
The	Clipper	Library	-	Version	6
Library	Overview Changes Example FAQ Rounding Deprecated License

Classes	(Hierarchy)

	ClipperBase
	Clipper

	ClipperOffset
	PolyNode
	PolyTree

Types
CInt InitOptions JoinType PolyFillType
ClipType IntPoint Path PolyType
EndType IntRect Paths ZFillCallback

Functions
Area ClosedPathsFromPolyTree OffsetPaths PointInPolygon
CleanPolygon MinkowskiDiff OpenPathsFromPolyTree PolyTreeToPaths
CleanPolygons MinkowskiSum Orientation ReversePath

Units
ClipperLib

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home Overview

Changes

v6.2.1	(31	October	2014)

Bugfix:
Bugfix	in	ClipperOffset.Execute	where	the	Polytree.IsHole	property
was	returning	incorrect	values	with	negative	offsets

Modified:
Very	minor	improvement	to	join	rounding	in	ClipperOffset

Bugfix:
Fixed	CPP	OpenGL	demo

v6.2.0	(26	September	2014)

Bugfix:
Numerous	minor	bugfixes	-	too	many	to	list.	(See	revisions	454-475
in	Sourceforge	Repository.)

Modified:
Parameters	have	changed	in	the	custom	callback	function	that	can
be	assigned	to	ZFillFunction.

Modified:
Deprecated	functions	have	been	removed.

Modified:
The	Curves	demo	has	been	temporarily	removed.	(It	needs	to	be
updated	but	that	was	holding	up	this	latest	release	of	the	Clipper
library.)

v6.1.3	(18	January	2014)

Bugfix:
Fixed	potential	endless	loop	condition	when	adding	open	paths	to
Clipper.

Bugfix:
Fixed	missing	implementation	of	SimplifyPolygon	function	in	C++
code.

Bugfix:
Fixed	incorrect	upper	range	constant	for	polygon	coordinates	in
Delphi	code.

Added:
Added	PointInPolygon	function.

Added:
Overloaded	MinkowskiSum	function	to	accommodate	multi-contour
paths.

Modified:
Documentation	updated.

v6.1.2	(15	December	2013)

Bugfix:
Fixed	broken	C++	header	file.

Modified:
Minor	improvement	to	joining	polygons.

v6.1.1	(13	December	2013)

Bugfix:
Fixed	a	couple	of	bugs	affecting	open	paths	that	could	raise
unhandled	exceptions.

v6.1.0	(2	December	2013)

Deleted:
Previously	deprecated	code	has	been	removed.

Modified:
The	OffsetPaths	function	is	now	deprecated	as	it	has	been	replaced	by
the	ClipperOffset	class	which	is	much	more	flexible.

Bugfix:
Several	minor	bugs	have	been	fixed	including	occasionally	an
incorrect	nesting	within	the	PolyTree	structure.

v6.0.0	(30	October	2013)
Ver	6	is	a	MAJOR	update	that	adds	support	for	open	path	clipping.

Added:
Open	path	(polyline)	clipping.	A	new	'Curves'	demo	application
showcases	this	(see	the	'Curves'	directory).

Update:
Major	improvement	in	the	merging	of	shared/collinear	edges	in	clip
solutions	(see	Execute).

Added:
The	IntPoint	structure	now	has	an	optional	'Z'	member.	(See	the
precompiler	directive	use_xyz.)

Added:
Users	can	now	force	Clipper	to	use	32bit	integers	(via	the
precompiler	directive	use_int32)	instead	of	using	64bit	integers.
Using	32bit	integers	improves	clipping	performance	by	about	20-
30%.	(This	has	required	the	introduction	of	a	new	cInt	integer	type.)
The	trade-off	to	this	speed	up	in	performance	is	a	very	restricted
vertex	coordinate	range	of	±	46340.

Modified:
To	accommodate	open	paths,	the	Polygon	and	Polygons	structures
have	been	renamed	Path	and	Paths	respectively.	The	AddPolygon
and	AddPolygons	methods	of	the	ClipperBase	class	have	been
renamed	AddPath	and	AddPaths	respectively.	Several	other
functions	have	been	similarly	renamed.

Modified:
The	PolyNode	Class	has	a	new	IsOpen	property	(to	support	open
paths).

Modified:
The	Clipper	class	has	a	new	ZFillFunction	property.

Added:
MinkowskiSum	and	MinkowskiDiff	functions	added.

Added:
Several	other	new	functions	have	been	added	including
PolyTreeToPaths,	OpenPathsFromPolyTree	and
ClosedPathsFromPolyTree.

Added:
The	Clipper	constructor	now	accepts	an	optional	InitOptions
parameter	to	simplify	setting	properties.

Bugfix:
Numerous	minor	bugs	have	been	fixed.

Deprecated:
Version	6	is	a	major	upgrade	from	previous	versions	and	quite	a
number	of	changes	have	been	made	to	exposed	structures	and
functions.	To	minimize	inconvenience	to	existing	library	users,	some
code	has	been	retained	and	some	added	to	maintain	backward
compatibility.	However,	because	this	code	will	be	removed	in	a	future
update,	it	has	been	marked	as	deprecated	and	a	precompiler	directive
use_deprecated	has	been	defined.

v5.1.6	(23	May	2013)

BugFix:
The	CleanPolygon	function	was	buggy.

Added:
New	OffsetPolyLines	function.	(Replaced	with	OffsetPaths	function
in	ver	6.)

Changed:
The	behaviour	of	the	'miter'	JoinType	has	been	changed	so	that	when
squaring	occurs,	it's	no	longer	extended	up	to	the	miter	limit	but	is
squared	off	at	exactly	'delta'	units.	(This	improves	the	look	of
mitering	with	larger	limits	at	acute	angles.)

Update:
Minor	code	refactoring	and	optimisations.

v5.1.5	(5	May	2013)

Update:
ForceSimple	property	added	to	the	Clipper	Class.	(Renamed
StrictlySimple	in	ver	6.)

Update:
Further	improvements	to	this	documentation.

Update:
Minor	code	optimisations	and	trivial	bug	fixes.

v5.1.4	(24	March	2013)

Update:
CleanPolygon	function	enhanced.

Update:
Documentation	improved.

v5.1.3	(12	March	2013)

Bugfix:
Minor	bug	fixes.

Update:
Documentation	significantly	improved.

v5.1.2	(26	February	2013)

Bugfix:
PolyNode	class	was	missing	a	constructor.

Update:
The	MiterLimit	parameter	in	the	OffsetPolygons	function	has	been
renamed	Limit	and	can	now	also	be	used	to	limit	the	number	of
vertices	used	to	construct	arcs	when	JoinType	is	set	to	jtRound.

v5.1.0	(17	February	2013)

Update:
ExPolygons	has	been	replaced	with	the	PolyTree	/	PolyNode	classes
to	more	fully	represent	the	parent-child	relationships	of	the	polygons
returned	by	Clipper's	Execute	method.

Added:
New	CleanPolygon	and	CleanPolygons	functions.

Bugfix:
Another	orientation	bug	fixed.

v5.0.2	(30	December	2012)

Bugfix:
Significant	fixes	in	and	tidy	of	the	internal	Int128	class	(which	is
used	only	when	polygon	coordinate	values	are	greater	than
±0x3FFFFFFF	(~1.07e9)).

Update:
The	Area	function	has	been	updated	with	a	faster	algorithm.

Update:
Documentation	updates.	The	newish	but	undocumented	'CheckInputs'
parameter	of	the	OffsetPolygons	function	has	been	renamed	'AutoFix'
and	documented	too.	The	comments	on	rounding	have	also	been
improved	(ie	clearer	and	expanded).

v4.10.0	(25	December	2012)

Bugfix:
Orientation	bugs	should	now	be	resolved	(finally!).

Bugfix:
Bug	in	Int128	class.

v4.9.8	(2	December	2012)

Bugfix:
Further	fixes	to	rare	Orientation	bug.

v4.9.7	(29	November	2012)

Bugfix:
Bug	that	very	rarely	returned	a	wrong	polygon	orientation.

Bugfix:
Obscure	bug	affecting	OffsetPolygons	when	using	jtRound	for	the
JoinType	parameter	and	when	polygons	also	contain	very	large
coordinate	values.

v4.9.6	(9	November	2012)

Bugfix:
Another	obscure	bug	related	to	joining	intersections.

v4.9.4	(2	November	2012)

Bugfix:
Bugs	in	Int128	class	occasionally	causing	wrong	orientations.

Bugfix:
Further	fixes	related	to	joining	intersections.

v4.9.0	(9	October	2012)

Bugfix:
Obscure	bug	related	to	joining	intersections.

v4.8.9	(25	September	2012)

Bugfix:
Obscure	bug	related	to	precision	of	intersections.

v4.8.8	(30	August	2012)

Bugfix:
Fixed	bug	in	OffsetPolygons	function	introduced	in	version	4.8.5.

v4.8.7	(24	August	2012)

Bugfix:
ReversePolygon	function	in	C++	translation	was	broken.

Bugfix:
Two	obscure	bugs	affecting	orientation	fixed	too.

v4.8.6	(11	August	2012)

Bugfix:
Potential	for	memory	overflow	errors	when	using	ExPolygons
structure.

Bugfix:
The	polygon	coordinate	range	has	been	reduced	to	±
0x3FFFFFFFFFFFFFFF	(4.6e18).

Update:
ReversePolygons	function	was	misnamed	ReversePoints	in	C++.

Update:
SimplifyPolygon	function	now	takes	a	PolyFillType	parameter.

v4.8.5	(15	July	2012)

Bugfix:
Potential	for	memory	overflow	errors	in	OffsetPolygons().

v4.8.4	(1	June	2012)

Bugfix:
Another	obscure	bug	affecting	ExPolygons	structure.

v4.8.3	(27	May	2012)

Bugfix:
Obscure	bug	causing	incorrect	removal	of	a	vertex.

v4.8.2	(21	May	2012)

Bugfix:
Obscure	bug	could	cause	an	exception	when	using	ExPolygon
structure.

v4.8.1	(12	May	2012)

Update:
Code	tidy	and	minor	bug	fixes.

v4.8.0	(30	April	2012)

Bugfix:
Occasional	errors	in	orientation	fixed.

Update:
Added	notes	on	rounding	to	the	documentation.

v4.7.6	(11	April	2012)

Bugfix:
Fixed	a	bug	in	the	Orientation	function	(affecting	C#	translations
only).

Update:
Minor	documentation	update.

v4.7.5	(28	March	2012)

Bugfix:
Fixed	a	recently	introduced	bug	that	occasionally	caused	an
unhandled	exception	in	C++	and	C#	translations.

v4.7.1	(3	March	2012)

Bugfix:
Rare	crash	when	JoinCommonEdges	joined	polygons	that	'cancelled'
each	other.

Bugfix:
Clipper's	internal	Orientation	method	occasionally	returned	wrong
result.

Update:
Improved	C#	code	(thanks	to	numerous	suggestions	from	David
Piepgrass)

v4.7	(10	February	2012)

Update:
Improved	the	joining	of	output	polygons	sharing	a	common	edge.

v4.6.4	(8	December	2011)

Added:
Added	SimplifyPolygon	and	SimplifyPolygons	functions.

v4.6	(29	October	2011)

Added:
Support	for	Positive	and	Negative	polygon	fill	types	(in	addition	to
the	EvenOdd	and	NonZero	fill	types).

Bugfix:
The	OffsetPolygons	function	was	generating	the	occasional	artefact
when	'shrinking'	polygons.

v4.5.5	(6	October	2011)

Bugfix:
Fixed	an	obscure	bug	in	Clipper's	JoinCommonEdges	method.

Update:
Replaced	IsClockwise	function	with	Orientation	function.	The
orientation	issues	affecting	OffsetPolygons	should	finally	be
resolved.

Change:
The	Area	function	once	again	returns	the	signed	area.

v4.4.0	(6	August	2011)

BugFix:
A	number	of	minor	bugfixes	that	mostly	affected	the	new
ExPolygons	structure.

v4.3.0	(17	June	2011)

Added:
ExPolygons	structure	that	explicitly	associates	'hole'	polygons	with
their	'outer'	container	polygons.

Added:
Execute	method	now	overloaded	so	the	solution	parameter	can	be
either	Polygons	or	ExPolygons.

Bug	fix:
Fixed	a	rare	bug	in	the	orientation	of	solution	polygons.

v4.2.4	(26	April	2011)

Update:
Input	polygon	coordinates	can	now	contain	the	full	range	of	signed
64bit	integers	(ie	+/-9,223,372,036,854,775,807).	This	means	that
floating	point	values	can	be	converted	to	and	from	Clipper's	64bit
vertex	structure	(IntPoint)	and	still	retain	a	precision	of	up	to	18
decimal	places.	However,	since	the	large-integer	math	that	supports
this	expanded	range	imposes	a	small	cost	on	performance	(~15%),	a
new	property	UseFullCoordinateRange	has	been	added	to	the	Clipper
class	to	allow	users	the	choice	of	whether	or	not	to	use	this	expanded
coordinate	range.	If	this	property	is	disabled,	coordinate	values	are
restricted	to	+/-1,500,000,000.	(By	default,	this	property	is	enabled.)

v4.0	(4	April	2011)

Major	update:
Clipper	is	a	major	rewrite	of	earlier	versions.	The	biggest	change	is
that	floating	point	values	are	no	longer	used,	except	for	the	storing	of
edge	slope	values.	The	main	benefit	of	this	is	the	issue	of	numerical
robustness	has	been	addressed.	Due	to	other	major	code
improvements	Clipper	v4	is	approximately	40%	faster	than	Clipper
v3.

