Meta Data Services Programming

Programming Meta Data Services Applications

Microsoft® SQL Server™ 2000 Meta Data Services is an object-oriented
repository technology that stores and manages meta data for SQL Server and its
components.

Meta Data Services is intended to store meta data, and it is designed to be
integrated with other tools and applications. It provides a solution for storing and
managing data warehousing definitions, OLAP definitions, design data used in
development tools, and any other type of meta data used in a programming
environment.

For tool and application developers, Meta Data Services provides an application
programming interface (API) that exposes the repository engine and meta model
definitions that the engine can manipulate.

With the repository API, you can create tools and applications that use or
manipulate data already stored in your repository. You can also add new meta
data to accomplish new programming objectives that you define.

Meta Data Services relies on information models to provide meta data
definitions. For more information about information models, see Information
Model Fundamentals and Information Models.

The following topics provide more information about how to deploy Meta Data
Services in a programming environment.

Topic Description

Repository Object Architecture Describes repository engine objects
and repository type information
objects used to define and manage

meta data.
Getting Started with Meta Data Describes the programming
Services environment requirements and

provides basic information you
should know before you start.
Connecting to and Configuring a Explains how to create and open a
Repository repository database.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Defining Information Models

Describes how to define an
information model.

Installing Information Models

Explains how to install an
information model in a repository
database.

Programming Information Models

Describes how to program against an
information model in a repository
database.

Storage Strategy in a Repository

Database

Explains how Meta Data Services
stores data in a repository database.

Using OLE DB Scanner

Describes how to use the OLE DB
Scanner utility that imports relational
data into a repository database.

Using XML Encoding

Describes how to use the Meta Data
Coalition (MDC) Extensible Markup
Language (XML) Encoding feature
for interchanging meta data in XML.

See Also

Meta Data Services Architecture

Meta Data Services Overview

Repository API Reference

Model Installer Reference

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Meta Data Services Programming

Repository Object Architecture

The repository object architecture shows how the repository application

programming interfaces relate and intersect. The object model is organized into
two parts: one that shows the repository engine objects, and another that shows

the Repository Type Information Model (RTIM).

Because the repository engine can accommodate data for any tool, its object

model reflects a simple, fundamental view of data. This section describes the

fundamental object model of a repository and introduces the classes and
interfaces that you use to implement the object model in your code.

The following topics provide more information about the repository object

architecture.

Topic

Description

Repository Engine Model

Describes the classes and interfaces
that drive the repository engine.

Repository Type Information Model

Describes the classes and interfaces
that define information models.

Understanding the RTIM Through
Examples

Describes the components of an
information model using examples.

See Also

Designing Information Models
Repository API

Repository API Reference

JavaScript:hhobj_1.Click()

Meta Data Services Programming

Repository Engine Model

The repository engine model represents the classes and interfaces that drive the

repository engine. Together with the Repository Type Information Model
(RTIM), the repository engine model makes up the complete repository object

architecture.

The repository engine model includes

the following objects.

Object

Description

Repository Objects and Object
Versions

An object that is known by a
Microsoft® SQL Server™ 2000
Meta Data Services repository and
managed by the repository engine

Repository Session Objects

An object that represents a repository
instance

Repository Transaction Objects

An object that provides transaction
services to a repository database

Repository Root Objects

An object that provides a starting
point for information model
navigation

Repository Relationship Objects

An object that defines characteristics
of a repository relationship

Repository Collections

A collection that contains objects of a
similar type

Repository Property Objects

An object that defines characteristics
of a repository property

Repository Workspace Objects

An object that represents a
workspace in a repository

See Also

Repository Object Architecture

Repository Type Information Model

Meta Data Services Programming

Repository Objects and Object Versions

A repository object and a repository object version are either COM or
Automation objects known to a Microsoft® SQL Server™ 2000 Meta Data
Services repository and managed by the repository engine. When you instantiate
any object, whether it is a repository engine object or an object from your
information model, the repository engine instantiates it as a repository object or
repository object version.

You can manipulate a repository object or object version instance from
Automation or COM programs using RepositoryObject and
RepositoryObjectVersion classes, objects, and interfaces. You can also use the
ObjectCol or VersionCol collections.

Working with RepositoryObject Objects

Repository Type Information Model (RTIM) objects and repository engine
objects are instantiated as RepositoryObject objects.

Working with RepositoryObjectVersion Objects

All object instances that are defined by your information model can be
instantiated as RepositoryObjectVersion objects. Doing so enables you to
create and manipulate historical or alternate versions of an object instance. In
previous releases of the repository engine, both versioned and nonversioned
objects were supported. The nonversioned repository object is maintained for
backward compatibility purposes. In SQL Server 2000 Meta Data Services,
object instances that you instantiate as either repository objects or repository
object versions are functionally equivalent.

By default, most repository interfaces work with the latest version of an object.
A few interfaces, such as IRepositoryObjectVersion, work with specific
versions that you specify.

See Also

IObjectCol Interface

IRepositoryObject Interface

IRepositoryObjectVersion Interface

IVersionCol Interface

Repository Object Architecture

RepositoryObject Class
RepositoryObject Object

RepositoryObjectVersion Class

RepositoryObjectVersion Object

Meta Data Services Programming

Repository Session Objects

The repository session object represents an instance of a single repository.
Within a single repository, you can have multiple information models. Each
repository instance is associated with one repository database.

The repository session object supports a database connection, transactions, error
handling, workspaces, and object instantiation. A repository session object is
created and managed by the repository engine. It is part of the repository engine
model.

You can manipulate a repository instance from Automation or COM programs
using the Repository object, IRepository interface, or the Repository class.

See Also

IRepository Interface

Repository Class

Repository Object

Repository Object Architecture

Meta Data Services Programming

Repository Transaction Objects

A repository transaction object handles all transactions between a Microsoft®
SQL Server™ 2000 Meta Data Services repository instance and a repository
database. Whenever you insert, delete, or update data in your repository
database, you do so by way of a transaction object. The repository transaction
object also tracks the status of a transaction, and it supports options that allow
you to instruct repository engine operations.

A transaction object is created and managed by the repository engine. It is part of
the repository engine model.

You can manipulate a repository transaction from Automation or COM programs
using the RepositoryTransaction object, the Repository class, or the
IRepositoryTransaction and IRepositoryTransaction? interfaces.

See Also

IRepositoryTransaction Interface

IRepositoryTransaction2 Interface

Repository Class

Repository Object Architecture

RepositoryTransaction Object

Meta Data Services Programming

Repository Root Objects

The root object is the top-level object in a repository. There is one root object for
each repository instance. It is the object from which all navigation begins. All
information models and workspaces in a repository are associated with the root
object.

As with any repository object, the root object can have any number of
relationships with other objects. Each relationship connecting the root object to
other objects must conform to a relationship type. The relationship type to which
these relationships conform is created by the information model creator. The
following figure shows seven such relationships.

The root object occupies a special role that spans both parts of the repository
object architecture. In the Repository Type Information Model (RTIM), it is the
starting point for navigating to your information models. However, it also
belongs to the Repository Engine Object model because it services the repository
engine. In addition, it does not describe type information to the same extent that
other RTIM objects do. Although you are not prohibited from doing so, it is
better to avoid setting properties on the repository root object.

You can access a repository root object from Automation or COM programs
using the ReposRoot object, the ReposRoot class, or the IReposRoot interface.

See Also

Repository Object Architecture

ReposRoot Class

ReposRoot Object

Meta Data Services Programming

Repository Relationship Objects

A relationship is an association between two objects. Relationships bind objects
together and give structure to a repository and an information model.

In a repository and in all subsequent information models, objects are connected
to each other through a network of relationships. For example, in a model that
depicts a database application, the association between a schema and its table is
a relationship. Furthermore, the association between a table and its columns, and
a column and its data type, are also relationships. In a repository, the connection
between one information model and another is also a relationship.

All relationships are accessed by way of a collection. You can only access a
relationship through its collections. Understanding how collections and
relationships correspond is an important prerequisite to programming an
information model. For more information about collections, see Repository
Collections.

The following topics provide more detail about the roles that a relationship
assumes.

Topic Description

Relationship Structure: Origin and |Explains how origin and destination

Destination objects provide the structure of a
relationship.

Relationship Navigation: Source and Explains how source and target

Target objects provide the navigation of a
relationship.

You can manipulate repository relationship objects from Automation or COM
programs using the Relationship object, the Relationship class, or the
IRelationship and IRelationshipCol interfaces.

See Also

Example: Associating Data with RTIM

[Relationship Interface

IRelationshipCol Interface

Relationship Class
Relationship Object

Repository Object Architecture

Meta Data Services Programming

Relationship Structure: Origin and Destination

In every relationship, one object participates as the origin and one object
participates as the destination. The terms origin and destination refer to the
relative roles of the two objects. Together, they define the primary direction of
the relationship. For any given relationship, the assignment of one particular role
as the origin and the other role as the destination is arbitrary to the repository
engine. In practice, however, the developer typically assigns the origin role to
the object that acts or operates on the other object.

For example, in a relationship of the type schema has tables, Schema is the
origin and Tables is the destination. In the relationship table has columns,
Tables is origin and Columns is the destination. Notice that Tables can be both
destination and origin, depending on its role in each relationship.

Origin and destination assignments create the structure of an information model.
Within a single origin-destination pairing, the origin and destination assignments
of the two objects are fixed after the assignments are made.

See Also

Relationship Navigation: Source and Target

Repository Object Architecture

Repository Relationship Objects

Meta Data Services Programming

Relationship Navigation: Source and Target

You use relationships to navigate through repository contents. From within a
relationship, you can retrieve either of the two repository objects that form the
relationship.

In a relationship, navigation always moves from a source object towards a target
object. Unlike origin and destination, source and target assignments are
dynamic; the assignments vary depending on where you want to go. Because
you can navigate back and forth across a network of objects, the source object is
simply where navigation starts, and the target is where navigation concludes.

Source and target assignments apply to instantiated objects for the duration of a
navigation step. Where origin and destination tend to reflect an enduring, real-
world relationship that is represented in a model, source and target assignments
exist only to provide navigation direction from one object to the next.

See Also

Navigation Overview

Relationship Structure: Origin and Destination

Repository Object Architecture

Repository Relationship Objects

Meta Data Services Programming

Repository Collections

A repository collection is a set of one or more objects that implement the same
interface. Repository collections are instantiated by the repository engine. State
information about a collection is stored in a repository so that you can call the
object in the same state in which you last left it.

Collections are used to define a relationship between two or more objects, to
support navigation, and to manipulate a set of similar objects as a unit.

Collections always reflect information about some kind of relationship. An

object typically has multiple collections, reflecting its association with many
kinds of objects. Furthermore, because an information model is a network of
objects, navigation follows a series of relationships by traversing collections.

All collections are fundamentally the same. However, the repository API
provides support for creating a variety of general-purpose and special-purpose
collections. The kind of collection that you create is determined by the COM
interfaces and Automation objects you use to materialize the collection. Each
collection exposes a set of methods and properties designed to support the
purpose of the collection type.

For more information about collections, see Defining Relationships and
Collections and Understanding Collections.

See Also

[TargetObjectCol Interface
ObjectCol Class
ObjectCol Object

RelationshipCol Class

RelationshipCol Object

Repository Object Architecture

TransientObjectCol Class

TransientObjectCol Object

VersionCol Class

VersionCol Object

Meta Data Services Programming

Repository Property Objects

A repository property object stores the persistent state of a repository object or a
repository object version.

You can use a repository property object to access or manipulate any repository
object in a generic way. For example, if you are creating a browsing tool, you
can use repository property objects to populate the browser. The data that is
returned to you is not tied to specific object instances. However, by using the
information that is returned, you can retrieve more specific data about an object.

You can access a repository property object from Automation or COM programs
using the ReposProperty object, the ReposProperty class, or the
IReposProperty or IReposProperty?2 interfaces.

To associate or access multiple properties of a repository object or repository
object version, use the ReposProperties collection.

To work with large text or image files, use IReposPropertyLarge.

See Also

IReposProperty Interface

Repository Object Architecture

ReposProperty Class

ReposProperty Object

ReposProperties Class

ReposProperties Object

Meta Data Services Programming

Repository Workspace Objects

A repository workspace is a subset of a shared, central repository. You can define
workspaces to materialize an information model as it existed at a specific point
in time, or to create a new space for furthering application development without
impacting the current code base.

A workspace object exposes methods that allow you to allocate, populate, and
manage a workspace. You can only have one version of each object assigned to a
workspace at a time.

A workspace object is created and managed by the repository engine. It is part of
the repository engine model.

You can access a workspace object from Automation or COM programs using
the Workspace object, the Workspaces collection of the ReposRoot object, the
Workspace class, or the IWorkspace or IWorkspaceltem interfaces.

See Also

IWorkspace Interface

IWorkspaceltem Interface

Managing Workspaces

Repository Object Architecture

Workspace Class

Workspace Object

Meta Data Services Programming

Repository Type Information Model

The Repository Type Information Model (RTIM) is the object model that defines
how information models are stored in a repository.

RTIM objects define the object classes of an information model. RTIM objects
are instantiated by the repository engine as repository objects or repository
object versions. RTIM objects can also be instantiated as members of a
repository collection.

When you model a tool or application in an information model, the definitions
must conform to the RTIM objects described in this section. Together with the
repository engine model, the RTIM makes up the complete repository object
architecture.

The following topics describe the parts of the RTIM model.

Object Description

Repository Type Library Objects An object that defines the scope of a
single information model

Class Definition Objects An object that defines a class

Interface Definition Objects An object that defines an interface

Property Definition Objects An object that defines a property

Method Definition Objects An object that defines a method

Parameter Definition Objects An object that defines a parameter of
a method

Relationship Definition Objects An object that defines a relationship
type

Collection Definition Objects An object that defines a collection
type

Alias Objects An object that defines an alias for

any named object

Enumeration Definition Objects An object that defines an
enumeration

Script Definition Objects An object that defines a script

See Also

Repository Object Architecture

Meta Data Services Programming

Repository Type Library Objects

A repository type library object defines the scope of an information model. If
you are working with a predefined information model or a modeling tool,
repository type library objects are created for you when you install the
information model. If you are creating type information programmatically, you
must create a repository type library object to contain your type definitions.

You can access a repository type library object from Automation or COM
programs using the ReposTypeLib object, the ReposTypeLib class, or the
IReposTypeLib or IReposTypeLib2 interfaces.

See Also

IReposTypeLib Interface

Repository Object Architecture

ReposTypeLib Class

ReposTypeLib Object

Meta Data Services Programming

Class Definition Objects

A class definition object defines a class. In a Microsoft® SQL Server™ 2000
Meta Data Services repository, a class definition object exposes properties, a
collection of interfaces, and a collection of scripts.

The following figure shows some classes and the interfaces they implement. In
the figure, the Chapter class implements two interfaces, ISpellingChecker and
IPagination. Both the Paragraph class and the Chapter class implement the
ISpellingChecker interface.

You can access a class definition object from Automation or COM programs
using the ClassDef object, the ClassDef class, or the IClassDef or IClassDef2
interfaces.

See Also

ClassDef Class
ClassDef Object

IClassDef Interface

Repository Object Architecture

Meta Data Services Programming

Interface Definition Objects

In Automation programs, each object exposes its properties, collections, and
behaviors through interfaces. To have the instances of a class exhibit certain
behaviors or have certain properties or collections, you implement the
appropriate interface for that class.

The Repository Type Information Model (RTIM) accommodates such data by
letting you describe interfaces. Each interface can have a set of classes that
implements it, and each class can have a set of interfaces that it implements.

In a Microsoft® SQL Server™ 2000 Meta Data Services repository, an interface
definition object exposes properties, an ancestors collection, a descendants
collection, and a members collection. It also provides for interface implication
and script support.

You can access an interface definition object from Automation or COM
programs using the InterfaceDef object, the InterfaceDef class, or the
IInterfaceDef or IInterfaceDef2 interfaces.

See Also

IInterfaceDef Interface

InterfaceDef Class

InterfaceDef Object

Repository Object Architecture

Meta Data Services Programming

Alias Objects

An alias object is a derived member of an interface. This object provides support
for delegating members of an interface to other interfaces.

You can access an alias object from Automation or COM programs using the
Alias object, the Alias class, or the IInterfaceMember?2 interface.

See Also

Alias Class

Alias Object

IInterfaceMember?2 Interface

Repository Object Architecture

Meta Data Services Programming

Relationship Definition Objects

A relationship definition object defines a relationship type. You can define a
relationship type for relationship characteristics that repeat. For example, table
has columns represents a type of relationship that repeats for every table that has
columns. This relationship can be used to describe how LoanTable relates to
LoanID, how CustomerTable relates to CustomerName, and how OrderTable
relates to OrderDate.

If you are creating an information model programmatically, you should create a
relationship definition object for every relationship that you implement. For
more information, see Defining a Relationship.

If you have relationship definition objects that conform to the same template,
you can define a relationship collection to represent the set. For more
information, see Collection Definition Objects.

You can access a relationship definition object from Automation or COM
programs using the RelationshipDef object, the RelationshipDef class, or the
IReposTypelnfo interface.

See Also

Example: Associating Data with RTIM

IReposTypelnfo Interface

RelationshipDef Class

RelationshipDef Object

Repository Object Architecture

Meta Data Services Programming

Collection Definition Objects

A collection definition is meta data about specific kinds of collections. The
collection definition object defines the characteristics of a collectionand provides
a template to which a collection conforms.

Typically, a collection contains a set of identically structured objects. You can
use a collection definition object to create object and relationship collections that
provide your tool or application with a way to manipulate sets of objects and
relationships as a single unit. An object collection is a set of similar objects. A
relationship collection is a set of similar relationships.

In the following example, the right column (Data) lists some collections by
name, while the kinds of collections are in the left column under Kind of Data.
The Kind of Data column indicates the templates to which the items in the Data
column must conform. Because the items in the Data column are collections, the
items in the Kind of Data column are called collection types and they conform
to a collection definition.

The most important way that a collection can conform to a collection definition
is in its size. That is, a collection definition describes the size limitations on any
collection conforming to it. In the following table, each instance of the collection
definition publisher-of-book describes the collection of publishers of a particular
book. A typical instance of this collection definition is publisher-of-Inside-OLE.
In the table, each book has only one publisher.

