
plt	help version	01-
Jan-17	
Copyright	©	2017,	Paul
Mennen

Getting	started
Introduction
Installation	instructions
Experiment	with	plt5
Default	colors
Workspace	plotting
Release	notes

Using	the	plt	window
Preliminaries
Adding	traces
Selecting	traces
Zooming	and	panning
Cursoring
Right	hand	axis
Menu	box	and	menu	bar
Data	editing

Programming	with	plt
Calling	sequence	and	line	styles
GUI	building	with	plt
Trace	properties
Axis	properties
Labels	and	figure	properties
Colors
Options
Cursor	commands
Pseudo	objects
Auxiliary	plt	functions	and	.m	files
Programming	examples

Introduction
plt
version
01Jan17	
Copyright	©	2017,
Paul	Mennen

Matlab	users	may	be	interested	in	this	toolbox	for	its	focus	in	one	or	more	of
these	three	areas:

1.	 A	plotting	interface.	An	alternative	to	Matlab's	plot	and	plotyy
routines

Like	plot,	plt	commands	can	be	typed	at	the	command	prompt	to
display	your	workspace	arrays.	For	simple	commands	the	interface	is
the	same.
Optimized	for	data	exploration.
Improved	zooming,	panning,	linear/log	toggling,	&	auto-scaling
controls.
You	can	interactively	select	which	variables	to	plot	(workspace
plotting).
Automatically	generates	a	legend	that	also	provides	trace	selection
controls.
Up	to	999	traces	on	a	single	axis.	(Limited	to	99	traces	if	a	legend	is
required).
Fast	and	easy	cursor	movement	with	delta,	rms,	mean,	y/x,	and
magnitude	readouts.
Support	for	dual	y-axes	and	sub-plots,	each	with	individual	cursor
control	&	readout.
Peak/Valley	finder,	display	expansion	history,	and	support	for	metric
prefixes.
Better	looking	grid	lines	with	selectable	color	and	style.
Interactive	editing	of	trace	properties,	figure	colors,	and	annotations.
Data	editing	(mouse	or	keyboard	driven).
Regular	updates	based	suggestions	from	users.
A	major	advantage	of	plt	is	the	consistency	and	flexibility	of	the
command	line	interface,	all	explained	in	a	single	help	file	with
includes	example	code	for	every	important	option.	You	no	longer	will

you	have	to	hunt	for	the	many	obscure	handle	graphics	commands
used	by	the	native	Matlab	commands	that	are	scattered	throughout	the
Matlab	documentation.

2.	 A	GUI	building	framework.	An	alternative	to	Matlab's	guide

Provides	a	framework	for	developing	graphical	user	interfaces,	usually
involving	2D	or	3D	plotting
Provides	these	pseudo	objects	(collections	of	Matlab	graphical	objects
with	a	single	purpose):

cursor
grid
plt

image
color	picker
help	text

slider
popup
edit	object

Provides	these	auxiliary	functions	which	perform	tasks	commonly
needed	in	plot	oriented	GUIs:

pltt
prin
datestr

metricp
figpos
pltwater

Pvbar
Pebar
Pquiv

The	capability	to	move	and	resize	the	pseudo	objects	and	native
Matlab	objects	while	recording	the	positions	so	that	they	can	be	made
permanent.
A	methodology	for	combining	these	elements	presented	with	a	series
of	examples	&	demo	programs.	These	examples	are	designed	to
demonstrate	the	use	of	the	various	pseudo	objects.

3.	 Signal	Processing.	Fourteen	of	the	example	programs,	in
addition	to	their	role	in	demonstrating	various	plt	features,	were
also	designed	to	have	an	educational	value	in	the	signal
processing	field:

			▪	bounce.m		(random	walks)

			▪	curves.m		(classic	plane	curves)

			▪	dice.m				(Monte	Carlo	simulation)

			▪	editz.m			(z-plane	analysis)

			▪	gauss.m			(summation	of	random	variables)

			▪	gui2.m				(classical	analog	filters)

			▪	julia.m			(Mandelbrot	&	Julia	set	fractals)

			▪	pltquiv.m	(Hermite	polynomial	interpolation)

			▪	pltmap.m		(2-dimensional	cubic	interpolation)

			▪	square.m		(synthesis	of	harmonic	functions)

			▪	tas.m					(aircraft	performance	modeling)

			▪	weight.m		(classic	sound	level	weighting	curves)

			▪	wfall.m			(clipping	distortion	effects)

			▪	winplt.m		(fft	windowing)

This	toolbox	has	been	extensively	tested	and	verified	to	run	under	all	Matlab
releases	from	12.1	(ver	6.1)	to	R2016a	under	Windows	10,	Windows	8,
Windows	7,	Windows	Vista,	and	Windows	XP.	Brief	testing	has	also	been	done
under	the	Mac	and	other	Unix	based	platforms.	

I	hope	using	plt	enhances	your	Matlab	experience.	
I'm	interested	in	hearing	about	your	problems	and	suggestions.	

You	can	reach	me	at		paul@mennen.org.

mailto:paul@mennen.org

plt.m Matlab	code	for	plt

pltt.m

Pvbar.m

Pebar.m

Pquiv.m

pltwater.m

Auxiliary	function:	for	adding	traces	to	an
existing	plt	figure
Auxiliary	function:	for	displaying	functions	as
vertical	bars
Auxiliary	function:	for	displaying	error	bar	plots
Auxiliary	function:	for	displaying	vector	fields
(arrows)
Auxiliary	function:	for	displaying	3D	waterfall
plots

figpos.m

screencfg.m

TaskbarSZ.m

Auxiliary	function:	for	positioning	figure
windows	(called	by	plt)
Auxiliary	function:	called	from	figpos	to
determine	screen	layout	(size,	taskbar,	etc).
Auxiliary	function:	used	by	screencfg.m	if

Installation	instructions

If	you	are	using	Matlab	R2014b	or	later,	you	may	select	"Download
Toolbox"	from	the	file	exchange	and	all	the	installation	details	will	be	taken
care	of	for	you	(and	you	can	ignore	all	the	instructions	below).	If	you	have
an	older	version	of	Matlab	select	"Download	Zip"	from	the	file	exchange
and	then	follow	the	instructions	below.	(Don't	be	intimidated	however	-	it	is
not	difficult	at	all.)

Create	a	new	folder	called	plt	in	any	convenient	place	on	your	disk.

Add	this	new	folder	to	your	Matlab	path.

Extract	the	downloaded	archive	file	(plt.zip)	into	this	new	folder.	It	is
important	that	your	unzipper	preserves	the	directory	structure.	(Most
unzippers	will	do	this	properly	by	default.)	After	the	unzip	operation	the
new	folder	will	contain	the	files	and	folders	shown	below.

pltColor1.mat automatic	method	fails
Color	specification	file:	Rename	this	file	to
pltColor.mat	to	use	Matlab's	default	colors.

prin.m

prin.pdf

Pftoa.m

A	powerful	alternative	to	sprintf	&	fprintf.
(Called	by	plt	and	its	demo	programs.)	
A	complete	description	of	the	prin	function.	
Called	by	prin.	(Implements	the	additional
floating	point	conversion	formats.)

contents.m brief	help	text

plt.htm

pltfiles*.*

Top	level	html	help	file	
A	folder	containing	all	lower	level	html	files	and
images.

plt.chm
full	plt	help	documentation	(compiled	from	above
plt.htm	and	pltfiles\)

demo\plt5.m

demo\bounce.m

demo\circles12.m

demo\curves.m

demo\dice.m

demo\editz.m

demo\gauss.m

demo\gui1.m

demo\gui2.m

demo\julia.m

demo\movbar.m

demo\plt50.m

demo\pltmap.m

demo\pltn.m

demo\pltquiv.m

demo\pltsq.m

demo\pltvar.m

demo\pltvbar.m

demo\pub.m

demo\pub2.m

demo\pub3.m

demo\subplt.m

demo\subplt8.m

Example	programs.	For	descriptions,	click	here

demo\subplt16.m

demo\subplt20.m

demo\tasplt.m

demo\trigplt.m

demo\weight.m

demo\wfall.m

demo\wfalltst.m

demo\winplt.m

demo\demoplt.m
Auto	sequences	through	all	31	examples	(in	the
order	of	the	files	shown	above)

demo\gui1v6.m

demo\gui2v6.m

demo\qui2ALT.m

Alternative	versions	of	some	of	the	example
programs	listed	above.
These	alternative	programs	are	also	described
here

Note	that	demoplt.m	and	the	31	example	programs	that	it	runs	appear	in	a
subfolder	called	demo.	It's	usually	convenient	to	also	add	this	demo
directory	to	your	Matlab	path.	If	you	prefer	not	to	do	that,	you	can	still	run
the	demo	programs	by	using	the	Matlab	cd	command	to	make	the	demo
folder	active.

You	may	delete	the	downloaded	plt.zip	if	you	prefer.

Notes	for	PC	based	systems:

If	you	type	plt	help	or	if	you	click	on	the	"Help"	tag	in	the	plt	menu	box,
then	plt.chm	is	opened	with	the	Windows	help	system	hh.exe.	(which
usually	resides	in	the	C:\Windows	folder)	If	hh.exe	is	missing	or	if	you	prefer
not	to	use	the	chm	compiled	help	file,	just	delete	the	chm	file	and	plt	will	instead
open	plt.htm	using	your	browser.

Notes	for	Unix	based	systems:

If	you	type	plt	help	or	if	you	click	on	the	"Help"	tag	in	the	plt	menu	box,
then	plt.htm	is	opened	in	your	browser.	This	file	points	to	many	other	html
files	and	images	inside	the	pltfiles\	folder.	If	your	browser	supports	chm
help	files	and	you	prefer	to	use	it,	you	can	do	that	by	deleting	or	renaming	the

plt.htm	file.

Experiment	with	plt5.m

The	easiest	way	to	start	learning	about	plt	is	to	start	the	sample	script	plt5.m.
Just	type	plt5	at	the	command	prompt.	This	simple	script	plots	five	traces.
Note	that	he	last	trace	(Line	5)	is	plotted	on	the	right	hand	axis.	Experiment	by
trying	the	following:

Click	on	all	the	objects	in	the	plt	window	including	the	trace	IDs.
Try	that	again	with	the	right	mouse	button	(which	usually	does	something
different).
Click	and	drag	on	the	x	and	y	axes	tick	labels	(again	...	try	both	left	and
right	buttons)
Left	or	right	click	and	drag	in	the	plot	area.	(On	and	off	the	traces	do
different	things).
Hold	down	both	mouse	buttons	in	the	plot	area	and	drag	(creates	an
expansion	box).

Expand	on	what	you	have	learned	playing	with	plt5	by:

Using	plt	with	some	data	you	are	currently	working	with.	Type	plt(x,y)
just	as	you	would	with	Matlab's	plot	routine.
Use	the	plt	workspace	plotter	by	typing	plt	with	no	arguments.	Then	you
can	interactively	select	the	variables	you	wish	to	plot.
Run	the	other	programming	examples.	(demoplt.m	sequences	through	all
the	examples.)
Explore	the	topics	in	"Using	the	plt	window"	from	the	plt	help	home	page.

Default	colors

The	first	thing	most	users	notice	when	running	plt	for	the	first	time	is	that	the
traces	are	plotted	on	a	black	background.	In	fact	this	can	be	shocking	at	first
because	it	is	so	different	from	the	traditional	Windows	and	Matlab	standard	color
scheme	that	you	may	have	grown	used	to.	Rest	assured	however	that	you	are	not
forced	into	any	color	scheme.	The	next	section	explains	why	you	may	not	want
to	change	the	defaults,	and	the	section	after	that	explains	how	this	is	easily	done
if	you	prefer	to	ignore	that	advice.

The	advantage	of	the	default	plt	color	scheme

The	primary	virtue	of
plt's	default	black
plotting	background	is
that	you	can	distinguish
far	more	traces	based	on
color	alone	when
compared	with	Matlab's
default	white	plotting
background.	

Why	is	this?	Consider
the	green	trace	for
example.	The	plt	default
uses	[0	1	0]	for	the
green	trace	as	you

would	expect.	However	with	the	standard	Matlab	color	scheme,	the	green	trace
is	not	[0	1	0]	because	that	is	too	bright	and	yields	low	contrast	against	the
white	background.	So	instead	they	use	[0	.5	0].	But	this	means	that	the
green	is	less	saturated	making	it	more	difficult	to	distinguish	the	green	from	say
a	black	or	dark	grey.	Similar	problems	happen	with	some	other	colors.	This	is
why	the	Matlab	default	trace	color	order	only	includes	seven	different	colors.
Once	you	define	an	8th	trace	it	cycles	back	around	and	uses	the	same	color	as
the	first	trace.	Especially	with	the	thin	traces	commonly	used,	seven	is	about	the
maximum	number	of	colors	most	people	can	distinguish	and	even	that	is	not
easy.	However	with	a	black	background	and	when	using	plt's	carefully	chosen
default	trace	colors	it	is	not	difficult	to	distinguish	at	least	three	times	as	many
traces	based	on	color	alone.	

To	see	that	this	is	true,	open	the	pltn	example	with	20	traces	enabled	(i.e.	type
pltn(20)	at	the	command	prompt).	Now	see	if	you	can	match	up	all	20	traces
with	the	respective	trace	labels	in	the	TraceID	box.	If	you	aren't	seriously	color
blind	you	probably	will	find	this	task	easy.	Now	use	the	edit	box	below	the
TraceID	box	to	change	the	number	of	lines	to	40.	(The	40	trace	colors	that	will
be	used	are	shown	to	the	left.)	If	you	have	sharp	color	vision	you	still	probably
can	identify	all	40	traces	just	by	the	trace	color.	You	will	find	that	if	you	switch

to	a	white	plotting	background,	you	will	be	able	to	identify	far	fewer	traces
based	on	the	trace	color	no	matter	what	trace	color	sequence	you	choose.
Matlab's	standard	plot	routine	doesn't	have	features	that	encourage	the	use	of	so
many	traces,	and	so	you	probably	haven't	noticed	this	problem	with	the	white
plot	background.	However,	plt	was	designed	to	work	well	with	many	dozens	of
traces	and	you	will	likely	take	advantage	of	this	capability	soon	...	and	in	the
process	you	will	come	to	appreciate	plt's	default	color	scheme.