Changes:
The	AddPolyPolygon	method	has	been	renamed	to	AddPolygons,
and	the	IgnoreOrientation	property	has	been	removed.	The
clipper_misc	library	has	been	merged	back	into	the	clipper	library.

v2.8	(20	November	2010)

Updated:
Output	polygons	which	previously	shared	a	common	edge	are	now
merged.

Added:
Added	support	module	for	Cairo	Graphics	Library	(with
accompanying	demo).

Added:
Added	C#	and	C++	demos.

v2.522	(15	October	2010)

Added:
Added	C#	translation	(thanks	to	Olivier	Lejeune)	and	a	link	to	Ruby
bindings	(thanks	to	Mike	Owens).

v2.0	(31	July	2010)

Major	update:
Clipper	now	processes	polygons	using	both	the	Even-Odd	(alternate)
and	Non-Zero	(winding)	filling	rules.

v1.4c	(16	June	2010)

Additions:
Added	Delphi	and	C++	units	to	support	the	AGG	graphics	library

v1.2s	(2	June	2010)

Additions:
C++	translation	of	Delphi	code

v1.0	(9	May	2010)	-	Initial	public	release

See	Also
Deprecated,	Rounding,	Clipper.Constructor,	Clipper.Execute,
Clipper.ZFillFunction,	ClipperBase.AddPath,	ClipperBase.AddPaths,
ClipperOffset,	ClipperOffset.Execute,	PolyNode,	PolyTree,	Area,
CleanPolygon,	CleanPolygons,	ClosedPathsFromPolyTree,
MinkowskiDiff,	MinkowskiSum,	OffsetPaths,	OpenPathsFromPolyTree,
Orientation,	PointInPolygon,	PolyTreeToPaths,	SimplifyPolygon,
SimplifyPolygons,	Defines,	CInt,	InitOptions,	IntPoint,	Path,	Paths,
PolyFillType,	ZFillCallback

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home Overview

Deprecated

The	precompiler	directive	'use_deprecated'	allows	users	to	update	the
Clipper	library	without	being	forced	to	make	immediate	changes	to	code
that	accesses	the	library.	Depricated	code	will	be	removed	in	a	future
update.	(Enabled	by	default.)

Deprecated	types	and	functions:

All	deprecated	code	has	been	removed	from	version	6.2.0.

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home Overview

Delphi	Code	Sample:
		uses

				graphics32,	clipper;

		

		function	GetEllipsePoints(bounds:	TIntRect):	TPath;

		begin

				//code	to	create	an	elliptical	polygon	here

		end;

	

		procedure	DrawPolygons(polys:	TPaths;	color:	TColor32);

		begin

				//code	to	display	the	polygons	here

		end;

	

		var

				sub,	clp,	sol:	TPaths;

		begin

				//set	up	the	subject	and	clip	polygons	...

				setlength(sub,	3);

				sub[0]	:=	GetEllipsePoints(IntRect(100,100,300,300));

				sub[1]	:=	GetEllipsePoints(IntRect(125,130,275,180));

				sub[2]	:=	GetEllipsePoints(IntRect(125,220,275,270));

	

				setlength(clp,	1);

				clp[0]	:=	GetEllipsePoints(IntRect(140,70,220,320));

				//display	the	subject	and	clip	polygons	...

				DrawPolygons(sub,	0x8033FFFF);

				DrawPolygons(clp,	0x80FFFF33);

				

				//get	the	intersection	of	the	subject	and	clip	polygons	...

				with	TClipper.Create	do

				try

						AddPaths(sub,	ptSubject,	true);

						AddPaths(clp,	ptClip,	true);

						Execute(ctIntersection,	sol,	pftEvenOdd,	pftEvenOdd);

				finally

						free;

				end;

				

				//finally	draw	the	intersection	polygons	...

				DrawPolygons(sol,	0x40808080);

								

C++	Code	Sample:
		#include	"clipper.hpp"

		

		...

		//from	clipper.hpp	...

		//typedef	long	long	cInt;

		//struct	IntPoint	{cInt	X;	cInt	Y;};

		//typedef	std::vector<IntPoint>	Path;

		//typedef	std::vector<Polygon>	Paths;

		using	namespace	ClipperLib;

Example

	

		void	GetEllipsePoints(IntRect&	bounds,	Path&	p)

		{/*	...	*/}

		

		void	DrawPolygons(Paths&	p,	unsigned	color)

		{/*	...	*/}

		

		int	main()

		{

				//set	up	the	subject	and	clip	polygons	...

				Paths	sub(3);

				GetEllipsePoints(IntRect(100,100,300,300),	sub[0]);

				GetEllipsePoints(IntRect(125,130,275,180),	sub[1]);

				GetEllipsePoints(IntRect(125,220,275,270),	sub[2]);

				

				Paths	clp(1);

				GetEllipsePoints(IntRect(140,70,220,320),	clp[0]);

				

				//display	the	subject	and	clip	polygons	...

				DrawPolygons(sub,	0x8033FFFF);

				DrawPolygons(clp,	0x80FFFF33);

				

				//get	the	intersection	of	the	subject	and	clip	polygons	...

				Clipper	clpr;

				clpr.AddPaths(sub,	ptSubject,	true);

				clpr.AddPaths(clp,	ptClip,	true);

				Paths	solution;

				clpr.Execute(ctIntersection,	solution,	pftEvenOdd,	pftEvenOdd);

				

				//finally	draw	the	intersection	polygons	...

				DrawPolygons(solution,	0x40808080);

		}

								

C#	Code	Sample:
		...

		using	ClipperLib;

	

		...

		using	Path	=	List<IntPoint>;

		using	Paths	=	List<List<IntPoint>>;

		

		static	Path	GetEllipsePoints(IntRect	bounds)

		{/*	...	*/}

		

		static	void	DrawPolygons(Path	p,	uint	color)

		{/*	...	*/}

		

		static	void	Main(string[]	args)

		{

				Paths	subjs	=	new	Paths(3);

				subjs.Add(GetEllipsePoints(new	IntRect(100,100,300,300)));

				subjs.Add(GetEllipsePoints(new	IntRect(125,130,275,180)));

				subjs.Add(GetEllipsePoints(new	IntRect(125,220,275,270)));

				

				Paths	clips	=	new	Paths(1);

				clips.Add(GetEllipsePoints(new	IntRect(140,70,220,320)));

				

				DrawPolygons(subjs,	0x8033FFFF);

				DrawPolygons(clips,	0x80FFFF33);

				

				Paths	solution	=	new	Paths();

	

				Clipper	c	=	new	Clipper();

				c.AddPaths(subjs,	PolyType.ptSubject,	true);

				c.AddPaths(clips,	PolyType.ptClip,	true);

				c.Execute(ClipType.ctIntersection,	solution);

				

				DrawPolygons(solution,	0x40808080);

		}

								

	

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home Overview

FAQ

Why	does	Clipper	use	integer	coordinates,	not	floats?
This	has	been	done	to	preserve	numerical	robustness.	Early	versions	of
the	library	did	use	floating	point	coordinates,	but	it	became	apparent
that	floating	point	imprecision	was	always	going	to	cause	occasional
errors.

How	do	I	use	floating	point	coordinates	with	Clipper?
It's	a	simple	task	to	multiply	your	floating	point	coordinates	by	a	scaling
factor	(that's	typically	a	power	of	10	depending	on	the	desired
precision).	Then	with	the	solution	paths,	divide	the	returned	coordinates
by	this	same	scaling	factor.	Clipper	accepts	integer	coordinates	as	large
as	±4.6e18,	so	it	can	accommodate	very	large	scaling.

Does	Clipper	handle	polygons	with	holes?
'Holes'	are	defined	by	the	specified	polygon	filling	rule.	(See	also
Clipper.Execute)

Some	polygons	in	the	solution	share	a	common	edge.	Is	this	a	bug?
No,	though	this	should	happen	rarely	as	of	version	6.	(See
Clipper.Execute	for	more	about	this.)

I	have	lots	of	polygons	that	I	want	to	'union'.	Can	I	do	this	in	one
operation?
Yes.	Just	add	all	the	polygons	as	subject	polygons	to	the	Clipper	object.
(You	don't	have	to	assign	both	subject	and	clip	polygons.)

The	polygons	produced	by	ClipperOffset	have	tiny	artefacts?	Could	this
be	a	bug?
Make	sure	the	input	polygons	don't	self-intersect.	Tiny	self-intersections
can	sometimes	be	produced	by	previous	clipping	operations.	These	can
be	cleaned	up	using	the	CleanPolygon	and	CleanPolygons	functions.
Also,	make	sure	the	supplied	polygons	don't	overlap.	If	they	do,	offset

http://www.mpi-inf.mpg.de/~kettner/pub/nonrobust_cgta_06.pdf

these	separately.	Finally,	the
precision	of	the	input	coordinates
may	be	a	problem.	Because	the
Clipper	Library	only	operates	on
integer	coordinates,	you	may	need
to	scale	your	coordinates	(eg	by	a
factor	of	10)	to	improve	precision.	

Is	there	an	easy	way	to	reverse
polygon	orientations?
Yes,	see	ReversePaths.	

	
My	drawings	contain	lots	of	beziers,	ellipses	and	arcs.	How	can	I
perform	clipping	operations	on	these?
You'll	have	to	convert	them	to	'flattened'	paths.	For	an	example	of	how
this	can	be	done	(and	even	reconstructed	back	into	beziers,	arcs	etc),	see
the	CurvesDemo	application	included	in	this	library.	

See	Also
Clipper.Execute,	ClipperOffset,	CleanPolygon,	CleanPolygons,
ReversePaths,	PolyFillType

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home Overview

License

The	Clipper	Library	(including	Delphi,	C++	&	C#	source	code,	other
accompanying	code,	examples	and	documentation),	hereafter	called	"the
Software",	has	been	released	under	the	following	license,	terms	and
conditions:
Boost	Software	License	-	Version	1.0	-	August	17th,	2003
http://www.boost.org/LICENSE_1_0.txt
Permission	is	hereby	granted,	free	of	charge,	to	any	person	or
organization	obtaining	a	copy	of	the	Software	covered	by	this	license	to
use,	reproduce,	display,	distribute,	execute,	and	transmit	the	Software,
and	to	prepare	derivative	works	of	the	Software,	and	to	permit	third-
parties	to	whom	the	Software	is	furnished	to	do	so,	all	subject	to	the
following:
The	copyright	notices	in	the	Software	and	this	entire	statement,	including
the	above	license	grant,	this	restriction	and	the	following	disclaimer,	must
be	included	in	all	copies	of	the	Software,	in	whole	or	in	part,	and	all
derivative	works	of	the	Software,	unless	such	copies	or	derivative	works
are	solely	in	the	form	of	machine-executable	object	code	generated	by	a
source	language	processor.
THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY
OF	ANY	KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT
LIMITED	TO	THE	WARRANTIES	OF	MERCHANTABILITY,
FITNESS	FOR	A	PARTICULAR	PURPOSE,	TITLE	AND	NON-
INFRINGEMENT.	IN	NO	EVENT	SHALL	THE	COPYRIGHT
HOLDERS	OR	ANYONE	DISTRIBUTING	THE	SOFTWARE	BE
LIABLE	FOR	ANY	DAMAGES	OR	OTHER	LIABILITY,	WHETHER
IN	CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,	OUT	OF
OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR
OTHER	DEALINGS	IN	THE	SOFTWARE.

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

http://www.boost.org/LICENSE_1_0.txt

Home Overview

Rounding

By	using	an	integer	type	for	polygon	coordinates,	the	Clipper	Library	has
been	able	to	avoid	problems	of	numerical	robustness	that	can	cause
havoc	with	geometric	computations.	Problems	associated	with	integer
rounding	and	their	possible	solutions	are	discussed	below.

It's
important	to
stress	at	the
outset	that
rounding
causes
vertices	to
move
fractions	of
a	unit	away
from	their
'true'
positions.

Nevertheless,	the	resulting	imprecision	can	be	very	effectively	managed
by	appropriate	scaling.

The	Clipper	Library	supports	scaling	to	very	high	degrees	of	precision	by
accepting	integer	coordinate	values	in	the	range
±0x3FFFFFFFFFFFFFFF	(±	4.6e+18).