The collection definition can define this restriction. That is, the publisher-of-
book collection definition can impose a maximum size of one on each collection
conforming to it. Similarly, the collection type can define a minimum size
restriction.

The following list contains some other examples:

e Publisher-of-book (zero, one).

The minimum size is zero because not every book has a publisher. The
maximum size is one because no book can have two or more publishers.

e Books-of-publisher (zero, many).

The minimum size is zero because a publisher can exist before it
actually publishes any books. The maximum size is many because some
publishers can publish more than one book.

e Books-of-person (zero, many).

The minimum size is zero because not every person is an author. The
maximum size is many because some people can write more than one
book.

e Authors-of-book (zero, many).

The minimum size is zero because the authors of some books are
anonymous. The maximum size is many because more than one person
can coauthor a book.

You can access a collection definition object from Automation or COM
programs using the CollectionDef object, the CollectionDef class, or the
ICollectionDef interface.

See Also

CollectionDef Class

CollectionDef Object

Defining a Collection

ICollectionDef Interface

Repository Object Architecture

Understanding Collections

Meta Data Services Programming

Property Definition Objects

A property definition object defines a property. Each property has an interface
that exposes it, and each interface can expose many properties.

In a Microsoft® SQL Server™ 2000 Meta Data Services repository, a property
definition object exposes properties, a collection of enumeration objects, a
collection of scripts, and a collection of aliases.

You can define properties that provide enumerated values or that use script to
validate a property value. You can also reuse a property in a new context by
assigning it an alias.

In the following example, the IParagraph interface exposes two properties, Left
Margin and Right Margin. Both Left Margin and Right Margin are
represented in a repository as property definition objects.

You can access a property definition object from Automation or COM programs
using the PropertyDef object, the PropertyDef class, or the IPropertyDef and
IPropertyDef2 interfaces.

See Also

[PropertyDef Interface

PropertyDef Class

PropertyDef Object

Repository Object Architecture

Meta Data Services Programming

Enumeration Definition Objects

An enumeration definition object exposes a fixed set of constant values. You can
use an enumeration definition object to create a property that supports a
predefined set of values to select from, or a selection list that provides data
values to a user (for example, a selection of countries to choose from).

To define a value list, you use the EnumerationValueDef object.

You can access an enumeration definition object from Automation or COM
programs using the EnumerationDef object, the EnumerationDef class, or the
IEnumerationDef interface.

See Also

EnumerationDef Class

EnumerationDef Object

EnumerationValueDef Object

IEnumerationDef Interface

Repository Object Architecture

Meta Data Services Programming

Method Definition Objects

An interface can expose one or more methods. A method definition object
defines a method that you can attach to an interface. You can enumerate the
methods for each interface of an information model. Each method can have one
interface that exposes it, and each interface can expose many methods. After you
define a method, you can define parameters and scripts to associate with the
method.

The following figure shows that the IParagraph interface exposes the
Reformat and ConvertIndentation methods.

You can access a method definition object from Automation or COM programs
using the MethodDef object, the MethodDef class, or the IMethodDef
interface.

See Also

Defining Methods
IMethodDef Interface

MethodDef Class
MethodDef Object

Repository Object Architecture

Meta Data Services Programming

Parameter Definition Objects

A parameter definition object defines a parameter of a method. You can associate
multiple parameters with a single method. You can also reuse a parameter on
multiple methods.

You can access a parameter definition object from Automation or COM
programs using the ParameterDef object, the ParameterDef class, or the
IParameterDef interface.

See Also

Defining a Parameter

[ParameterDef Interface

ParameterDef Class

ParameterDef Object

Repository Object Architecture

Meta Data Services Programming

Script Definition Objects

A script definition object defines an implementation of a script in an information
model.

You can access a script definition object from Automation or COM programs
using the ScriptDef object, the ScriptDef class, or the IScriptDef interface.

See Also

Defining Script Objects

IScriptDef Interface

Repository Object Architecture

ScriptDef Class

ScriptDef Object

Meta Data Services Programming

Understanding the RTIM Through Examples

This section uses examples to illustrate the objects of the Repository Type
Information Model (RTIM).

In addition to the examples provided here, you can review additional topics to
further your understanding of information model design. For more information,

see Designing Information Models.

Topic Description

Example: Associating Data with Describes how real-world data
RTIM corresponds to RTIM objects.
Example: A Finished Information |Provides a description of a finished
Model information model.

See Also

Repository Object Architecture

Meta Data Services Programming

Example: Associating Data with RTIM

A Microsoft® SQL Server™ 2000 Meta Data Services repository contains data

expressed as objects and relationships, along with their respective property

values. The following figure shows some typical data for employees, projects,

and subprojects. More details about this figure are provided later in this topic.

Mapping Real-World Data to RTIM objects

The preceding figure includes all the typical kinds of data you will find in a

Meta Data Services repository. You can use the figure to understand the classes
in the repository object architecture. In the figure, you can see instances of the

following classes.

Class

Description

Repository

Describes a repository session. The figure as a whole
represents an instance of the Repository class.

RepositoryObject

Describes a repository object. The figure shows 12
objects, one of which is the root object; each additional
instance is a dot.

ReposRoot

Describes the root object. The root object is the top-
level object in a repository from which navigation
begins. The root object can have any number of
relationships with other objects. The figure shows
seven such relationships.

Relationship

Describes an association between two objects. The
figure shows 15 relationships; each relationship is an
arrow.

RelationshipCol

Describes a set of similar relationships. The items in a
relationship collection must have the same source, and
the relationships must be the same type

For example, consider the relationships between

Projects and Subprojects. The Genome project is
related to Research Design and to Splicing Algorithms.
Both relationships have the same source (Genome) and
the same type (includes), thereby meeting the criteria
for a relationship collection.

Consider a second relationship collection: the set of
Mike's assignments to subprojects. In the figure, this
relationship collection appears as a pair of arrows
emerging from the dot representing Mike.

TargetObjectCol Describes a set of objects. For example, one set of
objects is the set of subprojects on which Mike works;
the set contains two items.

Drilling Down into Relationship Roles

Understanding roles in a relationship is one of the more difficult aspects to
information modeling. The following section draws out some of the complexity
of relationships by expanding on the example.

Same Object in Same Role

In the relationship collection shown in the following figure, every relationship
uses the object describing Mike as the performer of the work on a subproject.
The object describing Mike is the origin object in this relationship.

In contrast, the set of relationships shown in the following figure does not
constitute a collection because there is no object that all the relationships use in
the same role. In fact, the relationships have no object in common, regardless of
role.

Common Object in Different Roles

The following figure shows employees and their managers.

The set of relationships shown in the following figure does not constitute a valid
relationship collection.

Every relationship in the preceding figure is of the same relationship type, the
manages type. All the relationships have an object in common: the object
describing Frank. One relationship, however, has Frank in the role of person
being managed, whereas the other relationships have Frank in the role of person
who is managing someone else. Because the relationships do not all use the same
object in the same role, they do not constitute a valid relationship collection.

The three relationships in the following figure do constitute a valid collection
because Frank is in the manager role for all three relationships.

See Also

Repository Object Architecture

Understanding the RTIM Through Examples

Meta Data Services Programming

Example: A Finished Information Model

The following figure shows a complete information model that illustrates the
various parts of the Repository Type Information Model (RTIM). Details about
this figure are provided later in this topic.

The information model in the preceding figure maintains data about files and
directories. Thus, there are two classes, File and Directory.

There are three interfaces:

¢ [File exposes behavior unique to files. Thus, only the File class
implements the IFile interface.

¢ IDirectory exposes behavior unique to directories. Thus, only the
Directory class implements the IDirectory interface.

¢ IDirectoryItem exposes behavior appropriate to any object that can
appear as an item within a directory. Since files can be contained in
directories, the File class implements IDirectoryItem. Similarly,
because directories can be contained within directories, the Directory
class implements IDirectoryltem.

There is one relationship type: the Containment relationship type.
There are two collection types associated with the Containment relationship:

e Collections that conform to the items-of-directory collection type are
origin collections for Containment relationships. The IDirectory
interface exposes this collection.

e Collections that conform to the directory-of-item collection type are
destination collections for Containment relationships. The
IDirectoryltem interface exposes this collection.

The IFile interface exposes one property: the Size property.

The IDirectoryItem interface exposes one property: the ModificationDate
property.
The IDirectory interface exposes one property: the ChildCount property.

In this example, the information model exposes no methods through any of its
interfaces.

See Also

Repository Object Architecture

Understanding the RTIM Through Examples

Meta Data Services Programming

Designing Information Models

When you design a software tool, you must articulate the kinds of data that the
tool will manipulate. You can store the definitions of these kinds of data, called
types, in the repository by creating an information model. Each information
model is, in effect, an object model represented in the repository as data.

This section uses the example of a bookseller's database to introduce information
models and it describes how the repository engine can represent them as data.
You can use this example as a way to understand how to design an information

model.

Topic

Description

Understanding Application
Data

Describes how to formulate application
structures based on application data

Visualizing Data and Meta
Data

Describes techniques you can use to
understand application structures

Depicting Relationships
Between Objects

Describes how to identify relationships

How Relationships Conform
to Relationship Types

Describes how relationships conform to
relationship types

Understanding Collections

Discusses collection types and how they
relate

Understanding Relationship
Roles

Discusses the distinctions in relationship
roles and how those distinctions determine

relationship collections

See Also

Repository Object Architecture

Understanding the RTIM Through Examples

Meta Data Services Programming

Understanding Application Data

You can begin planning your information model by answering these questions:

e What kinds of objects will the tool store? That is, what are the classes to
which the tool's objects must conform?

e What kinds of relationships will the tool store? That is, what are the
relationship types that describe how objects can be related?

e What properties apply to the objects of each class or the relationships of
each relationship type?

You can think of any application structure as objects, properties, and
relationships. When you store data about your tool or application in a repository,
you can create objects, indicate how those objects are related to each other, and
define properties for each of those objects or relationships. To create the
hypothetical bookseller's tool, you can do the following:

e Create objects such as:

¢ Book, to store instance data like Moby Dick (a book) and
Inside OLE (a book)

e Publisher, to store instance data like Microsoft Press® (a
publisher)

e Person, to store instance data like Kraig Brockschmidt (a
person) or Herman Melville (a person)

¢ Indicate how those objects are related:

e Herman Melville (a person) wrote Moby Dick (a book). Kraig
Brockschmidt (a person) wrote Inside OLE (a book). These
relationships are the same and can be described as Authorship.

e Microsoft Press (a publisher) published Inside OLE (a book).
This relationship can be described as Publication.

e Decide which properties you need to capture additional information for
each object:

¢ Birthday is a property that can describe a person. (The
birthday of Herman Melville is November 12, 1819.)

e Address is a property that can describe a publisher. (The
address of Microsoft Press is One Microsoft Way.)

¢ You can also decide which properties you need for relationships:

¢ Year of Publication is a property that can describe the
Publication relationship. (The year of publication for Inside
OLE is 1995.)

The following figure summarizes this data. The figure shows typical data about
specific books, authors, and publishers. Because the data is typical, it helps you
visualize the kinds of data that your model must accommodate.

See Also

Designing Information Models

Meta Data Services Programming

Visualizing Data and Meta Data

This section presents tabular and graphic techniques for visualizing data.

After you identify the objects, property values, and relationships in your tool or
application, you can use tabular and graphic techniques to visualize your data.
These powerful techniques can help you understand the types of data you need.
The following topics describe how to visualize data and meta data.

Topic Description

Ways to List Data Describes visualization techniques for
understanding tool and application data

Ways to List Meta Data [Describes visualization techniques for
transforming your understanding of tool and
application data into an information model design

See Also

Designing Information Models

Meta Data Services Programming

Ways to List Data

The following table lists data about books, people, and publishers. The first
column (Kind of Data) provides labels for groups of data: books, people, and
publishers. The actual data appears in the table's second column (Data).

Expressed graphically, the data in the table is shown in the following figure.

The following table expands the preceding table to include relationships. Again,
the table uses a convenient grouping of the data. The first column labels each

group.

The labels in the left column (Kind of Data) are one example of how the object
model can store the bookseller's data. The labels identify three classes (Book,
Person, and Publisher) and two relationship types (Authorship and
Publication). Because it is a list, you can think of the entries in the Kind of
Data column as data. Because it is data, you can create another table in which
this information appears in the Data column.

In the Data column, each entry describes exactly one thing, either an object or a
relationship. Each entry in the Data column describes a particular book, author,
publisher, authorship, or publication.

The following figure contains arrows to show the relationships in the preceding
table.

See Also

Designing Information Models

Meta Data Services Programming

Ways to List Meta Data

The repository engine stores meta data as data. This section uses data
visualization techniques to demonstrate how to model meta data.

The following table lists and organizes the types of the bookseller's object
model. The left column contains convenient groupings of like information, and
the right column (Data) contains the information itself. The Data column
describes particular classes (such as Book and Person) and particular
relationship types (such as Authorship and Publication). The Kind of Data
column thus reveals a portion of the object model for storing classes and
relationship types.

The following table enlarges the preceding table to include properties.

In the preceding table, the information in the Data column is equivalent to the
information in the following figure. The following figure shows typical data
about a typical object model, the bookseller's object model.

See Also

Designing Information Models

Meta Data Services Programming

Depicting Relationships Between Objects

To depict relationships between objects, use arrows as shown in the following
figure.

Diagrams of meta data use these standard conventions:

e Show objects as dots.
e Show relationships as arrows.

e Show kinds of objects as labeled rectangles.

The tabular equivalent of this graphical presentation of data is shown in the
following table.

The labels in the Kind of Data column constitute a portion of an object model
for storing object models. The object model for storing object models is called
the Repository Type Information Model (RTIM).

Note Each entry in the Data column describes only one thing: either an object
or a relationship. The 23 entries in the Data column correspond to the 23 dots
and arrows in the preceding figure.

See Also

Designing Information Models

Meta Data Services Programming

How Relationships Conform to Relationship Types

When you store a relationship, the meaning of what you store answers three
questions:

e Which two objects are related to each other?

For example, when you store the relationship indicating that Herman
Melville wrote Moby Dick, you relate the object describing Herman
Melville and the object describing Moby Dick.

e How are the two objects related?

For example, when you store the relationship indicating that Herman
Melville wrote Moby Dick, you indicate that Melville wrote the book,
not that he reads it or criticizes it. You indicate that Melville wrote the
book by creating a relationship that conforms to the Authorship
relationship type.

e What role does each object play in the relationship?

For example, when you store the relationship indicating that Herman
Melville wrote Moby Dick, you indicate that Melville wrote Moby Dick,
not that Moby Dick wrote Melville. The object representing Melville
plays the role of the writer and the object representing Moby Dick plays
the role of the thing that was written.

The following figures evaluate whether potential relationships conform to the
two relationship types: Authorship (of book by person) and Publication (of
book by publisher).

Potential relationship

The following diagram shows the potential relationship based on relationship
type.

Does the relationship conform?

Microsoft Press® publishes Inside OLE: Yes, the relationship conforms to the
Publication relationship type.

Potential relationship

The following diagram shows a potential relationship that does not conform to
relationship type.

Does the relationship conform?

Kraig Brockschmidt publishes Inside OLE: No, the relationship does not
conform to either relationship type. The Publication relationship type allows
you to save a relationship indicating that a publisher publishes a book. This data
indicates that a person publishes a book.

Potential relationship

The following diagram shows the potential relationship based on relationship
type.

Does the relationship conform?

Kraig Brockschmidt wrote Inside OLE: Yes, the relationship conforms to the
Authorship relationship type.

Potential relationship

The following diagram shows a potential relationship that does not conform to
relationship type.

Does the relationship conform?

Inside OLE publishes Microsoft Press: No, the relationship does not conform to

either relationship type. Although this relationship uses two objects of the
correct type, it does not conform because it places those objects in the wrong
roles.

Potential relationship

The following diagram shows the potential relationship based on relationship
type.

Does the relationship conform?

Microsoft Press publishes Moby Dick: Yes, the relationship conforms to the
Publication relationship type. The relationship conforms, even though the data
is inaccurate. (Microsoft Press does not publish Moby Dick.)

See Also

Designing Information Models

Meta Data Services Programming

Understanding Collections

You can read any relationship in two directions. For example, you can say
Herman Melville wrote Moby Dick or Moby Dick was written by Herman
Melville. You can paraphrase each of these two statements as follows:

¢ Herman Melville is in the set of persons who wrote Moby Dick.

e Moby Dick is in the set of books written by Herman Melville.

Although awkward, this way of articulating relationships highlights the existence
of collections. The following two figures show various collections.

e The collection of books written by Herman Melville:
e The collection of persons who wrote Moby Dick:

You can think of collections as collections of objects or as collections of
relationships, each with a source and a target object. The following figures show
the ways to think of collections.

e The collection of books written by Herman Melville:

The figure to the left shows the collection of books written by Herman Melville
as an object collection, while the figure to the right shows the same collection as
a relationship collection.

e The collection of authors of Moby Dick:

The figure on the left shows the collection of authors of Moby Dick as an object
collection, while the figure to the right shows the same collection as a
relationship collection.

The preceding figures make clear that object collections and relationship
collections are fundamentally equivalent. They both accommodate the same
data. However, when you manipulate a relationship collection from a COM
program, you can manipulate it either with an interface called ITargetObjectCol
or with an interface called IRelationshipCol. The first interface lets you
manipulate a collection as if it contains objects. The second interface lets you
manipulate a collection as if it contains relationships. In Automation, if you do
not specify an interface, you implicitly manipulate relationships as object
collections because the RelationshipCol class implements ITargetObjectCol as
its default interface.

See Also

Defining a Target Object Collection
Designing Information Models

Meta Data Services Programming

Understanding Relationship Roles

Each relationship belongs to two relationship collections, one that describes the
relationship from the perspective of the origin, and another that describes it from
the perspective of the destination.

For example, the relationship Herman Melville wrote Billy Budd is a member of
two different collections:

e The set of books written by Herman Melville; or, expressed in terms of
a relationship collection, the set of authorships for which Herman
Melville is the writer

e The set of authors of Billy Budd; or, expressed in terms of a relationship
collection, the set of authorships for which Billy Budd is the written
thing

There is a relationship between collection type and relationship type. The
following figure shows some relationship types and their attendant collection

types.

