
Meta	Data	Services



Meta	Data	Services	Overview
Microsoft®	SQL	Server™	2000	Meta	Data	Services	is	an	object-oriented
repository	technology	that	can	be	integrated	with	enterprise	information	systems
or	with	applications	that	process	meta	data.

A	number	of	Microsoft	technologies	use	Meta	Data	Services	as	a	native	store	for
object	definitions	or	as	a	platform	for	deploying	meta	data.	One	of	the	ways	in
which	SQL	Server	2000	uses	Meta	Data	Services	is	to	store	versioned	Data
Transformation	Services	(DTS)	packages.	In	Microsoft	Visual	Studio®,	Meta
Data	Services	supports	the	exchange	of	model	data	with	other	development
tools.

You	can	use	Meta	Data	Services	for	your	own	purposes:	as	a	component	of	an
integrated	information	system,	as	a	native	store	for	custom	applications	that
process	meta	data,	or	as	a	storage	and	management	service	for	sharing	reusable
models.	You	can	also	extend	Meta	Data	Services	to	provide	support	for	new
tools	for	resale	or	customize	it	to	satisfy	internal	tool	requirements.

Meta	Data	Services	documentation	contains	the	following	sections.

Section Description
Meta	Data	Services
Fundamentals

Describes	fundamental	concepts	and
strategies	for	using	Meta	Data	Services.

Meta	Data	Services
Architecture

Explains	the	components	of	Meta	Data
Services	and	how	they	relate	to	each	other.

OIM	in	Meta	Data	Services Describes	the
Open	Information	Model	(OIM)	and	how	it
is	used	in	Meta	Data	Services.

Using	Meta	Data	Browser Introduces	Meta	Data	Browser	and
explains	how	to	use	it.

Programming	Meta	Data
Services	Applications

Provides	information	about	programming
against	meta	data	in	a	repository.

Repository	API	Reference Describes	the	classes,	interfaces,	and
objects	that	you	can	use	to	program	the
repository	engine	and	information	models.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


XML	Encoding	Reference Describes	the	classes,	interfaces,	and
objects	that	you	can	use	to	implement
Extensible	Markup	Language	(XML)
encoding	in	your	tool	or	application.

See	Also

What's	New	in	Meta	Data	Services

JavaScript:hhobj_3.Click()


Meta	Data	Services



Meta	Data	Services	Fundamentals
Microsoft®	SQL	Server™	2000	Meta	Data	Services	provides	a	way	to	store	and
manage	meta	data	about	information	systems	and	applications.	This	technology
serves	as	a	hub	for	data	and	component	definitions,	development	and
deployment	models,	reusable	software	components,	and	data	warehousing
descriptions.

Product	components	consist	of	the	repository	engine,	tools,	APIs,	standard
information	models,	a	browser,	and	a	Software	Development	Kit	(SDK).	For
more	information	about	product	components,	see	Meta	Data	Services
Architecture.

Integrating	a	meta	data	management	service	into	a	product,	a	development
environment,	or	an	information	system	requires	understanding	what	meta	data	is
and	how	it	is	used.	The	topics	in	this	section	describe	fundamental	concepts	and
usage	strategies	that	identify	ways	in	which	this	meta	data	management
technology	is	applied.

Topic Description
Meta	Data	Fundamentals Defines	and	explains	the	characteristics	of

meta	data.
Information	Model
Fundamentals

Provides	basic	information	about
information	models.

Meta	Data	Management Explains	why	meta	data	management	is
important	and	how	repository	technology
supports	management	tasks.

Using	Meta	Data	Services Describes	ways	to	use	Meta	Data	Services
based	on	user	roles	and	objectives.

Designing	Meta	Data	Types
Using	Information	Models

Explains	the	role	of	Meta	Data	Services	in
the	design	process.

Developing	Applications	Using
Meta	Data

Explains	the	role	of	Meta	Data	Services	in
the	development	process.

Processing	Meta	Data	at	Run
Time

Explains	the	role	of	Meta	Data	Services
during	run	time.



See	Also

OIM	in	Meta	Data	Services

Repository	API

Repository	Engine

Repository	Object	Architecture

Using	Meta	Data	Browser

JavaScript:hhobj_1.Click()


Meta	Data	Services



Meta	Data	Fundamentals
Microsoft®	SQL	Server™	2000	Meta	Data	Services	is	a	set	of	services	that
allows	you	to	manage	meta	data.	Using	Microsoft	Meta	Data	Services	requires
understanding	meta	data	characteristics.	If	you	are	new	to	the	concept	of	meta
data,	this	overview	will	help	you	learn	about	the	type	of	data	that	Meta	Data
Services	manages.

Meta	data	describes	the	structure	and	meaning	of	data,	as	well	as	the	structure
and	meaning	of	applications	and	processes.	It	is	important	to	remember	that
meta	data	is	abstract,	has	a	context,	and	can	be	used	for	multiple	purposes	in	a
development	environment.

Meta	Data	Is	Abstract
The	simple	act	of	describing	real-world	phenomena	generates	abstract
information	that	qualifies	as	meta	data.	For	example,	describing	natural
phenomena	such	as	rain,	wind,	and	sunshine	requires	abstractions	like	the
concept	of	weather.	Weather	can	be	further	abstracted	by	defining	concepts	such
as	temperature,	precipitation,	and	humidity.

In	data	design,	real-world	phenomena	are	also	described	in	abstract	terms.
People,	places,	things,	and	numbers	are	grouped	or	designated	as	employee,
customer,	or	product	data.

In	software	design,	the	application	and	database	structures	that	represent	or	store
data	can	be	abstracted	into	meta	data	classification	schemes	that	make	sense	to
developers	and	designers.	A	table	or	form	is	derived	from	an	object,	which,	in
turn,	can	be	derived	from	a	class.

There	are	multiple	levels	of	abstraction	in	meta	data.	You	can	describe	a	data
instance,	then	describe	that	description,	and	continue	to	describe	subsequent
descriptions	until	you	reach	some	practical	limit.	Typically,	meta	data
descriptions	used	in	software	development	extend	to	two	or	three	levels	of
abstraction.	In	real	terms,	a	data	instance	of	"loan	table"	can	be	described	as	a
database	table	name.	A	database	table	can	be	described	as	a	database	table
object.	Finally,	a	database	table	object	can	be	described	by	an	abstract	class	that
formalizes	the	fixed	set	of	characteristics	to	which	all	derived	objects	must



conform.

Meta	Data	Has	Context
The	distinction	between	data	and	meta	data	is	often	called	the	type/instance
distinction.	Model	designers	articulate	types	(such	as	classes	or	relationships)
and	software	developers	articulate	instances	(such	as	a	Table	class	or	a	table	has
columns	relationship).

The	distinction	between	instance	and	type	is	context-sensitive.	What	is	meta	data
in	one	scenario	becomes	data	in	another	scenario.	For	example,	in	a	typical
relational	DBMS,	the	system	catalog	describes	the	tables	and	columns	that
contain	your	data.	You	can	think	of	the	data	in	the	system	catalog	as	meta	data
because	it	describes	data	definitions.	However,	with	the	right	software	tool,	you
can	manipulate	it	as	you	would	manipulate	any	other	data.	Examples	of
manipulating	meta	data	include	viewing	data	lineage	or	table	versioning
information,	or	identifying	all	tables	that	express	financial	data	by	searching	for
columns	that	have	a	currency-based	data	type.	In	this	scenario,	standard	meta
data	like	the	system	catalog	becomes	data	that	you	can	manipulate.

Meta	Data	Has	Multiple	Purposes
You	can	work	with	meta	data	type	and	instance	information	just	as	you	would
with	any	kind	of	application	or	data	design	elements.	Expressing	design
information	as	meta	data,	especially	standard	meta	data,	opens	up	new
possibilities	for	reuse,	sharing,	and	multiple	tool	support.

For	example,	defining	data	objects	as	meta	data	enables	you	to	see	how	they	are
constructed	and	versioned.	Versioning	support	provides	a	way	to	view,	branch,
or	retrieve	any	historical	version	of	a	particular	DTS	package	or	data
warehousing	definition.	When	you	develop	code	based	on	meta	data,	you	can
define	a	structure	once	and	then	reuse	it	to	create	multiple	instances	that	can	be
versioned	for	specific	tools	and	applications.	You	can	also	create	new
relationships	among	existing	meta	data	types	to	support	a	new	application
design.

See	Also



Information	Model	Fundamentals

Meta	Data	Management

OIM	in	Meta	Data	Services



Meta	Data	Services



Information	Model	Fundamentals
An	information	model	is	a	set	of	meta	data	types	that	describe	a	tool,	application,
data	structure,	or	information	system.	You	can	model	a	business	process,	for
example,	to	describe	the	progression	of	an	order	as	it	moves	from	order	entry	to
final	invoicing.	If	you	model	a	database	application,	your	information	model
describes	the	tables	and	columns	that	are	supported	by	the	application.	If	your
goal	is	to	define	an	application	for	booksellers,	your	information	model	will
include	elements	that	describe	books,	authors,	and	publishers.	Books,	authors,
and	publishers	are	the	kinds	of	data	that	a	bookseller	application	would	need	to
manipulate.

Notice	that	these	examples	depict	types	of	data	rather	than	instances	of	data.	The
first	example	describes	an	order	process,	not	the	specific	orders	placed	by	a
customer.	Similarly,	an	information	model	for	a	database	application	describes
tables,	keys,	constraints,	and	stored	procedures,	but	not	the	actual	data	that	these
elements	store	and	manipulate.	In	the	same	way,	the	information	model	for	the
bookseller	application	describes	the	concept	of	a	book,	but	not	data	about
individual	books.	As	you	can	see,	information	models	articulate	things	that	are
always	two	steps	removed	from	end	user	instance	data.

Information	Model	Building	Blocks
Information	models	are	described	by	classes,	relationships,	and	properties.

A	class	is	a	template	that	defines	the	characteristics	of	objects.	A	class	represents
entities	in	an	information	model.	In	previous	examples,	an	order,	a	table,	a	key,	a
constraint,	and	a	stored	procedure	represent	different	classes.

A	relationship	type	defines	a	template	to	which	stored	relationships	must
conform.	For	example,	you	can	define	the	type	of	relationship	between	a	table
and	a	column,	a	column	and	a	data	type,	or	a	schema	and	a	table.	A	relationship
type	defines	a	set	of	criteria	that	describe	how	two	objects	relate.

A	property	is	a	template	to	which	stored	property	values	must	conform.	For
example,	when	you	store	an	invoice	total,	you	must	store	a	currency	value.

Standard	Information	Models



Microsoft®	SQL	Server™	2000	Meta	Data	Services	distributes	an
implementation	of	the	Open	Information	Model	(OIM)	that	provides	standard
meta	data	types	that	tools	can	use.	The	OIM	is	a	generic	set	of	information
models	that	describe	object	modeling,	database	modeling,	and	component	reuse.

You	can	extend	the	OIM	by	adding	custom	elements.	For	example,	if	you	are
creating	an	application	that	requires	elements	that	are	not	included	in	the	OIM,
you	can	add	those	elements	to	complete	your	design.	Although	the	OIM	is	not
required,	deploying	an	OIM-based	strategy	provides	integration	possibilities	that
are	not	otherwise	achievable.

Importance	of	Information	Models
In	SQL	Server	2000	and	in	other	Microsoft	products	that	integrate	with	Meta
Data	Services,	OIM-based	models	are	predefined,	installed,	and	operational.	No
action	is	required	on	your	part	if	all	you	want	to	do	is	use	these	services.
However,	if	you	want	to	build	your	own	tools	and	applications	that	work	with
meta	data	types,	or	if	you	want	to	create	or	extend	an	information	model,	you
will	need	to	know	all	about	information	models.

Information	models	are	the	key	to	integrating	Meta	Data	Services	with	other
tools	and	technologies.	For	more	information	about	how	information	models	fit
into	Meta	Data	Services	architecture,	see	Information	Models.

See	Also

Using	Meta	Data	Services

Meta	Data	Fundamentals

Meta	Data	Management



Meta	Data	Services



Meta	Data	Management
Tool	developers	can	make	use	of	Microsoft®	SQL	Server™	2000	Meta	Data
Services	by	adding	meta	data	management	support	in	products	they	provide.
Meta	Data	Services	provides	a	platform	for	building	meta	data	management
capability	into	dedicated	tools	or	into	add-on	features	of	existing	tools.

Shared	meta	data	is	a	way	to	deploy	data	and	application	structures	across
heterogeneous	platforms	and	development	environments.	It	provides	common
definition	so	that	tools	and	applications	can	interpret	the	same	meta	data
definition	and	transform	it	into	application-specific	structures.	Meta	data	is	an
integration	point	because	it	is	abstract,	containing	essential	details	that	remain
constant	regardless	of	the	implementation	strategy.	This	flexibility	makes	it
ideally	suited	for	design	purposes	because	it	allows	you	to	separate	design	from
implementation.	When	you	work	with	predefined	meta	data,	you	can	implement
a	specific	design	using	the	development	tool	that	best	serves	your	needs.

As	you	incorporate	meta	data	into	your	information	systems,	you	need	tools	that
can	keep	track	of	the	meta	data	you	create,	how	it	is	used,	and	how	it	can	be
reused	in	subsequent	projects.

Meta	Data	Services	helps	you	manage	meta	data	by	providing	a	platform	that
enables	you	to:

Store	meta	data	constructs.

Version	meta	data	objects	and	relationships	so	that	you	can	work	with
current	and	historical	editions	with	equal	ease.

Allocate	workspaces	to	isolate	modifications	to	a	specific	set	of	objects.

Import	and	export	meta	data	structures	in	Extensible	Markup	Language
(XML)	format	to	work	with	your	meta	data	in	a	variety	of
environments.

See	Also



Using	Meta	Data	Services

Meta	Data	Fundamentals



Meta	Data	Services



Using	Meta	Data	Services
Microsoft®	SQL	Server™	2000	Meta	Data	Services	is	a	technology	that	you	use
with	other	tools.	The	tools	that	you	use	vary	depending	on	whether	you	are
designing	meta	data,	programming	with	meta	data,	or	accessing	meta	data	at	run
time.

The	following	diagram	shows	the	ways	you	can	interact	with	Meta	Data
Services.	It	shows	design	time,	development	time,	and	run	time	phases.	In
practice,	the	distinction	between	these	phases	is	not	so	precise.	However,	making
these	distinctions	can	help	you	understand	the	various	ways	you	can	work	with
Meta	Data	Services.

During	design,	the	focus	is	on	model	creation.	You	can	use	modeling	tools	and
the	Meta	Data	Services	Software	Development	Kit	(SDK)	to	create	meta	data	to
store	in	a	repository	database.

Development	begins	after	you	have	model	information	in	the	database.	You	can
then	use	the	API	to	program	against	it,	or	you	can	use	XML	encoding	to
exchange	meta	data	with	other	repositories.

At	run	time,	you	can	use	browser	tools	that	work	directly	with	repository
contents.	At	every	level,	you	can	create	custom	solutions	that	are	based	on	Meta
Data	Services.