Another	complication	of	using	a	discrete	numbers	(as	opposed	to	real
numbers)	is	that	very	occasionally	tiny	self-intersection	artefacts	arise.	In
the	unscaled	image	on	the	left	(where	one	unit	equals	one	pixel),	the	area
of	intersection	of	two	polygons	has	been	highlighted	in	bright	green.

A	30X	'close	up'	of	the	lower	points	of	intersection	of	these	same	two

http://www.mpi-inf.mpg.de/~kettner/pub/nonrobust_cgta_06.pdf
http://en.wikipedia.org/wiki/Real_number

polygons	shows
the	presence	of	a
tiny	self-
intersecting
artefact.	The	three
'black	dots'
highlight	the
actual	points	of
intersection	(with
their	fractional
coordinates
displayed).	The
'red	dots'	show
where	these	points
of	intersection	are	located	once	rounding	is	applied.	With	a	little	care	you
can	see	that	rounding	reverses	the	orientation	of	these	vertices	and	causes
a	tiny	self-intersecting	artefact.

Although	these	tiny	self-intersections	are	uncommon,	if	it's	deemed
necessary,	they	are	best	removed	with	CleanPolygons.	(Setting	Clipper's
StrictlySimple	property	to	true	would	also	address	this	self-intersection
but	the	tiny	(sub-unit)	polygon	'artefact'	with	incorrect	orientation	would
still	appear	in	the	solution.)	

In	this	final	example,	the	single
polygon	on	the	left	also	has	a	tiny
self-intersection.	However,	the
clipping	algorithm	sees	this	vertex
(88,50)	as	simply	'touching'	rather
than	intersecting	the	right	edge	of	the
polygon	(though	only	by	a	fraction	of
a	unit).	Since	this	intersection	won't

normally	be	detected,	the	clipping	solution	(eg	following	a	union
operation)	will	still	contain	this	tiny	self-intersection.	Setting	Clipper's
StrictlySimple	property	to	true	avoids	this	uncommon	problem.

See	Also
Clipper.StrictlySimple,	CleanPolygons

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

CInt

Del.»

{$IFDEF	use_int32}

	cInt	=	Int32;

{$ELSE}

		cInt	=	Int64;

{$ENDIF}

C++	»

#ifdef	use_int32

		typedef	int	cInt;

#else

		typedef	signed	long	long	cInt;

#endif

C#		»

#if	use_int32

		using	cInt	=	Int32;

#else

		using	cInt	=	Int64;

#endif

cInt	is	the	integer	type	used	by	the	Clipper	Library	to	represent	vertex
coordinate	values.	(See	also	IntPoint.)

The	library	uses	integers	instead	of	floating	point	values	to	preserve
numerical	robustness.	(Very	early	versions	of	the	library	used	floating
point	coordinates,	but	it	became	apparent	that	floating	point	imprecision
was	always	going	to	cause	occasional	errors.)

By	default	cInt	represents	a	signed	64bit	integer	and	polygon	coordinates
can	have	any	value	in	the	range	±	9.2e+18.	This	accommodates	the
scaling	of	floating	point	coordinate	values	to	very	large	integers	so	that
very	high	degrees	of	precision	can	be	retained	during	clipping.	However,
if	coordinate	values	can	be	kept	within	the	range	±	3.0e+9,	then	by
avoiding	large	integer	math,	a	modest	~10%	improvement	in	clipping
performance	is	achieved.

If	the	preprocessor	directive	use_int32	is	defined,	cInt	will	represent	a

http://www.mpi-inf.mpg.de/~kettner/pub/nonrobust_cgta_06.pdf

signed	32bit	integer.	This	improves	clipping	performance	by	20-30%	but
the	trade-off	is	that	coordinate	values	are	restricted	to	the	much	narrower
range	of	±	46340.

See	Also
Defines,	IntPoint

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

ClipType

Del.»	type	TClipType	=	(ctIntersection,	ctUnion,

ctDifference,	ctXor);

C++	»	enum	ClipType	{	ctIntersection,	ctUnion,

ctDifference,	ctXor	};

C#		»	public	enum	ClipType	{	ctIntersection,

ctUnion,	ctDifference,	ctXor	};

There	are	four	boolean	operations	-	AND,	OR,	NOT	&	XOR.

Given	that	subject	and	clip	polygon	brush	'filling'	is	defined	both	by	their
vertices	and	their	respective	filling	rules,	the	four	boolean	operations	can
be	applied	to	polygons	to	define	new	filling	regions:

AND	(intersection)	-	create	regions	where	both	subject	and	clip
polygons	are	filled
OR	(union)	-	create	regions	where	either	subject	or	clip	polygons

(or	both)	are	filled
NOT	(difference)	-	create	regions	where	subject	polygons	are	filled

except	where	clip	polygons	are	filled
XOR	(exclusive	or)	-	create	regions	where	either	subject	or	clip

polygons	are	filled	but	not	where	both	are	filled

		 		 		

All	polygon	clipping	is	performed	with	a	Clipper	object	with	the	specific
boolean	operation	indicated	by	the	ClipType	parameter	passed	in	its
Execute	method.

With	regard	to	open	paths	(polylines),	clipping	rules	generally	match
those	of	closed	paths	(polygons).
However,	when	there	are	both	polyline	and	polygon	subjects,	the
following	clipping	rules	apply:

union	operations	-	polylines	will	be	clipped	by	any	overlapping
polygons	so	that	non-overlapped	portions	will	be	returned	in	the
solution	together	with	the	union-ed	polygons
intersection,	difference	and	xor	operations	-	polylines	will	be	clipped

only	by	'clip'	polygons	and	there	will	be	not	interaction	between
polylines	and	subject	polygons.

Example	of	clipping	behaviour	when	mixing	polyline	and	polygon
subjects:

See	Also
Overview,	Clipper,	Clipper.Execute,	PolyFillType

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

EndType

Del.»	type	TEndType	=	(etClosedPolygon,

etClosedLine,	etOpenSquare,	etOpenRound,

etOpenButt);

C++	»	enum	EndType	{etClosedPolygon,

etClosedLine,	etOpenSquare,	etOpenRound,

etOpenButt};

C#		»	public	enum	EndType	{etClosedPolygon,

etClosedLine,	etOpenSquare,	etOpenRound,

etOpenButt};

The	EndType	enumerator	has	5	values:

etClosedPolygon:	Ends	are	joined	using	the	JoinType	value	and	the
path	filled	as	a	polygon
etClosedLine:	Ends	are	joined	using	the	JoinType	value	and	the

path	filled	as	a	polyline
etOpenSquare:	Ends	are	squared	off	and	extended	delta	units
etOpenRound:	Ends	are	rounded	off	and	extended	delta	units
etOpenButt:	Ends	are	squared	off	with	no	extension.
etOpenSingle:	Offsets	an	open	path	in	a	single	direction.	Planned

for	a	future	update.

Note:	With	etClosedPolygon	and	etClosedLine	types,	the	path	closure
will	be	the	same	regardless	of	whether	or	not	the	first	and	last	vertices	in
the	path	match.

See	Also
ClipperOffset.AddPath,	ClipperOffset.AddPaths

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

InitOptions

Del.»	type	TInitOption	=	(ioReverseSolution,

ioStrictlySimple,	ioPreserveCollinear);

C++	»	enum	InitOptions	{

								ioReverseSolution		=	1,

								ioStrictlySimple			=	2,

								ioPreserveCollinear	=	4};

C#		»	public	const	int	ioReverseSolution		=	1;

						public	const	int	ioStrictlySimple			=	2;

						public	const	int	ioPreserveCollinear	=	4;

See	Also
Clipper.Constructor,	Clipper.PreserveCollinear,	Clipper.ReverseSolution,
Clipper.StrictlySimple

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

IntPoint

Del.»	TIntPoint	=	record	X,	Y:	cInt;	end;

C++	»	struct	IntPoint	{	cInt	X;	cInt	Y;	...	};

C#		»	public	class	IntPoint	{	public	cInt	X;	{

get;	set;	}	public	cInt	Y;	{	get;	set;	}	...	};

The	IntPoint	structure	is	used	to	represent	all	vertices	in	the	Clipper
Library.	An	integer	storage	type	has	been	deliberately	chosen	to	preserve
numerical	robustness.	(Early	versions	of	the	library	used	floating	point
coordinates,	but	it	became	apparent	that	floating	point	imprecision	would
always	cause	occasional	errors.)

A	sequence	of	IntPoints	are	contained	within	a	Path	structure	to	represent
a	single	contour.

As	of	version	6,	IntPoint	now	has	an	optional	third	member	'Z'.	This	can
be	enabled	by	exposing	(ie	uncommenting)	the	PreProcessor	define
'use_xyz'.	When	the	Z	member	is	used,	its	values	will	be	copied	to
corresponding	verticies	in	solutions	to	clipping	operations.	However,	at
points	of	intersection	where	there's	no	corresponding	Z	value,	the	value
will	be	assigned	zero	unless	a	new	value	is	provided	by	a	user	supplied
callback	function.

Users	wishing	to	clip	or	offset	polygons	containing	floating	point
coordinates	need	to	use	appropriate	scaling	when	converting	these	values
to	and	from	IntPoints.

See	also	the	notes	on	rounding.

http://www.mpi-inf.mpg.de/~kettner/pub/nonrobust_cgta_06.pdf

See	Also
Rounding,	Clipper.ZFillFunction,	Defines,	CInt,	Path,	Paths

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

IntRect

Del.»	TIntRect	=	record	left,	top,	right,

bottom:	cInt;	end;

C++	»

struct	IntRect	{	cInt	left;	cInt	top;	cInt

right;	cInt	bottom;	...	};

C#		»

public	class	IntRect	{

		public	cInt	left;	{	get;	set;	}

		public	cInt	top;	{	get;	set;	}

		public	cInt	right;	{	get;	set;	}

		public	cInt	bottom;	{	get;	set;	}	...	};

Structure	returned	by	Clipper's	GetBounds	method.

See	Also
ClipperBase.GetBounds,	CInt

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

JoinType

Del.»	type	TJoinType	=	(jtSquare,	jtRound,

jtMiter);

C++	»	enum	JoinType	{jtSquare,	jtRound,

jtMiter};

C#		»	public	enum	JoinType	{jtSquare,	jtRound,

jtMiter};

When	adding	paths	to	a	ClipperOffset	object	via	the	AddPaths	method,
the	joinType	parameter	may	be	one	of	three	types	-	jtMiter,	jtSquare	or
jtRound.

jtMiter:	There's	a	necessary	limit	to	mitered	joins	since	offsetting
edges	that	join	at	very	acute	angles	will	produce	excessively	long	and
narrow	'spikes'.	To	contain	these	potential	spikes,	the	ClippOffset
object's	MiterLimit	property	specifies	a	maximum	distance	that
vertices	will	be	offset	(in	multiples	of	delta).	For	any	given	edge	join,
when	miter	offsetting	would	exceed	that	maximum	distance,	'square'
joining	is	applied.
jtRound:	While	flattened	paths	can	never	perfectly	trace	an	arc,	they

are	approximated	by	a	series	of	arc	chords	(see	ClipperObject's
ArcTolerance	property).
jtSquare:	Squaring	is	applied	uniformally	at	all	convex	edge	joins	at

1	×	delta.

See	Also
ClipperOffset,	ClipperOffset.AddPaths,	ClipperOffset.ArcTolerance,
ClipperOffset.MiterLimit

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

Path

Del.»	TPath	=	array	of	TIntPoint;

C++	»	typedef	std::vector<IntPoint>	Path;

C#		»	using	Path	=	List<IntPoint>;

This	structure	contains	a	sequence	of	IntPoint	vertices	defining	a	single
contour	(see	also	terminology).	Paths	may	be	open	and	represent	a	series
of	line	segments	bounded	by	2	or	more	vertices,	or	they	may	be	closed
and	represent	polygons.	Whether	or	not	a	path	is	open	depends	on
context.	Closed	paths	may	be	'outer'	contours	or	'hole'	contours.	Which
they	are	depends	on	orientation.

Multiple	paths	can	be	grouped	into	a	Paths	structure.

See	Also
Overview,	Example,	ClipperBase.AddPath,	PolyTree,	Orientation,
IntPoint,	Paths

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

Paths

Del.»	TPaths	=	array	of	TPath;

C++	»	typedef	std::vector<	Path	>	Paths;

C#		»	using	Paths	=	List<List<	IntPoint	>>;

This	structure	is	fundamental	to	the	Clipper	Library.	It's	a	list	or	array	of
one	or	more	Path	structures.	(The	Path	structure	contains	an	ordered	list
of	vertices	that	make	a	single	contour.)

Paths	may	open	(a	series	of	line	segments),	or	they	may	closed
(polygons).	Whether	or	not	a	path	is	open	depends	on	context.	Closed
paths	may	be	'outer'	contours	or	'hole'	contours.	Which	they	are	depends
on	orientation.