In the figure, each relationship type has exactly two collection types. The
following are true for every relationship:

e Each relationship is a member of two relationship collections.

e FEach relationship relates two objects, an origin object and a destination
object.

¢ You can read each relationship in two directions.

¢ In any relationship, the related objects participate in two separate roles.
For example, the roles in the relationship Kraig Brockschmidt wrote

Inside OLE, are:

e The role of writing thing, filled by the object describing Kraig
Brockschmidt.

e The role of written thing, filled by the object describing Inside
OLE.

The two roles correspond to the two collection types.

See Also

Designing Information Models

Meta Data Services Programming

Getting Started with Meta Data Services

This section provides information that prepares you for programming
Microsoft® SQL Server™ 2000 Meta Data Services applications. You can learn
about programming environment requirements, and how to get started with
information model definition and programming. For more information about
upgrading repository components from previous releases, see Upgrading from
Earlier Versions.

The following topics can help you get started.

Topic Description
Programming Environment |Describes the requirements of your
programming environment.

Accessing Automation Object/Explains how to access a nondefault member
Members on an Automation object.

Visual C++ Wrappers with [Explains how to generate and use wrappers
Meta Data Services on a COM interface.

Using Meta Data Services to |[Explains information model definition in
Define Information Models |Meta Data Services. It also explains how
information models enable subsequent
application development.

Using Meta Data Services to |Provides basic information for programmers,
Program Information Models |providing a big picture overview of what
programming an information model entails.

See Also

Repository API Reference

Repository Object Architecture

What's New in Meta Data Services

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Meta Data Services Programming

Programming Environment

Programming a Microsoft® SQL Server™ 2000 Meta Data Services application
requires software and operating systems. Required software works together in an
integrated manner. For this reason, the software that you use to build a Meta
Data Services application must be installed on the same PC.

The Automation server distributed with Meta Data Services is Repodbc.dll. If
you require more server functionality than Repodbc.dll provides, you can create
your own Automation server. For more information, see Choosing an
Automation Server for a Class.

Additional programming resources are provided through the Meta Data Services
Software Development Kit (SDK). The Meta Data Services SDK provides tools
that complete your repository environment. Whether you are using COM or
Automation interfaces to define or manipulate an information model, be sure to
download the Meta Data Services SDK so that you can take advantage of the
additional utilities and documentation that it provides.

The following software details the required and optional software you need.

Software Description

Microsoft Windows® You can use Windows 98, Windows NT® 4.0, or
operating system Windows 2000.

SQL Server or You can use SQL Server 6.5, SQL Server 7.0, and
Microsoft Jet, and SQL Server 2000, or Microsoft Jet 3.5 and later. You
ODBC also need ODBC 2.0 or later.

A DBMS is required to manage the repository
database. For more information, see Repository
Databases.

The DBMS you use can affect the performance of a
repository database and the availability of some
features. For more information, see Using
Repository Engine Features with Older Databases.

Meta Data Services |Meta Data Services installs with SQL Server 2000.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Meta Data Services provides the repository engine.

You can also obtain Meta Data Services from the
Microsoft Repository web site. To install from the
Web, a licensed copy of SQL Server 6.5, SQL
Server 7.0, SQL Server 2000, or Microsoft Visual
Studio® 6.0 must already be installed on your PC.

Services SDK

Modeling tool (Optional.) A modeling tool is strongly
recommended. Rational Rose is the preferred
modeling tool for use with this release of Meta Data
Services.

The Meta Data (Optional.) The Meta Data Services SDK contains

programming and modeling resources.

You can obtain the Meta Data Services SDK from
the Meta Data Services web site. For more
information, see Meta Data Services SDK.

Development tool

(Optional.) COM support is a programming
requirement. You can use Microsoft Visual Studio or
another development tool that supports COM

Automation development.

See Also

Accessing Automation Object Members

Automation Reference

COM Reference

Meta Data Services SDK

Specifications and Limits

Visual C++ Wrappers with Meta Data Services

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Meta Data Services Programming

Accessing Automation Object Members

The repository API exposes a number of Automation objects that support
multiple interfaces. For each Automation object, one interface is defined to be
the default interface, and the members (the properties, methods, and collections)
that are attached to that interface are accessible through the standard Microsoft®
Visual Basic® mechanisms.

When accessing members that are attached to an interface that is not the default
interface for an Automation object, a different access technique must be used.
An additional reference to the object must be declared that explicitly calls for the
nondefault interface. The nondefault interface members can then be accessed
through the new object reference.

The following example illustrates how to access a property that is attached to an
interface that is not the default interface for an Automation object. In this
example, the connection string that is used to connect to the repository database
is retrieved. Repository objects implement the IRepositoryODBC interface; this
interface is not the default interface. The ConnectionString property is attached
to the IRepositoryODBC interface. The ConnectionString property is the
ODBC connection string that Microsoft SQL Server™ 2000 Meta Data Services
uses when connecting to a database server.

Dim myRepos As Repository

Dim nonDeflfc As IRepositoryODBC

' Initialize myRepos by opening a connection to a repository database.
Set nonDeflfc = myRepos

connect$ = nonDefIfc.ConnectionString

In this example, the nonDefIfc object does not use additional resources; rather, it
is an alternate view of the myRepos object.

See Also

Automation Reference

Repository ConnectionString Property

Repository Object

Meta Data Services Programming

Visual C++ Wrappers with Meta Data Services

The repository API is based on dispatch interfaces. This means that all properties
are manipulated through the Invoke method that the IDdispatch interface
exposes. Using dispatch interfaces from programming languages that are v-table
based, such as Microsoft® Visual C++®, can be cumbersome.

Visual C++ version 6.0 provides support for using dispatch interfaces in an
easier way than before. It does this through the #import directive. The #import
directive instructs the Visual C++ compiler to read the type library given as a
parameter to the directive, and to create v-table based wrappers for the type
library. The compiler does this on the fly, and it also updates the wrappers if the
type library is updated.

The compiler generates the following two header files with the same name as the
type library:

e A .tlh header file that contains definitions of all interfaces and
identifiers.

e A .tli header file that contains inline wrapper functions, which convert
properties from their respective data types to the variant data type that
the Invoke method expects. The .tli file is automatically included inside
the .tlh file.

Generating the Wrappers

In order to make use of the dispatch support in Visual C++, add the following
statement at the top of one of the .cpp files:

#include <atlbase.h>

// Required for smart pointer support

#import "rtim.tlb" named_guids

// ' The following using-directive allows other type libraries to
// reference repository engine objects:

using namespace RepositoryTypeLib;
#import "uml.tlb" named_guids
using namespace UML;

The Atlbase.h header file is required to support smart pointers. The next two
lines instruct the compiler to generate wrapper classes for the main interfaces
defined by the repository engine. The compiler automatically wraps type
libraries into namespaces that have the same name as the type library. This is
done to limit the possibility of name clashes between type libraries.
Unfortunately, the wrapper generator does not support references between type
libraries. Therefore, the using namespace directive is required to automatically
map the repository engine interfaces into the default namespace.

After the compiler generates wrappers for the repository engine interfaces, you
can use the mechanism mentioned previously to import any required type library.
Make sure that the type libraries are imported in a correct dependency order.

When the wrapper is generated, the compiler creates the following two functions
for each interface member (such as property or collection):

e GetmemberName

e PutmemberName

where memberName is replaced by the member name.

For example, the Visibility method on the IUMLModelElement interface
(IUMLModelElement.Visibility) will be wrapped into the following methods:

o GetVisibility()

o PutVisibility()

Using the Wrappers

After the compiler generates wrappers for dispatch-based interfaces, smart
pointer templates can be used to manipulate these objects. To define a smart
pointer for an interface, use a declaration similar to the following;:

CComPtr<IRepository> pRep;

This defines a smart pointer for the IRepository interface. To instantiate a
repository and assign it to the smart pointer, use the CoCreateInstance method
of the smart pointer, as shown here:

hr = pRep.CoCreatelnstance(CLSID_Repository, NULL);

After instantiating the repository, it is possible to use methods defined on the
IRepository interface to open a repository database as follows:

CComPtr<IRepositoryObject> pRootRO;
pRootRO = pRep->Open("C:\\test. mdb","","",0);

The methods defined on the dispatch interface are accessed using the ->
operator, while helper functions such as CoCreateInstance are accessed using
the dot (.) operator.

After opening a repository database, it is possible to use the wrappers and the
smart pointers to access any object in the repository. For example:

CComPtr<IUmlPackage> pPackage;
CComPtr<IRepositoryObject> pRO;

hr = pRootRO.QueryInteface(&pPackage);

for (long n=1;n<pPackage->GetElements()->GetCount();n++)
{

pRO = pPackage->GetElements()->Getltem(n); // Get the element # 1
// ' Use the element pRO

See Also

COM Reference

Meta Data Services Programming

Using Meta Data Services to Define Information
Models

Information models define the meta data types that you can store and
subsequently manipulate in and from another tool or application. The
information model that you create and install determines the physical storage in
a repository database.

The information model is a meta model, and it defines the meta data types that
programmers can use and otherwise manipulate. The information model that is
recommended for use with Microsoft® SQL Server™ 2000 Meta Data Services
is the Open Information Model (OIM). This model is recommended because it
contains generic meta data that is supported by a variety of third-party vendors,
providing instant integration with tools and platforms that you may already be
using in your development environment. Although this model is predefined, it
can be extended to accommodate meta data that you require.

Typically, you define an information model using a modeling tool. However, you
can also create an information model programmatically using the repository API
and the COM or Automation interfaces it exposes.

Information Model as a Framework

You can think of an information model as a framework or structure for storing
meta data definitions. For example, suppose you want to create design data that
programmers can subsequently use to create Microsoft Visual Basic®, Microsoft
Visual C++®, and Microsoft Visual J++® applications. In your information
model, you define the basic elements of your application once by specifying the
objects, defining relationships that associate the objects, and setting properties.
Programmers can then use your model definitions in each development
environment to program the implementation strategy that each language
requires. Using a single information model provides a way to use the same
design for multiple implementations.

The following topics provide model designers with information needed to build
and deploy an information model.

Topic Description
Repository Object Explains the object architecture that exposes
Architecture repository engine functionality and the

information model objects that the engine can
manipulate.

This topic includes examples that can help
you understand information model definition.

Defining Information
Models

Provides detailed information about alternate
ways of creating an information model and
defining elements of an information model.

Installing Information
Models

Explains how to install an information model
into a repository database. Installing an
information model makes the information
model available for programming.

See Also

Repository API Reference

Using Meta Data Services to Program Information Models

Meta Data Services Programming

Using Meta Data Services to Program Information
Models

You can program against an information model that is installed in a repository
database. Programming against an information model adds, updates, removes,
and retrieves data from a repository database.

Typically, the data that you add and otherwise manipulate is design data about a
tool or application that you create. Furthermore, the data that you can add and
manipulate is defined by the information model. You can think of the
information model as a template to which the data you add must conform. For
example, to create an application that manipulates a schema, tables, and
columns, you need an information model that defines what a schema is, what a
table is, and what a column is.

As a programmer who is coding such an application, you populate the schema,
table, and column types with meta data instances to be used by the tools and
applications you create. The following example provides a simplistic look at
how you can program elements of a database application using the Open
Information Model (OIM).

What OIM defines What you create

Schema A schema for a Microsoft® SQL Server™ database, a
Microsoft Jet database, or a new version of each
database. In this case, four instances of Schema are
stored in your information model.

Tables Tables for Customers, Orders, and Products. For
example, you can vary the table definitions based on
the schema types, or you can reuse the tables for each
schema. Creating separate tables for each schema
results in twelve instances of tables in your
information model.

Columns Columns for Customer, Order, and Product tables.

Assuming no reuse strategy, you can have a separate
column instance for each table and for each schema.

Notice that the instance data you store is all about definitions. Instead of storing
"Joe Smith" customer name, you store data about the CustomerName column.

Meta data is, by definition, unbiased. The following suggestions describe
different ways to reuse meta data.

e Use the meta data objects in two development environments (Microsoft
Visual C++® for a desktop application and Microsoft Visual J++® for a
Web application), using the syntax of each language to call the same
object. For more information about declaring objects, see Programming

Fundamentals: Declaring Objects.

e Use the meta data objects in development projects in the same
environment (one project for an application you are maintaining for an
existing customer, one project for new development). You can use
versioned objects and workspaces to isolate changes.

e Export the meta data as Extensible Markup Language (XML) to a
different repository.

See Also

Information Models

OIM in Meta Data Services

Repository API Reference

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Meta Data Services Programming

Programming Fundamentals: Declaring Objects

When you program, you instantiate repository objects. Repository objects are
COM objects that the repository engine creates on the fly using the type
information and object instance data provided in your information model.

The repository object architecture divides objects into engine objects and
information model objects. Programming against an information model typically
requires that you invoke repository objects that are described by the repository
engine object model. In contrast, when a model designer creates the type
information, he or she typically uses Repository Type Information Model
(RTIM) objects.

Declaring SpellChecker as RTIM Objects

For example, before you can use the following SpellChecker structure in your
application code, the following declarations for SpellChecker must be
predefined in your information model in some way that is compatible with the
repository API. The following code example shows a hypothetical information
model, MyTypeLib, and shows some additional definitions for SpellChecker
that you can work with:

DIM oTypeLib as ReposTypeLib

DIM oCSpellChecker as ClassDef

DIM olSpellChecker as InterfaceDef

DIM oPLanguage as PropertyDef

Set oCSpellChecker = oTypeLib.CreateClassDef(CSC_objid, CSpellC
Set oISpellChecker = oCSpellChecker.CreatelnterfaceDef(ISC_objid, -
Set oPLanguage = olSpellChecker.CreatePropertyDef(PLang_objid, P]

Declaring SpellChecker in Application Code

At a minimum, to retrieve meta data in your application code, you invoke a
repository object that represents a repository session, another repository object
that represents the repository type library containing your information model

definitions, and additional repository objects that represent specific meta data
instances.

Typically, to support versioning, you should use RepositoryObjectVersion.
However, you can also use RepositoryObject as an alternative.

DIM oTypeLib as RepositoryObjectVersion

DIM oCSpellChecker as RepositoryObjectVersion

Dim olISpellChecker As ISpellChecker
oSpellChecker(oISpellChecker).Properties("Language")=French

See Also

Programming Fundamentals: Populating a Collection

Using Meta Data Services to Program Information Models

Meta Data Services Programming

Programming Fundamentals: Populating a Collection

Collections provide navigation and a way to handle a set of objects as a unit.
When programming against an information model, you write code that
materializes a collection so that you can access and otherwise manipulate its
objects at run time.

The following example provides a simple illustration for adding objects to a
collection. Suppose your information model contains a Schema object that has a
collection of Tables attached to it. You can populate the Tables collection by
writing code that adds specific instances (such as a Customer table and an
Order table) to the collection.

You can populate the Tables collection with specific table instances using code
like the following. Note that the relationships you can create are possible
because the information model already contains definitions for collections.

Dim oSchema As RepositoryObject

Dim oCTable As RepositoryObject

Dim oISchema As ISchema

Set oSchema=oRepos.GetObject(ObjID_oSchema)
Set oTable=oRepos.GetObject(ObjID_oTable)

Set oISchema=0Schema
olSchema.Tables.Add(table)

See Also

Programming Fundamentals: Declaring Objects

Using Meta Data Services to Program Information Models

Meta Data Services Programming

Connecting to and Configuring a Repository

The repository engine can access repository databases that are managed by either
Microsoft® Jet, Microsoft SQL Server™, or SQL Server Runtime Engine.

The repository engine accesses a database through an ODBC driver (version 2.0
or later). You must have ODBC installed on the server hosting the database and
on the client from which you are accessing the repository engine.

The ODBC connection string that is used to specify the location of the repository
database varies, depending upon which database server is managing the
repository database. The ODBC connection string contains keyword=keyValue
pairs, separated by semicolons. If you do not specify a connection string, the
repository engine creates a default repository database.

Before you can connect to a database, you must first instantiate a repository
session. After you create a repository instance, you can open an existing
database or create a new database. Note that how a database is created varies
depending on the DBMS you use.

The following table lists topics that tell you more about database connections
and configuration.

Topic Description

Connecting to a SQL Server Describes how to open or create a
Repository Database SQL Server database connection
Connecting to a Jet Repository Describes how to open or create a Jet
Database database connection

Connecting Through a DSN Describes how to connect to a

repository database through a data
source name (DSN)

Default Repository Databases Explains how the repository engine
resolves an unspecified connection
string by creating a default database
Replicating Repository Databases |Describes replication behavior for
SQL Server repository databases

See Also

IRepository::Create
Repository Create Method

Repository Databases

Storage Strategy in a Repository Database

Upgrading and Migrating a Repository Database
Using Repository Engine Features with Older Databases

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Meta Data Services Programming

Connecting to a SQL Server Repository Database

Microsoft® SQL Server™ 2000 is the DBMS recommended for repository
databases. Using a SQL Server database yields maximum performance from the
repository engine and provides a layer of security that is otherwise unavailable.
If you do not own a licensed copy of SQL Server, you can use the SQL Server
Runtime Engine that is freely distributed by Microsoft. The SQL Server Runtime
Engine can be used to create or open a SQL Server repository database.

When you use a SQL Server repository database, you must either use (that is,
open) an existing repository database, or create an empty database. The
repository engine cannot automatically create a SQL Server database for you. To
the repository engine, creating a new SQL Server database means populating an
empty database with the repository SQL tables it needs to store and manage
repository data. If you already have a repository database (that is, a database that
contains repository SQL tables), you can connect to it through an open
statement.

When you create a new, empty SQL Server database, be sure to specify which
users can access the database. You must also create the necessary login and user
accounts for people who will be accessing the database, and you must assign the
appropriate permissions to these accounts. If you want to grant full permissions
to everyone, you can use this SQL command to set database access permissions:

GRANT ALL TO PUBLIC

Creating a New Database

To create a new repository database, use the following syntax. Notice that the
first statement creates a repository session. In Microsoft Visual Basic®, be sure
to reference Repodbc.dll so that it is available to your program. By default,
Repodbc.dll is located in C:\Program Files\Common Files\Microsoft
Shared\Repostry.

