
Replication	Programming

Getting	Started	with	Replication	Programming
Replication	programming	contains	the	following	sections.

Topic Description
Introducing	Replication
Programming

Describes	the	benefits	and	planning
required	to	program	replication.

Developing	Replication	Applications
Using	ActiveX	Controls

Describes	the	Microsoft®	ActiveX®
controls,	with	code	samples	for	each
control	showing	various	pieces	of
functionality.

Replication	ActiveX	Control
Reference

Describes	the	objects,	collections,
properties,	methods,	events,	and
constants	available	to	the	ActiveX
controls.

Developing	Replication	Merge
Conflict	Resolvers	Through	a
Custom	Resolver

Provides	an	overview	of	the	methods
available	for	creating	a	merge
conflict	resolver

Programming	Replication	from
Heterogeneous	Data	Sources

Provides	an	overview	of	the	methods
available	for	making	a	heterogeneous
data	source	a	Publisher.

Replication	Distributor	Interface
Reference

Describes	the	objects,	properties,
methods,	and	interface	structures
available	for	the	Replication
Distributor	Interface.

Replication	Programming	Samples Describes	the	replication	samples
that	are	included	with	Microsoft	SQL
Server™	2000.

For	more	information	about	replication	applications	that	use	SQL-DMO,	see
Developing	SQL-DMO	Applications	and	SQL-DMO	Reference.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Replication	Programming

Introducing	Replication	Programming
As	an	alternative	to	using	SQL	Server	Enterprise	Manager,	you	can	use	the
following	programming	interfaces	to	implement,	administer,	and	monitor
replication:

Microsoft®	ActiveX®	controls,	when	used	within	custom	applications
that	employ	Microsoft	Visual	Basic®	or	Microsoft	Visual	C++®,
provide	programmable	controls	for	administering	and	controlling	the
Snapshot	Agent,	the	Distribution	Agent,	and	the	Merge	Agent.	These
controls	can	be	used	to	program	activities	needed	to	operate	replication.
Using	ActiveX	replication	controls,	you	can	build	custom	applications
to	configure	and	administer	replication.	Benefits	include:

Installing	a	smaller	portion	of	Microsoft	SQL	Server™	2000.
Because	the	client	has	no	dependency	on	the	full	SQL	Server
2000	installation,	the	user	only	needs	to	install	Microsoft	SQL
Server	2000	Desktop	Engine.	

Controlling	when	replication	activity	occurs.	For	example,	for
an	application	that	provides	online	and	offline	capabilities,	you
may	want	to	expose	a	Synchronize	button.	That	button	can	be
associated	with	the	merge	ActiveX	control	so	that	whenever
users	click	the	button,	the	merge	ActiveX	control	connects	to
the	Publisher	and	activates	the	Merge	Agent	for	the	specified
publication,	which	then	merges	and	synchronizes	the	data.	For
more	information,	see	Programming	Replication	with	ActiveX
Controls.

SQL	Distributed	Management	Objects	(SQL-DMO)	allow	you	to	create
custom	applications	using	Visual	Basic	or	C++,	which	allows	you	to
configure,	implement,	or	maintain	your	replication	topology.	SQL-
DMO	can	be	used	to	program	replication	administration	such	as
configuring	distribution	and	creating	subscriptions.	The	SQL-DMO
objects	can	be	used	in	programming	languages	such	as	Visual	C++	or
Visual	Basic.	

JavaScript:hhobj_1.Click()

The	Replication	Distributor	Interface	allows	you	to	replicate	data	from
heterogeneous	data	sources	such	as	Microsoft	Access	or	Oracle.	The
Replication	Distributor	Interface	is	an	OLE	DB	service	provider	that
allows	heterogeneous	data	sources	to	publish	data	to	SQL	Server
Subscribers	using	snapshot	replication	or	read-only	transactional
replication.	It	can	be	used	to	develop	a	custom	replication	application
based	on	proprietary	data	sources.	For	more	information,	see
Programming	Replication	from	Heterogeneous	Data	Sources.

Transact-SQL	system	stored	procedures	allow	you	automate	some
replication	tasks,	configure	replication,	and	implement	subscriptions	on
multiple	servers.	Stored	procedures	are	frequently	used	in	scripts	that
can	be	run	when	configuring	replication	on	multiple	servers	(for
example,	creating	subscriptions	to	a	publication	on	multiple
Subscribers).	In	most	cases,	you	are	better	served	by	using	the
programming	interfaces	SQL-DMO	and	ActiveX	replication	controls
for	programming	replication	rather	than	writing	direct	calls	to	the
system	stored	procedures.

Replication	Programming

Benefits	of	Programming	Replication
Programming	replication	allows	you	to	create	custom	applications	with	which
you	can	configure	and	maintain	a	replication	topology.	Some	benefits	of	using
custom	applications	include:

Making	it	easier	for	mobile	or	occasionally	connected	users	to	modify
data	offline	and	propagate	those	changes	to	other	locations	when	they
reconnect	to	the	network.	The	users	can	enter	their	changes	to	the	data,
and	then	when	connected	to	the	network,	use	an	application	to	upload
and	download	data	changes.	The	users	do	not	need	to	have	knowledge
of	Microsoft®	SQL	Server™	or	replication	to	perform	these	actions.

Allowing	you	to	program	heterogeneous	data	sources,	such	as
Publishers	of	data,	to	SQL	Server	Subscribers.	The	Replication
Distributor	Interface	can	be	programmed	to	support	heterogeneous
Publishers	for	snapshot	replication	and	transactional	replication.

Allowing	you	to	save	the	initial	snapshot	on	removable	media	(such	as	a
CD-ROM)	and	apply	the	snapshot	at	the	Subscriber	from	the	media,
rather	than	applying	the	initial	snapshot	over	a	slow	link.

Simplifying	replication	by	separating	functionality	into	smaller,
reusable	pieces	that	manage	and	administer	the	replication	process
easily	from	a	central	location.

Allowing	heterogeneous	applications	to	inherit	replication	features	and
act	as	Publishers	so	SQL	Server	Subscribers	can	gain	access	to	data	that
is	stored	on	a	variety	of	data	sources,	including	legacy	data	sources	and
proprietary	data	sources.

Storing	replication	SQL	statements,	scripts,	and	.bcp	files	(in	addition	to
transactions),	and	forwarding	them	to	the	Subscriber.

Writing	custom	applications	to	resolve	merge	conflicts	that	can	occur
when	the	same	data	is	modified	at	multiple	places	allow	the	developer
to	implement	specific	data	or	business-decision	rules	to	resolve	the
conflict.	Custom	resolvers	can	be	built	either	as	stored	procedures	or	as
COM	objects	written	in	languages	such	as	Microsoft	Visual	C++®	or
Microsoft	Visual	Basic®.	By	using	merge	replication	custom	conflict
resolvers,	you	can	resolve	unique	business	conflicts	by	writing	scripts
that	can	handle	any	logic	required	to	resolve	complex	conflict	scenarios.
For	more	information,	see	Merge	Replication	Conflict	Detection	and
Resolution.

JavaScript:hhobj_1.Click()

Replication	Programming

Planning	for	Replication	Programming
When	planning	to	program	an	application	used	in	replication,	decide	what
replication	topology	you	will	use,	which	replication	actions	need	to	be
performed	programmatically,	and	which	actions	will	be	performed	using	other
Microsoft®	SQL	Server™	2000	tools.

For	the	actions	that	are	being	controlled	programmatically,	determine	what
functionality	in	your	business	application	will	be	performed	only	one	time	(such
as	creating	the	databases,	configuring	a	Publisher,	or	creating	a	publication),	and
what	functionality	will	be	performed	repeatedly	(such	as	creating	subscriptions,
synchronizing	data	between	the	Publisher	and	Subscribers,	and	validating
replicated	data).

Example

See	Also

Planning	for	Application	Development

JavaScript:hhobj_1.Click()

Replication	Programming

Developing	Replication	Applications	Using	ActiveX
Controls
Microsoft®	SQL	Server™	2000	provides	Microsoft	ActiveX®	controls	that
allow	custom	applications	to	embed	replication	functionality.	These	controls
support	synchronization	and	limited	administration	of	push,	pull,	and
anonymous	subscriptions.	In	addition,	these	controls	can	be	programmed	to	add,
copy,	and	delete	both	pull	and	anonymous	subscriptions;	create	or	attach
subscription	databases;	and	create	new	subscriptions	to	be	synchronized.	The
activity	of	these	controls	can	be	monitored	using	Replication	Monitor	in	SQL
Server	Enterprise	Manager.

Software	developers	can	use	ActiveX	replication	controls	like	any	standard
built-in	control.	They	have	been	implemented	as	in-process	components	and	do
not	have	visible	user	interfaces.	The	ActiveX	replication	controls	provided	are:

SQL	Snapshot	control	

SQL	Distribution	control

SQL	Merge	control

These	controls	are	comparable	to	the	replication	agents	of	the	same	name.	The
SQL	Snapshot	control	has	functions	similar	to	the	Snapshot	Agent,	the	SQL
Distribution	control	has	functions	similar	to	the	Distribution	Agent,	and	the	SQL
Merge	control	has	functions	similar	to	the	Merge	Agent.

The	Microsoft	SQL	Server	CD-ROM	ships	with	some	ActiveX	replication
control	samples.	For	more	information,	see	Replication	ActiveX	Control
Samples.

See	Also

Replication	ActiveX	Control	Reference

Replication	Programming

Requirements	for	Using	Replication	ActiveX	Controls
in	Development	Environments
This	section	explains	how	to	use	the	SQL	Distribution	control,	SQL	Merge
control,	and	SQL	Snapshot	control	in	Microsoft®	Visual	Basic®	and	Microsoft
Visual	C++®	development	environments.

Microsoft	Visual	Basic
To	use	one	or	more	Microsoft	ActiveX®	replication	controls	in	a	Microsoft
Visual	Basic	program:	on	the	Project/References	menu	in	the	Visual	Basic
Development	Environment,	in	the	References	dialog	box,	select	the	.dll
references	for	the	controls	you	plan	to	use.

Component Reference Library
SQL	Distribution
Control

Microsoft	SQL	Distribution	Control
8.0

sqldistx.dll

SQL	Merge	Control Microsoft	SQL	Merge	Control	8.0 sqlmergx.dll
SQL	Snapshot	Control Microsoft	SQL	Snapshot	Control	8.0 sqlinitx.dll
Replication	Errors Microsoft	SQL	Replication	Errors

8.0
replerrx.dll

If	Microsoft	SQL	Server™	2000	was	installed	to	the	default	locations,	these
component	.dlls	are	located	in	C:\Program	Files\Microsoft	SQL
Server\80\COM\.

Microsoft	Visual	C++
To	use	the	one	or	more	replication	controls	in	a	Microsoft	Visual	C++	program,
include	the	files	from	the	Include	Files	column	of	the	following	table	in	the
appropriate	source	files	of	your	project.	These	files	are	installed	on	your
computer	only	if	Headers	and	Libraries	was	selected	in	Development	Tools
during	a	custom	installation	of	the	SQL	Server	2000	client	tools.

Reference	the	files	from	the	Libraries	column	of	the	table	in	your	project	or
NMAKE	file.	These	files	are	installed	automatically	during	a	typical	installation

of	the	SQL	Server	2000	client	tools.

Component Include	Files Libraries
SQL	Distribution	Control sqldistx.h

repldstx.c
sqldistx.dll

SQL	Merge	Control sqlmergx.h
replmrgx.c

sqlmergx.dll

SQL	Snapshot	Control sqlinitx.h
replinix.c

sqlinitx.dll

Replication	Errors replerrx.h replerrx.dll

If	SQL	Server	2000	was	installed	to	the	default	locations,	the	files	in	the	Include
Files	column	are	located	in	C:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Include\.	The	files	in	the	Libraries	column	are
located	in	C:\Program	Files\Microsoft	SQL	Server\80\COM\.

After	the	controls	are	referenced,	they	can	be	included	in	the	Components
toolbar;	however,	these	controls	are	not	user	interface	controls.	Drawing	the
controls	on	the	form	will	not	instantiate	them.	The	controls	need	to	be
instantiated	with	the	NEW	keyword.	In	addition,	a	variable	of	the	ActiveX
object's	class	can	be	declared	using	the	WithEvents	keyword.	This	enables	the
program	to	receive	callbacks	from	the	agents,	and	the	application	can	cancel	the
ActiveX	object	in	this	callback	function.	The	callback	is	also	available	with	the
ReplErr	object,	although	it	is	a	notify	callback	and	not	a	status	callback.

See	Also

Replication	ActiveX	Control	Reference

Replication	Programming

Requirements	for	Deploying	Replication	ActiveX
Controls
When	deploying	the	Microsoft®	ActiveX®	replication	controls	independently	of
Microsoft	SQL	Server™	2000,	you	must	include	additional	files	in	the
installation	kit	that	you	use	to	distribute	your	application.	If	you	deploy	your
application	using	these	ActiveX	replication	controls	on	a	computer	where	SQL
Server	2000	Desktop	Engine	or	SQL	Server	2000	client	software	is	also
installed,	these	files	will	already	be	present.

If	you	use	Microsoft	Visual	Studio®	and	the	Deployment	Wizard	to	prepare	your
installation	kit,	the	wizard	will	recognize	that	the	files	from	the	Referenced
Libraries	column	in	the	following	table	are	needed,	and	will	include	them	in	the
installation	kit.	The	wizard	will	also	indicate	that	dependency	information	for
these	files	is	not	available.	Include	the	files	from	the	Dependent	Libraries
column	of	the	table	in	your	installation	kit	(click	the	Add	button	on	the	Included
Files	page	of	the	wizard).	The	paths	shown	in	this	table	assume	SQL	Server
2000	was	installed	to	the	default	locations.

Replication
Control

Referenced
Libraries Dependent	Libraries

SQL
Distribution
Control

Sqldistx.dll
Replerrx.dll C:\Program	Files\Microsoft	SQL

Server\80\COM\Rdistcom.dll

C:\Program	Files\Microsoft	SQL
Server\MSSQL\Binn\Sqlrepss.dll

$(WinSysPath)\Sqlwoa.dll

SQL	Merge
Control

Sqlmergx.dll
Replerrx.dll C:\Program	Files\Microsoft	SQL

Server\80\COM\Replprov.dll

C:\Program	Files\Microsoft	SQL

Server\80\COM\Replrec.dll

$(WinSysPath)\Sqlwoa.dll

SQL	Snapshot
Control

Sqlinitx.dll
Replerrx.dll C:\Program	Files\Microsoft	SQL

Server\80\COM\Rinitcom.dll

$(WinSysPath)\Sqlwoa.dll

See	Also

Replication	ActiveX	Control	Reference

Replication	Programming

Programming	the	SQL	Snapshot	ActiveX	Control
The	SQL	Snapshot	control	is	implemented	as	a	Microsoft®	ActiveX®	in-
process	component.	It	provides	a	way	to	create	snapshots,	and	is	used	by	all
types	of	replication.	The	control	is	comparable	to	the	Snapshot	Agent.	Its
primary	class,	the	SQLSnapshot	object,	creates	a	snapshot	of	the	specified
publication	on	the	specified	Distributor.

Dynamic	snapshots	are	supported.	There	are	properties	to	provide	values	for	the
HOST_NAME()	and	SUSER_SNAME()	functions	when	they	appear	in	the
filter	criteria	of	dynamic	publications,	and	to	specify	the	location	where	the
dynamic	snapshots	are	written.

Instantiating	the	SQL	Snapshot	Control
This	example	is	a	Microsoft®	Visual	Basic®	Sub	procedure	that	creates	a
snapshot	from	a	publication	named	FullSnapPublication	using	the	database
UE_PublisherDB	on	Publisher	UE_PUBLISHER	and	saves	it	on	Distributor
UE_DISTRIBUTOR.	Windows	Authentication	is	used	for	both	the	Publisher
and	Distributor	connections.	The	example	shows	the	snapshot	code	for	a
snapshot	publication.	The	code	for	a	merge	publication	requires	the
ReplicationType	property	to	be	set.

Sub	Main()
				Dim	oSnapCtl								As	SQLINITXLib.SQLSnapshot
				
				Set	oSnapCtl	=	New	SQLINITXLib.SQLSnapshot
				oSnapCtl.Publisher	=	"UE_PUBLISHER"
				oSnapCtl.PublisherDatabase	=	"UE_PublisherDB"
				oSnapCtl.PublisherSecurityMode	=	NT_AUTHENTICATION
				oSnapCtl.Publication	=	"FullSnapPublication"
				oSnapCtl.Distributor	=	"UE_DISTRIBUTOR"
				oSnapCtl.DistributorSecurityMode	=	NT_AUTHENTICATION
				oSnapCtl.Initialize
				oSnapCtl.Run

				oSnapCtl.Terminate
End	Sub

Note		Include	the	call	to	the	Terminate	method	to	close	connections	and	release
allocated	memory.

See	Also

SQLSnapshot	Object

Replication	Programming

Programming	the	SQL	Distribution	ActiveX	Control
The	SQL	Distribution	control	is	implemented	as	a	Microsoft®	ActiveX®	in-
process	component.	It	provides	a	way	to	move	schema	and	data	to	Subscribers
for	snapshot	replication	and	to	control	the	synchronization	of	subscriptions	for
transactional	replication.	The	control	is	comparable	to	the	Distribution	Agent.	Its
primary	class,	the	SQLDistribution	object,	includes	the	ability	to:

Add,	drop,	copy,	and	register	subscriptions	for	synchronization	using
Windows	Synchronization	Manager.	For	more	information,	see
Common	SQL	Distribution	Control	and	SQL	Merge	Control
Functionality.

Specify	an	alternate	snapshot	folder	from	which	the	initial	snapshot	for
a	subscription	can	be	applied.	

Specify	a	working	directory	to	which	snapshot	files	are	copied	when
File	Transfer	Protocol	(FTP)	is	used	to	retrieve	the	initial	snapshot.	

Generate	a	specially	formatted	subscription	file	(usually	an	.msf)	in	a
specified	location.	These	files	can	be	attached	to	create	a	synchronized
subscription	that	is	registered	at	the	Publisher	as	part	of	an	attachable
subscription	database.

Specify	a	Data	Transformation	Services	(DTS)	package	that	transforms
command	rowsets	before	applying	them	to	a	Subscriber.	

Set	the	Subscriber	options	to	immediate	updating	or	queued	updating
for	changes	made	at	the	Subscriber.

Synchronize	push,	pull,	or	anonymous	subscriptions	in	a	transactional
publication.

For	more	information,	see	SQLDistribution	Object.

Instantiating	the	SQL	Distribution	Control
This	code	segment	demonstrates	how	a	Microsoft	Visual	Basic®	program
configures	the	SQLDistribution	object	to	synchronize	data	with	an	anonymous
SQL	Server	Subscriber.

In	the	example,	Distributor	properties	are	not	set,	so	the	Publisher	is	also	the
Distributor.	The	SubscriberDatabase	must	already	exist	when	this	code	is
executed.	Replace	the	fields	in	italic	with	appropriate	values.

'SQLDistribution	control	declaration.
Private	mobjDistr				As	SQLDISTXLib.SQLDistribution
.	.	.

Set	mobjDistr	=	New	SQLDISTXLib.SQLDistribution

With	mobjDistr
				'Set	up	the	Publisher
				.Publisher	=	"PublisherServer"
				.PublisherDatabase	=	"PublisherDatabase"
				.Publication	=	"PublicationName"
				.PublisherSecurityMode	=	NT_AUTHENTICATION

				'Set	up	the	Subscriber.
				.Subscriber	=	"SubscriberServer"
				.SubscriberDatabase	=	"SubscriberDatabase"
				.SubscriberDatasourceType	=	SQL_SERVER
				.SubscriberSecurityMode	=	NT_AUTHENTICATION

				'Set	up	the	Subscription.
				.SubscriptionType	=	ANONYMOUS
				.SynchronizationType	=	AUTOMATIC

				'Synchronize	the	data.
				.Initialize
				.Run
				.Terminate
End	With

Note		When	adding	an	anonymous	subscription,	you	do	not	have	to	call	the
AddSubscription	method	of	the	SQLDistribution	object.	If	the	anonymous
subscription	does	not	exist,	it	will	be	added	automatically	when	the	first
synchronization	is	performed,	as	in	the	previous	sample.

When	using	a	merge	publication,	the	same	example	can	be	used	for
programming	anonymous	subscriptions	with	the	SQLMerge	object.	Replace
references	to	the	SQLDistribution	object	with	references	to	the	SQLMerge
object.

Creating	Anonymous	Internet	Subscriptions	Sample
ActiveX	replication	controls	can	be	programmed	to	synchronize	data	over	the
Internet.	After	the	Publisher	and	Distributor	are	configured	for	publishing	over
the	Internet	and	a	publication	enabled	for	anonymous	subscriptions	is	created,	an
application	using	an	ActiveX	replication	control	can	synchronize	with	the
publication	data.	FTP	is	used	for	the	snapshot	download,	both	during	the	initial
application	and	when	the	subscription	is	re-initialized.	All	other
synchronizations	use	SQL	packets	over	TCP/IP	to	transfer	data	between
Publisher	and	Subscriber.

Examples

Distribution	Control	Using	IP	Address
This	code	segment	demonstrates	how	a	Visual	Basic	program	configures	the
SQL	Distribution	control	to	create	a	Subscriber	database	and	synchronize	data
with	an	anonymous	SQL	Server	Subscriber	over	the	Internet.	The	Distributor
and	Publisher	are	reached	using	an	IP	address.

In	this	example,	no	distributor	properties	are	set,	so	the	Publisher	is	also	used	as
the	Distributor.	Replace	the	fields	in	italic	with	appropriate	values.	The	port

numbers	shown	are	the	numbers	that	are	typically	used,	but	they	may	also	need
to	be	changed.'SQLDistribution	control	declaration.

Private	mobjDistr				As	SQLDISTXLib.SQLDistribution
.	.	.

Set	mobjDistr	=	New	SQLDISTXLib.SQLDistribution

With	mobjDistr
				'Set	up	the	Publisher.
				.Publisher	=	"PublisherServer"
				.PublisherDatabase	=	"PublisherDatabase"
				.Publication	=	"PublicationName"
				.PublisherSecurityMode	=	DB_AUTHENTICATION
				.PublisherLogin	=	"PublisherUserID"
				.PublisherPassword	=	"PublisherPassword"
				.PublisherAddress	=	"157.56.17.27,1433"
				.PublisherNetwork	=	TCPIP_SOCKETS

				'Set	up	the	Subscriber.
				.Subscriber	=	"SubscriberServer"
				.SubscriberDatabase	=	"SubscriberDatabase"
				.SubscriberDatasourceType	=	SQL_SERVER
				.SubscriberSecurityMode	=	NT_AUTHENTICATION

				'Set	up	the	Subscription.
				.SubscriptionType	=	ANONYMOUS
				.SynchronizationType	=	AUTOMATIC

				'Synchronize	subscription.
				.Initialize
				.Run
				.Terminate
End	With

When	using	a	merge	publication,	the	same	example	can	be	used	for
programming	anonymous	subscriptions	with	the	SQL	Merge	control.	Replace
references	to	the	SQLDistribution	object	with	references	to	the	SQLMerge
object.

Creating	Pull	Subscriptions	to	an	ODBC	Data	Source	Sample
The	SQL	Distribution	control	can	be	programmed	to	synchronize	Publishers
with	ODBC	data	sources.	This	feature	is	one	method	by	which	applications	can
synchronize	subscriptions	to	heterogeneous	data	sources.

Before	using	the	SQL	Distribution	control,	an	ODBC	data	source	name	(DSN)
must	be	created	at	the	client	computer	on	which	the	application	hosting	the	SQL
Distribution	control	is	running.	If	a	pull	subscription	is	to	be	created,	the	ODBC
DSN	must	also	be	created	at	the	Distributor	if	it	is	a	different	computer	from	the
client.	The	DSN	at	the	Distributor	must	be	configured	as	a	Subscriber	(for
example,	by	using	the	sp_addsubscriber	stored	procedure).

This	code	segment	demonstrates	how	a	Visual	Basic	program	configures	the
SQL	Distribution	control	to	create	a	pull	subscription	and	synchronize	data	with
an	ODBC	Subscriber.	If	an	anonymous	subscription	is	used,	it	is	not	necessary	to
call	AddSubscription	or	to	create	the	DSN	at	the	Distributor.	Replace	the	fields
in	italic	with	appropriate	values.

'SQLDistribution	object	declaration.
Private	mobjDistr				As	SQLDISTXLib.SQLDistribution
.	.	.

'Configure	the	control	for	an	ODBC	subscription.
Set	mobjDistr	=	New	SQLDISTXLib.SQLDistribution

With	mobjDistr
				'Set	up	the	Publisher.
				.Publisher	=	"PublisherServer"
				.PublisherDatabase	=	"PublisherDatabase"
				.Publication	=	"PublicationName"
				.PublisherSecurityMode	=	NT_AUTHENTICATION

				'Set	up	the	Distributor.
				.Distributor	=	"DistributorServer"
				.DistributorSecurityMode	=	NT_AUTHENTICATION

				'Set	up	the	Subscriber.
				.Subscriber	=	"The_ODBC_DSN"
				.SubscriberDatasourceType	=	ODBC_DSN
				.SubscriberSecurityMode	=	DB_AUTHENTICATION

				'Subscriber	login	information	needed	only	if	the
				'	ODBC	DSN	does	not	contain	login	information.
				.SubscriberLogin	=	"SubscriberUserID"
				.SubscriberPassword	=	"SubscriberPassword"

				'Set	up	the	subscription.
				.SubscriptionName	=	"SubscriptionName"
				.SubscriptionType	=	PULL
				.SynchronizationType	=	AUTOMATIC

				'Create	and	synchronize	the	subscription.
				.AddSubscription	EXISTING_DATABASE,	NONE
				.Initialize
				.Run
				.Terminate
End	With

Creating	Pull	Transactional	Subscriptions	to	an	OLE	DB	Data
Source	Sample
You	can	program	the	SQL	Distribution	control	to	synchronize	data	with	OLE
DB	data	sources.	This	feature	is	one	method	by	which	applications	can
synchronize	subscriptions	to	heterogeneous	data	sources.

Before	running	the	control,	a	linked	server	to	the	OLE	DB	database	must	be
created	at	the	Distributor.	This	can	be	done	in	SQL	Server	Enterprise	Manager	or
by	using	the	sp_addlinkedserver	stored	procedure.	A	heterogeneous	Subscriber
using	the	linked	server	must	be	created	at	the	Publisher	(for	example,	by	using
the	sp_addsubscriber	stored	procedure).

SQL	Server	2000	does	not	support	anonymous	subscriptions	using
OLEDB_DATASOURCE	with	the	SubscriberDatasourceType	property.	You
can	create	OLE	DB	anonymous	subscriptions	to	instances	of	SQL	Server	by
setting	SubscriberDatasourceType	to	SQL_SERVER.

This	code	segment	demonstrates	how	a	Visual	Basic	program	can	configure	the
SQL	Distribution	control	to	create	a	pull	subscription	and	synchronize	data	with
an	OLE	DB	Subscriber.Replace	the	fields	in	italic	with	appropriate	values.

'Declare	the	SQLDistribution	object.
Private	mobjDistr				As	SQLDISTXLib.SQLDistribution
.	.	.

'Configure	the	control	for	an	OLE	DB	subscription.
Set	mobjDistr	=	New	SQLDISTXLib.SQLDistribution

With	mobjDistr
				'Set	up	the	Publisher.
				.Publisher	=	"PublisherServer"
				.PublisherDatabase	=	"PublisherDatabase"
				.Publication	=	"PublicationName"
				.PublisherSecurityMode	=	NT_AUTHENTICATION

				'Set	up	the	Subscriber.
				.Subscriber	=	"LinkedServerName"
				.SubscriberDatasourceType	=	OLEDB_DATASOURCE
				.SubscriberSecurityMode	=	DB_AUTHENTICATION

				'Subscriber	login	information	is	needed	only	if	the	OLE	DB
				'	linked	server	definition	does	not	include	login	information.

				.SubscriberLogin	=	"SubscriberUserID"
				.SubscriberPassword	=	"SubscriberPassword"

				'Set	up	the	subscription.
				.SubscriptionName	=	"SubscriptionName"
				.SubscriptionType	=	PULL
				.SynchronizationType	=	AUTOMATIC

				'Create	and	synchronize	the	subscription.
				.AddSubscription	EXISTING_DATABASE,	NONE
				.Initialize
				.Run
				.Terminate
End	With

See	Also

Replication	and	Heterogeneous	Data	Sources

sp_addlinkedserver

sp_addsubscriber

SubscriberDatasourceType	Property

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Replication	Programming

Programming	the	SQL	Merge	ActiveX	Control
The	SQL	Merge	control	is	implemented	as	a	Microsoft®	ActiveX®	in-process
component.	It	provides	a	way	to	synchronize	data	in	merge	subscriptions.	It	is
not	used	in	snapshot	replication	or	transactional	replication.	Its	primary	class,	the
SQLMerge	object,	provides	the	functionality	of	the	Merge	Agent	and	supports
synchronization	of	push,	pull,	or	anonymous	subscriptions	to	a	merge
publication.	It	also	includes	the	options	to:

Add,	drop,	copy,	and	register	subscriptions	for	synchronization	using
Windows	Synchronization	Manager.	For	more	information,	see
Common	SQL	Distribution	Control	and	SQL	Merge	Control
Functionality.

Apply	the	initial	snapshots	to	the	Subscriber.

Merge	incremental	changes	that	occurred	at	the	Publisher	or	Subscribers
after	the	initial	snapshot	was	created.

Reconcile	conflicts	according	to	the	rules	configured,	through	a	COM
component	custom	conflict	resolver,	or	interactively	by	setting	the
UseInteractiveResolver	property.

Specify	the	direction	of	the	synchronization	so	that	it	executes	only	the
upload	phase,	the	download	phase,	or	both	the	upload	and	download
phases.

Specify	an	alternate	snapshot	folder	from	which	the	snapshot	for	a
subscription	can	be	applied.	

Specify	a	client-side	working	folder	to	which	snapshot	files	can	be
copied	using	FTP.	

Copy	a	subscription	database	by	generating	a	specially	formatted
subscription	file	in	a	specified	location.	These	files	can	be	attached	to
create	a	synchronized	subscription,	registered	at	the	Publisher	as	part	of
an	attachable	subscription	database.

Synchronize	with	a	Publisher	other	than	the	one	at	which	its
subscription	originated.	This	alternate	synchronization	partner	must
contain	the	same	schema	and	data	set	as	the	original	Publisher.	

Attach	a	subscription	database	by	specifying	Subscriber-side	properties
only.	The	Publisher,	PublisherDatabase,	Distributor,	and
Publication	properties	do	not	need	to	be	set	while	adding	attachable
subscription	databases.

Instantiating	the	SQL	Merge	Control

The	SQL	Distribution	and	SQL	Merge	controls	can	be	used	to	create	a
subscription	database	and	a	pull	subscription,	as	well	as	synchronize	with	the
publication	data.

