
Replication

Replication	Overview
Microsoft®	SQL	Server™	2000	replication	is	a	set	of	solutions	that	allow	you	to
copy,	distribute,	and	potentially	modify	data	across	your	enterprise.	SQL	Server
2000	includes	several	methods	and	options	for	replication	design,
implementation,	monitoring,	and	administration	to	give	you	the	functionality	and
flexibility	needed	for	distributing	data	and	maintaining	data	consistency.

Topic Description
Introducing	Replication Describes	how	replication	can	be	used	in	various

business	environments.	Explains	the	SQL	Server
2000	replication	model,	the	types	of	replication,
and	how	replication	works.

Planning	for	Replication Provides	the	information	needed	to	make	critical
decisions	when	creating	a	replication	plan,
including:	business	considerations,	enterprise
data	needs,	network	considerations,	and
designing	a	replication	topology.

Types	of	Replication Details	the	types	of	replication	(snapshot
replication,	transactional	replication,	and	merge
replication).	Discusses	the	components	of	each
type,	how	each	type	works,	the	architecture,	and
the	benefits	and	strengths	of	each	type.

Replication	Tools Describes	the	primary	methods	used	to
implement	replication,	including	using	the
replication	wizards,	using	system	stored
procedures,	programming	a	replication
application	with	Microsoft	ActiveX®	controls,
and	using	tools	such	as	Windows
Synchronization	Manager.

Implementing
Replication

Describes	the	steps	for	implementing	replication
using	the	replication	tools.	Includes	configuring
Publishers	and	Distributors,	creating
publications,	creating	different	types	of
subscriptions,	replicating	between	instances	of

SQL	Server	2000	and	instances	of	SQL	Server
version	7.0	and	earlier.

Replication	Options Explains	the	options	available	with	each	type	of
replication,	including	filtering	published	data,
publishing	database	objects,	immediate	updating,
queued	updating,	and	transforming	published
data.

Replication	Data
Considerations

Includes	handling	identity	columns,	timestamp
data,	uniqueidentifiers	and	data	types.

Administering	and
Monitoring	Replication

Details	the	agents	used	during	replication,
replication	alerts,	validating	data	at	the
Subscriber,	strategies	for	monitoring	replication,
and	remote	agent	activation.

Replication	and
Heterogeneous	Data
Sources

Describes	how	you	can	replicate	data	between
heterogeneous	data	sources	(such	as	DB2,
Oracle,	Microsoft	Access,	or	Microsoft
Exchange),	how	to	publish	to	heterogeneous
Subscribers,	and	how	to	subscribe	to
heterogeneous	Publishers.

Replication	Security Discusses	security	access	layers	and	replication,
Internet	security	issues,	snapshot	folder	security,
agent	login	security,	role	requirements,	and
security	for	updatable	subscriptions.

Enhancing	Replication
Performance

Provides	techniques	for	optimizing	replication
performance	including	enhancement	techniques
for	each	type	of	replication,	effective	data
partitioning,	and	Distributor	options.

Backing	Up	and
Restoring	Replication
Databases

Describes	strategies	for	backing	up	replication
databases,	how	to	restore	each	type	of
replication,	and	restoring	backups	of	replicated
databases.

Getting	Started	with
Replication
Programming

Discusses	programming	replication	including
using	ActiveX	controls,	SQL-DMO,	and	the
Replication	Distributor	Interface.

JavaScript:hhobj_1.Click()

Replication

Introducing	Replication
Microsoft®	SQL	Server™	2000	replication	is	a	set	of	technologies	for	copying
and	distributing	data	and	database	objects	from	one	database	to	another	and	then
synchronizing	between	databases	for	consistency.

Using	replication,	you	can	distribute	data	to	different	locations,	to	remote	or
mobile	users	over	a	local	area	network,	using	a	dial-up	connection,	and	over	the
Internet.	Replication	also	allows	you	to	enhance	application	performance,
physically	separate	data	based	on	how	it	is	used	(for	example,	to	separate	online
transaction	processing	(OLTP)	and	decision	support	systems),	or	distribute
database	processing	across	multiple	servers.

Benefits	of	Replication
Replication	offers	various	benefits	depending	on	the	type	of	replication	and	the
options	you	choose,	but	the	common	benefit	of	SQL	Server	2000	replication	is
the	availability	of	data	when	and	where	it	is	needed.

Other	benefits	include:

Allowing	multiple	sites	to	keep	copies	of	the	same	data.	This	is	useful
when	multiple	sites	need	to	read	the	same	data	or	need	separate	servers
for	reporting	applications.

Separating	OLTP	applications	from	read-intensive	applications	such	as
online	analytical	processing	(OLAP)	databases,	data	marts,	or	data
warehouses.

Allowing	greater	autonomy.	Users	can	work	with	copies	of	data	while
disconnected	and	then	propagate	changes	they	make	to	other	databases
when	they	are	connected.	

Scale	out	of	data	to	be	browsed,	such	as	browsing	data	using	Web-based
applications.	

Increasing	aggregate	read	performance.	

Bringing	data	closer	to	individuals	or	groups.	This	helps	to	reduce
conflicts	based	on	multiple	user	data	modifications	and	queries	because
data	can	be	distributed	throughout	the	network,	and	you	can	partition
data	based	on	the	needs	of	different	business	units	or	users.

Using	replication	as	part	of	a	customized	standby	server	strategy.
Replication	is	one	choice	for	standby	server	strategy.	Other	choices	in
SQL	Server	2000	include	log	shipping	and	failover	clustering,	which
provide	copies	of	data	in	case	of	server	failure.

When	to	Use	Replication

With	organizations	supporting	diverse	hardware	and	software	applications	in
distributed	environments,	it	becomes	necessary	to	store	data	redundantly.
Moreover,	different	applications	have	different	needs	for	autonomy	and	data
consistency.

Replication	is	a	solution	for	a	distributed	data	environment	when	you	need	to:

Copy	and	distribute	data	to	one	or	more	sites.	

Distribute	copies	of	data	on	a	scheduled	basis.

Distribute	data	changes	to	other	servers.

Allow	multiple	users	and	sites	to	make	changes	then	merge	the	data
modifications	together,	potentially	identifying	and	resolving	conflicts.

Build	data	applications	that	need	to	be	used	in	online	and	offline
environments.

Build	Web	applications	where	users	can	browse	large	volumes	of	data.

Optionally	make	changes	at	subscribing	sites	that	are	transparently
under	transactional	control	of	the	Publisher.

Replication

Replication	Model
Microsoft®	SQL	Server™	2000	replication	uses	a	publishing	industry	metaphor
to	represent	the	components	and	processes	in	a	replication	topology.	The	model
is	composed	of	the	following:	Publisher,	Distributor,	Subscribers,	Publications,
articles,	and	subscriptions.

There	are	also	several	replication	processes	that	are	responsible	for	copying	and
moving	data	between	the	Publisher	and	Subscriber.	These	are	the	Snapshot
Agent,	Distribution	Agent,	Log	Reader	Agent,	Queue	Reader	Agent,	and	Merge
Agent.	For	more	information	about	the	agent	processes,	see	Agents	and
Monitors.

Publisher
The	Publisher	is	a	server	that	makes	data	available	for	replication	to	other
servers.	The	Publisher	can	have	one	or	more	publications,	each	representing	a
logically	related	set	of	data.	In	addition	to	being	the	server	where	you	specify
which	data	is	to	be	replicated,	the	Publisher	also	detects	which	data	has	changed
during	transactional	replication	and	maintains	information	about	all	publications
at	that	site.	

Distributor
The	Distributor	is	a	server	that	hosts	the	distribution	database	and	stores	history
data,	and/or	transactions	and	meta	data.	The	role	of	the	Distributor	varies
depending	on	which	type	of	replication	you	implement.	For	more	information,
see	Types	of	Replication.

A	remote	Distributor	is	a	server	that	is	separate	from	the	Publisher	and	is
configured	as	a	Distributor	of	replication.	A	local	Distributor	is	a	server	that	is
configured	to	be	both	a	Publisher	and	a	Distributor	of	replication.

Subscribers
Subscribers	are	servers	that	receive	replicated	data.	Subscribers	subscribe	to
publications,	not	to	individual	articles	within	a	publication,	and	they	subscribe

only	to	the	publications	that	they	need,	not	all	of	the	publications	available	on	a
Publisher.	Depending	on	the	type	of	replication	and	replication	options	you
choose,	the	Subscriber	could	also	propagate	data	changes	back	to	the	Publisher
or	republish	the	data	to	other	Subscribers.

Publication
A	publication	is	a	collection	of	one	or	more	articles	from	one	database.	This
grouping	of	multiple	articles	makes	it	easier	to	specify	a	logically	related	set	of
data	and	database	objects	that	you	want	to	replicate	together.

Article
An	article	is	a	table	of	data,	a	partition	of	data,	or	a	database	object	that	is
specified	for	replication.	An	article	can	be	an	entire	table,	certain	columns	(using
a	vertical	filter),	certain	rows	(using	a	horizontal	filter),	a	stored	procedure	or
view	definition,	the	execution	of	a	stored	procedure,	a	view,	an	indexed	view,	or
a	user-defined	function.

Subscription
A	subscription	is	a	request	for	a	copy	of	data	or	database	objects	to	be	replicated.
A	subscription	defines	what	publication	will	be	received,	where,	and	when.
Synchronization	or	data	distribution	of	a	subscription	can	be	requested	either	by
the	Publisher	(a	push	subscription)	or	by	the	Subscriber	(a	pull	subscription).	A
publication	can	support	a	mixture	of	push	and	pull	subscriptions.

See	Also

Implementing	Replication

Publishers,	Distributors,	and	Subscribers

Subscribing	to	Publications

Replication

Introducing	the	Types	of	Replication
There	are	three	types	of	replication	available	with	Microsoft®	SQL	Server™
2000:	snapshot	replication,	transactional	replication	and	merge	replication.

Snapshot	Replication
Snapshot	replication	is	the	process	of	copying	and	distributing	data	and	database
objects	exactly	as	they	appear	at	a	moment	in	time.	Snapshot	replication	does	not
require	continuous	monitoring	of	changes	because	changes	made	to	published
data	are	not	propagated	to	the	Subscriber	incrementally.	Subscribers	are	updated
with	a	complete	refresh	of	the	data	set	and	not	individual	transactions.	Because
snapshot	replication	replicates	an	entire	data	set	at	one	time,	it	may	take	longer
to	propagate	data	modifications	to	Subscribers.	Snapshot	publications	are
typically	replicated	less	frequently	than	other	types	of	publications.

Options	available	with	snapshot	replication	allow	you	to	filter	published	data,
allow	Subscribers	to	make	modifications	to	replicated	data	and	propagate	those
changes	to	the	Publisher	and	then	to	other	Subscribers,	and	allow	you	to
transform	data	as	it	is	published.

Snapshot	replication	can	be	helpful	in	situations	when:

Data	is	mostly	static	and	does	not	change	often.

It	is	acceptable	to	have	copies	of	data	that	are	out	of	date	for	a	period	of
time.

Replicating	small	volumes	of	data.

Sites	are	often	disconnected	and	high	latency	(the	amount	of	time
between	when	data	is	updated	at	one	site	and	when	it	is	updated	at
another)	is	acceptable.

Transactional	Replication

With	transactional	replication,	an	initial	snapshot	of	data	is	propagated	to
Subscribers,	and	then	when	data	modifications	are	made	at	the	Publisher,	the
individual	transactions	are	captured	and	propagated	to	Subscribers.

SQL	Server	2000	monitors	INSERT,	UPDATE,	and	DELETE	statements,	and
changes	to	stored	procedure	executions	and	indexed	views.	SQL	Server	2000
stores	the	transactions	affecting	replicated	objects	and	then	it	propagates	those
changes	to	Subscribers	continuously	or	at	scheduled	intervals.	Transaction
boundaries	are	preserved.	If,	for	example,	100	rows	are	updated	in	a	transaction,
either	the	entire	transaction	with	all	100	data	modifications	are	accepted	and
propagated	to	Subscribers	or	none	of	them	are.	When	all	changes	are	propagated,
all	Subscribers	will	have	the	same	values	as	the	Publisher.

Options	available	with	transactional	replication	allow	you	to	filter
published	data,	allow	users	at	the	Subscriber	to	make	modifications	to
replicated	data	and	propagate	those	changes	to	the	Publisher	and	to
other	Subscribers,	and	allow	you	to	transform	data	as	it	is	published.

Transactional	replication	is	typically	used	when:

You	want	data	modifications	to	be	propagated	to	Subscribers,	often
within	seconds	of	when	they	occur.

You	need	transactions	to	be	atomic	(either	all	or	none	applied	at	the
Subscriber).

Subscribers	are	mostly	connected	to	the	Publisher.

Your	application	will	not	tolerate	high	latency	for	Subscribers	receiving
changes.

Merge	Replication

Merge	replication	allows	various	sites	to	work	autonomously	(online	or	offline)
and	merge	data	modifications	made	at	multiple	sites	into	a	single,	uniform	result
at	a	later	time.	The	initial	snapshot	is	applied	to	Subscribers	and	then	SQL
Server	2000	tracks	changes	to	published	data	at	the	Publisher	and	at	the

Subscribers.	The	data	is	synchronized	between	servers	either	at	a	scheduled	time
or	on	demand.	Updates	are	made	independently	(no	commit	protocol)	at	more
than	one	server,	so	the	same	data	may	have	been	updated	by	the	Publisher	or	by
more	than	one	Subscriber.	Therefore,	conflicts	can	occur	when	data
modifications	are	merged.

Merge	replication	includes	default	and	custom	choices	for	conflict	resolution
that	you	can	define	when	you	configure	a	merge	publication.	When	a	conflict
occurs,	a	resolver	is	invoked	by	the	Merge	Agent	to	determine	which	data	will
be	accepted	and	propagated	to	other	sites.

Options	available	with	merge	replication	include	filtering	published	data
horizontally	and	vertically,	including	join	filters	and	dynamic	filters,	using
alternate	synchronization	partners,	optimizing	synchronization	to	improve	merge
performance,	validating	replicated	data	to	ensure	synchronization,	and	using
attachable	subscription	databases.

Merge	replication	is	helpful	when:

Multiple	Subscribers	need	to	update	data	at	various	times	and	propagate
those	changes	to	the	Publisher	and	to	other	Subscribers.

Subscribers	need	to	receive	data,	make	changes	offline,	and	synchronize
changes	later	with	the	Publisher	and	other	Subscribers.

The	application	latency	requirement	is	either	high	or	low.

Site	autonomy	is	critical.

See	Also

Designing	a	Replication	Topology

Planning	for	Replication

Replication	Options

Types	of	Replication

Validating	Replicated	Data

Replication

Introducing	Replication	Options
Options	available	with	the	types	of	replication	allow	you	more	replication
solutions	and	greater	flexibility	and	control	in	your	applications.	Replication
options	are:

Filtering	published	data

Publishing	database	objects

Publishing	schema	objects

Updatable	subscriptions

Transforming	published	data

Alternate	synchronization	partners

Filtering	Published	Data

Filtering	data	during	replication	allows	you	to	publish	only	the	data	or	partitions
of	data	that	are	needed	at	the	Subscriber.	You	can	filter	data	to	create	partitions
that	include	only	the	columns	and/or	only	the	rows	that	you	specify	for
replication.

With	all	types	of	replication,	you	can	choose	to	copy	and	distribute	complete
tables,	or	data	filtered	horizontally	or	vertically	with	static	filters.
Merge	replication	is	especially	strong	in	filtering	options,	and	you	can	use
dynamic	filters	to	customize	the	filter	based	on	a	property	of	the	Subscriber
receiving	the	data.

Filtering	data	horizontally	allows	you	to	publish	only	the	data	that	is	needed,
partition	data	to	different	sites,	avoid	conflicts	(because	Subscribers	will	be
viewing	and	updating	different	subsets	of	data),	and	manage	publications	based

on	user	needs	or	applications.

Additionally,	you	have	the	option	of	employing	user-defined	functions	in	your
static	and	dynamic	filters	and	leveraging	the	power	of	customized	functions.

Merge	replication	provides	the	added	functionality	of	join	filters	and	dynamic
filters.	Join	filters	enable	you	to	extend	filters	created	on	one	table	to	another.
For	example,	if	you	are	publishing	customer	data	based	on	the	state	where	the
customer	resides,	you	may	want	to	extend	that	filter	to	the	related	orders	and
order	details	of	the	customers	in	a	particular	state.	Dynamic	filters	allow	you	to
create	a	merge	publication	and	then	filter	data	from	the	publishing	table..	The
filter	value	can	be	the	user	ID	or	login	retrieved	based	on	a	Transact-SQL
function,	such	as	SUSER_SNAME()	or	HOSTNAME().

Publishing	Database	Objects
You	can	publish	database	objects	including	views,	indexed	views,	user-defined
functions,	stored	procedure	definitions,	and	the	execution	of	stored	procedures.
You	can	include	data	and	database	objects	in	the	same	publication	or	in	different
publications.	Publishing	database	objects	is	available	with	all	types	of	replication
(snapshot	replication,	transactional	replication,	and	merge	replication).

Publishing	Schema	Objects
In	addition	to	database	objects,	you	can	also	specify	if	you	want	schema	objects
to	be	published	such	as	declared	referential	integrity	(primary	key	constraints,
reference	constraints,	unique	constraints),	clustered	indexes,	nonclustered
indexes,	user	triggers,	extended	properties,	and	collation.	You	can	also	change
destination	table	owner	names	and	data	formats	to	optimize	for	SQL	Server	2000
or	heterogeneous	Subscribers.

Updatable	Subscriptions
Data	at	the	Subscriber	can	be	modified	if	you	use	merge	replication	or	if	you	use
snapshot	replication	or	transactional	replication	with	an	updatable	subscription
option.

Updatable	subscription	options	available	with	snapshot	replication	and
transactional	replication	allow	you	to	make	changes	to	replicated	data	at	the

Subscriber	and	propagate	those	changes	to	the	Publisher	and	to	other
Subscribers.	Updatable	subscription	options	include	immediate	updating,	queued
updating,	and	immediate	updating	with	queued	updating	as	a	failover.

Immediate	updating	allows	Subscribers	to	update	data	only	if	the	Publisher	will
accept	them	immediately.	If	the	changes	are	accepted	at	the	Publisher,	they	are
propagated	to	other	Subscribers.	The	Subscriber	must	be	continuously	and
reliably	connected	to	the	Publisher	to	make	changes	at	the	Subscriber.

Queued	updating	allows	Subscribers	to	modify	data	and	store	those	data
modifications	in	a	queue	while	disconnected	from	the	Publisher	for	a	period	of
time.	When	the	Subscriber	reconnects	to	the	Publisher,	the	changes	are
propagated	to	the	Publisher.	If	the	Publisher	accepts	the	changes,	normal
replication	processes	occur	and	the	changes	are	propagated	to	other	Subscribers
from	the	Publisher.	You	can	store	data	modifications	in	a	SQL	Server	2000
queue	or	use	Microsoft	Message	Queuing.

Immediate	updating	with	the	queued	updating	option	allows	you	to	use
immediate	updating	and	switch	to	queued	updating	if	a	connection	cannot	be
maintained	between	the	Publisher	and	Subscribers.	After	switching	to	queued
updating,	reconnecting	to	the	Publisher,	and	emptying	the	queue,	you	can	switch
back	to	immediate	updating	mode.

When	using	merge	replication,	data	at	the	Subscriber	is	automatically	updatable.

Transforming	Published	Data
With	snapshot	replication	or	transactional	replication,	you	can	leverage	the
transformation	mapping	and	scripting	capabilities	of	Data	Transformation
Services	(DTS)	when	building	a	replication	topology.	Replication	integrated
with	DTS	allows	you	to	customize	and	distribute	data	based	on	the	requirements
of	individual	Subscribers.	For	example,	a	Subscriber	might	need	to	have
different	table	names,	column	names,	or	compatible	data	types.

By	transforming	published	data,	you	can	filter	data	and	simulate	dynamic
partitions	of	data	so	that	data	from	one	snapshot	or	transactional	publication	can
be	distributed	to	Subscribers	that	require	different	partitions	of	data.	With	static
partitions,	you	need	to	create	and	filter	separate	publications	for	each	Subscriber
based	on	the	needs	of	the	Subscriber.

Alternate	Synchronization	Partners
Subscribers	to	merge	publications	can	synchronize	with	servers	other	than	the
Publisher	at	which	the	subscription	originated.	Synchronizing	with	alternate
partners	allows	Subscribers	to	synchronize	data	even	if	the	primary	Publisher	is
unavailable.	This	feature	is	also	useful	when	mobile	Subscribers	have	access	to	a
faster	or	more	reliable	network	connection	with	an	alternate	Publisher.

See	Also

Alternate	Synchronization	Partners

Filtering	Published	Data

Merge	Replication	or	Updatable	Subscriptions

Publishing	Data	and	Database	Objects

Replication

Typical	Uses	of	Replication
Microsoft®	SQL	Server™	2000	replication	supports	the	distributed	environment
of	increasingly	global	and	mobile	corporate	operations.	Replication	allows	you
to	share	information	across	heterogeneous	platforms	and	databases	and	then
modify	and	reconcile	that	information.	Replication	ensures	that	correct	data	will
be	available	when	and	where	it	is	needed.

Replication	is	used	for	a	variety	of	applications:

Reporting,	decision	support,	and	data	warehousing	applications.

Online	and	offline	applications.

Web-based	applications	with	many	users	browsing	data.

Keeping	data	close	to	users	(providing	more	site	autonomy	and	efficient
network	usage).

Replication

Reporting,	Decision	Support,	and	Data	Warehousing
Applications
A	data	warehouse	is	a	database	that	contains	enterprise	data	representing	the
business	history	of	an	organization.	It	is	used	to	consolidate	information	stored
in	various	business	systems	and	heterogeneous	platforms.	Data	in	a	data
warehouse	is	often	structured	and	optimized	for	decision	support.

Replication	becomes	an	integral	part	of	the	data	warehousing	and	decision
support	environment	when	it	is	used	during	data	staging	and	as	a	data
warehousing	management	and	deployment	tool.	You	can	use	replication	to
update	data	marts	and	data	warehouses,	distribute	data	to	read-only	databases
used	for	queries	and	analyses,	distribute	data	to	an	online	analytical	processing
(OLAP)	database,	and	consolidate	data	so	it	can	be	transformed	and	moved	into
the	data	warehousing	environment.

Replication	can	also	be	used	to	partition	data	that	has	been	consolidated	in	a	data
warehousing	environment	and	distribute	the	data	to	data	marts	or	databases
inside	or	outside	of	the	data	warehousing	environment.

Although	Microsoft®	SQL	Server™	does	not	replicate	SQL	Server	2000
Analysis	Services	objects	(for	example,	dimensions	or	cubes),	it	can	help	you
distribute	data	from	OLTP	databases	to	data	staging	databases	or	databases	that
will	be	used	for	reporting,	decision	support	or	analysis	purposes,	and	if	needed,
you	can	use	the	capabilities	of	Data	Transformation	Services	(DTS)	during
replication.

Providing	consistent	data	to	data	warehousing	and	decision	support	systems	is
critical	to	the	success	of	those	operations.	Within	a	reporting,	decision	support
query,	or	OLAP	environment,	different	user	groups	have	different	requirements
for	the	data,	and	replication	provides	several	options	for	distributing,	updating,
and	synchronizing	data.

Because	data	used	in	decision	support	is	predominantly	read-only	(used	for
queries	and	analysis),	snapshot	replication	or	transactional	replication	are	often
the	types	of	replication	used.	With	snapshot	replication,	data	and	database
objects	are	copied	and	distributed	exactly	as	they	appear	at	a	specific	moment	in
time.	If	data	transformations	are	needed	for	data	that	is	replicated	into	a	data

mart	or	data	warehouse,	you	can	use	Data	Transformation	Services	(DTS)	as	part
of	the	replication	process	when	using	snapshot	replication	or	transactional
replication.

Example

See	Also

Snapshot	Replication

Transactional	Replication

Transforming	Published	Data

Replication

Online/Offline	Applications
Microsoft®	SQL	Server™	2000	replication	offers	a	solution	to	the	problem	of
data	accessibility	while	traveling	and	at	disconnected	locations.	Business	users
often	need	to	use	laptops	or	handheld	computers	when	traveling	and	need	a	way
to	access	data,	often	on	demand,	when	using	a	modem	to	dial	into	corporate
networks	or	connect	to	an	intranet	or	the	Internet.

Working	online,	using	replication,	mobile	users	can	receive	data	from	the	central
server	(which	would	typically	be	the	Publisher)	when	they	connect	to	the
corporate	wide	area	network	(WAN)	or	local	area	network	(LAN),	or	over	the
Internet.	They	can	then	make	changes	to	data	immediately,	or	they	can	modify
data	offline	and	propagate	those	changes	to	the	originating	database	and	to	other
locations	when	they	reconnect	to	the	network.

Because	data	modifications	made	at	Subscribers	are	performed	asynchronously
at	the	original	server	and	then	sent	to	other	servers,	transactional	replication
using	the	queued	updating	option,	or	merge	replication	are	often	the	types	of
replication	used	for	mobile	or	disconnected	users.

Note		When	planning	for	an	online/offline	application	that	uses	replication,	plan
for	occasional	maintenance	in	the	deployment	of	the	application	and	a	way	to
transfer	new	datasets	to	the	disconnected	Subscribers.

Example

Because	the	sales	representatives	make	frequent	data	modifications	and	are	often
disconnected,	Northwind	administrators	decide	to	use	merge	replication.	When
the	sales	representatives	reconnect	to	the	network,	they	can	synchronize	their
data	changes	with	changes	made	at	other	locations.

See	Also

Merge	Replication

Merge	Replication	or	Updatable	Subscriptions

Planning	for	Merge	Replication

Replication

Web-Based	Applications
Replicating	data	over	the	Internet	allows	remote,	disconnected,	and	anonymous
users	to	access	data	when	they	need	it	using	a	connection	to	the	Internet.	For
example,	if	a	Web	site	allows	users	to	browse	items	for	sale,	users	will	need	to
browse	high	volumes	of	data.	Using	replication,	administrators	can	make	that
data	available	for	read	purposes	on	multiple	Web	servers.	Browsing	can	take
place	at	any	server	and	the	site	can	then	handle	more	traffic.	

Another	use	of	replication	and	Web-based	applications	is	allowing	individual
Subscribers	to	download	or	upload	data	changes	using	an	application	that	uses
an	Internet	browser,	or	by	using	a	connection	to	the	corporate	network	or	share
where	the	data	resides.	Ways	for	users	to	connect	to	replicated	data	over	the
Internet	using	Microsoft®	SQL	Server™	2000	include:

Using	Virtual	Private	Networks	(VPNs),	such	as	those	based	on	the
Microsoft	Windows	NT®	Server	version	4.0	operating	system,	the
Microsoft	Windows®	2000	Server	operating	system,	or	a	third	party
provider.

Integrating	replication	with	Microsoft	Proxy	Server.	

Using	TCP/IP	and	File	Transfer	Protocol	(FTP)	to	transfer	the
initial	snapshot	of	data	over	the	Internet.

VPNs	allow	users	who	are	not	connected	directly	to	a	corporate	network	to
access	the	corporate	network	remotely	through	the	Internet.	A	VPN	connects	the
components	of	one	network	over	another	network.	This	is	achieved	by	allowing
the	user	to	tunnel	through	the	Internet	or	another	public	network	(using	a
protocol	such	as	Microsoft	Point-to-Point	Tunneling	Protocol	(PPTP)).	This
process	provides	the	same	security	and	features	previously	available	only	in	a
private	network.

Using	VPNs	is	the	most	secure	method	for	replicating	data	over	the	Internet.	You
can	use	Windows	Authentication	as	though	you	were	on	a	local	area	network
(LAN).

Integrating	Microsoft	SQL	Server	2000	replication	with	Microsoft	Proxy	Server
allows	for	replication	over	the	Internet	with	security	configured	on	Windows	NT
version	4.0,	Windows	2000	Server,	Proxy	Server,	and	SQL	Server	2000.

SQL	Server	2000	can	use	the	TCP/IP	Sockets	or	the	Multiprotocol	Net-Libraries
over	TCP/IP	to	establish	an	ODBC	or	OLE	DB	connection	between	the
Publisher	or	Distributor	and	the	Subscriber.	You	can	then	configure	the
publication	and	pull	subscriptions	or	anonymous	subscriptions	to	access	the	FTP
site	to	apply	the	initial	snapshot	files	(incremental	changes	are	propagated	using
ODBC	or	OLE	DB	on	TCP/IP).

For	more	information,	see	Implementing	Replication	Over	the	Internet.

Replication

Keeping	Data	Close	to	Users
Data	distribution	is	the	process	of	ensuring	that	data	is	available	to	people	when
they	need	it.	Here	are	examples	of	using	replication	to	give	data	to	the	users	who
need	it.	Publish	data:

From	a	central	site,	partitioning	it,	and	distributing	it	to	various	regional
offices.

To	a	read-only	database	so	that	users	can	execute	queries	and	analyses
without	interrupting	transaction	processing	on	a	production	database.

From	multiple	databases	into	a	central	database,	which	could	be	a	data
mart	or	data	warehouse.

To	a	backup	database	as	part	of	a	standby	solution.

To	support	mobile,	disconnected	users.

Over	the	Internet,	so	it	can	be	available	on-demand	with	
anonymous	subscriptions.

Example

Using	replication,	Northwind	Traders	can	replicate	partitions	of	the	central
orders	online	transaction	processing	(OLTP)	database	to	each	region,	and	filter
the	data	based	on	the	city,	region,	or	user	who	is	accessing	the	data.

If	the	regional	office	only	needs	to	read	the	data	and	not	make	changes,	the
central	office	can	filter	the	data	to	create	the	appropriate	partitions	based	on
region	or	other	criteria	and	then	publish	that	data	to	Subscribers.	Depending	on
how	often	and	the	how	much	data	is	modified	at	the	publishing	site,	this	type	of
application	could	use	snapshot	replication	or	transactional	replication.

If	a	regional	office	will	make	changes	to	the	data	and	needs	autonomy,	the	data

can	be	filtered,	replicated	to	the	region,	and	the	regional	office	can	make	changes
to	its	data	as	needed.	When	the	changes	need	to	be	propagated	to	the	corporate
office	or	to	other	regions,	the	regional	office	can	synchronize	with	the	corporate
office	and	those	changes	will	be	propagated	automatically	to	the	other	regions
when	they	synchronize	with,	and	are	accepted	by,	the	corporate	office.	If	the
regional	office	needs	to	distribute	the	corporate	data	to	its	sales	force	within	the
region,	it	can	republish	the	data	to	the	necessary	sites.

There	are	several	options	for	scheduling	distribution	of	the	data	and	modifying
the	data	at	the	different	regional	offices.	If	the	regional	offices	are	continuously
and	reliably	connected,	multiple	offices	can	update	the	data	and	propagate
changes	to	the	corporate	office	immediately.	The	data	is	then	propagated	to	other
regions	within	seconds	(immediate	updating),	or	if	a	site	is	disconnected	for	a
limited	amount	of	time,	data	modifications	can	be	stored	in	a	queue	until	the
connection	with	the	corporate	office	is	reestablished	(queued	updating).

Replication

How	Replication	Works
There	are	several	ways	to	implement	and	monitor	replication,	and	the	process	of
replication	is	different	depending	on	the	type	of	replication	and	the	options	you
choose.	In	general,	replication	is	composed	of	the	following	stages:	configuring
replication,	generating	and	applying	the	initial	snapshot,	modifying	replicated
data,	and	synchronizing	and	propagating	data.

Configuring	Replication
Replication	deployment	begins	when	you	configure	a	Publisher	and	Distributor.
The	Distributor	can	be	a	separate	server	from	the	Publisher,	or	it	can	be	the	same
server.	In	general,	replication	is	composed	of	the	following	stages:	configuring
replication,	generating	and	applying	the	initial	snapshot,	modifying	replicated
data,	and	synchronizing	and	propagating	data.	The	Distributor	is	a	primary
component	during	snapshot	replication	and	transactional	replication;	however,
the	role	of	the	Distributor	is	limited	during	merge	replication.	The	Distributor	is
used	only	for	agent	history	reporting	and	monitoring	purposes.	During	merge
replication,	the	Publisher	and	Distributor	are	usually	the	same	server.	This	is
called	using	a	local	Distributor.

After	the	Publisher	and	Distributor	are	configured,	you	can	create	publications
based	on	data,	subsets	of	data,	and/or	database	objects.	When	you	create	the
publication,	you	determine	what	type	of	replication	you	want	to	use,	the	type	of
databases	that	will	be	Subscribers	to	the	publication,	the	data	and	database
objects	that	will	be	published,	where	the	snapshot	files	will	be	stored,	when	the
initial	snapshot	synchronization	will	occur,	and	options	that	will	be	used	with	the
publication.

After	you	create	a	publication,	you	can	create	push	and/or	pull	subscriptions	at
either	the	Publisher	or	the	Subscriber	and	configure	your	replication	schedule
and	options.

Generating	and	Applying	the	Initial	Snapshot
Whether	you	choose	snapshot	replication,	transactional	replication,	or	merge
replication,	SQL	Server	2000	creates	an	initial	snapshot	of	schema	and	data	and

saves	it	to	the	snapshot	folder	and	location	you	chose	when	creating	the
publication.	The	two	exceptions	to	this	process	are	with	dynamic	filters	in	merge
replication	and	subscriptions	for	which	the	snapshot	will	be	applied	manually.
After	the	subscription	is	created,	when	the	initial	snapshot	is	applied	is	based	on
the	schedule	you	indicated	when	creating	the	publication,	or	you	can	apply	the
snapshot	manually.

The	Snapshot	Agent	prepares	snapshot	files	containing	schema,	data,	and
database	objects,	stores	the	files	in	the	snapshot	folder,	and	records
synchronization	jobs	in	the	distribution	database	on	the	Distributor	for	snapshot
replication	or	transactional	replication,	and	in	the	publication	database	for	merge
replication.	The	Snapshot	Agent	does	not	prepare	these	files	when	the	merge
publication	uses	dynamic	filters	and	does	not	use	dynamic	snapshots	when	the
subscription	specifies	that	the	snapshot	will	be	applied	manually.

With	snapshot	replication	and	transactional	replication,	the	Distribution	Agent
moves	the	snapshot	from	the	distribution	database	to	the	destination	tables	at	the
Subscribers	and	applies	the	scripts,	schema,	and	data	necessary	for	replication.
With	merge	replication,	the	Merge	Agent	moves	the	snapshot	to	Subscribers
when	it	is	run	for	the	first	time	or	when	the	subscription	is	set	for	reinitialization.
It	then	applies	the	scripts,	schema,	and	data	necessary	for	replication.

Modifying	Replicated	Data
Depending	on	the	type	of	replication	and	the	options	you	chose	when
configuring	the	publication,	the	Subscriber	may	be	able	to	modify	data	after	the
initial	snapshot	has	been	replicated	and	propagate	changes	to	the	Publisher,
which	can	then	propagate	the	changes	to	other	Subscribers.

The	following	replication	types	and	options	allow	Subscribers	to	modify
replicated	data:

Merge	replication

Snapshot	replication	or	transactional	replication	with	immediate
updating

Snapshot	replication	or	transactional	replication	with	queued	updating

Any	type	of	replication	in	which	data	is	filtered	so	partitions	of	data	can
be	modified	at	individual	sites	autonomously	and	without	conflicts
occurring	between	sites

Synchronizing	and	Propagating	Data	Changes

How	data	is	synchronized	and	data	modifications	propagated	to	Publishers	and
other	Subscribers	depends	on	the	type	of	replication	and	options	you	choose.
Synchronizing	data	refers	to	the	process	of	data	being	propagated	between
Publisher	and	Subscribers	after	the	initial	snapshot	has	been	applied	at	the
Subscriber.

For	snapshot	replication,	synchronize	means	to	reapply	the	snapshot	at	the
Subscriber	so	that	schema	and	data	at	the	subscription	database	is	consistent	with
the	publication	database.	For	transactional	replication,	synchronizing	data	means
that	data	INSERTs,	UPDATEs,	and	DELETEs,	and	other	data	modifications,	are
distributed	between	Publisher	and	Subscribers.	For	merge	replication,
synchronization	means	that	data	modifications	made	at	multiple	sites	are
merged,	conflicts	(if	any)	are	detected	and	resolved,	and	data	eventually
converges	to	the	same	data	values	at	all	sites.

See	Also

Applying	the	Initial	Snapshot

Generating	the	Initial	Snapshot

Implementing	Replication

Replication	Options

Synchronizing	Data

Types	of	Replication

Replication

Methods	of	Implementation
Methods	for	implementing	replication,	developing	replication	applications,	and
maintaining	replication	are:	replication	wizards	and	properties,	replication
programming	interfaces,	scripting	of	system	stored	procedures,	and	Windows
Synchronization	Manager.

Replication	Wizards	and	Properties
SQL	Server	Enterprise	Manager	includes	several	wizards	and	properties	dialog
boxes	you	can	use	to	simplify	the	installation	and	maintenance	of	replication.
SQL	Server	Enterprise	Manager	allows	you	to	view	and	modify	the	properties	of
replication,	and	provides	graphical	navigational	tools.	It	also	provides	the
replication	folder	and	Replication	Monitor,	which	help	you	monitor	and
troubleshoot	replication	activity.

The	following	replication	wizards	and	properties	dialog	boxes	provide	a	guided
approach	to	implementing	replication:

The	Configure	Publishing	and	Distribution	Wizard	helps	you	specify	a
server	to	use	as	a	Distributor	and,	optionally,	specify	other	replication
components.	After	the	Publisher	and	Distributor	are	configured	initially,
changes	can	be	made	in	the	Publisher	and	Distributor	Properties
dialog	box.	

The	Create	Publication	Wizard	guides	you	through	the	process	of
choosing	the	type	of	replication	and	replication	options,	specifying	the
data	or	database	objects	that	you	want	to	replicate,	the	types	of
Subscribers	that	will	access	the	publication,	as	well	as	other	properties
of	the	publication.	After	the	publication	is	created	using	the	Create
Publication	Wizard,	changes	can	be	made	in	the	Publication	Properties
dialog	box.	

The	Push	Subscription	Wizard	helps	you	create	a	subscription	to	a
publication	that	will	be	distributed	to	a	specified	Subscriber.	You	can
view	the	options	selected	for	a	push	subscription	in	the	Subscription

Properties	dialog	box.

The	Pull	Subscription	Wizard	helps	you	create	a	subscription	to	a
publication	requested	by	a	Subscriber.	After	the	subscription	is	created,
you	can	view	the	options	in	the	Pull	Subscription	Properties	dialog
box.

The	Disable	Publishing	and	Distribution	Wizard	helps	you	disable
publishing,	distribution,	or	both,	on	a	server.

After	replication	is	configured	using	wizards,	you	can	script	different
configuration	processes	of	replication.	For	example,	after	creating	a	standard
subscription	to	a	publication	for	one	Subscriber,	you	can	script	the	set	up	of	the
subscription,	run	it	at	various	Subscribers,	and	substitute	the	correct	Subscriber
name	in	the	script	as	necessary.	For	more	information,	see	Scripting	Replication.

Replication	Programming	Interfaces
Another	method	of	replication	implementation	and	administration	is	by	using
one	of,	or	a	combination	of,	the	replication	programming	interfaces:

SQL-DMO

Microsoft®	ActiveX®	controls	for	replication

Replication	Distributor	Interface

SQL-DMO	has	more	options	available	than	the	replication	wizards	(which	are
based	on	SQL-DMO),	and	you	can	create	custom	applications	using	Microsoft
Visual	Basic®	or	Microsoft	Visual	C++®	that	allow	you	to	configure	or
maintain	a	replication	topology.	SQL-DMO	can	be	used	to	program	replication
administration	such	as	configuring	distribution,	creating	subscriptions,	and	so
on.

ActiveX	controls	for	replication	enable	you	to	control	Snapshot	Agent,	Merge
Agent,	and	Distribution	Agent	activity	programmatically.	This	allows	users	to

program	replication	into	their	applications.	The	controls	also	offer	some
lightweight	administration	options	to	create,	delete,	and	reinitialize
subscriptions,	and	to	control,	monitor,	and	troubleshoot	replication	agents.	These
controls	can	be	used	to	program	activity	needed	to	operate	replication.	For
example,	for	an	application	that	provides	online	and	offline	capabilities,	you	may
want	to	expose	a	Synchronize	button.	That	button	can	be	associated	with	the
merge	ActiveX	control,	and	whenever	the	users	click	the	button,	the	Merge
Agent	connects	to	the	Publisher,	and	data	is	synchronized	for	the	specified
publication.

The	Replication	Distributor	Interface	provides	the	capability	to	replicate	data
from	heterogeneous	data	sources	such	as	Microsoft	Access	or	Oracle.	The
Replication	Distributor	Interface	is	used	primarily	by	independent	service
vendors,	or	others	who	need	to	develop	a	custom	replication	application	based
on	proprietary	data	sources.

Essentially,	this	interface	allows	a	custom	solution	while	employing	the
replication	distribution	system,	but	developers	assume	the	data	modification
detection	capabilities	that	would	typically	be	conducted	by	the	Log	Reader
Agent.

Replication	System	Stored	Procedures
Replication	system	stored	procedures	are	documented	and	available	as	a	method
for	implementing	replication	in	special	circumstances	or	for	use	in	batch	files
and	scripts.	In	most	cases,	however,	you	are	better	served	by	using	the
programming	interfaces	SQL-DMO	and	replication	ActiveX	controls	for
programming	replication.	SQL-DMO	provides	an	easier	method	and	higher-level
solution	than	direct	use	of	stored	procedures.

The	stored	procedures	are	typically	used	if	you	use	the	scripting	features	from
SQL	Server	Enterprise	Manager.	When	you	script	replication,	SQL	Server
generates	Transact-SQL	batches	that	re-create	the	replication	environment
(configuring	publishing	and	distribution,	creating	publications	and	subscriptions,
and	so	on).	After	the	scripts	are	generated,	you	can	edit	them	as	needed	using
SQL	Query	Analyzer.

Windows	Synchronization	Manager

Windows	Synchronization	Manager	is	a	utility	available	with	the	Microsoft
Windows®	2000	operating	system	and	anywhere	Microsoft	Internet	Explorer
version	5.0	or	later	is	installed.	It	allows	you	to	synchronize	data	between
instances	of	Microsoft	SQL	Server™.	You	can	use	SQL	Server	Enterprise
Manager	to	enable	pull	subscriptions	for	use	in	Windows	Synchronization
Manager,	or	you	can	enable	subscriptions	programmatically	for	use	in	Windows
Synchronization	Manager	by	using	ActiveX	controls	for	replication.

Using	Windows	Synchronization	Manager,	you	can	schedule	synchronizations	or
instruct	Windows	to	synchronize	selected	items	automatically	when	you	log	on
to	the	computer	or	when	the	computer	is	idle	for	a	specified	length	of	time.
Windows	Synchronization	Manager	is	located	under	the	Accessories	folder	on
the	Windows	Start	menu.

See	Also

Developing	SQL-DMO	Applications

Getting	Started	with	Replication	Programming

Replication	Tools

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Replication

Agents	and	Monitors
Agents	used	with	Microsoft®	SQL	Server™	2000	replication	carry	out	the	tasks
associated	with	copying	and	distributing	data.	SQL	Server	2000	replication	uses
SQL	Server	Agent	as	well	as	agents	that	are	specific	to	replication.

SQL	Server	Agent
SQL	Server	Agent	hosts	and	schedules	the	agents	used	in	replication,	and
provides	an	easy	way	to	run	replication	agents.	SQL	Server	Agent	also	controls
and	monitors	several	other	operations	outside	of	replication,	including
monitoring	the	SQL	Server	Agent	service,	maintaining	error	logs,	running	jobs,
and	starting	other	processes.

Snapshot	Agent
The	Snapshot	Agent	is	used	with	all	types	of	replication.	It	prepares	schema	and
initial	data	files	of	published	tables	and	stored	procedures,	stores	the	snapshot
files,	and	records	information	about	synchronization	in	the	distribution	database.
The	Snapshot	Agent	typically	runs	under	SQL	Server	Agent	at	the	Distributor
and	can	be	administered	using	SQL	Server	Enterprise	Manager.

Log	Reader	Agent
The	Log	Reader	Agent	is	used	with	transactional	replication.	It	moves
transactions	marked	for	replication	from	the	transaction	log	on	the	Publisher	to
the	distribution	database.	Each	database	published	using	transactional	replication
has	its	own	Log	Reader	Agent	that	runs	on	the	Distributor	and	connects	to	the
Publisher.

Distribution	Agent
The	Distribution	Agent	is	used	with	snapshot	replication	and	transactional
replication.	It	moves	the	snapshot	jobs	and	transactions	held	in	the	distribution
database	to	Subscribers.	The	Distribution	Agent	typically	runs	at	either	the
Distributor	for	push	subscriptions	or	at	the	Subscriber	for	pull	subscriptions.

Merge	Agent
The	Merge	Agent	is	used	with	merge	replication.	It	applies	the	initial	snapshot	to
the	Subscriber,	and	moves	and	reconciles	incremental	data	changes	that	occur.
Each	merge	subscription	has	its	own	Merge	Agent	that	connects	to	both	the
Publisher	and	the	Subscriber	and	updates	both.	The	Merge	Agent	typically	runs
at	either	the	Distributor	for	push	subscriptions	or	the	Subscriber	for	pull
subscriptions.	The	Merge	Agent	typically	uploads	changes	from	the	Subscriber
to	the	Publisher	and	then	downloads	changes	from	the	Publisher	to	the
Subscriber	during	a	typical	bidirectional	merge.	Changes	can	also	be	moved	in
one	direction	by	configuring	the	exchange	type	of	the	agent.

Queue	Reader	Agent
The	Queue	Reader	Agent	is	used	with	snapshot	replication	or	transactional
replication	with	the	queued	updating	option,	or	if	the	immediate	updating	with
queued	updating	as	a	failover	option	is	enabled.

The	Queue	Reader	Agent	is	a	multithreaded	agent	that	runs	on	the	Distributor.	It
is	responsible	for	taking	messages	from	a	queue	and	applying	them	to	the
appropriate	publication.

Unlike	the	Distribution	Agent	and	the	Merge	Agent,	only	one	instance	of	the
Queue	Reader	Agent	exists	to	service	all	Publishers	and	publications	for	a	given
Distributor.

Miscellaneous	Agents
Clean	up	agents	listed	under	the	Miscellaneous	Agents	folder	in	Replication
Monitor	complete	scheduled	and	on-demand	maintenance	of	replication.

Clean	up	agent Description Default	schedule
Agent	History	Clean
Up:	Distribution

Removes	replication	agent
history	from	the	distribution
database.

Runs	every	10
minutes

Distribution	Clean	Up:
Distribution

Removes	replicated
transactions	from	the
distribution	database.

Runs	every	10
minutes

Expired	Subscription Detects	and	removes Runs	every	day	at

Clean	Up expired	subscriptions	from
publication	databases.

1:00	A.M.

Reinitialize
Subscriptions	Having
Data	Validation	Failures

Reinitializes	all
subscriptions	that	have	data
validation	failures.

No	default	schedule
(not	enabled	by
default).

Replication	Agents
Checkup

Detects	replication	agents
that	are	not	actively	logging
history.

Runs	every	10
minutes

Replication	Monitor
Through	Replication	Monitor	in	SQL	Server	Enterprise	Manager,	you	can	view
and	manage	replication	agents	responsible	for	various	replication	tasks.	For
example,	you	can	set	up	transactional	replication	so	that	the	log	on	the	Publisher
is	read	continuously,	transactions	are	distributed	to	Subscribers	every	ten
minutes	(although	this	is	often	also	continuously),	and	initial	snapshots	are
generated	every	night	at	midnight.	You	can	also	execute	replication	agents	on
demand.

Replication	Monitor	provides	a	way	to	set	alerts	on	replication	events.	When	the
event	occurs,	Replication	Monitor	responds	automatically,	either	by	executing	a
task	that	you	have	defined	or	by	sending	an	e-mail	or	a	pager	message	to	a
specified	individual.

See	Also

Administering	and	Monitoring	Replication

Replication	Agents

Types	of	Replication

Replication

Planning	for	Replication
Careful	planning	before	replication	deployment	can	maximize	data	consistency,
minimize	demands	on	network	resources,	and	prevent	troubleshooting	later.

Consider	these	areas	when	planning	for	replication:

Whether	replicated	data	needs	to	be	updated,	and	by	whom.

Your	data	distribution	needs	regarding	consistency,	autonomy,	and
latency.

The	replication	environment,	including	business	users,	technical
infrastructure,	network	and	security,	and	data	characteristics.

Types	of	replication	and	replication	options.

Replication	topologies	and	how	they	align	with	the	types	of	replication.

Replication

Distributed	Update	Factors
If	distributed	data	does	not	need	to	be	updated	at	more	than	one	site,	data	can
easily	maintain	the	ACID	properties	of	transactions.	However,	when	you	need	to
update	data	at	multiple	sites,	you	should	consider	how	the	ACID	properties	of
transactions	and	site	autonomy	are	going	to	be	affected.

ACID	Properties
To	qualify	as	a	transaction,	a	single	unit	of	work	must	adhere	to	the	ACID
properties	of	atomicity,	consistency,	isolation,	and	durability.

Atomic.	For	a	transaction	to	be	atomic,	all	of	its	data	modifications	are
performed	or	none	of	them	are	performed.	

Consistent.	To	be	consistent,	a	completed	transaction	must	leave	all	data
in	a	consistent,	logically	correct	state.	

Isolation.	To	meet	the	isolation	property,	a	transaction	reads	data	in	the
state	it	was	in	before	another	concurrent	transaction	modified	it	(without
yet	committing	the	transaction).	Concurrent	modifications	that	are	in
progress	do	not	affect	the	transaction.	

Durable.	To	meet	the	durability	property,	the	modifications	of	a
transaction	will	persist	(for	example,	remain	in	the	database,	even	if
there	is	a	system	failure).	After	a	commit	is	acknowledged,	the	system
must	guarantee	that	the	transaction	persists.

Your	needs	for	strict	adherence	to	ACID	properties	are	significant	when
planning	for	replication	because	when	data	modifications	are	made	at	multiple
Subscribers	independently,	conflicts	can	occur.	If	conflicts	are	allowed,	strict
ACID	characteristics	cannot	be	guaranteed	even	with	conflict	detection	and
resolution.	If	you	are	considering	merge	replication	or	transactional	replication
with	the	queued	updating	option,	you	need	to	prepare	for	how	to	handle
transactions	that	do	not	meet	these	properties.

Two-phase	commit	protocol	(2PC)	is	required	to	guarantee	ACID	properties	in	a
distributed,	multiple-update	environment.	However,	this	means	that	the	sites	are
dependent	on	one	another	for	completion	of	an	update,	and	they	will	give	up	site
autonomy.

For	more	information	about	ACID	properties,	see	Transactions.

Questions	relating	to	ACID	properties	include:

Do	multiple	Subscribers	need	to	make	updates?	If	replicated	data	is
going	to	be	read-only,	ACID	properties	will	not	be	affected.

If	updates	need	to	be	made	at	multiple	sites,	can	you	allow	conflicts?	Is
the	data	filtered	into	different	partitions	for	different	sites?	If	you	need
to	preserve	transaction	isolation	and	durability,	you	must	avoid
conflicts.	

Is	it	acceptable	for	a	committed	transaction	to	be	undone	to	resolve	a
conflict?

Is	it	acceptable	that	subsequent	transactions	are	changed	based	on	the
value	of	a	transaction	that	was	undone	due	to	a	conflict?

If	ACID	properties	must	be	preserved,	you	can	use	2PC	so	that	the	Publisher
accepts	any	changes	before	a	conflict	could	exist,	execute	all	updates	at	one	site,
or	filter	data	so	sites	can	update	unique	subsets	of	data	and	avoid	conflicts	with
other	sites.

ACID	Properties	and	Replication
When	designing	replication,	determine	whether	ACID	properties	need	to	be
maintained	and	how	much	autonomy	is	required	by	your	application.

When	thinking	about	ACID	properties	in	regards	to	replication,	consider
whether	data	at	any	participating	site	must	be	the	same	data	that	would	have
resulted	had	all	transactions	been	performed	at	only	one	site.	If	you	made	all
data	modifications	at	one	site,	your	transactions	would	typically	be	consistent,
isolated,	and	durable.	Consider	if	you	also	have	those	needs	in	your	distributed

JavaScript:hhobj_1.Click()

environment.

Latency	refers	to	the	period	of	time	between	when	data	is	updated	at	one	site
(the	Publisher)	and	when	those	changes	appear	at	another	site	(the	Subscriber).
The	latency	can	vary	from	a	few	seconds	to	hours,	days,	or	longer.

Questions	relating	to	ACID	properties	in	your	replication	application	include:

Does	data	need	to	be	updated	at	Subscribers?

How	much	latency	is	acceptable?

To	maintain	strict	ACID	properties,	you	will	often	have	to	give	up	site	autonomy
because	servers	must	be	continuously	and	reliably	connected.	That	is	the	only
way	to	guarantee	you	avoid	conflicts.	If	you	allow	conflicts,	some	transactions
must	be	altered	or	undone	to	resolve	the	conflict.	Therefore,	at	least	some
transactions	were	not	durable,	and	perhaps	other	transactions	that	read	the	values
of	the	non-durable	transaction	were	not	isolated.

Autonomy
Autonomy	is	the	degree	of	dependence	one	site	has	on	another.	Complete
autonomy	occurs	when	one	site	does	not	depend	on	any	other	site	to	complete	its
work,	and	it	is	independent	of	the	operations	at	any	other	site.

2PC	is	an	example	of	a	nonautonomous	process	because	every	data	change	is
dependent	on	every	other	participating	site	being	able	to	accept	the	transaction
successfully	and	immediately.	But	in	replication,	2PC	is	optimized	to	be
dependent	on	only	two	servers	in	the	replication	topology:	the	Publisher	and	the
Subscriber	making	the	update,	with	the	Publisher	as	the	arbiter.

Merge	replication	or	transactional	replication	with	queued	updating	is	often	used
when	sites	need	to	modify	data	autonomously	and	then	later	merge	changes	with
changes	made	at	the	Publisher	and	at	other	Subscribers.

With	merge	replication,	data	converges	and	all	sites	end	up	with	the	same	values;
however,	because	conflicts	can	occur	and	are	resolved,	the	values	are	not
necessarily	the	ones	that	would	have	resulted	had	all	the	work	been	done	at	only
one	site.	All	sites	may	work	offline	and	when	all	sites	have	synchronized	data,
all	sites	will	eventually	have	the	same	data.	However,	because	the	same	data	is

being	changed	at	multiple	locations,	conflicts	can	occur	and	some	transactions
from	one	site	will	be	committed	while	others	will	be	rejected	and	resolved.
Those	transactions	by	definition	are	not	durable.

Example

A	sales	representative	in	the	Northwest	office	changes	the	customer	information
for	the	company	named	White	Clover	Markets	by	changing	the	value	of	the
customer	phone	number	to	(206)	554-2341.	A	sales	representative	in	the
Southwest	office	uses	replicated	data	at	that	site	and	changes	the	fax	number	for
White	Clover	Markets	to	(206)	555-8314.	Another	sales	representative	at	the
publishing	site	in	the	corporate	headquarters	changes	the	phone	number	of	White
Clover	Markets	to	(206)	554-2241.	When	the	Subscribers	merge	with	the
Publisher,	the	conflicts	will	be	detected	and	depending	on	the	conflict	resolution
policy,	it	will	be	resolved.	It	is	possible	that	White	Clover	Markets	ends	up	with
the	new	phone	number	that	was	entered	at	the	corporate	office,	(206)	554-2241,
and	that	the	new	fax	number	entered	at	the	Southwest	office	is	rolled	back	and
the	original	fax	number	is	maintained	in	the	database.

If	sites	are	autonomous,	ACID	properties	cannot	be	assured.	For	example,	merge
replication	allows	sites	to	be	autonomous	and	to	update	replicated	data	whether
online	or	offline.	It	does	not,	however,	guarantee	durability.	If	conflicts	are	to	be
resolved,	then	a	committed	transaction	must	be	altered	in	order	to	resolve	the
conflict.	Instead,	it	focuses	on	data	convergence,	the	merging	of	changes	made	at
various	sites	into	a	new	result	set.

Questions	relating	to	autonomy	include:

How	independent	do	the	various	sites	need	to	be?

Are	sites	continuously	and	reliably	connected,	or	are	they	disconnected
for	periods	of	time?

Is	preserving	ACID	properties	more	important	than	autonomy?

Replication

Evaluating	the	Replication	Environment
The	replication	environment	is	composed	of	the	business	units,	people,	technical
structure,	and	applications	that	will	either	host	or	use	replication.	At	this	stage	of
replication	planning,	you	should	talk	to	the	people	who	will	be	affected	by
replication	as	well	as	gather	information	about	the	technical	infrastructure
including	how	and	what	data	is	stored,	where,	how,	and	when	the	data	needs	to
be	replicated,	and	how	replication	will	be	administered	and	maintained.

Replication

Business	Objectives	and	Requirements
Asking	questions	in	the	areas	of	data	distribution	and	data	modification	helps
you	determine	how	to	distribute	data,	what	type	of	replication	to	use,	what
replication	options	to	use,	what	the	business	needs	are	for	replication,	and	who
will	be	affected	by	replication.

Data	Distribution
Answering	questions	about	the	objective	of	distributing	data	ensures	that
replication	is	the	correct	solution	for	the	problem	you	need	to	solve	or	goal	you
hope	to	attain.	Answering	questions	about	the	needs	of	the	organization
regarding	data	distribution	helps	you	plan	where	replication	is	needed	and	how
often,	and	determine	the	type	of	replication	to	use.	These	questions	include:

What	is	the	core	problem	or	objective	that	replication	might	help	solve?
For	example,	do	you	want	to	distribute	data	for	reporting	servers,	do
you	have	applications	that	need	to	be	updated	online	and	offline,	or	do
you	want	a	standby	solution?

How	will	data	distribution	affect	existing	technology,	administrative
resources,	people	who	currently	access	the	data,	and	costs	of	data
administration?

What	data	is	needed	and	where	is	it	needed?	

How	often	is	the	data	needed?	

Are	entire	refreshes	of	the	data	required	or	just	incremental	updates?	

Are	entire	tables	needed,	or	can	you	filter	the	data	according	to	site	or
data	usage?	Do	you	want	to	replicate	database	objects	such	as	stored
procedure	definitions	or	execution,	views,	triggers,	or	user-defined

functions?

Where	will	data	be	published	and	what	Subscribers	need	to	receive	the
data?

How	many	Subscribers	need	the	data?

Are	data	transformations	necessary	during	replication?

Data	Modification

Answering	questions	about	modifying	data	helps	you	determine	what	types	of
replication	to	use,	what	replication	options	to	use,	and	when	to	schedule	updates.

Do	Subscribers	need	to	update	the	data?	

If	multiple	Subscribers	update	the	same	sets	of	data,	are	conflicts
allowed?

Do	transactions	have	dependencies?	Will	dependent	transactions	be
affected	if	a	transaction	has	dependencies	and	that	transaction	is	undone
due	to	a	conflict?

If	data	modifications	are	made	at	Subscribers,	what	is	the	rate	of	data
modification?	

Will	Subscribers	have	continuous,	reliable	connections	to	the
publication	database	or	will	they	be	disconnected	for	periods	of	time?	

Can	data	be	partitioned	logically	so	that	various	sites	can	modify	their
own	subsets	of	data	without	the	possibility	of	updates	causing	conflicts
with	updates	made	at	other	sites?

If	multiple	sites	are	updating	the	same	data	independently,	how	will
conflicts	be	handled?

How	quickly	must	changes	be	replicated	to	other	sites?

How	quickly	must	the	initial	snapshot	and	data	be	applied	at	the
Subscriber?

How	often	will	Subscribers	synchronize	data	or	propagate	changes?

How	many	updates	are	you	sending?

Replication

Network	Considerations
The	following	replication	issues	affect	the	performance	of	your	networks:

The	volume	and	typical	size	of	data	flowing	over	the	network.

The	number	of	Subscribers	to	a	particular	Publisher.

The	speed	and	reliability	of	the	line.

The	processing	power	of	the	Publisher,	Distributor,	and	Subscribers.

If	you	are	replicating	over	a	slow	link,	the	profiles	for	the	agents	involved	in
replication	can	be	customized.	For	example,	you	can	configure	behavior	such	as
the	batch	size,	the	polling	interval,	the	timeout	period,	and	the	number	of	buffers
available.	The	configuration	options	vary	with	the	particular	agent	whose	profile
is	being	configured.	

Network	speed	is	often	the	most	important	issue	when	applying	the	initial
snapshot.	The	volume	of	incremental	data	changes	may	be	low,	but	the	volume
of	data	initially	distributed	may	be	high.	Transferring	the	snapshot	using	a	CD-
ROM	or	tape	device	is	one	solution	to	this	situation.	Compressing	the	snapshot
files	can	also	help	preserve	network	speed.

Knowing	the	processing	power	of	the	servers	in	your	replication	topology	helps
you	decide	whether	to	use	remote	agent	activation.	If	you	are	using	push
subscriptions	and	there	is	greater	processing	power	at	the	Subscriber,	you	may
want	to	use	remote	agent	activation	so	that	the	Distribution	Agent	or	Merge
Agent	runs	at	the	Subscriber	rather	than	at	the	Distributor.	If	you	are	using	pull
subscriptions	and	there	is	greater	processing	power	at	the	Distributor,	you	may
want	to	use	remote	agent	activation	so	that	the	Distribution	Agent	or	Merge
Agent	runs	at	the	Distributor	rather	than	at	the	Subscriber.

You	may	also	want	to	perform	transformations	on	published	data	specific	to
individual	Subscribers	that	discard	some	data	at	the	Distributor.	The
transformation	could	discard	the	data	before	placing	it	on	the	network,	and	this

could	be	a	significant	benefit	for	replication	performance,	especially	if	the
network	bandwidth	is	low.

See	Also

Agent	Profiles

Generating	the	Initial	Snapshot

Remote	Agent	Activation

Transferring	Snapshots

Transforming	Published	Data

Replication

Security	Considerations
When	considering	security	in	Microsoft®	SQL	Server™	2000,	replication	is
similar	to	other	applications	in	SQL	Server	2000.	Your	determining	factors	will
be	a	balance	between	how	secure	the	data	needs	to	be,	and	how	accessible	the
data	needs	to	be	for	your	environment.

Additional	security	issues	need	to	be	considered	in	the	following	areas:

SQL	Server	Agent.

Location	of	snapshot	files.

Testing	agent	connectivity.

Security	mode	of	the	Publisher.

SQL	Server	Agent

The	SQL	Server	Agent	service	(SQLServerAgent)	at	the	client	should	not	use
the	LocalSystem	account.	It	needs	to	use	a	standard	domain	account.	The
SQLAgent	account	is	the	security	context	under	which	the	Snapshot	Agent,
Merge	Agent,	and	Distribution	Agent	are	running	by	default.

The	account	used	by	the	SQL	Server	Agent	is	defined	at	the	time	SQL	Server
2000	is	installed	and	can	be	changed	at	any	time.

On	the	Microsoft	Windows®	98	operating	system,	SQL	Server	Agent	and	the
replication	agents	run	under	the	security	account	of	the	user	logging	on	to	the
Windows	operating	system.	On	Microsoft	Windows	NT®	version	4.0	and
Microsoft	Windows	2000	operating	systems,	the	replication	agents	run	under	the
login	or	security	context	of	the	SQLServerAgent	service.	Neither	the
SQLServerAgent	service	nor	the	SQL	Server	service	needs	to	run	under	a
Windows	2000	Administrator	account.

Each	agent	connects	to	one	or	more	servers	(Publisher,	Distributor,	or

Subscribers	depending	on	the	agent)	and	must	have	a	valid	login	to	that	instance
of	SQL	Server	to	complete	the	connection.	For	more	information,	see	Agent
Login	Security.

Location	of	Snapshot	Files
The	folder	in	which	the	snapshots	are	stored	must	be	available	to	all	Subscribers
on	the	network.	To	ensure	secure	access	to	the	initial	snapshot	files	of	your
replicated	data,	it	is	recommended	you	use	an	explicit	share	instead	of	an
administration	share	(for	example,	C$)	for	which	you	cannot	grant	specific
permissions.	The	administrative	share	is	used	as	a	default	only	because	it	will
always	exist	on	Windows	NT	4.0	and	Windows	2000	(but	it	cannot	be	accessed
except	by	an	administrator	account).

When	configuring	distribution,	you	can	define	the	default	location	for	all
snapshot	files.	After	creating	a	publication,	you	can	define	the	location	of	the
snapshot	files	using	the	publication	properties	dialog	box.

Testing	Agent	Connectivity
When	implementing	replication,	make	sure	that	the	replication	agents	can
communicate	with	all	servers	involved	in	the	replication	topology.	One	way	to
test	agent	connectivity	is	to	log	in	to	the	required	server	and	database	using	SQL
Query	Analyzer	or	osql	using	the	same	login	that	the	replication	agent	will	be
using	(or	typically	the	login	that	SQL	Server	Agent	is	using).

You	must	be	a	SQL	Server	2000	system	administrator	to	enable	the	server	for
replication.	After	replication	is	enabled,	you	do	not	need	to	be	a	SQL	Server
2000	system	administrator	to	set	up	publications	and	subscriptions,	or	to	invoke
or	schedule	the	replication	agents.	You	must	be	in	the	db_owner	role	to	create
publications.	Anyone	who	is	added	to	the	publication	access	list	(PAL)	can
create	pull	subscriptions	to	that	publication	(but	only	to	that	publication).

Security	Mode	of	the	Publisher
Connections	to	a	server	(Publisher,	Distributor,	or	Subscribers)	can	use	Windows
Authentication	or	SQL	Server	security.	Windows	Authentication	is	generally
preferred	for	greater	security	and	ease	of	use;	however,	connections	to	Windows
98	servers	must	use	SQL	Server	security	because	Windows	Authentication	is	a

feature	only	on	Windows	NT	4.0	and	Windows	2000.

It	is	recommended	that	the	Subscriber	connection	have	dbo	permissions	in	the
subscription	database	to	make	sure	the	proper	permissions	are	granted,	and	for
overall	simplification;	however,	dbo	permissions	are	not	required.

See	Also

Generating	the	Initial	Snapshot

Managing	Security

Replication	Security

Transferring	Snapshots

JavaScript:hhobj_1.Click()

Replication

Data	Needs	and	Characteristics
While	examining	the	data	that	you	are	replicating,	consider	the	following:

Collation	(defines	code	page	or	character	set	and	data	sorting)

Data	types

Character	Sets

If	replication	is	implemented	between	servers	using	different	character	sets,
Microsoft®	SQL	Server™	2000	does	not	convert	any	of	the	replicated	data	and
may	mistranslate	the	data	as	it	is	replicated	because	it	is	impossible	to	map	all
characters	between	character	sets.

If	you	can	guarantee	that	all	characters	you	use	will	have	identical	codes	on	all
code	pages,	replication	would	be	successful,	but	it	would	not	be	guaranteed.
Similarly,	the	comparison	style	specified	by	the	collation	you	select	can	affect
the	accuracy	of	replicated	transactions.	To	guarantee	successful	data	replication,
servers	are	best	when	configured	using	the	same	code	pages	and	comparison
styles.

Generally,	if	you	have	an	environment	where	you	have	different	character	sets,
you	should	consider	using	Unicode	data	types	for	which	no	conversion	is
necessary.

Data	Types
When	determining	data	to	replicate,	consider	the	data	type.	You	should
understand	the	following:

timestamp	columns.	For	merge	replication	or	transactional	replication
with	the	queued	updating	option,	when	articles	contain	a	timestamp
column,	the	timestamp	column	is	replicated,	but	the	literal	timestamp
values	are	not.	The	timestamp	values	are	regenerated	when	applying
the	initial	snapshot	rows	at	the	Subscriber.	This	allows	timestamp	to
continue	using	optimistic	concurrency	control	(a	frequent	usage).	For

snapshot	and	transactional	publications,	and	publications	that	allow
immediate	updating,	the	literal	values	for	a	timestamp	column	are
replicated,	but	the	data	type	for	the	replicated	values	is	changed	to
binary	(8)	on	the	Subscriber.	For	more	information,	see	Replication
Data	Considerations.

uniqueidentifier	columns.	If	you	are	using	merge	replication,	or	if	you
are	using	snapshot	replication	or	transactional	replication	with	queued
updating	and	the	table	that	is	being	replicated	does	not	have	a
uniqueidentifier	column,	SQL	Server	2000	will	add	one	when	you
create	a	publication.	In	merge	replication,	this	occurs	when	the	initial
snapshot	is	generated.	In	snapshot	replication	or	transactional
replication	using	the	queued	updating	option,	this	occurs	when	the
publication	is	created.	In	the	case	of	queued	updating,	a	predefined
uniqueidentifier	column	will	be	added	for	row	versioning	irrespective
of	the	presence	of	a	globally	uniqueidentifier	(GUID)	column	in	the
table.	The	use	of	the	uniqueidentifier	in	queued	updating	is	conceptually
like	a	global	timestamp.	To	ensure	that	merge	replication	will	reuse	an
existing	uniqueidentifier	column	to	uniquely	identify	replicated	rows,
make	sure	that	your	uniqueidentifier	column	is	created	with	the
column	property	ROWGUIDCOL.	The	use	of	the	GUID	in	merge
replication	is	conceptually	like	the	use	of	a	global	primary	key.

Columns	with	text	or	image	data	types.	These	columns	can	take	longer
to	replicate	because	they	can	be	very	large.	When	using	snapshot
replication	or	transactional	replication	with	the	immediate	updating	or
queued	updating	options,	updates	made	at	the	Subscriber	to	replicated
data	with	text	or	image	data	types	are	not	supported.	However,
replication	and	updating	of	these	columns	is	fully	supported	when	not
using	updatable	subscriptions.	Publishing	text	and	image	data	types	is
also	supported	in	merge	replication.	

Case	sensitivity.	Generally,	you	should	choose	the	same	collation
scheme	(as	the	most	common	setting	is	case	sensitivity)	at	the	Publisher
and	at	the	Subscriber.	For	more	information,	see	Specifying	Collations.

JavaScript:hhobj_1.Click()

For	example,	suppose	you	are	publishing	data	about	customers	and	you	do	not
choose	the	same	collation	scheme	at	the	Publisher	that	is	at	the	Subscriber.	Data
is	then	filtered	based	on	state="Ca"	for	a	particular	Subscriber.	The	data	that	is
published	to	the	Subscriber	may	not	be	the	data	that	you	intended	because	of
differences	in	collation.	Choosing	the	same	collation	scheme	is	not	required,	and
depending	on	your	application	requirements,	you	may	want	to	choose	a	different
collation	scheme	(for	example,	a	Publisher	might	have	data	that	is	case-sensitive,
but	a	Subscriber	that	is	a	reporting	server	may	have	data	that	is	case-insensitive).

Triggers.	Consider	triggers	that	reside	on	the	publishing	table.	By
default,	the	triggers	will	be	published	with	data	from	that	table.	If	you
do	not	want	triggers	on	the	publishing	table	to	be	published	with	data,
you	can	change	an	option	in	the	properties	for	a	specific	publication.
For	more	information,	see	Publishing	Data	and	Database	Objects	and
Using	NOT	FOR	REPLICATION.

Row	size.	Is	the	row	size	greater	than	the	maximum	of	6,000	characters
for	merge	replication	and	8,000	characters	for	transactional	replication?
(Size	limits	exclude	columns	with	text	and	image	data	types.)

Data	type	mapping.	Do	you	need	to	support	Subscribers	running	on	an
instance	of	SQL	Server	7.0	or	earlier,	or	Subscribers	that	are	not
running	on	a	version	of	SQL	Server?	SQL	Server	2000	has	new	data
types	that	servers	running	earlier	versions	of	SQL	Server	cannot
replicate.	If	so,	you	should	know	how	the	data	types	map	between	the
different	databases.	For	more	information,	see	Data	Type	Mapping.

Column-level	or	database	collations.	Depending	on	which	collation	you
use,	retrieving	the	data	may	be	different	at	different	Subscribers.

JavaScript:hhobj_2.Click()

Replication

Planning	for	Application	Development
When	planning	replication	applications,	consider	the	following:

Design	your	application	to	minimize	conflicts.	If	the	Subscribers	need
to	read	data	and	do	not	need	to	update	data,	conflicts	will	be	avoided.
Partitioning	data	logically	according	to	geographic	locations	or	business
uses	can	also	prevent	users	from	updating	the	same	data	values,	thus
avoiding	conflicts.	

For	online/offline	applications	where	you	expect	conflicts	can	and	will
occur,	merge	replication	is	usually	the	best	choice	for	your	application.
Merge	replication	allows	for	a	variety	of	conflict	detection	and
resolution	policies,	evaluates	updates	row	by	row,	and	results	in	data
convergence.	

Snapshot	replication	or	transactional	replication	with	the	immediate
updating	or	queued	updating	option	is	recommended	for	applications
that	are	mostly	read	with	occasional	updates.	Immediate	updating	uses
two-phase	commit	(2PC).	Queued	updating	provides	policies	for
conflict	resolution	and	evaluates	updates	and	conflicts	on	a	transaction
basis.	

When	using	merge	replication,	or	when	using	snapshot	replication	or
transactional	replication	with	the	queued	updating	option,	determine	the
conflict	resolution	policy	before	implementing	replication.

Research	how	disconnecting	from	the	database	will	affect	mobile	or
disconnected	users.	What	happens	if	users	do	not	immediately	see	the
updates	they	make	at	the	Subscriber?	

How	fast	is	data	synchronization?	How	long	does	it	take	to	apply	the
initial	snapshot	and	how	long	does	it	take	for	periodic	updates?	Test	the

initial	snapshot	by	applying	it	over	the	actual	network	that	will	be	used.
Consider	applying	the	initial	snapshot	manually	using	a	CD-ROM	or
removable	media	device	if	transferring	it	over	the	network	takes	too
long.	

Manage	identity	values	by	using	identity	ranges	when	using	merge
replication	or	when	using	snapshot	replication	or	transactional
replication	and	allowing	queued	updating	subscriptions.	If	you	create
data	partitions	and	assign	different	identity	ranges	to	the	partitions,
conflicts	will	be	avoided	because	different	sites	will	be	working	with
different	subsets	of	data.

Ensure	that	your	applications	use	column	names	in	INSERT	statements
before	enabling	merge	replication	or	transactional	replication	with
immediate	updating	or	queued	updating	options,	because	these	types	of
replication	may	add	columns	to	your	publishing	table.	If	you	do	not	list
the	column	names	in	INSERT	statements	for	these	types	of	replication,
an	error	will	occur.

If	you	are	using	transactional	replication	with	the	immediate	updating	or
queued	updating	option,	Subscribers	will	not	be	able	to	update	values
with	the	text	or	image	data	types.	The	publication	can	contain	text	or
image	columns,	but	those	columns	may	be	updated	only	at	the
Publisher.

Be	aware	of	maximum	column	and	row	sizes.	A	table	used	in	snapshot
replication	or	transactional	replication	can	have	a	maximum	of	255
columns	and	a	maximum	row	size	of	8,000	bytes.	A	table	used	in	a
merge	publication	can	have	a	maximum	of	246	columns	and	a
maximum	row	size	of	6,000	bytes.	The	reason	the	restriction	for	merge
replication	is	stricter	than	the	restriction	for	transactional	replication	is
because	conflict	tables	have	the	same	structure	with	additional	columns
that	store	information	about	the	origin	of	the	conflict	and	the	specific
reason	for	the	conflict.	Because	additional	space	is	needed	to	record	this
conflict	information,	the	maximum	row	size	is	less	than	the	maximum

row	size	for	transactional	replication.

If	you	will	have	a	high	volume	of	transactions,	always	design	your
application	to	use	stored	procedures	to	modify	data	at	the	Publisher	and
publish	the	execution	of	stored	procedures.

See	Also

Filtering	Published	Data

Merge	Replication	Conflict	Detection	and	Resolution

Merge	Replication	or	Updatable	Subscriptions

Queued	Updating	Conflict	Detection	and	Resolution

Replication

Planning	for	Each	Type	of	Replication
Each	type	of	replication	(snapshot	replication,	transactional	replication,	and
merge	replication)	has	specific	requirements	and	issues	that	you	should	consider
before	implementation.

Because	an	initial	snapshot	must	be	applied	for	all	types	of	replication,	you
should	be	familiar	with	the	planning	considerations	for	snapshot	replication	even
if	you	choose	to	implement	transactional	replication	or	merge	replication.

When	considering	transactional	replication,	allocate	adequate	disk	space	in	the
distribution	database	to	handle	the	number	of	transactions	that	will	be	stored
there.

When	considering	merge	replication,	Microsoft®	SQL	Server™	2000	uses	a
globally	unique	identifier	(GUID)	column	to	identify	each	row	during	the	merge
replication	process.	If	the	table	that	is	replicated	does	not	have	a
uniqueidentifier	column	with	the	ROWGUIDCOL	property	and	a	unique	index,
SQL	Server	2000	will	add	one	to	the	table,	and	you	will	need	to	account	for	the
additional	data	that	is	stored	there.	If	the	table	already	has	a	uniqueidentifier
column,	you	can	add	the	ROWGUIDCOL	property	to	signal	that	it	can	be	used
during	merge	replication.	You	must	also	add	a	unique	index	on	this	column	or
make	it	the	primary	key	for	the	table.	Distributed	applications	can	benefit	greatly
from	using	the	uniqueidentifier	column	because	it	guarantees	that	no	two	sites
will	generate	the	same	key	value.

See	Also

Planning	for	Snapshot	Replication

Types	of	Replication

Replication

Planning	for	Snapshot	Replication
Snapshot	replication	requires	planning	in	the	following	areas:

Transferring	and	storing	snapshot	files.

Scheduling	snapshots.

Transferring	and	Storing	Snapshot	Files

You	have	the	option	of	storing	snapshot	files	in	a	location	other	than	or	in
addition	to	the	default	location,	which	is	often	located	on	the	Distributor.
Alternate	locations	can	be	on	another	server,	on	a	network	drive,	or	on
removable	media	(such	as	CD-ROM	or	removable	disks).	You	can	also	save	the
snapshot	files	to	a	File	Transfer	Protocol	(FTP)	site	for	retrieval	by	the
Subscriber	at	a	later	time.

Additionally,	you	can	compress	the	snapshot	files	to	improve	network
performance	by	writing	data	in	the	Microsoft®	CAB	file	format.	For	more
information,	see	Compressed	Snapshot	Files.

When	planning	to	transfer	and	store	snapshot	files,	estimate	the	disk	space
required	at	the	snapshot	file	location	and	at	the	Subscriber	that	will	receive	the
snapshot	files.

The	amount	of	space	required	for	one	snapshot	can	be	affected	by	several	factors
including	the	size	and	number	of	articles	published.	You	can	create	snapshot
files	in	the	default	snapshot	folder	on	the	Distributor	and	in	an	alternate	location.
Compressing	the	snapshot	files	in	the	alternate	location	can	reduce	the	overall
space	required.

When	snapshot	files	are	created	in	both	the	default	folder	and	in	an	alternate
location	on	the	same	drive,	each	file	is	created	initially	in	the	default	folder	and
then	copied	to	the	alternate	location.	If	you	are	using	compressed	snapshot	files,
the	files	are	copied	and	compressed	before	they	are	placed	in	the	alternate
snapshot	location.	The	total	space	required	for	all	snapshot	files	in	this	situation
is	the	size	of	the	original	snapshot	files	in	the	default	location	plus	the	size	of	the

compressed	snapshot	files	in	the	alternate	location.

If	the	alternate	storage	location	is	on	a	different	drive	than	the	default	location,
the	space	required	at	the	default	location	is	the	size	of	the	snapshot	files.	The
space	required	at	the	alternate	location	is	the	total	size	of	the	compressed
snapshot	files.

For	more	information,	see	Transferring	Snapshots.

Scheduling	Snapshots
Concurrent	snapshot	processing	is	provided	for	transactional	replication,	and	an
optimized	merge	snapshot	generation	is	provided	for	merge	replication.
Concurrent	snapshot	processing	is	conceptually	similar	to	how	a	database
backup	can	be	performed	while	updates	on	the	database	continue.

With	concurrent	snapshot	processing	and	transactional	replication,	at	the	time
the	Snapshot	Agent	runs,	it	places	temporary	shared	locks	on	the	publication
tables	that	are	released	quickly	so	that	data	modifications	at	the	database	can
continue.	The	data	modifications	made	at	this	time	are	included	as	part	of	the
initial	snapshot.	The	snapshot	is	applied	at	the	Subscriber,	and	the	Distribution
Agent	reconciles	each	captured	transaction	to	see	if	it	has	already	been	delivered
to	the	Subscriber.	During	this	reconciliation,	the	tables	on	the	Subscriber	are	also
temporarily	locked.	

To	minimize	the	user	from	being	temporarily	unable	to	add	to	or	update	the
table:

Choose	the	concurrent	snapshot	processing	with	transactional
replication	when	possible.	Shared	locks	on	the	Publisher	are	only	held
for	seconds.

Identify	times	when	the	least	amount	of	updates	to	data	are	needed	and
schedule	the	agent	accordingly.	Like	a	backup,	the	generation	of	the
snapshot	can	be	quite	resource-intensive	and	that	overhead	will	reduce
the	rest	of	the	system	performance	during	that	time.

To	plan	the	optimum	schedule	for	running	the	Snapshot	Agent,	estimate	the
length	of	time	it	takes	the	Snapshot	Agent	to	complete	the	snapshot.	Because	the

snapshot	is	created	using	bcp,	perform	a	test	bulk	copy	of	your	data	set	and	time
how	long	it	takes	to	complete.	If	your	data	set	is	very	large,	perform	the	bulk
copy	on	a	sample	of	the	data	set	and	extrapolate	the	lapse	time	to	the	entire	data
set.

Not	applying	a	snapshot	is	another	option	if	you	are	concerned	about
interrupting	activity	on	your	database.	You	can	set	up	a	Subscriber	manually
such	as	from	a	database	dump.	This	is	known	as	manually	applying	the	initial
snapshot.

See	Also

Copying	Data	Between	Different	Collations

JavaScript:hhobj_1.Click()

Replication

Planning	for	Transactional	Replication
Transactional	replication	requires	planning	in	the	following	areas:

Transaction	log	space.

Disk	space	for	the	distribution	database.

Primary	keys	for	each	table	to	be	published.

Immediate	updating	and	queued	updating.

Transforming	replicated	data.

text	and	image	data	types	in	transactional	replication.

Identity	ranges.

Constraints	and	NOT	FOR	REPLICATION.

Transaction	Log	Space

For	each	database	that	will	be	published	in	transactional	replication,	ensure	that
the	transaction	log	has	enough	space	allocated.	The	transaction	log	of	a
published	database	may	require	more	space	than	the	log	of	an	identical,
unpublished	database.	This	is	because	the	log	records	may	not	be	purged	until
they	have	been	moved	to	the	distribution	database.

If	the	distribution	database	is	unavailable,	or	if	the	Log	Reader	Agent	is	not
running,	the	transaction	log	of	a	publication	database	continues	to	grow.	The	log
cannot	be	truncated	past	the	oldest	published	transaction	that	has	not	been	passed
into	the	distribution	database	(unless	replication	is	turned	off	completely	for	that

database).	It	is	recommended	that	you	set	the	transaction	log	file	to	autogrow	so
that	the	log	can	accommodate	these	circumstances.

Disk	Space	for	the	Distribution	Database
If	you	plan	to	create	transactional	publications	and	make	the	snapshot	files
available	to	Subscribers	immediately,	allow	enough	disk	space	for	the
distribution	database	to	store	all	of	the	transactions	after	the	last	snapshot.
Although	making	the	snapshot	available	to	Subscribers	immediately	improves
the	speed	with	which	new	Subscribers	have	access	to	the	publication,	the	option
does	require	a	larger	disk	storage	area	for	the	distribution	database.	It	also	means
that	a	new	snapshot	will	be	generated	each	time	the	Snapshot	Agent	runs.	If	the
option	is	not	used,	and	if	anonymous	subscriptions	are	not	allowed,	a	new
snapshot	needs	to	be	generated	only	if	there	is	a	new	subscription.

The	distribution	database	begins	collecting	transactions	immediately	and
continues	to	store	them	until	the	second	time	the	Snapshot	Agent	is	run	(either
scheduled	or	run	manually).	After	the	second	time	the	Snapshot	Agent	is	run,	the
cleanup	task	begins	to	clean	up	and	reduce	the	size	of	the	distribution	database
by	deleting	the	rows	from	the	first	snapshot.	Thus,	if	you	use	the	default
schedule	of	once	a	day	for	running	the	Snapshot	Agent,	you	must	have	enough
disk	space	to	store	all	the	transactions	that	occur	in	one	day.

Similarly,	if	you	plan	to	create	transactional	publications	and	allow	anonymous
subscriptions	to	a	publication,	you	must	allow	enough	disk	space	for	the
distribution	database	to	store	all	of	the	transactions	since	the	last	snapshot.
Allowing	anonymous	subscriptions	also	means	that	a	new	snapshot	will	be
generated	every	time	the	Snapshot	Agent	runs.

An	alternative	to	allocating	more	disk	space	in	both	of	these	situations	is	to	run
the	Snapshot	Agent	more	frequently	than	once	a	day	(the	default)	so	fewer
commands	must	be	retained	in	the	distribution	database.	However,	generating	a
snapshot	can	be	resource-intensive	and	can	affect	performance	temporarily.
Reducing	the	distribution	retention	period	(in	Publisher	and	Distributor
Properties)	can	also	help	maintain	fewer	commands	because	the	Distribution
Clean	Up	Agent	is	controlled	by	the	distribution	retention	period	and	will
remove	replicated	transactions	from	the	distribution	database.

Primary	Keys

All	published	tables	in	transactional	replication	must	contain	a	declared	primary
key.	Existing	tables	can	be	prepared	for	publishing	by	adding	a	declared	primary
key	using	the	Transact-SQL	statement	ALTER	TABLE.

text	and	image	Data	Types	in	Transactional	Replication
The	process	of	replicating	text	and	image	data	types	in	a	transactional
publication	is	subject	to	the	following	considerations:

INSERT,	UPDATE,	and	DELETE	statements	at	the	Publisher	on	text
and	image	columns	are	supported	with	no	special	considerations.
However,	these	columns	cannot	be	updated	by	Subscribers	that	use
snapshot	replication	or	transactional	replication	and	immediate	updating
or	queued	updating	subscriptions.

Logged	text	operations	can	be	replicated	by	using	WRITETEXT	and
UPDATETEXT	with	the	WITH	LOG	option	on	tables	that	are
published	for	replication.	A	text	or	image	column	that	is	published	for
replication	using	WRITETEXT	and	UPDATETEXT	operations	with	the
WITH	NO_LOG	option	is	not	supported	because	replication	reads	the
transaction	log.	

UPDATETEXT	operations	can	be	performed	only	if	all	Subscribers	are
running	Microsoft®	SQL	Server™	version	6.0	or	later	Subscribers.
WRITETEXT	operations	are	replicated	as	UPDATE	statements,
enabling	replication	of	WRITETEXT	to	ODBC	Subscribers	as	well	as
to	SQL	Server.	(UPDATETEXT	operations	are	replicated	as	only
UPDATETEXT.)

Custom	procedures	are	not	used	if	multiple	text	columns	are	being
modified	because	the	other	text	column	values	are	not	logged.	Instead,
a	standard	UPDATE	statement	is	generated.

A	configurable	parameter,	max	text	repl	size,	controls	the	maximum
size	(in	bytes)	of	text	and	image	data	that	can	be	replicated.	This

permits	support	of	ODBC	drivers	and	instances	of	SQL	Server	that
cannot	handle	large	text	and	image	values,	and	Distributors	that	have
system	resource	(virtual	memory)	constraints.	When	a	text	or	image
column	is	published	and	an	INSERT,	UPDATE,	WRITETEXT,	or
UPDATETEXT	operation	is	run	that	exceeds	the	configured	limit,	the
operation	fails.

Using	the	sp_configure	system	stored	procedure	sets	the	max	text	repl
size	parameter.

When	publishing	text	and	image	columns,	the	text	pointer	should	be
retrieved	within	the	same	transaction	as	the	UPDATETEXT	or
WRITETEXT	operation	(and	with	read	repeatability).	For	example,	do
not	retrieve	the	text	pointer	in	one	transaction	and	then	use	it	in	another.
It	may	have	moved	and	become	invalid.

In	addition,	when	the	text	pointer	has	been	obtained,	you	should	not
perform	any	operations	that	can	alter	the	location	of	the	text	pointed	to
by	the	text	pointer	(such	as	updating	the	primary	key),	before	executing
the	UPDATETEXT	or	WRITETEXT	statement.

This	is	the	recommended	way	of	using	UPDATETEXT	and
WRITETEXT	operations	with	data	to	be	replicated:

1.	 Begin	the	transaction.

2.	 Obtain	the	text	pointer	with	read	repeatable	isolation.

3.	 Use	the	text	pointer	in	the	UPDATETEXT	or	WRITETEXT
operation.

4.	 Commit	the	transaction.

Note		If	you	do	not	obtain	the	text	pointer	in	the	same	transaction,
modifications	are	allowed	at	the	Publisher,	but	changes	are	not

published	to	Subscribers.

An	important	consideration	when	sizing	Subscriber	databases	is	that	the	text
pointer	for	replicated	text	and	image	columns	must	be	initialized	on	Subscriber
tables,	even	when	they	are	not	initialized	on	the	Publisher.	Consequently,	each
text	and	image	column	added	to	the	Subscriber	table	by	the	distribution	task	will
consume	at	least	43	bytes	of	database	storage	even	if	the	contents	are	empty.

Replication

Planning	for	Merge	Replication
Merge	replication	requires	planning	in	the	following	areas:

timestamp	columns.

Identity	ranges.

Data	integrity.

Primary	keys.

Synchronizing	with	alternate	synchronization	partners.

Row-level	tracking	and	column-level	tracking.

Triggers	and	business	rules.

text	and	image	data	types	in	merge	replication.

Conflict	resolution.

Occassional	maintenance	for	online/offline	applications

timestamp	Columns

Merge	replication	supports	timestamp	columns.	The	timestamp	column	is
replicated,	but	the	literal	timestamp	values	are	not.	The	timestamp	values	are
regenerated	when	the	initial	snapshot	rows	are	applied	at	the	Subscriber.	This
allows	timestamp	values	to	be	used	by	client	applications	at	the	Subscriber	for
functions	such	as	optimistic	concurrency	control.	In	those	cases,	the	ODBC

driver,	OLE	DB	provider,	DB-Library	cursor,	or	server	cursor	used	to	implement
optimistic	concurrency	control	compares	the	timestamp	value	of	the	row	being
updated	with	the	current	local	value	of	the	original	row.	If	the	timestamp	values
are	different,	indicating	a	row	has	changed,	the	application	can	take	appropriate
action	(such	as	rolling	back	the	transaction	or	rereading	the	data).	Because	the
timestamp	values	are	regenerated	at	the	Subscriber,	timestamp	columns	are
filtered	out	when	performing	article	validation.