Use the following code to create a new database in Microsoft Visual C++®:

CoCreatelnstance(CLSID_Repository, NULL, CLSCTX_INPROC_SE
m_pIRepos->Create(CCOM Variant(SERVER="MyServer";DATABA

Use the following code to create a new database using Visual Basic:

DIM oRepos as New Repository
oRepos.Create "SERVER=MyServer; DATABASE=MyDatabase;UID-=

Note Invoking the Create method on an existing repository database simply
opens it.

Opening an Existing Database

To connect to an existing SQL Server repository database such as msdb, use the
SERVER keyword to specify the SQL Server name and the database name. If the
database name is not specified, the default database for the user who is opening
the database is used. You can also use a data source name (DSN) to connect to a
database.

CoCreatelnstance(CLSID_Repository, NULL, CLSCTX_INPROC_SE
m_pIRepos->Open(CCOM Variant(SERVER="MyServer";DATABAS]

Administering a SQL Server Database

You can use the utilities and tools that come with SQL Server to administer the
repository database (at the database level). For example, if your repository
database is damaged due to a power outage or system failure, you should use the
recovery tools that are provided with SQL Server to repair the damage.
Similarly, if your repository database requires periodic defragmentation, you
should use the defragmentation tools that are provided with SQL Server.

CautioN SQL Server and its components store private meta data in the msdb
database. While you are encouraged to use and add to existing data, be aware
that modifying or deleting it can cause unexpected results. If you introduce a
modification that breaks the functionality of SQL Server or its components, you
must reinstall the software.

See Also

Connecting Through a DSN

Default Repository Databases

IRepository::Create
IRepository::Open

Repository Create Method

Repository Open Method
Repository SQL Tables

Storage Strategy in a Repository Database

Meta Data Services Programming

Connecting to a Jet Repository Database

If you choose to use a Microsoft® Jet database, you can create it
programmatically using the IRepository Create method. If you do not specify a
complete path, the repository engine uses the default path. For more information,
see Default Repository Databases.

You can create a new database using the syntax provided in the following
example. Notice that the first statement creates a repository session.

Use the following code to connect to a Jet database in Microsoft Visual C++®:

CoCreatelnstance(CLSID_Repository, NULL, CLSCTX_INPROC_SE
m_pIRepos->Create(CCOM Variant(DBQ="MyDB.mdb"), CCOM Vari

Use the following code to connect to a Jet database in Microsoft Visual Basic®:

DIM m_pIRepos as New Repository
m_pIRepos.Create(DBQ="MyDB.mdb")

To connect to a Jet repository database, use the DBQ keyword to specify the path
to the database file. The DBQ keyword must be the first keyword in the
connection string, if it is present. If the DBQ keyword is not present, the
connection string is assumed to contain only a database path specification. In
this case, the repository will add the DBQ keyword to the front of the ODBC
connection string before passing it on to the database server. If the Jet database
file specified by the DBQ keyword does not exist, the repository engine will
create it.

CoCreatelnstance(CLSID_Repository, NULL, CLSCTX_INPROC_SE
m_pIRepos->0Open(CCOM Variant(DBQ="MyDB.mdb"), CCOM Varia

See Also

Connecting to a SQL Server Repository Database

Default Repository Databases

Meta Data Services Programming

Connecting Through a DSN

You can use the DSN keyword to specify a data source name (DSN) to connect
to an existing Microsoft® Jet or Microsoft SQL Server™ repository database.
The DSN keyword specifies a data source name that has been configured using
the ODBC Data Source Administrator.

If you are connecting to a SQL Server database, you must explicitly specify the
user ID and password in the connection string, even if the values are part of the
ODBC registration.

You can connect to a database using the syntax provided in the following
example. Notice that the first statement creates a repository session.

CoCreatelnstance(CLSID_Repository, NULL, CLSCTX_INPROC_SE
m_pIRepos->Open(CCOM Variant(DSN="MyDataSourceName";UID:-

See Also

Connecting to a Jet Repository Database

Connecting to a SQL Server Repository Database

Default Repository Databases

Meta Data Services Programming

Default Repository Databases

If you do not specify the repository database explicitly, a connection will be
established to the default repository database. This database is managed by
Microsoft® Jet. Its location is determined by the default value of the Current
Location registry key.

If you are using the Create method and an unspecified connection string, and if
the default database does not exist, the repository engine creates the database. If
you are using the Connection method (or the Create method on an existing
database) and an unspecified connection string, the repository engine looks for
the database at the default location.

The location of the default repository database is stored in the system registry in
this registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\Repository\Current |

This registry key must contain a DBQ keyword-value pair, SERVER keyword-
value pair, DSN keyword-value pair, or just the path to a Jet repository database.
The default value for this registry key is:

windowsDirectory\MsApps\Repostry\Repostry.mdb
Replace windowsDirectory with the path specification for the directory that
contains the Microsoft Windows installation. Unless you change this registry key

value after installing Microsoft SQL Server™ 2000 Meta Data Services, your
default database server is Jet.

See Also

Connecting Through a DSN

Connecting to a Jet Repository Database

Connecting to a SQL Server Repository Database

Meta Data Services Programming

Replicating Repository Databases

Microsoft® SQL Server™ 2000 repository databases can take advantage of the
replication features provided by SQL Server to publish a repository to other
subscriber repositories.

You can use either transactional or snapshot replication to replicate a repository
database. If you implement transactional replication, you can choose whether to
support synchronization. Synchronization automatically updates your subscriber
databases so that they contain the same content as the publisher. For more
information, see Replication Overview.

Replication Requirements for Repository Databases

For repository databases, additional steps beyond those required by SQL Server
should be followed to ensure successful replication.

Publishing a Repository Database

¢ Install information models into a repository database. Before you begin
replication, you must install information models into the repository
database that you want to publish, and then allow replication to
propagate the content across all subscriber databases.

Installing new or revised information models after replication is enabled
can produce unexpected results. In this case, new tables that are
associated with new or revised information models are not
automatically enabled for replication. If you are updating an existing
publisher with newer models, you must manually select the additional
tables as articles so that updates to those tables will propagate to
subscriber databases.

Note that you cannot publish msdb, the default repository database in
SQL Server. You must create an alternate repository database to enable
replication.

e Verify that all repository SQL tables and information model tables are
selected as articles in the publication. Repository SQL table names have

JavaScript:hhobj_1.Click()

an rtbl prefix. Information model table names are typically prefixed
with the name of the model (for example, UML, UMX, GEN, and so
on).

You cannot publish a subset of the tables in a repository database. A
repository database stores type information in multiple tables. If you
omit some tables from the publication, you may not get a complete
definition for each repository object.

e Verify that repository stored procedures are not included in your
publication. Repository stored procedures are part of the publisher
database, but cannot be part of a subscriber database. Repository stored
procedure names have an r_iRtbl prefix.

Stored procedures are used by the repository engine to install and
update information models in a SQL Server repository database.
Replicating a stored procedure can result in an attempt to reinstall an
information model that is already installed on a subscriber database.

e Avoid creating data filters or enabling autonomous subscriptions.

Defining Subscriber Databases

After you create a publication, you can create one or more push subscriptions
that propagate repository data from the publisher.

Avoid updating subscriber objects from any nonpublisher source. Only the
publisher should be allowed to update subscriber objects.

Repository subscriber databases must be read-only. Furthermore, each subscriber
can receive content from only one publisher. Repository databases use internal
identifiers to store and manipulate meta data. While internal identifiers are
unique within a specific repository, they may not be unique across multiple
repositories. To avoid duplicate internal identifiers, you must require that each
subscriber is read-only and receives all of its updates from a single publisher. To
do this, specify that a publication for the publisher database has all of the
repository tables as articles, then add read-only repository databases as
subscribers.

See Also

Connecting to a SQL Server Repository Database

Repository Databases
Repository Identifiers

Storage Strategy in a Repository Database

JavaScript:hhobj_2.Click()

Meta Data Services Programming

Defining Information Models

The part of a Microsoft® SQL Server™ 2000 Meta Data Services repository that
stores type information is defined by the information models you create and
install.

The following topics explain how to create and specify the parts of an
information model. For more information about creating and populating a
repository database, see Connecting to and Configuring a Repository.

Topic Description

Repository Identifiers Describes identifiers that are used to retrieve
and manage repository objects

Naming Objects, Describes naming conventions, name reuse,

Collections, and aliasing, and ways names are created by the

Relationships repository engine

Creating and Extending Describes alternate approaches for creating

Type Information and extending information models

Defining Inheritance Explains how inheritance works and how you

can implement it for your interfaces
Defining Relationships and Explains how to define general-purpose and

Collections special-purpose relationships and collections

Defining Properties Explains how to define property definition
objects

Defining Methods Explains how to define methods, parameters,
and scripted objects

Generating Views Describes how to generate SQL views that

correspond to your information model

See Also

Information Models

Installing Information Models

JavaScript:hhobj_1.Click()

Meta Data Services Programming

Repository Identifiers

The repository engine uses identifiers to distinguish objects and object versions
from each other.

There is an object identifier for every object in a repository database. When you
add an object to a repository (programmatically or by installing a model), the
object identifier is created as part of the object definition. This identifier remains
with the object until you delete the object from a repository. When you program
a repository object, you can use the object identifier to retrieve the object you
want.

The repository engine maintains two sets of identifiers: object identifiers
(ObjID) and internal identifiers (IntID). One set, the object identifiers, is public.
The second set, the internal identifiers, is used by the repository engine. A
repository SQL table maps the two sets, and the repository engine maintains the
correspondence.

Functionally, object identifiers and internal identifiers are similar. However, the
values of internal identifiers are smaller and more efficient for the engine to
handle and the database to store. When the repository engine receives a call for
an object identifier, it converts the internal identifier into an object identifier that
your program can use.

In some cases it is desirable to use the internal identifiers. For example, if you
want to query the database directly, you can use the smaller internal identifier
that the repository engine uses to store object data. However, when you program
with repository objects, you should always use the longer object identifier.

The following table lists topics that provide more information about repository
identifiers.

Topic Description

Object Identifiers and Internal Compares object identifiers and

Identifiers internal identifiers, and provides
details about their composition.

Object-Version Identifiers and Describes the portion of a repository

Internal Object-Version Identifiers |identifier that stores version

information, and compares how
version identifiers are represented in
object identifiers and internal
identifiers.

How Repository Identifiers and
Stored and Instantiated

Details how internal identifiers are
stored and how object identifiers are
created from internal identifiers.

Repository Identifier Data Structures

Explains the data structure of
repository identifiers. Knowing about
internal identifier data structures can
help you build a query.

Assigning Object Identifiers

Explains how to assign object

identifiers.

See Also

Navigating a Repository

Meta Data Services Programming

Object Identifiers and Internal Identifiers

Each RepositoryObject instance has two identifiers: an object identifier and an
internal identifier.

An object identifier is global in scope. It uniquely distinguishes a repository
object from all other repository objects represented in all other repository
databases.

Internal identifiers correspond to object identifiers, except that internal
identifiers are used by the engine.

Both object identifiers and internal identifiers are explained in this topic.
Another kind of repository identifier is used for a RepositoryObjectVersion
instance. For more information, see Object-Version Identifiers and Internal
Object-Version Identifiers.

About Object Identifiers

Object identifiers have the following format.

The first 16 bytes of each object identifier constitute a globally unique identifier
(or GUID). The next 4 bytes constitute a local identifier.

RepositoryObjects do not include version information. When you are working
with RepositoryObject instances, the repository engine follows a resolution
strategy to select a specific version of a RepositoryObject instance. The
resolution strategy, not the version indicator, determines which object is selected.

About Internal Identifiers

Each RepositoryObject instance also has an internal identifier that distinguishes
it from every other object within the same repository database. The internal
identifier is used by the repository engine to manipulate the object specified by
the object identifier. The internal identifier is an 8-byte quantity of the following
form.

The first 4 bytes constitute a site identifier (site ID). For more information about
site IDs, see How Repository Identifiers are Stored and Instantiated.

The last 4 bytes constitute the local identifier (local ID). For a
RepositoryObject instance, the local identifier portion of the internal identifier
and the object identifier is the same. That is, each repository object has a single
4-byte local identifier, regardless of whether you are using an object identifier or
an internal identifier.

See Also

Assigning Object Identifiers

How Repository Identifiers are Stored and Instantiated

Repository Identifier Data Structures

Repository Identifiers

RepositoryObject Object

RTblSites SQL Table

Meta Data Services Programming

Object-Version Identifiers and Internal Object-
Version Identifiers

Each RepositoryObjectVersion instance has two identifiers: an object-version
identifier and an internal object-version identifier.

An object-version identifier uniquely distinguishes a repository object from all
other repository object versions represented in all other repository databases.

Internal object-version identifiers correspond to object-version identifiers, except
that internal object-version identifiers are used by the repository engine. Object-
version identifiers and internal object-version identifiers are described in this
topic. Another kind of repository identifier identifies a RepositoryObject
instance. To use identifiers, you need to know about both kinds. For more
information about other repository identifiers, see Object Identifiers and Internal
Identifiers.

About Object-Version Identifiers

The object-version identifier has the following format.

The first 16 bytes of each object-version identifier constitute a globally unique
identifier (or GUID).

The next 4 bytes constitute a local identifier. Note that the local identifier of a
repository object version does not equal the local identifier of a
RepositoryObject instance.

The next 8 bytes constitute a version indicator. Each object version gets a unique
value that identifies a specific version of a particular object (for example,
version 3 of an Employee object). To get a specific version of an object, you
have to traverse the version tree of an object.

About Internal Object-Version Identifiers

Each RepositoryObjectVersion instance also has an internal object-version

identifier that distinguishes it from every other object version within the same
repository database. The internal object-version identifier is a 16-byte quantity
of the following form.

Wersion within
Site ID Local ID Branch ID Branch ID

4 bytes | 4 bytes 4 bytes | 4 hytes

LY P rs
I I
Irternal ID of RepositoryObject wWersion ID of Object-version

The first 4 bytes constitute a site identifier (site ID). For more information about
site IDs, see How Repository Identifiers are Stored and Instantiated.

The first 4 bytes constitute the local identifier (local ID) of the repository object.
The second 4 bytes constitute a branch identifier (branch ID); a branch is a
portion of a version graph. The third 4 bytes constitute a version-within-branch
identifier.

The first 8 bytes make up the internal identifier of the repository object version.
The next 8 bytes make up a version identifier.

See Also

Branches in the Version Graph

Repository Identifier Data Structures

Repository Identifiers

RepositoryObjectVersion Object

Version Graph

Meta Data Services Programming

How Repository Identifiers are Stored and
Instantiated

A site identifier (site ID) is a portion of the internal identifier (or internal object-
version identifier) of a repository object. A globally unique identifier (GUID) is
a portion of an object identifier (or object-version identifier).

There is a one-to-one correspondence between a site ID and its GUID, and each
repository database includes a table (RTbISites) that maintains this
correspondence. Each row of the table associates one GUID with one site ID.

The repository engine uses the one-to-one correspondence between the site
identifiers and GUIDs to conserve space in the repository database. When the
repository engine stores a repository object, it stores the internal identifier with
the object. The engine does not store the GUID or the object identifier with the
repository object. When you need to retrieve the object identifier of an object,
the repository engine constructs the object identifier by reading the internal
identifier stored with the object, matching the site identifier to the appropriate
row of the RTblSites table, and reading the GUID from that row.

See Also

Object Identifiers and Internal Identifiers

Object-Version Identifiers and Internal Object-Version Identifiers

Repository Identifiers

RTblSites SQL Table

Meta Data Services Programming

Repository Identifier Data Structures

The following data structures describe object identifiers, object-version
identifiers, internal identifiers, and internal object-version identifiers.

If you are querying the database by building a query against the repository
tables, you need to know about internal identifier data structures to form the
query. Information in this topic about object identifier and object-version
identifier data structures is provided for completeness. Only internal identifiers
and internal object-version identifiers are used to build queries.

Internal Identifier

struct INTID {

ULONG iSitelD;

ULONG iLocallD;

b

typedef const INTID &REFINTID;

An INTID or a REFINTID variable is an internal identifier for a specific
repository object that uniquely identifies the object within a particular repository
database. An internal identifier is not unique across all repositories. Note that an
internal identifier is not the same thing as the interface identifier for an interface,
or the class identifier that is used to create an instance of a class.

The internal identifier is composed of an internal site identifier (iSiteID) and an
internal local identifier (iLocallD).

Internal Object-Version Identifier

struct VERSIONID {

INTID sIntID;

BRANCHID iBranchID;
VERSIONNUM iVersionStart;

b

typedef const VERSIONID &REFVERSIONID;

A VERSIONID or a REFVERSIONID variable is an internal identifier for a
specific repository object version that uniquely identifies the object version
within a particular repository database. It is not unique across all repositories.

The internal identifier is composed of an internal identifier (sIntID), a branch
identifier (iBranchID), and a version-within-branch identifier (iVersionStart).

Object Identifiers and Object-Version Identifiers

typedef const OBJECTID OBJID;
typedef const OBJID &REFOBJID;

An OBJID or a REFOBJID variable can be used in either of two ways:

e It can be an object identifier for a specific repository object in a
particular repository database. An object identifier is unique across all
repositories.

e It can be an object-version identifier for a specific version of a
repository object in a particular repository database. An object-version
identifier is unique across all repositories.

An OBJID or a REFOBJID variable is composed of a global unique identifier
(GUID) and a 4-byte local identifier appended to the GUID. The GUID portion
of the variable specifies where the identifier was created, and the local identifier
has a value that is unique within the repository database. When you use an
OBJID or a REFOBJID variable to contain an object-version identifier, the 4-
byte local identifier is not the branch identifier or the version-within-branch
identifier of the object version.

See Also

Branches in the Version Graph

Object Identifiers and Internal Identifiers

Object-Version Identifiers and Internal Object-Version Identifiers

Repository Identifiers

Version Graph

Meta Data Services Programming

Assigning Object Identifiers

When you install an information model in a repository, the repository engine
creates a number of objects to represent the classes, interfaces, collection types,
properties, and relationship types of that model. The assignment of an object
identifier to an object occurs when the object definition is inserted into a
repository database. If you are installing an information model using the model
installer, the repository engine assigns the identifier.