This	code	segment	demonstrates	how	a	Microsoft	Visual	Basic®	program	can
configure	the	SQLMerge	object	to	create	a	Subscriber	database	and	subscription
using	the	AddSubscription	method,	and	then	synchronizes	data	with	the	SQL
Server	Publisher.

In	the	example,	Microsoft	SQL	Server™	2000	generates	the	subscription	name.
Replace	the	fields	in	italic	with	appropriate	values.

'SQLMerge	control	declaration.
Private	mobjMerge				As	SQLMERGXLib.SQLMerge

Set	mobjMerge	=	New	SQLMERGXLib.SQLMerge

With	mobjMerge
				'Set	up	the	Publisher.
				.Publisher	=	"PublisherServer"

				.PublisherDatabase	=	"PublisherDatabase"
				.Publication	=	"PublicationName"
				.PublisherSecurityMode	=	NT_AUTHENTICATION

				'Set	up	the	Distributor.
				.Distributor	=	"DistributorServer"
				.DistributorSecurityMode	=	NT_AUTHENTICATION

				'Set	up	the	Subscriber.
				.Subscriber	=	"SubscriberServer"
				.SubscriberDatabase	=	"SubscriberDatabase"
				.SubscriberDatasourceType	=	SQL_SERVER
				.SubscriberSecurityMode	=	DB_AUTHENTICATION
				.SubscriberLogin	=	"SubscriberUserID"
				.SubscriberPassword	=	"SubscriberPassword"

				'Set	up	the	subscription.
				.SubscriptionType	=	PULL
				.SynchronizationType	=	AUTOMATIC

				'Create	the	database	and	subscription.
				.AddSubscription	CREATE_DATABASE,	NONE

				'Synchronize	the	subscription.
				.Initialize
				.Run
				.Terminate
End	With

Note		Subscriptions	other	than	anonymous	subscriptions	that	are	added	using	the
SQLDistribution	or	SQLMerge	objects	must	be	added	by	explicitly	calling	the
AddSubscription	method	before	attempting	to	initialize	and	synchronize	the
subscription	for	the	first	time.

Both	SQLDistribution	and	SQLMerge	objects	can	be	used	to	create	a
subscription	database	and	a	pull	subscription,	as	well	as	synchronize	with	the
publication	data.	When	using	a	transactional	publication,	the	previous	sample
code	can	be	used	for	creating	a	Subscriber	database	and	pull	subscriptions	with
the	SQLDistribution	control.	Replace	references	to	the	SQLMerge	object	with
references	to	the	SQLDistribution	object.	For	more	information	about	the
merge	object,	see	SQLMerge	Object.

Creating	Anonymous	Internet	Subscriptions	Sample
ActiveX	replication	controls	can	be	programmed	to	synchronize	data	over	the
Internet.	After	the	Publisher	and	Distributor	are	configured	for	publishing	over
the	Internet	and	a	publication	enabled	for	anonymous	subscriptions	is	created,	an
application	using	an	ActiveX	replication	control	can	synchronize	with	the
publication	data.	FTP	is	used	for	the	snapshot	download,	both	during	the	initial
application	and	when	the	subscription	is	re-initialized.	All	other
synchronizations	use	SQL	packets	over	TCP/IP	to	transfer	data	between
Publisher	and	Subscriber.

This	example	demonstrates	how	a	Visual	Basic	program	configures	the	SQL
Merge	Control	to	synchronize	data	for	an	anonymous	subscription	over	the
Internet.	The	Distributor	and	Publisher	are	reached	using	a	Uniform	Resource
Locator	(URL).

The	SubscriberDatabase	must	already	exist	when	this	code	is	executed.	Because
the	FTP	information	has	not	been	provided,	the	specification	of
FILETRANSFERFTP	for	the	FileTransferType	property	causes	the	control	to
request	the	FTP	information	from	the	Distributor.

A	handler	for	the	Status	event	is	included.	It	displays	the	most	recent	status
message	in	a	label.	Replace	the	fields	in	italic	with	appropriate	values.

'SQLMerge	control	declaration.
Private	WithEvents	mobjMerge				As	SQLMERGXLib.SQLMerge
.	.	.

Private	Sub	RunReplMerge()
				

				'Create	SQLMerge	control.
				Set	mobjMerge	=	New	SQLMERGXLib.SQLMerge

				With	mobjMerge
								'Set	up	the	Publisher.
								.Publisher	=	"PublisherServer"
								.PublisherAddress	=	"publisher.company.com"
								.PublisherNetwork	=	TCPIP_SOCKETS
								.PublisherDatabase	=	"PublisherDatabase"
								.Publication	=	"PublicationName"
								.PublisherSecurityMode	=	DB_AUTHENTICATION
								.PublisherLogin	=	"PublisherUserID"
								.PublisherPassword	=	"PublisherPassword"
								
								'Set	up	FTP.
								.FileTransferType	=	FILETRANSFERFTP
				
								'Set	up	the	Distributor.
								.Distributor	=	"DistributorServer"
								.DistributorAddress	=	"distributor.company.com"
								.DistributorNetwork	=	TCPIP_SOCKETS
								.DistributorSecurityMode	=	DB_AUTHENTICATION
								.DistributorLogin	=	"DistributorUserID"
								.DistributorPassword	=	"DistributorPassword"
				
								'Set	up	the	Subscriber.
								.Subscriber	=	"SubscriberServer"
								.SubscriberDatabase	=	"SubscriberDatabase"
								.SubscriberDatasourceType	=	SQL_SERVER
								.SubscriberSecurityMode	=	NT_AUTHENTICATION
								
								'Set	up	the	subscription.
								.SubscriptionType	=	ANONYMOUS

								.SynchronizationType	=	AUTOMATIC
								
								'Synchronize	the	Subscriber.
								.Initialize
								.Run
								.Terminate
				End	With
				Exit	Sub

End	Sub

Private	Function	mobjMerge_Status(ByVal	Message	As	String,	ByVal	Percent	As	Long)	_
									As	SQLMERGXLib.STATUS_RETURN_CODE
'Display	most	recent	status	message.
				Label1	=	Message
				DoEvents
End	Function

Note		The	URLs	publisher.company.com	and	distributor.company.com	need	to
be	resolvable	by	an	external	DNS	server.	If	a	listening	port	other	than	the	default
port	1433	is	used,	it	must	be	explicitly	coded.	For	example,	if	port	1430	is	to	be
used:

.PublisherAddress	=	"publisher.company.com,1430"

When	using	a	transactional	publication,	the	same	example	can	be	used	for
synchronizing	a	Subscriber	database	with	the	SQL	Distribution	control.	Replace
references	to	the	SQLMerge	object	with	references	to	the	SQLDistribution
object.

Creating	and	Synchronization	Subscriptions	to	a	Jet	4.0	Database
ActiveX	replication	controls	can	be	programmed	to	synchronize	data	with	a
Microsoft	Jet	4.0	database.	This	enables	applications	to	synchronize
subscriptions	to	Jet	4.0	databases	without	having	to	create	an	OLE	DB	data
source.	The	publication	must	be	configured	to	accept	heterogeneous	data	source

Subscribers.	The	Subscriber	does	not	need	to	be	configured	as	a	linked	server.

This	code	segment	demonstrates	how	a	Visual	Basic	program	configures	the
SQL	Merge	control	to	create	a	Jet	4.0	database	and	synchronizes	data	with	it.
The	AddSubscription	method	need	not	be	used	if	the	database	already	exists.

Note		If	the	publication	has	not	been	enabled	for	heterogeneous	Subscribers,	the
Jet	database	will	be	created	and	the	Publisher	schema	applied,	but	no	data	will
be	copied.	No	error	message	or	warning	is	given.

'SQLMerge	control	declaration.
Private	WithEvents	mobjMerge				As	SQLMERGXLib.SQLMerge
.	.	.

'Configure	the	control	for	a	Jet	4.0	database	subscription.
Set	mobjMerge	=	New	SQLMERGXLib.SQLMerge

With	mobjMerge

				'Set	up	the	Publisher.
				.Publisher	=	"PublisherServer"
				.PublisherDatabase	=	"PublisherDatabase"
				.Publication	=	"PublicationName"
				.PublisherSecurityMode	=	NT_AUTHENTICATION

				'Set	up	the	Subscriber.
				.Subscriber	=	"SubscriberServer"
				'	MDBFileSpecification	would	be	something	like	C:\ReplDBs\JetPubs.mdb
				.SubscriberDatabasePath	=	"MDBFileSpecification"			
				.SubscriberDatasourceType	=	JET4_DATABASE
				.SubscriberSecurityMode	=	DB_AUTHENTICATION
				'	JetDatabaseUserID	would	be	something	like	"Admin"
				.SubscriberLogin	=	"JetDatabaseUserID"
				.SubscriberPassword	=	"JetDatabasePassword"

				'Set	up	the	subscription.
				.SubscriptionType	=	ANONYMOUS
				.SynchronizationType	=	AUTOMATIC

				'Synchronize	the	subscription.
				.Initialize
				.Run
				.Terminate
End	With

When	using	a	transactional	publication,	the	same	example	can	be	used	for
synchronizing	a	Subscriber	database	with	the	SQL	Distribution	control.	Replace
references	to	the	SQLMerge	object	with	references	to	the	SQLDistribution
object.

Providing	Status	and	Handling	Cancel	Requests
ActiveX	replication	controls	provide	a	Status	event	that	provides	status
messages	and	percent	complete	during	Initialize,	Run,	and	other	replication
control	methods.	These	messages	can	be	displayed	in	the	user	interface	of	the
application	(for	example,	a	label	and	a	progress	bar).	The	event	also	supports	the
ability	to	cancel	the	control	process.

Assume	the	application	hosts	a	SQL	Merge	control,	and	its	visible	user	interface
includes	these	controls.

Control	Type Control	Name
Label lblStatus
Progress	Bar prgStatus
Command	Button cmdCancel

The	Status	event	handler	updates	lblStatus	and	prgStatus	with	the	status
information.	When	cmdCancel	is	clicked,	a	Boolean	variable	is	set.	The	handler
returns	a	CANCEL	notification	when	it	finds	the	variable	set.	The	DoEvents	call

should	be	included	to	update	the	visible	controls.

If	you	use	a	mechanism	similar	to	this,	be	sure	to	inhibit	subsequent	calls	to
control	methods	after	the	cancel	request	is	received.

This	code	segment	demonstrates	how	a	Visual	Basic	program	displays	status
information	and	handles	a	cancel	request.	Note	that	the	Status	callback	might	be
called	again	after	being	cancelled.	Some	operations	cannot	be	cancelled
immediately.

Private	WithEvents	mobjMerge				As	SQLMERGXLib.SQLMerge
Private	mblnCancel														As	Boolean
.	.	.

Private	Sub	cmdCancel_Click()
'Set	flag	when	the	Cancel	button	is	clicked.
				mblnCancel	=	True
End	Sub

Private	Function	mobjMerge_Status(ByVal	Message	As	String,	_
								ByVal	Percent	As	Long)	As	SQLMERGXLib.STATUS_RETURN_CODE
				'Display	progress	and	status	message.
				lblStatus.Caption	=	Message
				prgStatus.Value	=	Percent
				
				'Cancel	if	the	button	was	clicked.
				If	mblnCancel	Then	mobjMerge_Status	=	CANCEL
				
				'Allow	screen	to	update.
				DoEvents
End	Function

Using	Error	Handling	Sample
ActiveX	replication	controls	provide	detailed	information	about	method	failures
through	these	mechanisms:

Returning	an	error	code	to	the	caller	of	the	method.	In	Microsoft	Visual
Basic,	this	is	done	by	raising	a	runtime	error	that	you	can	trap	in	an
error	handler.	In	Microsoft	Visual	C++®,	the	error	code	is	an
HRESULT	function	return	value.

Referencing	a	SQLReplErrors	collection.	Each	control	has	an
ErrorRecords	property	that	references	a	SQLReplErrors	collection.
To	retrieve	error	information,	you	can	enumerate	through	each
SQLReplError	object	in	the	collection.

Usually,	any	error	that	is	returned	to	the	caller	is	added	to	the	collection.
Collection	elements	that	have	an	error	code	equal	to	0	are	supplemental
information	such	as	a	stored	procedure	reference	with	actual	arguments
substituted,	which	applies	to	the	previous	collection	element.	The	collection	is
cleared	at	each	new	call	to	a	replication	control	method	to	ensure	that	all
elements	apply	to	the	most	recent	call.

This	example	demonstrates	how	a	Visual	Basic	program	reports	detailed	error
information	that	might	be	generated	by	an	ActiveX	replication	control.	Most	of
the	code	to	set	up	the	control	is	omitted.	The	error	handler	displays	the	error
code	and	description	for	the	raised	error	and	for	each	error	in	the	errors
collection.	When	the	raised	error	description	is	the	same	as	the	description	of
one	of	the	collection	elements,	it	is	not	duplicated	in	the	display.	Both	the	raised
error	codes	and	the	duplicate	collection	element	error	code	are	displayed.

Private	WithEvents	mobjMerge				As	SQLMERGXLib.SQLMerge
Private	mobjReplErr													As	REPLERRXLib.SQLReplError
.	.	.

Private	Sub	RunReplMerge()
				Dim	strPhase								As	String			'setup/initialize/run/terminate
				
On	Error	GoTo	ErrorHandler
				
				Set	mobjMerge	=	New	SQLMERGXLib.SQLMerge

				With	mobjMerge
								'Set	up	the	SQL	Merge	control.
								strPhase	=	"Setup"
								.Publisher	=	"PublisherServer"
								.PublisherDatabase	=	"PublisherDatabase"
								.PublisherSecurityMode	=	NT_AUTHENTICATION
								.SubscriberSecurityMode	=	NT_AUTHENTICATION
								'<Remainder	of	properties	set	here.>
								
								'Synchronize	the	subscription.
								strPhase	=	"Initialize"
								.Initialize
								strPhase	=	"Run"
								.Run
								strPhase	=	"Terminate"
								.Terminate
				End	With
				Exit	Sub
								
ErrorHandler:
				Dim	blnMsgDupl						As	Boolean		'True:	duplicate	found	in	collection
				Dim	strErrMsg							As	String			'Message	buffer
								
				'Iterate	through	errors	collection.
				For	Each	mobjReplErr	In	mobjMerge.ErrorRecords
				
'The	raised	error	is	the	same	as	the	collection	element;	add	error	code.
								If	Err.Description	=	mobjReplErr.Description	Then
												strErrMsg	=	strErrMsg	&	vbCrLf	&	vbCrLf	&	_
																				mobjReplErr.Description	&	vbCrLf	&	_
																				"Error	"	&	strErrorNumConv(Err.Number)
												blnMsgDupl	=	True
												

'The	raised	error	is	not	the	same	as	the	collection	element;	add	'description.
								Else
												strErrMsg	=	strErrMsg	&	vbCrLf	&	vbCrLf	&	_
																				mobjReplErr.Description
								End	If
								
								'Append	error	code	from	collection.
								strErrMsg	=	strErrMsg	&	vbCrLf	&	"Coll.	"	&	_
																strErrorNumConv(mobjReplErr.ErrorNumber)
				Next	mobjReplErr
				
				'Format	message,	include	raised	error	if	duplicate	not	found.
				strErrMsg	=	"Error	during	Merge	control	"	&	_
												strPhase	&	"	phase:"	&	_
												IIf(blnMsgDupl,	"",	_
																vbCrLf	&	vbCrLf	&	Err.Description	&	vbCrLf	&	_
																"Error	"	&	strErrorNumConv(Err.Number))	&	_
												strErrMsg
				
				MsgBox	strErrMsg,	vbExclamation
End	Sub

Private	Function	strErrorNumConv(ByVal	lngErrNum	As	Long)	As	String
'Convert	error	number	into	readable	forms,
'	hex,	and	decimal	for	the	low-order	word.
				Dim	strErrNums						As	String
				
				If	lngErrNum	<	16	And	lngErrNum	>	-16	Then
								strErrNums	=	CStr(lngErrNum)
				ElseIf	lngErrNum	<	65536	And	lngErrNum	>	-65536	Then
								strErrNums	=	"x"	&	Hex(lngErrNum)	&	_
																"	=	"	&	CStr(lngErrNum)
				Else

								strErrNums	=	"x"	&	Hex(lngErrNum)	&	_
																"	=	x"	&	Hex(lngErrNum	And	-65536)	&	_
																"	+	"	&	CStr(lngErrNum	And	65535)
				End	If
				
				strErrorNumConv	=	"Code:	"	&	strErrNums
End	Function

If	this	example	is	run	as	shown,	with	part	of	the	control	setup	missing,	the
following	error	is	displayed.

Error	during	Merge	control	Initialize	phase:

'The	property	'Publication'	must	be	set	before	initializing	the	SQL	Merge	'ActiveX	Control.
Error	Code:	x80004005	=	x80000000	+	16389
Coll.	Code:	x7918	=	31000

'The	property	'Subscriber'	must	be	set	before	initializing	the	SQL	Merge	'ActiveX	Control.
Coll.	Code:	x7918	=	31000

See	Also

ErrorRecords	Property

SQLReplError	Object

SQLReplErrors	Collection

Replication	Programming

Common	SQL	Distribution	Control	and	SQL	Merge
Control	Functionality
The	SQL	Distribution	control	and	SQL	Merge	control	have	common
functionality.	This	functionality	includes:

Adding	subscriptions.

Registering	subscriptions	in	Microsoft®	Windows	Synchronization
Manager.

Copying	subscriptions.

Dropping	subscriptions.

Note		This	functionality	applies	only	to	existing	pull	and	anonymous
subscriptions.	It	cannot	be	used	for	push	subscriptions.

Adding	Subscriptions
The	SQLDistribution	and	SQLMerge	objects	can	be	configured	to	add
subscriptions	using	the	AddSubscription	method.	When	adding	a	subscription,
you	can	specify	to	create	the	Subscriber	database,	use	an	existing	database,
attach	a	database	.mdf	file,	register	an	existing	subscription,	or	attach	a
subscription	.msf	file.

To	add	a	pull	subscription,	the	Subscriber	must	already	be	defined	at	the
Publisher.

Explicitly	adding	a	subscription	for	an	anonymous	Subscriber	is	optional.

Registering	Subscriptions
In	addition	to	adding	the	subscription,	the	subscription	can	be	registered	in
Microsoft	Windows	Synchronization	Manager	using	the	AddSubscription
method.	After	being	registered,	there	is	no	need	to	use	the	Microsoft	ActiveX®

replication	controls	to	synchronize	the	Subscriber	because	you	can	perform	this
operation	using	the	Microsoft	Windows	Synchronization	Manager.	The
Windows	Synchronization	Manager	can	be	accessed	from	the	Start	menu	by
clicking	Programs,	clicking	Accessories,	then	clicking	Synchronize.

To	register	a	subscription	in	Windows	Synchronization	Manager,	specify
SYNC_MANAGER	(instead	of	the	default	NONE)	for	the	second	argument	of
AddSubscription.

Copying	Subscriptions
The	SQLDistribution	and	SQLMerge	objects	can	be	used	to	copy	a	specially
prepared	database	subscription	file	(typically	with	an	.msf	extension)	to	a
Subscriber,	attach	the	subscription,	and	receive	an	immediately	synchronized
subscription	at	the	original	Publisher.	The	CopySubscription	method	creates	the
.msf	file.	The	AddSubscription	method	with	the	ATTACH_SUBSCRIPTION
option	creates	the	new	subscription	from	the	.msf	file.

Dropping	Subscriptions
The	SQLDistribution	and	SQLMerge	objects	can	be	programmed	to	drop
subscriptions	using	the	DropSubscription	method.	When	removing	the
subscription,	you	can	specify	if	the	Subscriber	database	should	be	dropped.	You
can	also	specify	that	the	subscription	be	unregistered	from	Microsoft	Windows
Synchronization	Manager,	but	not	dropped	by	specifying
UNREGISTER_SUBSCRIPTION	for	the	parameter	of	DropSubscription.

See	Also

AddSubscription	Method

CopySubscription	Method

DBADDOPTION

DBDROPOPTION

DropSubscription	Method

SUBSCRIPTION_HOST

Replication	Programming

Programming	Replication	ActiveX	Controls	Using
VBScript
Using	the	Microsoft®	ActiveX®	replication	controls	with	Microsoft	Visual
Basic®	Scripting	Edition	is	supported	with	the	following	limitations:

Named	constants	are	not	supported.	You	must	specify	the	actual	value
represented	by	the	constant;	for	example,	AddSubscription(0,	1)	instead
of	coding	AddSubscription(EXISTING_DATABASE,
SYNC_MANAGER).

The	error	handler	is	not	supported.	You	must	use	the
ErrorRecords.Count	method	to	determine	if	there	are	failures.

This	example	demonstrates	how	an	HTML	page	using	Visual	Basic	Scripting
Edition	configures	the	SQL	Distribution	control	to	synchronize	data	for	an
anonymous	subscription	over	the	Internet:

<html>
<head>
<meta	http-equiv="Content-Language"	content="en-us">
<meta	http-equiv="Content-Type"	content="text/html;	charset=windows-1252">
<meta	name="GENERATOR"	content="Microsoft	FrontPage	4.0">
<meta	name="ProgId"	content="FrontPage.Editor.Document">
<title>New	Page	1</title>
</head>

<body>
<p>This	is	only	a	test.</p>
<p>
<object	classid="clsid:08B0B2E6-3FB3-11D3-A4DE-00C04F610189"	id="oSQLDistribution"	data="DATA:application/x-oleobject;BASE64,5rKwCLM/0xGk3gDAT2EBiQADAADYEwAA2BMAAA=="	width="240"	height="240">
</object>
</p>

<script	LANGUAGE="VBScript">
<!--
Sub	window_onload()
				Call	DoSync()
End	Sub

Sub	DoSync()
				Dim	oErrorObject
				On	Error	Resume	Next

				'	Configure	the	control	for	an	anonymous	subscription.
				oSQLDistribution.Publisher	=	"PUBLISHERNAME"
				oSQLDistribution.PublisherDatabase	=	"PublishedDBName"
				oSQLDistribution.Publication	=	"PublicationName"
				oSQLDistribution.PublisherSecurityMode	=	0		'	DB_AUTHENTICATION
				oSQLDistribution.PublisherLogin	=	"sa"
				oSQLDistribution.PublisherPassword	=	""
				oSQLDistribution.SubscriberDatasourceType	=	0	'	SQL_SERVER
				oSQLDistribution.Subscriber	=	"SUBSCRIBERNAME"
				oSQLDistribution.SubscriberDatabase	=	"SubscribingDBName"
				oSQLDistribution.SubscriptionType	=	2			'	ANONYMOUS
				oSQLDistribution.SubscriberSecurityMode	=	0	'	DB_AUTHENTICATION
				oSQLDistribution.SubscriberLogin	=	"sa"
				oSQLDistribution.SubscriberPassword	=	""

'Configure	the	control	to	access	Publisher	over	the	Internet	using	TCP/IP.
				oSQLDistribution.PublisherNetwork	=	1				'	TCPIP_SOCKETS

			'	Replace	000.00.00.00	with	the	correct	IP	address
				oSQLDistribution.PublisherAddress	=	"000.00.00.00,1433"
				oSQLDistribution.FileTransferType	=	1				'	FILETRANSFERFTP
				'	Synchronize	the	data.
				oSQLDistribution.Initialize

		If	(oSQLDistribution.ErrorRecords.Count	>	0)	Then
			'	Display	each	error	message.
				For	Each	oErrorObject	in	oSQLDistribution.ErrorRecords
						MsgBox	oErrorObject.Description,	vbCritical,	"SQLDist	Failure"
						Next
		Else
					oSQLDistribution.Run
					If	(oSQLDistribution.ErrorRecords.Count	>	0)	Then
							'	Display	each	error	message.
							For	Each	oErrorObject	in	oSQLDistribution.ErrorRecords
											MsgBox	oErrorObject.Description,	vbCritical,	"SQLDist	Failure"
											Next
					Else
								oSQLDistribution.Terminate
								If	(oSQLDistribution.ErrorRecords.Count	>	0)	Then
										'	Display	each	error	message.
										For	Each	oErrorObject	in	oSQLDistribution.ErrorRecords
												MsgBox	oErrorObject.Description,	vbCritical,	"SQLDist	Failure"
												Next
									End	If
					End	If
		End	If
End	Sub

Sub	oSQLDistribution_Status(Message,	Percent)
				'Display	message	here.
End	Sub
</script>
</body>
</html>

Note		The	properties	in	this	example	are	the	same	for	both	the	SQL	Merge	and

SQL	Distribution	controls.	You	can	replace	references	to	the	SQLDistribution
object	with	references	to	the	SQLMerge	object.

Replication	Programming

Replication	ActiveX	Control	Reference
Microsoft®	ActiveX®	replication	controls	provide	a	means	of	programmatically
controlling	Merge	Agent,	Distribution	Agent,	and	Snapshot	Agent	activity	using
a	program	written	in	Microsoft	Visual	Basic®,	Microsoft	Visual	C++®,	or	other
development	languages	that	support	COM.

The	Microsoft	ActiveX	replication	controls	include:

SQL	Snapshot	controls

SQL	Distribution	controls

SQL	Merge	controls

See	Also

Developing	Replication	Applications	Using	ActiveX	Controls

Object	Model	for	ActiveX	Controls

Other	Replication	Control	Objects	and	Collections

Replication	ActiveX	Control	Properties

Replication	ActiveX	Control	Methods

Replication	ActiveX	Control	Events

Replication	ActiveX	Control	Constants

Replication	Programming

Object	Model	for	ActiveX	Controls
The	table	shows	the	Microsoft®	ActiveX®	controls	and	lists	and	describes	their
associated	objects	and	collections.

ActiveX	control Object Description
SQL	Distribution
Control

SQLDistribution
Object

Provides	the	functionality	of
the	Distribution	Agent	and
supports	synchronization	of
push,	pull,	or	anonymous
subscriptions	to	a	transactional
publication.

	 SQLReplError	Object Defines	an	error	that	occurred
during	processing	by	an
ActiveX	replication	control.

	 SQLReplErrors
Collection

Contains	a	SQLReplError
object	for	each	error	that	has
occurred	during	the	most	recent
method	execution	of	an
ActiveX	replication	control.

SQL	Merge	Control SQLMerge	Object Provides	the	functionality	of
the	Merge	Agent	and	supports
synchronization	of	push,	pull,
or	anonymous	subscriptions	to
a	merge	publication.

	 AlternateSyncPartners
Property

Returns	a	reference	to	the
AlternateSyncPartners
collection.

	 AlternateSyncPartners
Collection

Contains	all	of	the
AlternateSyncPartner
objects.

	 AlternateSyncPartner
Object

Defines	an	alternate
synchronization	partner	that	a
subscription	(referenced	by	the
SQLMerge	object)	can	use	if

the	primary	Publisher	is	not
available,	or	if	use	of	the
alternate	synchronization
partner	is	preferable.

	 SQLReplError	Object Defines	an	error	that	occurred
during	processing	by	an
ActiveX	replication	control.

	 SQLReplErrors
Collection

Contains	a	SQLReplError
object	for	each	error	that	has
occurred	during	the	most	recent
method	execution	of	an
ActiveX	replication	control.

SQL	Snapshot
Control

SQLSnapshot	Object Creates	a	snapshot	of	the
specified	publication	on	the
specified	Distributor.

	 SQLReplError	Object Defines	an	error	that	occurred
during	processing	by	an
ActiveX	replication	control.

	 SQLReplErrors
Collection

Contains	a	SQLReplError
object	for	each	error	that	has
occurred	during	the	most	recent
method	execution	of	an
ActiveX	replication	control.

See	Also

How	Snapshot	Replication	Works

How	Transactional	Replication	Works

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Replication	Programming

SQLSnapshot	Object
The	SQL	Snapshot	control	is	implemented	as	a	Microsoft®	ActiveX®	in-
process	component.	It	provides	an	alternate	way,	in	addition	to	the	Snapshot
Agent,	to	create	snapshots.	The	primary	class	of	the	SQLSnapshot,	the
SQLSnapshot	object,	creates	a	snapshot	of	the	specified	publication	on	the
specified	Distributor.

Dynamic	snapshots	are	supported.	There	are	properties	to	provide	values	for	the
HOST_NAME()	and	sp_repl_suser_sname()	functions	when	they	appear	in
the	filter	criteria	of	dynamic	publications,	and	to	specify	the	location	where	the
dynamic	snapshots	are	written.

Properties
Distributor	Property

DistributorLogin	Property

DistributorPassword	Property

DistributorSecurityMode	Property

DynamicFilterHostName	Property

DynamicFilterLogin	Property

DynamicSnapshotLocation	Property

ErrorRecords	Property

LoginTimeout	Property

ProfileName	Property

Publication	Property

Publisher	Property

PublisherDatabase	Property

PublisherLogin	Property

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

PublisherPassword	Property

PublisherSecurityMode	Property

QueryTimeout	Property

ReplicationType	Property

Methods
Initialize	Method

Run	Method

Terminate	Method

Events
Status	Event

Remarks
To	refer	to	the	elements	of	this	object	from	a	Microsoft	Visual	Basic®
application,	in	the	Project/References	dialog	box,	select	Microsoft	SQL
Snapshot	Control	8.0.	In	a	C++	application,	include	Replinix.c	and	Sqlinitx.h,
and	reference	Sqlinitx.dll	from	the	project/NMAKE	file.

See	Also

Developing	Replication	Applications	Using	ActiveX	Controls

Replication	Programming

SQLDistribution	Object
The	SQL	Distribution	control	is	implemented	as	a	Microsoft®	ActiveX®	in-
process	component.	The	SQL	Distribution	control	provides	an	alternate	way,	in
addition	to	the	Distribution	Agent,	to	control	synchronization	of	transactional
replication	subscriptions.	Its	primary	class,	the	SQLDistribution	object,
provides	the	functionality	of	the	Distribution	Agent	and	supports
synchronization	of	push,	pull,	or	anonymous	subscriptions	to	a	transactional
publication.	The	SQLDistribution	object	also	includes	options	to:

Add	or	drop	subscriptions	and	register	them	for	synchronization	using
Windows	Synchronization	Manager.

Specify	an	alternate	snapshot	folder,	from	which	the	initial	snapshot	for
a	subscription	can	be	applied.	

Specify	a	working	directory	to	which	snapshot	files	are	copied	using
FTP.	

Generate	a	specially	formatted	subscription	file	in	a	specified	location.
These	files	can	then	be	attached	to	create	a	synchronized	subscription
registered	at	the	Publisher,	as	part	of	the	attach-and-go	functionality.

Specify	a	Data	Transformation	Services	(DTS)	package	that	transforms
command	rowsets	before	applying	them	to	a	Subscriber.	

Set	the	Subscriber	update	mode	to	use	immediate	or	queued	updating
for	changes	made	at	the	Subscriber.

