
Meta	Data	Services	Programming

Programming	Meta	Data	Services	Applications
Microsoft®	SQL	Server™	2000	Meta	Data	Services	is	an	object-oriented
repository	technology	that	stores	and	manages	meta	data	for	SQL	Server	and	its
components.

Meta	Data	Services	is	intended	to	store	meta	data,	and	it	is	designed	to	be
integrated	with	other	tools	and	applications.	It	provides	a	solution	for	storing	and
managing	data	warehousing	definitions,	OLAP	definitions,	design	data	used	in
development	tools,	and	any	other	type	of	meta	data	used	in	a	programming
environment.

For	tool	and	application	developers,	Meta	Data	Services	provides	an	application
programming	interface	(API)	that	exposes	the	repository	engine	and	meta	model
definitions	that	the	engine	can	manipulate.

With	the	repository	API,	you	can	create	tools	and	applications	that	use	or
manipulate	data	already	stored	in	your	repository.	You	can	also	add	new	meta
data	to	accomplish	new	programming	objectives	that	you	define.

Meta	Data	Services	relies	on	information	models	to	provide	meta	data
definitions.	For	more	information	about	information	models,	see	Information
Model	Fundamentals	and	Information	Models.

The	following	topics	provide	more	information	about	how	to	deploy	Meta	Data
Services	in	a	programming	environment.

Topic Description
Repository	Object	Architecture Describes	repository	engine	objects

and	repository	type	information
objects	used	to	define	and	manage
meta	data.

Getting	Started	with	Meta	Data
Services

Describes	the	programming
environment	requirements	and
provides	basic	information	you
should	know	before	you	start.

Connecting	to	and	Configuring	a
Repository

Explains	how	to	create	and	open	a
repository	database.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Defining	Information	Models Describes	how	to	define	an
information	model.

Installing	Information	Models Explains	how	to	install	an
information	model	in	a	repository
database.

Programming	Information	Models Describes	how	to	program	against	an
information	model	in	a	repository
database.

Storage	Strategy	in	a	Repository
Database

Explains	how	Meta	Data	Services
stores	data	in	a	repository	database.

Using	OLE	DB	Scanner Describes	how	to	use	the	OLE	DB
Scanner	utility	that	imports	relational
data	into	a	repository	database.

Using	XML	Encoding Describes	how	to	use	the	Meta	Data
Coalition	(MDC)	Extensible	Markup
Language	(XML)	Encoding	feature
for	interchanging	meta	data	in	XML.

See	Also

Meta	Data	Services	Architecture

Meta	Data	Services	Overview

Repository	API	Reference

Model	Installer	Reference

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Meta	Data	Services	Programming

Repository	Object	Architecture
The	repository	object	architecture	shows	how	the	repository	application
programming	interfaces	relate	and	intersect.	The	object	model	is	organized	into
two	parts:	one	that	shows	the	repository	engine	objects,	and	another	that	shows
the	Repository	Type	Information	Model	(RTIM).

Because	the	repository	engine	can	accommodate	data	for	any	tool,	its	object
model	reflects	a	simple,	fundamental	view	of	data.	This	section	describes	the
fundamental	object	model	of	a	repository	and	introduces	the	classes	and
interfaces	that	you	use	to	implement	the	object	model	in	your	code.

The	following	topics	provide	more	information	about	the	repository	object
architecture.

Topic Description
Repository	Engine	Model Describes	the	classes	and	interfaces

that	drive	the	repository	engine.
Repository	Type	Information	Model Describes	the	classes	and	interfaces

that	define	information	models.
Understanding	the	RTIM	Through
Examples

Describes	the	components	of	an
information	model	using	examples.

See	Also

Designing	Information	Models

Repository	API

Repository	API	Reference

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

Repository	Engine	Model
The	repository	engine	model	represents	the	classes	and	interfaces	that	drive	the
repository	engine.	Together	with	the	Repository	Type	Information	Model
(RTIM),	the	repository	engine	model	makes	up	the	complete	repository	object
architecture.

The	repository	engine	model	includes	the	following	objects.

Object Description
Repository	Objects	and	Object
Versions

An	object	that	is	known	by	a
Microsoft®	SQL	Server™	2000
Meta	Data	Services	repository	and
managed	by	the	repository	engine

Repository	Session	Objects An	object	that	represents	a	repository
instance

Repository	Transaction	Objects An	object	that	provides	transaction
services	to	a	repository	database

Repository	Root	Objects An	object	that	provides	a	starting
point	for	information	model
navigation

Repository	Relationship	Objects An	object	that	defines	characteristics
of	a	repository	relationship

Repository	Collections A	collection	that	contains	objects	of	a
similar	type

Repository	Property	Objects An	object	that	defines	characteristics
of	a	repository	property

Repository	Workspace	Objects An	object	that	represents	a
workspace	in	a	repository

See	Also

Repository	Object	Architecture

Repository	Type	Information	Model

Meta	Data	Services	Programming

Repository	Objects	and	Object	Versions
A	repository	object	and	a	repository	object	version	are	either	COM	or
Automation	objects	known	to	a	Microsoft®	SQL	Server™	2000	Meta	Data
Services	repository	and	managed	by	the	repository	engine.	When	you	instantiate
any	object,	whether	it	is	a	repository	engine	object	or	an	object	from	your
information	model,	the	repository	engine	instantiates	it	as	a	repository	object	or
repository	object	version.

You	can	manipulate	a	repository	object	or	object	version	instance	from
Automation	or	COM	programs	using	RepositoryObject	and
RepositoryObjectVersion	classes,	objects,	and	interfaces.	You	can	also	use	the
ObjectCol	or	VersionCol	collections.

Working	with	RepositoryObject	Objects
Repository	Type	Information	Model	(RTIM)	objects	and	repository	engine
objects	are	instantiated	as	RepositoryObject	objects.

Working	with	RepositoryObjectVersion	Objects
All	object	instances	that	are	defined	by	your	information	model	can	be
instantiated	as	RepositoryObjectVersion	objects.	Doing	so	enables	you	to
create	and	manipulate	historical	or	alternate	versions	of	an	object	instance.	In
previous	releases	of	the	repository	engine,	both	versioned	and	nonversioned
objects	were	supported.	The	nonversioned	repository	object	is	maintained	for
backward	compatibility	purposes.	In	SQL	Server	2000	Meta	Data	Services,
object	instances	that	you	instantiate	as	either	repository	objects	or	repository
object	versions	are	functionally	equivalent.

By	default,	most	repository	interfaces	work	with	the	latest	version	of	an	object.
A	few	interfaces,	such	as	IRepositoryObjectVersion,	work	with	specific
versions	that	you	specify.

See	Also

IObjectCol	Interface

IRepositoryObject	Interface

IRepositoryObjectVersion	Interface

IVersionCol	Interface

Repository	Object	Architecture

RepositoryObject	Class

RepositoryObject	Object

RepositoryObjectVersion	Class

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

Repository	Session	Objects
The	repository	session	object	represents	an	instance	of	a	single	repository.
Within	a	single	repository,	you	can	have	multiple	information	models.	Each
repository	instance	is	associated	with	one	repository	database.

The	repository	session	object	supports	a	database	connection,	transactions,	error
handling,	workspaces,	and	object	instantiation.	A	repository	session	object	is
created	and	managed	by	the	repository	engine.	It	is	part	of	the	repository	engine
model.

You	can	manipulate	a	repository	instance	from	Automation	or	COM	programs
using	the	Repository	object,	IRepository	interface,	or	the	Repository	class.

See	Also

IRepository	Interface

Repository	Class

Repository	Object

Repository	Object	Architecture

Meta	Data	Services	Programming

Repository	Transaction	Objects
A	repository	transaction	object	handles	all	transactions	between	a	Microsoft®
SQL	Server™	2000	Meta	Data	Services	repository	instance	and	a	repository
database.	Whenever	you	insert,	delete,	or	update	data	in	your	repository
database,	you	do	so	by	way	of	a	transaction	object.	The	repository	transaction
object	also	tracks	the	status	of	a	transaction,	and	it	supports	options	that	allow
you	to	instruct	repository	engine	operations.

A	transaction	object	is	created	and	managed	by	the	repository	engine.	It	is	part	of
the	repository	engine	model.

You	can	manipulate	a	repository	transaction	from	Automation	or	COM	programs
using	the	RepositoryTransaction	object,	the	Repository	class,	or	the
IRepositoryTransaction	and	IRepositoryTransaction2	interfaces.

See	Also

IRepositoryTransaction	Interface

IRepositoryTransaction2	Interface

Repository	Class

Repository	Object	Architecture

RepositoryTransaction	Object

Meta	Data	Services	Programming

Repository	Root	Objects
The	root	object	is	the	top-level	object	in	a	repository.	There	is	one	root	object	for
each	repository	instance.	It	is	the	object	from	which	all	navigation	begins.	All
information	models	and	workspaces	in	a	repository	are	associated	with	the	root
object.

As	with	any	repository	object,	the	root	object	can	have	any	number	of
relationships	with	other	objects.	Each	relationship	connecting	the	root	object	to
other	objects	must	conform	to	a	relationship	type.	The	relationship	type	to	which
these	relationships	conform	is	created	by	the	information	model	creator.	The
following	figure	shows	seven	such	relationships.

The	root	object	occupies	a	special	role	that	spans	both	parts	of	the	repository
object	architecture.	In	the	Repository	Type	Information	Model	(RTIM),	it	is	the
starting	point	for	navigating	to	your	information	models.	However,	it	also
belongs	to	the	Repository	Engine	Object	model	because	it	services	the	repository
engine.	In	addition,	it	does	not	describe	type	information	to	the	same	extent	that
other	RTIM	objects	do.	Although	you	are	not	prohibited	from	doing	so,	it	is
better	to	avoid	setting	properties	on	the	repository	root	object.

You	can	access	a	repository	root	object	from	Automation	or	COM	programs
using	the	ReposRoot	object,	the	ReposRoot	class,	or	the	IReposRoot	interface.

See	Also

Repository	Object	Architecture

ReposRoot	Class

ReposRoot	Object

Meta	Data	Services	Programming

Repository	Relationship	Objects
A	relationship	is	an	association	between	two	objects.	Relationships	bind	objects
together	and	give	structure	to	a	repository	and	an	information	model.

In	a	repository	and	in	all	subsequent	information	models,	objects	are	connected
to	each	other	through	a	network	of	relationships.	For	example,	in	a	model	that
depicts	a	database	application,	the	association	between	a	schema	and	its	table	is
a	relationship.	Furthermore,	the	association	between	a	table	and	its	columns,	and
a	column	and	its	data	type,	are	also	relationships.	In	a	repository,	the	connection
between	one	information	model	and	another	is	also	a	relationship.

All	relationships	are	accessed	by	way	of	a	collection.	You	can	only	access	a
relationship	through	its	collections.	Understanding	how	collections	and
relationships	correspond	is	an	important	prerequisite	to	programming	an
information	model.	For	more	information	about	collections,	see	Repository
Collections.

The	following	topics	provide	more	detail	about	the	roles	that	a	relationship
assumes.

Topic Description
Relationship	Structure:	Origin	and
Destination

Explains	how	origin	and	destination
objects	provide	the	structure	of	a
relationship.

Relationship	Navigation:	Source	and
Target

Explains	how	source	and	target
objects	provide	the	navigation	of	a
relationship.

You	can	manipulate	repository	relationship	objects	from	Automation	or	COM
programs	using	the	Relationship	object,	the	Relationship	class,	or	the
IRelationship	and	IRelationshipCol	interfaces.

See	Also

Example:	Associating	Data	with	RTIM

IRelationship	Interface

IRelationshipCol	Interface

Relationship	Class

Relationship	Object

Repository	Object	Architecture

Meta	Data	Services	Programming

Relationship	Structure:	Origin	and	Destination
In	every	relationship,	one	object	participates	as	the	origin	and	one	object
participates	as	the	destination.	The	terms	origin	and	destination	refer	to	the
relative	roles	of	the	two	objects.	Together,	they	define	the	primary	direction	of
the	relationship.	For	any	given	relationship,	the	assignment	of	one	particular	role
as	the	origin	and	the	other	role	as	the	destination	is	arbitrary	to	the	repository
engine.	In	practice,	however,	the	developer	typically	assigns	the	origin	role	to
the	object	that	acts	or	operates	on	the	other	object.

For	example,	in	a	relationship	of	the	type	schema	has	tables,	Schema	is	the
origin	and	Tables	is	the	destination.	In	the	relationship	table	has	columns,
Tables	is	origin	and	Columns	is	the	destination.	Notice	that	Tables	can	be	both
destination	and	origin,	depending	on	its	role	in	each	relationship.

Origin	and	destination	assignments	create	the	structure	of	an	information	model.
Within	a	single	origin-destination	pairing,	the	origin	and	destination	assignments
of	the	two	objects	are	fixed	after	the	assignments	are	made.

See	Also

Relationship	Navigation:	Source	and	Target

Repository	Object	Architecture

Repository	Relationship	Objects

Meta	Data	Services	Programming

Relationship	Navigation:	Source	and	Target
You	use	relationships	to	navigate	through	repository	contents.	From	within	a
relationship,	you	can	retrieve	either	of	the	two	repository	objects	that	form	the
relationship.

In	a	relationship,	navigation	always	moves	from	a	source	object	towards	a	target
object.	Unlike	origin	and	destination,	source	and	target	assignments	are
dynamic;	the	assignments	vary	depending	on	where	you	want	to	go.	Because
you	can	navigate	back	and	forth	across	a	network	of	objects,	the	source	object	is
simply	where	navigation	starts,	and	the	target	is	where	navigation	concludes.

Source	and	target	assignments	apply	to	instantiated	objects	for	the	duration	of	a
navigation	step.	Where	origin	and	destination	tend	to	reflect	an	enduring,	real-
world	relationship	that	is	represented	in	a	model,	source	and	target	assignments
exist	only	to	provide	navigation	direction	from	one	object	to	the	next.

See	Also

Navigation	Overview

Relationship	Structure:	Origin	and	Destination

Repository	Object	Architecture

Repository	Relationship	Objects

Meta	Data	Services	Programming

Repository	Collections
A	repository	collection	is	a	set	of	one	or	more	objects	that	implement	the	same
interface.	Repository	collections	are	instantiated	by	the	repository	engine.	State
information	about	a	collection	is	stored	in	a	repository	so	that	you	can	call	the
object	in	the	same	state	in	which	you	last	left	it.

Collections	are	used	to	define	a	relationship	between	two	or	more	objects,	to
support	navigation,	and	to	manipulate	a	set	of	similar	objects	as	a	unit.

Collections	always	reflect	information	about	some	kind	of	relationship.	An
object	typically	has	multiple	collections,	reflecting	its	association	with	many
kinds	of	objects.	Furthermore,	because	an	information	model	is	a	network	of
objects,	navigation	follows	a	series	of	relationships	by	traversing	collections.

All	collections	are	fundamentally	the	same.	However,	the	repository	API
provides	support	for	creating	a	variety	of	general-purpose	and	special-purpose
collections.	The	kind	of	collection	that	you	create	is	determined	by	the	COM
interfaces	and	Automation	objects	you	use	to	materialize	the	collection.	Each
collection	exposes	a	set	of	methods	and	properties	designed	to	support	the
purpose	of	the	collection	type.

For	more	information	about	collections,	see	Defining	Relationships	and
Collections	and	Understanding	Collections.

See	Also

ITargetObjectCol	Interface

ObjectCol	Class

ObjectCol	Object

RelationshipCol	Class

RelationshipCol	Object

Repository	Object	Architecture

TransientObjectCol	Class

TransientObjectCol	Object

VersionCol	Class

VersionCol	Object

Meta	Data	Services	Programming

Repository	Property	Objects
A	repository	property	object	stores	the	persistent	state	of	a	repository	object	or	a
repository	object	version.

You	can	use	a	repository	property	object	to	access	or	manipulate	any	repository
object	in	a	generic	way.	For	example,	if	you	are	creating	a	browsing	tool,	you
can	use	repository	property	objects	to	populate	the	browser.	The	data	that	is
returned	to	you	is	not	tied	to	specific	object	instances.	However,	by	using	the
information	that	is	returned,	you	can	retrieve	more	specific	data	about	an	object.

You	can	access	a	repository	property	object	from	Automation	or	COM	programs
using	the	ReposProperty	object,	the	ReposProperty	class,	or	the
IReposProperty	or	IReposProperty2	interfaces.

To	associate	or	access	multiple	properties	of	a	repository	object	or	repository
object	version,	use	the	ReposProperties	collection.

To	work	with	large	text	or	image	files,	use	IReposPropertyLarge.

See	Also

IReposProperty	Interface

Repository	Object	Architecture

ReposProperty	Class

ReposProperty	Object

ReposProperties	Class

ReposProperties	Object

Meta	Data	Services	Programming

Repository	Workspace	Objects
A	repository	workspace	is	a	subset	of	a	shared,	central	repository.	You	can	define
workspaces	to	materialize	an	information	model	as	it	existed	at	a	specific	point
in	time,	or	to	create	a	new	space	for	furthering	application	development	without
impacting	the	current	code	base.

A	workspace	object	exposes	methods	that	allow	you	to	allocate,	populate,	and
manage	a	workspace.	You	can	only	have	one	version	of	each	object	assigned	to	a
workspace	at	a	time.

A	workspace	object	is	created	and	managed	by	the	repository	engine.	It	is	part	of
the	repository	engine	model.

You	can	access	a	workspace	object	from	Automation	or	COM	programs	using
the	Workspace	object,	the	Workspaces	collection	of	the	ReposRoot	object,	the
Workspace	class,	or	the	IWorkspace	or	IWorkspaceItem	interfaces.

See	Also

IWorkspace	Interface

IWorkspaceItem	Interface

Managing	Workspaces

Repository	Object	Architecture

Workspace	Class

Workspace	Object

Meta	Data	Services	Programming

Repository	Type	Information	Model
The	Repository	Type	Information	Model	(RTIM)	is	the	object	model	that	defines
how	information	models	are	stored	in	a	repository.

RTIM	objects	define	the	object	classes	of	an	information	model.	RTIM	objects
are	instantiated	by	the	repository	engine	as	repository	objects	or	repository
object	versions.	RTIM	objects	can	also	be	instantiated	as	members	of	a
repository	collection.

When	you	model	a	tool	or	application	in	an	information	model,	the	definitions
must	conform	to	the	RTIM	objects	described	in	this	section.	Together	with	the
repository	engine	model,	the	RTIM	makes	up	the	complete	repository	object
architecture.

The	following	topics	describe	the	parts	of	the	RTIM	model.

Object Description
Repository	Type	Library	Objects An	object	that	defines	the	scope	of	a

single	information	model
Class	Definition	Objects An	object	that	defines	a	class
Interface	Definition	Objects An	object	that	defines	an	interface
Property	Definition	Objects An	object	that	defines	a	property
Method	Definition	Objects An	object	that	defines	a	method
Parameter	Definition	Objects An	object	that	defines	a	parameter	of

a	method
Relationship	Definition	Objects An	object	that	defines	a	relationship

type
Collection	Definition	Objects An	object	that	defines	a	collection

type
Alias	Objects An	object	that	defines	an	alias	for

any	named	object
Enumeration	Definition	Objects An	object	that	defines	an

enumeration
Script	Definition	Objects An	object	that	defines	a	script

See	Also

Repository	Object	Architecture

Meta	Data	Services	Programming

Repository	Type	Library	Objects
A	repository	type	library	object	defines	the	scope	of	an	information	model.	If
you	are	working	with	a	predefined	information	model	or	a	modeling	tool,
repository	type	library	objects	are	created	for	you	when	you	install	the
information	model.	If	you	are	creating	type	information	programmatically,	you
must	create	a	repository	type	library	object	to	contain	your	type	definitions.

You	can	access	a	repository	type	library	object	from	Automation	or	COM
programs	using	the	ReposTypeLib	object,	the	ReposTypeLib	class,	or	the
IReposTypeLib	or	IReposTypeLib2	interfaces.

See	Also

IReposTypeLib	Interface

Repository	Object	Architecture

ReposTypeLib	Class

ReposTypeLib	Object

Meta	Data	Services	Programming

Class	Definition	Objects
A	class	definition	object	defines	a	class.	In	a	Microsoft®	SQL	Server™	2000
Meta	Data	Services	repository,	a	class	definition	object	exposes	properties,	a
collection	of	interfaces,	and	a	collection	of	scripts.

The	following	figure	shows	some	classes	and	the	interfaces	they	implement.	In
the	figure,	the	Chapter	class	implements	two	interfaces,	ISpellingChecker	and
IPagination.	Both	the	Paragraph	class	and	the	Chapter	class	implement	the
ISpellingChecker	interface.

You	can	access	a	class	definition	object	from	Automation	or	COM	programs
using	the	ClassDef	object,	the	ClassDef	class,	or	the	IClassDef	or	IClassDef2
interfaces.

See	Also

ClassDef	Class

ClassDef	Object

IClassDef	Interface

Repository	Object	Architecture

Meta	Data	Services	Programming

Interface	Definition	Objects
In	Automation	programs,	each	object	exposes	its	properties,	collections,	and
behaviors	through	interfaces.	To	have	the	instances	of	a	class	exhibit	certain
behaviors	or	have	certain	properties	or	collections,	you	implement	the
appropriate	interface	for	that	class.

The	Repository	Type	Information	Model	(RTIM)	accommodates	such	data	by
letting	you	describe	interfaces.	Each	interface	can	have	a	set	of	classes	that
implements	it,	and	each	class	can	have	a	set	of	interfaces	that	it	implements.

In	a	Microsoft®	SQL	Server™	2000	Meta	Data	Services	repository,	an	interface
definition	object	exposes	properties,	an	ancestors	collection,	a	descendants
collection,	and	a	members	collection.	It	also	provides	for	interface	implication
and	script	support.

You	can	access	an	interface	definition	object	from	Automation	or	COM
programs	using	the	InterfaceDef	object,	the	InterfaceDef	class,	or	the
IInterfaceDef	or	IInterfaceDef2	interfaces.

See	Also

IInterfaceDef	Interface

InterfaceDef	Class

InterfaceDef	Object

Repository	Object	Architecture

Meta	Data	Services	Programming

Alias	Objects
An	alias	object	is	a	derived	member	of	an	interface.	This	object	provides	support
for	delegating	members	of	an	interface	to	other	interfaces.

You	can	access	an	alias	object	from	Automation	or	COM	programs	using	the
Alias	object,	the	Alias	class,	or	the	IInterfaceMember2	interface.

See	Also

Alias	Class

Alias	Object

IInterfaceMember2	Interface

Repository	Object	Architecture

Meta	Data	Services	Programming

Relationship	Definition	Objects
A	relationship	definition	object	defines	a	relationship	type.	You	can	define	a
relationship	type	for	relationship	characteristics	that	repeat.	For	example,	table
has	columns	represents	a	type	of	relationship	that	repeats	for	every	table	that	has
columns.	This	relationship	can	be	used	to	describe	how	LoanTable	relates	to
LoanID,	how	CustomerTable	relates	to	CustomerName,	and	how	OrderTable
relates	to	OrderDate.

If	you	are	creating	an	information	model	programmatically,	you	should	create	a
relationship	definition	object	for	every	relationship	that	you	implement.	For
more	information,	see	Defining	a	Relationship.

If	you	have	relationship	definition	objects	that	conform	to	the	same	template,
you	can	define	a	relationship	collection	to	represent	the	set.	For	more
information,	see	Collection	Definition	Objects.

You	can	access	a	relationship	definition	object	from	Automation	or	COM
programs	using	the	RelationshipDef	object,	the	RelationshipDef	class,	or	the
IReposTypeInfo	interface.

See	Also

Example:	Associating	Data	with	RTIM

IReposTypeInfo	Interface

RelationshipDef	Class

RelationshipDef	Object

Repository	Object	Architecture

Meta	Data	Services	Programming

Collection	Definition	Objects
A	collection	definition	is	meta	data	about	specific	kinds	of	collections.	The
collection	definition	object	defines	the	characteristics	of	a	collectionand	provides
a	template	to	which	a	collection	conforms.

Typically,	a	collection	contains	a	set	of	identically	structured	objects.	You	can
use	a	collection	definition	object	to	create	object	and	relationship	collections	that
provide	your	tool	or	application	with	a	way	to	manipulate	sets	of	objects	and
relationships	as	a	single	unit.	An	object	collection	is	a	set	of	similar	objects.	A
relationship	collection	is	a	set	of	similar	relationships.

In	the	following	example,	the	right	column	(Data)	lists	some	collections	by
name,	while	the	kinds	of	collections	are	in	the	left	column	under	Kind	of	Data.
The	Kind	of	Data	column	indicates	the	templates	to	which	the	items	in	the	Data
column	must	conform.	Because	the	items	in	the	Data	column	are	collections,	the
items	in	the	Kind	of	Data	column	are	called	collection	types	and	they	conform
to	a	collection	definition.

The	most	important	way	that	a	collection	can	conform	to	a	collection	definition
is	in	its	size.	That	is,	a	collection	definition	describes	the	size	limitations	on	any
collection	conforming	to	it.	In	the	following	table,	each	instance	of	the	collection
definition	publisher-of-book	describes	the	collection	of	publishers	of	a	particular
book.	A	typical	instance	of	this	collection	definition	is	publisher-of-Inside-OLE.
In	the	table,	each	book	has	only	one	publisher.

The	collection	definition	can	define	this	restriction.	That	is,	the	publisher-of-
book	collection	definition	can	impose	a	maximum	size	of	one	on	each	collection
conforming	to	it.	Similarly,	the	collection	type	can	define	a	minimum	size
restriction.

The	following	list	contains	some	other	examples:

Publisher-of-book	(zero,	one).

The	minimum	size	is	zero	because	not	every	book	has	a	publisher.	The
maximum	size	is	one	because	no	book	can	have	two	or	more	publishers.

Books-of-publisher	(zero,	many).

The	minimum	size	is	zero	because	a	publisher	can	exist	before	it
actually	publishes	any	books.	The	maximum	size	is	many	because	some
publishers	can	publish	more	than	one	book.

Books-of-person	(zero,	many).

The	minimum	size	is	zero	because	not	every	person	is	an	author.	The
maximum	size	is	many	because	some	people	can	write	more	than	one
book.

Authors-of-book	(zero,	many).

The	minimum	size	is	zero	because	the	authors	of	some	books	are
anonymous.	The	maximum	size	is	many	because	more	than	one	person
can	coauthor	a	book.

You	can	access	a	collection	definition	object	from	Automation	or	COM
programs	using	the	CollectionDef	object,	the	CollectionDef	class,	or	the
ICollectionDef	interface.

See	Also

CollectionDef	Class

CollectionDef	Object

Defining	a	Collection

ICollectionDef	Interface

Repository	Object	Architecture

Understanding	Collections

Meta	Data	Services	Programming

Property	Definition	Objects
A	property	definition	object	defines	a	property.	Each	property	has	an	interface
that	exposes	it,	and	each	interface	can	expose	many	properties.

In	a	Microsoft®	SQL	Server™	2000	Meta	Data	Services	repository,	a	property
definition	object	exposes	properties,	a	collection	of	enumeration	objects,	a
collection	of	scripts,	and	a	collection	of	aliases.

You	can	define	properties	that	provide	enumerated	values	or	that	use	script	to
validate	a	property	value.	You	can	also	reuse	a	property	in	a	new	context	by
assigning	it	an	alias.

In	the	following	example,	the	IParagraph	interface	exposes	two	properties,	Left
Margin	and	Right	Margin.	Both	Left	Margin	and	Right	Margin	are
represented	in	a	repository	as	property	definition	objects.

You	can	access	a	property	definition	object	from	Automation	or	COM	programs
using	the	PropertyDef	object,	the	PropertyDef	class,	or	the	IPropertyDef	and
IPropertyDef2	interfaces.

See	Also

IPropertyDef	Interface

PropertyDef	Class

PropertyDef	Object

Repository	Object	Architecture

Meta	Data	Services	Programming

Enumeration	Definition	Objects
An	enumeration	definition	object	exposes	a	fixed	set	of	constant	values.	You	can
use	an	enumeration	definition	object	to	create	a	property	that	supports	a
predefined	set	of	values	to	select	from,	or	a	selection	list	that	provides	data
values	to	a	user	(for	example,	a	selection	of	countries	to	choose	from).

To	define	a	value	list,	you	use	the	EnumerationValueDef	object.

You	can	access	an	enumeration	definition	object	from	Automation	or	COM
programs	using	the	EnumerationDef	object,	the	EnumerationDef	class,	or	the
IEnumerationDef	interface.

See	Also

EnumerationDef	Class

EnumerationDef	Object

EnumerationValueDef	Object

IEnumerationDef	Interface

Repository	Object	Architecture

Meta	Data	Services	Programming

Method	Definition	Objects
An	interface	can	expose	one	or	more	methods.	A	method	definition	object
defines	a	method	that	you	can	attach	to	an	interface.	You	can	enumerate	the
methods	for	each	interface	of	an	information	model.	Each	method	can	have	one
interface	that	exposes	it,	and	each	interface	can	expose	many	methods.	After	you
define	a	method,	you	can	define	parameters	and	scripts	to	associate	with	the
method.

The	following	figure	shows	that	the	IParagraph	interface	exposes	the
Reformat	and	ConvertIndentation	methods.

You	can	access	a	method	definition	object	from	Automation	or	COM	programs
using	the	MethodDef	object,	the	MethodDef	class,	or	the	IMethodDef
interface.

See	Also

Defining	Methods

IMethodDef	Interface

MethodDef	Class

MethodDef	Object

Repository	Object	Architecture

Meta	Data	Services	Programming

Parameter	Definition	Objects
A	parameter	definition	object	defines	a	parameter	of	a	method.	You	can	associate
multiple	parameters	with	a	single	method.	You	can	also	reuse	a	parameter	on
multiple	methods.

You	can	access	a	parameter	definition	object	from	Automation	or	COM
programs	using	the	ParameterDef	object,	the	ParameterDef	class,	or	the
IParameterDef	interface.

See	Also

Defining	a	Parameter

IParameterDef	Interface

ParameterDef	Class

ParameterDef	Object

Repository	Object	Architecture

Meta	Data	Services	Programming

Script	Definition	Objects
A	script	definition	object	defines	an	implementation	of	a	script	in	an	information
model.

You	can	access	a	script	definition	object	from	Automation	or	COM	programs
using	the	ScriptDef	object,	the	ScriptDef	class,	or	the	IScriptDef	interface.

See	Also

Defining	Script	Objects

IScriptDef	Interface

Repository	Object	Architecture

ScriptDef	Class

ScriptDef	Object

Meta	Data	Services	Programming

Understanding	the	RTIM	Through	Examples
This	section	uses	examples	to	illustrate	the	objects	of	the	Repository	Type
Information	Model	(RTIM).

In	addition	to	the	examples	provided	here,	you	can	review	additional	topics	to
further	your	understanding	of	information	model	design.	For	more	information,
see	Designing	Information	Models.

Topic Description
Example:	Associating	Data	with
RTIM

Describes	how	real-world	data
corresponds	to	RTIM	objects.

Example:	A	Finished	Information
Model

Provides	a	description	of	a	finished
information	model.

See	Also

Repository	Object	Architecture

Meta	Data	Services	Programming

Example:	Associating	Data	with	RTIM
A	Microsoft®	SQL	Server™	2000	Meta	Data	Services	repository	contains	data
expressed	as	objects	and	relationships,	along	with	their	respective	property
values.	The	following	figure	shows	some	typical	data	for	employees,	projects,
and	subprojects.	More	details	about	this	figure	are	provided	later	in	this	topic.

Mapping	Real-World	Data	to	RTIM	objects
The	preceding	figure	includes	all	the	typical	kinds	of	data	you	will	find	in	a
Meta	Data	Services	repository.	You	can	use	the	figure	to	understand	the	classes
in	the	repository	object	architecture.	In	the	figure,	you	can	see	instances	of	the
following	classes.

Class Description
Repository Describes	a	repository	session.	The	figure	as	a	whole

represents	an	instance	of	the	Repository	class.
RepositoryObject Describes	a	repository	object.	The	figure	shows	12

objects,	one	of	which	is	the	root	object;	each	additional
instance	is	a	dot.

ReposRoot Describes	the	root	object.	The	root	object	is	the	top-
level	object	in	a	repository	from	which	navigation
begins.	The	root	object	can	have	any	number	of
relationships	with	other	objects.	The	figure	shows
seven	such	relationships.

Relationship Describes	an	association	between	two	objects.	The
figure	shows	15	relationships;	each	relationship	is	an
arrow.

RelationshipCol Describes	a	set	of	similar	relationships.	The	items	in	a
relationship	collection	must	have	the	same	source,	and
the	relationships	must	be	the	same	type

For	example,	consider	the	relationships	between

Projects	and	Subprojects.	The	Genome	project	is
related	to	Research	Design	and	to	Splicing	Algorithms.
Both	relationships	have	the	same	source	(Genome)	and
the	same	type	(includes),	thereby	meeting	the	criteria
for	a	relationship	collection.

Consider	a	second	relationship	collection:	the	set	of
Mike's	assignments	to	subprojects.	In	the	figure,	this
relationship	collection	appears	as	a	pair	of	arrows
emerging	from	the	dot	representing	Mike.

TargetObjectCol Describes	a	set	of	objects.	For	example,	one	set	of
objects	is	the	set	of	subprojects	on	which	Mike	works;
the	set	contains	two	items.

Drilling	Down	into	Relationship	Roles
Understanding	roles	in	a	relationship	is	one	of	the	more	difficult	aspects	to
information	modeling.	The	following	section	draws	out	some	of	the	complexity
of	relationships	by	expanding	on	the	example.

Same	Object	in	Same	Role
In	the	relationship	collection	shown	in	the	following	figure,	every	relationship
uses	the	object	describing	Mike	as	the	performer	of	the	work	on	a	subproject.
The	object	describing	Mike	is	the	origin	object	in	this	relationship.

In	contrast,	the	set	of	relationships	shown	in	the	following	figure	does	not
constitute	a	collection	because	there	is	no	object	that	all	the	relationships	use	in
the	same	role.	In	fact,	the	relationships	have	no	object	in	common,	regardless	of
role.

Common	Object	in	Different	Roles
The	following	figure	shows	employees	and	their	managers.

The	set	of	relationships	shown	in	the	following	figure	does	not	constitute	a	valid
relationship	collection.

Every	relationship	in	the	preceding	figure	is	of	the	same	relationship	type,	the
manages	type.	All	the	relationships	have	an	object	in	common:	the	object
describing	Frank.	One	relationship,	however,	has	Frank	in	the	role	of	person
being	managed,	whereas	the	other	relationships	have	Frank	in	the	role	of	person
who	is	managing	someone	else.	Because	the	relationships	do	not	all	use	the	same
object	in	the	same	role,	they	do	not	constitute	a	valid	relationship	collection.

The	three	relationships	in	the	following	figure	do	constitute	a	valid	collection
because	Frank	is	in	the	manager	role	for	all	three	relationships.

See	Also

Repository	Object	Architecture

Understanding	the	RTIM	Through	Examples

Meta	Data	Services	Programming

Example:	A	Finished	Information	Model
The	following	figure	shows	a	complete	information	model	that	illustrates	the
various	parts	of	the	Repository	Type	Information	Model	(RTIM).	Details	about
this	figure	are	provided	later	in	this	topic.

The	information	model	in	the	preceding	figure	maintains	data	about	files	and
directories.	Thus,	there	are	two	classes,	File	and	Directory.

There	are	three	interfaces:

IFile	exposes	behavior	unique	to	files.	Thus,	only	the	File	class
implements	the	IFile	interface.

IDirectory	exposes	behavior	unique	to	directories.	Thus,	only	the
Directory	class	implements	the	IDirectory	interface.

IDirectoryItem	exposes	behavior	appropriate	to	any	object	that	can
appear	as	an	item	within	a	directory.	Since	files	can	be	contained	in
directories,	the	File	class	implements	IDirectoryItem.	Similarly,
because	directories	can	be	contained	within	directories,	the	Directory
class	implements	IDirectoryItem.

There	is	one	relationship	type:	the	Containment	relationship	type.

There	are	two	collection	types	associated	with	the	Containment	relationship:

Collections	that	conform	to	the	items-of-directory	collection	type	are
origin	collections	for	Containment	relationships.	The	IDirectory
interface	exposes	this	collection.

Collections	that	conform	to	the	directory-of-item	collection	type	are
destination	collections	for	Containment	relationships.	The
IDirectoryItem	interface	exposes	this	collection.

The	IFile	interface	exposes	one	property:	the	Size	property.

The	IDirectoryItem	interface	exposes	one	property:	the	ModificationDate
property.

The	IDirectory	interface	exposes	one	property:	the	ChildCount	property.

In	this	example,	the	information	model	exposes	no	methods	through	any	of	its
interfaces.

See	Also

Repository	Object	Architecture

Understanding	the	RTIM	Through	Examples

Meta	Data	Services	Programming

Designing	Information	Models
When	you	design	a	software	tool,	you	must	articulate	the	kinds	of	data	that	the
tool	will	manipulate.	You	can	store	the	definitions	of	these	kinds	of	data,	called
types,	in	the	repository	by	creating	an	information	model.	Each	information
model	is,	in	effect,	an	object	model	represented	in	the	repository	as	data.

This	section	uses	the	example	of	a	bookseller's	database	to	introduce	information
models	and	it	describes	how	the	repository	engine	can	represent	them	as	data.
You	can	use	this	example	as	a	way	to	understand	how	to	design	an	information
model.

Topic Description
Understanding	Application
Data

Describes	how	to	formulate	application
structures	based	on	application	data

Visualizing	Data	and	Meta
Data

Describes	techniques	you	can	use	to
understand	application	structures

Depicting	Relationships
Between	Objects

Describes	how	to	identify	relationships

How	Relationships	Conform
to	Relationship	Types

Describes	how	relationships	conform	to
relationship	types

Understanding	Collections Discusses	collection	types	and	how	they
relate

Understanding	Relationship
Roles

Discusses	the	distinctions	in	relationship
roles	and	how	those	distinctions	determine
relationship	collections

See	Also

Repository	Object	Architecture

Understanding	the	RTIM	Through	Examples

Meta	Data	Services	Programming

Understanding	Application	Data
You	can	begin	planning	your	information	model	by	answering	these	questions:

What	kinds	of	objects	will	the	tool	store?	That	is,	what	are	the	classes	to
which	the	tool's	objects	must	conform?

What	kinds	of	relationships	will	the	tool	store?	That	is,	what	are	the
relationship	types	that	describe	how	objects	can	be	related?

What	properties	apply	to	the	objects	of	each	class	or	the	relationships	of
each	relationship	type?

You	can	think	of	any	application	structure	as	objects,	properties,	and
relationships.	When	you	store	data	about	your	tool	or	application	in	a	repository,
you	can	create	objects,	indicate	how	those	objects	are	related	to	each	other,	and
define	properties	for	each	of	those	objects	or	relationships.	To	create	the
hypothetical	bookseller's	tool,	you	can	do	the	following:

Create	objects	such	as:

Book,	to	store	instance	data	like	Moby	Dick	(a	book)	and
Inside	OLE	(a	book)

Publisher,	to	store	instance	data	like	Microsoft	Press®	(a
publisher)

Person,	to	store	instance	data	like	Kraig	Brockschmidt	(a
person)	or	Herman	Melville	(a	person)

Indicate	how	those	objects	are	related:

Herman	Melville	(a	person)	wrote	Moby	Dick	(a	book).	Kraig
Brockschmidt	(a	person)	wrote	Inside	OLE	(a	book).	These
relationships	are	the	same	and	can	be	described	as	Authorship.

Microsoft	Press	(a	publisher)	published	Inside	OLE	(a	book).
This	relationship	can	be	described	as	Publication.

Decide	which	properties	you	need	to	capture	additional	information	for
each	object:

Birthday	is	a	property	that	can	describe	a	person.	(The
birthday	of	Herman	Melville	is	November	12,	1819.)

Address	is	a	property	that	can	describe	a	publisher.	(The
address	of	Microsoft	Press	is	One	Microsoft	Way.)

You	can	also	decide	which	properties	you	need	for	relationships:

Year	of	Publication	is	a	property	that	can	describe	the
Publication	relationship.	(The	year	of	publication	for	Inside
OLE	is	1995.)

The	following	figure	summarizes	this	data.	The	figure	shows	typical	data	about
specific	books,	authors,	and	publishers.	Because	the	data	is	typical,	it	helps	you
visualize	the	kinds	of	data	that	your	model	must	accommodate.

See	Also

Designing	Information	Models

Meta	Data	Services	Programming

Visualizing	Data	and	Meta	Data
This	section	presents	tabular	and	graphic	techniques	for	visualizing	data.

After	you	identify	the	objects,	property	values,	and	relationships	in	your	tool	or
application,	you	can	use	tabular	and	graphic	techniques	to	visualize	your	data.
These	powerful	techniques	can	help	you	understand	the	types	of	data	you	need.
The	following	topics	describe	how	to	visualize	data	and	meta	data.

Topic Description
Ways	to	List	Data Describes	visualization	techniques	for

understanding	tool	and	application	data
Ways	to	List	Meta	Data Describes	visualization	techniques	for

transforming	your	understanding	of	tool	and
application	data	into	an	information	model	design

See	Also

Designing	Information	Models

Meta	Data	Services	Programming

Ways	to	List	Data
The	following	table	lists	data	about	books,	people,	and	publishers.	The	first
column	(Kind	of	Data)	provides	labels	for	groups	of	data:	books,	people,	and
publishers.	The	actual	data	appears	in	the	table's	second	column	(Data).

Expressed	graphically,	the	data	in	the	table	is	shown	in	the	following	figure.

The	following	table	expands	the	preceding	table	to	include	relationships.	Again,
the	table	uses	a	convenient	grouping	of	the	data.	The	first	column	labels	each
group.

The	labels	in	the	left	column	(Kind	of	Data)	are	one	example	of	how	the	object
model	can	store	the	bookseller's	data.	The	labels	identify	three	classes	(Book,
Person,	and	Publisher)	and	two	relationship	types	(Authorship	and
Publication).	Because	it	is	a	list,	you	can	think	of	the	entries	in	the	Kind	of
Data	column	as	data.	Because	it	is	data,	you	can	create	another	table	in	which
this	information	appears	in	the	Data	column.

In	the	Data	column,	each	entry	describes	exactly	one	thing,	either	an	object	or	a
relationship.	Each	entry	in	the	Data	column	describes	a	particular	book,	author,
publisher,	authorship,	or	publication.

The	following	figure	contains	arrows	to	show	the	relationships	in	the	preceding
table.

See	Also

Designing	Information	Models

Meta	Data	Services	Programming

Ways	to	List	Meta	Data
The	repository	engine	stores	meta	data	as	data.	This	section	uses	data
visualization	techniques	to	demonstrate	how	to	model	meta	data.

The	following	table	lists	and	organizes	the	types	of	the	bookseller's	object
model.	The	left	column	contains	convenient	groupings	of	like	information,	and
the	right	column	(Data)	contains	the	information	itself.	The	Data	column
describes	particular	classes	(such	as	Book	and	Person)	and	particular
relationship	types	(such	as	Authorship	and	Publication).	The	Kind	of	Data
column	thus	reveals	a	portion	of	the	object	model	for	storing	classes	and
relationship	types.

The	following	table	enlarges	the	preceding	table	to	include	properties.

In	the	preceding	table,	the	information	in	the	Data	column	is	equivalent	to	the
information	in	the	following	figure.	The	following	figure	shows	typical	data
about	a	typical	object	model,	the	bookseller's	object	model.

See	Also

Designing	Information	Models

Meta	Data	Services	Programming

Depicting	Relationships	Between	Objects
To	depict	relationships	between	objects,	use	arrows	as	shown	in	the	following
figure.

Diagrams	of	meta	data	use	these	standard	conventions:

Show	objects	as	dots.

Show	relationships	as	arrows.

Show	kinds	of	objects	as	labeled	rectangles.

The	tabular	equivalent	of	this	graphical	presentation	of	data	is	shown	in	the
following	table.

The	labels	in	the	Kind	of	Data	column	constitute	a	portion	of	an	object	model
for	storing	object	models.	The	object	model	for	storing	object	models	is	called
the	Repository	Type	Information	Model	(RTIM).

Note		Each	entry	in	the	Data	column	describes	only	one	thing:	either	an	object
or	a	relationship.	The	23	entries	in	the	Data	column	correspond	to	the	23	dots
and	arrows	in	the	preceding	figure.

See	Also

Designing	Information	Models

Meta	Data	Services	Programming

How	Relationships	Conform	to	Relationship	Types
When	you	store	a	relationship,	the	meaning	of	what	you	store	answers	three
questions:

Which	two	objects	are	related	to	each	other?

For	example,	when	you	store	the	relationship	indicating	that	Herman
Melville	wrote	Moby	Dick,	you	relate	the	object	describing	Herman
Melville	and	the	object	describing	Moby	Dick.

How	are	the	two	objects	related?

For	example,	when	you	store	the	relationship	indicating	that	Herman
Melville	wrote	Moby	Dick,	you	indicate	that	Melville	wrote	the	book,
not	that	he	reads	it	or	criticizes	it.	You	indicate	that	Melville	wrote	the
book	by	creating	a	relationship	that	conforms	to	the	Authorship
relationship	type.

What	role	does	each	object	play	in	the	relationship?

For	example,	when	you	store	the	relationship	indicating	that	Herman
Melville	wrote	Moby	Dick,	you	indicate	that	Melville	wrote	Moby	Dick,
not	that	Moby	Dick	wrote	Melville.	The	object	representing	Melville
plays	the	role	of	the	writer	and	the	object	representing	Moby	Dick	plays
the	role	of	the	thing	that	was	written.

The	following	figures	evaluate	whether	potential	relationships	conform	to	the
two	relationship	types:	Authorship	(of	book	by	person)	and	Publication	(of
book	by	publisher).

Potential	relationship
The	following	diagram	shows	the	potential	relationship	based	on	relationship
type.

Does	the	relationship	conform?
Microsoft	Press®	publishes	Inside	OLE:	Yes,	the	relationship	conforms	to	the
Publication	relationship	type.

Potential	relationship
The	following	diagram	shows	a	potential	relationship	that	does	not	conform	to
relationship	type.

Does	the	relationship	conform?
Kraig	Brockschmidt	publishes	Inside	OLE:	No,	the	relationship	does	not
conform	to	either	relationship	type.	The	Publication	relationship	type	allows
you	to	save	a	relationship	indicating	that	a	publisher	publishes	a	book.	This	data
indicates	that	a	person	publishes	a	book.

Potential	relationship
The	following	diagram	shows	the	potential	relationship	based	on	relationship
type.

Does	the	relationship	conform?
Kraig	Brockschmidt	wrote	Inside	OLE:	Yes,	the	relationship	conforms	to	the
Authorship	relationship	type.

Potential	relationship
The	following	diagram	shows	a	potential	relationship	that	does	not	conform	to
relationship	type.

Does	the	relationship	conform?
Inside	OLE	publishes	Microsoft	Press:	No,	the	relationship	does	not	conform	to

either	relationship	type.	Although	this	relationship	uses	two	objects	of	the
correct	type,	it	does	not	conform	because	it	places	those	objects	in	the	wrong
roles.

Potential	relationship
The	following	diagram	shows	the	potential	relationship	based	on	relationship
type.

Does	the	relationship	conform?
Microsoft	Press	publishes	Moby	Dick:	Yes,	the	relationship	conforms	to	the
Publication	relationship	type.	The	relationship	conforms,	even	though	the	data
is	inaccurate.	(Microsoft	Press	does	not	publish	Moby	Dick.)

See	Also

Designing	Information	Models

Meta	Data	Services	Programming

Understanding	Collections
You	can	read	any	relationship	in	two	directions.	For	example,	you	can	say
Herman	Melville	wrote	Moby	Dick	or	Moby	Dick	was	written	by	Herman
Melville.	You	can	paraphrase	each	of	these	two	statements	as	follows:

Herman	Melville	is	in	the	set	of	persons	who	wrote	Moby	Dick.

Moby	Dick	is	in	the	set	of	books	written	by	Herman	Melville.

Although	awkward,	this	way	of	articulating	relationships	highlights	the	existence
of	collections.	The	following	two	figures	show	various	collections.

The	collection	of	books	written	by	Herman	Melville:

The	collection	of	persons	who	wrote	Moby	Dick:

You	can	think	of	collections	as	collections	of	objects	or	as	collections	of
relationships,	each	with	a	source	and	a	target	object.	The	following	figures	show
the	ways	to	think	of	collections.

The	collection	of	books	written	by	Herman	Melville:

The	figure	to	the	left	shows	the	collection	of	books	written	by	Herman	Melville
as	an	object	collection,	while	the	figure	to	the	right	shows	the	same	collection	as
a	relationship	collection.

The	collection	of	authors	of	Moby	Dick:

The	figure	on	the	left	shows	the	collection	of	authors	of	Moby	Dick	as	an	object
collection,	while	the	figure	to	the	right	shows	the	same	collection	as	a
relationship	collection.

The	preceding	figures	make	clear	that	object	collections	and	relationship
collections	are	fundamentally	equivalent.	They	both	accommodate	the	same
data.	However,	when	you	manipulate	a	relationship	collection	from	a	COM
program,	you	can	manipulate	it	either	with	an	interface	called	ITargetObjectCol
or	with	an	interface	called	IRelationshipCol.	The	first	interface	lets	you
manipulate	a	collection	as	if	it	contains	objects.	The	second	interface	lets	you
manipulate	a	collection	as	if	it	contains	relationships.	In	Automation,	if	you	do
not	specify	an	interface,	you	implicitly	manipulate	relationships	as	object
collections	because	the	RelationshipCol	class	implements	ITargetObjectCol	as
its	default	interface.

See	Also

Defining	a	Target	Object	Collection

Designing	Information	Models

Meta	Data	Services	Programming

Understanding	Relationship	Roles
Each	relationship	belongs	to	two	relationship	collections,	one	that	describes	the
relationship	from	the	perspective	of	the	origin,	and	another	that	describes	it	from
the	perspective	of	the	destination.

For	example,	the	relationship	Herman	Melville	wrote	Billy	Budd	is	a	member	of
two	different	collections:

The	set	of	books	written	by	Herman	Melville;	or,	expressed	in	terms	of
a	relationship	collection,	the	set	of	authorships	for	which	Herman
Melville	is	the	writer

The	set	of	authors	of	Billy	Budd;	or,	expressed	in	terms	of	a	relationship
collection,	the	set	of	authorships	for	which	Billy	Budd	is	the	written
thing

There	is	a	relationship	between	collection	type	and	relationship	type.	The
following	figure	shows	some	relationship	types	and	their	attendant	collection
types.

In	the	figure,	each	relationship	type	has	exactly	two	collection	types.	The
following	are	true	for	every	relationship:

Each	relationship	is	a	member	of	two	relationship	collections.

Each	relationship	relates	two	objects,	an	origin	object	and	a	destination
object.

You	can	read	each	relationship	in	two	directions.

In	any	relationship,	the	related	objects	participate	in	two	separate	roles.
For	example,	the	roles	in	the	relationship	Kraig	Brockschmidt	wrote

Inside	OLE,	are:

The	role	of	writing	thing,	filled	by	the	object	describing	Kraig
Brockschmidt.

The	role	of	written	thing,	filled	by	the	object	describing	Inside
OLE.

The	two	roles	correspond	to	the	two	collection	types.

See	Also

Designing	Information	Models

Meta	Data	Services	Programming

Getting	Started	with	Meta	Data	Services
This	section	provides	information	that	prepares	you	for	programming
Microsoft®	SQL	Server™	2000	Meta	Data	Services	applications.	You	can	learn
about	programming	environment	requirements,	and	how	to	get	started	with
information	model	definition	and	programming.	For	more	information	about
upgrading	repository	components	from	previous	releases,	see	Upgrading	from
Earlier	Versions.

The	following	topics	can	help	you	get	started.

Topic Description
Programming	Environment Describes	the	requirements	of	your

programming	environment.
Accessing	Automation	Object
Members

Explains	how	to	access	a	nondefault	member
on	an	Automation	object.

Visual	C++	Wrappers	with
Meta	Data	Services

Explains	how	to	generate	and	use	wrappers
on	a	COM	interface.

Using	Meta	Data	Services	to
Define	Information	Models

Explains	information	model	definition	in
Meta	Data	Services.	It	also	explains	how
information	models	enable	subsequent
application	development.

Using	Meta	Data	Services	to
Program	Information	Models

Provides	basic	information	for	programmers,
providing	a	big	picture	overview	of	what
programming	an	information	model	entails.

See	Also

Repository	API	Reference

Repository	Object	Architecture

What's	New	in	Meta	Data	Services

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Meta	Data	Services	Programming

Programming	Environment
Programming	a	Microsoft®	SQL	Server™	2000	Meta	Data	Services	application
requires	software	and	operating	systems.	Required	software	works	together	in	an
integrated	manner.	For	this	reason,	the	software	that	you	use	to	build	a	Meta
Data	Services	application	must	be	installed	on	the	same	PC.

The	Automation	server	distributed	with	Meta	Data	Services	is	Repodbc.dll.	If
you	require	more	server	functionality	than	Repodbc.dll	provides,	you	can	create
your	own	Automation	server.	For	more	information,	see	Choosing	an
Automation	Server	for	a	Class.

Additional	programming	resources	are	provided	through	the	Meta	Data	Services
Software	Development	Kit	(SDK).	The	Meta	Data	Services	SDK	provides	tools
that	complete	your	repository	environment.	Whether	you	are	using	COM	or
Automation	interfaces	to	define	or	manipulate	an	information	model,	be	sure	to
download	the	Meta	Data	Services	SDK	so	that	you	can	take	advantage	of	the
additional	utilities	and	documentation	that	it	provides.

The	following	software	details	the	required	and	optional	software	you	need.

Software Description
Microsoft	Windows®
operating	system

You	can	use	Windows	98,	Windows	NT®	4.0,	or
Windows	2000.

SQL	Server	or
Microsoft	Jet,	and
ODBC

You	can	use	SQL	Server	6.5,	SQL	Server	7.0,	and
SQL	Server	2000,	or	Microsoft	Jet	3.5	and	later.	You
also	need	ODBC	2.0	or	later.

A	DBMS	is	required	to	manage	the	repository
database.	For	more	information,	see	Repository
Databases.

The	DBMS	you	use	can	affect	the	performance	of	a
repository	database	and	the	availability	of	some
features.	For	more	information,	see	Using
Repository	Engine	Features	with	Older	Databases.

Meta	Data	Services Meta	Data	Services	installs	with	SQL	Server	2000.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Meta	Data	Services	provides	the	repository	engine.

You	can	also	obtain	Meta	Data	Services	from	the
Microsoft	Repository	web	site.	To	install	from	the
Web,	a	licensed	copy	of	SQL	Server	6.5,	SQL
Server	7.0,	SQL	Server	2000,	or	Microsoft	Visual
Studio®	6.0	must	already	be	installed	on	your	PC.

Modeling	tool (Optional.)	A	modeling	tool	is	strongly
recommended.	Rational	Rose	is	the	preferred
modeling	tool	for	use	with	this	release	of	Meta	Data
Services.

The	Meta	Data
Services	SDK

(Optional.)	The	Meta	Data	Services	SDK	contains
programming	and	modeling	resources.

You	can	obtain	the	Meta	Data	Services	SDK	from
the	Meta	Data	Services	web	site.	For	more
information,	see	Meta	Data	Services	SDK.

Development	tool (Optional.)	COM	support	is	a	programming
requirement.	You	can	use	Microsoft	Visual	Studio	or
another	development	tool	that	supports	COM
Automation	development.

See	Also

Accessing	Automation	Object	Members

Automation	Reference

COM	Reference

Meta	Data	Services	SDK

Specifications	and	Limits

Visual	C++	Wrappers	with	Meta	Data	Services

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Meta	Data	Services	Programming

Accessing	Automation	Object	Members
The	repository	API	exposes	a	number	of	Automation	objects	that	support
multiple	interfaces.	For	each	Automation	object,	one	interface	is	defined	to	be
the	default	interface,	and	the	members	(the	properties,	methods,	and	collections)
that	are	attached	to	that	interface	are	accessible	through	the	standard	Microsoft®
Visual	Basic®	mechanisms.

When	accessing	members	that	are	attached	to	an	interface	that	is	not	the	default
interface	for	an	Automation	object,	a	different	access	technique	must	be	used.
An	additional	reference	to	the	object	must	be	declared	that	explicitly	calls	for	the
nondefault	interface.	The	nondefault	interface	members	can	then	be	accessed
through	the	new	object	reference.

The	following	example	illustrates	how	to	access	a	property	that	is	attached	to	an
interface	that	is	not	the	default	interface	for	an	Automation	object.	In	this
example,	the	connection	string	that	is	used	to	connect	to	the	repository	database
is	retrieved.	Repository	objects	implement	the	IRepositoryODBC	interface;	this
interface	is	not	the	default	interface.	The	ConnectionString	property	is	attached
to	the	IRepositoryODBC	interface.	The	ConnectionString	property	is	the
ODBC	connection	string	that	Microsoft	SQL	Server™	2000	Meta	Data	Services
uses	when	connecting	to	a	database	server.

Dim	myRepos	As	Repository
Dim	nonDefIfc	As	IRepositoryODBC
'		Initialize	myRepos	by	opening	a	connection	to	a	repository	database.
Set	nonDefIfc	=	myRepos
connect$	=	nonDefIfc.ConnectionString

In	this	example,	the	nonDefIfc	object	does	not	use	additional	resources;	rather,	it
is	an	alternate	view	of	the	myRepos	object.

See	Also

Automation	Reference

Repository	ConnectionString	Property

Repository	Object

Meta	Data	Services	Programming

Visual	C++	Wrappers	with	Meta	Data	Services
The	repository	API	is	based	on	dispatch	interfaces.	This	means	that	all	properties
are	manipulated	through	the	Invoke	method	that	the	IDdispatch	interface
exposes.	Using	dispatch	interfaces	from	programming	languages	that	are	v-table
based,	such	as	Microsoft®	Visual	C++®,	can	be	cumbersome.

Visual	C++	version	6.0	provides	support	for	using	dispatch	interfaces	in	an
easier	way	than	before.	It	does	this	through	the	#import	directive.	The	#import
directive	instructs	the	Visual	C++	compiler	to	read	the	type	library	given	as	a
parameter	to	the	directive,	and	to	create	v-table	based	wrappers	for	the	type
library.	The	compiler	does	this	on	the	fly,	and	it	also	updates	the	wrappers	if	the
type	library	is	updated.

The	compiler	generates	the	following	two	header	files	with	the	same	name	as	the
type	library:

A	.tlh	header	file	that	contains	definitions	of	all	interfaces	and
identifiers.

A	.tli	header	file	that	contains	inline	wrapper	functions,	which	convert
properties	from	their	respective	data	types	to	the	variant	data	type	that
the	Invoke	method	expects.	The	.tli	file	is	automatically	included	inside
the	.tlh	file.

Generating	the	Wrappers

In	order	to	make	use	of	the	dispatch	support	in	Visual	C++,	add	the	following
statement	at	the	top	of	one	of	the	.cpp	files:

#include	<atlbase.h>
//	Required	for	smart	pointer	support
#import	"rtim.tlb"	named_guids
//	The	following	using-directive	allows	other	type	libraries	to	
//	reference	repository	engine	objects:

using	namespace	RepositoryTypeLib;
#import	"uml.tlb"		named_guids
using	namespace	UML;

The	Atlbase.h	header	file	is	required	to	support	smart	pointers.	The	next	two
lines	instruct	the	compiler	to	generate	wrapper	classes	for	the	main	interfaces
defined	by	the	repository	engine.	The	compiler	automatically	wraps	type
libraries	into	namespaces	that	have	the	same	name	as	the	type	library.	This	is
done	to	limit	the	possibility	of	name	clashes	between	type	libraries.
Unfortunately,	the	wrapper	generator	does	not	support	references	between	type
libraries.	Therefore,	the	using	namespace	directive	is	required	to	automatically
map	the	repository	engine	interfaces	into	the	default	namespace.

After	the	compiler	generates	wrappers	for	the	repository	engine	interfaces,	you
can	use	the	mechanism	mentioned	previously	to	import	any	required	type	library.
Make	sure	that	the	type	libraries	are	imported	in	a	correct	dependency	order.

When	the	wrapper	is	generated,	the	compiler	creates	the	following	two	functions
for	each	interface	member	(such	as	property	or	collection):

GetmemberName	

PutmemberName

where	memberName	is	replaced	by	the	member	name.

For	example,	the	Visibility	method	on	the	IUMLModelElement	interface
(IUMLModelElement.Visibility)	will	be	wrapped	into	the	following	methods:

GetVisibility()

PutVisibility()

Using	the	Wrappers

After	the	compiler	generates	wrappers	for	dispatch-based	interfaces,	smart
pointer	templates	can	be	used	to	manipulate	these	objects.	To	define	a	smart
pointer	for	an	interface,	use	a	declaration	similar	to	the	following:

CComPtr<IRepository>	pRep;

This	defines	a	smart	pointer	for	the	IRepository	interface.	To	instantiate	a
repository	and	assign	it	to	the	smart	pointer,	use	the	CoCreateInstance	method
of	the	smart	pointer,	as	shown	here:

hr	=	pRep.CoCreateInstance(CLSID_Repository,NULL);

After	instantiating	the	repository,	it	is	possible	to	use	methods	defined	on	the
IRepository	interface	to	open	a	repository	database	as	follows:

CComPtr<IRepositoryObject>	pRootRO;
pRootRO	=	pRep->Open("C:\\test.mdb","","",0);

The	methods	defined	on	the	dispatch	interface	are	accessed	using	the	->
operator,	while	helper	functions	such	as	CoCreateInstance	are	accessed	using
the	dot	(.)	operator.

After	opening	a	repository	database,	it	is	possible	to	use	the	wrappers	and	the
smart	pointers	to	access	any	object	in	the	repository.	For	example:

CComPtr<IUmlPackage>	pPackage;
CComPtr<IRepositoryObject>	pRO;
hr	=	pRootRO.QueryInteface(&pPackage);
for	(long	n=1;n<pPackage->GetElements()->GetCount();n++)
{

pRO	=	pPackage->GetElements()->GetItem(n);			//	Get	the	element	#	n	
//	Use	the	element	pRO	

See	Also

COM	Reference

Meta	Data	Services	Programming

Using	Meta	Data	Services	to	Define	Information
Models
Information	models	define	the	meta	data	types	that	you	can	store	and
subsequently	manipulate	in	and	from	another	tool	or	application.	The
information	model	that	you	create	and	install	determines	the	physical	storage	in
a	repository	database.

The	information	model	is	a	meta	model,	and	it	defines	the	meta	data	types	that
programmers	can	use	and	otherwise	manipulate.	The	information	model	that	is
recommended	for	use	with	Microsoft®	SQL	Server™	2000	Meta	Data	Services
is	the	Open	Information	Model	(OIM).	This	model	is	recommended	because	it
contains	generic	meta	data	that	is	supported	by	a	variety	of	third-party	vendors,
providing	instant	integration	with	tools	and	platforms	that	you	may	already	be
using	in	your	development	environment.	Although	this	model	is	predefined,	it
can	be	extended	to	accommodate	meta	data	that	you	require.

Typically,	you	define	an	information	model	using	a	modeling	tool.	However,	you
can	also	create	an	information	model	programmatically	using	the	repository	API
and	the	COM	or	Automation	interfaces	it	exposes.

Information	Model	as	a	Framework
You	can	think	of	an	information	model	as	a	framework	or	structure	for	storing
meta	data	definitions.	For	example,	suppose	you	want	to	create	design	data	that
programmers	can	subsequently	use	to	create	Microsoft	Visual	Basic®,	Microsoft
Visual	C++®,	and	Microsoft	Visual	J++®	applications.	In	your	information
model,	you	define	the	basic	elements	of	your	application	once	by	specifying	the
objects,	defining	relationships	that	associate	the	objects,	and	setting	properties.
Programmers	can	then	use	your	model	definitions	in	each	development
environment	to	program	the	implementation	strategy	that	each	language
requires.	Using	a	single	information	model	provides	a	way	to	use	the	same
design	for	multiple	implementations.

The	following	topics	provide	model	designers	with	information	needed	to	build
and	deploy	an	information	model.

Topic Description
Repository	Object
Architecture

Explains	the	object	architecture	that	exposes
repository	engine	functionality	and	the
information	model	objects	that	the	engine	can
manipulate.

This	topic	includes	examples	that	can	help
you	understand	information	model	definition.

Defining	Information
Models

Provides	detailed	information	about	alternate
ways	of	creating	an	information	model	and
defining	elements	of	an	information	model.

Installing	Information
Models

Explains	how	to	install	an	information	model
into	a	repository	database.	Installing	an
information	model	makes	the	information
model	available	for	programming.

See	Also

Repository	API	Reference

Using	Meta	Data	Services	to	Program	Information	Models

Meta	Data	Services	Programming

Using	Meta	Data	Services	to	Program	Information
Models
You	can	program	against	an	information	model	that	is	installed	in	a	repository
database.	Programming	against	an	information	model	adds,	updates,	removes,
and	retrieves	data	from	a	repository	database.

Typically,	the	data	that	you	add	and	otherwise	manipulate	is	design	data	about	a
tool	or	application	that	you	create.	Furthermore,	the	data	that	you	can	add	and
manipulate	is	defined	by	the	information	model.	You	can	think	of	the
information	model	as	a	template	to	which	the	data	you	add	must	conform.	For
example,	to	create	an	application	that	manipulates	a	schema,	tables,	and
columns,	you	need	an	information	model	that	defines	what	a	schema	is,	what	a
table	is,	and	what	a	column	is.

As	a	programmer	who	is	coding	such	an	application,	you	populate	the	schema,
table,	and	column	types	with	meta	data	instances	to	be	used	by	the	tools	and
applications	you	create.	The	following	example	provides	a	simplistic	look	at
how	you	can	program	elements	of	a	database	application	using	the	Open
Information	Model	(OIM).

What	OIM	defines What	you	create
Schema A	schema	for	a	Microsoft®	SQL	Server™	database,	a

Microsoft	Jet	database,	or	a	new	version	of	each
database.	In	this	case,	four	instances	of	Schema	are
stored	in	your	information	model.

Tables Tables	for	Customers,	Orders,	and	Products.	For
example,	you	can	vary	the	table	definitions	based	on
the	schema	types,	or	you	can	reuse	the	tables	for	each
schema.	Creating	separate	tables	for	each	schema
results	in	twelve	instances	of	tables	in	your
information	model.

Columns Columns	for	Customer,	Order,	and	Product	tables.
Assuming	no	reuse	strategy,	you	can	have	a	separate
column	instance	for	each	table	and	for	each	schema.

Notice	that	the	instance	data	you	store	is	all	about	definitions.	Instead	of	storing
"Joe	Smith"	customer	name,	you	store	data	about	the	CustomerName	column.

Meta	data	is,	by	definition,	unbiased.	The	following	suggestions	describe
different	ways	to	reuse	meta	data.

Use	the	meta	data	objects	in	two	development	environments	(Microsoft
Visual	C++®	for	a	desktop	application	and	Microsoft	Visual	J++®	for	a
Web	application),	using	the	syntax	of	each	language	to	call	the	same
object.	For	more	information	about	declaring	objects,	see	Programming
Fundamentals:	Declaring	Objects.

Use	the	meta	data	objects	in	development	projects	in	the	same
environment	(one	project	for	an	application	you	are	maintaining	for	an
existing	customer,	one	project	for	new	development).	You	can	use
versioned	objects	and	workspaces	to	isolate	changes.

Export	the	meta	data	as	Extensible	Markup	Language	(XML)	to	a
different	repository.

See	Also

Information	Models

OIM	in	Meta	Data	Services

Repository	API	Reference

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Meta	Data	Services	Programming

Programming	Fundamentals:	Declaring	Objects
When	you	program,	you	instantiate	repository	objects.	Repository	objects	are
COM	objects	that	the	repository	engine	creates	on	the	fly	using	the	type
information	and	object	instance	data	provided	in	your	information	model.

The	repository	object	architecture	divides	objects	into	engine	objects	and
information	model	objects.	Programming	against	an	information	model	typically
requires	that	you	invoke	repository	objects	that	are	described	by	the	repository
engine	object	model.	In	contrast,	when	a	model	designer	creates	the	type
information,	he	or	she	typically	uses	Repository	Type	Information	Model
(RTIM)	objects.

Declaring	SpellChecker	as	RTIM	Objects
For	example,	before	you	can	use	the	following	SpellChecker	structure	in	your
application	code,	the	following	declarations	for	SpellChecker	must	be
predefined	in	your	information	model	in	some	way	that	is	compatible	with	the
repository	API.	The	following	code	example	shows	a	hypothetical	information
model,	MyTypeLib,	and	shows	some	additional	definitions	for	SpellChecker
that	you	can	work	with:

DIM	oTypeLib	as	ReposTypeLib
DIM	oCSpellChecker	as	ClassDef
DIM	oISpellChecker	as	InterfaceDef
DIM	oPLanguage	as	PropertyDef
Set	oCSpellChecker	=	oTypeLib.CreateClassDef(CSC_objid,	CSpellCheck,	CSC_clsid)
Set	oISpellChecker	=	oCSpellChecker.CreateInterfaceDef(ISC_objid,	ISpellCheck,	ISC_iid)
Set	oPLanguage	=	oISpellChecker.CreatePropertyDef(PLang_objid,	PLanguage,	PLang_iid)

Declaring	SpellChecker	in	Application	Code
At	a	minimum,	to	retrieve	meta	data	in	your	application	code,	you	invoke	a
repository	object	that	represents	a	repository	session,	another	repository	object
that	represents	the	repository	type	library	containing	your	information	model

definitions,	and	additional	repository	objects	that	represent	specific	meta	data
instances.

Typically,	to	support	versioning,	you	should	use	RepositoryObjectVersion.
However,	you	can	also	use	RepositoryObject	as	an	alternative.

DIM	oTypeLib	as	RepositoryObjectVersion
DIM	oCSpellChecker	as	RepositoryObjectVersion
Dim	oISpellChecker	As	ISpellChecker
oSpellChecker(oISpellChecker).Properties("Language")=French

See	Also

Programming	Fundamentals:	Populating	a	Collection

Using	Meta	Data	Services	to	Program	Information	Models

Meta	Data	Services	Programming

Programming	Fundamentals:	Populating	a	Collection
Collections	provide	navigation	and	a	way	to	handle	a	set	of	objects	as	a	unit.
When	programming	against	an	information	model,	you	write	code	that
materializes	a	collection	so	that	you	can	access	and	otherwise	manipulate	its
objects	at	run	time.

The	following	example	provides	a	simple	illustration	for	adding	objects	to	a
collection.	Suppose	your	information	model	contains	a	Schema	object	that	has	a
collection	of	Tables	attached	to	it.	You	can	populate	the	Tables	collection	by
writing	code	that	adds	specific	instances	(such	as	a	Customer	table	and	an
Order	table)	to	the	collection.

You	can	populate	the	Tables	collection	with	specific	table	instances	using	code
like	the	following.	Note	that	the	relationships	you	can	create	are	possible
because	the	information	model	already	contains	definitions	for	collections.

Dim	oSchema	As	RepositoryObject
Dim	oCTable	As	RepositoryObject
Dim	oISchema	As	ISchema
Set	oSchema=oRepos.GetObject(ObjID_oSchema)
Set	oTable=oRepos.GetObject(ObjID_oTable)
Set	oISchema=oSchema
oISchema.Tables.Add(table)

See	Also

Programming	Fundamentals:	Declaring	Objects

Using	Meta	Data	Services	to	Program	Information	Models

Meta	Data	Services	Programming

Connecting	to	and	Configuring	a	Repository
The	repository	engine	can	access	repository	databases	that	are	managed	by	either
Microsoft®	Jet,	Microsoft	SQL	Server™,	or	SQL	Server	Runtime	Engine.

The	repository	engine	accesses	a	database	through	an	ODBC	driver	(version	2.0
or	later).	You	must	have	ODBC	installed	on	the	server	hosting	the	database	and
on	the	client	from	which	you	are	accessing	the	repository	engine.

The	ODBC	connection	string	that	is	used	to	specify	the	location	of	the	repository
database	varies,	depending	upon	which	database	server	is	managing	the
repository	database.	The	ODBC	connection	string	contains	keyword=keyValue
pairs,	separated	by	semicolons.	If	you	do	not	specify	a	connection	string,	the
repository	engine	creates	a	default	repository	database.

Before	you	can	connect	to	a	database,	you	must	first	instantiate	a	repository
session.	After	you	create	a	repository	instance,	you	can	open	an	existing
database	or	create	a	new	database.	Note	that	how	a	database	is	created	varies
depending	on	the	DBMS	you	use.

The	following	table	lists	topics	that	tell	you	more	about	database	connections
and	configuration.

Topic Description
Connecting	to	a	SQL	Server
Repository	Database

Describes	how	to	open	or	create	a
SQL	Server	database	connection

Connecting	to	a	Jet	Repository
Database

Describes	how	to	open	or	create	a	Jet
database	connection

Connecting	Through	a	DSN Describes	how	to	connect	to	a
repository	database	through	a	data
source	name	(DSN)

Default	Repository	Databases Explains	how	the	repository	engine
resolves	an	unspecified	connection
string	by	creating	a	default	database

Replicating	Repository	Databases Describes	replication	behavior	for
SQL	Server	repository	databases

See	Also

IRepository::Create

Repository	Create	Method

Repository	Databases

Storage	Strategy	in	a	Repository	Database

Upgrading	and	Migrating	a	Repository	Database

Using	Repository	Engine	Features	with	Older	Databases

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Meta	Data	Services	Programming

Connecting	to	a	SQL	Server	Repository	Database
Microsoft®	SQL	Server™	2000	is	the	DBMS	recommended	for	repository
databases.	Using	a	SQL	Server	database	yields	maximum	performance	from	the
repository	engine	and	provides	a	layer	of	security	that	is	otherwise	unavailable.
If	you	do	not	own	a	licensed	copy	of	SQL	Server,	you	can	use	the	SQL	Server
Runtime	Engine	that	is	freely	distributed	by	Microsoft.	The	SQL	Server	Runtime
Engine	can	be	used	to	create	or	open	a	SQL	Server	repository	database.

When	you	use	a	SQL	Server	repository	database,	you	must	either	use	(that	is,
open)	an	existing	repository	database,	or	create	an	empty	database.	The
repository	engine	cannot	automatically	create	a	SQL	Server	database	for	you.	To
the	repository	engine,	creating	a	new	SQL	Server	database	means	populating	an
empty	database	with	the	repository	SQL	tables	it	needs	to	store	and	manage
repository	data.	If	you	already	have	a	repository	database	(that	is,	a	database	that
contains	repository	SQL	tables),	you	can	connect	to	it	through	an	open
statement.

When	you	create	a	new,	empty	SQL	Server	database,	be	sure	to	specify	which
users	can	access	the	database.	You	must	also	create	the	necessary	login	and	user
accounts	for	people	who	will	be	accessing	the	database,	and	you	must	assign	the
appropriate	permissions	to	these	accounts.	If	you	want	to	grant	full	permissions
to	everyone,	you	can	use	this	SQL	command	to	set	database	access	permissions:

GRANT	ALL	TO	PUBLIC

Creating	a	New	Database
To	create	a	new	repository	database,	use	the	following	syntax.	Notice	that	the
first	statement	creates	a	repository	session.	In	Microsoft	Visual	Basic®,	be	sure
to	reference	Repodbc.dll	so	that	it	is	available	to	your	program.	By	default,
Repodbc.dll	is	located	in	C:\Program	Files\Common	Files\Microsoft
Shared\Repostry.

Use	the	following	code	to	create	a	new	database	in	Microsoft	Visual	C++®:

CoCreateInstance(CLSID_Repository,	NULL,	CLSCTX_INPROC_SERVER,	IID_IREPOSITORY,	(LPVOID	*)	&m_pIRepos)))
m_pIRepos->Create(CCOMVariant(SERVER="MyServer";DATABASE="MyDatabase";UID="MyUserID";PWD="MyPassword"),	CCOMVariant(""),	CCOMVariant(""),	0,	&m_pIRootObj))

Use	the	following	code	to	create	a	new	database	using	Visual	Basic:

DIM	oRepos	as	New	Repository
oRepos.Create	"SERVER=MyServer;DATABASE=MyDatabase;UID=MyUserID;PWD=MyPassword;"

Note		Invoking	the	Create	method	on	an	existing	repository	database	simply
opens	it.

Opening	an	Existing	Database
To	connect	to	an	existing	SQL	Server	repository	database	such	as	msdb,	use	the
SERVER	keyword	to	specify	the	SQL	Server	name	and	the	database	name.	If	the
database	name	is	not	specified,	the	default	database	for	the	user	who	is	opening
the	database	is	used.	You	can	also	use	a	data	source	name	(DSN)	to	connect	to	a
database.

CoCreateInstance(CLSID_Repository,	NULL,	CLSCTX_INPROC_SERVER,	IID_IREPOSITORY,	(LPVOID	*)	&m_pIRepos)
m_pIRepos->Open(CCOMVariant(SERVER="MyServer";DATABASE="MSDB";UID="MyUserID";PWD="MyPassword"),	CCOMVariant(""),	CCOMVariant(""),	0,	&m_pIRootObj)

Administering	a	SQL	Server	Database
You	can	use	the	utilities	and	tools	that	come	with	SQL	Server	to	administer	the
repository	database	(at	the	database	level).	For	example,	if	your	repository
database	is	damaged	due	to	a	power	outage	or	system	failure,	you	should	use	the
recovery	tools	that	are	provided	with	SQL	Server	to	repair	the	damage.
Similarly,	if	your	repository	database	requires	periodic	defragmentation,	you
should	use	the	defragmentation	tools	that	are	provided	with	SQL	Server.

CAUTION		SQL	Server	and	its	components	store	private	meta	data	in	the	msdb
database.	While	you	are	encouraged	to	use	and	add	to	existing	data,	be	aware
that	modifying	or	deleting	it	can	cause	unexpected	results.	If	you	introduce	a
modification	that	breaks	the	functionality	of	SQL	Server	or	its	components,	you
must	reinstall	the	software.

See	Also

Connecting	Through	a	DSN

Default	Repository	Databases

IRepository::Create

IRepository::Open

Repository	Create	Method

Repository	Open	Method

Repository	SQL	Tables

Storage	Strategy	in	a	Repository	Database

Meta	Data	Services	Programming

Connecting	to	a	Jet	Repository	Database
If	you	choose	to	use	a	Microsoft®	Jet	database,	you	can	create	it
programmatically	using	the	IRepository	Create	method.	If	you	do	not	specify	a
complete	path,	the	repository	engine	uses	the	default	path.	For	more	information,
see	Default	Repository	Databases.

You	can	create	a	new	database	using	the	syntax	provided	in	the	following
example.	Notice	that	the	first	statement	creates	a	repository	session.

Use	the	following	code	to	connect	to	a	Jet	database	in	Microsoft	Visual	C++®:

CoCreateInstance(CLSID_Repository,	NULL,	CLSCTX_INPROC_SERVER,	IID_IREPOSITORY,	(LPVOID	*)	&m_pIRepos)
m_pIRepos->Create(CCOMVariant(DBQ="MyDB.mdb"),	CCOMVariant(""),	CCOMVariant(""),	0,	&m_pIRootObj)

Use	the	following	code	to	connect	to	a	Jet	database	in	Microsoft	Visual	Basic®:

DIM	m_pIRepos	as	New	Repository
m_pIRepos.Create(DBQ="MyDB.mdb")

To	connect	to	a	Jet	repository	database,	use	the	DBQ	keyword	to	specify	the	path
to	the	database	file.	The	DBQ	keyword	must	be	the	first	keyword	in	the
connection	string,	if	it	is	present.	If	the	DBQ	keyword	is	not	present,	the
connection	string	is	assumed	to	contain	only	a	database	path	specification.	In
this	case,	the	repository	will	add	the	DBQ	keyword	to	the	front	of	the	ODBC
connection	string	before	passing	it	on	to	the	database	server.	If	the	Jet	database
file	specified	by	the	DBQ	keyword	does	not	exist,	the	repository	engine	will
create	it.

CoCreateInstance(CLSID_Repository,	NULL,	CLSCTX_INPROC_SERVER,	IID_IREPOSITORY,	(LPVOID	*)	&m_pIRepos)))
m_pIRepos->Open(CCOMVariant(DBQ="MyDB.mdb"),	CCOMVariant(""),	CCOMVariant(""),	0,	&m_pIRootObj))

See	Also

Connecting	to	a	SQL	Server	Repository	Database

Default	Repository	Databases

Meta	Data	Services	Programming

Connecting	Through	a	DSN
You	can	use	the	DSN	keyword	to	specify	a	data	source	name	(DSN)	to	connect
to	an	existing	Microsoft®	Jet	or	Microsoft	SQL	Server™	repository	database.
The	DSN	keyword	specifies	a	data	source	name	that	has	been	configured	using
the	ODBC	Data	Source	Administrator.

If	you	are	connecting	to	a	SQL	Server	database,	you	must	explicitly	specify	the
user	ID	and	password	in	the	connection	string,	even	if	the	values	are	part	of	the
ODBC	registration.

You	can	connect	to	a	database	using	the	syntax	provided	in	the	following
example.	Notice	that	the	first	statement	creates	a	repository	session.

CoCreateInstance(CLSID_Repository,	NULL,	CLSCTX_INPROC_SERVER,	IID_IREPOSITORY,	(LPVOID	*)	&m_pIRepos)))
m_pIRepos->Open(CCOMVariant(DSN="MyDataSourceName";UID="MyUserID";PWD="MyPassword"))

See	Also

Connecting	to	a	Jet	Repository	Database

Connecting	to	a	SQL	Server	Repository	Database

Default	Repository	Databases

Meta	Data	Services	Programming

Default	Repository	Databases
If	you	do	not	specify	the	repository	database	explicitly,	a	connection	will	be
established	to	the	default	repository	database.	This	database	is	managed	by
Microsoft®	Jet.	Its	location	is	determined	by	the	default	value	of	the	Current
Location	registry	key.

If	you	are	using	the	Create	method	and	an	unspecified	connection	string,	and	if
the	default	database	does	not	exist,	the	repository	engine	creates	the	database.	If
you	are	using	the	Connection	method	(or	the	Create	method	on	an	existing
database)	and	an	unspecified	connection	string,	the	repository	engine	looks	for
the	database	at	the	default	location.

The	location	of	the	default	repository	database	is	stored	in	the	system	registry	in
this	registry	key:

HKEY_LOCAL_MACHINE\Software\Microsoft\Repository\Current	Location

This	registry	key	must	contain	a	DBQ	keyword-value	pair,	SERVER	keyword-
value	pair,	DSN	keyword-value	pair,	or	just	the	path	to	a	Jet	repository	database.
The	default	value	for	this	registry	key	is:

windowsDirectory\MsApps\Repostry\Repostry.mdb

Replace	windowsDirectory	with	the	path	specification	for	the	directory	that
contains	the	Microsoft	Windows	installation.	Unless	you	change	this	registry	key
value	after	installing	Microsoft	SQL	Server™	2000	Meta	Data	Services,	your
default	database	server	is	Jet.

See	Also

Connecting	Through	a	DSN

Connecting	to	a	Jet	Repository	Database

Connecting	to	a	SQL	Server	Repository	Database

Meta	Data	Services	Programming

Replicating	Repository	Databases
Microsoft®	SQL	Server™	2000	repository	databases	can	take	advantage	of	the
replication	features	provided	by	SQL	Server	to	publish	a	repository	to	other
subscriber	repositories.

You	can	use	either	transactional	or	snapshot	replication	to	replicate	a	repository
database.	If	you	implement	transactional	replication,	you	can	choose	whether	to
support	synchronization.	Synchronization	automatically	updates	your	subscriber
databases	so	that	they	contain	the	same	content	as	the	publisher.	For	more
information,	see	Replication	Overview.

Replication	Requirements	for	Repository	Databases
For	repository	databases,	additional	steps	beyond	those	required	by	SQL	Server
should	be	followed	to	ensure	successful	replication.

Publishing	a	Repository	Database
Install	information	models	into	a	repository	database.	Before	you	begin
replication,	you	must	install	information	models	into	the	repository
database	that	you	want	to	publish,	and	then	allow	replication	to
propagate	the	content	across	all	subscriber	databases.

Installing	new	or	revised	information	models	after	replication	is	enabled
can	produce	unexpected	results.	In	this	case,	new	tables	that	are
associated	with	new	or	revised	information	models	are	not
automatically	enabled	for	replication.	If	you	are	updating	an	existing
publisher	with	newer	models,	you	must	manually	select	the	additional
tables	as	articles	so	that	updates	to	those	tables	will	propagate	to
subscriber	databases.

Note	that	you	cannot	publish	msdb,	the	default	repository	database	in
SQL	Server.	You	must	create	an	alternate	repository	database	to	enable
replication.

Verify	that	all	repository	SQL	tables	and	information	model	tables	are
selected	as	articles	in	the	publication.	Repository	SQL	table	names	have

JavaScript:hhobj_1.Click()

an	rtbl	prefix.	Information	model	table	names	are	typically	prefixed
with	the	name	of	the	model	(for	example,	UML,	UMX,	GEN,	and	so
on).

You	cannot	publish	a	subset	of	the	tables	in	a	repository	database.	A
repository	database	stores	type	information	in	multiple	tables.	If	you
omit	some	tables	from	the	publication,	you	may	not	get	a	complete
definition	for	each	repository	object.

Verify	that	repository	stored	procedures	are	not	included	in	your
publication.	Repository	stored	procedures	are	part	of	the	publisher
database,	but	cannot	be	part	of	a	subscriber	database.	Repository	stored
procedure	names	have	an	r_iRtbl	prefix.

Stored	procedures	are	used	by	the	repository	engine	to	install	and
update	information	models	in	a	SQL	Server	repository	database.
Replicating	a	stored	procedure	can	result	in	an	attempt	to	reinstall	an
information	model	that	is	already	installed	on	a	subscriber	database.

Avoid	creating	data	filters	or	enabling	autonomous	subscriptions.

Defining	Subscriber	Databases
After	you	create	a	publication,	you	can	create	one	or	more	push	subscriptions
that	propagate	repository	data	from	the	publisher.

Avoid	updating	subscriber	objects	from	any	nonpublisher	source.	Only	the
publisher	should	be	allowed	to	update	subscriber	objects.

Repository	subscriber	databases	must	be	read-only.	Furthermore,	each	subscriber
can	receive	content	from	only	one	publisher.	Repository	databases	use	internal
identifiers	to	store	and	manipulate	meta	data.	While	internal	identifiers	are
unique	within	a	specific	repository,	they	may	not	be	unique	across	multiple
repositories.	To	avoid	duplicate	internal	identifiers,	you	must	require	that	each
subscriber	is	read-only	and	receives	all	of	its	updates	from	a	single	publisher.	To
do	this,	specify	that	a	publication	for	the	publisher	database	has	all	of	the
repository	tables	as	articles,	then	add	read-only	repository	databases	as
subscribers.

See	Also

Connecting	to	a	SQL	Server	Repository	Database

Repository	Databases

Repository	Identifiers

Storage	Strategy	in	a	Repository	Database

JavaScript:hhobj_2.Click()

Meta	Data	Services	Programming

Defining	Information	Models
The	part	of	a	Microsoft®	SQL	Server™	2000	Meta	Data	Services	repository	that
stores	type	information	is	defined	by	the	information	models	you	create	and
install.

The	following	topics	explain	how	to	create	and	specify	the	parts	of	an
information	model.	For	more	information	about	creating	and	populating	a
repository	database,	see	Connecting	to	and	Configuring	a	Repository.

Topic Description
Repository	Identifiers Describes	identifiers	that	are	used	to	retrieve

and	manage	repository	objects
Naming	Objects,
Collections,	and
Relationships

Describes	naming	conventions,	name	reuse,
aliasing,	and	ways	names	are	created	by	the
repository	engine

Creating	and	Extending
Type	Information

Describes	alternate	approaches	for	creating
and	extending	information	models

Defining	Inheritance Explains	how	inheritance	works	and	how	you
can	implement	it	for	your	interfaces

Defining	Relationships	and
Collections

Explains	how	to	define	general-purpose	and
special-purpose	relationships	and	collections

Defining	Properties Explains	how	to	define	property	definition
objects

Defining	Methods Explains	how	to	define	methods,	parameters,
and	scripted	objects

Generating	Views Describes	how	to	generate	SQL	views	that
correspond	to	your	information	model

See	Also

Information	Models

Installing	Information	Models

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

Repository	Identifiers
The	repository	engine	uses	identifiers	to	distinguish	objects	and	object	versions
from	each	other.

There	is	an	object	identifier	for	every	object	in	a	repository	database.	When	you
add	an	object	to	a	repository	(programmatically	or	by	installing	a	model),	the
object	identifier	is	created	as	part	of	the	object	definition.	This	identifier	remains
with	the	object	until	you	delete	the	object	from	a	repository.	When	you	program
a	repository	object,	you	can	use	the	object	identifier	to	retrieve	the	object	you
want.

The	repository	engine	maintains	two	sets	of	identifiers:	object	identifiers
(ObjID)	and	internal	identifiers	(IntID).	One	set,	the	object	identifiers,	is	public.
The	second	set,	the	internal	identifiers,	is	used	by	the	repository	engine.	A
repository	SQL	table	maps	the	two	sets,	and	the	repository	engine	maintains	the
correspondence.

Functionally,	object	identifiers	and	internal	identifiers	are	similar.	However,	the
values	of	internal	identifiers	are	smaller	and	more	efficient	for	the	engine	to
handle	and	the	database	to	store.	When	the	repository	engine	receives	a	call	for
an	object	identifier,	it	converts	the	internal	identifier	into	an	object	identifier	that
your	program	can	use.

In	some	cases	it	is	desirable	to	use	the	internal	identifiers.	For	example,	if	you
want	to	query	the	database	directly,	you	can	use	the	smaller	internal	identifier
that	the	repository	engine	uses	to	store	object	data.	However,	when	you	program
with	repository	objects,	you	should	always	use	the	longer	object	identifier.

The	following	table	lists	topics	that	provide	more	information	about	repository
identifiers.

Topic Description
Object	Identifiers	and	Internal
Identifiers

Compares	object	identifiers	and
internal	identifiers,	and	provides
details	about	their	composition.

Object-Version	Identifiers	and
Internal	Object-Version	Identifiers

Describes	the	portion	of	a	repository
identifier	that	stores	version

information,	and	compares	how
version	identifiers	are	represented	in
object	identifiers	and	internal
identifiers.

How	Repository	Identifiers	and
Stored	and	Instantiated

Details	how	internal	identifiers	are
stored	and	how	object	identifiers	are
created	from	internal	identifiers.

Repository	Identifier	Data	Structures Explains	the	data	structure	of
repository	identifiers.	Knowing	about
internal	identifier	data	structures	can
help	you	build	a	query.

Assigning	Object	Identifiers Explains	how	to	assign	object
identifiers.

See	Also

Navigating	a	Repository

Meta	Data	Services	Programming

Object	Identifiers	and	Internal	Identifiers
Each	RepositoryObject	instance	has	two	identifiers:	an	object	identifier	and	an
internal	identifier.

An	object	identifier	is	global	in	scope.	It	uniquely	distinguishes	a	repository
object	from	all	other	repository	objects	represented	in	all	other	repository
databases.

Internal	identifiers	correspond	to	object	identifiers,	except	that	internal
identifiers	are	used	by	the	engine.

Both	object	identifiers	and	internal	identifiers	are	explained	in	this	topic.
Another	kind	of	repository	identifier	is	used	for	a	RepositoryObjectVersion
instance.	For	more	information,	see	Object-Version	Identifiers	and	Internal
Object-Version	Identifiers.

About	Object	Identifiers
Object	identifiers	have	the	following	format.

The	first	16	bytes	of	each	object	identifier	constitute	a	globally	unique	identifier
(or	GUID).	The	next	4	bytes	constitute	a	local	identifier.

RepositoryObjects	do	not	include	version	information.	When	you	are	working
with	RepositoryObject	instances,	the	repository	engine	follows	a	resolution
strategy	to	select	a	specific	version	of	a	RepositoryObject	instance.	The
resolution	strategy,	not	the	version	indicator,	determines	which	object	is	selected.

About	Internal	Identifiers
Each	RepositoryObject	instance	also	has	an	internal	identifier	that	distinguishes
it	from	every	other	object	within	the	same	repository	database.	The	internal
identifier	is	used	by	the	repository	engine	to	manipulate	the	object	specified	by
the	object	identifier.	The	internal	identifier	is	an	8-byte	quantity	of	the	following
form.

The	first	4	bytes	constitute	a	site	identifier	(site	ID).	For	more	information	about
site	IDs,	see	How	Repository	Identifiers	are	Stored	and	Instantiated.

The	last	4	bytes	constitute	the	local	identifier	(local	ID).	For	a
RepositoryObject	instance,	the	local	identifier	portion	of	the	internal	identifier
and	the	object	identifier	is	the	same.	That	is,	each	repository	object	has	a	single
4-byte	local	identifier,	regardless	of	whether	you	are	using	an	object	identifier	or
an	internal	identifier.

See	Also

Assigning	Object	Identifiers

How	Repository	Identifiers	are	Stored	and	Instantiated

Repository	Identifier	Data	Structures

Repository	Identifiers

RepositoryObject	Object

RTblSites	SQL	Table

Meta	Data	Services	Programming

Object-Version	Identifiers	and	Internal	Object-
Version	Identifiers
Each	RepositoryObjectVersion	instance	has	two	identifiers:	an	object-version
identifier	and	an	internal	object-version	identifier.

An	object-version	identifier	uniquely	distinguishes	a	repository	object	from	all
other	repository	object	versions	represented	in	all	other	repository	databases.

Internal	object-version	identifiers	correspond	to	object-version	identifiers,	except
that	internal	object-version	identifiers	are	used	by	the	repository	engine.	Object-
version	identifiers	and	internal	object-version	identifiers	are	described	in	this
topic.	Another	kind	of	repository	identifier	identifies	a	RepositoryObject
instance.	To	use	identifiers,	you	need	to	know	about	both	kinds.	For	more
information	about	other	repository	identifiers,	see	Object	Identifiers	and	Internal
Identifiers.

About	Object-Version	Identifiers
The	object-version	identifier	has	the	following	format.

The	first	16	bytes	of	each	object-version	identifier	constitute	a	globally	unique
identifier	(or	GUID).

The	next	4	bytes	constitute	a	local	identifier.	Note	that	the	local	identifier	of	a
repository	object	version	does	not	equal	the	local	identifier	of	a
RepositoryObject	instance.

The	next	8	bytes	constitute	a	version	indicator.	Each	object	version	gets	a	unique
value	that	identifies	a	specific	version	of	a	particular	object	(for	example,
version	3	of	an	Employee	object).	To	get	a	specific	version	of	an	object,	you
have	to	traverse	the	version	tree	of	an	object.

About	Internal	Object-Version	Identifiers
Each	RepositoryObjectVersion	instance	also	has	an	internal	object-version

identifier	that	distinguishes	it	from	every	other	object	version	within	the	same
repository	database.	The	internal	object-version	identifier	is	a	16-byte	quantity
of	the	following	form.

The	first	4	bytes	constitute	a	site	identifier	(site	ID).	For	more	information	about
site	IDs,	see	How	Repository	Identifiers	are	Stored	and	Instantiated.

The	first	4	bytes	constitute	the	local	identifier	(local	ID)	of	the	repository	object.
The	second	4	bytes	constitute	a	branch	identifier	(branch	ID);	a	branch	is	a
portion	of	a	version	graph.	The	third	4	bytes	constitute	a	version-within-branch
identifier.

The	first	8	bytes	make	up	the	internal	identifier	of	the	repository	object	version.
The	next	8	bytes	make	up	a	version	identifier.

See	Also

Branches	in	the	Version	Graph

Repository	Identifier	Data	Structures

Repository	Identifiers

RepositoryObjectVersion	Object

Version	Graph

Meta	Data	Services	Programming

How	Repository	Identifiers	are	Stored	and
Instantiated
A	site	identifier	(site	ID)	is	a	portion	of	the	internal	identifier	(or	internal	object-
version	identifier)	of	a	repository	object.	A	globally	unique	identifier	(GUID)	is
a	portion	of	an	object	identifier	(or	object-version	identifier).

There	is	a	one-to-one	correspondence	between	a	site	ID	and	its	GUID,	and	each
repository	database	includes	a	table	(RTblSites)	that	maintains	this
correspondence.	Each	row	of	the	table	associates	one	GUID	with	one	site	ID.

The	repository	engine	uses	the	one-to-one	correspondence	between	the	site
identifiers	and	GUIDs	to	conserve	space	in	the	repository	database.	When	the
repository	engine	stores	a	repository	object,	it	stores	the	internal	identifier	with
the	object.	The	engine	does	not	store	the	GUID	or	the	object	identifier	with	the
repository	object.	When	you	need	to	retrieve	the	object	identifier	of	an	object,
the	repository	engine	constructs	the	object	identifier	by	reading	the	internal
identifier	stored	with	the	object,	matching	the	site	identifier	to	the	appropriate
row	of	the	RTblSites	table,	and	reading	the	GUID	from	that	row.

See	Also

Object	Identifiers	and	Internal	Identifiers

Object-Version	Identifiers	and	Internal	Object-Version	Identifiers

Repository	Identifiers

RTblSites	SQL	Table

Meta	Data	Services	Programming

Repository	Identifier	Data	Structures
The	following	data	structures	describe	object	identifiers,	object-version
identifiers,	internal	identifiers,	and	internal	object-version	identifiers.

If	you	are	querying	the	database	by	building	a	query	against	the	repository
tables,	you	need	to	know	about	internal	identifier	data	structures	to	form	the
query.	Information	in	this	topic	about	object	identifier	and	object-version
identifier	data	structures	is	provided	for	completeness.	Only	internal	identifiers
and	internal	object-version	identifiers	are	used	to	build	queries.

Internal	Identifier

struct	INTID	{
ULONG		iSiteID;
ULONG		iLocalID;
};
typedef	const	INTID	&REFINTID;

An	INTID	or	a	REFINTID	variable	is	an	internal	identifier	for	a	specific
repository	object	that	uniquely	identifies	the	object	within	a	particular	repository
database.	An	internal	identifier	is	not	unique	across	all	repositories.	Note	that	an
internal	identifier	is	not	the	same	thing	as	the	interface	identifier	for	an	interface,
or	the	class	identifier	that	is	used	to	create	an	instance	of	a	class.

The	internal	identifier	is	composed	of	an	internal	site	identifier	(iSiteID)	and	an
internal	local	identifier	(iLocalID).

Internal	Object-Version	Identifier

struct	VERSIONID	{
INTID		sIntID;
BRANCHID		iBranchID;
VERSIONNUM		iVersionStart;
};

typedef	const	VERSIONID	&REFVERSIONID;

A	VERSIONID	or	a	REFVERSIONID	variable	is	an	internal	identifier	for	a
specific	repository	object	version	that	uniquely	identifies	the	object	version
within	a	particular	repository	database.	It	is	not	unique	across	all	repositories.

The	internal	identifier	is	composed	of	an	internal	identifier	(sIntID),	a	branch
identifier	(iBranchID),	and	a	version-within-branch	identifier	(iVersionStart).

Object	Identifiers	and	Object-Version	Identifiers

typedef	const	OBJECTID	OBJID;
typedef	const	OBJID	&REFOBJID;

An	OBJID	or	a	REFOBJID	variable	can	be	used	in	either	of	two	ways:

It	can	be	an	object	identifier	for	a	specific	repository	object	in	a
particular	repository	database.	An	object	identifier	is	unique	across	all
repositories.

It	can	be	an	object-version	identifier	for	a	specific	version	of	a
repository	object	in	a	particular	repository	database.	An	object-version
identifier	is	unique	across	all	repositories.

An	OBJID	or	a	REFOBJID	variable	is	composed	of	a	global	unique	identifier
(GUID)	and	a	4-byte	local	identifier	appended	to	the	GUID.	The	GUID	portion
of	the	variable	specifies	where	the	identifier	was	created,	and	the	local	identifier
has	a	value	that	is	unique	within	the	repository	database.	When	you	use	an
OBJID	or	a	REFOBJID	variable	to	contain	an	object-version	identifier,	the	4-
byte	local	identifier	is	not	the	branch	identifier	or	the	version-within-branch
identifier	of	the	object	version.

See	Also

Branches	in	the	Version	Graph

Object	Identifiers	and	Internal	Identifiers

Object-Version	Identifiers	and	Internal	Object-Version	Identifiers

Repository	Identifiers

Version	Graph

Meta	Data	Services	Programming

Assigning	Object	Identifiers
When	you	install	an	information	model	in	a	repository,	the	repository	engine
creates	a	number	of	objects	to	represent	the	classes,	interfaces,	collection	types,
properties,	and	relationship	types	of	that	model.	The	assignment	of	an	object
identifier	to	an	object	occurs	when	the	object	definition	is	inserted	into	a
repository	database.	If	you	are	installing	an	information	model	using	the	model
installer,	the	repository	engine	assigns	the	identifier.

If	you	are	inserting	an	information	model	programmatically,	you	can	still	let	the
repository	engine	assign	an	identifier	automatically,	or	you	can	provide	an	object
identifier	manually.	To	let	the	repository	engine	assign	an	identifier	for	a
programmatically	inserted	object,	set	the	input	parameter	for	the	object	identifier
to	OBJID_NULL.

In	most	cases,	you	should	let	the	repository	engine	assign	object	identifiers.	The
exception	is	when	you	are	inserting	a	replica	of	an	object	represented	in	one
Microsoft®	SQL	Server™	2000	Meta	Data	Services	repository	database	into
another	Meta	Data	Services	repository.	For	each	type	definition	object	that	you
copy	to	the	new	repository,	you	should	use	the	object	identifier	that	was	assigned
to	that	object	in	the	existing	repository.	This	will	ensure	that	the	type	definition
has	the	same	identity	in	both	repositories.

If	you	explicitly	assign	object	identifiers	for	your	definition	objects,	you	must
ensure	that	the	object	identifiers	are	unique	across	all	repositories.	The	following
steps	are	recommended	to	guarantee	such	uniqueness:

1.	 Generate	a	single	unused	GUID	and	use	it	for	the	GUID	portion	(the
first	16	bytes)	of	all	definition	object	identifiers	for	the	information
model.

2.	 Using	the	CreateObject	method,	manually	assign	unique	local
identifiers	for	each	definition	object	in	the	information	model.

Using	Guidgen

When	creating	object	identifiers	for	your	information	model,	you	can	use	the
Guidgen.exe	program	to	create	an	unused	GUID,	and	use	the	DEFINE_OBJID
macro	to	create	the	object	identifiers.	Given	a	GUID	and	a	unique	number	for	an
object,	the	macro	will	equate	the	symbolic	name	to	the	value	for	the	object
identifier.	Use	the	DEFINE_OBJID	macro	(which	is	provided	for	both
Microsoft	Visual	C++®	and	Microsoft	Visual	Basic®	programmers)	to	avoid
incompatibility	problems	later.

See	Also

Installing	Information	Models

IRepository::CreateObject

Object-Version	Identifiers	and	Internal	Object-Version	Identifiers

Repository	CreateObject	Method

Repository	Identifiers

Meta	Data	Services	Programming

Naming	Objects,	Collections,	and	Relationships
This	section	provides	guidelines	for	identifying	objects,	collections,	and
relationships	by	name.	Different	naming	guidelines	apply	depending	on	whether
you	are	naming	objects	of	an	information	model,	or	naming	object	instances	in	a
repository.

Naming	Information	Model	Elements
When	you	create	ClassDef,	RelationshipDef,	and	CollectionDef	objects	in	an
information	model,	you	specify	a	name	that	you	can	use	later	to	reference	that
meta	data	type.	You	can	provide	this	name	by	specifying	the	Name	parameter	in
a	creation	method	(for	example,	CreateClassDef,	CreateInterfaceDef,
CreateRelationColDef,	and	so	on).

Depending	on	how	you	define	a	relationship	collection,	you	can	determine	how
objects	of	that	collection	are	subsequently	named	(this	naming	occurs	when	you
populate	an	information	model).	Specifically,	you	can	specify	that	object	names
are	explicitly	named	through	the	INamedObject	interface.	If	you	are
accustomed	to	assigning	object	names	yourself,	or	if	your	information	model	is
structured	in	such	a	way	that	the	destination	of	a	naming	relationship	collection
is	not	obvious,	you	can	use	this	interface	to	attach	a	Name	property	to	an
information	model	object.	You	can	then	provide	a	name	when	creating	an
instance	of	that	object.

The	following	example	shows	an	incomplete	code	sample	that	gives	you	a	basic
idea	about	how	to	implement	INamedObject	for	a	repository	object.	When	you
use	this	interface,	be	sure	to	set	the	COLLECTION_OBJECTNAMING	flag	on
the	collection.

Dim	oRepository	as	Repository
Dim	oCObject	as	ClassDef
Dim	oINamedObject	as	InterfaceDef
Dim	oIObject	as	InterfaceDef
Dim	oRContains	as	RelationshipDef
Dim	oColObjectContains	as	CollectionDef

...
Set	oINamedObject	=	oRepository.object(OBJID_INamedObject)
oCObject.AddInterface	oINamedObject
...
Set	oColObjectContains	=	oIObject.CreateRealtionshipColDef(objid_null,	name_collection,	dispid_collection,	True,	COLLECTION_NAMING,	oRContains)

Naming	Object	Instances
When	you	populate	an	information	model	with	meta	data	instances,	you	can
allow	the	repository	engine	to	name	the	object	for	you,	or	you	can	provide	a
name.

How	the	Repository	Engine	Names	Object	Instances
The	repository	engine	uses	relationship	collections	to	create	names	for	objects.
Specifically,	the	relationship	collection	that	determines	an	object	instance	name
is	the	target	object	collection.	When	the	target	object	collection	contains
uniquely	named	objects,	and	when	it	is	the	sole	target	of	the	source	object,	the
identity	of	the	target	object	is	unambiguous.	However,	if	more	than	one	target	is
possible,	you	should	assign	an	explicit	name	to	avoid	having	the	repository
engine	select	one	for	you.

You	can	choose	to	let	objects	assume	different	names	when	accessed	through	a
relationship,	as	opposed	to	the	single	name	that	it	assumes	when	it	is	accessed
through	the	object.	Naming	an	object	through	a	relationship	has	the	benefit	of
referring	to	the	same	object	through	different	names	depending	on	the	context	in
which	it	is	used.	In	this	case,	the	relationship	collection	provides	the	context.

For	more	information,	see	Naming	and	Unique-naming	Collections.

How	to	Explicitly	Name	an	Object	Instance
If	an	object	supports	the	INamedObject	interface	in	the	information	model,	you
can	call	an	object	by	its	INamedObject::Name	property.	You	can	also	use
IRepositoryItem::Name	to	supply	a	name.

See	Also

Changing	an	Object	Version's	Name

Changing	a	Destination	Relationship's	Name

INamedObject	Interface

Naming	Conventions

Retrieving	an	Object	Version's	Name

Selecting	Items	in	a	Collection

Type	Information	Aliasing

Meta	Data	Services	Programming

Type	Information	Aliasing
The	information	model	elements	that	you	create	support	type	information
aliasing.	This	form	of	aliasing	enables	you	to	define	an	alternate	name	for	the
meta	data	type	so	that	you	can	reuse	an	existing	definition	in	a	new	context.	You
can	also	use	type	information	aliases	to	preserve	existing	work	when	information
model	names	change.	For	example,	Open	Information	Model	(OIM)	or	Unified
Modeling	Language	(UML)	name	changes	that	result	from	new	versions	of	a
model	can	be	accommodated	by	applying	aliases	to	a	changed	name.

To	define	a	type	information	alias,	use	the	following	interfaces:

IReposTypeInfo2	defines	aliases	for	Classdef,	Interfacedef,
Relationshipdef,	and	Enumerationdef	objects.

IInterfaceMember2	defines	aliases	for	Propertydef,	Methoddef,
Alias,	and	Collectiondef	objects.

To	use	the	alias,	specify	it	just	as	you	would	the	meta	data	type	name.	The
repository	engine	keeps	track	of	type	information	aliases.	When	you	invoke	a
type	information	alias,	the	repository	engine	returns	the	appropriate	class,
interface,	or	property	to	which	the	alias	is	mapped.

Note		Aliasing	provides	additional	functionality	when	it	is	applied	to	interface
members.	For	more	information,	see	Derived	Members.

See	Also

IInterfaceMember2	Interface

IReposTypeInfo2	Interface

Member	Delegation

Naming	Conventions

Naming	Objects,	Collections,	and	Relationships

Meta	Data	Services	Programming

Naming	Conventions
Names	must	always	be	unique	within	a	scope.	The	scope	varies	depending	on
the	object.	Within	a	repository,	information	model	names	(that	is,	repository	type
library	names)	cannot	repeat.	Within	an	information	model,	class,	interface,	and
relationship	names	cannot	repeat.	Similarly,	within	an	interface,	property,
collection,	and	method	names	cannot	repeat.	Also,	within	a	collection	that
supports	unique	naming,	object	names	cannot	repeat.

When	you	create	a	new	information	model,	choose	your	names	carefully.
Otherwise,	you	may	encounter	name	duplication	problems	later	on	if	you	decide
to	share	information	models.	One	way	to	avoid	name	confusion	is	by	using	a
distinctive	prefix	on	all	of	your	names.	An	information	model	name	provides	an
obvious	solution.	For	example,	if	you	are	using	the	Open	Information	Model
(OIM),	you	can	use	the	subject	area	names	such	as	Database	Schema	(or
DBSchema)	as	a	prefix.

In	addition	to	unique	constraints,	the	following	naming	conventions	apply	to
Repository	Type	Information	(RTIM)	objects	and	relationships:

The	name	cannot	be	a	reserved	SQL	or	MIDL	keyword.	Generally,	you
should	avoid	any	word	that	is	reserved	by	a	DBMS.

Names	can	be	a	maximum	of	249	characters	in	length.

Any	alphanumeric	character	can	be	used	in	the	name.

For	object	instance	names,	you	can	define	a	name	that	contains	leading
or	trailing	spaces.	It	can	also	be	an	empty	string.	If	the	name	is	all
spaces,	it	is	treated	as	an	empty	string.

Spaces	within	a	name	are	allowed	because	COM	supports	it.	However,
if	you	include	spaces	in	an	interface	definition	name,	you	will	get	an
error	when	you	subsequently	define	properties	on	that	interface.

See	Also

Naming	and	Unique-Naming	Collections

Naming	Conventions	for	Generated	Views

Naming	Objects,	Collections,	and	Relationships

Meta	Data	Services	Programming

Naming	and	Unique-Naming	Collections
Certain	relationships	can	provide	a	name	by	which	the	origin	object	refers	to	the
destination	object.	Such	a	relationship	is	called	a	naming	relationship.	A
collection	of	naming	relationships	is	a	naming	collection.

Certain	naming	collections	require	that	all	destination	objects	in	the	collection
have	unique	names.	Such	a	collection	is	referred	to	as	a	unique-naming
collection.

User	requirements	may	require	objects	to	support	multiple	names.	For	example,
consider	a	system	in	which	a	single	program	can	have	two	different	file	names,
because	there	are	two	different	file	systems	that	allow	and	disallow	long	names,
respectively.	The	following	figure	illustrates	this	case.

The	figure	shows	four	relationships.	Each	relationship	specifies	a	name	by	which
one	of	the	objects	(the	origin	object)	refers	to	the	other	object	(the	destination
object).	In	particular,	notice	that	the	object	representing	the	error-handling
program	file	has	two	different	names,	ErrHndl	and	ErrorHandler.

In	order	to	support	this	kind	of	capability,	the	Repository	Type	Information
Model	(RTIM)	attaches	the	Name	property	to	the	relationship	type,	not	to	the
object	class.	This	enables	an	object	to	have	as	many	names	as	it	has	relationships
(that	is,	relationships	for	which	it	is	the	destination).

Object	Naming	Collections
If	the	COLLECTION_OBJECTNAMING	flag	is	set,	there	is	no	relation-specific
naming	of	this	object.	The	object	has	the	same	name	in	the	relationship	as
specified	by	the	INamedObject::Name	property	on	the	object.	Specifying	a
name	during	the	collection's	Add	operation	or	attempting	to	set	the
IRepositoryItem:Name	property	on	the	relationship	object	will	return	the	error
EREP_COL_OBJECTNAMING.	If	you	attempt	to	add	an	object	that	does	not
support	INamedObject	to	the	collection,	the	error
EREP_COL_OBJECTNOTNAMED	is	returned.

See	Also

CollectionDefFlags	Enumeration

INamedObject	Interface

Naming	Objects,	Collections,	and	Relationships

Repository	Errors	(alphabetical	order)

Meta	Data	Services	Programming

Retrieving	an	Object	Version's	Name
When	you	try	to	retrieve	the	name	of	an	object	version,	the	repository	engine	can
search	in	several	places	for	the	name:

If	the	object	version	implements	the	INamedObject	interface,	the
repository	engine	retrieves	the	Name	property	exposed	by	that
interface.

If	the	object	version	does	not	implement	the	INamedObject	interface,
the	repository	engine	seeks	a	destination	naming	relationship	for	the
object	version.	With	that	destination	naming	relationship,	the	repository
engine	performs	object-version	resolution,	yielding	a	particular	origin
object	version	from	the	relationship's	TargetVersions	collection.	The
repository	engine	retrieves	the	name	by	which	that	origin	object	version
refers	to	the	destination	object.

See	Also

Changing	a	Destination	Relationship's	Name

Changing	an	Object	Version's	Name

INamedObject	Interface

Naming	Objects,	Collections,	and	Relationships

Resolution	Strategy	for	Objects	and	Object	Versions

Meta	Data	Services	Programming

Changing	an	Object	Version's	Name
When	you	change	the	name	of	an	object	version,	the	repository	engine	might	try
to	change	several	names	as	follows:

If	the	object	version	implements	the	INamedObject	interface,	the
repository	engine	changes	the	Name	property	exposed	by
INamedObject	unless	the	object	version	is	unchangeable.

If	the	object	version	has	one	or	more	destination	naming	relationships,
the	repository	engine	tries	to	change	a	name	for	each	of	those
relationships.	For	more	information,	see	Changing	a	Destination
Relationship's	Name.

See	Also

IRepositoryItem	Interface

Repository	Object

Repository	ConnectionString	Property

Retrieving	an	Object	Version's	Name

Meta	Data	Services	Programming

Changing	a	Destination	Relationship's	Name
A	name	associated	with	a	naming	relationship	is	the	origin	object	version's	name
for	the	destination	object.	When	you	change	the	name	of	a	destination	naming
relationship,	you	simultaneously	change	an	origin	version's	name	for	the
destination	object.	If	the	destination	relationship	has	multiple	items	in	its
TargetVersions	collection,	each	of	those	origin	versions	could	have	a	different
name	for	the	destination	object.	The	repository	engine	follows	a	resolution
strategy	to	choose	a	particular	origin	object	version	from	the	destination
relationship's	TargetVersions	collection.	Next,	the	repository	engine	changes	the
origin	object	version's	name	for	the	destination	object,	unless	the	origin	object
version	is	unchangeable.

See	Also

Changing	an	Object	Version's	Name

Resolution	Strategy	for	Objects	and	Object	Versions

Retrieving	an	Object	Version's	Name

Meta	Data	Services	Programming

Naming	Stored	Procedures
When	you	use	a	Microsoft®	SQL	Server™	database	for	your	repository,	the
repository	engine	creates	stored	procedures	for	the	insertion	of	rows	into	the
repository	SQL	tables.	This	topic	describes	how	these	stored	procedures	are
named.

The	stored	procedure	name	for	a	table	is	generated	by	prefixing	the	table	name
with	the	string	"R_i".	Because	table	names	are	unique,	this	naming	convention
will	generate	unique	stored	procedure	names.	If	the	length	of	the	table	name	is
greater	than	MaxIdentifierLength-3,	however,	the	table	name	generation
algorithm	fails.	For	this	reason,	a	user	may	not	supply	a	table	name	longer	than
MaxIdentifierLength-3.	Supplying	a	longer	name	causes	the	error
EREP_BADNAME.

When	the	user	does	not	provide	a	table	name	for	an	interface,	the	engine
automatically	generates	the	table	name	from	the	interface	name.	If	the	interface
name,	with	the	leading	"I"	stripped	off,	is	less	than	MaxIdentifierLength-4,	the
interface	name	will	be	used	as	the	table	name.	Otherwise,	the	interface	name	is
truncated	to	MaxIdentifierLength-7,	and	a	4-character	number	is	appended	to
the	name	to	make	it	unique,	before	prefixing	"R_i.

The	engine	uses	named	arguments	to	call	the	stored	procedures.	A	named
argument	starts	with	the	at	sign	(@)	character	and	is	no	longer	than
MaxIdentifierLength.	Therefore,	the	property	names,	which	are	also	column
names,	must	be	no	longer	than	MaxIdentifierLength-1.

MaxIdentifierLength	values	are	30	characters	for	SQL	Server	version	6.5	and
128	characters	for	SQL	Server	version	7.0	and	SQL	Server	2000.

See	Also

Naming	Objects,	Collections,	and	Relationships

Repository	Errors	(Alphabetical	Order)

Repository	SQL	Schema

Meta	Data	Services	Programming

Creating	and	Extending	Type	Information
Information	models	contain	type	information	about	the	tools	and	applications
you	develop.	Creating	an	information	model	is	the	first	step	in	developing	tools
and	applications	with	the	Microsoft®	SQL	Server™	2000	Meta	Data	Services
repository.

You	can	build	custom	information	models,	or	use	the	predefined	information
model	distributed	with	SQL	Server	2000.	SQL	Server	distributes	the	Open
Information	Model	(OIM).	You	can	obtain	a	more	recent	version	of	the	OIM
from	the	Meta	Data	Coalition	(MDC)	or	the	Meta	Data	Services	Software
Development	Kit	(SDK).

If	you	are	using	a	predefined	information	model,	the	information	model	is
created	for	you.	However,	you	can	extend	a	predefined	information	model	if	you
want	to	add	elements	that	further	describe	the	tool	or	application	you	want	to
develop.	Extending	an	information	model	is	equivalent	to	creating	a	new	model.

The	following	topics	detail	different	strategies	for	creating	an	information
model.

Topic Description
Creating	Type	Information	Using
Modeling	Tools

Describes	the	advantages	of	creating
an	information	model	with	modeling
tools

Information	Model	Creation	Issues Identifies	choices	you	can	make
about	a	model	you	create,	and
identifies	some	basic	requirements
for	creating	a	navigable	information
model

Creating	Type	Information
Programmatically

Details	the	steps	to	follow	when
creating	an	information	model
through	code

See	Also

Getting	Started	with	Meta	Data	Services

Information	Models

OIM	in	Meta	Data	Services

Meta	Data	Services	SDK

Repository	API	Reference

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Meta	Data	Services	Programming

Creating	Type	Information	Using	Modeling	Tools
Using	a	third-party	tool	to	create	an	information	model	in	a	visual	modeling
environment	is	strongly	recommended.	Information	models	are	complex	to
design	and	difficult	to	get	right	the	first	time.	Unless	you	are	creating	the
simplest	of	models,	or	making	small	changes	to	an	existing	model,	you	should
invest	in	a	tool	to	develop	your	design.

In	addition	to	providing	a	visual	modeling	environment,	modeling	tools	provide
support	for	multiple	users,	version	control,	report	generation,	and	integration
with	application	programming	environments.

The	Microsoft®	SQL	Server™	2000	Meta	Data	Services	Software	Development
Kit	(SDK)	includes	utilities	for	creating	and	extending	an	information	model.
You	can	access	these	utilities	from	within	third-party	modeling	tools	by	way	of
extensions.

See	Also

Creating	and	Extending	Type	Information

Information	Models

Meta	Data	Services	SDK

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Meta	Data	Services	Programming

Information	Model	Creation	Issues
When	you	insert	an	information	model	into	a	repository,	you	have	the	following
choices	and	decisions	to	consider:

How	much	of	the	tool	information	will	you	store	in	the	repository
database	and	how	much	will	you	store	in	other	files?

For	each	class	you	define	in	your	information	model,	what	Automation
server	will	create	instances	of	that	class?

Can	you	tune	the	database	schema	to	improve	performance?

Should	you	create	a	new	information	model	or	extend	an	existing	one?

Should	you	assign	object	identifiers,	or	let	the	repository	engine	do	this
for	you?

How	will	your	information	model	accommodate	navigation	from	one
object	to	another?

The	following	topics	discuss	each	of	these	questions.

Topic Description
Extending	vs.	Creating
Information	Models

Provides	guidelines	to	help	you	decide
whether	to	create	or	extend	an
information	model

Choosing	Which	Information
Belongs	in	the	Repository

Provides	guidelines	to	help	you	decide
where	a	Microsoft®	SQL	Server™	2000
Meta	Data	Services	repository	fits	into
your	development	environment

Choosing	an	Automation	Server Explains	how	to	instantiate	an

for	a	Class Automation	server	in	your	application
code

Tuning	the	Database	Schema	of
an	Information	Model

Provides	tips	that	can	help	you	determine
how	the	repository	database	is	created

Accommodating	Navigation
Within	an	Information	Model

Explains	the	core	requirements	for
building	a	navigable	information	model

Assigning	Object	Identifiers Explains	the	ways	in	which	a	repository
identifier	can	be	assigned	to	an	object

See	Also

Creating	Type	Information	Programmatically

Meta	Data	Services	Programming

Extending	vs.	Creating	Information	Models
You	can	create	a	new	information	model	or	extend	an	existing	one.	In	general,
each	information	model	should	accommodate	the	data	about	a	particular	area	of
your	application	environment.

When	faced	with	the	decision	of	whether	to	extend	an	existing	information
model	or	build	a	new	one,	you	can	follow	these	guidelines	to	determine	a	course
of	action.

To	accommodate	data	or	structures	that	are	unrelated	or	only	minimally
related	to	existing	type	information,	create	a	new	information	model.	

To	accommodate	additional	kinds	of	data	that	are	closely	related	to
existing	type	information	model,	extend	an	existing	information	model.

After	you	decide	that	extending	an	information	model	is	the	right	choice,	you
must	decide	whether	to	extend	it	through	a	modeling	tool	or	through	the
repository	API.	If	you	do	not	own	a	modeling	tool	or	if	the	change	is	small,	you
can	use	the	repository	API	to	create	type	information	programmatically.

See	Also

Creating	Type	Information	Programmatically

Information	Model	Creation	Issues

Meta	Data	Services	Programming

Choosing	Which	Information	Belongs	in	the
Repository
You	do	not	need	to	store	all	of	the	information	for	your	tool	in	a	Microsoft®
SQL	Server™	2000	Meta	Data	Services	repository.	For	example,	suppose	your
tool	helps	application	developers	and	systems	engineers	keep	track	of	the	bugs
on	their	software	systems.	Your	tool	maintains	modules,	bug	reports,	and	test
suites.	Each	module	has	a	name,	an	author,	source	code,	and	one	or	more	bugs
reported	on	it.	Each	bug	can	have	a	description,	a	module	on	which	it	is	reported,
and	a	test	suite	used	to	reproduce	the	bug.	Each	test	suite	can	have	one	or	more
bugs	that	it	can	reproduce.	Because	your	tool	maintains	each	test	suite	in	a	file
format,	you	decide	not	to	explicitly	insert	each	test	suite	into	a	repository.
Instead,	you	store	in	the	repository	only	the	name	of	a	file	containing	the	test
suite.

To	decide	which	information	belongs	in	the	repository,	consider	the	following
questions:

Do	you	want	to	perform	impact	analysis	on	the	data?

The	more	information	you	store	in	the	repository,	the	more	impact
analysis	questions	you	can	answer.	Consider	the	example	described
previously.	Because	the	information	model	includes	a	class	describing
test	suites,	you	can	learn	which	test	suite	generates	the	most	bugs.

Conversely,	because	the	information	model	does	not	include	a	class
accommodating	individual	tests	or	the	persons	responsible	for	them,
you	cannot	use	the	repository	to	learn	which	person	discovers	the	most
bugs.

Is	there	another	file	format	that	is	more	appropriate	for	the	fine	details
of	the	definitions	that	describe	your	tool?

There	are	two	aspects	to	consider:

If	a	tool	manipulates	objects	whose	fundamental	units	of
storage	and	manipulation	are	large,	a	file	format	can	be	more
efficient	than	the	repository.	In	this	case,	it	is	probably	more

effective	to	store	the	data	objects	in	their	native	file	format,	and
to	store	in	the	repository	a	description	of	each	data	object.

If	an	existing	tool	already	stores	its	data	in	a	file	format,
switching	to	Meta	Data	Services	would	require	rewriting	the
tool.	To	save	time,	you	can	choose	to	retain	the	existing	file
format	and	replicate	some	subset	of	the	tool	data	in	the
repository.

See	Also

Creating	Type	Information	Programmatically

Information	Model	Creation	Issues

Meta	Data	Services	Programming

Choosing	an	Automation	Server	for	a	Class
After	you	add	your	information	model	to	a	repository,	you	can	run	your	tool.
Periodically,	your	tool	will	invoke	the	CreateObject	method	to	create	an
instance	of	one	of	the	classes	of	your	information	model.	CreateObject	must
create	a	run-time	object	(that	is,	an	Automation	object).	To	create	the	run-time
object,	the	repository	engine	calls	CoCreateInstance,	using	as	a	parameter	the
ClassID	you	provided	as	a	property	of	the	class.

When	the	engine	calls	CoCreateInstance	with	the	ClassID,	the	system	registry
is	checked	to	determine	which	Automation	server	contains	the	required	class
factory.	For	most	classes	in	your	information	model,	a	generic	Automation
server	for	repository	objects,	Repodbc.dll,	suffices.	To	use	the	generic	server	as
the	Automation	server	for	a	class,	you	can	either	do	nothing,	or	you	can	specify
Repodbc.dll	in	the	entry	for	that	class	in	the	registry.

Although	Repodbc.dll	suffices	as	the	Automation	server	for	most	repository
classes,	you	will	occasionally	create	a	class	whose	instances	require	special
treatment.	For	example:

A	class	of	your	information	model	requires	input	validation.

You	can	validate	the	property	values	or	collections	of	each	instance	of	a
class	by	writing	a	special	Automation	server	for	that	class.

A	class	of	your	information	model	replicates	some	properties	retained	in
another	file	format	outside	the	repository.

Suppose	your	information	model	includes	a	class	whose	instances
describe	Microsoft®	Word	documents.	Each	instance	describes	a	Word
document,	indicating	specifically	its	title,	subject,	and	author.	Your
class-specific	Automation	server	must	include	special	code	to	ensure
that	the	values	of	the	repository	properties	match	the	values	of	title,
subject,	and	author	stored	in	the	Word	file.

A	class	of	your	information	model	requires	some	class-specific	behavior
that	you	implement	in	a	method.

Suppose	your	information	model	includes	a	class	whose	instances
describe	modem	pools.	Each	instance	describes	a	particular	modem
pool,	including	its	phone	number.	Your	class-specific	Automation	server
can	include	a	method	to	automatically	dial	the	number	and	establish	a
connection.

Note		At	this	time,	the	repository	engine	supports	in-process
Automation	servers	only	(that	is,	dynamic-link	libraries).

See	Also

Creating	Type	Information	Programmatically

Information	Model	Creation	Issues

Meta	Data	Services	Programming

Tuning	the	Database	Schema	of	an	Information	Model
The	repository	engine	stores	data	in	a	relational	database.	When	you	add	an
information	model,	the	repository	engine	enlarges	this	database	by	creating	new
tables	and	columns	to	accommodate	your	tool	information.	Generally,	each
interface	corresponds	to	a	table,	and	each	property	corresponds	to	a	column.
When	you	populate	your	information	model,	the	repository	engine	inserts	rows
into	these	tables.

You	have	some	control	over	the	database	schema	that	accommodates	your	tool
information.	For	example,	you	can:

Use	a	single	table	to	contain	the	interface-specific	properties	of	more
than	one	interface.

To	do	this,	set	the	TableName	property	for	each	interface	definition
object	to	the	same	name	before	you	commit	the	transaction	that	is	used
to	create	your	information	model.

Create	an	additional	index	for	a	table.

To	do	this,	open	the	database	directly	and	use	the	SQL	CREATE
INDEX	command	after	you	commit	the	transaction	that	is	used	to	create
your	information	model.

Note		You	cannot	completely	control	the	database	schema.	In	particular,
each	table	must	include	the	columns	IntID,	Z_BrID_Z,	and	Z_VS_Z,
and	must	define	the	primary	key	on	those	columns.	Furthermore,	you
cannot	drop	columns	that	your	information	model	uses	to	store
properties.

See	Also

Creating	Type	Information	Programmatically

Information	Model	Creation	Issues

Meta	Data	Services	Programming

Accommodating	Navigation	within	an	Information
Model
Because	the	objects	in	your	information	model	are	associated	through	a	network
of	relationships,	you	can	navigate	to	each	part	of	an	information	model	through
the	relationships	you	define.

To	support	programming	against	the	information	model,	you	must	build	in
navigation	support	by	way	of	relationships.

The	first	relationship	must	be	between	the	repository	root	object	and	an	object	in
your	information	model.	To	enable	this	first	navigation	step,	include	in	your
information	model	a	relationship	type	whose	instances	will	associate	the	root
object	with	objects	stored	in	your	information	model.

Create	a	relationship	type	with	these	characteristics:

The	origin	collection	type	of	the	relationship	type	is	a	member	of	an
interface	implemented	by	the	ReposRoot	class.

The	destination	collection	type	of	the	relationship	type	is	a	member	of
an	interface	implemented	by	a	class	of	the	information	model.

To	create	this	relationship	type

1.	 Create	a	new	interface	and	add	it	to	the	set	of	interfaces	implemented
by	the	ReposRoot	class.

2.	 Create	a	relationship	type	associating	the	newly	created	interface	with
some	interface	implemented	by	a	class	of	your	information	model.
Choose	an	interface	implemented	by	a	fundamental	class,	a	class
whose	instances	are	good	objects	from	which	to	begin	moving	to	other
objects	of	the	information	model.

For	more	information	about	moving	through	a	repository,	see	Navigating	a
Repository.

See	Also

Creating	Type	Information	Programmatically

Information	Model	Creation	Issues

Meta	Data	Services	Programming

Creating	Type	Information	Programmatically
If	you	do	not	have	a	modeling	tool,	you	can	create	a	new	information	model	or
extend	an	existing	one	programmatically.	This	section	explains	the	steps	you
need	to	follow	when	creating	an	information	model,	and	discusses	some	issues
to	consider	in	designing	and	inserting	information	models	into	a	Microsoft®
SQL	Server™	2000	Meta	Data	Services	repository.

When	you	insert	an	information	model	into	a	repository,	you	populate	the
Repository	Type	Information	Model	(RTIM).	That	is,	you	create	instances	of	the
classes,	interfaces,	properties,	methods,	and	relationship	types	of	the	RTIM.

The	following	topics	describe	the	steps	in	creating	type	information
programmatically.

Topic Description
Begin	a	Transaction Explains	how	to	begin	a	transaction	that

brackets	the	information	model
definitions

Create	a	Repository	Type
Library

Describes	how	to	create	an	empty
information	model	to	store	subsequent
definition

Define	Dependencies	Between
Type	Libraries

Explains	how	to	define	dependencies
between	multiple	information	models

Add	Classes	to	the	Repository
Type	Library

Details	how	to	add	class	definitions	to	an
information	model

Add	Interfaces	to	Each	Class Details	how	to	add	interface	definitions	to
an	information	model

Add	Properties	to	Each	Interface Details	how	to	add	property	definitions	to
an	interface

Add	Methods	to	Each	Interface Details	how	to	add	method	definitions	to
an	interface

Add	Relationship	Types	and
Pairs	of	Collection	Types

Details	how	to	add	relationship	and
collection	definitions	to	an	interface

Commit	the	Transaction Describes	how	to	commit	the	transaction

that	inserts	your	definitions	into	a	Meta
Data	Services	repository

See	Also

Creating	and	Extending	Type	Information

Information	Model	Creation	Issues

Information	Models

Repository	API	Reference

Repository	Object	Architecture

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

Begin	a	Transaction
To	write	data	to	a	repository,	bracket	your	interactions	within	the	scope	of	a
transaction.

To	begin	a	transaction

1.	 Open	or	create	the	repository	into	which	you	want	to	insert	the
information	model.	To	open	an	existing	repository,	use	the	Open
method	of	the	IRepository	interface	or	the	Repository	object.

-or-

To	create	a	new	repository,	use	the	Create	method	of	the	IRepository
interface.

Both	of	these	methods	return	the	root	object	for	the	open	repository.

2.	 Invoke	the	Begin	method	of	the	IRepositoryTransaction	interface	or
RepositoryTransaction	object.

The	IRepositoryTransaction	interface	is	accessible	through	the
Transaction	property	of	the	object	that	represents	your	connection	to
the	repository.

See	Also

Creating	Type	Information	Programmatically

Create	a	Repository	Type	Library

Commit	the	Transaction

Connecting	to	and	Configuring	a	Repository

IRepository	Interface

IRepositoryTransaction	Interface

Meta	Data	Services	Programming

Create	a	Repository	Type	Library
The	Repository	Type	Information	Model	(RTIM)	includes	a	class	named
ReposTypeLib;	each	instance	of	this	class	corresponds	to	a	repository	type
library.	Each	repository	type	library	describes	an	information	model.

To	create	an	instance	of	the	ReposTypeLib	class

Use	the	CreateTypeLib	method	of	the	root	object's
IManageReposTypeLib	interface	or	the	ReposRoot	object.

Note		Each	instance	of	ReposTypeLib	has	a	collection	of	types,	where
each	type	is	either	a	class,	an	interface,	or	a	relationship	type.	The
collection	is	called	ReposTypeInfos,	and	is	used	to	ensure	that	unique
names	are	used	for	all	classes,	interfaces,	and	relationship	types	in	your
information	model.

See	Also

Creating	Type	Information	Programmatically

Define	Dependencies	Between	Type	Libraries

IManageReposTypeLib	Interface

ReposRoot	Object

ReposTypeLib	Class

Meta	Data	Services	Programming

Define	Dependencies	Between	Type	Libraries
The	Repository	Type	Information	Model	(RTIM)	allows	model	developers	to
define	dependencies	between	type	libraries.	You	can	define	dependencies	if	you
want	to	share	information	models,	or	leverage	an	existing	information	model
within	a	new	context.

To	define	a	dependency

Use	the	DependsOn	collection	on	the	IReposTypeLib2	interface	to
define	a	dependency	between	two	type	libraries.	For	example,	in	order
to	define	a	dependency	between	file	allocation	table	(FAT)	and	FileSys
type	libraries:

Use	the	following	code	to	define	a	dependency	in	Automation:

FAT.DependsOn("IReposTypeLib2").Add	FileSys

Use	the	following	code	to	define	a	dependency	in	COM:

pFATCol	->	Add(pFileSys,	RelShipName,	&pRelShipName);

pFATCol
A	pointer	to	the	FAT	type	library	DependsOn	collection	on	the
IReposTypeLib2	Interface.

pFileSys
A	pointer	to	the	FileSys	type	library.

RelShipName
The	name	of	the	relationship	between	the	FAT	and	the	FileSys	type	libraries.

pRelShipName
A	pointer	to	the	relationship	between	the	FAT	and	the	FileSys	type	libraries.

See	Also

Add	Classes	to	the	Repository	Type	Library

Creating	Type	Information	Programmatically

IReposTypeLib2	DependsOn	Collection

Meta	Data	Services	Programming

Add	Classes	to	the	Repository	Type	Library
According	to	the	Repository	Type	Information	Model	(RTIM),	you	define	a	new
object	class	by	creating	an	instance	of	the	ClassDef	class.

To	create	a	new	class	definition

Use	the	CreateClassDef	method	of	the	IReposTypeLib	interface	that	is
exposed	by	your	ReposTypeLib	object.

Be	sure	the	class	identifier	that	you	supply	as	an	input	parameter	to	this
method	matches	the	globally	unique	identification	(GUID)	of	that	class
in	the	system	registry.

Note		Within	the	system	registry,	you	can	indicate	which	Automation
server	the	repository	engine	uses	to	create	instances	of	your	new	class.
You	can	use	the	Automation	server	that	the	repository	engine	provides
for	all	repository	objects,	or	you	can	use	your	own	server.	For	more
information	about	deciding	which	kind	of	Automation	server	to	use,	see
Information	Model	Creation	Issues.

See	Also

Add	Interfaces	to	Each	Class

Creating	Type	Information	Programmatically

ReposTypeLib	Object

Meta	Data	Services	Programming

Add	Interfaces	to	Each	Class
Each	of	the	classes	in	your	information	model	exposes	one	or	more	interfaces.
Add	a	new	interface	to	a	class	by	creating	an	instance	of	the	InterfaceDef	class.

When	you	create	a	custom	interface,	you	must	avoid	assigning	a	dispatch	ID	of
1000	to	the	interface.	IRepositoryDispatch::get_Properties	reserves	this	value
for	itself.

To	create	a	new	interface	definition

Use	the	CreateInterfaceDef	method	of	the	IClassDef	interface	that	is
exposed	by	your	ClassDef	object.

Be	sure	the	interface	identifier	that	you	supply	as	an	input	parameter	to
this	method	matches	the	globally	unique	identification	(GUID)	that	has
been	assigned	to	the	interface.

Note		Among	the	interfaces	you	create	for	your	information	model,	you
must	include	an	interface	that	the	ReposRoot	class	implements.	You
need	this	interface	and	an	attendant	relationship	type	to	enable
navigation	to	the	objects	that	will	populate	your	information	model.	For
more	information	about	why	you	need	this	interface,	see	Information
Model	Creation	Issues.

See	Also

Add	Methods	to	Each	Interface

Add	Properties	to	Each	Interface

Add	Relationship	Types	and	Pairs	of	Collection	Types

ClassDef	Object

Creating	Type	Information	Programmatically

IClassDef	Interface

Meta	Data	Services	Programming

Add	Properties	to	Each	Interface
Each	interface	in	your	information	model	can	expose	properties.	Attach	a	new
property	to	an	interface	by	creating	an	instance	of	the	PropertyDef	class.

To	create	a	new	property	definition

Use	the	CreatePropertyDef	method	of	the	IInterfaceDef	interface	that
is	exposed	by	your	InterfaceDef	object.

See	Also

Add	Methods	to	Each	Interface

Add	Relationship	Types	and	Pairs	of	Collection	Types

Creating	Type	Information	Programmatically

IInterfaceDef	Interface

Meta	Data	Services	Programming

Add	Methods	to	Each	Interface
Each	of	the	interfaces	in	your	information	model	can	expose	methods.	Attach	a
new	method	to	an	interface	by	creating	an	instance	of	the	MethodDef	class.

To	create	a	new	method	definition

Use	the	CreateMethodDef	method	of	the	IInterfaceDef	interface	that
is	exposed	by	your	InterfaceDef	object.

Note		If	your	interface	has	methods,	you	must	provide	your	own
Automation	server	for	classes	that	implement	this	interface.	For	more
information	about	deciding	which	kind	of	Automation	server	to	use,	see
Information	Model	Creation	Issues.

See	Also

Add	Properties	to	Each	Interface

Add	Relationship	Types	and	Pairs	of	Collection	Types

Creating	Type	Information	Programmatically

IInterfaceDef	Interface

Meta	Data	Services	Programming

Add	Relationship	Types	and	Pairs	of	Collection	Types
Relationships	connect	objects	to	each	other	in	a	Microsoft®	SQL	Server™	2000
Meta	Data	Services	repository.	When	you	define	a	new	relationship	type,	you
also	define	an	origin	collection	type	and	a	destination	collection	type.	The	origin
collection	type	connects	the	relationship	type	to	one	interface;	the	destination
collection	type	connects	the	relationship	type	to	a	second	interface.	The	classes
that	implement	those	interfaces	are	now	related	in	your	information	model.

To	create	a	new	relationship	type	(and	its	corresponding	pair	of	collection
types)	and	attach	it	to	two	interfaces

Use	the	CreateRelationshipDef	method	of	the	IReposTypeLib
interface	that	is	exposed	by	your	ReposTypeLib	object.	Then,	use	the
CreateRelationshipCol	method	to	create	the	collection.	For	more
information,	see	Defining	a	Collection.

Note		One	of	the	relationship	types	that	you	create	for	your	information
model	must	enable	navigation	from	the	root	object	of	the	repository	to
some	objects	of	your	information	model.	For	more	information	about
why	you	need	this	interface,	see	Information	Model	Creation	Issues.

See	Also

Add	Properties	to	Each	Interface

Add	Methods	to	Each	Interface

Creating	Type	Information	Programmatically

IReposTypeLib	Interface

Meta	Data	Services	Programming

Commit	the	Transaction
When	you	have	added	all	of	the	type	definition	objects	to	your	information
model,	use	the	Commit	method	of	the	IRepositoryTransaction	interface	to
commit	your	additions	to	the	repository	database.

See	Also

Creating	Type	Information	Programmatically

Information	Model	Creation	Issues

IRepositoryTransaction	Interface

Meta	Data	Services	Programming

Defining	Relationships	and	Collections
Relationships	and	collections	provide	the	structure	and	navigation	of	your
information	model.	After	you	define	the	objects	you	require,	you	need	to
associate	the	objects	by	defining	relationships.	The	relationships	that	you	create
must	be	defined	as	collections.	You	can	also	create	collections	that	do	not
contain	relationships.

The	following	collection	types	are	possible.

Collection Description
Object	collection Contains	multiple	instances	of	the	same	type	of

object	(for	example,	a	set	of	StoredProcedure
objects).

Object	collections	are	only	used	in	an
ObjectInstances	collection	on	ClassDef	and
InterfaceDef	objects.	For	more	information,	see
Defining	a	Collection	and	ObjectCol	Object.

Version	collection Contains	versioned	objects.	There	are	seven	kinds	of
version	collections.	For	more	information,	see	Kinds
of	Version	Collections.

Relationship
collection

Contains	relationship	objects.	Each	relationship
object	pairs	one	source	object	to	one	target	object.
Relationship	collections	can	be	used	for	navigation.
For	more	information,	see	Defining	a	Relationship
and	Defining	a	Relationship	Collection.

Target	object
collection

Contains	all	of	the	target	objects	of	a	specific	source
object.	For	example,	the	target	object	collection	of	a
Table	source	object	can	be	a	collection	of	Column
objects.

A	target	object	collection	is	represented	as	a
property	that	returns	a	TargetObjectCol	object.

For	more	information,	see	Defining	a	Target	Object
Collection	and	ITargetObjectCol	Interface.

Transient	object
collection

Contains	objects	that	are	populated	by	code.	A
transient	object	collection	is	a	special	case	of
collection	type.	Where	the	other	collection	types	are
formed	from	persistent	object	data,	a	transient	object
collection	is	instantiated	from	your	code.	This
collection	is	populated	dynamically	and	does	not
rely	on	persistent	data	to	determine	its	contents.	For
more	information	about	defining	transient	object
collections,	see	Programming	Transient	Object
Collections.

See	Also

Navigating	a	Repository

Understanding	Collections

Understanding	Relationship	Roles

Meta	Data	Services	Programming

Defining	a	Relationship
Relationships	are	used	to	navigate.	At	a	minimum,	you	need	to	know	how	to
traverse	relationships	to	get	from	one	object	to	another.	Furthermore,	the
repository	engine	supports	complex	behavior	that	varies	based	on	relationships:
namely,	delete	propagation,	version	propagation,	view	generation,	version
resolution,	and	naming	relationships.	To	understand	how	the	repository	engine
responds	to	these	cases,	you	need	to	know	about	relationships	and	how	they	are
structured.

Origin	and	Destination	Collections
All	relationships	are	accessed	by	way	of	a	collection.	For	this	reason,	you	must
always	associate	objects	through	a	relationship	definition.	When	an	origin	object
accesses	a	destination	object,	the	origin	object	accesses	a	relationship	collection
that	contains	destination	objects.	When	a	destination	object	accesses	an	origin
object,	the	destination	object	accesses	a	relationship	collection	that	contains	the
origin	object.

To	support	access	in	both	directions,	you	must	always	provide	two	collections.
From	the	perspective	of	the	origin	object,	the	relationship	collection	to	which	it
is	attached	is	a	destination	collection.	Similarly,	from	the	perspective	of	the
destination	object,	the	relationship	collection	to	which	it	is	attached	is	an	origin
collection.

When	you	define	a	relationship	type	and	its	attendant	collection	types,	you	must
declare	one	collection	type	as	the	origin.	To	do	this,	you	must	set	the	IsOrigin
property	on	the	collection.

In	addition	to	providing	access,	the	distinction	between	origin	and	destination
collections	is	important	because	naming	collections,	unique-naming	collections,
and	sequenced	collections	can	only	be	defined	on	origin	collections.

The	following	example	illustrates	how	to	create	an	origin	collection	that
supports	unique-naming	and	sequencing.	In	this	example,	objid_null	is	the
object	identifier,	name_	is	the	string	that	defines	a	name,	and	dispid_	indicates	a
dispatch	identifier	(a	constant	not	shown	in	this	example).

Rem	**	Declare	interface,	collection,	and	relationship
Dim	oTypeLib	as	RepositoryTypeLib
Dim	oRContains	as	RelationshipDef
Dim	oCTableContains	as	CollectionDef

Rem	**	Create	the	oRContains	relationship	on	oTypeLib
Set	oRContains	=	oTypeLib.CreateRelationshipDef(objid_null,	name_Contains)

Rem	**	Create	the	relationship	collection	for	oRContains
Rem	**	IsOrigin	is	set	to	True
Rem	**	10	is	the	combined	bits	for	CollectionDef	flags	(2	for	uniquenaming,	8	for	sequenced)
Set	oCTableContains	=	oTypeLib.CreateRelationshipColDef(objid_null,	name_CTableContains,	dispid_TableContains,	True,	10,	oRContains)

See	Also

CollectionDef	IsOrigin	Property

Defining	Relationships	and	Collections

Defining	a	Collection

ICollectionDef	IsOrigin	Property

IRelationship	Interface

Relationship	Class

Relationship	Object

Meta	Data	Services	Programming

Defining	a	Collection
Collections	are	a	kind	of	property	that	provide	a	way	to	relate	and	group	objects.
Each	object	can	support	multiple	collections.

Collections	are	materialized	at	run	time,	using	interfaces	that	you	call.	The	kind
of	collection	that	is	materialized	depends	on	the	interface	you	use.	Because	the
repository	stores	data,	the	collections	that	you	materialize	assume	the	state	that
they	had	the	last	time	the	collection	was	instantiated.	For	example,	a	collection
that	contains	three	objects	at	the	end	of	one	repository	session	will	still	contain
those	three	objects	the	next	time	you	run	a	repository	session.

The	rule	for	an	object-collection	association	is	object	to	collection	to	object.	In
an	information	model,	objects	are	never	related	to	each	other	directly.	Objects
are	always	associated	through	a	collection.	For	example,	if	the	relationship
between	two	objects	is	strictly	one-to-one,	the	collections	that	associate	the
objects	each	contain	one	object.

To	define	a	collection,	use	the	CollectionDef	class	or	ICollectionDef	interface
for	COM	programs,	or	CollectionDef	object	for	Automation	programs.

The	following	example	illustrates	how	to	define	two	collections	for	a	single
relationship.	The	pattern	of	two	collections	for	each	relationship	holds	for	all
relationships	that	you	create.	In	this	example,	objid_null	is	the	object	identifier,
name_	is	the	string	that	defines	a	name,	and	dispid_	indicates	a	dispatch
identifier	(a	constant	not	shown	in	this	example).

Rem	**	Declare	interfaces,	relationship,	and	collections
Dim	oTypeLib	as	RepositoryTypeLib
Dim	oRContains	as	RelationshipDef
Dim	oCTableContains	as	CollectionDef
Dim	oCTableContainedBy	as	CollectionDef

Rem	**	Create	the	relationship	oContains	on	oTypeLib
Set	oRContains	=	oTypeLib.CreateRelationshipDef(objid_null,	name_Contains)

Rem	**	Create	the	Contains	and	ContainedBy	collections
Set	oCTableContains	=	oITypeLib.CreateRelationshipColDef(objid_null,	name_TableContains,	dispid_TableContains,	True,	oRContains)
Set	oCTableContainedBy	=	oTypeLib.CreateRelationshipColDef(objid_null,	name_TableContainedBy,	dispid_TableContainedBy,	False,	oRContains)

See	Also

CollectionDef	Class

CollectionDef	Object

Defining	Relationships	and	Collections

ICollectionDef	Interface

Understanding	Collections

Understanding	Relationship	Roles

Meta	Data	Services	Programming

Sequenced	Collections
Some	information	models	require	the	tool	or	application	be	able	to	set	the
sequence	of	items	in	a	collection.	This	requirement	occurs	when	the	sequence
itself	is	significant	in	some	way.

A	collection	that	supports	the	sequencing	of	its	items	is	referred	to	as	a
sequenced	collection.	Relationships	contained	within	such	a	collection	are
sequenced	relationships.	The	Repository	Type	Information	Model	(RTIM)
supports	the	definition	of	collection	types	for	sequenced	collections.

For	example,	consider	a	report	generator	tool	that	displays	tables	of	data	where
the	data	is	displayed	in	rows	and	columns.	Each	table	is	represented	by	an	object
that	conforms	to	the	Table	class.	The	columns	of	the	table	are	represented	by
objects	that	conform	to	the	Column	class.	Each	table	has	a	collection	of	columns
that	are	included	in	it	(the	relationship	that	relates	a	Table	object	to	a	Column
object	is	the	includes	relationship).	The	following	figure	illustrates	this	example.

To	determine	the	order	in	which	the	columns	will	appear	when	the	table	is
displayed	or	printed,	the	report	generator	tool	relies	on	the	sequence	of	the
column	items.	For	the	Student	table,	the	report	is	displayed	with	the	Student	ID
column	leftmost,	the	Last	Name	column	next,	and	the	First	Name	column	on
the	right-hand	side.

To	define	a	sequenced	collection,	set	the	COLLECTION_SEQUENCED	flag	on
a	collection	definition	object.

See	Also

CollectionDefFlags	Enumeration

Defining	Relationships	and	Collections

Understanding	Collections

Understanding	Relationship	Roles

Meta	Data	Services	Programming

Heterogeneous	Collections	of	Objects
Every	collection	of	relationships	is	homogeneous.	In	any	relationship	collection,
each	item	is	a	relationship	of	the	same	relationship	type.	Collections	of	objects,
however,	can	be	either	homogenous	or	heterogeneous	(that	is,	the	items	can	have
different	classes).

A	collection	of	objects	can	be	heterogeneous	for	the	following	reasons:

The	Repository	Type	Information	Model	(RTIM)	allows	each	interface
to	be	implemented	by	many	classes.

The	RTIM	expresses	each	relationship	type	as	an	association	between
two	interfaces	rather	than	as	an	association	between	two	classes.

Each	relationship	type	describes	how	the	objects	of	classes	implementing
particular	interfaces	can	be	related.	Thus,	if	several	classes	implement	a
particular	interface,	some	relationship	types	involving	that	interface	can	yield
collections	whose	target	objects	span	several	classes.	As	you	prepare	programs
that	manipulate	such	collections,	do	not	assume	that	the	collections	will	contain
homogeneous	sets	of	objects.

Note		Plan	for	change;	do	not	assume	that	your	information	model	will	remain
unchanged.	Although	a	particular	relationship	type	of	your	information	model
might	associate	two	interfaces	that	are	implemented	by	exactly	one	class	each,
you	might	someday	create	other	classes	that	implement	those	same	interfaces.
Any	user	who	enlarges	the	number	of	classes	implementing	either	of	those
interfaces	introduces	the	possibility	for	heterogeneous	collections	of	objects.	If
your	programs	that	use	those	collections	are	dependent	upon	homogeneous
collections,	you	must	rewrite	them	as	soon	as	you	implement	the	interfaces	with
several	classes.	To	protect	your	programs	from	this	cause	of	obsolescence,	write
them	assuming	that	any	collection	of	objects	can	be	heterogeneous.

See	Also

Defining	Relationships	and	Collections

Understanding	Collections

Understanding	Relationship	Roles

Meta	Data	Services	Programming

Defining	a	Relationship	Collection
Tools	and	applications	can	sometimes	manipulate	sets	of	relationships	as	a	single
unit.	To	represent	this	functionality	in	your	information	model,	you	can	use
relationship	collections.	The	Repository	Type	Information	Model	(RTIM)	lets
you	describe	relationship	collection	types	as	templates	to	which	relationship
collections	must	conform.

A	relationship	collection	is	a	set	of	similar	relationships.	To	be	part	of	a
relationship	collection,	the	relationships	must	be	similar	in	these	two	ways:

They	must	be	of	the	same	relationship	type.	All	the	relationships	in	a
collection	must	conform	to	the	same	relationship	type.

They	must	have	the	same	object	in	the	same	role.	One	object	must	be
common	to	all	relationships	in	the	collection.	That	object	must	play	the
same	role	(either	origin	or	destination)	for	all	relationships	in	the
collection.

To	define	a	relationship	collection,	use	the	RelationshipCol	class	or
IRelationshipCol	interface	for	COM	programs,	or	Relationship	object	for
Automation	programs.

See	Also

Defining	Relationships	and	Collections

Naming	and	Unique-Naming	Collections

Heterogeneous	Collections	of	Objects

IRelationshipCol	Interface

RelationshipCol	Class

RelationshipCol	Object

Sequenced	Collections

Understanding	Collections

Understanding	Relationship	Roles

Meta	Data	Services	Programming

Defining	a	Target	Object	Collection
A	target	object	collection	is	a	kind	of	special-purpose	collection	that	is	designed
for	navigation.	Since	target	object	collections	reduce	navigation	to	a	one-step
operation,	you	should	use	target	object	collections	for	most	of	your	navigation.

About	Target	Object	Collections
A	target	object	collection	is	the	set	of	target	objects	that	are	associated	with	the
relationships	in	a	particular	relationship	collection.	The	relationship	collection	in
the	following	figure	is	one	example.

This	relationship	corresponds	to	this	target	object	collection.

These	associations	are	valid	because	the	underlying	data	looks	like	this.

The	object	that	is	common	to	all	of	the	relationships	in	the	corresponding
relationship	collection	is	referred	to	as	the	source	object.	In	the	preceding	figure,
the	object	describing	Frank	is	the	source	object.	The	objects	describing	Kim,
Iola,	and	Fenton	are	target	objects.

Implementing	a	Target	Object	Collection
A	target	object	collection	is	represented	as	a	property,	which	returns	an
ITargetObjectCol	object.	On	this	object,	you	can	invoke	QueryInterface	to
access	the	IRelationshipCol	and	IVersionCol	interfaces.

To	define	a	target	object	collection,	use	the	ITargetObjectCol	interface.

See	Also

Defining	Relationships	and	Collections

ITargetObjectCol	Interface

Understanding	Collections

Understanding	Relationship	Roles

Meta	Data	Services	Programming

Defining	a	Version	Collection
Version	collections	provide	a	way	to	manipulate	sets	of	versioned	objects.

To	define	a	versioned	collection,	use	the	VersionCol	class	or	IVersionCol
interface	for	COM	programs,	or	VersionCol	object	for	Automation	programs.

You	can	also	define	a	versioned	relationship.	To	define	a	versioned	relationship,
use	the	VersionRelationship	class	or	IVersionRelationship	interface	for	COM
programs,	or	use	the	VersionRelationship	object	for	Automation	programs.

See	Also

Defining	Relationships	and	Collections

IVersionCol	Interface

IVersionedRelationship	Interface

Kinds	of	Version	Collections

Understanding	Collections

Understanding	Relationship	Roles

VersionCol	Class

VersionCol	Object

VersionedRelationship	Class

VersionedRelationship	Object

Meta	Data	Services	Programming

Defining	Properties
You	can	create	a	property	definition	object	to	represent	properties	in	an
information	model.	Properties	can	include	enumerated	values.	You	can	also
specify	a	property	as	a	virtual	member	if	you	want	to	provide	a	property	value
from	a	source	other	than	the	repository.

To	define	a	property	definition	object,	you	can	use	the	PropertyDef	class	or	the
IPropertyDef	interface	for	COM	programs,	or	the	PropertyDef	object	for
Automation	programs.

The	following	topics	provide	more	information	about	defining	properties.

Topic Description
Virtual	Members Describes	how	to	implement	a	virtual

member	in	your	information	model
Repository	Enumeration	Definition Explains	how	to	provide	an

enumerated	list	of	values	for	a
property

See	Also

Defining	Relationships	and	Collections

IPropertyDef	Interface

PropertyDef	Class

PropertyDef	Object

Meta	Data	Services	Programming

Virtual	Members
Virtual	members	are	properties	and	collections	that	are	not	allocated	storage	in	a
repository	database.	Creating	a	virtual	member	is	useful	if	you	want	to	store
property	values	or	collection	items	somewhere	other	than	the	repository.

Virtual	members	are	defined	on	interfaces.	You	can	define	nonpersistent
members	by	setting	the	flag	VIRTUAL_MEMBER	in	the
InterfaceMemberFlags	enumeration.	If	this	flag	is	set,	the	repository	engine
returns	an	error	if	an	attempt	is	made	to	access	this	member.

A	COM	aggregation	object	must	be	used	to	implement	the	transient	storage.

See	Also

IInterfaceMember	Flags	Property

InterfaceMemberFlags	Enumeration

Meta	Data	Services	Programming

Repository	Enumeration	Definition
The	repository	enumeration	definition	is	used	to	specify	a	fixed	set	of	constant
strings	or	integer	values	that	correspond	to	real-world	concepts	as	an
enumeration.	With	the	following	interfaces	you	can	specify	an	EnumerationDef
object	and	associated	EnumerationValue	objects,	and	associate	these	objects
with	PropertyDef	objects.

IEnumerationDef	interface

The	IEnumerationDef	interface	is	the	default	interface	for	enumeration
objects.	Use	this	interface	to	define	new	enumeration	values.

IEnumerationValueDef	interface

The	IEnumerationValueDef	interface	contains	a	value	that	can	be
stored	in	the	Property	value	of	an	object.

IPropertyDef2	interface

The	IPropertyDef2	interface	has	a	relationship	collection	called
EnumerationDef.	It	contains	an	optional	relationship	to	a	single
EnumerationDef	object.

The	following	table	identifies	enumeration	objects	that	support	interfaces.

Objects Interfaces
All	Enumeration	objects IenumerationDef
	 IrepositoryObject
	 IRepositoryObjectStorage
	 IreposTypeInfo
	 IVersionAdminInfo2
	 InamedObject
	 ISummaryInformation
EnumerationValue	objects IEnumerationValue
	 IrepositoryObject

	 IRepositoryObjectStorage
	 InamedObject
	 ISummaryInformation
	 IVersionAdminInfo2

See	Also

IEnumerationDef	Interface

IEnumerationValueDef	Interface

IPropertyDef2	Interface

Meta	Data	Services	Programming

Defining	Methods
You	can	define	a	method	definition	object	to	represent	methods	in	an
information	model.	In	addition	to	specifying	methods,	you	can	define	parameters
on	a	method	and	on	script	objects.