See	Also
Clipper.Execute,	ClipperBase.AddPath,	ClipperBase.AddPaths,
OffsetPaths,	IntPoint,	Path

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

PolyFillType

Del.»	type	TPolyFillType	=	(pftEvenOdd,

pftNonZero,	pftPositive,	pftNegative);

C++	»	enum	PolyFillType	{pftEvenOdd,	pftNonZero,

pftPositive,	pftNegative};

C#		»	public	enum	PolyFillType	{pftEvenOdd,

pftNonZero,	pftPositive,	pftNegative};

Filling	indicates	those	regions	that	are	inside	a	closed	path	(ie	'filled'	with
a	brush	color	or	pattern	in	a	graphical	display)	and	those	regions	that	are
outside.	The	Clipper	Library	supports	4	filling	rules:	Even-Odd,	Non-
Zero,	Positive	and	Negative.

The	simplest	filling	rule	is	Even-Odd	filling	(sometimes	called	alternate
filling).	Given	a	group	of	closed	paths	start	from	a	point	outside	the	paths
and	progress	along	an	imaginary	line	through	the	paths.	When	the	first
path	is	crossed	the	encountered	region	is	filled.	When	the	next	path	is
crossed	the	encountered	region	is	not	filled.	Likewise,	each	time	a	path	is
crossed,	filling	starts	if	it	had	stopped	and	stops	if	it	had	started.

With	the	exception	of	Even-Odd	filling,	all	other	filling	rules	rely	on	edge
direction	and	winding	numbers	to	determine	filling.	Edge	direction	is
determined	by	the	order	in	which	vertices	are	declared	when	constructing
a	path.	Edge	direction	is	used	to	determine	the	winding	number	of	each
polygon	subregion.

	The	winding	number	for	each	polygon	sub-region	can	be	derived	by:

1.	 starting	with	a	winding	number	of	zero	and
2.	 from	a	point	(P1)	that's	outside	all	polygons,	draw	an	imaginary

line	to	a	point	that's	inside	a	given	sub-region	(P2)
3.	 while	traversing	the	line	from	P1	to	P2,	for	each	path	that	crosses

the	imaginary	line	from	right	to	left	increment	the	winding	number,
and	for	each	path	that	crosses	the	line	from	left	to	right	decrement
the	winding	number.

4.	 Once	you	arrive	at	the	given	sub-region	you	have	its	winding
number.

Even-Odd	(Alternate):	Odd	numbered	sub-regions	are	filled,	while	even
numbered	sub-regions	are	not.
Non-Zero	(Winding):	All	non-zero	sub-regions	are	filled.
Positive:	All	sub-regions	with	winding	counts	>	0	are	filled.
Negative:	All	sub-regions	with	winding	counts	<	0	are	filled.

Paths	are	added	to	a	Clipper	object	using	the	AddPath	or	AddPaths
methods	and	the	filling	rules	(for	subject	and	clip	polygons	separately)
are	specified	in	the	Execute	method.

Polygon	regions	are	defined	by	one	or	more	closed	paths	which	may	or
may	not	intersect.	A	single	polygon	region	can	be	defined	by	a	single
non-intersecting	path	or	by	multiple	non-intersecting	paths	where	there's
typically	an	'outer'	path	and	one	or	more	inner	'hole'	paths.	Looking	at	the
three	shapes	in	the	image	above,	the	middle	shape	consists	of	two
concentric	rectangles	sharing	the	same	clockwise	orientation.	With	even-
odd	filling,	where	orientation	can	be	disregarded,	the	inner	rectangle
would	create	a	hole	in	the	outer	rectangular	polygon.	There	would	be	no
hole	with	non-zero	filling.	In	the	concentric	rectangles	on	the	right,	where
the	inner	rectangle	is	orientated	opposite	to	the	outer,	a	hole	will	be
rendered	with	either	even-odd	or	non-zero	filling.	A	single	path	can	also
define	multiple	subregions	if	it	self-intersects	as	in	the	example	of	the	5
pointed	star	shape	below.

			 			 			

By	far	the	most	widely	used	fill	rules	are	Even-Odd	(aka	Alternate)	and
Non-Zero	(aka	Winding).	Most	graphics	rendering	libraries	(AGG,
Android	Graphics,	Cairo,	GDI+,	OpenGL,	Quartz	2D	etc)	and	vector
graphics	storage	formats	(SVG,	Postscript,	Photoshop	etc)	support	both
these	rules.	However	some	libraries	(eg	Java's	Graphics2D)	only	support
one	fill	rule.	Android	Graphics	and	OpenGL	are	the	only	libraries	(that
I'm	aware	of)	that	support	multiple	filling	rules.

It's	useful	to	note	that	edge	direction	has	no	affect	on	a	winding	number's
odd-ness	or	even-ness.	(This	is	why	orientation	is	ignored	when	the	Even-
Odd	rule	is	employed.)

The	direction	of	the	Y-axis	does	affect	polygon	orientation	and	edge
direction.	However,	changing	Y-axis	orientation	will	only	change	the	sign
of	winding	numbers,	not	their	magnitudes,	and	has	no	effect	on	either
Even-Odd	or	Non-Zero	filling.

http://www.antigrain.com/__code/include/agg_basics.h.html#filling_rule_e
http://developer.android.com/reference/android/graphics/Path.FillType.html
http://cairographics.org/manual/cairo-cairo-t.html#cairo-fill-rule-t
http://msdn.microsoft.com/en-us/library/windows/desktop/ms534120(v=vs.85).aspx
http://www.glprogramming.com/red/chapter11.html
http://developer.apple.com/library/ios/#documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/dq_paths/dq_paths.html#//apple_ref/doc/uid/TP30001066-CH211-TPXREF101
http://www.w3.org/TR/SVG/painting.html#FillRuleProperty
http://www.adobe.com/devnet-apps/photoshop/fileformatashtml/PhotoshopFileFormats.htm#50577409_17587
http://docs.oracle.com/javase/6/docs/api/java/awt/Graphics.html#fillPolygon(int[], int[], int)

See	Also
Clipper.Execute,	ClipperBase.AddPath,	ClipperBase.AddPaths,
Orientation

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

PolyType

Del.»	type	TPolyType	=	(ptSubject,	ptClip);

C++	»	enum	PolyType	{	ptSubject,	ptClip	};

C#		»	public	enum	PolyType	{	ptSubject,	ptClip

};

Boolean	(clipping)	operations	are	mostly	applied	to	two	sets	of	Polygons,
represented	in	this	library	as	subject	and	clip	polygons.	Whenever
Polygons	are	added	to	the	Clipper	object,	they	must	be	assigned	to	either
subject	or	clip	polygons.

UNION	operations	can	be	performed	on	one	set	or	both	sets	of	polygons,
but	all	other	boolean	operations	require	both	sets	of	polygons	to	derive
meaningful	solutions.

See	Also
ClipperBase.AddPath,	ClipperBase.AddPaths,	ClipType

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

ZFillCallback

Del.»	type	TZFillCallback	=	procedure	(const

E1Bot,	E1Top,	E2Bot,	E2Top:	TIntPoint;	var	Pt:

TIntPoint);

C++	»	typedef	void	(*ZFillCallback)(const

IntPoint&	e1bot,	IntPoint&	e1top,	IntPoint&

e2bot,	IntPoint&	e2top,	IntPoint&	pt);

C#		»	public	delegate	void

ZFillCallback(IntPoint	bot1,	IntPoint	top1,

IntPoint	bot2,	IntPoint	top2,	ref	IntPoint	pt);

If	the	use_xyz	pre-processor	directive	is	enabled,	then	the	IntPoint	class
will	have	an	extra	'Z'	member	and	the	Clipper	class's	ZFillFunction
property	will	be	exposed	so	it	can	be	assigned	a	custom	callback	function.

This	custom	callback	procedure	requires	five	IntPoint	parameters:	the
first	2	parameters	are	the	vertices	that	define	one	line	segment	involved	in
the	intersection	and	the	next	two	parameters	the	other	line	segment.
(Since	the	Clipper	library	has	been	developed	in	an	environment	that	uses
an	inverted	Y	axis	display,	e1bot	and	e2bot	will	always	have	Y	values
greater	than	or	equal	to	their	corresponding	e1top	and	e2top	Y	values.)
The	last	IntPoint	parameter	contain	the	actual	coordinates	at	the
intersection.	This	last	parameter	is	passed	by	reference	so	that	its	Z
member	can	be	assigned	with	a	custom	value.

See	Also
Clipper.ZFillFunction,	Defines

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

Area

Del.»	function	Area(const	pts:	TPath):	double;

C++	»	double	Area(const	Path	&poly);

C#		»	public	static	double	Area(Path	poly);

This	function	returns	the	area	of	the	supplied	polygon.	It's	assumed	that
the	path	is	closed	and	does	not	self-intersect.	Depending	on	orientation,
this	value	may	be	positive	or	negative.	If	Orientation	is	true,	then	the	area
will	be	positive	and	conversely,	if	Orientation	is	false,	then	the	area	will
be	negative.

See	Also
Orientation,	Path

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

CleanPolygon

Del.»	function	CleanPolygon(const	Poly:	TPath;

Distance:	double	=	1.415):	TPath;

C++	»	void	CleanPolygon(const	Path	&in_poly,

Path	&out_poly,	double	distance	=	1.415);

C++	»	void	CleanPolygon(Path	&poly,	double

distance	=	1.415);

C#		»	public	static	Path	CleanPolygon(Path	poly,

double	distance	=	1.415);

Removes	vertices:

that	join	co-linear	edges,	or	join	edges	that	are	almost	co-linear	(such
that	if	the	vertex	was	moved	no	more	than	the	specified	distance	the
edges	would	be	co-linear)
that	are	within	the	specified	distance	of	an	adjacent	vertex
that	are	within	the	specified	distance	of	a	semi-adjacent	vertex

together	with	their	out-lying	vertices

Vertices	are	semi-adjacent	when	they	are	separated	by	a	single	(out-lying)
vertex.

The	distance	parameter's	default	value	is	approximately	√2	so	that	a
vertex	will	be	removed	when	adjacent	or	semi-adjacent	vertices	having
their	corresponding	X	and	Y	coordinates	differing	by	no	more	than	1	unit.
(If	the	egdes	are	semi-adjacent	the	out-lying	vertex	will	be	removed	too.)

C++	only:	This	function	is	overloaded.	In	the	first	definition,	the	in_poly
and	out_poly	parameters	can	reference	the	same	Path	object	though	in
that	case	the	calling	code	might	be	clearer	if	the	second	definition
(accepting	a	single	Paths	parameter)	is	used.

				

See	Also
CleanPolygons,	SimplifyPolygon,	Path

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

CleanPolygons

Del.»	function	CleanPolygons(const	Polys:

TPaths;	Distance:	double	=	1.415):	TPaths;

C++	»	void	CleanPolygons(const	Paths	&in_polys,

Paths	&out_polys,	double	distance	=	1.415);

C++	»	void	CleanPolygons(Paths	&polys,	double

distance	=	1.415);

C#		»	public	static	Paths	CleanPolygons(Paths

polys,	double	distance	=	1.415);

Removes	vertices:

that	join	co-linear	edges,	or	join	edges	that	are	almost	co-linear	(such
that	if	the	vertex	was	moved	no	more	than	the	specified	distance	the
edges	would	be	co-linear)
that	are	within	the	specified	distance	of	an	adjacent	vertex
that	are	within	the	specified	distance	of	a	semi-adjacent	vertex

together	with	their	out-lying	vertices

Vertices	are	semi-adjacent	when	they	are	separated	by	a	single	(out-lying)
vertex.

The	distance	parameter's	default	value	is	approximately	√2	so	that	a
vertex	will	be	removed	when	adjacent	or	semi-adjacent	vertices	having
their	corresponding	X	and	Y	coordinates	differing	by	no	more	than	1	unit.
(If	the	egdes	are	semi-adjacent	the	out-lying	vertex	will	be	removed	too.)

C++	only:	This	function	is	overloaded.	In	the	first	definition,	the	in_polys
and	out_polys	parameters	can	reference	the	same	Paths	object	though	in
that	case	the	calling	code	might	be	clearer	if	the	second	definition
(accepting	a	single	Paths	parameter)	is	used.

				

See	Also
CleanPolygon,	SimplifyPolygons

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

ClosedPathsFromPolyTree

Del.»	function	ClosedPathsFromPolyTree(PolyTree:

TPolyTree):	TPaths;

C++	»	void	ClosedPathsFromPolyTree(PolyTree&

polytree,	Paths&	paths);

C#		»	public	static	void

ClosedPathsFromPolyTree(PolyTree	polytree,	Paths

paths);

This	function	filters	out	open	paths	from	the	PolyTree	structure	and
returns	only	closed	paths	in	a	Paths	structure.