Data	Integrity
Because	merge	replication	propagates	changes	made	at	the	Subscriber,	you	must
ensure	that	the	application	integrity	is	preserved	at	each	Subscriber.	All	controls
used	to	validate	data	changes	at	the	Publisher	should	also	be	present	at	the
Subscriber.

There	are	options	to	ensure	that	the	login	used	by	the	Merge	Agent	to	connect	to
the	Publisher	can	also	be	used	to	control	that	only	authenticated	users	can
propagate	data	changes	made	at	the	Subscriber	to	the	Publisher.

Foreign	Keys
When	creating	a	merge	publication,	specify	the	tables	that	are	included	as
articles	in	that	publication.	If	you	include	tables	that	contain	foreign	keys,	the
referenced	table	should	also	be	included	in	the	publication.	If	an	attempt	is	made
to	add	new	rows	to	an	article	referencing	a	primary	key	in	a	missing	table,	the
insert	fails	because	SQL	Server	2000	cannot	find	the	required	primary	key.	If	an
attempt	is	made	to	update	data	in	an	existing	row(s)	of	the	article,	the	update
succeeds	because	SQL	Server	2000	does	not	have	to	add	a	new	row(s)	and
key(s).

After	they	are	created,	merge	publications	can	be	modified	to	include	additional
articles.	You	can	add	any	missing,	referenced	tables	to	a	publication	if	you
discover	that	an	article	must	be	updated	with	additional	rows	and	not	just	with
modifications	to	existing	rows.	Use	the	publication	properties	dialog	box	to	add
the	missing	table.

Synchronizing	with	Alternate	Synchronization	Partners
Subscribers	to	merge	publications	can	synchronize	with	servers	other	than	the

Publisher	where	the	subscription	originated.	Synchronizing	with	alternate
synchronization	partners	provides	the	ability	for	a	Subscriber	to	synchronize	data
even	if	the	primary	Publisher	is	unavailable,	or	if	you	can	connect	to	another
synchronization	partner	because	of	physical	location	(for	example,	if	you	are
visiting	a	remote	office	and	can	connect	to	an	alternate	synchronization	partner
there).

Determine	whether	it	will	be	necessary	for	merge	replication	Subscribers	to	have
alternate	synchronization	partners,	and	then	prepare	those	alternate	servers	for
the	synchronization.

For	more	information,	see	Alternate	Synchronization	Partners.

Conflict	Detection	and	Resolution
When	determining	merge	replication	conflict	detection	and	resolution,	you	can
specify	whether	you	want	the	conflicts	recognized	at	the	row	level	or	at	the
column	level.

Whether	to	use	row-level	or	column-level	tracking	should	be	decided	based
upon	whether	you	want	to	consider	any	change	within	a	row	as	a	conflict	(row-
level	tracking)	or	if	different	users	will	be	allowed	to	update	the	same	row
simultaneously,	but	not	the	same	column	between	synchronizations	(column-
level	tracking).

The	choice	to	use	row-level	versus	column-level	tracking	should	be	based	on
your	application	and	whether	you	want	to	consider	any	change	to	the	same	row
in	a	table	as	a	conflict	or	whether	it	is	okay	for	different	users	to	simultaneously
update	the	same	row,	but	not	the	same	column,	between	synchronizations.	For
example,	it	might	be	considered	acceptable	in	some	applications	that	changes	to
different	columns	can	be	merged	by	using	column-tracking.	This	means	that	if
the	Publisher	changes	column	1	and	the	Subscriber	changes	column	2,	the	merge
process	accepts	the	change	to	column	1	from	the	Publisher	and	change	to
column	2	from	the	Subscriber.	Or	some	applications	might	require	that	changes
to	the	same	row	at	multiple	sites	(even	if	the	values	are	in	different	columns)
should	be	considered	conflicts,	detected	and	resolved	at	the	row	level.

For	more	information,	see	Merge	Replication	Conflict	Detection	and	Resolution.

Triggers	and	Business	Rules

You	should	be	aware	of	all	triggers	and	constraints	on	a	table	that	is	replicated.
Without	planning,	the	triggers	and	constraints	can	be	replicated	along	with	the
table	and	can	cause	recurring	conflicts	during	merge	replication.	For	more
information,	see	Publishing	Data	and	Database	Objects	and	Using	NOT	FOR
REPLICATION.

text	and	image	Data	Types	in	Merge	Replication
Merge	replication	supports	the	replication	of	text,	ntext,	and	image	columns
only	if	they	have	been	updated	explicitly	by	an	UPDATE	statement	because	it
causes	a	trigger	to	fire	that	updates	meta	data	ensuring	that	the	transaction	gets
propagated	to	other	Subscribers.

Using	only	the	WRITETEXT	and	UPDATETEXT	operations	will	not	propagate
the	change	to	other	sites.	If	your	application	uses	WRITETEXT	and
UPDATETEXT	to	update	the	text	or	ntext	columns,	explicitly	add	a	dummy
UPDATE	statement	after	the	WRITETEXT	or	UPDATETEXT	operations,
within	the	same	transaction,	to	fire	the	trigger	and	thereby	guarantee	that	the
change	will	be	propagated	to	other	sites.

Example

SET	TRANSACTION	ISOLATION	LEVEL	REPEATABLE	READ
BEGIN	TRAN
DECLARE	@mytextptr	varbinary(16)
SELECT	@mytextptr	=	textptr(Notes)	
FROM	Employees	
WHERE	EmployeeID	=	'7'
			IF	@mytextptr	IS	NOT	NULL	
BEGIN
UPDATETEXT	Employees.Notes	@mytextptr	0	NULL	'Terrific	job	this	review	period.'
--	Dummy	update	to	fire	trigger	that	will	update	meta	data	and	ensure	the	update	gets	propagated	to	other	Subscribers.
UPDATE	Employees	
--	Set	value	equal	to	itself.
SET	Notes	=	Notes
WHERE	EmployeeID	=	'7'	

END
COMMIT	TRAN	
SET	TRANSACTION	ISOLATION	LEVEL	READ	COMMITTED

Occasional	Maintenance	for	Online/Offline	Applications
When	planning	for	an	online/offline	application	that	uses	replication,	plan	for
occasional	maintenance	in	the	deployment	of	the	application	and	for	a	way	to
transfer	new	datasets	to	the	disconnected	Subscribers.

Although	SQL	Server	2000	replication	allows	for	rich	data	access	for
occasionally	connected	Subscribers,	or	for	Subscribers	using	a	slow	link,	there
will	still	be	a	need	to	plan	for	occasional	maintenance	of	the	application	and
possibly	for	reapplying	a	snapshot	at	the	Subscriber.

Replication

Planning	for	Replication	Options
The	replication	options	of	immediate	updating,	queued	updating,	immediate
updating	with	queued	updating	as	a	failover,	and	transforming	replicated	data
require	additional	considerations	during	replication	planning.	If	users	do	not
need	to	update	data	at	the	Subscriber,	consider	using	snapshot	replication	or
transactional	replication	without	immediate	updating	or	queued	updating
options,	and	then	replication	will	be	easier	to	configure	and	administer.

Considerations	for	Immediate	Updating	or	Queued	Updating
Subscriptions
Here	are	planning	considerations	for	immediate	updating	or	queued	updating
subscriptions:

INSERT	statements	used	to	add	rows	of	data	to	a	table	must	include	a
column	list.

Subscribers	using	immediate	updating	or	queued	updating	options
cannot	republish	replicated	data	at	the	Subscriber.

The	Subscriber	cannot	update	or	insert	text	or	image	values.	For	more
information,	see	Updatable	Subscriptions.

After	a	publication	is	enabled	for	either	immediate	updating
subscriptions	or	queued	updating	subscriptions,	the	option	cannot	be
disabled	for	the	publication	(although	subscriptions	do	not	need	to	use
it);	to	delete	the	option,	the	publication	must	be	deleted	and	a	new	one
created.

Snapshot	replication	does	not	require	the	use	of	primary	keys	in	a	table.
However,	transactional	replication	by	itself	or	snapshot	replication	with
any	updatable	subscriptions	does	require	the	use	of	primary	keys.	

If	you	enable	immediate	updating	and/or	queued	updating	on	a
publication,	you	cannot	also	use	transformable	subscriptions.	The
Transform	Published	Data	page	will	not	show	in	the	Create	Publication
Wizard	if	you	have	already	chosen	to	use	immediate	updating	and/or
queued	updating.

Additional	Considerations	for	Immediate	Updating	Subscriptions

Immediate	updating	allows	snapshot	replication	and	transactional	replication
Subscribers	to	update	the	replicated	data	at	the	Subscriber	and	propagate	those
changes	to	the	Publisher,	which	then	propagates	to	all	other	Subscribers.

Consider	the	following	when	planning	to	use	snapshot	replication	or
transactional	replication	with	immediate	updating:

A	uniqueidentifier	column	is	used	to	track	updates.	The
uniqueidentifier	column	is	added	automatically	to	any	tables	used	in
the	publication.	The	addition	of	this	column	requires	INSERT
statements	to	have	column	lists.	If	you	used	immediate	updating	in
Microsoft®	SQL	Server™	version	7.0	and	are	upgrading	to	SQL	Server
2000,	you	will	need	to	subscribe	to	the	publication	again.	For	more
information,	see	Replication	and	Upgrading.

Using	this	option,	the	update	is	distributed	and	performed	at	both	the
Publisher	and	Subscriber	using	two-phase	commit	protocol	(2PC):	one
locally	at	the	Subscriber	and	one	at	the	Publisher.	This	requires	that	the
Publisher	and	the	Subscriber	making	the	change	be	available	and
connected.

The	immediate	updating	subscription	connection	to	the	Publisher
(controlled	by	sp_link_publication)	can	use	security	mode	0	for	SQL
Server	Authentication	or	2	for	linked	server	definition	to	create	login
mappings.	The	publication	access	list	(PAL)	must	include	at	least	one
SQL	Server	Authentication	account	unless	you	use	security	mode	2	and
configure	delegation	(it	is	possible	to	set	up	Windows	Authentication	in
mode	2	by	configuring	delegation).	You	can	make	connections	to	the
Publisher	under	Windows	user	accounts	invoking	the	INSERT,

JavaScript:hhobj_1.Click()

UPDATE,	and	DELETE	triggers	at	the	Subscriber	using	delegation.	To
set	up	delegation,	see	sp_addlinkedsrvlogin.

Additional	Considerations	for	Queued	Updating	Subscriptions

Queued	updating	allows	snapshot	replication	and	transactional	replication
Subscribers	to	modify	published	data	without	requiring	a	continuous	connection
to	the	Publisher.

When	you	create	a	publication	with	the	queued	updating	option	enabled	and	a
Subscriber	that	is	enabled	for	queued	updating	performs	inserts,	updates,	or
deletes	on	published	data,	the	changes	are	stored	in	a	queue.	The	queued
transactions	are	applied	asynchronously	at	the	Publisher	when	network
connectivity	is	restored.

Consider	the	following	when	planning	to	use	snapshot	replication	or
transactional	replication	with	queued	updating:

Because	the	updates	are	propagated	asynchronously	to	the	Publisher,	the
same	data	may	have	been	updated	by	the	Publisher	or	by	another
Subscriber	and	conflicts	can	occur	when	applying	the	updates.	You	will
need	to	choose	an	appropriate	conflict	resolution	policy	when	creating
the	publication.	

For	snapshot	replication,	tables	should	have,	at	least,	a	unique	index	and
preferably	a	primary	key.	For	transactional	replication,	tables	must	have
a	primary	key.

If	the	Subscriber	database	is	partitioned	horizontally	and	there	are	rows
in	the	partition	that	exist	at	the	Subscriber,	but	not	at	the	Publisher,	the
Subscriber	cannot	update	the	preexisting	rows.	Attempting	to	update
these	rows	returns	an	error.	The	rows	should	be	deleted	from	the	table
and	then	added	again.

Manage	identity	values	with	identity	ranges	to	ensure	that	different
Subscribers	have	different	identity	values.	For	more	information,	see
Replication	Data	Considerations.

JavaScript:hhobj_2.Click()

Considerations	for	Transforming	Published	Data

You	can	transform	data	during	the	replication	process	by	leveraging	the
capabilities	of	Data	Transformation	Services	(DTS).	Examples	of	transforming
published	data	are	creating	custom	horizontal	and	vertical	data	partitions	and
creating	data	transformations	such	as	data	type	mappings,	column
manipulations,	and	string	manipulations.

Consider	the	following	when	planning	to	transform	replicated	data:

Snapshot	data	for	a	transformable	subscription	is	limited	to	character
mode	only;	native	format	(which	is	usually	faster	to	apply)	cannot	be
used	with	DTS.

After	a	publication	is	enabled	for	transformable	subscriptions,	the
option	cannot	be	disabled;	the	existing	publication	must	be	deleted	and
a	new	one	created,	but	if	the	option	is	enabled,	subscriptions	do	not
need	to	use	it.

You	cannot	use	immediate	updating	or	queued	updating	options	with
transformable	subscriptions	(transformations	are	mapped	in	one
direction,	from	Publisher	to	Subscriber).	

Although	using	the	Transform	Published	Data	Wizard	creates	a	DTS
package,	this	type	of	DTS	package	is	not	available	for	execution	outside
of	replication	(from	DTS	Designer	or	at	the	command	prompt).
However,	you	can	use	a	package	created	with	DTS	tools	during
replication	of	snapshot	and	transactional	publications	that	allow
transforming	of	published	data.

Introducing	DTS	transformations	into	replication	adds	overhead	and
reduces	the	distribution	performance.	The	amount	depends	on	the
complexity	of	the	transformation.	It	does	not	affect	Log	Reader	Agent
performance.

See	Also

Filtering	Published	Data

Immediate	Updating

Queued	Updating

Transforming	Published	Data

Replication

Merge	Replication	or	Updatable	Subscriptions
When	replicated	data	needs	to	be	updated	at	the	Subscribers,	you	can	use
snapshot	replication	or	transactional	replication	with	updatable	subscription
options	or	you	can	use	merge	replication.	The	method	you	choose	depends	on
your	replication	topology	and	the	needs	of	your	application	and	its	users.

Use	merge	replication	when	.	.
.

Use	snapshot	replication	or
transactional	replication	with
immediate	updating	or	queued	updating
when	.	.	.

Replicated	data	is	read
and	updated	at	the
Subscriber.

Subscriber	and
Publisher	are	only
occasionally
connected.

Conflicts	caused	by
multiple	updates	to	the
same	data	are	handled
and	resolved.

You	need	updates	to	be
propagated	on	a	row-
by-row	basis,	and
conflicts	to	be
evaluated	and	resolved
at	the	row	level.

Replicated	data	is	mostly	read-
only	at	the	Subscriber.

Subscriber,	Distributor,	and
Publisher	are	connected	most	of
the	time,	but	this	is	not	necessary
for	queued	updating
subscriptions.

Conflicts	caused	by	multiple
updates	to	the	same	data	are
infrequent.

You	need	updates	to	be
propagated	on	a	transaction	basis,
and	conflicts	to	be	evaluated	and
resolved	on	a	transaction	basis
(the	entire	transaction	is	either
committed	or	rolled	back).

See	Also

Merge	Replication

Planning	for	Merge	Replication

Planning	for	Replication	Options

Updatable	Subscriptions

Replication

Designing	a	Replication	Topology
A	replication	topology	defines	the	relationship	between	servers	and	the	copies	of
data,	along	with	the	logic	that	determines	how	synchronization	occurs	between
copies.	Designing	a	replication	topology	helps	you	determine	how	long	it	takes
for	changes	to	get	from	a	Publisher	to	a	Subscriber,	whether	the	failure	of	one
update	prevents	other	Subscribers	from	being	updated,	and	the	order	in	which
updated	information	arrives	at	a	Subscriber,	which	can	affect	analysis	and
reporting.

To	determine	your	replication	topology:

Select	the	physical	replication	model	(central	Publisher,	central
Publisher	with	remote	Distributor,	publishing	Subscriber,	or	central
Subscriber).

Determine	where	snapshot	files	will	be	located	and	how	Publishers	and
Subscribers	will	synchronize	initially.

Determine	whether	the	Distributor	will	be	local	or	remote,	and
determine	whether	the	distribution	database	will	be	shared.

Determine	if	multiple	Publishers	will	share	a	Distributor,	each	use	its
own	distribution	database	on	the	Publisher,	or	share	a	distribution
database.

Determine	the	type	of	replication	and	options	to	use.

Determine	whether	replication	is	initiated	at	the	Publisher	(using	push
subscriptions)	or	at	the	Subscriber	(using	pull	subscriptions).

The	replication	topology	is	not	limited	to	the	physical	connections	between
servers	because	it	also	includes	data	paths	between	copies	of	the	data.	A
Subscriber	can	receive	multiple	copies	of	data	from	different	Publishers,	and	all

of	those	data	copies	can	exist	on	one	server,	incorporating	a	complicated
topology.

See	Also

Synchronizing	Data

Transferring	Snapshots

Types	of	Replication

Replication

Physical	Replication	Models
The	physical	replication	model	is	the	map	for	how	data	will	be	distributed	across
your	enterprise	and	for	how	you	will	configure	your	servers	during	replication
implementation.	Based	on	all	the	factors	and	considerations	outlined	in
Distributed	Data	Factors,	Evaluating	the	Replication	Environment,	and	Planning
for	Each	Type	of	Replication,	you	should	be	able	to	determine	the	best	solution
for	your	replication	model.

The	following	are	examples	of	replication	models:

Central	Publisher.

Central	Publisher	with	remote	Distributor.

Republisher.

Central	Subscriber.

Replication

Central	Publisher
The	simplest	Microsoft®	SQL	Server™	2000	replication	topology	model	places
one	Publisher	and	one	Distributor	on	the	same	server	and	one	Subscriber	on	a
separate	server.

The	scenario	becomes	more	complex	as	you	add	Subscribers	to	the	Publisher
and	Distributor.	The	Publisher	owns	the	data	being	published	and	becomes	a
central	Publisher	for	all	the	Subscribers.	For	example,	this	scenario	might	be
used	to	distribute	master	data,	lists,	or	reports	from	a	central	Publisher	to	any
number	of	Subscribers.

The	roles	of	Publisher	and	Subscriber	are	not	exclusive;	servers	can	perform
both	simultaneously.	For	example,	suppose	Server	A	publishes	Publication	1,
and	Server	B	publishes	Publication	2.	In	this	case,	Server	A	could	act	both	as	a

Publisher	of	Publication	1	and	a	Subscriber	to	Publication	2.	This	is	an	example
of	filtering	data	and	publishing	partitions.

Replication

Central	Publisher	with	Remote	Distributor
As	the	level	of	replication	activity	increases	or	as	server	or	network	resources
become	constrained,	there	may	be	performance	reasons	to	place	the	Publisher
and	Distributor	on	separate	servers.	This	may	be	appropriate	when	a	busy	online
transaction	processing	(OLTP)	server	is	configured	as	a	Publisher.	Using	a
separate	Distributor	reduces	local	processing	and	disk	usage	on	the	Publisher,
although	it	increases	overall	network	traffic.

This	scenario	is	similar	to	the	central	Publisher	scenario,	except	that	separate
computers	perform	the	publishing	and	distribution	tasks.	This	is	useful	when	the
Publisher	(for	example,	a	heavily	used	OLTP	server)	should	be	freed	from	the
distribution	tasks	because	of	performance	and	storage	space	considerations.	The
Publisher	should	be	connected	to	the	Distributor	by	a	reliable,	high-speed
communications	link.

See	Also

Central	Publisher

Replication

Republisher
The	republisher	model	uses	two	servers	to	publish	the	same	data.	The	Publisher
sends	data	to	a	Subscriber,	which	then	republishes	the	data	to	any	number	of
Subscribers.	This	is	useful	when	a	Publisher	must	send	data	to	Subscribers	over
a	slow	or	expensive	communications	link.	If	there	are	a	number	of	Subscribers
on	the	far	side	of	that	link,	using	a	republisher	shifts	the	bulk	of	the	distribution
load	to	that	side	of	the	link.

In	this	diagram,	both	the	Publisher	and	the	republisher	(publishing	Subscriber)
are	acting	as	their	own	local	Distributors.	If	each	were	set	up	to	use	a	remote
Distributor,	each	Distributor	would	need	to	be	on	the	same	side	of	the	slow	or
expensive	communications	link	as	its	Publisher.	Publishers	must	be	connected	to
remote	Distributors	by	reliable,	high-speed	communications	links.

Any	server	can	act	as	both	Publisher	and	Subscriber.	For	example,	consider	the
publication	of	a	table	that	exists	in	New	York	and	needs	to	be	distributed	to	four
different	cities	in	Europe:	London,	Oslo,	Paris,	and	Lisbon.	The	server	in
London	is	chosen	to	subscribe	to	the	published	table	originating	in	New	York,
because	the	London	site	meets	these	conditions:

The	network	link	back	to	New	York	is	relatively	reliable.

The	New	York-to-London	communication	costs	are	acceptable.

There	are	good	network	communications	lines	from	London	to	all	other
European	Subscriber	sites.

Replication

Central	Subscriber
In	a	central	Subscriber	model,	a	number	of	Publishers	replicate	information	to	a
common	destination	table	at	a	Subscriber.	The	destination	table	is	partitioned
horizontally	and	contains	a	location-specific	column	as	part	of	the	primary	key.
Each	Publisher	replicates	rows	containing	location-specific	data.

For	example,	this	replication	configuration	may	be	useful	for	rolling	up
inventory	data	from	a	number	of	servers	at	local	warehouses	into	a	central
Subscriber	at	corporate	headquarters.	It	could	also	be	used	to	roll	up	information
from	autonomous	business	divisions	within	a	company,	or	to	consolidate	order
processing	from	dispersed	locations.

Replication

Types	of	Replication
Microsoft®	SQL	Server™	2000	provides	the	following	types	of	replication	that
you	can	use	in	your	distributed	applications:

Snapshot	replication

Transactional	replication

Merge	replication

Each	type	provides	different	capabilities	depending	on	your	application,	and
different	levels	of	ACID	properties	(atomicity,	consistency,	isolation,	durability)
of	transactions	and	site	autonomy.	For	example,	merge	replication	allows	users
to	work	and	update	data	autonomously,	although	ACID	properties	are	not
assured.	Instead,	when	servers	are	reconnected,	all	sites	in	the	replication
topology	converge	to	the	same	data	values.	Transactional	replication	maintains
transactional	consistency,	but	Subscriber	sites	are	not	as	autonomous	as	they	are
in	merge	replication	because	Publishers	and	Subscribers	generally	should	be
connected	continuously	for	updates	to	be	propagated	to	Subscribers.

It	is	possible	for	the	same	application	to	use	multiple	replication	types	and
options.	Some	of	the	data	in	the	application	may	not	require	any	updates	at
Subscribers,	some	sets	of	data	may	require	updates	infrequently,	with	updates
made	at	only	one	or	a	few	servers,	while	other	sets	of	data	may	need	to	be
updated	daily	at	multiple	servers.

Which	type	of	replication	you	choose	for	your	application	depends	on	your
requirements	based	on	distributed	data	factors,	whether	or	not	data	will	need	to
be	updated	at	the	Subscriber,	your	replication	environment,	and	the	needs	and
requirements	of	the	data	that	will	be	replicated.	For	more	information,	see
Planning	for	Replication.

Each	type	of	replication	begins	with	generating	and	applying	the	snapshot	at	the
Subscriber,	so	it	is	important	to	understand	snapshot	replication	in	addition	to
any	other	type	of	replication	and	options	you	choose.

Replication

Snapshot	Replication
Snapshot	replication	distributes	data	exactly	as	it	appears	at	a	specific	moment	in
time	and	does	not	monitor	for	updates	to	the	data.	Snapshot	replication	is	best
used	as	a	method	for	replicating	data	that	changes	infrequently	or	where	the
most	up-to-date	values	(low	latency)	are	not	a	requirement.	When
synchronization	occurs,	the	entire	snapshot	is	generated	and	sent	to	Subscribers.

Snapshot	replication	would	be	preferable	over	transactional	replication	when
data	changes	are	substantial	but	infrequent.	For	example,	if	a	sales	organization
maintains	a	product	price	list	and	the	prices	are	all	updated	at	the	same	time	once
or	twice	each	year,	replicating	the	entire	snapshot	of	data	after	it	has	changed	is
recommended.	Creating	new	snapshots	nightly	is	also	an	option	if	you	are
publishing	relatively	small	tables	that	are	updated	only	at	the	Publisher.

Snapshot	replication	is	often	used	when	needing	to	browse	data	such	as	price
lists,	online	catalogs,	or	data	for	decision	support,	where	the	most	current	data	is
not	essential	and	the	data	is	used	as	read-only.	These	Subscribers	can	be
disconnected	if	they	are	not	updating	the	data.

Snapshot	replication	is	helpful	when:

Data	is	mostly	static	and	does	not	change	often.	When	it	does	change,	it
makes	more	sense	to	publish	an	entirely	new	copy	to	Subscribers.

It	is	acceptable	to	have	copies	of	data	that	are	out	of	date	for	a	period	of
time.

Replicating	small	volumes	of	data	in	which	an	entire	refresh	of	the	data
is	reasonable.

Snapshot	replication	is	mostly	appropriate	when	you	need	to	distribute	a	read-
only	copy	of	data,	but	it	also	provides	the	option	to	update	data	at	the	Subscriber.
When	Subscribers	only	read	data,	transactional	consistency	is	maintained
between	the	Publisher	and	Subscribers.	When	Subscribers	to	a	snapshot
publication	must	update	data,	transactional	consistency	can	be	maintained
between	the	Publisher	and	Subscriber	because	the	data	is	propagated	using	two-

phase	commit	protocol	(2PC),a	feature	of	the	immediate	updating	option.
Snapshot	replication	requires	less	constant	processor	overhead	than	transactional
replication	because	it	does	not	require	continuous	monitoring	of	data	changes	on
source	servers.	If	the	data	set	being	replicated	is	very	large,	it	can	require
substantial	network	resources	to	transmit.	In	deciding	if	snapshot	replication	is
appropriate,	you	must	consider	the	size	of	the	entire	data	set	and	the	frequency
of	changes	to	the	data.

Replication

How	Snapshot	Replication	Works
Snapshot	replication	is	implemented	by	the	Snapshot	Agent	and	the	Distribution
Agent.	The	Snapshot	Agent	prepares	snapshot	files	containing	schema	and	data
of	published	tables	and	database	objects,	stores	the	files	in	the	snapshot	folder,
and	records	synchronization	jobs	in	the	distribution	database	on	the	Distributor.
By	default,	the	snapshot	folder	is	located	on	the	Distributor,	but	you	can	specify
an	alternate	location	instead	of	or	in	addition	to	the	default.	For	more
information,	see	Alternate	Snapshot	Locations.

The	Distribution	Agent	moves	the	snapshot	held	in	the	distribution	database
tables	to	the	destination	tables	at	the	Subscribers.	The	distribution	database	is
used	only	by	replication	and	does	not	contain	any	user	tables.

Snapshot	Agent
Each	time	the	Snapshot	Agent	runs,	it	checks	to	see	if	any	new	subscriptions
have	been	added.	If	there	are	no	new	subscriptions,	no	new	scripts	or	data	files

are	created.	If	the	publication	is	created	with	the	option	to	create	the	first
snapshot	immediately	enabled,	new	schema	and	data	files	are	created	each	time
the	Snapshot	Agent	runs.	All	schema	and	data	files	are	stored	in	the	snapshot
folder	and	then	either	the	Distribution	Agent	or	Merge	Agent	transfers	them	to
Subscriber	or	you	can	transfer	them	manually.	The	Snapshot	Agent	performs	the
following	steps:

1.	 Establishes	a	connection	from	the	Distributor	to	the	Publisher	and	sets
a	share-lock	on	all	tables	included	in	the	publication.	The	share-lock
ensures	a	consistent	snapshot	of	data.	Because	the	locks	prevent	all
other	users	from	updating	the	tables,	the	Snapshot	Agent	should	be
scheduled	to	execute	during	off-peak	database	activity.

2.	 Establishes	a	connection	from	the	Publisher	to	the	Distributor	and
writes	a	copy	of	the	table	schema	for	each	article	to	an	.sch	file.	If	you
request	that	indexes	and	declarative	referential	integrity	be	included,
the	agent	scripts	out	the	selected	indexes	to	an	.idx	file.	Other	database
objects,	such	as	stored	procedures,	views,	user-defined	functions,	and
others,	can	also	be	published	as	part	of	replication.

3.	 Copies	the	data	in	the	published	table	on	the	Publisher	and	writes	the
data	to	the	snapshot	folder.	If	all	Subscribers	are	instances	of
Microsoft®	SQL	Server™	2000,	the	snapshot	is	stored	as	a	native	bulk
copy	program	file.	If	one	or	more	Subscribers	is	a	heterogeneous	data
source,	the	snapshot	is	stored	as	a	character	mode	file.	The	files	are	the
synchronization	set	that	represents	the	table	at	one	point	in	time.	There
is	a	synchronization	set	for	each	article	within	a	publication.	

4.	 Appends	rows	to	the	MSrepl_commands	and	MSrepl_transactions
tables	in	the	distribution	database.	The	entries	in	the
MSrepl_commands	tables	are	commands	indicating	the	location	of
the	synchronization	set	(.sch	and	.bcp	files)	and	references	to	any
specified	pre-creation	scripts.	The	entries	in	the	MSrepl_transactions
table	are	commands	referencing	the	Subscriber	synchronization	task.	

5.	 Releases	the	share-locks	on	each	published	table	and	finishes	writing
the	log	history	tables.

After	the	snapshot	files	are	generated,	you	can	view	them	in	the	Snapshot	Folder
using	the	Snapshot	Explorer.	In	SQL	Server	Enterprise	Manager,	expand	the
Replication	and	Publications	folders,	right-click	a	publication,	and	then	click
Explore	the	Latest	Snapshot	Folder.	For	more	information,	see	Exploring
Snapshots.

Distribution	Agent
Each	time	the	Distribution	Agent	runs	for	a	snapshot	publication,	it	moves	the
schema	and	data	to	Subscribers.	The	Distribution	Agent	performs	the	following
steps:

1.	 Establishes	a	connection	from	the	server	where	the	agent	is	located	to
the	Distributor.	For	push	subscriptions,	the	Distribution	Agent	is
usually	run	on	the	Distributor,	and	for	pull	subscriptions,	the
Distribution	Agent	is	usually	run	on	the	Subscriber.	

2.	 Examines	the	MSrepl_commands	and	MSrepl_transactions	tables	in
the	distribution	database	on	the	Distributor.	The	agent	reads	the
location	of	the	synchronization	set	from	the	first	table	and	the
Subscriber	synchronization	commands	from	both	tables.

3.	 Applies	the	schema	and	commands	to	the	subscription	database.	If	the
Subscriber	is	not	an	instance	of	Microsoft	SQL	Server	2000,	the	agent
converts	the	data	types	as	necessary.	All	articles	of	a	publication	are
synchronized,	preserving	transactional	and	referential	integrity
between	the	underlying	tables	(presuming	the	subscription	database,	if
not	SQL	Server,	has	the	transactional	capabilities	to	do	so).

When	handling	a	large	number	of	Subscribers,	running	the	Distribution	Agent	at
the	Subscriber,	either	by	using	pull	subscriptions	or	by	using	remote	agent
activation,	can	save	processing	resources	on	the	Distributor.	With	remote	agent
activation,	you	can	choose	to	run	the	Distribution	Agent	at	the	Subscriber	for
push	subscriptions	or	at	the	Distributor	for	pull	subscriptions.	For	more

information,	see	Remote	Agent	Activation.

Snapshots	can	be	applied	either	when	the	subscription	is	created	or	according	to
a	schedule	set	at	the	time	the	publication	is	created.

Note		For	agents	running	at	the	Distributor,	scheduled	synchronization	is	based
on	the	date	and	time	at	the	Distributor	(not	the	date	and	time	at	the	Subscribers).
Otherwise,	the	schedule	is	based	on	the	date	and	time	at	the	Subscriber.

Because	automatic	synchronization	of	databases	or	individual	tables	requires
increased	system	overhead,	a	benefit	of	scheduling	automatic	synchronization
for	less	frequent	intervals	is	that	it	allows	the	initial	snapshot	to	be	scheduled	for
a	period	of	low	activity	on	the	Publisher.

The	Snapshot	Agent	is	usually	run	by	SQL	Server	Agent	and	can	be
administered	directly	by	using	SQL	Server	Enterprise	Manager.	The	Snapshot
Agent	and	Distribution	Agent	can	also	be	embedded	into	applications	by	using
Microsoft	ActiveX®	controls.	The	Snapshot	Agent	executes	on	the	Distributor.
The	Distribution	Agent	usually	executes	on	the	Distributor	for	push
subscriptions,	or	on	Subscribers	for	pull	subscriptions,	but	remote	agent
activation	can	be	used	to	offload	Distribution	Agent	processing	to	another	server.

Cleaning	Up	Snapshot	Replication
When	the	distribution	database	is	created,	SQL	Server	2000	adds	the	following
tasks	at	the	Distributor:

Agent	checkup

Transaction	cleanup

History	cleanup

These	tasks	help	replication	to	function	effectively	in	a	long-running
environment.	After	the	snapshot	is	applied	at	all	Subscribers,	replication	cleanup
deletes	the	associated	.bcp	file	for	the	initial	snapshots	automatically.

If	the	publication	is	enabled	for	anonymous	subscriptions	or	with	the	option	to
create	the	first	snapshot	immediately,	at	least	one	copy	of	the	snapshot	files	are

kept	in	the	snapshot	location.	This	ensures	that	if	a	Subscriber	with	an
anonymous	subscription	to	a	snapshot	publication	synchronizes	with	the
Publisher,	the	most	recent	snapshot	will	be	available.

See	Also

Planning	for	Snapshot	Replication

Replication	Options

Replication

Transactional	Replication
With	transactional	replication,	an	initial	snapshot	of	data	is	applied	at
Subscribers,	and	then	when	data	modifications	are	made	at	the	Publisher,	the
individual	transactions	are	captured	and	propagated	to	Subscribers.

Transactional	replication	is	helpful	when:

You	want	incremental	changes	to	be	propagated	to	Subscribers	as	they
occur.	

You	need	transactions	to	adhere	to	ACID	properties.

Subscribers	are	reliably	and/or	frequently	connected	to	the	Publisher.

Transactional	replication	uses	the	transaction	log	to	capture	incremental	changes
that	were	made	to	data	in	a	published	table.	Microsoft®	SQL	Server™	2000
monitors	INSERT,	UPDATE,	and	DELETE	statements,	or	other	modifications
made	to	the	data,	and	stores	those	changes	in	the	distribution	database,	which
acts	as	a	reliable	queue.	Changes	are	then	propagated	to	Subscribers	and	applied
in	the	same	order	as	they	occurred.

With	transactional	replication,	incremental	changes	made	at	the	Publisher	flow
according	to	the	Distribution	Agent	schedule.	This	schedule	can	be	set	to
continuously	for	minimal	latency,	or	set	at	scheduled	intervals	to	Subscribers.
Because	changes	to	the	data	must	be	made	at	the	Publisher	(when	transactional
replication	is	used	without	immediate	updating	or	queued	updating	options),
update	conflicts	are	avoided.	This	guarantees	ACID	properties	of	transactions
will	be	maintained.	Ultimately,	all	Subscribers	will	achieve	the	same	values	as
the	Publisher.	If	immediate	updating	or	queued	updating	options	are	used	with
transactional	replication,	updates	can	be	made	at	the	Subscriber,	and	with	queued
updating,	conflicts	might	occur.

If	Subscribers	need	to	receive	data	changes	in	near	real-time,	they	need	a
network	connection	to	the	Publisher.	Transactional	replication	can	provide	very
low	latency	to	Subscribers.	Subscribers	receiving	data	using	a	push	subscription
usually	receive	changes	from	the	Publisher	within	one	minute	or	sooner,

provided	that	the	network	link	and	adequate	processing	resources	are	available
(latency	of	a	few	seconds	can	often	be	achieved).

However,	Subscribers	can	also	pull	changes	down	as	needed.	A	traveling	sales
representative	can	be	a	Subscriber	and	request	incremental	changes	to	a	price
list,	which	is	only	modified	at	the	corporate	office,	once	each	evening.	The	use
of	transactional	replication	for	disconnected	users	can	be	very	effective	for	read-
only	data.

Replication

How	Transactional	Replication	Works
Transactional	replication	is	implemented	by	the	Snapshot	Agent,	Log	Reader
Agent,	and	Distribution	Agent.	The	Snapshot	Agent	prepares	snapshot	files
containing	schema	and	data	of	published	tables	and	database	objects,	stores	the
files	in	the	snapshot	folder,	and	records	synchronization	jobs	in	the	distribution
database	on	the	Distributor.

The	Log	Reader	Agent	monitors	the	transaction	log	of	each	database	configured
for	transactional	replication	and	copies	the	transactions	marked	for	replication
from	the	transaction	log	into	the	distribution	database.	The	Distribution	Agent
moves	the	initial	snapshot	jobs	and	the	transactions	held	in	the	distribution
database	tables	to	Subscribers.

Initial	Snapshot
Before	a	new	transactional	replication	Subscriber	can	receive	incremental
changes	from	a	Publisher,	the	Subscriber	must	contain	tables	with	the	same

schema	and	data	as	the	tables	at	the	Publisher.	Copying	the	complete	current
publication	from	the	Publisher	to	the	Subscriber	is	called	applying	the	initial
snapshot.	Microsoft®	SQL	Server™	2000	will	create	and	apply	the	snapshot	for
you,	or	you	can	choose	to	apply	the	snapshot	manually.	For	more	information,
see	Applying	the	Initial	Snapshot.

When	snapshots	are	distributed	and	applied	to	Subscribers,	only	those
Subscribers	waiting	for	initial	snapshots	are	affected.	Other	Subscribers	to	that
publication	(those	that	are	already	receiving	inserts,	updates,	deletes,	or	other
modifications	to	the	published	data)	are	unaffected.

Concurrent	Snapshot	Processing
Typically	with	snapshot	generation,	SQL	Server	will	place	shared	locks	on	all
tables	published	as	part	of	replication	for	the	duration	of	snapshot	generation.
This	can	prevent	updates	from	being	made	on	the	publishing	tables.	Concurrent
snapshot	processing,	available	only	with	transactional	replication,	does	not	hold
the	share	locks	in	place	during	the	entire	snapshot	generation,	therefore,	it	allows
users	to	continue	working	uninterrupted	while	SQL	Server	2000	creates	initial
snapshot	files.

When	you	create	a	new	publication	using	transactional	replication	and	indicate
that	all	Subscribers	will	be	instances	of	SQL	Server	7.0	or	SQL	Server	2000,
concurrent	snapshot	processing	is	available.

After	replication	begins,	the	Snapshot	Agent	places	shared	locks	on	the
publication	tables.	The	locks	prevent	changes	until	a	record	indicating	the	start
of	the	snapshot	is	entered	in	the	log	file.	After	the	transaction	is	received,	the
shared	locks	are	released	and	data	modifications	at	the	database	can	continue.
The	duration	for	holding	the	locks	is	very	brief	(a	few	seconds)	even	if	a	large
amount	of	data	is	being	copied.

At	this	point,	the	Snapshot	Agent	starts	to	build	the	snapshot	files.	When	the
snapshot	is	complete,	a	second	record	indicating	the	end	of	the	snapshot	process
is	written	to	the	log.	Any	transactions	that	affect	the	tables	while	the	snapshot	is
being	generated	are	captured	between	these	beginning	and	ending	tokens	and
forwarded	to	the	distribution	database	by	the	Log	Reader	Agent.

When	the	snapshot	is	applied	at	the	Subscriber,	the	Distribution	Agent	first
applies	the	snapshot	files	(schema	and	.bcp	files).	It	then	reconciles	each

captured	transaction	to	see	if	it	has	already	been	delivered	to	the	Subscriber.
During	this	reconciliation	process,	the	tables	on	the	Subscriber	are	locked.
Depending	on	the	number	of	transactions	captured	at	the	Publisher	while	the
snapshot	was	created,	you	should	expect	an	increase	in	the	amount	of	time
required	to	apply	the	snapshot	at	the	Subscriber.	Conceptually,	this	is	similar	to
the	process	of	recovery	that	SQL	Server	uses	when	it	is	restarted.

UPDATETEXT	statements	cannot	be	performed	on	data	marked	for	replication
while	it	is	being	extracted	during	concurrent	snapshot	processing.	If	you	initiate
an	UPDATETEXT	statement,	you	will	get	an	error	indicating	that	the	operation
is	not	allowed	because	of	concurrent	snapshot	processing.	After	the	snapshot	is
complete,	UPDATETEXT	statements	can	be	performed	again.

As	mentioned	earlier,	use	caution	when	concurrent	snapshot	processing	occurs
on	systems	where	business	logic	is	indicated	through	triggers	or	constraints	on
the	subscription	database.	Concurrent	snapshot	processing	uses	bulk	inserts	of
tables	followed	by	a	series	of	special	INSERT	and	DELETE	statements	that
bring	the	table	to	a	consistent	state.	These	operations	are	performed	as	one
transaction	so	that	database	users	do	not	see	the	data	in	an	inconsistent	state;
however,	constraints	at	the	Subscriber	will	be	executed	within	the	transaction
and	may	evaluate	changes	that	are	not	based	on	a	consistent	set	of	data.	To
prevent	this,	it	is	generally	recommended	that	you	specify	the	NOT	FOR
REPLICATION	option	on	all	constraints	and	columns	with	the	IDENTITY
property	on	the	Subscriber	database.	Business	logic	implemented	using	custom
stored	procedures	will	not	be	affected	because	custom	stored	procedures	are	not
used	during	concurrent	snapshot	processing	until	the	Subscriber	tables	are	in	a
consistent	state.

Foreign	key	constraints,	check	constraints,	and	triggers	at	the	Subscriber	do	not
require	the	NOT	FOR	REPLICATION	option	because	they	will	be	disabled
during	the	concurrent	snapshot	generation	and	will	be	enabled	after	the	snapshot
is	generated.

IMPORTANT		The	Log	Reader	Agent	must	run	after	the	snapshot	is	generated	with
concurrent	processing.	If	the	Log	Reader	Agent	does	not	run,	the	Distribution
Agent	will	continue	to	return	an	error	stating	that	the	snapshot	is	not	available
and	will	not	apply	it	to	Subscribers.	The	Log	Reader	Agent	needs	to	propagate
all	changes	that	occurred	during	snapshot	generation	to	the	distribution	database
before	the	Distribution	Agent	can	apply	the	snapshot	to	Subscribers.	Usually	the

Log	Reader	Agent	runs	in	continuous	mode,	so	it	will	run	automatically	soon
after	the	snapshot	is	generated,	but	this	is	not	a	concern.	If	you	choose	not	to	run
the	Log	Reader	Agent	in	continuous	mode,	you	must	run	it	manually.

Although	concurrent	snapshot	processing	allows	updates	to	continue	on
publishing	tables,	the	performance	will	be	lowered	due	to	the	overhead	of	the
snapshot	itself.	It	is	recommended	that	you	generate	the	snapshot	during	periods
of	lowest	general	activity	whenever	possible	(similar	to	when	you	would	choose
to	do	a	database	backup).

IMPORTANT		If	the	publishing	table	has	a	primary	key	or	unique	constraint	not
contained	within	the	clustered	index,	replication	could	fail	if	data	modifications
occur	on	the	clustering	key	during	concurrent	snapshot	processing.	It	is
recommended	that	you	enable	concurrent	snapshot	processing	only	when	unique
and	primary	key	constraints	are	contained	within	the	clustered	index	or	you
ensure	that	data	modifications	are	not	made	to	the	columns	of	the	clustering
index	while	the	snapshot	is	generated.

Concurrent	snapshot	processing	is	available	only	with	transactional	replication
and	for	Subscribers	running	instances	of	SQL	Server	7.0	or	later	on	the
Microsoft	Windows®	98,	Microsoft	Windows	NT®	4.0	and	Microsoft	Windows
2000	operating	systems.

If	you	are	publishing	to	Subscribers	running	SQL	Server	7.0,	the	Distributor
must	be	running	SQL	Server	2000,	and	you	must	use	push	subscriptions	to	use
concurrent	snapshot	processing.	The	Distribution	Agent	runs	at	the	Distributor,
and	is	able	to	execute	the	concurrent	snapshot	processing.	If	you	used	a	pull
subscription,	the	Distribution	Agent	would	run	at	the	Subscriber	on	SQL	Server
7.0	where	concurrent	snapshot	processing	is	not	available.	If	you	use	pull
subscriptions	with	Subscribers	running	SQL	Server	7.0,	concurrent	snapshot
processing	must	be	disabled.

Because	of	these	restrictions,	the	Create	Publication	Wizard	does	not	make
concurrent	snapshot	processing	the	default	when	you	create	a	transactional
publication;	however,	if	your	application	meets	these	criteria,	it	is	recommended
that	you	enable	this	option.	To	enable	concurrent	snapshot	processing,	change
the	snapshot	generation	mode.	Open	Publication	Properties,	click	the	Snapshot
tab,	and	then	select	the	Concurrent	access	during	snapshot	generation
checkbox.

Snapshot	Agent
The	procedures	by	which	the	Snapshot	Agent	implements	the	initial	snapshot	in
transactional	replication	are	the	same	procedures	used	in	snapshot	replication
(except	as	outlined	earlier	with	regard	to	concurrent	snapshot	processing).	After
the	snapshot	files	have	been	generated,	you	can	view	them	in	the	Snapshot
Folder	using	the	Snapshot	Explorer.	In	SQL	Server	Enterprise	Manager,	expand
the	Replication	and	Publications	folders,	right	click	a	publication,	and	then	click
Explore	the	Latest	Snapshot	Folder.	For	more	information,	see	Exploring
Snapshots.

Modifying	Data	and	the	Log	Reader	Agent
The	Log	Reader	Agent	runs	either	continuously	or	according	to	a	schedule	you
establish	at	the	time	the	publication	is	created.	When	executing,	the	Log	Reader
Agent	first	reads	the	publication	transaction	log	(the	same	database	log	used	for
transaction	tracking	and	recovery	during	regular	SQL	Server	2000	operations)
and	identifies	any	INSERT,	UPDATE,	and	DELETE	statements,	or	other
modifications	made	to	the	data	transactions	that	have	been	marked	for
replication.	Next,	the	agent	batch	copies	those	transactions	to	the	distribution
database	at	the	Distributor.	The	Log	Reader	Agent	uses	the	internal	stored
procedure	sp_replcmds	to	get	the	next	set	of	commands	marked	for	replication
from	the	log.	The	distribution	database	then	becomes	the	store-and-forward
queue	from	which	changes	are	sent	to	Subscribers.	Only	committed	transactions
are	sent	to	the	distribution	database.

There	is	a	one-to-one	correspondence	between	transactions	on	the	Publisher	and
replication	transactions	in	the	distribution	database.	One	transaction	stored	in
MSrepl_transactions	can	consist	of	one	or	more	commands	and	each	command
can	be	broken	up	along	a	500-Unicode-character	boundary	in	the
MSrepl_commands	table.	After	the	entire	batch	of	transactions	has	been	written
successfully	to	the	distribution	database,	it	is	committed.	Following	the	commit
of	each	batch	of	commands	to	the	Distributor,	the	Log	Reader	Agent	calls
sp_repldone	to	mark	where	replication	was	last	completed.	Finally,	the	agent
marks	the	rows	in	the	transaction	log	that	are	ready	to	be	truncated.	Rows	still
waiting	to	be	replicated	are	not	truncated.	The	transaction	log	on	the	Publisher
can	be	dumped	without	interfering	with	replication,	because	only	transactions
not	marked	for	replication	are	purged.

Data	modifications	made	at	the	Subscriber	will	always	be	propagated	as	a	series
of	single	row	statements,	provided	they	do	not	modify	a	uniquely	constrained
column.	If	an	UPDATE	does	modify	a	uniquely	constrained	column,	the
UPDATE	will	be	propagated	as	a	series	of	DELETE	statements	followed	by	a
series	of	INSERT	statements.	A	uniquely	constrained	column	is	any	column
participating	in	a	unique	index	or	clustered	index,	even	if	the	clustered	index	is
not	declared	as	unique.	UPDATES	made	to	indexed	views	or	base	tables	that
indexed	views	are	based	on	will	be	propagated	as	DELETE/INSERT	pairs.

The	Log	Reader	Agent	usually	runs	under	SQL	Server	Agent	at	the	Distributor
and	can	be	administered	directly	by	accessing	it	in	SQL	Server	Enterprise
Manager	under	Replication	Monitor	and	the	Agents	folder.	

Distribution	Agent
Transaction	commands	are	stored	in	the	distribution	database	until	the
Distribution	Agent	propagates	them	to	all	Subscribers	or	a	Distribution	Agent	at
the	Subscriber	pulls	the	changes.	The	distribution	database	is	used	only	by
replication	and	does	not	contain	any	user	tables.	You	should	never	create	other
objects	in	the	distribution	database.	Subscribers	will	receive	transactions	in	the
same	order	in	which	they	were	applied	at	the	Publisher.

The	Distribution	Agent	is	a	component	of	SQL	Server	Agent	and	can	be
administered	directly	by	using	SQL	Server	Enterprise	Manager.	The	Snapshot
Agent	and	Distribution	Agent	can	also	be	embedded	into	applications	by	using
Microsoft	ActiveX®	controls.	The	Snapshot	Agent	executes	on	the	Distributor.
The	Distribution	Agent	usually	executes	on	the	Distributor	for	push
subscriptions,	or	on	Subscribers	for	pull	subscriptions,	but	remote	agent
activation	can	be	used	to	offload	agent	processing	to	another	server.	For	more
information,	see	Remote	Agent	Activation.

SQL	Server	can	validate	the	data	being	updated	at	the	Subscriber	as	the
replication	process	is	occurring	so	that	you	can	ensure	that	data	is	the	same	at	the
Publisher	and	at	the	Subscribers.	For	more	information,	see	Validating
Replicated	Data.

Skipping	Errors	in	Transactional	Replication
The	-skiperrors	agent	command	line	parameter	for	transactional	replication

allows	you	to	specify	errors	that	can	be	skipped	during	the	distribution	process.
Typically,	when	the	Log	Reader	Agent	and	Distribution	Agent	are	running	in
continuous	mode	and	one	of	them	encounters	an	error,	the	agent,	and	the
distribution	process,	stops.	By	specifying	expected	errors	or	errors	that	you	do
not	want	to	interfere	with	replication,	with	the	-skiperrors	parameter,	the
Distribution	Agent	will	log	the	error	information	and	then	continue	running.	For
more	information,	see	Handling	Agent	Errors.

Cleaning	Up	Transactional	Replication
When	the	distribution	database	is	created,	SQL	Server	adds	the	following	tasks
to	SQL	Server	Agent	at	the	Distributor	to	purge	the	data	no	longer	required:

Agent	checkup

Agent	history	cleanup

Transaction	cleanup

Distribution	cleanup

History	cleanup

Expired	subscription	cleanup

After	all	Subscribers	have	received	transactions,	the	Distribution	Cleanup	Agent
removes	delivered	transactions	in	the	distribution	database.	Delivered
transactions	are	kept	in	the	distribution	database	for	a	defined	period	known	as
the	retention	period.	Setting	a	retention	period	while	scheduling	backups	can
ensure	that	information	required	to	recover	a	destination	database	automatically
is	available	within	the	distribution	database.

For	example,	if	a	Subscriber	has	scheduled	a	transaction	log	dump	of	a
destination	database	every	24	hours,	you	could	set	the	retention	period	to	48
hours.	Even	if	the	Subscriber	experiences	a	failure	immediately	before	a
scheduled	backup,	all	transactions	necessary	to	restore	the	replicated	tables

automatically	will	still	be	available	to	the	distribution	process	of	the	Distributor.

See	Also

Planning	for	Transactional	Replication

Replication	Options

Replication

Merge	Replication
Merge	replication	is	the	process	of	distributing	data	from	Publisher	to
Subscribers,	allowing	the	Publisher	and	Subscribers	to	make	updates	while
connected	or	disconnected,	and	then	merging	the	updates	between	sites	when
they	are	connected.

Merge	replication	allows	various	sites	to	work	autonomously	and	at	a	later	time
merge	updates	into	a	single,	uniform	result.	The	initial	snapshot	is	applied	to
Subscribers,	and	then	Microsoft®	SQL	Server™	2000	tracks	changes	to
published	data	at	the	Publisher	and	at	the	Subscribers.	The	data	is	synchronized
between	servers	continuously,	at	a	scheduled	time,	or	on	demand.	Because
updates	are	made	at	more	than	one	server,	the	same	data	may	have	been	updated
by	the	Publisher	or	by	more	than	one	Subscriber.	Therefore,	conflicts	can	occur
when	updates	are	merged.

Merge	replication	includes	default	and	custom	choices	for	conflict	resolution
that	you	can	define	as	you	configure	a	merge	publication.	When	a	conflict
occurs,	a	resolver	is	invoked	by	the	Merge	Agent	and	determines	which	data	will
be	accepted	and	propagated	to	other	sites.

Merge	Replication	is	helpful	when:

Multiple	Subscribers	need	to	update	data	at	various	times	and	propagate
those	changes	to	the	Publisher	and	to	other	Subscribers.

Subscribers	need	to	receive	data,	make	changes	offline,	and	later
synchronize	changes	with	the	Publisher	and	other	Subscribers.

You	do	not	expect	many	conflicts	when	data	is	updated	at	multiple	sites
(because	the	data	is	filtered	into	partitions	and	then	published	to
different	Subscribers	or	because	of	the	uses	of	your	application).
However,	if	conflicts	do	occur,	violations	of	ACID	properties	are
acceptable.

Insert	Diagram	(servers	and	data	flow	–	laptops	to	indicate	occasionally
connected)

Both	queued	updating	and	merge	replication	allow	updates	at	the	Publisher	and
at	Subscribers	while	offline;	however,	there	are	significant	differences	between
the	two	methods.	For	more	information,	see	Merge	Replication	or	Updatable
Subscriptions.

Replication

How	Merge	Replication	Works
Merge	replication	is	implemented	by	the	Snapshot	Agent	and	Merge	Agent.	The
Snapshot	Agent	prepares	snapshot	files	containing	schema	and	data	of	published
tables,	stores	the	files	in	the	snapshot	folder,	and	inserts	synchronization	jobs	in
the	publication	database.	The	Snapshot	Agent	also	creates	replication-specific
stored	procedures,	triggers,	and	system	tables.

The	Merge	Agent	applies	the	initial	snapshot	jobs	held	in	the	publication
database	tables	to	the	Subscriber.	It	also	merges	incremental	data	changes	that
occurred	at	the	Publisher	or	Subscribers	after	the	initial	snapshot	was	created,
and	reconciles	conflicts	according	to	rules	you	configure	or	a	custom	resolver
you	create.

The	role	of	the	Distributor	is	very	limited	in	merge	replication,	so	implementing
the	Distributor	locally	(on	the	same	server	as	the	Publisher)	is	very	common.
The	Distribution	Agent	is	not	used	at	all	during	merge	replication,	and	the
distribution	database	on	the	Distributor	stores	history	and	miscellaneous
information	about	merge	replication.

UNIQUEIDENTIFIER	Column
Microsoft®	SQL	Server™	2000	identifies	a	unique	column	for	each	row	in	the
table	being	replicated.	This	allows	the	row	to	be	identified	uniquely	across
multiple	copies	of	the	table.	If	the	table	already	contains	a	column	with	the
ROWGUIDCOL	property	that	has	a	unique	index	or	primary	key	constraint,
SQL	Server	will	use	that	column	automatically	as	the	row	identifier	for	the
publishing	table.

Otherwise,	SQL	Server	adds	a	uniqueidentifier	column,	titled	rowguid,	which
has	the	ROWGUIDCOL	property	and	an	index,	to	the	publishing	table.	Adding
the	rowguid	column	increases	the	size	the	publishing	table.	The	rowguid
column	and	the	index	are	added	to	the	publishing	table	the	first	time	the
Snapshot	Agent	executes	for	the	publication.

Triggers
SQL	Server	then	installs	triggers	that	track	changes	to	the	data	in	each	row	or
each	column.	The	triggers	capture	changes	made	to	the	publishing	table	and

record	the	changes	in	merge	system	tables.	Tracking	triggers	on	the	publishing
tables	are	created	while	the	Snapshot	Agent	for	the	publication	runs	for	the	first
time.	Triggers	are	created	at	the	Subscriber	when	the	snapshot	is	applied	at	the
Subscriber.

Different	triggers	are	generated	for	articles	that	track	changes	at	the	row	level	or
the	column	level.	Because	SQL	Server	supports	multiple	triggers	of	the	same
type	on	the	publishing	table,	merge	replication	triggers	do	not	interfere	with
application-defined	triggers.

Stored	Procedures
The	Snapshot	Agent	also	creates	custom	stored	procedures	that	update	the
subscription	database.	There	is	one	custom	stored	procedure	for	INSERT
statements,	one	for	UPDATE	statements,	and	one	for	DELETE	statements.
When	data	is	updated	and	the	new	records	need	to	be	entered	in	the	subscription
database,	the	custom	stored	procedures	are	used	rather	than	individual	INSERT,
UPDATE,	and	DELETE	statements.	For	more	information,	see	Using	Custom
Stored	Procedures	in	Articles.

System	Tables
SQL	Server	then	adds	several	system	tables	to	the	database	to	support	data
tracking,	efficient	synchronization,	and	conflict	detection,	resolution	and
reporting.	For	every	changed	or	created	row,	the	table	MSmerge_contents
contains	the	generation	in	which	the	most	recent	modification	occurred.	It	also
contains	the	version	of	the	row	as	a	whole	and	every	attribute	of	the	row.
MSmerge_tombstone	stores	DELETEs	to	the	data	within	a	publication.	These
tables	use	the	rowguid	column	to	join	to	the	publishing	table.

The	generation	column	in	these	tables	acts	as	a	logical	clock	indicating	when	a
row	was	last	updated	at	a	given	site.	Actual	datetime	values	are	not	used	for
marking	when	changes	occur,	or	deciding	conflicts,	and	there	is	no	dependence
on	synchronized	clocks	between	sites.	This	makes	the	conflict	detection	and
resolution	algorithms	more	resilient	to	time	zone	differences	and	differences
between	physical	clocks	on	multiple	servers.	At	a	given	site,	the	generation
numbers	correspond	to	the	order	in	which	changes	were	performed	by	the	Merge
Agent	or	by	a	user	at	that	site.

MSmerge_genhistory	and	MSmerge_replinfo	allow	SQL	Server	to	determine
the	generations	that	need	to	be	sent	with	each	merge.

There	are	several	tracking	columns	added	to	a	merge	publication	table.	If	your
publishing	table	has	column	names	reserved	for	merge	processing,	you	will	not
be	able	to	generate	an	initial	snapshot	because	of	duplicate	column	names.
Reserved	column	names	are:

reason_code

source_object

reason_text

Pubid

conflict_type

origin_datasource

tablenick

create_time

Initial	Snapshot	and	the	Snapshot	Agent

Before	a	new	Subscriber	can	receive	incremental	changes	from	a	Publisher,	the
Subscriber	must	contain	tables	with	the	same	schema	and	data	as	the	tables	at	the
Publisher.	Copying	the	complete	current	publication	from	the	Publisher	to	the
Subscriber	is	called	applying	the	initial	snapshot.	SQL	Server	will	create	and
apply	the	snapshot	for	you,	or	you	can	choose	to	apply	the	snapshot	manually.
For	more	information,	see	Applying	the	Initial	Snapshot.

Even	when	creating	a	subscription	for	which	the	snapshot	is	not	applied

automatically	(sometimes	referred	to	as	a	nosync	subscription),	portions	of	the
snapshot	are	still	applied.	The	necessary	tracking	triggers	and	tables	are	created
at	the	Subscriber,	which	means	that	you	still	need	to	create	and	apply	a	snapshot
even	when	subscriptions	specify	that	the	snapshot	will	not	be	applied
automatically.

Replication	of	changed	data	occurs	only	after	merge	replication	ensures	that	the
Subscriber	has	the	most	recent	snapshot	of	the	table	schema	and	data	that	has
been	generated.	When	snapshots	are	distributed	and	applied	to	Subscribers,	only
those	Subscribers	needing	initial	snapshots	are	affected.	Subscribers	that	are
already	receiving	INSERTs,	UPDATEs,	DELETEs,	or	other	modifications	to	the
published	data	are	unaffected	unless	the	subscription	is	marked	for
reinitialization	or	the	publication	is	marked	for	a	reintialization,	in	which	case	all
subscriptions	corresponding	to	a	given	publication	are	reintialized	during	the
next	merge	process.

A	subscription	table	can	subscribe	only	to	one	merge	publication	at	a	time.	For
example,	suppose	you	publish	the	Customers	table	in	two	publications,	and	then
you	subscribe	to	both	publications	from	one	Subscriber,	indicating	the	same
subscription	database	will	receive	data	from	both	publications.	One	of	the	Merge
Agents	will	fail	during	the	initial	synchronization.

The	initial	snapshot	can	be	an	attached	subscription	database	in	snapshot
replication,	transactional	replication,	and	merge	replication.	If	you	use	attachable
subscription	database,	a	subscription	database	and	its	subscriptions	will	be
copied	and	you	can	apply	them	at	another	Subscriber.	For	more	information,	see
Attachable	Subscription	Databases.

The	Snapshot	Agent	implements	the	initial	snapshot	in	merge	replication	using
similar	steps	to	the	Snapshot	Agent	in	snapshot	replication.	For	more
information,	see	Snapshot	Replication	.

After	the	snapshot	files	have	been	generated,	you	can	view	them	in	the	Snapshot
Folder	using	the	Snapshot	Explorer.	In	SQL	Server	Enterprise	Manager,	expand
the	Replication	and	Publications	folders,	right-click	a	publication,	and	then	click
Explore	the	Latest	Snapshot	Folder.	For	more	information,	see	Exploring
Snapshots.

Dynamic	Snapshots

Dynamic	snapshots	provide	a	performance	advantage	when	applying	the
snapshot	of	a	merge	publication	with	dynamic	filters.	By	using	SQL	Server	2000
bulk	copy	programming	files	to	apply	data	to	a	specific	Subscriber	instead	of	a
series	of	INSERT	statements,	you	will	improve	the	performance	of	applying	the
initial	snapshot	for	dynamically	filtered	merge	publications.

For	more	information,	see	Dynamic	Snapshots.

Merge	Agent
After	the	initial	snapshot	has	been	applied	to	a	Subscriber,	SQL	Server	triggers
will	begin	tracking	INSERT,	UPDATE	and	DELETE	statements	made	at	the
Publisher	and	at	Subscribers.

Every	table	that	participates	in	merge	replication	is	assigned	a	generation	slot	in
the	MSmerge_articles	table.	When	a	row	is	updated	in	a	merge	publication	at
the	Publisher	or	at	Subscribers,	even	if	they	are	not	connected,	a	trigger	updates
the	generation	column	in	the	MSmerge_contents	system	table	for	that	row	to
the	appropriate	generations	slot	for	the	given	base	table.	When	the	Publisher	and
Subscriber	are	reconnected	and	the	Merge	Agent	runs,	the	Merge	Agent	collects
all	the	undelivered	row	changes	(with	new	generation	values)	into	one	or	more
groups	and	assigns	generation	values	that	are	higher	than	all	previous
generations.	This	allows	the	Merge	Agent	to	batch	changes	to	different	tables	in
separate	generations	and	process	these	batches	to	achieve	efficiency	over	slow
networks.

The	Merge	Agent	at	each	site	keeps	track	of	the	highest	generation	it	has	sent	to
each	of	the	other	sites,	and	the	highest	generation	that	each	of	the	other	sites	has
sent	to	it.	These	provide	starting	points,	so	that	each	table	can	be	examined
without	looking	at	data	already	shared	with	the	other	site.	The	generations	stored
in	a	given	row	can	differ	between	sites	because	the	numbers	at	a	site	reflect	the
order	in	which	changes	were	processed	at	that	site.

You	can	limit	the	number	of	merge	processes	running	simultaneously	by	setting
the	@max_concurrent_merge	parameter	of	sp_addmergepublication	or
sp_changemergepublication.	If	the	maximum	number	of	merge	processes	is
already	running,	any	new	merge	processes	will	wait	in	a	queue.	You	can	set	–
StartQueueTimeout	on	the	Merge	Agent	command	line	to	specify	how	long	the
agent	should	wait	for	the	other	merge	processes	to	complete.	If	the	–

StartQueueTimeout	period	is	exceeded,	and	the	new	merge	process	is	still
waiting,	it	will	stop	and	exit.

Synchronization
Synchronization	occurs	when	Publishers	and	Subscribers	in	a	merge	replication
topology	reconnect	and	changes	are	propagated	between	sites,	and	if	necessary,
conflicts	detected	and	resolved.	At	the	time	of	synchronization,	the	Merge	Agent
sends	all	changed	data	to	the	Subscriber.	Data	flows	from	the	originator	of	the
change	to	the	site	that	needs	to	be	updated	or	synchronized.

The	direction	of	the	exchange	controls	whether	the	Merge	Agent	uploads
changes	from	the	Subscriber	(-ExchangeType='Upload'),	downloads	changes	to
the	Publisher	(-ExchangeType='Download')	or	executes	an	upload	followed	by	a
download	(-ExchangeType='Bidirectional').	If	the	number	of	changes	applied
must	be	controlled,	the	Merge	Agent	command	line	parameters	–
MaxUploadChanges	and	–MaxDownloadChanges	can	be	configured.	In	this
case,	the	data	at	the	Publisher	and	Subscribers	converges	only	when	all	changes
are	propagated.

At	the	destination	database,	updates	propagated	from	other	sites	are	merged	with
existing	values	according	to	conflict	detection	and	resolution	rules.	A	Merge
Agent	evaluates	the	arriving	and	current	data	values,	and	any	conflicts	between
new	and	old	values	are	resolved	automatically	based	on	the	default	resolver,	a
resolver	you	specified	when	creating	the	publication	or	a	custom	resolver.	Merge
replication	in	SQL	Server	2000	offers	many	out-of-the-box	custom	resolvers	that
will	help	you	implement	the	business	logic.

Changed	data	values	are	replicated	to	other	sites	and	converged	with	changes
made	at	those	sites	only	when	synchronization	occurs.	Synchronizations	can
occur	minutes,	days,	or	even	weeks	apart	and	are	defined	in	the	Merge	Agent
schedule.	Data	is	converged	and	all	sites	ultimately	end	up	with	the	same	data
values,	but	for	this	to	happen,	you	would	have	to	stop	all	updates	and	merge
between	sites	a	couple	of	times.

The	retention	period	for	subscriptions	specified	for	each	publication	controls
how	often	the	Publisher	and	Subscribers	should	synchronize.	If	subscriptions	do
not	synchronize	with	the	Publisher	within	the	retention	period,	they	are	marked
as	'expired'	and	will	need	to	be	reinitialized.	This	is	to	prevent	old	Subscriber

data	from	synchronizing	and	uploading	these	changes	to	the	Publisher.	The
default	retention	period	for	a	publication	is	14	days.	Because	the	Merge	Agent
cleans	up	the	publication	and	subscription	databases	based	on	this	value,	care
must	be	taken	to	configure	this	value	appropriate	to	the	application.

Note		The	merge	process	requires	an	entry	for	the	Publisher	in	the	sysservers
table	on	the	Subscriber.	If	the	entry	does	not	exist,	SQL	Server	will	attempt	to
add	this	entry.	If	the	login	used	by	the	Merge	Agent	does	not	have	access	to	add
the	entry	(such	as	db_owner	of	the	subscription	database),	an	error	will	be
returned.

Reinitializing	Subscriptions
Merge	replication	Subscribers	update	data	based	on	the	original	snapshot
provided	to	them	unless	you	mark	the	subscription	for	reinitialization.	When	you
mark	the	subscription	for	reinitialization,	the	next	time	the	Merge	Agent	runs,	it
will	apply	a	new	snapshot	to	the	Subscriber.	Optionally,	changes	made	at	the
Subscriber	can	be	uploaded	to	the	Publisher	before	the	snapshot	is	reapplied.
This	ensures	that	any	data	changes	at	the	Subscriber	are	not	lost	when	the
subscription	is	reinitialized.

If	you	created	a	subscription	and	indicated	no	initial	snapshot	was	to	be	applied
at	the	Subscriber	(the	@sync_type	parameter	set	to	nosync	in
sp_addmergesubscription	system	stored	procedure),	and	you	reinitialize	the
subscription,	the	snapshot	will	be	reapplied	to	the	Subscriber.	This	functionality
ensures	that	Subscribers	have	data	and	schema	identical	to	data	and	schema	at
the	Publisher.

If	you	reinitialize	all	subscriptions	to	a	merge	publication,	the	subscriptions
specified	with	no	initial	snapshot	synchronization	will	be	reinitialized	the	same
way	the	subscriptions	with	synchronization	type	of	'automatic'	are	reinitialized.
To	prevent	the	reapplication	of	the	snapshot	to	the	Subscriber,	drop	the
subscription	specified	with	no	initial	snapshot	synchronization,	and	then	recreate
it	after	reinitialization.

For	more	information	about	synchronization,	see	Synchronizing	Data.

The	Merge	Agent	is	a	component	of	SQL	Server	Agent	and	can	be	administered
directly	by	using	SQL	Server	Enterprise	Manager.	The	Snapshot	Agent	and
Merge	Agent	can	also	be	embedded	into	applications	by	using	Microsoft

ActiveX®	controls.	The	Snapshot	Agent	executes	on	the	Distributor.	The	Merge
Agent	usually	executes	on	the	Distributor	for	push	subscriptions	and	on
Subscribers	for	pull	subscriptions.	Remote	agent	activation	can	be	used	to
offload	agent	processing	to	another	server.	For	more	information,	see	Remote
Agent	Activation.

SQL	Server	can	validate	the	data	at	the	Subscriber	as	the	replication	process	is
occurring	so	that	you	can	ensure	that	data	updates	applied	at	the	Publisher	are
applied	at	Subscribers.	For	more	information,	see	Validating	Replicated	Data.

Validating	Permissions	for	a	Subscriber
SQL	Server	2000	provides	the	option	to	validate	permissions	for	a	Subscriber	to
upload	data	changes	to	a	Publisher.	This	verifies	that	the	Merge	Agent	login	has
the	permissions	to	perform	INSERT,	UPDATE,	and	DELETE	commands	on	the
publication	database.	Validating	permissions	requires	that	the	Merge	Agent	login
be	a	valid	user	with	the	appropriate	permissions	in	the	publication	database.

This	permissions	validation	is	in	addition	to	the	verification	that	the	logins	used
at	the	Subscriber	are	in	the	publication	access	list	(PAL).

Validating	permissions	for	a	Subscriber	can	be	set	using	the
@check_permissions	property	in	sp_addmergearticle	or	by	using	the
CheckPermissions	Property	in	SQL-DMO.	For	more	information,	see
CheckPermissions	Property.	You	can	specify	one	or	more	of	the	following
values	for	the	@check_permissions	parameter	in	sp_addmergearticle.

Value Description
0	(Default) Permissions	will	not	be	checked.
1 Check	permissions	at	the	Publisher	before	INSERTs

made	at	a	Subscriber	can	be	uploaded.
2 Check	permissions	at	the	Publisher	before	UPDATEs

made	at	a	Subscriber	can	be	uploaded.
4 Check	permissions	at	the	Publisher	before	DELETEs

made	at	a	Subscriber	can	be	uploaded.

Note		If	you	set	the	@check_permissions	parameter	after	the	initial	snapshot

JavaScript:hhobj_1.Click()

has	been	generated,	a	new	snapshot	must	be	generated	and	reapplied	at	the
Subscriber	in	order	for	permissions	to	be	validated	when	data	changes	are
merged.

Cleaning	Up	Merge	Replication
When	the	distribution	database	is	created,	SQL	Server	adds	the	following	tasks
automatically	to	SQL	Server	Agent	to	purge	the	data	no	longer	needed:

Subscription	cleanup	at	the	Publisher

History	cleanup	at	the	Distributor

These	tasks	help	replication	to	function	effectively	in	a	long-running
environment;	therefore,	administrators	should	plan	for	this	periodic	maintenance.
The	cleanup	tasks	delete	the	initial	snapshot	for	each	publication	and	remove
history	information	in	the	Msmerge_history	table.

Merge	Meta	Data	Cleanup
The	sp_mergecleanupmetadata	system	stored	procedure	allows	administrators
to	clean	up	meta	data	in	the	MSmerge_contents	and	MSmerge_tombstone
system	tables.	Although	these	tables	can	expand	infinitely,	in	some	cases	it
improves	merge	performance	to	clean	up	the	meta	data.	This	procedure	can	be
used	to	save	space	by	reducing	the	size	of	these	tables	at	the	Publisher	and
Subscribers.

Before	executing	this	stored	procedure,	merge	all	data	from	Subscribers	with	the
Publisher	to	load	all	the	Subscriber	data	changes	that	must	be	saved.	Snapshot
files	for	all	merge	publications	involved	at	all	levels	must	be	regenerated	after
executing	this	stored	procedure.	If	you	try	to	merge	without	running	the	snapshot
first,	you	will	receive	a	prompt	to	run	the	snapshot.

CAUTION		After	sp_mergecleanupmetadata	is	executed,	by	default,	all
subscriptions	at	the	Subscribers	of	publications	that	have	meta	data	stored	in	the
two	tables	are	marked	for	reinitialization,	changes	at	the	Subscriber	are	lost,	and
the	current	snapshot	is	marked	obsolete.

The	reinitialization	propagates	the	merge	topology	automatically.	The

administrator	does	not	have	to	reinitialize	all	subscriptions	at	every	republisher
manually.	When	using	SQL	Server	7.0	with	Service	Pack	2,	the	reinitialization
does	not	propagate	through	the	merge	topology	automatically.

By	default,	the	@reinitialize_subscriber	parameter	of
sp_mergecleanupmetadata	is	set	to	TRUE,	and	all	subscriptions	are	marked	for
reinitialization.	If	you	set	the	@reinitialize_subscriber	parameter	to	FALSE,
the	subscriptions	are	not	marked	for	reinitialization.	Setting	the	parameter	to
FALSE	should	be	used	with	caution	because	if	you	choose	not	to	have	the
subscriptions	reinitialized,	you	must	make	sure	that	data	at	the	Publisher	and
Subscribers	is	synchronized.

If	sp_mergecleanupmetadata	is	executed	with	the	@reinitialize_subscriber
parameter	set	to	TRUE,	the	snapshot	will	be	reapplied	at	the	Subscriber	even	if
the	subscription	was	created	without	an	initial	snapshot	applied	(for	example,	if
the	snapshot	data	and	schema	were	manually	applied	or	already	existed	at	the
Subscriber).	If	you	do	not	want	the	subscription	to	be	reinitialized	and	the
snapshot	reapplied,	the	subscription	must	be	dropped	and	re-created	as	a
subscription	with	no	initial	synchronization	after	ensuring	that	the	data	is	in
synchronization	between	Publisher	and	Subscriber.

If	you	want	to	run	sp_mergecleanupmetadata	without	the	subscriptions	being
marked	for	reinitialization:

1.	 Synchronize	all	Subscribers.

2.	 Stop	all	updates	to	the	publication	and	subscription	databases.

3.	 It	is	recommended	that	you	execute	a	merge	that	validates	the
Subscriber	data	with	the	Publisher	by	running	the	Merge	Agent	with
the	-Validate	command	line	option	at	each	Subscriber.

4.	 Execute	the	sp_mergecleanupmetadata	system	stored	procedure.
After	the	stored	procedure	has	executed,	you	can	allow	users	to	update
the	publication	and	subscription	databases	again.

Execute	sp_mergecleanupmetadata	after	all	merges,	including	continuous

mode	merges,	have	been	completed.	One	method	for	controlling	this	is	to
deactivate	the	publication	and	activate	it	after	the	merge	cleanup	has	been
completed.

For	example,	execute	code	similar	to	the	following	at	the	Publisher:

EXEC	central..sp_changemergepublication	'publicationname',	'status',	'inactive'

This	ensures	that	all	continuous	mode	merges	that	are	polling	for	the	publication
status	will	fail	if	the	publication	has	been	inactivated.	Execute	the	following
after	all	continuous	mode	merges	have	terminated:

EXEC	central..sp_mergecleanupmetadata	'publicationname',	
			@reinitialize_subscriber='false'
EXEC	central..sp_changemergepublication	'publicationname',	'status',	'active'

If	the	merge	cleanup	is	propagated	to	a	republisher	that	is	not	yet	inactive,an
error	message	is	returned	stating	that	cleanup	of	merge	meta	data	could	not	be
performed.

To	use	this	stored	procedure,	the	Publisher	and	all	Subscribers	must	be	running
Microsoft	SQL	Server	7.0	with	Service	Pack	2	or	later.	Only	members	of
sysadmin	and	db_owner	role	can	use	this	stored	procedure.	To	clean	up	merge
meta	data,	execute	the	sp_mergecleanupmetadata	system	stored	procedure.	If
you	specify	a	@tablename	parameter,	only	the	merge	meta	data	for	that	table
will	be	cleaned.	If	no	table	name	is	specified,	all	merge	meta	data	in
MSmerge_contents	and	MSmerge_tombstone	will	be	cleaned.

IMPORTANT		If	there	are	multiple	publications	on	a	database,	and	any	one	of	those
publications	uses	an	infinite	publication	retention	period	(@retention=0),
running	sp_mergecleanupmetadata	will	not	clean	up	the	merge	replication
change	tracking	meta	data	for	the	database.	For	this	reason,	use	infinite
publication	retention	with	caution.

See	Also

Planning	for	Merge	Replication

Replication	Options

Replication

Merge	Replication	Conflict	Detection	and	Resolution
When	Publisher	and	Subscribers	are	reconnected	and	synchronization	occurs,	the
Merge	Agent	detects	conflicts	and	then	determines	which	data	will	be	accepted
and	propagated	to	other	sites	based	on	a	resolver	specified	when	the	merge
publication	was	implemented.

In	merge	replication,	a	conflict	exists	when:

Changes	are	made	to	the	same	column(s)	in	the	same	row	(using
INSERT,	UPDATE	or	DELETE	statements)	in	more	than	one	copy,
with	column-level	conflict	tracking	in	effect.

Changes	are	made	to	a	row	in	both	replicas,	and	row-level	tracking	is	in
effect	(the	columns	affected	in	the	corresponding	rows	need	not	be	the
same).

Note		Although	a	Subscriber	is	merging	with	the	Publisher,	a	conflict	typically
occurs	between	updates	made	at	different	Subscribers	and	not	necessarily
updates	made	at	a	Subscriber	and	at	the	Publisher.

Conflict	Detection
The	Merge	Agent	detects	conflicts	through	lineage	values	in	the
MSmerge_contents	tables	for	the	database	of	the	article.	Each	entry	in
MSmerge_contents	contains	information	about	a	row	that	has	been	updated.
The	lineage	column	in	MSmerge_contents	represents	the	history	of	changes	in
an	updated	row;	its	value	is	updated	automatically	by	the	Merge	Agent	whenever
the	row	is	synchronized.

When	the	Merge	Agent	is	merging	changes,	it	examines	the	lineage	values	of	the
version	of	the	row	at	each	site.	The	agent	compares	the	lineage	value	for	the
updated	row	between	MSmerge_contents	tables	(MSmerge_contents	Publisher
table,	MSmerge_contents	Subscriber	table)	to	determine	whether	the	row	has
been	updated	in	multiple	locations.	If	the	row	has	not	been	updated	in	multiple
locations,	there	is	no	conflict	and	the	updated	value	is	merged.	If	the	row	has
been	updated	in	multiple	locations,	a	conflict	has	occurred,	and	the	conflict

resolution	process	is	invoked.

If	column-level	tracking	is	enabled,	the	Merge	Agent	also	needs	to	compare	the
COLV	values	in	the	MSmerge_contents	table	with	the	updated	rows.

Resolving	Conflicts
After	a	conflict	is	detected,	the	Merge	Agent	launches	the	selected	conflict
resolver.	The	winner	of	the	conflict	is	chosen	according	to	a	user-specified
priority	scheme,	a	first	wins	solution	(with	the	first	to	synchronize	winning	the
conflict),	or	a	custom	resolver	consisting	of	a	COM	object	or	stored	procedure.
Unless	the	interactive	conflict	resolver	is	used,	conflicts	are	resolved
immediately	after	the	resolver	executes.	The	losing	row	is	written	to	a	conflict
table	named	conflict_<PublicationName>_<ArticleName>_usertablename
(the	winning	row	is	applied	at	the	Publisher	and	Subscriber).

Conflict	Resolvers
Microsoft®	SQL	Server™	2000	allows	you	to	choose	how	to	resolve	merge
conflicts.	Options	available	include:

The	default	priority-based	conflict	resolver	supplied	with	SQL	Server
2000.	When	using	this	resolver,	you	can	assign	priority	values	to
individual	Subscribers	(global	subscriptions),	or	use	the	default	priority
assignments	(local	subscriptions),	where	the	Publisher	takes	ownership
of	the	changes	upon	data	synchronization.	These	changes	then	have
priority	over	changes	made	at	other	local	Subscribers	on	a	first-merge
basis.

A	custom	resolver,	which	implements	specific	data	or	business-decision
rules	to	resolve	the	conflict.	Custom	resolvers	can	be	built	either	as
stored	procedures	or	as	COM	objects	written	in	languages	such	as
Microsoft	Visual	C++®	or	Microsoft	Visual	Basic®.	A	set	of	out-of-
the-box	custom	conflict	resolvers	and	examples	of	custom	conflict
resolvers	are	supplied	with	SQL	Server	2000.	

Other	Microsoft	Resolvers	including	additive,	averaging,	DATETIME,

maximum,	merge	text,	minimum,	and	Subscriber	Always	Wins
resolvers.

In	addition,	SQL	Server	2000	supplies	an	Interactive	Resolver	that	you	can	use
in	conjunction	with	either	the	priority-based	resolver	or	a	custom	resolver.	When
performing	an	on-demand	synchronization,	the	Interactive	Resolver	displays
conflict	data	at	run-time,	and	lets	you	choose	which	data	to	use	to	resolve	the
conflict.	You	can	also	use	the	Conflict	Viewer,	which	has	a	similar	user	interface
to	the	Interactive	Resolver,	to	view	the	results	of	conflicts	that	have	been
resolved.	This	means	that	a	user	must	be	available	to	respond	to	the	Interactive
Resolver	when	a	merge	occurs.	This	would	therefore	not	be	appropriate	for	an
application	independent	of	human	interaction.

In	merge	replication,	conflict	resolution	takes	place	at	the	article	level	(property
of	an	article)	for	a	single	row	of	data	at	a	time.	For	publications	composed	of
several	articles,	you	can	have	different	conflict	resolvers	serving	different
articles,	or	the	same	conflict	resolver	serving	one	article,	several	articles,	or	all
the	articles	comprising	a	publication.

If	you	plan	to	use	the	default	priority-based	conflict	resolver,	you	do	not	have	to
set	the	resolver	property	of	an	article.	If	you	want	to	use	a	custom	resolver
instead	of	the	default	resolver,	you	must	set	the	resolver	property	(by	selecting
an	available	custom	resolver	on	the	Publisher)	for	the	article	that	will	use	it.	Any
specific	information	that	needs	to	be	passed	to	the	custom	resolver	can	also	be
specified	in	the	resolver	information	property.

Viewing	Conflicts
Replication	creates	several	tables	that	can	be	used	to	review	information	on
conflicts	and	their	resolution.	In	addition,	the	Conflict	Viewer	displays
conflicting	rows	and	can	be	used	as	a	conflict	reviewing	tool.

SQL	Server	2000	creates	a	conflict	table	for	each	table	in	a	merge	article.	For
example,	if	there	is	a	table	named	Customers	that	is	published	as	an	article
named	"Customer-Article"	in	the	"Northwind-Customers"	publication,	the
conflict	table	named	conflict_Northwind-Customers_Customers-Article	will
be	generated.	

Conflict	tables	have	the	same	structure	as	the	tables	on	which	they	are	based.	A

row	in	one	of	these	tables	consists	of	a	losing	version	of	a	conflict	row	(the
winning	version	of	the	row	residing	in	the	actual	user	table).	The
sysmergearticles	table	identifies	which	user	tables	have	conflict	tables,	and
provides	information	about	the	conflict	tables.	SQL	Server	also	provides	stored
procedures	that	allow	the	conflict	tables	to	be	queried.

Another	conflict	table	generated	during	merge	replication	setup	is
MSmerge_delete_conflicts.	The	table	is	a	log	for	deleted	conflicts.	It	contains
information	for	deleted	rows	that	conflicted	with	an	update	and	lost	the	conflict,
or	because	a	delete	was	undone	to	achieve	data	convergence.

Concepts	necessary	for	understanding	merge	conflict	resolution	include:

Row-level	tracking	versus	column-level	tracking,	which	specifies
whether	the	Merge	Agent	identifies	changes	to	any	values	in
corresponding	rows,	or	changes	to	the	same	columns	in	corresponding
rows	as	a	conflict.

Subscriber	type,	which	describes	whether	a	user	assigns	a	priority	value
to	a	Subscriber	(global),	or	whether	the	Subscriber	uses	the	priority
value	of	the	Publisher	when	the	changes	are	synchronized	(local).

Replication

Row-Level	Tracking	and	Column-Level	Tracking
Several	options	are	available	for	specifying	how	the	Merge	Agent	recognizes	a
conflict.	One	option	is	specifying	whether	conflicts	are	recognized	at	the	row
level	or	at	the	column	level.

When	conflicts	are	recognized	at	the	row	level,	changes	made	to	corresponding
rows	are	judged	a	conflict,	whether	or	not	the	changes	are	made	to	the	same
column.	For	example,	suppose	one	change	is	made	to	the	address	column	of	a
Publisher	row,	and	a	second	change	is	made	to	the	phone	number	column	(in	the
same	table)	of	the	corresponding	Subscriber	row.	With	row-level	tracking,	a
conflict	is	detected,	because	changes	were	made	to	both	rows.	With	column-
level	tracking,	no	conflict	is	detected,	because	changes	were	made	to	different
columns	in	the	rows.

Resolution	of	the	conflict	is	the	same,	regardless	of	which	tracking	option	is
used;	the	entire	row	of	data	is	overwritten	by	data	from	the	conflict	winner.	In
the	earlier	example,	suppose	the	phone	number	is	changed	at	both	the	Publisher
and	Subscriber,	and	the	address	is	changed	only	in	the	Subscriber	row.	If	the
Publisher	wins	the	conflict,	the	entire	Publisher	row	overwrites	the	Subscriber
row	for	both	row-level	tracking	and	column-level	tracking;	thus,	the	original
value	for	phone	number	in	the	Publisher	overwrites	the	changed	value	in	the
Subscriber.	If	you	are	using	column-level	tracking,	and	one	user	changes	the
address	for	a	particular	row,	and	another	user	changes	the	phone	number	for	the
same	row,	there	is	no	conflict	and	both	changes	will	be	accepted.

The	application	semantics	usually	determine	which	tracking	option	to	use.	For
example,	if	you	are	updating	customer	data	that	is	generally	entered	at	the	same
time,	such	as	an	address	and	phone	number,	row-level	tracking	should	be
chosen.	If	column-level	tracking	were	chosen	in	this	situation,	changes	to	the
customer	address	in	one	location	and	to	the	customer	phone	number	in	another
location	would	not	be	detected	as	a	conflict:	the	data	would	be	merged	on
synchronization	and	the	error	would	be	missed.	In	other	situations,	updating
individual	columns	from	different	sites	may	be	the	most	logical	choice.	For
example,	two	sites	may	have	access	to	different	types	of	statistical	information
on	a	customer,	such	as	income	level	and	total	dollar	amount	of	credit	card

purchases.	Selecting	column-level	tracking	ensures	that	both	sites	can	enter	the
statistical	data	for	different	columns	without	generating	unnecessary	conflicts.

Row-level	tracking	involves	less	tracking	overhead.	Column-level	tracking	may
result	in	fewer	conflicts	being	detected	by	the	Merge	Agent,	but	can	be	more
resource	intensive	in	terms	of	the	storage	needed	to	track	changes.	Column-level
tracking	may	generate	less	network	traffic	during	synchronization	because	only
the	changed	columns	are	transferred	to	the	partner	database	(the	publication
database	or	the	subscription	database).

To	set	row-	or	column-level	tracking	for	an	article

Replication

Subscriber	Types	and	Conflicts
When	you	create	a	subscription,	you	can	either	assign	it	a	priority	value	or	use
the	priority	value	of	the	Publisher.

A	subscription	with	an	assigned	priority	value	is	called	a	global	subscription;	a
subscription	using	the	priority	value	of	the	Publisher	is	called	a	local
subscription.	This	table	summarizes	the	main	differences	and	uses	of	each	type.

Type Priority	Value Used
Global Assigned	by	user When	you	want	different

Subscribers	to	have	different
priorities.

Local	(includes
anonymous)

0.00,	but	change
assumes	priority	value
of	Publisher	after
synchronization

When	you	want	all	Subscribers	to
have	the	same	priority,	and	the
first	Subscriber	to	merge	with	the
Publisher	to	win	the	conflict.

Anonymous	subscriptions	are
helpful	when	you	expect	to	have	a
large	number	of	Subscribers	and
you	do	not	want	to	keep	track	of
them	at	the	Publisher/Distributor.

When	you	change	a	row	in	a	global	subscription,	the	subscription	priority	is
stored	in	the	meta	data	for	the	change.	This	priority	value	travels	with	the
changed	row	as	it	merges	with	changes	at	other	Subscribers.	This	assures	that	a
change	made	by	a	higher	priority	subscription	does	not	lose	to	a	change	made	by
a	subscription	with	a	lower	priority.

If	a	row	is	changed	in	a	local	subscription,	no	priority	is	assigned	to	the	change
until	the	row	merges	with	the	other	changes	at	a	Publisher.	During	the	merge
process	at	the	Publisher,	the	changes	from	the	Subscriber	are	assigned	the
priority	of	the	Publisher	and	travel	with	that	priority	as	it	merges	with	changes	at
other	Publishers	and	Subscribers.	In	a	sense,	the	Publisher	assumes	authorship	of
the	change.

Global	subscriptions	provide	a	greater	number	of	options	and	allow	for	greater
sophistication	to	a	conflict	resolution	scheme	than	local	subscriptions.	Using
global	subscriptions	ensures	that	priority	values	are	preserved	throughout	the
enterprise.

Local	subscriptions	are	also	appropriate	(and	usually	required)	in	a	topology
with	several	levels,	where	Subscribers	are	leaf	nodes.	In	these	topologies,	any
nodes	that	republish	data	must	be	global	Subscribers;	local	Subscribers	can	be
used	only	at	the	leaf	nodes.

Example	of	Merge	Conflict	Resolution	Based	on	Subscriber	Type
and	Assigned	Priorities
To	understand	how	conflicts	resolve	according	to	assigned	priority	values	and
whether	a	subscription	is	global	or	local,	consider	the	following	example,	which
describes	a	series	of	updates	to	a	row	over	several	merge	synchronizations.