If you are inserting an information model programmatically, you can still let the
repository engine assign an identifier automatically, or you can provide an object
identifier manually. To let the repository engine assign an identifier for a
programmatically inserted object, set the input parameter for the object identifier
to OBJID_NULL.

In most cases, you should let the repository engine assign object identifiers. The
exception is when you are inserting a replica of an object represented in one
Microsoft® SQL Server™ 2000 Meta Data Services repository database into
another Meta Data Services repository. For each type definition object that you
copy to the new repository, you should use the object identifier that was assigned
to that object in the existing repository. This will ensure that the type definition
has the same identity in both repositories.

If you explicitly assign object identifiers for your definition objects, you must
ensure that the object identifiers are unique across all repositories. The following
steps are recommended to guarantee such uniqueness:

1. Generate a single unused GUID and use it for the GUID portion (the
first 16 bytes) of all definition object identifiers for the information
model.

2. Using the CreateObject method, manually assign unique local
identifiers for each definition object in the information model.

Using Guidgen

When creating object identifiers for your information model, you can use the
Guidgen.exe program to create an unused GUID, and use the DEFINE_OBJID
macro to create the object identifiers. Given a GUID and a unique number for an
object, the macro will equate the symbolic name to the value for the object
identifier. Use the DEFINE_OBJID macro (which is provided for both
Microsoft Visual C++® and Microsoft Visual Basic® programmers) to avoid
incompatibility problems later.

See Also

Installing Information Models

IRepository::CreateObject

Object-Version Identifiers and Internal Object-Version Identifiers

Repository CreateObject Method

Repository Identifiers

Meta Data Services Programming

Naming Objects, Collections, and Relationships

This section provides guidelines for identifying objects, collections, and
relationships by name. Different naming guidelines apply depending on whether
you are naming objects of an information model, or naming object instances in a
repository.

Naming Information Model Elements

When you create ClassDef, RelationshipDef, and CollectionDef objects in an
information model, you specify a name that you can use later to reference that
meta data type. You can provide this name by specifying the Name parameter in
a creation method (for example, CreateClassDef, CreateInterfaceDef,
CreateRelationColDef, and so on).

Depending on how you define a relationship collection, you can determine how
objects of that collection are subsequently named (this naming occurs when you
populate an information model). Specifically, you can specify that object names
are explicitly named through the INamedObject interface. If you are
accustomed to assigning object names yourself, or if your information model is
structured in such a way that the destination of a naming relationship collection
is not obvious, you can use this interface to attach a Name property to an
information model object. You can then provide a name when creating an
instance of that object.

The following example shows an incomplete code sample that gives you a basic
idea about how to implement INamedObject for a repository object. When you
use this interface, be sure to set the COLLECTION_OBJECTNAMING flag on
the collection.

Dim oRepository as Repository

Dim oCObject as ClassDef

Dim oINamedObject as InterfaceDef

Dim olObject as InterfaceDef

Dim oRContains as RelationshipDef

Dim 0ColObjectContains as CollectionDef

Set olNamedObject = oRepository.object(OBJID_INamedObject)
0CObject.AddInterface olNamedObject

Set 0ColObjectContains = 0IObject.CreateRealtionshipColDef(objid_r

Naming Object Instances

When you populate an information model with meta data instances, you can
allow the repository engine to name the object for you, or you can provide a
name.

How the Repository Engine Names Object Instances

The repository engine uses relationship collections to create names for objects.
Specifically, the relationship collection that determines an object instance name
is the target object collection. When the target object collection contains
uniquely named objects, and when it is the sole target of the source object, the
identity of the target object is unambiguous. However, if more than one target is
possible, you should assign an explicit name to avoid having the repository
engine select one for you.

You can choose to let objects assume different names when accessed through a
relationship, as opposed to the single name that it assumes when it is accessed
through the object. Naming an object through a relationship has the benefit of
referring to the same object through different names depending on the context in
which it is used. In this case, the relationship collection provides the context.

For more information, see Naming and Unique-naming Collections.

How to Explicitly Name an Object Instance

If an object supports the INamedObject interface in the information model, you
can call an object by its INamedObject::Name property. You can also use
IRepositoryItem::Name to supply a name.

See Also

Changing an Object Version's Name

Changing a Destination Relationship's Name
INamedObject Interface

Naming Conventions

Retrieving an Object Version's Name

Selecting Items in a Collection

Type Information Aliasing

Meta Data Services Programming

Type Information Aliasing

The information model elements that you create support type information
aliasing. This form of aliasing enables you to define an alternate name for the
meta data type so that you can reuse an existing definition in a new context. You
can also use type information aliases to preserve existing work when information
model names change. For example, Open Information Model (OIM) or Unified
Modeling Language (UML) name changes that result from new versions of a
model can be accommodated by applying aliases to a changed name.

To define a type information alias, use the following interfaces:

¢ IReposTypelnfo2 defines aliases for Classdef, Interfacedef,
Relationshipdef, and Enumerationdef objects.

¢ IInterfaceMember2 defines aliases for Propertydef, Methoddef,
Alias, and Collectiondef objects.

To use the alias, specify it just as you would the meta data type name. The
repository engine keeps track of type information aliases. When you invoke a
type information alias, the repository engine returns the appropriate class,
interface, or property to which the alias is mapped.

Note Aliasing provides additional functionality when it is applied to interface
members. For more information, see Derived Members.

See Also

IInterfaceMember?2 Interface

IReposTypelnfo2 Interface

Member Delegation

Naming Conventions
Naming Objects, Collections, and Relationships

Meta Data Services Programming

Naming Conventions

Names must always be unique within a scope. The scope varies depending on
the object. Within a repository, information model names (that is, repository type
library names) cannot repeat. Within an information model, class, interface, and
relationship names cannot repeat. Similarly, within an interface, property,
collection, and method names cannot repeat. Also, within a collection that
supports unique naming, object names cannot repeat.

When you create a new information model, choose your names carefully.
Otherwise, you may encounter name duplication problems later on if you decide
to share information models. One way to avoid name confusion is by using a
distinctive prefix on all of your names. An information model name provides an
obvious solution. For example, if you are using the Open Information Model
(OIM), you can use the subject area names such as Database Schema (or
DBSchema) as a prefix.

In addition to unique constraints, the following naming conventions apply to
Repository Type Information (RTIM) objects and relationships:

e The name cannot be a reserved SQL or MIDL keyword. Generally, you
should avoid any word that is reserved by a DBMS.

e Names can be a maximum of 249 characters in length.
e Any alphanumeric character can be used in the name.

e For object instance names, you can define a name that contains leading
or trailing spaces. It can also be an empty string. If the name is all
spaces, it is treated as an empty string.

Spaces within a name are allowed because COM supports it. However,
if you include spaces in an interface definition name, you will get an
error when you subsequently define properties on that interface.

See Also
Naming and Unique-Naming Collections

Naming Conventions for Generated Views

Naming Objects, Collections, and Relationships

Meta Data Services Programming

Naming and Unique-Naming Collections

Certain relationships can provide a name by which the origin object refers to the
destination object. Such a relationship is called a naming relationship. A
collection of naming relationships is a naming collection.

Certain naming collections require that all destination objects in the collection
have unique names. Such a collection is referred to as a unique-naming
collection.

User requirements may require objects to support multiple names. For example,
consider a system in which a single program can have two different file names,
because there are two different file systems that allow and disallow long names,
respectively. The following figure illustrates this case.

The figure shows four relationships. Each relationship specifies a name by which
one of the objects (the origin object) refers to the other object (the destination
object). In particular, notice that the object representing the error-handling
program file has two different names, ErrHndl and ErrorHandler.

In order to support this kind of capability, the Repository Type Information
Model (RTIM) attaches the Name property to the relationship type, not to the
object class. This enables an object to have as many names as it has relationships
(that is, relationships for which it is the destination).

Object Naming Collections

If the COLLECTION_OBJECTNAMING flag is set, there is no relation-specific
naming of this object. The object has the same name in the relationship as
specified by the INamedObject::Name property on the object. Specifying a
name during the collection's Add operation or attempting to set the
IRepositoryItem:Name property on the relationship object will return the error
EREP_COL_OBJECTNAMING. If you attempt to add an object that does not
support INamedObject to the collection, the error
EREP_COL_OBJECTNOTNAMED is returned.

See Also

CollectionDefFlags Enumeration

INamedObject Interface

Naming Objects, Collections, and Relationships
Repository Errors (alphabetical order)

Meta Data Services Programming

Retrieving an Object Version's Name

When you try to retrieve the name of an object version, the repository engine can
search in several places for the name:

o If the object version implements the INamedObject interface, the
repository engine retrieves the Name property exposed by that
interface.

e If the object version does not implement the INamedObject interface,
the repository engine seeks a destination naming relationship for the
object version. With that destination naming relationship, the repository
engine performs object-version resolution, yielding a particular origin
object version from the relationship's TargetVersions collection. The
repository engine retrieves the name by which that origin object version
refers to the destination object.

See Also

Changing a Destination Relationship's Name

Changing an Object Version's Name
INamedObject Interface

Naming Objects, Collections, and Relationships

Resolution Strategy for Objects and Object Versions

Meta Data Services Programming

Changing an Object Version's Name

When you change the name of an object version, the repository engine might try
to change several names as follows:

o If the object version implements the INamedObject interface, the
repository engine changes the Name property exposed by
INamedObject unless the object version is unchangeable.

¢ If the object version has one or more destination naming relationships,
the repository engine tries to change a name for each of those
relationships. For more information, see Changing a Destination
Relationship's Name.

See Also

IRepositoryltem Interface

Repository Object

Repository ConnectionString Property

Retrieving an Object Version's Name

Meta Data Services Programming

Changing a Destination Relationship's Name

A name associated with a naming relationship is the origin object version's name
for the destination object. When you change the name of a destination naming
relationship, you simultaneously change an origin version's name for the
destination object. If the destination relationship has multiple items in its
TargetVersions collection, each of those origin versions could have a different
name for the destination object. The repository engine follows a resolution
strategy to choose a particular origin object version from the destination
relationship's TargetVersions collection. Next, the repository engine changes the
origin object version's name for the destination object, unless the origin object
version is unchangeable.

See Also

Changing an Object Version's Name

Resolution Strategy for Objects and Object Versions

Retrieving an Object Version's Name

Meta Data Services Programming

Naming Stored Procedures

When you use a Microsoft® SQL Server™ database for your repository, the
repository engine creates stored procedures for the insertion of rows into the
repository SQL tables. This topic describes how these stored procedures are
named.

The stored procedure name for a table is generated by prefixing the table name
with the string "R_i". Because table names are unique, this naming convention
will generate unique stored procedure names. If the length of the table name is
greater than MaxIdentifierLength-3, however, the table name generation
algorithm fails. For this reason, a user may not supply a table name longer than
MaxIdentifierLength-3. Supplying a longer name causes the error
EREP_BADNAME.

When the user does not provide a table name for an interface, the engine
automatically generates the table name from the interface name. If the interface
name, with the leading "I" stripped off, is less than MaxIdentifierLength-4, the
interface name will be used as the table name. Otherwise, the interface name is
truncated to MaxIdentifierLength-7, and a 4-character number is appended to
the name to make it unique, before prefixing "R_i.

The engine uses named arguments to call the stored procedures. A named
argument starts with the at sign (@) character and is no longer than
MaxIdentifierLength. Therefore, the property names, which are also column
names, must be no longer than MaxIdentifierLength-1.

MaxIdentifierLength values are 30 characters for SQL Server version 6.5 and
128 characters for SQL Server version 7.0 and SQL Server 2000.

See Also

Naming Objects, Collections, and Relationships

Repository Errors (Alphabetical Order)

Repository SQL Schema

Meta Data Services Programming

Creating and Extending Type Information

Information models contain type information about the tools and applications
you develop. Creating an information model is the first step in developing tools
and applications with the Microsoft® SQL Server™ 2000 Meta Data Services
repository.

You can build custom information models, or use the predefined information
model distributed with SQL Server 2000. SQL Server distributes the Open
Information Model (OIM). You can obtain a more recent version of the OIM
from the Meta Data Coalition (MDC) or the Meta Data Services Software
Development Kit (SDK).

If you are using a predefined information model, the information model is
created for you. However, you can extend a predefined information model if you
want to add elements that further describe the tool or application you want to
develop. Extending an information model is equivalent to creating a new model.

The following topics detail different strategies for creating an information
model.

Topic Description

Creating Type Information Using Describes the advantages of creating

Modeling Tools an information model with modeling
tools

Information Model Creation Issues |Identifies choices you can make
about a model you create, and
identifies some basic requirements
for creating a navigable information

model
Creating Type Information Details the steps to follow when
Programmatically creating an information model
through code

See Also

Getting Started with Meta Data Services

Information Models

OIM in Meta Data Services

Meta Data Services SDK

Repository API Reference

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Meta Data Services Programming

Creating Type Information Using Modeling Tools

Using a third-party tool to create an information model in a visual modeling
environment is strongly recommended. Information models are complex to
design and difficult to get right the first time. Unless you are creating the
simplest of models, or making small changes to an existing model, you should
invest in a tool to develop your design.

In addition to providing a visual modeling environment, modeling tools provide
support for multiple users, version control, report generation, and integration
with application programming environments.

The Microsoft® SQL Server™ 2000 Meta Data Services Software Development
Kit (SDK) includes utilities for creating and extending an information model.
You can access these utilities from within third-party modeling tools by way of
extensions.

See Also

Creating and Extending Type Information

Information Models

Meta Data Services SDK

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Meta Data Services Programming

Information Model Creation Issues

When you insert an information model into a repository, you have the following
choices and decisions to consider:

e How much of the tool information will you store in the repository
database and how much will you store in other files?

e For each class you define in your information model, what Automation
server will create instances of that class?

e Can you tune the database schema to improve performance?
¢ Should you create a new information model or extend an existing one?

e Should you assign object identifiers, or let the repository engine do this
for you?

¢ How will your information model accommodate navigation from one
object to another?

The following topics discuss each of these questions.

Topic Description
Extending vs. Creating Provides guidelines to help you decide
Information Models whether to create or extend an

information model

Choosing Which Information [Provides guidelines to help you decide
Belongs in the Repository where a Microsoft® SQL Server™ 2000
Meta Data Services repository fits into
your development environment

Choosing an Automation Server |Explains how to instantiate an

for a Class Automation server in your application

code
Tuning the Database Schema of [Provides tips that can help you determine
an Information Model how the repository database is created

Accommodating Navigation Explains the core requirements for
Within an Information Model |building a navigable information model

Assigning Object Identifiers Explains the ways in which a repository
identifier can be assigned to an object

See Also

Creating Type Information Programmatically

Meta Data Services Programming

Extending vs. Creating Information Models

You can create a new information model or extend an existing one. In general,
each information model should accommodate the data about a particular area of
your application environment.

When faced with the decision of whether to extend an existing information
model or build a new one, you can follow these guidelines to determine a course
of action.

e To accommodate data or structures that are unrelated or only minimally
related to existing type information, create a new information model.

e To accommodate additional kinds of data that are closely related to
existing type information model, extend an existing information model.

After you decide that extending an information model is the right choice, you
must decide whether to extend it through a modeling tool or through the
repository API. If you do not own a modeling tool or if the change is small, you
can use the repository API to create type information programmatically.

See Also

Creating Type Information Programmatically

Information Model Creation Issues

Meta Data Services Programming

Choosing Which Information Belongs in the
Repository

You do not need to store all of the information for your tool in a Microsoft®
SQL Server™ 2000 Meta Data Services repository. For example, suppose your
tool helps application developers and systems engineers keep track of the bugs
on their software systems. Your tool maintains modules, bug reports, and test
suites. Each module has a name, an author, source code, and one or more bugs
reported on it. Each bug can have a description, a module on which it is reported,
and a test suite used to reproduce the bug. Each test suite can have one or more
bugs that it can reproduce. Because your tool maintains each test suite in a file
format, you decide not to explicitly insert each test suite into a repository.
Instead, you store in the repository only the name of a file containing the test
suite.

To decide which information belongs in the repository, consider the following
questions:

¢ Do you want to perform impact analysis on the data?

The more information you store in the repository, the more impact
analysis questions you can answer. Consider the example described
previously. Because the information model includes a class describing
test suites, you can learn which test suite generates the most bugs.

Conversely, because the information model does not include a class
accommodating individual tests or the persons responsible for them,
you cannot use the repository to learn which person discovers the most
bugs.

e [s there another file format that is more appropriate for the fine details
of the definitions that describe your tool?

There are two aspects to consider:

e If a tool manipulates objects whose fundamental units of
storage and manipulation are large, a file format can be more
efficient than the repository. In this case, it is probably more

effective to store the data objects in their native file format, and
to store in the repository a description of each data object.

o If an existing tool already stores its data in a file format,
switching to Meta Data Services would require rewriting the
tool. To save time, you can choose to retain the existing file
format and replicate some subset of the tool data in the
repository.

See Also

Creating Type Information Programmatically

Information Model Creation Issues

Meta Data Services Programming

Choosing an Automation Server for a Class

After you add your information model to a repository, you can run your tool.
Periodically, your tool will invoke the CreateObject method to create an
instance of one of the classes of your information model. CreateObject must
create a run-time object (that is, an Automation object). To create the run-time
object, the repository engine calls CoCreatelnstance, using as a parameter the
ClassID you provided as a property of the class.

When the engine calls CoCreateInstance with the ClassID, the system registry
is checked to determine which Automation server contains the required class
factory. For most classes in your information model, a generic Automation
server for repository objects, Repodbc.dll, suffices. To use the generic server as
the Automation server for a class, you can either do nothing, or you can specify
Repodbc.dll in the entry for that class in the registry.

Although Repodbc.dll suffices as the Automation server for most repository
classes, you will occasionally create a class whose instances require special
treatment. For example:

¢ A class of your information model requires input validation.

You can validate the property values or collections of each instance of a
class by writing a special Automation server for that class.

¢ A class of your information model replicates some properties retained in
another file format outside the repository.

Suppose your information model includes a class whose instances
describe Microsoft® Word documents. Each instance describes a Word
document, indicating specifically its title, subject, and author. Your
class-specific Automation server must include special code to ensure
that the values of the repository properties match the values of title,
subject, and author stored in the Word file.

e A class of your information model requires some class-specific behavior
that you implement in a method.