Configuring	plt	to	use	Matlab	default	colors	(color
specification	files)

When	you	type	a	command	into	the	command	window	such	as	plt(x,y)	the
data	specified	will	be	plotted	using	plt's	default	colors	(i.e.	dark	background).
However	if	even	after	reading	the	previous	section	you	would	rather	it	plot	the
data	using	Matlab's	default	colors,	the	easiest	way	to	do	this	is	to	rename	the	file
pltColor1.mat	in	the	plt	folder	to	pltColor.mat.	This	is	a	"color
specification	file"	whose	contents	are	described	in	the	section	below.	Every	time
you	enter	a	plt	command	from	the	command	window,	plt	will	look	for	this	file
(pltColor.mat	in	the	plt	folder)	and	will	use	the	specified	colors	if	the	file
exists.	This	particular	file	(until	you	change	it	with	the	methods	described
below)	specifies	colors	that	are	the	same	as	Matlab's	default	color	selections.	

If	you	call	plt	from	a	Matlab	script	or	function	file	then	plt	will	not	use	the
pltColor.mat	file;	however,	it	will	look	for	a	different	color	specification
file.	Suppose	you	write	a	Matlab	script	called	FooPlot.m	that	contains	a	call
to	plt.	Then	plt	will	look	for	a	color	specification	file	called
FooPlotColor.mat.	This	file	must	be	located	in	the	same	folder	that
contains	FooPlot.m.	So	to	make	FooPlot	use	the	default	colors,	you	could	copy
pltColor1.mat	to	FooPlot.m.	This	can	also	be	accomplished	by	including	the
'ColorDef',0	parameter	in	the	plt	argument	list,	however	the	color
specification	file	method	is	better	if	you	want	to	allow	the	user	to	easily	modify
the	program's	colors	from	the	its	graphical	interface.	

There	is	one	other	special	color	specification	file	that	you	can	use	named
pltColorAll.mat.	If	this	file	exists	in	the	plt	folder	it	will	be	used	by	plt	no
matter	which	script	or	function	it	is	called	from	and	even	when	plt	is	entered
from	the	command	line.	However	the	colors	specified	by	pltColorAll.mat
may	be	overridden	by	several	methods:

A	color	file	whose	name	is	derived	from	the	name	of	the	script	as	explained
above	will	take	precedence	over	the	pltColorAll.mat	file
If	a	color	specification	file	is	included	in	the	plt	command	line	(via	the
'ColorFile'	parameter,	of	course	that	is	the	file	that	will	be	used.	If	the
'ColorFile'	parameter	includes	a	null	argument	(i.e.	[]	or	'',	then	plt	will

ignore	all	color	specification	files,	thereby	reverting	to	the	usual	plt
defaults.	Equivalent	to	the	'ColorFile'	parameter	with	the	null	argument	is	to
include	the	string	'IgnoreColorfile'	in	the	argument	to	the
'Options'	parameter.
Even	when	a	color	specification	file	is	being	used,	any	particular	color
characteristic	may	be	overridden	by	the	specific	plt	parameter	that	controls
that	feature.	All	these	parameters	are	defined	in	the	Colors	section.

Creating	or	modifying	a	color	specification	file

Start	by	opening	any	plt	figure.	It	will	be	easier	if	you	choose	a	plt	figure	that	is
already	using	colors	that	is	close	to	what	you	want.	To	edit	one	of	the	trace
colors:

Frist	click	on	the	trace	that	you	want	to	change	color.
Then	right-click	on	the	y-cursor	edit	box
Select	"Properties"	from	the	popup	menu	by	left-clicking	on	it.
The	edit	box	in	the	lower	left	corner	of	the	small	figure	that	appears
contains	the	color	triple	for	the	selected	trace.	Simply	edit	the	color	triple
with	the	value	you	have	in	mind.	As	soon	as	you	hit	enter,	the	color	of	the
selected	trace	and	its	associated	TraceID	label	will	be	changed	to	the	color
you	entered.
Or	if	you	don't	know	the	color	triple	that	you	want,	right-click	on	the	color
triple	edit	box	and	a	"Color	Pick"	palette	will	appear	allowing	you	to
choose	the	color	you	want	by	changing	the	sliders	and	then	clicking	on	one
of	the	100	colors	visible	in	the	palette.	Learn	more	about	this	palette	in	the
description	of	the	Color	Pick	pseudo	object	in	the	pseudo	object	section.
Repeat	step	one	and	two,	but	instead	of	left-clicking	on	"Properties",	right
click	instead.	A	small	figure	will	appear	that	will	allow	you	to	edit	the
figure	colors.
Select	the	figure	element	you	want	to	change	with	the	popup	menu.
As	before	you	can	change	the	color	by	entering	the	color	triple	or	by	using
the	color	palette.
After	all	the	colors	have	been	adjusted	to	your	satisfaction,	enable	the	top
menu	bar	by	clicking	on	the	"Menu"	tag	in	the	MenuBox,	then	click	on	the
last	menu	(plt).	Select	"Save	figure	colors".	You	will	see	a	message	box	that
tells	you	the	name	and	location	of	the	file	that	was	saved.	(If	your	script
was	called	FooPlot,	the	file	will	be	FooPlotColor.mat.	If	you	called	plt	from
the	command	line	the	file	will	be	called	pltColor.mat.)	If	the	color	file	had
already	existed,	it	will	be	overwritten	without	warning.

Once	the	color	file	is	created,	you	may	rename	it	to	pltColorAll.mat	if	you	want
it	to	apply	to	all	your	script	and	function	files.	Although	it	is	usually	easier	to
edit	the	colors	by	the	method	described	above,	you	can	also	manually	edit	the
colors	in	the	Matlab	command	window.	For	example,	if	you	type:	

clear;	cd	plt;	load	pltColor;	who;	

you	will	see	the	following	list	of	variables	from	the	file:	

cTRACE	-	Trace	colors	(an	N	x	3	matrix,	where	N	is	the	number	of	traces	in	the
TraceID	box)	
cFIGbk	-	Figure	background	color	
cPLTbk	-	Plot	background	color	
cXYax		-	Axis	border	color	
cXYlbl	-	Axis	label	color	
cDELTA	-	Delta	cursor	color	

After	editing	the	variables	you	want	to	modify,	type	save	pltColor	to	make
the	changes	permanent.	

The	menus	used	to	edit	these	colors	are	also	described	in	the
Menu	box	and	menu	bar	section.	There	you	will	also	find	that	there	are	other
ways	of	accessing	those	menus	which	perhaps	you	will	find	more	convenient.

Workspace	plotting

Starting	the	workspace	plotter

The	workspace	plotter	is	a	fast	way	to	plot	the
variables	in	your	current	workspace.	No	more
errors	from	mistyping	those	long	variable	names.
Just	type	plt	(with	no	arguments)	at	the
command	prompt	and	a	window	will	appear	such
as	the	one	shown	to	the	left.	(This	window	was
actually	generated	with	the	included	pltvar.m
script	example	which	creates	the	variables	listed
and	then	calls	plt	with	no	arguments.)	All	the
variables	in	your	workspace	(except	for	scalars
and	strings)	will	be	listed	in	the	workspace	plotter
figure.	The	size	of	the	variable	(row,	column)
appears	right	after	the	variable	name.	If	your
workspace	contains	many	variables,	the	variable

list	may	appear	in	several	columns.	If	your	workspace	includes	1x1	structures
with	vector	fields	(such	as	the	bottom	two	variables	in	this	figure),	then	these
fields	will	also	appear	in	the	workspace	plotter	figure	using	the	usual	structure
notation	(struct.field)

Choosing	an	x-vector

The	first	thing	you	should	do	is	select	the	x-vector	that	you	want	to	plot	along
the	x-axis.	As	you	can	see	from	the	instructions	(in	green)	at	the	top	of	the
figure,	you	should	do	this	by	clicking	on	the	desired	x-vector	using	the	right1
mouse	button.	You	may	click	on	any	of	the	variables	shown	in	white.	Note	that
in	this	example,	the	variable	called	long_variable_name	is	grayed	out.
This	is	because	only	row	or	column	vectors	can	be	x-vectors.	Since
long_variable_name	has	three	rows	of	400	elements	it	can't	be	selected	as

an	x-vector.	

1	Actually	in	this	initial	situation	you	may	also	select	the	x-vector	with	a	left	click.	Usually	a	left	click	is
used	for	selecting	y-vectors,	but	since	you	can't	do	that	without	at	least	on	selected	x-vector	it	assumes	that
you	are	choosing	an	x-vector	in	either	case.	For	consistency,	you	still	might	want	to	stick	with	the	right
click	for	selecting	the	x-vector	-	a	habit	that	probably	will	make	workspace	plotting	easier.	

Suppose	you	choose	to	plot	the	400	element	row
vector	sec	along	the	x	axis.	After	you	click	on
that	vector,	it	turns	red	for	identification	and
visibility	and	the	tag	←x	is	placed	after	the
variable	name	indicating	this	is	the	chosen	x
vector	as	shown	to	the	left.

Choosing	a	y-vector

Next	you	must	choose	the	array	(or	arrays)	to	plot
along	the	y	axis.	The	plot	routine	requires	that
one	of	the	dimensions	of	the	y	array	match	the
length	of	the	x	vector.	So	in	this	example,	the	y
arrays	must	have	either	400	rows	or	400	columns.
In	this	example	five	of	the	variables	do	not	meet
this	condition,	so	they	are	grayed	out	and	you	will
not	be	allowed	to	select	them.	

Suppose	you	then	click	on	these	3	array	names:
long_variable_name,	psvb1,	and
s.psvb4.	As	you	click	on	them,	the	names	will
turn	yellow	and	the	tag	←y	is	placed	after	the
variable	names	to	indicate	that	these	arrays	are	to
be	plotted	along	the	y	axis.	

If	you	then	click	on	the	"Plot"	button
plt	will	create	a	plot	containing	five
traces.	The	first	3	traces	will	be	the	3
rows	of	the	array
long_variable_name.	The
fourth	trace	will	contain	the	data
from	psvb3	and	the	last	trace	will

contain	the	data	from	s.psvb4.	(Note	that	the
order	of	the	traces	will	be	according	to	the	order
that	the	variables	appear	in	the	list	and	not	on	the

order	that	you	clicked	on	them.)	By	default,	a	maximum	of	7	characters	are	used
in	the	TraceID	box	which	means	that	some	characters	may	be	removed	to	make
it	fit.	Note	that	the	last	character	is	always	included	and	underscores	are	removed
to	save	space.	Also	note	that	for	arrays	with	more	than	one	row	or	column	a	row
or	column	index	is	attached	to	the	end	of	the	name.	

Since	a	single	x	vector	is	being	used,	the	x	vector	name	(sec)	is	used	as	the	x-
axis	label.	In	this	example,	the	y-axis	is	labeled	with	Y	axis	for	lack	of
anything	better.	If	you	had	selected	just	a	single	y-axis	variable	for	plotting,	that
variable	name	would	be	used	as	the	y-axis	label.	

Starting	from	the	previous	situation,	suppose	the
numbers	in	psvb1	were	far	bigger	than	the	other
selected	y	variables.	Then	the	other	traces	would
be	too	small	when	plotted	on	the	same	y-axis
scale.	One	way	to	solve	this	problem	is	to	plot
psvb1	on	the	right	hand	axis	and	leave	the	other
variables	on	the	left	side.	To	do	this,	double	click
on	psvb1.	Note	that	its	color	changes	to	orange
and	the	←y	changes	to	←yR	to	indicate	that	this
variable	will	be	plotted	on	the	right	hand	axis.
You	may	select	as	many	traces	as	you	want	for
either	the	left	or	right	hand	axes.	To	change	a
←yR		(orange)	to	a	←y		(yellow)	single	click	a	few
times	on	the	variable	name.	(The	exact	number	of
clicks	depends	somewhat	on	the	situation.)	

So	far	we	have	only	selected	a	single	x	vector.
Although	this	will	be	sufficient	most	of	the	time,
the	workspace	plotter	allows	multiple	x	vectors	to
be	selected.	Suppose	you	now	right-click	on
seconds	and	vb2rep.	(Since	they	are	grayed
out,	they	won't	accept	a	left	click,	but	in	this
situation	they	will	accept	a	right	click).	These	two
variables	will	then	turn	red	to	indicate	that	they
are	to	be	used	as	x	vectors.	They	will	also	be
marked	with	←x2	and	←x3	respectively	and	the
←x	marking	on	sec	will	change	to	←x1.	The
digits	after	the	"x"	make	it	easier	to	know	which
x	vector	you	have	selected	for	each	y	vector.	Also
the	first	two	variables	(b1catb3	and
b2catb4),	which	were	grayed	out	before,	now
turn	white	because	these	800	element	row	vectors
now	can	be	plotted	versus	either	x2	or	x3.	

Suppose	you	then	click	once	on	both	b1catb3	and	b2catb4.	They	will	both
turn	yellow	and	be	marked	with	←y2	indicating	that	they	should	be	plotted	with
respect	to	x2	(seconds).	In	this	case	there	is	more	than	one	choice	of	x
vectors,	so	if	you	click	on	b2catb4	again,	its	mark	changes	from	←y2	to	←y3
as	shown	in	the	figure	to	the	left.	Since	there	are	no	other	possible	x	vectors	to
choose	from,	if	you	click	on	b2catb4	one	more	time	the	←y3	mark	will
disappear	and	the	variable	name	will	change	back	to	white,	indicating	that	it	is
no	longer	selected.	

Every	time	you	click	the	"Plot"	button,	the	workspace	plotter	will	create	a	new
figure	window	containing	the	plot	you	specified	by	the	various	←x	and	←y	tags.
When	you	have	created	many	plots,	pressing	the	"CloseAll"	button	is	a
convenient	way	to	close	all	of	these	figure	windows	(although	the	workspace
browser	window	itself	remains	open).	If	you	have	many	long	variable	names,
you	may	not	be	happy	with	TraceIDs	of	only	7	characters.	In	that	case,	you	can
specify	longer	TraceID's	tags	by	typing	a	command	such	as	TraceIDlen=17;
before	calling	the	workspace	plotter.	(Try	this	before	typing	pltvar).	However
you	will	notice	one	problem.	The	longer	trace	names	will	not	fit	in	the	space
reserved	for	the	TraceID	box	and	the	characters	will	run	into	the	main	plot	axis.
You	could	solve	this	problem	by	using	a	plt	option	variable,	which	is	any
variable	containing	the	characters	pltvar	in	the	variable	name.	So	for	example
the	variables	pltopt,	pltopt2,	another_pltoption	would	all	be	recognized	as	plt
option	variables	where	as	variables	pltOpt2	and	another_plt_option	would	not	be
so	recognized	because	it	must	contain	the	string	"pltopt"	exactly	(including
case).	