Here	are	the	initial	priority	values	for	four	sites	in	a	basic	merge	replication
topology	(one	Publisher,	two	global	Subscribers,	and	one	local	Subscriber).

Site Type Priority	Value
A Publisher 100.00
B Global	Subscriber 75.00	(assigned)
C Global	Subscriber 50.00	(assigned)
D Local	Subscriber 0.00	(default)

Phase	1:	Initial	Values
Initially,	Site	A	(the	Publisher)	creates	version	one	of	the	row	containing
value='Nebraska',	which	is	replicated	to	Sites	B,	C,	and	D	during	the	next	merge
synchronization.	After	synchronization,	here	are	the	values	for	the	row.

Site Priority	Value Row	Value
A	(Publisher) 100.00 Nebraska
B	(Global	Subscriber) 75.00 Nebraska
C	(Global	Subscriber) 50.00 Nebraska

D	(Local	Subscriber) 0.00 Nebraska

Phase	2:	Publisher	and	Global	Subscriber	Both	Update	Row
Site	A	updates	the	row	value	to	Texas	and	site	B	updates	the	row	value	to	New
Jersey.	When	the	next	merge	synchronization	occurs,	there	is	a	conflict	between
sites	A	and	B.	Site	A	wins	the	conflict	(the	Publisher	always	wins	an	update
conflict,	even	if	the	priority	values	are	the	same	by	default,	but	there	is	also	the
option	that	Subscriber	wins	the	conflict).	The	conflict	winner	value	from	site	A
is	propagated	to	sites	B,	C,	and	D.

Site Priority	Value Row	Value
A	(Publisher) 100.00 Texas
B	(Global	Subscriber) 75.00 Texas
C	(Global	Subscriber) 50.00 Texas
D	(Local	Subscriber) 0.00 Texas

Phase	3:	Multiple	Changes	Made	to	the	Same	Row
Suppose	site	C	updates	the	row	(changes	it	to	North	Carolina)	and	synchronizes
with	the	Publisher.	This	is	not	a	conflict	because	C	already	successfully	merged
the	last	update	from	A	(with	the	row	value='Texas'	successfully	merged).	Then
suppose	Site	B	updates	the	row	(changes	it	to	Idaho).

Site Priority	Value Row	Value
A	(Publisher) 100.00 North	Carolina
B	(Global	Subscriber) 75.00 Idaho
C	(Global	Subscriber) 50.00 North	Carolina
D	(Local	Subscriber) 0.00 Texas

When	site	B	synchronizes	with	the	Publisher,	there	is	an	update	conflict.
Because	both	B	and	C	are	global	subscriptions	and	the	priority	of	B	is	greater
than	that	of	C,	site	B	wins	the	conflict.	After	the	other	two	sites	are	also	merged,

the	value	of	B	is	propagated	to	the	other	Subscribers.

Site Priority	Value Row	Value
A	(Publisher) 100.00 Idaho
B	(Global	Subscriber) 75.00 Idaho
C	(Global	Subscriber) 50.00 Idaho
D	(Local	Subscriber) 0.00 Idaho

Phase	4:	Local	and	Global	Subscribers	Both	Update	Row
Suppose	site	D	updates	the	row	(changes	it	to	New	Mexico)	and	synchronizes
with	the	Publisher.	Then	suppose	Site	B	updates	the	row	(changes	it	to
California).

Site Priority	Value Row	Value
A	(Publisher) 100.00 New	Mexico
B	(Global	Subscriber) 75.00 California
C	(Global	Subscriber) 50.00 Idaho
D	(Local	Subscriber) 0.00 New	Mexico

When	site	B	synchronizes	with	the	Publisher,	there	is	an	update	conflict.	Unlike
the	previous	example,	because	D	is	a	local	Subscriber,	it	assumes	the	priority
value	of	the	Publisher	(site	A)	upon	synchronization.	Because	the	priority	of	A	is
greater	than	B,	B	loses	the	conflict;	the	value	initially	entered	into	D	wins.	(Had
the	global	Subscriber	B	synchronized	with	A	before	the	local	Subscriber	D	did,
site	B	would	have	won	the	conflict.)	Site	D	winning	the	conflict	relies	on	the
Publisher	not	having	made	a	change	or	received	another	change	since	the	version
of	the	row	updated	at	Site	D	was	last	synchronized.	If	any	global	Subscriber	or
any	other	local	Subscriber	synchronizes	first,	the	rule	of	highest	priority	or	first
in	to	the	Publisher	wins	is	followed.)

The	final	values	after	all	the	sites	are	synchronized	are	shown	here.

Site Priority	Value Row	Value

A	(Publisher) 100.00 New	Mexico
B	(Global	Subscriber) 75.00 New	Mexico
C	(Global	Subscriber) 50.00 New	Mexico
D	(Local	Subscriber) 0.00 New	Mexico

Synchronization	order	and	priority	value	determine	the	outcome	of	conflicts
when	mixing	global	and	local	Subscribers	at	the	same	level	in	your	topology.
This	last	set	of	updates	illustrates	why	caution	must	be	exercised.	Although	the
local	Subscriber	had	the	lowest	priority	value	of	the	three	Subscribers,	it	won	the
conflict	because	it	synchronized	with	the	Publisher	(thus	assuming	the	Publisher
priority	value	of	100.00)	first.	Had	site	C	(global	Subscriber	with	a	priority	value
of	50.00)	entered	New	Mexico	instead	of	site	D,	site	B	(global	Subscriber	with	a
priority	value	of	75.00)	would	have	won	the	conflict,	and	the	result	would	have
been	California.

Replication

Default	Resolver	and	Custom	Resolvers
When	you	create	a	merge	publication,	the	conflict	resolver	is	set	to	the	default
resolver	for	all	articles	in	the	publication	(if	you	do	not	plan	on	using	a	custom
resolver	with	an	article,	you	do	not	need	to	choose	a	resolver).	For	each	article,
you	can	use	the	default	merge	resolver	or	select	an	available	custom	resolver.
After	an	article	in	a	publication	is	assigned	a	resolver,	that	association	must	be
maintained	across	all	publications	(for	when	the	same	table	is	in	multiple
publications).	You	cannot	assign	different	resolvers	to	the	same	article	across
different	publications.

Default	Resolver
When	you	create	a	push	or	pull	subscription,	you	specify	the	behavior	of	the
default	resolver	by	choosing	to	make	the	subscription	global	or	local.

By	default,	SQL	Server	defines	a	subscription	as	local,	with	a	priority	value	of
0.00.	On	the	Set	Subscription	Priority	page	in	the	Push	Subscription	Wizard	or
Pull	Subscription	Wizard,	this	selection	corresponds	to	the	option	for	using	the
priority	value	of	the	Publisher	when	a	conflict	occurs.	If	this	is	retained	for	all
Subscribers,	the	result	is	that	the	Publisher	updates	win	the	conflict	and	between
Subscribers	that	have	conflicts,	the	first	Subscriber	to	synchronize,	wins	the
conflict.	For	the	default	merge	resolver,	the	Publisher	always	wins	a	conflict;
however,	a	custom	resolver	can	override	this	rule.

You	can	also	assign	a	specific	priority	value	to	a	subscription.	On	the	Set
Subscription	Priority	page	in	either	the	Push	Subscription	Wizard	or	the	Pull
Subscription	Wizard,	this	selection	corresponds	to	the	option	for	assigning	a
specific	priority	value	from	0.00	through	99.99	to	the	Subscriber.	When	you
make	this	selection	and	specify	a	priority	greater	than	0.0,	you	define	a	global
subscription.

If	both	global	and	local	Subscribers	are	connected	to	the	Publisher,	and	changes
from	a	global	Subscriber	with	a	priority	value	greater	than	0.00	are	synchronized
first,	subsequent	conflicting	changes	from	local	Subscribers	are	rejected.	The
priority	value	for	the	global	Subscriber	is	greater	than	the	priority	value	of	any

local	Subscriber	(which	would	be	0	prior	to	merge	synchronization).	If	a	local
Subscriber	synchronizes	with	the	Publisher	first,	subsequent	conflicting	changes
from	global	Subscribers	or	other	local	Subscribers	will	be	rejected.	The	priority
value	for	the	local	Subscriber	that	was	first	synchronized	with	the	Publisher
assumes	the	priority	value	of	the	Publisher,	which	always	wins	a	conflict;
however,	a	custom	merge	resolver	can	override	these	rules.

Custom	Resolvers
Merge	replication	allows	you	to	use	a	variety	of	custom	resolvers	to	deal	with
conflict	situations.	Custom	resolvers	are	always	executed	where	the	Merge
Agent	runs.	You	can	select	from	a	number	of	out-of-the-box	custom	resolvers
supplied	with	SQL	Server,	write	a	custom	stored	procedure	resolver,	or	write	a
COM	object	resolver	in	a	language	such	as	Microsoft	Visual	C++®	or	Microsoft
Visual	Basic®.	If	you	plan	to	use	a	COM	object	resolver,	make	sure	the	DLL	is
registered	at	the	computer	where	the	Merge	Agent	runs.	For	a	push	subscription,
this	is	the	Distributor,	and	for	a	pull	subscription,	it	is	the	Subscriber.	For
applications	that	use	the	Merge	ActiveX®	Control,	the	resolver	should	be
registered	at	the	computer	where	the	application	executes.

Custom	resolvers	can	be	loaded	in	one	of	the	following	ways:

By	selecting	the	custom	resolver	you	want	in	the	Create	Publication
Wizard.	This	option	is	found	on	the	Resolver	tab,	in	the	Properties
dialog	box.

If	you	are	using	stored	procedures	to	set	up	and	configure	merge
replication,	the	@resolver_info	parameter	of	the	sp_addmergearticle
system	stored	procedure	contains	the	name	of	the	custom	conflict
resolver	to	use	with	the	article.

To	choose	a	resolver

Replication

COM	Custom	Resolvers
A	COM	custom	conflict	resolver	is	a	dynamic-link	library	(DLL)	that
implements	the	ICustomResolver	interface,	its	methods	and	properties,	and
other	supporting	interfaces	and	type	definitions	designed	specially	for	conflict
resolution.

These	interfaces	and	type	definitions	are	defined	in	Microsoft®	Visual	C++®
header	files	(Sqlres.h	and	Sqlresid.h),	supplied	with	the	merge	conflict	resolver
samples	in	\Microsoft	SQL	Server\Tools\DevTools\Samples\Sqlrepl	(available
through	a	custom	installation	of	Microsoft	SQL	Server™	2000).	If	you	are	a
Visual	C++	developer,	you	can	view	these	samples	to	get	an	idea	of	how	to	build
a	custom	COM	resolver	in	Visual	C++.

Because	the	conflict	resolver	interfaces	are	COM-based	and	therefore	language-
neutral,	it	is	possible	to	create	custom	COM	resolvers	in	other	languages	than
C++.	To	build	a	custom	COM	resolver	in	Visual	Basic®,	you	can	use	the	type
library	that	is	provided	in	the	replrec.dll.

Before	writing	a	custom	COM	resolver,	you	need	to	decide:

The	types	of	row	changes	you	want	to	resolve,	such	as	updates,	inserts,
and	deletes,	and	for	the	upload	of	merge	changes,	the	download,	or
both.	You	can	specify	one	type	of	change,	all	changes,	or	any
combination.	The	default	merge	conflict	resolver	handles	any	conflicts
not	covered	by	a	custom	resolver.

Whether	to	use	column	tracking	when	resolving	the	conflict.	No	column
tracking	means	that	changes	are	tracked	at	the	row	level.	Changes	to
any	columns	in	both	rows	are	flagged	as	a	conflict.	To	resolve	the
conflict,	the	priority	winner	overwrites	the	entire	row	of	data.

When	column-level	tracking	is	on,	only	data	in	those	columns	where	a	conflict
exists	are	flagged	as	a	conflict,	otherwise	the	data	is	merged.	However,	conflicts
are	resolved	in	the	same	way	as	row-level	tracking:	the	priority	winner
overwrites	the	entire	row	of	data	(but	the	data	can	be	a	mix	of	values	from	the

Publisher,	Subscribers,	or	some	altered	values	that	were	from	neither	Publisher
nor	Subscribers).

When	using	a	custom	COM	resolver	with	merge	replication	on	a	cluster,	you
must	register	the	custom	resolver	on	both	nodes	of	the	cluster	regardless	of
whether	the	configuration	is	active-active	or	active-passive.	This	is	required	to
ensure	that	the	custom	resolver	will	be	able	to	properly	load	the	reconcile
following	a	failover.

Replication

Specifying	a	Custom	Resolver
A	custom	resolver	can	be	specified	from	the	Create	Publication	Wizard	or	with
replication	stored	procedures.

Using	the	Create	Publication	Wizard
When	a	merge	replication	is	created	with	the	Create	Publication	Wizard,	custom
resolvers	can	be	specified	on	the	Specify	Articles	page.	When	a	table	is	selected
for	publication,	a	properties	(...)	button	is	presented,	which	when	clicked,
displays	the	Properties	dialog	box	for	the	article	(table).

On	the	General	tab,	select	whether	changes	to	the	same	row	or	to	the	same
column	are	regarded	as	conflicts.	When	changes	to	the	same	column	are
conflicts,	changes	to	different	columns	in	the	same	row	are	merged.

On	the	Resolver	tab,	select	whether	to	use	the	default	resolver,	or	a	custom
resolver,	and	then	select	one	in	the	list.	If	the	resolver	references	a	specific
column,	enter	its	name	in	the	Information	for	the	custom	resolver	dialog	box.

Using	Replication	Stored	Procedures
When	a	merge	replication	is	created	with	replication	stored	procedures,	custom
resolvers	are	specified	from	sp_addmergearticle	or	sp_changemergearticle.

In	sp_addmergearticle,	if	a	custom	resolver	is	to	be	used,	the	resolver	name
from	the	table	in	the	Microsoft	Resolver	Descriptions	topic	is	entered	with	the
@article_resolver	parameter.	The	name	must	be	typed	exactly	as	it	appears	in
the	table.	If	a	column	name	is	required,	it	is	entered	with	the	@resolver_info
parameter.

This	example	specifies	that	the	Microsoft	SQL	Server	Averaging	Conflict
Resolver	be	used	with	article	ProductsArticle	in	publication
ProductsPublication	for	source	table	Products	to	calculate	the	average	of	the
UnitPrice	column	when	conflicts	occur.

exec	@ret	=	sp_addmergearticle	@publication='ProductsCatalog',	

												@article='ProductsArticle',	@source_object='Products',	
												@article_resolver='Averaging	Conflict	Resolver',	
												@resolver_info='UnitPrice'

sp_changemergearticle	is	used	to	change	one	property	of	an	existing	merge
article.	The	@property	parameter	specifies	the	property	to	be	changed,	the
@value	parameter	specifies	the	new	value	for	the	property.

This	example	changes	the	article	ProductsArticle	in	publication
ProductsPublication	to	use	the	Microsoft	SQL	Server	Additive	Conflict
Resolver	to	calculate	the	sum	of	the	UnitsOnOrder	column	when	conflicts
occur.

exec	@ret	=	sp_changemergearticle	@publication='ProductsCatalog',	
												@article='ProductsArticle',	@property='article_resolver',	
												@value='Additive	Conflict	Resolver'
exec	@ret	=	sp_changemergearticle	
												@publication='ProductsCatalog',	@article='ProductsArticle',
												@property='resolver_info',	@value='UnitsOnOrder'

See	Also

Microsoft	Resolver	Descriptions

Replication

Interactive	Resolver
Microsoft	SQL	Server	replication	provides	an	interactive	resolver,	which	allows
you	to	resolve	conflicts	manually	during	on-demand	synchronization.	Activated
at	run-time,	the	Interactive	Resolver	displays	data	for	each	conflicting	row,	and
provides	options	for	viewing	and	editing	the	conflict	data,	and	resolving	each
conflict	individually.

Interactive	Resolver	and	the	Conflict	Viewer
The	Interactive	Resolver	resembles	the	Conflict	Viewer.	However,	the	Conflict
Viewer	displays	the	results	of	conflicts	that	are	already	resolved	after	merge
synchronization,	and	the	Interactive	Resolver	displays	each	conflict	prior	to
resolution,	allowing	you	to	determine	the	outcome	of	each	conflict	during	merge
synchronization.	Someone	must	be	available	to	monitor	the	Interactive	Resolver
when	a	conflict	occurs.

Article	Resolvers	and	the	Interactive	Resolver
Conflict	resolvers	(either	the	Microsoft®	SQL	Server™	2000	default	resolver	or
a	custom	resolver)	are	assigned	to	specific	articles	when	a	publication	is	created,
and	use	a	set	of	predetermined	rules	to	determine	which	set	of	data	should	be
used	when	conflicting	row	data	is	entered.

The	Interactive	Resolver	is	not	a	separate	conflict	resolver	with	rules	for
determining	conflict	winners	and	losers,	but	a	tool	used	in	conjunction	with	the
default	and	custom	merge	resolvers.	The	article	resolver	still	determines	the
winning	and	losing	row,	but	the	Interactive	Resolver	allows	user	intervention	to
accept,	reject,	or	modify	the	results.	Use	the	Interactive	Resolver	to	review
individual	conflicts	occurring	during	synchronization,	edit	the	conflict	data,	or
make	individual	determinations	of	conflict	winners	and	losers.	In	other	words,
an	Interactive	Resolver	can	be	used	in	conjunction	with	the	default	or	custom
resolvers.

The	option	to	allow	the	Interactive	Resolver	to	be	used	on	a	subscription	is
enabled	as	a	publication	property.	However,	invoking	the	Interactive	Resolver

when	a	conflict	is	detected	requires	setting	this	option	as	a	subscription	property
(in	the	Create	Pull	Subscription	Wizard,	using	replication	stored	procedures,	or
using	ActiveX®	controls).	After	these	properties	are	set	for	both	the	publication
and	subscription,	the	Interactive	Resolver	is	used	when	a	conflict	is	detected
during	merge	synchronization.

Note		Because	user	intervention	is	required,	the	Interactive	Resolver	should	be
used	only	during	an	on-demand	synchronization,	never	during	a	scheduled
synchronization.

To	enable	activation	of	the	Interactive	Resolver

Replication

Custom	Stored	Procedure	Conflict	Resolver
You	can	create	custom	resolvers	consisting	of	special	queries	and	code	to
examine	conflicts	and	override	the	default	way	in	which	conflicts	are	resolved
by	Microsoft®	SQL	Server™	2000.	You	can	override	the	default	conflict
resolver	by	substituting	your	own	program	with	the	same	name.	For	example,
suppose	multiple	sites	participate	in	monitoring	a	chemical	process	and	each
records	the	low	and	high	temperatures	achieved	in	a	test.	Rather	than	use	a
priority	or	first	wins	solution,	such	an	application	might	want	to	accept	the
lowest	low	and	the	highest	high	value.

You	can	use	Transact-SQL	to	build	your	custom	conflict	resolver	as	a	stored
procedure	at	each	Publisher.	Custom	conflict	resolvers	are	always	executed	at
the	Publisher.	The	stored	procedure	should	accept	the	following	required
parameters.

Parameter Data	Type Description
@tableowner Sysname Name	of	the	owner	of	the	table	for

which	a	conflict	is	being	resolved	-
this	is	the	owner	for	the	table	in	the
publication	database.

@tablename sysname Name	of	the	table	for	which	a
conflict	is	being	resolved.

@rowguid uniqueidentifier Unique	identifier	for	the	row	having
the	conflict.

@subscriber sysname Name	of	the	server	from	where	a
conflicting	change	is	being
propagated.

@subscriber_db sysname Name	of	the	database	from	where
conflicting	change	is	being
propagated.

@log_conflict
OUTPUT

int Whether	the	merge	process	should
log	a	conflict	for	later	resolution:

0	=	Do	not	log	the	conflict

1	=	Subscriber	is	the	conflict	loser
2	=	Publisher	is	the	conflict	loser

@conflict_message
OUTPUT

nvarchar(512) Message	to	be	given	about	the
resolution	if	the	conflict	is	logged.

The	stored	procedure	uses	these	parameters	to	examine	the	values	contained	in
the	row	at	both	the	Publisher	and	Subscriber.	The	stored	procedure	can	also
examine	any	additional	information	you	specify	and	manipulate	the	values	to
determine	what	column	values	the	resolved	row	should	have.	The	stored
procedure	then	returns	a	single	row	result	set	that	is	identical	in	structure	to	the
base	table	and	contains	the	data	values	for	the	winning	version	of	the	row.	The
stored	procedure	can	potentially	use	distributed	queries	or	other	mechanisms	to
query	the	value	from	the	remote	database.

The	stored	procedure	must	be	located	either	in	the	published	database	at	the
Publisher	or	in	the	master	database	and	marked	as	a	system	object.	Execute
permission	should	be	granted	to	public	or	to	a	list	of	all	Subscribers.

Note		SQL	Server	stored	procedure	resolvers	will	be	invoked	only	to	handle
update	conflicts.	They	cannot	be	used	to	handle	other	types	of	conflicts	such	as
insert	failures	due	to	PRIMARY	KEY	violations	or	unique	index	constraint
violations.

After	the	stored	procedure	is	created,	you	must	configure	an	article	to	use	that
stored	procedure	as	its	custom	resolver.	You	can	specify	a	custom	resolver	for	an
article	by	executing	sp_addmergearticle	to	associate	the	stored	procedure	with
the	article.	You	must	set	the	@article_resolver	parameter	to	Microsoft
SQLServer	Stored	Procedure	and	set	the	@resolver_info	parameter	to	the
name	of	stored	procedure.

For	more	information,	see	Developing	Replication	Merge	Conflict	Resolvers
Through	a	Custom	Resolver.

JavaScript:hhobj_1.Click()

Replication

Other	Microsoft	Resolvers
When	conflicts	occur	during	the	merge	process,	a	conflict	resolver	must
determine	how	the	conflict	is	resolved.	Microsoft®	SQL	Server™	2000	includes
several	custom	COM-component	resolvers	that	can	be	used	for	this	purpose,	in
addition	to	the	default	priority-based	resolver	and	the	stored	procedure	resolver:

Microsoft	SQL	Server	Additive	Conflict	Resolver

Microsoft	SQL	Server	Averaging	Conflict	Resolver

Microsoft	SQL	Server	DATETIME	(Earlier	Wins)	Conflict	Resolver

Microsoft	SQL	Server	DATETIME	(Later	Wins)	Conflict	Resolver

Microsoft	SQL	Server	Maximum	Conflict	Resolver

Microsoft	SQL	Server	Merge	Text	Conflict	Resolver

Microsoft	SQL	Server	Minimum	Conflict	Resolver

Microsoft	SQL	Server	Subscriber	Always	Wins	Conflict	Resolver

The	resolvers	are	installed	during	the	installation	process	for	SQL	Server	2000.
The	sp_enumcustomresolvers	stored	procedure	can	be	used	to	view	all	the
conflict	resolvers	registered	on	that	computer.	In	SQL	Query	Analyzer,	run:

exec	sp_enumcustomresolvers

This	displays	the	description	and	globally	unique	identifier	(GUID)	for	each
resolver	in	a	separate	result	set.

The	resolver	must	be	registered	on	the	computer	from	which	the	Merge	Agent	is
invoked.	For	push	subscriptions,	the	resolver	is	registered	at	the	Distributor.	For
pull	subscriptions,	the	resolver	should	be	registered	at	the	Subscriber.

Replication

Microsoft	Resolver	Descriptions
All	of	the	resolvers	in	Microsoft®	SQL	Server™	2000	handle	update	conflicts,
and	where	indicated,	they	also	handle	insert	and	delete	conflicts.	They	all	handle
column	tracking;	most	also	handle	row	tracking.	These	and	all	other	custom
conflict	resolvers	declare	the	types	of	conflict	they	can	handle,	and	the	merge
replication	agent	uses	the	default	resolver	for	all	other	conflict	types.

The	following	table	describes	the	attributes	of	the	specific	resolvers.	For
information	about	how	to	specify	the	required	input,	see	Specifying	a	Custom
Resolver.

Name Required	Input Description Comments
Microsoft	SQL
Server
Additive
Conflict
Resolver

Name	of	the
column	to	be
summed.	It	must
have	an	arithmetic
data	type	(such	as
int,	smallint,
numeric,	and	do
on.).

Conflict	winner
determined	from	priority
value.	Specified	column
values	set	to	sum	of	source
and	destination	column
values.	If	one	is	set	to
NULL,	they	are	set	to	the
value	of	the	other	column.

Supports
update
conflicts,
column
tracking
only.

Microsoft	SQL
Server
Averaging
Conflict
Resolver

Name	of	the
column	to	be
averaged.	It	must
have	an	arithmetic
data	type	(such	as
int,	smallint,
numeric,	and	so
on.).

Conflict	winner
determined	from	priority
value.	Resulting	column
values	set	to	average	of
source	and	destination
column	values.	If	one	is
set	to	NULL,	they	are	set
to	the	value	of	the	other
column.

Supports
update
conflicts,
column
tracking
only.

Microsoft	SQL
Server
DATETIME
(Earlier	Wins)
Conflict

Name	of	the
column	to	be	used
to	determine	the
conflict	winner.	It
must	have	a

Column	with	the	earlier
datetime	value	determines
the	conflict	winner.	If	one
is	set	to	NULL,	the	row
containing	the	other	is	the

Supports
update
conflicts,
row,	and
column

Resolver DATETIME	data
type.

winner. tracking.
The	column
values	are
compared
directly	and
an
adjustment
is	not	made
for	different
time	zones.

Microsoft	SQL
Server
DATETIME
(Later	Wins)
Conflict
Resolver

Name	of	the
column	to	be	used
to	determine	the
conflict	winner.	It
must	have
DATETIME	data
type.

Column	with	the	later
datetime	value	determines
the	conflict	winner.	If	one
is	set	to	NULL,	the	row
containing	the	other	is	the
winner.

Supports
update
conflicts,
row,	and
column
tracking.

Microsoft	SQL
Server
Maximum
Conflict
Resolver

Name	of	the
column	to	be	used
to	determine	the
conflict	winner.	It
must	have	an
arithmetic	data
type	(such	as	int,
smallint,	numeric,
and	so	on.).

Column	with	the	larger
numeric	value	determines
the	conflict	winner.	If	one
is	set	to	NULL,	the	row
containing	the	other	is	the
winner.

Supports
row	and
column
tracking.

Microsoft	SQL
Server	Merge
Text	Conflict
Resolver

No	inputs.	Text
columns	in
conflict	are
merged.

Conflict	winner
determined	from	priority
value.	Text	columns	in
conflict	are	set	to	merged
value	consisting	of
common	prefix	followed
by	unique	part	of	source,
newline	character
(linefeed),	and	then	unique
part	of	destination.

Supports
update
conflicts,
column
tracking
only.

Microsoft	SQL
Server
Minimum
Conflict
Resolver

Name	of	the
column	to	be	used
to	determine	the
conflict	winner.	It
must	have	a
arithmetic	data
type	(such	as	int,
smallint,	numeric,
and	so	on.).

Column	with	the	smaller
numeric	value	determines
the	conflict	winner.	If	one
is	set	to	NULL,	the	row
containing	the	other	is	the
winner.

Supports
update
conflicts,
row,	and
column
tracking.

Microsoft	SQL
Server
Subscriber
Always	Wins
Conflict
Resolver

No	inputs.	No
data	type
restrictions.

Subscriber,	regardless	of
whether	it	is	the	source	or
destination,	is	the	winner.

Supports	all
conflict
types.

Replication

Choosing	a	Resolver
When	choosing	a	resolver,	you	need	to	consider	the	importance	of	conflict
resolution	in	your	replication	application	and	whether	you	will	need	to	build	a
custom	resolver.

If	your	data	is	partitioned	without	multiple	users	writing	to	the	same	partitions,
and	your	replication	topology	is	relatively	basic	(one	Publisher	and	a	few
Subscribers),	conflicts	should	be	rare	or	nonexistent.	In	these	environments,	you
may	not	need	a	complex	conflict	resolution	strategy.	A	strategy	using	the	default
settings	for	conflict	resolution,	using	local	Subscribers	and	a	first	change	in	wins
policy,	is	recommended.

Another	factor	is	determining	whether	to	build	a	custom	resolver	or	use	the
default	merge	conflict	resolver.	Using	a	custom	resolver	is	the	recommended
option	if	your	business	needs	require	a	more	finely	tuned	solution	than	is
available	with	the	default	resolver,	and	the	table	associated	with	the	custom
resolver	is	relatively	stable,	or	updating	the	custom	resolver	is	not	an	issue.

Choosing	whether	to	use	the	default	resolver,	or	a	custom	resolver	and	the	logic
used	in	a	custom	resolver,	should	be	based	on	the	data.	For	example,	suppose	the
employees	entering	customer-ranking	data	into	a	set	of	nonpartitioned	replicas
span	various	job	categories	(branch	managers,	line	managers,	sales	staff),	and
job	category	determines	whose	data	should	be	given	priority.	In	this	case,	a
custom	resolver	can	be	built	that	uses	job	category	data	from	the	article	to
determine	the	priority	winner	when	a	conflict	occurs.

Custom	resolvers	are	usually	specific	to	a	particular	table;	if	the	table	used	in	the
article	is	modified	(for	example,	renaming	the	column	name	that	is	used	in
conflict	resolution),	the	custom	resolver	may	have	to	be	modified	and
recompiled.

If	conflicts	are	likely	to	occur	with	some	frequency,	here	are	the	most	important
decisions	you	will	need	to	consider	when	implementing	a	conflict	resolution
strategy.

Conflict	Resolution	Issue Recommendation

Different	categories	of	users
require	different	priority	values.

Use	the	default	merge	resolver
and	create	global	Subscribers
with	different	priority	values.

Or

Use	a	custom	resolver	that
recognizes	an	authority	value
column	in	the	article	to	help
resolve	a	conflict.

First	change	in	wins	conflict
solution	wanted.

Use	the	default	merge	resolver	and	create
local	Subscribers.

Multiple	users	changing	the
same	data	row	acceptable,	as
long	as	no	conflicting	changes
made	to	the	same	column.

Use	either	the	default	merge	resolver	or	a
custom	resolver	with	column-level
tracking	enabled.

Flag	multiple	changes	to	any
value	in	a	row	as	a	conflict.

Use	either	the	default	merge	resolver	or	a
custom	resolver	with	row-level	tracking.

Conflict	outcome	data	needs	to
be	different	from	original
conflict	data.

Use	a	custom	resolver	that	calculates	new
values.	Alternatively,	optionally	use	the
stored	procedure	resolver	and	write	a
custom	procedure	that	returns	a	result	set
that	contains	the	new	data.

Replication

Replication	Tools
Microsoft®	SQL	Server™	2000	provides	several	methods	for	implementing	and
administering	replication,	including	SQL	Server	Enterprise	Manager,
programming	interfaces,	and	other	Microsoft	Windows®	components.

SQL	Server	Enterprise	Manager	includes	a	graphical	organization	of	replication
objects,	several	wizards,	and	dialog	boxes	you	can	use	to	simplify	the
configuration	and	administration	of	replication.	SQL	Server	Enterprise	Manager
allows	you	to	view	and	modify	the	properties	of	replication	configuration,	and
monitor	and	troubleshoot	replication	activity.

You	can	also	implement,	monitor,	and	maintain	replication	using	programming
interfaces	such	as	Microsoft	ActiveX®	controls	for	replication,	SQL-DMO,	and
scripting	of	Transact-SQL	system	stored	procedures.

Components	such	as	Windows	Synchronization	Manager	and	Active
Directory™	Services	enable	you	to	synchronize	data,	subscribe	to	publications,
and	organize	and	access	replication	objects	from	within	Windows	applications.

Replication

Replication	and	SQL	Server	Enterprise	Manager
You	can	use	SQL	Server	Enterprise	Manager	to	implement,	administer,	and
monitor	a	complete	replication	environment	across	your	enterprise.

SQL	Server	Enterprise	Manager	provides	the	Replication	folder	as	a	central
location	to	organize	and	administer	your	publications	and	subscriptions.	If	you
have	heterogeneous	publishing	services	from	Microsoft	or	other	companies
installed,	the	Heterogeneous	Replication	folder	will	appear	under	the	Replication
folder	as	a	location	to	manage	publications	and	subscriptions	based	on
heterogeneous	data	sources.

Replication	Monitor
Through	Replication	Monitor,	you	can	view	and	manage	replication	agents
responsible	for	various	replication	tasks.	Replication	Monitor	appears	as	a	node
below	the	Replication	folder	in	SQL	Server	Enterprise	Manager	on	the
Distributor	after	you	have	configured	publishing	and	distribution.

For	example,	using	Replication	Monitor,	you	can	set	up	replication	so	that	the
Publisher	log	is	read	continuously,	transactions	are	distributed	to	Subscribers
every	ten	minutes,	and	initial	snapshots	are	generated	every	night	at	midnight.
You	can	also	execute	replication	agents	on	demand.

Replication	Monitor	provides	a	way	to	set	alerts	on	replication	events.	When	the
event	occurs,	Replication	Monitor	responds	automatically,	either	by	executing	a
task	that	you	have	defined	or	by	sending	an	e-mail	or	a	pager	message	to	a
specified	individual.

Events	in	the	task	history	can	also	be	written	to	the	Microsoft	Windows	NT®	4.0
or	Windows	2000	application	log	if	the	task	is	set	to	use	Windows	NT	logging,
and	can	be	viewed	by	using	Event	Viewer.	For	information	about	using	Event
Viewer,	see	Windows	NT	4.0	or	Windows	2000	Help.

SQL	Server	Agent	is	an	internal	SQL	Server	2000	tool	that	hosts	and	schedules
the	agents	used	in	replication,	and	provides	an	easy	way	to	run	replication
agents.	SQL	Server	Agent	also	controls	and	monitors	several	other	operations
outside	of	replication	including	monitoring	the	SQLServerAgent	service,

maintaining	error	logs,	running	jobs,	and	starting	other	processes.

Another	tool	accessible	through	SQL	Server	Enterprise	Manager	is	the
replication	Conflict	Viewer.	The	Conflict	Viewer	helps	you	view	and	resolve
conflicts	that	occurred	during	the	merge	replication	or	queued	updating	process.

See	Also

Administering	and	Monitoring	Replication

Merge	Replication	Conflict	Detection	and	Resolution

Queued	Updating	Conflict	Detection	and	Resolution

Replication

Replication	Wizards
Microsoft®	SQL	Server™	includes	replication	wizards	to	simplify	configuring
and	implementing	replication.	The	replication	wizards	can	be	accessed	in	SQL
Server	Enterprise	Manager.	On	the	Tools	menu,	point	to	Replication,	and	then
click	the	appropriate	wizard.

Configure	Publishing	and	Distribution	Wizard
Through	the	Configure	Publishing	and	Distribution	Wizard,	you	can:

Specify	the	server	that	you	want	to	configure	as	the	Distributor.

Configure	SQLServerAgent	service	to	start	manually	or	automatically
when	the	computer	is	started.

Customize	the	distribution	database	properties,	enable	Publishers,
enable	Subscribers,	and	set	publishing	settings.

Create	Publication	Wizard

Using	the	Create	Publication	Wizard,	you	can	specify:

The	existing	publication	to	be	used	as	a	template	for	the	new
publication.

The	type	of	publication	to	create	(snapshot,	transactional,	or	merge).

The	data	and	database	objects	(articles)	to	include	in	the	publication.

A	name	and	description	for	the	publication.

Horizontal	and	vertical	data	filters,	and	for	merge	publications,	dynamic

and	join	filters.

Whether	to	allow	anonymous	Subscribers.

The	Snapshot	Agent	schedule	and	whether	you	want	the	Snapshot
Agent	to	run	immediately.

If	you	select	the	Show	advanced	options	in	this	wizard	check	box	on	the
Welcome	page	of	the	wizard,	and	you	create	a	snapshot	or	transactional
publication,	you	can	specify	the	following:

Enabling	updatable	subscriptions	including	immediate	updating	and/or
queued	updating.

Enabling	transforming	published	data	so	data	can	be	transformed	before
it	is	distributed	to	Subscribers.

Create	Pull	Subscription	Wizard

The	Create	Pull	Subscription	Wizard	allows	you	to	initiate	a	subscription	at	a
Subscriber	and	request	data	to	be	replicated	from	a	Publisher.	Through	the
Create	Pull	Subscription	Wizard,	you	can:

Select	the	Publisher	and	publication	to	which	you	want	to	subscribe.

Select	the	Subscriber	(destination)	database	that	will	receive	the
published	data.

Specify	initialization	of	the	subscription	so	that	a	snapshot	of	schema
and	data	is	applied	at	the	Subscriber.

Specify	the	location	of	the	snapshot	files	and	how	to	access	them	at	the
time	the	subscription	is	initialized.

Set	agent	schedules	for	how	frequently	updates	are	propagated	to	the
Subscriber.

Specify	whether	to	transform	the	data	before	it	is	distributed	(for
snapshot	or	transactional	publications	that	allow	transforming	published
data).	

Specify	if	you	want	required	services	to	start	automatically	after	the
subscription	is	created	or	if	you	want	to	start	required	services
manually.

Create	Push	Subscription	Wizard

The	Create	Push	Subscription	Wizard	allows	you	to	specify	at	the	Publisher	what
data	you	want	replicated	to	specified	Subscribers.	Through	the	Create	Push
Subscription	Wizard,	you	can:

Select	one	or	more	Subscribers	or	groups	of	Subscribers	to	receive
published	data.

Specify	the	database	on	the	Subscriber	where	data	will	be	published.

Specify	where	you	want	the	Distribution	Agent	to	run	(for	snapshot
replication	or	transactional	replication).	

Set	agent	schedules	for	how	frequently	updates	are	propagated	to	the
Subscriber.

Specify	initialization	of	the	subscription	so	that	a	snapshot	of	schema
and	data	is	applied	at	the	Subscriber.

Specify	whether	to	transform	the	data	before	it	is	distributed	(for
snapshot	or	transactional	publications	that	allow	transforming	published

data).

Set	the	priority	value	of	the	subscription	to	determine	the	winner	if
conflicts	are	detected	(for	a	merge	publication).

Specify	whether	you	want	required	services	to	start	automatically	after
the	subscription	is	created	or	if	you	want	to	start	required	services
manually.

Define	Transformation	of	Published	Data

The	Define	Transformation	of	Published	Data	Wizard	is	available	after	you	have
configured	a	publication	to	allow	transformation	of	published	data.	This	wizard
allows	you	to	create	a	Data	Transformation	Services	(DTS)	package	that	defines
data	transformations.	You	can	specify:

The	Subscriber	that	will	use	the	package	and	what	authentication	that
Subscriber	uses.

Column	mappings	and	data	transformations	that	occur	as	the	data	is
published	including	Microsoft	ActiveX®	or	Java	scripts.

The	location	of	the	DTS	package	at	the	server	where	the	Distribution
Agent	runs.

The	name,	description,	and	security	for	the	package.

Note		DTS	packages	created	in	the	Define	Transformation	of	Published	Data
Wizard	cannot	be	used	outside	of	replication.	However,	DTS	packages	created
independently	of	replication	using	DTS	tools	can	be	used	to	transform	published
data	during	replication.

Create	Dynamic	Snapshot	Job	Wizard
The	Create	Dynamic	Snapshot	Job	Wizard	guides	you	through	creating	a

dynamic	snapshot	for	dynamically	filtered	merge	publications.	In	this	wizard
you	can:

Specify	the	filter	criteria	page,	including	any	system	or	user-defined
functions	used	in	the	dynamic	filters	of	the	publication	and	the	value	of
the	login	for	the	Publisher.

Specify	the	snapshot	file	location	where	you	want	snapshot	files	saved.

Set	the	dynamic	Snapshot	Agent	schedule.

Specify	the	agent	name	for	this	dynamic	Snapshot	Agent.

Note		You	must	generate	a	regular	snapshot	to	the	dynamically	filtered	merge
publication	before	creating	a	dynamic	snapshot.

Disable	Publishing	and	Distribution	Wizard
The	Disable	Publishing	and	Distribution	Wizard	allows	you	to	disable
publishing,	distribution,	or	both	on	a	server.	You	can	also:

Specify	whether	to	disable	publishing	on	the	server	where	the	wizard	is
run.

Confirm	the	publications	that	will	be	dropped.

See	Also

Configuring	Replication

Disabling	Publishing	and	Distribution

Dynamic	Snapshots

Publishing	Data	and	Database	Objects

Subscribing	to	Publications

Transforming	Published	Data

Replication

Replication	Properties
After	you	configure	replication,	you	can	view	and	modify	options	by	using	the
properties	dialog	boxes	for	replication.	Properties	are	available	for	the	Publisher,
its	Subscribers,	and	the	Distributor,	publications,	push	subscriptions,	pull
subscriptions,	and	replication	agents.

Publisher	and	Distributor	Properties
After	you	have	configured	a	Publisher	and	Distributor	using	the	Configure
Publishing	and	Distribution	Wizard,	you	can	view	and	modify	those	options
using	the	Publisher	and	Distributor	properties.	The	Publisher	and	Distributor
properties	include	the	following	tabs	and	information.

Tab Information
Distributor The	distributor	name,	distribution	databases,

properties	for	the	distribution	database,	buttons	to
create	or	delete	a	distribution	database,	a	button	to
see	the	agent	profiles	for	all	replication	agents,	and
the	administrative	link	password	for	Publishers	to
connect	to	the	Distributor.

Publishers A	list	of	Publishers	that	have	been	enabled	to	use
this	Distributor	during	replication,	and	buttons	to
enable,	disable,	or	specify	new	Publishers.

Publication
Databases

A	list	of	databases	that	are	enabled	for	transactional
replication	(includes	snapshot	replication)	and/or
merge	replication,	and	buttons	to	enable	or	disable
the	databases	for	transactional	replication	and/or
merge	replication.

Subscribers A	list	of	Subscribers	configured	to	receive	data
from	this	Distributor,	and	buttons	to	enable,	disable,
or	specify	new	Subscribers.

To	open	Publisher	and	Distributor	properties

Replication

Replication	Icons
SQL	Server	Enterprise	Manager	uses	several	icons	to	represent	replication
objects,	operations,	and	results.

Icon Description
Publisher

Publisher	error

Publisher	retrying	synchronization

Snapshot	publication

Snapshot	publication	error

Snapshot	publication	retry

Transactional	publication

Transactional	publication	error

Transactional	publication	retry

Merge	publication

Merge	publication	error

Merge	publication	retry

Subscription

Subscription	error

Subscription	retrying	synchronization

Subscription	to	a	merge	publication

Subscription	(agent	not	running)

Subscription	(agent	running)

Database	is	enabled	for	publishing

Replication	Monitor

Replication	Monitor	error

Replication	Monitor	retry
Snapshot	Agent	running
Snapshot	Agent	not	running
Snapshot	Agent	retrying
Snapshot	Agent	error
Log	Reader	Agent	running

Log	Reader	Agent	not	running

Log	Reader	Agent	retrying
Log	Reader	Agent	error

Queue	Reader	Agent	running
Queue	Reader	Agent	not	running

Queue	Reader	Agent	retrying
Queue	Reader	Agent	error

Miscellaneous	agents	running

Miscellaneous	agents	error

Miscellaneous	agents	retrying

Column	is	a	primary	key
No	primary	key	in	the	table
This	table	includes	a	timestamp	column	and
cannot	be	published	by	Publishers	running	SQL
Server	7.0	or	to	Subscribers	running	SQL	Server
7.0.

Replication

Replication	Programming	Interfaces
As	an	alternative	to	using	SQL	Server	Enterprise	Manager,	you	can	use	the
following	programming	interfaces	to	implement,	administer,	and	monitor
replication:

Microsoft®	ActiveX®	controls	used	within	custom	applications	using
Microsoft	Visual	Basic®	or	Microsoft	Visual	C++®,	provide
programmable	controls	to	administer	and	control	the	Snapshot	Agent,
the	Distribution	Agent,	and	the	Merge	Agent.	These	controls	can	be
used	to	program	activity	needed	to	operate	replication.	For	example,	for
an	application	that	provides	online	and	offline	capabilities,	you	may
want	to	display	a	Synchronize	button.	That	button	can	be	associated
with	the	merge	ActiveX	control,	and	whenever	users	click	the	button,
they	connect	to	the	Publisher	and	the	Merge	Agent	for	the	specified
publication	merges	and	synchronizes	data.

SQL-DMO	allows	you	to	create	custom	applications,	using	Visual	Basic
or	C++,	which	allow	you	to	configure,	implement,	or	maintain	your
replication	topology.	SQL-DMO	can	be	used	to	program	replication
administration	such	as	configuring	distribution,	creating	subscriptions,
and	so	on.

The	Replication	Distributor	Interface	provides	the	capability	to	replicate
data	from	heterogeneous	data	sources	such	as	Microsoft	Access	or
Oracle.	The	Replication	Distributor	Interface	is	primarily	used	by
independent	service	vendors,	or	others	who	need	to	develop	a	custom
replication	application	based	on	proprietary	data	sources.

Scripting	replication	using	Transact-SQL	system	stored	procedures
enables	you	to	automate	some	replication	tasks,	configure	replication,
and	implement	subscriptions	on	multiple	servers.	Stored	procedures	are
frequently	used	in	scripts	that	can	be	run	when	configuring	replication
on	multiple	servers	(for	example,	creating	subscriptions	to	a	publication

on	multiple	Subscribers).

Replication

Programming	Replication	with	ActiveX	Controls
Microsoft®	ActiveX®	controls	allow	custom	applications	to	invoke	replication
agent	functionality.	The	controls	support	all	types	of	subscriptions	and	can	be
monitored	using	SQL	Server	Enterprise	Manager	at	the	Distributor.

Programmers	can	use	ActiveX	controls	for	replication,	similar	to	any	standard
built-in	control.	The	controls	provided	are	the	SQL	Snapshot	control,	the	SQL
Distribution	control,	and	the	SQL	Merge	control.

The	following	list	describes	the	benefits	of	using	ActiveX	controls	for
replication:

Replication	can	be	part	of	your	application	intrinsically.	For	example,
you	can	place	a	Synchronize	Now	command	on	a	menu	that	controls
when	a	specified	agent	associated	with	the	type	of	replication	you	are
using	runs.	

An	application	can	use	a	progress	bar	to	provide	feedback	on	the
progress	of	the	replication	control.	

An	application	can	determine	how	to	obtain	login	information	(for
example,	hard-coded	or	interactive).	

Replication	controls	can	be	embedded	in	applications,	providing	a	way
to	distribute	mobile	applications	without	the	complexity	of	Subscriber
setup.	

Controls	can	be	programmed	to	add	or	drop	subscriptions	and	create	or
attach	databases	at	the	Subscriber.	

An	application	can	be	programmed	to	register	the	synchronization	of	a
subscription	in	Windows	Synchronization	Manager.	

The	client	has	no	dependency	on	SQL	Server	Agent,	which	is
responsible	for	executing	jobs	in	addition	to	replication.	

If	you	start	a	replication	agent	using	SQL	Server	Agent,	other	jobs	can
also	run.	If	you	are	replicating	to	heterogeneous	Subscribers	using	pull
or	anonymous	subscriptions,	SQL	Server	Agent	is	not	available	at	the
Subscriber.	

ActiveX	replication	controls	can	be	invoked	from	many	programming
environments,	including	Microsoft	Visual	Basic®,	Visual	Basic
Scripting	Edition,	Java,	and	Microsoft	Visual	C++®.

If	a	subscription	is	registered	in	Windows	Synchronization	Manager,	there	is
often	no	need	to	embed	the	controls	in	the	application.	All	synchronization	can
then	be	controlled	by	this	central	application,	if	that	meets	the	needs	of	your
application.

For	more	information,	see	Developing	Replication	Applications	Using	ActiveX
Controls.

JavaScript:hhobj_1.Click()

Replication

Programming	Replication	with	SQL-DMO
SQL	Distributed	Management	Objects	(SQL-DMO)	allows	you	to	control
replication	components	for	implementation,	administration,	and	monitoring.
SQL-DMO	encapsulates	Microsoft®	SQL	Server™	2000	components	as	objects.
Using	programming	languages,	such	as	Microsoft	Visual	C++®	or	Microsoft
Visual	Basic®,	you	can	write	SQL-DMO	applications	based	on	these	objects	and
the	properties	and	methods	associated	with	the	objects.

For	example,	a	replication	component	can	be	a	Distributor,	and	using	SQL-
DMO,	you	can	program	the	SQL-DMO	Distributor	Object	to	install	a	local
distributor	or	configure	remote	distribution	for	a	Publisher.	You	can	then	use	the
DistributionDatabase	Object	to	create	a	new	distribution	database	or	change
the	properties	of	a	distribution	database.

After	distribution	is	configured,	you	can	use	the	DistributorAvailable	property
to	find	out	the	state	of	a	Distributor	or	the	Distribution	Database	property	to
identify	the	distribution	database	used	at	the	Distributor.

For	more	information,	see	Developing	SQL-DMO	Applications.

JavaScript:hhobj_1.Click()

Replication

Programming	Replication	with	the	Replication
Distributor	Interface
The	Replication	Distributor	Interface	is	an	OLE	DB	service	provider	that	allows
heterogeneous	data	sources	to	publish	data	to	Microsoft®	SQL	Server™
Subscribers	using	snapshot	replication	or	transactional	replication.	Often	used	as
component	in	third-party	tools,	the	Replication	Distributor	Interface	allows
heterogeneous	Publishers	to	inherit	the	features	of	SQL	Server	replication	such
as	heterogeneous	Subscribers,	anonymous	subscriptions,	monitoring	and
troubleshooting	tools	in	SQL	Server	Enterprise	Manager,	alerts	and	notifications,
and	others.

You	can	program	C++	applications	to	use	the	Replication	Distributor	Interface
and	store	transactions	published	from	databases	other	than	SQL	Server.	You	can
program	the	Distribution	Agent	and	forward	those	transactions	to	Subscribers.

See	Also

Replication	and	Heterogeneous	Data	Sources

Programming	Replication	from	Heterogeneous	Data	Sources

JavaScript:hhobj_1.Click()

Replication

Transact-SQL	System	Stored	Procedures
Replication	system	stored	procedures	and	replication	agent	executable	files	are
documented	and	available	as	a	method	for	implementing	replication	in	special
circumstances	or	for	use	in	batch	files	and	scripts.	In	most	cases,	however,	you
are	better	served	by	using	the	programming	interfaces	SQL-DMO	and
replication	Microsoft®	ActiveX®	controls	for	programming	replication	rather
than	writing	direct	calls	to	the	system	stored	procedures.

An	advantage	to	using	scripts	based	on	system	stored	procedures	is	that	you	can
implement	replication,	create	publications	and	subscriptions	on	a	server,
generate	the	script	automatically	through	SQL	Server	Enterprise	Manager,	and
then	use	that	script	at	other	servers	to	implement	replication	components.
Executing	a	script	can	be	faster	and	more	efficient	than	manually	performing	the
same	steps	repeatedly	using	SQL	Server	Enterprise	Manager.

For	more	information,	see	Scripting	Replication.

Replication

Windows	Synchronization	Manager
Windows	Synchronization	Manager	is	a	utility	available	with	Microsoft®
Windows®	2000	and	anywhere	Microsoft	Internet	Explorer	version	5.0	is
installed.	It	allows	you	to	synchronize	or	distribute	data	between	instances	of
Microsoft	SQL	Server™	2000	when	using	snapshot	replication,	transactional
replication,	or	merge	replication.

Windows	Synchronization	Manager	is	also	a	central	location	for	synchronizing
other	applications	including	e-mail	and	offline	Web	pages.	You	can	use
Windows	Synchronization	Manager	to	schedule	synchronizations	or	instruct
Windows	to	synchronize	selected	items	automatically	when	you	log	on	or	log	off
a	computer,	or	when	you	undock	a	portable	computer.

Windows	Synchronization	Manager	allows	you	to:

Choose	an	alternate	synchronization	partner.

Add	a	new	subscription.

Remove	a	subscription	from	Windows	Synchronization	Manager	only.

Delete	a	subscription.

Reinitialize	a	subscription.

Reinitialize	a	subscription	preceded	by	an	upload	of	changes.

Change	the	update	mode	of	an	updatable	subscription.

Attach	a	subscription	database.

You	can	also	use	SQL	Server	Enterprise	Manager	to	enable	pull	subscriptions	for

use	in	Windows	Synchronization	Manager,	or	you	can	programmatically	enable
subscriptions	for	use	in	Windows	Synchronization	Manager	by	using	replication
Microsoft	ActiveX®	Controls,	SQL-DMO,	or	Transact-SQL	system	stored
procedures.

For	more	information	about	Windows	Synchronization	Manager,	see	the
Windows	2000	documentation.

Example

To	open	Windows	Synchronization	Manager

Replication

Active	Directory	Services
Replication	publications	can	be	accessed	using	Active	Directory™	Services	on
the	Microsoft®	Windows®	2000	operating	system.	Through	Active	Directory,
you	can	view	replication	objects,	such	as	a	publication,	and,	if	allowed,
subscribe	to	that	publication.

Typically,	if	a	user	wants	to	subscribe	to	a	publication,	they	must	know	the	name
of	the	instance	of	Microsoft	SQL	Server™	and	the	database	where	the
publication	is	published.	Having	publication	information	available	in	Active
Directory	allows	users	to	browse	based	on	publication	properties	and,	if	allowed,
to	subscribe	to	publications	using	pull	subscriptions.	Users	do	not	need	to	know
the	server	name	and	database	where	the	publication	is	located.	

Active	Directory	is	a	central	component	of	the	Windows	2000	operating	system
and	provides	a	place	to	store	information	about	network-based	entities,	such	as
applications,	files,	printers,	and	people.

The	properties	listed	in	the	Active	Directory	may	not	always	be	exactly	the	same
as	they	are	in	SQL	Server.	If	there	is	discrepancy	between	the	publication	and
attributes	in	the	Active	Directory	and	publication	properties	in	SQL	Server,	the
publication	properties	in	SQL	Server	are	the	correct	settings	to	use.	This	also
applies	to	database	and	server	listings	in	the	Active	Directory.

Adding	or	Removing	a	Server	Object	to	the	Active	Directory
Adding	an	instance	of	SQL	Server	object	to	the	Active	Directory	requires	a	login
with	local	administrator	privileges	on	the	server.	If	the	login	used	to	register	the
instance	of	SQL	Server	does	not	have	sufficient	permissions,	and	the	server	is	a
local	server,	the	Connect	to	SQL	Server	dialog	box	is	displayed	requesting	a
login	with	the	required	permissions.	If	the	login	does	not	have	sufficient
permissions,	and	the	server	is	a	remote	server,	an	error	message	is	displayed.

To	add	a	SQL	Server	object	to	the	Active	Directory

1.	 On	the	SQL	Server	Properties	dialog	box,	Active	Directory	tab,
click	Add.

2.	 After	the	SQL	Server	object	is	added,	click	Refresh	to	update	the
attributes	of	the	instance	of	SQL	Server	object	in	the	Active	Directory.
(Clicking	Refresh	does	not	add	new	objects	to	the	Active	Directory;	it
only	refreshes	the	attributes	of	the	server	object).

To	remove	a	SQL	Server	object	from	the	Active	Directory

On	the	SQL	Server	Properties	dialog	box,	Active	Directory	tab,	click
Remove.	Removing	this	SQL	Server	object	from	the	Active	Directory
also	removes	its	databases	and	publications	from	the	Active	Directory.

To	add	or	remove	a	SQL	Server	object	from	the	Active	Directory	using
Transact-SQL

Execute	sp_ActiveDirectory_SCP	and	set	@action='CREATE'	to	add
to	Active	Direcotry	or	set	@action='DELETE'	to	remove	from	Active
Directory.

Adding	Publications	as	Active	Directory	Objects

After	the	SQL	Server	object	is	enabled	for	the	Active	Directory,	you	can	add
publications	as	Active	Directory	objects.	To	add	publications	the	SQL	Server
service	account	must	have	at	least	Power	User	privileges.

To	add	a	publication	to	the	Active	Directory

1.	 Right-click	the	publication,	and	then	click	Publication	Properties.

2.	 On	the	General	tab,	select	List	this	publication	in	the	Active
Directory.	Or	when	you	are	creating	a	publication	using	the	Create
Publication	Wizard,	on	the	Select	Publication	Name	and	Description
page,	select	List	this	publication	in	the	Active	Directory.	If	a
Subscriber	has	access	to	the	publication,	you	can	subscribe	to	the
publication	using	Active	Directory.

To	add	a	publication	to	Active	Directory	using	Transact-SQL

For	new	publications,	execute	sp_addpublication	or
sp_addmergepublication	and	set

@add_to_active_directory='TRUE'.

For	existing	publications,	execute	sp_changepublication	or
sp_changemergepublication	and	set
@property=publish_to_ActiveDirectory,	@value='TRUE'.

Browsing	or	Subscribing	to	Publications	in	Active	Directory

You	can	browse	publications	in	Active	Directory	and,	if	allowed,	subscribe	to
publications	using	the	Pull	Subscription	Wizard	or	Windows	Synchronization
Manager.

Browsing	or	Subscribing	to	Publications	in	Active	Directory	Using	the	Pull
Subscription	Wizard

1.	 At	the	Subscriber,	start	the	Pull	Subscription	Wizard,	and	then	on	the
Look	for	Publication	page,	select	Look	at	publications	in	the	Active
Directory	or	specify	publication	information.

2.	 On	the	Specify	Publication	page,	click	the	browse	button	(...)	to
browse	for	publications	in	Active	Directory.

Browsing	or	Subscribing	to	Publications	in	Active	Directory	Using	Windows
Synchronization	Manager

3.	 In	Windows	Synchronization	Manager,	double-click	To	create	a
subscription,	and	then	select	By	browsing	Active	Directory	for
publications.

4.	 On	the	Create	Anonymous	Subscription	(Browse	the	Active
Directory)	dialog	box,	view	the	publication	listed	in	Active	Directory
or	click	the	browse	(...)	button	to	browse	for	publications	in	Active
Directory.

For	more	information,	see	the	Windows	2000	Server	documentation.

Replication

Implementing	Replication
The	following	stages	will	help	you	implement	replication,	whether	you	are	using
snapshot	replication,	transactional	replication,	or	merge	replication.

Stage Tasks
Configuring	Replication Identify	the	Publisher,	Distributor,	and

Subscribers	in	your	topology.	Use	SQL	Server
Enterprise	Manager,	SQL-DMO,	or	Transact-
SQL	system	stored	procedures	and	scripts	to
configure	the	Publisher,	create	a	distribution
database,	and	enable	Subscribers.

Publishing	Data	and
Database	Objects

Create	the	publication	and	define	the	data	and
database	object	articles	in	the	publication,	and
apply	any	necessary	filters	to	data	that	will	be
published.

Subscribing	to
Publications

Create	push,	pull,	or	anonymous	subscriptions
to	indicate	what	publications	need	to	be
propagated	to	individual	Subscribers	and	when.

Generating	the	Initial
Snapshot

Indicate	where	to	save	snapshot	files,	whether
they	are	compressed,	and	scripts	to	run	before
or	after	applying	the	initial	snapshot.

Specify	to	have	the	Snapshot	Agent	generate
the	snapshot	one	time,	or	on	a	recurring
schedule.

Applying	the	Initial
Snapshot

Apply	the	snapshot	automatically	by
synchronizing	the	subscription	using	the
Distribution	Agent	or	the	Merge	Agent.	The
snapshot	can	be	applied	from	the	default
snapshot	folder	or	from	removable	media	that
can	be	transported	manually	to	the	Subscriber
before	application	of	the	snapshot.

Synchronizing	Data Synchronizing	data	occurs	when	the	Snapshot
Agent,	Distribution	Agent,	or	Merge	Agent	runs

and	updates	are	propagated	between	Publisher
and	Subscribers.

For	snapshot	replication,	the	snapshot	will	be
reapplied	at	the	Subscriber.

For	transactional	replication,	the	Log	Reader
Agent	will	store	updates	in	the	distribution
database	and	updates	will	be	propagated	to
Subscribers	by	the	Distribution	Agent.

If	using	updatable	subscriptions	with	either
snapshot	replication	or	transactional	replication,
data	will	be	propagated	from	the	Subscriber	to
the	Publisher	and	to	other	Subscribers.

For	merge	replication,	data	is	synchronized
during	the	merge	process	when	data	changes	at
all	servers	are	converged	and	conflicts,	if	any,
are	detected	and	resolved.

Replication

Configuring	Replication
Configuring	replication	is	the	process	of	identifying	Publishers,	Distributors,	and
Subscribers	across	your	enterprise,	configuring	them	for	replication	using
Microsoft®	SQL	Server™	2000	tools,	and	then	later	modifying	or	disabling
replication	if	necessary.

The	steps	for	configuring	replication	are:

1.	 Identifying	a	Distributor.

2.	 Creating	a	distribution	database	on	the	Distributor.

3.	 Enabling	Publishers	that	will	use	the	Distributor.

4.	 Enabling	publication	databases.

5.	 Enabling	Subscribers	that	will	receive	published	data.

For	ease	of	implementation,	you	can	use	the	Configure	Distribution	and
Publishing	Wizard,	script	configuration	of	distribution	and	publishing	using
Transact-SQL	system	stored	procedures,	or	SQL-DMO.	After	replication	is
configured,	you	can	use	the	Publisher	and	Distributor	properties	dialog	box,
Transact-SQL	system	stored	procedures	or	SQL-DMO	to	modify	the	settings.

Replication

Publishers,	Distributors,	and	Subscribers
Before	you	configure	publishing	and	distribution,	consider	the	roles	and
requirements	of	the	servers	in	your	replication	topology.

Publisher
The	Publisher	is	a	server	that	makes	data	available	for	replication	to	other
servers.	In	addition	to	being	the	server	where	you	specify	which	data	is	to	be
replicated,	the	Publisher	also	detects	which	data	has	changed	and	maintains
information	about	all	publications	at	that	site.	Usually,	any	data	element	that	is
replicated	has	a	single	Publisher,	even	if	it	may	be	updated	by	several
Subscribers	or	republished	by	a	Subscriber.

The	publication	database	is	the	database	on	the	Publisher	that	is	the	source	of
data	and	database	objects	to	be	replicated.	Each	database	used	in	replication
must	be	enabled	as	a	publication	database	either	through	the	Configure
Publishing	and	Distribution	Wizard,	the	Publisher	and	Distributor	properties,	by
using	the	sp_replicationdboption	system	stored	procedure,	or	by	creating	a
publication	on	that	database	using	the	Create	Publication	Wizard.

Distributor
The	Distributor	is	a	server	that	contains	the	distribution	database	and	stores	meta
data,	history	data,	and/or	transactions.	The	Distributor	can	be	a	separate	server
from	the	Publisher	(remote	Distributor),	or	it	can	be	the	same	server	as	the
Publisher	(local	Distributor).	The	role	of	the	Distributor	varies	depending	on
which	type	of	replication	you	implement,	and	in	general,	its	role	is	much	greater
for	snapshot	replication	and	transactional	replication	than	it	is	for	merge
replication.

Type	of	Replication Distributor	role
Snapshot	Replication	or
Transactional
Replication

Stores	replicated	transactions	temporarily
for	transactional	replication.	

Hosts	most	of	the	replication	agents
unless	remote	agent	activation	or	pull
subscriptions	are	used.

Stores	meta	data	and	history	data.

Merge	Replication Stores	meta	data	and	synchronization
history.

Hosts	the	snapshot	agent	and	merge
agent	for	push	subscriptions.

A	Distributor	may	require	additional	resources	to:

Store	the	snapshot	files	for	a	publication.	The	default	snapshot	folder
location	is	on	the	Distributor;	however,	you	can	change	the	default
location	or	choose	an	alternate	snapshot	location.	For	more	information,
see	Alternate	Snapshot	Locations.

Host	one	or	more	distribution	databases.

Host	processing	for	most	replication	agents	(for	pull	subscriptions,	the
Merge	Agent	or	Distribution	Agent	runs	at	the	Subscriber).	You	can
however,	choose	to	offload	agent	processing.	For	more	information,	see
Remote	Agent	Activation.

Remote	Distributors

A	remote	Distributor	is	a	computer	that	is	physically	separate	from	the	Publisher
and	is	configured	as	a	Distributor	of	replication.	A	local	Distributor	is	a
computer	that	is	configured	to	be	both	a	Publisher	and	a	Distributor	of
replication.

When	you	create	a	publication,	the	default	snapshot	folder	location	is	on	the

Distributor.	If	you	use	this	default	location,	and	you	use	a	remote	Distributor,
make	sure	the	Snapshot	Agent	at	the	Publisher	can	access	the	snapshot	folder.
Without	access,	the	Snapshot	Agent	cannot	write	the	snapshot	files	to	the
Distributor.

Similarly,	if	pull	subscriptions	access	data	on	a	remote	Distributor,	make	sure	the
Distribution	Agent	or	Merge	Agent	that	runs	on	the	Subscriber	has	read
permission	on	the	snapshot	folder	if	it	is	located	on	the	Distributor.

Typically,	you	would	choose	to	use	a	remote	Distributor	when	you	want	to
offload	processing	to	another	computer,	when	you	want	minimal	impact	from
replication	on	the	Publisher	(for	example,	if	the	Publisher	is	an	OLTP	server),	or
if	you	want	a	centralized	Distributor	for	multiple	Publishers.

The	Distributor	could	be	configured	as	a	separate	instance	of	SQL	Server,	and
therefore,	could	run	on	the	same	computer	as	the	Publisher.	This	would
technically	be	correct	and	be	a	remote	Distributor,	but	this	is	not	advised.

Subscribers
Subscribers	are	servers	that	receive	replicated	data.	Subscribers	subscribe	to
publications,	not	to	individual	articles	within	a	publication,	and	they	subscribe
only	to	the	publications	that	they	need,	not	necessarily	all	of	the	publications
available	on	a	Publisher.

If	you	have	applications	using	transactional	replication	built	with	Microsoft®
SQL	Server™	version	6.5	or	later,	and	those	applications	subscribe	directly	to
articles	instead	of	to	publications,	the	applications	will	continue	to	work	in	SQL
Server	2000.	However,	you	should	begin	to	migrate	your	subscriptions	to	the
publication	level	where	each	publication	is	composed	of	one	or	more	articles.

To	configure	publishing	and	distribution

Replication

Disabling	Publishing	and	Distribution
Disabling	publishing	and	distribution	includes	disabling	the	Distributor	and
Publishers,	deleting	the	distribution	database,	and	deleting	publications	and
subscriptions.

By	using	the	Disable	Publishing	and	Distribution	Wizard,	SQL-DMO,	or	scripts
with	Transact-SQL	system	stored	procedures	on	the	Distributor,	you	can:

Delete	all	distribution	databases	on	the	Distributor.

Disable	all	Publishers	that	use	the	Distributor	and	delete	all	publications
on	those	Publishers.

Delete	all	subscriptions	to	the	publications.	Subscription	information	at
the	Subscriber	will	not	be	deleted,	and	you	should	delete	it	manually.
Data	in	the	publication	and	subscription	databases	will	not	be	deleted;
however,	it	loses	its	synchronization	relationship	to	any	publication
databases.	If	you	want	the	data	at	the	Subscriber	to	be	deleted,	you	need
to	delete	it	manually.

To	disable	publishing	and	distribution

Replication

Publishing	Data	and	Database	Objects
When	creating	a	publication,	you	can	choose	the	tables,	filtered	partitions	of
data,	and	database	objects	that	you	want	to	publish.

A	table	used	in	a	snapshot	or	transactional	publication	can	have	a	maximum	of
255	columns	and	a	maximum	row	size	of	8,000	bytes.	A	table	used	in	a	merge
publication	can	have	a	maximum	of	246	columns	and	a	maximum	row	size	of
6,000	bytes.

Horizontal,	vertical,	dynamic,	and	join	filters	enable	you	to	create	partitions	of
data	to	be	published.	By	filtering	published	data,	you	can:

Minimize	the	amount	of	data	sent	over	the	network.

Reduce	the	amount	of	storage	space	required	at	the	Subscriber.

Achieve	better	security;	the	Subscriber	sees	only	data	that	that	they
need	to	see.

Customize	publications	and	applications	based	on	individual	Subscriber
requirements.

Avoid	conflicts	because	the	different	data	partitions	can	be	sent	to
different	Subscribers	(limiting	the	number	of	Subscribers	likely	to	be
updating	the	same	data	values).

Restrict	visibility	of	sensitive	data	to	Subscribers.	For	example,	the
Employees	table	might	be	vertically	filtered	to	exclude	the	employee
salary	or	review	information	because	that	is	sensitive	and	might	be
information	that	is	not	necessary	at	the	Subscriber.

Horizontal	(row)	filters	and	vertical	(column)	filters	are	available	for	snapshot
replication,	transactional	replication,	and	merge	replication.	Dynamic	and	join

filters	are	available	for	merge	replication.	However,	by	using	transformable
subscriptions,	you	can	create	custom	partitions	for	snapshot	replication	and
transactional	replication	that	are	similar	to	dynamic	partitions.	For	information
about	creating	filtered	partitions	of	data,	see	Filtering	Published	Data.	For
information	about	dynamic	partitions	in	snapshot	or	transactional	replication,	see
Using	Transformable	Subscriptions	to	Create	Custom	Data	Partitions.

For	information	about	the	specific	data	types,	see	Data	Needs	and	Characteristics
and	Planning	for	Each	Type	of	Replication.

Note		When	you	create	a	publication	using	an	existing	publication	as	the
template,	the	Publication	Access	List	(PAL)	of	the	original	publication	will	not
be	copied	to	the	second	publication.	You	must	re-create	any	PAL	settings
manually	using	publication	properties	and	the	Publication	Access	List	tab	after
the	publication	is	created.

Publishing	Database	Objects
The	following	database	objects	can	be	published	with	Microsoft®	SQL	Server™
2000	replication.

Database	Object

Snapshot	Replication
or	Transactional
Replication

Merge
Replication

Tables X X
Stored	Procedures	–
Definition

X X

Stored	Procedures	–
Execution

X 	

Views X X
Indexed	Views X X
Indexed	Views	as	Tables X 	
User-Defined	Functions X X

When	you	publish	these	objects,	their	definitions	are	copied	to	Subscribers.
When	you	add	or	drop	columns	to	a	publication	database,	those	changes	to	the

definitions	of	the	objects	will	be	propagated	to	Subscribers.	Changes	to	the
definition	of	other	types	of	objects	may	not	be	copied	to	Subscribers
automatically.

When	you	change	data	in	a	published	table,	or	run	a	stored	procedure	published
for	execution,	the	data	changes	that	are	made	will	be	propagated	to	Subscribers.

If	you	are	publishing	a	database	object	that	references	other	database	objects,
you	must	publish	all	objects	referenced	by	the	object.	For	example,	the	Products
Above	Average	Price	view	on	the	Northwind	database	retrieves	data	from	the
PRODUCTS	tables.	If	you	publish	this	view,	you	must	also	publish	the
PRODUCTS	tables	as	part	of	the	publication.

A	publication	containing	a	stored	procedure	definition	might	be	replicated	even
if	you	do	not	publish	the	database	objects	that	the	stored	procedure	references;
however,	when	trying	to	execute	that	stored	procedure	at	the	Subscriber,	you	will
get	an	error.	This	occurs	because	of	deferred	name	resolution,	where	object
dependencies	are	checked	when	the	stored	procedure	is	executed	rather	than
when	the	stored	procedure	is	created.

Publishing	Views,	User-Defined	Functions,	Stored	Procedure
Definitions,	and	Triggers
After	you	create	views,	user-defined	functions,	and	stored	procedure	definitions
in	a	database,	they	will	appear	as	objects	in	the	Create	Publication	Wizard	in	the
Specify	Articles	dialog	box.

When	you	replicate	these	objects,	the	definitions	are	replicated	as	part	of	the
initial	snapshot	applied	at	the	Subscriber.	Subsequent	changes	to	the	definition	of
these	objects	are	not	copied	automatically	to	Subscribers.	However,	replicating
the	definition	of	these	objects	can	provide	a	convenient	mechanism	for
deploying	these	components	of	your	application	to	Subscribers.

When	publishing	indexed	views	that	are	not	schema-only	articles	for	snapshot
replication	or	transactional	replication,	you	do	not	have	to	replicate	the	view	as	a
table.	When	the	view	is	published	to	the	Subscriber,	a	table	is	created	on	the
Subscriber	that	contains	the	data	the	view	is	based	upon.	Indexing	a	view	as	a
table	at	a	Subscriber	can	be	a	convenient	way	of	replicating	the	contents	of	a
view	without	requiring	that	each	of	the	tables	that	comprise	the	view	definition
are	replicated	as	well.	An	indexed	view	published	as	a	table	article	cannot	be

partitioned	vertically	using	column	filters.

Triggers	are	defined	as	part	of	a	table	and	are	published	as	a	schema	option	when
that	table	is	replicated	as	part	of	a	publication.	To	publish	triggers	for	a	table
article	that	is	being	published:

1.	 Right	click	a	publication,	and	then	click	Properties.

2.	 On	the	Articles	tab,	click	the	properties	button	(...)	for	a	specific	table
article.	

3.	 In	the	Table	Articles	Properties	dialog	box,	on	the	Snapshot	tab,
select	the	User	triggers	check	box	under	Copy	objects	to	destination.

Note		If	you	are	publishing	to	a	Subscriber	running	an	earlier	version	of	SQL
Server,	you	are	limited	to	the	functionality	of	that	version.	For	example,	you	will
not	be	able	to	publish	views,	user-defined	functions,	triggers	and	schema	objects
to	Subscribers	running	SQL	Server	7.0.

Schema	Objects
In	addition	to	the	database	objects	listed	in	the	table	earlier,	you	can	also	specify
if	you	want	schema	objects	to	be	copied,	such	as	declared	referential	integrity
(primary	key	constraints,	reference	constraints,	unique	constraints),	clustered
indexes,	nonclustered	indexes,	user	triggers,	extended	properties,	and	collation.

Encrypted	Database	Objects
Stored	procedures,	views,	triggers,	and	user-defined	functions	that	are	marked
with	ENCRYPTION	or	WITH	ENCRYPTION	cannot	be	published	as	part	of
SQL	Server	replication.

To	create	publications	and	define	articles

Replication

Publishing	Stored	Procedure	Execution
If	you	include	one	or	more	stored	procedures	as	articles	in	a	snapshot	or
transactional	publication,	SQL	Server	2000	can	replicate	the	execution	of	the
stored	procedures	rather	than	the	data	changes	caused	by	the	execution	of	those
stored	procedures.	This	is	useful	in	replicating	the	results	of	maintenance-
oriented	stored	procedures	that	may	affect	large	amounts	of	data.

If	replicated	as	a	series	of	data	manipulation	language	(DML)	SQL	statements,
these	procedures	can	require	significant	amounts	of	network	resources,
distribution	database	space,	and	server	processing	time.	Replicating	the	changes
as	one	stored	procedure	statement	can	greatly	increase	the	efficiency	of	your
application,	but	this	feature	should	be	used	with	care.

There	are	two	different	ways	in	which	the	execution	of	a	stored	procedure	can	be
published:

Procedure	execution	article.	Replicates	the	procedure	execution	to	all
Subscribers	of	the	article.	This	occurs	regardless	of	whether	individual
statements	in	the	stored	procedure	were	successful.	Furthermore,
because	changes	made	to	data	by	the	stored	procedure	can	occur	within
multiple	transactions,	data	at	the	Subscribers	cannot	be	guaranteed	to	be
consistent	with	data	at	the	Publisher.

Serializable	procedure	execution	article.	Replicates	the	procedure
execution	only	if	the	procedure	is	executed	within	the	context	of	a
serializable	transaction.	If	the	stored	procedure	is	executed	from	outside
a	serializable	transaction,	changes	to	data	in	published	tables	are
replicated	as	a	series	of	DML	statements.	This	behavior	contributes	to
making	data	at	the	Subscriber	consistent	with	data	at	the	Publisher.	This
is	especially	useful	for	batch	operations,	such	as	large	cleanup
operations.

Procedure	Execution	Articles

If	a	stored	procedure	execution	is	replicated,	no	new	data	changes	or	procedure

executions	from	the	current	connection	are	replicated	until	that	stored	procedure
finishes	executing.	For	example,	if	a	stored	procedure	that	modifies	data	in	a
published	table	is	executed,	and	the	procedure	execution	is	replicated,	the
individual	DML	changes	to	the	published	table	are	not	replicated.

Similarly,	if	a	stored	procedure	that	executes	another	published	stored	procedure
is	executed,	and	the	execution	is	replicated,	the	EXEC	statement	of	the	stored
procedure	called	by	the	first	procedure	is	not	replicated.	However,	if	a	published
stored	procedure	modifies	data	within	another	database	and	the	underlying	table
is	replicated,	those	data	changes	are	replicated	as	DML	statements.

By	default,	the	stored	procedure	definition	at	the	Publisher	is	propagated	to	each
Subscriber.	However,	you	can	also	define	the	stored	procedure	logic	to	be
different	at	a	Subscriber.	This	is	useful	if	you	want	different	logic	to	be	executed
at	the	Publisher	and	Subscriber.	For	example,	consider	sp_big_delete,	a	stored
procedure	at	the	Publisher	that	has	two	functions:	it	deletes	1,000,000	rows	from
the	replicated	table	big_table1	and	updates	the	nonreplicated	table	big_table2.
To	reduce	the	demand	on	network	resources,	you	should	propagate	the	1	million
row	delete	as	a	stored	procedure	by	publishing	sp_big_delete	and	creating
subscriptions	at	the	Subscribers.	At	the	Subscriber,	you	can	define	sp_big_delete
to	delete	only	the	1	million	rows	and	not	perform	the	subsequent	update	to
big_table2.

Each	time	a	published	stored	procedure	is	executed	at	the	Publisher,	the
execution	and	the	parameters	passed	to	it	for	execution	are	forwarded	to	each
Subscriber	to	the	publication.

For	example,	if	you	execute	a	stored	procedure	that	contains	actions	on	several
different	tables,	only	the	execution	of	that	procedure	(along	with	its	parameters)
is	forwarded	to	each	Subscriber.	If	you	publish	the	underlying	tables	instead	of
the	stored	procedure,	each	data	modification	(insert,	update,	or	delete)	generated
by	the	procedure	is	marked	for	replication	and	forwarded	to	each	Subscriber.
During	the	execution	of	a	published	stored	procedure,	SQL	Server	2000
temporarily	suspends	marking	transactions	or	commands	for	replication	within
that	procedure	to	avoid	duplication	of	effort.

Stored	procedure	replication	both	reduces	the	volume	of	commands	requiring
forwarding	to	Subscribers	and	increases	the	performance	of	your	application	by
executing	fewer	dynamic	SQL	statements	at	each	Subscriber.

For	example,	assume	you	created	a	stored	procedure:

CREATE	PROC	give_raise	AS
UPDATE	EMPLOYEES	SET	salary	=	salary	*	1.10

This	procedure	gives	each	of	the	10,000	employees	in	your	company	a	10
percent	pay	increase.	When	you	execute	this	stored	procedure	at	the	Publisher,	it
updates	the	salary	for	each	employee.	Without	stored	procedure	replication,	the
update	is	sent	to	Subscribers	as	a	large,	multistep	transaction:

BEGIN	TRAN
UPDATE	EMPLOYEES	SET	salary	=	salary	*	1.10	WHERE	PK	=	'emp	1'
UPDATE	EMPLOYEES	SET	salary	=	salary	*	1.10	WHERE	PK	=	'emp	2'

And	so	on	for	10,000	updates.

With	stored	procedure	replication,	SQL	Server	2000	sends	only	the	execution	of
the	stored	procedure:

EXEC	give_raise

IMPORTANT		Stored	procedure	replication	is	not	appropriate	to	all	applications.	If
an	article	is	filtered	horizontally,	so	that	there	are	different	sets	of	rows	at	the
Publisher	than	at	the	Subscriber,	executing	the	same	stored	procedure	at	both
returns	different	results.	Similarly,	if	an	update	is	based	on	a	subquery	of
another,	nonreplicated	table	that	has	different	values	at	both	the	Publisher	and
Subscriber,	executing	the	same	stored	procedure	at	both	returns	different	results.

To	ensure	that	the	same	results	are	achieved	at	both	the	Publisher	and	Subscriber,
the	default	behavior	of	SQL	Server	2000	is	to	send	the	resultant	data	changes	as
a	series	of	singleton	statements	in	a	transaction.

Serializable	Procedure	Execution	Articles
The	following	example	illustrates	why	it	is	recommended	that	you	set	up
replication	of	procedures	as	serializable	procedure	articles.

BEGIN	TRANSACTION	T1
SELECT	@var	=	max(col1)	FROM	tableA																			

UPDATE	tableA	SET	col2	=	<value>	
			WHERE	col1	=	@var	

BEGIN	TRANSACTION	T2
			WHERE	col1	=	@var																																									
INSERT	tableA	VALUES																																																																																																																																										
COMMIT	TRANSACTION	T2

In	the	previous	example,	it	is	assumed	that	the	SELECT	in	transaction	T1
happens	before	the	INSERT	in	transaction	T2.

If	the	procedure	is	not	executed	within	a	serializable	transaction	(for	example,
with	isolation	level	set	to	SERIALIZABLE),	transaction	T2	will	be	allowed	to
insert	a	new	row	within	the	range	of	the	SELECT	statement	in	T1	and	it	will
commit	before	T1.	This	also	means	that	it	will	be	applied	at	the	Subscriber
before	T1.	When	T1	is	applied	at	the	Subscriber,	the	SELECT	can	potentially
return	a	different	value	than	at	the	Publisher	and	can	result	in	a	different	outcome
from	the	UPDATE.

If	the	procedure	is	executed	within	a	serializable	transaction,	transaction	T2	will
not	be	allowed	to	insert	within	the	range	covered	by	the	SELECT	statement	in
T2.	It	will	be	blocked	until	T1	commits	ensuring	the	same	results	at	the
Subscriber.

Locks	will	be	held	longer	when	you	execute	the	procedure	within	a	serializable
transaction	and	may	result	in	reduced	concurrency.

To	replicate	a	stored	procedure	when	it	is	executed	inside	a	serializable
transaction,	in	the	article	properties	for	the	stored	procedure	to	be	published,
click	the	Other	tab,	and	then	select	Only	when	it	is	executed	inside	a
serializable	transaction.

Using	Transact-SQL	system	stored	procedures,	you	can	indicate	that	the	stored
procedure	is	to	be	replicated	when	it	is	executed	inside	a	serializable	transaction
by	setting	the	@type	parameter	of	sp_addarticle	to	a	value	of	serializable	proc
exec.

Replication

Using	Custom	Stored	Procedures	in	Articles
When	the	Log	Reader	Agent	encounters	an	INSERT,	UPDATE,	or	DELETE
statement	marked	for	replication	in	the	transaction	log	of	a	publication	database,
it	usually	reconstructs	one	row	Transact-SQL	statement	from	the	recorded	data
changes.	The	Distribution	Agent	then	sends	that	reconstructed	Transact-SQL
statement	to	each	Subscriber	and	applies	the	statement	to	the	destination	table	in
each	destination	database.	This	is	the	default	data	replication	mechanism	used	by
Microsoft®	SQL	Server™	2000	when	there	are	one	or	more	heterogeneous
Subscribers.

If	all	Subscribers	are	instances	of	SQL	Server	2000,	SQL	Server	2000	can
override	the	INSERT,	UPDATE,	and	DELETE	statements	from	the	transaction
log	with	custom	stored	procedures	at	each	Subscriber.	For	each	published	table,
there	are	three	ways	you	can	handle	each	type	of	statement	(INSERT,	UPDATE,
or	DELETE)	detected	by	the	Log	Reader	Agent.	You	can:

Leave	the	default	replication	mechanism	in	place.

Specify	that	no	action	will	be	taken	at	any	Subscriber.	Transactions	of
that	type	are	not	replicated.	For	example,	if	you	select	Replace
DELETE	statements	with	this	stored	procedure	and	enter	NONE,
DELETE	statements	are	not	replicated	for	that	article.

Specify	that	a	custom	procedure	be	called	at	all	Subscribers.	When	the
Log	Reader	Agent	encounters	a	statement	of	the	specified	type
(INSERT,	UPDATE,	or	DELETE)	in	a	transaction	marked	for
replication,	it	constructs	a	stored	procedure	call	based	on	this	syntax	and
passes	column	values	to	the	referenced	stored	procedure.	This	is	the
default	behavior	for	SQL	Server	2000	Subscribers.

About	Custom	Stored	Procedures

Depending	on	the	requirements	of	the	application,	the	parameters	of	the	stored
procedures	can	be	specified	using:

CALL	syntax

XCALL	syntax

MCALL	syntax

Each	method	differs	in	the	amount	of	data	that	is	propagated	to	the	Subscriber.
For	example,	MCALL	will	pass	in	values	only	for	the	columns	that	are	actually
affected	by	the	update,	and	a	bitmask	representing	the	changed	columns	and
XCALL	will	pass	in	all	columns	(whether	affected	by	an	update	or	not)	and	all
the	old	data	values	for	each	column.	This	allows	flexibility	to	application
developers	with	diverse	requirements.	When	using	XCALL,	the	before	image
values	for	text	and	image	columns	are	expected	to	be	NULL.

To	implement	custom	stored	procedure–based	replication	for	a	published	table,
stored	procedures	must	be	created	either	by	replication	or	by	the	user.	These
custom	stored	procedures	expect	to	receive	and	process	these	parameters:

call	Syntax

INSERT	stored	procedures

Stored	procedures	handling	INSERT	statements	will	be	passed	the	inserted
values	for	all	columns:

c1,	c2,	c3,...	cn

UPDATE	stored	procedures

Stored	procedures	handling	UPDATE	statements	will	be	passed	the	updated
values	for	all	columns	defined	in	the	article,	followed	by	the	original	values
for	the	primary	key	columns:

c1,	c2,	c3,...	cn,	pkc1,	pkc2,...	pkcn

Note		No	attempt	is	made	to	determine	which	columns	were	changed.

DELETE	stored	procedures

Stored	procedures	handling	DELETE	statements	will	be	passed	values	for

the	primary	key	columns:

pkc1,	pkc2,...	pkcn

mcall	Syntax

UPDATE	stored	procedures

Stored	procedures	handling	UPDATE	statements	will	be	passed	the	updated
values	for	all	columns	defined	in	the	article,	followed	by	the	original	values
for	the	primary	key	columns,	followed	by	a	bitmask	(binary(n))	parameter
that	indicates	the	changed	columns:

c1,	c2,	c3,...	cn,	pkc1,	pkc2,...	pkcn,	bitmask

xcall	Syntax

UPDATE	stored	procedures

Stored	procedures	handling	UPDATE	statements	will	be	passed	the	original
(the	before	image)	values	for	all	columns	defined	in	the	article,	followed	by
the	update	(the	after	image)	values	for	all	columns	defined	in	the	article.

old-c1,	old-c2,	old-c3,...	old-cn,	c1,	c2,	c3,...	cn,

DELETE	stored	procedures

Stored	procedures	handling	UPDATE	statements	will	be	passed	the	original
(the	before	image)	values	for	all	columns	defined	in	the	article.

old-c1,	old-c2,	old-c3,...	old-cn

If	you	want	your	INSERT,	UPDATE,	or	DELETE	stored	procedure	to	return	an
error	when	a	failure	status	is	encountered,	you	must	add	a	RAISERROR
statement	so	that	the	Distributor	will	capture	the	failure	status	coming	back.	If
the	severity	is	greater	than	12,	the	Distributor	stops	the	distribution	process	to
that	Subscriber.	If	this	procedure	definition	is	distributed	as	part	of	the	article
schema	definition	file,	it	will	be	sent	using	ODBC.	In	this	case,	only	single
quotation	marks	(')	can	be	used	to	define	the	RAISERROR	message	string.	The
use	of	double	quotation	marks	(")	generates	an	error.

You	can	also	program	a	custom	stored	procedure	to	skip	specified	errors.	For

more	information,	see	Handling	Agent	Errors.

Indicate	whether	you	want	to	use	single	quotation	marks	or	double	quotation
marks	when	you	specify	article	properties	in	the	Create	Publication	Wizard.	You
can	also	make	this	choice	in	the	Properties	dialog	box	for	the	article.

Replication

Subscribing	to	Publications
A	subscription	is	the	request	for	data	or	database	objects	to	be	published	to	a
specific	Subscriber.	A	Subscriber	can	have	several	subscriptions	to	different
publications.

A	subscription	defines	what	publication	will	be	replicated,	where	and	when.	A
subscription	can	be	created	either	at	the	Publisher	(a	push	subscription)	or	at	the
Subscriber	(a	pull	subscription).	Push	subscriptions	are	then	created	and
synchronized	at	the	Publisher/Distributor	and	the	synchronizing	agent
(Distribution	Agent	or	Merge	Agent)	is	typically	run	at	the	Distributor.	Pull
subscriptions	and	anonymous	subscriptions	are	created	and	synchronized	at	the
Subscriber	and	the	synchronizing	agent	is	typically	run	at	the	Subscriber.

When	planning	for	subscriptions,	consider	where	you	want	administration	of	the
subscription	to	take	place	and	where	you	want	agent	processing	to	occur.	The
type	of	subscription	you	choose	controls	where	the	agent	runs,	but	in	some
circumstances,	using	remote	agent	activation,	you	can	offload	the
synchronization	agent	processing	to	another	server.

Additionally,	be	aware	of	publication	and	distribution	database	properties	for
subscription	deactivation	and	expiration.	For	more	information,	see	Subscription
Deactivation	and	Expiration.

Subscription Characteristics Use	When
Push
Subscription

With	a	push	subscription,
the	Publisher	propagates
changes	to	a	Subscriber
without	a	request	from
the	Subscriber.	Changes
can	be	pushed	to
Subscribers	on	demand,
continuously,	or	on	a
scheduled	basis.	By
default,	the	Distribution
Agent	or	Merge	Agent
runs	at	the	Distributor.

Data	will	typically	be
synchronized	on
demand	or	on	a
frequently	recurring
schedule.

Publications	require
near	real-time
movement	of	data
without	polling.	

Because	a	Subscriber
must	explicitly	be
enabled	at	the	Publisher
to	receive	a	push
subscription,	push
subscriptions	are	known
as	named	subscriptions.

The	higher	processor
overhead	at	a	Publisher
using	a	local
Distributor	does	not
affect	performance.	

You	need	easier
administration	from	a
centralized	location
(the	Distributor).

The	centralized
Distributor	will
establish	the	schedule
on	which	connections
will	be	made	with
remote,	occasionally
connected	Subscribers.

Pull
Subscription

With	a	pull	subscription,
the	Subscriber	requests
changes	made	at	the
Publisher.	Pull
subscriptions	allow	the
user	to	determine	when
the	data	changes	are
synchronized.	By	default,
the	Distribution	Agent	or
the	Merge	Agent	runs	at
the	Subscriber.

Because	a	Subscriber
must	explicitly	be
enabled	at	the	Publisher
to	receive	a	push
subscription,	pull
subscriptions	are	known

Administration	of	the
subscription	will	take
place	at	the	Subscriber.

The	publication	has	a
large	number	of
Subscribers	(for
example,	Subscribers
using	the	Internet),	and
when	it	would	be	too
resource-intensive	to
run	all	the	agents	at
one	site	or	all	at	the
Distributor.

as	named	subscriptions. Subscribers	are
autonomous,
disconnected,	and/or
mobile.	Subscribers
will	determine	when
they	will	connect	to	the
Publisher/Distributor
and	synchronize
changes.