See	Also

Designing	Meta	Data	Types	Using	Information	Models

Developing	Applications	Using	Meta	Data

Meta	Data	Fundamentals

Meta	Data	Management

Meta	Data	Services	Architecture

Processing	Meta	Data	at	Run	Time



Meta	Data	Services



Designing	Meta	Data	Types	Using	Information
Models
Deploying	Microsoft®	SQL	Server™	2000	Meta	Data	Services	technology
begins	with	an	information	model.	Meta	Data	Services	is	intended	to	be	used
with	information	models	that	provide	type	information	about	meta	data.	The
repository	engine,	repository	API,	add-on	tools,	and	Software	Development	Kit
(SDK)	work	with	information	models.	The	meta	data	types	that	are	defined	in	an
information	model	provide	the	design	data	that	interacts	with	development	tools,
applications,	and	browsers.	All	Microsoft	products	that	integrate	with	Meta	Data
Services	technology	base	integration	on	some	type	of	information	model.

If	you	want	to	build	an	application	with	Meta	Data	Services,	the	information
models	that	you	use	should	completely	describe	the	data,	tool,	or	application
structure	that	you	will	code	later.	For	example,	if	you	want	to	build	an	inventory
control	application,	the	information	model	that	you	need	should	completely
describe	the	inventory	control	application.

If	you	are	using	the	Open	Information	Model	(OIM),	your	design	elements	are
predefined.	You	can	also	use	a	subset	of	OIM	elements	and	then	supplement	the
model	with	the	additional	elements	you	require.	OIM	can	be	extended	to	support
tool-specific	meta	data	types	or	any	other	meta	data	types	that	your	design
requires.

Although	the	OIM	provides	significant	advantages	in	terms	of	tool	and
programming	support,	you	are	not	required	to	use	it.	You	can	create	custom
information	models	in	Unified	Modeling	Language	(UML)	that	are	completely
unrelated	to	the	OIM.

Custom	or	OIM-extended	information	models	that	you	create	must	conform	to
the	abstract	classes	provided	through	the	repository	API.	To	build	custom
information	models	or	extend	an	OIM	model,	you	should	use	the	Meta	Data
Services	SDK.	It	includes	a	model	compiler	that	validates	your	model	against
the	repository	API.

Using	an	information	model	does	not	eliminate	the	need	for	coding.	Rather,	it
changes	the	role	that	coding	plays.	In	a	model-driven	development	environment,
code	provides	the	implementation	strategy.	For	more	information	about



programming	against	information	models,	see	Developing	Applications	Using
Meta	Data.

See	Also

Using	Meta	Data	Services

Information	Model	Fundamentals

Meta	Data	Services	SDK

OIM	in	Meta	Data	Services

Processing	Meta	Data	at	Run	Time



Meta	Data	Services



Developing	Applications	Using	Meta	Data
After	an	information	model	is	installed	in	a	repository	database,	you	can
program	against	it	using	the	repository	API.

Before	you	begin	programming,	it	is	helpful	to	understand	how	the
information	model	is	constructed.	The	information	model	completely	describes
at	least	a	portion	(if	not	all)	of	the	code	that	you	must	provide.	If	it	contains
customer	and	order	objects,	your	code	should	instantiate	customer	and	order
object	instances.

Model-driven	development	does	not	place	boundaries	on	what	your	application
can	do.	As	always,	application	code	can	support	whatever	structures	and
behaviors	are	required	of	it,	regardless	of	whether	they	are	described	by	a	model.
To	be	especially	useful,	however,	your	information	model	must	contain	the	most
complete	set	of	meta	data	types	that	is	possible.	The	key	point	to	understand	is
that	the	information	model	provides	the	minimum	design	that	you	must
implement	in	your	code.

If	you	are	using	the	Microsoft®	SQL	Server™	2000	Meta	Data	Services
Software	Development	Kit	(SDK),	you	can	speed	up	your	development	effort	by
incorporating	samples	and	using	the	tools	it	provides	to	generate	program	files
from	your	information	model.

Development	Scenarios
For	tool	vendors,	Meta	Data	Services	provides	a	basis	for	integrating	tools	and
managing	tool	meta	data.	Meta	Data	Services	can	act	as	an	intermediate	store,
converting	the	output	from	one	tool	into	the	input	for	another	tool.	It	also
provides	a	way	to	create	variants	of	a	specific	application,	so	that	different
workgroups	can	simultaneously	pursue	new	application	development	or	maintain
an	existing	application.	Meta	Data	Services	includes	functions	that	allow	you	to
track	this	activity	and	then	synchronize	or	merge	the	versions	later.

Using	meta	data	improves	the	way	you	develop	applications.	When	you	use
meta	data,	you	separate	design	from	implementation.	You	can	create	a	design
once	and	then	implement	that	design	using	a	variety	of	tools.	When	you	use
meta	data	types,	you	can	redirect	a	specific	application	design	to	different



operating	systems,	database,	networks,	and	transaction	processors	by	using
repository	data	to	drive	the	implementation	tools.

See	Also

Designing	Meta	Data	Types	Using	Information	Models

Using	Meta	Data	Services

Information	Model	Fundamentals

Meta	Data	Management

Meta	Data	Services	Architecture

Processing	Meta	Data	at	Run	Time



Meta	Data	Services



Processing	Meta	Data	at	Run	Time
To	support	interoperability,	application	designers	and	vendors	rely	on	processed
meta	data	in	their	applications.	Although	it	is	not	a	common	or	obvious
implementation	of	Microsoft®	SQL	Server™	2000	Meta	Data	Services,
repository	technology	can	be	deployed	in	run-time	scenarios.

SQL	Server	2000	can	retrieve	and	process	meta	data	constructs	at	run	time	to
produce	cleansed	data	for	data	warehousing,	queries,	or	Data	Transformation
Services	(DTS)	packages.

For	data	warehousing	professionals,	Meta	Data	Services	enables	tool	integration
and	single-sourcing	of	data	warehousing	definitions	used	to	produce	cleansed
data.

Meta	Data	Browser	is	another	example	of	a	tool	that	processes	meta	data	at	run
time.	The	browser	enables	you	to	view	existing	meta	data	and	how	it	is	defined.
For	application	developers,	the	browser	provides	a	way	to	scan	repository
contents	for	objects	to	decide	which	one	to	use	for	a	particular	purpose.

You	can	create	custom	browsers	or	analysis	tools	for	studying	meta	data	content
stored	in	a	repository	database,	or	create	full-featured	applications	that	manage
the	meta	data	types	used	by	your	organization.

These	examples	represent	just	some	of	the	uses	of	processed	meta	data.	You	can
create	similar	tools	or	new	ones	that	use	meta	data	in	innovative	ways.

See	Also

Designing	Meta	Data	Types	Using	Information	Models

Developing	Applications	Using	Meta	Data

Using	Meta	Data	Services

Meta	Data	Services	Architecture

Using	Meta	Data	Browser



Meta	Data	Services



What's	New	in	Meta	Data	Services
Microsoft®	SQL	Server™	2000	Meta	Data	Services	extends	and	renames	the
former	repository	component	known	as	Microsoft	Repository.	Meta	Data
Services	extends	repository	technology	by	introducing	a	new	browser	for
viewing	data	in	a	repository	database,	new	Extensible	Markup	Language	(XML)
interchange	support,	and	new	repository	engine	features.

The	What's	New	topics	contain	brief	overviews	of	the	new	Meta	Data	Services
features	with	links	to	the	conceptual	topics	that	discuss	each	feature	in	more
detail	and	provide	further	links	into	the	documentation.

Topic Description
Meta	Data	Browser
Enhancement

New	in	this	release,	Meta	Data	Browser	is
a	tool	that	you	can	use	to	browse	a
repository	database.

XML	Encoding	Enhancements New	in	this	release,	XML	Encoding
supports	a	new	implementation	of	meta
data	interchange	in	Meta	Data	Coalition
(MDC)	Open	Information	Model	(OIM)
XML.

Repository	Engine
Programming	Enhancements

Programming	enhancements	detail	new	and
better	ways	for	programming	against	an
installed	information	model.

Repository	Engine	Modeling
Enhancements

Modeling	enhancements	support	new
definitions	that	you	can	include	in	an
information	model.

See	Also

Meta	Data	Services	Architecture

Meta	Data	Services	Overview

Meta	Data	Services	SDK

Upgrading	from	Earlier	Versions



Meta	Data	Services



Meta	Data	Browser	Enhancement
Meta	Data	Browser	is	a	new	tool	that	you	can	use	to	browse	the	contents	of	a
repository	database.	This	tool	is	introduced	in	Microsoft®	SQL	Server™	2000
Meta	Data	Services.	You	can	run	Meta	Data	Browser	when	you	select	Meta	Data
Services.	Meta	Data	Services	is	available	for	each	copy	of	SQL	Server	you
install.

For	more	information,	see	Using	Meta	Data	Browser.

See	Also

Meta	Data	Services	Overview

What's	New	in	Meta	Data	Services



Meta	Data	Services



XML	Encoding	Enhancements
Microsoft®	SQL	Server™	2000	Meta	Data	Services	now	uses	Extensible
Markup	Language	(XML)	encoding	in	native	mode.	You	can	import,	export,	and
publish	repository	meta	data	in	a	format	that	more	closely	matches	your
information	model.

XML	encoding	supercedes	the	XML	Interchange	Format	(XIF)	that	was	part	of
previous	versions	of	the	software.	For	more	information,	see	XML	in	Meta	Data
Services	and	Using	XML	Encoding.

New	COM	Interfaces
XML	IExport	Interface	Overview

XML	IImport	Interface	Overview

See	Also

Meta	Data	Services	Overview

Upgrading	an	Information	Model

What's	New	in	Meta	Data	Services

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()


Meta	Data	Services



Repository	Engine	Programming	Enhancements
Repository	engine	version	3.0	is	backward	compatible	with	version	2.0
functionality	and	interfaces.	You	can	use	version	3.0	with	no	change	to	the
databases.	In	this	case,	only	the	version	2.0	features	will	work.	You	can	upgrade
the	database	version	2.0	to	the	database	version	3.0	format	by	passing	the
REPOS_CONN_UPGRADE	flag	when	you	open	the	repository	database.
Another	way	to	upgrade	a	repository	database	is	through	Meta	Data	Browser,
during	repository	database	registration.	Upgrading	allows	you	to	use	all	the
features	of	version	3.0.	After	you	upgrade,	however,	you	cannot	open	the
upgraded	database	using	a	version	2.0	engine.

Microsoft®	SQL	Server™	2000	Meta	Data	Services	introduces	the	following
new	repository	engine	features	in	version	3.0.	These	features	extend	your	ability
to	program	against	an	information	model	that	resides	in	a	repository	database.

View	Generation

New	COM	Interfaces

IViewClassDef	Interface

IViewInterfaceDef	Interface

IViewPropertyDef	Interface

IViewRelationshipDef	Interface

Performance	Hints

New	COM	Interfaces

IReposOptions	Interface

Property	Extensions	for	BLOBs	and	Large	Text	Fields

New	COM	Interfaces

IReposProperty2	Interface

IReposPropertyLarge	Interface

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()


IRepositoryObject2	Interface

Collection	Filters

New	COM	Interfaces

IReposQuery	Interface

Integration	with	MS	DTC

New	COM	Interfaces

IRepositoryTransaction2	Interface

Version	Propagation

See	Also

Meta	Data	Services	Overview

Repository	Engine	Modeling	Enhancements

Upgrading	the	Repository	Engine

What's	New	in	Meta	Data	Services

JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_13.Click()


Meta	Data	Services



Repository	Engine	Modeling	Enhancements
Microsoft®	SQL	Server™	2000	Meta	Data	Services	introduces	the	following
new	repository	engine	features	in	version	3.0	of	the	engine.	These	features
extend	your	ability	to	create	an	information	model	that	can	take	advantage	of
new	features	added	to	this	version	of	the	repository	engine.

Scripting	Support

New	COM	Interfaces

IClassDef2	Interface

IInterfaceMember2	Interface

IInterfaceDef2	Interface

IScriptDef	Interface

Interface	Implication

New	COM	Interfaces

IInterfaceDef2	Interface

Member	Delegation

New	COM	Interfaces

IInterfaceMember2	Interface

IInterfaceDef2	Interface

Sharing	Model	Information

New	COM	Interfaces

IReposTypeLib2	Interface

Naming	Semantics	for	Objects

Parameter	Support

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_25.Click()
JavaScript:hhobj_26.Click()


New	COM	Interfaces

IMethodDef	Interface

IParameterDef	Interface

Enumeration	Definition

New	COM	Interfaces

IEnumerationDef	Interface

IEnumerationValueDef	Interface

IPropertyDef2	Interface

Type	Information	Aliasing

New	COM	Interfaces

IReposTypeInfo	Interface

IReposTypeInfo2	Interface

IInterfaceMember2	Interface

Version	Labeling

New	COM	Interfaces

IVersionAdminInfo2	Interface

Virtual	Members

See	Also

Meta	Data	Services	Overview

Repository	Engine	Programming	Enhancements

Upgrading	the	Repository	Engine

What's	New	in	Meta	Data	Services

JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()


Meta	Data	Services



Meta	Data	Services	Architecture
Microsoft®	SQL	Server™	2000	Meta	Data	Services	architecture	is	based	on	a
set	of	integrated	components.	Key	components	are	summarized	in	the	following
list	and	presented	in	a	subsequent	diagram.

Component	Summary
Architecture	components	are	described	in	the	following	list.	You	can	find	out
more	about	each	component	by	reading	specific	topics.

Topic Description
Tools	and	Applications Describes	how	tools	and	applications	relate	to

the	Meta	Data	Services	architecture.

Meta	Data	Browser	is	a	tool	provided	with
Meta	Data	Services.	For	more	information,	see
Using	Meta	Data	Browser.

Open	Standards:	OIM,
COM,	XML

Describes	open	standards	that	Meta	Data
Services	supports,	including	Component	Object
Model	(COM)-based	interfaces,	Extensible
Markup	Language	(XML)	encoding,	and
Open	Information	Model	(OIM).

OIM	supports	standard	meta	data.	XML
encoding	supports	import	and	exporting	of	OIM
meta	data.	For	more	information,	see	OIM	in
Meta	Data	Services	and	XML	in	Meta	Data
Services.

Information	Models Describes	how	Meta	Data	Services	supports
standard	and	user-defined	meta	data	through	the
OIM	and	other	information	models.

Model	designers	and	programmers	can	use	the
Software	Development	Kit	(SDK)	to	create
meta	data-based	applications	and	to	build	or



extend	information	models	that	are	the	basis	of
shared	meta	data.	For	more	information,	see
Meta	Data	Services	SDK.

Repository	Engine Discusses	the	repository	engine,	which	stores,
consolidates,	and	retrieves	meta	data	in
repository	databases.

The	repository	engine	is	exposed	as	an	object
model	that	you	can	access	using	the	repository
API.

Repository	API Discusses	the	API,	which	exposes	repository
engine	functions	and	information	model
definitions	through	COM	interfaces.