So	before	starting	pltvar,	try	typing	the	following	two	lines	at	the	command
prompt:	

TraceIDlen=17;

pltopt	=	{'xy',	[0	.24	.12	.74	.86;	-1	.01	.83	.2

.15]};	

The	first	row	of	the	xy	parameter	gives	new	coordinate	locations	for	the	plot
(both	left	&	right	axes)	and	the	second	row	gives	new	coordinates	for	the
TraceID	box.	These	coordinates	can	be	generated	easily	by	moving/resizing	the

objects	with	the	mouse.	(To	see	how,	look	at	the	manual	section	GUI	building
with	plt).	

If	you	wanted	to	make	the	two	commands	above	permanent	for	all	workspace
plotting,	create	a	file	on	your	Matlab	path	named	pltdef.m	which	contain
those	two	lines.	Below	are	more	details	about	how	to	use	pltdef.m	

As	an	alternative	to	the	'xy'	parameter	used	above	you	could	use	the	'AxisPos'
parameter	as	follows:	

pltopt	=	{'AxisPos',[1.8	1	.86	1	2.8]};	

This	would	increase	the	width	of	the	TraceID	box	by	a	factor	of	2.8	while	letting
plt	choose	the	height	of	the	TraceID	box	appropriately	(an	advantage	over	the
'xy'	command).	Unfortunately	the	AxisPos	parameters	can't	be	determined
automatically	with	the	GUI	building	tools.	(The	"1.8"	tells	plt	to	make	the	blank
space	to	the	left	of	the	axis	80%	bigger	to	make	more	room	for	the	TraceIDs	and
the	".86"	tells	plt	to	make	the	plot	width	86%	of	the	former	size	so	that	the	plot
doesn't	run	off	the	right	edge.)	

To	see	a	list	of	all	the	possible	commands	you	can	insert	into	pltopt	variables,
see	these	sections	of	the	manual

Trace	properties.htm
Axis	properties.htm
Labels	and	figure	properties.htm
Colors
Options

pltdef.m

If	a	file	named	pltdef.m	exists	on	your	Matlab	path	then	that	file	will	be	run
before	the	workspace	plotter	is	opened.	This	file	may	contain	any	Matlab
commands,	and	are	usually	used	to	defining	workspace	plotter	defaults	and
variables.

The	workspace	plotter	looks	for	any	variable	that	contains	the	characters

pltopt	anywhere	in	its	name.	If	it	finds	any	such	variables	it	will	use	the
parameters	they	contain	as	arguments	to	plt	when	you	press	the	"Plot"	button.
For	example	suppose	pltdef.m	contains	these	two	lines:

pltopt1	=	{'Options','Menu','Title','This	is	a	plot

title'};

pltopt2	=	{'FigName','Workspace	plotter'};

Then	any	plot	created	by	the	workspace	plotter	will	have	its	figure	menu	bar
enabled	(from	Options),	its	axis	label	will	be	set	to	'Frame	data'	and	its	figure
name	will	be	set	to	'Workspace	plotter'.	

pltdef.m	may	also	include	other	variables	or	commands	unrelated	to	plotting
options.	For	example	suppose	pltdef.m	included	these	three	lines:	

circleY	=	exp((0:.04:2)*pi*1j);	%	50	point	unit	circle

circleX	=	real(circleY);

circleY	=	imag(circleY);

Then	whenever	you	started	the	workspace	plotter	you	would	see	circleX	and
circleY	in	the	workspace	variables	list.	This	would	allow	you	to	add	a	unit	circle
to	your	plot	by	selecting	these	variables	from	the	list	(x	vs.	y)	This	would	be
quite	useful	if	you	were	often	plotting	z-plane	poles	and	zeros,	Nyquist	data,	or
other	data	that	lives	in	the	complex	plane.

Release	notes

Version

New	features	have	been	added	to	the	image	pseudo	object
which	also	has	been	generalized	so	that	it	now	allows	the	use	of
more	than	more	than	one	image	object	in	a	single	figure
window.	The	default	positioning	of	the	optional	components
have	been	improved.	The	number	of	colormap	selections	has
been	increased	(from	7	to	10).	A	new	meaning	has	been	added
to	the	Edge	parameter.	(Specifying	"Edge=0"	indicates	that	the
complete	data	range	of	the	input	should	be	used.)	A	new	demo
program	called	julia.m	was	added	to	demonstrate	some	of
these	new	features	and	also	demonstrates	several	mouse	driven
gui	programming	techniques.
plt.m	was	a	mere	1440	lines	of	code	for	its	first	release	back	in
2004,	but	now	it	has	grown	to	about	4900	lines	which	is	pretty
large	for	a	single	function.	To	make	this	function	more
manageable	it	has	been	split	this	into	two	parts.	The	first	part
(pltinit.m)	includes	the	code	which	creates	a	new	plot	(a
new	plt	pseudo	object	...	if	you	will).	The	second	part	(plt.m)
contains	everything	else,	i.e.	the	code	to	create,	access,	or
modify	all	the	other	pseudo	objects.	This	change	also	makes	plt
applications	clearer,	although	you	can	continue	to	call	plt	the
same	way	you	used	to	with	previous	releases	if	you	prefer.	This
is	explained	more	clearly	in	the
Calling	sequence	and	line	styles	section.
A	simpler	and	more	natural	method	of	using	the	mouse	to	adjust
the	size	of	an	expansion	box	was	added.	(The	older	method	is
still	available).	See	"Adjusting	the	expansion	box"	in	the
Zooming	and	panning	section	of	the	help	file.

01Jan17

All	eight	of	the	demo	programs	that	display	moving	traces	now
also	show	the	number	of	updates	per	second.	Also	programs
that	include	automatic	sequencing	(curves.m	and	demoplt.m)
display	the	elapsed	time	required	for	the	sequence	to	complete.
These	measures	are	useful	for	comparing	GUI	speeds	between
different	computers	and	different	Matlab	versions.	demoplt.m
was	enhanced,	to	allow	all	the	demos	to	be	run	in	sequence
without	having	to	click	"continue"	for	each	program.	This	is
useful	for	the	above	mentioned	speed	measurements,	as	well	as
providing	a	way	to	quickly	check	that	no	errors	where
introduced	by	changes	to	plt.m	or	pltinit.m.
Many	of	the	cursor	commands	have	been	simplified
1.	 Commands	of	the	form:

plt('cursor',cid,'set','param')

have	been	shortened	to:
plt('cursor',cid,'param').
The	only	exceptions	to	that	are	that
'set','position'	changes	to	'setObjPos'
and	'set','activeLine'	has	been	changed	to
'setActive'

and	'set','expHist'	has	been	changed	to
'exRestore'

2.	 Commands	of	the	form:
plt('cursor',cid,'get','param')

have	been	shortened	to:
plt('cursor',cid,'param').
The	only	exceptions	to	that	are	that:
'get','position'	changes	to	just	'get'
and	'get','activeLine'	was	changed	to:
'getActive'.

3.	 The	'axisCBaux'	cursor	command	was	changed	to
'axisCBr'

4.	 A	new	option	was	added	to	the	'xlim',	'ylim',	and
'xylim'	commands	to	allow	bypassing	the	axis	change
callback.

5.	 All	the	cursor	commands	used	to	be	case	sensitive,
however	now	they	are	case	insensitive.

6.	 The	use	of	the	MotionEdit	and	MotionZoom

parameters	has	been	slightly	simplified.	Also	a	similar
parameter	called	MotionZup	has	been	added.	The
julia.m	demo	program	demonstrates	the	use	of	this	new
parameter.

These	new	parameters	and	the	simplified	cursor	command
structure	are	all	described	in	the	Cursor	commands	section
The	slider	pseudo	object	commands	have	been	simplified	by
allowing	the	'set'	argument	to	be	optional.
A	new	optional	modifier	(j	or	k)	is	now	allowed	with	the	%w
and	%v	formats	in	prin	and	Pftoa.	Also	cell	array	arguments	are
now	allowed	in	the	input	parameter	list.	This	is	described	fully
in	the	prin	help	file	(prin.pdf)	which	you	can	view	by	simply
typing	"prin"	(i.e.	no	arguments)	at	the	Matlab	command
prompt.
Added	a	new	item	to	the	plt	menu	in	the	menu	bar	(Hide/Show
cursor	controls)
The	enable	parameter	of	the	edit	and	pop	pseudo	objects	was
changed	from	a	two	way	switch	to	a	three	way	switch
(hide/disabled/enabled).
When	you	click	on	the	menubox	Help	tag,	plt	used	to	search
for	just	two	possible	help	files	(plt.chm	and	plt.htm).	This	list
has	been	expanded	to	search	for	three	other	possible	help	files
all	having	the	same	name	as	the	application	followed	with	the
extension	.chm,	.htm,	or	.pdf.	Also	when	a	chm	help	file	is
specified,	you	now	have	the	ability	to	specify	that	the	chm	file
be	opened	starting	at	a	particular	topic.	Details	are	found	in	the
description	of	the	HelpFile	parameter	in	the	Options	section.
Several	improvements	were	made	to	the	HelpText	pseudo
object.	The	'text'	command	was	added	to	the	pseudo	object.
Also	a	new	option	was	added	for	how	the	text	properties	are
applied.	HelpText	objects	sometimes	interfered	with	the	axis
callback	function,	but	this	problem	was	solved	by	assigning	the
axis	callback	to	the	helptext	as	well.
A	bug	was	fixed	that	prevented	you	from	moving	some	axes	in
the	mouse	driven	repositioning	mode.
Other	minor	bug	fixes.
Improved	the	formatting	of	the	help	file,	and	corrected	several
documentation	errors.

A	compiled	version	of	demoplt.m	is	now	available	(for
Windows	computers	only)	which	allows	you	to	run	all	the	demo
programs	without	having	to	install	plt	(and	in	fact	Matlab
doesn't	even	need	to	be	installed).	This	may	be	useful	if	you	are
unsure	if	you	want	to	install	plt,	but	still	want	to	investigate	its
features.	It's	also	useful	so	that	you	can	run	the	demos	with
signal	processing	educational	value	on	computers	that	don't
have	Matlab.	This	is	not	included	in	the	file	exchange
submission	since	the	file	exchange	does	not	permit	executable
files,	but	you	can	download	it	from	my	web	site
(www.mennen.org).	It's	the	first	entry	in	the	"Other	Stuff"
category.	Amazingly	enough	it's	only	a	5	MByte	zip	file.	Noting
to	install.	Simply	unzip	the	file	to	the	folder	of	your	choice	and
start	it	by	clicking	on	the	"demopltC.exe"	file.

The	editz.m	example	program	was	improved	by	combining
the	two	figures	into	one,	both	to	demonstrate	the	use	of	the
'Fig'	parameter	and	to	make	the	application	easier	to	use.
The	pltsq.m	example	program	was	rewritten	to	make	it
clearer	and	more	concise.	A	new	checkbox	was	added	(called
"Live	cursor")	which	when	checked	allows	the	cursor	to	follow
its	trace	as	it	changes	amplitude.	Also	a	smoothing	function	was
applied	to	the	update	rate	readout	to	make	it	easier	to	read.
The	bounce.m	example	program	was	enhanced	so	that	it	also
can	display	arrows	representing	the	velocity	of	each	marker.
This	was	to	demonstrate	the	use	of	the	Pquiv.m	auxiliary
function	as	well	as	the	use	of	the	super	button	mode	of	the
popup	pseudo	object	(used	to	control	the	length	of	the	velocity
arrows).
Enhanced	the	gauss.m	example	program	to	alternatively
display	the	error	terms	instead	of	the	convolution	functions.	A
checkbox	was	added	to	select	whether	the	error	terms	should	be
displayed.	These	error	terms	are	stored	in	the	lines'	Zdata
property	and	shows	the	value	of	this	technique	for	storing
alternative	plot	values.
Added	comments	and	made	other	minor	changes	to	several	of
the	other	example	programs.

http://www.mennen.org

02Nov16

Added	a	new	OID	code	of	-3.	These	OID	(Object	ID)	codes	are
used	by	the	'xy'	parameter	and	this	new	code	allows	control
of	the	position	of	the	main	axes	as	well	as	its	associated	cursor
controls.	Unlike	the	other	OID	codes,	the	position	argument
may	be	complex.	The	complex	component	adjusts	the	scaling	of
the	cursor	controls.	The	editz,	plt50	and	pltvar
examples	were	modified	to	take	advantage	of	the	flexibility
provided	by	the	complex	position	parameter.	A	full	description
of	the	new	OID	code	can	be	found	under	the	'xy'	parameter	in
the	Axis	properties	section.	Actually	this	OID	code	was	added
for	the	October	release,	but	I	forgot	to	document	it.
Some	of	plt's	components	and	pseudo	objects	operate	repeatedly
when	the	mouse	button	is	held	down.	The	repeat	rate	of	these
objects	were	controlled	globally,	but	now	each	of	these	objects
may	be	controlled	individually,	so	that	different	objects	can	use
different	rates.	Also	a	means	of	disabling	the	repeat	feature	is
now	available.	This	is	explained	fully	in	the	description	of	the
edit	pseudo	object	in	the	Pseudo	objects	section.	(Look	for	the
description	of	the	repeat	application	data	property.)
Added	an	option	to	the	cursor	ZoomOut	command	to	control
the	zoom	amount	(formerly	fixed	at	40%).
Fixed	bugs	in	pltwater.m	which	could	cause	a	crash	when
stopping	an	updating	plot	or	when	closing	a	figure	while	the
plot	is	updating.
Fixed	a	bug	which	created	a	small	memory	leak	when	closing	a
window	that	was	created	using	the	'Fig'	parameter.
Clicking	on	the	"x"	or	"y"	labels	in	front	of	the	cursor	readouts
is	used	allow	the	use	of	the	edit	readout	boxes	for	modifying	the
axis	limits.	There	was	a	bug	preventing	that	from	working,
however	that	bug	has	been	fixed	in	this	release.
Fixed	a	bug	related	to	using	HelpText	along	with	the	'Fig'
parameter.
Fixed	a	bug	related	to	using	the	'xstr'	or	'ystr'	parameters	along
with	the	'Fig'	parameter.
Fixed	a	bug	in	pltwater.m	relating	to	its	close	request
function.	(This	could	have	caused	a	crash	when	exiting	a
program	while	the	water	fall	plot	was	running.)
Added	help	text	to	the	top	of	the	pltmap.m	example	program.

Added	the	use	of	the	Link	to	the	circles12.m	example	program
so	that	closing	any	one	of	its	four	figure	windows	will	close	all
of	them.
Substantially	rewrote	the	Zooming	and	panning	section	to
describe	these	features	more	clearly	and	to	update	it	to	agree
with	some	minor	recent	changes	in	the	way	these	features	work.