Data	will	typically	be
synchronized	on
demand	or	on	a
schedule	rather	than
continuously.

Anonymous
Subscription

An	anonymous
subscription	is	a	type	of
pull	subscription.
Detailed	information
about	the	subscription
and	the	Subscriber	is	not
stored	at	the	Publisher
when	using	an
anonymous	subscription.

Instead,	the	Subscriber
keeps	information	about
the	subscription	and	what
the	data	was	when	the
subscription	was	last
synchronized.	This
information	is	then
passed	on	to	the
Distributor	when	the	next
synchronization	occurs.

The	Subscriber	does	not

All	of	the	rules	for	pull
subscriptions	apply	to
anonymous
subscriptions.

Applications	have	a
large	number	of
Subscribers.

You	do	not	want	the
overhead	of
maintaining	extra
information	at	the
Publisher	or
Distributor.

If	Subscribers	use	the
Internet	to	access

need	to	be	explicitly
named	at	the	Publisher
when	using	anonymous
subscriptions.

publications.

Replication

Push	Subscriptions
Push	subscriptions	can	simplify	and	centralize	subscription	administration
because	you	do	not	need	to	administer	each	Subscriber	individually.	The
Distribution	Agent	or	Merge	Agent	runs	at	the	Distributor	when	synchronizing	a
push	subscription.	Push	subscriptions	are	created	at	the	Publisher,	and	the
replication	agents	propagate	data	and	updates	to	a	Subscriber	without	a	request
from	the	Subscriber.	Changes	can	also	be	pushed	to	Subscribers	on	a	scheduled
basis.

Use	push	subscriptions	when:

Data	will	typically	be	synchronized	on	demand	or	on	a	frequently
recurring	schedule.	

Publications	require	near	real-time	movement	of	data	without	polling.	

The	higher	processor	overhead	at	a	Publisher	using	a	local	Distributor
does	not	affect	performance.	

You	need	easier	administration	from	a	centralized	location	(the
Distributor).

The	centralized	Distributor	will	establish	the	schedule	on	which	connections	will
be	made	with	remote,	occasionally	connected	Subscribers.	With	push
subscriptions,	the	Distribution	Agent	(for	snapshot	and	transactional
publications)	or	the	Merge	Agent	(for	merge	publications)	runs	at	the	Distributor.
However,	if	you	need	to	offload	agent	processing	from	the	Distributor	but	retain
some	of	the	benefits	of	easier	administration,	you	can	run	the	agent	at	the
Subscriber.	For	more	information,	see	Remote	Agent	Activation.

Because	remote	agent	activation	is	available,	the	determining	factors	to	consider
when	setting	up	subscriptions	is	what	type	you	will	need	(push,	pull,	or
anonymous)	and	where	the	replication	agent	will	run.

Users	who	are	members	of	the	sysadmin	or	db_owner	roles	at	that	Subscriber

can	set	up	a	push	subscription.	However,	for	a	member	of	the	db_owner	role	to
set	up	a	push	subscription,	a	member	of	the	sysadmin	role	must	register	the
Subscribers.

For	a	subscription	to	be	created,	you	must	have	a	publication	at	the	Publisher
and	a	subscription	database	at	the	Subscriber.	You	can	create	the	subscription
database	before	creating	the	subscription,	or	specify	a	new	subscription	database
in	the	Create	Push	Subscription	Wizard.	You	can	create	a	push	subscription	for
any	Subscribers	that	are	enabled	in	the	Publisher	and	Distributor	properties.

Push	subscriptions	and	pull	subscriptions	are	known	as	named	subscriptions
because	information	about	the	subscription	and	the	Subscriber	is	stored	at	the
Publisher,	and	performance	information	about	the	Subscriber	is	stored	at	the
Distributor.	This	is	in	contrast	to	anonymous	subscriptions	(which	are	a	type	of
pull	subscription)	for	which	little	or	no	information	about	the	subscription	and
the	Subscriber	is	stored.

When	you	create	a	push	subscription,	you	specify:

The	name	of	the	Subscriber.

The	name	of	the	subscription	database.	

Whether	the	Distribution	Agent	or	Merge	Agent	runs	at	the	Distributor
(default)	or	at	the	Subscriber	using	remote	agent	activation.

Whether	the	Distribution	Agent	or	Merge	Agent	runs	continuously,	on	a
scheduled	basis	or	on	demand	only.	

If	the	Snapshot	Agent	should	create	an	updated	initial	snapshot	for	the
subscription	and	if	the	Distribution	Agent	or	Merge	Agent	should	apply
that	snapshot	at	the	Subscriber.	

For	snapshot	or	transactional	publications	that	allow	immediate
updating	or	queued	updating,	the	options	that	this	subscription	will	use
(available	if	you	enable	advanced	options	in	the	Push	Subscription

Wizard).

For	merge	replication,	the	priority	value	for	the	changes	made	in	the
subscription	database	to	be	used	during	conflict	detection	and
resolution.	

For	snapshot	replication	and	transactional	replication,	specify	that	the
subscription	will	use	immediate	updating,	queued	updating,	or
transform	published	data	options	(these	must	first	be	enabled	when
creating	the	publication).	

Services	that	will	be	started	to	create	the	subscription.

To	create	a	push	subscription

Replication

Pull	Subscriptions
Pull	subscriptions	are	created	at	the	Subscriber,	and	the	Subscriber	requests	data
and	updates	made	at	the	Publisher.	Pull	subscriptions	allow	the	user	at	the
Subscriber	to	determine	when	the	data	changes	are	synchronized,	which	can	be
on	demand	or	scheduled.

Use	pull	subscriptions	when:

Administration	of	the	subscription	will	take	place	at	the	Subscriber.

The	publication	has	a	large	number	of	Subscribers	(for	example,
Subscribers	using	the	Internet),	and	when	it	would	be	too	resource-
intensive	to	run	all	the	agents	at	one	site	or	all	at	the	Distributor.

Subscribers	are	autonomous,	disconnected,	and/or	mobile.	Subscribers
will	determine	when	they	will	connect	to	the	Publisher/Distributor	and
synchronize	changes.

Data	will	typically	be	synchronized	on	demand	or	on	a	schedule	rather	than
continuously.	One	feature	of	pull	subscriptions	is	that	the	Distribution	Agent	for
snapshot	and	transactional	publications	and	the	Merge	Agent	for	merge
publications	all	run	at	the	Subscriber.	This	can	result	in	a	reduction	of	the
amount	of	processing	overhead	on	the	Distributor.	However,	if	you	need	the
Distribution	Agent	or	Merge	Agent	to	run	at	the	Distributor,	you	can	offload
agent	processing	from	the	Subscriber.

For	example,	you	might	use	this	option	if	the	Subscriber	will	determine	when	it
is	connected	to	the	network	and	ready	to	synchronize,	but	you	want	to	run	the
agent	at	the	Distributor	to	make	use	of	better	processing	power	at	the	Distributor.
For	more	information,	see	Remote	Agent	Activation.

Another	feature	of	pull	subscriptions	is	that	members	of	the	sysadmin	or
db_owner	roles	at	the	Subscriber	decide	which	publications	are	received	and
when.	Each	Subscriber	can	have	subscriptions	to	multiple	publications	at
different	Publishers.

For	a	subscription	to	be	created,	you	must	have	a	publication	at	the	Publisher
and	a	subscription	database	at	the	Subscriber.	You	can	create	the	subscription
database	before	creating	the	subscription,	or	specify	a	new	subscription	database
in	the	Create	Pull	Subscription	Wizard.	You	can	create	a	pull	subscription	to	any
publication	that	has	been	enabled	for	pull	subscriptions	on	a	registered	Publisher.

When	you	create	a	pull	subscription,	you	specify:

The	name	of	the	subscription	database.	

Whether	the	Snapshot	Agent	should	create	an	initial	snapshot	and	the
Distribution	Agent	or	Merge	Agent	should	apply	that	snapshot	at	the
Subscriber.	

The	location	of	the	snapshot	files	to	apply	when	initializing	the
subscription.

The	priority	of	the	subscription	for	merge.

For	snapshot	replication	and	transactional	replication,	specify	that	the
subscription	will	use	immediate	updating,	queued	updating,	or
transform	published	data	options	(these	must	first	be	enabled	when
creating	the	publication).	

Whether	the	Distribution	Agent	or	Merge	Agent	runs	continuously,	on
demand,	or	on	a	scheduled	basis.	

Services	that	will	be	started	to	create	the	subscription.

Push	subscriptions	and	pull	subscriptions	are	known	as	named	subscriptions
because	information	about	the	subscription	and	the	Subscriber	is	stored	at	the
Publisher	and	performance	information	about	the	Subscriber	is	stored	at	the
Distributor.	This	is	in	contrast	to	anonymous	subscriptions	(which	are	a	type	of
pull	subscription)	for	which	information	about	the	subscription	and	the
Subscriber	is	not	stored.

When	you	create	a	pull	subscription	and	a	push	subscription	for	the	publication
already	exists	for	the	Subscriber,	an	error	message	informs	you	that	the	push
subscription	already	exists	and	that	you	should	drop	any	push	subscriptions
before	proceeding.	When	you	create	a	pull	subscription,	and	another	pull
subscription	to	the	same	publication	already	exists,	you	will	be	required	to	drop
the	existing	subscription	before	adding	the	new	one	unless	the	first	subscription
has	expired.

To	create	a	pull	or	anonymous	subscription

Replication

Anonymous	Subscriptions
An	anonymous	subscription	is	a	type	of	pull	subscription	for	which	detailed
information	about	the	subscription	and	the	Subscriber	is	not	stored.	Initiated	at
the	Subscriber,	the	Subscriber	is	responsible	for	keeping	an	anonymous
subscription	synchronized.

Use	anonymous	subscriptions	when:

Applications	have	a	very	large	number	of	Subscribers.

You	do	not	want	the	overhead	of	maintaining	extra	information	at	the
Publisher	or	Distributor.

If	Subscribers	use	the	Internet	to	access	publications.

All	the	rules	for	pull	subscriptions	apply	to	anonymous	subscriptions.

A	defining	factor	for	deciding	to	use	anonymous	subscriptions	with	snapshot
replication	and	transactional	replication	is	the	clean	up	of	the	distribution
database.	The	distribution	database	is	cleaned	up	by	the	Distribution	Clean	Up
Agent,	which	by	default	is	scheduled	to	run	every	10	minutes.	The	Distribution
Clean	Up	Agent	removes	replicated	transactions	from	the	distribution	database;
however,	if	you	are	using	anonymous	subscriptions,	the	transactions	are	kept	for
the	retention	period	of	the	subscription	to	given	anonymous	subscriptions	time	to
synchronize.

With	merge,	the	significant	factor	affecting	scale	relates	to	whether	or	not
Subscribers	know	about	other	Subscribers.	Meta	data	is	stored	for	all	global
subscriptions	in	the	Sysmergesubscriptions	system	table.	Information	can	be
viewed	about	all	Subscribers,	the	Publisher,	and	any	global	subscriptions	to
publications	to	which	they	are	subscribed.

If	you	enable	anonymous	subscriptions	for	the	publication,	the	user	creating	the
pull	subscription	can	specify	that	the	subscription	should	be	anonymous	in	the
Create	Pull	Subscription	Wizard,	by	using	Windows	Synchronization	Manager

or	in	the	stored	procedure.

To	create	a	pull	or	anonymous	subscription

Replication

Applying	the	Initial	Snapshot
After	a	publication	and	subscription	have	been	created,	you	need	to	create	and
transfer	an	initial	snapshot	to	the	Subscriber.	The	snapshot	transfers	schema	and
data	to	the	Subscriber,	as	well	as	constraints,	extended	properties,	indexes,
triggers	and	system	tables	necessary	for	replication.

The	snapshot	consists	of	different	files	depending	on	the	type	of	replication	and
the	articles	in	your	publication.	The	files	can	be	viewed	using	the	Snapshot
Explorer.	For	more	information,	see	Exploring	Snapshots.

Type	of	Replication Common	Snapshot	Files
Snapshot	Replication
or	Transactional
Replication

schema	(.sch);	data	(.bcp);	constraints	and	indexes
(.dri);	constraints	(.idx).

Merge	Replication schema	(.sch);	data	(.bcp);	constraints	and	indexes
(.dri);	triggers	(.trg);	system	table	data	(.sys);	conflict
tables	(.cft)

Applying	the	initial	snapshot	can	take	additional	time	if	you	are	transferring	a
large	amount	of	data	over	the	network,	or	if	you	have	a	slow	link.	In	that	case,
you	may	want	to	consider	saving	the	snapshot	to	removable	media	and
transferring	it	to	Subscribers	manually.

Additionally,	SQL	Server	2000	has	improved	performance	of	applying	the	initial
snapshots	with:	the	ability	to	compress	snapshots;	concurrent	snapshot
processing	for	transactional	replication;	and	dynamic	snapshot	for	merge
publications	that	use	dynamic	filters.	For	more	information,	see	Improving
Performance	While	Generating	and	Applying	Snapshots.

Replication

Generating	the	Initial	Snapshot
Snapshots	can	be	created:

Manually	by	running	the	Snapshot	Agent	after	creating	the	publication.	

Automatically	when	the	publication	is	created	by	selecting	Create	the
first	snapshot	immediately	on	the	Set	Snapshot	Agent	Schedule	page
in	the	Create	Publication	Wizard.

At	a	scheduled	time,	as	specified	by	the	Snapshot	Agent	Schedule	page
in	the	Create	Publication	Wizard.

By	default,	snapshots	are	saved	in	the	default	snapshot	folder	located	on	the
Distributor.	On	a	Distributor	running	Microsoft®	Windows	NT®	version	4.0	or
Windows	2000,	the	snapshot	folder	defaults	to	using	the	<drive>$	share	and	a
path	of	\\<computer>\<drive>$\Program	Files\Microsoft	SQL
Server\Mssql\Repldata.

On	a	Distributor	running	the	Microsoft	Windows	98	operating	system,	the
snapshot	folder	defaults	to	using	the	<drive>	without	a	share	and	a	path	of	\\
<computer>\<drive>\Program	Files\MicrosoftSQL	Server\Mssql\Repldata.	If
your	application	requires	the	ability	to	create	pull	subscriptions	on	a	server
running	the	Windows	98	operating	system,	you	must	change	the	snapshot	folder
to	a	network	path	accessible	by	replication	agents	running	at	the	Publisher	and
Subscribers.	You	can	change	the	local	path	to	a	network	path	by	sharing	the
folder.

IMPORTANT		The	<drive>$	share	is	a	special	administration-only	share,	and	you
will	not	be	able	to	grant	rights	to	it;	only	administrators	on	the	computer	can
access	it.	It	is	recommended	that	you	change	the	default	snapshot	location	to	a
network	location	or	shared	folder	that	the	Subscriber	can	access.	This	also
applies	if	you	are	going	to	allow	pull	or	anonymous	subscriptions	because
remote	Subscribers	or	Subscribers	over	the	Internet	will	rarely	be	administrators.
You	can	test	the	Subscriber	connection	to	the	snapshot	folder	by	mapping	a
network	drive	in	Windows	Explorer	at	the	Subscriber.

You	can	also	save	snapshot	files	on	removable	media	such	as	removable	disks,
CD-ROMs,	or	in	locations	other	than	in	the	default	snapshot	folder	on	the
Distributor,	such	as	File	Transfer	Protocol	(FTP)	servers.	Additionally,	you	can
view	and	transfer	the	snapshot	files	using	the	Snapshot	Explorer,	compress	the
files	so	that	they	are	easier	to	store	and	transfer,	and	execute	scripts	before	or
after	snapshot	synchronization.

To	view	or	modify	the	default	snapshot	folder	location

Replication

Alternate	Snapshot	Locations
Alternate	snapshot	locations	enable	you	to	store	snapshot	files	in	a	location	other
than,	or	in	addition	to,	the	default	location,	which	is	often	located	on	the
Distributor.	Alternate	locations	can	be	on	another	server,	on	a	network	drive,	or
on	removable	media	such	as	CD-ROMs	or	removable	disks.

Saving	snapshot	files	in	an	alternate	location	can	alleviate	disk	overhead	on	the
Distributor,	offers	an	administrative	advantage,	and	allows	you	to	transfer	files
using	removable	media.	

Alternate	snapshot	locations	are	stored	as	a	property	of	the	publication.	You	can
view	this	information	in	the	publication	properties	on	the	Snapshot	Location
tab.	Because	the	alternate	snapshot	location	is	a	publication	property,	the
Distribution	Agent	and	the	Merge	Agent	are	able	to	locate	the	proper	snapshot	as
part	of	the	synchronization	process.	However,	if	you	change	the	alternate
location	after	creating	the	initial	snapshot,	the	Distribution	Agent	and	the	Merge
Agent	may	not	be	able	to	find	the	alternate	location	and	you	may	have	to
reinitialize	the	snapshot.

Subscribers	running	earlier	versions	of	Microsoft®	SQL	Server™	cannot	use	the
alternate	snapshot	location.	Therefore,	continue	to	use	the	default	snapshot
location	to	store	snapshot	files	for	those	Subscribers.

If	you	want	to	specify	an	alternate	snapshot	folder	location	or	if	you	want	to
compress	snapshot	files,	create	the	publication	without	creating	the	initial
snapshot	immediately,	set	the	publication	properties	for	the	snapshot	location,
and	then	run	the	Snapshot	Agent	for	that	publication.

Note		Do	not	specify	an	alternate	location	in	publication	properties	that	is	the
same	as	the	default	snapshot	folder	location.	You	will	receive	an	error	message,
and	should	specify	a	different	alternate	location	or	use	the	default	location.

You	can	also	increase	the	availability	of	replication	when	using	failover
clustering	by	saving	the	snapshot	files	to	a	share	on	a	server	running	Microsoft
Cluster	Server.	For	more	information,	see	Failover	Clustering	.

To	specify	alternate	snapshot	locations

JavaScript:hhobj_1.Click()

Replication

Compressed	Snapshot	Files
When	snapshot	files	are	too	large	to	fit	on	removable	media	or	require
transmission	over	slow	networks,	compressing	the	snapshot	files	is	an	option.
Compressing	snapshot	files	can	reduce	network	traffic	but	it	increases	the	time
to	generate	and	apply	the	snapshot.

Compression	writes	data	in	the	Microsoft®	CAB	file	format.	You	can	compress
snapshot	files	when	you	are	saving	them	to	an	alternate	location	or	when
Subscribers	are	accessing	them	using	FTP.	Snapshot	files	written	to	the	default
snapshot	folder	on	the	Distributor	cannot	be	compressed.

Disk	Space	Requirements
The	amount	of	space	required	for	a	single	snapshot	can	be	affected	by	several
factors	including	the	size	and	number	of	articles	published.	You	can	create
snapshot	files	in	the	default	snapshot	folder	on	the	Distributor	and	in	an	alternate
location.	Compressing	the	snapshot	files	in	the	alternate	location	can	reduce	the
overall	space	required.

When	snapshot	files	are	created	in	both	the	default	directory	and	in	an	alternate
location	on	the	same	drive,	each	file	is	created	initially	in	the	default	directory
and	then	copied	to	the	alternate	location.	If	you	are	using	compressed	snapshot
files,	the	files	are	copied	and	compressed	before	they	are	placed	in	the	alternate
snapshot	location.	The	total	space	required	for	all	snapshot	files	in	this	situation
is	the	size	of	the	original	snapshot	files	in	the	default	location,	plus	the	size	of
the	compressed	snapshot	files	in	the	alternate	location.

If	the	alternate	storage	location	is	on	a	different	drive	than	the	default	location,
the	space	required	at	the	default	location	is	the	size	of	the	snapshot	files.	The
space	required	at	the	alternate	location	is	the	total	size	of	the	compressed
snapshot	files.

When	using	only	the	alternate	snapshot	location,	the	Snapshot	Agent	writes	files
directly	to	that	location.	After	the	Snapshot	Agent	generates	the	files,	the	files
are	compressed	by	the	CAB	utility	and	become	part	of	the	compressed	snapshot
file	with	the	extension	.cab.	After	each	file	is	compressed	successfully	and
included	in	the	compressed	snapshot	(.cab)	file,	the	original,	noncompressed	file

is	deleted.	The	space	required	in	the	alternate	location	is	the	size	of	the	last	file
in	the	default	snapshot	location	(usually	a	.bcp	file)	plus	the	size	of	the
compressed	snapshot	(.cab)	file.

When	the	Subscriber	receives	a	compressed	snapshot	file,	the	file	is	written
initially	to	a	temporary	location.	The	default	client	working	directory	can	be
used,	or	an	alternate	location	can	be	specified	in	the	subscription	properties.
After	the	compressed	snapshot	file	is	copied	to	the	Subscriber,	the	file	is
decompressed,	in	order,	one	file	at	a	time	by	the	CAB	utility.

The	uncompressed	files	are	read	by	either	the	Merge	Agent	or	the	Distribution
Agent	and	then	executed	or	applied	to	the	Subscriber.	As	each	file	is	applied
successfully,	it	is	deleted	and	the	next	file	in	the	snapshot	directory	is
decompressed.	Space	required	at	the	Subscriber	is	the	size	of	the	compressed
snapshot	file	plus	the	largest	uncompressed	file.

To	compress	and	deliver	snapshot	files

Replication

Exploring	Snapshots
Exploring	snapshots	allows	you	to	use	Windows	Explorer	to	review	or
customize	current	snapshot	files	or	copy	them	to	another	location.	After	the
Snapshot	Agent	has	created	the	snapshot	files	containing	the	schema	and	data	of
published	tables,	the	files	are	stored	in	the	snapshot	folder	on	the	Distributor	or
an	alternate	location.	You	can	then	use	the	Windows	Explorer	to	view	and
transfer	these	snapshot	files.

Note		You	may	not	see	a	snapshot	for	named	Subscribers	that	have	received
synchronization	objects.	In	this	case,	the	Distribution	Cleanup	Agent	may	have
removed	all	the	contents	of	the	directory.	When	viewing	snapshots	for
Subscribers	with	named	subscriptions,	you	may	not	see	a	current	snapshot	if
snapshot	processing	has	not	completed	or	the	Snapshot	Agent	has	not	generated
a	new	snapshot	file	for	that	Subscriber.

To	browse	and	copy	snapshot	files

Replication

Transferring	Snapshots
Before	a	new	Subscriber	can	receive	incremental	changes	from	a	Publisher,	it
must	contain	tables	with	the	same	schema	and	data	as	the	tables	at	the	Publisher.
After	the	snapshot	is	created	at	the	Publisher	and	stored,	you	need	to	transfer	the
snapshot	to	the	Subscriber,	either	using	Microsoft®	SQL	Server™	2000
replication	agents	or	manually.

SQL	Server	Applies	the	Initial	Snapshot
When	SQL	Server	2000	applies	the	snapshot	to	Subscribers,	either	the
Distribution	Agent	(for	snapshot	replication	and	transactional	replication)	or	the
Merge	Agent	(for	merge	replication)	applies	the	schema	and	data	files	to	the
subscription	database	on	the	Subscriber.

Unless	you	are	using	transactional	replication	with	concurrent	snapshot
processing,	share	locks	are	held	while	the	snapshot	is	generated	so	a	full,	logical,
and	consistent	set	of	data	is	produced.	This	means	that	while	the	data	can	be
queried,	it	cannot	be	updated	during	the	time	it	takes	to	generate	the	snapshot.	To
minimize	any	inconvenience	to	your	operations,	always	plan	to	generate	a
snapshot	when	updates	are	minimal.	If	you	are	using	transactional	replication,
concurrent	snapshot	processing	allows	you	to	continue	data	modifications	while
the	snapshot	is	generated.	For	more	information,	see	Improving	Performance
While	Generating	and	Applying	Snapshots.

For	merge	replication,	the	process	is	similar	to	concurrent	snapshot	processing
for	transactional	replication	because	locks	are	in	place	only	for	the	duration	of
the	copy	of	the	merge	contents	table.	The	tables	are	not	locked	when	the
snapshot	is	being	bulk	copied	and	updates	at	the	publication	database	are	not
prevented	for	the	duration	of	the	entire	snapshot.

When	snapshots	are	distributed	and	applied	to	Subscribers,	only	those
Subscribers	waiting	for	initial	or	new	snapshots	are	affected.	Other	Subscribers
to	that	publication	(those	that	are	already	receiving	inserts,	updates,	deletes,	or
other	modifications	to	the	published	data)	are	unaffected.

You	can	specify	that	SQL	Server	2000	should	initialize	the	schema	and	data	on
the	Initialize	Subscription	page	in	the	Create	Push	Subscription	or	Create	Pull

Subscription	Wizard.

When	the	first	synchronization	occurs	(which	you	specify	to	occur	immediately
in	the	subscription	wizards),	the	Distribution	Agent	or	Merge	Agent	applies	the
initial	snapshot	and	then	proceeds	to	propagate	updates	and	other	data
modifications.

Applying	the	Snapshot	Manually
If	the	publication	is	large,	it	may	be	more	efficient	to	load	the	snapshot	from	a
compact	disc,	or	other	storage	device.

For	example,	if	you	have	a	20	GB	database,	it	may	be	easier	and	faster	to	dump
the	database	to	removable	media,	express	courier	it	to	the	Subscriber	location,
and	reload	the	database	instead	of	sending	the	file	over	a	slow	network.	If	you
decide	to	load	the	snapshot	this	way,	SQL	Server	2000	will	not	synchronize	the
published	articles	with	the	destination	tables.

For	this	example	to	work	effectively	in	merge	replication,	you	must	have	pre-
created	and	populated	the	ROWGUIDCOL	column	or	have	already	run	the
Snapshot	Agent	at	the	Publisher.	Applying	the	snapshot	is	still	required	so	that
system	tracking	data	and	objects	necessary	for	merge	replication	are	at	the
Subscriber.

It	is	recommended	that	you	use	attachable	subscription	databases	when	you	need
to	apply	a	large	snapshot	rather	than	using	a	combination	of	standard	and
dynamic	snapshots	and	alternate	snapshot	locations	with	compression.	For	more
information,	see	Attachable	Subscription	Databases.

With	SQL	Server	2000,	you	can	store	snapshots	in	a	location	other	than	or	in
addition	to	the	default	location,	and	you	can	browse	snapshot	folders,	so	it	is
easier	to	view,	copy	and	move	snapshot	files.

To	apply	the	snapshot	manually,	you	can:

Save	the	snapshot	files	to	removable	media	such	as	a	compact	disc,	tape
device,	or	removable	disk	and	then	send	the	media	to	the	Subscriber
location.

Base	the	initial	snapshot	off	a	database	dump.

You	can	specify	that	the	Subscriber	already	have	the	schema	and	data	on	the
Initialize	Subscription	page	in	the	Create	Push	Subscription	or	Create	Pull
Subscription	Wizard.

The	Distribution	Agent	or	Merge	Agent	then	assumes	that	the	Publisher	and
Subscriber	are	already	synchronized,	and	starts	sending	inserts,	updates,	deletes,
or	other	modifications	to	the	published	data	immediately.

If	a	current	snapshot	is	not	already	waiting,	SQL	Server	will	wait	until	the	next
time	the	Snapshot	Agent	runs	according	to	its	schedule	(by	default,	that	is	once	a
day	at	1	A.M.)	before	applying	the	snapshot	to	the	new	Subscriber.

If	you	create	a	publication	and	enable	it	for	anonymous	subscriptions	or	if	you
specify	that	the	snapshot	should	be	retained	in	the	snapshot	location	(both	of
these	are	options	in	the	Create	Publication	Wizard),	the	snapshot	will	run	at	its
scheduled	time	and	it	will	be	retained	in	the	snapshot	location.	If	you	do	not
choose	one	of	these	options,	the	snapshot	will	not	be	retained,	therefore,	when	a
new	Subscriber	attempts	to	synchronize	for	the	first	time,	it	will	have	to	wait
until	the	next	time	a	snapshot	is	generated	to	have	the	snapshot	applied.

Replication

Attachable	Subscription	Databases
The	attachable	subscription	databases	feature	allows	you	to	transfer	a	database
with	published	data	and	subscriptions	from	one	Subscriber	to	another.	After	the
database	is	attached	to	the	new	Subscriber,	the	database	at	the	new	Subscriber
will	automatically	receive	its	own	pull	subscriptions	to	the	publications	at	those
Publishers.

Attachable	subscription	databases	requires	the	following	steps:

1.	 Configuring	a	publication	to	allow	copying.	

2.	 Copying	the	subscription	database.

3.	 Transferring	and	attaching	the	subscription	database	to	a	new
Subscriber.

Subscription	databases	copied	and	attached	to	other	Subscribers	can	contain
multiple	pull	subscriptions	for	multiple	publications	using	snapshot	replication,
transactional	replication,	or	merge	replication.	Attachable	Subscription	databases
are	not	compatible	with	heterogeneous	databases	or	instances	of	Microsoft®
SQL	Server™	version	6.5.	This	feature	is	not	available	with	push	subscriptions.

Replication

Configuring	a	Publication	to	Allow	Copying
To	use	attachable	subscription	databases,	you	must	first	configure	subscription
options	for	each	publication	that	propagates	data	to	a	Subscription	database	that
will	be	copied.	These	options	allow	new	subscriptions	to	be	created	after	the
subscription	database	is	attached	to	a	different	Subscriber.

IMPORTANT		After	you	create	a	subscription	to	the	publication,	you	cannot	change
the	subscription	options.	If	you	want	to	use	attachable	subscription	databases,
configure	the	subscription	options	for	the	publication	before	creating
subscriptions.

To	configure	a	publication	to	allow	copying	of	subscription	databases

Replication

Copying	a	Subscription	Database
After	you	have	configured	the	subscription	options	in	the	publication,	created,
and	synchronized	a	pull	subscription	to	a	subscription	database,	you	can	copy
the	subscription	database.

The	copy	of	the	subscription	database	includes	data,	views,	stored	procedures,
user-defined	functions,	schema,	and	all	objects	that	are	not	replicated	that
comprise	the	database.	Only	subscription	databases	that	are	contained	in	one,
primary	file	group	can	be	copied.	You	must	synchronize	at	least	one	subscription
to	the	subscription	database	before	copying.

During	the	copy	process,	a	compressed	Microsoft	Subscription	File	(.msf)	is
created.	The	.msf	file	contains	subscription	information	up	to	the	last
synchronization	of	the	subscription	database.

When	creating	the	.msf	file,	save	the	file	to	a	location.	The	file	can	then	be
picked	up	and	transferred	over	the	network,	transferred	using	removable	media,
or	attached	to	an	e-mail	message.

To	copy	a	subscription	database

Replication

Attaching	a	Subscription	Database
After	copying	the	subscription	database	and	saving	it	as	an	.msf	file,	you	can
transfer	and	attach	it	to	any	Subscriber.	When	you	attach	it	to	the	new
Subscriber,	the	file	is	decompressed	and	then	attached.	You	must	have	database
owner	permissions	to	attach	a	subscription	database	to	a	new	Subscriber.

Merge	replication	.msf	files	are	valid	only	for	the	retention	period	set	for	those
publications,	and	transactional	replication	.msf	files	are	valid	only	for	the
maximum	retention	period	of	the	distribution	database.	If	a	subscription	expires,
new	snapshot	files	must	be	generated	and	the	subscription	reinitialized.

If	the	subscription	database	has	subscriptions	to	publications	that	allow	queued
updating	with	auto	identity	range	articles,	you	will	need	to	run	the	distribution
agents	to	obtain	new	identity	ranges	on	the	Subscriber	after	attaching	the
subscription	database.	If	the	subscription	database	has	subscriptions	to	merge
publications,	you	will	need	to	run	the	merge	agents	on	the	Subscriber	after
attaching	the	subscription	database	to	prevent	conflicts.

Note		Detaching	a	database	created	with	SQL	Server	7.0	with	subscriptions	to
transactional	replication	and	attaching	it	on	a	server	running	SQL	Server	2000	is
not	recommended.	If	this	is	required,	run
sp_vupgrade_subscription_databases,	a	system	stored	procedure	in	the
master	database,	to	upgrade	the	replication	schema	after	attaching	the	database.

The	procedures	for	attaching	a	subscription	database	are	different	depending	on
whether	you	are	using	anonymous	or	named	subscriptions.

Replication

Attaching	Databases	with	Named	Subscriptions
For	subscriptions	that	are	not	anonymous,	you	must	enable	the	Subscriber	so	it
can	receive	data	from	the	Publisher,	attach	the	subscription	database,	and	add	the
subscription	at	the	Publisher	using	SQL-DMO	or	stored	procedures.	You	can	add
the	subscription	at	the	Publisher	before	or	after	attaching	the	database.

To	enable	a	Subscriber	to	receive	published	data

Replication

Attaching	Databases	with	Anonymous	Subscriptions
After	the	subscription	database	is	attached	to	the	new	Subscriber,	the
subscriptions	to	the	original	publications	will	be	generated	automatically.	This
allows	the	synchronization	process	to	begin	immediately	for	anonymous
subscriptions.	If	you	are	using	anonymous	subscriptions,	you	do	not	need	to
enable	the	Subscriber.

To	attach	a	subscription	database	with	anonymous	subscriptions

Replication

Improving	Performance	While	Generating	and
Applying	Snapshots
Depending	on	the	amount	of	data	in	your	publication	and	your	network
connection	and	resources,	applying	the	initial	snapshot	to	Subscribers	can	be
time-	and	resource-consuming.	Concurrent	snapshot	processing	for	transactional
replication,	dynamic	snapshots	(merge	replication)	and	the	–UseInprocLoader
property	have	been	added	to	Microsoft®	SQL	Server™	2000	to	improve
performance	while	generating	the	initial	snapshot	and	applying	it	at	Subscribers.

Concurrent	Snapshot	processing	for	Transactional	Replication
Typically,	with	snapshot	generation,	SQL	Server	places	shared	locks	on	all	tables
published	as	part	of	replication	for	the	duration	of	snapshot	generation.	This	can
prevent	updates	from	being	made	on	the	publishing	tables.	Concurrent	snapshot
processing,	available	only	with	transactional	replication,	does	not	hold	the	share
locks	in	place	during	the	entire	snapshot	generation,	thus	allowing	users	to
continue	working	uninterrupted	while	SQL	Server	2000	creates	initial	snapshot
files.

When	you	create	a	new	publication	using	transactional	replication	and	indicate
that	all	Subscribers	will	be	instances	of	SQL	Server	7.0	or	SQL	Server	2000,
concurrent	snapshot	processing	is	enabled	automatically.

For	more	information,	see	How	Transactional	Replication	Works.

Snapshot	Processing	for	Merge	Replication
For	merge	replication,	the	process	is	similar	to	concurrent	snapshot	processing
for	transactional	replication	because	locks	are	in	place	only	for	the	duration	of
the	copy	of	the	merge	contents	table.	The	tables	are	not	locked	when	the
snapshot	is	being	bulk	copied	and	updates	at	the	publication	database	are	not
prevented	for	the	duration	of	the	entire	snapshot.

Dynamic	Snapshots
Dynamic	snapshots	provide	a	performance	advantage	when	applying	the

snapshot	of	a	merge	publication	with	dynamic	filters.	By	using	SQL	Server	2000
bulk	copy	programming	files	to	apply	data	to	a	specific	Subscriber	instead	of	a
series	of	INSERT	statements,	you	will	improve	the	performance	of	applying	the
initial	snapshot	for	dynamically	filtered	merge	publications.

For	more	information,	see	Dynamic	Snapshots.

Add	a	ROWGUIDCOL	to	Merge	Publications
By	planning	ahead	and	creating	a	column	that	can	be	used	to	help	track	changes
during	merge	replication,	you	will	avoid	the	sometimes	significant	time	(and
disk	and	log)	decrease	in	performance	that	could	occur	from	waiting	for	the
Snapshot	Agent	to	alter	the	tables	for	you.

Merge	replication	requires	that	each	published	table	have	a	ROWGUID	column.
If	a	ROWGUID	column	does	not	exist	in	the	table	before	the	Snapshot	Agent
creates	the	initial	snapshot	files,	the	agent	must	first	add	and	populate	the
ROWGUID	column.	To	gain	a	performance	advantage	when	generating	and
applying	snapshots	during	merge	replication,	create	the	ROWGUID	column	on
each	table	published	during	merge	replication.	When	creating	the	column,
specify:

The	column	title	as	ROWGUID.

The	data	type	as	UNIQUEIDENTIFIER.

The	default	as	NEWID().

The	ROWGUIDCOL	property.

An	index	on	the	column.

The	ROWGUID	column	is	used	frequently	for	relating	to	merge	tracking	data
during	tracking	and	synchronization	of	changes	made	at	the	Publisher	and	at
Subscribers.

-UseInProcLoader
The	–UseInprocLoader	agent	property	improves	performance	of	the	initial
snapshot	for	snapshot	replication,	transactional	replication,	and	merge
replication.	

When	you	apply	this	property	to	either	the	Distribution	Agent	(for	snapshot
replication	or	transactional	replication)	or	the	Merge	Agent	(for	merge
replication),	the	agent	will	use	the	in-process	BULK	INSERT	command	when
applying	snapshot	files	to	the	Subscriber.

The	–UseInprocLoader	property	cannot	be	used	with	character	mode	bcp,	and
it	cannot	be	used	by	OLE	DB	or	ODBC	Subscribers.

IMPORTANT		When	using	the	–UseInprocLoader	property,	the	SQL	Server	2000
account	under	which	the	Subscriber	is	running	must	have	read	permissions	on
the	directory	where	the	snapshot	.bcp	data	files	are	located.	When	the	–
UseInprocLoader	property	is	not	used,	the	agent	(for	heterogeneous
Subscribers)	or	the	ODBC	driver	loaded	by	the	agent	(for	SQL	Server	2000
Subscribers)	reads	from	the	files,	so	the	security	context	of	the	Subscriber	SQL
Server	2000	account	is	not	used.

To	set	the	–UseInprocLoader	property

Replication

Executing	Scripts	Before	and	After	the	Snapshot	is
Applied
You	can	specify	scripts	to	execute	necessary	procedures	at	the	Subscriber	before
or	after	snapshot	synchronization.	Possible	uses	of	executing	scripts	before	or
after	synchronization	could	be	to	create	logins	at	each	Subscriber,	to	create	user-
defined	data	types	at	the	Subscriber	so	that	data	with	those	data	types	can	be
replicated,	or	to	update	statistics	after	snapshot	synchronization.

When	a	file	location	and	script	name	entry	is	specified,	the	Snapshot	Agent
copies	the	script	files	to	the	current	snapshot	folder	each	time	snapshot
processing	occurs.	The	Distribution	Agent	or	Merge	Agent	will	run	the	pre-
snapshot	script	before	any	of	the	replicated	object	scripts	when	applying	an
initial	synchronization.	The	Distribution	Agent	or	Merge	Agent	will	run	the
post-snapshot	script	after	all	the	other	replicated	object	scripts	and	data	have
been	applied	during	an	initial	synchronization.	The	script	is	run	by	launching	the
osql	utility.	Test	your	script	by	running	it	with	osql	to	be	sure	it	executes	as
expected.	It	is	recommended	that	you	make	sure	that	the	contents	of	scripts	that
are	executed	before	and	after	the	snapshot	is	applied	are	repeatable	and	can	be
executed	more	than	once.	If	you	need	to	reinitialize	a	subscription	for	which	the
script	has	already	been	applied,	the	script	will	be	applied	again	when	the	new
snapshot	is	applied	during	reinitialization.

If	you	are	compressing	the	snapshot	file	(by	putting	it	in	CAB	file	format),	the
scripts	are	also	compressed	and	placed	in	the	CAB	file.	After	the	compressed
snapshot	file	is	transferred	to	the	Subscriber	and	decompressed	to	a	working
directory	on	the	Subscriber,	any	scripts	indicated	as	a	pre-snapshot	script	will	be
executed.	Likewise,	any	post-snapshot	script	will	be	decompressed	and	executed
at	the	Subscriber	as	the	last	step	in	applying	the	snapshot.	After	initial
synchronization	is	complete	and	script	files	run	successfully,	the	script	files	are
removed	from	the	working	directory	on	the	Subscriber.

IMPORTANT		You	can	execute	scripts	when	applying	the	snapshot	to	Subscribers
running	SQL	Server	7.0	if	you	use	push	subscriptions	and	the	Distributor	is
running	SQL	Server	2000.	You	cannot	execute	scripts	when	applying	the
snapshot	to	Subscribers	running	SQL	Server	7.0	if	you	use	pull	subscriptions	or
anonymous	subscriptions.	With	pull	subscriptions,	the	agent	is	created	and	run

on	the	Subscriber.	Agents	in	SQL	Server	7.0	do	not	have	the	capability	of
running	scripts	while	applying	the	snapshot.	However,	if	you	use	push
subscriptions,	the	agent	is	run	at	the	Distributor	by	default.	If	the	Distributor	is
running	SQL	Server	2000,	the	agent	running	there	will	be	able	to	execute	the
scripts	before	and	after	applying	the	snapshot.

To	execute	scripts	before	and	after	the	snapshot	is	applied

Replication

Reinitializing	Subscriptions
When	a	subscription	is	marked	for	reinitialization,	the	snapshot	schema	and	data
are	applied	at	the	Subscriber	after	the	next	time	the	Snapshot	Agent	prepares	a
snapshot	and	Distribution	Agent	(for	snapshot	replication	or	transactional
replication)	applies	it	or	the	Merge	Agent	(for	merge	replication)	runs.

For	example,	merge	replication	Subscribers	update	data	based	on	the	original
snapshot	provided	to	them	unless	you	mark	the	subscription	for	reinitialization.
When	you	mark	the	subscription	for	reinitialization,	the	next	time	the	Merge
Agent	runs,	it	will	apply	the	most	recent	snapshot	to	the	Subscriber.

By	default,	a	new	snapshot	is	applied	at	the	Subscriber	as	the	first	step	on	the
next	synchronization	after	it	is	marked	for	reinitialization.	This	means	that	any
changes	made	at	the	Subscriber,	but	not	yet	synchronized	with	the	Publisher,	will
be	overwritten	by	the	application	of	the	new	snapshot.	Merge	replication
provides	an	option	that	can	preserve	the	changes	made	at	a	Subscriber	for	which
subscriptions	are	being	reinitialized.

If	you	have	a	subscription	to	a	merge	publication,	you	can	choose	to	have	all	the
data	changes	uploaded	from	the	Subscriber	before	the	snapshot	is	reapplied.	Any
updates	that	have	been	made	at	the	Subscriber	since	the	last	synchronization	will
be	propagated	to	the	Publisher	before	the	snapshot	is	reapplied.

If	you	created	a	subscription	and	indicated	no	initial	snapshot	was	to	be	applied
to	the	Subscriber	(specifying	in	the	Create	Push	Subscription	or	Create	Pull
Subscription	Wizard	that	the	Subscriber	already	has	the	schema	and	data),	and
you	reinitialize	the	subscription,	the	most	recent	snapshot	will	be	applied	to	the
Subscriber.

This	functionality	ensures	that	Subscribers	have	data	and	schema	identical	to
data	and	schema	at	the	Publisher.	To	prevent	the	reapplication	of	the	snapshot	to
the	Subscriber,	drop	the	subscription	specified	with	no	initial	snapshot
synchronization	and	then	re-create	it	after	the	reinitialization	of	any	other
Subscribers.

Reinitialization	of	push	subscriptions	is	administered	at	the	Publisher,	while
reinitialization	of	pull	subscriptions	is	administered	at	the	Subscriber.

Note		At	this	stage,	it	is	easy	to	confuse	reinitialize	with	synchronize.
Reinitialize	marks	the	subscription.	The	next	time	the	subscription	is
synchronized	(the	Distribution	Agent	or	Merge	Agent	runs),	the	snapshot	will	be
reapplied	at	the	Subscriber.

To	reinitialize	a	subscription

Replication

Synchronizing	Data
Synchronizing	data	refers	to	the	process	of	data	being	propagated	between
Publisher	and	Subscribers	after	the	initial	snapshot	has	been	applied	at	the
Subscriber.	When	a	subscription	is	synchronized,	different	processes	occur
depending	on	the	type	of	replication	you	are	using	and	whether	the	subscription
has	been	marked	for	reinitialization.

For	snapshot	replication,	synchronize	means	to	reapply	the	snapshot	at	the
Subscriber	so	that	schema	and	data	at	the	subscription	database	is	consistent	with
the	publication	database.	For	transactional	replication,	synchronizing	data	means
that	data	updates,	inserts,	deletes,	and	other	modifications	are	distributed
between	Publisher	and	Subscribers.	For	merge	replication,	synchronization
means	that	data	updates	made	at	multiple	sites	are	merged,	conflicts	(if	any)	are
detected	and	resolved,	and	data	eventually	converges	to	the	same	values.

The	Distribution	Agent	and	the	Merge	Agent	move	changes	to	data	that	occur	at
the	Publisher	or	at	Subscribers.	For	consistency,	Microsoft®	SQL	Server™	2000
replication	uses	the	term	synchronize	to	refer	to	when	one	of	these	replication
agent	runs.

Snapshot	Replication	Synchronization
When	a	subscription	to	a	snapshot	publication	is	synchronized,	the	Distribution
Agent	(using	distrib.exe	or	the	Distribution	ActiveX®	Control)	runs	and	the
most	recent	snapshot	will	be	applied	at	the	Subscriber.	If	modifications	to	data
have	been	made,	a	new	snapshot	will	need	to	be	generated	before	the	new	data
can	be	applied	to	the	Subscriber.

Transactional	Replication	Synchronization
When	a	subscription	to	a	transactional	publication	is	synchronized,	the
Distribution	Agent	(using	distrib.exe	or	the	Distribution	ActiveX	Control)	runs
and	UPDATE,	INSERT	and	DELETE	statements	that	have	been	logged	at	the
Distributor	are	propagated	to	the	Subscriber.

If	the	subscription	has	been	marked	for	reinitialization,	the	Snapshot	Agent	and
Distribution	Agent	must	run	so	that	a	new	snapshot	is	generated	and	propagated

to	Subscribers.	

Merge	Replication	Synchronization
Synchronization	occurs	when	Publishers	and	Subscribers	in	a	merge	replication
topology	reconnect	using	the	Merge	Agent	(replmerg.exe	or	the	Merge	ActiveX
Control)	and	updates	are	propagated	between	sites,	and	if	necessary,	conflicts
detected	and	resolved.	At	the	time	of	synchronization,	the	Merge	Agent	sends	all
changed	data	to	the	other	sites.	Data	flows	from	the	originator	of	the	change	to
the	sites	that	need	to	be	updated	or	synchronized.

At	the	destination	database,	updates	propagated	from	other	sites	are	merged	with
existing	values	according	to	extensible	and	flexible	conflict	detection	and
resolution.	A	Merge	Agent	evaluates	the	arriving	and	current	data	values,	and
any	conflicts	between	new	and	old	values	are	resolved	automatically	based	on
the	default	resolver	(a	resolver	you	specified	when	creating	the	publication	or	a
custom	resolver).

Changed	data	values	are	replicated	to	other	sites	and	converged	with	changes
made	at	those	sites	only	when	synchronization	occurs.	Synchronizations	can
occur	minutes,	days,	or	even	weeks	apart.	Data	is	converged	and	all	sites
eventually	end	up	with	the	same	data	values.	However,	if	conflicts	were	detected
and	resolved,	it	means	that	work	that	was	committed	by	some	users	was	altered
or	undone	to	resolve	the	conflict	according	to	your	defined	policies.

Synchronizing	Schema	Changes
Microsoft®	SQL	Server™	2000	supports	limited	schema	changes	to	an	existing
publication	database.	You	can	add	columns	to	and	drop	columns	from	a
published	table	without	dropping	and	re-creating	the	publications	and
subscriptions	referencing	that	table.

Replication	of	schema	changes	is	supported	for	snapshot	replication,
transactional	replication,	and	merge	replication.	Column	additions	and	deletions
are	implemented	at	the	table	level	and	propagated	to	all	Subscribers	that	receive
data	from	that	table.

For	more	information,	see	Schema	Changes	on	Publication	Databases.

On	Demand	Script	Execution
On	demand	script	execution	allows	you	to	post	a	SQL	script,	and	then	during	the
distribution	or	merge	process,	the	script	can	be	executed	at	all	Subscribers	to	a
specific	publication.

On	demand	script	execution	is	available	for	snapshot	replication,	transactional
replication,	and	merge	replication.

To	specify	a	script	to	run	for	all	Subscribers	to	a	merge	publication,	execute
sp_addreplmerge_script.	The	next	time	the	Merge	Agent	runs,	the	script	will
execute	at	each	Subscriber.	

To	specify	a	script	to	run	for	all	Subscribers	to	a	snapshot	or	transactional
publication,	execute	sp_addscriptexec.	The	next	time	the	Distribution	Agent
runs,	the	script	will	execute	at	each	Subscriber.

The	following	parameters	need	to	be	specified	when	executing	either
sp_addscriptexec	or	sp_addreplmerge_script.

Parameter Data	Type Description
@publication sysname Specifies	a	valid	publication.	Required.

No	default.
@scriptfile nvarchar(8000) Specifies	the	UNC	path	where	the	SQL

script	is	located.	Required.	No	default.

On	demand	script	execution	copies	the	script	to	the	replication	working	directory
and	then	uses	osql.exe	to	apply	the	script	at	the	Subscriber.	If	there	is	a	failure
when	applying	the	script	for	snapshot	or	transactional	publications,	the
Distribution	Agent	will	stop.	The	sp_addscriptexec	system	stored	procedure	has
an	additional	parameter,	@SkipError,	to	specify	whether	the	Distribution	Agent
should	stop	if	an	error	is	encountered	(@SkipError	=	0)	or	if	the	error	should	be
logged	and	the	Distribution	Agent	should	continue	(@SkipError	=	1).

To	synchronize	a	push	or	pull	subscription

Replication

Scripting	Replication
You	can	script	commonly	performed	replication	functions	such	as	configuring
publishing	and	distribution,	and	creating	or	deleting	publications	and
subscriptions.	After	you	configure	or	create	a	replication	component,	you	can
automate	the	creation	of	a	script	by	using	SQL	Server	Enterprise	Manager.

The	script	contains	the	Transact-SQL	system	stored	procedures	necessary	to
implement	the	replication	component.	Composed	primarily	of	a	series	of	stored
procedures,	you	can	view,	execute,	and/or	modify	and	run	the	script	using	SQL
Query	Analyzer	or	osql.

You	can	choose	to	script	creation	or	deletion	of	one	or	a	combination	of	the
following:

Distributor	properties

Publications	and	push	subscriptions

Pull	subscriptions

If	you	need	to	delete	multiple	push	subscriptions	or	a	mix	of	push	and	pull
subscriptions,	you	can	automate	the	process	by	creating	a	script	to	delete	the
publication.	All	subscriptions	to	the	publication	will	be	deleted	with	the
publication.	If	you	are	deleting	pull	subscriptions,	you	can	generate	a	script	that
deletes	one	or	more	pull	subscriptions	without	deleting	the	publication.

Example

Because	Northwind	Traders	has	more	than	50	sales	representatives	in	different
territories,	it	would	be	time-consuming	to	create	the	different	subscriptions
needed	at	each	Subscriber.	Instead,	the	replication	administrator	can	set	up	the
necessary	merge	publications	(with	static	or	dynamic	partitions	based	on	the
sales	representative	or	their	territory),	and	then	create	a	pull	subscription,
generate	a	script	based	on	that	pull	subscription,	and	then	run	that	script	at
multiple	Subscribers	to	generate	the	necessary	pull	subscriptions.

To	script	replication

Replication

Schema	Changes	on	Publication	Databases
Microsoft®	SQL	Server™	2000	supports	common	schema	changes	to	an
existing	publication	database.	You	can	add	columns	to,	and	drop	columns	from,
a	published	table	without	dropping	and	recreating	the	publications	and
subscriptions	referencing	that	table.

Schema	changes	can	be	replicated	during	snapshot	replication,	transactional
replication,	and	merge	replication.	Column	additions	and	deletions	are
implemented	at	the	table	level	and	propagated	to	all	Subscribers	that	receive	data
from	that	table.	For	snapshot	replication,	the	schema	change	is	propagated	when
a	new	snapshot	is	reapplied	at	the	Subscriber.	For	transactional	replication	and
merge	replication,	the	schema	change	is	propagated	incrementally	when	the
Distribution	Agent	or	Merge	Agent	runs.

IMPORTANT		Schema	changes	to	a	published	table	must	be	made	only	through	the
replication	publication	properties	dialog	box	in	SQL	Server	Enterprise	Manager
or	through	replication	stored	procedures.	Do	not	make	schema	changes	to
published	tables	using	the	SQL	ALTER	TABLE	statements	in	a	tool	such	as	SQL
Query	Analyzer	or	by	using	SQL	Server	Enterprise	Manager	visual	database
tools.	Changes	made	to	the	schema	of	a	published	table	using	these	tools	will	not
be	propagated	to	Subscribers.

It	is	recommended	that	you	back	up	the	publication	database	after	making
schema	changes	or	using	sp_mergecleanupmetadata.	This	will	ensure	that	you
can	recover	the	publication	database	in	its	correct	state	if	there	is	a	failure	of	the
Publisher.

Adding	Columns
You	can	add	a	column:

To	an	article	in	one	or	more	publications.

Here,	you	add	a	column	and	apply	the	schema	change	immediately	to
one	or	more	existing	publications;	the	change	is	propagated	to	the
Subscribers	of	those	publications.

To	the	underlying	table,	without	including	it	in	the	published	article.

You	may	want	to	make	a	schema	change	to	the	underlying	table	but	not
to	the	published	article.	For	example,	if	you	want	to	add	a	column	that
includes	sensitive	or	proprietary	data,	this	choice	allows	you	to	make	a
schema	change	without	propagating	the	information	to	Subscribers.
This	option	also	lets	you	defer	inclusion	of	a	new	column	in	a	published
article	until	a	later	date.

To	a	published	article,	using	a	column	that	exists	in	an	underlying	table.

Whenever	you	add	a	column	to	a	transactional	publication,	the	appropriate
ALTER	TABLE	statement	(or	sp_repladdcolumn	or	sp_repldropcolumn	if	the
table	is	republished	at	the	Subscriber)	will	be	propagated	and	run	at	the
Subscribers	to	complete	the	schema	changes	at	the	subscription	databases.

Reinitialization	of	the	subscription	is	necessary	only	when	you	add	an	existing
column	to	a	published	article.	When	creating	a	new	column	and	immediately
adding	it	to	a	published	article,	a	reinitialization	is	not	required.	This	is	because
the	Merge	Agent	re-executes	the	sp_repladdcolumn	stored	procedure	(or
sp_repldropcolumn	for	the	dropping	of	a	column),	including	all	of	its	original
syntax,	at	each	affected	Subscriber	at	the	time	of	the	next	synchronization.	The
Distribution	Agent	re-executes	the	ALTER	TABLE	statement	if	the	destination
table	is	not	republished	at	the	Subscriber,	otherwise,	it	re-executes	the
sp_repladdcolumn	or	sp_repldropcolumn,	including	all	the	original	syntax,	at
each	affected	Subscriber	at	the	time	of	the	next	synchronization.

When	you	add	a	column	to	the	publishing	table,	but	do	not	include	the	column	in
a	publication,	no	further	action	is	required.	However,	if	you	add	the	column	to	a
publication	later,	subscriptions	to	the	publication	will	need	to	be	reinitialized	for
all	types	of	publications.	To	avoid	reinitializing	subscriptions,	add	the	column	to
the	published	article	immediately,	instead	of	waiting	to	add	it	to	an	existing
article.

Additional	Considerations
When	defining	the	new	column	through	the	replication	user	interface	or	through
replication	stored	procedures,	you	must	do	one	of	the	following:

Allow	NULL	values	for	the	new	column.

Specify	a	default	value	for	the	column.

Adding	Articles	to	a	Merge	Publication

When	you	add	articles	to	a	merge	publication,	a	reinitialization	of	existing
subscriptions	is	not	required	for	the	new	article	schema	and	data	to	be
propagated	to	Subscribers.	When	adding	an	article	to	a	merge	publication	for
which	there	are	active	subscriptions,	you	must	run	the	Snapshot	Agent	after
adding	the	article	before	any	Subscribers	can	synchronize.	If	the	publication
already	has	subscriptions,	Subscribers	will	receive	the	schema	and	data	for	the
new	article	based	on	this	snapshot	the	next	time	they	synchronize.	The	Merge
Agent	will	then	synchronize	any	data	changes	for	the	subscription.

When	adding	an	article	to	a	publication	that	has	active	subscriptions,	you	can
filter	the	article	using	a	subset	filter	clause	without	requiring	that	subscriptions
be	reinitialized.	However,	you	cannot	add	any	join	filter	clauses	to	a	publication
that	has	active	subscriptions	without	also	reinitializing	all	subscriptions	to	the
publication.

When	adding	the	article	using	Publication	Properties	in	SQL	Server	Enterprise
Manager,	you	will	receive	a	message	indicating	that	subscriptions	will	be
prevented	from	synchronizing	until	a	new	snapshot	has	been	generated	for	the
publication.	When	you	apply	the	changes,	you	will	be	advised	to	run	the
Snapshot	Agent	immediately.

If	you	are	using	stored	procedures	to	add	articles,	you	must	authorize	the
addition	of	the	article	to	a	publication	by	setting	@force_invalidate_snapshot=1
in	sp_addmergearticle.	You	should	then	run	the	Snapshot	Agent	for	the
publication	immediately.

Whether	you	use	Publication	Properties	in	SQL	Server	Enterprise	Manager	or
stored	procedures,	you	can	defer	running	the	Snapshot	Agent,	but	you	must	run
it	before	any	existing	subscriptions	to	the	changed	publication	can	synchronize
and	receive	the	new	schema	and	data.

Dropping	Columns
When	dropping	a	column	from	a	published	article,	take	into	consideration	any
constraints	or	properties	of	the	column	that	could	affect	the	database.

You	cannot	drop	columns	with	primary	key	or	unique	constraints,	and
you	cannot	drop	UNIQUEIDENTIFIER	(or	ROWGUIDCOL)
columns,	which	are	used	by	the	replication	agents.

The	column	to	be	dropped	cannot	be	used	in	the	filter	clauses	of	any
article	of	any	publication	in	the	database.

Other	types	of	constraints,	such	as	foreign	key	and	check	constraints,
will	not	prevent	you	from	dropping	a	column.	However,	for	most
constraints,	you	are	prompted	with	a	warning	message	identifying	the
constraints	on	a	column	and	requesting	validation	before	you	can	drop
the	column.	After	you	confirm	the	action,	SQL	Server	2000	drops	all
constraints	on	the	column,	and	then	drops	the	column.

Note		Replication	does	not	warn	you	of	every	possible	dependency	related	to	a
column	that	is	being	dropped.	If	a	column	you	are	considering	dropping	is
referenced	by	a	constraint	on	another	column,	SQL	Server	2000	does	not	inform
you	of	the	dependency	and	you	are	allowed	to	drop	the	column.	Therefore,	you
should	have	a	thorough	understanding	of	the	underlying	database	schema	and
use	caution	before	dropping	a	published	column.

How	Schema	Changes	are	Applied
After	adding	or	dropping	a	column	on	the	publishing	table	in	merge	replication,
the	schema	change	will	be	propagated	to	Subscribers	the	next	time	the
subscription	is	synchronized.	In	transactional	replication,	the	schema	change	will
be	propagated	to	Subscribers	the	next	time	the	Log	Reader	Agent	and	the
Distribution	Agent	run.	When	adding	a	new	article	or	reinitializing	an	existing
article	to	a	transactional	publication	using	concurrent	snapshot	processing,	when
the	Snapshot	Agent	starts,	the	Distribution	Agent	stops	to	wait	for	the
synchronization	process	including	the	time	it	takes	for	the	Snapshot	Agent	and
Log	Reader	Agent	to	run.	When	the	synchronization	is	complete,	the
Distribution	Agent	will	resume.	

By	default,	in	transactional	replication,	the	custom	stored	procedures	will	be	re-
created	at	the	Subscriber	automatically.	The	current	snapshot	with	old	schema
information	is	invalidated	by	default	for	all	types	of	replication.

If	you	do	not	want	the	custom	stored	procedures	to	be	re-created	at	the
Subscriber	after	a	schema	change	to	a	transactional	publication,	you	should
specify	that	when	creating	the	publication.

Note		When	columns	are	added	to	or	dropped	from	a	publication	that	allows
transformations	on	published	data,	the	DTS	packages	will	need	to	be
regenerated.

To	disable	automatic	creation	of	custom	stored	procedures	during	initial
synchronization	(transactional	replication):

1.	 In	the	Create	Publication	Wizard,	on	the	Specify	Articles	page,	select
the	articles	you	want	to	publish,	and	for	a	specific	table	article,	click
the	properties	(...)	button	associated	with	that	table	article.

2.	 On	the	Commands	tab,	clear	the	Create	the	stored	procedures
during	initial	synchronization	of	subscriptions	check	box.

To	change	default	properties	for	forcing	reinitialization	and	invalidation	of
the	current	snapshot	(transactional	replication):

Execute	sp_repladdcolumn	or	sp_repldropcolumn	with	a	value	of	1
for	the	@force_reinit_subscription	parameter.	When	set	equal	to	1,
schema	changes	commands	will	not	be	propagated	to	Subscribers.	All
subscriptions	affected	by	the	schema	change	will	be	reinitialized	except
for	nosync	subscriptions,	for	which	no	action	is	taken.

Execute	sp_repladdcolumn	or	sp_repldropcolumn	with	a	value	of	0
for	the	@force_invalidate_snapshot	parameter.	When	set	equal	to	0,
current	snapshot	with	previous	schema	information	is	still	available	in
case	it	is	needed.	This	parameter	affects	only	publications	created	with
the	immediate_sync	option.

Applying	Schema	Changes	to	Specific	Publications
Usually,	schema	changes	flow	to	all	Subscribers	and	republishers	when
included	in	an	article.	You	can	optionally	select	the	publications	on
which	to	add	a	column,	and	the	schema	change	will	be	propagated	only

to	Subscribers	of	those	publications.	

When	dropping	a	column,	all	publications	and	Subscribers	are	affected;
you	cannot	selectively	implement	the	change	on	a	specific	publication.

To	apply	schema	changes	on	publication	databases

Replication

Implementing	Replication	Over	the	Internet
Replicating	data	over	the	Internet	allows	remote,	disconnected,	and	anonymous
users	to	access	data	when	they	need	it	using	a	connection	to	the	Internet.	Ways	to
replicate	data	over	the	Internet	using	Microsoft®	SQL	Server™	2000	include:

Using	a	Virtual	Private	Network	(VPN)	included	with	the	Microsoft
Windows	NT®	Server	version	4.0	operating	system	or	the	Microsoft
Windows®	2000	Server	operating	system,	as	well	as	offered	by	several
third	parties.

Integrating	replication	with	Microsoft	Proxy	Server.	

Using	TCP/IP	and	File	Transfer	Protocol	(FTP)	to	access	data	live	on
the	Internet	(if	there	is	no	firewall	or	proxy	server	used).

Replication

Publishing	Data	Over	the	Internet	Using	VPN
Virtual	Private	Networking	(VPN)	technology	allows	users	working	at	home,
branch	offices,	remote	clients,	and	other	companies	to	connect	to	a	corporate
network	over	the	Internet,	while	maintaining	secure	communications.	Using
VPNs	is	the	most	secure	method	for	publishing	data	over	the	Internet.	Users	can
use	Windows	Authentication	as	though	they	were	on	a	Local	Area	Network
(LAN).

VPNs	include	client	software	so	that	computers	connect	over	the	Internet	(or	in
special	cases,	even	an	intranet)	to	software	in	a	dedicated	computer	or	a	server.
Optionally,	encryption	at	both	ends	as	well	as	user	authentication	methods	keep
data	safe.	The	VPN	connection	over	the	Internet	logically	operates	as	a	Wide
Area	Network	(WAN)	link	between	the	sites.

A	VPN	connects	the	components	of	one	network	over	another	network.	This	is
achieved	by	allowing	the	user	to	tunnel	through	the	Internet	or	another	public
network	(using	a	protocol	such	as	Microsoft	Point-to-Point	Tunneling	Protocol
(PPTP)	available	with	the	Microsoft®	Windows	NT®	version	4.0	or	Microsoft
Windows®	2000	operating	system,	or	Layer	Two	Tunneling	Protocol	(L2TP)
available	with	Windows	2000).	This	process	provides	the	same	security	and
features	previously	available	only	in	a	private	network.

For	the	user,	the	intermediate	routing	infrastructure	of	the	Internet	is	not	visible,
and	it	appears	as	though	the	data	is	being	sent	over	a	dedicated	private	link.	As
far	as	users	are	concerned,	the	VPN	is	a	point-to-point	connection	between	the
user	computer	and	a	corporate	server.

After	you	have	your	remote	client	configured	to	connect	using	a	VPN,	and	the
client	has	Internet	access	and	is	logged	in	to	the	corporate	LAN,	you	can
configure	replication	as	though	the	remote	client	is	connected	directly	on	the
LAN.	For	security	reasons,	it	is	possible	to	have	different	network	resources
available	to	users	connected	over	VPN	and	to	those	connected	directly	on	the
LAN.

For	more	information	about	setting	up	VPN,	see	Virtual	Private	Networks	in	the
Windows	2000	documentation.

Replication

Publishing	Data	Over	the	Internet	Using	Microsoft
Proxy	Server
Integrating	Microsoft®	SQL	Server™	2000	replication	with	Microsoft	Proxy
Server	allows	for	replication	over	the	Internet	with	security	configured	on	the
Microsoft	Windows	NT®	version	4.0	or	Microsoft	Windows®	2000	Server
operating	systems,	Proxy	Server,	and	SQL	Server	2000.

Using	this	approach,	Proxy	Server	provides	a	connection	between	the	Internet
and	the	server	where	data	is	stored	in	SQL	Server	2000.	The	Subscriber	connects
to	Proxy	Server	over	the	Internet	and	uses	a	pull	subscription	to	receive	the	data.
Proxy	Server	is	configured	so	that	unauthorized	Internet	users	cannot	gain	access
to	internal	network	resources,	and	the	Subscriber	must	connect	to	a	port	on	the
Proxy	Server	that	limits	Subscriber	access	only	to	the	services	where	permission
is	been	granted.	

For	information	about	how	to	configure	Microsoft	Proxy	Server	for	replication,
search	for	the	white	paper	titled	Configuring	Proxy	Server	for	SQL	Server
Replication	at	Microsoft	Web	site.

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&o1=red

Replication

Publishing	Data	Over	the	Internet	Using	TCP/IP	and
FTP
Microsoft®	SQL	Server™	2000	can	use	the	TCP/IP	Sockets	or	the
Multiprotocol	Net-Libraries	over	TCP/IP	to	establish	an	ODBC	connection
between	the	Publisher	or	Distributor	and	the	Subscriber.	You	can	then	configure
the	publication	and	pull	subscriptions	or	anonymous	subscriptions	to	access	the
FTP	site	where	the	data	will	be	replicated.

Configuring	your	application	for	Internet	publishing	requires:

Configuring	a	Publisher	or	Distributor	to	listen	on	TCP/IP.

Configuring	a	publication	to	allow	Subscribers	to	retrieve	snapshots
using	FTP.

Creating	a	subscription	to	use	FTP	for	retrieving	snapshots.

Configuring	a	subscription	agent	to	use	TCP/IP.

Replication

Configuring	a	Publisher	or	Distributor	to	Listen	on
TCP/IP
Before	you	can	publish	articles	over	the	Internet,	the	servers	where	the	Publisher
and	Distributor	are	located	must	be	enabled	to	listen	on	either	TCP/IP	or
Multiprotocol	network	protocol.	Microsoft®	SQL	Server™	2000	uses	the
TCP/IP	Sockets	or	the	Multiprotocol	Net-Libraries	over	TCP/IP	to	establish	an
ODBC	connection	between	the	Publisher	or	Distributor	on	one	side	of	the
Internet	and	the	Subscriber	on	the	other.	In	pull	or	anonymous	subscriptions	to
transactional	publications,	the	Distribution	Agent	executes	at	the	Subscriber	and
connects	through	the	Internet	to	the	Distributor	to	synchronize.	In	pull	or
anonymous	subscriptions	to	merge	publications,	the	Merge	Agent	executes	at	the
Subscriber	and	connects	through	the	Internet	to	the	Publisher	and	Distributor	to
synchronize.

The	TCP/IP	Sockets	Net-Library	is	enabled	by	default	during	the	typical	SQL
Server	2000	Setup,	but	may	not	have	been	enabled	if	you	performed	a	custom
installation.	You	can	specify	the	FTP	paths	and	ports	as	the	snapshot	folder
location	under	Publication	Properties	so	that	a	server	already	configured	as	an
FTP	site	is	used	as	the	snapshot	folder	location.	Or	you	can	set	the	snapshot
folder	to	be	the	FTP	home	directory	(by	default,	\Microsoft	SQL
Server\Mssql\Repldata\Ftp)	and	configure	the	FTP	home	directory	as	an	FTP
site.

To	specify	FTP	information

Replication

Configuring	a	Publication	to	Allow	Subscribers	to
Retrieve	Snapshots	Using	FTP
After	you	have	completed	configuring	your	servers	to	listen	on	the	TCP/IP	or
Multiprotocol	connection,	you	are	ready	to	configure	your	publications	for
publishing	over	the	Internet.	Any	publication	you	create	can	be	enabled	for
Internet	publishing	by	setting	the	@enabled_for_internet	property	on	the
publication.	Setting	@enabled_for_internet	to	TRUE	tells	the	Snapshot	Agent
to	place	the	files	associated	with	the	initial	snapshot	into	the	FTP	location
specified	in	Publication	Properties.

The	Distribution	Agent	or	Merge	Agent	uses	FTP	to	download	the	snapshot	of
the	schema	and	data	to	the	Subscriber.	The	image	of	the	entire	publication	flows
to	the	destination	database	where	it	is	re-created	as	an	exact	duplicate.	After	the
snapshot	files	arrive	at	the	Subscriber,	the	agent	applies	the	files	to	the
appropriate	tables	at	the	Subscriber.	The	agent	moves	through	each	table	taking
out	exclusive	locks	on	a	set	of	rows,	copying	in	the	new	rows,	releasing	the
locks	on	the	rows,	and	then	repeating	the	process	on	the	next	blocks	of	rows.
Because	the	agent	locks	only	a	small	number	of	rows	at	one	time,	other	users
should	be	able	to	continue	using	the	tables	with	minimal	disruption.

You	can	configure	a	publication	through	SQL	Server	Enterprise	Manager	by
selecting	Allow	snapshots	to	be	downloaded	using	FTP	on	the	Subscriptions
Option	tab	of	the	publication	Properties	dialog	box.	You	can	also	set	the
@enabled_for_internet	property	programmatically	through	the	replication
stored	procedures	that	support	replication	over	the	Internet:

sp_addpublication

sp_addmergepublication

sp_changemergepublication

sp_helpmergepublication

To	publish	data	over	the	Internet

Replication

Configuring	a	Subscription	to	Use	FTP	to	Retrieve	a
Snapshot
After	a	publication	has	been	enabled	for	publishing	on	the	Internet,	you	must
create	a	pull	or	anonymous	subscription	to	the	publication.	Subscriptions	using
the	Internet	are	created	the	same	way	as	other	subscriptions.	The	only	difference
in	subscribing	to	a	Publication	over	the	Internet	is	that	you	must	also	configure
the	FTP	addressing	properties	(FtpAddress,	FtpPassword,	FtpPort,	and
FtpUserName)	for	the	Distribution	Agent	or	Merge	Agent	to	use.

You	can	configure	the	FTP	addressing	through	SQL	Server	Enterprise	Manager
on	the	Snapshot	Location	tab	in	Publication	Properties.

Replication

Replication	Between	Different	Versions	of	SQL	Server
Because	you	can	upgrade	servers	running	instances	of	Microsoft®	SQL
Server™	2000	one	at	a	time,	you	may	have	circumstances	where	servers	in	your
replication	topology	are	running	different	versions	of	SQL	Server.	You	can
replicate	between	different	versions	of	SQL	Server,	but	you	are	often	limited	to
the	functionality	of	the	earliest	version	used.

For	example,	if	you	upgrade	a	Distributor	to	an	instance	of	SQL	Server	2000,	but
you	have	a	Publisher	running	an	instance	of	SQL	Server	version	7.0,	and	a
Subscriber	running	an	instance	of	SQL	Server	version	6.5,	you	are	limited	to	the
replication	functionality	of	SQL	Server	6.5	and	unable	to	use	features	introduced
in	SQL	Server	7.0	or	SQL	Server	2000.	To	use	the	new	functionality,	upgrade	all
servers	used	for	replication	to	SQL	Server	2000.

Features	available	in	SQL	Server	2000	are	not	supported	with	Subscribers
running	earlier	versions	of	SQL	Server.	For	example,	if	a	merge	publication
contains	features	valid	only	in	SQL	Server	2000,	and	you	use	a	push
subscription	to	a	Subscriber	running	SQL	Server	7.0,	backward	compatibility	is
checked,	and	the	Merge	Agent	will	fail	and	display	an	error	message	indicating
that	the	Subscriber	does	not	meet	the	compatibility	level.	If	a	transactional
publication	contains	features	valid	only	in	SQL	Server	2000,	and	you	use	a	push
subscription	to	a	Subscriber	running	SQL	Server	7.0,	backward	compatibility	is
not	checked,	and	the	Distribution	Agent	may	fail	with	an	error	message	not
related	to	backward	compatibility,	or	the	Distribution	Agent	may	succeed,	but
transactional	processing	will	fail	at	another	point..

If	a	publication	has	active	subscriptions	to	Subscribers	running	earlier	versions
of	SQL	Server,	and	you	add	a	feature	to	the	publication	that	is	valid	only	for
SQL	Server	2000,	the	Merge	Agents	or	Distribution	Agents	for	the	SQL	Server
7.0	subscriptions	will	fail.	Even	if	the	SQL	Server	2000	feature	is	installed,	the
agents	will	not	run	successfully.	You	must	delete	the	subscription	and	re-create
the	publication	and	subscription.

Following	are	the	different	combinations	of	SQL	Server	versions	you	can	have
in	a	replication	topology.	When	using	SQL	Server	6.5,	you	must	have	SQL
Server	Service	Pack	4	or	later	installed,	and	when	using	SQL	Server	7.0,	you
must	have	SQL	Server	Service	Pack	1	or	later	installed.	SQL	Server	version	6.0

can	be	used	as	an	ODBC	Subscriber	in	snapshot	replication	or	transactional
replication,	but	it	cannot	be	a	Publisher.

This	table	lists	the	combinations	for	snapshot	replication	and	transactional
replication.

	 Combination	1 Combination	2 Combination	3
Publisher SQL	Server	6.5 SQL	Server	7.0 SQL	Server	2000
Distributor SQL	Server	6.5	or

SQL	Server	7.0
SQL	Server	7.0	or
SQL	Server	2000

SQL	Server	2000

Subscriber SQL	Server	6.0,
SQL	Server	6.5,
SQL	Server	7.0,	or
SQL	Server	2000

SQL	Server	6.0,
SQL	Server	6.5,
SQL	Server	7.0,	or
SQL	Server	2000

SQL	Server	6.0,
SQL	Server	6.5,
SQL	Server	7.0,
or	SQL	Server
2000

This	table	lists	the	combinations	for	merge	replication.

	 Combination	1 Combination	2 Combination	3
Publisher SQL	Server	7.0 SQL	Server	2000 SQL	Server	2000
Distributor SQL	Server	2000 SQL	Server	2000 SQL	Server	2000
Subscriber SQL	Server	7.0 SQL	Server	7.0 SQL	Server	2000

See	Also

Replication	and	Upgrading

JavaScript:hhobj_1.Click()

Replication

SQL	Server	7.0	Publisher/Distributor	to	SQL	Server
6.5	Subscriber
You	can	implement	replication	from	a	Microsoft®	SQL	Server™	version	7.0
Publisher/Distributor	to	a	SQL	Server	6.5	Subscriber	using	either	SQL	Server
Enterprise	Manager	or	stored	procedures.	Both	creating	the	publication	and
creating	the	subscription	are	subject	to	certain	restrictions.

Creating	a	Publication
When	you	create	a	SQL	Server	7.0	publication	that	has	SQL	Server	6.5
subscriptions,	the	following	restrictions	apply:

Replicated	tables	cannot	contain	any	Unicode	or	uniqueidentifier	data
types.

Replicated	tables	cannot	have	names	longer	than	30	characters.

The	name	of	the	custom	stored	procedure	cannot	be	longer	than	21
characters.	When	creating	a	transactional	publication	that	has	only	SQL
Server	6.5	Subscribers,	the	Create	Publication	Wizard	defaults	to	using
custom	stored	procedures	to	apply	transactions	at	the	Subscriber.	This
configuration	is	applied	to	each	article	in	a	publication.	The	name	of	the
insert/update/delete	stored	procedures	to	be	created	and	called	at	the
Subscriber	defaults	to	the	table	name,	with	a	prefix	of	sp_Msins_,
sp_Msupd_,	or	sp_Msdel_.	If	a	published	table	name	is	longer	than	21
characters,	this	prefix	causes	the	custom	stored	procedure	name	to	be
too	long	to	be	created	on	a	SQL	Server	6.5	Subscriber.	The	work	around
is	to	change	the	default	custom	stored	procedure	names	so	that	they	are
30	characters	or	less.	This	is	done	by	going	to	the	Commands	tab	on
the	property	page	for	each	article	in	the	publication	and	changing	the
name	of	the	custom	stored	procedure.	Alternatively,	you	can	choose	not
to	use	custom	stored	procedures	at	the	Subscriber,	or	set	up
subscriptions	using	stored	procedures	(sp_addarticle),	where	it	is	more
efficient	to	override	the	defaults.

Creating	a	Subscription

Before	creating	a	subscription	from	a	SQL	Server	7.0	Publisher	to	a	SQL	Server
6.5	Subscriber,	you	must	run	Replp70.sql	at	the	Subscriber,	and	then	execute
sp_addpublisher70	at	the	Subscriber.	sp_addpublisher70	registers	the	SQL
Server	7.0	Publisher	at	the	SQL	Server	6.5	Subscriber	(a	necessary	step	for	SQL
6.x	replication).	Replp70.sql	is	located	in	the	\Microsoft	SQL
Server\Mssql\Install	directory.	sp_addpublisher70	takes	two	parameters:
@publisher	and	@dist_account.	@publisher	is	the	name	of	the	SQL	Server
7.0	Publisher.	@dist_account	is	the	domain	account	name	that	SQL	Server
Agent	runs	under	at	the	SQL	Server	7.0	Distributor.	For	example,	the	syntax	may
look	as	follows:

EXEC	sp_addpublisher70	'PUBSERV',	'REDMOND\repladmin'

It	is	also	necessary	to	enable	a	SQL	Server	6.5	subscribing	database	for
replication.	This	can	be	done	through	the	SQL	Server	Enterprise	Manager	in
SQL	Server	6.5,	or	by	executing:

EXEC	sp_dboption	<dbname>,	'subscribed',	true

SQL	Server	7.0	replication	supports	push	subscriptions	to	SQL	Server	6.5
servers,	but	does	not	support	pull	subscriptions	from	SQL	Server	Enterprise
Manager	6.5.	To	configure	a	push	subscription	to	a	SQL	Server	6.5	Subscriber,
you	must	first	register	the	Subscriber	at	the	Publisher.	You	can	do	this	using	the
SQL	Server	Enterprise	Manager	in	SQL	Server	7.0,	or	executing
sp_addsubscriber.

Note		Subscribers	running	SQL	Server	6.5	do	not	support	nullable	bit	columns,
so	NULL	values	in	bit	columns	published	by	a	Publisher	running	SQL	Server
7.0	or	SQL	Server	2000	cannot	be	represented	at	the	Subscriber.	If	you	have
Subscribers	running	SQL	Server	6.5	and	you	need	to	use	nullable	bit	columns,
use	custom	stored	procedures	to	change	incoming	NULL	values	to	0.

Replication

SQL	Server	7.0	Publisher/Distributor	to	SQL	Server
6.0	Subscriber
Replication	from	a	Microsoft®	SQL	Server™	version	7.0	Publisher/Distributor
to	a	SQL	Server	6.0	Subscriber	is	implemented	in	much	the	same	way	as	to	a
SQL	Server	6.5	Subscriber.	The	only	difference	is	that	the	SQL	Server	6.0
Subscriber	must	be	configured	as	an	ODBC	data	source	rather	than	as	a	native
SQL	Server	Subscriber.

Replication

SQL	6.5	Publisher/Distributor	to	SQL	Server	7.0
Subscriber
Microsoft®	SQL	Server™	version	7.0	can	act	as	a	Subscriber	to	a	SQL	Server
6.5	Publisher.	You	must	add	the	SQL	Server	7.0	Server	as	a	Subscriber	at	the
SQL	Server	6.5	publishing	server.

This	action	will	also	add	an	entry	in	the	console	tree	of	SQL	Server	Enterprise
Manager.	This	is	for	replication	purposes	only,	and	you	cannot	administer	this
server	using	SQL	Server	Enterprise	Manager	in	SQL	Server	6.5.	If	you	click	this
server	in	the	console	tree,	the	following	warning	message	will	be	returned	(and
can	be	ignored	for	replication	purposes):

A	connection	cannot	be	established	to	<SERVER>	-	(SQL	Server)	You	must	upgrade	your	SQL	enterprise	Manager	and	SQL-DMO	(SQLOLE)	to	version	7.0	(SQLDMO)	to	connect	to	this	server

You	cannot	use	the	replication	topology	or	pull	subscription	features	of	SQL
Server	Enterprise	Manager	in	SQL	Server	6.5	to	manage	the	SQL	Server	7.0
Subscriber.

If	you	did	not	upgrade	the	ODBC	driver	at	the	Distributor	(thus	using	the	SQL
Server	6.5	ODBC	driver),	you	may	encounter	a	login	failure	when	the
Distribution	Agent	connects	to	the	SQL	Server	7.0	Subscriber.	You	should
upgrade	the	ODBC	driver	to	successfully	start	the	SQL	Server	7.0	Subscriber.

To	publish	from	a	Publisher	running	SQL	Server	6.5	to	a	Subscriber	running
SQL	Server	7.0,	add	the	SQL	Server	Authentication	login,	repl_publisher,	with
a	blank	password	at	the	SQL	Server	7.0	Subscriber.

Replication

SQL	Server	6.5	Publisher	to	SQL	Server	7.0
Distributor
It	is	possible	to	configure	a	Microsoft®	SQL	Server™	version	6.5	Publisher	to
use	a	SQL	Server	7.0	installation	as	a	remote	Distributor.	This	topology	provides
a	way	to	stagger	the	upgrade	of	SQL	Server	installations	participating	in	a
replication	application.	In	addition,	when	using	a	SQL	Server	7.0	Distributor	to
service	a	SQL	Server	6.5	Publisher,	you	can	use	the	monitoring	capability	of
SQL	Server	7.0	replication.

You	can	configure	a	SQL	Server	6.5	Publisher	to	use	a	SQL	Server	7.0
Distributor	by	registering	the	SQL	Server	6.5	Server	in	SQL	Server	Enterprise
Manager	7.0	and	configuring	it	as	a	Publisher.

Replication

Replication	with	SQL	Server	2000	Windows	CE
Edition
Using	Microsoft®	SQL	Server™	2000	and	merge	replication,	you	can	publish
data	to	mobile	devices	running	SQL	Server	2000	Windows	CE	Edition	(SQL
Server	CE).	Merge	replication	is	suited	for	replication	with	mobile,	disconnected
Subscribers	because	it	allows	updates	to	be	made	at	the	Subscriber	while	the
Subscriber	is	disconnected	from	the	network	and	the	Publisher.	Later,	when	the
device	is	reconnected,	the	changes	made	at	the	Subscriber	can	be	merged	with
other	changes	made	at	the	Publisher	and	at	other	Subscribers.

Replication	with	SQL	Server	CE	is	possible	with	merge	publications	using
anonymous	subscriptions.	Administration	of	the	subscription	is	conducted	at	the
Subscriber,	and	information	about	the	Subscriber	running	SQL	Server	CE	and
the	subscription	is	not	stored	at	the	Publisher.

How	Replication	to	SQL	Server	CE	Works
Publishing	to	Subscribers	running	SQL	Server	CE	is	similar	to	publishing	to
other	types	of	Subscribers	using	anonymous	subscriptions.

Create	a	merge	publication,	and	on	the	Specify	Subscriber	Types	page	of	the
Create	Publication	Wizard,	select	Servers	running	SQL	Server	CE	as	a	type	of
Subscriber	that	can	subscribe	to	this	publication.	If	you	select	this	option,
anonymous	subscriptions	will	be	enabled	for	the	publication	automatically.

A	SQL	Server	CE	application	can	subscribe	to	the	publication	using	the	SQL
Server	CE	Replication	Object.	When	the	subscription	is	created,	the	initial
snapshot	is	applied	to	create	the	subscription	database	on	the	device	running
SQL	Server	CE.

Users	can	modify	data	in	the	subscription	database	online	or	offline.	When
reconnected,	the	data	modifications	made	at	the	Subscriber	are	sent	to	the
Publisher	and	merged	with	changes	made	at	the	Publisher	and	at	other
Subscribers.	Changes	made	at	the	Publisher	or	propagated	to	the	Publisher	since
the	last	synchronization	are	sent	to	the	Subscriber.

The	SQL	Server	CE	Replication	Object,	within	SQL	Server	CE,	controls	the

execution	of	the	SQL	Server	Merge	Agent	to	complete	synchronization.	If
conflicts	occur	because	of	changes	to	the	same	data,	it	will	resolve	the	conflicts
using	the	conflict	resolvers	you	chose	when	creating	the	publication.

For	more	information,	see	the	SQL	Server	CE	documentation.

See	Also

Anonymous	Subscriptions

Merge	Replication

Replication

Replication	Options
Replication	options	allow	you	to	configure	replication	in	a	manner	best	suited	to
your	application	and	environment.

Option
Type	of
Replication Benefits

Filtering
Published	Data

Snapshot
Replication

Transactional
Replication

Merge
Replication

Filters	allow	you	to	create	vertical	and/or
horizontal	partitions	of	data	that	can	be
published	as	part	of	replication.	By
distributing	partitions	of	data	to	different
Subscribers,	you	can:

Minimize	the	amount	of	data	sent
over	the	network.

Reduce	the	amount	of	storage
space	required	at	the	Subscriber.

Customize	publications	and
applications	based	on	individual
Subscriber	requirements.

Reduce	conflicts	because	the
different	data	partitions	can	be
sent	to	different	Subscribers.

Updatable
Subscriptions
(Immediate
Updating,
Queued
Updating)

Snapshot
Replication

Transactional
Replication

Immediate	updating	and	queued	updating
options	allow	users	to	update	data	at	the
Subscriber	and	either	propagate	those
updates	to	the	Publisher	immediately	or
store	the	updates	in	a	queue.

Updatable	subscriptions	are	best	for
replication	topologies	where	replicated

data	is	mostly	read,	and	occasionally
updated	at	the	Subscriber	when	Publisher,
Distributor,	and	Subscriber	are	connected
most	of	the	time	and	when	conflicts	caused
by	multiple	users	updating	the	same	data
are	infrequent.

Updatable
Subscriptions
(Merge
Replication)

Merge
Replication

Merge	replication	allows	users	to	update
data	at	the	Subscriber	or	Publisher	and
synchronize	changes	continuously,	on-
demand,	or	at	scheduled	intervals.

Merge	replication	is	well	suited	for
topologies	where	replicated	data	is
frequently	updated	at	the	Subscriber	even
when	the	Subscriber	is	disconnected	from
the	Publisher.	Conflicts	caused	by	multiple
users	updating	the	same	data	should	be
infrequent,	but	merge	replication	provides
a	rich	set	of	options	for	handling	conflicts
that	do	occur.	For	more	information,	see
Merge	Replication.

Transforming
Published	Data

Snapshot
Replication

Transactional
Replication

You	can	leverage	the	data	movement,
transformation	mapping	and	filtering
capabilities	of	Data	Transformation
Services	(DTS)	during	replication.	With
transformable	subscriptions,	you	can:

Create	custom	partitions	for
snapshot	and	transactional
publications.

Transform	the	data	as	it	is	being
published	with	data	type
mappings	(for	example,	integer	to
real	data	type),	column
manipulations	(for	example,

concatenating	first	name	and	last
name	columns	into	one),	string
manipulations,	and	functions.

Alternate
Synchronization
Partners

Merge
Replication

Alternate	synchronization	partners	allow
merge	Subscribers	to	synchronize	data
with	servers	other	than	the	Publisher	at
which	the	subscription	originated.	This
allows	the	Subscriber	to	synchronize	data
when	the	original	Publisher	is	unavailable,
and	is	also	useful	for	mobile	Subscribers
that	may	have	access	to	a	faster	or	more
reliable	network	connection	with	an
alternate	server.

Optimizing
Synchronization

Merge
Replication

By	optimizing	synchronization	during
merge	replication,	you	can	store	more
information	at	the	Publisher	instead	of
transferring	that	information	over	the
network	to	the	Subscriber.	This	improves
synchronization	performance	over	a	slow
network	connection,	but	requires
additional	storage	at	the	Publisher.

Replication

Filtering	Published	Data
Horizontal,	vertical,	dynamic,	and	join	filters	enable	you	to	create	partitions	of
data	to	be	published.	By	filtering	published	data,	you	can:

Minimize	the	amount	of	data	sent	over	the	network.

Reduce	the	amount	of	storage	space	required	at	the	Subscriber.

Customize	publications	and	applications	based	on	individual	Subscriber
requirements.

Avoid	or	reduce	conflicts	because	the	different	data	partitions	can	be
sent	to	different	Subscribers	(no	two	Subscribers	will	be	updating	the
same	data	values).

Row	and	column	filters	can	be	used	with	snapshot,	transactional,	and	merge
publications.	Row	filters	use	the	WHERE	clause	of	an	SQL	statement	and
restrict	the	rows	included	in	a	publication	based	on	specific	criteria.	Column
filters	restrict	the	columns	that	are	included	in	a	publication.

Dynamic	and	join	filters	extend	the	capabilities	of	merge	replication.	Dynamic
filters	are	row	filters	that	use	a	function	to	retrieve	a	value	from	the	Subscriber
and	filter	data	based	on	that	value.	The	filter	is	defined	once	for	a	publication,
but	the	qualifying	result	set	can	be	different	for	each	Subscriber	and	allows	the
user	at	a	Subscriber	to	receive	only	the	subset	of	data	customized	for	their	needs.

Join	filters	extend	a	row	filter	from	one	published	table	to	another.	A	join	filter
defines	a	relationship	between	two	tables	that	will	be	enforced	during	the	merge
process;	it	is	similar	to	specifying	a	join	between	two	tables.