Suppose your information model includes a class whose instances
describe modem pools. Each instance describes a particular modem
pool, including its phone number. Your class-specific Automation server
can include a method to automatically dial the number and establish a
connection.

Note At this time, the repository engine supports in-process
Automation servers only (that is, dynamic-link libraries).

See Also

Creating Type Information Programmatically

Information Model Creation Issues

Meta Data Services Programming

Tuning the Database Schema of an Information Model

The repository engine stores data in a relational database. When you add an
information model, the repository engine enlarges this database by creating new
tables and columns to accommodate your tool information. Generally, each
interface corresponds to a table, and each property corresponds to a column.
When you populate your information model, the repository engine inserts rows
into these tables.

You have some control over the database schema that accommodates your tool
information. For example, you can:

e Use a single table to contain the interface-specific properties of more
than one interface.

To do this, set the TableName property for each interface definition
object to the same name before you commit the transaction that is used
to create your information model.

e (Create an additional index for a table.

To do this, open the database directly and use the SQL CREATE
INDEX command after you commit the transaction that is used to create
your information model.

Note You cannot completely control the database schema. In particular,
each table must include the columns IntID, Z_BrID_Z,and Z_VS_Z,
and must define the primary key on those columns. Furthermore, you
cannot drop columns that your information model uses to store
properties.

See Also

Creating Type Information Programmatically

Information Model Creation Issues

Meta Data Services Programming

Accommodating Navigation within an Information
Model

Because the objects in your information model are associated through a network
of relationships, you can navigate to each part of an information model through
the relationships you define.

To support programming against the information model, you must build in
navigation support by way of relationships.

The first relationship must be between the repository root object and an object in
your information model. To enable this first navigation step, include in your
information model a relationship type whose instances will associate the root
object with objects stored in your information model.

Create a relationship type with these characteristics:

e The origin collection type of the relationship type is a member of an
interface implemented by the ReposRoot class.

e The destination collection type of the relationship type is a member of
an interface implemented by a class of the information model.

To create this relationship type

1. Create a new interface and add it to the set of interfaces implemented
by the ReposRoot class.

2. Create a relationship type associating the newly created interface with
some interface implemented by a class of your information model.
Choose an interface implemented by a fundamental class, a class
whose instances are good objects from which to begin moving to other
objects of the information model.

For more information about moving through a repository, see Navigating a
Repository.

See Also

Creating Type Information Programmatically

Information Model Creation Issues

Meta Data Services Programming

Creating Type Information Programmatically

If you do not have a modeling tool, you can create a new information model or
extend an existing one programmatically. This section explains the steps you
need to follow when creating an information model, and discusses some issues
to consider in designing and inserting information models into a Microsoft®
SQL Server™ 2000 Meta Data Services repository.

When you insert an information model into a repository, you populate the
Repository Type Information Model (RTIM). That is, you create instances of the
classes, interfaces, properties, methods, and relationship types of the RTIM.

The following topics describe the steps in creating type information
programmatically.

Topic Description

Begin a Transaction Explains how to begin a transaction that
brackets the information model
definitions

Create a Repository Type Describes how to create an empty

Library information model to store subsequent
definition

Define Dependencies Between |Explains how to define dependencies

Type Libraries between multiple information models

Add Classes to the Repository [Details how to add class definitions to an

Type Library information model

Add Interfaces to Each Class Details how to add interface definitions to
an information model

Add Properties to Each Interface Details how to add property definitions to
an interface

Add Methods to Each Interface |Details how to add method definitions to
an interface

Add Relationship Types and Details how to add relationship and
Pairs of Collection Types collection definitions to an interface

Commit the Transaction Describes how to commit the transaction

that inserts your definitions into a Meta
Data Services repository

See Also

Creating and Extending Type Information

Information Model Creation Issues

Information Models

Repository API Reference

Repository Object Architecture

JavaScript:hhobj_1.Click()

Meta Data Services Programming

Begin a Transaction

To write data to a repository, bracket your interactions within the scope of a
transaction.

To begin a transaction

1. Open or create the repository into which you want to insert the
information model. To open an existing repository, use the Open
method of the IRepository interface or the Repository object.

OI‘

To create a new repository, use the Create method of the IRepository
interface.

Both of these methods return the root object for the open repository.

2. Invoke the Begin method of the IRepositoryTransaction interface or
RepositoryTransaction object.

The IRepositoryTransaction interface is accessible through the
Transaction property of the object that represents your connection to
the repository.

See Also

Creating Type Information Programmatically

Create a Repository Type Library

Commit the Transaction

Connecting to and Configuring a Repository

IRepository Interface

IRepositoryTransaction Interface

Meta Data Services Programming

Create a Repository Type Library

The Repository Type Information Model (RTIM) includes a class named
ReposTypeLib; each instance of this class corresponds to a repository type
library. Each repository type library describes an information model.

To create an instance of the ReposTypeLib class
e Use the CreateTypeLib method of the root object's
IManageReposTypeLib interface or the ReposRoot object.

Note Each instance of ReposTypeLib has a collection of types, where
each type is either a class, an interface, or a relationship type. The
collection is called ReposTypelnfos, and is used to ensure that unique
names are used for all classes, interfaces, and relationship types in your
information model.

See Also

Creating Type Information Programmatically

Define Dependencies Between Type Libraries

IManageReposTypeL.ib Interface

ReposRoot Object

ReposTypeLib Class

Meta Data Services Programming

Define Dependencies Between Type Libraries

The Repository Type Information Model (RTIM) allows model developers to
define dependencies between type libraries. You can define dependencies if you
want to share information models, or leverage an existing information model
within a new context.

To define a dependency

e Use the DependsOn collection on the IReposTypeLib2 interface to
define a dependency between two type libraries. For example, in order
to define a dependency between file allocation table (FAT) and FileSys
type libraries:

Use the following code to define a dependency in Automation:

FAT.DependsOn("IReposTypel.ib2").Add FileSys

Use the following code to define a dependency in COM:
pFATCol -> Add(pFileSys, RelShipName, &pRelShipName);

pFATCol

A pointer to the FAT type library DependsOn collection on the
IReposTypeLib2 Interface.

pFileSys
A pointer to the FileSys type library.
RelShipName

The name of the relationship between the FAT and the FileSys type libraries.
pRelShipName

A pointer to the relationship between the FAT and the FileSys type libraries.

See Also

Add Classes to the Repository Type Library

Creating Type Information Programmatically
IReposTypeL.ib2 DependsOn Collection

Meta Data Services Programming

Add Classes to the Repository Type Library

According to the Repository Type Information Model (RTIM), you define a new
object class by creating an instance of the ClassDef class.

To create a new class definition

e Use the CreateClassDef method of the IReposTypeLib interface that is
exposed by your ReposTypeLib object.

Be sure the class identifier that you supply as an input parameter to this
method matches the globally unique identification (GUID) of that class
in the system registry.

Note Within the system registry, you can indicate which Automation
server the repository engine uses to create instances of your new class.
You can use the Automation server that the repository engine provides
for all repository objects, or you can use your own server. For more
information about deciding which kind of Automation server to use, see
Information Model Creation Issues.

See Also

Add Interfaces to Each Class

Creating Type Information Programmatically
ReposTypeLib Object

Meta Data Services Programming

Add Interfaces to Each Class

Each of the classes in your information model exposes one or more interfaces.
Add a new interface to a class by creating an instance of the InterfaceDef class.

When you create a custom interface, you must avoid assigning a dispatch ID of
1000 to the interface. IRepositoryDispatch::get_Properties reserves this value
for itself.

To create a new interface definition

e Use the CreateInterfaceDef method of the IClassDef interface that is
exposed by your ClassDef object.

Be sure the interface identifier that you supply as an input parameter to
this method matches the globally unique identification (GUID) that has
been assigned to the interface.

Note Among the interfaces you create for your information model, you
must include an interface that the ReposRoot class implements. You
need this interface and an attendant relationship type to enable
navigation to the objects that will populate your information model. For
more information about why you need this interface, see Information
Model Creation Issues.

See Also

Add Methods to Each Interface

Add Properties to Each Interface

Add Relationship Types and Pairs of Collection Types

ClassDef Object

Creating Type Information Programmatically
IClassDef Interface

Meta Data Services Programming

Add Properties to Each Interface

Each interface in your information model can expose properties. Attach a new
property to an interface by creating an instance of the PropertyDef class.

To create a new property definition

e Use the CreatePropertyDef method of the IInterfaceDef interface that
is exposed by your InterfaceDef object.

See Also

Add Methods to Each Interface

Add Relationship Types and Pairs of Collection Types

Creating Type Information Programmatically

IInterfaceDef Interface

Meta Data Services Programming

Add Methods to Each Interface

Each of the interfaces in your information model can expose methods. Attach a
new method to an interface by creating an instance of the MethodDef class.

To create a new method definition

e Use the CreateMethodDef method of the IInterfaceDef interface that
is exposed by your InterfaceDef object.

Note If your interface has methods, you must provide your own
Automation server for classes that implement this interface. For more
information about deciding which kind of Automation server to use, see
Information Model Creation Issues.

See Also

Add Properties to Each Interface

Add Relationship Types and Pairs of Collection Types

Creating Type Information Programmatically

IInterfaceDef Interface

Meta Data Services Programming

Add Relationship Types and Pairs of Collection Types

Relationships connect objects to each other in a Microsoft® SQL Server™ 2000
Meta Data Services repository. When you define a new relationship type, you
also define an origin collection type and a destination collection type. The origin
collection type connects the relationship type to one interface; the destination
collection type connects the relationship type to a second interface. The classes
that implement those interfaces are now related in your information model.

To create a new relationship type (and its corresponding pair of collection
types) and attach it to two interfaces

e Use the CreateRelationshipDef method of the IReposTypeLib
interface that is exposed by your ReposTypeLib object. Then, use the
CreateRelationshipCol method to create the collection. For more
information, see Defining a Collection.

Note One of the relationship types that you create for your information
model must enable navigation from the root object of the repository to
some objects of your information model. For more information about
why you need this interface, see Information Model Creation Issues.

See Also

Add Properties to Each Interface

Add Methods to Each Interface

Creating Type Information Programmatically
IReposTypeLib Interface

Meta Data Services Programming

Commit the Transaction

When you have added all of the type definition objects to your information
model, use the Commit method of the IRepositoryTransaction interface to
commit your additions to the repository database.

See Also

Creating Type Information Programmatically

Information Model Creation Issues

IRepositoryTransaction Interface

Meta Data Services Programming

Defining Relationships and Collections

Relationships and collections provide the structure and navigation of your
information model. After you define the objects you require, you need to
associate the objects by defining relationships. The relationships that you create
must be defined as collections. You can also create collections that do not
contain relationships.

The following collection types are possible.

Collection Description

Object collection Contains multiple instances of the same type of
object (for example, a set of StoredProcedure
objects).

Object collections are only used in an
ObjectInstances collection on ClassDef and
InterfaceDef objects. For more information, see
Defining a Collection and ObjectCol Object.

Version collection Contains versioned objects. There are seven kinds of
version collections. For more information, see Kinds
of Version Collections.

Relationship Contains relationship objects. Each relationship
collection object pairs one source object to one target object.
Relationship collections can be used for navigation.
For more information, see Defining a Relationship
and Defining a Relationship Collection.

Target object Contains all of the target objects of a specific source

collection object. For example, the target object collection of a
Table source object can be a collection of Column
objects.

A target object collection is represented as a
property that returns a TargetObjectCol object.

For more information, see Defining a Target Object
Collection and ITargetObjectCol Interface.

Transient object
collection

Contains objects that are populated by code. A
transient object collection is a special case of
collection type. Where the other collection types are
formed from persistent object data, a transient object
collection is instantiated from your code. This
collection is populated dynamically and does not
rely on persistent data to determine its contents. For
more information about defining transient object
collections, see Programming Transient Object

Collections.

See Also

Navigating a Repository

Understanding Collections

Understanding Relationship Roles

Meta Data Services Programming

Defining a Relationship

Relationships are used to navigate. At a minimum, you need to know how to
traverse relationships to get from one object to another. Furthermore, the
repository engine supports complex behavior that varies based on relationships:
namely, delete propagation, version propagation, view generation, version
resolution, and naming relationships. To understand how the repository engine
responds to these cases, you need to know about relationships and how they are
structured.

Origin and Destination Collections

All relationships are accessed by way of a collection. For this reason, you must
always associate objects through a relationship definition. When an origin object
accesses a destination object, the origin object accesses a relationship collection
that contains destination objects. When a destination object accesses an origin
object, the destination object accesses a relationship collection that contains the
origin object.

To support access in both directions, you must always provide two collections.
From the perspective of the origin object, the relationship collection to which it
is attached is a destination collection. Similarly, from the perspective of the
destination object, the relationship collection to which it is attached is an origin
collection.

When you define a relationship type and its attendant collection types, you must
declare one collection type as the origin. To do this, you must set the IsOrigin
property on the collection.

In addition to providing access, the distinction between origin and destination
collections is important because naming collections, unique-naming collections,
and sequenced collections can only be defined on origin collections.

The following example illustrates how to create an origin collection that
supports unique-naming and sequencing. In this example, objid_null is the
object identifier, name_ is the string that defines a name, and dispid_ indicates a
dispatch identifier (a constant not shown in this example).

Rem ** Declare interface, collection, and relationship
Dim oTypeLib as RepositoryTypeLib

Dim oRContains as RelationshipDef

Dim oCTableContains as CollectionDef

Rem ** Create the oRContains relationship on oTypeLib
Set oRContains = oTypeLib.CreateRelationshipDef(objid_null, name_

Rem ** Create the relationship collection for oRContains

Rem ** IsOrigin is set to True

Rem ** 10 is the combined bits for CollectionDef flags (2 for uniquen:
Set oCTableContains = oTypeLib.CreateRelationshipColDef(objid_nul

See Also

CollectionDef IsOrigin Property

Defining Relationships and Collections
Defining a Collection

ICollectionDef IsOrigin Property

[Relationship Interface

Relationship Class

Relationship Object

Meta Data Services Programming

Defining a Collection

Collections are a kind of property that provide a way to relate and group objects.
Each object can support multiple collections.

Collections are materialized at run time, using interfaces that you call. The kind
of collection that is materialized depends on the interface you use. Because the
repository stores data, the collections that you materialize assume the state that
they had the last time the collection was instantiated. For example, a collection
that contains three objects at the end of one repository session will still contain
those three objects the next time you run a repository session.

The rule for an object-collection association is object to collection to object. In
an information model, objects are never related to each other directly. Objects
are always associated through a collection. For example, if the relationship
between two objects is strictly one-to-one, the collections that associate the
objects each contain one object.

To define a collection, use the CollectionDef class or ICollectionDef interface
for COM programs, or CollectionDef object for Automation programs.

The following example illustrates how to define two collections for a single
relationship. The pattern of two collections for each relationship holds for all
relationships that you create. In this example, objid_null is the object identifier,
name_ is the string that defines a name, and dispid_ indicates a dispatch
identifier (a constant not shown in this example).

Rem ** Declare interfaces, relationship, and collections
Dim oTypeLib as RepositoryTypeLib

Dim oRContains as RelationshipDef

Dim oCTableContains as CollectionDef

Dim oCTableContainedBy as CollectionDef

Rem ** Create the relationship oContains on oTypeLib
Set oRContains = oTypeLib.CreateRelationshipDef(objid_null, name_

Rem ** Create the Contains and ContainedBy collections
Set oCTableContains = oI TypeLib.CreateRelationshipColDef(objid_nt
Set oCTableContainedBy = oTypeLib.CreateRelationshipColDef(objid

See Also

CollectionDef Class

CollectionDef Object
Defining Relationships and Collections

ICollectionDef Interface

Understanding Collections

Understanding Relationship Roles

Meta Data Services Programming

Sequenced Collections

Some information models require the tool or application be able to set the
sequence of items in a collection. This requirement occurs when the sequence
itself is significant in some way.

A collection that supports the sequencing of its items is referred to as a
sequenced collection. Relationships contained within such a collection are
sequenced relationships. The Repository Type Information Model (RTIM)
supports the definition of collection types for sequenced collections.

For example, consider a report generator tool that displays tables of data where
the data is displayed in rows and columns. Each table is represented by an object
that conforms to the Table class. The columns of the table are represented by
objects that conform to the Column class. Each table has a collection of columns
that are included in it (the relationship that relates a Table object to a Column
object is the includes relationship). The following figure illustrates this example.

To determine the order in which the columns will appear when the table is
displayed or printed, the report generator tool relies on the sequence of the
column items. For the Student table, the report is displayed with the Student ID
column leftmost, the Last Name column next, and the First Name column on
the right-hand side.

To define a sequenced collection, set the COLLECTION_SEQUENCED flag on
a collection definition object.

See Also

CollectionDefFlags Enumeration

Defining Relationships and Collections

Understanding Collections

Understanding Relationship Roles

Meta Data Services Programming

Heterogeneous Collections of Objects

Every collection of relationships is homogeneous. In any relationship collection,
each item is a relationship of the same relationship type. Collections of objects,
however, can be either homogenous or heterogeneous (that is, the items can have
different classes).

A collection of objects can be heterogeneous for the following reasons:

e The Repository Type Information Model (RTIM) allows each interface
to be implemented by many classes.

e The RTIM expresses each relationship type as an association between
two interfaces rather than as an association between two classes.

Each relationship type describes how the objects of classes implementing
particular interfaces can be related. Thus, if several classes implement a
particular interface, some relationship types involving that interface can yield
collections whose target objects span several classes. As you prepare programs
that manipulate such collections, do not assume that the collections will contain
homogeneous sets of objects.

Note Plan for change; do not assume that your information model will remain
unchanged. Although a particular relationship type of your information model
might associate two interfaces that are implemented by exactly one class each,
you might someday create other classes that implement those same interfaces.
Any user who enlarges the number of classes implementing either of those
interfaces introduces the possibility for heterogeneous collections of objects. If
your programs that use those collections are dependent upon homogeneous
collections, you must rewrite them as soon as you implement the interfaces with
several classes. To protect your programs from this cause of obsolescence, write
them assuming that any collection of objects can be heterogeneous.