19Oct16

In	earlier	releases,	the	'Fig'	parameter	existed,	but	plt	could
not	be	called	more	than	once	using	the	same	figure.	That
restriction	has	now	been	lifting	making	this	parameter	far	more
useful.	The	expanded	use	of	the	'Fig'	parameter	is	described	at
the	end	of	the	Labels	and	figure	properties	section.	That	section
describes	how	the	'Fig'	parameter	may	be	used	to	create
multiple	plots	in	a	single	figure	and	contrasts	that	with	the
'Subplot'	parameter	which	is	used	for	the	same	purpose.
(Each	method	has	different	advantages.)
The	plt50.m	example	program	was	rewritten	to	demonstrate
the	new	use	of	the	'Fig'	parameter.	Since	that	example	is
focused	on	data	exploration,	both	of	its	plots	support	the	full
generality	of	the	plt	cursoring	system	with	none	of	restrictions
imposed	by	the	use	of	the	'Subplot'	parameter.	A	new
example	program	called	pub3.m	was	also	added	to
demonstrate	the	use	of	the	'Fig'	parameter	for	plots	focused
on	publication	quality.	The	ability	to	create	multiple	plots	each
containing	both	left	and	right	hand	axes	made	the	'Fig'
parameter	the	right	choice	for	that	example.	Both	examples	are
described	in	more	detail	in	the	Programming	examples	section.
The	use	of	color	selection	files	has	been	generalized.	A	new
section	of	the	help	file	(Default	colors)	has	been	added	to
describe	the	default	color	scheme	and	the	use	of	the	color
selection	files.
The	default	trace	color	order	has	been	modified	somewhat
(although	the	first	13	colors	remain	the	same	as	before).
The	cursor	behavior	when	a	number	is	entered	into	the	Ycursor
edit	box	has	been	changed	to	be	more	useful	and	also	more
consistent	with	the	behavior	of	the	Xcursor	edit	box.	This
behavior	is	described	under	"Typing	in	a	cursor	location"	in	the

Cursoring	section.
As	before,	the	dual	cursor	may	be	enabled	using	the	"Set	dual
cursor"	submenu	of	plt	menu	in	the	menu	bar.	However	now	the
"Set	dual	cursor"	submenu	acts	as	a	toggle,	i.e.	if	the	dual	cursor
was	already	enabled,	selecting	this	submenu	again	will	disable
it.
Enhanced	the	pltn.m'	example	program	by	adding	a	pseudo
popup	menu	to	control	the	trace	thickness.
Minor	bug	fixes	and	documentation	corrections.

The	reach	of	the	plt	toolbox	has	been	dramatically	extended
from	its	historical	2D	roots	into	the	domain	of	3D	function
plotting	by	including	a	new	pseudo	object	called	image
(primarily	for	displaying	intensity	maps)	as	well	as	a	new
auxiliary	function	called	pltwater.m	(for	waterfall	plots).
Matlab	already	has	many	tools	for	3D	plotting	(mesh,	meshc,
meshz,	waterfall,	surf,	shading,	surfc,	surfl,	surfnorm,	ezsurf,
contour,	contour3,	contourf,	plot3,	slice,	isosurface,	smooth3,
isocaps,	isonormals,	ribbon,	quiver,	quiver3,	fill3,	stem3,
sphere,	cylinder),	yet	when	you	need	to	scroll	thru	slices	of	a
massive	3D	data	set	in	detail	and	use	the	cursors	to	identify	or
mark	particular	values	or	features,	plt	now	offers	something	that
those	other	plotting	tools	can't	provide.	For	now	plt	only
supports	3D	plots	of	single	valued	functions,	i.e.	z	=	f(x,y).	The
image	pseudo	object	is	fully	described	in	the
Pseudo	objects	section.	pltwater.m	is	fully	described	at	the
end	of	the	Auxiliary	functions	section.
A	new	example	program	pltmap.m	was	added	to	the	demo
folder	to	demonstrate	the	use	of	the	new	image	pseudo	object.
Because	this	example	and	its	underlying	pseudo	object	have
such	a	wide	variety	of	features,	a	tutorial	of	sorts	is	available	to
help	you	learn	about	these	features.	For	the	other	examples,	this
information	is	included	as	comments	in	the	program	header,	but
this	was	not	done	for	pltmap.m	because	of	its	length.	So	to	find
this	tutorial,	please	see	the	description	of	pltmap.m	in	the
Programming	examples	section.
A	new	example	program	wfalltst.m	was	added	to	the	demo

folder	to	demonstrate	how	to	use	the	pltwater.m	function
mentioned	above.	Note	that	all	of	the	controls	on	the	screen
were	added	by	plt	&	pltwater,	so	wfalltst	only	had	to	supply	the
data	to	plot.	Some	help	text	is	added	to	the	plot	to	get	you
started,	but	eventually	you	will	want	to	read	the	full	pltwater.m
documentation	at	the	location	mentioned	above.	The	previous
plt	release	included	a	demo	program	called	wfall.m	which
demonstrates	the	basic	ideas	involved	with	creating	a	waterfall
plot,	and	this	demo	is	still	included	in	the	demo	folder.
However,	unlike	pltwater.m,	wfall.m	doesn't	have	the	control,
cursoring,	scaling,	scrolling,	and	annotating	options	needed	to
serve	as	a	general-purpose	plotting	tool.
A	new	auxiliary	function	pltt.m	(which	stands	for	"plt	trace")
has	been	added	to	the	plt	folder.	This	function	can	be	used	to
add	traces	to	an	existing	plt	figure,	which	makes	it	the	moral
equivalent	of	the	hold	on	and	hold	off	commands	that	are
used	with	Matlab's	native	plot	command.	pltt.m	spares	you
from	having	to	type	these	extra	hold	on/off	commands	and
alleviates	the	confusion	that	can	result	from	forgetting	the	hold
status.	The	pltt	function	is	described	fully	in	the	new
Adding	traces	section.	Related	to	this	new	auxiliary	function	is
a	new	plt	parameter,	concisely	named	'+'	which	allocates
space	in	the	TraceID	box	for	traces	that	are	added	later	with	the
pltt	function.	The	'+'	is	the	last	parameter	described	in	the
Trace	properties	section.
A	new	auxiliary	function	figpos.m	has	been	added	to	the	plt
folder	to	aid	in	figure	window	positioning.	The	main	advantage
of	figpos	is	that	one	can	position	figures	relative	to	the	free
space	available	on	the	screen.	The	traditional	Matlab
positioning	coordinates	don't	take	into	account	the	taskbar
position,	the	figure	borders,	and	the	title	bar	size.	This	makes	it
difficult	to	avoid	overlapping	figure	windows	with	the	taskbar
when	you	are	trying	to	take	advantage	of	the	entire	screen	real
estate.	When	you	supply	a	position	vector	to	plt	(with	the	'pos'
or	'position'	parameter),	plt	automatically	runs	these	coordinates
through	figpos.	figpos.m	calls	on	screencfg.m	(also	in	the
plt	folder)	to	determine	the	screen	coordinates	of	the	area	that	is
available	for	the	figure	windows.	Both	of	these	new	functions

24May16

are	fully	described	in	the	Auxiliary	functions	section.	Many	of
the	demo	routines	were	simplified	by	taking	advantage	of	this
new	feature.
Quite	often	you	will	want	to	add	annotations	to	the	figure
(permanent,	temporary,	or	toggleable)	to	identify	certain
elements	of	the	plot,	list	equations	used,	or	to	provide	the	user
some	help	in	determining	how	to	control	or	interpret	the	plot.
To	avoid	having	to	repeat	similar	code	for	this	purpose	in	many
of	your	GUIs,	a	new	pseudo	object	was	added	called
'HelpText'	which	provides	these	functions.	This	pseudo
object	is	summarized	in	the	GUI	building	with	plt	section	and
described	more	fully	in	the	Pseudo	objects	section.	Many	of	the
demo	programs	(including	curves,	editz,	gauss,	gui2,	pltquiv,
subplt,	tasplt,	trigplt,	and	wfalltst)	make	good	use	of	this
feature.
With	previous	versions,	once	you	drew	an	expansion	box	you
only	had	two	choices	-	either	left-click	to	accept	the	result	(i.e.
expand	the	axis	to	the	limits	indicated	by	the	zoom	box)	or
right-click	to	cancel	the	zoom	box,	probably	to	begin	again	in
an	attempt	to	draw	the	desired	zoom	box.	With	this	release,	you
may	also	choose	to	make	fine	adjustments	to	either	the	size	or
the	position	of	the	zoom	box	...	which	is	usually	far	easier	than
simply	starting	over	again.	To	see	exactly	how	to	make	these
adjustments,	consult	the	paragraph	titled	"Adjusting	the
expansion	box"	in	the	Zooming	and	panning	section.
A	few	alternative	methods	of	specifying	the	position	and	shape
of	the	slider	pseudo	object	were	added	which	provide	more
flexibility	as	well	as	a	more	compact	form	for	the	pseudo	slider
(in	both	vertical	and	horizontal	formats).	Details	can	be	found	in
the	Pseudo	objects	section.	The	bounce.m	example	program
was	substantially	rewritten	to	show	the	use	of	the	new	pseudo
slider	forms	(both	vertical	and	horizontal)	as	well	as	to
demonstrate	more	sophisticated	plotting	techniques.	Also	the
new	pltmap.m	uses	many	of	the	vertically	oriented	pseudo
sliders.	So	many	in	fact	that	there	would	not	have	been	room	to
fit	them	all	using	the	full	original	horizontal	style.
A	simplified	method	of	using	the	'TIDcolumn'	parameter
was	added.	For	full	details,	see	the	description	of	this	parameter

in	the	Trace	properties	section.	The	pltn.m	example	program
was	simplified	by	taking	advantage	of	this	new	method.
In	the	prin	command,	two	optional	modifiers	(+/-)	for	the	W
format	were	added	that	allow	the	output	to	be	padded	with
blanks.	Also	an	easier	way	to	view	the	prin	help	file
(prin.pdf)	was	added	-	simply	type	prin	(i.e.	without
arguments)	at	the	Matlab	command	prompt,	and	the	help	file
will	appear.
The	ability	to	change	the	name	of	the	trace	(as	it	appears	in	the
TraceID	box)	after	the	initial	plt	call	that	specified	these	trace
names.	See	"Right-clicking	on	the	Cursor	ID	Tag"	near	the
end	of	the	Cursoring	section.
A	new	cursor	command	('updateN')	was	added	which	has
the	same	effect	as	the	'updateH'	command	except	that	the
cursor	callback	(defined	by	'MoveCB')	is	not	executed.
Details	in	the	Cursor	commands	section
The	default	figure	name	(if	none	was	specified	with	the
'FigName'	parameter)	used	to	be	plt	but	now	the	name	of
the	function	that	is	calling	plt	is	used	as	the	default	name.
plt('pop',H,'get')	which	is	already	an	abbreviation	for
plt('pop',H,'get','index')	may	now	be	further
abbreviated	as	plt('pop',H).
plt('edit',H,'get')	which	is	already	an	abbreviation
for	plt('edit',H,'get','value')	may	now	be	further
abbreviated	as	plt('edit',H).
plt('slider',H,'get')	which	is	already	an
abbreviation	for	plt('slider',H,'get','value')
may	now	be	further	abbreviated	as	plt('slider',H).
The	argument	for	the	'HelpFile'	and	'HelpFileR'
parameters	normally	specifies	document	to	display,	however,
now	the	parameter	may	also	be	a	Matlab	command	to	be
executed.
Many	improvements	to	the	demoplt.m	program	including:

Added	a	string	(lower	right	corner)	that	shows	the	number
of	(uncommented)	lines	of	code	used	in	the	currently-
selected	example	program.	At	a	glance,	this	number	gives
you	an	idea	of	the	complexity	of	the	example	relative	to
the	other	demos.

Added	a	modal	dialog	on	exit	to	control	whether	changes
to	the	setup	should	be	saved	in	the	demoplt.mat
configuration	file.	(If	no	changes	were	made	to	the
configuration,	the	modal	dialog	is	skipped.)
A	history	of	the	changes	to	the	color	configuration	is
displayed	at	the	top	of	the	listbox.	This	is	partly	done	just
to	demonstrate	the	use	of	the	ColorPick	callback	function.
The	size	of	the	figure	window	is	preserved	in	the
configuration	file,	but	the	figure	window	is	always	placed
in	the	far	lower	right	corner	of	the	screen	to	minimize	the
overlap	between	the	demoplt	figure	and	the	example
programs	being	displayed.

Many	improvements	to	the	curves.m	example	program
including:

Added	four	additional	interesting	curves	to	the	collection.
Greatly	enhanced	the	program's	educational	value	by
adding	annotations	to	the	plot	area	describing	many	details
of	the	currently	displayed	set	of	curves.
Added	a	way	to	reset	the	curve	parameters	to	the	default
settings.	(Default	button)
Improved	the	way	functions	may	be	defined	in	complex	or
parametric	form.

Fixed	a	bug	introduced	a	few	years	ago	causing	plt	to	crash
when	improperly	editing	an	edit	pseudo	object.	Also	fixed	a
dozen	or	so	other	minor	bugs	in	plt	and	the	demo	programs.

Major	enhancements	to	the	subplot	capabilities:
Previously	you	were	limited	to	two	columns	of	plots.	As	of
this	release	any	number	of	columns	are	allowed.	A	new
example	program	called	subplt16.m	was	added	to
demonstrate	this	new	flexibility.
A	way	of	altering	the	default	vertical	spacing	between	plots
is	now	provided.	(Previously	only	the	horizontal	spacing
was	adjustable.)
Previously	the	cursors	and	x-axis	limits	for	all	the	plots
within	a	column	were	synchronized.	With	this	release,	this
synchronization	is	optional	and	is	referred	to	as	"linked"
mode.	The	new	alternative	mode	is	called	"independent"

08Nov15

mode,	and	as	the	name	implies,	all	plots	may	have	different
x-axis	limits	and	different	cursor	locations.	A	new	example
program	called	subplt20.m	was	added	to	demonstrate
this	new	mode.	Note	that	the	independent	mode	allows	you
to	pack	even	more	plots	into	a	given	area.
Since	subplots	were	added	late	in	the	development	of	plt,
many	plt	features	did	not	work	appropriately	when
subplots	were	enabled.	For	example	the	peak/valley	finder
and	marker	select	button	did	not	work.	Also	5	of	the	tags	in
the	menu	box	did	not	work	for	subplots	(LinX,	LinY,
Mark,	Zout,	XYrotate).	I'm	happy	to	report	that	all	those
problems	are	now	fixed.	The	delta	cursors	now	also	work
when	subplots	are	enabled,	however	you	can	only	use	them
on	the	(lower	left)	main	plot	since	there	isn't	enough	room
to	display	the	delta	cursor	readouts	for	all	the	subplots.
A	few	enhancements	to	the	subplt8.m	example
program,	which	now	uses	the	default	Matlab	color	scheme
with	a	modified	trace	color	order	(accomplished	using	plt's
'ColorDef'	argument).
The	order	of	the	y-axis	cursor	readout	edit	boxes	was
swapped	(left	to	right)	as	that	felt	more	natural.	In	any
case,	the	color	of	the	cursor	readout	edit	boxes	are	linked
to	the	color	of	the	trace	that	is	being	cursored	making
confusion	unlikely.