See	Also
PolyTree,	Paths

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

MinkowskiDiff

Del.»	function	MinkowskiDiff(const	Poly1:	TPath;

const	Poly2:	TPath):	TPaths;

C++	»	void	MinkowskiDiff(const	Path&	poly1,

const	Path&	poly2,	Paths&	solution);

C#		»	public	static	Paths	MinkowskiDiff(Path

poly1,	Path	poly2);

Minkowski	Difference	is	performed	by
subtracting	each	point	in	a	polygon	from	the
set	of	points	in	an	open	or	closed	path.	A	key
feature	of	Minkowski	Difference	is	that	when
it's	applied	to	two	polygons,	the	resulting
polygon	will	contain	the	coordinate	space
origin	whenever	the	two	polygons	touch	or
overlap.	(This	function	is	often	used	to
determine	when	polygons	collide.)

In	the	image	on	the	left	the	blue	polygon	is	the	'minkowski	difference'	of
the	two	red	boxes.	The	black	dot	represents	the	coordinate	space	origin.

See	Also
MinkowskiSum,	Path

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

MinkowskiSum

Del.»	function	MinkowskiSum(const	Pattern:

TPath;	const	Path:	TPath;	PathIsClosed:

Boolean):	TPaths;	overload;

Del.»	function	MinkowskiSum(const	Pattern:

TPath;	const	Paths:	TPaths;	PathFillType:

TPolyFillType;	PathIsClosed:	Boolean):	TPaths;

overload;

C++	»	void	MinkowskiSum(const	Path&	pattern,

const	Path&	path,	Paths&	solution,	bool

pathIsClosed);

C++	»	void	MinkowskiSum(const	Path&	pattern,

const	Paths&	paths,	Paths&	solution,

PolyFillType	pathFillType,	bool	pathIsClosed);

C#		»	public	static	Paths	MinkowskiSum(Path

pattern,	Path	path,	bool	pathIsClosed);

C#		»	public	static	Paths	MinkowskiSum(Path

pattern,	Paths	paths,	PolyFillType	pathFillType,

bool	pathIsClosed);

Minkowski	Addition	is	performed	by	adding	each	point	in	a	polygon
'pattern'	to	the	set	of	points	in	an	open	or	closed	path.	The	resulting
polygon	(or	polygons)	defines	the	region	that	the	'pattern'	would	pass
over	in	moving	from	the	beginning	to	the	end	of	the	'path'.

						Path	path	=	new	Path();

						Path	pattern	=	new	Path();

						Paths	solution	=	new	Paths();

						//Greek	capital	sigma	(sum	sign)	...	

						Int64[]	ints1	=	new	Int64[]	{	300,	400,	100,	400,	200,	300,	100,	200,	300,	200	};

						path	=	IntsToPolygon(ints1);

						//diagonal	brush	pattern	...

						Int64[]	ints2	=	new	Int64[]	{	4,	-6,	6,	-6,	-4,	6,	-6,	6	};

						pattern	=	IntsToPolygon(ints2);

						solution	=	Clipper.MinkowskiSum(pattern,	path,	false);

						//move	'pattern'	to	the	end	of	'path'	...

						pattern	=	TranslatePath(pattern,	300,	200);

						//Display	solution	±	pattern	...

				

See	Also
MinkowskiDiff

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

OffsetPaths

Del.»	function	OffsetPaths(const	polys:	Paths;

const	delta:	double;	JoinType:	TJoinType	=

jtSquare;	EndType:	TEndType	=	etClosed;	Limit:

double	=	0.0):	TPaths;

C++	»	void	OffsetPaths(const	Paths	&in_polys,

Paths	&out_polys,	double	delta,	JoinType

jointype	=	jtSquare,	EndType	endtype	=	etClosed,

double	limit	=	0.0);

C#		»	public	static	Paths	OffsetPaths(Paths

polys,	double	delta,	JoinType	jointype	=

JoinType.jtSquare,	EndType	endtype	=

EndType.etClosed,	double	limit	=	0.0);

Deprecated.	(See	ClipperOffset.)

See	Also
ClipperOffset

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

OpenPathsFromPolyTree

Del.»	function	OpenPathsFromPolyTree(PolyTree:

TPolyTree):	TPaths;

C++	»	void	OpenPathsFromPolyTree(PolyTree&

polytree,	Paths&	paths);

C#		»	public	static	void

OpenPathsFromPolyTree(PolyTree	polytree,	Paths

paths);

This	function	filters	out	closed	paths	from	the	PolyTree	structure	and
returns	only	open	paths	in	a	Paths	structure.

See	Also
PolyTree,	Paths

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

Orientation

Del.»	function	Orientation(const	poly:	TPath):

boolean;

C++	»	bool	Orientation(const	Path	&poly);	//

Function	in	the	ClipperLib	namespace.

C#		»	public	static	bool	Orientation(Path	poly);

//	Static	method	of	the	Clipper	class	in	the

ClipperLib	namespace.

Orientation	is	only	important	to	closed	paths.	Given	that	vertices	are
declared	in	a	specific	order,	orientation	refers	to	the	direction	(clockwise
or	counter-clockwise)	that	these	vertices	progress	around	a	closed	path.

Orientation	is	also	dependent	on	axis	direction:

On	Y-axis	positive	upward	displays,	Orientation	will	return	true	if
the	polygon's	orientation	is	counter-clockwise.
On	Y-axis	positive	downward	displays,	Orientation	will	return	true

if	the	polygon's	orientation	is	clockwise.

Notes:

Self-intersecting	polygons	have	indeterminate	orientations	in	which
case	this	function	won't	return	a	meaningful	value.
The	majority	of	2D	graphic	display	libraries	(eg	GDI,	GDI+,	XLib,

Cairo,	AGG,	Graphics32)	and	even	the	SVG	file	format	have	their
coordinate	origins	at	the	top-left	corner	of	their	respective	viewports
with	their	Y	axes	increasing	downward.	However,	some	display

libraries	(eg	Quartz,	OpenGL)	have	their	coordinate	origins	undefined
or	in	the	classic	bottom-left	position	with	their	Y	axes	increasing
upward.
For	Non-Zero	filled	polygons,	the	orientation	of	holes	must	be

opposite	that	of	outer	polygons.
For	closed	paths	(polygons)	in	the	solution	returned	by	Clipper's

Execute	method,	their	orientations	will	always	be	true	for	outer
polygons	and	false	for	hole	polygons	(unless	the	ReverseSolution
property	has	been	enabled).

See	Also
Overview,	Clipper.ReverseSolution,	Path

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

PointInPolygon

Del.»	function	PointInPolygon(const	Pt:

TIntPoint;	const	poly:	TPath):	Integer;

C++	»	int	PointInPolygon(const	IntPoint	pt,

const	Path	&poly);	//	Function	in	the	ClipperLib

namespace.

C#		»	public	static	int	PointInPolygon(IntPoint

pt,	Path	poly);	//	Static	method	of	the	Clipper

class.

Returns	0	when	false,	-1	when	pt	is	on	poly	and	+1	when	pt	is	in	poly.

It's	assumed	that	'poly'	is	closed	and	does	not	self-intersect.

See	Also
IntPoint,	Path

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

PolyTreeToPaths

Del.»	function	PolyTreeToPaths(PolyTree:

TPolyTree):	TPaths;

C++	»	void	PolyTreeToPaths(PolyTree&	polytree,

Paths&	paths);

C#		»	public	static	Paths

PolyTreeToPaths(PolyTree	polytree);

This	function	converts	a	PolyTree	structure	into	a	Paths	structure.

See	Also
PolyTree,	Paths

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

ReversePath

Del.»	function	ReversePath(const	polys:	TPath):

TPath;

C++	»	void	ReversePath(const	Path	&p);

C#		»	//Call	Path.Reverse().

Reverses	the	vertex	order	(and	hence	orientation)	in	the	specified	path.

See	Also
Path

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

ReversePaths

Del.»	function	ReversePaths(const	p:	TPaths):

TPaths;

C++	»	void	ReversePaths(const	Paths	&p);

C#		»	void	ReversePaths(Paths	p);

Reverses	the	vertex	order	(and	hence	orientation)	in	each	contained	path.

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

SimplifyPolygon

Del.»	function	SimplifyPolygon(const	Poly:

TPath;	FillType:	TPolyFillType	=	pftEvenOdd):

TPaths;

C++	»	void	SimplifyPolygon(const	Path	&in_poly,

Paths	&out_polys,	

								PolyFillType	fillType	=	pftEvenOdd);

C#		»	public	static	Paths	SimplifyPolygon(Path

poly,	

								PolyFillType	fillType	=

PolyFillType.pftEvenOdd);

Removes	self-intersections	from	the	supplied	polygon	(by	performing	a
boolean	union	operation	using	the	nominated	PolyFillType).
Polygons	with	non-contiguous	duplicate	vertices	(ie	'touching')	will	be
split	into	two	polygons.

Note:	There's	currently	no	guarantee	that	polygons	will	be	strictly	simple
since	'simplifying'	is	still	a	work	in	progress.

	

See	Also
Clipper.StrictlySimple,	CleanPolygon,	Path,	PolyFillType

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

SimplifyPolygons

Del.»	function	SimplifyPolygons(const	polys:

TPaths;	

								FillType:	TPolyFillType	=	pftEvenOdd):

TPaths;

C++	»	void	SimplifyPolygons(const	Paths

&in_polys,	Paths	&out_polys,	

								PolyFillType	fillType	=	pftEvenOdd);

C++	»	void	SimplifyPolygons(Paths	&polys,

PolyFillType	fillType	=	pftEvenOdd);

C#		»	public	static	Polygons

SimplifyPolygons(Paths	polys,	

								PolyFillType	fillType	=

PolyFillType.pftEvenOdd);

Removes	self-intersections	from	the	supplied	polygons	(by	performing	a
boolean	union	operation	using	the	nominated	PolyFillType).
Polygons	with	non-contiguous	duplicate	vertices	(ie	'vertices	are
touching')	will	be	split	into	two	polygons.

C++	only:	This	function	is	overloaded.	In	the	first	definition,	the	in_polys
and	out_polys	parameters	can	reference	the	same	Paths	object	though	in
that	case	the	calling	code	might	be	clearer	if	the	second	definition
(accepting	a	single	Paths	parameter)	is	used.

Note:	There's	currently	no	guarantee	that	polygons	will	be	strictly	simple
since	'simplifying'	is	still	a	work	in	progress.

	

See	Also
Clipper.StrictlySimple,	CleanPolygons,	PolyFillType

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib Clipper

		//C++	constructor	setting	StrictlySimple	and	PreserveCollinear	properties	...

		Clipper	clipper(ioStrictlySimple	|	ioPreserveCollinear);

		//C#	constructor	setting	StrictlySimple	and	PreserveCollinear	properties	...

		Clipper	clipper	=	new	Clipper(Clipper.ioStrictlySimple	|	Clipper.ioPreserveCollinear);

		//Delphi	constructor	setting	StrictlySimple	and	PreserveCollinear	properties	...

		clipper	:=	TClipper.Create([ioStrictlySimple,	ioPreserveCollinear]);

										

Clipper.Constructor

Del.»	constructor	TClipper.Create(InitOptions:

TInitOptions	=	[]);

C++	»	Clipper::Clipper(int	initOptions	=	0)	:

ClipperBase();

C#		»	public	Clipper(initOptions	=	0):	base()

{};

The	Clipper	constructor	creates	an	instance	of	the	Clipper	class.	One	or
more	InitOptions	may	be	passed	as	a	parameter	to	set	the	corresponding
properties.	(These	properties	can	still	be	set	or	reset	after	construction.)

Examples:

	

See	Also
PreserveCollinear,	ReverseSolution,	StrictlySimple,	InitOptions

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib Clipper

Clipper.Execute

Del.»	function	Execute(clipType:	TClipType;

		out	solution:	TPaths;

		subjFillType:	TPolyFillType	=	pftEvenOdd;

		clipFillType:	TPolyFillType	=	pftEvenOdd):

boolean;	overload;

function	Execute(clipType:	TClipType;

		out	solution:	TPolyTree;

		subjFillType:	TPolyFillType	=	pftEvenOdd;

		clipFillType:	TPolyFillType	=	pftEvenOdd):

boolean;	overload;

C++	»

bool	Execute(ClipType	clipType,

		Paths	&solution,

		PolyFillType	subjFillType	=	pftEvenOdd,

		PolyFillType	clipFillType	=	pftEvenOdd);

bool	Execute(ClipType	clipType,

		PolyTree	&solution,

		PolyFillType	subjFillType	=	pftEvenOdd,

		PolyFillType	clipFillType	=	pftEvenOdd);

C#		»

public	bool	Execute(ClipType	clipType,

		Paths	solution,

		PolyFillType	subjFillType,

		PolyFillType	clipFillType);

public	bool	Execute(ClipType	clipType,

		PolyTree	solution,

		PolyFillType	subjFillType,

		PolyFillType	clipFillType);

Once	subject	and	clip	paths	have	been	assigned	(via	AddPath	and/or
AddPaths),	Execute	can	then	perform	the	clipping	operation
(intersection,	union,	difference	or	XOR)	specified	by	the	clipType

parameter.