Repository	Databases Discusses	the	database	storage	of	meta	data.

Architecture	Diagram
In	Meta	Data	Services	architecture,	tools	and	applications	connect	to	the	core
engine	and	storage	components	through	open	standards.	Information	models
define	type	information	that	determines	the	structure	and	behavior	of	meta	data
that	is	exposed	by	tools	and	applications	at	the	top	layer.

See	Also

Meta	Data	Services	Fundamentals

OIM	in	Meta	Data	Services

Specifications	and	Limits

Using	Meta	Data	Services

XML	in	Meta	Data	Services



Meta	Data	Services



Tools	and	Applications
Microsoft®	SQL	Server™	2000	Meta	Data	Services	is	a	technology	designed	to
be	used	by	tools	and	applications.	A	tool	is	a	software	program	intended	to	help
application	developers	design,	implement,	deploy,	and	maintain	applications.	An
application	is	a	program	designed	to	assist	in	the	performance	of	a	specific	task,
such	as	word	processing,	accounting,	or	inventory	management.

In	Meta	Data	Services	architecture,	tools	and	applications	are	programs	that	you
build	or	provide.	In	the	architecture,	tools	and	applications	exist	outside	of	the
core	engine	and	storage	components,	connecting	to	these	core	components
through	open	standards.

Tools	and	applications	range	from	modeling	software	that	you	use	to	build
information	models	at	design	time	to	data	warehousing	or	application
development	tools	that	use	or	transform	meta	data	at	run	time.	The	type	of	tools
and	applications	that	can	be	used	with	Meta	Data	Services	is	open-ended.

The	following	list	summarizes	some	of	the	ways	in	which	Microsoft,
independent	software	vendors	(ISVs),	and	software	developers	have	integrated
Meta	Data	Services	with	tools	and	product	offerings.	This	list	shows	a	few
examples	of	how	the	Microsoft	repository	technology	is	being	applied.

SQL	Server	2000,	SQL	Server	2000	Analysis	Services,	English	Query,
and	Microsoft	Visual	Studio®	use	Meta	Data	Services	to	store	meta
data,	to	interchange	meta	data	with	other	tools,	and	to	add	versioning
capability	to	tools	that	support	meta	data	creation.

ISV	providers	use	Meta	Data	Services	in	commercial	product	offerings
to	store	value-added,	predefined	information	models	that	can	be	used	by
ISV	customers.

Software	developers	have	incorporated	Meta	Data	Services	into
application	development	environments	to	deploy	application	designs
across	a	variety	of	development	tools.

For	more	information	about	how	the	technology	is	deployed	by	third-party



vendors,	see	the	SQL	Server	page	at	the	Microsoft	Web	site.

See	Also

Developing	Applications	Using	Meta	Data

Meta	Data	Services	Architecture

Open	Standards:	OIM,	COM,	XML

Using	Meta	Data	Browser

http://www.microsoft.com/isapi/redir.dll?Prd=sql&Ar=home


Meta	Data	Services



Open	Standards:	OIM,	COM,	XML
Open	standards	are	publicly	available	specifications	that	describe	the
characteristics	of	a	technology.	The	objective	of	open	standards	is	to	promote
interoperability.	For	integration	platforms	like	Microsoft®	SQL	Server™	2000
Meta	Data	Services,	interoperability	is	essential.	For	this	reason,	you	find	open
interfaces	and	specifications	used	wherever	possible	in	Meta	Data	Services
architecture.

Meta	Data	Services	supports	three	open	standards:	the	Meta	Data	Coalition
(MDC)	Open	Information	Model	(OIM),	Component	Object	Model	(COM)
interfaces,	and	Extensible	Markup	Language	(XML)	encoding.	At	each	phase	of
an	application	life	cycle,	there	is	an	open	standard	that	you	can	use	to	lock	in
integration.

OIM	for	Design-Time	Integration
OIM	is	a	standard	information	model	that	can	be	shared,	reused,	and	extended.	It
is	published	by	the	MDC	and	is	widely	supported	in	the	tool	vendor	market.	The
wide	support	of	OIM	makes	it	possible	to	use	the	same	information	model
design	in	a	variety	of	implementation	tools.

In	Meta	Data	Services,	you	can	use	OIM	as	a	framework	on	which	to	build	type
information.	OIM	is	not	required	by	the	repository	engine	or	the	API.	However,
when	you	use	OIM,	you	can	take	advantage	of	resources	and	features	in	the
Meta	Data	Services	Software	Development	Kit	(SDK)	that	greatly	simplify	your
development	effort.	Furthermore,	you	can	use	information	models	in	any	OIM-
compliant	tool.

COM	Interfaces	for	Program-Level	Integration
COM	interfaces	are	binary	specifications	for	building,	using,	and	evolving
component	software.	COM	is	supported	in	programming	languages	such	as
Microsoft	Visual	Basic®,	Microsoft	Visual	C++®,	and	Microsoft	Visual	J++®.
COM	architecture	and	supporting	infrastructure	are	developed	and	maintained
by	Microsoft.

When	programming	Meta	Data	Services,	you	can	use	COM	interfaces	defined	in



the	repository	API	to	access	both	the	repository	engine	and	your	information
model	from	your	application	code.	Because	the	repository	engine	and
information	models	are	exposed	as	COM	objects,	the	only	thing	that	varies	from
one	programming	language	to	another	is	the	COM-implementation	strategy	of
your	development	platform.

XML	for	Run-Time	and	Storage-Level	Integration
XML	is	a	World	Wide	Web	Consortium	(W3C)	standard	for	the	representation	of
information	as	structured	documents.	XML	is	used	increasingly	for	data
transport	between	heterogeneous	systems.

The	repository	engine	supports	XML	encoding	to	provide	import	and	export	of
stored	meta	data	in	XML	format.	XML	encoding	enables	the	exchange	of	meta
data	between	different	OIM-compliant	repositories.

See	Also

Meta	Data	Services	Architecture

OIM	in	Meta	Data	Services

Repository	API

Using	XML	Encoding

XML	in	Meta	Data	Services

JavaScript:hhobj_1.Click()


Meta	Data	Services



Information	Models
Information	models	define	meta	data	types	that	are	stored	in	a	repository
database	and	used	by	tools	and	applications.	Information	models	used	with
Microsoft®	SQL	Server™	2000	Meta	Data	Services	must	be	described	using
Unified	Modeling	Language	(UML).

Meta	Data	Services	distributes	a	set	of	standard	information	models	called	the
Open	Information	Model	(OIM).	SQL	Server	2000	preinstalls	into	the	msdb
database	the	standard	OIM	subject	areas	that	describe	Data	Transformation
Services	(DTS)	packages,	data	warehousing	definitions,	and	online	analytical
processing	(OLAP)	cubes.	These	information	models	require	no	modification	to
perform	the	functions	for	which	they	are	intended.

You	can	use	these	same	standard	models	as	a	framework	for	building	new
applications.	You	can	also	create	new	models	to	work	with	using	the	Meta	Data
Services	Software	Development	Kit	(SDK).	As	long	as	your	information	models
are	defined	in	UML,	you	can	use	them	in	Meta	Data	Services.

Although	you	can	create	information	models	programmatically,	most
information	models	are	created	in	modeling	tools	like	Rational	Rose.	Custom
information	models	must	conform	to	the	repository	API.	The	repository	API
includes	abstract	classes	that	formally	describe	the	elements	you	can	include	in	a
model.	If	you	are	creating	a	custom	model,	you	may	want	to	review	the
repository	API	for	more	information	about	the	type	information	objects	that	the
repository	engine	supports.

After	you	define	and	test	an	information	model,	you	can	install	it	in	a	repository
database.	Model	installation	creates	the	storage	structure	for	your	meta	data.
Tools	and	applications	that	use	the	model	can	populate	the	storage	with	instance
data	about	the	model	definitions.

At	run	time,	the	repository	engine	reads	the	meta	data	and	instantiates
Component	Object	Model	(COM)	objects	in	a	tool	or	application	that	correspond
to	the	objects,	relationships,	and	members	of	your	information	model.	The	COM
interfaces	that	you	use	are	derived	from	an	information	model	installed	in	a
repository	database.	In	this	way,	the	information	model	is	a	blueprint	for	the
COM	objects	that	the	repository	engine	exposes.



You	can	also	use	Extensible	Markup	Language	(XML)	to	import	and	export
meta	data	between	platforms,	tools,	and	applications.	For	more	information,	see
Using	XML	Encoding.

See	Also

Creating	and	Extending	Type	Information

Designing	Meta	Data	Types	Using	Information	Models

Information	Model	Fundamentals

Meta	Data	Services	SDK

OIM	in	Meta	Data	Services

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Meta	Data	Services



Repository	Engine
The	repository	engine	is	a	service	that	provides	basic	functions	for	storing	and
retrieving	objects	and	maintaining	the	relationships	among	them.

The	engine	performs	these	functions	within	the	context	of	an	information	model.
In	this	way,	it	is	a	model-driven	interpreter.	The	engine	processes	user-defined
model	information	to	determine	how	to	store	and	support	objects,	relationships,
and	actions.	When	you	use	the	repository	engine	to	manipulate	instances	of
information	models,	the	engine	does	so	only	to	the	extent	that	model	structure
allows.	For	example,	the	engine	will	establish	an	object	relationship	only	if	the
underlying	model	supports	it.

To	use	the	repository	engine,	you	program	against	the	repository	API.	The
repository	engine	responds	to	directives	issued	by	application	code	through
Component	Object	Model	(COM)	and	COM	Automation	interfaces.

The	repository	engine	handles	all	interaction	with	the	storage	layer	for	you.
Although	you	control	when	and	how	transactions	occur,	the	engine	generates	the
SQL	commands	that	execute	specific	actions.

Engine	architecture
The	following	diagram	illustrates	engine	architecture.	The	engine	executes	as	a
class	library.	It	buffers	instance	data	from	repository	databases	in	a	cache.
Objects	that	you	manipulate	in	code	point	to	the	cached	data.	Row	caching
maintains	state	information	about	the	objects,	properties,	and	relationships	that
are	instantiated.



See	Also

Meta	Data	Services	Architecture

Repository	API



Meta	Data	Services



Repository	API
The	repository	API	is	a	programming	interface	that	is	used	to	drive	the
repository	engine	from	within	application	code.

The	API	is	based	on	an	object	model	that	describes	repository	engine
functionality	and	type	definitions	that	correspond	to	information	models.
Examples	of	engine	functionality	include	transaction,	workspace	management,
and	connection	services.	Examples	of	type	definitions	include	class,	interface,
property,	and	relationship	definitions.	In	practice,	the	distinction	between	the	two
parts	of	the	object	model	is	artificial.	Depending	on	the	requirements	of	your
application	code,	you	will	invoke	objects	of	either	type	whenever	and	wherever
you	need	to.

The	API	is	exposed	through	Component	Object	Model	(COM)	and	COM
Automation	interfaces,	supporting	an	open	standard	for	application	development
so	that	you	can	program	using	any	COM-compliant	programming	language.

By	using	the	Meta	Data	Services	Software	Development	Kit	(SDK),	you	can
build	models	that	conform	to	the	type	definitions	supported	by	the	API.	After
you	build	and	install	a	model,	you	can	instantiate	objects	and	invoke	interfaces
through	application	code.	Instantiated	objects	support	interfaces	that	have	single-
valued	properties	and	collections	of	relationships.

See	Also

Meta	Data	Services	Architecture

Meta	Data	Services	SDK

Open	Standards:	OIM,	COM,	XML

Programming	Meta	Data	Services	Applications

Repository	API	Reference

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Meta	Data	Services



Repository	Databases
A	repository	database	stores	physical	data.	Such	data	includes	repository	type
libraries	that	contain	type	information	or	object	instance	data,	and	tables	used	to
map	or	otherwise	manage	object	relationships.	In	the	versions	of	Microsoft®
SQL	Server™	2000	Meta	Data	Services	that	Microsoft	distributes,	storage	is
provided	through	SQL	Server,	SQL	Server	Runtime	Engine,	or	Microsoft	Jet.

Meta	Data	Services	is	an	installed	component	of	SQL	Server.	If	you	are	using
SQL	Server,	a	repository	database	already	exists	for	your	use.	By	default,
repository	tables	are	predefined	in	the	msdb	system	database.	These	tables	store
data	warehousing	meta	data	used	by	SQL	Server	and	other	add-on	components.

At	a	minimum,	a	repository	database	includes	standard	tables	that	are	present	in
every	repository	database.	Additional	tables	are	created	for	custom	interface
definitions.	Within	its	tables,	the	repository	engine	stores	properties	and
relationships.	For	more	information	about	repository	tables,	see	Repository	SQL
Schema.

If	you	prefer,	you	can	choose	to	add	your	custom	meta	data	to	msdb.	By	keeping
all	your	meta	data	in	one	database,	you	can	combine	existing	definitions	in	new
ways	by	creating	relationships.

Managing	Repository	Databases
Repository	databases	are	driven	by	the	repository	engine,	which	manages	all
transactions	and	determines	storage	structure.	To	save	space	in	the	database,
Meta	Data	Services	can	sometimes	eliminate	redundant	data	definitions.	For
example,	it	may	store	a	single	copy	of	a	property	value,	even	if	that	property
value	describes	many	object	versions.	Similarly,	Meta	Data	Services	can
sometimes	store	a	single	copy	of	a	relationship,	even	if	many	different	object
versions	have	that	relationship.

Repository	databases	should	not	be	modified	directly.	Unless	you	are	an	expert
database	programmer	or	administrator,	avoid	modifications	because	you	can
introduce	changes	that	the	repository	engine	cannot	manage.

You	can	store	multiple	information	models	in	a	single	repository	database.

JavaScript:hhobj_1.Click()


Connection	to	a	repository	database	is	made	using	ODBC	drivers.	To	access	a
specific	information	model	in	the	tables,	use	the	repository	API.

Other	Database	Types
If	you	are	using	Meta	Data	Services	as	an	add-on	component	of	SQL	Server,
physical	storage	of	meta	data	is	implemented	as	a	SQL	Server	database.
However,	Meta	Data	Services	is	also	distributed	with	other	Microsoft	products.
If	you	are	using	Meta	Data	Services	as	an	add-on	component	of	Microsoft	Visual
Studio®,	you	can	implement	data	storage	as	SQL	Server	tables	using	Microsoft
Jet	or	SQL	Server	Runtime	Engine.	SQL	Server	Runtime	Engine	is	a	SQL	Server
compatible	data	engine	and	it	can	be	used	to	provide	local	data	storage.	For	more
information	about	Microsoft	Jet	or	the	SQL	Server	Runtime	Engine,	see	the
MSDN®	Library	at	the	Microsoft	Web	site.

Other	third-party	vendors	support	Meta	Data	Services	on	non-Microsoft
database	platforms.	Future	development	by	third-party	vendors	will	expand	the
number	of	database	platforms	that	you	can	use	with	Meta	Data	Services.	For
more	information	about	third-party	support,	see	Meta	Data	Services	on	the	SQL
Server	page	at	the	Microsoft	Web	site.