To	define	a	method	definition	object,	you	can	use	the	MethodDef	class	or	the
IMethodDef	interface	for	COM	programs,	or	the	MethodDef	object	for
Automation	programs.

The	following	topics	provide	more	information	about	defining	methods	and
scripts.

Topic Description
Defining	a	Parameter Explains	how	to	define	a	parameter
Defining	Script	Objects Explains	how	to	define	a	script	object

that	provides	the	implementation	code
for	a	method

See	Also

IMethodDef	Interface

MethodDef	Class

MethodDef	Object

Meta	Data	Services	Programming

Defining	a	Parameter
Parameter	definitions	specify	a	parameter	that	is	attached	to	a	method.	With
parameter	definitions,	you	can	support	an	ordered	collection	of	parameters	that	a
method	uses.

To	define	a	parameter,	use	the	IMethodDef	and	IParameterDef	interfaces	for
COM	programs,	or	use	the	MethodDef	or	ParameterDef	objects	for
Automation	programs.

The	IMethodDef	interface	provides	a	way	to	define	an	ordered	list	of
parameters	for	that	method.	IMethodDef	is	the	default	interface	of	the
CMethodDef	object	that	the	IInterfaceDef::CreateMethodDef	method	returns.

The	IParameterDef	interface	enables	you	to	define	in	detail	each	parameter	of	a
method.

These	two	interfaces,	along	with	the	relationships	to	other	classes	and	interfaces,
are	shown	in	the	following	figure.

Parameter	definitions	are	stored	in	a	table	in	the	repository	database	called
RTblParameterDef.

For	more	information	about	model	graphs	and	conventions,	see	the	Microsoft®
SQL	Server™	2000	Meta	Data	Services	Software	Development	Kit	(SDK).

See	Also

Defining	Methods

IMethodDef	Interface

IParameterDef	Interface

RtblParameterDef	SQL	Table

Meta	Data	Services	SDK

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

Defining	Script	Objects
You	can	assign	Microsoft®	ActiveX®	scripts	to	method	and	property	definitions
in	an	information	model.	The	repository	engine	exposes	these	methods	and
properties,	and	invokes	the	associated	script	at	run	time.	You	can	also	use	scripts
to	program	transient	object	collections.

You	can	create	script	using	Microsoft	JScript®	and	Microsoft	Visual	Basic®
Scripting	Edition	(VBScript).	To	define	scripts	in	your	information	model,	use
the	IScriptDef	interface	for	COM	programs	or	the	ScriptDef	object	for
Automation	programs.	Only	one	script	definition	can	be	associated	for	each
method	or	property.

Attaching	scripts	to	properties	that	are	defined	as	BLOBs	(that	is,	PropertyDef
objects	that	have	SQLType	set	to	SQL_LONGVARBINARY	or
SQL_LONGVARCHAR)	is	not	supported.	Attaching	scripts	to	large	property
objects	does	not	result	in	an	error	or	warning;	the	script	is	not	invoked.

IScriptDef	properties	do	not	reside	on	the	IMethodDef	or	IPropertyDef
interfaces	by	design.	Associating	a	script	at	the	interface	or	class	level	allows
you	to	implement	the	same	method	in	a	variety	of	contexts.

The	following	topics	provide	more	information	about	script	implementation.

Topic Description
Binding	Scripts Explains	the	binding	algorithm	that

links	scripts	to	specific	methods	and
properties

Accessing	a	Script Describes	how	to	access	a	script
Predefined	Script	Variables Describes	variables	that	you	can	use

when	creating	a	script
Method	Invocation	for	Scripted
Methods

Describes	requirements	and
considerations	for	invoking	a
scripted	method

Get	Method	for	Scripted	Properties Describes	requirements	and
considerations	for	creating	the	Get

function	of	a	scripted	property
Put	Method	for	Scripted	Properties Describes	requirements	and

considerations	for	creating	the	Put
function	of	a	scripted	property

See	Also

Defining	Methods

IMethodDef	Interface

IScriptDef	Interface

Programming	Transient	Object	Collections

ScriptDef	Object

Meta	Data	Services	Programming

Binding	Scripts
ScriptDef	objects	are	bound	to	method	and	property	definitions	through
relationships.	The	repository	engine	uses	an	algorithm	to	support	the	binding.

To	support	scripting	for	both	method	and	property	interface	members,	a
ScriptDef	object	is	associated	at	the	interface	member	level.	Because	method
and	property	definitions	inherit	from	interface	member	objects,	an	interface
member	object	provides	the	common	ground	where	an	association	between
script	and	interface	members	can	be	made.

Because	interfaces	can	be	aliased,	derived,	or	otherwise	reused,	script	definitions
are	linked	through	association	to	support	the	levels	of	indirection	that	are
customary	in	COM	programming.	Associations	are	established	through
collections	of	classes,	interfaces,	and	members	that	you	define	for	each
ScriptDef	object.

During	script	invocation,	the	repository	engine	reads	the	collections	to	select	a
script	definition	most	closely	related	to	the	interface.	When	the	repository	engine
selects	the	closest	script	definition,	it	determines	which	method	calls	the	script,
on	which	interface,	and	on	what	class.	The	selection	process	enables	support	for
two	conditions	that	are	common	to	C++	programming:	inheriting	a	method	or
property	implementation,	and	overriding	a	default	implementation.

A	method	or	property	can	be	associated	with	the	class	and	interface	being
executed,	the	interface	being	executed,	or	the	closest	ancestor	that	has	the	script.
If	a	script	cannot	be	selected,	then	the	repository	engine	returns	an	error	in	the
case	of	methods.

You	can	implement	script	for	methods	and	property	validation	rules	that	apply
to:

All	classes	that	implement	the	interface.

A	specific	class	that	implements	the	interface.

A	derived	interface	that	can	override	the	implementation	of	a	base
interface	method	or	property	validation	rule.

Each	method	or	property	can	be	associated	with	only	one	script	definition.
However,	the	same	script	definition	can	be	associated	with	multiple	methods	and
properties.

The	IScriptDef	interface,	along	with	its	relationships	to	other	classes	and
interfaces,	is	shown	in	the	following	figure.

See	Also

Accessing	a	Script

Defining	Script	Objects

IScriptDef	Interface

ScriptDef	Object

Meta	Data	Services	Programming

Accessing	a	Script
A	script	must	run	within	the	transaction	of	the	calling	program.	When	scripts
encounter	an	unhandled	error	or	exception,	the	repository	engine	reads	the	error
information	and	populates	the	repository	error	queue	appropriately.	To	minimize
syntax	errors	in	the	script,	you	can	use	the	ValidateScript	method	to	perform	a
syntax	check	prior	to	script	invocation.

To	execute	the	script,	the	repository	engine	uses	the	Microsoft®	ActiveX®
Scripting	Engine	(VBScript)	by	default.	If	you	require	a	more	powerful	scripting
engine,	you	must	instantiate	that	service	from	within	your	script.

There	are	three	different	ways	to	access	a	script.	The	first	invokes	a	method;	the
other	two	get	or	put	a	property.

Invoking	a	Method
When	a	script	provides	the	implementation	code	for	a	method	definition	object,
you	must	access	the	script	through	method	invocation.

When	you	invoke	the	method,	the	repository	engine	automatically	executes	the
associated	script.	If	there	is	no	associated	script,	the	repository	engine	returns	the
error	message	E_NOTIMPL.

Getting	and	Putting	Properties
You	can	create	a	script	that	validates	a	property	before	inserting	the	value	of	that
property	into	the	repository	database.	In	this	case,	your	script	(rather	than	the
repository	engine)	validates	the	value,	gets	the	value,	and	puts	the	value.	If	you
are	accessing	script	to	validate	a	property	before	storing	it	in	a	repository
database,	you	must	create	Get	and	Put	methods	that	are	associated	with	a
property.

When	you	create	scripts	to	retrieve	and	assign	properties,	you	must	always
define	both	Get	and	Put	operations	in	the	same	script.

When	you	access	any	property	definition	object,	the	repository	engine
calls	the	Get	portion	of	the	script.	You	can	use	a	Get	method	with	a

property	to	present	properties	in	your	application	differently	from	the
way	they	are	stored	in	the	repository	engine.	If	there	is	no	associated
script,	the	property	is	returned	as	it	is	in	the	repository	database.

When	you	assign	a	value	to	any	property	definition	object,	the
repository	engine	executes	the	Put	portion	of	the	script.	The	Put	portion
of	the	script	is	used	to	validate	the	value.	If	there	is	no	associated	script,
the	repository	engine	stores	the	unvalidated	value.

See	Also

Defining	Script	Objects

Get	Method	for	Scripted	Properties

Handling	Errors

Method	Invocation	for	Scripted	Methods

Put	Method	for	Scripted	Properties

Meta	Data	Services	Programming

Predefined	Script	Variables
The	following	table	lists	variables	that	are	predefined	for	use	in	scripts.	Some
variables	are	initialized	as	part	of	the	repository	session.

Variable Description
ReposErr Represents	an	object	that	contains	two	properties:

ReposErr.Result,	which	is	an	HRESULT	value
that	is	returned	as	a	result	of	the
IDispatch::Invoke	call.

ReposErr.Description,	which	is	a	string	that
describes	the	error.	This	value	is	guaranteed	to
exist	only	for	errors	generated	by	the	repository
or	the	script	engine	itself.

CurRepos Represents	the	current	repository	session	as	an
IDispatch	object.

CurReposODBCRepresents	the	IReposODBC	interface	on	the	current
repository	session.

CurReposObj Represents	a	pointer	to	the	IRepositoryObject2
interface.	Use	this	interface	to	represent	the	repository
object	instance	on	which	the	method	or	validation	is
being	executed.

NestedScripts Represents	a	Boolean	variable	that	is	stored	as	a	thread-
level	object.	This	Boolean	variable	determines	whether
nested	scripts	are	called	for	in	the	current	script.	If	the
user-set	Boolean	variable	does	not	accept	nested	scripts,
this	variable	is	set	to	FALSE.	After	the	operation	is
complete,	the	system	sets	it	back	to	TRUE	(the	default
value).

See	Also

Accessing	a	Script

Defining	Script	Objects

Handling	Errors

IRepositoryObject2	Interface

Meta	Data	Services	Programming

Method	Invocation	for	Scripted	Methods
When	you	provide	a	script-based	implementation	for	a	method,	the	repository
engine	selects	the	script	object	for	the	method	using	a	binding	algorithm,	then
invokes	the	script	using	the	default	script	engine.

For	method	invocation	to	succeed,	you	must	make	sure	that	references	in	the
script	correspond	to	references	in	the	method	definition.	Specifically,	the	method
name,	signature,	and	returned	values	that	are	used	to	implement	the	script	must
be	the	same	as	the	name	and	signature	of	the	associated	method	definition.

When	you	execute	the	method,	it	returns	an	HRESULT	value	that	is	copied	into
the	error	object.	The	method	invocation	returns	this	value	to	the	caller.

The	method	can	invoke	other	methods,	including	itself.	You	should	exercise
caution	when	invoking	a	method	on	itself.	Doing	so	may	create	a	recursive
condition	that	can	cause	a	failure	in	your	application.

See	Also

Accessing	a	Script

Defining	Script	Objects

Get	Method	for	Scripted	Properties

Handling	Errors

Predefined	Script	Variables

Put	Method	for	Scripted	Properties

Meta	Data	Services	Programming

Get	Method	for	Scripted	Properties
A	script-based	implementation	for	a	property	requires	the	creation	of	a	Get
method	to	retrieve	a	property	value	from	the	repository	database.

A	Get	method	that	you	provide	substitutes	for	the	get	functionality	that	is
typically	provided	by	the	repository	engine.	When	your	script	(rather	than	the
repository	engine)	provides	the	implementation,	you	must	handle	the	retrieval	of
a	property	value	from	the	repository	database.

For	a	Get	method	to	succeed,	the	script	body	must	contain	a	function	with	the
same	name	as	the	property,	and	it	must	be	prefixed	with	Get.	For	example,	if	the
property	name	is	ExtendedPrice,	your	script	must	include	a	function	named
GetExtendedPrice.

When	executing	the	function,	the	repository	engine	first	performs	a	lookup	to
find	the	property	associated	with	the	script.	If	the	property	cannot	be	found,	a
repository	error	is	returned.	Otherwise,	the	function	returns	S_OK.

In	addition	to	a	Get	method,	you	must	also	define	a	corresponding	Put	method
within	the	same	script.	For	more	information,	see	Put	Method	for	Scripted
Properties.

See	Also

Accessing	a	Script

Defining	Script	Objects

Handling	Errors

IScriptDef	Interface

Method	Invocation	for	Scripted	Methods

Put	Method	for	Scripted	Properties

Meta	Data	Services	Programming

Put	Method	for	Scripted	Properties
A	script-based	implementation	for	a	property	requires	the	creation	of	a	Put
method	to	validate	and	set	a	property	value	in	the	repository	database.

A	Put	method	that	you	provide	substitutes	for	the	set	functionality	that	is
typically	provided	by	the	repository	engine.	A	Put	method	is	also	the	only	way
to	validate	a	property	value	prior	to	saving	it	in	the	database.	When	your	script
(rather	than	the	repository	engine)	provides	the	implementation,	you	must	handle
setting	and	validation	of	a	property	value	from	the	repository	database.

For	a	Put	method	to	succeed,	the	script	body	must	contain	a	function	with	the
same	name	as	the	property,	and	it	must	be	prefixed	with	Put.	For	example,	if	the
property	name	is	ExtendedPrice,	your	script	must	include	a	function	named
PutExtendedPrice.

When	the	Put	function	is	executed,	the	repository	engine	returns	an	error	if	the
new	value	is	invalid.	If	an	error	is	returned,	the	repository	engine	does	not	store
the	new	value	in	the	repository	database.	If	the	function	returns	S_OK,	the	value
passed	to	the	function	is	stored	in	the	repository	database.

In	addition	to	a	Put	method,	you	must	also	define	a	corresponding	Get	method
within	the	same	script.	For	more	information,	see	Get	Method	for	Scripted
Properties.

Validating	Multiple	Properties	Simultaneously
Sometimes	two	properties	are	so	intertwined	that	it	does	not	make	sense	to
validate	them	separately.	Instead,	you	can	validate	both	properties	at	the	same
time	by	following	these	steps:

1.	 Set	the	Put	method	for	both	properties	to	return	a	descriptive	error	that
tells	the	user	the	property	cannot	be	set.	This	step	makes	the	property
effectively	read-only.

2.	 Create	a	method	that	accepts	the	values	of	both	properties	as
parameters.	This	method	validates	the	property	combination.	You	can

then	set	each	property	individually.

See	Also

Accessing	a	Script

Defining	Script	Objects

Handling	Errors

IScriptDef	Interface

Method	Invocation	for	Scripted	Methods

Predefined	Script	Variables

Meta	Data	Services	Programming

Defining	Inheritance
Inheritance	enables	you	to	share	and	reuse	an	interface	or	its	members	in	new
ways.	The	following	topics	discuss	the	inheritance	techniques	that	are	available.

Topic Description
Interface	Implication Describes	the	support	of	inheritance

for	interfaces
Member	Delegation Describes	the	support	of	inheritance

for	interface	members,	specifically
relationships

Type	Information	Aliasing Describes	how	you	can	reuse	an
object	by	creating	a	type	information
alias

See	Also

Defining	Information	Models

Defining	Relationships	and	Collections

Interface	Definition	Objects

Meta	Data	Services	Programming

Interface	Implication
Interface	implication	enables	a	client	application	to	define	a	correspondence
between	two	interfaces	in	an	information	model	such	that	all	of	the	members	on
one	interface	are	available	to	members	of	another	interface.	Interface	implication
offers	some	of	the	functionality	of	multiple	inheritance,	which	is	not	allowed	in
COM.

Interface	implication	supports	information	model	definitions	of	the	form
Interface-I1-implies	Interface	I2,	which	means	that	any	class	that	implements
I1	also	implements	I2.	Consequently,	if	I1	is	added	to	the	list	of	implemented
interfaces	on	a	class,	I2	will	be	added	to	the	list	automatically.	The	engine
supports	implication	for	such	classes,	whether	the	interfaces	exist	at	the	time	of
the	implication	definition,	or	are	installed	into	the	repository	at	a	later	time.

Extending	an	Information	Model	Using	Interface	Implication
Interface	implication	facilitates	information	model	extension.	By	using	interface
implication,	you	can	define	a	new	interface	and	require	that	all	new	and	existing
classes	support	it.	Interface	implication	eliminates	the	need	to	write	a	custom
procedure	that	updates	existing	classes	so	that	they	support	the	new	interface.

For	example,	consider	the	two	interfaces	IA	and	IB	shown	in	the	following
figure.	Suppose	that	all	classes	implementing	IA	now	need	to	implement	IB	as
well.	By	using	interface	implication,	you	can	define	IA-implies-IB,	as	shown	in
the	following	figure.	This	ensures	that	any	class	that	implements	IA,	such	as	C,
will	also	implement	IB,	even	if	class	C	is	installed	after	the	implication	has	been
defined.

Note		In	previous	versions	of	the	repository	engine,	interface	implication	was
accomplished	only	by	using	the	Model	Development	Kit	(MDK).	With	this
release,	this	restriction	no	longer	applies.

For	more	information	about	creating	information	models	by	using	the	MDK,	see
the	Microsoft®	SQL	Server™	2000	Meta	Data	Services	Software	Development
Kit	(SDK).

See	Also

Adding	an	Interface	Implication

Defining	Inheritance

Simulating	Multiple	Inheritance

Meta	Data	Services	Programming

Adding	an	Interface	Implication
Interface	implication	is	defined	through	IInterfaceDef2.	This	interface	supports
two	collections	that	determine	implication:	Implies	and	ImpliedBy.	These
collections	allow	you	to	define	both	directions	of	an	implication.

During	a	commit	of	any	transaction	that	includes	an	interface	that	has	an	Implies
collection	attached	to	it,	the	repository	engine	adds	all	implied	interfaces	to	an
existing	class	and	then	recalculates	the	class.	The	result	of	the	recalculation	is
the	same	as	if	the	class	implemented	the	implied	interface	directly.

See	Also

Defining	Inheritance

Interface	Implication

IInterfaceDef2	Interface

Meta	Data	Services	Programming

Member	Delegation
Member	delegation	supports	the	assignment	of	members	on	one	interface	to	base
members	on	another	interface.	Delegation	can	be	used	to	support	relationship
inheritance.

The	following	topics	provide	more	information.

Topics Description
Derived	Members Describes	derived	members	and

strategies	for	using	derived	members
in	your	information	model

Derived	Member	Requirements Explains	the	conditions	and
requirements	that	support	member
derivation

Creating	a	Derived	Member Describes	how	to	create	a	derived
member	and	how	to	add	a	derived
member	to	an	existing	class

Derivation	Behavior Explains	how	the	repository	engine
stores,	retrieves,	and	updates	derived
members

Example:	Basic	Member	Delegation Provides	sample	code	that	illustrates
member	delegation

Example:	Member	Delegation	with
Filtering

Provides	sample	code	that	illustrates
filtering	on	derived	collections

See	Also

Defining	Inheritance

Interface	Implication

IInterfaceDef2	Interface

Meta	Data	Services	Programming

Derived	Members
Derived	members	is	a	capability	that	can	be	used	to	delegate	the	implementation
of	members	of	one	interface	to	members	of	another	interface,	where	both
interfaces	are	implemented	by	the	same	class.

Aliasing	is	a	simplified	form	of	member	delegation,	where	a	member	of	one
interface	is	derived	from	a	member	of	another	without	modifying	its	underlying
semantics.	Through	aliasing,	you	can	overlap	functionality	for	multiple
interfaces.

For	example,	when	interfaces	evolve,	you	can	rename	properties	and	methods,
place	them	on	different	interfaces,	and	still	maintain	the	naming	scheme	of	the
original	interface.	Similarly,	aliasing	provides	a	way	to	flatten	multiple	interfaces
into	a	single	interface	that	contains	members	from	all	of	them.	The	advantage	to
flattening	a	set	of	interfaces	is	that	it	simplifies	navigation.	Also,	aliasing
simulates	multiple	inheritance.

Note		You	can	define	aliases	for	type	information	elements	other	than	members.
For	more	information	about	type	information	aliasing,	see	Type	Information
Aliasing.

The	following	topics	discuss	how	member	derivation	aliasing	enables	these
scenarios.

Topic Description
Supporting	Multiple	Interfaces	With
Overlapping	Functionality

Describes	how	you	can	reuse
interface	definitions	through	derived
members.

Flattening	Interfaces Describes	how	you	can	combine
interface	members	into	one	interface
to	simplify	navigation.

Simulating	Multiple	Inheritance Explains	how	you	can	simulate
multiple	inheritance	using	derived
members.

A	semantically	richer	variant	of	derived	members	allows	a	collection	on	one

interface	to	be	derived	from	a	collection	on	another	interface	while,	at	the	same
time,	filtering	out	some	of	the	base	collection	members.

The	following	topics	discuss	how	member	derivation	enables	these	scenarios.

Topic Description
Specializing	Relationship	Collections Describes	how	you	can	create

special-purpose	collections	that	are
based	on	a	general-purpose
collection.

Filtering	Derived	Collections Describes	how	you	can	apply
filtering	techniques	to	a	derived
collection.

See	Also

Creating	a	Derived	Member

Defining	Inheritance

Derived	Member	Requirements

Meta	Data	Services	Programming

Supporting	Multiple	Interfaces	With	Overlapping
Functionality
As	an	information	model	changes	to	accommodate	new	functionality,	it	is
common	to	create	a	new	interface	by	evolving	an	existing	interface.	In	this
situation,	the	two	interfaces	(the	old	and	new	versions)	have	overlapping
functionality.	The	two	interfaces	can	exist	together	when	the	old	version	of	the
interface	must	still	be	supported.	In	this	case,	properties	can	be	renamed	and
placed	on	different	interfaces	while	keeping	the	underlying	semantics
synchronized	between	the	interfaces.

The	following	graph	shows	an	object	exposing	the	two	interfaces:

I1:	An	interface	with	a	base	member	M1.

I2:	An	interface	with	a	derived	member	M2.

By	using	member	delegation	from	I2	to	I1,	the	user	can	either	call	the	base
member	(that	is,	I1::M1),	or	call	the	derived	member	(that	is,	I2::M2),	which
will	be	delegated	to	I1::M1.

For	more	information	about	other	ways	of	combining	interface	members,	see
Flattening	Interfaces	and	Simulating	Multiple	Inheritance.

See	Also

Creating	a	Derived	Member

Derived	Members

Interface	Implication

Meta	Data	Services	Programming

Flattening	Interfaces
You	can	use	derived	members	to	flatten	a	set	of	interfaces	of	a	class	into	a	single
interface.	In	this	case,	the	new	interface	contains	all	of	the	combined	members	of
the	flattened	interfaces.	This	simplifies	the	use	of	the	class,	because	your
application	does	not	need	to	navigate	between	interfaces	of	the	class.

In	the	following	figure,	an	object	exposes	two	interfaces,	I1	and	I2,	whose
members	are	M1	and	M2.	By	delegation,	the	two	interfaces	could	be	flattened
into	one	interface	I3	that	contains	the	derived	members	Md1	and	Md2.	In	this
case	the	call	I3::Md1	will	be	mapped	to	I1::M1,	and	the	call	I3:Md2	will	be
mapped	to	I2::M2.

For	more	information	about	other	ways	of	combining	interface	members,	see
Supporting	Multiple	Interfaces	With	Overlapping	Functionality	and	Simulating
Multiple	Inheritance.

See	Also

Creating	a	Derived	Member

Derived	Members

Interface	Implication

Meta	Data	Services	Programming

Simulating	Multiple	Inheritance
In	COM,	multiple	inheritance	between	interfaces	is	not	supported.	However,	by
using	the	derived	members	capability,	multiple	inheritance	can	be	simulated.

For	example,	the	following	figure	shows	an	interface	IA	that	inherits	from	IB,
and	implies	IC	(meaning	that	any	class	that	supports	IA	must	also	support	IC).
According	to	COM,	IA	cannot	inherit	from	IC	because	it	already	inherits	from
IB.	However,	with	delegation,	the	members	of	IC	could	be	made	available	on
IA.	This	is	not	inheritance,	because	IC	members	are	not	explicitly	mapped	into
IA.	Nevertheless,	the	result	is	the	same	because	IA	now	includes	members	of
both	IB	and	IC.

For	more	information	about	other	ways	of	combining	interface	members,	see
Flattening	Interfaces	and	Supporting	Multiple	Interfaces	With	Overlapping
Functionality.

See	Also

Creating	a	Derived	Member

Derived	Members

Interface	Implication

Meta	Data	Services	Programming

Specializing	Relationship	Collections
Using	derived	members	makes	it	possible	to	create	a	subset	or	specialize	a
relationship	collection.

For	example,	in	the	following	figure,	Vehicle	is	related	to	Engine	through	the
relationship	vehicle	has	engine.	Because	the	Motor	Vehicle	uses	an	Internal
Combustion	Engine,	it	requires	specializing	the	general	relationship	vehicle	has
engine	to	motorVehicle	has	internalCombustionEngine.	The	last	relationship	is
specialized	in	Truck	to	truck	has	dieselEngine.

For	more	information	about	other	ways	of	specializing	a	collection,	see	Filtering
Derived	Collections.

See	Also

Creating	a	Derived	Member

Derived	Members

Meta	Data	Services	Programming

Filtering	Derived	Collections
By	using	filtering,	it	is	possible	to	derive	specific	collections	from	a	general
collection.	Filtered	collections	apply	to	inherited	interfaces.

The	following	example	illustrates	the	basic	concept	of	filtering.	In	the	figure,
IDoc1	interface	has	the	Elements	collection	definition,	which	contains	figures
and	text.	You	may	find	it	useful	to	access	only	the	text	or	only	the	figures.	With
the	derivation	mechanism	that	uses	filtering,	the	IDoc2	interface	can	have	two
collection	definitions,	Figures	and	Text.	The	first	contains	only	figures,	and	the
second	contains	only	text.

Architecture	of	Filtered	Derived	Collections
To	create	a	filtered	derived	collection,	you	must	set	up	parallel	collections	that
correspond	to	the	base	collections.	You	must	define	a	derived	origin	collection
for	the	base	origin	collection,	a	derived	destination	collection	for	the	base
destination	collection,	and	a	derived	relationship	collection	for	the	base
relationship	collection.	The	following	example	provides	an	illustration.

The	following	figure	shows	two	base	objects	and	the	collections	that	relate	them.

In	the	next	figure,	Table	object	inherits	from	Package	object	and	Column	object
inherits	from	Element	object.	Derived	collections	include	the	Table	collection,
the	Column	collection,	and	the	Relationship	collection	that	joins	them.

In	this	example	and	in	all	cases	where	filtering	applies,	the	derived	collection	is
a	subset	of	the	base	collection.	The	Table	collection	is	made	up	of	a	subset	of	the
items	in	the	Package	collection.	The	derived	relationship	matches	the	items	in
the	Table	subset	with	the	items	in	the	Column	subset.

For	more	information	about	other	ways	of	specializing	a	collection,	see
Specializing	Relationship	Collections.

See	Also

Derived	Members

Example:	Member	Delegation	with	Filtering

Filtering	Collections

Meta	Data	Services	Programming

Derived	Member	Requirements
Before	you	define	a	derived	member,	verify	that	conditions	supporting	the
implementation	are	in	place.

General	Requirements
The	following	requirements	apply	to	all	derived	members.

A	class	that	supports	an	interface	with	a	derived	member	must	also
support	the	interface	on	which	the	corresponding	base	member	is
defined.	In	other	words,	the	interface	with	the	derived	member	must
either	inherit	or	imply	the	interface	with	the	base	member.	

A	derived	member	can	be	on	the	same	or	a	different	interface	as	its	base
member.

A	derived	member	can	be	derived	from	another	derived	member.	An
interface	member	must	ultimately	derive	from	a	member	that	is	not
derived.	In	other	words,	cyclic	derivations	are	not	allowed.

Derived	members	can	be	defined	for	any	interface	that	is	an	instance	of
InterfaceDef,	including	built-in	repository	engine	interfaces,	such	as
IRepositoryObject.

Derived	Property	Definition	Requirements

For	property	definitions,	storage	data	types	and	lengths	of	derived	properties
must	be	the	same	as	those	of	the	base	property.

Derived	Collection	Definition	Requirements
Because	a	derived	collection	must	map	to	a	base	collection,	the	derived
collection	and	base	collection	must	have	correspondent	characteristics.

The	following	requirements	apply	to	derived	collections.

Collection	Type
A	derived	origin	collection	must	map	to	a	base	origin	collection,	and	a	derived
destination	collection	must	map	to	a	base	destination	collection.

Relationship	Type
A	derived	collection	can	be	connected	by	way	of	a	relationship	only	to	another
derived	collection.	However,	a	derived	collection	cannot	be	connected	to	a	base
(stored)	collection.

A	derived	collection	definition	must	be	defined	in	the	same	transaction	as	the
collection	from	which	it	was	derived,	on	the	same	relationship.

Two	derived	relationships	can	specialize	the	same	base	relationship	and	have
their	collections	on	the	same	pair	of	interfaces.	However,	because	only	the
generalized	relationship	is	stored	in	the	relationship	table	(RTblRelships),
instances	of	the	two	specialized	relationships	are	indistinguishable.

Naming
A	derived	collection	must	be	identical	to	the	base	collection	with	regard	to
naming	characteristics.	If	the	base	collection	specifies	unique	naming,	the
derived	collection	must	also	contain	uniquely	named	items.	Furthermore,	if	you
add	items	to	a	base	collection	by	way	of	the	derived	collection,	you	must	verify
that	the	items	you	add	do	not	break	the	unique	naming	constraints	of	the	base
collection.	For	more	information,	see	Naming	and	Unique-Naming	Collections.

Sequencing
A	derived	collection	must	be	identical	to	the	base	collection	with	regard	to
sequencing	characteristics.	Inserting	an	item	into	a	derived	sequenced	collection
inserts	the	new	relationship	into	the	base	collection	immediately	after	its
predecessor	in	the	derived	collection.	Also,	moving	an	item	in	the	derived
collection	moves	the	item	in	the	base	collection	immediately	after	its
predecessor	in	the	derived	collection.	For	more	information,	see	Sequenced
Collections.

Delete	Propagation
The	delete	propagation	semantics	of	a	derived	collection	must	be	the	same	as	the
base	collection.	For	more	information,	see	Propagating	Deletes.

Version	Propagation
The	version	propagation	semantics	of	a	derived	collection	must	be	the	same	as
the	base	collection.	For	more	information,	see	Propagating	Versions.

See	Also

Creating	a	Derived	Member

Defining	Inheritance

Example:	Basic	Member	Delegation

Example:	Member	Delegation	with	Filtering

IInterfaceMember2	interface

InterfaceMemberFlags	Enumeration

Meta	Data	Services	Programming

Creating	a	Derived	Member
Interface	members	are	either	base	members	or	derived	members.	A	derived
member	is	mapped	to	another	interface	base	member	through	a	relationship.
Member	derivation	supports	mapping	of	the	form	MemberB	Is-Derived-From
MemberA,	which	means	that	MemberA	provides	implementation	for
MemberB.

How	to	Define	a	Derived	Member
Before	you	can	define	a	derived	member,	you	must	verify	that	the	interface	that
includes	the	derived	member	and	the	interface	that	contributes	the	base	member
are	implemented	by	the	same	class.	For	more	information	about	conditions	and
constraints	that	apply	to	derived	member	definition,	see	Derived	Member
Requirements.

To	define	a	derived	member,	use	the	IInterfaceDef2::CreateAlias	method	to
create	an	alias	that	represents	the	derived	member.	Aliases	are	created	from	the
interface	on	which	you	add	the	derived	member.

If	you	use	CreateAlias,	the	derived	member	is	automatically	mapped	to	the	base
member	providing	implementation	details.	Mapping	is	achieved	by	adding	the
derived	member	and	the	base	member	to	collections.	The	base	member	is	added
to	the	ServicedByBaseMember	(the	origin)	collection,	and	the	alias	to	the
ServicesDerivedMembers	(the	destination)	collection.	The	two	collections	are
the	two	sides	of	the	BaseMemberServicesDerivedMembers	relationship	class.
IInterfaceMember2	provides	these	collections.

After	you	create	a	derived	member,	you	can	add	a	property	definition	object	to
the	derived	member	to	enhance	its	definition.

Adding	a	Derived	Member	to	an	Existing	Class
You	can	add	an	interface	containing	derived	members	to	an	existing	class.	No
modification	of	the	instances	is	required	as	long	as	both	the	derived	members
and	the	existing	instances	of	the	class	have	valid	data	for	the	properties	and
collections.

However,	in	one	case	some	existing	instances	of	the	class	may	be	undesirable,
although	they're	technically	valid.	In	this	case,	an	interface	with	a	derived
collection,	for	example,	may	be	added	to	a	class	that	already	has	instances,	and
the	base	member	may	be	read-only.	This	means	that	new	relationships	on
instances	of	this	class	can	be	added	to	the	derived	collection	but	not	(directly)	to
the	base	collection.	Thus,	all	new	relationships	in	the	base	collection	will
conform	to	the	definition	of	the	derived	collection.	However,	at	the	time	the
derived	collection	definition	was	added,	there	may	have	been	existing	instances
of	the	class	with	relationships	on	the	base	collection	that	do	not	conform	to	the
derived	collection.

Updating	a	Derived	Member
You	can	define	whether	a	derived	member	can	be	updated.	Update	capability	is
enabled	by	default.	To	prohibit	updating,	set	the
INTERFACEMEMBER_READONLY	flag	to	TRUE.	For	more	information,	see
Derivation	Behavior	and	InterfaceMemberFlags	Enumeration.

See	Also

Defining	Inheritance

Example:	Basic	Member	Delegation

Example:	Member	Delegation	with	Filtering

IInterfaceDef2::CreateAlias

IInterfaceMember2	interface

Meta	Data	Services	Programming

Derivation	Behavior
The	following	are	detailed	rules	for	derivations	that	apply	to	storage,	retrievals,
updating	collections,	and	adding	derived	members	to	an	existing	class.

Storage
A	property	or	relationship	is	always	stored	by	the	repository	engine	on	the	base
interface.	That	is,	there	are	no	instances	of	derived	relationships	in
RTblRelships	and	there	are	no	columns	allocated	for	derived	properties	in	the
repository	SQL	table	of	their	interface.

Retrievals
When	a	derived	collection	is	referenced,	the	repository	engine	materializes	the
derived	collection	by	applying	a	filter	to	the	base	collection.	For	each	instance	in
the	base	collection,	the	engine	determines	whether	the	target	object	supports	the
target	interface	of	the	derived	collection.	The	effect	for	a	relationship	collection
is	that	all	instances	are	visible	at	the	general	level	in	the	base	collection,	and
subsets	of	the	generalized	relationship	instance	collection	are	visible	at	the	more
specialized	levels	in	the	derived	collections.

Updates	to	Collections
Use	IInterfaceMember::Flags	to	determine	whether	a	derived	or	base	member
is	updateable.

Add,	remove,	insert,	and	move	methods	on	the	derived	collection	are	delegated
to	the	corresponding	operation	on	the	corresponding	item	in	the	base	collection.
An	insert	or	move	method	on	a	sequenced	collection	places	the	item	relative	to
the	derived	collection.	For	more	information	about	sequencing,	see	Derived
Member	Requirements.

The	count,	enumeration,	and	type	methods	on	a	derived	collection	are	specific	to
that	collection.

See	Also

Creating	a	Derived	Member

Defining	Inheritance

Example:	Basic	Member	Delegation

Example:	Member	Delegation	with	Filtering

IInterfaceMember2	interface

InterfaceMemberFlags	Enumeration

Meta	Data	Services	Programming

Example:	Basic	Member	Delegation
This	example	includes	sample	code	for	creating	a	derived	property	and	a	derived
collection.	This	example	illustrates	how	to	create	a	new	interface	and	define	the
derived	property.	Creating	a	relationship	with	a	predefined	base	property
declares	that	this	property	is	derived.	Similarly,	this	example	also	illustrates	how
to	define	a	derived	collection.	The	same	procedure	is	used	for	method
definitions.	There	is	no	change	in	the	programming	logic	of	setting	and	getting
properties	or	manipulating	collections.

The	following	table	identifies	the	Repository	Type	Information	(RTIM)	objects
and	the	corresponding	pointers	that	appear	in	the	sample	code.

RTIM	object Pointer
IinterfaceDef *pINewIface;
IclassDef *pIClassDef;
IpropertyDef *pIBaseProp,	*pIDerivedProp;
IrelationshipDef *pINewRelshipDef;
IrelshipColDef *pIBaseCol,	*pIDerivedCol;
IreposTypeLib *pITypeLib;

In	order	to	run	this	sample,	you	must	create	a	type	library	and	a	class	definition
for	a	new	interface.	Also,	the	collection	pIBaseCol	(a	collection	that	is	the	same
type	as	the	one	being	delegated)	and	the	property	pIBaseProp	(a	property	that	is
the	same	type	as	the	one	being	delegated)	must	have	been	defined	earlier.	The
pointers	pIBaseCol	and	pIBaseProp	are	assumed	to	have	been	already	set
before	running	this	example.

//	Create	a	new	interface:
pIClassDef->CreateInterfaceDef(CRepVariant(OBJID_INewOrgIface),	
CVariant("INewIface"),	CRepVariant(IID_INewIface),	pIIReposDispatch,	
CVariant("Default"),	&pINewIface);

//	Create	an	alias	property:

pINewIface->CreateAlias(CRepVariant(OBJID_ALongDerived),	
CVariant("ALongDerived"),	DISPID_ALongDerived,	pIBaseProp,	
&pIDerivedProp);

//	Create	an	alias	collection:
pINewIface->CreateAlias(CRepVariant(OBJID_CollectionDerived),	
CVariant("CollectionDerived"),	DISPID_CollectionDerived,	
pIBaseCol,	&pIDerivedCol);

See	Also

Creating	a	Derived	Member

Defining	Inheritance

Example:	Member	Delegation	with	Filtering

Meta	Data	Services	Programming

Example:	Member	Delegation	with	Filtering
The	repository	stores	information	that	determines	whether	a	derived	collection
can	be	filtered	for	objects	that	support	a	certain	target	interface.

To	filter	a	derived	collection,	you	must	create	two	derived	collection	definitions
and	a	new	relationship	to	connect	them.	One	derived	collection	contains	the
target	objects	of	interest	(that	is,	the	set	of	target	objects,	minus	those	that	do	not
match	your	filter	criteria).	The	second	derived	collection	contains	the	origin
object.	You	need	a	derived	origin	collection	whenever	you	want	to	create	a
relationship	that	includes	a	derived	destination	collection.	The	new	relationship
type	is	used	to	match	the	collections.

Note		If	the	derived	collections	were	connected	by	the	relationship	type	as	the
base	collections,	there	would	be	two	collections	on	each	side	of	the	relationship
type,	and	the	matching	of	origin	and	destination	collections	would	not	be	well
defined.

The	following	table	identifies	the	Repository	Type	Information	(RTIM)	objects
that	are	used	to	create	derived	collections	and	shows	the	corresponding	pointers
that	appear	in	the	example	code.

RTIM	object Pointer
IInterfaceDef *pINewOrgIface,	*pIDestIface,

*pIIReposDispatch;
IClassDef *pIClassDef;
IPropertyDef *pIBaseProp,	*pIDerivedProp;
IRelationshipDef *pINewRelshipDef
IRelshipColDef *pIBaseOrgCol,	*pIDerivedOrgCol;
IRelshipColDef *pIBaseDstCol,	*pIDerivedDstCol;
IReposTypeLib *pITypeLib;

In	order	to	run	this	sample,	you	must	create	a	type	library	and	a	class	definition
for	a	new	interface.	Also,	the	interface	pIDestIface	must	exist,	as	well	as	a
relationship	from	this	interface	with	two	collections,	pIBaseOrgCol	and
pIBaseDstCol.	The	pointers	pIDestIface,	pIBaseOrgCol,	and	pIBaseDstCol

are	assumed	to	have	been	already	set	before	running	this	example.

//	Create	interfaces	for	a	given	class:
pIClassDef->CreateInterfaceDef(CRepVariant(OBJID_INewOrgIface),	
CVariant("INewOrgIface"),	CRepVariant(IID_INewOrgIface),	
IIReposDispatch,	CVariant("Default"),	&pINewOrgIface);

//	Create	a	new	relationship	type:
/*	Notice	that	CVariant	is	a	wrapper	of	the	VARIANT	class	defined
			in	the	header	file	"oleutil.h"	*/
pITypeLib->CreateRelationshipDef(CRepVariant(OBJID_NULL),	
CVariant("A_Relationship"),	&pINewRelshipDef);

//	Create	an	origin	collection	definition:
pINewOrgIface->CreateRelationshipColDef(CRepVariant(OBJID_Members),	
CVariant("Members"),	DISPID_Members,	TRUE,	COLLECTION_NAMING,	
pINewRelshipDef,	&pIDerivedOrgCol);

//	Get	the	ServicedBy	collection	and	add	the	base	origin	collection:
pIDerivedOrgCol->Interface("IInterfaceMember2")
																										.ServicedBy.Add(pIBaseOrgCol);

//	Create	the	destination	collection:
pIDestIface->CreateRelationshipColDef(CRepVariant(OBJID_NULL),	
CVariant("Parent"),	DISPID_Parent,	FALSE,	NULL,	pINewRelshipDef,	
pIDerivedDstCol);
//	Get	the	ServicedBy	collection	and	add	the	base	destination	collection:
pIDerivedDstCol->Interface("IInterfaceMember2")
																											.ServicedBy.Add(pIBaseDstCol);

In	this	example	code,	the	derived	origin	collection	will	filter	the	objects	that
support	the	IDestIface	interface.	Note	that	a	new	relationship	type	is	defined.
The	relationship	instances,	however,	will	not	use	this	relationship	type.	All	of	the
collections	will	continue	to	use	the	base	relationship	type	instead.	The	new

relationship	type	will	be	used	to	identify	the	matching	collections	in
RTblRelColDefs.

See	Also

Creating	a	Derived	Member

Defining	Inheritance

Example:	Basic	Member	Delegation

Filtering	Derived	Collections

Meta	Data	Services	Programming

Generating	Views
A	repository	database	stores	classes,	properties,	and	relationships	in	a	table
structure	that	does	not	reflect	the	composition	of	an	information	model.	While
this	arrangement	is	optimal	for	the	repository	engine,	it	can	be	difficult	to	work
with	if	you	want	to	query	the	database.

To	simplify	querying,	you	can	generate	SQL	views	of	your	repository	database
that	correspond	to	an	information	model.	An	SQL	view	provides	a	mechanism
for	gathering	elements	from	the	repository	tables	and	assembling	them	into	a
virtual	table	that	resembles	a	specific	class,	interface,	or	relationship	in	your
information	model.	Generated	views	simplify	database	queries	by	eliminating
the	need	to	understand	the	underlying	structure	of	a	repository	database.	In
addition,	views	allow	you	to	represent	any	relationship,	including	a	many-to-
many	relationship,	as	a	junction	table	view,	which	is	something	you	cannot
specify	in	an	information	model.	Views	also	provide	a	way	to	represent	each
many-to-one	relationship	as	a	foreign	key.

View	Types
You	can	define	three	kinds	of	SQL	views	for	each	class,	interface,	and
relationship.	For	more	information	about	each	view	type,	see	Defining	Views	in
an	Information	Model	and	Kinds	of	SQL	Views.

Performance	varies	for	each	kind	of	view.	For	more	information	about	how	to
improve	view	performance,	see	View	Hints.

How	to	Generate	Views
View	generation	requires	Microsoft®	SQL	Server™	2000	and	repository	engine
3.0.	The	3.0	repository	database	format	provides	storage	for	the	view	definitions
you	add	to	an	information	model.	For	more	information	about	upgrading	to	a	3.0
database,	see	Upgrading	and	Migrating	a	Repository	Database.

View	generation	is	performed	by	the	repository	engine	in	response	to	flags	that
you	set	in	the	information	model.	If,	while	creating	a	model,	the	repository
engine	finds	one	of	these	flags	set	to	True,	it	generates	an	SQL	view	from	your
view	definitions.

JavaScript:hhobj_1.Click()

By	default,	view	generation	flags	are	set	to	False.	To	generate	a	SQL	view	after
an	information	model	is	installed,	you	can	write	code	that	sets	the	flags	to	True.
You	can	also	set	the	flags	in	an	information	model,	then	reinstall	it.

The	repository	engine	synchronizes	your	generated	views	with	subsequent
changes	you	make	to	an	information	model	(for	example,	adding	an	interface	to
a	class	or	adding	an	interface	implication).	As	long	as	view	generation	flags
remain	set	to	True,	synchronization	occurs	automatically.

Storing	SQL	Views
View	definitions	are	stored	in	the	repository	SQL	tables.	Class	view	definitions
are	stored	in	the	RTblClassDefs	table.	Interface	view	definitions	are	stored	in
the	RTblIfaceDefs	table.	Junction	table	view	definitions	are	stored	in	the
RTblRelshipDefs	table.

Generated	views	are	stored	by	your	DBMS	in	the	same	catalog	and	schema	that
contains	your	information	model.

See	Also

Repository	Databases

RTblClassDefs	SQL	Tables

RTblIfaceDefs	SQL	Tables

RTblRelshipDefs	SQL	Tables

JavaScript:hhobj_2.Click()

Meta	Data	Services	Programming

Defining	Views	in	an	Information	Model
Before	you	can	generate	a	view,	you	must	add	view	definitions	to	your
information	model	using	IViewClassDef,	IViewInterfaceDef,	or
IViewRelationshipDef.

You	must	set	at	least	one	of	the	following	flags	to	cause	view	generation:
GENERATE_RESOLVED_VIEW,	GENERATE_NORESOLUTION_VIEW,	or
GENERATE_WORKSPACE_VIEW.	Each	one	of	these	flags	generates	a
different	kind	of	view.

You	can	add	view	definitions	using	the	Model	Development	Kit	(MDK)	or	the
repository	API.	The	following	topics	describe	the	kinds	of	SQL	views	you	can
generate.

Topic Description
Kinds	of	SQL	Views Describes	the	scope	and	attributes	of

generated	views.
Defining	a	Class	View Provides	information	about	SQL	views

that	are	based	on	a	class.
Defining	an	Interface	View Provides	information	about	SQL	views

that	are	based	on	an	interface.
Defining	a	Junction	Table	View Provides	information	about	SQL	views

that	are	based	on	a	relationship	class.
Defining	View	Columns Provides	information	about	customizing

a	view	column.

MDC	OIM	SQL	Views
The	Meta	Data	Coalition	(MDC)	Open	Information	Model	(OIM)	is	distributed
with	predefined	SQL	views	that	are	ready	to	use.	These	views	are	added	to	the
views	folder	of	your	Microsoft®	SQL	Server™	2000	repository	database	when
the	MDC	OIM	is	installed.

See	Also

Generating	Views

Naming	Conventions	for	Generated	Views

Meta	Data	Services	Programming

Kinds	of	SQL	Views
View	definitions	can	be	defined	for	a	shared	repository	and	for	workspaces.
Flags	that	you	specify	on	each	interface	determine	the	number	and	type	of	views
that	are	generated	and	whether	implied	interfaces	are	included	in	the	view.

For	each	class,	interface,	and	relationship	class,	you	can	define	three	kinds	of
views.

Kind	of	view Description
Workspace A	view	that	is	scoped	by	a	workspace,	so	it	includes

only	objects	that	are	contained	by	the	workspace.	This
view	is	defined	when	you	set
GENERATE_WORKSPACE_VIEW.

Version	Resolved A	view	that	supports	version	resolution,	so	it	includes
only	the	latest	version	of	each	object	in	the	shared
repository.	This	view	is	defined	when	you	set	the
GENERATE_RESOLVED_VIEW.	For	more
information,	see	Version	Resolution	for	Generated
Views.

Unresolved A	view	that	does	not	support	resolution,	to	be	used	only
when	the	repository	is	not	versioned	or	when	you	know
that	version	information	does	not	exist	or	is
unimportant.	This	view	is	defined	when	you	set	the
GENERATE_NORESOLUTION_VIEW.

Running	an	unresolved	view	against	a	versioned
repository	returns	multiple	entries	(that	is,	all	versions
of	all	meta	data	instances	are	returned).

Note		These	views	are	not	mutually	exclusive;	you	can	create	all	three,
depending	on	your	requirements.

Choosing	one	kind	of	view	over	another	can	have	an	effect	on	performance.	For
more	information,	see	View	Hints.

See	Also

Defining	a	Class	View

Defining	an	Interface	View

Defining	a	Junction	Table	View

Generating	Views

Versioning	Objects

Workspace	Management	Overview

Meta	Data	Services	Programming

Defining	a	Class	View
You	can	direct	the	repository	engine	to	create	a	class-oriented	view	for	a	class
definition	object.	The	generated	view	includes	all	the	properties	(one	column	for
each	property)	of	every	interface	that	is	implemented	by	the	class,	including
those	that	are	implied	and	inherited.	It	also	includes	all	many-to-one
relationships	on	those	interfaces,	representing	each	one	as	a	foreign	key.

When	defining	a	class	view,	you	should	verify	that	the	combination	of	interfaces
does	not	produce	a	duplicate	column	name	(for	example,	a	Name	property	on
two	separate	interfaces).	To	ensure	that	column	names	are	unique,	you	can	create
a	view	column	name.	For	more	information,	see	IViewPropertyDef	Interface,
Defining	View	Columns,	and	Naming	Conventions	for	Generated	Views.

To	create	a	class	view,	use	IViewClassDef	in	a	way	that	is	similar	to	the
following	example:

Dim	oTypeLib	as	ReposTypeLib
Dim	oTable	as	ClassDef
Dim	oViewTable	as	IViewClassDef
set	oTable	=	oTypeLib.CreateClassDef(objid_null,	oTypeLib_name,	oTypeLib_clsID)
set	oViewTable=oTable
//	Generate	a	workspace-scoped	view	by	specifying	bit=4
oViewTable.flags=4

For	more	information	about	properties	and	flags	that	you	can	specify,	see
Defining	Views	in	an	Information	Model	and	IViewClassDef	Interface.

See	Also

Defining	a	Junction	Table	View

Defining	an	Interface	View

RTblClassDefs	SQL	Tables

Meta	Data	Services	Programming

Defining	an	Interface	View
You	can	direct	the	repository	engine	to	create	an	interface-oriented	view	for	an
interface	definition	object.	The	generated	view	includes	all	properties,	including
those	that	are	available	by	way	of	inheritance,	implication,	or	derivation.	It	also
includes	all	many-to-one	relationships	on	those	interfaces,	representing	each	one
as	a	foreign	key.

Interface	views	are	useful	for	abstract	interfaces	that	are	further	specialized	by
other	interfaces	or	that	are	implemented	by	different	classes.	For	example,
suppose	that	IStudent	and	IEmployee	both	inherit	from	IPerson.	Assume	that
IStudent	and	IEmployee	are	implemented	by	classes,	but	that	no	class	exists	for
IPerson.	By	generating	a	view	for	IPerson,	you	can	include	instances	of	both
IStudent	and	IEmployee	using	one	view.

To	create	an	interface	view,	use	IViewInterfaceDef.	For	more	information	about
properties	and	flags	that	you	can	specify,	see	Defining	Views	in	an	Information
Model	and	IViewInterfaceDef	Interface.

See	Also

Defining	a	Class	View

Defining	a	Junction	Table	View

RTblIfaceDefs	SQL	Tables

Meta	Data	Services	Programming

Defining	a	Junction	Table	View
You	can	direct	the	repository	engine	to	create	a	junction-table	view	for	a
relationship	class.	This	is	the	only	way	to	represent	a	many-to-many
relationship.	You	can	also	create	a	junction-table	view	for	a	many-to-one
relationship,	although	you	can	express	this	kind	of	relationship	using	a	foreign
key	instead.

For	more	information,	see	IViewRelationshipDef	Interface.

See	Also

Defining	a	Class	View

Defining	an	Interface	View

Defining	Views	in	an	Information	Model

IReposQuery	Interface

RTblRelshipDefs	SQL	Tables

Meta	Data	Services	Programming

Defining	View	Columns
Column	names	are	generated	from	property	interface	members.	There	is	one
column	for	each	property.

You	can	create	custom	names	for	view	columns.	Creating	custom	names	can
eliminate	duplicate	names	in	cases	where	columns	from	multiple	interfaces	are
defined	in	the	same	view.	For	more	information	about	defining	column	names,
see	IViewPropertyDef	Interface.

Using	Prefixes	to	Distinguish	Between	Names
When	necessary,	the	repository	engine	adds	prefixes	to	disambiguate	identical
names.	Duplicate	names	are	most	likely	to	occur	when	you	generate	a	class	view
on	a	class	that	implements	interfaces	that	contain	members	of	the	same	name.

To	resolve	duplicate	column	names,	the	repository	engine	attaches	the	interface
name	as	a	prefix	to	each	occurrence	of	the	column	name.

For	example,	consider	the	following	two	interface	members,
ISpellchecker::Name	and	IThesaurus::name.	When	creating	a	view	that
combines	both	members,	one	item	will	be	called	ISpellchecker.Name	and	the
item	will	be	called	IThesaurus.name.

The	combined	name	of	base,	interface	prefix,	and	view	type	prefix	cannot
exceed	the	maximum	length	of	118	characters	for	view	columns.	For	more
information,	see	Naming	Conventions	for	Generated	Views.

See	Also

Defining	a	Class	View

Defining	a	Junction-Table	View

Defining	an	Interface	View

Meta	Data	Services	Programming

Version	Resolution	for	Generated	Views
Version	resolution	determines	which	version	of	the	repository	object	is	included
in	a	view	when	there	are	multiple	versions	to	choose	from.	Version	resolution
does	not	apply	to	Workspace	views.	A	Workspace	view	contains	whatever
version	of	the	object	is	included	in	the	workspace.

Version	Resolution	Strategy
When	generating	a	view,	the	repository	engine	selects	the	last	version	of	every
object.	Depending	on	the	combination	of	versions	and	relationships	that	exist,
this	strategy	can	exclude	some	versions	from	the	view,	even	if	they	are	related	to
a	version	that	is	in	the	view.

For	example,	suppose	you	define	a	view	that	contains	version	one	of	ObjectA
(VersionA1),	which	is	related	to	version	one	of	ObjectB	(VersionB1).	If
VersionB1	has	a	successor,	VersionB2,	the	repository	engine	selects	VersionA1
and	VersionB2	for	the	view.	Because	there	is	no	relationship	between
VersionA1	and	VersionB2,	the	generated	view	does	not	reflect	the	relationship.

Because	view	definitions	resolve	to	a	single	version,	version	identifiers	are	not
usually	included	in	a	view.	However,	views	that	use
IRepositoryODBC::ExecuteQuery	to	run	directly	against	the	underlying
database	system	may	need	the	VersionID	column	for	a	subsequent	GetObject
operation.	To	handle	this	case,	you	can	include	the	VersionID	column	in	the
view.	This	column	indicates	which	version	of	an	object	is	selected	by	version
resolution.	You	can	include	the	VersionID	column	by	setting	the
USE_VERSIONID_COLUMN	flag	on	the	view	definition	interface.

See	Also

Defining	Views	in	an	Information	Model

Filtering	Collections

IRepositoryODBC	Interface

IReposQuery	Interface

Meta	Data	Services	Programming

Naming	Conventions	for	Generated	Views
When	you	generate	views,	you	can	either	specify	a	name	through	your
application	code	or	you	can	allow	the	repository	engine	to	specify	a	default	view
name.	View	names	must	conform	to	certain	guidelines.

View	names	can	have	a	maximum	length	of	128	characters.	View	column	names
can	have	a	maximum	length	of	118	characters.

SQL	keywords	are	allowed	for	view	names	and	view	column	names.

Note		If	a	view	name	exceeds	128	characters	and	it	is	not	prefixed,	the	view
name	will	be	truncated	to	128	characters.

Name	Composition
View	names	are	composite	names,	formed	from	a	base	view	name	and	a	prefix.

The	base	view	name	can	be	provided	by	your	application	code	and	stored	in	a
repository	database.	If	no	view	name	is	provided,	a	default	base	name	is	created
from	the	name	of	the	class,	interface,	or	relationship	on	which	the	view	is	based.
Default	names	are	not	stored	in	a	repository	database.

If	you	generate	two	or	more	kinds	of	view,	the	repository	engine	adds	a	prefix	to
distinguish	the	kind	of	view	(class,	interface,	or	junction-table)	and	whether	it	is
resolved.

Prefix	Composition
Prefixes	are	six	characters	in	length,	composed	of	view	type	and	view	resolution
indicators.	Prefixes	are	added	only	when	it	is	necessary	to	distinguish	between
kinds	of	views.	If	you	generate	one	view	for	each	class,	interface,	or
relationship,	no	prefix	is	created.	If	you	generate	two	views	for	each	class,
interface,	or	relationship,	one	of	the	views	will	be	prefixed.	If	you	generate	three
views,	two	of	the	views	will	be	prefixed.

Prefixes	are	assigned	based	on	priority.	The	following	table	indicates	how
priority	rotates	depending	on	the	kinds	of	views	that	are	generated.	A	Workspace

view	is	always	priority	1	if	it	is	generated,	and	it	is	never	prefixed.	If	a
Workspace	view	is	not	generated,	priority	1	shifts	to	Version	Resolved.	If	neither
a	Workspace	view	nor	a	Version	Resolved	view	is	generated,	priority	1	shifts	to
Version	Unresolved.

Workspace Version	Resolved Version	Unresolved
Priority	1	(not
prefixed)

Priority	2	(prefixed) Priority	3	(prefixed)

Priority	1	(not
prefixed)

	 Priority	2	(prefixed)

	 Priority	1	(not	prefixed) Priority	2	(prefixed)
	 	 Priority	1	(not	prefixed)

The	following	table	describes	each	component	of	the	prefix.

Prefix	component Description
RVw Indicates	a	repository	view.
C,	I,	or	J Indicates	a	class	view,	interface	view,	or	junction-table

view.
R	or	N Indicates	whether	a	view	is	resolved	(R)	for	multiple

versions,	or	not	resolved	(N).
_ Separates	the	prefix	from	the	base	name.

View	Name	Example
The	following	table	shows	the	combined	base	name	and	prefix	for	each	view
type,	for	each	kind	of	view	you	can	generate.

View
type Workspace Version	Resolved Version	Unresolved
Class MyClassViewName RVwCR_MyClassViewName RVwCN_MyClassViewName
Interface MyIFaceViewName RVwIR_MyIFaceViewName RVwIN_MyIFaceViewName
Junction-
Table

MyRelshipViewNameRVwJR_MyRelshipViewNameRVwJN_MyRelshipViewName

See	Also

Generating	Views

Defining	Views	in	an	Information	Model

RTblIfaceDefs	SQL	Tables

RTblRelshipDefs	SQL	Tables

Meta	Data	Services	Programming

Querying	a	Repository	Database	Using	SQL	Views
To	query	a	database	using	a	view,	you	can	use	the
IRepositoryODBC::ExecuteQuery	method	or	you	can	run	queries	using	SQL
commands.	The	following	example	illustrates	one	approach.	Other	query	syntax
is	required	for	querying	Workspace	views.

dim	oRepos	as	Repository
dim	ODBC	as	IRepositoryODBC
set	ODBC=oRepos
ODBC.ExcecuteQuery("select	intID	from	cTable	where	TableName="Customer")

The	addition	of	a	SQL	view	makes	it	easier	to	build	select	statements	that
correspond	to	your	information	model.

To	perform	a	query,	the	object	that	you	specify	must	implement
IRepositoryODBC,	which	provides	the	ExecuteQuery	method.

Instead	of	referencing	the	generated	view	in	your	SELECT	statement,	you
specify	the	class,	interface,	or	relationship	object	for	which	you	defined	a	view
definition	and	generated	the	corresponding	view.	In	this	case,	cTable	is	a	class
that	has	a	corresponding	IViewClassDef	defined	for	it,	and	a	generated	view	that
is	available	to	it.	Microsoft®	SQL	Server™	2000	uses	the	generated	SQL	view
transparently	to	process	the	query.	You	do	not	need	to	specify	the	name	of	the
view	when	creating	the	query.

Note		Collection	filters	can	also	be	used	to	facilitate	querying.	For	more
information,	see	Filtering	Collections.

Querying	Workspace	Views
Workspace	views	are	created	as	user-defined	functions.	The	name	of	the	user-
defined	function	is	the	view	name	that	you	specify.	When	querying	a	workspace,
you	must	pass	in	the	workspace	IntID.

The	following	example	illustrates	one	way	to	query	a	Workspace	view.	In	this
example,	MyUDF	is	the	view	name.

dim	oRepos	as	Repository
dim	ODBC	as	IRepositoryODBC
set	ODBC=oRepos
ODBC.ExcecuteQuery("select	*	from	MyUDF(IntID)")

See	Also

Generating	Views

IReposQuery	Interface

Meta	Data	Services	Programming

Installing	Information	Models
Installing	a	model	is	the	process	of	defining	an	information	model	in	a	repository
database.	When	you	install	an	information	model,	the	repository	engine	adds
entries	to	the	repository	SQL	schema.	After	a	model	is	installed,	it	is	available
for	tools	and	applications.	You	can	program	against	an	installed	information
model	using	the	repository	API.

Before	you	can	install	a	model,	you	must	compile	it	using	the	Modeling
Development	Kit	(MDK)	in	the	Microsoft®	SQL	Server™	2000	Meta	Data
Services	Software	Development	Kit	(SDK).	Compiled	models	have	an	.rdm	file
extension.

Note		If	you	are	using	Open	Information	Model	(OIM)	models,	Meta	Data
Services	distributes	ready-to-install	.rdm	files	for	each	model.

The	following	table	lists	four	approaches	to	installing	a	model.

Installation	approach Description
Meta	Data	Browser Provides	a	dialog	box	so	that	you	can

browse	to	the	file	you	want.	For	more
information,	see	Using	Meta	Data	Browser.

Command	line	utility Enables	you	to	run	a	model	installation
from	a	command	line.	For	more
information,	see	Using	the	Model	Installer
from	the	Command	Line.

Microsoft®	ActiveX®
component

Enables	you	to	install	an	information	model
from	your	application	code	using	a	program
that	Meta	Data	Services	provides.	For	more
information,	see	Using	the	Model	Installer
ActiveX	Component.

Repository	API Enables	you	to	install	an	information	model
programmatically	using	methods.	For	more
information,	see
IManageReposTypeLib::CreateTypeLib	and
ReposRoot	CreateTypeLib	Method.

JavaScript:hhobj_1.Click()

See	Also

Information	Models

Information	Model	Fundamentals

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Meta	Data	Services	Programming

Using	the	Model	Installer	from	the	Command	Line
The	model	installer	can	be	executed	through	the	command-line	utility
Insrepim.exe.	By	default,	this	utility	is	located	in	the	folder	C:\Program
Files\Common	Files\Microsoft	Shared\Repository.	It	reads	an	.rdm	file	produced
by	or	distributed	with	the	Microsoft®	SQL	Server™	2000	Meta	Data	Services
Software	Development	Kit	(SDK).	From	the	.rdm	file,	the	utility	extracts	meta
data	from	the	information	model	and	stores	it	in	a	repository	database.	You	use
command-line	arguments	to	specify	the	repository	database.

Syntax

InsRepIM.exe	/f[Model	File]	/r[Repository	Connection	String]	/u[User]	/p[Password]

Parameters

Value Description
[Model	File] The	compiled	information	model

(.rdm)	file
[Repository	Connection	String] The	repository	database	file,	either	a

Data	Source	Name	(DSN)	or
database	and	authentication
information

[User] The	user	name
[Password] The	user	password

See	Also

Connecting	to	and	Configuring	a	Repository

Meta	Data	Services	SDK

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

Using	the	Model	Installer	ActiveX	Component
The	file	Insrepim.dll	is	a	Microsoft®	ActiveX®	DLL	located	in	the	folder
C:\Program	Files\Common	Files\Microsoft	Shared\Repository.	It	can	be	used
from	either	a	Microsoft	Visual	Basic®	application	or	a	Microsoft	Visual	C++®
application	to	programmatically	install	a	model	file	into	a	repository	database.

The	component	supports	the	following	method:

HRESULT	InstallRDM(

BSTR	Connect,

BSTR	RdmFile,

BSTR	UserName,

BSTR	Password

);

Parameters
Connect
[in]
The	repository	connection	string	used	to	access	the	database	server	that	hosts	the
repository	database.

RdmFile
[in]
The	compiled	information	model	(.rdm)	file.

UserName
[in]
The	user's	name.

Password
[in]
The	user's	password.

Return	Value

S_OK
The	method	completed	successfully.

Error	Code
The	method	failed	to	complete	successfully.

See	Also

Connecting	to	and	Configuring	a	Repository

Repository	Errors	(Alphabetical	Order)

Meta	Data	Services	Programming

Programming	Information	Models
After	you	define	and	install	an	information	model	in	a	Microsoft®	SQL
Server™	2000	Meta	Data	Services	repository,	you	can	use	the	object	definitions
in	the	repository	in	your	application	code.

The	following	topics	provide	information	about	accessing	and	manipulating
objects	in	a	repository.

Topic Description
Navigating	a	Repository Describes	how	to	access	objects

through	collection	navigation,	and
identifies	the	repository	API	objects
that	perform	object	manipulation

Versioning	Objects Explains	how	to	version	objects,
manipulate	object	versions,	and
merge	versions

Programming	BLOBs	and	Large	Text
Fields

Describes	programming	support	for
binary	large	objects	(BLOBs)	and
large	text	fields

Programming	Transient	Object
Collections

Explains	how	to	program	a	transient
object	collection

Managing	Transactions	and	Threads Describes	how	to	set	up	a
transaction,	and	how	the	repository
engine	processes	a	transaction	in
single	and	multiple	threads

Managing	Workspaces Explains	how	to	set	up	and	manage	a
workspace,	and	how	to	manipulate
workspace	contents

Handling	Errors Describes	how	to	handle	errors
Optimizing	Repository	Performance Describes	optimization	techniques

that	you	can	use	to	improve
repository	performance

See	Also

Defining	Information	Models

Information	Models

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

Navigating	a	Repository
Because	the	objects	represented	in	a	Microsoft®	SQL	Server™	2000	Meta	Data
Services	repository	are	connected	through	relationships,	you	can	navigate	from
one	object	to	any	related	object.	Relationships	are	implemented	through
collections.	To	navigate,	you	must	traverse	a	collection.

This	section	describes	the	process	of	retrieving	objects	related	to	a	given	object.
This	section	requires	an	understanding	of	the	information	presented	in	the
Repository	Type	Information	Model	(RTIM).

The	following	topics	describe	how	to	navigate	a	repository.

Topic Description
Navigation	Overview Provides	basic	information	about	navigation

elements	and	strategies
Accessing	a	Repository Identifies	the	methods	you	can	use	to	create

or	open	a	repository	database,	handle	errors,
and	set	up	a	transaction

Accessing	Repository	Objects Identifies	the	methods	you	can	use	to
manipulate	a	repository	object

Accessing	Properties Identifies	interfaces	you	can	use	to	acquire
information	about	an	object

Accessing	Relationships Identifies	the	methods	you	can	use	to
manipulate	a	relationship

Accessing	Relationship
Collections

Identifies	the	methods	you	can	use	to
manipulate	a	relationship	collection

Accessing	Target	Object
Collections

Identifies	the	methods	you	can	use	to
manipulate	a	target	object	collection

Selecting	Items	in	a
Collection

Explains	how	to	select	items	in	a	collection
and	how	to	work	with	enumerated	items	in	a
collection

Propagating	Deletes Describes	how	deleting	one	object	can	cause
the	automatic	deletion	of	subsequent	objects

See	Also

Repository	Object	Architecture

Repository	Type	Information	Model

Meta	Data	Services	Programming

Navigation	Overview
The	information	in	a	Microsoft®	SQL	Server™	2000	Meta	Data	Services
repository	is	a	network	of	objects	and	relationships.	You	navigate	through	this
network	using	collections.	Depending	on	your	objective,	you	can	retrieve	an
object	collection,	a	relationship	collection,	or	some	other	special-purpose
collection.

Typically,	you	navigate	to	an	object	because	you	want	to	manipulate	it.
Manipulations	include	retrieving	or	setting	a	property,	deleting	an	object,
deleting	a	relationship	between	two	objects,	or	adding	a	relationship	between
two	objects.

The	following	figure	represents	a	relationship	between	a	Table	origin	object	and
a	Column	destination	object.	The	relationship	type	is	table	has	columns.	In	this
relationship,	one	table	can	have	many	columns.

Subsequent	topics	explore	the	navigable	relationships	and	strategies	that	you	can
implement	based	on	this	single	origin-destination	pairing	of	Table	to	Column.

The	following	topics	provide	this	information.

Topic Description
Navigating	a	Relationship	from
Two	Directions

Describes	how	you	can	navigate	a
relationship	from	either	object	in	the
relationship

Navigating	a	Relationship
Using	Two	Approaches

Describes	alternate	approaches	for
navigating

See	Also

Navigating	a	Repository

Meta	Data	Services	Programming

Navigating	a	Relationship	from	Two	Directions
You	can	navigate	a	relationship	from	the	direction	of	either	the	origin	or
destination	object.	As	such,	there	are	always	two	ways	to	navigate	every
relationship.

In	the	following	example,	you	can	navigate	from	Table	to	Column,	or	you	can
navigate	from	Column	to	Table.	This	figure	shows	the	direction	of	navigation
from	the	Table	object	to	a	Column	object,	using	a	Columns	collection.	When
navigating	from	a	Table	object	to	a	Column	object,	you	use	a	Columns
collection.	The	navigation	and	subsequent	manipulation	is	always	through	the
collection.	For	example,	from	the	Columns	collection,	you	can	select	a	column,
retrieve	or	set	a	column	property,	add	or	delete	a	new	column,	and	so	on.

In	the	next	figure,	the	direction	of	the	navigation	is	from	a	Column	object	to	the
Table	object.	Each	Column	object	accesses	a	separate	Table	collection	to
navigate	back	to	the	Table.	The	same	origin-destination	relationship	between	the
Table	origin	object	and	the	Column	destination	object	supports	this	alternate
approach	to	navigation.	Typically,	a	relationship	from	a	destination	object	to	an
origin	object	is	called	a	reverse	relationship.	Furthermore,	you	can	treat	this
relationship	as	a	separate	entity	(for	example,	as	a	column	containedBy	table
relationship).

See	Also

Navigating	a	Relationship	Using	Two	Approaches

Navigating	a	Repository

Navigation	Overview

Meta	Data	Services	Programming

Navigating	a	Relationship	Using	Two	Approaches
After	you	know	the	direction	of	navigation	that	you	want	to	follow,	you	can
choose	between	two	different	approaches	to	implement	the	navigation.

You	can	navigate	directly	through	a	relationship	collection	using	the
IRelationshipCol	interface,	or	you	can	use	a	specialized	collection	that	is
designed	to	simplify	navigation.	This	specialized	collection	is	a	target	object
collection.	You	instantiate	an	object	collection	using	the	ITargetObjCol
interface.

The	following	figure	shows	two	different	approaches	for	navigating	the	same
path.	In	this	example,	the	navigation	moves	from	the	Table	object	to	a	Column
object.

In	this	figure,	you	can	navigate	through	the	Relationship	collection	(a	two-step
approach)	or	through	the	Columns	collection	(a	one-step	approach).

Instantiating	the	Columns	collection	through	ITargetObjectCol	makes	this
collection	a	target	object	collection.

See	Also

Navigating	a	Relationship	from	Two	Directions

Navigating	a	Repository

Navigation	Overview

Meta	Data	Services	Programming

Source	Objects	and	Target	Objects
A	relationship	collection	associates	a	source	object	with	one	or	more	target
objects.	The	objects	are	attached	to	the	relationship	collection	through	interfaces.

The	words	source	and	target	convey	the	potential	for	browsing.	Typically,	the
source	object	of	a	relationship	is	the	object	for	which	you	retrieve	a	collection.
The	target	object	of	a	relationship	is	the	object	that	can	become	the	target	of	a
step	that	proceeds	from	the	source	object,	through	the	relationship,	to	the	target
object.

Source-and-target	terminology	differs	from	origin-and-destination	terminology.
The	origin	and	destination	do	not	change	based	upon	which	collection	is	being
used	to	access	a	relationship.	For	example,	suppose	Table	is	an	origin	object	and
Column	is	a	destination	object.	When	navigation	proceeds	from	Table	to
Column,	Table	is	the	source	object.	When	navigation	proceeds	in	the	reverse
direction,	Column	is	the	source	object.

See	Also

Navigating	a	Repository

Meta	Data	Services	Programming

Accessing	a	Repository
Access	to	repository	methods	and	properties	is	supported	at	both	the	COM	and
Automation	level.

For	more	information	about	creating	and	opening	a	repository	database,	see
Connecting	to	and	Configuring	a	Repository.

To Use
Create	a	new	repository
database	and	open	it

The	Create	method	of	the	Repository
object,	or	use	IRepository::Create.

Open	an	existing	repository
database

The	Open	method	of	the	Repository	object,
or	use	IRepository::Open.

Retrieve	repository	error
information

The	standard	Err	Automation	object,	or	use
the	methods	of
IRepositoryErrorQueueHandler,
IRepositoryErrorQueue,	and
IEnumRepositoryErrors.

Manage	transactions	in	the
repository

The	methods	of	the	RepositoryTransaction
object	or	the	IRepositoryTransaction
interface.	To	retrieve	an	interface	pointer	to
the	IRepositoryTransaction	interface,	use
the	Transaction	property	of	the	IRepository
interface.

See	Also

Handling	Errors

IRepository	Interface

IRepositoryTransaction	Interface

Repository	Class

Repository	Databases

JavaScript:hhobj_1.Click()

Repository	Object

Repository	Object	Architecture

RepositoryTransaction	Object

Meta	Data	Services	Programming

Accessing	Repository	Objects
Access	to	repository	objects	is	supported	at	both	the	COM	and	Automation
level,	as	shown	in	the	following	table.

To Use
Create	an	object The	CreateObject	method	of	the	IRepository

interface.
Retrieve	an	object The	Object	property	of	the	IRepository	interface.
Delete	an	object The	Delete	method	of	the	IRepositoryItem

interface.
Obtain	the	value	of	an
early-bound	object
property

(Automation)	The	syntax	variable	=
object.property,	as	for	any	Automation	object
property.

(COM)	The	get_PropertyName	method	of	the
COM	interface	to	which	the	property	is	attached,
where	PropertyName	is	the	name	of	the	property
to	be	retrieved.	You	can	also	use	the	late-bound
property	access	method.

Obtain	the	value	of	a
late-bound	object
property	(that	is,	the
object	class	is	not	in	an
available	type	library)

(Automation)	The	syntax	variable	=
object.property,	as	for	any	Automation	object
property.

(COM)	The	standard	Automation	method-
invocation	technique	to	invoke	the
get_PropertyName	method,	where
PropertyName	is	the	name	of	the	property	to	be
retrieved.	Because	all	Microsoft®	SQL	Server™
2000	Meta	Data	Services	interfaces	that	expose
late-bound	properties	are	indirectly	derived	from
the	IDispatch	interface,	the	GetIDsOfNames	and
Invoke	methods	are	available	for	use.

Set	the	value	of	an (Automation)	The	syntax	object.property	=	value,

early-bound	object
property

as	for	any	Automation	object	property.

(COM)	The	put_PropertyName	method	of	the
COM	interface	to	which	the	property	is	attached,
where	PropertyName	is	the	name	of	the	property
to	be	set.	You	can	also	use	the	late-bound	property
access	method.

Set	the	value	of	a	late-
bound	object	property
(that	is,	the	object	class
is	not	in	an	available
type	library)

(Automation)	The	syntax	object.property	=	value,
as	for	any	Automation	object	property.

(COM)	The	standard	Automation	method-
invocation	technique	to	invoke	the
put_PropertyName	method,	where
PropertyName	is	the	name	of	the	property	to	be
set.	Because	all	Meta	Data	Services	interfaces	that
expose	late-bound	properties	are	indirectly
derived	from	the	IDispatch	interface,	the
GetIDsOfNames	and	Invoke	methods	are
available	for	use.

Retrieve	the	object
identifier	of	an	object

The	ObjectID	property	of	the	IRepositoryObject
interface.

Retrieve	the	version
identifier	of	an	object

The	VersionID	property	of	the
IRepositoryVersion	interface.

Set	the	object	identifier
of	an	object

The	object	identifier,	which	is	passed	as	a
parameter	when	creating	the	object.

Retrieve	the	internal
identifier	of	an	object

The	InternalID	property	of	the
IRepositoryObject	interface.

See	Also

Accessing	Properties

Navigating	a	Repository

Versioning	Objects

Meta	Data	Services	Programming

Accessing	Properties
Repository	properties	store	state	information	about	an	object.	You	can	access	a
repository	property	to	acquire	information	about	an	unknown	object,	and	then
use	the	property	data	that	is	returned	to	you	to	acquire	more	specific	information.

The	following	interfaces	are	available	for	manipulating	properties:
IReposProperty,	IReposProperty2,	IReposPropertyLarge,	and
IReposProperties.

To Use
Retrieve	generic	data
about	an	unknown
object

The	IReposProperty	property,	which	exposes
methods	that	enable	you	to	retrieve	generic
information	about	an	object.	You	can	determine
an	object	type	(for	example,	whether	it	is	a	class
or	interface),	retrieve	an	object	identifier,	or	set
and	retrieve	property	values.

Retrieve	additional	data
about	a	specific	object

The	IReposProperty2	property,	which	exposes
additional	data	about	an	object,	such	as	whether	it
is	a	base	member	or	a	derived	member,	whether	it
is	read-only	or	an	origin	collection,	and	so	on.
You	can	use	this	interface	to	retrieve	meta	data
about	the	interface	without	incurring	an	additional
round	trip	to	the	database.	You	can	also	use	this
interface	to	get	the	PropertyDef	object	that
represents	the	property.

Retrieve	all	properties
of	an	interface

The	IReposProperties	property,	which	exposes
all	properties	of	a	particular	interface	as	a	single
collection.

Retrieve	all	properties
of	a	class

The	IRepositoryObject2	property,	which	exposes
a	Properties	collection	that	you	can	use	to	access
all	properties	of	all	interfaces	that	are
implemented	by	a	class.

Retrieve,	set,	and
navigate	a	property

The	IReposPropertyLarge	property,	which
provides	methods	for	manipulating	binary	large

object	that	exceeds	64
kilobytes	(KB)

objects	(BLOBs)	and	large	text	fields	that	exceed
64	KB.	For	more	information,	see	Programming
BLOBs	and	Large	Text	Fields.

See	Also

Accessing	Repository	Objects

IReposProperty	Interface

IReposProperty2	Interface

IReposPropertyLarge	Interface

IReposProperties	Interface

Meta	Data	Services	Programming

Accessing	Relationships
Access	to	relationships	is	supported	at	both	the	COM	and	Automation	level.

To Use
Create	a	relationship The	Add	method	of	the	IRelationshipCol

interface.
Delete	a	relationship The	Remove	method	of	the	IRelationshipCol

interface.
Retrieve	a	relationship (Automation)	The	syntax

relationshipCollection(index),	as	for	retrieving
an	item	from	any	Automation	collection.

(COM)	The	get_Item	method	of	the
IRelationshipCol	interface,	specifying	the
relationship	to	be	retrieved.

Retrieve	an	object	that
participates	in	a	given
relationship

The	Origin	or	Destination	property	of	the
IRelationship	interface.

See	Also

Navigating	a	Repository

Meta	Data	Services	Programming

Accessing	Relationship	Collections
Access	to	relationship	collections	is	supported	at	both	the	COM	and	Automation
level.

You	cannot	add	or	delete	a	relationship	collection	after	it	is	created.	Sometimes	a
relationship	collection	contains	no	relationships,	but	the	collection	still	exists.	If
you	retrieve	such	an	empty	relationship	collection,	the	repository	engine	returns
an	interface	pointer	to	a	relationship	collection,	just	as	it	would	for	any	other
relationship	collection.

Loading	object	instance	collections	can	be	asynchronous.	The	calling	thread
should	check	to	determine	whether	the	load	is	complete.	If	the	calling	thread
tries	to	read	data,	refresh	the	collection,	or	construct	an	enumerator	while
loading	is	in	progress,	it	will	be	blocked	until	the	load	is	complete.

Note		You	can	use	IRepositoryObject2	to	access	specific	collections,	even	if
the	collections	share	the	same	name	through	an	inherited	interface.	For	more
information,	see	IRepositoryObject2	Interface.

To Use
Add	a	relationship	to	a
relationship	collection

The	Add	method	of	the	IRelationshipCol
interface.

Remove	a	relationship
from	a	relationship
collection

The	Remove	method	of	the	IRelationshipCol
interface.

Enumerate	the
relationships	within	a
relationship	collection

(Automation)	The	syntax
relationshipCollection(index),	as	for	retrieving
an	item	from	any	Automation	collection.

(COM)	The	get_Count	and	get_Item	methods	of
the	IRelationshipCol	interface.	You	can	also	use
the	_NewEnum	method	of	the	IRelationshipCol
interface	to	obtain	a	standard	enumerator
interface	for	the	collection.

See	Also

Navigating	a	Repository

Meta	Data	Services	Programming

Retrieving	Relationship	Collections
Relationship	collections	can	be	retrieved	at	both	the	COM	and	Automation	level.

Retrieving	Relationship	Collections	Using	Automation	Interfaces
To	retrieve	a	relationship,	first	declare	a	variable	as	a	RelationshipCol	object
(that	is,	an	object	that	implements	the	IRelationshipCol	interface).	Next,	set	the
variable	equal	to	the	object	member	that	is	the	collection	you	want	to	retrieve.

For	example,	the	following	Microsoft®	Visual	Basic®	code	retrieves	a
collection	of	bug	discoveries	(a	relationship	collection)	belonging	to	a	particular
person	into	the	variable	called	DiscoveryCollection:

DIM	DiscoveryCollection	As	RelationshipCol
DIM	Person	As	RepositoryObjectVersion
REM	Retrieve	the	source	object	into	the	Person	variable
Set	DiscoveryCollection	=	Person.bugs

In	this	example,	DiscoveryCollection(1)	refers	to	the	first	relationship	in	the
collection.

Retrieving	Relationship	Collections	Using	COM	Interfaces
To	retrieve	a	relationship,	you	can	perform	the	following	steps:

Call	the	Invoke	method	of	the	interface	to	which	the	collection	is
attached.

Pass	in	DISPATCH_PROPERTYGET	to	specify	that	this	is	a	property-
get	operation.

Pass	in	the	dispatch	identifier	for	the	collection	to	be	retrieved.

The	Invoke	method	will	pass	an	IDispatch	interface	pointer	for	the

collection	back	to	you.

Invoke	the	QueryInterface	method	of	the	IDispatch	interface	to
retrieve	an	IRelationshipCol	interface	pointer	for	the	relationship
collection.

See	Also

Navigating	a	Repository

Meta	Data	Services	Programming

Accessing	Target	Object	Collections
Access	to	target	object	collections	is	supported	at	both	the	COM	and	Automation
level.

Note		You	can	use	IRepositoryObject2	to	access	specific	collections,	even	if
the	collections	share	the	same	name	through	an	inherited	interface.	For	more
information,	see	IRepositoryObject2	Interface.

To Use
Include	an	object	in	a
collection

The	Add	method	of	the	ITargetObjectCol
interface.

Exclude	an	object	from
a	collection

The	Remove	method	of	the	ITargetObjectCol
interface.

Enumerate	the	objects
within	a	target	object
collection

(Automation)	The	syntax
targetObjectCollection(index),	as	for	retrieving
an	item	from	any	Automation	collection.

(COM)	The	get_Count	and	get_Item	methods	of
the	ITargetObjectCol	interface,	or	use	the
_NewEnum	method	of	the	ITargetObjectCol
interface	to	obtain	a	standard	enumerator	interface
for	the	collection.

See	Also

Navigating	a	Repository

Meta	Data	Services	Programming

Using	TargetObjectCol	with	Relationship	Collections
The	TargetObjectCol	class	provides	a	convenient	way	to	manipulate
relationship	collections.	When	you	manipulate	a	target	object	collection,	you
actually	manipulate	the	corresponding	relationship	collection.

For	example,	suppose	you	are	manipulating	the	target	object	collection
describing	the	employees	managed	by	Frank,	shown	in	the	following	figure.

Now	suppose	you	want	to	add	Louise,	an	existing	employee,	to	the	collection.
To	do	so,	use	the	Add	method,	extending	the	collection	to	look	like	the
collection	in	the	following	figure.

When	you	call	the	Add	method,	the	repository	engine	actually	adds	a
relationship	to	the	corresponding	relationship	collection.	Before	adding	the	new
relationship,	the	relationship	collection	appeared	as	follows.

Using	the	Add	method	changed	the	relationship	collection	to	the	following.

See	Also

Navigating	a	Repository

Meta	Data	Services	Programming

Retrieving	Target	Object	Collections
Object	collections	can	be	retrieved	at	both	the	COM	and	Automation	level.

Retrieving	Object	Collections	Using	Automation	Interfaces
To	retrieve	a	relationship,	first	declare	a	variable	as	an	object	that	implements
the	ITargetObjectCol	interface.	Next,	set	the	variable	equal	to	the	object
member	that	is	the	collection	you	want	to	retrieve.

Note		All	collections	in	a	Microsoft®	SQL	Server™	2000	Meta	Data	Services
repository	are	attached	to	repository	objects	as	members.

For	example,	the	following	Microsoft	Visual	Basic®	code	retrieves	a	collection
of	bugs	(a	target	object	collection)	discovered	by	a	particular	person	into	the
variable	called	BugCollection:

DIM	BugCollection	As	ITargetObjectCol
DIM	Person	As	RepositoryObject
REM	Retrieve	the	source	object	into	the	Person	variable
Set	BugCollection	=	Person.bugs

In	this	example,	BugCollection(1)	can	refer	to	the	first	object	in	the	collection.

Retrieving	Relationship	Collections	Using	COM	Interfaces
To	retrieve	a	relationship,	you	can	perform	the	following	steps:

1.	 Call	the	Invoke	method	of	the	interface	to	which	the	collection	is
attached.

2.	 Pass	in	DISPATCH_PROPERTYGET	to	specify	that	this	is	a	property-
get	operation.

3.	 Pass	in	the	dispatch	identifier	for	the	collection	to	be	retrieved.

4.	 The	Invoke	method	will	pass	an	IDispatch	interface	pointer	for	the
collection	back	to	you.

5.	 Invoke	the	QueryInterface	method	of	the	IDispatch	interface	to
retrieve	an	ITargetObjectCol	interface	pointer	for	the	collection	of
target	objects.

See	Also

Navigating	a	Repository

Meta	Data	Services	Programming

Selecting	Items	in	a	Collection
You	can	select	the	items	of	a	collection	by	index,	by	sequence,	by	enumerator,	or
by	name.	If	you	get	a	collection	for	an	origin	object,	or	plan	to	move	from	an
origin	object	to	a	destination	object,	all	of	these	selection	options	are	available.
If	you	get	a	collection	for	a	destination	object,	or	plan	to	move	from	a
destination	object	to	an	origin	object,	you	have	fewer	selection	options.	The
availability	of	a	selection	option	is	described	in	each	approach.

You	can	select	collection	items	in	the	following	ways:

By	index.	Choose	the	nth	item	in	the	collection,	where	n	is	a	number
between	one	and	the	size	of	the	collection.

COM:	Use	the	get_Item	method	of	the	IRelationshipCol	interface	or
the	ITargetObjectCol	interface.

Automation:	Use	the	syntax	collection(index),	as	for	any	Automation
collection.

By	sequence.	Use	the	same	programming	statements	to	select	by
sequence	as	you	use	to	select	by	index.	The	distinction	between	the	two
depends	only	on	how	the	repository	orders	the	items	in	the	collection.	In
most	cases,	the	repository	uses	an	arbitrary	order.	But	if	the	collection	is
a	sequenced	collection,	the	repository	orders	the	collection	items
according	to	the	defined	sequence.

This	approach	is	valid	when	the	origin	object	and	the	source	object	are
the	same.	You	cannot	select	by	sequence	from	a	collection	belonging	to
a	destination	object,	because	the	repository	does	not	sequence
collections	belonging	to	destination	objects.

With	an	enumerator.	At	the	COM	level	you	can	get	an	enumerator
object	for	a	collection,	and	then	use	the	standard	enumerator	functions
(Next,	Skip,	Reset,	and	Clone).	Use	the	_NewEnum	method	of	the
IRelationshipCol	interface	or	the	ITargetObjectCol	interface	to	obtain
an	interface	pointer	to	an	enumerator	object.

For	more	information,	see	Using	Enumerators	to	Work	with	Items	in	a
Collection.

By	name.	If	the	collection	is	a	collection	of	names,	you	can	select	the
item	whose	name	matches	the	name	you	supply.

COM:	Use	the	get_Item	method	of	the	IRelationshipCol	interface	or
the	ITargetObjectCol	interface.

Automation:	Use	the	syntax	myCollection("name").

Note		You	cannot	select	by	name	from	a	collection	belonging	to	a
destination	object,	because	a	Microsoft®	SQL	Server™	2000	Meta
Data	Services	repository	does	not	support	the	naming	of	origin	objects.

If	a	name	within	the	collection	of	names	is	not	unique,	the	repository
will	return	the	first	item	that	it	finds	with	the	specified	name.

See	Also

Navigating	a	Repository

Meta	Data	Services	Programming

Using	Enumerators	to	Work	with	Items	in	a
Collection
You	can	use	enumerators	to	select	items	from	a	collection.	When	the	repository
engine	establishes	an	enumerator	for	you,	it	reads	the	repository	database	to
determine	which	items	should	appear	in	the	list,	and	the	order	in	which	those
items	should	appear.	The	enumerator	does	not,	however,	contain	repository
items.	Rather,	each	element	of	an	enumerator	identifies	a	repository	item.	To
retrieve	a	particular	item	identified	by	the	next	element	of	an	enumerator,	use	the
Next	method	of	the	enumerator	interface.

The	elements	in	an	enumerator	identify	the	items	in	a	collection	as	described	by
the	repository	database	when	the	enumerator	was	instantiated.	After	you
instantiate	the	enumerator,	the	collection	in	the	database	can	change.
Specifically,	you	change	a	collection	in	these	ways:

Add	an	item.

Your	enumerator	will	not	refer	to	the	newly	added	item.	To	see	the	new
item,	you	must	instantiate	the	enumerator	again.

Remove	an	item.

Your	enumerator	will	continue	to	refer	to	the	deleted	item.	That	is,	your
enumerator	will	retain	an	element	that	refers	to	the	deleted	item	by	its
internal	identifier.	When	you	call	the	Next	method	to	retrieve	the	item,
the	method	returns	an	error.

Reorder	the	collection.

Your	enumerator	will	reflect	the	old	order.	To	see	the	new	order,	you
must	reinstantiate	the	enumerator.

See	Also

Navigating	a	Repository

Selecting	Items	in	a	Collection

Meta	Data	Services	Programming

Filtering	Collections
You	can	filter	collections	to	determine	which	items	to	include	in	a	collection
based	on	criteria	you	provide.	Filters	can	be	used	to	define	queries,	or	to	work
with	a	subset	of	all	available	items	that	match	criteria	you	define.

Filters	that	you	create	can	be	applied	to	target	object	collections,	relationship
collections,	object	instance	collections,	workspaces,	and	to	the	repository	as	a
whole.	You	can	also	create	filters	on	derived	collections.

To	create	a	filter,	use	the	IReposQuery	interface.	IReposQuery	is	implemented
by	the	Repository	class,	the	Workspace	class,	and	the	RelationshipCol	class.

To	create	your	criteria,	you	must	create	a	filter	in	the	form	of	a	SQL	WHERE
clause.	You	can	then	attach	this	filter	as	a	parameter	to	the
IReposQuery::GetCollection	method.

Filtering	only	occurs	at	run	time.	Filter	definitions	are	not	stored	in	a	repository
database.

See	Also

Filtering	Derived	Collections

IReposQuery::GetCollection

Navigating	a	Repository

RelationshipCol	Class

Repository	Class

Workspace	Class

Meta	Data	Services	Programming

Propagating	Deletes
When	you	delete	an	object	version	or	relationship,	the	repository	engine	can
sometimes	automatically	delete	other	object	versions	and	their	attendant
relationships.	The	automatic	removal	of	an	object	version	is	called	a	propagated
deletion.	The	process	by	which	the	repository	engine	first	determines	which
propagated	deletions	are	necessary	and	then	performs	those	propagated	deletions
is	called	delete	propagation.

Delete	propagation	is	very	useful	for	removing	orphan	objects	that	are	no	longer
associated	with	other	objects	or	collections	in	your	information	model.	Delete
propagation	does	not	occur	by	default.	The	repository	engine	performs
propagated	deletions	only	when	you	remove	a	relationship	whose	corresponding
origin	collection	type	has	the	COLLECTION_PROPAGATEDELETE	flag	set.
Such	relationships	are	called	delete-propagating	relationships.	This	flag	must	be
set	in	the	information	model	on	the	collection.

A	single	delete	propagation	can	result	in	the	removal	of	many	object	versions.
There	are	several	reasons	for	this:

A	delete-propagating	relationship	can	have	a	TargetVersions	collection
containing	many	items.	As	a	result,	deleting	the	relationship	causes	the
deletion	of	all	objects	in	the	TargetVersions	collection.

An	object	version	that	you	delete	can	have	many	delete-propagating
origin	relationships.	

An	object	version	to	be	removed	automatically	(that	is,	by	propagated
deletion)	can	itself	have	delete-propagating	origin	relationships.

The	following	table	provides	specific	topics	for	each	of	the	actions	that	trigger
delete	propagation.

Topic Description
Delete	Propagation	After Removing	an	origin	relationship	that

Removing	an	Origin	Relationship has	the
COLLECTION_PROPAGATEDELETE
set	causes	delete	propagation.

Delete	Propagation	After
Removing	a	Destination
Relationship

Removing	a	destination	relationship	that
has	the
COLLECTION_PROPAGATEDELETE
set	causes	delete	propagation.

Delete	Propagation	After
Removing	a	Destination	Target
Version

Removing	an	item	from	the
TargetVersions	collection	of	an	origin
relationship	that	has	the
COLLECTION_PROPAGATEDELETE
set	causes	delete	propagation.

Delete	Propagation	After
Removing	an	Origin	Target
Version

Removing	an	item	from	the
TargetVersions	collection	of	a
destination	relationship	that	has	the
COLLECTION_PROPAGATEDELETE
set	causes	delete	propagation.

Delete	Propagation	After
Removing	an	Object	Version

Removing	an	object	version	that	has
origin	relationships	that	have	the
COLLECTION_PROPAGATEDELETE
set	causes	delete	propagation.

See	Also

CollectionDefFlags	Enumeration

Navigating	a	Repository

Requirements	for	Changing	an	Object	Version

Requirements	for	Object-Version	Deletion

Meta	Data	Services	Programming

Requirements	for	Object-Version	Deletion
The	following	restrictions	apply	to	object-version	deletion:

If	the	object	version	has	any	successor,	it	cannot	be	deleted.

If	the	object	version	is	a	member	of	a	TargetVersions	collection	of	an
origin	relationship,	and	that	relationship's	source	object	version	is
unchangeable,	it	cannot	be	deleted.	For	more	information,	see
Requirements	for	Changing	an	Object	Version.

If	a	to-be-deleted	object	version	does	not	satisfy	these	requirements,	the
repository	engine	does	not	necessarily	return	an	error.	If	you	are	explicitly
deleting	the	object	version	with	the	Delete	method,	the	method	fails	and	returns
an	error.	However,	if	the	repository	engine	is	automatically	attempting	to	delete
the	object	version	during	delete	propagation,	it	does	not	return	an	error.	Instead,
the	engine	continues	to	evaluate	other	object	versions	as	candidates	for
propagated	deletions.

See	Also

Navigating	a	Repository

Propagating	Deletes

Meta	Data	Services	Programming

Requirements	for	Changing	an	Object	Version
An	object	version	is	unchangeable	if	it	is	frozen	or	if	it	is	checked	out	to	a
workspace	and	the	attempt	to	change	it	does	not	occur	within	the	context	of	that
workspace.

Note		This	restriction	applies	when	the	repository	engine	automatically	attempts
to	change	an	object	version	for	you.	The	repository	engine	can	automatically
change	an	object	during	delete	propagation.	This	occurs	when	a	propagated
deletion	of	a	destination	object	version	reduces	the	TargetVersions	collection	of
a	corresponding	origin	object	version's	origin	relationship.	In	effect,	the	origin
object	version	has	been	modified	automatically	by	the	repository	engine.

This	restriction	also	applies	when	you	attempt	explicitly	to	modify	an	object,	for
example,	by	setting	one	of	its	properties.

See	Also

Navigating	a	Repository

Propagating	Deletes

Requirements	for	Object-Version	Deletion

Meta	Data	Services	Programming

Delete	Propagation	After	Removing	an	Origin
Relationship
If	you	delete	a	delete-propagating	origin	relationship,	or	if	the	repository	engine
automatically	removes	one	after	deleting	its	attendant	origin	object	version,
delete	propagation	can	occur.	The	repository	engine	considers	performing	a
propagated	deletion	on	each	destination	version	of	the	relationship	(that	is,	the
repository	engine	considers	performing	a	propagated	deletion	on	each	object
version	from	the	TargetVersions	collection	of	the	deleted	origin	relationship).

The	repository	engine	considers	deleting	the	target	versions	in	reverse	order	of
their	creation	(not	in	the	reverse	order	of	their	inclusion	in	the	TargetVersions
collection).	In	effect,	the	repository	engine	works	backward	through	the	version
graph,	attempting	to	delete	leaf	nodes	before	attempting	to	delete	their
predecessors.

The	repository	engine	performs	a	propagated	deletion	on	an	object	version	only
if	the	object	version	satisfies	the	requirements	for	object-version	deletion.	If	the
object	version	does	not	satisfy	the	requirements,	the	repository	engine	does	not
perform	the	propagated	deletion	on	that	object	version.

Even	if	the	repository	engine	encounters	a	candidate	for	propagated	deletion	that
does	not	satisfy	the	requirements	for	object-version	deletion,	it	continues	to
evaluate	the	other	candidates.	Thus,	the	entire	delete	propagation	operation	can
result	in	the	deletion	of	some	of	the	TargetVersions,	but	not	others.

See	Also

Propagating	Deletes

Requirements	for	Object-Version	Deletion

Version	Graph

Meta	Data	Services	Programming

Delete	Propagation	After	Removing	a	Destination
Relationship
Deleting	a	destination	relationship	is	similar	to	removing	an	item	from	the
TargetVersions	collection	of	a	destination	relationship.	Thus,	the	delete
propagation	that	occurs	after	such	a	deletion	is	equal	to	the	delete	propagation
occurring	after	such	a	removal	from	a	TargetVersions	collection.	For	more
information,	see	Delete	Propagation	After	Removing	an	Origin	Target	Version.

See	Also

Propagating	Deletes

Meta	Data	Services	Programming

Delete	Propagation	After	Removing	a	Destination
Target	Version
If	you	remove	an	object	version	from	the	TargetVersions	collection	of	a	delete-
propagating	origin	relationship,	the	repository	engine	considers	performing	a
propagated	deletion	on	that	object	version.	The	repository	engine	performs	a
propagated	deletion	on	the	destination	object	version	if	both	of	the	following
conditions	hold:

The	destination	object	version	has	no	other	destination	relationship	of
the	same	type	as	the	deleted	relationship.

The	source	object	satisfies	the	basic	requirements	for	object-version
deletion.	For	more	information,	see	Requirements	for	Object-Version
Deletion.

See	Also

Propagating	Deletes

Meta	Data	Services	Programming

Delete	Propagation	After	Removing	an	Origin	Target
Version
If	you	remove	an	object	version	from	the	TargetVersions	collection	of	a	delete-
propagating	destination	relationship,	the	repository	engine	considers	performing
a	propagated	deletion.

Delete	propagation	always	occurs	from	the	origin	object	toward	a	destination
object.	Thus,	in	this	situation,	the	repository	engine	considers	performing	a
propagated	deletion	on	the	object	version	that	was	the	source	of	the	relationship
whose	TargetVersions	collection	you	modified.	The	repository	engine	performs
a	propagated	deletion	on	the	source	object	version	if	all	of	the	following
conditions	hold:

The	item	you	removed	was	the	last	item	in	its	TargetVersions
collection.

The	source	object	version	has	no	other	destination	relationship	of	the
same	type	as	the	destination	relationship	whose	TargetVersions
collection	you	modified.

The	source	object	satisfies	the	basic	requirements	for	object-version
deletion.	For	more	information,	see	Requirements	for	Object-Version
Deletion.

See	Also

Propagating	Deletes

Meta	Data	Services	Programming

Delete	Propagation	After	Removing	an	Object	Version
You	can	explicitly	delete	an	object	version	using	the	Delete	method.	Similarly,
the	repository	engine	can	automatically	delete	an	object	version	by	performing	a
propagated	deletion	operation	on	it.	In	either	case,	the	object	version	is	deleted
only	if	it	satisfies	the	basic	requirements	for	object-version	deletion.

If	an	object	version	you	are	trying	explicitly	to	delete	does	not	satisfy	these
requirements,	the	Delete	method	returns	an	error.	If	an	object	version	that	the
repository	engine	is	trying	to	delete	through	propagation	does	not	satisfy	these
requirements,	the	repository	engine	does	not	return	an	error.	Instead,	it	continues
with	the	delete	propagation	operation.	That	is,	the	repository	engine	continues	to
consider	performing	propagated	deletion	operations	on	other	object	versions.

Whether	an	explicit	deletion	or	a	propagated	deletion	is	attempted,	the	repository
engine	deletes	the	object	version	and	any	of	its	relationships	if	the	object	version
satisfies	the	requirements	for	object-version	deletion.

Note		Some	of	these	deleted	relationships	can	be	delete-propagating	origin
relationships.	The	repository	engine	considers	performing	one	or	more
propagated	deletions	for	each.	For	more	information,	see	Delete	Propagation
After	Removing	an	Origin	Relationship.

See	Also

Propagating	Deletes

Requirements	for	Object-Version	Deletion

Meta	Data	Services	Programming

Versioning	Objects
Information	models	that	you	create	for	use	with	Microsoft®	SQL	Server™	2000
Meta	Data	Services	contain	instance	data	relevant	to	the	tools	and	applications
you	build	and	support.	As	you	continue	to	develop	and	maintain	these	software
tools,	this	instance	data	is	accessed	and	modified.	The	ability	to	view	past
versions	of	this	instance	data	can	be	useful.	For	example,	you	can	use	this
information	to:

Reproduce	old	versions	of	a	software	component.

Analyze	differences	between	two	versions	of	a	software	component.

Determine	how	the	relationships	between	various	software	components
have	changed	from	one	release	of	a	software	tool	to	the	next.

Meta	Data	Services	maintains	past	versions	of	your	instance	data.	These	past
versions	are	accessible	through	version	management	and	workspace
management	interfaces.

The	following	topics	describe	the	version	management	capabilities	of	Meta	Data
Services.

Topic Description
Versioning	Overview Explains	basic	concepts	of	object	and

collection	versioning.
Manipulating	Object	Versions Explains	how	you	can	manipulate	an	object

version	programmatically,	including	how	to
create,	propagate,	and	freeze	object
versions.

Manipulating	Versioned
Relationships

Explains	how	you	can	manipulate	versioned
relationships	programmatically.

Resolution	Strategy	for
Objects	and	Object	Versions

Explains	how	to	select	an	object.	You	can
select	a	specific	version,	or	allow	the
repository	engine	to	select	an	object	for

you.
Version	Graph Describes	the	version	graph	and	explains

how	to	navigate	a	network	of	versioned
objects.

Merging	Object	Versions Explains	how	to	merge	multiple	object
versions	together.

See	Also

IRepositoryObjectVersion	Interface

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

Versioning	Overview
Versioning	provides	a	way	to	define	and	redefine	objects	at	specific	points	in
time.	This	topic	uses	an	example	to	explain	versioning	behavior	in	Microsoft®
SQL	Server™	2000	Meta	Data	Services.

How	Versioning	Works	in	Meta	Data	Services
Objects	in	a	Meta	Data	Services	repository	conform	to	classes.	The	following
figure	shows	two	objects	that	conform	to	the	File	class.

An	individual	object	can	change	whenever	any	of	its	property	values	or
collections	change.	Sometimes	the	new	property	values	or	collections	simply
replace	the	preceding	ones.	Other	times,	you	may	want	to	retain	both	the	old
values	and	the	new	values.	The	repository	engine	can	retain	the	old	property
values	and	collections	with	an	old	version	of	the	object.	The	following	figure
shows	three	versions	of	the	Main	file	and	two	versions	of	the	Header	file.

The	different	versions	of	an	object	can	have	different	property	values.	The
following	figure	includes	property	values	for	the	properties	X,	Y,	and	Z,
properties	that	the	File	class	exposes	through	its	various	interfaces.	In	the	figure,
individual	versions	have	different	values	for	the	properties.	The	picture	shows
the	property	values	as	ordered	X-Y-Z	triplets.	"(22,3,4)"	means	X=22,	Y=3,	and
Z=4.

Note	how	this	works:	the	repository	engine	does	not	store	multiple	values	for	a
particular	property	of	an	object.	Instead,	it	stores	multiple	versions	of	an	object
such	that	each	individual	version	can	contain	its	own	individual	property	values.

The	different	versions	of	an	object	can	also	have	different	collections.	The
following	figure	shows	one	collection	(of	the	Persons-of-File	collection	type)	for
each	of	the	five	object	versions	of	the	File	class.	(To	save	space,	the	X-Y-Z
triplets	are	not	shown.)

Here	are	the	collections	of	the	five	object	versions	of	the	File	class:

Persons-of-Version	1-of-Main:		{Alexandra,	Bruce}

Persons-of-Version	2-of-Main:		{	}	(The	empty	set)

Persons-of-Version	3-of-Main:		{Bruce,	Christoph}

Persons-of-Version	1-of-Header:		{	}	(The	empty	set)

Persons-of-Version	2-of-Header:		{Christoph}

Although	the	preceding	figure	shows	that	the	three	different	versions	of	Main
have	three	different	values	for	the	collection	type	Persons-of-File,	things	are
much	simpler	at	run	time.	At	run	time,	when	your	program	manipulates	an
object,	it	manipulates	a	particular	version	of	that	object.	In	other	words,
whenever	you	secure	a	reference	to	an	object,	the	repository	engine	actually
gives	you	a	reference	to	a	specific	version	of	an	object.	No	matter	how	your
program	obtains	the	reference,	through	IRepository::get_Object,	through
navigation,	or	through	any	other	technique,	the	repository	engine	provides	you	a
reference	to	one	version	of	that	object.

For	example,	suppose	your	program	has	a	reference	to	Version	3-of-Main	and
Version	2-of-Header.	The	following	figure	distinguishes	between	object
versions	to	which	your	program	has	current	references	(filled-in	circles)	and	the
other	object	versions	(blank	circles).

The	preceding	figure	indicates	that	your	program	does	not	currently	have	a
reference	to	any	person.	Your	program	merely	has	references	to	some	collections
that	include	persons.	To	get	a	reference	to	a	specific	person	(for	example,
Bruce),	your	program	can	navigate	to	it.

The	preceding	figure	is	simplified;	it	shows	only	one	version	of	each	person.	The
following	figure	is	more	realistic.

The	preceding	figure	shows	two	collections.	One	collection	is	Persons-of-
Version	3-of-Main,	which	contains	Version	2-of-Bruce	and	Version	2-of-
Christoph.	The	other	collection	is	Persons-of-Version	2-of-Header;	it	contains
Version	2-of-Christoph.	The	figure	also	shows	that	your	program	already	has
references	to	Version	2-of-Bruce	and	Version	2-of-Christoph	(because	the
corresponding	dots	are	filled	in).

The	preceding	figure	reflects	that	when	you	navigate	along	a	relationship	to	a
target	object,	you	navigate	to	a	specific	version	of	that	object.	The	figure	reflects
this	by	showing	each	arrow	pointing	to	a	specific	version	of	an	object	to	which
you	have	already	navigated	(a	filled-in	circle	in	the	set	of	versions	of	persons).

In	most	situations,	this	view	is	adequate.	For	example,	you	can	think	of	a	target
object	collection	as	containing	a	particular	version	of	each	target	object.	A	more
detailed	view,	shown	in	the	following	figure,	is	sometimes	useful.

The	preceding	figure	shows	a	single	collection,	Persons-of-Version	3-Of-Main.	It
contains	two	items:	Bruce	and	Christoph.	The	figure	does	not	indicate	which
particular	version	of	Bruce	is	in	the	collection,	because	your	program	has	not	yet
navigated	from	Version	3-of-Main	to	Bruce.	But	it	does	indicate	that	when	you
do	navigate	to	Bruce,	the	repository	engine	can	return	a	reference	to	any	of	the
three	versions.	Similarly,	the	picture	does	not	indicate	which	version	of
Christoph	is	in	the	collection,	but	it	does	indicate	that	when	you	navigate	to
Christoph,	the	repository	engine	returns	a	reference	to	Version	1	or	to	Version
2,	but	not	to	Version	3.

See	Also

Repository	Object	Architecture

Versioning	Objects

Meta	Data	Services	Programming

Kinds	of	Version	Collections
Version	collections	are	used	to	access	repository	object	versions.	There	are	seven
kinds	of	version	collections.	All	version	collections	inherit	from	the	IVersionCol
interface.

ObjectVersions	Collection
RepositoryObjectVersion	implements	the	ObjectVersions	collection.	The
ObjectVersions	collection	contains	all	the	versions	of	a	particular	repository
object.	For	example,	if	you	have	multiple	versions	of	the	Column	object,	you
can	access	all	of	them	through	the	ObjectVersions	collection.	To	establish	this
collection,	use	the	get_ObjectVersions	method	of	the
IRepositoryObjectVersion	interface.

Predecessor	Collection
RepositoryObjectVersion	implements	the	Predecessor	collection.	The
Predecessor	collection	contains	all	the	immediate	predecessors	of	an	object
version.	Although	only	one	predecessor	is	the	creation	version,	multiple
predecessors	can	exist.	For	example,	when	you	merge	an	object	version	into
another,	existing	object	version,	the	object	version	that	you	merge	becomes	a
new,	noncreation	predecessor.	To	establish	this	collection,	use	the
get_PredecessorVersions	method	of	the	IRepositoryObjectVersion	interface.

Successor	Collection
RepositoryObjectVersion	implements	the	Successor	collection.	The	Successor
collection	contains	all	the	immediate	successors	of	an	object	version.	An
immediate	successor	is	an	object	that	is	one	step	away	in	the	version	graph.	For
example,	if	LoanTable_1	is	versioned	into	two	more	loan	tables	(LoanTable_2
and	LoanTable_3),	both	LoanTable_2	and	LoanTable_3	are	immediate
successors.	Subsequent	versioning	of	LoanTable_2	and	LoanTable_3	results	in
successors	that	are	not	part	of	the	Successor	collection	of	LoanTable_1.	To
establish	this	collection,	use	the	get_SuccessorVersions	method	of	the

IRepositoryObjectVersion	interface.

TargetVersions	Collection
VersionedRelationship	implements	the	TargetVersions	collection.	The
TargetVersions	collection	contains	the	specific	versions	of	a	target	object	that
are	related	to	a	particular	version	of	a	source	object.	For	example,	if	a	Table
object	is	related	to	two	versions	of	the	same	Column	object,	you	can	access	both
versions	of	the	Column	object	through	a	TargetVersions	collection.	To	establish
this	collection,	use	the	get_TargetVersions	method	of	the
IVersionedRelationship	interface.

Contents	Collection
Workspace	implements	the	Contents	collection.	The	Contents	collection
contains	all	the	object	versions	present	in	a	workspace.	Remember	that,	at	most,
one	version	of	each	object	can	appear	in	a	workspace.	So,	at	most,	you	will	have
only	one	instance	of	each	object	in	a	Contents	collection.	For	example,	if	a
workspace	contains	a	Schema,	Table,	and	a	Tables	collection,	the	Contents
collection	includes	a	Schema	object,	a	Table	object,	and	the	Tables	collection
object.	To	establish	this	collection,	use	the	get_Contents	method	of	the
IWorkspace	interface.

Workspaces	Collection
RepositoryObjectVersion	implements	the	Workspaces	collection.	The
Workspaces	collection	contains	all	the	workspaces	in	which	a	particular	object
version	is	present.	A	repository	object	version	can	exist	in	multiple	workspaces.
For	example,	if	you	have	one	workspace	for	testing	purposes	and	another
workspace	for	production,	both	Workspaces	can	contain	the	same	version	of	the
same	repository	object.	In	this	case,	the	Workspaces	collection	contains
references	to	both	workspaces.	To	establish	this	collection,	use	the
get_Workspaces	method	of	the	IWorkspaceItem	interface.

Checkouts	Collection
Workspace	implements	the	Checkouts	collection.	The	Checkouts	collection
contains	all	the	object	versions	checked	out	to	a	particular	workspace	(that	is,	all

object	versions	that	can	be	modified	or	removed	within	the	context	of	a
workspace).	For	more	information,	see	Objects	Within	Workspaces.	To	establish
this	collection,	use	the	get_Checkouts	method	of	the	IWorkspace	interface.

See	Also

IRepositoryObjectVersion	Interface

IVersionCol	Interface

IVersionedRelationship	Interface

IWorkspace	Interface

Navigating	a	Repository

Navigating	the	Version	Graph

Retaining	Workspace	Context

Version	Graph

Meta	Data	Services	Programming

Version	Graph
Each	repository	object	has	a	version	graph,	which	indicates	how	the	various
versions	relate	to	each	other.	An	object's	version	graph	consists	of	nodes	and
arrows.	Each	node	represents	a	version	of	the	object	and	each	arrow	points	from
one	object	version	to	a	successor	of	that	object	version.	The	following	figure
shows	a	typical	version	graph	for	an	object	with	11	versions.

There	are	two	kinds	of	arrows.	A	solid	arrow	indicates	the	creation	of	one	object
version	based	on	another.	For	example,	the	solid	arrow	from	Version	6	to
Version	7	indicates	that	Version	7	was	created	based	on	Version	6.	That	is,
Version	7	was	created	when	a	program	invoked	the	CreateVersion	method	on
an	IRepositoryObjectVersion	interface	pointer	to	Version	6.

A	dashed	arrow	indicates	the	merging	of	property	values	and	collections	from
one	object	into	another.	For	example,	the	dashed	arrow	from	Version	10	to
Version	11	indicates	that	property	values	and	collections	from	Version	10	were
merged	into	Version	11.	That	is,	the	dashed	arrow	was	created	when	a	program
invoked	the	MergeVersion	method	with	an	IRepositoryObjectVersion
interface	pointer	to	Version	11	(and	the	invoking	program	provided	an	interface
pointer	to	Version	10	as	an	input	parameter	i).

See	Also

Branches	in	the	Version	Graph

Creating	Object	Versions

Merging	Object	Versions

Navigating	the	Version	Graph

Meta	Data	Services	Programming

Navigating	the	Version	Graph
You	can	navigate	a	version	graph	by	traversing	collections.	For	more
information	about	the	kinds	of	collections	that	contain	versioned	objects,	see
Kinds	of	Version	Collections.

The	repository	engine	supports	navigation	of	the	version	graph	in	the	following
ways:

Every	object	version	has	a	collection	of	successor	versions,	the	other
versions	of	the	same	object	that	immediately	follow	in	the	version
graph.	In	the	following	figure,	Version	5	has	two	successor	versions,
Version	9	and	Version	7.	An	object	version's	set	of	successor	versions
can	be	null.	For	example,	Version	11	has	no	successors.

Every	object	version	has	a	collection	of	predecessor	versions,	the	other
versions	of	the	same	object	that	immediately	precede	it	in	the	version
graph.	In	the	preceding	figure,	for	example,	Version	11	has	three
predecessor	versions:	Version	9,	Version	7,	and	Version	10.

Every	object	version	(except	Version	1)	has	a	predecessor	creation
version,	the	predecessor	version	from	which	the	current	object	version
was	created.	For	example,	of	Version	11's	three	predecessor	versions,

only	Version	9	is	its	predecessor	creation	version.

Every	object	version	has	a	collection	of	object	versions,	the	entire	set	of
versions	of	the	object.

See	Also

Branches	in	the	Version	Graph

Navigating	a	Repository

Version	Graph

Versioning	Objects

Meta	Data	Services	Programming

Manipulating	Versioned	Relationships
Access	to	relationships	is	supported	at	both	the	COM	level	and	the	Automation
level.	Given	a	versioned	relationship	that	connects	two	repository	object
versions,	you	can	perform	the	operations	listed	in	the	following	table.	These
operations	are	performed	relative	to	a	specific	version	of	the	source	object.

To Use
Pin	the	destination	object	version The	Pin	method	of	the

IVersionedRelationship	interface.
Unpin	the	destination	object	versionThe	Unpin	method	of	the

IVersionedRelationship	interface.
Retrieve	(a	version	of)	the	target
object

The	Target	property	of	the
IRelationship	interface.

Retrieve	the	source	object	version The	Source	property	of	the
IRelationship	interface.

Create	a	new	relationship	to	relate	a
new	target	object	to	a	source	object

The	Add	method	of	the
IRelationshipCol	or
ITargetObjectCol	interface.

Relate	a	subsequent	target	object
version	to	a	source	object

The	Add	method	for	the
TargetVersions	collection.	This
collection	is	accessible	through	the
IVersionedRelationship	interface.

For	more	information,	see	the	Microsoft®	SQL	Server™	2000	Meta	Data
Services	Software	Development	Kit	(SDK).

See	Also

Changing	a	Destination	Relationship's	Name

Repository	API	Reference

Versioning	Objects

Version-to-Version	Relationships

Meta	Data	Services	Programming

Version-to-Version	Relationships
A	version-to-version	relationship	is	a	relationship	that	associates	a	particular
version	of	the	origin	object	with	a	particular	version	of	the	destination	object.	At
run	time,	the	repository	object	model	never	presents	an	individual	version-to-
version	relationship	to	you.	That	is,	from	within	a	COM	or	Automation	program,
you	cannot	materialize	an	object	corresponding	to	a	version-to-version
relationship.	Instead,	you	can	materialize	an	object	corresponding	to	a	versioned
relationship	using	the	IVersionedRelationship	interface	or
VersionedRelationship	object.

After	you	materialize	the	versioned	relationship,	you	can	select	a	specific
version-to-version	relationship	by	allowing	the	repository	engine	to	follow	a
resolution	strategy	that	picks	one	for	you,	or	by	selecting	a	specific	version	from
a	TargetVersions	collection.

The	following	figure	shows	versioned	relationships.

The	preceding	figure	shows	two	versioned	relationships;	however,	five	version-
to-version	relationships	are	evident,	as	shown	in	the	following	figure.

In	the	preceding	figure,	each	line	is	a	version-to-version	relationship.	The	top
line	indicates	that	Version	1-of-Bruce	is	in	the	TargetVersions	collection	of	the
versioned	relationship	owned	by	Version	3-of-Main.	It	also	indicates	that
Version	3-of-Main	is	in	the	TargetVersions	collection	of	the	versioned
relationship	owned	by	Version	1-of-Bruce.	The	complete	TargetVersions
collection	of	the	versioned	relationship	owned	by	Version	1-of-Bruce	might
include	other	items.	That	is,	there	might	be	other	version-to-version	relationships
between	Version	1-of-Bruce	and	individual	versions	of	Main.

The	following	figure	shows	that	Version	1-of-Bruce	has	version-to-version
relationships	to	Version	1-of-Main,	Version	2-of-Main,	and	Version	3-of-Main.

The	preceding	figure	shows	a	total	of	seven	version-to-version	relationships.

See	Also

IVersionedRelationship	Interface

Manipulating	Versioned	Relationships

Resolution	Strategy	for	Objects	and	Object	Versions

Selecting	Items	in	a	Collection

VersionedRelationship	Object

Versioning	Objects

Meta	Data	Services	Programming

Manipulating	Object	Versions
Access	to	repository	object	versions	is	supported	at	both	the	COM	level	and	the
Automation	level.	Given	a	specific	version	of	a	repository	object,	you	can
perform	the	operations	listed	in	the	following	table.	For	more	information	about
retrieving	or	changing	object	version	names,	see	Retrieving	an	Object	Version's
Name	and	Changing	an	Object	Version's	Name.

To Use
Create	the	first	object	version The	CreateObject	method	of	the

IRepository	interface.
Create	subsequent	object
versions

The	CreateVersion	method	of	the
IRepositoryObjectVersion	interface.

Determine	which	predecessor
version	was	the	creation	version

The	PredecessorCreationVersion	method
of	the	IRepositoryObjectVersion
interface.

Determine	how	this	version	of
the	current	object	was	resolved

The	ResolutionType	method	of	the
IRepositoryObjectVersion	interface.

Freeze	an	object	version The	FreezeVersion	method	of	the
IRepositoryObjectVersion	interface.

Retrieve	the	object-version
identifier	of	an	object	version

The	VersionID	property	of	the
IRepositoryObjectVersion	interface.

Retrieve	the	state	of	an	object
version

The	IsFrozen	method	of	the
IRepositoryObjectVersion	interface	and
the	IsCheckedOut	method	of	the
IWorkspaceItem	interface.

Merge	the	contents	of	another
object	version	into	the	current
object	version

The	MergeVersion	method	of	the
IRepositoryObjectVersion	interface.

For	more	information,	see	the	Microsoft®	SQL	Server™	2000	Meta	Data
Services	Software	Development	Kit	(SDK).

See	Also

IRepository	Interface

IRepositoryObjectVersion	Interface

IWorkspaceItem	Interface

Repository	API	Reference

Repository	Object

RepositoryObjectVersion	Object

Versioning	Objects

Workspace	Object

Meta	Data	Services	Programming

Creating	Object	Versions
Whenever	you	want	to	continue	modifying	an	object	without	overwriting	the
nonannotational	property	values	and	origin	collections	of	the	existing	object
versions,	you	create	a	new	version	of	the	object.	When	you	create	a	new	object
version,	you	must	use	an	existing,	frozen	version	of	the	object	as	the	creation
version	of	the	to-be-created	version.	To	create	the	new	version,	you	invoke	the
CreateVersion	method	with	an	IRepositoryObjectVersion	interface	pointer	to
the	creation	version.	The	repository	engine	creates	a	new,	unfrozen	version	of
the	object.	The	new	version	has	property	values	identical	to	those	of	the	creation
version.	The	collections	of	the	new	version	are	based	on	the	creation	version's
collections,	as	follows:

The	repository	engine	copies	each	origin	collection	whose	type	has	the
COLLECTION_NEWORGVERSIONSPARTICIPATE	flag	set.	If	this
flag	is	not	set,	the	origin	collection	is	not	copied.

By	default,	the	repository	engine	does	not	copy	the	creation	version's
destination	collections	into	the	newly	created	version.	Your	application
might,	however,	include	custom	behavior	for	the	CreateVersion
method	that	does	copy	some	or	all	destination	collections.

When	you	create	a	new	version	of	an	object,	the	repository	engine	modifies	the
version	graph	accordingly.

See	Also

Branches	in	the	Version	Graph

Freezing	an	Object	Version

IRepositoryObjectVersion	Interface

Merging	Object	Versions

Propagating	Versions

Version	Graph

Versioning	Objects

Meta	Data	Services	Programming

Propagating	Versions
The	repository	engine	can	sometimes	create	a	new	versioned	object
automatically,	in	response	to	the	versioning	of	another,	related	object.	More
specifically,	you	can	create	a	new	version	of	an	origin	object	automatically	when
you	purposely	create	a	new	version	of	a	destination	object.	The	automatic
creation	of	an	object	version	is	called	a	propagated	version.	Version	propagation
is	the	process	by	which	the	repository	determines	which	propagated	versions	are
necessary	and	then	performs	those	propagated	version.

You	can	implement	version	propagation	for	collections	that	contain	versioned
objects	and	versioned	relationships.	The	occurrence	of	version	propagation
depends	on	flags	you	set	for	the	collection	that	contains	the	versioned	items.

To	implement	version	propagation,	you	must	set	the
COLLECTION_NEWDESTVERSIONPROPAGATE	flag	on	the	collection.
When	this	flag	is	set,	invoking	the	CreateVersion	method	on	a	destination
object	propagates	versioning	to	origin	objects	related	through	collections	of	this
type.

After	version	propagation	is	in	progress,	it	can	continue	to	propagate	origin-
destination	pairs.	This	occurs	when	a	newly	versioned	origin	object	is
simultaneously	a	destination	object	of	another	relationship.	In	this	case,	its	origin
object	is	also	versioned.	The	versioning	of	paired	objects	continues	up	the
version	graph	until	a	frozen	origin	object	is	encountered.	This	behavior	occurs
only	while	the	origin	object	is	unfrozen,	and	it	occurs	only	for	relationships	that
are	created	within	the	same	transaction.

Version	propagation	creates	a	new,	unfrozen	version	that	has	property	values	that
are	identical	to	the	property	values	of	the	creation	version.	You	can	set	additional
CollectionDefFlags	to	further	determine	how	object	versions	are	propagated.

The	following	CollectionDefFlags	can	be	set	to	determine	how	and	whether
version	propagation	occurs.

Flag Result
COLLECTION_NEWDESTVERSIONPROPAGATE Version

propagation
occurs	when
the
CreateVersion
method	is
invoked	on	a
destination
object	that	is
related	to	an
unfrozen
origin	object.

COLLECTION_NEWDESTVERSIONADD The	origin
object	always
links	to	the
latest	version
of	a
destination
object,
eliminating
manual
versioning	of
an	origin
object	in
response	to	a
newly
versioned
destination
object.

COLLECTION_NEWORGVERSIONSDONOTPARTICIPATE The	origin
collection	is
not	copied
from	the
creation
origin	object
to	the	newly
versioned
origin	object,

even	if	other
flags	support
version
propagation.

COLLECTION_NEWDESTVERSIONSDONOTPARTICIPATE The
destination
collection	is
not	copied
from	the
creation
destination
object	to	the
newly
versioned
destination
object,	even	if
other	flags
support
version
propagation.

Usage	Scenarios
The	version	propagation	functionality	supports	the	following	scenarios:

The	first	scenario,	shown	in	the	following	figure,	demonstrates	the	case	when	the
origin	object	should	be	linked	to	the	latest	version	of	the	destination	object.	In
this	case,	the	new	version	of	Dest,	Dest1,	is	added	to	the	TargetVersions
collection	of	the	relationship.	In	this	scenario,	the
COLLECTION_NEWDESTVERSIONADD	flag	is	set,	and	the	origin	object	is
not	frozen.

The	second	scenario,	as	shown	in	the	following	figure,	demonstrates	the	case
when	the	origin	object	needs	to	be	versioned	when	the	destination	object	is
versioned.	In	this	scenario,	the
COLLECTION_NEWDESTVERSIONPROPAGATE	flag	must	be	set,	and	the
origin	object	must	be	frozen.

In	this	example,	a	new	version	of	Dest0,	Dest1	is	created.	A	new	version	of
Org0,	Org1	is	then	created.	Because,	by	default,	the
COLLECTION_NEWORGVERSIONSDONOTPARTICIPATE	flag	is	not	set,
the	new	version	of	Org1	includes	a	relationship	to	Dest0.	This	relationship	is
deleted,	and	a	new	relationship	with	Dest1	is	created.	Note	that	this	behavior
happens	only	if	the	origin	object	is	frozen.	If	it	is	not	frozen,	the	origin	object	is
not	versioned.

This	behavior	can	propagate.	That	is,	any	object	for	which	Org	is	a	destination
will	also	be	versioned.	The	behavior	will	propagate	until	the	engine	reaches	an
object	that	is	not	frozen,	or	is	not	the	destination	of	any	relationships	or	any
relationships	for	which	the	propagation	flag	is	not	set.

The	third	scenario,	as	shown	in	the	following	figure,	demonstrates	the	case	when
an	origin	object	has	multiple	relationships	with	destination	objects	that	must	be
versioned.	In	this	scenario,	the
COLLECTION_NEWDESTVERSIONPROPAGATE	flag	is	set.

In	this	example,	Org0	is	the	origin	of	relationships	with	both	DestA0	and
DestB0.	A	new	version	of	DestA0	is	created,	DestA1,	and	the	version	is
propagated	to	Org0,	as	described	in	the	previous	example.	Both	the	Org0	and
Org1	have	relationships	to	the	existing	DestB0.	When	a	new	version	of	DestB0,
DestB1,	is	created,	a	new	relationship	to	the	already	versioned	Org1	is	added,
and	the	relationship	between	Org1	and	DestB0	is	deleted.

To	summarize,	propagating	relationships	during	a	transaction	creates	only	a
single	version	of	an	origin	object.

See	Also

CollectionDefFlags	Enumeration

Propagating	Deletes

IRepositoryObjectVersion::CreateVersion

RepositoryObjectVersion	CreateVersion	Method

Versioning	Objects

Meta	Data	Services	Programming

Freezing	an	Object	Version
In	the	version	graph,	each	object	version	with	an	emerging	(solid	or	dashed)
arrow	must	be	frozen.	The	other	object	versions	can	be	frozen	or	unfrozen.	One
purpose	of	the	repository	engine's	versioning	capability	is	to	let	you	maintain
multiple	versions	of	an	object	so	that	you	can	remember	what	the	object	was	like
at	different	times.	After	you	decide	that	a	particular	version	of	an	object	is	worth
remembering,	you	must	protect	that	version	of	the	object	from	further
modification.	You	do	this	by	freezing	the	object	version.	To	freeze	the	object
version,	invoke	the	FreezeVersion	method	with	an	IRepositoryObjectVersion
interface	pointer	to	the	version	you	want	to	preserve.

When	you	freeze	a	version	of	an	object,	you	prevent	any	program	from
modifying	any	of	its	origin	collections	or	any	of	its	nonannotational	property
values.	A	program	can,	however,	modify	a	frozen	object	version	in	the	following
ways:

Modify	a	frozen	object	version's	destination	collections.	By	allowing
such	modifications,	the	repository	engine	lets	you	protect	an	object
(such	as	a	text	formatting	template)	from	further	modification,	yet
allows	other,	newly	created	objects	(such	as	text	files)	to	include	the
frozen	object	version	in	their	origin	collections.

Modify	an	object's	annotational	properties.	If	a	class	exposes	(through
one	of	its	interfaces)	an	annotational	property,	the	repository	engine
stores	one	value	of	that	property	for	each	object	(not	one	property	value
for	each	object	version).	Thus,	if	you	change	an	annotational	property
value	on	an	unfrozen	version	of	an	object,	the	change	affects	all
versions	of	that	object,	including	the	frozen	versions.

The	repository	engine	provides	two	methods	for	you	to	manage	the	frozen	status
of	an	object	version:

FreezeVersion	freezes	a	version	of	an	object.

IsFrozen	(exposed	by	IRepositoryObjectVersion)	determines	whether
an	object	version	is	frozen	or	unfrozen.

See	Also

Branches	in	the	Version	Graph

Creating	Object	Versions

IRepositoryObjectVersion	Interface

Merging	Object	Versions

Version	Graph

Versioning	Objects

Meta	Data	Services	Programming

Resolution	Strategy	for	Objects	and	Object	Versions
When	you	retrieve	an	object	or	navigate	to	an	object,	the	repository	engine
returns	an	interface	pointer	to	a	specific	version	of	that	object.	You	can	explicitly
ask	for	a	particular	version,	or	you	can	rely	on	the	repository	engine	to	choose	a
version	of	the	object	for	you.	For	example,	you	may	have	repository	objects	that
do	not	explicitly	provide	version	information	(instances	of	RepositoryObject	do
not	provide	version	information).	When	objects	lack	specific	version
information,	the	repository	engine	can	choose	an	instance	for	you.

If	the	repository	engine	chooses	for	you,	it	can	choose	any	of	the	following:

The	most	recently	created	object	version.

The	object	version	present	in	the	workspace	in	which	you	are	operating.

The	pinned	target	object	version	of	the	relationship	that	you	are
navigating	along.

You	can	predict	how	the	repository	engine	selects	an	object	version	to	return	to
you:

If	you	explicitly	request	a	specific	version	of	an	object,	the	repository
engine	retrieves	that	version;	if	for	any	reason	it	cannot	retrieve	that
version,	it	returns	an	error.	

If	you	are	operating	within	a	workspace,	the	repository	engine	retrieves
the	version	that	is	in	the	workspace;	if	for	any	reason	it	cannot	return
the	in-workspace	version	of	the	object,	it	returns	an	error.

If	you	do	not	request	a	specific	version	and	you	are	not	operating	within
a	workspace,	the	repository	engine	returns	either	the	most	recently
created	version	or	(if	applicable)	the	pinned	version.

The	following	topics	discuss	how	the	repository	engine	chooses	among	versions
of	an	item.

Topic Description
Requesting	a	Specific	Version Explains	how	to	select	a	specific	version
Resolution	While	Operating
Within	a	Workspace

Explains	how	the	repository	engine
selects	an	object	from	a	workspace

Resolution	While	Operating
Outside	a	Workspace

Explains	how	the	repository	engine
selects	an	object	from	a	centralized,
shared	repository

See	Also

IRepositoryObject	Interface

IRepositoryObjectVersion	Interface

Navigating	a	Repository

RepositoryObject	Object

RepositoryObjectVersion	Object

Versioning	Objects

Meta	Data	Services	Programming

Requesting	a	Specific	Version
In	some	situations,	you	can	request	a	specific	version	of	an	object.	For	example,
the	get_Version	method	of	the	IRepository2	interface	retrieves	the	specific
object	version	whose	object-version	identifier	you	supply.	If	the	repository
engine	cannot	return	this	particular	object	version	to	you,	it	returns	an	error.	For
example,	it	returns	an	error	if	the	specific	version	you	requested	does	not	exist,
or	if	the	specific	version	you	requested	is	not	present	in	the	workspace	in	which
you	are	operating.

See	Also

IRepository2	Interface

Object-Version	Identifiers	and	Internal	Object-Version	Identifiers

Resolution	Strategy	for	Objects	and	Object	Versions

Versioning	Objects

Meta	Data	Services	Programming

Resolution	While	Operating	Within	a	Workspace
If	you	are	operating	within	a	workspace,	the	repository	engine	returns	the
version	of	the	object	that	is	present	in	the	workspace.	If	the	repository	engine
cannot	return	the	in-workspace	object	to	you,	it	returns	an	error.	The	repository
engine	may	fail	to	return	an	in-workspace	version	of	the	object	you	requested	in
the	following	situations:

If	the	workspace	contains	no	version	of	the	requested	object,	the
repository	engine	returns	an	error.

If	the	workspace	contains	a	version	other	than	the	specific	version	you
explicitly	requested,	the	repository	engine	returns	an	error.

If	you	navigate	to	a	target	object	along	a	relationship	that	is	a	member
of	a	relationship	collection,	but	the	specific	version	of	the	target	object
in	your	workspace	is	not	among	the	specific	versions	of	the	target	object
that	participate	in	the	relationship,	the	repository	engine	returns	an	error.

For	example,	the	following	figure	shows	one	item	in	the	collection	Persons-of-
V3-of-Main.	The	target	object	of	the	item	is	Christoph.	Because	you	have	not
yet	navigated	along	the	relationship,	the	figure	does	not	show	which	particular
version	of	Christoph	will	be	returned	to	you;	it	shows	only	that	it	will	be
Version	2-of-Christoph	or	Version	3-of-Christoph.

If	you	are	operating	in	a	workspace	that	contains	Version	1-of-Christoph,	the
repository	engine	returns	an	error.	When	you	invoke	the	get_Target	method	of
the	IRelationship	interface,	the	repository	engine	cannot	find	a	suitable	version
of	Christoph	to	return	to	you.	It	cannot	return	Version	1	because	Version	1-of-
Christoph	is	not	related	to	the	source	of	the	navigation.	It	cannot	return	Version
2	or	Version	3	because	neither	Version	2-of-Christoph	nor	Version	3-of-
Christoph	is	in	the	workspace	in	which	you	are	operating.	(The	workspace
contains	object	versions	and	a	workspace	can	contain	only	one	version	of	each
object.)

In	your	programs,	you	can	avoid	this	error	by	manipulating	target	object
collections	rather	than	relationship	collections.	This	error	occurs	only	when	a
collection	includes	an	item	that	the	repository	engine	cannot	resolve	to	an	in-
workspace	object.	The	only	situation	in	which	this	occurs	is	described	in	the
preceding	example:	the	collection	is	a	relationship	collection,	and	none	of	its
items	refers	to	the	specific	version	of	the	target	object	that	is	in	the	workspace.
When	you	establish	a	target	object	collection,	however,	each	item	in	the
collection	is	a	repository	object	(rather	than	a	relationship	to	a	repository	object).
If	you	establish	the	collection	while	operating	within	a	workspace,	each	item	in
the	collection	is	a	version	of	the	target	object	that	is	present	in	the	workspace.

See	Also

Resolution	Strategy	for	Objects	and	Object	Versions

Versioning	Objects

Meta	Data	Services	Programming

Resolution	While	Operating	Outside	a	Workspace
If	you	do	not	request	a	specific	version	and	you	are	not	operating	within	a
workspace,	the	repository	engine	generally	returns	the	most	recently	created
version	of	an	object.	In	one	situation,	however,	the	repository	engine	first	tries	to
find	another,	preferable	version	of	the	requested	object.	If	you	are	navigating
from	an	origin	object	to	a	destination	object,	and	there	is	a	pinned	version	of	the
target	object,	the	repository	engine	returns	an	interface	pointer	to	the	pinned
version.	If	there	is	no	pinned	version,	the	repository	engine	simply	returns	an
interface	pointer	to	the	most	recently	created	version	of	the	target	object	that
participates	in	the	relationship.

Following	are	some	basic	facts	about	pinning:

The	repository	engine	can	return	a	pinned	version	(see	Example	One).

If	there	is	not	a	pinned	version,	the	repository	engine	can	return	the
most	recent	version	(see	Example	Two).

A	destination	object	version	can	be	pinned	to	several	origin	object
versions	(see	Example	Three).

If	a	target	object	version	is	pinned	for	one	versioned	relationship,	it	is
not	necessarily	pinned	for	others	(see	Example	Four).

You	can	pin	at	most	one	version	of	the	destination	object	for	each
relationship.

You	can	pin	a	version	of	the	destination	object	only;	you	cannot	pin	an
item	within	the	target	versions	collection	of	a	destination	relationship.

Pinning	Example	One

The	following	figure	shows	a	two-item	collection:	TestSuites-of-Version	3-of-
Main.	The	two	items	are	SuiteB	and	SuiteC.	If	you	are	not	operating	in	a
workspace	and	you	navigate	to	SuiteB,	the	repository	engine	discovers	a	pinned
version	of	the	target	object.	(The	figure	shows	the	pinned	version	with	a	dashed
arrow.)	Thus,	the	repository	engine	returns	Version	2-of-SuiteB	to	your
program,	even	though	Version	3-of-SuiteB	was	created	more	recently	and	is
related	to	the	source	object	version.

Pinning	Example	Two
The	following	figure	shows	a	two-item	collection:	TestSuites-of-Version	3-of-
Main.	The	two	items	are	SuiteB	and	SuiteC.	If	you	are	not	operating	in	a
workspace	and	you	navigate	to	SuiteC,	the	repository	engine	finds	no	pinned
version,	so	it	returns	Version	2-of-SuiteC.

Note		Although	Version	3-of-SuiteC	was	created	more	recently,	the	repository
engine	does	not	return	it	because	there	is	no	relationship	between	it	and	the
source	object	version	(Version	3-of-ProductX).	The	repository	engine	returns
Version	2-of-SuiteC	because,	among	the	versions	related	to	the	source	object
version,	Version	2-of-SuiteC	is	the	most	recently	created	version.

Pinning	Example	Three
A	destination	object	version	can	be	pinned	to	any	number	of	origin	object
versions.	For	example,	the	following	figure	shows	that	Version	3-of-SuiteD	is
the	pinned	destination	object	version	of	two	different	items.

Pinning	Example	Four
If	a	target	object	version	is	pinned	for	one	versioned	relationship,	it	is	not
necessarily	pinned	for	others.	For	example,	the	following	figure	simultaneously
shows	three	versions	of	Product	Z,	each	of	which	has	a	collection	containing
Suite	D.	All	three	versions	of	Product	Z	use	SuiteD	as	the	target	object.	The	top
item	uses	Version	3-of-SuiteD	as	the	pinned	version	of	the	target	object.	The
middle	item,	even	though	it	includes	the	same	version	(Version	3)	of	the	target
object,	does	not	have	it	pinned;	it	uses	Version	5-of-SuiteD	as	the	pinned
version	of	the	target	object.	The	bottom	item	includes	both	Version	3	and
Version	5	of	SuiteD,	but	it	includes	no	pinned	version	at	all.

See	Also

Resolution	Strategy	for	Objects	and	Object	Versions

Versioning	Objects

Meta	Data	Services	Programming

Merging	Object	Versions
The	version	management	feature	of	the	repository	engine	supports	branching.	A
branch	results	when	you	create	a	new	object	version	whose	predecessor	version
already	has	one	or	more	successor	versions.	Common	branching	scenarios	are:

When	two	concurrent	development	efforts	must	change	the	same	object.

When	a	maintenance	change	is	required	on	an	older	version	of	an
already	released	object.

In	scenarios	like	these,	it	is	sometimes	necessary	to	merge	branched	lines	of
development	back	together.	You	can	merge	one	object	version	into	another	with
the	MergeVersion	method	of	the	IRepositoryObjectVersion	interface.	You	can
merge	several	branches	together	by	successively	merging	two	branches	at	a	time
until	all	branches	have	been	merged.

The	following	topics	describe	the	merging	process	in	more	detail.

Topic Description
Merge	Overview Provides	basic	information	about	merge

behavior
Invoking	MergeVersion Explains	prerequisite	steps	for	invoking

the	MergeVersion	method
Resolving	Merge	Conflicts	for
Properties

Describes	how	conflicts	between
property	values	are	resolved

Resolving	Merge	Conflicts	for
Collections

Describes	how	conflicts	between
collections	are	resolved

Examples	of	Merging	Versions Provides	before	and	after	examples	of
merged	objects

See	Also

Branches	in	the	Version	Graph

IRepositoryObjectVersion	Interface

Version	Graph

Versioning	Objects

Meta	Data	Services	Programming

Merge	Overview
To	perform	a	merge	operation,	you	use	the	MergeVersion	method	of	the
RepositoryObjectVersion	object.

You	can	predict	how	the	property	values	and	collections	in	a	successor	version
will	change.	The	MergeVersion	method	modifies	one	object	version,	the
successor,	by	combining	its	property	values	and	collections	with	those	of	another
version,	the	predecessor.	MergeVersion	compares	the	property	values	and
collections	of	the	predecessor	version	and	the	successor	version	to	a	third
version,	called	the	basis	version.

MergeVersion	does	not	combine	two	versions	into	a	third,	newly	created
version.	Rather,	it	merges	the	property	values	and	collections	of	one	version	into
another	version.	After	the	operation	is	complete,	the	modified	version	becomes	a
successor	of	the	other	version.	MergeVersion	modifies	the	version	graph
accordingly.

Calculating	the	Basis	Version
When	you	invoke	the	MergeVersion	method,	the	repository	engine	uses	the
version	graph	to	compare	version	data.	The	MergeVersion	method	compares
each	object	version	to	be	merged	to	a	basis	version	of	the	same	object.	The	basis
version	of	the	two	to-be-merged	object	versions	is	the	most	recently	created
object	version	that	is	on	the	creation	path	of	both	the	primary	object	version	and
the	secondary	object	version	of	the	merge.	The	creation	path	of	an	object	version
is	a	path	through	the	version	graph	leading	from	the	object	version	directly	to
Version	1	of	the	object.	Each	step	of	the	path	leads	from	an	object	version	to	its
predecessor	creation	version.

You	can	easily	follow	an	object	version's	creation	path	backward	from	it	to
Version	1	by	following	the	solid	arrows	in	reverse.	For	example,	the	version
graph	in	the	following	figure	shows	that	the	creation	path	of	Version	11	goes
through	these	other	versions:	9,	5,	4,	2,	and	1.

Comparing	Collections
As	it	works,	the	MergeVersion	method	must	compare	collections	to	each	other.
It	compares	each	collection	in	the	basis	version	to	its	corresponding	collection	in
the	primary	version	and	in	the	secondary	version.	MergeVersion	considers	two
collections	to	be	different	if	either	of	the	following	is	true:

One	collection	contains	different	objects	from	the	other	collection.

A	corresponding	pair	of	items	from	the	two	collections	differs	from
each	other.

Comparing	Versioned	Relationships

The	MergeVersion	method	compares	each	collection	of	the	basis	version	of	an
object	to	the	corresponding	collections	of	the	primary	version	and	of	the
secondary	version.	As	part	of	these	comparisons,	the	method	must	compare	the
versioned	relationships	of	these	collections.	An	item	from	the	basis	object
version's	collection	corresponds	to	an	item	in	the	primary	or	secondary	object
version's	collection	if	the	two	items	use	the	same	target	object.	Even	if	two	items
correspond,	however,	they	can	still	differ	in	important	ways.	The	repository
engine	considers	two	versioned	relationships	to	differ	if	any	of	the	following	is
true:

The	collection	type	is	a	sequenced	collection	and	the	two	items	have

different	sequence	numbers.

The	collection	type	is	a	naming	collection	and	the	two	items	have
different	names.

The	two	items	refer	to	different	versions	of	the	target	object.

The	two	items	use	a	different	version	of	the	target	object	as	pinned
version.

One	item	has	a	pinned	target	object	version	and	the	other	does	not.

For	example,	the	following	figure	shows	two	items	that	differ	in	one	respect
only;	the	top	item	refers	to	Versions	1	and	Version	3.	The	corresponding	item	of
the	second	collection	refers	to	Versions	3	and	Version	5.

Meta	Data	Services	Programming

Invoking	MergeVersion
When	you	invoke	MergeVersion,	the	object	version	you	will	use	as	predecessor
of	the	merge	must	already	be	frozen.	The	object	version	to	be	modified,	the
successor	of	the	merge,	cannot	be	frozen.

Briefly,	the	merge	operation	has	these	results:

The	object's	version	graph	is	updated	to	indicate	that	the	merge
operation	occurred.

The	successor	object	can	have	different	property	values	or	collections.

You	invoke	MergeVersion	on	the	successor	version	of	the	merge;	you	pass	a
reference	to	the	predecessor	as	an	input	parameter.	You	also	pass	an	indication	of
which	version	is	to	be	considered	the	primary	version.	The	primary	version	is	the
version	whose	member	values	are	given	priority	when	there	are	merge	conflicts
between	the	two	versions.

See	Also

IRepositoryObjectVersion::MergeVersion

Merge	Overview

Merging	Object	Versions

Resolving	Merge	Conflicts	for	Collections

Resolving	Merge	Conflicts	for	Properties

Versioning	Objects

Meta	Data	Services	Programming

Resolving	Merge	Conflicts	for	Properties
For	each	property,	MergeVersion	uses	this	rule	to	resolve	merge	conflicts:

If	the	primary	version	differs	from	the	basis	version,	the	repository
engine	uses	the	property	value	from	the	primary	version.

If	only	the	secondary	version	differs	from	the	basis	version,	the
repository	engine	uses	the	property	value	from	the	secondary	version.

If	neither	version	differs	from	the	basis	version,	the	repository	engine
leaves	the	property	value	in	the	current	version	unchanged.

See	Also

IRepositoryObjectVersion::MergeVersion

Merging	Object	Versions

Resolving	Merge	Conflicts	for	Collections

Version	Graph

Versioning	Objects

Meta	Data	Services	Programming

Resolving	Merge	Conflicts	for	Collections
For	each	collection,	MergeVersion	uses	flags	and	rules	to	resolve	merge
conflicts.	CollectionDefFlags	that	you	set	for	a	collection	can	determine	how
that	collection	is	merged.

Setting	the	COLLECTION_MERGEWHOLE	Flag
For	each	origin	collection	type	whose	COLLECTION_MERGEWHOLE	flag	is
set,	MergeVersion	uses	this	rule:

If	the	primary	version's	collection	differs	from	the	basis	version's
collection,	the	repository	engine	uses	the	collection	from	the	primary
version.	For	more	information,	see	the	Comparing	Collections	section
of	Merge	Overview.

If	only	the	secondary	version's	collection	differs	from	the	basis	version's
collection,	the	repository	engine	uses	the	collection	from	the	secondary
version.

If	neither	version	differs	from	the	basis	version,	the	repository	engine
leaves	the	collection	in	the	current	version	unchanged.

Not	Setting	the	COLLECTION_MERGEWHOLE	Flag

For	each	origin	collection	type	whose	COLLECTION_MERGEWHOLE	flag	is
not	set,	MergeVersion	combines	the	items	in	the	two	collections	as	follows:

MergeVersion	includes	in	the	resulting	collection	each	item	in	the	basis
version	not	changed	in	or	deleted	from	either	the	primary	version	or
secondary	version.	For	more	information,	see	the	Comparing	Versioned
Relationships	section	of	Merge	Overview.

MergeVersion	includes	in	the	resulting	collection	each	item	in	the

primary	version's	collection	that	differs	from	the	basis	version.

MergeVersion	includes	in	the	resulting	collection	each	item	in	the
secondary	version's	collection	that	differs	from	the	basis	version,
provided	the	corresponding	items	in	the	primary	version	and	basis
version	do	not	differ	from	each	other.

Note		The	resulting	collection	can	exclude	some	items	found	in	the	basis	object
version's	collection.	For	example,	if	the	primary	version's	collection	excludes	the
item,	the	resulting	collection	will	exclude	the	item.	Similarly,	if	the	primary
version's	collection	includes	an	item	that	is	identical	to	an	item	in	the	basis
version's	collection,	but	the	secondary	object	version	excludes	the	item,	the
resulting	collection	will	exclude	the	item.

For	more	information	about	merge	behavior,	see	Examples	of	Merging	Versions.

See	Also

CollectionDefFlags	Enumeration

IRepositoryObjectVersion::MergeVersion

Merge	Overview

Merging	Object	Versions

Resolving	Merge	Conflicts	for	Properties

Versioning	Objects

Meta	Data	Services	Programming

Examples	of	Merging	Versions
A	typical	version	graph	for	an	object	is	shown	in	the	following	figure.	The	object
has	three	properties:	Size,	Color,	and	Quantity.	For	selected	versions	of	the
object,	the	figure	shows	the	values	of	these	properties	as	ordered	triplets.

If	you	merge	Version	4	into	Version	8	(using	Version	4	as	the	primary	version),
the	repository	engine	uses	Version	2	as	the	basis	version.

The	resulting	version	graph	looks	like	the	following.

In	the	resulting	version	graph,	notice	the	following:

Version	4	is	now	a	noncreation	predecessor	of	Version	8.

In	Version	8,	the	value	of	the	Size	property	is	medium.	The	change	in
the	primary	version,	from	small	to	medium,	prevails	over	the	change	in
the	secondary	version,	from	small	to	large.

In	Version	8,	the	value	of	the	Color	property	is	red.	The	change	in	the

secondary	version's	value	prevails	because	the	corresponding	value	in
the	primary	version	did	not	change.

In	Version	8,	the	value	of	the	Quantity	property	is	null.	The	change	in
the	secondary	version's	value	prevails	because	the	corresponding	value
in	the	primary	version	did	not	change.

Later,	you	merge	Version	6	into	Version	8,	using	Version	8	as	the	primary
version.	The	repository	engine	uses	Version	1	as	the	basis	version.	Before	the
merge,	the	version	graph	(with	important	property	values	shown)	looks	like	the
following.

The	resulting	version	graph	is	shown	in	the	following	figure.

In	the	resulting	version	graph	in	the	preceding	figure,	notice	the	following:

Version	6	is	now	a	noncreation	predecessor	of	Version	8.

In	Version	8,	the	value	of	the	Size	property	is	medium.	Neither	the
primary	nor	secondary	version's	value	had	changed	from	the	basis
version's	value.

In	Version	8,	the	value	of	the	Color	property	is	red.	The	change	in	the
primary	version's	value,	from	green	to	red,	prevails	over	the	change	in
the	secondary	version's	value,	from	green	to	null.

In	Version	8,	the	value	of	the	Quantity	property	is	555.	The	change	in
the	secondary	version's	value,	from	null	to	555,	prevails	because	the
corresponding	value	in	the	primary	version	did	not	change.

See	Also

Merge	Overview

Version	Graph

Versioning	Objects

Meta	Data	Services	Programming

Programming	Objects
This	section	provides	information	about	programming	special-purpose	objects
and	collections.

Topic Description
Programming	BLOBs	and	Large	Text
Fields

Describes	the	binary	large	object
(BLOB)	and	large	text	field	support
that	is	available	through	the
repository	API

Programming	Transient	Object
Collections

Describes	how	to	instantiate	a
transient	object	collection

See	Also

Accessing	Repository	Objects

Accessing	Target	Object	Collections

Programming	Information	Models

Meta	Data	Services	Programming

Programming	BLOBs	and	Large	Text	Fields
Repository	engine	provides	interfaces	to	handle	properties	that	are	binary	large
objects	(BLOBs)	and	large	text	fields.	BLOBs	are	properties	that	have	values
containing	text	or	image	data	that	can	be	in	excess	of	64	kilobytes	(KB).	You	can
use	BLOBs	to	perform	database	operations	that	require	you	to	work	with	large
segments	of	data	at	a	time.

To	define	a	BLOB,	create	a	PropertyDef	object,	and	then	do	the	following:

1.	 Set	the	SQLType	property	to	SQL_LONGVARBINARY	or
SQL_LONGVARCHAR.

2.	 Set	the	SQLBlobSize	property	to	a	value	greater	than	64	KB.

When	SQLType	is	set	to	either	SQL_LONGVARBINARY	or
SQL_LONGVARCHAR,	SQLBlobSize	(rather	than	SQLSize)	determines	the
maximum	size.

To	work	with	a	BLOB,	use	the	IReposPropertyLarge	interface.	This	interface
provides	methods	that	support	BLOB	manipulation.	Specifically,	it	can	be	used
to	read,	write,	move,	and	seek	information	about	a	BLOB.

The	locking	behavior	for	the	methods	on	this	interface	varies	from	the	locking
behavior	used	by	other	repository	interfaces.	Specifically,	as	soon	as	you	invoke
the	Write	and	WriteToFile	methods,	the	repository	engine	locks	the	database
row	until	you	commit	the	transaction.	In	contrast,	locking	for	other	rows	only
occurs	for	the	duration	of	the	commit.

When	you	use	IReposPropertyLarge	to	manipulate	an	object,	avoid	using	other
repository	property	interfaces	(such	as	IReposProperty	or	IReposProperty2)
on	the	same	property.	These	interfaces	only	work	with	properties	that	contain	up
to	64	KB	of	data.	If	your	property	exceeds	64	KB,	you	will	only	get	the	first	64
KB	of	it.

When	you	version	a	BLOB	or	large	text	field	property,	you	can	use
CreateVersion	to	create	the	version	and	MergeVersion	to	combine	versions.

MergeVersion	always	selects	the	primary	version	of	the	BLOB	or	large	text
field.	The	new	values	are	inserted	directly	into	the	database	(rather	than	cached).
For	this	reason,	atomic	operations	are	not	supported	for	versioning	these	kinds	of
properties.	For	more	information	about	atomicity	of	operations,	see	Transaction
Management	Overview.

For	more	information	about	other	repository	property	interfaces,	see	Accessing
Properties.

Note		IReposPropertyLarge	is	basically	a	dispatch-based	version	of	the
IStream	OLE	2.0	interface.

For	more	information	about	handling	BLOBs,	search	on	"Stream	Objects"	and
"IStream	Interface"	in	the	MSDN®	Library	at	the	Microsoft	Web	site.

See	Also

Accessing	Repository	Objects

IPropertyDef2	Interface

IRepositoryObjectVersion::CreateVersion

IRepositoryObjectVersion::MergeVersion

IReposProperty	Interface

IReposProperty2	Interface

IReposPropertyLarge	Interface

PropertyDef	Object

RepositoryObjectVersion	CreateVersion	Method

RepositoryObjectVersion	MergeVersion	Method

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Meta	Data	Services	Programming

Programming	Transient	Object	Collections
Transient	object	collections	are	not	stored	in	a	repository	database.	This	means
that	you	can	populate	a	transient	object	collection	dynamically,	using	application
code	to	determine	the	criteria	for	including	objects.

Transient	object	collections	extend	your	ability	to	create	collections	by	providing
a	way	to	create	collections	at	run	time.	Typically,	the	way	you	do	this	is	through
script.	In	this	case	script,	instead	of	stored	repository	data,	is	used	to	dynamically
populate	a	transient	object	collection.	After	a	transient	object	collection	is
instantiated,	you	can	use	the	collection	in	your	application	code	just	as	you
would	any	other	repository	collection.

Because	it	is	based	on	script,	a	transient	object	collection	can	contain	any
combination	of	objects	that	you	want.	It	is	not	subject	to	the	conformance
constraints	that	apply	to	other	kinds	of	repository	object	collections.

Transient	object	collections	are	exposed	through	the	ITransientObjCol
interface.

The	following	example	illustrates	how	you	can	use	script	to	populate	a	transient
object	collection.	Suppose	you	have	an	information	model	that	defines	a	catalog,
schemas,	and	tables.	Script	that	creates	a	collection	of	all	tables	for	all	schemas
in	the	catalog	can	be	something	like	the	following:

Function	GetTables()
Set	ObjCol	=	CreateObject("Repository.TransientObjectCol")
Set	reposCatalog	=	CurReposObject
For	each	reposSchema	in	reposCatalog.Interface("Catalog").Schemas
					For	each	reposTable	in	reposSchema.Interface("Schema").Tables
										ObjCol.Add	reposTable
					Next
Next
Set	GetTables	=	ObjCol
End	Function

See	Also

Accessing	Repository	Objects

Accessing	Target	Object	Collections

Defining	Script	Objects

ITransientObjectCol	Interface

Understanding	Collections

Understanding	Relationship	Roles

Meta	Data	Services	Programming

Managing	Transactions	and	Threads
When	you	make	changes	to	a	repository	database,	the	updates	are	done	within
the	scope	of	a	transaction.	You	use	repository	transaction	management	methods
to	ensure	that	changes	to	a	repository	database	always	leave	the	database	in	a
consistent	state.	This	section	discusses	the	transaction	management	support
provided	by	the	repository	engine,	and	the	threading	model	that	is	supported	by
repository	objects.

Knowing	how	to	perform	a	transaction	is	necessary	if	you	are	creating	or
extending	information	models	programmatically,	or	writing	programs	that
populate	or	update	an	information	model.

Transactions	are	not	required	for	programming	to	retrieve	data	through	the
repository	engine.

The	following	topics	provide	more	information	about	transactions.

Topic Description
Transaction	Management	Overview Explains	when	you	should	use	a

transaction	and	how	transactions	are
implemented	by	the	repository
engine.

Design	Issues	and	Transaction
Management

Describes	design	issues	that	you
should	consider	when	implementing
transaction	behavior	in	an
application.

Repository	Objects	and
Multithreading

Explains	transaction	behavior	and
issues	that	apply	when	running
multiple	instances	of	a	repository.