See Also

Defining Relationships and Collections

Understanding Collections

Understanding Relationship Roles

Meta Data Services Programming

Defining a Relationship Collection

Tools and applications can sometimes manipulate sets of relationships as a single
unit. To represent this functionality in your information model, you can use
relationship collections. The Repository Type Information Model (RTIM) lets
you describe relationship collection types as templates to which relationship
collections must conform.

A relationship collection is a set of similar relationships. To be part of a
relationship collection, the relationships must be similar in these two ways:

e They must be of the same relationship type. All the relationships in a
collection must conform to the same relationship type.

e They must have the same object in the same role. One object must be
common to all relationships in the collection. That object must play the
same role (either origin or destination) for all relationships in the
collection.

To define a relationship collection, use the RelationshipCol class or
IRelationshipCol interface for COM programs, or Relationship object for
Automation programs.

See Also

Defining Relationships and Collections
Naming and Unique-Naming Collections

Heterogeneous Collections of Objects

IRelationshipCol Interface

RelationshipCol Class

RelationshipCol Object

Sequenced Collections

Understanding Collections

Understanding Relationship Roles

Meta Data Services Programming

Defining a Target Object Collection

A target object collection is a kind of special-purpose collection that is designed
for navigation. Since target object collections reduce navigation to a one-step
operation, you should use target object collections for most of your navigation.

About Target Object Collections

A target object collection is the set of target objects that are associated with the
relationships in a particular relationship collection. The relationship collection in
the following figure is one example.

This relationship corresponds to this target object collection.
These associations are valid because the underlying data looks like this.

The object that is common to all of the relationships in the corresponding
relationship collection is referred to as the source object. In the preceding figure,
the object describing Frank is the source object. The objects describing Kim,
Iola, and Fenton are target objects.

Implementing a Target Object Collection

A target object collection is represented as a property, which returns an
ITargetObjectCol object. On this object, you can invoke QuerylInterface to
access the IRelationshipCol and I'VersionCol interfaces.

To define a target object collection, use the ITargetObjectCol interface.

See Also

Defining Relationships and Collections
[TargetObjectCol Interface

Understanding Collections

Understanding Relationship Roles

Meta Data Services Programming

Defining a Version Collection

Version collections provide a way to manipulate sets of versioned objects.

To define a versioned collection, use the VersionCol class or IVersionCol
interface for COM programs, or VersionCol object for Automation programs.

You can also define a versioned relationship. To define a versioned relationship,
use the VersionRelationship class or IVersionRelationship interface for COM
programs, or use the VersionRelationship object for Automation programs.

See Also

Defining Relationships and Collections

IVersionCol Interface

I'VersionedRelationship Interface

Kinds of Version Collections

Understanding Collections

Understanding Relationship Roles

VersionCol Class

VersionCol Object

VersionedRelationship Class

VersionedRelationship Object

Meta Data Services Programming

Defining Properties

You can create a property definition object to represent properties in an
information model. Properties can include enumerated values. You can also
specify a property as a virtual member if you want to provide a property value
from a source other than the repository.

To define a property definition object, you can use the PropertyDef class or the
IPropertyDef interface for COM programs, or the PropertyDef object for
Automation programs.

The following topics provide more information about defining properties.

Topic Description

Virtual Members Describes how to implement a virtual
member in your information model

Repository Enumeration Definition |Explains how to provide an
enumerated list of values for a

property

See Also

Defining Relationships and Collections

[PropertyDef Interface

PropertyDef Class

PropertyDef Object

Meta Data Services Programming

Virtual Members

Virtual members are properties and collections that are not allocated storage in a
repository database. Creating a virtual member is useful if you want to store
property values or collection items somewhere other than the repository.

Virtual members are defined on interfaces. You can define nonpersistent
members by setting the flag VIRTUAL_MEMBER in the
InterfaceMemberFlags enumeration. If this flag is set, the repository engine
returns an error if an attempt is made to access this member.

A COM aggregation object must be used to implement the transient storage.

See Also

IInterfaceMember Flags Property

InterfaceMemberFlags Enumeration

Meta Data Services Programming

Repository Enumeration Definition

The repository enumeration definition is used to specify a fixed set of constant
strings or integer values that correspond to real-world concepts as an
enumeration. With the following interfaces you can specify an EnumerationDef
object and associated EnumerationValue objects, and associate these objects
with PropertyDef objects.

¢ IEnumerationDef interface

The IEnumerationDef interface is the default interface for enumeration
objects. Use this interface to define new enumeration values.

¢ IEnumerationValueDef interface

The IEnumerationValueDef interface contains a value that can be
stored in the Property value of an object.

e IPropertyDef2 interface

The IPropertyDef2 interface has a relationship collection called
EnumerationDef. It contains an optional relationship to a single
EnumerationDef object.

The following table identifies enumeration objects that support interfaces.

Objects Interfaces
All Enumeration objects IenumerationDef

IrepositoryObject
IRepositoryObjectStorage
IreposTypelnfo
I'VersionAdminInfo2
InamedObject
ISummaryInformation

EnumerationValue objects IEnumerationValue

IrepositoryObject

IRepositoryObjectStorage

InamedObject

ISummaryInformation

IVersionAdminInfo?2

See Also

IEnumerationDef Interface

IEnumerationValueDef Interface

[PropertyDef2 Interface

Meta Data Services Programming

Defining Methods

You can define a method definition object to represent methods in an
information model. In addition to specifying methods, you can define parameters
on a method and on script objects.

To define a method definition object, you can use the MethodDef class or the
IMethodDef interface for COM programs, or the MethodDef object for
Automation programs.

The following topics provide more information about defining methods and
scripts.

Topic Description
Defining a Parameter Explains how to define a parameter
Defining Script Objects Explains how to define a script object

that provides the implementation code
for a method

See Also

IMethodDef Interface
MethodDef Class
MethodDef Object

Meta Data Services Programming

Defining a Parameter

Parameter definitions specify a parameter that is attached to a method. With
parameter definitions, you can support an ordered collection of parameters that a
method uses.

To define a parameter, use the IMethodDef and IParameterDef interfaces for
COM programs, or use the MethodDef or ParameterDef objects for
Automation programs.

The IMethodDef interface provides a way to define an ordered list of
parameters for that method. IMethodDef is the default interface of the
CMethodDef object that the IInterfaceDef::CreateMethodDef method returns.

The IParameterDef interface enables you to define in detail each parameter of a
method.

These two interfaces, along with the relationships to other classes and interfaces,
are shown in the following figure.

Parameter definitions are stored in a table in the repository database called
RTblParameterDef.

For more information about model graphs and conventions, see the Microsoft®
SQL Server™ 2000 Meta Data Services Software Development Kit (SDK).

See Also

Defining Methods
IMethodDef Interface

[ParameterDef Interface

RtblParameterDef SQL Table

Meta Data Services SDK

JavaScript:hhobj_1.Click()

Meta Data Services Programming

Defining Script Objects

You can assign Microsoft® ActiveX® scripts to method and property definitions
in an information model. The repository engine exposes these methods and
properties, and invokes the associated script at run time. You can also use scripts
to program transient object collections.

You can create script using Microsoft JScript® and Microsoft Visual Basic®
Scripting Edition (VBScript). To define scripts in your information model, use
the IScriptDef interface for COM programs or the ScriptDef object for
Automation programs. Only one script definition can be associated for each
method or property.

Attaching scripts to properties that are defined as BLOBs (that is, PropertyDef
objects that have SQLType set to SQL_LONGVARBINARY or
SQL_LONGVARCHAR) is not supported. Attaching scripts to large property
objects does not result in an error or warning; the script is not invoked.

IScriptDef properties do not reside on the IMethodDef or IPropertyDef
interfaces by design. Associating a script at the interface or class level allows
you to implement the same method in a variety of contexts.

The following topics provide more information about script implementation.

Topic Description

Binding Scripts Explains the binding algorithm that
links scripts to specific methods and
properties

Accessing a Script Describes how to access a script

Predefined Script Variables Describes variables that you can use
when creating a script

Method Invocation for Scripted Describes requirements and

Methods considerations for invoking a
scripted method

Get Method for Scripted Properties |Describes requirements and
considerations for creating the Get

function of a scripted property

Put Method for Scripted Properties |Describes requirements and
considerations for creating the Put

function of a scripted property

See Also

Defining Methods
IMethodDef Interface

IScriptDef Interface

Programming Transient Object Collections
ScriptDef Object

Meta Data Services Programming

Binding Scripts

ScriptDef objects are bound to method and property definitions through
relationships. The repository engine uses an algorithm to support the binding.

To support scripting for both method and property interface members, a
ScriptDef object is associated at the interface member level. Because method
and property definitions inherit from interface member objects, an interface
member object provides the common ground where an association between
script and interface members can be made.

Because interfaces can be aliased, derived, or otherwise reused, script definitions
are linked through association to support the levels of indirection that are
customary in COM programming. Associations are established through
collections of classes, interfaces, and members that you define for each
ScriptDef object.

During script invocation, the repository engine reads the collections to select a
script definition most closely related to the interface. When the repository engine
selects the closest script definition, it determines which method calls the script,
on which interface, and on what class. The selection process enables support for
two conditions that are common to C++ programming: inheriting a method or
property implementation, and overriding a default implementation.

A method or property can be associated with the class and interface being
executed, the interface being executed, or the closest ancestor that has the script.
If a script cannot be selected, then the repository engine returns an error in the
case of methods.

You can implement script for methods and property validation rules that apply
to:

e All classes that implement the interface.

e A specific class that implements the interface.

e A derived interface that can override the implementation of a base
interface method or property validation rule.

Each method or property can be associated with only one script definition.
However, the same script definition can be associated with multiple methods and
properties.

The IScriptDef interface, along with its relationships to other classes and
interfaces, is shown in the following figure.

==|nterface== ==|nterface==
S IScriptDef linterfaceDef2
IClassDef2 o.n _ 0.n 0.n
+Body | String
0. +Language : String InterfacelJsesScript
ClassUsesSCrpt I, igateSenpty - HRESULT |0.n 11
==|nterface== MemberlsesSeript
INamed Object ;
" ScriptDef
1.1
zzInterfacess [« 2
IReposTypelnfo ceintetfacas=
linterfaceMember2
See Also

Accessing a Script

Defining Script Objects
IScriptDef Interface

ScriptDef Object

Meta Data Services Programming

Accessing a Script

A script must run within the transaction of the calling program. When scripts
encounter an unhandled error or exception, the repository engine reads the error
information and populates the repository error queue appropriately. To minimize
syntax errors in the script, you can use the ValidateScript method to perform a
syntax check prior to script invocation.

To execute the script, the repository engine uses the Microsoft® ActiveX®
Scripting Engine (VBScript) by default. If you require a more powerful scripting
engine, you must instantiate that service from within your script.

There are three different ways to access a script. The first invokes a method; the
other two get or put a property.

Invoking a Method

When a script provides the implementation code for a method definition object,
you must access the script through method invocation.

When you invoke the method, the repository engine automatically executes the
associated script. If there is no associated script, the repository engine returns the
error message E_NOTIMPL.

Getting and Putting Properties

You can create a script that validates a property before inserting the value of that
property into the repository database. In this case, your script (rather than the
repository engine) validates the value, gets the value, and puts the value. If you
are accessing script to validate a property before storing it in a repository
database, you must create Get and Put methods that are associated with a

property.
When you create scripts to retrieve and assign properties, you must always
define both Get and Put operations in the same script.

e When you access any property definition object, the repository engine
calls the Get portion of the script. You can use a Get method with a

property to present properties in your application differently from the
way they are stored in the repository engine. If there is no associated
script, the property is returned as it is in the repository database.

¢ When you assign a value to any property definition object, the
repository engine executes the Put portion of the script. The Put portion
of the script is used to validate the value. If there is no associated script,
the repository engine stores the unvalidated value.

See Also

Defining Script Objects
Get Method for Scripted Properties

Handling Errors
Method Invocation for Scripted Methods

Put Method for Scripted Properties

Meta Data Services Programming

Predefined Script Variables

The following table lists variables that are predefined for use in scripts. Some
variables are initialized as part of the repository session.

Variable Description
ReposErr Represents an object that contains two properties:

e ReposErr.Result, which is an HRESULT value
that is returned as a result of the
IDispatch::Invoke call.

e ReposErr.Description, which is a string that
describes the error. This value is guaranteed to
exist only for errors generated by the repository
or the script engine itself.

CurRepos Represents the current repository session as an
IDispatch object.

CurReposODBC Represents the IReposODBC interface on the current
repository session.

CurReposObj |Represents a pointer to the IRepositoryObject2
interface. Use this interface to represent the repository
object instance on which the method or validation is
being executed.

NestedScripts |Represents a Boolean variable that is stored as a thread-
level object. This Boolean variable determines whether
nested scripts are called for in the current script. If the
user-set Boolean variable does not accept nested scripts,
this variable is set to FALSE. After the operation is
complete, the system sets it back to TRUE (the default
value).

See Also

Accessing a Script

Defining Script Objects
Handling Errors
IRepositoryObject? Interface

Meta Data Services Programming

Method Invocation for Scripted Methods

When you provide a script-based implementation for a method, the repository
engine selects the script object for the method using a binding algorithm, then
invokes the script using the default script engine.

For method invocation to succeed, you must make sure that references in the
script correspond to references in the method definition. Specifically, the method
name, signature, and returned values that are used to implement the script must
be the same as the name and signature of the associated method definition.

When you execute the method, it returns an HRESULT value that is copied into
the error object. The method invocation returns this value to the caller.

The method can invoke other methods, including itself. You should exercise
caution when invoking a method on itself. Doing so may create a recursive
condition that can cause a failure in your application.

See Also

Accessing a Script

Defining Script Objects
Get Method for Scripted Properties

Handling Errors

Predefined Script Variables

Put Method for Scripted Properties

Meta Data Services Programming

Get Method for Scripted Properties

A script-based implementation for a property requires the creation of a Get
method to retrieve a property value from the repository database.

A Get method that you provide substitutes for the get functionality that is
typically provided by the repository engine. When your script (rather than the
repository engine) provides the implementation, you must handle the retrieval of
a property value from the repository database.

For a Get method to succeed, the script body must contain a function with the
same name as the property, and it must be prefixed with Get. For example, if the
property name is ExtendedPrice, your script must include a function named
GetExtendedPrice.

When executing the function, the repository engine first performs a lookup to
find the property associated with the script. If the property cannot be found, a
repository error is returned. Otherwise, the function returns S_OK.

In addition to a Get method, you must also define a corresponding Put method
within the same script. For more information, see Put Method for Scripted

Properties.

See Also

Accessing a Script

Defining Script Objects
Handling Errors

IScriptDef Interface

Method Invocation for Scripted Methods

Put Method for Scripted Properties

Meta Data Services Programming

Put Method for Scripted Properties

A script-based implementation for a property requires the creation of a Put
method to validate and set a property value in the repository database.

A Put method that you provide substitutes for the set functionality that is
typically provided by the repository engine. A Put method is also the only way
to validate a property value prior to saving it in the database. When your script
(rather than the repository engine) provides the implementation, you must handle
setting and validation of a property value from the repository database.

For a Put method to succeed, the script body must contain a function with the
same name as the property, and it must be prefixed with Put. For example, if the
property name is ExtendedPrice, your script must include a function named
PutExtendedPrice.

When the Put function is executed, the repository engine returns an error if the
new value is invalid. If an error is returned, the repository engine does not store
the new value in the repository database. If the function returns S_OK, the value
passed to the function is stored in the repository database.

In addition to a Put method, you must also define a corresponding Get method
within the same script. For more information, see Get Method for Scripted

Properties.

Validating Multiple Properties Simultaneously

Sometimes two properties are so intertwined that it does not make sense to
validate them separately. Instead, you can validate both properties at the same
time by following these steps:

1. Set the Put method for both properties to return a descriptive error that
tells the user the property cannot be set. This step makes the property
effectively read-only.

2. Create a method that accepts the values of both properties as
parameters. This method validates the property combination. You can

then set each property individually.

See Also

Accessing a Script
Defining Script Objects

Handling Errors
IScriptDef Interface

Method Invocation for Scripted Methods

Predefined Script Variables

Meta Data Services Programming

Defining Inheritance

Inheritance enables you to share and reuse an interface or its members in new
ways. The following topics discuss the inheritance techniques that are available.

Topic Description

Interface Implication Describes the support of inheritance
for interfaces

Member Delegation Describes the support of inheritance
for interface members, specifically
relationships

Type Information Aliasing Describes how you can reuse an
object by creating a type information
alias

See Also

Defining Information Models
Defining Relationships and Collections
Interface Definition Objects

Meta Data Services Programming

Interface Implication

Interface implication enables a client application to define a correspondence
between two interfaces in an information model such that all of the members on
one interface are available to members of another interface. Interface implication
offers some of the functionality of multiple inheritance, which is not allowed in
COM.

Interface implication supports information model definitions of the form
Interface-I1-implies Interface 12, which means that any class that implements
I1 also implements I2. Consequently, if I1 is added to the list of implemented
interfaces on a class, 12 will be added to the list automatically. The engine
supports implication for such classes, whether the interfaces exist at the time of
the implication definition, or are installed into the repository at a later time.

Extending an Information Model Using Interface Implication

Interface implication facilitates information model extension. By using interface
implication, you can define a new interface and require that all new and existing
classes support it. Interface implication eliminates the need to write a custom
procedure that updates existing classes so that they support the new interface.

For example, consider the two interfaces IA and IB shown in the following
figure. Suppose that all classes implementing IA now need to implement IB as
well. By using interface implication, you can define IA-implies-IB, as shown in
the following figure. This ensures that any class that implements IA, such as C,
will also implement IB, even if class C is installed after the implication has been
defined.

Note In previous versions of the repository engine, interface implication was
accomplished only by using the Model Development Kit (MDK). With this
release, this restriction no longer applies.

For more information about creating information models by using the MDK, see
the Microsoft® SQL Server™ 2000 Meta Data Services Software Development
Kit (SDK).

See Also

Adding an Interface Implication
Defining Inheritance
Simulating Multiple Inheritance

Meta Data Services Programming

Adding an Interface Implication

Interface implication is defined through IInterfaceDef2. This interface supports
two collections that determine implication: Implies and ImpliedBy. These
collections allow you to define both directions of an implication.

During a commit of any transaction that includes an interface that has an Implies
collection attached to it, the repository engine adds all implied interfaces to an
existing class and then recalculates the class. The result of the recalculation is
the same as if the class implemented the implied interface directly.