Properties

AltSnapshotFolder	Property

Distributor	Property

DistributorAddress	Property

DistributorLogin	Property

DistributorNetwork	Property

DistributorPassword	Property

DistributorSecurityMode	Property

DTSPackageFileName	Property

DTSPackagePassword	Property

ErrorRecords	Property

FileTransferType	Property

FTPAddress	Property

FTPLogin	Property

FTPPassword	Property

FTPPort	Property

LoginTimeout	Property

MaxDeliveredTransactions	Property

ProfileName	Property

Publication	Property

Publisher	Property

PublisherAddress	Property

PublisherDatabase	Property

PublisherLogin	Property

PublisherNetwork	Property

PublisherPassword	Property

PublisherSecurityMode	Property

QueryTimeout	Property

SkipErrors	Property

Subscriber	Property

SubscriberDatabase	Property

SubscriberDatabasePath	Property

SubscriberDatasourceType	Property

SubscriberLogin	Property

SubscriberPassword	Property

SubscriberSecurityMode	Property

SubscriptionName	Property

SubscriptionType	Property

SynchronizationType	Property

UndeliveredCommands	Property

UndeliveredTransactions	Property

WorkingDirectory	Property

Methods
AddSubscription	Method

CopySubscription	Method

DropSubscription	Method

Initialize	Method

ReinitializeSubscription	Method

Run	Method

SetFailoverMode	Method

Terminate	Method

Events

Status	Event

Remarks
To	refer	to	the	elements	of	this	object	from	a	Microsoft	Visual	Basic®
application,	in	the	Project/References	dialog	box,	select	Microsoft	SQL
Distribution	Control	8.0.	In	a	C++	application,	include	Repldstx.c	and
Sqldistx.h,	and	reference	Sqldistx.dll	from	the	project/NMAKE	file.

See	Also

Developing	Replication	Applications	Using	ActiveX	Controls

Replication	Programming

SQLMerge	Object
The	SQL	Merge	control	is	implemented	as	a	Microsoft®	ActiveX®	in-process
component.	The	SQL	Merge	control	provides	an	alternate	way,	in	addition	to	the
Merge	Agent,	to	synchronize	merge	subscriptions.	Its	primary	class,	the
SQLMerge	object,	provides	the	functionality	of	the	Merge	Agent	and	supports
synchronization	of	push,	pull,	or	anonymous	subscriptions	to	a	merge
publication.	The	SQLMerge	object	also	includes	the	options	to:

Add	or	drop	subscriptions	and	register	them	for	synchronization	using
Windows	Synchronization	Manager.

Specify	whether	only	the	upload	phase,	the	download	phase,	or	both
phases	are	run.

Specify	an	alternate	snapshot	folder,	from	which	the	initial	snapshot	for
a	subscription	can	be	applied.	

Specify	a	client-side	working	directory	to	which	snapshot	files	can	be
copied	using	FTP.	

Copy	a	subscription	database	by	generating	a	specially	formatted
subscription	file	in	a	specified	location.	These	files	can	then	be	attached
to	create	a	synchronized	subscription	registered	at	the	Publisher,	as	part
of	the	attach-and-go	functionality.

Synchronize	with	a	Publisher	other	than	the	one	at	which	its
subscription	originated.	Alternate	Publishers	must	contain	the	same
schema	and	data	set	as	the	original	Publisher.	

Access	an	alternate	sync	partner	when	the	primary	Publisher	of	the	data
for	the	Subscriber	is	temporarily	unavailable,	or	select	an	alternate	sync
partner	to	use	the	fastest	available	connection	speed.

Attach	a	subscription	database	by	specifying	only	Subscriber-side
properties.	The	Publisher,	PublisherDatabase,	Distributor,	and
Publication	properties	no	longer	need	to	be	set	while	adding	attach-
and-go	subscriptions.	

Validate	that	a	subscription	has	the	expected	data.

Properties

AlternateSyncPartners	Property

AltSnapshotFolder	Property

Distributor	Property

DistributorAddress	Property

DistributorLogin	Property

DistributorNetwork	Property

DistributorPassword	Property

DistributorSecurityMode	Property

DynamicSnapshotLocation	Property

ErrorRecords	Property

ExchangeType	Property

FileTransferType	Property

FTPAddress	Property

FTPLogin	Property

FTPPassword	Property

FTPPort	Property

HostName	Property

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

LoginTimeout	Property

ProfileName	Property

Publication	Property

Publisher	Property

PublisherAddress	Property

PublisherChanges	Property

PublisherConflicts	Property

PublisherDatabase	Property

PublisherLogin	Property

PublisherNetwork	Property

PublisherPassword	Property

PublisherSecurityMode	Property

QueryTimeout	Property

Subscriber	Property

SubscriberChanges	Property

SubscriberConflicts	Property

SubscriberDatabase	Property

SubscriberDatabasePath	Property

SubscriberDatasourceType	Property

SubscriberLogin	Property

SubscriberPassword	Property

SubscriberSecurityMode	Property

SubscriptionName	Property

SubscriptionPriority	Property

SubscriptionPriorityType	Property

SubscriptionType	Property

SynchronizationType	Property

SyncToAlternate	Property

UseInteractiveResolver	Property

Validate	Property

WorkingDirectory	Property

Methods
AddSubscription	Method

CopySubscription	Method

DropSubscription	Method

Initialize	Method

ReinitializeSubscription	Method

Run	Method

Terminate	Method

Events
Status	Event

Remarks
To	refer	to	the	elements	of	this	object	from	a	Microsoft	Visual	Basic®
application,	in	the	Project/References	dialog	box,	select	Microsoft	SQL	Merge
Control	8.0.	In	a	C/C++	application,	include	Replmrgx.c	and	Sqlmergx.h,	and
reference	Sqlmergx.dll	from	the	project/NMAKE	file.

See	Also

Developing	Replication	Applications	Using	ActiveX	Controls

Replication	Programming

Other	Replication	Control	Objects	and	Collections
The	table	lists	the	objects	and	collections	that	are	used	to	implement	features	of
the	Microsoft®	ActiveX®	replication	controls.

Object/Collection Description
AlternateSyncPartner	Object Defines	an	alternate	Publisher	that	a

subscription	can	use.
AlternateSyncPartners	Collection Contains	the	alternate	Publishers	that

a	subscription	can	use.
SQLReplError	Object Defines	an	error	that	occurred	during

processing	by	a	replication	control.
SQLReplErrors	Collection Contains	the	error	objects	for	a

replication	control.

Replication	Programming

AlternateSyncPartner	Object
An	AlternateSyncPartner	object	defines	an	alternate	Publisher	that	a
subscription	referenced	by	a	SQLMerge	object	can	use	if	the	primary	Publisher
is	not	available,	or	if	use	of	the	alternate	Publisher	is	preferable	(for	example,	it
is	reachable	by	a	faster	or	more	reliable	network	connection).

Properties
Distributor	Property

FriendlyName	Property

Publication	Property

Publisher	Property

PublisherDatabase	Property

Remarks
To	select	an	alternate	synchronization	partner,	the	Publisher,
PublisherDatabase,	Publication,	and	Distributor	properties	of	the	SQLMerge
object	should	be	set	to	the	corresponding	property	values	of	the
AlternateSyncPartner	object	before	the	Run	method	of	the	SQLMerge	object
is	called.

See	Also

AlternateSyncPartners	Collection

SQLMerge	Object

Replication	Programming

AlternateSyncPartners	Collection
The	AlternateSyncPartners	collection	contains	the	AlternateSyncPartner
objects,	which	define	the	alternate	Publishers	that	a	subscription	referenced	by	a
SQLMerge	object	can	use	if	the	primary	Publisher	is	not	available,	or	if	use	of
the	alternate	Publisher	is	preferable.

Applies	To
SQLMerge	Object

Properties
Count	Property

Remarks
The	AlternateSyncPartners	property	of	a	SQLMerge	object	is	used	to	return	a
reference	to	the	AlternateSyncPartners	collection.

See	Also

AlternateSyncPartner	Object

AlternateSyncPartners	Property

Replication	Programming

SQLReplError	Object
A	SQLReplError	object	defines	an	error	that	occurred	during	processing	by	a
Microsoft®	ActiveX®	replication	control.

Properties
Description	Property

ErrorNumber	Property

ErrorNumberString	Property

Source	Property

SourceType	Property

Remarks
SQLReplError	objects	are	referenced	from	the	SQLReplErrors	collection.	A
reference	to	this	collection	is	obtained	from	the	ErrorRecords	property	of
replication	ActiveX	controls.

To	refer	to	the	elements	of	this	object	from	a	Microsoft	Visual	Basic®
application,	in	the	Project/References	dialog	box,	select	Microsoft	SQL
Replication	Errors	8.0.	In	a	C++	application,	include	Replerrx.h	and	reference
Replerrx.dll	from	the	project/NMAKE	file.

An	interface	ISQLReplError	is	available	directly	from	the	replication	ActiveX
control	components;	however,	use	of	the	SQLReplError	object	is
recommended.

See	Also

SQLDistribution	Object

SQLMerge	Object

SQLReplErrors	Collection

SQLSnapshot	Object

Replication	Programming

SQLReplErrors	Collection
The	SQLReplErrors	collection	contains	an	SQLReplError	object	for	each
error	that	has	occurred	during	the	most	recent	method	execution	of	a	Microsoft®
ActiveX®	replication	control.

Applies	To
SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Properties
Count	Property

Methods
Add	Method

AddReplError	Method

Events
Notify	Event

Remarks
A	reference	to	the	SQLReplErrors	collection	is	obtained	from	the
ErrorRecords	property	of	replication	ActiveX	controls.	The	collection	is
cleared	before	the	execution	of	each	control	method.

To	refer	to	the	elements	of	this	collection	from	a	Microsoft	Visual	Basic®
application,	in	the	Project/References	dialog	box,	select	Microsoft	SQL
Replication	Errors	8.0.	In	a	C++	application,	include	Replerrx.h	and	reference
Replerrx.dll	from	the	project/NMAKE	file.

An	interface	ISQLReplErrors	is	available	directly	from	the	replication	ActiveX
control	components;	however,	using	the	SQLReplErrors	collection	is
recommended.

See	Also

ErrorRecords	Property

SQLReplError	Object

Replication	Programming

Replication	ActiveX	Control	Properties
The	topics	in	this	section	define	the	properties	of	the	Microsoft®	ActiveX®
replication	control	objects	and	collections.

Properties

AlternateSyncPartners	Property PublisherChanges	Property
AltSnapshotFolder	Property PublisherConflicts	Property
Count	Property PublisherDatabase	Property
Description	Property PublisherLogin	Property
Distributor	Property PublisherNetwork	Property
DistributorAddress	Property PublisherPassword	Property
DistributorLogin	Property PublisherRPCLogin	Property
DistributorNetwork	Property PublisherRPCPassword	Property
DistributorPassword	Property PublisherRPCSecurityMode	Property
DistributorSecurityMode	Property PublisherSecurityMode	Property
DTSPackageFileName	Property QueryTimeout	Property
DTSPackagePassword	Property ReplicationType	Property
DynamicFilterHostName	Property SkipErrors	Property
DynamicFilterLogin	Property Source	Property
DynamicSnapshotLocation	Property SourceType	Property
ErrorNumber	Property Subscriber	Property
ErrorNumberString	Property SubscriberChanges	Property
ErrorRecords	Property SubscriberConflicts	Property
ExchangeType	Property SubscriberDatabase	Property
FileTransferType	Property SubscriberDatabasePath	Property
FriendlyName	Property SubscriberDatasourceType	Property
FTPAddress	Property SubscriberLogin	Property
FTPLogin	Property SubscriberPassword	Property
FTPPassword	Property SubscriberSecurityMode	Property
FTPPort	Property SubscriptionName	Property

HostName	Property SubscriptionPriority	Property
LoginTimeout	Property SubscriptionPriorityType	Property
MaxDeliveredTransactions	Property SubscriptionType	Property
ProfileName	Property SynchronizationType	Property
Publication	Property SyncToAlternate	Property
Publisher	Property UndeliveredCommands	Property
PublisherAddress	Property UndeliveredTransactions	Property
	 UseInteractiveResolver	Property
	 Validate	Property
	 WorkingDirectory	Property

Replication	Programming

AlternateSyncPartners	Property
The	AlternateSyncPartners	property	returns	a	reference	to	the
AlternateSyncPartners	collection	maintained	by	the	SQLMerge	object.

Applies	To
SQLMerge	Object

Syntax
object.AlternateSyncPartners

Part Description
object Expression	that	evaluates	to	a	SQLMerge	object.

Remarks
The	AlternateSyncPartners	collection	contains	the	AlternateSyncPartner
objects,	which	define	the	alternate	Publishers	that	a	subscription	referenced	by	a
SQLMerge	object	can	employ	if	the	primary	Publisher	is	not	available,	or	if	the
use	of	the	alternate	Publisher	is	preferable.

The	alternate	Publishers	must	be	defined	in	the	publication	for	the
AlternateSyncPartners	collection	to	be	populated.

Data	Type
AlternateSyncPartners	Collection

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	AlternateSyncPartners(IAlternateSyncPartners**	pVal);

Replication	Programming

AltSnapshotFolder	Property
The	AltSnapshotFolder	property	returns	or	sets	the	path	to	the	folder	that
contains	the	initial	snapshot	for	a	subscription.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.AltSnapshotFolder	[=	path]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
path Path	to	alternate	snapshot	folder.

Remarks
The	snapshot	folder	path	must	include	a	UNC	or	FTP	designator,	for	example:

			objMerge.AltSnapshotFolder	=	"file:\\Distributor\Backup\Snapshots"
			objDistr.AltSnapshotFolder	=	_
						"ftp://distributor.company.com/backup/snapshots,1433"

It	is	recommended	you	use	the	sp_copysnapshot	stored	procedure	to	copy	a
subscription	manually.

Data	Type
String

Modifiable

Read/write

Prototype	(C/C++)
HRESULT	AltSnapshotFolder(BSTR	pVal);

HRESULT	AltSnapshotFolder(BSTR*	pVal);

See	Also

How	to	Browse	and	Copy	Snapshot	Files	(Transact-SQL)

JavaScript:hhobj_1.Click()

Replication	Programming

Count	Property
The	Count	property	specifies	the	number	of	objects	in	a	collection.

Applies	To
AlternateSyncPartners	Collection

SQLReplErrors	Collection

Syntax
object.Count

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	Count(long*	cMembers);

Replication	Programming

Description	Property
The	Description	property	returns	a	string	that	describes	the	error	defined	by	a
SQLReplError	object.

Applies	To
SQLReplError	Object

Syntax
object.Description

Part Description
object Expression	that	evaluates	to	a	SQLReplError	object.

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	Description(BSTR	pVal);

HRESULT	Description(BSTR*	pVal);

See	Also

ErrorNumber	Property

ErrorNumberString	Property

Source	Property

SourceType	Property

Replication	Programming

Distributor	Property
The	Distributor	property	sets	or	returns	the	name	of	the	Distributor	server.

Applies	To
AlternateSyncPartner	Object

SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.Distributor	[=	name]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
name Name	of	the	Distributor	used	by	the	Publisher.

Remarks
Distributor	is	a	required	property	for	the	SQLSnapshot	object	but	optional	for
the	other	controls.

The	Distributor	is	the	instance	of	Microsoft®	SQL	Server™	on	which	the
snapshots	are	stored	by	default,	and	on	which	replication	history	and	statistics
are	logged.	For	the	SQL	Distribution	control,	it	is	also	the	location	of	the	store-
and-forward	database	that	contains	the	replicated	transactions.

If	the	DistributorNetwork	and	DistributorAddress	properties	are	specified,
they	will	be	used	instead	of	the	Distributor	property	when	connecting	to	the
Distributor.

If	Distributor	connection	properties	are	not	specified,	it	is	assumed	the	Publisher
and	Distributor	are	on	the	same	instance	of	SQL	Server,	and	Publisher

connection	properties	will	be	used	when	connecting	to	the	Distributor.

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	Distributor(BSTR	pVal);

HRESULT	Distributor(BSTR*	pVal);

See	Also

DistributorAddress	Property

DistributorNetwork	Property

Replication	Programming

DistributorAddress	Property
The	DistributorAddress	property	specifies	the	network	address	used	for
connecting	to	the	Distributor	when	the	DistributorNetwork	property	is
specified.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.DistributorAddress	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Network	address	used	when	connecting	to	the

Distributor.

Remarks
This	is	a	required	property	only	when	DistributorNetwork	is	set	to	a	value
other	than	DEFAULT_NETWORK.

This	property	is	useful	when	configuring	the	control	to	connect	to	the	Distributor
without	having	to	use	SQL	Server	Client	Network	Utility.

For	example,	if	the	Distributor	is	accessed	over	the	Internet,
DistributorNetwork	can	be	set	to	TCPIP_SOCKETS	and	DistributorAddress
can	be	set	to	a	specific	IP	address.

If	the	DistributorNetwork	is	TCP/IP_SOCKETS	or	MULTI_PROTOCOL
using	TCP/IP,	the	value	is	in	the	form	of:

'IP	address,socket'	(i.e.	'111.11.11.11,1433")

If	the	Distributor	connection	properties	are	not	specified,	it	is	assumed	that	the
Publisher	and	Distributor	are	the	same	instance	of	Microsoft®	SQL	Server™
and	the	Publisher	connection	properties	will	be	used	when	connecting	to	the
Distributor.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_DistributorAddress(BSTR	*pVal);

HRESULT	put_DistributorAddress(BSTR	newVal);

See	Also

Distributor	Property

DistributorNetwork	Property

Replication	Programming

DistributorLogin	Property
The	DistributorLogin	property	specifies	the	login	name	used	when	connecting
to	the	Distributor.

Applies	To
SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.DistributorLogin	[=	name]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
name Name	used	to	log	in	to	the	Distributor.

Remarks
This	is	a	required	property	if	DistributorSecurityMode	is	set	to
DB_AUTHENTICATION.

If	the	Distributor	connection	properties	are	not	specified,	it	is	assumed	that	the
Publisher	and	Distributor	are	the	same	instance	of	Microsoft®	SQL	Server™,
and	that	the	Publisher	connection	properties	are	used	when	connecting	to	the
Distributor.

Data	Type
String

Modifiable

Read/write

Prototype	C/C++
HRESULT	get_DistributorLogin(BSTR	*pVal);

HRESULT	put_DistributorLogin(BSTR	newVal);

See	Also

DistributorPassword	Property

DistributorSecurityMode	Property

Replication	Programming

DistributorNetwork	Property
The	DistributorNetwork	property	specifies	the	client	Net-Library	used	when
connecting	to	the	Distributor.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.DistributorNetwork	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value NETWORK_TYPE	constant	that	specifies	the	client

Net-Library	used	when	connecting	to	the	Distributor.

Remarks
This	option	is	useful	when	configuring	the	control	to	connect	to	the	Distributor
without	having	to	use	SQL	Server	Client	Network	Utility.

If	the	value	is	not	DEFAULT_NETWORK	(default),	the	DistributorAddress
property	must	be	specified.

Data	Type
NETWORK_TYPE

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_DistributorNetwork(NETWORK_TYPE	*pVal);

HRESULT	put_DistributorNetwork(NETWORK_TYPE	newVal);

See	Also

DistributorAddress	Property

Replication	Programming

DistributorPassword	Property
The	DistributorPassword	property	sets	or	returns	the	login	password	used
when	connecting	to	the	Distributor.

Applies	To
SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.DistributorPassword	[=	string]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
string Password	string	used	when	connecting	to	the

Distributor.

Remarks
This	property	is	used	only	when	DistributorSecurityMode	is	set	to
DB_AUTHENTICATION.	Specify	a	NULL	password	as	follows:

			objMerge.DistributorPassword	=	""

If	the	Distributor	connection	properties	are	not	specified,	it	is	assumed	that	the
Publisher	and	Distributor	are	the	same	instance	of	Microsoft®	SQL	Server™,
and	that	Publisher	connection	properties	will	be	used	when	connecting	to	the
Distributor.

The	default	is	no	password.

Data	Type

String

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_DistributorPassword(BSTR	*pVal);

HRESULT	put_DistributorPassword(BSTR	newVal);

See	Also

DistributorLogin	Property

DistributorSecurityMode	Property

Replication	Programming

DistributorSecurityMode	Property
The	DistributorSecurityMode	property	sets	or	returns	the	security	mode	used
when	connecting	to	the	Distributor.

Applies	To
SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.DistributorSecurityMode	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list
value SECURITY_TYPE	constant	that	specifies	the	mode	of

security	enforced	at	the	Distributor

Remarks
If	the	value	is	DB_AUTHENTICATION	(default),	DistributorLogin	and
DistributorPassword	will	be	used	when	connecting	to	the	Distributor.

NT_AUTHENTICATION	is	not	supported	for	DistributorSecurityMode	unless
the	Distributor	uses	the	Microsoft®	Windows	NT®	4.0	or	Microsoft	Windows®
2000	operating	system.	NT_AUTHENTICATION	is	not	supported	for	any	of
DistributorSecurityMode,	PublisherSecurityMode,	and
SubscriberSecurityMode	unless	the	computer	on	which	the	replication	control
is	running	uses	the	Windows	NT	4.0	or	Windows	2000	operating	system.

Data	Type
SECURITY_TYPE

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_DistributorSecurityMode(SECURITY_TYPE	*pVal);

HRESULT	put_DistributorSecurityMode(SECURITY_TYPE	newVal);

See	Also

DistributorLogin	Property

DistributorPassword	Property

Replication	Programming

DTSPackageFileName	Property
The	DTSPackageFileName	property	returns	or	sets	the	name	and	path	of	a	DTS
package	used	to	transform	command	rowsets	before	they	are	applied	to	a
Subscriber.

Applies	To
SQLDistribution	Object

Syntax
object.DTSPackageFileName	[=	PackageSpec]

Part Description
object Expression	that	evaluates	to	a	SQLDistribution	object.
PackageSpec Fully	qualified	path	to	a	DTS	package.

Remarks
If	the	DTS	package	is	stored	in	Microsoft®	SQL	Server™	or	Meta	Data
Services,	the	value	of	this	property	is	the	package	name.	If	the	package	is	stored
in	a	file,	the	property	value	is	the	file	specification.

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	DTSPackageFileName(BSTR	pVal);

HRESULT	DTSPackageFileName(BSTR*	pVal);

See	Also

DTSPackagePassword	Property

Replication	Programming

DTSPackagePassword	Property
The	DTSPackagePassword	property	returns	or	sets	the	owner	password	used	to
access	the	DTS	package	specified	by	the	DTSPackageFileName	property.

Applies	To
SQLDistribution	Object

Syntax
object.DTSPackagePassword	[=	string]

Part Description
object Expression	that	evaluates	to	a	SQLDistribution	object.
string Password	needed	to	access	the	specified	DTS	package.

Remarks
The	DTS	owner	password	must	be	provided	for	this	property.	The	required
access	cannot	be	obtained	with	the	user	password.

This	property	returns	the	value	to	which	the	property	was	most	recently	set.	It
cannot	be	used	to	return	the	actual	owner	password	of	the	DTS	package
specified	by	DTSPackageFileName,	unless	it	was	set	to	that	value	previously.

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	DTSPackagePassword(BSTR	pVal);

HRESULT	DTSPackagePassword(BSTR*	pVal);

See	Also

DTSPackageFileName	Property

Replication	Programming

DynamicFilterHostName	Property
The	DynamicFilterHostName	property	returns	or	sets	the	host	name	used	when
creating	a	dynamic	snapshot.	This	property	provides	a	value	used	when	the
publication	is	dynamically	filtered	using	the	HOST_NAME()	function.

Applies	To
SQLSnapshot	Object

Syntax
object.DynamicFilterHostName	[=	value]

Part Description
object Expression	that	evaluates	to	a	SQLSnapshot	object.
value Value	to	be	returned	by	HOST_NAME()	in	filter

clauses	when	creating	a	dynamic	snapshot.

Remarks
Use	the	DynamicFilterHostName	property	to	set	a	value	for	HOST_NAME()
in	filtering	when	a	dynamic	snapshot	is	created.	For	example,	if	the	subset	filter
clause	"rep_id	=	HOST_NAME()"	has	been	specified	for	an	article,	and	if	you
set	the	DynamicFilterHostName	property	to	"FBJones"	before	calling	the	Run
method	of	the	SQLSnapshot	object,	only	rows	having	"FBJones"	in	the	rep_id
column	will	be	included	in	the	snapshot.

The	DynamicFilterHostName	property	applies	only	to	snapshots	created	for
merge	publications.

By	default,	HOST_NAME()	evaluates	to	the	name	of	the	computer	on	which
the	merge	control	is	executing,	unless	it	is	overridden	by	setting	the
DynamicFilterHostName	property.

Data	Type

String

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_DynamicFilterHostName(BSTR	*pVal);

HRESULT	put_DynamicFilterHostName(BSTR	newVal);

See	Also

HOST_NAME

JavaScript:hhobj_1.Click()

Replication	Programming

DynamicFilterLogin	Property
The	DynamicFilterLogin	property	returns	or	sets	the	user	name	used	when
creating	a	dynamic	snapshot.	This	property	provides	a	value	used	when	the
publication	is	dynamically	filtered	using	the	SUSER_SNAME()	function.

Applies	To
SQLSnapshot	Object

Syntax
object.DynamicFilterLogin	[=	value]

Part Description
object Expression	that	evaluates	to	a	SQLSnapshot	object.
value Value	to	be	returned	by	SUSER_NAME()	in	filter

clauses	when	creating	a	dynamic	snapshot.

Remarks
Use	the	DynamicFilterLogin	property	to	set	a	value	for	SUSER_SNAME()	in
filtering	when	a	dynamic	snapshot	is	created.	For	example,	if	the	subset	filter
clause	"user_id	=	SUSER_SNAME()"	has	been	specified	for	an	article,	and	if
you	set	the	DynamicFilterLogin	property	to	"rsmith"	before	calling	the	Run
method	of	the	SQLSnapshot	object,	only	rows	having	"rsmith"	in	the	user_id
column	will	be	included	in	the	snapshot.

The	DynamicFilterLogin	property	applies	only	to	snapshots	created	for	merge
publications.

Data	Type
String

Modifiable

Read/write

Prototype	C/C++
HRESULT	get_DynamicFilterLogin(BSTR	*pVal);

HRESULT	put_DynamicFilterLogin(BSTR	newVal);

See	Also

SUSER_NAME

JavaScript:hhobj_1.Click()

Replication	Programming

DynamicSnapshotLocation	Property
The	DynamicSnapshotLocation	property	returns	or	sets	the	path	to	a	folder	to
which	the	files	are	to	be	written	when	a	dynamic	snapshot	is	created.

Applies	To
SQLSnapshot	Object

Syntax
object.DynamicSnapshotLocation	[=	path]

Part Description
object Expression	that	evaluates	to	a	SQLSnapshot	object.
path Path	of	the	folder	to	which	the	files	of	a	dynamic

snapshot	are	to	be	written.

Remarks
The	DynamicSnapshotLocation	property	applies	only	to	snapshots	created	for
Merge	publications.

The	snapshot	folder	path	must	include	a	UNC	or	FTP	designator,	for	example:

			objMerge.DynamicSnapshotLocation	=	_
						"file:\\Distributor\Backup\Snapshots"
			objDistr.DynamicSnapshotLocation	=	_
						"ftp://distributor.company.com/backup/snapshots,1433"

Data	Type
String

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_DynamicSnapshotLocation(BSTR	*pVal);

HRESULT	put_DynamicSnapshotLocation(BSTR	newVal);

Replication	Programming

ErrorNumber	Property
The	ErrorNumber	property	returns	the	numeric	code	that	identifies	the	error.

Applies	To
SQLReplError	Object

Syntax
object.ErrorNumber	[=	pVal]

Part Description
object Expression	that	evaluates	to	a	SQLReplError	object.
pVal Error	number.

Remarks
The	error	number	is	the	value	assigned	by	the	error	source.

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	ErrorNumber(long	pVal);

HRESULT	ErrorNumber(long*	pVal);

See	Also

Description	Property

JavaScript:hhobj_1.Click()

ErrorNumberString	Property

Source	Property

SourceType	Property

Replication	Programming

ErrorNumberString	Property
The	ErrorNumberString	property	returns	or	sets	a	string	representation	of	the
error	number.

Applies	To
SQLReplError	Object

Syntax
object.ErrorNumberString	[=	string]

Part Description
object Expression	that	evaluates	to	a	SQLReplError	object.
string String	representation	of	the	error	number.

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	ErrorNumberString(BSTR	pVal);

HRESULT	ErrorNumberString(BSTR*	pVal);

See	Also

Description	Property

ErrorNumber	Property

Source	Property

JavaScript:hhobj_1.Click()

SourceType	Property

Replication	Programming

ErrorRecords	Property
The	ErrorRecords	property	returns	a	reference	to	the	SQLReplErrors
collection	maintained	by	the	replication	control.

Applies	To
SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.ErrorRecords

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.

Remarks
The	SQLReplErrors	collection	is	loaded	when	a	control	method	fails.	The	error
records	in	the	collection	are	available	until	the	next	replication	control	method	is
called.

Data	Type
SQLReplErrors	Collection

Modifiable
Read-only

Prototype	C/C++
HRESULT	ErrorRecords(ISQLReplErrors**	pVal);

See	Also

SQLReplError	Object

SQLReplErrors	Collection

Replication	Programming

ExchangeType	Property
The	ExchangeType	property	specifies	whether	data	merges	up	to	the	Publisher,
down	to	the	Subscriber,	or	in	both	directions.

Applies	To
SQLMerge	Object

Syntax
object.ExchangeType	[=	value]

Part Description
object Expression	that	evaluates	to	a	SQLMerge	object.
value EXCHANGE_TYPE	constant	that	specifies	the

direction	in	which	data	can	be	merged.

Remarks
The	ExchangeType	property	is	typically	used	first	to	upload	all	the	changes
from	several	Subscribers	to	a	Publisher,	and	then	to	download	the	changes	to	the
Subscribers	only	after	all	the	uploads	have	been	completed.

BIDIRECTIONAL	is	the	default.	You	should	use	a	BIDIRECTIONAL
synchronization	unless	you	have	a	specific	reason	for	separating	the	UPLOAD
and	DOWNLOAD	phases.

Data	Type
EXCHANGE_TYPE

Modifiable
Read/write

Prototype	C/C++

HRESULT	get_ExchangeType(EXCHANGE_TYPE	*pVal);

HRESULT	put_ExchangeType(EXCHANGE_TYPE	newVal);

Replication	Programming

FileTransferType	Property
The	FileTransferType	property	returns	or	sets	how	the	snapshot	file	is
transferred.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.FileTransferType	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Value	from	the	FILE_TRANSFER_TYPE

enumeration.

Remarks
The	file	transfer	options	are	FTP	and	UNC	(network	file	copy).

Data	Type
FILE_TRANSFER_TYPE

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	FileTransferType(FILE_TRANSFER_TYPE	pVal);

HRESULT	FileTransferType(FILE_TRANSFER_TYPE*	pVal);

Replication	Programming

FriendlyName	Property
The	FriendlyName	property	returns	or	sets	a	display	name	by	which	the
association	of	Publisher,	publication,	and	Distributor	that	makes	up	an	alternate
sync	partner	can	be	identified.