See	Also

IRepositoryTransaction	Interface

IRepositoryTransaction2	Interface

Repository	Class

Repository	Databases

Repository	Transaction	Objects

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

Transaction	Management	Overview
Transactions	can	be	used	to	bracket	multiple	interactions	with	the	repository
engine.	Changes	to	a	repository	that	are	a	result	of	such	interactions	are	either	all
committed	or	all	undone,	depending	on	the	way	that	the	transaction	is
completed.	Repository	methods	that	write	data	to	a	repository	can	be	executed
only	within	a	transaction.	Methods	that	read	data	from	a	repository	can	be
executed	without	a	transaction	(although	such	reads	can	be	done	against	partially
updated	data).

A	repository	database	can	have	multiple	repository	instances	connected	to	it
simultaneously,	from	the	same	or	from	different	processes.	Each	repository
instance	can	have	at	most	one	transaction	active	at	a	time.

As	a	rule,	the	repository	engine	never	implicitly	cancels	transactions.	If	a	failure
occurs,	you	must	explicitly	terminate	the	transaction.	There	is	one	exception	to
this	rule:	If	you	start	a	transaction,	and	then	release	the	repository	instance	to
which	the	transaction	belongs,	your	transaction	will	be	canceled.

Atomicity	of	Operations
OPT_ATOMICOP_MODE	is	an	IReposOption	option	that	you	can	set	to	enable
or	disable	atomicity	of	operations.	If	this	option	is	enabled,	all	operations,	except
commit,	are	executed	atomically.	If	this	option	is	disabled,	the	entire	transaction
is	terminated	in	cases	where	an	operation	fails.

Atomicity	of	operations	creates	a	backup	copy	of	each	row	in	cache	just	before
an	update	and	restores	it	in	case	the	operation	fails.	If	the	operation	is	successful,
the	backup	copy	is	discarded.

The	following	topics	provide	more	information	about	defining	a	transaction.

Topic Description
Managing	Transactions Explains	the	steps	used	to	set	up	a

transaction.
Nesting	Transactions Describes	the	scope	and

implementation	of	nesting

transactions.
Transactions	and	Caching Describes	caching	behavior	as	it

relates	to	transactions.
Integration	with	Distributed
Transaction	Coordinator

Explains	how	to	use	Microsoft®
Distributed	Transaction	Coordinator
(MS	DTC),	a	component	of
Microsoft	SQL	Server™	2000,	to
coordinate	multiple	transactions.

See	Also

Design	Issues	and	Transaction	Management

Managing	Transactions	and	Threads

Repository	Objects	and	Multithreading

IRepositoryTransaction::abort

Meta	Data	Services	Programming

Managing	Transactions
Each	instance	of	the	Repository	class	implements	the	IRepositoryTransaction
interface,	which	supports	these	methods	and	properties:

The	Begin	method,	which	marks	the	beginning	of	a	transaction

The	Commit	method,	which	marks	the	end	of	a	transaction

The	Abort	method,	which	cancels	a	transaction	and	undoes	all	updates
performed	by	the	transaction

The	GetOption	and	SetOption	methods,	which	get	and	set	transaction
options	that	control:

Whether	other	transactions	are	permitted	to	open	the	repository
database	from	within	the	same	process.

Whether	updates	are	cached	until	the	Commit	is	performed.

How	long	to	wait	for	a	transaction	to	start.

How	long	to	wait	for	a	query	to	complete.

How	long	to	wait	for	a	lock	on	a	repository	object.

The	Status	property,	which	indicates	whether	or	not	a	transaction	is
currently	active

For	each	open	repository	instance,	the	pointer	to	the	IRepositoryTransaction
interface	is	available	through	the	Transaction	property.	For	more	information
about	the	transaction	options	you	can	set,	see	TransactionFlags	Enumeration.

See	Also

IRepositoryTransaction	Interface

IRepositoryTransaction2	Interface

Managing	Transactions	and	Threads

Meta	Data	Services	Programming

Nesting	Transactions
The	repository	engine	permits	nesting	of	Begin	and	Commit	method
invocations,	but	no	actual	transaction	nesting	occurs.	A	nested	transaction	count
is	maintained	for	each	open	repository	instance.

Invoking	the	Begin	method	during	an	active	transaction	increments	the	nested
transaction	count	by	one,	but	has	no	other	effect.

Invoking	the	Commit	method	during	an	active	transaction	decrements	the	nested
transaction	count	by	one.	If,	and	only	if,	this	decrement	reduces	the	nested
transaction	count	to	zero,	all	updates	are	committed	to	the	repository	database.

Invoking	the	Abort	method	during	an	active	transaction	undoes	all	changes
made	during	that	transaction.	Changes	made	during	any	nested	transactions	are
also	undone,	even	if	the	Commit	method	has	already	been	invoked	for	those
transactions.	The	nested	transaction	count	is	set	to	zero.

See	Also

IRepositoryTransaction::abort

IRepositoryTransaction::begin

IRepositoryTransaction::commit

Managing	Transactions	and	Threads

Meta	Data	Services	Programming

Transactions	and	Caching
The	repository	engine	changes	are	cached	to	improve	performance.	Guaranteed
updates	to	a	repository	are	written	to	persistent	storage	only	when	the	active
transaction	is	committed.

By	default,	multiple	repository	instances	within	the	same	process	share	a
repository	cache.	Within	the	same	process,	when	a	transaction	for	one	repository
instance	commits,	its	updates	are	immediately	visible	to	transactions	executing
for	other	repository	instances.	These	updates	are	not	visible	to	open	repository
instances	in	other	processes	if	those	processes	already	have	the	preupdate	data
cached.	Explicit	refreshes	are	required	to	view	updates	from	transactions	that
have	completed	in	other	processes.

You	can	override	the	default	sharing	behavior	by	setting	a	flag	that	allocates	a
new	cache	for	each	repository	instance.	For	more	information	about
REPOS_CONN_NEWCACHE,	see	ConnectionFlags	Enumeration.

You	can	customize	cache	behavior	by	defining	different	age	out	strategies	for
different	kinds	of	rows.	For	more	information	about	age	out	strategies	and
caching	behavior,	see	Optimizing	Repository	Performance.

To	refresh	a	cache

Refresh	an	individual	repository	item	by	invoking	the	Refresh	method
for	the	repository	item.

This	method	invalidates	unchanged	cache	data	for	the	repository	item.
Subsequent	requests	for	that	data	will	be	fulfilled	by	retrieving	the	data
from	the	repository	database.

-or-

Refresh	all	repository	items	currently	cached	for	an	open	repository
instance	by	invoking	the	Refresh	method	associated	with	that
repository	instance.

This	method	invalidates	unchanged	cache	data	for	all	repository	items.
Subsequent	requests	for	that	data	will	be	fulfilled	by	retrieving	the	data

from	the	repository	database.

In	addition	to	explicit	refreshes,	repository	items	may	be	refreshed	implicitly	at
any	time	by	the	repository	engine,	due	to	execution	of	internal	repository
caching	algorithms.

See	Also

Managing	Transactions	and	Threads

Meta	Data	Services	Programming

Integration	with	Distributed	Transaction	Coordinator
You	can	design	an	application	that	runs	a	distributed	transaction	on	Microsoft®
SQL	Server™	2000	running	on	Microsoft	Windows®	2000.

Before	you	use	Microsoft	Distributed	Transaction	Coordinator	(MS	DTC)	with	a
SQL	Server	2000	Meta	Data	Services	repository,	you	must	install	the	Windows
2000	Service	Pack	1.	This	service	pack	fixes	an	intermittent	bug	that	causes	MS
DTC	to	stop	responding	when	committing	changes	to	a	repository	database.

The	protocol	for	coordinating	transaction	atomicity	across	multiple	resource
managers	is	a	two-phase	commit.	The	Microsoft	facility	for	a	two-phase	commit
is	MS	DTC.	You	can	enable	distributed	transactions	to	support	the	following
scenarios:

Create	an	application	that	updates	data	in	two	repositories	within	the
same	transaction.

Create	an	application	that	updates	data	in	a	repository	and	in	another
database	within	the	same	transaction.

Create	an	application	that	runs	a	Microsoft	Transaction	Server	(MTS)	to
update	a	repository,	while	running	the	application	within	the	transaction
that	called	it.

Create	an	information	model	that	aggregates	a	repository	object	class
and	updates	another	database	within	the	aggregation	wrapper.

The	distributed	transaction	must	be	atomic;	that	is,	it	must	either	commit	at	all
resource	managers	or	terminate	at	all	of	them.	For	more	information	about
supporting	atomic	operations,	see	Transaction	Management	Overview.

The	Transaction	Protocol
To	support	MS	DTC	in	your	application,	you	must	set	the	TXN_USE_DTC

transaction	flag.	IRepositoryTransaction	supports	the	TXN_USE_DTC	flag	on
the	GetOption	and	SetOption	methods.	The	bit	value	for	TXN_USE_DTC	is
10.	The	default	value	of	this	option	is	FALSE.	If	the	value	is	set	to	TRUE,	each
call	to	IRepositoryTransaction::Begin	will	create	an	MS	DTC	transaction.

IRepositoryTransaction::SetOption(10,	1)
IRepositoryTransaction::Begin

MS	DTC	requires	that	the	participant	who	started	the	transaction	be	the	only
party	who	can	call	Commit.

Programming	in	Visual	C++
If	you	are	a	Microsoft	Visual	C++®	programmer,	you	can	use	the
ITransactionJoin::JoinTransaction	method.	You	can	use	this	method	to	cause
a	repository	instance	that	is	not	currently	running	a	transaction	to	become	part	of
an	existing	MS	DTC	transaction.	The	active	MS	DTC	transaction	object	is
passed	in	as	an	input	argument.	For	more	information	about	the
ITransactionJoin	interface,	see	SQL	Server	Books	Online.

Programming	in	Microsoft	Visual	Basic
Microsoft	Visual	Basic®	applications	must	use	the	following	API	to	enlist	an
MS	DTC	transaction:

HRESULT	IRepositoryTransaction2::JoinTransaction	([in]VARIANT	sVArTxn);

where	sVArTxn	is	an	IUnknown	pointer	to	the	distributed	transaction
coordinator.

See	Also

IRepositoryTransaction::begin

IRepositoryTransaction::commit

IRepositoryTransaction::getOption

IRepositoryTransaction::setOption

Managing	Transactions	and	Threads

Meta	Data	Services	Programming

Design	Issues	and	Transaction	Management
When	you	design	an	application	that	writes	or	updates	data	in	a	repository
database,	you	must	consider	these	transaction	management	issues:

What	are	the	implications	of	reading	repository	data	outside	the	scope
of	a	transaction?

Is	a	locking	protocol	necessary	for	the	application?

Are	repository	cache	overflows	likely	to	occur,	and	what	can	be	done	to
avoid	cache	overflows?

The	following	topics	provide	more	information	about	these	issues.

Topic Description
Reading	Repository	Data	Outside	of
a	Transaction

Explains	strategies	for	successfully
reading	data	outside	a	transaction.

Using	a	Lock	Protocol Describes	how	and	why	you	should
use	lock	protocols.

Avoiding	Repository	Cache
Overflows

Explains	how	to	avoid	and	correct
for	cache	overflows.

See	Also

Managing	Transactions	and	Threads

Repository	Objects	and	Multithreading

Meta	Data	Services	Programming

Reading	Repository	Data	Outside	of	a	Transaction
A	repository	engine	method	that	reads	data	can	execute	outside	a	transaction.
However,	repository	data	that	is	read	in	this	way	can	include	partial	updates	from
an	active	transaction.

To	ensure	that	the	data	read	from	a	repository	does	not	include	partial	updates
from	active	transactions,	put	read	requests	into	a	transaction.	Otherwise,	if	you
bracket	your	reads	within	a	transaction	and	your	repository	database	is	a
Microsoft®	Jet	database,	you	risk	overloading	the	cache.

Microsoft	Jet	uses	an	in-memory	cache	to	speed	up	query	processing.	Cached
data	is	not	released	until	the	transaction	is	committed.	If	your	repository
application	is	reading	a	large	amount	of	data,	and	you	are	performing	the	reads
within	the	scope	of	a	transaction	to	isolate	them	from	the	uncommitted	changes
of	other	applications,	the	Jet	cache	can	grow	so	large	that	it	causes	the
application	to	fail.	To	avoid	this,	commit	your	transaction	periodically	(even
though	it	is	a	read-only	transaction).

See	Also

Managing	Transactions	and	Threads

Restrictions	for	Microsoft	Jet	Repository	Databases

Meta	Data	Services	Programming

Using	a	Lock	Protocol
Executing	transactions	concurrently	can	adversely	affect	the	integrity	of
repository	data	if	a	locking	protocol	is	not	used.	For	example,	consider	two
concurrently	executing	transactions	that	both	increment	an	integer	property	of	a
repository	object.	This	property	represents	a	sequential	counter.

1.	 Transaction	A	reads	the	value	of	the	property.	The	current	value	is	six.

2.	 Transaction	B	reads	the	same	current	value	of	the	property.

3.	 Transaction	A	increments	the	retrieved	property	value	by	one	and
writes	it	back	to	the	repository	database.	The	value	in	the	database	is
now	seven.

4.	 Transaction	B	increments	its	copy	of	the	retrieved	property	value	by
one	and	writes	it	back	to	the	repository	database.	The	value	in	the
database	is	still	seven.	It	should	be	eight.

To	avoid	this	problem,	use	the	Lock	method	in	concurrently	executing
transactions	to	serialize	access	to	a	repository	item.	The	Lock	method	sets	an
exclusive	lock	on	the	item,	and	refreshes	any	unchanged	cache	data	for	the	item.
The	lock	is	effective	across	processes	and	across	computers.	If	the	repository
item	is	already	locked,	the	lock	request	waits	until	the	lock	becomes	available.
The	item	is	unlocked	when	the	transaction	is	ended,	either	by	the	Abort	method
or	by	the	final	invocation	of	the	Commit	method	for	the	transaction.

By	invoking	the	Lock	method,	the	caller	has	exclusive	access	to	a	repository
item,	as	long	as	all	other	concurrently	executing	transactions	also	obtain	a	lock
on	that	repository	item	before	updating	it.

By	default,	the	repository	engine	will	wait	up	to	20	seconds	to	get	a	lock	on	a
repository	object.	If	this	lock	time-out	value	is	insufficient,	you	can	increase	it
by	setting	a	transaction	flag.	For	more	information,	see	TransactionFlags
Enumeration.

CAUTION		Calling	the	Lock	method	on	a	repository	item	only	prevents	other
transactions	from	executing	the	Lock	method	on	the	item.	It	does	not	block	other
transactions	that	are	not	using	the	locking	protocol	from	changing	the	item.

See	Also

IRepositoryItem::Lock

IRepositoryTransaction::abort

Managing	Transactions	and	Threads

RepositoryObjectVersion	Lock	Method

Workspace	Lock	Method

VersionedRelationship	Lock	Method

Meta	Data	Services	Programming

Avoiding	Repository	Cache	Overflows
To	enhance	performance,	repository	transactions	typically	run	in	writeback
mode.	In	writeback	mode,	the	updates	for	a	transaction	are	held	in	the	repository
cache	until	the	transaction	is	committed.	If	a	single	transaction	performs	a	large
number	of	updates,	it	can	cause	the	repository	cache	for	the	process	to	overflow.

By	setting	transaction	options	through	the	SetOption	method,	a	repository
instance	can	operate	in	exclusive	writeback	mode,	where	it	allows	no	more	than
one	active	transaction	at	a	time	for	a	given	process	and	repository	database.
Using	exclusive	writeback	mode	will	reduce,	but	not	eliminate,	the	possibility	of
a	cache	overflow.	For	a	very	large	number	of	updates	within	a	single	transaction,
or	if	memory	is	limited,	the	repository	cache	can	still	overflow.

To	guarantee	that	cache	overflows	will	not	cause	transactions	to	fail,	set	the
exclusive	writethrough	mode	transactional	option.	In	exclusive	writethrough
mode,	updates	are	immediately	flushed	from	the	repository	cache.	Exclusive
writethrough	mode	does	not	affect	your	ability	to	cancel	an	active	transaction	by
using	the	Abort	method.

See	Also

IRepositoryTransaction::Abort

IRepositoryTransaction::SetOption

Managing	Transactions	and	Threads

TransactionFlags	Enumeration

Meta	Data	Services	Programming

Repository	Objects	and	Multithreading
A	process	can	create	multiple	instances	of	the	Repository	class,	with	each
instance	connected	to	the	same	or	to	different	repository	databases.	Instances	of
the	Repository	class,	as	well	as	instances	of	other	repository-supplied	classes,
can	be	instantiated	as	either	COM	or	Automation	objects.	With	regard	to
multiple	threads	executing	within	a	single	process,	these	objects:

Support	multithread	processing.

Use	the	free-threaded	model.

Are	thread-safe	objects.

The	following	topics	provide	more	information	about	each	of	these	issues.

Topic Description
Restrictions	for	Microsoft	Jet
Repository	Databases

Explains	how	multithreading	affects
cache	behavior	in	Microsoft®	Jet
databases.

Synchronizing	Commit	Operations Identifies	which	methods	require
synchronization	between	application
threads.

See	Also

Design	Issues	and	Transaction	Management

Managing	Transactions	and	Threads

Repository	Class

Transaction	Management	Overview

Meta	Data	Services	Programming

Restrictions	for	Microsoft	Jet	Repository	Databases
When	Microsoft®	Jet	manages	a	repository	database,	a	special	restriction	applies
to	the	use	of	multiple	threads.	Only	the	Jet-managed	thread	that	created	an	open
repository	instance	to	a	repository	database	can	use	the	instance.	In	other	words,
if	your	repository	database	is	managed	by	Jet,	construct	your	application	as	if	the
repository	were	using	the	apartment	thread	model.

For	more	information	about	using	Jet	repository	databases,	see	Reading
Repository	Data	Outside	of	a	Transaction.

See	Also

Managing	Transactions	and	Threads

Synchronizing	Commit	Operations

Meta	Data	Services	Programming

Synchronizing	Commit	Operations
When	programming	a	multithreaded	repository	application,	synchronize
repository	commit	operations	between	application	threads.	Specifically,
synchronize	the	use	of	the	following	methods:

The	Count	method	of	the	IRelationshipCol	interface

The	ObjectInstances	method	of	the	IClassDef	interface

The	ObjectInstances	method	of	the	IInterfaceDef	interface

The	ExecuteQuery	method	of	the	IRepositoryODBC	interface

See	Also

IClassDef::ObjectInstances

IInterfaceDef::ObjectInstances

IRelationshipCol::get_Count

IRepositoryODBC::ExecuteQuery

Managing	Transactions	and	Threads

Restrictions	for	Microsoft	Jet	Repository	Databases

Meta	Data	Services	Programming

Managing	Workspaces
A	workspace	is	a	restricted	view	of	the	contents	of	a	Microsoft®	SQL	Server™
2000	Meta	Data	Services	repository.	You	define	which	objects	are	contained	in
the	workspace.	You	also	define	which	version	of	each	object	is	used.	You	can
only	have	one	version	of	any	object	checked	out	to	a	workspace	at	one	time.

The	following	topics	describe	workspace	management	capabilities.

Topic Description
Workspace	Management
Overview

Introduces	a	workspace	and	explains	the
reasons	for	using	one.

Objects	Within	Workspaces Describes	how	objects	can	be	used	within	a
workspace.

Workspace	Context Describes	the	scope	of	a	workspace,	and
provides	basic	information	about
navigation.	Workspace	Context	also	details
the	operational	differences	between	a
repository	instance	and	a	workspace.

Accessing	Objects	in	a
Workspace

Explains	the	various	ways	in	which		an
object	can	be	retrieved	within	a	workspace.

Manipulating	Workspaces Describes	how	to	manipulate	a	workspace
object.

Manipulating	Objects	in	a
Workspace

Describes	how	to	manipulate	an	object
within	a	workspace.

See	Also

Versioning	Objects

Meta	Data	Services	Programming

Workspace	Management	Overview
Each	repository	can	contain	multiple	workspaces.	A	workspace	is	a	restricted
view	of	the	contents	of	a	repository.	The	view	is	restricted	for	two	reasons:

A	workspace	can	contain	only	those	repository	object	versions	that	you
explicitly	include	in	it.	Thus,	if	you	set	up	a	workspace	to	apply	to	a
functional	area,	you	can	include	in	that	workspace	only	objects	that
pertain	to	that	area.

A	workspace	can	contain	only	one	version	of	any	repository	object.
Thus,	the	workspace	provides	a	simple	view	of	the	repository's	data	in
which	only	one	version	of	each	object	exists.	In	effect,	operating	within
a	workspace	simplifies	your	environment	because	you	do	not	need	to
choose	among	several	versions	of	the	same	object.	When	you	retrieve
an	object	from	a	workspace,	the	repository	engine	returns	the	specific
version	of	that	object	that	is	present	in	the	workspace.

Although	the	view	of	repository	data	in	a	workspace	is	restricted,	operating	in
the	context	of	a	workspace	is	liberating	for	two	reasons:

A	workspace	reveals	only	the	objects	that	are	important	to	you,
effectively	yielding	a	custom	view	of	the	repository.

Because	a	workspace	contains	at	most	one	version	of	any	object,	your
within-workspace	operations	can	avoid	much	of	the	complexity	of	a
multiversion	environment.

See	Also

IRepositoryObjectVersion	Interface

Managing	Workspaces

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

Objects	Within	Workspaces
An	object	version	can	participate	in	a	workspace	in	two	ways:

An	object	version	can	be	present	in	the	workspace.	That	is,	the
workspace	can	contain	the	object	version.

Each	workspace	has	a	Versions	collection	containing	the	object
versions	present	in	the	workspace.	Use	the	Add	method	to	include	an
object	version	in	a	workspace;	use	Remove	to	exclude	an	object
version.

Note		An	object	version	can	be	present	in	more	than	one	workspace.
Each	object	version	has	a	Workspaces	collection	containing	the
workspaces	in	which	the	object	is	present.

An	object	version	can	be	checked	out	to	a	workspace.

When	an	object	version	is	checked	out	to	a	workspace,	you	can	modify
that	object	version	only	while	operating	in	the	workspace.	Each
workspace	has	a	Checkouts	collection	containing	the	object	versions
checked	out	to	the	workspace.	Use	the	Checkout	and	Checkin	methods
to	control	the	contents	of	the	Checkouts	collection.

Note		An	object	version	can	be	checked	out	to	no	more	than	one
workspace,	and	it	can	be	checked	out	only	to	a	workspace	in	which	it	is
already	present.	Even	when	you	check	out	an	object	version	to	a
workspace,	that	object	version	can	remain	present	in	many	other
workspaces.

Workspaces	support	various	kinds	of	collections	that	determine	the	scope	of	a
workspace.	For	more	information	about	the	collections	you	can	access	in	a
workspace,	see	Retaining	Workspace	Context.

See	Also

Managing	Workspaces

Workspace	Context

Meta	Data	Services	Programming

Workspace	Context
When	you	operate	within	a	workspace,	the	workspace	provides	a	specific
context	for	your	work.	That	context	includes	both	the	Versions	collection	and
the	Checkouts	collection	for	that	workspace.	If	an	object	version	is	not	part	of
either	of	these	collections,	it	is	not	part	of	the	context	for	that	workspace.

The	behavior	of	a	repository	method	can	vary	depending	on	whether	you
invoked	the	method	from	within	the	context	of	a	workspace	or	from	within	the
more	general	context	of	a	repository	instance.	For	example,	if	you	materialize
the	ObjectInstances	collection	for	a	class,	the	collection	can	consist	of	two
different	sets	of	items:

If	you	are	operating	within	the	context	of	a	workspace,	the	collection
contains	one	item	for	each	object	in	that	workspace	conforming	to	that
class.

If	you	are	operating	within	the	more	general	context	of	a	repository
instance,	the	collection	contains	one	item	for	each	object	in	the
repository	conforming	to	that	class.

Similarly,	if	you	invoke	get_Object,	two	different	things	can	happen:

If	you	are	operating	within	the	context	of	a	workspace,	the	repository
engine	follows	a	resolution	strategy	to	yield	the	version	of	the	object
present	in	the	workspace.

If	you	are	operating	within	the	more	general	context	of	a	repository
instance,	the	resolution	strategy	yields	the	latest	version	of	the	object.

See	Also

Establishing	Workspace	Context

Kinds	of	Version	Collections

Managing	Workspaces

Resolution	Strategy	for	Objects	and	Object	Versions

Retaining	Workspace	Context

Meta	Data	Services	Programming

Establishing	Workspace	Context
When	you	create	or	open	a	repository	instance,	the	repository	engine	returns	a
reference	to	the	repository	root	object.	From	there,	you	can	immediately	begin	to
manipulate	other	repository	objects.	For	example,	you	can	invoke	get_Object	to
materialize	a	reference	to	a	specific	repository	object,	or	you	can	navigate	from
the	root	object	to	other	repository	objects.	In	either	of	these	cases,	the	resulting
references	refer	to	run-time	objects	that	exist	within	the	general	context	of	the
open	repository	instance.	Thus,	if	you	invoke	methods	exposed	by	this	object,
the	methods	perform	their	work	within	that	context.

On	the	other	hand,	you	can	first	establish	a	workspace	context	before
manipulating	any	repository	objects.	To	establish	a	workspace	context,	you	must
materialize	a	workspace	object	in	any	of	these	ways:

From	the	root	object,	you	can	materialize	the	Workspaces	collection
and	then	retrieve	a	particular	workspace	from	the	resulting	collection.

You	can	invoke	the	get_Object	method	to	explicitly	retrieve	a	reference
to	the	workspace	object	in	whose	context	you	want	to	operate.

From	the	workspace	definition	object	you	can	use	the	ObjectInstances
method	to	establish	a	collection	of	all	workspaces	in	the	repository.	You
can	then	retrieve	a	particular	workspace	from	that	collection.

After	you	have	a	reference	to	the	workspace	object,	you	can	operate	within	the
context	of	that	workspace.

To	retrieve	an	object	directly	within	the	context	of	the	workspace,	you	can
invoke	the	get_Object	method	as	exposed	by	the	workspace	object.	The
Workspace	class	implements	IRepository2,	making	methods	like	get_Object
and	get_RootObject	equally	available	to	a	repository	instance	and	the
workspaces	it	contains.

To	navigate	to	an	object	within	the	context	of	a	workspace,	start	by	invoking	the
get_RootObject	method	exposed	by	the	workspace	object,	then	navigate	to

other	objects	that	are	related	to	the	root.

Important	differences	exist	between	workspaces	and	repository	instances.	For
more	information	about	how	these	differences	affect	programming	within	a
workspace	context,	see	Workspaces	and	Repository	Instances.

See	Also

Managing	Workspaces

Navigating	a	Repository

Retaining	Workspace	Context

Workspace	Context

Meta	Data	Services	Programming

Retaining	Workspace	Context
As	you	navigate	the	objects	present	in	the	workspace,	the	repository	engine
retains	the	workspace	context.	In	other	words,	if	you	retrieve	an	item	from	a
relationship	collection	or	a	target	object	collection,	the	retrieved	target	item	has
the	same	context	as	the	source	item	of	that	relationship.

However,	only	relationship	collections	and	target	object	collections	retain
workspace	context.	If	you	retrieve	an	item	from	any	VersionCol	object,	the
reference	that	the	repository	engine	returns	to	you	has	the	context	of	the	open
repository	instance	in	which	you	are	operating.	The	object	reference	does	not
have	an	in-workspace	context.

For	example,	suppose	that	within	the	context	of	a	workspace,	you	have	a
reference	to	the	root	object,	and	you	perform	these	steps:

1.	 From	the	root	object,	you	navigate	to	a	particular	repository	object.

As	you	navigate	to	each	object	along	the	navigation	path,	the
repository	engine	returns	whichever	object	version	is	present	in	the
workspace.	At	each	step,	the	reference	that	the	repository	engine
returns	preserves	the	workspace	context.

2.	 At	some	point	along	the	navigation	path,	you	materialize	the
PredecessorVersions	collection	of	an	object	version.	Then,	you
retrieve	the	first	item	in	that	collection.

The	repository	engine	returns	a	reference	to	the	oldest	predecessor	of
the	object	version.	Because	the	PredecessorVersions	collection	is	a
VersionCol	object	rather	than	a	relationship	collection	or	a	target
object	collection,	this	reference	does	not	preserve	the	workspace
context.	All	subsequent	manipulations	of	and	navigations	from	this
object	occur	within	the	general	context	of	the	open	Repository
instance.

See	Also

Establishing	Workspace	Context

Kinds	of	Version	Collections

Managing	Workspaces

Navigating	a	Repository

Workspace	Context

Meta	Data	Services	Programming

Workspaces	and	Repository	Instances
In	many	respects,	operating	within	a	workspace	is	just	like	operating	within	a
larger	repository	instance.	Both	the	Workspace	class	and	the	Repository	class
implement	the	IRepository2	interface.	There	are,	however,	some	important
differences:

Some	methods	exposed	by	the	IRepository2	interface	apply	only	to
Repository	instances,	not	to	workspaces.	You	cannot	call	Open	or
Create	on	a	workspace	object.

Unlike	repository	connections,	workspaces	are	named	persistent
repository	objects.	Thus,	workspaces	can	be	created,	used	across
multiple	sessions,	and	deleted,	if	necessary.

See	Also

Establishing	Workspace	Context

IRepository2	Interface

Managing	Workspaces

Retaining	Workspace	Context

Workspace	Context

Meta	Data	Services	Programming

Accessing	Objects	in	a	Workspace
You	can	retrieve	a	repository	object	in	the	context	of	a	workspace	by	doing	one
of	the	following:

Retrieving	the	object	using	the	Object	property	that	the	workspace
object	exposes.

Retrieving	the	root	object	using	the	RootObject	property	that	the
workspace	object	exposes,	and	then	navigating	to	other	objects	by
traversing	relationship	collections.

Retrieving	the	object	from	the	workspace	Versions	collection.

When	you	retrieve	an	object	using	any	of	these	alternatives,	you	retrieve	the
specific	object	version	that	is	included	in	the	workspace.	For	more	information,
see	Workspace	Context.

See	Also

Establishing	Workspace	Context

Managing	Workspaces

Retaining	Workspace	Context

Meta	Data	Services	Programming

Manipulating	Workspaces
Operations	on	workspaces	are	supported	at	both	the	COM	level	and	the
Automation	level.	You	can	perform	the	following	operations	on	a	workspace.

To Use
Enumerate	the	workspaces	in	a
repository	instance

The	Workspaces	collection	of	the
IWorkspaceContainer	interface	that	is
exposed	by	the	root	repository	object.

Create	a	workspace The	CreateObject	method	of	the
IRepository	interface	that	is	exposed	by
the	open	repository	instance.	Use	the	Add
method	for	the	Workspaces	collection	to
add	the	workspace	to	the	collection	of
workspaces.

Delete	a	workspace The	Delete	method	of	the
IRepositoryItem	interface	that	is	exposed
by	the	workspace	object.	If	you	attempt	to
delete	a	workspace	that	contains	checked
out	objects,	the	delete	will	fail.

Retrieve	the	root	object	in	a
workspace

The	RootObject	property	of	the
IRepository	interface	that	is	exposed	by
the	workspace	object.

Enumerate	the	repository
objects	contained	in	a
workspace

The	Contents	collection	of	the
IWorkspace	interface	that	is	exposed	by
the	workspace	object.

Enumerate	the	checked	out
objects	in	a	workspace

The	Checkouts	collection	of	the
IWorkspace	interface	that	is	exposed	by
the	workspace	object.

See	Also

Managing	Workspaces

Manipulating	Objects	in	a	Workspace

Meta	Data	Services	Programming

Manipulating	Objects	in	a	Workspace
Repository	objects	implement	the	IWorkSpaceItem	interface	in	order	to	support
workspace-related	capabilities.	The	IWorkSpaceItem	interface	is	available	at
both	the	COM	level	and	the	Automation	level.	Given	a	specific	version	of	a
repository	object,	you	can	perform	the	workspace-related	operations	listed	in	the
following	table.

To Use
Determine	whether	an	object
version	is	checked	out	to	a
workspace

The	CheckedOutToWorkspace	property
of	the	IWorkSpaceItem	interface.

Determine	which	workspaces
contain	a	particular	object
version

The	Workspaces	collection	of	the
IWorkSpaceItem	interface	that	is	exposed
by	the	object	version.

Add	an	object	version	to	a
workspace

The	IWorkspace	interface	to	obtain	access
to	the	Contents	collection.	Then	use	the
Add	method	of	the	Contents	collection	to
add	an	object	version	to	the	workspace.

Remove	an	object	version	from
a	workspace

The	IWorkspace	interface	to	obtain	access
to	the	Contents	collection.	Then	use	the
Remove	method	of	the	Contents
collection	to	remove	the	object	version
from	the	workspace.

Check	an	object	version	out	to
a	workspace

The	CheckOut	method	of	the
IWorkSpaceItem	interface	that	is	exposed
by	the	object	version.

Check	an	object	version	in
from	a	workspace

The	CheckIn	method	of	the
IWorkSpaceItem	interface	that	is	exposed
by	the	object	version.

See	Also

Managing	Workspaces

Manipulating	Workspaces

Meta	Data	Services	Programming

Handling	Errors
Error	information	is	available	to	programs	that	use	repository	engine	COM	or
Automation	interfaces.	This	section	gives	an	overview	of	repository	error
handling	and	presents	techniques	for	accessing	repository	error	information.

Topic Description
Error	Handling	Overview Describes	how	the	repository	engine

implements	error	queue	and	error	handling
Accessing	Error	Information	at
the	Automation	Level

Explains	how	to	access	repository
interfaces	at	the	Automation	level

Accessing	Error	Information	at
the	COM	Level

Explains	how	to	access	repository
interfaces	at	the	COM	level

Persisting	Error	Queue
Information

Describes	how	to	retain	error	queue
information

Repository	Errors Documents	repository	engine	error	codes
and	messages	in	alphabetical	or	numerical
format

Meta	Data	Services	Programming

Error	Handling	Overview
If	you	are	programming	with	COM	interfaces,	you	can	use	interfaces	to	work
with	the	error	queue	and	handle	errors.	Equivalent	functionality	is	not	available
to	Automation	objects.	You	cannot	manage	the	error	queue	or	its	contents	from
an	Automation	object.

Error	Handling
Error	handling	applies	to	methods	on	repository	engine	objects.	In	the	repository
API,	COM	interface	members	return	an	HRESULT	return	value	that	indicates
whether	a	method	completed	successfully.	If	a	repository	interface	member	fails
to	complete	successfully,	an	error	object	that	contains	details	about	the	failure	is
created.

Error	objects	conform	to	the	REPOSERROR	data	structure.	For	more
information	about	the	data	structure	of	repository	errors,	see	REPOSERROR
Data	Structure.

Error	Queues
An	error	queue	is	a	collection	of	error	objects.	Each	repository	instance
maintains	a	single	error	queue.	When	an	error	is	generated	by	a	repository
interface	method,	the	error	is	added	to	the	error	queue	of	the	current	repository
instance.	If	multiple	errors	occur	as	a	result	of	a	single	member	invocation,	all	of
the	errors	are	added	to	the	error	queue	of	the	current	repository	instance.

You	can	have	multiple	repository	instances	and	associated	error	queues	active	at
one	time.	Multiple	repository	instances	can	be	connected	to	the	same	repository
database.	Repository	instances	can	originate	from	the	same	or	from	different
processes.	A	single	process	can	create	multiple	repository	instances.

The	repository	error	queue	is	a	transient	object;	that	is,	the	contents	of	the	queue
are	valid	only	within	the	same	operation	in	which	the	error	occurred.	Subsequent
interactions	with	any	repository	object	will	automatically	clear	the	error	queue.

To	work	with	the	queue,	use	IRepositoryErrorQueueHandler	to	create	an	error

queue,	assign	an	error	queue	to	a	thread	of	execution,	or	retrieve	an	interface
pointer	to	a	thread's	currently	assigned	error	queue.

To	manage	errors	within	a	queue,	use	IRepositoryErrorQueue	for	repository
objects	and	IEnumRepositoryErrors	enumeration	objects.

See	Also

Accessing	Error	Information	at	the	COM	Level

IEnumRepositoryErrors	Interface

IRepositoryErrorQueue	Interface

IRepositoryErrorQueueHandler	Interface

Persisting	Error	Queue	Information

Repository	Class

Meta	Data	Services	Programming

Accessing	Error	Information	at	the	Automation	Level
When	a	repository	interface	member	generates	an	error,	Automation	programs
can	access	the	repository	error	object	to	obtain	error	information.	For	more
information	about	the	repository	error	object,	see	REPOSERROR	Data
Structure.

Visual	Basic
In	Microsoft®	Visual	Basic®,	you	use	the	global	Err	object	to	handle	errors.
The	first	error	in	a	repository	error	queue	is	the	error	that	is	placed	into	the	Err
object.	For	each	error,	you	can	use	the	On	Error	statement	to	invoke	an	error
handler	when	an	error	is	encountered.	In	the	error	handler,	access	the	properties
of	the	global	Err	object	to	retrieve	the	error	information.	Only	the	first	error	in
the	repository	error	queue	is	accessible	through	the	Err	object.	For	more
information	about	the	global	Err	object,	see	the	Visual	Basic	documentation.

Script	Objects
A	predefined	variable	for	script	objects,	ReposErr,	can	be	used	to	report	a	result
and	an	error	description	that	you	provide.	ReposErr	enables	you	to	create	an
error	to	return	to	the	calling	application.

See	Also

Accessing	Error	Information	at	the	COM	Level

Handling	Errors

ScriptDef	Object

Meta	Data	Services	Programming

Accessing	Error	Information	at	the	COM	Level
COM	programs	can	access	all	of	the	errors	in	a	repository	error	queue.	You	can
use	IRepositoryErrorQueue	to	select,	insert,	or	remove	errors	in	a	repository
error	queue.	You	can	also	persist	queue	information	if	you	want	to	return	to	it
after	working	with	other	error	queues	or	repository	objects.

To	access	the	errors	in	a	COM	program

Use	the	QueryInterface	method	on	any	repository	object	interface	to
obtain	an	IReposErrorQueueHandler	interface	pointer.	There	is	an
IRepository	interface	pointer	associated	with	each	instance	of	the
Repository	class.

-or-

Call	the	GetErrorQueue	method	of	the	IReposErrorQueueHandler
interface	to	obtain	an	IRepositoryErrorQueue	interface	pointer.

-or-

Use	the	Count	method	of	the	IRepositoryErrorQueue	interface	to	get
the	number	of	elements	in	the	error	queue,	and	the	Item	method	to
retrieve	the	error	information	for	each	error	in	the	queue.

The	repository	engine	also	provides	an	enumeration	interface	for	errors	called
IEnumRepositoryErrors.

See	Also

Error	Handling	Overview

IEnumRepositoryErrors	Interface

IRepositoryErrorQueue	Interface

IReposErrorQueueHandler	Interface

Persisting	Error	Queue	Information

Repository	Class

Meta	Data	Services	Programming

Persisting	Error	Queue	Information
If	you	are	programming	with	COM	interfaces,	you	can	retain	error	queue
information	while	you	switch	to	other	error	queues	or	work	with	other
repository	objects.

You	can	access	only	one	repository	error	queue	at	a	time.	When	you	switch	from
one	error	queue	to	another,	several	things	occur	automatically:

The	IRepositoryErrorQueue	interface	reference	to	the	first	error
queue	is	automatically	released.

If	that	reference	is	the	only	remaining	reference	to	the	interface,	the
error	queue	is	destroyed.

An	IRepositoryErrorQueue	interface	reference	to	the	second	error
queue	is	automatically	added.

Consequently,	if	you	switch	from	one	error	queue	to	a	second	error	queue	and
then	back	to	the	first	error	queue,	the	first	error	queue	is	destroyed	and	then	re-
created	as	an	empty	queue.

To	switch	between	multiple	error	queues	and	retain	all	error	queue
information

1.	 Obtain	an	IRepositoryErrorQueue	interface	pointer	for	the	error
queue.

2.	 Explicitly	increment	the	interface	reference	count	using	the	AddRef
method	that	is	associated	with	the	error	queue.

Note		You	must	repeat	these	steps	for	each	error	queue.

The	error	queues	will	be	retained	as	long	as	you	hold	these	explicit	interface
references.

To	switch	back	and	forth	between	error	queues

Use	the	SetErrorQueue	method	of	the	IReposErrorQueueHandler
interface.	When	the	error	queue	information	is	no	longer	needed,	use
the	Release	method	to	remove	the	explicit	interface	references.

See	Also

Accessing	Error	Information	at	the	COM	Level

Error	Handling	Overview

IRepositoryErrorQueue	Interface

IReposErrorQueueHandler	Interface

Meta	Data	Services	Programming

Optimizing	Repository	Performance
The	biggest	factor	that	affects	repository	engine	performance	is	the	number	of
round	trips	the	repository	engine	makes	to	the	underlying	database	system.	As	a
result,	reducing	the	number	of	round	trips	is	the	single	best	solution	to	improving
repository	engine	performance.	To	be	able	to	minimize	the	number	of	round
trips,	you	must	understand	the	repository	engine	data	access	strategy.	Once	you
understand	this	strategy,	you	can	use	the	tips	and	hints	listed	here	to	improve
repository	performance.

Data	Access	Strategy
The	repository	engine	maintains	a	cache	of	repository	objects.	When	accessing
an	object	by	object	identifier	or	by	way	of	a	relationship,	the	engine	first	looks	in
its	cache.	Similarly,	the	engine	maintains	a	cache	of	relationship	collections.
When	accessing	a	collection	on	a	repository	object,	the	engine	first	looks	in	its
cache.

Because	round	trips	to	the	database	are	expensive,	the	engine	fetches	and
updates	data	in	batches.	For	example,	when	you	access	a	relationship	collection,
the	engine	fetches	all	the	relationships	in	the	collection.	The	engine	caches	the
updates	that	a	transaction	performs,	and	(unless	the	cache	overflows)	sends	them
to	the	database	only	when	the	transaction	commits.	There	are	many	other	cases,
too	numerous	to	mention	here,	where	the	engine	performs	batching.

Many	of	the	engine's	caching	and	batching	strategies	are	universally	beneficial
and	require	no	special	consideration	when	writing	an	application.	However,
sometimes	the	application's	usage	pattern	can	have	a	significant	performance
effect.	The	benefits	of	the	caching	and	batching	strategies	often	require	a
tradeoff	of	functional	flexibility;	consequently,	none	of	the	hints	can	be	blindly
applied	without	consideration	of	possible	tradeoffs.

Tips	and	Hints
The	following	table	lists	the	tips	and	hints	that	you	can	use	to	improve	repository
engine	performance.

Topic Description
General	Hints	to	Improve
Performance

Provides	general	hints	about	using
cached	data	and	storing	data

Retrieval	Hints Discusses	alternate	ways	of
retrieving	data	from	a	repository
database

Update	Hints Provides	information	about	update
behavior	that	you	can	use	to	improve
engine	performance

Versioning	Hints Offers	a	versioning	tip	that	improves
performance

Run-Time	Tuning Discusses	options	that	you	can	set	to
improve	run-time	performance

Adjusting	Cache	Aging	for
Repository	Objects

Explains	how	you	can	adjust	ageout
behavior	for	specific	kinds	of	rows

View	Hints Offers	hints	that	improve	the
performance	of	views	when	querying
a	database

See	Also

Repository	Engine

Repository	Databases

Storage	Strategy	in	a	Repository	Database

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Meta	Data	Services	Programming

General	Hints	to	Improve	Performance
The	following	hints	cover	cache	reuse	and	model	storage	strategies.

Reusing	Cached	Rows
An	application	can	have	multiple	repository	instances	(for	example,	database
sessions)	open	at	the	same	time.	Although	objects	are	not	shared	between
sessions,	cached	rows	are	shared.	This	offers	some	opportunities	for	increased
parallelism.

The	repository	engine	shares	a	cache	by	default,	so	this	optimization	tip	is
already	at	work.	Be	aware	that	if	you	set	the	connection	flag
REPOS_CONN_NEWCACHE	you	will	lose	the	benefit	of	this	optimization
technique.

Reusing	an	Interface	Instance
It	is	more	efficient	to	cache	the	result	of	IRepositoryItem::Interface	than	to
call	it	many	times	in	a	row	on	the	same	object	and	interface.	This	avoids	the	cost
of	a	COM	object	creation	and	type	information	lookup.

Storing	an	Information	Model
If	you	are	creating	or	extending	an	information	model	programmatically,	you	can
improve	performance	by	minimizing	the	number	of	tables	that	you	use	to	store
properties.	You	can	minimize	the	number	of	tables	by	mapping	multiple
interfaces	to	the	same	table.	To	do	this,	before	you	commit	the	transaction	that	is
used	to	create	your	information	model,	set	the	TableName	property	for	each
interface	definition	object	to	the	same	name.	Since	the	engine	must	issue	a
separate	SQL	query	for	each	table	it	accesses,	when	you	reduce	the	number	of
tables,	you	reduce	the	number	of	database	round	trips.	However,	this	may	cost
some	space	for	objects	that	do	not	support	or	populate	all	the	interfaces.

See	Also

Optimizing	Repository	Performance

Meta	Data	Services	Programming

Retrieval	Hints
A	fast	way	to	access	an	object	is	to	use	its	object	identifier.	This	kind	of	retrieval
is	only	possible	for	well-known	objects	that	your	application	expects	to	find,
such	as	a	container	(that	is,	folder	or	package)	object	that	is	the	root	of	a
container	hierarchy.

Using	Relationships	to	Fetch	Objects
If	a	given	set	of	objects	is	usually	loaded	together,	it	is	helpful	to	have	a
relationship	collection	that	points	to	those	objects.	If	you	access	the	objects
through	that	collection,	the	engine	will	load	them	in	one	round	trip.

Think	twice	before	navigating	to	a	collection	that	contains	only	one	or	two
objects	of	interest.	Navigating	to	the	collection	loads	the	entire	collection.
Instead,	try	to	find	another	way	to	navigate	to	those	objects.	ExecuteQuery	to
fetch	objects	provides	one	such	alternative.

Collection	Loading	Hints
When	loading	or	exporting	objects,	specify	the	maximum	number	of	objects	in
each	collection.	This	is	an	effective	way	to	allow	the	repository	engine	to
preload	all	the	object	collections	for	each	repository	object.

You	can	also	set	the	IReposOptions	OPT_PRELOAD_COL_MODE	and
OPT_EXPORT_MODE	options	to	preload	objects	in	a	collection.	For	more
information	about	option	values	and	descriptions,	see	IReposOptions	Options
Table.

Using	ExecuteQuery	to	Fetch	Objects
When	you	know	the	exact	set	of	objects	you	want,
IRepositoryODBC::ExecuteQuery	is	often	a	faster	way	to	find	the	objects	than
navigating	to	them	by	way	of	collections,	because	it	usually	requires	many	fewer
round	trips.	For	convenience,	consider	writing	some	view	definitions	to	insulate
application	programmers	from	the	complexity	of	the	relationship	table

(RTblRelationships)	and	type	definitions	(for	example,	those	stored	in
RTblClassDefs	and	RTblIfaceDefs).	If	the	query-update	ratio	warrants	it,
consider	adding	indexes	to	the	repository	SQL	interface	tables	(the	ones	to	which
the	properties	associated	with	that	interface	are	mapped).

ExecuteQuery	can	be	run	asynchronously,	in	which	case	the	call	returns
immediately.	Later,	you	use	IObjectCol2	to	determine	whether	the	collection
that	is	being	loaded	is	ready	to	read.

You	can	use	ExecuteQuery	to	explicitly	tell	the	repository	engine	to	prefetch
certain	objects.	However,	in	addition	to	calling	ExecuteQuery	for	at	least	one
object	in	the	ObjectCollection	that	the	query	returns,	you	must	access	a
property	on	each	interface	you	want	to	access.	This	tells	the	engine	to	prefetch
the	properties	on	those	interfaces	for	all	the	objects	in	the	collection.	As	an	aside,
the	engine	flushes	all	updates	to	the	database	before	running	ExecuteQuery,	so
the	query	is	reading	exactly	the	current	database	state.

Using	Named	Relationships	to	Fetch	Objects
If	an	object	has	the	same	name	in	all	contexts,	make	sure	its	class	supports
INamedObject.	This	makes	it	more	efficient	to	fetch	the	name.	That	is,	the
engine	fetches	the	name	from	INamedObject::Name	instead	of	a	name	from
any	of	the	incoming	relationships.	Note	that	an	update	of	the	name	causes	an
update	to	all	naming	relationships	pointing	to	the	name.

If	an	object	supports	INamedObject,	the	most	efficient	way	to	set	the	Name
property	on	the	object	only	(and	not	on	any	of	its	incoming	relationships)	is	to
explicitly	QueryInterface	for	INamedObject	and	set	its	Name	property.	For
example:

Dim	oReposObj	as	RepositoryObject
Set	oReposObj.Interface("INamedObject").Name	=	"Any	Name"

Note	that	since	the	names	of	the	relationships	to	the	object	are	not	updated	here,
you	cannot	later	fetch	by	name	from	the	collection.	Rather,	you	have	to
enumerate	the	collection	and	check	each	object's	name.	Also	note	that	the
property	Name	corresponds	to	the	dispatch	ID	DISPID_ObjName	(not
DISPID_Name).

It	is	more	efficient	to	follow	a	relationship	in	the	origin-to-destination	direction

than	vice	versa.	This	is	because	the	physical	representation	of	relationships	in
the	relationship	table	is	biased	in	this	direction.	So,	traverse	relationships	in	this
direction	whenever	you	have	a	choice.

See	Also

IReposOptions	Interface

Optimizing	Repository	Performance

Repository	SQL	Schema

Repository	SQL	Tables

Meta	Data	Services	Programming

Update	Hints
Because	the	repository	engine	sends	updates	to	the	database	in	a	batch	at
transaction	commit	time,	a	single	long	transaction	is	preferable	to	many	small
ones.	This	is	true	for	any	combination	of	inserts,	deletes,	and	updates.	For
moderate-sized	objects,	you	should	be	able	to	update	25,000	objects	within	one
transaction	without	hitting	cache	size	limitations.

Use	the	automatic	delete	propagation	feature	of	relationships	wherever	possible.
This	allows	the	engine	to	delete	objects	in	a	batch.

See	Also

Propagating	Deletes

Optimizing	Repository	Performance

Meta	Data	Services	Programming

Versioning	Hints
Do	not	freeze	a	version	until	it	is	necessary.	The	engine	knows	that	an	unfrozen
version	can	have	no	successors,	and	it	exploits	this	knowledge	in	its	access
strategies.

See	Also

Optimizing	Repository	Performance

Meta	Data	Services	Programming

Run-Time	Tuning
The	repository	engine	provides	excellent	performance	for	typical	applications.
Some	of	these	optimizations,	because	they	are	generic	in	nature,	may	not	be	well
tuned	for	certain	applications	and	may	even	be	detrimental	to	their	performance.
The	repository	engine	allows	run-time	performance	tuning	that	is	specific	to
each	application.

The	IReposOptions	interface	has	the	following	methods.

Method Description
SetOption Sets	numerous	options,	all	of	which	impact	repository

engine	performance	in	some	way.	For	more	information
about	option	values	and	descriptions,	see
IReposOptions	Options	Table.

GetOption Retrieves	a	current	option	value.
ResetOptions Resets	all	options	to	their	default	values.

See	Also

IReposOptions	Interface

Optimizing	Repository	Performance

Meta	Data	Services	Programming

Adjusting	Cache	Aging	for	Repository	Objects
The	repository	engine	cache	aging	mechanism	ensures	that	the	engine's	client
cache	is	automatically	refreshed	periodically	so	that	clients	can	see	up-to-date
values.	The	mechanism	also	affects	performance,	because	the	next	access	to	an
aged-out	entry	must	be	fetched	again	from	the	database	system.

A	new	mechanism	for	aging	out	rows	of	different	types	in	the	repository	engine
is	used	in	version	3.0.	Different	strategies	are	offered	for	rows	that	are
referenced,	recently	used,	cached,	and	static.	Ageout	strategies	are	specified
based	on	IReposOptions	options	that	you	set.	These	options	include
OPT_AGEOUT,	OPT_TIM_AGEOUT,	and	OPT_PRELOAD_AGEOUT.
For	more	information	about	option	values	and	descriptions,	see	IReposOptions
Options	Table.

See	Also

IReposOptions	Interface

Optimizing	Repository	Performance

Meta	Data	Services	Programming

View	Hints
View	definitions	can	affect	performance	in	two	ways:	during	SQL	view
generation	and	when	Microsoft®	SQL	Server™	2000	compiles	a	SQL	view
before	executing	it.	The	following	hints	can	help	you	achieve	better	performance
along	these	two	dimensions.

Choose	an	unresolved	view	(a	view	that	does	not	support	version
resolution)	if	version	information	is	unimportant	(for	example,	when
you	know	that	all	objects	are	version	one).	The	repository	engine	does
not	perform	version	resolution	if	the	SQL	view	is	flagged	as	unresolved.

When	you	have	a	choice	between	using	a	class-based	view	or	an
interface-based	view,	choose	the	class-based	view.	Interface-based
views	have	an	extra	join	that	determines	which	classes	implement	the
interface.	Using	a	class-based	view	avoids	the	performance	hit	of
processing	the	extra	join.

Choose	an	interface-based	view	over	a	class-based	view	when	querying
a	small	set	of	interfaces	where	the	key	(IntID)	is	specified.	This	choice
is	often	preferable	because	the	compilation	time	can	be	so	much	smaller
for	interface-based	views.

When	navigating	a	relationship,	performing	the	query	on	a	junction
view	often	runs	faster	than	when	you	represent	the	relationship	as	a
foreign	key	on	a	class	or	interface	view.	Using	a	junction	view	yields
faster	performance	on	average.

If	you	have	a	view	that	includes	a	text	field,	and	you	reference	the	text
field	in	a	SELECT	clause,	then	you	are	not	allowed	to	use	SELECT
DISTINCT.	As	a	result,	the	query	optimizer	cannot	eliminate	certain
redundant	joins.	A	solution	is	to	use	a	nested	query	on	two	interface-
based	views.	The	inner	query	uses	DISTINCT	and	includes	IntID	in	the

SELECT	clause,	but	does	not	reference	the	text	field.	This	causes	the
inner	query	to	reference	a	presumably	smaller	number	(specifically,	the
IntID),	which	then	joins	with	the	interface-based	view	that	contains	the
text	field.

See	Also

Generating	Views

Optimizing	Repository	Performance

Repository	Identifiers

Meta	Data	Services	Programming

Storage	Strategy	in	a	Repository	Database
The	database	storage	model	in	Microsoft®	SQL	Server™	2000	Meta	Data
Services	differs	from	the	run-time	object	model.	While	the	run-time	object
model	is	designed	to	accommodate	run-time	operations	conveniently,	the
database	model	is	designed	to	accommodate	storage	efficiently.

To	save	space	in	the	database,	Meta	Data	Services	can	sometimes	store	a	single
copy	of	a	property	value,	even	if	that	property	value	describes	many	object
versions.	Similarly,	Meta	Data	Services	can	sometimes	store	a	single	copy	of	a
relationship,	even	if	many	different	object	versions	have	that	relationship.

Meta	Data	Services	anticipates	which	object	versions	are	especially	likely	to
share	property	values	and	relationships	and	which	object	versions	are	less	likely
to.	The	repository	engine	uses	these	guidelines:

Two	versions	of	the	same	object	are	likely	to	share	property	values	and
collections,	but	two	versions	of	different	objects	are	less	likely	to	do	so.
In	other	words,	if	two	object	versions	are	not	on	the	same	version	graph,
they	are	not	especially	likely	to	share	property	values	or	relationships.
For	more	information,	see	Version	Graph.

Within	a	version	graph,	two	versions	that	are	near	each	other	are	more
likely	to	share	values;	two	versions	that	are	far	apart	are	less	likely	to
share	values.	The	repository	engine	arranges	each	version	graph	into
branches.	For	more	information,	see	Branches	in	the	Version	Graph.
Each	branch	contains	versions	that	are	especially	likely	to	share	values.

Although	property	values	and	collections	can	change,	they	do	not
change	back	and	forth	frequently.	More	commonly,	a	value	holds	for	a
few	consecutive	versions	of	an	object,	and	then	that	value	changes	to	a
new	value,	which	holds	for	a	few	more	versions	of	the	object.	Thus,
when	Meta	Data	Services	stores	a	property	value,	it	stores	the	property
value	for	an	entire	range	of	object	versions.	For	more	information,	see
Ranges	in	the	Version	Graph.

Similarly,	in	a	single	row	of	the	RTblRelships	table,	Meta	Data
Services	can	indicate	that	every	object	version	in	a	range	(of	origin
object	versions)	has	a	relationship	to	every	object	version	in	a	range	(of
destination	object	versions).

The	repository	SQL	tables	store	the	physical	data	of	a	repository.	For	more
information	about	object	and	object	version	storage,	see	RTblVersions	SQL
Table	and	Interface-Specific	Tables

See	Also

Connecting	to	and	Configuring	a	Repository

Repository	Databases

Repository	SQL	Schema

Repository	SQL	Tables

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

Branches	in	the	Version	Graph
Within	the	database,	the	repository	engine	partitions	each	version	graph	into
branches.	Each	branch	contains	object	versions	that	are	especially	likely	to	share
property	values	and	target	object	versions	with	each	other.

A	branch	of	a	version	graph	is	a	sequence	S	of	n	(n	>	0)	object	versions	such
that:

S	=		x1,		x2,		x3,		...,	xn		

and	x1	is	the	creation	predecessor	of	x2
and	xk	is	the	creation	predecessor	of	xk+1	(1	<	k	<	n-2)	
and	xn-1	is	the	creation	predecessor	of	xn.

According	to	this	definition,	each	object	version	can	be	in	the	same	branch	with
at	most	one	of	its	creation	successors.	For	example,	in	the	following	version
graph,	Version	3	and	Version	4	cannot	be	in	the	same	branch,	because	they	are
both	creation	successors	of	Version	2.

In	fact,	this	version	graph	has	four	branches,	as	shown	in	the	following	figure.

Every	version	graph	has	at	least	one	branch,	the	branch	beginning	with	the	first
version	of	the	object.

Each	object	version	is	a	member	of	a	single	branch;	branches	do	not	overlap.

When	you	create	a	new	version	of	an	object,	the	repository	engine	tries	to	add
the	newly	created	version	to	the	same	branch	as	its	predecessor.	If	that	branch
already	includes	a	successor	to	the	creation	version,	the	repository	engine	creates
a	new	branch.	The	newly	created	object	version	is	the	only	element	of	the	new
branch.

For	example,	if	you	create	a	new	version	from	Version	8,	the	repository	engine
creates	the	new	version	and	adds	it	to	the	branch	containing	Version	8.	But	if	you
create	a	new	version	from	Version	3,	the	repository	engine	creates	a	new	branch
for	the	new	version,	because	Version	3's	branch	already	includes	a	creation
successor	of	Version	3.

Each	branch	represents	a	set	of	object	versions	that	are	especially	likely	to	share
property	values	and	have	identical	relationships.	If	two	object	versions	exist	on
separate	branches,	the	repository	does	not	save	any	space	in	the	database	even	if
those	versions	share	values	for	all	of	their	properties	and	have	identical
collections	for	all	of	their	collection	types.	For	the	repository	engine	to	save
space,	the	similar	objects	must	exist	on	the	same	branch.	For	this	reason,	the
repository	engine	attempts	during	CreateVersion	to	assign	the	new	version	to	an
existing	branch.	The	fewer	the	branches,	the	higher	the	likelihood	that	space	can
be	saved	in	the	database.

The	repository	engine	never	moves	an	object	version	from	one	branch	to
another.	After	assigning	an	object	version	to	a	branch	during	the	CreateVersion
method,	that	object	version	remains	on	that	branch	until	the	object	version	is
deleted.

See	Also

IRepositoryObjectVersion::CreateVersion

RepositoryObjectVersion	CreateVersion	Method

Storage	Strategy	in	a	Repository	Database

Version	Graph

Meta	Data	Services	Programming

Ranges	in	the	Version	Graph
To	save	space	in	the	database,	the	repository	engine	can	associate	a	property
value	or	relationship	with	an	entire	range	of	object	versions.	A	range	of	object
versions	is	a	set	of	consecutive	elements	of	a	branch.	For	more	information,	see
Branches	in	the	Version	Graph.

To	refer	to	a	range,	a	row	of	a	repository	SQL	table	must	include	the	following
four	values:

The	Version	Graph.	That	is,	the	row	must	refer	to	the	repository	object.
Use	the	internal	identifier	of	the	object.

The	Branch.	This	is	the	portion	of	the	version	graph	containing	the
range.	Use	the	branch	identifier	of	the	branch.

The	Range	Start.	This	is	the	element	within	the	branch	where	the	range
starts.	Use	the	version-within-branch	identifier	of	the	object	version.

The	Range	End.	This	is	the	element	within	the	branch	where	the	range
ends.	Use	the	version-within-branch	identifier	of	the	object	version,	or
use	the	special	constant	VERINFINITY	(hex	7fffffff),	to	indicate	an
unbounded	range.

The	repository	engine	uses	unbounded	ranges	to	indicate	that	properties	apply	to
a	set	of	object	versions	that	can	grow	as	you	make	new	object	versions	using
CreateVersion.

For	more	information	about	how	the	repository	engine	uses	unbounded	ranges,
see	Interface-Specific	Tables.

See	Also

IRepositoryObjectVersion::CreateVersion

Repository	SQL	Schema

Repository	SQL	Tables

RepositoryObjectVersion	CreateVersion	Method

Storage	Strategy	in	a	Repository	Database

Version	Graph

Meta	Data	Services	Programming

Storing	Relationships
The	run-time	object	model	and	the	storage	schema	differ	significantly.	These
differences	are	most	apparent	when	you	query	a	repository	database	for
information	about	relationships.	In	fact,	the	storage	of	relationships	and	the	run-
time	manipulation	of	relationships	differ	significantly.

The	repository	engine	uses	the	RTblRelships	table	to	store	information	about
relationships.	An	individual	row	of	the	table	can	be	any	of	the	following:

A	description	of	an	individual	version-to-version	relationship

A	description	of	a	set	of	version-to-version	relationships

A	description	of	sequencing	and	pinning	information	for	a	single	origin-
versioned	relationship

See	Also

Repository	SQL	Schema

Repository	SQL	Tables

RTblRelships	SQL	Table

Storage	Strategy	in	a	Repository	Database

Meta	Data	Services	Programming

Interface-Specific	Tables
When	you	create	an	information	model,	the	repository	engine	enlarges	the
database	schema	to	accommodate	the	new	kinds	of	data.	The	additional	tables
that	the	repository	engine	adds	are	called	the	extended	schema.	Generally,	the
repository	engine	creates	one	table	for	each	new	interface	you	create.	Several
interfaces,	however,	can	share	a	table.	For	more	information,	see	Information
Model	Creation	Issues.

Each	row	of	an	interface-specific	table	indicates	that	a	set	of	property	values
applies	to	a	particular	range	of	object	versions.	For	more	information,	see
Ranges	in	the	Version	Graph.

The	primary	key	of	any	interface-specific	table	consists	of	three	columns:	IntID,
Z_BranchID_Z,	and	Z_VS_Z,	as	shown	in	the	following	table.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	for	the	object
Z_BranchID_Z RTBrID Indicates	the	branch	of	the	version

graph	containing	the	range	to	whose
items	the	property	values	in	this	row
apply

Z_VS_Z RTVerID A	version-within-branch	identifier
indicating	the	lower	bound	of	the	range
to	whose	items	the	property	values	in
this	row	apply

Z_VE_Z RTVerID A	version-within-branch	identifier
indicating	the	upper	limit	of	the	range
to	whose	items	the	property	values	in
this	row	apply

(User-supplied
column	name	for
Interface-Specific
Property	1)

(User-
supplied	data
type)

A	column	that	corresponds	to	a
property	you	defined	in	your
information	model

(User-supplied (User- Other	columns	that	correspond	to	other

column	name	for
Interface-Specific
Property	n...)

supplied	data
type)

properties	you	defined	in	your
information	model

Each	row	indicates	a	range	and	a	set	of	property	values.	Every	object	version	in
the	range	is	described	by	every	property	value.

See	Also

Branches	in	the	Version	Graph

Example:	Rows	of	Interface-Specific	Tables

Repository	SQL	Schema

Repository	SQL	Tables

Storage	Strategy	in	a	Repository	Database

Version	Graph

Meta	Data	Services	Programming

Example:	Rows	of	Interface-Specific	Tables
Consider	the	version	graph	for	a	typical	object.	Suppose	the	object	is	part	of	a
user-installed	information	model;	it	conforms	to	the	CParagraph	class.	Suppose
further	that	the	CParagraph	class	implements	two	interfaces:

IFont	exposes	the	properties	Color,	Style,	and	PointSize.

IParagraph	exposes	the	properties	Alignment	and	Spacing.

The	following	figure	shows	a	portion	of	the	version	graph,	along	with	properties
for	each	version	of	the	object.

Assume	that	the	object's	internal	identifier	is	7.	Assume	that	Version	7	and
Version	9	are	leaf	nodes;	they	have	no	successors.	Also	assume	that	there	are
two	branches	containing	these	object	versions,	as	shown	in	the	following	figure.

The	properties	for	these	object	versions	are	stored	in	two	separate	interface-
specific	tables.	The	table	for	the	properties	of	the	IFont	interface	includes	the
following	rows.

IntID Z_BranchID_ZZ_VS_Z Z_VE_Z Color Style
Point
Size

7 2 0 1 Blue Italic 10
7 2 3 VERINFINITYBlue Italic 10
7 2 0 VERINFINITYBlue Italic 10

The	first	row	in	the	preceding	table	indicates	that	the	properties	(Blue,	Italic,	10-
point)	apply	to	each	object	version	in	a	range	within	Branch	2	that	begins	at
Version	4	and	ends	at	Version	5.

The	second	row	indicates	that	the	properties	(Blue,	Italic,	12-point)	apply	to	each
object	version	in	a	range	within	Branch	2	that	begins	at	Version	9	and	ends	at	the
end	of	the	branch.

Similarly,	the	third	row	indicates	that	the	properties	(Blue,	Italic,	10-point)	apply
to	each	object	version	in	a	range	within	Branch	3	that	begins	at	Version	6	and
ends	at	the	end	of	the	branch.

The	following	table	for	the	properties	of	the	IParagraph	interface	includes	the
following	rows.

IntID Z_BranchID_Z Z_VS_Z Z_VE_Z Alignment Spacing
7 2 0 0 Center Single
7 2 1 VERINFINITYCenter Double
7 3 0 VERINFINITYCenter Double

The	first	row	of	the	preceding	table	indicates	that	the	properties	(Center,	Single)
apply	to	each	object	version	in	a	range	within	Branch	2	that	begins	at	Version	4
and	ends	at	Version	4,	a	single-version	range.

The	second	row	indicates	that	the	properties	(Center,	Double)	apply	to	each
object	version	in	an	unbounded	range	within	Branch	2	that	begins	at	Version	5.

Similarly,	the	third	row	indicates	that	the	properties	(Center,	Double)	apply	to
each	object	version	in	an	unbounded	range	within	Branch	3	that	begins	at
Version	6.

Within	the	Z_VE_Z	column,	VERINFINITY	indicates	that	the	range	has	no
upper	bound.	Thus,	if	you	enlarge	a	branch	(by	invoking	the	CreateVersion
method	on	the	branch's	newest	object	version)	the	creation	predecessor's
property	values	will	automatically	apply	to	the	newly	created	version.

For	example,	suppose	you	invoke	the	CreateVersion	method	on	Version	9,
yielding	a	version	graph,	as	shown	in	the	following	figure.

In	the	preceding	figure,	the	new	object	version	is	on	the	same	branch	as	its
predecessor,	and	has	the	same	properties	as	its	predecessor.	To	apply	these
existing	property	values	to	the	newly	created	object,	the	CreateVersion	method
does	not	need	to	modify	the	IFont-specific	property	table	or	the	IParagraph-
specific	property	table,	because	those	tables	contained	rows	that	applied	those
property	values	to	ranges	with	no	upper	bound.

See	Also

Branches	in	the	Version	Graph

Ranges	in	the	Version	Graph

Repository	SQL	Schema

Repository	SQL	Tables

Storage	Strategy	in	a	Repository	Database

Version	Graph

Meta	Data	Services	Programming

Using	OLE	DB	Scanner
OLE	DB	Scanner	is	a	feature	of	Microsoft®	SQL	Server™	2000	Meta	Data
Services	that	imports	relational	database	schema	information	from	an	OLE	DB
data	source	and	populates	instances	of	the	Open	Information	Model	(OIM)
Database	Schema	model	in	a	repository	database.	This	section	describes	the
OLE	DB	Scanner	for	Meta	Data	Services.	The	following	topics	provide	more
detailed	information	about	OLE	DB	Scanner.

Topic Description
OLE	DB	Scanner	Overview Describes	OLE	DB	Scanner	and	how	to

apply	it.
Supported	OLE	DB	Schema
Rowsets	in	OLE	DB	Scanner

Lists	the	OLE	DB	rowsets	and	indicates
which	are	supported	by	OLE	DB	Scanner.

Navigating	the	Schema	in
OLE	DB	Scanner

Shows	a	Microsoft®	Visual	Basic®	code
example	that	navigates	an	OLE	DB	rowset
using	the	repository	API.

Schema	Versioning	in	OLE
DB	Scanner

Explains	versioning	behavior	for	rowsets
imported	by	OLE	DB	Scanner	into	a
repository	database.

Data	Type	Mappings	in	OLE
DB	Scanner

Lists	data	type	equivalents	for	OLE	DB	data
types	and	repository	data	types.

OLE	DB	Scanner	Reference Provides	API	reference	topics	for	OLE	DB
Scanner	interfaces.

Meta	Data	Services	Programming

OLE	DB	Scanner	Overview
OLE	DB	Scanner	imports	database	schema	information	from	an	OLE	DB	data
source	and	populates	instances	of	the	Open	Information	Model	(OIM)	Database
Schema	model	in	a	repository	database.	OLE	DB	Scanner	works	with	OLE	DB
providers.	When	you	pass	an	OLE	DB	provider	to	the	scanner,	it	examines	the
schema	and	creates	a	set	of	corresponding	instance	objects	in	the	repository
database.

OLE	DB	Scanner	is	written	as	a	Microsoft®	ActiveX®	DLL.	The	scanner
provides	one	dual	interface,	IRepOLEDBScanner.	The	provided	interface	is
declared	as	dual	so	that	it	can	be	called	from	both	COM	and	Automation	clients.

IRepOLEDBScanner	supports	initial	scans	and	rescans.	It	also	supports	clients
that	already	have	an	initialized	OLE	DB	connection.	For	more	information,	see
OLE	DB	Scanner	Reference.

Meta	Data	Services	Programming

Supported	OLE	DB	Schema	Rowsets	in	OLE	DB
Scanner
Thirty	types	of	database	schema	information	can	be	fetched	from	an	OLE	DB
data	source.	The	Database	object	name	column	in	the	following	table	shows	the
name	of	the	database	objects	that	can	be	fetched.	The	Supported	column
indicates	whether	the	item	is	supported	by	OLE	DB	Scanner.	If	an	item	is	not
supported,	there	is	no	corresponding	item	in	the	Open	Information	Model	(OIM)
to	capture	it.	For	more	information	about	property	descriptions	and	OLE	DB
type	information,	see	the	OLE	DB	documentation.

Database	object	name Supported
ASSERTIONS Yes
CATALOGS Yes
CHARACTER_SETS No
CHECK_CONSTRAINTS Yes
COLLATIONS No
COLUMN_DOMAIN_USAGE Yes
COLUMN_PRIVILEGES No
COLUMNS Yes
CONSTRAINT_COLUMN_USAGE Yes
CONSTRAINT_TABLE_USAGE Yes
FOREIGN_KEYS Yes
INDEXES Yes
KEY_COLUMN_USAGE Yes
PRIMARY_KEYS Yes
PROCEDURE_COLUMNS Yes
PROCEDURE_PARAMETERS Yes
PROCEDURES Yes
PROVIDER_TYPES Yes
REFERENTIAL_CONSTRAINTS Yes
SCHEMATA Yes
SQL_LANGUAGES No

STATISTICS No
TABLE_CONSTRAINTS Yes
TABLE_PRIVILEGES No
TABLES Yes
TRANSLATIONS No
USAGE_PRIVILEGES No
VIEW_COLUMN_USAGE No
VIEW_TABLE_USAGE No
VIEWS Yes

Meta	Data	Services	Programming

Navigating	the	Schema	in	OLE	DB	Scanner
After	the	database	schema	has	been	scanned	into	a	repository	database,	the
schema	can	be	easily	navigated	from	Microsoft®	Visual	Basic®	or	Microsoft
Visual	C++®	using	the	repository	API.	For	example,	the	following	Visual	Basic
code	navigates	in	the	following	order:	DataSource,	Catalog,	Schema,	Table,
Column,	DataType.

Set	IfD	=	Repos.object(OBJID_IDbmDataSource)
For	Each	datasource	In	IfD.ObjectInstances
		...
		For	Each	catalog	In	datasource("_DataSource").DeployedCatalogs
				...
				For	Each	schema	In	catalog("_Catalog").Schemas
						...
						For	Each	table	In	schema("_Schema").Tables
								If	QI(table,	"IDbmTable")	Then
										...
										For	Each	column	In	table("_Table").Columns
												...
												Set	datatype	=	column("_Column").Attribute.Item(1)
										Next
								End	If
						Next
				Next
		Next
Next

Private	Function	QI(o	As	RepositoryObject,	name	As	String)	As	Boolean
On	Error	GoTo	Fail
				Dim	r	As	RepositoryObject
				Set	r	=	o.Interface(name)
				QI	=	True

				Exit	Function
Fail:
				QI	=	False
End	Function

Meta	Data	Services	Programming

Schema	Versioning	in	OLE	DB	Scanner
When	scanning	a	database	catalog	that	is	already	in	a	repository	database
(identified	by	identical	catalog	names),	the	scanner	versions	the	schema	at	the
lowest	granularity	of	change.	For	example,	take	the	following	example	data
model	of	an	Authors	table	with	two	columns.

Name Data	type Size
au_lname Varchar 20
au_fname Varchar 40

Changing	the	data	type	of	the	au_lname	column	results	in	a	new	version	of	the
column	object	and	a	relationship	to	the	new	data	type	object.

In	general,	adding	or	removing	an	element	of	a	relationship	collection	requires
that	you	create	a	new	version	of	the	origin	object.	For	example,	adding	a	column
to	the	table	results	in	a	new	version	of	the	table	with	the	new	column	object
added	to	the	elements	collection.	Relationships	to	existing	columns	are
propagated.

Removing	a	column	from	the	table	results	in	a	new	version	of	the	table	with	the
column	object	removed	from	elements	collection.	Relationships	to	existing
columns	are	propagated.

Name Data	type Size
au_lname Varchar 40
au_mname Varchar 10

The	following	diagram	shows	the	model	for	the	revised	table	schema.

Meta	Data	Services	Programming

Data	Type	Mappings	in	OLE	DB	Scanner
Each	OLE	DB	column	has	an	enumerated	indicator	that	must	be	mapped	to	a
DBMS	data	type	instance.	These	instances,	which	are	implemented	by	a	class
that	supports	the	IDbmDBMSDataType	interface,	are	created	using	the
following	mapping	table	and	are	assigned	to	columns	using	the
PROVIDER_TYPES	rowset.

OLE	DB	type	indicator Repository	mapping Remarks
DBTYPE_EMPTY DbmDBMSDataTypeNone
DBTYPE_NULL DbmDBMSDataTypeNone
DBTYPE_RESERVED DbmDBMSDataTypeNone
DBTYPE_I1 DbmTinyInt None
DBTYPE_I2 DbmSmallInt None
DBTYPE_I4 DbmInteger None
DBTYPE_I8 DbmQuadInt None
DBTYPE_UI1 DbmTinyInt OLE	DB	Scanner	sets

IDtmNumeric.IsSigned	to
False

DBTYPE_UI2 DbmSmallInt OLE	DB	Scanner	sets
IDtmNumeric.IsSigned	to
False

DBTYPE_UI4 DbmInteger OLE	DB	Scanner	sets
IDtmNumeric.IsSigned	to
False

DBTYPE_UI8 DbmQuadInt OLE	DB	Scanner	sets
IDtmNumeric.IsSigned	to
False

DBTYPE_R4 DbmReal OLE	DB	Scanner	sets
IDtmNumeric.IsSigned	to
True

DBTYPE_R8 DbmDouble OLE	DB	Scanner	sets
IDtmNumeric.IsSigned	to
True

DBTYPE_CY DbmMoney None
DBTYPE_DECIMAL DbmDecimal OLE	DB	Scanner	sets

IDtmNumeric.IsSigned	to
True

DBTYPE_NUMERIC DbmNumeric OLE	DB	Scanner	sets
IDtmNumeric.IsSigned	to
True

DBTYPE_DATE DbmDate None
DBTYPE_BOOL DbmBit None
DBTYPE_BYTES DbmBinary	or

DbmVarBinary
If	IsVariable	is	set	to	True,
OLE	DB	Scanner	uses
DbmVarBinary	and	sets
IDtmBinary.IsVariable	and
IDtmBinary.Length	to	True

DBTYPE_BSTR DbmDBMSDataTypeOLE	DB	Scanner	sets
IDtmString.Length	and
IDtmString.IsVariable	to	True

DBTYPE_STR DbmChar	or
DbmVarChar

If	IsVariable	is	set	to	True,
OLE	DB	Scanner	uses
DbmVarChar	and	sets
IDtmString.IsVariable	and
IDtmString.Length	to	True

DBTYPE_WSTR DbmNChar	or
DbmNVarChar

If	IsVariable	is	set	to	True,
OLE	DB	Scanner	uses
DbmVarChar	and	sets
CharacterType	equal	to
DTM_CHARACTER_TYPE_
UNICODE	and
IDtmString.IsVariable	and
IDtmString.Length	to	True

DBTYPE_VARIANT DbmDBMSDataTypeNone
DBTYPE_IDISPATCH DbmDBMSDataTypeNone
DBTYPE_IUNKNOWN DbmDBMSDataTypeNone
DBTYPE_GUID DbmDBMSDataTypeNone
DBTYPE_ERROR DbmDBMSDataTypeNone

DBTYPE_BYREF DbmDBMSDataTypeNone
DBTYPE_ARRAY DbmDBMSDataTypeNone
DBTYPE_VECTOR DbmDBMSDataTypeNone
DBTYPE_UDT DbmDBMSDataTypeNone
DBTYPE_DBDATE DbmDate None
DBTYPE_DBTIME DbmTime None
DBTYPE_DBTIMESTAMPDbmTimeStamp None

Meta	Data	Services	Programming

Using	XML	Encoding
Extensible	Markup	Language	(XML)	interchange	is	supported	by
MSMDCXML.dll,	which	is	installed	with	Microsoft®	SQL	Server™	2000	Meta
Data	Services.

Meta	Data	Services	supports	exporting	and	importing	of	meta	data	through	the
Meta	Data	Coalition	(MDC)	Open	Information	Model	(OIM)	XML	Encoding
format.	XML	Encoding	defines	rules	for	generating	XML	elements	that	map	to
information	model	elements.	The	XML	Encoding	format	is	published	by	the
MDC	and	implemented	in	Meta	Data	Services	to	support	the	exchange	of	meta
data.	In	Meta	Data	Services,	exporting	and	importing	using	XML	enables	you	to
exchange	meta	data	with	other	repositories	or	tools.

Export	and	import	using	XML	is	supported	through	a	dual	interface.	You	can	use
the	objects	separately	or	together	to	perform	a	seamless	exchange:

The	export	process	generates	an	XML	document	that	contains	XML-
tagged	meta	data.	The	XML	document	can	be	expressed	in	memory	or
stored	in	a	file.

The	import	process	converts	XML	documents	to	object	instance	data	in
a	repository	database.	You	can	import	an	XML	document	from	memory
or	from	a	file.

The	exchange	of	meta	data	is	directed	by	your	application	code.	By	instantiating
export	and	import	objects	and	calling	the	methods	supported	by	the	objects,	you
can	complete	the	entire	exchange	programmatically.

Backward	Compatibility
Meta	Data	Services	still	recognizes	models	that	are	based	on	earlier	versions	of
the	OIM.	If	you	have	been	using	XML	Interchange	Format	(XIF)	to	import	and
export	repository	data,	you	can	still	do	so.	You	can	also	use	MDC	XML
Encoding	to	achieve	the	same	objective.	However,	you	cannot	combine	XIF	and
MDC	XML	Encoded	formats.	You	must	use	either	XIF	or	MDC	XML	Encoding
to	perform	an	import	and	export.	You	cannot	use	both	in	the	same	exchange.

Although	MDC	XML	Encoding	supports	an	XML	format	that	most	closely
corresponds	to	the	most	recent	version	of	the	OIM,	the	import	and	export
features	of	MDC	XML	Encoding	can	map	previous	versions	of	OIM-based
models	to	the	newest	version	of	OIM.	This	mapping	occurs	automatically	during
an	import	or	export	operation,	and	it	does	this	without	modifying	your
information	model.	The	advantage	of	this	mapping	is	that	you	can	exchange	data
between	information	models	that	are	based	on	different	versions	of	the	OIM.

The	only	exception	to	this	mapping	correspondence	occurs	for	new	Unified
Modeling	Language	(UML)	and	OIM	elements	that	are	not	defined	by	older
versions	of	the	OIM.	If	your	objective	is	to	transfer	repository	data	from
information	models	that	use	new	definitions	to	information	models	that	use	older
definitions,	you	will	experience	some	data	loss	in	the	conversion.	Specifically,
the	portion	of	data	from	the	new	model	that	cannot	be	accommodated	by	the
older	model	is	logged	to	an	error	file.

For	more	information	about	XML	interchange	formats	and	information	models,
see	Upgrading	an	Information	Model.

Additional	Topics
The	following	topics	provide	more	detailed	information	about	XML	encoding.

Topic Description
XML	in	Meta	Data	Services Describes	XML	Encoding	as	an	extension

of	OIM	and	how	it	is	supported	in	Meta
Data	Services.

Exporting	XML Explains	how	to	perform	an	export.
Export	Automation	Object
Example

Shows	examples	of	Microsoft	Visual
Basic®	code	that	instantiate	an	Export
object.

Importing	XML Explains	how	to	perform	an	import.
Import	Automation	Object
Example

Shows	examples	of	Visual	Basic	code	that
instantiate	an	Import	object.

XML	Encoding	Reference Contains	reference	topics	for	the	XML
Encoding	API.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

See	Also

Meta	Data	Coalition

OIM	in	Meta	Data	Services

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Meta	Data	Services	Programming

Exporting	XML
In	Microsoft®	SQL	Server™	2000	Meta	Data	Services,	exporting	Extensible
Markup	Language	(XML)	is	the	process	of	creating	an	XML	document	and
populating	it	with	meta	data	tagged	as	XML	elements.	You	can	export	data	as	an
XML	file	or	as	a	string	that	is	stored	in	memory.	After	you	export	the	data,	you
must	import	it	into	a	repository	database	or	make	it	available	to	another	tool.

Exporting	is	implemented	by	a	dual	interface.	Automation	and	COM
programmers	can	use	the	Export	object	and	IExport	interface	provided	by	Meta
Data	Services.

You	can	export	instance	data	for	specific	objects,	or	recursively	through	a	set	of
related	objects.	The	XML	document	is	created	automatically	by	the	export
process.	At	minimum,	you	must	instantiate	the	Export	object	and	define	the
repository	objects	for	which	you	want	to	export	instance	data.	The	methods	you
invoke	determine	whether	the	XML	document	is	stored	in	memory	or	as	an
XML	file	that	you	specify.

You	can	generate	an	XML	Document	Type	Definition	(DTD)	that	precisely
describes	the	XML	that	is	produced.	You	can	refer	to	the	XML	DTD	to	find	out
which	XML	structures	you	must	support.	The	XML	DTD	that	you	generate	is
based	on	an	information	model.	The	information	model	can	be	a	version	of	the
OIM	or	some	other	information	model	that	you	create.	XML	DTD	generation	is
provided	through	the	Meta	Data	Services	Software	Development	Kit	(SDK).

Exporting	Objects
To	export	object	data,	use	the	Export	object	and	the	IExport	interface	to	specify
the	objects	you	want.	The	object	can	be	any	repository	object.	You	can	specify
multiple	objects	in	your	application	code.

Exporting	a	Set	of	Related	Objects
You	can	also	export	data	for	related	objects	within	an	information	model	object.
The	export	process	will	automatically	add	all	target	objects	recursively	as	long
as	you	set	the	COLLECTION_CONTAINING	flag	for	the	collection.	You	must
set	this	flag	on	the	relationship	collection	in	the	information	model.

To	avoid	having	to	manually	relate	your	exported	data	with	the	data	in	the	target
database,	you	may	need	to	include	the	root	object	as	part	of	your	export
definition.

See	Also

Export	Automation	Object	Example

Importing	XML

XML	Encoding	Errors

XML	Encoding	Reference

XML	IExport	Interface	Overview

XML	IImport	Interface	Overview

Meta	Data	Services	Programming

Export	Automation	Object	Example
The	following	examples	show	how	to	use	the	Export	object	in	Microsoft®
Visual	Basic®.

Exporting	to	a	File
The	following	example	shows	how	to	export	object	instance	data	for	two
repository	objects.	You	do	not	need	to	bracket	an	export	within	a	transaction.	To
release	the	objects	after	the	export	concludes,	set	the	objects	to	nothing.

dim	oExp	as	new	Export
dim	oMyObj1	as	RepositoryObject
dim	oMyObj2	as	RepositoryObject
dim	oRep	as	new	Repository
dim	oRoot	as	RepositoryObject

set	oRoot=oRep.Open	"SERVER=MyServer;DATABASE=MyDB;UID=sa;PWD=MyPassword;"
set	oMyObj1=oRep.Object(objid1)
set	oMyObj2=oRep.Object(objid2)
oExp.add	oMyObj1
oExp.add	oMyObj2
oExp.Export	"c:\temp\myXmlFile.xml",	INDENTATION
Set	oMyObj1=Nothing
Set	oMyObj2=Nothing
Set	oRoot=Nothing
Set	oRep=Nothing
Set	oExp=Nothing

Exporting	Multiple	Objects	in	a	Relationship
In	the	following	example,	oMyObj1	is	a	collection	object	that	relates	multiple
objects.	The	COLLECTION_CONTAINING	flag,	which	is	set	on	the	collection
object,	makes	exporting	a	relationship	possible.	This	flag	is	set	in	the

information	model	and	does	not	appear	in	your	export	code.	Another	flag,
ADDCONTAINING_BASE	(you	can	also	use
ADDCONTAINING_MOSTDERIVED)	does	appear	in	your	export	code.	This
flag	supports	the	selection	of	objects	in	a	relationship	for	the	export	process.
This	flag	depends	on	the	COLLECTION_CONTAINING	flag	to	enable	the
selection.

dim	oExp	as	new	Export
dim	oMyObj1	as	RepositoryObject
dim	oRep	as	new	Repository
dim	oRoot	as	RepositoryObject

set	oRoot=oRep.Open	"SERVER=MyServer;DATABASE=MyDB;UID=sa;PWD=MyPassword;"
set	oMyObj1=oRep.Object(objid1)
oExp.add	oMyObj1,	ADDCONTAINING_BASE
oExp.Export	"c:\temp\myXmlFile.xml",	INDENTATION
Set	oMyObj1=Nothing
Set	oRoot=Nothing
Set	oRep=Nothing
Set	oExp=Nothing

Exporting	to	a	String
The	following	example	shows	how	to	export	the	same	object	instance	data	to	a
string	stored	in	memory:

dim	oExp	as	new	Export
dim	oMyObj1	as	RepositoryObject
dim	oMyObj2	as	RepositoryObject
dim	oRep	as	new	Repository
dim	oRoot	as	RepositoryObject

set	oRoot=oRep.Open	"SERVER=MyServer;DATABASE=MyDB;UID=sa;PWD=MyPassword;"
set	oMyObj1=oRep.Object(objid1)
set	oMyObj2=oRep.Object(objid2)

oExp.add	oMyObj1
oExp.add	oMyObj2
set	sXMLStr=Export.GetXML,	INDENTATION
Set	oMyObj1=Nothing
Set	oMyObj2=Nothing
Set	oRoot=Nothing
Set	oRep=Nothing
Set	oExp=Nothing

See	Also

Exporting	XML

Import	Automation	Object	Example

XML	IExport	Interface	Overview

Meta	Data	Services	Programming

Importing	XML
Importing	an	XML	document	is	the	process	of	adding	meta	data	to	a	target
repository.	You	can	import	meta	data	that	was	previously	exported	through	the
IExport	interface,	the	Export	object,	or	some	other	mechanism	that	you	define.

To	import	object	data,	you	can	use	the	IImport	interface	and	the	Import	object.
You	can	handle	the	XML	document	as	a	string	to	import	it	from	memory.	More
likely,	however,	you	will	want	to	import	an	XML	document	from	a	file.

Import	requires	the	following	conditions:

The	XML	documents	you	import	must	be	structured	in	the	format
described	by	Meta	Data	Coalition	(MDC)	Open	Information	Model
(OIM)	XML	Encoding.

The	type	information	of	the	target	repository	or	tool	must	be	identical	to
the	type	information	of	the	source	objects	or	model.	For	example,	if	you
export	objects	from	a	Unified	Modeling	Language	(UML)	information
model,	you	must	install	an	identical	UML	information	model	in	the
target	repository	database	prior	to	importing.	If	the	information	models
do	not	correspond	exactly,	you	will	lose	data	during	the	import.	Rows
that	fail	to	import	are	logged	to	an	error	file.	This	file	is	named
MSMDCXML.log	and	it	is	created	in	your	Temp	directory.

You	can	set	flags	on	an	import	object	to	determine	import	behavior.	For	more
information,	see	IImport::ImportXMLString	Method	and	IImport::ImportXML
Method.

Import	returns	a	collection	of	top-level	objects	that	your	application	can
manipulate.	To	view	and	manipulate	imported	data	in	a	repository	database,	the
imported	data	must	be	related	to	the	repository	root	object.	When	the
information	model	in	the	target	database	corresponds	to	the	information	model	in
the	source	database,	a	relationship	to	the	root	object	may	be	established
automatically.	However,	whether	this	linkage	occurs	depends	on	the	structure
and	content	of	the	imported	data.	If	your	imported	data	is	not	related	to	the	root
object,	you	must	programmatically	add	an	object	from	the	imported	data	to	a

collection	of	the	root	object.	This	step	is	necessary	to	support	navigation	and	to
define	relationships	with	objects	in	other	information	models.

See	Also

Exporting	XML

Import	Automation	Object	Example

Installing	Information	Models

Using	the	Model	Installer	ActiveX	Component

XML	Encoding	Errors

Using	XML	Encoding

XML	Encoding	Reference

XML	IImport	Interface	Overview

Meta	Data	Services	Programming

Import	Automation	Object	Example
The	following	examples	show	how	to	use	the	Import	object	in	Microsoft®
Visual	Basic®.

Importing	from	a	File
The	following	example	shows	how	to	import	object	instance	data	from	a	file	that
contains	exported	data.	The	ImportXML	method	returns	a	collection.	After	you
get	the	collection,	you	can	enumerate	the	objects.	To	release	the	objects	after	the
import	concludes,	set	the	objects	to	nothing.

dim	oImp	as	new	Import
dim	oRep	as	new	Repository
dim	oRoot	as	RepositoryObject
dim	ObjCol	as	TransientObjCol
set	oRoot=oRep.Open	"SERVER=MyServer;DATABASE=MyDB;UID=sa;PWD=MyPassword;"
set	ObjCol	=	oImp.ImportXML(oRep,	"c:\temp\myXmlFile.xml",NEWVERSION)
for	each	obj	in	ObjCol
.	.	.
next
Set	oRoot=Nothing
Set	oRep=Nothing
Set	oImp=Nothing

Importing	from	a	String
The	following	example	shows	how	to	import	object	instance	data	from	a	string
stored	in	memory:

dim	oImp	as	new	Import
dim	oRep	as	new	Repository
dim	oRoot	as	RepositoryObject

set	oRoot=oRep.Open	"SERVER=MyServer;DATABASE=MyDB;UID=sa;PWD=MyPassword;"

oImp.ImportXMLString	oRep,	sXMLStr,	NEWVERSION
Set	oRoot=Nothing
Set	oRep=Nothing
Set	oImp=Nothing

See	Also

Export	Automation	Object	Example

Importing	XML

XML	IImport	Interface	Overview

Meta	Data	Services	Programming

Repository	API	Reference
The	application	programming	interface	(API)	for	information	models	and	the
repository	engine	is	the	Repository	API.	The	Repository	API	is	composed	of
interfaces	that	define	information	models,	and	interfaces	that	expose	the
functionality	of	the	repository	engine.	The	interfaces	that	define	information
models	are	collectively	known	as	the	Repository	Type	Information	Model
(RTIM).

The	Repository	API	Reference	contains	the	definitions	for	all	the	core	engine
APIs	for	Microsoft®	SQL	Server™	2000	Meta	Data	Services.	These	interfaces
are	documented	at	the	Automation	level	for	the	Microsoft	Visual	Basic®
programmer	and	at	the	Component	Object	Model	(COM)	level	for	the	Microsoft
Visual	C++®	programmer.

This	table	describes	the	sections	of	the	Repository	API	reference	documentation.

Section Description
Automation	Reference Introduces	the	reference	documentation	for	COM

Automation	objects	and	members.
COM	Reference Introduces	the	reference	documentation	for	COM

classes,	interfaces,	and	members.
Constants	and	Data
Types

Documents	the	constant	and	data	types	that	you
can	use	when	programming	with	the	repository
API.

Enumerations Documents	the	enumerated	values	for	a	variety	of
flags.

Repository	Errors Documents	the	errors	generated	by	the	repository
engine.

Repository	SQL	Schema Documents	the	schema	of	the	underlying	SQL
tables.	The	schema	of	the	underlying	SQL	tables
is	documented	to	facilitate	querying	repository
data	directly	through	SQL.

For	more	information	about	programming	against	information	models	and	the
repository	engine,	see	Programming	Meta	Data	Services	Applications.

For	more	information	about	other	programming	interfaces	that	you	can	use	in
Meta	Data	Services,	see	XML	Encoding	Reference	and	OLE	DB	Scanner
Reference.

See	Also

Getting	Started	with	Meta	Data	Services

Repository	Object	Architecture

Meta	Data	Services	Programming

Automation	Reference
The	Automation	Reference	documents	the	Automation	objects	of	the	repository
API.	An	equivalent	reference	is	available	for	COM	classes	and	interfaces.

In	this	documentation,	Automation	objects	are	organized	into	two	sections.

Section Description
Repository	Engine	Automation
Objects

Describes	the	Automation	objects
that	expose	the	functionality	of	the
repository	engine.

RTIM	Automation	Objects Describes	the	Repository	Type
Information	Model	(RTIM)
Automation	objects.	These	objects
define	the	abstract	classes	to	which
an	information	model	must	conform.

See	Also

Accessing	Automation	Object	Members

COM	Reference

Information	Models

Repository	API	Reference

Repository	Engine

Repository	Object	Architecture

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Meta	Data	Services	Programming

Repository	Engine	Automation	Objects
This	topic	introduces	the	repository	engine	objects,	which	are	used	to	add,
retrieve,	and	change	information	model	data	in	a	repository	database.

These	objects	complement	the	Repository	Type	Information	Model	(RTIM)
automation	objects	that	define	an	information	model.	The	RTIM	objects	are
listed	separately.	For	more	information,	see	RTIM	Automation	Objects.

The	following	table	lists	the	repository	engine	Automation	objects	in
alphabetical	order.

Object Description
ObjectCol	Object Defines	a	set	of	repository	objects

that	can	be	enumerated
Relationship	Object Connects	two	objects	in	a	repository

database
RelationshipCol	Object Defines	a	set	of	relationships	that	are

attached	to	a	particular	source	object
Repository	Object Defines	an	instance	of	a	single

repository	session
RepositoryObject	Object Defines	an	object	that	is	stored	in	a

repository	database	and	managed	by
the	repository	engine

RepositoryObjectVersion	Object Defines	a	versioned	object	that	is
stored	in	the	repository	database	and
managed	by	the	repository	engine

RepositoryTransaction	Object Defines	a	transaction
ReposProperties	Object Defines	a	set	of	persistent	properties

and	collections	that	are	attached	to	a
repository	object	or	relationship

ReposProperty	Object Defines	a	persistent	property	or
collection	that	is	attached	to	an	object
instance

TransientObjectCol	Object Defines	an	object	collection	that	you

can	create	and	dynamically	populate
at	run	time	using	script	and	object
methods	rather	than	persisted	data	in
a	repository	database

VersionCol	Object Defines	a	versioned	collection	of
object	versions

VersionedRelationship	Object Defines	a	connection	between	two
repository	objects	in	a	repository
database

Workspace	Object Defines	a	subset	of	a	larger,	shared
repository

See	Also

Automation	Reference

Information	Models

Repository	API	Reference

Repository	Engine

Repository	Object	Architecture

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Meta	Data	Services	Programming

ObjectCol	Object
An	object	collection	is	a	set	of	repository	objects	that	can	be	enumerated.	Two
kinds	of	object	collections	are	supported	by	the	repository	engine:

The	collection	of	destination	objects	that	correspond	to	the	relationships
in	a	relationship	collection.	Use	the	RelationshipCol	object	to	manage
this	kind	of	collection.	

The	collection	of	all	objects	in	a	repository	that	conform	to	a	particular
class	or	expose	a	particular	interface.	You	can	instantiate	a	collection	by
using	the	ObjectInstances	method.

When	to	Use

Use	the	ObjectCol	object	to	enumerate	the	collection	of	repository	objects	that
conform	to	a	particular	class	or	expose	a	particular	interface.	With	this	object,
you	can:

Get	a	count	of	the	number	of	objects	in	the	collection.

Retrieve	one	of	the	objects	in	the	collection.

Refresh	the	cached	image	of	the	object	collection.

Properties

Property Description
Count The	count	of	the	number	of	items	in	the	collection
Item Retrieves	the	specified	object	from	the	collection

Methods

Method Description
Cancel Cancels	an	in-progress	load	operation
LoadStatus Obtains	the	load	status	of	the	collection
Refresh Refreshes	the	cached	image	of	the	collection

See	Also

ClassDef	ObjectInstances	Method

InterfaceDef	ObjectInstances	Method

RelationshipCol	Object

Meta	Data	Services	Programming

ObjectCol	Count	Property
A	long	integer	that	contains	the	count	of	the	number	of	items	in	the	collection.
This	is	a	read-only	property.

Syntax
object.Count

The	Count	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	an	ObjectCol

object

See	Also

ObjectCol	Object

Meta	Data	Services	Programming

ObjectCol	Item	Property
This	property	retrieves	an	object	from	the	collection.	This	is	a	read-only
property.	There	are	two	variations	of	this	property.

Syntax
Set	variable		=		object.Item(index)
Set	variable		=		object.Item(objId)

The	Item	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RepositoryObjectVersion.	It

receives	the	specified	repository	object.
object An	object	expression	that	evaluates	to	an	ObjectCol

object.
index The	index	of	the	repository	object	to	be	retrieved	from

the	collection.
objId The	object	identifier	of	the	repository	object	to	be

retrieved	from	the	collection.

Remarks
This	property	yields	the	latest	version	of	a	repository	object.	The	repository
engine	uses	a	version	resolution	strategy	to	select	a	specific	version	to	include	in
the	collection.	For	more	information,	see	Resolution	Strategy	for	Objects	and
Object	Versions.

See	Also

ObjectCol	Object

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

ObjectCol	Cancel	Method
The	Cancel	method	requests	the	cancellation	of	the	ongoing	load	operation.	This
method	only	works	when	the	ExecuteQuery	method	is	used	and	you	specify
whether	you	want	the	resulting	object	collection	to	be	loaded	asynchronously.
For	other	object	collections,	this	method	has	no	effect.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IObjectCol2	interface,	which	inherits
from	IObjectCol.	For	more	information	about	accessing	a	member	of	an
interface	that	is	not	the	default	interface,	see	Accessing	Automation	Object
Members.

Syntax
object.Cancel

The	Cancel	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	an	ObjectCol

object

See	Also

IObjectCol2	Interface

ObjectCol	Object

ObjectCol	LoadStatus	Method

Repository	ExecuteQuery	Method

Meta	Data	Services	Programming

ObjectCol	LoadStatus	Method
The	LoadStatus	method	is	used	to	obtain	the	load	status	of	the	collection.	This
method	only	works	when	the	ExecuteQuery	method	is	used	and	you	specify
whether	you	want	the	resulting	object	collection	to	be	loaded	asynchronously.
For	other	object	collections,	this	method	has	no	effect.

This	method	is	not	attached	to	the	default	interface	for	an	ObjectCol;	it	is
attached	to	the	IObjectCol2	interface,	which	inherits	from	IObjectCol.	For
more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
variable	=	object.LoadStatus

The	LoadStatus	method	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	long.	It	receives	the	load	status

value.
object An	object	expression	that	evaluates	to	an	ObjectCol

object.

See	Also

ObjectCol	Object

ObjectCol	Cancel	Method

Repository	ExecuteQuery	Method

Meta	Data	Services	Programming

ObjectCol	Refresh	Method
This	method	refreshes	the	cached	image	of	the	object	collection.	Only	cached
data	that	has	not	been	changed	by	the	current	process	is	refreshed.

Syntax
Call	object.Refresh(milliSecs)

The	Refresh	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	an	ObjectCol

object.
milliSecs This	value	is	ignored.	It	is	kept	for	backward

compatibility.

See	Also

ObjectCol	Object

Meta	Data	Services	Programming

Relationship	Object
A	relationship	connects	two	objects	in	a	repository	database.

All	repository	relationships	are	versioned.	You	can	version	a	relationship
explicitly	by	using	VersionedRelationship,	or	you	can	allow	the	repository
engine	to	version	a	relationship	automatically.	The	repository	engine
automatically	versions	a	relationship	in	cases	where	version	information	is
unspecified	or	where	legacy	relationship	objects	that	were	created	prior	to
version	support	exist.

A	versioned	relationship	can	connect	a	particular	version	of	a	repository	object
to	one	or	more	specific	versions	of	the	target	object.	Because	every	relationship
is	a	VersionedRelationship	object,	you	can	declare	any	relationship	with	the
following	line,	where	myVersionedRship	is	the	object	you	are	defining:

Dim	myVersionedRship	As	VersionedRelationship

In	earlier	releases	of	the	repository	engine,	the	object	model	included	the
Relationship	object,	but	not	the	VersionedRelationship	object.	If	you	have
Microsoft®	Visual	Basic®	programs	written	against	earlier	releases	of	the
repository	engine,	those	programs	might	include	declarations	like	the	following,
where	oldRship	is	the	object	you	are	defining:

Dim	oldRship	As	Relationship

These	programs	will	continue	to	work	with	Microsoft	SQL	Server™	2000	Meta
Data	Services	because	the	repository	API	still	includes	the	Relationship	object.
For	this	reason,	the	preceding	declaration	remains	valid	in	Visual	Basic.
However,	because	every	relationship	is	a	versioned	relationship,	the	object
oldRship	has	the	same	members	as	any	versioned	relationship.	In	effect,	the
following	two	lines	of	code	are	equivalent:

Dim	oldRship	As	Relationship
Dim	myVersionedRship	As	VersionedRelationship

Even	though	all	relationships	are	now	versioned	relationships,	the	repository

API	includes	the	Relationship	object	so	that	you	do	not	need	to	rewrite	your
Visual	Basic	programs	that	declare	objects	as	Relationship	objects.

See	Also

Repository	API

RepositoryObjectVersion	Object

VersionedRelationship	Object

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

RelationshipCol	Object
A	relationship	collection	is	the	set	of	relationships	that	are	attached	to	a
particular	source	repository	object.	All	of	the	relationships	in	the	collection	must
conform	to	the	same	relationship	type.

When	to	Use
Use	this	object	to	manage	the	relationships	that	belong	to	a	particular
relationship	collection.	With	this	object,	you	can:

Get	a	count	of	the	number	of	relationships	in	the	collection.

Add	and	remove	relationships	to	and	from	the	collection.

If	the	collection	is	sequenced,	place	a	relationship	in	a	specific	place	in
the	collection	sequence.

Retrieve	a	specific	relationship	or	target	object	from	the	collection.

Refresh	the	cached	image	of	the	collection.

Obtain	the	type	of	the	collection.

Properties

Property Description
Count The	count	of	the	number	of	items	in	the	collection
Item Retrieves	the	specified	relationship	or	target	object	from

the	collection
Source The	source	object	for	the	relationship	collection
Type The	object	identifier	for	the	definition	object	of	the

collection

Methods

Method Description
Add Adds	a	relationship	to	the	collection
Insert Inserts	a	relationship	into	a	specific	place	in	a	sequenced

collection
Move Moves	a	relationship	from	one	place	to	another	in	a

sequenced	collection
Refresh Refreshes	the	cached	image	of	the	collection
Remove Removes	a	relationship	from	the	collection

See	Also

RepositoryObject	Object

Meta	Data	Services	Programming

RelationshipCol	Count	Property
This	property	is	a	long	integer	that	contains	the	count	of	the	number	of	items	in
the	collection.	This	is	a	read-only	property.

Syntax
object.Count

The	Count	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a

RelationshipCol	object

See	Also

RelationshipCol	Object

Meta	Data	Services	Programming

RelationshipCol	Item	Property
This	property	retrieves	a	target	object	or	relationship	from	the	collection.	This	is
a	read-only	property.	There	are	three	variations	of	this	property.

Syntax
Set	variable		=	object.Item(index)	Set	variable		=	object.Item(objName)
Set	variable		=	object.Item(objId)

The	Item	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RepositoryObject	class.	It

receives	the	target	object	of	the	specified	relationship	or
the	VersionedRelationship	object.

object An	object	expression	that	evaluates	to	a
RelationshipCol	object.

index The	index	of	the	relationship	to	be	retrieved	from	the
collection.

objName The	name	that	the	relationship	uses	to	refer	to	its
destination	object.	This	variation	can	be	used	only	when
the	target	object	is	also	the	destination	object,	and	when
the	collection	requires	names	for	destination	objects.

objId The	object	identifier	for	the	target	object	to	be	retrieved
from	the	collection.

Remarks
This	property	is	available	on	two	interfaces:	the	default	interface,
ITargetObjectCol,	and	a	second	interface,	IRelationshipCol.	If	you	choose	to
access	the	property	that	is	exposed	by	the	IRelationshipCol	interface,	your
variable	receives	the	specified	VersionedRelationship	object	instead	of	the
relationship's	target	object.	In	this	case,	you	should	declare	your	variable	as	a

VersionedRelationship,	instead	of	as	a	RepositoryObject.	Each	item	in	the
collection	is	a	versioned	relationship;	each	item	has	a	TargetVersions	collection.
When	you	obtain	a	reference	to	the	target	object	of	a	particular	item	(with	the
get_Target	method	of	the	IRelationship	interface),	the	repository	engine
chooses	a	particular	version	of	the	target	object	from	the	items	in	the	versioned
relationship's	TargetVersions	collection.

For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

See	Also

IRelationshipCol	Interface

ITargetObjectCol	Interface

RelationshipCol	Object

VersionedRelationship	Object

Meta	Data	Services	Programming

RelationshipCol	Source	Property
This	property	retrieves	the	source	object	for	the	relationship	collection.	This	is	a
read-only	property.

Syntax
Set	variable		=	object.Source

The	Source	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RepositoryObjectVersion

object.	It	receives	the	source	object	version	of	the
relationship	collection.

object An	object	expression	that	evaluates	to	a
RelationshipCol	object.

See	Also

RelationshipCol	Object

Meta	Data	Services	Programming

RelationshipCol	Type	Property
This	property	specifies	the	type	of	the	collection.	More	specifically,	it	is	the
object	identifier	of	the	CollectionDef	object	for	the	collection.	The	Type
property	is	a	read-only	property.	To	copy	this	property	to	another	variable,	use	a
variable	that	is	declared	as	a	Variant.

Syntax
object.Type

The	Type	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

RelationshipCol	object

See	Also

CollectionDef	Object

Object	Identifiers	and	Internal	Identifiers

RelationshipCol	Object

Meta	Data	Services	Programming

RelationshipCol	Add	Method
This	method	adds	a	new	item	to	a	relationship	collection,	when	the	sequencing
of	relationships	in	the	collection	is	not	important.	The	new	relationship	connects
the	RepositoryObjectVersion	to	the	source	object	version	of	the	collection.	The
new	relationship	is	passed	back	to	the	caller.

Syntax
Set	variable	=		object.Add(reposObj,	objName)

The	Add	method	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	VersionedRelationship	object.

It	receives	the	new	relationship	that	is	created	for	the
reposObj	RepositoryObjectVersion.

object An	object	expression	that	evaluates	to	a
RelationshipCol	object.

reposObj The	RepositoryObjectVersion	whose	relationship	is	to
be	added	to	the	collection.

objName The	name	that	the	new	relationship	is	to	use	for
reposObj.	This	parameter	is	optional.

Remarks
You	can	add	a	relationship	to	a	collection	only	when	the	collection's	source
object	is	also	the	collection's	origin	object.

When	you	call	this	method,	the	origin	version	must	be	unfrozen.

You	can	use	this	method	to	create	a	new	versioned	relationship	between	the
source	object	version	and	a	version	of	the	target	object.	You	cannot	use	it	to	add
to	a	versioned	relationship.	If	the	source	object	version	is	already	related	to	any
version	of	the	target	object,	this	method	fails.	You	can	include	another	version	of
the	target	object	in	the	versioned	relationship	by	adding	an	item	to	the	versioned

relationship's	TargetVersions	collection.

The	value	of	plReposObj	is	the	specific	version	of	the	target	object.

If	you	are	operating	within	the	context	of	a	workspace,	the	target	object	version
you	specify	with	plReposObj	must	be	present	in	the	workspace.

See	Also

RelationshipCol	Object

RelationshipCol	Insert	Method

RepositoryObjectVersion	Object

VersionedRelationship	Object

Meta	Data	Services	Programming

RelationshipCol	Insert	Method
This	method	adds	a	relationship	to	the	collection	at	a	specified	point	in	the
collection	sequence.	The	new	relationship	connects	the	repository	object	to	the
source	object	of	the	collection.	The	new	relationship	is	passed	back	to	the	caller.

Syntax
Set	variable	=		object.Insert(reposObj,	index,	objName)

The	Insert	method	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	relationship.	It	receives	the	new

relationship	that	is	created	for	the	reposObj	repository
object.

object An	object	expression	that	evaluates	to	a
RelationshipCol	object.

reposObj The	repository	object	whose	relationship	is	to	be	added
to	the	collection.

index The	index	of	the	sequence	location	where	the
relationship	is	to	be	inserted.	If	another	relationship	is
already	present	at	this	sequence	location,	the	new
relationship	is	inserted	before	the	existing	relationship.

objName The	name	that	the	new	relationship	is	to	use	for	the
reposObj	object.	This	parameter	is	optional.

Remarks
Relationships	may	be	inserted	into	a	collection	only	if	the	collection's	source
object	is	also	the	collection's	origin	object.

This	method	can	be	used	only	for	collections	that	are	sequenced.

When	you	call	this	method,	the	origin	version	must	be	unfrozen.

You	can	use	this	method	to	insert	a	new	versioned	relationship	between	the
source	object	version	and	a	version	of	the	target	object.	You	cannot	use	it	to
enlarge	a	versioned	relationship.	If	the	source	object	version	already	has	a
relationship	to	any	version	of	the	target	object,	this	method	fails.	You	can	include
another	version	of	the	target	object	in	the	versioned	relationship	by	adding	an
item	to	the	versioned	relationship's	TargetVersions	collection.

The	value	of	plReposObj	is	the	specific	version	of	the	target	object.

If	you	are	operating	within	the	context	of	a	workspace,	the	target	object	version
you	specify	with	plReposObj	must	be	present	in	the	workspace.

See	Also

RelationshipCol	Object

Meta	Data	Services	Programming

RelationshipCol	Move	Method
This	method	moves	a	VersionedRelationship	object	from	one	point	in	the
collection	sequence	to	another	point.

Syntax
Call	object.Move(indexFrom,	indexTo)

The	Move	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a

RelationshipCol	object
indexFrom The	index	of	the	VersionedRelationship	object	to	be

moved	in	the	collection	sequence
indexTo The	index	of	the	sequence	location	to	which	the

VersionedRelationship	object	is	to	be	moved

Remarks
This	method	can	be	used	only	with	sequenced	collections.	When	you	call	this
method,	the	origin	object	version	must	be	unfrozen.

See	Also

RelationshipCol	Object

Selecting	Items	in	a	Collection

Meta	Data	Services	Programming

RelationshipCol	Refresh	Method
This	method	refreshes	the	cached	image	of	the	object	collection.	Only	cached
data	that	has	not	been	changed	by	the	current	process	is	refreshed.

Syntax
Call	object.Refresh(milliSecs)

The	Refresh	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a

RelationshipCol	object.
milliSecs This	value	is	ignored.

See	Also

RelationshipCol	Object

Meta	Data	Services	Programming

RelationshipCol	Remove	Method
This	method	deletes	a	relationship	from	its	relationship	collection.	The	exact
behavior	of	this	method	depends	on	whether	the	relationship	collection	is	an
origin	collection	or	a	destination	collection.

If	the	relationship	collection	is	an	origin	collection,	this	method	deletes	the
versioned	relationship.

If	the	relationship	collection	is	a	destination	collection,	this	method	first
performs	object-version	resolution	to	yield	a	single	target-object	version,	and
then	it	removes	that	target-object	version	from	the	relationship's	TargetVersions
collection.

Syntax
Call	object.Remove(index)	Call	object.Remove(objID)
Call	object.Remove(objName)

The	Remove	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a

RelationshipCol	object
index The	index	of	the	relationship	to	be	removed	from	the

collection
objID The	object	identifier	for	the	relationship	object	to	be

removed	from	the	collection
objName The	relationship	that	uses	this	name	for	its	destination

object	is	to	be	removed	from	the	collection

Remarks
A	relationship	can	be	removed	by	name	only	if	it	is	a	unique-naming
relationship.

If	the	source	is	the	origin,	the	origin	version	must	be	unfrozen.

If	the	relationship	is	a	destination	relationship	and	the	resolution	strategy	yields	a
target	object	version	that	is	frozen,	this	method	fails.

Removal	from	a	sequenced	collection	does	not	update	the	collection	sequence
order.

See	Also

Naming	and	Unique-Naming	Collections

RelationshipCol	Object

Resolution	Strategy	for	Objects	and	Object	Versions

Meta	Data	Services	Programming

Repository	Object
A	Repository	object	is	an	instance	of	a	single	repository	session.	The	scope	of	a
repository	object	is	a	repository	database.	Because	you	can	have	multiple
repository	databases,	you	use	the	Repository	object	to	connect	and	interact	with
a	specific	database.

When	to	Use
You	can	use	a	repository	instance	to:

Create	a	new	repository	database	or	connect	to	an	existing	repository
database.

Access	the	root	repository	object,	ReposRoot.

Retrieve	a	RepositoryObject	or	RepositoryObjectVersion.

Create	the	initial	version	of	a	RepositoryObject	or
RepositoryObjectVersion.

Refresh	cached	repository	data.

Manage	repository	transactions.

Properties

Property Description
ConnectionString The	ODBC	connection	string	that	the	repository	engine

uses	to	obtain	an	ODBC	connection.	This	property	is
not	a	default	interface	member.

MajorDBVersion The	major	version	number	of	the	first	repository	engine

version	that	introduced	this	database	format.	This
property	is	not	a	default	interface	member.

MinorDBVersion The	minor	version	number	of	the	first	repository	engine
version	that	introduced	this	database	format.	This
property	is	not	a	default	interface	member.

Object Retrieves	the	specified	RepositoryObject.
ReposConnection The	ODBC	connection	handle	that	the	repository

engine	uses	to	access	the	repository	database.	This
property	is	not	a	default	interface	member.

RootObject The	ReposRoot	object	of	the	open	repository	database.
Transaction The	transaction	processing	interface.
Version Retrieves	the	specified	RepositoryObjectVersion.

Methods

Method Description
Create Creates	a	new	repository	database.
CreateObject Creates	a	new	instance	of	a	RepositoryObject	or

RepositoryObjectVersion	in	the	open	repository
database.

CreateObjectEx Creates	the	first	version	of	a	new	repository	object
instance	of	the	specified	type	and	explicitly	assigns
the	object-version	identifier	that	is	passed	in	as	an
argument.	This	is	unlike	CreateObject	method,	in
which	the	repository	engine	assigns	the	version	ID.

ExecuteQuery Executes	an	SQL	query	against	the	repository
database.	This	method	is	not	a	default	interface
member.

FreeConnection Releases	an	ODBC	connection	handle.	This	method
is	not	a	default	interface	member.

GetCollection Returns	a	result	set	of	objects	in	a	collection	based
on	selection	criteria.

GetNewConnection Obtains	a	new	ODBC	connection	handle	using	the
same	connection	settings	that	the	repository	engine

is	using	to	access	the	repository	database.	This
method	is	not	a	default	interface	member.

GetOption Gets	an	option	that	supports	performance
optimization	at	run	time.

InternalIDToObjectID Converts	an	internal	identifier	into	an	object
identifier.

InternalIDToVersionID Converts	an	internal	object-version	identifier	into
an	object-version	identifier.

ObjectIDToInternalID Converts	an	object	identifier	into	an	internal
identifier.

Open Opens	the	specified	repository	database.
Refresh Refreshes	the	cached	image	of	all	data	for	the	open

repository	database.
ResetOption Resets	a	run-time	performance	option	to	its	default

value.
SetOption Sets	an	option	that	supports	performance

optimization	at	run	time.
VersionIDToInternalID Converts	an	object-version	identifier	into	an

internal	object-version	identifier.

See	Also

Connecting	to	and	Configuring	a	Repository

Meta	Data	Services	Programming

Repository	ConnectionString	Property
This	property	contains	the	ODBC	connection	string	that	the	repository	engine
uses	to	connect	to	a	repository	database.	This	is	a	read-only	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryODBC	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
object.ConnectionString

The	ConnectionString	property	syntax	has	the	following	part.

Part Description
object The	object	that	represents	the	open	repository	instance

through	which	application	code	or	a	tool	interacts	with	a
repository

Remarks
The	ODBC	connection	string	can	contain	user	identification	and	password
information.	Be	sure	to	protect	this	information	to	prevent	unauthorized	access.

See	Also

Connecting	to	and	Configuring	a	Repository

IRepositoryODBC	Interface

Repository	Object

Meta	Data	Services	Programming

Repository	MajorDBVersion	Property
This	property	returns	the	database	version.	The	database	version	is	created	from
the	version	number	of	the	repository	engine	that	created	the	database.	This	is	a
read-only	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepository2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
variable		=		object.MajorDBVersion

The	MajorDBVersion	property	syntax	has	the	following	parts.

Part Description
variable Declared	as	long.	It	receives	the	database	major

version.
object The	object	that	represents	the	open	repository	instance.

Remarks
Database	version	information	is	stored	in	the	RTblDatabaseVersion	SQL	Table.
The	value	will	be	2.0	if	the	database	was	created	or	upgraded	by	repository
engine	2.0,	or	3.0	if	the	database	was	created	or	upgraded	by	repository	engine
3.0.

Additional	version	information	is	available	through	the	MinorDBVersion
property.

See	Also

IRepository2	Interface

Repository	MinorDBVersion	Property

Repository	Object

RTblDatabaseVersion	SQL	Table

Upgrading	and	Migrating	a	Repository	Database

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

Repository	MinorDBVersion	Property
This	property	returns	the	minor	version	number	of	the	first	repository	engine
version	that	introduced	this	database	format.	This	is	a	read-only	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepository2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
variable		=		object.MinorDBVersion

The	MinorDBVersion	property	syntax	has	the	following	parts.

Part Description
variable Declared	as	long.	It	receives	the	database	minor	version.
object The	object	that	represents	the	open	repository	instance.

Remarks
Database	version	information	is	stored	in	the	RTblDatabaseVersion	SQL	Table.
Major	version	information	can	be	retrieved	using	the	MajorDBVersion
property.

See	Also

IRepository2	Interface

Repository	MajorDBVersion	Property

Repository	Object

RTblDatabaseVersion	SQL	Table

Upgrading	and	Migrating	a	Repository	Database

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

Repository	Object	Property
Use	this	property	to	retrieve	a	particular	instance	of	a	RepositoryObject.	This
property	is	read-only.

Syntax
Set	variable		=		object.Object(objectId)

The	Object	property	syntax	has	the	following	parts.

Part Description
variable Declared	as	a	RepositoryObject.	It	receives	the

repository	object.
object The	object	that	represents	the	open	repository	instance

through	which	application	code	or	a	tool	interacts	with	a
repository.

objectId The	object	identifier	for	the	repository	object	to	be
retrieved.

Remarks
The	repository	returns	the	latest	version	of	a	repository	object.	For	more
information	about	how	the	repository	engine	selects	a	specific	version,	see
Resolution	Strategy	for	Objects	and	Object	Versions.

See	Also

Object	Identifiers	and	Internal	Identifiers

Repository	Object

Meta	Data	Services	Programming

Repository	ReposConnection	Property
This	property	contains	the	ODBC	connection	handle	that	the	repository	engine	is
using	to	access	the	repository	database.	This	is	a	read-only	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryODBC	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
object.ReposConnection

The	ReposConnection	property	syntax	has	the	following	part.

Part Description
object The	object	that	represents	the	open	repository	instance

through	which	application	code	or	a	tool	interacts	with	a
repository

Remarks
Using	the	repository	engine	ODBC	connection	handle	does	not	isolate	you	from
changes	made	by	the	repository	engine.	For	example,	uncommitted	changes
made	by	the	repository	engine	will	be	visible	to	your	application.

When	using	the	repository	engine's	ODBC	connection	handle,	you	must	not
change	the	state	of	the	handle	in	a	way	that	is	incompatible	with	the	repository
engine.	Specifically,	do	not:

Change	any	ODBC	connection	options.

Perform	any	access	operations	that	are	concurrent	with	repository
method	invocations.

Directly	commit	or	rollback	a	database	transaction.	The
IRepositoryTransaction	interface	must	always	be	used	to	manage
transactions.

Be	sure	to	free	the	handle	obtained	through	this	method	before	releasing	your
open	repository	instance.	To	free	the	connection	handle,	use	the
FreeConnection	method.

See	Also

Connecting	to	and	Configuring	a	Repository

IRepositoryODBC	Interface

IRepositoryTransaction	Interface

Repository	FreeConnection	Method

Repository	Object

Meta	Data	Services	Programming

Repository	RootObject	Property
This	property	is	the	repository	root	object	for	the	open	repository.	The	root
object	provides	a	starting	location	for	all	subsequent	navigation	through	the
information	models	you	have	installed.	This	is	a	read-only	property.

Syntax
Set	variable		=		object.RootObject

The	RootObject	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RepositoryObject.	It	receives

the	root	repository	object	(ReposRoot).
object The	object	that	represents	the	open	repository	instance

through	which	application	code	or	a	tool	interacts	with	a
repository.

See	Also

Repository	Object

ReposRoot	Object

Meta	Data	Services	Programming

Repository	Transaction	Property
This	property	is	the	RepositoryTransaction	object	for	the	open	repository
instance.	This	is	a	read-only	property.

Syntax
Set	variable		=		object.Transaction

The	Transaction	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	object.	It	receives	the

RepositoryTransaction	object	for	this	repository
instance.

object The	object	that	represents	the	open	repository	instance
through	which	application	code	or	a	tool	interacts	with	a
repository.

Remarks
You	can	gain	access	to	the	RepositoryTransaction	object	by	using	this	syntax.
After	you	access	the	RepositoryTransaction	object,	you	can	access	the
properties	and	methods	of	the	RepositoryTransaction	object	through	standard
variable.method	and	variable.property	syntax.	You	can	also	access	the	properties
and	methods	of	the	RepositoryTransaction	object	directly	by	using	syntax	like
the	following:

Call	object.Transaction.method

-or-

variable		=	object.Transaction.property

See	the	RepositoryTransaction	object	for	details	on	the	methods	and	properties
that	it	provides.

See	Also

Repository	Object

RepositoryTransaction	Object

Meta	Data	Services	Programming

Repository	Version	Property
This	property	retrieves	a	particular	instance	of	a	RepositoryObjectVersion	from
the	repository.	This	is	a	read-only	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepository2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=		object.Version(versionId,	integer)

The	Version	property	syntax	has	the	following	parts.

Part Description
variable Declared	as	a	RepositoryObjectVersion.	It	receives	the

repository	object	version.
object The	object	that	represents	the	open	repository	instance

through	which	application	code	or	a	tool	interacts	with	a
repository.

versionId The	object-version	identifier	for	the	repository	object	to
be	retrieved.

integer An	integer	indicates	the	strategy	used	by	the	repository
engine	to	select	a	specific	object.
1=SPECIFIEDVERSION.	This	value	appears	when	you
explicitly	select	a	specific	object	version.
2=LATESTVERSION.	This	value	appears	when	the
most	recently	created	version	is	selected.
3=VERSIONINWORKSPACE.	This	value	appears	when
the	object	version	in	the	workspace	is	selected.
4=PINNEDVERSION.	This	value	appears	when	the
pinned	target	object	version	of	the	relationship	that	you
are	currently	navigating	is	selected.

See	Also

Repository	Object

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

Repository	Create	Method
Use	this	method	to	create	a	new	repository	database	or	to	populate	an	empty
database	with	repository	SQL	schema.	Standard	repository	SQL	tables	are
automatically	created.	The	root	repository	object	of	the	new	repository	is	passed
back	to	the	calling	program.

Syntax
Set	variable		=		object.Create(connect,	user,	password,	flags)

The	Create	method	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RepositoryObject	that

evaluates	to	a	ReposRoot	object.
object The	instance	of	the	Repository	class	that	you	are	using

to	create	the	new	repository	database.
connect The	ODBC	connection	string	to	be	used	for	accessing

the	database	server	that	will	host	your	new	repository.
user The	user	name	to	use	for	identification	to	the	database

server.
password The	password	that	matches	the	user	input	parameter.
flags Flags	that	determine	database	access	and	caching

behavior	for	the	open	repository.	For	more	information,
see	the	ConnectionFlags	Enumeration.

Remarks
If	the	connection	string	indicates	a	Microsoft®	JET	database,	the	repository
engine	creates	the	database	and	populates	it	with	the	repository	SQL	schema.	If
the	connection	string	indicates	a	Microsoft	SQL	Server™	6.5,	SQL	Server	7.0,
or	SQL	Server	2000,	or	the	SQL	Server	Runtime	Engine,	the	repository	engine
populates	an	empty	database	with	the	standard	SQL	schema.	In	this	case,	you
must	create	an	empty	database	before	invoking	this	method.

See	Also

Connecting	to	and	Configuring	a	Repository

Repository	Object

RepositoryObject	Object

Repository	SQL	Schema

ReposRoot	Object

Meta	Data	Services	Programming

Repository	CreateObject	Method
This	method	creates	a	new	repository	object	of	a	certain	type.	You	can	specify
this	method	in	application	code	to	create	an	instance	of	a	class	defined	in	an
information	model.

Syntax
Set	variable		=		object.CreateObject(typeId,	objectId)

The	CreateObject	method	syntax	has	the	following	parts.

Part Description
variable Declared	as	a	RepositoryObject	or

RepositoryObjectVersion.	It	receives	the	new
RepositoryObject	or	RepositoryObjectVersion.

object The	object	that	represents	the	open	repository	instance
through	which	application	code	or	a	tool	interacts	with	a
repository.

typeId The	object	identifier	of	the	class	to	which	the	new	object
conforms.	For	example,	to	create	an	instance	of	a
Storage	class,	specify	the	object	identifier	of	the
Storage	class.

objectId The	object	identifier	to	be	assigned	to	the	new	object.
Either	pass	in	ObjID_NULL,	or	leave	it	unspecified	to
have	an	object	identifier	assigned	automatically.

Remarks
Use	this	method	to	create	the	first	version	of	a	new	RepositoryObject.	To	create
subsequent	versions,	use	the	CreateVersion	method	of	the
RepositoryObjectVersion	object.

This	method	can	be	called	from	a	shared	repository	but	not	from	a	workspace.
The	workaround	is	to	create	the	object	through	the	central	repository	and	include
it	in	the	workspace.

See	Also

Choosing	an	Automation	Server	for	a	Class

Object	Identifiers	and	Internal	Identifiers

Repository	Object

RepositoryObject	Object

RepositoryObjectVersion	CreateVersion	Method

Meta	Data	Services	Programming

Repository	CreateObjectEx	Method
This	method	creates	the	first	version	of	a	new	repository	object	instance	of	the
specified	type	and	explicitly	assigns	the	object-version	identifier	that	is	passed	in
as	an	argument.	This	is	unlike	the	CreateObject	method,	in	which	the	repository
engine	assigns	the	version	ID.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepository2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
set	variable		=		object.CreateObjectEx(typeID,	objID,	extVersionID)

The	CreateObjectEx	method	syntax	has	the	following	parts.

Part Description
variable Declared	as	a	RepositoryObjectVersion.	It	receives	the

new	RepositoryObjectVersion.
object The	object	that	represents	the	open	repository	instance

through	which	application	code	or	a	tool	interacts	with	a
repository.

typeId The	object	identifier	of	the	class	to	which	the	new	object
conforms.	For	example,	to	create	an	instance	of	a
Storage	class,	specify	the	object	identifier	of	the
Storage	class.

objectId The	object	identifier	to	be	assigned	to	the	new	object.
Either	pass	in	ObjID_NULL,	or	leave	unspecified	to
have	an	object	identifier	assigned	automatically.

extVersionID The	external	object-version	identifier.

Remarks

This	method	provides	an	alternate	approach	for	creating	an	object	instance.	To
allow	the	repository	engine	to	create	an	object	identifier	for	you,	use	the
CreateObject	method.

See	Also

Repository	CreateObject	Method

Repository	Object

Assigning	Object	Identifiers

Meta	Data	Services	Programming

Repository	ExecuteQuery	Method
This	method	executes	the	specified	SQL	query	against	the	repository	database,
and	returns	a	collection	of	repository	object	instances.	The	columns	that	are
returned	by	the	query	must	be	either	just	the	internal	identifier	(IntID)	column,
or	the	internal	identifier	and	the	type	identifier	(IntID	and	TypeID)	columns	of
the	RTblVersions	table.

The	ExecuteQuery	method	returns	all	objects	based	on	the	identifier.	To	create	a
query	that	applies	selection	criteria	to	an	object	collection,	use	the
GetCollection	method.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryODBC	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=	object.ExecuteQuery(queryString)

The	ExecuteQuery	method	syntax	has	the	following	parts.

Part Description
variable Declared	as	an	ObjectCol	object.	It	receives	the

collection	of	objects	that	meet	the	selection	criteria	of	the
SQL	query.

object The	object	that	represents	the	open	repository	instance
through	which	application	code	or	a	tool	interacts	with	a
repository.

queryString A	string	that	contains	the	SQL	Query	or	the	name	of	a
stored	procedure	to	be	executed.

See	Also

Object	Identifiers	and	Internal	Identifiers

ObjectCol	Object

Repository	Object

RTblVersions	SQL	Table

Meta	Data	Services	Programming

Repository	FreeConnection	Method
This	method	frees	an	ODBC	connection	handle.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryODBC	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Call	object.FreeConnection(hdbc)

The	FreeConnection	method	syntax	has	the	following	parts.

Part Description
object The	object	that	represents	the	open	repository	instance

through	which	application	code	or	a	tool	interacts	with	a
repository

hdbc The	ODBC	connection	handle	to	be	released

Remarks
Use	this	method	to	free	the	handle	obtained	via	either	the	ReposConnection
property	or	the	GetNewConnection	method	before	releasing	the	open	repository
instance.

See	Also

IRepositoryODBC	Interface

Repository	Object

Repository	GetNewConnection	Method

Repository	ReposConnection	Property

Meta	Data	Services	Programming

Repository	GetCollection	Method
This	method	returns	a	result	set	based	on	selection	criteria.	The	result	set	is	a
collection	of	repository	objects.	When	you	use	this	method	on	the	repository
session	object,	the	repository	engine	filters	the	collection	of	all	objects	in	the
repository	database.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposQuery	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
set	variable		=		object.GetCollection(filter)

The	GetCollection	method	syntax	has	the	following	parts.

Part Description
variable Declared	as	an	object	collection.	It	receives	the	new

ObjectCol	instance.
object The	object	that	represents	the	open	repository	instance

through	which	application	code	or	a	tool	interacts	with	a
repository.

filter The	query	string	that	selects	a	result	set.	For	more
information	about	query	syntax	and	arguments,	see
IReposQuery	Interface.

See	Also

ObjectCol	Object

Repository	Object

Meta	Data	Services	Programming

Repository	GetNewConnection	Method
This	method	obtains	a	new	ODBC	connection	handle	using	the	same	ODBC
connection	string	that	the	repository	engine	uses	to	access	the	repository
database.	Using	a	new	ODBC	connection	handle	isolates	you	from	changes
made	by	the	repository	engine.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryODBC	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
variable		=	object.GetNewConnection

The	GetNewConnection	method	syntax	has	the	following	parts.

Part Description
variable Receives	the	new	connection	handle
object The	object	that	represents	the	open	repository	instance

through	which	application	code	or	a	tool	interacts	with	a
repository

Remarks
Be	sure	to	free	the	handle	obtained	via	this	method	before	releasing	your	open
repository	instance.	To	free	the	connection	handle,	use	the	FreeConnection
method.

See	Also

IRepositoryODBC	Interface

Repository	FreeConnection	Method

Repository	Object

Meta	Data	Services	Programming

Repository	GetOption	Method
This	method	gets	an	option	that	supports	the	implementation	of	performance
optimization	at	run	time.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposOptions	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
variable		=		object.GetOption(optionIdentifier)

The	GetOption	method	syntax	has	the	following	parts.

Part Description
object An	expression	that	evaluates	to	a	Repository	session

object.
optionIdentifier An	option	expressed	as	a	Variant.	You	can	specify	an

option	name	or	an	option	value.	For	more	information
about	option	names	and	values,	see	IReposOptions
Options	Table.

See	Also

IReposOptions	Interface

Optimizing	Repository	Performance

Repository	Object

Repository	ResetOption	Method

Repository	SetOption	Method

Meta	Data	Services	Programming

Repository	InternalIDToObjectID	Method
This	method	translates	an	internal	identifier	into	an	object	identifier.	The
repository	engine	uses	internal	identifiers	to	identify	instances	of
RepositoryObject	or	RepositoryObjectVersion.

Syntax
variable	=	object.InternalIDToObjectID(internalId)

The	InternalIDToObjectID	method	syntax	has	the	following	parts.

Part Description
variable Receives	the	object	identifier
object The	object	that	represents	the	open	repository	instance

through	which	application	code	or	a	tool	interacts	with	a
repository

internalId The	internal	identifier	to	be	converted

Remarks
Object	identifiers	are	globally	unique,	and	are	the	same	across	repositories	for
the	same	object.	Internal	identifiers	are	unique	only	within	the	scope	of	a	single
repository.

The	translation	performed	by	this	method	is	accomplished	without	loading	the
object	in	question.	This	enables	database	queries	involving	an	object	or
relationship	type	identifier	to	be	constructed	without	having	to	load	the
definition	object.

See	Also

Assigning	Object	Identifiers

Object	Identifiers	and	Internal	Identifiers

Repository	Object

Meta	Data	Services	Programming

Repository	InternalIDToVersionID	Method
This	method	translates	an	internal	object-version	identifier	into	a	repository
object-version	identifier.	The	repository	engine	uses	internal	object-version
identifiers	to	identify	RepositoryObjectVersions.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepository2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
variable	=		object.InternalIDToVersionID(intVersionId)

The	InternalIDToVersionID	method	syntax	has	the	following	parts.

Part Description
variable Receives	the	object-version	identifier
object The	object	that	represents	the	open	repository	instance

through	which	application	code	or	a	tool	interacts	with
a	repository

intVersionId The	internal	object-version	identifier	to	be	converted

Remarks
Object-version	identifiers	are	globally	unique,	and	are	the	same	across
repositories	for	the	same	object.	Internal	object-version	identifiers	are	unique
only	within	the	scope	of	a	single	repository.

The	translation	performed	by	this	method	is	accomplished	without	loading	the
object	version	in	question.	This	enables	database	queries	involving	an	object	or
relationship	type	identifier	to	be	constructed	without	having	to	load	the
definition	object.

See	Also

Assigning	Object	Identifiers

Object	Identifiers	and	Internal	Identifiers

Repository	Object

Repository	ObjectIDToInternalID	Method

Meta	Data	Services	Programming

Repository	ObjectIDToInternalID	Method
This	method	translates	an	object	identifier	into	an	internal	identifier.	Internal
identifiers	are	used	by	the	repository	engine	to	identify	repository	objects.

Syntax
variable		=		object.ObjectIDToInternalID(objectId)

The	ObjectIDToInternalID	method	syntax	has	the	following	parts.

Part Description
variable Receives	the	internal	identifier
object The	object	that	represents	the	open	repository	instance

through	which	application	code	or	a	tool	interacts	with	a
repository

objectId The	object	identifier	to	be	converted

Remarks
Object	identifiers	are	globally	unique,	and	are	the	same	across	repositories	for
the	same	object.	Internal	identifiers	are	unique	only	within	the	scope	of	a	single
repository.

The	translation	performed	by	this	method	is	accomplished	without	loading	the
object	in	question.	This	enables	database	queries	involving	an	object	or
relationship	type	identifier	to	be	constructed	without	having	to	load	the
definition	object.

See	Also

Assigning	Object	Identifiers

Object	Identifiers	and	Internal	Identifiers

Repository	InternalIDToObjectID	Method

Repository	Object

Meta	Data	Services	Programming

Repository	Open	Method
Use	this	method	to	open	(connect	to)	a	repository.	The	root	repository	object	is
passed	back	to	the	caller.

Syntax
Set	variable		=		object.Open(connect,	user,	password,	flags)

The	Open	method	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RepositoryObject.	It	receives

the	root	repository	object	(ReposRoot)	for	the
repository.

object The	instance	of	the	Repository	class	that	you	are	using
to	connect	to	the	repository.

connect The	ODBC	connection	string	to	be	used	for	accessing
the	database	server	that	hosts	your	repository.

user The	user	name	to	use	for	identification	to	the	database
server.

password The	password	that	matches	the	user	input	parameter.
flags Flags	that	determine	database	access	and	caching

behavior	for	the	open	repository.	For	more	information,
see	ConnectionFlags	Enumeration.

See	Also

Connecting	to	and	Configuring	a	Repository

Repository	Object

Meta	Data	Services	Programming

Repository	Refresh	Method
This	method	refreshes	all	of	the	cached	data	for	this	open	repository	instance.
Only	cached	data	that	has	not	been	changed	by	the	current	process	is	refreshed.

Syntax
Call	object.Refresh(milliSeconds)

The	Refresh	method	syntax	has	the	following	parts.

Part Description
object The	object	that	represents	the	open	repository	instance

through	which	application	code	or	a	tool	interacts	with	a
repository.

milliSecs This	value	is	ignored.	It	is	kept	for	backward
compatibility.

See	Also

Repository	Object

Meta	Data	Services	Programming

Repository	ResetOption	Method
This	method	resets	an	option	that	supports	performance	optimization	at	run	time
to	its	default	value.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposOptions	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
variable		=		object.ResetOption(optionIdentifier,	value)

The	ResetOption	method	syntax	has	the	following	parts.

Part Description
object An	expression	that	evaluates	to	a	Repository	session

object.
optionIdentifier An	option	expressed	as	a	Variant.	You	can	specify	an

option	name	or	an	option	value.	For	more	information
about	option	names	and	values,	see	IReposOptions
Options	Table.

See	Also

IReposOptions	Interface

Optimizing	Repository	Performance

Repository	GetOption	Method

Repository	Object

Repository	SetOption	Method

Meta	Data	Services	Programming

Repository	SetOption	Method
This	method	sets	an	option	that	supports	performance	optimization	at	run	time.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposOptions	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Call	object.SetOption(optionIdentifier,	value)

The	SetOption	method	syntax	has	the	following	parts.

Part Description
object An	expression	that	evaluates	to	a	Repository	session

object.
optionIdentifier An	option	expressed	as	a	Variant.	You	can	specify	an

option	name	or	an	option	value.
value The	value	of	the	option.	The	value	must	be	paired	with

the	corresponding	optionIdentifier.	For	more
information	about	option	names	and	values,	see
IReposOptions	Options	Table.

See	Also

IReposOptions	Interface

Optimizing	Repository	Performance

Repository	GetOption	Method

Repository	Object

Repository	ResetOption	Method

Meta	Data	Services	Programming

Repository	VersionIDToInternalID	Method
This	method	translates	a	repository	object-version	identifier	into	an	internal
object-version	identifier.	Internal	object-version	identifiers	are	used	by	the
repository	engine	to	identify	specific	instances	of	a	RepositoryObjectVersion.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepository2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
variable		=		object.VersionIDToInternalID(versionId)

The	VersionIDToInternalID	method	syntax	has	the	following	parts.

Part Description
variable Receives	the	internal	object-version	identifier
object The	object	that	represents	the	open	repository	instance

through	which	application	code	or	a	tool	interacts	with	a
repository

objectId The	object-version	identifier	to	be	converted

Remarks
Object-version	identifiers	are	globally	unique,	and	are	the	same	across
repositories	for	the	same	object	version.	Internal	object-version	identifiers	are
unique	only	within	the	scope	of	a	single	repository.

The	translation	performed	by	this	method	is	accomplished	without	loading	the
object	version	in	question.	This	enables	database	queries	involving	an	object	or
relationship	type	identifier	to	be	constructed	without	having	to	load	the
definition	object.

See	Also

Assigning	Object	Identifiers

Object	Identifiers	and	Internal	Identifiers

Repository	InternalIDToObjectID	Method

Repository	Object

Meta	Data	Services	Programming

RepositoryObject	Object
A	RepositoryObject	is	an	object	that	is	stored	in	a	repository	database	and
managed	by	the	repository	engine.

All	repository	objects	are	versioned.	You	can	create	new	object	versions
explicitly	using	the	RepositoryObjectVersion.	The	repository	engine	can	create
version	information	implicitly	in	cases	where	version	information	is	unspecified
or	where	legacy	objects	that	were	created	prior	to	version	support	exist.

A	RepositoryObjectVersion	is	a	particular	rendition	of	a	RepositoryObject.
Each	version	of	an	object	can	differ	from	other	versions	of	that	object	in	its
property	values	and	collections.	When	you	manipulate	a	repository	object	within
a	Microsoft®	Visual	Basic®	program,	for	example,	you	are	actually
manipulating	a	particular	version	of	that	object.	That	is,	you	manipulate	a
RepositoryObjectVersion.

You	can	declare	any	repository	object	version	with	the	following	line:

Dim	newVersionedReposObject	As	RepositoryObjectVersion

In	earlier	releases	of	the	repository	engine,	the	object	model	included	the
RepositoryObject	but	not	the	RepositoryObjectVersion.	If	you	have	Visual
Basic	programs	written	against	earlier	releases,	those	programs	might	include
declarations	like	the	following:

Dim	oldReposObject	As	RepositoryObject

These	programs	will	continue	to	work	with	Microsoft	SQL	Server™	2000	Meta
Data	Services	because	the	repository	object	model	still	includes	the
RepositoryObject.	As	a	result,	the	preceding	declaration	remains	valid	in	Visual
Basic.	Whenever	you	manipulate	an	object,	you	actually	manipulate	a	specific
version	of	that	object.	So	the	object	oldReposObject	has	the	same	members	as
any	repository	object	version	has.	In	effect,	the	following	two	lines	of	code	are
equivalent:

Dim	myVersionedReposObject	As	RepositoryObjectVersion

Dim	oldReposObject	As	RepositoryObject

Even	though	repository	objects	are	now	versioned,	the	repository	object	model
includes	the	RepositoryObject	so	that	you	do	not	need	to	rewrite	your	Visual
Basic	programs	that	declare	an	object	as	a	RepositoryObject.

When	to	Use
The	RepositoryObjectVersion	object	supersedes	RepositoryObject.	However,
if	you	already	have	application	code	that	includes	RepositoryObject,	you	can
maintain	that	code	using	RepositoryObject.	You	can	also	use
RepositoryObject	to	work	with	meta	data	that	is	not	versioned.

Use	the	RepositoryObject	object	to	manipulate	the	properties	of	a	repository
object,	to	delete	a	repository	object,	or	to	refresh	the	cached	image	of	a
repository	object.

To	create	a	new	RepositoryObject,	use	the	CreateObject	method	of	the
Repository	session	object.

Properties

Property Description
ClassName The	name	of	a	class	that	defines	a	repository	object,	as

defined	in	an	information	model.

This	property	is	not	a	default	interface	member.

ClassType The	type	of	a	class	that	defines	a	repository	object,	as
defined	in	an	information	model.

This	property	is	not	a	default	interface	member.

Interface The	specified	object	interface.
InternalID The	internal	identifier	that	a	repository	instance	uses	to

refer	to	a	repository	object.
Name The	name	of	the	repository	object.
ObjectID The	object	identifier	for	the	repository	object.
Repository The	open	a	repository	instance	through	which	this

repository	object	was	instantiated.
Type The	type	of	the	repository	object.

Methods

Method Description
Delete Deletes	a	repository	object
Lock Locks	the	repository	object
Refresh Refreshes	the	cached	image	of	a	repository	object

Collections

Collection Description
Properties The	collection	of	all	persistent	properties	that	are

attached	to	a	RepositoryObject

See	Also

Repository	CreateObject	Method

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

RepositoryObject	ClassName	Property
This	property	specifies	the	name	of	a	class	that	defines	a	repository	object.	This
property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObject2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
string=object.ClassName

The	ClassName	property	syntax	has	the	following	parts.

Part Description
string A	variable	length	string	that	can	be	a	maximum	of	255

characters
object An	object	expression	that	evaluates	to	a

RepositoryObject

Remarks
This	property	can	be	used	to	display	the	name	of	the	class	that	defines	the	object.
For	example,	if	you	create	multiple	repository	object	instances	of	a	ClassDef
named	StoredProcedure,	the	class	name	associated	with	each	of	these
repository	object	instances	is	StoredProcedure.

In	Meta	Data	Browser,	ClassName	values	are	included	with	object	property
information	to	provide	additional	information	about	an	object.	For	example,	the
ClassName	of	Model	is	Model.

See	Also

IRepositoryObject2	Interface

RepositoryObject	ClassType	Property

RepositoryObject	Object

Meta	Data	Services	Programming

RepositoryObject	ClassType	Property
This	property	specifies	the	type	of	a	class	as	defined	by	its	object	identifier.	This
property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObject2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable	=	object.ClassType

The	ClassType	property	syntax	has	the	following	parts.

Part Description
variable An	object	expression	that	evaluates	to	a	ClassDef	object
object An	object	expression	that	evaluates	to	a

RepositoryObject

Remarks
This	property	can	be	used	to	retrieve	the	abstract	class	in	the	information	model
that	defines	the	object	instance.	For	example,	if	you	create	multiple	repository
object	instances	of	a	ClassDef	named	StoredProcedure	that	has	an	object
identifier	of	StoredProc_objid,	the	class	type	associated	with	each	of	these
repository	object	instances	is	StoredProc_objid.

See	Also

IRepositoryObject2	Interface

Repository	Identifiers

RepositoryObject	ClassName	Property

RepositoryObject	Object

Using	Meta	Data	Browser

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

RepositoryObject	Interface	Property
Use	this	property	to	obtain	a	view	of	the	repository	object	that	uses	an	interface
other	than	the	default	interface.	This	is	a	read-only	property.	There	are	three
variations	of	this	property.

Syntax
Set	variable		=	object.Interface(interfaceId)
Set	variable		=	object.Interface(objectId)
Set	variable		=		object.Interface(interfaceName)

The	Interface	property	syntax	has	the	following	parts.

Part Description
variable An	object	variable.	It	receives	the	repository	object

with	the	specified	interface	as	the	default	interface.
object An	object	expression	that	evaluates	to	a

RepositoryObject.
interfaceId The	interface	identifier	for	the	interface	to	be	retrieved.
objectId The	object	identifier	for	the	interface	definition	to

which	the	interface	to	be	retrieved	conforms.
interfaceName A	string	containing	the	name	of	the	interface	to	be

retrieved.

See	Also

Assigning	Object	Identifiers

InterfaceDef	Object

Object	Identifiers	and	Internal	Identifiers

Repository	Object

RepositoryObject	Object

Meta	Data	Services	Programming

RepositoryObject	InternalID	Property
This	property	is	the	internal	identifier	that	the	repository	engine	uses	to	refer	to
this	object.	The	internal	identifier	is	unique	within	the	repository,	but	is	not
unique	across	repositories.	This	is	a	read-only	property.	To	copy	this	property	to
another	variable,	use	a	variable	declared	as	a	Variant.

Syntax
object.InternalID

The	InternalID	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryObject

See	Also

Assigning	Object	Identifiers

Object	Identifiers	and	Internal	Identifiers

RepositoryObject	Object

RepositoryObject	ObjectID	Property

Meta	Data	Services	Programming

RepositoryObject	Name	Property
This	property	is	a	character	string	that	contains	the	name	of	the	repository	object.

The	Name	property	is	normally	derived	from	the	relationship	for	which	this
repository	object	is	the	destination	object.	When	the	name	is	retrieved,	the	name
from	the	first	naming	relationship	found	is	returned.	If	the	object	is	not	the
destination	of	any	naming	relationship,	a	null	name	is	returned.	However,	you
can	set	a	name	property	explicitly.	When	the	name	is	set,	the	new	name	is	used
for	all	naming	relationships	for	which	the	object	is	the	destination.

Syntax
string=object.Name

The	Name	property	syntax	has	the	following	parts.

Part Description
string A	variable	length	string	that	can	be	a	maximum	of	255

characters
object An	object	expression	that	evaluates	to	a

RepositoryObject

Remarks
If	the	repository	object	exposes	the	INamedObject	interface,	the	name	that	is
retrieved	is	always	the	Name	property	of	the	INamedObject	interface.
Likewise,	when	this	property	is	set,	the	Name	property	of	the	INamedObject
interface	and	the	name	associated	with	all	naming	relationships	are	set	to	the
new	value.

See	Also

INamedObject	Interface

Repository	Object

RepositoryObject	Object

Meta	Data	Services	Programming

RepositoryObject	ObjectID	Property
This	property	is	the	object	identifier	for	the	repository	object.	The	object
identifier	is	unique	across	all	repositories.	This	is	a	read-only	property.	To	copy
this	property	to	another	variable,	use	a	variable	declared	as	a	Variant.

Syntax
object.ObjectID

The	ObjectID	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryObject

See	Also

Assigning	Object	Identifiers

Object	Identifiers	and	Internal	Identifiers

Repository	Object

RepositoryObject	Object

RepositoryObject	InternalID	Property

Meta	Data	Services	Programming

RepositoryObject	Repository	Property
The	Repository	property	is	the	open	repository	instance	through	which	a
repository	object	is	instantiated.	This	is	a	read-only	property.

Syntax
Set	variable		=	object.Repository

The	Repository	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	instance	of	the	Repository

class.	It	receives	the	object	that	represents	the	open
repository	instance.

object An	object	expression	that	evaluates	to	a
RepositoryObject	object.

See	Also

Repository	Object

RepositoryObject	Object

Meta	Data	Services	Programming

RepositoryObject	Type	Property
This	property	specifies	the	type	of	the	repository	object.	More	specifically,	it	is
the	object	identifier	of	the	class	definition	object	that	defines	the	repository
object.	This	property	is	read-only.	To	copy	this	property	to	another	variable,	use
a	variable	declared	as	a	Variant.

Syntax
object.Type

The	Type	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryObject

Remarks
The	Type	property	is	the	object	identifier	of	the	class	to	which	the	new	object
conforms.	For	example,	to	manipulate	an	object	instance	of	a	Storage	class,
specify	the	object	identifier	of	the	Storage	class	definition	object	upon	which	the
object	instance	is	based.

For	example,	if	you	define	three	object	instances	of	the	Storage	class
(testStorage1,	testStorage2,	and	finalStorage1),	all	three	object	instances	will
have	the	same	Type	property	value.

See	Also

Object	Identifiers	and	Internal	Identifiers

RepositoryObject	Object

Meta	Data	Services	Programming

RepositoryObject	Delete	Method
This	method	deletes	a	repository	object	from	the	repository.	Any	relationships
that	connect	the	object	to	other	objects	are	deleted.	If	the	repository	object	is	an
origin	object	of	a	relationship	collection,	and	the	relationship	type	indicates	that
deletes	are	to	be	propagated,	all	of	the	destination	objects	are	also	deleted.

Syntax
Call	object.Delete

The	Delete	method	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryObject

See	Also

Propagating	Deletes

Repository	Object

RepositoryObject	Object

Meta	Data	Services	Programming

RepositoryObject	Lock	Method
Use	this	method	to	lock	the	repository	object.	Locking	the	object	prevents	other
processes	from	updating	the	object	while	you	are	working	with	it.	The	lock	is
released	when	you	end	the	current	transaction.

Syntax
Call	object.Lock

The	Lock	method	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryObject

See	Also

Repository	Object

RepositoryObject	Object

Meta	Data	Services	Programming

RepositoryObject	Refresh	Method
This	method	refreshes	the	cached	image	of	the	repository	object.	Only	cached
data	that	has	not	been	changed	by	the	current	process	is	refreshed.

Syntax
Call	object.Refresh(milliSecs)

The	Refresh	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryObject.
milliSecs This	value	is	ignored.	It	is	kept	for	backward

compatibility.

See	Also

Repository	Object

RepositoryObject	Object

Meta	Data	Services	Programming

RepositoryObject	Properties	Collection
The	Properties	collection	returns	a	list	of	all	properties	defined	on	every
interface	that	the	class	supports.

Property	names	must	be	unique	within	the	collection.	To	distinguish	between
identically	named	properties,	the	repository	engine	first	adds	the	interface	name
(for	example,	myInterfaceName.myPropertyName).	If	the	name	is	still	a
duplicate,	the	prefix	of	the	information	model	is	assigned	(for	example,
myTypeLibPrefix:myInterfaceName.myPropertyName).	In	this	case,	the
prefix	is	provided	by	the	ReposTypeLib	object.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObject2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=	object.Properties(index)	Set	variable		=
object.Properties(objID)
Set	variable		=	object.Properties(objName)

The	Properties	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposProperty	object.	It

receives	the	specified	property.
object An	object	expression	that	evaluates	to	a

RepositoryObject.
index An	integer	index	that	identifies	which	property	in	the

collection	to	address.	For	an	integer	index,	the	valid
range	is	from	one	to	the	total	number	of	elements	in	the
collection.	The	number	of	elements	in	the	collection	is
specified	by	object.Properties.Count.

For	more	information,	see	Selecting	Items	in	a

Collection.

objID An	object	identifier	that	identifies	which	property	in	the
collection	to	address.

objName An	object	name	that	identifies	which	property	in	the
collection	to	address.

See	Also

IRepositoryObject	Interface

IRepositoryObject2	Interface

Repository	Object

RepositoryObject	Object

ReposProperty	Object

Meta	Data	Services	Programming

RepositoryObjectVersion	Object
A	Repository	object	is	an	object	that	is	stored	in	the	repository	database,	and	is
managed	by	the	repository	engine.	A	RepositoryObjectVersion	object	is	a
specific	rendition	of	a	RepositoryObject.	Microsoft®	SQL	Server™	2000	Meta
Data	Services	can	retain	multiple	renditions	of	a	RepositoryObject	so	that	you
can	reestablish	historical	states	of	a	particular	instance.

When	to	Use
Use	the	RepositoryObjectVersion	object	to	manipulate	the	properties	of	a
repository	object	version,	to	delete	a	repository	object	version,	or	to	refresh	the
cached	image	of	a	repository	object	version.

Properties

Property Description
CheckOutWorkspace The	workspace	to	which	the	object	version	is

checked	out.

This	property	is	not	a	default	interface
member.

ClassName The	name	of	a	class	that	defines	a	repository
object,	as	defined	in	an	information	model.

This	property	is	not	a	default	interface
member.

ClassType The	type	of	a	class	that	defines	repository
objects,	as	defined	in	an	information	model.

This	property	is	not	a	default	interface
member.

Interface The	specified	object	interface.

This	property	is	not	a	default	interface

member.

InternalID The	internal	object	identifier	that	the
repository	engine	uses	to	refer	to	the
repository	object.

This	property	is	not	a	default	interface
member.

IsCheckedOut A	flag	that	indicates	whether	the	object	version
is	checked	out	to	a	workspace.

This	property	is	not	a	default	interface
member.

IsFrozen Indicates	whether	the	object	version	is	frozen.
Name The	name	of	the	repository	object	version.

This	property	is	not	a	default	interface
member.

ObjectID The	object	identifier	for	the	repository	object.

This	property	is	not	a	default	interface
member.

PredecessorCreationVersion The	object	version	from	which	the	current
object	version	was	originally	created.

Repository The	open	repository	instance	through	which
this	repository	object	was	instantiated.

This	property	is	not	a	default	interface
member.

ResolutionType An	enumerated	property	that	identifies	which
criteria	was	used	to	select	a	repository	object
version.

This	property	is	not	a	default	interface
member.

Type The	type	of	the	repository	object.

This	property	is	not	a	default	interface
member.

VersionID The	object-version	identifier	for	the	repository
object	version.

VersionInternalID The	internal	object-version	identifier	that	the
repository	uses	to	refer	to	the	repository	object
version.

Methods

Method Description
CreateVersion Creates	a	new	version	of	the	current	object,	based

on	the	current	object	version.
Delete Deletes	a	repository	object.

This	method	is	not	a	default	interface	member.

FreezeVersion Fixes	object	version	property	values	and	origin
collections,	permanently	preventing	further
modification	to	a	specific	version.

Lock Locks	the	repository	object.

This	method	is	not	a	default	interface	member.

MergeVersion Modifies	the	current	object	version	by	combining
its	property	values	and	collection	with	those	of
another	version	of	the	same	repository	object.

Refresh Refreshes	the	cached	image	of	a	repository
object.

This	method	is	not	a	default	interface	member.

Collections

Collection Description

ObjectVersions The	collection	of	all	the	versions	of	the	current
repository	object.

PredecessorVersions The	collection	of	all	immediate	predecessor
versions	of	the	current	repository	object	version.

Properties The	collection	of	all	of	the	properties	that	are
attached	to	the	repository	object.

This	collection	is	not	a	default	interface	member.

SuccessorVersions The	collection	of	all	immediate	successor
versions	of	the	current	repository	object	version.

Workspaces The	collection	of	all	workspaces	in	which	the
current	object	version	is	present.

This	collection	is	not	a	default	interface	member.

See	Also

RepositoryObject	Object

Versioning	Objects

Meta	Data	Services	Programming

RepositoryObjectVersion	ClassName	Property
This	property	specifies	the	name	of	a	class	that	defines	a	repository	object.	This
property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObject2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
string=object.ClassName

The	ClassName	property	syntax	has	the	following	parts.