Trace	data	may	now	be	included	in	the	plt	argument	list	using
cell	arrays.	Full	details	on	how	to	use	this	are	included	in	the
Calling	sequence	section.	The	gauss.m	demo	program	was
modified	(and	simplified)	by	taking	advantage	of	this	new
option.
When	the	multiCursor	is	enabled,	plt	previously	added	a	cursor
marker	to	every	trace.	Now	however,	cursor	markers	are	not
added	to	disabled	traces	or	to	traces	whose	Xdata	differs	from
the	currently	active	trace.	The	full	details	are	in	the
Cursoring	section.
The	trace	color	order	was	modified	slightly.	To	see	what	the
new	trace	color	order	looks	like	for	the	first	99	traces,	see	the
section	called	Selecting	traces.	To	see	a	list	of	the	trace	colors	in
terms	of	the	RGB	triples,	see	the	description	of	the	TRACEc

parameter.
The	'Position'	or	'Pos'	argument	specifies	the	[xleft
ybottom	width	height]	position	of	the	plt	figure	window	as
before,	however	now	you	may	specify	just	the	size	by	using	a	2
element	vector	in	which	case	the	xleft	and	ybottom	values	will
be	set	to	their	default	values.	For	example	'Pos',[500
600]	would	be	equivalent	to	'Pos',[9	55	500	600]
since	the	default	values	of	xleft	&	ybottom	are	9	&	55
respectively.
A	new	option	(replace	vs.	append)	was	added	to	the
'ColorDef'	argument.	Also	the	default	changed	from
append	to	replace.	See	the	details	in	the	Colors	section.
The	FigBKc,	PltBKc,	TraceC,	xyAXc,	xyLBLc,	GRIDc,	and
TraceC	parameters	continue	to	accept	standard	Matlab	color
triples	as	before	(i.e.	a	row	vector	of	3	numbers	all	between	zero
and	one).	But	now	there	are	two	additional	color	specification
formats	allowed.	The	first	is	"percent",	meaning	that	[15	35	92]
is	equivalent	to	the	matlab	color	triple	[.15	.35	.92].	The	2nd
alternative	method	is	to	use	a	single	number	to	represent	all
three	colors.	Using	that	method	the	color	above	would	be
represented	by	the	number	153592.	Of	course	if	you	prefer	the
standard	Matlab	style,	you	can	ignore	all	this,	but	otherwise,
check	out	the	full	description	in	the	Colors	section.
Various	improvements	to	the	curves.m	demo	program.	These
improvements	don't	demonstrate	any	additional	plt	features,
however	the	new	curves	that	have	been	added	rounds	out	this
collection	of	classic	and	unusual	plane	curves	...	perhaps
providing	some	educational	or	recreational	value.
Fixed	several	problems	relating	to	the	screen	positioning	of
objects	when	using	the	new	graphics	engine	of	R2014b	or	later.
Fixed	errors	in	the	documentation	describing	the	Cursor
commands,	the	xy	parameter,	and	the	Options	parameter.
Also	made	other	minor	documentation	corrections	and
improvements.

Enhanced	the	pltquiv.m	example	program	to	demonstrate
data	editing	on	quiver	plots,	the	use	of	the	MotionEdit

03Jul15

parameter,	and	real	time	Hermite	polynomial	interpolation.
Added	a	default	for	the	Cursor	ID,	simplifying	many	of	the
demo	programs.
Simplified	data	editing	routines	by	adding	the	cursor	index	to
the	'Dedit'	figure	application	data.	Added	a	full	description
of	the	Dedit	array	in	a	table	at	the	end	of	the	Data	editing
section.
Minor	improvements	to	the	grid	pseudo	object.
Multi-line	titles	are	now	allowed.	See	the	Title	parameter	in
the	Labels	and	figure	properties	section.
Added	the	title	property	prefix	(^)	which	is	described	in
Axis	properties	section.
Added	right	click	actions	to	the	"pub"	button	of	the	pub2.m
example	and	to	the	"Delete	P/Z"	button	of	the	editz.m
example
Improvements	in	the	plt('datestr')	function
Fixed	bugs	relating	to	the	use	of	the	'Fig'	parameter.
Fixed	a	bug	which	caused	the	right	click	action	to	be	executed
when	double	clicking	on	the	LinX/LogX	or	LinY/LogY
menubox	tags.
Fixed	a	bug	in	the	xView	slider	feature	that	caused	it	to	interfere
with	the	graph	title.
Fixed	a	bug	in	the	'Nocursor'	option	that	unintentionally
left	the	cursor	marker	visible.
Fixed	bugs	causing	error	messages	when	cycling	quickly	thru
demoplt.
Many	corrections	and	improvements	to	the	help	file	especially
in	the	Pseudo	objects	section	which	was	substantially	rewritten
to	include	the	motivation	behind	these	objects.

Added	the	"multiCursor"	feature	which	allows	you	to	cursor	all
plot	traces	simultaneously.	Usually	this	cursoring	mode	is
enabled	from	the	Yedit	menu,	but	sometimes	you	may	want	to
have	this	mode	enabled	at	startup.	This	can	be	done	using	the
new	"multiCursor"	Options	item.	(As	with	all	the	other	option
items,	only	capital	letters	are	significant	so	if	you	want	to	be
concise	just	the	letter	C	is	sufficient).	The	trigplt.m	demo

13Mar15

program	was	modified	to	use	this	new	options	item	to	enable
the	multiCursor	feature.	The	multiCursor	feature	is	more
completely	described	in	the	Cursoring	section.
Added	the	"xView	slider"	feature	that	offers	yet	another	way	to
pan	and	zoom	the	display	horizontally.	It	is	especially	useful
with	long	time	records	because	of	how	easy	it	is	to	use	and	how
well	it	gives	you	feedback	about	where	and	how	much	of	the
data	you	are	viewing.	Usually	this	feature	is	enabled	from	the
Yedit	menu,	but	sometimes	you	may	want	to	have	the	xView
slider	visible	at	startup.	This	can	be	done	using	the	new
"xView"	Options	item.	(As	with	all	the	other	option	items,	only
capital	letters	are	significant	so	if	you	want	to	be	concise	just
the	letter	V	is	sufficient).	The	pub2.m	demo	program	was
modified	to	use	this	new	options	item	to	enable	the	xView
slider.	The	xView	slider	feature	is	more	completely	described	in
the	Zooming	and	panning	section.
Modified	the	plt50.m	demo	program	to	demonstrate	how	to
modify	the	cursor	size	and	shape.
Fixed	a	bug	in	the	implementation	of	the	Link	parameter	(with
pre-R2014b	versions)
Fixed	a	bug	in	the	initialization	of	the	cursor	data	window	(with
R2014b	only)
Fixed	a	bug	which	caused	plt	to	behave	improperly	when	given
an	empty	'Right'	parameter.
Various	documentation	improvements

Although	plt	retains	all	its	previous	capabilities	plt	has	been
expanded	and	refocused	as	a	GUI	building	tool,	primarily	for
applications	which	include	one	or	more	2D	plots.	This	was
accomplished	by	enhancing	the	pseudo	objects	and	by	adding
the	plt	move	command	to	allow	you	to	move	or	resize	all	the
graphical	objects	using	the	mouse.	When	you	reposition	or
resize	an	object,	its	new	coordinates	are	displayed	in	the
command	window	so	that	you	can	make	the	new	locations
permanent	by	embedding	these	coordinates	into	your	program.
These	operations	are	described	in	a	new	section	of	the	manual:
GUI	building	with	plt

In	addition	to	the	plt	move	command,	you	may	also	enter	the
repositioning	mode	by	right-clicking	on	the	cursor	delta	button.
When	you	do	this,	the	delta	symbol	on	the	button	changes	to	a
double	right	arrow	to	indicate	that	you	are	now	in	repositioning
mode.	Also	the	uicontrols	will	be	grayed	out	to	indicate	that
these	controls	may	be	repositioned/resized.	Right-clicking	on
this	button	a	second	time	cancels	the	repositioning	mode,
changes	the	button	symbol	back	to	delta,	and	restores	all	the
controls	to	their	original	functions.
Two	new	example	programs	(gui1.m	and	gui2.m)	where
added	to	help	you	learn	how	to	use	the	new	plt	GUI	building
features.	An	alternate	version	of	gui2.m	called	gui2ALT.m	is
also	included	in	the	demo	folder	to	demonstrate	an	additional
approach	to	the	problem	that	may	be	instructive.	Both	of	these
new	examples	use	Matlab	features	not	found	in	Matlab	v6.1	so
alternate	versions	(called	gui1v6	and	gui2v6)	are	available	for
running	on	that	version.	demoplt	queries	the	Matlab	version	and
automatically	runs	the	appropriate	version	of	gui1	and	gui2.)
Support	for	the	latest	version	of	Matlab	(R2014b)	has	been
added.	The	plt	options	related	to	the	line	erasemode	are	ignored
when	running	R2014b	since	The	Mathworks	has	abandoned
support	for	the	erasemode	line	property.	The	erasemode	options
continue	to	work	as	before	for	all	older	versions	of	Matlab
(dating	back	to	Matlab	6.1).	The	defaults	for	the	grid	style	and
color	have	changed	somewhat	because	of	this,	and	this	is
described	in	the	default	section	of	the	GRIDc	parameter.	As
before	right-clicking	on	the	Grid	tag	in	the	menu	box	toggles
the	grid	style	between	solid	and	dashed	lines.
Reorganized	the	plt	item	in	the	menu	bar.	(Also	plt	Hardcopy
was	moved	from	the	file	menu	to	the	plt	menu.)	The	new	plt
menu	now	shows	the	mouse	shortcuts	(in	blue)	for	most	of	the
submenus.	These	shortcuts	are	often	more	convenient	since	the
menubar	is	hidden	by	default.
The	AxisPos	parameter	which	provides	a	way	to
reposition/resize	the	main	plotting	axis	and/or	the	TraceID	box
is	still	supported	for	backwards	compatibility,	but	for	new
programs	a	more	versatile	xy	parameter	was	added.	It	serves
similar	functions	but	also	allows	you	to	reposition	the	menu	box

19Jan15

as	well	as	any	plotting	axis	inside	the	plt	window.	The	xy
method	of	specifying	the	axis	size	and	positions	is	simpler	and
easier	to	use	and	is	also	compatible	with	the	new	repositioning
mode	mentioned	above.	(All	the	objects	that	can	be	moved	and
resized	via	the	xy	parameter	may	also	be	moved	and	resized
using	the	mouse.)	The	demo	programs	that	used	the	AxisPos
parameter	were	modified	to	use	the	xy	parameter	instead.	A
complete	description	of	the	new	xy	parameter	may	be	found	at
Axis	properties
Several	enhancements	to	the	Edit	pseudo	object:

Edit	objects	may	be	incremented	or	decremented	by	a	fixed
value	as	before,	but	now	may	also	be	incremented	or
decremented	by	a	percentage	of	the	current	value.
The	value	property	was	split	into	two	different	properties
(value	and	val).	They	differ	only	in	that	when	you	set
the	latter	one	(val)	the	edit	object's	callback	does	not	get
called.
An	option	was	added	to	allow	a	label	to	be	associated	with
the	edit	pseudo	object.
A	more	concise	form	for	creating	the	edit	pseudo	object
was	added	for	convenience.
Several	get	commands	where	added	allowing	you	to
query	the	current	setting	for	any	of	the	edit	pseudo	object
parameters.
Edit	objects	now	come	in	two	types,	type	1/2	using
figure/axis	coordinates	respectively.	Type	1	is	usually	the
most	convenient.	(Previously	only	type	2	was	supported).
See	details	at	Pseudo	objects

Several	enhancements	to	the	Popup	pseudo	object:
The	right	click	operation	of	Popup	pseudo	object	(which
advances	the	popup	without	opening	it)	was	enhanced	so
that	holding	down	the	right	mouse	button	continues	to
advance	to	the	next	selection	for	as	long	as	you	hold	down
the	button.	The	repeat	rate	may	be	altered	by	the	same
method	used	to	control	the	edit	pseudo	object	repeat	rate.
An	option	was	added	to	allow	a	label	to	be	associated	with
the	popup	pseudo	object.
An	option	was	added	for	swapping	the	role	of	the	left	&

right	buttons	(super-button	mode).
A	method	for	opening	or	closing	the	popup	from	a	program
was	added.
Setting	the	index	of	the	popup	using	the	'index'
parameter	used	to	call	the	popup's	callback	function	after
the	index	was	set,	just	as	if	you	had	clicked	on	that
selection	from	an	opened	popup.	Now	the	callback	will	not
be	called.	However	if	you	want	the	callback	to	be	called	in
this	circumstance,	specify	the	negative	of	the	index	as	the
index	parameter.
A	more	concise	form	for	creating	the	popup	pseudo	object
was	added	for	convenience.	See	details	at	Pseudo	objects

Several	enhancements	to	the	Slider	pseudo	object	mostly	related
to	the	log	increment	mode.	Also	the	calling	sequence	was
altered	to	allow	easier	use	of	the	optional	parameters.
A	new	mode	was	added	to	the	DualCur	parameter	that	allows
specifying	the	dual	cursor	trace	as	an	offset	from	the	primary
cursor.	See	the	demo	program	gui2.m	for	an	example	showing
the	utility	of	using	this	mode.	Also	the	ability	to	select	the
DualCur	trace	interactively	was	added	to	the	plt	menu.	See	the
Dual	Cursor	section	for	more	information.
A	new	parameter	(CloseReq)	was	added	which	allows	you	to
specify	a	function	to	be	executed	when	the	plt	window	is
closed.	Details	about	this	new	parameter	may	be	found	at
Labels	and	figure	properties.	The	plt50.m,	wfall.m,	and
gui2.m	example	programs	where	modified	to	demonstrate	the
use	of	this	new	parameter.
A	new	parameter	(TIDc)	was	added	which	allows	you	to
choose	the	background	color	for	the	TraceID	box.	Details	about
this	new	parameter	may	be	found	at	Colors	Also	the	solid	patch
used	in	the	TraceID	box	to	indicate	that	the	trace	is	on	the	right
hand	axis	is	now	optional.	To	see	how	to	do	that,	look	at	the
details	of	the	TraceID	parameter	here:	Trace	properties
The	demo	program	pltsq.m	was	rewritten	to	use	pseudo
popups	in	place	of	the	uicontrol	popups	of	the	previous	version.
Also	the	two	buttons	(start	&	stop)	were	replaced	with	a	single
pseudo	popup	in	the	"super	button"	mode.	The	older	version
was	renamed	to	pltsqALT.m	and	is	also	included	in	the	demo

folder	so	you	can	compare	the	relative	merits	of	these	control
types.
A	new	example	program	(pub2.m)	was	added	which
demonstrates	how	to	create	a	plot	optimized	for	publication	by
first	setting	up	the	desired	viewing	window	using	the	cursors	on
a	data	exploration	mode	plot.	Another	goal	of	this	particular
example	was	to	demonstrate	as	many	unusual	plt	parameters
and	programming	techniques	as	possible.
The	cursor	mainCur	command	was	renamed	to	update	and
the	cursor	updateH	(update	hold)	command	was	added
(similar	to	the	update	command	except	that	y-axis	limits	are	not
permitted	to	change.
The	showTrace	command	was	renamed	to	show.	Also	new	is
that	this	command	may	now	be	used	for	both	setting	and
reading	which	traces	are	currently	visible.	The	example
program	gui2.m	demonstrates	both	uses	of	the	show
command.	See	details	at	Calling	sequence
All	the	pseudo	objects	that	accept	a	'position'	argument
will	also	now	accept	the	more	concise	'pos'	form	of	this
parameter.
Several	enhancements	and	bug	fixes	to	the	various	example
programs.
Many	improvements	and	corrections	to	the	plt	help	file.