Replication

Row	Filters
Using	row	filters,	you	can	specify	a	subset	of	rows	from	a	table	to	be	published.
Row	filters	can	be	used	when	only	specific	rows	need	to	be	propagated	to
Subscribers,	to	eliminate	rows	that	users	do	not	need	to	see	(such	as	rows	that
contain	sensitive	or	confidential	information),	or	to	create	different	partitions	of
data	that	are	sent	to	different	Subscribers.	For	those	applications	that	can,
publishing	different	partitions	of	data	to	different	Subscribers	can	also	help	avoid
conflicts	that	would	otherwise	be	caused	by	multiple	Subscribers	updating	the
same	data	values.

Row	filtering	is	convenient	because	it	can	be	applied	to	existing	applications
where	a	site-specific	attribute	is	present	to	filter	on	either	in	the	table	to	be
published	or	in	one	of	its	related	tables.

In	this	diagram,	the	published	table	is	filtered	so	that	only	rows	2,	3,	and	6	are
included	in	the	publication	sent	to	the	Subscriber.

Row	filters	are	available	with	snapshot	replication,	transactional	replication,	and
merge	replication.	Row	filters	in	transactional	publications	may	add	significant
overhead	because	the	article	filter	clause	is	evaluated	for	each	log	row	written
for	a	published	table	to	determine	whether	it	should	be	marked	for	replication.
Row	filters	in	transactional	publications	should	be	avoided	where	each	site	can
support	the	full	data	load,	the	overall	data	set	is	reasonably	small,	and	the
number	of	insert,	update,	and	delete	transactions	per	day	is	low.

Row	filters	in	snapshot	replication	and	transactional	replication	are	static	and	the
WHERE	clause	criteria	you	set	in	the	Create	Publication	Wizard	or	the
publication	properties	dialog	box	stays	the	same	until	you	modify	it.	If	you	had
two	Subscribers	that	require	different	rows	of	data	from	the	publishing	table,	you
would	need	two	different	publications	each	with	a	different	row	filter	to	retrieve
the	correct	rows	for	each	Subscriber.

Although	you	can	put	a	subquery	into	a	row	filter,	it	is	not	a	join	filter.	If	you
update	a	row	in	a	table	referenced	by	a	subquery,	the	query	will	not	be	re-
evaluated	and	the	row	will	not	be	propagated	as	part	of	replication.	Replication
join	filters	exist	only	for	merge	replication.	For	more	information,	see	Join

Filters.

An	alternative	to	creating	multiple	publications	is	to	use	a	dynamic	filter	for
merge	replication	or	create	a	transformable	subscription	with	a	custom	filter	for
snapshot	replication	or	transactional	replication	that	dynamically	creates	data
partitions	based	on	information	from	individual	Subscribers.	For	more
information,	see	Dynamic	Filters	and	Transforming	Published	Data.

Example

Because	the	sales	representatives	need	to	update	the	data	frequently	and	make
updates	while	connected	and	while	disconnected	from	the	Publisher,	the
replication	administrator	at	Northwind	decides	to	use	merge	replication	and
create	different	publications	with	row	filters	based	on	region.	The	publication
would	include	data	from	the	customers,	orders,	and	order	details	table.	For
example,	one	of	the	publications	would	be	restricted	for	the	Northwest	region	of
the	United	States.	In	the	Specify	Filter	dialog	box	in	the	Create	Publication
Wizard,	the	WHERE	clause	would	read:

SELECT	<published_columns>	FROM	[dbo].[Customers]	WHERE	Region	=
'WA'

Because	data	partitions	based	on	region	will	be	sent	to	Subscribers	that	have
exclusive,	logical	ownership	of	each	region,	conflicts	that	could	occur	when
multiple	Subscribers	update	the	same	data	will	be	avoided.	However,	conflicts
may	still	occur	if	the	Publisher	and	Subscriber	update	the	same	data.	For	more
information,	see	Merge	Replication	and	Merge	Replication	Conflict	Detection
and	Resolution.

An	alternate,	often	preferable	approach	to	this	type	of	situation	is	to	use	a
dynamic	filter	for	a	merge	publication	or	a	transformable	subscription	for	a
snapshot	or	transactional	publication.	For	more	information,	see	Dynamic	Filters
and	Transforming	Published	Data.

To	filter	publications	horizontally

Replication

Column	Filters
Column	filters	restrict	the	columns	to	be	included	as	part	of	a	snapshot,
transactional,	or	merge	publication.	Column	filters	can	reduce	the	time	it	takes	to
propagate	data	updates	to	Subscribers,	reduce	the	storage	space	needed	at	the
Subscriber,	and	limit	the	data	in	a	publication	to	data	that	is	needed	by	individual
Subscribers.

This	illustration	shows	a	publication	that	has	a	column	filter	to	restrict	all
columns	except	columns	A,	B,	and	D.

You	can	also	use	row	and	column	filtering	together,	as	illustrated	here.

When	you	add	a	column	to	a	vertical	partition,	the	table	structure	changes	and
any	INSERT	statements	on	the	publishing	table	will	require	column	lists.

Columns	that	cannot	be	vertically	filtered	from	a	publication	are:

Columns	with	primary	key	constraints.

Non-null	columns	without	a	default.

Columns	included	in	a	unique	index.

The	ROWGUID	column	for	merge	publications	and	the	ROWGUID
column	for	snapshot	or	transactional	publications	that	allow	immediate
updating	subscriptions.

For	snapshot	replication	and	transactional	replication,	you	can	use	transformable
subscriptions	to	create	custom	filters	that	produce	different	vertical	partitions	for
different	Subscribers	using	one	publication.	For	more	information,	see	Using
Transformable	Subscriptions	to	Create	Custom	Data	Partitions.

Note		If	the	snapshot	or	transactional	publication	allows	updatable	subscriptions

and	the	publication	has	a	column	filter,	you	cannot	filter	non-nullable	columns
without	defaults	from	the	publication.

Example

Currently,	the	sales	information	is	distributed	to	all	sales	representatives,	but
Northwind	managers	do	not	want	the	sales	representatives	to	see	the	commission
amounts	paid.	The	replication	administrator	can	use	a	column	filter	to	exclude
the	COMMISSION	column	from	the	publication.

To	filter	publications	vertically

Replication

Dynamic	Filters
Dynamic	filters	allow	you	to	create	a	merge	publication	and	then	filter	data	from
the	publishing	table	providing	different	partitions	of	data	to	different
Subscribers.	Benefits	of	using	dynamic	filters	in	merge	publications	are:

Fewer	publications	stored	at	the	Publisher.	This	reduces	the	overhead	of
administering	multiple	publications.

Employing	user-defined	functions	in	the	dynamic	filter	enables	you	to
filter	criteria.

The	Subscriber	receives	only	the	information	needed	because	data	is
filtered	based	onthe	connection	properties	of	the	Merge	Agent	for	the
subscription.

In	the	dynamic	filter,	you	specify	a	Microsoft®	SQL	Server™	2000	function	or	a
user-defined	function	that	is	evaluated	differently	for	each	Subscriber	based	on
the	connection	properties	of	the	Merge	Agent	when	the	merge	process	is
replicating	data	between	the	Subscriber	and	Publisher.	The	most	common	system
functions	used	for	this	purpose	are	SUSER_SNAME()	and	HOST_NAME().
You	can	use	a	user-defined	function	in	a	dynamic	filter,	but	unless	the	user-
defined	function	definition	includes	SUSER_SNAME(),	HOST_NAME(),	or
the	user-defined	function	evaluates	one	of	these	system	functions	in	the	filter
criteria	(such	as	MyUDF(SUSER_SNAME()),	the	user-defined	function	will	be
static.

Dynamic	filters	are	row	filters	(restricting	rows	of	data)	and	are	created	on	a
single	table	basis	(they	do	not	cross	or	join	tables).	You	can,	however,	use	both
dynamic	filters	and	join	filters	in	the	same	publication	and	on	the	same
published	tables.

Dynamic	filters	are	available	only	with	merge	replication,	so	when	using	them,
you	should	consider	employing	a	dynamic	snapshot	as	well.	By	default,	dynamic
filtered	publications	rely	on	INSERTs	from	the	Publisher	to	apply	data	to	the
Subscriber	as	part	of	the	initial	snapshot.	Dynamic	snapshots	provide	the

performance	advantage	of	using	SQL	bulk	copy	program	(bcp)	files	to	apply
data	to	a	specific	Subscriber	when	applying	the	initial	snapshot	while	using
dynamic	filters.	For	more	information,	see	Dynamic	Snapshots.

If	you	are	using	snapshot	replication	or	transactional	replication,	you	can	create
custom	filters	using	transformable	subscriptions,	which	will	filter	data	based	on
individual	Subscriber	requirements.	For	more	information,	see	Transforming
Published	Data.

Example

Instead	of	creating	a	separate	publication	for	each	sales	representative,
Northwind	will	use	the	SUSER_SNAME()	function	in	the	dynamic	filter	on	the
CUSTOMERS	table	article	to	return	the	user	ID	of	the	sales	representative
assigned	to	each	customer	and	filter	published	data	based	on	it.	The
SALES_REP	column	could	be	added	to	the	CUSTOMERS	table	to	identify	the
sales	representative	responsible	for	servicing	each	customer.

The	CUSTOMERS	table	at	the	Publisher.

CustomerID CompanyName SALES_REP
GREAL Great	Lakes	Food	Market WestRegion\Robert	King
RATTC Rattlesnake	Canyon	Grocery Janet	Leverling

The	row	filter	for	the	CUSTOMERS	article	in	the	Northwind	merge	publication
is:

WHERE	SALES_REP	=	SUSER_SNAME()

If	the	merge	process	is	initiated	using	the	WestRegion\Robert	King	integrated
security	account,	the	SUSER_SNAME()	function	evaluates	to	this	account	in
the	dynamic	filter	only	when	the	Merge	Agent	is	run	by	the	user
WestRegion\Robert	King.	As	a	result,	Robert	King	receives	only	data	regarding
the	customers	for	which	he	is	assigned	as	a	sales	representative.

The	CUSTOMERS	table	at	the	Subscriber	after	using	the	dynamic	filter	when
publishing	data.

CUST_ID CUSTNAME SALES_REP
GREAL Great	Lakes	Food	Market West	Region\Robert

King

The	behavior	of	dynamic	filters	is	different	depending	on	whether	you	use
Windows	Authentication	or	SQL	Server	Authentication.	With	SQL	Server
Authentication,	the	–PublisherLogin	parameter	specified	in	the	Merge	Agent
command	line	(or	PublisherLogin	property	in	the	SQL	Merge	ActiveX®
Control)	is	the	key	property	returned	when	using	SUSER_SNAME()	in	a
dynamic	filter.

With	Windows	Authentication,	SQL	Server	Agent	initiates	the	merge	process
and	the	SUSER_SNAME()	function	in	SQL	Server	2000	returns	the	account
under	which	the	SQLServerAgent	service	is	running.	This	may	be	different	from
the	Microsoft	Windows	NT®	security	account	of	the	user.	If	the	merge	process
is	initiated	using	the	Microsoft	ActiveX	control	or	by	calling	Replmerge.exe
independently	of	SQL	Server	Agent,	the	SUSER_SNAME()	function	in	SQL
Server	2000	returns	the	login	account	of	the	user.

When	using	dynamic	filters,	the	filtering	logic	expression	is	evaluated	within	the
context	of	the	merge	connection	to	the	Publisher,	not	the	connection	to	the
Subscriber.	If	the	merge	process	uses	the	SQL	Server	2000	login	Janet	Leverling
to	connect	to	the	Publisher,	and	the	sa	login	to	connect	to	the	Subscriber,	the
SUSER_SNAME()	function	will	evaluate	to	Janet	Leverling	in	the	filtering
logic.

The	CUSTOMERS	table	at	the	Subscriber	(using	the	dynamic	filter).

CUST_ID CUSTNAME SALES_REP
RATTC Rattlesnake	Canyon	Grocery Janet	Leverling

Replication

Dynamic	Snapshots
Dynamic	snapshots	provide	a	performance	advantage	when	applying	the
snapshot	of	a	merge	publication	with	dynamic	filters.	Performance	is	improved
by	using	Microsoft®	SQL	Server™	2000	bulk	copy	files	to	apply	data	to	a
specific	Subscriber	instead	of	a	series	of	INSERT	statements.

Generating	a	dynamic	snapshot	for	a	subscription	also	allows	the	flexibility	of
saving	and	transferring	the	snapshot	on	removable	media	(such	as	a	CD-ROM)
and	applying	the	snapshot	at	the	Subscriber	from	the	media	rather	than	applying
the	initial	snapshot	over	a	slow	network	connection.

How	Dynamic	Snapshots	Work
When	dynamic	filters	are	used	in	merge	publications,	data	is	filtered	from	the
publishing	table	based	on	the	connection	properties	of	the	Merge	Agent	for	the
publication	during	the	merge	process.	By	default,	dynamically	filtered
publications	rely	on	INSERTs	from	the	Publisher	to	apply	data	to	the	Subscriber
as	part	of	the	initial	snapshot.	This	can	be	a	lengthy	and	resource-intensive
process	because	the	Merge	Agent	will	have	to	determine	row-by-row	which	data
to	include	in	the	snapshot	based	upon	the	dynamic	filter	criteria.

Dynamic	snapshots	provide	the	performance	advantage	of	using	SQL	bulk	copy
program	(bcp)	files	to	apply	data	to	a	specific	Subscriber	when	applying	the
initial	snapshot	while	using	dynamic	filters.	When	you	create	a	dynamic
snapshot,	you	pre-generate	a	snapshot	that	will	be	customized	to	a	specified
Subscriber.	Because	the	data	values	are	already	copied	and	extracted,	applying
the	snapshot	will	be	just	as	fast	as	applying	snapshots	without	dynamic	filters.
There	is,	however,	additional	time	and	space	required	when	generating	and
storing	the	dynamic	snapshot.

Although	it	takes	longer	to	prepare	a	dynamic	snapshot	(you	will	need	to
generate	two	snapshots),	the	process	of	applying	the	snapshot	at	Subscribers	is
faster	than	applying	a	standard	snapshot	for	a	dynamically	filtered	merge
publication.	You	will	need	to	generate	a	standard	snapshot	first,	before	the
dynamic	snapshot	is	created	by	filtering	the	standard	snapshot.

Dynamic	snapshots	can	be	implemented	using	SQL	Server	Enterprise	Manager
and	the	Create	Publication	and	Create	Dynamic	Snapshot	Job	wizards,	Transact-
SQL	system	stored	procedures	and	scripts,	Microsoft	ActiveX®	controls	or
SQL-DMO.

Dynamic	Snapshot	Considerations
When	planning	for	dynamically	filtered	merge	publications	and	dynamic
snapshots,	consider:

Dynamic	snapshots	can	be	used	with	all	types	of	subscriptions.	You	can
generate	the	dynamic	snapshot	using	the	Create	Dynamic	Snapshot	Job
Wizard	and/or	running	the	Snapshot	Agent	with	the	appropriate
parameters.	Applying	a	dynamic	snapshot	is	done	using	the	Merge
Agent	or	Merge	ActiveX	Control	and	setting	the
DynamicSnapshotLocation	properties.

You	can	use	the	–DynamicSnapshotLocation	command	line	parameter
for	the	Merge	Agent	or	the	DynamicSnapshotLocation	property	in	the
Merge	ActiveX	Control	to	apply	a	pre-generated	dynamic	snapshot.

Dynamic	filters	and	dynamic	snapshot	are	available	only	with	merge
replication.

To	generate	a	dynamic	snapshot,	the	publication	must	be	enabled	for
dynamic	filters	and	a	standard	snapshot	must	be	generated.

Dynamic	snapshot	files	will	also	be	compressed	if	the	standard	snapshot
is	compressed.	To	compress	a	standard	snapshot,	and	therefore	the
dynamic	snapshot,	open	publication	properties,	and	on	the	Snapshot
Location	tab,	select	Generate	snapshots	in	the	following	location,
specify	a	snapshot	location	in	the	text	box,	and	then	select	Compress
snapshot	files	in	this	location.

The	login	specified	as	the	value	of	the	Publisher	login	must	be	in	the

Publication	Access	List	(PAL)	or	be	a	member	of	the	publication
database	sysadmin	role	or	db_owner	group.	This	login	can	be	specified
in	the	Create	Dynamic	Snapshot	Job	Wizard	or	by	using	the	-
DynamicFilterLogin	parameter	of	the	Snapshot	Agent.

Because	SQL	Server	adds	and	drops	temporary	logins	in	the	Snapshot
Agent,	the	Publisher	login	of	the	Snapshot	Agent	must	be	a	member	of
the	securityadmin	server	role	and	be	a	member	of	the	db_owner	group
on	the	publication	database	to	be	able	to	generate	dynamic	snapshots.	

Dynamic	filter	logins	specified	for	dynamic	snapshot	generation	must
be	members	of	the	corresponding	publication	access	list	(PAL).

SQL	Server	on	the	Publisher	must	be	running	under	mixed	security
mode.

Changing	publication	properties	without	regenerating	a	standard
snapshot	for	a	dynamically	filtered	publication	will	invalidate	all
subsequent	dynamic	snapshots	that	are	generated.

For	example,	if	you	have	a	sales	representative	who	receives	customer
management	information	based	on	a	SalesPersonLogin,	which	is	really	the
integrated	login	used	at	the	Subscriber	to	connect	to	the	Publisher.	In	this
example,	there	are	two	users,	DOMAIN\JohnSmith	and	DOMAIN\BobJohnson.
The	administrator	of	the	Publication	can	specify	the	-DynamicFilterLogin
property	of	the	Snapshot	Agent	to	be	DOMAIN\JohnSmith	and	generate	a
dynamic	snapshot	for	the	user	named	John	Smith.	Similarly,	they	can	specify	the
–DynamicFilterLogin	property	to	be	DOMAIN\BobJohnson	and	generate	the
snapshot	for	the	user	named	Bob	Johnson.	However,	the	dynamic	filter	must	be
expressed	using	the	SUSER_SNAME()	function	for	this	to	occur.

If	the	dynamic	filter	used	previously	was	SalesPersonLogin	=
SUSER_SNAME(),	the	dynamic	filter	must	now	be	SalesPersonLogin	=
SUSER_SNAME()	to	use	the	dynamic	snapshot	functionality.

Do	not	use	parameters	in	the	SUSER_SNAME()	system	function	used

with	dynamic	snapshots,	such	as	'SUSER_SNAME(SID)'.

Functions	that	implicitly	rely	on	SUSER_SNAME()	or	the	current	user,
such	as	USER_NAME(),	CURRENT_USER(),	SYSTEM_USER(),
USER_ID(),	or	SUSER_SID()	will	not	work	as	expected	and	should
not	be	used	with	dynamic	snapshots	(use	SUSER_SNAME()	or
HOST_NAME()	instead).

You	can	use	user-defined	functions	in	a	dynamic	filter;	however,	if	the
user-defined	filter	evaluates	to	the	same	value	for	all	Subscribers,	it	is	a
type	of	static	filter,	and	there	is	no	need	to	use	dynamic	snapshots
because	all	Subscribers	would	receive	the	same	snapshot	of	data.

You	can	use	the	SUSER_SNAME()	system	function	nested	in	a	user-
defined	function	in	the	filter	criteria	for	a	dynamic	filter,	and	you	can
use	a	dynamic	snapshot	(for	example,	MyUDF(SUSER_SNAME())
where	the	MyUDF	user-defined	function	evaluates	the
SUSER_SNAME()	system	function).	The	system	function	must	be
visible	in	the	dynamic	filter	criteria.	If	the	system	function	exists	in	the
definition	of	the	user-defined	function,	and	you	enter	only	the	user-
defined	function	in	the	dynamic	filter,	you	will	not	be	able	to	use	a
dynamic	snapshot.

To	create	a	dynamic	snapshot

Replication

Validate	Subscriber	Information
With	merge	replication	dynamic	filters,	you	use	a	function	that	references
Subscriber	information.	Microsoft®	SQL	Server™	2000	validates	Subscriber
information	based	on	that	function	before	each	merge.	This	ensures	that
information	is	partitioned	consistently	with	each	merge.

For	example,	when	a	publication	is	dynamically	filtered	using	the	function
SUSER_SNAME(),	the	Merge	Agent	applies	the	initial	snapshot	to	each
Subscriber	based	on	data	that	is	valid	for	the	SUSER_SNAME()	expression.		

When	the	Subscriber	reconnects	to	the	Publisher	for	the	next	synchronization,
the	Merge	Agent	validates	the	information	at	the	Subscriber	and	ensures	that	the
same	partitions	are	synchronized	as	was	originally	sent	as	part	of	the	initial
snapshot.	If	the	Merge	Agent	detects	that	the	filtering	expression	returns	a
different	value,	the	merge	fails.	Because	the	value	of	the	function	used	in	the
dynamic	filter	has	changed,	the	subscription	at	the	Subscriber	may	need	to	be
reinitialized	or	the	original	login	or	host_name	value	must	be	used	before
synchronization	will	be	permitted.	This	will	prevent	problems	that	may	arise	if
the	merge	settings	of	a	Subscriber	are	changed.

You	can	choose	to	create	the	dynamic	filter	and	then	validate	Subscriber
information	while	creating	a	publication	using	the	Create	Publication	Wizard	or
after	the	publication	is	created	and	enabled	for	dynamic	filters	by	using	the
publication	properties.

Example

If	a	laptop	used	by	Northwind	sales	representative	Bob	Jones	is	the	Subscriber	to
the	merge	publication	with	the	dynamic	filter,	each	time	Bob	Jones	logs	in	and
synchronizes	data	with	the	Publisher,	he	will	receive	data	based	only	on	the	user
ID	he	enters	when	logging	on	to	his	laptop.	Because	he	is	a	sales	representative
receiving	customer	and	orders	information,	he	receives	data	only	for	the
customers	he	services.

To	validate	Subscriber	information	using	the	Create	Publication	Wizard

Replication

Join	Filters
Join	filters	allow	cross	table	relationships	to	be	used	in	merge	replication	filters
when	the	filter	of	one	table	is	based	on	another	table	in	the	publication.	A	join
filter	defines	a	relationship	between	two	tables	that	will	be	enforced	during	the
merge	process;	it	is	similar	to	specifying	a	join	between	two	tables.	The	join
filter	names	two	articles,	and	specifies	the	join	condition	to	represent	the
relationship	between	the	two	tables	in	the	articles.	The	join	condition	is	usually
in	the	form:

ARTICLE1_TABLE.COLUMN	=	ARTICLE2_TABLE.COLUMN

Join	filters	are	typically	used	in	conjunction	with	row	filters	and	allow	the	merge
process	to	maintain	the	referential	integrity	between	the	two	tables.	If	a	table
published	with	a	row	filter	is	referenced	by	a	foreign	key	in	another	published
table,	the	foreign	key	table's	article	must	have	a	join	filter	to	represent	the
referential	dependency	on	the	primary	key	table	article.

SQL	Server	Enterprise	Manager	uses	this	rule	when	creating	a	publication	to
suggest	the	join	filter	logic	automatically	for	the	foreign	key	table	based	in	the
foreign	key	reference.	For	this	reason	and	also	for	ease	of	use,	it	is	recommended
that	you	declare	the	proper	primary	key	to	foreign	key	relationships	and	then	let
the	join	filters	be	generated	automatically	when	you	create	a	publication	using
the	Create	Publication	Wizard.

Note		The	syntax	for	creating	FOREIGN	KEY	constraints	with	CREATE
TABLE	or	ALTER	TABLE	allows	the	NOT	FOR	REPLICATION	option.	When
this	option	is	set,	Microsoft®	SQL	Server™	2000	assumes	that	the	reference	was
validated	when	the	user	made	the	data	change;	therefore,	SQL	Server	2000	does
not	perform	the	extra	processing	steps	to	verify	the	reference	when	the	merge
process	synchronizes	the	data.	If	this	option	is	used,	a	merge	filter	must	be
defined	to	avoid	invalid	foreign	key	rows	at	the	subscriber.

Join	filters	are	not	limited	strictly	to	primary	key/foreign	key	relationships.	The
join	filter	can	be	based	on	any	comparison	logic	that	associates	the	data	in	the
two	article	tables,	but	the	logic	should	use	indexed	columns	if	possible	for	best
performance.

The	merge	process	has	special	performance	optimizations	depending	on	whether
the	join	condition	is	based	on	a	unique	column,	as	is	the	case	when	the	join	filter
represents	a	foreign	key	relationship.	If	the	join	condition	is	based	on	a	unique
column,	the	join_unique_key	property	should	be	set	for	the	article	for	best
performance.

Although	you	can	put	a	subquery	into	a	row	filter,	it	is	not	a	join	filter.	If	you
update	a	row	in	a	table	referenced	by	a	subquery,	the	query	will	not	be	re-
evaluated	and	the	row	will	not	be	propagated	as	part	of	replication.	Replication
join	filters	exist	only	for	merge	replication.

WARNING		Join	filters	with	several	tables	(such	as	dozens	or	hundreds	of	tables)
will	seriously	impact	performance	during	merge	processing.	It	is	recommended
that	if	you	are	generating	join	filters	of	five	or	more	tables	that	you	consider
other	solutions.	Another	strategy	might	be	to	not	filter	tables	which	are	primarily
lookup	tables,	smaller	tables,	and	tables	that	are	not	subject	to	change.	Make
those	tables	part	of	the	publication	in	their	entirety.	It	is	recommended	that	you
use	join	filters	only	between	tables	for	which	it	is	important	they	carefully
partition	among	Subscribers.

Example

The	CUSTOMERS	table

CustomerID CustomerName Status
ALFKI Alfreds	Futterkiste Active
ANATR Ana	Trujillo	Emparedados.	.

.
Inactive

ANTON Antonio	Moreno	Taqueria Active

The	ORDERS	table

OrderID CustomerID OrderDate
10643 ALFKI 1997-08-25
11077 RATTC 1998-05-06
10926 ANATR 1998-03-04
11000 RATTC 1998-04-06
11010 REGGC 1998-04-09

10569 RATTC 1997-06-16

The	join	filter	for	these	tables	would	be	defined	for	the	ORDERS	article.	The
join	article	would	be	the	CUSTOMERS	article,	and	the	join	filter	clause	would
be:

CUSTOMERS.CUSTOMERID=ORDERS.CUSTOMERID

If	the	CUSTOMERS	table	article	in	the	publication	has	a	row	filter	clause	of
Status	=	'Active',	the	merge	process	publishes	only	the	Alfreds	Futterkiste	and
Antonio	Moreno	Taqueria	customer	data	to	the	Subscriber.

If	no	join	filter	is	present	to	restrict	the	ORDERS	table	data	to	the	filtered
customers,	the	merge	process	fails	with	a	primary	key	violation	for	the
CustomerID	column	in	the	ORDERS	table.	This	is	because	the	process	attempts
to	insert	the	inactive	customers'	transaction	rows	that	have	no	valid	CustomerID
in	the	CUSTOMERS	table	at	the	Subscriber.

The	ORDERS	table	data	with	no	join	filter	applied	to	the	Subscriber.

OrderID CustomerID OrderDate
10643 ALFKI 1997-08-25
11077* RATTC 1998-05-06
10926 ANATR 1998-03-04
11000* RATTC 1998-04-06
11010* REGGC 1998-04-09
10569* RATTC 1997-06-16
*These	rows	violate	the	foreign	key	on	the	CustomerID	column	at	the	Subscriber.

To	avoid	this	problem,	add	a	join	filter	to	the	ORDERS	table	that	represents	the
referential	dependence	on	the	CUSTOMERS	table.	The	merge	process	replicates
only	the	ORDERS	data	for	the	active	customers.

The	CUSTOMERS	table	at	the	Publisher.

CustomerID CustomerName Status
ALFKI Alfreds	Futterkiste Active
ANATR Ana	Trujillo	Emparedados.	. Inactive

.
ANTON Antonio	Moreno	Taqueria Active

The	ORDERS	table	at	the	Publisher.

OrderID CustomerID OrderDate
10643 ALFKI 1997-08-25
11077 RATTC 1998-05-06
10926 ANATR 1998-03-04
11000 RATTC 1998-04-06
11010 REGGC 1998-04-09
10569 RATTC 1997-06-16

The	CUSTOMERS	table	at	the	Subscriber	with	a	row	filter	clause	for	Active
customers.

CustomerID CustomerName Status
ALFKI Alfreds	Futterkiste Active
ANTON Antonio	Moreno	Taqueria Active

The	ORDERS	table	at	the	Subscriber	with	a	join	filter	to	Active	customers.

OrderID CustomerID OrderDate
10643 ALFKI 1997-08-25
10926 ANTON 1998-03-04

Replication

User-Defined	Functions	and	Static	Filters
User-defined	functions	are	subroutines	composed	of	encapsulated	sets	of
Transact-SQL	logic.	You	can	use	them	in	row	static	or	dynamic	filters.	

By	accessing	user-defined	functions,	you	increase	your	filtering	capability
because	you	can	create	filters	based	on	frequently	performed	logic,	table-driven
business	rules,	or	any	set	of	complex	instructions	that	returns	a	value.

You	can	specify	user-defined	functions	that	return	a	scalar	value	(such	as	int,
char,	or	decimal)	when	filtering	horizontally	(row	filtering	replicates	a	subset	of
the	rows	in	a	table)	in	snapshot	replication,	transactional	replication,	or	merge
replication.

To	create	a	user-defined	function	for	use	as	a	publication	filter,	use	the	CREATE
FUNCTION	command	on	the	database	containing	the	data	you	want	to	publish,
and	build	a	function	with	Transact-SQL.	You	can	then	use	the	function	in	a	filter
when	you	create	a	new	publication	using	the	Create	Publication	Wizard	or	when
configuring	an	existing	publication	using	the	publication	properties	dialog	box.
If	the	publication	has	subscribers,	you	must	drop	all	subscriptions	to	the
publication	before	you	can	create	or	modify	row	filters.	You	do	not	have	to
replicate	the	function	to	use	it	as	part	of	a	filter	in	a	publication.

Example

CREATE	FUNCTION	fn_wknum(@Parm	datetime)
RETURNS		int
AS
BEGIN
		DECLARE	@ReturnVar	int
		SELECT	@ReturnVar	=	CAST((DATEPART(dy,@Parm)	+	DATEPART(dw,@Parm-DATEPART(dy,	@Parm)-1))/7+1	AS	int)
		RETURN	@ReturnVar
END

To	implement	the	fn_wknum	example	in	a	publication	based	on	the	Northwind
database,	create	the	function	on	that	database.	Start	the	Create	Publication
Wizard,	select	Define	Data	Filters,	and	then	in	the	Filter	Table	Rows	dialog

box,	click	the	properties	button	(...)	for	the	Orders	article.

In	the	Specify	Filter	dialog	box,	you	can	complete	the	WHERE	clause	to	filter
for	the	first	12	weeks	of	any	year	based	on	the	orderdate	column:

SELECT	*	FROM	[dbo].[Orders]	WHERE	dbo.fn_wknum(orderdate)	between	1	and	12

To	filter	with	a	user-defined	function	using	the	Create	Publication	Wizard

Replication

User-Defined	Functions	and	Dynamic	Filters
You	can	gain	greater	flexibility	when	filtering	merge	publications	and	improve
dynamic	filtering	performance	by	invoking	user-defined	functions	to	determine
the	different	partitions	of	data.	Dynamic	filters	allow	you	to	define	different
partitions	of	one	publication	replicated	to	different	Subscribers.

Dynamic	filters	can	use	an	intrinsic	function	(such	as	SUSER_SNAME())	that
is	evaluated	based	on	each	Subscriber	to	a	publication.	Different	partitions	of
data	are	replicated	to	different	Subscribers	based	on	the	value	returned	by	the
function.

User-defined	functions	expand	on	this	capability	by	allowing	you	to	define	the
function	used	in	the	dynamic	filter.	This	enhancement	allows	you	to	define
business	rules,	scalar,	or	table	values	to	use	when	partitioning	published	data
based	in	a	dynamic	filter.	

For	example,	in	a	sales	environment,	each	customer	is	assigned	a	region	code
representing	the	region	where	they	are	located.	Sales	representatives	in	the
Northwest	need	to	see	orders	only	for	the	customers	in	their	region.	To	publish
only	the	orders	placed	in	the	Northwest	to	the	Subscribers	in	that	region,	you
could	write	a	user-defined	function	that	retrieved	the	region	code	from	the
Subscriber	and	then	use	that	code	to	partition	the	data	dynamically	depending	on
which	Subscriber	is	receiving	the	data.

For	more	information,	see	Dynamic	Filters.

See	Also

CREATE	FUNCTION

User-Defined	Functions	and	Static	Filters

JavaScript:hhobj_1.Click()

Replication

Updatable	Subscriptions
With	snapshot	replication	or	transactional	replication,	replicated	data	is	by
default	read	only;	however,	you	have	the	ability	to	modify	replicated	data	at	the
Subscriber	by	using	updatable	subscriptions.	If	you	need	to	modify	data	at	the
Subscriber	using	snapshot	or	transactional	replication,	you	can	choose	one	of	the
following	options	depending	on	your	requirements.

Updatable	Subscription Requirements
Immediate	Updating Publisher	and	Subscriber	must	be

connected	to	update	data	at	the	Subscriber.
Queued	Updating Publisher	and	Subscriber	do	not	have	to	be

connected	to	update	data	at	the	Subscriber.
Updates	can	be	made	while	offline.

Immediate	Updating	with
Queued	Updating	as	a	Failover

Publisher	and	Subscriber	are	connected
most	of	the	time,	but	you	may
occasionally	need	to	make	updates	offline.

Replication

Immediate	Updating
Immediate	updating	allows	snapshot	replication	and	transactional	replication
Subscribers	to	update	the	replicated	data	at	the	Subscriber	and	send	those
changes	back	to	the	Publisher	and	to	other	Subscribers.	Immediate	updating
benefits	applications	in	which	snapshot	or	transactional	publications	are
preferred	but	occasional	updates	need	to	be	made	at	the	Subscriber.	If	using
immediate	updating,	the	Publisher	and	Subscribers	must	be	available	and
connected.

The	immediate-updating	option:

Ensures	that	there	are	no	conflicts.	A	Subscriber	can	perform	inserts,
updates,	and	deletes	on	replicated	data	only	if	it	can	perform	a	two-
phase	commit	protocol	(2PC)	transaction	with	the	Publisher.	The
Publisher	must	accept	every	update	before	it	is	made	at	the	Subscriber.
Conflicts	do	not	occur	because	they	are	detected	before	a	transaction	is
committed.

Initiates	two-phase	commit	(2PC)	automatically.

Replicates	the	committed	update	down	to	all	other	Subscribers	through
the	standard	snapshot	replication	or	transactional	replication
mechanism.

Lets	the	Subscriber	continue	working	without	waiting	for	the	successful
update	to	propagate	to	other	Subscribers.

Forestalls	the	requirement	for	the	updating	Subscriber	to	have	a
distribution	database	or	log	reader	and	get	involved	in	the
administrative	issues	of	replication	publishing.

Has	fewer	failure	points	with	every	site	than	with	full	2PC	involving
every	Subscriber,	and	it	is	also	more	scalable.

Because	there	are	no	conflicts,	there	is	no	loss	of	ACID	properties.	

Registers	a	uniqueidentifier	column	in	the	publishing	table	named
MSrepl_tran_version.	This	column	is	used	for	tracking	changes	to
replicated	data	and	to	perform	conflict	detection	at	the	Publisher.
Adding	this	uniqueidentifier	column	will	cause	INSERT	statements
without	column	lists	to	fail	and	increase	the	size	of	the	publishing	table.

If	you	were	using	the	immediate	updating	option	with	Microsoft®	SQL	Server™
version	7.0	and	are	upgrading	to	SQL	Server	2000,	there	are	additional	upgrade
requirements.	For	more	information,	see	Replication	and	Upgrading.

JavaScript:hhobj_1.Click()

Replication

How	Immediate	Updating	Works
When	a	publication	is	enabled	to	support	immediate	updating,	a	Subscriber	can
modify	replicated	data	if	the	transaction	can	be	performed	by	using	the	two-
phase	commit	protocol	(2PC)	with	the	Publisher.	The	2PC	transaction	back	to
the	Publisher	is	completed	automatically,	so	an	application	can	be	written	as
though	it	is	updating	just	one	site.

This	approach	does	not	have	the	large	availability	limitations	of	using	2PC	with
all	participating	sites	because	only	the	Publisher	needs	to	be	available.	After	the
change	is	made	at	the	Publisher	under	2PC,	it	will	eventually	be	published	to	all
other	Subscribers	to	the	publication.

2PC	is	managed	by	Microsoft	Distributed	Transaction	Coordinator	(MS	DTC).	If

the	update	can	be	performed	using	2PC,	the	Publisher	propagates	those	changes
to	all	other	Subscribers	according	to	the	Distribution	Agent	schedule	(or	at	the
time	of	the	next	snapshot	refresh,	if	it	is	a	snapshot	publication).	Because	the
Subscriber	making	the	update	already	has	the	data	changes	reflected	locally,	the
user	can	continue	working	with	the	updated	data	secure	in	the	guarantee	that
data	at	the	Publisher	also	reflects	the	change.	There	is	no	loss	of	ACID
properties.

An	application	using	immediate	updating	should	be	able	to	deal	with	a	failure	in
the	transaction,	just	as	it	would	in	a	non-replication	environment	for	issues	such
as	a	uniqueness	violation.	The	most	common	failure	is	that	data	has	been
changed	at	the	Publisher,	and	Subscribers	need	to	refresh	their	copies.	In	many
cases,	the	preferred	choice	might	be	to	retry	the	update	after	a	few	seconds.	If
the	transaction	is	successful,	the	Subscriber	can	work	with	the	changed	values
immediately,	and	know	that	the	update	has	been	accepted	at	the	Publisher
without	conflict	and	will	eventually	be	propagated	to	every	Subscriber	of	the
publication.	A	Subscriber	performing	updates	does	not	have	full	autonomy;
however,	because	the	Publisher	must	be	available	at	the	time	of	the	update.
Autonomy	is	higher	than	the	full	2PC	case	where	every	site	must	be	available	for
any	site	to	perform	changes.

Instead	of	using	a	timestamp	column	to	track	updates	(as	in	SQL	Server	7.0),	a
uniqueidentifier	column,	added	automatically	to	any	tables	used	in	the
publication,	is	used	to	track	updates.	The	addition	of	this	column	requires
INSERT	statements	to	have	column	lists.

The	uniqueidentifier	column	MSrepl_tran_version	is	used	in	place	of
timestamps	to	provide	a	reliable	method	of	detecting	conflicts	even	when	an
update	is	made	offline	(such	as	in	the	case	of	queued	updating).	Any	server	in
the	enterprise	can	assign	a	uniqueidentifier	and	it	will	not	be	duplicated.	If	an
update	occurs	and	the	uniqueidentifier	columns	do	not	match,	a	conflict	is
detected.	If	the	uniqueidentifier	columns	match,	the	update	is	completed.

Replication

Immediate	Updating	Components
Immediate	updating	is	supported	using:

Triggers

Stored	procedures

Microsoft	Distributed	Transaction	Coordinator	(MS	DTC)

Conflict	detection

Loopback	detection

Triggers

An	update	trigger	at	the	Publisher	updates	the	MSrepl_tran_version	column	for
the	updated	rows	when	needed.

Triggers	at	the	Subscriber	capture	transactions	and	submit	them	to	the	Publisher
using	a	remote	stored	procedure	call	within	a	2PC	that	is	controlled	by	MS	DTC.
The	triggers	are	created	using	the	NOT	FOR	REPLICATION	parameter	of	the
CREATE	TRIGGER	statement	so	that	changes	applied	by	the	Distribution	Agent
do	not	themselves	cause	the	trigger	to	fire.	The	logic	of	the	INSERT,	UPDATE,
and	DELETE	triggers	is:

Extract	values	from	inserted	or	deleted	tables	at	the	Subscriber.

Call	the	BEGIN	DISTRIBUTED	TRANSACTION	statement.

Execute	a	remote	procedure	to	call	the	relevant	stored	procedure	at	the
Publisher,	passing	values	from	inserted	or	deleted	tables.

Manage	identity	and	timestamp	values	at	the	Subscriber.	In	the	case	of
immediate	updating	subscriptions,	the	new	values	generated	at	the
Publisher	for	these	types	of	columns	are	propagated	to	the	Subscriber	as
part	of	the	2PC	transaction.

If	the	remote	stored	procedure	call	succeeds,	commit	the	transaction,
reflecting	exactly	the	same	changes	at	both	the	Subscriber	and	the
Publisher.

The	Publisher	then	ensures	that	the	changes	are	propagated	to	all	other
Subscribers.	Otherwise,	roll	back	the	transaction	and	return	an	error	to
the	user.

If	you	subscribe	to	a	transactional	publication	and	use	the	immediate
updating	option,	but	choose	not	to	initialize	the	subscription,	the
immediate	updating	triggers	are	not	automatically	applied	to	the
Subscriber.	Instead,	you	must	create	the	triggers	manually	at	the
Subscriber	using	sp_addsynctrigger.	You	can	use
sp_script_synctran_commands	to	script	out	the	immediate-updating
trigger	commands	at	the	Publisher	and	then	use	those	commands	when
running	sp_addsynctrigger	at	the	Subscriber.

When	creating	synchronization	triggers	for	immediate	updating	or
queued	updating	subscriptions,	additional	calls	to	the
sp_settriggerorder	system	stored	procedure	are	made	to	specify	the
firing	order	for	the	INSERT,	UPDATE,	and	DELETE	triggers	so	that
these	triggers	fire	first	during	synchronization.	If	there	is	already	a
trigger	set	to	fire	first,	an	error	will	be	returned	and	the	subscription	will
be	marked	inactive.	If	you	receive	this	error,	you	should	either	remove
the	existing	trigger	or	set	the	firing	order	to	none.	Restart	the
Distribution	Agent	so	that	the	initial	snapshot	and	triggers	are	applied	at
the	Subscriber.

Stored	Procedures

Stored	procedures	at	the	Publisher	apply	transactions	only	if	they	do	not	conflict
with	changes	made	at	the	Publisher	after	the	Subscriber	last	received	its	copy	of
the	changes.	If	a	conflict	is	detected,	the	transaction	is	rejected	and	rolled	back	at

both	sites.	INSERT,	UPDATE,	and	DELETE	procedures	are	created	for	each
article.	The	logic	of	the	immediate	updating	subscription	stored	procedure	at	the
Publisher	is:

Insert	procedure

Attempt	to	insert	rows.	Check	@@ROWCOUNT	and	@@ERROR,
and	return	success	or	failure	to	calling	trigger.	May	also	return	an
identity	value	to	the	Subscriber	if	required.

Delete	procedure

Attempt	to	delete	rows,	with	a	WHERE	clause	that	qualifies	the	current
row	with	values	from	deleted	table.	Check	@@ROWCOUNT	and
@@ERROR,	and	return	success	or	failure	to	the	calling	trigger.

Update	procedure.	Attempt	to	update	row,	with	a	WHERE	clause	that
qualifies	the	unique	index	and	uniqueidentifier	column	in	current	row,
with	unique	index	and	uniqueidentifier	value	from	deleted	table.
Check	@@ROWCOUNT	and	@@ERROR,	and	return	success	or
failure	to	the	calling	trigger.	May	also	return	an	identity	value	to	the
Subscriber	if	required.

Note		A	transaction	that	affects	multiple	rows	must	have	all	rows	reflected	at
both	sites	to	succeed.

Microsoft	Distributed	Transaction	Coordinator
Microsoft	Distributed	Transaction	Coordinator	(MS	DTC)	manages	the	two-
phase	commit	operation	between	a	Subscriber	and	Publisher	inside	a	Microsoft®
SQL	Server™	2000	remote	stored	procedure	call	using	the	BEGIN
DISTRIBUTED	TRANSACTION	statement	in	Transact-SQL.

Conflict	Detection
The	Publisher	stored	procedure	uses	the	uniqueidentifier	column	to	detect
whether	a	row	has	changed	after	it	was	replicated	to	the	Subscriber.	When	the
Subscriber	requests	an	immediate-update	transaction,	it	passes	the
uniqueidentifier	value	(generated	at	the	Subscriber)	to	the	Publisher,	along	with
all	other	columns	in	the	row.	Within	the	Publisher's	stored	procedure,	this	value

is	compared	to	the	current	uniqueidentifier	value	for	the	row	in	question.	If	the
values	are	the	same,	the	row	has	not	been	modified	after	it	was	replicated	to	the
Subscriber,	and	so	the	transaction	is	accepted.	If	a	conflict	is	detected,	the
transaction	is	rejected,	and	the	application	should	treat	it	like	any	transaction
rollback.	This	usually	means	that	the	Subscriber	needs	to	synchronize	with	the
latest	data	changes	at	the	Publisher	before	attempting	to	update	the	same	data
locally.

Loopback	Detection
If	a	transaction	is	applied	successfully	to	a	Subscriber	and	Publisher,	it	is
unnecessary	to	propagate	the	change	back	to	the	originating	Subscriber	using	the
standard	asynchronous	transaction	replication	mechanisms.	SQL	Server	2000
replication	has	a	loopback	detection	mechanism	to	handle	this	situation.

The	information	used	to	perform	loopback	detection	is	stored	on	a	transaction-
by-transaction	basis.	Consequently,	tables	that	reside	in	different	databases	at	the
Subscriber	with	immediate	updating	subscriptions	or	tables	that	reside	in
different	databases	across	Subscribers	with	immediate	updating	subscriptions
should	not	be	updated	in	the	same	transaction.

WARNING		Using	the	same	transaction	to	update	tables	that	reside	in	different
databases	at	the	Subscriber	or	to	update	tables	that	reside	in	different	databases
across	Subscribers	that	have	immediate	updating	subscriptions	will	delete	the
information	necessary	to	control	loopback	detection	and	may	cause	replication	to
fail.	Loopback	detection	is	tracked	at	the	transaction	level.	If	the	transaction
involves	more	than	one	subscription	database,	SQL	Server	will	attempt	to	mark
the	transaction	with	the	Subscriber	server	name	and	database	name	multiple
times.	The	last	entry	will	overwrite	all	previous	entries.

Replication

Immediate	Updating	Considerations
Immediate	updating	can	be	enabled	using	SQL	Server	Enterprise	Manager,	or
programmatically	by	using	Transact-SQL	system	stored	procedures	or	SQL-
DMO.

Immediate	Updating	Restrictions
The	following	restrictions	exist	with	immediate	updating:

Published	tables	must	have	a	uniqueidentifier	column.	The
uniqueidentifier	column	MSrepl_tran_version	is	added	to	the
publishing	table	automatically.	If	the	MSrepl_tran_version	column
already	exists	on	the	publishing	table,	it	will	be	used.

INSERT	statements	used	to	add	rows	of	data	to	a	table	must	include	a
column	list.

If	you	create	two	or	more	articles	on	the	same	table	in	a	publication
database	and	then	create	subscriptions	to	those	articles	in	the	same
subscription	database,	the	following	additional	restrictions	apply:

If	multiple	articles	based	on	the	same	table	are	in	one
publication	enabled	for	immediate	updating,	you	cannot	create
an	immediate	updating	subscription	to	this	publication.
Warning	message	21293	will	be	issued.

If	multiple	articles	based	on	the	same	table	are	in	different
publications	and	you	want	to	create	subscriptions	to	all
publications	in	the	same	subscription	database,	only	one	of	the
subscriptions	can	be	immediate-updating.

The	immediate	updating	subscription	connection	to	the	Publisher
(controlled	by	sp_link_publication)	can	use	security	mode	0	for	SQL
Server	Authentication	or	2	for	linked	server	definition	to	create	login

mappings.	The	publication	access	list	(PAL)	must	include	at	least	one
SQL	Server	Authentication	account	unless	you	use	security	mode	2	and
configure	delegation	(it	is	possible	to	set	up	Windows	Authentication	in
mode	2	by	configuring	delegation).	You	can	make	connections	to	the
Publisher	under	Windows	user	accounts	invoking	the	INSERT,
UPDATE,	and	DELETE	triggers	at	the	Subscriber	using	delegation.	To
set	up	delegation,	see	sp_addlinkedsrvlogin.

If	the	snapshot	or	transactional	publication	allows	immediate	updating
subscriptions	and	the	publication	has	a	column	filter,	you	cannot	filter
non-nullable	columns	without	defaults	from	the	publication.

Subscribers	using	immediate	updating	subscriptions	cannot	republish
data	to	other	Subscribers.

Data	Modifications	at	Subscribers

When	modifying	data	at	Subscriber	sites	using	the	immediate-updating
Subscribers	option,	consider	the	following	issues:

The	Subscriber	should	not	update	timestamp	or	identity	values
directly.	Those	values	are	generated	by	the	Publisher	as	part	of	the	2PC
transaction	between	the	Publisher	and	Subscriber.	Default	constraints
are	applied	to	these	columns	at	the	Subscriber.

The	Subscriber	cannot	update	or	insert	text	or	image	values	because
they	cannot	be	read	from	the	inserted	or	deleted	tables	inside	the	trigger.
Similarly,	the	Subscriber	cannot	update	or	insert	text	or	image	values
using	WRITETEXT	or	UPDATETEXT	because	the	data	is	overwritten
by	the	Publisher.	Instead,	you	could	partition	the	text	and	image
columns	into	a	separate	table	and	modify	the	two	tables	within	a
transaction.	You	could	use	merge	replication	to	synchronize	these
values	if	updates	to	text	or	image	columns	are	needed	at	the	Subscriber.
You	can	be	assured	there	are	no	conflicts	if	all	updates	follow	this
guideline	because	the	update	of	the	text	or	image	table	cannot	occur
unless	the	main	table	was	updated,	which	is	protected	by	2PC.

JavaScript:hhobj_1.Click()

When	loopback	detection	is	in	effect,	modified	rows	are	not	sent	back	to
the	originating	Subscriber	(thereby	reducing	overhead).

It	is	recommended	that	Subscriber	tables	have	at	least	a	unique	index
and	preferably	a	primary	key	for	snapshot	replication.	This	is	required
for	transactional	replication.	

Although	snapshot	replication	without	immediate	updating	does	not
require	the	use	of	primary	keys	in	a	table,	snapshot	replication	with
immediate	updating	or	transactional	replication	with	immediate
updating	requires	you	to	use	primary	keys	on	publishing	tables.
(Transactional	replication	always	requires	the	use	of	primary	keys	on
publishing	tables).

If	the	subscription	database	is	horizontally	filtered	and	there	are	rows	in
the	partition	that	existed	at	the	Subscriber	separate	from	the	data
propagated	to	the	Subscriber	by	the	Publisher,	and	that	partition	is	not	at
the	Publisher,	the	Subscriber	cannot	update	the	pre-existing	rows.
Attempting	to	update	these	rows	returns	an	error.	The	rows	should	be
deleted	from	the	table	and	added	again.

Configuration	Modes

The	immediate	updating	option	supports	either	dynamic	RPC	mode	or	static
RPC	mode	for	the	2PC	connection	from	the	synchronization	triggers	back	to	the
Publisher.	In	dynamic	RPC	mode,	synchronization	triggers	connect	dynamically
to	the	Publisher,	using	a	supplied	server	name,	login,	and	password.	This	mode
offers	increased	security	for	users	who	do	not	want	a	statically	defined	linked
server/remote	server	connection	from	a	Subscriber	to	Publisher.	It	is	also	easier
to	use	when	setting	up	push	subscriptions	because	the	Publisher	does	not	have	to
be	predefined	at	the	Subscriber.	In	static	RPC	mode,	synchronization	triggers
connect	to	the	Publisher	over	a	statically	defined	server	name	defined	as	a	linked
server	or	remote	server	in	the	sysservers	table.	This	entry	is	added	by	an
administrator	at	the	Subscriber	server.

The	configuration	mode	is	set	automatically	when	creating	push	or	pull
subscriptions:

When	setting	up	a	push	subscription	using	the	Push	Subscription
Wizard	in	SQL	Server	Enterprise	Manager	or	the	sp_addsubscription
stored	procedure,	the	default	configuration	uses	dynamic	RPC	at	the
Subscriber.	The	dynamic	RPC	defaults	to	using	the	sa	login	with	no
password.	This	is	done	to	avoid	sending	logins	or	passwords	over	the
network,	and	should	be	changed	at	the	Subscriber	using
sp_link_publication.

When	setting	up	a	pull	subscription	using	the	Pull	Subscription	Wizard
in	SQL	Server	Enterprise	Manager,	the	user	chooses	the	desired
configuration	mode.	If	you	choose	static	RPC,	the	Publisher	must	be
configured	as	a	linked	server	or	remote	server	at	the	Subscriber.	If	you
choose	dynamic	RPC,	you	must	supply	a	login	and	password	that	the
synchronization	triggers	will	use	to	connect	to	the	Publisher.

When	setting	up	a	pull	subscription	using	stored	procedures,	you	need
to	explicitly	call	sp_link_publication	after	calling
sp_addpullsubscription	at	the	Subscriber.

User-Defined	Triggers

If	you	are	adding	user-defined,	cascading	triggers	to	tables	that	are	published	and
allow	immediate	updating,	you	can	place	the	triggers	at	either	the	Publisher	or
Subscriber.	Adding	the	triggers	at	the	Publisher	requires	no	special	programming
considerations.	For	example,	you	may	have	two	tables,	customer	and	orders,
where	customerid	is	a	primary	key	in	the	customers	table	and	a	foreign	key	in
the	orders	table.	You	can	use	a	user-defined	trigger	on	the	customers	table	to
cascade	changes	to	the	customerid	in	the	orders	table.	Updating	the
customerid	in	the	customers	table	at	the	Subscriber	causes	the	immediate
updating	trigger	to	propagate	the	update	to	the	Publisher.	When	the	update	is
applied	to	the	Publisher,	the	user-defined	trigger	fires	at	the	Publisher,	and
cascades	the	update	to	the	orders	table	at	the	Publisher.	When	the	Distribution
Agent	runs,	the	update	to	the	orders	table	is	propagated	down	to	the	Subscriber.

The	cascaded	changes	are	reflected	accurately	at	the	Subscriber,	but	with	some
latency	because	the	orders	table	is	not	immediately	up	to	date.

If	your	application	requires	that	the	cascaded	table	at	the	Subscriber	immediately
reflect	the	change	in	the	cascading	table	(that	is,	avoid	the	latency	of	the	round-
trip	to	the	Publisher),	you	also	can	add	the	cascading	triggers	at	the	Subscriber.
However,	when	you	add	user-defined	triggers	at	both	the	Publisher	and	the
Subscriber,	both	sets	of	triggers	must	be	created	using	the	NOT	FOR
REPLICATION	option.	With	the	NOT	FOR	REPLICATION	option	active,	an
update	to	one	of	the	tables	at	the	Subscriber	is	cascaded	to	the	other	table	by	the
user-defined	trigger	and	then	propagated	to	the	Publisher	by	the	immediate-
updating	triggers	on	each	table.	Because	the	user-defined	cascading	triggers	at
the	Publisher	are	marked	NOT	FOR	REPLICATION,	these	triggers	do	not	fire.

Note		SQL	Server	2000	replication	supports	the	automatic	transferring	of
triggers	from	the	table	at	the	Publisher	to	the	table	at	the	Subscriber;	however,
they	will	not	be	marked	automatically	as	NOT	FOR	REPLICATION	on	the
Subscriber,	which	has	to	be	done	manually.	The	triggers	will	be	marked	as	NOT
FOR	REPLICATION	if	that	is	how	they	are	defined	on	the	Publisher.

You	can	also	add	user-defined	triggers	to	update	columns	in	the	row	currently
being	modified.	Programming	insert	and	update	triggers	is	challenging	because
the	immediate	updating	triggers	may	also	need	to	update	the	same	row.	For
example,	an	immediate	updating	trigger	must	insert	the	new	timestamp	or
identity	value	received	from	the	Publisher	as	part	of	a	two-phase-commit
transaction.

If	both	the	user-defined	trigger	and	the	immediate	updating	trigger	apply	an
update	to	the	same	row	and	you	have	not	included	a	subroutine	for	special	case
handling,	the	transaction	could	terminate.	Without	special	handling,	the	update
process	continues	in	a	loop	with	each	trigger	update	firing	the	other	trigger	until
the	maximum	nesting	level	(32)	is	reached	and	the	transaction	terminates.

To	avoid	this	situation,	you	must	allow	immediate	updating	insert	and	update
triggers	to	fire	before	any	user-defined	triggers.	The	user-defined	trigger	should
determine	if	it	is	being	fired	in	the	context	of	an	immediate	updating	trigger	and,
if	so,	terminate	without	firing.	Add	the	following	lines	of	code	to	the	beginning
of	the	trigger:

DECLARE	@retcode	int,	@trigger_op	char(10)

EXEC	@retcode	=	sp_check_for_sync_trigger	@table_id,	@tablename	sysname,	@trigger_op	OUTPUT
IF	@retcode	=	1	RETURN

Replication

Queued	Updating
Queued	updating	allows	snapshot	replication	and	transactional	replication
Subscribers	to	modify	published	data	without	requiring	an	active	network
connection	to	the	Publisher.

When	you	create	a	publication	with	the	queued	updating	option	enabled	and	a
Subscriber	performs	INSERT,	UPDATE,	or	DELETE	statements	on	published
data,	the	changes	are	stored	in	a	queue.	The	queued	transactions	are	applied
asynchronously	at	the	Publisher	when	network	connectivity	is	restored.

Because	the	updates	are	propagated	asynchronously	to	the	Publisher,	the	same
data	may	have	been	updated	by	the	Publisher	or	by	another	Subscriber	and
conflicts	can	occur	when	applying	the	updates.

Conflicts	are	detected	and	resolved	according	to	a	conflict	resolution	policy	that
is	set	when	creating	the	publication.	The	transaction	is	then	propagated	to	other
Subscribers	using	typical	replication	mechanisms	(loopback	detection	avoids
sending	the	update	to	the	Subscriber	that	originated	the	transaction).

Queued	updating	is	most	appropriate	for	applications	where	users	mostly	read
data	and	only	occasionally	update	data.	Subscribers	should	be	connected	most	of
the	time,	but	if	they	are	offline,	updates	can	continue	without	interruption.

Both	queued	updating	and	merge	replication	allow	updates	while	offline;
however,	there	are	significant	differences	between	the	two	features.	For	more
information,	see	Merge	Replication	or	Updatable	Subscriptions.

Replication

How	Queued	Updating	Works
When	you	create	a	publication	and	enable	it	for	queued	updating,	data
modifications	can	be	made	at	the	Subscriber	and	then	held	in	a	queue	until	they
can	be	applied	to	the	Publisher	and	then	propagated	to	other	Subscribers.	The
queue	is	implemented	as	a	Microsoft®	SQL	Server™	2000	table	but	on
Microsoft	Windows®	2000,	it	can	optionally	be	implemented	using	Microsoft
Message	Queuing.	For	more	information,	see	Queued	Updating	Components.

The	following	illustration	shows	how	triggers,	queues,	and	the	Queue	Reader
Agent	work	together	to	complete	this	process.

1.	 Updates	made	at	the	Subscriber	are	captured	by	triggers	on	the
subscribing	tables.	The	triggers	store	these	updates	in	a	queue,	which
by	default	is	a	SQL	Server	queue.	The	triggers	are	created
automatically	when	the	subscription	is	created.

2.	 If	you	are	using	SQL	Server	queues,	updates	will	be	stored	in	a	table
designated	as	the	queue	(called	MSreplication_queue),	which	is
created	automatically	when	the	subscription	is	configured.	If	you	are
using	Message	Queuing	version	2.0,	the	updates	will	be	stored	in	a
message	queue	at	the	Distributor.	If	the	Subscriber	is	disconnected
from	the	network,	it	can	continue	to	generate	messages	destined	for
other	computers.	Message	Queuing	stores	the	messages	locally,	and
automatically	sends	them	to	the	queue	at	the	Distributor	when	network
connection	is	restored.	

3.	 The	Queue	Reader	Agent	applies	queued	transactions	to	the
appropriate	publication.	When	using	SQL	Server	2000	queues,	the
queued	transactions	are	read	directly	from	the	queue	stored	on	the
Subscriber.	When	using	Message	Queuing,	the	queued	transactions	are
read	from	a	queue	stored	at	the	Distributor.

4.	 While	applying	the	queued	transactions,	conflicts	(if	any)	are	detected
and	resolved	according	to	a	conflict	resolution	policy	that	is	set	when
the	publication	is	created.	As	a	result,	compensating	commands	may
be	generated	to	rollback	a	transaction	to	a	Subscriber	using	the
standard	transactional	replication	distribution	process,	but	they	are	sent
only	to	the	Subscriber	that	caused	the	conflict.	

5.	 Any	changes	made	at	the	Publisher	are	propagated	to	all	other
Subscribers	according	to	the	Distribution	Agent	schedule.

Replication

Queued	Updating	Components
Triggers,	stored	procedures,	queues,	and	the	Queue	Reader	Agent	are	the
components	used	with	queued	updating.

Triggers
When	immediate	updating,	queued	updating,	or	immediate	updating	with	queued
updating	as	a	failover	is	enabled,	triggers	are	attached	to	the	replicated	table	at
the	Subscriber.	With	queued	updating,	the	triggers	capture	transactions	initiated
at	the	Subscriber,	and	then	package	the	transactions	into	messages	and	place
them	in	a	queue.	This	occurs	within	the	same	transaction	to	ensure	that	the
update	to	the	local	database	and	the	queuing	of	the	update	is	atomic.

The	triggers	are	created	using	the	NOT	FOR	REPLICATION	modifier	of	the
CREATE	TRIGGER	statement	so	that	the	changes	applied	by	the	Distribution
Agent	do	not	cause	the	trigger	to	fire.

If	you	subscribe	to	a	transactional	publication	and	use	the	queued	updating
option	but	do	not	initialize	the	subscription;	the	queued	updating	triggers	are	not
applied	to	the	Subscriber	automatically.	Instead,	you	must	create	the	triggers
manually	at	the	Subscriber	using	sp_addsynctrigger.Manual	initial
synchronization	of	a	queued	updating	subscription	is	discussed	later	in	this	topic.

When	creating	synchronization	triggers	for	immediate	updating	or	queued
updating	subscriptions,	additional	calls	to	the	sp_settriggerorder	system	stored
procedure	are	made	to	specify	the	firing	order	for	the	INSERT,	UPDATE,	and
DELETE	triggers	so	that	these	triggers	fire	first	during	synchronization.	If	there
is	already	a	trigger	set	to	fire	first,	an	error	will	be	returned	and	the	subscription
will	be	marked	inactive.	If	you	receive	this	error,	you	should	either	remove	the
existing	trigger	or	set	the	firing	order	to	none.	Restart	the	Distribution	Agent	so
that	the	initial	snapshot	and	triggers	are	applied	at	the	Subscriber.

Stored	Procedures
When	you	create	a	publication	and	enable	it	for	queued	updating	by	default,
stored	procedures	to	insert,	update,	and	delete	data	in	the	published	table	are

created	automatically	on	the	publication	database.

The	stored	procedures	are	called	by	the	Queue	Reader	Agent	to	apply
transactions	at	the	Publisher,	detect	conflicts,	and	if	needed,	generate
compensating	commands,	which	are	posted	to	the	distribution	database	and	then
delivered	to	the	Subscriber.	INSERT,	UPDATE,	and	DELETE	stored	procedures
are	created	for	each	article.

A	stored	procedure	for	logging	conflict	information	at	the	Publisher,	and
optionally	sending	conflict	information	to	relevant	Subscribers,	is	also	created	at
the	Publisher.	This	is	invoked	by	the	Queue	Reader	Agent	if	a	conflict	is
detected.

Storing	Messages	in	a	Queue
Subscribers	with	the	queued	updating	option	can	use	either	a	Microsoft®	SQL
Server™	2000	queue	or	Microsoft	Message	Queuing	version	2.0	on	Microsoft
Windows®	2000	Server	as	the	queuing	mechanism.	When	selecting	queued
updating,	the	default	is	a	SQL	Server	2000	queue,	which	is	available	to	all
instances	of	SQL	Server.	After	creating	the	publication,	you	can	change	the
queue	to	Message	Queuing	using	the	publication	properties	dialog	box.	This
must	be	done	before	activating	any	subscriptions	to	the	publication.

To	see	which	rows	have	changes	that	are	pending	in	a	queue,	execute
sp_getqueuedrows	in	the	subscription	database	at	the	Subscriber.

SQL	Server	Queue
When	using	SQL	Server	2000	queue,	each	Subscriber	has	its	own	queue	in	the
form	of	a	SQL	Server	2000	table	(MSreplication_queue)	in	the	subscription
database.	The	triggers	store	all	messages	in	the	SQL	Server	2000	queue	until	the
Subscriber	reconnects	to	the	network	after	updating	published	data.	The
Subscriber	and	the	Publisher	must	be	connected	and	available	for	the	updates	to
occur.

The	Subscriber	is	dependent	on	the	Queue	Reader	Agent	to	read	and	empty	the
queue.	The	Queue	Reader	Agent	reads	messages	on	a	Subscriber,	finds
modifications,	and	propagates	the	changes	to	the	Publisher.	It	then	repeats	this
process	at	each	Subscriber.

Using	SQL	Server	2000	queues	requires	that	all	three	servers	(Subscriber,
Distributor,	and	Publisher)	are	connected	and	available	when	queued	updates
need	to	be	applied	at	the	Publisher.	Updates	made	at	the	Subscriber	can	be
queued	without	the	Subscriber,	Distributor	and	Publisher	being	connected.	SQL
Server	2000	queues	at	the	Subscriber	can	be	monitored	using	the
sp_replqueuemonitor	stored	procedure.

SQL	Server	queues:

Work	with	all	SQL	Server	platforms	(Windows	98,	Windows	NT®	4.0,
and	Windows	2000).

Do	not	have	any	additional	components	that	need	to	be	installed.

Are	faster	for	updates	made	at	the	Subscriber	to	queue.

The	sp_getqueuedrows	stored	procedure	returns	a	result	set	consisting	of	rows
in	the	user	table	that	have	pending	updates	in	the	queue	not	yet	picked	up	by	the
Queue	Reader	Agent.	This	procedure	can	be	used	to	identify	the	rows	that	can	be
considered	tentative.

Microsoft	Message	Queuing
If	you	are	running	Windows	2000	Server	on	the	Distributor	and	Subscriber,	you
have	the	option	to	use	Microsoft	Message	Queuing	as	the	queuing	mechanism	at
the	Subscriber.	Message	Queuing	provides	additional	routing,	centralized
monitoring,	and	administrative	capabilities	beyond	what	is	available	with	SQL
Server	2000	queues.

When	using	Message	Queuing	as	the	queuing	mechanism,	the	update	is
packaged	as	a	message	and	is	placed	in	a	queue	on	the	Distributor	under	a	two-
phase	commit	protocol	(2PC)	transaction	managed	by	Microsoft	Distributed
Transaction	Coordinator	(MS	DTC).

When	the	Subscriber	is	disconnected	from	the	network,	Message	Queuing	stores
transactions	as	messages	in	a	cache	on	the	Subscriber	until	they	can	be	sent	to	a
corresponding	queue	on	the	Distributor.	You	must	enable	Message	Queuing	on
both	the	Subscriber	and	the	Distributor.	The	Queue	Reader	Agent,	which	runs	at

the	Distributor,	reads	the	queued	messages	asynchronously	and	applies	them	as
transactions	to	the	appropriate	publication.

Using	Message	Queuing	provides	some	advantages	over	SQL	Server	2000
queues.	In	addition	to	routing	capabilities,	it	offers	centralized	queue
administration	and	monitoring.	This	is	not	possible	with	SQL	Server	2000
queues	because	the	queues	are	distributed	at	each	Subscriber	instead	of
consolidated	at	the	Distributor.

Message	Queuing	provides	better	offline	capabilities	including	propagating
offline	changes	to	the	queue	at	the	Distributor	without	SQL	Server	running	on
the	Subscriber.	In	addition,	Message	Queuing	does	not	require	availability	of	the
Publisher	when	the	Subscriber	reconnects	to	the	network	after	updating
published	data.	Message	Queuing	propagates	messages	automatically	when	the
Subscriber	comes	online	without	relying	on	the	Queue	Reader	Agent	to	read	and
empty	the	queue.	It	will	also	be	a	better	choice	if	there	are	many	Subscribers.

You	will	need	to	install	Message	Queuing	on	each	Subscriber	and	the
Distributor.	Queued	updating	works	with	Message	Queuing	installed	in
workgroup	mode	on	Windows	2000.	This	eliminates	the	need	to	install	Message
Queuing	on	a	Windows	2000	domain	controller	and	should	be	the	preferred
installation	method	unless	you	have	other	Message	Queuing	requirements	that
preclude	using	workgroup	mode	(for	example,	Message	Queuing	in	workgroup
mode	does	not	allow	public	queues	and	cannot	use	Message	Queuing
authentication	or	encryption).

For	Message	Queuing	installed	in	workgroup	mode,	install	Message	Queuing	on
the	Distributor	and	on	the	Subscribers.	For	Message	Queuing	not	installed	in
workgroup	mode,	install	Message	Queuing	server	on	the	domain	controller	and
Message	Queuing	independent	client	on	the	Distributor	and	on	the	Subscribers.

To	install	Message	Queuing	on	the	Distributor	and	Subscribers

Replication

Queued	Updating	Considerations
When	using	queued	updating,	consider	the	following:

Queued	updating	is	supported	only	with	Subscribers	running	SQL
Server	2000.

If	you	create	two	or	more	articles	on	the	same	table,	and	then	create
subscriptions	to	those	articles	in	the	same	Subscriber	database,	the
following	restrictions	apply:

If	multiple	articles	based	on	the	same	table	are	in	a	single
publication	enabled	for	queued	updating,	you	cannot	create	a
queued	updating	subscription	to	this	publication.

If	multiple	articles	based	on	the	same	table	are	in	different
publications	and	you	want	to	create	subscriptions	to	all
publications	in	the	same	database,	only	one	of	the	subscriptions
can	be	queued	updating.

The	publication	access	list	(PAL)	must	include	at	least	one	SQL	Server
Authentication	account.

Subscribers	using	immediate	updating	or	queued	updating	cannot
republish	replicated	data	at	the	Subscriber.

If	a	transaction	at	the	Subscriber	involves	multiple	databases,
compensating	commands	are	generated	only	for	the	updates	affecting
the	subscription	database	in	case	of	a	conflict.

Tables	included	in	a	merge	publication	cannot	also	be	published	as	part
of	a	snapshot	or	transactional	publication	that	allows	queued	updating
subscriptions.

Modifying	Data	at	the	Subscriber

When	modifying	published	data	at	the	Subscriber,	consider	the	following:

The	Subscriber	cannot	update	or	insert	text	or	image	values	because
they	cannot	be	read	from	the	inserted	or	deleted	tables	inside	the	trigger.
Similarly,	the	Subscriber	cannot	update	or	insert	text	or	image	values
using	WRITETEXT	or	UPDATETEXT	because	the	data	is	overwritten
by	the	Publisher.	Instead,	you	could	partition	the	text	and	image
columns	into	a	separate	table	and	modify	the	two	tables	within	a
transaction.	Use	merge	replication	to	synchronize	these	values.	You
cannot	be	assured	there	are	no	conflicts	because	the	update	of	the	text
or	image	table	can	occur	if	the	data	is	not	well	partitioned.

INSERT	statements	used	to	add	rows	of	data	to	a	table	must	include	a
column	list.

It	is	recommended	that	Subscriber	tables	have	at	least	a	unique	index
and	preferably	a	primary	key	for	snapshot	replication.	This	is	required
for	transactional	replication.	

Although	snapshot	replication	without	immediate	updating	does	not
require	the	use	of	primary	keys	in	a	table,	snapshot	replication	or
transactional	replication	with	an	immediate	updating	subscription
requires	you	to	use	primary	keys	on	publishing	tables.	Although
snapshot	replication	does	not	require	the	use	of	primary	keys	in	a	table,
queued	updating	does	require	the	use	of	primary	keys.	

Updates	made	to	primary	key	columns	are	not	recommended	when
using	queued	updating	because	the	primary	key	is	used	as	a	record
locator	for	all	queries.	When	the	conflict	resolution	policy	is	set	to
Subscriber	Wins,	updates	to	primary	keys	should	be	made	with	caution.
If	updates	to	the	primary	key	are	made	at	both	the	Publisher	and	at	the
Subscriber,	the	result	will	be	two	rows	with	different	primary	keys.

For	example,	if	a	row	has	a	value	of	'Bill'	in	the	primary	key	column,	and	that
value	is	updated	to	be	'William'	at	the	Publisher	and	to	'Will'	at	the	Subscriber,
both	the	publication	database	and	the	subscription	database	will	end	up	with	two
rows	(one	with	the	primary	key	'William',	and	the	other	with	the	primary	key	of
'Will').	It	is	recommended	to	restrict	primary	key	updates	to	a	single	site	(for
example,	you	could	restrict	primary	key	updates	by	adding	an	update	trigger	at
the	Subscriber	that	prevents	updates	to	columns	participating	in	the	primary	key.
The	trigger	could	be	added	to	any	necessary	Subscribers	by	using	script
execution	before	or	after	applying	the	initial	snapshot).	

Updates	to	unique	keys	(including	primary	keys)	that	generate
duplicates	(for	example,	an	update	of	the	form	UPDATE	<column>
SET	<column>	=<column>+1)	are	not	allowed	and	will	be	rejected
because	of	a	uniqueness	violation.	This	is	because	set	updates	made	at
the	Subscriber	are	propagated	by	replication	as	individual	UPDATE
statements	for	each	row	affected.

If	the	Subscriber	database	is	partitioned	horizontally	and	there	are	rows
in	the	partition	that	exist	at	the	Subscriber	but	not	at	the	Publisher,	the
Subscriber	cannot	update	the	pre-existing	rows.	Attempting	to	update
these	rows	returns	an	error.	The	rows	should	be	deleted	from	the	table
and	added	again.

Manual	Initial	Synchronization	of	a	Queued	Updating
Subscription

If	you	subscribe	to	a	transactional	publication	that	allows	queued	updating
subscriptions,	but	you	do	not	have	the	subscription	initialized	automatically	by
SQL	Server,	all	of	the	objects	(custom	stored	procedures,	change	tracking
triggers,	and	conflict	table)	will	not	be	created.	You	will	need	to	create	them
manually	with	the	following	steps:

1.	 Script	the	creation	of	the	table	at	the	Publisher,	and	using	that	script,
create	the	table	in	the	subscription	database.	If	you	create	the	script
manually,	include	the	primary	key	constraint.

2.	 In	the	publication	database,	execute	the	following	stored	procedures:

sp_scriptinsproc	(specify	the	@article_id	parameter).

sp_scriptxupdproc	(specify	the	@article_id	parameter).

sp_scriptxdelproc	(specify	the	@article_id	parameter).

These	will	generate	scripts	for	custom	stored	procedures	to	be	applied	to	the
subscription	database.	Execute	these	scripts	in	the	subscription	database.	The
article	ID	value	can	be	obtained	by	executing	sp_helparticle.

3.	 	In	the	publication	database,	execute	the	following	system	stored
procedure:

sp_makeconflicttable	(specify	the	@publication	and
@article	parameters).

This	stored	procedure	returns	0	if	successful	and	1	if	not	successful.	This
generates	a	script	for	the	conflict	table	for	the	given	article.	Execute	this	script	in
the	subscription	database.

4.	 At	the	Subscriber,	execute	the	following	system	stored	procedure:

sp_addsynctriggers.	For	more	information,	see
sp_addsynctriggers.

JavaScript:hhobj_1.Click()

Replication

Queued	Updating	Conflict	Detection	and	Resolution
Because	queued	updating	allows	modifications	to	the	same	data	at	multiple
locations,	there	may	be	conflicts	when	data	is	synchronized	at	the	Publisher.
Conflict	detection	and	resolution	is	handled	differently	with	queued	updating
than	it	is	with	merge	replication.	With	queued	updating,	conflict	detection	and
resolution	is	based	on	maintaining	atomicity	of	the	transaction.	Because	of	this
requirement,	the	number	of	conflict	resolution	policies	that	can	be	defined	by	the
user	is	limited	as	compared	with	merge	replication,	which	provides	a	more
flexible	framework	for	conflict	resolution,	but	merge	replication	handles
conflicts	at	the	row	level,	not	at	the	transaction	level.

Microsoft®	SQL	Server™	2000	detects	the	conflict	when	changes	are
synchronized	with	the	Publisher.	It	then	follows	the	resolution	policy	you
selected	when	creating	the	publication.

Conflict	detection	and	resolution	can	be	a	time-consuming	and	resource-
intensive	process,	and	it	is	best	to	minimize	conflicts	in	the	application	by
creating	data	partitions	so	that	different	Subscribers	are	modifying	different
subsets	of	data,	and	to	prevent	a	user's	work	from	being	uncommitted	if	a
conflict	occurs.

Detecting	Conflicts
When	creating	a	publication	and	enabling	queued	updating,	SQL	Server	2000
adds	a	uniqueidentifier	column	(MSrepl_tran_version)	with	the	default	of
newid()	to	the	underlying	table.	When	published	data	is	changed	at	either	the
Publisher	or	the	Subscriber,	the	row	receives	a	new	globally	unique	identifier
(GUID)	to	indicate	that	a	new	row	version	exists.	The	Queue	Reader	Agent	uses
this	column	during	synchronization	to	determine	if	a	conflict	exists.

A	transaction	in	a	queue	maintains	the	old	and	new	row	version	values.	When
the	transaction	is	applied	at	the	Publisher,	the	GUIDs	from	the	transaction	and
the	GUID	in	the	publication	are	compared.	If	the	old	GUID	stored	in	the
transaction	matches	the	GUID	in	the	publication,	the	publication	is	updated	and
the	row	is	assigned	the	new	GUID	that	was	generated	by	the	Subscriber.	By

updating	the	publication	with	the	GUID	from	the	transaction,	you	have	matching
row	versions	in	the	publication	and	in	the	transaction.

If	the	old	GUID	stored	in	the	transaction	does	not	match	the	GUID	in	the
publication,	a	conflict	is	detected.	The	new	GUID	in	the	publication	indicates
that	two	different	row	versions	exist:	one	in	the	transaction	being	submitted	by
the	Subscriber	and	a	newer	one	that	exists	on	the	Publisher.	In	this	case,	another
Subscriber	or	the	Publisher	updated	the	same	row	in	the	publication	before	this
Subscriber	transaction	was	synchronized.

Unlike	merge	replication,	the	use	of	a	GUID	column	is	not	used	to	identify	the
row	itself,	but	is	used	to	check	if	the	row	has	changed.

Resolving	Conflicts
When	you	create	a	publication	using	queued	updating,	a	conflict	resolver
instructs	the	Queue	Reader	Agent	how	it	should	handle	different	versions	of	the
same	row	encountered	during	synchronization.	By	default,	the	Publisher	wins
conflict	resolver	is	set.	You	can	change	the	conflict	resolution	policy	after	the
publication	is	created	as	long	as	there	are	no	subscriptions	to	the	publication.

The	conflict	resolver	choices	are:

Publisher	wins	and	the	subscription	is	reinitialized

Publisher	wins

Subscriber	wins

These	conflict	resolvers	maintain	transactional	consistency	at	the	Subscriber	to
varying	degrees.	Reinitializing	the	Subscriber	provides	the	highest	degree	of
transactional	consistency,	and	Subscriber	wins	provides	the	lowest	degree	of
transactional	consistency.

Conflicts	are	recorded	and	can	be	viewed	using	the	Conflict	Viewer.	When	using
queued	updating	with	snapshot	replication,	the	conflict	resolution	policy	is
restricted	to	reinitializing	the	Subscriber	or	Publisher	wins.	The	Subscriber	wins
conflict	resolution	policy	is	not	available.

Reinitialize	Subscriber
Reinitializing	Subscriber	to	resolve	conflicts	maintains	strict	transactional
consistency	at	the	Subscriber,	but	it	can	be	time	consuming	if	the	publication
contains	large	amounts	of	data.

When	the	Queue	Reader	Agent	detects	a	conflict,	all	remaining	transactions	in
the	queue	(including	the	transaction	in	conflict)	are	rejected,	and	the	Subscriber
is	marked	for	reinitialization.	The	next	snapshot	generated	for	the	publication
will	be	applied	by	the	Distribution	Agent	to	the	Subscriber.

Publisher	Wins
When	the	conflict	resolution	is	set	to	Publisher	wins,	transactional	consistency	is
maintained	based	on	the	data	at	the	Publisher.	The	conflicting	transaction	is
rolled	back	at	the	Subscriber	that	initiated	it.

The	Queue	Reader	Agent	detects	a	conflict	and	compensating	commands	are
generated	and	propagated	to	the	Subscriber	by	posting	them	in	the	distribution
database.	The	Distribution	Agent	then	applies	the	compensating	commands	to
the	Subscriber	that	originated	the	conflicting	transaction.	The	compensating
actions	update	the	rows	on	the	Subscriber	to	match	the	row	on	the	Publisher.

Until	the	compensating	commands	are	applied,	it	is	possible	to	read	the	results	of
a	transaction	that	will	eventually	be	rolled	back	to	the	Subscriber.	This	is
equivalent	to	a	dirty	read	(read	uncommitted	isolation	level).	There	is	no
compensation	for	the	subsequent	dependent	transactions	that	can	occur.
However,	transaction	boundaries	are	honored	and	all	the	actions	within	a
transaction	are	either	committed,	or	in	the	case	of	a	conflict,	rolled	back.

Subscriber	Wins
Conflict	detection	under	the	Subscriber	wins	policy	means	the	last	Subscriber
transaction	to	update	the	Publisher	wins.	In	this	case,	when	a	conflict	is	detected,
the	transaction	sent	by	the	Subscriber	is	still	used	and	the	Publisher	is	updated.
This	policy	is	suitable	for	applications	where	such	changes	do	not	compromise
data	integrity.

To	set	the	queued	updating	conflict	resolution	policy

Replication

Queued	Updating	and	Identity	Ranges
Normally	with	snapshot	replication	and	transactional	replication	(read	only	or
using	immediate	updating),	if	the	publishing	table	contains	a	column	with	the
identity	data	type,	the	identity	property	is	not	propagated	to	the	Subscriber.

The	identity	property	is	used	to	provide	next	number	values	for	data
automatically	(for	example,	for	columns	such	as	Customer	ID	or	Order	ID).
When	using	immediate	updating,	the	Publisher	determines	this	value,	and	as	part
of	the	2PC	transaction	initiated	by	the	Subscriber,	it	is	synchronized	between
Publisher	and	Subscriber.

With	queued	updating	and	immediate	updating	with	queued	updating	as	a
failover,	identity	values	must	be	assigned	at	the	Subscriber	because	the
Subscriber	may	be	offline	and	updates	at	the	Subscriber	may	be	sent	to	a	queue.
In	this	case,	the	Publisher	will	not	be	able	to	assign	identity	values	immediately.
Therefore,	when	the	initial	snapshot	is	applied	at	the	Subscriber,	the	identity
property	is	propagated	as	well.

To	avoid	different	Subscribers	assigning	the	same	identity	values,	you	can	define
identity	ranges	for	each	Subscriber.	When	you	define	identity	ranges,	a
Subscriber	is	allowed	to	assign	values	only	from	a	specific	range.

You	can	manage	identity	values	using	automatic	identity	ranges	(SQL	Server
2000	replication	handles	assigning	identity	ranges	for	you)	or	you	can	set
identity	ranges	manually	using	a	check	constraint	and	the	NOT	FOR
REPLICATION	option	on	the	IDENTITY	property	of	a	Transact-SQL	CREATE
TABLE	statement.

For	more	information	about	handling	identity	values	in	replication,	see
Replication	Data	Considerations.

If	you	are	using	the	attachable	subscription	database	feature	and	the	subscription
database	has	subscriptions	to	publications	that	allow	queued	updating	with	auto
identity	range	articles,	you	will	need	to	run	the	distribution	agents	to	obtain	new
identity	ranges	on	the	Subscriber	after	attaching	the	subscription	database.	For
more	information,	see	Attachable	Subscription	Databases.

See	Also

Identity	Ranges	with	Immediate	Updating	and	Queued	Updating

Replication

Immediate	Updating	with	Queued	Updating	as	a
Failover
Immediate	updating	with	queued	updating	as	a	failover	can	be	used	when	you
expect	the	Publisher	and	Subscribers	to	be	connected,	but	you	do	not	want	to
lose	the	ability	to	make	updates	at	the	Subscriber	if	a	system	failure	results	in	the
loss	of	network	connectivity.	Immediate	updating	with	queued	updating	as	a
failover	allows	you	to	use	immediate	updating	and	switch	to	queued	updating
when	needed.

In	this	case,	2PC	is	used	to	propagate	updates	made	at	the	Subscriber	to	the
Publisher	until	you	enable	the	queued	updating	failover.	After	the	queued
updating	failover	is	enabled,	transactions	from	the	Subscriber	are	packaged	into
messages	and	sent	to	a	queue.	The	transactions	are	recorded	asynchronously	and
are	applied	to	the	Publisher	when	a	connection	is	re-established.

You	can	invoke	queued	updating	failover	at	any	time,	but	after	you	do,	you
cannot	failback	to	immediate	updating	until	the	Subscriber	and	Publisher	(or
Distributor	and	Publisher	in	the	case	of	Message	Queuing)	are	connected	and	the
Queue	Reader	Agent	has	applied	all	pending	messages	in	the	queue	to	the
Publisher.	Queued	updating	is	not	invoked	automatically	because	it	may	be	easy
to	fix	the	problem	that	is	preventing	immediate	updating	(for	example,	hardware
that	is	disconnected).	You	may	not	need	or	want	to	allocate	resources	to	switch
from	queued	updating	back	to	immediate	updating	(which	requires	emptying	the
queue).

Pull	subscriptions	created	using	on-demand	synchronization	are	added	to
Windows	Synchronization	Manager	automatically.	You	can	add	pull
subscriptions	that	are	not	using	on-demand	synchronization	to	Windows
Synchronization	Manager	by	opening	the	subscription	properties,	and	then	on
the	Synchronization	tab,	selecting	Enable	this	subscription	to	be
synchronized	using	the	Windows	Synchronization	Manager.

To	enable	immediate	updating	with	queued	updating	as	a	failover

Replication

Transforming	Published	Data
Transformable	subscriptions	(available	with	snapshot	replication	or	transactional
replication)	leverages	the	data	movement,	transformation	mapping,	and	filtering
capabilities	of	Data	Transformation	Services	(DTS).	Using	transformable
subscriptions	in	your	replication	topology	allows	you	to	customize	and	send
published	data	based	on	the	requirements	of	individual	Subscribers.

Examples	of	how	you	can	use	transformable	subscriptions	include:

Creating	column	and	horizontal	partitions	of	published	data	on	a	per
Subscriber	basis	(custom	data	partitions).	

Creating	data	transformations	such	as	data	type	mappings	(for	example,
integer	to	real	data	type),	column	manipulations	(for	example,
concatenating	first	name	and	last	name	columns),	string	manipulations,
and	use	of	functions.

The	option	to	allow	transformations	is	set	at	the	time	you	create	a	publication.
After	the	option	is	set,	and	a	replication	DTS	package	is	built,	Subscribers	to	the
publication	can	attach	a	DTS	package	and	incorporate	it	as	part	of	the	replication
data	flow.	This	functionality	is	supported	for	Microsoft®	SQL	Server™	2000
and	OLE	DB	Subscribers	(ODBC	Subscribers	are	not	supported).

You	create	a	DTS	package	for	replication	either	using	the	replication	wizards	or
programmatically,	such	as	using	Microsoft	Visual	Basic®.	You	can	also
customize	a	DTS	package	for	use	with	a	Subscriber	by	using	DTS	Designer.

The	transformable	subscriptions	topics	assume	you	are	familiar	with	DTS.	For
information	about	DTS	concepts,	DTS	programming,	and	using	DTS	as	a	part	of
your	data	warehousing	strategy,	see	DTS	Basics

JavaScript:hhobj_1.Click()

Replication

How	Transforming	Published	Data	Works
When	a	publication	is	configured	to	allow	DTS	transformations,	the	Subscriber
is	allowed	to	specify	a	DTS	package	as	part	of	setting	up	a	subscription.	The
following	diagram	illustrates	how	snapshots	and	subsequent	incremental	changes
are	transformed	before	the	data	is	applied	to	the	Subscriber.

Snapshots
During	the	process	of	applying	the	snapshot,	the	Distribution	Agent	loads	the
replication	DTS	package	from	the	msdb	database	(or	loads	a	saved	.dts	file,	in
the	case	of	OLE	DB	pull	Subscribers).	The	SQL	Server	replication	OLE	DB
Provider	for	DTS	converts	snapshot	data	into	an	OLE	DB	rowset	that	is	used	to
drive	a	DTS	Data	Driven	Query	task,	which	performs	any	specified

transformations	or	filtering	operations	before	applying	the	data	to	the	Subscriber.
This	is	a	special	purpose	OLE	DB	provider	intended	for	use	only	by	replication
and	not	a	general	purpose	OLE	DB	provider.

The	following	events	and	processes	occur	when	a	DTS	package	is	included	in
the	replication	data	flow:

A	DTS	package	is	created	with	the	snapshot	.bcp	(bulk	copy)	file	as	the
source	input	to	the	package.

The	Subscriber	table	is	created	from	the	script	in	the	DTS	package
Execute	SQL	task.

The	Data	Driven	Query	task,	used	in	a	replication	DTS	package,	moves
data	using	Transact-SQL	INSERT	statements.	When	snapshots	are
applied	or	reinitialized,	the	equivalent	of	an	INSERT	statement	for	each
row	of	data	is	executed	by	the	DTS	package.

For	publications	allowing	DTS	transformations,	the	snapshot	.bcp	data	files	are
generated	as	character-mode	because	native	format	.bcp	files	cannot	be	used
with	DTS.

Heterogeneous	Subscribers	can	subscribe	to	publications	for	which	the	snapshot
is	created	in	character-mode,	as	long	as	the	publication	allows	transformations	of
published	data.

Incremental	Changes
As	incremental	changes	occur	at	the	Publisher,	the	Distribution	Agent	retrieves
transactions	that	need	to	be	replicated	from	the	distribution	database,	and
processes	them	in	the	same	way	described	for	applying	a	snapshot.	In	this	case,
however,	the	data	source	is	the	MSrepl_commands	table	rather	than	a	.bcp
character-mode	data	file.	For	incremental	changes,	the	Data	Driven	Query	task
handles	UPDATES	and	DELETES	in	addition	to	INSERTS,	and	applies	the
incremental	changes	for	individual	statements	within	a	transaction	according	to
the	type	of	incremental	change	and	its	specified	transaction	mappings	(for
example,	if	the	change	is	mapped	to	a	transaction	with	INSERT,	UPDATE	or
DELETE	statements).

Note		When	columns	are	added	to	or	dropped	from	a	publication	that	allows
transformations	on	published	data,	the	DTS	packages	will	need	to	be
regenerated.

Replication

Creating	a	Transformable	Subscription	Using
Replication	Wizards
Creating	a	transformable	subscription	using	the	replication	wizards	requires	the
following	steps:

1.	 Create	a	new	snapshot	publication	or	transactional	publication	and
enable	the	publication	for	transformable	subscriptions	using	the	Create
Publication	Wizard.

2.	 Build	the	replication	DTS	package	(define	the	columns	and	rows	in	the
partition,	and	map	the	transformations)	using	the	Transform	Published
Data	Wizard	(available	by	right-clicking	the	publication	that	allows
data	transformations	and	selecting	Define	Transformation	of
Published	Data).