Part Description
string A	variable	length	string	that	can	be	a	maximum	of	255

characters
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion

Remarks
This	property	can	be	used	to	display	the	name	of	the	class	that	defines	the	object.
For	example,	if	you	create	multiple	repository	object	instances	of	a	ClassDef
named	StoredProcedure,	the	class	name	associated	with	each	of	these
repository	objects	instance	is	StoredProcedure.

In	Meta	Data	Browser,	ClassName	values	are	included	with	object	property
information	to	provide	additional	information	about	an	object.	For	example,	the
ClassName	of	Model	is	Model.

See	Also

IRepositoryObject2	Interface

RepositoryObjectVersion	ClassType	Property

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

RepositoryObjectVersion	ClassType	Property
This	property	specifies	the	type	of	a	class	as	defined	by	its	object	identifier.	This
property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObject2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable	=	object.ClassType

The	ClassType	property	syntax	has	the	following	parts.

Part Description
variable An	object	expression	that	evaluates	to	a	ClassDef	object
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion

Remarks
This	property	can	be	used	to	retrieve	the	abstract	class	in	the	information	model
that	defines	the	object	instance.	For	example,	if	you	create	multiple	repository
object	instances	of	a	ClassDef	named	StoredProcedure	that	has	an	object
identifier	of	StoredProc_objid,	the	class	type	associated	with	each	of	these
repository	objects	instance	is	StoredProc_objid.

See	Also

IRepositoryObject2	Interface

RepositoryObjectVersion	ClassName	Property

RepositoryObjectVersion	Object

Using	Meta	Data	Browser

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

RepositoryObjectVersion	CheckOutWorkspace
Property
This	property	identifies	the	workspace	to	which	the	repository	object	version	is
currently	checked	out.	This	property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IWorkspaceItem	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=	object.CheckOutWorkspace

The	CheckOutWorkspace	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	instance	of	the	Workspace	class.	It

receives	the	object	that	represents	the	workspace	to	which
the	object	version	is	checked	out.

object An	object	expression	that	evaluates	to	a
RepositoryObjectVersion	object.

Remarks
A	workspace	is	a	repository	object.	The	CheckOutWorkspace	property
identifies	the	workspace	object	by	object	identifier	or	object	name.

See	Also

IWorkspaceItem	Interface

RepositoryObjectVersion	Object

Workspace	Checkin	Method

Meta	Data	Services	Programming

RepositoryObjectVersion	Interface	Property
Use	this	property	to	obtain	a	view	of	the	repository	object	version	that	uses	an
alternate	interface	as	the	default	interface.	There	are	three	variations	of	this
property.	This	property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryItem	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=	object.Interface(interfaceId)
Set	variable		=	object.Interface(objectId)
Set	variable		=	object.Interface(interfaceName)

The	Interface	property	syntax	has	the	following	parts.

Part Description
variable An	object	variable.	It	receives	the	repository	object	with

the	specified	interface	as	the	default	interface.
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	instance.
interfaceId The	interface	identifier	for	the	interface	to	be	retrieved.
objectId The	object	identifier	for	the	interface	definition	to	which

the	interface	to	be	retrieved	conforms.
interfaceName A	string	containing	the	name	of	the	interface	to	be

retrieved.

See	Also

InterfaceDef	Object

IRepositoryItem	Interface

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

RepositoryObjectVersion	InternalID	Property
This	property	is	the	internal	identifier	that	the	repository	engine	uses	to	refer	to
this	object.	The	internal	identifier	is	unique	within	a	repository	instance,	but	not
unique	across	all	repositories.	To	copy	this	property	to	another	variable,	use	a
variable	declared	as	a	Variant.	This	property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObject	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
variant=object.InternalID

The	InternalID	property	syntax	has	the	following	parts.

Part Description
variant A	string,	Boolean,	or	integer	that	receives	the	value	of	an

internal	identifier
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	object

Remarks
This	property	yields	the	internal	object	identifier,	not	the	internal	object-version
identifier.

See	Also

IRepositoryObject	Interface

Object	Identifiers	and	Internal	Identifiers

RepositoryObjectVersion	Object

RepositoryObjectVersion	ObjectID	Property

Meta	Data	Services	Programming

RepositoryObjectVersion	IsCheckedOut	Property
This	property	indicates	whether	the	object	version	is	currently	checked	out	to
any	workspace.	This	property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IWorkspaceItem	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
variable	=	object.IsCheckedOut

The	IsCheckedOut	property	syntax	has	the	following	parts.

Part Description
variable A	Boolean	variable
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	object

See	Also

IWorkspaceItem	Interface

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

RepositoryObjectVersion	IsFrozen	Property
This	property	indicates	whether	the	object	version	is	frozen.	This	property	is
read-only.

Syntax
variable	=	object.IsFrozen

The	IsFrozen	property	syntax	has	the	following	parts.

Part Description
variable A	Boolean	variable
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	object

See	Also

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

RepositoryObjectVersion	Name	Property
This	property	is	a	character	string	that	contains	the	name	of	the	repository	object
version.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryItem	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
object.Name=string

The	Name	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	instance
string A	variable	length	string	that	can	be	a	maximum	of	255

characters

Remarks
When	you	retrieve	an	object	version	name,	there	are	several	places	the
repository	engine	can	look	for	a	name.

When	you	change	the	value	of	this	property,	there	may	be	several	names	the
repository	engine	tries	to	change.

Note	that	when	you	change	this	property,	the	repository	engine	can,	in	some
circumstances,	change	some	names	but	not	change	others.	For	example,	if	an
object	version	is	the	destination	of	three	naming	relationships	and	also
implements	the	INamedObject	interface,	this	method	will	try	to	change	four
names.	The	method	returns	success	if	any	of	the	four	attempts	succeeds.

See	Also

Changing	an	Object	Version's	Name

INamedObject	Interface

IRepositoryItem	Interface

Naming	Objects,	Collections,	and	Relationships

RepositoryObjectVersion	Object

Retrieving	an	Object	Version's	Name

Meta	Data	Services	Programming

RepositoryObjectVersion	ObjectID	Property
This	property	is	the	object	identifier	for	the	repository	object	version.	The	object
identifier	is	unique	across	all	repositories.	To	copy	this	property	to	another
variable,	use	a	variable	declared	as	a	Variant.	This	property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObject	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
object.ObjectID

The	ObjectID	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	RepositoryObject

object

Remarks
This	property	yields	the	object	identifier,	not	the	object-version	identifier.

See	Also

Assigning	Object	Identifiers

IRepositoryObject	Interface

Object	Identifiers	and	Internal	Identifiers

RepositoryObjectVersion	Object

RepositoryObject	Object

RepositoryObjectVersion	InternalID	Property

Meta	Data	Services	Programming

RepositoryObjectVersion	PredecessorCreationVersion
Property
The	PredecessorCreationVersion	property	is	the	RepositoryObjectVersion
instance	from	which	this	repository	object	version	was	created.	This	property	is
read-only.

Syntax
Set	variable		=	object.PredecessorCreationVersion

The	PredecessorCreationVersion	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	RepositoryObjectVersion	object.	It

receives	the	object	version	from	which	the	current	object
version	was	created.

object An	object	expression	that	evaluates	to	a
RepositoryObjectVersion	instance.

Remarks
This	property	applies	to	object	versions	that	are	subsequently	created	from	an
existing	object	version.	If	you	invoke	this	method	for	the	first	version	of	an
object,	it	returns	an	error.

The	PredecessorCreationVersion	property	identifies	the
RepositoryObjectVersion	by	object	identifier	or	object	name.

See	Also

Assigning	Object	Identifiers

Object	Identifiers	and	Internal	Identifiers

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

RepositoryObjectVersion	Repository	Property
The	Repository	property	is	the	open	repository	instance	or	workspace	through
which	this	repository	object	was	instantiated.	This	is	a	read-only	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObject	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=	object.Repository

The	Repository	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	reference	to	any	object	implementing

the	IRepository	interface.	It	receives	the	object	that
represents	the	open	Repository	instance	or	the	workspace.

object An	object	expression	that	evaluates	to	a
RepositoryObjectVersion	object.

Remarks
The	returned	reference	can	refer	to	either	a	repository	instance	or	a	workspace.	If
it	refers	to	a	workspace,	you	manipulate	the	item	within	the	context	of	that
workspace.	If	it	refers	to	a	repository	object,	you	manipulate	the	item	within	the
context	of	a	shared	repository	instance.

See	Also

IRepositoryObject	Interface

Repository	Object

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

RepositoryObjectVersion	ResolutionType	Property
This	property	indicates	the	resolution	technique	by	which	the	repository	engine
selected	a	reference	to	the	current	version	(rather	than	a	reference	to	some	other
version	of	the	same	object).	This	is	a	read-only	property.

Syntax
integer	=	object.ResolutionType

The	ResolutionType	property	syntax	has	the	following	parts.

Part Description
integer An	integer	that	indicates	the	strategy	used	by	the	repository

engine	to	select	a	specific	object.
1=	SPECIFIEDVERSION.	This	value	appears	when	you
explicitly	select	a	specific	object	version.
2=LATESTVERSION.	This	value	appears	when	the	most
recently	created	version	is	selected.
3=VERSIONINWORKSPACE.	This	value	appears	when	the
object	version	in	the	workspace	is	selected.
4=PINNEDVERSION.	This	value	appears	when	the	pinned
target	object	version	of	the	relationship	that	you	are	currently
navigating	is	selected.

object An	object	expression	that	evaluates	to	a
RepositoryObjectVersion	object.

Remarks
The	repository	engine	automatically	sets	the	value	of	the	ResolutionType
property	whenever	you	retrieve	an	object	version.	For	more	information	about
how	the	repository	engine	selects	object	versions,	see	Resolution	Strategy	for
Objects	and	Object	Versions.

See	Also

RepositoryObjectVersion	Object

RepositoryObjectVersion	InternalID	Property

Meta	Data	Services	Programming

RepositoryObjectVersion	Type	Property
This	property	specifies	the	type	of	the	RepositoryObjectVersion	instance.	More
specifically,	it	is	the	object	identifier	of	the	object	definition	object	for	the
repository	object.	To	copy	this	property	to	another	variable,	use	a	variable
declared	as	a	Variant.	This	property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryItem	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
object.Type

The	Type	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	object

Remarks
The	Type	property	is	the	object	identifier	of	the	class	to	which	the	new	object
conforms.	For	example,	to	manipulate	an	object	instance	of	a	Storage	class,
specify	the	object	identifier	of	the	Storage	class	upon	which	the	object	instance
is	based.

An	object	in	the	repository	is	simultaneously	a	repository	object,	an	Automation
object,	and	an	object	of	a	specific	type,	as	defined	by	an	information	model.	The
Type	property	identifies	a	specific	object	in	an	information	model.	The	model-
specific	object	is	identified	by	its	object	identifier.	The	value	of	an	object
identifier	is	used	as	the	value	of	the	Type	property	for	all	repository	objects	that
conform	to	that	object	definition.

See	Also

IRepositoryItem	Interface

Object	Identifiers	and	Internal	Identifiers

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

RepositoryObjectVersion	VersionID	Property
This	property	is	the	object-version	identifier	for	the	RepositoryObjectVersion
instance.	The	object-version	identifier	is	unique	across	all	repositories.	To	copy
this	property	to	another	variable,	use	a	variable	declared	as	a	Variant.	This
property	is	read-only.

Syntax
object.VersionID

The	VersionID	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	object

Remarks
This	property	yields	the	object-version	identifier,	not	the	object	identifier.

See	Also

Object	Identifiers	and	Internal	Identifiers

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

RepositoryObjectVersion	VersionInternalID	Property
This	property	is	the	internal	object-version	identifier	that	the	repository	engine
uses	to	refer	to	this	object.	The	internal	object-version	identifier	is	unique	within
the	repository	instance,	but	not	unique	across	all	repositories.	To	copy	this
property	to	another	variable,	use	a	variable	declared	as	a	Variant.	This	property
is	read-only.

Syntax
object.VersionInternalID

The	VersionInternalID	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	object

Remarks
This	property	yields	the	internal	object-version	identifier,	not	the	internal	object
identifier.

See	Also

Object	Identifiers	and	Internal	Identifiers

RepositoryObjectVersion	Object

RepositoryObjectVersion	ObjectID	Property

Meta	Data	Services	Programming

RepositoryObjectVersion	CreateVersion	Method
This	method	creates	a	new	version	of	a	repository	object,	based	on	the	current
version.

Syntax
set	variable	=	object.CreateVersion(versionID)

The	Refresh	method	syntax	has	the	following	parts.

Part Description
variable An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	object.	It	receives	a	reference	to
the	newly	created	object	version.

object An	object	expression	that	evaluates	to	a
RepositoryObjectVersion	object.

versionID The	value	you	want	the	repository	to	use	as	an	object-version
identifier	for	the	newly	created	object	version.	If	you	want
the	repository	to	choose	a	value	for	you,	set	this	parameter	to
EXTVERSIONID_NULL,	or	you	can	leave	it	blank.

Remarks
The	current	object	version	must	be	frozen.

The	repository	engine	creates	the	new	version	as	unfrozen.	Its	property	values
are	identical	to	the	property	values	of	the	current	object	version.

For	each	of	the	predecessor	version's	origin	relationship	collections,	the
repository	engine	takes	this	action:

If	the	corresponding	relationship	type	has	the
COLLECTION_NEWORGVERSIONSPARTICIPATE	flag	set,	the
repository	engine	copies	the	collection	to	the	newly	created	version.

If	the	corresponding	relationship	type	does	not	have	the
COLLECTION_NEWORGVERSIONSPARTICIPATE	flag	set,	the
repository	engine	does	not	copy	the	collection	to	the	new	version.

You	cannot	invoke	this	method	while	operating	in	a	workspace.

See	Also

Assigning	Object	Identifiers

Object	Identifiers	and	Internal	Identifiers

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

RepositoryObjectVersion	Delete	Method
This	method	deletes	the	repository	object	version	from	the	repository.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryItem	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Call	object.Delete

The	Delete	method	syntax	has	the	followings	part:

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	instance

Remarks
A	delete	operation	succeeds	only	under	certain	conditions.

If	an	object	version	has	a	successor,	it	cannot	be	deleted.	To	delete	an	object
version	that	has	successors,	you	must	delete	all	successors	first.

If	an	object	is	checked	out	to	a	workspace,	you	must	invoke	Delete	from	within
that	workspace.

If	the	object	version	satisfies	both	of	these	restrictions,	the	repository	engine
deletes	it	and	any	of	its	relationships,	including	any	delete-propagating	origin
relationships.	For	each	relationship,	the	repository	engine	considers	performing
one	or	more	propagated	deletions.

See	Also

IRepositoryItem	Interface

Delete	Propagation	After	Removing	an	Origin	Relationship

RepositoryObjectVersion	Object

Requirements	for	Object-Version	Deletion

Workspace	Context

Meta	Data	Services	Programming

RepositoryObjectVersion	FreezeVersion	Method
This	method	freezes	the	current	RepositoryObjectVersion	object.

Syntax
Call	object.FreezeVersion

The	FreezeVersion	method	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	object

Remarks
To	freeze	an	object	version,	the	object	version	must	be	unfrozen.	You	can	only
freeze	an	object	version	that	is	contained	by	a	shared	repository.	You	cannot
freeze	an	object	version	that	is	checked	out	to	a	workspace.

Freezing	an	object	version	prevents	changes	to	property	values,	collection
attributes,	and	versioned	relationships.	Specifically,	you	cannot	resize	or
resequence	origin	collections.	Furthermore,	you	cannot	change	the	versioned
relationships	of	origin	collections.	That	is,	you	cannot	enlarge	or	shrink	a
TargetVersions	collection	of	an	origin	versioned	relationship;	and	you	cannot
pin	or	unpin	a	target	object	version.	However,	you	can	change	the	name	by
which	the	origin	object	version	refers	to	the	target	object.

Note		Annotational	properties	are	an	exception.	You	can	modify	the	annotational
properties	of	a	frozen	object	version.

The	FreezeVersion	method	fails	in	the	following	conditions:

If	you	call	this	method	for	an	item	currently	checked	out	to	any
workspace	(including	the	workspace	in	which	you	are	working),	it
returns	an	error.

If	the	to-be-frozen	object	version	includes	any	nonnull	origin	collection
whose	corresponding	collection	type	has	the
COLLECTION_REQUIRESFREEZE	flag	set,	and	that	nonnull
collection	includes	an	item	whose	TargetVersions	collection	contains
an	unfrozen	object	version,	the	method	fails.

See	Also

RepositoryObjectVersion	Object

RepositoryObjectVersion	IsFrozen	Property

Workspace	CheckIn	Method

Meta	Data	Services	Programming

RepositoryObjectVersion	Lock	Method
Use	this	method	to	lock	the	repository	object	version.	Locking	the	object	version
prevents	other	processes	from	locking	it	while	you	are	working	with	it.	The	lock
is	released	when	you	end	the	current	transaction.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryItem	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Call	object.Lock

The	Lock	method	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	instance

See	Also

IRepositoryItem	Interface

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

RepositoryObjectVersion	MergeVersion	Method
This	method	changes	the	current	object	version	by	combining	its	property	values
and	origin	collections	with	the	property	values	and	origin	collections	of	another
version	of	the	same	object.

Syntax
Call	object.MergeVersion(otherVersion	,	flags)

The	MergeVersion	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	object.
otherVersion An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	object.	It	is	the	object	version
that	has	values	that	you	want	to	merge	into	the	current	object
version.

flags A	flag	indicating	which	version	(the	current	version	or	the
other	version)	the	repository	should	use	as	the	primary
version	of	the	merge	operation.

Primary=1	indicates	that	the	predecessor	object	is	primary
and	the	current	object	is	secondary.

Secondary=2	indicates	that	the	predecessor	object	is
secondary	and	the	current	object	is	primary.

Remarks
Merging	two	object	versions	requires	that	the	current	object	version	is	unfrozen,
and	the	other	object	version	is	frozen.	Furthermore,	the	two	object	versions	must
be	versions	of	the	same	object.

Depending	on	how	you	set	flags,	one	object	version	is	the	Primary	Version	and

the	other	object	version	is	the	Secondary	Version.	MergeVersion	compares	the
property	values	and	collections	of	each	object	version	to	a	third	version,	called
the	Basis	Version.	During	the	merge,	the	repository	engine	considers	each
property	and	origin	collection	type	in	turn.	Relationships	are	inserted	at	the	end
of	the	sequenced	collection.

Merging	object	versions	is	a	complex	process.	For	more	information	about	the
merge	process	and	how	the	repository	engine	selects	values,	see	Merge
Overview.

See	Also

Merging	Object	Versions

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

RepositoryObjectVersion	Refresh	Method
This	method	refreshes	the	cached	image	of	the	repository	object	version.	Only
cached	data	that	has	not	been	changed	by	the	current	process	is	refreshed.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObject	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Call	object.Refresh(milliSecs)

The	Refresh	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	object.
milliSecs This	value	is	ignored.	It	is	kept	for	backward	compatibility.

See	Also

IRepositoryObject	Interface

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

RepositoryObjectVersion	ObjectVersions	Collection
An	ObjectVersions	collection	contains	all	of	the	RepositoryObjectVersion
objects	that	are	versions	of	the	same	repository	object.

Syntax
Set	variable		=	object.ObjectVersions(index)

The	ObjectVersions	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	VersionCol	object.	It	receives	a

reference	to	the	Versions-of-Object	collection.
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	object.
index An	integer	index	that	identifies	which	property	in	the

collection	to	address.	The	valid	range	is	from	one	to	the	total
number	of	elements	in	the	collection.	The	number	of
elements	in	the	collection	is	specified	by
object.Properties.Count.	For	more	information,	see
Selecting	Items	in	a	Collection.

Remarks
Within	the	returned	collection,	the	repository	engine	sequences	the	items	in	order
of	their	creation,	with	the	oldest	object	version	first.

You	cannot	modify	the	collection.	To	add	a	new	object	version,	use	the
CreateVersion	method	of	the	RepositoryObjectVersion	object.

See	Also

RepositoryObjectVersion	Object

RepositoryObject	Object

Relationship	Object

Meta	Data	Services	Programming

RepositoryObjectVersion	PredecessorVersions
Collection
A	PredecessorVersions	collection	contains	all	of	the	RepositoryObjectVersion
objects	that	are	immediate	predecessors	of	the	current	object	version.

Syntax
Set	variable		=	object.PredecessorVersions(index)

The	PredecessorVersions	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	VersionCol	object.	It	receives	a

reference	to	the	Predecessor-Versions	collection.
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	instance.
index An	integer	index	that	identifies	which	property	in	the

collection	to	address.	The	valid	range	is	from	one	to	the	total
number	of	elements	in	the	collection.	For	more	information,
see	Selecting	Items	in	a	Collection.

Remarks
This	method	returns	only	the	immediate	predecessors	of	the	current	object
version.	If	you	invoke	this	method	for	the	first	version	of	an	object,	it	returns	an
empty	collection.

Within	the	returned	collection,	the	repository	engine	sequences	the	items	in	order
of	their	creation,	with	the	oldest	object	version	first.	Objects	are	indicated	by
object	identifier	or	object	name.

You	cannot	modify	the	collection	directly.	To	enlarge	the	set	of	predecessor
versions	of	an	object,	use	the	MergeVersion	method	of	the
RepositoryObjectVersion	object.

See	Also

Assigning	Object	Identifiers

Object	Identifiers	and	Internal	Identifiers

RepositoryObjectVersion	Object

Version	Graph

Meta	Data	Services	Programming

RepositoryObjectVersion	Properties	Collection
The	Properties	collection	contains	all	of	the	persistent	properties	on	all	of	the
interfaces	that	are	attached	to	the	repository	object	version.

This	collection	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObject2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=	object.Properties(index)

The	Properties	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposProperty	object.	It	receives

the	specified	property.
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	object.
index An	integer	index	or	a	property	name	that	identifies	which

property	in	the	collection	is	to	be	addressed.

For	an	index,	the	valid	range	is	from	one	to	the	total	number
of	elements	in	the	collection.	The	number	of	elements	in	the
collection	is	specified	by	object.Properties.Count.

For	property	names,	unique-naming	constraints	may	apply.

For	more	information,	see	Selecting	Items	in	a	Collection.

See	Also

IRepositoryObject2	Interface

Naming	and	Unique-Naming	Collections

RepositoryObjectVersion	Object

Relationship	Object

Meta	Data	Services	Programming

RepositoryObjectVersion	SuccessorVersions
Collection
A	SuccessorVersions	collection	contains	all	of	the	RepositoryObjectVersion
objects	that	are	immediate	successors	of	the	current	object	version.

Syntax
Set	variable		=	object.SuccessorVersions(index)

The	SuccessorVersions	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	VersionCol	object.	It	receives	a

reference	to	the	SuccessorVersions	collection.
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	instance.
index An	integer	index	that	identifies	which	property	in	the

collection	to	address.	The	valid	range	is	from	one	to	the	total
number	of	elements	in	the	collection.	For	more	information,
see	Selecting	Items	in	a	Collection.

Remarks
This	method	returns	only	the	immediate	successors	of	the	current	object	version.
If	the	current	object	version	has	no	successors,	this	method	returns	an	empty
collection.

Within	the	returned	collection,	the	repository	engine	sequences	the	items	in	order
of	their	creation,	with	the	oldest	object	version	first.	Objects	are	indicated	by
object	identifier	or	object	name.

You	cannot	modify	the	collection	directly.	To	enlarge	the	set	of	successor
versions	of	an	object,	use	the	CreateVersion	method	of	the
RepositoryObjectVersion	object.

See	Also

RepositoryObjectVersion	Object

Version	Graph

Meta	Data	Services	Programming

RepositoryObjectVersion	Workspaces	Collection
The	Workspaces	collection	contains	all	of	the	workspaces	in	which	the	object
version	is	present.

This	collection	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IWorkspaceItem	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=	object.Workspaces(index)

The	Workspaces	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	VersionCol	object.	It	receives	a

reference	to	the	WorkspacesOfVersion	collection.
object An	object	expression	that	evaluates	to	a

RepositoryObjectVersion	object.
index An	integer	index	that	identifies	which	member	in	the

collection	is	to	be	addressed.	The	valid	range	is	from	one	to
the	total	number	of	members	in	the	collection.	For	more
information,	see	Selecting	Items	in	a	Collection.

Remarks
A	workspace	is	a	repository	object.	Within	the	Workspaces	collection,
workspaces	are	identified	by	object	identifier	or	object	name.

See	Also

IWorkspaceItem	Interface

RepositoryObjectVersion	Object

Relationship	Object

Meta	Data	Services	Programming

RepositoryTransaction	Object
The	repository	engine	supports	the	bracketing	of	multiple	changes	within	the
scope	of	a	transaction.	Changes	to	a	repository	that	are	bracketed	within	a
transaction	are	either	all	committed	or	all	undone,	depending	on	the	way	that	the
transaction	is	completed.	Repository	methods	that	are	reading	data	from	the
repository	may	be	executed	outside	of	a	transaction,	but	methods	that	write	data
must	be	bracketed	within	a	transaction.

You	cannot	directly	instantiate	a	RepositoryTransaction	object.	When	you
connect	to	a	repository,	a	RepositoryTransaction	object	is	created	for	you.	It	is
accessible	through	the	Repository	Transaction	property.

When	to	Use
Use	the	RepositoryTransaction	object	to	manage	repository	transactions.

Properties

Property Description
Status The	transaction	status	of	the	repository

Methods

Method Description
Abort Cancels	the	current	transaction
Begin Begins	a	new	transaction
Commit Commits	the	current	transaction
Flush Flushes	uncommitted	changes	to	the	repository	database
GetOption Retrieves	various	transaction	options
SetOption Sets	various	transaction	options

Remarks
Only	one	transaction	can	be	active	at	a	time	for	each	opened	Repository
instance.	Nesting	of	Begin	or	Commit	method	invocations	is	permitted,	but	no
actual	nesting	of	transactions	occurs.

See	Also

Repository	Object

Repository	Transaction	Property

Managing	Transactions	and	Threads

Meta	Data	Services	Programming

RepositoryTransaction	Status	Property
This	property	indicates	what	the	current	transaction	status	is	for	the	Repository
instance.	If	the	value	is	zero,	no	transaction	is	active.	If	the	value	is	nonzero,	a
transaction	is	active.	To	copy	this	property	to	another	variable,	use	a	variable	that
is	declared	as	a	Variant.	This	is	a	read-only	property.

Syntax
object.Status

The	Status	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryTransaction	object	for	the	open	Repository
instance

Remarks
A	transaction	is	considered	active	until	the	Commit	method	has	successfully
executed	and	the	nested	transaction	count	has	been	decremented	to	zero.
Depending	upon	the	data-flushing	capabilities	of	the	underlying	database	server,
the	data	associated	with	a	committed	transaction	may	or	may	not	be	written	to
the	physical	storage	device	when	the	Commit	method	returns	control	to	its
caller.

See	Also

Repository	Transaction	Property

RepositoryTransaction	Commit	Method

RepositoryTransaction	Object

Meta	Data	Services	Programming

RepositoryTransaction	Abort	Method
This	method	cancels	the	currently	active	transaction	for	an	open	repository
instance.	All	updates	made	during	the	transaction	are	rolled	back.	The	nested
transaction	count	is	set	to	zero.

Syntax
Call	object.Abort

The	Abort	method	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryTransaction	object	for	the	currently	open
Repository	instance

See	Also

Repository	Transaction	Property

RepositoryTransaction	Object

Meta	Data	Services	Programming

RepositoryTransaction	Begin	Method
This	method	increments	the	nested	transaction	count	by	one.	If	there	is	no	active
transaction,	this	method	begins	a	transaction	for	the	open	Repository	instance.

Syntax
Call	object.Begin

The	Begin	method	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryTransaction	object	for	the	currently	open
Repository	instance

See	Also

Repository	Transaction	Property

RepositoryTransaction	Object

Meta	Data	Services	Programming

RepositoryTransaction	Commit	Method
This	method	decrements	the	nested	transaction	count	for	an	open	Repository
instance.	If	the	currently	active	transaction	is	not	nested,	all	changes	made	to
repository	data	within	the	transaction	are	committed	to	the	repository	database.
A	transaction	is	not	nested	if	the	nested	transaction	count	equals	one.

Syntax
Call	object.Commit

The	Commit	method	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryTransaction	object	for	the	currently	open
Repository	instance

See	Also

Repository	Transaction	Property

RepositoryTransaction	Object

Meta	Data	Services	Programming

RepositoryTransaction	Flush	Method
This	method	flushes	cached	changes	to	the	repository	database.

Syntax
Call	object.Flush

The	Flush	method	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryTransaction	object	for	the	currently	open
Repository	instance

Remarks
You	can	set	flags	that	determine	what	happens	to	data	during	a	transaction.
Changes	are	not	written	to	the	database	until	the	transaction	is	committed.	If	a
concurrent	SQL	query	is	run	against	the	repository	database,	the	result	of	the
query	will	not	reflect	the	uncommitted	changes.	(This	is	usually	the	desired
behavior.)

If	your	tool	or	application	must	be	able	to	see	uncommitted	changes	in	SQL
queries,	you	can	use	the	Flush	method	to	write	uncommitted	changes	to	the
repository	database.	All	changes	made	within	the	scope	of	the	current	transaction
are	flushed.	Flushing	uncommitted	changes	does	not	affect	your	ability	to	cancel
a	transaction	using	the	Abort	method.

To	get	and	set	flags,	use	the	GetOption	and	SetOption	methods.

See	Also

Repository	Transaction	Property

RepositoryTransaction	Object

RepositoryTransaction	GetOption	Method

RepositoryTransaction	SetOption	Method

TransactionFlags	Enumeration

Meta	Data	Services	Programming

RepositoryTransaction	GetOption	Method
This	method	is	used	to	retrieve	various	transaction	options.

Syntax
variable		=		object.GetOption(whichOption)

The	GetOption	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryTransaction	object	for	the	currently	open
Repository	instance.

whichOption A	parameter	that	specifies	which	option	to	retrieve.	For
more	information	about	flag	values	and	descriptions,	see
TransactionFlags	Enumeration.

variable A	variable	declared	as	a	Variant.	It	receives	the	value	of
the	specified	option.

Remarks
You	can	only	get	an	option	that	is	already	set.	You	can	set	an	option	using	the
SetOption	method.

See	Also

Repository	Transaction	Property

RepositoryTransaction	Object

RepositoryTransaction	SetOption	Method

Meta	Data	Services	Programming

RepositoryTransaction	SetOption	Method
This	method	is	used	to	set	various	transaction	options.

Syntax
Call	object.SetOption(whichOption,	optionValue)

The	SetOption	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a

RepositoryTransaction	object	for	the	open	Repository
instance.

whichOption A	parameter	that	specifies	which	option	to	set.	For	more
information	about	flag	values	and	descriptions,	see
TransactionFlags	Enumeration.

optionValue The	new	value	for	the	option.

Remarks
After	you	set	an	option,	you	can	retrieve	it	using	the	GetOption	method.

See	Also

Repository	Transaction	Property

RepositoryTransaction	Object

RepositoryTransaction	GetOption	Method

Meta	Data	Services	Programming

ReposProperties	Object
A	Properties	collection	is	the	set	of	persistent	properties	and	collections	that	are
attached	to	a	repository	object	or	relationship	through	a	particular	interface.

When	to	Use
Use	the	ReposProperties	object	to	enumerate	the	collection	of	repository
properties	that	are	attached	to	a	particular	repository	object	or	relationship.

Properties

Property Description
Count The	count	of	the	number	of	items	in	the	collection
Item Retrieves	the	specified	property	from	the	collection
Type Retrieves	the	type	of	the	interface	to	which	these

properties	are	attached

See	Also

ReposProperty	Object

Meta	Data	Services	Programming

ReposProperties	Count	Property
This	property	is	a	long	integer	that	contains	the	count	of	the	number	of
properties	in	the	collection.	This	is	a	read-only	property.

Syntax
object.Count

The	Count	property	syntax	has	the	following	part.

Part Description
object The	repository	property	collection

See	Also

ReposProperties	Object

Meta	Data	Services	Programming

ReposProperties	Item	Property
This	property	is	used	to	retrieve	a	specific	repository	property	from	a	Properties
collection.	This	is	a	read-only	property.	There	are	three	variations	of	this
property.

Syntax
Set	variable		=		object.Item(index)
Set	variable		=		object.Item(objName)
Set	variable		=		object.Item(objId)

The	Item	property	syntax	has	the	following	parts.

Part Description
variable An	object	expression	that	evaluates	to	a	ReposProperty

object.
object The	repository	property	collection.
index The	index	of	the	repository	property	to	be	retrieved

from	the	collection.
objName The	name	associated	with	the	repository	property	to	be

retrieved	from	the	collection.
ObjId The	object	identifier	of	the	property	definition	object	for

this	property.

See	Also

ReposProperties	Object

Meta	Data	Services	Programming

ReposProperties	Type	Property
This	property	retrieves	the	object	identifier	for	the	interface	definition	of	the
interface	to	which	these	properties	are	attached.	This	object	identifier	is	referred
to	as	the	type	of	the	interface.	This	is	a	read-only	property.

Syntax
variable		=		object.Type

The	Type	property	syntax	has	these	parts.

Part Description
variable A	Variant	that	receives	the	object	identifier	for	the

interface	definition
object The	repository	property	collection

See	Also

ReposProperties	Object

Meta	Data	Services	Programming

ReposProperty	Object
A	repository	property	is	a	persistent	property	or	collection	that	is	attached	to	an
object	instance.	It	provides	generic	access	to	the	properties	of	repository	objects.

When	to	Use
Use	the	ReposProperty	object	to	access	generic	meta	data	about	a	repository
property,	or	to	set	the	value	of	a	repository	property.	ReposProperty	retrieves
meta	data	type	information	from	the	repository	object	instance	itself.	This
eliminates	the	need	to	access	the	information	model	to	obtain	data	from	the
ClassDef,	InterfaceDef,	PropertyDef,	or	CollectionDef	that	defines	the	object.

If	you	are	providing	browsing	functionality	in	a	tool	or	application,	you	can	use
ReposProperty	to	retrieve	data	about	an	object.	Based	on	the	values	you	obtain
through	ReposProperty,	you	can	access	more	specific	meta	data	about	the
object	instance.

ReposProperty	retrieves	meta	data	about	an	object	by	accessing	cached	data.	It
also	provides	properties	and	methods	for	handling	special	case	scenarios	when
accessing	binary	large	objects	(BLOBs)	or	large	text	fields.

Properties

Property Description
APIType The	C	data	type	of	the	property.	It	returns	an	API	type

enumeration	value	for	the	property.

This	property	is	not	a	default	interface	member.

CurrentPosition A	position	within	a	BLOB	or	large	text	field.	It
establishes	a	starting	point	anywhere	within	a	BLOB	or
large	text	field	for	performing	Read	and	Write
operations.

This	property	is	not	a	default	interface	member.

Flags Flags	that	specify	attributes	of	an	interface	member,
such	as	whether	it	is	hidden,	read-only,	virtual,	or
derived.

This	property	is	not	a	default	interface	member.

IsBaseMember A	flag	that	indicates	whether	the	property	is	a	base
member.

This	property	is	not	a	default	interface	member.

IsMostDerived A	flag	that	indicates	whether	the	property	is	the	most
recently	derived	member	of	a	base	member.

This	property	is	not	a	default	interface	member.

IsOriginCollectionA	flag	that	indicates	whether	the	collection	is	the	origin
of	the	relationship.

This	property	is	not	a	default	interface	member.

IsReadOnly A	flag	that,	when	set	to	TRUE,	returns	a	value
associated	with	the	current	property.

This	property	is	not	a	default	interface	member.

Name The	name	of	the	property.
PropType An	in-memory	pointer	to	an	object	instance.

This	property	is	not	a	default	interface	member.

Size The	size	of	a	BLOB	or	large	text	field.

This	property	is	not	a	default	interface	member.

Type The	type	of	the	property,	expressed	as	an	object	name	or
object	identifier.

Value The	value	of	the	property.

Methods

Property Description

Close Directs	the	repository	engine	to	stop	reading	from	or
writing	to	a	BLOB	or	large	text	field.

This	method	is	not	a	default	interface	member.

Read Reads	a	large	property	value	provided	through	a	BLOB
or	large	text	field,	starting	at	the	current	position.

This	method	is	not	a	default	interface	member.

ReadFromFile Reads	the	contents	of	a	BLOB	or	large	text	field	from	a
file.

This	method	is	not	a	default	interface	member.

Write Writes	a	large	property	value	to	a	BLOB	or	large	text
field,	starting	at	the	current	position.

This	method	is	not	a	default	interface	member.

WriteToFile Stores	the	contents	of	a	BLOB	or	large	text	field	as	a
file.

This	method	is	not	a	default	interface	member.

See	Also

ReposProperties	Object

Meta	Data	Services	Programming

ReposProperty	APIType	Property
This	property	returns	the	C	data	type	of	the	property.	The	value	is	an	API	type
enumeration	value	for	the	property.	This	property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposProperty2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable	=	object.APIType

The	APIType	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

ReposProperty	object

See	Also

IReposProperty2	Interface

ReposProperty	Object

SQL	and	API	Types	Used	in	Property	Definitions

Meta	Data	Services	Programming

ReposProperty	CurrentPosition	Property
This	property	stores	a	position	within	a	binary	large	object	(BLOB)	or	large	text
field.	It	establishes	a	starting	point	anywhere	within	a	BLOB	or	large	text	field
for	performing	Read	and	Write	operations	without	loading	the	BLOB	or	large
text	field	in	memory.	You	can	set	and	retrieve	this	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposPropertyLarge	interface.	For
more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
object.CurrentPosition

The	CurrentPosition	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

ReposProperty	object

See	Also

IReposPropertyLarge	Interface

Programming	BLOBs	and	Large	Text	Fields

ReposProperty	Object

Meta	Data	Services	Programming

ReposProperty	Flags	Property
This	property	returns	enumerated	values	that	specify	attributes	of	an	interface
member,	such	as	whether	it	is	hidden,	read-only,	virtual,	or	derived.	This
property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposProperty2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable	=	object.Flags=(integer)

The	Flags	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a

ReposProperty	object.
integer Flag	values	are	bit	flags,	and	they	can	be	combined	to

set	multiple	options.	For	more	information	about	flag
values	and	descriptions,	see	the	InterfaceMemberFlags
Enumeration.

See	Also

IReposProperty2	Interface

ReposProperty	Object

Meta	Data	Services	Programming

ReposProperty	IsBaseMember	Property
This	Boolean	property	returns	a	flag	that	indicates	whether	the	property	is	a	base
member.	For	more	information	about	base	and	derived	members,	see	Member
Delegation.	This	property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposProperty2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable	=	object.IsBaseMember

The	IsBaseMember	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

ReposProperty	object

See	Also

IReposProperty2	Interface

ReposProperty	Object

Meta	Data	Services	Programming

ReposProperty	IsMostDerived	Property
This	Boolean	property	returns	a	flag	that	indicates	whether	the	property	is	the
most	derived	member	of	a	base	member.	Member	derivations	are	scoped	to
branches	in	the	version	graph.	For	example,	if	there	are	two	branches	and	each
one	has	derived	members,	the	IsMostDerived	property	returns	True	for	each
branch.	For	more	information	about	base	and	derived	members,	see	Member
Delegation.	This	property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposProperty2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable	=	object.IsMostDerived

The	IsMostDerived	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

ReposProperty	object

See	Also

IReposProperty2	Interface

ReposProperty	Object

Meta	Data	Services	Programming

ReposProperty	IsOriginCollection	Property
This	Boolean	property	returns	a	flag	that	indicates	whether	the	collection	is	the
origin	of	the	relationship.	This	property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposProperty2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable	=	object.IsOriginCollection

The	IsOriginCollection	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

ReposProperty	object

See	Also

IReposProperty2	Interface

ReposProperty	Object

Meta	Data	Services	Programming

ReposProperty	IsReadOnly	Property
This	Boolean	property	returns	True	if	the	current	property	is	read-only.	This
property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposProperty2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable	=	object.IsReadOnly

The	IsReadOnly	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

ReposProperty	object

Remarks
A	property	value	is	stored	as	a	Value	property.

See	Also

IReposProperty2	Interface

ReposProperty	Object

ReposProperty	Value	Property

Meta	Data	Services	Programming

ReposProperty	Name	Property
This	property	stores	the	name	of	the	repository	property.	This	property	is	read-
only.

Syntax
string=object.Name

The	Name	property	syntax	has	the	following	parts.

Part Description
string A	variable	length	string	that	can	be	a	maximum	of	255

characters
object An	object	expression	that	evaluates	to	a	ReposProperty

object

See	Also

ReposProperty	Object

Meta	Data	Services	Programming

ReposProperty	PropType	Property
This	property	returns	an	in-memory	pointer	to	a	PropertyDef	instance.	This
property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposProperty2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
object.PropType

The	PropType	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

ReposProperty	object

Remarks
After	you	obtain	an	in-memory	pointer	to	an	object	instance,	you	have	the
PropertyDef	object	upon	which	the	instance	is	based.

See	Also

IReposProperty2	Interface

Object	Identifiers	and	Internal	Identifiers

ReposProperty	Object

Assigning	Object	Identifiers

Meta	Data	Services	Programming

ReposProperty	Size	Property
This	property	returns	the	size	of	a	binary	large	object	(BLOB)	or	large	text	field.
This	property	is	read-only.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposPropertyLarge	interface.	For
more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
object.Size

The	Size	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

ReposProperty	object

See	Also

IReposPropertyLarge	Interface

ReposProperty	Object

Meta	Data	Services	Programming

ReposProperty	Type	Property
This	property	is	the	type	of	the	repository	property;	that	is,	it	is	the	object
identifier	of	the	PropertyDef	or	CollectionDef	object	to	which	this	repository
property	conforms.	You	use	a	Variant	variable	to	receive	the	Type	property.
This	property	is	read-only.

Syntax
object.Type

The	Type	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	ReposProperty

object

See	Also

Object	Identifiers	and	Internal	Identifiers

ReposProperty	Object

ReposProperty	PropType	Property

Meta	Data	Services	Programming

ReposProperty	Value	Property
This	property	is	the	value	of	the	repository	property.	You	use	a	Variant	variable
to	receive	this	property	value.

Syntax
object.Value
object.Value	=		newValue

The	Value	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	ReposProperty

object
newValue An	expression	that	evaluates	to	a	value	of	the	appropriate

type	for	the	repository	property

See	Also

ReposProperty	Object

ReposProperty	PropType	Property

Meta	Data	Services	Programming

ReposProperty	Close	Method
This	method	directs	the	repository	engine	to	stop	reading	from	or	writing	to	a
binary	large	object	(BLOB)	or	large	text	field.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposPropertyLarge	interface.	For
more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
Call	object.Close

The	Close	method	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	ReposProperty

object

Remarks
When	you	release	a	property	object,	the	repository	engine	automatically	closes	a
BLOB	or	large	text	field	for	you.	However,	if	you	want	to	free	up	memory	or
terminate	a	read-write	operation	before	releasing	an	object,	you	can	use	Close	to
do	so.

Be	aware	that	if	you	keep	an	object	in	memory	and	you	have	not	called	Close
before	committing	a	transaction,	a	Write	operation	will	not	be	committed	during
the	transaction.

See	Also

IReposPropertyLarge	Interface

ReposProperty	Object

ReposProperty	Read	Method

ReposProperty	Write	Method

Meta	Data	Services	Programming

ReposProperty	Read	Method
This	method	reads	into	memory	a	large	property	value	provided	through	a	binary
large	object	(BLOB)	or	large	text	field,	starting	at	the	current	position.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposPropertyLarge	interface.	For
more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
Call	object.Read(sizeToRead,	pSizeRead,	psBlob)

The	Read	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	ReposProperty

object
sizeToRead The	amount	of	memory	you	allocate	in	advance	to	store	the

data	to	be	read
pSizeRead The	actual	size	of	the	data	that	is	read
psBlob A	Variant	pointer	to	a	location	that	stores	the	data	to	be	read.

The	location	you	specify	must	be	able	to	accommodate	the
amount	of	preallocated	memory

Remarks
After	you	read	data,	you	can	use	the	Close	method	to	release	memory	and
resources.

See	Also

IReposPropertyLarge	Interface

ReposProperty	Close	Method

ReposProperty	CurrentPosition	Property

ReposProperty	Object

ReposProperty	ReadFromFile	Method

ReposProperty	Write	Method

Meta	Data	Services	Programming

ReposProperty	ReadFromFile	Method
This	method	sets	a	binary	large	object	(BLOB)	or	large	text	field	property	value
to	the	contents	of	a	file.	This	method	does	not	support	the	CurrentPosition
property.	If	content	exists	within	the	BLOB	or	large	text	field,	the
ReadFromFile	method	will	overwrite	it.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposPropertyLarge	interface.	For
more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
Call	object.ReadFromFile(BSTR	filename)

The	ReadFromFile	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	ReposProperty

object
BSTR
filename

The	fully	qualified	path	and	file	name	that	provides	content
to	the	BLOB	or	large	text	field

Remarks
After	you	read	data,	you	can	use	the	Close	method	to	release	memory	and
resources.

See	Also

IReposPropertyLarge	Interface

ReposProperty	Close	Method

ReposProperty	Object

ReposProperty	Read	Method

ReposProperty	Write	Method

Meta	Data	Services	Programming

ReposProperty	Write	Method
This	method	takes	data	and	writes	it	to	a	binary	large	object	(BLOB)	or	large
text	field,	starting	at	the	current	position.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposPropertyLarge	interface.	For
more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
Call	object.Write(psBlob)

The	Write	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	ReposProperty

object
psBlob A	Variant	pointer	to	the	location	where	data	is	to	be	written.

The	location	you	specify	must	contain	the	amount	of
preallocated	memory

Remarks
After	you	write	data,	you	can	use	the	Close	method	to	release	memory	and
resources.

See	Also

IReposPropertyLarge	Interface

ReposProperty	Close	Method

ReposProperty	CurrentPosition	Property

ReposProperty	Object

ReposProperty	WriteToFile	Method

Meta	Data	Services	Programming

ReposProperty	WriteToFile	Method
This	method	stores	the	contents	of	a	binary	large	object	(BLOB)	or	large	text
field	to	a	file.	You	must	specify	a	fully	qualified	path	and	file	name.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposPropertyLarge	interface.	For
more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
Call	object.WriteToFile(BSTR	filename)

The	WriteToFile	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	ReposProperty

object
BSTR
filename

The	fully-qualified	path	and	file	name	that	stores	the	value
of	a	BLOB	or	large	text	field

Remarks
After	you	write	data,	you	can	use	the	Close	method	to	release	memory	and
resources.

See	Also

IReposPropertyLarge	Interface

ReposProperty	Close	Method

ReposProperty	Object

ReposProperty	Write	Method

Meta	Data	Services	Programming

TransientObjectCol	Object
The	TransientObjectCol	object	is	an	object	collection	that	you	can	create	and
dynamically	populate	at	run	time	using	script	and	object	methods	rather	than
stored	data	in	a	repository	database.	TransientObjectCol	simulates	a	standard,
stored	repository	object	collection.

You	can	have	multiple	transient	object	collections	at	one	time.	The	object
collection	can	contain	only	repository	objects.	Although	enumeration	is
supported,	sequencing	is	not.	Except	for	the	fact	that	the	object	collection	is	not
saved	to	a	repository	database,	it	is	identical	in	functionality	to	the	ObjectCol
object.

TransientObjectCol	is	instantiated	by	application	code.	Applications	that	use
TransientObjectCol	can	treat	the	object	collection	exactly	the	same	way	as	any
other	repository	object	collection.

Objects	represented	in	TransientObjectCol	are	not	versioned.

When	to	Use
Use	this	object	to	create	an	object	collection	that	is	instantiated	by	application
code	and	populated	dynamically	at	run	time.	With	this	object,	you	can:

Create	an	object	collection	that	is	not	stored	in	a	repository	database.

Get	a	count	of	the	number	of	objects	in	the	collection.

Add	and	remove	objects	to	and	from	the	collection.

Properties

Property Description
Count The	count	of	the	number	of	objects	in	the	collection
Item Retrieves	a	specific	object	from	the	collection

Methods

Method Description
Add Adds	an	object	to	the	collection.
Refresh Supports	backward	compatibility	of	the	Refresh

method.	This	method	is	not	used.
Remove Removes	an	object	from	the	collection.

See	Also

ITargetObjectCol	Interface

MethodDef	Object

ObjectCol	Class

ScriptDef	Object

TransientObjectCol	Class

Meta	Data	Services	Programming

TransientObjectCol	Count	Property
This	property	is	a	long	integer	that	contains	the	count	of	the	number	of	items	in
the	collection.	This	is	a	read-only	property.

Syntax
Object.Count

The	Count	property	syntax	has	the	following	part.

Part Description
object The	object	collection	created	by	TransientObjectCol

See	Also

TransientObjectCol	Object

Meta	Data	Services	Programming

TransientObjectCol	Add	Method
This	method	is	used	to	add	target	objects	to	an	object	collection.

Syntax
object.Add(reposObj,	objName)

The	Add	method	syntax	has	the	following	parts.

Part Description
object The	object	collection	created	by	TransientObjectCol.
reposObj The	repository	object	to	be	added	to	the	collection.
objName The	name	that	the	new	collection	is	to	use	for	reposObj.

This	parameter	is	optional.

Remarks
Populating	a	TransientObjectCol	is	done	using	the	Add	method	for	each	object
that	you	want	to	add	to	the	collection.

See	Also

TransientObjectCol	Object

TransientObjectCol	Remove	Method

Meta	Data	Services	Programming

TransientObjectCol	Refresh	Method
This	method	has	no	effect.	It	is	included	for	backward	compatibility	only.

Syntax
Call	object.Refresh(milliSecs)

The	Refresh	method	syntax	has	the	following	parts.

Part Description
object The	object	collection	created	by	TransientObjectCol.
milliSecs This	value	is	ignored.	It	is	kept	for	backward

compatibility.

See	Also

TransientObjectCol	Object

Meta	Data	Services	Programming

TransientObjectCol	Remove	Method
This	method	removes	a	specified	object	from	a	transient	object	collection.

Syntax
Call	object.Remove(index)	Call	object.Remove(objName)
Call	object.Remove(objID)

The	Remove	method	syntax	has	the	following	parts.

Part Description
object The	object	collection	created	by	TransientObjectCol.
index The	index	of	the	object	to	be	removed	from	the

collection.	For	more	information,	see	Selecting	Items	in
a	Collection.

objName The	object	that	uses	this	name	for	its	destination	object
is	to	be	removed	from	the	collection.

objID The	object	identifier	of	the	object	to	be	removed	from
the	collection.

Remarks
This	property	removes	a	specific	repository	object	from	the	collection.	You	can
identify	an	object	by	its	position	in	the	collection	(as	indicated	by	the	index)	or
by	identifier.

See	Also

Object	Identifiers	and	Internal	Identifiers

TransientObjectCol	Object

Meta	Data	Services	Programming

TransientObjectCol	Item	Collection
Use	this	property	to	retrieve	an	object	from	the	collection.	This	is	a	read-only
property.	There	are	two	variations	of	this	property.

Syntax
Set	variable		=		object.Item(index)
Set	variable		=		object.Remove(objName)
Set	variable		=		object.Item(objId)

The	Item	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RepositoryObject	or

RepositoryObjectVersion.	It	receives	the	specified
repository	object.

object The	object	collection	created	by	TransientObjectCol.
index The	index	of	the	repository	object	to	be	retrieved	from

the	collection.
objName The	name	of	the	object	to	be	retrieved	from	the

collection.
objId The	object	identifier	of	the	repository	object	to	be

retrieved	from	the	collection.

Remarks
This	property	retrieves	a	specific	repository	object	from	the	collection	by	its
position	in	the	collection	(as	indicated	by	the	index)	or	by	identifier.

See	Also

Object	Identifiers	and	Internal	Identifiers

RepositoryObject	Object

RepositoryObjectVersion	Object

TransientObjectCol	Object

Meta	Data	Services	Programming

Workspace	Object
A	workspace	is	a	repository	object	that	can	provide	a	context	for	your	work	that
is	separate	from	other	work	occurring	in	the	repository.	A	workspace	is	a	subset
of	a	larger,	shared	repository.	Within	a	workspace,	you	can	have	only	one
version	of	any	given	repository	object	at	a	time.

When	to	Use
Use	the	Workspace	object	to	control	the	contents	of	a	workspace.

Properties

Property Description
CheckedOutToWorkspace Always	null,	because	a	workspace	cannot	be

contained	in	or	checked	out	to	another
workspace.

This	property	is	not	a	default	interface
member.

Interface The	specified	object	interface.

This	property	is	not	a	default	interface
member.

InternalID The	internal	object	identifier	of	the	workspace.

This	property	is	not	a	default	interface
member.

IsCheckedOut Always	FALSE,	because	a	workspace	cannot
be	present	in	(or	checked	out	to)	another
workspace.

This	property	is	not	a	default	interface
member.

IsFrozen Always	FALSE,	because	you	cannot	freeze	a
workspace.

This	property	is	not	a	default	interface
member.

Name The	name	of	the	workspace.

This	property	is	not	a	default	interface
member.

Object A	property	used	to	retrieve	a	particular
repository	object.

This	property	is	not	a	default	interface
member.

ObjectID The	object	identifier	of	the	workspace.

This	property	is	not	a	default	interface
member.

MajorDBVersion The	major	version	number	of	the	first
repository	engine	version	that	introduced	this
database	format.

This	property	is	not	a	default	interface
member.

MinorDBVersion The	minor	version	number	of	the	first
repository	engine	version	that	introduced	this
database	format.

This	property	is	not	a	default	interface
member.

PredecessorCreationVersion Always	null,	because	each	workspace	has	only
one	version.

This	property	is	not	a	default	interface
member.

Repository The	open	repository	instance	through	which

this	workspace	was	instantiated.

This	property	is	not	a	default	interface
member.

ResolutionType Always	LATEST_VERSION,	because	each
workspace	has	only	one	version.

This	property	is	not	a	default	interface
member.

RootObject The	root	repository	object	of	the	open
repository.

This	property	is	not	a	default	interface
member.

Transaction The	transaction-processing	interface.

This	property	is	not	a	default	interface
member.

Type An	object	identifier	of	the	type	to	which	this
workspace	conforms.	The	property	is	always
the	object	identifier	of	the	workspace
definition	object	of	the	Repository	Type
Information	Model	(RTIM).

This	property	is	not	a	default	interface
member.

Version Retrieves	the	specified	object	version.

This	property	is	not	a	default	interface
member.

VersionID The	object-version	identifier	of	the	workspace.

This	property	is	not	a	default	interface
member.

VersionInternalID The	internal	object-version	identifier	of	the
workspace.

Methods

Method Description
Checkin Returns	an	error,	because	a	workspace	cannot

be	present	in	(or	checked	out	to)	another
workspace.

This	method	is	not	a	default	interface	member.

Checkout Returns	an	error,	because	a	workspace	cannot
be	present	in	(or	checked	out	to)	another
workspace.

This	method	is	not	a	default	interface	member.

Create Returns	an	error,	because	you	cannot	create	a
new	repository	database	from	within	a
workspace.

This	method	is	not	a	default	interface	member.

CreateObject Creates	a	new	repository	object	in	the	open
repository.

This	method	is	not	a	default	interface	member.

CreateVersion Returns	an	error,	because	each	workspace	has
only	one	version.

This	method	is	not	a	default	interface	member.

Delete Deletes	a	workspace.

This	method	is	not	a	default	interface	member.

FreezeVersion Returns	an	error,	because	you	cannot	freeze	a
workspace.

This	method	is	not	a	default	interface	member.

InternalIDToObjectID Converts	an	internal	identifier	into	an	object

identifier.
InternalIDToVersionID Converts	an	internal	object-version	identifier

into	an	object-version	identifier.

This	method	is	not	a	default	interface	member.

Lock Locks	the	workspace.

This	method	is	not	a	default	interface	member.

MergeVersion Returns	an	error,	because	each	workspace	has
only	one	version.

This	method	is	not	a	default	interface	member.

ObjectIDToInternalID Converts	an	object	identifier	into	an	internal
identifier.

This	method	is	not	a	default	interface	member.

Open Returns	an	error,	because	you	cannot	open	a
new	repository	database	from	within	a
workspace.

This	method	is	not	a	default	interface	member.

Refresh Supports	backward	compatibility	of	the
Refresh	method.	This	method	is	not	used.

This	method	is	not	a	default	interface	member.

Refresh	(from
IRepositoryObjectVersion)

Supports	backward	compatibility	of	the
Refresh	method.	This	method	is	not	used.

This	method	is	not	a	default	interface	member.

VersionIDToInternalID Converts	an	object-version	identifier	into	an
internal	object-version	identifier.

This	method	is	not	a	default	interface	member.

Collections

Collection Description
Checkouts The	collection	of	object	versions	checked	out

to	the	workspace.
Containers A	collection	that	contains	this	workspace.	The

collection	has	only	one	item,	the	root	object.

This	collection	is	not	a	default	interface
member.

Contents The	collection	of	object	versions	present	in	the
workspace.

ObjectVersions The	collection	of	all	the	versions	of	the
repository	object	representing	the	workspace.	It
always	contains	one	item,	because	you	cannot
invoke	CreateVersion	on	a	workspace.

This	collection	is	not	a	default	interface
member.

PredecessorVersions Always	null,	because	you	cannot	invoke
CreateVersion	on	a	workspace.

This	collection	is	not	a	default	interface
member.

Properties The	collection	of	all	properties	that	are
attached	to	the	workspace.

SuccessorVersions Always	null,	because	you	cannot	invoke
CreateVersion	on	a	workspace.

This	collection	is	not	a	default	interface
member.

Workspaces Always	null,	because	a	workspace	cannot	be
contained	in	other	workspaces.

This	collection	is	not	a	default	interface
member.

Meta	Data	Services	Programming

Workspace	CheckedOutToWorkspace	Property
The	property	is	always	null,	because	a	workspace	cannot	be	present	in	(or
checked	out	to)	another	workspace.

Remarks
This	member	is	exposed	by	the	IRepositoryObjectVersion	interface,	which	is	a
nondefault	interface	for	this	object.	Because	of	how	interface	inheritance	works,
this	member	is	made	available	to	the	Workspace	object	by	convention.

See	Also

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	Interface	Property
This	property	obtains	an	alternate	interface	for	the	default	interface	of	the
workspace.	This	is	a	read-only	property.	There	are	three	variations	of	this
property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObjectVersion	interface.
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=		object.Interface(interfaceId)
Set	variable		=		object.Interface(objectId)
Set	variable		=		object.Interface(interfaceName)

The	Interface	property	syntax	has	the	following	parts.

Part Description
variable An	object	variable.	It	receives	the	workspace	with	the

specified	interface	as	the	default	interface.
object An	object	expression	that	evaluates	to	a	Workspace

object.
interfaceId The	interface	identifier	for	the	interface	to	be	retrieved.
objectId The	object	identifier	for	the	interface	definition	to	which

the	interface	you	want	to	retrieve	conforms.
interfaceName A	string	that	contains	the	name	of	the	interface	to	be

retrieved.

See	Also

Object	Identifiers	and	Internal	Identifiers

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	InternalID	Property
This	property	is	the	internal	identifier	that	the	repository	engine	uses	to	refer	to
this	workspace.	Each	workspace	has	an	internal	identifier	that	is	unique	within
the	repository,	but	not	unique	across	repositories.	To	copy	this	property	to
another	variable,	use	a	variable	declared	as	a	Variant.	This	is	a	read-only
property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObjectVersion	interface.
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
object.InternalID

The	InternalID	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	Workspace

object

See	Also

Object	Identifiers	and	Internal	Identifiers

RepositoryObject	ObjectID	Property

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	IsCheckedOut	Property
The	property	is	always	FALSE	because	a	workspace	cannot	be	present	in	(or
checked	out	to)	another	workspace.

Remarks
This	member	is	exposed	by	the	IRepositoryObjectVersion	interface,	which	is	a
nondefault	interface	for	this	object.	Because	of	how	interface	inheritance	works,
this	member	is	made	available	to	the	Workspace	object	by	convention.

See	Also

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	IsFrozen	Property
The	property	is	always	FALSE,	because	you	cannot	freeze	a	workspace.

Remarks
This	member	is	exposed	by	the	IRepositoryObjectVersion	interface,	which	is	a
nondefault	interface	for	this	object.	Because	of	how	interface	inheritance	works,
this	member	is	made	available	to	the	Workspace	object	by	convention.

See	Also

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	MajorDBVersion	Property
This	property	retrieves	the	major	version	number	of	the	first	repository	engine
version	that	introduced	this	database	format.	This	is	a	read-only	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepository2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
variable		=		object.MajorDBVersion

The	MajorDBVersion	property	syntax	has	the	following	parts.

Part Description
variable Declared	as	long.	It	receives	the	database	major	version.
object The	object	that	represents	the	open	repository	instance.

See	Also

IRepository2	Interface

RepositoryObjectVersion	Object

Workspace	MinorDBVersion	Property

Workspace	Object

Meta	Data	Services	Programming

Workspace	MinorDBVersion	Property
This	property	retrieves	the	minor	version	number	of	the	first	repository	engine
version	that	introduced	this	database	format.	This	is	a	read-only	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepository2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
variable		=		object.MinorDBVersion

The	MinorDBVersion	property	syntax	has	the	following	parts.

Part Description
variable Declared	as	long.	It	receives	the	database	minor	version.
object The	object	that	represents	the	open	repository	instance.

See	Also

IRepository2	Interface

Workspace	MajorDBVersion	Property

Workspace	Object

Meta	Data	Services	Programming

Workspace	Name	Property
This	property	is	a	character	string	that	contains	the	name	of	the	workspace.

The	Name	property	is	normally	a	property	of	the	relationship	for	which	this
repository	object	is	the	destination	object.	However,	because	the	Workspace
object	exposes	the	INamedObject	interface,	the	name	retrieved	is	the	value	of
the	Name	property	exposed	by	this	interface.	When	you	set	this	property,	the
repository	engine	sets	two	things:	the	name	property	of	the	INamedObject
interface,	and	the	name	associated	with	every	naming	relationship	in	which	this
workspace	participates	as	the	destination	object.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	INamedObject	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
object.Name

The	Name	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	Workspace

object

Remarks
In	addition	to	the	Name	property	exposed	by	the	INamedObject	interface,	each
workspace	can	have	other	names,	because	each	workspace	has	a	destination
naming	relationship	to	the	root	object.	When	you	retrieve	the	name	of	a
workspace,	the	repository	engine	retrieves	the	value	of	the	name	as	exposed	by
the	INamedObject	interface.	When	you	set	the	name,	the	engine	attempts	to
change	some	or	all	of	the	names	of	the	workspace.

See	Also

Changing	an	Object	Version's	Name

INamedObject	Interface

Workspace	Object

Meta	Data	Services	Programming

Workspace	Object	Property
This	property	retrieves	a	particular	repository	object.	This	is	a	read-only
property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObjectVersion	interface.
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=		object.Object(objectId)

The	Object	property	syntax	has	the	following	parts.

Part Description
variable Declared	as	a	RepositoryObject.	It	receives	the	repository

object.
object The	object	that	represents	the	workspace	through	which

this	program	is	interacting	with	the	repository.
objectId The	object	identifier	for	the	repository	object	to	be

retrieved.

Remarks
The	repository	engine	returns	the	specific	version	of	the	repository	object	that	is
present	in	the	workspace.	If	no	version	of	the	object	is	present	in	the	workspace,
this	property	returns	an	error.

See	Also

RepositoryObject	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	ObjectID	Property
This	property	is	the	object	identifier	for	the	workspace.	Each	workspace	has	an
object	identifier	that	is	unique	across	all	repositories.	This	is	a	read-only
property.	To	copy	this	property	to	another	variable,	use	a	variable	declared	as	a
Variant.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObjectVersion	interface.
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
object.ObjectID

The	ObjectID	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	Workspace

object

See	Also

Object	Identifiers	and	Internal	Identifiers

RepositoryObjectVersion	Object

Repository	ObjectIDToInternalID	Method

Workspace	Object

Meta	Data	Services	Programming

Workspace	PredecessorCreationVersion	Property
The	property	is	always	null,	because	each	workspace	has	only	one	version.

Remarks
This	member	is	exposed	by	the	IRepositoryObjectVersion	interface,	which	is	a
nondefault	interface	for	this	object.	Because	of	how	interface	inheritance	works,
this	member	is	made	available	to	the	Workspace	object	by	convention.

See	Also

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	Repository	Property
This	property	is	the	open	repository	instance	through	which	this	workspace	was
instantiated.	This	is	a	read-only	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObjectVersion	interface.
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=		object.Repository

The	Repository	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	instance	of	the	Repository

class.	It	receives	the	object	that	represents	the	open
repository	instance.

object An	object	expression	that	evaluates	to	a	Workspace
object.

See	Also

Repository	Object

RepositoryObjectVersion	Object

ReposProperty	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	ResolutionType	Property
The	property	is	always	LATEST_VERSION,	because	each	workspace	has	only
one	version.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObjectVersion	interface.
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

See	Also

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	RootObject	Property
This	property	is	the	root	repository	object	for	the	open	repository.	This	is	a	read-
only	property.	The	returned	reference	to	the	root	object	has	the	context	of	the
current	workspace.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepository	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=		object.RootObject

The	RootObject	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RepositoryObject.	It	receives	the

root	repository	object.
object The	object	that	represents	the	workspace	through	which	this

program	is	interacting	with	the	repository.

See	Also

ReposRoot	Object

RepositoryObject	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	Transaction	Property
This	property	is	the	RepositoryTransaction	object	for	the	open	repository
instance.	This	is	a	read-only	property.

Syntax
Set	variable		=		object.Transaction

The	Transaction	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	object.	It	receives	the

RepositoryTransaction	object	for	this	repository
instance.

object The	object	that	represents	the	workspace	through	which
this	program	is	interacting	with	the	repository.

Remarks
You	can	gain	access	to	the	RepositoryTransaction	object	by	using	this	syntax.
Then	you	can	access	the	properties	and	methods	of	the	RepositoryTransaction
object	by	using	the	variable.method	and	variable.property	syntax.	You	can	also
access	the	properties	and	methods	of	the	RepositoryTransaction	object	directly,
using	syntax	similar	to	that	shown	here:

Call	object.Transaction.method

-or-

variable		=		object.Transaction.property

For	more	information	about	the	RepositoryTransaction	object	and	the	methods
and	properties	that	it	provides,	see	RepositoryTransaction	Object.

See	Also

Repository	Transaction	Property

Workspace	Object

Meta	Data	Services	Programming

Workspace	Type	Property
This	property	specifies	the	type	of	the	workspace.	More	specifically,	it	is	the
object	identifier	of	the	workspace	definition	object	of	the	type	information
model.	Type	is	a	read-only	property.	To	copy	this	property	to	another	variable,
use	a	variable	declared	as	a	Variant.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObjectVersion	interface.
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
object.Type

The	Type	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	Workspace

object

Remarks
An	object	in	an	information	model	is	identified	by	its	object	identifier.	The	value
of	an	ObjectID	property	is	used	as	the	value	of	the	Type	property	for	all
repository	objects	that	conform	to	that	object	definition.

See	Also

Object	Identifiers	and	Internal	Identifiers

RepositoryObject	Object

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	Version	Property
This	property	retrieves	a	particular	repository	object	version	from	the
workspace.	This	is	a	read-only	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepository2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=		object.Version(versionId)

The	Version	property	syntax	has	the	following	parts.

Part Description
variable Declared	as	a	RepositoryObjectVersion.	It	receives	the

repository	object	version.
object The	object	that	represents	the	workspace	through	which	this

program	is	interacting	with	the	repository.
versionId The	object-version	identifier	for	the	repository	object	to	be

retrieved.

Remarks
This	method	returns	an	error	if	the	requested	version	is	not	present	in	the
workspace.

See	Also

IRepository2	Interface

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	VersionID	Property
This	property	is	the	object-version	identifier	for	the	workspace.	Each	workspace
has	an	object-version	identifier	that	is	unique	across	all	repositories.	This	is	a
read-only	property.	To	copy	this	property	to	another	variable,	use	a	variable
declared	as	a	Variant.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObjectVersion	interface.
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
object.VersionID

The	VersionID	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	Workspace

object

See	Also

RepositoryObject	InternalID	Property

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	VersionInternalID	Property
This	property	is	the	internal	object-version	identifier	that	the	repository	engine
uses	to	refer	to	this	workspace.	Each	workspace	has	an	internal	object-version
identifier	that	is	unique	within	the	repository,	but	not	unique	across	repositories.
This	is	a	read-only	property.	To	copy	this	property	to	another	variable,	use	a
variable	declared	as	a	Variant.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObjectVersion	interface.
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
object.VersionInternalID

The	VersionInternalID	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	Workspace

object

See	Also

Object	Identifiers	and	Internal	Identifiers

RepositoryObject	ObjectID	Property

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	Checkin	Method
This	method	always	returns	an	error,	because	a	workspace	cannot	be	present	in
(or	checked	out	to)	another	workspace.

Remarks
This	member	is	exposed	by	the	IRepositoryObjectVersion	interface,	which	is	a
nondefault	interface	for	this	object.	Because	of	how	interface	inheritance	works,
this	member	is	made	available	to	the	Workspace	object	by	convention.

See	Also

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	Checkout	Method
This	method	always	returns	an	error,	because	a	workspace	cannot	be	present	in
(or	checked	out	to)	another	workspace.

Remarks
This	member	is	exposed	by	the	IRepositoryObjectVersion	interface,	which	is	a
nondefault	interface	for	this	object.	Because	of	how	interface	inheritance	works,
this	member	is	made	available	to	the	Workspace	object	by	convention.

See	Also

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	Create	Method
This	method	creates	a	new	repository	instance.	When	operating	on	a	workspace,
this	method	always	fails.	To	create	a	new	repository	database,	use	the	Create
method	of	the	Repository	object.

See	Also

Repository	Object

Repository	Create	Method

Workspace	Object

Meta	Data	Services	Programming

Workspace	CreateObject	Method
This	method	creates	a	new	RepositoryObject	of	the	specified	type.	After	you
create	a	new	object,	you	must	include	it	in	the	workspace.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObjectVersion	interface.
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=		object.CreateObject(typeId,	objectId)

The	CreateObject	method	syntax	has	the	following	parts.

Part Description
variable Declared	as	a	RepositoryObject.	It	receives	the	new

repository	object.
object The	object	that	represents	the	workspace	through	which	this

program	is	interacting	with	the	repository.
typeId The	type	of	the	new	object;	that	is,	the	object	identifier	of	the

object	definition	to	which	the	new	object	conforms.
objectId The	object	identifier	to	be	assigned	to	the	new	object.	To	have

the	repository	engine	assign	an	object	identifier	for	you,	pass	in
ObjID_NULL	or	do	not	supply	this	optional	parameter.

Remarks
This	method	creates	a	new	object	in	the	repository,	but	it	does	not	insert	the
newly	created	object	into	the	workspace	in	whose	context	you	are	operating.

This	method	can	only	be	called	from	the	shared	repository	but	not	from	a
workspace.	The	workaround	is	to	create	the	object	through	the	central	repository
and	include	it	in	the	workspace.

See	Also

RepositoryObject	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	CreateVersion	Method
This	method	always	returns	an	error,	because	each	workspace	has	only	one
version.

Remarks
This	member	is	exposed	by	the	IRepositoryObjectVersion	interface,	which	is	a
nondefault	interface	for	this	object.	Because	of	how	interface	inheritance	works,
this	member	is	made	available	to	the	Workspace	object	by	convention.

See	Also

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	Delete	Method
This	method	deletes	the	workspace	from	the	repository.	Any	relationships	that
connect	the	workspace	to	other	objects	are	deleted.	If	the	workspace	is	an	origin
object	of	a	relationship	collection,	and	the	relationship	type	indicates	that	deletes
are	to	be	propagated,	all	destination	objects	are	also	deleted.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObjectVersion	interface.
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
Call	object.Delete

The	Delete	method	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	Workspace

object

See	Also

Propagating	Deletes

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	FreezeVersion	Method
This	method	always	returns	an	error,	because	you	cannot	freeze	a	workspace.

Remarks
This	member	is	exposed	by	the	IRepositoryObjectVersion	interface,	which	is	a
nondefault	interface	for	this	object.	Because	of	how	interface	inheritance	works,
this	member	is	made	available	to	the	Workspace	object	by	convention.

See	Also

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	InternalIDToObjectID	Method
This	method	translates	an	internal	identifier	into	an	object	identifier.	Internal
identifiers	are	used	by	the	repository	engine	to	identify	repository	objects.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepository	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
variable		=		object.InternalIDToObjectID(internalId)

The	InternalIDToObjectID	method	syntax	has	the	following	parts.

Part Description
variable Receives	the	object	identifier
object The	object	that	represents	the	workspace	through

which	this	program	is	interacting	with	the	repository
internalId The	internal	identifier	to	be	converted

Remarks
Repository	object	identifiers	are	globally	unique,	and	are	the	same	across
repositories	for	the	same	object.	Internal	identifiers	are	unique	only	within	the
scope	of	a	single	repository.

The	translation	performed	by	this	method	is	performed	without	loading	the
object	in	question.	This	enables	database	queries	involving	an	object	or
relationship	type	identifier	to	be	constructed	without	having	to	load	the
definition	object.

See	Also

Object	Identifiers	and	Internal	Identifiers

Repository	ObjectIDToInternalID	Method

Workspace	Object

Meta	Data	Services	Programming

Workspace	InternalIDToVersionID	Method
This	method	translates	an	internal	object-version	identifier	into	an	object-version
identifier.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepository	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
variable		=		object.InternalIDToVersionID(internalVersionId)

The	InternalIDToVersionID	method	syntax	has	the	following	parts.

Part Description
variable Receives	the	object-version	identifier
object The	object	that	represents	the	current	workspace

through	which	this	program	is	interacting	with	the
repository

internalVersionId The	internal	object-version	identifier	to	be	converted

Remarks
Repository	object-version	identifiers	are	globally	unique,	and	they	are	the	same
across	repositories	for	the	same	object	version.	Internal	object-version	identifiers
are	unique	only	within	the	scope	of	a	single	repository.

The	translation	performed	by	this	method	is	performed	without	loading	the
object-version	in	question.	This	enables	database	queries	involving	an	object	or
relationship	type	identifier	to	be	constructed	without	having	to	load	the
definition	object.

See	Also

Object	Identifiers	and	Internal	Identifiers

Repository	ObjectIDToInternalID	Method

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	Lock	Method
This	method	locks	the	workspace.	Locking	the	workspace	prevents	other
processes	from	locking	the	object	describing	the	workspace	while	you	are
working	with	it.	The	lock	is	released	when	you	end	the	current	transaction.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObjectVersion	interface.
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
Call	object.Lock

The	Lock	method	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	Workspace

object

See	Also

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	MergeVersion	Method
This	method	always	returns	an	error,	because	there	is	only	one	version	of	each
workspace.

Remarks
This	member	is	exposed	by	the	IRepositoryObjectVersion	interface,	which	is	a
nondefault	interface	for	this	object.	Because	of	how	interface	inheritance	works,
this	member	is	made	available	to	the	Workspace	object	by	convention.

See	Also

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	ObjectIDToInternalID	Method
This	method	translates	an	object	identifier	into	an	internal	identifier.	Internal
identifiers	are	used	by	the	repository	engine	to	identify	repository	objects.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObjectVersion	interface.
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
variable		=		object.ObjectIDToInternalID(objectId)

The	ObjectIDToInternalID	method	syntax	has	the	following	parts.

Part Description
variable Receives	the	internal	identifier
object The	object	that	represents	the	workspace	through

which	this	program	is	interacting	with	the	repository
objectId The	object	identifier	to	be	converted

Remarks
Repository	object	identifiers	are	globally	unique,	and	are	the	same	across
repositories	for	the	same	object.	Internal	identifiers	are	unique	only	within	the
scope	of	a	single	repository.

The	translation	performed	by	this	method	is	performed	without	loading	the
object	in	question.	This	enables	database	queries	involving	an	object	or
relationship	type	identifier	to	be	constructed	without	having	to	load	the
definition	object.

See	Also

Object	Identifiers	and	Internal	Identifiers

Repository	InternalIDToObjectID	Method

Workspace	Object

Meta	Data	Services	Programming

Workspace	Open	Method
This	method	connects	to	a	repository	database.	When	operating	on	a	workspace,
this	method	always	fails.

To	open	(connect	to)	a	repository,	use	the	Open	method	of	the	Repository
object.

Remarks
This	member	is	exposed	by	the	IRepositoryObjectVersion	interface,	which	is	a
nondefault	interface	for	this	object.	Because	of	how	interface	inheritance	works,
this	member	is	made	available	to	the	Workspace	object	by	convention.

See	Also

Repository	Create	Method

Workspace	Object

Meta	Data	Services	Programming

Workspace	Refresh	Method
This	method	refreshes	all	cached	data	for	the	open	repository	instance.	Only
cached	data	that	has	not	been	changed	by	the	current	process	is	refreshed.	Even
though	you	are	operating	within	the	context	of	a	workspace,	this	method
refreshes	all	cached	data	for	the	open	repository	instance,	including	cached	data
not	present	in	the	workspace.

Syntax
Call	object.Refresh(milliseconds)

The	Refresh	method	syntax	has	the	following	parts.

Part Description
object The	object	that	represents	the	workspace	through	which	this

program	is	interacting	with	the	repository
milliseconds This	value	is	ignored

See	Also

Workspace	Object

Meta	Data	Services	Programming

Workspace	Refresh	(from	IRepositoryObjectVersion)
Method
This	method	refreshes	the	cached	image	of	the	repository	object	that	describes
the	workspace.	Only	cached	data	that	has	not	been	changed	by	the	current
process	is	refreshed.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryObjectVersion	interface.
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

Syntax
Call	object.Refresh(milliSecs)

The	Refresh	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	Workspace

object
milliSecs This	value	is	ignored

See	Also

Workspace	Object

Meta	Data	Services	Programming

Workspace	VersionIDToInternalID	Method
This	method	translates	an	object-version	identifier	into	an	internal	object-version
identifier.	Internal	object-version	identifiers	are	used	by	the	repository	engine	to
identify	repository	object	versions.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepository2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
variable		=		object.VersionIDToInternalID(versionId)

The	VersionIDToInternalID	method	syntax	has	the	following	parts.

Part Description
variable Receives	the	internal	identifier
object The	object	that	represents	the	workspace	through	which

this	program	is	interacting	with	the	repository
versionId The	object-version	identifier	to	be	converted

Remarks
Repository	object-version	identifiers	are	globally	unique,	and	they	are	the	same
across	repositories	for	the	same	object	version.	Internal	object-version	identifiers
are	unique	only	within	the	scope	of	a	single	repository.

The	translation	performed	by	this	method	is	performed	without	loading	the
object	version	in	question.	This	enables	database	queries	involving	an	object	or
relationship	type	identifier	to	be	constructed	without	having	to	load	the
definition	object.

See	Also

IRepository2	Interface

Object	Identifiers	and	Internal	Identifiers

Repository	InternalIDToObjectID	Method

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	Checkouts	Collection
This	collection	contains	all	repository	object	versions	checked	out	to	the
workspace.

Syntax
Set	variable		=		object.Checkouts(index)
Set	variable		=		object.Checkouts(objectID)

The	Checkouts	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RepositoryObjectVersion	object.	It

receives	the	specified	object	version.
object An	object	expression	that	evaluates	to	a	Workspace	object.
index An	integer	index	that	identifies	which	item	in	the	collection	is

to	be	addressed.	The	valid	range	is	from	one	to	the	number	of
elements	in	the	collection.	The	number	of	elements	in	the
collection	is	specified	by	object.Checkouts.Count.	For	more
information,	see	Selecting	Items	in	a	Collection.

objectID An	object	identifier	of	the	object	version	checked	out	to	the
workspace.

See	Also

Object	Identifiers	and	Internal	Identifiers

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	Containers	Collection
This	collection	specifies	the	root	object	that	contains	this	workspace.	Although
the	maximum	size	of	the	collection	is	defined	as	unlimited,	the	collection	always
contains	one	object.	This	is	because	there	is	only	one	root	object,	and	only	the
root	object	can	contain	workspaces.

Syntax
Set	variable		=		object.Containers(index)

The	Containers	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposRoot	object	or	as	any	object

that	supports	the	IWorkspaceContainer	interface.	It	receives
the	object	containing	the	interface.

object The	object	that	represents	a	Workspace	object.
index An	integer	index	that	identifies	which	element	in	the	collection

is	to	be	addressed.	This	value	must	be	one,	because	in	this
release,	the	root	object	is	the	only	object	that	implements	the
IWorkspaceContainer	interface.	For	more	information,	see
Selecting	Items	in	a	Collection.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

WsContainer_Contains_WorkspaceThis	is	the	type	of
relationship	by	which
all	items	of	the
collection	are
connected	to	a

common	source
object.

Source	Is
Origin

No The	source	object	for
the	collection	is	not
the	same	as	the
origin	object.

Minimum
Collection
Size

One The	minimum
number	of	items	that
must	be	contained	in
the	collection	is	one.

Maximum
Collection
Size

Many The	maximum
number	of	items	that
can	be	contained	in
the	collection	is
unlimited.

Sequenced
Collection

No As	a	destination
collection,	this	does
not	have	an	explicitly
defined	sequence.
Collections	of	origin
objects	are	never
sequenced.

Deletes
Propagated

No Deleting	an	origin
object	or	a
relationship	in	the
collection	does	not
cause	the	deletion	of
a	corresponding
destination	object.

Destinations
Named

No The	relationship	type
for	the	collection
does	not	permit	the
naming	of
destination	objects.

Case-sensitive
Names

Not	applicable Case-sensitive
naming	is	not

applicable	for	this
collection.

Unique	Names Not	applicable Unique	naming	is	not
applicable	for	this
collection.

See	Also

ClassDef	Object

InterfaceDef	Object

ReposRoot	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	Contents	Collection
This	collection	contains	all	repository	object	versions	present	in	the	workspace.

Syntax
Set	variable		=		object.Contents(index)
Set	variable		=		object.Contents(objectID)

The	Contents	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RepositoryObjectVersion	object.

It	receives	the	specified	object	version.
object An	object	expression	that	evaluates	to	a	Workspace

object.
index An	integer	index	that	identifies	which	item	in	the

collection	is	to	be	addressed.	The	valid	range	is	from	one
to	the	number	of	elements	in	the	collection.	The	number	of
elements	in	the	collection	is	specified	by
object.Contents.Count.	For	more	information,	see
Selecting	Items	in	a	Collection.

objectID An	object	identifier	of	the	object	version	present	in	the
workspace.

See	Also

Object	Identifiers	and	Internal	Identifiers

RepositoryObjectVersion

Workspace	Object

Meta	Data	Services	Programming

Workspace	ObjectVersions	Collection
This	collection	contains	all	RepositoryObjectVersion	objects	that	are	versions
of	the	same	repository	object.

Syntax
Set	variable		=		object.ObjectVersions

The	ObjectVersions	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	VersionCol	object.	It	receives

a	reference	to	the	Versions-of-Object	collection.
object An	object	expression	that	evaluates	to	a	Workspace

object.

Remarks
Each	Workspace	object	has	only	one	version	(because	you	cannot	invoke	the
CreateVersion	method	on	a	workspace).	Thus,	this	collection	always	contains
only	one	item.

See	Also

Relationship	Object

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	PredecessorVersions	Collection
This	collection	contains	all	RepositoryObjectVersion	objects	that	are
immediate	predecessors	of	the	current	object	version.

Syntax
Set	variable		=		object.PredecessorVersions

The	PredecessorVersions	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	VersionCol	object.	It	receives

a	reference	to	the	Predecessor-Versions	collection.
object An	object	expression	that	evaluates	to	a	Workspace

object.

Remarks
Each	Workspace	object	has	only	one	version	(because	you	cannot	invoke	the
CreateVersion	method	on	a	workspace).	Thus,	this	collection	is	always	null.

See	Also

RepositoryObjectVersion	Object

Version	Graph

Workspace	Object

Meta	Data	Services	Programming

Workspace	Properties	Collection
This	collection	contains	all	persistent	properties	and	collections	that	are	attached
to	an	object	through	a	particular	interface.	The	Workspace	object	exposes	three
separate	Properties	collections.	These	collections	are	exposed	by:

The	IWorkspace	interface	(the	default).

The	IRepositoryObjectVersion	interface.

The	INamedObject	interface.

Syntax

Set	variable		=		object.Properties(index)

The	Properties	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposProperty	object.	It	receives

the	specified	property.
object An	object	expression;	it	evaluates	to	an	object	that	exposes

IWorkspace,	IRepositoryObjectVersion,	or
INamedObject	as	the	default	interface.

index An	integer	index	that	identifies	which	property	in	the
collection	is	to	be	addressed.	The	valid	range	is	from	one	to
the	number	of	elements	in	the	collection.	The	number	of
elements	in	the	collection	is	specified	by
object.Properties.Count.

Remarks
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the

default	interface,	see	Accessing	Automation	Object	Members.

See	Also

INamedObject	Interface

RepositoryObjectVersion	Object

ReposProperty	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	SuccessorVersions	Collection
This	collection	contains	all	RepositoryObjectVersion	objects	that	are
immediate	predecessors	of	the	current	object	version.

Syntax
Set	variable		=		object.SuccessorVersions

The	SuccessorVersions	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	VersionCol	object.	It	receives	a

reference	to	the	Predecessor-Versions	collection.
object An	object	expression	that	evaluates	to	a	Workspace	object.

Remarks
Each	Workspace	object	has	only	one	version	(because	you	cannot	invoke	the
CreateVersion	method	on	a	workspace).	Thus,	this	collection	is	always	null.

See	Also

Relationship	Object

RepositoryObjectVersion	Object

Version	Graph

VersionCol	Object

Workspace	Object

Meta	Data	Services	Programming

Workspace	Workspaces	Collection
This	collection	is	always	empty,	because	workspaces	are	not	contained	by	other
workspaces.

Remarks
This	member	is	exposed	by	the	IRepositoryObjectVersion	interface,	which	is	a
nondefault	interface	for	this	object.	Because	of	how	interface	inheritance	works,
this	member	is	made	available	to	the	Workspace	object	by	convention.

See	Also

RepositoryObjectVersion	Object

Workspace	Object

Meta	Data	Services	Programming

VersionCol	Object
A	version	collection	is	a	collection	of	object	versions.	You	can	establish	several
different	kinds	of	version	collections.

When	to	Use
Use	the	VersionCol	object	to	manage	the	contents	of	a	workspace,	to	manage
the	target	object	versions	of	a	versioned	relationship,	to	navigate	an	object's
version	graph,	or	to	manipulate	all	the	versions	of	a	particular	object.

Properties

Property Description
Count The	count	of	the	number	of	object	versions	in	the

collection
Item Retrieves	the	specified	object	version	from	the

collection

Methods

Method Description
Add Adds	an	object	version	to	the	collection
Refresh Refreshes	the	cached	image	of	the	collection
Remove Removes	an	object	version	from	the	collection

See	Also

Kinds	of	Version	Collections

RelationshipCol	Insert	Method

RelationshipCol	Move	Method

RelationshipCol	Source	Property

RelationshipCol	Type	Property

Meta	Data	Services	Programming

VersionCol	Count	Property
This	property	is	a	long	integer	that	contains	the	count	of	the	number	of	items	in
the	collection.	This	is	a	read-only	property.

Syntax
object.Count

The	Count	property	syntax	has	the	following	part.

Part Description
object The	version	collection

See	Also

VersionCol	Object

Meta	Data	Services	Programming

VersionCol	Item	Property
This	property	retrieves	an	item	from	the	collection.	This	is	a	read-only	property.
There	are	three	variations	of	this	property.

Syntax
Set	variable		=		object.Item(index)
Set	variable		=		object.Item(objectId)
Set	variable		=		object.Item(objectVersionId)

The	Item	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RepositoryObjectVersion,	or

as	any	object	that	implements	the
IrepositoryObjectVersion	interface.	It	receives	the
item.

object The	version	collection.
index The	index	of	the	item	to	be	retrieved	from	the	collection.
objectId The	object	identifier	for	the	object	version	or	workspace

to	be	retrieved	from	the	collection.	You	can	supply	an
objectID	only	for	the	Versions-of-Workspace
collection,	the	Workspaces-of-Version	collection,	or	the
Checkouts-of-Workspace	collection.

objectVersionId The	object-version	identifier	for	the	item	to	be	retrieved
from	the	collection.	You	can	supply	an	objectVersionID
for	any	version	collection.

See	Also

Accessing	Automation	Object	Members

Kinds	of	Version	Collections

VersionCol	Object

Meta	Data	Services	Programming

VersionCol	Add	Method
This	method	adds	a	new	item	to	a	relationship	collection,	when	the	sequencing
of	relationships	in	the	collection	is	not	important.	The	new	relationship	connects
the	reposObj	object	version	to	the	source	object	version	of	the	collection.	The
new	relationship	is	passed	back	to	the	caller.

Syntax
Set	variable		=		object.Add(reposVersion)

The	Add	method	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RepositoryObjectVersion

object.	It	receives	the	object	version	that	is	added	to	the
collection.

object The	version	collection.
reposVersion The	Repository	object	version	to	be	added	to	the

collection.

Remarks
There	are	many	different	kinds	of	object-version	collections.	You	can	apply	the
Add	method	to	some	of	them,	but	not	to	others.	This	method	succeeds	for:

TargetVersions	collections.	You	can	use	this	method	to	enlarge	the	set
of	versions	of	a	particular	target	object	that	are	related	to	a	particular
source	object.

Contents	collections.	You	can	use	this	method	to	add	an	object	version
to	the	set	of	items	contained	in	the	workspace.

This	method	fails	for:

Predecessors	collection.	To	enlarge	an	object	version's	set	of

predecessors,	use	the	MergeVersion	method	of	the
RepositoryObjectVersion	object.

Successors	collection.	To	enlarge	an	object	version's	set	of	successors,
use	the	CreateVersion	method	of	the	RepositoryObjectVersion	object.

ObjectVersions	collection.	To	enlarge	an	object's	set	of	versions,	use
the	CreateVersion	method	of	the	RepositoryObjectVersion	object.

Workspaces	collection.	To	enlarge	the	set	of	workspaces	to	which	an
item	belongs,	you	add	the	object	version	to	a	workspace,	rather	than	add
a	workspace	to	an	object	version.	In	other	words,	you	use	the	Add
method	of	the	VersionCol	object,	but	the	version	collection	you	are
manipulating	is	the	Versions-of-Workspace	collection,	not	the
Workspaces-of-Version	collection.

Checkouts	collection.	To	check	out	another	item	to	a	workspace,	use
the	Checkout	method	of	the	Workspace	object.

See	Also

Kinds	of	Version	Collections

Meta	Data	Services	Programming

VersionCol	Refresh	Method
This	method	refreshes	the	cached	image	of	the	version	collection.	Only	cached
data	that	has	not	been	changed	by	the	current	process	is	refreshed.

Syntax
Call	object.Refresh(milliSecs)

The	Refresh	method	syntax	has	the	following	parts.

Part Description
object The	version	collection.
milliSecs This	value	is	ignored.

See	Also

VersionCol	Object

Meta	Data	Services	Programming

VersionCol	Remove	Method
This	method	deletes	an	object	version	from	a	version	collection.

Syntax
Call	object.Remove(index)
Call	object.Remove(objectId)
Call	object.Remove(objectVersionId)

The	Remove	method	syntax	has	the	following	parts.

Part Description
object The	version	collection.
index The	index	of	the	item	to	be	removed	from	the	collection.
objectID The	object	identifier	for	the	object	version	or	workspace

to	be	removed	from	the	collection.	You	can	supply	an
objectID	only	for	the	Versions-of-Workspace
collection,	the	Workspaces-of-Version	collection,	or	the
Checkouts-of-Workspace	collection.

objectVersionID The	object-version	identifier	for	the	item	to	be	removed
from	the	collection.	You	can	supply	an	objectVersionID
for	any	version	collection.

Remarks
There	are	many	different	kinds	of	object-version	collections.	You	can	apply	this
method	to	some	of	them,	but	not	to	others.	The	Remove	method	works	for:

Target-Versions	collections.	You	can	use	this	method	to	reduce	the	set
of	versions	of	a	particular	target	object	that	are	related	to	a	particular
source	object.

Versions-of-Workspace	collections.	You	can	use	this	method	to

remove	an	object	version	to	the	set	of	items	contained	in	the	workspace.

This	method	fails	for:

Predecessor-Versions	collections.	To	enlarge	an	object	version's	set	of
predecessors,	use	the	MergeVersion	method	of	the
RepositoryObjectVersion	object.

Successor-Versions	collections.	To	enlarge	an	object	version's	set	of
successors,	use	the	CreateVersion	method	of	the
RepositoryObjectVersion	object.

Versions-of-Object	collections.	To	enlarge	an	object's	set	of	versions,
use	the	CreateVersion	method	of	the	RepositoryObjectVersion	object.

Workspaces-of-Version	collections.	To	remove	a	workspace	from	the
set	of	workspaces	in	which	an	object	version	is	present,	you	must
explicitly	remove	the	object	version	from	that	workspace's	Versions-of-
Workspace	collection.

Checkouts-of-Workspace	collections.	To	reduce	the	number	of	items
checked	out	to	a	workspace,	use	the	Checkin	method	of	the	Workspace
object.

See	Also

Kinds	of	Version	Collections

VersionCol	Object

Meta	Data	Services	Programming

VersionedRelationship	Object
A	relationship	connects	two	repository	objects	in	a	repository	database.	A
relationship	has	an	origin	object,	a	destination	object,	and	a	set	of	properties.
Each	relationship	conforms	to	a	particular	relationship	type.	You	can	version	a
relationship	using	this	object.

When	to	Use
Use	the	VersionedRelationship	object	to	manipulate	the	properties	of	a
versioned	relationship,	to	delete	a	versioned	relationship,	or	to	refresh	the	cached
image	of	a	versioned	relationship.

Properties

Property Description
Destination The	destination	object	of	the	relationship
Interface The	specified	object	interface
Name The	name	of	the	relationship's	destination	object
Origin The	origin	object	of	the	relationship
Repository The	open	repository	instance	through	which	this

relationship	was	instantiated
Source The	source	object	of	the	relationship
Target The	target	object	of	the	relationship
Type The	type	of	the	relationship

Methods

Method Description
Delete Deletes	a	relationship
Lock Locks	the	relationship
Pin Establishes	a	particular	item	in	the	TargetVersions

collection	as	the	pinned	target	version	of	the

relationship
Unpin Ensures	that	no	item	in	the	TargetVersions	collection

is	pinned

Collections

Collection Description
Properties The	collection	of	all	of	the	properties	that	are	attached

to	the	relationship
TargetVersions The	collection	of	all	versions	of	the	target	object	that	are

related	to	the	source	object	version	of	the	relationship

See	Also

Relationship	Object

Versioning	Objects

Meta	Data	Services	Programming

VersionedRelationship	Destination	Property
This	property	is	the	destination	object	of	the	current	version	of	the	relationship.
This	is	a	read-only	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRelationship	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=		object.Destination

The	Destination	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RepositoryObjectVersion.	It

receives	the	destination	object	for	the	relationship.
object An	object	expression	that	evaluates	to	a

VersionedRelationship	object.

Remarks
If	the	object	is	a	destination	versioned	relationship,	this	property	is	equivalent	to
the	Source	property.	If	the	object	is	an	origin	versioned	relationship,	this
property	is	equivalent	to	the	Target	property.

See	Also

IRelationship	Interface

Relationship	Object

VersionedRelationship	Object

VersionedRelationship	Source	Property

VersionedRelationship	Target	Property

Meta	Data	Services	Programming

VersionedRelationship	Interface	Property
This	property	obtains	a	view	of	the	VersionedRelationship	object	that	uses	an
alternate	interface	as	the	default	interface.	This	is	a	read-only	property.	There	are
three	variations	of	this	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryItem	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=		object.Interface(interfaceId)
Set	variable		=		object.Interface(objectId)
Set	variable		=		object.Interface(interfaceName)

The	Interface	property	syntax	has	the	following	parts.

Part Description
variable An	object	variable.	It	receives	the	relationship	object

with	the	specified	interface	as	the	default	interface.
object An	object	expression	that	evaluates	to	a

VersionedRelationship	object.
interfaceId The	interface	identifier	for	the	interface	to	be	retrieved.
objected The	object	identifier	for	the	interface	definition	to	which

the	interface	to	be	retrieved	conforms.
interfaceName A	string	containing	the	name	of	the	interface	to	be

retrieved.

Remarks
Because	the	VersionedRelationship	class	implements	a	limited	set	of	interfaces,
the	input	parameter	you	supply	must	specify	one	of	the	following	interfaces:

IVersionedRelationship,	IRelationship,	IRepositoryItem,
IRepositoryDispatch,	or	IAnnotationalProperties.

See	Also

IAnnotationalProps	Interface

IRelationship	Interface

IRepositoryDispatch	Interface

IRepositoryItem	Interface

IVersionedRelationship	Interface

Relationship	Object

VersionedRelationship	Object

Meta	Data	Services	Programming

VersionedRelationship	Name	Property
This	property	is	a	character	string	that	contains	the	name	that	the	relationship
assigns	to	the	destination	object.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryItem	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
object.Name

The	Name	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

VersionedRelationship	object

Remarks
A	relationship's	name	is	the	name	by	which	the	origin	object	version	refers	to
every	destination	object	version	in	its	TargetVersions	collection.	When	you
access	or	set	the	Name	property	for	an	origin	versioned	relationship,	it	is	this
name	that	the	repository	engine	retrieves	or	sets	for	you.

When	you	access	or	set	the	Name	property	for	a	destination	versioned
relationship,	the	repository	engine	takes	a	different	action.	For	more	information,
see	Changing	a	Destination	Relationship's	Name.

See	Also

INamedObject	Interface

IRepositoryItem	Interface

Relationship	Object

VersionedRelationship	Object

Meta	Data	Services	Programming

VersionedRelationship	Origin	Property
This	property	is	the	origin	object	of	the	current	version	of	the	relationship.	This
is	a	read-only	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRelationship	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=		object.Origin

The	Origin	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RepositoryObjectVersion

object.	It	receives	the	origin	object	version	for	the
relationship.

object An	object	expression	that	evaluates	to	a
VersionedRelationship	object.

Remarks
If	the	object	is	an	origin	versioned	relationship,	this	property	is	equivalent	to	the
VersionedRelationship	Source	property.	If	the	object	is	a	destination	versioned
relationship,	this	property	is	equivalent	to	the	VersionedRelationship	Target
property.

See	Also

IRelationship	Interface

Relationship	Object

VersionedRelationship	Object

VersionedRelationship	Source	Property

VersionedRelationship	Target	Property

Meta	Data	Services	Programming

VersionedRelationship	Repository	Property
This	property	is	the	open	repository	instance	or	workspace	through	which	this
relationship	was	instantiated.	This	is	a	read-only	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryItem	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=		object.Repository

The	Repository	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	reference	to	any	object

implementing	the	IRepository	interface.	It	receives	the
object	that	represents	the	open	repository	instance	or	the
workspace.

object An	object	expression	that	evaluates	to	a
VersionedRelationship	object.

Remarks
This	method	returns	a	reference	to	either	a	Repository	object	or	a	Workspace
object.	If	it	returns	a	Workspace	object,	you	are	manipulating	the	item	within
the	context	of	that	workspace.	If	it	returns	a	Repository	object,	you	are
manipulating	the	item	not	within	the	context	of	a	workspace,	but	within	the
context	of	a	shared	Repository	instance.

See	Also

IRepositoryItem	Interface

Relationship	Object

VersionedRelationship	Object

Meta	Data	Services	Programming

VersionedRelationship	Source	Property
This	property	is	the	source	object	of	the	current	version	of	the	relationship.	This
is	a	read-only	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRelationship	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=		object.Source

The	Source	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RepositoryObjectVersion.	It

receives	the	source	object	version	for	the	relationship.
object An	object	expression	that	evaluates	to	a

VersionedRelationship	object.

See	Also

IRelationship	Interface

Relationship	Object

VersionedRelationship	Object

Meta	Data	Services	Programming

VersionedRelationship	Target	Property
This	property	is	the	target	object	of	the	current	version	of	the	relationship.	This
is	a	read-only	property.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRelationship	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=		object.Target

The	Target	property	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RepositoryObjectVersion.	It

receives	the	target	object	version	for	the	relationship.
object An	object	expression	that	evaluates	to	a

VersionedRelationship	object.

Remarks
A	versioned	relationship	can	have	a	TargetVersions	collection	containing	the	set
of	object	versions	related	(through	the	versioned	relationship)	to	the	source
object	version.	The	repository	engine	follows	a	resolution	strategy	to	select	a
specific	object	version	to	return.

See	Also

IRelationship	Interface

Relationship	Object

Resolution	Strategy	for	Objects	and	Object	Versions

VersionedRelationship	Object

Meta	Data	Services	Programming

VersionedRelationship	Type	Property
This	property	specifies	the	type	of	the	versioned	relationship.	More	specifically,
it	is	the	object	identifier	of	the	relationship	definition	object	for	the	versioned
relationship.	Type	is	a	read-only	property.	To	copy	this	property	to	another
variable,	use	a	variable	that	is	declared	as	a	Variant.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryItem	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
object.Type

The	Type	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

VersionedRelationship	object

See	Also

IRepositoryItem	Interface

Relationship	Object

VersionedRelationship	Object

Meta	Data	Services	Programming

VersionedRelationship	Delete	Method
This	method	deletes	a	relationship	from	its	relationship	collection.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryItem	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Call	object.Delete

The	Delete	method	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

VersionedRelationship	object

Remarks
If	the	item	to	be	deleted	is	an	origin	versioned	relationship,	this	method	fails
unless	the	source	object	version	satisfies	the	basic	requirements	for	changing	an
object	version.	Assuming	the	source	object	version	can	be	changed,	the
repository	engine	deletes	the	entire	relationship	(rather	than	merely	removing
one	item	from	the	TargetVersions	collection	of	the	relationship).	In	other	words,
after	this	method	finishes,	no	version	of	the	destination	object	remains	related	to
the	origin	object	version.	Furthermore,	if	the	relationship	is	a	delete-propagating
relationship,	the	repository	engine	considers	performing	one	or	more	propagated
deletions.

If	the	item	to	be	deleted	is	a	destination	versioned	relationship,	the	repository
engine	follows	a	resolution	strategy	to	yield	a	single	origin	object	version	from
the	TargetVersions	collection	of	the	relationship.	If	that	origin	object	version
cannot	be	changed	(that	is,	if	it	does	not	satisfy	the	requirements	for	changing	an
object	version),	this	method	fails.	Assuming	that	the	origin	object	version	can	be

changed,	the	repository	engine	removes	it	from	the	TargetVersions	collection	of
the	relationship.	Furthermore,	if	the	relationship	is	a	delete-propagating
relationship,	the	repository	engine	considers	performing	one	or	more	propagated
deletions.

For	more	information,	see	Propagating	Deletes.

See	Also

IRepositoryItem	Interface

Relationship	Object

Requirements	for	Changing	an	Object-Version

Resolution	Strategy	for	Objects	and	Object	Versions

VersionedRelationship	Object

Meta	Data	Services	Programming

VersionedRelationship	Lock	Method
This	method	locks	the	versioned	relationship.	Locking	the	relationship	prevents
other	processes	from	locking	the	relationship	while	you	are	working	with	it.	The
lock	is	released	when	you	end	the	current	transaction.

This	method	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IRepositoryItem	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Call	object.Lock

The	Lock	method	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a

VersionedRelationship	object

See	Also

IRepositoryItem	Interface

Relationship	Object

VersionedRelationship	Object

Meta	Data	Services	Programming

VersionedRelationship	Pin	Method
This	method	marks	a	particular	version	of	the	target	object	as	the	pinned	version.

Syntax
Call	object.Pin(objectVersion)

The	Pin	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a

VersionedRelationship	object
objectVersion The	Repository	object	version	to	be	pinned

Remarks
The	objectVersion	you	supply	must	be	a	member	of	the	versioned	relationship's
TargetVersions	collection.

Remember	that	no	versioned	relationship	can	have	more	than	one	pinned	target
object	version.	If	the	relationship	already	has	a	pinned	target	object	version,	it
becomes	unpinned	when	you	call	this	method,	and	the	objectVersion	you	supply
becomes	the	pinned	target	object	version.

If	the	relationship	is	a	destination	relationship,	the	Pin	method	fails.

If	the	origin	of	the	relationship	is	unchangeable,	the	Pin	method	fails.

See	Also

Relationship	Object

VersionedRelationship	Object

Meta	Data	Services	Programming

VersionedRelationship	Unpin	Method
This	method	ensures	that	the	versioned	relationship	has	no	pinned	version.

Syntax
Call	object.Unpin

The	Unpin	method	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	Versioned

Relationship	object

Remarks
If	the	relationship	is	a	destination	relationship,	the	Unpin	method	fails.

If	the	origin	of	the	relationship	is	unchangeable,	the	Pin	method	fails.

See	Also

Relationship	Object

VersionedRelationship	Object

Meta	Data	Services	Programming

VersionedRelationship	Properties	Collection
This	collection	contains	all	of	the	stored	properties	and	collections	that	are
attached	to	an	object	through	a	particular	interface.	The	VersionedRelationship
object	exposes	two	separate	properties	collections.	These	collections	are	exposed
by:

The	IVersionedRelationship	interface	(the	default).

The	IAnnotationalProps	interface.

Syntax

Set	variable		=		object.Properties(index)

The	Properties	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposProperty	object.	It

receives	the	specified	property.
object An	object	expression.	It	evaluates	to	an	object	that

exposes	IVersionedRelationship	or
IAnnotationalProps	as	the	default	interface.

index An	integer	index	that	identifies	which	property	in	the
collection	is	to	be	addressed.	The	valid	range	is	from	one
to	the	number	of	elements	in	the	collection.	The	number
of	elements	in	the	collection	is	specified	by
object.Properties.Count.

Remarks
For	more	information	about	how	to	access	a	member	of	an	interface	that	is	not
the	default	interface,	see	Accessing	Automation	Object	Members.

See	Also

Relationship	Object

ReposProperty	Object

VersionedRelationship	Object

Meta	Data	Services	Programming

VersionedRelationship	TargetVersions	Collection
This	collection	contains	all	of	the	RepositoryObjectVersion	objects	that	are
related	to	the	source	object	version	through	the	versioned	relationship.

Syntax
Set	variable		=		object.TargetVersions

The	Properties	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	VersionCol	object.	It	receives	a

reference	to	the	TargetVersions	collection.
object An	object	expression	that	evaluates	to	a

VersionedRelationship	object.

See	Also

Relationship	Object

ReposProperty	Object

VersionedRelationship	Object

Meta	Data	Services	Programming

RTIM	Automation	Objects
This	section	introduces	the	Repository	Type	Information	Model	(RTIM)	objects,
which	are	used	to	create	or	extend	information	models.

These	objects	work	with	the	repository	engine	automation	objects	that	are	used
to	drive	the	repository	engine.	The	repository	engine	objects	are	listed	separately.
For	more	information,	see	Repository	Engine	Automation	Objects.

The	following	table	lists	RTIM	Automation	objects	in	alphabetical	order.

Object Description
Alias	Object Defines	a	derived	property	that	is

based	on	another	property	without
changing	the	meaning	of	underlying
property

ClassDef	Object Adds	interfaces	to	a	class
CollectionDef	Object Defines	how	instances	of	a	particular

type	of	collection	will	behave
EnumerationDef	Object Represents	an	association	of

enumerated	values
EnumerationValueDef	Object Represents	a	single	member	of	an

enumeration	value	set
InterfaceDef	Object Defines	an	interface	object,	including

its	properties	and	members
MethodDef	Object Defines	a	method	object
ParameterDef	Object Defines	a	parameter	object
PropertyDef	Object Defines	a	property	object
RelationshipDef	Object Defines	a	relationship	object
ReposRoot	Object Defines	the	starting	point	in	a

repository	for	both	type	information
and	object	instance	data	navigation

ReposTypeLib	Object Defines	an	information	model	in	a
repository	database

ScriptDef	Object Represents	a	Microsoft®	ActiveX®
script	that	you	can	associate	with	a
method	or	property	definition

See	Also

Automation	Reference

Information	Models

Repository	API	Reference

Repository	Engine

Repository	Object	Architecture

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Meta	Data	Services	Programming

Alias	Object
An	Alias	object	supports	member	delegation	of	property	definitions.	You	can	use
the	Alias	object	to	define	a	derived	property	that	is	based	on	another	property
without	changing	the	meaning	of	underlying	property.

An	Alias	object	is	also	a	RepositoryObject	and	a	RepositoryObjectVersion
object.	In	addition	to	the	members	described	here,	you	can	access	members	that
are	defined	for	those	objects	as	well	as	members	of	IReposTypeInfo.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

When	to	Use
Use	the	Alias	object	to	rename	an	existing	property.

Properties

Property Description
Name Stores	the	name	of	the	alias.
MemberSynonym Stores	a	synonym	of	an	alias	name.	This	property	is

optional.

Collections

Collection Description
ServicedByMember Identifies	the	base	property	to	which	an	alias	name	is

mapped.

See	Also

Member	Delegation

RepositoryObject	Object

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

Alias	Name	Property
This	property	is	a	string	that	stores	the	alias	name	of	a	property.

Syntax
Object.Name=string

The	Name	property	syntax	has	the	following	parts.

Part Description
object An	Alias	object
string A	variable	length	string	that	can	be	a	maximum	of	200

characters	in	length

Remarks
The	alias	name	that	you	provide	is	an	alternate	name	of	a	property	that	is
identified	in	the	ServicedByMember	collection.

See	Also

Alias	Object

Alias	ServicedByMember	Collection

Meta	Data	Services	Programming

Alias	MemberSynonym	Property
This	property	is	a	string	used	as	a	synonym	for	an	alias	name.	It	applies	to
MethodDef,	PropertyDef,	and	CollectionDef	objects.	The	value	that	you
specify	must	be	unique.

Syntax
Object.MemberSynonym=string

The	MemberSynonym	property	syntax	has	the	following	parts.

Part Description
object An	Alias	object
string A	variable	length	string	that	can	be	a	maximum	of	255

characters	in	length

See	Also

Alias	Object

Alias	Name	Property

Meta	Data	Services	Programming

Alias	ServicedByMember	Collection
This	collection	contains	the	base	property	for	which	you	are	creating	an	alias.
Each	alias	can	only	have	one	item	in	its	ServicedByMember	collection.

Syntax
Set	variable=object.ServicedByMember(index)

The	ServicedByMember	syntax	has	the	following	parts.

Part Description
variable Variable	declared	as	an	object.
object An	Alias	object.
index An	integer	index	that	identifies	the	member	in	the

collection	to	be	addressed.	The	valid	range	is	from	one.
For	more	information,	see	Selecting	Items	in	a
Collection.

See	Also

Alias	Object

Alias	Name	Property

Meta	Data	Services	Programming

ClassDef	Object
The	ClassDef	object	helps	you	create	information	models	by	adding	interfaces
to	a	class.	To	insert	a	new	class	definition	into	an	information	model,	use	the
ReposTypeLib	object.

Once	you	have	added	all	of	the	interfaces,	you	complete	a	class	definition	by
committing	the	transaction	that	brackets	your	class	definition	modifications.

A	ClassDef	object	is	also	a	RepositoryObject	and	a	RepositoryObjectVersion
object.	You	can	also	access	members	that	are	defined	for	those	objects	and
members	of	IViewClassDef	and	IVersionAdminInfo.	For	more	information
about	accessing	a	member	of	an	interface	that	is	not	the	default	interface,	see
Accessing	Automation	Object	Members.

When	to	Use
Use	the	ClassDef	object	to:

Add	a	new	or	existing	interface	to	a	class	definition.

Retrieve	the	global	identifier	for	the	class.

Access	the	collection	of	interfaces	that	are	part	of	a	class	definition.

Properties

Property Description
ClassID The	global	identifier	of	the	class
Name The	name	of	a	ClassDef	object
Synonym A	synonym	of	the	name	of	the	ClassDef	object

Methods

Method Description
AddInterface Adds	an	existing	interface	to	the	class	definition
CreateInterfaceDef Creates	a	new	interface	and	adds	it	to	the	class

definition
ObjectInstances Materializes	an	object	collection	containing	all	of	the

objects	in	the	repository	that	conform	to	this	class

Collections

Collection Description
Interfaces The	collection	of	all	interfaces	that	are	implemented

by	the	class.
ItemInCollections This	collection	is	empty	for	class	definitions.	It	is

reserved	for	future	use.
Properties The	collection	of	all	persistent	properties	that	are

attached	to	the	ClassDef	object.
ReposTypeLibScopes The	collection	of	all	repository	type	libraries	that

contain	this	class.
ScriptsUsedByClass The	collection	of	all	ScriptDef	objects	that	are

implemented	by	this	class.

See	Also

RepositoryObject	Object

RepositoryObjectVersion	Object

ReposTypeLib	Object

ScriptDef	Object

Meta	Data	Services	Programming

ClassDef	ClassID	Property
This	property	contains	the	global	identifier	(ClsID)	that	is	assigned	to	this	class.
If	you	copy	this	property	to	a	variable,	declare	the	variable	as	a	Variant.

Syntax
object.ClassID

The	ClassID	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	ClassDef	object

See	Also

ClassDef	Object

Object	Identifiers	and	Internal	Identifiers

Meta	Data	Services	Programming

ClassDef	Name	Property
This	property	stores	the	name	of	the	ClassDef	object.	The	Name	property	is
made	available	through	the	INamedObject	interface.	To	use	the	Name	property,
the	class	definition	object	that	you	create	must	implement	INamedObject.

Syntax
Object.Name=string

The	Name	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	ClassDef	object
string A	variable	length	string	that	can	be	a	maximum	of	200

characters	in	length

See	Also

ClassDef	Object

INamedObject	Interface

Meta	Data	Services	Programming

ClassDef	Synonym	Property
This	property	stores	a	synonym	of	the	name	of	the	ClassDef	object.	The
Synonym	property	is	made	available	through	the	IReposTypeInfo2	interface.
To	use	the	Synonym	property,	the	class	definition	object	that	you	create	must
implement	IReposTypeInfo2.

Syntax
Object.Synonym=string

The	Synonym	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	ClassDef

object.
string A	variable	length	string	that	can	be	a	maximum	of	200

characters	in	length.

Synonym	values	must	be	unique	for	ClassDef	objects.

See	Also

ClassDef	Name	Property

ClassDef	Object

IReposTypeInfo2	Interface

Meta	Data	Services	Programming

ClassDef	AddInterface	Method
The	AddInterface	method	adds	an	existing	interface	to	the	collection	of
interfaces	that	are	implemented	by	a	particular	class.

Syntax
Call	object.AddInterface(interfaceDef,	flag)

The	AddInterface	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	ClassDef

object.
interfaceDef The	InterfaceDef	definition	object	for	the	interface	that

is	to	be	added	to	the	collection	of	interfaces	that	are
implemented	by	this	class.

flag Determines	whether	the	interface	is	the	default
interface.	If	the	interface	that	you	are	adding	is	the
default	interface,	pass	in	the	string	"Default".	Otherwise,
pass	in	a	null	string.

Remarks
When	you	indicate	that	an	interface	is	the	default	interface	for	a	class,	you	are
actually	setting	the	value	of	the	ImplementsOptions	annotational	property	on
the	Class_Implements_Interface	relationship	to	TRUE.

See	Also

Accessing	Automation	Object	Members

ClassDef	Object

ClassDef	CreateInterfaceDef	Method

IAnnotationalProps	Interface

InterfaceDef	Object

Meta	Data	Services	Programming

ClassDef	CreateInterfaceDef	Method
The	CreateInterfaceDef	method	creates	a	new	interface	definition	and	adds	the
interface	to	the	collection	of	interfaces	that	are	implemented	by	the	class.

Syntax
Set	variable	=	object.CreateInterfaceDef(sObjId,	name,	interfaceId,	[ancestor],
[flag])

The	CreateInterfaceDef	method	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	InterfaceDef	object.	It

receives	the	new	interface	definition.
object An	object	expression	that	evaluates	to	a	ClassDef	object
sObjId The	object	identifier	to	be	assigned	to	the	new	interface

definition	object.	If	this	parameter	is	set	to
OBJID_NULL,	the	repository	engine	assigns	an	object
identifier	for	you.

name The	name	of	the	interface	that	is	to	be	created.
interfaceId The	interface	identifier	for	this	interface.	If	there	is

none,	set	this	parameter	to	zero.
ancestor The	InterfaceDef	definition	object	for	the	interface	that

is	the	base	interface	from	which	the	interface	being
created	is	derived.	This	parameter	is	optional.

flag Determines	whether	the	interface	is	the	default
interface.	If	the	interface	that	you	are	adding	is	the
default	interface,	pass	in	the	string	"Default".	Otherwise,
pass	in	a	null	string.	This	parameter	is	optional.

Remarks
When	you	indicate	that	an	interface	is	the	default	interface	for	a	class,	you	are
actually	setting	the	value	of	the	ImplementsOptions	annotational	property	on

the	Class	Implements	Interface	relationship	to	TRUE.

See	Also

Accessing	Automation	Object	Members

ClassDef	Object

IAnnotationalProps	Interface

InterfaceDef	Object

Meta	Data	Services	Programming

ClassDef	ObjectInstances	Method
This	method	materializes	an	object	collection	containing	all	of	the	objects	in	a
repository	that	conform	to	this	class.

Syntax
Set	variable		=		object.ObjectInstances

The	ObjectInstances	method	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	ObjectCol	object.	It	receives

the	collection	of	objects	that	conform	to	this	class.
object An	object	expression	that	evaluates	to	a	ClassDef

object.

Remarks
The	collection	contains	one	version	of	each	object	that	conforms	to	the	class.	For
each	such	object,	the	repository	engine	uses	criteria	to	select	which	version	to
include	in	the	collection.	For	more	information,	see	Resolution	Strategy	for
Objects	and	Object	Versions.

ObjectInstances	is	not	scoped	to	a	workspace.	All	information	models	in	a
repository	are	included	in	the	scope.

See	Also

ClassDef	Object

ObjectCol	Object

Meta	Data	Services	Programming

ClassDef	Interfaces	Collection
The	Interfaces	collection	contains	all	interfaces	that	are	implemented	by	this
class.

Syntax
Set	variable		=		object.Interfaces(index)

The	Interfaces	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	InterfaceDef	object.	It

receives	the	specified	interface.
object An	object	expression	that	evaluates	to	a	ClassDef

object.
index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	elements	in	the	collection.
The	number	of	elements	in	the	collection	is	specified	by
the	object	Interfaces.Count.	For	more	information,	see
Selecting	Items	in	a	Collection.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship	Type Class_Implements_Interface This	is	the	type	of

relationship	by	which	all
items	of	the	collection
are	connected	to	a
common	source	object.

Source	Is	Origin Yes The	source	object	for	the

collection	is	also	the
origin	object.

Minimum
Collection	Size

Zero The	minimum	number	of
items	that	must	be
contained	in	the
collection	is	zero.

Maximum
Collection	Size

Many The	maximum	number	of
items	that	can	be
contained	in	the
collection	is	unlimited.

Sequenced
Collection

No As	a	destination
collection,	this	does	not
have	an	explicitly
defined	sequence.
Collections	of	origin
objects	are	never
sequenced.

Deletes
Propagated

No Deleting	an	origin	object
or	a	relationship	in	the
collection	does	not	cause
the	deletion	of	a
corresponding
destination	object.

Destinations
Named

No The	relationship	type	for
the	collection	does	not
permit	the	naming	of
destination	objects.

Case-sensitive
Names

Not	Applicable Case-sensitive	naming	is
not	applicable	for	this
collection.

Unique	Names Not	Applicable Unique	naming	is	not
applicable	for	this
collection.

See	Also

ClassDef	Object

InterfaceDef	Object

Meta	Data	Services	Programming

ClassDef	Properties	Collection
A	Properties	collection	contains	all	of	the	persistent	properties	and	collections
that	are	attached	to	a	ClassDef	object	through	a	particular	interface.	The
ClassDef	object	exposes	four	separate	Properties	collections.	These	collections
are	exposed	by:

The	IClassDef2	interface	(the	default)	or	IClassDef	interface.

The	IReposTypeInfo	or	IReposTypeInfo2	interface.

The	IRepositoryObject	or	IRepositoryObject2	interface.

The	IAnnotationalProps	interface.

Syntax

Set	variable		=		object.Properties(index)

The	Properties	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposProperty	object.	It

receives	the	specified	property.
object An	object	expression;	it	evaluates	to	an	object	that

exposes	IClassDef	or	IClassDef2,	IReposTypeInfo	or
IReposTypeInfo2,	IRepositoryObject	or
IRepositoryObject2,	or	IAnnotationalProps	as	the
default	interface.

index An	integer	index	that	identifies	which	property	in	the
collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	elements	in	the	collection.
The	number	of	elements	in	the	collection	is	specified	by

the	object	Properties.Count.	For	more	information,	see
Selecting	Items	in	a	Collection.

Remarks
Additional	steps	are	required	for	accessing	members	that	are	not	part	of	the
default	interface.	For	more	information	about	accessing	a	member	of	an	interface
that	is	not	the	default	interface,	see	Accessing	Automation	Object	Members.

See	Also

ClassDef	Object

IAnnotationalProps	Interface

ReposProperty	Object

Meta	Data	Services	Programming

ClassDef	ReposTypeLibScopes	Collection
This	is	the	collection	of	repository	type	libraries	that	contain	this	definition.

Syntax
Set	variable		=		object.ReposTypeLibScopes(index)

The	ReposTypeLibScopes	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposTypeLib	object.	It

receives	the	specified	repository	type	library	object.
object An	object	expression	that	evaluates	to	a	ClassDef

object.
index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	elements	in	the	collection.
The	number	of	elements	in	the	collection	is	specified	by
the	object	TypeLibScopes.Count.	For	more
information,	see	Selecting	Items	in	a	Collection.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

ReposTypeLib_ScopeFor_ReposTypeInfoThis	is	the	type
of	relationship
by	which	all
items	of	the
collection	are
connected	to	a
common

source	object.
Source	is
Origin

No The	source
object	for	the
collection	is
not	the	same	as
the	origin
object.

Minimum
Collection
Size

One The	minimum
number	of
items	that	must
be	contained	in
the	collection
is	one.

Maximum
Collection
Size

Many The	maximum
number	of
items	that	can
be	contained	in
the	collection
is	unlimited.

Sequenced
Collection

No As	a
destination
collection,	this
does	not	have
an	explicitly
defined
sequence.
Collections	of
origin	objects
are	never
sequenced.

Deletes
Propagated

Yes The	deletion	of
an	origin	object
or	relationship
in	the
collection
causes	the

deletion	of	the
corresponding
destination
object.

Destinations
Named

Yes The
relationship
type	for	the
collection
permits	the
naming	of
destination
objects.

Case-sensitive
Names

No The
relationship
type	for	the
collection	does
not	permit	the
use	of	case-
sensitive
names	for
destination
objects.

Unique	Names Yes The
relationship
type	for	the
collection
requires	that
the	name	of	a
destination
object	be
unique	within
the	collection
of	destination
objects.	This
applies	to
collections
whose

relationship
type	permits
destination
objects	to	be
named.

See	Also

ClassDef	Object

Naming	and	Unique-Naming	Collections

ReposTypeLib	Object

Meta	Data	Services	Programming

ClassDef	ScriptsUsedByClass	Collection
This	is	the	collection	of	ScriptDef	objects	that	are	implemented	by	this	class.

Syntax
Set	variable		=		object.ScriptsUsedByClass(index)

The	ScriptsUsedByClass	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ScriptDef	object.	Receives	the

specified	script	definition.
object An	object	expression	that	evaluates	to	a	ClassDef

object.
index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	elements	in	the	collection.
The	number	of	elements	in	the	collection	is	specified	by
the	object	ScriptsUsedByClass.Count.	For	more
information,	see	Selecting	Items	in	a	Collection.

See	Also

ClassDef	Object

ReposTypeLib	Object

ScriptDef	Object

Meta	Data	Services	Programming

CollectionDef	Object
A	collection	type	(or	collection	definition)	defines	how	instances	of	a	particular
type	of	collection	will	behave.	The	properties	of	the	collection	type	determine:

The	minimum	and	maximum	number	of	items	in	a	collection.

Whether	the	collection	type	is	an	origin	collection	type.

Whether	the	collection	type	permits	the	naming	of	destination	objects,
and	if	so,	whether	those	names	are	case-sensitive,	and	required	to	be
unique.

Whether	the	collection	type	permits	the	explicit	sequencing	of	items	in
the	collection.

What	happens	to	related	objects	when	objects	or	relationships	in	the
collection	are	deleted.

Whether	origin	collections	of	this	type	are	automatically	copied	to	new
object	versions	by	the	CreateVersion	method.

Whether	the	MergeVersion	method	combines	origin	collections	of	this
type	as	a	whole,	or	item-by-item.

Whether	the	FreezeVersion	method	requires	that	destination	object
versions	of	relationships	of	this	type	be	frozen	before	the	attendant
origin	object	versions	can	be	frozen.

The	kind	of	relationship	that	a	particular	collection	type	uses	to	relate	objects	to
each	other	is	determined	by	its	CollectionItem	collection.	The	CollectionItem

collection	associates	a	single	relationship	type	to	the	collection	type.	To	add	a
new	collection	type,	use	the	InterfaceDef	object.

A	CollectionDef	object	is	also	a	RepositoryObject	and	a
RepositoryObjectVersion	object.	In	addition	to	the	members	described	here,
you	can	access	members	that	are	defined	for	those	objects	as	well	as	members	of
IInterfaceMember2	and	IVersionAdminInfo.	For	more	information	about
accessing	a	member	of	an	interface	that	is	not	the	default	interface,	see
Accessing	Automation	Object	Members.

When	to	Use
Use	the	CollectionDef	object	to	retrieve	or	modify	the	properties	of	a	collection
type,	to	determine	the	kind	of	relationship	that	the	collection	implements,	or	to
determine	the	interface	to	which	the	collection	is	attached.

Properties

Property Description
DispatchID The	dispatch	identifier	to	use	when	accessing	an

instance	of	this	type	of	collection
Flags Flags	that	specify	details	about	this	collection

definition
IsOrigin Indicates	whether	collections	of	this	type	are	origin

collections
MemberSynonym Stores	a	synonym	of	the	collection	name
MaxCount The	maximum	number	of	target	objects	that	can	be

contained	in	a	collection	of	this	type
MinCount The	minimum	number	of	target	objects	that	must	be

contained	in	a	collection	of	this	type
Name Stores	the	name	of	a	collection

Collections

Collection Description

CollectionItem The	collection	of	one	relationship	type	that	defines	the
relationship	between	target	objects	of	this	type	of
collection	and	a	single	source	object

Interface The	interface	to	which	this	collection	definition	is
attached

Properties The	collection	of	all	persistent	properties	that	are
attached	to	the	CollectionDef	object

See	Also

IInterfaceMember2	Interface

InterfaceDef	Object

RepositoryObject	Object

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

CollectionDef	DispatchID	Property
This	property	contains	the	dispatch	identifier	to	use	when	accessing	a	collection
of	this	type.

This	property	is	not	attached	to	the	default	interface	for	the	CollectionDef
Automation	object;	it	is	attached	to	the	IInterfaceMember	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
object.DispatchID

The	DispatchID	property	syntax	has	the	following	part.

Part Description
object An	object	expression;	evaluates	to	an	object	that

exposes	IInterfaceMember	as	the	default	interface

See	Also

CollectionDef	Object

IInterfaceMember	Interface

Meta	Data	Services	Programming

CollectionDef	Flags	Property
The	CollectionDef	object	exposes	two	separate	Flags	properties.	One	of	these
properties	is	exposed	by	the	default	interface	ICollectionDef,	and	the	other	is
exposed	by	the	IInterfaceMember	interface.	The	Flags	property	of	both
interfaces	is	described	here.

The	default	ICollectionDef	Flags	property	determines:

Whether	the	collection	type	permits	the	naming	of	destination	objects,
and	if	so,	whether	those	names	are	case-sensitive,	and	required	to	be
unique.

Whether	the	collection	type	permits	the	explicit	sequencing	of	items	in
the	collection.

What	happens	to	related	objects	when	objects	or	relationships	in	the
collection	are	deleted.

Whether	origin	collections	of	this	type	are	automatically	copied	to	new
object	versions	by	the	CreateVersion	method.

Whether	the	MergeVersion	method	combines	origin	collections	of	this
type	as	a	whole,	or	item	by	item.

Whether	the	FreezeVersion	method	requires	that	destination	object
versions	of	relationships	of	this	type	be	frozen	before	the	attendant
origin	object	versions	can	be	frozen.

The	IInterfaceDef	Flags	property	is	a	flag	that	specifies	whether	the	interface
member	should	be	visible	to	Automation	queries.	For	more	information	about
flag	values	and	their	specific	purposes,	see	InterfaceMemberFlags	Enumeration.

Syntax
object.Flags=(integer)

The	Flags	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	CollectionDef

object,	for	the	default	Flags	property.

-or-

An	object	expression	that	evaluates	to	an	object	that
exposes	IInterfaceMember	as	the	default	interface,	for
the	alternate	Flags	property.

integer Flag	values	are	bit	flags,	and	may	be	combined	to	set
multiple	options.	For	more	information	about	flag
values	and	their	specific	purposes,	see
CollectionDefFlags	Enumeration.

Remarks
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

See	Also

CollectionDef	Object

IInterfaceMember	Interface

Meta	Data	Services	Programming

CollectionDef	IsOrigin	Property
This	property	indicates	whether	collections	of	this	type	are	origin	collections.	If
you	copy	this	property	to	a	variable,	declare	the	variable	as	a	Boolean.

Syntax
object.IsOrigin

The	IsOrigin	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	CollectionDef

object

See	Also

CollectionDef	Object

Meta	Data	Services	Programming

CollectionDef	MaxCount	Property
This	property	specifies	the	maximum	number	of	target	objects	that	a	collection
of	this	type	can	contain.	This	property	is	maintained	for	informational	purposes,
and	is	not	enforced	by	the	repository	engine.

Syntax
object.MaxCount

The	MaxCount	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	CollectionDef

object

See	Also

CollectionDef	Object

Meta	Data	Services	Programming

CollectionDef	MemberSynonym	Property
This	property	is	a	string	used	as	a	synonym	for	a	collection	name.	The	value	that
you	specify	must	be	unique.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IInterfaceMember2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
object.MemberSynonym=(string)

The	MemberSynonym	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	CollectionDef

object
string A	variable	length	string	that	can	be	a	maximum	of	255

characters	in	length

See	Also

CollectionDef	Object

IInterfaceMember2	Interface

Meta	Data	Services	Programming

CollectionDef	MinCount	Property
This	property	specifies	the	minimum	number	of	target	objects	that	a	collection	of
this	type	can	contain.	This	property	is	maintained	for	informational	purposes,
and	is	not	enforced	by	the	repository	engine.

Syntax
object.MinCount

The	MinCount	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	CollectionDef

object

See	Also

CollectionDef	Object

Meta	Data	Services	Programming

CollectionDef	Name	Property
This	property	is	a	string	that	stores	the	name	of	a	collection.

Syntax
object.Name=(string)

The	Name	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	CollectionDef

object
string A	variable	length	string	that	can	be	a	maximum	of	200

characters	in	length

See	Also

CollectionDef	Object

Meta	Data	Services	Programming

CollectionDef	CollectionItem	Collection
Every	RelationshipDef	object	has	two	CollectionDef	objects.	You	can	navigate
a	relationship	definition	instance	from	either	of	two	directions.	That	is,	from	a
RelationshipDef	object,	you	can	navigate	to	its	collection	of	CollectionDef
objects.	Conversely,	you	can	navigate	from	a	CollectionDef	object	to	the
associated	RelationshipDef	object.	To	do	this,	use	the	CollectionItem	collection
on	the	ICollectionDef	interface.	For	more	information	about	collections	and
relationships,	see	Repository	Object	Architecture.

Syntax
Set	variable		=		object.CollectionItem(index)

The	CollectionItem	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RelationshipDef	object.	It

receives	the	specified	relationship	definition	object.
object An	object	expression	that	evaluates	to	a	CollectionDef

object.
index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	number	of	elements	in	the	collection.	The
number	of	elements	in	the	collection	is	specified	by
object.CollectionItem.Count.	For	more	information,
see	Selecting	Items	in	a	Collection.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship	Type Collection_Contains_ItemsThis	is	the	type	of

relationship	by	which	all
items	of	the	collection	are
connected	to	a	common
source	object.

Source	Is	Origin Yes The	source	object	for	the
collection	is	also	the	origin
object.

Minimum
Collection	Size

Zero The	minimum	number	of
items	that	must	be
contained	in	the	collection
is	zero.

Maximum
Collection	Size

One The	maximum	number	of
items	that	can	be
contained	in	the	collection
is	one.

Sequenced
Collection

No As	a	destination
collection,	this	does	not
have	an	explicitly	defined
sequence.	Collections	of
origin	objects	are	never
sequenced.

Deletes
Propagated

No Deleting	an	origin	object
or	a	relationship	in	the
collection	does	not	cause
the	deletion	of	a
corresponding	destination
object.

Destinations
Named

No The	relationship	type	for
the	collection	does	not
permit	the	naming	of
destination	objects.

Case-sensitive
Names

Not	applicable Case-sensitive	naming	is
not	applicable	for	this
collection.

Unique	Names Not	applicable Unique	naming	is	not
applicable	for	this

collection.

See	Also

CollectionDef	Object

RelationshipDef	ItemInCollections	Collection

RelationshipDef	Object

Meta	Data	Services	Programming

CollectionDef	Interface	Collection
For	a	particular	collection	definition,	the	interface	collection	specifies	which
interface	exposes	a	member	of	the	collection	type.

This	collection	is	not	attached	to	the	default	interface	for	the	CollectionDef
Automation	object;	it	is	attached	to	the	IInterfaceMember	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=		object.Interface(index)

The	Interface	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	InterfaceDef	object.

Receives	the	specified	interface	definition.
object An	object	expression;	evaluates	to	an	object	that

implements	IInterfaceMember	as	the	default
interface.

index An	integer	index	that	identifies	which	element	in	the
collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	number	of	elements	in	the	collection.	The
number	of	elements	in	the	collection	is	specified	by
object.Interface.Count.	For	more	information,	see
Selecting	Items	in	a	Collection.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship	Type Interface_Has_Members This	is	the	type	of

relationship	by	which	all
items	of	the	collection	are
connected	to	a	common
source	object.

Source	Is	Origin No The	source	object	for	the
collection	is	not	the	same
as	the	origin	object.

Minimum
Collection	Size

One The	minimum	number	of
items	that	must	be
contained	in	the	collection
is	one.

Maximum
Collection	Size

One The	maximum	number	of
items	that	can	be	contained
in	the	collection	is	one.

Sequenced
Collection

Yes As	a	destination	collection,
this	collection	permits	an
explicitly	defined
sequence.	Collections	of
origin	objects	are	never
sequenced.

Deletes	Propagated Yes Deleting	an	origin	object	or
a	relationship	in	the
collection	causes	the
deletion	of	a	corresponding
destination	object.

Destinations
Named

Yes The	relationship	type	for
the	collection	permits	the
naming	of	destination
objects.

Case-sensitive
Names

No The	relationship	type	for
the	collection	does	not
permit	the	use	of	case-
sensitive	names	for
destination	objects.

Unique	Names Yes The	relationship	type	for

the	collection	requires	that
the	name	of	a	destination
object	be	unique	within	the
collection	of	destination
objects.	This	applies	to
collections	whose
relationship	type	permits
destination	objects	to	be
named.

See	Also

CollectionDef	Object

InterfaceDef	Object

Meta	Data	Services	Programming

CollectionDef	Properties	Collection
A	Properties	collection	contains	all	of	the	persistent	properties	and	collections
that	are	attached	to	an	object	through	a	particular	interface.	The	CollectionDef
object	exposes	four	separate	Properties	collections.	These	collections	are
exposed	by:

The	ICollectionDef	interface	(the	default).

The	IInterfaceMember	or	IInterfaceMember2	interface.

The	IRepositoryObject	or	IRepositoryObject2	interface.

The	IAnnotationalProps	interface.

Syntax

Set	variable		=		object.Properties(index)

The	Properties	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposProperty	object.

Receives	the	specified	property.
object An	object	expression;	evaluates	to	an	object	that

exposes	ICollectionDef,	IInterfaceMember	or
IInterfaceMember2,	IRepositoryObject	or
IRepositoryObject2,	or	IAnnotationalProps	as	the
default	interface.

index An	integer	index	that	identifies	which	property	in	the
collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	number	of	elements	in	the	collection.	The
number	of	elements	in	the	collection	is	specified	by

object.Properties.Count.	For	more	information,	see
Selecting	Items	in	a	Collection.

Remarks
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

See	Also

CollectionDef	Object

ReposProperty	Object

Meta	Data	Services	Programming

EnumerationDef	Object
An	enumeration	definition	object	represents	an	association	of	enumerated
values.	The	enumerated	values	that	you	provide	to	an	enumeration	definition	are
defined	through	a	series	of	EnumerationValueDef	objects.	The	enumeration
definition	itself	can	be	associated	with	a	PropertyDef	object.

You	can	combine	enumeration	definition	objects	in	collections.	Collections
allow	you	to	limit	the	number	or	filter	the	range	of	values	that	appear	to	the	end
user.	You	can	also	allow	a	property	definition	object	to	reference	an	enumeration
definition	object	that	is	defined	in	another	information	model.

Note		The	repository	engine	does	not	restrict	objects	to	the	enumeration	values
associated	with	a	property.	Specifying	a	value	that	is	not	in	the	enumeration
value	set	does	not	produce	an	error.

An	EnumerationDef	object	is	also	a	RepositoryObject	and	a
RepositoryObjectVersion	object.	You	can	also	access	members	that	are	defined
for	these	objects	and	members	of	IRepositoryObjectStorage,
IReposTypeInfo2,	and	IVersionAdminInfo2.	For	more	information	about
accessing	a	member	of	an	interface	that	is	not	the	default	interface,	see
Accessing	Automation	Object	Members.

When	to	Use
Use	an	EnumerationDef	object	to	define	a	property	that	uses	enumerated	values
comprised	of	a	fixed	set	of	constant	string	or	integer	values.

Properties

Property Description
Name Contains	the	name	of	the	EnumerationDef	object.	The

name	must	be	unique	within	the	information	model.
Description Contains	a	description	of	the	enumeration.
IsFlag Indicates	that	the	enumeration	defines	a	logical	flag.

The	selected	enumeration	values	should	be	combined

logically	using	OR.	This	only	applies	to	numeric
enumeration	values.

Collections

Collection Description
Values Collection	of	EnumerationValueDef	objects

See	Also

EnumerationValueDef	Object

Filtering	Collections

IRepositoryObjectStorage	Interface

IVersionAdminInfo2	Interface

PropertyDef	Object

RepositoryObject	Object

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

EnumerationDef	Name	Property
This	property	stores	the	name	of	the	EnumerationDef	object.

Syntax
Object.Name=string

The	Name	property	syntax	has	the	following	parts.

Part Description
object The	EnumerationDef	object.
string A	variable	length	string	that	can	be	a	maximum	of	255

characters	in	length.

The	name	must	be	unique	within	the	information	model.

See	Also

EnumerationDef	Object

EnumerationValueDef	Object

Meta	Data	Services	Programming

EnumerationDef	Description	Property
This	property	stores	a	description	of	the	EnumerationDef	object	for
documentation	purposes.	This	property	is	not	processed	by	the	repository	engine.

Syntax
Object.Description=string

The	Description	property	syntax	has	the	following	parts.

Part Description
object The	EnumerationDef	object
string A	variable	length	string	that	can	be	a	maximum	of	255

characters	in	length

See	Also

EnumerationDef	Object

EnumerationValueDef	Object

Meta	Data	Services	Programming

EnumerationDef	IsFlag	Property
This	Boolean	property	indicates	whether	the	enumeration	definition	object
defines	a	logical	flag.	The	selected	enumeration	values	should	be	combined
logically	using	OR.	This	only	applies	to	numeric	enumeration	values.

Syntax
Object.IsFlag

The	IsFlag	property	syntax	has	the	following	part.

Part Description
object The	EnumerationDef	object

Remarks
If	you	need	an	object	to	represent	a	flag	structure,	and	you	want	that	flag	to
support	a	series	of	bit	flags	that	can	be	combined	to	set	multiple	options,	you	can
create	an	EnumerationDef	object	and	set	the	IsFlag	property	to	True.

See	Also

EnumerationDef	Object

EnumerationValueDef	Object

Meta	Data	Services	Programming

EnumerationDef	Values	Collection
This	collection	contains	EnumerationValuesDef	objects.

Syntax
Set	variable=object.Values(index)

The	Values	syntax	has	the	following	parts.

Part Description
variable Variable	declared	as	an	object.
object An	EnumerationDef	object.
index An	integer	index	that	identifies	which	member	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	members	in	the	collection.
For	more	information,	see	Selecting	Items	in	a
Collection.

See	Also

Filtering	Collections

EnumerationDef	Object

EnumerationValueDef	Object

Meta	Data	Services	Programming

EnumerationValueDef	Object
An	enumeration	value	definition	object	defines	a	single	member	of	an
enumeration	value	set.	An	EnumeratedValueDef	object	is	owned	by	an
EnumerationDef	object.	You	can	define	multiple	EnumerationValueDef
objects	to	create	an	array	of	values	for	a	property	definition	that	uses	enumerated
values.

An	EnumerationValueDef	object	is	also	a	RepositoryObject	and	a
RepositoryObjectVersion	object.	You	can	also	access	members	that	are	defined
for	these	objects	and	members	of	IRepositoryObjectStorage	and
IVersionAdminInfo2.	For	more	information	about	accessing	a	member	of	an
interface	that	is	not	the	default	interface,	see	Accessing	Automation	Object
Members.

When	to	Use
Use	an	EnumerationValueDef	object	to	associate	real-world,	constant	data
values	with	a	property	definition.

Properties

Property Description
EnumerationValueDef
EnumValue	Property

A	string	value	included	in	an	enumerated	set	of
values	for	a	specified	property	definition	object

See	Also

EnumerationDef	Object

IRepositoryObjectStorage	Interface

IVersionAdminInfo2	Interface

RepositoryObject	Object

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

EnumerationValueDef	EnumValue	Property
This	property	is	a	string	containing	a	value	that	may	be	stored	as	the	property
value	of	an	object.

Syntax
Object.EnumValue=string

The	EnumValue	property	syntax	has	the	following	parts.

Part Description
object The	EnumerationValueDef	object.
string A	variable	length	string	that	can	be	a	maximum	of	255

characters	in	length.

This	value	can	be	numeric.	If	you	are	using	the	IsFlag
property	of	an	EnumerationDef	object	to	create	a	series
of	bit	flags,	this	value	must	be	numeric.

See	Also

EnumerationValueDef	Object

Meta	Data	Services	Programming

InterfaceDef	Object
The	properties,	methods,	and	collections	that	a	class	implements	are	organized
into	functionally	related	groups.	Each	group	is	implemented	as	a	repository
interface.	The	properties,	methods,	and	collections	of	each	interface	are
members	of	the	interface.	An	interface	definition	is	the	template	to	which	an
interface	conforms.

To	add	a	new	interface	to	a	repository,	use	the	ClassDef	object	or	the
ReposTypeLib	object.

An	InterfaceDef	object	is	also	a	RepositoryObject	and	a
RepositoryObjectVersion	object.	In	addition	to	the	members	described	here,
you	can	access	members	that	are	defined	for	those	objects.	For	more	information
about	accessing	a	member	of	an	interface	that	is	not	the	default	interface,	see
Accessing	Automation	Object	Members.

When	to	Use
Use	the	InterfaceDef	class	to:

Retrieve	or	modify	properties	of	an	interface	definition.

Determine	which	members	are	attached	to	an	interface	definition.

Determine	which	classes	implement	an	interface.

Determine	the	base	interface	from	which	an	interface	derives.

Determine	which	interfaces	derive	from	a	particular	interface.

Determine	which	repository	objects	expose	a	particular	interface.

Add	a	new	property,	method,	or	collection	type	to	an	interface
definition.

Properties

Property Description
Flags Flags	that	specify	whether	the	interface	is

extensible,	and	whether	the	interface	should	be
visible	to	Automation	interface	queries

InterfaceID The	global	interface	identifier	for	the	interface
Synonym Stores	a	synonym	of	the	interface	name
TableName The	name	of	the	SQL	table	that	is	used	to	store

instance	information	for	the	properties	of	the
interface

Methods

Method Description
CreateAlias Creates	a	new	alias	definition,	and	attaches	it	to

the	interface	definition.
CreateMethodDef Creates	a	new	method	definition,	and	attaches	it

to	the	interface	definition.
CreatePropertyDef Creates	a	new	property	definition,	and	attaches

it	to	the	interface	definition.
CreateRelationshipColDef Creates	a	relationship	collection	type.	The

collection	type	is	attached	to	the	interface
definition.

ObjectInstances Materializes	an	ObjectCol	collection	of	all
objects	in	the	repository	that	expose	this
interface.

Collections

Collection Description
Ancestor The	collection	of	one	base	interface	from	which

this	interface	derives
Classes The	collection	of	classes	that	implement	the

interface
Descendants The	collection	of	other	interfaces	that	derive

from	this	interface
Members The	collection	of	members	that	are	exposed	by

the	interface
Properties The	collection	of	all	persistent	properties	that	are

attached	to	the	InterfaceDef	object
ReposTypeLibScopes The	collection	of	all	repository	type	libraries	that

contain	this	definition
Implies The	collection	of	InterfaceDef	objects	that	are

also	implemented	by	this	interface
ImpliedBy The	collection	of	InterfaceDef	objects	that	also

implement	this	interface
ScriptsUsedByInterface The	collection	of	script	definition	object	used	by

this	interface

See	Also

ClassDef	Object

InterfaceDef	Object

PropertyDef	Object

RepositoryObject	Object

RepositoryObjectVersion	Object

ReposTypeLib	Object

Meta	Data	Services	Programming

InterfaceDef	Flags	Property
This	property	contains	flags	that	specify	whether	the	interface	is	extensible,	and
whether	the	interface	should	be	visible	to	Automation	interface	queries.

Syntax
object.Flags=(integer)

The	Flags	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	an	InterfaceDef

object.
Integer A	byte	that	stores	a	flag	value	(either	1,	2,	or	3).	For

more	information	about	flag	values,	see
InterfaceDefFlags	Enumeration.

See	Also

InterfaceDef	Object

Meta	Data	Services	Programming

InterfaceDef	InterfaceID	Property
This	property	is	the	global	interface	identifier	for	the	interface.	If	you	copy	this
property	to	a	variable,	declare	the	variable	as	a	Variant.

Syntax
object.InterfaceID

The	InterfaceID	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	an	InterfaceDef

object

See	Also

InterfaceDef	Object

Object	Identifiers	and	Internal	Identifiers

Meta	Data	Services	Programming

InterfaceDef	Synonym	Property
This	property	is	a	string	used	as	a	synonym	for	an	interface	name.	The	value	that
you	specify	must	be	unique.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IReposTypeInfo2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
object.Synonym=string

The	Synonym	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	an	InterfaceDef

object
string A	variable	length	string	that	can	be	a	maximum	of	255

characters	in	length

See	Also

InterfaceDef	Object

IReposTypeInfo2	Interface

Meta	Data	Services	Programming

InterfaceDef	TableName	Property
This	character	string	property	contains	the	name	of	the	SQL	table	that	is	used	to
store	instance	information	for	the	properties	of	the	interface.

Syntax
object.TableName=(string)

The	TableName	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	an	InterfaceDef

object
string A	variable	length	string	that	can	be	a	maximum	of	30

characters

See	Also

InterfaceDef	Object

Repository	SQL	Schema

Meta	Data	Services	Programming

InterfaceDef	CreateAlias	Method
This	method	creates	a	new	alias	and	attaches	it	to	the	interface	definition.

Syntax
Set	variable		=		object.CreateAlias(sObjId,	name,	dispId,	base)

The	CreateAlias	method	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	Alias	object.	It	receives	the

new	alias	definition.
object An	object	expression	that	evaluates	to	an	InterfaceDef

object.
sObjId The	object	identifier	to	be	used	for	the	new	alias	object.

The	repository	engine	will	assign	an	object	identifier	if
you	set	this	parameter	to	OBJID_NULL.

name A	string	that	stores	the	name	of	the	new	alias.	Also,	the
name	of	the	InterfaceDef	object	containing	the	base
member.

dispId The	dispatch	identifier	to	be	used	for	accessing	the	new
alias.

base A	string	that	stores	the	name	of	the	interface	member
upon	which	the	alias	is	based.

See	Also

Alias	Object

InterfaceDef	Object

Object	Identifiers	and	Internal	Identifiers

Meta	Data	Services	Programming

InterfaceDef	CreateMethodDef	Method
This	method	creates	a	new	method	definition	and	attaches	it	to	the	interface
definition.

Syntax
Set	variable		=		object.CreateMethodDef(sObjId,	name,	dispId)

The	CreateMethodDef	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	an	InterfaceDef

object.
variable A	variable	declared	as	a	MethodDef	object.	It	receives

the	new	method	definition.
sObjId The	object	identifier	to	be	used	for	the	new	method

definition	object.	The	repository	engine	will	assign	an
object	identifier	if	you	set	this	parameter	to
OBJID_NULL.

name The	name	of	the	new	method.
dispId The	dispatch	identifier	to	be	used	for	accessing	the	new

method.

See	Also

InterfaceDef	Object

MethodDef	Object

Object	Identifiers	and	Internal	Identifiers

Meta	Data	Services	Programming

InterfaceDef	CreatePropertyDef	Method
This	method	creates	a	new	property	definition	and	attaches	it	to	the	interface
definition.

Syntax
Set	variable		=		object.CreatePropertyDef(sObjId,	name,	dispId,	CType)

The	CreatePropertyDef	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	an	InterfaceDef

object.
variable A	variable	declared	as	a	PropertyDef	object.	It	receives

the	new	property	definition.
sObjId The	object	identifier	to	be	used	for	the	new	property

definition	object.	The	repository	engine	will	assign	an
object	identifier	if	you	set	this	parameter	to
OBJID_NULL.

name The	name	of	the	new	property.
dispId The	dispatch	identifier	to	be	used	for	accessing	the	new

property.
CType The	C	data	type	of	the	property.	For	a	definition	of	valid

values,	see	the	ODBC	documentation.

See	Also

InterfaceDef	Object

Object	Identifiers	and	Internal	Identifiers

PropertyDef	Object

Meta	Data	Services	Programming

InterfaceDef	CreateRelationshipColDef	Method
This	method	creates	a	new	collection	type,	attaches	it	to	this	interface,	and
associates	it	with	the	specified	relationship	type.

Syntax
Set	variable		=		object.CreateRelationshipColDef(sObjId,	name,	dispId,
isOrigin,	flags,	relshipDef)

The	CreateRelationshipColDef	method	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	an	InterfaceDef

object.
variable A	variable	declared	as	a	CollectionDef	object.	It

receives	the	new	collection	definition.
sObjId The	object	identifier	for	the	collection	type.	The

repository	engine	will	assign	an	object	identifier	if	you
set	this	parameter	to	OBJID_NULL.

name The	name	of	the	new	collection	type.
dispId The	dispatch	identifier	to	be	used	for	Automation	access

to	collections	of	this	type.
isOrigin Specifies	whether	collections	of	this	type	are	origin

collections.	This	is	a	Boolean	parameter.
flags Flags	that	specify	naming,	sequencing,	and	delete

propagation	behavior	for	the	collection	type.	For	more
information	about	flag	values,	see	CollectionDefFlags
Enumeration.

RelshipDef The	relationship	definition	object	to	which	this
collection	type	is	connected.

Remarks
By	default,	the	collection	definition	specifies	that	zero	to	many	items	are

permitted	in	collections	of	this	type.	To	specify	a	different	minimum	and
maximum	item	count	for	the	new	collection	type,	change	the	MinCount	and
MaxCount	properties	before	committing	the	transaction	that	contains	this
method	invocation.

See	Also

CollectionDef	Object

CollectionDefFlags	Enumeration

InterfaceDef	Object

Object	Identifiers	and	Internal	Identifiers

RelationshipDef	Object

Meta	Data	Services	Programming

InterfaceDef	ObjectInstances	Method
This	method	materializes	an	ObjectCol	collection	of	all	objects	in	the	repository
that	expose	this	interface.

Syntax
Set	variable	=	object.ObjectInstances

The	ObjectInstances	method	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	ObjectCol	object.	It	receives

the	collection	of	objects	that	expose	this	interface.
object An	object	expression	that	evaluates	to	an	InterfaceDef

object.

Remarks
The	retrieved	collection	contains	one	version	of	each	object	that	conforms	to	a
class	exposing	this	interface.	For	each	such	object,	the	repository	engine	uses
criteria	to	select	which	version	to	include	in	the	collection.	For	more
information,	see	Resolution	Strategy	for	Objects	and	Object	Versions.

ObjectInstances	is	not	scoped	to	a	workspace.	All	information	models	in	a
repository	are	included	in	the	scope.

See	Also

InterfaceDef	Object

ObjectCol	Object

Meta	Data	Services	Programming

InterfaceDef	Ancestor	Collection
This	collection	specifies	the	one	base	interface	from	which	this	interface	derives.
You	use	Ancestor	collections	to	define	inheritance.

Syntax
Set	variable		=		object.Ancestor(index)

The	Ancestor	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	InterfaceDef	object.	It

receives	the	specified	base	interface	definition.
object An	object	expression	that	evaluates	to	an	InterfaceDef

object.
index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	number	of	elements	in	the	collection.	The
number	of	elements	in	the	collection	is	specified	by
object.Ancestor.Count.	For	more	information,	see
Selecting	Items	in	a	Collection.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

Interface_InheritsFrom_InterfaceThis	is	the	type	of
relationship	by
which	all	items	of
the	collection	are
connected	to	a
common	source

object.
Source	is	Origin Yes The	source	object	for

the	collection	is	also
the	origin	object.

Minimum
Collection	Size

One The	minimum
number	of	items	that
must	be	contained	in
the	collection	is	one.

Maximum
Collection	Size

One The	maximum
number	of	items	that
can	be	contained	in
the	collection	is	one.

Sequenced
Collection

No As	a	destination
collection,	this	does
not	have	an	explicitly
defined	sequence.
Collections	of	origin
objects	are	never
sequenced.

Deletes
Propagated

No Deleting	an	origin
object	or	a
relationship	in	the
collection	does	not
cause	the	deletion	of
a	corresponding
destination	object.

Destinations
Named

No The	relationship	type
for	the	collection
does	not	permit	the
naming	of
destination	objects.

Case-sensitive
Names

Not	applicable Case-sensitive
naming	is	not
applicable	for	this
collection.

Unique	Names Not	applicable Unique	naming	is	not

applicable	for	this
collection.

See	Also

InterfaceDef	Object

Meta	Data	Services	Programming

InterfaceDef	Classes	Collection
This	collection	specifies	which	classes	implement	the	interface.

Syntax
Set	variable		=		object.Classes(index)

The	Classes	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ClassDef	object.	It	receives	the

specified	class	definition.
object An	object	expression	that	evaluates	to	an	InterfaceDef

object.
index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	elements	in	the	collection.
The	number	of	elements	in	the	collection	is	specified	by
object.Classes.Count.	For	more	information,	see
Selecting	Items	in	a	Collection.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship	Type Class_Implements_Interface This	is	the	type	of

relationship	by	which	all
items	of	the	collection
are	connected	to	a
common	source	object.

Source	is	Origin No The	source	object	for	the
collection	is	not	the	same

as	the	origin	object.
Minimum
Collection	Size

Zero The	minimum	number	of
items	that	must	be
contained	in	the
collection	is	zero.

Maximum
Collection	Size

Many The	maximum	number	of
items	that	can	be
contained	in	the
collection	is	unlimited.

Sequenced
Collection

No As	a	destination
collection,	this	does	not
have	an	explicitly
defined	sequence.
Collections	of	origin
objects	are	never
sequenced.

Deletes
Propagated

No Deleting	an	origin	object
or	a	relationship	in	the
collection	does	not	cause
the	deletion	of	a
corresponding
destination	object.

Destinations
Named

No The	relationship	type	for
the	collection	does	not
permit	the	naming	of
destination	objects.

Case-sensitive
Names

Not	Applicable Case-sensitive	naming	is
not	applicable	for	this
collection.

Unique	Names Not	Applicable Unique	naming	is	not
applicable	for	this
collection.

See	Also

ClassDef	Object

InterfaceDef	Object

Meta	Data	Services	Programming

InterfaceDef	Descendants	Collection
This	collection	specifies	other	interfaces	that	derive	from	this	interface.

Syntax
Set	variable		=		object.Descendants(index)

The	Descendants	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	InterfaceDef	object.	It

receives	the	specified	interface	definition.
object An	object	expression	that	evaluates	to	an	InterfaceDef

object.
index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	elements	in	the	collection.
The	number	of	elements	in	the	collection	is	specified	by
object.Descendants.Count.	For	more	information,	see
Selecting	Items	in	a	Collection.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Types

Interface_InheritsFrom_InterfaceThis	is	the	type	of
relationship	by
which	all	items	of
the	collection	are
connected	to	a
common	source
object.

Source	is	Origin No The	source	object	for
the	collection	is	not
the	same	as	the
origin	object.

Minimum
Collection	Size

Zero The	minimum
number	of	items	that
must	be	contained	in
the	collection	is	zero.

Maximum
Collection	Size

Many The	maximum
number	of	items	that
can	be	contained	in
the	collection	is
unlimited.

Sequenced
Collection

No As	a	destination
collection,	this	does
not	have	an	explicitly
defined	sequence.
Collections	of	origin
objects	are	never
sequenced.

Deletes
Propagated

No Deleting	an	origin
object	or	a
relationship	in	the
collection	does	not
cause	the	deletion	of
a	corresponding
destination	object.

Destinations
Named

No The	relationship	type
for	the	collection
does	not	permit	the
naming	of
destination	objects.

Case-sensitive
Names

Not	applicable Case-sensitive
naming	is	not
applicable	for	this
collection.

Unique	Names Not	applicable Unique	naming	is	not
applicable	for	this
collection.

See	Also

InterfaceDef	Object

Meta	Data	Services	Programming

InterfaceDef	Implies	Collection
This	is	the	collection	of	InterfaceDef	objects	that	are	made	available	to	another
interface	through	implication.

Syntax
Set	variable		=		object.Implies(index)

The	Implies	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	InterfaceDef	object.	It	receives

the	specified	interface	definition.
object An	object	expression	that	evaluates	to	an	InterfaceDef

object.
index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	elements	in	the	collection.
For	more	information,	see	Selecting	Items	in	a
Collection.

Remarks
You	can	define	an	implication	between	two	interface	definition	objects	of	the
form	Interface1	implies	Interface2.	For	each	such	implication,	the	repository
engine	guarantees	that	every	class	that	implements	Interface1	also	implements
the	members	of	Interface2.