Applies	To
AlternateSyncPartner	Object

Syntax
object.FriendlyName	[=	name]

Part Description
object Expression	that	evaluates	to	an	AlternateSyncPartner

object.
name Friendly	name	for	alternate	sync	partner.

Remarks
An	AlternateSyncPartner	object	defines	an	alternate	Publisher	that	a
subscription	referenced	by	the	SQLMerge	object	can	use	if	the	primary
Publisher	is	not	available.

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	FriendlyName(BSTR	pVal);

HRESULT	FriendlyName(BSTR*	pVal);

See	Also

SQLMerge	Object

Replication	Programming

FTPAddress	Property
The	FTPAddress	property	specifies	the	IP	address	of	the	FTP	site	where
publication	snapshot	files	are	stored.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.FTPAddress	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Network	address	of	the	FTP	site.

Remarks
FTPAddress	is	an	optional	property.

If	specified,	the	FTPLogin,	FTPPassword,	and	FTPPort	properties	are	also
used.

This	option	is	useful	when	configuring	the	control	to	connect	to	a	Distributor
over	the	Internet,	where	the	Distributor	working	directory	is	not	directly
accessible.	Setting	this	property	forces	the	control	to	download	all	publication
snapshot	files	using	File	Transfer	Protocol	(FTP)	before	applying	them	at	the
Subscriber.

These	properties	should	not	be	required	when	you	dynamically	determine	the
FTP	login	properties	by	querying	the	publication.	Provided	for	backward
compatibility	only:	these	properties	will	not	be	effective	when	used	against
Microsoft®	SQL	Server™	2000	publications	unless	the	Subscriber	is	a
Microsoft	SQL	Server	version	7.0	Subscriber.

Note		The	publication	must	be	enabled	for	the	Internet.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_FTPAddress(BSTR	*pVal);

HRESULT	put_FTPAddress(BSTR	newVal);

See	Also

Distributor	Property

DistributorAddress	Property

Implementing	Replication	Over	the	Internet

JavaScript:hhobj_1.Click()

Replication	Programming

FTPLogin	Property
The	FTPLogin	property	specifies	the	user	name	of	the	FTP	site	where	the
publication	snapshot	files	are	stored.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.FTPLogin	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value FTP	user	name	of	the	FTP	site.

Remarks
The	default	is	anonymous.	These	properties	should	not	be	required	when	you
dynamically	determine	the	FTP	login	properties	by	querying	the	publication.
Provided	for	backward	compatibility	only:	these	properties	will	not	be	effective
when	used	against	Microsoft®	SQL	Server™	2000	publications	unless	the
Subscriber	is	a	Microsoft	SQL	Server	version	7.0	Subscriber.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++

HRESULT	get_FTPLogin(BSTR	*pVal);

HRESULT	put_FTPLogin(BSTR	newVal);

See	Also

FTPAddress	Property

FTPPassword	Property

FTPPort	Property

Replication	Programming

FTPPassword	Property
The	FTPPassword	property	specifies	the	password	of	the	FTP	site	where	the
publication	snapshot	files	are	stored.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.FTPPassword	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Password	of	the	FTP	site.

Remarks
The	default	is	no	password.	Typically,	an	e-mail	address	of	the	form
user@company.com	is	used	for	FTP	passwords.

These	properties	should	not	be	required	when	you	dynamically	determine	the
FTP	login	properties	by	querying	the	publication.	Provided	for	backward
compatibility	only:	these	properties	will	not	be	effective	when	used	against
Microsoft®	SQL	Server™	2000	publications	unless	the	Subscriber	is	a
Microsoft	SQL	Server	version	7.0	Subscriber.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_FTPPassword(BSTR	*pVal);

HRESULT	put_FTPPassword(BSTR	newVal);

See	Also

FTPAddress	Property

FTPLogin	Property

FTPPort	Property

Replication	Programming

FTPPort	Property
The	FTPPort	property	specifies	the	TCP	port	number	of	the	FTP	site	where	the
publication	snapshot	files	are	stored.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.FTPPort	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value TCP	port	number	of	the	FTP	site.

Remarks
The	default	value	is	21.

These	properties	should	not	be	required	when	you	dynamically	determine	the
FTP	login	properties	by	querying	the	publication.	Provided	for	backward
compatibility	only:	these	properties	will	not	be	effective	when	used	against
Microsoft®	SQL	Server™	2000	publications	unless	the	Subscriber	is	a
Microsoft	SQL	Server	version	7.0	Subscriber.

Data	Type
Long

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_FTPPort(long	*pVal);

HRESULT	put_FTPPort(long	newVal);

See	Also

FTPAddress	Property

Replication	Programming

HostName	Property
The	HostName	property	returns	or	sets	the	host	name	used	when	connecting	to
the	Publisher.	This	property	provides	a	value	used	when	the	publication	is
dynamically	filtered	using	the	SQL	Server	HOST_NAME()	function.

Applies	To
SQLMerge	Object

Syntax
object.HostName	[=	value]

Part Description
object Expression	that	evaluates	to	a	SQLMerge	object.
value Value	to	be	returned	by	HOST_NAME()	in	filter

clauses.

Remarks
Use	the	HostName	property	to	set	a	value	for	HOST_NAME()	in	dynamic
filtering.	For	example,	if	the	subset	filter	clause	"rep_id	=	HOST_NAME()"	has
been	specified	for	an	article,	and	if	you	set	the	HostName	property	to	"FBJones"
before	calling	the	Run	method	of	the	SQLMerge	object,	only	rows	having
"FBJones"	in	the	rep_id	column	will	participate	in	the	replication	of	that	article.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++

HRESULT	get_HostName(BSTR	*pVal);

HRESULT	put_HostName(BSTR	newVal);

See	Also

HOST_NAME

JavaScript:hhobj_1.Click()

Replication	Programming

LoginTimeout	Property
The	LoginTimeout	property	specifies	the	maximum	number	of	seconds	to	wait
for	connections	to	be	established.

Applies	To
SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.LoginTimeout	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Number	of	seconds	for	connections	to	be	established.

Remarks
The	default	is	15	seconds.	A	value	of	0	specifies	an	indefinite	wait.

Data	Type
Integer

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_LoginTimeout(short	*pVal);

HRESULT	put_LoginTimeout(short	newVal);

Replication	Programming

MaxDeliveredTransactions	Property
The	MaxDeliveredTransactions	property	sets	or	returns	the	maximum	number
of	transactions	to	be	downloaded	to	Subscribers	during	each	Run	operation.

Applies	To
SQLDistribution	Object

Syntax
object.MaxDeliveredTransactions	[=	value]

Part Description
object Expression	that	evaluates	to	a	SQLDistribution	object.
value Maximum	number	of	transactions	to	be	downloaded.

Remarks
The	default	is	0,	which	means	that	all	available	transactions	are	delivered.	Other
values	can	be	used	to	control	the	number	of	transactions	downloaded	during	a
Run	operation.

Data	Type
Integer

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_MaxDeliveredTransactions(long	*pVal);

HRESULT	put_MaxDeliveredTransactions(long	newVal);

See	Also

UndeliveredCommands	Property

UndeliveredTransactions	Property

Replication	Programming

ProfileName	Property
The	ProfileName	property	returns	or	sets	the	name	of	the	agent	profile	at	the
Distributor	to	be	used	by	the	replication	control.

Applies	To
SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.ProfileName	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Agent	profile	name.

Remarks
If	not	specified,	the	default	profile	for	the	agent	type	is	used.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_ProfileName(BSTR	*pVal);

HRESULT	put_ProfileName(BSTR	newVal);

See	Also

Agent	Profiles

How	to	create	a	replication	agent	profile	(Enterprise	Manager)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Replication	Programming

Publication	Property
The	Publication	property	returns	or	sets	the	name	of	the	publication.

Applies	To
AlternateSyncPartner	Object

SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.Publication	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Publication	name.

Remarks
This	is	a	required	property.	An	error	is	raised	if	it	is	set	to	an	empty	string.

If	using	the	SQL	Distribution	Control	to	synchronize	multiple	publications
configured	to	use	a	shared	agent,	the	value	must	be	ALL.	For	more	information
about	shared	agents,	see	sp_addpublication.

Data	Type
String

Modifiable
Read/write

JavaScript:hhobj_1.Click()

Prototype	C/C++
HRESULT	get_Publication(BSTR	*pVal);

HRESULT	put_Publication(BSTR	newVal);

See	Also

Publisher	Property

PublisherDatabase	Property

Replication	Programming

Publisher	Property
The	Publisher	property	returns	or	sets	the	Publisher	name	where	the	publication
resides.

Applies	To
AlternateSyncPartner	Object

SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.Publisher	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Publisher	name.

Remarks
If	the	PublisherNetwork	and	PublisherAddress	properties	are	specified,	they
will	be	used	instead	of	the	Publisher	property	when	connecting	to	the	Publisher;
otherwise,	Publisher	is	a	required	property.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_Publisher(BSTR	*pVal);

HRESULT	put_Publisher(BSTR	newVal);

See	Also

Publication	Property

PublisherDatabase	Property

Replication	Programming

PublisherAddress	Property
The	PublisherAddress	property	specifies	the	network	address	used	when
connecting	to	the	Publisher	when	the	PublisherNetwork	property	is	specified.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.PublisherAddress	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Network	connection	string.

Remarks
This	is	a	required	property	when	PublisherNetwork	is	set	to	a	value	other	than
DEFAULT_NETWORK.

This	property	is	useful	when	configuring	the	control	to	connect	to	the	Publisher
without	having	to	use	SQL	Server	Client	Network	Utility.

For	example,	if	the	Publisher	is	to	be	accessed	over	the	Internet,
PublisherNetwork	can	be	set	to	TCPIP_SOCKETS	and	PublisherAddress	can
be	set	to	a	specific	IP	address.

If	the	PublisherNetwork	is	TCP/IP_SOCKETS	or	MULTI_PROTOCOL	over
TCP/IP,	the	value	is	in	the	form	of:

'IP	address,	socket'	(i.e.	'111.11.11.11,1433")

Data	Type

String

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_PublisherAddress(BSTR	*pVal);

HRESULT	put_PublisherAddress(BSTR	newVal);

See	Also

PublisherNetwork	Property

Replication	Programming

PublisherChanges	Property
The	PublisherChanges	property	returns	the	total	number	of	Publisher	changes
applied	to	the	Subscriber	during	the	last	Run	operation.

Applies	To
SQLMerge	Object

Syntax
object.PublisherChanges	[=	value]

Part Description
object Expression	that	evaluates	to	a	SQLMerge	object.
value Total	number	of	Publisher	rows	inserted,	deleted,	and

updated.

Data	Type
Long

Modifiable
Read-only

Prototype	C/C++
HRESULT	get_PublisherChanges(long	*pVal);

See	Also

PublisherConflicts	Property

SubscriberChanges	Property

Replication	Programming

PublisherConflicts	Property
The	PublisherConflicts	property	specifies	the	total	number	of	conflicts	that
occurred	at	the	Publisher	during	the	last	Run	operation.

Applies	To
SQLMerge	Object

Syntax
object.PublisherConflicts	[=	value]

Part Description
object Expression	that	evaluates	to	a	SQLMerge	object.
value Number	of	conflicts	that	occurred.

Data	Type
Long

Modifiable
Read-only

Prototype	C/C++
HRESULT	get_PublisherConflicts(long	*pVal);

See	Also

SubscriberConflicts	Property

PublisherChanges	Property

Replication	Programming

PublisherDatabase	Property
The	PublisherDatabase	property	returns	or	sets	the	name	of	the	publication
database.

Applies	To
AlternateSyncPartner	Object

SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.PublisherDatabase	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Publication	database	name.

Remarks
This	is	a	required	property.	An	error	is	raised	if	it	is	set	to	an	empty	string.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++

HRESULT	get_PublisherDatabase(BSTR	*pVal);

HRESULT	put_PublisherDatabase(BSTR	newVal);

See	Also

Publication	Property

Publisher	Property

Replication	Programming

PublisherLogin	Property
The	PublisherLogin	property	sets	or	returns	the	login	name	used	when
connecting	to	the	Publisher.

Applies	To
SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.PublisherLogin	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value User	name	used	to	log	in	to	the	Publisher.

Remarks
This	is	a	required	property	if	PublisherSecurityMode	is	set	to
DB_AUTHENTICATION.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_PublisherLogin(BSTR	*pVal);

HRESULT	put_PublisherLogin(BSTR	newVal);

See	Also

PublisherPassword	Property

PublisherSecurityMode	Property

Replication	Programming

PublisherNetwork	Property
The	PublisherNetwork	property	specifies	the	client	Net-Library	used	when
connecting	to	the	Publisher.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.PublisherNetwork	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value NETWORK_TYPE	constant	that	specifies	the	client

Net-Library	to	use.

Remarks
This	option	is	useful	when	configuring	the	control	to	connect	to	the	Publisher
without	having	to	use	SQL	Server	Client	Network	Utility.

If	the	value	is	not	DEFAULT_NETWORK	(default),	the	DistributorAddress
property	must	be	specified.

Data	Type
NETWORK_TYPE

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_PublisherNetwork(NETWORK_TYPE	*pVal);

HRESULT	put_PublisherNetwork(NETWORK_TYPE	newVal);

See	Also

Publisher	Property

PublisherAddress	Property

Replication	Programming

PublisherPassword	Property
The	PublisherPassword	property	sets	or	returns	the	login	password	used	when
connecting	to	the	Publisher.

Applies	To
SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.PublisherPassword	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Password	used	to	connect	to	the	Publisher.

Remarks
The	default	is	no	password.

This	is	a	required	property	if	PublisherSecurityMode	is	set	to
DB_AUTHENTICATION.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++

HRESULT	get_PublisherPassword(BSTR	*pVal);

HRESULT	put_PublisherPassword	(BSTR	newVal);

See	Also

PublisherLogin	Property

PublisherSecurityMode	Property

Replication	Programming

PublisherRPCLogin	Property
The	PublisherRPCLogin	property	determines	the	login	name	used	by	the
immediate-updating	Subscriber	trigger	RPC	when	connecting	to	the	Publisher.

Applies	To
SQLDistribution	Object

Syntax
object.PublisherRPCLogin	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Login	to	be	used	when	connecting	to	the	Publisher.

Remarks
This	property	is	relevant	only	to	immediate-updating	subscriptions.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_PublisherRPCLogin(BSTR	*pVal);

HRESULT	put_PublisherRPCLogin(BSTR	newVal);

See	Also

PublisherRPCPassword

PublisherRPCSecurityMode

Replication	Programming

PublisherRPCPassword	Property
The	PublisherRPCPassword	property	determines	the	password	used	by	the
immediate-updating	Subscriber	trigger	RPC	when	connecting	to	the	Publisher.

Applies	To
SQLDistribution	Object

Syntax
object.PublisherRPCPasswrod	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Password	string	used	when	connecting	to	the	Publisher.

Remarks
This	property	is	relevant	only	to	immediate-updating	subscriptions.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_PublisherRPCPassword(BSTR	*pVal);

HRESULT	put_PublisherRPCPassword(BSTR	newVal);

See	Also

PublisherRPCLogin

PublisherRPCSecurityMode

Replication	Programming

PublisherRPCSecurityMode	Property
The	PublisherRPCSecurityMode	property	determines	the	security	mode	used
by	the	immediate-updating	Subscriber	trigger	RPC	when	connecting	to	the
Publisher.

Applies	To
SQLDistribution	Object

Syntax
object.PublisherRPCPassword	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Specifies	the	mode	of	security	enforced	during

immediate-updating	Subscriber	RPC	login	at	the
Publisher.	The	value	is	from	the
REPLRPC_SECURITY_TYPE	enumeration.

Remarks
This	property	is	relevant	only	to	immediate-updating	subscriptions.

Data	Type
Long,	enumerated.

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_PublisherRPCPassword(REPLRPC_SECURITY_TYPE	*pVal);

HRESULT	put_PublisherRPCPassword(REPLRPC_SECURITY_TYPE
newVal);

See	Also

PublisherRPCLogin

PublisherRPCPassword

Replication	Programming

PublisherSecurityMode	Property
The	PublisherSecurityMode	property	sets	or	returns	the	security	mode	when
connecting	to	the	Publisher.

Applies	To
SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.PublisherSecurityMode	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value SECURITY_TYPE	constant	that	specifies	the

Publisher	security	mode.

Remarks
If	the	value	is	DB_AUTHENTICATION	(default),	PublisherLogin	and
PublisherPassword	will	be	used	when	connecting	to	the	Publisher.

NT_AUTHENTICATION	is	not	supported	for	PublisherSecurityMode	unless
the	Publisher	runs	on	the	Microsoft®	Windows	NT®	4.0	or	Microsoft
Windows®	2000	operating	system.	NT_AUTHENTICATION	is	not	supported
for	any	of	DistributorSecurityMode,	PublisherSecurityMode,	and
SubscriberSecurityMode	unless	the	computer	on	which	the	replication	control
is	running	uses	the	Windows	NT	4.0	or	Windows	2000	operating	system.

Data	Type
SECURITY_TYPE

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_PublisherSecurityMode(SECURITY_TYPE	*pVal);

HRESULT	put_PublisherSecurityMode(SECURITY_TYPE	newVal);

See	Also

PublisherLogin	Property

PublisherPassword	Property

Replication	Programming

QueryTimeout	Property
The	QueryTimeout	property	returns	or	sets	the	number	of	seconds	allowed	for
internal	queries	to	complete.

Applies	To
SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.QueryTimeout	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Number	of	seconds	allowed	for	internal	queries	to	be

returned.

Remarks
The	default	value	is	30.

A	value	of	0	means	to	wait	indefinitely.

Data	Type
Integer

Modifiable
Read/write

Prototype	C/C++

HRESULT	get_QueryTimeout(short	*pVal);

HRESULT	put_QueryTimeout(short	newVal);

Replication	Programming

ReplicationType	Property
The	ReplicationType	property	returns	or	sets	the	type	of	replication	for	which
the	snapshot	is	to	be	used.

Applies	To

SQLSnapshot	Object

Syntax

object.ReplicationType	[=	value]

Part Description
object Expression	that	evaluates	to	a	SQLSnapshot	object.
value Value	from	the	REPLICATION_TYPE	enumeration.

Remarks

The	types	of	replication	are	transactional	replication	and	merge	replication.

Data	Type

REPLICATION_TYPE

Modifiable

Read/write

Prototype	(C/C++)

HRESULT	ReplicationType(REPLICATION_TYPE	pVal);

HRESULT	ReplicationType(REPLICATION_TYPE*	pVal);

Replication	Programming

SkipErrors	Property
The	SkipErrors	property	returns	or	sets	a	list	of	the	errors	to	be	skipped.

Applies	To
SQLDistribution	Object

Syntax
object.SkipErrors	[=	list]

Part Description
object Expression	that	evaluates	to	a	SQLDistribution	object.
list List	of	the	errors	that	are	to	be	skipped	by	the	control.

Remarks
The	SkipErrors	list	has	this	format:

<native_error_id1>:<native_error_id2>:<native_error_id3>....

Native	error	IDs	are	the	error	numbers	from	the	underlying	database.	Only	the
errors	that	are	encountered	when	applying	replication	transactions	at	the
Subscriber	can	be	skipped.

Data	Type
String

Modifiable
Read/Write

Prototype	C/C++
HRESULT	get_SkipErrors(BSTR	*pList);

HRESULT	put_SkipErrors(BSTR	pList);

See	Also

Handling	Errors	and	Messages	in	Applications

JavaScript:hhobj_1.Click()

Replication	Programming

Source	Property
The	Source	property	returns	or	sets	the	name	of	the	source	where	the	error
occurred.

Applies	To
SQLReplError	Object

Syntax
object.Source	[=	pVal]

Part Description
object Expression	that	evaluates	to	a	SQLReplError	object.
pVal Name	of	the	source	where	the	error	occurred.

Data	Type
String

Modifiable

Read/write

Prototype	(C/C++)

HRESULT	Source(BSTR	pVal);

HRESULT	Source(BSTR*	pVal);

See	Also

Description	Property

ErrorNumber	Property

ErrorNumberString	Property

SourceType	Property

JavaScript:hhobj_1.Click()

Replication	Programming

SourceType	Property
The	SourceType	property	specifies	the	type	of	the	source	of	the	error
information.

Applies	To
SQLReplError	Object

Syntax
object.SourceType	[=	value]

Part Description
object Expression	that	evaluates	to	a	SQLReplError	object.
value Value	from	the	ERRORSOURCE_TYPE

enumeration.

Data	Type
ERRORSOURCE_TYPE

Modifiable
Read/write

Prototype	(C/C++)

HRESULT	SourceType(ERRORSOURCE_TYPE	pVal);

HRESULT	SourceType(ERRORSOURCE_TYPE*	pVal);

See	Also

Description	Property

ErrorNumber	Property

ErrorNumberString	Property

JavaScript:hhobj_1.Click()

Source	Property

Replication	Programming

Subscriber	Property
The	Subscriber	property	specifies	the	name	of	the	Subscriber.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.Subscriber	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Subscriber	name.

Remarks
This	is	a	required	property.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_Subscriber(BSTR	*pVal);

HRESULT	put_Subscriber(BSTR	newVal);

See	Also

SubscriberDatasourceType	Property

Replication	Programming

SubscriberChanges	Property
The	SubscriberChanges	property	specifies	the	total	number	of	Subscriber
changes	applied	at	the	Publisher	during	the	last	Run	operation.

Applies	To
SQLMerge	Object

Syntax
[value	=]	object.SubscriberChanges

Part Description
object Expression	that	evaluates	to	a	SQLMerge	object.
value Total	number	of	rows	inserted,	deleted,	and	updated.

Data	Type
Long

Modifiable
Read-only

Prototype	C/C++
HRESULT	get_SubscriberChanges(long	*pVal);

See	Also

PublisherChanges	Property

SubscriberConflicts	Property

Replication	Programming

SubscriberConflicts	Property
The	SubscriberConflicts	property	specifies	the	total	number	of	conflicts	that
occurred	during	the	upload	operation	from	the	Subscriber.

Applies	To
SQLMerge	Object

Syntax
object.SubscriberConflicts

Part Description
object Expression	that	evaluates	to	a	SQLMerge	object.

Data	Type
Long

Modifiable
Read-only

Prototype	C/C++
HRESULT	get_SubscriberConflicts(long	*pVal);

See	Also

PublisherConflicts	Property

SubscriberChanges	Property

Replication	Programming

SubscriberDatabase	Property
The	SubscriberDatabase	property	specifies	the	name	of	the	Subscriber
database.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.SubscriberDatabase	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Subscriber	database	name.

Remarks
This	is	a	required	property	if	SubscriberDatasourceType	is	SQLSERVER.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_SubscriberDatabase(BSTR	*pVal);

HRESULT	put_SubscriberDatabase(BSTR	newVal);

See	Also

SubscriberDatabasePath	Property

Replication	Programming

SubscriberDatabasePath	Property
The	SubscriberDatabasePath	property	specifies	the	path	to	a	Microsoft®	Jet
4.0	database	or	Microsoft	SQL	Server™	detached	database	or	subscription	file.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.SubscriberDatabasePath	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Path	to	a	Jet	database	or	SQL	Server	detached	database

or	subscription	file.

Remarks
This	is	a	required	property	if	SubscriberDatasourceType	is	JET4_DATABASE,
or	if	you	are	using	the	DBADDOPTION	constants	ATTACH_DATABASE	or
ATTACH_SUBSCRIPTION	when	calling	AddSubscription.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++

HRESULT	get_SubscriberDatabasePath(BSTR	*pVal);

HRESULT	put_SubscriberDatabasePath(BSTR	newVal);

See	Also

AddSubscription	Method

DBADDOPTION

SubscriberDatasourceType	Property

Replication	Programming

SubscriberDatasourceType	Property
The	SubscriberDatasourceType	property	specifies	the	type	of	Subscriber	data
source.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.SubscriberDatasourceType	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value DATASOURCE_TYPE	constant	that	specifies	the	type

of	database	at	the	Subscriber.

Remarks
The	default	is	SQL_SERVER.

Data	Type
DATASOURCE_TYPE

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_SubscriberDatasourceType(
DATASOURCE_TYPE	*pVal);

HRESULT	put_SubscriberDatasourceType(
DATASOURCE_TYPE	newVal);

See	Also

SubscriberDatabasePath	Property

Replication	Programming

SubscriberLogin	Property
The	SubscriberLogin	property	specifies	the	login	name	used	connecting	to	the
Subscriber.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.SubscriberLogin	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Subscriber	login	name.

Remarks
This	is	a	required	property	if	SubscriberSecurityMode	is	set	to
DB_AUTHENTICATION.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_SubscriberLogin(BSTR	*pVal);

HRESULT	put_SubscriberLogin(BSTR	newVal);

See	Also

SubscriberPassword	Property

SubscriberSecurityMode	Property

Replication	Programming

SubscriberPassword	Property
The	SubscriberPassword	property	specifies	the	login	password	used	when
connecting	to	the	Subscriber.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.SubscriberPassword	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Subscriber	password	string.

Remarks
This	property	is	used	only	when	SubscriberSecurityMode	is	set	to
DB_AUTHENTICATION.

The	default	is	no	password.

Data	Type
String

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_SubscriberPassword(BSTR	*pVal);

HRESULT	put_SubscriberPassword(BSTR	newVal);

See	Also

SubscriberLogin	Property

SubscriberSecurityMode	Property

Replication	Programming

SubscriberSecurityMode	Property
The	SubscriberSecurityMode	property	specifies	the	security	mode	used	when
connecting	to	the	Publisher.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.SubscriberSecurityMode	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value SECURITY_TYPE	constant	that	specifies	the	security

mode	enforced	at	the	Subscriber.

Remarks
If	the	value	is	DB_AUTHENTICATION	(default),	SubscriberLogin	and
SubscriberPassword	will	be	used	when	connecting	to	the	Subscriber.

NT_AUTHENTICATION	is	not	supported	for	SubscriberSecurityMode	unless
the	Subscriber	runs	on	the	Microsoft®	Windows	NT®	4.0	or	Microsoft
Windows®	2000	operating	systems.	NT_AUTHENTICATION	is	not	supported
for	any	of	DistributorSecurityMode,	PublisherSecurityMode,	and
SubscriberSecurityMode	unless	the	computer	on	which	the	replication	control
is	running	uses	the	Windows	NT	4.0	or	Windows	2000	operating	system.

Data	Type
SECURITY_TYPE

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_SubscriberSecurityMode(SECURITY_TYPE	*pVal);

HRESULT	put_SubscriberSecurityMode(SECURITY_TYPE	newVal);

See	Also

SubscriberLogin	Property

SubscriberPassword	Property

Replication	Programming

SubscriptionName	Property
The	SubscriptionName	property	specifies	a	display	name	for	the	subscription.
This	name	is	used	in	the	Windows	Synchronization	Manager	user	interface.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.Subscription	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value Name	of	the	Subscription.

Remarks
If	SubscriptionName	is	not	specified,	a	subscription	name	is	set	using
Subscriber	name,	Subscriber	database,	and	publication.

The	SubscriptionName	property	is	not	persisted	anywhere	except	in	the
operating	system	registry	for	the	current	user	Synchronization	manager	settings.
All	subsequent	merges	will	show	the	property	to	be	formatted:

subscribername:subscriberdatabase	

This	is	consistent	with	the	way	subscription	names	are	shown	in	SQL	Server
Enterprise	Manager.

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	get_SubscriptionName(BSTR	*pVal);

HRESULT	put_SubscriptionName(BSTR	newVal);

Replication	Programming

SubscriptionPriority	Property
The	SubscriptionPriority	returns	or	sets	the	priority	of	the	subscription.

Applies	To
SQLMerge	Object

Syntax
object.SubscriptionPriority	[=	value]

Part Description
object Expression	that	evaluates	to	a	SQLMerge	object.
value Subscription	priority	value	from	0.0	through	100.0,

inclusive.

Remarks
If	the	SubscriptionPriorityType	property	has	the	value	GLOBAL_PRIORITY,
use	this	property	to	set	the	priority.

Data	Type
Single/Float

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_SubscriptionPriority(float	*pVal);

HRESULT	put_SubscriptionPriority(float	newVal);

See	Also

Subscriber	Types	and	Conflicts

SUBSCRIPTION_PRIORITY_TYPE

SubscriptionPriorityType	Property

JavaScript:hhobj_1.Click()

Replication	Programming

SubscriptionPriorityType	Property
The	SubscriptionPriorityType	property	specifies	how	the	subscription	priority
is	determined.

Applies	To
SQLMerge	Object

Syntax
object.SubscriptionType	[=	value]

Part Description
object Expression	that	evaluates	to	a	SQLMerge	object.
value SUBSCRIPTION_PRIORITY_TYPE	constant	that

specifies	how	the	subscription	priority	is	determined.

Remarks
The	subscription	priority	can	be	assigned	or	assume	the	priority	value	of	the
Publisher.	If	the	value	of	the	property	is	GLOBAL_PRIORITY,	use	the
SubscriptionPriority	property	to	set	the	priority.

Data	Type
SUBSCRIPTION_PRIORITY_TYPE

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_SubscriptionPriorityType(SUBSCRIPTION_PRIORITY_TYPE
*pVal);

HRESULT	put_SubscriptionPriorityType(SUBSCRIPTION_PRIORITY_TYPE
newVal);

See	Also

Subscriber	Types	and	Conflicts

SubscriptionPriority	Property

JavaScript:hhobj_1.Click()

Replication	Programming

SubscriptionType	Property
The	SubscriptionType	property	specifies	whether	the	subscription	is	push,	pull,
or	anonymous.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.SubscriptionType	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value SUBSCRIPTION_TYPE	constant	that	specifies	the

type	of	subscription.

Remarks
The	publication	must	be	configured	to	support	the	specified	subscription	type.

The	default	is	ANONYMOUS.

Data	Type
SUBSCRIPTION_TYPE

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_SubscriptionType(SUBSCRIPTION_TYPE	*pVal);

HRESULT	put_SubscriptionType(SUBSCRIPTION_TYPE	newVal);

Replication	Programming

SynchronizationType	Property
The	SynchronizationType	property	specifies	whether	the	subscription	needs	to
be	initially	synchronized.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.SubscriptionType	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
value SYNCHRONIZATION_TYPE	constant	that	specifies

whether	initial	synchronization	will	occur.

Remarks
The	default	is	AUTOMATIC.

Data	Type
SYNCHRONIZATION_TYPE

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_SynchronizationType(SYNCHRONIZATION_TYPE	*pVal);

HRESULT	put_SynchronizationType(SYNCHRONIZATION_TYPE	newVal);

Replication	Programming

SyncToAlternate	Property
The	SyncToAlternate	property	returns	or	sets	whether	the	synchronization	is	to
an	alternate	synchronization	partner.