3.	 Create	a	subscription	that	incorporates	an	existing	replication	DTS
package	to	transform	published	data,	using	either	the	Push
Subscription	Wizard	or	the	Pull	Subscription	Wizard	(the	DTS
package	must	exist	at	the	time	a	subscription	is	created).	When
creating	a	transformable	subscription,	you	select	from	the	existing
DTS	packages	marked	for	replication.

After	the	replication	DTS	package	is	created,	advanced	users	can	edit	the	DTS
package	in	DTS	Designer	to	customize	it	for	an	individual	Subscriber.

Note		You	must	enable	a	subscription	to	use	a	DTS	package	when	you	create	the
publication;	you	cannot	modify	an	existing	publication	to	use	DTS	packages.

To	create	a	transformable	subscription

Replication

Using	Transformable	Subscriptions	to	Create	Custom
Data	Partitions
In	earlier	versions	of	Microsoft®	SQL	Server™,	if	you	needed	to	create	different
partitions	of	data	for	different	Subscribers	that	subscribe	to	snapshot	or
transactional	publications,	you	would	have	to	create	a	different	publication	for
each	Subscriber.	With	SQL	Server	2000,	you	can	use	transformable
subscriptions	to	create	custom	data	partitions	for	a	single	publication	that
provide	different	data	based	on	requirements	of	individual	Subscribers.	You	can
create	partitions	of	column	and	row	data	on	a	per	Subscriber	basis,	with	one
publication	supporting	multiple	subscriptions.	

One	method	of	creating	custom	data	partitions	with	transformable	subscriptions
is	with	the	Transform	Published	Data	Wizard.	After	you	create	a	publication	and
enable	it	for	transformable	subscriptions,	you	create	the	data	partitions	in	the
Transform	Published	Data	Wizard	as	part	of	the	process	of	building	a	replication
DTS	package.	Most	of	the	work	required	to	build	data	partitions	is	done	on	the
Column	Mappings	and	Transformations	page	of	that	wizard.

Replication

Defining	a	Vertical	Partition
The	Define	Transformations	page	of	the	Transform	Published	Data	Wizard	lists
the	published	tables.	To	filter	published	data	vertically,	select	a	table	in	that	page
by	clicking	its	transform	(...)	button,	and	then	on	the	Column	Mappings	and
Transformations	page,	click	the	Column	Mappings	tab	and	clear	any	columns
you	want	to	exclude	from	the	partition.

Replication

Defining	a	Horizontal	Partition
Using	transformable	subscriptions,	you	can	exclude	certain	rows	on	a	per
Subscriber	basis.	To	partition	data	horizontally	for	a	transformable	subscription,
you	must:

Enable	the	publication	to	use	horizontal	DTS	partitions	by	selecting	the
Provide	support	for	horizontal	DTS	transformation	scripts	option	in
the	properties	for	each	article	for	which	you	want	a	horizontal	DTS
partition.

Use	the	Transform	Published	Data	Wizard	to	build	the	DTS	package.
The	Define	Transformations	page	of	the	Transform	Published	Data
Wizard	lists	the	published	tables.	To	partition	published	data
horizontally,	select	a	table	in	that	page	by	clicking	its	transform	(...)
button.	On	the	subsequent	Column	Mappings	and	Transformations
page,	click	the	Transformations	tab.	The	Transformations	tab
contains	an	edit	box	you	use	to	write	the	Microsoft®	ActiveX®	scripts
that	define	the	horizontal	partition.

Include	Microsoft	ActiveX	scripts	written	to	the	DTS	object	model	with
the	DTS	package.	The	ActiveX	script	needs	to	specify	the	filter
criterion	and	be	able	to	check	if:

1.	 A	newly	inserted	row	needs	to	be	propagated	to	the	Subscriber.

2.	 Rows	updated	at	the	Publisher	no	longer	meet	the	partitioning	criterion
and	need	to	be	deleted	at	the	Subscriber.

3.	 Rows	updated	at	the	Publisher	meet	the	filter	criteria	and	need	to	be
inserted	at	the	Subscriber.

Supporting	steps	2	and	3	is	possible	by	using	XCALL	syntax	for	UPDATE,

which	ensures	before	and	after	values	for	the	row	after	an	update.	This	allows
the	ActiveX	script	to	determine	if	the	row	is	moving	into	or	out	of	the	partition.

The	ActiveX	scripts	you	use	to	define	the	horizontal	partition	need	to	follow
guidelines	that	are	explained	in	the	following	example.	You	would	only	need	to
provide	the	two	functions	IsInPartition()	and	Transform().	You	do	not	need	to
change	the	Main()	function.

You	can	also	use	the	system	stored	procedures	sp_addarticle	and
sp_changearticle	to	specify	horizontal	partitions	for	snapshot	or	transactional
publications	that	allow	data	transformations.

If	a	publication	allows	transformable	subscriptions,	you	can	set	@status
parameter	for	sp_addarticle	to	a	value	of	64	to	indicate	that	the	article	supports
DTS	horizontal	partitions.	If	the	parameter	is	not	set,	it	is	not	possible	to	insert
or	delete	rows	at	the	Subscriber	when	rows	move	into	or	out	of	the	partition
resulting	from	an	update	at	the	Publisher.	If	the	status	is	set,	the	before	image	of
an	updated	row	will	be	sent	to	the	distribution	database	by	the	Log	Reader
Agent	and	then	to	the	DTS	package	inside	the	Distribution	Agent.	This	will
increase	network	traffic,	and	should	be	used	with	caution.

If	the	publication	allows	data	transformations,	sp_changearticle	accepts	the
values	of	'dts	horizontal	partitions'	and	'no	dts	horizontal	partitions'	for	the	status
article	property.	Changes	to	this	property	are	not	allowed	when	there	are	active
subscriptions	(snapshots	have	been	generated	for	the	subscriptions).	If	the
publication	allows	immediate	updating,	the	Snapshot	Agent	needs	to	be	run	after
this	property	is	changed.	Snapshots	generated	previously	will	be	obsolete.

Validation	of	Custom	Data	Partitions
Using	transformable	subscriptions	to	exclude	rows	or	columns	and	create
horizontal	and	vertical	partitions	means	that	data	at	the	Subscriber	will	be
different	than	data	at	the	Publisher.	ROWCOUNT	and	CHECKSUM	validation
will	report	discrepancies.	Typically,	you	would	not	want	to	run	validation	for
those	Subscribers.

Dynamic	filters	available	with	merge	replication	do	not	have	this	limitation
because	the	validation	is	compared	with	the	SQL	Server	view	that	defines	the
partition.

Example

Function	Main()		
			'		If	the	current	source	data	is	the	old	values	of	the	row	before	an	update,	verify	if	the	old	row	is	in	the	partition	or	not.		
			'		ReplicationChangeType	values:		
			'			1	=	Insert.	Source	data	is	from	a	row	that	was	inserted	at	the	source.		
			'			2	=	Update.	Source	data	is	from	a	row	that	was	updated	at	the	source.	The	data	are	values	before	the	update.		
			'			3	=	Delete.	Source	data	is	from	a	row	that	was	deleted	at	the	source.		
			'			4	=	Before	Update.	Source	data	is	from	a	row	that	was	updated	at	the	source.	The	data	are	values	before	the	update.				
			
			If	DTSGlobalVariables("ReplicationChangeType").Value	=	4	Then		
			OldRowInPartition	=	IsInPartition()		
			Main	=	DTSTransformStat_SkipRow		
			Else				'Error	check	to	prevent	users	from	forgetting	to	enable	the	article	for	DTS	horizontal	partition.
			If	DTSGlobalVariables("RelicationChangeType").Value=2	and	IsEmpty(OldRowInPartition)=True	Then
						Err.Raise	1,	"Replication	DTS	ActiveX	Script",	"The	article	does	not	support	DTS	horizontal	partitions."
			End	If			
If	IsInPartition()	Then		
			'Set	default	return	status,	which	means	using	the	query	type	set	by	the	replication	process.		
			Main	=	DTSTransformStat_OK		
			Transform		

			'	If	it	is	an	update,	test	to	see	if	the	row	has	just	moved	into	the	partition.	If	so,	overwrite	the	query	type	to	insert	from	update.		
			If	DTSGlobalVariables("ReplicationChangeType").Value	=	2	And	_		
						Not	OldRowInPartition	Then		
			Main	=	DTSTransformStat_InsertQuery		
			End	If		
			Else		

			'	If	it	is	an	update,	test	to	see	if	the	row	has	just	moved	out	of	the	partition.	
			'	If	so,	overwrite	the	query	type	to	insert	from	update.		
			If	DTSGlobalVariables("ReplicationChangeType").Value	=	2	And	_		
						OldRowInPartition	Then		

			Transform		
			Main	=	DTSTransformStat_DeleteQuery		
			Else		
			Main	=	DTSTransformStat_SkipRow		
			End	If		
			"		
			End	If		
			End	If		
			End	Function		

Function	Transform()		
						DTSDestination("CustID")	=	DTSSource("CustID")
						DTSDestination("LName")	=	DTSSource("LName")
						DTSDestination("FName")	=	DTSSource("FName")
						DTSDestination("Item")	=	DTSSource("Item")
						DTSDestination("SaleAmt")	=	DTSSource("SaleAmt")
End	Function		
			Function	IsInPartition()		
			'	In	partition	if	the	first	char	is	uppercase	and	begins	with	A,	B,	C	or	D.		
				If	Left(DTSSource("LName"),	1)	<=	"D"		Then					
			IsInPartition	=	True		
			Else		
			IsInPartition	=	False		
			End	If		
			End	Function

Replication

Using	Distributed	Agents	to	Create	Efficient	Custom
Partitions
It	is	recommended	that	you	use	push	subscriptions	when	creating	data	partitions
using	transformable	subscriptions.	If	you	intend	to	use	transformable	pull
subscriptions	instead,	you	can	decrease	the	amount	of	data	sent	over	the	network
by	running	the	Distribution	Agent	on	the	Distributor	using	DCOM	instead	of	on
the	Subscriber.

The	advantage	of	this	functionality	is	that	the	filtering	takes	place	at	the
Distributor,	and	only	the	data	included	in	a	partition	is	sent	over	the	network.	If
the	Distribution	Agents	were	located	at	each	Subscriber,	all	the	published	data
would	travel	over	the	network	before	being	filtered	at	the	Subscriber.	Remote
agent	activation	works	best	on	Microsoft®	Windows®	2000	and	requires
additional	configuration	when	using	Windows	98	and	Windows	NT®	4.0.	For
information	about	configuring	replication	for	distributed	pull	agents,	see	Remote
Agent	Activation.

Replication

Using	Transformable	Subscriptions	with	Data
Transformations
You	can	use	transformable	subscriptions	for	basic	data	transformations	and
column	manipulations	between	a	Publisher	and	Subscriber,	including:

Changing	data	types	(except	for	primary	key	columns).

Renaming	a	column.

Concatenating	columns.

Extracting	a	substring	from,	or	adding	characters	to,	a	column.

Applying	functions	to	column	values.

You	map	transformations	in	the	Transform	Published	Data	Wizard,	on	the
Column	Mappings	and	Transformations	page,	on	the	Transformations	tab,
using	Microsoft®	ActiveX®	scripts	written	to	the	DTS	object	model	(the	same
as	when	defining	partitions).	Using	scripting	code,	specify	the	transformation	in
the	ActiveX	script	edit	box.	For	example,	to	concatenate	the	first	name	and	last
name	columns	of	published	data	to	a	one	name	column	in	the	Subscriber,	you
could	use	the	following	Microsoft	Visual	Basic®	Scripting	Edition	code	(the
second	line	of	the	function	shows	the	column	concatenation):

Function	Main()
			DTSDestination("CustID")	=	DTSSource("CustID")
			DTSDestination("Name")	=	DTSSource("LName")	&	"	"	&	DTSSource("FName")
			DTSDestination("Item")	=	DTSSource("Item")
			Main	=	DTSTransformStat_OK
End	Function

Replication

DTS	Package	Details
A	Data	Transformation	Services	(DTS)	package	containing	a	specific
configuration	of	DTS	custom	tasks,	connection	settings,	and	workflow	is	used	to
create	a	transformable	subscription.

Connections
To	connect	to	the	distribution	database	and	provide	published	data	to	the
DTS	package	(source	connection),	a	special	OLE	DB	provider,	the
Microsoft	SQL	Server	Replication	OLE	DB	Provider	for	DTS	is	used.
When	you	create	a	transformable	subscription,	this	provider	is	installed
automatically	on	the	DTS	package,	and	cannot	be	changed.	This
provider	can	be	used	only	with	transformable	subscriptions.

The	connection	from	the	DTS	package	to	the	Subscriber	(destination
connection)	does	not	use	the	Microsoft	SQL	Server	Replication	OLE
DB	Provider	for	DTS;	it	uses	whatever	OLE	DB	provider	is	required	to
connect	to	the	Subscriber.	For	example,	you	would	use	the	Microsoft
OLE	DB	Provider	for	SQL	Server	to	send	transformed	data	to	a
Microsoft®	SQL	Server™	2000	Subscriber.

Only	SQL	Server	(the	Microsoft	OLE	DB	Provider	for	SQL	Server)
Subscribers	and	other	OLE	DB	Subscribers	can	use	transformable
subscriptions;	ODBC	Subscribers	will	not	work	with	transformable
subscriptions.

Package	Storage
A	DTS	package	created	through	replication	is	saved	by	default	as	a	DTS	SQL
Server	package	(a	DTS	save	option	where	the	package	is	saved	to	local	SQL
Server	tables	in	the	msdb	database);	however,	packages	can	also	be	saved	as	a
DTS	structured	storage	(.dts)	file.	Packages	used	with	transformable
subscriptions	cannot	be	saved	in	the	other	available	DTS	save	formats
(repository,	Microsoft	Visual	Basic®	Script	file,	Visual	Basic	.bas	file).

Package	Security
The	DTS	package	can	be	read	or	overwritten	only	by	a	user	operating	under	the
sysadmin	role,	or	by	the	package	owner.	Thus,	Distribution	Agents	need	to	be
run	under	the	sysadmin	account	or	the	package	owner	account	at	the	Distributor
or	Subscriber	site.	The	optional	package	password	is	stored	in
MSDistribution_agents	at	the	Distributor,	or	in	the
MSSubscription_properties	table.	If	the	package	is	stored	at	the	Distributor,	all
the	publication	access	list	(PAL)	users	will	have	access	to	the	package	passwords
defined	for	subscriptions	on	the	publication.	If	the	package	is	stored	on	the
Subscriber,	members	of	db_owner	for	the	Subscriber	database	have	access.

Package	Components
A	DTS	package	used	for	transformable	subscriptions	consists	of	several	DTS
objects:

Connections	for	the	Subscriber	(multiple	Subscribers	share	the	same
connection)	and	the	Publisher.	The	Publisher	connection	is	always	a
Microsoft	SQL	Server	Replication	OLE	DB	Provider	for	DTS	data
source.	A	different	Publisher	connection	is	necessary	for	each	article.

One	or	more	Execute	SQL	tasks.	These	include,	at	minimum,	create
table	scripts,	per	article,	for	each	published	article.

Data	Driven	Query	task.	This	task	is	able	to	match	different	types	of
replication	change	request	(INSERT,	DELETE,	UPDATE)	with	the	data
movement	operations	required	to	implement	the	request	on	the
Subscriber	correctly.	Each	article	requires	a	different	Data	Driven
Query	task	in	the	DTS	package.	For	the	data	movement	to	work,	the
destination	column	values	must	bind	to	parameters	in	the	INSERT,
DELETE,	and	UPDATE	statements.	The	Data	Driven	Query	task
handles	all	data	movement	from	the	distribution	database	to	the
Subscriber	through	its	underlying	data	pump.	For	the	snapshot,	the
InsertQuery	property	is	used.

If	a	replication	DTS	package	is	customized	later	in	DTS	Designer	by
adding	a	Microsoft	ActiveX®	script	transformation,	the	return	status
specified	in	the	script	must	be	changed	to:
Main	=	DTSTransformStat_OK

A	global	variable,	ReplicationChangeType,	is	set	by	the	Distribution
Agent	to	signify	the	change	type	of	a	particular	row,	and	can	be
accessed	programmatically.	Here	are	the	available	change	types.

Change	Type Value Action
INSERT 1 Source	data	is	from	a	row	that	was

inserted	at	the	source.
UPDATE 2 Source	data	is	from	a	row	that	was

updated	at	the	source.	The	data	are
values	after	the	update.

DELETE 3 Source	data	is	from	a	row	that	was
deleted	at	the	source.

BEFORE
UPDATE

4 Source	data	is	from	a	row	that	was
updated	at	the	source.	The	data	are
values	before	the	update.	This	is	used
with	horizontal	partitions.

Declaring	the	global	variable	is	optional.	When	used,	its	value	is	set	by
the	Distribution	Agent.	The	global	variable	can	be	used	with	an
ActiveX	script	or	other	transformation	servers	to	determine	the	change
type	associated	with	the	current	row.	Following	is	sample	Microsoft
Visual	Basic	code	you	might	use	to	declare	and	use	this	global	variable:

Dim	oConnProperty	As	DTS.OLEDBProperty
Dim	gVar	As	Integer
Dim	oGlobal	As	DTS.GlobalVariable
Set	oGlobal	=	goPackage.GlobalVariables.New("ReplicationChangeType")
oGlobal.Name	=	"ReplicationChangeType"
oglobal.Value	=	0
goPackage.GlobalVariables.Add	oGlobal

Set	oGlobal	=	Nothing

Debugging	ActiveX	Scripts	in	DTS	Packages

You	can	debug	ActiveX	scripts	in	transformable	subscription	DTS	packages.	To
debug	your	scripts:

Turn	on	debugging	in	the	Data	Transformation	Services	Package
Properties	dialog.	

Run	the	Distribution	Agent	from	the	command	line	or	ActiveX	control.
Do	not	run	it	under	the	SQL	Server	Agent	NT	service.

For	more	information	about	how	to	debug	scripts,	see	Debugging	ActiveX
Scripts.

To	turn	on	just-in-time	debugging

JavaScript:hhobj_1.Click()

Replication

Limitations	and	Considerations
Limitations	to	using	transformable	subscriptions	and	considerations	to	take	into
account	include	the	following:

Snapshot	data	for	a	transformable	subscription	is	limited	to	character
mode	only;	native	format	(which	is	usually	faster	to	apply)	cannot	be
used	with	Data	Transformation	Services	(DTS).

After	a	publication	is	enabled	for	transformable	subscriptions,	the
option	cannot	be	disabled;	the	existing	publication	must	be	deleted	and
a	new	one	created.

You	cannot	use	the	updatable	transactional	Subscriber	(two-way
transactional	updates)	or	queued	updating	Subscriber	feature	with
transformable	subscriptions	(transformations	are	mapped	in	one
direction,	from	Publisher	to	Subscriber).

If	an	existing	DTS	package	is	changed,	and	Distribution	Agent	is
running	in	continuous	mode,	the	Distribution	Agent	must	be	shut	down
and	restarted	for	the	package	changes	to	take	effect.

Although	creating	a	transformable	subscription	creates	a	DTS	package,
this	type	of	DTS	package	is	not	available	for	execution	outside	of
replication	(from	DTS	Designer	or	at	the	command	prompt).

You	must	have	the	proper	access	permissions	for	executing	the	DTS
package	to	use	a	transformable	subscription.

Introducing	DTS	transformations	into	the	replication	data	flow	may
affect	performance.	Performance	will	usually	be	somewhat	slower	than
sending	data	to	a	Subscriber	without	a	DTS	package.

If	you	add	or	drop	columns	from	a	published	table	by	using	Add
Column	or	Drop	Column	on	the	Filter	Columns	tab	of	the
publications	properties	dialog	box,	or	by	using	sp_repladdcolumn	or
sp_repldropcolumn,	you	will	also	need	to	drop	and	recreate	the	DTS
package	to	reflect	changes	to	the	meta	data.

WRITETEXT	and	UPDATETEXT	statements	cannot	be	used	to	update
columns	with	text,	ntext,	or	image	data	types.

Replication

Alternate	Synchronization	Partners
Subscribers	to	merge	publications	can	synchronize	with	servers	other	than	the
Publisher	at	which	the	subscription	originated.	Synchronizing	with	alternate
partners	provides	the	ability	for	a	Subscriber	to	synchronize	data	even	if	the
primary	Publisher	is	unavailable.	This	feature	is	also	useful	when	mobile
Subscribers	have	access	to	a	faster	or	more	reliable	network	connection	with	an
alternate	synchronization	partner.

The	following	are	requirements	when	using	alternate	synchronization	partners:

The	feature	is	available	only	with	merge	replication.

The	alternate	synchronization	partner	must	have	the	data	and	schema
required	by	the	subscription.

It	is	recommended	that	the	publication	created	on	the	alternate	server	be
a	clone	of	the	publication	created	on	the	original	Publisher.

The	publication	properties	must	specify	that	Subscribers	can
synchronize	with	other	Publishers.

For	named	subscriptions	(subscriptions	that	are	not	anonymous	to	the
Publisher),	the	Subscriber	must	be	enabled	at	the	alternate
synchronization	partner	so	that	the	Subscriber	can	synchronize	data
with	that	Publisher.	If	this	is	not	done,	the	merge	Agent	will	add	the
subscription	entry	at	the	Publisher	automatically.

For	named	subscriptions,	a	subscription	with	the	same	attributes	as	the
subscription	at	the	primary	Publisher	will	be	added	automatically	at	the
alternate	synchronization	partner.

Replication

How	Alternate	Synchronization	Partners	Works
To	enable	alternate	synchronization	partners,	create	a	publication	and	then
modify	its	properties	to	allow	Subscribers	to	synchronize	with	alternate	partners
or	create	a	publication	with	the	property	enabled	using	SQL-DMO	or	Transact-
SQL	system	stored	procedures.	Next,	create	a	pull	subscription	with	the
synchronize	on	demand	option.

When	you	need	to	synchronize	data	using	an	alternate	partner,	you	can	use
Windows	Synchronization	Manager,	SQL	Server	Enterprise	Manager,	or	the
SQL	Server	merge	replication	ActiveX®	control	and	select	from	a	list	of
available	alternate	synchronization	partners.	When	synchronizing	published
data,	the	Publisher	where	the	subscription	originated	is	the	default	Publisher;
however,	you	can	choose	to	specify	a	different	synchronization	partner	as	the
default	in	Windows	Synchronization	Manager.

If	you	are	using	named	Subscriptions,	you	must	enable	the	Subscriber	at	the
alternate	synchronization	partner	and	create	a	subscription	identical	to	the
original	subscription	at	the	alternate	synchronization	partner.

When	the	Subscriber	merges	its	published	data	with	data	at	an	alternate
synchronization	partner,	checks	occur	verifying	that	the	Subscriber	login	exists
in	the	publication	access	list	(PAL)	and	ensuring	that	the	Subscriber	is	enabled	at
the	alternate	synchronization	partner	(for	named	subscriptions).

When	a	Subscriber	using	an	anonymous	subscription	synchronizes	with	an
alternate	synchronization	partner	for	the	first	time,	this	subscription	is	recorded
in	the	subscription	database.	The	subscription	will	have	the	same	attributes	as
the	subscription	at	the	primary	Publisher.

To	enable	Subscribers	to	synchronize	with	alternate	synchronization
partners

Replication

Optimizing	Synchronization
Optimizing	synchronization	during	merge	replication	allows	you	to	minimize
network	traffic	when	determining	if	recent	changes	have	caused	a	row	to	move
into	or	out	of	a	partition	for	a	Subscriber.	In	merge	replication,	an	option	is
provided	that	stores	more	information	at	the	Publisher	instead	of	transferring	that
information	over	the	network	to	the	Subscriber.	While	this	option	may	result	in	a
larger	database	at	the	Publisher,	it	can	improve	synchronization	performance
over	a	slow	link.	However,	more	information	will	be	stored	at	the	Publisher	and
additional	storage	space	will	be	necessary.

If	the	optimize	synchronization	setting	is	not	used,	changes	in	one	partition	will
cause	the	merge	process	to	verify	the	partition	content	of	data	sent	to	all
Subscribers	again,	even	if	the	change	affects	only	one	or	a	few	Subscribers.

For	example,	if	sales	data	is	filtered	based	on	the	state	where	a	customer	resides,
and	a	customer	moves	from	Washington	to	California,	that	row	needs	to	be
removed	from	the	data	partition	sent	to	Washington	Subscribers	and	added	to	the
data	partition	sent	to	California	Subscribers.

If	optimize	synchronization	is	not	used,	the	merge	process	will	also	check
partitions	sent	to	other	Subscribers	(those	in	Idaho,	Oregon,	and	so	on)	for	the
state	value	that	changed.	The	merge	process	cannot	know	what	the	California
value	was	before	it	was	changed.	Enabling	synchronization	optimization	will
allow	the	merge	process	to	accurately	know	what	partitions	were	affected	and
what	Subscribers	need	to	be	cleaned	up.

By	storing	additional	information	at	the	Publisher,	Microsoft®	SQL	Server™
2000	can	more	quickly	determine	the	filtered	data	that	should	be	sent	to	a
particular	Subscriber.	When	synchronization	is	optimized,	SQL	Server	2000
creates	before	image	tables	at	the	Publisher	that	contain	additional	information
about	changes	to	columns	used	in	horizontal	or	join	filters.	These	before	images
from	an	UPDATE	or	DELETE	to	such	a	column	permit	the	Merge	Agent	to
determine	quickly	and	accurately	which	Subscriber	may	need	to	have	rows
added	to	or	removed	from	a	specific	data	partition.

For	example,	if	a	sales	organization	partitions	and	distributes	data	based	on	sales
territories,	and	the	publication	is	enabled	to	optimize	synchronization,	the

information	about	how	data	is	partitioned	would	be	stored	in	before	image	tables
at	the	Publisher.	If	sales	territories	shift	and	data	needs	to	be	repartitioned	to
multiple	Subscribers,	it	will	be	a	faster	process	to	update	and	redistribute	the
data	because	the	information	about	how	data	is	currently	partitioned	is	already	at
the	Publisher.

This	optimization	may	be	useful	if	your	application	allows	for	the	values	used	in
row	filters	to	change	frequently	for	a	given	row.	For	example,	if	you	frequently
shift	or	realign	sales	territory	assignments,	you	may	gain	a	significant
performance	improvement	during	synchronization	through	this	optimization.

The	amount	of	information	stored	at	Publisher	is	based	on	columns	used	to
define	the	partition.	For	example,	if	the	columns	in	a	partition	total	20	bytes	and
there	are	10	million	rows,	approximately	an	extra	200	MB	will	be	stored	at	the
Publisher.	If	there	are	only	10,000	rows,	200	KB	will	be	stored	at	the	Publisher.

CAUTION		Choosing	to	maintain	this	additional	information	at	the	Publisher
results	in	an	increase	in	the	storage	requirements	for	the	merge	replication
tracking	system	tables	in	the	publication	database;	however,	if	UPDATES	to
columns	included	in	partitions	are	not	atypical,	the	performance	gains	are
usually	worth	maintaining	the	additional	information.

To	minimize	the	amount	of	data	sent	over	the	network

Replication

Replication	Data	Considerations
Special	considerations	should	be	taken	when	publishing	certain	data	types	and
properties.	This	section	identifies	those	data	types	and	properties,	and	it
describes	solutions	for	managing	them,	including:

Identity	range	management.	Specifying	identity	range	management	can
help	you	control	how	data	modifications	are	made	at	different
Subscribers	during	merge	replication	or	during	snapshot	or	transactional
replication	with	updatable	subscriptions.

Data	types	with	specific	uses.	Different	data	types	such	as
uniqueidentifier	and	timestamp	have	specific	uses	during	replication
processing,	including	conflict	resolution	when	changes	to	the	same	data
are	made	at	multiple	servers.

NOT	FOR	REPLICATION.	Using	the	NOT	FOR	REPLICATION
option	allows	you	to	implement	ranges	of	identity	values	in	a
partitioned	environment.	.

Replication

Using	IDENTITY	Values	with	Replication
When	you	assign	an	IDENTITY	property	to	a	column,	the	system	automatically
generates	sequential	incrementing	numbers	for	new	rows	inserted	into	a	table.
Because	identity	values	are	usually	unique,	an	identity	column	is	frequently
defined	as	a	primary	key.

In	replication	topologies,	where	a	publication	contains	an	identity	column	and
new	rows	can	be	inserted	at	Subscribers,	additional	configuration	may	be
necessary	to	ensure	that	no	duplicate	identity	values	or	constraint	violations
occur.

To	illustrate	managing	identity	values	with	replicas,	suppose	three	rows	of	data
from	Publisher	A,	containing	the	identity	values	1,	2,	and	3,

	are	replicated	to	Subscriber	A	and	Subscriber	A	allows	inserts.	If	two	new	rows
in	the	same	article	are	inserted,	one	at	Publisher	A	and	one	at	Subscriber	A,	and
no	additional	measures	are	taken	by	the	replication	agents,	both	rows	are
assigned	an	identity	value	of	4.	An	attempt	is	made	by	the	replication	agents	to
copy	the	new	rows	between	the	Subscriber	and	Publisher.	If	successful,	two
different	rows	with	an	identity	value	of	4	will	exist	on	each	replica.	As	a	result,	
each	published	article	will	contain	multiple	rows	with	the	same	identity	values.
If	the	identity	column	was	defined	as	a	primary	key,	or	with	a	unique	constraint,
the	data	will	not	replicate.

Replication	provides	several	options	to	ensure	the	same	identity	values	are	not
assigned	to	rows	inserted	at	different	replicas,	or	that	a	primary	key	constraint
violation	does	not	occur.

Replication

Managing	Identity	Values
You	can	manage	identity	values	by:

Allowing	Microsoft®	SQL	Server™	2000	replication	to	automatically
manage	identity	columns	by	dynamically	allocating	ranges	of	identity
values	to	the	Publisher	and	all	the	Subscribers.	

Using	the	Transact-SQL	NOT	FOR	REPLICATION	option	when
defining	the	identity	column.

Using	a	primary	key	other	than	the	identity	column	(for	example,	a
composite	key	or	a	rowguid	column),	if	an	identity	column	is	not
necessary.	This	strategy	eliminates	the	overhead	of	managing	identity
columns	on	the	replicated	data.

Automatic	Identity	Range	Handling

The	simplest	way	of	handling	identity	ranges	across	replicas	is	to	allow	SQL
Server	2000	to	manage	identity	range	handling	for	you.	To	use	automatic
identity	range	handling,	you	must	first	enable	the	feature	at	the	time	the
publication	is	created,	assign	a	set	of	initial	Publisher	and	Subscriber	identity
range	values,	and	then	assign	a	threshold	value	that	determines	when	a	new
identity	range	is	created.

For	example,	assigning	an	identity	range	from	1000	through	2000	to	a	Publisher,
and	a	range	from	2001	through	3000	to	an	initial	Subscriber,	works	as	follows
when	combined	with	a	threshold	value	of	80	percent:

Newly	inserted	Publisher	rows	are	assigned	identity	values	from	1000
through	2000.	Newly	inserted	rows	on	the	initial	Subscriber	will
sequence	from	2001	through	3000.

When	80	percent	of	either	the	Publisher	identity	values	or	the
Subscriber	identity	values	are	used,	a	new	identity	range	is	created	for

forthcoming	inserts.	In	this	example,	if	rows	from	1001	through	1800
are	used	on	the	Publisher,	the	threshold	has	been	reached.	A	new
identity	range,	from	3001	through	4000,	is	created	on	the	Publisher,	and
the	next	inserted	row	at	the	Publisher	is	assigned	an	identity	value	of
3001.	After	the	Subscriber	reaches	the	threshold	(assuming	the
Subscriber	reached	threshold	after	the	Publisher),	a	new	identity	range
is	created	on	the	Subscriber,	from	4001	through	5000,	and	the	next
inserted	row	at	the	Subscriber	is	assigned	an	identity	value	of	4001.	The
process	is	repeated	as	identity	ranges	are	used.	

As	each	Subscriber	is	added,	an	identity	range	that	is	the	same	size	as
the	initial	Subscriber	range	is	added,	using	the	next	available	starting
point.

The	threshold	setting	avoids	situations	where	the	Subscribers	run	out	of	identity
values	and	become	unable	to	insert	new	rows	until	the	Distribution	Agent	or
Merge	Agent	synchronizes	with	the	Subscriber.	However,	setting	the	threshold
value	too	low	can	generate	large	numbers	of	unused	identity	values.	The
threshold	value	should	be	set	carefully	by	evaluating	the	update	frequency	at	the
Subscriber	and	the	synchronization	schedule.

For	transactional	articles	enabled	for	identity	range	management,	the	identity
ranges	at	both	the	Publisher	and	Subscriber	need	to	be	checked	and	adjusted
periodically.	The	Log	Reader	Agent	does	this	at	the	Publisher	and	the
Distribution	Agent	does	this	at	the	Subscriber.

If	a	Log	Reader	Agent	or	Distribution	Agent	is	not	running	in	continuous	mode,
the	check	and	possible	adjustment	will	be	done	after	all	the	commands	have
been	processed.	When	one	of	the	agents	is	in	continuous	mode,	the	check	and
possible	adjustment	will	be	done	in	a	time	interval	of	10	times	the	polling
interval	of	the	agent	after	all	the	commands	have	been	processed.	After	the	agent
is	started,	the	first	check	will	be	done	as	soon	as	the	commands	have	been
processed.

Run	the	Log	Reader	Agent	or	the	Distribution	Agent	to	adjust	the	Publisher	or
Subscriber	when	the	server	is	out	of	its	identity	range.	If	the	agent	is	running	in
continuous	mode,	you	may	need	to	restart	it	for	the	identity	range	to	be	adjusted
immediately.

You	can	also	execute	sp_adjustpublisheridentityrange	to	explicitly	adjust	the
identity	range	at	the	Publisher	based	on	threshold	value	for	either	transactional
or	merge	publications.

You	enable	automatic	identity	range	handling:

In	SQL	Server	Enterprise	Manager,	in	the	Publication	Properties
dialog	box.

By	setting	the	following	options	in	the	sp_addmergearticle	stored
procedure.

Parameter Values Description
@auto_identity_range TRUE	or	FALSE Enable	(TRUE)	or

disable	(FALSE)
automatic	identity	range
handling.

@pub_identity_range Integer	values	of	range
(for	example,	from	1001
through	2000)

Identity	range	for	the
Publisher.

@identity_range Integer	values	of	range
(for	example,	from	2001
through	3000)

Identity	range	for	the
initial	Subscriber;	length
of	range	used	for
additional	Subscribers.

@threshold Integer	value	for	percent
threshold	(for	example,	90
is	equivalent	to	90
percent)

Percent	of	total	identity
values	used	on	replica
that	trigger	creation	of
new	identity	range.

Manual	Identity	Range	Handling

You	can	also	manage	identity	values	using	a	check	constraint	and	the	NOT	FOR
REPLICATION	option	on	the	IDENTITY	property	of	a	Transact-SQL	CREATE
TABLE	statement.	Use	the	NOT	FOR	REPLICATION	option	to	specify	identity
ranges	programmatically,	or	if	you	are	upgrading	an	existing	instance	of	SQL

Server	where	identity	ranges	are	already	being	managed	through	Transact-SQL
statements.

Using	the	NOT	FOR	REPLICATION	statement	informs	SQL	Server	2000	that
the	replication	process	gets	a	waiver	when	supplying	an	explicit	value	and	that
the	local	identity	value	should	not	be	reseeded.	Each	Publisher	using	this	option
receives	a	reseeding	waiver.

The	following	code	example	illustrates	how	to	implement	identities	with
different	ranges	at	each	Publisher:

At	Publisher	A,	start	at	1	and	increment	by	1.
CREATE	TABLE	authors	(COL1	INT	IDENTITY	(1,	1)	NOT	FOR	REPLICATION	PRIMARY	KEY)	

At	Publisher	B,	start	at	1001	and	increment	by	1.
CREATE	TABLE	authors	(COL1	INT	IDENTITY	(1001,	1)	NOT	FOR	REPLICATION	PRIMARY	KEY)	

After	activating	the	NOT	FOR	REPLICATION	option,	connections	from
replication	agents	to	Publisher	A	insert	rows	with	values	such	as	1,	2,	3,	4.	These
are	replicated	to	Publisher	B	without	being	changed	(that	is,	1,	2,	3,	4).
Connections	from	replication	agents	at	Publisher	B	receive	values	1001,	1002,
1003,	and	1004.	Those	are	replicated	to	A	without	being	changed.	When	all	data
is	distributed	or	merged,	both	Publishers	have	values	1,	2,	3,	4,	1001,	1002,
1003,	and	1004.	The	next	locally	inserted	value	at	Publisher	A	is	5.	The	next
locally	inserted	value	at	Publisher	B	is	1005.

It	is	recommended	that	you	always	use	the	NOT	FOR	REPLICATION	option
along	with	the	CHECK	constraint	to	ensure	that	the	identity	values	being
assigned	are	within	the	allowed	range.	For	example:

CREATE	TABLE	sales

(sale_id	INT	IDENTITY(100001,1)

NOT	FOR	REPLICATION

CHECK	NOT	FOR	REPLICATION	(sale_id	<=	200000),

sales_region	CHAR(2),

CONSTRAINT	id_pk	PRIMARY	KEY	(sale_id)

)
Even	if	someone	used	SET	IDENTITY	INSERT,	all	values	inserted	locally	must
obey	the	range.	However,	a	replication	process	is	still	exempt	from	the	check.

Using	Other	Columns	as	Primary	Keys
If	using	an	identity	column	is	not	a	requirement,	you	can	eliminate	the	overhead
of	managing	the	uniqueness	of	identity	values	in	replicated	data	by	using	another
column	as	the	primary	key,	or	using	combinations	of	columns	as	the	primary
key.

For	example,	you	can	define	a	primary	key,	consisting	of	an	identity	column
whose	values	are	not	unique	and	a	second	column,	that	when	combined	with	the
identity	column	guarantees	uniqueness	(for	example,	a	site	ID	column,
pk_id_plus_site).	In	this	example,	the	composite	key	pk_id_plus_site	is	a
combination	of	the	identity	and	site	columns.	In	replication,	duplicate	identity
values	can	be	created	only	at	different	sites;	therefore,	each	primary	key	value	in
this	case	will	always	be	unique.

ROWGUIDCOL	is	a	property	you	can	assign	to	a	column	with	uniqueidentifier
values,	a	SQL	Server	2000	data	type	that	defines	a	128-bit	integer	guaranteed	to
be	unique.	As	such,	using	a	rowguid	column	as	a	primary	key	is	a	safe
alternative	to	using	an	identity	column	to	guarantee	uniqueness.

Replication

Identity	Ranges	with	Immediate	Updating	and
Queued	Updating
For	publications	that	allow	immediate	updating	but	not	queued	updating	(in
snapshot	replication	and	transactional	replication),	the	Publisher	controls	identity
values.	You	cannot	assign	identity	ranges	with	this	type	of	replication	because
the	replication	agents	do	not	assign	an	IDENTITY	property	to	the	column	on	the
Subscriber.	Create	the	IDENTITY	property	at	the	Publisher	only,	and	have	the
Subscriber	use	the	base	numeric	data	type	(for	example,	int)	with	a	default	value
of	0.	These	actions	are	taken	automatically	if	the	Distribution	Agent	initializes
the	schema	and	data	(that	is,	if	the	synchronization	type	of	the	subscription	is	set
to	automatic).	The	next	identity	value	is	always	generated	at	the	Publisher	and
assigned	to	the	row	inserted	at	the	Subscriber.

With	queued	updating,	identity	values	must	be	assigned	by	the	Subscriber
because	newly	inserted	rows	at	the	Subscriber	may	be	sent	to	a	queue	rather	than
directly	to	the	Publisher.	Because	the	data	is	sent	asynchronously,	there	is	no
mechanism	for	the	Publisher	to	assign	an	identity	value	immediately	to	a	newly
inserted	row	at	the	Subscriber,	as	there	is	for	the	immediate	updating	case.

For	publications	that	allow	immediate	updating	with	queued	updating	as	a
failover	option,	assign	identity	ranges	to	Subscribers	either	automatically	or
manually.	Inserted	rows	at	a	Subscriber	will	generate	identity	values	from	the
assigned	local	identity	range.	The	new	Subscriber	row	will	be	sent	to	the	queue,
where	it	will	be	picked	up	by	the	Queue	Reader	Agent	and	applied	to	the
Publisher	with	the	correct	(not	reseeded)	identity	value.

Replication

Managing	Replicated	timestamp	Data
Microsoft®	SQL	Server™	2000	timestamp	data	refers	to	database-specific
incrementing	binary	numbers	that	indicate	the	relative	sequence	in	which	data
modifications	take	place	in	a	database;	timestamp	data	is	unrelated	to	both
chronological	time	and	calendar	date.

A	uniqueidentifier	data	type	column	is	used	to	detect	conflicts	for	this
replication	type;	timestamp	data	is	no	longer	used	for	conflict	detection.	For
information	about	upgrade	issues	associated	with	this	change,	see	Replication
and	Upgrading.

The	literal	values	for	a	timestamp	column	are	replicated,	but	the	data	type	for
the	replicated	values	is	changed	to	binary	(8)	on	the	Subscriber.

For	merge	replication	and	queued	updating	Subscriber	(including	immediate
updating	with	queued	updating	as	a	failover)	articles	containing	a	timestamp
column,	the	timestamp	column	is	replicated,	but	the	literal	timestamp	values
are	not.	The	timestamp	values	are	regenerated	at	initial	synchronization	time
when	the	rows	are	applied	at	the	Subscriber.	This	allows	timestamps	to	be	used
by	client	applications	at	the	Subscriber	for	functions	such	as	optimistic	locking.
In	those	cases,	the	ODBC	driver,	OLE	DB	provider,	DB-Library	cursor,	or
server	cursor	used	by	the	application	to	implement	optimistic	locking	compares
the	timestamp	value	of	the	row	being	updated	with	the	current	value	of	the
original	row.	If	the	timestamp	values	are	different,	indicating	the	row	has
changed,	the	application	can	take	appropriate	action	(rolling	back	the
transaction,	rereading	the	data,	and	so	on).

The	processing	of	timestamp	data	has	implications	for	the	detection	of	conflicts.
For	a	conflict	to	occur	with	row-level	tracking,	the	same	row	must	be	updated	at
both	replicas.	For	a	conflict	to	occur	with	column-level	tracking,	the	same
column	within	the	same	row	must	be	updated	at	both	replicas.	Because
timestamp	values	change	whenever	a	row	is	updated,	the	distinction	between
row-level	and	column-level	tracking	would	disappear	with	the	presence	of	a
timestamp	column,	unless	special	measures	were	taken.	With	column	tracking
turned	on,	every	time	updates	were	made	at	both	locations,	even	to	different
columns	within	the	rows,	both	timestamp	values	would	change,	and	a	column-
level	conflict	would	be	flagged.	Effectively,	column-level	tracking	would	always

JavaScript:hhobj_1.Click()

work	the	same	as	row-level	tracking,	and	no	merging	of	data	updated	in	different
columns	could	take	place.

Merge	replication	tracking	resolves	this	problem	by	ignoring	timestamp	values
The	queued	updating	Subscribers	option	for	transactional	replication	uses	only
row-level	tracking	to	detect	conflicts,	so	this	is	not	an	issue.	For	example,
suppose	a	merge	replication	table	contains	four	columns:	a	uniqueidentifier
column,	an	integer	column,	a	character	column,	and	a	timestamp	column.	The
value	for	the	integer	column	of	row	1	on	the	Publisher	is	updated,	and	the	value
for	the	character	column	of	row	1	is	changed	on	the	Subscriber.	When	column-
level	tracking	is	turned	on,	the	data	merges	without	a	conflict.	If	the	Merge
Agent	did	not	ignore	the	timestamp	values	with	column	level	tracking	turned	on
(with	row-level	tracking,	a	conflict	would	have	been	detected	in	any	case),	this
non-conflicting	update	would	have	been	flagged	as	a	conflict,	and	the	data
would	not	have	been	merged	correctly.	Therefore,	the	Merge	Agent	does	not
compare	the	timestamp	columns	and	does	not	take	any	action	if	their	values
changed.

Replication

Using	NOT	FOR	REPLICATION
The	NOT	FOR	REPLICATION	option	is	used	by	Microsoft®	SQL	Server™
2000	replication	to	implement	ranges	of	identity	values	in	a	partitioned
environment.	The	NOT	FOR	REPLICATION	option	is	especially	useful	in
transactional	or	merge	replication	when	a	published	table	is	partitioned	with
rows	from	various	sites.

When	a	replication	agent	connects	to	a	table	with	any	login,	all	of	the	NOT	FOR
REPLICATION	options	on	the	table	are	activated.	When	the	option	is	set,	SQL
Server	2000	maintains	the	original	identity	values	on	rows	added	by	the
replication	agent	but	continues	to	increment	the	identity	value	on	rows	added	by
other	users.	When	a	user	adds	a	new	row	to	the	table,	the	identity	value	is
incremented	in	the	normal	way.	When	a	replication	agent	replicates	that	row	to	a
Subscriber,	the	identity	value	is	not	changed	when	the	row	is	inserted	in	the
Subscriber	table.

For	example,	consider	a	table	that	contains	rows	inserted	from	two	sources:
Publisher	A	and	Publisher	B.	The	rows	inserted	at	Publisher	A	are	identified	by
increasing	values	from	1	through	1000,	and	those	rows	at	Publisher	B	are
identified	by	values	from	1001	through	2000.	If	a	process	at	Publisher	A	inserts
a	row	locally	into	the	table,	SQL	Server	assigns	the	first	row	a	value	of	1,	the
next	row	a	value	of	2,	and	so	forth,	in	automatically	increasing	increments.
Similarly,	if	a	process	at	Publisher	B	inserts	a	row	locally	into	the	table,	the	first
row	is	assigned	a	value	of	1001,	the	next	row	a	value	of	1002,	and	so	forth.
When	rows	at	Publisher	A	are	replicated	to	B,	the	identity	values	remain	1,	2,
and	so	forth,	but	local	seed	values	at	B	are	not	reset.

Regardless	of	its	role	in	replication,	the	IDENTITY	property	does	not	enforce
uniqueness	by	itself,	but	merely	inserts	the	next	value.	Although	you	can	provide
an	explicit	value	using	SET	IDENTITY	INSERT,	that	function	is	not	appropriate
for	replication	because	it	also	reseeds	the	value.	The	NOT	FOR	REPLICATION
option	was	created	specifically	for	applications	using	replication.	For	example,
without	this	option,	as	soon	as	the	first	row	from	Publisher	B	(with	value	1001)
is	propagated	to	Publisher	A,	Publisher	A's	next	value	would	be	1002.	The	NOT
FOR	REPLICATION	option	is	a	way	of	telling	SQL	Server	2000	that	the
replication	process	gets	a	waiver	when	supplying	an	explicit	value	and	that	the

local	value	should	not	be	reseeded.	Each	Publisher	using	this	option	gets	the
same	reseeding	waiver.

Custom	stored	procedures	that	use	INSERT,	UPDATE,	and	DELETE	statements
with	full	column	lists	are	required	before	replication	will	work	with	identity
properties.	If	full	column	lists	are	not	used,	an	error	will	be	returned.

The	following	code	example	illustrates	how	to	implement	identities	with
different	ranges	at	each	Publisher:

At	Publisher	A,	start	at	1	and	increment	by	1.
CREATE	TABLE	authors	(COL1	INT	IDENTITY	(1,	1)	NOT	FOR	REPLICATION	PRIMARY	KEY)	

At	Publisher	B,	start	at	1001	and	increment	by	1.
CREATE	TABLE	authors	(COL1	INT	IDENTITY	(1001,	1)	NOT	FOR	REPLICATION	PRIMARY	KEY)	

After	activating	the	NOT	FOR	REPLICATION	option,	connections	from
replication	agents	to	Publisher	A	insert	rows	with	values	such	as	1,	2,	3,	4.	These
are	replicated	to	Publisher	B	without	being	changed	(that	is,	1,	2,	3,	4).
Connections	from	replication	agents	at	Publisher	B	get	values	1001,	1002,	1003,
1004.	Those	are	replicated	to	A	without	being	changed.	When	all	data	is
distributed	or	merged,	both	Publishers	have	values	1,	2,	3,	4,	1001,	1002,	1003,
1004.	The	next	locally	inserted	value	at	Publisher	A	is	5.	The	next	locally
inserted	value	at	Publisher	B	is	1005.

It	is	advisable	to	always	use	the	NOT	FOR	REPLICATION	option	along	with
the	CHECK	constraint	to	ensure	that	the	identity	values	being	assigned	are
within	the	allowed	range.	For	example:

CREATE	TABLE	sales	
(sale_id	INT	IDENTITY(100001,1)	
				NOT	FOR	REPLICATION
				CHECK	NOT	FOR	REPLICATION	(sale_id	<=	200000),	
sales_region	CHAR(2),
CONSTRAINT	id_pk	PRIMARY	KEY	(sale_id)
)

Even	if	someone	used	SET	IDENTITY	INSERT,	all	values	inserted	locally	must

obey	the	range.	However,	a	replication	process	is	still	exempt	from	the	check.

Note		If	you	are	using	transactional	replication	with	the	immediate-updating
Subscribers	option,	do	not	use	the	IDENTITY	NOT	FOR	REPLICATION
design.	Instead,	create	the	IDENTITY	property	at	the	Publisher	only,	and	have
the	Subscriber	use	just	the	base	data	type	(for	example,	int).	Then,	the	next
identity	value	is	always	generated	at	the	Publisher.

Replication

Administering	and	Monitoring	Replication
Microsoft®	SQL	Server™	2000	replication	provides	tools	to	administer	and
monitor	replication	agents,	replication	alerts,	and	replication	processes,	ensuring
that	replication	meets	the	needs	of	your	organization.

Monitoring	replication	helps	you:

Set	the	agent	profiles,	schedules,	properties,	and	notifications	for
replication	agents.

View	and	troubleshoot	agent	activity,	including	verifying	when	agents
last	ran,	monitoring	agent	activity,	and	analyzing	replication
performance.

Receive	notification	through	a	replication	alert	when	an	event	occurs	on
a	replication	agent.

Validate	subscriptions	to	ensure	that	data	values	are	the	same	at	the
Publisher	and	at	Subscribers.

Reinitialize	one	or	all	subscriptions	to	a	publication	as	needed.

Manage	replication	agents	from	a	central	location.

Replication

Tools	for	Administering	and	Monitoring	Replication
To	administer	and	monitor	agents,	you	can	use	Replication	Monitor	in	SQL
Server	Enterprise	Manager,	command	prompt	utilities,	Transact-SQL	system
stored	procedures,	or	you	can	use	Microsoft®	ActiveX®	controls	for	replication
or	SQL-DMO	objects	that	are	programmable	in	languages	such	as	Microsoft
Visual	Basic®	and	Microsoft	Visual	C++®.	Windows	NT	Performance	Monitor
or	Windows	2000	System	Monitor	can	be	used	to	monitor	the	rate	at	which
various	replication	processes	occur.

Replication

Replication	Monitor
Replication	Monitor	is	a	component	of	SQL	Server	Enterprise	Manager	designed
for	viewing	the	status	of	replication	agents	and	troubleshooting	potential
problems	at	the	Distributor.	Replication	Monitor	shows	up	as	a	node	in	SQL
Server	Enterprise	Manager	under	the	server	that	is	enabled	as	a	Distributor	when
the	user	is	a	member	of	the	sysadmin	fixed	server	role.	Replication	Monitor
Group	can	also	appear	as	a	top-level	node	in	Enterprise	Manager	for	a	central
location	where	you	can	monitor	and	administer	multiple	Distributors.

Additionally,	users	that	are	not	members	of	the	sysadmin	fixed	server	role	can
monitor	replication	if	they	are	defined	with	the	replmonitor	role	in	the
distribution	database.	A	system	administrator	can	add	any	user	to	the
replmonitor	role,	which	allows	that	user	to	view	replication	activity	with	the
Replication	Monitor	node	in	SQL	Server	Enterprise	Manager;	however,	the	user
will	not	be	able	to	administer	replication.

Users	may	only	be	part	of	the	replmonitor	role	in	only	one	distribution
database.	They	will	only	be	able	to	view	agents	in	the	distribution	database	in
which	they	are	part	of	the	replmonitor	role.	However,	the	status	shown	on	the
Replication	Monitor	node	reflects	all	agents.	So	there	may	be	times	when	the
user	sees	an	error	status	(red	X	on	the	Replication	Monitor	node,	Publishers	or
Agents	folders),	but	none	of	the	agents	they	can	view	show	an	error	status.	This
indicates	that	an	agent	this	user	is	not	able	to	see	is	showing	an	error	status.

For	example,	a	user	added	as	part	of	the	replmonitor	role	can	view	agent
history,	errors,	and	analyze	error	details,	but	they	would	not	be	able	to	change
agent	profiles,	agent	schedules,	and	so	on.	Although	this	user	would	be	able	to
view	a	list	of	publications,	the	user	would	only	be	able	to	view	properties	for	the
publications	that	include	the	user	in	the	Publication	Access	List	(PAL).

You	can	use	Replication	Monitor	to:

View	a	list	of	Publishers,	publications,	and	subscriptions	to	the
publications	that	are	supported	by	the	Distributor.

View	scheduled	replication	agents,	and	to	monitor	real-time	status	and
history	for	each	agent.

Set	up	and	monitor	alerts	related	to	replication	events.	

Administer	agents	and	subscriptions	including	starting	and	stopping
agents	and	reinitializing	subscriptions.

After	replication	has	been	configured,	you	can	also	use	the	Microsoft	Windows
NT®	or	Windows	2000	Event	Viewer	to	view	SQL	Server™	messages.	For
information	about	Event	Viewer,	see	Microsoft	Windows	NT	4.0	Help	or
Windows®	2000	Help.

To	Enable	Replication	Monitor	Group

1.	 In	Enterprise	Manager,	right-click	on	a	SQL	Server,	and	click
Properties.	

2.	 On	the	Replication	tab,	select	Show	Replication	Monitor	Group.
Optionally,	you	can	also	select	to	add	this	server	as	a	Distributor	in	the
Replication	Monitor	Group.

Replication

Replication	Agent	Utilities
You	can	use	the	replication	command	prompt	utilities	to	configure	and	start
replication	agent	activity.	Command	prompt	utilities	are	installed	automatically
with	Microsoft®	SQL	Server™	2000.	The	replication	agent	files	are	located
under	\Microsoft	SQL	Server\80\Com.	This	table	lists	the	replication	utility
names	and	file	names.

Command	Prompt	Utility File	Name
Replication	Snapshot	Agent	Utility snapshot.exe
Replication	Distribution	Agent	Utility distrib.exe
Replication	Log	Reader	Agent	Utility logread.exe
Replication	Queue	Reader	Agent	Utility qrdrsvc.exe
Replication	Merge	Agent	Utility replmerg.exe

Note		You	can	modify	agent	settings	by	changing	the	command	line	available	for
each	agent	when	administering	replication	agents	through	Replication	Monitor.
To	access	that	command	line,	right-click	a	specific	agent,	click	Agent
Properties,	click	the	Steps	tab,	and	then	double-click	the	Run	Agent	step.

For	more	information,	see	Getting	Started	with	Command	Prompt	Utilities.

JavaScript:hhobj_1.Click()

Replication

ActiveX	Controls	for	Replication
Microsoft®	ActiveX®	controls	allow	custom	applications	to	configure	and
invoke	replication	agent	functionality.	The	controls	support	all	types	of
subscriptions	and	can	be	monitored	using	SQL	Server	Enterprise	Manager	at	the
Distributor.

Programmers	can	use	ActiveX	controls	for	replication,	similar	to	any	standard
built-in	control.	The	controls	provided	are	the	SQL	Snapshot	control,	the	SQL
Distribution	control,	and	the	SQL	Merge	control.

Benefits	of	using	ActiveX	controls	for	replication	are:

The	client	has	no	dependency	on	SQL	Server	Agent,	which	is
responsible	for	executing	jobs	in	addition	to	replication.	

If	you	start	a	replication	agent	using	SQL	Server	Agent,	other	jobs	can
also	run.

If	you	are	replicating	to	heterogeneous	Subscribers	using	pull	or
anonymous	subscriptions,	SQL	Server	Agent	is	not	available	at	the
Subscriber.	

ActiveX	replication	controls	can	be	invoked	from	many	programming
environments,	including	Microsoft	Visual	Basic®,	Visual	Basic
Scripting	Edition,	and	Microsoft	Visual	C++®.	

The	application	can	control	when	replication	should	take	place.	For
example,	you	can	program	a	command	on	a	menu	or	a	Web	page	that
uses	the	replication	ActiveX	controls.	

An	application	can	use	the	ActiveX	Controls	status	callback	handlers	to
place	a	progress	bar	to	provide	feedback	on	the	progress	of	the
replication	control.	

An	application	can	determine	how	to	obtain	login	information	for
running	the	replication	agents	automatically	(for	example,	hard-coded
or	interactive).	

Embedding	replication	controls	in	applications	provides	a	way	to
distribute	mobile	applications	without	the	complexity	of	Subscriber
setup.	

Controls	can	be	programmed	to	add,	drop,	reinitialize,	or	validate
subscriptions,	and	create	or	attach	databases	at	the	Subscriber.	

An	application	can	be	programmed	to	register	the	synchronization	of	a
subscription	in	Microsoft	Synchronization	Manager.

If	a	subscription	is	registered	in	Microsoft	Windows	Synchronization	Manager,
there	is	no	need	to	embed	the	controls	in	the	application.	All	synchronization	is
then	controlled	by	this	central	application.	Windows	Synchronization	Manager
does	not,	however,	allow	you	to	specify	some	of	the	custom	properties	of	a
subscription,	such	as	its	hostname	override	and	subscription	agent	settings
including	FTP.	ActiveX	Controls	are	useful	for	these	administrative	activities.

For	more	information,	see	Developing	Replication	Applications	Using	ActiveX
Controls.

JavaScript:hhobj_1.Click()

Replication

Windows	NT	Performance	Monitor	and	Windows
2000	System	Monitor
Windows	2000	System	Monitor	and	Windows	NT	Performance	Monitor	can	be
used	to	monitor	the	rate	at	which	various	replication	processes	are	running.
Using	Performance	Monitor	or	System	Monitor,	you	can	use	charts	and	reports
to	gauge	the	efficiency	of	your	computer,	identify	and	troubleshoot	possible
problems	(such	as	unbalanced	resource	use,	insufficient	hardware,	or	poor
program	design),	and	plan	for	additional	hardware	needs.	You	can	optimize
replication	performance	by	using	the	relevant	replication	counters.

For	more	information,	see	Performance	Monitor	and	System	Monitor
documentation	included	with	Windows	NT	and	Windows	2000.

Replication

Setting	Agent	Parameters
Each	replication	agent	supports	a	set	of	run-time	parameters	that	you	can	use	to
control	how	the	agent	runs.	For	information	about	parameters	available	for	each
agent,	see	the	documentation	for	replication	command	prompt	utilities.

For	example,	a	parameter	that	can	be	helpful	when	troubleshooting	replication
agent	activity	is	the	–output	parameter.	This	parameter	writes	all	actions	that
occur	and	error	messages	for	a	particular	agent	to	a	text	file.

The	parameters	can	be	set	through:

The	command	line	of	the	agent	job	step	titled	'Run	agent'.	

The	properties	of	a	Microsoft®	ActiveX®	component.

A	centralized	agent	profile.	

The	agent	command	prompt	utility.

See	Also

Replication	Distribution	Agent	Utility

Replication	Log	Reader	Agent	Utility

Replication	Merge	Agent	Utility

Replication	Queue	Reader	Agent	Utility

Replication	Snapshot	Agent	Utility

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Replication

Agent	Profiles
When	a	replication	agent	is	created,	it	is	associated	with	an	agent	profile	that	is
maintained	at	the	Distributor.	The	agent	profile	contains	a	set	of	parameters	to	be
used	each	time	the	agent	runs.	During	the	startup	process,	each	agent	logs	in	to
the	Distributor	and	queries	for	the	parameters	in	its	profile.

The	agent	profile	allows	you	to	change	key	parameters	easily	for	all	agents
associated	with	that	profile.	For	example,	if	you	have	20	Snapshot	Agents	and
need	to	change	the	query	time-out	value,	you	can	update	the	profile	used	by	the
Snapshot	Agents	and	all	agents	of	that	type	will	begin	using	the	new	value
automatically	the	next	time	they	are	run.	You	also	may	have	different	profiles	for
different	instances	of	an	agent.	For	example,	a	Distribution	Agent	that	uses
Remote	Access	Service	(RAS)	to	connect	to	the	Distributor	could	use	a	set	of
parameters	that	are	better	suited	to	the	slower	communications	link.

A	set	of	default	and	predefined	profiles	for	each	agent	type	is	installed	when	a
server	is	configured	as	a	Distributor.	If	a	specific	profile	is	not	associated	with	an
agent,	SQL	Server	Agent	uses	the	default	profile	for	that	type	of	agent.

Note		The	values	set	in	the	agent	profile	are	overridden	by	any	values	set	for	the
same	parameter	in	the	agent	command	prompt	utility.

To	create	a	replication	agent	profile

Replication

Replication	Agents
The	replication	agents	carry	out	many	of	the	tasks	associated	with	replication
including	creating	copies	of	schema	and	data,	detecting	updates	at	the	Publisher
or	Subscriber,	and	propagating	changes	between	servers.	Each	replication	agent
has	an	agent	profile	associated	with	it,	agent	properties	that	you	can	set,	an	agent
schedule,	and	an	agent	history.

Replication	Monitor	provides	the	capability	to	administer	replication	agent
activity	graphically.	You	can	view	a	list	of	all	the	Snapshot,	Log	Reader,
Distribution,	Queue	Reader,	or	Merge	Agents	supported	by	a	Distributor.	You
can	select	a	Distributor	and	click	Replication	Monitor	to	display	a	list	of	agents.
When	you	click	the	folder	for	a	specific	type	of	agent,	all	the	agents	of	that	type
on	the	Distributor	are	displayed.	You	can	then	view	the	detailed	activity	of	a
specific	agent.

Independent	and	Shared	Agents
An	independent	agent	is	an	agent	that	services	one	subscription.	Latency	is
reduced	when	using	independent	agents	because	it	is	ready	whenever	the
subscription	needs	to	synchronize.

A	shared	agent	services	multiple	subscriptions,	and	is	the	default	for	snapshot
replication	or	transactional	replication.	When	multiple	subscriptions	using	the
same	shared	agent	need	to	synchronize,	they	wait	in	a	queue,	and	the	shared
agent	services	them	one	at	a	time.

All	of	the	agents	used	during	merge	replication	are	independent	agents.	When
using	independent	agents	with	snapshot	replication	or	transactional	replication,
you	must	take	care	to	prevent	transactions	that	have	interdependencies	from
being	delivered	out	of	sequence.

Replication

SQL	Server	Agent
SQL	Server	Agent	hosts	and	schedules	the	agents	used	in	replication,	and
provides	an	easy	way	to	run	replication	agents.	When	choosing	to	make	a	trusted
connection,	the	replication	agents	run	under	the	security	context	of	the	SQL
Server	Agent	startup	account.	SQL	Server	Agent	also	controls	and	monitors
several	other	operations	outside	of	replication	including	monitoring	the
SQLServerAgent	service,	maintaining	error	logs,	running	jobs,	and	starting	other
processes.

Replication

Snapshot	Agents
The	Snapshot	Agent	is	used	with	all	types	of	replication.	It	prepares	schema	and
initial	data	files	of	published	tables	and	stored	procedures,	stores	the	snapshot
files,	and	inserts	information	about	initial	synchronization	in	the	distribution
database.	The	Snapshot	Agent	typically	runs	under	SQL	Server	Agent	at	the
Distributor	and	can	be	administered	using	SQL	Server	Enterprise	Manager	or	the
ActiveX®	Snapshot	Control.	There	is	one	Snapshot	Agent	per	publication.

Replication

Snapshot	Agent	Profile
A	default	profile	for	the	Snapshot	Agent	is	installed	when	a	server	is	configured
as	a	Distributor.	The	default	profile	contains	the	following	parameters	and
values.

Parameter
Default
Value Description

-BcpBatchSize 100000 When	performing	a	bcp	in	operation,	the
batch	size	is	the	number	of	rows	to	send	to
the	server	as	one	transaction	and	is	also	the
number	of	rows	that	must	be	sent	before
the	Distribution	Agent	logs	a	bcp	progress
message.	When	performing	a	bcp	out
operation,	a	fixed	batch	size	of	100,000	is
used.	A	value	of	0	indicates	no	message
logging.

-
HistoryVerboseLevel

2 The	amount	of	history	logged	during	a
snapshot	operation	can	be:

1	=	Always	update	a	previous	history
message	of	the	same	status	(startup,
progress,	success,	and	so	forth).	If	no
previous	record	with	the	same	status	exists,
insert	a	new	record.
2	=	Insert	new	history	records.	If	the	record
is	for	items	such	as	idle	messages	or	long-
running	job	messages,	update	the	previous
records.
3	=	Always	insert	new	records,	unless	it	is
for	idle	messages.

You	can	minimize	the	performance	effect
of	history	logging	by	specifying	1.

-LoginTimeOut 15 The	number	of	seconds	before	the	login

attempted	by	the	agent	times	out.
-MaxBcpThreads 1 The	number	of	bulk	copy	operations	that

can	be	performed	in	parallel.	The
maximum	number	of	threads	and	ODBC
connections	that	exist	simultaneously	is	the
lesser	of	MaxBcpThreads	or	the	number
of	bulk	copy	requests	that	appear	in	the
synchronization	transaction	in	the
distribution	database.	MaxBcpThreads
must	be	greater	than	zero,	and	has	no	hard-
coded	upper	limit.

-QueryTimeOut 300 The	number	of	seconds	before	the	queries
issued	by	the	agent	time	out.

Replication

Distribution	Agents
The	Distribution	Agent	is	used	with	snapshot	replication	and	transactional
replication.	It	moves	the	snapshot	files	and	incremental	changes	held	in	the
distribution	database	to	Subscribers.	The	Distribution	Agent	typically	runs	under
SQL	Server	Agent	at	the	Distributor	for	push	subscriptions	or	at	the	Subscriber
for	pull	subscriptions.	It	can	be	administered	using	SQL	Server	Enterprise
Manager	or	the	ActiveX®	Distribution	Control.	There	will	either	be	one
Distribution	Agent	per	subscription	(an	independent	agent)	or	one	Distribution
Agent	per	publication	database	and	subscription	database	pair	(a	shared	agent).

Replication

Distribution	Agent	Profile
A	default	profile	for	the	Distribution	Agent	is	installed	when	a	server	is
configured	as	a	Distributor.	The	default	profile	contains	the	following
parameters	and	values.

Parameter
Default
Value Description

-BcpBatchSize 100000 The	number	of	rows	to	send	in	a	bulk
copy	operation.	When	performing	a
bcp	in	operation,	the	batch	size	is	the
number	of	rows	to	send	to	the	server
as	one	transaction,	and	is	also	the
number	of	rows	that	must	be	sent
before	the	Distribution	Agent	logs	a
bcp	progress	message.	When
performing	a	bcp	out	operation,	a
fixed	batch	size	of	1000	is	used.	A
value	of	0	indicates	no	message
logging.

-CommitBatchSize 100 The	number	of	transactions	to	be
issued	to	the	Subscriber	before	a
COMMIT	statement	is	issued.

-CommitBatchThreshold 1000 The	number	of	replication	commands
to	be	issued	to	the	Subscriber	before	a
COMMIT	statement	is	issued.

-HistoryVerboseLevel 1 The	amount	of	history	logged	during
a	distribution	operation	can	be:

1	=	Always	update	a	previous	history
message	of	the	same	status	(startup,
progress,	success,	and	so	forth).	If	no
previous	record	with	the	same	status
exists,	insert	a	new	record.
2	=	Insert	new	history	records	unless

the	record	is	for	such	things	as	idle
messages	or	long-running	job
messages,	in	which	case	update	the
previous	records.
3	=	Always	insert	new	records,	unless
it	is	for	idle	messages.

You	can	minimize	the	performance
effect	of	history	logging	by	selecting
1.

-LoginTimeOut 15 The	number	of	seconds	before	the
login	attempted	by	the	agent	times
out.

-MaxBcpThreads 1 The	number	of	bulk	copy	operations
that	can	be	performed	in	parallel.	The
maximum	number	of	threads	and
ODBC	connections	that	exist
simultaneously	is	the	lesser	of
MaxBcpThreads	or	the	number	of
bulk	copy	requests	that	appear	in	the
synchronization	transaction	in	the
distribution	database.
MaxBcpThreads	must	have	a	value
greater	than	zero,	and	has	no	hard-
coded	upper	limit.

-
MaxDeliveredTransactions

0 The	maximum	number	of	push	or	pull
transactions	applied	to	Subscribers	in
one	synchronization.	A	value	of	0
indicates	that	the	maximum	is	an
infinite	number	of	transactions.	Other
values	can	be	used	by	Subscribers	to
shorten	the	duration	of	a
synchronization	being	pulled	from	a
Publisher.

-PollingInterval 10 Number	of	seconds	the	distribution
database	is	queried	for	replicated

transactions.
-SkipErrors 	 The	error	number(s)	that	will	be

skipped.	The	Distribution	Agent	will
ignore	the	error	number(s)	indicated
and	continue	processing	according	to
its	schedule.

-SkipFailureLevel 1 The	Distribution	Agent	is	enabled	to
skip	errors.	A	value	of	0	indicates	that
the	Distribution	Agent	will	not	ignore
any	errors.

-QueryTimeOut 300 The	number	of	seconds	before	the
queries	issued	by	the	agent	time	out.

-TransactionsPerHistory 100 The	transaction	interval	for	history
logging.	If	the	number	of	committed
transactions	after	the	last	instance	of
history	logging	is	greater	than	this
option,	a	history	message	is	logged.	A
value	of	0	indicates	infinite
TransactionsPerHistory.

Replication

Log	Reader	Agents
The	Log	Reader	Agent	is	used	with	transactional	replication.	It	moves
transactions	marked	for	replication	from	the	transaction	log	on	the	Publisher	to
the	distribution	database.	Each	database	that	is	marked	for	transactional
replication	will	have	one	Log	Reader	Agent	that	runs	on	the	Distributor	and
connects	to	the	Publisher.

Replication

Log	Reader	Agent	Profile
A	default	profile	for	the	Log	Reader	Agent	is	installed	when	a	server	is
configured	as	a	Distributor.	The	default	profile	contains	the	following
parameters	and	values.

Parameter
Default
Value Description

-HistoryVerboseLevel 1 The	amount	of	history	logged	during	a	log
reader	operation	can	be:

1	=	Always	update	a	previous	history
message	of	the	same	status	(startup,
progress,	success,	and	so	forth).	If	no
previous	record	with	the	same	status
exists,	insert	a	new	record.
2	=	Insert	new	history	records	unless	the
record	is	for	such	things	as	idle	messages
or	long-running	job	messages,	in	which
case	update	the	previous	records.

You	can	minimize	the	performance	effect
of	history	logging	by	selecting	1.

-LoginTimeOut 15 The	number	of	seconds	before	the	login
attempted	by	the	agent	times	out.

-PollingInterval 10 The	number	of	seconds	the	log	is	queried
for	replicated	transactions.

-QueryTimeOut 300 The	number	of	seconds	before	the	queries
issued	by	the	agent	times	out.

-ReadBatchSize 500 The	maximum	number	of	transactions
read	out	of	the	source.	For	the	Log	Reader
Agent,	the	source	is	the	transaction	log	of
the	publishing	database.

- 100 The	number	of	replication	commands	to

ReadBatchThreshold be	read	from	the	transaction	log	before
being	issued	to	the	Subscriber	by	the
Distribution	Agent.

Replication

Queue	Reader	Agents
The	Queue	Reader	Agent	is	used	with	snapshot	replication	or	transactional
replication	with	the	queued	updating	option,	or	if	the	immediate	updating	with
queued	updating	as	a	failover	option	is	enabled.

The	Queue	Reader	Agent	is	a	multithreaded	agent	that	runs	on	the	Distributor.	It
is	responsible	for	taking	messages	from	a	queue	and	applying	them	to	the
appropriate	publication.

The	Queue	Reader	Agent	reads	messages	from	the	Microsoft®	SQL	Server™
2000	queue	on	each	Subscriber	and	applies	the	transactions	to	the	publication.
This	agent	uses	the	security	context	of	SQL	Server	Agent	by	default.	Unlike	the
Distribution	Agent	and	the	Merge	Agent,	only	one	instance	of	the	Queue	Reader
Agent	exists	to	service	all	Publishers	and	publications	for	a	given	Distributor.

Replication

Merge	Agents
The	Merge	Agent	is	used	with	merge	replication.	It	applies	the	initial	snapshot	at
the	Subscriber,	and	moves	and	reconciles	incremental	data	changes	that	occurred
after	the	initial	snapshot	was	created.	Each	merge	subscription	has	its	own
Merge	Agent	that	connects	to	and	updates	both	the	Publisher	and	the	Subscriber.
The	Merge	Agent	typically	runs	under	SQL	Server	Agent	at	the	Distributor	for
push	subscriptions	or	at	the	Subscriber	for	pull	subscriptions.	It	can	be
administered	using	SQL	Server	Enterprise	Manager	or	the	ActiveX®	Merge
Control.

Replication

Merge	Agent	Profile
A	default	profile	for	the	Merge	Agent	is	installed	when	a	server	is	configured	as
a	Distributor.	The	default	profile	contains	the	following	parameters	and	values.

Parameter
Default
Value Description

-BcpBatchSize 100000 The	number	of	rows	to	send	a
bulk	copy	operation.	When
performing	a	bcp	in	an
operation	while	applying	the
schema	changes,	the	Merge
Agent	uses	the	batch	size	to
determine	when	to	log	a
progress	message.	A	value	of
0	indicates	no	message
logging.

-ChangesPerHistory 100 The	threshold	beyond	which
upload	and	download
messages	are	logged.

-DownloadGenerationsPerBatch 100 The	number	of	generations	to
be	processed	in	one	batch
while	downloading	changes
from	the	Publisher	to	the
Subscriber.	A	generation	is
defined	as	a	logical	group	of
changes	per	article.	The
default	for	an	unreliable
communication	link	is	10.

In	all	cases,	however,	the
actual	number	of	generations
processed	per	batch	will	be
equal	to	the	greater	of	the
UploadGenerationsPerBatch

setting	or	the	number	of
articles	published	plus	1.

-
DownloadReadChangesPerBatch

100 The	number	of	changes	to	be
read	in	one	batch	while
downloading	changes	from
the	Publisher	to	the
Subscriber.

-
DownloadWriteChangesPerBatch

100 The	number	of	changes	to	be
applied	in	one	batch	while
downloading	changes	from
the	Publisher	to	the
Subscriber.

-FastRowCount 1 Specifies	what	type	of
rowcount	calculation	method
should	be	used	for	rowcount
validation.	A	value	of	1
(default)	indicates	the	fast
method.	A	value	of	0
indicates	the	full	rowcount
method.

-HistoryVerboseLevel 1 The	amount	of	history	logged
during	a	merge	operation	can
be:

1	=	Always	update	a	previous
history	message	of	the	same
status	(startup,	progress,
success,	and	so	forth).	If	no
previous	record	with	the	same
status	exists,	insert	a	new
record.	This	level	logs	the
minimum	number	of
messages.
2	=	Insert	new	history	records
unless	the	record	is	for	such
things	as	idle	messages	or

long-running	job	messages,	in
which	case	update	the
previous	records.	This	level
logs	level	1	messages	plus
additional	in-progress
messages.
3	=	Always	insert	new
records,	unless	it	is	for	idle
messages.

You	can	minimize	the
performance	effect	of	history
logging	by	setting	the
ChangesPerHistory
parameter.

-KeepAliveMessageInterval 300 The	number	of	seconds	before
history	thread	checks	if	any	of
the	existing	connections	is
waiting	for	a	response	from
the	server.	This	value	can	be
increased	to	avoid	getting	the
agent	marked	as	suspect	by
the	checkup	agent	when
executing	a	long-running
batch.

-LoginTimeOut 15 The	number	of	seconds	before
the	login	attempted	by	the
agent	times	out.

-MaxDownloadChanges 0 The	maximum	number	of
changes	you	want	to
download	during	a	specific
merge	session.	Because
complete	generations	are
processed,	the	number	of
rows	downloaded	may	go
over	the	specified	maximum.

-MaxUploadChanges 0 The	maximum	number	of

changes	you	want	to	upload
during	a	specific	merge
session.	Because	complete
generations	are	processed,	the
number	of	rows	uploaded
may	go	over	the	specified
maximum.

-NumDeadlockRetries 5 The	number	of	times	the
merge	process	attempts	to
retry	an	internal	operation
when	it	encounters	a	deadlock
error.	Can	be	any	value
between	1	and	100.

-PollingInterval 60 The	number	of	seconds	the
Publisher	or	Subscriber	is
queried	for	data	changes
when	in	continuous	mode.

-QueryTimeOut 300 The	number	of	seconds	before
the	queries	issued	by	the
agent	times	out.

-StartQueueTimeout 0 If	the	number	of	merge
processes	running	is	at	the
limit,	this	indicates	the
maximum	number	of	seconds
that	the	Merge	Agent	waits.	If
the	maximum	number	of
seconds	is	reached	and	the
Merge	Agent	is	still	waiting,
it	will	exit.	A	value	of	'0'
means	that	the	agent	waits
indefinitely,	although	it	can	be
cancelled.

-UploadGenerationsPerBatch 100 The	number	of	generations	to
be	processed	in	one	batch
while	uploading	changes	from
the	Subscriber	to	the

Publisher.	A	generation	is
defined	as	a	logical	group	of
changes	per	article.	The
default	for	an	unreliable
communication	link	is	1.

In	all	cases,	however,	the
actual	number	of	generations
processed	per	batch	will	be
equal	to	the	greater	of	the
UploadGenerationsPerBatch
setting	or	the	number	of
articles	published	plus	1.

-UploadReadChangesPerBatch 100 The	number	of	changes	to	be
read	in	one	batch	while
uploading	changes	from	the
Subscriber	to	the	Publisher.

-UploadWriteChangesPerBatch 100 The	number	of	changes	to	be
applied	in	one	batch	while
uploading	changes	from	the
Subscriber	to	the	Publisher.

-Validate 0 Specifies	if	validation	should
be	done	at	the	end	of	the
merge	session,	and,	if	so,
what	type	of	validation.	A
value	of	0	(default)	indicates
no	validation.	A	value	of	1
indicates	rowcount-only
validation.	A	value	of	2
indicates	rowcount	and
checksum	validation.	A	value
of	3	indicates	binary
checksum	validation
(available	only	with	SQL
Server	2000).

-ValidateInterval 60 The	number	of	minutes	the
subscription	is	validated	when

set	to	continuous	mode.

Replication

Miscellaneous	Agents
The	Miscellaneous	Agents	folder	in	Replication	Monitor	lists	the	agents	needed
to	clean	up	and	monitor	different	replication	processes.

Agent	History	Clean	Up	Agent
The	Agent	History	Clean	Up	Agent	removes	replication	agent	history	from	the
distribution	database.	This	agent	runs	every	10	minutes	by	default.	Running	this
agent	is	helpful	in	managing	the	size	of	the	distribution	database.

Distribution	Clean	Up	Agent
The	Distribution	Clean	Up	Agent	removed	replicated	transactions	from	the
distribution	database.	This	agent	runs	for	snapshot	and	transactional	publications
every	72	hours	by	default.	The	Distribution	Clean	Up	Agent	may	deactivate	a
subscription	if	the	subscription	has	not	been	synchronized	within	the	maximum
distribution	retention	period.	For	more	information,	see	Subscription
Deactivation	and	Expiration.

Expired	Subscription	Clean	Up	Agent
Detects	and	removes	expired	subscriptions	from	the	published	databases.	If	a
subscription	is	deactivated,	the	subscription	will	be	removed	by	the	Expired
Subscription	Clean	Up	Agent,	which	runs	once	a	day	by	default.	A	subscription
is	marked	as	expired	either	during	the	cleanup	process	or	when	the	replication
agent	runs	after	the	publication	retention	period	has	been	exceeded.	For	more
information,	see	Subscription	Deactivation	and	Expiration.

Reinitialize	Subscriptions	Having	Data	Validation	Failures	Agent
Reinitializes	all	subscriptions	that	have	data	validation	failures.	This	agent	is	not
set	on	a	schedule	by	default.	Run	this	agent	to	automatically	detect	the
subscriptions	that	failed	validation	and	mark	them	for	reinitialization.	After	the
subscriptions	are	marked	for	reinitialization,	the	next	time	the	Merge	Agent	or
Distribution	Agent	runs,	a	new	snapshot	will	be	applied	at	the	Subscribers.

Replication	Agents	Checkup	Agent
Detects	replication	agents	that	are	not	actively	logging	history.	This	agent	runs
every	10	minutes	by	default,	and	it	writes	to	the	Windows	event	log	if	the	job
step	fails.	

See	Also

Anonymous	Subscriptions

Planning	for	Transactional	Replication

Subscription	Deactivation	and	Expiration

Replication

Viewing	Agent	History
The	Replication	Monitor	Agent	History	dialog	box	displays	a	summary	of	the
sessions	of	a	selected	agent.	This	is	helpful	when	you	need	to	examine	recent
agent	activity,	gauge	performance	quickly,	or	detect	error	trends.	The	amount	of
history	information	stored	for	a	replication	agent	is	determined	by	the
distribution	retention	period	and	how	often	the	History	Clean	Up	Agent	runs.

Agent	history	also	includes	several	predefined	filters	on	(or	views	of)	session
history,	such	as:

All	sessions.

Sessions	in	the	last	24	hours.

Sessions	in	the	last	two	days.

Sessions	in	the	last	seven	days.

Sessions	with	errors.

The	following	history	columns	are	displayed	in	the	Agent	History	dialog	box.

Column Values
Status Success	icon;	Error	icon;	In	Progress	icon	(only

one	session	can	be	in	progress	at	a	given	time).
#Actions Number	of	actions	in	each	session.
Action	Message If	the	session	ended	in	an	error,	the	highest	level

error	reported.
Start	Time Time	this	session	was	started.
End	Time Time	this	session	ended.
Duration Duration	of	the	agent	session.
Delivery	Rate Ratio	of	delivered	commands	to	the	duration	of	the

agent.	If	the	agent	is	still	running,	this	value	reflects

a	cumulative	count	from	the	beginning	of	the
session.

Latency Latency	between	when	an	action	occurs	at	the
Publisher	and	is	propagated	to	the	Subscriber.	If	the
agent	is	still	running,	this	value	reflects	a
cumulative	count	from	the	beginning	of	the	session.
Not	available	for	Snapshot	Agent	or	Merge	Agent.

#	Trans Total	number	of	transactions	delivered	during	the
agent	session.	Not	available	for	Merge	Agent.

#	Cmds Total	number	of	commands	delivered	during	the
agent	session.	Not	available	for	Merge	Agent.

Publisher_Inserts Number	of	inserts	that	occurred	on	the	Publisher.
Available	only	for	Merge	Agent.

Publisher_Updates Number	of	updates	that	occurred	on	the	Publisher.
Available	only	for	Merge	Agent.

Publisher_Deletes Number	of	deletes	that	occurred	on	the	Publisher.
Available	only	for	Merge	Agent.

Publisher_Conflicts Number	of	conflicts	that	occurred	on	the	Publisher.
Available	only	for	Merge	Agent.

Subscriber_Inserts Number	of	inserts	that	occurred	on	Subscribers.
Available	only	for	Merge	Agent.

Subscriber_Updates Number	of	updates	that	occurred	on	Subscribers.
Available	only	for	Merge	Agent.

Subscriber_Deletes Number	of	deletes	that	occurred	on	Subscribers.
Available	only	for	Merge	Agent.

Subscriber_Conflicts Number	of	conflicts	that	occurred	on	Subscribers.
Available	only	for	Merge	Agent.

Replication

Handling	Agent	Errors
You	can	monitor	details	about	the	current	activity	and	the	task	history	of	each
replication	agent	in	Replication	Monitor.	As	an	agent	operates,	it	writes	details
of	its	activity	and	messages	to	the	history	table	in	the	Distributor.

You	can	display	errors	if	the	agent	has	encountered	any	during	an	agent	session.
The	error	details	are	displayed	in	the	Error	Detail	dialog	box.	You	can	also
display	error	information	in	the	Session	Details	dialog	box,	or	right-click	an
agent	and	then	click	Error	Details.

The	replication	agent	error	status	is	represented	in	SQL	Server	Enterprise
Manager	as	an	icon	at	each	agent	and	each	node	under	Replication	Monitor.	To
have	the	icon	correctly	reflecting	the	status	of	the	replication	agents,	you	must
refresh	the	node	manually	or	enable	automatic	refreshing.

You	can	use	the	Refresh	Rate	and	Settings	dialog	box	to:

Enable	or	disable	automatic	refreshing	for	the	console	tree	or	details
pane.	

Specify	the	refresh	period	in	seconds	for	the	console	tree	or	details
pane.	

Specify	the	inactivity	threshold	for	restarting	replication	agents.	

Specify	the	Windows	NT	Performance	Monitor	or	Windows	2000
System	Monitor	file	setting	for	replication	performance.

You	can	also	customize	the	columns	displayed	in	the	details	pane	when	the
selection	is	on	a	publication	or	an	agent	view.	Use	the	Select	Columns	dialog
box	to	select	which	columns	to	display.

You	can	use	the	Select	Columns	dialog	box	to	select	columns	to	display	when
the	focus	is	on	any	of	these	nodes:

A	transactional,	snapshot,	or	merge	publication	

Snapshot	Agent	

Log	Reader	Agent

Distribution	Agent

Merge	Agent

Skipping	Errors	in	Transactional	Replication

During	transactional	replication,	you	can	specify	errors	that	can	be	skipped
during	the	distribution	process.	Typically,	when	the	Distribution	Agent	is
running	in	continuous	mode	and	it	encounters	an	error,	the	agent,	and	the
distribution	process,	stops.	By	specifying	expected	errors	or	errors	that	you	do
not	want	to	interfere	with	replication,	the	agent	will	log	the	error	information	and
then	continue	running.

The	most	typical	way	to	skip	errors	is	using	the	Distribution	Agent	profile	titled
Continue	On	Data	Consistency	Errors.	To	use	this	profile,	right-click	on	the
Distribution	Agent,	click	Profiles,	and	then	select	this	profile.	The	Distribution
Agent	will	then	skip	errors	2601,	2627,	and	20598.	You	can	also	create	your	own
agent	profile	and	specify	the	–SkipErrors	parameter	with	the	errors	you	want
skipped.	For	more	information	on	creating	profiles,	see	Agent	Profiles.

CAUTION		Under	typical	replication	processing,	you	should	not	experience	any
errors	that	need	to	be	skipped.	The	ability	to	skip	errors	during	transactional
replication	is	available	for	the	unique	circumstances	where	you	expect	errors	and
do	not	want	them	to	affect	replication	(for	example,	when	failing	over	to	a
secondary	Publisher	during	log	shipping).	Skipping	errors	should	only	be	used
with	caution	and	with	the	understanding	of	what	the	error	is,	why	it	is	occurring,
and	why	it	needs	to	be	skipped	rather	than	solved.

You	can	specify	the	errors	that	should	be	skipped	using	the	SQL	Distribution
ActiveX®	Control,	in	an	agent	profile	(with	the	–SkipErrors	parameter	on	the
Distribution	Agent	profile),	or	by	using	the	–SkipErrors	parameter	in	the

command	line	for	the	Distribution	Agent.

For	example,	if	the	Distribution	Agent	returns	a	duplicate	key	violation	error,	but
you	would	want	the	distribution	process	to	continue	and	log	only	the	error
information,	you	can	specify	the	–SkipErrors	command	line	parameter	with	the
number	of	the	error	that	should	be	skipped.

Typically,	the	Distribution	Agent	is	a	shared	agent	servicing	multiple
publications	and	multiple	articles.	If	you	specify	–SkipErrors	on	the	agent,	all
publications	that	use	that	Distribution	Agent	will	be	affected.	If	you	want	to	skip
an	error	on	one	specified	publication,	set	up	the	publication	with	an	independent
agent	and	then	specify	the	–SkipErrors	command	line	parameter	for	that	agent.

To	specify	the	–SkipErrors	parameter	on	the	agent	command	line

1.	 At	the	Distributor,	expand	Replication	Monitor,	click	the
Distribution	Agents	folder,	right-click	an	agent,	and	then	click	Agent
Properties.

2.	 On	the	Steps	tab,	double	click	the	Run	agent	step.

3.	 In	the	command	text	box,	type	–SkipErrors	and	specify	the	error
numbers	that	you	want	skipped	if	this	agent	encounters	them	(errors
are	delimited;	list	them	with	colons	between	each	error	number).

To	change	replication	monitor	refresh	rate	and	settings

Replication

Remote	Agent	Activation
Remote	agent	activation	allows	you	to	reduce	the	amount	of	processing	on	the
Distributor	or	Subscriber	by	running	the	Distribution	Agent	or	Merge	Agent	on
another	computer	and	then	activating	that	agent	remotely	using	Distributed
Component	Object	Model	(DCOM).

You	can	implement	remote	agent	activation	on	either	push	or	pull	subscriptions.
With	each	type	of	subscription,	you	need	to:

Indicate	where	the	agent	will	run	in	the	Push	Subscription	or	Pull
Subscription	Wizard.	

Configure	DCOM	to	activate	an	agent	remotely.

Configure	or	create	the	subscription	indicating	where	the	agent	should
run.

It	is	recommended	that	you	set	up	regular	push	or	pull	subscriptions	before
configuring	remote	agent	activation.	You	are	not	able	to	configure	remote	agent
activation	on	a	local	computer	(for	example,	when	the	Subscriber	and	Distributor
reside	on	the	same	computer).

Remote	agent	activation	is	supported	on	Microsoft®	SQL	Server™	2000
running	on	Microsoft	Windows	NT®	4.0	or	Windows®	2000,	but	it	is	not
supported	on	Windows	98.

Remote	Agent	Activation	and	Push	Subscriptions
When	Distributor	and	Subscriber	servers	have	a	reliable,	continuous	connection,
push	subscriptions	allow	centralized	subscription	management.	Push
subscriptions	offer	an	advantage	for	organizations	that	want	to	control	who	is
allowed	to	subscribe	to	publications	and	when.	Push	subscriptions	are	also
helpful	for	circumstances	in	which	the	Subscriber	needs	updates	sent	to	them	as
soon	as	they	occur.

For	push	subscriptions,	the	Distribution	Agent	(used	in	snapshot	replication	or

transactional	replication)	or	the	Merge	Agent	(used	in	merge	replication)	runs	on
the	Distributor;	however,	the	Distributor	can	become	overloaded	as	the	number
of	push	subscriptions	increases.

Remote	agent	activation	allows	you	to	offload	agent	activity	to	the	Subscriber,
which	reduces	the	amount	of	processing	on	the	Distributor.	Using	DCOM,	you
can	activate	the	agent	remotely	and	increase	the	number	of	push	subscriptions
the	Distributor	can	handle.