The	Implies	collection	contains	the	interface	definition	objects	that	are
automatically	implemented	whenever	the	current	interface	definition	object	is
implemented.	To	define	an	implication	in	the	opposite	direction,	use	the
ImpliedBy	collection.

For	example,	if	you	extend	an	information	model	by	creating	a	new	version	of
an	interface	(Interface1a),	you	can	add	Interface2	to	the	Implies	collection	of

Interface1a	to	guarantee	that	Interface2	members	are	always	available.

See	Also

Interface	Implication

InterfaceDef	Object

ReposTypeLib	Object

Meta	Data	Services	Programming

InterfaceDef	ImpliedBy	Collection
This	is	the	collection	of	InterfaceDef	objects	that	have	been	made	available	to
another	interface	through	implication.

Syntax
Set	variable		=		object.ImpliedBy(index)

The	ImpliedBy	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	InterfaceDef	object.	It

receives	the	specified	interface	definition.
object An	object	expression	that	evaluates	to	an	InterfaceDef

object.
index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	elements	in	the	collection.
For	more	information,	see	Selecting	Items	in	a
Collection.

Remarks
You	can	define	an	implication	between	two	interface	definition	objects	of	the
form	Interface2	is	implied	by	Interface1.	For	example,	if	Interface2	is	implied
by	Interface1,	the	ImpliedBy	collection	for	Interface2	can	include	the
Interface1	object.

The	ImpliedBy	collection	provides	a	way	to	define	which	interfaces	are	part	of
an	implication	relationship.	This	collection	reflects	the	opposite	direction	of	a
relationship	that	is	defined	by	the	Implies	collection.

See	Also

Interface	Implication

InterfaceDef	Object

ReposTypeLib	Object

Meta	Data	Services	Programming

InterfaceDef	Members	Collection
This	collection	specifies	which	members	are	attached	to	the	interface.

Syntax
Set	variable		=		object.Members(index)

The	Members	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	object.	It	receives	the

specified	property	definition,	method	definition,	or
collection	definition.

object An	object	expression	that	evaluates	to	an	InterfaceDef
object.

index An	integer	index	that	identifies	which	element	in	the
collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	elements	in	the	collection.
The	number	of	elements	in	the	collection	is	specified	by
object.Members.Count.	For	more	information,	see
Selecting	Items	in	a	Collection.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship	Type Interface_Has_Members This	is	the	type	of

relationship	by	which	all
items	of	the	collection	are
connected	to	a	common
source	object.

Source	is	Origin Yes The	source	object	for	the

collection	is	also	the	origin
object.

Minimum
Collection	Size

Zero The	minimum	number	of
items	that	must	be
contained	in	the	collection
is	zero.

Maximum
Collection	Size

Many The	maximum	number	of
items	that	can	be	contained
in	the	collection	is
unlimited.

Sequenced
Collection

Yes As	a	destination	collection,
this	collection	permits	an
explicitly	defined
sequence.	Collections	of
origin	objects	are	never
sequenced.

Deletes	Propagated Yes The	deletion	of	an	origin
object	or	relationship	in	the
collection	causes	the
deletion	of	the
corresponding	destination
object.

Destinations
Named

Yes The	relationship	type	for
the	collection	permits	the
naming	of	destination
objects.

Case-sensitive
Names

No The	relationship	type	for
the	collection	does	not
permit	the	use	of	case-
sensitive	names	for
destination	objects.

Unique	Names Yes The	relationship	type	for
the	collection	requires	that
the	name	of	a	destination
object	be	unique	within	the
collection	of	destination

objects.	This	applies	to
collections	whose
relationship	type	permits
destination	objects	to	be
named.

See	Also

CollectionDef	Object

InterfaceDef	Object

MethodDef	Object

PropertyDef	Object

Meta	Data	Services	Programming

InterfaceDef	Properties	Collection
A	Properties	collection	contains	all	of	the	persistent	properties	and	collections
that	are	attached	to	an	object	through	a	particular	interface.	The	InterfaceDef
object	exposes	four	separate	Properties	collections.	These	collections	are
exposed	by:

The	IInterfaceDef2	interface	(the	default)	or	IInterfaceDef	interface.

The	IReposTypeInfo	or	IReposTypeInfo2	interface.

The	IRepositoryObject	or	IRepositoryObject2	interface.

The	IAnnotationalProps	interface.

Syntax

Set	variable		=		object.Properties(index)

The	Properties	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposProperty	object.	It

receives	the	specified	property.
object An	object	expression;	it	evaluates	to	an	object	that

exposes	IInterfaceDef	or	IInterfaceDef2,
IReposTypeInfo	or	IReposTypeInfo2,
IRepositoryObject	or	IRepositoryObject2,	or
IAnnotationalProps	as	the	default	interface.

index An	integer	index	that	identifies	which	property	in	the
collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	elements	in	the	collection.
The	number	of	elements	in	the	collection	is	specified	by

object.Properties.Count.

Remarks
Additional	steps	are	required	for	accessing	members	that	are	not	part	of	the
default	interface.	For	more	information	about	accessing	a	member	of	an	interface
that	is	not	the	default	interface,	see	Accessing	Automation	Object	Members.

See	Also

InterfaceDef	Object

ReposProperty	Object

Meta	Data	Services	Programming

InterfaceDef	ReposTypeLibScopes	Collection
This	is	the	collection	of	repository	type	libraries	that	contain	this	definition.

Syntax
Set	variable		=		object.ReposTypeLibScopes(index)

The	ReposTypeLibScopes	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposTypeLib	object.	It

receives	the	specified	repository	type	library	object.
object An	object	expression	that	evaluates	to	an	InterfaceDef

object.
index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	number	of	elements	in	the	collection.	The
number	of	elements	in	the	collection	is	specified	by
object.TypeLibScopes.Count.	For	more	information,
see	Selecting	Items	in	a	Collection.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

ReposTypeLib_ScopeFor_ReposTypeInfoThis	is	the	type
of	relationship
by	which	all
items	of	the
collection	are
connected	to	a
common

source	object.
Source	is
Origin

No The	source
object	for	the
collection	is
not	the	same	as
the	origin
object.

Minimum
Collection
Size

One The	minimum
number	of
items	that	must
be	contained	in
the	collection
is	one.

Maximum
Collection
Size

Many The	maximum
number	of
items	that	can
be	contained	in
the	collection
is	unlimited.

Sequenced
Collection

No As	a
destination
collection,	this
does	not	have
an	explicitly
defined
sequence.
Collections	of
origin	objects
are	never
sequenced.

Deletes
Propagated

Yes The	deletion	of
an	origin	object
or	relationship
in	the
collection
causes	the

deletion	of	the
corresponding
destination
object.

Destinations
Named

Yes The
relationship
type	for	the
collection
permits	the
naming	of
destination
objects.

Case-sensitive
Names

No The
relationship
type	for	the
collection	does
not	permit	the
use	of	case-
sensitive
names	for
destination
objects.

Unique	Names Yes The
relationship
type	for	the
collection
requires	that
the	name	of	a
destination
object	be
unique	within
the	collection
of	destination
objects.	This
applies	to
collections
whose

relationship
type	permits
destination
objects	to	be
named.

See	Also

InterfaceDef	Object

ReposTypeLib	Object

Meta	Data	Services	Programming

InterfaceDef	ScriptsUsedByInterface	Collection
This	is	the	collection	of	ScriptDef	objects	that	are	implemented	by	this
interface.

This	collection	is	not	attached	to	the	default	interface	for	this	Automation	object;
it	is	attached	to	the	IClassDef2	interface.	For	more	information	about	accessing
a	member	of	an	interface	that	is	not	the	default	interface,	see	Accessing
Automation	Object	Members.

Syntax
Set	variable		=		object.ScriptsUsedByInterface(index)

The	ScriptsUsedByInterface	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ScriptDef	object.	It	receives

the	specified	script	definition.
object An	object	expression	that	evaluates	to	an	InterfaceDef

object.
index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	elements	in	the	collection.
The	number	of	elements	in	the	collection	is	specified	by
object.ScriptDef.Count.	For	more	information,	see
Selecting	Items	in	a	Collection.

See	Also

IClassDef2	Interface

InterfaceDef	Object

ReposTypeLib	Object

ScriptDef	Object

Meta	Data	Services	Programming

MethodDef	Object
When	you	define	a	class	for	an	information	model,	you	specify	the	interfaces
that	the	class	implements.	For	each	of	those	interfaces,	you	specify	the	members
(properties,	methods,	and	collections)	that	are	attached	to	the	interface.	To	attach
a	new	method	to	an	interface,	use	the	CreateMethodDef	method	of	the
InterfaceDef	object.

The	definition	of	a	method	as	a	member	of	an	interface	does	not	result	in	the
storage	of	method	implementation	logic	in	the	repository.	However,	the	method
name	is	added	to	the	set	of	defined	member	names	for	that	interface.	It	also
reserves	the	dispatch	identifier	of	the	method	in	the	set	of	defined	dispatch
identifier	values	for	the	interface.

A	MethodDef	object	is	also	a	RepositoryObject	and	a
RepositoryObjectVersion	object.	You	can	also	access	members	that	are	defined
for	those	objects	and	members	of	IInterfaceMember2	and
IVersionAdminInfo2.	For	more	information	about	accessing	a	member	of	an
interface	that	is	not	the	default	interface,	see	Accessing	Automation	Object
Members.

When	to	Use
Use	the	MethodDef	object	to	access	or	modify	the	characteristics	of	a	method
definition,	or	to	determine	the	interface	definition	to	which	a	particular	method
is	attached.

Properties

Property Description
DispatchID The	dispatch	identifier	to	use	when	invoking	a

method	that	conforms	to	this	method	definition
Flags Flags	that	specify	details	about	this	method	definition
MemberSynonym Stores	a	synonym	of	the	method	name

Methods

Method Description
CreateParameterDef Defines	a	ParameterDef	object	for	this	method

definition

Collections

Collection Description
Interface The	interface	to	which	this	method	definition	is

attached
Properties The	collection	of	all	persistent	properties	that	are

attached	to	the	MethodDef	object

See	Also

InterfaceDef	CreateMethodDef	Method

IInterfaceMember2	Interface

IVersionAdminInfo2	Interface

ParameterDef	Object

RepositoryObject	Object

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

MethodDef	DispatchID	Property
This	property	contains	the	dispatch	identifier	that	is	used	to	invoke	a	method	that
conforms	to	this	method	definition.

Syntax
object.DispatchID

The	DispatchID	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	MethodDef

object

See	Also

MethodDef	Object

Meta	Data	Services	Programming

MethodDef	Flags	Property
This	property	is	a	flag	that	specifies	whether	the	interface	member	should	be
visible	to	Automation	queries.

Syntax
object.Flags=(integer)

The	Flags	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	MethodDef

object.
integer Flag	values	are	bit	flags,	and	may	be	combined	to	set

multiple	options.	For	more	information	about	flag
values	and	descriptions,	see	the	InterfaceMemberFlags
Enumeration.

See	Also

MethodDef	Object

Meta	Data	Services	Programming

MethodDef	MemberSynonym	Property
This	property	is	a	string	used	as	a	synonym	for	a	method	name.	The	value	that
you	specify	must	be	unique.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IInterfaceMember2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
object.MemberSynonym=string

The	MemberSynonym	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	MethodDef

object
string A	variable	length	string	that	can	be	a	maximum	of	255

characters	in	length

See	Also

MethodDef	Object

IInterfaceMember2	Interface

Meta	Data	Services	Programming

MethodDef	CreateParameterDef	Method
This	method	creates	a	ParameterDef	object	for	a	method	definition.

Syntax
Set	variable		=		object.CreateParameterDef(sObjID,	Name,	Type,	Flags,
Description,	Default)

The	CreateParameterDef	method	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ParameterDef	object.	It

receives	the	new	parameter	definition.
object An	object	expression	that	evaluates	to	a	MethodDef

object.
sObjId The	object	identifier	to	be	used	for	the	new	parameter

definition	object.	The	repository	engine	will	assign	an
object	identifier	if	you	set	this	parameter	to
OBJID_NULL.

name The	name	of	the	new	parameter.
type The	data	type	of	the	new	parameter.
flags The	attributes	of	the	new	parameter.	For	more

information	about	flag	values	and	descriptions,	see
ParameterDef	Flags	Property.

description An	alternate	description	of	the	parameter	that	replaces
the	generic,	default	string	that	is	generated	by	the
Microsoft®	SQL	Server™	2000	Meta	Data	Services
Software	Development	Kit	(SDK).	This	string	is	placed
into	an	IDL	file.

default A	string	denoting	the	default	value	for	the	new
parameter.

See	Also

Assigning	Object	Identifiers

MethodDef	Object

Object	Identifiers	and	Internal	Identifiers

Meta	Data	Services	Programming

MethodDef	Interface	Collection
For	a	particular	method	definition,	the	Interface	collection	specifies	which
interface	exposes	a	member	of	this	type.

Syntax
Set	variable		=		object.Interface(index)

The	Interface	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	InterfaceDef	object.	It

receives	the	specified	interface	definition.
object An	object	expression	that	evaluates	to	a	MethodDef

object.
index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	elements	in	the	collection.
The	number	of	elements	in	the	collection	is	specified	by
object.Interface.Count.	For	more	information,	see
Selecting	Items	in	a	Collection.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship	Type Interface_Has_Members This	is	the	type	of

relationship	by	which	all
items	of	the	collection	are
connected	to	a	common
source	object.

Source	Is	Origin No The	source	object	for	the

collection	is	not	the	same
as	the	origin	object.

Minimum
Collection	Size

One The	minimum	number	of
items	that	must	be
contained	in	the	collection
is	one.

Maximum
Collection	Size

One The	maximum	number	of
items	that	can	be	contained
in	the	collection	is	one.

Sequenced
Collection

Yes As	a	destination	collection,
this	collection	permits	an
explicitly	defined
sequence.	Collections	of
origin	objects	are	never
sequenced.

Deletes	Propagated Yes Deleting	an	origin	object	or
a	relationship	in	the
collection	causes	the
deletion	of	a	corresponding
destination	object.

Destinations
Named

Yes The	relationship	type	for
the	collection	permits	the
naming	of	destination
objects.

Case-sensitive
Names

No The	relationship	type	for
the	collection	does	not
permit	the	use	of	case-
sensitive	names	for
destination	objects.

Unique	Names Yes The	relationship	type	for
the	collection	requires	that
the	name	of	a	destination
object	be	unique	within	the
collection	of	destination
objects.	This	applies	to
collections	whose

relationship	type	permits
destination	objects	to	be
named.

See	Also

InterfaceDef	Object

MethodDef	Object

Meta	Data	Services	Programming

MethodDef	Properties	Collection
A	Properties	collection	contains	all	of	the	persistent	properties	and	collections
that	are	attached	to	an	object	via	a	particular	interface.	The	MethodDef	object
exposes	three	separate	Properties	collections.	These	collections	are	exposed	by:

The	IInterfaceMember2	interface	(the	default)	or	IInterfaceMember
interface.

The	IRepositoryObject	or	IRepositoryObject2	interface.

The	IAnnotationalProps	interface.

Syntax

Set	variable		=		object.Properties(index)

The	Properties	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposProperty	object.	It

receives	the	specified	property.
object An	object	expression;	evaluates	to	an	object	that

exposes	IInterfaceMember2	or	IInterfaceMember,
IRepositoryObject	or	IRepositoryObject2,	or
IAnnotationalProps	as	the	default	interface.

index An	integer	index	that	identifies	which	property	in	the
collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	elements	in	the	collection.
The	number	of	elements	in	the	collection	is	specified	by
object.Properties.Count.	For	more	information,	see
Selecting	Items	in	a	Collection.

Remarks
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

See	Also

MethodDef	Object

ReposProperty	Object

Meta	Data	Services	Programming

ParameterDef	Object
A	parameter	definition	object	represents	the	parameter	of	a	method.

A	ParameterDef	object	is	also	a	RepositoryObject	and	a
RepositoryObjectVersion	object.	You	can	also	access	members	that	are	defined
for	these	objects	and	members	of	IReposTypeInfo.	For	more	information	about
accessing	a	member	of	an	interface	that	is	not	the	default	interface,	see
Accessing	Automation	Object	Members.

When	to	Use
Use	the	ParameterDef	object	to	create	parameters	for	a	method	definition	object
that	you	define.

Properties

Property Description
Flags A	flag	that	defines	attributes	of	the	parameter	value.

You	can	define	whether	a	parameter	is	the	default
parameter	of	the	method,	is	optional,	or	is	passed	by
reference	or	by	value.

Default A	string	denoting	the	default	value	for	the	parameter.
Description A	descriptive	string	placed	into	an	Interface	Definition

Language	(IDL)	file	that	substitutes	for	the	generic
default	text	for	the	parameter	type.

GUID A	globally	unique	identifier	(GUID)	that	defines	the
interface	identifier	of	a	COM-based	interface
parameter.

Type The	data	type	of	the	parameter	expressed	as	a	constant
value.

See	Also

MethodDef	Object

Object	Identifiers	and	Internal	Identifiers

RepositoryObject	Object

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

ParameterDef	Default	Property
This	property	is	a	string	denoting	the	default	value	for	the	parameter.

Syntax
Object.Default=string

The	Default	property	syntax	has	the	following	parts.

Part Description
object The	ParameterDef	object
string A	variable	length	string	that	can	be	a	maximum	of	255

characters

See	Also

ParameterDef	Object

Meta	Data	Services	Programming

ParameterDef	Description	Property
This	property	is	a	string	placed	into	an	IDL	file	that	provides	more	descriptive
information	about	a	parameter,	that	is,	for	example,	a	DISPATCH	interface.
When	you	generate	an	Interface	Definition	Language	(IDL)	file,	the	Description
property	can	be	used	instead	of	the	generic	default	text	to	identify	the	parameter.
For	example,	instead	of	the	default	text	DISPATCH	*,	you	can	specify
something	like	IUMLCLass	*.

Syntax
Object.Description=string

The	Description	property	syntax	has	the	following	parts.

Part Description
object The	ParameterDef	object
string A	variable	length	string	that	can	be	a	maximum	of	255

characters

See	Also

ParameterDef	Object

Meta	Data	Services	Programming

ParameterDef	Flags	Property
This	property	is	an	integer	that	determines	the	attributes	of	a	parameter.	The	sum
total	of	the	flag	values	determines	the	combination	of	flags	that	apply.

Syntax
Object.Flags=integer

The	Flags	property	syntax	has	the	following	parts.

Part Description
object The	ParameterDef	object
integer A	single	flag	name	value,	or	an	aggregated	value	that

results	from	combining	flag	values

Remarks
Parameter	definition	flags,	values,	and	descriptions	are	provided	in	the	following
table.

Flag	Name	and	Value Description
PARAMFLAGS_IN	=	1 The	parameter	accepts	a	value	passed	to	it

as	input.
PARAMFLAGS_OUT	=	2 The	parameter	passes	an	output	value	by

reference.
PARAMFLAGS_RETVAL	=	4 The	parameter	passes	a	return	value.	Only

one	parameter	for	each	method	can	be
marked	as	a	return	value.

PARAMFLAGS_OPTIONAL	=
8

An	optional	parameter.	Once	you	define	a
parameter	as	optional,	all	subsequent
parameters	that	follow	must	also	be
optional.

See	Also

ParameterDef	Object

Meta	Data	Services	Programming

ParameterDef	GUID	Property
This	property	is	a	string	that	stores	the	globally	unique	identifier	(GUID)	that
defines	the	COM-based	interface	to	which	the	parameter	refers.

Syntax
Object.GUID

The	GUID	property	syntax	has	the	following	part.

Part Description
object The	ParameterDef	object

Remarks
You	cannot	set	GUID	using	the	CreateParameterDef	method.	Setting	the	GUID
property	is	useful	when	you	have	a	dispatch-based	interface	(for	example,
ITransactionObjectCol	object	that	has	a	data	type	of	vt_dispatch).	You	can	set
a	GUID	as	a	parameter	for	a	TransactionObjectCol	object,	even	though	the
object	is	not	a	method.

See	Also

ParameterDef	Object

Object	Identifiers	and	Internal	Identifiers

Meta	Data	Services	Programming

ParameterDef	Type	Property
This	property	is	the	data	type	of	the	parameter.	You	can	specify	most	data	types
that	are	supported	by	Automation	objects.	The	value	that	you	specify	must	be	an
integer.

Syntax
Set	object.Type=(integer)

The	Type	property	syntax	has	the	following	parts.

Part Description
object The	ParameterDef	object
integer The	integer	associated	with	a	Variant	data	type

Remarks
Automation	Variant	data	types	and	integers	are	provided	in	the	following	table.

Variant	data	type Integer
VT_ARRAY 0x2000
VT_UI1	(BYTE) 18
VT_BOOL 11
VT_BSTR 8
VT_CY	(CURRENCY) 6
VT_DATE 7
VT_I2	(SHORT) 2
VT_14	(LONG) 3
VT_R4	(SINGLE) 4
VT_R8	(DOUBLE) 5
VT_DISPATCH 9
VT_UNKNOWN 13
VT_VARIANT 12

See	Also

ParameterDef	Object

Meta	Data	Services	Programming

PropertyDef	Object
When	you	define	a	class	for	an	information	model,	you	specify	the	interfaces
that	the	class	implements.	For	each	of	those	interfaces,	specify	the	members
(properties,	methods,	and	collections)	that	are	attached	to	the	interface.

Before	you	can	attach	a	property	to	an	interface,	a	property	definition	object
must	exist	for	the	property.	The	characteristics	of	the	property	(its	name,
dispatch	identifier,	data	type,	and	various	storage	details)	are	stored	in	the
property	definition	object.	These	characteristics	are	defined	by	the	properties	of
the	property	definition	object.

To	create	a	new	property	definition

1.	 Use	the	CreatePropertyDef	method	of	the	InterfaceDef	object.

2.	 Define	any	non-default	characteristics	of	your	new	property	definition
by	manipulating	the	properties	of	the	property	definition	object.

3.	 Commit	your	changes	to	a	repository	database.

A	PropertyDef	object	is	also	a	RepositoryObject	and	a
RepositoryObjectVersion	object.	You	can	also	access	members	that	are	defined
for	these	objects,	and	members	of	IInterfaceMember2,	IViewPropertyDef	and
IVersionAdminInfo2.	For	more	information	about	accessing	a	member	of	an
interface	that	is	not	the	default	interface,	see	Accessing	Automation	Object
Members.

When	to	Use
Use	the	PropertyDef	object	to	retrieve	or	modify	the	characteristics	of	a
property	definition,	or	to	determine	which	interface	exposes	a	particular
property.

Properties

Property Description
APIType The	C	data	type	of	the	property
ColumnName The	name	of	the	column	in	the	SQL	table	for	this

property
DispatchID The	dispatch	identifier	to	use	when	accessing	an

instance	of	this	type	of	property
Flags Flags	that	specify	details	about	this	property	definition
MemberSynonym Stores	a	synonym	of	the	property	name
SQLBlobSize The	SQL	BLOB	size	of	the	property
SQLScale The	number	of	digits	to	the	right	of	the	decimal	point

for	a	numeric	property
SQLSize The	size	in	bytes	of	the	property
SQLType The	SQL	data	type	of	the	property

Collections

Collection Description
EnumerationDef The	collection	of	EnumerationDef	objects	to	which

this	property	definition	is	attached
Interface The	interface	to	which	this	property	definition	is

attached
Properties The	collection	of	all	persistent	properties	that	are

attached	to	the	PropertyDef	object

See	Also

EnumerationDef	Object

InterfaceDef	CreateProperty	Method

RepositoryObject	Object

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

PropertyDef	APIType	Property
The	C	data	type	of	the	property.	For	a	definition	of	valid	values,	see	the	ODBC
documentation.

Syntax
object.APIType

The	APIType	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	PropertyDef

object

See	Also

PropertyDef	Object

SQL	and	API	Types	Used	in	Property	Definitions

Meta	Data	Services	Programming

PropertyDef	ColumnName	Property
An	SQL	table	is	used	to	store	instance	information	for	the	properties	of	an
interface.	By	default,	there	is	a	column	in	this	table	for	each	property	that	is
defined	as	a	member	of	the	interface.	The	ColumnName	string	property
specifies	the	name	of	the	column	in	the	SQL	table	for	the	property	definition.

Syntax
object.ColumnName=(string)

The	ColumnName	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	PropertyDef

object
string A	variable	length	string	that	can	be	a	maximum	of	30

bytes

See	Also

PropertyDef	Object

Repository	SQL	Schema

Meta	Data	Services	Programming

PropertyDef	DispatchID	Property
This	property	contains	the	dispatch	identifier	to	use	when	accessing	an	instance
of	this	type	of	member.

This	property	is	not	attached	to	the	default	interface	for	the	PropertyDef
Automation	object;	it	is	attached	to	the	IInterfaceMember	interface.	For	details
on	how	to	access	a	member	of	an	interface	that	is	not	the	default	interface,	see
Accessing	Automation	Object	Members.

Syntax
object.DispatchID

The	DispatchID	property	syntax	has	the	following	part.

Part Description
object An	object	expression;	evaluates	to	an	object	that

exposes	IInterfaceMember	as	the	default	interface

See	Also

PropertyDef	Object

Meta	Data	Services	Programming

PropertyDef	Flags	Property
The	PropertyDef	object	exposes	two	separate	Flags	properties.	Both	the	default
interface,	IPropertyDef,	and	a	non-default	interface,	IInterfaceMember,
expose	a	Flags	property	that	you	can	set.

The	IPropertyDef	Flags	property	is	ignored.	It	is	preserved	for
backward	compatibility.	Originally,	this	flag	specified	whether	to	create
a	column	for	the	property.	Column	creation	would	occur	in	the	SQL
table	providing	persistent	storage	for	the	interface	to	which	the	property
is	attached.	Without	a	column,	instances	of	the	property	only	attached	to
individual	objects	when	setting	the	property	value	for	that	particular
object.	

The	IInterfaceMember	Flags	property	specifies	whether	the	interface
member	should	be	visible	to	Automation	queries.	For	more	information
about	flag	values,	see	the	InterfaceMemberFlags	Enumeration.

Syntax

object.Flags

The	Flags	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	PropertyDef

object,	for	the	default	Flags	property

-or-

An	object	expression	that	evaluates	to	an	object	that
exposes	IInterfaceMember	as	the	default	interface,	for
the	alternate	Flags	property

Remarks
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

See	Also

IInterfaceMember	Interface

PropertyDef	Object

Meta	Data	Services	Programming

PropertyDef	MemberSynonym	Property
This	property	is	a	string	used	as	a	synonym	for	a	property	name.	The	value	that
you	specify	must	be	unique.

This	property	is	not	attached	to	the	default	interface	for	the	repository
Automation	object;	it	is	attached	to	the	IInterfaceMember2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
object.MemberSynonym=(string)

The	MemberSynonym	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	PropertyDef

object
string A	variable	length	string	that	can	be	a	maximum	of	255

characters	in	length

See	Also

PropertyDef	Object

IInterfaceMember2	Interface

Meta	Data	Services	Programming

PropertyDef	SQLBlobSize	Property
The	SQL	Binary	Large	Object	(BLOB)	size	of	the	property.	For	a	definition	of
valid	values,	see	the	ODBC	documentation.

This	property	is	not	attached	to	the	default	interface	for	the	PropertyDef
Automation	object;	it	is	attached	to	the	IPropertyDef2	interface.	For	details	on
how	to	access	a	member	of	an	interface	that	is	not	the	default	interface,	see
Accessing	Automation	Object	Members.

Syntax
object.SQLBlobSize

The	SQLBlobSize	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	PropertyDef

object

See	Also

IPropertyDef2	Interface

Programming	BLOBs	and	Large	Text	Fields

PropertyDef	Object

Meta	Data	Services	Programming

PropertyDef	SQLScale	Property
The	number	of	digits	to	the	right	of	the	decimal	point	for	a	numeric	property.
This	parameter	is	ignored	unless	the	SQLType	property	specifies	a
SQL_NUMERIC,	SQL_DECIMAL,	or	SQL_TIME	data	type.

Syntax
object.SQLScale

The	SQLScale	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	PropertyDef

object

See	Also

PropertyDef	Object

SQL	and	API	Types	Used	in	Property	Definitions

Meta	Data	Services	Programming

PropertyDef	SQLSize	Property
The	size	in	bytes	of	the	property.	This	parameter	is	ignored	when	the	data	type	of
the	property	inherently	specifies	the	size	of	the	property.

Syntax
object.SQLSize

The	SQLSize	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	PropertyDef

object

Note		If	a	SQLSize	is	set	to	a	value	greater	than	65535,	the	engine	divides	the
entered	number	by	65536	and	sets	SQLSize	to	the	value	of	the	remainder	of	the
division,	but	no	error	is	returned.

See	Also

PropertyDef	Object

Meta	Data	Services	Programming

PropertyDef	SQLType	Property
The	SQL	data	type	of	the	property.	For	a	definition	of	valid	values,	see	the
ODBC	documentation.

Syntax
object.SQLType

The	SQLType	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	PropertyDef

object

See	Also

PropertyDef	Object

SQL	and	API	Types	Used	in	Property	Definitions

Meta	Data	Services	Programming

PropertyDef	EnumerationDef	Collection
An	EnumerationDef	collection	specifies	which	EnumerationDef	objects	use
the	property.

Syntax
Set	variable		=		object.EnumerationDef(index)

The	EnumerationDef	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposProperty	object.	It

receives	the	specified	property.
object An	object	expression	that	evaluates	to	PropertyDef

object.
index An	integer	index	that	identifies	which	object	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	elements	in	the	collection.
The	number	of	elements	in	the	collection	is	specified
by	object.Count.	For	more	information,	see	Selecting
Items	in	a	Collection.

See	Also

PropertyDef	Object

EnumerationDef	Object

Meta	Data	Services	Programming

PropertyDef	Interface	Collection
For	a	particular	property	definition,	the	Interface	collection	specifies	which
interface	exposes	a	member	of	this	type.

This	collection	is	not	attached	to	the	default	interface	for	the	PropertyDef
Automation	object;	it	is	attached	to	the	IInterfaceMember	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Set	variable		=		object.Interface(index)

The	Interface	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	InterfaceDef	object.	It

receives	the	specified	interface	definition.
object An	object	expression;	evaluates	to	an	object	that

implements	IInterfaceMember	as	the	default
interface.

index An	integer	index	that	identifies	which	element	in	the
collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	number	of	elements	in	the	collection.	The
number	of	elements	in	the	collection	is	specified	by
object.Interface.Count.	For	more	information,	see
Selecting	Items	in	a	Collection.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship	Type Interface_Has_Members This	is	the	type	of

relationship	by	which	all
items	of	the	collection	are
connected	to	a	common
source	object.

Source	is	Origin No The	source	object	for	the
collection	is	not	the	same
as	the	origin	object.

Minimum
Collection	Size

One The	minimum	number	of
items	that	must	be
contained	in	the	collection
is	one.

Maximum
Collection	Size

One The	maximum	number	of
items	that	can	be	contained
in	the	collection	is	one.

Sequenced
Collection

Yes As	a	destination	collection,
this	collection	permits	an
explicitly	defined
sequence.	Collections	of
origin	objects	are	never
sequenced.

Deletes	Propagated Yes The	deletion	of	an	origin
object	or	relationship	in	the
collection	causes	the
deletion	of	the
corresponding	destination
object.

Destinations
Named

Yes The	relationship	type	for
the	collection	permits	the
naming	of	destination
objects.

Case-sensitive
Names

No The	relationship	type	for
the	collection	does	not
permit	the	use	of	case-
sensitive	names	for
destination	objects.

Unique	Names No The	relationship	type	for
the	collection	requires	that
the	name	of	a	destination
object	be	unique	within	the
collection	of	destination
objects.	This	applies	to
collections	whose
relationship	type	permits
destination	objects	to	be
named.

See	Also

PropertyDef	Object

Meta	Data	Services	Programming

PropertyDef	Properties	Collection
A	Properties	collection	contains	all	of	the	persistent	properties	and	collections
that	are	attached	to	an	object	through	a	particular	interface.	The	PropertyDef
object	exposes	four	separate	Properties	collections.	These	collections	are
exposed	by:

The	IPropertyDef2	interface	(the	default)	or	IPropertyDef	interface.

The	IRepositoryObject	or	IRepositoryObject2	interface.

The	IInterfaceMember	or	IInterfaceMember2	interface.

The	IAnnotationalProps	interface.

Syntax

Set	variable		=		object.Properties(index)

The	Properties	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposProperty	object.	It

receives	the	specified	property.
object An	object	expression;	evaluates	to	an	object	that

exposes	IPropertyDef2	or	IPropertyDef,
IRepositoryObject	or	IRepositoryObjectVersion,
IInterfaceMember	or	IInterfaceMember2,	or
IAnnotationalProps	as	the	default	interface.

index An	integer	index	that	identifies	which	property	in	the
collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	number	of	elements	in	the	collection.	The
number	of	elements	in	the	collection	is	specified	by

object.Properties.Count.

Remarks
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

See	Also

PropertyDef	Object

ReposProperty	Object

Meta	Data	Services	Programming

RelationshipDef	Object
When	you	define	an	information	model	according	to	the	repository	API,	you
define	classes	of	objects,	types	of	relationships	that	can	exist	between	objects,
and	various	properties	that	are	attached	to	these	object	classes	and	relationship
types.	The	relationship	types	that	you	define	in	your	information	model	are
represented	by	instances	of	the	RelationshipDef	class.	To	add	a	new	relationship
type	(also	referred	to	as	a	relationship	definition)	to	an	information	model,	use
the	CreateRelationshipDef	method	of	the	ReposTypeLib	object.

A	RelationshipDef	object	is	also	a	RepositoryObject	and	a
RepositoryObjectVersion	object.	In	addition	to	the	members	described	here,
you	can	access	members	that	are	defined	for	those	objects.	For	more	information
about	accessing	a	member	of	an	interface	that	is	not	the	default	interface,	see
Accessing	Automation	Object	Members.

When	to	Use
Use	the	RelationshipDef	object	to:

Access	persistent	properties	that	are	attached	to	a	relationship
definition.

Determine	which	collection	types	are	associated	with	a	relationship
definition.

Determine	which	information	models	contain	a	relationship	definition.

Properties

Property Description
Name The	name	of	a	RelationshipDef	object
Synonym A	synonym	of	the	name	of	the	RelationshipDef	object

Collections

Collection Description
ItemInCollections The	collection	of	two	collection	types	that	are

associated	with	this	relationship	definition
Properties The	collection	of	all	persistent	properties	that	are

attached	to	the	RelationshipDef	object
ReposTypeLibScopes The	collection	of	all	repository	type	libraries	that

contain	this	definition

See	Also

RepositoryObject	Object

RepositoryObjectVersion	Object

ReposTypeLib	CreateRelationshipDef	Method

ReposTypeLib	Object

Meta	Data	Services	Programming

RelationshipDef	Name	Property
This	property	stores	the	name	of	the	RelationshipDef	object.

Syntax
Object.Name=(string)

The	Name	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a

RelationshipDef	object
string A	variable-length	string	that	can	be	a	maximum	of	200

characters	in	length

See	Also

RelationshipDef	Object

INamedObject	Interface

Meta	Data	Services	Programming

RelationshipDef	Synonym	Property
This	property	stores	a	synonym	of	the	name	of	the	RelationshipDef	object.
Synonym	values	are	not	unique	for	relationship	definition	objects.

This	property	is	not	attached	to	the	default	interface	for	the	RelationshipDef
Automation	object;	it	is	attached	to	the	IReposTypeInfo2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
Object.Synonym=(string)

The	Synonym	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a

RelationshipDef	object
string A	variable-length	string	that	can	be	a	maximum	of	200

characters	in	length

See	Also

INamedObject	Interface

IReposTypeInfo2	Interface

RelationshipDef	Name	Property

RelationshipDef	Object

Meta	Data	Services	Programming

RelationshipDef	ItemInCollections	Collection
A	relationship	type	is	associated	with	two	collection	types.	Origin	collections
conform	to	one	collection	type	(the	origin	collection	type),	and	destination
collections	conform	to	the	other	collection	type	(the	destination	collection	type).
The	ItemInCollections	collection	contains	the	two	collection	definition	objects
that	represent	the	origin	and	destination	collection	types.

If	the	relationship	type	has	not	yet	been	connected	to	its	origin	and	destination
collection	types,	this	collection	can	contain	less	than	two	collection	types.

Syntax
Set	variable	=		object.ItemInCollections(index)

The	ItemInCollections	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	CollectionDef	object.	It

receives	the	specified	collection	definition.
object An	object	expression	that	evaluates	to	a

RelationshipDef	object.
index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	elements	in	the	collection.
The	number	of	elements	in	the	collection	is	specified	by
object.ItemInCollections.Count.	For	more	information,
see	Selecting	Items	in	a	Collection.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship	TypeCollection_Contains_ItemsThis	is	the	type	of

relationship	by	which	all
items	of	the	collection	are
connected	to	a	common
source	object.

Source	Is	Origin No The	source	object	for	the
collection	is	not	the	same
as	the	origin	object.

Minimum
Collection	Size

Zero The	minimum	number	of
items	that	must	be
contained	in	the	collection
is	zero.

Maximum
Collection	Size

Two The	maximum	number	of
items	that	can	be	contained
in	the	collection	is	two.

Sequenced
Collection

No As	a	destination	collection,
this	does	not	have	an
explicitly	defined
sequence.	Collections	of
origin	objects	are	never
sequenced.

Deletes
Propagated

No Deleting	an	origin	object	or
a	relationship	in	the
collection	does	not	cause
the	deletion	of	a
corresponding	destination
object.

Destinations
Named

No The	relationship	type	for
the	collection	does	not
permit	the	naming	of
destination	objects.

Case-sensitive
Names

Not	applicable Case-sensitive	naming	is
not	applicable	for	this
collection.

Unique	Names Not	applicable Unique	naming	is	not
applicable	for	this
collection.

See	Also

CollectionDef	Object

RelationshipDef	Object

Meta	Data	Services	Programming

RelationshipDef	Properties	Collection
A	Properties	collection	contains	all	of	the	persistent	properties	and	collections
that	are	attached	to	an	object	through	a	particular	interface.	The
RelationshipDef	object	exposes	three	separate	Properties	collections.	These
collections	are	exposed	by:

The	IReposTypeInfo2	interface	(the	default)	or	IReposTypeInfo
interface.

The	IRepositoryObject	or	IRepositoryObject2	interface.

The	IAnnotationalProps	interface.

Syntax

Set	variable		=		object.Properties(index)

The	Properties	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposProperty	object.	It

receives	the	specified	property.
object An	object	expression.	It	evaluates	to	an	object	that

exposes	IReposTypeInfo2	or	IReposTypeInfo,
IRepositoryObject	or	IRepositoryObject2,	or
IAnnotationalProps	as	the	default	interface.

index An	integer	index	that	identifies	which	property	in	the
collection	is	to	be	addressed.	The	valid	range	is	from	one
to	the	total	number	of	elements	in	the	collection.	The
number	of	elements	in	the	collection	is	specified	by
object.Properties.Count.	For	more	information,	see
Selecting	Items	in	a	Collection.

Remarks
For	more	information	about	accessing	a	member	of	an	interface	that	is	not	the
default	interface,	see	Accessing	Automation	Object	Members.

See	Also

RelationshipDef	Object

ReposProperty	Object

Meta	Data	Services	Programming

RelationshipDef	ReposTypeLibScopes	Collection
This	is	the	collection	of	repository	type	libraries	that	contain	the	current
RelationshipDef	object.	.

Syntax
Set	variable		=		object.ReposTypeLibScopes(index)

The	ReposTypeLibScopes	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposTypeLib	object.	It

receives	the	specified	repository	type	library	object.
object An	object	expression	that	evaluates	to	a

RelationshipDef	object.
index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from	one
to	the	number	of	elements	in	the	collection.	The	number
of	elements	in	the	collection	is	specified	by
object.TypeLibScopes.Count.	For	more	information,
see	Selecting	Items	in	a	Collection.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

ReposTypeLib_ScopeFor_ReposTypeInfoThis	is	the	type
of	relationship
by	which	all
items	of	the
collection	are
connected	to	a

common
source	object.

Source	Is
Origin

No The	source
object	for	the
collection	is
not	the	same	as
the	origin
object.

Minimum
Collection
Size

One The	minimum
number	of
items	that	must
be	contained	in
the	collection
is	one.

Maximum
Collection
Size

Many The	maximum
number	of
items	that	can
be	contained	in
the	collection
is	unlimited.

Sequenced
Collection

No As	a
destination
collection,	this
does	not	have
an	explicitly
defined
sequence.
Collections	of
origin	objects
are	never
sequenced.

Deletes
Propagated

Yes The	deletion	of
an	origin	object
or	relationship
in	the
collection

causes	the
deletion	of	the
corresponding
destination
object.

Destinations
Named

Yes The
relationship
type	for	the
collection
permits	the
naming	of
destination
objects.

Case-sensitive
Names

No The
relationship
type	for	the
collection	does
not	permit	the
use	of	case-
sensitive
names	for
destination
objects.

Unique	Names Yes The
relationship
type	for	the
collection
requires	that
the	name	of	a
destination
object	be
unique	within
the	collection
of	destination
objects.	This
applies	to
collections

whose
relationship
type	permits
destination
objects	to	be
named.

See	Also

RelationshipDef	Object

ReposTypeLib	Object

Meta	Data	Services	Programming

ReposRoot	Object
There	is	one	root	object	in	each	repository.	The	root	object	is	the	starting	point
for	navigating	to	other	objects	in	the	repository.	The	root	object	is	also	the
starting	point	for	two	kinds	of	data	navigation:	type	data	navigation	and	instance
data	navigation.

Type	data	navigation

When	you	create	an	information	model,	the	corresponding	repository
type	library	is	attached	to	the	root	object	through	the	ReposTypeLibs
collection.	This	collection	can	be	used	to	enumerate	all	of	the
information	models	that	are	contained	in	a	repository	database.

Instance	data	navigation

After	an	information	model	is	installed,	a	repository	database	can	be
populated	with	object	instance	data.	This	instance	data	consists	of
objects	and	relationships	that	conform	to	the	classes	and	relationship
types	of	the	information	model.

Because	the	objects	are	connected	through	relationships,	you	can
navigate	through	this	data.	However,	to	enable	general-purpose
repository	browsers	to	navigate	this	data,	the	first	navigational	step
must	be	from	the	root	object	of	the	repository	through	a	root
relationship	collection	to	the	primary	objects	of	your	information
model.	Primary	objects	are	objects	that	make	a	good	starting	point	for
navigating	to	other	objects	of	your	information	model.

Because	this	root	relationship	collection	is	different	for	each
information	model,	the	information	model	must	define	it.	There	are	two
options	for	attaching	this	relationship	collection	to	the	root	object:

The	ReposRoot	class	implements	the	IReposRoot	interface.
This	interface	is	provided	to	information	model	creators	as	a
connection	point.	You	can	add	your	connecting	relationship
collection	to	this	interface.

You	can	extend	the	ReposRoot	class	to	implement	a	new
interface	that	is	defined	in	your	information	model.	This
interface	implements	a	relationship	collection	that	attaches	the
root	object	to	the	primary	objects	in	your	information	model.

To	facilitate	navigation,	the	root	object	in	all	repositories	always	has	the	same
object	identifier.	The	symbolic	name	for	this	object	identifier	is
OBJID_ReposRootObj.

A	ReposRoot	object	is	also	a	RepositoryObject	and	a
RepositoryObjectVersion	object.	In	addition	to	the	members	described	here,
you	can	access	members	that	are	defined	for	those	objects.	For	more	information
about	accessing	a	member	of	an	interface	that	is	not	the	default	interface,	see
Accessing	Automation	Object	Members.

When	to	Use
Use	the	ReposRoot	object	to:

Obtain	a	starting	point	for	navigating	to	objects	in	a	repository	database.

Create	a	new	information	model	container.

Attach	a	relationship	collection	to	the	root	object	of	the	repository	that
connects	to	the	primary	objects	of	your	information	model.

Determine	which	information	models	are	currently	stored	in	a
repository	database.

Methods

Method Description
CreateTypeLib Creates	an	empty	repository	type	library	that	you	can

use	to	define	a	new	information	model

Collections

Collection Description
ReposTypeLibs The	collection	of	repository	type	libraries	that	are

currently	stored	in	the	repository
Properties The	collection	of	all	persistent	properties	that	are

attached	to	the	ReposRoot	object
Workspaces The	collection	of	all	workspaces	present	in	the

repository

See	Also

IReposRoot	Interface

RepositoryObject	Object

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

ReposRoot	CreateTypeLib	Method
This	method	creates	an	empty	repository	type	library	and	attaches	it	to	the	root
of	the	repository.	Each	repository	type	library	represents	an	information	model.
After	you	create	an	empty	information	model,	you	can	populate	it	with	classes,
interfaces,	properties,	and	so	on.

Syntax
Set	variable		=		object.CreateTypeLib(sObjId,	Name,	TypeLibId)

The	CreateTypeLib	method	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposTypeLib	object.	It

receives	the	new	repository	type	library.
object An	object	expression	that	evaluates	to	a	ReposRoot

object.
sObjId The	object	identifier	to	be	used	for	the	new	repository

type	library	object.	The	repository	engine	will	assign	an
object	identifier	if	you	set	this	parameter	to
OBJID_NULL.

Name The	name	of	the	new	repository	type	library.
TypeLibId The	global	identifier	by	which	this	repository	type

library	is	referenced.

Remarks
This	method	does	not	create	an	external	type	library;	it	creates	a	ReposTypeLib
object	in	a	repository	database.

You	use	this	method	only	when	you	are	creating	an	information	model
programmatically.	If	you	are	using	the	model	installer	to	add	a	predefined
information	model	to	a	repository,	you	do	not	need	this	method.

See	Also

Object	Identifiers	and	Internal	Identifiers

ReposRoot	Object

ReposTypeLib	Object

Meta	Data	Services	Programming

ReposRoot	ReposTypeLibs	Collection
This	collection	contains	the	repository	type	libraries	currently	stored	in	a
repository	database.	Each	repository	type	library	represents	an	information
model.

Syntax
Set	variable		=		object.ReposTypeLibs(index)

The	ReposTypeLibs	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposTypeLib	object.	It

receives	the	specified	repository	type	library.
object An	object	expression	that	evaluates	to	a	ReposRoot

object.
index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from	one
to	the	total	number	of	elements	in	the	collection.	The
number	of	elements	in	the	collection	is	specified	by
object.ReposTypeLibs.Count.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

TlbManager_ContextFor_ReposTypeLibs This	is	the	type
of	relationship
by	which	all
items	of	the
collection	are
connected	to	a

common
source	object.

Source	Is
Origin

Yes The	source
object	for	the
collection	is
also	the	origin
object.

Minimum
Collection
Size

Zero The	minimum
number	of
items	that	must
be	contained	in
the	collection
is	zero.

Maximum
Collection
Size

Many The	maximum
number	of
items	that	can
be	contained	in
the	collection
is	unlimited.

Sequenced
Collection

No As	a
destination
collection,	this
does	not	have
an	explicitly
defined
sequence.
Collections	of
origin	objects
are	never
sequenced.

Deletes
Propagated

Yes The	deletion	of
an	origin
object	or
relationship	in
the	collection
causes	the

deletion	of	the
corresponding
destination
object.

Destinations
Named

Yes The
relationship
type	for	the
collection
permits	the
naming	of
destination
objects.

Case-sensitive
Names

No The
relationship
type	for	the
collection	does
not	permit	the
use	of	case-
sensitive
names	for
destination
objects.

Unique
Names

Yes The
relationship
type	for	the
collection
requires	that
the	name	of	a
destination
object	be
unique	within
the	collection
of	destination
objects.	This
applies	to
collections
whose

relationship
type	permits
destination
objects	to	be
named.

See	Also

ReposRoot	Object

ReposTypeLib	Object

Meta	Data	Services	Programming

ReposRoot	Properties	Collection
This	collection	contains	all	of	the	persistent	properties	and	collections	that	are
attached	to	an	object	through	a	particular	interface.	The	ReposRoot	object
exposes	four	separate	Properties	collections.	These	collections	are	exposed	by:

The	IManageReposTypeLib	interface	(the	default).

The	IReposRoot	interface.

The	IRepositoryObject	interface.

The	IAnnotationalProps	interface.

Syntax

Set	variable		=		object.Properties(index)

The	Properties	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposProperty	object.	It

receives	the	specified	property.
object An	object	expression.	It	evaluates	to	an	object	that

exposes	IManageReposTypeLib,	IReposRoot,
IRepositoryObject,	or	IAnnotationalProps	as	the
default	interface.

index An	integer	index	that	identifies	which	property	in	the
collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	elements	in	the	collection.
The	number	of	elements	in	the	collection	is	specified	by
object.Properties.Count.

Remarks
Additional	steps	are	required	for	accessing	members	that	are	not	part	of	the
default	interface.	For	more	information	about	how	to	access	a	member	of	an
interface	that	is	not	the	default	interface,	see	Accessing	Automation	Object
Members.

See	Also

ReposRoot	Object

Meta	Data	Services	Programming

ReposRoot	Workspaces	Collection
This	collection	is	the	set	of	object	versions	checked	out	to	a	workspace.

Syntax
Set	variable		=		object.Workspaces(index)

The	Workspaces	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	Workspace	object.	It	receives

the	specified	item	in	the	collection.
object An	object	expression	that	evaluates	to	a	ReposRoot

object.
index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from	one
to	the	number	of	elements	in	the	collection.	The	number
of	elements	in	the	collection	is	specified	by
object.Workspaces.Count.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

WsContainer_Contains_Workspaces This	is	the	type	of
relationship	by
which	all	items	of
the	collection	are
connected	to	a
common	source
object.

Source	Is Yes The	source	object

Origin for	the	collection	is
also	the	origin
object.

Minimum
Collection	Size

Zero The	minimum
number	of	items
that	must	be
contained	in	the
collection	is	zero.

Maximum
Collection	Size

Many The	maximum
number	of	items
that	can	be
contained	in	the
collection	is
unlimited.

Sequenced
Collection

No As	a	destination
collection,	this
does	not	have	an
explicitly	defined
sequence.
Collections	of
origin	objects	are
never	sequenced.

Deletes
Propagated

No Deleting	an	origin
object	or	a
relationship	in	the
collection	does	not
cause	the	deletion
of	a	corresponding
destination	object.

Destinations
Named

No The	relationship
type	for	the
collection	does	not
permit	the	naming
of	destination
objects.

Case-sensitive No The	collection

Names does	not	permit	the
use	of	case-
sensitive	names	for
destination	objects.

Unique	Names No The	relationship
type	for	the
collection	does	not
require	that	the
name	of	a
destination	object
be	unique	within
the	collection	of
destination	objects.

See	Also

ReposRoot	Object

ReposTypeLib	Object

Meta	Data	Services	Programming

ReposTypeLib	Object
Repository	type	libraries	are	represented	by	ReposTypeLib	objects.	There	is	one
repository	type	library	for	every	information	model	contained	in	a	repository
database.	Each	information	model	provides	a	logical	grouping	of	all	of	the	type
definitions.

ReposTypeLib	objects	are	often	used	to	support	navigation	when	traversing	an
information	model.	However,	you	can	also	use	ReposTypeLib	objects	to	define
or	extend	information	models	programmatically.	To	insert	a	new	information
model	into	the	repository	database,	use	the	ReposRoot	object.

A	ReposTypeLib	object	is	also	a	RepositoryObject	and	a
RepositoryObjectVersion	object.	You	can	also	access	members	that	are	defined
for	those	objects.	For	more	information	about	how	to	access	a	member	of	an
interface	that	is	not	the	default	interface,	see	Accessing	Automation	Object
Members.

When	to	Use
Use	a	ReposTypeLib	object	to:

Define	new	classes,	relationship	types,	and	interfaces	for	an	information
model	to	create	or	extend	an	information	model	programmatically.

Retrieve	or	modify	the	global	identifier	associated	with	a	repository
type	library.

Determine	which	type	definitions	are	associated	with	a	particular
repository	type	library.

Properties

Property Description
Name The	name	of	the	ReposTypeLib	object

Prefix The	prefix	of	an	interface	name	that	distinguishes
an	interface	from	other	identically	named
interfaces

TypeLibID The	global	identifier	for	the	repository	type	library

Methods

Method Description
CreateClassDef Creates	a	new	class	definition	object
CreateInterfaceDef Creates	a	new	interface	definition	object
CreateRelationshipDef Creates	a	new	relationship	definition	object

Collections

Collection Description
ReposTypeInfos The	collection	of	all	classes,	interfaces,	and

relationship	types	that	are	defined	in	the	repository
type	library

ReposTypeLibContexts The	collection	of	one	repository	root	object	that	is
the	context	for	the	repository	type	library

Properties The	collection	of	all	persistent	properties	that	are
attached	to	the	ReposTypeLib	object

See	Also

RepositoryObject	Object

RepositoryObjectVersion	Object

ReposRoot	Object

Meta	Data	Services	Programming

ReposTypeLib	Name	Property
This	property	stores	the	name	of	the	ReposTypeLib	object.

Syntax
object.Name=string

The	Name	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	ReposTypeLib

object
string A	variable	length	string	that	can	be	a	maximum	of	255

characters

See	Also

ReposTypeLib	Object

Meta	Data	Services	Programming

ReposTypeLib	Prefix	Property
This	property	stores	a	prefix	for	the	information	model	that	distinguishes	it	from
all	other	information	models	in	a	repository.

This	property	is	not	attached	to	the	default	interface	for	the	ReposTypeLib
Automation	object;	it	is	attached	to	the	IReposTypeLib2	interface.	For	more
information	about	accessing	a	member	of	an	interface	that	is	not	the	default
interface,	see	Accessing	Automation	Object	Members.

Syntax
object.prefix=(string)

The	prefix	property	syntax	has	the	following	parts.

Part Description
object An	object	expression	that	evaluates	to	a	ReposTypeLib

object.
string A	variable	length	string	that	can	be	a	maximum	of	255

characters.

Prefix	values	are	added	during	model	installation.	If	no
prefix	is	specified,	the	first	three	letters	of	the
information	model	name	are	applied	as	a	default	value.

Remarks
The	prefix	is	also	used	in	XML	for	identifying	namespaces	(for	example,	"Uml"
in	UmlElement).

Attaching	a	prefix	guarantees	that	a	class	that	implements	interfaces	from
different	information	models	does	not	introduce	a	name	conflict	when	both
interfaces	share	the	same	name.	The	prefix	is	also	used	in	XML	for	identifying
namespaces	(for	example,	"Uml"	in	UmlElement).

For	the	Open	Information	Model	(OIM),	prefix	values	are	added	during	model

installation.	If	no	prefix	is	specified,	the	first	three	letters	of	the	information
model	name	are	applied	as	a	default	value.

For	the	latest	version	of	the	MDC	(Meta	Data	Coalition)	OIM,	prefix	values
must	be	added	programmatically.	Prefix	values	are	not	added	during	model
installation.

See	Also

IReposTypeLib2	Interface

ReposTypeLib	Object

Meta	Data	Services	Programming

ReposTypeLib	TypeLibID	Property
This	property	is	the	global	identifier	for	the	repository	type	library.	If	you	copy
this	property	to	a	variable,	declare	the	variable	as	a	Variant.

Syntax
object.TypeLibID

The	TypeLibID	property	syntax	has	the	following	part.

Part Description
object An	object	expression	that	evaluates	to	a	ReposTypeLib

object

See	Also

Object	Identifiers	and	Internal	Identifiers

ReposTypeLib	Object

Meta	Data	Services	Programming

ReposTypeLib	CreateClassDef	Method
This	method	creates	a	new	class	definition	object.	No	interfaces	are	attached	to
the	class.	After	you	create	a	class	definition	object,	you	can	define	it	using	the
ClassDef	object.

Syntax
Set	variable		=		object.CreateClassDef(sObjId,	Name,	sClsId)

The	CreateClassDef	method	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ClassDef	object.	It	receives	the

new	class	definition.
object An	object	expression	that	evaluates	to	a	ReposTypeLib

object.
sObjId The	object	identifier	to	be	used	for	the	new	class

definition	object.	The	repository	engine	will	assign	an
object	identifier	if	you	set	this	parameter	to
OBJID_NULL.

Name The	name	of	the	new	class.
sClsId The	global	identifier	by	which	this	class	is	referenced.

See	Also

ClassDef	Object

Object	Identifiers	and	Internal	Identifiers

ReposTypeLib	Object

Meta	Data	Services	Programming

ReposTypeLib	CreateInterfaceDef	Method
The	CreateInterfaceDef	method	creates	a	new	interface	definition	object.	Use
the	AddInterface	method	of	the	ClassDef	object	to	attach	the	interface	to	a
class	definition	object.

Syntax
Set	variable		=		object.CreateInterfaceDef(sObjId,	Name,	sIId,	Ancestor)

The	CreateInterfaceDef	method	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	InterfaceDef	object.	It

receives	the	new	interface	definition.
object An	object	expression	that	evaluates	to	a	ReposTypeLib

object.
sObjId The	object	identifier	to	be	assigned	to	the	new	interface

definition	object.	If	this	parameter	is	set	to
OBJID_NULL,	the	repository	engine	assigns	an	object
identifier	for	you.

Name The	name	of	the	interface	that	is	to	be	created.
sIId The	interface	identifier	associated	with	the	signature	for

this	interface.	If	there	is	none,	set	this	parameter	to	zero.
Ancestor The	base	interface	from	which	the	new	interface	is

derived.

See	Also

ClassDef	AddInterface	Method

InterfaceDef	Object

Object	Identifiers	and	Internal	Identifiers

ReposTypeLib	Object

Meta	Data	Services	Programming

ReposTypeLib	CreateRelationshipDef	Method
This	method	creates	a	relationship	definition	object	for	a	new	relationship	type.
Once	the	relationship	definition	is	created,	use	the	CreateRelationshipColDef
method	of	the	InterfaceDef	object	to	create	origin	and	destination	collection
definitions	for	the	new	relationship	type.

Syntax
Set	variable		=		object.CreateRelationshipDef(sObjId,	Name)

The	CreateRelationshipDef	method	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	RelationshipDef	object.	It

receives	the	new	relationship	definition.
object An	object	expression	that	evaluates	to	a	ReposTypeLib

object.
sObjId The	object	identifier	for	the	new	relationship	type.	The

repository	engine	will	assign	an	object	identifier	if	you
set	this	parameter	to	OBJID_NULL.

Name The	name	of	the	new	relationship	type.

See	Also

InterfaceDef	CreateRelationshipColDef	Method

InterfaceDef	Object

Object	Identifiers	and	Internal	Identifiers

RelationshipDef	Object

ReposTypeLib	Object

Meta	Data	Services	Programming

ReposTypeLib	ReposTypeInfos	Collection
This	collection	contains	all	classes,	interfaces,	and	relationship	types	that	are
associated	with	a	repository	type	library.	The	repository	engine	uses	this
collection	to	enforce	the	unique	naming	of	all	classes,	interfaces,	and
relationship	types	for	a	repository	type	library.

Syntax
Set	variable		=		object.ReposTypeInfos(index)

The	ReposTypeInfos	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	an	object.	It	receives	the	specified

class	definition,	interface	definition,	or	relationship
definition.

object An	object	expression	that	evaluates	to	a	ReposTypeLib
object.

index An	integer	index	that	identifies	which	element	in	the
collection	is	to	be	addressed.	The	valid	range	is	from	one
to	the	total	number	of	elements	in	the	collection.	The
number	of	elements	in	the	collection	is	specified	by
object.ReposTypeInfos.Count.	For	more	information,
see	Selecting	Items	in	a	Collection.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

ReposTypeLib_ScopeFor_ReposTypeInfoThis	is	the	type
of	relationship
by	which	all

items	of	the
collection	are
connected	to	a
common
source	object.

Source	Is
Origin

Yes The	source
object	for	the
collection	is
also	the	origin
object.

Minimum
Collection
Size

Zero The	minimum
number	of
items	that	must
be	contained	in
the	collection
is	zero.

Maximum
Collection
Size

Many The	maximum
number	of
items	that	can
be	contained	in
the	collection
is	unlimited.

Sequenced
Collection

No As	a
destination
collection,	this
does	not	have
an	explicitly
defined
sequence.
Collections	of
origin	objects
are	never
sequenced.

Deletes
Propagated

Yes Deleting	an
origin	object	or
a	relationship

in	the
collection
causes	the
deletion	of	a
corresponding
destination
object.

Destinations
Named

Yes The
relationship
type	for	the
collection
permits	the
naming	of
destination
objects.

Case-sensitive
Names

No This	collection
does	not	use
case-sensitive
names	for
destination
objects.

Unique	Names Yes The	collection
requires	that
the	name	of	a
destination
object	be
unique	within
the	collection
of	destination
objects.

See	Also

ClassDef	Object

InterfaceDef	Object

Naming	and	Unique-Naming	Collections

RelationshipDef	Object

ReposTypeLib	Object

Meta	Data	Services	Programming

ReposTypeLib	ReposTypeLibContexts	Collection
This	collection	contains	one	repository	root	object	that	is	the	context	for	a
repository	type	library.

Syntax
Set	variable		=		object.ReposTypeLibContexts(index)

The	ReposTypeLibContexts	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposRoot	object.	It	receives

the	repository	root	object.
object An	object	expression	that	evaluates	to	a	ReposTypeLib

object.
Index An	integer	index	that	identifies	which	element	in	the

collection	is	to	be	addressed.	The	valid	range	is	from	one
to	the	number	of	elements	in	the	collection.	The	number
of	elements	in	the	collection	is	specified	by
object.ReposTypeLibContexts.Count.	For	more
information,	see	Selecting	Items	in	a	Collection.

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

TlbManager_ContextFor_ReposTypeLibs This	is	the	type
of	relationship
by	which	all
items	of	the
collection	are
connected	to	a

common
source	object.

Source	Is
Origin

No The	source
object	for	the
collection	is
not	the	origin
object.

Minimum
Collection
Size

One The	minimum
number	of
items	that	must
be	contained	in
the	collection
is	one.

Maximum
Collection
Size

Many The	maximum
number	of
items	that	can
be	contained	in
the	collection
is	unlimited.

Sequenced
Collection

No As	a
destination
collection,	this
does	not	have
an	explicitly
defined
sequence.
Collections	of
origin	objects
are	never
sequenced.

Deletes
Propagated

Yes Deleting	an
origin	object
or	a
relationship	in
the	collection
causes	the

deletion	of	a
corresponding
destination
object.

Destinations
Named

Yes The
relationship
type	for	the
collection
permits	the
naming	of
destination
objects.

Case-sensitive
Names

No The	collection
does	not
permit	the	use
of	case-
sensitive
names	for
destination
objects.

Unique
Names

Yes The
relationship
type	for	the
collection
requires	that
the	name	of	a
destination
object	be
unique	within
the	collection
of	destination
objects.

See	Also

Naming	and	Unique-Naming	Collections

ReposRoot	Object

ReposTypeLib	Object

Meta	Data	Services	Programming

ReposTypeLib	Properties	Collection
A	Properties	collection	contains	all	of	the	persistent	properties	and	collections
that	are	attached	to	an	object	through	a	particular	interface.	The	ReposTypeLib
object	exposes	three	separate	Properties	collections.	These	collections	are
exposed	by:

The	IReposTypeLib2	interface	(the	default)	and	the	IReposTypeLib
interface.

The	IReposTypeInfo	or	IReposTypeInfo2	interface.

The	IAnnotationalProps	interface.

Syntax

Set	variable		=		object.Properties(index)

The	Properties	collection	syntax	has	the	following	parts.

Part Description
variable A	variable	declared	as	a	ReposProperty	object.	It

receives	the	specified	property.
object An	object	expression.	It	evaluates	to	an	object	that

exposes:

IReposTypeLib	or	IReposTypeLib2

IRepositoryObject	or	IRepositoryObject2

-or-

IAnnotationalProps

as	the	default	interface.

index An	integer	index	that	identifies	which	property	in	the
collection	is	to	be	addressed.	The	valid	range	is	from	one
to	the	number	of	elements	in	the	collection.	The	number
of	elements	in	the	collection	is	specified	by
object.Properties.Count.	For	more	information,	see
Selecting	Items	in	a	Collection.

Remarks
Additional	steps	are	required	for	accessing	members	that	are	not	part	of	the
default	interface.	For	more	information	about	accessing	a	member	of	an	interface
that	is	not	the	default	interface,	see	Accessing	Automation	Object	Members.

See	Also

ReposProperty	Object

ReposTypeLib	Object

Meta	Data	Services	Programming

ScriptDef	Object
A	script	definition	object	represents	Microsoft®	ActiveX®	script	that	you	can
associate	with	a	method	or	property	definition.	A	ScriptDef	object	provides	a
way	to	store	the	implementation	of	a	method	in	an	information	model.	You	can
also	use	ScriptDef	to	validate	properties	before	storing	them	in	a	repository
database.

A	ScriptDef	object	is	also	a	RepositoryObject	and	a	RepositoryObjectVersion
object.	You	can	also	access	members	that	are	defined	for	those	objects	and
members	of	IReposTypeInfo.	For	more	information	about	accessing	a	member
of	an	interface	that	is	not	the	default	interface,	see	Accessing	Automation	Object
Members.

When	to	Use
Use	the	ScriptDef	object	to	define	a	method	or	a	property	validation	rule.

Properties

Property Description
Body Contains	the	body	of	a	script.
Language Contains	a	string	that	identifies	the	language	in	which

the	script	is	written.	You	can	provide	script	in
Microsoft	Visual	Basic®	Scripting	Edition	(VBScript)
and	Microsoft	JScript®.

Name The	name	of	a	ScriptDef	object.

Methods

Method Description
ValidateScript Validates	script	syntax

Collections

Collection Description
UsingClasses Class	collections	for	which	the	script	applies
UsingInterfaces Interface	collections	for	which	the	script	applies
UsingMembers Member	collections	for	which	the	script	applies

See	Also

Defining	Script	Objects

MethodDef	Object

RepositoryObject	Object

RepositoryObjectVersion	Object

Meta	Data	Services	Programming

ScriptDef	Body	Property
This	property	stores	the	body	of	a	script.

Syntax
Object.Body=string

The	Body	property	syntax	has	the	following	parts.

Part Description
object The	ScriptDef	object
string A	variable	length	string	that	can	be	a	maximum	of	64

KB	in	length

Remarks
You	can	provide	validation	using	the	ValidateScript	method.

See	Also

ScriptDef	Object

ScriptDef	ValidateScript	Method

Meta	Data	Services	Programming

ScriptDef	Language	Property
This	property	stores	the	name	of	the	language	in	which	the	script	is	written.

Syntax
Object.Language=string

The	Language	property	syntax	has	the	following	parts.

Part Description
object The	ScriptDef	object.
string A	variable	length	string	that	can	be	a	maximum	of	255

characters	in	length.

Valid	values	are	Microsoft®	Visual	Basic®	Scripting
Edition	(VBScript)	and	Microsoft	JScript®.

See	Also

ScriptDef	Object

Meta	Data	Services	Programming

ScriptDef	Name	Property
This	property	stores	the	name	of	the	ScriptDef	object.

Syntax
Object.Name=string

The	Name	property	syntax	has	the	following	parts.

Part Description
object The	ScriptDef	object
string A	variable	length	string	that	can	be	a	maximum	of	200

characters	in	length

See	Also

ScriptDef	Object

Meta	Data	Services	Programming

ScriptDef	ValidateScript	Method
This	method	validates	script	provided	through	the	Body	property.	Validation	is
performed	by	the	Microsoft®	ActiveX®	Scripting	Engine	for	the	specified
language.

Syntax
Object.ValidateScript

The	ValidateScript	method	syntax	has	the	following	part.

Part Description
object The	ScriptDef	object

Remarks
The	ValidateScript	method	returns	S_OK	if	the	script	can	be	executed;
otherwise	it	returns	an	error	generated	by	the	script	engine.

The	syntax	of	the	script	is	checked	by	instantiating	the	script.	For	more
information,	see	Defining	Script	Objects.

See	Also

ScriptDef	Object

Meta	Data	Services	Programming

ScriptDef	UsingClasses	Collection
This	collection	contains	classes	that	use	the	script.

This	collection	is	the	origin	collection	of	a	relationship	that	associates	a	script
with	a	class.	The	destination	collection	of	this	relationship	is	the
ScriptsUsedByClass	collection.

Syntax
Set	variable=object.UsingClasses(index)

The	UsingClasses	syntax	has	the	following	parts.

Part Description
variable Variable	declared	as	an	object.
object A	ClassDef	object.
index An	integer	index	that	identifies	which	class	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	classes	in	the	collection.	For
more	information,	see	Selecting	Items	in	a	Collection.

See	Also

ClassDef	Object

ScriptDef	Object

Meta	Data	Services	Programming

ScriptDef	UsingInterfaces	Collection
This	collection	contains	interfaces	that	use	the	script.

This	collection	is	the	origin	collection	of	a	relationship	that	associates	a	script
with	an	interface.	The	destination	collection	of	this	relationship	is	the
ScriptsUsedByInterface	collection.

Syntax
Set	variable=object.UsingInterfaces(index)

The	UsingInterfaces	syntax	has	the	following	parts.

Part Description
variable Variable	declared	as	an	object.
object An	InterfaceDef	object.
index An	integer	index	that	identifies	which	interface	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	interfaces	in	the	collection.
For	more	information,	see	Selecting	Items	in	a
Collection.

See	Also

InterfaceDef	Object

ScriptDef	Object

Meta	Data	Services	Programming

ScriptDef	UsingMembers	Collection
This	collection	contains	interface	members	(methods	or	properties)	that	use	the
script.

This	collection	is	the	origin	collection	of	a	relationship	that	associates	a	script
with	an	interface	member.	The	destination	collection	of	this	relationship	is	the
ScriptsUsedByMember	collection.

Syntax
Set	variable=object.UsingMembers(index)

The	UsingMembers	syntax	has	the	following	parts.

Part Description
variable Variable	declared	as	an	object.
object A	MethodDef	or	PropertyDef	object.
index An	integer	index	that	identifies	which	member	in	the

collection	is	to	be	addressed.	The	valid	range	is	from
one	to	the	total	number	of	members	in	the	collection.
For	more	information,	see	Selecting	Items	in	a
Collection.

See	Also

MethodDef	Object

PropertyDef	Object

ScriptDef	Object

Meta	Data	Services	Programming

COM	Reference
The	COM	Reference	documents	the	COM	classes	and	interfaces	of	the
repository	API.	An	equivalent	reference	is	available	for	Automation	objects.

In	this	documentation,	classes	and	interfaces	are	organized	into	four	categories.

Section Description
Repository	Engine	Classes Describes	the	classes	that	expose	the

functionality	of	the	repository
engine.

RTIM	Classes Describes	the	Repository	Type
Information	Model	(RTIM)	classes.
These	are	the	abstract	classes	to
which	an	information	model	must
conform.

Repository	Engine	COM	Interfaces Describes	the	interfaces	that	expose
the	functionality	of	the	repository
engine.

RTIM	COM	Interfaces Describes	the	interfaces	that	define
the	RTIM.

See	Also

Automation	Reference

Information	Models

Repository	API	Reference

Repository	Engine

Repository	Object	Architecture

Visual	C++	Wrappers	with	Meta	Data	Services

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Meta	Data	Services	Programming

Repository	Engine	Classes
Repository	engine	classes	are	used	to	add,	retrieve,	and	change	information
model	data	in	a	repository.	To	create	a	new	information	model,	or	extend	an
existing	one,	use	the	Repository	Type	Information	Model	(RTIM)	classes.	For
more	information,	see	RTIM	Classes.

All	repository	engine	classes	expose	the	standard	IUnknown	and	IDispatch
interfaces	that	provide	fundamental	COM	and	Automation	support.

The	following	table	lists	the	repository	engine	classes	in	alphabetical	order.

Class Description
ObjectCol Defines	a	set	of	repository	objects

that	can	be	enumerated
Relationship Connects	two	repository	objects	in	a

repository	database
RelationshipCol Defines	a	set	of	relationships	that

connect	a	particular	source	object	to
a	set	of	one	or	more	target	objects

Repository Defines	a	connection	to	a	particular
repository

RepositoryObject Defines	an	object	that	is	stored	in	a
repository	database	and	managed	by
the	repository	engine

RepositoryObjectVersion Defines	a	versioned	object	that	is
stored	in	a	repository	database	and	is
managed	by	the	repository	engine

ReposProperties Provides	access	to	the	Properties
collection

ReposProperty Provides	access	to	a	persistent
member	(a	property	or	collection)	of
an	information	model	interface

TransientObjectCol Defines	an	object	collection	that	you
can	create	and	dynamically	populate
at	run	time	using	script	and	object

methods	rather	than	persisted	data	in
a	repository	database

VersionCol Defines	a	collection	of	object
versions

VersionedRelationship Defines	a	connection	between	two
versioned	objects	in	a	repository
database

Workspace Defines	a	subset	of	a	central,	shared
repository

See	Also

COM	Reference

Repository	API	Reference

Repository	Engine

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

ObjectCol	Class
An	object	collection	is	a	set	of	repository	objects	that	can	be	enumerated.	Two
kinds	of	object	collections	are	supported	by	the	repository	engine:

The	collection	of	destination	objects	that	correspond	to	the	relationships
in	a	relationship	collection.	Use	the	RelationshipCol	class	to	manage
this	kind	of	collection.

The	collection	of	all	objects	in	the	repository	that	implement	a
particular	interface.	Use	the	ObjectCol	class	to	enumerate	objects	in
this	kind	of	object	collection.

Use	the	IInterfaceDef::ObjectInstances	method	to	materialize	an	instance	of
this	class.

When	to	Use
Use	the	ObjectCol	class	to	access	the	collection	of	repository	objects	that
expose	a	particular	interface.

Interfaces

Interface Description
IObjectCol Manages	objects	in	a	collection
IObjectCol2 Exposes	methods	for	controlling	the	load	status	of

an	object	collection

See	Also

IInterfaceDef::ObjectInstances

IRepositoryDispatch	Interface

RelationshipCol	Class

Repository	Engine	Classes

Meta	Data	Services	Programming

Relationship	Class
A	relationship	connects	two	repository	objects	in	a	repository	database.	In	this
release	of	the	repository	engine,	relationships	are	versioned.	That	is,	every
relationship	is	a	VersionedRelationship	object.	A	versioned	relationship	can
connect	a	particular	version	of	a	repository	object	to	one	or	more	specific
versions	of	the	target	object.	Because	every	relationship	is	a
VersionedRelationship	object,	you	can	declare	any	relationship	with	the
following	line	of	Microsoft®	Visual	Basic®:

Dim	myVersionedRship	As	VersionedRelationship

In	earlier	releases	of	the	repository	engine,	the	object	model	included	the
Relationship	class,	but	not	the	VersionedRelationship	class.	If	you	have	Visual
Basic	programs	written	against	earlier	releases	of	the	repository	engine,	those
programs	might	include	declarations	like	the	following:

Dim	oldRship	As	Relationship

These	programs	will	work,	because	the	repository	object	model	still	includes	the
Relationship	class.	Visual	Basic	recognizes	the	Relationship	declaration	as
valid.	But	in	this	release,	every	relationship	is	a	versioned	relationship.	So	the
object	oldRship,	even	though	it	is	declared	as	a	Relationship,	must	conform	to
the	VersionedRelationship	class.

To	ensure	that	objects	declared	as	Relationship	conform	to	the
VersionedRelationship	class,	the	repository	engine	uses	the	same	Class	Factory
for	both	classes.	In	this	way,	any	object	that	you	declare	as	a	Relationship
implements	the	exact	same	methods	as	any	object	that	you	declare	as	a
VersionedRelationship.	In	effect,	the	following	two	lines	of	Visual	Basic	code
are	identical:

Dim	oldRship	As	Relationship
Dim	myVersionedRship	As	VersionedRelationship

Interfaces

Interface Description
IAnnotationalProps Gets	and	sets	annotational	properties
IRelationship Connects	two	objects	in	an	information	model

See	Also

IAnnotationalProps	Interface

IRelationship	Interface

IRepositoryDispatch	Interface

IRepositoryItem	Interface

RelationshipCol	Class

Repository	Engine	Classes

VersionedRelationship	object

Meta	Data	Services	Programming

RelationshipCol	Class
A	relationship	collection	is	the	set	of	relationships	that	connect	a	particular
source	repository	object	to	a	set	of	one	or	more	target	objects.	All	of	the
relationships	in	the	collection	must	conform	to	the	same	relationship	type.

When	to	Use
Use	the	RelationshipCol	class	to	manage	a	collection	of	relationships	in	a
repository	database.

Interfaces

Interface Description
IObjectCol Manages	objects	in	a	collection
IRelationshipCol Manages	a	collection	of	relationships
IReposQuery Provides	filters	on	collections	to	control	how

objects	appear	in	an	object	collection
ITargetObjectCol Manages	objects	in	a	target	object	collection

See	Also

IRepositoryDispatch	Interface

Relationship	Class

Repository	Engine	Classes

Meta	Data	Services	Programming

Repository	Class
When	you	populate	an	information	model,	the	objects	and	relationships	that
conform	to	the	model	are	stored	in	a	repository.	Multiple	information	models
may	be	stored	in	the	same	repository.	The	Repository	class	represents	your
connection	to	a	particular	repository.

When	to	Use
You	can	use	the	Repository	class	to	connect	to	a	repository,	retrieve	the	root
object	of	the	repository,	create	new	repository	objects,	and	manage	repository
transactions	and	error	handling.

Interfaces

Interface Description
IRepository Creates	and	populates	a	repository
IRepository2 Manages	individual	versions	of	repository

objects
IReposErrorQueueHandler Creates	and	assigns	error	queues
IRepositoryODBC Provides	access	to	repository	database

connection	information
IRepositoryODBC2 Exposes	methods	that	enable	you	to	set	or	get

options	for	retrieving	object	collections
asynchronously

IRepositoryTransaction Controls	repository	transactions
IRepositoryTransaction2 Supports	distributed,	atomic	transactions
IReposOptions Exposes	methods	for	getting,	setting,	or

resetting	engine	options
IReposQuery Provides	filters	on	collections	to	control	how

objects	appear	in	an	object	collection

See	Also

IRepositoryDispatch

Repository	Engine	Classes

Meta	Data	Services	Programming

RepositoryObjectVersion	Class
An	object	version	is	a	specific	state	of	a	repository	object	at	a	given	point	in
time.	Each	object	version	consists	of	a	state	that	can	be	permanently	fixed
(protected	from	further	modification)	plus	another,	always	modifiable,	aspect.
The	state	of	an	object	version	consists	of	its	nonannotational	property	values	and
its	origin	collections.	The	other,	always	modifiable,	aspect	of	an	object	version
consists	of	its	annotational	properties	and	its	destination	collections.

When	to	Use
Use	the	RepositoryObjectVersion	class	to	manipulate	a	particular	version	of	a
repository	object.

Interfaces

Interface Description
IRepositoryDispatch Provides	enhanced	dispatch	support
IRepositoryItem Manages	repository	objects	and	relationships
IRepositoryObject Retrieves	repository	object	identifiers
IRepositoryObjectStorageCreates	and	loads	repository	objects
IRepositoryObjectVersionManages	repository	object	versions
IWorkspaceItem Manages	repository	object	versions	in	a

workspace

See	Also

RepositoryObject	Class

Repository	Engine	Classes

Meta	Data	Services	Programming

RepositoryObject	Class
A	repository	object	is	an	object	that	is	stored	in	a	repository	database	and	is
managed	by	the	repository	engine.

In	this	release	of	the	repository	engine,	objects	can	be	versioned.	A	repository
object	version	is	a	particular	edition	of	a	repository	object.	Each	version	of	an
object	can	differ	from	other	versions	of	that	object	in	its	property	values	and
collections.	When	you	obtain	a	reference	to	a	repository	object,	you	are	actually
manipulating	a	particular	version	of	that	object.	That	is,	you	manipulate	a
RepositoryObjectVersion	object.	Because	you	manipulate	particular	versions	of
objects,	you	can	declare	any	object	with	the	following	line	of	Microsoft®	Visual
Basic®	code:

Dim	myVersionedReposObject	As	RepositoryObjectVersion

In	earlier	releases	of	the	repository	engine,	the	object	model	included	the
RepositoryObject	class,	but	not	the	RepositoryObjectVersion	class.	If	you
have	Visual	Basic	programs	written	against	earlier	releases,	those	programs
might	include	declarations	like	the	following:

Dim	oldReposObject	As	RepositoryObject

These	programs	will	work	because	the	repository	object	model	still	includes	the
RepositoryObject	object.	Visual	Basic	recognizes	the	preceding	declaration	as
valid.	But	whenever	you	manipulate	an	object,	you	actually	manipulate	a
specific	version	of	that	object.	So	the	object	oldReposObject,	even	though	it	is
declared	as	a	RepositoryObject,	must	conform	to	the
RepositoryObjectVersion	class.

To	ensure	that	objects	declared	as	RepositoryObject	conform	to	the
RepositoryobjectVersion	class,	the	repository	engine	uses	the	same	Class
Factory	for	both	classes.	In	this	way,	any	object	that	you	declare	as	a
Relationship	implements	the	exact	same	methods	as	any	object	you	declare	as	a
VersionedRelationship.	In	effect,	the	following	two	lines	of	Visual	Basic	code
are	identical:

Dim	myVersionedReposObject	As	RepositoryObjectVersion
Dim	oldReposObject	As	RepositoryObject

Interfaces

Interface Description
IRepositoryDispatch Provides	enhanced	dispatch	support
IRepositoryItem Manages	repository	objects	and	relationships
IRepositoryObject Retrieves	repository	object	identifiers
IRepositoryObject2 Provides	binary	large	object	(BLOB)	and	large

text	file	support,	and	exposes	additional	meta
data	about	an	object

IRepositoryObjectStorageCreates	and	loads	repository	objects

See	Also

IRepositoryDispatch	Interface

IRepositoryItem	Interface

IRepositoryObject	Interface

IRepositoryObjectStorage	Interface

Repository	Engine	Classes

RepositoryObjectVersion

Meta	Data	Services	Programming

ReposProperties	Class
The	ReposProperties	class	provides	access	to	the	Properties	collection.	The
Properties	collection	gives	you	a	convenient	mechanism	for	enumerating
through	all	of	the	persistent	properties	and	collections	of	an	interface.	The
ReposProperty	class	can	be	used	to	access	the	individual	members	in	the
Properties	collection.

When	to	Use
Use	the	ReposProperties	class	to	access	the	properties	and	collections	of	a
repository	object,	when	no	custom	implementation	is	available,	and	you	do	not
already	know	what	members	are	exposed	by	the	object's	interface.

Interfaces

Interface Description
IReposProperties Provides	access	to	the	members	that	are	attached	to

an	interface

See	Also

IReposProperty	Interface

IRepositoryDispatch	Interface

Repository	Engine	Classes

Meta	Data	Services	Programming

ReposProperty	Class
The	ReposProperty	class	provides	access	to	a	persistent	member	(a	property	or
collection)	of	an	information	model	interface.

When	to	Use
Use	the	ReposProperty	class	to	access	a	persistent	interface	member,	when	a
custom	implementation	is	not	available	and	you	do	not	already	know	the	type	or
name	of	the	member.

Interfaces

Interface Description
IReposProperty Provides	access	to	the	members	that	are	attached	to

an	interface

See	Also

IReposProperties	Interface

IRepositoryDispatch	Interface

Repository	Engine	Classes

Meta	Data	Services	Programming

TransientObjectCol	Class
This	class	defines	an	object	collection	that	you	can	create	and	dynamically
populate	at	run	time	using	script	and	object	methods	rather	than	persisted	data	in
a	repository	database.	It	simulates	a	standard,	persisted	object	collection.

When	to	Use
Use	this	class	to	create	an	object	collection	that	is	instantiated	by	application
code	and	populated	dynamically	at	run	time.	With	this	object,	you	can:

Create	an	object	collection	that	is	not	stored	in	a	repository	database.

Get	a	count	of	the	number	of	objects	in	the	collection.

Add	and	remove	objects	to	and	from	the	collection.

Interfaces

Interface Description
ITransientObjectCol Defines	a	set	of	repository	objects	that	can	be

instantiated	by	an	application	and	populated	at	run
time

IObjectCol Manages	objects	in	a	collection

See	Also

Repository	Engine	Classes

TransientObjectCol	Object

Meta	Data	Services	Programming

VersionCol	Class
A	version	collection	is	a	collection	of	object	versions.

When	to	Use
Use	the	VersionCol	class	to	manage	a	collection	of	object	versions.

Interfaces

Interface Description
IVersionCol Manages	object	versions	in	a	collection

See	Also

RepositoryObjectVersion	Class

RepositoryObjectVersion	Object

Repository	Engine	Classes

Meta	Data	Services	Programming

VersionedRelationship	Class
A	relationship	connects	two	repository	objects	in	a	repository	database.	In	this
release	of	the	repository	engine,	relationships	are	versioned.	That	is,	every
relationship	is	a	VersionedRelationship	object.	A	versioned	relationship	can
connect	a	particular	version	of	a	repository	object	to	one	or	more	specific
versions	of	the	target	object.

When	to	Use
Use	the	VersionedRelationship	class	to	manipulate	a	relationship,	or	to	retrieve
the	source,	target,	origin,	or	destination	object	for	a	relationship.

Interfaces

Interface Description
IAnnotationalProps Gets	and	sets	annotational	properties
IRelationship Retrieves	information	about	a	relationship
IRepositoryDispatch Provides	enhanced	dispatch	support
IRepositoryItem Manages	repository	objects	and	relationships
IVersionedRelationship Manages	the	TargetVersions	collection	of	a

versioned	relationship

See	Also

RelationshipCol	Class

Repository	Engine	Classes

VersionedRelationship	object

Meta	Data	Services	Programming

Workspace	Class
A	workspace	is	a	subset	of	the	repository	within	which	you	can	operate	on	tool
data	in	isolation	from	other	repository	activity.

To	insert	a	new	workspace	into	a	repository	database,	use	any	class	that
implements	the	IWorkspaceContainer	interface.	The	ReposRoot	class	is	one
such	class.

When	to	Use
Use	the	Workspace	class	to	perform	any	operation	you	would	perform	within
the	repository,	when	you	want	to	perform	the	operation	in	isolation	from	other
repository	activity.

Interfaces

Interface Description
INamedObject Manages	object	names
IRepository Creates	and	populates	a	repository
IRepository2 Creates	and	manages	subsequent	versions	of

repository	objects
IRepositoryDispatch Provides	enhanced	dispatch	support
IRepositoryItem Manages	repository	objects	and	relationships
IRepositoryObject Retrieves	repository	object	identifiers
IRepositoryObjectVersionManages	individual	versions	of	objects,	and	the

relationships	among	individual	versions	of	the
same	object

IRepositoryODBC Provides	access	to	a	repository	database	through
an	ODBC	connection

IRepositoryODBC2 Exposes	methods	that	enable	you	to	set	or	get
options	for	retrieving	object	collections
asynchronously

IReposQuery Provides	filters	on	collections	to	control	how

objects	appear	in	an	object	collection
IVersionAdminInfo2 Retains	properties	inherited	from

IVersionAdminInfo	and	sets	or	retrieves
version	comments

IWorkspace Manages	workspaces
IWorkspaceItem Manages	the	participation	of	object	versions	in

workspaces

See	Also

IAnnotationalProps	Interface

IRepositoryObjectStorage	Interface

IReposTypeLib	Interface

Repository	Engine	Classes

ReposRoot	Class

Meta	Data	Services	Programming

Repository	Engine	COM	Interfaces
The	repository	engine	interfaces	expose	the	properties	and	methods	that	are	used
to	add,	retrieve,	and	change	information	model	data	in	a	repository	database.

These	interfaces	work	with	the	interfaces	that	describe	an	information	model.
The	Repository	Type	Information	Model	(RTIM)	interfaces	are	listed	separately.
For	more	information,	see	RTIM	COM	Interfaces.

All	repository	engine	interfaces	inherit	from	the	standard	IUnknown	and
IDispatch	interfaces,	which	provide	fundamental	COM	and	Automation
support.

The	following	repository	engine	interfaces	are	listed	alphabetically.

Interfaces Description
IannotationalProps	Interface Accesses	the	annotational	properties

of	a	repository	object	or	relationship
IEnumRepositoryErrors	Interface Provides	enumeration	capabilities	for

the	set	of	errors	that	have	been
placed	on	the	repository	error	queue

INamedObject	Interface Accesses	the	Name	property	of	a
repository	object	that	exposes	this
interface

IObjectCol	Interface Enumerates	the	collection	of
repository	objects	that	conform	to	a
particular	class	or	expose	a	particular
interface

IObjectCol2	Interface Controls	the	load	status	of	an	object
collection

IRelationship	Interface Connects	two	repository	objects	in	a
repository	database

IRelationshipCol	Interface Manages	the	relationships	that
belong	to	a	particular	relationship
collection

IReposErrorQueueHandler	Interface Creates	a	repository	error	queue	and

retrieves	an	interface	pointer	to	an
error	queue

IRepository	Interface Creates	and	accesses	a	repository
session

IRepository2	Interface Manipulates	versioned	objects	within
a	repository	session

IRepositoryDispatch	Interface Accesses	the	properties	and
collections	of	a	repository	object,
when	no	custom	implementation	is
available

IRepositoryErrorQueue	Interface Manages	the	errors	that	belong	to	a
particular	repository	error	queue

IRepositoryItem	Interface Defines	general	purpose	methods
that	are	used	to	manage	repository
items

IRepositoryObject	Interface Provides	methods	to	manage
repository	objects

IRepositoryObject2	Interface Supports	Meta	Data	Browser	by
accessing	meta	data	about
information	models

IRepositoryObjectStorage	Interface Initializes	the	memory	image	for	a
repository	object

IRepositoryObjectVersion	Interface Manipulates	any	version	of	an	object
IRepositoryODBC	Interface Obtains	or	releases	an	ODBC

connection	handle,	or	retrieves	the
ODBC	connection

IRepositoryODBC2	Interface Sets	or	gets	options	when	loading
object	collections	asynchronously

IRepositoryTransaction	Interface Begins,	commits,	stops,	or	sets
options	on	a	repository	transaction,
or	obtains	information	about	a
transaction	state

IRepositoryTransaction2	Interface Begins,	commits,	or	stops	a
distributed	repository	transaction

IReposOptions	Interface Gets,	sets,	or	resets	engine	options

IReposProperties	Interface Accesses	a	Properties	collection
IReposProperty	Interface Provides	access	to	a	stored	member

(a	property	or	collection)	of	an
information	model	interface

IReposProperty2	Interface Supports	Meta	Data	Browser	by
retrieving	meta	data	for	an	interface
without	having	to	query	the	database

IReposPropertyLarge	Interface Handles	binary	large	objects
(BLOBs)	and	large	text	fields

IReposQuery	Interface Filters	on	collections	for	the	purpose
of	controlling	how	objects	appear	in
an	object	collection

ISummaryInformation	Interface Maintains	Comments	and
ShortDescription	properties

ITargetObjectCol	Interface Manages	the	repository	objects	that
belong	to	a	particular	relationship
collection

ITransientObjectCol	Interface Creates	and	dynamically	populates
an	object	collection	at	run	time	using
script	and	object	methods	rather	than
stored	data	in	a	repository	database

IVersionAdminInfo	Interface Retains	and	manipulates
administrative	information	about
object	versions

IVersionAdminInfo2	Interface Retains	version	string,	comment,	and
description	data

IVersionCol	Interface Manages	a	collection	of	versioned
objects

IVersionedRelationship	Interface Manages	a	collection	of	versioned
relationship	objects

IWorkspace	Interface Manages	the	object	versions	present
in	the	workspace	and	the	workspace
container

IWorkspaceContainer	Interface Retrieves	the	collection	of
workspaces	in	a	repository

IWorkspaceItem	Interface Manages	the	participation	of	object
versions	within	workspaces

See	Also

COM	Reference

Information	Models

Repository	API	Reference

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

IAnnotationalProps	Interface
Annotational	properties	are	repository	properties	that	can	be	associated	with
individual	repository	objects	or	relationships.	Before	an	annotational	property
value	can	be	attached	to	a	repository	object,	two	requirements	must	be	met:

The	object	must	conform	to	an	object	class	that	exposes	the
IAnnotationalProps	interface.

A	property	definition	object	must	exist	for	an	IAnnotationalProps
interface	property.	The	name	of	the	property	definition	object	must
match	the	name	of	your	annotational	property.

If	these	two	requirements	are	met,	you	can	attach	an	annotational	property	value
to	an	object	using	the	IReposProperty::put_Value	method	to	set	the	value	of
the	annotational	property	for	that	particular	object.

When	to	Use
Annotational	properties	are	not	recommended.	Support	for	annotational
properties	will	not	be	included	in	future	releases	of	the	repository	engine.

Version	3.0	of	the	repository	engine	still	supports	annotational	properties.	If	you
are	already	using	annotational	properties,	you	can	use	the	IAnnotationalProps
interface	to	access	the	annotational	properties	of	a	repository	object	or
relationship.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which
can	be	used	to	get	the	type	information	for
an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	Properties	collection.

Remarks
Annotational	properties	are	maintained	by	the	repository	engine	as	string	data.
The	creator	and	users	of	the	annotational	property	must	get	and	set	the	property
value	using	the	appropriate	data	type	through	the	VARIANT	structure.	If	a	data
type	other	than	string	is	used,	the	repository	engine	performs	the	appropriate
data	conversion.

Because	all	annotational	properties	in	the	repository	must	be	defined	as	interface
members	of	the	IAnnotationalProps	interface,	all	annotational	property	names
share	the	same	name	space.	When	you	choose	a	name	for	an	annotational
property,	make	the	name	as	specific	and	unique	as	possible.

See	Also

ClassDef	Class

CollectionDef	Class

InterfaceDef	Class

IReposProperty::put_Value

MethodDef	Class

PropertyDef	Class

Relationship	Class

RelationshipDef	Class

ReposTypeLib	Class

ReposRoot	Class

Meta	Data	Services	Programming

IEnumRepositoryErrors	Interface
This	interface	provides	enumeration	capabilities	for	the	set	of	errors	that	have
been	placed	on	the	repository	error	queue.

When	to	Use
Use	the	IEnumRepositoryErrors	interface	to	access	the	queue	of	repository
errors.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IEnumRepositoryErrors
method Description
Clone Clones	the	current	enumerator
Next Returns	the	next	one	or	more	elements
Reset Resets	the	enumerator	to	the	beginning
Skip Skips	over	the	next	one	or	more	elements

See	Also

Error	Handling	Overview

IRepositoryErrorQueue::	_NewEnum

Repository	Errors

Meta	Data	Services	Programming

IEnumRepositoryErrors::Clone
Use	this	method	to	create	a	clone	of	the	COM	enumerator	object.	After	cloning,
the	two	enumerators	operate	independently	of	each	other.

HRESULT	Clone(IEnumRepositoryErrors			**ppIEnum)

Parts
*ppIEnum

[out]
The	interface	pointer	for	the	new	enumerator	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IEnumRepositoryErrors	Interface

Meta	Data	Services	Programming

IEnumRepositoryErrors::Next
Use	this	method	to	retrieve	the	next	one	or	more	elements	from	the	enumeration.
There	are	two	variations	of	this	method.

HRESULT	Next(ULONG										iCount,
				REPOSERR			*psErrors,
				ULONG										*piFetched
)

HRESULT	Next(IErrorInfo			**ppIErrorInfo);

Parts
iCount

[in]
The	number	of	elements	the	caller	is	requesting.

*psErrors

[out]
The	array	of	REPOSERROR	structures	for	the	retrieved	items.

*ppIErrorInfo

[out]
The	interface	pointer	to	the	error	information	object	for	the	first	element	in
the	error	queue.

*piFetched

[out]
The	number	of	elements	actually	fetched	for	the	caller.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IEnumRepositoryErrors	Interface

REPOSERROR	Data	Structure

Meta	Data	Services	Programming

IEnumRepositoryErrors::Reset
Use	this	method	to	reset	the	enumerator	to	the	beginning	of	the	enumeration
sequence.

HRESULT	Reset(void)

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IEnumRepositoryErrors	Interface

Meta	Data	Services	Programming

IEnumRepositoryErrors::Skip
Use	this	method	to	skip	over	the	next	one	or	more	elements	in	the	enumeration.

HRESULT	Skip(ULONG						iCount)

Parts
iCount

[in]
The	number	of	elements	to	be	skipped.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IEnumRepositoryErrors	Interface

Meta	Data	Services	Programming

INamedObject	Interface
Typically,	a	name	is	associated	with	a	repository	object	through	a	naming
relationship.	The	collection	for	such	a	relationship	provides	the	scope	for	the
name,	and	can	require	that	all	names	in	the	collection	be	unique.	This	is	the
preferred	method	for	naming	objects,	when	a	given	object	will	be	the	destination
of	only	one	naming	relationship.

If	your	information	model	contains	a	class	that	is	not	the	destination	of	a	naming
relationship	type,	or	is	the	destination	of	multiple	relationship	types,	but	no
single	relationship	type	is	the	obvious	choice	to	be	the	naming	relationship	type,
you	can	attach	the	Name	property	to	the	class.	This	is	accomplished	by	defining
your	class	to	implement	the	INamedObject	interface.	If	your	class	implements
the	INamedObject	interface,	the	repository	engine	will	use	that	interface	when
asked	to	retrieve	or	set	an	object	name.

When	to	Use
Use	the	INamedObject	interface	to	access	the	Name	property	of	a	repository
object	that	exposes	this	interface.

Properties

Property Description
Name The	name	of	the	object

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which
can	be	used	to	get	the	type	information	for
an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	persistent	members
exposed	by	the	INamedObject	interface.

Remarks
None	of	the	standard	repository	engine	classes	implement	the	INamedObject
interface	by	default.	However,	the	repository	engine	does	use	the
INamedObject	interface,	if	the	interface	is	exposed	by	a	repository	object.

When	the	IRepositoryItem::get_Name	method	is	invoked	for	a	repository
object,	the	repository	engine	will	perform	these	steps	to	retrieve	the	name:

1.	 If	the	object	exposes	the	INamedObject	interface,	the	repository
engine	returns	the	value	of	the	Name	property	on	the	INamedObject
interface.

2.	 Otherwise,	the	repository	engine	searches	for	a	naming	relationship	for

which	the	current	object	is	the	destination	object,	taking	the	workspace
context	into	consideration.

3.	 If	such	a	relationship	is	found,	the	repository	engine	returns	the	name
associated	with	that	relationship.

4.	 If	the	object	is	not	the	destination	of	a	naming	relationship,	the
repository	engine	returns	a	null	name.

When	the	IRepositoryItem::put_Name	method	is	invoked	for	a	repository
object,	the	repository	engine	will	perform	these	steps	to	set	the	name:

1.	 The	repository	engine	sets	the	value	of	the	Name	property	of	all
naming	relationships	for	which	the	object	is	the	destination.

2.	 If	the	object	exposes	the	INamedObject	interface,	the	repository
engine	also	sets	the	value	of	the	Name	property	attached	to	that
interface.

See	Also

IRepositoryItem	get_Name

IRepositoryItem	put_Name

Naming	and	Unique-Naming	Collections

Naming	Objects,	Collections,	and	Relationships

Workspace	Context

Meta	Data	Services	Programming

INamedObject	Name	Property
This	property	contains	the	name	of	an	object	that	exposes	the	INamedObject
interface.	The	name	can	be	up	to	200	bytes	in	length.

Dispatch	Identifier:			DISPID_ObjName	(68)

Property	Data	Type:			string

See	Also

INamedObject	Interface

Meta	Data	Services	Programming

IObjectCol	Interface
An	object	collection	is	a	set	of	repository	objects	that	can	be	enumerated.	Two
kinds	of	object	collections	are	supported	by	the	repository	engine:

The	collection	of	destination	objects	that	correspond	to	the	relationships
in	a	relationship	collection.	Use	the	ITargetObjectCol	interface	to
manage	this	kind	of	collection.

The	collection	of	all	objects	in	the	repository	that	conform	to	a
particular	class	or	expose	a	particular	interface.

When	to	Use

Use	the	IObjectCol	interface	to	enumerate	the	collection	of	repository	objects
that	conform	to	a	particular	class	or	expose	a	particular	interface.	With	this
interface,	you	can:

Get	a	count	of	the	number	of	objects	in	the	collection.

Enumerate	the	objects	in	the	collection.

Retrieve	an	IRepositoryObject	pointer	to	one	of	the	objects	in	the
collection.

Refresh	the	cached	image	of	the	object	collection.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces.
AddRef Increments	the	reference	count.
Release Decrements	the	reference	count.

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument	names	to

a	corresponding	set	of	dispatch	identifiers.
GetTypeInfo Retrieves	a	type	information	object,	which	can	be	used

to	get	the	type	information	for	an	interface.
GetTypeInfoCountRetrieves	the	number	of	type	information	interfaces

that	an	object	provides	(either	0	or	1).
Invoke Provides	access	to	properties	and	methods	exposed	by

an	Automation	object.

IobjectCol	method Description
Get_Count Retrieves	a	count	of	the	number	of	objects	in	the

collection.
Get_Item Retrieves	an	IRepositoryObject	interface	pointer	for

the	specified	collection	object.
_NewEnum Retrieves	an	enumeration	interface	pointer	for	the

collection.
Refresh Refreshes	the	cached	image	of	the	object	collection.

See	Also

IRepositoryObject	Interface

ITargetObjectCol	Interface

ObjectCol	Class

Meta	Data	Services	Programming

IObjectCol::get_Count
This	method	retrieves	a	count	of	the	number	of	repository	objects	that	are	in	the
object	collection.

HRESULT	get_Count(long				*piCount)

Parameters
*piCount

[out]
The	number	of	objects	in	the	collection.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IObjectCol	Interface

Meta	Data	Services	Programming

IObjectCol::_NewEnum
This	method	retrieves	an	enumeration	interface	pointer	for	the	object	collection.
This	interface	is	a	standard	Automation	enumeration	interface.	It	supports	the
Clone,	Next,	Reset,	and	Skip	methods.	You	can	use	the	enumeration	interface	to
step	through	the	objects	in	the	collection.

HRESULT	_NewEnum(IUnknown				**ppIEnumObjects
)

Parameters
*ppIEnumObjects

[out]
The	enumeration	interface	pointer.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IObjectCol	Interface

Meta	Data	Services	Programming

IObjectCol::get_Item
This	method	retrieves	the	specified	object	from	the	collection.

HRESULT	get_Item(VARIANT																		sItem,
				IRepositoryObject			**ppIReposObj
)

Parameters
sItem

[in]
Identifies	the	item	to	be	retrieved	from	the	collection.	This	parameter	can	be
either	the	index	or	the	object	identifier	of	the	item.

*ppIReposObj

[out]
The	IRepositoryObject	interface	pointer	for	the	version	of	the	specified
object	from	the	collection.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
When	this	method	is	invoked	through	the	ITargetObjectCol	interface	(which
inherits	this	method	from	the	IObjectCol	interface),	an	object	can	also	be
retrieved	by	name,	but	only	if	it	is	the	destination	object	of	a	naming
relationship.

This	method	returns	a	specific	version	of	the	item.	To	choose	which	version,	the
repository	engine	follows	a	resolution	strategy.

See	Also

IObjectCol	Interface

IRepositoryObject	Interface

Resolution	Strategy	for	Objects	and	Object	Versions

Meta	Data	Services	Programming

IObjectCol::Refresh
This	method	refreshes	the	cached	image	of	the	collection.	All	unchanged	data
for	objects	in	the	collection	is	flushed	from	the	cache.

HRESULT	Refresh(long				iMilliseconds)

Parameters
iMilliseconds

[in]
This	value	is	ignored.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Note		The	Refresh()	method	asynchronously	refreshes	the	object	collection
(reloads	the	object	collection	and	refreshes	target	objects)	when	the
asynchronous	mode	is	in	effect.	The	calling	thread	should	check	to	determine
whether	refresh	is	complete.	If	the	calling	thread	tries	to	read	data,	refresh	the
collection,	or	construct	an	enumerator	while	refresh	is	in	progress,	it	will	be
blocked	until	refresh	is	complete.

See	Also

IObjectCol	Interface

Meta	Data	Services	Programming

IObjectCol2	Interface
This	interface	exposes	methods	that	enable	you	to	control	the	load	status	of	an
object	collection.	The	IObjectCol2	interface	also	inherits	the	methods	of	the
IObjectCol	interface.

When	to	Use
Use	the	IObjectCol2	interface	to:

Obtain	the	load	status	of	an	object	collection.

Cancel	the	load	operation	of	an	object	collection.

Methods

IUnknown	Method Description
QueryInterface Returns	pointers	to	supported	interfaces.
AddRef Increments	the	reference	count.
Release Decrements	the	reference	count.

IDispatch	Method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers.

GetTypeInfo Retrieves	a	type	information	object,	which	can	be
used	to	get	the	type	information	for	an	interface.

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or	1).

Invoke Provides	access	to	properties	and	methods	exposed
by	an	Automation	object.

IObjectCol	Method Description
get_Count Retrieves	a	count	of	the	number	of	objects	in	the

collection.
get_Item Retrieves	an	IRepositoryObject	interface	pointer

for	the	specified	collection	object.
_NewEnum Retrieves	an	enumeration	interface	pointer	for	the

collection.
Refresh Refreshes	the	cached	image	of	the	object

collection.

IObjectCol2	Method Description
get_LoadStatus Obtains	the	load	status	of	the	collection.
Cancel Requests	the	cancellation	of	the	ongoing	load

operation.

See	Also

IObjectCol

IRepositoryObject	Interface

ITargetObjectCol	Interface

ObjectCol	Class

Meta	Data	Services	Programming

IObjectCol2::get_LoadStatus
This	method	is	used	to	obtain	the	load	status	of	the	object	collection.

HRESULT	get_LoadStatus(long	*piStatus
)

Parts
piStatus

[out,	retval]

One	of	the	constant	values:	READY,	INPROGRESS,	CANCELLED,	or
FAILED.

Return	Value
S_OK

The	method	completed	successfully.

ErrorValues

The	method	failed	to	complete	successfully.

See	Also

IObjectCol2	Interface

IObjectCol2::Cancel

Meta	Data	Services	Programming

IObjectCol2::Cancel
This	method	requests	the	cancellation	of	the	ongoing	load	operation	of	the	object
collection.

HRESULT	Cancel	();

Return	Value
S_OK

The	method	completed	successfully.

ErrorValues

The	method	failed	to	complete	successfully.

See	Also

IObjectCol2	Interface

IObjectCol2::get_LoadStatus

Meta	Data	Services	Programming

IRelationship	Interface
A	relationship	connects	two	repository	objects	in	the	repository	database.	A
relationship	has	an	origin	object,	a	destination	object,	and	a	set	of	properties.
Each	relationship	conforms	to	a	particular	relationship	type.

When	to	Use
Use	the	IRelationship	interface	to	manipulate	a	relationship,	or	to	retrieve	the
source,	target,	origin,	or	destination	object	for	a	relationship.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which	can
be	used	to	get	the	type	information	for	an
interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch

method Description
get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	Properties	collection.

IRepositoryItem	method Description
Delete Deletes	a	repository	item
get_Interface Retrieves	an	interface	pointer	to	the	specified

item	interface
get_Name Retrieves	the	name	associated	with	an	item
get_Repository Retrieves	the	IRepository	interface	pointer

for	an	open	repository	instance	of	an	item
get_Type Retrieves	the	type	of	an	item
Lock Locks	the	item
put_Name Sets	the	name	associated	with	an	item

IRelationship	method Description
get_Destination Retrieves	an	interface	pointer	to	the

destination	object
get_Origin Retrieves	an	interface	pointer	to	the	origin

object
get_Source Retrieves	an	interface	pointer	to	the	source

object
get_Target Retrieves	an	interface	pointer	to	the	target

object

See	Also

IRepository::Refresh

Relationship	Class

Meta	Data	Services	Programming

IRelationship::get_Destination
This	method	retrieves	an	IRepositoryObject	interface	pointer	to	the	destination
object	version	of	a	relationship.

HRESULT	get_Destination(IRepositoryObject	**ppIReposObj
)

Parameters

*ppIRepObj

[out]
The	IRepositoryObject	interface	pointer	for	the	destination	object	version.

Return	Value

S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks

If	the	relationship	is	a	destination	versioned	relationship,	this	method	is
equivalent	to	the	get_Source	method.	If	it	is	an	origin	versioned	relationship,
this	method	is	equivalent	to	the	get_Target	method.

See	Also

IRelationship::get_Source

IRelationship::get_Target

IRelationship::get_Origin

IRelationship	Interface

Meta	Data	Services	Programming

IRelationship::get_Origin
This	method	retrieves	an	IRepositoryObject	interface	pointer	to	the	origin
object	version	of	a	relationship.

HRESULT	get_Origin(IRepositoryObject	**ppIRepObj
)

Parameters

*ppIRepObj

[out]
The	IRepositoryObject	interface	pointer	for	the	origin	object	version.

Return	Value

S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks

If	the	relationship	is	an	origin	versioned	relationship,	this	method	is	equivalent
to	the	get_Source	method.	If	the	relationship	is	a	destination	versioned
relationship,	this	method	is	equivalent	to	the	get_Target	method.

See	Also

IRelationship::get_Source

IRelationship::get_Target

IRelationship::get_Destination

IRelationship	Interface

Meta	Data	Services	Programming

IRelationship::get_Source
This	method	retrieves	an	IRepositoryObject	interface	pointer	to	the
source	object	version	of	a	relationship.

HRESULT	get_Source(IRepositoryObject	**ppIRepObj
)

Parameters

*ppIRepObj

[out]
The	IRepositoryObject	interface	pointer	for	the	source	object	version.

Return	Value

S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRelationship::get_Target

IRelationship	Interface

Meta	Data	Services	Programming

IRelationship::get_Target
This	method	retrieves	an	IRepositoryObject	interface	pointer	to	a	target	object
version	of	a	relationship.

HRESULT	get_Target(IRepositoryObject	**ppIRepObj
)

Parameters

*ppIRepObj

[out]
The	IRepositoryObject	interface	pointer	for	the	target	object	version.

Return	Value

S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks

The	repository	engine	uses	follows	a	resolution	strategy	to	choose	a	specific
target	object	version	to	return.

There	is	one	situation	in	which	the	repository	engine	can	fail	to	return	a	version
of	the	target	object:	If	you	are	operating	within	a	workspace,	and	the	collection
of	TargetVersions	of	the	versioned	relationship	does	not	include	the	object
version	that	is	present	in	the	workspace,	this	method	fails.

See	Also

IRelationship::get_Source

IRelationship	Interface

Resolution	Strategy	for	Objects	and	Object	Versions

Meta	Data	Services	Programming

IRelationshipCol	Interface
A	relationship	collection	is	the	set	of	versioned	relationships	that	connect	a
particular	source	object	version	to	a	set	of	one	or	more	target	objects.	All	of	the
relationships	in	the	collection	must	conform	to	the	same	relationship	type.

When	to	Use
Use	the	IRelationshipCol	interface	to	manage	the	repository	relationships	that
belong	to	a	particular	relationship	collection.	With	this	interface,	you	can:

Get	a	count	of	the	number	of	relationships	in	the	collection.

Enumerate	the	relationships	in	the	collection.

Add	and	remove	relationships	to	and	from	the	collection.

If	the	collection	is	sequenced,	place	a	relationship	in	a	specific	spot	in
the	collection	sequence.

Retrieve	an	IRelationship	pointer	to	one	of	the	relationships	in	the
collection.

Obtain	the	identifier	of	the	definition	object	of	the	collection.

Retrieve	an	interface	pointer	for	the	source	object	of	the	collection.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces

AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument	names	to

a	corresponding	set	of	dispatch	identifiers
GetTypeInfo Retrieves	a	type	information	object,	which	can	be

used	to	get	the	type	information	for	an	interface
GetTypeInfoCount Retrieves	the	number	of	type	information	interfaces

that	an	object	provides	(either	0	or	1)
Invoke Provides	access	to	properties	and	methods	exposed	by

an	Automation	object

IRelationshipCol
method Description
Add Adds	a	relationship	to	the	collection
get_Count Retrieves	a	count	of	the	number	of	relationships

in	the	collection
_NewEnum Retrieves	an	enumeration	interface	pointer	for	the

collection
get_Source Retrieves	an	interface	pointer	for	the	collection's

source	object
get_Type Retrieves	the	object	identifier	for	the	collection's

definition	object
Insert Inserts	a	relationship	into	a	specific	spot	in	a

sequenced	collection
get_Item Retrieves	an	IRelationship	interface	pointer	for

the	specified	relationship
Move Moves	a	relationship	from	one	spot	to	another	in

a	sequenced	collection
Refresh Refreshes	the	cached	image	of	the	relationship

collection

Remove Removes	a	relationship	from	the	collection

Remarks

The	IRelationshipCol	interface	is	similar	to	the	ITargetObjectCol	interface.
Use	the	IRelationshipCol	interface	when	you	are	primarily	interested	in
working	with	relationships.	Use	the	ITargetObjectCol	interface	when	you	are
primarily	interested	in	working	with	objects.

See	Also

ITargetObjectCol	Interface

Meta	Data	Services	Programming

IRelationshipCol::Add
This	method	is	used	to	add	a	new	item	to	a	repository	relationship	collection
when	the	sequencing	of	relationships	in	the	collection	is	not	important.	An
interface	pointer	for	the	new	relationship	is	passed	back	to	the	caller.

HRESULT	Add(IDispatch									*plReposObj,
				BSTR															Name,
				IRelationship			**pplRelship
);

Parts
*plReposObj

[in]
The	object	for	which	a	relationship	is	to	be	added	to	the	relationship
collection.	The	value	of	plReposObj	is	the	specific	version	of	the	target
object.	If	you	are	operating	within	the	context	of	a	workspace,	the	target
object	version	you	specify	with	plReposObj	must	be	present	in	the
workspace.

Name

[in]
The	name	of	the	new	relationship.

*pplRelship

[out]
The	IRelationship	interface	pointer	of	the	newly	added	relationship.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
You	can	add	a	relationship	to	a	collection	only	when	the	collection	source	object
is	also	the	collection	origin	object.

When	you	call	this	method,	the	origin	version	must	be	unfrozen.

You	can	use	this	method	to	create	a	new	versioned	relationship	between	the
source	object	version	and	a	version	of	the	target	object.	You	cannot	use	it	to
enlarge	a	versioned	relationship.	If	the	source	object	version	already	has	a
relationship	to	any	version	of	the	target	object,	this	method	will	fail.	You	can
include	another	version	of	the	target	object	in	the	versioned	relationship	by
adding	an	item	to	the	TargetVersions	collection	of	the	versioned	relationship.

See	Also

IRelationship	Interface

IRelationshipCol	Interface

Meta	Data	Services	Programming

IRelationshipCol::get_Count
This	method	retrieves	a	count	of	the	number	of	relationships	that	are	in	the
relationship	collection.

HRESULT	get_Count(long			*piCount
);

Parts
*piCount

[out]
The	number	of	relationships	in	the	collection.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
Each	item	in	the	collection	is	a	versioned	relationship.	Thus,	the	returned	count
indicates	how	many	objects	are	in	the	collection,	not	the	number	of	object
versions.

See	Also

IRelationshipCol	Interface

Meta	Data	Services	Programming

IRelationshipCol::_NewEnum
This	method	retrieves	an	enumeration	interface	pointer	for	the	relationship
collection.	This	interface	is	a	standard	Automation	enumeration	interface.	It
supports	the	Clone,	Next,	Reset,	and	Skip	methods.	You	can	use	the
enumeration	interface	to	step	through	the	relationships	in	the	collection.

HRESULT	_NewEnum(IUnknown				**ppIEnumRelships
);

Parts
*ppIEnumRelships

[out]
The	enumeration	interface	pointer.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRelationshipCol	Interface

Meta	Data	Services	Programming

IRelationshipCol::get_Source
This	method	retrieves	an	interface	pointer	for	the	source	object	version	of	the
collection.

HRESULT	get_Source(
				IRepositoryObject			**ppIInterface
);

Parts
*ppIInterface

[out]
The	interface	pointer	of	the	interface	for	the	source	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRelationshipCol	Interface

Meta	Data	Services	Programming

IRelationshipCol::get_Type
This	method	retrieves	the	type	of	the	collection;	that	is,	it	returns	the	object
identifier	for	the	definition	object	of	the	collection.

HRESULT	get_Type(
				VARIANT				*pColDefObjId
);

Parts
*pColDefObjId

[out]
The	object	identifier	of	the	definition	object	of	the	collection.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRelationshipCol	Interface

Meta	Data	Services	Programming

IRelationshipCol::Insert
This	method	adds	a	relationship	to	the	collection	at	a	specified	point	in	the
collection	sequence.	An	interface	pointer	for	the	new	relationship	is	passed	back
to	the	caller.

HRESULT	Insert(
				IDispatch									*pIReposObj,
				long																		iIndex,
				BSTR																Name,
				IRelationship			**ppIRelship
);

Parts
*pIReposObj

[in]
The	repository	object	to	be	inserted	into	the	collection	sequence	through	the
new	relationship.	The	value	of	plReposObj	is	the	specific	version	of	the
target	object.	If	you	are	operating	within	the	context	of	a	workspace,	the
target	object	version	you	specify	with	plReposObj	must	be	present	in	the
workspace.

iIndex

[in]
The	index	of	the	sequence	location	where	the	relationship	is	to	be	inserted.	If
another	relationship	is	already	present	at	this	sequence	location,	the	new
relationship	is	inserted	in	front	of	the	existing	relationship.

Name

[in]
The	name	you	supply	for	the	object	to	which	the	new	relationship	connects.

*ppIRelship

[out]

The	IRelationship	interface	pointer	for	the	new	relationship.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
Relationships	can	be	inserted	into	a	collection	only	if	the	collection	source	object
is	also	the	collection	origin	object.

This	method	can	only	be	used	for	collections	that	are	sequenced.

When	you	call	this	method,	the	origin	version	must	be	unfrozen.

You	can	use	this	method	to	insert	a	new	versioned	relationship	between	the
source	object	version	and	a	target	object	version.	You	cannot	use	it	to	enlarge	a
versioned	relationship.	If	the	source	object	version	already	has	a	relationship	to
any	version	of	the	target	object,	this	method	will	fail.	You	can	include	another
version	of	the	target	object	in	the	versioned	relationship	by	adding	an	item	to	the
TargetVersions	collection	of	the	versioned	relationship.

See	Also

IRelationshipCol	Interface

IRelationship	Interface

Meta	Data	Services	Programming

IRelationshipCol::get_Item
This	method	retrieves	the	specified	relationship	from	the	collection.

HRESULT	get_Item(
				VARIANT										sItem,
				IRelationship			**ppIRelship
);

Parts
sItem

[in]
Identifies	the	item	to	be	retrieved	from	the	collection.	This	parameter	can	be
the	index,	the	name,	or	the	object	identifier	of	the	item.

*ppIRelship

[out]
The	IRelationship	interface	pointer	for	the	specified	relationship	from	the
collection.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
Each	item	in	the	collection	is	a	versioned	relationship.	That	is,	it	has	a	collection
of	TargetVersions.	When	you	obtain	a	reference	to	the	target	object	of	a
particular	item	(with	the	get_Target	method	of	the	IRelationship	interface),	the
repository	engine	chooses	a	particular	version	of	the	target	object	from	the	items

in	the	TargetVersions	collection	of	the	versioned	relationship.

Using	the	sItem	parameter	to	specify	the	relationship	by	destination	object	name
is	supported	only	for	naming	collections.

See	Also

IRelationshipCol	Interface

IRelationship	Interface

Meta	Data	Services	Programming

IRelationshipCol::Move
This	method	moves	a	relationship	from	one	point	in	the	collection	sequence	to
another	point.

HRESULT	Move(
				long				iIndexFrom,
				long				iIndexTo
);

Parts
iIndexFrom

[in]
The	index	of	the	relationship	to	be	moved	in	the	collection	sequence.

iIndexTo

[in]
The	index	of	the	sequence	location	to	which	the	relationship	is	to	be	moved.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
This	method	can	be	used	only	for	collections	that	are	sequenced.

The	origin	object	version	must	be	unfrozen.

See	Also

IRelationshipCol	Interface

Meta	Data	Services	Programming

IRelationshipCol::Refresh
This	method	refreshes	the	cached	image	of	the	collection.	All	unchanged	data
for	relationships	in	the	collection	is	flushed	from	the	cache.

HRESULT	Refresh(long				iMilliseconds);

Parts
iMilliseconds

[in]
This	value	is	ignored.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRelationshipCol	Interface

Meta	Data	Services	Programming

IRelationshipCol::Remove
This	method	deletes	a	relationship	from	its	relationship	collection.	The	exact
behavior	of	this	method	depends	on	whether	the	relationship	collection	is	an
origin	collection	or	a	destination	collection.

If	the	relationship	collection	is	an	origin	collection,	this	method	deletes	the
versioned	relationship.

If	the	relationship	collection	is	a	destination	collection,	this	method	first
performs	object-version	resolution	to	yield	a	single	target-object	version,	and
then	it	removes	that	target-object	version	from	the	TargetVersions	collection	of
the	relationship.

HRESULT	Remove(
VARIANT				sItem	
);

Parts
sItem

[in]
Identifies	the	item	to	be	removed	from	the	collection.	This	parameter	can	be
either	the	index	or	the	name	associated	with	the	item.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
A	relationship	can	be	removed	by	name	only	if	it	is	a	unique-naming

relationship.

If	the	source	is	the	origin,	the	origin	version	must	be	unfrozen.

If	the	relationship	is	a	destination	relationship	and	the	resolution	strategy	yields	a
target	object	version	that	is	frozen,	this	method	fails.

Removing	an	item	from	a	sequenced	collection	does	not	update	the	collection
sequence	order.

See	Also

IRelationshipCol	Interface

Meta	Data	Services	Programming

IReposErrorQueueHandler	Interface
Errors	that	occur	while	accessing	a	repository	are	saved	on	a	repository	error
queue.	A	repository	error	queue	is	a	collection	of	REPOSERROR	structures.
Each	thread	of	execution	with	an	open	repository	instance	can	access	one	active
error	queue	at	a	time.

When	to	Use
Use	the	IReposErrorQueueHandler	interface	to	create	a	repository	error
queue,	assign	an	error	queue	to	a	thread	of	execution,	or	retrieve	an	interface
pointer	to	a	thread's	currently	assigned	error	queue.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IReposErrorQueueHandler
method Description
CreateErrorQueue Creates	a	new	repository	error	queue
SetErrorQueue Sets	the	active	error	queue	for	a	thread
GetErrorQueue Retrieves	an	interface	pointer	to	the	currently

active	error	queue	for	a	thread

See	Also

Handling	Errors

Repository	Class

REPOSERROR	Data	Structure

Meta	Data	Services	Programming

IReposErrorQueueHandler::CreateErrorQueue
This	method	creates	a	repository	error	queue.	After	it	has	been	created,	the	error
queue	is	available	to	be	assigned	to	a	thread	context.

HRESULT	CreateErrorQueue(IRepositoryErrorQueue			
**ppIErrorQueue
);

Parameters

*ppIErrorQueue

[out]
The	interface	pointer	for	the	newly	created	repository	error	queue.

Return	Value

S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposErrorQueue	Interface

IReposErrorQueueHandler	Interface

Meta	Data	Services	Programming

IReposErrorQueueHandler::GetErrorQueue
This	method	retrieves	the	repository	error	queue	that	is	assigned	to	the	current
thread.

HRESULT	GetErrorQueue(
				IRepositoryErrorQueue				**ppIErrorQueue
);

Parameters

*ppIErrorQueue

[out]
The	interface	pointer	for	the	error	queue	that	is	currently	assigned	to	this
thread.

Return	Value

S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposErrorQueue	Interface

IReposErrorQueueHandler	Interface

Meta	Data	Services	Programming

IReposErrorQueueHandler::SetErrorQueue
This	method	assigns	the	specified	repository	error	queue	to	the	current	thread
context.

HRESULT	SetErrorQueue(
				IRepositoryErrorQueue				*pIErrorQueue
);

Parameters

pIErrorQueue

[in]
The	interface	pointer	for	the	error	queue	to	be	assigned	to	this	thread.

Return	Value

S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposErrorQueue	Interface

IReposErrorQueueHandler	Interface

Meta	Data	Services	Programming

IRepository	Interface
When	you	define	an	information	model,	the	classes,	relationships,	properties,
and	collections	for	the	model	are	stored	in	a	repository	database.	Multiple
information	models	can	be	stored	in	the	same	repository.

When	to	Use
Use	the	repository	interface	to	create	and	access	repository	databases.	You	can
also	use	the	repository	interface	to	create	and	access	repository	objects	in	a
repository	database.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces.
AddRef Increments	the	reference	count.
Release Decrements	the	reference	count.

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument	names	to

a	corresponding	set	of	dispatch	identifiers.
GetTypeInfo Retrieves	a	type	information	object,	which	can	be

used	to	get	the	type	information	for	an	interface.
GetTypeInfoCount Retrieves	the	number	of	type	information	interfaces

that	an	object	provides	(either	0	or	1).
Invoke Provides	access	to	properties	and	methods	exposed	by

an	Automation	object.

IRepository	method Description
Create Creates	a	repository	database.
CreateObject Creates	a	new	repository	object.

get_Object Retrieves	the	IRepositoryObject	interface	pointer
for	a	repository	object.

get_RootObject Retrieves	the	IRepositoryObject	interface	pointer
for	the	root	repository	object.

get_Transaction Retrieves	the	IRepositoryTransaction	interface
pointer	for	this	repository	instance.

InternalIDToObjectID Translates	an	internal	identifier	to	an	object
identifier.

ObjectIDToInternalID Translates	an	object	identifier	to	an	internal
identifier.

Open Opens	a	repository	database.
Refresh Refreshes	unchanged	cached	repository	data.

See	Also

Connecting	to	and	Configuring	a	Repository

IRepository2	Interface

Repository	Class

Repository	Databases

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

IRepository::Create
This	method	creates	a	new	repository.	The	fundamental	repository	tables	are
automatically	created	in	the	new	repository.	An	IRepositoryObject	interface
pointer	to	the	repository	root	object	is	passed	back	to	the	caller.

HRESULT	Create(BSTR																							Connect,
				BSTR																							User,
				BSTR																							Password,
				long																									fFlags,
				IRepositoryObject		**ppIRootObj
);

Parts
Connect

[in]
The	ODBC	connection	string	to	be	used	for	accessing	the	database	server
that	will	host	your	new	repository.

User

[in]
The	user	name	to	use	for	identification	to	the	database	server.

Password

[in]
The	password	that	matches	the	User	input	parameter.

fFlags

[in]
Flags	that	determine	database	access	and	caching	behavior	for	the	open
repository.	For	more	information,	see	ConnectionFlags	Enumeration.

*ppIRootObj

[out]

The	IRepositoryObject	interface	pointer	for	the	root	repository	object	of	the
new	repository.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

Connecting	to	and	Configuring	a	Repository

IRepository	Interface

IRepositoryObject	Interface

Meta	Data	Services	Programming

IRepository::CreateObject
This	method	creates	the	first	version	of	a	new	repository	object.	The	specified
COM	interface	pointer	to	the	new	object	is	passed	back	to	the	caller.

HRESULT	CreateObject(VARIANT																	sTypeId,
				VARIANT																	sObjId,
				IRepositoryObject		**ppIReposObj
);

Parts
sTypeId

[in]
The	type	of	the	new	object;	that	is,	the	object	identifier	of	the	class	definition
to	which	the	new	object	conforms.

sObjId

[in]
The	object	identifier	to	be	assigned	to	the	new	object.	Pass	in	OBJID_NULL
to	have	the	repository	engine	assign	an	object	identifier	for	you.

*ppIReposObj

[out]
The	IRepositoryObject	interface	pointer	for	the	new	repository	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
The	new	object	will	automatically	create	persistent	storage	for	itself.

You	can	use	this	method	only	to	create	the	first	version	of	a	repository	object.	To
create	subsequent	versions	of	the	object,	use
IRepositoryObjectVersion::CreateVersion.

This	method	can	only	be	called	from	the	shared	repository.	It	cannot	be	called
from	a	workspace.	The	workaround	is	to	create	the	object	through	the	central
repository	and	include	it	in	the	workspace.

See	Also

IRepository	Interface

IRepository2	Interface

Meta	Data	Services	Programming

IRepository::get_Object
This	method	retrieves	an	IRepositoryObject	interface	pointer	to	the	specified
repository	object.

HRESULT	get_Object(VARIANT																	sObjectId,
				IRepositoryObject	**ppIReposObj
);

Parts
sObjectId

[in]
The	object	identifier	of	the	repository	object	to	be	retrieved.

*ppIReposObj

[out]
The	IRepositoryObject	interface	pointer	for	the	repository	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
The	returned	IRepositoryObject	interface	pointer	refers	to	a	specific	version	of
the	repository	object.	The	repository	engine	follows	a	resolution	strategy	to
choose	a	specific	version.

See	Also

IRepository	Interface

Resolution	Strategy	for	Objects	and	Object	Versions

Meta	Data	Services	Programming

IRepository::get_RootObject
This	method	obtains	a	pointer	to	the	root	object	of	the	repository	that	is	currently
open.	The	root	object	is	the	repository	object	to	which	all	other	repository
objects	are	(either	directly	or	indirectly)	connected.

HRESULT	get_RootObject(IRepositoryObject				**ppIRootObj
);

Parts
*ppIRootObj

[out]
The	IRepositoryObject	interface	pointer	for	the	root	repository	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepository	Interface

IRepositoryObject	Interface

Meta	Data	Services	Programming

IRepository::get_Transaction
This	method	retrieves	the	IRepositoryTransaction	interface	pointer	for	this
repository	instance.	Use	the	IRepositoryTransaction	interface	to	manage
repository	transactions	for	this	repository	instance.

HRESULT	get_Transaction(IRepositoryTransaction				**ppIRepTrans
);

Parts
*ppIRepTrans

[out]
The	IRepositoryTransaction	interface	pointer.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepository	Interface

Meta	Data	Services	Programming

IRepository::InternalIDToObjectID
This	method	translates	an	internal	identifier	into	an	object	identifier.	Internal
identifiers	are	used	by	the	repository	engine	to	identify	repository	objects.

HRESULT	InternalIDToObjectID(VARIANT			sInternalID,
				VARIANT			*sObjectId
);

Parts
sInternalID

[in]
The	internal	identifier	for	the	repository	object.

*sObjectId

[out]
The	object	identifier	for	the	repository	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
Repository	object	identifiers	are	globally	unique,	and	they	are	the	same	across
repositories	for	the	same	object.	Repository	internal	identifiers	are	unique	only
within	the	scope	of	a	single	repository.

The	translation	performed	by	this	method	is	performed	without	loading	the
object	in	question.	This	enables	database	queries	involving	an	object	or

relationship	type	identifier	to	be	constructed	without	having	to	load	the
definition	object.

See	Also

IRepository	Interface

IRepository::ObjectIDToInternalID

Meta	Data	Services	Programming

IRepository::ObjectIDToInternalID
This	method	translates	an	object	identifier	into	an	internal	identifier.	Internal
identifiers	are	used	by	the	repository	engine	to	identify	repository	objects.

HRESULT	ObjectIDToInternalID(VARIANT			sObjectID,
				VARIANT			*sInternalId
);

Parts
sObjectID

[in]
The	object	identifier	for	the	repository	object.

*sInternalId

[out]
The	internal	identifier	for	the	repository	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
Repository	object	identifiers	are	globally	unique,	and	they	are	the	same	across
repositories	for	the	same	object.	Repository	internal	identifiers	are	unique	only
within	the	scope	of	a	single	repository.

The	translation	performed	by	this	method	is	performed	without	loading	the
object	in	question.	This	enables	database	queries	involving	an	object	or

relationship	type	identifier	to	be	constructed	without	loading	the	definition
object.

See	Also

IRepository	Interface

IRepository::InternalIDToObjectID

Meta	Data	Services	Programming

IRepository::Open
This	method	opens	a	repository.	An	IRepositoryObject	interface	pointer	to	the
root	object	is	passed	back	to	the	caller.

HRESULT	Open(BSTR																							Connect,
				BSTR																							User,
				BSTR																								Password,
				long																										fFlags,
				IRepositoryObject		**ppIRootObj
);

Parts
Connect

[in]
The	ODBC	connection	string	to	be	used	for	accessing	the	database	server
that	hosts	your	repository.

User

[in]
The	user	name	to	use	for	identification	to	the	database	server.

Password

[in]
The	password	that	matches	the	User	input	parameter.

fFlags

[in]
Flags	that	determine	database	access	and	caching	behavior	for	the	open
repository.	For	more	information,	see	ConnectionFlags	Enumeration.

*ppIRootObj

[out]
The	IRepositoryObject	interface	pointer	for	the	root	Repository	object	of

the	open	repository.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepository	Interface

IRepositoryObject	Interface

Meta	Data	Services	Programming

IRepository::Refresh
This	method	refreshes	all	of	the	cached	data	for	this	repository	instance.	Only
cached	data	that	has	not	been	changed	by	the	current	process	is	refreshed.

HRESULT	Refresh(long			iMilliseconds);

Parts
iMilliseconds

[in]
This	value	is	ignored.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepository	Interface

Meta	Data	Services	Programming

IRepository2	Interface
This	interface	exposes	methods	for	manipulating	object-version	identifiers,	plus
other	methods	inherited	from	the	IRepository	interface.

When	to	Use
Use	the	IRepository2	interface	to	create	and	access	repository	databases.	You
can	also	use	this	interface	to	create	and	access	repository	objects	in	a	repository
database,	and	to	manipulate	repository	object	versions.

Methods

IUnknown	Method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	Method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument	names

to	a	corresponding	set	of	dispatch	identifiers
GetTypeInfo Retrieves	a	type	information	object,	which	can	be

used	to	get	the	type	information	for	an	interface
GetTypeInfoCount Retrieves	the	number	of	type	information	interfaces

that	an	object	provides	(either	0	or	1)
Invoke Provides	access	to	properties	and	methods	exposed

by	an	Automation	object

IRepository	Method Description
Create Creates	a	repository	database
CreateObject Creates	a	new	repository	object
get_Object Retrieves	the	IRepositoryObject	interface	pointer

for	a	repository	object
get_RootObject Retrieves	the	IRepositoryObject	interface	pointer

for	the	root	repository	object
get_Transaction Retrieves	the	IRepositoryTransaction	interface

pointer	for	this	repository	instance
InternalIDToObjectID Translates	an	internal	identifier	to	an	object

identifier
ObjectIDToInternalID Translates	an	object	identifier	to	an	internal

identifier
Open Opens	a	repository	database
Refresh Refreshes	unchanged	cached	repository	data

IRepository2	Method Description
InternalIDToVersionID Translates	an	internal	object-version	identifier	to	an

object-version	identifier
get_Version Retrieves	the	IRepositoryObjectVersion	interface

pointer	for	a	Repository	object	version
VersionIDToInternalID Translates	an	object-version	identifier	to	an	internal

object-version	identifier
CreateObjectEx Creates	the	first	version	of	a	new	repository	object

of	the	specified	type
get_MajorDBVersion Retrieves	the	major	version	number	of	the	first

repository	engine	version	that	introduced	this
database	format

get_MinorDBVersion Retrieves	the	minor	version	number	of	the	first
repository	engine	version	that	introduced	this
database	format

See	Also

Repository	Class

Meta	Data	Services	Programming

IRepository2::get_Version
Retrieves	an	IRepositoryObjectVersion	interface	pointer	to	the	specified
repository	object	version.

HRESULT	get_Version(VARIANT																															sVersionId,
				IRepositoryObjectVersion				**ppIReposVersion
				Long																																						**fFlags
);

Parts
sVersionId

[in]
The	object-version	identifier	of	the	repository	object	version	to	be	retrieved.

ppIReposVersion

[out]
A	pointer	to	the	IRepositoryObjectVersion	interface	pointer	for	the
repository	object.

fFlag

[out]
Long	integer	specifying	the	resolution	strategy	used	to	select	a	specific
version	of	the	repository	object.	fFlag	can	be	one	of	these.

Constant Value Description
SPECIFIEDVERSION 1 A	specific	version	explicitly

selected
LATESTVERSION 2 The	version	most	recently	created
VERSIONINWORKSPACE 3 The	version	in	the	workspace
PINNEDVERSION 4 A	version	that	is	pinned

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

The	method	failed	to	complete	successfully.

See	Also

IRepository	Interface

Resolution	Strategy	for	Objects	and	Object	Versions

Meta	Data	Services	Programming

IRepository2::InternalIDToVersionID
This	method	translates	an	internal	object-version	identifier	into	an	object-version
identifier.	Internal	object-version	identifiers	are	used	by	the	repository	engine	to
identify	repository	object	versions.

HRESULT	InternalIDToObjectID(VARIANT			sIntVersionID,
				VARIANT			*psExtVersionID
);

Parts
sIntVersionID

[in]
The	internal	object-version	identifier	for	the	repository	object.

psExtVersionID

[out]
A	pointer	to	the	object-version	identifier	for	the	repository	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

The	method	failed	to	complete	successfully.

Remarks
Repository	object-version	identifiers	are	globally	unique,	and	are	the	same
across	repositories	for	the	same	object.	Repository	internal	object-version
identifiers	are	unique	only	within	the	scope	of	a	single	repository.

The	translation	performed	by	this	method	is	performed	without	loading	the

object	version	in	question.	This	enables	database	queries	involving	an	object	or
relationship	type	identifier	to	be	constructed	without	having	to	load	the
definition	object.

See	Also

IRepository::ObjectIDToInternalID

IRepository	Interface

Meta	Data	Services	Programming

IRepository2::VersionIDToInternalID
This	method	translates	an	object-version	identifier	into	an	internal	object-version
identifier.	Internal	object-version	identifiers	are	used	by	the	repository	engine	to
identify	repository	object	versions.

HRESULT	ObjectIDToInternalID(VARIANT			sExtVersionID,
				VARIANT			*psIntVersionID
);

Parts
sExtVersionID

[in]
The	object-version	identifier	for	the	repository	object.

psIntVersionID

[out]
A	pointer	to	the	internal	object-version	identifier	for	the	repository	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

The	method	failed	to	complete	successfully.

Remarks
Repository	object	identifiers	are	globally	unique,	and	are	the	same	across
repositories	for	the	same	object.	Repository	internal	identifiers	are	unique	only
within	the	scope	of	a	single	repository.

The	translation	performed	by	this	method	is	performed	without	loading	the

object	version	in	question.	This	enables	database	queries	involving	an	object	or
relationship	type	identifier	to	be	constructed	without	having	to	load	the
definition	object.

See	Also

IRepository::InternalIDToObjectID

IRepository	Interface

Meta	Data	Services	Programming

IRepository2::CreateObjectEx
This	method	creates	the	first	version	of	a	new	repository	object	of	the	specified
type.	The	newly	created	version	is	assigned	the	object-version	identifier	passed
in	as	an	argument.	This	is	unlike	IRepository::CreateObject(),	in	which	the
repository	engine	assigns	the	version	ID.

HRESULT	IRepository2::CreateObjectEx(
VARIANT	sTypeID,
VARIANT	sObjectID,
VARIANT	ExtVersionID,
IRepositoryObjectVersion	**ppRepObjVer
);

Parts
sTypeID

[in]
The	type	of	the	new	object;	that	is,	the	object	identifier	of	the	class	definition
to	which	the	new	object	conforms.

sObjectID

[in]
The	object	identifier	to	be	assigned	to	the	new	object.	Pass	in	OBJID_NULL
to	have	the	repository	engine	assign	an	object	identifier	for	you.

ExtVersionID

[in]
The	object-version	identifier	(20	bytes)	to	be	assigned	to	the	first	version	of
the	object.

ppRepObjVer

[out]
The	IRepositoryObjectVersion	pointer	to	the	newly	created	version.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

The	method	failed	to	complete	successfully.

See	Also

IRepository::CreateObject

Meta	Data	Services	Programming

IRepository2::get_MajorDBVersion
This	method	retrieves	the	major	version	number	of	the	first	repository	engine
version	that	introduced	this	database	format.

HRESULT	get_MajorDBVersion(long	*piMajorDBVersion
);

Parts
piMajorDBVersion

[out,	retval]
A	pointer	to	the	major	version	number	of	the	first	repository	engine	version
that	introduced	this	database	format.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

The	method	failed	to	complete	successfully.

See	Also

IRepository2::get_MinorDBVersion

Meta	Data	Services	Programming

IRepository2::get_MinorDBVersion
This	method	retrieves	the	minor	version	number	of	the	first	repository	engine
version	that	introduced	this	database	format.

HRESULT	get_MinorDBVersion(long	*piMinorDBVersion
);

Parts
piMinorDBVersion

[out,	retval]
A	pointer	to	the	minor	version	number	of	the	first	repository	engine	version
that	introduced	this	database	format.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

The	method	failed	to	complete	successfully.

See	Also

IRepository2::get_MajorDBVersion

Meta	Data	Services	Programming

IRepositoryDispatch	Interface
The	IRepositoryDispatch	interface	is	an	enhanced	IDispatch	interface.	In
addition	to	all	of	the	standard	IDispatch	methods,	IRepositoryDispatch	also
provides	access	to	the	Properties	collection.	The	Properties	collection	gives
you	a	convenient	mechanism	to	enumerate	through	all	of	the	persistent
properties	and	collections	of	an	interface.

When	you	instantiate	an	Automation	object	that	represents	an	object	from	your
information	model,	and	that	object	conforms	to	a	class	for	which	there	is	no
custom	implementation	(in	other	words,	you	have	not	provided	a	software
implementation	of	the	class),	the	repository	engine	will	provide	an	interface
implementation	for	you.	This	interface	implementation	uses
IRepositoryDispatch	as	its	dispatch	interface.

When	to	Use
Use	the	IRepositoryDispatch	interface	to	access	the	properties	and	collections
of	a	repository	object,	when	no	custom	implementation	is	available.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which
can	be	used	to	get	the	type	information	for
an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	Properties	collection.

Remarks
The	repository	engine	will	supply	an	interface	implementation	only	if	your
interface	is	defined	to	inherit	from	IDispatch	or	IRepositoryDispatch.

See	Also

IAnnotationalProps	Interface

IClassDef	Interface

ICollectionDef	Interface

IInterfaceDef	Interface

IInterfaceMember	Interface

IManageReposTypeLib	Interface

IPropertyDef	Interface

IReposProperties	Interface

IReposTypeInfo	Interface

IReposTypeLib	Interface

IReposRoot	Interface

ISummaryInformation	Interface

Meta	Data	Services	Programming

IRepositoryDispatch::get_Properties	Method
This	method	retrieves	the	IReposProperties	interface	pointer.	The
IReposProperties	interface	provides	methods	to	access	the	Properties
collection.	The	Properties	collection	gives	you	a	convenient	mechanism	to
enumerate	through	all	of	the	persistent	properties	and	collections	of	an	interface.

HRESULT	get_Properties(IReposProperties			**ppIReposProps);

Parts
*ppIReposProps

[out]
The	IReposProperties	interface	pointer.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryDispatch	Interface

IReposProperties	Interface

Meta	Data	Services	Programming

IRepositoryErrorQueue	Interface
Errors	that	occur	while	accessing	a	repository	are	saved	on	a	repository	error
queue.	A	repository	error	queue	is	a	collection	of	REPOSERROR	structures.
Individual	elements	on	a	repository	error	queue	can	be	managed	in	much	the
same	way	that	elements	can	be	managed	in	other	repository	collections.	This
interface	provides	those	management	capabilities.

When	to	Use
Use	the	IRepositoryErrorQueue	interface	to	manage	the	errors	that	belong	to	a
particular	repository	error	queue.	With	this	interface,	you	can:

Get	a	count	of	the	number	of	error	elements	in	the	collection.

Enumerate	the	elements	in	the	collection.

Insert	and	remove	error	elements	to	and	from	the	collection.

Retrieve	one	of	the	error	elements	in	the	collection.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IRepositoryErrorQueue
method Description
Count Returns	a	count	of	the	number	of	errors	on	the

queue

Insert Inserts	a	new	error	onto	the	error	queue,	in	the
specified	location

Item Retrieves	the	specified	error	from	the	error	queue
Remove Removes	the	specified	error	from	the	error	queue
_NewEnum Creates	an	enumerator	object	for	the	error	queue

See	Also

Error	Handling	Overview

Handling	Errors

IReposErrorQueueHandler	Interface

REPOSERROR	Data	Structure

Meta	Data	Services	Programming

IRepositoryErrorQueue::Count
This	method	returns	the	number	of	errors	that	are	currently	on	the	error	queue.

ULONG	Count(void);

Return	Value

The	number	of	error	elements	on	the	queue.

See	Also

IRepositoryErrorQueue

REPOSERROR	Data	Structure

Meta	Data	Services	Programming

IRepositoryErrorQueue::Insert
This	method	inserts	a	new	element	into	the	error	queue.	The	element	can	either
be	inserted	at	a	specific	location	in	the	queue,	or	it	can	be	appended	to	the	end	of
the	queue.

HRESULT	Insert(ULONG															iIndex,
				REPOSERROR			*psError
);

Parameters

iIndex

[in]
The	index	of	the	location	in	the	error	queue	where	this	element	is	to	be
inserted.	To	insert	an	element	at	the	beginning	of	the	error	queue,	set	this
parameter	to	one.	To	append	the	element	to	the	end	of	the	error	queue,	set
this	parameter	to	zero.

*psError

[in]
The	error	information	for	the	element	to	be	inserted.	The	information	from
this	structure	is	copied,	and	the	copy	is	placed	on	the	error	queue.

Return	Value

S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryErrorQueue

REPOSERROR	Data	Structure

Meta	Data	Services	Programming

IRepositoryErrorQueue::Item
This	method	retrieves	the	specified	element	from	the	error	queue.	There	are	two
variations	of	this	method.

HRESULT	Item(ULONG															iIndex,
				REPOSERROR			*psError
);

HRESULT	Item(
				ULONG								iIndex,
				IErrorInfo				**ppIErrorInfo
);

Parameters

iIndex

[in]
The	index	of	the	location	in	the	error	queue	of	the	element	to	be	retrieved.

*ppError

[out]
The	repository	error	information	structure	with	information	from	the
retrieved	element.

*ppIErrInfoObj

[out]
The	interface	pointer	to	an	error	information	object	for	the	retrieved	element.

Return	Value

S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryErrorQueue

REPOSERROR	Data	Structure

Meta	Data	Services	Programming

IRepositoryErrorQueue::Remove
This	method	removes	the	specified	element	from	the	error	queue.

HRESULT	Remove(ULONG				iIndex
);

Parameters

iIndex

[in]
The	index	of	the	location	in	the	error	queue	of	the	element	to	be	removed.

Return	Value

S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryErrorQueue

Meta	Data	Services	Programming

IRepositoryErrorQueue::_NewEnum
This	method	creates	an	enumeration	object	for	the	error	queue.	An	interface
pointer	for	the	enumeration	object	is	passed	back	to	the	caller.

HRESULT	_NewEnum(IEnumRepositoryErrors				**ppIEnum
);

Parameters

*ppIEnum

[out]
The	interface	pointer	to	the	enumeration	object.

Return	Value

S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryErrorQueue

IEnumRepositoryErrors	Interface

Meta	Data	Services	Programming

IRepositoryItem	Interface
The	IRepositoryItem	interface	contains	methods	that	are	common	to	both
repository	objects	and	relationships.	It	contains	all	of	the	general-purpose
methods	that	are	used	to	manage	repository	items.

When	to	Use
Use	the	IRepositoryItem	interface	to:

Retrieve	an	item	type	or	name.

Obtain	a	lock	on	an	item.

Change	the	name	of	an	item.

Delete	an	item.

Get	a	pointer	to	an	alternate	interface	that	the	item	exposes.

Get	the	open	repository	instance	through	which	the	item	is	accessed.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description

GetIDsOfNames Maps	a	single	member	and	a	set	of	argument
names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which
can	be	used	to	get	the	type	information	for
an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	Properties	collection.

IRepositoryItem	method Description
Delete Deletes	a	repository	item
get_Interface Retrieves	an	interface	pointer	to	the

specified	item	interface
get_Name Retrieves	the	name	associated	with	an	item
get_Repository Retrieves	the	IRepository	interface	pointer

for	an	item's	open	repository	instance
get_Type Retrieves	the	type	of	an	item
Lock Locks	the	item
put_Name Sets	the	name	associated	with	an	item

See	Also

IRepositoryObject	Interface

IRelationship	Interface

Meta	Data	Services	Programming

IRepositoryItem::Delete
This	method	deletes	a	repository	item.

HRESULT	Delete(void);

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
If	the	item	to	be	deleted	is	a	repository	object	version,	this	method	fails	unless
the	object	version	satisfies	the	basic	requirements	for	object-version	deletion.

Furthermore,	if	the	object	version	is	checked	out	to	a	workspace,	the	Delete
method	fails	unless	you	invoke	it	from	within	the	context	of	that	workspace.	If
the	object	version	satisfies	both	of	these	restrictions,	the	repository	engine
deletes	it	and	its	relationships,	including	any	delete-propagating	origin
relationships.	For	each	of	these	relationships,	the	repository	engine	considers
performing	one	or	more	propagated	deletions.

If	the	item	to	be	deleted	is	an	origin	versioned	relationship,	this	method	fails
unless	the	source	object	version	satisfies	the	basic	requirements	for	changing	an
object	version.

If	the	source	object	version	is	changeable,	the	repository	engine	deletes	the
entire	relationship	(rather	than	merely	removing	one	item	from	the
TargetVersions	collection	of	the	relationship).	That	is,	after	this	method
finishes,	no	version	of	the	destination	object	remains	related	to	the	origin	object
version.	Then,	if	the	relationship	is	a	delete-propagating	relationship,	the
repository	engine	considers	performing	one	or	more	propagated	deletions.

If	the	item	to	be	deleted	is	a	destination	versioned	relationship,	the	repository
engine	performs	object-version	resolution	strategy	to	yield	a	single	origin	object
version	from	the	TargetVersions	collection	of	the	relationship.	If	that	origin
object	version	does	not	satisfy	the	basic	requirements	for	changing	an	object
version,	this	method	fails.

If	that	origin	object	version	is	changeable,	the	repository	engine	removes	it	from
the	TargetVersions	collection	of	the	relationship.	Then,	if	the	relationship	is	a
delete-propagating	relationship,	the	repository	engine	considers	performing	one
or	more	propagated	deletions.

See	Also

Propagating	Deletes

IRepositoryItem	Interface

Requirements	for	Changing	an	Object-Version

Requirements	for	Object-Version	Deletion

Resolution	Strategy	for	Objects	and	Object	Versions

Workspace	Context

Meta	Data	Services	Programming

IRepositoryItem::get_Interface
This	method	retrieves	the	interface	pointer	for	an	alternate	interface	that	the	item
exposes.	The	specified	interface	must	be	an	Automation	interface;	that	is,	it	must
support	the	methods	of	the	IDispatch	interface.

HRESULT	get_Interface(VARIANT					whichInterface,
				IDispatch				**ppInterface
);

Parameters
whichInterface

[in]
Specifies	the	interface	you	want	to	access.	This	parameter	can	be	the	name	of
the	interface,	the	interface	identifier,	or	the	object	identifier	of	the	interface
definition	object	in	the	repository.

*ppInterface

[out]
The	interface	pointer	for	the	Automation	interface.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
Some	objects	expose	multiple	interfaces.	This	method	is	provided	as	a
mechanism	so	that	the	Automation	programmer	can	easily	access	alternate
interfaces	for	those	cases	where	no	type	library	is	available	for	the	class	of	the

item.

See	Also

IRepositoryItem	Interface

Meta	Data	Services	Programming

IRepositoryItem::get_Name
This	method	retrieves	the	name	associated	with	a	repository	item.	For	repository
relationships,	this	is	the	name	defined	by	the	relationship.	For	repository	objects,
this	is	either:

The	Name	property	of	the	INamedObject	interface,	if	the	object
exposes	that	interface.

The	name	defined	by	a	relationship	for	which	the	object	is	the
destination	object.

HRESULT	get_Name(BSTR			*pName);

Parameters
*pName

[out]
The	name	associated	with	the	item.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
When	you	try	to	retrieve	the	name	of	an	object	version,	the	repository	engine	can
look	in	several	places	for	the	name.

See	Also

INamedObject	Interface

IRepositoryItem	Interface

IRepositoryItem::put_Name

Retrieving	an	Object	Version's	Name

Meta	Data	Services	Programming

IRepositoryItem::get_Repository
This	method	retrieves	an	IRepository	interface	pointer	for	the	open	repository
instance	or	workspace	through	which	this	repository	item	was	instantiated.

HRESULT	get_Repository(IRepository			**ppIRepository);

Parameters
*ppIRepository

[out]
The	IRepository	interface	pointer	for	the	open	repository	instance	or
workspace.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
The	returned	IRepository	interface	pointer	can	refer	to	either	a	Repository
object	or	a	Workspace	object.	If	it	refers	to	a	Workspace	object,	you	are
manipulating	the	item	within	the	context	of	that	workspace.	If	it	refers	to	a
Repository	object,	you	are	manipulating	the	item	not	within	the	context	of	a
workspace,	but	within	the	context	of	a	shared	repository	instance.

See	Also

IRepositoryItem	Interface

IRepository	Interface

Repository	Object

Workspace	Object

Meta	Data	Services	Programming

IRepositoryItem::get_Type
This	method	obtains	the	object	identifier	of	the	repository	definition	object	to
which	the	repository	item	conforms.	This	is	the	type	of	the	repository	item.

HRESULT	get_Type(VARIANT			*psTypeId);

Parameters
*psTypeId

[out]
The	object	identifier	of	the	definition	object	of	the	repository	item.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryItem	Interface

Meta	Data	Services	Programming

IRepositoryItem::Lock
This	method	locks	a	particular	repository	item.	Locking	the	item	prevents	other
processes	from	locking	the	item	while	you	are	working	with	it.	The	lock	is
released	when	you	end	the	current	transaction.

HRESULT	Lock(void);

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryItem	Interface

Meta	Data	Services	Programming

IRepositoryItem::put_Name
This	method	changes	one	or	more	names	of	an	item.

HRESULT	put_Name(BSTR			Name);

Parameters
Name

[in]
The	name	to	be	associated	with	the	item.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
The	behavior	of	this	method	depends	on	whether	the	to-be-named	item	is	an
object	version,	an	origin	versioned	relationship,	or	a	destination	versioned
relationship.	For	more	information,	see	Changing	an	Object	Version's	Name	and
Changing	a	Destination	Relationship's	Name.

Note		In	some	circumstances,	this	method	may	attempt	to	change	several	names.
For	example,	an	object	version	that	implements	the	INamedObject	interface	is
the	destination	of	three	naming	relationships.	If	you	rename	the	object,	this
method	will	attempt	to	change	four	names.	The	method	returns	S_OK	if	any	of
the	four	attempts	succeeds.

See	Also

IRepositoryItem	Interface

INamedObject	Interface

IRepositoryItem::get_Name

Meta	Data	Services	Programming

IRepositoryObject	Interface
The	IRepositoryObject	interface	provides	methods	to	manage	repository
objects.

When	to	Use
Use	the	IRepositoryObject	interface	to:

Retrieve	the	object	identifier	or	the	internal	identifier	for	a	repository
object.

Retrieve	a	repository	object	type	or	name.

Obtain	a	lock	on	a	repository	object.

Change	the	name	of	a	repository	object.

Refresh	the	cached	image	of	a	repository	object.

Delete	a	repository	object.

Get	a	pointer	to	an	alternate	interface	that	the	object	exposes.

Get	the	open	instance	of	the	repository	session	object	through	which	the
object	is	accessed.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces

AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which
can	be	used	to	get	the	type	information	for
an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	Properties	collection.

IRepositoryItem	method Description
Delete Deletes	a	repository	item
get_Interface Retrieves	an	interface	pointer	to	the

specified	item	interface
get_Name Retrieves	the	name	associated	with	an	item
get_Repository Retrieves	the	IRepository	interface	pointer

for	an	open	repository	instance	of	an	item
get_Type Retrieves	the	type	of	an	item
Lock Locks	the	item

put_Name Sets	the	name	associated	with	an	item

IRepositoryObject	method Description
get_InternalID Retrieves	the	internal	identifier	for	a

repository	object
get_ObjectID Retrieves	the	object	identifier	for	a

repository	object
Refresh Refreshes	the	cached	image	of	the	object

See	Also

ClassDef	Class

CollectionDef	Class

InterfaceDef	Class

MethodDef	Class

PropertyDef	Class

RelationshipDef	Class

RepositoryObject	Class

ReposRoot	Class

ReposTypeLib	Class

Meta	Data	Services	Programming

IRepositoryObject::get_InternalID
This	method	obtains	the	internal	identifier	for	a	repository	object.

HRESULT	get_InternalID(VARIANT			*psInternalId);

Parameters
*psInternalId

[out]
The	internal	identifier	of	the	current	repository	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
This	method	retrieves	the	internal	object	identifier,	not	the	internal	object-
version	identifier.

See	Also

IRepositoryObject	Interface

Meta	Data	Services	Programming

IRepositoryObject::get_ObjectID
This	method	retrieves	the	object	identifier	for	a	repository	object.

HRESULT	get_ObjectID(VARIANT			*psObjectId);

Parameters
*psObjectId

[out]
The	object	identifier	of	the	current	repository	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
This	method	retrieves	the	object	identifier,	not	the	object-version	identifier.

See	Also

IRepositoryObject	Interface

Meta	Data	Services	Programming

IRepositoryObject::Refresh
This	method	refreshes	the	cached	image	of	a	particular	repository	object	version.
Only	unchanged	cache	data	is	refreshed.

HRESULT	Refresh(long			iMilliseconds);

Parameters
iMilliseconds

[in]
This	value	is	ignored.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryItem	Interface

IRepositoryObject	Interface

Meta	Data	Services	Programming

IRepositoryObject2	Interface
This	interface	is	implemented	by	all	repository	objects.	It	inherits	the	properties,
methods,	and	collections	of	IRepositoryObject.

When	to	Use
Use	IRepositoryObject2	to	retrieve	information	about	an	object,	without	having
to	make	a	roundtrip	to	the	repository	database.

You	can	also	use	the	Properties	property	on	this	interface	to	explicitly	define
which	interfaces	and	collections	to	work	with.	If	you	are	working	with	inherited
interfaces,	a	collection	on	the	derived	interface	may	assume	the	same	name	as
the	base	collection	on	the	base	interface.	When	both	collections	share	the	same
name,	using	the	IRepositoryObject	interface	can	return	either	collection,	even
though	the	collections	may	be	fundamentally	different	in	other	ways.	Using
IRepositoryObject2	instead	of	IRepositoryObject	allows	you	to	explicitly
identify	the	collection	you	want,	eliminating	the	possibility	that	the	repository
engine	will	return	the	wrong	collection.

The	following	example	illustrates	how	to	work	with	same	name	collections	on
specific	interfaces	using	IRepositoryObject2.	In	this	case,	a	base	interface	and
an	inherited	interface	each	have	a	collection	named	Contains.