See	Also

Connecting	to	and	Configuring	a	Repository

Meta	Data	Services	Architecture

Repository	API

Repository	Engine

Storage	Strategy	in	a	Repository	Database

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red
http://www.microsoft.com/isapi/redir.dll?Prd=sql&Ar=home
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()


Meta	Data	Services



Meta	Data	Services	SDK
The	Microsoft®	SQL	Server™	2000	Meta	Data	Services	Software	Development
Kit	(SDK)	contains	resources	for	model	designers	and	programmers.	It	includes
the	Modeling	Development	Kit	(MDK),	modeling	documentation,	sample	code,
and	add-on	tools.	Together,	the	SDK	and	MDK	provide	essential	resources	for
extending	models,	customizing	models,	building	new	models,	and	programming
against	models.

The	following	components	are	distributed	in	the	SDK.

The	MDK	includes	documentation,	programming	extensions,	and
resource	files	that	you	can	use	to	validate	models	and	generate
programming	resources	for	Microsoft	Visual	Basic®	and	Microsoft
Visual	C++®	programs.

The	Open	Information	Model	(OIM)	contains	models	organized	by
subject	area.	Each	subject	area	model	is	distributed	as	a	separate	file.
Associated	with	each	model	file	is	a	set	of	ready-to-use	modeling	files
that	can	help	you	get	started.

The	Model	Installer	automates	the	process	of	adding	information
models	to	a	repository	database.	The	Model	Compiler	prepares	models
for	installation	by	compiling	them	into	Repository	Distributable	Model
(RDM)	files.

Development	samples	provide	sample	files	and	documentation	that
explains	how	to	use	the	files.	You	can	practice	working	with	Meta	Data
Services	using	development	samples.	Working	with	sample	files	will
help	you	develop	the	skills	you	need	to	build	and	work	with	your	own
files.

You	can	download	the	SDK	from	the	Meta	Data	Services	Web	site.	You	must
already	have	Meta	Data	Services	installed	in	order	to	use	the	SDK.	For	more
information,	see	the	SQL	Server	page	at	the	Microsoft	Web	site.

http://www.microsoft.com/isapi/redir.dll?Prd=sql&Ar=home


See	Also

Installing	Information	Models

Meta	Data	Services	Architecture

OIM	in	Meta	Data	Services

Using	OLE	DB	Scanner

Using	XML	Encoding

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()


Meta	Data	Services



Specifications	and	Limits
Memory	and	storage	limits	depend	on	the	amount	of	RAM	on	your	server	and
the	disk	storage	resources	available	to	the	DBMS	providing	database	storage
services.

You	can	fine-tune	repository	engine	performance	by	following	the	performance
hints	provided	in	this	documentation.	For	more	information,	see	Optimizing
Repository	Performance.

Storage	Limits
Microsoft®	SQL	Server™	2000	Meta	Data	Services	uses	storage	provided	by	a
DBMS.	SQL	Server	2000	imposes	no	practical	limit	on	database	size.	If	you	are
using	msdb,	or	if	you	are	creating	a	new	repository	using	SQL	Server	2000,	you
can	configure	database	size	when	you	require	more	storage.

Memory	Limits	at	Run	Time
The	repository	engine	works	with	available	RAM	to	process	transactions	and
instantiate	model	information.	The	more	RAM	you	have	available,	the	better	the
repository	engine	performs.

See	Also

Meta	Data	Services	Architecture

Programming	Environment

Repository	Databases

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Meta	Data	Services



OIM	in	Meta	Data	Services
The	Open	Information	Model	(OIM)	is	a	set	of	standard	object	models	that	tools
and	applications	use	to	create	exchangeable	meta	data.	The	OIM	is	published	by
the	Meta	Data	Coalition	(MDC).

Microsoft	distributes	a	version	of	the	OIM	with	Microsoft®	SQL	Server™	2000,
the	SQL	Server	2000	Meta	Data	Services	Software	Development	Kit	(SDK),	and
Microsoft	Visual	Studio®.	Meta	data	models	based	on	the	OIM	are	used	to
define	meta	data	in	these	and	other	Microsoft	offerings.	To	accommodate	tool-
specific	meta	data,	Microsoft	has	extended	the	version	of	the	OIM	that	it
distributes	to	support	its	meta	data	requirements.

The	OIM	is	an	evolving	standard.	You	can	always	obtain	the	latest	version	of	the
OIM	from	the	MDC	to	support	your	model-based	application	development.	You
can	also	extend	it	by	adding	new	definitions	to	support	your	tool-specific	meta
data	requirements.

This	section	includes	topics	that	explain	why	the	OIM	is	important,	where	you
can	get	additional	information	and	resources,	and	who	backs	OIM	development.

Topic Description
Why	the	OIM	is	Important Explains	why	Microsoft	integrates	the

OIM	with	Meta	Data	Services.
OIM	Resources	and
Documentation

Tells	you	where	to	obtain	OIM
documentation	and	model	development
resources.

Meta	Data	Coalition Introduces	the	Meta	Data	Coalition
(MDC).

See	Also

Information	Models

Information	Model	Fundamentals

Open	Standards:	OIM,	COM,	XML



XML	in	Meta	Data	Services



Meta	Data	Services



Why	the	OIM	is	Important
The	Open	Information	Model	(OIM)	is	a	formal	specification	of	meta	data	that
provides	common	ground	for	defining	standard	meta	data.	To	achieve	maximum
integration	across	its	product	lines,	Microsoft	uses	the	OIM	standard	when
defining	meta	data	constructs.	To	promote	the	use	of	standard	meta	data	for
model-driven	application	development,	Microsoft	distributes	the	OIM	with	the
Microsoft®	SQL	Server™	2000	Meta	Data	Services	Software	Development	Kit
(SDK),	with	SQL	Server	2000,	and	with	Microsoft	Visual	Studio®.

OIM	definitions	are	widely	supported	by	third-party	data	warehousing,
enterprise	application,	and	knowledge	management	tool	vendors.	By	building
OIM-compliant	models,	you	introduce	a	level	of	standardization	that	provides
recurring	benefits	by	later	allowing	you	to	choose	from	a	variety	of	development
tools	that	support	OIM.

The	OIM	is	an	established	specification	based	on	the	collective	experience	of
many	vendors	and	developers.	An	important	advantage	to	using	the	OIM	is	that
it	is	a	stable	model	framework.	Modeling	is	not	trivial.	If	you	are	unfamiliar	with
modeling,	the	OIM	can	help	you	get	started	by	providing	a	general	architecture
within	which	you	can	organize	your	development	effort.

The	OIM	is	extensible	and	evolving.	If	existing	definitions	do	not	meet	your
needs,	you	can	create	new	core	information	models	that	satisfy	your
requirements	exactly.	In	the	same	way,	as	tool	and	data	warehousing	vendors
identify	new	requirements	for	meta	data	definition,	the	OIM	can	be	extended	in	a
way	that	supports	a	common	implementation.

See	Also

Meta	Data	Coalition

Meta	Data	Fundamentals

OIM	Resources	and	Documentation

Open	Standards:	OIM,	COM,	XML



Meta	Data	Services



OIM	Resources	and	Documentation
This	topic	identifies	important	resources	and	documentation	that	can	help	you
get	started	with	the	Open	Information	Model	(OIM).

The	OIM	is	a	formal	specification	that	is	extensively	documented.	OIM
documentation	is	published	by	the	Meta	Data	Coalition	(MDC)	and	can
be	downloaded	from	the	MDC	Web	site.	It	is	also	distributed	with	the
Microsoft®	SQL	Server™	2000	Meta	Data	Services	Software
Development	Kit	(SDK).	For	more	information	about	the	OIM,	see
http://www.mdcinfo.com.

The	Meta	Data	Services	SDK	includes	a	version	of	the	OIM,	modeling
documentation,	and	several	resources	to	help	you	use	and	deploy	the
OIM	right	away.	OIM	resources	include	definition	files	for	Microsoft
Visual	C++®	and	Microsoft	Visual	Basic®,	Extensible	Markup
Language	(XML)	files,	Interface	Definition	Language	(IDL)	files,	and
installation	scripts	for	OIM	models.	For	more	information	about	the
SDK,	see	Meta	Data	Services	SDK.

See	Also

Developing	Applications	Using	Meta	Data

Meta	Data	Coalition

http://www.mdcinfo.com


Meta	Data	Services



Meta	Data	Coalition
The	Meta	Data	Coalition	(MDC)	is	an	independent	organization	of	vendors	and
users	who	volunteer	time	and	resources	to	pursue	agreed-upon	goals	related	to
the	standardization	of	enterprise	meta	data	for	the	mutual	benefit	of	all	interested
parties.

The	MDC	drives	the	definition,	implementation,	and	evolution	of	the	Open
Information	Model	(OIM)	and	its	support	mechanisms.	Proposals	for	new	OIM
models	and	extensions	are	made	available	to	members	for	in-depth	review.	From
this	process,	agreed-upon	models	are	formally	adopted	into	the	OIM
specification	and	published	through	the	MDC	Web	site.

The	MDC	maintains	a	Web	site	to	disseminate	information	and	an	e-mail
address	to	allow	members	and	potential	members	to	communicate	electronically.
For	more	information	about	the	MDC,	see	the	MDC	Web	site	at
http://www.mdcinfo.com.

http://www.mdcinfo.com


Meta	Data	Services



XML	in	Meta	Data	Services
Microsoft®	SQL	Server™	2000	Meta	Data	Services	supports	Extensible	Markup
Language	(XML)	Encoding	of	information	models	for	the	purpose	of	importing,
exporting,	and	publishing	meta	data	in	XML.	You	can	exchange	meta	data
between	two	repository	databases,	between	a	repository	database	and	an
application,	or	between	two	applications	that	can	interpret	the	same	XML
format.

Meta	Data	Services	encodes,	exchanges,	and	decodes	XML	documents	for	you.
This	functionality	is	provided	through	dual	interfaces	so	that	you	can	manage
these	operations	from	code.

The	XML	format	supported	by	Meta	Data	Services	is	defined	by	the	Meta	Data
Coalition	(MDC)	Open	Information	Model	(OIM)	XML	Encoding	format.	This
format	defines	rules	for	generating	XML	that	is	based	on	an	information	model.
Applying	these	rules	enables	Meta	Data	Services	to	generate	XML	that
corresponds	to	your	information	model.	These	same	rules	also	enable	Meta	Data
Services	to	convert	an	XML	document	back	into	repository	instance	data.

XML	Encoding	provided	with	this	release	of	Meta	Data	Services	supersedes	the
XML	Interchange	Format	(XIF)	that	was	part	of	previous	versions	of	the
software.	For	more	information	about	backward	compatibility,	see	Using	XML
Encoding.	For	more	information	about	how	to	use	XML	Encoding,	see	Ways	to
Use	XML	in	Meta	Data	Services.

About	MDC	OIM	XML	Encoding
Both	the	OIM	and	the	MDC	OIM	XML	Encoding	format	are	defined	by	the
MDC.	To	make	best	use	of	the	XML	Encoding	functionality,	your	meta	data
should	conform	to	the	most	recent	version	of	the	OIM.	The	MDC	OIM	XML
Encoding	format	is	optimized	for	the	most	recent	version	of	the	OIM.	You	can
generate	richer,	more	accurate	XML	if	your	information	model	is	based	on	the
version	of	OIM	that	best	matches	the	XML	Encoding	format.

You	can	generate	valid	and	well-formed	XML	for	any	information	model,
however,	even	if	it	is	not	based	on	OIM.	If	the	information	model	is	not	based	on
the	OIM,	the	MDC	OIM	XML	Encoding	rules	still	determine	which	XML	tag

JavaScript:hhobj_1.Click()


elements	are	used	to	structure	your	repository	data.	To	see	which	XML	elements
will	be	created	for	your	information	model,	you	can	use	the	Meta	Data	Services
Model	Development	Kit	(MDK)	to	generate	an	XML	Document	Type	Definition
(DTD).	XML	DTDs	are	definitions	of	the	structure	that	an	XML	document	can
assume.

See	Also

Meta	Data	Coalition

OIM	in	Meta	Data	Services

Open	Standards:	OIM,	COM,	XML



Meta	Data	Services



Ways	to	Use	XML	in	Meta	Data	Services
Extensible	Markup	Language	(XML)	support	for	Open	Information	Model
(OIM)-based	meta	data	opens	up	new	possibilities	for	publishing	and	sharing
meta	data.	For	example,	you	can	build	an	application	that	creates	XML	and	then
let	the	repository	engine	manage	it.	You	can	also	exchange	meta	data	with	other
repositories	and	with	other	tools	that	use	meta	data.	If	you	have	two	applications
that	understand	the	same	XML	format,	you	can	exchange	meta	data	between	the
two	applications	directly,	without	interacting	with	a	repository	database	or	the
repository	engine.

In	Microsoft®	SQL	Server™	2000	Meta	Data	Services,	you	can	use	XML
Encoding	to	achieve	the	following	benefits.	You	can	compare	each	benefit	to	the
diagram	to	see	how	XML	is	used	between	repositories	and	applications.

You	can	export	and	import	meta	data	between	two		repository	databases.
The	diagram	shows	that	you	can	exchange	meta	data	between
Repository	A	and	Repository	B	through	XML	documents.

You	can	export	meta	data	from	a	repository	database	to	a	tool	or	run-
time	object.	In	the	diagram,	you	can	provide	data	from	Repository	A	to
Application	A	through	an	XML	document.

You	can	import	meta	data	from	a	tool	or	run-time	object	to	a	repository
database.	In	the	diagram,	you	can	import	meta	data	from	Application	A
to	Repository	A	through	an	XML	document.

XML	Encoding	supports	a	fourth	benefit	outside	the	scope	of	repository
technology.	OIM-enabled	tools	that	support	the	same	OIM	models	can
exchange	meta	data	directly,	without	the	support	of	an	underlying
repository	database.	Although	the	diagram	does	not	indicate	this,	you
can	exchange	data	between	Application	A	and	Application	B	(for
example)	using	XML	documents.

The	following	diagram	shows	the	relationship	and	flow	of	XML	from	one



repository	to	another,	and	subsequently	to	other	applications.

See	Also

Open	Standards:	OIM,	COM,	XML

Using	XML	Encoding

JavaScript:hhobj_1.Click()


Meta	Data	Services



Upgrading	from	Earlier	Versions
A	Microsoft®	SQL	Server™	2000	Meta	Data	Services	installation	consists	of
certain	core	components,	each	of	which	can	vary	by	version	or	format.	A	single
configuration	includes	the	following:	a	DBMS,	a	repository	engine,	a	repository
database,	one	or	more	information	models,	and	an	Extensible	Markup	Language
(XML)	interchange	format.

The	DBMS	used	to	manage	the	repository	database	can	be	Microsoft	Jet
3.5	or	later,	SQL	Server	6.5	or	7.0,	or	SQL	Server	2000.	

The	repository	engine	can	be	version	2.0	or	3.0.

The	repository	database	can	be	a	2.0	database	or	a	3.0	database	(created
with	repository	engine	2.0	or	3.0,	respectively).