Using	DCOM	for	remote	agent	activation	with	push	subscriptions,	the
Distributor	first	establishes	a	connection	to	the	Subscriber.	After	the	connection
is	made,	SQL	Server	Agent	on	the	Distributor	uses	DCOM	to	activate	the
Distribution	Agent	or	the	Merge	Agent	on	the	Subscriber.

Remote	Agent	Activation	and	Pull	Subscriptions
Pull	subscriptions	offer	the	ability	to	manage	subscription	synchronization
locally.	This	is	important	for:

Anyone	who	travels	and	needs	to	connect	and	synchronize	data	on
demand.	

Remote	offices	that	need	to	manage	subscription	synchronization
because	they	do	not	have	a	reliable,	continuous	connection	to	the
Publisher	or	Distributor.

For	pull	subscriptions,	the	Distribution	Agent	or	the	Merge	Agent	runs	on	the
Subscriber.	You	can	reduce	processing	at	the	Subscriber	by	offloading	the
Distribution	Agent	or	the	Merge	Agent	activity	to	the	Distributor	and	using
DCOM	to	activate	the	agent.

Using	DCOM	for	remote	agent	activation	with	pull	subscriptions,	the	Subscriber
first	establishes	a	connection	to	the	Distributor.	After	the	connection	is	made,
SQL	Server	Agent	on	the	Subscriber	uses	DCOM	to	activate	either	the
Distribution	Agent	or	the	Merge	Agent	on	the	Distributor.

Subscription	Security	Requirements
When	you	create	a	subscription,	the	Distribution	Agent	or	the	Merge	Agent	runs

under	the	security	context	of	SQL	Server	Agent.	Using	the	security	context	of
SQL	Server	Agent,	the	Distribution	Agent	establishes	a	connection	to	the
Subscriber	and	to	the	Distributor,	and	when	required,	to	the	snapshot	folder.	The
Merge	Agent	establishes	a	connection	to	the	Subscriber,	the	Distributor,	the
Publisher,	and	when	required,	to	the	snapshot	folder.	You	can	view	the	security
requirements	for	a	subscription	as	if	SQL	Server	Agent	were	making	all	of	the
connections.

After	an	agent	is	activated	on	a	remote	computer,	the	agent	will	be	run	under	the
security	context	as	configured	through	DCOM.	When	you	configure	DCOM	for
remote	agent	activation,	you	need	to	enter	a	user	account	that	will	be	used	to
activate	either	the	Distribution	Agent	or	the	Merge	Agent.	It	is	recommended
that	you	provide	a	custom	account	that	is	the	same	as	the	SQL	Server	Agent
account	on	the	original	activating	computer.

Enabling	Remote	Agent	Activation	When	Creating	Subscriptions
When	creating	a	push	subscription	or	a	pull	subscription,	you	enable	remote
agent	activation	by	specifying	where	the	agent	will	run.	If	the	Subscriber	is	the
same	server	as	the	Distributor,	you	will	not	see	the	option	to	run	the	agent	at
another	server	in	the	Push	Subscription	or	Pull	Subscription	wizards.

IMPORTANT		After	you	specify	where	the	agent	should	run	when	creating	the
subscription,	synchronization	may	fail	if	you	specified	that	the	subscription
should	be	synchronized	automatically	and	you	have	not	configured	DCOM	for
the	remote	agent	activation.

Configuring	DCOM	for	Remote	Agent	Activation
DCOM	handles	low-level	details	of	network	protocols	by	extending	the
Component	Object	Model	(COM)	to	support	communication	among	objects	on
different	computers,	a	LAN,	a	WAN,	or	the	Internet.	When	configuring	DCOM,
consider	the	security	that	is	already	in	place	for	SQL	Server	Agent	as	well	as	the
type	of	subscriptions	that	will	be	used.

For	push	subscriptions:

DCOM	must	be	configured	on	the	Subscriber	before	you	change	an
existing	push	subscription	or	create	a	new	push	subscription	using
remote	agent	activation.	

You	must	have	administrative	privileges	on	the	Subscriber.	

The	SQL	Server	Agent	on	the	Distributor	must	be	allowed	to	use
DCOM	on	the	Subscriber.

An	account	or	security	context	needs	to	be	specified	through	DCOM
that	will	allow	the	Distribution	Agent	or	the	Merge	Agent	to	be	run	on
the	Subscriber.

For	pull	subscriptions:

DCOM	must	be	configured	on	the	Distributor	before	you	change	an
existing	pull	subscription	or	create	a	new	pull	subscription	using	remote
agent	activation.	

You	must	have	administrative	privileges	on	the	Distributor.	

The	SQL	Server	Agent	on	the	Subscriber	must	be	allowed	to	use
DCOM	on	the	Distributor.

An	account	or	security	context	needs	to	be	specified	through	DCOM
that	will	allow	the	Distribution	Agent	or	the	Merge	Agent	to	be	run	on
the	Distributor.

To	configure	DCOM	to	run	the	Distribution	Agent	remotely

Replication

Replication	Alerts
SQL	Server	Enterprise	Manager	and	SQL	Server	Agent	provide	a	way	to
monitor	events,	such	as	replication	agent	errors,	using	alerts.	SQL	Server	Agent
monitors	the	Microsoft®	Windows	NT®	4.0	or	Microsoft	Windows®	2000
application	log,	watching	for	an	event	that	qualifies	as	one	of	the	defined	alerts.
If	such	an	event	occurs,	SQL	Server	Agent	can	respond	automatically,	either	by
executing	a	task	that	you	have	defined	or	by	sending	e-mail	or	a	pager	message
to	a	specified	operator.

You	can	select	a	Distributor	and	use	Replication	Monitor	to	display	a	list	of	all
of	the	replication-related	alerts	on	the	server.

Microsoft	SQL	Server™	2000	includes	a	set	of	predefined	alerts	for	replication.
You	can	configure	these	alerts	to	notify	operators	about	the	state	of	replication.
Operators	can	then	intervene	in	the	replication	process	manually	or	configure	an
automated	response	job.	Alerts	that	support	an	automated	response	job	enter
additional	information	into	the	msdb..sysreplicationalerts	system	table.	The
information	in	sysreplicationalerts	can	be	used	by	a	custom	Transact-SQL	job
when	responding	to	the	alert.

The	following	alerts	are	installed	when	a	computer	is	configured	as	a	Distributor.

Message
ID Predefined	Alert

Condition	Causing
the	Alert	to	Fire

Enters	Additional
Information	in
sysreplicationalerts

14150 Replication:	Agent
success

Agent	shuts	down
successfully.

Yes

14151 Replication:	Agent
failure

Agent	shuts	down	with
an	error.

Yes

14152 Replication:	Agent
retry

Agent	shuts	down	after
unsuccessfully	retrying
an	operation	(agent
encounters	an	error
such	as	server	not
available,	deadlock,
connection	failure,	or

Yes

time-out	failure).
14157 Replication:

Subscription
cleaned	up.

Inactive	subscription
was	deleted.

No

20574 Replication:
Subscriber	has
failed	data
validation

Distribution	or	Merge
Agent	fails	data
validation.

Yes

20575 Replication:
Subscriber	has
passed	data
validation

Distribution	or	Merge
Agent	passes	data
validation.

Yes

20572 Replication:
Subscription
reinitialized	after
validation	failure

Response	job
'Reinitialize
subscriptions	on	data
validation	failure'
reinitializes	a
subscription
successfully.

No

Viewing	the	Application	Log
To	view	the	Microsoft®	Windows	NT®	4.0	or	Windows®	2000	application	log,
use	the	Windows	NT	4.0	or	Windows	2000	Event	Viewer.	If	you	are	part	of	the
Windows	NT	Administrators	group,	you	can	also	view	remote	application
logs.	The	application	log	contains	SQL	Server	error	messages	as	well	as
messages	for	all	activities	on	the	computer.

When	you	use	the	Windows	NT	application	log,	each	SQL	Server	session	writes
new	events	to	an	existing	application	log;	you	can	filter	the	log	for	specific
events.	Unlike	the	SQL	Server	error	log,	a	new	application	log	is	not	created
each	time	you	start	SQL	Server;	however,	you	can	specify	how	long	logged
events	will	be	retained.

Replication

Automating	a	Response	to	an	Alert
Usually,	when	an	alert	occurs,	the	only	information	you	have	to	help	you
understand	what	caused	the	alert	and	the	appropriate	action	to	take	is	contained
in	the	alert	message	itself.	Creating	jobs	to	respond	to	the	alert	is	time-
consuming	because	you	must	first	parse	and	analyze	the	information	in	the
message	and	then	insert	the	relevant	information	into	Transact-SQL	commands.
Microsoft®	SQL	Server™	2000	replication	makes	automating	response	jobs
easier	by	providing	additional	information	about	the	alert.	This	information	is
stored	in	the	sysreplicationalerts	system	table.	In	addition	to	providing	detailed
information,	sysreplicationalerts	provides	that	information	already	parsed	in	a
form	easily	used	by	customized	programs.

For	example,	if	the	pubs	data	at	Subscriber	A	fails	the	validation	check,	SQL
Server	triggers	alert	message	20574	notifying	you	of	that	failure.	The	message
you	receive	may	be:

"Subscriber	'A',	subscription	to	article	'authors'	in	publication	'pubs'	failed	data	validation."

If	you	create	a	response	job	based	on	the	alert	message,	you	must	manually	parse
the	Subscriber	name,	article	name,	publication	name,	and	error	from	the
message.	However,	because	the	Distribution	Agent	writes	that	same	information
in	sysreplicationalerts,	along	with	details	such	as	the	type	of	agent,	time	of	the
alert,	publication	database,	Subscriber	database,	and	type	of	publication,	the
response	job	can	directly	query	the	relevant	information	from	the	table.
Although	the	exact	row	cannot	be	associated	with	a	specific	instance	of	the	alert,
the	table	has	a	status	column,	which	can	be	used	to	keep	track	of	serviced
entries.	The	entries	in	this	table	are	maintained	for	the	history	retention	period.	

For	example,	if	you	were	to	create	a	response	job	in	Transact-SQL	that	services
alert	message	20574,	you	might	use	the	following	logic:

declare	hc	cursor	local	for	select	publisher,	publisher_db,	publication,	publication_type,	article,	subscriber,	
						subscriber_db,	alert_id	from	
						msdb..sysreplicationalerts	where
						alert_error_code	=	20574	and	status	=	0
						for	read	only

open	hc
fetch	hc	into		@publisher,	@publisher_db,	@publication,	@publication_type,	@article,	@subscriber,	subscriber_db,	@alert_id
while	(@@fetch_status	<>	-1)
begin
/*	Do	custom	work		*/
/*	Update	status	to	1,	which	means	the	alert	has	been	serviced.	This	prevents	subsequent	runs	of	this	job	from	doing	this	again	*/
update	msdb..sysreplicationalerts	set	status	=	1	where	alert_id	=	@alert_id
	fetch	hc	into		@publisher,	@publisher_db,	@publication,	@publication_type,	@article,	@subscriber,	@subscriber_db,	@alert_id
end
close	hc
deallocate	hc
	

Replication

Predefined	Response	Jobs
Whenever	a	computer	is	configured	as	a	Distributor,	the	following	predefined
alert	response	jobs	are	installed.

Predefined
Response	Job Responds	to	Alert Action
Reinitialize
subscriptions	on
data	validation
failure.

Replication:
Subscriber	has
failed	data
validation.

Reinitializes	all	subscriptions	that
have	logged	a	sysreplicationalerts
record	with	alert_error_code	=
20574.

If	a	transactional	publication,	only
articles	that	failed	are	reinitialized.
If	a	merge	publication,	the	whole
publication	is	reinitialized.

Note		The	response	jobs	included	in	Microsoft®	SQL	Server™	2000	are
provided	only	for	the	most	well	known	responses	and	as	examples	you	can	use
for	writing	your	own	response	jobs.	The	provided	response	jobs	are	not
associated	with	an	alert	after	they	have	been	installed.	You	must	configure	an
alert	manually	to	call	the	appropriate	response	job.

See	Also

SQLServerAgent	Service

Validating	Replicated	Data

JavaScript:hhobj_1.Click()

Replication

Subscription	Deactivation	and	Expiration
Subscriptions	can	be	deactivated	or	can	expire	if	they	are	not	synchronized
within	a	specified	period	of	time.	The	action	that	occurs	depends	on	the	type	of
replication	and	the	retention	period	that	is	exceeded.

Snapshot	and	Transactional	Replication	Subscriptions
If	a	subscription	is	not	synchronized	within	a	specified	period	of	time,	there	is	a
possibility	the	subscription	may	get	deleted	or	it	may	be	automatically	marked
deactivated	and	require	reinitialization.	Whether	it	expires	and	is	deleted	or	gets
marked	deactivated	and	requires	initialization	depends	upon	whether	it	exceeds
the	subscription	expiration	property	of	the	publication	or	the	maximum
transaction	retention	property	of	the	distribution	database	as	well	as	whether	or
not	it	is	an	anonymous	subscription.

Subscription	Deactivation
When	a	subscription	is	not	synchronized	(for	example,	the	Distribution	Agent
for	it	has	not	run	or	cannot	connect	to	the	Subscriber)	within	the	maximum
transaction	retention	period	of	the	distribution	database	and	there	are	changes	in
the	distribution	database	waiting	to	be	picked	up,	the	subscription	will	be
marked	deactivated	by	the	Distribution	Cleanup	Agent	that	runs	on	the
Distributor.	The	default	for	maximum	transaction	retention	period	is	72	hours	for
transactional	replication	and	the	Distribution	Cleanup	Agent	runs	every	10
minutes	by	default.

If	there	is	no	activity	at	the	Publisher,	subscriptions	will	not	be	deactivated	even
if	they	have	not	been	synchronized	within	the	distribution	retention	period.	After
a	subscription	is	marked	inactive,	the	Distribution	Agent	will	fail	with	an	error
message	that	informs	the	user	that	the	subscription	has	been	deactivated	and	that
it	needs	to	be	reinitialized.	The	subscription	will	then	need	to	be	reinitialized	and
a	new	snapshot	applied	at	the	Subscriber	before	replication	continues	for	that
subscription.

In	addition	to	deactivating	subscriptions	that	have	not	synchronized	within	the
maximum	transaction	retention	period	of	the	distribution	database,	the

Distribution	Cleanup	Agent	is	also	responsible	for	cleaning	up	transactions	in
the	distribution	database	that	have	been	delivered	to	Subscribers	with	named
subscriptions.

If	anonymous	subscriptions	are	used,	this	agent	will	clean	up	only	transactions	in
the	distribution	database	that	have	exceeded	the	maximum	transaction	retention
period.	The	Distribution	Cleanup	Agent	will	not	clean	up	transactions	in	the
distribution	database	before	the	end	of	the	retention	period	when	anonymous
subscriptions	are	used	because	it	cannot	be	sure	that	the	Subscribers	using
anonymous	subscriptions	have	received	the	transactions	stored	in	the	distribution
database.	If	you	set	the	retention	period	to	a	high	value,	the	distribution	database
will	grow	larger	if	you	are	using	anonymous	subscriptions	because	of	this.

To	modify	a	Distributor	or	add	or	modify	a	distribution	database

Replication

Validating	Replicated	Data
Problems	encountered	during	replication	often	occur	because	data	at	the
Subscriber	is	not	in	synchronization	with	data	at	the	Publisher.	Microsoft®	SQL
Server™	2000	replication	can	validate	the	replicated	data	at	a	Subscriber	as	the
replication	process	is	occurring	to	ensure	that	data	at	the	Subscriber	matches	data
at	the	Publisher.

You	do	not	need	to	stop	updates	to	the	Publisher	and	wait	for	the	Subscriber	to
become	fully	synchronized	before	testing	that	data	has	been	received	and	applied
correctly.	You	can	validate	the	data	in	snapshot	replication,	transactional
replication,	or	merge	replication.	Validation	can	be	performed	for	specific
subscriptions	or	for	all	subscriptions	to	a	publication.

How	Inline	Data	Validation	Works
SQL	Server	validates	data	by	calculating	a	rowcount	and/or	a	checksum	at	the
Publisher	and	then	comparing	those	values	to	the	rowcount	and/or	checksum
calculated	at	the	Subscriber.	One	value	is	calculated	for	the	entire	publication
table	and	one	value	is	calculated	for	the	entire	subscription	table,	but	data	in	text
or	image	columns	is	not	included	in	the	calculations.

While	the	calculations	are	performed,	shared	locks	are	placed	temporarily	on
tables	for	which	rowcounts	or	checksums	are	being	run,	but	the	calculations	are
completed	quickly	and	the	shared	locks	removed,	usually	in	a	matter	of	seconds.

When	validating	replicated	data,	consider	the	following:

Is	the	fact	that	validation	failed	really	a	problem?	Some	validation
failures	are	explainable,	and	you	may	not	want	to	reinitialize.

If	the	validation	failure	is	an	issue,	consider	the	different	options	for
synchronizing	the	data,	including	a	full	reinitialization,	a	partial
reinitialization	a	previous	state,	or	manually	updating	the	data	so	that	it
is	synchronized.

Validating	Replicated	Data	for	Transactional	Replication

Validation	can	be	performed	on	transactional	replication,	subscriptions	that	use
immediate	updating	or	queued	updating,	and	on	horizontal	and	vertical	partitions
of	data.

You	can	choose	any	of	the	following	methods	for	validation:

Rowcount	only.

Rowcount	and	checksum.

Rowcount	and	binary	checksum	(this	is	available	only	for	Subscribers
running	Microsoft	SQL	Server	2000).

You	can	configure	validation	using	SQL	Server	Enterprise	Manager	or	Transact-
SQL	system	stored	procedures.	Regardless	of	which	you	use,	when	you	run
validation,	stored	procedures	are	executed	at	the	Publisher.	The	stored	procedure
sp_publication_validation	calls	sp_article_validation	for	each	article	that	is
being	validated,	and	sp_article_validation	calls	sp_table_validation	for	each
table,	which	then	generates	the	rowcount	or	checksum	calculations.	The
sp_table_validation	command	is	posted	as	a	replication	command	to	the
Subscriber	using	the	Log	Reader	Agent	and	Distribution	Agent,	and	the
calculations	are	then	made	at	the	Subscriber.

Note		Subscribers	running	SQL	Server	6.5	can	use	rowcount	only	validation,	but
not	checksum	validation.	You	can	validate	based	on	a	binary	checksum
calculation	if	Subscribers	are	running	SQL	Server	2000.

You	can	validate	replicated	data	on	a	schedule	by	creating	a	Transact-SQL	job
that	calls	sp_publication_validation	or	sp_article_validation.

Unless	you	are	a	member	of	the	sysadmin	or	db_owner	roles,	you	must	have
SELECT	permissions	on	all	columns	of	the	base	table	used	in	the	article	(even	if
the	article	is	vertically	partitioned)	in	order	to	execute	sp_publication_validation.

Validation	with	Checksums
When	checksums	are	used,	32-bit	redundancy	check	(CRC)	occurs	on	a	column-
by-column	basis	rather	than	a	CRC	on	the	physical	row	on	the	data	page.	This
allows	the	columns	with	the	table	to	be	in	any	order	physically	on	the	data	page,

but	still	compute	to	the	same	CRC	for	the	row.	Checksum	validation	can	be	used
when	there	are	row	(horizontal)	or	column	(vertical)	filters	on	the	publication.
Because	checksums	can	require	large	amounts	of	processor	resources	when
validating	a	large	data	set,	you	may	want	to	schedule	validation	to	occur	when
there	is	the	least	activity	on	the	servers	used	in	replication.

Subscribers	running	SQL	Server	7.0	use	the	checksum	routines	released	in	SQL
Server	7.0,	which	generate	CRC	values	that	are	different	than	those	generated
with	SQL	Server	2000.	The	checksum	routines	released	in	SQL	Server	7.0
cannot	validate	vertical	partitions,	or	logical	table	structures	where	column
offsets	differ	(due	to	ALTER	TABLE	statements	that	DROP	and	ADD	columns).

Setting	the	Rowcount_only	Parameter
The	@rowcount_only	parameter	is	a	smallint	and	accepts	the	following	values.

Value Description
0 Execute	checksum	functionality	released	with	SQL

Server	7.0.
1	(Default) Execute	a	rowcount	check	only.
2 Execute	checksum	functionality	released	with	SQL

Server	2000.

Because	Subscribers	running	SQL	Server	7.0	will	use	this	parameter	as	a	bit	data
type,	not	a	smallint,	SQL	Server	will	interpret	the	parameter	as	'ON'.	Setting	the
parameter	to	a	value	of	2	with	a	Subscriber	running	SQL	Server	7.0	will	result	in
a	rowcount	only	validation	at	the	Subscriber.	If	you	need	to	run	a	checksum
validation	for	a	Subscriber	running	SQL	Server	7.0,	use	the	value	of	0	for	this
parameter.	Subscribers	running	SQL	Server	2000	could	use	the	same	value	(0),
but	the	checksum	functionality	would	have	the	SQL	Server	7.0	limitations.

To	validate	transactional	data	using	SQL	Server	Enterprise	Manager

1.	 At	the	Distributor,	expand	Replication	Monitor,	expand	Publishers,
and	then	expand	a	specific	Publisher.

2.	 Right-click	a	transactional	publication,	and	then	click	Validate

subscriptions.

3.	 Choose	whether	you	want	to	validate	all	subscriptions	or	just	specific
subscriptions,	and	if	you	want	to	validate	specific	subscriptions,	select
those	in	the	text	box.

4.	 To	choose	the	type	of	validation,	click	Validation	Options.

5.	 Choose	whether	you	want	to	compute	a	fast	rowcount	based	on	cached
table	information,	compute	an	actual	row	count	by	querying	the	tables
directly,	or	compute	a	fast	row	count	and	if	differences	are	found,
compute	an	actual	row	count.

6.	 You	can	also	choose	to	enable	Compare	checksums	to	validate	data,	a
binary	checksum	(if	the	Subscriber	is	running	SQL	Server	2000),	and
you	can	choose	to	stop	the	Distribution	Agent	after	the	validation	has
completed.

To	validate	transactional	data	using	Transact-SQL	system	stored
procedures

To	validate	all	articles	in	a	publication	and	specify	rowcount	only	(the
default)	or	checksum	validation,	execute	sp_publication_validation.
This	will	call	sp_article_validation	for	each	article	in	the	publication.

To	validate	specific	articles	and	specify	rowcount	only	or	checksum
validation,	execute	sp_article_validation.

Validation	and	Immediate	Updating

When	using	inline	publication	validation	(sp_publication_validation)	on
immediate	updating	subscriptions,	there	is	a	period	of	time	when	a	change	on	the
Subscriber	will	cause	the	publication	validation	to	fail.	This	occurs	when	a	data
change	is	made	on	the	Subscriber	after	a	publication	validation	has	been	run	on
the	Publisher,	but	before	the	publication	validation	can	be	performed	on	the

Subscriber.

With	transactional	replication	(without	updatable	subscriptions),	changes	can	be
made	only	at	the	Publisher,	so	changes	made	to	the	Publisher	after
sp_publication_validation	has	been	executed	will	be	applied	at	the	Subscriber
after	the	validation	is	run	on	the	Subscriber.	

However,	when	using	immediate	updating	subscriptions,	data	modifications	can
be	made	at	the	Subscriber.	Any	changes	made	at	the	Subscriber	after	validation
was	run	on	the	Publisher	are	reflected	immediately	at	the	Subscriber.	Validation
will	fail	because	the	checksum	and	rowcount	calculations	were	based	on	data	in
the	publication	table	before	changes	were	made	at	the	Subscriber.	To	avoid	this,
stop	all	data	modifications	at	the	Subscriber	during	the	validation	process.

Considerations	when	Validating	Replicated	Data	for
Transactional	Replication
The	following	are	validation	restrictions	when	using	validation	for	transactional
replication:

Checksum	validations	are	not	supported	for	transformable	subscriptions
because	values	are	likely	to	be	transformed	between	Publisher	and
Subscriber	and	checksum	values	would	not	be	the	same.	

Rowcount	validation	is	not	supported	for	an	article	that	is	configured	as
a	DTS	horizontal	partition	because	the	filter	criteria	is	saved	as	part	of	a
DTS	package,	not	in	a	view	at	the	Publisher	like	replication	filters.	

Validation	for	replicated	data	to	heterogeneous	Subscribers	is	not
supported.

Validation	Failure	and	Alerts

If	validation	between	data	at	the	Publisher	and	data	at	the	Subscriber	fails,	you
can	configure	replication	alerts	to	notify	you	of	the	failure	(with	a	message	sent
through	e-mail	or	to	a	pager)	and	you	can	have	the	subscriptions	reinitialized
automatically.

To	configure	automatic	reinitialization	of	subscriptions	that	fail	validation

1.	 At	the	Distributor,	expand	Replication	Monitor,	click	Replication
Alerts,	right-click	the	Replication:	Subscription	has	failed	data
validation	alert,	and	then	click	Properties.

2.	 On	the	General	tab,	select	the	Enabled	check	box.	

3.	 On	the	Response	tab,	select	Execute	job,	and	then	in	the	drop	down
box,	click	Reinitialize	subscriptions	having	data	validation	failures.

4.	 To	send	a	reinitialize	confirmation	message	to	the	event	log,	right-click
the	Replication:	Subscription	reinitialized	after	validation	failure
alert,	and	click	Properties.

5.	 On	the	General	tab,	select	the	Enabled	check	box.

Validating	Replicated	Data	for	Merge	Replication

Using	SQL	Server	Enterprise	Manager,	you	can	choose	to	validate	all
subscriptions	to	a	merge	publication.	Using	Transact-SQL	system	stored
procedures,	you	can	validate	all	subscriptions	to	a	merge	publication	or	specified
subscriptions.

You	can	choose	any	of	the	following	methods	for	validation:

Rowcount	only

Checksum

To	request	validation	of	replicated	data	at	a	merge	Subscriber,	you	can	use:

SQL	Server	Enterprise	Manager,	which	allows	you	to	validate	all
subscriptions	to	a	publication.

The	Merge	Agent	command	line	or	the	Merge	Agent	Command	Prompt

Utility	specifying	the	–Validate	parameter.	If	the	Merge	Agent	is
running	in	continuous	mode,	the	–Validate	parameter	run	at	an	agent
command	prompt	will	conduct	validation	until	the	-ValidationInterval
value	is	reached.	Validation	will	occur	after	the	merge	process	is
complete.

The	sp_validatemergepublication	Transact-SQL	system	stored
procedure.	This	will	conduct	a	publication-wide	validation	for	which	all
subscriptions	(push,	pull,	and	anonymous)	will	be	validated	once	each.

The	sp_validatemergesubscription	Transact-SQL	system	stored
procedure,	which	runs	validation	once	on	the	Merge	Agent	for	the
specified	subscription.

Running	the	Merge	Agent	with	the	-Validate	parameter	causes	SQL
Server	to	temporarily	lock	the	Subscriber	tables	to	prevent	further
changes.	SQL	Server	then	computes	either	a	rowcount	or	checksum	of
each	replicated	table	at	the	Subscriber	and	at	the	Publisher.	If	there	is	a
difference,	SQL	Server	locks	the	discrepant	table	at	the	Publisher	and
any	new	data	changes	are	downloaded	to	the	Subscriber.	After
downloading	is	complete,	SQL	Server	recalculates	the	rowcount	or
checksum	at	the	Subscriber	and	Publisher	and	compares	them	again.
After	validation	is	complete,	SQL	Server	removes	all	locks	on
Subscriber	and	Publisher	tables.

You	can	validate	your	data	on	a	regular	schedule	by	adding	-Validate	to
the	Merge	Agent	profile	at	a	specified	time.	Because	inline	validation
may	be	time-consuming	or	may	result	in	undesirable	contention
between	the	Publisher	and	Subscriber,	you	should	schedule	validation
for	a	time	when	Publisher	and	Subscriber	activity	is	at	a	minimum.

In	case	of	merge	validation	failure,	you	can	respond	to	the	failure	by
using	SQL	Server	Enterprise	Manager	to	configure	the	replication	alert
named	Replication:	Subscriber	has	failed	data	validation	so	that	you
are	notified	of	the	failure	or	you	can	reinitialize	the	subscription	to
ensure	that	data	at	the	Subscriber	is	in	synchronization	with	data	at	the
Publisher.	Reinitializing	the	subscription	should	be	performed	with

caution	because	it	can	be	a	resource-intensive	process	for	the	Publisher,
Distributor	and	Subscribers,	and	users	may	not	be	able	to	update	data
while	the	initial	snapshot	is	reapplied	at	Subscribers.

When	validating	merge	replication,	another	option	is	to	validate	data,	and	if	data
is	not	converged,	to	conduct	a	partial	reinitialization	of	the	subscription.	This
partial	reinitialization	will	return	the	Subscriber	back	to	a	previous	state	when
data	was	in	synchronization.	Using	the	Validate	and	Resynchronize
Subscription	option	in	SQL	Server	Enterprise	Manager	or
sp_resyncmergesubscription,	you	can	resynchronize	a	merge	subscription	to	a
known	validation	state	that	you	specify.	This	allows	you	to	force	convergence	or
synchronize	the	subscription	database	to	a	specific	point	in	time,	such	as	the	last
time	there	was	a	successful	validation,	or	to	a	specified	date.	When
resynchronizing	a	subscription	using	this	method,	the	snapshot	is	not	reapplied.

To	validate	merge	data	using	SQL	Server	Enterprise	Manager

1.	 At	the	Distributor,	expand	Replication	Monitor,	expand	Publishers,
and	then	expand	a	specific	Publisher.

2.	 Right-click	a	merge	publication,	and	then	click	Validate	all
subscriptions.

3.	 Choose	whether	you	want	to	validate	replicated	data	using	rowcounts
only,	rowcounts	and	checksums,	or	rowcounts	and	comparing	binary
checksums	(all	Subscribers	must	be	running	SQL	Server	2000	to	use
this	option).	Validation	will	occur	the	next	time	the	Merge	Agent	runs
with	results	displayed	in	Replication	Monitor.

To	validate	and	resynchronize	subscriptions

Expand	Replication	Monitor,	expand	the	Publishers	folder,	and	then
expand	a	registered	Publisher.	Right-click	a	publication,	and	then	click
Validate	and	Resynchronize	Subscriptions.

Execute	sp_resyncmergesubscription	at	the	Publisher	on	the
publication	database	or	at	the	Subscriber	on	the	subscription	database.

To	validate	merge	data	using	Transact-SQL	system	stored	procedures

To	mark	all	named	and	anonymous	subscriptions	for	validation	the	next
time	the	Merge	Agent	runs,	execute	sp_validatemergepublication.

To	mark	specific	subscriptions	for	validation,	execute
sp_validatemergesubscription	or	sp_validatemergepullsubscription.

To	validate	merge	data	using	a	Merge	Agent	command	line	parameter

1.	 At	the	Distributor,	expand	Replication	Monitor,	click	the	Merge
Agents	folder,	right-click	an	agent,	and	then	click	Agent	Properties.

2.	 On	the	Steps	tab,	double	click	the	Run	agent	step.

3.	 In	the	command	text	box,	type	–validate	and	specify	1	for	rowcount-
only	validation,	2	for	rowcount	and	checksum	validation.	Validation
will	occur	the	next	time	the	Merge	Agent	runs	and	success	or	failure
messages	are	logged	in	the	Merge	Agent	History.	

4.	 If	you	want	to	schedule	validation,	set	the	–ValidateInterval
parameter	on	the	Merge	Agent	command	line	to	the	number	of	minutes
when	you	want	the	validation	to	occur	(the	default	is	to	validate	every
60	minutes).

Replication

Replication	and	Heterogeneous	Data	Sources
Microsoft®	SQL	Server™	2000	offers	the	ability	to	replicate	data	to	any
heterogeneous	data	source	that	provides	a	32-bit	ODBC	or	OLE	DB	driver	on
Microsoft	Windows®	2000,	Microsoft	Windows	NT®	Server	4.0,	or	Windows
98	operating	systems.	Additionally,	SQL	Server	2000	can	receive	copies	of	data
replicated	from	Microsoft	Access,	Microsoft	Exchange,	Oracle,	DB2	Universal,
DB2/MVS,	and	DB2	AS400.

Heterogeneous	Subscribers
Publishing	to	heterogeneous	data	sources	allows	corporations	that	have	acquired
different	databases	to	continue	providing	SQL	Server	2000	to	individuals	or
offices	using	those	databases.

The	simplest	way	to	publish	data	to	a	heterogeneous	data	source	is	by	using	OLE
DB	or	ODBC	and	creating	a	push	subscription	from	the	Publisher	to	the	OLE
DB	or	ODBC	Subscriber.

SQL	Server	2000	supports	replication	between	different	versions	of	SQL	Server
and	it	supports	replication	to	Subscribers	running	Microsoft	SQL	Server	2000
Windows	CE	Edition	(SQL	Server	CE).	For	more	information,	see	Replication
Between	Different	Versions	of	SQL	Server	and	Replication	with	SQL	Server	for
Windows	CE.

Heterogeneous	Publishers
SQL	Server	2000	can	subscribe	to	snapshot	or	transactional	data	replicated	from
Oracle,	DB2,	Access,	and	other	data	sources.	This	allows	companies	that	are
planning	to	deploy	large	databases	or	a	data	warehouse	with	SQL	Server,	or
Internet	and	intranet	applications,	to	gain	access	to	various	sources	of	data.	That
data	can	then	be	consolidated	in	SQL	Server	2000	using	replication,	and	placed
into	a	data	mart,	data	warehouse,	or	multidimensional	database	designed	for
SQL	Server	Analysis	Services.

To	implement	snapshot	or	transactional	replication	published	by	heterogeneous
data	sources	to	your	SQL	Server	2000	applications,	configure	SQL	Server	with
third-party	software	or	using	applications	built	with	SQL-DMO	and	the

Replication	Distributor	Interface.

For	more	information,	see	Programming	Replication	from	Heterogeneous	Data
Sources.

JavaScript:hhobj_1.Click()

Replication

Heterogeneous	Subscribers
Microsoft®	SQL	Server™	2000	supports	publishing	to	heterogeneous	data
sources	that	provide	32-bit	ODBC	or	OLE	DB	drivers	on	Microsoft	Windows®
2000,	Microsoft	Windows	NT®	4.0	and	Microsoft	Windows	98.	Heterogeneous
Subscribers	to	SQL	Server	include:

Microsoft	Access	databases.

Oracle	databases.

Other	databases	on	heterogeneous	Subscribers	that	comply	with	SQL
Server	ODBC	or	OLE	DB	Subscriber	requirements.

The	simplest	way	to	publish	data	to	a	heterogeneous	Subscriber	is	by	using
ODBC	and	creating	a	push	subscription	from	the	Publisher	to	the	ODBC
Subscriber.	As	an	alternative,	you	can	create	a	publication	and	then	create	an
application	with	an	embedded	distribution	control.	The	embedded	control
implements	the	pull	subscription	from	the	Subscriber	to	the	Publisher.	For
ODBC	Subscribers,	the	subscribing	database	has	no	administrative	capabilities
regarding	the	replication	being	performed.

ODBC/OLE	DB	Driver	Support
ODBC	drivers	and	OLE	DB	providers	for	various	heterogeneous	data	sources
are	included	on	the	SQL	Server	2000	compact	disc.		

Stored	Procedures	That	Support	Replication	to	Heterogeneous
Subscribers
SQL	Server	2000	provides	the	following	stored	procedures	and	extended	stored
procedures	to	support	replication	to	ODBC	Subscribers.

Procedure Description
sp_enumdsn Reports	all	defined	ODBC	DSNs	for	a	server	running

under	a	specific	Windows	NT	4.0	or	Windows	2000	user
account.

sp_dsninfo Retrieves	ODBC	DSN	information	from	the	replication
Distributor	associated	with	the	current	server,	if
replication	is	installed.

Note		SQL	Server	Enterprise	Manager	(the	recommended	tool)	uses	these	stored
procedures	automatically	to	set	up	replication	to	ODBC	Subscribers.	Use	these
stored	procedures	directly	only	if	you	are	not	using	SQL	Server	Enterprise
Manager.

Replication	Restrictions	for	Heterogeneous	Subscribers
The	following	restrictions	apply	to	replication	to	heterogeneous	Subscribers:

Tables	replicated	to	heterogeneous	Subscribers	will	adopt	the	table
naming	conventions	of	the	heterogeneous	data	source.

Schema	files	that	create	tables	at	the	Subscriber	do	not	include
quotation	marks	around	table	names,	and	the	new	table	name	is
dependent	on	the	behavior	of	the	heterogeneous	Subscriber	on	which
they	are	created.	For	example,	if	you	have	a	Subscriber	running	Oracle,
and	a	table	is	created	on	Oracle	without	quotation	marks	around	the
table	name,	it	will	default	to	an	uppercase	table	name	on	the	Oracle
server.	If	you	specify	the	name	Shipper	in	the	article	properties,	it	will
become	SHIPPER	on	the	Oracle	Subscriber.

Transactions	applied	to	the	heterogeneous	Subscriber	using	the
Distribution	Agent	do	have	quotation	marks	around	table	names.

Batched	statements	to	ODBC	Subscribers	are	not	supported	(because
the	distribution	task	commit	batch	size	option	is	ignored).

The	ODBC	DSN	must	conform	to	SQL	Server	2000	naming

conventions	(because	the	DSN	is	stored	in	the	sysservers	table).

The	publication	option	to	truncate	before	synchronization	is	not
supported	if	the	ODBC	DSN	is	not	a	SQL	Server	DSN.	ODBC
Subscribers	are	not	allowed	to	subscribe	to	publications	that	have	this
option	selected.

The	quoted	identifier	character	on	the	target	server	(as	reported	by	the
ODBC	driver)	is	used.

The	character	format	bulk	copy	method	must	be	selected	for
synchronization	(using	the	Create	Publication	Wizard	on	the	publication
property	dialog	box).	ODBC	Subscribers	cannot	subscribe	to
publications	that	have	selected	the	native	format	bulk	copy	method	for
synchronization.

Only	NULL,	NOT	NULL,	IDENTITY,	and	the	constraint	PRIMARY
KEY	for	CREATE	TABLE	are	supported	for	all	heterogeneous
Subscribers.	Therefore,	SQL	Server	2000	does	not	support	adding
articles	to	a	publication	after	a	subscription	has	been	created	for	a
heterogeneous	Subscriber.	Each	time	an	article	is	added	or	deleted	from
the	publication,	the	subscription	must	be	reinitialized.

Replication

Access	Subscribers
Microsoft®	SQL	Server™	2000	includes	an	ODBC	driver	and	OLE	DB	provider
that	supports	Microsoft	Access	97	or	Microsoft	Access	2000	subscriptions	to
SQL	Server	publications.	SQL	Server	2000	Setup	installs	the	driver	and	provider
automatically.

To	replicate	to	Access	Subscribers,	you	must	assign	the	MSSQLServer	service
the	same	domain	user	account	assigned	by	SQL	Server	Agent,	for	the	service	to
have	the	necessary	permissions	to	connect	to	an	.mdb	file	over	the	network.	Use
the	Services	application	in	Control	Panel	to	do	this.

Note		When	you	register	a	Access	DSN	on	a	remote	server,	supply	a	UNC	path
(not	a	redirected	drive	letter).

IMPORTANT		If	you	do	not	enable	heterogeneous	Subscribers	and	you	create	the
subscription	database	in	the	Create	Publication	Wizard,	the	schema	will	be
published	to	the	Subscriber,	but	the	data	will	not	be,	and	you	will	not	receive	an
error.	To	enable	heterogeneous	Subscribers,	on	the	Specify	Subscriber	Types
page	of	the	Create	Publication	Wizard,	select	Heterogeneous	data	sources,
such	as	Oracle	or	Microsoft	Access;	devices	running	SQL	Server	CE;	or
servers	running	earlier	versions	of	SQL	Server.

Data	Type	Mapping	to	Jet-SQL	3.51	(Access	8)	for	Transactional
Replication
The	following	table	maps	data	types	for	transactional	replication	to	Access
Subscribers	When	you	replicate	to	ODBC	Subscribers,	the	distribution	task
maps	SQL	Server	2000	data	types	to	the	closest	data	type	on	the	target	database.

SQL	Server	2000	data	type Access	Jet-SQL	3.51	data	type
binary(n) LONGBINARY
bit BIT
char(n) LONGTEXT
datetime CHAR	(23)
decimal CHAR	(30)
float DOUBLE

image LONGBINARY
int LONG
int LONG
money CHAR	(25)
nchar(n) LONGTEXT
ntext LONGTEXT
numeric CHAR	(30)
nvarchar(n) LONGTEXT
real SINGLE
smalldatetime DATETIME
smallint SHORT
smallmoney DOUBLE
text LONGTEXT
timestamp BINARY	(8)
tinyint BYTE
uniqueidentifier CHAR	(36)
varbinary(n) LONGBINARY
varchar(n) LONGTEXT

Data	Type	Mapping	to	Jet-SQL	4.0	for	Transactional	Replication
The	following	table	maps	data	types	for	transactional	replication	to	Access
Subscribers.	When	you	replicate	to	ODBC	Subscribers,	the	distribution	task
maps	SQL	Server	2000	data	types	to	the	closest	data	type	on	the	target	database.

Note		The	data	type	mapping	from	SQL	Server	to	Jet-SQL	4.0	is	the	same	for
snapshot	replication,	transactional	replication,	and	merge	replication.

SQL	Server	2000	data	type Microsoft	Jet-SQL	4.0	data	type
binary(n) BINARY	(n)
Bit BIT
char(n) CHAR	(n)
datetime DATETIME
decimal DECIMAL
float FLOAT

image IMAGE
int INT
money CURRENCY
nchar(n) NCHAR	(n)
numeric NUMERIC
nvarchar(n) NCHAR	VARYING	(n)
real REAL
smalldatetime DATETIME
smallint SMALLINT
smallmoney CURRENCY
text LONGTEXT
timestamp BINARY
tinyint BYTE
uniqueidentifier GUID
varbinary(n) VARBINARY	(n)
varchar(n) VARCHAR	(n)

Replication

Oracle	Subscribers
Microsoft®	SQL	Server™	2000	includes	an	ODBC	driver	and	OLE	DB	provider
that	support	Oracle	subscriptions	to	SQL	Server	publications	on	Intel	computers.
SQL	Server	2000	Setup	installs	the	driver	automatically.

Note		To	replicate	to	Oracle	ODBC	and	OLE	DB	Subscribers,	you	must	also
obtain	the	appropriate	Oracle	SQL*Net	driver	from	Oracle	or	from	your
software	vendor.	You	must	then	install	the	driver	on	the	Publisher	and	the
Distributor.

Replication	Restrictions	for	Oracle	Subscribers
The	following	restrictions	apply	when	replicating	to	an	Oracle	ODBC
Subscriber:

Replication	of	tables	that	have	names	with	spaces	will	not	be	created	on
the	Oracle	subscriber.	Replication	will	fail	with	Oracle	error	ORA-
00903:	invalid	table	name.

The	date	data	type	is	a	small	datetime	(the	range	is	4712	B.C.	to	4712
A.D.).

If	you	are	replicating	to	Oracle,	verify	that	SQL	Server	datetime	entries
in	a	replicated	column	are	within	this	range.

A	replicated	table	can	have	only	one	column	of	either	text	or	image
data	type,	which	is	mapped	to	long	raw.

The	datetime	data	type	is	mapped	to	char4.

The	SQL	Server	2000	ranges	for	float	and	real	data	types	are	different
from	the	Oracle	ranges.

The	following	table	maps	data	types	for	replication	to	Oracle	Subscribers.

SQL	Server	2000	data	type Oracle	data	type
bigint NUMBER
binary LONG	RAW	NOT	NULL
bit NUMBER	(1,	0)
char VARCHAR2	(900)	NOT	NULL
datetime DATE
decimal NUMBER	(255,	3)	NOT	NULL
float FLOAT	NOT	NULL
image LONG	RAW
int NUMBER	(255,	3)	NOT	NULL
money NUMBER	(255,	3)	NOT	NULL
nchar VARCHAR2	(2000)	NOT	NULL
ntext LONG
numeric NUMBER	(255,	3)	NOT	NULL
nvarchar VARCHAR2	(2000)	NOT	NULL
real FLOAT	NOT	NULL
smallint NUMBER	(255,	3)	NOT	NULL
smalldatetime DATE	NOT	NULL
smallmoney NUMBER	(255,	3)	NOT	NULL
sql_variant LONG
sysname CHAR(255)
text LONG
timestamp RAW	(255)
tinyint NUMBER	(255,	3)	NOT	NULL

Oracle	Data	Type	Definitions
The	following	table	lists	the	Oracle	data	type	definitions.

Oracle	data	type Definition
CHAR <=2000
DATE Jan	1,	4712	B.C.	to	Dec	31,	4712

A.D.

DECIMAL Same	as	Number
FLOAT Same	as	Number
INTEGER Same	as	Number
LONG <=2GB
LONG	RAW Raw	data;	Same	as	Long
LONG	VARCHAR Same	as	Long
NUMBER 1.0E-130	to	9.99..E125
SMALLINT Same	as	Number
RAW Raw	Binary	Data	<=255	bytes
ROWID Unique	Value
VARCHAR2 <=4000	bytes
VARCHAR Same	as	Varchar2
BLOB Binary	Large	Object	<=4GB
COB Char	Large	Object	<=4GB
NCLOB Same	as	Clob	(for	multibyte)
BFILE Pointer	to	binary	operating	file

Replication

IBM	DB2/AS400	Subscribers
IBM	DB2/AS400	subscriptions	to	Microsoft®	SQL	Server™	2000	publications
are	supported	through	the	OLE	DB	provider	and	ODBC	driver	that	are	included
with	Microsoft	Host	Integration	Server	2000.

The	following	table	maps	SQL	Server	2000	data	types	to	IBM	DB2/AS400	data
types.	When	you	replicate	to	OLE	DB	or	ODBC	Subscribers,	the	distribution
task	maps	SQL	Server	2000	data	types	to	the	closest	data	type	on	the	target
database.

SQL	Server	2000	data	type DB2/AS400	data	type
binary(n) CHAR(8000)	FOR	BIT	DATA
bit SMALLINT
char(n) CHAR	(8000)
datetime TIMESTAMP
decimal DECIMAL
double	precision DOUBLE
float FLOAT
image VARCHAR(32739)	FOR	BIT	DATA
int INTEGER	NOT	NULL
money DECIMAL	(19,	4)
numeric NUMERIC
real REAL
smalldatetime TIMESTAMP	NOT	NULL
smallint SMALLINT
smallmoney DECIMAL	(10,	4)	NOT	NULL,
text VARCHAR	(32739)
timestamp CHAR(8)	FOR	BIT	DATA)
tinyint SMALLINT	NOT	NULL
uniqueidentifier CHAR	(36)
varbinary(n) VARCHAR(8000)	FOR	BIT	DATA

NOT	NULL
varchar(n) VARCHAR	(8000)	NOT	NULL

Replication

IBM	DB2/AS400	Data	Type	Definitions
The	following	table	lists	the	IBM	DB2/AS400	data	type	definitions.

DB2/AS400	data	type Definition
INT 9
SMALLINT 4
FLOAT <=53
NUMERIC 1	-	31	digits
DECIMAL 1	-	31	digits
CHAR <=32766
VARCHAR <=32740
LONG	VARCHAR Determined	by	space	available	in	row
TIMESTAMP Gregorian
GRAPHIC <=16383
VARGRAPHIC <=16370
LONG	VARGRAPHIC Determined	by	space	available	in	row
REAL 8,7
DOUBLE 17,16

Replication

IBM	DB2/MVS	Subscribers
IBM	DB2/MVS	subscriptions	to	Microsoft®	SQL	Server™	2000	publications
are	supported	through	the	OLE	DB	provider	and	ODBC	driver	that	are	included
with	Microsoft	Host	Integration	Server	2000.

The	following	table	maps	SQL	Server	2000	data	types	to	IBM	DB2/MVS	data
types.	When	you	replicate	to	OLE	DB	or	ODBC	Subscribers,	the	distribution
task	maps	SQL	Server	2000	data	types	to	the	closest	data	type	on	the	target
database.

SQL	Server	2000	data	type DB2/MVS	data	type
binary(n) CHAR(254)	FOR	BIT	DATA	NOT

NULL
bit SMALLINT
char(n) CHAR	(254)	NOT	NULL
datetime TIMESTAMP	NOT	NULL
decimal DECIMAL	(31,	3)	NOT	NULL
double	precision DOUBLE
float FLOAT	NOT	NULL
image VARCHAR(4045)	FOR	BIT	DATA
int INTEGER	NOT	NULL
money DECIMAL	(19,	4)	NOT	NULL
nchar(n) VARCHAR	(900)	NOT	NULL
numeric NUMERIC	(31,	3)	NOT	NULL
real REAL	NOT	NULL
smalldatetime TIMESTAMP	NOT	NULL
smallint SMALLINT	NOT	NULL
smallmoney DECIMAL	(10,	4)	NOT	NULL
text VARCHAR	(4045)
timestamp CHAR(8)	FOR	BIT	DATA
tinyint SMALLINT	NOT	NULL
uniqueidentifier CHAR	(38)
varbinary(n) VARCHAR(4045)	FOR	BIT	DATA

NOT	NULL
varchar(n) VARCHAR	(4045)	NOT	NULL

Replication

Other	Heterogeneous	Subscribers
This	section	includes	the	data	type	mappings	for	Subscribers	running	DB2/NT	or
DB2/6000	as	well	as	the	driver	types	needed	for	ODBC	Subscribers.

IBM	DB2/NT
IBM	DB2/NT	subscriptions	to	Microsoft®	SQL	Server™	2000	publications	are
supported	through	the	OLE	DB	provider	and	ODBC	driver	that	are	included
with	Microsoft	Host	Integration	Server	2000.	

The	following	table	maps	SQL	Server	2000	data	types	to	IBM	DB2/NT	data
types.	When	you	replicate	to	OLE	DB	or	ODBC	Subscribers,	the	distribution
task	maps	SQL	Server	2000	data	types	to	the	closest	data	type	on	the	target
database.

SQL	Server	2000	data	type IBM	DB2/NT	data	type
binary(n) CHAR(254)	FOR	BIT	DATA	NOT

NULL
bit SMALLINT
char(n) CHAR	(254)	NOT	NULL
datetime TIMESTAMP
decimal DECIMAL
double	precision DOUBLE
float FLOAT
image VARCHAR(4000)	FOR	BIT	DATA
int INTEGER	NOT	NULL
money DECIMAL(19,	4)
numeric NUMERIC
real REAL
smalldatetime TIMESTAMP	NOT	NULL
smallmoney DECIMAL(10,	4)
text VARCHAR	(4000)
timestamp CHAR(8)	FOR	BIT	DATA)

tinyint SMALLINT	NOT	NULL
uniqueidentifier CHAR	(38)
varbinary(n) VARCHAR(4000)	FOR	BIT	DATA

NOT	NULL
varchar(n) VARCHAR	(4000)	NOT	NULL

IBM	DB2/6000
IBM	DB2/6000	subscriptions	to	MSQL	Server	2000	publications	are	supported
through	the	OLE	DB	provider	and	ODBC	driver	that	are	included	with
Microsoft	Host	Integration	Server	2000.	

The	following	table	maps	SQL	Server	2000	data	types	to	IBM	DB2/6000	data
types.	When	you	replicate	to	OLE	DB	or	ODBC	Subscribers,	the	distribution
task	maps	SQL	Server	2000	data	types	to	the	closest	data	type	on	the	target
database.

SQL	Server	2000	data	type IBM	DB2/6000	data	type
binary(n) CHAR(254)	FOR	BIT	DATA	NOT

NULL
Bit SMALLINT
char(n) CHAR	(254)	NOT	NULL
Datetime TIMESTAMP
Decimal NUMERIC	(28,	14)	NOT	NULL
Float INTEGER	NOT	NULL
Image VARCHAR(4000)	FOR	BIT	DATA
Int INTEGER(10)	NOT	NULL
Money DECIMAL(19,	4)
Numeric NUMERIC
Real REAL
Smalldatetime TIMESTAMP	NOT	NULL
Smallint SMALLINT
Smallmoney DECIMAL	(10,	4)	NOT	NULL,
Text VARCHAR	(4000)
Timestamp CHAR(8)	FOR	BIT	DATA

Tinyint SMALLINT	NOT	NULL
Uniqueidentifier CHAR	(38)
varbinary(n) VARCHAR(4000)	FOR	BIT	DATA

NOT	NULL
varchar(n) VARCHAR	(4000)	NOT	NULL

ODBC	Driver	and	OLE	DB	Provider	Support
ODBC	drivers	and	OLE	DB	providers	for	various	heterogeneous	data	sources
are	included	on	the	SQL	Server	2000	compact	disc.

Drivers	for	other	ODBC	Subscriber	types	must	conform	to	the	SQL	Server	2000
replication	requirements	for	generic	ODBC	Subscribers.	The	ODBC	driver:

Must	be	ODBC	level-1	compliant.

Must	be	32-bit,	thread-safe,	and	for	the	processor	architecture	(Intel	or
Alpha)	on	which	the	distribution	process	run.

Must	be	transaction	capable.

Must	support	the	Data	Definition	Language	(DDL).

Cannot	be	read-only.

Must	support	long	table	names	such	as	MSreplication_subscriptions.

Replicating	Using	OLE	DB	Interfaces

SQL	Server	2000	replication	can	use	OLE	DB	interfaces	to	execute	SQL
statements	at	Subscribers	using	the	ICommand	interface.	OLE	DB	providers
must	support	these	objects	for	transactional	replication:

DataSource	object

Session	object

Command	object

Rowset	object

Error	object

DataSource	Object	Interfaces

The	following	interfaces	are	required	to	connect	to	a	data	source:

IDBInitialize

IDBCreateSession

IDBProperties

If	the	provider	supports	the	IDBInfo	interface,	SQL	Server	2000	uses	the
interface	to	retrieve	information	such	as	the	quoted	identifier	character,
maximum	SQL	statement	length,	and	maximum	number	of	characters	in	table
and	column	names.

Session	Object	Interfaces
The	following	interfaces	are	required:

IDBCreateCommand

ITransaction

ITransactionLocal

IDBSchemaRowset

Command	Object	Interfaces

The	following	interfaces	are	required:

ICommand

ICommandProperties

ICommandText

ICommandPrepare

IColumnsInfo

IAccessor

ICommandWithParameters

IAccessor	is	necessary	to	create	parameter	accessors.	If	the	provider	supports
IColumnRowset,	SQL	Server	2000	uses	that	interface	to	determine	whether	a
column	is	an	identity	column.

Rowset	Object	Interfaces
The	following	interfaces	are	required:

IRowset

IAccessor

IColumnsInfo

An	application	should	open	a	rowset	on	a	replicated	table	that	is	created	in	the
subscribing	database.	IColumnsInfo	and	IAccessor	are	needed	to	access	data	in
the	rowset.

Error	Object	Interfaces
Use	the	following	interfaces	to	manage	errors:

IErrorRecords

IErrorInfo

Use	ISQLErrorInfo	if	it	is	supported	by	the	OLE	DB	provider.

For	more	information	about	the	OLE	DB	provider,	see	the	documentation
supplied	with	your	OLE	DB	provider.

Note		The	primary	source	of	information	regarding	the	use	of	OLE	DB	is	the
OLE	DB	Programmer's	Reference	Version	2.0	available	with	the	OLE	DB
Software	Development	Kit	(SDK).

Replication

Implementing	Merge	Replication	to	Access
Subscribers
When	using	releases	of	Microsoft®	Access	later	than	Access	8,	you	have	a
choice	between	using	the	SQL	Server	2000	Desktop	Engine	or	Microsoft	Jet	as
the	database	engine	and	data	storage	for	your	Access	database.	Desktop	Engine
is	a	data	store	based	on	Microsoft	SQL	Server™	2000	technology,	but	it	is
designed	and	optimized	for	use	on	smaller	computer	systems,	such	as	a	one
computer	or	small	workgroup	server.	Because	Desktop	Engine	is	based	on	the
same	database	engine	as	SQL	Server,	most	Access	projects	or	client/server
applications	run	on	either	Desktop	Engine	or	SQL	Server	Standard	or	Enterprise
Edition	unchanged.	However,	unlike	other	editions	of	SQL	Server,	Desktop
Engine	has	a	2	gigabyte	database	size	limit,	it	does	not	support	symmetrical
multiprocessing	(SMP),	and	it	cannot	be	a	Publisher	for	a	transactional
publication	(although	it	can	be	a	Subscriber	to	transactional	publications).

If	you	select	Desktop	Engine	or	SQL	Server	as	the	database	engine	for	your
application,	there	are	no	further	steps	required	to	replicate	between	a	SQL	Server
Publisher	and	an	Access	Subscriber.	The	computer	running	Access	appears	in
SQL	Server	Enterprise	Manager	as	simply	another	server.

If	you	select	Microsoft	Jet	as	the	database	engine	for	your	Access	application,
you	must	enable	the	Jet	version	4.0	database	as	a	Subscriber.	To	do	so,	you	must
configure	SQL	Server	to	use	an	OLE	DB	connection	to	the	database	for	each	Jet
Subscriber.	The	easiest	way	to	do	this	is	through	SQL	Server	Enterprise
Manager;	however,	you	can	also	add	a	Jet	database	as	a	linked	server
programmatically	by	executing	sp_addlinkedserver.

Replication	to	Access	Subscribers	is	subject	to	the	following	restrictions:

Microsoft	Jet	4.0	does	not	support	case-sensitive	sort	orders.	Do	not	use
an	instance	of	SQL	Server	with	a	case-sensitive	sort	order	installed	to
create	publications	for	Jet	4.0	Subscribers.

Microsoft	Jet	4.0	does	not	support	push	subscriptions	from	Publishers
running	on	DEC	Alpha	servers	to	Jet	4.0	Subscribers	running	on	other
platforms.	Instead	of	creating	a	push	subscription	at	the	DEC	Alpha

Publisher,	create	a	pull	subscription	at	the	Jet	4.0	Subscriber.

SQL	Server	does	not	support	known	pull	subscriptions	but	does	support
anonymous	pull	subscriptions	from	Jet	4.0	Subscribers.	This
functionality	is	implemented	using	the	Microsoft	ActiveX®	replication
controls.

You	cannot	replicate	both	merge	and	transactional	publications	from	the
same	publication	database	to	a	Jet	Subscriber.

When	running	the	Merge	Agent	with	the	–validate	parameter,	only
rowcount	validation	is	supported.	You	cannot	use	checksum	validation
when	validating	replicated	data	to	a	Jet	Subscriber.

Column	names	cannot	be	the	same	names	as	those	columns	used	during
Jet	replication.	Reserved	column	names	include:	s_Generation,
s_GUID,	s_Lineage	and	s_ColLineage.

Replication

Data	Type	Mapping	to	Jet-SQL	4.0	for	Merge
Replication
The	following	table	maps	data	types	for	merge	replication	to	Microsoft®	Access
Subscribers.	When	you	replicate	to	ODBC	Subscribers,	the	distribution	task
maps	Microsoft	SQL	Server™	2000	data	types	to	the	closest	data	type	on	the
target	database.

Note		The	data	type	mapping	from	SQL	Server	2000	to	Jet-SQL	4.0	is	the	same
for	snapshot	replication,	transactional	replication,	and	merge	replication.

SQL	Server	2000	data	type Microsoft	Jet-SQL	4.0	data	type
bigint DECIMAL
binary(n) BINARY	(n)
bit BIT
char(n) CHAR	(n)
datetime DATETIME
decimal DECIMAL
float FLOAT
image IMAGE
int INT
money CURRENCY
nchar(n) NCHAR	(n)
ntext LONGTEXT
numeric DECIMAL
nvarchar(n) NCHAR	VARYING	(n)
real REAL
smalldatetime DATETIME
smallint SMALLINT
smallmoney CURRENCY
text LONGTEXT
timestamp BINARY

tinyint BYTE
uniqueidentifier GUID
varbinary(n) VARBINARY	(n)
varchar(n) VARCHAR	(n)

Replication

Heterogeneous	Publishers
Microsoft®	SQL	Server™	2000	can	subscribe	to	snapshot	or	transactional	data
published	from	Oracle,	DB2,	Access,	and	other	data	sources.	This	allows
organizations	that	are	planning	to	deploy	large	databases	or	a	data	warehouse
with	SQL	Server,	or	Internet	and	intranet	applications,	to	gain	access	to	various
sources	of	data.	That	data	can	then	be	consolidated	in	SQL	Server	2000	using
replication,	and	then	placed	into	a	data	mart,	data	warehouse,	or
multidimensional	database,	or	the	data	can	then	be	replicated	to	other	data
sources.

Methods	for	implementing	replication	published	by	heterogeneous	data	sources
to	your	SQL	Server	2000	applications	include:

Building	applications	with	SQL-DMO	and	the	Replication	Distributor
Interface

Using	third-party	tools

Microsoft	SQL	Server	2000	provides	a	programming	framework	that	enables
heterogeneous	data	sources	to	become	Publishers	of	snapshot	and	transactional
publications	within	the	SQL	Server	2000	replication	framework.	You	can	use	the
Replication	Distributor	Interface	with	programmable	SQL-DMO	objects	and
third-party	tools	to	publish	data	incrementally	from	heterogeneous	Publishers.

Using	third-party	tools,	you	can	configure	Oracle,	DB2,	and	other	data	sources
as	a	merge	or	incremental	Publisher	for	SQL	Server	Subscribers,	which	can	then
propagate	data	to	other	SQL	Server	or	heterogeneous	data	sources.

By	integrating	with	SQL	Server	2000	replication,	heterogeneous	applications	can
inherit	a	full	set	of	replication	features,	such	as:

Remote	store-and-forward	databases	and	Distribution	Agents.	

Heterogeneous	Subscribers,	including	Microsoft	Access,	Oracle,	and
DB2.	

Pull	subscriptions.	

Anonymous	subscriptions.	

Internet	subscriptions.	

Subscriptions	on	computers	running	Microsoft	Windows®	98.	

Stand-alone	and	embeddable	Distribution	Agents.	

Monitoring	and	troubleshooting	tools	using	SQL	Server	Enterprise
Manager.	

Replication	agent	scheduling	using	SQL	Server	Agent.	

Alerts	and	notifications.	

Performance	monitoring.

The	programming	framework	for	transactional	and	snapshot	replication	from
heterogeneous	data	sources	includes:

Programmable	SQL-DMO	replication	objects	for	administering	and
monitoring	replication.	

The	Replication	Distributor	Interface	for	storing	replicated	transactions
from	a	heterogeneous	Publisher.	

A	Distribution	Agent	to	forward	the	transactions	to	Subscribers.	

SQL	Server	Enterprise	Manager	to	administer	and	monitor	replication

graphically.

Using	Data	Transformation	Services	(DTS),	heterogeneous	data	sources	can	be
used	to	create	snapshot	replication	publications.

See	Also

Programming	Replication	from	Heterogeneous	Data	Sources

JavaScript:hhobj_1.Click()

Replication

Replication	Security
Microsoft®	SQL	Server™	2000	replication	uses	a	combination	of	security
methods	to	protect	the	data	and	business	logic	in	your	application.

Security Description
Role	Requirements By	mapping	user	logins	to	specific	SQL	Server	2000

roles,	SQL	Server	2000	allows	users	to	perform	only
those	replication	and	database	activities	authorized	for
that	role.	Replication	grants	certain	permission	to	the
sysadmin	fixed	server	role,	the	db_owner	fixed
database	role,	the	current	login,	and	the	public	role.

Connecting	to	the
Distributor

SQL	Server	2000	provides	a	secure	administrative	link
between	the	Distributor	and	Publisher.	Publishers	can
be	treated	as	trusted	or	nontrusted.

Snapshot	Folder
Security

With	alternate	snapshot	locations,	you	can	save	your
snapshot	files	to	a	location	other	than	at	the	Distributor
(for	example,	a	network	share,	an	FTP	site,	or
removable	media).	When	saving	snapshots,	ensure	that
replication	agents	have	proper	permission	to	write	and
read	the	snapshot	files.

Publication	Access
Lists

Publication	access	lists	(PALs)	allow	you	to	determine
which	logins	have	access	to	publications.	SQL	Server
2000	creates	the	PAL	with	default	logins,	but	you	can
add	or	delete	logins	from	the	list.

Agent	Login
Security

SQL	Server	2000	requires	each	user	to	supply	a	valid
login	account	to	connect	to	the	server.	Replication
agents	are	required	to	use	valid	logins	when	connecting
to	Publishers,	Distributors,	and	Subscribers.	However,
agents	can	also	use	different	logins	and	security	modes
when	connecting	to	different	servers	simultaneously.

Password
Encryption

Passwords	used	in	SQL	Server	2000	replication	are
encrypted	automatically	for	greater	security.	

Security	and
Replication

Filtering	replicated	data	can	be	used	to	increase	data
security,	and	there	are	additional	security

Options considerations	when	using	dynamic	snapshots,
immediate	updating,	and	queued	updating.

Security	and
Replication	Over
the	Internet

Different	types	of	replication	over	the	Internet	have
different	security	levels.	Additionally,	when
transferring	replication	files	using	FTP	sites,
precautions	must	be	taken	to	secure	the	site	and	still
make	it	accessible	to	replication	agents.

Replication

Role	Requirements
Microsoft®	SQL	Server™	2000	replication	restricts	the	specific	actions	that	a
user	can	perform	based	on	the	role	mapped	to	the	user's	login.	Replication	has
granted	certain	permissions	to	the	sysadmin	server	role,	the	db_owner	database
role,	and	the	logins	in	the	publication	access	list	(PAL).

These	tables	summarize	the	requirements	for	common	replication	actions.

Replication	administration Membership	requirement
Enable,	modify	or	drop	a
Distributor.

sysadmin	server	role.

Enable,	modify,	or	drop	a	Publisher. sysadmin	server	role.
Enable,	modify,	or	drop	a
Subscriber.

sysadmin	server	role.

Enable	a	database	for	replication. sysadmin	server	role.
Create	or	drop	a	publication. sysadmin	server	role	or	db_owner

database	role.
Modify	publication	properties. sysadmin	server	role	or	db_owner

database	role.	If	the	login	is	in	the
PAL,	a	user	can	view	the	publication
properties	as	read-only	even	if	the	user
is	not	a	member	of	the	sysadmin	or
db_owner	roles.

Create	or	delete	a	push
subscription.

sysadmin	server	role	or	db_owner
database	role.

Create	a	pull	subscription. sysadmin	server	role	or	db_owner
database	role	or	any	login	in	the	PAL.

Delete	a	pull	subscription. sysadmin	or	db_owner	database	role,
or	the	creating	login	of	a	pull
subscription.

Update	a	PAL. sysadmin	server	role	or	db_owner
database	role.

Enable	snapshots	for	FTP
downloading	using	the	Internet.

sysadmin	server	role	or	db_owner
database	role.

View	replication	activity,	errors	and
history	using	Replication	Monitor.
A	user	cannot	modify	agent
profiles,	schedules,	and	so	on,
unless	the	user	is	a	member	of	the
sysadmin	server	role.

replmonitor	role.

Replication	agents Membership	requirement
Configure	agent	profile. sysadmin	server	role.
Monitor	replication	agents. sysadmin	server	role.
At	the	Publisher,	logins	for
Snapshot	Agents,	Log	Reader
Agents,	and	Merge	Agents.

For	pull	subscriptions,	login	must	be	in
the	publication	access	list	of	the
referenced	publication.	For	push
subscriptions,	login	must	be	member
of	db_owner	(includes	sysadmin)	in
the	publication	database.

At	the	Distributor,	logins	for
Snapshot	Agents,	Log	Reader
Agents,	Distribution	Agents,	and
Merge	Agents.

For	pull	subscriptions,	login	must	be	in
the	publication	access	list	of	the
referenced	publication	or	db_owner
database	role	on	the	distribution
database.	For	push	subscriptions,	login
must	be	member	of	db_owner
(includes	sysadmin)	in	the	distribution
database.

Distribution	Agents	and	Merge
Agents	logging	into	the	Subscriber.

For	both	push	and	pull	subscriptions,
the	login	must	be	a	member	of
db_owner	(includes	sysadmin)	in	the
subscription	database.

Replication	agents Membership	requirement
Configure	agent	profile. sysadmin	server	role.

Replication	tasks Membership	requirement
Cleanup. sysadmin	server	role	or	db_owner

database	role	on	the	distribution

database.
Schedule	jobs. sysadmin	server	role	or	db_owner

database	role	on	the	msdb	database.
Merge	data	during	merge
replication.

The	merge	process	requires	an	entry
for	the	Publisher	in	the	sysservers
table	on	the	Subscriber.	If	the	entry
does	not	exist,	SQL	Server	will
attempt	to	add	this	entry.	If	the	login
used	by	the	Merge	Agent	does	not
have	access	to	add	the	entry	(such	as
db_owner	of	the	subscription
database),	an	error	will	be	returned.

Replication

Connecting	to	the	Distributor
The	Distributor	can	be	the	same	server	as	the	Publisher	(local	Distributor),	or	it
can	be	a	separate	server	from	the	Publisher	(remote	Distributor).	When	using
remote	Distributors,	you	can	configure	the	security	necessary	when	the	Publisher
and	Distributor	connect.

The	connection	between	a	Publisher	and	a	remote	Distributor	is	a	hybrid	of	a
linked	server	and	remote	server.	The	connection	uses	the	login
distributor_admin.	At	the	remote	Distributor,	the	Publisher	can	be	configured
to	be	either	trusted	(no	password	is	required	for	the	distributor_admin	login)	or
non-trusted	(a	password	is	required).

It	is	recommended	that	you	use	a	non-trusted	connection	for	the	Publisher
connection	to	the	Distributor,	requiring	a	distributor_admin	password.	This
increases	security	at	the	Distributor	by	restricting	access.	Members	of	the
sysadmin	or	db_owner	roles	who	want	to	use	a	Distributor	must	know	the
administrative	link	password.	An	incorrect	distributor_admin	password	at	the
Publisher	causes	the	configuration	of	replication	at	the	Publisher	to	fail.

WARNING		Do	not	change	the	password	for	the	distributor_admin	manually.
Always	use	either	sp_changedistributor_password	or	the	Distributor	tab	of
the	Publisher	and	Distributor	Properties	in	SQL	Server	Enterprise	Manager
because	password	changes	are	then	applied	to	local	publications	automatically.
Changing	the	distributor_admin	password	manually	causes	publications	using
a	local	Distributor	to	fail.

To	add	or	change	a	password	on	a	Distributor

Replication

Snapshot	Folder	Security
Alternate	snapshot	locations	enable	you	to	store	snapshot	files	in	a	location	other
than	or	in	addition	to	the	default	location,	which	is	often	located	on	the
Distributor.	Alternate	locations	can	be	on	another	server,	on	a	network	share,	or
on	removable	media	(such	as	CD-ROMs	or	removable	disks).

When	specifying	the	snapshot	location	on	a	network	share,	it	is	recommended
that	you	dedicate	the	share	for	snapshot	storage	and	files	that	have	the	same
security	standards.	Next,	give	the	replication	agents	Write	permission	on	the
share	and	in	the	snapshot	location	and	appropriate	folders	so	they	can	write	the
snapshot	files	there.

Subscribers	that	need	to	access	the	snapshot	files	will	need	Read	permission	to
the	snapshot	location	and	appropriate	folders.	If	the	snapshot	folder	is	not	shared
for	the	appropriate	Subscribers,	the	replication	agents	cannot	access	the	folder
and	replication	fails.

On	a	Distributor	running	the	Microsoft®	Windows	NT®	4.0	or	Microsoft
Windows®	2000	operating	system,	the	snapshot	folder	defaults	to	using	the
<drive>$	share	and	a	path	of	\\<computer>\<drive>$\Mssql\Repldata\.	On	a
Distributor	running	the	Microsoft	Windows	98	operating	system,	the	snapshot
folder	defaults	to	using	the	<drive>	without	a	share	and	a	path	of
<drive>:\Mssql\Repldata.	You	can,	however,	save	the	snapshot	files	to	a	location
other	than	the	default.	

If	your	application	requires	the	ability	to	create	pull	subscriptions	on	a	server
running	the	Windows	98	operating	system,	you	must	change	the	snapshot	folder
to	a	network	path	accessible	by	replication	agents	running	at	the	Publisher	and
Subscribers.	You	can	change	the	local	path	to	a	network	path	by	sharing	the
folder	manually.

See	Also

Alternate	Snapshot	Locations

Security	and	Replication	Over	the	Internet

Replication

Publication	Access	Lists
When	you	create	a	publication,	Microsoft®	SQL	Server™	2000	creates	a
publication	access	list	(PAL)	for	the	publication.	The	PAL	contains	a	list	of
logins	that	are	granted	access	to	the	publication.	The	logins	included	in	the	PAL
are	members	in	the	sysadmin	fixed	server	role	and	the	current	login.

The	PAL	functions	similarly	to	a	Microsoft	Windows®	2000	access	control	list.
When	a	user	or	replication	agent	attempts	to	log	in	to	a	Publisher,	SQL	Server
2000	first	checks	to	see	if	the	login	is	in	the	PAL.	If	you	must	further	expand	or
restrict	access	to	a	publication,	you	can	add	or	delete	logins	in	the	PAL	using
SQL	Server	Enterprise	Manager	or	the	sp_grant_publication_access	and
sp_revoke_publication_access	stored	procedures.

A	snapshot,	transactional,	or	merge	publication	may	be	secured	with	a	PAL
through	SQL	Server	Enterprise	Manager	or	programmatically.

Note		A	replication	agent	login	for	the	Publisher	and	Distributor	must	exist	in	the
PAL	before	it	can	access	the	publication.	The	user	login	must	also	exist	in	the
publication	database	or	the	database	must	allow	guest	users.	If	you	are	using	a
remote	Distributor,	the	logins	must	exist	at	both	the	Publisher	and	the	Distributor
before	it	can	be	added	to	the	PAL.	Because	the	replication	agents	run	under	SQL
Server	Agent,	the	account	under	which	SQL	Server	Agent	runs	on	a	Windows
platform	must	be	in	the	PAL.

If	you	have	a	large	number	of	user	logins	to	add	to	the	PAL,	consider	making
them	all	members	of	a	single	Windows	2000	group	and	then	adding	the
Windows	2000	group	to	the	PAL.

To	grant	or	revoke	access	to	a	publication

Replication

Agent	Login	Security
Replication	implements	login	security	by	requiring	a	user	to	have	a	valid	login
account	and	password	to	connect	to	a	Publisher,	Distributor,	or	Subscriber.
Replication	agents	run	under	SQL	Server	Agent	and	use	the	associated	logins
and	passwords	to	connect	to	the	various	replication	objects	and	to	perform	their
roles	in	the	synchronization	process.

On	the	Microsoft®	Windows®	98	operating	system,	SQL	Server	Agent	and	the
replication	agents	run	under	the	security	account	of	the	user	logging	on	to
Windows.	On	the	Microsoft	Windows	NT®	4.0	and	Windows	2000	operating
system,	replication	agents	run	under	the	login	or	security	context	of	the
SQLServerAgent	service.	Each	agent	connects	to	one	or	more	servers	and	must
have	a	valid	login	to	complete	the	connection.

Applying	a	Snapshot
When	applying	a	snapshot,	the	agents	must	have	the	following	capabilities:

The	Snapshot	Agent	connects	to	the	publication	database	on	the
Publisher	and	to	the	distribution	database	on	the	Distributor.	The
Snapshot	Agent	also	writes	to	the	snapshot	folder	when	storing	the
snapshot	files.

Transactional	Replication

The	agents	used	in	transactional	replication	must	have	the	following	capabilities:

The	Log	Reader	Agent	connects	to	the	publication	database	at	the
Publisher	and	to	the	distribution	database	at	the	Distributor.

With	a	push	subscription,	the	Distribution	Agent	is,	by	default,	located
on	the	Distributor	and	connects	first	to	the	distribution	database	on	the
Distributor.	While	connected	to	the	Distributor,	the	Distribution	Agent
connects	to	the	subscription	database	at	the	Subscriber.	The	Distribution
Agent	also	reads	from	the	snapshot	folder	when	applying	the	snapshot
files.

With	a	pull	subscription,	the	Distribution	Agent	is,	by	default,	located
on	the	Subscriber	and	connects	first	to	the	subscription	database	on	the
Subscriber.	While	connected	to	the	Subscriber,	the	Distribution	Agent
connects	to	the	distribution	database	at	the	Distributor.	The	Distribution
Agent	also	reads	from	the	snapshot	folder	when	applying	the	snapshot
files.

Merge	Replication

The	agents	used	in	merge	replication	must	have	the	following	capabilities:

With	a	push	subscription,	the	Merge	Agent	is	located	on	the	Distributor
and	connects	first	to	the	distribution	database	on	the	Distributor.	While
connected	to	the	Distributor,	the	Merge	Agent	connects	to	the
subscription	database	at	the	Subscriber	and	then	to	the	publication
database	at	the	Publisher.	The	Merge	Agent	also	reads	from	the
snapshot	folder	when	applying	the	snapshot	files.

With	a	pull	subscription,	the	Merge	Agent	is	located	on	the	Subscriber
and	connects	first	to	the	subscription	database	on	the	Subscriber.	While
connected	to	the	Subscriber,	the	Merge	Agent	connects	to	the
distribution	database	at	the	Distributor	and	then	to	the	publication
database	at	the	Publisher.	The	Merge	Agent	also	reads	from	the
snapshot	folder	when	applying	the	snapshot	files.

Merge	replication	requires	an	entry	for	the	Publisher	in	the	sysservers
table	at	the	Subscriber.	If	the	entry	does	not	exist,	either	SQL	Server
will	attempt	to	add	the	entry	when	you	create	a	merge	publication	or	the
Merge	Agent	will	attempt	to	add	the	entry.	If	the	login	used	does	not
have	sufficient	access	to	add	the	entry	in	sysservers,	an	error	will	be
returned.

Note		For	an	agent	that	holds	simultaneous	connections,	Microsoft	SQL
Server™	allows	you	to	configure	the	login	for	each	connection	independently.
For	example,	if	the	Snapshot	Agent	connects	to	the	Publisher	and	to	the

Distributor,	each	connection	can	use	a	different	login.

Replication

Security	and	Replication	Options

Filtering	Published	Data
Filtering	published	data	allows	you	to	restrict	access	to	data	and	allows	you	to
specify	the	data	that	is	available	at	the	Subscriber.	You	can	filter	data
horizontally	or	vertically	with	any	type	of	replication	so	partitions	based	on	user
requirements	and	needs	can	be	published	to	Subscribers.

Additionally,	dynamic	filters	can	be	used	with	merge	replication	and	custom	data
partitions	can	be	created	with	transactional	replication	to	filter	rows	based	on
values	retrieved	from	the	Subscriber.	For	example,	using	the	SUSER_SNAME
function	in	a	merge	replication	dynamic	filter,	you	can	propagate	just	the	rows
that	relate	to	the	value	at	the	Subscriber	retrieved	by	SUSER_SNAME.

For	more	information,	see	Filtering	Published	Data.

Dynamic	Snapshots
Dynamic	snapshots	provide	a	performance	advantage	when	applying	the
snapshot	of	a	merge	publication	with	dynamic	filters.	By	using	Microsoft®	SQL
Server™	2000	bulk	copy	files	to	apply	data	to	a	specific	Subscriber	instead	of	a
series	of	INSERT	statements,	you	will	improve	the	performance	when	applying
the	initial	snapshot	for	dynamically	filtered	merge	publications.

The	following	security	considerations	must	be	met	to	use	dynamic	snapshots:

SQL	Server	on	the	Publisher	must	be	running	under	mixed	security
mode.	

The	login	specified	as	the	value	of	the	Publisher	login	must	be	in	the
publication	access	list	(PAL),	or	be	a	member	of	the	publication
database	sysadmin	role	or	db_owner	group.	This	login	can	be	specified
in	the	Create	Dynamic	Snapshot	Job	Wizard	or	by	using	the	-
DynamicFilterLogin	parameter	of	the	Snapshot	Agent.

Because	SQL	Server	adds	and	drops	temporary	logins	in	the	Snapshot

Agent,	the	Publisher	login	of	the	Snapshot	Agent	must	be	a	member	of
the	securityadmin	server	role	and	be	a	member	of	the	db_owner	group
on	the	publication	database	to	generate	dynamic	snapshots.	

Dynamic	filter	logins	specified	for	dynamic	snapshot	generation	must
be	members	of	the	corresponding	PAL.

For	more	information,	see	Dynamic	Snapshots.

Immediate	Updating	and	Queued	Updating
The	immediate	updating	option	supports	either	dynamic	remote	procedure	call
(RPC)	mode	or	static	RPC	mode	for	the	two-phase	commit	protocol	(2PC)
connection	from	the	synchronization	triggers	back	to	the	Publisher.

In	dynamic	RPC	mode,	synchronization	triggers	connect	dynamically	to	the
Publisher,	using	a	supplied	server	name,	login,	and	password.	This	mode	offers
increased	security	for	users	who	do	not	want	a	statically	defined	linked
server/remote	server	connection	from	a	Subscriber	to	Publisher.	It	is	also	easier
to	use	when	setting	up	push	subscriptions	because	the	Publisher	does	not	have	to
be	predefined	at	the	Subscriber.

In	static	RPC	mode,	synchronization	triggers	connect	to	the	Publisher	over	a
statically	defined	server	name	defined	as	a	linked	server	or	remote	server	in	the
sysservers	table.	This	entry	is	added	by	an	administrator	at	the	Subscriber.	The
configuration	mode	is	set	automatically	when	creating	push	or	pull
subscriptions.

The	immediate	updating	subscription	connection	to	the	Publisher
(controlled	by	sp_link_publication)	can	use	security	mode	0	for	SQL
Server	Authentication	or	2	for	linked	server	definition	to	create	login
mappings.	The	publication	access	list	(PAL)	must	include	at	least	one
SQL	Server	Authentication	account	unless	you	use	security	mode	2	and
configure	delegation	(it	is	possible	to	set	up	Windows	Authentication	in
mode	2	by	configuring	delegation).	You	can	make	connections	to	the
Publisher	under	Windows	user	accounts	invoking	the	INSERT,
UPDATE,	and	DELETE	triggers	at	the	Subscriber	using	delegation.	To
set	up	delegation,	see	sp_addlinkedsrvlogin.	

JavaScript:hhobj_1.Click()

When	setting	up	a	push	subscription	using	the	Push	Subscription
Wizard	in	SQL	Server	Enterprise	Manager	or	the	sp_addsubscription
stored	procedure,	the	default	configuration	uses	dynamic	RPC	at	the
Subscriber.	The	dynamic	RPC	defaults	to	using	the	sa	login	with	no
password.	This	is	done	to	avoid	sending	logins	or	passwords	over	the
network,	and	can	be	changed	at	the	Subscriber	using
sp_link_publication.

When	setting	up	a	pull	subscription	using	the	Pull	Subscription	Wizard
in	SQL	Server	Enterprise	Manager,	you	choose	the	desired
configuration	mode.	If	you	choose	static	RPC,	the	server	name	must
already	exist.	If	you	choose	dynamic	RPC,	you	must	supply	a	login	and
password	that	the	synchronization	triggers	will	use	to	connect	to	the
Publisher.

When	setting	up	a	pull	subscription	using	stored	procedures,	you	must
explicitly	call	sp_link_publication	after	calling
sp_addpullsubscription	at	the	Subscriber.

When	using	dynamic	RPCs,	Microsoft®	SQL	Server™	2000	handles	login	and
password	forwarding	by	adding	a	replication	command	to	the	distribution
database	to	call	sp_addsynctriggers	at	the	Subscriber.	When	executed	at	the
Subscriber,	sp_addsynctriggers	creates	immediate	updating	triggers	and
configures	the	linked	server	connection.

When	executed,	the	immediate	updating	stored	procedures	at	the	Subscriber
check	the	PAL	at	the	Publisher	to	ensure	that	the	user	account	executing	the	RPC
has	permissions	to	update	the	data	in	the	publication.

Replication

Security	and	Replication	Over	the	Internet
Different	types	of	replication	over	the	Internet	have	different	security	levels.
Additionally,	when	transferring	replication	files	using	FTP	sites,	precautions
must	be	taken	to	secure	the	site	and	still	make	it	accessible	to	replication	agents.

Virtual	Private	Network
Using	a	Virtual	Private	Network	(VPN)	is	the	most	secure	option	for
implementing	replication	over	the	Internet.	VPNs	include	client	software	so	that
computers	connect	over	the	Internet	(or	in	special	cases,	even	an	intranet)	to
software	in	a	dedicated	computer	or	a	server.	Optionally,	encryption	at	both	ends
as	well	as	user	authentication	methods	keep	data	safe.	The	VPN	connection	over
the	Internet	logically	operates	as	a	Wide	Area	Network	(WAN)	link	between	the
sites.

A	VPN	connects	the	components	of	one	network	over	another	network.	This	is
achieved	by	allowing	the	user	to	tunnel	through	the	Internet	or	another	public
network	(using	a	protocol	such	as	Microsoft	Point-to-Point	Tunneling	Protocol
(PPTP)	available	with	the	Microsoft®	Windows	NT®	version	4.0	or	Microsoft
Windows®	2000	operating	system,	or	Layer	Two	Tunneling	Protocol	(L2TP)
available	with	the	Windows	2000	operating	system).	This	process	provides	the
same	security	and	features	previously	available	only	in	a	private	network.

For	more	information,	see	Virtual	Private	Networks	in	the	Windows	2000
documentation	or	Publishing	Data	Over	the	Internet	Using	VPN.

Microsoft	Proxy	Server
Integrating	Microsoft	SQL	Server™	2000	replication	with	Microsoft	Proxy
Server	allows	for	replication	over	the	Internet	with	security	configured	on	the
Microsoft	Windows	NT	version	4.0	or	Microsoft	Windows	2000	Server
operating	systems,	Proxy	Server,	and	SQL	Server	2000.

For	replicating	data	over	the	Internet	when	a	firewall	is	present,	configuring
replication	with	Microsoft	Proxy	Server	provides	security	so	that	so	that
unauthorized	Internet	users	cannot	gain	access	to	internal	network	resources,	and
the	Subscriber	can	connect	to	a	port	on	the	Proxy	Server	that	limits	Subscriber

access	only	to	the	services	where	permission	is	been	granted.

For	more	information,	search	for	the	"Configuring	Proxy	Server	for	SQL	Server
Replication"	white	paper	at	Microsoft	Web	site.

TCP/IP	and	File	Transfer	Protocol
For	replication	over	the	Internet	where	a	firewall	is	not	a	concern,	or	for
transferring	snapshot	files,	you	can	use	TCP/IP	and	File	Transfer	Protocol	(FTP).

If	you	use	FTP	to	download	the	snapshot	files,	define	the	FTP	site	without	Write
access.	Although	this	is	the	default	setting	for	many	services,	confirm	that	the
setting	has	not	been	changed	after	installation.

CAUTION		When	a	Subscriber	completes	applies	the	initial	snapshot	files	from	an
FTP	site,	the	files	transmitted	using	FTP	are	left	on	the	Subscriber	disk.	The	files
are	visible	to	at	least	all	other	logins	that	can	access	the	computer.	The	files	are
accessible	to	any	users	logged	into	the	same	computer.	To	prevent	this,	set	the
cache	retention	settings	low	and/or	purge	Microsoft	Internet	Explorer	cache	after
applying	snapshots.

For	more	information,	see	Publishing	Data	Over	the	Internet	Using	TCP/IP	and
FTP.

http://www.microsoft.com/isapi/redir.dll?Prd=sql&Ar=home

Replication

Enhancing	Replication	Performance
You	can	enhance	the	general	performance	for	all	types	of	replication	in	your
application	and	on	your	network	by:

Setting	a	minimum	amount	of	memory	allocated	to	Microsoft®	SQL
Server™	2000.

Using	a	separate	disk	drive	for	the	transaction	log	for	all	databases
involved	in	replication.

Consider	adding	memory	to	servers	used	in	replication.

Using	multiprocessor	computers.

Setting	a	fixed	size	for	the	distribution	database.

Publishing	only	the	amount	of	data	required.

Running	the	Snapshot	Agent	only	when	necessary	and	at	off-peak
times.

Placing	the	snapshot	folder	on	a	drive	not	used	to	store	database	or	log
files.

Using	a	single	snapshot	folder	per	publication.

Consider	using	compressed	snapshot	files.

Reducing	the	distribution	frequency	when	replicating	to	numerous

Subscribers.

Consider	use	of	pull	or	anonymous	subscriptions.

Reduce	the	verbose	level	of	replication	agents	to	'0'	except	during	initial
testing,	monitoring,	or	debugging.

Run	agents	continuously	instead	of	on	very	frequent	schedules.

Consider	using	the	–UseInprocLoader	agent	property.

Set	a	Minimum	Amount	of	Memory	Allocated	to	SQL	Server

By	default,	SQL	Server	2000	changes	its	memory	requirements	dynamically
based	on	available	system	resources.	To	avoid	low	memory	availability	during
replication	activities,	use	the	min	server	memory	option	to	set	the	minimum
available	memory.	If	the	server	is	a	remote	Distributor	or	a	combined	Publisher
and	Distributor,	you	must	assign	it	at	least	16	megabytes	(MB)	of	memory.	For
more	information,	see	Server	Memory	Options.	

Use	a	Separate	Disk	Drive	for	All	Databases	Involved	in
Replication
This	applies	to	the	publication	database,	the	distribution	database,	and	the
subscription	database.	You	can	decrease	the	time	it	takes	to	write	transactions	by
storing	the	log	files	on	a	disk	drive	different	than	the	one	used	to	store	the
database.	You	can	mirror	that	drive,	using		a	Redundant	Array	of	Inexpensive
Disks	(RAID)-1,	if	you	require	fault	tolerance.	Use	RAID	0	or	0+1	(depending
on	your	need	for	fault	tolerance)	for	other	database	files.	This	is	a	good	practice
regardless	of	whether	or	not	replication	is	being	used.	For	more	information,	see
RAID	Levels	and	SQL	Server.

Consider	Adding	Memory	to	Servers	Used	in	Replication
If	you	need	to	improve	replication	performance,	consider	adding	memory	to	the

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

servers	used	in	replication.	For	example,	if	the	computer	is	configured	with	64
megabytes	(MB)	of	memory,	consider	increasing	the	memory	to	128	MB	or
more.	You	can	use	the	sp_configure	stored	procedure	to	assign	additional
memory	to	Microsoft®	SQL	Server™	2000.

Use	Multiprocessor	Computers
SQL	Server	2000	replication	agents	can	take	advantage	of	additional	processors
on	the	server.	If	you	are	running	at	high	CPU	usage,	consider	installing	a	faster
CPU	or	multiple	CPUs	(symmetric	multiprocessing).

Publish	Only	the	Amount	of	Data	Required
Because	replication	is	easy	to	set	up,	there	is	a	tendency	to	publish	more	data
than	is	actually	required.	This	can	consume	additional	resources	within	the
distribution	databases	and	snapshot	files,	and	can	lower	the	throughput	for
required	data.	Avoid	publishing	unnecessary	tables	and	consider	updating
publications	less	frequently.