Enhancements	to	edit	pseudo	object:	Values	can	now	be
continually	incremented	or	decremented	by	holding	down	the
mouse	button.	Absolute	incr/decr	values	may	be	specified	(as
before)	or	now	they	may	be	specified	as	a	percentage	of	the
current	value.	incr/decr	values	may	now	be	used	with	floating
point	edit	pseudo	objects	as	well.	(Zero	increment	disables	this
feature.)	Position	may	be	specified	in	normalized	units	(as
before)	and	now	data	units	may	be	used	as	well.	The	slider	in
the	circles12.m	demo	program	was	changed	to	an	edit	pseudo
object	to	illustrated	its	use.
Improved	log	grid	lines.	Now	includes	subdecade	grids	for	6
decades	or	less
HardCopy	figure	window	now	defaults	properly	for	bmp	files

13Mar14

Improved	appearance	of	the	menu	box	(background	and	border
colors)
Added	right	click	action	to	"LinY/LogY"	tag.	It	now	brings	up
the	hard	copy	dialog.
Added	'Link'	parameter	to	force	groups	of	plt	figures	to	close
together.	The	demo	programs	editz.m	and	tasplt.m	were
modified	to	take	advantage	of	this	new	parameter
Enhanced	a	few	of	the	functions	plotted	in	curves.m
Added	images	&	thumbnails	of	all	the	example	programs	to	the
help	file
Fixed	various	bugs	related	to	log	axis	scaling	and	panning
Fixed	LinX/LogX	switching	bug	for	subplots
Fixed	bug	which	prevented	data	editing	of	subplots
Fixed	bugs	with	the	subplot	parameter	and	in	the	weight.m
demo	program
Fixed	bug	occurring	when	using	the	'MoveCB'	parameter	with
subplots
Fixed	bug	occurring	when	right-clicking	on	the	grid	tag	using
default	colors
Other	minor	bug	fixes.

Renamed	vbar.m,	ebar.m,	quiv.m,	and	ftoa.m
to	Pvbar,	Pebar,	Pquiv,	and	Pftoa	to	reduce	the
probability	of	name	collisions	(since	these	files	typically	reside
in	the	plt	folder	on	the	Matlab	path).
Added	Linesmoothing	to	the	list	of	strings	that	may	appear
in	the	Options	parameter.	When	this	option	is	specified,	the
Linesmoothing	property	of	the	traces	is	set	which	tells	Matlab
to	use	anti-aliasing	techniques	to	make	the	traces	look	smoother.
You	can	also	toggle	the	Linesmoothing	property	by	right-
clicking	on	the	marker	button	(labeled	with	"o").	See	important
details	about	this	property	in	the	Cursoring	section
Changed	the	default	characteristics	of	the	grid	lines.	The	new
default	is	solid	lines	instead	of	dashed	lines	and	the	default
color	has	changed	from	dim	grey	(30%)	to	very	dim	gray
(13%).	Also	the	default	erase	mode	for	the	grid	lines	has
changed	from	'norm'	to	'xor',	The	grid	linestyle	may	now	be
selected	by	using	the	new	GridStyle	parameter.	The

03Jan14

Linestyle	parameter	was	also	added	to	the	'init'	action	of	the
grid	pseudo	object.	The	grid	lines	used	to	update	only	when	a
zoom	or	pan	operation	was	complete,	but	this	has	been	changed
so	that	the	grid	lines	are	now	updated	during	the	pan	and	zoom
operations.	The	color	file	format	was	updated	to	include	the	grid
lines	erase	mode	as	well	as	the	new	GridStyle	parameter
Left-clicking	on	the	Grid	tag	in	the	menu	box	has	the	same
meaning	as	before	(i.e.	toggling	between	grid	lines	and	ticks)
however	now	you	can	also	right	click	on	the	Grid	tag.	The
effect	of	this	right	click	is	to	toggle	back	and	forth	between	the
current	default	grid	style	and	something	similar	to	the	older	grid
style	(i.e.	slightly	brighter	grey	dashed	lines	in	normal	erase
mode).
Left-clicking	on	the	Menu	tag	in	the	menu	box	has	the	same
meaning	as	before	(i.e.	toggling	the	menu	bar	visibility)	but
there	is	a	new	meaning	to	right	clicking	on	the	Menu	tag.	The
effect	of	this	right	click	is	to	open	a	new	figure	window
containing	a	textual	view	of	the	trace	data.	See	Cursor	Data
Window	in	the	Menu	box	section
Replaced	the	"Color/Lines"	heading	in	the	menu	bar	(which
included	4	submenus)	with	the	"plt"	heading	containing	the
original	4	submenus	and	4	additional	ones.	Three	of	the	new
menus	mirror	right	click	actions	of	the	GUI	objects,	but	the
menu	bar	makes	the	actions	easier	to	discover	and	remember.
The	4th	action	(Delete	Cursor	Annotations)	is	a	new	feature
which	allows	you	to	quickly	delete	all	annotations	entered	using
the	Mark	tag.	(Previously	these	annotations	could	only	be
deleted	one	at	a	time.)
Added	the	swap	x/y	action	which	swaps	the	x	and	y	data	of	all
traces	(i.e.	displays	inverse	functions).	This	action	is	available
from	the	menu	bar	(plt	menu)	as	well	as	by	right	clicking	on	the
LinX	tag
The	installation	has	been	simplified	by	always	including	both
the	compiled	help	file	(plt.chm)	as	well	as	the	all	individual
html	files	used	to	create	it.	By	default	PC	systems	will	open	the
plt.chm	compiled	help	file	and	Unix	based	systems	will	open
plt.htm	(the	top	level	html	file).	However	you	can	change	these
defaults.	See	the	Installation	instructions	for	details.
As	before	the	HelpFile	parameter	modifies	the	help	tag	left

click	action.	In	a	similar	manner,	the	new	HelpFileR
parameter	modifies	help	tag	right	click	action.	For	a	full
description	of	these	parameters	see	Options.
Enhancements	to	the	ColorPick	pseudo	object.
Improvements	to	the	example	programs	include:

Fontsize	popup	added	to	demoplt.m
#	of	lines	control	added	to	pltn.m
Cycle	button	added	to	curves.m
The	upper	plot	in	editz.m	now	demonstrates	the	use	of
Dual	Cursors.
Other	more	minor	enhancements.

Y-axis	metric	prefixes	are	now	disabled	when	using	the
SubTrace	parameter
Fixed	a	bug	which	sometimes	prevented	you	from	being	able	to
close	the	plt	window.
Many	other	bug	fixes	and	documentation	improvements.

03Dec13

Removed	the	plt('ftoa')	and	plt('vtoa')
commands	and	replaced	and	expanded	on	this	functionality	with
the	separate	functions	prin.m	and	ftoa.m.	(ftoa	is	called	by
prin	and	is	not	usually	called	directly)	See	the	new	file	prin.pdf
	for	a	description.	Modified	demo\pub.m	as	well	as	several	of
the	other	example	programs	to	take	advantage	of	the	new
features	provided	by	the	prin()	function.
The	cursor	control	buttons	(a	group	of	buttons	in	lower	left
corner)	previously	consisted	of	3	buttons	(peak	finder,	valley
finder,	and	delta	cursor).	As	of	this	release	a	4th	button	is
included	in	this	group	(called	the	marker	button)	and	is	labeled
with	the	letter	"o".	The	function	of	this	new	button	is	described
in	the	Cursoring	section	but	if	you	click	on	this	button	3	times
you	will	already	know	all	it	does.
Left/right-clicking	on	the	x-axis	label	still	moves	the	cursor
left/right	one	data	element	as	it	did	before,	but	now	this	has
been	enhanced	so	that	the	cursor	continues	to	move	as	long	as
you	hold	down	the	mouse	button.	The	default	repeat	rate	is	33
times	a	second,	but	this	is	adjustable.	See	the	full	description	in
the	Cursoring	section.	This	gives	the	x-axis	label	nearly	all	the

features	of	the	optional	x-axis	slider	without	taking	up	any	extra
space.
Including	the	letters	H	or	Hidden	in	the	options	string	now
instructs	plt	to	leave	the	plt	figure	hidden	until	the	figure
visibility	property	is	latter	set	to	'on'.
Fixed	a	bug	that	appeared	only	on	MACs	that	caused	incorrect
displays	of	some	floating	point	numbers	in	edit	boxes.
Other	minor	bug	fixes.

06Jun12

Changed	the	focus	of	plt	somewhat	(in	the	Introduction)	from
plotting	to	GUI	tools	although	many	users	will	still	think	of	plt
primarily	as	a	substitute	for	plot	and	plotyy.
Added	the	ColorPick	pseudo	object.		(See	Pseudo	objects).	The
demoplt.m	function	was	modified	to	demonstrate	how	to	use
this	new	pseudo	object.
The	data	editing	capabilities	of	plt	(See	Data	editing)	were
completely	revamped,	both	to	make	it	easier	to	use	and	to	allow
its	use	with	subplots.	The	demo\editz.m	demo	routine		was
substantially	rewritten	to	take	advantage	of	the	new	data	editing
interface.
Modified	the	demo\trigplt.m	demo	routine	to	show	how	to
create	a	"clipboard"	button	as	well	as	how	to	modify	the
position	and	appearance	of	the	traceID	box.
Modified	the	demo\pltvbar.m	demo	routine	to	show	how
to	use	the	Grid	pseudo	object	to	display	some	tabular	character
data.
The	plt('ftoa')	function	was	enhanced	to	include	an
additional	formatting	code	('c')	which	is	useful	for
displaying	color	triples.
Many	minor	bug	fixes.

Added	the	'SubTrace'	parameter	to	allow	more	flexibility
on	how	traces	are	assigned	to	the	various	subplot	axes.	(See
SubTrace	Parameter)
Added	a	new	interpretation	of	the	'SubPlot'	parameter
which	allows	you	to	adjust	the	spacing	between	two	columns	of

02Dec11

subplots.	(See	Subplot	Parameter)
The	demo	program	demo\pub.m	was	expanded	to	include	yet
one	more	plot	to	show	how	subplots	can	be	used	when
formatting	plots	for	publication	and	to	show	how	the	SubTrace
parameter	is	used.
Fixed	bugs	which	were	causing	the	delta	cursor	and	peak/valley
finder	features	to	work	incorrectly	when	using	Matlab	2009b	or
newer.
Fixed	bugs	which	caused	the	AxisPos	parameter	to	be
interpreted	incorrectly	when	used	with	subplots.
Added	the	'MotionEdit'	parameter	which	allows	you	to
specify	a	function	to	be	executed	while	the	mouse	is	being
moved	during	a	data	edit	operation.	(See
Mouse	Motion	Functions.)	The	demo\editz.m		program	was
updated	to	take	advantage	of	this	feature.	If	you	have	used
previous	versions	of	editz	(which	updated	the	plots	only	after
you	have	selected	the	final	root	location),	you	will	recognize	the
benefit	of	seeing	the	transfer	function	plot	update	in	real	time	as
you	drag	a	root	to	a	new	location.
In	a	similar	vain	to	'MotionEdit'	the	'MotionZoom'
parameter	was	added	which	allows	you	to	specify	a	function	to
be	executed	while	the	mouse	is	being	moved	during	a	display
zoom	operation	(i.e.	while	the	zoom	box	is	being	dragged).	(See
Mouse	Motion	Functions.)	The	demo\gauss.m	function	was
updated	to	take	show	how	to	use	this	feature.
Fixed	a	bug	which	caused	the	display	to	flicker	while	a	plt
window	was	being	initialized.
Added	more	useful	information	to	the	"Calling	sequence"
section	of	the	documentation.

11Mar10

The	demo	program	demo\pub.m	was	expanded	to	include	an
additional	plot	(bar	chart).
A	bug	was	fixed	that	caused	an	error	when	null	strings	were
specified	in	the	TraceID	parameter.
The	cursor	ID	(cid)	is	now	saved	in	the	axis	user	data	even	for
subplot	axes.
Changes	for	compatibility	with	Matlab	ver	2009b

25Feb10

Added	a	cursor	mode	to	show	distance	from	cursor	to	the	origin
or	to	the	marked	location,	i.e.	abs(x+iy).	See	Average,	RMS,
Slope,	&	Distance	readout	section	in	Cursoring.
Improvements	and	bug	fixes	to	the	"plt	hardcopy"	function
(from	the	file	menu	or	optionally	in	the	menu	box).	Defaults	are
now	saved	in	pltHcpy.mat	in	the	folder	containing	plt.m.
Fixed	a	bug	that	caused	the	cursor	to	misbehave	when	cursoring
non-monotonic	traces	on	the	right	hand	axis.
Fixed	a	bug	that	caused	annotations	added	with	the	"mark"
feature	to	sometimes	be	associated	with	the	incorrect	axis.
Fixed	a	bug	that	sometimes	caused	the	grid	lines	to	not	initialize
properly	until	the	first	time	you	clicked	on	the	figure	window.
Fixed	some	bugs	related	to	grid	lines	on	subplots	(turning	on/off
via	the	menu	box	tag	or	via	the	'Ticks'	options	argument).
Fixed	bug	in	setting	x-axis	limits	for	right	hand	column	of
subplots	('Xlim'	parameter).
Improved	cursor	hiding	feature	(right	click	of	y-axis	label)	to
work	with	subplots	as	well.