Applies	To

SQLMerge	Object

Syntax

object.SyncToAlternate	[=	value]

Part Description
object Expression	that	evaluates	to	a	SQLMerge	object.
value If	set	to	True,	an	alternate	synchronization	partner	is

used.

Remarks

To	select	an	alternate	synchronization	partner,	the	Publisher,
PublisherDatabase,	Publication,	and	Distributor	properties	of	the	SQLMerge
object	should	be	set	to	the	corresponding	property	values	of	an
AlternateSyncPartner	object	before	the	Run	method	of	the	SQLMerge	object
is	called.

Data	Type

Boolean

Modifiable

Read/write

Prototype	(C/C++)

HRESULT	SyncToAlternate(VARIANT_BOOL	pVal);

HRESULT	SyncToAlternate(VARIANT_BOOL*	pVal);

See	Also

AlternateSyncPartner	Object

AlternateSyncPartners	Collection

Distributor	Property

Publication	Property

Publisher	Property

PublisherDatabase	Property

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Replication	Programming

UndeliveredCommands	Property
The	UndeliveredCommands	property	specifies	the	number	of	commands
currently	available	to	download	to	the	Subscriber.

Applies	To
SQLDistribution	Object

Syntax
object.UndeliveredCommands

Part Description
object Expression	that	evaluates	to	a	SQLDistribution	object.

Data	Type
Long

Modifiable
Read-only

Prototype	C/C++
HRESULT	get_UndeliveredCommands(long	*pVal);

See	Also

MaxDeliveredTransactions	Property

UndeliveredTransactions	Property

Replication	Programming

UndeliveredTransactions	Property
The	UndeliveredTransactions	property	returns	the	number	of	transactions
currently	available	to	download	to	the	Subscriber.

Applies	To
SQLDistribution	Object

Syntax
object.UndeliveredTransactions

Part Description
object Expression	that	evaluates	to	a	SQLDistribution	object.

Data	Type
Long

Modifiable
Read-only

Prototype	C/C++
HRESULT	get_UndeliveredTransactions(long	*pVal);

See	Also

MaxDeliveredTransactions	Property

UndeliveredCommands	Property

Replication	Programming

UseInteractiveResolver	Property
The	UseInteractiveResolver	property	returns	or	sets	whether	the	interactive
resolver	is	used	during	reconciliation.

Applies	To

SQLMerge	Object

Syntax

object.UseInteractiveResolver	[=	value]

Part Description
object Expression	that	evaluates	to	a	SQLMerge	object.
value If	set	to	True,	the	interactive	resolver	is	used.

Remarks

The	interactive	resolver	is	displayed	for	each	row	in	which	a	conflict	is	detected.
If	the	property	is	changed	from	True	to	False	during	a	merge	replication,	all
subsequent	conflicts	will	be	handled	by	the	default	resolver	or	the	resolver
specified	when	the	article	was	created.

Data	Type

Boolean

Modifiable

Read/write

Prototype	(C/C++)

HRESULT	UseInteractiveResolver(VARIANT_BOOL	pVal);

HRESULT	UseInteractiveResolver(VARIANT_BOOL*	pVal);

Replication	Programming

Validate	Property
The	Validate	property	specifies	the	type	of	data	validation	to	perform	on	the
Subscriber	data	at	the	end	of	the	Run.

Applies	To
SQLMerge	Object

Syntax
object.Validate	[=	value]

Part Description
object Expression	that	evaluates	to	a	SQLMerge	object.
value VALIDATE_TYPE	constant	that	specifies	the	type	of

data	validation	to	perform.

Data	Type
VALIDATE_TYPE

Modifiable
Read/write

Prototype	C/C++
HRESULT	get_Validate(VALIDATE_TYPE	newVal);

HRESULT	put_Validate(VALIDATE_TYPE*	pVal);

Replication	Programming

WorkingDirectory	Property
The	WorkingDirectory	property	returns	or	sets	the	working	directory	to	which
snapshot	files	are	transferred	using	FTP	when	that	option	is	specified.

Applies	To

SQLDistribution	Object

SQLMerge	Object

Syntax

object.WorkingDirectory	[=	path]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
path Fully	qualified	path	to	the	working	directory	for	copied

snapshots.

Data	Type

String

Modifiable

Read/write

Prototype	(C/C++)

HRESULT	WorkingDirectory(BSTR	pVal);

HRESULT	WorkingDirectory(BSTR*	pVal);

Replication	Programming

Replication	ActiveX	Control	Methods
This	section	defines	the	methods	of	the	replication	Microsoft®	ActiveX®
control	objects	and	collections.

Methods
Add	Method

AddReplError	Method

AddSubscription	Method

CopySubscription	Method

DropSubscription	Method

Initialize	Method

ReinitializeSubscription	Method

Run	Method

SetFailoverMode	Method

Terminate	Method

Replication	Programming

Add	Method
The	Add	method	adds	a	SQLReplError	object	to	a	SQLReplErrors	collection.

Applies	To
SQLReplErrors	Collection

Syntax
collection.Add	object

Part Description
collection Expression	that	evaluates	to	a	SQLReplErrors

collection.
object Expression	that	evaluates	to	a	SQLReplError	object.

Remarks
The	AddReplError	method	can	be	used	to	add	an	error	to	a	SQLReplErrors
collection	without	creating	a	SQLReplError	object	first.

Prototype	(C/C++)
HRESULT	Add(
				ISQLReplError*	pISQLReplError);

See	Also

AddReplError	Method

SQLReplError	Object

Replication	Programming

AddReplError	Method
The	AddReplError	method	adds	a	new	error	to	a	SQLReplErrors	collection.

Applies	To
SQLReplErrors	Collection

Syntax
collection.AddReplError	Description,	Source,	ErrorNumber,	_
				ErrorSourceType,	ErrorNumberString

Part Description
collection Expression	that	evaluates	to	a	SQLReplErrors

collection.
Description String	that	describes	the	error.
Source String	that	describes	the	component	that	generated	the

error.
ErrorNumber Long	integer	code	for	the	error.
ErrorSourceType Value	from	the	ERRORSOURCE_TYPE

enumerating	the	type	of	error	source.
ErrorNumberString String	representation	of	the	error	number.

Remarks
The	AddReplError	method	adds	an	error	to	a	SQLReplErrors	collection
without	the	caller	explicitly	creating	a	SQLReplError	object.	The	Add	method
can	be	used	to	add	a	SQLReplError	object	to	a	SQLReplErrors	collection.

Prototype	(C/C++)
HRESULT	AddReplError(
				BSTR	bstrDescription,

				BSTR	bstrSource,
				long	lErrorNumber,
				ERRORSOURCE_TYPE	ErrorSourceType,
				BSTR	bstrErrorNumberString);

See	Also

Add	Method

ERRORSOURCE_TYPE

SQLReplError	Object

Replication	Programming

AddSubscription	Method
The	AddSubscription	method	adds	a	new	or	existing	subscription	based	on	the
specified	control	properties.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.AddSubscription	DBAddOption,	SubscriptionHost

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
DBAddOption Option	to	add;	use	a	value	from	DBADDOPTION.
SubscriptionHost Subscription	host;	use	a	value	from

SUBSCRIPTION_HOST.

Remarks
Push	subscriptions	are	not	currently	supported	by	this	method.

If	DBAddOption	is	set	to	ATTACH_DATABASE	and
SubscriberDatasourceType	is	set	to	SQL_SERVER,	AddSubscription	can
work	only	with	single-file	databases.	Use	the	SubscriberDatabasePath
property	to	specify	the	name	and	path	of	the	.mdf	file	to	attach.

If	DBAddOption	is	ATTACH_SUBSCRIPTION,	use	SubscriberDatabasePath
to	specify	the	name	and	path	of	the	Microsoft	Subscription	File	(.msf).	This	file
can	be	created	with	the	CopySubscription	method.

AddSubscription	also	supports	creating	a	new	Subscriber	database,	creating	a
new	subscription	for	an	existing	database,	and	registering	an	existing
subscription	with	Windows	Synchronization	Manager.

In	Microsoft®	Visual	Basic®,	AddSubscription	is	a	Sub	method	and	does	not
return	a	value.

Prototype	C/C++
HRESULT	AddSubscription(
				DBADDOPTION	DBAddOption,
				SUBSCRIPTION_HOST	SubscriptionHost);

Return	code Description
S_OK Method	succeeded.
E_FAIL General	failure	occurred.	Check	error

records	for	detailed	information.
REPLX_E_DBEXISTS Specified	database	already	exists.
REPLX_E_DBNOTFOUND Specified	database	does	not	exist.
REPLX_E_SUBEXISTS Specified	subscription	already	exists.
REPLX_E_RETRYFAILUREFailure	occurred	that	might	require	retrying

the	last	operation.

See	Also

CopySubscription	Method

DropSubscription	Method

SubscriberDatasourceType	Property

SubscriberDatabasePath	Property

Replication	Programming

CopySubscription	Method
The	CopySubscription	method	copies	the	entire	subscription	database	to	the	file
location	specified	by	the	parameter.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.CopySubscription	filespec

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
filespec File	name	and	path	to	which	subscription	database	is

copied.

Remarks
CopySubscription	copies	a	specially	prepared	database	subscription	file
(typically	with	an	.msf	extension)	to	a	Subscriber,	attaches	it,	and	receives	an
immediately	synchronized	subscription	at	the	original	Publisher.
CopySubscription	creates	the	.msf	file.	Use	the	AddSubscription	method	with
the	ATTACH_SUBSCRIPTION	option	to	create	the	new	subscription	from	the
.msf	file.

You	can	use	the	CopySubscription	method	to	copy	a	subscription	database	that
contains	more	than	one	subscription.

Prototype	(C/C++)
HRESULT	CopySubscription(BSTR	bstrSubscriptionFileName);

See	Also

AddSubscription	Method

DropSubscription	Method

Replication	Programming

DropSubscription	Method
The	DropSubscription	method	drops	the	subscription	having	the	specified
control	properties.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.DropSubscription	DBDropOption

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
DBDropOption Option	to	drop;	use	a	value	from	DBDROPOPTION.

Remarks
Push	subscriptions	are	not	currently	supported	by	this	method.

If	DROP_DATABASE	is	specified,	the	database	is	dropped	even	when	the
subscription	specified	by	the	SubscriptionName	property	does	not	exist.	Error
notification	is	not	provided.

DropSubscription	also	supports	dropping	the	subscription	without	dropping	the
database	and	unregistering	the	subscription	from	Windows	Synchronization
Manager.

In	Microsoft®	Visual	Basic®,	DropSubscription	is	a	Sub	method	and	does	not
return	a	value.

Prototype	C/C++
HRESULT	DropSubscription(

				DBDROPOPTION	DBDropOption);

Return	code Description
S_OK Method	succeeded.
E_FAIL General	failure	occurred.	Check	error

records	for	detailed	information.
REPLX_E_SUBNOTFOUNDSpecified	subscription	does	not	exist.
REPLX_E_RETRYFAILURE Failure	occurred	that	might	require	retrying

the	last	operation.

See	Also

AddSubscription	Method

CopySubscription	Method

DBDROPOPTION

SubscriptionName	Property

Replication	Programming

Initialize	Method
The	Initialize	method	validates	the	control	properties	and	establishes	all
database	connections.

Applies	To
SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.Initialize

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.

Remarks
Control	properties	that	define	the	Publisher,	publication,	Distributor,	and
Subscriber	(for	the	Distribution	and	Merge	controls)	must	be	set	before	calling
Initialize.

In	Microsoft®	Visual	Basic®,	Initialize	is	a	Sub	method	and	does	not	return	a
value.

Initialize	should	not	be	called	prior	to	using	the	AddSubscription	method	to
add	a	new	subscription,	or	prior	to	using	the	DropSubscription	method	to	drop
an	existing	subscription.

Prototype	(C/C++)
HRESULT	Initialize();

Return	code Description

S_OK Method	succeeded.
E_FAIL General	failure	occurred.	Check	error

records	for	detailed	information.
REPLX_E_DBNOTFOUND Specified	database	does	not	exist.
REPLX_E_SUBNOTFOUND Specified	subscription	does	not	exist

(SQLDistribution	and	SQLMerge
objects	only).

REPLX_E_SUBEXPIRED Subscription	has	expired
(SQLDistribution	and	SQLMerge
objects	only).

REPLX_E_PROFILENOTFOUNDSpecified	profile	does	not	exist.
REPLX_E_RETRYFAILURE Failure	occurred	that	might	require

retrying	the	last	operation.

See	Also

Developing	Replication	Applications	Using	ActiveX	Controls

Replication	Programming

ReinitializeSubscription	Method
The	ReinitializeSubscription	method	configures	a	subscription	to	reapply	the
initial	snapshot	and	subsequent	changes	during	the	next	Run	operation.

Applies	To
SQLDistribution	Object

SQLMerge	Object

Syntax
object.ReinitializeSubscription	[bUploadBeforeReinit]

Part Description
object Expression	that	evaluates	to	a	SQLMerge	object.
bUploadBeforeReinit If	True,	the	changes	in	the	subscription	database	are

uploaded	to	the	Publisher	before	the	snapshot	is
applied	at	the	Subscriber.	The	default	is	False.

Remarks
ReinitializeSubscription	is	a	method	of	both	the	SQLDistribution	and
SQLMerge	objects.	ReinitializeSubscription	for	the	SQLMerge	object	has	the
bUploadBeforeReinit	parameter.	For	the	SQLDistribution	object,
ReinitializeSubscription	has	no	parameters.

In	Microsoft®	Visual	Basic®,	ReinitializeSubscription	is	a	Sub	method	and
does	not	return	a	value.

Prototype	(C/C++)
HRESULT	ReinitializeSubscription(VARIANT_BOOL	bUploadBeforeReinit);

Return	code Description
S_OK Method	succeeded.

E_FAIL General	failure	occurred.	Check	error
records	for	detailed	information.

REPLX_E_DEADLOCK Deadlock	occurred.
REPLX_E_RETRYFAILUREFailure	occurred	that	might	require	retrying

the	last	operation.

Replication	Programming

Run	Method
The	Run	method	executes	the	replication	process	using	the	control	properties.

Applies	To
SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.Run

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.

Remarks
The	control	must	call	Initialize	before	calling	the	Run	method.

In	Microsoft®	Visual	Basic®,	Run	is	a	Sub	method	and	does	not	return	a	value.

Prototype	(C/C++)
HRESULT	Run();

Return	code Description
S_OK Method	succeeded.
E_FAIL General	failure	occurred.	Check

error	records	for	detailed
information.

REPLX_E_DEADLOCK Deadlock	occurred.
REPLX_E_RETRYFAILURE Failure	occurred	that	might	require

retrying	the	last	operation.

REPLX_S_VALIDATIONFAILED Validation	failure	occurred.
REPLX_S_CONFLICTSOCCURREDConflicts	occurred	while	merging

changes	(SQLMerge	object	only).

See	Also

Developing	Replication	Applications	Using	ActiveX	Controls

Replication	Programming

SetFailoverMode	Method
The	SetFailoverMode	method	sets	the	Subscriber	update	mode	when	adding
subscriptions	to	use	immediate	(DTC)	updates	or	queued	updates,	or	support
immediate	updating	with	a	queued	updating	failover.

Applies	To
SQLDistribution	Object

Syntax
object.SetFailoverMode	FailoverMode

Part Description
object Expression	that	evaluates	to	a	SQLDistribution	object.
FailoverMode Value	from	the	REPL_FAILOVER_MODE

enumeration.

Prototype	(C/C++)
HRESULT	SetFailoverMode(REPL_FAILOVER_MODE	FailoverMode);

See	Also

REPL_FAILOVER_MODE

Replication	Programming

Terminate	Method
The	Terminate	method	terminates	the	replication	process	and	closes	all	database
connections.

Applies	To
SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Syntax
object.Terminate

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list.

Remarks
After	using	Terminate,	the	control	host	must	call	Initialize	before	again	calling
Run.

In	Microsoft®	Visual	Basic®,	Terminate	is	a	Sub	method	and	does	not	return	a
value.

Prototype	(C/C++)
HRESULT	Terminate();

Return	code Description
S_OK Method	succeeded.
E_FAIL General	failure	occurred.	Check	error

records	for	detailed	information.
REPLX_E_RETRYFAILUREFailure	occurred	that	might	require	retrying

the	last	operation.

See	Also

Developing	Replication	Applications	Using	ActiveX	Controls

Replication	Programming

Replication	ActiveX	Control	Events
This	section	defines	the	events	of	the	replication	Microsoft®	ActiveX®	control
objects	and	collections.

Events
Notify	Event

Status	Event

Replication	Programming

Notify	Event
The	Notify	event	is	raised	when	an	error	is	added	to	the	SQLReplErrors
collection	by	a	replication	Microsoft®	ActiveX®	control.

Applies	To
SQLReplErrors	Collection

Prototype	(Visual	Basic)
Sub	Objectvar_Notify(_
				ByVal	Status	As	REPLERRXLib.AGENT_STATUS	_
				ByVal	Message	As	String)

Part Description
Objectvar Expression	that	evaluates	to	a	SQLReplErrors

collection.
Status Value	that	indicates	the	type	of	error	from	the

AGENT_STATUS	enumeration.
Message Description	of	the	error.

Remarks
To	receive	the	Notify	event,	the	program	must	declare	Objectvar	WithEvents	of
type	REPLERRXLib.SQLReplErrors.

This	event	is	not	available	through	the	ISQLReplErrors	interface	of	the
replication	ActiveX	controls.

Prototype	(C/C++)
HRESULT	Notify(
				AGENT_STATUS	Status,
				BSTR	Message);

See	Also

AGENT_STATUS

Replication	Programming

Status	Event
The	Status	event	returns	information	about	significant	occurrences	in	the
operation	of	a	replication	Microsoft®	ActiveX®	control.

Applies	To
SQLDistribution	Object

SQLMerge	Object

SQLSnapshot	Object

Prototype	(Visual	Basic)
Function	Objectvar_Status(_
				ByVal	Message	As	String,		_
				ByVal	Percent	As	Long)	_
				As	STATUS_RETURN_CODE

Part Description
Objectvar Expression	that	evaluates	to	an	object	in	the	Applies	To

list.
Message Description	of	the	significant	occurrence.
Percent Percentage	of	the	operation	completed	successfully,

from	0	through	100.

Remarks
To	receive	the	Status	event,	a	Microsoft	Visual	Basic®	program	must	declare
Objectvar	WithEvents	of	the	appropriate	type.

STATUS_RETURN_CODE	is	an	enumeration	that	specifies	the	values	that	can
be	returned	from	the	Status	callback	function	(event).

Prototype	(C/C++)

HRESULT	Status(
				BSTR	Message,	
				Long	Percent,	
				STATUS_RETURN_CODE	*pReturnCode);

See	Also

Developing	Replication	Applications	Using	ActiveX	Controls

STATUS_RETURN_CODE

Replication	Programming

Replication	ActiveX	Control	Constants
This	section	defines	the	enumerated	data	types	that	are	used	as	parameters	and
return	values	in	Microsoft®	ActiveX®	replication	control	properties,	methods,
and	events.

Replication	Programming

AGENT_STATUS
The	AGENT_STATUS	constants	provide	agent	status	codes	that	are	returned	by
the	Notify	event	of	the	SQLReplErrors	collection.

Constant Value Description
REPLAGENT_FAIL 4 Agent	operation	failed.
REPLAGENT_IN_PROGRESS 1 Agent	operation	in	progress.
REPLAGENT_RETRY 3 Agent	operation	failed.
REPLAGENT_SUCCEED 2 Agent	operation	completed

successfully.

Remarks
REPLAGENT_RETRY	indicates	the	agent	operation	failed	with	errors	that	may
not	recur	if	the	operation	is	retried	at	a	later	time.	The	control	does	not	retry	the
operation	unless	the	calling	program	directs	it	to	do	so.

See	Also

Notify	Event

SQLReplErrors	Collection

Replication	Programming

DATASOURCE_TYPE
The	DATASOURCE_TYPE	constants	provide	data	source	type	values	for	the
SubscriberDatasourceType	property.

Constant Value Description
DB2_UNIVERSAL 6 DB2	Universal	database	Subscriber
EXCHANGE 4 Microsoft®	Exchange	Subscriber
JET4_DATABASE 2 Microsoft	Jet	4.0	database	Subscriber
ODBC_DSN 1 ODBC	data	source	Subscriber
OLEDB_DATASOURCE 3 OLE	DB	data	source	Subscriber
ORACLE 5 Oracle	database	Subscriber
SQL_SERVER 0 Microsoft	SQL	Server™	Subscriber

See	Also

SubscriberDatasourceType	Property

Replication	Programming

DBADDOPTION
The	DBADDOPTION	constants	specify	if	the	Subscriber	database	exists	or	if	it
must	be	created	or	attached,	or	if	the	subscription	must	be	attached,	when	calling
the	AddSubscription	method	of	the	SQLDistribution	and	SQLMerge	objects.

Constant Value Description
ATTACH_DATABASE 2 Attaches	a	Subscriber	database	file,

typically	an	.mdf	(Microsoft®	SQL
Server™	Subscribers	only).

ATTACH_SUBSCRIPTION 3 Attaches	a	subscription	file,
typically	an	.msf	(Microsoft
Subscription	File).

CREATE_DATABASE 1 Creates	the	Subscriber	database
(SQL	Server	Subscribers	only).

EXISTING_DATABASE 0 Uses	an	existing	Subscriber
database.

REGISTER_SUBSCRIPTION4 Registers	the	existing	subscription
with	Windows	Synchronization
Manager.

See	Also

AddSubscription	Method

Replication	Programming

DBDROPOPTION
The	DBDROPOPTION	constants	specify	whether	the	Subscriber	database
should	be	dropped	when	calling	the	DropSubscription	method	of	the
SQLDistribution	and	SQLMerge	objects.

Constant Value Description
DROP_DATABASE 1 Drops	the	Subscriber	database

and	the	subscription,	if
specified.

LEAVE_DATABASE 0 Drops	the	subscription	without
dropping	the	Subscriber
database.

UNREGISTER_SUBSCRIPTION 2 Unregisters,	but	does	not	drop,
the	subscription.

See	Also

DropSubscription	Method

Replication	Programming

ERRORSOURCE_TYPE
The	ERRORSOURCE_TYPE	constants	provide	values	for	the	SourceType
property	of	the	SQLReplError	object.

Constant Value Description
INVALID_SOURCE_TYPE 0 Error	source	type	is	invalid.
MERGE_PROCESS 9 Merge	process	error.
MERGE_PROVIDER 8 Merge	replication	provider	error.
NET_LIBRARY 6 Net-Library	error.
ODBC_API 4 ODBC	API	error.
OPERATING_SYSTEM 3 Operating	system	error.
REPL_CONTROL 2 Replication	ActiveX®	control	error.
SQL_COMMAND 1 SQL	command	error.
SQLDMO 7 SQL	DMO	error.
SQLSERVER_ENGINE 5 Microsoft®	SQL	Server™	error.

See	Also

SourceType	Property

Replication	Programming

EXCHANGE_TYPE
The	EXCHANGE_TYPE	constants	are	used	with	the	ExchangeType	property
of	the	SQLMerge	object	to	specify	whether	merge	replication	changes	should	be
uploaded	to	the	Publisher,	downloaded	to	the	Subscriber,	or	both	(uploaded	and
then	downloaded).

Constant Value Description
UPLOAD 1 Only	merge	Subscriber	changes	with	the

Publisher.
DOWNLOAD 2 Only	merge	Publisher	changes	with	the

Subscriber.
BIDIRECTIONAL 3 Merge	all	changes	between	the	Publisher	and

Subscriber	(default).

Remarks
You	should	use	a	BIDIRECTIONAL	synchronization	unless	you	have	a	specific
reason	for	separating	the	UPLOAD	and	DOWNLOAD	phases.

See	Also

ExchangeType	Property

Replication	Programming

FILE_TRANSFER_TYPE
The	FILE_TRANSFER_TYPE	constants	specify	the	type	of	transfer	for
snapshot	files.

Constant Value Description
FILETRANSFERFTP 1 Download	snapshot	files	using	FTP.
FILETRANSFERUNC0 Apply	snapshot	from	a	UNC	network

share.

See	Also

FileTransferType	Property

Replication	Programming

NETWORK_TYPE
The	NETWORK_TYPE	constants	provide	network	protocol	type	values	for	the
DistributorNetwork	and	PublisherNetwork	properties.

Constant Value Description
DEFAULT 0 Use	the	current	configured	client	Net-

Library	(default).
MULTI_PROTOCOL2 Multiprotocol	Net-Library.
TCPIP_SOCKETS 1 TCP/IP	Sockets	Net-Library.

See	Also

DistributorNetwork	Property

PublisherNetwork	Property

Replication	Programming

REPL_FAILOVER_MODE
The	REPL_FAILOVER_MODE	enumeration	specifies	the	Subscriber	update
mode	when	adding	subscriptions	to	use	immediate	updating	or	queued	updating
options	with	transactional	replication.

Constant Value Description
FAILOVER_IMMEDIATE 1 Immediate	updating.
FAILOVER_NONE 0 No	updating	from	Subscriber.
FAILOVER_QUEUED 2 Queued	updating.

See	Also

SetFailoverMode	Method

Replication	Programming

REPLICATION_TYPE
The	REPLICATION_TYPE	enumeration	specifies	the	type	of	replication	for
which	the	snapshot	is	to	be	used.

Constant Value Description
MERGE 2 Specifies	merge	replication.
TRANSACTIONAL1 Specifies	transactional	replication	or

snapshot	replication.

See	Also

ReplicationType	Property

Replication	Programming

REPLRPC_SECURITY_TYPE
The	REPLRPC_SECURITY_TYPE	constants	provide	data	source	type	values
for	the	PublisherRPCSecurityMode	property.

Constant Value Description
RPC_STANDARD_MODE0 Dynamic	RPC	connection	is	used.
RPC_STATIC_MODE 2 Static	sysservers	entry	is	used	for

RPC.

See	Also

PublisherRPCSecurityMode

Replication	Programming

SECURITY_TYPE
The	SECURITY_TYPE	specifies	security	type	values	for	the
DistributorSecurityMode,	PublisherSecurityMode,	and
SubscriberSecurityMode	properties.

Constant Value Description
DB_AUTHENTICATION 0 Specifies	SQL	Server	Authentication

for	the	connection.
NT_AUTHENTICATION 1 Specifies	Windows	Authentication	for

the	connection	(supported	by
Microsoft®	SQL	Server™	on	Microsoft
Windows	NT®	4.0	and	Microsoft
Windows®	2000	operating	systems
only).

Remarks
If	the	computer	on	which	the	Microsoft	ActiveX®	replication	control	is	hosted	is
not	running	the	Windows	NT	4.0	or	Windows	2000	operating	system,
NT_AUTHENTICATION	cannot	be	used	on	the	Publisher,	Distributor,	or
Subscriber.

See	Also

DistributorSecurityMode	Property

SubscriberSecurityMode	Property

PublisherSecurityMode	Property

Replication	Programming

STATUS_RETURN_CODE
The	STATUS_RETURN	specifies	the	return	code	values	that	can	be	returned
from	the	status	callback	functions.

Constant Value Description
SUCCESS 0 Operation	is	successful.
CANCEL 1 Operation	is	canceled.

See	Also

Status	Event

Replication	Programming

SUBSCRIPTION_HOST
The	SUBSCRIPTION_HOST	specifies	subscription	host	codes	for	the
SubscriptionHost	parameter	of	the	AddSubscription	method	of	the	SQLMerge
and	SQLDistribution	objects.

Constant Value Description
NONE 0 Subscription	is	not	registered	under	other

hosts.
SYNC_MANAGER 1 Subscription	is	to	be	registered	in	Windows

Synchronization	Manager.

See	Also

AddSubscription	Method

Replication	Programming

SUBSCRIPTION_PRIORITY_TYPE
The	SUBSCRIPTION_PRIORITY_TYPE	constants	specify	subscription
priority	type	values	for	the	SubscriptionPriorityType	property	of	the
SQLMerge	object.

Constant Value Description
GLOBAL_PRIORITY 1 Subscription	has	an	assigned	priority	value.
LOCAL_PRIORITY 2 Subscription	uses	the	priority	value	of	the

Publisher.

See	Also

SubscriptionPriorityType	Property

Replication	Programming

SUBSCRIPTION_TYPE
The	SUBSCRIPTION_TYPE	specifies	subscription	type	values	for	the
SubscriptionType	property	of	the	SQLMerge	and	SQLDistribution	objects.

Constant Value Description
ANONYMOUS 2 Anonymous	subscription.
PULL 1 Pull	subscription.
PUSH 0 Push	subscription.

See	Also

SubscriptionType	Property

Replication	Programming

SYNCHRONIZATION_TYPE
The	SYNCHRONIZATION_TYPE	specifies	subscription	synchronization	type
codes	for	the	SynchronizationType	property	of	the	SQLMerge	and
SQLDistribution	objects.

Constant Value Description
AUTOMATIC 1 Initial	synchronization	is	to	be	provided	to	the

Subscriber.
NOSYNC 2 No	initial	synchronization	is	needed	by	the

Subscriber.

See	Also

SynchronizationType	Property

Replication	Programming

VALIDATE_TYPE
The	VALIDATE_TYPE	constants	specify	the	type	of	data	validation	to	perform
on	the	Subscriber	data	at	the	end	of	the	run.	VALIDATE_TYPE	is	used	with	the
Validate	property	of	the	SQLMerge	object.

Constant Value Description
FAST_ROWCOUNT_AND_CHECKSUM 4 Perform	a	fast	row

count	and	checksum
validation	of	the
Subscriber	data.

FAST_ROWCOUNT_AND_BINARYCHECKSUM6 Perform	a	fast	row
count	and	binary
checksum	validation	of
the	Subscriber	data.
BINARYCHECKSUM
is	not	supported	by
Microsoft®	SQL
Server™	2000
Subscribers.

FAST_ROWCOUNT_ONLY 3 Perform	only	a	fast
row	count	validation
of	the	Subscriber	data.

NO_VALIDATION 0 Do	not	validate	the
Subscriber	data
(default).

ROWCOUNT_AND_CHECKSUM 2 Perform	a	full	row
count	and	checksum
validation	of	the
Subscriber	data.

ROWCOUNT_AND_BINARYCHECKSUM 5 Perform	a	full	row
count	and	binary
checksum	validation	of
the	Subscriber	data.
BINARYCHECKSUM

is	not	supported	by
SQL	Server	2000
Subscribers.

ROWCOUNT_ONLY 1 Perform	only	a	full
row	count	validation
of	the	Subscriber	data.

See	Also

Help	with	Replication

Validate	Property

JavaScript:hhobj_1.Click()

Replication	Programming

Developing	Replication	Merge	Conflict	Resolvers
Through	a	Custom	Resolver
Microsoft®	SQL	Server™	2000	supports	two	types	of	user-implemented	conflict
resolvers:

Custom	conflict	resolvers	built	as	COM	components	and	compiled	into
dynamic-link	libraries	(.dll)	through	products	such	as	Microsoft	Visual
Basic®	and	Microsoft	Visual	C++®.	The	COM	custom	conflict	resolver
is	a	DLL	that	implements	the	ICustomResolver	interface,	methods,	and
properties.	There	are	interfaces	and	type	definitions	designed	specially
for	conflict	resolution.	For	information	about	the	required	header	file,
see	COM	Conflict	Resolver	Header	File.