The	solution	parameter	can	be	either	a	Paths	or	PolyTree	structure.	The
Paths	structure	is	simpler	than	the	PolyTree	stucture.	Because	of	this	it	is
quicker	to	populate	and	hence	clipping	performance	is	a	little	better	(it's
roughly	10%	faster).	However,	the	PolyTree	data	structure	provides	more
information	about	the	returned	paths	which	may	be	important	to	users.
Firstly,	the	PolyTree	structure	preserves	nested	parent-child	polygon
relationships	(ie	outer	polygons	owning/containing	holes	and	holes
owning/containing	other	outer	polygons	etc).	Also,	only	the	PolyTree
structure	can	differentiate	between	open	and	closed	paths	since	each
PolyNode	has	an	IsOpen	property.	(The	Path	structure	has	no	member
indicating	whether	it's	open	or	closed.)	For	this	reason,	when	open	paths
are	passed	to	a	Clipper	object,	the	user	must	use	a	PolyTree	object	as
the	solution	parameter,	otherwise	an	exception	will	be	raised.

When	a	PolyTree	object	is	used	in	a	clipping	operation	on	open	paths,
two	ancilliary	functions	have	been	provided	to	quickly	separate	out	open
and	closed	paths	from	the	solution	-	OpenPathsFromPolyTree	and
ClosedPathsFromPolyTree.	PolyTreeToPaths	is	also	available	to
convert	path	data	to	a	Paths	structure	(irrespective	of	whether	they're
open	or	closed).

There	are
several
things	to
note	about
the
solution
paths
returned:

they
aren't
in	any

specific	order
they	should	never	overlap	or	be	self-intersecting	(but	see	notes	on

rounding)
holes	will	be	oriented	opposite	outer	polygons
the	solution	fill	type	can	be	considered	either	EvenOdd	or	NonZero

since	it	will	comply	with	either	filling	rule
polygons	may	rarely	share	a	common	edge	(though	this	is	now	very

rare	as	of	version	6)

The	subjFillType	and	clipFillType	parameters	define	the	polygon	fill
rule	to	be	applied	to	the	polygons	(ie	closed	paths)	in	the	subject	and	clip
paths	respectively.	(It's	usual	though	obviously	not	essential	that	both	sets
of	polygons	use	the	same	fill	rule.)

Execute	can	be	called	multiple	times	without	reassigning	subject	and	clip
polygons	(ie	when	different	clipping	operations	are	required	on	the	same
polygon	sets).

See	Also
Example,	Rounding,	ClipperBase.AddPath,	ClipperBase.AddPaths,
PolyNode.IsOpen,	PolyTree,	ClosedPathsFromPolyTree,
OpenPathsFromPolyTree,	PolyTreeToPaths,	ClipType,	Path,	Paths,
PolyFillType

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib Clipper

Clipper.PreserveCollinear

Del.»	property	PreserveCollinear:	boolean;

override;

C++	»	void	PreserveCollinear(bool	value);

C#		»	public	bool	PreserveCollinear	{	get	{}	set

{}	};

By	default,	when	three	or	more	vertices	are	collinear	in	input	polygons
(subject	or	clip),	the	Clipper	object	removes	the	'inner'	vertices	before
clipping.	When	enabled	the	PreserveCollinear	property	prevents	this
default	behavior	to	allow	these	inner	vertices	to	appear	in	the	solution.

See	Also
Constructor

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib Clipper

Clipper.ReverseSolution

Del.»	property	ReverseSolution:	boolean;

override;

C++	»	void	ReverseSolution(bool	value);

C#		»	public	bool	ReverseSolution	{	get	{}	set

{}	};

When	this	property	is	set	to	true,	polygons	returned	in	the	solution
parameter	of	the	Execute()	method	will	have	orientations	opposite	to	their
normal	orientations.

See	Also
Execute,	Orientation

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib Clipper

Clipper.StrictlySimple

Del.»	property	StrictlySimple:	boolean;

override;

C++	»	void	StrictlySimple(bool	value);

C#		»	public	bool	StrictlySimple	{	get	{}	set	{}

};

Terminology:

A	simple	polygon	is	one	that	does	not	self-intersect.
A	weakly	simple	polygon	is	a	simple	polygon	that	contains	'touching'

vertices,	or	'touching'	edges.
A	strictly	simple	polygon	is	a	simple	polygon	that	does	not	contain

'touching'	vertices,	or	'touching'	edges.

Vertices	'touch'	if	they	share	the	same	coordinates	(and	are	not	adjacent).
An	edge	touches	another	if	one	of	its	end	vertices	touches	another	edge
excluding	its	adjacent	edges,	or	if	they	are	co-linear	and	overlapping
(including	adjacent	edges).

Polygons	returned	by	clipping	operations	(see	Clipper.Execute())	should
always	be	simple	polygons.	When	the	StrictlySimply	property	is
enabled,	polygons	returned	will	be	strictly	simple,	otherwise	they	may	be
weakly	simple.	It's	computationally	expensive	ensuring	polygons	are
strictly	simple	and	so	this	property	is	disabled	by	default.

Note:	There's	currently	no	guarantee	that	polygons	will	be	strictly	simple
since	'simplifying'	is	still	a	work	in	progress.

	

In	the	image	above,	the	two	examples	show	weakly	simple	polygons
being	broken	into	two	strictly	simple	polygons.	(The	outlines	with	arrows
are	intended	to	aid	visualizing	vertex	order.)

See	also	the	article	on	Simple	Polygons	on	Wikipedia.

http://en.wikipedia.org/wiki/Simple_polygon

See	Also
Execute,	SimplifyPolygons

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib Clipper

Clipper.ZFillFunction

Del.»	property	ZFillFunction:	TZFillCallback

read	FZFillCallback	write	FZFillCallback;

C++	»	void	ZFillFunction(ZFillCallback

zFillFunc);

C#		»	public	ZFillCallback	ZFillFunction	{	get;

set;	};

This	property	is	only	exposed	when	the	pre-processor	directive	use_xyz
has	been	defined.	If	this	is	the	case,	a	'Z'	member	will	be	included	in	the
IntPoint	structure	where	users	can	store	custom	data.	While	most	vertices
in	a	clipping	solution	will	correspond	to	input	(subject	and	clip)	vertices,
there	will	also	be	new	vertices	wherever	edges	intersect.	This	property
assigns	a	custom	callback	function	to	the	Clipper	object	so	that	custom	'Z'
values	can	be	assigned	to	these	intersection	vertices.	(Note	that	'Z'	values
in	the	solution	at	non-intersecting	vertices	will	simply	be	copied	from
matching	input	vertices	along	with	the	X	and	Y	values.)	

It	is	up	to	the	library	user	to	assign	'Z'	values	for	new	intersection	vertices
(otherwise	these	values	will	remain	0).	The	four	vertices	that	define	the
intersecting	line	segments	will	be	passed	to	the	callback	function
(together	with	the	new	intersection	vertex)	to	aid	the	user	in	determining
appropriate	Z	values.

See	Also
Defines,	IntPoint,	ZFillCallback

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib ClipperBase

ClipperBase.AddPath

Del.»	function	AddPath(const	path:	TPath;

polyType:	TPolyType;	Closed:	Boolean):	Boolean;

C++	»	bool	AddPath(const	Path	&pg,	PolyType

polyType,	bool	closed);

C#		»	public	virtual	bool	AddPath(Path	pg,

PolyType	polyType,	bool	closed);

Any	number	of	subject	and	clip
paths	can	be	added	to	a	clipping
task,	either	individually	via	the
AddPath()	method,	or	as	groups	via
the	AddPaths()	method,	or	even
using	both	methods.

'Subject'	paths	may	be	either	open
(lines)	or	closed	(polygons)	or	even
a	mixture	of	both,	but	'clipping'	paths	must	always	be	closed.	Clipper
allows	polygons	to	clip	both	lines	and	other	polygons,	but	doesn't	allow
lines	to	clip	either	lines	or	polygons.

With	closed	paths,	orientation	should	conform	with	the	filling	rule	that
will	be	passed	via	Clippper's	Execute	method.

Path	Coordinate	range:
Path	coordinates	must	be	between	±	0x3FFFFFFFFFFFFFFF	(±
4.6e+18),	otherwise	a	range	error	will	be	thrown	when	attempting	to	add
the	path	to	the	Clipper	object.	If	coordinates	can	be	kept	between	±
0x3FFFFFFF	(±	1.0e+9),	a	modest	increase	in	performance	(approx.	15-
20%)	over	the	larger	range	can	be	achieved	by	avoiding	large	integer
math.	If	the	preprocessor	directive	use_int32	is	defined	(allowing	a
further	increase	in	performance	of	20-30%),	then	the	maximum	range	is
restricted	to	±	32,767.	

Return	Value:
The	function	will	return	false	if	the	path	is	invalid	for	clipping.	A	path	is

invalid	for	clipping	when:

it	has	less	than	2	vertices
it	has	2	vertices	but	is	not	an	open	path
the	vertices	are	all	co-linear	and	it	is	not	an	open	path

See	Also
Example,	Clipper.Execute,	AddPaths,	Orientation,	Defines,	Path,
PolyFillType,	PolyType

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib ClipperBase

ClipperBase.AddPaths

Del.»	function	AddPaths(const	paths:	TPaths;

polyType:	TPolyType;	Closed:	Boolean):	boolean;

C++	»	bool	AddPaths(const	Paths	&ppg,	PolyType

polyType,	bool	closed);

C#		»	public	virtual	bool	AddPaths(Paths	ppg,

PolyType	polyType,	bool	closed);

Any	number	of	subject	and	clip
paths	can	be	added	to	a	clipping
task,	either	individually	via	the
AddPath()	method,	or	as	groups	via
the	AddPaths()	method,	or	even
using	both	methods.

'Subject'	paths	may	be	either	open
(lines)	or	closed	(polygons)	or	even
a	mixture	of	both,	but	'clipping'	paths	must	always	be	closed.	Clipper
allows	polygons	to	clip	both	lines	and	other	polygons,	but	doesn't	allow
lines	to	clip	either	lines	or	polygons.

With	closed	paths,	orientation	should	conform	with	the	filling	rule	that
will	be	passed	via	Clippper's	Execute	method.

Path	Coordinate	range:
Path	coordinates	must	be	between	±	0x3FFFFFFFFFFFFFFF	(±
4.6e+18),	otherwise	a	range	error	will	be	thrown	when	attempting	to	add
the	path	to	the	Clipper	object.	If	coordinates	can	be	kept	between	±
0x3FFFFFFF	(±	1.0e+9),	a	modest	increase	in	performance	(approx.	15-
20%)	over	the	larger	range	can	be	achieved	by	avoiding	large	integer
math.	If	the	preprocessor	directive	use_int32	is	defined	(allowing	a
further	increase	in	performance	of	20-30%),	then	the	maximum	range	is
restricted	to	±	32,767.	

Return	Value:
The	function	will	return	false	if	the	path	is	invalid	for	clipping.	A	path	is

invalid	for	clipping	when:

it	has	less	than	2	vertices
it	has	2	vertices	but	is	not	an	open	path
the	vertices	are	all	co-linear	and	it	is	not	an	open	path

See	Also
Example,	Clipper.Execute,	AddPaths,	Orientation,	Defines,	Paths,
PolyFillType,	PolyType

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib ClipperBase

ClipperBase.Clear

Del.»	procedure	Clear;

C++	»	virtual	void	Clear();

C#		»	public	void	Clear()	{};

The	Clear	method	removes	any	existing	subject	and	clip	polygons
allowing	the	Clipper	object	to	be	reused	for	clipping	operations	on
different	polygon	sets.

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib ClipperBase

ClipperBase.GetBounds

Del.»	function	GetBounds:	TIntRect;

C++	»	IntRect	GetBounds();

C#		»	public	IntRect	GetBounds()	{...};

This	method	returns	the	axis-aligned	bounding	rectangle	of	all	polygons
that	have	been	added	to	the	Clipper	object.

See	Also
Example,	IntRect

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib ClipperOffset

ClipperOffset.AddPath

Del.»	procedure	AddPath(const	Path:	TPath;

JoinType:	TJoinType;	EndType:	TEndType);

C++	»	void	AddPath(const	Path&	path,	JoinType

jointype,	EndType	endtype);

C#		»	public	void	AddPath(Path	path,	JoinType

jointype,	EndType	endtype);

Adds	a	Path	to	a	ClipperOffset	object	in	preparation	for	offsetting.

Any	number	of	paths	can	be	added,	and	each	has	its	own	JoinType	and
EndType.	All	'outer'	Paths	must	have	the	same	orientation,	and	any	'hole'
paths	must	have	reverse	orientation.	Closed	paths	must	have	at	least	3
vertices.	Open	paths	may	have	as	few	as	one	vertex.	Open	paths	can	only
be	offset	with	positive	deltas.