03Dec09

Added	a	new	example	(pub.m)	to	the	demo	folder	to	show	how
to	optimize	a	plot	for	publication	(instead	of	the	typical	data
exploration	uses	of	plt).	Also	demonstrates	the	use	of	the	new
property	prefix	characters	described	below.
Previously	there	were	two	property	prefix	characters	('+',	'-')
which	refer	to	the	left	and	right	axis	properties.	(Without	the
prefix	characters	plt	assumes	properties	are	to	be	applied	to	the
line	objects.)	Now	three	additional	prefix	characters	have	been
added	('<',	'>',	'.')	which	refer	the	properties	to	the	left	y-label,
right	y-label	and	x-label	respectively.	A	property	may	be
preceded	by	more	than	one	prefix	character.		For	example	'>.-
FontSize',14		will	change	the	font	size	of	the	right	y-label,
the	x-label	and	the	tick	marks	of	the	right	hand	axis.	See
Axis	properties	for	details.
Improved	demoplt.m	so	that	it	is	easier	to	tell	which	demo	is
currently	running.
Fixed	a	bug	with	the	workspace	plotter	that	occurred	when	the

workspace	contained	a	large	number	of	variables.

07Nov09

Fixed	a	bug	in	plt's	Edit	line	selection	from	the	color	menu.
Fixed	a	bug	in	demoplt.m	that	would	sometimes	cause	an
error	if	you	clicked	in	the	listbox	window.
Fixed	a	bug	in	the	plt('open')	command	for	non	Windows
systems
Significant	enhancements	to	the	winplt.m	demo	program
including	the	use	of	an	application	specific	help	file	as	well	as
the	use	of	a	popup	control	to	edit	a	vector	(the	window	kernel	in
this	example).
Added	the	plt	hideCur	command.	Equivalent	to	right-
clicking	on	the	y-axis	label.	See	Cursor	commands.
Added	the	plt('showTrace',e)	command.	For	details	see
the	"DIStrace"	section	at	Trace	properties.
Documentation	updates

25Oct09

All	the	example	routines	in	the	demo	folder	(except	the	scripts)
were	substantially	rewritten	for	improved	clarity.
The	winplt	demo	now	demonstrates	how	to	include	two	help
tags	in	the	menu	box	(one	for	plotting	help	and	the	other	for
application	specific	help).	The	files	winplt.chm	and
winplt.pdf	were	added	both	to	demonstrate	this	feature	and
to	provide	more	extensive	information	about	the	winplt	demo
program.
The	demoplt.m	program	was	rewritten	to	make	it	easier	to
run	the	individual	examples	as	well	as	auto-sequence	thru	them.
A	listbox	was	added	to	allow	easy	viewing	of	the	demo
programs	help	text.
In	addition	to	pure	strings	to	be	evaluated,	the	plt	callback
functions	now	allows	you	to	specifying	a	function	handle	of	the
form	@func	as	well	as	the	cell	array	form
{@func,	arg1,	ar2,	...	argn}	which	lets	you
provide	arguments	to	the	callback	function.	This	applies	to	the
plt	parameters	moveCB,	axisCB,	TIDcback,	Xstring,
and	Ystring	as	well	as	the	callbacks	for	the	auxiliary	plt

functions	edit,	pop,	and	slider.	Note	that	you	can't	take
advantage	of	the	string	substitution	features	of	these	callbacks
when	using	the	function	handle	forms.	This	form	is	now	used	in
many	of	the	Programming	examples.
Added	the	ability	to	modify	properties	of	the	left	or	right	axis
using	plt	parameters.	(See	+AxisProp,	-AxisProp).	This	feature
is	demonstrated	in	the	demo\pltvbar.m	example	program.
Enhanced	the	data	editing	features	to	include	the	ability	to	add
or	remove	data	points	from	a	trace.	Also	added	a	more	natural
way	of	entering	the	data	edit	mode.	See	data	editing	for	details.
Added	a	new	set	command	('val')	to	the	plt('slider')
pseudo	object.	See	Pseudo	objects
Added	the	plt('save',file)	command.	See	menu	box	for
details.
Fixed	a	bug	that	caused	the	right	hand	axis	to	be	missing	from
getappdata(gcf,'axis'),	as	well	as	a	minor	bug	fix	in
the	data	editing	mode	and	a	bug	fix	relating	to	a	rare	crash	when
saving	a	file	from	the	menu	bar.

11Aug09

This	is	the	first	release	which	includes	the	full	.m		source	code.
The	pcode	or	dll	versions	are	no	longer	needed.
Added	the	TraceMK	parameter	to	allow	you	to	include	the	line
types	in	the	trace	selection	box.	See	the	demo	programs
demo\trigplt.m	and	demo\subplt.m		for	examples	of
using	this	parameter.	See	Trace	properties	for	a	complete
description	of	the	TraceMX	parameter.
Added	a	new	example	to	the	demo	folder	(trigplt.m)	to
demonstrate	the	use	of	the	TraceMK	parameter	as	well	as	the
use	of	the	slider	pseudo	object.
Added	the	Fig	parameter	to	allow	plt	to	use	an	already	opened
figure	window	instead	of	creating	a	new	one.	See
Labels	and	figure	properties	for	a	complete	description	of	the
Fig	parameter.

Fixed	a	bug	which	caused	plt	to	crash	when	called	from	a	guide
application.

11May09
Fixed	a	bug	which	sometimes	caused	the	wrong	foreground
color	in	the	cursor	edit	boxes.
Fixed	a	bug	which	sometimes	caused	the	Xlim	or	Ylim
parameter	to	be	ignored.
Improved	the	operation	of	the	x-axis	slider.

18Jan09

The	SubPlot	parameter	was	added,	a	major	enhancement	in
plt's	ability	to	place	multiple	plots	in	a	figure	window.	This	is
more	flexible	and	far	easier	to	use	than	the	subplot	method
introduced	in	version	19Aug08.	The	demo\subplt.m	and
subplt8.m	examples	were	rewritten	to	use	the	new	SubPlot
parameter.	The	weight.m	example	(which	was	also	simplified
by	using	the	new	parameter)	also	demonstrates	a	trick	for
allowing	multiple	traces	in	each	subplot.	See	Axis	properties	for
a	complete	description	of	the	SubPlot	parameter.
The	Xlim	and	LabelX	parameters	now	allow	cell	array	inputs
so	that	they	may	specify	values	for	the	right	hand	column	of
subplots.	The	LabelY	parameter	now	allows	a	cell	array	input
so	that	you	can	specify	labels	for	all	the	subplots	as	well	as	for
the	right	hand	axis	of	the	main	plot,	and	Ylim	parameter	can
take	a	cell	array	input	to	specify	limits	for	both	the	left	and	right
hand	axis	of	the	main	plot.
Added	an	easier	way	to	remove	cursor	objects	for	production
plots.	See	the	-All	and	the	Nocursor	items	under	the
Options	parameter.	(The	last	figure	of	the	circles12.m
example	demonstrates	this	usage.)
right-clicking	on	the	Menu	tag	in	the	menu	box	will	now	toggle
the	line	style	used	for	of	all	traces.	(See	Menu	box)
Added	the	Lhandles,	axis,	and	cid	cid	figure
application	properties.	(See	Calling	sequence)
Added	the	'tag','MenuBox'	property	to	the	menu	box	axis
to	make	it	easier	to	find.
Added	a	new	parameter	to	the	plt('grid','init',...
command	(the	erase	mode).	(See	Auxiliary	plt	functions).	Also
the	default	erase	mode	for	the	grids	has	changed	from	xor	to
normal.	You	may	select	the	exclusive-or	erase	mode	for	the
grids	by	specifying	a	grid	color	containing	a	negative	value	(e.g.

'GRIDc',[0	-.2	.4]).	The	actual	grid	color	used	in	this
example	is	[0	.2	.4]).
Added	a	special	case	to	the
plt('cursor',cid,'set','activeLine',a,k)

command	for	when	a	is	zero.	(See	Cursor	commands)
Added	a	special	case	for	null	trace	ID	strings.	(See
Trace	properties)
Fixed	bug	that	could	cause	a	crash	when	selecting	logarithmic
y-axis.
Fixed	bug	that	caused	a	crash	when	using	the	color	selection
box	to	edit	plot	colors.

03Oct08

	

A	zero	is	now	allowed	for	the	3rd	or	4th	element	of	the
'position'	parameter	to	indicated	that	the	width	or	height
of	the	window	should	be	chosen	so	that	circles	will	look
symmetric.	However	after	stretching	the	figure	size	with	the
mouse,	the	circle	will	then	look	like	an	ellipse.	If	you	want	the
circle	to	look	symmetric	even	after	the	figure	window	is	resized,
you	should	follow	the	plt	command	with	the	command
axis('equal').
The	example	programs	circle12.m		and		editz.m		were
enhanced	to	demonstrate	the	feature	mentioned	above.
The	TraceID	box	has	been	made	wider	in	situations	where	it
will	not	run	into	the	y-axis	label.
The	file	plt.dll	is	now	compressed	into	a	zip	file	called
pltdll.zip.	This	replaces	a	different	type	of	compression	used	in
earlier	releases	that	caused	some	errant	virus	protection
programs	to	flag	this	file	as	a	virus.	(For	a	description	of	this
file,	see	the	installation	instructions	or	see	the	last	item	in	the
12-Mar-08	release	notes).

Added	two	new	example	programs	(demo\subplt.m	and
subplt8.m)	which	show	how	to	put	several	plots	(each	with
its	own	cursor)	in	a	single	figure	window.	The	cursor	move
callback	(moveCB)	and	the	axis	callback	(axisCB)	are	used	to
keep	the	plots	synchronized.

19Aug08

The	way	that	plt.chm	is	opened	when	you	click	on	the	help
tag	has	been	improved.	Previously	plt	and	any	application
calling	plt	would	hang	until	the	help	window	was	closed.	Now
you	can	continue	to	use	plt	while	the	help	window	is	open.
The	axis	change	(axisCB)	callback	is	now	called	(as	it	should)
when	you	click	on	the	Zout	or	XY<->	tags	in	the	menu	box.
Now	when	you	right-click	on	the	y-axis	label,	the	menu	box	and
all	cursor	objects	disappear.	Right-clicking	again	causes	the
objects	to	reappear.	This	is	useful	for	making	screen	captures	of
the	plots	since	these	objects	are	used	for	data	exploration	and
are	normally	just	a	distraction	in	a	hardcopy.	See	cursoring.
The	cursor('get','obj')	call	was	added	so	that	one	can
easily	get	the	handles	of	the	cursor	objects.
The	cursor('set','VISon')	and		VISoff	calls	were
improved	so	that	they	now	include	control	of	the	xstring	and
ystring	objects,	the	x-cursor	slider	and	the	cursor	id	string.
A	bug	was	fixed	which	caused	plt	to	render	some	text
improperly	when	the	default	text	interpreter	was	changed.
A	bug	was	fixed	which	sometimes	caused	the	plt	cursor	to
change	shape	after	the	data	editing	feature	was	used.

13Jun08

Added	a	new	example	program	(demo\movbar.m)	which
shows	a	simple	way	to	start	and	stop	a	moving	plot	as	well	as
demonstrating	the	use	of	the	xstring	parameter.
Added	the	ability	to	set	properties	of	the	main	axis	from	within
the	plt	call.	(Just	add	a	"+"	in	front	of	the	axis	property	name.
For	example	+FontSize	will	set	the	axis	font	size	property.
For	an	example	of	how	you	might	use	this	feature,	see	the
demo\pltvbar.m	demo	program.
Added	a	cursor	function	to	call	the	user	defined	cursor
callbacks.	(See	the	mainCur	function	and	demo\movbar.m)

Added	the	ability	to	link	the	left	and	right	axes	for	panning	and
zooming.	This	option	is	enabled	by	default.	Use	the	new
AxisLink	parameter	to	turn	off	linking	by	default.	Regardless

11Apr08

of	the	status	of	the	default	you	may	toggle	the	axis	linking	by
clicking	on	the	right-hand	y-axis	label.	The	divide	sign	indicates
the	axes	are	unlinked	(i.e.	divided).
Improved	the	demo\editz.m	demo	program,	which	now
displays	phase	as	well	as	magnitude.	It	also	demonstrates	the
use	of	the	new	AxisLink	parameter
Previously	although	a	plt	figure	could	be	saved	(.fig),	when	the
figure	was	reopened	the	usual	plt	cursor	controls	would	not	be
available.	In	this	release,	plt	save	and	plt	open	items
have	been	added	to	the	file	menu.	Figures	saved	via	the	plt	save
menu	are	saved	with	a	.plt	extension	(although	like	.fig	files
they	are	actually	ordinary	.mat	files).	You	can	reopen	the	figure
from	a	file	browser	dialog	box	by	selecting	the	plt	open	menu	or
by	typing	plt	open	at	the	command	prompt.	Or	at	the
command	prompt	you	can	type	plt	open	filename.
Fixed	a	bug	relating	to	metric	prefixes	on	the	y-axis.	(The
scaling	was	improperly	applied	to	the	right	hand	axis	where	as
the	intention	was	that	it	should	be	applied	only	to	the	left	hand
axis.)
Fixed	a	bug	relating	to	the	modification	and	saving	of	color
schemes	when	a	right	hand	axis	was	being	used.