To	use	a	COM	object	resolver,	make	sure	the	DLL	is	registered	at	the
computer	where	the	Merge	Agent	runs.	For	a	push	subscription,	this	is
the	Distributor	computer,	and	for	a	pull	subscription,	it	is	the	Subscriber
computer.	When	using	Visual	C++	or	Visual	Basic,	the	name	of	the
project	becomes	the	name	of	the	.DLL.	The	DLL	name	must	be	a
unique	resolver	name.	Run	the	sp_enumcustomresolvers	stored
procedure	to	ensure	uniqueness.	sp_enumcustomresolvers	displays	all
the	resolvers	currently	registered	on	the	system.

User-built	Transact-SQL	stored	procedures	can	be	used	instead	of	a
COM	component.	The	stored	procedures	must	implement	a	specific	set
of	parameters	required	for	a	conflict	resolver.	For	more	information
about	the	use	of	each	field	defined,	see	Custom	Stored	Procedure
Conflict	Resolver.

The	Microsoft	SQL	Server	2000	CD-ROM	ships	with	some	resolver	samples.
For	more	information,	see	Replication	Resolver	Samples.

See	Also

Custom	Stored	Procedure	Conflict	Resolver

Merge	Replication	Conflict	Detection	and	Resolution

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Other	Microsoft	Resolvers

Replication	Architecture

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Replication	Programming

COM	Conflict	Resolver	Header	File
A	file	named	sqlres.h	is	located	in	C:\Program	Files\Microsoft	SQL	Server\80\
Dev	Tools\include,	if	the	replication	sample	programs	were	installed	to	the
default	folder.	The	file,	sqlres.h,	contains	several	important	definitions	with
which	you	should	be	familiar.	Do	no	modify	this	file.

The	custom	resolver	must	implement	the	interface	ICustomResolver,	which	is
defined	in	this	file.

#undef		INTERFACE
#define		INTERFACE	ICustomResolver
DECLARE_INTERFACE_(ICustomResolver,	Iunknown)
{
		//**			IUnknown	methods
			STDMETHOD(QueryInterface)		(THIS_	REFIID	riid,	LPVOID	*ppvObj)		PURE;
			STDMETHOD_(ULONG,AddRef)		(THIS)					PURE;
			STDMETHOD_(ULONG,Release)		(THIS)				PURE;

		//**			ICustomResolver	methods
			STDMETHOD(Reconcile)	(THIS_
																								IReplRowChange	*pRowChange,
																								DWORD	dwFlags,
																								PVOID	pvReserved)		PURE;
			STDMETHOD(GetHandledStates)	(THIS_
																								DWORD	*pResolverBm)		PURE;
};

ICustomResolver	inherits	from	IUnknown,	similar	to	all	COM	classes.	The
IUnknown	methods	usually	do	not	need	to	be	modified	from	the	supplied
resolver,	but	the	ICustomResolver	methods	Reconcile	and	GetHandledStates
must	be	implemented.	Reconcile	is	the	method	called	for	each	table	row	that
contains	a	conflict.	GetHandledStates	defines	the	conflict	conditions	that	the
resolver	will	handle.

The	important	parameter	for	Reconcile	is	a	reference	to	an	IReplRowChange
object;	IReplRowChange	is	defined	in	this	include	file.	Through	the	method	of
IReplRowChange,	the	resolver	determines	the	columns	in	conflict,	examines
the	conflicting	data,	and	then	copies	the	appropriate	data	to	the	result	row.

Other	definitions	in	the	file	include	IConnectionInfo,	which	is	used	when	a
resolver	needs	to	access	a	stored	procedure,	and	ITranDataChange,	which	is
used	in	a	transactional	resolver.	Only	the	Get<xxx>	methods	in
IConnectionInfo	are	accessible	to	user-implemented	resolvers.

Several	enumerations	are	defined	in	sqlres.h.	Symbols	from	these	enumerations
should	be	used	wherever	possible	instead	of	using	hard-coded	constants.

Enumeration	Name Description
REPOLE_CHANGE_TYPE Codes	for	the	database	operation	(insert,

update,	delete),	whether	there	is	a	conflict,
and	whether	column	tracking	is	active.
Many	symbolic	definitions	of	aggregates
of	these	change	types	are	also	available.

REPOLE_CONFLICT_TYPE Codes	for	the	database	operation	and
whether	the	failure	occurred	at	upload	or
download.

REPOLE_COLSTATUS_TYPE Codes	for	the	conflict	status	of	an
individual	column.

REPOLE_PRIORITY_TYPE Codes	for	what	have	higher	priority
(source,	destination,	neither	source	nor
destination).

Replication	Programming

Programming	Replication	from	Heterogeneous	Data
Sources
Microsoft®	SQL	Server™	enables	third-party	products	to	become	Publishers
within	the	SQL	Server	replication	framework.	The	Replication	Distributor
Interface	allows	replication	from	heterogeneous	databases	that	provide	32-bit
OLE	DB	drivers	to	Subscribers	running	SQL	Server	2000.	Heterogeneous	data
sources	include:

Oracle	databases

DB2	databases

Microsoft	Access	databases

Other	databases	that	comply	with	SQL	Server	ODBC	or	OLE	DB
Subscriber	requirements.

When	integrated,	the	Replication	Distributor	Interface	exposes	the	SQL
Distributor,	and	allows	heterogeneous	data	sources	to	store	meta	data	and
replicated	transactions	in	the	SQL	Server	Distributor	database.	The	Replication
Distributor	Interface	is	an	OLE	DB	service	provider	that	allows	users	to	store
replicated	SQL	statements,	scripts,	and	.bcp	files	in	the	Distributor	store-and-
forward	database.	The	Replication	Distributor	Interface	is	based	on	the	OLE	DB
connection	model	and	supports	a	subset	of	the	DataSource,	Session,	and	Error
objects.	An	additional	Distribution	object	is	added	to	the	Session	object	and	is
used	to	store	transactions	marked	for	replication	in	a	SQL	Server	distribution
database.

Note		The	Replication	Distributor	Interface	is	a	special	purpose	OLE	DB	service
that	is	used	only	to	distribute	replicated	SQL	Server	transactions.	It	does	not
support	the	minimal	set	of	interfaces	necessary	to	be	considered	a	standard	OLE
DB	data	provider.

The	Replication	Distributor	Interface	cannot	be	used	with	replication	types	that

need	updates	to	be	made	at	the	Subscriber.	The	only	types	of	replication	that	can
be	used	with	the	Replication	Distributor	Interface	are	snapshot	replication	and
transactional	replication	that	has	read-only	Subscribers.	Merge	replication,	and
transactional	replication	with	immediate	updating,	queued	updating,	or
immediate	updating	with	queued	updating	as	failover	are	not	available	from
heterogeneous	Publishers	to	SQL	Server	Subscribers.

Here	are	the	steps	to	using	the	Replication	Distributor	Interface.

1.	 This	step	uses	Microsoft	Visual	Basic®	or	Microsoft	Visual	C++®	and
the	replication	SQL-DMO	objects,	makes	calls	for	setting	up	the
publication,	articles,	and	subscription	information.	These	calls	differ
from	the	typical	SQL-DMO	setup	calls	because	they	are	made	on	the
distribution	server	and	not	at	the	Publisher.	A	third-party	replication
tool	can	also	be	used	to	implement	this	first	step	

2.	 This	step	takes	the	place	of	the	Snapshot	Agent	and	Log	Reader
Agent.	The	Replication	Distributor	Interface	is	used	to	store	the
replication	transactions	on	a	server	that	is	currently	acting	as	the
Distributor,	which	will	then	be	distributed	by	the	Distribution	Agent.
The	following	C++	code	is	a	sample	of	an	object	that	is	used	to	place
commands	into	the	distribution	database.
//	Instantiate	a	data	source	object	for	the	SQL	Server	Publishing
//	provider.
hr	=	CoCreateInstance(CLSID_SQLDistribution,	NULL,	CLSCTX_INPROC_SERVER,	IID_IDBInitialize,
(void**)	&pIDBInit);

Using	the	Replication	Distributor	Interface	leaves	the	responsibility	of	data
modification	detection	to	the	developers	because	the	Log	Reader	Agent	is	not
available.	The	use	of	the	monitoring	and	troubleshooting	tools,	alerts,	and
notifications	are	still	available	in	SQL	Server	Enterprise	Manager.	The	Log
Reader	Agent	can	be	activated	by	using	Microsoft	Host	Integration	Server	2000
and	its	Distribution	Store	Interface	(iDistributionStore).	For	more	information,
see	the	Host	Integration	Server	2000	documentation.

The	Microsoft	SQL	Server	CD-ROM	ships	with	some	Replication	Distributor
Interface	samples.	For	more	information,	see	Replication	Distributor	Interface

Samples.

When	deploying	an	application	using	the	Replication	Distributor	Interface
independently	of	SQL	Server	2000,	you	must	include	additional	files	in	the
installation	kit	you	use	to	distribute	your	application.	If	you	will	be	deploying
your	application	to	a	computer	where	SQL	Server	2000	will	also	be	installed,
these	files	will	already	be	present.

Replication	Programming

SQL-DMO	Replication	Objects
SQL-DMO	provides	a	set	programming	interface	for	administering	and
monitoring	Microsoft®	SQL	Server™	replication,	including	the	ability	to
administer	replication	from	heterogeneous	computers.	Here	are	the	SQL-DMO
objects	used	in	replication:

Distributor	object

DistributionDatabase	object

DistributionPublisher	object

DistributionPublication	object

DistributionSubscription	object

DistributionArticle	object

RegisteredSubscriber	object

Replication	object

The	SQL-DMO	replication	objects	are	a	subset	of	the	SQL-DMO	COM	object
model.	For	information	about	how	these	object	fit	into	the	larger	replication
object	model,	see	Developing	SQL-DMO	Applications.

See	Also

Distributor	Object

DistributionArticle	Object

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

DistributionDatabase	Object

DistributionPublication	Object

DistributionPublisher	Object

DistributionSubscription	Object

RegisteredSubscriber	Object

Replication	Object

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

Replication	Programming

Replication	Distributor	Interface	Reference
The	Replication	Distributor	Interface	can	be	used	to	enable	Microsoft®	SQL
Server™	2000	replication	services	on	heterogeneous	databases.	The	Replication
Distributor	Interface	is	based	on	the	OLE	DB	connection	model.	The	objects	are
available	using	Microsoft	Visual	C++®	and	the	OLE	library.

The	Replication	Distributor	Interface	exposes	a	Distribution	object	that	is
generated	from	a	Session	object.	The	Distribution	object	is	used	to	store
replicated	transactions	in	the	distribution	database	on	the	SQL	Server
Distributor,	and	is	used	to	log	history	and	error	information.

The	Replication	Distributor	Interface	is	implemented	using	these	files:

Repldist.dll

Repldist.h

The	Replication	Distributor	Interface	objects,	methods,	properties,	events,	and
structures	can	be	found	in	the	following	topics.

Topic Description
Replication	Distributor	Interface
Objects

Description	of	Replication
Distributor	Interface	Distribution
objects.

Replication	Distributor	Interface
Properties

Description	of	Replication
Distributor	Interface	properties.

Replication	Distributor	Interface
Methods

Description	of	Replication
Distributor	Interface	methods.

Replication	Distributor	Interface
Structures

Description	of	Replication
Distributor	Interface	structures.

See	Also

Replication	Distributor	Interface	Samples

Replication	Programming

Replication	Distributor	Interface	Objects
The	Replication	Distributor	Interface	exposes	these	objects.

Topic Description
DistributionLog	Object Stores	history	and	error	information

about	the	Replication	Distributor
Interface.

DistributionStore	Object Stores	transactions	in	a	Distributor.

Replication	Programming

DistributionLog	Object
The	DistributionLog	object	stores	history	and	error	information	about	the
Replication	Distributor	Interface.	This	information	is	used	to	monitor
replication.

Methods
AddLog	Method

Replication	Programming

DistributionStore	Object
The	DistributionStore	object	stores	transactions	in	a	Distributor.	This	is	a
custom	interface	supported	only	by	the	Distributor.

Methods
Abort	Method

AddTransactionCommands	Method

Commit	Method

GetLastTransaction	Method

StartTransaction	Method

Replication	Programming

Replication	Distributor	Interface	Properties
This	section	defines	the	properties	of	the	Replication	Distributor	Interface.

Replication	Programming

DBPROP_APPLICATION_NAME	Property
The	DBPROP_APPLICATION_NAME	property	specifies	the	name	of	the
application.

Applies	To
DistributionStore	Object

Syntax
object.DBPROP_APPLICATION_NAME

Data	Type
VT_BSTR

Modifiable
Read/write

Replication	Programming

DBPROP_APPLICATION_TYPE	Property
The	DBPROP_APPLICATION_TYPE	property	specifies	the	Publisher
application	type.	The	application	type	can	be	either	snapshot	or	transactional
(incremental	updates).

Applies	To
DistributionStore	Object

Syntax
object.DBPROP_APPLICATION_TYPE

Data	Type
VT_I1

Modifiable
Read/write

Replication	Programming

DBPROP_AUTH_PASSWORD	Property
The	DBPROP_AUTH_PASSWORD	property	specifies	the	password	used
when	connecting	to	the	data	source.

Applies	To
DistributionStore	Object

Syntax
object.DBPROP_AUTH_PASSWORD

Data	Type
VT_BSTR

Modifiable
Read/write

Replication	Programming

DBPROP_AUTH_USERID	Property
The	DBPROP_AUTH_USERID	property	specifies	the	user	ID	used	when
connecting	to	the	data	source.

Applies	To
DistributionStore	Object

Syntax
object.DBPROP_AUTH_USERID

Data	Type
VT_BSTR

Modifiable
Read/write

Replication	Programming

DBPROP_DBMSNAME	Property
The	DBPROP_DBMSNAME	property	specifies	the	name	of	the	product
accessed	by	the	provider.

Applies	To
DistributionStore	Object

Syntax
object.DBPROP_DBMSNAME

Data	Type
VT_BSTR

Modifiable
Read-only

Replication	Programming

DBPROP_DBMSVER	Property
The	DBPROP_DBMSVER	property	specifies	the	version	of	the	product
accessed	by	the	provider.

Applies	To
DistributionStore	Object

Syntax
object.DBPROP_DBMSVER

Data	Type
VT_BSTR

Modifiable
Read-only

Replication	Programming

DBPROP_INIT_DATASOURCE	Property
The	DBPROP_INIT_DATASOURCE	property	specifies	the	name	of	the
distribution	database	to	which	to	connect.

Applies	To
DistributionStore	Object

Syntax
object.DBPROP_INIT_DATASOURCE

Data	Type
VT_BSTR

Modifiable
Read/write

Replication	Programming

DBPROP_INIT_LOCATION	Property
The	DBPROP_INIT_LOCATION	property	specifies	the	location	of	the
Distributor	to	which	to	connect	(typically,	the	server	name).

Applies	To
DistributionStore	Object

Syntax
object.DBPROP_INIT_LOCATION

Data	Type
VT_BSTR

Modifiable
Read/write

Replication	Programming

DBPROP_INIT_PUBLISHERDATASOURCE
Property
The	DBPROP_INIT_PUBLISHERDATASOURCE	property	specifies	the
name	of	the	Publisher	database	on	whose	behalf	the	connection	is	made.

Applies	To
DistributionStore	Object

Syntax
object.DBPROP_INIT_PUBLISHERDATASOURCE

Data	Type
VT_BSTR

Modifiable
Read/write

Replication	Programming

DBPROP_INIT_PUBLISHER_NAME	Property
The	DBPROP_INIT_PUBLISHER_NAME	property	specifies	the	name	of	the
Publisher	on	whose	behalf	the	connection	is	made.

Applies	To
DistributionStore	Object

Syntax
object.DBPROP_INIT_PUBLISHERNAME

Data	Type
VT_BSTR

Modifiable
Read/write

Replication	Programming

DBPROP_INIT_TIMEOUT	Property
The	DBPROP_INIT_TIMEOUT	property	specifies	the	connection	time-out.

Applies	To
DistributionStore	Object

Syntax
object.DBPROP_INIT_TIMEOUT

Data	Type
VT_I4

Modifiable
Read/write

Replication	Programming

DBPROP_INIT_XACT_SEQNO_SIZE	Property
The	DBPROP_INIT_XACT_SEQNO_SIZE	property	specifies	the	size	of	the
transaction	sequence	number.

Applies	To
DistributionStore	Object

Syntax
object.DBPROP_INIT_XACT_SEQNO_SIZE

Data	Type
VT_I1

Modifiable
Read/write

Replication	Programming

DBPROP_INIT_XACTID_SIZE	Property
The	DBPROP_INIT_XACTID_SIZE	property	specifies	the	size	of	the
transaction	ID.

Applies	To
DistributionStore	Object

Syntax
object.DBPROP_INIT_XACTID_SIZE

Data	Type
VT_I1

Modifiable
Read/write

Replication	Programming

DBPROP_PUBLICATION_NAME	Property
The	DBPROP_PUBLICATION_NAME	property	specifies	the	name	of	the
publication	serviced	by	the	application.

Applies	To
DistributionStore	Object

Syntax
object.DBPROP_PUBLICATION_NAME

Data	Type
VT_BSTR

Modifiable
Read/write

Replication	Programming

Replication	Distributor	Interface	Methods
This	section	defines	the	methods	of	the	Replication	Distributor	Interface.

Replication	Programming

Abort	Method
The	Abort	method	rolls	back	the	storage	of	transaction	commands.

Applies	To
DistributionStore	Object

Syntax
HRESULT	Abort();

Remarks
The	method	returns	S_OK	if	it	succeeds	and	DB_E_ERROROCCURRED	if	it
fails.

Replication	Programming

AddLog	Method
The	AddLog	method	adds	history	and	error	information	to	a	distribution	store.

Applies	To
DistributionLog	Object

Syntax
HRESULT	AddLog(
DWORD	dwStatusID,
LPSTR	szComment,
BYTE*	pXactSeqno,
ULONG	ulTransactions,	
ULONG	ulCommands,
ULONG	cErrorDescs,
const	DISTERRORDESC	rgErrorDescs[]);

Part Description
dwStatusID Status	of	the	log	message:

1	=	STARTUP

2	=	SUCCESS

3	=	INPROGRESS

4	=	RETRY

5	=	FAILURE

szComment Log	message	text
XactSeqno Transaction	sequence	number

ulTransactionsNumber	of	transactions	associated	with	this	message
ulCommands Number	of	commands	associated	with	this	message
cErrorDescs Number	of	DISTCOMMANDDESC	structures	in	the

rgCommandDesc	array
rgErrorDescs Array	of	DISTERRORDESC	structures	that	describe	the

replicated	command

Remarks
The	method	returns	S_OK	if	it	succeeds	and	DB_E_ERROROCCURRED	if	it
fails.

See	Also

DISTERRORDESC	Structure

Replication	Programming

AddTransactionCommands	Method
The	AddTransactionCommands	method	stores	a	group	of	replicated
transaction	commands.	If	the	StartTransaction	method	is	not	called	before	this
method,	AddTransactionsCommands	uses	an	implicit	transaction.

Applies	To
DistributionStore	Object

Syntax
HRESULT	AddTransactionCommands(
ULONG	cCommandDescs,
const	DISTCOMMANDDESC	rgCommandDescs	[]);

Part Description
cCommandDescs Number	of	DISTCOMMANDDESC	structures	in	the

rgCommandDescs	array
rgCommandDescsArray	of	DISTCOMMANDDESC	structures	that

describe	the	replicated	command

Remarks
The	method	returns	S_OK	if	it	succeeds	and	DB_E_ERROROCCURRED	if	it
fails.

See	Also

DISTCOMMANDDESC	Structure

Replication	Programming

Commit	Method
The	Commit	method	commits	the	storage	of	the	transaction	commands.

Applies	To
DistributionStore	Object

Syntax
HRESULT	Commit();

Remarks
The	method	returns	S_OK	if	it	succeeds	and	DB_E_ERROROCCURRED	if	it
fails.

Replication	Programming

GetLastTransaction	Method
The	GetLastTransaction	method	retrieves	information	about	the	last	stored
transaction.

Applies	To
DistributionStore	Object

Syntax
HRESULT	GetLastTransaction(
BYTE*	pXactID,
BYTE*	pXactSeqno);

Part Description
XactID Transaction	identifier	that	uniquely	identifies	the	transaction.	It

can	be	up	to	255	bytes.	The	default	is	NULL.
XactSeqnoTransaction	sequence	number	that	identifies	the	sequence	in

which	transactions	are	committed	(in	big-endian	format).
Transactions	with	lower	sequence	numbers	are	committed	first.

Remarks
The	method	returns	S_OK	if	it	succeeds	and	DB_E_ERROROCCURRED	if	it
fails.

Replication	Programming

StartTransaction	Method
The	StartTransaction	method	begins	a	transaction.

Applies	To
DistributionStore	Object

Syntax
HRESULT	StartTransaction();

Remarks
The	method	returns	S_OK	if	it	succeeds	and	DB_E_ERROROCCURRED	if	it
fails.

Replication	Programming

Replication	Distributor	Interface	Structures
This	section	defines	the	structures	exposed	by	the	Replication	Distributor
Interface.

Replication	Programming

DISTCOMMANDDESC	Structure
This	is	the	definition	of	the	DISTCOMMANDDESC	structure.

Syntax

typedef	struct	tagDISTCOMMANDDESC{
INT									PublicationID;
INT									ArticleID;
INT									CommandID;
DISTCMDTYPE			CommandType;
BOOL						fPartialCommand;
LPSTR						szCommand;
BYTE*						pXactID;
BYTE*						pXactSeqno;
LPSTR						szOriginator;
LPSTR						szOriginatorDB;
}	DISTCOMMANDDESC;

Part Description
PublicationID Publication	ID.
ArticleID Article	ID.
CommandID Uniquely	identifies	commands	within	a	transaction.	Each

command	added	to	a	transaction	should	have	a	unique,
monotonically	increasing	command	ID.

CommandType Identifies	the	type	of	the	command.	The	Microsoft®
SQL	Server™	Distribution	Agent	can	handle	the
following	command	types:

SQL_CMDTYPE_SQL	=	Transact-SQL
command.

SQL_CMDTYPE_SCRIPT	=	File	path	to	a
Transact-SQL	script	file.

SQL_CMDTYPE_NATIVE_BCP	=	File	path	to
a	.bcp	file	in	native	format.

SQL_CMDTYPE_CHAR_BCP	=	File	path	to	a
.bcp	file	in	character	format.

SQL_CMDTYPE_WORKINGDIR	=	File	path
to	the	directory	in	which	snapshot	files	are
stored.	Used	by	the	Distribution	Cleanup	Agent.

fPartialCommandDetermines	whether	the	command	wraps	more	than	one
row.

szCommand Command	text.
pXactID Pointer	to	the	transaction	ID.
pXactSeqno Pointer	to	the	transaction	sequence	number.
szOriginator Name	of	the	originating	server.
szOriginatorDB Name	of	the	originating	database.

Replication	Programming

CommandType	Text	Formats
The	CommandType	member	of	the	DISTCOMMANDDESC	structure	requires
specific	text	formatting	when	specifying	these	items

Transact-SQL	data	types

Working	directories

Schema	files

bcp	files

Transact-SQL	Data	Types

When	using	DISTCMDTYPE_SQL,	data	types	in	Transact-SQL	statements	have
these	formats.

Data	type Format Comment
Datetime
				datetime
				smalldatetime

{ts	'yyyy'mm'dd
hh'mm'ss[.mmm]'}

Milliseconds	are	optional.

Binary
				binary
				varbinary

{b	'data'} Where	data	is	one	or	more
characters	within	the	range:	[0-9a-f].
It	should	not	contain	a	leading	0x.

Long	Binary	
				image

{lb	'data'} Where	data	is	one	or	more
characters	within	the	range:	[0-9a-f].
It	should	not	include	a	leading	0x.

Character
				char
				varchar

'data' Where	data	is	any	sequence	of
characters.	Single	quotation	marks
within	the	data	portion	must	be
expanded	to	two	adjacent	single
quotation	marks.

Long	Character
				text

{lc	'data'} Where	data	is	any	sequence	of
characters.	Single	quotation	marks
within	the	data	portion	must	be
expanded	to	two	adjacent	single
quotation	marks.

Working	Directories
When	using	DISTCMDTYPE_WORKINGDIR,	include	escape	characters	(\)	in
the	file	paths.

const	char	szDir[]	=	":\\Program	Files\\Microsoft	SQL	Server\\mssql\\repldata\\unc\\samppub\\";
DISTCOMMANDDESC							aCommand[60];
INT												NumCommands	=	0;
DistByteArray						XactId;
DistByteArray						XactSeqno;
CHAR												szWrkDir[_MAX_PATH];

//	Get	the	current	working	directory.
sprintf(szWrkDir,	"%c",	(char)(_getdrive()	+	'A'	-	1));
strcat(szWrkDir,	szDir);

//	Set	working	directory.
NumCommands++;
aCommand[i].PublicationId	=	1;
aCommand[i].ArticleId	=	1;
aCommand[i].CommandId	=	NumCommands;
aCommand[i].CommandType	=	DISTCMDTYPE_SQL_WORKINGDIR;
aCommand[i].fPartialCommand	=	FALSE;
aCommand[i].pXactId	=	(BYTE	*)&XactId;
aCommand[i].pXactSeqno	=	(BYTE	*)&XactSeqno;
aCommand[i].szOriginator	=	NULL;
aCommand[i].szOriginatorDB	=	NULL;

aCommand[i].szCommand	=	(LPSTR)szWrkDir;
i++;

Schema	Files
When	using	DISTCMDTYPE_SCRIPT,	include	escape	characters	(\)	in	file
paths.

const	char	szDir[]	=	":\\Program	Files\\Microsoft	SQL	Server\\mssql\\repldata\\unc\\samppub\\";			
const	char	szScriptCmd[]	=	"%ssamptab.sch";
DISTCOMMANDDESC							aCommand[60];
char													pszCmdBuf[60][255];
INT												NumCommands	=	0;
DistByteArray						XactId;
DistByteArray						XactSeqno;

//	Get	the	current	working	directory.
sprintf(szWrkDir,	"%c",	(char)(_getdrive()	+	'A'	-	1));
strcat(szWrkDir,	szDir);

//	Execute	script	-	table	schema.
NumCommands++;
aCommand[i].PublicationId	=	1;
aCommand[i].ArticleId	=	1;
aCommand[i].CommandId	=	NumCommands;
aCommand[i].CommandType	=	DISTCMDTYPE_SCRIPT;
aCommand[i].fPartialCommand	=	FALSE;
aCommand[i].pXactId	=	(BYTE	*)&XactId;
aCommand[i].pXactSeqno	=	(BYTE	*)&XactSeqno;
aCommand[i].szOriginator	=	NULL;
aCommand[i].szOriginatorDB	=	NULL;

sprintf(pszCmdBuf[i],	szScriptCmd,	szWrkDir);
aCommand[i].szCommand	=	pszCmdBuf[i];

i++;

Use	this	format	in	.sch	files:

SET	QUOTED	IDENTIFIER	ON
GO
SET	ANSI_PADDING	OFF
GO
CREATE	TABLE	[Samptbl1]	(C1	INT,	C2	VARCHAR(20))
GO

bcp	Files
When	using	DISTCMDTYPE_CHAR_BCP	or
DISTCMDTYPE_NATIVE_BCP,	you	can	use	these	switches	with	the	sync
command.

Switch Description
-t Destination	table.
-o Destination	owner.
-d Data	file.
-f Field	delimiter.	Default	field	delimiter:		\n<x$3>\n
-r Row	delimiter.	Default	row	delimiter:		\n<,@g>\n
-u Unicode.	This	switch	applies	only	when	using

DISTCMDTYPE_NATIVE_BCP	type	bcp	files.
-m Denotes	that	the	file	is	a	character	bcp	file	with	a	Unicode	marker

at	the	beginning	of	the	file.

Include	escape	characters	(\)	in	file	paths.	Begin	switch	arguments	with
quotation	marks	(")	and	end	the	arguments	with	a	backslash	and	quotation	marks
(\").

const	char	szDir[]	=	":\\Program	Files\\Microsoft	SQL	Server\\mssql\\repldata\\unc\\samppub\\";			
const	char	szBCPCmd[]	=	"sync	-t\"SampTable1\"	-d\"%ssamptab.bcp\"	-u";
DISTCOMMANDDESC							aCommand[60];

char													pszCmdBuf[60][255];
INT												NumCommands	=	0;
DistByteArray						XactId;
DistByteArray						XactSeqno;

//	Get	the	current	working	directory.
sprintf(szWrkDir,	"%c",	(char)(_getdrive()	+	'A'	-	1));
strcat(szWrkDir,	szDir);

//	Import	data	-	char	bcp.
NumCommands++;
aCommand[i].PublicationId	=	1;
aCommand[i].ArticleId	=	1;
aCommand[i].CommandId	=	NumCommands;
aCommand[i].CommandType	=	DISTCMDTYPE_CHAR_BCP;
aCommand[i].fPartialCommand	=	FALSE;
aCommand[i].pXactId	=	(BYTE	*)&XactId;
aCommand[i].pXactSeqno	=	(BYTE	*)&XactSeqno;
aCommand[i].szOriginator	=	NULL;
aCommand[i].szOriginatorDB	=	NULL;

sprintf(pszCmdBuf[i],	szBCPCmd,	szWrkDir);
aCommand[i].szCommand	=	pszCmdBuf[i];
i++;

Replication	Programming

DISTERRORDESC	Structure
This	is	the	definition	of	the	DISTERRORDESC	structure.

Syntax
typedef	struct	tagDISTERRORDESC{
INT				SourceType;
CHAR				szSourceName[31];
CHAR				szErrorCode[31];
BSTR				bstrErrorText;
}	DISTERRORDESC;

Part Description
SourceType Identifies	the	type	of	the	command.	Microsoft®	SQL

Server™	2000	supports	the	following	command	types:

APPLICATION	

DISTOLE

OS

szSourceName Name	of	the	component	responsible	for	the	error	(for
example,	ODBC).

szErrorCode Error	code	string	of	the	source.
bstrErrorText Error	text.

Replication	Programming

Replication	Programming	Samples
The	following	samples	illustrate	Microsoft®	SQL	Server™	2000	replication
application	development	in	various	environments	and	languages,	including
Transact-SQL	,	Microsoft	Visual	C++®,	and	Microsoft	Visual	Basic®.	The
samples	and	associated	headers	and	libraries	are	required	for	successful
execution	of	several	sample	applications.