Information	models	can	be	Microsoft	Open	Information	Model	(OIM)
1.0,	Microsoft	OIM	1.1,	Meta	Data	Coalition	(MDC)	OIM,	or	a	custom
information	model	you	define.

XML	interchange	support	can	be	XML	Interchange	Format	(XIF)	or	the
MDC	XML	Encoding	format.

Recommended	Configuration

We	recommend	that	you	upgrade	to	repository	engine	3.0	on	each	computer,	and
that	you	upgrade	your	repository	databases	to	the	3.0	format.	In	addition,	you
will	get	better	performance	and	have	access	to	more	repository	engine	features	if
you	migrate	your	repository	database	to	SQL	Server	2000.

Upgrading	an	information	model	provides	access	to	more	meta	data	types	(for
example,	access	to	Unified	Modeling	Language	(UML)	1.3	elements).

Whether	you	should	upgrade	your	information	models	depends	on	the
requirements	of	your	tools	and	applications.	For	example,	if	your	tools	and



applications	are	using	Data	Transformation	Services	(DTS)	or	Microsoft	Visual
Component	Manager,	it	is	not	necessary	to	upgrade	your	information	model.
SQL	Server	2000	and	Visual	Component	Manager	use	the	existing	OIM	as	it	is
currently	implemented.

Before	upgrading	an	information	model,	you	should	determine	whether	a	new
model	format	will	provide	you	with	the	definitions	required	for	your	repository
applications.	If	a	new	model	format	does	not	offer	compelling	advantages,	you
should	retain	your	existing	information	models	for	use	with	a	3.0	repository
engine	and	databases.

For	more	information	about	upgrading	any	element	of	your	Meta	Data	Services
installation,	see	Retaining	Legacy	Components	in	a	Repository.

See	Also

Information	Models

Repository	Engine

Repository	Databases

What's	New	in	Meta	Data	Services



Meta	Data	Services



Retaining	Legacy	Components	in	a	Repository
While	upgrading	every	component	of	an	installation	has	its	advantages,	in
practice	many	installations	retain	at	least	one	component	that	is	not	the	latest
version.

The	following	table	describes	how	different	versions	of	these	components	work
in	combination	and	how	to	upgrade	to	another	version.

Topic Description
Upgrading	the	Repository
Engine

Explains	how	to	upgrade	the	repository
engine.

Upgrading	and	Migrating	a
Repository	Database

Explains	how	to	upgrade	a	repository
database	and	migrate	it	to	a	different
DBMS	format,	and	how	to	use	a
nonupgraded	database	with	an	upgraded
repository	engine.

Upgrading	an	Information
Model

Explains	how	to	upgrade	an	information
model	using	Extensible	Markup
Language	(XML).

Using	Repository	Engine
Features	with	Older	Databases

Describes	the	availability	of	some
features	depending	on	the	kind	of	DBMS
and	operating	system	you	are	using.

See	Also

Information	Models

Repository	Engine

Repository	Databases

What's	New	in	Meta	Data	Services



Meta	Data	Services



Upgrading	the	Repository	Engine
Repository	engine	3.0	is	the	newest	version	of	the	repository	engine.	It	supports
new	features	that	improve	your	ability	to	fully	define	information	models	and
program	against	a	Microsoft®	SQL	Server™	2000	Meta	Data	Services
repository.

Only	one	version	of	the	repository	engine	can	be	installed	on	each	computer.
You	can	upgrade	to	version	3.0	to	use	the	new	features,	or	you	can	continue	to
use	the	version	you	already	have	installed.	If	you	keep	the	previous	version,	you
cannot	upgrade	a	repository	database.	Use	the	newest	version	of	the	Meta	Data
Coalition	(MDC)	Open	Information	Model	(OIM),	or	use	the	newest	version	of
Extensible	Markup	Language	(XML)	interchange	functionality.

The	following	table	lists	the	versions	of	database,	information	models,	and	XML
interchange	formats	that	can	be	used	with	each	repository	engine.

Engine	version Database	version OIM	version XML	version
2.0 2.0 OIM	1.0 XML

Interchange
Format	(XIF)

3.0 2.0	and	3.0 OIM	1.0	and	MDC
OIM

XIF	and	MDC
XML

How	to	Upgrade	the	Repository	Engine
SQL	Server	2000	uses	repository	engine	3.0	.	As	a	result,	upgrading	to
repository	engine	3.0	is	accomplished	when	you	upgrade	an	existing	SQL	Server
or	create	a	new	SQL	Server	2000	installation.

To	take	advantage	of	new	repository	engine	features,	we	recommend	that	you
upgrade	the	repository	database	to	the	latest	format.	Upgrading	adds	tables	and
columns	that	support	new	features.	For	more	information,	see	Upgrading	and
Migrating	a	Repository	Database.

See	Also



Repository	Engine	Modeling	Enhancements

Repository	Engine	Programming	Enhancements

Retaining	Legacy	Components	in	a	Repository

Upgrading	an	Information	Model

Upgrading	from	Earlier	Versions

Using	Repository	Engine	Features	with	Older	Databases



Meta	Data	Services



Upgrading	and	Migrating	a	Repository	Database
Upgrading	a	repository	database	updates	the	repository	schema	with	new	tables
and	columns	that	support	repository	engine	3.0	features.	If	you	have	upgraded	to
repository	engine	3.0,	you	should	upgrade	your	database	so	that	it	corresponds	to
the	engine.

Upgrading	and	migrating	a	database	are	separate,	optional	tasks.	For	any
repository	database,	you	can	do	all	or	none	of	the	following:

Upgrade	the	repository	schema	to	the	repository	engine	3.0	format.

After	you	install	repository	engine	3.0,	you	can	choose	whether	to
upgrade	all	or	some	of	your	repository	databases.	After	you	upgrade,
however,	you	cannot	open	the	database	using	a	version	2.0	engine.
Upgrading	is	unrelated	to	database	migration.	You	can	upgrade	a
repository	database	that	you	created	in	Microsoft®	SQL	Server™
version	6.5,	for	example,	without	having	to	migrate	your	SQL	Server
6.5	database	to	a	later	version	of	SQL	Server.

Migrate	a	repository	database	so	that	it	runs	on	a	more	recent	or
different	DBMS.

You	can	migrate	a	database	if	you	require	performance	improvements	or
the	view	generation	features	that	are	only	available	on	SQL	Server
2000.

How	to	Upgrade	a	Repository	Database

You	can	upgrade	a	repository	database	by	passing	the
REPOS_CONN_UPGRADE	flag	when	you	open	the	repository	database	using
repository	engine	3.0.	For	more	information	about	REPOS_CONN_UPGRADE,
see	ConnectionFlags	Enumeration.

If	you	are	upgrading	a	SQL	Server	6.5	or	7.0	database,	you	can	either	use	the
REPOS_CONN_UPGRADE	flag	or	Meta	Data	Browser.	To	upgrade	the
database	through	the	browser,	you	must	edit	the	properties	of	a	registered
repository	database.	For	more	information,	see	Working	with	Repository

JavaScript:hhobj_1.Click()


Databases	in	Meta	Data	Browser.

Backward	Compatibility	with	2.0	Repository	Databases
The	version	of	the	repository	engine	that	you	use	to	initially	populate	the
database	determines	the	version	of	the	repository	database.	For	example,	if	you
used	repository	engine	2.0	to	populate	the	repository	database,	the	repository
database	is	version	2.0.

Repository	engine	3.0	is	backward	compatible	with	version	2.0	functionality	and
interfaces.	When	you	use	a	2.0	repository	database,	typically	only	the	2.0	engine
features	of	repository	engine	3.0	will	work.	However,	two	repository	engine	3.0
features,	IReposProperty2	and	handling	of	bit	properties,	are	available	to	2.0
repository	databases.

Most	new	features	are	provided	through	new	interfaces.	If	you	inadvertently
invoke	a	repository	engine	3.0	feature	on	2.0	repository	database,
QueryInterface	returns	E_NOTIMPL	for	the	interface	that	provides	the	new
feature.

For	more	information	about	feature	restrictions	for	an	upgraded	database,	see
Using	Repository	Engine	Features	with	Older	Databases.

How	to	Migrate	a	Repository	Database
You	can	migrate	a	repository	database	from	one	DBMS	version	to	another.	Your
DBMS	provides	these	features.

To	convert	from	a	Jet	database	to	a	SQL	Server	database,	you	must	copy	the	data
in	the	Jet	database	to	the	SQL	Server	database	using	features	provided	by	SQL
Server	and	Microsoft	Access.	Next,	you	must	set
REPOS_CONN_RECOMPUTE	on	the	Open	command	to	add	definitions	that
SQL	Server	2000	Meta	Data	Services	requires	for	SQL	Server	databases.	For
more	information,	see	ConnectionFlags	Enumeration.

See	Also

Connecting	to	a	SQL	Server	Repository	Database

Generating	Views

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


Repository	SQL	Schema

Retaining	Legacy	Components	in	a	Repository

Upgrading	the	Repository	Engine

JavaScript:hhobj_5.Click()


Meta	Data	Services



Upgrading	an	Information	Model
This	topic	provides	information	about	using	different	versions	of
information	models	and	Extensible	Markup	Language	(XML)	interchange
formats.	Generally,	you	can	omit	upgrading	(that	is,	replacing)	an	existing
information	model	with	a	newer	format	of	the	same	information	model	if	you	do
not	require	the	additional	meta	data	types	that	the	newer	format	provides.

If	you	do	choose	to	replace	an	older	information	model	format	with	a	newer
format,	you	must	copy	your	object	instance	data	to	the	new	information	model.
XML	interchange	provides	the	means	to	move	your	data.

Open	Information	Model	Formats
The	Open	Information	Model	(OIM)	is	a	generic	information	model.	OIM	1.0
and	the	Meta	Data	Coalition	(MDC)	OIM	are	two	alternate	modeling	formats	of
the	OIM.	MDC	OIM	is	an	enhanced	version	of	OIM	1.0	that	includes	Unified
Modeling	Language	(UML)	1.3	support.	OIM	1.0	and	the	MDC	OIM	use	the
same	repository	tables	and	cannot	be	installed	into	the	same	repository	database.
If	you	want	to	use	the	MDC	OIM,	you	must	copy	your	OIM	1.0	meta	data	to	the
new	information	model.

OIM	1.0	is	supported	by	repository	engine	2.0	and	repository	engine
3.0.	A	version	of	OIM	1.0	is	distributed	with	Microsoft®	SQL	Server™.

MDC	OIM	is	supported	by	repository	engine	3.0,	and	it	is	the	newer	of
the	two	formats.	A	version	of	MDC	OIM	is	distributed	with	the	SQL
Server	2000	Meta	Data	Services	Software	Development	Kit	(SDK).

You	can	exchange	and	migrate	meta	data	between	these	two	model	formats	using
either	XML	interchange	format.	The	following	section	discusses	backward
compatibility	in	more	detail.	For	more	information	about	XML	Interchange
Format	(XIF)	and	backward	compatibility,	see	Using	XML	Encoding.

XML	Interchange	Formats
XML	interchange	formats	define	the	way	in	which	you	can	exchange	meta	data

JavaScript:hhobj_1.Click()


in	XML	with	other	tools	and	repositories.	You	can	choose	between	two	alternate
XML	interchange	formats.

XIF	is	supported	by	repository	engine	2.0	and	repository	engine	3.0.	It
expresses	meta	data	in	entity-normal	format.	

MDC	XML	Encoding	is	supported	by	repository	engine	3.0,	and	it	is
the	native	format	of	the	MDC	OIM.	It	expresses	meta	data	in	attribute-
normal	format.	MDC	XML	Encoding	conforms	to	the	XML
specification	published	by	the	World	Wide	Web	Consortium	(W3C).

XIF	and	MDC	XML	Encoding	are	two	alternate	encoding	mechanisms.	They	are
not	compatible.

Note		In	practice,	because	MDC	OIM	and	MDC	XML	Encoding	are	not
supported	by	repository	engine	2.0,	you	cannot	pair	OIM	1.0	with	MDC	XML
Encoding	unless	you	are	running	repository	engine	3.0.	MDC	OIM	and	XIF	are
not	compatible.	You	cannot	pair	MDC	OIM	with	XIF	under	any	circumstances.

The	following	table	lists	which	versions	of	the	OIM	and	XML	interchange
format	you	can	use	with	each	repository	engine	version.

Engine	version OIM	version XML	version
2.0 OIM	1.0 XIF
3.0 OIM	1.0

MDC	OIM

XIF	or	MDC	XML	Encoding

MDC	XML	Encoding	only

Meta	Data	Interchange	Combinations
The	following	table	recommends	an	XML	interchange	format	for	each
information	model	source-target	combination,	for	all	versions	of	the	repository
engine.

Engine
version

Source	model
version

Target	model
version

Recommended	XML
interchange

2.0 OIM	1.0 OIM	1.0 XIF



3.0 OIM	1.0 OIM	1.0 MDC	XML	Encoding
3.0 OIM	1.0 MDC	OIM MDC	XML	Encoding
3.0 MDC	OIM MDC	OIM MDC	XML	Encoding
3.0 MDC	OIM OIM	1.0 MDC	XML	Encoding

See	Also

Information	Models

OIM	in	Meta	Data	Services

Retaining	Legacy	Components	in	a	Repository

Upgrading	from	Earlier	Versions

Upgrading	the	Repository	Engine

XML	in	Meta	Data	Services



Meta	Data	Services



Using	Repository	Engine	Features	with	Older
Databases
Upgrading	a	repository	database	to	version	3.0	makes	repository	engine	3.0
features	available	to	the	database.	Depending	on	the	DBMS	you	use	to	manage
the	database,	however,	you	can	encounter	some	exceptions.	A	few	newer
features	are	not	supported	on	older	versions	of	DBMS	products.	This	topic
provides	more	information	about	these	exceptions.

DBMS	Version	Exceptions
The	majority	of	repository	engine	features	work	identically	for	all	supported
DBMS	products	and	versions.

The	following	table	details	which	features	are	unavailable	for	certain	DBMS
versions	when	you	upgrade	a	repository	database	to	repository	engine	3.0.

Database	type Features
Microsoft®	SQL	Server™
6.5

Bit	properties	cannot	be	added	to	existing
tables.
View	generation	and	view-based	queries	are
not	supported.

SQL	Server	7.0 View	generation	and	view-based	queries	are
not	supported.

SQL	Server	2000 All	features	are	supported.
Microsoft	Jet	3.5	and	later Bit	properties	cannot	be	added	to	existing

tables.
View	generation	and	view-based	queries	are
not	supported.
Some	performance	optimization	techniques	are
not	supported.

Note		Converting	a	Microsoft	SQL	Server	database	to	a	more	recent	version	of
SQL	Server	does	not	automatically	generate	views.	Generating	views	and
database	conversion	are	separate	tasks.