See	Also
EndType,	JoinType,	Path

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib ClipperOffset

ClipperOffset.AddPaths

Del.»	procedure	AddPaths(const	Paths:	TPaths;

JoinType:	TJoinType;	EndType:	TEndType);

C++	»	void	AddPaths(const	Paths&	paths,	JoinType

jointype,	EndType	endtype);

C#		»	public	void	AddPaths(Paths	paths,	JoinType

jointype,	EndType	endtype);

Adds	Paths	to	a	ClipperOffset	object	in	preparation	for	offsetting.

Any	number	of	paths	can	be	added,	and	each	path	has	its	own	JoinType
and	EndType.	All	'outer'	Paths	must	have	the	same	orientation,	and	any
'hole'	paths	must	have	reverse	orientation.	Closed	paths	must	have	at	least
3	vertices.	Open	paths	may	have	as	few	as	one	vertex.	Open	paths	can
only	be	offset	with	positive	deltas.

See	Also
EndType,	JoinType,	Paths

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib ClipperOffset

ClipperOffset.Clear

Del.»	procedure	Clear;

C++	»	void	Clear();

C#		»	public	void	Clear();

This	method	clears	all	paths	from	the	ClipperOffset	object,	allowing	new
paths	to	be	assigned.

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib ClipperOffset

ClipperOffset.Constructor

Del.»	constructor	Create(MiterLimit:	Double	=	2;

RoundPrecision:	Double	=	0.25);

C++	»	ClipperOffset(double	miterLimit	=	2.0,

double	roundPrecision	=	0.25);

C#		»	public	ClipperOffset(double	miterLimit	=

2.0,	double	roundPrecision	=	0.25);

The	ClipperOffset	constructor	takes	2	optional	parameters:	MiterLimit
and	ArcTolerance.	Thes	two	parameters	corresponds	to	properties	of	the
same	name.	MiterLimit	is	only	relevant	when	JoinType	is	jtMiter,	and
ArcTolerance	is	only	relevant	when	JoinType	is	jtRound	or	when
EndType	is	etOpenRound.

See	Also
ArcTolerance,	MiterLimit

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib ClipperOffset

ClipperOffset.Execute

Del.»	procedure	Execute(out	solution:	TPaths;

Delta:	Double);	overload;

C++	»	void	Execute(Paths&	solution,	double

delta);

C#		»	public	void	Execute(ref	Paths	solution,

double	delta);

Del.»	procedure	Execute(out	PolyTree:	TPolyTree;

Delta:	Double);	overload;

C++	»	void	Execute(PolyTree&	polytree,	double

delta);

C#		»	public	void	Execute(ref	PolyTree	polytree,

double	delta);

This	method	takes	two	parameters.	The	first	is	the	structure	that	receives
the	result	of	the	offset	operation	(either	a	PolyTree	or	a	Paths	structure).
The	second	parameter	is	the	amount	to	which	the	supplied	paths	will	be
offset.	Negative	delta	values	shrink	polygons	and	positive	delta	expand
them.

This	method	can	be	called	multiple	times,	offsetting	the	same	paths	by
different	amounts	(ie	using	different	deltas).

#include	"clipper.hpp"		

...

using	namespace	ClipperLib;

int	main()

{

		Path	subj;

		Paths	solution;

		subj	<<	

				IntPoint(348,257)	<<	IntPoint(364,148)	<<	IntPoint(362,148)	<<	

				IntPoint(326,241)	<<	IntPoint(295,219)	<<	IntPoint(258,88)	<<	

				IntPoint(440,129)	<<	IntPoint(370,196)	<<	IntPoint(372,275);

		ClipperOffset	co;

		co.AddPath(subj,	jtRound,	etClosedPolygon);

		co.Execute(solution,	-7.0);

		

		//draw	solution	...

		DrawPolygons(solution,	0x4000FF00,	0xFF009900);

}

										

	

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib ClipperOffset

ClipperOffset.ArcTolerance

Del.»	property	ArcTolerance:	double;	//read	and

write

C++	»	double	ArcTolerance;

C#		»	public	double	ArcTolerance	{get;	set;}

Firstly,	this	field/property	is	only	relevant	when	JoinType	=	jtRound
and/or	EndType	=	etRound.

Since	flattened	paths	can	never	perfectly	represent	arcs,	this
field/property	specifies	a	maximum	acceptable	imprecision	('tolerance')
when	arcs	are	approximated	in	an	offsetting	operation.	Smaller	values
will	increase	'smoothness'	up	to	a	point	though	at	a	cost	of	performance
and	in	creating	more	vertices	to	construct	the	arc.

The	default	ArcTolerance	is	0.25	units.	This	means	that	the	maximum
distance	the	flattened	path	will	deviate	from	the	'true'	arc	will	be	no	more
than	0.25	units	(before	rounding).

Reducing	tolerances	below	0.25	will	not	improve	smoothness	since
vertex	coordinates	will	still	be	rounded	to	integer	values.	The	only	way	to
achieve	sub-integer	precision	is	through	coordinate	scaling	before	and
after	offsetting	(see	example	below).

It's	important	to	make	ArcTolerance	a	sensible	fraction	of	the	offset	delta
(arc	radius).	Large	tolerances	relative	to	the	offset	delta	will	produce	poor
arc	approximations	but,	just	as	importantly,	very	small	tolerances	will
substantially	slow	offsetting	performance	while	providing	unnecessary
degrees	of	precision.	This	is	most	likely	to	be	an	issue	when	offsetting
polygons	whose	coordinates	have	been	scaled	to	preserve	floating	point
precision.

Example:	Imagine	a	set	of	polygons	(defined	in	floating	point
coordinates)	that	is	to	be	offset	by	10	units	using	round	joins,	and	the
solution	is	to	retain	floating	point	precision	up	to	at	least	6	decimal
places.
To	preserve	this	degree	of	floating	point	precision,	and	given	that	Clipper

and	ClipperOffset	both	operate	on	integer	coordinates,	the	polygon
coordinates	will	be	scaled	up	by	108	(and	rounded	to	integers)	prior	to
offsetting.	Both	offset	delta	and	ArcTolerance	will	also	need	to	be	scaled
by	this	same	factor.	If	ArcTolerance	was	left	unscaled	at	the	default	0.25
units,	every	arc	in	the	solution	would	contain	a	fraction	of	44
THOUSAND	vertices	while	the	final	arc	imprecision	would	be	0.25	×	10-
8	units	(ie	once	scaling	was	reversed).	However,	if	0.1	units	was	an
acceptable	imprecision	in	the	final	unscaled	solution,	then	ArcTolerance
should	be	set	to	0.1	×	scaling_factor	(0.1	×	108).	Now	if	scaling	is
applied	equally	to	both	ArcTolerance	and	to	Delta	Offset,	then	in	this
example	the	number	of	vertices	(steps)	defining	each	arc	would	be	a
fraction	of	23.

The	formula	for	the	number	of	steps	in	a	full	circular	arc	is	...	Pi	/	acos(1	-
arc_tolerance	/	abs(delta))

See	Also
offset_triginometry2

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib ClipperOffset

ClipperOffset.MiterLimit

Del.»	property	MiterLimit:	double;	//read	and

write

C++	»	double	MiterLimit;

C#		»	public	double	MiterLimit	{get;	set;}

This	property	sets	the	maximum	distance	in	multiples	of	delta	that
vertices	can	be	offset	from	their	original	positions	before	squaring	is
applied.	(Squaring	truncates	a	miter	by	'cutting	it	off'	at	1	×	delta	distance
from	the	original	vertex.)

The	default	value	for	MiterLimit	is	2	(ie	twice	delta).	This	is	also	the
smallest	MiterLimit	that's	allowed.	If	mitering	was	unrestricted	(ie
without	any	squaring),	then	offsets	at	very	acute	angles	would	generate
unacceptably	long	'spikes'.

An	example	of	an	offsetting	'spike'	at	a	narrow	angle	that's	a	consequence
of	using	a	large	MiterLimit	(25)	...

See	Also
JoinType

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib PolyNode

		PolyTree	polytree;

		//call	to	Clipper.Execute	method	here	which	fills	'polytree'

		

		PolyNode*	polynode	=	polytree.GetFirst();

		while	(polynode)

		{

				//do	stuff	with	polynode	here

	

				polynode	=	polynode->GetNext();

		}

		

										

PolyNode.GetNext

Del.»	function	GetNext:	TPolyNode;

C++	»	PolyNode*	GetNext();

C#		»	public	PolyNode	GetNext();

The	returned	Polynode	will	be	the	first	child	if	any,	otherwise	the	next
sibling,	otherwise	the	next	sibling	of	the	Parent	etc.

A	PolyTree	can	be	traversed	very	easily	by	calling	GetFirst()	followed	by
GetNext()	in	a	loop	until	the	returned	object	is	a	null	pointer	...

See	Also
PolyTree.GetFirst

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib PolyNode

PolyNode.ChildCount

Del.»	property	ChildCount:	Integer;	//read	only

C++	»	ChildCount();	//read	only

C#		»	public	int	ChildCount;	//read	only

Returns	the	number	of	PolyNode	Childs	directly	owned	by	the	PolyNode
object.

See	Also
Childs

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib PolyNode

PolyNode.Childs

Del.»	property	Childs[index:	Integer]:

TPolyNode;	//read	only

C++	»	std::vector	<	PolyNode*	>	Childs;//public

field

C#		»	public	List	<	PolyNode	>	Childs;	//read

only	property

A	read-only	list	of	PolyNode.
Outer	PolyNode	childs	contain	hole	PolyNodes,	and	hole	PolyNode
childs	contain	nested	outer	PolyNodes.

See	Also
ChildCount

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib PolyNode

PolyNode.Contour

Del.»	property	Contour:	TPath;	//read	only

C++	»	Path	Contour;	//public	field

C#		»	public	Path	Contour;	//read	only	property

Returns	a	path	list	which	contains	any	number	of	vertices.

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib PolyNode

PolyNode.IsHole

Del.»	IsHole:	Boolean;	//read	only

C++	»	bool	IsHole;	//field

C#		»	public	bool	IsHole;	//read	only	property

Returns	true	when	the	PolyNode's	polygon	(Contour)	is	a	hole.

Children	of	outer	polygons	are	always	holes,	and	children	of	holes	are
always	(nested)	outer	polygons.
The	IsHole	property	of	a	PolyTree	object	is	undefined	but	its	children	are
always	top-level	outer	polygons.

See	Also
Overview,	Contour,	PolyTree

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib PolyNode

PolyNode.IsOpen

Del.»	IsOpen:	Boolean;	//read	only

C++	»	bool	IsOpen;	//field

C#		»	public	bool	IsOpen;	//read	only	property

Returns	true	when	the	PolyNode's	Contour	results	from	a	clipping
operation	on	an	open	contour	(path).	Only	top-level	PolyNodes	can
contain	open	contours.

See	Also
Contour

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib PolyNode

PolyNode.Parent

Del.»	Parent:	TPolyNode;	//read	only

C++	»	PolyNode*	Parent;	//field

C#		»	public	PolyNode	Parent;	//read	only

property

Returns	the	parent	PolyNode.

The	PolyTree	object	(which	is	also	a	PolyNode)	does	not	have	a	parent
and	will	return	a	null	pointer.

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib PolyTree

PolyTree.Clear

Del.»	procedure	Clear;

C++	»	void	Clear();

C#		»	public	void	Clear();

This	method	clears	any	PolyNode	children	contained	by	PolyTree	the
object.

Clear	does	not	need	to	be	called	explicitly.	The	Clipper.Execute	method
that	accepts	a	PolyTree	parameter	will	automatically	clear	the	PolyTree
object	before	propagating	it	with	new	PolyNodes.	Likewise,	PolyTree's
destructor	will	also	automatically	clear	any	contained	PolyNodes.

See	Also
Clipper.Execute

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib PolyTree

PolyTree.GetFirst

Del.»	function	GetFirst:	TPolyNode;

C++	»	PolyNode*	GetFirst();

C#		»	public	PolyNode	GetFirst();

This	method	returns	the	first	outer	polygon	contour	if	any,	otherwise	a
null	pointer.

This	function	is	almost	equivalent	to	calling	Childs[0]	except	that	when	a
PolyTree	object	is	empty	(has	no	children),	calling	Childs[0]	would	raise
an	out	of	range	exception.

See	Also
PolyNode.GetNext,	PolyNode.ChildCount,	PolyNode.Childs

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib PolyTree

PolyTree.Total

Del.»	property	Total:	Integer;	//read	only

C++	»	Total();	//read	only

C#		»	public	int	Total;	//read	only

Returns	the	total	number	of	PolyNodes	(polygons)	contained	within	the
PolyTree.	This	value	is	not	to	be	confused	with	ChildCount	which	returns
the	number	of	immediate	children	only	(Childs)	contained	by	PolyTree.

See	Also
PolyNode.ChildCount,	PolyNode.Childs

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home

Overview

The	Clipper	Library	performs	clipping,	and	offsetting	of	both	lines	and
polygons.