To	install	the	samples	and	related	headers	and	libraries	using	the	SQL
Server	Installation	Wizard

1.	 On	the	Setup	Type	page,	select	Custom.

2.	 On	the	Select	Components	page,	under	Components,	select	Code
Samples.

3.	 In	the	Select	Sub-Components	dialog	box,	select	Replication.

4.	 On	the	Select	Components	page,	under	Components,	select
Development	Tools.

5.	 In	the	Select	Sub-Components	dialog	box,	select	Headers	and
Libraries.

After	installation	is	complete,	if	you	have	accepted	the	default	installation
location,	the	path	C:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Samples\sqlrepl	will	be	on	your	computer.	The
sqlrepl	directory	contains	an	executable	file,	unzip_sqlrepl.exe,	which	expands
the	samples	into	useable	files.	Double-click	unzip_sqlrepl.exe,	and	you	will	be
prompted	to	enter	that	path	to	the	folder	where	you	want	the	samples	stored.	The
samples	assume	that	the	default	is	selected,	and	samples	are	not	installed	to	an
alternate	location.	The	expansion	adds	several	subdirectories	to	sqlrepl.

The	Visual	C++	samples	were	tested	with	Visual	C++	version	6.0,	Service	Pack
3.	The	Visual	Basic	samples	were	tested	with	Visual	Basic	version	6.0,	Service

Pack	3.	The	samples	have	been	run	on	Microsoft	Windows	NT®	version	4.0,
Service	Pack	6,	and	on	Microsoft	Windows®	2000	operating	systems.	They
have	not	been	compiled	or	tested	on	any	other	hardware	platform	supported	by
any	other	compiler.

For	Visual	C++	samples	to	compile,	header	and	libraries	file	paths	must	be	set
properly	to	obtain	the	required	replication	files.	After	installation,	set	your
project	options	for	include	files	to	C:\Microsoft	SQL
Server\80\Tools\Devtools\Include,	and	set	your	options	for	the	library	files	to
C:\Microsoft	SQL	Server\80\Tools\Devtools\Lib.

Replication	Programming

Replication	Syntax	Conventions
Replication	programming	samples	use	the	following	conventions	to	distinguish
elements	of	text.

Convention Used	for
UPPERCASE Constants	and	enumerated	data	types.
courier	new Sample	command	lines	and	program	code.

italic Information	that	the	user	or	the	application	must
provide.

bold Replication	component	objects;	object	events,	methods
or	properties;	data	types;	and	other	syntax	that	must	be
typed	exactly	as	shown.

Replication	Programming

Replication	ActiveX	Control	Samples
Microsoft®	SQL	Server™	2000	comes	with	the	following	sample	applications
to	help	you	use	Microsoft	ActiveX®	replication	controls	in	your	application.

Sample Description
Using	SQL	Merge	and	SQL
Distribution	Controls	in	a
Custom	Visual	Basic
Application

Microsoft	Visual	Basic®	sample	that
demonstrates	how	to	include	the	SQL
Distribution	and	SQL	Merge	controls	in	a
custom	application.

Using	SQL	Merge	and	SQL
Distribution	Controls	in	a
Custom	Visual	C++
Application

Microsoft	Visual	C++®	sample	that
demonstrates	how	to	include	the	SQL
Distribution	and	SQL	Merge	controls	in	a
custom	application.

Using	SQL	Merge	and	SQL
Distribution	Controls	in	a
Custom	Web	Application

HTML	sample	that	demonstrates	how	to
include	the	SQL	Distribution	and	SQL	Merge
controls	in	a	custom	application.

Creating	a	Transformable
Subscription	Using	Visual
Basic

Visual	Basic	sample	that	creates	and	saves	a
Data	Transformation	Services	(DTS)	package
to	DTS	LocalPackages.	The	package	contains
Data	Driven	Query	code	to	synchronize	a
subscription,	and	ActiveX	code	to	transform
the	data	before	it	is	entered	into	the
subscription	database.

Replication	Programming

Using	SQL	Merge	and	SQL	Distribution	Controls	in	a
Custom	Visual	Basic	Application
The	programs	in	the	replctrl	folder	are	samples	of	how	to	include	the	SQL
Merge	and	SQL	Distribution	controls	in	a	custom	application.	This	sample	is
located	in	C:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Samples\sqlrepl\replctrl.

To	run	the	sample	programs

1.	 On	the	computer	that	will	be	a	Publisher	with	a	local	Distributor,
verify	that	the	SQL	Server	Agent	is	running.	If	it	is	not	running,	start
it.

2.	 Open	SQL	Query	Analyzer,	open
\Samples\sqlrepl\replctrl\instsamp.sql,	and	then	run	instsamp.sql.	This
SQL	script	configures	the	computer	for	publishing	and	distribution,
enables	the	computer	as	a	Subscriber,	adds	a	distribution	database	with
the	name	distributor,	creates	a	transactional	publication	named
SampleTransactionalPublication,	and	creates	a	merge	publication
named	SampleMergePublication.		

3.	 The	instsamp.sql	script	creates	pull	and	push	subscriptions	for	each
publication	and	creates	and	configures	a	database	called
Northwind_replica	as	the	subscription	database.	Any	warnings	from
the	script	regarding	tables	that	have	been	created	with	a	maximum	row
size	that	exceeds	the	maximum	number	of	bytes	per	row	can	be
ignored.	The	computer	is	now	configured	as	a	Publisher	with	a	local
Distributor	and	enabled	as	a	Subscriber.

The	Northwind	publication	database	will	have	two	publications:
SampleTransactionalPublication	and	SampleMergePublication.	The
instance	of	SQL	Server	contains	a	new	subscription	database,
Northwind_replica.

4.	 After	the	instsamp.sql	script	has	completed	successfully,	in	SQL

Server	Enterprise	Manager,	expand	Replication	Monitor,	expand	the
Agents	folder,	and	then	click	the	Snapshot	Agents	folder.	In	the	right
pane,	for	each	agent	listed,	right-click,	and	then	click	Start	Agent.
This	starts	the	Snapshot	Agents	for	each	publication	and	creates	a
snapshot	for	each	publication.

5.	 Start	Visual	Basic,	and	then	open
\Samples\sqlrepl\replctrl\VB\replsamp.vbp.	

6.	 On	the	Project	menu,	click	References,	and	then	in	the	Available
References	list,	verify	that	the	following	controls	are	selected:

Microsoft	SQL	Distribution	Control	8.0

Microsoft	SQL	Merge	Control	8.0

Microsoft	SQL	Snapshot	Control	8.0

Microsoft	SQL	Replication	Errors	8.0

7.	 On	the	File	menu,	click	Make	ReplSamp.exe,	and	then	save	the
executable	to	a	directory.	

8.	 Run	replsamp.exe.	The	following	options	will	be	displayed:

Generate	Snapshot	for	Transactional	Publication

Creates	a	snapshot	for	the	Northwind	transactional	publication.	The
snapshot	activity	can	be	monitored	interactively	in	SQL	Server
Enterprise	Manager	using	Replication	Monitor	and	the	Agents	folder.

Generate	Snapshot	for	Merge	Publication

Creates	a	snapshot	for	the	Northwind	merge	publication.	The	snapshot
activity	can	be	monitored	interactively	in	SQL	Server	Enterprise
Manager	using	Replication	Monitor	and	the	Agents	folder.

Update	Transactional	Subscription	Tables

Runs	the	Distribution	Agent	and	applies	the	snapshot	and	schema	at
the	subscription	database,	Northwind_replica.	After	the	SQL
Replication	Sample	dialog	box	shows	that	the	task	has	completed,	the
Northwind_replica	subscription	database	shows	the	new	tables.	The
distribution	activity	can	be	monitored	interactively	in	SQL	Server
Enterprise	Manager	using	Replication	Monitor	and	the	Agents	folder.

Update	Merge	Subscription	Tables

Runs	the	Merge	Agent	and	applies	the	snapshot	data	and	schema	at	the
merge	subscription	database,	Northwind_replica.	After	the	SQL
Replication	Sample	dialog	box	shows	that	the	task	has	completed,	the
Northwind_replica	subscription	database	shows	the	new	tables.	The
merge	activity	can	be	monitored	interactively	in	SQL	Server
Enterprise	Manager	using	Replication	Monitor	and	the	Agents	folder.

Replication	Programming

Using	SQL	Merge	and	SQL	Distribution	Controls	in	a
Custom	Visual	C++	Application
The	programs	in	the	replctrl	folder	are	samples	of	how	to	include	the	SQL
Merge	control	and	the	SQL	Distribution	control	in	a	custom	application.	This
sample	is	located	in	C:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Samples\sqlrepl\replctrl.

To	run	the	sample	programs

1.	 On	the	computer	that	will	be	a	Publisher	with	a	local	Distributor,
verify	that	the	SQL	Server	Agent	is	running.	If	it	is	not	running,	start
it.

2.	 Open	SQL	Query	Analyzer,	open
\Samples\sqlrepl\replctrl\instsamp.sql,	and	then	run	instsamp.sql.	This
SQL	script	configures	the	computer	for	publishing	and	distribution,
enables	the	computer	as	a	Subscriber,	adds	a	distribution	database	with
the	name	distributor,	creates	a	transactional	publication	named
SampleTransactionalPublication,	and	creates	a	merge	publication
named	SampleMergePublication.	

3.	 The	instsamp.sql	script	creates	pull	and	push	subscriptions	for	each
publication	and	creates	and	configures	a	database	called
Northwind_replica	as	the	subscription	database.	Any	warnings	from
the	script	regarding	tables	that	have	been	created	with	a	maximum	row
size	that	exceeds	the	maximum	number	of	bytes	per	row	can	be
ignored.	The	computer	is	now	configured	as	a	Publisher	with	a	local
Distributor	and	is	enabled	as	a	Subscriber.	The	Northwind	database
will	have	two	publications:	SampleTransactionalPublication	and
SampleMergePublication.	The	instance	of	SQL	Server	contains	a	new
subscription	database,	Northwind_replica.

4.	 After	the	instsamp.sql	script	has	completed	successfully,	in	SQL

Server	Enterprise	Manager,	expand	Replication	Monitor,	expand	the
Agents	folder,	and	then	click	the	Snapshot	Agents	folder.	In	the	right
pane,	for	each	agent	listed,	right-click,	and	then	click	Start	Agent.
This	starts	the	Snapshot	Agent	and	creates	a	snapshot	for	each
publication.

To	use	the	Microsoft	Visual	C++®	sample	code	that	demonstrates	how	to
include	the	SQL	Distribution	control	and	the	SQL	Merge	control	in	a	custom
application,	the	two	programs	must	first	be	built	into	executables.

To	build	the	distribution	sample	executable	using	Visual	C++

1.	 Open	Visual	C++.	On	the	main	menu,	click	File,	click	Open
Workspace,	navigate	to	the	C:\Program	Files	Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqlrepl\replctrl\cpp	directory,	and
then	open	distsamp.dsw.	

2.	 On	the	Tools	menu,	click	Options,	and	then	on	the	Directories	tab,	in
the	Show	directories	for	drop-down	list,	select	Include	files.	Add	the
path	C:\Program	Files	Microsoft	SQL
Server\80\Tools\Devtools\Include.	This	path	assumes	the	samples	were
installed	to	the	default	directory.	If	this	path	does	not	exist,	navigate	to
the	path	where	the	include	files	were	installed.

3.	 On	the	Directories	tab,	in	the	Show	directories	for	drop-down	list,
click	Library	files,	and	then	add	the	path	C:\Program	Files	Microsoft
SQL	Server\80\Tools\Devtools\Lib.

This	path	assumes	the	samples	were	installed	to	the	default	directory.
If	this	path	does	not	exist,	navigate	to	the	path	where	the	Lib	files	were
installed.

4.	 On	the	Build	menu,	click	Build	distsamp.exe.	The	default	location	of
the	resulting	distsamp.exe	will	be	in	C:\Program	Files	Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqlrepl\replctrl\cpp\Debug	or
C:\Program	Files	Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqlrepl\replctrl\cpp\Release,
depending	on	the	build	configuration.

To	build	the	distribution	sample	executable	using	a	batch	command

1.	 Open	a	command	prompt	window.	

2.	 Navigate	to	C:\Program	Files	Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqlrepl\replctrl\cpp.

3.	 Run	the	batch	file	builddst.cmd	with	the	following	parameters:

builddst.cmd	[x86]	[debug|retail]	[clean]

Enter	builddst.cmd	/?	for	help.

To	run	the	sample,	run	the	executable	from	its	location	using	a	command	prompt
window.

The	distsamp.exe	sample	activates	the	Distribution	Agent	and	moves	the	data
from	the	snapshot	into	the	tables	defined	as	articles	for	the	transactional
subscription	in	the	database	Northwind_replica.

To	build	the	merge	sample	executable	using	Microsoft	Visual	C++.

1.	 Open	Visual	C++.	On	the	main	menu,	click	File,	click	Open
Workspace,	and	then	navigate	to	the	C:\Program	Files	Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqlrepl\replctrl\cpp	directory	and
open	mergsamp.dsw.	

2.	 On	the	Tools	menu,	click	Options,	and	then	on	the	Directories	tab,	in
the	Show	directories	for	drop-down	list,	click	Include	files.	Add	the
path	C:\Program	Files	Microsoft	SQL
Server\80\Tools\Devtools\Include.

This	path	assumes	the	samples	were	installed	to	the	default	directory.
If	this	path	does	not	exist,	navigate	to	the	path	where	the	include	files
were	installed.

3.	 On	the	Directories	tab,	in	the	Show	directories	for	drop-down	list,
click	Library	files,	and	then	add	the	path	C:\Program	Files	Microsoft
SQL	Server\80\Tools\Devtools\Lib.

This	path	assumes	the	samples	were	installed	to	the	default	directory.
If	this	path	does	not	exist,	navigate	to	the	path	where	the	Lib	files	were
installed.

4.	 On	the	Build	menu,	click	Build	mergsamp.exe.	The	default	location
of	the	resulting	mergsamp.exe	will	be	in	C:\Program	Files	Microsoft
SQL	Server\80\Tools\Devtools\Samples\sqlrepl\replctrl\cpp\Debug	or
C:\Program	Files	Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqlrepl\replctrl\cpp\Release,
depending	on	the	build	configuration.

To	build	the	merge	sample	executable	using	a	batch	command

1.	 Open	a	command	prompt	window.	

2.	 Navigate	to	C:\Program	Files	Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqlrepl\replctrl\cpp.

3.	 Run	the	batch	file	buildmrg.cmd	with	the	following	parameters:

buildmrg.cmd	[x86]	[debug|retail]	[clean]

Enter	buildmrg.cmd	/?	for	help.

To	run	the	sample,	run	the	executable	from	its	location	using	a	command	prompt
window.

The	mergsamp.exe	sample	activates	the	Merge	Agent	and	moves	data	from	the
snapshot	into	the	tables	defined	as	articles	for	the	merge	subscription	in	the
Northwind_replica_html	database.

Replication	Programming

Using	SQL	Merge	and	SQL	Distribution	Controls	in	a
Web	Application
The	programs	in	the	replctrl	folder	are	samples	of	how	to	include	the	SQL
Merge	control	and	the	SQL	Distribution	control	in	a	custom	application.	This
sample	is	located	in	C:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Samples\sqlrepl\replctrl.

To	run	the	sample	programs

1.	 On	the	computer	that	will	be	a	Publisher	with	a	local	Distributor,
verify	that	the	SQL	Server	Agent	is	running.	If	it	is	not	running,	start
it.

2.	 Open	SQL	Query	Analyzer,	open
\Samples\sqlrepl\replctrl\instsamp.sql,	and	then	run	instsamp.sql.	This
SQL	script	configures	the	computer	for	publishing	and	distribution,
enables	the	computer	as	a	Subscriber,	adds	a	distribution	database	with
the	name	distributor,	creates	a	transactional	publication	named
SampleTransactionalPublication	and	a	merge	publication	named
SampleMergePublication.	instsamp.sql	creates	a	Snapshot	Agent	for
both	publications.

3.	 The	instsamp.sql	creates	pull	and	push	subscriptions	for	each
publication	and	creates	and	configures	a	database	called
Northwind_replica	as	the	subscription	database.	Any	warnings	from
the	script	regarding	tables	that	have	been	created	with	a	maximum	row
size	that	exceeds	the	maximum	number	of	bytes	per	row	can	be
ignored.

The	Northwind	database	will	have	two	publications:
SampleTransactionalPublication	and	SampleMergePublication.	The
SQL	Server	contains	a	new	subscription	database,
Northwind_replica.

4.	 After	the	instsamp.sql	script	has	completed	successfully,	in	SQL

Server	Enterprise	Manager,	expand	Replication	Monitor,	expand	the
Agents	folder,	and	then	click	the	Snapshot	Agents	folder.	In	the	right
pane,	for	each	agent	listed,	right-click,	and	then	click	Start	Agent.
This	starts	the	Snapshot	Agent	and	creates	a	snapshot	for	each
publication.

To	modify	the	HTML	sample	program

1.	 Open	the	\Samples\sqlrepl\replctrl\html\replsamp.htm	file	in	Notepad
or	other	HTML	editor.	There	are	comments	in	the	file	noting	that	the
local	computer	name	needs	to	be	specified	in	the	line	of	code
following	the	comment.

2.	 Save	and	the	file.

To	execute	the	HTML	sample	program

Using	Microsoft	Internet	Explorer	or	another	Internet	browser,	open	the
replsamp.htm	file.	These	options	are	available:

Synchronize	Transactional	Subscription

Runs	the	Distribution	Agent	and	applies	the	snapshot	data	and	schema	at	the
subscription	database,	Northwind_replica.	After	the	HTML	page	has
completed,	the	snapshot	will	be	applied,	and	the	Northwind_replica
database	will	show	the	new	tables,	with	each	table	corresponding	to	an
article	from	the	publication.	The	distribution	activity	can	be	monitored
interactively	in	SQL	Server	Enterprise	Manager	using	Replication	Monitor
and	the	Agents	folder.

Synchronize	Merge	Subscription

Runs	the	Merge	Agent	and	applies	the	snapshot	data	and	schema	at	the
subscription	database,	Northwind_replica.	After	the	HTML	Page	has
completed,	the	snapshot	will	be	replicated,	and	the	Northwind_replica
database	will	show	the	new	tables,	with	each	table	corresponding	to	an
article	from	the	publication.	The	merge	activity	can	be	monitored
interactively	in	SQL	Server	Enterprise	Manager	using	Replication	Monitor

and	the	Agents	folder.

Replication	Programming

Creating	a	Transformable	Subscription	Using	Visual
Basic
Advanced	users	familiar	with	the	Data	Transformation	Services	(DTS)	object
model	can	build	their	own	transformable	subscription	DTS	packages	in
Microsoft®	Visual	Basic™.	For	information	about	programming	to	the	DTS
object	model,	see	DTS	Programming	Reference.

A	transformable	subscription	is	a	subscription	in	which	the	data	is	modified	as	it
flows	from	Publisher	to	Subscriber.	In	replication	programming,	a	Visual	Basic
program	for	a	transformable	subscription	closely	resembles	that	of	a	DTS	Visual
Basic	program	used	outside	of	replication.	This	sample	is	located	in	C:\Program
Files\Microsoft	SQL	Server\80\Tools\DevTools\Samples\sqlrepl\repldts.

How	to	Run	the	Transformable	Subscription	Sample
The	program	in	the	repldts	folder	is	a	sample	of	how	to	write	a	transformable
subscription	using	Visual	Basic.

To	run	the	sample	program

1.	 On	the	computer	that	will	be	a	Publisher	with	a	local	Distributor,
verify	that	the	SQL	Server	Agent	is	running.	If	it	is	not,	start	it.

2.	 Open	Visual	Basic	6.0.	Open	ReplDTS.vbp,	and	then	open	the	code
window	for	ModReplDTS	(ReplDTS.bas).

3.	 Select	the	following	Project	/	References:

Microsoft	DTSPackage	Object	Library	(required)

Microsoft	DTSDataPump	Scripting	Object	Library
(required	to	use	a	Microsoft	ActiveX®	script	or	custom
transformation)

JavaScript:hhobj_1.Click()

Microsoft	DTS	Custom	Tasks	Object	Library	(required	to
use	one	of	the	DTS	custom	tasks)

4.	 Edit	the	following	line	of	code	to	include	your	own	connection
information:
goPackage.SavetoSQLServer	"MyServerName",	"sa",	""

5.	 In	Visual	Basic,	start	the	ReplDTS	program.

6.	 When	the	program	is	finished	executing,	you	should	receive	a	message
indicating	the	Employees	package	was	saved	successfully.	When	you
receive	this	message,	save	the	project,	and	then	close	Visual	Basic.

7.	 In	SQL	Server	Enterprise	Manager,	ensure	that	your	server	is
configured	for	replication.

8.	 In	SQL	Server	Enterprise	Manager,	click	Data	Transformation
Services,	click	Local	Packages,	and	then	on	the	Action	menu,	click
Refresh	to	refresh	the	view.	The	package	Employees	should	appear	in
the	right	pane.

9.	 Open	SQL	Query	Analyzer,	open	the	repldts.sql	script	supplied	with
sample,	and	then	edit	the	@subscriber	parameter	of
sp_addsubscription	so	that	it	contains	your	server	name.	The
sp_addsubscription	stored	procedure	is	the	last	SQL	statement	in	the
file.

10.	 Run	the	repldts.sql	script.	You	can	run	the	entire	script	at	once,	or	you
can	run	the	script	a	block	at	a	time	and	check	each	message.

11.	 After	the	repldts.sql	script	has	completed	successfully,	in	SQL	Server
Enterprise	Manager,	expand	Replication	Monitor,	expand	the	Agents
folder,	and	then	click	the	Snapshot	Agent	folder.

12.	 In	the	right	pane,	right-click	the	Snapshot	Agent	for	the	Employees
publication,	and	then	click	Start	Agent.

13.	 When	the	Snapshot	Agent	has	completed,	view	or	query	the	data	in
MyEmployees	table	of	the	subscription	database	ReplDTS_SubDB,
and	then	compare	it	to	the	data	in	the	Employees	table	of	the
publication	database	ReplDTS_PubDB.	

14.	 The	Address	column	of	the	MyEmployees	table	in	the	subscription
database,	ReplDTS_subDB,	contains	data	concatenated	from	several
columns	of	the	Employees	table	of	the	publication	database.

Examining	the	Sample	Code

This	section	describes	key	parts	of	the	sample	Visual	Basic	program.

The	Publisher	connection	is	always	set	to	the	Microsoft	SQL	Server
Replication	OLE	DB	Provider	for	DTS.	This	is	specified	in	the	section
of	code	where	the	connections	are	created.	In	addition,	a	required
property	specified	for	this	provider	is	the	column	list	for
ConnectionProperties,	which	provides	DTS	Designer	with	the	number
and	names	of	the	source	columns	in	the	package.	The	Subscriber
connection	(not	shown	here)	is	set	to	the	Microsoft	OLE	DB	Provider
for	SQL	Server.
Dim	oConnection	As	DTS.Connection
Set	Connection	=	goPackage.Connections.New("SQLReplication.OLEDB")
oConnection.Name	=	"Publisher	article	'Employees'"
oConnection.ID	=	1
oConnection.ConnectImmediate	=	False
oConnection.ConnectionProperties("Column	List")	=	_
		"[EmployeeID],[LastName],[FirstName],[Title],
		[BirthDate],[HireDate],[Address],[City],[Region],
		[PostalCode],[Country],[HomePhone],[Extension]
		[ReportsTo]"
goPackage.Connections.Add	oConnection

Set	oConnection	=	Nothing

If	the	destination	table	schema	is	not	defined,	use	an	Execute	SQL
custom	task	containing	an	SQL	statement	to	generate	the	schema	for	the
destination	(Subscriber)	table.

Use	additional	Execute	SQL	custom	tasks	to	define	SQL	scripts	to	be
applied	after	the	data	has	been	copied	to	the	destination	(for	example,	a
script	containing	index	generation	statements	(not	shown)).

Use	the	following	conventions	when	naming	tasks	in	a	replication	DTS
program	(required	by	the	replication	agents):

For	a	Data	Driven	Query	task,	the	task	name	is	the	same	as	the
article	name.

For	custom	tasks,	such	as	an	Execute	SQL	task,	the	name	is	a
concatenated	string	consisting	of	the	article	name,	the	prefix
"pre"	(if	the	task	executes	before	the	snapshot	data	is	copied)	or
"post"	(if	the	task	executes	after	the	snapshot	data	is	copied),
and	an	optional	part	("ignore_error")	if	an	instruction	is	given
to	continue	program	execution	when	a	query	script	error	is
encountered.	To	determine	what	the	name	should	be,	run
sp_helparticledts	in	SQL	Query	Analyzer.	For	more
information,	see	sp_helparticledts.

In	the	following	code	sample,	the	Execute	SQL	task	name
"Employees_pre_ignore_error"	(line	5)	means	that	the	article	name	is
Employees,	the	task	occurs	before	the	snapshot	data	is	copied,	and	that
program	execution	should	continue	if	a	script	error	is	encountered.

Dim	oTask	As	DTS.Task
Dim	oCustomTask0	As	DTS.ExecuteSQLTask
Set	oTask	=	goPackage.Tasks.New("DTSExecuteSQLTask")
Set	oCustomTask0	=	oTask.CustomTask
oCustomTask0.Name	=	"Employees_pre_ignore_error"
oCustomTask0.Description	=	"Pre	script	for	article	employees"
oCustomTask0.SQLStatement	=	_

JavaScript:hhobj_2.Click()

			"If	object_id('MyEmployees')	is	NOT	NULL	_
			BEGIN	Drop	Table	MyEmployees	END	_
			Create	Table	MyEmployees	_
			([EmployeeID]	[int]	NOT	NULL,
				[LastName]	[nvarchar]	(20)	NOT	NULL,
				[FirstName]	[nvarchar]	(10)	NOT	NULL,
				[Title]	[nvarchar]	(30)	NULL,
				[Birthdate]	[datetime]	NULL,
				[HireDate]	[datetime]	NULL,
				[Address]	[nvarchar]	(255)	NULL,
				[HomePhone]	[nvarchar]	(24)	NULL,
				[Extension]	[nvarchar]	(4)	NULL,
				[ReportsTo]	[int]	NULL,
				CONSTRAINT	[PK_Employees]	PRIMARY	KEY	_
							CLUSTERED([EmployeeID]))"
CustomTask0.ConnectionID	=	2
goPackage.Tasks.Add	oTask
Set	CustomTask0	=	Nothing
Set	oTask	=	Nothing

With	transformable	subscriptions,	data	movement	is	always	done	with	a
Data	Driven	Query	task,	never	with	a	Transform	Data	task,	which	is
commonly	used	in	DTS	packages	that	do	not	use	replication.	Therefore,
you	must	define	a	Data	Driven	Query	custom	task:
Dim	oTransformation	As	DTS.Transformation
Dim	oTransProps	As	DTS.Properties
Dim	oColumn	As	DTS.Column
Dim	oCustomTask1	As	DTS.DataDrivenQueryTask
Set	oTask	=	goPackage.Tasks.New("DTSDataDrivenQueryTask")
Set	oCustomTask1	=	oTask.CustomTask
oCustomTask1.Name	=	"Employees"
oCustomTask1.Description	=	"Transformations	for	article	Employees"
oCustomTask1.SourceConnectionID	=	1

oCustomTask1.SourceObjectName	=	"nothing"	'Experiment
oCustomTask1.DestinationConnectionID	=	2
oCustomTask1.DestinationObjectName	=	"MyEmployees"

Among	the	properties	you	need	to	define	for	the	Data	Driven	Query
task	are	the	parameterized	queries	associated	with	each	type	of
incremental	update	(INSERT,	UPDATE,	and	DELETE).	The
parameterized	query	works	by	selecting	for	data	movement	source	rows
that	satisfy	the	conditions	in	the	query	statement.
oCustomTask1.InsertQuery	=	"INSERT	INTO	_
			MyEmployees	values	(?,?,?,?,?,?,?,?,?,?)"
oCustomTask1.UpdateQuery	=	"UPDATE	_MyEmployees	_
			SET	LastName=?,	FirstName=?,	Title=?,	Birthdate=?,	_
			HireDate=?,	Address=?,	HomePhone=?,	Extension=?,	_
			ReportsTo=?	where	EmployeeID=?"
oCustomTask1.DeleteQuery	=	"DELETE	MyEmployees	_
			WHERE	EmployeeID	=	?"

Another	essential	set	of	operations	is	setting	the	source	and	destination
column	collections.	Because	one	of	the	transform	operations	performed
by	the	DTS	package	is	a	concatenation	of	several	of	the	source
columns,	the	number	of	destination	columns	added	to	the	destination
collection	is	fewer	than	the	number	of	source	columns	added	to	the
source	collection.	An	example	of	one	source	column	and	one
destination	column	added	to	their	respective	collections	is	shown	here.
The	column	"Address"	for	the	destination	is	actually	the	concatenation
of	the	source	columns	"Address",	"City",	"Region",	and	"Postal	Code".
Set	oColumn	=	oTransformation.DestinationColumns.New("HireDate",	6)
oColumn.Name	=	"HireDate"
oColumn.Ordinal	=	6
oTransformation.DestinationColumns.Add	oColumn
Set	oColumn	=	Nothing
...

Set	oColumn	=	oTransformation.DestinationColumns.New("Address",	7)

oColumn.Name	=	"Address"
oColumn.Ordinal	=	7
oTransformation.DestinationColumns.Add	oColumn
Set	oColumn	=	Nothing
...

To	complete	the	Data	Driven	Query	task	transformation,	add	column
definitions	(in	sequential	order)	to	each	of	the	incremental	update
operations	described	earlier.	For	example,	because	an	INSERT
operation	was	defined	with	parameters	for	the	10	destination	columns	of
the	article,	INSERT	column	definition	code	for	each	of	the	10	columns
is	required	(only	the	first	two	are	shown	here):
Set	oColumn	=	oCustomTask1.InsertQueryColumns.New("EmployeeID",	1)
oColumn.Name	=	"EmployeeID"
oColumn.Ordinal	=	1
oCustomTask1.InsertQueryColumns.Add	oColumn
Set	oColumn	=	Nothing

Set	oColumn	=	oCustomTask1.InsertQueryColumns.New("LastName",	2)
oColumn.Name	=	"LastName"
oColumn.Ordinal	=	2
oCustomTask1.InsertQueryColumns.Add	oColumn
Set	oColumn	=	Nothing
...

Similar	code	is	used	for	the	UPDATE	and	DELETE	queries.	When
defining	the	columns	for	those	queries,	remember	that	the	order	of	the
columns	must	follow	the	order	of	the	parameters	specified	by	the
question	mark	(?)	characters	in	the	InsertQuery	and	DeleteQuery
definitions.	For	example,	in	this	sample,	the	DELETE	query	uses	only
the	EmployeeId	column;	therefore,	only	code	for	that	column	is	used.