About	Operating	Systems
You	can	run	SQL	Server	2000	Meta	Data	Services	on	the	following	Microsoft
Windows®	operating	systems:	Windows	98,	Windows	NT®	4.0,	and	Windows
2000.	Integration	with	Microsoft	Distributed	Transaction	Coordinator	(MS	DTC)
runs	only	on	a	computer	that	is	running	Windows	2000.	For	more	information,
see	Integration	with	Distributed	Transaction	Coordinator.

See	Also

Generating	Views

IReposProperty2	Interface

Optimizing	Repository	Performance

Repository	Databases

Retaining	Legacy	Components	in	a	Repository

Upgrading	and	Migrating	a	Repository	Database

Upgrading	the	Repository	Engine

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


Meta	Data	Services



Using	Meta	Data	Browser
Microsoft®	SQL	Server™	2000	Meta	Data	Services	supports	browsing	of
registered	repository	databases	through	Meta	Data	Browser.	You	can	use	Meta
Data	Browser	in	the	following	ways:

From	within	SQL	Server	2000	using	SQL	Server	Enterprise	Manager

As	a	stand-alone	snap-in	that	you	add	through	Microsoft	Management
Console	(MMC)	and	run	separately	from	SQL	Server	Enterprise
Manager

The	way	you	use	the	browser	determines	the	set	of	features	and	functionality
that	you	can	work	with.

Using	Meta	Data	Browser	in	SQL	Server	Enterprise	Manager
To	run	the	browser	from	within	SQL	Server	Enterprise	Manager,	click	Meta
Data	Services.

In	SQL	Server,	Meta	Data	Services	provides	storage	service	for	SQL	Server
meta	data,	including	meta	data	associated	with	specific	Data	Transformation
Services	(DTS)	packages	and	all	online	analytical	processing	(OLAP)	meta	data.
Repository	tables	are	included	in	the	SQL	Server	msdb	system	database	to
support	management	and	storage	of	SQL	Server	meta	data.

In	SQL	Server	Enterprise	Manager,	Meta	Data	Browser	enables	you	to	view
meta	data	that	you	create	and	store	in	msdb.	You	can	view	this	data	in	the
Contents	folder.

When	you	use	Meta	Data	Browser	in	SQL	Server	Enterprise	Manager,	you
function	in	End	User	mode.	End	User	Mode	provides	read-only	access	to	the
repository	database.	You	can	view	information	about	any	meta	data	that	you
store	in	the	repository.

SQL	Server	Enterprise	Manager	purposely	restricts	the	functionality	of	Meta
Data	Browser	to	protect	the	meta	data	that	it	uses.	Modifying	or	deleting	native



meta	data	can	corrupt	your	SQL	Server	installation.	For	this	reason,	actions	that
put	your	meta	data	at	risk	are	not	supported	in	this	mode.

Running	Meta	Data	Browser	Separately
Meta	Data	Services	can	be	run	separately	from	SQL	Server	Enterprise	Manager
as	a	stand-alone	MMC	snap-in.	You	can	add	Meta	Data	Services	to	a	console	to
work	with	other	SQL	Server	repository	databases,	using	a	wider	range	of
functionality.

After	you	add	Meta	Data	Services	to	the	MMC,	you	can	run	the	Meta	Data
Browser	to	register	the	repository	databases	you	want	to	work	with.	You	can
work	with	any	SQL	Server	repository	database	created	in	SQL	Server	version
6.5	or	7.0,	or	in	SQL	Server	2000.	However,	you	must	use	version	3.0	of	the
repository	engine	that	is	distributed	with	SQL	Server	2000.

To	run	the	browser	in	stand-alone	mode,	click	Meta	Data	Services.

See	Also

Viewing	Meta	Data	in	Meta	Data	Browser

Working	with	Contents	in	Meta	Data	Browser

Working	with	Information	Models	in	Meta	Data	Browser

Working	with	Repository	Databases	in	Meta	Data	Browser

Meta	Data	Fundamentals

Repository	Databases

Storage	Strategy	in	a	Repository	Database

JavaScript:hhobj_1.Click()


Meta	Data	Services



Viewing	Meta	Data	in	Meta	Data	Browser
Meta	Data	Browser	presents	content	in	different	ways,	depending	on	whether
you	run	the	browser	from	within	SQL	Server	Enterprise	Manager	or	in	stand-
alone	mode.	In	addition,	display	options	that	you	select	can	expand	the	kinds	of
meta	data	that	you	can	view.	Icons	are	used	to	visually	identify	the	kinds	of	meta
data	displayed	in	the	browser.

Viewing	Meta	Data	in	SQL	Server	Enterprise	Manager
Meta	data	in	SQL	Server	Enterprise	Manager	is	presented	in	the	Contents	folder.
In	SQL	Server	Enterprise	Manager,	repository	tables	are	defined	within	the
msdb	database.	In	SQL	Server	Enterprise	Manager,	msdb	is	the	only	database
that	provides	viewable	content	in	Meta	Data	Browser.

Initially,	the	msdb	database	does	not	contain	any	meta	data	for	you	to	view.
However,	after	you	add	content	to	a	repository,	you	can	view	it	by	expanding	the
Contents	folder	in	Meta	Data	Services.

Adding	content	to	a	repository	occurs	when	you	choose	to	save	to	Microsoft®
SQL	Server™	2000	Meta	Data	Services	(for	example,	when	saving	Data
Transformation	Services	(DTS)	packages).

Viewing	Meta	Data	in	Stand-Alone	Mode
When	you	run	Meta	Data	Browser	as	a	separate,	stand-alone	Microsoft
Management	Console	(MMC)	snap-in,	you	can	work	with	multiple	repository
databases,	and	you	can	view	content	and	perform	tasks	that	are	not	available
otherwise.

Meta	Data	Browser	organizes	content	by	repository	database.	Depending	on	the
browse	mode	you	select	for	your	database,	content	can	be	further	organized	into
folders	named	Contents	and	Information	Models.	Within	each	folder,	objects	and
collections	are	arranged	within	a	hierarchy	to	facilitate	browsing.

The	Contents	folder	shows	meta	data	stored	in	the	repository	database.
Meta	data	varies	depending	on	the	database.	In	some	repository
databases,	for	example,	meta	data	can	be	application	objects,	database



objects,	or	some	other	software	artifact.

The	Information	Models	folder	shows	the	information	models	that	are
installed	in	a	repository	database,	and	the	classes	and	relationship
definitions	that	they	contain.	Information	models	can	be	viewed	only	in
Administrator	browse	mode.

See	Also

Icons	Used	in	Meta	Data	Browser

Selecting	Browse	Mode	in	Meta	Data	Browser

Setting	Display	Options	in	Meta	Data	Browser

Using	Meta	Data	Browser

Working	with	Contents	in	Meta	Data	Browser

Working	with	Information	Models	in	Meta	Data	Browser



Meta	Data	Services



Icons	Used	in	Meta	Data	Browser
This	table	shows	and	describes	the	icons	used	in	Meta	Data	Browser.

Icon Description
Information	model	icon
Class	icon
Connection	object	icon
Interface	icon
Relationship	icon
DTS	package	icon
Generic	object	icon
Data	source	icon
OLE	DB	provider	icon
Class	diagram	icon
Attribute	icon
Method	icon
Tagged	value	icon
Generic	collection	icon

See	Also

Setting	Display	Options	in	Meta	Data	Browser

Using	Meta	Data	Browser



Meta	Data	Services



Working	with	Repository	Databases	in	Meta	Data
Browser
When	you	run	Meta	Data	Browser	as	a	stand-alone	snap-in,	you	can	register	any
Microsoft®	SQL	Server™	database	that	contains	repository	tables.	Registered
repository	databases	are	listed	in	the	SQL	Server	2000	Meta	Data	Services
folder.	All	registered	repository	databases	are	grouped	together	on	the	same
level.

Upgrading	Databases
After	you	register	a	database,	you	have	the	option	of	upgrading	the	database	to
the	latest	format.	Upgrading	applies	the	most	recent	repository	SQL	schema	to	a
repository	database	that	you	formatted	using	a	version	of	the	repository	engine
that	is	older	than	the	current	repository	engine.	Although	you	can	register
repository	databases	created	with	earlier	versions	of	the	repository	engine,
upgrading	gets	the	most	current	repository	SQL	schema	tables	that	support	new
repository	engine	features.	During	the	upgrade	process,	new	tables	are	added,
and	data	from	existing	tables	is	copied	to	the	new	table	format.	Custom	tables
that	you	create	remain	unchanged.

To	upgrade	a	SQL	Server	repository	database,	right-click	the	registered	database
and	then	click	Properties.	This	opens	the	Repository	Properties	dialog	box.
Providing	the	required	information	in	this	dialog	box	completes	your	option
selections.

More	Database	Related	Tasks
The	following	table	contains	links	to	topics	that	can	help	you	learn	more	about
related	tasks.	For	more	information	about	repository	databases,	see	Repository
Databases.

Topic Description
Selecting	Browse	Mode	in
Meta	Data	Browser

Describes	how	to	select	End	User,	Power
User,	or	Administrator	browse	mode.



When	working	with	a	repository	database,
the	scope	of	actions	that	are	available	to
you	depend	on	the	browse	mode	you
choose	for	the	database.

Setting	Display	Options	in
Meta	Data	Browser

Describes	how	to	make	optional	items
viewable	in	the	browser.

Registering	a	Repository
Database	in	Meta	Data
Browser

Explains	how	to	add	a	new	repository
database	to	the	list	of	registered	databases.

Editing	Registration	Properties
in	Meta	Data	Browser

Explains	how	to	edit	registration
properties.

Deleting	Registration
Properties	in	Meta	Data
Browser

Explains	how	to	delete	registration
information	and	thereby	unregister	a
database.

Exporting	to	XML Explains	how	to	copy	repository	data	to	an
XML	file.

See	Also

Repository	Properties	Dialog	Box

Repository	SQL	Schema

Upgrading	From	Previous	Versions

Using	Meta	Data	Browser

Working	with	Contents	in	Meta	Data	Browser

Working	with	Information	Models	in	Meta	Data	Browser

JavaScript:hhobj_1.Click()


Meta	Data	Services



Registering	a	Repository	Database	in	Meta	Data
Browser
When	you	run	Meta	Data	Browser	as	a	stand-alone	snap-in,	you	can	register
repository	databases.	You	can	register	only	repository	databases	that	you	created
in	Microsoft®	SQL	Server™	6.5	or	7.0,	SQL	Server	2000,	or	the	SQL	Server
Runtime	Engine.	Registering	a	repository	database	makes	it	available	to	users	of
Meta	Data	Browser.	Later,	if	you	want	to	make	the	database	unavailable,	you	can
unregister	it	by	deleting	registration	information.

When	you	register	a	repository	database,	you	must	provide	connection
information	similar	to	SQL	Server	2000	database	registration.

Before	you	can	register	a	repository	database,	it	must	already	exist.	SQL	Server
2000	Meta	Data	Services	does	not	create	repository	databases.

After	you	register	a	database,	you	can	upgrade	it	to	use	the	newest	features	of	the
repository	engine.	For	more	information,	see	Working	with	Repository
Databases	in	Meta	Data	Browser.

To	register	a	repository	database,	right-click	Meta	Data	Services,	and	then	click
Register	Database.	This	opens	the	Database	Registration	Properties	dialog
box.	Providing	the	information	requested	in	this	dialog	box	completes	the
database	registration.

See	Also

Deleting	Registration	Properties	in	Meta	Data	Browser

Editing	Registration	Properties	in	Meta	Data	Browser

Database	Registration	Properties	Dialog	Box

Selecting	Browse	Mode	in	Meta	Data	Browser



Meta	Data	Services



Selecting	Browse	Mode	in	Meta	Data	Browser
When	you	run	Meta	Data	Browser	as	a	stand-alone	snap-in,	you	can	set	a	browse
mode	at	the	repository	database	level	to	determine	the	scope	of	actions	that	are
available	to	you.	Browse	modes	include	End	User,	Power	User,	and
Administrator.	You	can	choose	different	browse	modes	for	each	database.

The	scope	of	actions	for	each	browse	mode	includes	the	following:

Creating,	editing,	and	deleting	registration	information	can	be
performed	in	all	browse	modes.

Viewing	the	Contents	folder	and	setting	display	options	can	be
performed	in	all	browse	modes.

Creating,	editing,	and	deleting	objects	and	object	properties	can	be
performed	in	Power	User	and	Administrator	browse	mode.

Viewing	the	Information	Models	folder	can	be	performed	in
Administrator	browse	mode.	In	addition,	only	Administrators	can	view
repository	identifiers.

Browse	modes	apply	exclusively	to	repository	databases	and	have	no	impact	on
Microsoft®	SQL	Server™	2000	user	modes,	Microsoft	Windows	NT®	4.0	user
modes,	or	Microsoft	Windows®	2000	user	modes.	In	other	words,	being	a
repository	Administrator	does	not	confer	administrator	rights	in	SQL	Server.

You	cannot	change	the	browse	mode	if	you	are	running	Meta	Data	Browser	from
within	SQL	Server	Enterprise	Manager.	From	within	SQL	Server	Enterprise
Manager,	Meta	Data	Browser	can	only	be	run	in	End	User	mode.

To	set	a	browse	mode,	you	must	select	it	during	database	registration.	The
browse	mode	you	select	is	part	of	the	registration	information.	To	select	a
different	browse	mode,	you	must	edit	registration	properties.	For	more
information	about	the	scope	of	actions	each	user	mode	supports,	see	Database
Registration	Properties	Dialog	Box.



See	Also

Editing	Registration	Properties	in	Meta	Data	Browser

Registering	a	Repository	Database	in	Meta	Data	Browser

Working	with	Contents	in	Meta	Data	Browser

Working	with	Information	Models	in	Meta	Data	Browser



Meta	Data	Services



Setting	Display	Options	in	Meta	Data	Browser
For	the	meta	data	that	you	view	in	Meta	Data	Browser,	you	can	set	display
options	to	alternately	show	or	hide	collection	and	inherited	property	information.
If	you	show	collections,	you	can	set	additional	options	to	show	or	hide	empty
collections	and	reverse	relationships.

The	following	figure	shows	a	collection	icon	and	a	relationship	icon,
respectively.

Display	options	are	context-sensitive.	The	options	you	set	affect	the	current
selection	and	all	child	nodes	that	branch	from	it.	You	can	set	display	options	for
all	or	part	of	the	selected	database.	The	display	options	you	select	remain	in
effect	until	you	reset	the	options.	Display	options	are	independent	of	browse
mode	selections.

To	set	display	options,	right-click	a	registered	repository	database	or	an	object
within	the	database,	and	then	click	Browse	Options.	This	opens	the	Meta	Data
Services	Browser	Display	Options	dialog	box.	Providing	the	required
information	in	this	dialog	box	completes	your	option	selections.

See	Also

Meta	Data	Services	Browser	Display	Options	Dialog	Box



Meta	Data	Services



Editing	Registration	Properties	in	Meta	Data	Browser
When	you	run	Meta	Data	Browser	as	a	stand-alone	snap-in,	you	can	edit	the
properties	of	a	registered	repository	database	to	change	connection	information,
choose	a	different	database,	or	change	browse	mode.