Dim	MyObject	as	IRepositoryObject2
MyObject.Properties(IBaseIFace	+	".Contains").Value.Add	oFile1
MyObject.Properties(IBaseIFace	+	".Contains").Value.Add	oFile2
MyObject.Properties(IInheritIFace	+	".Contains").Value.Add	oFile1

Properties

Property Description
ClassName Contains	the	name	of	the	class	where	the	property	is

used
ClassType Returns	the	ClassDef	object	that	represents	this	property

Properties Allows	the	application	to	obtain	all	properties	for	the
object

See	Also

ClassDef	Object

IRepositoryObject	Interface

Meta	Data	Services	Programming

IRepositoryObject2	ClassName	Property
The	ClassName	property	identifies	the	name	of	the	class	where	the	property	is
used.

Syntax
HRESULT	ClassName	(

				BSTR								*pClassName

);

Dispatch	Identifier:			DISPID_IRepositoryObject2_ClassName	=	31

Parameters
*pClassName

[out,	retval]
A	pointer	to	the	string	that	contains	the	name	of	the	class.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryObject2	Interface

Meta	Data	Services	Programming

IRepositoryObject2	ClassType	Property
The	ClassType	property	returns	an	in-memory	pointer	to	a	ClassDef	object.	An
object	type	is	identified	by	its	object	identifier.

Syntax
HRESULT	ClassDef	(

				VARIANT				*plClassDef

);

Dispatch	Identifier:			DISPID_IRepositoryObject2_ClassType	=	30

Parameters
*plClassDef

[out]
A	pointer	to	the	ClassDef	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryObject2	Interface

Repository	Identifiers

Meta	Data	Services	Programming

IRepositoryObject2	Properties	Property
The	Properties	property	allows	the	application	to	obtain	all	properties	for	the
object,	regardless	of	which	interface	they	are	defined	on.

Syntax
HRESULT	Size	(

				VARIANT								*pIReposProps

);

Dispatch	Identifier:			DISPID_IRepositoryObject2_Properties	=	1000

Parameters
*pIReposProps

[out]

Return	Value
S_OK

The	method	completed	successfully.

Error	Values
None.

See	Also

IRepositoryObject2	Interface

Meta	Data	Services	Programming

IRepositoryObjectStorage	Interface
The	IRepositoryObjectStorage	interface	initializes	the	memory	image	for	a
repository	object.	New	repository	objects	are	initialized	as	empty	objects.	For
existing	repository	objects,	the	state	of	the	object	is	retrieved	from	the	repository
database.

When	to	Use
The	IRepositoryObjectStorage	interface	is	used	by	the	repository	engine	to
materialize	repository	objects	in	memory.	It	is	not	intended	for	use	by	repository
applications.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces.
AddRef Increments	the	reference	count.
Release Decrements	the	reference	count.

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers.

GetTypeInfo Retrieves	a	type	information	object,	which	can
be	used	to	get	the	type	information	for	an
interface.

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or	1).

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object.

IRepositoryObjectStorage
method Description
get_PropertyInterface Retrieves	an	IRepositoryDispatch	interface

pointer	for	accessing	the	persistent	members	of
one	of	the	supported	interfaces	of	an	item.

InitNew Initializes	memory	for	a	new	repository	object.
Load Initializes	memory	for	an	existing	repository

object.

See	Also

ClassDef	Class

CollectionDef	Class

InterfaceDef	Class

MethodDef	Class

PropertyDef	Class

RelationshipDef	Class

RepositoryObject	Class

ReposRoot	Class

ReposTypeLib	Class

Meta	Data	Services	Programming

IRepositoryObjectStorage::get_PropertyInterface
This	method	retrieves	an	IRepositoryDispatch	interface	pointer	for	accessing
the	persistent	members	of	one	of	the	object's	supported	Automation	interfaces.

The	IRepositoryDispatch	interface	can	be	used	to	get	and	set	member	values
for	the	interface	specified	by	the	InterfaceId	input	parameter.	The	interface	must
be	one	that	is	exposed	by	this	object.

HRESULT	get_PropertyInterface(VARIANT																						InterfaceId,
				IRepositoryDispatch	**ppInterface
);

Parameters
InterfaceId

[in]
The	interface	identifier	of	the	interface	whose	properties	are	to	be	accessed.

*ppInterface

[out]
The	IRepositoryDispatch	interface	pointer.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
IRepositoryDispatch	does	not	perform	any	parameter	validation,	and	it	cannot
be	used	to	access	custom	methods	or	nonpersistent	properties.	It	is	intended	for

use	by	custom	class	implementers.

See	Also

IRepositoryDispatch	Interface

IRepositoryObjectStorage	Interface

Meta	Data	Services	Programming

IRepositoryObjectStorage::InitNew
The	repository	engine	uses	this	method	to	initialize	a	new	repository	object	in
memory.

HRESULT	InitNew(IRepository				*pIRepository,
				INTID														sInternalId
);

Parameters
*pIRepository

[in]
The	repository	that	contains	this	object.

sInternalId

[in]
The	internal	identifier	for	the	new	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepository	Interface

IRepositoryObjectStorage	Interface

Meta	Data	Services	Programming

IRepositoryObjectStorage::Load
The	repository	engine	uses	this	method	to	load	the	state	information	of	a
repository	object	into	memory	from	the	repository	database.

HRESULT	Load(IRepository			*pIRepository,
				INTID													sInternalId
);

Parameters
*pIRepository

[in]
The	repository	that	contains	this	object.

sInternalId

[in]
The	internal	identifier	for	the	repository	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepository	Interface

IRepositoryObjectStorage	Interface

Meta	Data	Services	Programming

IRepositoryObjectVersion	Interface
A	repository	object	version	is	a	particular	version	of	a	repository	object.	Each
version	of	an	object	can	differ	from	other	versions	of	that	object	in	its	property
values	and	collections.

When	to	Use
Use	the	IRepositoryObjectVersion	interface	to	manipulate	any	version	of	an
object,	including	the	original	version	established	with
IRepository::CreateObject.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which
can	be	used	to	get	the	type	information	for
an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	Properties	collection.

IRepositoryItem	method Description
Delete Deletes	a	repository	item
Get_Interface Retrieves	an	interface	pointer	to	the

specified	item	interface
Get_Name Retrieves	the	name	associated	with	an	item
Get_Repository Retrieves	the	IRepository	interface	pointer

for	an	item's	open	Repository	instance
Get_Type Retrieves	the	type	of	an	item
Lock Locks	the	item
Put_Name Sets	the	name	associated	with	an	item

IRepositoryObject	method Description
get_InternalID Retrieves	the	internal	identifier	for	a

Repository	object
get_ObjectID Retrieves	the	object	identifier	for	a

Repository	object

IRepositoryObjectVersion
method Description
CreateVersion Creates	a	new	version	of	an	object	as	a

successor	to	the	current	object	version
FreezeVersion Disallows	further	modification	of	the

(nonannotational)	property	values	or
origin	collections	of	the	current	object
version

get_IsFrozen Determines	whether	the	current	object
version	is	frozen

get_ObjectVersions Retrieves	an	interface	pointer	to	the
collection	of	all	versions	of	the	current
object

get_PredecessorCreationVersionRetrieves	an	interface	pointer	to	the
predecessor	object	version	from	which	the
current	object	version	was	created

get_PredecessorVersions Retrieves	an	interface	pointer	to	the
collection	of	all	predecessor	versions	of
the	current	object	version

get_ResolutionType Returns	an	indication	of	which	resolution
technique	the	repository	engine	used	in
returning	the	particular	version	of	the
current	object

get_SuccessorVersions Retrieves	an	interface	pointer	to	the
collection	of	all	successor	versions	of	the
current	object	version

get_VersionID Retrieves	the	object-version	identifier	of
the	current	object	version

get_VersionInternalID Retrieves	the	internal	object-version
identifier	of	the	current	object	version

MergeVersion Changes	the	current	object	version	by
combining	its	property	values	and
collections	with	another	object	version

See	Also

IRepository::CreateObject

RepositoryObjectVersion	Class

Versioning	Objects

Meta	Data	Services	Programming

IRepositoryObjectVersion::CreateVersion
This	method	creates	a	new	version	of	an	object	as	a	successor	to	the	current
object	version.

HRESULT	CreateVersion(VARIANT	sVersionID
				IRepositoryObjectVersion	**ppCreatedVersion
);

Parameters
sVersionID

[in]
The	object-version	identifier	to	be	assigned	to	the	new	object	version.	If	you
want	the	repository	engine	to	assign	an	object-version	identifier,	use	a	value
of	EXTVERSIONID_NULL.

**ppCreatedVersion

[out]
The	IRepositoryObjectVersion	interface	pointer	for	the	newly	created
object	version.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
The	current	object	version	must	be	frozen.

The	repository	engine	creates	the	new	version	as	unfrozen.	Its	property	values

are	identical	to	the	current	object	version's	property	values.

For	each	of	the	predecessor	version's	origin	relationship	collections,	the
repository	engine	takes	this	action:

If	the	corresponding	relationship	type	has	the
COLLECTION_NEWORGVERSIONSPARTICIPATE	flag	set,	the
repository	engine	copies	the	collection	to	the	newly	created	version.

If	the	corresponding	relationship	type	does	not	have	the
COLLECTION_NEWORGVERSIONSPARTICIPATE	flag	set,	the
repository	engine	does	not	copy	the	collection	to	the	new	version.

You	cannot	invoke	this	method	while	operating	in	a	workspace.

See	Also

IRepositoryObjectVersion	Interface

Meta	Data	Services	Programming

IRepositoryObjectVersion::FreezeVersion
This	method	allows	further	modification	of	the	property	values	or	origin
collections	of	the	current	object	version.	You	cannot	use	this	method	for
annotational	properties.

HRESULT	FreezeVersion(void);

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
After	you	freeze	an	object	version,	you	cannot	change	its	nonannotational
property	values.	However,	you	can	change	the	value	of	any	of	its	annotational
properties.

After	you	freeze	an	object,	you	cannot	enlarge	or	shrink	any	of	its	origin
collections.	You	cannot	pin,	unpin,	rename,	or	resequence	any	of	the	items	in
any	of	its	origin	collections.	Furthermore,	you	cannot	change	any	of	the
individual	versioned	relationships	in	any	of	the	origin	collections.	That	is,	you
cannot	enlarge	an	item's	set	of	target	object	versions;	pin	a	target	object	version,
and	you	cannot	unpin	the	pinned	target	object	version.

If	you	call	this	method	for	an	item	currently	checked	out	to	any	workspace
(including	the	workspace	in	which	you	are	working),	it	returns	an	error.

If	the	to-be-frozen	object	version	includes	any	nonnull	origin	collection	whose
corresponding	collection	type	has	the	COLLECTION_REQUIRESFREEZE	flag
set,	and	that	nonnull	collection	includes	an	item	whose	TargetVersions
collection	contains	a	nonfrozen	object	version,	the	method	fails.

See	Also

IRepositoryObjectVersion	Interface

Meta	Data	Services	Programming

IRepositoryObjectVersion::get_IsFrozen
This	method	determines	whether	the	current	object	version	is	frozen.

HRESULT	get_IsFrozen(VARIANT_BOOL	*pbFrozen
);

Parameters
*pbFrozen

[out]
TRUE	if	the	current	object	version	is	frozen;	FALSE	if	it	is	not	frozen.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryObjectVersion	Interface

Meta	Data	Services	Programming

IRepositoryObjectVersion::get_ObjectVersions
This	method	retrieves	an	interface	pointer	to	the	collection	of	all	versions	of	the
current	object.

HRESULT	get_ObjectVersions(IVersionCol	**ppObjVersions
);

Parameters
**ppObjVersions

[out]
The	IVersionCol	interface	pointer	for	the	collection	of	object	versions.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
Within	the	returned	collection,	the	repository	engine	sequences	the	items	in	order
of	their	creation,	with	the	oldest	object	version	first.

You	cannot	modify	the	collection.	To	add	a	new	object	version,	use
IRepositoryObjectVersion::CreateVersion.

See	Also

IRepositoryObjectVersion	Interface

IRepositoryObjectVersion::CreateVersion

Meta	Data	Services	Programming

IRepositoryObjectVersion::get_PredecessorCreationVersion
This	method	retrieves	an	interface	pointer	to	the	predecessor	object	version	from
which	the	current	object	version	was	created.

HRESULT	get_PredecessorCreationVersion(IRepositoryObjectVersion
**ppPredCreationVersion
);

Parameters
**ppPredCreationVersion

[out]
The	IRepositoryObjectVersion	interface	pointer	for	the	object	version	from
which	the	current	object	version	was	created.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
If	you	invoke	this	method	for	the	first	version	of	an	object,	it	returns	an	error.

See	Also

IRepositoryObjectVersion	Interface

Meta	Data	Services	Programming

IRepositoryObjectVersion::get_PredecessorVersions
This	method	retrieves	an	interface	pointer	to	the	collection	of	all	predecessor
versions	of	the	current	object	version.

HRESULT	get_PredecessorVersions(IVersionCol	**ppPredVersions
);

Parameters
**ppPredVersions

[out]
The	IVersionCol	interface	pointer	for	the	collection	of	predecessor	object
versions.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
This	method	returns	only	the	immediate	predecessors	of	the	current	object
version.

If	you	invoke	this	method	for	the	first	version	of	an	object,	it	returns	an	empty
collection.

Within	the	returned	collection,	the	repository	engine	sequences	the	items	in	order
of	their	creation,	with	the	oldest	object	version	first.

You	cannot	modify	the	collection.

See	Also

IRepositoryObjectVersion	Interface

Meta	Data	Services	Programming

IRepositoryObjectVersion::get_ResolutionType
This	method	returns	an	indication	of	the	resolution	technique	by	which	the
repository	engine	chose	to	give	you	a	reference	to	the	current	version	(rather
than	a	reference	to	any	other	version	of	the	same	object).

HRESULT	get_ResolutionType(LONG	*pResolutionType
);

Parameters
*pResolutionType

[out]
One	of	four	possible	values.	The	following	table	lists	the	values.

Constant Value Description
SPECIFIEDVERSION 1 Indicates	that	a	specific	object

version	was	selected
LATESTVERSION 2 Indicates	that	the	most	recently

created	object	version	was	selected
VERSIONINWORKSPACE 3 Indicates	that	the	version	in	the

workspace	was	selected
PINNEDVERSION 4 Indicates	that	a	pinned	object

version	was	selected

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
The	repository	engine	automatically	sets	the	value	of	the	ResolutionType
property	whenever	you	retrieve	an	object	version.

See	Also

IRepositoryObjectVersion	Interface

Meta	Data	Services	Programming

IRepositoryObjectVersion::get_SuccessorVersions
This	method	retrieves	an	interface	pointer	to	the	collection	of	all	successor
versions	of	the	current	object	version.

HRESULT	get_SuccessorVersions(IVersionCol	**ppSuccVersions
);

Parameters
**ppTargetVersions

[out]
The	IVersionCol	interface	pointer	for	the	collection	of	successor	object
versions.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
This	method	returns	only	the	immediate	successors	of	the	current	object	version.

If	the	current	object	version	has	no	successors,	this	method	returns	an	empty
collection.

Within	the	returned	collection,	the	repository	engine	sequences	the	items	in	order
of	their	creation,	with	the	oldest	object	version	first.

You	cannot	modify	the	collection.	To	add	a	new	successor	to	the	current	object
version,	use	IRepositoryObjectVersion::CreateVersion.

See	Also

IRepositoryObjectVersion	Interface

Meta	Data	Services	Programming

IRepositoryObjectVersion::get_VersionID
This	method	retrieves	the	object-version	identifier	of	the	current	object	version.

HRESULT	get_VersionID(VARIANT	*psVersionID
);

Parameters
*psVersionID

[out]
The	object-version	identifier	of	the	current	object	version.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryObjectVersion	Interface

Meta	Data	Services	Programming

IRepositoryObjectVersion::get_VersionInternalID
This	method	retrieves	the	internal	object-version	identifier	of	the	current	object
version.

HRESULT	get_VersionInternalID(VARIANT	*psVersionID
);

Parameters
*psVersionID

[out]
The	internal	object-version	identifier	of	the	current	object	version.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryObjectVersion	Interface

Meta	Data	Services	Programming

IRepositoryObjectVersion::MergeVersion
This	method	changes	the	current	object	version	by	combining	its	property	values
and	origin	collections	with	the	property	values	and	origin	collections	of	another
version	of	the	same	object.

HRESULT	MergeVersion(IRepositoryObjectVersion	*pOtherVersion
				long	fFlags
);

Parameters
*pOtherVersion

[in]
The	IRepositoryObjectVersion	interface	pointer	for	the	predecessor	of	the
merge.	That	is,	the	object	version	whose	property	values	and	collections
should	be	merged	into	the	current	version.

fFlags

[in]
Long	integer	specifying	which	object	version	is	the	primary	and	which	is
secondary	in	the	merge.

Constant Value Description
PRIMARY 1 The	predecessor	object	is	primary	and	the

current	object	is	secondary.
SECONDARY 2 The	predecessor	object	is	secondary	and	the

current	object	is	primary.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
Relationships	are	inserted	at	the	end	of	the	sequenced	collection.

The	two	object	versions	must	be	versions	of	the	same	object.

The	current	object	version	must	be	unfrozen.	The	other	object	version	must	be
frozen.

MergeVersion	compares	the	property	values	and	collections	of	each	object
version	to	a	third	version,	called	the	Basis	Version.

The	repository	engine	considers	one	of	the	two	to-be-merged	object	versions	as
the	primary	version,	and	the	other	to	be	the	secondary	version,	according	to	the
value	of	fFlags	you	supply.	During	the	merge,	the	repository	engine	considers
each	property	and	origin	collection	type	in	turn.	For	each	property,
MergeVersion	uses	this	rule:

If	the	primary	version	differs	from	the	Basis	Version,	the	repository
engine	uses	the	property	value	from	the	primary	version.	If	only	the
secondary	version	differs	from	the	Basis	Version,	the	repository	engine
uses	the	property	value	from	the	secondary	version.	If	neither	version
differs	from	the	Basis	Version,	the	repository	engine	leaves	the	property
value	in	the	current	version	unchanged.

For	each	origin	collection	type	whose	COLLECTION_MERGEWHOLE	flag	is
set,	MergeVersion	uses	this	rule:

If	the	primary	version's	collection	differs	from	the	Basis	Version's
collection,	the	repository	engine	uses	the	collection	from	the	primary
version.	If	only	the	secondary	version's	collection	differs	from	the	Basis
Version's,	the	repository	engine	uses	the	collection	from	the	secondary
version.	If	neither	version	differs	from	the	Basis	Version,	the	repository
engine	leaves	the	property	value	in	the	current	version	unchanged.

For	each	origin	collection	type	whose	COLLECTION_MERGEWHOLE	flag	is
not	set,	MergeVersion	combines	the	items	in	the	two	collections	as	follows:

1.	 MergeVersion	includes	in	the	resulting	collection	each	item	in	the
Basis	Version	not	changed	in	or	deleted	from	either	the	primary
version	or	secondary	version.

2.	 MergeVersion	includes	in	the	resulting	collection	each	item	in	the
primary	version's	collection	that	differs	from	the	Basis	Version.

3.	 MergeVersion	includes	in	the	resulting	collection	each	item	in	the
secondary	version's	collection	that	differs	from	the	Basis	Version,
provided	the	corresponding	items	in	the	primary	version	and	the	Basis
Version	do	not	differ	from	each	other.

The	resulting	collection	can	exclude	some	items	found	in	the	basis	object
version's	collection.	For	example,	if	the	primary	version's	collection	excludes	the
item,	the	resulting	collection	excludes	the	item.	Similarly,	if	the	primary
version's	collection	includes	an	item	that	is	identical	to	an	item	in	the	Basis
Version's	collection,	but	the	secondary	object	version	excludes	the	item,	the
resulting	collection	excludes	the	item.

See	Also

IRepositoryObjectVersion	Interface

Meta	Data	Services	Programming

IRepositoryODBC	Interface
The	repository	engine	stores	information	in	an	SQL	database.	The	repository
engine	connects	to	the	database	server	through	an	ODBC	connection.	The
IRepositoryODBC	interface	provides	you	with	access	to	the	database	through
the	same	(or	a	similar)	ODBC	connection.

Care	should	be	taken	when	accessing	the	repository	database	directly,	especially
when	sharing	the	repository	ODBC	connection.	Specific	restrictions	are	defined
in	the	detailed	information	for	each	interface	method.	Directly	accessing	the
repository	database	in	a	read-only	manner	is	generally	considered	safe;	however,
if	you	tune	your	repository	application	to	be	dependent	upon	specific	features	of
your	database	server,	you	limit	the	portability	of	your	application.

When	to	Use
Use	the	IRepositoryODBC	interface	to	obtain	or	release	an	ODBC	connection
handle,	or	to	retrieve	the	ODBC	connection	string	used	by	the	repository	engine.

To	obtain	a	pointer	to	this	interface,	use	the	IRepository::QueryInterface
method.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces.
AddRef Increments	the	reference	count.
Release Decrements	the	reference	count.

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers.

GetTypeInfo Retrieves	a	type	information	object,	which	can
be	used	to	get	the	type	information	for	an

interface.
GetTypeInfoCount Retrieves	the	number	of	type	information

interfaces	that	an	object	provides	(either	0	or
1).

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object.

IRepositoryODBC
method Description
ExecuteQuery Executes	the	specified	SQL	query	against	the

repository	database.
FreeConnection Releases	an	ODBC	connection	handle.
get_ConnectionString Retrieves	the	ODBC	connection	string	that	the

repository	engine	uses	to	obtain	an	ODBC
connection.

GetNewConnection Obtains	a	new	ODBC	connection	handle	using
the	same	connection	settings	that	the	repository
engine	is	using	to	access	the	repository
database.

get_ReposConnection Retrieves	the	ODBC	connection	handle	that	the
repository	engine	is	using	to	access	the
repository	database.

See	Also

IRepositoryODBC2	Interface

Repository	Class

Meta	Data	Services	Programming

IRepositoryODBC::ExecuteQuery
This	method	executes	the	specified	SQL	query	against	the	repository	database,
and	returns	a	collection	of	repository	objects.	The	columns	that	are	returned	by
the	query	must	be	either	the	internal	identifier	(IntID)	column,	or	a	combination
of	the	internal	identifier	and	the	type	identifier	(IntID,	TypeID)	columns	of	the
RTblVersions	table.

HRESULT	ExecuteQuery(BSTR			queryString,	IObjectCol	**ppICol);

Parameters
queryString

[in]
The	SQL	query,	or	the	name	of	a	stored	procedure.

**ppICol

[out]
The	collection	of	objects	that	meet	the	selection	criteria	of	the	SQL	query.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryODBC	Interface

RTblVersions	SQL	Table

Meta	Data	Services	Programming

IRepositoryODBC::FreeConnection
This	method	frees	an	ODBC	connection	handle.

HRESULT	FreeConnection(long			Hdbc);

Parameters
Hdbc

[in]
The	ODBC	connection	handle	to	be	released.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
Use	this	method	to	free	the	handle	obtained	through	either	the
get_ReposConnection	method	or	the	GetNewConnection	method	before
releasing	an	open	repository	instance.

See	Also

IRepositoryODBC	Interface

IRepositoryODBC::GetNewConnection

IRepositoryODBC::get_ReposConnection

Meta	Data	Services	Programming

IRepositoryODBC::get_ConnectionString
This	method	retrieves	the	ODBC	connection	string	that	the	repository	engine
uses	to	obtain	an	ODBC	connection	to	the	repository	database.

HRESULT	get_ConnectionString(BSTR				szString);

Parameters
szString

[out]
The	ODBC	connection	string.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
The	ODBC	connection	string	can	contain	user	identification	and	password
information.	Take	care	to	protect	this	information	from	exposure	to	unauthorized
access.

See	Also

IRepositoryODBC	Interface

Meta	Data	Services	Programming

IRepositoryODBC::GetNewConnection
This	method	obtains	a	new	ODBC	connection	handle	using	the	same	ODBC
connection	string	that	the	repository	engine	is	using	to	access	the	repository
database.	Using	a	new	ODBC	connection	handle	isolates	you	from	changes
made	by	the	repository	engine.

HRESULT	GetNewConnection(long			*pHdbc);

Parameters
*pHdbc

[out]
A	new	ODBC	connection	handle.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
Be	sure	to	free	the	handle	obtained	through	this	method	before	releasing	your
open	repository	instance.	To	free	the	connection	handle,	use	the
FreeConnection	method.

See	Also

IRepositoryODBC	Interface

IRepositoryODBC::FreeConnection

Meta	Data	Services	Programming

IRepositoryODBC::get_ReposConnection
This	method	retrieves	the	ODBC	connection	handle	that	the	repository	engine	is
using	to	access	the	repository	database.

HRESULT	get_ReposConnection(long			*pHdbc);

Parameters
*pHdbc

[out]
A	copy	of	the	repository	engine	ODBC	connection	handle.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
If	you	use	the	repository	engine	ODBC	connection	handle,	you	are	not	isolated
from	changes	made	by	the	repository	engine.	For	example,	uncommitted
changes	made	by	the	repository	engine	will	be	visible	to	your	application.

When	using	the	ODBC	connection	handle	of	the	repository	engine,	you	must	not
change	the	state	of	the	handle	in	a	way	that	is	incompatible	with	the	repository
engine.	Specifically,	do	not:

Change	any	ODBC	connection	options.

Perform	any	accesses	concurrent	with	repository	method	invocations.

Directly	commit	or	roll	back	a	database	transaction.	The
IRepositoryTransaction	interface	must	always	be	used	to	manage
transactions.

Be	sure	to	free	the	handle	obtained	through	this	method	before	releasing	your
open	repository	instance.	To	free	the	connection	handle,	use	the
FreeConnection	method.

See	Also

IRepositoryODBC	Interface

IRepositoryODBC::FreeConnection

Meta	Data	Services	Programming

IRepositoryODBC2	Interface
This	interface	exposes	methods	that	enable	you	to	set	or	get	options	for
retrieving	object	collections	asynchronously,	plus	other	methods	inherited	from
the	IRepositoryODBC	interface.

When	to	Use
Use	the	IRepositoryODBC2	interface	to	obtain	or	release	an	ODBC	connection
handle,	or	to	retrieve	the	ODBC	connection	string	used	by	the	repository	engine.
It	is	also	used	to	set	or	get	options	when	loading	object	collections
asynchronously.

To	obtain	a	pointer	to	this	interface,	use	the	IRepository::QueryInterface
method.

Methods

IUnknown	Method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	Method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which	can
be	used	to	get	the	type	information	for	an
interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods

exposed	by	an	Automation	object

IRepositoryODBC
Method Description
ExecuteQuery Executes	the	specified	SQL	query	against	the

repository	database
FreeConnection Releases	an	ODBC	connection	handle
get_ConnectionString Retrieves	the	ODBC	connection	string	that	the

repository	engine	uses	to	obtain	an	ODBC
connection

GetNewConnection Obtains	a	new	ODBC	connection	handle	using
the	same	connection	settings	that	the	repository
engine	is	using	to	access	the	repository
database

get_ReposConnection Retrieves	the	ODBC	connection	handle	that	the
repository	engine	is	using	to	access	the
repository	database

IRepositoryODBC2
Method Description
GetOption Obtains	the	value	of	the	load	option
SetOption Sets	the	option	for	loading	the	collection

See	Also

IRepositoryODBC	Interface

Repository	Class

Meta	Data	Services	Programming

IRepositoryODBC2::GetOption
This	method	obtains	the	value	of	the	load	option.

Syntax
HRESULT	GetOption(long	iOption,
				VARIANT	*psValue);

Parameters
iOption

[in]
RODBC_ASYNCH.

psValue

[out,	retval]
VARIANT_TRUE	or	VARIANT_FALSE,	depending	upon	whether	the
RODBC_ASYNCH	option	has	been	set.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryODBC	Interface

IRepositoryODBC2	Interface

IRepositoryODBC2::SetOption

Meta	Data	Services	Programming

IRepositoryODBC2::SetOption
This	method	sets	the	option	for	loading	the	collection.	The	RODBC_ASYNCH
flag	can	be	set	only	if	the	underlying	database	system	supports	asynchronous
operations.

Syntax
HRESULT	SetOption(
				long	iOption,
				VARIANT	sValue);

Parameters
iOption

[in]
Specifies	the	option	to	set.	You	can	set	either	RODBC_ASYNCH	or
RODBC_RESET_OPTIONS.

RODBC_ASYNCH	takes	an	sValue.

RODBC_RESET_OPTIONS	does	not	take	an	sValue.

sValue

[in]
TRUE	sets	the	asynchronous	mode	of	load.

FALSE	clears	the	asynchronous	mode	of	load.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryODBC	Interface

IRepositoryODBC2	Interface

IRepositoryODBC2::GetOption

Meta	Data	Services	Programming

IRepositoryTransaction	Interface
The	repository	engine	supports	transactional	processing.	Repository	engine
methods	that	are	reading	data	from	a	repository	database	may	be	executed
outside	of	a	transaction,	but	methods	that	write	data	must	be	bracketed	within	a
transaction.	Only	one	transaction	can	be	active	at	a	time	for	each	opened
repository	instance.	Nesting	of	Begin	or	Commit	method	invocations	is
permitted,	but	no	actual	nesting	of	transactions	occurs.

When	to	Use
Use	the	IRepositoryTransaction	interface	to	begin,	commit,	or	cancel	a
repository	transaction.	You	can	also	use	this	interface	to	retrieve	the	information
about	the	transactional	state	of	an	open	repository	instance,	and	to	set	transaction
options.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces.
AddRef Increments	the	reference	count.
Release Decrements	the	reference	count.

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers.

GetTypeInfo Retrieves	a	type	information	object,	which	can	be
used	to	get	the	type	information	for	an	interface.

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or	1).

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object.

IRepositoryTransaction
method Description
Abort Cancels	a	currently	active	transaction.
Begin Begins	a	new	transaction.
Commit Commits	an	active	transaction.
Flush Flushes	uncommitted	changes	to	the	repository

database.
GetOption Retrieves	a	transaction	option.
get_Status Indicates	whether	there	is	a	currently	active

transaction.
SetOption Sets	a	transaction	option.

See	Also

Managing	Transactions	and	Threads

Repository	Class

Meta	Data	Services	Programming

IRepositoryTransaction::Abort
This	method	cancels	the	currently	active	transaction	for	an	open	repository.	All
updates	made	during	the	transaction	are	undone.	The	nested	transaction	count	is
set	to	zero.

Syntax
HRESULT	Abort(void);

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryTransaction	Interface

Meta	Data	Services	Programming

IRepositoryTransaction::Begin
This	method	increments	the	nested	transaction	count	by	one.	If	there	is	no	active
transaction,	this	method	begins	a	transaction	for	the	open	repository	instance.

Syntax
HRESULT	Begin(void);

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryTransaction	Interface

Meta	Data	Services	Programming

IRepositoryTransaction::Commit
This	method	decrements	the	nested	transaction	count	for	an	open	repository
instance.	If	the	currently	active	transaction	is	not	nested,	all	changes	made	to
repository	data	within	the	transaction	are	committed	to	the	repository	database.
A	transaction	is	not	nested	if	the	nested	transaction	count	equals	one.

Syntax
HRESULT	Commit(void);

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryTransaction	Interface

Meta	Data	Services	Programming

IRepositoryTransaction::Flush
This	method	flushes	cached	changes	to	the	repository	database.

Unless	you	have	set	the	exclusive-write-through-mode	transaction	option,
changes	that	you	make	within	the	scope	of	a	transaction	are	cached,	and	they	are
not	written	to	the	database	until	the	transaction	is	committed.	If	a	concurrent
SQL	query	is	run	against	the	repository	database,	the	result	of	the	query	will	not
reflect	the	uncommitted	changes.	Typically,	this	is	the	desired	behavior.

If	your	repository	application	must	be	able	to	see	uncommitted	changes	in	SQL
queries,	you	can	use	the	Flush	method	to	write	uncommitted	changes	to	the
repository	database.	All	changes	made	within	the	scope	of	the	current	transaction
are	flushed.	Flushing	uncommitted	changes	does	not	affect	your	ability	to	cancel
a	transaction	through	the	Abort	method.

Syntax
HRESULT	Flush(void);

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryTransaction	Interface

IRepositoryTransaction::Abort

Meta	Data	Services	Programming

IRepositoryTransaction::GetOption
This	method	retrieves	the	value	of	a	transaction	option	for	an	open	Microsoft®
SQL	Server™	2000	Meta	Data	Services	instance.

Syntax
HRESULT	GetOption(long											iOption,
				VARIANT	*psValue
);

Parameters
iOption

[in]
The	transaction	option	to	retrieve.	For	more	information	about	valid	values
and	their	meanings,	see	TransactionFlags	Enumeration.

*psValue

[out]
The	value	of	the	specified	transaction	option.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryTransaction	Interface

IRepositoryTransaction::Abort

Meta	Data	Services	Programming

IRepositoryTransaction::get_Status
This	method	determines	whether	there	is	a	currently	active	transaction.

Syntax
HRESULT	get_Status(long				*piStatus);

Parameters
*piStatus

[out]
The	current	transaction	status.	If	the	value	is	zero,	no	transaction	is	active.	If
the	value	is	nonzero,	a	transaction	is	active.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
A	transaction	is	considered	active	until	the	Commit	method	has	successfully
executed	and	the	nested	transaction	count	has	been	decremented	to	zero.
Depending	on	the	data-flushing	capabilities	of	the	underlying	database	server,
the	data	associated	with	a	committed	transaction	may	or	may	not	be	written	to
the	physical	storage	device	when	the	Commit	method	returns	control	to	its
caller.

See	Also

IRepositoryTransaction	Interface

IRepositoryTransaction::Commit

Meta	Data	Services	Programming

IRepositoryTransaction::SetOption
This	method	sets	one	of	the	transaction	options	for	an	open	Microsoft®	SQL
Server™	2000	Meta	Data	Services	instance.	You	cannot	set	a	transaction	option
while	a	transaction	is	active.

Syntax
HRESULT	SetOption(ULONG						iOption,
				VARIANT			sValue
);

Parameters
iOption

[in]
The	transaction	option	to	set.	For	more	information	about	valid	values	and
their	meanings,	see	TransactionFlags	Enumeration.

sValue

[in]
The	value	of	the	specified	transaction	option.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRepositoryTransaction	Interface

Meta	Data	Services	Programming

IRepositoryTransaction2	Interface
This	interface	supports	distributed	transactions	on	Microsoft®	SQL	Server™
6.5,	SQL	Server	7.0,	and	SQL	Server	2000.	However,	the	operating	system	must
be	Microsoft	Windows®	2000.	This	feature	ensures	that	the	distributed
transaction	is	atomic;	that	is,	it	either	commits	at	all	resource	managers	or	aborts
at	all	of	them.

When	to	Use
Use	the	IRepositoryTransaction2	interface	to	begin,	commit,	or	abort	a
distributed	repository	transaction.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which	can	be
used	to	get	the	type	information	for	an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or	1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryTransaction

method Description
Abort Cancels	a	currently	active	transaction
Begin Begins	a	new	transaction
Commit Commits	an	active	transaction
Flush Stores	uncommitted	changes	to	the	repository

database
GetOption Retrieves	a	transaction	option
get_Status Indicates	whether	there	is	a	currently	active

transaction
SetOption Sets	a	transaction	option

IRepositoryTransaction2
method Description
get_DTCTransaction Retrieves	a	pointer	to	the	active	Microsoft

Distributed	Transaction	Coordinator	(MS	DTC)
transaction

See	Also

Integration	with	Distributed	Transaction	Coordinator

IRepositoryTransaction	Interface

Managing	Transactions	and	Threads

Meta	Data	Services	Programming

IRepositoryTransaction2::get_DTCTransaction
This	method	returns	a	pointer	to	the	active	Microsoft®	Distributed	Transaction
Coordinator	(MS	DTC)	transaction.	If	it	is	not	running	inside	an	MS	DTC
transaction,	this	method	returns	NULL.	It	allows	the	caller	to	enlist	other
resource	managers	in	the	same	transaction	that	is	being	used	to	access	the
repository	database.	For	example,	you	can	use	the	pointer	as	a	parameter	of
IJoinTransaction::JoinTransaction	to	instantiate	another	repository	session	or
an	OLE	DB	provider,	which	you	then	can	enlist	in	the	MS	DTC	transaction.
Similarly,	you	can	use	the	pointer	in	an	aggregation	wrapper	that	accesses
another	resource	manager.	The	wrapped	object	can	get	the	MS	DTC	transaction
in	the	transaction	that	accessed	it,	so	it	can	enlist	the	other	resource	manager	in
the	same	transaction.

Syntax
HRESULT	get_DTCTransaction	(VARIANT	*UnKTransaction
);

Parameters
UnKTransaction

[out]
A	pointer	to	the	IUnknown	interface	on	the	transaction	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

For	more	information	about	the	ITransactionJoin	interface,	see	the	MSDN®
Library.

See	Also

IRepositoryTransaction	Interface

IRepositoryTransaction2	Interface

Meta	Data	Services	Programming

IReposOptions	Interface
This	interface	exposes	methods	for	getting,	setting,	or	resetting	engine	options.
These	options	are	used	to	change	the	default	engine	behavior	and	to	enable	the
application	to	override	some	of	the	engine	optimizations.

When	to	use
Use	the	IReposOptions	interface	to:

Let	the	application	exercise	some	control	over	the	execution.

Change	the	engine's	default	parameters.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument	names	to

a	corresponding	set	of	dispatch	identifiers
GetTypeInfo Retrieves	a	type	information	object,	which	can	be	used

to	get	the	type	information	for	an	interface
GetTypeInfoCountRetrieves	the	number	of	type	information	interfaces

that	an	object	provides	(either	0	or	1)
Invoke Provides	access	to	properties	and	methods	exposed	by

an	Automation	object

Method Description
GetOption Retrieves	the	value	of	an	engine's	option
SetOption Sets	the	value	of	an	engine's	option
ResetOptions Resets	the	engine's	options

See	Also

IReposOptions	Options	Table

Meta	Data	Services	Programming

IReposOptions::GetOption
Use	this	method	to	retrieve	the	value	of	an	engine's	option.

Syntax
HRESULT	GetOption(
				BSTR			OptionName,
				VARIANT			*OptionValue	
);

Parameters
OptionName

[in]
One	of	the	string	identifiers	described	in	the	IReposOptions	Options	Table.
For	more	information	about	option	values	and	descriptions,	see
IRepoOptions	Options	Table.

OptionValue

[out,	retval]
A	pointer	to	one	of	the	values	shown	in	the	options	table.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposOptions::SetOption

IReposOptions::ResetOptions

Meta	Data	Services	Programming

IReposOptions::SetOption
Use	this	method	to	set	the	value	of	an	engine's	option.

Syntax
HRESULT	SetOption(
				BSTR				OptionName,
				VARIANT				OptionValue	
);

Parameters
OptionName

[in]
One	of	the	string	identifiers	shown	in	the	IReposOptions	Options	Table.	For
more	information	about	option	values	and	descriptions,	see	IRepoOptions
Options	Table.

OptionValue

[out,	retval]
One	of	the	values	described	in	the	options	table.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposOptions::GetOption

IReposOptions::ResetOptions

Meta	Data	Services	Programming

IReposOptions::ResetOptions
Use	this	method	to	reset	the	values	to	the	repository	engine	default	option
values.

Syntax
HRESULT	ResetOptions();

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposOptions::GetOption

IReposOptions::SetOption

Meta	Data	Services	Programming

IReposOptions	Options	Table
The	following	table	shows	the	options	that	can	be	used	as	parameters	for	the
SetOption	and	GetOption	methods.

OptionName
OptionValue
Default Type Description

OPT_RELEASENOREF
ROW_MODE

FALSE boolean When	set	to	TRUE,
this	option	causes
cache	rows	to	be
immediately	released
when	the	reference
count	goes	to	zero.
This	is	the	same	as
setting	the	age-out
time	to	zero,	except
that	the	value	will	not
be	used	by	the
background	thread.

OPT_AGEOUT 1000 ulong The	number	of
milliseconds	after	a
repository	object
pointer	gets	released
until	it	is	outdated.
0xFFFFFFFF	(-1)
indicates	that	the
object	never	ages	out.

OPT_TIM_AGEOUT 0xFFFFFFFFulong The	number	of
milliseconds	after	a
pointer	to	a	type
information	model
object	gets	released
until	it	is	outdated.
0xFFFFFFFF	(-1)

indicates	that	the
object	never	ages	out.

OPT_PRELOAD_AGEOUT 60000 ulong The	number	of
milliseconds	after	an
object	is	prefetched
until	it	is	marked	as
outdated	and	ready	to
be	cleaned	up	by	the
background	thread.
0xFFFFFFFF	(-1)
indicates	that	the
object	never	ages	out.

OPT_ATOMICOP_MODE FALSE boolean Indicates	whether
atomic	operations	are
enabled.	A	value	of
TRUE	indicates	that
atomic	operations	are
enabled,	while	the
value	of	FALSE
indicates	that	atomic
operations	are
disabled.

OPT_PRELOAD_COL
_MODE

0 long The	number	indicates
the	maximum	number
of	objects	in	a
collection	C	such	that
when	a	destination
object	collection	D	is
accessed,	for	any
object	in	C,	then	the
repository	engine	will
preload	D	for	all
objects	in	C.	Zero
means	this	preloading
is	disabled.

OPT_EXPORT_MODE FALSE boolean Loads	all	origin

collections	on	an
object	at	object
creation.

OPT_NOPROPERTYPRE
FETCH_MODE

FALSE boolean If	this	option	is	set	to
TRUE,	it	does	not
prefetch	properties	on
objects	in	any	of	the
collections.

OPT_LCID 1033
(US	English)

ulong The	engine	allows	its
clients	to	change	the
locale	at	run-time.
This	is	done	by	using
the	SetOption	method
and	setting	LCID
(locale	identifier)	as
value.

See	Also

IReposOptions::ResetOptions

Meta	Data	Services	Programming

IReposProperties	Interface
The	IReposProperties	interface	provides	access	to	the	Properties	collection.
The	Properties	collection	gives	you	a	convenient	mechanism	for	enumerating
through	all	of	the	persistent	properties	and	collections	of	an	interface,	when	you
do	not	already	know	the	names	of	all	of	the	interface	members.

When	you	instantiate	an	Automation	object	that	represents	an	object	from	your
information	model,	and	that	object	conforms	to	a	class	for	which	there	is	no
custom	implementation	(in	other	words,	you	have	provided	no	software
implementation	of	the	class),	the	repository	engine	provides	an	interface
implementation	for	you.	This	interface	implementation	uses
IRepositoryDispatch	as	its	dispatch	interface.	This	dispatch	interface	contains
one	additional	method,	the	get_Properties	method,	which	returns	an
IReposProperties	interface	pointer.

This	support	enables	the	Automation	programmer	to	use	syntax	like	the
following:

Dim	firstProperty	As	ReposProperty	
Set	firstProperty	=	repObject.Properties(1)

The	second	statement	is	resolved	in	the	following	way:

In	this	example,	repObject	is	an	Automation	instantiation	of	a
repository	object	where	the	default	implementation	has	been	used.

The	Properties	term	is	the	Automation	level	name	for	the
get_Properties	method	that	is	supplied	by	the	IRepositoryDispatch
dispatch	interface.

The	get_Properties	method	returns	the	interface	pointer	to	the
IReposProperties	interface.

The	default	method	of	the	IReposProperties	interface	is	the	get_Item

method,	which	returns	an	IReposProperty	interface	pointer	for	the
specified	property	object	in	the	Properties	collection.

At	this	point,	the	Automation	programmer	has	access	to	the	first	property	in	the
collection	through	the	firstProperty	object	variable.

When	to	Use
Use	the	IReposProperties	interface	to	access	the	properties	and	collections	of	a
repository	object	when	no	custom	implementation	is	available,	and	you	do	not
already	know	what	members	are	exposed	by	the	object's	interface.	With	the
IReposProperties	interface,	you	can:

Get	a	count	of	the	number	of	members	in	the	collection.

Retrieve	an	IReposProperty	interface	pointer	to	one	of	the	members	in
the	collection.

Enumerate	the	members	in	the	collection.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which	can
be	used	to	get	the	type	information	for	an
interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or	1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IReposProperties	method Description
get_Count Retrieves	the	count	of	the	number	of	members

in	the	collection
get_Item Retrieves	the	IReposProperty	interface

pointer	for	the	specified	member	of	the
collection

get_Type Retrieves	the	type	of	the	interface	to	which
these	properties	are	attached

_NewEnum Retrieves	a	standard	Automation	enumeration
interface	pointer	for	the	collection

Remarks

Only	persistent	members	(that	is,	members	that	are	stored	in	the	repository)	are
represented	in	the	Properties	collection.

See	Also

ReposProperties	Class

IRepositoryDispatch	Interface

IReposProperty

Meta	Data	Services	Programming

IReposProperties::get_Count
This	method	retrieves	a	count	of	the	number	of	persistent	members	(properties
and	collections)	that	are	in	the	Properties	collection.

HRESULT	get_Count(long				*piCount);

Parameters
*piCount

[out]
The	number	of	members	in	the	collection.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposProperties	Interface

Meta	Data	Services	Programming

IReposProperties::get_Item
This	method	retrieves	the	specified	member	from	the	Properties	collection.

HRESULT	get_Item(VARIANT														sItem,
				IReposProperty			**ppIReposProperty
);

Parameters
sItem

[in]
Identifies	the	item	to	be	retrieved	from	the	collection.	This	parameter	can	be
either	the	index	or	the	name	of	the	member,	or	the	object	identifier	of	the
property	definition	object	for	the	member.

*ppIReposProperty

[out]
The	IReposProperty	interface	pointer	for	the	specified	collection	member.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposProperties	Interface

IReposProperty	Interface

Meta	Data	Services	Programming

IReposProperties::get_Type
This	method	retrieves	the	object	identifier	for	the	interface	definition	of	the
interface	to	which	these	properties	are	attached.	This	object	identifier	is	referred
to	as	the	type	of	the	interface.

HRESULT	get_Type(VARIANT				*psTypeId);

Parameters
*psTypeId	[out]

The	object	identifier	for	the	interface	definition	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposProperties	Interface

IReposProperty	Interface

Meta	Data	Services	Programming

IReposProperties::_NewEnum
This	method	retrieves	an	enumeration	interface	pointer	for	the	Properties
collection.	This	interface	is	a	standard	Automation	enumeration	interface.	It
supports	the	Clone,	Next,	Reset,	and	Skip	methods.	You	can	use	the
enumeration	interface	to	step	through	the	members	in	the	collection.

HRESULT	_NewEnum(IUnknown			**ppIEnumProps);

Parameters
*ppIEnumProps

[out]
The	enumeration	interface	pointer.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposProperties	Interface

IReposProperty	Interface

Meta	Data	Services	Programming

IReposProperty	Interface
The	IReposProperty	interface	provides	access	to	a	persistent	member	(a
property	or	collection)	of	an	information	model	interface.

When	you	instantiate	an	Automation	object	that	represents	an	object	from	your
information	model,	and	that	object	conforms	to	a	class	for	which	there	is	no
custom	implementation	(in	other	words,	you	have	provided	no	software
implementation	of	the	class),	the	repository	engine	provides	an	interface
implementation	for	you.	This	interface	implementation	uses
IRepositoryDispatch	as	its	dispatch	interface.

The	IRepositoryDispatch	interface	is	an	enhanced	IDispatch	interface;	in
addition	to	all	of	the	standard	IDispatch	methods,	IRepositoryDispatch	also
provides	access	to	the	Properties	collection.	The	Properties	collection	gives
you	a	convenient	mechanism	to	enumerate	through	all	of	the	persistent
properties	and	collections	of	an	interface.	The	IReposProperty	interface	can	be
used	to	access	the	individual	members	in	the	Properties	collection.

This	support	enables	the	Automation	programmer	to	use	syntax	like	the
following:

Dim	firstPropName	As	String
Let	firstPropName	=	repObject.Properties(1).Name

The	second	statement	resolves	in	the	following	way:

In	this	example,	repObject	is	an	Automation	instantiation	of	a
repository	object	where	the	default	implementation	has	been	used.

The	Properties	term	is	the	Automation	level	name	for	the
get_Properties	method	that	is	supplied	by	the	IRepositoryDispatch
interface.

The	get_Properties	method	returns	the	interface	pointer	to	the
IReposProperties	interface.

The	default	method	of	the	IReposProperties	interface	is	the	get_Item
method,	which	returns	an	IReposProperty	interface	pointer	for	the
specified	property	object	in	the	Properties	collection.

The	Name	term	is	the	Automation	level	name	for	the	get_Name
method	that	is	supplied	by	the	IReposProperty	interface.

At	this	point,	the	Automation	programmer	has	access	to	the	name	of	the	first
property	in	the	collection	through	the	firstPropName	variable.

When	to	Use
Use	the	IReposProperty	interface	to	access	a	persistent	interface	member,	when
no	custom	implementation	is	available,	and	you	do	not	already	know	the	type	or
name	of	the	member.	With	this	interface,	you	can:

Retrieve	the	name	of	a	property	or	collection.

Retrieve	the	type	of	a	property	or	collection.

Get	or	set	the	value	of	a	property.

Methods

IUnknown	methods Description
QueryInterface Returns	pointers	to	supported	interfaces.
AddRef Increments	the	reference	count.
Release Decrements	the	reference	count.

IDispatch	methods Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers.

GetTypeInfo Retrieves	a	type	information	object,	which	can	be
used	to	get	the	type	information	for	an	interface.

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or	1).

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object.

IReposProperty
methods Description
get_Type Retrieves	the	type	of	a	persistent	interface

member.
get_Name Retrieves	the	name	of	a	persistent	interface

member.
get_Value Retrieves	the	value	of	a	persistent	interface

member.
put_Value Sets	the	value	of	a	persistent	property.

Remarks

Only	persistent	members	(that	is,	members	that	are	stored	in	the	repository
database)	can	be	accessed	by	the	IReposProperty	interface.

See	Also

ReposProperty	Class

IReposProperties	Interface

IRepositoryDispatch	Interface

Meta	Data	Services	Programming

IReposProperty::get_Name
This	method	retrieves	the	name	of	a	persistent	interface	member	(a	property	or
collection).

HRESULT	get_Name(BSTR				*pName);

Parameters
*pName

[out]
The	name	of	the	member.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposProperty	Interface

Meta	Data	Services	Programming

IReposProperty::get_Type
This	method	retrieves	the	type	of	a	persistent	property	or	collection;	that	is,	it
returns	the	object	identifier	of	the	definition	object	to	which	the	member
conforms.

HRESULT	get_Type(VARIANT			*psTypeId);

Parameters
*psTypeId

[out]
The	object	identifier	of	the	member's	definition	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposProperty	Interface

Meta	Data	Services	Programming

IReposProperty::get_Value
This	method	retrieves	the	value	of	a	persistent	interface	member	(a	property	or
collection).	If	the	member	is	a	collection,	the	retrieved	value	is	a	pointer	to	the
interface	that	supports	that	type	of	collection.

HRESULT	get_Value(VARIANT			*psValue);

Parameters
*psValue

[out]
The	property	value.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposProperty	Interface

Meta	Data	Services	Programming

IReposProperty::put_Value
This	method	sets	the	value	of	a	persistent	interface	property.	The	type	of	the
input	parameter	is	converted	to	the	storage	data	type	of	the	property.	If	the	type
of	the	input	parameter	cannot	be	successfully	converted	to	the	storage	data	type,
this	method	will	return	an	error.

HRESULT	put_Value(VARIANT			sValue);

Parameters
sValue

[in]
The	property	value	to	be	set.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
You	cannot	set	the	value	of	a	read-only	property	or	a	collection.

See	Also

IReposProperty	Interface

Meta	Data	Services	Programming

IReposProperty2	Interface
This	interface	is	used	by	applications	such	as	the	Meta	Data	Browser	to	retrieve
meta	data	for	an	interface	without	having	to	query	the	database.

Properties

Properties Description
APIType An	API	type	enumeration	constant	that	identifies	the

API	type	of	the	object.
IsBaseMember Indicates	whether	the	property	is	a	base	member.
IsOriginCollection Indicates	whether	the	collection	is	the	origin	of	the

relationship.
PropType Returns	the	IIFaceMember	object	that	represents	this

property.
IsReadOnly Returns	the	meta	data	information	that	represents	this

property.

See	Also

IReposProperty	Interface

Using	Meta	Data	Browser

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

IReposProperty2	APIType	Property
The	APIType	property	contains	the	data	type	of	the	property.

Syntax
HRESULT	APIType	(

				LONG								*pAPIType

);

Dispatch	Identifier:			DISPID_IReposProperty2_APIType	=	42

Parameters
*pAPIType

[out]
The	data	type	of	the	property.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposProperty2	Interface

Meta	Data	Services	Programming

IReposProperty2	IsBaseMember	Property
The	IsBaseMember	property	indicates	whether	the	property	is	a	base	member.

Syntax
HRESULT	IsBaseMember	(

				VARIANT_BOOL								*pIsBase

);

Dispatch	Identifier:			DISPID_IReposProperty2_IsBaseMember	=	41

Parameters
*pIsBase

[out]
TRUE	if	the	property	is	a	base	member.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposProperty2	Interface

Meta	Data	Services	Programming

IReposProperty2	IsOriginCollection	Property
The	IsOriginCollection	property	indicates	whether	the	collection	is	the	origin	of
the	relationship.

Syntax
HRESULT	IsOriginCollection	(

				VARIANT_BOOL								*pIsOrigin

);

Dispatch	Identifier:			DISPID_IReposProperty2_IsOriginCollection	=	43

Parameters
*pIsOrigin

[out]
TRUE	if	the	collection	is	the	origin	of	the	relationship.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposProperty2	Interface

Meta	Data	Services	Programming

IReposProperty2	PropType	Property
The	PropType	property	returns	the	IIFaceMember	of	the	PropertyDef,
CollectionDef,	or	Alias	object	that	represents	this	property.

Syntax
HRESULT	PropType	(

				VARIANT								*pIIfaceMember

);

Dispatch	Identifier:			DISPID_IReposProperty2_PropType	=	40

Parameters
*pIIfaceMember

[out]
A	pointer	to	the	IIFaceMember	interface	of	this	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

Alias	Object

CollectionDef	Object

IReposProperty2	Interface

PropertyDef	Object

Meta	Data	Services	Programming

IReposProperty2	IsReadOnly	Property
The	IsReadOnly	property	indicates	whether	a	property	is	read-only.

Syntax
HRESULT	IsReadOnly(

VARIANT_BOOL								*pIsReadOnly

);

Dispatch	Identifier:			DISPID_IReposProperty2_IsReadOnly	=	44

Parameters
*pIsReadOnly

[out]
TRUE	if	the	property	is	a	derived	member.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposProperty2	Interface

Meta	Data	Services	Programming

IReposPropertyLarge	Interface
This	interface	is	used	to	handle	binary	large	objects	(BLOBs)	and	large	text
fields.	The	IReposPropertyLarge	is	only	available	to	BLOB	and	text	data.
Attempting	to	use	it	with	other	kinds	of	data	will	fail.

This	interface	is	intended	to	be	an	IDispatch	version	of	some	IStream	methods.

When	to	Use
All	text	and	binary	fields	can	publish	this	interface,	regardless	of	their	size.

Properties

Property Description
Size The	size	of	a	BLOB	in	bytes.
CurrentPosition Used	to	get	and	set	the	current	position.

Methods

Methods Description
Read Reads	a	chunk	of	data	from	the	BLOB	or	large	text

field.
ReadFromFile Sets	the	value	of	the	BLOB	or	large	text	field	to	be	the

contents	of	a	file.
Close Notifies	the	engine	that	no	additional	data	is	to	be	read

from	or	written	to	the	BLOB	or	large	text	field.
Write Writes	a	chunk	of	data	to	the	BLOB	or	large	text	field.
WriteToFile Stores	the	contents	of	a	BLOB	or	large	text	field	in	a

file.

See	Also

IReposProperty	Interface

Programming	BLOBs	and	Large	Text	Fields

Meta	Data	Services	Programming

IReposPropertyLarge::Size
The	Size	property	contains	the	size	(in	bytes)	of	a	binary	large	object	(BLOB)	or
large	text	field.

Syntax
HRESULT	Size	(

				LONG........*plSize

);

Dispatch	Identifier:			DISPID_IReposPropertyLarge_Size	=	32

Parameters
*plSize

[out]
The	size	of	the	BLOB.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposPropertyLarge	Interface

Meta	Data	Services	Programming

IReposPropertyLarge::CurrentPosition
The	CurrentPosition	property	is	used	to	get	and	set	a	position	for	a	large
BLOB.

Syntax
HRESULT	CurrentPosition	(

				LONG........*plCurrentPosition

);

Dispatch	Identifier:			DISPID_IReposPropertyLarge_CurrentPosition	=	34

Parameters
*plCurrentPosition

[out]
Moves	the	read	pointer	to	a	position	in	the	BLOB.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposPropertyLarge	Interface

Meta	Data	Services	Programming

IReposPropertyLarge::Read
This	method	reads	a	chunk	of	data	from	a	BLOB	or	large	text	field.

Syntax
HRESULT	Read	(

				LONG								SizeToRead,

				LONG								*pSizeRead,

				VARIANT			*	psBlob

);

Dispatch	Identifier:			DISPID_IReposPropertyLarge_Read	=	30

Parameters
SizeToRead

[in]
A	request	for	the	amount	of	data	to	read.

*plSizeRead

[out]
The	actual	amount	of	data	read.

*psBlob

[out]
A	pointer	to	a	location	where	the	retrieved	data	will	be	stored.	It	must	be
large	enough	to	contain	the	amount	of	data	requested.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposPropertyLarge	Interface

Meta	Data	Services	Programming

IReposPropertyLarge::ReadFromFile
This	method	configures	the	object	to	use	a	file	for	the	BLOB	value.

Syntax
HRESULT	ReadFromFile	(

				BSTR								FileName

);

Dispatch	Identifier:			DISPID_IReposPropertyLarge_ReadFromFile	=	35

Parameters
FileName

[in]
The	path	of	the	file	to	read.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
Existing	data	in	the	BLOB	value	is	overwritten,	and	the	seek	position	is	reset.

See	Also

IReposPropertyLarge	Interface

Meta	Data	Services	Programming

IRepositoryPropetyLarge::Close
Moves	the	read	pointer	to	a	position	in	the	BLOB.

Syntax
HRESULT	Close	(

				LONG								IPosition

);

Dispatch	Identifier:			DISPID_IReposPropertyLarge_Close	=	33

Parameters
IPosition

[in]
A	byte	offset	relative	to	the	start	of	the	BLOB.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
This	method	tells	the	engine	that	no	more	data	is	to	be	read	from	or	written	to
the	BLOB.

See	Also

IReposPropertyLarge	Interface

Meta	Data	Services	Programming

IReposPropertyLarge::Write
This	method	writes	a	chunk	of	data	to	a	BLOB	or	large	text	field.

Syntax
HRESULT	Write	(

				VARIANT								sBlob

);

Dispatch	Identifier:			DISPID_IReposPropertyLarge_Write	=	31

Parameters
sBlob

[in]
A	pointer	to	the	data	to	be	written.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposPropertyLarge	Interface

Meta	Data	Services	Programming

IReposPropertyLarge::WriteToFile
This	method	configures	the	object	to	write	the	contents	of	the	BLOB	to	a	file.

Syntax
HRESULT	WriteToFile	(

				BSTR								FileName

);

Dispatch	Identifier:			DISPID_IReposPropertyLarge_WriteToFile	=	36

Parameters
FileName

[in]
The	path	of	the	file	where	the	data	is	written.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IReposPropertyLarge	Interface

Meta	Data	Services	Programming

IReposQuery	Interface
This	interface	allows	you	to	use	filters	on	collections	in	order	to	give	you	control
over	the	objects	that	appear	in	an	object	collection.

When	to	use
The	IReposQuery	interface	is	implemented	by	the	following	objects	to	enable
you	to	apply	different	queries	with	given	filter	conditions:

The	Repository	object:	This	allows	you	to	query	the	whole	repository.

The	Workspace	object:	This	allows	you	to	query	the	workspace.

The	relationship	collection	objects:	This	allows	you	to	query	all
instances	in	the	given	relationship	collection.	(Notice	that	the
ITargetObjectCol	interface	implies	IReposQuery;	therefore,	all	the
objects	that	implement	this	interface	also	implement	IReposQuery.)

Methods

IUnknown	Method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	Method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument	names

to	a	corresponding	set	of	dispatch	identifiers
GetTypeInfo Retrieves	a	type	information	object,	which	can	be

used	to	get	the	type	information	for	an	interface
GetTypeInfoCount Retrieves	the	number	of	type	information	interfaces

that	an	object	provides	(either	0	or	1)
Invoke Provides	access	to	properties	and	methods	exposed

by	an	Automation	object

IReposQuery
Method Description
GetCollection Filters	relationship	collections	in	a	workspace	or	in

the	whole	repository

See	Also

Filtering	Collections

Repository	Object

Workspace	Object

Meta	Data	Services	Programming

IReposQuery::GetCollection
This	method	is	used	to	filter	relationship	collections	in	a	workspace	or	in	the
whole	repository.

Syntax
HRESULT	GetCollection(
				BSTR	Filter,
				long	Flags	
				IObjectCol2	**ppObjCol

);

Parameters
Filter

[in]
A	text	string	that	limits	the	objects	that	appear	in	the	collection.	This	string
can	be	a	maximum	of	255	characters	in	length.

Flags

[in]
An	optional	parameter	to	control	the	synchronicity	of	the	query	(default	=	0).
The	following	flag	values	are	supported.

Flag	enumerator Value Description
FILTERCOL_SYNCH 0 The	collection	is	fetched	synchronously

(default).
FILTERCOL_ASYNCH 2 The	collection	is	fetched	asynchronously.

The	collection	pointer	returned	is	an
IObjectCol2	interface,	which	can	be
used	to	query	the	status	of	the
asynchronous	fetch.

*ppObjCol

[out,	retval]
A	pointer	to	the	object	collection.

Filter	Text	String
The	text	string	of	the	Filter	parameter	is	case	insensitive.	The	engine	will	return
an	error	code	if	the	syntax	of	the	Filter	parameter	is	wrong.	The	Filter	parameter
obeys	these	rules:

1.	 The	string	format	is	based	on	the	SQL	WHERE	clause	format.	For
example,
[PROPA]	=	'employee'	AND	[PROPB]>10.

2.	 Property	names	are	provided	in	the	format:
[property	identifier]

where	the	property	identifier	can	either	be	the	object	identifier	of	the
property	definition,	or	in	the	format:

typelib.interface.property.

As	a	result,	any	occurrence	of	the	character	[has	to	be	escaped	if	it	is
not	marking	the	start	of	a	property	identifier.	The	escape	sequence	is	\
(that	is,	you	must	use	\[whenever	you	want	to	specify	[).

If	the	typelib	or	the	interface	part	is	omitted,	the	following	rules	apply:

If	the	filtering	applies	to	a	relationship	collection,	the	omitted
type	library	is	assumed	to	be	the	same	as	the	type	library	in
which	the	relationship	collection	was	defined.	In	addition,	the
omitted	interface	name	is	assumed	to	be	the	same	as	the	target

If	filtering	applies	to	the	repository	session,	an
E_REP_UNKNOWNPROPERTY	error	is	returned.

3.	 The	following	operators	are	supported:

The	Boolean	operators	AND,	OR,	and	NOT.

The	comparison	operators	=,	<,	<=,	>,	>=,	IN,	and	LIKE.

Grouping	of	conditions	by	parentheses.

4.	 The	following	special,	case-insensitive	clauses	are	supported:

InstanceOf	(class	definition	list)

The	class	definition	list	is	a	comma-delimited	list	of	class
definition	object	identifiers.	The	collection	returned	contains
those	objects	that	are	instances	of	these	class	definitions.	The
list	elements	are	considered	to	be	connected	together	by	the
OR	logical	operator.

Implements	(interface	definition	list)

The	interface	definition	list	is	a	comma-delimited	list	of
interface	definition	object	identifiers.	The	collection	returned
contains	those	objects	that	support	the	interfaces	given.	The
list	elements	are	considered	to	be	connected	together	by	the
OR	logical	operator.

5.	 If	the	Filter	parameter	is	empty,	all	objects	in	the	collection	are
returned.

The	Filter	parameter	can	include	an	Order	By	clause	that	accepts	a
comma-separated	list	of	property	names.	The	property	names	follow
the	same	rules	as	property	names	in	the	selection	part	of	the	Filter
parameter.

The	following	is	an	example	of	a	valid	Filter	parameter:

[FirstName]='Jason'	AND	[Age]>20	ORDER	BY	[LastName]

Return	Value

S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

Filtering	Collections

Filtering	Derived	Collections

IReposQuery	Interface

Meta	Data	Services	Programming

ISummaryInformation	Interface
The	ISummaryInformation	interface	maintains	Comments	and
ShortDescription	properties	for	objects	that	expose	this	interface.

When	to	Use
Use	the	ISummaryInformation	interface	to	access	the	Comments	and
ShortDescription	properties	of	a	repository	object.

Properties

Property Description
Comments General	comments	about	the	object
ShortDescription A	brief	description	of	the	object

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which	can	be
used	to	get	the	type	information	for	an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or	1)

Invoke Provides	access	to	properties	and	methods

exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface	pointer.

The	IReposProperties	interface	provides	access
to	the	properties	exposed	by	the
ISummaryInformation	interface.

Meta	Data	Services	Programming

ISummaryInformation	Comments	Property
This	property	contains	general	comments	about	an	object.	Up	to	65,536	bytes	of
information	can	be	stored	in	this	property.

Dispatch	Identifier:			DISPID_Comments	(66)

Property	Data	Type:			long	varchar

See	Also

ISummaryInformation	Interface

Meta	Data	Services	Programming

ISummaryInformation	ShortDescription	Property
This	property	contains	a	short	description	of	an	object.	Up	to	255	bytes	of
information	can	be	stored	in	this	property.

Dispatch	Identifier:			DISPID_ShortDesc	(67)

Property	Data	Type:			varchar

See	Also

ISummaryInformation	Interface

Meta	Data	Services	Programming

ITargetObjectCol	Interface
A	target	object	collection	is	a	set	of	repository	object	versions	that	are	attached
to	a	particular	source	object	version	through	a	relationship	collection.	At	most,
one	version	of	each	repository	object	is	present	in	any	target	object	collection.

When	to	Use
Use	the	ITargetObjectCol	interface	to	manage	the	repository	objects	that
belong	to	a	particular	relationship	collection.	With	this	interface,	you	can:

Get	a	count	of	the	number	of	objects	in	the	collection.

Enumerate	the	objects	in	the	collection.

Add	and	remove	objects	to	and	from	the	collection.

If	the	collection	is	sequenced,	place	an	object	in	a	specific	spot	in	the
collection	sequence.

Retrieve	an	IRepositoryObject	pointer	to	one	of	the	objects	in	the
collection.

Obtain	the	type	of	the	collection.

Retrieve	an	interface	pointer	for	the	collection's	source	object.

Refresh	the	cached	image	of	the	target	object	collection.

Methods

IUnknown
methods Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument	names	to

a	corresponding	set	of	dispatch	identifiers
GetTypeInfo Retrieves	a	type	information	object,	which	can	be	used

to	get	the	type	information	for	an	interface
GetTypeInfoCountRetrieves	the	number	of	type	information	interfaces

that	an	object	provides	(either	0	or	1)
Invoke Provides	access	to	properties	and	methods	exposed	by

an	Automation	object

IObjectCol
method Description
get_Count Retrieves	a	count	of	the	number	of	objects	in	the

collection.
_NewEnum Retrieves	an	enumeration	interface	pointer	for	the

collection.	This	interface	is	a	standard	Automation
enumeration	interface.	It	supports	the	Clone,	Next,
Reset,	and	Skip	methods.

get_Item Retrieves	an	IRepositoryObject	interface	pointer	for
the	specified	collection	object.

Refresh Refreshes	the	cached	image	of	the	target	object
collection.

ITargetObjectCol
method Description

Add Adds	an	object	to	the	collection
get_Source Retrieves	an	interface	pointer	for	the	collection's	source

object
get_Type Retrieves	the	object	identifier	for	the	collection's

definition	object
Insert Inserts	an	object	into	a	specific	spot	in	a	sequenced

collection
Move Moves	an	object	from	one	spot	to	another	in	a

sequenced	collection
Remove Removes	an	object	from	the	collection

Remarks

The	ITargetObjectCol	interface	is	similar	to	the	IRelationshipCol	interface.
Use	the	ITargetObjectCol	interface	when	you	are	primarily	interested	in
working	with	objects.	Use	the	IRelationshipCol	interface	when	you	are
primarily	interested	in	working	with	relationships	between	objects.

See	Also

IRelationshipCol	Interface

RelationshipCol	Class

Meta	Data	Services	Programming

ITargetObjectCol::Add
This	method	is	used	to	add	a	new	item	to	an	object	collection,	when	the
sequencing	of	objects	in	the	collection	is	not	important.	An	interface	pointer	for
the	new	relationship	is	passed	back	to	the	caller.

HRESULT	Add(IDispatch									*plReposObj,
				BSTR														Name,
				IRelationship			**pplRelship
);

Parameters
*plReposObj

[in]
The	repository	object	version	to	be	added	to	the	collection.

Name

[in]
The	name	to	be	assigned	to	the	object	that	is	being	added	to	the	collection.

*pplRelship

[out]
The	newly	added	object's	relationship	interface	pointer.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks

Objects	may	only	be	added	to	a	collection	when	the	collection's	source	object	is
also	the	collection's	origin	object.

When	you	call	this	method,	the	origin	version	must	be	unfrozen.

You	can	use	this	method	to	create	a	new	versioned	relationship	between	the
source	object	version	and	a	version	of	the	target	object.	You	cannot	use	it	to
enlarge	a	versioned	relationship.	If	the	source	object	version	already	has	a
relationship	to	any	version	of	the	target	object,	this	method	will	fail.	You	can
include	another	version	of	the	target	object	in	the	versioned	relationship	by
adding	an	item	to	the	versioned	relationship's	TargetObjects	collection.

The	value	of	plReposObj	is	the	specific	version	of	the	target	object.

See	Also

IRelationship	Interface

ITargetObjectCol	Interface

Meta	Data	Services	Programming

ITargetObjectCol::get_Source
This	method	retrieves	the	IRepositoryObject	interface	pointer	for	the
collection's	source	object	version.

HRESULT	get_Source(IRepositoryObject			**ppIInterface);

Parameters
*ppIInterface

[out]
The	interface	pointer	of	the	IRepositoryObject	interface	for	the	source
object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

ITargetObjectCol	Interface

Meta	Data	Services	Programming

ITargetObjectCol::get_Type
This	method	retrieves	the	type	of	the	collection;	that	is,	it	returns	the	object
identifier	for	the	collection's	definition	object.

HRESULT	get_Type(VARIANT			*pColDefObjId);

Parameters
*pColDefObjId

[out]
The	object	identifier	of	the	collection's	definition	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

ITargetObjectCol	Interface

Meta	Data	Services	Programming

ITargetObjectCol::Insert
This	method	adds	an	object	to	the	collection	at	a	specified	point	in	the	collection
sequence.	An	interface	pointer	for	the	new	relationship	is	passed	back	to	the
caller.

HRESULT	Insert(IDispatch								*pIReposObj,
				long																	iIndex,
				BSTR															Name,
				IRelationship	**ppIRelship
);

Parameters
*pIReposObj

[in]
The	repository	object	to	be	inserted	into	the	collection	sequence.

iIndex

[in]
The	index	of	the	sequence	location	where	the	object	is	to	be	inserted.	If
another	object	is	already	present	at	this	sequence	location,	the	new	object	is
inserted	before	the	existing	object.

Name

[in]
The	name	of	the	object.	Set	this	parameter	to	a	null	string	if	the	object	is	not
referred	to	by	name.

*ppIRelship

[out]
The	IRelationship	interface	pointer	for	the	new	object's	relationship	with	the
collection's	origin	object.

Return	Value

S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
Objects	may	only	be	inserted	into	a	collection	when	the	collection's
source	object	is	also	the	collection's	origin	object.

This	method	can	only	be	used	for	collections	that	are	sequenced.

When	you	call	this	method,	the	origin	version	must	be	unfrozen.

You	can	use	this	method	to	insert	a	new	versioned	relationship	between	the
source	object	version	and	a	version	of	the	target	object.	You	cannot	use	it	to
enlarge	a	versioned	relationship.	If	the	source	object	version	already	has	a
relationship	to	any	version	of	the	target	object,	this	method	will	fail.	You	can
include	another	version	of	the	target	object	in	the	versioned	relationship	by
adding	an	item	to	the	versioned	relationship's	TargetObjects	collection.

The	value	of	plReposObj	is	the	specific	version	of	the	target	object.

See	Also

IRelationship	Interface

ITargetObjectCol	Interface

Meta	Data	Services	Programming

ITargetObjectCol::Move
This	method	moves	an	object	from	one	point	in	the	collection	sequence	to
another	point.

HRESULT	Move(
				long									iIndexFrom,
				long									iIndexTo
);

Parameters
iIndexFrom

[in]
The	index	of	the	object	to	be	moved	in	the	collection	sequence.

iIndexTo

[in]
The	index	of	the	sequence	location	to	which	the	object	is	to	be	moved.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
This	method	can	only	be	used	for	collections	that	are	sequenced.

The	origin	object	version	must	be	unfrozen.

See	Also

ITargetObjectCol	Interface

Meta	Data	Services	Programming

ITargetObjectCol::Remove
This	method	removes	the	specified	object	from	the	collection.	The	exact
behavior	of	this	method	depends	on	whether	the	relationship	collection	is	an
origin	collection	or	a	destination	collection.

If	the	relationship	collection	is	an	origin	collection,	this	method	deletes	the
versioned	relationship.

If	the	relationship	collection	is	a	destination	collection,	this	method	first
performs	object-version	resolution	to	yield	a	single	target-object	version,	and
then	it	removes	that	target-object	version	from	the	relationship's	TargetVersions
collection.

HRESULT	Remove(VARIANT				sItem	
);

Parameters
sItem

[in]
Identifies	the	item	to	be	retrieved	from	the	collection.	This	parameter	can	be
the	index,	the	name,	or	the	object	identifier	of	the	item.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
An	object	can	be	removed	by	name	only	if	it	is	the	destination	object	of	a
naming	relationship.

If	the	source	is	the	origin,	the	origin	version	must	be	unfrozen.

If	the	relationship	is	a	destination	relationship,	and	the	resolution	strategy	yields
a	target	object	version	that	is	frozen,	this	method	fails.

Removal	from	a	sequenced	collection	does	not	update	the	collection	sequence
order.

See	Also

ITargetObjectCol	Interface

Resolution	Strategy	for	Objects	and	Object	Versions

Meta	Data	Services	Programming

ITransientObjectCol	Interface
This	interface	provides	transient	object	collections	that	you	can	create	and
dynamically	populate	at	run	time	using	script	and	object	methods	rather	than
persisted	data	in	a	repository	database.

ITransientObjectCol	inherits	from	IObjectCol.	Except	for	the	fact	that	a
transient	object	collection	is	not	saved	to	a	repository	database,	it	is	identical	in
functionality	to	the	ObjectCol	object.

You	can	have	multiple	transient	object	collections	at	one	time.	The	object
collection	can	contain	only	repository	objects.	Although	enumeration	is
supported,	sequencing	is	not.	Objects	and	object	collections	represented	by
TransientObjectCol	are	not	versioned.

When	to	Use
Use	this	interface	to	create	an	object	collection	that	is	instantiated	by	application
code	and	populated	dynamically	at	run	time.	With	this	interface,	you	can	add	and
remove	objects	to	and	from	the	collection

Methods

Method Description
Add Adds	an	object	to	the	collection.
Remove Removes	an	object	from	the

collection.

See	Also

ObjectCol	Class

TransientObjectCol	Class

Meta	Data	Services	Programming

ITransientObjectCol::Add
Use	this	method	to	add	target	objects	to	an	object	collection.

Syntax
HRESULT	Add([in]	IDispatch			*pIReposObj)

Parts
*pIReposObj

[in]
The	repository	object	version	to	be	added	to	the	collection

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
Populating	a	TransientObjectCol	is	done	using	the	Add	method	for	each	object
that	you	want	to	add	to	the	collection.

See	Also

ITransientObjectCol	Interface

ITransientObjectCol::Remove

Meta	Data	Services	Programming

ITransientObjectCol::Remove
Use	this	method	to	remove	a	specified	object	from	a	transient	object	collection.

Syntax
HRESULT	Remove([in]	VARIANT			sItem)

Parts
sItem

[in]
Identifies	the	item	to	be	removed	from	the	collection.	This	parameter	can	be
the	index,	the	object	identifier,	or	the	Object-Version	identifier	of	the	item.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
This	property	method	a	specific	repository	object	from	the	collection.	You	can
identify	an	object	by	its	position	in	the	collection	(as	indicated	by	the	index)	or
by	identifier.

See	Also

ITransientObjectCol	Interface

Object	Identifiers	and	Internal	Identifiers

Meta	Data	Services	Programming

IVersionAdminInfo	Interface
Use	this	interface	to	retain	and	manipulate	administrative	information	about
repository	object	versions.

When	to	Use
By	default,	no	class	implements	this	interface.	But	within	information	models,
any	class	can	implement	this	interface,	thereby	ensuring	that	for	each	object
conforming	to	that	class,	the	repository	automatically	retains	the	properties	listed
here.

Properties

Property Description
CreateByUser The	user	who	created	the	object	version.
ModifyByUser The	user	who	made	the	most	recent	modification	to

the	object	version.
VersionCreateTime The	date	and	time	the	object	version	was	created.
VersionModifyTime The	date	and	time	of	the	most	recent	modification	to

the	object	version.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces.
AddRef Increments	the	reference	count.
Release Decrements	the	reference	count.

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument	names	to

a	corresponding	set	of	dispatch	identifiers.

GetTypeInfo Retrieves	a	type	information	object,	which	can	be	used
to	get	the	type	information	for	an	interface.

GetTypeInfoCountRetrieves	the	number	of	type	information	interfaces
that	an	object	provides	(either	0	or	1).

Invoke Provides	access	to	properties	and	methods	exposed	by
an	Automation	object.

See	Also

IVersionAdminInfo2	Interface

IVersionCol	Interface

IVersionedRelationship	Interface

Meta	Data	Services	Programming

IVersionAdminInfo	CreateByUser	Property
This	property	indicates	the	user	who	created	the	object	version.

Dispatch	Identifier:			DISPID_CreateByUser	(83)

Property	Data	Type:			string

See	Also

IVersionAdminInfo	Interface

Meta	Data	Services	Programming

IVersionAdminInfo	ModifyByUser	Property
This	property	indicates	the	user	who	most	recently	modified	the	object	version.
If	the	object	version	is	frozen,	this	property	indicates	the	user	who	froze	the
object	version.

Dispatch	Identifier:			DISPID_ModifyByUser	(84)

Property	Data	Type:			string

Remarks
ModifyByUser	does	not	change	when	an	origin	relationship	or	target	object
collection	is	modified.

See	Also

IVersionAdminInfo	Interface

Meta	Data	Services	Programming

IVersionAdminInfo	VersionCreateTime	Property
This	property	contains	the	date	and	time	at	which	the	object	version	was	created.

The	default	value	is	set	to	9999-12-31-00:00:0000	after	the	object	is	created	but
before	it	is	committed.	The	current	date	and	time	are	set	only	after	the	commit	is
successful.

Dispatch	Identifier:			DISPID_VersionCreateTime	(81)

Property	Data	Type:			datetime

See	Also

IVersionAdminInfo	Interface

Meta	Data	Services	Programming

IVersionAdminInfo	VersionModifyTime	Property
This	property	contains	the	date	and	time	at	which	the	object	version	was	most
recently	modified.	If	the	object	version	is	frozen,	this	property	is	the	date	and
time	at	which	the	object	version	was	frozen.

The	default	value	is	set	to	9999-12-31-00:00:0000	after	the	object	is	created	but
before	it	is	committed.	The	current	date	and	time	are	set	only	after	the	commit	is
successful.

Dispatch	Identifier:			DISPID_VersionModifyTime	(82)

Property	Data	Type:			string

Remarks
VersionModifyTime	does	not	change	when	an	origin	relationship	or	target
object	collection	is	modified.

See	Also

IVersionAdminInfo	Interface

Meta	Data	Services	Programming

IVersionAdminInfo2	Interface
Use	this	interface	to	set	and	retrieve	the	description	of	repository	object	versions.
This	interface	inherits	from	the	IVersionAdminInfo	interface.

When	to	Use
By	default,	no	class	except	for	Repository	Type	Information	Model	(RTIM)
classes	implements	this	interface.	But	within	information	models,	any	class	can
implement	this	interface.	Use	this	interface	to	ensure	that	the	repository
automatically	retains	the	properties	inherited	from	IVersionAdminInfo.	You	can
also	use	this	interface	to	set	or	retrieve	the	version	comments	properties	on
IVersionAdminInfo2.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which	can	be
used	to	get	the	type	information	for	an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or	1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

Properties

IVersionAdminInfo
property Description
CreateByUser The	name	of	the	user	who	created	the	object

version
ModifyByUser The	name	of	the	user	who	made	the	most	recent

modification	to	the	object	version
VersionCreateTime Date	and	time	the	object	version	was	created
VersionModifyTime Date	and	time	of	the	most	recent	modification	to

the	object	version

IVersionAdminInfo2
property Description
VersionLabel The	version	string	property.	It	is	an	application-

supplied	version	label.
VersionComments The	version	comment	property.	It	corresponds	to

the	comments	added	when	a	file	is	checked	into	a
version	control	system.

VersionShortDesc The	short	description	property.	It	is	a	short
summary	of	the	version	comments.

See	Also

Repository	Type	Information	Model

IVersionAdminInfo	Interface

Meta	Data	Services	Programming

IVersionAdminInfo2	VersionLabel	Property
This	property	indicates	the	version	label	supplied	by	the	application.

Dispatch	Identifier:			DISPID_	VersionLabel	(90)

Property	Data	Type:			string

See	Also

IVersionAdminInfo	Interface

IVersionAdminInfo2	Interface

Meta	Data	Services	Programming

IVersionAdminInfo2	VersionComments	Property
This	property	contains	user-defined	comments	about	the	version.

Dispatch	Identifier:			DISPID_	VersionComments	(92)

Property	Data	Type:			string

See	Also

IVersionAdminInfo	Interface

IVersionAdminInfo2	Interface

Meta	Data	Services	Programming

IversionAdminInfo2	VersionShortDesc	Property
This	property	is	used	to	add	a	short	description	comment.

Dispatch	Identifier:			DISPID_	VersionShortDesc	(91)

Property	Data	Type:			string

See	Also

IVersionAdminInfo	Interface

IVersionAdminInfo2	Interface

Meta	Data	Services	Programming

IVersionCol	Interface
A	version	collection	is	a	collection	of	object	versions.	The	repository	API
supports	multiple	collection	types.	For	more	information	about	each	one,	see
Kinds	of	Version	Collections.

When	to	Use
Use	the	IVersionCol	interface	to	manage	the	contents	of	a	workspace,	to
manage	the	target	object	versions	of	a	versioned	relationship,	to	navigate	an
object's	version	graph,	or	to	manipulate	all	the	versions	of	a	particular	object.

Methods

IUnknown	Method Description
QueryInterface Returns	pointers	to	supported	interfaces.
AddRef Increments	the	reference	count.
Release Decrements	the	reference	count.

IDispatch	Method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument	names	to

a	corresponding	set	of	dispatch	identifiers.
GetTypeInfo Retrieves	a	type	information	object,	which	can	be

used	to	get	the	type	information	for	an	interface.
GetTypeInfoCount Retrieves	the	number	of	type	information	interfaces

that	an	object	provides	(either	0	or	1).
Invoke Provides	access	to	properties	and	methods	exposed	by

an	Automation	object.

IVersionCol
Method Description
Add Adds	an	object	version	to	the	collection.

get_Count Returns	the	number	of	items	in	the	collection.
get_Item Returns	an	interface	pointer	to	an	item	of	the

collection.
_NewEnum Retrieves	an	enumeration	interface	pointer	for	the

collection.
Refresh Refreshes	the	cached	image	of	the	collection.
Remove Removes	an	object	version	from	the	collection.

See	Also

VersionCol	Class

Meta	Data	Services	Programming

IVersionCol::Add
Adds	an	object	version	to	the	collection.

Syntax
HRESULT	Add(IRepositoryObjectVersion	*pIReposVersion
				IRepositoryObjectVersion	**ppIAddedVersion
);

Parts
*pIReposVersion

[in]
The	IRepositoryObjectVersion	interface	pointer	to	the	object	version	to	be
added	to	the	collection.

**ppIAddedVersion

[in]

a.	 For	Target-Versions,	ppIAddedVersion	is	the	same	as	the	first
parameter:	pIReposVersion.

b.	 For	Versions-of-Workspace,	ppIAddedVersion	is	the	workspace-
scoped	version	of	pIReposVersion.

Return	Value

S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
There	are	many	different	kinds	of	object	version	collections.	You	can	apply	this
method	to	some	of	them,	but	not	to	others.	This	method	works	for:

TargetVersions	collection.	You	can	use	this	method	to	enlarge	the	set
of	versions	of	a	particular	target	object	that	are	related	to	a	particular
source	object.

Contents	collection.	You	can	use	this	method	to	add	an	object	version
to	the	set	of	items	contained	in	the	workspace.

This	method	does	not	work	for:

Predecessor	collection.	To	enlarge	an	object	version's	set	of
predecessors,	use	the	MergeVersion	method	of	the
IRepositoryObjectVersion	interface.

Successor	collection.	To	enlarge	an	object	version's	set	of	successors,
use	the	CreateVersion	method	of	the	IRepositoryObjectVersion
interface.

ObjectVersions	collection.	To	enlarge	an	object's	set	of	versions,	use
the	CreateVersion	method	of	the	IRepositoryObjectVersion	interface.

Workspaces	collection.	To	enlarge	the	set	of	workspaces	to	which	an
object	version	belongs,	you	do	not	add	a	workspace	to	an	object	version
—rather	you	add	the	object	version	to	a	workspace.	In	other	words,	you
use	the	Add	method	of	the	IVersionCol	interface.	In	this	case,	the
version	collection	you	are	manipulating	is	the	Contents	collection,	not
the	Workspaces	collection.

Checkouts	collection.	To	check	out	another	item	to	a	workspace,	use
the	Checkout	method	of	the	IWorkspaceItem	interface.

See	Also

IVersionCol	Interface

Meta	Data	Services	Programming

IVersionCol::get_Count
Retrieves	count	of	the	number	of	items	in	the	collection.

Syntax
HRESULT	get_Count(long	*piCount
);

Parts
*piCount

[out]
The	number	of	items	in	the	collection.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IVersionCol	Interface

Meta	Data	Services	Programming

IVersionCol::get_Item
Retrieves	the	specified	object	version	from	the	collection.

Syntax
HRESULT	get_Item(VARIANT	sItem
				IRepositoryObjectVersion	**ppIReposVersion
);

Parts
sItem

[in]
Identifies	the	item	to	be	retrieved	from	the	collection.	This	parameter	can	be
the	index,	the	object	identifier,	or	the	object-version	identifier	of	the	item.

**ppIReposVersion

[out]
The	IRepositoryObjectVersion	interface	pointer	for	the	retrieved	object
versions.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
There	are	many	different	kinds	of	version	collection.	The	sItem	parameter	can	be
an	object	identifier	for	some	version	collections,	but	not	for	others.	It	can	be	an
object	identifier	only	for	the	ObjectVersions	collection,	the	Workspaces

collection,	or	the	Checkouts	collection.

See	Also

IVersionCol	Interface

Meta	Data	Services	Programming

IVersionCol::_NewEnum
This	method	retrieves	an	enumeration	interface	pointer	for	the	relationship
collection.	This	interface	is	a	standard	Automation	enumeration	interface.	It
supports	the	Clone,	Next,	Reset,	and	Skip	methods.	You	can	use	the
enumeration	interface	to	step	through	the	relationships	in	the	collection.

Syntax
HRESULT	_NewEnum(IUnknown	**ppIEnum
);

Parts
**ppIEnum

[out]
The	enumeration	interface	pointer.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IVersionCol	Interface

Meta	Data	Services	Programming

IVersionCol::Refresh
This	method	refreshes	the	cached	image	of	the	collection.	All	unchanged	data
for	items	in	the	collection	is	flushed	from	the	cache.

Syntax
HRESULT	Refresh(long	iMilliseconds
);

Parts
iMilliseconds

[in]
This	value	is	ignored.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IVersionCol	Interface

Meta	Data	Services	Programming

IVersionCol::Remove
Removes	an	object	version	from	the	collection.

Syntax
HRESULT	Remove(VARIANT	sItem
);

Parts
sItem

[in]
Identifies	the	item	to	be	removed	from	the	collection.	This	parameter	can	be
the	index,	the	object	identifier,	or	the	Object-Version	identifier	of	the	item.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
There	are	many	different	kinds	of	Object-Version	collections.	You	can	apply
this	method	to	some	of	them,	but	not	to	others.	This	method	works	for:

TargetVersions	collections.	You	can	use	this	method	to	reduce	the	set
of	versions	of	a	particular	target	object	that	are	related	to	a	particular
source	object.

ObjectVersions	collections.	You	can	use	this	method	to	remove	an
object	version	from	the	set	of	items	contained	in	the	workspace.

This	method	fails	for:

Predecessor	collections.	To	enlarge	an	object	version's	set	of
predecessors,	use	MergeVersion.

Successor	collections.	To	enlarge	an	object	version's	set	of	successors,
use	the	CreateVersion	method	of	the	IRepositoryObjectVersion
interface.

ObjectVersions	collections.	To	enlarge	an	object's	set	of	versions,	use
the	CreateVersion	method	of	the	IRepositoryObjectVersion	interface.

Workspaces	collections.	To	remove	a	workspace	from	the	set	of
workspaces	in	which	an	object	version	is	present,	you	must	explicitly
remove	the	object	version	from	that	workspace's	ObjectVersions
collection.

Checkouts	collections.	To	reduce	the	number	of	items	checked	out	to	a
workspace,	use	the	Checkin	method	of	the	IWorkspaceItem	interface.

The	sItem	parameter	can	be	an	object	identifier	for	some	version	collections,	but
not	for	others.	It	can	be	an	object	identifier	only	for	the	ObjectVersions
collection,	the	Workspaces	collection,	or	the	Checkouts	collection.

See	Also

IVersionCol	Interface

Kinds	of	Version	Collections

Meta	Data	Services	Programming

IVersionedRelationship	Interface
A	versioned	relationship	connects	one	source	object	version	to	any	number	of
versions	of	a	destination	object.	Versioned	relationships	are	items	within
relationship	collections.

When	to	Use
Use	the	IVersionedRelationship	interface	to	manipulate	a	relationship,	or	to
retrieve	the	source,	target,	origin,	or	destination	object	for	a	relationship.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which
can	be	used	to	get	the	type	information	for
an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch

method Description
Get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	Properties	collection.

IRepositoryItem	methods Description
Delete Deletes	a	repository	item
Get_Interface Retrieves	an	interface	pointer	to	the

specified	item	interface
Get_Name Retrieves	the	name	associated	with	an	item
Get_Repository Retrieves	the	IRepository	interface	pointer

for	an	item's	open	repository	instance
Get_Type Retrieves	the	type	of	an	item
Lock Locks	the	item
Put_Name Sets	the	name	associated	with	an	item

IRelationship	method Description
Get_Destination Retrieves	an	interface	pointer	to	the

destination	object
Get_Origin Retrieves	an	interface	pointer	to	the	origin

object
Get_Source Retrieves	an	interface	pointer	to	the	source

object
Get_Target Retrieves	an	interface	pointer	to	the	target

object

IVersionedRelationship
method Description
Get_TargetVersions Returns	an	interface	pointer	to	the	set	of

target	versions	of	the	relationship
Pin Establishes	one	target	version	as	the	pinned

target	version
Unpin Unpins	all	target	versions

See	Also

IRelationship	Interface

Versioning	Objects

Meta	Data	Services	Programming

IVersionedRelationship::get_TargetVersions
Retrieves	an	IVersionCol	interface	pointer	to	a	collection	of	object	versions.
Each	item	in	the	collection	is	a	particular	version	of	the	target	object	to	which	a
versioned	relationship	refers.

HRESULT	get_TargetVersions(IVersionCol	**ppTargetVersions
);

Parameters
**ppTargetVersions

[out]
The	IVersionCol	interface	pointer	for	the	collection	of	target	object	versions.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IRelationship	Interface

IVersionedRelationship	Interface

Meta	Data	Services	Programming

IVersionedRelationship::Pin
Identifies	which	target	object	version	of	an	origin	relationship	is	the	pinned
version.

HRESULT	Pin(IRepositoryObjectVersion	*pIReposVersion
);

Parameters
*pIReposVersion

[in]
The	IRepositoryObjectVersion	interface	pointer	for	the	object	version	to	be
pinned.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
You	can	use	this	method	only	for	origin	relationships.	The	origin	object	of	the
versioned	relationship	must	be	unfrozen.

If	the	origin	object	of	the	relationship	is	checked	out	to	a	workspace,	the	Pin
method	will	work	only	from	within	that	workspace.

When	you	pin	a	target	object	version	for	versioned	relationship,	any	previously
pinned	target	object	version	of	the	relationship	becomes	unpinned.

The	target	object	version	to	be	pinned	must	already	participate	in	the
relationship.

See	Also

IRelationship	Interface

IRelationship::Get_Destination

IVersionedRelationship	Interface

Meta	Data	Services	Programming

IVersionedRelationship::Unpin
Declares	that	no	target	object	version	of	an	origin	versioned	relationship	is
pinned.

HRESULT	Unpin(void);

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
You	can	use	this	method	only	for	origin	relationships.	The	origin	object	of	the
versioned	relationship	must	be	unfrozen.

If	the	origin	object	of	the	versioned	relationship	is	checked	out	to	a	workspace,
the	Unpin	method	will	work	only	from	within	that	workspace.

See	Also

IRelationship	Interface

IRelationship::Get_Target

IVersionedRelationship	Interface

Meta	Data	Services	Programming

IWorkspace	Interface
A	workspace	is	a	subset	of	the	repository	within	which	you	can	operate	on	tool
data	in	isolation	from	other	repository	activity.	The	IWorkspace	interface
provides	methods	for	operating	on	workspaces.

When	to	Use
Use	the	IWorkspace	interface	to	manage	the	object	versions	present	in	the
workspace,	the	object	versions	checked	out	to	the	workspace,	and	to	manage	the
workspace	containers	in	which	the	workspace	is	present.	(In	Microsoft®	SQL
Server™	2000	Meta	Data	Services,	there	is	only	one	workspace	container,	the
root	object.)

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces.
AddRef Increments	the	reference	count.
Release Decrements	the	reference	count.

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers.

GetTypeInfo Retrieves	a	type	information	object,	which	can	be
used	to	get	the	type	information	for	an	interface.

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or	1).

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object.

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface	pointer.

The	IReposProperties	interface	provides	access
to	the	Properties	collection.

IWorkspace	method Description
get_Checkouts Returns	the	collection	of	object	versions	checked

out	to	the	workspace.
get_Contents Returns	the	collection	of	object	versions	present

in	the	workspace.

Collections

Collection Description
Containers The	collection	of	objects	containing	the	current

workspace.

See	Also

Workspace	Class

Meta	Data	Services	Programming

IWorkspace	Containers	Collection
This	collection	specifies	the	containers	of	this	workspace.	The	collection
contains	exactly	one	item,	the	root	object.

Dispatch	Identifier:			DISPID_WorkspaceContainers	(85)

Remarks
Although	the	collection's	maximum	size	is	defined	as	many,	the	collection
always	contains	exactly	one	object,	because	CReposRoot	is	the	only	class	that
implements	IWorkspaceContainer,	and	there	is	only	one	object	(the	root
object)	conforming	to	the	CReposRoot	class.

The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

WsContainer_Contains_WorkspaceThis	is	the	type	of
relationship	by
which	all	items	of
the	collection	are
connected	to	a
common	source
object.

Source	Is	Origin No The	source	object
for	the	collection
is	not	the	same	as
the	origin	object.

Minimum
Collection	Size

One The	minimum
number	of	items
that	must	be
contained	in	the
collection	is	one.

Maximum Many The	maximum

Collection	Size number	of	items
that	can	be
contained	in	the
collection	is
unlimited.

Sequenced
Collection

No As	a	destination
collection,	this
does	not	have	an
explicitly	defined
sequence.
Collections	of
origin	objects	are
never	sequenced.

Deletes
Propagated

No Deleting	an	origin
object	or	a
relationship	in	the
collection	does
not	cause	the
deletion	of	a
corresponding
destination	object.

Destinations
Named

No The	relationship
type	for	the
collection	does
not	permit	the
naming	of
destination
objects.

Case-Sensitive
Names

Not	applicable Case-sensitive
naming	is	not
applicable	for	this
collection.

Unique	Names Not	applicable Unique	naming	is
not	applicable	for
this	collection.

See	Also

IWorkspace	Interface

Meta	Data	Services	Programming

IWorkspace::get_Checkouts
This	method	returns	an	IVersionCol	interface	pointer	to	a	collection	of	object
versions	currently	checked	out	to	the	workspace.

HRESULT	get_Checkouts(IVersionCol	**ppWSVersions
);

Parameters
**ppWSVersions

[out]
The	IVersionCol	interface	pointer	to	the	collection	of	object	versions
checked	out	to	the	workspace.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
For	each	repository	object,	one	version	at	most	can	be	checked	out	to	the	current
workspace.

See	Also

IInterfaceDef	Interface

IWorkspace	Interface

IWorkspace::get_Contents

Meta	Data	Services	Programming

IWorkspace::get_Contents
This	method	returns	an	IVersionCol	interface	pointer	to	a	collection	of	object
versions	currently	present	in	the	workspace.

HRESULT	get_Contents(IVersionCol	**ppWSVersions
);

Parameters
**ppWSVersions

[out]
The	IVersionCol	interface	pointer	to	the	collection	of	object	versions	present
in	the	workspace.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
For	each	repository	object,	one	version	at	most	can	be	present	in	the	current
workspace.

See	Also

IInterfaceDef	Interface

IWorkspace	Interface

IWorkspace::get_Checkouts

Meta	Data	Services	Programming

IWorkspaceContainer	Interface
The	IWorkspaceContainer	interface	contains	methods	for	managing	the
collection	of	workspaces	within	a	repository.

When	to	Use
Use	the	IWorkspaceContainer	interface	to	retrieve	the	collection	of
workspaces	in	a	repository.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which	can	be
used	to	get	the	type	information	for	an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or	1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface	pointer.

The	IReposProperties	interface	provides	access

to	the	Properties	collection.

Collections

Collection Description
Workspaces The	collection	of	workspaces	contained	by	this

repository	object

See	Also

IWorkspaceItem::get_Workspaces

ReposRoot	Class

Meta	Data	Services	Programming

IWorkspaceContainer	Workspaces	Collection
This	collection	specifies	the	workspaces	contained	in	the	workspace	container.
Only	the	root	object	can	be	a	workspace	container.

Dispatch	Identifier:			DISPID_ContainedWorkspaces	(84)

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

WsContainer_Contains_WorkspaceThe	type	of
relationship	by
which	all	items	of
the	collection	are
connected	to	a
common	source
object.

Source	Is	Origin Yes The	source	object
for	the	collection	is
also	the	origin
object.

Minimum
Collection	Size

Zero The	minimum
number	of	items
that	must	be
contained	in	the
collection	is	zero.

Maximum
Collection	Size

Many The	maximum
number	of	items
that	can	be
contained	in	the
collection	is
unlimited.

Sequenced
Collection

No As	a	destination
collection,	this
does	not	have	an
explicitly	defined
sequence.
Collections	of
origin	objects	are
never	sequenced.

Deletes
Propagated

Yes Deleting	an	origin
object	or	a
relationship	in	the
collection	causes
the	deletion	of	a
corresponding
destination	object.

Destinations
Named

Yes The	relationship
type	for	the
collection	permits
the	naming	of
destination	objects.

Case-Sensitive
Names

No The	collection
does	not	permit	the
use	of	case-
sensitive	names	for
destination	objects.

Unique	Names Yes The	relationship
type	for	the
collection	requires
that	the	name	of	a
destination	object
be	unique	within
the	collection	of
destination	objects.

See	Also

IWorkspaceContainer	Interface

IWorkspaceItem::get_Workspaces

Meta	Data	Services	Programming

IWorkspaceItem	Interface
The	IWorkspaceItem	interface	contains	methods	for	managing	workspace
items,	that	is,	object	versions	that	can	be	present	in	or	checked	out	to	a
workspace.

When	to	Use
Use	the	IWorkspaceItem	interface	to	manage	the	participation	of	object
versions	within	workspaces.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which	can	be
used	to	get	the	type	information	for	an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or	1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface	pointer.

The	IReposProperties	interface	provides	access
to	the	Properties	collection.

IWorkspaceItem	method Description
Checkin Terminates	the	ability	to	modify	the	current

object	version	from	within	the	current
workspace

Checkout Establishes	the	current	workspace	as	the
only	workspace	within	which	the	current
object	version	can	be	modified

get_CheckedOutToWorkspace Returns	the	workspace	to	which	the	current
object	version	is	checked	out

get_IsCheckedOut Indicates	whether	any	workspace	has	the
current	object	version	checked	out

get_Workspaces Returns	the	collection	of	workspaces	in
which	the	current	object	version	is	present

See	Also

Workspace	Object

Meta	Data	Services	Programming

IWorkspaceItem::Checkin
This	method	terminates	the	ability	to	modify	the	current	object	version	from
within	the	current	workspace.

HRESULT	Checkin();

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
When	you	call	this	method,	you	must	be	operating	within	the	workspace	to
which	the	object	version	is	checked	out.

See	Also

IWorkspaceItem	Interface

Meta	Data	Services	Programming

IWorkspaceItem::Checkout
This	method	establishes	the	current	workspace	as	the	only	workspace	within
which	the	current	object	version	can	be	modified.

HRESULT	Checkout();

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
If	the	object	version	is	already	checked	out	to	a	workspace,	this	method	returns
an	error.

See	Also

IWorkspaceItem	Interface

Meta	Data	Services	Programming

IWorkspaceItem::get_CheckedOutToWorkspace
This	method	returns	an	IWorkspace	interface	pointer	of	the	workspace	to	which
the	current	object	version	is	checked	out.

HRESULT	get_CheckedOutToWorkspace(IWorkspace	**ppIWorkspace
);

Parameters
**ppIWorkspace

[out]
The	IWorkspace	interface	pointer	of	the	workspace.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
If	the	object	version	is	not	currently	checked	out	to	any	workspace,	this	method
returns	an	error.

See	Also

IWorkspaceItem	Interface

Meta	Data	Services	Programming

IWorkspaceItem::get_IsCheckedOut
This	method	determines	whether	the	current	workspace	item	is	checked	out	to	a
workspace.

HRESULT	get_IsCheckedOut(VARIANT_BOOL	*pbCheckedOut
);

Parameters
*pbCheckedOut

[out]
TRUE	if	the	object	version	is	checked	out	to	a	workspace;	FALSE	if	the
object	version	is	not	checked	out	to	any	workspace.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IWorkspaceItem	Interface

Meta	Data	Services	Programming

IWorkspaceItem::get_Workspaces
This	method	returns	the	collection	of	workspaces	in	which	the	current	object
version	is	present.

HRESULT	get_Workspaces(IVersionCol	**ppIWorkspaces
);

Parameters
**ppIWorkspaces

[out]
The	IVersionCol	interface	pointer	to	the	collection	of	workspaces	in	which
the	object	version	is	present.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
If	the	current	object	version	is	not	present	in	any	workspaces,	this	method
returns	an	empty	collection.

See	Also

IWorkspaceItem	Interface

Meta	Data	Services	Programming

RTIM	Classes
The	Repository	Type	Information	Model	(RTIM)	is	the	object	model	that	the
repository	engine	uses	to	define	and	store	information	models.	Use	the	RTIM
classes	to	programmatically	create	or	extend	an	information	model.	These
classes	build	upon	the	fundamental	repository	engine	classes.	For	more
information,	see	Repository	Engine	Classes.

All	repository	classes	expose	the	standard	IUnknown	and	IDispatch	interfaces
that	provide	fundamental	COM	and	Automation	support.

Class Description
Alias Defines	property	classes	of	a	derived

property	without	changing	the
meaning	of	the	underlying	property.

ClassDef Defines	object	classes	in	an
information	model.

CollectionDef Defines	collection	classes	of	object
relationships.

EnumerationDef Defines	object	classes	of
enumeration	objects.

EnumerationValueDef Defines	object	classes	of
enumeration	value	objects.

InterfaceDef Defines	interface	classes.
MethodDef Defines	method	classes.
ParameterDef Defines	parameter	classes.
PropertyDef Defines	property	classes.
RelationshipDef Defines	relationship	classes.
ReposRoot Defines	an	object	class	of	the

repository	root	object.	This	is	the
starting	point	for	all	repository
navigation.

ReposTypeLib Defines	an	object	class	of	an
information	model.

ScriptDef Defines	script	definition	classes.

See	Also

COM	Reference

Information	Models

Repository	API	Reference

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

Alias	Class
The	Alias	class	supports	member	delegation.	This	class	defines	a	derived
property	that	is	based	on	another	property	without	changing	the	meaning	of	the
underlying	property.

When	to	Use
Use	the	Alias	class	to	rename	an	existing	property.

Interfaces

Interface Description
IInterfaceMember2 Creates	simple,	derived	members	as	instances

from	the	Alias	class.
IRepositoryDispatch Provides	enhanced	dispatch	support.
IRepositoryItem Manages	repository	objects	and	relationships.

See	Also

Alias	Object

Member	Delegation

RTIM	Classes

Meta	Data	Services	Programming

ClassDef	Class
When	you	define	an	information	model	in	Microsoft®	SQL	Server™	2000	Meta
Data	Services,	you	define	classes	of	objects,	types	of	relationships	that	can	exist
between	objects,	and	various	properties	that	are	attached	to	these	object	classes
and	relationship	types.	The	object	classes	that	you	define	in	your	information
model	are	represented	by	instances	of	the	ClassDef	class.

To	insert	a	new	class	definition	into	an	information	model,	use	the
ReposTypeLib	class.

When	to	Use
Use	the	ClassDef	class	to	complete	the	definition	of	a	new	repository	class.	You
can	define	new	interfaces	and	attach	them	to	the	class	definition.	You	can	also
attach	existing	interfaces	to	the	class	definition.

Interfaces

Interface Description
IAnnotationalProps Gets	and	sets	annotational	properties
IClassDef Manages	class	definitions
IClassDef2 Manipulates	the	ScriptsUsedByClass	collection
INamedObject Retrieves	or	sets	the	class	name
IRepositoryDispatch Provides	enhanced	dispatch	support
IRepositoryItem Manages	repository	objects	and	relationships
IRepositoryObject Retrieves	repository	object	identifiers
IRepositoryObjectStorageCreates	and	loads	repository	objects
IReposTypeInfo Contains	the	collection	of	definition	objects	that

are	associated	with	an	information	model's
repository	type	library

IVersionAdminInfo2 Retains	properties	inherited	from
IVersionAdminInfo	and	sets	or	retrieves
version	comments

IViewClassDef Defines	database	views	for	a	class

See	Also

ClassDef	Object

ReposTypeLib	Class

RTIM	Classes

Meta	Data	Services	Programming

CollectionDef	Class
Repository	objects	are	related	to	each	other	through	relationships.	The	set	of
relationships,	all	of	the	same	type,	that	relate	one	object	to	zero	or	more	other
objects,	is	a	relationship	collection.

A	collection	type	(also	referred	to	as	a	collection	definition)	defines	how
instances	of	a	particular	collection	type	will	behave.	The	characteristics	of	the
collection	type	determine:

The	minimum	and	maximum	number	of	items	in	a	collection.

Whether	the	collection	type	is	an	origin	collection	type.

Whether	the	collection	type	permits	the	naming	of	destination	objects,
and	if	so,	whether	those	names	are	case	sensitive	and	required	to	be
unique.

Whether	the	collection	type	permits	the	explicit	sequencing	of	items	in
the	collection.

What	happens	to	related	objects	when	objects	or	relationships	in	the
collection	are	deleted.

The	kind	of	relationship	that	a	particular	collection	type	uses	to	relate
objects	to	each	other.

A	collection	is	attached	to	an	interface	as	a	member	of	the	interface.	To	add	a
new	collection	type	to	an	interface	definition,	use	the	InterfaceDef	class.

When	to	Use
Use	the	CollectionDef	class	to	retrieve	or	modify	the	properties	of	a	collection

type,	or	to	determine	the	kind	of	relationship	that	the	collection	implements.

Interfaces

Interface Description
IAnnotationalProps Gets	and	sets	annotational	properties
ICollectionDef Manages	collection	definitions
IInterfaceMember Relates	a	member	to	an	interface
IInterfaceMember2 Creates	simple,	derived	members	as	instances	of

the	Alias	class,	and	creates	semantically	rich
derived	members	as	instances	of	the
CollectionDef	class

INamedObject Retrieves	or	sets	the	class	name
IRepositoryDispatch Provides	enhanced	dispatch	support
IRepositoryItem Manages	repository	objects	and	relationships
IRepositoryObject Retrieves	repository	object	identifiers
IRepositoryObjectStorageCreates	and	loads	repository	objects
IVersionAdminInfo2 Retains	properties	inherited	from

IVersionAdminInfo	and	sets	or	retrieves
version	comments

See	Also

CollectionDef	Object

InterfaceDef	Class

RTIM	Classes

Meta	Data	Services	Programming

EnumerationDef	Class
The	EnumerationDef	class	defines	objects	that	contain	enumerated	values.

When	to	Use
Use	the	EnumerationDef	class	to	create	an	enumeration	object.

Interfaces

Interface Description
IEnumerationDef Creates	an	enumeration	object

See	Also

EnumerationDef	Object

EnumerationValueDef	Class

RTIM	Classes

Meta	Data	Services	Programming

EnumerationValueDef	Class
The	EnumerationValueDef	class	defines	objects	that	represent	a	specific
enumerated	value.	Each	enumerated	value	is	a	separate	instance	of	the
EnumerationValueDef	object.

When	to	Use
Use	the	EnumerationValueDef	class	to	create	an	enumeration	value.

Interfaces

Interface Description
IEnumerationValueDef Creates	an	enumeration	value

See	Also

EnumerationDef	Class

EnumerationValueDef	Object

RTIM	Classes

Meta	Data	Services	Programming

InterfaceDef	Class
The	properties,	methods,	and	collections	that	a	class	implements	are	organized
into	functionally	related	groups.	Each	group	is	implemented	as	a	COM	interface.
The	properties,	methods,	and	collections	of	each	interface	are	members	of	the
interface.	An	interface	definition	is	the	template	to	which	an	interface	conforms.
Interface	definitions	are	instances	of	the	InterfaceDef	class.

To	create	a	new	interface	definition,	use	the	ClassDef	class	or	the
ReposTypeLib	class.

When	to	Use
Use	the	InterfaceDef	class	to:

Retrieve	or	modify	properties	of	an	interface	definition.

Determine	which	members	are	attached	to	an	interface	definition.

Determine	which	classes	implement	an	interface.

Determine	the	base	interface	from	which	an	interface	derives.

Determine	what	interfaces	derive	from	a	particular	interface.

Determine	which	repository	objects	expose	a	particular	interface.

Add	a	new	property,	method,	or	collection	type	to	an	interface
definition.

Interfaces

Interface Description
IAnnotationalProps Gets	and	sets	annotational	properties
IInterfaceDef Manages	interface	definitions
INamedObject Retrieves	or	sets	the	class	name
IRepositoryDispatch Provides	enhanced	dispatch	support
IRepositoryItem Manages	repository	objects	and	relationships
IRepositoryObject Retrieves	repository	object	identifiers
IRepositoryObjectStorageCreates	and	loads	repository	objects
IReposTypeInfo Contains	the	collection	of	definition	objects	that

are	associated	with	an	information	model's
repository	type	library

IReposTypeInfo2 Allows	classes,	interfaces	and	relationships	to	be
referred	to	by	multiple	names	as	aliases

IVersionAdminInfo2 Retains	properties	inherited	from
IVersionAdminInfo	and	sets	or	retrieves
version	comments

IViewInterfaceDef Defines	a	database	view	for	all	objects	that
implement	a	specific	interface

See	Also

ClassDef	Class

InterfaceDef	Object

ReposTypeLib	Class

RTIM	Classes

Meta	Data	Services	Programming

MethodDef	Class
When	you	define	a	class	for	an	information	model,	you	specify	the	interfaces
that	the	class	implements.	For	each	of	those	interfaces,	you	specify	the	members
(properties,	methods,	and	collections)	that	are	attached	to	the	interface.

The	definition	of	a	method	as	a	member	of	an	interface	does	not	result	in	the
method's	implementation	logic	being	stored	in	the	repository.	However,	it	does
add	the	method	name	to	the	set	of	defined	member	names	for	that	interface.	It
also	reserves	the	method's	dispatch	identifier	in	the	set	of	defined	dispatch
identifier	values	for	the	interface.

Instances	of	the	MethodDef	class	represent	method	definitions.

To	attach	a	new	method	to	an	interface,	use	the	InterfaceDef	class.

When	to	Use
Use	the	MethodDef	class	to	access	or	modify	the	characteristics	of	a	method
definition,	or	to	determine	the	interface	definition	to	which	a	particular	method
is	attached.

Interfaces

Interface Description
IAnnotationalProps Gets	and	sets	annotational	properties
IInterfaceMember Relates	a	member	to	an	interface
IInterfaceMember2 Creates	simple,	derived	members	as	instances	of

the	Alias	class,	and	creates	semantically	rich
derived	members	as	instances	of	the
CollectionDef	class

INamedObject Retrieves	or	sets	the	class	name
IRepositoryDispatch Provides	enhanced	dispatch	support
IRepositoryItem Manages	repository	objects	and	relationships
IRepositoryObject Retrieves	repository	object	identifiers

IRepositoryObjectStorageCreates	and	loads	repository	objects
IVersionAdminInfo2 Retains	properties	inherited	from

IVersionAdminInfo	and	sets	or	retrieves
version	comments

See	Also

InterfaceDef	Class

MethodDef	Object

RTIM	Classes

Meta	Data	Services	Programming

ParameterDef	Class
When	you	define	a	method	for	an	information	model,	you	can	specify
parameters	that	the	method	implements.	Instances	of	the	ParameterDef	class
represent	parameters	of	method	definitions.

When	to	Use
Use	the	ParameterDef	class	to	create	parameters	for	a	method	definition	object
that	you	define.

Interfaces

Interface Description
IAnnotationalProps Gets	and	sets	annotational	properties
IRepositoryDispatch Provides	enhanced	dispatch	support
IRepositoryItem Manages	repository	objects	and	relationships
IRepositoryObject Retrieves	repository	object	identifiers
IRepositoryObjectStorageCreates	and	loads	repository	objects
IVersionAdminInfo2 Retains	properties	inherited	from

IVersionAdminInfo	and	sets	or	retrieves
version	comments

See	Also

MethodDef	Object

ParameterDef	Object

RTIM	Classes

Meta	Data	Services	Programming

PropertyDef	Class
When	you	define	a	class	for	an	information	model,	you	specify	the	interfaces
that	the	class	implements.	For	each	of	those	interfaces,	you	specify	the	members
(properties,	methods,	and	collections)	that	are	attached	to	the	interface.

In	order	to	attach	a	property	to	an	interface,	a	property	definition	must	exist	for
the	property.	The	characteristics	of	the	property	(its	name,	dispatch	identifier,
data	type,	and	various	storage	details)	are	stored	in	the	property	definition.
Property	definitions	are	instances	of	the	PropertyDef	class.

To	attach	a	new	property	to	an	interface,	use	the	InterfaceDef	class.

When	to	Use
Use	the	PropertyDef	class	to	access	or	modify	the	characteristics	of	a	property
definition,	or	to	determine	the	interface	definition	to	which	a	particular	property
is	attached.

Interfaces

Interface Description
IAnnotationalProps Gets	and	sets	annotational	properties
IInterfaceMember Relates	a	member	to	an	interface
IInterfaceMember2 Creates	simple,	derived	members	as	instances	of

the	Alias	class,	and	creates	semantically	rich
derived	members	as	instances	of	the
CollectionDef	class

INamedObject Retrieves	or	sets	the	class	name
IPropertyDef Retains	property	characteristics
IPropertyDef2 Contains	an	optional	relationship	to	a	single

EnumerationDef	object
IRepositoryDispatch Provides	enhanced	dispatch	support
IRepositoryItem Manages	repository	objects	and	relationships
IRepositoryObject Retrieves	repository	object	identifiers

IRepositoryObjectStorageCreates	and	loads	repository	objects
IVersionAdminInfo2 Retains	properties	inherited	from

IVersionAdminInfo	and	sets	or	retrieves
version	comments

IViewPropertyDef Defines	the	column	name	of	a	property	in	a	view

See	Also

InterfaceDef	Class

PropertyDef	Object

RTIM	Classes

Meta	Data	Services	Programming

RelationshipDef	Class
When	you	define	an	information	model	in	a	repository,	you	define	classes	of
objects,	types	of	relationships	that	can	exist	between	objects,	and	various
properties	that	are	attached	to	these	object	classes	and	relationship	types.	The
relationship	types	that	you	define	in	your	tool	information	model	are	represented
by	instances	of	the	RelationshipDef	class.

When	to	Use
Use	the	RelationshipDef	class	to	access	the	properties	of	a	relationship
definition	(also	referred	to	as	a	relationship	type).

To	insert	a	new	relationship	type	into	an	information	model,	use	the
ReposTypeLib	class.

Interfaces

Interface Description
IAnnotationalProps Gets	and	sets	annotational	properties
IClassDef Manages	class	definitions
IClassDef2 Manipulates	the	ScriptsUsedByClass	collection
INamedObject Retrieves	or	sets	the	class	name
IRepositoryDispatch Provides	enhanced	dispatch	support
IRepositoryItem Manages	repository	objects	and	relationships
IRepositoryObject Retrieves	repository	object	identifiers
IRepositoryObjectStorageCreates	and	loads	repository	objects
IReposTypeInfo Contains	the	collection	of	definition	objects	that

are	associated	with	an	information	model's
repository	type	library

IVersionAdminInfo2 Retains	properties	inherited	from
IVersionAdminInfo	and	sets	or	retrieves
version	comments

IViewRelationshipDef Defines	a	junction	table	view	of	a	relationship

class

See	Also

RelationshipDef	Object

ReposTypeLib	Class

RTIM	Classes

Meta	Data	Services	Programming

ReposRoot	Class
There	is	one	root	object	in	each	repository.	The	root	object	is	the	starting	point
for	navigating	to	other	objects	in	the	repository.	The	root	object	serves	as	the
starting	point	for	both	type	data	navigation	and	instance	data	navigation.

Type	data	navigation

When	you	create	an	information	model,	the	corresponding	repository
type	library	is	attached	to	the	root	object	through	the	ReposTypeLibs
collection.	This	collection	can	be	used	to	enumerate	all	of	the
information	models	(type	data)	that	are	contained	in	a	repository.

Instance	data	navigation

Once	an	information	model	is	defined,	the	repository	can	be	populated
with	instance	data.	This	instance	data	consists	of	objects	and
relationships	that	conform	to	the	classes	and	relationship	types	of	the
information	model.

Because	the	objects	are	connected	via	relationships,	you	can	navigate
through	this	data.	However,	to	enable	general	purpose	repository
browsers	to	navigate	this	data,	the	first	navigational	step	must	be	from
the	root	object	of	the	repository	through	a	root	relationship	collection	to
the	primary	objects	of	your	information	model.	Primary	objects	are
objects	that	make	a	good	starting	point	for	navigating	to	other	objects	of
your	information	model.

Because	this	root	relationship	collection	is	different	for	each
information	model,	it	must	be	defined	by	the	information	model.	There
are	two	options	for	attaching	this	relationship	collection	to	the	root
object:

a.	 The	ReposRoot	class	implements	the	IReposRoot	interface.
This	interface	is	provided	to	information	model	creators	as	a
connection	point.	You	can	add	your	connecting	relationship
collection	to	this	interface.

b.	 You	can	extend	the	ReposRoot	class	to	implement	a	new
interface	that	is	defined	in	your	information	model.	This
interface	implements	a	relationship	collection	that	attaches	the
root	object	to	the	primary	objects	in	your	information	model.

To	facilitate	navigation,	the	root	object	in	all	repositories	always	has	the	same
object	identifier.	The	symbolic	name	for	this	object	identifier	is
OBJID_REPOSROOTOBJ.

When	to	Use
Use	the	ReposRoot	class	to:

Obtain	a	starting	point	for	navigating	to	objects	in	the	repository.

Create	a	new	information	model.

Attach	a	relationship	collection	to	the	root	object	of	the	repository	that
connects	to	the	primary	objects	of	your	information	model.

Interfaces

Interface Description
IAnnotationalProps Gets	and	sets	annotational	properties
IManageReposTypeLib Adds	information	models	(repository	type

libraries)	to	a	repository
IRepositoryDispatch Provides	enhanced	dispatch	support
IRepositoryItem Manages	repository	objects	and	relationships
IRepositoryObject Retrieves	repository	object	identifiers
IRepositoryObjectStorageCreates	and	loads	repository	objects
IReposRoot Provides	an	attachment	point	for	information

model	instance	data
IVersionAdminInfo2 Retains	properties	inherited	from

IVersionAdminInfo	and	sets	or	retrieves
version	comments

IWorkspaceContainer Manages	the	set	of	workspaces	in	a	repository

See	Also

IManageReposTypeLib	Interface

ReposRoot	Object

RTIM	Classes

Meta	Data	Services	Programming

ReposTypeLib	Class
There	is	one	repository	type	library	for	every	information	model	contained	in	a
repository	database.	Each	information	model	provides	a	logical	grouping	of	all
of	the	type	definitions	related	to	a	particular	application,	tool,	or	tool	set	that	you
are	developing.	Repository	type	libraries	are	instances	of	the	ReposTypeLib
class.

To	insert	a	new	information	model	into	a	repository	database,	use	the
ReposRoot	class.

When	to	Use
Use	the	ReposTypeLib	class	to:

Define	new	classes,	relationship	types,	and	interfaces	for	an	information
model.

Retrieve	or	modify	the	global	identifier	associated	with	a	repository
type	library.

Determine	which	type	definitions	are	associated	with	a	particular
repository	type	library.

Interfaces

Interface Description
IAnnotationalProps Gets	and	sets	annotational	properties
INamedObject Retrieves	or	sets	the	class	name
IRepositoryDispatch Provides	enhanced	dispatch	support
IRepositoryItem Manages	repository	objects	and	relationships
IRepositoryObject Retrieves	repository	object	identifiers
IRepositoryObjectStorageCreates	and	loads	repository	objects
IReposTypeLib Creates	class,	interface,	and	relationship

definitions	for	a	repository	type	library
IReposTypeLib2 Defines	dependencies	between	information

models
IVersionAdminInfo2 Retains	properties	inherited	from

IVersionAdminInfo	and	sets	or	retrieves
version	comments

See	Also

ReposRoot	Class

ReposTypeLib	Object

RTIM	Classes

Meta	Data	Services	Programming

ScriptDef	Class
A	script	definition	object	represents	Microsoft®	ActiveX®	script	that	you	can
associate	with	a	method	or	property	definition.

To	support	scripting	for	both	method	and	property	interface	members,	a
ScriptDef	object	is	associated	at	the	interface	member	level.	Because	method
and	property	definitions	inherit	from	interface	member	objects,	an	interface
member	object	provides	the	common	ground	where	an	association	between
script	and	interface	members	can	be	made.

Because	interfaces	can	be	aliased,	derived,	or	otherwise	reused,	script	definitions
are	linked	through	association	to	support	the	levels	of	indirection	that	are
customary	in	COM	programming.	Associations	are	established	through
collections	of	classes,	interfaces,	and	members	that	you	define	for	each
ScriptDef	object.

During	script	invocation,	the	repository	engine	reads	the	collections	to	select	a
script	definition	most	closely	related	to	the	interface.	When	the	repository	engine
selects	the	closest	script	definition,	it	determines	which	method	calls	the	script,
on	which	interface,	and	on	what	class.	The	selection	process	enables	support	for
two	conditions	that	are	common	to	C++	programming:	inheriting	a	method	or
property	implementation,	and	overriding	a	default	implementation.

A	method	or	property	can	be	associated	with	the	class	and	interface	being
executed,	the	interface	being	executed,	or	the	closest	ancestor	that	has	the	script.
If	a	script	cannot	be	selected,	then	the	repository	engine	returns	an	error	in	the
case	of	methods.

When	to	Use
Use	a	ScriptDef	object	to	store	the	implementation	of	a	method	in	an
information	model.	You	can	also	use	ScriptDef	to	validate	properties	before
storing	them	in	a	repository	database.

You	can	implement	methods	or	property	validation	rules	that	apply	to:

All	classes	that	implement	the	interface.

A	specific	class	that	implements	the	interface.

A	derived	interface	for	those	cases	in	which	you	want	to	override	the
implementation	of	a	base	interface	method	or	property	validation	rule.

Each	method	or	property	can	be	associated	with	only	one	script	definition.
However,	the	same	script	definition	can	be	associated	with	multiple	methods	and
properties.

Interfaces

Interface Description
INamedObject Retrieves	or	sets	the	class	name
IRepositoryDispatch Provides	enhanced	dispatch	support
IRepositoryItem Manages	repository	objects	and	relationships
IReposTypeInfo Relates	class,	interface,	and	relationship	definition

objects	to	information	models
IScriptDef Associates	a	Microsoft	ActiveX	script	definition

with	a	method

See	Also

RTIM	Classes

ScriptDef	Object

Meta	Data	Services	Programming

RTIM	COM	Interfaces
The	Repository	Type	Information	Model	(RTIM)	is	the	object	model	the
repository	engine	uses	to	store	information	models.	The	RTIM	interfaces	expose
the	properties	and	methods	that	are	used	to	programmatically	create	or	extend	an
information	model.

These	interfaces	build	upon	the	interfaces	that	drive	the	repository	engine.	The
repository	engine	interfaces	are	listed	separately.

All	RTIM	interfaces	expose	the	standard	IUnknown	and	IDispatch	interfaces,
which	provide	fundamental	COM	and	Automation	support.

The	following	table	lists	RTIM	interfaces	alphabetically.

Interfaces Description
IClassDef	Interface Adds	interfaces	to	a	class.
IClassDef2	Interface Manages	the	collection	of	scripts	that

a	class	uses.
ICollectionDef	Interface Defines	how	instances	of	a	particular

type	of	collection	will	behave.
IEnumerationDef	Interface Defines	enumeration	objects.
IEnumerationValueDef	Interface Defines	enumeration	values.
IInterfaceDef	Interface Defines	interface	objects.
IInterfaceDef2	Interface Supports	interface	implication

between	any	two	interfaces	and
aliasing.

IInterfaceMember	Interface Accesses	the	common	properties	of
an	interface	member.

IInterfaceMember2	Interface Allows	classes,	interfaces	and
relationships	to	be	referred	to	by	a
second	name	or	alias.

IManageReposTypeLib	Interface Creates	a	type	library	for	storing
information	models.

IMethodDef	Interface Defines	a	list	of	parameters	for	a
method	definition.

IParameterDef	Interface Defines	in	detail	each	parameter	of
the	method.

IPropertyDef	Interface Defines	a	property	definition	object.
IPropertyDef2	Interface Contains	an	optional	relationship	to	a

single	EnumerationDef	object.
IReposRoot	Interface Provides	a	starting	point	to	navigate

to	other	objects	in	a	repository.
IReposTypeInfo	Interface Determines	which	information

models	contain	a	particular	class,
interface,	or	relationship	type.

IReposTypeInfo2	Interface Allows	classes,	interfaces	and
relationships	to	be	referred	to	by
aliases.

IReposTypeLib	Interface Defines	new	classes,	relationship
types,	and	interfaces	for	an
information	model,	and	accesses	the
global	identifier	of	repository	type
libraries.

IReposTypeLib2	Interface Defines	dependencies	between
information	models	for	sharing
model	information.

IScriptDef	Interface Defines	a	script	definition	object.
IViewClassDef	Interface Defines	database	views	for	a	class.
IViewInterfaceDef	Interface Defines	a	database	view	for	all

objects	that	implement	a	specific
interface.

IViewPropertyDef	Interface Defines	the	column	name	of	a
property	in	the	view.

IViewRelationshipDef	Interface Defines	a	junction	table	view	of	a
relationship	class.	This	is	used	for
views	that	have	many-to-many
relationships.

See	Also

COM	Reference

Repository	API	Reference

Repository	Engine

Repository	Engine	COM	Interfaces

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

IClassDef	Interface
The	IClassDef	interface	helps	you	create	information	models	by	adding
interfaces	to	a	class.	To	insert	a	new	class	definition	into	an	information	model,
use	the	IReposTypeLib	interface.

After	you	add	all	of	the	interfaces,	you	can	complete	a	class	definition	by
committing	the	transaction	that	brackets	your	class	definition	modifications.

When	to	Use
Use	the	IClassDef	interface	to:

Add	a	new	or	existing	interface	to	a	class	definition.

Retrieve	the	global	identifier	for	the	class.

Access	the	collection	of	interfaces	that	are	part	of	a	class	definition.

Properties

Property Description
ClassID The	global	identifier	of	the	class

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which
can	be	used	to	get	the	type	information	for	an
interface.

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	Properties	collection.

IClassDef	method Description
AddInterface Adds	an	existing	interface	to	the	class

definition
CreateInterfaceDef Creates	a	new	interface	and	adds	it	to	the

class	definition
ObjectInstances Materializes	an	IObjectCol	interface	pointer

for	the	collection	of	all	objects	in	the
repository	that	conform	to	this	class

Collections

Collection Description

Interfaces The	collection	of	all	interfaces	that	are
implemented	by	a	class

See	Also

ClassDef	Class

IReposTypeLib	Interface

Meta	Data	Services	Programming

IClassDef::AddInterface
The	AddInterface	method	adds	an	existing	interface	to	the	collection	of
interfaces	that	are	implemented	by	a	particular	class.

HRESULT	AddInterface(IInterfaceDef		*plInterfaceDef,
				BSTR													Flags
);

Parts
plInterfaceDef

[in]
The	interface	pointer	for	the	interface	that	is	to	be	added	to	the	collection	of
interfaces	implemented	by	this	class.

Flags

[in]
If	the	interface	that	you	are	adding	is	the	default	interface	for	the	class,	pass
in	the	string	"Default".	Otherwise,	pass	in	a	null	string.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
When	you	indicate	that	an	interface	is	the	default	interface	for	a	class,	you	are
actually	setting	the	value	of	the	ImplementsOptions	annotational	property	on
the	Class_Implements_Interface	relationship	to	TRUE.

See	Also

IClassDef	Interface

IInterfaceDef	Interface

Meta	Data	Services	Programming

IClassDef	ClassID	Property
The	global	identifier	that	is	assigned	to	this	class.

Dispatch	Identifier:			DISPID_ClassID

Property	Data	Type:			GUID

See	Also

IClassDef	Interface

Meta	Data	Services	Programming

IClassDef::CreateInterfaceDef
The	CreateInterfaceDef	method	creates	a	new	interface	definition	and	adds	the
interface	to	the	collection	of	interfaces	implemented	by	the	class.

HRESULT	CreateInterfaceDef(VARIANT								sObjId,
				BSTR														Name,
				VARIANT								sIID,
				IInterfaceDef		*pIAncestor,
				BSTR														Flags,
				IInterfaceDef		**ppIInterfaceDef
);

Parts
sIObjId

[in]
The	object	identifier	to	be	assigned	to	the	new	interface	definition	object.	If
this	parameter	is	set	to	OBJID_NULL,	the	repository	engine	assigns	an
object	identifier	for	you.

Name

[in]
The	name	of	the	interface	you	are	creating.

sIID

[in]
The	global	identifier	associated	with	the	signature	for	this	interface.	If	there
is	none,	set	this	parameter	to	zero.

*pIAncestor

[in]
The	interface	pointer	to	the	base	interface	from	which	the	interface	being
added	is	derived.

Flags

[in]
If	the	interface	that	you	are	adding	is	the	default	interface	for	the	class,	pass
in	the	string	"Default".	Otherwise,	pass	in	a	null	string.

*pplInterfaceDef

[out]
The	interface	pointer	for	the	new	interface.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
When	you	indicate	that	an	interface	is	the	default	interface	for	a	class,	you	are
actually	setting	the	value	of	the	ImplementsOptions	annotational	property	on
the	Class_Implements_Interface	relationship	to	TRUE.

See	Also

IClassDef	Interface

IInterfaceDef	Interface

Meta	Data	Services	Programming

IClassDef	Interfaces	Collection
The	collection	of	all	interfaces	that	are	implemented	by	this	class.

Dispatch	Identifier:			DISPID_Ifaces	(32)

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship	Type Class_Implements_Interface This	is	the	type	of

relationship	by	which
all	items	of	the
collection	are
connected	to	a	common
source	object.

Source	Is	Origin Yes The	source	object	for
the	collection	is	also
the	origin	object.

Minimum
Collection	Size

Zero The	minimum	number
of	items	that	must	be
contained	in	the
collection	is	zero.

Maximum
Collection	Size

Many The	maximum	number
of	items	that	can	be
contained	in	the
collection	is	unlimited.

Sequenced
Collection

No As	a	destination
collection,	this	does	not
have	an	explicitly
defined	sequence.
Collections	of	origin
objects	are	never

sequenced.
Deletes	Propagated No Deleting	an	origin

object	or	a	relationship
in	the	collection	does
not	cause	the	deletion
of	a	corresponding
destination	object.

Destinations	Named No The	relationship	type
for	the	collection	does
not	permit	the	naming
of	destination	objects.

Case-sensitive
Names

Not	applicable Case-sensitive	naming
is	not	applicable	for
this	collection.

Unique	Names Not	applicable Unique	naming	is	not
applicable	for	this
collection.

See	Also

IClassDef	Interface

Meta	Data	Services	Programming

IClassDef::ObjectInstances
This	method	materializes	an	IObjectCol	interface	pointer	for	the	collection	of
all	objects	in	the	repository	that	conform	to	this	class.

HRESULT	ObjectInstances(
IObjectCol		**ppIObjectCol	
);

Parts
*ppIObjectCol

[out]
The	interface	pointer	for	the	object	collection.

Return	Value
S_OK

The	method	completed	successfully.

ErrorValues

This	method	failed	to	complete	successfully.

Remarks
The	retrieved	collection	contains	one	version	of	each	object	that	conforms	to	the
class.	For	each	such	object,	the	repository	engine	uses	its	resolution	strategy	to
choose	which	version	appears	in	the	collection.

ObjectInstances	is	not	workspace-scoped.

See	Also

IClassDef	Interface

Resolution	Strategy	for	Objects	and	Object	Versions

Meta	Data	Services	Programming

IClassDef2	Interface
The	IClassDef2	interface	is	derived	from	IClassDef,	IDepositoryDispatch,	and
IDispatch.

This	interface	is	used	to	manage	the	collection	of	scripts	that	a	class	uses.

When	to	Use
Use	the	IClassDef	derived	methods	to	manipulate	the	ScriptsUsedByClass
collection.

Properties
None

Methods
None

Collections

Collection Description
ScriptsUsedByClass The	collection	of	scripts	that	are	used	by	this

class

For	more	information	about	methods	and	properties	for	the	functionality	this
interface	provides,	see	IClassDef	Interface.

Meta	Data	Services	Programming

ScriptsUsedByClass	Collection
The	collection	of	scripts	being	used	by	this	class	definition.

Dispatch	Identifier:			DISPID_IclassDef2_ScriptsUsedByClass	(350)

Meta	Data	Services	Programming

ICollectionDef	Interface
A	collection	type	(also	referred	to	as	a	collection	definition)	defines	how
instances	of	a	particular	type	of	collection	behave.	The	properties	of	the
collection	type	determine:

The	minimum	and	maximum	number	of	items	in	a	collection.

Whether	the	collection	type	is	an	origin	collection	type.

Whether	the	collection	type	permits	the	naming	of	destination	objects
and,	if	so,	whether	those	names	are	case-sensitive	and	required	to	be
unique.

Whether	the	collection	type	permits	the	explicit	sequencing	of	items	in
the	collection.

What	happens	to	related	objects	when	objects	or	relationships	in	the
collection	are	deleted.

Whether	origin	collections	of	this	type	are	automatically	copied	to	new
object	versions	by	the	CreateVersion	method.

Whether	the	MergeVersion	method	combines	origin	collections	of	this
type	as	a	whole,	or	item	by	item.

Whether	the	FreezeVersion	method	requires	destination	object	versions
of	relationships	of	this	type	to	be	frozen	before	their	origin	object
versions	can	be	frozen.

The	kind	of	relationship	that	a	particular	collection	type	uses	to	relate	objects	to

each	other	is	determined	by	its	CollectionItem	collection.	The	CollectionItem
collection	associates	a	single	relationship	type	to	the	collection	type.

To	add	a	new	collection	type,	use	the	IInterfaceDef	interface.

When	to	Use
Use	the	ICollectionDef	interface	to	retrieve	or	modify	the	properties	of	a
collection	type	or	to	determine	the	kind	of	relationship	that	the	collection
implements.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which
can	be	used	to	get	the	type	information	for
an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	Properties	collection.

Properties

Property Description
Flags Flags	that	determine	the	behavior	of	this	type

of	collection
IsOrigin The	indicator	of	whether	collections	of	this

type	are	origin	collections
MaxCount The	maximum	number	of	target	objects	that

can	be	contained	in	a	collection	of	this	type
MinCount The	minimum	number	of	target	objects	that

must	be	contained	in	a	collection	of	this	type

Collections

Collection Description
CollectionItem The	collection	of	one	relationship	type	that

defines	the	relationship	between	target
objects	of	this	type	of	collection	and	a	single
source	object

See	Also

CollectionDef	Class

IInterfaceDef	Interface

Meta	Data	Services	Programming

ICollectionDef	Flags	Property
For	a	particular	type	of	collection,	the	Flags	property	determines:

Whether	the	collection	type	permits	the	naming	of	destination	objects
and,	if	so,	whether	those	names	are	case-sensitive	and	required	to	be
unique.

Whether	the	collection	type	permits	the	explicit	sequencing	of	items	in
the	collection.

What	happens	to	related	objects	when	objects	or	relationships	in	the
collection	are	deleted.

Whether	origin	collections	of	this	type	are	automatically	copied	to	new
object	versions	by	the	CreateVersion	method.

Whether	the	MergeVersion	method	combines	origin	collections	of	this
type	as	a	whole,	or	item	by	item.

Whether	the	FreezeVersion	method	requires	that	destination	object
versions	of	relationships	of	this	type	be	frozen	before	the	attendant
origin	object	versions	can	be	frozen.

For	more	information	about	flag	values	and	descriptions,	see	CollectionDefFlags
Enumeration.

Dispatch	Identifier:			DISPID_ColFlags	(54)

Property	Data	Type:			long

See	Also

ICollectionDef	Interface

Meta	Data	Services	Programming

ICollectionDef	IsOrigin	Property
This	property	indicates	whether	collections	of	this	type	are	origin	collections.

Dispatch	Identifier:			DISPID_IsOrigin	(57)

Property	Data	Type:			Boolean

See	Also

ICollectionDef	Interface

Meta	Data	Services	Programming

ICollectionDef	MaxCount	Property
This	property	specifies	the	maximum	number	of	target	objects	that	can	be
contained	in	a	collection	of	this	type.	This	property	is	maintained	for
informational	purposes.	It	is	not	enforced	by	the	repository	engine.

Dispatch	Identifier:			DISPID_MaxCount	(56)

Property	Data	Type:			short

See	Also

ICollectionDef	Interface

Meta	Data	Services	Programming

ICollectionDef	MinCount	Property
This	property	specifies	the	minimum	number	of	target	objects	that	must	be
contained	in	a	collection	of	this	type.	This	property	is	maintained	for
informational	purposes.	It	is	not	enforced	by	the	repository	engine.

Dispatch	Identifier:			DISPID_MinCount	(55)

Property	Data	Type:			short

See	Also

ICollectionDef	Interface

Meta	Data	Services	Programming

ICollectionDef	CollectionItem	Collection
Every	RelationshipDef	object	has	two	CollectionDef	objects.	Therefore,	every
relationship	definition	instance	can	be	navigated	in	one	of	two	directions.	That
is,	from	a	RelationshipDef	object,	you	can	navigate	to	its	collection	of
CollectionDef	objects.	Conversely,	you	can	navigate	in	the	opposite	direction;
that	is,	from	a	CollectionDef	object	to	the	associated	RelationshipDef	object.
To	navigate	in	the	opposite	direction,	use	the	CollectionItem	collection	on	the
ICollectionDef	interface.	For	more	information	about	relationships	and
collections,	see	Repository	Object	Architecture.

Dispatch	Identifier:			DISPID_CollectionItem	(38)

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship	Type Collection_Contains_itemsThis	is	the	type	of

relationship	by	which
all	items	of	the
collection	are
connected	to	a	common
source	object.

Source	Is	Origin Yes The	source	object	for
the	collection	is	also
the	origin	object.

Minimum	Collection
Size

Zero The	minimum	number
of	items	that	must	be
contained	in	the
collection	is	zero.

Maximum	Collection
Size

One The	maximum	number
of	items	that	can	be
contained	in	the

collection	is	one.
Sequenced	Collection No As	a	destination

collection,	this	does	not
have	an	explicitly
defined	sequence.
Collections	of	origin
objects	are	never
sequenced.

Deletes	Propagated No Deleting	an	origin
object	or	a	relationship
in	the	collection	does
not	cause	the	deletion
of	a	corresponding
destination	object.

Destinations	Named No The	relationship	type
for	the	collection	does
not	permit	the	naming
of	destination	objects.

Case-sensitive	Names Not	applicable Case-sensitive	naming
is	not	applicable	for
this	collection.

Unique	Names Not	applicable Unique	naming	is	not
applicable	for	this
collection.

See	Also

ICollectionDef	Interface

RelationshipDef	ItemInCollections	Collection

Meta	Data	Services	Programming

IEnumerationDef	Interface
The	IEnumerationDef	interface	is	derived	from	IRepositoryDispatch,	which
inherits	from	IDispatch.	The	IEumerationDef	interface	is	implemented	by	the
EnumerationDef	class.

When	to	Use
IEnumerationDef	is	the	default	interface	for	Enumeration	objects.	Use	this
interface	for	defining	new	enumeration	values.

Properties

Property Description
IsFlag Indicates	that	the	enumeration	defines	a	logical	flag.	The

selected	enumeration	values	should	be	combined	logically
using	OR.	This	property	applies	only	to	numeric	enumeration
values.

There	are	no	methods	associated	with	this	interface.

Collections

Property Description
Values The	collection	of	EnumerationValue	objects

See	Also

IEnumerationValueDef	Interface

IPropertyDef2	Interface

IRepositoryDispatch

Repository	Enumeration	Definition

Meta	Data	Services	Programming

IEnumerationDef	Values	Collection
A	collection	of	EnumerationValue	objects.

Dispatch	Identifier:			DISPID_IEnumerationDefIsFlag	(365)

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

EnumerationDef_Valuesof_EnumerationValueDef This	is	the
type	of
relationship
by	which	all
items	of	the
collection	are
connected	to
a	common
source	object.

Source	Is
Origin

Yes The	source
object	for	the
collection	is
also	the	origin
object.

Minimum
Collection
Size

One The	minimum
number	of
items	that
must	be
contained	in
the	collection
is	one.

Maximum
Collection

Many The
maximum

Size number	of
items	that	can
be	contained
in	the
collection	is
unlimited.

Sequenced
Collection

No Because	it	is	a
destination
collection,
this	collection
does	not	have
an	explicitly
defined
sequence.
Collections	of
origin	objects
are	never
sequenced.

Deletes
Propagated

Yes Deleting	an
origin	object
or	a
relationship	in
the	collection
causes	the
deletion	of	a
corresponding
destination
object.

Destinations
Named

Yes The
relationship
type	for	the
collection
permits	the
naming	of
destination
objects.

Case-sensitive No The	collection

Names does	not
permit	the	use
of	case-
sensitive
names	for
destination
objects.

Unique
Names

Yes The
relationship
type	for	the
collection
requires	that
the	name	of	a
destination
object	be
unique	within
the	collection
of	destination
objects.

See	Also

IEnumerationValueDef	Interface

Repository	Enumeration	Definition

Meta	Data	Services	Programming

IEnumerationValueDef	Interface
The	IEnumerationValueDef	interface	is	derived	from	IRepositoryDispatch
and	IDispatch,	and	is	implemented	by	the	EnumerationValue	class.

Properties

Property Description
EnumValue A	string	containing	a	value	that	may	be	stored	in	the	property

value	of	an	object.

There	are	no	methods	or	collections	associated	with	this	interface.

See	Also

IEnumerationDef	Interface

IPropertyDef2	Interface

IRepositoryDispatch

Repository	Enumeration	Definition

Meta	Data	Services	Programming

IEnumerationValueDef::EnumValue
The	EnumValue	property	contains	a	value	that	may	be	stored	as	the	property
value	of	an	object.

Dispatch	Identifier:			DISPID_IEnumerationValueDefValue	(371)

See	Also

IEnumerationValueDef	Interface

Meta	Data	Services	Programming

IInterfaceDef	Interface
The	properties,	methods,	and	collections	that	a	class	implements	are	organized
into	functionally	related	groups.	Each	group	is	implemented	as	a	COM	interface.
Each	COM	interface	that	you	create	can	have	members	consisting	of	properties,
methods,	and	collections.	An	interface	definition	is	the	template	to	which	that
interface	conforms.

To	add	a	new	interface	to	the	repository,	use	the	IClassDef	interface	or	the
IReposTypeLib	interface.

When	to	Use
Use	the	IInterfaceDef	interface	to:

Retrieve	or	modify	properties	of	an	interface	definition.

Determine	which	members	are	attached	to	an	interface	definition.

Determine	which	classes	implement	an	interface.

Determine	the	base	interface	from	which	an	interface	derives.

Determine	which	interfaces	derive	from	a	particular	interface.

Determine	which	repository	objects	expose	a	particular	interface.

Add	a	new	property,	method,	or	collection	type	to	an	interface
definition.

Properties

Property Description
Flags The	flags	that	specify	whether	the	interface

is	extensible,	and	whether	the	interface
should	be	visible	to	Automation	interface
queries.

InterfaceID The	global	interface	identifier	for	the
interface.

TableName The	name	of	the	SQL	table	that	is	used	to
store	instance	information	for	the	properties
of	the	interface.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces.
AddRef Increments	the	reference	count.
Release Decrements	the	reference	count.

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers.

GetTypeInfo Retrieves	a	type	information	object,	which
can	be	used	to	get	the	type	information	for
an	interface.

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1).

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object.

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	Properties	collection.

IInterfaceDef	method Description
CreateMethodDef Creates	a	new	method	definition,	and

attaches	it	to	the	interface	definition.
CreatePropertyDef Creates	a	new	property	definition,	and

attaches	it	to	the	interface	definition.
CreateRelationshipColDef Creates	a	relationship	collection	type.	The

collection	type	is	attached	to	the	interface
definition.

ObjectInstances Materializes	an	IObjectCol	interface	pointer
for	the	collection	of	all	objects	in	a
repository	that	expose	this	interface.

Collections

Collection Description
Ancestor The	collection	of	one	base	interface	from

which	this	interface	inherits.
Classes The	collection	of	classes	that	implement	the

interface.
Descendants The	collection	of	other	interfaces	that	derive

from	this	interface.
Members The	collection	of	members	that	are	attached

to	the	interface	definition.

See	Also

IClassDef	Interface

IInterfaceDef	Interface

IReposTypeLib	Interface

Meta	Data	Services	Programming

IInterfaceDef	Flags	Property
This	property	contains	flags	that	specify	whether	the	interface	is	extensible,	and
whether	the	interface	should	be	visible	to	Automation	interface	queries.	For
more	information	about	flag	values	and	descriptions,	see	InterfaceDefFlags
Enumeration.

Dispatch	Identifier:			DISPID_IfaceFlags	(50)

Property	Data	Type:			long

See	Also

IInterfaceDef	Interface

Meta	Data	Services	Programming

IInterfaceDef	InterfaceID	Property
This	property	is	the	global	interface	identifier	for	the	interface.

Dispatch	Identifier:			DISPID_InterfaceID	(48)

Property	Data	Type:			GUID

See	Also

IInterfaceDef	Interface

Meta	Data	Services	Programming

IInterfaceDef	TableName	Property
This	property	is	the	name	of	the	SQL	table	that	is	used	to	store	instance
information	for	the	properties	of	the	interface.	The	length	of	the	name	must	be
30	characters	or	less.

Dispatch	Identifier:			DISPID_TableName	(49)

Property	Data	Type:			string

See	Also

IInterfaceDef	Interface

Meta	Data	Services	Programming

IInterfaceDef::CreateMethodDef
This	method	creates	a	new	method	definition	and	attaches	it	to	the	interface
definition.

HRESULT	CreateMethodDef(VARIANT															sObjId,
				BSTR																					Name,
				long																							iDispId,
				IInterfaceMember	**ppIMethodDef
);

Parts
sObjId

[in]
The	object	identifier	to	be	used	for	the	new	method	definition	object.	The
repository	engine	will	assign	an	object	identifier	if	you	set	this	parameter	to
OBJID_NULL.

Name

[in]
The	name	of	the	new	method.

iDispId

[in]
The	dispatch	identifier	to	be	used	for	accessing	the	new	method.

*ppIMethodDef	[out]

The	interface	pointer	for	the	newly	created	method	definition.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IInterfaceDef	Interface

IInterfaceMemberInterface

Meta	Data	Services	Programming

IInterfaceDef::CreatePropertyDef
This	method	creates	a	new	property	definition	and	attaches	it	to	the	interface
definition.

HRESULT	CreatePropertyDef	(VARIANT								sObjId,
				BSTR														Name,
				long																iDispId,
				short															iCType,
				IPropertyDef	**ppIPropertyDef
);

Parts
sObjId

[in]
The	object	identifier	to	be	used	for	the	new	property	definition	object.	The
repository	engine	will	assign	an	object	identifier	if	you	set	this	parameter	to
OBJID_NULL.

Name

[in]
The	name	of	the	new	property.

iDispId

[in]
The	dispatch	identifier	to	be	used	for	accessing	the	new	property.

iCType	[in]

The	C	data	type	of	the	property.	For	more	information,	including	a	definition
of	valid	values,	see	the	ODBC	documentation.

*ppIPropertyDef	[out]

The	interface	pointer	for	the	newly	created	property	definition.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IInterfaceDef	Interface

IPropertyDef	Interface

Meta	Data	Services	Programming

IInterfaceDef::CreateRelationshipColDef
This	method	creates	a	new	collection	type,	attaches	it	to	this	interface,	and
associates	it	with	the	specified	relationship	type.

HRESULT	CreateRelationshipColDef(VARIANT														sObjId,
				BSTR																				Name,
				long																						iDispId,
				boolean																IsOrigin,
				short																					fFlags,
				IReposTypeInfo	*pIRelshipDef,
				ICollectionDef					**pICollectionDef
);

Parts
sObjId	[in]
The	object	identifier	for	the	collection	type.	The	repository	engine	will	assign	an
object	identifier	if	you	set	this	parameter	to	OBJID_NULL.

Name

[in]
The	name	of	the	new	collection	type.

iDispId	[in]

The	dispatch	identifier	to	be	used	for	Automation	access	to	collections	of	this
type.

IsOrigin	[in]

Specifies	whether	collections	of	this	type	are	origin	collections.

fFlags

[in]
Flags	that	specify	naming,	sequencing,	and	delete	propagation	behavior	for
the	collection	type.	For	more	information	about	flag	values	and	descriptions,

see	CollectionDefFlags	Enumeration.

*pIRelshipDef	[in]

The	interface	pointer	for	the	relationship	definition	object	to	which	this
collection	type	is	connected.

*ppICollectionDef

[out]
The	interface	pointer	for	the	new	collection	definition	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
By	default,	the	collection	definition	specifies	that	zero	to	many	items	are
permitted	in	collections	of	this	type.	To	specify	a	different	minimum	and
maximum	item	count	for	the	new	collection	type,	change	the	MinCount	and
MaxCount	properties	before	committing	the	transaction	that	contains	this
method	invocation.

See	Also

ICollectionDef	Interface

IInterfaceDef	Interface

RelationshipDef	Class

Meta	Data	Services	Programming

IInterfaceDef::ObjectInstances
This	method	materializes	an	IObjectCol	interface	pointer	for	the	collection	of
all	objects	in	the	repository	that	expose	the	current	interface.

HRESULT	ObjectInstances(IObjectCol		**ppIObjectCol	
);

Parts
*ppIObjectCol	[out]

The	interface	pointer	for	the	object	collection.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

Remarks
The	retrieved	collection	contains	one	version	of	each	object	that	conforms	to	a
class	that	exposes	the	current	interface.	For	each	such	object,	the	repository
engine	uses	its	resolution	strategy	to	choose	which	version	appears	in	the
collection.

ObjectInstances	is	not	workspace	scoped.

See	Also

IInterfaceDef	Interface

Resolution	Strategy	for	Objects	and	Object	Versions

Meta	Data	Services	Programming

IInterfaceDef	Classes	Collection
This	collection	specifies	which	classes	implement	the	interface.

Dispatch	Identifier:			DISPID_Classes	(33)

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship	Type Class_Implements_Interface This	is	the	type	of

relationship	by	which	all
items	of	the	collection
are	connected	to	a
common	source	object.

Source	Is	Origin No The	source	object	for	the
collection	is	not	the
origin	object.

Minimum
Collection	Size

Zero The	minimum	number	of
items	that	must	be
contained	in	the
collection	is	zero.

Maximum
Collection	Size

Many The	maximum	number	of
items	that	can	be
contained	in	the
collection	is	unlimited.

Sequenced
Collection

No As	a	destination
collection,	this	does	not
have	an	explicitly
defined	sequence.
Collections	of	origin
objects	are	never
sequenced.

Deletes
Propagated

No Deleting	an	origin	object
or	a	relationship	in	the
collection	does	not	cause
the	deletion	of	a
corresponding
destination	object.

Destinations
Named

No The	relationship	type	for
the	collection	does	not
permit	the	naming	of
destination	objects.

Case-sensitive
Names

Not	applicable Case-sensitive	naming	is
not	applicable	for	this
collection.

Unique	Names Not	applicable Unique	naming	is	not
applicable	for	this
collection.

See	Also

IInterfaceDef	Interface

Meta	Data	Services	Programming

IInterfaceDef	Members	Collection
This	collection	specifies	which	members	are	attached	to	the	interface.

Dispatch	Identifier:			DISPID_Members	(36)

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship	Type Interface_Has_Members This	is	the	type	of

relationship	by	which	all
items	of	the	collection	are
connected	to	a	common
source	object.

Source	Is	Origin Yes The	source	object	for	the
collection	is	also	the	origin
object.

Minimum
Collection	Size

Zero The	minimum	number	of
items	that	must	be
contained	in	the	collection
is	zero.

Maximum
Collection	Size

Many The	maximum	number	of
items	that	can	be	contained
in	the	collection	is
unlimited.

Sequenced
Collection

Yes As	a	destination	collection,
this	collection	permits	an
explicitly	defined
sequence.	Collections	of
origin	objects	are	never
sequenced.

Deletes	Propagated Yes The	deletion	of	an	origin

object	or	relationship	in	the
collection	causes	the
deletion	of	the
corresponding	destination
object.

Destinations
Named

Yes The	relationship	type	for
the	collection	permits	the
naming	of	destination
objects.

Case-Sensitive
Names

No The	relationship	type	for
the	collection	does	not
permit	the	use	of	case-
sensitive	names	for
destination	objects.

Unique	Names Yes The	relationship	type	for
the	collection	requires	that
the	name	of	a	destination
object	be	unique	within	the
collection	of	destination
objects.	This	applies	to
collections	whose
relationship	type	permits
destination	objects	to	be
named.

See	Also

IInterfaceDef	Interface

Meta	Data	Services	Programming

IInterfaceDef	Ancestor	Collection
This	collection	specifies	the	one	base	interface	from	which	this	interface	derives.
You	use	Ancestor	collections	to	define	inheritance.

Dispatch	Identifier:			DISPID_Ancestor	(34)

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

Interface_InheritsFrom_InterfaceThis	is	the	type	of
relationship	by
which	all	items	of
the	collection	are
connected	to	a
common	source
object.

Source	Is	Origin Yes The	source	object	for
the	collection	is	also
the	origin	object.

Minimum
Collection	Size

One The	minimum
number	of	items	that
must	be	contained	in
the	collection	is	one.

Maximum
Collection	Size

One The	maximum
number	of	items	that
can	be	contained	in
the	collection	is	one.

Sequenced
Collection

No As	a	destination
collection,	this	does
not	have	an	explicitly
defined	sequence.

Collections	of	origin
objects	are	never
sequenced.

Deletes
Propagated

No Deleting	an	origin
object	or	a
relationship	in	the
collection	does	not
cause	the	deletion	of
a	corresponding
destination	object.

Destinations
Named

No The	relationship	type
for	the	collection
does	not	permit	the
naming	of
destination	objects.

Case-Sensitive
Names

Not	applicable Case-sensitive
naming	is	not
applicable	for	this
collection.

Unique	Names Not	applicable Unique	naming	is	not
applicable	for	this
collection.

See	Also

IInterfaceDef	Interface

Meta	Data	Services	Programming

IInterfaceDef	Descendants	Collection
This	collection	specifies	other	interfaces	that	derive	from	this	interface.

Dispatch	Identifier:			DISPID_Descendants	(35)

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

Interface_InheritsFrom_InterfaceThis	is	the	type	of
relationship	by
which	all	items	of
the	collection	are
connected	to	a
common	source
object.

Source	Is	Origin No The	source	object	for
the	collection	is	not
the	same	as	the
origin	object.

Minimum
Collection	Size

Zero The	minimum
number	of	items	that
must	be	contained	in
the	collection	is	zero.

Maximum
Collection	Size

Many The	maximum
number	of	items	that
can	be	contained	in
the	collection	is
unlimited.

Sequenced
Collection

No As	a	destination
collection,	this	does
not	have	an	explicitly

defined	sequence.
Collections	of	origin
objects	are	never
sequenced.

Deletes
Propagated

No Deleting	an	origin
object	or	a
relationship	in	the
collection	does	not
cause	the	deletion	of
a	corresponding
destination	object.

Destinations
Named

No The	relationship	type
for	the	collection
does	not	permit	the
naming	of
destination	objects.

Case-Sensitive
Names

Not	applicable Case-sensitive
naming	is	not
applicable	for	this
collection.

Unique	Names Not	applicable Unique	naming	is	not
applicable	for	this
collection.

See	Also

IInterfaceDef	Interface

Meta	Data	Services	Programming

IInterfaceDef2	Interface
The	IInterfaceDef2	interface	inherits	from	IInterfaceDef.	It	helps	you	define
implication	between	two	interfaces	in	the	form	of	"Interface	I1	implies	Interface
I2,"	which	means	that	any	class	that	implements	I1	also	implements	I2.	There	is
a	many-to-many	relationship	named	Interface_Implies_Interface	that	relates
multiple	instances	of	IInterfaceDef2	to	other	instances	of	itself.	Therefore,
IInterfaceDef2	has	two	collections,	Implies	and	ImpliedBy,	which	are	the	two
sides	of	the	relationship.