Set	oColumn	=	oCustomTask1.DeleteQueryColumns.New("EmployeeID",	1)
oColumn.Name	=	"EmployeeID"
oColumn.Ordinal	=	1

oCustomTask1.DeleteQueryColumns.Add	oColumn
Set	oColumn	=	Nothing

In	the	example,	a	Microsoft	ActiveX®	script	performs	the	actual
transformation	of	data,	which	is	the	concatenation	of	several	columns.
The	entire	ActiveX	script	code	should	be	viewed	in	the	sample.	This
example	shows	how	to	set	the	transform	server	property	to	handle
scripts,	and	how	to	set	the	line	of	script	code	used	to	perform	the
column	concatenation.
Set	oTransProps	=	oTransformation.TransformServerProperties
...
oTransProps("Text")	=	oTransProps("Text")	&	
			"			DTSDestination(""Address"")	=	DTSSource(""Address"")	_
			&	"",""	&	DTSSource(""City"")	&"",""&	DTSSource(""Region"")	_
			&"",""&	DTSSource(""PostalCode"")"	&	vbCrLf
...

Transformable	subscription	DTS	packages	are	typically	saved	to	an
instance	of	SQL	Server.	They	can	also	be	saved	as	a	.dts	structured
storage	file,	but	cannot	be	saved	to	the	repository.	In	the	following	line
of	code,	the	package	is	saved	to	an	instance	of	SQL	Server:
GoPackage.SaveToSQLServer	"myServerName",	"sa",	""
...

DTS	includes	several	options	for	handling	data	conversions.	These
options	are	handled	by	a	set	of	transformation	flags	whose	values	can	be
viewed	in	the	Visual	Basic	Object	Browser	under	the	DTSPump
component,	DTSTransformFlags	enumeration.	When	building	a
replication	DTS	package	in	Visual	Basic,	if	an	ActiveX	script
transformation	is	used,	as	in	this	sample,	the	transformation	flags	do	not
need	to	be	explicitly	set.	If	you	build	a	replication	DTS	package	without
ActiveX	scripts	(using	only	Copy	Column	mappings),	the
TransformFlags	property	must	be	explicitly	set	to
DTSTransformFlag_Default	(a	value	of	63).
oTransformation.TransformFlags	=	63

Replication	Programming

Merge	Replication	Samples
Microsoft®	SQL	Server™	2000	comes	with	the	following	samples	to	help	you
implement	merge	replication	in	your	application.

Sample Description
Subscriber-Based	Resolver	using
C++	and	a	Stored	Procedure

Microsoft	Visual	C++	language
sample	that	builds	a	stored	procedure
custom	resolver	to	use	in	merge
replication.

Transact-SQL	Custom	Stored
Procedure	Resolver

Transact-SQL	stored	procedure	that
is	the	custom	resolver	used	in	a
merge	replication.

Generating	Merge	Dynamic
Snapshot	Jobs

The	procedures	in	this	sample	show
how	to	enumerate	a	list	of	users	from
within	a	Microsoft	Windows®	group
and	generate	dynamic	snapshot	jobs
for	each	user.

Replication	Programming

Subscriber-Based	Resolver	Using	C++	and	a	Stored
Procedure
This	sample	application	builds	a	custom	stored	procedure	resolver	that	executes
the	stored	procedure	at	the	Subscriber.	It	contains	a	sample	script	to	set	up	a
publication	on	Northwind,	and	install	the	sample	resolver	that	calls
sp_authority_resolver.	sp_authority_resolver	retrieves	the	'authority'	value
from	the	table	at	the	Publisher	and	Subscriber,	and	the	row	with	the	highest
authority	will	win	and	be	returned	to	the	merge	process	to	be	applied	to	both
servers.	If	both	rows	have	the	same	authority,	the	source	table	will	win.	The
Microsoft®	Visual	C++	sample	code	is	located	in	the	\Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqlrepl\resolver\subspres	directory.

To	run	the	sample	program

1.	 On	the	computer	that	will	be	the	Publisher,	verify	that	the	SQL	Server
Agent	is	running.	If	it	is	not	running,	start	it.

2.	 Verify	that	the	computer	is	configured	for	publishing	and	distribution	
If	it	is	not	configured,	configure	it	using	the	Configure	Publishing	and
Distribution	Wizard.	The	defaults	given	in	the	wizard	are	all
acceptable	for	this	sample.

Replication	Programming

Transact-SQL	Custom	Stored	Procedure	Resolver
The	program	in	the	C:\Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqlrepl\deflt_sp	directory	is	a	sample
application,	which	builds	a	custom	stored	procedure	resolver	that	executes	at	the
Publisher.	The	resolver	uses	the	Northwind	sample	database,	a	distributed	query
to	obtain	information	from	the	Subscriber,	and	then	computes	the	average	price
if	the	values	between	the	Publisher	and	Subscriber	are	different.	The	resolver
then	makes	the	average	price	the	resolved	value,	and	logs	the	conflict	at	the
Publisher	so	it	can	be	viewed,	and	if	necessary,	changed.	Finally,	the	application
sends	an	e-mail	stating	that	the	price	was	changed	to	an	average	due	to	a
conflict.	If	any	columns	other	than	price	have	changed,	the	resolver	uses	the
values	from	the	Publisher.

The	resolver	is	designed	to	run	on	the	Products	table	in	Northwind	sample
database.	It	is	assumed	that	the	sample	code	was	saved	to	the	default	directory
offered	during	installation,	and	that	the	files	can	be	found	in	C:\Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqlrepl\deflt_sp.

Note		To	run	this	sample,	two	computers	are	required.	For	the	distributed	query
to	work,	the	two	computers	must	both	be	running	the	Microsoft	Windows	NT
4.0	or	Windows	2000	operating	system,	or	the	Publisher	must	be	running	on
Windows	2000	with	the	linked	server	running	on	Windows	NT	4.0.

To	run	the	sample	program

1.	 On	the	computer	that	will	be	the	Publisher,	verify	that	the	SQL	Server
Agent	is	running.	If	it	is	not	running,	start	it.

2.	 Using	the	Create	Publication	Wizard,	create	a	merge	publication
based	on	the	Northwind	database,	and	then	select	the	Products	table
as	an	article	in	the	publication.

How	to	create	publications	and	define	articles

Replication	Programming

Generating	Merge	Dynamic	Snapshot	Jobs
This	sample	generates	multiple	merge	dynamic	snapshot	jobs	for	a	set	of
Windows	Group	users.	After	you	create	a	merge	publication	with	a	dynamic
filter	and	generate	a	standard	snapshot,	you	can	run	the	extended	stored
procedure	and	stored	procedures	included	with	this	sample	to	generate	dynamic
snapshot	jobs.

The	sample	extended	stored	procedure	enumerates	a	Windows	group	and
identifies	the	members	for	which	dynamic	snapshot	jobs	will	be	created.	After
the	members	are	identified,	you	can	execute	the	sample	stored	procedure	that
will	create	the	actual	dynamic	snapshot	jobs.	After	the	dynamic	snapshot	jobs
are	created,	you	will	need	to	start	them	manually	or	ensure	they	will	start
according	to	a	schedule.

If	you	have	a	dynamically	filtered	merge	publication	with	multiple	subscriptions,
this	sample	shows	how	you	can	create	multiple	dynamic	snapshot	jobs	for	the
users	of	those	subscriptions.	Dynamic	snapshots	provide	the	performance
advantage	of	using	SQL	bulk	copy	program	(bcp)	files	to	apply	data	to	a	specific
Subscriber	when	applying	the	initial	snapshot.		For	more	information,	see
Dynamic	Snapshots.

The	sample	code	is	located	in	the	\Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqlrepl\dynsnapjob	directory.

To	run	the	sample	programs

1.	 In	the	\Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqlrepl\dynsnapjob\xp	directory,
copy	the	compiled	xp_enumntusers.dll	into	your	Windows	system32
folder.

2.	 Register	the	name	of	the	extended	stored	procedure	to	Microsoft	SQL
Server™	by	running	the	following	Transact-SQL	command	in	SQL
Query	Analyzer:
use	master
go

JavaScript:hhobj_1.Click()

exec	sp_addextendedproc	'xp_enumntusers',	'xp_enumntusers.dll'
go

3.	 To	create	the	stored	procedure,	open	SQL	Query	Analyzer,	and	then
run	spdynsnapsample.sql,	which	is	located	in	the
\Samples\sqlrepl\dynsnapjob\sp	directory.	

4.	 Create	a	merge	publication	with	dynamic	filtering	enabled	(use	a
system	function	such	as	SUSER_SNAME()	as	the	criteria	for	the
filter),	and	then	generate	a	standard	snapshot	for	the	publication.

5.	 Allow	a	Windows	Local	(or	Global)	group	access	to	the	SQL	Server
instance	that	contains	the	merge	publication	in	Step	4.	This	group
needs	to	have	public	access	only	to	the	database	on	which	you	created
the	publication.	This	step	can	be	performed	using	SQL	Server
Enterprise	Manager.

6.	 Add	the	Windows	Group	to	the	Publication	Access	List	(PAL),	which
is	found	in	the	merge	publication	properties.

You	can	now	run	the	extended	stored	procedure	and	stored	procedure	to	generate
dynamic	snapshot	jobs	for	the	Windows	Group	users.	For	more	information
about	how	to	execute	each	procedure,	see	Using	xp_enumntusers	and	Using
sp_addntgroupmergedynsnapshotjob.

Using	xp_enumntusers
This	extended	stored	procedure	enumerates	through	Microsoft®	Windows®
Local	and	Global	group	users.

xp_enumntusers	[@servername	=]	'domain_server_name'

				,	[@groupname	=]	'group_name'

Arguments

[@servername	=]	'domain_server_name'

The	domain	server	to	retrieve	the	group	from.	Use	'.'	or	''	for	local	server.

[@groupname	=]	'group_name'

The	name	of	the	group	from	which	to	enumerate	users.

Both	@servername	and	@groupname	must	be	server	strings.

Using	sp_addntgroupmergedynsnapshotjob
This	stored	procedure	generates	a	dynamic	snapshot	job	for	each	user	found
when	xp_enumntusers	was	run.	The	stored	procedure	accepts	parameters	that
allow	you	to	specify	the	following:

Generate	a	single	dynamic	snapshot	job	for	all	users	or	generate	a
separate	dynamic	snapshot	job	for	each	user.

Filter	the	enumerated	user	using	the	LIKE	operand.

Specify	schedule	information.

sp_addntgroupmergedynsnapshotjob	[@publication	=]	'publication'
				,	[@ntserver_name	=]	'ntserver_name'
				,	[@group_name	=]	'group_name'
				,	[@destination	=]	'destination'
				,	[@job_name	=]	'job_name'
				,	[@like_string	=]	'like_string'
				,	[@as_one_job	=]	as_one_job
				,	[@frequency_type	=]	frequency_type
				,	[@frequency_interval	=]	frequency_interval
				,	[@frequency_subday	=]	frequency_subday
				,	[@frequency_subday_interval	=]	frequency_subday_interval
				,	[@frequency_relative_interval	=]	frequency_relative_interval
				,	[@frequency_recurrence_factor	=]	frequency_recurrence_factor
				,	[@active_start_date	=]	active_start_date
				,	[@active_end_date	=]	active_end_date
				,	[@active_start_time_of_day	=]	active_start_time_of_day

				,	[@active_end_time_of_day	=]	active_end_time_of_day

Arguments

[@publication	=]	'publication'

The	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@ntserver_name	=]	'ntserver_name'

The	Windows	server	or	domain	name	on	which	to	enumerate	users.	Use	'.'
for	local	server.	ntserver_name	is	nvarchar(100)	with	no	default.

[@group_name	=]	'group_name'

The	name	of	the	group	on	the	Windows	server	or	domain.	group_name	is
nvarchar(256)	with	no	default.

[@destination	=]	'destination'

The	destination	directory	path.	destination	is	nvarchar(3500)	with	no
default.

[@job_name	=]	'job_name'

The	job	name.	job_name	is	sysname	with	a	default	of	NULL.	If	NULL,	a
default	job	name	is	used.	This	parameter	is	ignored	when	@as_one_job=0

[@like_string	=]	'like_string'

The	string	to	be	used	in	WHERE	clause	used	when	creating	jobs	for	user
names.	For	example,	the	WHERE	clause	is	constructed	of	"WHERE	user
name	LIKE	@like_string".	like_string	can	contain	any	of	the	valid	wildcard
characters	such	as	the	percent	sign	('%').	like_string	is	nvarchar(1000)	with
a	default	of	NULL.

[@as_one_job	=]	as_one_job

Specifies	how	many	dynamic	snapshot	jobs	to	create.	as_one_job	is	a	bit
with	a	default	of	1.	1	specifies	that	one	dynamic	snapshot	job	will	be	created
for	all	users.	0	specifies	that	an	individual	dynamic	snapshot	job	will	be
created	for	each	user.

[@frequency_type	=]	frequency_type

@frequency_type														int	=	4,

Is	a	value	indicating	when	the	job	is	to	be	executed.	freq_type	is	int	with	a
default	of	4,	and	can	be	one	of	these	values.

Value Description
1 Once
4 Daily
8 Weekly
16 Monthly
32 Monthly,	relative	to

frequency_interval
64 Run	when	SQL	Server	Agent	service

starts
128 Run	when	computer	is	idle

[@frequency_interval	=]	frequency_interval

Is	the	days	that	the	job	is	executed.	freq_interval	is	int	with	a	default	of	1,
and	the	value	used	is	dependent	on	the	value	of	freq_type.

Value	of	frequency_type Effect	on	frequency_interval
1	(Once) frequency_interval	is	ignored.
4	(Daily) Every	frequency_internval	days.
8	(Weekly) frequency_interval	is	one	or	more	of

the	following	(combined	with	an	OR
logical	operator):

1	=	Sunday
2	=	Monday
4	=	Tuesday
8	=	Wednesday
16	=	Thursday
32	=	Friday
64	=	Saturday

16	(Monthly) On	the	frequency_interval	day	of	the
month.

32	(Monthly	relative) frequency_interval	is	one	of	the
following:

1	=	Sunday	
2	=	Monday	
3	=	Tuesday	
4	=	Wednesday	
5	=	Thursday	
6	=	Friday	
7	=	Saturday	
8	=	Day	
9	=	Weekday
10	=	Weekend	day

64	(When	SQL	Server	Agent	service
starts)

frequency_interval	is	unused.

128	(When	computer	is	idle) frequency_interval	is	unused.

[@frequency_subday	=]	frequency_subday

Specifies	the	units	for	frequency_subday_interval.	frequency_subday	is	int
with	a	default	of	8,	and	can	be	one	of	these	values.

Value Description	of	Units
0x1 At	the	specified	time.
0x4 Minutes.
0x8 Hours.

[@frequency_subday_interval	=]	frequency_subday_interval

Is	the	number	of	frequency_subday_type	periods	to	occur	between	each
execution	of	the	job.	frequency_subday_interval	is	int,	with	a	default	of	6.

[@frequency_relative_interval	=]	frequency_relative_interval

Is	the	scheduled	job's	occurrence	of	frequency_interval	in	each	month,	if
frequency_interval	is	32	(monthly	relative).	frequency_relative_interval	is

int	with	a	default	of	1,	and	can	be	one	of	these	values.

Value Description	of	Units
1 First
2 Second
4 Third
8 Fourth
16 Last

[@frequency_recurrence_factor	=]	frequency_recurrence_factor

Is	the	number	of	weeks	or	months	between	the	scheduled	execution	of	the
job.	frequency_recurrence_factor	is	used	only	if	frequency_type	is	8,	16,	or
32.	frequency_recurrence_factor	is	int	with	a	default	of	0.

[@active_start_date	=]	active_start_date

Is	the	date	on	which	execution	of	the	job	can	begin.	active_start_date	is	int
with	a	default	of	0,	which	indicates	today's	date.	The	date	is	formatted	as
YYYYMMDD.	If	active_start_date	is	not	NULL,	the	date	must	be	greater
than	or	equal	to	19900101.

[@active_end_date	=]	active_end_date

Is	the	date	on	which	execution	of	the	job	can	stop.	active_end_date	is	int
with	a	default	of	99991231,	which	indicates	December	31,	9999.	Formatted
as	YYYYMMDD.

[@active_start_time_of_day	=]	active_start_time_of_day

Is	the	time	on	any	day	between	active_start_date	and	active_end_date	to
begin	execution	of	the	job.	active_start_time	is	int,	with	a	default	of	0,	which
indicates	12:00:00	A.M.	on	a	24-hour	clock.	The	value	for	this	parameter
must	be	entered	using	the	form	HHMMSS.

[@active_end_time_of_day	=]	active_end_time_of_day

Is	the	time	on	any	day	between	active_start_date	and	active_end_date	to	end
execution	of	the	job.	active_end_time	is	int	with	a	default	of	235959,	which
indicates	11:59:59	P.M.	on	a	24-hour	clock.	The	value	for	this	parameter

must	be	entered	using	the	form	HHMMSS.

Replication	Programming

Replication	Distributor	Interface	Samples
Microsoft®	SQL	Server™	2000	comes	with	the	following	sample	applications
to	help	you	implement	the	Replication	Distributor	Interface.

Sample Description
Programming	Snapshot	or
Transactional	Replication
from	Heterogeneous	Data
Sources

Microsoft	Visual	Basic®	SQL-DMO
application	to	configure	the	Publisher,
publication,	and	a	subscription	for	use	in	a
heterogeneous	publishing	environment.	Also
includes	a	Microsoft	Visual	C++®	application
to	deliver	transactions	to	the	Distributor.

Replication	Programming

Programming	Snapshot	or	Transactional	Replication
from	Heterogeneous	Data	Sources
SQL-DMO	and	the	Replication	Distributor	Interface	sample	explains	how	to
support	a	third-party	publication.	Because	this	sample	uses	transactional
replication,	this	sample	will	work	only	with	Microsoft®	SQL	Server™	2000
Standard	Edition	and	SQL	Server	2000	Enterprise	Edition.

SQL-DMO	configures	a	third-party	publication	and	Distributor	using	SQL
Server.	The	Replication	Distributor	Interface	logs	any	transaction	that	it	marks
for	replication	to	this	Distributor.	The	third-party	publication	uses	the
Distribution	Agent	to	distribute	the	transactions	as	if	they	were	coming	from	an
instance	of	SQL	Server.

If	the	samples	were	installed	to	the	default	location,	the	files	used	in	this	sample
will	be	located	in	the	C:\Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqlrepl\samppub	directory.

To	run	the	sample	programs

1.	 On	the	computer	that	will	be	the	Publisher,	verify	that	SQL	Server
Agent	is	running.	If	it	is	not	running,	start	it.

2.	 In	SQL	Query	Analyzer,	open	\Samples\sqlrepl\samppub\samppub.sql,
and	then	execute	it.	This	script	creates	two	databases,
SampleSubscriberDB1	and	SampleSubscriberDB2,	and	sets	up	a
subscription	to	one	of	the	databases.	The	script	also	configures	the
computer	for	publishing	and	distribution,	adds	a	distribution	database
named	distribution,	and	enables	the	computer	as	a	Subscriber.

3.	 Execute	the	BAT	file	iniwkdir.bat,	in	the	in	\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Sqlrepl\Samppub	directory,	by
either	double-clicking	it	in	Microsoft	Windows	Explorer	or	running	it
at	a	command	line.	The	result	of	the	execution	creates	the	working
directory	at	C:\mssql8\repldata\UNC\samppub	that	contains	the	files
Samptab.sch	and	Samptab.bcp.	These	schema	and	.bcp	data	files

will	be	used	by	the	Visual	C++	application.

4.	 On	the	Publisher,	open	Visual	Basic,	open	the	SQL-DMO	application
workspace,	samppub.vbp,	in	the	samppub\sqldmo	directory.	Build	the
application	by	selecting	Make	samppub.exe	on	the	File	menu.	The
resulting	executable	will	be	named	samppub.exe,	(the	same	name	as
the	Visual	C++	executable);	therefore,	it	is	recommended	that	this	one
be	kept	in	the	SQLDMO	directory	or	in	a	directory	of	your	choosing
where	the	two	executables	can	be	distinguished	from	each	other.

5.	 Run	the	Visual	Basic	version	of	the	samppub.exe	from	inside	Visual
Basic	on	the	Run	menu	by	clicking	Start,	or	by	starting	the	executable
from	where	it	was	saved.	The	application	has	one	form	with	four
buttons.	

6.	 Click	the	Create	Sample	Publication	button	to	create	a	publication	on
a	third-party	vendor.	You	can	view	the	results	in	SQL	Server
Enterprise	Manager.	Expand	Replication,	and	there	will	be	a	new
folder	called	Heterogeneous	Publications.	There	will	be	a	folder
called	Sample	Vendor,	with	a	publication	called	SamplePublication.
You	can	right-click	SamplePublication:SampleDatabase	and	select
Properties	to	view	information	about	the	publication.	You	will	see
that	there	is	no	subscription	to	this	publication.	If	the	Replication
folder	was	already	expanded,	click	Refresh	to	show	the	new	objects	or
close	and	open	SQL	Server	Enterprise	Manager	again.	

7.	 Click	the	Add	Subscription	button.	This	creates	a	push	subscription,
with	the	data	going	to	the	SampleSubscriberDB1	database.	If	you
have	not	clicked	the	Create	Sample	Publication	button,	clicking	this
button	will	give	an	error	because	there	will	be	no	publication	on	which
to	add	a	subscription.	After	clicking	this	button,	you	can	view	the
results	in	SQL	Server	Enterprise	Manager.	Expand	Replication,
expand	Heterogeneous	Publications,	expand	Sample	Vendor	Right-
click	SamplePublication:SampleDatabase	and	select	Properties.
The	Subscriptions	tab	shows	the	new	subscription.

8.	 Open	Visual	C++,	and	then	open	the	workspace	samppub.dsw	in	the
samppub\repldist	directory.	On	the	Tools	menu,	point	to	Options,	and
then	click	the	Directories	tab.	In	the	Show	directories	for	box,	select
Include	files	and	point	to	the	\Microsoft	SQL
Server\80\Tools\Devtools\Include	directory.	For	the	Library	setting,
navigate	to	\Microsoft	SQL	Server\80\Tools\Devtools\Lib.	On	the
Build	menu,	select	Build	samppub.exe.	The	application	will	be
compiled	and	saved	to	the	samppub\repldist	directory.

9.	 Run	the	Visual	C++	version	of	samppub.exe	.	On	the	Build	menu,
click	Execute	samppub.exe.	It	can	also	be	executed	directly	running	it
from	the	directory	where	it	was	saved.	This	will	deliver	transactions	to
the	Distributor.	The	application	will	perform	Snapshot	Agent	and	Log
Reader	Agent	operations	for	the	publication.	When	run,	messages	will
appear	in	the	Command	window,	with	the	messages:
Sample	Publisher	Agent	Startup
Added	1	Transaction(s)	consisting	of	3	Command(s)
Sample	Publisher	Snapshot	Agent	Succeeded.
Added	1	Transaction(s)	consisting	of	30	Command(s)
Sample	Publisher	Logreader	Agent	Succeeded.

After	a	successful	execution,	you	should	see	a	table	SampleTable1	in
the	SampleSubscriberDB1	database.	Opening	the	table	shows	20
rows	of	data.

10.	 Optionally,	create	a	push	subscription	to	the	SampleSubscriberDB2
from	the	publication	database	using	SQL	Server	Enterprise	Manager.
When	creating	this	subscription,	do	not	create	an	initial	snapshot.
Running	the	Visual	C++	program	results	in	transactions	being
propagated	to	both	subscriptions.

11.	 Execute	the	Visual	Basic	samppub.exe	file	from	where	it	was	saved,
and	then	click	Drop	Subscription	to	drop	the	push	subscription.	After
clicking	this	button,	you	can	view	the	results	in	SQL	Server	Enterprise

Manager.	Expand	the	SQL	Server	Group,	the	Replication	folder,
Heterogeneous	Publications	folder,	and	Sample	Vendor.	On
SamplePublication:SampleDatabase,	right-click	and	select
Properties.	On	the	Subscriptions	tab	is	a	Properties	button	that
shows	the	Subscription	Properties	dialog	box.	There	are	no
subscriptions	showing.	If	you	have	not	clicked	the	Create	Sample
Publication	button,	clicking	this	button	will	give	an	error,	as	there	will
be	no	subscription	to	drop	because	one	has	not	been	created.	If	you
have	not	clicked	the	Add	Subscription	button,	clicking	this	button
will	give	an	error,	as	there	is	no	subscription	to	drop.	

12.	 Click	the	Drop	Sample	Publication	button	to	removes	the
publication.	In	SQL	Server	Enterprise	Manager,	in	the	Replication
folder,	the	Heterogeneous	Publications	folder	is	removed	if	this	was
the	only	heterogeneous	publication	on	the	computer.	If	you	have	not
clicked	the	Create	Sample	Publication	button,	clicking	this	button
will	give	an	error,	as	there	will	be	no	Publication	to	drop.	The
subscription	and	the	publication	have	been	removed.

Data	and	schema	files	were	installed	on	the	local	computer	to	a
directory	created	by	the	iniwkdir.bat.	The	directory	is
C:\mssql8\repldata\uncsamppub.	They	were	used	by	the	Visual	C++
application	as	the	data	copied	into	the	SampleTable1.

	Getting Started with Replication Programming
	Introducing Replication Programming
	Benefits of Programming Replication
	Planning for Replication Programming

	Developing Replication Applications Using ActiveX Controls
	Requirements for Using Replication ActiveX Controls in Development Environments
	Requirements for Deploying Replication ActiveX Controls
	Programming the SQL Snapshot ActiveX Control
	Programming the SQL Distribution ActiveX Control
	Programming the SQL Merge ActiveX Control
	Common SQL Distribution Control and SQL Merge Control Functionality
	Programming Replication ActiveX Controls Using VBScript

	Replication ActiveX Control Reference
	Object Model for ActiveX Controls
	SQLSnapshot Object
	SQLDistribution Object
	SQLMerge Object

	Other Replication Control Objects and Collections
	AlternateSyncPartner Object
	AlternateSyncPartners Collection
	SQLReplError Object
	SQLReplErrors Collection

	Replication ActiveX Control Properties
	AlternateSyncPartners Property
	AltSnapshotFolder Property
	Count Property
	Description Property
	Distributor Property
	DistributorAddress Property
	DistributorLogin Property
	DistributorNetwork Property
	DistributorPassword Property
	DistributorSecurityMode Property
	DTSPackageFileName Property
	DTSPackagePassword Property
	DynamicFilterHostName Property
	DynamicFilterLogin Property
	DynamicSnapshotLocation Property
	ErrorNumber Property
	ErrorNumberString Property
	ErrorRecords Property
	ExchangeType Property
	FileTransferType Property
	FriendlyName Property
	FTPAddress Property
	FTPLogin Property
	FTPPassword Property
	FTPPort Property
	HostName Property
	LoginTimeout Property
	MaxDeliveredTransactions Property
	ProfileName Property
	Publication Property
	Publisher Property
	PublisherAddress Property
	PublisherChanges Property
	PublisherConflicts Property
	PublisherDatabase Property
	PublisherLogin Property
	PublisherNetwork Property
	PublisherPassword Property
	PublisherRPCLogin Property
	PublisherRPCPassword Property
	PublisherRPCSecurityMode Property
	PublisherSecurityMode Property
	QueryTimeout Property
	ReplicationType Property
	SkipErrors Property
	Source Property
	SourceType Property
	Subscriber Property
	SubscriberChanges Property
	SubscriberConflicts Property
	SubscriberDatabase Property
	SubscriberDatabasePath Property
	SubscriberDatasourceType Property
	SubscriberLogin Property
	SubscriberPassword Property
	SubscriberSecurityMode Property
	SubscriptionName Property
	SubscriptionPriority Property
	SubscriptionPriorityType Property
	SubscriptionType Property
	SynchronizationType Property
	SyncToAlternate Property
	UndeliveredCommands Property
	UndeliveredTransactions Property
	UseInteractiveResolver Property
	Validate Property
	WorkingDirectory Property

	Replication ActiveX Control Methods
	Add Method
	AddReplError Method
	AddSubscription Method
	CopySubscription Method
	DropSubscription Method
	Initialize Method
	ReinitializeSubscription Method
	Run Method
	SetFailoverMode Method
	Terminate Method

	Replication ActiveX Control Events
	Notify Event
	Status Event

	Replication ActiveX Control Constants
	AGENT_STATUS
	DATASOURCE_TYPE
	DBADDOPTION
	DBDROPOPTION
	ERRORSOURCE_TYPE
	EXCHANGE_TYPE
	FILE_TRANSFER_TYPE
	NETWORK_TYPE
	REPL_FAILOVER_MODE
	REPLICATION_TYPE
	REPLRPC_SECURITY_TYPE
	SECURITY_TYPE
	STATUS_RETURN_CODE
	SUBSCRIPTION_HOST
	SUBSCRIPTION_PRIORITY_TYPE
	SUBSCRIPTION_TYPE
	SYNCHRONIZATION_TYPE
	VALIDATE_TYPE

	Developing Replication Merge Conflict Resolvers Through a Custom Resolver
	COM Conflict Resolver Header File

	Programming Replication from Heterogeneous Data Sources
	SQL-DMO Replication Objects

	Replication Distributor Interface Reference
	Replication Distributor Interface Objects
	DistributionLog Object
	DistributionStore Object

	Replication Distributor Interface Properties
	DBPROP_APPLICATION_NAME Property
	DBPROP_APPLICATION_TYPE Property
	DBPROP_AUTH_PASSWORD Property
	DBPROP_AUTH_USERID Property
	DBPROP_DBMSNAME Property
	DBPROP_DBMSVER Property
	DBPROP_INIT_DATASOURCE Property
	DBPROP_INIT_LOCATION Property
	DBPROP_INIT_PUBLISHERDATASOURCE Property
	DBPROP_INIT_PUBLISHER_NAME Property
	DBPROP_INIT_TIMEOUT Property
	DBPROP_INIT_XACT_SEQNO_SIZE Property
	DBPROP_INIT_XACTID_SIZE Property
	DBPROP_PUBLICATION_NAME Property

	Replication Distributor Interface Methods
	Abort Method
	AddLog Method
	AddTransactionCommands Method
	Commit Method
	GetLastTransaction Method
	StartTransaction Method

	Replication Distributor Interface Structures
	DISTCOMMANDDESC Structure
	CommandType Text Formats

	DISTERRORDESC Structure

	Replication Programming Samples
	Replication Syntax Conventions
	Replication ActiveX Control Samples
	Using SQL Merge and SQL Distribution Controls in a Custom Visual Basic Application
	Using SQL Merge and SQL Distribution Controls in a Custom Visual C++ Application
	Using SQL Merge and SQL Distribution Controls in a Web Application
	Creating a Transformable Subscription Using Visual Basic

	Merge Replication Samples
	Subscriber-Based Resolver Using C++ and a Stored Procedure
	Transact-SQL Custom Stored Procedure Resolver
	Generating Merge Dynamic Snapshot Jobs

	Replication Distributor Interface Samples
	Programming Snapshot or Transactional Replication from Heterogeneous Data Sources