To	edit	database	registration,	right-click	a	repository	database	from	Microsoft®
SQL	Server™	2000	Meta	Data	Services,	and	then	click	Edit	Database
Registration.	This	opens	the	Database	Registration	Properties	dialog	box.	For
more	information	about	repository	database	properties,	see	Database
Registration	Properties	Dialog	Box.

See	Also

Deleting	Registration	Properties	in	Meta	Data	Browser

Registering	a	Repository	Database	in	Meta	Data	Browser



Meta	Data	Services



Deleting	Registration	Properties	in	Meta	Data
Browser
When	you	run	Meta	Data	Browser	as	a	stand-alone	snap-in,	you	can	remove	a
repository	database	from	the	Meta	Data	Services	folder	by	deleting	its
registration	information.	To	delete	a	repository	database,	use	the	database
deletion	features	of	Microsoft®	SQL	Server™	2000.

To	delete	database	registration,	right-click	a	repository	database	from	SQL
Server	2000	Meta	Data	Services	and	then	click	Delete.	Meta	Data	Services
prompts	you	to	confirm	the	deletion.

See	Also

Editing	Registration	Properties	in	Meta	Data	Browser

Registering	a	Repository	Database	in	Meta	Data	Browser



Meta	Data	Services



Exporting	to	XML
You	can	export	any	kind	of	meta	data	stored	in	the	repository	to	an	XML	file,
including	instance	data	from	the	Contents	folder	and	information	model
elements	from	the	Information	Models	folder.

The	format	of	the	XML	is	defined	by	MDC	OIM	XML	Encoding.	For	more
information,	see	Using	XML	Encoding.

To	export	to	XML,	right-click	an	element	and	then	click	Export	to	XML.

The	scope	of	an	export	varies	depending	on	whether	the	selected	element	is
related	to	other	elements.	For	elements	that	are	related	through	containing	or
aggregate	relationships,	the	XML	export	file	includes	the	related	data.	In	the
Contents	folder,	where	the	relationship	between	parent	and	child	elements	is	a
containing	relationship,	the	export	file	includes	multiple	XML	tagged	elements.
In	contrast,	relationships	between	elements	in	the	Information	Models	folder	are
typically	not	containing	relationships.	As	a	result,	XML	export	files	for	elements
in	the	Information	Models	folder	include	XML	data	for	only	the	selected	node.

See	Also

Working	with	Contents	in	Meta	Data	Browser

Working	with	Information	Models	in	Meta	Data	Browser

JavaScript:hhobj_1.Click()


Meta	Data	Services



Working	with	Contents	in	Meta	Data	Browser
You	can	use	Meta	Data	Browser	to	discover	facts	about	objects	already
implemented	in,	designed	for,	or	defined	by	an	application.	If	you	are	an
application	developer,	browsing	the	contents	of	a	repository	can	help	you
identify	the	best	object	to	choose	when	building	a	new	application.	You	can	also
browse	the	contents	to	view	details	about	an	existing	Data	Transformation
Services	(DTS)	package	or	application	component.

The	kind	of	content	that	you	can	view	varies	depending	on	how	you	run	the
browser	and	the	options	you	select.	For	more	information,	see	Using	Meta	Data
Browser	and	Viewing	Meta	Data	in	Meta	Data	Browser.

Inside	the	Contents	Folder
The	Contents	folder	shows	object	instance	data	in	a	repository	database.	You	can
view	objects,	object	properties,	collections,	and	relationships.	Your	browse	mode
selection	determines	how	you	interact	with	the	Contents	folder.	Your	display
option	selections	determine	what	is	visible.	Except	for	sequenced	relationship
collections,	the	order	in	which	objects	appear	is	undefined.	If	a	database	does	not
show	a	Contents	folder,	it	is	probably	not	a	repository	database.

Note		The	browser	does	not	track	workspace	or	repository	object	version	data.
Object	properties	do	not	indicate	the	workspace	to	which	an	object	belongs.
However,	some	version	information	is	surfaced	through	property	information.
Version	labeling	can	be	particularly	helpful	in	identifying	how	a	specific	object
version	is	deployed.

Objects
Objects	can	contain	collections	and	other	objects.	If	you	choose	not	to	display
collections,	you	can	more	easily	view	object	relationships.	In	the	browser,	object
relationships	are	rendered	hierarchically.	Expanding	an	object	brings	its	related
objects	into	view.	For	example,	expanding	a	Car	object	can	show	additional
objects	for	Engine,	Body,	and	Tires.	Expanding	Engine	can	show	an	additional
object	for	Parts.

The	following	figure	shows	a	generic	object	icon.



For	each	object,	you	can	view	properties	that	tell	you	a	great	deal	about	each
object.	Properties	are	listed	in	alphabetical	order.	For	more	information	about
properties,	see	Working	with	Object	Properties	in	Meta	Data	Browser.

If	you	are	a	repository	Administrator,	you	can	delete,	rename,	and	remove
objects	from	collections.	For	more	information,	see	Deleting,	Renaming,	and
Removing	Objects	from	Collections.

Collections
Collections	can	contain	objects	or	be	empty.	When	you	display	collections,	you
can	see	how	objects	are	grouped.	For	example,	because	Engine,	Body,	and
Tires	are	elements	of	Car,	displaying	collection	information	can	reveal	that
Engine,	Body,	and	Tires	are	members	of	an	Elements	collection	under	Car.

The	following	figure	shows	a	generic	collection	icon.

See	Also

Selecting	Browse	Mode	in	Meta	Data	Browser

Setting	Display	Options	in	Meta	Data	Browser



Meta	Data	Services



Working	with	Object	Properties	in	Meta	Data
Browser
You	can	display	object	properties	to	view	the	characteristics	of	individual
objects.

To	view	properties,	right-click	an	object,	and	then	click	Properties.	This	opens
the	Repository	Object	Properties	dialog	box.	For	more	information	about	the
options	on	this	dialog	box,	see	Repository	Object	Properties	Dialog	Box.

In	addition	to	viewing	properties,	when	you	run	Meta	Data	Browser	as	a	stand-
alone	snap-in,	you	can	edit	property	values	of	objects	in	the	Contents	folder.	You
must	be	a	repository	Administrator	or	Power	User	to	edit	property	values.
Editing	property	values	can	only	be	performed	on	objects	in	the	Contents	folder.
The	Information	Models	folder	is	always	read-only.

To	edit	a	property	value,	select	a	property	for	an	object	in	the	Contents	folder
and	type	a	different	value	in	the	Value	column.	For	more	information	about	how
to	become	a	repository	Administrator	or	Power	User,	see	Selecting	Browse
Mode	in	Meta	Data	Browser.

Understanding	Property	Information
Object	properties	expose	Class	Name	and	a	property	set	that	reveals	details
about	a	particular	object.	Each	object	supports	a	property	set	that	varies	from
object	to	object	and	folder	to	folder.

In	the	Contents	folder,	Class	Name	identifies	the	information	model	class	used
to	create	the	object.	If	you	understand	information	models,	knowing	about	the
class	reveals	abstract	data	about	an	object	that	can	be	useful.	The	property	set
defines	object	characteristics.	Property	values	are	instance	data	about	the	object.
The	property	set	originates	from	the	properties	supported	by	the	abstract	class.

In	the	Information	Models	folder,	Class	Name	identifies	the	repository	API
definition	used	to	build	the	object	class.	A	repository	API	definition	can	be	an
InterfaceDef,	a	ClassDef,	or	some	other	definition.	The	property	set	defines
object	class	characteristics.	Type	information	about	the	object	class	is	expressed
through	property	values.	The	property	set	originates	from	the	properties



supported	by	the	repository	API	definition.

You	can	search	SQL	Server	Books	Online	for	more	information	about	repository
API	definitions	and	properties.	For	example,	you	can	search	for	InterfaceDef.
You	can	also	search	for	specific	properties,	such	as	CreateByUser,	Name,	and
VersionLabel.

Special	Properties
Custom	objects	support	a	property	set	that	is	determined	by	a	model	designer.
For	more	information	about	custom	object	properties,	check	with	the	author	of
the	model.

Enumeration	objects	are	associated	with	property	definitions.	The	purpose	of	an
enumeration	object	is	to	provide	a	list	of	predefined	values	for	a	given	property.
In	the	browser,	when	you	view	a	property	that	is	enumerated,	you	can	select	one
of	the	enumerated	values	from	a	predefined	list.	The	list	appears	in	the	Values
column	of	the	property.

Virtual	properties	are	a	special	category	of	properties	that	typically	do	not	have
persistent	data.	However,	if	the	aggregation	objects	are	stored	in	the	repository
database,	virtual	properties	will	appear	in	the	Meta	Data	Browser.

See	Also

Creating	Objects

Deleting,	Renaming,	and	Removing	Objects	from	Collections

Repository	API	Reference

Working	with	Contents	in	Meta	Data	Browser

Working	with	Information	Models	in	Meta	Data	Browser

JavaScript:hhobj_1.Click()


Meta	Data	Services



Creating	Objects
You	can	populate	a	repository	with	new	object	instance	data	that	you	create.	The
objects	you	create	must	be	compatible	with	the	definitions	of	an	installed
information	model.	For	example,	to	create	a	new	table	object,	the	underlying
information	model	must	support	a	table	object	definition.

To	create	objects,	right-click	the	parent	object	under	which	the	new	object	is	to
reside,	and	then	click	Create	Object.

To	create	objects,	the	following	conditions	must	be	satisfied.

Criteria Conditions
Environment Stand-alone	snap-in.	You	cannot	create	objects	from

within	Enterprise	Manager.	For	more	information
about	stand-alone	mode,	see	Using	Meta	Data
Browser.

Browser	mode Administrator	or	Power	User.	For	more	information,
see	Selecting	Browse	Mode	in	Meta	Data	Browser.

Kind	of	meta	data Contents	folder	meta	data.	You	cannot	create	objects	in
information	models.	For	more	information	about
Contents,	see	Viewing	Meta	Data	in	Meta	Data
Browser.

Creating	an	object	requires	choosing	a	collection,	choosing	a	class,	and	defining
a	name.	Your	choices	determine	the	characteristics	assumed	by	the	object.

Collections	that	you	can	choose	from	belong	to	the	parent	element.	For
example,	if	the	parent	object	is	a	Table	object,	you	can	choose	from	the
collections	that	belong	to	the	Table	object	(in	this	case,	the	Columns
collection).	You	cannot	create	collections.	You	can	only	choose	from
collections	that	are	provided	for	the	parent	object	by	way	of	the
information	model.

Class	selections	are	derived	from	the	collection.	If	a	collection	supports
multiple	classes,	you	must	choose	which	class	to	use.



Names	are	object	names	that	you	define.	The	name	you	define	must	be
under	255	characters	in	length.	Names	can	include	spaces.

After	you	create	the	object,	you	can	edit	properties.	For	more	information,	see
Working	with	Object	Properties	in	Meta	Data	Browser.

See	Also

Deleting,	Renaming,	and	Removing	Objects	from	Collections

Working	with	Contents	in	Meta	Data	Browser



Meta	Data	Services



Deleting,	Renaming,	and	Removing	Objects	from
Collections
When	you	run	Meta	Data	Browser	as	a	stand-alone	snap-in,	you	can	delete,
rename,	or	remove	object	instance	data	from	collections.	You	must	be	a
repository	Administrator	to	perform	these	actions.	You	can	only	perform	these
actions	on	object	instance	data	that	appears	in	the	Contents	folder.

When	you	delete,	rename,	or	remove	an	object	from	a	collection,	your	changes
are	immediately	saved	in	the	repository	database.	Except	for	renaming,	you
cannot	reverse	these	changes	using	the	Meta	Data	Browser.

To	perform	these	actions,	right-click	an	object	in	the	Contents	folder,	and	then
click	Delete,	Rename,	or	Remove.

Delete	permanently	deletes	the	object	instance	data	from	the	repository
database.

Rename	activates	an	in-place	editor	so	that	you	can	type	over	the
existing	name.	If	you	are	naming	an	object	in	a	collection	that	requires
unique	names,	Meta	Data	Services	does	not	allow	you	to	duplicate	a
name	in	that	collection.	Otherwise,	duplicate	names	are	supported.

Remove	deletes	reference	information	that	associates	an	object	with	a
collection.	The	object	instance	data	is	not	deleted.

For	more	information	about	how	to	become	a	repository	Administrator,	see
Selecting	Browse	Mode	in	Meta	Data	Browser.

See	Also

Creating	Objects

Working	with	Contents	in	Meta	Data	Browser

Working	with	Object	Properties	in	Meta	Data	Browser



Meta	Data	Services



Working	with	Information	Models	in	Meta	Data
Browser
If	you	are	an	application	developer	or	model	designer,	you	can	use	Meta	Data
Browser	as	a	visual	tool	for	tracking	your	inventory	of	information	models.	You
can	also	discover	facts	about	the	objects,	collections,	and	properties	that	make	up
an	information	model.

The	Information	Models	folder	shows	the	information	models	that	are	installed
in	a	repository	database.	The	Information	Models	folder	is	visible	only	to
repository	Administrators,	and	it	is	available	only	when	you	run	the	browser	as	a
stand-alone	snap-in.	Except	for	sequenced	relationship	collections,	the	order	in
which	information	model	objects	appear	is	undefined.

Information	models	are	the	blueprints	of	items	you	see	in	the	Contents	folder.	In
its	native	format,	an	information	model	is	typically	a	network	of	related	objects.
In	Meta	Data	Browser,	information	models	are	depicted	hierarchically.	When
you	expand	an	object,	the	child	nodes	that	appear	are	the	objects	related	to	the
expanded	object.	Depicting	a	network	structure	in	a	hierarchical	format	means
that	some	objects	appear	multiple	times.	For	example,	in	a	relationship,	each
object	will	appear	as	a	child	node	of	the	other	object.

You	can	install	ready-to-use	information	models	(stored	as	.rdm	files)	using
Meta	Data	Browser	or	a	separate	installation	tool	that	comes	with	the
Microsoft®	SQL	Server™	2000	Meta	Data	Services	Software	Development	Kit
(SDK).	Installing	an	information	model	extracts	information	from	a	model	and
places	it	into	tables	in	the	repository	database.	How	an	information	model	is
used	from	that	point	forward	can	vary	considerably	across	tools,	users,	and
environments.

For	more	information	about	how	to	become	a	repository	Administrator,	see
Selecting	Browse	Mode	in	Meta	Data	Browser.

Inside	the	Information	Models	Folder
In	the	browser,	you	can	expand	an	installed	information	model	to	view	the
objects	and	collections	it	contains.	You	cannot	create,	modify,	or	delete	an



information	model,	its	objects,	or	its	properties.	To	perform	those	tasks,	you
must	use	modeling	tools.

You	can	expand	an	information	model	to	do	the	following.

View	objects,	collections,	interfaces,	and	members.

View	the	inheritance	tree	for	each	interface.

View	read-only	object	properties	to	see	how	an	object	is	defined.