A	number	of	features	set	Clipper	apart	from	other	clipping	libraries:

it	accepts	all	types	of	polygons	including	self-intersecting	ones
it	supports	multiple	polygon	filling	rules	(EvenOdd,	NonZero,

Positive,	Negative)
it's	very	fast	relative	to	other	libraries
it's	numerically	robust
it	also	performs	line	and	polygon	offsetting
it's	free	to	use	in	both	freeware	and	commercial	applications

Current	Version:	6.2.0

Author	&	copyright:
Angus	Johnson.	Copyright	©	2010-2014
License,	terms	and	conditions:	Boost	Software	License

Terminology:

Clipping:
commonly	refers
to	the	process	of
cutting	away
from	a	set	of	2-
dimensional
geometric	shapes
those	parts	that
are	outside	a
rectangular
'clipping'
window.	This
can	be	achieved
by	intersecting

http://www.angusj.com/delphi/clipper.php#features
http://www.mpi-inf.mpg.de/~kettner/pub/nonrobust_cgta_06.pdf

subject	paths	(lines	and	polygons)	with	a	clipping	rectangle.	In	a	more
general	sense,	the	clipping	window	need	not	be	rectangular	but	can	be
any	type	of	polygon,	even	multiple	polygons.	Also,	while	clipping
typically	refers	to	an	intersection	operation,	in	this	documentation	it
will	refer	to	any	one	of	the	four	boolean	operations	(intersection,
union,	difference	and	exclusive-or).
Path:	is	an	ordered	sequence	of	vertices	defining	a	single	geometric

contour	that's	either	a	line	(an	open	path)	or	a	polygon	(a	closed	path).
Line:	or	polyline	is	an	open	path	containing	2	or	more	vertices.
Polygon:	commonly	refers	to	a	two-dimensional	region	bounded	by

an	outer	non-intersecting	closed	contour.	That	region	may	also	contain
a	number	of	'holes'.	In	this	documentation	however,	polygon	will
simply	refer	to	a	closed	path.
Contour:	synonymous	with	path.
Hole:	is	a	closed	region	within	a	polygon	that's	not	part	of	the

polygon.	A	'hole	polygon'	is	a	closed	path	that	forms	the	outer
boundaries	of	a	hole.
Polygon	Filling	Rule:	the	filling	rule,	together	with	a	list	of	closed

paths,	defines	those	regions	(bounded	by	paths)	that	are	inside	(ie
regions	'brush	filled'	in	a	graphical	display)	and	those	which	are
outside	(ie	'holes').

Distribution	package	contents:

The	ZIP	package	contains	the	Clipper	library's	source	code,	a	Windows
CHM	help	file,	HTML	help,	and	a	number	of	compiled	demo	applications
(with	full	source	code).	The	library	was	initially	written	in	Delphi	Pascal
(and	compiles	with	Delphi	version	7	or	above)	but	now	contains	C++,	C#
and	Python	translations	too.	The	library's	source	code	in	each	language	is
about	5000	lines.	The	Delphi	code	contains	reasonably	extensive
comments,	but	comments	are	fewer	in	the	C++	and	C#	code.	The
included	sample	applications	show	how	Clipper	can	be	used	with	the
different	languages	using	a	number	of	graphics	display	libraries	including
-	AGG,	Cairo,	OpenGL,	Graphics32,	GDI+	and	SVG.

Download	Link:

SourceForge

References:

The	Library	is	based	on	but	significantly	extends	Bala	Vatti's	polygon
clipping	algorithm	as	described	in	"A	generic	solution	to	polygon
clipping",	Communications	of	the	ACM,	Vol	35,	Issue	7	(July	1992)	pp
56-63.

A	section	in	"Computer	graphics	and	geometric	modeling:
implementation	and	algorithms"	by	By	Max	K.	Agoston	(Springer,	2005)
discussing	Vatti	Polygon	Clipping	was	also	helpful	in	creating	the	initial
Clipper	implementation.

The	paper	titled	"Polygon	Offsetting	by	Computing	Winding	Numbers"
by	Chen	&	McMains	(Paper	no.	DETC2005-85513,	ASME	2005.	Pages
565-575)	contains	helpful	discussion	on	the	complexities	of	polygon
offsetting	together	with	some	solutions.

http://sourceforge.net/projects/polyclipping
http://portal.acm.org/citation.cfm?id=129906
http://books.google.com/books?q=vatti+clipping+agoston
http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf

See	Also
Source,	License,	Clipper,	ClipperOffset,	ClipType,	PolyFillType

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

ClipperBase

ClipperBase	is	an	abstract	base	class	for	Clipper.	A	ClipperBase	object
should	not	be	instantiated	directly.

Reference
Methods

In	ClipperBase:
AddPath
AddPaths
Clear
GetBounds

See	Also
Clipper

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

Clipper

Hierarchy
			|
ClipperBase

The	Clipper	class	encapsulates	boolean	operations	on	polygons
(intersection,	union,	difference	and	XOR),	which	is	also	called	polygon
clipping.

Input	polygons,	both	subject	and	clip	sets,	are	passed	to	a	Clipper	object
by	its	AddPath	and	AddPaths	methods,	and	the	clipping	operation	is
performed	by	calling	its	Execute	method.	Multiple	boolean	operations
can	be	performed	on	the	same	input	polygon	sets	by	repeat	calls	to
Execute.

Reference
Methods Properties
In	Clipper:
Constructor PreserveCollinear
Execute ReverseSolution

StrictlySimple
ZFillFunction

In	ClipperBase:
AddPath
AddPaths
Clear
GetBounds

See	Also
Overview,	ClipType

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

#include	"clipper.hpp"		

...

using	namespace	ClipperLib;

int	main()

{

ClipperOffset

The	ClipperOffset	class	encapsulates	the	process	of	offsetting
(inflating/deflating)	both	open	and	closed	paths	using	a	number	of
different	join	types	and	end	types.

(This	class	replaces	the	now	deprecated	OffsetPaths	function	which	was
less	flexible.)

Preconditions	for	offsetting:
1.	The	orientations	of	closed	paths	must	be	consistent	such	that	outer
polygons	share	the	same	orientation,	and	any	holes	have	the	opposite
orientation	(ie	non-zero	filling).	Open	paths	must	be	oriented	with	closed
outer	polygons.
2.	Polygons	must	not	self-intersect.	

Limitations:
When	offsetting,	small	artefacts	may	appear	where	polygons	overlap.	To
avoid	these	artefacts,	offset	overlapping	polygons	separately.

		Path	subj;

		Paths	solution;

		subj	<<	

				IntPoint(348,257)	<<	IntPoint(364,148)	<<	IntPoint(362,148)	<<	

				IntPoint(326,241)	<<	IntPoint(295,219)	<<	IntPoint(258,88)	<<	

				IntPoint(440,129)	<<	IntPoint(370,196)	<<	IntPoint(372,275);

		ClipperOffset	co;

		co.AddPath(subj,	jtRound,	etClosedPolygon);

		co.Execute(solution,	-7.0);

		

		//draw	solution	...

		DrawPolygons(solution,	0x4000FF00,	0xFF009900);

}

										

	

Reference
Methods Properties
In	ClipperOffset:
AddPath ArcTolerance
AddPaths MiterLimit
Clear
Constructor
Execute

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

PolyNode

PolyNodes	are	encapsulated	within	a	PolyTree	container,	and	together
provide	a	data	structure	representing	the	parent-child	relationships	of
polygon	contours	returned	by	Clipper's	Execute	method.

A	PolyNode	object	represents	a	single	polygon.	Its	IsHole	property
indicates	whether	it's	an	outer	or	a	hole.	PolyNodes	may	own	any	number
of	PolyNode	children	(Childs),	where	children	of	outer	polygons	are
holes,	and	children	of	holes	are	(nested)	outer	polygons.

Reference
Methods Properties
In	PolyNode:
GetNext ChildCount

Childs
Contour
IsHole
IsOpen
Parent

See	Also
Overview,	Clipper.Execute,	PolyTree

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home ClipperLib

PolyTree

Hierarchy
			|
PolyNode

PolyTree	is	intended	as	a	read-only	data	structure	that	should	only	be
used	to	receive	solutions	from	clipping	and	offsetting	operations.	It's	an
alternative	to	the	Paths	data	structure	which	also	receives	these	solutions.
PolyTree's	two	major	advantages	over	the	Paths	structure	are:	it	properly
represents	the	parent-child	relationships	of	the	returned	polygons;	it
differentiates	between	open	and	closed	paths.	However,	since	PolyTree	is
a	more	complex	structure	than	the	Paths	structure,	and	since	it's	more
computationally	expensive	to	process	(the	Execute	method	being	roughly
5-10%	slower),	it	should	used	only	be	when	parent-child	polygon
relationships	are	needed,	or	when	open	paths	are	being	'clipped'.

An	empty	PolyTree	object	can	be	passed	as	the	solution	parameter	in
Clipper.Execute	and	in	ClipperOffset.Execute.	Once	the	clipping	or
offseting	operation	is	completed,	the	method	returns	with	the	PolyTree
structure	filled	with	data	representing	the	solution.

A	PolyTree	object	is	a	container	for	any	number	of	PolyNode	children,
with	each	contained	PolyNode	representing	a	single	polygon	contour
(either	an	outer	or	hole	polygon).	PolyTree	itself	is	a	specialized
PolyNode	whose	immediate	children	represent	the	top-level	outer
polygons	of	the	solution.	(Its	own	Contour	property	is	always	empty.)
The	contained	top-level	PolyNodes	may	contain	their	own	PolyNode
children	representing	hole	polygons	that	may	also	contain	children
representing	nested	outer	polygons	etc.	Children	of	outers	will	always	be
holes,	and	children	of	holes	will	always	be	outers.

PolyTrees	can	also	contain	open	paths.	Open	paths	will	always	be
represented	by	top	level	PolyNodes.	Two	functions	are	provided	to
quickly	separate	out	open	and	closed	paths	from	a	polytree	-
OpenPathsFromPolyTree	and	ClosedPathsFromPolyTree.	

				polytree:	
				Contour	=	()
				ChildCount	=	1
				Childs[0]:	
								Contour	=	((10,10),(100,10),(100,100),(10,100))
								IsHole	=	False
								ChildCount	=	1
								Childs[0]:	
												Contour	=	((20,20),(20,90),(90,90),(90,20))
												IsHole	=	True
												ChildCount	=	2
												Childs[0]:	
																Contour	=	((30,30),(50,30),(50,50),(30,50))
																IsHole	=	False
																ChildCount	=	0
												Childs[1]:	
																Contour	=	((60,60),(80,60),(80,80),(60,80))
																IsHole	=	False
																ChildCount	=	0

												

Reference
Methods Properties
In	PolyTree:
Clear Total
GetFirst
In	PolyNode:
GetNext ChildCount

Childs
Contour
IsHole
IsOpen
Parent

See	Also
Overview,	Clipper.Execute,	ClipperOffset.Execute,	PolyNode,
ClosedPathsFromPolyTree,	OpenPathsFromPolyTree,	Paths

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

Home

ClipperLib

Filenames:	clipper.pas;	clipper.hpp	and	clipper.cpp;	clipper.cs

Namespace:	ClipperLib

Contents
Types Classes Functions

CInt Clipper Area
ClipType ClipperBase CleanPolygon
EndType ClipperOffset CleanPolygons
InitOptions PolyNode ClosedPathsFromPolyTree
IntPoint PolyTree MinkowskiDiff
IntRect MinkowskiSum
JoinType OffsetPaths
Path OpenPathsFromPolyTree
Paths Orientation
PolyFillType PointInPolygon
PolyType PolyTreeToPaths
ZFillCallback ReversePath

ReversePaths
SimplifyPolygon
SimplifyPolygons

Copyright	©2010-2014	Angus	Johnson		-			Clipper	6.2.0			-			Help	file	built	on	1-November-2014	

	Graphics32 Help
	Overview
	Changes
	Deprecated
	Example
	FAQ
	License
	Rounding
	ClipperLib
	CInt
	ClipType
	EndType
	InitOptions
	IntPoint
	IntRect
	JoinType
	Path
	Paths
	PolyFillType
	PolyType
	ZFillCallback
	Area
	CleanPolygon
	CleanPolygons
	ClosedPathsFromPolyTree
	MinkowskiDiff
	MinkowskiSum
	OffsetPaths
	OpenPathsFromPolyTree
	Orientation
	PointInPolygon
	PolyTreeToPaths
	ReversePath
	ReversePaths
	SimplifyPolygon
	SimplifyPolygons
	Clipper
	Constructor
	Execute
	PreserveCollinear
	ReverseSolution
	StrictlySimple
	ZFillFunction
	ClipperBase
	AddPath
	AddPaths
	Clear
	GetBounds
	ClipperOffset
	AddPath
	AddPaths
	Clear
	Constructor
	Execute
	ArcTolerance
	MiterLimit
	PolyNode
	GetNext
	ChildCount
	Childs
	Contour
	IsHole
	IsOpen
	Parent
	PolyTree
	Clear
	GetFirst
	Total