Run	the	Snapshot	Agent	Only	When	Necessary	and	at	Off-Peak
Times
The	Snapshot	Agent	bulk	copies	data	from	the	published	table	on	the	Publisher
to	a	file	in	the	snapshot	folder	on	the	Distributor.	In	SQL	Server	2000,	the
process	of	generating	a	snapshot	for	transactional	replication	no	longer	holds
table	locks	on	the	published	tables.	Similarly,	for	merge	replication	in	SQL
Server	2000,	concurrency	is	improved	and	lock	duration	is	reduced	when	a
snapshot	is	being	generated.	Although	this	reduces	the	impact	on	concurrently
connected	users,	generating	a	snapshot	is	still	a	resource	intensive	process	and	is
best	scheduled	during	off-peak	times.

Place	the	Snapshot	Folder	on	a	Drive	that	Does	Not	Store
Database	or	Log	Files
Similarly,	the	Snapshot	Agent	will	perform	a	sequential	write	of	data	to	the
snapshot	folder	when	generating	the	snapshot	for	any	publication	type.	Because
the	snapshot	agent	always	copies	a	complete	copy	of	the	data	in	the	publication
to	disk	when	replicating	changes,	placing	the	snapshot	folder	on	a	separate	drive

from	any	database	or	log	files	reduces	contention	among	the	disks	and	helps	the
snapshot	process	complete	faster.

Using	a	Single	Snapshot	Folder	Per	Publication
When	specifying	the	publication	properties	related	to	snapshot	location,	you	can
choose	to	generate	snapshot	files	to	the	default	snapshot	folder,	to	an	alternate
snapshot	folder,	or	to	both.	Generating	snapshot	files	in	both	locations	requires
additional	processing	when	the	Snapshot	Agent	runs.	This	takes	more	time	than
generating	the	snapshot	files	to	a	single	location	for	the	publication.

For	more	information,	see	Alternate	Snapshot	Locations.

Consider	Using	Compressed	Snapshots
Compressing	snapshot	files	in	the	alternate	snapshot	folder	can	reduce	snapshot
disk	storage	requirements	and,	in	some	cases,	improve	the	performance	of
transferring	snapshot	files	across	the	network	when	they	are	used	for	replication
over	the	Internet.	However,	compressing	the	snapshot	requires	additional
processing	by	the	Snapshot	Agent	when	generating	the	snapshot	files,	and	by	the
merge	agent	when	applying	the	snapshot	files.	This	may	slow	down	snapshot
generation	and	increase	the	time	it	takes	to	apply	a	snapshot	in	some	cases.
Consider	these	tradeoffs	carefully	when	using	compressed	snapshots.

For	more	information,	see	Compressed	Snapshot	Files.

Reduce	the	Distribution	Frequency	When	Replicating	to
Numerous	Subscribers
A	single	Distributor	can	distribute	transactions	to	a	larger	number	of	Subscribers
if	the	Distribution	and	Merge	Agents	associated	with	each	Subscriber	are
scheduled	to	run	less	frequently.	Stagger	when	the	Distribution	Agents	or	Merge
Agents	are	initially	run	so	they	do	not	all	attempt	to	start	simultaneously	the	first
time	they	are	started.	If	the	agents	are	running	on	a	scheduled	basis,	the
schedules	are	set	by	default	so	that	the	agents	are	not	running	at	the	same	time
for	regular	synchronizations.

Consider	Pull	or	Anonymous	Subscriptions

The	Distribution	or	Merge	Agent	runs	on	the	Distributor	for	push	subscriptions,
and	on	Subscribers	for	pull	or	anonymous	subscriptions.	Using	pull	or
anonymous	subscriptions	can	increase	performance	by	moving	Distribution	or
Merge	Agent	processing	from	the	Distributor	to	Subscribers.

You	can	also	offload	agent	processing	by	using	Remote	Agent	Activation.	Agent
processing	can	be	moved	to	the	Subscriber	for	push	subscriptions	and	to	the
Distributor	for	pull	subscriptions.	Administration	of	the	agent	still	takes	place	at
the	Distributor	for	push	subscriptions	and	at	the	Subscriber	for	pull
subscriptions.	For	more	information,	see	Remote	Agent	Activation.

Anonymous	subscriptions,	which	are	especially	useful	for	Internet	applications,
do	not	require	that	information	about	the	Subscriber	be	stored	in	the	distribution
database	at	the	Distributor	for	transactional	replication	and	reduces	the	storage
of	information	about	the	Subscriber	in	the	publishing	database	for	merge
replication.	This	reduces	the	resource	demands	on	the	Publisher	and	Distributor
because	they	do	not	have	to	maintain	information	about	anonymous	Subscribers.

Anonymous	subscriptions	are	a	special	category	of	pull	subscriptions.	In	regular
pull	subscriptions,	the	Distribution	or	Merge	Agent	runs	at	the	Subscriber
(thereby	reducing	the	resource	demands	on	the	Distributor),	but	still	stores
information	at	the	Publisher.	When	a	publication	supports	anonymous
subscriptions,	the	publication	is	configured	to	always	have	a	snapshot	ready	for
new	Subscribers.

For	transactional	replication,	this	means	that	every	time	the	Snapshot	Agent
runs,	a	new	snapshot	will	be	generated.	Typically,	a	snapshot	is	not	generated	if
there	are	no	new	Subscribers	waiting	for	a	snapshot	or	no	Subscriber	needs	to	be
reinitialized	at	the	time	the	Snapshot	Agent	is	run.	So	while	anonymous
Subscribers	can	reduce	the	resource	demands	at	the	Distributor,	the	tradeoff	is
that	a	snapshot	is	generated	more	often.	With	merge	replication,	a	new	snapshot
is	always	generated	when	the	Snapshot	Agent	runs	regardless	of	the	type	of
subscriptions	supported	by	the	publication.

Additional	Indexes	at	the	Subscriber
If	a	subscription	database	needs	to	be	used	for	decision	support	analysis	and	you
add	a	lot	of	indexes	to	support	these	queries,	you	should	note	that	these
additional	indexes	may	significantly	reduce	the	throughput	with	which	changes

can	be	applied	to	the	Subscriber	by	the	Distribution	Agent	or	Merge	Agent.	In
some	cases,	where	you	are	mostly	aggregating	the	data	at	the	Subscriber,	it	may
be	more	efficient	to	create	an	indexed	view	at	the	Publisher	and	publish	it	as	a
table	to	the	Subscriber	using	transactional	replication.	For	more	information,	see
Indexed	Views.

Application	Logic	in	Triggers	at	the	Subscriber
Similarly,	additional	business	logic	in	user	defined	triggers	at	the	Subscriber	may
also	slow	down	the	replication	of	changes	to	the	Subscriber.	For	transactional
replication,	it	can	be	more	efficient	to	include	this	logic	in	custom	stored
procedures	used	to	apply	the	replicated	commands.	For	more	information,	see
Using	Custom	Stored	Procedures	in	Articles.

Use	Horizontal	Partitioning	Judiciously
When	a	transactional	publication	is	set	up	with	an	article(s)	that	is	horizontally
partitioned,	the	log	reader	has	to	apply	the	filter	to	each	row	affected	by	an
update	to	the	table	as	it	scans	the	transactions	log.	The	throughput	of	the	log
reader	will	therefore	be	affected.	If	achieving	maximum	throughput	is	key,	you
should	consider	using	DTS	custom	partitions	to	do	custom	horizontal	partitions	.
That	allows	the	log	reader	agent	to	move	transactions	out	of	the	published
database's	log	as	quickly	as	possible.	Instead	of	affecting	all	Subscribers	with	the
overhead	of	filtering	the	data,	only	the	subscriber	that	chooses	to	use	a	DTS
package	to	filter	the	data	is	affected.

Similarly,	merge	replication	must	evaluate	changed	or	deleted	rows	to	determine
every	time	you	synchronize	changes	to	determine	which	Subscribers	should
receive	those	rows.	When	horizontal	partitioning	is	employed	to	reduce	the
subset	of	data	required	at	a	Subscriber,	this	processing	is	more	complex	and	can
be	slower	than	when	you	publish	all	rows	in	a	table.	Consider	carefully	the
tradeoff	between	reduced	storage	requirements	at	each	subscriber	and	the	need
for	achieving	maximum	throughput.

Use	a	Fast	Network
The	propagation	of	changes	to	the	Subscriber	can	be	significantly	enhanced	by
using	a	very	fast	network	of	100	Mbps	or	faster.

JavaScript:hhobj_3.Click()

Reduce	the	Verbose	Level	of	Replication	Agents
Reduce	the	–HistoryVerboseLevel	parameter	and/or	the	–OutputVerboseLevel
parameter	of	the	Distribution	Agents	or	Merge	Agents	to	the	lowest	value.	This
will	reduce	the	amount	of	new	rows	inserted	to	track	agent	history	and	output.
Instead,	previous	history	messages	with	the	same	status	will	be	updated	to	the
new	history	information.	Changing	this	agent	parameter	can	yield	a	significant
performance	gain	of	up	to	or	over	10	to	15	percent.

However,	you	should	increase	the	–HistoryVerboseLevel	for	testing,	monitoring,
and	debugging	so	that	you	have	as	much	history	information	about	agent	activity
as	possible.

Run	Agents	Continuously	Instead	of	on	Very	Frequent	Schedules
Setting	the	agents	to	run	continuously	rather	than	creating	frequent	schedules
(such	as	every	minute)	will	improve	replication	performance.	When	you	set	the
Distribution	Agent	or	Merge	Agent	to	run	continuously,	whenever	changes
occur,	they	will	be	immediately	propagated	to	the	other	servers	that	are
connected	in	the	topology.	Because	the	agent	is	continuously	running,	it	does	not
have	to	start	and	stop	which	causes	more	work	for	the	server	where	the	agent	is
running.

Consider	Using	the	–UseInprocLoader	Agent	Property
The	–UseInprocLoader	agent	property	improves	performance	of	the	initial
snapshot	for	snapshot	replication,	transactional	replication,	and	merge
replication.	

When	you	apply	this	property	to	either	the	Distribution	Agent	(for	snapshot
replication	or	transactional	replication)	or	the	Merge	Agent	(for	merge
replication),	the	agent	will	use	the	in-process	BULK	INSERT	command	when
applying	snapshot	files	to	the	Subscriber.

The	–UseInprocLoader	property	cannot	be	used	with	character	mode	bcp,	and
it	cannot	be	used	by	OLE	DB	or	ODBC	Subscribers.

IMPORTANT		When	using	the	–UseInprocLoader	property,	the	SQL	Server	2000
account	under	which	the	Subscriber	is	running	must	have	read	permissions	on
the	directory	where	the	snapshot	.bcp	data	files	are	located.	When	the	–

UseInprocLoader	property	is	not	used,	the	agent	(for	heterogeneous
Subscribers)	or	the	ODBC	driver	loaded	by	the	agent	(for	SQL	Server	2000
Subscribers)	reads	from	the	files,	so	the	security	context	of	the	Subscriber	SQL
Server	2000	account	is	not	used.

Replication

Enhancing	Snapshot	Replication	Performance
You	can	enhance	the	performance	of	snapshot	replication	in	your	application	and
on	your	network	by:

Using	a	quality	disk	subsystem.

Using	a	single	snapshot	folder	per	publication.

Using	compressed	snapshots.

Using	native	bcp.

Use	a	Quality	Disk	Subsystem

Because	snapshot	replication	bulk	copies	a	complete	copy	of	the	publication,	it
writes	the	entire	publication	to	the	snapshot	folder.	The	faster	the	disk	subsystem
can	read	and	write	data	to	the	disk(s),	the	faster	the	snapshot	is	completed.

Using	a	Single	Snapshot	Folder	Per	Publication
When	specifying	the	publication	properties	related	to	snapshot	location,	you	can
choose	to	generate	snapshot	files	to	the	default	snapshot	folder,	an	alternate
snapshot	folder,	or	both.	Generating	snapshot	files	in	both	locations	requires
additional	processing	when	the	Snapshot	Agent	runs.	This	takes	more	time	than
generating	the	snapshot	files	to	a	single	location	for	the	publication.

For	more	information,	see	Alternate	Snapshot	Locations.

Consider	Using	Compressed	Snapshots
Compressing	snapshot	files	in	the	alternate	snapshot	folder	can	reduce	snapshot
disk	storage	requirements	and,	in	some	cases,	improve	the	performance	of
transferring	snapshot	files	across	the	network	when	they	are	used	for	replication
over	the	Internet.	However,	compressing	the	snapshot	requires	additional

processing	by	the	Snapshot	Agent	when	generating	the	snapshot	files	and	by	the
merge	agent	when	applying	the	snapshot	files.	This	may	slow	down	snapshot
generation	and	increase	the	time	it	takes	to	apply	a	snapshot	in	some	cases.
Consider	these	tradeoffs	carefully	when	using	compressed	snapshots.

For	more	information,	see	Compressed	Snapshot	Files.

Consider	Using	Native	bcp
When	you	are	not	using	ODBC	or	OLE	DB	Subscriber	or	using	transformable
subscriptions	and	you	have	a	large	volume	of	data,	consider	using	native	bcp
mode	to	apply	snapshot	files	to	Subscribers.	Storing	information	in	native	format
is	useful	when	information	must	be	copied	from	one	instance	of	Microsoft®
SQL	Server™	to	another.

Replication

Enhancing	Snapshot	and	Transactional	Replication
Performance
You	can	enhance	the	performance	of	snapshot	or	transactional	replication	in	your
application	and	on	your	network	by:

Configuring	the	Distributor	on	a	dedicated	server.

Increasing	memory	on	the	Distributor.

Subscribing	to	all	articles	in	a	publication.

Using	stored	procedure	replication	when	a	large	number	of	rows	are
affected.

Minimizing	the	retention	period	for	transactions	and	history.

Configure	the	Distributor	on	a	Dedicated	Server

You	can	reduce	processing	overhead	on	the	publishing	server	by	configuring	a
computer	dedicated	to	the	distribution	process.	This	may	result	in	performance
gains	for	both	the	Publisher	and	the	Distributor.

Increase	Memory	on	the	Distributor
In	addition	to	the	benefits	of	maintaining	a	dedicated	Distributor,	you	can	realize
additional	performance	gains	by	increasing	the	amount	of	memory	on	the
Distributor.	This	is	especially	true	if	the	Distributor	is	supporting	replication	to	a
large	number	of	Subscribers.	For	example,	if	the	computer	is	configured	with	64
megabytes	(MB)	of	memory,	consider	increasing	the	memory	to	128	MB	or
more.	You	can	use	the	sp_configure	stored	procedure	to	assign	additional
memory	to	Microsoft®	SQL	Server™	2000.	

Subscribe	to	All	Articles	in	a	Publication
By	default,	a	subscription	includes	all	the	articles	in	a	publication.	By	not	having
to	exclude	any	articles	from	a	publication,	the	Distribution	Agent	can	use	an
optimal	query	during	synchronization.

Use	Stored	Procedure	Replication	When	a	Large	Number	of	Rows
are	Affected
If	a	single	set	update/delete	at	the	Publisher	affects	a	very	large	number	of	rows,
the	change	to	each	row	affected	by	the	update	is	logged	individually	in	the
transaction	log	of	the	database.	The	log	reader	will	propagate	these	as	individual
updates	(within	a	single	transaction)	and	when	the	Distribution	Agent	applies	the
changes	it	can	take	much	longer	than	the	original	update	at	the	Publisher.

If	you	have	batch	updates	that	occasionally	affect	a	large	number	of	rows	at	the
Subscriber,	you	should	consider	updating	the	published	table	using	a	stored
procedure	and	publish	the	execution	of	the	stored	procedure.	Instead	on	a
sending	an	update/delete	for	every	row	affected	by	the	update/delete,	the
Distribution	Agent	will	execute	the	same	procedure	at	the	subscriber	with	the
same	parameter	values.	This	is	faster	by	a	large	magnitude	compared	to	sending
the	update/delete	as	individual	row	changes.	For	more	information	see
Publishing	Stored	Procedure	Execution.

Use	Custom	Stored	Procedures	to	Update	Subscribers
By	default	when	a	Subscriber	is	set	up	for	transactional	replication,	the	process
of	applying	a	snapshot	to	a	Subscriber,	in	addition	to	creating	the	table(s)	and
populating	them,	will	also	create	a	set	of	stored	procedures	at	the	Subscriber	(for
INSERT,	UPDATE	and	DELETE).

Subsequently	when	changes	are	made	to	a	published	table,	the	log	reader	will
construct	a	stored	procedure	call	instead	of	SQL	statements	representing	the
change.	The	distribution	agent	then	executes	this	while	applying	changes	to	a
Subscriber.	This	is	much	more	efficient	than	SQL	statements	over	which	it
provides	significant	performance	gains.

These	stored	procedures	can	be	further	customized,	which	is	generally	better
than	adding	Subscriber-specific	logic	in	triggers	(for	actions	such	as	maintaining

aggregate	tables).

	For	more	information,	see	Using	Custom	Stored	Procedures	in	Articles.

Minimize	the	Retention	Period	for	Transactions	and	History
You	can	reduce	the	amount	of	disk	space	used	on	the	Distributor	by	minimizing
the	amount	of	time	that	replicated	transactions	and	history	are	stored	in	the
distribution	database	after	they	have	been	delivered	to	Subscribers.	

Reduce	Unnecessary	Reinitialization	or	Expiration	of
Subscriptions
If	a	Subscriber	does	not	synchronize	for	a	long	time		there	is	a	possibility	the
subscription	may	get	dropped	or	it	may	be	automatically	marked	deactivated	and
require	reinitialization.	Whether	it	expires	and	is	dropped	or	gets	marked
deactivated	and	requires	initialization	depends	upon	whether	it	exceeds	the
Subscription	Expiration	property	of	the	publication	or	the	Maximum	Transaction
Retention	property	of	the	distribution	database	as	well	as	whether	or	not	it	is	an
Anonymous	subscriber.

If	you	do	not	want	your	subscriptions	to	expire,	you	should	set	the	publication
retention	to	"0".	If	you	do	not	want	your	subscriptions	to	be	deactivated	you
should	set	the	Maximum	Distribution	Retention	period	to	a	higher	value	than	the
default	of	72	hours	taking	into	consideration	the	effect	it	may	have	on	the	size	of
the	distribution	database.	For	more	information,	see	Subscription	Deactivation
and	Expiration.

Use	a	Quality	Disk	Subsystem
Because	snapshot	replication	copies	a	complete	copy	of	data	in	the	publication,
it	writes	data	for	the	entire	publication	to	the	snapshot	folder.	The	faster	the	disk
subsystem	can	read	and	write	data	to	the	disk(s),	the	faster	the	snapshot	is
completed.

Replication

Enhancing	Transactional	Replication	Performance
You	can	enhance	the	performance	of	transactional	replication	in	your	application
and	on	your	network	by:

Increasing	the	Log	Reader	Agent	read	batch	size.

Minimizing	the	log	history	and	retention	period.

Optimizing	your	database	design	to	include	replication	considerations.

Using	custom	stored	procedures	for	inserts,	updates,	and	deletes	at
Subscribers.

Avoiding	horizontal	filtering.

Increase	the	Log	Reader	Agent	Read	Batch	Size

The	Log	Reader	Agent	and	Distribution	Agents	support	batch	sizes	for
transaction	read	and	commit	operations.	Batch	sizes	default	to	500	transactions.
When	a	large	number	of	transactions	are	written	to	a	publishing	database	but
only	a	small	subset	of	those	are	marked	for	replication,	you	should	use	the	-
ReadBatchSize	parameter	to	increase	the	read	batch	size	of	the	log	reader.	The
Log	Reader	Agent	reads	the	specific	number	of	transactions	from	the	log,
whether	or	not	they	are	marked	for	replication.	For	more	information,	see
Replication	Log	Reader	Agent	Utility.

Minimize	the	Log	History	and	Retention	Period
You	can	reduce	the	amount	of	disk	space	used	on	the	Distributor	by	minimizing
the	amount	of	time	for	log	history	and	transaction	retention.	For	more
information,	see	Transactional	Replication.

Optimize	Your	Database	Design	to	Include	Replication

JavaScript:hhobj_1.Click()

Considerations
Horizontal	partitions	can	inhibit	replication	performance.	Consider	database
design	options	that	reduce	the	need	to	filter	rows	when	defining	articles	in	a
publication.	Alternatively,	consider	using	custom	stored	procedures	that	can
delete	unnecessary	rows	at	the	Subscriber	or	using	custom	data	partitions	with
transformable	subscriptions	(for	more	information,	see	Using	Transformable
Subscriptions	to	Create	Custom	Data	Partitions).

Use	Custom	Stored	Procedures	for	Inserts,	Updates,	and	Deletes
at	Subscribers
When	Microsoft®	SQL	Server™	2000	applies	transactions	at	a	Subscriber,	by
default	it	overrides	the	INSERT,	UPDATE,	and	DELETE	statements	from	the
transaction	log	with	custom	stored	procedures.	For	example,	instead	of	applying
the	INSERT	statement	read	from	the	transaction	log,	the	Distribution	Agent	can
run	a	stored	procedure	at	the	Subscriber	to	perform	the	same	action.	These	stored
procedures	can	be	further	customized,	which	is	generally	better	than	adding
Subscriber-specific	logic	in	triggers	(for	actions	such	as	maintaining	aggregate
tables).

Avoid	Horizontal	Filtering
The	criteria	set	for	a	horizontal	filter	are	evaluated	one	time	for	each	row	marked
for	replication	in	the	publication	database	log.	This	determines	whether	the	row
should	be	moved	to	the	distribution	database.	For	applications	that	require
maximum	data	throughput,	horizontal	filtering	of	articles	may	not	be	the	best
choice	for	minimizing	the	rows	delivered	to	each	Subscriber.	Instead,	developing
natural	partitions	of	the	table	may	be	a	better	choice	using	custom	data	partitions
with	transformable	subscriptions	(for	more	information,	see	Using
Transformable	Subscriptions	to	Create	Custom	Data	Partitions).

Replication

Enhancing	Merge	Replication	Performance
You	can	enhance	the	performance	of	merge	replication	in	your	application	and
on	your	network	by:

Using	indexes	on	columns	used	in	subset	and	join	filters.

Creating	a	ROWGUIDCOL	column	prior	to	generating	the	initial
snapshot.

Using	native	mode	bcp	whenever	possible.

Increasing	the	batch	sizes	processed	by	the	Merge	Agent.	

Using	pull	and	anonymous	subscriptions	when	there	are	a	large	number
of	Subscribers.

Limiting	the	use	of	text	and	image	columns.

Considering	over-normalization	of	tables	containing	text	and	image
columns.

Using	static	rather	than	dynamic	partitions	when	possible.

Using	dynamic	snapshots	for	dynamically	filtered	publications.

Limiting	complexity	of	subset	filter	clauses.

Reducing	publication	retention	settings.

Selecting	column-level	tracking	when	bandwidth	is	limited.

Optimizing	synchronization	when	partitioning	data.

Controlling	article	processing	order	if	using	triggers	for	referential
integrity.

Using	global	subscriptions.

Occasionally	re-indexing	merge	replication	system	tables.

Not	overusing	join	filters.

Modifying	database	design.

Limiting	or	controlling	simultaneous	agent	processing.

Considering	Reinitialization	of	the	subscription.

Using	Indexes	on	Columns	Used	in	Subset	and	Join	Filters

When	you	use	a	filter	on	a	published	article,	create	an	index	on	each	of	the
columns	that	is	used	in	the	filter's	WHERE	clause.	Without	an	index,
Microsoft®	SQL	Server™	2000	has	to	read	each	row	in	the	table	to	determine
whether	the	row	should	be	included	in	the	article	(that	is,	in	the	horizontal
partition	of	the	table).	With	an	index,	SQL	Server	2000	can	quickly	locate	which
rows	should	be	included.	The	fastest	processing	takes	place	if	SQL	Server	2000
can	fully	resolve	the	WHERE	clause	of	the	filter	from	just	the	index.

Indexing	all	the	columns	used	in	JOIN	filters	is	also	important.	Each	time	the
Merge	Agent	runs,	it	searches	the	base	table	to	determine	which	rows	in	the	base
table	and	which	rows	in	related	tables	are	included	in	the	article.	Creating	an
index	on	the	JOIN	columns	saves	SQL	Server	2000	from	having	to	read	each

row	in	the	table	every	time	the	Merge	Agent	runs.

For	more	information,	see	Filtering	Published	Data.

Create	a	ROWGUIDCOL	Column	Prior	to	Generating	the	Initial
Snapshot
By	creating	a	column	that	can	be	used	to	help	track	changes	during	merge
replication,	you	will	avoid	the	sometimes	significant	time	(and	disk	and	log)
decrease	in	performance	that	occurs	from	waiting	for	the	Snapshot	Agent	to	alter
the	tables	for	you.

Merge	replication	requires	that	each	published	table	have	a	ROWGUIDCOL
column.	If	a	ROWGUIDCOL	column	does	not	exist	in	the	table	before	the
Snapshot	Agent	creates	the	initial	snapshot	files,	the	agent	must	first	add	and
populate	the	ROWGUIDCOL	column.	To	gain	a	performance	advantage	when
generating	snapshots	during	merge	replication,	create	the	ROWGUIDCOL
column	on	each	table	before	publishing	using	merge	replication.	The	column	can
have	any	name	(rowguid	is	used	by	the	Snapshot	Agent	by	default),	but	must
contain	the	following	data	type	characteristics:

The	data	type	as	UNIQUEIDENTIFIER.

The	default	as	NEWID().

The	ROWGUIDCOL	property.

A	unique	index	on	the	column.

The	ROWGUIDCOL	column	is	used	frequently	in	merge	replication	during
tracking	and	synchronization	of	changes	made	at	the	Publisher	and	at
Subscribers.

Increase	the	Batch	Sizes	Processed	by	the	Merge	Agent
By	default,	the	Merge	Agent	processes	100	generations	in	each	batch	uploaded
and	downloaded	between	the	Publisher	and	Subscriber.	If	you	make	frequent

updates	to	a	single	table	and	update	a	large	number	of	rows	in	a	single
transaction,	consider	increasing	the	number	of	generations	in	each	batch.	You
can	set	the	-DownloadGenerationsPerBatch	and	-
UploadGenerationsPerBatch	parameters	in	the	Merge	Agent	profile.

Use	Pull	and	Anonymous	Subscriptions	When	There	Are	a	Large
Number	of	Subscribers
A	pull	subscription	moves	the	Distribution	Agent	from	the	Distributor	to	the
Subscriber.	Relocating	the	Distribution	Agent	reduces	the	amount	of	processing
the	Distributor	must	do	for	each	pull	subscription	and	shifts	the	processing
overhead	to	the	Subscriber.	By	creating	pull	subscriptions	instead	of	push
subscriptions,	you	free	up	more	processing	capacity	at	the	Distributor	for
performing	other	replication	or	application	tasks.	By	creating	anonymous
subscriptions,	you	can	further	reduce	the	resource	demands	on	the	Distributor
because	no	meta	data	has	to	be	stored	about	the	Subscriber.

Use	Native	Mode	bcp	Whenever	Possible
When	you	create	a	publication,	you	have	the	choice	of	specifying	that	one	or
more	Subscribers	will	be	Microsoft	Jet	4.0	(Microsoft	Access)	or	SQL	Server	for
Windows®	CE	databases.	Enabling	support	for	these	types	of	Subscribers	causes
the	Snapshot	Agent	to	store	the	snapshot	files	in	character	format	instead	of
native	SQL	Server	2000	format.	Because	it	takes	additional	processing	time	and
storage	space	for	SQL	Server	2000	to	process	and	store	character	format	files,	do
not	enable	SQL	Server	for	Windows	CE	or	Access	Subscribers	unless	you	are
sure	that	you	will	actually	have	such	Subscribers.

Limit	the	Use	of	text	and	image	Columns
text	and	image	columns	require	more	storage	space	and	processing	than	other
column	data	types.	Do	not	include	text	and	image	columns	in	articles	unless
absolutely	necessary	for	your	application.

Consider	Over-normalizing	Tables	Containing	text	and	image
Columns
When	synchronization	occurs,	the	Merge	Agent	may	need	to	read	and	transfer

the	entire	data	row	from	a	Publisher	or	Subscriber.	If	the	row	contains	text	and
image	columns	this	process	can	require	additional	memory	allocation	and
negatively	impact	performance	even	though	these	columns	may	not	have	been
updated.	To	reduce	the	likelihood	that	this	performance	impact	will	occur,
consider	putting	text	and	image	columns	in	a	separate	table	using	a	one-to-one
relationship	to	the	rest	of	the	row	data.

Reducing	Use	of	Horizontal	Filtering
When	subset	filters	or	join	filters	are	used	to	filter	the	data	in	a	publication,	the
Merge	Agent	must	determine	if	rows	need	to	be	added	to	or	removed	from	a
subscription	database.	While	this	can	decrease	the	amount	of	data	that	must	be
transferred	to	each	Subscriber,	it	can	increase	the	amount	of	processing	required
at	the	Publisher	during	each	synchronization.	If	data	is	not	horizontally	filtered,
all	data	changes	must	be	sent	to	each	Subscriber	and	the	Merge	Agent	will	begin
sending	data	to	Subscribers	quickly	without	having	to	first	evaluate	the	filter
criteria	for	the	publication.

Publish	unrelated	tables	in	separate	publications	if	some	tables	receive	a	lot	of
activity	and	others	do	not.

Use	Static	Rather	Than	Dynamic	Partitions	When	Possible
Dynamic	filters	and	partitions	are	a	powerful	feature	of	SQL	Server	2000
replication.	However,	even	with	indexes	on	the	filtered	columns,	SQL	Server
2000	must	still	read	each	row	in	the	dynamic	partition	and	compare	it	to	the
filtered	value.	Using	static	filters	and	partitions	reduces	the	processing	time
required	to	complete	the	merge	process.

Using	Dynamic	Snapshots	for	Dynamic	Filtered	Publications
When	dynamic	filters	are	used	to	partition	a	publication,	the	Snapshot	Agent
cannot	pre-determine	the	data	required	for	a	Subscriber.	As	such,	the	Merge
Agent	must	request	inserts	for	all	data	specific	to	its	partition	after	it	applies	the
schema	files	from	the	snapshot	folder.	Processing	the	initial	snapshot	for	a	large
volume	of	data	using	inserts	can	be	significantly	slower	than	processing	the
same	data	using	the	SQL	Server	bulk	copy	utility.

With	SQL	Server	2000,	the	Snapshot	Agent	can	be	instructed	to	generate	bcp

files	specific	to	each	subscriber	by	creating	a	dynamic	snapshot	job.	Dynamic
snapshots	will	generate	bcp	files	as	though	a	static	filter	had	been	applied	to	the
publication.	While	this	requires	running	the	Snapshot	Agent	in	a	special	mode
once	for	each	partition	of	data	to	be	generated	for	Subscribers,	it	can
dramatically	improve	the	time	it	takes	the	Merge	Agent	to	apply	the	data	when
processing	the	snapshot	files.

For	more	information,	see	Dynamic	Snapshots.

Limiting	Complexity	of	Subset	Filter	Clauses
When	using	subset	filter	clauses	to	horizontally	partition	data	in	a	publication,
limit	the	complexity	of	the	filter	criteria.	The	subset	filter	clause	will	be
evaluated	frequently	to	determine	which	changed	rows	of	published	data	should
be	synchronized	with	each	Subscriber.	Limiting	the	complexity	of	the	filtering
criteria	will	help	improve	performance	when	the	merge	agent	is	evaluating	row
changes	to	send	to	Subscribers.	Avoid	using	sub-selects	within	merge	subset
filter	clauses.	Instead,	consider	using	join	filters,	which	are	generally	more
efficient	when	used	to	partition	data	in	one	table	based	on	the	subset	filter	clause
in	another	table.

Note		Do	not	overuse	join	filters.	Join	filters	with	dozens	or	more	tables	will
impact	performance.

For	more	information,	see	Filtering	Published	Data.

Reducing	Publication	Retention	Settings
Publication	retention	determines	how	long	a	Subscriber	can	go	without
synchronizing	incremental	changes	before	that	Subscriber	is	considered	to	be	out
of	synchronization	and	requires	a	new	snapshot	from	the	Publisher.

This	setting	also	controls	how	long	some	merge	tracking	meta	data	is	maintained
in	the	publication	and	subscription	databases.	You	can	control	the	growth	of
merge	tracking	meta	data	and,	in	some	cases,	see	improved	performance	while
synchronizing	changes,	if	you	reduce	the	publication	retention	period	setting.
Select	a	publication	retention	setting	that	is	adequate	to	support	Subscribers
working	offline	for	extended	periods	of	time.

Selecting	Column-level	Tracking	When	Bandwidth	is	Limited
While	business	application	needs	generally	drive	the	choice	selection	of	row-	or
column-level	tracking	for	merge	publications,	there	can	be	a	performance	benefit
to	selecting	column-level	tracking	when	bandwidth	availability	is	low.	Column-
level	tracking	of	data	changes	allows	the	Merge	Agent	to	send	only	the	changed
columns	and	rowguidcol	property	across	the	network	for	changed	rows.
Conversely,	the	Merge	Agent	will	always	send	the	entire	row	when	row-level
tracking	is	used.	Sending	only	the	changed	columns	can	provide	better
performance	across	a	network	with	limited	bandwidth	when	an	application
frequently	changes	only	a	few	columns	in	a	table	that	has	many	columns.

Optimizing	Synchronization	When	Partitioning	Data
Selecting	the	@keep_partition_changes	option	when	adding	an	article	to	a	merge
publication	can	significantly	reduce	the	amount	of	time	it	takes	the	Merge	Agent
to	determine	whether	recently	changed	rows	should	be	sent	to	a	Subscriber.

In	cases	where	an	application	updates	a	column	used	in	a	subset	filter	or	join
filter,	the	Merge	Agent	must	do	additional	work	to	determine	if	that	row	change
requires	that	rows	be	added	to	or	removed	from	the	partition	for	each	Subscriber
as	they	synchronize.	By	maintaining	some	additional	data	about	the	changed
rows	in	the	publication	database,	the	Merge	Agent	can	more	quickly	determine
which	partition-related	row	changes	are	relevant	to	each	Subscriber.

CAUTION		Choosing	to	maintain	this	additional	information	at	the	Publisher	will
result	in	an	increase	in	the	storage	requirements	for	the	merge	replication
tracking	system	tables	in	the	publication	database.	However,	if	UPDATES	to
columns	included	in	partitions	are	not	atypical,	the	performance	gains	are
usually	worth	maintaining	the	additional	information.

For	more	information,	see	Optimizing	Synchronization.

Controlling	Article	Processing	Order	If	Using	Triggers	for
Referential	Integrity
When	publishing	tables	related	to	one	another	via	declared	foreign	key
constraints	or	constraints	enforced	via	triggers,	the	Merge	Agent	will	need	to
apply	changes	to	related	rows	in	the	correct	order	to	propagate	all	changes.	If

you	are	using	declared	referential	integrity,	SQL	Server	will	process	articles	in
order	based	on	the	relationships.	By	processing	articles	in	the	optimal	order
based	on	the	action	being	performed	(for	example,	inserting	parent	rows	before
related	child	rows),	the	Merge	Agent	can	avoid	additional	retry	operations	when
processing	articles	during	synchronizing.

If	declared	referential	integrity	is	not	used,	the	Merge	Agent	will,	by	default,
process	articles	in	the	order	they	are	added	to	a	publication	via	stored	procedures
or	SQLDMO	–	article	order	cannot	be	controlled	through	SQL	Server	Enterprise
Manager.

If	triggers	are	used	to	enforce	referential	integrity,	the	Merge	Agent	will	not
recognize	this	as	declared	referential	integrity,	and	you	need	to	be	aware	of	the
processing	order	of	the	articles.

Using	Global	Subscriptions
When	synchronizing	changes	for	a	local	or	anonymous	merge	Subscriber,	the
Publisher	must	also	synchronize	additional	system	tracking	data	that	would
otherwise	be	unnecessary	with	global	subscriptions.	Using	global	subscriptions
may	improve	synchronization	performance	in	cases	where	subscribers	make
frequent	updates.

Occasionally	Re-index	Merge	Replication	System	Tables.
As	part	of	maintenance	for	merge	replication,	occasionally	check	the	growth	of
the	system	tables	associated	with	merge	replication:	MSmerge_contents,
MSmerge_genhistory,	and	MSmerge_tombstone.	Periodically	re-index	these
tables	by	running	DBCC	Transact-SQL	commands.	To	re-index	these	system
tables,	execute	the	following	commands	on	the	publication	database:

DBCC	DBREINDEX	('MSmerge_contents')

DBCC	DBREINDEX	('MSmerge_genhistory')

DBCC	DBREINDEX	('MSmerge_tombstone')

Additionally,	you	should	minimize	the	size	of	the	merge	system	tables

(specifically	MSmerge_history)	by	using	sp_mergecleanupmetadata.	For	more
information,	see	How	Merge	Replication	Works.

Not	Overusing	Join	Filters
Join	filters	with	several	tables	(such	as	dozens	or	hundreds	of	tables)	will
seriously	impact	performance	during	merge	processing.	It	is	recommended	that
if	you	are	generating	join	filters	of	five	or	more	tables	that	you	consider	other
solutions.	Another	strategy	might	be	to	avoid	filtering	tables	that	are	primarily
lookup	tables,	smaller	tables,	and	tables	that	are	not	subject	to	change.	Make
those	tables	part	of	the	publication	in	their	entirety.	It	is	recommended	that	you
use	join	filters	only	between	tables	for	which	it	is	important	they	carefully
partition	among	Subscribers.

Modify	Database	Design
The	design	of	the	database	ultimately	determines	the	complexity	and	processing
resource	requirements	of	the	queries	used	by	merge	replication,	which	affects
merge	performance.	A	poor	database	design	or	a	database	design	that	does	fit
with	the	publication	(or	filtering)	needs	of	a	merge	publication	may	require	some
structural	changes	to	the	database	to	improve	merge	performance.	Specifically,
adding	columns	or	tables	to	support	dynamic	partitioning	logic	more	efficiently,
and	making	sure	that	the	columns	used	in	the	filtering	expressions	can	take
advantage	of	indexes.	Generic	'optimizing	queries	for	index	usage'	rules	apply.	If
you	generically	mention	to	use	indexes	on	all	filtering	columns,	this	may
actually	be	counter-productive	in	terms	of	index	maintenance	if	the	index	is	not
used	by	the	query	optimizer,	because	the	data	is	not	very	unique	or	the
expression	cannot	use	indexes.	Sometimes	changing	the	filtering	expressions
will	allow	an	existing	index	to	be	used	where	it	was	not	before.

Limit	or	Control	Simultaneous	Agent	Processing
Limit	or	control	the	number	of	multiple	simultaneous	Snapshot	Agent	or	Merge
Agent	processes,	especially	with	large	data	sets,	complex	partitioning	logic,	and
large	volumes	of	merged	changes.	The	@max_concurrent_merge	and
@max_concurrent_dynamic_snapshots	parameters	for	sp_addmergepublication
can	help	with	this.

Consider	Reinitializing	the	Subscription
When	large	amounts	of	changes	need	to	be	sent	to	subscribers,	reinitializing
them	with	a	new	snapshot	may	be	faster	than	using	merge	to	move	the	individual
changes.

See	Also

Agent	Profiles

Creating	an	Index

Creating	and	Modifying	Identifier	Columns

Data	Types	and	Table	Structures

Dynamic	Filters

Planning	for	Replication

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Replication

Backing	Up	and	Restoring	Replication	Databases
In	addition	to	the	regular	backup	and	restore	guidelines	and	procedures	for
Microsoft®	SQL	Server™	2000,	additional	considerations	for	backing	up	and
restoring	the	databases	are	involved	in	replication.

The	considerations	for	backing	up	databases	used	in	snapshot	replication,
transactional	replication,	or	merge	replication	vary	according	to	the	role	the
server	performs	in	replication	and	where	the	failure	occurs	in	the	replication
topology.

To	restore	replication,	back	up	some	or	all	of	the	following	regularly:

Publisher

Distributor

Subscriber(s)

Your	backup	strategy	will	depend	on	your	needs	for	restoring	a	replicated
environment	quickly,	and	on	the	degree	of	complexity	you	can	tolerate	in	your
backup	plan.	You	only	need	to	back	up	all	databases	if	you	want	to	restore	any
replica	immediately	from	backup	while	minimizing	the	likelihood	of	data	loss.

Maintaining	a	regular	backup	of	the	Publisher	databases,	and	leveraging	the	SQL
Server	replication	built-in	ability	to	reinitialize	one	or	more	subscriptions	on-
demand	provides	a	simple	recovery	strategy.	This	strategy	can	be	used	to	support
a	large	enterprise	of	mobile,	occasionally	connected	Subscribers	that	otherwise
would	not	typically	participate	in	regular	backup	management	at	each	node	in
the	topology.	You	could	further	limit	regular	backups	to	your	publication
databases	and	rely	on	SQL	Server	replication	scripting	to	provide	a	method	for
reestablishing	replication	if	you	need	to	restore	the	entire	replication
environment.

Another	strategy	includes	backing	up	only	the	Publisher	and	the	Distributor	as
long	as	the	Publisher	and	Distributor	are	synchronized.	This	strategy	allows	you
to	restore	a	replication	environment	completely.	Backing	up	a	Subscriber	is

optional	but	can	reduce	the	time	it	takes	to	recover	from	a	failure	of	the
Subscriber.

Basic	backup	plans	can	result	in	a	longer	time	to	restore	the	replication
environment.	If	your	application	requires	that	you	restore	replication
immediately,	you	may	want	to	consider	more	complex	backup	and	recovery
strategies	described	later	in	this	section.

In	most	situations,	the	publications	and	distribution	databases	should	be	backed
up	after	adding	or	changing	replication	objects	such	as	articles	and	subscriptions,
or	after	a	schema	change	is	made	that	affects	replication.	If	the	distribution
database	is	restored	to	a	version	that	is	before	such	a	change,	the	publication
database	will	have	to	be	restored	to	a	version	before	that	change	as	well.

As	part	of	any	backup	strategy,	always	keep	a	current	script	of	your	replication
settings	in	a	safe	location.	This	should	be	done	in	addition	to	regular	backups	of
the	Publisher,	Distributor	and	the	Subscribers.	In	the	event	of	a	total	server
failure	or	the	need	to	set	up	a	test	environment,	you	can	modify	the	script	by
changing	the	server	name	references	and	using	the	script	to	help	recover
replication	with	the	previous	settings.

	You	should	also	script	the	enabling	and	disabling	of	replication.	These	scripts
are	part	of	the	backup	of	the	Publisher	or	Distributor.

For	more	information	about	generating	SQL	scripts	for	setting	up	or	disabling
replication,	see	Scripting	Replication.

Backing	Up	the	Publisher
Publication	databases	are	the	primary,	or	central	source,	of	data	in	a	replication
topology;	therefore,	even	the	most	basic	recovery	plan	should	include	regular
backups	at	the	Publisher.	Backing	up	the	Publisher	requires	you	to	back	up	the
publication	database	regularly	on	the	server	where	the	Publisher	is	located.	Back
up	the	publication	database	and	then	make	transaction	log	backups	and/or
differential	database	backups.	You	can	also	back	up	the	master	and	msdb
system	databases	to	protect	against	total	loss	of	the	system	and	not	just	the
publication	database.	If	you	are	shipping	transaction	logs	to	a	warm	standby
server,	back	up	the	msdb	system	database	regularly	(which	is	required	if	log
shipping	is	used).

Backing	Up	the	Distributor
Backing	up	the	Distributor	involves	backing	up	the	distribution	database,	the
msdb	database,	and	the	master	system	database.	This	allows	you	to	recover
from	almost	any	type	of	failure	without	having	to	re-create	publications	or
reconfigure	replication.

Backing	up	the	Distributor	preserves	the	snapshot	of	the	publication	as	well	as
the	history,	error,	and	replication	agent	information	for	your	application.	It
allows	you	to	recover	faster	in	the	event	of	a	Publisher	or	Distributor	failure
because	there	is	no	need	to	re-establish	replication.	Particularly	for	transactional
replication,	this	strategy	requires	coordination	between	backing	up	the
publication	database	and	the	distribution	database.	SQL	Server	2000	handles	this
coordination	automatically.	Back	up	the	distribution	database,	and	then	make
transaction	log	backups	and	differential	database	backups.

For	more	information,	see	Strategies	for	Backing	Up	and	Restoring
Transactional	Replication.

Backing	Up	the	Subscriber
A	comprehensive	backup	recovery	strategy	may	rely	on	reinitialization	of
subscriptions	in	the	event	that	recovery	is	required,	or	may	include	regular
backups	of	each	subscription	database	and	relevant	system	databases	at	the
Subscriber.	Backing	up	the	Subscriber	involves	backing	up	the	subscription
database	and,	optionally,	the	msdb	and	master	system	databases.	The	msdb	and
master	databases	need	to	be	backed	up	only	if	it	is	a	Subscriber	that	uses	pull
subscriptions	and	only	if	there	is	a	need	to	be	able	to	restore	after	a	total	system
loss.

Backup	the	subscriptions	database	and	then	make	transaction	log	backups	and
incremental	database	backups.

Note		Backing	up	each	Subscriber	is	not	required	to	reestablish	replication	after
a	failure.	Under	most	circumstances,	backing	up	the	Publisher	and	Distributor
regularly	should	be	sufficient.	If	the	cost	of	reinitializing	a	Subscriber	is
significantly	greater	than	the	cost	of	restoring	it	from	a	backup,	and	the
complexity	of	managing	backups	among	the	replicas	within	the	enterprise	is
manageable,	you	should	consider	backing	up	the	Subscriber.

See	Also

Validating	Replicated	Data

Replication

Strategies	for	Backing	Up	and	Restoring	Snapshot
Replication
Snapshot	replication	is	best	used	as	a	method	for	replicating	data	that	changes
infrequently	or	where	the	most	up-to-date	values	(low	latency)	are	not	a
requirement.	When	synchronization	occurs,	the	entire	snapshot	is	generated	and
sent	to	Subscribers.

Because	snapshot	replication	propagates	changes	by	generating	and	delivering	a
complete	snapshot	for	the	publication,	it	is	not	necessary	to	back	up	the
publication	database	as	frequently	as	it	is	backed	up	in	transactional	replication
or	merge	replication.	The	publication	database	needs	to	be	backed	up	when
changes	are	made	to	existing	publication	properties	or	when	new	publications
are	added.

When	you	back	up	the	Publisher,	also	back	up	the	Distributor.	While	the	backups
are	in	progress,	no	new	snapshot	publications	or	subscriptions	should	be	added.
This	ensures	that	when	the	Publisher	and	Distributor	are	restored,	they	both	will
both	contain	the	same	information.

Backing	Up	and	Restoring	the	Publication	Database
The	Log	Reader	Agent	is	less	important	in	back	up	and	restoration	than	it	is	in
transactional	replication.	The	publication	database	needs	to	be	backed	up	only
when	changes	are	made	to	existing	publications	(such	as	an	article	added	or
deleted,	or	schema	changes	on	the	publication	database	that	affect	the
publication),	or	new	publications	are	added.

Backing	Up	and	Restoring	the	Distribution	Database
Before	backing	up	the	distribution	database,	it	is	recommended	that	you	run	the
Distribution	Cleanup	Task	to	make	sure	any	unnecessary	information	is	cleaned
up	and	does	not	add	to	the	time	it	takes	to	back	up	the	distribution	database.

The	distribution	database	should	be	backed	up	at	the	same	time	as	the
publication	database.	During	the	back	up,	do	not	add	new	snapshot	publications
or	subscriptions.	

Backing	Up	and	Restoring	the	msdb	Database
The	msdb	database	contains	the	job	definitions	for	replication	agents	that	are	run
under	the	control	of	SQL	Server	Agent.	To	provide	additional	security	against	a
total	system	failure,	the	msdb	database	on	the	Publisher,	Distributor,	and
Subscribers	(that	use	pull	subscriptions)	must	be	backed	up	periodically
whenever	a	subscription	is	dropped,	whenever	a	change	is	made	to	a	replication
agent,	or	when	a	new	Publisher	is	added	to	the	Distributor.

Backing	Up	and	Restoring	the	master	Database
When	a	new	Subscriber	is	added,	an	entry	for	the	Subscriber	is	added	to	the
sysservers	table	in	the	master	database	on	the	Publisher.	When	a	new	Publisher
is	added	to	a	Distributor,	an	entry	for	the	Publisher	is	added	to	the	sysservers
table	in	the	master	database	on	the	Distributor.

To	restore	replication	after	the	loss	of	the	Publisher	or	Distributor,	back	up	the
master	database	on	the	Publisher	and	Distributor	each	time	a	new	Subscriber	or
Publisher	is	added	(respectively).

Replication

Strategies	for	Backing	Up	and	Restoring
Transactional	Replication
Microsoft®	SQL	Server™	2000	allows	you	to	restore	transactional	replication
databases	without	reinitializing	subscriptions	or	disabling	and	reconfiguring
publishing	and	distribution.	You	can	set	up	replication	to	work	with	log	shipping,
enabling	you	to	use	a	warm	standby	server	without	reconfiguring	replication.

Recovering	transactional	replication	from	a	loss	of	the	publication	database	or
distribution	database,	without	having	to	reinitialize	subscriptions	or	reconfigure
replication,	requires	the	publication	database	and	the	distribution	database	be
restored	to	a	consistent	point	in	time.	In	SQL	Server	version	7.0	and	earlier,	this
had	to	be	ensured	manually	by	backing	up	the	publication	database	and
distribution	database	simultaneously,	and	at	the	same	time	ensuring	no	changes
were	being	made	to	the	databases	while	the	backup	was	in	progress.	SQL	Server
2000	automatically	handles	the	coordination	of	the	backups	of	the	two	databases.

To	ensure	that	you	can	restore	the	Publisher	or	Distributor	at	any	time,	SQL
Server	2000	requires	the	replication	database	option	sync	with	backup	be	set	to
true	on	the	publication	database	and	on	the	distribution	database.	If	you	use	this
option,	you	will	need	to	back	up	the	publication	database	and	distribution
databases	(usually	you	would	back	up	the	transaction	log	or	make	differential
backups)	frequently	because	the	frequency	of	backups	determines	the	latency
with	which	replication	delivers	changes	to	Subscribers.

IMPORTANT		Only	SQL	Server	2000	Publishers	support	this	option.	If	the
distribution	database	is	set	to	sync	with	backup,	Publishers	running	SQL	Server
7.0	and	earlier	and	using	that	distribution	database	will	be	treated	as	if	the	option
is	not	set.

Backing	Up	and	Restoring	the	Publication	Database
Usually	the	Log	Reader	Agent	runs	in	continuous	mode,	monitoring	the	log	for
data	changes,	which	it	immediately	propagates	to	the	distribution	database
(typically	within	a	few	seconds).	In	addition,	because	backups	of	the	publication
database	usually	occur	on	a	scheduled	basis,	the	Log	Reader	Agent	may	be
transferring	transactions	faster	than	they	are	being	backed	up.	If	the	Publisher

fails	and	is	restored,	the	distribution	database	may	already	have	transactions	that
will	not	exist	in	the	restored	publication	database	because	those	transactions
were	not	backed	up.

Setting	the	sync	with	backup	option	on	the	publication	database	ensures	that	the
Log	Reader	Agent	will	not	propagate	any	transactions	to	the	distribution
database	that	have	not	been	backed	up	at	the	Publisher.	This	ensures	that	the	last
backup	can	be	restored	without	any	possibility	of	the	distribution	database
having	transactions	that	the	restored	publication	database	does	not	have.

Synchronizing	the	Log	Reader	Agent	with	backing	up	the	publication	database
means	that	replication	latency	(the	time	it	takes	for	changes	at	the	Publisher	to	be
delivered	to	the	Subscriber),	which	can	often	be	as	low	as	a	few	seconds,	is	now
constrained	to	be	equal	to	the	frequency	of	backups	at	the	Publisher.	For
example,	if	you	are	backing	up	the	transaction	log	of	the	publication	database
every	five	minutes,	replication	latency	could	be	as	much	as	five	minutes	plus	the
time	it	takes	to	complete	the	backup.	On	the	average,	it	will	be	less	than	five
minutes,	but	more	than	typical	transactional	replication	latency,	which	can	be
tens	of	seconds.	If	you	synchronize	the	Log	Reader	Agent	with	the	backup,	it	is
recommended	that	you	back	up	the	publication	database	(database	backup
followed	by	log	and/or	differential	database	backups)	as	frequently	as	possible	to
reduce	the	time	it	takes	for	changes	to	appear	at	Subscribers.

To	synchronize	the	publication	database	to	a	backup

Execute	sp_replicationdboption	'<publicationdatabasename>',	'sync
with	backup',	'true'.

Note		If	you	change	the	sync	with	backup	option	to	false,	the	truncation	point
of	the	publication	database	will	be	updated	after	the	Log	Reader	Agent	runs,	or
after	an	interval	if	the	Log	Reader	Agent	is	running	continuously.	The	maximum
interval	is	controlled	by	the	–MessageInterval	agent	parameter	with	a	default	of
30	seconds.

To	determine	if	the	sync	with	backup	option	has	been	set	on	a	publication
database,	use	the	IsSyncWithBackup	property	of	the	DatabasePropertyex()
intrinsic	function.	You	can	also	run	the	system	stored	procedure	sp_helpdb	to
check	if	this	option	has	been	set.

If	the	increase	in	replication	latency	is	not	acceptable,	do	not	to	set	the	sync	with

backup	option	on	the	publication	database.	If	the	publication	database	fails,	it
will	be	possible	for	the	distribution	database	to	have	transactions	that	the
restored	publication	database	does	not	have,	and	it	is	not	guaranteed	that	the
Subscriber	will	be	in	synchronization	with	the	Publisher.

Restoring	the	Publication	Database	When	the	sync	with	backup
Option	is	False
If	you	do	not	set	the	sync	with	backup	option	and	allow	the	distribution
database	to	have	transactions	that	the	restored	publication	database	does	not
have,	it	is	possible	to	restore	a	publication	database	from	backup	and	for
replication	to	continue,	but	the	Subscriber	and	Publisher	may	no	longer	be	in
synchronization.	To	accomplish	this:

1.	 Restore	the	publication	database.	At	this	point,	you	will	get	an	error
from	the	Log	Reader	Agent	because	it	will	detect	that	the	Distributor	is
ahead	of	the	Publisher.

2.	 Run	sp_replrestart	in	the	publication	database	with	no	parameters.
This	forces	replication	to	continue	even	if	the	Distributor	and	some
Subscribers	may	now	have	data	that	the	Publisher	no	longer	has.

3.	 Ensure	that	that	the	Distribution	Agents,	which	could	now	deliver
duplicate	rows	to	Subscribers,	can	continue	despite	these	failures.
Choose	the	–SkipError	Distribution	Agent	profile,	or	you	can
manually	add	the	–SkipError	parameter	to	the	runtime	parameters	of
the	Distribution	Agents	and	supply	the	errors	you	want	the
Distribution	Agents	to	ignore.	For	more	information,	see	Distribution
Agent	Profile.

CAUTION		This	method	can	lead	to	inconsistencies	between	data	at	the	Publisher
and	data	at	the	Subscribers.

Backing	Up	and	Restoring	the	Distribution	Database
The	distribution	database	can	be	restored	to	the	last	backup	without
reconfiguring	replication	or	reinitializing	subscriptions.	Usually,	the	Log	Reader

Agent	connects	to	the	publication	database,	scans	the	log,	retrieves	the	next	set
of	N	transactions	that	need	to	be	replicated,	propagates	them	to	the	distribution
database,	and	then	indicates	to	the	publication	database	that	the	transactions	have
been	successfully	committed	at	the	distribution	database.

At	this	point,	the	publication	database	can	truncate	the	part	of	the	log	that
contains	these	transactions	(provided	they	have	been	backed	up).	If	the
distribution	database	fails	at	this	point	and	is	restored	to	a	previous	backup,	it
will	not	be	possible	for	the	Log	Reader	Agent	to	deliver	the	missing	transactions
because	the	part	of	the	log	containing	them	may	have	been	truncated.

Setting	the	sync	with	backup	option	on	the	distribution	database	ensures	that
the	log	of	the	publication	database	will	not	be	truncated	beyond	the	point	up	to
which	all	transactions	have	been	propagated	to	the	distribution	database.	It	also
ensures	that	the	distribution	database	with	the	new	transactions	has	been	backed
up.	The	distribution	database	can	be	restored	to	the	last	backup	and	the	Log
Reader	Agent	will	be	able	to	deliver	transactions	that	the	restored	distribution
database	is	now	missing.	Replication	will	continue	unaffected.

IMPORTANT		To	backup	the	distribution	database	more	frequently	by	backing	up
the	transaction	logs	and	setting	the	sync	with	backup	option,	you	must	set	the
trunc.	log	on	chkpt.	option	of	sp_dboption	to	false	on	the	distribution
database.

Unlike	the	publication	database,	setting	the	sync	with	backup	option	on	the
distribution	database	has	no	effect	on	replication	latency,	but	it	will	delay	the
truncation	of	the	log	on	the	publication	database	until	the	corresponding
transactions	in	the	distribution	database	have	been	backed	up.The	sync	with
backup	option	is	available	only	if	the	Publisher	and	Distributor	are	running	SQL
Server	2000.

To	synchronize	the	distribution	database	to	a	backup

Execute	sp_replicationdboption	'<distributiondatabasename>',	'sync
with	backup',	'true'

To	determine	if	the	sync	with	backup	option	has	been	set	on	a	distribution
database,	use	the	IsSyncWithBackup	property	of	the	databaseproperty()
intrinsic	function.	You	can	also	run	the	system	stored	procedure	sp_helpdb	to
check	if	this	option	has	been	set.

Backing	Up	and	Restoring	a	Subscription	Database
To	restore	the	Subscriber	to	the	last	backup	without	any	need	to	reinitialize	the
subscriptions,	ensure	that	the	minimum	transaction	retention	period	at	the
Distributor	is	greater	than	the	frequency	of	the	backup	interval	at	the	Subscriber.
This	guarantees	that	when	you	restore	a	Subscriber,	all	the	transactions	necessary
for	the	Subscriber	to	catch	up	will	still	be	available	in	the	distribution	database.
When	you	restore	a	Subscriber,	the	Distribution	Agent	delivers	any	transactions
the	Subscriber	is	missing.	By	default,	the	minimum	transaction	retention	period
is	set	to	0,	and	under	most	circumstances	a	transaction	that	has	been	delivered	to
all	Subscribers	will	be	deleted.

To	set	the	minimum	transaction	retention	period	of	the	Distributor

1.	 In	SQL	Server	Enterprise	Manager,	expand	a	server	group,	expand	the
Distributor,	right-click	the	Replication	folder,	and	then	click
Configure	Publishing,	Subscribers,	and	Distribution.

2.	 To	modify	the	distribution	database,	click	the	Properties	button	for	the
distribution	database	to	change	the	transaction	retention	period.

Note		It	is	not	necessary	to	back	up	the	Subscribers	to	restore	transactional
replication;	however,	it	is	essential	that	you	back	up	the	Publisher	and
Distributor.	If	the	cost	of	generating	a	snapshot	and	reinitializing	the	subscription
is	less	than	the	time	it	would	take	to	restore	the	subscription	database	from	a
backup,	there	is	no	need	to	back	up	the	subscription	database.

Backing	Up	and	Restoring	the	msdb	Database
The	msdb	database	contains	the	job	definitions	for	replication	agents	that	are	run
under	the	control	of	SQL	Server	Agent.	To	provide	additional	security	against	a
system	failure,	the	msdb	database	on	the	Distributor	and	Subscribers	that	use
pull	subscriptions	must	be	backed	up	periodically,	whenever	a	subscription	is
dropped	or	a	new	one	added,	or	whenever	a	change	is	made	to	a	replication
agent.

The	msdb	database	may	also	contain	Data	Transformation	Services	(DTS)
package	definitions	used	in	replication	if	transformable	subscriptions	are	used
with	any	transactional	or	snapshot	publications.	To	provide	assurance	against

system	failure,	the	msdb	database	on	the	Distributor	and	on	the	Subscribers	that
use	transformable	subscriptions	must	be	backed	up	periodically	as	well.	These
operations	should	be	performed	any	time	the	DTS	package	associated	with	a
publication	is	modified	or	each	time	a	subscription	is	dropped	or	a	new	one	is
added.	This	ensures	that	the	most	up-to-date	definitions	can	be
recovered.Backing	up	and	restoring	the	msdb	database	allows	you	to	restore
replication	after	a	complete	loss	of	the	Distributor	or	Subscriber.

Backing	Up	and	Restoring	the	master	Database
When	a	new	Subscriber	is	added,	an	entry	for	the	Subscriber	is	added	to	the
sysservers	table	in	the	master	database	on	the	Publisher.	Back	up	the	master
database	at	the	Publisher	and	after	a	Subscriber	is	added	or	after	an	entry	for	the
Publisher	is	added	to	the	sysservers	table	in	the	master	database	on	the
Distributor.

To	restore	replication	after	loss	of	the	Publisher	or	Distributor,	back	up	the
master	database	on	the	Publisher	and	Distributor	each	time	a	new	Subscriber	or
Publisher	is	added	(respectively).

Replication

Transactional	Replication	and	Log	Shipping
Microsoft®	SQL	Server™	2000	transactional	replication	can	be	configured	to
work	with	log	shipping	to	provide	a	warm	standby	server	recovery	option	if	the
Publisher	fails.

You	must	be	running	Microsoft	SQL	Server	2000	Enterprise	Edition	to	use	log
shipping.	There	are	two	modes	for	replication	and	log	shipping	working
together:	synchronous	and	semi-synchronous.

Synchronous	Mode
In	synchronous	mode,	the	sync	with	backup	option	is	set	on	the	publication
database.	This	causes	the	Log	Reader	Agent	to	synchronize	with	the	publication
database	backup.	In	this	mode,	the	Log	Reader	Agent	does	not	propagate	any
transactions	from	the	Publisher	to	the	distribution	database	if	they	have	not	been
backed	up.	This	ensures	that	no	Subscriber	will	get	ahead	of	the	Distributor;
however,	this	also	means	that	replication	latency	(the	time	it	takes	changes	made
at	the	Publisher	to	appear	at	the	Subscriber),	which	can	usually	be	as	low	as	a
few	seconds,	is	now	constrained	to	be	greater	than	or	equal	to	the	log	shipping
interval.	Typically,	this	is	between	two	and	ten	minutes.

The	advantage	of	using	synchronous	mode	is	that	after	failing	over	to	the	new
Publisher,	all	replication	servers	are	in	synchronization.

To	configure	replication	to	work	with	log	shipping	in	synchronous	mode

1.	 On	the	publication	database,	execute	sp_replicationdboption
'<publicationdatabasename>',	'sync	with	backup',	'true'.

When	this	option	is	set,	the	Log	Reader	Agent	will	not	process	the
transaction	until	it	is	backed	up	through	either	database	backup	or	log
backup.

2.	 Set	up	log	shipping	for	the	publication	database.

3.	 When	the	Publisher	fails,	restore	the	last	log	of	the	database	using	the
KEEP_REPLICATION	option	with	RESTORE	LOG.	This	will	keep

all	the	replication	settings.

4.	 Rename	the	warm	standby	server	to	the	name	of	the	original	Publisher.
Replication	will	continue	to	distribute	data	changes	to	Subscribers.

Semi-Synchronous	Mode

If	the	increased	latency	that	occurs	in	synchronous	mode	is	unacceptable,	and
the	possibility	that	the	warm	standby	Publisher	and	the	Subscribers	are	not
synchronized	is	acceptable,	use	semi-synchronous	mode.

The	warm	standby	Publisher	and	the	Subscribers	may	not	be	synchronized
because	the	performance	of	the	Log	Reader	Agent	and	the	backups	are	not
synchronized.	This	allows	transactions	that	may	not	have	been	backed	up	on	the
Publisher	and	shipped	to	the	warm	standby	to	be	propagated	to	the	Distributor
and	then	to	Subscribers.	Although	the	Publisher	and	the	Subscribers	are	now	out
of	synchronization,	you	can	restart	replication.

To	configure	replication	to	work	with	log	shipping	in	semi-synchronous
mode

1.	 Set	up	log	shipping	for	the	publication	database.

2.	 When	the	Publisher	fails,	restore	the	last	log	of	the	database	using	the
KEEP_REPLICATION	option	with	RESTORE	LOG.	This	will	keep
all	replication	settings.

3.	 Rename	the	warm	standby	server	to	the	name	of	the	original	Publisher.
You	may	receive	an	error	message	from	the	Log	Reader	Agent	that	the
publication	database	and	the	distribution	database	are	not
synchronized.	

4.	 Execute	sp_replrestart.	This	stored	procedure	can	be	used	to	force	the
Log	Reader	Agent	to	ignore	all	the	previous	replicated	transactions	in
the	publication	database	log.	Transactions	applied	after	the	completion

of	the	stored	procedure	will	be	processed	by	the	Log	Reader	Agent.
You	can	restart	the	Log	Reader	Agent	after	the	stored	procedure
executes	successfully.

IMPORTANT		The	sp_replrestart	system	stored	procedure	should	be
used	only	with	log	shipping.	It	can	also	be	used	under	controlled
circumstances	if	you	need	to	restore	the	publication	database	are	you
are	not	using	the	sync	with	backup	option.	This	option	should	be	used
only	when	the	Log	Reader	fails	to	process	replicated	transactions	in
the	publication	database	log	and	there	are	no	other	ways	to	resolve	the
problem.

5.	 Set	the	profile	of	the	Distribution	Agent	to	the	Skip	Error	profile
because	lost	transactions	(some	of	which	have	already	been	replicated
to	the	Subscribers)	may	be	reapplied	at	the	Publisher.

Replication

Strategies	for	Backing	Up	and	Restoring	Merge
Replication
Microsoft®	SQL	Server™	2000	allows	you	to	restore	replicated	databases
without	reinitializing	subscriptions	or	disabling	and	reconfiguring	Publishers	or
Subscribers.	With	merge	replication,	you	can	use	the	latest	data	stored	at	other
sites	to	resynchronize	a	server	with	changes	that	may	not	have	been	preserved	in
a	recent	backup.	You	can	also	configure	replication	to	work	with	log	shipping,
enabling	you	to	use	a	warm	standby	server	without	reconfiguring	replication.

Because	merge	replication	stores	change	tracking	meta	data	directly	in	your
publication	and	subscription	databases,	there	is	no	general	requirement	that	you
restore	the	publication	database	and	distribution	database	to	a	consistent	point	in
time.	When	you	back	up	or	restore	a	publication	or	subscription	database,	you
also	back	up	or	restore	the	system	meta	data	used	to	track	replicated	changes	to	a
point	in	time	consistent	with	your	replicated	data.

Merge	replication	ensures	data	convergence	among	all	replicas	in	your	topology.
When	it	is	necessary	to	restore	a	backup	of	a	database,	there	are	generally
multiple	options	for	recovery	depending	on	the	role	of	the	database	requiring	a
restore.

As	part	of	any	recovery	strategy,	always	keep	a	current	script	of	your	replication
settings	in	a	safe	location.	In	the	event	of	server	failure	or	the	need	to	set	up	a
test	environment,	you	can	modify	the	script	by	changing	server	name	references,
and	it	can	be	used	to	help	recover	your	replication	settings.	In	addition	to
scripting	your	current	replication	settings,	you	should	script	the	enabling	and
disabling	of	replication.

Backing	Up	and	Restoring	the	Publication	Database
When	restoring	a	publication	database,	you	may	want	to	reinitialize	all
subscriptions	to	any	restored	publications.	You	may	also	want	to	synchronize
immediately	with	a	Subscriber	that	has	the	latest	data.	Reinitializing	all
subscriptions	provides	a	convenient	mechanism	to	reset	all	replicas	of	the
publication	database	to	a	state	consistent	with	the	restored	publication	database.
Alternatively,	you	may	want	to	synchronize	your	publication	database

immediately	with	a	subscription	database	that	has	the	latest	data,	and	attempt	to
recover	any	changes	synchronized	with	that	replica	but	not	included	in	the	most
recent	publication	database	backup	of	publication	database	transaction	log
backup.

For	example,	suppose	a	publication	database	is	backed	up,	changes	are	made	in
the	publication	database,	a	subscription	database	is	synchronized	with	the
publication	database,	and	then	the	publication	database	is	restored	from	backup.
There	are	two	choices	for	restoring	the	database:

Synchronize	the	publication	database	with	the	subscription	database	and
all	changes	made	previously	in	the	publication	database,	but	not
represented	in	the	restored	backup,	will	be	uploaded	from	the
subscription	database	to	the	publication	database.	

Reinitialize	all	subscriptions	to	the	publications	in	the	publication
database.

You	may	want	to	reinitialize	all	subscriptions	if	you	are	restoring	a	publication
database	to	an	earlier	point	in	time	as	a	mechanism	to	recover	from	an
erroneously	performed	batch	data	operation,	or	if	you	are	recovering	your
publication	database	to	an	earlier	state.	Reinitializing	all	subscriptions	extends
the	recovery	to	an	earlier	state	to	all	replicas	within	the	enterprise.	If	you	choose
this	option,	it	is	recommended	that	you	generate	a	new	snapshot	for	delivery	to
reinitialized	Subscribers	immediately	after	restoring	your	publication	database.

Performing	replication	configuration	or	maintenance	activities	in	the	publication
database,	synchronizing	those	changes	with	subscription	databases,	and	then
restoring	the	publication	database	to	a	state	prior	to	the	configuration	changes
may	require	a	reinitialization	of	all	subscriptions	to	effected	publications	in	the
restored	publication	database.	Subscription	databases	are	expected	to	have	the
same	publication	definition	represented	in	the	corresponding	publication
database	whenever	synchronization	occurs.

It	is	recommended	that	you	back	up	the	publication	database	(either	incremental
or	full	backup)	whenever	changes	are	made	to	a	replicated	objects	schema	(for
example,	adding	or	dropping	a	column)	or	to	a	publication	property	even	though
you	may	have	regularly	scheduled	database	and	log	backups	to	be	performed	on
a	regular	schedule.	A	description	of	some	common	actions	affecting	replication

configuration	or	replicated	object	schema	are	described	later	in	this	topic.

Backing	Up	and	Restoring	the	Distribution	Database
When	restoring	a	publication	database	that	contains	only	merge	publications,	it
is	not	always	necessary	to	restore	the	corresponding	distribution	database	to	a
consistent	point	in	time.	The	distribution	database	has	a	limited	role	in	merge
replication	as	the	common	store	for	synchronization	history	and	error	tracking
information.	It	does	not	store	any	data	used	in	change	tracking	and	it	does	not
provide	temporary	storage	of	merge	replication	changes	to	be	forwarded	to
subscription	databases.	In	most	cases,	it	is	not	necessary	to	restore	a	distribution
database	when	restoring	a	publication	database	backup	for	merge	publications.
The	exception	is	when	any	database	maintenance	activity	has	been	performed	in
the	publication	database	or	distribution	database	that	affects	replication
configuration	or	replicated	object	schema.

Backing	Up	and	Restoring	a	Subscription	Database
Similar	to	backing	up	a	publication	database,	when	a	subscription	database	is
restored,	you	are	restoring	replication	change	tracking	data	to	a	state	consistent
with	the	replicated	data.	Synchronizing	the	subscription	database	with	each	of	its
publications	following	a	restore	results	in	the	Merge	Agent	downloading	any
changes	that	the	subscription	database	backup	has	not	yet	received	from	the
various	publication	databases	for	which	it	has	Subscribers.	A	reinitialization	of
the	subscription	database	is	generally	not	required,	and	only	the	data	changes
since	the	backup	was	taken	are	synchronized	between	the	publication	database
and	the	subscription	database.

To	restore	a	subscription	database	without	any	need	to	reinitialize	its
subscriptions,	ensure	that	the	restored	database	backup	represents	the
subscription	database	in	a	state	in	which	it	has	synchronized	all	subscriptions
within	the	defined	publication	retention	period.		Restoring	a	database	(and
transaction	logs)	to	a	point	in	time	prior	to	the	retention	period	of	the	publication
will	require	that	the	subscriptions	in	the	subscription	database	be	reinitialized.
For	more	information	about	retention	periods,	see	Subscription	Deactivation	and
Expiration.

Backing	Up	and	Restoring	a	Republishing	Database

When	a	database	subscribes	to	data	from	a	Publisher	and	in	turn	publishes	that
same	data	to	other	subscription	databases,	it	is	referred	to	as	a	republishing
database.	When	restoring	a	republishing	database,	follow	the	guidelines
described	in	the	Backing	Up	and	Restoring	a	Publication	Database	and	Backing
Up	and	Restoring	a	Subscription	Database	sections	in	this	topic.

Backing	Up	and	Restoring	the	msdb	System	Database
The	msdb	database	at	the	Publisher	contains	the	job	definitions	for	replication
agents	that	are	run	under	the	control	of	SQL	Server	Agent.	The	msdb	database	at
the	Distributor	contains	the	job	schedule,	steps,	alerts,	and	other	job	components
for	all	Snapshot	Agents,	agents	used	with	push	subscriptions,	and	miscellaneous
replication	agents.	The	msdb	database	at	each	Subscriber	contains	similar	job
information	for	all	pull	subscription	agents.	The	msdb	database	at	the
Distributor	also	contains	the	agent	profile	information	for	all	replication	agents.

To	provide	improved	recovery	options	if	you	need	to	restore	one	or	more
replicated	databases,	the	msdb	database	should	be	backed	up	periodically.	In
additionensure	that	an	accurate	backup	of	the	msdb	database	is	taken	whenever
any	database	maintenance	activity	has	been	performed	in	the	publication
database,	distribution	database,	or	subscription	database	that	affects	replication
configuration	(especially	agent	profiles	or	agent	properties)	.Backing	up	the
msdb	database	is	necessary	in	the	event	you	want	to	restore	replication	after	the
loss	a	Distributor	or	Subscriber.

Backing	Up	and	Restoring	the	master	Database
It	is	not	generally	necessary	to	back	up	the	master	database	on	a	regular	basis;
however,	similar	to	backing	up	the	msdb	database,	the	master	database	is
involved	in	storing	limited	configuration	information	regarding	the	replicated
databases	on	any	instance	of	SQL	Server.	For	example,	when	a	server	is	enabled
as	a	Distributor,	Publisher,	or	Subscriber,	the	sysservers	table	in	the	master
database	on	the	Distributor	is	updated.	To	restore	replication	after	the	loss	of	a
master	database	on	a	Publisher	or	Distributor,	back	up	the	master	database	on
the	Publisher	and	Distributor.	It	is	recommended	that	you	back	up	the	master
database	periodically	and	when	any	database	maintenance	activity	has	been
performed	in	the	publication	database,	distribution	database,	or	subscription
database	that	effects	replication	configuration	(especially	changes	to	enabled

Publishers	or	Subscribers).

Merge	Replication,	Log	Shipping,	and	Alternate	Synchronization
Partners
Microsoft®	SQL	Server™	2000	merge	replication	can	be	configured	to	work
with	log	shipping	to	provide	a	warm	standby	server	recovery	option	if	the
Publisher	fails.	Merge	replication	also	allows	Subscribers	to	synchronize	with	an
alternate	Publisher	in	the	event	the	Publisher	at	which	their	subscriptions
originated	is	unavailable.

Alternate	synchronization	partners	can	be	used	with	any	edition	of	SQL	Server
2000	that	supports	merge	replication;	however,	you	must	be	running	Microsoft
SQL	Server	2000	Enterprise	Edition	to	use	log	shipping.	Because	merge
replication	tracks	changes	directly	in	the	publication	database,	merge	replication
works	with	log	shipping	in	a	semi-synchronous	mode	only.

Semi-Synchronous	Mode
In	semi-synchronous	mode,	there	is	a	possibility	that	the	warm	standby	Publisher
and	its	Subscribers	may	not	be	synchronized	at	the	point	of	failover	if	any
changes	synchronized	between	the	primary	Publisher	and	its	Subscribers	have
not	yet	been	transferred	using	log	shipping	to	the	warm	standby	Publisher	at	the
point	of	failover.When	restoring	a	publication	database	from	backup,	you	may
want	to	reinitialize	all	subscriptions	to	publications	following	a	failover,	or	you
may	elect	to	synchronize	immediately	with	a	Subscriber	that	has	the	latest	data.
Typically,	you	can	synchronize	immediately,	and	use	log	shipping	to	help
provide	continuous	synchronization	of	updatable	replicas	if	the	primary
Publication	server	fails.

Alternate	Synchronization	Partners
Similar	to	log	shipping,	using	alternate	synchronization	partners	during	merge
replication	is	an	option	that	supports	continuous	synchronization	in	the	event	of
a	failure	of	the	primary	Publisher.	Log	shipping	can	be	used	to	send	all	changes,
including	schema	changes,	user	modifications,	and	database	maintenance
activities,	to	a	warm	standby	Publisher.	Specifying	an	alternate	synchronization
partner	for	publications	defined	at	a	Publisher	provides	a	method	to	synchronize

data	changes	to	replicated	tables	with	servers	other	than	the	Publisher	at	which	a
subscription	originated.	Synchronizing	with	alternate	synchronization	partners
provides	the	ability	for	a	Subscriber	to	synchronize	data	even	if	the	primary
Publisher	is	unavailable.	For	more	information,	see	Alternate	Synchronization
Partners.

Common	Actions	Requiring	an	Updated	Backup
In	addition	to	regularly	scheduled	backups,	it	is	recommended	that	you	update
backups	of	the	publication,	distribution,	subscription,	msdb,	and	master
databases	after	making	modifications	to	your	replication	schema	or	topology.

Backup	the	publication	database	after:

Creating	new	publications.

Altering	any	publication	property	including	filtering.

Adding	articles	to	an	existing	publication.

Performing	a	Publication-wide	reinitialization	of	subscriptions.

Altering	any	published	table	using	a	replication	schema	change.

Performing	on-demand	script	replication.

Cleaning	up	merge	meta	data	(running	sp_mergecleanupmetadata).

Changing	any	article	property	including	changing	the	selected	article
resolver.

Dropping	any	publications.

Dropping	any	articles.	

Disabling	replication.

Backup	the	distribution	database	after:

Creating	or	modifying	replication	agent	profiles.

Modifying	replication	agent	profile	parameters.

Changing	the	replication	agent	properties	(including	schedules)	for	any
push	subscriptions.

Backup	the	subscription	database	after:

Changing	any	subscription	property.

Changing	the	priority	for	a	subscription	at	the	Publisher.

Dropping	any	subscriptions.

Disabling	replication.

Backup	the	msdb	system	database	after:

Enabling	or	disabling	replication.

Adding	or	dropping	a	distribution	database	(at	the	Distributor).

Enabling	or	disabling	a	database	for	publishing	(at	the	Publisher).

Creating	or	modifying	replication	agent	profiles	(at	the	Distributor).

Modifying	any	replication	agent	profile	parameters	(at	the	Distributor).

Changing	the	replication	agent	properties	(including	schedules)	for	any
push	subscriptions	(at	the	Distributor).

Changing	the	replication	agent	properties	(including	schedules)	for	any
pull	subscriptions	(at	the	Subscriber).

Backup	the	master	system	database	after:

Enabling	or	disabling	replication.

Adding	or	dropping	a	distribution	database	(at	the	Distributor).

Enabling	or	disabling	a	database	for	publishing	(at	the	Publisher).

Adding	the	first	or	dropping	the	last	publication	in	any	database	(at	the
Publisher).

Adding	the	first	or	dropping	the	last	subscription	in	any	database	(at	the
Subscriber).

Enabling	or	disabling	a	Publisher	at	a	Distribution	Publisher	(at	the
Publisher	and	Distributor).

Enabling	or	disabling	a	Subscriber	at	a	Distribution	Publisher	(at	the
Subscriber	and	Distributor).

Replication

Restoring	Backups	of	Replicated	Databases	to	the
Same	Server	and	Database
When	you	create	a	backup	of	a	database,	Microsoft®	SQL	Server™	2000	makes
a	copy	of	all	user	tables	and	system	tables	(including	sysobjects)	in	the	current
database.	It	also	makes	a	complete	copy	of	the	log	file(s)	for	the	current
database,	including	everything	past	the	last	log	read	transaction.

When	you	restore	a	database	to	the	same	server	and	database	from	which	it	was
backed	up,	SQL	Server	2000	does	a	full	restore	of	the	database	and	log.	SQL
Server	then	reads	the	master.dbo.sysdatabases.category	column	for	the
restored	database	to	determine	if	any	replication	settings	stored	in	the	target
database	should	be	preserved.

Publication	Databases
For	both	transactional	and	merge	publication	databases,	replication	is	preserved
if	the	sysdatabases.category	column	is	set	to	indicate	the	database	is	enabled
for	publishing.	For	transactional	and	snapshot	publishing	databases,	the	category
bit	is	set	to	1.	For	merge	publishing	databases,	the	category	bit	is	set	to	4.

In	most	cases,	restoring	a	backup	to	the	same	server	and	database	from	which	it
was	created	will	preserve	your	replication	settings.	If	the	failure	you	are
recovering	from	required	you	to	completely	re-create	the	database	you	are
restoring	into,	run	sp_replicationdboption	or	enable	the	database	for
transactional	and	merge	publishing	before	restoring	your	backup.

CAUTION		If	you	do	not	run	sp_replicationdboption,	your	replication	settings
will	be	lost	during	the	restore	operation.

Distribution	Databases
A	single	Distributor	can	store	many	distribution	databases:	up	to	one	per
Publisher	served	by	the	Distributor.	It	is	important	that	when	a	publishing
database	is	backed	up,	a	coordinated	backup	of	its	associated	distribution
database	is	created.	A	coordinated	restore	of	both	databases	is	often	required	to
preserve	transactional	integrity	in	your	replication	scenario.	You	may	want	to

consider	including	a	coordinated	backup	and	restore	of	your	replication	working
directory	associated	with	the	publishing	database.	This	can	reduce	the	amount	of
time	required	to	resynchronize	Subscribers	in	snapshot	and	transactional
replication	scenarios.

Similar	to	publishing	databases,	distribution	databases	cannot	be	restored	to	any
location.	Because	of	several	database	and	server	name	dependencies	among
replication	Publishers,	Distributors,	and	Subscribers,	you	must	restore	to	the
same	server	and	database	you	created	the	backup	from	to	ensure	proper
resumption	of	replicated	data	flow.	You	should	restore	a	distribution	database
only	when	you	are	restoring	a	publishing	database,	and	always	to	the	same
server	and	database.	After	restoring	the	distribution	database,	review	the
replication	agent	profiles	to	confirm	they	are	set	as	required	by	the	application.

Subscription	Databases
For	transactional	replication,	subscription	databases	contain	the	table
MSreplication_subscriptions,	which	stores	data	indicating	the	last	transaction
received	at	the	Subscriber.	This	table	is	included	automatically	when	a
subscribing	database	is	backed	up.

After	a	restore	or	attach	of	a	transactional	subscription	database,	you	should	run
sp_vupgrade_subscription_tables	to	ensure	that	all	required	objects	are	created
and	are	the	correct	version.	If	you	do	not	run
sp_vupgrade_subscription_tables,	objects	necessary	for	replication	may	not
exist	in	the	subscription	database.

Merge	subscription	databases	are	internally	tracked	as	a	type	of	publishing
database	as	well.	For	this	reason,	the	same	considerations	taken	when	planning
for	backup	and	restore	of	merge	publishing	databases	should	also	be	applied
when	working	with	merge	subscribing	databases.

See	Also

MSreplication_subscriptions

sp_replicationdboption

sysdatabases

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

sysobjects

JavaScript:hhobj_4.Click()

Replication

Restoring	Backups	of	Replicated	Databases	to	a
Different	Server	or	Database
When	you	restore	a	backup	of	a	replicated	database	to	a	server	or	database	other
than	the	one	on	which	it	was	created,	your	replication	settings	cannot	be
preserved.	For	publishing	databases	and	merge	subscribing	databases,	a	full
restore	of	the	database	and	logs	is	followed	by	an	automatic	removal	of
replication	meta	data	from	the	database	when	the	database	or	server	you	restore
to	differs	from	the	one	on	which	the	backup	was	created.	If	necessary,	you	can
use	this	approach	to	recover	your	data	to	another	server	or	database	and	then	set
up	a	new	replication	topology	including	the	restored	database.

	Replication Overview
	Introducing Replication
	Replication Model
	Introducing the Types of Replication
	Introducing Replication Options
	Typical Uses of Replication
	Reporting, Decision Support, and Data Warehousing Applications
	Online/Offline Applications
	Web-Based Applications
	Keeping Data Close to Users

	How Replication Works
	Methods of Implementation
	Agents and Monitors

	Planning for Replication
	Distributed Update Factors
	Evaluating the Replication Environment
	Business Objectives and Requirements
	Network Considerations
	Security Considerations
	Data Needs and Characteristics
	Planning for Application Development

	Planning for Each Type of Replication
	Planning for Snapshot Replication
	Planning for Transactional Replication
	Planning for Merge Replication

	Planning for Replication Options
	Merge Replication or Updatable Subscriptions
	Designing a Replication Topology
	Physical Replication Models
	Central Publisher
	Central Publisher with Remote Distributor
	Republisher
	Central Subscriber

	Types of Replication
	Snapshot Replication
	How Snapshot Replication Works

	Transactional Replication
	How Transactional Replication Works

	Merge Replication
	How Merge Replication Works
	Merge Replication Conflict Detection and Resolution
	Row-Level Tracking and Column-Level Tracking
	Subscriber Types and Conflicts
	Default Resolver and Custom Resolvers
	COM Custom Resolvers
	Specifying a Custom Resolver

	Interactive Resolver
	Custom Stored Procedure Conflict Resolver
	Other Microsoft Resolvers
	Microsoft Resolver Descriptions

	Choosing a Resolver

	Replication Tools
	Replication and SQL Server Enterprise Manager
	Replication Wizards
	Replication Properties
	Replication Icons

	Replication Programming Interfaces
	Programming Replication with ActiveX Controls
	Programming Replication with SQL-DMO
	Programming Replication with the Replication Distributor Interface

	Transact-SQL System Stored Procedures
	Windows Synchronization Manager
	Active Directory Services

	Implementing Replication
	Configuring Replication
	Publishers, Distributors, and Subscribers
	Disabling Publishing and Distribution

	Publishing Data and Database Objects
	Publishing Stored Procedure Execution
	Using Custom Stored Procedures in Articles

	Subscribing to Publications
	Push Subscriptions
	Pull Subscriptions
	Anonymous Subscriptions

	Applying the Initial Snapshot
	Generating the Initial Snapshot
	Alternate Snapshot Locations
	Compressed Snapshot Files
	Exploring Snapshots
	Transferring Snapshots
	Attachable Subscription Databases
	Configuring a Publication to Allow Copying
	Copying a Subscription Database
	Attaching a Subscription Database
	Attaching Databases with Named Subscriptions
	Attaching Databases with Anonymous Subscriptions

	Improving Performance While Generating and Applying Snapshots
	Executing Scripts Before and After the Snapshot is Applied
	Reinitializing Subscriptions

	Synchronizing Data
	Scripting Replication
	Schema Changes on Publication Databases
	Implementing Replication Over the Internet
	Publishing Data Over the Internet Using VPN
	Publishing Data Over the Internet Using Microsoft Proxy Server
	Publishing Data Over the Internet Using TCP/IP and FTP
	Configuring a Publisher or Distributor to Listen on TCP/IP
	Configuring a Publication to Allow Subscribers to Retrieve Snapshots Using FTP
	Configuring a Subscription to Use FTP to Retrieve a Snapshot

	Replication Between Different Versions of SQL Server
	SQL Server 7.0 Publisher/Distributor to SQL Server 6.5 Subscriber
	SQL Server 7.0 Publisher/Distributor to SQL Server 6.0 Subscriber
	SQL 6.5 Publisher/Distributor to SQL Server 7.0 Subscriber
	SQL Server 6.5 Publisher to SQL Server 7.0 Distributor

	Replication with SQL Server 2000 Windows CE Edition

	Replication Options
	Filtering Published Data
	Row Filters
	Column Filters
	Dynamic Filters
	Dynamic Snapshots
	Validate Subscriber Information

	Join Filters
	User-Defined Functions and Static Filters
	User-Defined Functions and Dynamic Filters

	Updatable Subscriptions
	Immediate Updating
	How Immediate Updating Works
	Immediate Updating Components
	Immediate Updating Considerations

	Queued Updating
	How Queued Updating Works
	Queued Updating Components
	Queued Updating Considerations
	Queued Updating Conflict Detection and Resolution
	Queued Updating and Identity Ranges

	Immediate Updating with Queued Updating as a Failover
	Transforming Published Data
	How Transforming Published Data Works
	Creating a Transformable Subscription Using Replication Wizards
	Using Transformable Subscriptions to Create Custom Data Partitions
	Defining a Vertical Partition
	Defining a Horizontal Partition

	Using Distributed Agents to Create Efficient Custom Partitions
	Using Transformable Subscriptions with Data Transformations
	DTS Package Details
	Limitations and Considerations

	Alternate Synchronization Partners
	How Alternate Synchronization Partners Works

	Optimizing Synchronization

	Replication Data Considerations
	Using IDENTITY Values with Replication
	Managing Identity Values
	Identity Ranges with Immediate Updating and Queued Updating

	Managing Replicated timestamp Data
	Using NOT FOR REPLICATION

	Administering and Monitoring Replication
	Tools for Administering and Monitoring Replication
	Replication Monitor
	Replication Agent Utilities
	ActiveX Controls for Replication
	Windows NT Performance Monitor and Windows 2000 System Monitor
	Setting Agent Parameters
	Agent Profiles

	Replication Agents
	SQL Server Agent
	Snapshot Agents
	Snapshot Agent Profile

	Distribution Agents
	Distribution Agent Profile

	Log Reader Agents
	Log Reader Agent Profile

	Queue Reader Agents
	Merge Agents
	Merge Agent Profile

	Miscellaneous Agents
	Viewing Agent History
	Handling Agent Errors
	Remote Agent Activation

	Replication Alerts
	Automating a Response to an Alert
	Predefined Response Jobs

	Subscription Deactivation and Expiration
	Validating Replicated Data

	Replication and Heterogeneous Data Sources
	Heterogeneous Subscribers
	Access Subscribers
	Oracle Subscribers
	IBM DB2/AS400 Subscribers
	IBM DB2/AS400 Data Type Definitions

	IBM DB2/MVS Subscribers
	Other Heterogeneous Subscribers
	Implementing Merge Replication to Access Subscribers
	Data Type Mapping to Jet-SQL 4.0 for Merge Replication

	Heterogeneous Publishers

	Replication Security
	Role Requirements
	Connecting to the Distributor
	Snapshot Folder Security
	Publication Access Lists
	Agent Login Security
	Security and Replication Options
	Security and Replication Over the Internet

	Enhancing Replication Performance
	Enhancing Snapshot Replication Performance
	Enhancing Snapshot and Transactional Replication Performance
	Enhancing Transactional Replication Performance
	Enhancing Merge Replication Performance

	Backing Up and Restoring Replication Databases
	Strategies for Backing Up and Restoring Snapshot Replication
	Strategies for Backing Up and Restoring Transactional Replication
	Transactional Replication and Log Shipping

	Strategies for Backing Up and Restoring Merge Replication
	Restoring Backups of Replicated Databases to the Same Server and Database
	Restoring Backups of Replicated Databases to a Different Server or Database