See	Also

Information	Models

Information	Model	Fundamentals

Installing	Information	Models	in	Meta	Data	Browser

Working	with	Contents	in	Meta	Data	Browser

Working	with	Object	Properties	in	Meta	Data	Browser



Meta	Data	Services



Installing	Information	Models	in	Meta	Data	Browser
When	you	run	Meta	Data	Browser	as	a	stand-alone	snap-in,	you	can	install
ready-to-use	information	models	to	the	repository	database,	making	them
available	to	applications,	application	developers,	and	model	designers.	You	must
be	a	repository	Administrator	to	install	an	information	model.	For	more
information	about	how	to	become	a	repository	Administrator,	see	Selecting
Browse	Mode	in	Meta	Data	Browser.

After	you	install	an	information	model,	it	remains	in	the	repository	database.
Deleting	an	information	model	is	not	currently	supported	by	Microsoft®	SQL
Server™	2000	Meta	Data	Services.

To	install	an	information	model,	right-click	the	Information	Models	folder	of	the
database	in	which	you	want	the	model	to	reside,	and	then	click	Install
Information	Model.	This	opens	the	Install	Information	Model	dialog	box	so
that	you	can	choose	a	Repository	Distributable	Model	(RDM)	file	to	install.
RDM	files	are	compiled	information	model	files.	RDM	files	are	generated	from
a	modeling	tool	in	the	Meta	Data	Services	Software	Development	Kit	(SDK).

Note		It	is	also	possible	to	install	information	models	programmatically	or	by
command	line,	without	using	Meta	Data	Browser.	For	more	information	about
this	alternate	approach,	see	Installing	Information	Models.

See	Also

Information	Model	Fundamentals

Information	Models

Meta	Data	Services	SDK

JavaScript:hhobj_1.Click()


Meta	Data	Services



Meta	Data	Browser	User	Interface	Reference
Meta	Data	Browser	includes	dialog	boxes.	Several	of	these	dialog	boxes	support
direct	access	to	context-sensitive	Help	topics.

To	open	a	context-sensitive	Help	topic,	click	Help	or	press	F1	when	the	dialog
box	is	open.	You	can	also	choose	a	topic	from	the	following	list.

Dialog	box Description
Meta	Data	Services	Browser
Display	Options	Dialog	Box

Contains	options	that	you	can	set	to	increase
the	amount	of	viewable	content.

Repository	Object	Properties
Dialog	Box

Displays	the	properties	of	an	information
model,	object,	or	collection.

Database	Registration
Properties	Dialog	Box

Connects	a	repository	database	so	that	you
can	view	meta	data	in	the	browser.	It	also
includes	options	for	selecting	a	browse
mode.

Repository	Properties	Dialog
Box

Displays	the	server	name,	database	name,
and	repository	database	version.	It	also
includes	an	option	for	upgrading	the
database	format.

Create	New	Object	Dialog
Box

Populates	an	information	model	with	new
object	instance	data.

See	Also

Using	Meta	Data	Browser



Meta	Data	Services



Meta	Data	Services	Browser	Display	Options	Dialog
Box
Use	this	dialog	box	to	set	display	options	that	filter	collection	and	property	data
in	Meta	Data	Browser.

This	dialog	box	appears	when	you	right-click	any	item	within	the	Meta	Data
Services	folder,	and	then	click	Browse	Options.	The	display	options	that	you
select	apply	to	the	current	item	and	all	items	that	branch	from	it.

Collection	Options
These	options	enable	you	to	view	collections,	and	to	select	whether	empty
collections	and	reverse	relationships	are	visible.

Display	Collections

Specifies	whether	object	and	relationship	collections	are	displayed.	The
following	icon	identifies	a	collection.

Selecting	this	option	enables	the	following	additional	options.

Show	Empty	Collections

Specifies	whether	empty	collections	are	displayed.	Empty	collections	contain
no	members.

Show	Reverse	Relationships

Specifies	whether	reverse	relationships	are	displayed.	Reverse	relationships
show	a	relationship	from	the	opposite	perspective	and	may	contain	additional
data	not	otherwise	available.	For	example,	given	this	one-to-one	relationship,
car	contains	engine,	the	reverse	relationship	is	engine	contained	by	car.	The
reverse	relationship	represents	a	data	definition	that	shows	whether	one	type
of	engine	is	used	in	many	types	of	cars.

Properties	Options



These	options	enable	you	to	show	or	suppress	inherited	property	values	for
objects	in	the	Contents	and	Information	Model	folders.

Show	All	Class	Properties

Specifies	whether	inherited	properties	are	displayed.	An	inherited	property	is
an	alias	of	a	property	on	a	base	interface.	When	you	show	inherited
properties,	you	see	both	the	alias	and	the	base	property	from	which	the	alias
is	derived.

Consider	a	Person	object	that	has	a	property	named	Phone	Number.
Through	aliasing,	you	could	base	a	new	property	of	a	different	object	on
Phone	Number.	For	example,	a	Customer	object	could	have	a	property
named	Customer	ID	that	is	derived	from	Phone	Number.	When	you	select
the	Show	All	Class	Properties	option,	both	the	inherited	property
(Customer	ID)	and	the	base	property	(Phone	Number)	are	presented	as
sibling	properties.

See	Also

Repository	Collections

Repository	Relationship	Objects

Setting	Display	Options	in	Meta	Data	Browser

Working	with	Object	Properties	in	Meta	Data	Browser

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Meta	Data	Services



Repository	Object	Properties	Dialog	Box
Use	this	dialog	box	to	view	properties	of	a	repository	object.	The	name	of	the
current	object	determines	the	name	of	the	dialog	box.	For	example,	if	the	object
name	is	TblCustomer,	the	dialog	box	name	is	TblCustomer	Properties.

If	you	are	running	Meta	Data	Browser	as	a	stand-alone	snap-in,	and	you	are
running	in	either	Power	User	or	Administrator	browse	mode,	you	can	edit
property	values.

This	dialog	box	appears	when	you	right-click	an	object	in	the	Contents	folder	or
in	the	Information	Models	folder,	and	then	click	Properties.

Options
Name

Displays	the	name	of	the	object	or	information	model.

Class	Name

Displays	the	name	of	the	class	upon	which	an	object	is	based.	The	class
name	is	a	repository	API	class	that	provides	meta	data	about	the	object.

Columns

Name
Shows	the	name	of	the	property.

Data	Type
Shows	the	data	type	of	a	property.

Value
Shows	the	user-defined	value	of	a	property.	Depending	on	your	browser
mode,	you	can	click	the	value	to	invoke	an	in-place	editor	used	to	modify
the	value.

See	Also



Editing	Registration	Properties	in	Meta	Data	Browser

Repository	API	Reference

Selecting	Browse	Mode	in	Meta	Data	Browser

Working	with	Object	Properties	in	Meta	Data	Browser

JavaScript:hhobj_1.Click()


Meta	Data	Services



Database	Registration	Properties	Dialog	Box
Use	this	dialog	box	to	register	a	new	repository	database	with	Meta	Data
Browser.	You	should	only	register	repository	databases.	Databases	that	do	not
contain	the	standard	repository	SQL	tables	do	not	have	viewable	content	in	Meta
Data	Browser.

This	dialog	box	is	available	when	you	run	Meta	Data	Browser	as	a	stand-alone
snap-in.	It	is	not	available	for	use	within	SQL	Server	Enterprise	Manager.	For
more	information,	see	Using	Meta	Data	Browser.

This	dialog	box	appears	when	you	right-click	the	Meta	Data	Services	folder	or
an	existing	registered	repository	database	and	then	click	Register	Database.	You
can	also	open	this	dialog	box	by	clicking	Edit	Database	Registration.

Options
Server

The	name	of	a	registered	computer	running	Microsoft®	SQL	Server™	2000.

Connection

Provides	two	authentication	approaches	that	are	identical	to	SQL	Server
database	registration.	For	more	information,	search	on	"registered	SQL
Server	properties"	in	SQL	Server	Books	Online.

Database

The	name	of	the	repository	database	you	want	to	register.	Be	sure	to	choose	a
database	that	has	the	repository	SQL	tables.	These	tables	provide	data	for	the
Contents	and	Information	folders.

Browse	Mode

Specifies	the	browse	mode	for	browsing	contents	and	information	models.
The	default	selection	is	End	User.	Power	User	and	Administrator	modes
provide	additional	browsing	capability.

End	User



The	default	user	mode	selection.	End	User	mode	supports	read-only	access
to	the	Contents	folder.

Power	User
Power	User	mode	supports	read/write	access	to	the	Contents	folder.	In
the	Contents	folder,	Power	Users	can	display	and	edit	object	properties.

Administrator
Administrator	mode	supports	read-write	access	to	the	Contents	folder,
read-only	access	to	the	Information	Models	folder,	and	support	for
creating,	editing,	and	deleting	repository	database	registration.
Repository	Administrators	can	also	install	information	models	and	view
object	identifier	properties	(such	as	ObjID	and	InternalID)	in	the
Repository	Object	Properties	dialog	box.

Browse	mode	selection	is	available	during	new	database	registration.
The	browse	mode	that	you	select	determines	your	degree	of
interaction	with	the	database.	To	change	the	browse	mode,	you	must
edit	the	registration	properties.

The	browse	mode	selection	you	make	applies	to	you.	You	cannot	set
or	predetermine	the	browse	mode	for	other	users.

See	Also

Editing	Registration	Properties	in	Meta	Data	Browser

Registering	a	Repository	Database	in	Meta	Data	Browser

Selecting	Browse	Mode	in	Meta	Data	Browser



Meta	Data	Services



Repository	Properties	Dialog	Box
Use	this	dialog	box	to	specify	an	upgrade	option	and	view	version	information
about	the	repository	database.	The	name	of	the	current	repository	database
determines	the	name	of	the	dialog	box.	For	example,	if	the	repository	database
name	is	DevTools,	the	dialog	box	name	is	DevTools	Properties.	If	you	open	this
dialog	box	from	within	Enterprise	Manager,	the	dialog	box	name	is	Meta	Data
Services	Properties.

This	dialog	box	appears	when	you	right-click	a	repository	database	and	then
click	Properties.

Options
Server

The	name	of	an	installed	instance	of	Microsoft®	SQL	Server™	2000.

Database

The	name	of	the	repository	database.

Repository	Database	Version

Shows	a	version	number	and	a	point	release	number,	if	applicable.	Version
information	identifies	which	version	of	the	repository	engine	was	used	to
create	the	database.	The	outcome	of	creating	a	database	varies	depending	on
the	DBMS	you	are	using.	For	a	SQL	Server	database,	creating	a	database
causes	SQL	Server	to	create	repository	SQL	tables	in	an	empty	database	that
you	provide.	For	more	information,	see	Connecting	to	a	SQL	Server
Repository	Database.

Upgrade

Updates	repository	SQL	schema	tables	in	a	repository	database	so	that	you
can	use	new	repository	engine	features.	After	you	upgrade	a	repository
database,	you	cannot	work	with	it	using	previous	versions	of	the	repository
engine.

JavaScript:hhobj_1.Click()


This	button	is	enabled	only	when	the	database	version	is	less	than	the	current
version	of	the	repository	engine.

See	Also

Registering	a	Repository	Database	in	Meta	Data	Browser

Repository	SQL	Schema

Upgrading	from	Earlier	Versions

JavaScript:hhobj_2.Click()


Meta	Data	Services



Create	New	Object	Dialog	Box
Use	this	dialog	box	to	create	a	new	repository	object	and	add	it	to	the	specified
collection.	You	can	add	repository	objects	instance	data	in	the	Contents	folder.
You	cannot	create	new	objects	for	items	in	the	Information	Models	folder.

This	dialog	box	is	available	when	you	run	Meta	Data	Browser	as	a	stand-alone
snap-in,	in	either	Power	User	or	Administrator	browse	mode.	This	dialog	is	not
available	within	SQL	Server	Enterprise	Manager.	For	more	information,	see
Using	Meta	Data	Browser.

This	dialog	box	appears	when	you	right-click	an	item	in	the	Contents	folder	and
then	click	New	Object.	The	item	that	you	select	determines	what	type	of	object
you	can	create	and	where	it	is	located.

Options
Collection	to	add	object	to

Lists	the	collections	defined	on	an	object.	Objects	are	always	added	to
collections.	If	collections	are	visible	(that	is,	the	Display	Collections	option
is	enabled),	the	collection	is	selected	for	you.	If	collections	are	hidden,	you
must	select	the	collection	in	which	to	place	the	object.

Object	Type

Lists	the	object	types	that	are	allowed	for	the	collection.	Only	valid	object
types	are	available	for	selection.

Object	Name

The	objName	of	the	object.	This	name	is	required	when	adding	objects	to	a
naming	relationship.	The	name	of	the	object	should	reflect	its	context.	For
example,	a	name	of	an	interface	member	should	include	the	package,
interface,	and	member	name.	Names	composed	of	multiple	parts	must	be
separated	by	colons	(for	example,	BaseInterfaces:IUMLPackage:Visibility).



See	Also

Creating	Objects

Working	with	Object	Properties	in	Meta	Data	Browser


	Meta Data Services Overview
	Meta Data Services Fundamentals
	Meta Data Fundamentals
	Information Model Fundamentals
	Meta Data Management

	Using Meta Data Services
	Designing Meta Data Types Using Information Models
	Developing Applications Using Meta Data
	Processing Meta Data at Run Time


	What's New in Meta Data Services
	Meta Data Browser Enhancement
	XML Encoding Enhancements
	Repository Engine Programming Enhancements
	Repository Engine Modeling Enhancements

	Meta Data Services Architecture
	Tools and Applications
	Open Standards: OIM, COM, XML
	Information Models
	Repository Engine
	Repository API
	Repository Databases
	Meta Data Services SDK
	Specifications and Limits

	OIM in Meta Data Services
	Why the OIM is Important
	OIM Resources and Documentation
	Meta Data Coalition

	XML in Meta Data Services
	Ways to Use XML in Meta Data Services

	Upgrading from Earlier Versions
	Retaining Legacy Components in a Repository
	Upgrading the Repository Engine
	Upgrading and Migrating a Repository Database
	Upgrading an Information Model
	Using Repository Engine Features with Older Databases

	Using Meta Data Browser
	Viewing Meta Data in Meta Data Browser
	Icons Used in Meta Data Browser
	Working with Repository Databases in Meta Data Browser
	Registering a Repository Database in Meta Data Browser
	Selecting Browse Mode in Meta Data Browser
	Setting Display Options in Meta Data Browser
	Editing Registration Properties in Meta Data Browser
	Deleting Registration Properties in Meta Data Browser
	Exporting to XML

	Working with Contents in Meta Data Browser
	Working with Object Properties in Meta Data Browser
	Creating Objects
	Deleting, Renaming, and Removing Objects from Collections

	Working with Information Models in Meta Data Browser
	Installing Information Models in Meta Data Browser

	Meta Data Browser User Interface Reference
	Meta Data Services Browser Display Options Dialog Box
	Repository Object Properties Dialog Box
	Database Registration Properties Dialog Box
	Repository Properties Dialog Box
	Create New Object Dialog Box