IInterfaceDef2	also	provides	the	CreateAlias	method,	which	adds	an	alias
member	to	the	interface	definition.

When	to	use

Use	the	IInterfaceDef2	interface	to:

Define	implication	between	two	interfaces.

Create	and	add	alias	members	to	the	interface	definition.

Properties

IInterfaceDef	property Description
Flags Flags	that	specify	whether	the	interface	is

extensible,	and	whether	the	interface	should
be	visible	to	Automation	interface	queries

InterfaceID The	global	interface	identifier	for	the
interface

TableName The	name	of	the	SQL	table	that	is	used	to
store	instance	information	for	the	properties
of	the	interface

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which
can	be	used	to	get	the	type	information	for
an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	Properties	collection.

IInterfaceDef	method Description
CreateMethodDef Creates	a	new	method	definition,	and

attaches	it	to	the	interface	definition.
CreatePropertyDef Creates	a	new	property	definition,	and

attaches	it	to	the	interface	definition.
CreateRelationshipColDef Creates	a	relationship	collection	type.	The

collection	type	is	attached	to	the	interface

definition.
ObjectInstances Materializes	an	IObjectCol	interface	pointer

for	the	collection	of	all	objects	in	a
repository	that	expose	this	interface.

IInterfaceDef2	method Description
CreateAlias Adds	an	alias	member	to	the	interface

definition

Collections

IInterfaceDef	collection Description
Ancestor The	collection	of	one	base	interface	from

which	this	interface	derives
Classes The	collection	of	classes	that	implement	the

interface
Descendants The	collection	of	other	interfaces	that	derive

from	this	interface
Members The	collection	of	members	that	are	attached

to	the	interface	definition

IInterfaceDef2	collection Description
Implies The	collection	of	one	interface	that	implies

other	interfaces
ImpliedBy The	collection	of	interfaces	implied	by

another	interface

See	Also

IClassDef	Interface

IInterfaceDef	Interface

InterfaceDef	Class

IReposTypeLib	Interface

Meta	Data	Services	Programming

IInterfaceDef2	Implies	Collection
The	collection	of	one	interface	that	implies	other	interfaces.

Dispatch	Identifier:	DISPID_Implies	(95)

See	Also

IInterfaceDef2	Interface

IInterfaceDef2	ImpliedBy	Collection

Meta	Data	Services	Programming

IInterfaceDef2	ImpliedBy	Collection
The	collection	of	interfaces	implied	by	another	interface.

Dispatch	Identifier:	DISPID_ImpliedBy	(96)

See	Also

IInterfaceDef2	Interface

IInterfaceDef2	Implies	Collection

Meta	Data	Services	Programming

IInterfaceDef2::CreateAlias
The	CreateAlias	method	is	used	in	member	delegation	to	add	an	alias	member
to	the	interface	definition.	The	repository	engine	does	not	prevent	the	creation	of
duplicate	alias	names.	If	you	want	to	avoid	duplicate	aliases,	you	must	verify
that	the	alias	name	is	unique.

This	method	has	the	following	syntax:

HRESULT	CreateAlias(
				VARIANT	sObjID,
				BSTR	Name,
				long	iDispID,
				IInterfaceMember	*pIIfaceMemBase,
				IInterfaceMember2	**ppIIfaceMem2);

Parts
sObjID

[in]
The	object	identifier	to	be	used	with	the	new	alias	member.

Name

[in]
The	name	of	the	new	alias	member.

iDispID

[in]
The	dispatch	identifier	to	be	used	for	accessing	the	new	alias	member.

pIIfaceMemBase

[in]
The	interface	pointer	for	the	base	member.

*ppIIfaceMem2

[out,	retval]
The	interface	pointer	for	the	derived	member.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IInterfaceDef2	Interface

Member	Delegation

Meta	Data	Services	Programming

IInterfaceMember	Interface
The	properties,	methods,	and	collections	that	a	class	implements	are	organized
into	functionally	related	groups.	Each	group	is	implemented	as	a	COM	interface.
The	properties,	methods,	and	collections	of	each	interface	are	members	of	the
interface.

The	IInterfaceMember	interface	maintains	this	information	for	an	interface
member:

The	member	dispatch	identifier.

Information	about	member	visibility.

The	relationship	to	the	interface	that	exposes	a	particular	interface
member.

This	information	is	common	to	properties,	methods,	and	collection	types.	The
PropertyDef,	MethodDef,	and	CollectionDef	classes	all	implement	this
interface.

When	to	Use
Use	the	IInterfaceMember	interface	to	access	the	common	properties	of	an
interface	member,	or	to	determine	which	interface	definition	has	a	member	of	a
particular	property,	method,	or	collection	type.

Properties

Properties Description
DispatchID The	dispatch	identifier	to	use	when

accessing	an	instance	of	this	type	of	member
Flags The	flags	that	specify	details	about	this	type

of	member

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which
can	be	used	to	get	the	type	information	for
an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	Properties	collection.

Collections

Collection Description

Interface The	collection	of	one	interface	that	exposes
this	type	of	member

See	Also

CollectionDef	Class

IInterfaceMember2	Interface

MethodDef	Class

PropertyDef	Class

Meta	Data	Services	Programming

IInterfaceMember	DispatchID	Property
This	property	contains	the	dispatch	identifier	to	use	when	accessing	an	instance
of	this	type	of	member.

Dispatch	Identifier:			DISPID_DispID	(51)

Property	Data	Type:			long

See	Also

IInterfaceMember	Interface

Meta	Data	Services	Programming

IInterfaceMember	Flags	Property
This	property	contains	a	flag	that	specifies	whether	or	not	the	interface	member
should	be	visible	to	Automation	queries.	For	more	information	about	flag	values
and	descriptions,	see	InterfaceMemberFlags	Enumeration.

Dispatch	Identifier:	DISPID_IfaceMemFlags	(52)

Property	Data	Type:			long

See	Also

IInterfaceMember	Interface

Meta	Data	Services	Programming

IInterfaceMember	Interface	Collection
For	a	particular	property,	method,	or	collection	definition,	the	Interface
collection	specifies	which	interface	exposes	a	member	of	this	type.

Dispatch	Identifier:			DISPID_Iface	(37)

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship	Type Interface_Has_Members This	is	the	type	of

relationship	by	which	all
items	of	the	collection
are	connected	to	a
common	source	object.

Source	Is	Origin No The	source	object	for	the
collection	is	not	the
same	as	the	origin
object.

Minimum	Collection
Size

One The	minimum	number
of	items	that	must	be
contained	in	the
collection	is	one.

Maximum	Collection
Size

One The	maximum	number
of	items	that	can	be
contained	in	the
collection	is	one.

Sequenced	Collection Yes As	a	destination
collection,	this
collection	permits	an
explicitly	defined
sequence.	Collections	of

origin	objects	are	never
sequenced.

Deletes	Propagated Yes The	deletion	of	an	origin
object	or	relationship	in
the	collection	causes	the
deletion	of	the
corresponding
destination	object.

Destinations	Named Yes The	relationship	type	for
the	collection	permits
the	naming	of
destination	objects.

Case-Sensitive	Names No The	relationship	type	for
the	collection	does	not
permit	the	use	of	case-
sensitive	names	for
destination	objects.

Unique	Names Yes The	relationship	type	for
the	collection	requires
that	the	name	of	a
destination	object	be
unique	within	the
collection	of	destination
objects.	This	applies	to
collections	whose
relationship	type	permits
destination	objects	to	be
named.

See	Also

IInterfaceMember	Interface

Meta	Data	Services	Programming

IInterfaceMember2	Interface
This	interface	is	used	to	support	aliasing.	You	can	use	this	interface	to	allow
PropertyDef,	MethodDef,	Alias,	and	CollectionDef	objects	to	be	referred	to	by
a	second	name	or	alias.

The	Alias	class	implements	IInterfaceMember2	as	its	default	interface.
Instances	of	the	Alias	class	are	simple,	derived	members.	The	CollectionDef
class	also	implements	IInterfaceMember2	in	order	to	support	the	semantically
richer	kind	of	derived	member.

This	interface	inherits	from	IInterfaceMember.	It	also	uses	methods	exposed
through	IRepositoryDispatch.	For	more	information,	see	IRepositoryDispatch
Interface.

When	to	Use
Use	the	IInterfaceMember2	interface	to:

Create	simple,	derived	members	as	instances	from	the	Alias	class.

Create	semantically	rich	derived	members	as	instances	from	the
CollectionDef	class.

Properties

Property Description
MemberSynonym A	string	used	as	an	alias.

Collections

Collection Description
ScriptsUsedByMember A	collection	that	contains	a	script

definition	object.

ServicedByBaseMember The	base	member	that	provides
implementation	to	a	derived	member.

ServicesDerivedMembers The	derived	interface	member	that
receives	its	implementation	from	a
base	member	on	another	interface.

See	Also

Creating	a	Derived	Member

IInterfaceMember	Interface

IReposTypeInfo2	Interface

Meta	Data	Services	Programming

IInterfaceMember2	MemberSynonym	Property
Use	this	property	to	create	an	alias	of	an	interface	member.	If	this	property	is	set,
the	alias	name	can	reference	the	InterfaceDef,	PropertyDef,	CollectionDef,
MethodDef	and	Alias	classes.

The	maximum	length	of	this	string	is	255	characters.

Dispatch	Identifier:	DISPID_MemberSynonym	(394)

Remarks
The	repository	engine	does	not	allow	duplicate	synonym	values	for
InterfaceDef,	PropertyDef,	CollectionDef,	MethodDef,	or	Alias	classes.

See	Also

IInterfaceMember2	Interface

Type	Information	Aliasing

Meta	Data	Services	Programming

IInterfaceMember2	ScriptsUsedByMember	Collection
A	ScriptsUsedByMember	collection	contains	the	interface	member	(either	a
method	definition	or	a	property	definition)	that	uses	a	script	for	its
implementation.

This	collection	is	the	destination	collection	of	a	relationship	that	associates	a
script	with	an	interface	member.	The	origin	collection	of	this	relationship	is	the
UsingMembers	collection	of	the	ScriptDef	object.

Dispatch	Identifier:	DISPID_IInterfaceMember2ScriptsUsedByMember	(356)

See	Also

Defining	Script	Objects

IInterfaceMember2	Interface

IScriptDef	Interface

Meta	Data	Services	Programming

IInterfaceMember2	ServicedByBaseMember
Collection
A	ServicedByBaseMember	collection	contains	the	base	member	that	provides
the	implementation	for	a	member	on	another	interface.

This	collection	can	contain	one	interface	member	object.	This	collection	is	the
origin	of	a	relationship	collection	that	maps	the	correspondence	between	the
base	member	and	an	alias.	When	you	populate	this	collection,	you	must	also
populate	the	ServicesDerivedMember	collection	to	complete	the	relationship.

Dispatch	Identifier:	DISPID_IInterfaceMember2ServicedByBaseMember
(100)

See	Also

Creating	a	Derived	Member

IInterfaceMember2	Interface

IInterfaceMember2	ServicesDerivedMembers	Collection

Type	Information	Aliasing

Meta	Data	Services	Programming

IInterfaceMember2	ServicesDerivedMembers
Collection
A	ServicesDerivedMember	collection	contains	the	derived	interface	member
that	receives	its	implementation	from	a	base	member	on	another	interface.

This	collection	can	contain	one	interface	member	object.	This	collection	is	the
destination	of	a	relationship	collection	that	maps	the	correspondence	between	the
base	member	and	an	alias.	When	you	populate	this	collection,	you	must	also
populate	the	ServicedByBaseMember	collection	to	complete	the	relationship.

Dispatch	Identifier:	DISPID_IInterfaceMember2ServicesDerivedMembers	(99)

See	Also

Creating	a	Derived	Member

IInterfaceMember2	Interface

IInterfaceMember2	ServicedByBaseMember	Collection

Type	Information	Aliasing

Meta	Data	Services	Programming

IManageReposTypeLib	Interface
Each	information	model	that	is	stored	in	the	repository	is	represented	by	a
repository	type	library.

When	to	Use
Use	the	IManageReposTypeLib	interface	to:

Create	a	repository	type	library	for	a	new	information	model.

Determine	which	information	models	are	currently	stored	in	the
repository.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which
can	be	used	to	get	the	type	information	for
an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods

exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	Properties	collection.

IManageReposTypeLib
method Description
CreateTypeLib Creates	a	repository	type	library	for	a	new

information	model

Collections

Collection Description
ReposTypeLibs The	collection	of	repository	type	libraries

that	are	currently	stored	in	a	repository
database

See	Also

ReposRoot	Class

Meta	Data	Services	Programming

IManageReposTypeLib::CreateTypeLib
This	method	creates	a	new	repository	type	library	and	attaches	it	to	the	root	of
the	repository.	Each	repository	type	library	represents	an	information	model.

HRESULT	CreateTypeLib(VARIANT													sObjId,
				BSTR																			Name,
				VARIANT													TypeLibId,
				IReposTypeLib			**ppIRepTypeLib
);

Parts
sObjId

[in]
The	object	identifier	to	be	used	for	the	new	repository	type	library	object.
The	repository	engine	will	assign	an	object	identifier	if	you	set	this
parameter	to	OBJID_NULL.

Name

[in]
The	name	of	the	new	repository	type	library.

TypeLibId

[in]
The	global	identifier	by	which	this	repository	type	library	is	referenced.

*ppIRepTypeLib	[out]
The	IReposTypeLib	interface	pointer	to	the	new	repository	type	library	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IManageReposTypeLib	Interface

IReposTypeLib	Interface

Meta	Data	Services	Programming

IManageReposTypeLib	ReposTypeLibs	Collection
The	collection	of	repository	type	libraries	that	are	currently	stored	in	the
repository	database.	Each	repository	type	library	represents	an	information
model.

Dispatch	Identifier:			DISPID_ReposTypeLibs	(40)

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

TblManager_ContextFor_ReposTypeLibs This	is	the
type	of
relationship	by
which	all
items	of	the
collection	are
connected	to	a
common
source	object.

Source	Is
Origin

Yes The	source
object	for	the
collection	is
also	the	origin
object.

Minimum
Collection
Size

Zero The	minimum
number	of
items	that
must	be
contained	in
the	collection
is	zero.

Maximum
Collection
Size

Many The	maximum
number	of
items	that	can
be	contained
in	the
collection	is
unlimited.

Sequenced
Collection

No As	a
destination
collection,	this
does	not	have
an	explicitly
defined
sequence.
Collections	of
origin	objects
are	never
sequenced.

Deletes
Propagated

Yes Deleting	an
origin	object
or	a
relationship	in
the	collection
causes	the
deletion	of	a
corresponding
destination
object.

Destinations
Named

Yes The
relationship
type	for	the
collection
permits	the
naming	of
destination
objects.

Case-Sensitive
Names

No This	collection
does	not	use
case-sensitive
names	for
destination
objects.

Unique	Names Yes The	collection
requires	that
the	name	of	a
destination
object	be
unique	within
the	collection
of	destination
objects.

See	Also

IManageReposTypeLib	Interface

Meta	Data	Services	Programming

IMethodDef	Interface
The	IMethodDef	interface,	which	inherits	from	IInterfaceMember,	allows	the
model	creator	to	define	an	ordered	list	of	parameter	definitions	for	a	method.
The	IMethodDef	interface	is	the	default	interface	of	the	MethodDef	class
returned	by	the	IInterfaceDef::CreateMethodDef	method.

When	to	use
Use	the	IMethodDef	interface	to:

Define	a	list	of	parameter	definitions	for	a	method.

Generate	fully	descriptive	Interface	Definition	Language	(IDL)	files
from	the	information	model.

Properties

IInterfaceMember	property Description
DispatchID The	dispatch	identifier	to	use	when

accessing	a	MethodDef	instance
Flags Flags	that	specify	details	about	a

MethodDef	instance

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which
can	be	used	to	get	the	type	information	for
an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	Properties	collection.

IMethodDef	method Description
CreateParameterDef Creates	a	new	parameter	definition	and

attaches	it	to	the	end	of	the	parameter	list	for
the	particular	method

Collections

IInterfaceMember
collection Description
Interface The	collection	of	one	interface	that	exposes

this	type	of	member

IMethodDef	collection Description
Parameters The	collection	of	parameter	definition

objects	that	provide	parameters	to	this
method

See	Also

CollectionDef	Class

IParameterDef	Interface

MethodDef	Class

PropertyDef	Class

Meta	Data	Services	Programming

IMethodDef::CreateParameterDef
This	method	creates	a	new	parameter	definition	and	attaches	it	to	the	end	of	the
parameter	list	for	the	particular	method.

HRESULT	CreateParameterDef	(
				VARIANT	sObjID,
				BSTR	Name,
				long	Type,
				long	Flags,
				BSTR	Description,
				BSTR	Default,
				IParameterDef	**pParamDef
);

Parts
sObjID

[in]
Object	ID	for	the	parameter.

Name

[in]
Name	of	the	parameter.

Type

[in]
Type	of	the	parameter.	This	should	be	one	of	the	VT_XXXX	values	defined
by	OLE	Automation.

Flags

[in]
A	flag	that	can	take	one	of	the	following	values.	Enumerated	values	are
defined	through	the	IParameterDef	Flags	property.

PARAMFLAGS_IN	=	1
PARAMFLAGS_OUT	=	2
PARAMFLAGS_RETVAL	=	4
PARAMFLAGS_OPTIONAL	=	8

Description

[in]
Text	inserted	into	the	type	library	to	define	the	parameter	type.

Default

[in]
This	is	inserted	into	the	type	library	to	define	the	default	value	of	the
parameter.

*ppParamDef

[out]
A	pointer	to	the	IParameterDef	interface	that	returns	the	newly	created
parameter	definition.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IMethodDef	Interface

IParameterDef	Flags	Property

MethodDef	Class

Meta	Data	Services	Programming

IMethodDef	Parameters	Collection
This	collection	contains	the	parameter	definition	objects	that	you	define	for	the
current	method	definition.

If	you	use	CreateParameterDef	method	to	create	the	parameter,	the	parameter
is	automatically	added	to	this	collection	for	the	current	method	definition.

This	collection	is	sequenced	and	it	must	contain	only	uniquely	named	items.

See	Also

IMethodDef	Interface

IMethodDef::CreateParameterDef

MethodDef	Class

Meta	Data	Services	Programming

IParameterDef	Interface
The	IParameterDef	interface	allows	the	model	creator	to	define,	in	detail,	each
parameter	of	the	method	that	uses	the	interface	properties	listed	in	this	topic.
Parameter	definitions	are	stored	in	a	RTblParameterDef	table	in	the	repository
database.

When	the	engine	receives	a	call	to	a	method	defined	through	these	interfaces,	it
returns	E_NOTIMPL.

Properties

Property Description
Type The	data	type	of	the	parameter.
Flags A	flag	that	defines	whether	the	parameter	is	the

default	parameter.	It	also	defines	whether	it	is	passed
by	reference	or	by	value.

Description A	string	(of	255	characters	maximum)	to	be	placed
into	the	IDL	file	instead	of	the	default	text	for	the
parameter	type.

Default A	string	(of	255	characters	maximum)	that	denotes
the	default	value	for	the	parameter.

GUID A	GUID	that	defines	the	interface	ID	of	a
VT_DISPATCH	or	VT_UNKNOWN	object.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	emthod Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which
can	be	used	to	get	the	type	information	for
an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	Properties	collection.

See	Also

CollectionDef	Class

IInterfaceMember	DispatchID	Property

IInterfaceMember	Flags	Property

IInterfaceMember	Interface	Collection

IMethodDef	Interface

IParameterDef	Interface

MethodDef	Class

PropertyDef	Class

Repository	SQL	Tables

Meta	Data	Services	Programming

IParameterDef	Type	Property
This	property	is	the	data	type	of	the	parameter,	which	can	be	any	variable	type
supported	by	Automation.

Dispatch	Identifier:			DISPID_ParDefType	(104)

Property	Data	Type:			long

See	Also

IMethodDef	Interface

IParameterDef	Interface

MethodDef	Class

Meta	Data	Services	Programming

IParameterDef	Flags	Property
This	property	supports	flags	that	define	whether	the	parameter	is	an	optional
parameter.	It	also	defines	whether	it	is	passed	by	reference	or	value,	and
specifies	which	of	the	parameters	is	a	return	value.

The	trailing	parameters	are	optional.	Only	one	parameter	can	be	marked	as	a
return	value.

Dispatch	Identifier:			DISPID_ParDefFlags	(103)

Property	Data	Type:			long

The	flag	can	take	one	of	the	following	values.

Flag	value Description
PARAMFLAGS_IN	=	1 Passed	by	value
PARAMFLAGS_OUT	=	2 Passed	by	reference
PARAMFLAGS_RETVAL	=	4 A	return	value
PARAMFLAGS_OPTIONAL	=	8 Optional	parameter

See	Also

IMethodDef	Interface

IParameterDef	Interface

MethodDef	Class

Meta	Data	Services	Programming

IParameterDef	Description	Property
This	property	is	a	string	(of	255	characters	maximum)	that	can	be	placed	in	an
IDL	file,	providing	a	more	meaningful	description	than	that	provided	through	the
default	text	for	the	parameter	type.	This	allows	parameters	of	the	type
VT_DISPATCH	to	be	defined,	even	though	the	IDL	file	contains	text	like
"IRepositoryObject	*".

Dispatch	Identifier:			DISPID_ParDefDesc	(105)

Property	Data	Type:			string

See	Also

IMethodDef	Interface

IParameterDef	Interface

MethodDef	Class

Meta	Data	Services	Programming

IParameterDef	Default	Property
This	property	is	a	string	(of	255	characters	maximum)	that	denotes	the	default
value	for	the	parameter.

Dispatch	Identifier:			DISPID_ParDefDefault	(106)

Property	Data	Type:			string

See	Also

IMethodDef	Interface

IParameterDef	Interface

MethodDef	Class

Meta	Data	Services	Programming

IParameterDef	GUID	Property
This	property	is	a	GUID	that	defines	the	interface	ID	of	a	VT_DISPATCH	or
VT_UNKNOWN	object.	This	cannot	be	set	through	the	CreateParameterDef
method.

Dispatch	Identifier:			DISPID_ParDefGUID	(107)

Property	Data	Type:			string

See	Also

IParameterDef	Interface

IMethodDef	Interface

MethodDef	Class

Meta	Data	Services	Programming

IPropertyDef	Interface
A	property	definition	object	specifies	the	characteristics	of	a	particular	type	of
property.	These	characteristics	are	defined	by	the	properties	of	the	property
definition	object.

To	create	a	new	property	definition

1.	 Use	the	CreatePropertyDef	method	of	the	IInterfaceDef	interface.

2.	 Define	any	non-default	characteristics	of	your	new	property	definition
by	manipulating	the	properties	of	the	property	definition	object.

3.	 Commit	your	changes	to	the	repository	database.

Use	the	IPropertyDef	interface	to	retrieve	or	modify	the	characteristics	of	a
property	definition.

Properties

Property Description
APIType The	C	data	type	of	the	property
ColumnName The	name	of	the	column	in	the	SQL	table	for	this	property
Flags Specifies	details	about	the	property
SQLScale The	number	of	digits	to	the	right	of	the	decimal	point	for	a

numeric	property
SQLSize The	size	in	bytes	of	the	property
SQLType The	SQL	data	type	of	the	property

Methods

IUnknown	method Description

QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument	names	to

a	corresponding	set	of	dispatch	identifiers
GetTypeInfo Retrieves	a	type	information	object,	which	can	be

used	to	get	the	type	information	for	an	interface
GetTypeInfoCount Retrieves	the	number	of	type	information	interfaces

that	an	object	provides	(either	0	or	1)
Invoke Provides	access	to	properties	and	methods	exposed	by

an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface	pointer.

The	IReposProperties	interface	provides	access	to
the	Properties	collection.

See	Also

IInterfaceDef	CreatePropertyDef	Method

PropertyDef	Class

Meta	Data	Services	Programming

IPropertyDef	APIType	Property
This	property	contains	the	C	data	type	of	the	property	definition	object.	For	a
definition	of	valid	values,	see	the	ODBC	documentation.

Dispatch	Identifier:			DISPID_APIType	(59)

Property	Data	Type:			short

See	Also

IPropertyDef	Interface

Meta	Data	Services	Programming

IPropertyDef	ColumnName	Property
This	property	specifies	the	name	of	the	column	in	the	SQL	table	for	the	property
definition	object.	A	SQL	table	is	used	to	store	instance	information	for	the
properties	of	an	interface.	By	default,	there	is	a	column	in	this	table	for	each
property	that	is	defined	as	a	member	of	the	interface.	The	length	of	the	column
name	must	be	30	bytes	or	less.

Dispatch	Identifier:			DISPID_ColumnName	(58)

Property	Data	Type:			string

See	Also

IPropertyDef	Interface

Meta	Data	Services	Programming

IPropertyDef	Flags	Property
This	property	supports	a	flag	that	is	used	to	create	annotational	properties.	In	this
release,	the	repository	engine	ignores	this	flag.	By	default,	a	column	is	created
for	each	property.	This	flag	is	preserved	for	backward	compatibility.

In	earlier	versions,	this	flag	specified	whether	to	create	a	column	for	the
property.	Column	creation	occurred	in	the	SQL	table	that	provided	persistent
storage	for	the	interface	to	which	the	property	was	attached.	Without	a	column,
instances	of	the	property	attached	only	to	individual	objects	when	setting	the
property	value	for	that	particular	object.

Dispatch	Identifier:			DISPID_ColFlags	(54)

Property	Data	Type:			long

See	Also

IPropertyDef	Interface

Meta	Data	Services	Programming

IPropertyDef	SQLScale	Property
This	property	sets	the	number	of	digits	to	the	right	of	the	decimal	point	for	a
numeric	property	definition	object.	This	parameter	is	ignored	unless	the
SQLType	property	specifies	an	SQL_NUMERIC,	SQL_DECIMAL,	or
SQL_TIME	data	type.

Dispatch	Identifier:			DISPID_SQLScale	(62)

Property	Data	Type:			short

See	Also

IPropertyDef	Interface

Meta	Data	Services	Programming

IPropertyDef	SQLSize	Property
This	property	sets	the	size	in	bytes	of	the	property	definition	object.	This
property	is	ignored	when	the	data	type	of	the	property	inherently	specifies	the
size	of	the	property.

Dispatch	Identifier:			DISPID_SQL_Size	(61)

Property	Data	Type:			short

Note		If	SQLSize	is	set	to	a	value	greater	than	65535,	the	repository	engine
divides	the	entered	number	by	65536	and	sets	SQLSize	to	the	value	of	the
remainder	of	the	division,	but	no	error	is	returned.

See	Also

IPropertyDef	Interface

Meta	Data	Services	Programming

IPropertyDef	SQLType	Property
This	property	sets	the	SQL	data	type	of	the	property	definition	object.	For	more
information,	including	a	definition	of	valid	values,	see	the	ODBC
documentation.

Dispatch	Identifier:			DISPID_SQLType	(60)

Property	Data	Type:			short

See	Also

IPropertyDef	Interface

Meta	Data	Services	Programming

IPropertyDef2	Interface
The	IPropertyDef2	interface	is	derived	from	IRepositoryDispatch,	which
inherits	from	IDispatch,	and	is	implemented	by	the	PropertyDef	class.

IPropertyDef2	supports	the	definition	of	enumerated	properties.	When	you
create	an	enumerated	object,	you	can	associate	it	with	a	PropertyDef	object
through	the	IPropertyDef2	interface.

When	to	Use
The	IPropertyDef2	interface	contains	an	optional	relationship	to	a	single
EnumerationDef	object.

There	are	no	methods	or	properties	associated	with	this	interface.	For	more
information,	see	IRepositoryDispatch.

Properties

Property Description
SQLBlobSize The	SQL	binary	large	object	(BLOB)	size	of	the	property

Collections

IPropertyDef2
collection Description
EnumerationDef The	collection	of	enumerated	objects	that	are

associated	with	a	property	definition	object

Meta	Data	Services	Programming

IPropertyDef2	SQLBlobSize	Property
This	property	contains	the	SQL	Binary	Large	Object	(BLOB)	size.	When
SQLType	is	set	to	SQL_LONGVARBINARY	or	SQL_LONGVARCHAR,	the
SQLBlobSize	(rather	than	SQLSize)	determines	the	size	of	a	property	that	is	a
BLOB.	For	a	definition	of	valid	values,	see	the	ODBC	documentation.

Dispatch	Identifier:			DISPID_SQLBlobSize	(87)

Property	Data	Type:			long

See	Also

IPropertyDef	SQLSize	Property

IPropertyDef	SQLType	Property

IPropertyDef2	Interface

Programming	BLOBs	and	Large	Text	Fields

Meta	Data	Services	Programming

IPropertyDef2	EnumerationDef	Collection
This	is	a	collection	of	EnumerationDef	objects.

Dispatch	Identifier:			DISPID_IPropertyDef2_EnumerationDef	=	373

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

PropertyDef_EnumerationFor_EnumerationDefThis	is	the
type	of
relationship
by	which	all
items	of	the
collection	are
connected	to
a	common
source	object.

Source	Is
Origin

Yes The	source
object	for	the
collection	is
also	the	origin
object.

Minimum
Collection
Size

Zero The	minimum
number	of
items	that
must	be
contained	in
the	collection
is	zero.

Maximum
Collection

One The
maximum

Size number	of
items	that	can
be	contained
in	the
collection	is
one.

Sequenced
Collection

No As	a
destination
collection,
this	does	not
have	an
explicitly
defined
sequence.
Collections	of
origin	objects
are	never
sequenced.

Deletes
Propagated

No Deleting	an
origin	object
or	a
relationship	in
the	collection
does	not
cause	the
deletion	of	a
corresponding
destination
object.

Destinations
Named

Yes The
relationship
type	for	the
collection
permits	the
naming	of
destination
objects.

Case-sensitive
Names

No The	collection
does	not
permit	the	use
of	case-
sensitive
names	for
destination
objects.

Unique
Names

Yes The
relationship
type	for	the
collection
requires	that
the	name	of	a
destination
object	be
unique	within
the	collection
of	destination
objects.

See	Also

IEnumerationDef	Interface

IEnumerationValueDef	Interface

IPropertyDef2	Interface

Repository	Enumeration	Definition

Meta	Data	Services	Programming

IReposRoot	Interface
The	IReposRoot	interface	is	a	placeholder	interface;	it	contains	no	properties,
methods,	or	collections	beyond	Automation	dispatch	methods.	It	is	provided	as	a
convenient	connection	point	to	the	root	object.	When	you	create	an	information
model,	you	can	attach	to	this	interface	a	relationship	collection	that	provides	a
navigational	connection	to	the	primary	objects	of	your	information	model.

When	to	Use
Use	the	IReposRoot	interface	as	a	starting	point	to	navigate	to	other	objects	in
the	repository.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which
can	be	used	to	get	the	type	information	for
an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or
1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface

pointer.	The	IReposProperties	interface
provides	access	to	the	Properties	collection.

See	Also

ReposRoot	Class

Meta	Data	Services	Programming

IReposTypeInfo	Interface
This	interface	relates	class,	interface,	and	relationship	definition	objects	to
repository	type	libraries.

When	to	Use
Use	the	IReposTypeInfo	interface	to:

Determine	which	repository	type	libraries	contain	a	particular	class,
interface,	or	relationship	type.

Determine	what	collection	types	are	associated	with	a	particular
relationship	type.

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces.
AddRef Increments	the	reference	count.
Release Decrements	the	reference	count.

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers.

GetTypeInfo Retrieves	a	type	information	object,	which	can	be
used	to	get	the	type	information	for	an	interface.

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or	1).

Invoke Provides	access	to	properties	and	methods	exposed
by	an	Automation	object.

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface	pointer.

The	IReposProperties	interface	provides	access	to
the	Properties	collection.

Collections

Collection Description
ItemInCollections The	origin	and	destination	collection	types	that	are

connected	to	a	relationship	definition	object.
ReposTypeLibScopes The	collection	of	repository	type	libraries	that

contain	a	particular	class,	interface,	or	relationship
type.

See	Also

ClassDef	Class

InterfaceDef	Class

RelationshipDef	Class

Meta	Data	Services	Programming

IReposTypeInfo	ItemInCollections	Collection
This	collection	contains	the	origin	and	destination	collection	types	that	are
associated	with	a	particular	relationship	type.	This	collection	is	empty	for
definition	objects	that	are	not	relationship	definitions.

Dispatch	Identifier:			DISPID_Collection	(39)

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship	Type Collection_Contains_itemsThis	is	the	type	of

relationship	by	which	all
items	of	the	collection	are
connected	to	a	common
source	object.

Source	Is	Origin No The	source	object	for	the
collection	is	not	the	same
as	the	origin	object.

Minimum
Collection	Size

Zero The	minimum	number	of
items	that	must	be
contained	in	the	collection
is	zero.

Maximum
Collection	Size

Two. The	maximum	number	of
items	that	can	be	contained
in	the	collection	is	two.

Sequenced
Collection

No As	a	destination	collection,
this	does	not	have	an
explicitly	defined
sequence.	Collections	of
origin	objects	are	never
sequenced.

Deletes
Propagated

No Deleting	an	origin	object
or	a	relationship	in	the
collection	does	not	cause
the	deletion	of	a
corresponding	destination
object.

Destinations
Named

No The	relationship	type	for
the	collection	does	not
permit	the	naming	of
destination	objects.

Case-Sensitive
Names

Not	applicable Case-sensitive	naming	is
not	applicable	for	this
collection.

Unique	Names Not	applicable Unique	naming	is	not
applicable	for	this
collection.

See	Also

IReposTypeInfo	Interface

Meta	Data	Services	Programming

IReposTypeInfo	ReposTypeLibScopes	Collection
The	collection	of	repository	type	libraries	that	contain	a	particular	class,
interface,	or	relationship	type.

Dispatch	Identifier:			DISPID_ReposTypeLibScopes	(43)

Collection
characteristic Value Description
Relationship
Type

ReposTypeLib_ScopeFor_ReposTypeInfoThis	is	the	type
of	relationship
by	which	all
items	of	the
collection	are
connected	to	a
common
source	object.

Source	Is
Origin

No The	source
object	for	the
collection	is
not	the	same	as
the	origin
object.

Minimum
Collection
Size

One The	minimum
number	of
items	that	must
be	contained	in
the	collection
is	one.

Maximum
Collection
Size

Many The	maximum
number	of
items	that	can
be	contained	in
the	collection
is	unlimited.

Sequenced
Collection

No As	a
destination
collection,	this
does	not	have
an	explicitly
defined
sequence.
Collections	of
origin	objects
are	never
sequenced.

Deletes
Propagated

Yes Deleting	an
origin	object	or
a	relationship
in	the
collection
causes	the
deletion	of	a
corresponding
destination
object.

Destinations
Named

Yes The
relationship
type	for	the
collection
permits	the
naming	of
destination
objects.

Case-Sensitive
Names

No The	collection
does	not	permit
the	use	of	case-
sensitive
names	for
destination
objects.

Unique	Names Yes The
relationship
type	for	the
collection
requires	that
the	name	of	a
destination
object	be
unique	within
the	collection
of	destination
objects.

See	Also

IReposTypeInfo	Interface

Meta	Data	Services	Programming

IReposTypeInfo2	Interface
This	interface	exposes	methods	that	allow	you	to	create	synonyms	for	an
existing	class,	interface,	relationship,	or	enumeration	definition	object.	The
IReposTypeInfo2	interface	inherits	from	the	IReposTypeInfo	interface.

When	to	Use
Use	the	IReposTypeInfo2	interface	to	allow	classes,	interfaces,	and
relationships	to	be	referred	to	by	multiple	names	as	aliases.

Properties

Property Description
Synonym A	string	used	as	an	alias	name

See	Also

IInterfaceMember2	Interface

Type	Information	Aliasing

Meta	Data	Services	Programming

IReposTypeInfo2	Synonym	Property
This	property	contains	a	string	that	is	used	as	an	alias	name.	You	can	use	this
property	to	define	an	alias	for	ClassDef,	RelationshipDef,	InterfaceDef,	and
EnumerationDef	classes.	The	maximum	length	of	this	string	is	255	characters.

Dispatch	Identifier:	DISPID_Synonym	(393)

Remarks
The	repository	engine	does	not	check	for	duplicate	synonym	values.	If	you	want
unique	synonyms,	you	must	check	for	duplicate	values	first.

This	interface	uses	methods	exposed	through	IRepositoryDispatch.	For	more
information,	see	IRepositoryDispatch	Interface.

See	Also

IReposTypeInfo2	Interface

Type	Information	Aliasing

Meta	Data	Services	Programming

IReposTypeLib	Interface
There	is	one	repository	type	library	for	every	information	model	contained	in	the
repository.	Each	information	model	provides	a	logical	grouping	of	all	of	the	type
definitions	related	to	a	particular	tool	(or	tool	set).

To	add	a	new	repository	type	library	to	the	repository,	use	the
IManageReposTypeLib	interface.

When	to	Use
Use	the	IReposTypeLib	interface	to:

Define	new	classes,	relationship	types,	and	interfaces	for	an	information
model.

Retrieve	or	modify	the	global	identifier	associated	with	a	repository
type	library.

Determine	which	type	definitions	are	associated	with	a	particular
repository	type	library.

Properties

Property Description
TypeLibID The	global	identifier	for	the	repository	type

library

Methods

IUnknown	method Description
QueryInterface Returns	pointers	to	supported	interfaces

AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which	can	be
used	to	get	the	type	information	for	an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or	1)

Invokes Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
method Description
get_Properties Retrieves	the	IReposProperties	interface	pointer.

The	IReposProperties	interface	provides	access
to	the	Properties	collection.

IReposTypeLib
method Description
CreateClassDef Creates	a	new	class	definition	object
CreateInterfaceDef Creates	a	new	interface	definition	object
CreateRelationshipDef Creates	a	new	relationship	definition	object

Collections

Collection Description
ReposTypeInfos The	collection	of	all	classes,	interfaces,	and

relationship	types	that	are	defined	in	the
repository	type	library

ReposTypeLibContexts The	collection	of	one	repository	root	object	that	is
the	context	for	the	repository	type	library

See	Also

IManageReposTypeLib	Interface

ReposTypeLib	Class

Meta	Data	Services	Programming

IReposTypeLib	TypeLibID	Property
This	property	is	the	global	identifier	for	the	repository	type	library.

Dispatch	Identifier:			DISPID_TypeLibID	(64)

Property	Data	Type:			GUID

See	Also

IReposTypeLib	Interface

Meta	Data	Services	Programming

IReposTypeLib::CreateClassDef
This	method	creates	a	new	class	definition	object.	No	interfaces	are	attached	to
the	class.

HRESULT	CreateClassDef(
				VARIANT			sObjId,
				BSTR									Name,
				VARIANT			sClsId,
				IClassDef	**ppIClassDef
);

Parameters
sObjId

[in]
The	object	identifier	to	be	used	for	the	new	class	definition	object.	The
repository	engine	will	assign	an	object	identifier	if	you	set	this	parameter	to
OBJID_NULL.

Name

[in]
The	name	of	the	new	class.

sClsId

[in]
The	global	identifier	by	which	this	class	is	referenced.

*ppIClassDef	[out]

The	interface	pointer	to	the	new	class	definition	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IClassDef	Interface

IReposTypeLib	Interface

Meta	Data	Services	Programming

IReposTypeLib::CreateInterfaceDef
This	method	creates	a	new	interface	definition	object.	Use	the
IClassDef::AddInterface	method	to	attach	the	interface	to	a	class	definition
object.

HRESULT	CreateInterfaceDef(VARIANT									sObjId,
				BSTR															Name,
				VARIANT									sIId,
				IInterfaceDef			*pIAncestor,
				IInterfaceDef			**ppIInterfaceDef
);

Parameters
sObjId

[in]
The	object	identifier	to	be	assigned	to	the	new	interface	definition	object.	If
this	parameter	is	set	to	OBJID_NULL,	the	repository	engine	assigns	an
object	identifier	for	you.

Name

[in]
The	name	of	the	interface	that	is	to	be	created.

sIId

[in]
The	interface	identifier	associated	with	the	signature	for	this	interface.	If
there	is	none,	set	this	parameter	to	zero.

*pIAncestor

[in]
The	IInterfaceDef	interface	pointer	for	the	base	interface	from	which	the
new	interface	is	derived.

*pplInterfaceDef

[out]
The	interface	pointer	for	the	new	interface.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IClassDef::AddInterface

IInterfaceDef	Interface

IReposTypeLib	Interface

Meta	Data	Services	Programming

IReposTypeLib::CreateRelationshipDef
This	method	creates	a	relationship	definition	object	for	a	new	relationship	type.
After	the	relationship	definition	is	created,	use	the
IInterfaceDef::CreateRelationshipColDef	method	to	create	origin	and
destination	collection	definitions	for	the	new	relationship	type.

HRESULT	CreateRelationshipDef(
				VARIANT													sObjId,
				BSTR																			Name,
				IReposTypeInfo		**ppIRelshipDef
);

Parameters
sObjId	[in]
The	object	identifier	for	the	new	relationship	type.	The	repository	engine	assigns
an	object	identifier	if	you	set	this	parameter	to	OBJID_NULL.

Name

[in]
The	name	of	the	new	relationship	type.

*ppIRelshipDef

[out]
The	COM	interface	pointer	to	the	new	relationship	definition	object.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	failed	to	complete	successfully.

See	Also

IInterfaceDef::CreateRelationshipColDef

IReposTypeLib	Interface

RelationshipDef	Class

Meta	Data	Services	Programming

IReposTypeLib	ReposTypeInfos	Collection
This	collection	contains	all	classes,	interfaces,	and	relationship	types	that	are
associated	with	a	repository	type	library.	The	repository	engine	uses	this
collection	to	enforce	the	unique	naming	of	all	classes,	interfaces,	and
relationship	types	for	a	repository	type	library.

Dispatch	Identifier:			DISPID_ReposTypeInfos	(42)

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

ReposTypeLib_ScopeFor_ReposTypeInfoThis	is	the	type
of	relationship
by	which	all
items	of	the
collection	are
connected	to	a
common
source	object.

Source	Is
Origin

Yes The	source
object	for	the
collection	is
also	the	origin
object.

Minimum
Collection
Size

Zero The	minimum
number	of
items	that	must
be	contained	in
the	collection
is	zero.

Maximum Many The	maximum

Collection
Size

number	of
items	that	can
be	contained	in
the	collection
is	unlimited.

Sequenced
Collection

No As	a
destination
collection,	this
does	not	have
an	explicitly
defined
sequence.
Collections	of
origin	objects
are	never
sequenced.

Deletes
Propagated

Yes Deleting	an
origin	object	or
a	relationship
in	the
collection
causes	the
deletion	of	a
corresponding
destination
object.

Destinations
Named

Yes The
relationship
type	for	the
collection
permits	the
naming	of
destination
objects.

Case-Sensitive
Names

No This	collection
does	not	use

case-sensitive
names	for
destination
objects.

Unique	Names Yes The	collection
requires	that
the	name	of	a
destination
object	be
unique	within
the	collection
of	destination
objects.

See	Also

IReposTypeLib	Interface

Meta	Data	Services	Programming

IReposTypeLib	ReposTypeLibContexts	Collection
This	is	the	collection	of	one	repository	root	object	that	is	the	context	for	an
information	model.

Dispatch	Identifier:			DISPID_ReposTLBContexts	(41)

Remarks
The	following	characteristics	are	true	for	this	collection.

Collection
characteristic Value Description
Relationship
Type

TlbManager_ContextFor_ReposTypeLibs This	is	the
type	of
relationship	by
which	all
items	of	the
collection	are
connected	to	a
common
source	object.

Source	Is
Origin

No The	source
object	for	the
collection	is
not	the	same
as	the	origin
object.

Minimum
Collection
Size

One The	minimum
number	of
items	that
must	be
contained	in
the	collection
is	one.

Maximum
Collection
Size

Many The	maximum
number	of
items	that	can
be	contained
in	the
collection	is
unlimited.

Sequenced
Collection

No As	a
destination
collection,	this
does	not	have
an	explicitly
defined
sequence.
Collections	of
origin	objects
are	never
sequenced.

Deletes
Propagated

Yes Deleting	an
origin	object
or	a
relationship	in
the	collection
causes	the
deletion	of	a
corresponding
destination
object.

Destinations
Named

Yes The
relationship
type	for	the
collection
permits	the
naming	of
destination
objects.

Case-Sensitive
Names

No The	collection
does	not
permit	the	use
of	case-
sensitive
names	for
destination
objects.

Unique
Names

Yes The
relationship
type	for	the
collection
requires	that
the	name	of	a
destination
object	be
unique	within
the	collection
of	destination
objects.

See	Also

IReposTypeLib	Interface

Meta	Data	Services	Programming

IReposTypeLib2	Interface
The	IReposTypeLib2	interface	inherits	from	the	IReposTypeLib	interface.	It
allows	model	creators	to	define	dependencies	between	information	models	that
are	stored	in	a	repository.

The	interface	IReposTypeLib2	adds	two	collections,	DependsOn	and	UsedBy,
which	are	connected	through	the	ReposTypeLibDependency	relationship.
When	an	installation	script	for	a	repository	type	library	is	inserted	into	a
repository	database,	the	repository	engine	stores	this	information	by	using	the
DependsOn	collection.

Note		The	engine	does	not	automatically	calculate	the	dependency	information
for	models	created	using	the	repository	API.

When	to	Use
Use	the	IReposTypeLib2	interface	to	define	dependencies	between	type
libraries	in	information	models.

Properties

IReposTypeLib
Property Description
TypeLibID The	global	identifier	for	the	repository	type

library

IReposTypeLib2
Property Description
Prefix Stores	the	prefix	of	an	interface	name	to

distinguish	an	interface	from	other	identically
named	interfaces

Methods

IUnknown	Method Description
QueryInterface Returns	pointers	to	supported	interfaces
AddRef Increments	the	reference	count
Release Decrements	the	reference	count

IDispatch	Method Description
GetIDsOfNames Maps	a	single	member	and	a	set	of	argument

names	to	a	corresponding	set	of	dispatch
identifiers

GetTypeInfo Retrieves	a	type	information	object,	which	can	be
used	to	get	the	type	information	for	an	interface

GetTypeInfoCount Retrieves	the	number	of	type	information
interfaces	that	an	object	provides	(either	0	or	1)

Invoke Provides	access	to	properties	and	methods
exposed	by	an	Automation	object

IRepositoryDispatch
Method Description
get_Properties Retrieves	the	IReposProperties	interface	pointer.

The	IReposProperties	interface	provides	access
to	the	Properties	collection.

IReposTypeLib
Methods Description
CreateClassDef Creates	a	new	class	definition	object
CreateInterfaceDef Creates	a	new	interface	definition	object
CreateRelationshipDef Creates	a	new	relationship	definition	object

Collections

IReposTypeLib
Collection Description
ReposTypeInfos The	collection	of	all	classes,	interfaces,	and

relationship	types	that	are	defined	in	the
repository	type	library

ReposTypeLibContexts The	collection	of	one	Repository	root	object	that
is	the	context	for	the	repository	type	library

IReposTypeLib2
Collection Description
DependsOn The	collection	that	relates	type	libraries	that

depend	on	other	type	libraries
UsedBy The	collection	that	relates	type	libraries	used	by

other	type	libraries

See	Also

IManageReposTypeLib	Interface

IReposTypeLib	Interface

ReposTypeLib	Class

Meta	Data	Services	Programming

IReposTypeLib2	Prefix	Property
This	property	stores	the	prefix	of	an	interface	name	to	distinguish	an	interface
from	other	identically	named	interfaces.	Attaching	a	prefix	guarantees	that	a
class	that	implements	interfaces	from	different	information	models	does	not
introduce	a	name	conflict	when	both	interfaces	share	the	same	name.	The	prefix
is	also	used	in	XML	for	identifying	namespaces	(for	example,	"Uml"	in
UmlElement).

The	maximum	length	for	this	prefix	is	255	characters.

For	the	Open	Information	Model	(OIM),	prefix	values	are	added	during	model
installation.	If	no	prefix	is	specified,	the	first	three	letters	of	the	information
model	name	are	applied	as	a	default	value.

For	the	latest	version	of	the	Meta	Data	Coalition	(MDC)	OIM,	prefix	values
must	be	added	programmatically.	Prefix	values	are	not	added	during	model
installation.

Dispatch	Identifier:			DISPID_IReposTypeLib2Prefix

Property	Data	Type:				string

See	Also

IManageReposTypeLib	Interface

IReposTypeLib	Interface

ReposTypeLib	Class

Meta	Data	Services	Programming

IReposTypeLib2	DependsOn	Collection
This	is	the	collection	that	relates	repository	type	libraries	that,	in	turn,	depend	on
other	repository	type	libraries.

Dispatch	Identifier:	DISPID_IReposTypeLib2DependsOn	(330)

See	Also

IManageReposTypeLib	Interface

IReposTypeLib	Interface

ReposTypeLib	Class

Meta	Data	Services	Programming

IReposTypeLib2	UsedBy	Collection
This	is	the	collection	that	relates	repository	type	libraries	used	by	other
repository	type	libraries.

Dispatch	Identifier:	DISPID_IReposTypeLib2UsedBy	(331)

See	Also

IManageReposTypeLib	Interface

IReposTypeLib	Interface

ReposTypeLib	Class

Meta	Data	Services	Programming

Model	Dependency	Example
The	following	example	demonstrates	the	use	of	both	the	DependsOn	and
UsedBy	collections.	These	examples	are	written	in	Microsoft®	Visual	Basic®.

This	example	requires	the	Microsoft	SQL	Server™	2000	Meta	Data	Services
Software	Development	Kit	(SDK).

To	run	this	example:

1.	 Create	an	information	model	FileSys.mdl	that	contains	three	packages:
FileSys,	FAT,	and	NTFS.

2.	 Create	three	type	libraries:	FileSys,	FAT,	and	NTFS.

3.	 Populate	the	repository	database	(FileSys.mdb)	with	the	type	libraries
by	using	the	SDK	component	Inrepim.exe.

In	this	example	the	type	library	FileSys	is	used	by	FAT	and	NTFS.	Also,	both	of
the	type	libraries	FAT	and	NTFS	depend	on	the	FileSys	type	library.

The	Visual	Basic	Module

'-----------------------	Model	Dependency	Example	-----------------------
'Declare	OBJIDs	assigned	to	type	libraries:
Public	Const	OBJID_TypeLib_FILESYS	=	"{{992CF8AC-BD64-11d2-ACBD-00C04FC2F637},0000000E}"
Public	Const	OBJID_TypeLib_NTFS	=	"{{992CF8B1-BD64-11d2-ACBD-00C04FC2F637},00000005}"
Public	Const	OBJID_TypeLib_FAT	=	"{{992CF8AF-BD64-11d2-ACBD-00C04FC2F637},00000006}"
'-----------------------------	Declarations	-----------------------------
Public	Rep	As	New	Repository
Dim	FileSys	As	RepositoryObject
Dim	FAT	As	RepositoryObject
Dim	NTFS	As	RepositoryObject
Dim	Root	As	RepositoryObject

Private	Sub	Main()
'-----------Open	Repository	database	and	set	OBJIDs	to	objects	----------
			Set	Root	=	Rep.Open("FileSys.mdb")
			Set	FileSys	=	Rep.Object(OBJID_TypeLib_FILESYS)
			Set	FAT	=	Rep.Object(OBJID_TypeLib_FAT)
			Set	NTFS	=	Rep.Object(OBJID_TypeLib_NTFS)
'------------------------------	Transaction	-----------------------------
			Rep.Transaction.Begin
			FileSys("IReposTypeLib2").UsedBy.Add	FAT
			NTFS("IReposTypeLib2").DependsOn.Add	FileSys
			Rep.Transaction.Commit
'--------------------------------	Cleanup	-------------------------------
			Set	FileSys	=	Nothing
			Set	FAT	=	Nothing
			Set	NTFS	=	Nothing
			Set	Rep	=	Nothing
End	Sub
'--------------------	End	of	Model	Dependency	Example	-------------------

See	Also

IManageReposTypeLib	Interface

IReposTypeLib	Interface

Meta	Data	Services	SDK

ReposTypeLib	Class

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

IScriptDef	Interface
IScriptDef	is	derived	from	IUnknown,	IDispatch,	and	IRepositoryDispatch.

The	IScriptDef	interface	allows	the	user	to	associate	a	Microsoft®	ActiveX®
script	definition	with	a	method	without	requiring	the	user	to	create	an
aggregation	wrapper.

When	to	Use
Use	the	IScriptDef	interface	to:

Define	a	method	on	an	interface.

Define	a	method	on	a	base	interface,	overriding	the	base	interface
method.

Define	a	validation	rule	for	a	property	on	an	interface.

Define	a	validation	rule	for	a	property	on	a	base	interface,	overriding
the	base	interface	validation	rule.

Properties

Properties Description
Body The	storage	for	the	body	of	the	script.	A	variable	length

string,	not	to	exceed	64	KB	in	length.
Language The	storage	for	the	language	the	script	is	written	in.

Valid	values	are	Microsoft	JScript®	and	Microsoft
Visual	Basic®	Scripting	Edition	(VBScript).

This	string	is	a	maximum	of	255	characters.

Methods

Method Description
ValidateScript Validates	a	script's	syntax.	It	returns	S_OK	if	the	script

can	be	executed;	otherwise	it	returns	a	script	engine
specific	error.

Collections

Collection Description
UsingClasses Collection	of	classes	for	which	this	script	is	used
UsingInterfaces Collection	of	interfaces	for	which	this	script	is	used
UsingMembers Collection	of	members	for	which	this	script	is	used

See	Also

Defining	Script	Objects

MethodDef	Object

Meta	Data	Services	Programming

IScriptDef::ValidateScript
The	ValidateScript	method	syntactically	validates	the	script.

HRESULT	ValidateScript();

Dispatch	Identifier:			DISPID_IScriptDef_ValidateScript	=	347

Parameters
None.

Return	Value
S_OK

The	method	completed	successfully.

Error	Values

This	method	returns	a	Script	Engine	specific	error	if	the	script	engine	is
unable	to	instantiate	the	script.

Remarks
The	syntax	of	the	script	is	checked	by	instantiating	the	script.

See	Also

IScriptDef	Interface

Meta	Data	Services	Programming

IScriptDef	Body	Property
Contains	the	body	of	a	script.

Dispatch	Identifier:			DISPID_IScriptDef_Body	=	346

Property	Data	Type:			string

See	Also

IScriptDef	Interface

Meta	Data	Services	Programming

IScriptDef	Language	Property
Contains	a	string	describing	the	language	the	script	is	written	in.	Valid	values
are:

VBScript

JScript

Dispatch	Identifier:			DISPID_IScriptDef_Language	=	345

Property	Data	Type:			string

See	Also

IScriptDef	Interface

Meta	Data	Services	Programming

IScriptDef	UsingClasses	Collection
The	collection	of	classes	being	used	by	this	script.

Dispatch	Identifier:			DISPID_IScriptDef_UsingClasses	(349)

See	Also

IScriptDef	Interface

Meta	Data	Services	Programming

IScriptDef	UsingInterfaces	Collection
The	collection	of	interfaces	being	used	by	this	script.

Dispatch	Identifier:			DISPID_IScriptDef_UsingClasses	(352)

See	Also

IScriptDef	Interface

Meta	Data	Services	Programming

IScriptDef	UsingMembers	Collection
The	collection	of	members	using	this	script.

Dispatch	Identifier:			DISPID_IScriptDef_UsingMembers	(355)

See	Also

IScriptDef	Interface

Meta	Data	Services	Programming

IViewClassDef	Interface
The	IViewClassDef	interface	is	derived	from	IRepositoryDispatch,	which
inherits	from	IDispatch	and	is	implemented	by	the	ClassDef	class.

When	to	Use
Use	this	interface	to	define	database	views	for	a	class.

Properties

Property Type Description
ViewName string Customized	view	name	for	better

readability	and	to	help	prevent	name-
space	collisions

ViewFlags long Bit	flags	that	determine	the
characteristics	of	the	view	generated
for	the	class

Dispatch	Identifier:			DISPID_IViewClassDef	(375)

See	Also

Defining	a	Class	View

IRepositoryDispatch	Interface

IViewInterfaceDef	Interface

IViewPropertyDef	Interface

IViewRelationshipDef	Interface

Meta	Data	Services	Programming

IViewClassDef	ViewName	Property
This	property	contains	a	custom	view	name	for	the	class-based	view.	This
property	overrides	the	default	name.	The	maximum	length	for	ViewName	is	128
characters.

Dispatch	Identifier:			DISPID_IViewClassDefViewName	(377)

Property	Data	Type:	string

See	Also

IViewInterfaceDef	Interface

Naming	Conventions	for	Generated	Views

ViewFlags	Property

Meta	Data	Services	Programming

IViewClassDef	ViewFlags	Property
This	property	contains	flags	that	determine	the	characteristics	of	a	generated
view	that	is	based	on	a	ClassDef	object.

Dispatch	Identifier:			DISPID_IViewClassDefViewFlags	(376)

Property	Data	Type:	long

The	following	table	describes	the	bit	flags	allowed	for	the	ViewFlags	property.

Name Bit
Default
value Description

GENERATE_RESOLVED_VIEW 1 0 Specifies	whether	to	generate	a
view	that	supports	version
resolution.

GENERATE_NORESOLUTION_VIEW2 0 Specifies	whether	to	generate	a
view	that	does	no	version
resolution.	This	flag	should	only
be	used	on	non-versioned
repositories.

GENERATE_WORKSPACE_VIEW 4 0 Specifies	whether	to	generate	a
view	that	is	scoped	for	a
workspace.

USE_VERSIONID_COLUMN 8 0 Specifies	that	the
GENERATE_RESOLVED_VIEW
view	for	this	class	includes	a
VersionID	column	to	identify	the
version	to	which	this	object
resolves.

USE_VERSION_FLAGS_COLUMN 16 0 Specifies	whether	to	include
Z_VState_Z	of	RTblVersion
the
GENERATE_RESOLVED_VIEW
view,	indicating	whether	the
version	is	frozen	or	checked	out	to

a	workspace.

See	Also

Defining	a	Class	View

IViewInterfaceDef	Interface

ViewName	Property

Meta	Data	Services	Programming

IViewInterfaceDef	Interface
The	IViewInterfaceDef	interface	is	derived	from	IRepositoryDispatch,	which
inherits	from	IDispatch	and	is	implemented	by	the	InterfaceDef	class.

When	to	Use
Use	this	interface	to	define	a	database	view	for	all	objects	that	implement	a
specific	interface.

Properties

Property Type Description
ViewName string Customized	view	name	for	better

readability	and	to	help	prevent	name-space
collisions.

ViewFlags long Bit	flags	that	determine	the	characteristics
of	the	view	generated	for	the	class

Dispatch	Identifier:			DISPID_IViewInterfaceDef	(378)

See	Also

Defining	an	Interface	View

InterfaceDef	Object

IRepositoryDispatch	Interface

IViewClassDef	Interface

IViewPropertyDef	Interface

IViewRelationshipDef	Interface

Meta	Data	Services	Programming

IViewInterfaceDef	ViewName	Property
This	is	a	custom	view	name	that	overrides	the	default	view.	The	ViewName	can
be	no	longer	than	128	characters.

Dispatch	Identifier:			DISPID_IViewInterfaceDefViewName	(380)

Property	Data	Type:	string

See	Also

IViewInterfaceDef	Interface

Naming	Conventions	for	Generated	Views

Meta	Data	Services	Programming

IViewInterfaceDef	ViewFlags	Property
This	property	contains	flags	that	determine	the	characteristics	of	a	generated
view	that	is	based	on	an	InterfaceDef	object.

Dispatch	Identifier:			DISPID_IViewInterfaceDefFlags	(379)

Property	Data	Type:	long

The	following	table	describes	the	bit	flags	for	the	ViewFlag	property.

Flag	Name Position
Default
value Description

GENERATE_RESOLVED_VIEW 1 0 Specifies	whether	to	generate	a
view	that	supports	version
resolution.

GENERATE_NORESOLUTION_VIEW2 0 Specifies	whether	to	generate	a
view	that	does	no	version
resolution.	This	flag	should	only
be	used	on	nonversioned
repositories.

GENERATE_WORKSPACE_VIEW 4 0 Specifies	whether	to	generate	a
view	that	is	scoped	for	a
workspace.

USE_VERSIONID_COLUMN 8 0 Specifies	that	the
GENERATE_RESOLVED_VIEW
view	for	this	interface	includes	a
VersionID	column	to	identify	the
version	to	which	this	object
resolves.

USE_VERSION_FLAGS_COLUMN 16 0 Specifies	whether	to	include
Z_VState_Z	of	RTblVersion
the
GENERATE_RESOLVED_VIEW
view.	Z-VState_Z	indicates
whether	the	version	is	frozen	or

checked	out	to	a	workspace.
EXCLUDE_IMPLIED_INTERFACES 32 0 Specifies	whether	to	include	the

properties	of	interfaces	that	are
directly	or	indirectly	implied	by
this	interface	but	are	not
supertypes	of	this	interface.

See	Also

Defining	an	Interface	View

IViewInterfaceDef	Interface

ViewName	Property

Meta	Data	Services	Programming

IViewPropertyDef	Interface
The	IViewPropertyDef	interface	defines	a	custom	name	that	you	can	use	to
override	the	default	column	name	of	a	view.	This	interface	is	derived	from
IRepositoryDispatch,	which	inherits	from	IDispatch	and	is	implemented	by	the
PropertyDef	class.

The	same	view	column	can	appear	in	multiple	views.	In	each	case,	the	view
column	name	that	you	define	is	the	same	for	all	occurrences.	For	example,	a
view	that	supports	implied	interfaces	or	that	is	based	on	an	inherited	interface
includes	members	from	multiple	interfaces,	creating	a	case	where	a	single
column	can	appear	more	than	once.

When	to	Use
Use	this	interface	to	define	the	column	name	of	a	property	in	the	view.	This
prevents	name-space	collisions	and	allows	for	column	renaming	for	better
readability	in	an	SQL	query	statement.

Properties

Property Type Description
ViewColumnName string Customized	view	name	for	better

readability	and	to	help	prevent	name-space
collisions.

A	view	column	name	can	be	a	maximum	of
128	characters	in	length.	The	default	value
is	null.

Dispatch	Identifier:			DISPID_IViewInterfaceDef	(385)

See	Also

IViewClassDef	Interface

IViewInterfaceDef	Interface

IViewRelationshipDef	Interface

PropertyDef	Object

Meta	Data	Services	Programming

IViewPropertyDef	ViewColumnName	Property
Use	this	property	to	create	a	customized	column	name	for	a	property.	The
maximum	length	for	this	property	is	128	characters.

Dispatch	Identifier:			DISPID_IViewInterfaceDefViewColumnName	(386)

Property	Data	Type:		string

See	Also

IViewPropertyDef	Interface

Meta	Data	Services	Programming

IViewRelationshipDef	Interface
The	IViewRelationshipDef	interface	is	derived	from	IRepositoryDispatch,
which	inherits	from	IDispatch	and	is	implemented	by	the	RelationshipDef
class.

When	to	Use
Use	this	interface	to	define	a	junction	table	view	of	a	relationship	class.	This	is
used	for	views	that	have	many-to-many	relationships.

Properties

Property Type Description
ViewFlags long Bit	flags	that	determine	the	characteristics

of	the	view	generated	for	the	class
ColumnNamePrefix string	 This	string	is	prefixed	to	the	column

names	NAME,	PrevDstID,	and
RelTypeID.	The	string	is	used	in	all	views
where	the	corresponding	column	appears.

JunctionViewName string A	custom	view	name	that	overrides	the
default	view.	It	applies	specifically	to	a
many-to-many	relationship	or	a
relationship	that	has	the
GENERATE_VIEW	flag	set.

Dispatch	Identifier:			DISPID_IViewRelationship	(381)

See	Also

Defining	a	Junction	Table	View

IRepositoryDispatch	Interface

IViewInterfaceDef	Interface

IViewPropertyDef	Interface

IViewClassDef	Interface

Meta	Data	Services	Programming

IViewRelationshipDef	ViewFlags	Property
This	property	contains	flags	that	determine	the	characteristics	of	a	generated
view	that	is	based	on	a	RelationshipDef	object.

Property	Data	Type:	long

This	table	describes	the	flags	property	for	the	IViewRelationshipDef	interface.

Flag	name Position
Default
value Description

GENERATE_RESOLVED_VIEW 1 0 Specifies	whether	to	generate	a	junction
table	view	that	supports	version
resolution.

GENERATE_NORESOLUTION_VIEW2 0 Specifies	whether	to	generate	a	junction
table	view	that	does	no	version
resolution.	This	flag	should	only	be	used
on	nonversioned	repositories.

GENERATE_WORKSPACE_VIEW 4 0 Specifies	whether	to	generate	a	junction
table	view	that	is	scoped	for	a
workspace.

INCLUDE_PREVDSTID 64 0 Specifies	that	the	internal	identifier	of
the	previous	element	in	a	sequential
collection	be	included	as	a	column	in	the
view	containing	the	relationship.

This	flag	applies	only	to	sequenced
relationship	types.

INCLUDE_RELTYPEID 128 0 Specifies	that	the	view	containing	this
relationship	should	have	a	column
containing	the	relationship	type	to	enable
joins	with	RTblRelshipProps

CHOOSE_ORIGIN 256 0 If	a	relationship	is	one-to-one,	specifies
storage	in	views	containing	the
relationship	type's	origin	interface.

GENERATE_RESOLVED_VIEW,
GENERATE_NORESOLUTION_VIEW,
and	GENERATE_WORKSPACE_VIEW
have	precedence	over	this	flag.

INCLUDE_LONGNAMES 512 0 Specifies	that	long	names	should	be
included	in	junction	table	views.

Dispatch	Identifier:			DISPID_IViewRelationshipDefFlags	(382)

See	Also

Defining	Views	in	an	Information	Model

IViewRelationshipDef	ColumnNamePrefix	Property

IViewRelationshipDef	Interface

IViewRelationshipDef	JunctionViewName	Property

RTblRelshipProps	SQL	Table

Meta	Data	Services	Programming

IViewRelationshipDef	ColumnNamePrefix	Property
This	string	is	prefixed	to	the	column	names	NAME,	PrevDstID,	and
RelTypeID.	The	string	is	used	in	all	views	in	which	the	corresponding	column
appears.	The	maximum	length	of	this	string	is	118	characters.

This	string	is	used	as	the	foreign	key	column	(if	the	relationship	is	stored	as	a
foreign	key),	and	is	attached	to	all	columns	that	are	scoped	to	the	relationship.

Note		In	a	view	that	involves	multiple	relationship	types,	use	this	property	to
enhance	the	readability	of	column	names.

Dispatch	Identifier:			DISPID_IViewRelationshipDefColumnNamePrefix	(383)

Property	Data	Type:		string

See	Also

IViewRelationshipDef	Interface

JunctionViewName	Property

Naming	Conventions	for	Generated	Views

ViewFlags	Property

Meta	Data	Services	Programming

IViewRelationshipDef	JunctionViewName	Property
This	property	is	a	custom	view	name	that	overrides	the	default	view	name.	It
applies	only	to	many-to-many	relationships	or	those	that	have	the
GENERATE_RESOLVED_VIEW,	GENERATE_NORESOLUTION_VIEW,	or
GENERATE_WORKSPACE_VIEW	flag	set.	The	maximum	length	of	this	string
is	128	characters.

Dispatch	Identifier:			DISPID_IViewRelationshipDefJunctionViewName	(384)

Property	Data	Type:	string

See	Also

ColumnNamePrefix	Property

Defining	a	Junction	Table	View

IViewRelationshipDef	Interface

Naming	Conventions	for	Generated	Views

ViewFlags	Property

Meta	Data	Services	Programming

Constants	and	Data	Types
This	section	contains	information	about	the	constants	you	can	use	when
programming	against	the	repository	API.	It	also	contains	reference	topics	about
data	types,	which	provide	information	that	supports	conversion,	migration,	or
cross-tool	integration.	Header	files	provide	additional	definitions.

Topic Description
Repository	Constants Defines	the	constants	used	for	repository

engine	classes,	interfaces,	and	objects
SQL	and	API	Types	Used	in
Property	Definitions

Maps	the	API	types	and	SQL	types
recognized	by	the	repository	engine

Repository	SQL	Data	Types Maps	repository	data	types	to	SQL	data
types	supported	by	the	underlying	database
server

Header	Files
Various	declarations	and	definitions	for	the	repository	API	can	be	found	in	the
following	files.	The	repository	API	is	organized	by	repository	engine	classes,
interfaces,	and	objects,	and	by	type	information	model	classes,	interfaces,	and
objects.

The	Repapi.h	source	file	contains	Microsoft®	Visual	C++®	definitions
specific	to	the	repository	engine	classes,	interfaces,	and	objects.

The	Reptim.h,	Reptim2.h,	and	Reptim3.h	source	files	contain	the
constant	definitions	specific	to	the	type	information	model	classes,
interfaces,	and	objects.	Most	of	the	various	identifiers	(class,	interface,
object,	local,	internal,	and	dispatch)	that	you	may	find	useful	are
defined	in	this	file.

The	Repauto.h	file	contains	the	definitions	of	the	external	enumerations,
classes,	and	interfaces	of	the	repository	engine	and	of	the	type
information	model.	All	of	the	interfaces	found	in	this	file	support

Automation-level	access.

See	Also

Programming	Information	Models

Repository	API

Repository	API	Reference

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

Repository	Constants
These	constants	are	defined	for	repository	engine	classes,	interfaces,	and	objects.

Constant Value Description
CARD_NOLIMIT 0xFFFF Specifies	that	a	collection

can	have	an	unlimited
number	of	items.

COLUMNNAMESIZE 32	or	255 The	maximum	length,	in
bytes,	of	an	SQL	column
name.

Microsoft®	SQL	Server™
version	6.5	allows	32	bytes.
SQL	Server	7.0	and	SQL
Server	2000	allow	255
bytes.

INTID_NULL 0xFFFFFFFF The	null	internal	identifier.
MEMBERNAMESIZE 64	or	128 The	maximum	length,	in

bytes,	of	a	property,	method,
or	collection	type	name.

SQL	Server	6.5	allows	64
bytes.	SQL	Server	7.0	and
SQL	Server	2000	allow	128
bytes.

OBJID_NULL See	Reptim.h The	null	object	identifier.
Use	this	value	when	you
want	the	repository	engine
to	assign	an	object	identifier
for	you.

PASSWORDSIZE 64 The	maximum	length,	in
bytes,	of	the	password	string
that	is	used	to	connect	to	the
repository	database.

PROPVALSIZE 220 The	maximum	length,	in
bytes,	of	an	annotational
property	string.

RELSHIPNAMESIZE 249	or	260 The	maximum	length,	in
bytes,	of	a	name	that	a
relationship	assigns	to	its
destination	object.

SQL	Server	6.5	allows	249
bytes.	SQL	Server	7.0	and
SQL	Server	2000	allow	260
bytes.

REPOSERROR_OBJKNOWN0x00000001L Returned	in	the	fFlags	field
of	the	REPOSERROR
structure.	It	indicates	that	the
object	identifier	is	known.

REPOSERROR_SQLINFO 0x00000002L Returned	in	the	fFlags	field
of	the	REPOSERROR
structure.	It	indicates	that	the
SQL	error	information	is
valid.

REPOSERROR_HELPAVAIL 0x00000004L Returned	in	the	fFlags	field
of	the	REPOSERROR
structure.	It	indicates	that	the
rcHelpFile	and
dwHelpContext	fields	are
valid.

REPOSERROR_MSG_SIZE 256 The	maximum	length,	in
bytes,	of	the	message	in	the
rcMsg	field	of	the
REPOSERROR	structure.

TABLENAMESIZE 32	or	255 The	maximum	length,	in
bytes,	of	an	SQL	table	name.

SQL	Server	6.5	allows	32
bytes.	SQL	Server	7.0	and
SQL	Server	2000	allow	255

bytes.

TIMESTAMP_NULL {9999,	12,	31,
0,	0,	0,	0}

The	null	timestamp	value.

TYPEINFONAMESIZE 64	or	128 The	maximum	length,	in
bytes,	of	a	class,	interface,
or	relationship	type	name.

SQL	Server	6.5	allows	64
bytes.	SQL	Server	7.0	and
SQL	Server	2000	allow	128
bytes.

TYPELIBNAMESIZE 64	or	128 The	maximum	length,	in
bytes,	of	a	repository	type
library	name.

SQL	Server	6.5	allows	64
bytes.	SQL	Server	7.0	and
SQL	Server	2000	allow	128
bytes.

USERSIZE 64	or	128 The	maximum	length,	in
bytes,	of	the	user	name	that
is	used	to	connect	to	the
repository	database.

SQL	Server	6.5	allows	64
bytes.	SQL	Server	7.0	and
SQL	Server	2000	allow	128
bytes.

VIEWNAMESIZE 128 The	maximum	length,	in
bytes,	of	a	user-defined	view
name.

COLPREFIXSIZE 119 The	maximum	length,	in
bytes,	of	a	prefix	that
identifies	a	relationship	in	a
generated	view.

See	Also

CollectionDefFlags	Enumeration

ConnectionFlags	Enumeration

Generating	Views

InterfaceDefFlags	Enumeration

InterfaceMemberFlags	Enumeration

REPOSERROR	Data	Structure

TransactionFlags	Enumeration

Meta	Data	Services	Programming

SQL	and	API	Types	Used	in	Property	Definitions
The	following	tables	show	the	API	types	recognized	by	the	repository	engine,	as
well	as	the	SQL	types.	These	values	appear	in	the	APIType	and	SQLType
properties	of	a	PropertyDef	object.	For	more	information	about	conversion
between	SQL	and	API	types,	see	the	Microsoft®	ODBC	documentation.	For
more	information	about	API	and	SQL	data	type	descriptions,	see	Data	Types.

The	following	table	identifies	API	types	that	map	to	Transact-SQL.	It	is
recommended	that	you	not	use	unlisted	API	types.

API	Types

API	type VALUE Maps	to	(T-SQL)
SQL_C_BINARY* -2 Binary	or	varbinary
SQL_C_TINYINT -6 tinyint
SQL_C_BIT -7 bit
SQL_C_CHAR 1 char	or	varchar
SQL_C_LONG 4 int
SQL_C_SHORT 5 int
SQL_C_FLOAT 7 real
SQL_C_DOUBLE 8 float
SQL_C_DATE 9 datetime
SQL_C_TIME 10 datetime
SQL_C_TIMESTAMP 11 datetime

Note		For	SQL_C_BINARY	use	an	array	of	unsigned	characters.	C++
programmers	must	use	VT-UI1.

SQL	Types

SQL	type VALUE Maps	to
SQL_LONGVARCHAR -1 text
SQL_BINARY -2 binary

JavaScript:hhobj_1.Click()

SQL_VARBINARY -3 varbinary
SQL_LONGVARBINARY -4 image
SQL_TINYINT -6 tinyint
SQL_BIT -7 bit
SQL_CHAR 1 char
SQL_NUMERIC 2 numeric
SQL_DECIMAL 3 decimal
SQL_INTEGER 4 integer
SQL_SMALLINT 5 smallint
SQL_FLOAT 6 float
SQL_REAL 7 real
SQL_DOUBLE 8 real
SQL_DATE 9 datetime
SQL_TIME 10 datetime
SQL_TIMESTAMP 11 datetime
SQL_VARCHAR 12 varchar

The	following	table	identifies	API	types	that	are	not	supported	by	repository
Automation.	You	can	only	store	and	retrieve	unsigned	integers.	It	is
recommended	that	you	not	use	these	API	types.

API	Types	-	Not	Supported

API	type VALUE
SQL_C_UTINYINT -28
SQL_C_STINYINT -26
SQL_C_ULONG -18
SQL_C_USHORT -17
SQL_C_SLONG -16
SQL_C_SSHORT -15

See	Also

Constants	and	Data	Types

PropertyDef	object

Repository	SQL	Data	Types

Meta	Data	Services	Programming

Repository	SQL	Data	Types
Because	data	types	can	vary	between	database	management	systems,	the
repository	engine	maps	its	own	set	of	repository	data	types	to	the	SQL	data	types
that	are	supported	by	the	underlying	database	server.

This	table	translates	repository	data	types	into	SQL	data	types	known	by	the
database	server.	For	data	types	that	vary	between	different	database	servers,	the
data	type	used	for	each	database	server	is	shown.	In	these	cases,	the	Microsoft®
SQL	Server™	data	type	is	shown	with	(S)	appended	to	it,	and	the	Microsoft	Jet
server	data	type	is	shown	with	(J)	appended	to	it.

Repository	SQL	data	types	appear	in	repository	SQL	tables	that	compose	the
repository	SQL	schema.

Repository
data	type

Database
data	type Description

RTBoolean bit	(S)
boolean	(J)

A	true/false	value

RTBrID 4-byte	integer A	branch	identifier
RTCount 2-byte	integer The	count	(that	is,	cardinality)	of	a

collection
RTDBVersion 40-byte	varchar A	string	that	indicates	the	engine	version

that	created	the	database
RTDispID 4-byte	integer An	Automation	dispatch	identifier
RTFlags 2-byte	integer Flag	bits	that	define	the	behavior	of	an

entity	or	indicate	what	kind	of	row	exists
in	a	table

RTGUID 16-byte	binary A	globally	unique	identifier
RTIntID 8-byte	binary An	internal	identifier
RTLClock 4-byte	integer Logical	clock	value
RTLocalID 4-byte	binary A	local	identifier;	part	of	an	internal

identifier
RTLongBinary image	(S)

longbinary	(J)
A	long	binary	stream	of	data

RTLongString text	(S)
memo	(J)

A	string	with	a	maximum	length	of
approximately	1	gigabyte	(GB)

RTNameString 200-byte
varchar

A	special	truncated	name	string	used	for
indexing

RTScale 2-byte	integer Scale	for	numeric	data;	the	number	of
digits	after	the	decimal	point

RTShortString 220-byte
varchar

A	special	shortened	string	value	used	for
indexing

RTSiteID 4-byte	binary A	site	identifier;	part	of	an	object
identifier

RTSize 2-byte	integer The	size	of	a	data	type,	in	bytes
RTSQLName 30-byte	varchar An	SQL	identifier;	a	table	or	column

name
RTSQLType 2-byte	integer The	ODBC	representation	of	an	SQL

data	type
RTVerID 4-byte	integer A	version-within-branch	identifier

See	Also

Constants	and	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

Meta	Data	Services	Programming

Enumerations
Enumerations	are	a	fixed	set	of	values	that	share	the	same	context.	Through	the
repository	API,	you	can	set	predefined	enumerations	on	flags	to	control
repository	engine	behavior	for	object	definitions	and	some	aspects	of	load
operations.

Enumeration	values	for	flags	are	not	the	same	as	EnumerationDef	objects	that
you	create	using	the	repository	API.	For	more	information	about	enumeration
objects,	see	EnumerationDef	Object.

You	can	set	enumeration	values	for	the	following	flags.

Flags Description
CollectionDefFlags
Enumeration

Defines	the	behavior	of	relationship
collections

ConnectionFlags	Enumeration Defines	the	characteristics	of	a	repository
database	connection

InterfaceDefFlags	Enumeration Defines	specific	characteristics	of	an
interface	definition

InterfaceMemberFlags
Enumeration

Defines	specific	characteristics	of	an
interface	member

TransactionFlags	Enumeration Defines	which	transaction	option	is	to	be
retrieved	or	set

LoadStatus	Enumeration Reports	on	the	loading	status	of	an	object
RepODBCFlags	Enumeration Enables	asynchronous	operations	for

loading	object	collections

Meta	Data	Services	Programming

CollectionDefFlags	Enumeration
This	enumeration	defines	the	behavior	of	a	Relationship	collection.	These	flags
are	bit	flags,	and	they	can	be	combined	to	set	multiple	options.	The	absence	of	a
flag	indicates	that	the	option	is	not	set.

enum	{
COLLECTION_NAMING	=	1,
COLLECTION_UNIQUENAMING	=	2,
COLLECTION_CASESENSITIVE	=	4,
COLLECTION_SEQUENCED	=	8,
COLLECTION_PROPAGATEDELETE	=	16,
COLLECTION_NEWORGVERSIONSPARTICIPATE	=	32,
COLLECTION_NEWORGVERSIONSDONOTPARTICIPATE	=	64,
COLLECTION_MERGEWHOLE	=	128,
COLLECTION_CONTAINING	=	256,
COLLECTION_OBJECTNAMING	=	512,
COLLECTION_NEWDESTVERSIONADD	=	1024,
COLLECTION_NEWDESTVERSIONPROPAGATE	=	2048
}	CollectionDefFlags;

Value Description
COLLECTION_UNIQUENAMING If	this	flag	is	set,	the	relationship	type	for	the

collection	requires	the	name	of	a	destination	object	to
be	unique	within	the	collection	of	destination	objects.
This	flag	applies	to	collections	of	a	relationship	type
that	permits	the	naming	of	destination	objects.

COLLECTION_CASESENSITIVE If	this	flag	is	set,	the	relationship	type	for	the
collection	permits	the	use	of	case-sensitive	names	for
destination	objects.	This	flag	applies	to	collections	of	a
relationship	type	that	permits	the	naming	of
destination	objects.

COLLECTION_SEQUENCED If	this	flag	is	set,	the	destination	objects	in	the
collection	have	an	explicitly	defined	sequence.

Collections	of	origin	objects	are	never	sequenced.
COLLECTION_NAMING If	this	flag	is	set,	the	relationship	type	for	the

collection	permits	the	naming	of	destination	objects.
COLLECTION_PROPAGATEDELETE If	this	flag	is	set,	the	relationship	type	for	the

collection	requires	that	deletes	be	propagated	to
destination	objects.	The	destination	object	is	only
deleted	if	it	is	the	last	relationship	of	this	type	that	is
connected	to	the	object.

COLLECTION_NEWORGVERSIONSPARTICIPATE If	this	flag	is	set,	the	
origin	collections	of	this	type	from	the	predecessor
creation	version	to	the	newly	created	successor
version.

COLLECTION_NEWORGVERSIONSDONOTPARTICIPATE If	this	flag	is	set,	origin	collections	cannot	be	copied	to
a	new	object	version.	This	flag	is	the	opposite	of	the
COLLECTION_NEWORGVERSIONSPARTICIPATE
flag.	You	cannot	set	both	flags	at	the	same	time.
However,	by	default,	both	flags	are	not	set.	When
neither	flag	is	set,	the	repository	engine	operates	as	if
the
COLLECTION_NEWORGVERSIONSPARTICIPATE
flag	were	set.	That	is,	during	the	creation	of	a	new
version	of	a	repository	object,	the	repository	engine
copies	new	origin	collections	from	a	predecessor
creation	version	to	a	successor	version.

COLLECTION_MERGEWHOLE Setting	this	flag	determines	the	behavior	of	the
MergeVersion	method.	If	this	flag	is	set,	this	flag
causes	the	successor	version	to	match	the	primary
version.	If	the	successor	and	primary	versions	already
match,	the	successor	version	is	matched	to	the
secondary	version.	If	this	flag	is	not	set,	the	combined
differences	from	both	the	primary	and	secondary
versions	are	merged	into	the	successor	version.	For
more	information,	see	

COLLECTION_CONTAINING If	this	flag	is	set,	the	destination	object	(for	example,	a
column)	will	be	contained	in	the	origin	object	(for
example,	a	table).	In	other	words,	the	destination

cannot	exist	outside	the	origin.	XML	Encoding	uses
this	flag	to	determine	which	objects	to	nest.	For	more
information,	see	

COLLECTION_OBJECTNAMING If	this	flag	is	set,	it	specifies	that	the	collection	uses	the
name	specified	by	the	
as	its	relationship	name.	For	more	information,	see
INamedObject	Interface

COLLECTION_NEWDESTVERSIONADD If	this	flag	is	set,	the	
destination	object	and	a	new	version	of	the	destination
object	is	created,	then	a	relationship	between	the
related	origin	object	and	the	new	destination	object	is
created.	The	new	relationship	overrides	the
relationship	between	the	origin	object	and	the	original
destination	object.

COLLECTION_NEWDESTVERSIONPROPAGATE If	this	flag	is	set,	the	
destination	object	propagates	versioning	to	origin
objects	related	through	collections	of	that	match	the
current	collection	type.

This	behavior	occurs	in	response	to	the	versioning	of	a
destination	object.	When	the	destination	object	is
versioned,	its	origin	object	is	also	versioned.

This	behavior	can	propagate	backwards	through	a
version	graph.	If	the	newly	versioned	origin	object	is
simultaneously	a	destination	object	of	another
relationship,	its	origin	object	is	also	versioned.	The
versioning	of	paired	objects	continues	up	the	version
graph	until	an	unfrozen	origin	object	is	encountered.
This	behavior	occurs	continues	to	occur	until	a	frozen
origin	object	is	encountered.	It	also	continues	to	occur
for	a	series	of	relationships	that	are	created	within	the
same	transaction.

See	Also

CollectionDef	Flags	Property

ICollectionDef	Flags	Property

IInterfaceDef::CreateRelationshipColDef

InterfaceDef	CreateRelationshipColDef	Method

Meta	Data	Services	Programming

ConnectionFlags	Enumeration
This	enumeration	defines	the	characteristics	of	a	connection	to	a	repository
database.	These	flags	are	bit	flags,	and	may	be	combined	to	set	multiple	options.
The	absence	of	a	flag	indicates	that	the	option	is	not	set.

enum	{
REPOS_CONN_NEWCACHE	=	2	
REPOS_CONN_UPGRADE	=	4	
REPOS_CONN_RECOMPUTE	=	8	
}	ConnectionFlags;

Value Description
REPOS_CONN_NEWCACHE Creates	a	new	cache	when	you	open	or

create	a	repository	instance.	This
consumes	additional	resources.

REPOS_CONN_UPGRADE Upgrades	the	repository	database	tables	to
the	most	recent	version.	Standard
repository	SQL	tables	are	replaced.
Custom	repository	tables	that	you	create
by	way	of	schema	extensions	are
unchanged.

REPOS_CONN_RECOMPUTERecomputes	all	class	definitions,	and
regenerates	views	and	stored	procedures.

See	Also

IRepository::Create	Method

IRepository::Open	Method

Repository	Create	Method

Repository	Open	Method

Meta	Data	Services	Programming

InterfaceDefFlags	Enumeration
This	enumeration	defines	specific	characteristics	of	an	interface	definition.
These	flags	are	bit	flags,	and	you	can	combine	them	to	set	multiple	options.	The
absence	of	a	flag	indicates	that	the	option	is	not	set.

enum	{
INTERFACE_EXTENSIBLE		=	1
INTERFACE_HIDDEN						=	2
}	InterfaceDefFlags;

Value Description
INTERFACE_EXTENSIBLE Specifies	that	the	interface	supports

extensions
INTERFACE_HIDDEN Specifies	that	the	interface	is	not	visible	to

Automation	queries

See	Also

IInterfaceDef	Flags	Property

InterfaceDef	Flags	Property

Meta	Data	Services	Programming

InterfaceMemberFlags	Enumeration
This	enumeration	defines	specific	characteristics	of	an	interface	member.	The
absence	of	the	flag	indicates	that	the	option	is	not	set.

enum	{
INTERFACEMEMBER_HIDDEN	=	1
INTERFACEMEMBER_READONLY	=	2
INTERFACEMEMBER_VIRTUAL	=	4
INTERFACEMEMBER_DERIVED	=	0x8000
}	InterfaceMemberFlags;

Value Description
INTERFACEMEMBER_HIDDEN Specifies	that	the	interface	member

is	not	visible	to	Automation	queries.
INTERFACEMEMBER_READONLYSpecifies	that	the	interface	member

cannot	be	updated	by	an
application.

INTERFACEMEMBER_VIRTUAL Supports	members	that	are	not
stored.	If	this	flag	is	set	and	the
member	is	a	property,	the	repository
engine	will	not	allocate	a	column
for	it	in	the	table	for	the	interface.
The	repository	engine	will	return	an
error	if	an	attempt	is	made	to	access
this	member.	A	COM	aggregation
must	be	used	to	implement	the
member.	For	more	information,	see
Virtual	Members.

INTERFACEMEMBER_DERIVED Specifies	that	the	interface	member
is	derived	from	a	base	member.	By
default,	a	member	is	a	base
member.

See	Also

CollectionDef	Flags	Property

IInterfaceMember	Flags	Property

MethodDef	Flags	Property

PropertyDef	Flags	Property

Meta	Data	Services	Programming

TransactionFlags	Enumeration
This	enumeration	specifies	which	transaction	option	is	to	be	retrieved	or	set.

enum	{
TXN_RESET_OPTIONS											=	1
TXN_NORMAL																		=	2
TXN_EXCLUSIVE_WRITEBACK					=	3
TXN_EXCLUSIVE_WRITETHROUGH		=	4
TXN_TIMEOUT_DURATION								=	5
TXN_START_TIMEOUT											=	6
TXN_QUERY_TIMEOUT											=	7
TXN_DBMS_READONLY											=	8
TXN_USE_DTC																	=	10
}	TransactionFlags;

Value Description
TXN_RESET_OPTIONS Specifies	that	all	options	must	be	reset	to

their	default	values.	Any	associated
option	value	is	ignored.	It	is	valid	only
for	setting	transaction	options.

TXN_NORMAL Specifies	the	nonexclusive	writeback
mode	transaction	option.

Nonexclusive	writeback	mode	allows
transactions	for	other	repository
instances	to	execute	concurrently.
Updates	are	cached	for	each	session	until
a	transaction	is	committed.

TXN_NORMAL,
TXN_EXCLUSIVE_WRITEBACK,	and
TXN_EXCLUSIVE_WRITETHROUGH
are	write	modes.	Write	modes	are
mutually	exclusive.	Only	one	write	mode

can	be	specified	for	each	transaction.

TXN_EXCLUSIVE_WRITEBACK This	flag	was	created	for	use	with
version	1	of	the	repository	engine.	This
flag	is	no	longer	valid.

TXN_EXCLUSIVE_WRITETHROUGHThis	flag	was	created	for	use	with
version	1	of	the	repository	engine.	This
flag	is	no	longer	valid.

TXN_TIMEOUT_DURATION Specifies	the	transaction	option	that
determines	the	maximum	time	to	wait	for
a	lock.	The	default	value	for	this	option
is	20000	milliseconds.

TXN_START_TIMEOUT Specifies	the	transaction	option	that
determines	the	maximum	time	to	wait
before	starting	a	transaction.

TXN_START_TIMEOUT	is	the	timeout
duration	if	there	are	any	conflicts	in
starting	a	transaction	(for	example,	when
two	transactions	want	to	use	a	shared
cache	in	exclusive	mode).

Setting	TXN_START_TIMEOUT	to	zero
means	that	there	is	no	timeout.	As	a
result,	the	repository	engine	will
continuously	try	to	start	the	transaction
until	it	succeeds.

The	default	value	for	this	option	is	0
milliseconds.

TXN_QUERY_TIMEOUT Specifies	the	transaction	option	that
determines	the	maximum	number	of
seconds	to	wait	while	a	database	query	is
executing.

If	multiple	applications	are	performing
transactions	on	the	same	cache,	you	may
want	to	increase	this	value.	Doing	so

gives	a	transaction	from	one	application
more	time	to	complete	before	a	second
transaction	(from	another	application)
begins.

The	default	value	for	this	option	is	10
seconds.

TXN_DBMS_READONLY Specifies	whether	you	can	make	changes
to	the	repository	database.	If	the	value	is
zero,	you	can	make	changes.	If	the	value
is	nonzero,	the	database	is	read-only.	You
can	read	the	value	of	this	option,	but	you
cannot	set	it.

TXN_USE_DTC Specifies	whether	to	use	Microsoft®
Distributed	Transaction	Coordinator	(MS
DTC)	transactions.

See	Also

IRepositoryTransaction::Get	Option

IRepositoryTransaction::Set	Option

RepositoryTransaction	Get	Option	Method

RepositoryTransaction	Set	Option	Method

Meta	Data	Services	Programming

LoadStatus	Enumeration
This	enumeration	contains	the	flags	for	the	asynchronous	loading	status	of	a
collection.

enum	{
READY	=	1,
INPROGRESS	=	2,
CANCELLED	=	3,
FAILED	=	4
}	LoadStatus;

Value Description
READY Loading	is	complete.
INPROGRESS Loading	in	progress.
CANCELLED Loading	has	been	canceled	(by	caller).
FAILED Loading	failed	(reason	unknown).

See	Also

RepODBCFlags	Enumeration

Meta	Data	Services	Programming

RepODBCFlags	Enumeration
This	enumeration	sets	or	clears	the	ASNYCH	option	of	ExecuteQuery.

enum	{
RODBC_RESET_OPTIONS	=	1,
RODBC_ASYNCH	=	2
}	RepODBCFlags;

Value Description
RODBC_RESET_OPTIONSReset	all	options	on	the	ODBC	connection.
RODBC_ASYNCH Execute	queries	asynchronously.

See	Also

IRepositoryODBC::ExecuteQuery

LoadStatus	Enumeration

Meta	Data	Services	Programming

Repository	Errors
Repository	errors	are	errors	returned	by	the	methods	of	repository	interfaces.
Repository	error	objects	are	described	as	REPOSERROR	data	structures.

All	methods	of	repository	interfaces	return	an	HRESULT	value	that	indicates
whether	the	method	successfully	performed	its	function.	The	facility	field	of
these	HRESULT	values	is	always	set	to	FACILITY_ITF;	this	indicates	that	the
meaning	for	any	given	error	code	value	is	specific	to	the	interface	from	which
the	error	is	being	reported.	All	of	the	standard	repository	interfaces	(that	is,
interfaces	that	are	automatically	supplied	with	the	repository	API)	use	the	same
set	of	error	codes.	These	codes	are	listed	in	numerical	order	and	in	alphabetical
order.	For	more	information,	see	Repository	Errors	(Numerical	Order)	and
Repository	Errors	(Alphabetical	Order).

See	Also

Error	Handling	Overview

Handling	Errors

REPOSERROR	Data	Structure

Meta	Data	Services	Programming

REPOSERROR	Data	Structure
Repository	engine	methods	return	an	HRESULT	value	that	indicates	whether	or
not	the	method	completed	successfully.	If	a	repository	engine	method	fails	to
complete	successfully,	an	error	object	is	created	that	contains	details	about	the
failure.

The	REPOSERROR	data	structure	contains	the	following	details:

struct	REPOSERROR	{
ULONG				iSize;
ULONG				fFlags;
HRESULT		hr;
TCHAR				rcMsg[REPOSERROR_MSG_SIZE];
TCHAR				rcHelpFile[_MAX_PATH];
ULONG				dwHelpContext;
long					iNativeError;
TCHAR				rcSqlState[6];
short				iReserved;
OBJID				sObjID;
GUID					clsid;
GUID					iid;
};

iSize

The	size	in	bytes	of	this	data	structure.

fFlags

Bit	flags	that	define	the	validity	of	certain	members	of	this	data	structure.
Valid	values	are	REPOSERROR_OBJKNOWN,
REPOSERROR_SQLINFO,	and	REPOSERROR_HELPAVAIL.	For
more	information	about	the	meaning	of	these	constants,	see	Repository
Constants.

hr

The	HRESULT	return	value	that	was	returned	from	the	method	that	logged
this	error.

rcMsg

The	text	message	that	is	associated	with	this	error.	The	message	can	be	a
maximum	of	256	characters.

rcHelpFile

The	name	of	the	Help	file	that	contains	more	information	about	this	error.

dwHelpContext

The	Help	context	identifier	that	is	associated	with	this	error.

iNativeError

The	error	code	that	was	returned	from	the	database	engine.	The	value	of	this
member	is	only	valid	if	the	fFlags	member	indicates	that	SQL	information	is
present.

rcSqlState

SQL	state	information	supplied	by	the	database	engine.	The	value	of	this
member	is	only	valid	if	the	fFlags	member	indicates	that	SQL	information	is
present.

iReserved

This	parameter	is	reserved	for	use	by	the	repository	engine.

sObjID

The	object	identifier	of	the	object	that	is	associated	with	this	error.	The	value
of	this	member	is	only	valid	if	the	fFlags	member	indicates	that	the	object	is
known.

clsid

The	class	identifier	of	the	object	that	is	associated	with	this	error.	The	value
of	this	member	is	only	valid	if	the	fFlags	member	indicates	that	the	object	is
known.

iid

The	interface	identifier	of	the	interface	that	is	associated	with	this	error.	If
the	interface	is	not	known,	or	not	applicable,	the	value	of	this	member	is	set
to	GUID_NULL.

See	Also

IEnumRepositoryErrors::Next

Meta	Data	Services	Programming

Repository	Errors	(Numerical	Order)
The	error	codes	that	can	be	returned	as	a	part	of	the	HRESULT	return	value	by
repository	engine	methods	are	listed	here	in	numerical	order.	These	codes	are
also	listed	in	alphabetical	order.	For	more	information,	see	Repository	Errors
(Alphabetical	Order).

All	error	codes	are	of	the	form	0x8004nnnn.	The	prefix	8004	is	omitted	in	the
following	errors	to	make	the	code	more	readable.

(0x1000)		EREP_BADPARAMS

(0x1001)		EREP_BADNAME

(0x1002)		EREP_BADDRIVER

(0x1003)		EREP_BADERROR

(0x1004)		EREP_BUFFER_OVERFLOW

(0x1005)		EREP_NAMETOOLONG

(0x1011)		EREP_NOROWSFOUND

(0x1012)		EREP_ODBC_CERROR

(0x1013)		EREP_ODBC_MDBNOTFOUND

(0x1014)		EREP_NEED_DATA

(0x1015)		EREP_ODBC_UNKNOWNDRIVER

(0x1016)		EREP_ODBC_CREATEFAILED

(0x1017)		EREP_ODBC_WARNINGS

(0x1018)		EREP_STILL_EXECUTING

(0x1019)		EREP_ODBC_NOTCAPABLE

(0x1030)		EREP_DB_EXISTS

(0x1031)		EREP_DB_NOTCONNECTED

(0x1032)		EREP_DB_ALREADYCONNECTED

(0x1033)		EREP_DB_DBMSONETHREAD

(0x1034)		EREP_DB_CORRUPT

(0x1035)		EREP_DB_NOSCHEMA

(0x1036)		EREP_DB_DBMSOLD

(0x1037)		EREP_DB_READONLY

(0x1038)		EREP_DB_INCOMPATIBLEVERSION

(0x1039)		EREP_DB_UPGRADE

(0x1041)		EREP_TXN_NOTXNACTIVE

(0x1042)		EREP_TXN_AUTOABORT

(0x1043)		EREP_TXN_TOOMANY

(0x1044)		EREP_TXN_TIMEOUT

(0x1045)		EREP_TXN_NODATA

(0x1046)		EREP_TXN_NOSETINTXN

(0x1047)		EREP_TXN_OBJABORTED

(0x1048)		EREP_TXN_COLABORTED

(0x1070)		EREP_REPOS_CACHEFULL

(0x1071)		EREP_REPOS_NONEXTDISPID

(0x1072)		EREP_DUPEDISPID

(0x1100)		EREP_RELSHIP_EXISTS

(0x1101)		EREP_RELSHIP_INVALID_PAIR

(0x1102)		EREP_RELSHIP_NOTFOUND

(0x1105)		EREP_RELSHIP_ORGONLY

(0x1106)		EREP_RELSHIP_OUTOFDATE

(0x1107)		EREP_RELSHIP_INVALIDFLAGS

(0x1108)		EREP_RELSHIP_NAMEINVALID

(0x1109)		EREP_RELSHIP_DUPENAME

(0x1110)		EREP_RELSHIP_NONNAMINGCOL

(0x1120)		EREP_TYPE_TABLEMISMATCH

(0x1121)		EREP_TYPE_COLMISMATCH

(0x1122)		EREP_TYPE_NOTNULLABLE

(0x1123)		EREP_TYPE_MULTIDEFIFACES

(0x1124)		EREP_TYPE_INVERTEDNOTALLOWED

(0x1125)		EREP_TYPE_INVALIDSCALE

(0x1126)		EREP_TYPE_BADTABLENAME

(0x1127)		EREP_TYPE_MULTIPLEANCESTORS

(0x1200)		EREP_LOCK_TIMEOUT

(0x1250)		EREP_QRY_BADCOLUMNS

(0x1300)		EREP_OBJ_NOTINITIALIZED

(0x1301)		EREP_OBJ_NOTFOUND

(0x1302)		EREP_OBJ_NONAMINGRELSHIP

(0x1303)		EREP_OBJ_EXISTS

(0x1304)		EREP_VERSION_NOTFOUND

(0x1400)		EREP_PROP_MISMATCH

(0x1401)		EREP_PROP_SETINVALID

(0x1402)		SREP_PROP_TRUNCATION

(0x1403)		EREP_PROP_CANTSETREPTIM

(0x1404)		EREP_PROP_READONLY

(0x1405)		EREP_PROP_NOTEXISTS

(0x1500)		EREP_TIM_INVALIDFLAGS

(0x1501)		EREP_TIM_FLAGSDEST

(0x1502)		EREP_TIM_RELTYPEINVALID

(0x1503)		EREP_TIM_CTYPEINVALID

(0x1504)		EREP_TIM_TOOMANYCOLS

(0x1505)		EREP_TIM_SQLTYPEINVALID

(0x1506)		EREP_TIM_SQLSIZEINVALID

(0x1600)		EREP_VM_CANTSETFROZEN

(0x1601)		EREP_VM_MERGETOFROZEN

(0x1602)		EREP_VM_MERGEFROMUNFROZEN

(0x1603)		EREP_VM_UNFROZENVERSION

(0x1604)		EREP_VM_FROZENVERSION

(0x1605)		EREP_VM_CHECKEDOUTVERSION

(0x1606)		EREP_VM_DUPBRANCHID

(0x1607)		EREP_VM_SUCCESSOREXISTS

(0x1800)		EREP_WKS_ITEMEXISTS

(0x1801)		EREP_WKS_ITEMNOTEXISTS

(0x1802)		EREP_NOTWORKSPACEITEM

(0x1803)		EREP_ITEMNOTCHECKEDOUT

(0x1A01)		EREP_BLOB_SEEKPASTEND

(0x1A02)		EREP_BLOB_TEMPFILE

(0x1A03)		EREP_BLOB_USERFILE

(0x1A04)		EREP_BLOB_CANNOTSETPOS

(0x1B05)		EREP_MEMDEL_DELCOLINVALID

(0x1C00)		EREP_COL_OBJECTNAMING

(0x1C01)		EREP_COL_OBJECTNOTNAMED

(0x1D00)		EREP_UNKNOWNPROPERTY

(0x1D01)		EREP_MISSINGLEFTBRACKET

(0x1D02)		EREP_MISSINGRIGHTBRACKET

(0x1D03)		EREP_MISSINGLEFTPARENTHESIS

(0x1D04)		EREP_MISSINGRIGHTPARENTHESIS

(0x1D05)		EREP_MISSINGCOMMA

(0x1D06)		EREP_PROPERTYNOTFOUND

(0x1D07)		EREP_INVALIDFILTER

(0x1D08)		EREP_SCRIPT_NESTEDCALL

(0x1D09)		EREP_SCRIPT_NOTFOUND

(0x1D0A)		EREP_SCRIPT_INVALIDLANGUAGE

(0x1D0B)		EREP_VIRTUAL_ALIAS

(0x1D0C)		EREP_VIRTUAL_CALL

(0x1E00)		EREP_CLASS_TOOCOMPLEX

(0x1E02)		EREP_RTIM_CLASS_IS_NOT_CREATEABLE

(0x2000)		EREP_VM_DIFFERENTTYPES

(1x1700)		EREP_REL_ORGFROZEN

(1x1701)		EREP_REL_ORGCLONE

(1x1702)		EREP_REL_NONSEQONLY

(1x1703)		EREP_REL_ORGPIN

(1x1704)		EREP_REL_NOTPINNED

(1x1900)		EREP_VCOL_VERSIONNOTMEMBER

(1x1901)		EREP_VCOL_INVALIDOP

(1x1950)		EREP_COL_NOTSEQUENCED

(1x1B00)		EREP_MEMDEL_COLNOTDEFINED

(1x1B01)		EREP_MEMDEL_BASEIFACENOTIMPL

(1x1B02)		EREP_MEMDEL_BASECOLVIRTUAL

(1x1B03)		EREP_MEMDEL_MULTIPLEBASES

(1x1B04)		EREP_MEMDEL_CIRCULARCOLS

(1x1E03)		EREP_NAME_NOTUNIQUE

See	Also

Repository	Errors

Meta	Data	Services	Programming

Repository	Errors	(Alphabetical	Order)
The	error	codes	that	can	be	returned	as	a	part	of	the	HRESULT	return	value	by
repository	engine	methods	are	listed	here	in	alphabetical	order,	according	to	the
symbolic	name	for	each	error	code.	These	codes	are	also	listed	in	numerical
order.	For	more	information,	see	Repository	Errors	(Numerical	Order).

EREP_BADDRIVER		(0x1002)

EREP_BADERROR		(0x1003)

EREP_BADNAME		(0x1001)

EREP_BADPARAMS		(0x1000)

EREP_BLOB_CANNOTSETPOS		(0x1A04)

EREP_BLOB_SEEKPASTEND		(0x1A01)

EREP_BLOB_TEMPFILE		(0x1A02)

EREP_BLOB_USERFILE		(0x1A03)

EREP_BUFFER_OVERFLOW		(0x1004)

EREP_CLASS_TOOCOMPLEX		(0x1E00)

EREP_COL_NOTSEQUENCED		(1x1950)

EREP_COL_OBJECTNAMING		(0x1C00)

EREP_COL_OBJECTNOTNAMED		(0x1C01)

EREP_DB_ALREADYCONNECTED		(0x1032)

EREP_DB_CORRUPT		(0x1034)

EREP_DB_DBMSOLD		(0x1036)

EREP_DB_DBMSONETHREAD		(0x1033)

EREP_DB_EXISTS		(0x1030)

EREP_DB_INCOMPATIBLEVERSION		(0x1038)

EREP_DB_NOSCHEMA		(0x1035)

EREP_DB_NOTCONNECTED		(0x1031)

EREP_DB_READONLY		(0x1037)

EREP_DB_UPGRADE		(0x1039)

EREP_DUPEDISPID		(0x1072)

EREP_INVALIDFILTER(0x1D07)

EREP_ITEMNOTCHECKEDOUT		(0x1803)

EREP_LOCK_TIMEOUT		(0x1200)

EREP_MEMDEL_BASECOLVIRTUAL		(1x1B02)

EREP_MEMDEL_BASEIFACENOTIMPL		(1x1B01)

EREP_MEMDEL_CIRCULARCOLS		(1x1B04)

EREP_MEMDEL_COLNOTDEFINED		(1x1B00)

EREP_MEMDEL_DELCOLINVALID		(0x1B05)

EREP_MEMDEL_MULTIPLEBASES		(1x1B03)

EREP_MISSINGLEFTBRACKET		(0x1D01)

EREP_MISSINGRIGHTBRACKET		(0x1D02)

EREP_MISSINGLEFTPARENTHESIS		(0x1D03)

EREP_MISSINGRIGHTPARENTHESIS		(0x1D04)

EREP_MISSINGCOMMA		(0x1D05)

EREP_NAME_NOTUNIQUE		(1x1E03)

EREP_NAMETOOLONG		(0x1005)

EREP_NEED_DATA		(0x1014)

EREP_NOROWSFOUND		(0x1011)

EREP_NOTWORKSPACEITEM		(0x1802)

EREP_OBJ_EXISTS		(0x1303)

EREP_OBJ_NONAMINGRELSHIP		(0x1302)

EREP_OBJ_NOTFOUND		(0x1301)

EREP_OBJ_NOTINITIALIZED		(0x1300)

EREP_ODBC_CERROR		(0x1012)

EREP_ODBC_CREATEFAILED		(0x1016)

EREP_ODBC_MDBNOTFOUND		(0x1013)

EREP_ODBC_NOTCAPABLE		(0x1019)

EREP_ODBC_UNKNOWNDRIVER		(0x1015)

EREP_ODBC_WARNINGS		(0x1017)

EREP_PROP_CANTSETREPTIM		(0x1403)

EREP_PROP_MISMATCH		(0x1400)

EREP_PROP_NOTEXISTS		(0x1405)

EREP_PROP_READONLY		(0x1404)

EREP_PROP_SETINVALID		(0x1401)

EREP_PROPERTYNOTFOUND(0x1D06)

EREP_QRY_BADCOLUMNS		(0x1250)

EREP_REL_NONSEQONLY		(1x1702)

EREP_REL_NOTPINNED		(1x1704)

EREP_REL_ORGCLONE		(1x1701)

EREP_REL_ORGFROZEN		(1x1700)

EREP_REL_ORGPIN		(1x1703)

EREP_RELSHIP_DUPENAME		(0x1109)

EREP_RELSHIP_EXISTS		(0x1100)

EREP_RELSHIP_INVALIDFLAGS		(0x1107)

EREP_RELSHIP_INVALID_PAIR		(0x1101)

EREP_RELSHIP_NAMEINVALID		(0x1108)

EREP_RELSHIP_NONNAMINGCOL		(0x1110)

EREP_RELSHIP_NOTFOUND		(0x1102)

EREP_RELSHIP_ORGONLY		(0x1105)

EREP_RELSHIP_OUTOFDATE		(0x1106)

EREP_REPOS_CACHEFULL		(0x1070)

EREP_REPOS_NONEXTDISPID		(0x1071)

EREP_RTIM_CLASS_IS_NOT_CREATEABLE		(0x1E02)

EREP_SCRIPT_INVALIDLANGUAGE		(0x1D0A)

EREP_SCRIPT_NESTEDCALL		(0x1D08)

EREP_SCRIPT_NOTFOUND		(0x1D09)

EREP_STILL_EXECUTING		(0x1018)

EREP_TIM_CTYPEINVALID		(0x1503)

EREP_TIM_FLAGSDEST		(0x1501)

EREP_TIM_INVALIDFLAGS		(0x1500)

EREP_TIM_RELTYPEINVALID		(0x1502)

EREP_TIM_SQLSIZEINVALID		(0x1506)

EREP_TIM_SQLTYPEINVALID		(0x1505)

EREP_TIM_TOOMANYCOLS		(0x1504)

EREP_TXN_AUTOABORT		(0x1042)

EREP_TXN_COLABORTED		(0x1048)

EREP_TXN_NODATA		(0x1045)

EREP_TXN_NOSETINTXN		(0x1046)

EREP_TXN_NOTXNACTIVE		(0x1041)

EREP_TXN_OBJABORTED		(0x1047)

EREP_TXN_TIMEOUT		(0x1044)

EREP_TXN_TOOMANY		(0x1043)

EREP_TYPE_BADTABLENAME		(0x1126)

EREP_TYPE_COLMISMATCH		(0x1121)

EREP_TYPE_INVALIDSCALE		(0x1125)

EREP_TYPE_INVERTEDNOTALLOWED		(0x1124)

EREP_TYPE_MULTIDEFIFACES		(0x1123)

EREP_TYPE_MULTIPLEANCESTORS		(0x1127)

EREP_TYPE_NOTNULLABLE		(0x1122)

EREP_TYPE_TABLEMISMATCH		(0x1120)

EREP_UNKNOWNPROPERTY		(0x1D00)

EREP_VCOL_INVALIDOP		(1x1901)

EREP_VCOL_VERSIONNOTMEMBER		(1x1900)

EREP_VERSION_NOTFOUND		(0x1304)

EREP_VIRTUAL_ALIAS		(0x1D0B)

EREP_VIRTUAL_CALL		(0x1D0C)

EREP_VM_CANTSETFROZEN		(0x1600)

EREP_VM_CHECKEDOUTVERSION		(0x1605)

EREP_VM_DIFFERENTTYPES		(0x2000)

EREP_VM_DUPBRANCHID		(0x1606)

EREP_VM_FROZENVERSION		(0x1604)

EREP_VM_MERGEFROMUNFROZEN		(0x1602)

EREP_VM_MERGETOFROZEN		(0x1601)

EREP_VM_SUCCESSOREXISTS		(0x1607)

EREP_VM_UNFROZENVERSION		(0x1603)

EREP_WKS_ITEMEXISTS		(0x1800)

EREP_WKS_ITEMNOTEXISTS		(0x1801)

SREP_PROP_TRUNCATION		(0x1402)

See	Also

Repository	Errors

Meta	Data	Services	Programming

EREP_BADDRIVER		(0x1002)
The	currently	installed	ODBC	driver	is	too	old,	and	it	is	incompatible	with	the
repository	engine.	To	continue,	update	your	ODBC	driver.

Meta	Data	Services	Programming

EREP_BADERROR		(0x1003)
An	internal	error	has	occurred.	To	continue,	stop	and	then	restart	the	repository
engine.

Meta	Data	Services	Programming

EREP_BADNAME		(0x1001)
The	name	that	you	have	supplied	for	a	table,	view,	or	column	name	contains
characters	that	are	not	valid,	or	it	is	a	reserved	word	for	the	database
management	system	(DBMS).	To	continue,	change	the	name,	and	then	try	your
request	again.

Meta	Data	Services	Programming

EREP_BADPARAMS		(0x1000)
One	or	more	invalid	parameters	have	been	passed	to	a	repository	engine	method.
To	continue,	correct	the	input	parameters,	and	then	try	again.

Meta	Data	Services	Programming

EREP_BLOB_SEEKPASTEND		(0x1A01)
You	have	attempted	a	seek	operation	that	is	defined	outside	of	the	range	of	the
data.	To	continue,	verify	the	location	of	your	data,	and	then	reset	the
CurrentPosition	property.

Meta	Data	Services	Programming

EREP_BLOB_TEMPFILE		(0x1A02)
The	repository	engine	cannot	create	or	access	a	temporary	file	to	read	or	write
the	data	from	a	binary	large	object	(BLOB)	or	large	text	field.

Meta	Data	Services	Programming

EREP_BLOB_USERFILE		(0x1A03)
The	repository	engine	cannot	access	the	specified	file.

Meta	Data	Services	Programming

EREP_BLOB_CANNOTSETPOS		(0x1A04)
The	repository	engine	cannot	set	the	seek	pointer	to	the	specified	position.	As	a
result,	the	current	position	is	unchanged.

Meta	Data	Services	Programming

EREP_BUFFER_OVERFLOW		(0x1004)
An	overflow	error	occurred	while	building	an	SQL	statement.	To	continue,
reduce	the	number	of	changed	properties	or	repository	objects	in	the	operation,
and	then	try	again.

Meta	Data	Services	Programming

EREP_CLASS_TOOCOMPLEX		(0x1E00)
You	have	specified	a	class	that	is	too	complex.

Meta	Data	Services	Programming

EREP_COL_NOTSEQUENCED		(1x1950)
This	operation	cannot	be	performed	on	a	nonsequenced	collection.

Meta	Data	Services	Programming

EREP_COL_OBJECTNAMING		(0x1C00)
Although	the	COLLECTION_OBJECTNAMING	flag	is	set,	a	name	that	is
specific	to	the	relationship	cannot	be	found	for	objects	within	this	collection.
Most	likely,	a	specific	name	does	not	exist.

Meta	Data	Services	Programming

EREP_COL_OBJECTNOTNAMED		(0x1c01)
You	have	attempted	to	add	an	object	that	does	not	support	the	INamedObject
interface	to	a	collection	that	requires	all	objects	to	support	the	INamedObject
interface.

Meta	Data	Services	Programming

EREP_DB_ALREADYCONNECTED		(0x1032)
You	have	attempted	to	connect	to	a	repository	database	that	is	already	open.	To
continue,	skip	the	redundant	Open	or	Create	method	invocation	and	proceed
with	the	repository	interactions	that	follow	that	Open	invocation.

See	Also

Repository	Create	Method

Repository	Open	Method

Meta	Data	Services	Programming

EREP_DB_CORRUPT		(0x1034)
The	repository	database	has	been	damaged.	For	more	information	about
available	facilities	for	restoring	or	rebuilding	the	database,	see	your	database
server	documentation.

Meta	Data	Services	Programming

EREP_DB_DBMSOLD		(0x1036)
This	version	of	Microsoft®	SQL	Server™	is	not	supported	by	the	repository
engine.	To	use	version	2.0	of	the	repository	engine,	you	must	upgrade	to	SQL
Server	version	6.5,	SQL	Server	7.0,	or	SQL	Server	2000.

Meta	Data	Services	Programming

EREP_DB_DBMSONETHREAD		(0x1033)
The	repository	database	that	you	have	attempted	to	access	is	managed	by	a
database	server	that	does	not	support	multithreaded	access.	The	thread
attempting	the	access	is	not	the	same	as	the	thread	that	currently	has	the	open
repository	instance	for	the	database.	To	continue,	either	move	your	repository
database	to	a	database	server	that	supports	multithreaded	access,	or	modify	the
logic	of	your	program	to	use	a	single	thread	for	repository	database	access.

Meta	Data	Services	Programming

EREP_DB_EXISTS		(0x1030)
You	have	requested	that	a	repository	database	be	created	with	a	name	that	is
already	in	use	for	an	existing	database.	If	you	want	to	use	the	existing	database,
use	the	Open	method	instead	of	the	Create	method.	If	the	existing	database	is
no	longer	needed,	delete	it.	Otherwise,	choose	a	different	name,	and	then	try
again.

See	Also

Repository	Create	Method

Repository	Open	Method

Meta	Data	Services	Programming

EREP_DB_INCOMPATIBLEVERSION		(0x1038)
The	version	of	the	database	that	you	are	using	as	a	repository	database	is	not
supported	by	the	repository	engine.

Meta	Data	Services	Programming

EREP_DB_NOSCHEMA		(0x1035)
The	repository	database	does	not	contain	the	type	information	model	schema.	If
your	repository	has	not	yet	been	populated	with	data,	install	the	type	information
model	schema	by	using	the	Create	method	to	open	the	repository	database.	If
your	repository	has	been	populated	with	data,	restore	the	database	from	a	backup
copy.

See	Also

Repository	Create	Method

Meta	Data	Services	Programming

EREP_DB_NOTCONNECTED		(0x1031)
You	have	requested	an	operation	that	requires	a	connection	to	an	open	repository
database,	and	you	do	not	currently	have	such	a	connection.	To	continue,	use	the
Open	method	on	the	appropriate	repository	and	try	your	request	again.

See	Also

Repository	Open	Method

Meta	Data	Services	Programming

EREP_DB_READONLY		(0x1037)
You	have	attempted	to	change	a	read-only	database	management	system
(DBMS).	To	continue,	contact	the	system	administrator.

Meta	Data	Services	Programming

EREP_DB_UPGRADE		(0x1039)
The	repository	engine	was	unable	to	complete	the	upgrade	operation.	The
repository	SQL	schema	has	not	been	updated.

Meta	Data	Services	Programming

EREP_DUPEDISPID		(0x1072)
Duplicate	dispatch	identifiers	have	been	found.

Meta	Data	Services	Programming

EREP_INVALIDDEPENDENCY		(0x1C02)
You	have	attempted	to	define	a	dependency	between	a	model	and	itself.	You	can
define	dependencies	only	between	separate	and	distinct	models.

Meta	Data	Services	Programming

EREP_INVALIDFILTER		(0x1D07)	
The	filter	could	not	be	parsed.	To	continue,	check	the	filter	syntax	and	try	again.

Meta	Data	Services	Programming

EREP_ITEMNOTCHECKEDOUT		(0x1803)
This	operation	was	performed	on	an	item	that	was	not	checked	out	to	a
workspace.

Meta	Data	Services	Programming

EREP_LOCK_TIMEOUT		(0x1200)
An	attempt	to	obtain	a	lock	on	a	repository	item	has	timed	out.	To	continue,
either	increase	the	lock	time-out	value	and	try	again,	or	wait	for	the	item	to
become	available	and	then	try	again.	For	more	information	about	changing	the
lock	time-out	value,	see	RepositoryTransaction	SetOption	Method.

Meta	Data	Services	Programming

EREP_MEMDEL_DELCOLINVALID		(0x1B05)
The	structure	of	a	delegated	collection	is	not	valid.

Meta	Data	Services	Programming

EREP_MEMDEL_COLNOTDEFINED	(1x1B00)
You	have	delegated	a	member	in	a	different	transaction	in	which	the	collection
was	created.	To	delegate	a	member,	you	must	do	so	within	the	transaction	in
which	the	collection	was	instantiated.

Meta	Data	Services	Programming

EREP_MEMDEL_BASEIFACENOTIMPL	(1x1B01)
This	class	does	not	support	the	interface	that	is	the	base	interface	for	a	delegated
member.

Meta	Data	Services	Programming

EREP_MEMDEL_BASECOLVIRTUAL	(1x1B02)
A	base	member	of	the	delegated	collection	is	virtual.

Meta	Data	Services	Programming

EREP_MEMDEL_MULTIPLEBASES	(1x1B03)
A	delegated	member	has	more	than	one	base	member.

Meta	Data	Services	Programming

EREP_MEMDEL_CIRCULARCOLS	(1x1B04)
A	circular	dependency	has	been	created	from	delegated	collections.

Meta	Data	Services	Programming

EREP_MISSINGCOMMA		(0x1D05)
The	INSTANCEOF	or	IMPLEMENTS	clause	is	missing	a	comma.

Meta	Data	Services	Programming

EREP_MISSINGLEFTBRACKET		(0x1D01)
The	filter	string	is	missing	a	left	bracket.

Meta	Data	Services	Programming

EREP_MISSINGLEFTPARENTHESIS		(0x1D03)
There	is	no	left	parenthesis	following	the	INSTANCEOF	or	IMPLEMENTS
clause.

Meta	Data	Services	Programming

EREP_MISSINGRIGHTBRACKET		(0x1D02)
The	filter	string	is	missing	a	right	bracket.

Meta	Data	Services	Programming

EREP_MISSINGRIGHTPARENTHESIS		(0x1D04)
There	is	no	right	parenthesis	following	the	INSTANCEOF	or	IMPLEMENTS
clause.

Meta	Data	Services	Programming

EREP_NAME_NOTUNIQUE		(1x1E03)
The	name	you	have	specified	is	not	unique	in	the	class.

Meta	Data	Services	Programming

EREP_NAMETOOLONG		(0x1005)
The	name	you	have	specified	exceeds	the	maximum	length	allowed	for	this
string.

Meta	Data	Services	Programming

EREP_NEED_DATA		(0x1014)
An	ODBC	error	occurred	indicating	that	a	variable-length	data	item	(such	as	a
name)	was	needed	at	run	time,	and	was	never	supplied.	To	continue,	check	input
parameters.

Meta	Data	Services	Programming

EREP_NOROWSFOUND		(0x1011)
A	query	operation	against	the	repository	database	yielded	no	rows.	If	you
expected	data	to	be	returned,	verify	that	your	query	is	correctly	constructed.

Meta	Data	Services	Programming

EREP_NOTWORKSPACEITEM		(0x1802)
This	item	is	not	a	workspace	item.

Meta	Data	Services	Programming

EREP_OBJ_EXISTS		(0x1303)
You	have	attempted	to	create	a	repository	object	that	already	exists	in	the
repository.	This	situation	can	occur	if	multiple	users	are	attempting	to	add	the
same	object	to	the	repository	concurrently.	If	this	is	not	the	case,	eliminate	the
redundant	Add,	CreateObject,	or	Insert	method	invocation	from	your	program.

See	Also

RelationshipCol	Add	Method

RelationshipCol	Insert	Method

Repository	CreateObject	Method

Meta	Data	Services	Programming

EREP_ODBC_NOTCAPABLE		(0x1019)
The	ODBC	driver	does	not	support	the	current	operation.

Meta	Data	Services	Programming

EREP_OBJ_NONAMINGRELSHIP		(0x1302)
You	have	attempted	to	add	an	object	to	a	collection	using	the	object	name,	but
the	collection	is	not	a	naming	collection.

Meta	Data	Services	Programming

EREP_OBJ_NOTFOUND		(0x1301)
You	have	attempted	to	retrieve	a	repository	object	that	does	not	exist.	If	multiple
users	are	accessing	the	repository	database	concurrently,	this	error	can	occur	if
one	user	deletes	a	repository	object	while	a	second	user	is	attempting	to	retrieve
the	object.	It	can	also	occur	if	you	are	using	an	object	identifier	that	has	been
saved	from	prior	interactions	with	the	repository,	and	the	object	has	been	deleted
between	the	time	that	you	obtained	the	object	identifier	and	the	time	that	you
attempted	to	retrieve	the	repository	object.	Consider	handling	this	exception	with
special	processing	for	the	case	where	a	repository	object	no	longer	exists.

Meta	Data	Services	Programming

EREP_OBJ_NOTINITIALIZED		(0x1300)
An	attempt	has	been	made	to	interact	with	a	repository	object	that	has	not	been
initialized	with	valid	data	from	the	repository	database.	To	continue,	ensure	that
all	repository	objects	in	your	program	are	initialized	before	you	attempt	to
interact	with	them.

Meta	Data	Services	Programming

EREP_ODBC_CERROR		(0x1012)
A	database	error	has	occurred.	To	continue,	check	the	error	queue	for	more
information.	You	may	be	able	to	determine	the	source	of	the	problem	and	correct
it	before	trying	again.

Meta	Data	Services	Programming

EREP_ODBC_CREATEFAILED		(0x1016)
The	creation	of	an	.mdb	file	has	failed.	Most	likely,	you	either	supplied	a	wrong
path,	or	you	tried	to	create	an	.mdb	file	that	already	existed.	To	continue,	check
the	path	or	delete	the	.mdb	file,	and	then	try	again.

Meta	Data	Services	Programming

EREP_ODBC_MDBNOTFOUND		(0x1013)
You	have	specified	a	repository	database	that	does	not	exist	or	is	not	accessible.
To	continue,	make	sure	that	the	database	exists	and	the	name	is	correct,	and	then
try	again.

Meta	Data	Services	Programming

EREP_ODBC_UNKNOWNDRIVER		(0x1015)
The	specified	ODBC	driver	is	not	a	valid	driver,	or	is	not	known	to	the
repository	engine.	To	continue,	obtain	an	ODBC	driver	(2.0	or	later)	that	is
compatible	with	the	repository	engine.

Meta	Data	Services	Programming

EREP_ODBC_WARNINGS		(0x1017)
The	ODBC	driver	issued	warnings.	To	continue,	check	the	error	queue	for	the
error	text.

Meta	Data	Services	Programming

EREP_PROP_CANTSETREPTIM		(0x1403)
You	have	attempted	to	modify	a	property	of	a	definition	object	that	is	part	of	the
type	information	model.	Modifying	type	information	model	properties	is	not
supported.

Meta	Data	Services	Programming

EREP_PROP_MISMATCH		(0x1400)
An	attempt	to	update	a	property	value	in	the	repository	has	failed.	The	data	type
of	the	input	property	cannot	be	converted	to	the	storage	data	type.	To	continue,
correct	the	data	type	of	the	input	property,	and	then	try	the	update	again.

Meta	Data	Services	Programming

EREP_PROP_NOTEXISTS		(0x1405)
You	have	attempted	to	reference	a	property	that	does	not	exist.	For	repository	2.0
databases,	this	error	is	returned	if	you	call	get_VersionID	on	any	Repository
Type	Information	Model	(RTIM)	object,	including	the	root	object.	For	repository
3.0	databases,	this	error	is	returned	if	you	call	get_VersionID	on	any	RTIM
object,	except	the	root	object.	To	continue,	check	the	property	reference	(name
or	dispatch	identifier),	and	then	try	again.

Meta	Data	Services	Programming

EREP_PROP_READONLY		(0x1404)
Your	request	to	set	the	value	of	a	property	has	failed	because	the	property	is	a
read-only	property.

Meta	Data	Services	Programming

EREP_PROP_SETINVALID		(0x1401)
You	have	attempted	to	modify	a	collection	as	if	it	were	a	property.	The
repository	engine	does	not	support	this	type	of	operation.

Meta	Data	Services	Programming

EREP_PROPERTYNOTFOUND		(0x1D06)
No	property	was	found	between	two	brackets	([]).	Check	the	syntax,	and	then	try
again.

Meta	Data	Services	Programming

EREP_QRY_BADCOLUMNS		(0x1250)
An	ad-hoc	query	is	missing	the	IntID	column	or	TypeID	column.

Meta	Data	Services	Programming

EREP_REL_ORGFROZEN	(1x1700)
This	operation	cannot	be	performed	on	a	frozen	origin	object.

Meta	Data	Services	Programming

EREP_REL_ORGCLONE	(1x1701)
A	relationship	can	be	cloned	only	by	a	version	of	the	origin	object.

Meta	Data	Services	Programming

EREP_REL_NONSEQONLY	(1x1702)
This	operation	cannot	be	performed	on	a	sequenced	relationship.

Meta	Data	Services	Programming

EREP_REL_ORGPIN	(1x1703)
You	cannot	pin	or	unpin	an	origin	version.

Meta	Data	Services	Programming

EREP_REL_NOTPINNED	(1x1704)
You	cannot	unpin	a	relationship	that	is	not	pinned.

Meta	Data	Services	Programming

EREP_RELSHIP_DUPENAME		(0x1109)
You	have	attempted	to	add	a	relationship	with	a	name	that	is	not	unique	within
the	collection.	The	collection	requires	unique	names.	To	continue,	either	choose
a	different	name	for	the	relationship	or	delete	the	existing	relationship	with	the
same	name	if	it	is	no	longer	needed.

Meta	Data	Services	Programming

EREP_RELSHIP_EXISTS		(0x1100)
You	have	attempted	to	create	a	relationship	that	already	exists	in	the	repository.
To	continue,	either	ignore	this	error,	or	eliminate	the	redundant	Add	or	Insert
method	invocation	from	your	program.

See	Also

RelationshipCol	Add	Method

RelationshipCol	Insert	Method

Meta	Data	Services	Programming

EREP_RELSHIP_INVALIDFLAGS		(0x1107)
Your	attempt	to	add	or	modify	a	Relationship	collection	has	failed.	Either	the
combinations	of	flags	are	invalid,	or	you	are	attempting	to	set	flag	values	on	a
destination	collection.	To	continue,	verify	that	the	origin	collection	is	being	used
for	the	operation,	and	that	the	flag	combinations	are	valid.	For	more	information
about	relationship	flags,	see	CollectionDefFlags_Enumeration.

Meta	Data	Services	Programming

EREP_RELSHIP_INVALID_PAIR		(0x1101)
An	attempt	to	add	a	new	relationship	between	two	objects	has	failed.	One	or
both	of	the	classes	to	which	these	objects	conform	does	not	support	this	type	of
relationship.	To	continue,	verify	that	the	relationship	type	and	the	object	classes
are	correct,	and	then	check	your	information	model	to	verify	that	it	supports	the
type	of	relationship	that	you	are	trying	to	create.

Meta	Data	Services	Programming

EREP_RELSHIP_NAMEINVALID		(0x1108)
You	have	attempted	to	add	a	relationship	that	has	an	invalid	name	specified	for
the	destination	object.	To	continue,	verify	that	the	name	is	nonnull	and	is	shorter
than	the	maximum	allowed	length.	For	more	information	about	repository	text
string	lengths,	see	Repository	Constants.

Meta	Data	Services	Programming

EREP_RELSHIP_NONNAMINGCOL		(0x1110
The	repository	engine	is	unable	to	perform	the	current	operation	on	a	nonnaming
collection.

Meta	Data	Services	Programming

EREP_RELSHIP_NOTFOUND		(0x1102)
You	have	attempted	to	retrieve	a	specific	relationship	that	does	not	exist,	or	you
have	attempted	to	retrieve	a	relationship	from	an	empty	collection.	If	multiple
users	are	accessing	the	repository	concurrently,	this	error	can	occur	if	one	user
deletes	a	relationship	while	a	second	user	is	attempting	to	retrieve	the
relationship.	Consider	handling	this	exception	with	special	processing	for	the
case	where	a	collection	is	empty	or	a	specific	relationship	no	longer	exists.

Meta	Data	Services	Programming

EREP_RELSHIP_ORGONLY		(0x1105)
An	attempt	to	move	or	insert	a	relationship	in	a	sequenced	collection	has	failed
because	the	Move	or	Insert	method	was	invoked	through	the	destination	object
instead	of	the	origin	object.	To	continue,	use	the	origin	object	to	move	or	insert	a
relationship	in	a	sequenced	collection.

See	Also

RelationshipCol	Insert	Method

RelationshipCol	Move	Method

Meta	Data	Services	Programming

EREP_RELSHIP_OUTOFDATE		(0x1106)
Your	request	has	failed	because	the	sequenced	Relationship	collection	that	you
are	attempting	to	update	has	been	changed	by	another	process.	To	continue,
refresh	the	collection,	and	then	try	the	update	again.

Meta	Data	Services	Programming

EREP_REPOS_CACHEFULL		(0x1070)
The	repository	engine	cache	is	full.	If	you	are	writing	new	and	changed	data	to
the	repository,	and	you	cannot	reduce	the	number	of	steps	in	the	transaction,
consider	releasing	some	object	references	to	create	additional	free	space.

See	Also

TransactionFlags	Enumeration

Meta	Data	Services	Programming

EREP_REPOS_NONEXTDISPID		(0x1071)
You	have	attempted	to	add	a	member	to	an	interface	that	is	defined	in	the
repository	engine,	but	there	are	no	more	dispatch	identifier	values	available.	To
continue,	factor	the	interface	into	several	smaller	interfaces.

Meta	Data	Services	Programming

EREP_RTIM_CLASS_IS_NOT_CREATEABLE	
(0x1E02)
The	repository	type	class	that	you	defined	cannot	be	created	for	the	information
model.

Meta	Data	Services	Programming

EREP_SCRIPT_INVALIDLANGUAGE		(0x1D0A)
The	script	engine	is	not	installed.

Meta	Data	Services	Programming

EREP_SCRIPT_NESTEDCALL		(0x1D08)
The	repository	engine	detected	a	nested	call	in	a	script.	This	error	occurs	when
you	nest	a	call	within	script	while	the	NESTEDSCRIPT	flag	is	set	to	FALSE.

Meta	Data	Services	Programming

EREP_SCRIPT_NOTFOUND		(0x1D09)
The	script	object	associated	with	this	method	or	property	is	either	undefined,	or
it	is	unrelated.	For	more	information	about	how	the	repository	engine	selects
script	objects,	see	ScriptDef	Object.

Meta	Data	Services	Programming

EREP_STILL_EXECUTING		(0x1018)
A	statement	you	have	executed	is	still	in	progress.

Meta	Data	Services	Programming

EREP_TIM_CTYPEINVALID		(0x1503)
You	have	chosen	an	invalid	C	data	type	for	a	property.	To	continue,	use	a	valid	C
data	type.

Meta	Data	Services	Programming

EREP_TIM_FLAGSDEST		(0x1501)
You	have	attempted	to	set	a	collection	flag	on	a	destination	collection.

Meta	Data	Services	Programming

EREP_TIM_INVALIDFLAGS		(0x1500)
You	have	specified	an	invalid	combination	of	CollectionDef	bit	flags.

Meta	Data	Services	Programming

EREP_TIM_RELTYPEINVALID		(0x1502)
The	type	of	a	RelationshipDef	object	for	a	collection	is	incorrect.

Meta	Data	Services	Programming

EREP_TIM_SQLTYPEINVALID		(0x1505)
You	have	chosen	an	invalid	SQL	data	type	for	a	property.	To	continue,	use	a
valid	SQL	data	type.

Meta	Data	Services	Programming

EREP_TIM_SQLSIZEINVALID		(0x1506)
You	have	chosen	an	invalid	SQL	size	for	a	property	data	type.	To	continue,	use	a
valid	SQL	size.

Meta	Data	Services	Programming

EREP_TIM_TOOMANYCOLS		(0x1504)
The	number	of	collections	in	use	exceeds	the	maximum	allowed	for	the
RelationshipDef	object.	To	continue,	release	the	collections	that	are	not	in	use.

Meta	Data	Services	Programming

EREP_TXN_AUTOABORT		(0x1042)
Resources	for	an	open	repository	instance	were	released	while	a	transaction	was
in	progress.	The	transaction	has	been	canceled;	all	changes	associated	with	the
transaction	will	be	rolled	back.	To	prevent	this	error	in	the	future,	complete	an
active	transaction	(through	either	the	Commit	or	the	Abort	method)	before
releasing	an	open	repository	instance.

See	Also

RepositoryTransaction	Abort	Method

RepositoryTransaction	Commit	Method

Meta	Data	Services	Programming

EREP_TXN_COLABORTED		(0x1048)
The	collection	has	been	deleted,	or	the	last	transaction	that	updated	the
collection	has	been	stopped.	In	the	latter	case,	release	all	the	pointers	to	the
collection,	and	then	reinstantiate	it.

Meta	Data	Services	Programming

EREP_TXN_NODATA		(0x1045)
You	have	attempted	to	retrieve	the	value	of	a	property	that	is	null	or	does	not
exist.	The	action	you	decide	to	take	depends	on	the	requirements	of	your	task.	If
the	property	has	a	null	value,	consider	handling	this	exception	with	special
processing.

Meta	Data	Services	Programming

EREP_TXN_NOSETINTXN		(0x1046)
You	have	attempted	to	modify	the	current	transaction	option	settings	for	an
active	transaction.	To	continue,	either	complete	the	current	transaction	and	then
modify	the	transaction	options	or	set	the	transaction	options	before	beginning	the
transaction.

Meta	Data	Services	Programming

EREP_TXN_NOTXNACTIVE		(0x1041)
You	have	attempted	to	update	the	repository	database,	but	no	transaction	is
active.	To	continue,	bracket	your	repository	updates	between	Begin	and	Commit
transaction	method	invocations.

See	Also

RepositoryTransaction	Begin	Method

RepositoryTransaction	Commit	Method

Meta	Data	Services	Programming

EREP_TXN_OBJABORTED		(0x1047)
The	object	was	created	during	a	transaction	that	was	stopped.	To	continue,
release	all	the	pointers	to	the	object,	and	then	reinstantiate	it.

Meta	Data	Services	Programming

EREP_TXN_TIMEOUT		(0x1044)
This	error	occurs	for	query	time-outs	and	transaction	time-outs.	If	you	are
querying	a	repository	database,	the	amount	of	time	that	the	repository	engine
waits	for	a	query	to	complete	elapsed	before	the	query	returned	a	result.	To
continue,	increase	the	query	time-out	value.

If	you	are	attempting	to	start	a	transaction,	your	transaction	timed	out	while
waiting	to	begin.	To	continue,	either	increase	the	start	transaction	time-out	value
and	retry	the	transaction	or	wait	for	the	item	to	become	available	and	then	retry
the	transaction.

For	more	information	about	transaction	options,	see	TransactionFlags
Enumeration.	For	more	information	about	changing	the	transaction	time-out
values,	see	RepositoryTransaction	SetOption	Method	or
IRepositoryTransaction::SetOption.

Note		DTS	users	and	other	tool	users	who	issue	queries	for	large	amounts	of	data
can	set	a	registry	key	to	workaround	this	error.	In	this	case,	create	a	new	entry
for
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Repository\Engine\ODBCQueryTimeout
and	set	it	to	large	value.	Query	time-out	values	are	measured	in	seconds.

Meta	Data	Services	Programming

EREP_TXN_TOOMANY		(0x1043)
A	new	transaction	cannot	be	started	because	the	maximum	number	of	concurrent
transactions	has	been	exceeded.	To	continue,	reduce	the	number	of	transactions
that	are	concurrently	executing	within	the	same	process.

Meta	Data	Services	Programming

EREP_TYPE_BADTABLENAME		(0x1126)
The	string	specified	for	the	table	name	is	invalid.	Most	likely,	it	contains	invalid
characters.

Meta	Data	Services	Programming

EREP_TYPE_COLMISMATCH		(0x1121)
The	conversion	of	a	property	value	between	the	stored	data	type	and	the	data
type	as	specified	by	the	caller	has	failed.	To	continue,	check	the	caller-specified
data	type	to	verify	that	it	can	be	converted	to	the	storage	data	type,	as	defined	by
the	associated	property	definition	object.

Meta	Data	Services	Programming

EREP_TYPE_INVALIDSCALE		(0x1125)
You	have	attempted	to	set	the	PropertyDef	SQLScale	property	of	a	property
definition	to	an	invalid	value.	To	continue,	correct	the	value	that	you	are	using,
and	then	try	the	operation	again.

See	Also

PropertyDef	SQLScale	Property

Meta	Data	Services	Programming

EREP_TYPE_INVERTEDNOTALLOWED		(0x1124)
You	have	attempted	to	add	a	property	to	an	interface	using	the
PROPERTY_INVERTED	option,	and	the	option	is	not	permitted	for	the
interface.	To	continue,	correct	either	the	property	definition	or	the	interface
definition.

Meta	Data	Services	Programming

EREP_TYPE_MULTIDEFIFACES		(0x1123)
You	have	attempted	to	set	more	than	one	interface	as	the	default	interface	for	a
class	definition.	To	continue,	choose	one	of	the	interfaces	to	be	the	default
interface.

Meta	Data	Services	Programming

EREP_TYPE_MULTIPLEANCESTORS		(0x1127)
There	is	more	than	one	ancestor	specified	for	the	current	interface.

Meta	Data	Services	Programming

EREP_TYPE_NOTNULLABLE		(0x1122)
You	have	attempted	to	set	a	property	value	to	the	null	value,	and	the	property
definition	does	not	allow	this.	To	continue,	choose	one	of	the	permitted	property
values,	and	then	try	the	update	operation	again.

Meta	Data	Services	Programming

EREP_TYPE_TABLEMISMATCH		(0x1120)
An	attempt	to	extend	an	interface	for	an	information	model	has	failed.	The	SQL
table	that	is	designated	as	the	table	to	be	used	for	storing	property	values	for	the
interface	does	not	contain	the	expected	columns.	To	continue,	check	the	table	to
determine	whether	it	has	been	damaged	or	whether	columns	have	been	dropped
from	the	table.	You	can	then	restore	the	table	to	its	prior	state	and	try	the	request
again.

Meta	Data	Services	Programming

EREP_UNKNOWNPROPERTY		(0x1D00)
The	property	name	inside	the	brackets	([])	could	not	be	resolved.	To	continue,
check	the	property	name,	and	then	try	again.

Meta	Data	Services	Programming

EREP_VCOL_INVALIDOP		(1x1901)
This	is	not	a	valid	operation	for	collections.

Meta	Data	Services	Programming

EREP_VCOL_VERSIONNOTMEMBER		(1x1900)
This	version	is	not	a	member	of	the	version	collection.

Meta	Data	Services	Programming

EREP_VERSION_NOTFOUND		(0x1304)
The	version	of	the	repository	object	you	selected	cannot	be	found.

Meta	Data	Services	Programming

EREP_VIRTUAL_ALIAS		(0x1D0B)
You	cannot	specify	an	alias	as	a	virtual	property.

Meta	Data	Services	Programming

EREP_VIRTUAL_CALL		(0x1D0C)
The	virtual	member	you	specified	cannot	be	called.

Meta	Data	Services	Programming

EREP_VM_CANTSETFROZEN	(0x1600)
You	cannot	set	a	property	on	an	object	that	has	been	frozen.

Meta	Data	Services	Programming

EREP_VM_MERGETOFROZEN	(0x1601)
You	cannot	perform	a	merge	operation	on	an	object	that	has	been	frozen.

Meta	Data	Services	Programming

EREP_VM_MERGEFROMUNFROZEN	(0x1602)
You	cannot	perform	a	merge	operation	with	an	unfrozen,	secondary	version.

Meta	Data	Services	Programming

EREP_VM_UNFROZENVERSION	(0x1603)
This	operation	cannot	be	performed	on	an	unfrozen	version.

Meta	Data	Services	Programming

EREP_VM_FROZENVERSION	(0x1604)
This	operation	cannot	be	performed	on	a	frozen	version.

Meta	Data	Services	Programming

EREP_VM_CHECKEDOUTVERSION	(0x1605)
This	operation	cannot	be	performed	on	a	checked-out	version.

Meta	Data	Services	Programming

EREP_VM_DUPBRANCHID	(0x1606)
A	duplicate	branch	ID	was	generated	for	this	object.

Meta	Data	Services	Programming

EREP_VM_SUCCESSOREXISTS	(0x1607)
A	successor	of	the	version	exists.	You	cannot	delete	an	object	version	if	a
successor	exists.

Meta	Data	Services	Programming

EREP_VM_DIFFERENTTYPES	(0x2000)
You	cannot	perform	a	merge	operation	on	objects	of	different	types.

Meta	Data	Services	Programming

EREP_WKS_ITEMEXISTS		(0x1800)
This	item	already	exists	in	the	workspace.	You	can	have	only	one	version	of
each	object	in	a	workspace.

Meta	Data	Services	Programming

EREP_WKS_ITEMNOTEXISTS		(0x1801)
The	item	that	you	selected	does	not	exist	in	the	workspace.

Meta	Data	Services	Programming

SREP_PROP_TRUNCATION		(0x1402)
Your	request	to	set	the	value	of	a	property	has	succeeded;	however,	the	value	of
the	property	has	been	truncated	because	the	input	property	value	was	too	long.

Meta	Data	Services	Programming

Repository	SQL	Schema
The	repository	SQL	schema	is	a	mapping	of	information	model	elements	to	SQL
schema	elements.	The	repository	engine	uses	data	in	these	tables	to	instantiate
and	manage	COM	objects.	The	repository	SQL	schema	consists	of	a	standard
schema	and	an	extended	schema.

The	standard	schema	consists	of	tables	that	contain	the	core	information
needed	to	manage	all	repository	objects,	relationships,	and	collections.
The	standard	schema	also	contains	tables	that	are	used	by	Microsoft®
SQL	Server™	2000	Meta	Data	Services	to	store	the	definition
information	for	information	models.	Standard	schema	tables	are
prefixed	with	RTbl.

If	you	obtained	Meta	Data	Services	through	SQL	Server,	repository	SQL
schema	tables	are	located	in	the	msdb	system	database.

The	extended	schema	consists	of	tables	that	are	automatically	generated
by	the	repository	engine	when	you	create	or	extend	an	information
model.	An	interface	is	mapped	to	at	most	one	table	in	a	repository
database.	The	table	contains	the	instance	data	for	persistent	properties
that	are	attached	to	the	interface.	One	column	in	the	table	is	created	for
each	property.	If	an	interface	is	defined	that	has	no	member	properties,
no	table	is	created.

Adding	Data	to	Repository	SQL	Schema

You	can	add	data	to	the	repository	SQL	schema	when	you	install	an	information
model	or	create	an	information	model	programmatically.	When	you	use	a	SQL
Server	database	for	your	repository	storage,	the	repository	engine	creates	stored
procedures	to	insert	the	data.	For	more	information	about	how	these	stored
procedures	are	named,	see	Naming	Stored	Procedures.

Tuning	the	Extended	Schema
Although	the	extended	schema	is	automatically	generated,	experienced	model
designers	can	tune	the	extended	schema	to	optimize	performance	and	data

retrieval.	For	example,	by	default,	the	properties	of	each	interface	are	stored	in	a
separate	SQL	table.	You	can	map	the	properties	of	multiple	interfaces	to	a	single
table.	You	can	also	specify	the	column	names	and	data	types	to	be	used	for
property	data.	You	can	add	indexes	to	tables,	but	you	must	not	remove	indexes
that	have	been	automatically	defined	by	Meta	Data	Services.	For	more
information,	see	Tuning	the	Database	Schema	of	an	Information	Model.

Querying	the	Repository
You	can	construct	an	SQL	query	to	extract	specific	information	from	a
repository.	Although	it	is	simpler	to	perform	queries	through	generated	views,
you	can	manually	build	an	SQL	query	against	the	repository	SQL	schema	if	you
want	a	result	set	that	covers	more	than	one	information	model.	To	build	such	a
query,	you	must	be	familiar	with	the	repository	tables.	For	more	information
about	querying,	see	Repository	SQL	Tables	and	Generating	Views.

See	Also

Repository	Databases

Repository	SQL	Data	Types

Storage	Strategy	in	a	Repository	Database

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

Repository	SQL	Tables
The	set	of	SQL	tables	that	make	up	the	standard	schema	is	shown	in	the
following	table.	For	more	information	about	the	standard	schema,	see	Repository
SQL	Schema.

SQL	table	name Description
RTblClassDefs Stores	ClassDef	instance	data
RTblDatabaseVersion Stores	the	version	and	the	build	of	the	engine

that	created	the	repository	database
RTblEnumerationDef Stores	EnumerationDef	instance	data
RTblEnumerationValueDef Stores	property	values	of	enumerated	properties
RTblIfaceDefs Stores	InterfaceDef	instance	data
RTblIfaceHier Contains	information	about	interface

hierarchies
RTblIfaceMem Contains	information	about	interface	members
RTblNamedObj Contains	values	of	the	Name	property	exposed

by	the	INamedObject	interface
RTblParameterDef Stores	ParameterDef	instance	data
RTblPropDefs Stores	PropertyDef	instance	data
RTblProps Stores	property	values	of	annotational

properties	that	are	attached	to	repository	objects
RTblRelColDefs Stores	CollectionDef	instance	data
RTblRelshipDefs Stores	RelationshipDef	instance	data
RTblRelshipProps Stores	property	values	of	annotational

properties	that	are	attached	to	relationships
RTblRelships Stores	instance	data	for	each	version

combination	present	in	a	two-way	versioned
relationship

RTblScriptDefs Stores	ScriptDef	instance	data
RTblSites Stores	translations	of	local	site	identifiers	to

global	site	identifiers
RTblSumInfo Contains	values	of	the	properties	exposed	by

the	ISummaryInformation	interface
RTblTypeInfo Contains	information	about	type	information
RTblTypeLibs Contains	information	about	repository	type

libraries
RTblVersionAdminInfo Contains	information	about	the	properties

exposed	by	the	IVersionAdminInfo	interface
RTblVersions Contains	information	about	repository	object

versions
RTblWorkspaceItems Contains	information	about	the	inclusion	of

object	versions	in	workspaces

See	Also

Repository	SQL	Data	Types

Repository	Databases

Storage	Strategy	in	a	Repository	Database

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

RTblClassDefs	SQL	Table
RTblClassDefs	contains	one	row	for	each	class	that	is	defined	in	a	repository
database.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	for	the	class	object.
Z_BranchID_ZRTBrID The	branch	identifier	for	repository	API

versioning.	It	is	reserved	for	proprietary	use
by	the	repository	engine.	The	value	of	this
column	is	always	zero.

Z_VS_Z RTVerID An	identifier	for	repository	API	versioning.	It
is	reserved	for	proprietary	use	by	the
repository	engine.	The	value	of	this	column	is
always	zero.

Z_VE_Z RTVerID An	identifier	for	repository	API	versioning.	It
is	reserved	for	proprietary	use	by	the
repository	engine.	The	value	of	this	column	is
always	VERINFINITY.

ClassID RTGUID The	global	identifier	of	the	class,	as	recorded
in	the	system	registry.

VerPropDescs Image,	
16	bytes

Definition	information	for	the	class.	It	is
reserved	for	proprietary	use	by	the	repository
engine.	This	field	can	be	NULL.	The
maximum	length	for	this	value	is	16	bytes.

PropDescs Image,	
16	bytes

This	column	supports	backward	compatibility
with	RTblClassDefs	in	version	1.0.	In	version
2.0	and	later,	the	value	of	this	column	is
always	NULL.	The	maximum	length	for	this
value	is	16	bytes.

ViewName Varchar,	
128	bytes

Specifies	a	user-defined	view	name	for	an
SQL	view	based	on	the	class.	View	generation
is	supported	on	Microsoft®	SQL	Server™
2000	databases	only.	The	maximum	length	for
this	value	is	128	bytes.	For	more	information,

see	IViewClassDef	Interface.
ViewFlags Integer,	

4	bytes
Specifies	whether	view	generation	is
supported	by	the	class.	This	value	is	provided
by	the	ViewFlags	property.	The	maximum
length	for	this	value	is	4	bytes.

Remarks
The	RTblClassDefs	table	stores	instance	data	for	ClassDef	objects	that	you
define.

The	primary	key	for	this	table	is	formed	from	the	IntID,	Z_BranchID_Z,	and
Z_VS_Z	columns.	A	unique	index	is	defined	on	the	same	set	of	columns.

Z_BranchID_Z,	Z_VS_Z,	and	Z_VE_Z	are	included	to	provide	future	support
for	versioning	repository	API	definitions.	At	this	time,	there	is	only	one	version
of	ClassDef.

See	Also

ClassDef	Class

ClassDef	Object

Defining	a	Class	View

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

RTblVersionAdminInfo	SQL	Table

RTblVersions	SQL	Table

Meta	Data	Services	Programming

RTblDatabaseVersion	SQL	Table
RTblDatabaseVersion	contains	the	version	and	the	build	of	the	repository
engine	that	created	the	repository	database.

Column	name Data	type Description
DatabaseVersion RTDBVersion The	version	and	the	build	of	the	engine

in	the	following	format:

V1.V2.B1.B2

where:

V1:	major	version	number.
V2:	minor	version	number.
B1:	major	build	number.
B2:	minor	build	number.

For	example,	3.0.6019.0	means	that	the
repository	database	was	created	using
the	engine	3.0	and	the	build	6019.0.

See	Also

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

Meta	Data	Services	Programming

RTblEnumerationDef	SQL	Table
RTblEnumationDef	contains	one	row	for	each	enumeration	definition	that	is
defined	in	a	repository	database.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	for	the	interface

definition	object.
Z_BranchID_Z RTBrID The	branch	identifier	for	repository	API

versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always	zero.

Z_VS_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always	zero.

Z_VE_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always
VERINFINITY.

IsFlag RTBoolean A	TRUE/FALSE	value	that	indicates
whether	the	enumeration	defines	a
logical	flag.	This	flag	applies	to	numeric
enumeration	values	only.

Remarks
The	RTblEnumationDef	table	stores	instance	data	for	EnumerationDef	objects
that	you	define.	Enumeration	values	for	an	enumeration	object	are	stored	in
RTblEnumerationValueDef.

The	primary	key	for	this	table	is	formed	from	the	IntID,	Z_BranchID_Z,	and
Z_VS_Z	columns.

Z_BranchID_Z,	Z_VS_Z,	and	Z_VE_Z	are	included	to	provide	future	support

for	versioning	repository	API	definitions.	At	this	time,	there	is	only	one	version
of	EnumerationDef.

See	Also

EnumerationDef	Class

EnumerationDef	Object

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

RTblEnumerationValueDef	SQL	Table

RTblVersionAdminInfo	SQL	Table

RTblVersions	SQL	Table

Meta	Data	Services	Programming

RTblEnumerationValueDef	SQL	Table
RTblEnumationValueDef	stores	enumeration	values	associated	with	an
enumeration	definition	object.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	for	the	interface

definition	object.
Z_BranchID_Z RTBrID The	branch	identifier	for	repository

API	versioning.	It	is	reserved	for
proprietary	use	by	the	repository
engine.	The	value	of	this	column	is
always	zero.

Z_VS_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always	zero.

Z_VE_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always
VERINFINITY.

EnumValue Text,	
16	bytes

A	string	containing	a	value	that	can	be
stored	in	the	property	value	of	an
object.	The	maximum	length	for	this
value	is	16	bytes.

RTblEnumationValueDef	table	stores	instance	data	for	EnumerationValueDef
objects	that	you	define.

The	primary	key	for	this	table	is	formed	from	the	IntID,	Z_BranchID_Z,	and
Z_VS_Z	columns.

Z_BranchID_Z,	Z_VS_Z,	and	Z_VE_Z	are	included	to	provide	future	support
for	versioning	repository	API	definitions	in	case	more	than	one	version	of	this

repository	API	structure	is	created.

See	Also

EnumerationValueDef	Class

EnumerationValueDef	Object

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

RTblEnumerationDef	SQL	Table

RTblVersionAdminInfo	SQL	Table

RTblVersions	SQL	Table

Meta	Data	Services	Programming

RTblIfaceDefs	SQL	Table
RTblIfaceDefs	contains	one	row	for	each	interface	that	is	defined	in	a	repository
database.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	for	the	interface

definition	object.
Z_BranchID_Z RTBrID The	branch	identifier	for	repository

API	versioning.	It	is	reserved	for
proprietary	use	by	the	repository
engine.	The	value	of	this	column	is
always	zero.

Z_VS_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always	zero.

Z_VE_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always
VERINFINITY.

InterfaceID RTGUID The	global	identifier	of	the	interface,	as
recorded	in	the	system	registry.

SQLTableName Varchar,	
255	bytes

The	name	of	the	SQL	table	used	to
store	property	instance	data	for	the
interface.	This	field	can	be	NULL.	The
maximum	length	for	this	value	is	255
bytes.

Flags RTFlags Flags	that	determine	interface	behavior.
This	value	is	provided	by	the
InterfaceDef	Flags	property.	For	more
information,	see	InterfaceDefFlags
Enumeration.

ViewName Varchar,	 Specifies	a	user-defined	view	name	for

128	bytes an	SQL	view	based	on	the	interface.
View	generation	is	supported	on
Microsoft®	SQL	Server™	2000
databases	only.	The	maximum	length
for	this	value	is	128	bytes.	For	more
information,	see	IViewInterfaceDef
Interface.

ViewFlags Integer,	
4	bytes

Specifies	whether	view	generation	is
supported	by	the	interface.	This	value
is	provided	by	the	ViewFlags	property.
The	maximum	length	for	this	value	is	4
bytes.

Remarks
The	RTblIfaceDefs	table	stores	instance	data	for	InterfaceDef	objects	that	you
define.

The	primary	key	for	this	table	is	formed	from	the	IntID,	Z_BranchID_Z,	and
Z_VS_Z	columns.	A	unique	index	is	defined	on	the	same	set	of	columns.

Z_BranchID_Z,	Z_VS_Z,	and	Z_VE_Z	are	included	to	provide	future	support
for	versioning	repository	API	definitions.	At	this	time,	there	is	only	one	version
of	InterfaceDef.

See	Also

Defining	an	Interface	View

InterfaceDef	Class

InterfaceDef	Object

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

RTblVersionAdminInfo	SQL	Table

RTblVersions	SQL	Table

Meta	Data	Services	Programming

RTblIfaceHier	SQL	Table
RTblIfaceHier	stores	the	transitive	closure	of	the	interface	hierarchy.

Column	name Data	type Description
BaseID RTIntID The	internal	identifier	for	a	base

InterfaceDef	object
AncestorID RTIntID The	internal	identifier	for	an

InterfaceDef	object	that	is	an	ancestor
of	the	base	InterfaceDef	object

Remarks
The	RTblIfaceHier	table	maintains	mapping	information	that	supports	circular
and	extended	interface	relationships.	In	this	table,	complex	chains	of	inheritance
are	broken	down	into	a	series	of	BaseID	and	AncestorID	pairs	until	the
complete	inheritance	relationship	is	expressed	as	isolated	pairs	of	interfaces.

Interface	inheritance	represents	a	many-to-many	relationship.	An	interface
identifier	can	be	an	AncestorID	column	in	one	pairing	and	a	BaseID	column	in
another	pairing.	All	combinations	of	interface	pairs,	whether	implicitly	or
explicitly	related,	are	expressed	in	the	RTblIfaceHier	table.