See Also

Defining Inheritance

Interface Implication

IInterfaceDef2 Interface

Meta Data Services Programming

Member Delegation

Member delegation supports the assignment of members on one interface to base

members on another interface. Delegation can be used to support relationship

inheritance.

The following topics provide more information.

Topics

Description

Derived Members

Describes derived members and
strategies for using derived members
in your information model

Derived Member Requirements

Explains the conditions and
requirements that support member
derivation

Creating a Derived Member

Describes how to create a derived
member and how to add a derived
member to an existing class

Derivation Behavior

Explains how the repository engine
stores, retrieves, and updates derived
members

Example: Basic Member Delegation

Provides sample code that illustrates
member delegation

Example: Member Delegation with
Filtering

Provides sample code that illustrates
filtering on derived collections

See Also

Defining Inheritance

Interface Implication

IInterfaceDef2 Interface

Meta Data Services Programming

Derived Members

Derived members is a capability that can be used to delegate the implementation
of members of one interface to members of another interface, where both
interfaces are implemented by the same class.

Aliasing is a simplified form of member delegation, where a member of one
interface is derived from a member of another without modifying its underlying
semantics. Through aliasing, you can overlap functionality for multiple
interfaces.

For example, when interfaces evolve, you can rename properties and methods,
place them on different interfaces, and still maintain the naming scheme of the
original interface. Similarly, aliasing provides a way to flatten multiple interfaces
into a single interface that contains members from all of them. The advantage to
flattening a set of interfaces is that it simplifies navigation. Also, aliasing
simulates multiple inheritance.

Note You can define aliases for type information elements other than members.
For more information about type information aliasing, see Type Information

Aliasing.

The following topics discuss how member derivation aliasing enables these
scenarios.

Topic Description

Supporting Multiple Interfaces With [Describes how you can reuse

Overlapping Functionality interface definitions through derived
members.

Flattening Interfaces Describes how you can combine

interface members into one interface
to simplify navigation.

Simulating Multiple Inheritance Explains how you can simulate
multiple inheritance using derived
members.

A semantically richer variant of derived members allows a collection on one

interface to be derived from a collection on another interface while, at the same
time, filtering out some of the base collection members.

The following topics discuss how member derivation enables these scenarios.

Topic Description

Specializing Relationship CollectionsDescribes how you can create
special-purpose collections that are
based on a general-purpose

collection.

Filtering Derived Collections Describes how you can apply
filtering techniques to a derived
collection.

See Also

Creating a Derived Member

Defining Inheritance

Derived Member Requirements

Meta Data Services Programming

Supporting Multiple Interfaces With Overlapping

Functionality

As an information model changes to accommodate new functionality, it is
common to create a new interface by evolving an existing interface. In this
situation, the two interfaces (the old and new versions) have overlapping
functionality. The two interfaces can exist together when the old version of the
interface must still be supported. In this case, properties can be renamed and

placed on different interfaces while keeping the underlying semantics
synchronized between the interfaces.

The following graph shows an object exposing the two interfaces:
I1: An interface with a base member M1.
I2: An interface with a derived member M2.

By using member delegation from I2 to I1, the user can either call the base
member (that is, I1::M1), or call the derived member (that is, 12::M2), which
will be delegated to I1::M1.

For more information about other ways of combining interface members, see

Flattening Interfaces and Simulating Multiple Inheritance.

See Also

Creating a Derived Member

Derived Members

Interface Implication

Meta Data Services Programming

Flattening Interfaces

You can use derived members to flatten a set of interfaces of a class into a single
interface. In this case, the new interface contains all of the combined members of
the flattened interfaces. This simplifies the use of the class, because your
application does not need to navigate between interfaces of the class.

In the following figure, an object exposes two interfaces, I1 and 12, whose
members are M1 and M2. By delegation, the two interfaces could be flattened
into one interface I3 that contains the derived members Md1 and Md2. In this
case the call I3::Md1 will be mapped to I1::M1, and the call 13:Md2 will be
mapped to 12::M2.

For more information about other ways of combining interface members, see
Supporting Multiple Interfaces With Overlapping Functionality and Simulating

Multiple Inheritance.

See Also

Creating a Derived Member

Derived Members

Interface Implication

Meta Data Services Programming

Simulating Multiple Inheritance

In COM, multiple inheritance between interfaces is not supported. However, by
using the derived members capability, multiple inheritance can be simulated.

For example, the following figure shows an interface IA that inherits from IB,
and implies IC (meaning that any class that supports IA must also support IC).
According to COM, IA cannot inherit from IC because it already inherits from
IB. However, with delegation, the members of IC could be made available on
IA. This is not inheritance, because IC members are not explicitly mapped into
IA. Nevertheless, the result is the same because IA now includes members of
both IB and IC.

For more information about other ways of combining interface members, see

Flattening Interfaces and Supporting Multiple Interfaces With Overlapping
Functionality.

See Also

Creating a Derived Member

Derived Members

Interface Implication

Meta Data Services Programming

Specializing Relationship Collections

Using derived members makes it possible to create a subset or specialize a
relationship collection.

For example, in the following figure, Vehicle is related to Engine through the
relationship vehicle has engine. Because the Motor Vehicle uses an Internal
Combustion Engine, it requires specializing the general relationship vehicle has
engine to motorVehicle has internal CombustionEngine. The last relationship is
specialized in Truck to truck has dieselEngine.

For more information about other ways of specializing a collection, see Filtering
Derived Collections.

See Also

Creating a Derived Member

Derived Members

Meta Data Services Programming

Filtering Derived Collections

By using filtering, it is possible to derive specific collections from a general
collection. Filtered collections apply to inherited interfaces.

The following example illustrates the basic concept of filtering. In the figure,
IDocl interface has the Elements collection definition, which contains figures
and text. You may find it useful to access only the text or only the figures. With
the derivation mechanism that uses filtering, the IDoc2 interface can have two
collection definitions, Figures and Text. The first contains only figures, and the
second contains only text.

Architecture of Filtered Derived Collections

To create a filtered derived collection, you must set up parallel collections that
correspond to the base collections. You must define a derived origin collection
for the base origin collection, a derived destination collection for the base
destination collection, and a derived relationship collection for the base
relationship collection. The following example provides an illustration.

The following figure shows two base objects and the collections that relate them.

F'au:_kage Fackage Relationship Element Element
object collection collection caollzction object

In the next figure, Table object inherits from Package object and Column object
inherits from Element object. Derived collections include the Table collection,
the Column collection, and the Relationship collection that joins them.

Package @ m m | Element

object collechion collection collection | object

I

, : Derived | :
Table object Drerived table relaﬁirulzuvnihip Derived calumn Calurnn object

IT able::|Package @/ wiﬂj-/ @/ | [Column::IElement

In this example and in all cases where filtering applies, the derived collection is
a subset of the base collection. The Table collection is made up of a subset of the
items in the Package collection. The derived relationship matches the items in
the Table subset with the items in the Column subset.

For more information about other ways of specializing a collection, see
Specializing Relationship Collections.

See Also

Derived Members

Example: Member Delegation with Filtering

Filtering Collections

Meta Data Services Programming

Derived Member Requirements

Before you define a derived member, verify that conditions supporting the
implementation are in place.

General Requirements
The following requirements apply to all derived members.

e A class that supports an interface with a derived member must also
support the interface on which the corresponding base member is
defined. In other words, the interface with the derived member must
either inherit or imply the interface with the base member.

e A derived member can be on the same or a different interface as its base
member.

¢ A derived member can be derived from another derived member. An
interface member must ultimately derive from a member that is not
derived. In other words, cyclic derivations are not allowed.

e Derived members can be defined for any interface that is an instance of
InterfaceDef, including built-in repository engine interfaces, such as
IRepositoryObject.

Derived Property Definition Requirements

For property definitions, storage data types and lengths of derived properties
must be the same as those of the base property.

Derived Collection Definition Requirements

Because a derived collection must map to a base collection, the derived
collection and base collection must have correspondent characteristics.

The following requirements apply to derived collections.

Collection Type

A derived origin collection must map to a base origin collection, and a derived
destination collection must map to a base destination collection.

Relationship Type

A derived collection can be connected by way of a relationship only to another
derived collection. However, a derived collection cannot be connected to a base
(stored) collection.

A derived collection definition must be defined in the same transaction as the
collection from which it was derived, on the same relationship.

Two derived relationships can specialize the same base relationship and have
their collections on the same pair of interfaces. However, because only the
generalized relationship is stored in the relationship table (RTbIRelships),
instances of the two specialized relationships are indistinguishable.

Naming

A derived collection must be identical to the base collection with regard to
naming characteristics. If the base collection specifies unique naming, the
derived collection must also contain uniquely named items. Furthermore, if you
add items to a base collection by way of the derived collection, you must verify
that the items you add do not break the unique naming constraints of the base
collection. For more information, see Naming and Unique-Naming Collections.

Sequencing

A derived collection must be identical to the base collection with regard to
sequencing characteristics. Inserting an item into a derived sequenced collection
inserts the new relationship into the base collection immediately after its
predecessor in the derived collection. Also, moving an item in the derived
collection moves the item in the base collection immediately after its
predecessor in the derived collection. For more information, see Sequenced
Collections.

Delete Propagation

The delete propagation semantics of a derived collection must be the same as the
base collection. For more information, see Propagating Deletes.

Version Propagation

The version propagation semantics of a derived collection must be the same as
the base collection. For more information, see Propagating Versions.

See Also

Creating a Derived Member

Defining Inheritance

Example: Basic Member Delegation

Example: Member Delegation with Filtering

IInterfaceMember? interface

InterfaceMemberFlags Enumeration

Meta Data Services Programming

Creating a Derived Member

Interface members are either base members or derived members. A derived
member is mapped to another interface base member through a relationship.
Member derivation supports mapping of the form MemberB Is-Derived-From
MemberA, which means that MemberA provides implementation for
MemberB.

How to Define a Derived Member

Before you can define a derived member, you must verify that the interface that
includes the derived member and the interface that contributes the base member
are implemented by the same class. For more information about conditions and
constraints that apply to derived member definition, see Derived Member
Requirements.

To define a derived member, use the IInterfaceDef2::CreateAlias method to
create an alias that represents the derived member. Aliases are created from the
interface on which you add the derived member.

If you use CreateAlias, the derived member is automatically mapped to the base
member providing implementation details. Mapping is achieved by adding the
derived member and the base member to collections. The base member is added
to the ServicedByBaseMember (the origin) collection, and the alias to the
ServicesDerivedMembers (the destination) collection. The two collections are
the two sides of the BaseMemberServicesDerivedMembers relationship class.
IInterfaceMember2 provides these collections.

After you create a derived member, you can add a property definition object to
the derived member to enhance its definition.

Adding a Derived Member to an Existing Class

You can add an interface containing derived members to an existing class. No
modification of the instances is required as long as both the derived members
and the existing instances of the class have valid data for the properties and
collections.

However, in one case some existing instances of the class may be undesirable,
although they're technically valid. In this case, an interface with a derived
collection, for example, may be added to a class that already has instances, and
the base member may be read-only. This means that new relationships on
instances of this class can be added to the derived collection but not (directly) to
the base collection. Thus, all new relationships in the base collection will
conform to the definition of the derived collection. However, at the time the
derived collection definition was added, there may have been existing instances
of the class with relationships on the base collection that do not conform to the
derived collection.

Updating a Derived Member

You can define whether a derived member can be updated. Update capability is
enabled by default. To prohibit updating, set the
INTERFACEMEMBER_READONLY flag to TRUE. For more information, see
Derivation Behavior and InterfaceMemberFlags Enumeration.

See Also

Defining Inheritance

Example: Basic Member Delegation

Example: Member Delegation with Filtering

IInterfaceDef2::CreateAlias

IInterfaceMember? interface

Meta Data Services Programming

Derivation Behavior

The following are detailed rules for derivations that apply to storage, retrievals,
updating collections, and adding derived members to an existing class.

Storage

A property or relationship is always stored by the repository engine on the base
interface. That is, there are no instances of derived relationships in
RTbIRelships and there are no columns allocated for derived properties in the
repository SQL table of their interface.

Retrievals

When a derived collection is referenced, the repository engine materializes the
derived collection by applying a filter to the base collection. For each instance in
the base collection, the engine determines whether the target object supports the
target interface of the derived collection. The effect for a relationship collection
is that all instances are visible at the general level in the base collection, and
subsets of the generalized relationship instance collection are visible at the more
specialized levels in the derived collections.

Updates to Collections

Use IInterfaceMember::Flags to determine whether a derived or base member
is updateable.

Add, remove, insert, and move methods on the derived collection are delegated
to the corresponding operation on the corresponding item in the base collection.
An insert or move method on a sequenced collection places the item relative to
the derived collection. For more information about sequencing, see Derived
Member Requirements.

The count, enumeration, and type methods on a derived collection are specific to
that collection.

See Also

Creating a Derived Member

Defining Inheritance
Example: Basic Member Delegation
Example: Member Delegation with Filtering

IInterfaceMember? interface

InterfaceMemberFlags Enumeration

Meta Data Services Programming

Example: Basic Member Delegation

This example includes sample code for creating a derived property and a derived
collection. This example illustrates how to create a new interface and define the
derived property. Creating a relationship with a predefined base property
declares that this property is derived. Similarly, this example also illustrates how
to define a derived collection. The same procedure is used for method
definitions. There is no change in the programming logic of setting and getting
properties or manipulating collections.

The following table identifies the Repository Type Information (RTIM) objects
and the corresponding pointers that appear in the sample code.

RTIM object Pointer

IinterfaceDef *pINewlIface;

IclassDef *pIClassDef;

IpropertyDef *pIBaseProp, *pIDerivedProp;
IrelationshipDef *pINewRelshipDef;
IrelshipColDef *pIBaseCol, *pIDerivedCol;
IreposTypeLib *pITypeLib;

In order to run this sample, you must create a type library and a class definition
for a new interface. Also, the collection pIBaseCol (a collection that is the same
type as the one being delegated) and the property pIBaseProp (a property that is
the same type as the one being delegated) must have been defined earlier. The
pointers pIBaseCol and pIBaseProp are assumed to have been already set
before running this example.

// Create a new interface:

pIClassDef->CreatelnterfaceDef(CRep Variant(OBJID_INewOrglface)
CVariant("INewlface"), CRep Variant(IID_INewlIface), pIIReposDispa
CVariant("Default"), &pINewlface);

// Create an alias property:

pINewlface->CreateAlias(CRep Variant(OBJID_ALongDerived),
CVariant("ALongDerived"), DISPID_ALongDerived, pIBaseProp,
&plDerivedProp);

// Create an alias collection:

pINewlface->CreateAlias(CRep Variant(OBJID_CollectionDerived),
CVariant("CollectionDerived"), DISPID_CollectionDerived,
pIBaseCol, &plDerivedCol);

See Also

Creating a Derived Member

Defining Inheritance

Example: Member Delegation with Filtering

Meta Data Services Programming

Example: Member Delegation with Filtering

The repository stores information that determines whether a derived collection
can be filtered for objects that support a certain target interface.

To filter a derived collection, you must create two derived collection definitions
and a new relationship to connect them. One derived collection contains the
target objects of interest (that is, the set of target objects, minus those that do not
match your filter criteria). The second derived collection contains the origin
object. You need a derived origin collection whenever you want to create a
relationship that includes a derived destination collection. The new relationship
type is used to match the collections.

Note If the derived collections were connected by the relationship type as the
base collections, there would be two collections on each side of the relationship
type, and the matching of origin and destination collections would not be well
defined.

The following table identifies the Repository Type Information (RTIM) objects
that are used to create derived collections and shows the corresponding pointers
that appear in the example code.

RTIM object Pointer

IInterfaceDef *pINewOrglface, *pIDestlface,
*pIIReposDispatch;

IClassDef *pIClassDef;

IPropertyDef *pIBaseProp, *pIDerivedProp;
IRelationshipDef [*pINewRelshipDef

IRelshipColDef |*pIBaseOrgCol, *pIDerivedOrgCol;
IRelshipColDef |*pIBaseDstCol, *pIDerivedDstCol;
IReposTypeLib [*pITypeLib;

In order to run this sample, you must create a type library and a class definition
for a new interface. Also, the interface pIDestIface must exist, as well as a
relationship from this interface with two collections, pIBaseOrgCol and
pIBaseDstCol. The pointers pIDestIface, pIBaseOrgCol, and pIBaseDstCol

are assumed to have been already set before running this example.

// Create interfaces for a given class:
pIClassDef->CreatelnterfaceDef(CRep Variant(OBJID_INewOrglface)
CVariant("INewOrglface™), CRepVariant(IID_INewOrglface),
[TReposDispatch, CVariant("Default"), &pINewOrglface);

// Create a new relationship type:

/* Notice that CVariant is a wrapper of the VARIANT class defined
in the header file "oleutil.h" */

pITypeLib->CreateRelationshipDef(CRep Variant(OBJID_NULL),

CVariant("A_Relationship"), &pINewRelshipDef);

// Create an origin collection definition:
pINewOrglface->CreateRelationshipColDef(CRep Variant(OBJID_Me
CVariant("Members"), DISPID_Members, TRUE, COLLECTION_N/
pINewRelshipDef, &pIDerivedOrgCol);

/I Get the ServicedBy collection and add the base origin collection:
pIDerivedOrgCol->Interface("IInterfaceMember2")
.ServicedBy.Add(pIBaseOrgCol);

// Create the destination collection:

pIDestIface->CreateRelationshipColDef(CRep Variant(OBJID_NULL)

CVariant("Parent"), DISPID_Parent, FALSE, NULL, pINewRelshipDe

pIDerivedDstCol);

// Get the ServicedBy collection and add the base destination collectior

pIDerivedDstCol->Interface("IInterfaceMember2")
.ServicedBy.Add(pIBaseDstCol);

In this example code, the derived origin collection will filter the objects that
support the IDestIface interface. Note that a new relationship type is defined.
The relationship instances, however, will not use this relationship type. All of the
collections will continue to use the base relationship type instead. The new

relationship type will be used to identify the matching collections in
RTbIRelColDefs.

See Also

Creating a Derived Member

Defining Inheritance

Example: Basic Member Delegation

Filtering Derived Collections

Meta