The	primary	key	for	this	table	is	formed	by	the	BaseID	and	AncestorID
columns.

See	Also

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

Meta	Data	Services	Programming

RTblIfaceMem	SQL	Table
RTblIfaceMem	contains	one	row	for	each	member	of	an	interface.	Interface
members	include	property	definitions,	method	definitions,	and	collection
definitions	stored	in	a	repository	database.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	for	the	member

definition	object.
Z_BranchID_Z RTBrID The	branch	identifier	for	repository	API

versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always	zero.

Z_VS_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always	zero.

Z_VE_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always
VERINFINITY.

DispID RTDispID The	Automation	dispatch	identifier	for
the	member.	This	field	can	be	NULL.

Flags RTFlags Flags	that	determine	member	behavior.
For	more	information	about	flag	values,
see	InterfaceMemberFlags
Enumeration.

MemberSynonymVarchar,	
255	bytes

A	string	used	as	an	alias	name.	The
maximum	length	for	this	data	type	is
255	bytes.

Remarks

The	RTblIfaceMem	table	stores	instance	data	for	members	of	interfaces.	The
information	contained	in	this	table	is	used	by	the	repository	engine	to	create	an
extended	schema	(or	one	or	more	interface-specific	SQL	tables)	when	an
interface	is	added.

The	primary	key	for	this	table	is	formed	from	the	IntID,	Z_BranchID_Z,	and
Z_VS_Z	columns.

Z_BranchID_Z,	Z_VS_Z,	and	Z_VE_Z	are	included	to	provide	future	support
for	versioning	repository	API	definitions	in	case	more	than	one	version	of	this
repository	API	structure	is	created.

See	Also

CollectionDef	Class

CollectionDef	Object

MethodDef	Class

MethodDef	Object

PropertyDef	Class

PropertyDef	Object

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

Meta	Data	Services	Programming

RTblNamedObj	SQL	Table
RTblNamedObj	stores	instance	data	of	the	Name	property	exposed	through	the
INamedObject	interface	of	a	repository	object.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	of	the	class
Z_BranchID_Z RTBrID Indicates	the	branch	of	the	version

graph	containing	the	range	to	whose
items	the	property	values	in	this	row
apply

Z_VS_Z RTVerID A	version-within-branch	identifier
indicating	the	lower	limit	of	the	range
to	whose	items	the	property	values	in
this	row	apply

Z_VE_Z RTVerID A	version-within-branch	identifier
indicating	the	upper	limit	of	the	range
to	whose	items	the	property	values	in
this	row	apply

Name Text The	name	of	the	object,	as	specified	by
the	Name	property	of	the
INamedObject	interface

Remarks
The	RTblNamedObj	table	is	an	interface-specific	table;	its	columns	correspond
to	the	properties	exposed	by	the	INamedObject	interface.	If	you	create	a	custom
interface,	you	must	implement	INamedObject	if	you	want	to	use	the	Name
property	to	refer	to	an	object.

See	Also

INamedObject	Interface

InterfaceDef	Class

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

RTblSumInfo	SQL	Table

RTblVersionAdminInfo	SQL	Table

RTblVersions	SQL	Table

Meta	Data	Services	Programming

RTblParameterDef	SQL	Table
RTblParameterDef	stores	parameter	data	associated	with	method	definitions.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	for	the	member

definition	object.
Z_BranchID_Z RTBrID The	branch	identifier	for	repository

API	versioning.	It	is	reserved	for
proprietary	use	by	the	repository
engine.	The	value	of	this	column	is
always	zero.

Z_VS_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always	zero.

Z_VE_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always
VERINFINITY.

ParamFlags RTFlags A	flag	that	defines	whether	the
parameter	is	optional,	passed	by
reference	or	value,	or	has	a	return
value.	For	more	information	about	flag
values,	see	IParameterDef	Flags
Property.

ParamType RTFlags The	data	type	of	the	parameter,	which
can	be	any	variable	type	supported	by
an	Automation	interface.

ParamDesc Varchar,	
255	bytes

A	string	placed	into	an	Interface
Definition	Language	(IDL)	file	instead
of	the	default	text	for	the	parameter
type.	The	maximum	length	for	this
value	is	255	bytes.

ParamDefault Varchar,	
255	bytes

A	string	that	denotes	the	default	value
for	the	parameter.	The	maximum	length
for	this	value	is	255	bytes.

ParamGUID RTGUID A	GUID	that	defines	the	interface	ID	of
a	VT_DISPATCH	or
VT_UNKNOWN	object.

Remarks
The	RTblIParameterDef	table	stores	parameter	definitions	associated	with
MethodDef	objects.

The	primary	key	for	this	table	is	formed	from	the	IntID,	Z_BranchID_Z,	and
Z_VS_Z	columns.

Z_BranchID_Z,	Z_VS_Z,	and	Z_VE_Z	are	included	to	provide	future	support
for	versioning	repository	API	definitions.	At	this	time,	there	is	only	one	version
of	ParameterDef.

See	Also

Defining	a	Parameter

IParameterDef	Interface

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

RTblVersionAdminInfo	SQL	Table

RTblVersions	SQL	Table

Meta	Data	Services	Programming

RTblPropDefs	SQL	Table
RTblPropDefs	contains	one	row	for	each	property	definition	object	that	is
stored	in	a	repository	database.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	for	the	property

definition	object.
Z_BranchID_Z RTBrID The	branch	identifier	for	repository

API	versioning.	It	is	reserved	for
proprietary	use	by	the	repository
engine.	The	value	of	this	column	is
always	zero.

Z_VS_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for
proprietary	use	by	the	repository
engine.	The	value	of	this	column	is
always	zero.

Z_VE_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for
proprietary	use	by	the	repository
engine.	The	value	of	this	column	is
always	VERINFINITY.

SQLColName Varchar,	
255	bytes

The	name	of	the	column	in	the	SQL
table	for	this	property.	This	field	can
be	NULL.	The	maximum	length	for
this	value	is	255	bytes.

APIType RTSQLType The	C	language	data	type	for	the
property.	This	is	the	type	of	the
property	when	it	is	passed	through	a
repository	programming	interface.

SQLType RTSQLType The	SQL	data	type	for	the	property.
SQLSize RTSize The	length	in	bytes	of	the	property	in

terms	of	its	SQL	data	type.
SQLScale RTScale The	scale	for	a	numeric	property;	the

number	of	digits	after	the	decimal
point.	This	field	can	be	NULL.

Flags RTFlags Flags	that	determine	property	behavior.
For	more	information	about	flag
values,	see	PropertyDef	Flags
Property.

ViewColumnNameVarchar,	128
bytes

A	user-defined	name	applied	to	a	view
column.	The	maximum	length	for	this
value	is	128	bytes.

SQLBlobSize Integer,	4
bytes

The	maximum	size	of	a	property
definition.	The	maximum	length	for
this	value	is	4	bytes.

Remarks
The	RTblPropDefs	table	stores	instance	data	for	PropertyDef	objects	you
create.	The	repository	engine	uses	information	contained	in	this	table	to	create
an	extended	schema	(or	interface-specific	SQL	tables)	when	an	interface	is
added.

Note		Annotational	properties	are	not	version-specific.	Annotational	properties
that	you	create	apply	to	the	repository	object	as	a	whole.

The	primary	key	for	this	table	is	formed	from	the	IntID,	Z_BranchID_Z,	and
Z_VS_Z	columns.

Z_BranchID_Z,	Z_VS_Z,	and	Z_VE_Z	are	included	to	provide	future	support
for	versioning	repository	API	definitions.	At	this	time,	there	is	only	one	version
of	PropertyDef.

See	Also

IViewPropertyDef	Interface

PropertyDef	Class

PropertyDef	Object

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

RTblVersionAdminInfo	SQL	Table

RTblVersions	SQL	Table

Meta	Data	Services	Programming

RTblProps	SQL	Table
RTblProps	stores	one	row	for	each	annotational	property	instance	that	is
attached	to	a	repository	object.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	for	the	object	to

which	this	annotational	property	is
attached.

PropID RTIntID The	internal	identifier	of	a	property
definition	object.	A	PropertyDef	object
is	a	prerequisite	to	using	annotational
properties.

PropValue RTShortString The	value	of	the	annotational	property
instance.

Remarks
The	RTblProps	table	stores	instances	of	annotational	properties	that	you	define
for	a	repository	object.	An	annotational	property	associates	a	user-defined	text
string	with	a	specific	repository	object.	User-defined	text	strings	are	stored	in
this	table.	A	similar	table	stores	data	for	relationships.	For	more	information,	see
RTblRelshipProps	SQL	Table.

The	primary	key	for	this	table	is	formed	from	the	IntID	and	PropID	columns.	A
nonunique	index	is	defined	on	concatenated	values	from	the	PropID	and
PropValue	columns.

See	Also

PropertyDef	Class

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

Meta	Data	Services	Programming

RTblRelColDefs	SQL	Table
RTblRelColDefs	stores	one	row	for	each	collection	type	defined	in	the
repository	database.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	for	the	collection

definition	object.
Z_BranchID_Z RTBrID The	branch	identifier	for	repository

API	versioning.	It	is	reserved	for
proprietary	use	by	the	repository
engine.	The	value	of	this	column	is
always	zero.

Z_VS_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always	zero.

Z_VE_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always
VERINFINITY.

RelTypeID RTIntID Internal	identifier	of	the	relationship
definition	object.

Flags RTFlags Flags	that	determine	the	behavior	of
collections	that	conform	to	this
collection	type.

MinCount RTCount The	minimum	number	of	repository
items	that	can	occur	in	a	collection	of
this	type.	This	field	can	be	NULL.	This
property	is	not	enforced	by	the
repository	engine.

MaxCount RTCount The	maximum	number	of	repository
items	that	can	occur	in	a	collection	of
this	type.	This	field	can	be	NULL.	This

property	is	not	enforced	by	the
repository	engine.

IsOrigin RTBoolean Determines	whether	collections	that
conform	to	this	collection	type	are
origin	collections	(True),	or	destination
collections	(False).

Remarks
The	RTblRelColDefs	associates	relationship	objects	with	a	collection	type.
Collection	types	are	distinguished	by	the	CollectionDefFlag	value.	Flag	values
determine	collection	characteristics,	while	IsOrigin	determines	the	collection
type.

Each	relationship	in	a	repository	is	associated	with	two	relationship	collections:
an	origin	collection	and	a	destination	collection.	Each	relationship	collection
conforms	to	a	collection	type.	The	collection	type	defines	the	role	that	the
collection	plays	in	the	relationship.

The	primary	key	for	this	table	is	formed	from	the	IntID	and	PropID	columns.	A
nonunique	index	is	defined	on	concatenated	values	of	the	PropID	and
PropValue	columns.

Z_BranchID_Z,	Z_VS_Z,	and	Z_VE_Z	are	included	to	provide	future	support
for	versioning	repository	API	definitions	in	case	more	than	one	version	of	this
repository	API	structure	is	created.

See	Also

CollectionDef	Class

CollectionDef	Object

CollectionDefFlags	Enumeration

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

Meta	Data	Services	Programming

RTblRelshipDefs	SQL	Table
RTblRelshipDefs	stores	persistent	properties	associated	with	relationship
definitions	defined	in	the	repository	database.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	for	the

relationship	definition	object.
Z_BranchID_Z RTBrID The	branch	identifier	for	repository

API	versioning.	It	is	reserved	for
proprietary	use	by	the	repository
engine.	The	value	of	this	column	is
always	zero.

Z_VS_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for
proprietary	use	by	the	repository
engine.	The	value	of	this	column	is
always	zero.

Z_VE_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for
proprietary	use	by	the	repository
engine.	The	value	of	this	column	is
always	VERINFINITY.

ViewFlags Integer,	
4	bytes

A	set	of	flags	that	determine	the	view
generation	behavior	for	relationship
definitions.	The	maximum	length	for
this	value	is	4	bytes.	For	more
information	about	flag	values,	see
ViewFlags	Property.

ColumnNamePrefixVarchar,	
118	bytes

A	string	prefixed	to	the	column	name
NAME,	PrevDstID,	and	RelTypeID.
The	string	is	used	in	all	views	where
the	corresponding	columns	appear.
The	maximum	length	for	this	value	is
118	bytes.

JunctionViewName Varchar,	
128	bytes

Specifies	a	user-defined	view	name	for
an	SQL	view	based	on	the
relationship.	View	generation	is
supported	on	Microsoft®	SQL
Server™	2000	databases	only.	The
maximum	length	for	this	value	is	128
bytes.	For	more	information,	see
IViewRelationshipDef	Interface.

Remarks
The	RTblRelshipDefs	table	stores	values	that	direct	view	generation	behavior
for	relationship	definitions	and	indicate	whether	to	create	a	junction-table	view
of	a	relationship.	Another	SQL	table	stores	relationship	instance	data.	For	more
information,	see	RTblRelships	SQL	Table.

The	primary	key	for	this	table	is	formed	from	the	IntID,	Z_BranchID_Z,	and
Z_VS_Z	columns.

Z_BranchID_Z,	Z_VS_Z,	and	Z_VE_Z	are	included	to	provide	future	support
for	versioning	repository	API	definitions	in	case	more	than	one	version	of	this
repository	API	structure	is	created.

See	Also

Defining	a	Junction	Table	View

Generating	Views

RelationshipDef	Class

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

Meta	Data	Services	Programming

RTblRelshipProps	SQL	Table
RTblRelshipProps	stores	one	row	for	each	annotational	property	instance	that	is
attached	to	a	relationship	definition.

Column	name Data	type Description
OrgID RTIntID The	internal	identifier	for	the	origin

object	of	the	relationship.
RelTypeID RTIntID The	internal	identifier	for	the

relationship	type.
DstID RTIntID The	internal	identifier	for	the

destination	object	of	the	relationship.
PropID RTIntID The	internal	identifier	of	a	property

definition	object.	A	PropertyDef
object	is	a	prerequisite	to	using
annotational	properties.

PropValue RTShortString The	value	of	the	annotational	property
instance.

Remarks
The	RTblRelshipProps	table	stores	instances	of	annotational	properties	that	you
define	for	a	relationship	definition.	An	annotational	property	associates	a	user-
defined	text	string	with	a	specific	relationship	definition.	User-defined	text
strings	are	stored	in	this	table.	A	similar	table	stores	data	for	repository	objects.
For	more	information,	see	RTblProps	SQL	Table.

Note		Annotational	properties	are	not	version-specific.	Annotational	properties
that	you	create	apply	to	the	repository	object	as	a	whole.

The	primary	key	for	this	table	is	formed	from	the	OrgID,	RelTypeID,	DstID,
and	PropID	columns.	A	single	nonunique	index	is	defined	on	the	concatenation
of	the	PropID	and	PropValue	columns.

See	Also

PropertyDef	Class

PropertyDef	Object

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

Meta	Data	Services	Programming

RTblRelships	SQL	Table
RTblRelships	stores	instance	data	for	each	version	combination	present	in	a
two-way	versioned	relationship.

Column	name Data	type Description
OrgID RTIntID The	internal	identifier	for	the	origin

object	of	the	relationship.
Z_OrgBrID_Z RTBrID Indicates	the	branch	of	the	version

graph	containing	the	origin	object
version.

Z_OrgVS_Z RTVerID Indicates	the	lower	limit	of	the	range	of
origin	object	versions	that	have
version-to-version	relationships
described	by	this	row.

Z_OrgVE_Z RTVerID Indicates	the	upper	limit	of	the	range	of
origin	object	versions	that	have
version-to-version	relationships
described	by	this	row.	It	can	be	a
special	value	indicating	that	the	range
is	unlimited.

Z_OrgLClock_Z RTLClock For	internal	use	only.
DstID RTIntID The	internal	identifier	for	the

destination	object	of	the	relationship.
Z_DstBrID_Z RTBrID For	relationship	rows,	indicates	the

branch	of	the	version	graph	containing
the	destination	object	version.

For	auxiliary	rows,	it	can	indicate	the
branch	containing	the	pinned	object
version	of	an	origin	versioned
relationship.

Z_DstVS_Z RTVerID For	relationship	rows,	indicates	the
lower	limit	of	the	range	of	destination
object	versions	that	have	version-to-

version	relationships	described	by	this
row.

For	auxiliary	rows,	it	can	indicate	the
pinned	object	version	of	an	origin
versioned	relationship.

Z_DstVE_Z RTVerID Indicates	the	upper	limit	of	the	range	of
destination	object	versions	having
version-to-version	relationships
described	by	this	row.

Z_DstLClock_Z RTLClock For	internal	use	only.
OrgTypeID RTIntID The	internal	identifier	for	the	class	to

which	the	origin	object	conforms.	It	is
redundantly	stored	in	this	table	for
performance	reasons.

RelTypeID RTIntID The	internal	identifier	for	the
relationship	type.

DstTypeID RTIntID The	internal	identifier	for	the	class	to
which	the	destination	object	conforms.
It	is	redundantly	stored	in	this	table	for
performance	reasons.

PrevDstID RTIntID This	property	is	NULL	for	every
relationship	row	and	any	auxiliary	row
of	a	nonsequenced	relationship.	For	an
auxiliary	row	describing	an	item	in	a
sequenced	relationship	collection,	this
column	has	a	nonNULL	value	that
refers	to	the	previous	relationship	in	the
sequenced	collection.	Specifically,	the
value	is	the	internal	identifier	of	the
previous	relationship;	that	is,	the	value
in	the	DstID	column	of	the	relationship
row	describing	that	previous
relationship.

DstName RTNameString The	name	of	the	destination	object.
More	precisely,	the	name	(as	defined

by	this	naming	relationship)	by	which
each	origin	version	(in	the	range	of
origin	versions)	refers	to	each
destination	version	(in	the	range	of
destination	versions).	If	the	relationship
is	not	a	naming	relationship,	then	this
field	is	NULL.

DstNameLong Text,	
16	bytes

If	the	name	of	the	destination	object	is
too	long	for	the	DstName	field,	this
field	contains	the	full	name.	Otherwise,
this	field	is	NULL.	The	maximum
length	for	this	value	is	16	bytes.

Z_RelFlags_Z RTFlags A	value	of	2	indicates	that	the	row	is	a
relationship	row;	a	value	of	1	indicates
it	is	an	auxiliary	row.

Remarks
The	RTblRelships	table	stores	information	about	each	object	version
combination	that	exists	in	a	two-way	versioned	relationship.	Within	a
relationship	where	both	objects	are	versioned,	multiple	versions	can	exist	for
each	object	pairing.	For	example,	one	instance	of	a	relationship	may	associate
Object_X	version	3	with	Object_Y	version	2,	a	second	instance	may	associate
Object_X	version	4	with	Object_Y	version	5,	and	so	on.	This	table	tracks	data
about	each	combination	of	versioned	objects.

Another	SQL	table	stores	relationship	definition	properties.	For	more
information,	see	RTblRelshipDefs	SQL	Table.

The	primary	key	for	this	table	is	formed	from	the	OrgID,	Z_OrgBrID_Z,
Z_OrgVS_Z,	DstID,	Z_DstBrID_Z,	Z_DstVS_Z,	RelTypeID,	and
Z_RelFlags_Z	columns.

Examples
The	RTblRelships	table	stores	two	kinds	of	rows:	relationship	rows	and
auxiliary	rows.	Relationship	rows	store	data	about	specific	combinations	of

versioned	objects.	Auxiliary	rows	contain	pinning	and	sequence	information	for
an	origin	versioned	relationship.	Examples	illustrate	each	case	and	explain	how
to	interpret	instance	data	in	the	table.

Relationship	Row	Examples
In	the	simplest	case,	a	relationship	row	describes	exactly	one	version-
to-version	relationship.	For	more	information,	see	RTblRelships
Example	One	RTblRelships	Example	One.

In	the	ideal	case,	a	relationship	row	describes	as	large	a	range	as
possible.	For	more	information,	see	RTblRelships	Example	Two.

A	relationship	row	can	describe	an	unbounded	range.	For	more
information,	see	RTblRelships	Example	Three.

In	some	situations,	several	relationship	rows	exist	when	one	would
theoretically	suffice.	For	more	information,	see	RTblRelships	Example
Four.

Auxiliary	Row	Examples
An	auxiliary	row	can	contain	sequencing	information.	For	more
information,	see	RTblRelships	Example	Five.

An	auxiliary	row	can	contain	pinning	information.	For	more
information,	see	RTblRelships	Example	Six.

An	auxiliary	row	can	contain	both	pinning	and	sequencing	information.
For	more	information,	see	RTblRelships	Example	Seven.

Not	every	origin	versioned	relationship	has	a	corresponding	auxiliary	row.	If	the
origin	versioned	relationship	is	not	part	of	a	sequencing	collection	and	does	not
have	any	member	of	its	TargetVersions	collection	pinned,	it	does	not	have	an
auxiliary	row.

See	Also

Relationship	Class

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

Meta	Data	Services	Programming

RTblRelships	Example	One
This	example	shows	exactly	one	version-to-version	relationship.	This	is	the
simplest	case.

If	Z_OrgVS_Z	=		Z_OrgVE_Z,	the	range	of	origin	versions	contains	exactly
one	item.	Similarly,	if	Z_DstVS_Z	=		Z_DstVE_Z,	the	range	of	destination
versions	contains	exactly	one	item.	If	both	these	equalities	hold,	the	row
describes	exactly	one	version-to-version	relationship.

For	example,	if	a	row	has	the	following	values,	it	indicates	that	there	is	a
version-to-version	relationship	between	a	version	of	the	object	whose	internal
identifier	is	7	and	a	version	of	the	object	whose	internal	identifier	is	888:

OrgID		=		7
Z_OrgBrID_Z		=	1	
Z_OrgVS_Z		=		3
Z_OrgVE_Z		=		3
DstID		=		888
Z_DstBrID_Z		=		4
Z_DstVS_Z		=		2
Z_DstVE_Z		=		2
RelTypeID		=		465
Z_RelFlags_Z		=		2

Note	that	some	column	values	are	not	shown	here.

See	Also

RTblRelships	SQL	Table

Meta	Data	Services	Programming

RTblRelships	Example	Two
This	example	shows	how	multiple	versions	of	an	origin	object	can	be	related	to
one	version	of	a	destination	object.	Multiple	versions	of	an	origin	object	are
indicated	by	the	inequality	between	the	two	endpoints	of	a	range	of	origin	object
versions.

Within	a	relationship	row,	if	Z_OrgVS_Z	<	Z_OrgVE_Z,	the	row	describes
more	than	one	version-to-version	relationship.	For	example,	suppose	that
Z_DstVS_Z	=		Z_DstVE_Z,	but	that	Z_OrgVS_Z	<	Z_OrgVE_Z.	The	set	of
destination	versions	referred	to	by	this	row	includes	exactly	one	item,	but	the	set
of	origin	versions	referred	to	by	this	row	includes	n	(n	>	1)	items.	In	this
situation,	this	row	of	the	table	indicates	the	existence	of	n	different	version-to-
version	relationships.

For	example,	if	a	row	contains	the	following	values,	it	describes	three	version-
to-version	relationships,	where	versions	3,	4,	and	5	of	an	origin	object	are	related
to	one	versioned	destination	object:

OrgID		=		7
Z_OrgBrID_Z		=	1	
Z_OrgVS_Z		=		3
Z_OrgVE_Z		=		5
DstID		=		888
Z_DstBrID_Z		=		4
Z_DstVS_Z		=		2
Z_DstVE_Z		=		2
RelTypeID		=		465
Z_RelFlags_Z		=		2

See	Also

RTblRelships	SQL	Table

Meta	Data	Services	Programming

RTblRelships	Example	Three
This	example	shows	how	the	version	graph	defines	an	unbounded	range	for	an
origin	object	that	is	related	to	one	versioned	destination	object.

Within	a	relationship	row,	if	Z_OrgVE_Z	=		VERINFINITY,	the	row	describes
one	or	more	version-to-version	relationships,	depending	on	the	shape	of	the
version	graph.

For	example,	consider	the	following	two	rows	and	the	accompanying	version
graph	of	the	origin	object.	Compare	the	row	data	to	the	diagram	at	the	end	of	this
topic.

OrgID		=		7
Z_OrgBrID_Z		=	2	
Z_OrgVS_Z		=		5
Z_OrgVE_Z		=		VERINFINITY
DstID		=		888
Z_DstBrID_Z		=		4
Z_DstVS_Z		=		2
Z_DstVE_Z		=		2
RelTypeID		=		465
Z_RelFlags_Z		=		2

OrgID		=		7
Z_OrgBrID_Z		=	3	
Z_OrgVS_Z		=		4
Z_OrgVE_Z		=		VERINFINITY
DstID		=		888
Z_DstBrID_Z		=		4
Z_DstVS_Z		=		2
Z_DstVE_Z		=		2
RelTypeID		=		465
Z_RelFlags_Z		=		2

The	first	row	describes	exactly	three	version-to-version	relationships,	because
within	Branch	2,	there	are	three	object	versions	whose	version-within-branch

identifiers	are	5	or	higher.

The	second	row	describes	exactly	one	version-to-version	relationship,	because
within	Branch	3,	there	is	exactly	one	object	version	whose	version-within-
branch	identifier	is	4	or	higher.

See	Also

RTblRelships	SQL	Table

Meta	Data	Services	Programming

RTblRelships	Example	Four
This	example	shows	a	data	set	that	can	be	consolidated	to	remove	extraneous
values.

In	some	situations,	several	relationship	rows	exist	where	one	would	theoretically
suffice.	For	example,	consider	a	row	that	includes	these	values:

OrgID		=		7
Z_OrgBrID_Z		=	4
Z_OrgVS_Z		=		3
Z_OrgVE_Z		=		8
DstID		=		888
Z_DstBrID_Z		=		4
Z_DstVS_Z		=		2
Z_DstVE_Z		=		2
RelTypeID		=		465
Z_RelFlags_Z		=		2

The	row	indicates	that	a	version-to-version	relationship	(to	a	specific	version	of
the	destination	object)	exists	from	every	Branch	4	version	of	the	origin	object
whose	version-within-branch	identifier	is	between	3	and	8.

Compare	the	preceding	row	to	the	following	rows.	In	particular,	notice	that	the
following	two	rows	are	effectively	equivalent	to	the	preceding	row.	Taken
together,	the	following	two	rows	indicate	exactly	what	the	preceding	single	row
indicates.	In	other	words,	given	two	instances	of	the	same	origin-destination
object	pair,	combining	the	lowest	of	the	Z_OrgVS_Z	values	and	the	highest	of
the	Z_OrgVE_Z	values	fully	represents	all	version	possibilities	between	this
origin-destination	object	pair.

OrgID		=		7
Z_OrgBrID_Z		=	4
Z_OrgVS_Z		=		3
Z_OrgVE_Z		=		5
DstID		=		888
Z_DstBrID_Z		=		4

Z_DstVS_Z		=		2
Z_DstVE_Z		=		2
RelTypeID		=		465
Z_RelFlags_Z		=		2

OrgID		=		7
Z_OrgBrID_Z		=	4
Z_OrgVS_Z		=		6
Z_OrgVE_Z		=		8
DstID		=		888
Z_DstBrID_Z		=		4
Z_DstVS_Z		=		2
Z_DstVE_Z		=		2
RelTypeID		=		465
Z_RelFlags_Z		=		2

See	Also

RTblRelships	SQL	Table

Meta	Data	Services	Programming

RTblRelships	Example	Five
This	example	shows	sequence	data	in	an	auxiliary	row.	When	Z_RelFlags_Z	is
equal	to	1,	the	row	is	an	auxiliary	row.	When	equal	to	2,	it	is	a	relationship	row.

For	each	item	in	a	sequenced	origin	versioned	relationship,	an	auxiliary	row	in
RTblVersions	exists.	For	example,	consider	the	following	sequenced	origin
versioned	relationship.

The	figure	shows	a	sequenced	origin	versioned	relationship.	Because	the
versioned	relationship	has	two	items,	there	are	two	sets	of	rows	in	the
RTblVersions	table.	One	set	consists	of	one	relationship	row	and	one	auxiliary
row,	with	these	values:

OrgID		=		008
Z_OrgBrID_Z		=	2
Z_OrgVS_Z		=		3
Z_OrgVE_Z		=		3
DstID		=		984
Z_DstBrID_Z		=		0
Z_DstVS_Z		=		5
Z_DstVE_Z		=		5
RelTypeID		=		522
PrevDstID		=		NULL
Z_RelFlags_Z		=		2

OrgID		=		008
Z_OrgBrID_Z		=	2
Z_OrgVS_Z		=		3
Z_OrgVE_Z		=		3
DstID		=		984
Z_DstBrID_Z		=		0
Z_DstVS_Z		=		5
Z_DstVE_Z		=		5
RelTypeID		=		522

PrevDstID		=		SEQUENCE_END
Z_RelFlags_Z		=		1

The	other	item	has	two	version-to-version	relationships.	The	RTblVersions	table
expresses	this	as	a	set	of	three	rows	with	the	following	values:

OrgID		=		008
Z_OrgBrID_Z		=	2
Z_OrgVS_Z		=		3
Z_OrgVE_Z		=		3
DstID		=		777
Z_DstBrID_Z		=		2
Z_DstVS_Z		=		2
Z_DstVE_Z		=		2
RelTypeID		=		522
PrevDstID		=		NULL
Z_RelFlags_Z		=		2

OrgID		=		008
Z_OrgBrID_Z		=	2
Z_OrgVS_Z		=		3
Z_OrgVE_Z		=		3
DstID		=		777
Z_DstBrID_Z		=		2
Z_DstVS_Z		=		3
Z_DstVE_Z		=		3
RelTypeID		=		522
PrevDstID		=		NULL
Z_RelFlags_Z		=		2

OrgID		=		008
Z_OrgBrID_Z		=	2
Z_OrgVS_Z		=		3
Z_OrgVE_Z		=		3
DstID		=		777
Z_DstBrID_Z		=		NULLBRANCH
Z_DstVS_Z		=		NULLVERSION
Z_DstVE_Z		=		NULL	
RelTypeID		=		522

PrevDstID		=		984
Z_RelFlags_Z		=		1

See	Also

RTblRelships	SQL	Table

Meta	Data	Services	Programming

RTblRelships	Example	Six
This	example	shows	pinning	information.

If	an	origin	versioned	relationship	has	a	pinned	target	version,	the	RTblVersions
table	includes	an	auxiliary	row	to	indicate	which	target	version	is	pinned.	For
example,	the	following	figure	shows	an	origin	versioned	relationship	with	a
pinned	target	version.

To	accommodate	this	origin	versioned	relationship,	RTblVersions	includes	four
rows	with	the	following	values,	where	the	four	rows	correspond	to	the	four
arrows	(counting	the	double	arrow	as	two):

OrgID		=		008
Z_OrgBrID_Z		=	2
Z_OrgVS_Z		=		3
Z_OrgVE_Z		=		3
DstID		=		984
Z_DstBrID_Z		=		0
Z_DstVS_Z		=		4
Z_DstVE_Z		=		4
RelTypeID		=		522
Z_RelFlags_Z		=		2

OrgID		=		008
Z_OrgBrID_Z		=	2
Z_OrgVS_Z		=		3
Z_OrgVE_Z		=		3
DstID		=		984
Z_DstBrID_Z		=		0
Z_DstVS_Z		=		5
Z_DstVE_Z		=		5
RelTypeID		=		522
Z_RelFlags_Z		=		2

OrgID		=		008

Z_OrgBrID_Z		=	2
Z_OrgVS_Z		=		3
Z_OrgVE_Z		=		3
DstID		=		984
Z_DstBrID_Z		=		0
Z_DstVS_Z		=		5
Z_DstVE_Z		=		NULL	
RelTypeID		=		522
Z_RelFlags_Z		=		1

OrgID		=		008
Z_OrgBrID_Z		=	2
Z_OrgVS_Z		=		3
Z_OrgVE_Z		=		3
DstID		=		984
Z_DstBrID_Z		=		0
Z_DstVS_Z		=		6
Z_DstVE_Z		=		6
RelTypeID		=		522
Z_RelFlags_Z		=		2

See	Also

RTblRelships	SQL	Table

Meta	Data	Services	Programming

RTblRelships	Example	Seven
This	example	shows	a	combination	of	sequencing	and	pinning	information.

An	auxiliary	row	can	include	both	sequencing	and	pinning	information.	For
example,	if	a	sequenced	origin	collection	includes	an	origin	versioned
relationship	with	a	pinned	target	version,	the	RTblVersions	table	includes	an
auxiliary	row	that	indicates	which	target	version	is	pinned	and	which	item	in	the
sequenced	origin	collection	precedes	the	current	one.	For	example,	the	following
figure	shows	a	sequences	origin	collection,	one	of	whose	items	has	a	pinned
target	version.

To	accommodate	this	relationship	collection,	RTblVersions	includes:

Five	relationship	rows,	one	for	each	version-to-version	relationship

Two	auxiliary	rows,	one	for	each	origin	versioned	relationship.

The	auxiliary	rows	have	the	following	values:

OrgID		=		008
Z_OrgBrID_Z		=	2
Z_OrgVS_Z		=		3
Z_OrgVE_Z		=		3
DstID		=		984
Z_DstBrID_Z		=		0
Z_DstVS_Z		=		5
Z_DstVE_Z		=		NULL	
RelTypeID		=		522
PrevDstID		=		SEQUENCE_END
Z_RelFlags_Z		=		1

OrgID		=		008
Z_OrgBrID_Z		=	2
Z_OrgVS_Z		=		3

Z_OrgVE_Z		=		3
DstID		=		777
Z_DstBrID_Z		=		NULLBRANCH
Z_DstVS_Z		=		NULLVERSION
Z_DstVE_Z		=		NULL
RelTypeID		=		522
PrevDstID		=		984
Z_RelFlags_Z		=		1

See	Also

RTblRelships	SQL	Table

Meta	Data	Services	Programming

RTblScriptDefs	SQL	Table
RTbleScriptDefs	stores	one	row	for	each	script	definition	object	stored	in	a
repository	database.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	of	the	class.
Z_BranchID_Z RTBrID Indicates	the	branch	of	the	version

graph	that	contains	the	range	to	whose
items	the	property	values	in	this	row
apply.

Z_VS_Z RTVerID A	version-within-branch	identifier	that
indicates	the	lower	limit	of	the	range	to
whose	items	the	property	values	in	this
row	apply.

Z_VE_Z RTVerID A	version-within-branch	identifier	that
indicates	the	upper	limit	of	the	range	to
whose	items	the	property	values	in	this
row	apply.

ScriptLanguage Varchar,	
255	bytes

The	name	of	the	scripting	language	to
be	used.	The	maximum	length	for	this
value	is	255	bytes.

Body Text,	
64	kilobytes
(KB)

A	string	that	contains	the	script	body.
The	maximum	length	for	this	value	is
64	kilobytes.

Remarks
The	RTblScriptDefs	table	stores	instances	of	ScriptDef	objects	associated	with
MethodDef	objects.	Script	instance	data	includes	the	script	string	and	the
language	that	supports	it.

The	primary	key	for	this	table	is	formed	from	the	IntID,	Z_BranchID_Z,	and
Z_VS_Z	columns.

Z_BranchID_Z,	Z_VS_Z,	and	Z_VE_Z	are	included	to	provide	future	support
for	versioning	repository	API	definitions	in	case	more	than	one	version	of	this
repository	API	structure	is	created.

See	Also

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

ScriptDef	Class

ScriptDef	Object

Meta	Data	Services	Programming

RTblSites	SQL	Table
RTblSites	contains	translation	data	that	maps	a	global	site	identifier	to	a	local
site	identifier.	There	is	one	row	for	each	repository	site	known	to	this	repository
database.

Column	name Data	type Description
SiteID RTSiteID The	site	identifier	for	a	repository	site

that	is	known	to	this	repository
database

SiteGUID RTGUID The	global	identifier	for	the	site

Remarks
The	RTblSites	table	provides	a	translation	capability	between	the	global	site
identifier	that	uniquely	identifies	a	site	across	all	repositories	and	the	local	site
identifier,	which	is	unique	only	within	the	current	repository	database.	The
smaller	local	site	identifier	is	a	part	of	the	internal	identifier	that	is	used	to
identify	a	repository	object	within	the	repository	database.

The	primary	key	for	this	table	is	the	SiteID	column.	A	unique	index	is	defined
on	the	SiteGUID	column.

See	Also

Object	Identifiers	and	Internal	Identifiers

Repository	Identifiers

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

Meta	Data	Services	Programming

RTblSumInfo	SQL	Table
RTblSumInfo	stores	user-defined	descriptive	data	about
ISummaryInformation	interfaces.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	of	the	class.
Z_BranchID_Z RTBrID Indicates	the	branch	of	the	version

graph	that	contains	the	range	to	whose
items	the	property	values	in	this	row
apply.

Z_VS_Z RTVerID A	version-within-branch	identifier
that	indicates	the	lower	limit	of	the
range	to	whose	items	the	property
values	in	this	row	apply.

Z_VE_Z RTVerID A	version-within-branch	identifier
that	indicates	the	upper	limit	of	the
range	to	whose	items	the	property
values	in	this	row	apply.

Comments RTLongStringA	field	used	for	comments.
ShortDesc Varchar,	

255	bytes
The	description	of	the	object.	The
maximum	length	for	this	value	is	255
bytes.

HelpContext Varchar,	
255	bytes

A	context-sensitive	Help	string.	The
maximum	length	for	this	value	is	255
bytes.

DescriptionContext RTLongStringA	context-sensitive	description	of	the
object.

OwnerInformation Varchar,	
255	bytes

The	name	of	the	current	owner.	The
maximum	length	for	this	value	is	255
bytes.

Status Varchar,	
255	bytes

The	current	status	of	the	object.	The
maximum	length	for	this	value	is	255
bytes.

Author Varchar,	
255	bytes

The	name	of	the	original	author.	The
maximum	length	for	this	value	is	255
bytes.

Caption Varchar,	255
bytes

A	caption	that	provides	a	more
descriptive	name.	The	maximum
length	for	this	value	is	255	bytes.

Remarks
The	RTblSumInfo	table	is	an	interface-specific	table;	its	columns	correspond	to
the	properties	exposed	by	the	ISummaryInformation	interface.	The	repository
engine	creates	and	populates	this	table	when	you	invoke	the
ISummaryInformation	interface	and	insert	summary	data.

The	primary	key	for	this	table	is	formed	from	the	InitID,	Z_BranchID_Z,	and
Z_VS_Z	columns.

See	Also

InterfaceDef	Class

ISummaryInformation	Interface

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

RTblVersionAdminInfo	SQL	Table

Meta	Data	Services	Programming

RTblTypeInfo	SQL	Table
RTblTypeInfo	stores	aliases	of	class,	interface	and	relationship	objects.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	for	the	member

definition	object.
Z_BranchID_Z RTBrID The	branch	identifier	for	repository	API

versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always	zero.

Z_VS_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always	zero.

Z_VE_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always	VERINFINITY.

Synonym Varchar,	
127	bytes

A	string	used	as	an	alias	name.	The
maximum	length	for	this	value	is	127
bytes.

Remarks
The	RTblTypeInfo	table	extends	the	repository	API	to	allow	classes,	interfaces
and	relationships	to	be	referred	to	by	multiple	names	as	aliases.

The	primary	key	for	this	table	is	formed	by	the	IntID,	Z_BranchID_Z,	and
Z_VS_Z	columns.

Z_BranchID_Z,	Z_VS_Z,	and	Z_VE_Z	are	included	to	provide	future	support
for	versioning	repository	API	definitions	in	case	more	than	one	version	of	this
repository	API	structure	is	created.

See	Also

CollectionDef	Class

CollectionDef	Object

MethodDef	Class

MethodDef	Object

PropertyDef	Class

PropertyDef	Object

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

Meta	Data	Services	Programming

RTblTypeLibs	SQL	Table
RTblTypeLibs	stores	a	global	identifier	for	each	information	model	object.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	for	the

information	model	(repository	type
library).

Z_BranchID_Z RTBrID The	branch	identifier	for	repository
API	versioning.	It	is	reserved	for
proprietary	use	by	the	repository
engine.	The	value	of	this	column	is
always	zero.

Z_VS_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always	zero.

Z_VE_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for	proprietary
use	by	the	repository	engine.	The	value
of	this	column	is	always
VERINFINITY.

TypeLibID RTGUID The	global	identifier	for	the	repository
type	library,	as	recorded	in	the	system
registry.

Prefix Varchar,	
255	bytes

A	string	containing	the	prefix	that
identifies	an	object	with	an	information
model.	The	first	three	characters	of	the
information	model	provide	a	default
prefix	(for	example,	UML	for	the
generic	Unified	Modeling	Language
(UML)	model	of	the	Open	Information
Model	(OIM)).	The	maximum	length
for	this	value	is	255	bytes.

Remarks
The	RTblTypeLibs	table	relates	the	internal	object	identifiers	of	ReposTypeLib
objects	(information	models)	to	their	corresponding	global	identifiers.

The	primary	key	for	this	table	is	formed	by	the	IntID,	Z_BranchID_Z,	and
Z_VS_Z	columns.

Z_BranchID_Z,	Z_VS_Z,	and	Z_VE_Z	are	included	to	provide	future	support
for	versioning	repository	API	definitions	in	case	more	than	one	version	of	this
repository	API	structure	is	created.

See	Also

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

ReposTypeLib	Class

ReposTypeLib	Object

Meta	Data	Services	Programming

RTblVersionAdminInfo	SQL	Table
RTblVersionAdminInfo	stores	version	information	for	objects	created	through
custom	interfaces.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	of	the	class.
Z_BranchID_Z RTBrID Indicates	the	branch	of	the	version

graph	that	contains	the	range	to
whose	items	the	property	values	in
this	row	apply.

Z_VS_Z RTVerID A	version-within-branch	identifier
that	indicates	the	lower	limit	of	the
range	to	whose	items	the	property
values	in	this	row	apply.

Z_VE_Z RTVerID A	version-within-branch	identifier
that	indicates	the	upper	limit	of	the
range	to	whose	items	the	property
values	in	this	row	apply.

VersionCreateTime Datetime,	
8	bytes

The	time	the	version	was	created.
The	maximum	length	for	this	value	is
8	bytes.

VersionModifyTime Datetime,	
8	bytes

The	time	the	version	was	modified.
The	maximum	length	for	this	value	is
8	bytes.

CreateByUser RTLongStringThe	user	who	created	the	version.
ModifyByUser RTLongStringThe	user	who	modified	the	version.
VersionLabel Varchar,	

255	bytes
A	string	provided	by	an	application	to
indicate	a	version	label.	The
maximum	length	for	this	value	is	255
bytes.

VersionShortDesc Varchar,	
255	bytes

A	short	summary	of	the	version
comments.	The	maximum	length	for
this	value	is	255	bytes.

VersionComments Text,	
16	bytes

Comments	added	when	a	file	is
checked	in	a	version	control	system.
The	maximum	length	for	this	value	is
16	bytes.

Remarks
The	RTblVersionAdminInfo	table	is	an	interface-specific	table;	its	columns
correspond	to	the	properties	exposed	by	the	IVersionAdminInfo	interface.	By
default,	no	class	of	the	repository	API	implements	IVersionAdminInfo.
However,	as	soon	as	you	insert	any	class	that	implements	IVersionAdminInfo,
the	engine	creates	the	table.

Each	row	of	this	table	is	either	a	version	row	or	a	merge	row.	Each	version	row
describes	an	object	version.	Each	merge	row	indicates	that	one	or	more	merge
operations	occurred	between	the	same	pair	of	object	versions.	For	more
information,	see	RTblVersions	SQL	Table.

The	primary	key	is	formed	from	the	IntID,	Z_BranchID_Z,	and	Z_VS_Z
columns.

See	Also

InterfaceDef	Class

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

RTblNamedObj	SQL	Table

RTblSumInfo	SQL	Table

Storage	Strategy	in	a	Repository	Database

Versioning	Objects

Meta	Data	Services	Programming

RTblVersions	SQL	Table
RTblVersions	stores	version	information	about	repository	objects.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	for	the	object.
Z_BranchID_Z RTBrID A	branch	identifier.	It	indicates	the

branch	of	the	version	graph	that
contains	this	object	version.

Z_VS_Z RTVerID A	version-within-branch	identifier.	It
differentiates	the	version	described	by
this	row	from	other	versions	on	the
same	branch.

Z_PredBr_Z RTBrID A	branch	identifier.	For	a	version	row,
this	column	indicates	the	branch
containing	the	predecessor	creation
version	of	the	current	object	version.
For	a	merge	row,	this	column	indicates
the	branch	containing	the	object	version
that	was	the	predecessor	of	the	merge
operation.

Z_PredVer_Z RTVerID A	version-within-branch	identifier.	For	a
version	row,	this	column	indicates	the
predecessor	creation	version	of	the
current	object	version.	For	a	merge	row,
this	column	indicates	the	object	version
that	was	the	predecessor	of	the	merge
operation.

TypeID RTIntID The	internal	identifier	of	the	class	to
which	the	version	conforms.

VerIntID RTIntID The	internal	identifier	of	this	version.
Z_VState_Z RTFlags Indicates	whether	the	object	version	is

frozen	and	whether	it	is	checked	out.
The	object	version	is	frozen	only	if	the
last	(least	significant)	bit	is	set.	The

object	version	is	checked	out	only	if	the
second-last	bit	is	set.

Z_PredFlags_Z RTFlags Indicates	whether	this	row	is	a	version
row	or	a	merge	row.	A	value	of	1
indicates	that	this	is	a	version	row.	A
value	of	2	indicates	that	this	is	a	merge
row.

Z_SuccInc_Z RTSuccInc For	internal	use	only.
Z_LClock_Z RTLClock For	internal	use	only.

Remarks
The	RTblVersions	table	stores	two	row	types:	version	rows	and	merge	rows.
Each	row	is	either	one	type	or	the	other.	Version	rows	describe	an	object	version.
Merge	rows	indicate	that	one	or	more	merge	operations	occurred	between	the
same	pair	or	object	versions.

Because	a	repository	object	can	have	many	versions,	it	can	have	multiple	version
rows	to	store	information	about	each	version.	For	each	object,	there	is	exactly
one	version	row	that	describes	the	initial	version	of	the	object.	Within	the	initial
version	row,	the	values	of	Z_PredBrID_Z	and	Z_PredVer_Z	are	special
constants	indicating	that	the	first	version	has	no	predecessor.

Because	an	object	version	can	have	zero,	one,	or	many	non-creation
predecessors,	each	object	version	can	have	zero,	one,	or	many	merge	rows.

The	primary	key	is	formed	from	the	IntID,	Z_BranchID_Z,	Z_VS_Z,
Z_PredBrID_Z,	and	Z_PredVer_Z	columns.

See	Also

InterfaceDef	Class

InterfaceDef	Object

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

RTblVersionAdminInfo	SQL	Table

Storage	Strategy	in	a	Repository	Database

Versioning	Objects

Meta	Data	Services	Programming

RTblWorkspaceItems	SQL	Table
RTblWorkspaceItems	stores	information	about	which	repository	object
versions	are	included	within	a	workspace.

Column	name Data	type Description
IntID RTIntID The	internal	identifier	for	the

workspace	object.
Z_BranchID_Z RTBrID The	branch	identifier	for	repository

API	versioning.	It	is	reserved	for
proprietary	use	by	the	repository
engine.	The	value	of	this	column	is
always	zero.

Z_VS_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for
proprietary	use	by	the	repository
engine.	The	value	of	this	column	is
always	zero.

Z_VE_Z RTVerID An	identifier	for	repository	API
versioning.	It	is	reserved	for
proprietary	use	by	the	repository
engine.	The	value	of	this	column	is
always	VERINFINITY.

Z_ItemIntID_Z RTIntID The	internal	identifier	of	the	object
version	present	in	the	workspace.

Z_ItemBranchID_ZRTBrID The	branch	identifier	of	the	object
version	present	in	the	workspace.

Z_ItemVS_Z RTVerID The	version-within-branch	identifier
of	the	object	version	present	in	the
workspace.

Z_ItemFlag_Z RTFlags A	set	of	flags	indicating	whether	the
object	version	is	checked	out	to	the
workspace.	A	value	of	0	indicates	that
the	object	version	is	not	checked	out.
A	value	of	2	indicates	that	the	object

version	is	checked	out.

Remarks
The	RTblWorkspaceItems	table	tracks	which	object	version	is	part	of	a
workspace.	A	workspace	can	have	only	a	single	version	of	any	given	object.

The	primary	key	is	formed	from	the	IntID,	Z_BranchID_Z,	Z_VS_Z,
Z_ItemIntID_Z,	Z_ItemBranchID_Z,	and	Z_ItemVS_Z	columns.

See	Also

Repository	SQL	Data	Types

Repository	SQL	Schema

Repository	SQL	Tables

Meta	Data	Services	Programming

XML	Encoding	Reference
This	section	describes	the	format	for	exchanging	instances	of	the	Open
Information	Model	(OIM)	through	the	use	of	Extensible	Markup	Language
(XML).	The	XML	encoding	format	works	for	any	information	model	that	is
based	on	the	Meta	Data	Coalition	(MDC)	OIM	framework.	A	set	of	rules
governs	the	encoding	of	meta	data	objects	by	OIM	in	XML.	The	XML	encoding
of	OIM	types	enables	the	interchange	of	meta	data	between	heterogeneous
repositories.	The	encoding	format	defined	in	this	specification	is	completely
driven	by	the	abstract	model.	The	names	of	the	element	and	attribute	tags	used	in
the	representation	are	derived	from	the	model.	Documents	can	be	generated	and
parsed	automatically	by	any	implementation	of	OIM,	regardless	of	technology.

XML	DTD
Accompanying	this	section	is	a	set	of	XML	Document	Type	Definitions	(DTDs)
that	together	form	a	grammar	to	express	the	structure	of	XML	instances.	DTDs
are	currently	the	only	approved	mechanism	for	describing	the	structure	of	XML
documents.	In	its	current	form,	DTDs	are	not	expressive	enough	to	cover	the
semantics	of	OIM	completely.	A	correct	interpretation	of	an	XML	document	is
only	possible	based	on	the	OIM	specification.	However,	DTDs	have	been
supplied	to	make	understanding	the	XML	documents	easier	and	to	help	with	the
development	of	XML	import/export	functionality	based	on	this	encoding	format.

The	following	topics	are	discussed	in	this	section.

Topic Description
XML	Encoding	Definition Explains	the	XML	encoding	format	rules	for

OIM
OIM-to-XML	Mapping Shows	the	mapping	of	the	core	concepts,

which	include	diagrams	and	example	code
Sample	Encoding Provides	an	example	code	of	an	XML	OIM

transfer
EBNF	Representation Shows	an	example	of	an	OIM	XML

encoding	in	Extended	Backus-Naur	Form
(EBNF)

Namespaces	in	OIM Shows	a	table	of	unique	namespaces	of	each
OIM	information	model

DTD	for	the	OIM	Namespace Shows	an	example	of	OIM	Namespace
Definition

XML	Import	Export Describes	the	import	and	export	interfaces
for	XML	in	the	OIM

XML	Encoding	Errors Lists	the	XML	encoding	error	messages

It	is	assumed	that	the	reader	is	familiar	with	the	concepts	represented	by	the
OIM.	A	basic	knowledge	of	XML,	COM,	and	Microsoft®	SQL	Server™	2000
Meta	Data	Services	is	also	assumed	throughout	this	section.	This	section	is
based	on	XML	standards	as	defined	by	the	World	Wide	Web	Consortium	(W3C),
and	XML	Namespaces	provide	a	simple	method	for	qualifying	names	in	XML
documents.	The	implementation	of	namespaces	in	this	section	is	based	on	the
W3C	recommendation	Namespaces	in	XML.

For	more	information	about	COM,	XML,	and	OIM,	see	the	MSDN®	Library	at
the	Microsoft	Web	site	and	the	Meta	Data	Coalition	Web	site	at
http://www.mdcinfo.com.

For	more	information	about	XML	standards,	see	the	W3C	Web	site
http://www.w3.org/.

See	Also

Using	XML	Encoding

XML	in	Meta	Data	Services

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red
http://www.mdcinfo.com
http://www.w3.org/
JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

XML	Encoding	Definition
Extensible	Markup	Language	(XML)	encodes	information	as	content	enclosed	in
nested	begin/end	tag	elements	and	name/value	pair	attributes	on	these	elements.
The	XML	encoding	format	defined	in	this	section	is	based	on	this	encoding	rule.

XML	provides	the	following	basic	concepts	to	encode	information.

Topic Description
Character	Set	and	Data
Types

Describes	the	character	set	and	data	types	for
encoding	used	in	an	XML	document

Top-Level	Element Describes	the	element	that	encapsulates	all	transfer
information	in	an	XML	document

Elements	and
Attributes

Describes	the	begin/end	tag	pairs	and	the	content
encapsulated	between	them

Namespaces Shows	the	basic	structure	of	the	Open	Information
Model	(OIM)	namespace	hierarchy	to	ensure
unique	elements	in	an	XML	document

Nested	Lists Shows,	by	example,	the	ordered	or	unordered	sets
of	elements	that	can	be	used	to	represent
hierarchies	of	elements

Element	References Describes	connections	between	elements	to
represent	network	structures	of	elements

Extensibility Describes	extended	vendor-specific	meta	data	types

See	Also

Using	XML	Encoding

XML	Encoding	Errors

XML	Encoding	Reference

XML	in	Meta	Data	Services

XML	Import	Export

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

Character	Set	and	Data	Types
The	Extensible	Markup	Language	(XML)	encoding	relies	on	the	native	XML
character	set	handling	based	on	Unicode.

Values	appear	as	attribute-tagged	values.	They	are	represented	using	the
following	rules.

Data	type Encoding
String Any	occurrence	of	&	must	be	replaced	by	&

Any	occurrence	of	<	must	be	replaced	by	<
Any	occurrence	of	>	must	be	replaced	by	>
Any	occurrence	of	"	(double	quote)	must	be	replaced	by
"

Date Must	follow	the	ISO	8601	format.
Numbers Punctuation	must	use	US	English	rules	(for	example,	they

must	use	a	period	as	a	decimal	separator).	Numbers	can
include	exponents.

Boolean False	=	-1,	True	=	1.
BLOB Use	MIME	Base64	encoding.

See	Also

XML	Encoding	Reference

Meta	Data	Services	Programming

Top-Level	Element
The	Extensible	Markup	Language	(XML)	requires	a	top-level	element
(begin/end	tag)	that	encapsulates	all	information	contained	in	an	XML
document.	Any	Document	Type	Definitions	(DTDs)	defined	or	referenced	in	the
document	apply	to	the	content	of	the	top-level	element.

The	Open	Information	Model	(OIM)	to	XML	mapping	defines	a	transfer
element	as	the	top-level	structure.	This	element	encapsulates	all	structured
information	that	is	described	in	the	XML	document.	Additional	features	of	the
transfer	element	can	be	nested.	The	top-level	element	also	maintains
administrative	information,	such	as	what	exporter	generated	the	data	and
version.

Example

<?xml	version="1.0"?>
<oim:Transfer	version="1.0"
			xmlns:oim="http://www.mdcinfo.com/oim/oim.dtd">
			<oim:TransferHeader
						Exporter="MSMDCXML"
						ExporterVersion="2.0"
						TransferDateTime="19980804T08:15:00"
			>
						.	.	.	user-defined	information	.	.	.
			</oim:TransferHeader>
			.	.	.	objects	.	.	.
</oim:Transfer>

All	structures	defined	within	the	remainder	of	this	section	are	valid	only	within
the	begin	(<oim:Transfer>)	and	end	(</oim:Transfer>)	tags	of	the	transfer
element.	The	TransferHeader	element	is	used	to	contain	information	about	the
component	that	generated	the	transfer.

See	Also

XML	Encoding	Reference

Meta	Data	Services	Programming

Elements	and	Attributes
Elements	in	Extensible	Markup	Language	(XML)	are	enclosed	within	a	pair	of
tags.	Each	pair	includes	an	opening	tag	and	a	closing	tag.	The	content	can	be
either	a	structure	of	sub-elements	or	an	unstructured	data	representation.	The
following	table	shows	how	the	meta	data	element	types,	which	are	used	to
describe	the	Open	Information	Model	(OIM),	are	mapped	into	XML.

Element XML	representation
Information	Model No	mapping.	For	more	information,	see

Namespaces.
Concrete	Class <class_name>...</class_name>
Attribute Included	as	an	XML	attribute	on	an	XML

element,	for	example,	attribute=value.
Association <association_name>...</association_name>

The	tag	identifies	the	type	of	an	element.	Additional	meta	information	about	the
element	can	be	represented	by	predefined	attributes.	The	following	table	lists
attributes	that	are	currently	predefined.

Attribute	name
Defined
for Mandatory/optional Description

OIM:id Object,
association

Optional Transfer	identifier	(ID)
used	to	uniquely
identify	an	element	in
an	XML	document.	The
id	has	no	meaning
outside	of	a	transfer.
The	id	is	mandatory	on
objects,	but	optional	on
object	references.

OIM:objid Object,
association

Optional Unique	identifier	of	an
element	in	the	source	or
target	repository.

OIM:href Objects Optional Hyperlink	mechanism
to	reference	objects.

OIM:label Objects Optional The	name	of	an	object
within	the
encapsulating
association.

OIM:supertypeObject Optional Used	by	extensions	to
indicate	the	OIM	type
that	can	be	used	for
importing	an	object.

The	OIM-to-XML	mapping	separates	the	transfer	ID	and	object	ID	and	treats	the
object	ID	as	an	attribute	of	the	element.	This	XML	encoding	is	designed	to
enable	the	interchange	of	objects	between	heterogeneous	repositories.	There	is
no	common	format	for	object	identifiers;	furthermore,	there	is	no	agreement	on
how	to	implement	object	identity	(name	based,	GUID,	disk	pointer,	and	so	on).

To	provide	a	generic	solution,	a	uniquely	defined	ID	identifies	an	object	within	a
transfer;	that	is,	an	ID	can	serve	as	the	target	of	a	reference	in	the	transfer.	The
structure	of	the	ID	is	unspecified,	but	it	must	be	unique	in	a	transfer	and	it	must
contain	an	underscore	as	the	first	character.	Examples	of	valid	transfer	IDs	are	a
running	number	("_007")	or	the	name	of	an	object	("_Invoice007").

Note	that	object	identity	is	necessary	to	allow	a	meaningful	synchronization	of
objects	between	repositories.	In	a	heterogeneous	environment,	this	requires	the
XML	encoding	to	maintain	a	cross-reference	between	the	globally	unique
identifiers	(GUIDs)	of	objects	maintained	by	different	repository	products.	To
exchange	object	IDs	as	attributes	of	objects,	exchanging	repositories	must	agree
on	the	semantics	of	the	exchange	mechanism.	To	simplify	this	process,	the
attribute	objid	is	included	in	the	encoding	format.	If	necessary,	the	first	source	of
a	transfer	can	generate	the	object	ID.	Each	successive	transfer	step	must
maintain	the	whole	object	ID	and	pass	it	on.

See	Also

XML	Encoding	Reference

Meta	Data	Services	Programming

Namespaces
In	the	Open	Information	Model	(OIM),	classes	and	associations	share	the	same
namespace	for	a	single	information	model.	This	means	that	more	than	one	class
and/or	association	within	the	same	information	model	cannot	share	the	same
name.	The	following	table	shows	the	basic	structure	of	the	OIM	namespace
hierarchy.

Level	1 Level	2 Description
Information	Model 	 Corresponds	to	an	information	model
	 Class Class	name	and	the	associated

attributes
	 Association A	collection	of	nested	or	linked

classes

The	OIM-to-Extensible	Makeup	Language	(XML)	mapping	combines	XML
Namespaces	and	a	naming	convention	to	provide	the	following	solution.

< Namespace : Name >
< Information	Model	Prefix : Class	Name >
< Information	Model	Prefix : Association	Name >

For	example,	<x:y>	is	an	element	tag	for	an	object	of	class	y	in	submodel	x.
Note	that	because	attributes	are	represented	as	XML	attributes	they	are	scoped	as
part	of	the	element.	Therefore,	the	attribute	names	need	to	be	unique	only	within
the	class,	not	the	whole	subject	area	of	the	model.

If	attributes	in	the	inheritance	chain	of	the	class	share	the	same	name,	the	names
of	the	attributes	are	expanded	to	ClassName.AttributeName.	If	the	class	name
is	not	unique,	it	is	prefixed	with	the	same	information	model	prefix	as	the
namespace.

See	Also

XML	Encoding	Reference

Namespaces	in	OIM

Meta	Data	Services	Programming

Nested	Lists
Extensible	Markup	Language	(XML)	represents	information	as	nested	lists	of
elements	or	references	to	elements.	Lists	can	be	either	ordered	or	unordered;	the
occurrence	of	element	types	is	optional	or	mandatory.

The	following	diagram	shows	the	representation	of	the	Open	Information	Model
(OIM)	"class	has	associations"	and	"associations	contain	objects"	in	XML.

Example

<object	attribute="_">
			<association>
						<object	label="C"	name="Lisa"	seqno="1">
						...
						</object>
						<object	label="A"	name="John"	seqno="2">
						...
						</object>
						<object	label="B"	name="Tom"	seqno="3">
						...
						</object>
			</association>
			...
</object>

Object	elements	contain	lists	of	association	elements,	which,	in	turn,	contain	lists
of	object	elements.

See	Also

XML	Encoding	Reference

Meta	Data	Services	Programming

Element	References
Nested	lists	of	Extensible	Markup	Language	(XML)	elements	enable	the
representation	of	hierarchical	structures	of	objects.	References	are	used	to	link
objects	into	a	general	network	of	associations.	The	XML	hyperlink	mechanism	is
used	to	reference	objects	defined	internal	to	a	transfer.	An	internal	object	is
simply	referenced	by	its	transfer	identifier	(ID).

An	object	reference	is	represented	by	the	href	attribute	of	the	element	tag:

			<object_type_name	href="#_123"/	>

The	object	reference	indicates	the	type	of	the	object	referred	to.	To	learn	the
object	type,	you	do	not	need	to	navigate	the	object	reference	to	the	target	object.

See	Also

XML	Encoding	Reference

Meta	Data	Services	Programming

Extensibility
The	Open	Information	Model	(OIM)	can	be	extended	with	vendor-specific	meta
data	types.	New	classes,	attributes,	and	associations	are	added	using	the
Universal	Modeling	Language	(UML)	representation	of	the	OIM.	New	elements
may	be	either	created	from	scratch	or	based	on	existing	OIM	types	using
specialization	(inheritance).	A	vendor	may	choose	to	publish	the	model
extensions	in	order	to	share	the	meta	data	with	other	vendors,	or	treat	the
extension	as	tool	specific	(private).

Using	the	OIM	to	Extensible	Markup	Language	(XML)	mapping	rules	described
in	this	document,	an	XML	Document	Type	Definition	(DTD)	for	the	model
extension	can	be	created	from	its	UML	representation.	However,	the	XML	DTD
does	not	provide	enough	information	for	other	vendors	to	interpret	the	model.
This	is	a	limitation	of	the	current	XML	standard	with	DTD	as	schema
description	language.	DTDs	do	not	capture	type	inheritance	and	other
sophisticated	modeling	structures.	The	World	Wide	Web	Consortium	(W3C),	as
XML	standard	body,	is	standardizing	a	new	schema	definition	language	called
XML	Schema.

Until	the	XML	Schema	specification	is	available,	the	OIM	XML	encoding
format	will	support	the	use	of	the	optional	supertype	attribute.	This	attribute	is
used	to	define	which	OIM	type	a	new	meta	data	type	specializes.	In	the	case
where	multiple	OIM	types	are	specialized,	it	is	the	responsibility	of	the
exporting	tool	to	choose	one	of	the	types.

The	following	example	shows	an	instance	of	a	new	meta	data	type	that	extends
the	table	class	in	the	Database	Schema	Model.

Example

<Ext:MyTable	supertype="DBM:Table"	name="xxx"	size="yyy"	myVal="123"/>

An	importer	can	decode	the	element	structure	even	if	the	new	subtype	is
unknown.	It	simply	uses	the	schema	of	the	known	OIM	type	specified	by	the
supertype	attribute.	Note	that	the	attribute	must	contain	a	fully	qualified	class
name	(including	namespace).	It	is	also	necessary	to	resolve	attribute	name

conflicts	using	the	rules	described	in	the	following	sections.

See	Also

XML	Encoding	Reference

Meta	Data	Services	Programming

OIM-to-XML	Mapping
This	section	provides	a	set	of	basic	diagrams	that	show	the	mapping	of	the	core
concepts	Class,	Attribute,	and	Association,	as	well	as	class	inheritance	from
Open	Information	Model	(OIM)	into	Extensible	Markup	Language	(XML).	The
Universal	Modeling	Language	(UML)	diagram	that	represents	the	OIM	concepts
is	provided	with	the	XML	encoding.

The	following	topics	include	diagrams	with	examples.

Topic Description
Classes	and	Attributes Shows	how	the	attributes	of	an	OIM

class	are	mapped	into	XML
Attribute	Name	Expansion Shows	how	attributes	that	are	typed	as

classes	are	mapped	into	XML
Classes	and	Single	Inheritance Shows	how	attributes	and	inherited

attributes	of	a	class	are	mapped	into
XML

Classes	and	Multiple	Inheritance Shows	a	class	that	inherits	attributes
from	multiple	other	classes

Associations	with	XML Shows	how	associations	are	encoded	in
XML

Object	References	with	XML Shows	an	association	structure	in	which
the	destination	object	has	already	been
defined

Association	Classes	(Many-to-
Many)

Shows	how	a	many-to-many	association
class	is	represented	in	XML

Association	Classes	(One-to-
Many	or	One-to-One)

Shows	how	a	one-to-many	or	one-to-
one	association	class	is	represented	in
XML

See	Also

XML	Encoding	Errors

XML	Encoding	Reference

XML	Import	Export

Meta	Data	Services	Programming

Classes	and	Attributes
The	following	example	shows	how	the	attributes	of	an	Open	Information	Model
(OIM)	class	are	mapped	into	Extensible	Markup	Language	(XML).

Example

<Class	Attribute1="..."	Attribute2="...">
						...
</Class>

See	Also

XML	Encoding	Reference

Meta	Data	Services	Programming

Attribute	Name	Expansion
The	following	example	shows	how	attributes	that	are	typed	as	classes	are
mapped	into	Extensible	Markup	Language	(XML).

Example

<Class1	Attribute1Attribute2="..."
						Attribute1Attribute3="...">
						...
</Class1>	

In	general,	given	a	class	A	with	an	attribute	B	of	type	C,	for	each	attribute	D(n)
on	C,	create	a	new	attribute	on	A	called	BD(n).	The	name	of	the	new	attribute	on
A	is	appended	with	the	name	of	D(n)	unless	the	ExpandName	tagged	value	on
the	attribute	definition	is	set	to	false.

See	Also

XML	Encoding	Reference

Meta	Data	Services	Programming

Classes	and	Single	Inheritance
The	following	example	shows	how	attributes	and	inherited	attributes	of	a	class
are	mapped	into	Extensible	Markup	Language	(XML).

Example

<Class2	Attribute1="..."	Attribute2="...">
						...
</Class2>	

See	Also

XML	Encoding	Reference

Meta	Data	Services	Programming

Classes	and	Multiple	Inheritance
A	class	can	inherit	attributes	from	multiple	other	classes.	The	following	example
shows	how	such	a	class	is	represented.

Example

<Class4	oim:id	=	"_123"
						Class4.Attribute1="..."
						Class1.Attribute1="..."
						Attribute2="..."
						Attribute3="...">
						...
</Class4>	

Note		Because	there	is	a	naming	conflict	between	the	two	attributes	called
Attribute1,	the	name	of	the	class	they	are	defined	on	is	added	as	a	prefix.

See	Also

XML	Encoding	Reference

Meta	Data	Services	Programming

Associations	with	XML
The	following	example	shows	how	Open	Information	Model	(OIM)	associations
are	encoded	in	Extensible	Markup	Language	(XML).

Example

<Class1	oim:id="_1"	attrib1="...">
						<Class1OriginAssocEnd>	<!--	assoc	starts	-->
												<Class2	oim:id="_2"	oim:seqno="1"	label="A"
																								name="Alpha"	Attribute2="..."/>
												<Class2	oim:id="_3"	oim:seqno="2"	oim:label="B"
																								name="Beta"	Attribute2="..."/>
						</Class1OriginAssocEnd>	<!--	assoc	ends	-->
</Class1>

If	an	association	name	is	not	specified,	the	name	is	generated	using	the	following
rule:

OriginClassName	+	OriginAssociationEndName

Given	this	rule,	the	association	in	the	preceding	example	is	named
<Class1OriginAssocEnd>.

See	Also

XML	Encoding	Reference

Meta	Data	Services	Programming

Object	References	with	XML
The	following	example	shows	an	association	structure	in	which	the	destination
object	has	already	been	defined	and	therefore	needs	to	be	referenced.

Example

<Class2	oim:id="_2">
						...
</Class2>
<Class1	oim:id="_1">
						<Class1OriginAssocEnd>
												<Class2	oim:href="#_2"/>
												...
						</Class1OriginAssocEnd>
</Class1>

See	Also

XML	Encoding	Reference

Meta	Data	Services	Programming

Association	Classes	(Many-to-Many)
The	following	example	shows	how	a	many-to-many	association	class	is
represented	in	Extensible	Markup	Language	(XML).

Example

<Class1	oim:id="_2">
						<Class1OriginAssocEnd>
												<AssocClass	AttributeA="...">
																		<AssocClassDestAssocEnd>
																								<Class2	oim:id="_3"/>
																		</AssocClassDestAssocEnd>
												</AssocClass	/>
						</Class1OriginAssocEnd>
</Class1>

This	example	encodes	the	association	element	into	a	junction	class	between	the
other	two	classes	and	uses	the	association	name	generation	rule	to	establish	the
two	association	names.

See	Also

XML	Encoding	Reference

Meta	Data	Services	Programming

Association	Classes	(One-to-Many	or	One-to-One)
The	following	example	shows	how	a	one-to-many	or	one-to-one	association
class	is	represented	in	Extensible	Markup	Language	(XML).

Example

<Class1	oim:id="_2"	attribute1="..."
						<Class1OriginAssocEnd>
												<Class2	attributeA="..."
																								Attribute2=oim:id="_3"
															
						</Class1OriginAssocEnd>
</Class1>

This	mapping	represents	all	the	attributes	of	the	association	class	as	attributes	on
the	destination	class.

See	Also

XML	Encoding	Reference

Meta	Data	Services	Programming

Sample	Encoding
<?xml	version="1.0"	?>	
					<oim:Transfer	xmlns:oim="http://www.mdcinfo.com/oim/oim.dtd"	xmlns:dbm="http://www.mdcinfo.com/oim/dbm.dtd">
								<dbm:Catalog	oim:id="_1"	name="sales"	comments="Sample	catalog">
											<dbm:CatalogSchemas>
														<dbm:Schema	oim:id="_2"	name="dbo">
														<dbm:SchemaTables>
																	<dbm:Table	oim:id="_3"	name="Customer">
																				<dbm:ColumnSetColumns>
																							<dbm:Column	oim:id="_6"	name="CustomerID"	IsNullable="0"	/>	
																							<dbm:Column	oim:id="_7"	name="Name"	IsNullable="0"	/>	
																							<dbm:Column	oim:id="_8"	name="Address"	IsNullable="1"	/>	
																							<dbm:Column	oim:id="_9"	name="Phone"	IsNullable="1"	/>	
																				</dbm:ColumnSetColumns>
																	</dbm:Table>
																	<dbm:Table	oim:id="_4"	name="Order"	EstimatedRows="10000">
																				<dbm:ColumnSetColumns>
																							<dbm:Column	oim:id="_10"	name="CustomerID"	IsNullable="0"	/>	
																							<dbm:Column	oim:id="_11"	name="OrderID"	IsNullable="0"	/>	
																							<dbm:Column	oim:id="_12"	name="Date"	IsNullable="1"	/>	
																				</dbm:ColumnSetColumns>
																	</dbm:Table>
																	<dbm:Table	oim:id="_5"	name="OrderItem"	EstimatedRows="100000">
																				<dbm:ColumnSetColumns>
																							<dbm:Column	oim:id="_13"	name="CustomerID"	IsNullable="0"	/>	
																							<dbm:Column	oim:id="_14"	name="OrderID"	IsNullable="0"	/>	
																							<dbm:Column	oim:id="_15"	name="LineNo"	IsNullable="0"	/>	
																							<dbm:Column	oim:id="_16"	name="Description"	IsNullable="1"	/>	
																							<dbm:Column	oim:id="_17"	name="Quantity"	IsNullable="0"	/>	
																							<dbm:Column	oim:id="_18"	name="UnitPrice"	IsNullable="0"	/>	
																				</dbm:ColumnSetColumns>

																				<dbm:TableUniqueKeys>
																							<dbm:UniqueKey	oim:id="_19"	name="PK_OrderItem"	IsPrimary="1">
																										<dbm:KeyColumns>
																													<dbm:Column	oim:href="#_14"	/>	
																													<dbm:Column	oim:href="#_15"	/>	
																										</dbm:KeyColumns>
																							</dbm:UniqueKey>
																				</dbm:TableUniqueKeys>
																	</dbm:Table>
														</dbm:SchemaTables>
											</dbm:Schema>
								</dbm:CatalogSchemas>
					</dbm:Catalog>
		</oim:Transfer>

See	Also

Using	XML	Encoding

XML	Encoding	Reference

XML	in	Meta	Data	Services

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

EBNF	Representation
The	following	defines	the	grammar	of	the	Open	Information	Model	(OIM)
Extensible	Markup	Language	(XML)	encoding	in	Extended	Backus-Naur	Form
(EBNF).

xmlHdr::='<?xml	version="1.0">'	
oimDoc::=xmlHdr	S	Transfer
Transfer::='<oim:Transfer'	[S	'version="1.0"']	NameSpaceDecl	'>'	S
			[TransferHeader]
			(Object	|	Transfer)*
			'</oim:Transfer>'
TransferHeader::='<oim:TransferHeader'
			['Exporter="'	ExporterName	'"']
			['ExporterVersion="'	ExporterVersion	'"']
			['TransferDateTime="'	CurrentDate	'"']
			'/>'
oimNameSpace::='xmlns:oim="http://www.mdcinfo.com/oim/oim.dtd"'
oimPrefix::='oim:'
NameSpaceDecl::=oimNameSpace	(S	ModelSpaceDecl)*	
ModelSpaceDecl::=	'xmlns:'	modelAbbr	'="http://www.mdcinfo.com/oim/'	nsPrefix	'.dtd"'
nsPrefix::=modelAbbr	(for	the	information	model	that	the	class	is	defined	in)
objTransID::=	'_'	uniquifier	(where	uniquifier	is	a	running	number)
objID::=	unique	identifier	for	the	element	(repository	dependent)
seqno::=	sequence	number	within	an	association
label::=	name	of	object	within	the	association
object::='<'	nsPrefix	':'	elementName	S	
'oim:id="'	objTransID	'"'	
			[S	'oim:objid="'	objID	'"']	
			[S	'oim:seqno="'	seqno		'"']
			[S	'oim:label="'	label	'"']
			[(S	Attribute)*]	
			'>'

			[(S	Association)*]
			'</'	nsPrefix	':'	elementName	'>'
Attribute::=[[nsPrefix	':']	ClassName	'.']	AttributeName	S?	'="'	S?
			attributeValue	S?	'"'
Association			::=			'<'	[nsPrefix	':']	AssociationName	'>'	S?
			(Object	S)*
			</'	[nsPrefix	':']	AssociationName	'>'

See	Also

Using	XML	Encoding

XML	Encoding	Reference

XML	in	Meta	Data	Services

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

Namespaces	in	OIM
Using	Extensible	Markup	Language	(XML)	Namespaces,	each	information
model	of	the	Open	Information	Model	(OIM)	encoding	defines	a	separate
namespace	for	its	XML	tags;	that	is,	an	individual	Document	Type	Definition
(DTD)	describes	each	information	model.	Information	models	depend	on	each
other	and	form	a	well-defined	(acyclic)	dependency	graph.	Meta	Data	Coalition
(MDC)	OIM	has	the	following	information	models.

OIM	groupings	by	subject
areas OIM	information	models

Namespace
identifier

Analysis	and	Design	Model Unified	Modeling	Language uml
	 UML	Extensions umx
	 Common	Data	Types dtm
	 Generic	Elements gen
Object	and	Component
Description	Model

Component	Descriptions cde

Database	and	Data	Warehousing Database	Schema	Elements dbm
	 Data	Transformation

Elements
tfm

	 OLAP	Schema	Elements olp
	 Record	Oriented	Legacy rec
Knowledge	Management	Model Semantic	Definition

Elements
sim

The	XML	namespaces	respect	the	extensibility	mechanism	of	OIM.	Users	are
able	to	add	information	models	with	new	elements	without	causing	name
conflicts	with	existing	information	models	or	future	extensions.

See	Also

Using	XML	Encoding

XML	Encoding	Reference

XML	in	Meta	Data	Services

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

DTD	for	the	OIM	Namespace
This	is	a	sample	Document	Type	Definition	(DTD)	for	the	Open	Information
Model	(OIM)	namespace	used	by	the	encoding.

<!--	___	-->
<!--																									XML	Encoding																										-->
<!--																for	the	Open	Information	Model																	-->
<!--	___	-->

<!--	___	-->
<!--	Transfer																																																						-->
<!--	___	-->
<!--	A	transfer	is	a	unit	of	exchange	in	OIM.	Transfers	might	be			-->
<!--	nested.																																																							-->
<!ELEMENT	Transfer	(TransferHeader?,	(ANY	|	Transfer)*)	>
<!ATTLIST	Transfer	
						version	CDATA	#FIXED	"1.0"
>
<!--	___	-->
<!--	TransferHeader																																																-->
<!--	___	-->
<!--	A	transfer	header	is	used	to	specify	all	necessary	information			-->
<!--	to	define	the	origin	of	a	transfer	in	a	structured	way.							-->
<!--	Exporter									Name	of	software	that	generated	the	transfer	-->
<!--	ExporterVersion		Version	of	software	that	generated	transfer		-->
<!--	TransferDateTime		Date	and	time	that	the	transfer	was	created	-->
<!ELEMENT	TransferHeader	(ANY)>
<!ATTLIST	TransferHeader
							Exporter	CDATA	#IMPLIED	
							ExporterVersion	CDATA	#IMPLIED	
							TransferDateTime	CDATA	#IMPLIED
>	

<!--	___	-->
<!--	Classes																																																							-->
<!--	___	-->
<!--	Classes	are	output	as	XML	elements.	They	should	all	have	id,		-->
<!--	objid,	href	and	sequence	number	as	predefined	XML	attributes.	-->
<!--	Unfortunately	the	DTD	grammar	does	not	specify	this.										-->
<!--	so	these	attributes	are	shown	here	as	an	example.	The	oim:				-->
<!--	namespace	qualifier	for	the	predefined	attribute	is	only						-->
<!--	included	when	one	of	the	predefined	attribute	has	a	naming				-->
<!--	conflict	with	the	attributes	on	the	class																					-->
<!--	<!ATTLIST	typename																																												-->
<!--																				[oim:]id	ID	#REQUIRED																						-->
<!--																				[oim:]objid	CDATA	#IMPLIED																	-->
<!--																				[oim:]href	CDATA	#IMPLIED																		-->
<!--																				[oim:]seqno	CDATA	#IMPLIED																	-->
<!--																				[oim:]label	CDATA	#IMPLIED																	-->
<!--																				[oim:]supertype	CDATA	#IMPLIED													-->
<!--																																																															-->
<!--	End	of	DTD	__	-->

See	Also

Using	XML	Encoding

XML	Encoding	Reference

XML	in	Meta	Data	Services

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

XML	Import	Export
This	section	describes	the	methods	used	for	importing,	exporting,	and
transferring	data	from	one	Microsoft®	SQL	Server™	2000	Meta	Data	Services
repository	to	another.

XML	Exporter	is	a	utility	that	exports	objects	from	a	Microsoft	repository	by
using	Open	Information	Model	(OIM)	XML	Encoding.	The	export	is	handled	by
a	COM	component	that	has	the	MSMDCXML.IExport	program	identifier	(ID).
The	component	publishes	one	interface,	IExport.	Through	this	interface,	the
client	can	specify	which	repository	objects	to	export	and	initiate	the	export
process.	Because	it	is	a	dual	interface,	it	can	be	used	by	both	COM	and
Automation.

Topic Description
XML	IExport	Interface
Overview

Describes	the	IExport	interface	and	shows
the	Interface	Definition	Language	(IDL)
definition

IExport::_NewEnum	Method Explains	the	NewEnum	method	of	the
IExport	interface	and	provides
Automation	syntax

IExport::Add	Method Explains	the	Add	method	of	the	IExport
interface	and	provides	Automation	syntax

IExport::Clear	Method Explains	the	Clear	method	of	the	IExport
interface	and	provides	Automation	syntax

IExport::Count	Property Explains	the	Count	property	of	the
IExport	interface	and	provides
Automation	syntax

IExport::Export	Method Explains	the	Export	method	of	the
IExport	interface	and	provides
Automation	syntax

IExport::GetXML	Method Explains	the	GetXML	method	of	the
IExport	interface	and	provides
Automation	syntax

IExport::Item	Method Explains	the	Item	method	of	the	IExport

interface	and	provides	Automation	syntax
IExport::Remove	Method Explains	the	Remove	method	of	the

IExport	interface	and	provides
Automation	syntax

The	import	process	uses	an	Extensible	Markup	Language	(XML)	document	to
create	OIM	instances	in	a	Meta	Data	Services	repository.	The	OIM	describes	the
structure	as	well	as	the	semantics	of	the	transferred	elements.	The	COM
component	is	used	for	XML	importing	MSMDCXML.IImport	program	ID.
The	component	publishes	one	interface,	IImport.	Through	this	interface,	the
client	can	specify	which	objects	to	import	and	initiate	the	import	process.
Because	it	is	a	dual	interface,	it	can	be	used	by	both	COM	and	Automation.

Topic Description
XML	IImport	Interface
Overview

Describes	the	IExport	interface	and	IDL
definition

IImport::ImportXML	Method Explains	the	ImportXML	method	of	the
IImport	interface	and	provides
Automation	syntax

IImport::ImportXMLString
Method

Explains	the	ImportXMLString	method
of	the	IImport	interface	and	provides
Automation	syntax

See	Also

Using	XML	Encoding

XML	Encoding	Errors

XML	Encoding	Reference

Meta	Data	Services	Programming

XML	IExport	Interface	Overview
Using	Extensible	Markup	Language	(XML)	to	export	objects	from	Microsoft®
SQL	Server™	2000	Meta	Data	Services	is	a	two-step	process:

1.	 Mark	objects	for	export.

2.	 Generate	the	XML	file.

Marking	Objects	for	Export

The	client	marks	objects	for	export	by	using	the	IExport::Add	method	to	create
an	object	list.	Using	this	method,	the	client	passes	a	handle	of	the	repository
object	to	be	exported.

The	export	process	creates	a	collection	of	all	objects	that	have	been	added	to	the
export	list.	The	order	in	which	objects	are	added	determines	the	order	in	which
the	objects	will	appear	in	the	XML	document.

After	the	collection	has	been	created,	a	client	can	enumerate	through	this
collection	and	get	information,	such	as	the	number	of	objects,	as	in	a	normal
collection.

Generating	the	XML	File
The	client	starts	the	export	by	invoking	the	IExport::Export	method.	The	client
passes	the	name	of	the	file	into	which	the	XML	document	should	be	exported	as
a	parameter	of	this	method.	XML	Exporter	will	overwrite	the	file	if	it	already
exists.	The	client	can	specify	flags	that	control	the	way	objects	are	handled	in	the
output.	The	allowed	flags	can	be	combined	using	a	bitwise	logical	OR	operation.
For	more	information	about	the	effect	of	each	flag,	see	IExport::Export	Method.

IDL	Definition
The	following	expandable	text	is	the	part	of	the	Interface	Definition	Language
(IDL)	file	that	describes	the	methods	and	the	properties	on	the	IExport
Interface.	In	Automation,	properties	and	methods	are	attached	to	the	IExport

object.

IDL	Segment

interface	IExport	:	IDispatch
{
			[id(0),	helpstring("method	Item")]	HRESULT	Item([in]	VARIANT	Index,	[out,retval]	IRepositoryObject	**ppRO);
			[id(1),	helpstring("method	Export")]	HRESULT	Export([in]	BSTR	XMLFileName,[in,optional]	long	Flags);
			[id(2),	helpstring("method	GetXML")]	HRESULT	GetXML([in,optional]	long	Flags,[out,retval]	BSTR	*XML);
			[id(3),	helpstring("method	Add")]	HRESULT	Add([in]	IRepositoryObject	*pIRO,	[in,	optional,	defaultvalue(0)]	long	Flags);
			[id(-4),	helpstring("method	_NewEnum")]	HRESULT	_NewEnum([out,	retval]	IUnknown	**ppVal);
			[propget,	id(6),	helpstring("property	Count")]	HRESULT	Count([out,	retval]	long	*pVal);
			[id(7),	helpstring("method	Remove")]	HRESULT	Remove([in]	VARIANT	Index);
			[id(8),	helpstring("method	Clear")]	HRESULT	Clear();
};

See	Also

XML	Import	Export

Meta	Data	Services	Programming

IExport::_NewEnum	Method
This	method	is	used	to	obtain	an	enumerator	property	that	can	be	used	to
enumerate	through	the	list	of	the	exported	objects.

COM	Syntax
HRESULT	_NewEnum(
						IUnknown	**ppVal
);

Parameters
ppVal	[out,	retval]

A	pointer	that	points	to	a	location	that	stores	the	enumerator	of	objects	in	the
export	list.

Return	Value
S_OK	indicates	successful	completion.

An	error	value	indicates	that	the	method	failed	to	complete	successfully.	For
more	information,	see	XML	Encoding	Errors.

Automation	Syntax
The	_NewEnum	property	is	used	by	Automation-based	programming	languages
to	enumerate	through	collections.	It	is	never	used	directly;	instead,	enumeration
constructs	use	it	internally.	In	Microsoft®	Visual	Basic®,	this	enables	the
following	example:

For	each	item	in	the	collection.

				...

Next	item

In	the	example,	Collection	is	an	object	that	contains	the	_NewEnum	property.

See	Also

XML	Import	Export

Meta	Data	Services	Programming

IExport::Add	Method
This	method	allows	the	client	to	add	an	object	to	the	list	of	objects	to	be
exported.

COM	Syntax
HRESULT	Add(
						IRepositoryObject	*pIRO
						Long	Flags
);

Parameters
pIRO	[in]

A	pointer	to	the	repository	object	to	be	added	to	the	exported	objects	list.

Flags	[in]

The	following	table	describes	the	flag.

Enumerator Value Description
ADDCONTAINING_BASE 1 Only	objects	that	are

contained	in	base
collections	of	the	current
object	are	added.

ADDCONTAINING_MOSTDERIVED 2 Only	objects	that	are	in
the	most	derived
collections	of	the	current
object	are	added.

Return	Value
S_OK	indicates	successful	completion.

An	error	value	indicates	that	the	method	failed	to	complete	successfully.	For

more	information,	see	XML	Encoding	Errors.

Automation	Syntax
In	Automation,	this	method	has	the	following	syntax:

			object.Add	pIRO	[,Flags]

The	Add	method	syntax	has	the	following	parts.

Parameter Description
object An	object	declared	as	MSMDCXML.Export
pIRO An	object	expression	that	evaluates	to

RepositoryObject
Flags ADDCONTAINING

See	Also

Member	Delegation

XML	Import	Export

Meta	Data	Services	Programming

IExport::Clear	Method
This	method	removes	all	objects	from	the	export	collection.

COM	Syntax
HRESULT	Clear(
);

Return	Value
S_OK	indicates	successful	completion.

An	error	value	indicates	that	the	method	failed	to	complete	successfully.	For
more	information,	see	XML	Encoding	Errors.

Automation	Syntax
In	Automation,	this	method	has	the	following	syntax:

			Call	Object.Clear

See	Also

XML	Import	Export

Meta	Data	Services	Programming

IExport::Count	Property
This	method	is	used	to	obtain	the	number	of	objects	that	have	been	added	to	the
export	list.	In	COM,	it	is	called	as	a	method	that	returns	a	property.	In
Automation,	it	is	used	as	the	read-only	property	of	an	object.

COM	Syntax
HRESULT	get_Count(
						long	*pVal
);

Parameters
pVal	[out,	retval]

A	pointer	to	the	location	of	the	number	of	objects	in	the	export	list	is	stored.

Return	Value
S_OK	indicates	successful	completion.

An	error	value	indicates	that	the	method	failed	to	complete	successfully.	For
more	information,	see	XML	Encoding	Errors.

Automation	Syntax
In	Automation,	this	property	has	the	following	syntax:

			variable	=	object.Count

The	Count	property	syntax	has	the	following	parts.

Parameter Description
object An	object	declared	as	MSMDCXML.Export
variable A	long	variable	that	contains	the	value	of	the	Count

property

See	Also

XML	Import	Export

Meta	Data	Services	Programming

IExport::Export	Method
This	method	exports	the	marked	objects	into	the	file	specified	by	the	file	name
parameter.

COM	Syntax
HRESULT	Export(
						BSTR	XML,	
						long	Flags
);

Parameters
XML	[in]

The	file	name	of	the	Extensible	Markup	Language	(XML)	document	or
XML	string.

Flags	[in]

Flag	values	that	can	be	combined	in	a	bitwise	OR	operation	to	control	the
way	exported	objects	are	handled	in	the	output.	The	following	table
describes	the	flags.

Enumerator Value Description
NOOBJID 1 If	this	bit	is	set,	no	object	identifiers

(OBJID)	are	returned	for	the	objects	being
exported.

NOHEADER 2 If	this	bit	is	set,	the	XML	file	does	not
include	a	transfer	header.

INDENTATION 4 If	this	bit	is	set,	the	system	indents	the	XML.
UNICODE 8 If	this	bit	is	set,	the	system	output	is

Unicode.
EXPORTBASE 16 If	this	bit	is	set,	the	system	exports	only	base

properties	and	collections.

Return	Value
S_OK	indicates	successful	completion.

An	error	value	indicates	that	the	method	failed	to	complete	successfully.	For
more	information,	see	XML	Encoding	Errors.

Automation	Syntax
In	Automation,	the	Export	method	has	the	following	syntax:

			object.Export	XMLFilename	[,Flags]

The	Export	method	syntax	has	the	following	parts.

Parameter Description
object An	object	declared	as	MSMDCXML.Export.
XMLFilename The	XML	file	name	declared	as	string.
Flags Flag	values	that	can	be	combined	in	a	bitwise	OR

operation	to	control	the	way	exported	objects	are
handled	in	the	output.	The	values	are	declared	as
long.

See	Also

XML	Import	Export

Meta	Data	Services	Programming

IExport::GetXML	Method
This	method	exports	the	marked	objects	into	the	Extensible	Markup	Language
(XML)	string.

COM	Syntax
HRESULT	GetXML(
						long	Flags
						BSTR	XML,	
);

Parameters
XML	[out]

The	XML	output	string.

Flags	[in]

Flag	values	that	can	be	combined	in	a	bitwise	OR	operation	to	control	the
way	exported	objects	are	handled	in	the	output.	The	following	table
describes	the	flags.

Enumerator Value Description
NOOBJID 1 If	this	bit	is	set,	no	object	identifiers	(OBJID)

are	for	the	objects	being	exported.
NOHEADER 2 If	this	bit	is	set,	the	XML	file	does	not	include

a	transfer	header.
INDENTATION 4 If	this	bit	is	set,	the	system	indents	XML.
UNCLODE 8 If	this	bit	is	set,	the	output	is	Unicode.
EXPORTBASE 16 If	this	bit	is	set,	the	system	exports	only	base

properties	and	collections.

Return	Value

S_OK	indicates	successful	completion.

An	error	value	indicates	that	the	method	failed	to	complete	successfully.	For
more	information,	see	XML	Encoding	Errors.

Automation	Syntax
In	Automation,	the	GetXML	method	has	the	following	syntax:

			object.GetXML	[,Flags]

The	GetXML	method	syntax	has	the	following	parts.

Parameter Description
object An	object	declared	as	MSMDCXML.Export.
XML The	XML	output	string.
Flags Flag	values	that	can	be	combined	in	a	bitwise	OR

operation	to	control	the	way	exported	objects	are
handled	in	the	output.	This	part	is	declared	as	long.

See	Also

XML	Import	Export

Meta	Data	Services	Programming

IExport::Item	Method
This	method	allows	the	client	to	access	elements	within	the	list	of	objects	to	be
exported.

COM	Syntax
HRESULT	Item(
						VARIANT	Index,	
						IRepositoryObject	**ppRO
);

Parameters
Index	[in]

A	variable	that	contains	the	object	sequence	in	the	object	list.	This	parameter
can	be	a	zero-based	numeric	index,	an	object	identifier	(OBJID),	or	a	string-
based	OBJID.

ppRO	[out,	retval]

A	pointer	to	a	repository	object.

Return	Value
S_OK	indicates	successful	completion.

An	error	value	indicates	that	the	method	failed	to	complete	successfully.	For
more	information,	see	XML	Encoding	Errors.

Automation	Syntax
In	Automation,	the	Item	method	is	attached	to	the	IExport	object	and	has	the
following	syntax:

			Set	variable	=	object.Item(index)

The	Item	method	syntax	has	the	following	parts.

Parameter Description
object An	object	declared	as	MSMDCXML.Export.
variable An	object	expression	that	evaluates	to	a	RepositoryObject

object.
Index A	variable	declared	as	variant.	It	contains	the	object	sequence

number,	string	ObjectId,	or	OBJID	in	the	object	list.

See	Also

XML	Import	Export

Meta	Data	Services	Programming

IExport::Remove	Method
This	method	removes	the	selected	object	from	the	export	collection.

COM	Syntax
HRESULT	Item(
						VARIANT	Index,	
);

Parameters
Index	[out,	retval]

A	variable	that	contains	the	object	sequence	in	the	object	list.	This	parameter
can	be	a	zero-based	numeric	index,	an	object	identifier	(OBJID),	or	a	string-
based	OBJID.

Return	Value
S_OK	indicates	successful	completion.

An	error	value	indicates	that	the	method	failed	to	complete	successfully.	For
more	information,	see	XML	Encoding	Errors.

Automation	Syntax
The	following	syntax	is	used	in	automation:

			object.Remove(Index)

See	Also

XML	Import	Export

Meta	Data	Services	Programming

XML	IImport	Interface	Overview
Extensible	Markup	Language	(XML)	can	be	used	to	import	XML	documents
into	a	Microsoft®	SQL	Server™	2000	Meta	Data	Services	repository.

If	importing	an	object	that	already	exists,	and	this	object	is	marked	as	versioned,
the	following	rules	apply:

If	the	version	flag	is	set,	the	system	will	freeze	the	original	object	and
create	a	new	version.

If	the	version	flag	is	not	set,	the	system	will	overwrite	the	original
object	to	the	defined	pointer.

IDL	Definition

The	following	expandable	text	is	the	part	of	the	Interface	Definition	Language
(IDL)	file	that	describes	the	methods	on	the	IImport	interface.	In	Automation,
properties	and	methods	are	attached	to	the	import	object.

IDL	Segment

interface	IImport	:	IDispatch
{
			[id(1),	helpstring("method	ImportXML")]	HRESULT	ImportXML([in]	IRepository	*pRepository,	[in]	BSTR	XMLFile,	[in]	long	Flag,[out,retval]	ITransientObjectCol**	ppITOC);
			[id(2),	helpstring("method	ImportXMLString")]	HRESULT	ImportXMLString([in]	IRepository	*pRepository,	[in]	BSTR	XML,	[in]	long	Flag,[out,retval]	ITransientObjectCol**	ppITOC);
};

See	Also

XML	Import	Export

Meta	Data	Services	Programming

IImport::ImportXML	Method
This	method	is	used	to	import	objects	from	an	Extensible	Markup	Language
(XML)	document.	The	document	file	name	and	the	repository	pointer	are	passed
to	the	method	as	parameters.	The	repository	this	method	uses	must	be	opened	in
the	exclusive	mode.

COM	Syntax
HRESULT	ImportXML(
								IRepository	*pRepository,	
								BSTR	XMLFile,	
								ITransientObject	**pp	ITOL
								long	Flags
);

Parameters
pRepository	[in]

A	pointer	to	the	IRepository	interface.

XMLFile	[in]

The	XML	document	file	name.

**pp	ITOL	[out]

A	collection	of	top-level	objects	to	be	imported.

Flags	[in]

Flag	values	that	control	the	way	XML	Importer	works.

Enumerator Bit Description
NOOVERWRITE 1 If	this	bit	is	set,	the	system	generates

an	error	if	an	object	in	the	file	already
exists	in	the	target	repository.

NEWVERSION 2 If	this	bit	is	set,	the	system

automatically	creates	a	new	version
of	any	object	that	already	exists.

NOOBJECTCHECK 4 If	this	bit	is	set,	the	system	does	not
check	for	object	existence.	If	the
object	exists,	an	error	occurs	when
the	object	is	created	or	committed.

IGNOREUNKNOWNTAGS8 If	this	bit	is	set,	the	system	ignores
unrecognized	tags.

LOGUNKNOWNTAGS 16 If	this	bit	is	set,	the	system	creates	a
file	called	Msmdcxml.log	in	the
Temp	directory.	The	file	contains	all
ignored	tags	and	attributes.

LOGUNMAPPED 32 If	this	bit	is	set,	the	system	logs
everything	that	is	not	mapped	during
the	import	from	Open	Information
Model	(OIM)	1.0	to	the	Meta	Data
Coalition	(MDC)	OIM.

Return	Value
S_OK	indicates	successful	completion.

An	error	value	indicates	that	the	method	failed	to	complete	successfully.	For
more	information,	see	XML	Encoding	Errors.

Automation	Syntax
In	Automation,	the	ImportXML	method	is	attached	to	the	Import	object	and
has	the	following	syntax:

			Set	TransientCol	=	object.ImportXML	(pRepository,	XMLFile	[,	Flags])

See	Also

XML	Import	Export

Meta	Data	Services	Programming

IImport::ImportXMLString	Method
This	method	is	used	to	import	objects	from	an	Extensible	Markup	Language
(XML)	document	provided	as	a	string.	The	document	file	name	and	the
repository	pointer	are	passed	to	the	method	as	parameters.	The	repository	used
by	this	method	must	be	opened	in	the	exclusive	mode.

COM	Syntax
HRESULT	ImportXML(
						IUnknown	*pRepository,	
						BSTR	XML,	
						ITransientObject	**pp	ITOL
						long	Flags
);

Parameters
pRepository	[in]

A	pointer	to	the	IUnknown	interface	used	as	a	repository	interface	pointer.

XML	[in]

The	XML	string	to	import	from.

**pp	ITOL	[out]

A	collection	of	top-level	objects.

Flags	[in]

Flag	values	that	control	the	way	XML	Importer	works.	These	flags,	defined
in	the	following	table,	are	mutually	exclusive.

Enumerator Bit Description
NOOVERWRITE 1 If	this	bit	is	set,	the	system	generates

an	error	if	an	object	in	the	file
already	exists	in	the	target	repository.

NEWVERSION 2 If	this	bit	is	set,	the	system
automatically	creates	a	new	version
of	any	object	that	already	exists.

NOOBJECTCHECK 4 If	this	bit	is	set,	the	system	does	not
check	for	object	existence.	If	the
object	exists,	an	error	occurs	when
the	object	is	created	or	committed.

IGNOREUNKNOWNTAGS8 If	this	bit	is	set,	the	system	ignores
any	tags	that	are	not	recognized.

LOGUNKNOWNTAGS 16 If	this	bit	is	set,	the	system	creates	a
file	called	Msmdcxml.log	in	the
Temp	directory.	This	file	contains	all
ignored	tags	and	attributes.

LOGUNMAPPED 32 If	this	bit	is	set,	the	system	logs
everything	that	is	not	mapped	during
the	import	from	Open	Information
Model	(OIM)	1.0	to	the	Meta	Data
Coalition	(MDC)	OIM.

Return	Value
S_OK	indicates	successful	completion.

An	error	value	indicates	that	the	method	failed	to	complete	successfully.	For
more	information,	see	XML	Encoding	Errors.

Automation	Syntax
In	Automation,	the	ImportXMLString	method	is	attached	to	the	Import	object
and	has	the	following	syntax:

			Set	Col	=	object.ImportXMLString	(pRepository,	XML,	[,Flags])

See	Also

XML	Import	Export

Meta	Data	Services	Programming

XML	Encoding	Errors
The	following	table	lists	the	error	codes	and	messages	returned	by	the	XML
Interchange	Format	methods.	A	workaround	or	an	explanation	follows	each
error.

Error
number Error	text Description
0x80042000E_REPXML_REPNOTINITIALIZED Repository	is	not	initialized.

0x80042001E_REPXML_INVALIDFILE XML	format	for	the	importer	is	not	valid.

0x80042002E_REPXML_LIBNOTFOUND Could	not	find	type	library	associated	with	tag	-	(%s).

0x80042003E_REPXML_TXNCREATE Could	not	create	a	transaction.

0x80042004E_REPXML_OBJNOTFOUND Object	was	not	found.

0x80042005E_REPXML_IMPORT_INVALIDFLAG Invalid	flag	or	combination	of	import	flags	was	used.

0x80042006E_REPXML_EXPORT_INVALIDFLAG Invalid	flag	or	combination	of	export	flags	was	used.

0x80042007E_REPXML_INVALIDFILENAME File	name	"%s"	is	not	valid.

0x80042008E_REPXML_CANTCREATEFILE Error	creating	file.

0x80042009E_REPXML_ITEMEXISTS Item	with	transfer	ID	%s	already	exists	in	database	and	overwrite	is	not	allowed.

0x8004200a E_REPXML_ERRORPARSING Error	parsing	XML	file.

0x8004200bE_REPXML_ERROREXPORTING Error	occurred	while	exporting	XML.

0x8004200c E_REPXML_ERRORADDINGOBJ

Error	occurred	while	adding	an	object.

0x8004200dE_REPXML_ERRORGETITEM Error	occurred	while	getting	an	object.

0x8004200e E_REPXML_ERRORREMOVEOBJ Error	occurred	when	removing	an	object.

0x8004200f E_REPXML_INVALIDBINARY Binary	property	%s	of	object	with	transfer	ID	%s	contains	a	character	that	is	not	valid.

0x80042010E_REPXML_COLADDERROR Error	adding	to	collection	with	relationship	name	%s.

0x80042011 E_REPXML_IMPORTOBJECT Error	creating	new	object/version	of	object	with	transfer	ID	%s.

0x80042012E_REPXML_NOTRANSID Object	does	not	contain	a	transfer	ID.	(

0x80042013E_REPXML_ERRORSETTINGPROP Error	setting	property	%s	of	object	with	transfer	ID	%s.

0x80042014E_REPXML_EXPORTOBJEXIST Object	already	exists	in	export	collection.

0x80042015E_REPXML_DUPEPREFIX Prefix	%s	of	model	%s	already	exists	in	the	export	list.

0x80042016E_REPXML_WRITEFILE Error	writing	file.

0x80042017E_REPXML_RETURNCOLERROR Error	occurred	adding	to	return	collection.

0x80042018E_REPXML_READINGTIM An	error	occurred	reading	information	model.

0x80042019E_REPXML_CANTGETCOL Error	getting	collection	off	relationship	%s.

0x8004201a E_REPXML_ERROROPENFILE Error	opening	file	%s.

0x8004201bE_REPXML_ERROROPENTEMPFILE Error	opening	temporary	log	file.

0x8004201c E_REPXML_ERRORWRITETEMPFILEError	writing	to	temp	file.

0x8004201dE_REPXML_UNMAPPEDOBJECT Name	%s	is	unmapped.

0x8004201e E_REPXML_NOOBJECSTTOEXPORT No	objects	to	export.

See	Also

Using	XML	Encoding

XML	Encoding	Reference

XML	in	Meta	Data	Services

JavaScript:hhobj_1.Click()

Meta	Data	Services	Programming

OLE	DB	Scanner	Reference
The	scanner	provides	one	dual	interface,	IRepOLEDBScanner.	This	interface
supports	two	methods,	ScanDB	and	ScanConnection.

Topic Description
IRepOLEDBScanner::ScanDB Copies	the	schema	into	the

repository.
IRepOLEDBScanner::ScanConnectionCopies	the	schema	from	the	OLE

DB	session	into	the	repository.

See	Also

Using	OLE	DB	Scanner

Meta	Data	Services	Programming

IRepOLEDBScanner::ScanDB
IRepOLEDBScanner::ScanDB	copies	the	schema	from	the	specified	OLE	DB
data	source	object	into	a	specified	repository.	If	the	catalog	is	already	in	the
specified	repository,	the	systemwill	version	and	store	the	original	schema.

Syntax
HRESULT	ScanDB	(IRepository	*	pRepository,
					IRepositoryObject	**pDbmDataSource,
					BSTR	szProviderName,
					BSTR	szProviderString,
					BSTR	szDataSource,
					BSTR	szCatalog,
					BSTR	szUserName,
					BSTR	szPassword
);

Parameters
pRepository	[in]

A	pointer	to	an	IRepository	interface	that	represents	the	repository	where
the	class	instances	will	be	stored.

pDbmDataSource	[in,	out]

A	pointer	to	an	interface	for	a	repository	data	source	object.	If	the	object
does	not	support	the	IDbmDataSource	interface,	the	scanner	will	create	the
data	source	object	and	assign	the	pointer	to	the	newly	created	object.

szProviderName	[in]

The	OLE	DB	provider	name	or	program	identifier.

szProviderString	[in,	optional]

A	provider-specific	connection	string	for	the	scanner	to	use	during	provider
initialization.

szDataSource	[in,	optional]

A	provider-specific	location	of	the	data	source.		Typically,	this	will	be	a
server	name	or	the	path	of	the	database	file.

szCatalog	[in,	optional]

A	provider-specific	database	name.	If	the	database	name	is	not	specified,	the
default	catalog	in	the	data	source	will	be	scanned.

szUserName	[in,	optional]

The	database	user	name	for	login.	If	the	user	name	is	specified	in	the	connect
string,	this	parameter	is	not	required.

szPassword	[in,	optional]

The	user	password	for	authentication.	If	the	user	name	is	specified	in	the
connect	string,	this	parameter	is	not	required.

Return	Value
S_OK

The	method	succeeded.

E_FAIL

A	provider-specific	error	occurred.

E_INVALIDARG

Either	pRepository	or	pDbmDataSource	is	a	null	pointer.

Meta	Data	Services	Programming

IRepOLEDBScanner::ScanConnection
IRepOLEDBScanner::ScanConnection	copies	the	schema	from	the	connected
OLE	DB	session	object	into	the	specified	repository.	If	the	catalog	is	already	in
the	specified	repository,	the	system	will	create	a	versioned	copy	of	the	original
schema.

Syntax
HRESULT	ScanConnection	(IRepository	*	pRepository,
					IRepositoryObject	**pDbmDataSource,
					IUnknown	*	pSession,
					BSTR	szCatalog
);

Parameters
pRepository	[in]

A	pointer	to	an	IRepository	interface	that	represents	the	repository	where
the	class	instances	will	be	stored.

pDbmDataSource	[in,	out]

A	pointer	to	an	interface	for	a	repository	data	source	object.	If	the	object
does	not	support	the	IDbmDataSource	interface,	the	scanner	will	create	the
data	source	object	and	assign	the	pointer	to	the	newly	created	object.

pSession	[in]

An	interface	pointer	to	an	initialized	OLE	DB	session	object.	The	scan	is	not
possible	if	the	session	does	not	support	schema	information	through	the
IDBSchemaRowset	interface.	Appropriate	initialization	properties	should
already	be	set	on	the	session.

szCatalog	[in,	optional]

A	provider-specific	database	name.	If	the	database	name	is	not	specified,	the
current	or	default	catalog	in	the	data	source	will	be	scanned.

Return	Value
S_OK

The	method	succeeded.

E_FAIL

A	provider-specific	error	occurred.

E_INVALIDARG

Either	pRepository,	pDbmDataSource,	or	pSession	was	a	null	pointer.

Meta	Data	Services	Programming

Model	Installer	Reference
The	Microsoft®	SQL	Server™	2000	Meta	Data	Services	information	model
installer	reads	a	binary	information	model	RDM	file	and	installs	the	information
model	in	the	specified	repository	database.	The	installer	can	be	used	to	install
either	prebuilt	information	model	installation	files,	such	as	those	provided	with
the	Meta	Data	Coalition	(MDC)	Open	Information	Model	(OIM),	or	user
information	model	files	generated	by	the	Model	Development	Kit	(MDK).	A
user	model	must	be	successfully	compiled	by	the	MDK	before	it	can	be	installed
on	a	repository	database.	The	compiling	process	creates	the	.rdm	input	string	for
the	model	installer.

The	model	installer	has	a	dependency	on	the	repository	engine	DLL.	It	will	read
the	installation	script	and	create	the	information	model	in	the	specified
repository.

The	installer	is	compatible	with	earlier	versions	of	the	Meta	Data	Services
repository	.rdm	files	and	handles	them	correctly.

When	the	model	installer	recognizes	that	the	model	already	exists,	it	will	check
to	see	whether	any	additions	have	been	made	(classes,	interfaces,	properties,
collections,	relationships,	methods,	and	so	on)	and	reinstall	them	as	required.

Command	Line	Installer
The	command	line	installer	uses	the	Installer	COM	server	DLL	to	perform	the
actual	installation	or	deletion	of	model	files.	It	outputs	any	error	message	to	the
console	window.

The	syntax	of	the	two	possible	command	lines	are:

			InsRepIM.exe	/f[Model	File]	/r[Repository	connect	string]	/u[User]
/p[Password]

-or-

			InsRepIM.exe	/d	/r[Repository	connect	string]	/u[User]	/p[Password]

WARNING		Using	the	flag	/d	deletes	all	repository	tables	and	property	tables	from
the	repository	database	that	are	specified	by	the	connection	string	using	the	user

ID	and	password.

The	following	table	lists	the	parameters.

Parameter Description
Model	File The	information	model	data	file

(with	a	file	extension	of	.rdm)
Repository	connect	string The	repository	database	file	data

source	name	(DSN)	or	a	Microsoft
Access	database	file	(with	a	file
extension	of	.mdb)

User The	user's	name
Password The	user's	password

Example
The	following	examples	show	how	you	can	use	either	the	DSN	or	the	.mdb	to
identify	the	file	name:

			InsRepIM	/f	C:\MyRdmFolder\Mar.rdm	/r	DSN=Mar	/u	MyName	/p	MyPassword

			InsRepIM	/f	C:\MyRdmFolder\Mar.rdm	/r	C:\MyMdbFolder\Mar.mdb	/u	MyName	/p	MyPassword

Installer	COM	API
The	model	installer	API	is	the	same	as	in	Microsoft	Repository	version	2.0.	The
IMInstall	COM	server	publishes	the	IMInstall	interface.

The	file	Insrepim.dll	is	a	Microsoft	ActiveX®	DLL	located	in	C:\Program
Files\Common	Files\Microsoft	Shared\Repository.	It	can	be	used	either	from	a
Microsoft	Visual	Basic®	application	or	a	Microsoft	Visual	C++®	application	to
programmatically	install	a	model	file	into	a	repository	database.

Topic Description
IIMInstall::InstallRDM	Method Describes	the	method	that	is	used	to

install	the	model	by	DSN	or
connection	name

IIMInstall2::InstallRDM	Method Describes	the	method	that	is	used	to

install	the	model	by	repository
pointer

Model	Installer	Errors Lists	the	model	installer	error
messages

The	model	installer	uses	the	following	sample	Interface	Definition	Language
(IDL)	definition	to	install	models	into	a	Meta	Data	Services	repository.

IDL	Definition
IDL	Segment

			[
						object,
						uuid(D24FD4A4-BEBC-11D1-8CB9-00C04FC2F51A),
						dual,
						helpstring("IIMInstall	Interface"),
						pointer_default(unique)
]
			interface	IIMInstall	:	IDispatch
			{
						[id(1),	helpstring("method	InstallRDM")]	HRESULT	InstallRDM([in]	BSTR	DSN,	[in]	BSTR	RDMFile,	[in]	BSTR	UserName,	[in]	BSTR	Password);
			};

			[
						object,
						uuid(AF7F843B-FB34-4ff2-BD7D-81DDB284D2A9),
						dual,
						helpstring("IIMInstall2	Interface"),
						pointer_default(unique)
]
			interface	IIMInstall2	:	IDispatch
			{
						[id(1),	helpstring("method	InstallRDM")]	HRESULT	InstallRDM([in]	IRepository	*pRepos,	[in]	BSTR	RDMFile);

			};

See	Also

Installing	Information	Models

Model	Installer	Errors

Meta	Data	Services	Programming

IIMInstall::InstallRDM	Method
IIMInstall	supports	the	following	method:

HRESULT	InstallRDM(

						BSTR	DSN,

						BSTR	RdmFile,

						BSTR	UserName,

						BSTR	Password

);

Parameters
DSN	[in]

The	data	source	name	(DSN)	of	the	repository	database.

RdmFile	[in]

The	information	model	data	file	.rdm.

UserName	[in]

The	user's	name.

Password	[in]

The	user's	password.

Return	Value
S_OK

The	method	is	successfully	completed.

Error	Value

The	method	failed	to	complete	successfully.

See	Also

Model	Installer	Errors

Model	Installer	Reference

Meta	Data	Services	Programming

IIMInstall2::InstallRDM	Method
IIMInstall	supports	the	following	method:

HRESULT	InstallRDM(

						IRepository	*pRepos,

						BSTR	RdmFile,

);

Parameters
*pRepos	[in]

Points	to	a	repository	database	where	the	model	is	to	be	installed.

RdmFile	[in]

The	information	model	data	file	(with	an	extension	of	.rdm).

Return	Value
S_OK

The	method	is	successfully	completed.

Error	Value

The	method	failed	to	complete	successfully.

See	Also

Model	Installer	Reference

Model	Installer	Errors

Meta	Data	Services	Programming

Model	Installer	Errors
The	following	errors	may	occur	when	you	install	a	model	into	a	Microsoft®
SQL	Server™	2000	Meta	Data	Services	repository.

Error	number Error	text
0x80045001 E_INSREP_BAD_ARGUMENTS
0x80045002 E_INSREP_CANT_OPEN_MODEL_FILE
0x80045003 E_INSREP_CANT_INITIALIZE_COM
0x80045004 E_INSREP_CANT_CREATE_IREPOSITORY
0x80045005 E_INSREP_REPOSITORY_CREATE_FAILS
0x80045006 E_INSREP_PREMATURE_EOF
0x80045007 E_INSREP_WRONG_FILE_TYPE
0x80045008 E_INSREP_UNEXPECTEDERROR
0x80045009 E_INSREP_CANTINSTALLTYPELIB
0x8004500A E_INSREP_INCOMPATIBLERDMVERSION
0x8004500B E_INSREP_CANTINSTALLINTERFACEDEF
0x8004500C E_INSREP_CANTINSTALLPROPERTYDEF
0x8004500D E_INSREP_CANTINSTALLRELATIONSHIPDEF
0x8004500E E_INSREP_CANTINSTALLROLEDEF
0x8004500F E_INSREP_CANTINSTALLCLASSDEF
0x80045010 E_INSREP_TRANSACTIONERROR
0x80045011 E_INSREP_CANTCREATEENUMDEF
0x80045012 E_INSREP_CANTCREATEENUMLITERAL
0x80045013 E_INSREP_CANTCREATEOPERATION
0x80045014 E_INSREP_CANTCREATEALIAS
0x80045015 E_INSREP_IMPLIESFAILED
0x80045016 E_INSREP_ERRORADDINGIFACE
0x80045017 E_INSREP_ERRORGETTINGREPOSROOT
0x80045018 E_INSREP_CANTCREATEPARAMDEF
0x80045019 E_INSREP_INCOMPREPOSVERSION

See	Also

Model	Installer	Reference

Meta	Data	Services	Programming

E_INSREP_BAD_ARGUMENTS
One	or	more	of	the	arguments	passed	are	not	valid.

Meta	Data	Services	Programming

E_INSREP_CANT_CREATE_IREPOSITORY
Microsoft®	SQL	Server™	2000	Meta	Data	Services	is	not	registered	on	this
computer.

Meta	Data	Services	Programming

E_INSREP_CANT_INITIALIZE_COM
The	installer	failed	to	initialize	COM.

Meta	Data	Services	Programming

E_INSREP_CANT_OPEN_MODEL_FILE
The	installer	cannot	open	the	model	file.

Meta	Data	Services	Programming

E_INSREP_CANTCREATEALIAS
The	installer	failed	to	create	an	alias.

Meta	Data	Services	Programming

E_INSREP_CANTCREATEENUMDEF
The	installer	failed	to	create	an	enumeration.

Meta	Data	Services	Programming

E_INSREP_CANTCREATEENUMLITERAL
The	installer	failed	to	create	an	enumeration	literal.

Meta	Data	Services	Programming

E_INSREP_CANTCREATEOPERATION
The	installer	failed	to	create	a	MethodDef	class.

Meta	Data	Services	Programming

E_INSREP_CANTCREATEPARAMDEF
The	installer	failed	to	install	a	parameter	definition.

Meta	Data	Services	Programming

E_INSREP_CANTINSTALLCLASSDEF
The	installer	failed	to	install	a	class	definition.

Meta	Data	Services	Programming

E_INSREP_CANTINSTALLINTERFACEDEF
The	installer	failed	to	install	an	interface	definition.

Meta	Data	Services	Programming

E_INSREP_CANTINSTALLPROPERTYDEF
The	installer	failed	to	install	a	property	definition.

Meta	Data	Services	Programming

E_INSREP_CANTINSTALLRELATIONSHIPDEF
The	installer	failed	to	install	a	relationship	definition.

Meta	Data	Services	Programming

E_INSREP_CANTINSTALLROLEDEF
The	installer	failed	to	install	a	relationship	collection	definition.

Meta	Data	Services	Programming

E_INSREP_CANTINSTALLTYPELIB
The	installer	failed	to	install	a	type	library.

Meta	Data	Services	Programming

E_INSREP_ERRORADDINGIFACE
An	error	occurred	while	adding	an	interface.

Meta	Data	Services	Programming

E_INSREP_ERRORGETTINGREPOSROOT
An	error	occurred	while	getting	the	repository	root.

Meta	Data	Services	Programming

E_INSREP_IMPLIESFAILED
An	error	occurred	while	adding	an	implication.

Meta	Data	Services	Programming

E_INSREP_INCOMPATIBLERDMVERSION
The	RDM	file	version	is	incompatible	with	the	installer.

Meta	Data	Services	Programming

E_INSREP_INCOMPREPOSVERSION
The	installer	requires	Microsoft®	SQL	Server™	2000	Meta	Data	Services.

Meta	Data	Services	Programming

E_INSREP_PREMATURE_EOF
The	installer	ended	unexpectedly.

Meta	Data	Services	Programming

E_INSREP_REPOSITORY_CREATE_FAILS
The	installer	failed	while	creating	a	repository.

Meta	Data	Services	Programming

E_INSREP_TRANSACTIONERROR
An	error	occurred	while	creating	or	committing	a	transaction.

Meta	Data	Services	Programming

E_INSREP_UNEXPECTEDERROR
An	unexpected	error	occurred.

Meta	Data	Services	Programming

E_INSREP_WRONG_FILE_TYPE
File	type	is	unknown.

	Programming Meta Data Services Applications
	Repository Object Architecture
	Repository Engine Model
	Repository Objects and Object Versions
	Repository Session Objects
	Repository Transaction Objects
	Repository Root Objects
	Repository Relationship Objects
	Relationship Structure: Origin and Destination
	Relationship Navigation: Source and Target

	Repository Collections
	Repository Property Objects
	Repository Workspace Objects

	Repository Type Information Model
	Repository Type Library Objects
	Class Definition Objects
	Interface Definition Objects
	Alias Objects
	Relationship Definition Objects
	Collection Definition Objects
	Property Definition Objects
	Enumeration Definition Objects
	Method Definition Objects
	Parameter Definition Objects
	Script Definition Objects

	Understanding the RTIM Through Examples
	Example: Associating Data with RTIM
	Example: A Finished Information Model

	Designing Information Models
	Understanding Application Data
	Visualizing Data and Meta Data
	Ways to List Data
	Ways to List Meta Data

	Depicting Relationships Between Objects
	How Relationships Conform to Relationship Types
	Understanding Collections
	Understanding Relationship Roles

	Getting Started with Meta Data Services
	Programming Environment
	Accessing Automation Object Members
	Visual C++ Wrappers with Meta Data Services

	Using Meta Data Services to Define Information Models
	Using Meta Data Services to Program Information Models
	Programming Fundamentals: Declaring Objects
	Programming Fundamentals: Populating a Collection

	Connecting to and Configuring a Repository
	Connecting to a SQL Server Repository Database
	Connecting to a Jet Repository Database
	Connecting Through a DSN
	Default Repository Databases
	Replicating Repository Databases

	Defining Information Models
	Repository Identifiers
	Object Identifiers and Internal Identifiers
	Object-Version Identifiers and Internal Object-Version Identifiers
	How Repository Identifiers are Stored and Instantiated
	Repository Identifier Data Structures
	Assigning Object Identifiers

	Naming Objects, Collections, and Relationships
	Type Information Aliasing
	Naming Conventions
	Naming and Unique-Naming Collections
	Retrieving an Object Version's Name
	Changing an Object Version's Name
	Changing a Destination Relationship's Name
	Naming Stored Procedures

	Creating and Extending Type Information
	Creating Type Information Using Modeling Tools
	Information Model Creation Issues
	Extending vs. Creating Information Models
	Choosing Which Information Belongs in the Repository
	Choosing an Automation Server for a Class
	Tuning the Database Schema of an Information Model
	Accommodating Navigation within an Information Model

	Creating Type Information Programmatically
	Begin a Transaction
	Create a Repository Type Library
	Define Dependencies Between Type Libraries
	Add Classes to the Repository Type Library
	Add Interfaces to Each Class
	Add Properties to Each Interface
	Add Methods to Each Interface
	Add Relationship Types and Pairs of Collection Types
	Commit the Transaction

	Defining Relationships and Collections
	Defining a Relationship
	Defining a Collection
	Sequenced Collections
	Heterogeneous Collections of Objects

	Defining a Relationship Collection
	Defining a Target Object Collection
	Defining a Version Collection

	Defining Properties
	Virtual Members
	Repository Enumeration Definition

	Defining Methods
	Defining a Parameter
	Defining Script Objects
	Binding Scripts
	Accessing a Script
	Predefined Script Variables
	Method Invocation for Scripted Methods
	Get Method for Scripted Properties
	Put Method for Scripted Properties

	Defining Inheritance
	Interface Implication
	Adding an Interface Implication

	Member Delegation
	Derived Members
	Supporting Multiple Interfaces With Overlapping Functionality
	Flattening Interfaces
	Simulating Multiple Inheritance
	Specializing Relationship Collections
	Filtering Derived Collections

	Derived Member Requirements
	Creating a Derived Member
	Derivation Behavior
	Example: Basic Member Delegation
	Example: Member Delegation with Filtering

	Generating Views
	Defining Views in an Information Model
	Kinds of SQL Views
	Defining a Class View
	Defining an Interface View
	Defining a Junction Table View
	Defining View Columns

	Version Resolution for Generated Views
	Naming Conventions for Generated Views
	Querying a Repository Database Using SQL Views

	Installing Information Models
	Using the Model Installer from the Command Line
	Using the Model Installer ActiveX Component

	Programming Information Models
	Navigating a Repository
	Navigation Overview
	Navigating a Relationship from Two Directions
	Navigating a Relationship Using Two Approaches
	Source Objects and Target Objects

	Accessing a Repository
	Accessing Repository Objects
	Accessing Properties

	Accessing Relationships
	Accessing Relationship Collections
	Retrieving Relationship Collections

	Accessing Target Object Collections
	Using TargetObjectCol with Relationship Collections
	Retrieving Target Object Collections

	Selecting Items in a Collection
	Using Enumerators to Work with Items in a Collection
	Filtering Collections

	Propagating Deletes
	Requirements for Object-Version Deletion
	Requirements for Changing an Object Version
	Delete Propagation After Removing an Origin Relationship
	Delete Propagation After Removing a Destination Relationship
	Delete Propagation After Removing a Destination Target Version
	Delete Propagation After Removing an Origin Target Version
	Delete Propagation After Removing an Object Version

	Versioning Objects
	Versioning Overview
	Kinds of Version Collections
	Version Graph
	Navigating the Version Graph
	Manipulating Versioned Relationships
	Version-to-Version Relationships

	Manipulating Object Versions
	Creating Object Versions
	Propagating Versions
	Freezing an Object Version

	Resolution Strategy for Objects and Object Versions
	Requesting a Specific Version
	Resolution While Operating Within a Workspace
	Resolution While Operating Outside a Workspace

	Merging Object Versions
	Merge Overview
	Invoking MergeVersion
	Resolving Merge Conflicts for Properties
	Resolving Merge Conflicts for Collections
	Examples of Merging Versions

	Programming Objects
	Programming BLOBs and Large Text Fields
	Programming Transient Object Collections

	Managing Transactions and Threads
	Transaction Management Overview
	Managing Transactions
	Nesting Transactions
	Transactions and Caching
	Integration with Distributed Transaction Coordinator

	Design Issues and Transaction Management
	Reading Repository Data Outside of a Transaction
	Using a Lock Protocol
	Avoiding Repository Cache Overflows

	Repository Objects and Multithreading
	Restrictions for Microsoft Jet Repository Databases
	Synchronizing Commit Operations

	Managing Workspaces
	Workspace Management Overview
	Objects Within Workspaces
	Workspace Context
	Establishing Workspace Context
	Retaining Workspace Context
	Workspaces and Repository Instances

	Accessing Objects in a Workspace
	Manipulating Workspaces
	Manipulating Objects in a Workspace

	Handling Errors
	Error Handling Overview
	Accessing Error Information at the Automation Level
	Accessing Error Information at the COM Level
	Persisting Error Queue Information

	Optimizing Repository Performance
	General Hints to Improve Performance
	Retrieval Hints
	Update Hints
	Versioning Hints
	Run-Time Tuning
	Adjusting Cache Aging for Repository Objects
	View Hints

	Storage Strategy in a Repository Database
	Branches in the Version Graph
	Ranges in the Version Graph
	Storing Relationships
	Interface-Specific Tables
	Example: Rows of Interface-Specific Tables

	Using OLE DB Scanner
	OLE DB Scanner Overview
	Supported OLE DB Schema Rowsets in OLE DB Scanner
	Navigating the Schema in OLE DB Scanner
	Schema Versioning in OLE DB Scanner
	Data Type Mappings in OLE DB Scanner

	Using XML Encoding
	Exporting XML
	Export Automation Object Example
	Importing XML
	Import Automation Object Example

	Repository API Reference
	Automation Reference
	Repository Engine Automation Objects
	ObjectCol Object
	ObjectCol Count Property
	ObjectCol Item Property
	ObjectCol Cancel Method
	ObjectCol LoadStatus Method
	ObjectCol Refresh Method

	Relationship Object
	RelationshipCol Object
	RelationshipCol Count Property
	RelationshipCol Item Property
	RelationshipCol Source Property
	RelationshipCol Type Property
	RelationshipCol Add Method
	RelationshipCol Insert Method
	RelationshipCol Move Method
	RelationshipCol Refresh Method
	RelationshipCol Remove Method

	Repository Object
	Repository ConnectionString Property
	Repository MajorDBVersion Property
	Repository MinorDBVersion Property
	Repository Object Property
	Repository ReposConnection Property
	Repository RootObject Property
	Repository Transaction Property
	Repository Version Property
	Repository Create Method
	Repository CreateObject Method
	Repository CreateObjectEx Method
	Repository ExecuteQuery Method
	Repository FreeConnection Method
	Repository GetCollection Method
	Repository GetNewConnection Method
	Repository GetOption Method
	Repository InternalIDToObjectID Method
	Repository InternalIDToVersionID Method
	Repository ObjectIDToInternalID Method
	Repository Open Method
	Repository Refresh Method
	Repository ResetOption Method
	Repository SetOption Method
	Repository VersionIDToInternalID Method

	RepositoryObject Object
	RepositoryObject ClassName Property
	RepositoryObject ClassType Property
	RepositoryObject Interface Property
	RepositoryObject InternalID Property
	RepositoryObject Name Property
	RepositoryObject ObjectID Property
	RepositoryObject Repository Property
	RepositoryObject Type Property
	RepositoryObject Delete Method
	RepositoryObject Lock Method
	RepositoryObject Refresh Method
	RepositoryObject Properties Collection

	RepositoryObjectVersion Object
	RepositoryObjectVersion ClassName Property
	RepositoryObjectVersion ClassType Property
	RepositoryObjectVersion CheckOutWorkspace Property
	RepositoryObjectVersion Interface Property
	RepositoryObjectVersion InternalID Property
	RepositoryObjectVersion IsCheckedOut Property
	RepositoryObjectVersion IsFrozen Property
	RepositoryObjectVersion Name Property
	RepositoryObjectVersion ObjectID Property
	RepositoryObjectVersion PredecessorCreationVersion Property
	RepositoryObjectVersion Repository Property
	RepositoryObjectVersion ResolutionType Property
	RepositoryObjectVersion Type Property
	RepositoryObjectVersion VersionID Property
	RepositoryObjectVersion VersionInternalID Property
	RepositoryObjectVersion CreateVersion Method
	RepositoryObjectVersion Delete Method
	RepositoryObjectVersion FreezeVersion Method
	RepositoryObjectVersion Lock Method
	RepositoryObjectVersion MergeVersion Method
	RepositoryObjectVersion Refresh Method
	RepositoryObjectVersion ObjectVersions Collection
	RepositoryObjectVersion PredecessorVersions Collection
	RepositoryObjectVersion Properties Collection
	RepositoryObjectVersion SuccessorVersions Collection
	RepositoryObjectVersion Workspaces Collection

	RepositoryTransaction Object
	RepositoryTransaction Status Property
	RepositoryTransaction Abort Method
	RepositoryTransaction Begin Method
	RepositoryTransaction Commit Method
	RepositoryTransaction Flush Method
	RepositoryTransaction GetOption Method
	RepositoryTransaction SetOption Method

	ReposProperties Object
	ReposProperties Count Property
	ReposProperties Item Property
	ReposProperties Type Property

	ReposProperty Object
	ReposProperty APIType Property
	ReposProperty CurrentPosition Property
	ReposProperty Flags Property
	ReposProperty IsBaseMember Property
	ReposProperty IsMostDerived Property
	ReposProperty IsOriginCollection Property
	ReposProperty IsReadOnly Property
	ReposProperty Name Property
	ReposProperty PropType Property
	ReposProperty Size Property
	ReposProperty Type Property
	ReposProperty Value Property
	ReposProperty Close Method
	ReposProperty Read Method
	ReposProperty ReadFromFile Method
	ReposProperty Write Method
	ReposProperty WriteToFile Method

	TransientObjectCol Object
	TransientObjectCol Count Property
	TransientObjectCol Add Method
	TransientObjectCol Refresh Method
	TransientObjectCol Remove Method
	TransientObjectCol Item Collection

	Workspace Object
	Workspace CheckedOutToWorkspace Property
	Workspace Interface Property
	Workspace InternalID Property
	Workspace IsCheckedOut Property
	Workspace IsFrozen Property
	Workspace MajorDBVersion Property
	Workspace MinorDBVersion Property
	Workspace Name Property
	Workspace Object Property
	Workspace ObjectID Property
	Workspace PredecessorCreationVersion Property
	Workspace Repository Property
	Workspace ResolutionType Property
	Workspace RootObject Property
	Workspace Transaction Property
	Workspace Type Property
	Workspace Version Property
	Workspace VersionID Property
	Workspace VersionInternalID Property
	Workspace Checkin Method
	Workspace Checkout Method
	Workspace Create Method
	Workspace CreateObject Method
	Workspace CreateVersion Method
	Workspace Delete Method
	Workspace FreezeVersion Method
	Workspace InternalIDToObjectID Method
	Workspace InternalIDToVersionID Method
	Workspace Lock Method
	Workspace MergeVersion Method
	Workspace ObjectIDToInternalID Method
	Workspace Open Method
	Workspace Refresh Method
	Workspace Refresh (from IRepositoryObjectVersion) Method
	Workspace VersionIDToInternalID Method
	Workspace Checkouts Collection
	Workspace Containers Collection
	Workspace Contents Collection
	Workspace ObjectVersions Collection
	Workspace PredecessorVersions Collection
	Workspace Properties Collection
	Workspace SuccessorVersions Collection
	Workspace Workspaces Collection

	VersionCol Object
	VersionCol Count Property
	VersionCol Item Property
	VersionCol Add Method
	VersionCol Refresh Method
	VersionCol Remove Method

	VersionedRelationship Object
	VersionedRelationship Destination Property
	VersionedRelationship Interface Property
	VersionedRelationship Name Property
	VersionedRelationship Origin Property
	VersionedRelationship Repository Property
	VersionedRelationship Source Property
	VersionedRelationship Target Property
	VersionedRelationship Type Property
	VersionedRelationship Delete Method
	VersionedRelationship Lock Method
	VersionedRelationship Pin Method
	VersionedRelationship Unpin Method
	VersionedRelationship Properties Collection
	VersionedRelationship TargetVersions Collection

	RTIM Automation Objects
	Alias Object
	Alias Name Property
	Alias MemberSynonym Property
	Alias ServicedByMember Collection

	ClassDef Object
	ClassDef ClassID Property
	ClassDef Name Property
	ClassDef Synonym Property
	ClassDef AddInterface Method
	ClassDef CreateInterfaceDef Method
	ClassDef ObjectInstances Method
	ClassDef Interfaces Collection
	ClassDef Properties Collection
	ClassDef ReposTypeLibScopes Collection
	ClassDef ScriptsUsedByClass Collection

	CollectionDef Object
	CollectionDef DispatchID Property
	CollectionDef Flags Property
	CollectionDef IsOrigin Property
	CollectionDef MaxCount Property
	CollectionDef MemberSynonym Property
	CollectionDef MinCount Property
	CollectionDef Name Property
	CollectionDef CollectionItem Collection
	CollectionDef Interface Collection
	CollectionDef Properties Collection

	EnumerationDef Object
	EnumerationDef Name Property
	EnumerationDef Description Property
	EnumerationDef IsFlag Property
	EnumerationDef Values Collection

	EnumerationValueDef Object
	EnumerationValueDef EnumValue Property

	InterfaceDef Object
	InterfaceDef Flags Property
	InterfaceDef InterfaceID Property
	InterfaceDef Synonym Property
	InterfaceDef TableName Property
	InterfaceDef CreateAlias Method
	InterfaceDef CreateMethodDef Method
	InterfaceDef CreatePropertyDef Method
	InterfaceDef CreateRelationshipColDef Method
	InterfaceDef ObjectInstances Method
	InterfaceDef Ancestor Collection
	InterfaceDef Classes Collection
	InterfaceDef Descendants Collection
	InterfaceDef Implies Collection
	InterfaceDef ImpliedBy Collection
	InterfaceDef Members Collection
	InterfaceDef Properties Collection
	InterfaceDef ReposTypeLibScopes Collection
	InterfaceDef ScriptsUsedByInterface Collection

	MethodDef Object
	MethodDef DispatchID Property
	MethodDef Flags Property
	MethodDef MemberSynonym Property
	MethodDef CreateParameterDef Method
	MethodDef Interface Collection
	MethodDef Properties Collection

	ParameterDef Object
	ParameterDef Default Property
	ParameterDef Description Property
	ParameterDef Flags Property
	ParameterDef GUID Property
	ParameterDef Type Property

	PropertyDef Object
	PropertyDef APIType Property
	PropertyDef ColumnName Property
	PropertyDef DispatchID Property
	PropertyDef Flags Property
	PropertyDef MemberSynonym Property
	PropertyDef SQLBlobSize Property
	PropertyDef SQLScale Property
	PropertyDef SQLSize Property
	PropertyDef SQLType Property
	PropertyDef EnumerationDef Collection
	PropertyDef Interface Collection
	PropertyDef Properties Collection

	RelationshipDef Object
	RelationshipDef Name Property
	RelationshipDef Synonym Property
	RelationshipDef ItemInCollections Collection
	RelationshipDef Properties Collection
	RelationshipDef ReposTypeLibScopes Collection

	ReposRoot Object
	ReposRoot CreateTypeLib Method
	ReposRoot ReposTypeLibs Collection
	ReposRoot Properties Collection
	ReposRoot Workspaces Collection

	ReposTypeLib Object
	ReposTypeLib Name Property
	ReposTypeLib Prefix Property
	ReposTypeLib TypeLibID Property
	ReposTypeLib CreateClassDef Method
	ReposTypeLib CreateInterfaceDef Method
	ReposTypeLib CreateRelationshipDef Method
	ReposTypeLib ReposTypeInfos Collection
	ReposTypeLib ReposTypeLibContexts Collection
	ReposTypeLib Properties Collection

	ScriptDef Object
	ScriptDef Body Property
	ScriptDef Language Property
	ScriptDef Name Property
	ScriptDef ValidateScript Method
	ScriptDef UsingClasses Collection
	ScriptDef UsingInterfaces Collection
	ScriptDef UsingMembers Collection

	COM Reference
	Repository Engine Classes
	ObjectCol Class
	Relationship Class
	RelationshipCol Class
	Repository Class
	RepositoryObjectVersion Class
	RepositoryObject Class
	ReposProperties Class
	ReposProperty Class
	TransientObjectCol Class
	VersionCol Class
	VersionedRelationship Class
	Workspace Class

	Repository Engine COM Interfaces
	IAnnotationalProps Interface
	IEnumRepositoryErrors Interface
	IEnumRepositoryErrors::Clone
	IEnumRepositoryErrors::Next
	IEnumRepositoryErrors::Reset
	IEnumRepositoryErrors::Skip

	INamedObject Interface
	INamedObject Name Property

	IObjectCol Interface
	IObjectCol::get_Count
	IObjectCol::_NewEnum
	IObjectCol::get_Item
	IObjectCol::Refresh

	IObjectCol2 Interface
	IObjectCol2::get_LoadStatus
	IObjectCol2::Cancel

	IRelationship Interface
	IRelationship::get_Destination
	IRelationship::get_Origin
	IRelationship::get_Source
	IRelationship::get_Target

	IRelationshipCol Interface
	IRelationshipCol::Add
	IRelationshipCol::get_Count
	IRelationshipCol::_NewEnum
	IRelationshipCol::get_Source
	IRelationshipCol::get_Type
	IRelationshipCol::Insert
	IRelationshipCol::get_Item
	IRelationshipCol::Move
	IRelationshipCol::Refresh
	IRelationshipCol::Remove

	IReposErrorQueueHandler Interface
	IReposErrorQueueHandler::CreateErrorQueue
	IReposErrorQueueHandler::GetErrorQueue
	IReposErrorQueueHandler::SetErrorQueue

	IRepository Interface
	IRepository::Create
	IRepository::CreateObject
	IRepository::get_Object
	IRepository::get_RootObject
	IRepository::get_Transaction
	IRepository::InternalIDToObjectID
	IRepository::ObjectIDToInternalID
	IRepository::Open
	IRepository::Refresh

	IRepository2 Interface
	IRepository2::get_Version
	IRepository2::InternalIDToVersionID
	IRepository2::VersionIDToInternalID
	IRepository2::CreateObjectEx
	IRepository2::get_MajorDBVersion
	IRepository2::get_MinorDBVersion

	IRepositoryDispatch Interface
	IRepositoryDispatch::get_Properties Method

	IRepositoryErrorQueue Interface
	IRepositoryErrorQueue::Count
	IRepositoryErrorQueue::Insert
	IRepositoryErrorQueue::Item
	IRepositoryErrorQueue::Remove
	IRepositoryErrorQueue::_NewEnum

	IRepositoryItem Interface
	IRepositoryItem::Delete
	IRepositoryItem::get_Interface
	IRepositoryItem::get_Name
	IRepositoryItem::get_Repository
	IRepositoryItem::get_Type
	IRepositoryItem::Lock
	IRepositoryItem::put_Name

	IRepositoryObject Interface
	IRepositoryObject::get_InternalID
	IRepositoryObject::get_ObjectID
	IRepositoryObject::Refresh

	IRepositoryObject2 Interface
	IRepositoryObject2 ClassName Property
	IRepositoryObject2 ClassType Property
	IRepositoryObject2 Properties Property

	IRepositoryObjectStorage Interface
	IRepositoryObjectStorage::get_PropertyInterface
	IRepositoryObjectStorage::InitNew
	IRepositoryObjectStorage::Load

	IRepositoryObjectVersion Interface
	IRepositoryObjectVersion::CreateVersion
	IRepositoryObjectVersion::FreezeVersion
	IRepositoryObjectVersion::get_IsFrozen
	IRepositoryObjectVersion::get_ObjectVersions
	IRepositoryObjectVersion::get_PredecessorCreationVersion
	IRepositoryObjectVersion::get_PredecessorVersions
	IRepositoryObjectVersion::get_ResolutionType
	IRepositoryObjectVersion::get_SuccessorVersions
	IRepositoryObjectVersion::get_VersionID
	IRepositoryObjectVersion::get_VersionInternalID
	IRepositoryObjectVersion::MergeVersion

	IRepositoryODBC Interface
	IRepositoryODBC::ExecuteQuery
	IRepositoryODBC::FreeConnection
	IRepositoryODBC::get_ConnectionString
	IRepositoryODBC::GetNewConnection
	IRepositoryODBC::get_ReposConnection

	IRepositoryODBC2 Interface
	IRepositoryODBC2::GetOption
	IRepositoryODBC2::SetOption

	IRepositoryTransaction Interface
	IRepositoryTransaction::Abort
	IRepositoryTransaction::Begin
	IRepositoryTransaction::Commit
	IRepositoryTransaction::Flush
	IRepositoryTransaction::GetOption
	IRepositoryTransaction::get_Status
	IRepositoryTransaction::SetOption

	IRepositoryTransaction2 Interface
	IRepositoryTransaction2::get_DTCTransaction

	IReposOptions Interface
	IReposOptions::GetOption
	IReposOptions::SetOption
	IReposOptions::ResetOptions
	IReposOptions Options Table

	IReposProperties Interface
	IReposProperties::get_Count
	IReposProperties::get_Item
	IReposProperties::get_Type
	IReposProperties::_NewEnum

	IReposProperty Interface
	IReposProperty::get_Name
	IReposProperty::get_Type
	IReposProperty::get_Value
	IReposProperty::put_Value

	IReposProperty2 Interface
	IReposProperty2 APIType Property
	IReposProperty2 IsBaseMember Property
	IReposProperty2 IsOriginCollection Property
	IReposProperty2 PropType Property
	IReposProperty2 IsReadOnly Property

	IReposPropertyLarge Interface
	IReposPropertyLarge::Size
	IReposPropertyLarge::CurrentPosition
	IReposPropertyLarge::Read
	IReposPropertyLarge::ReadFromFile
	IRepositoryPropetyLarge::Close
	IReposPropertyLarge::Write
	IReposPropertyLarge::WriteToFile

	IReposQuery Interface
	IReposQuery::GetCollection

	ISummaryInformation Interface
	ISummaryInformation Comments Property
	ISummaryInformation ShortDescription Property

	ITargetObjectCol Interface
	ITargetObjectCol::Add
	ITargetObjectCol::get_Source
	ITargetObjectCol::get_Type
	ITargetObjectCol::Insert
	ITargetObjectCol::Move
	ITargetObjectCol::Remove

	ITransientObjectCol Interface
	ITransientObjectCol::Add
	ITransientObjectCol::Remove

	IVersionAdminInfo Interface
	IVersionAdminInfo CreateByUser Property
	IVersionAdminInfo ModifyByUser Property
	IVersionAdminInfo VersionCreateTime Property
	IVersionAdminInfo VersionModifyTime Property

	IVersionAdminInfo2 Interface
	IVersionAdminInfo2 VersionLabel Property
	IVersionAdminInfo2 VersionComments Property
	IversionAdminInfo2 VersionShortDesc Property

	IVersionCol Interface
	IVersionCol::Add
	IVersionCol::get_Count
	IVersionCol::get_Item
	IVersionCol::_NewEnum
	IVersionCol::Refresh
	IVersionCol::Remove

	IVersionedRelationship Interface
	IVersionedRelationship::get_TargetVersions
	IVersionedRelationship::Pin
	IVersionedRelationship::Unpin

	IWorkspace Interface
	IWorkspace Containers Collection
	IWorkspace::get_Checkouts
	IWorkspace::get_Contents

	IWorkspaceContainer Interface
	IWorkspaceContainer Workspaces Collection

	IWorkspaceItem Interface
	IWorkspaceItem::Checkin
	IWorkspaceItem::Checkout
	IWorkspaceItem::get_CheckedOutToWorkspace
	IWorkspaceItem::get_IsCheckedOut
	IWorkspaceItem::get_Workspaces

	RTIM Classes
	Alias Class
	ClassDef Class
	CollectionDef Class
	EnumerationDef Class
	EnumerationValueDef Class
	InterfaceDef Class
	MethodDef Class
	ParameterDef Class
	PropertyDef Class
	RelationshipDef Class
	ReposRoot Class
	ReposTypeLib Class
	ScriptDef Class

	RTIM COM Interfaces
	IClassDef Interface
	IClassDef::AddInterface
	IClassDef ClassID Property
	IClassDef::CreateInterfaceDef
	IClassDef Interfaces Collection
	IClassDef::ObjectInstances

	IClassDef2 Interface
	ScriptsUsedByClass Collection

	ICollectionDef Interface
	ICollectionDef Flags Property
	ICollectionDef IsOrigin Property
	ICollectionDef MaxCount Property
	ICollectionDef MinCount Property
	ICollectionDef CollectionItem Collection

	IEnumerationDef Interface
	IEnumerationDef Values Collection

	IEnumerationValueDef Interface
	IEnumerationValueDef::EnumValue

	IInterfaceDef Interface
	IInterfaceDef Flags Property
	IInterfaceDef InterfaceID Property
	IInterfaceDef TableName Property
	IInterfaceDef::CreateMethodDef
	IInterfaceDef::CreatePropertyDef
	IInterfaceDef::CreateRelationshipColDef
	IInterfaceDef::ObjectInstances
	IInterfaceDef Classes Collection
	IInterfaceDef Members Collection
	IInterfaceDef Ancestor Collection
	IInterfaceDef Descendants Collection

	IInterfaceDef2 Interface
	IInterfaceDef2 Implies Collection
	IInterfaceDef2 ImpliedBy Collection
	IInterfaceDef2::CreateAlias

	IInterfaceMember Interface
	IInterfaceMember DispatchID Property
	IInterfaceMember Flags Property
	IInterfaceMember Interface Collection

	IInterfaceMember2 Interface
	IInterfaceMember2 MemberSynonym Property
	IInterfaceMember2 ScriptsUsedByMember Collection
	IInterfaceMember2 ServicedByBaseMember Collection
	IInterfaceMember2 ServicesDerivedMembers Collection

	IManageReposTypeLib Interface
	IManageReposTypeLib::CreateTypeLib
	IManageReposTypeLib ReposTypeLibs Collection

	IMethodDef Interface
	IMethodDef::CreateParameterDef
	IMethodDef Parameters Collection

	IParameterDef Interface
	IParameterDef Type Property
	IParameterDef Flags Property
	IParameterDef Description Property
	IParameterDef Default Property
	IParameterDef GUID Property

	IPropertyDef Interface
	IPropertyDef APIType Property
	IPropertyDef ColumnName Property
	IPropertyDef Flags Property
	IPropertyDef SQLScale Property
	IPropertyDef SQLSize Property
	IPropertyDef SQLType Property

	IPropertyDef2 Interface
	IPropertyDef2 SQLBlobSize Property
	IPropertyDef2 EnumerationDef Collection

	IReposRoot Interface
	IReposTypeInfo Interface
	IReposTypeInfo ItemInCollections Collection
	IReposTypeInfo ReposTypeLibScopes Collection

	IReposTypeInfo2 Interface
	IReposTypeInfo2 Synonym Property

	IReposTypeLib Interface
	IReposTypeLib TypeLibID Property
	IReposTypeLib::CreateClassDef
	IReposTypeLib::CreateInterfaceDef
	IReposTypeLib::CreateRelationshipDef
	IReposTypeLib ReposTypeInfos Collection
	IReposTypeLib ReposTypeLibContexts Collection

	IReposTypeLib2 Interface
	IReposTypeLib2 Prefix Property
	IReposTypeLib2 DependsOn Collection
	IReposTypeLib2 UsedBy Collection
	Model Dependency Example

	IScriptDef Interface
	IScriptDef::ValidateScript
	IScriptDef Body Property
	IScriptDef Language Property
	IScriptDef UsingClasses Collection
	IScriptDef UsingInterfaces Collection
	IScriptDef UsingMembers Collection

	IViewClassDef Interface
	IViewClassDef ViewName Property
	IViewClassDef ViewFlags Property

	IViewInterfaceDef Interface
	IViewInterfaceDef ViewName Property
	IViewInterfaceDef ViewFlags Property

	IViewPropertyDef Interface
	IViewPropertyDef ViewColumnName Property

	IViewRelationshipDef Interface
	IViewRelationshipDef ViewFlags Property
	IViewRelationshipDef ColumnNamePrefix Property
	IViewRelationshipDef JunctionViewName Property

	Constants and Data Types
	Repository Constants
	SQL and API Types Used in Property Definitions
	Repository SQL Data Types

	Enumerations
	CollectionDefFlags Enumeration
	ConnectionFlags Enumeration
	InterfaceDefFlags Enumeration
	InterfaceMemberFlags Enumeration
	TransactionFlags Enumeration
	LoadStatus Enumeration
	RepODBCFlags Enumeration

	Repository Errors
	REPOSERROR Data Structure
	Repository Errors (Numerical Order)
	Repository Errors (Alphabetical Order)
	EREP_BADDRIVER
	EREP_BADERROR
	EREP_BADNAME
	EREP_BADPARAMS
	EREP_BLOB_SEEKPASTEND
	EREP_BLOB_TEMPFILE
	EREP_BLOB_USERFILE
	EREP_BLOB_CANNOTSETPOS
	EREP_BUFFER_OVERFLOW
	EREP_CLASS_TOOCOMPLEX
	EREP_COL_NOTSEQUENCED
	EREP_COL_OBJECTNAMING
	EREP_COL_OBJECTNOTNAMED
	EREP_DB_ALREADYCONNECTED
	EREP_DB_CORRUPT
	EREP_DB_DBMSOLD
	EREP_DB_DBMSONETHREAD
	EREP_DB_EXISTS
	EREP_DB_INCOMPATIBLEVERSION
	EREP_DB_NOSCHEMA
	EREP_DB_NOTCONNECTED
	EREP_DB_READONLY
	EREP_DB_UPGRADE
	EREP_DUPEDISPID
	EREP_INVALIDDEPENDENCY
	EREP_INVALIDFILTER
	EREP_ITEMNOTCHECKEDOUT
	EREP_LOCK_TIMEOUT
	EREP_MEMDEL_DELCOLINVALID
	EREP_MEMDEL_COLNOTDEFINED
	EREP_MEMDEL_BASEIFACENOTIMPL
	EREP_MEMDEL_BASECOLVIRTUAL
	EREP_MEMDEL_MULTIPLEBASES
	EREP_MEMDEL_CIRCULARCOLS
	EREP_MISSINGCOMMA
	EREP_MISSINGLEFTBRACKET
	EREP_MISSINGLEFTPARENTHESIS
	EREP_MISSINGRIGHTBRACKET
	EREP_MISSINGRIGHTPARENTHESIS
	EREP_NAME_NOTUNIQUE
	EREP_NAMETOOLONG
	EREP_NEED_DATA
	EREP_NOROWSFOUND
	EREP_NOTWORKSPACEITEM
	EREP_OBJ_EXISTS
	EREP_ODBC_NOTCAPABLE
	EREP_OBJ_NONAMINGRELSHIP
	EREP_OBJ_NOTFOUND
	EREP_OBJ_NOTINITIALIZED
	EREP_ODBC_CERROR
	EREP_ODBC_CREATEFAILED
	EREP_ODBC_MDBNOTFOUND
	EREP_ODBC_UNKNOWNDRIVER
	EREP_ODBC_WARNINGS
	EREP_PROP_CANTSETREPTIM
	EREP_PROP_MISMATCH
	EREP_PROP_NOTEXISTS
	EREP_PROP_READONLY
	EREP_PROP_SETINVALID
	EREP_PROPERTYNOTFOUND
	EREP_QRY_BADCOLUMNS
	EREP_REL_ORGFROZEN
	EREP_REL_ORGCLONE
	EREP_REL_NONSEQONLY
	EREP_REL_ORGPIN
	EREP_REL_NOTPINNED
	EREP_RELSHIP_DUPENAME
	EREP_RELSHIP_EXISTS
	EREP_RELSHIP_INVALIDFLAGS
	EREP_RELSHIP_INVALID_PAIR
	EREP_RELSHIP_NAMEINVALID
	EREP_RELSHIP_NONNAMINGCOL
	EREP_RELSHIP_NOTFOUND
	EREP_RELSHIP_ORGONLY
	EREP_RELSHIP_OUTOFDATE
	EREP_REPOS_CACHEFULL
	EREP_REPOS_NONEXTDISPID
	EREP_RTIM_CLASS_IS_NOT_CREATEABLE
	EREP_SCRIPT_INVALIDLANGUAGE
	EREP_SCRIPT_NESTEDCALL
	EREP_SCRIPT_NOTFOUND
	EREP_STILL_EXECUTING
	EREP_TIM_CTYPEINVALID
	EREP_TIM_FLAGSDEST
	EREP_TIM_INVALIDFLAGS
	EREP_TIM_RELTYPEINVALID
	EREP_TIM_SQLTYPEINVALID
	EREP_TIM_SQLSIZEINVALID
	EREP_TIM_TOOMANYCOLS
	EREP_TXN_AUTOABORT
	EREP_TXN_COLABORTED
	EREP_TXN_NODATA
	EREP_TXN_NOSETINTXN
	EREP_TXN_NOTXNACTIVE
	EREP_TXN_OBJABORTED
	EREP_TXN_TIMEOUT
	EREP_TXN_TOOMANY
	EREP_TYPE_BADTABLENAME
	EREP_TYPE_COLMISMATCH
	EREP_TYPE_INVALIDSCALE
	EREP_TYPE_INVERTEDNOTALLOWED
	EREP_TYPE_MULTIDEFIFACES
	EREP_TYPE_MULTIPLEANCESTORS
	EREP_TYPE_NOTNULLABLE
	EREP_TYPE_TABLEMISMATCH
	EREP_UNKNOWNPROPERTY
	EREP_VCOL_INVALIDOP
	EREP_VCOL_VERSIONNOTMEMBER
	EREP_VERSION_NOTFOUND
	EREP_VIRTUAL_ALIAS
	EREP_VIRTUAL_CALL
	EREP_VM_CANTSETFROZEN
	EREP_VM_MERGETOFROZEN
	EREP_VM_MERGEFROMUNFROZEN
	EREP_VM_UNFROZENVERSION
	EREP_VM_FROZENVERSION
	EREP_VM_CHECKEDOUTVERSION
	EREP_VM_DUPBRANCHID
	EREP_VM_SUCCESSOREXISTS
	EREP_VM_DIFFERENTTYPES
	EREP_WKS_ITEMEXISTS
	EREP_WKS_ITEMNOTEXISTS
	SREP_PROP_TRUNCATION

	Repository SQL Schema
	Repository SQL Tables
	RTblClassDefs SQL Table
	RTblDatabaseVersion SQL Table
	RTblEnumerationDef SQL Table
	RTblEnumerationValueDef SQL Table
	RTblIfaceDefs SQL Table
	RTblIfaceHier SQL Table
	RTblIfaceMem SQL Table
	RTblNamedObj SQL Table
	RTblParameterDef SQL Table
	RTblPropDefs SQL Table
	RTblProps SQL Table
	RTblRelColDefs SQL Table
	RTblRelshipDefs SQL Table
	RTblRelshipProps SQL Table
	RTblRelships SQL Table
	RTblRelships Example One
	RTblRelships Example Two
	RTblRelships Example Three
	RTblRelships Example Four
	RTblRelships Example Five
	RTblRelships Example Six
	RTblRelships Example Seven

	RTblScriptDefs SQL Table
	RTblSites SQL Table
	RTblSumInfo SQL Table
	RTblTypeInfo SQL Table
	RTblTypeLibs SQL Table
	RTblVersionAdminInfo SQL Table
	RTblVersions SQL Table
	RTblWorkspaceItems SQL Table

	XML Encoding Reference
	XML Encoding Definition
	Character Set and Data Types
	Top-Level Element
	Elements and Attributes
	Namespaces
	Nested Lists
	Element References
	Extensibility

	OIM-to-XML Mapping
	Classes and Attributes
	Attribute Name Expansion
	Classes and Single Inheritance
	Classes and Multiple Inheritance
	Associations with XML
	Object References with XML
	Association Classes (Many-to-Many)
	Association Classes (One-to-Many or One-to-One)

	Sample Encoding
	EBNF Representation
	Namespaces in OIM
	DTD for the OIM Namespace
	XML Import Export
	XML IExport Interface Overview
	IExport::_NewEnum Method
	IExport::Add Method
	IExport::Clear Method
	IExport::Count Property
	IExport::Export Method
	IExport::GetXML Method
	IExport::Item Method
	IExport::Remove Method
	XML IImport Interface Overview
	IImport::ImportXML Method
	IImport::ImportXMLString Method

	XML Encoding Errors

	OLE DB Scanner Reference
	IRepOLEDBScanner::ScanDB
	IRepOLEDBScanner::ScanConnection

	Model Installer Reference
	IIMInstall::InstallRDM Method
	IIMInstall2::InstallRDM Method
	Model Installer Errors
	E_INSREP_BAD_ARGUMENTS
	E_INSREP_CANT_CREATE_IREPOSITORY
	E_INSREP_CANT_INITIALIZE_COM
	E_INSREP_CANT_OPEN_MODEL_FILE
	E_INSREP_CANTCREATEALIAS
	E_INSREP_CANTCREATEENUMDEF
	E_INSREP_CANTCREATEENUMLITERAL
	E_INSREP_CANTCREATEOPERATION
	E_INSREP_CANTCREATEPARAMDEF
	E_INSREP_CANTINSTALLCLASSDEF
	E_INSREP_CANTINSTALLINTERFACEDEF
	E_INSREP_CANTINSTALLPROPERTYDEF
	E_INSREP_CANTINSTALLRELATIONSHIPDEF
	E_INSREP_CANTINSTALLROLEDEF
	E_INSREP_CANTINSTALLTYPELIB
	E_INSREP_ERRORADDINGIFACE
	E_INSREP_ERRORGETTINGREPOSROOT
	E_INSREP_IMPLIESFAILED
	E_INSREP_INCOMPATIBLERDMVERSION
	E_INSREP_INCOMPREPOSVERSION
	E_INSREP_PREMATURE_EOF
	E_INSREP_REPOSITORY_CREATE_FAILS
	E_INSREP_TRANSACTIONERROR
	E_INSREP_UNEXPECTEDERROR
	E_INSREP_WRONG_FILE_TYPE