12Mar08

Changed	the	method	of	rendering	the	right-hand	axes	to	avoid
the	problem	when	plotting	overlapping	or	very	dense	data	sets.
Changes	for	compatibility	with	Matlab	ver	7.5
Previously	data	editing	only	worked	on	traces	on	the	left	axis.
Now	it	works	on	the	right	axis	as	well.
Renamed	the	"COLORc"	parameter	to	"COLORdef"	for	clarity.
Eliminated	the	flicker	and	window	movement	you	used	to	see
when	starting	plt.
Fixed	bug	in	plt('datestr')	and	other	minor	bug	fixes.
Added	the	plt.d		file	to	this	release.	This	dll	is	only	useful	for
compiled	applications	using	the	older	Matlab	compiler	(ver	2.2)
that	shipped	with	Matlab	6.1.	Feel	free	to	delete	this	file	if	you
are	not	using	that	compiler.	(To	use	this	file,	rename	it	to	plt.dll)

Many	of	the	example	programs	where	modified	to	improve

02Dec07

	

clarity.
A	new	example	program	(demo\dice.m)	was	added	that
shows	how	to	plot	a	function	as	it	is	as	it	is	being	computed	(i.e.
the	plot	shows	the	function	growing	in	length).
A	new	feature	was	added	to	the	x-axis	label.	Now	when	you
left/right	click	on	this	label	the	cursor	x-axis	position
increments/decrements	by	one	data	index.	See	the	cursoring
section	for	details.
The	x-axis	slider	now	provides	a	more	natural	functionality.	See
the	cursoring	section	for	details.
The	cursor	'maincur'	call	now	changes	the	axis	limits	if
necessary	to	keep	the	cursor	in	view.
Modified	the	default	trace	color	ordering.	The	most	significant
change	is	that	yellow	is	now	used	as	the	color	of	the	13th	trace
instead	of	the	7th.	This	means	that	yellow	will	be	used	less
often	(which	is	good	since	yellow	doesn't	normally	print	well).

08Jul07

Expanded	the	pltsq.m	example	to	show	how	all	the	traces
can	be	cursored	at	once
Several	of	the	demo	examples	were	edited	to	improve
readability
Removed	the	'noshift'	option	that	was	added	in	the	previous
version.	(This	proved	to	be	misguided).

17May07

The	plt('datestr')	function	has	been	modified	slightly.
For	dates	between	2000	and	2099,	it	now	uses	two	digits	for	the
year	instead	of	four.	For	example	"12-Jan-2007"	becomes	"12-
Jan-07".	This	only	applies	to	date	string	formats	0	and	1.
A	new	method	of	drawing	a	zoom	expansion	box	is	provided	...
hold	both	mouse	buttons	down,	and	drag.	(Actually	this	method
was	previously	available	as	an	undocumented	feature.)
The	demo\tasplt.m	example	program	was	updated	and
simplified.	It	now	shows	how	to	use	a	right	hand	or	top	axis	to
plot	in	more	than	one	unit.

04Mar07

The	plt('slider')	function	has	been	reworked	to	be	easier
to	use.	Several	arguments	were	reordered	with	improved
defaults.	See	winplt.m	and	the	new	wfall.m	for	examples	of
how	to	use	the	slider	object.
A	new	example	program	(demo\wfall.m)	was	added	to
demonstrate	waterfall	plotting	as	well	as	extensive	use	of	the
plt('slider')	function.
Now	the	callback	function	defined	by	'moveCB'	is	not	called
by	events	initiated	from	outside	the	figure	window	containing
the	cursor.	(For	example	a	button	push	that	moves	the	cursor	in
another	figure	window	would	not	activate	the	callback.)	The
reason	for	this	change	was	to	prevent	infinite	loops	when	figure
A	modifies	figure	B's	cursor	and	visa	versa.	If	you	do	want	to
enable	the	callback	for	external	events,	insert	an	extra
semicolon	as	the	first	character	of	the	moveCB	callback	string.
Fixed	bug	causing	the	cursor	to	move	to	the	wrong	y-axis
position	for	traces	on	the	right	hand	axis	(only	a	problem	when
clicking	in	the	axis	area).	Also	improved	the	ability	to	select	the
desired	line	when	several	right	hand	traces	are	close	together.
Removed	the	'NewLimit'	parameter.	(It	had	the	same
function	as	'axisCB'.)

28Jan07

Removed	the	99	trace	limitation	for	cases	where	the	TraceID
box	is	not	used.
Added	the	'moveCB'	and	'axisCB'	parameters	to	plt	as	an
alternate	to	the	equivalent	plt('cursor',...)	commands.
The	editz.m	example	was	modified	to	take	advantage	of	this.
Added	a	new	example	(demo\bounce.m)	showing	how	to
use	matrix	arguments	to	create	many	line	objects	at	once.	Also
shows	how	to	avoid	plt's	99	trace	limit	by	disabling	the
TraceIDs.
Modified	the	pltn	example	to	allow	displaying	an	unlimited
number	of	traces.
The	colors	specified	by	TRACEc	are	now	used	in	a	cyclical
fashion	to	allow	specifying	fewer	colors	than	traces.
The	ENAcur	and	DIStrace	parameters	are	now	extended	if
they	contain	fewer	elements	than	the	number	of	traces.

Added	TIDcolumn	to	the	documentation	(inadvertent
omission).
Fixed	a	bug	causing	the	"Mark"	function	to	crash	when
TraceIDs	are	disabled.
Fixed	a	bug	causing	incorrect	colors	when	choosing
COLORc,'default'.

23Jan07

The	'Xstring'	and	'Ystring'	parameters	where	added	to
provide	additional	textual	information	related	to	the	plotted	data
including	customized	cursor	readouts.	The	ptln.m,
tasplt.m,	editz.m	examples	now	use	this	feature	to	good
advantage.
The	callback	functions	defined	by	'TIDcback',
'Xstring',	'Ystring',	'moveCB',	and	'axisCB'	can
now	contain	strings	within	strings	defined	using	a	single	double
quote	character	on	either	side	of	the	string,	instead	of	the	usual
and	more	cumbersome	method	using	two	single	quote
characters	on	each	side.
The	'pltquiv.m'	example	was	updated	to	demonstrate	the
use	of	the	'TIDcback'	parameter.
Added	a	right	click	action	to	the	XY↔	(XYrotate)	tag	in	the
menu	box.
Improved	the	avg	and	rms	cursor	readout	so	that	NaN	values	are
ignored.
Added	an	additional	plot	to	the	circles12.m	example	program.
Added	the	@CID	tag	to	the	'moveCB'	cursor	callback
function.	The	weight.m	and	tasplt.m	examples	now	make
use	of	this	tag.
The	xy	output	from
plt('cursor',cid,'get','position')	is	now
complex.
Improved	the	look	of	the	cursor	peak/valley	buttons	and	delta
cursor	button	by	removing	the	rectangular	dotted	line	around
the	string.
Fixed	bug	in	Y/X	cursor	value
Added	"HardCopy"	as	the	fourth	item	of	the	File	menu.	(See
"print"	under	"Menu	box").

Many	documentation	improvements	and	updates

26Nov06

Added	the	capability	of	assigning	different	line	property	values
for	each	trace
A	new	parameter	(TIDcolumn)	was	added	to	allow	you	to
arrange	the	trace	IDs	in	multiple	columns.
Added	a	new	demo	program	(circles12.m)
Fixed	a	bug	that	prevented	assigning	a	color	to	two	different
traces.
Fixed	a	bug	that	caused	incorrect	positioning	for	the	"Mark"
function	(right	hand	axis).
Added	a	default	to	the	color	property	of	the	'pop'	and	'edit'
objects	([1	1	.4]).	Fixed	the	default	color	for	the	background	of
an	open	'pop'	menu	to	agree	with	the	documentation.
Added	the	Fresnel	function	to	curves.m	demo	so	that	the
symbolic	toolbox	is	not	called.
Modified	the	editz.m	example	so	that	the	signal	processing
toolbox	is	not	required.
Modified	the	winplt.m	example	program	so	that	it	can	run
without	the	signal	processing	toolbox,	however	in	that	case	it
will	not	be	able	to	display	all	the	window	types.

The	way	plt	handles	complex	arguments	was	changed.	Now
including	w	in	the	argument	list	(where	w	is	complex)	is
equivalent	to	including	the	two	arguments
"real(w),imag(w)".	In	earlier	revisions	this	was	only	true
sometimes.
The	delta	button	is	now	highlighted	whenever	the	delta	cursor
mode	has	been	selected.
Left-clicking	on	the	up/down	arrow	buttons	moves	to	the	next
peak/valley	respectively	as	before.	Also	as	before,	clicking	on
the	trace	resets	the	peak	or	valley	finder	so	that	the	next	click	of
the	up/down	arrow	brings	you	to	the	largest	peak	or	smallest
valley.	Now,	the	resetting	of	the	peak	or	valley	finder	may	also
be	accomplished	by	right	clicking	on	the	up/down	arrow	button.
Added	files:

04Sep06

vbar.m	-	for	displaying	functions	as	vertical	bars
ebar.m	-	for	displaying	error	bars
quiv.m	-	for	displaying	vector	fields	(arrows)
The	functionality	of	quiv.m	is	similar	to	Matlab's	quiver.m
although	unlike	quiver,	quiv	doesn't	call	plot.	Therefore	you
must	call	plot	or	plt	with	the	data	generated	by	quiv.	In	earlier
versions	of	plt,	the	code	in	quiv.m	was	inside	plt.p,	but	I
extracted	it	to	a	separate	function	to	provide	more	flexibility
and	a	cleaner	user	interface.
In	the	previous	release,	all	the	files	were	in	the	same	folder.	In
this	release	a	new	folder	named	"demo"	was	added	to	contain
all	the	example	programs.
A	new	program	named	demoplt.m	was	added	(in	the	demo
folder)	which	runs	all	12	example	programs	in	succession.
Every	time	you	press	<Enter>	demoplt	will	close	the	current
example	and	start	up	the	next	one.
A	new	example	program	named	pltvbar.m	was	added	to
demonstrate	the	use	of	vbar.m	and	ebar.m	.
The	pltquiv.m	example	program	was	modified	to	use	the
new	quiv.m	function.

A	new	parameter	('Right')	was	added	to	specify	which
traces	should	be	on	the	right	hand	axis.	In	earlier	plt	versions,
only	one	trace	was	allowed	on	the	right	hand	axis	and	it	had	to
be	the	last	trace.	Now	you	may	place	any	or	all	of	the	traces	on
the	right	axis.	For	example,	in	the	argument	list	you	could
specify	'Right',[1	4:2:10	17].	Then	plt	would	put
trace	numbers	1,4,6,8,10,	and	17	on	the	right	axis	and	all	other
traces	on	the	left	axis.	A	slight	shading	is	used	behind	the	Trace
IDs	associated	with	the	right	hand	axis	so	you	can	tell	at	a
glance	which	traces	belong	to	which	axis.	You	can	also	tell
which	axis	a	trace	is	on	by	the	shape	of	its	cursor	(+/o	for
left/right	axis).	As	with	earlier	revisions,	a	right	axis	is	created
if	you	include	the	'LabelYR',	or	'YlimR'	parameters	in	the
argument	list.	For	clarity,	you	should	also	include	the	'Right'
parameter	in	that	case,	however	if	omitted,	plt	will	put	the	last
trace	on	the	right	axis.

17Aug06

A	new	parameter	('DualCur')	was	added	to	control	a	feature
I	now	call	a	dual	cursor.	The	usual	cursor	can	only	show	the
value	of	one	of	the	visible	traces	on	the	plot.	With	a	dual	cursor,
two	such	values	can	be	shown	at	the	same	time	-	especially
useful	when	displaying	two	tightly	linked	values	(for	example,
the	magnitude	and	phase	of	a	complex	quantity).	In	earlier
versions	of	plt,	a	dual	cursor	was	provided,	however	it	was
forced	to	be	on	the	last	trace	only	which	was	also	forced	to	be
on	the	right	hand	axis.	(Moreover	the	dual	cursor	was	not
optional.	If	you	wanted	to	use	a	right	hand	axis,	you
automatically	got	a	dual	cursor).	As	of	this	version,	you	specify
a	dual	cursor	for	the	Nth	trace	by	including	'DualCur',N	in
the	parameter	list.	This	means	that	trace	N	will	never	be	the
active	trace	and	so	its	value	will	never	appear	in	the	usual	y
value	readout	location	(immediately	to	the	right	of	the	"y:"
cursor	label).	However	when	you	cursor	any	other	trace,	a
cursor	will	also	appear	on	trace	N	at	the	same	x-axis	location
and	the	value	of	trace	N	will	appear	just	to	the	right	of	the	value
for	the	active	trace.	The	dual	cursor	is	easily	distinguished	from
the	usual	cursor	by	its	shape	-	an	asterisk	if	the	dual	cursored
trace	is	on	the	left	axis	or	a	square	if	it	is	on	the	right	axis.
A	new	parameter	('TIDcback',fcn)	was	added	to	that	one
can	define	a	callback	function	to	be	executed	whenever	the	user
clicks	on	a	Trace	ID	(i.e.	a	trace	is	enabled	or	disabled).
The	winplt	example	program	was	updated	to	show
comparisons	between	previous	window	time	shapes	as	well	as
the	previous	frequency	shapes.	(In	the	earlier	revision,	only	the
previous	frequency	shapes	were	saved).	This	takes	advantage	of
plt's	new	ability	to	put	multiple	traces	on	the	right	hand	axis.

Added	the	Color	menu	to	the	menu	bar	providing	the	ability	to
change	any	of	the	colors	used	by	plt	and	optionally	to	make
those	changes	permanent.
Enhanced	the	ability	to	edit	strings	created	with	the
plt('edit')	command	by	using	the	left	and	right	arrow
keys.
Enhanced	the	functionality	of	the	winplt	example	program.

25Jun06

Changed	the	default	alignment	of		plt('edit')	strings	to
'center'.		(Required	to	make	the	increment/decrement
feature	to	work.)
Set	foreground	(text)	color	of	x/y	cursor	readout	objects	to
white	or	black,	whichever	enhances	contrast.
Swapped	execution	order	of	MoveCB	and	MoveCB2	callbacks.
This	appears	to	fix	the	problem	of	mouse	button	up	events
getting	lost	(which	was	only	a	problem	with	Matlab	ver	2006a
or	later).
Swapped	viewing	order	of	the	menu	and	TraceID	boxes.	This
fixed	the	problem	where	the	top	menu	box	item	was
inaccessible.
Fixed	bug	with	'@VAL'	substitution	in	plt('slider').
Fixed	bug	in	plt('slider')	relating	to	the	'%d'	format.
Fixed	bug	relating	to	accidentally	redefining	the	exp()
function
Fixed	bug	relating	to	finding	the	help	file.

11Apr06

Added	a	new	option	plt('Options','Slider',...	to
create	a	slider	used	for	changing	the	cursor	x	position
Added	a	dialog	box	(via	a	right	click	on	the	Mark	tag)	that
allows	the	editing	of	line	and	cursor	properties
Fixed	delta	cursors	so	they	can	work	between	different	traces
Extended	plt('ftoa',...)	to	work	with	vectors	as	well	as
scalars	and	added	a	delimiter	option.	The	plt('vtoa',...)
function	was	also	enhanced.
Added	the	[TexOff]	specifier	in	the	'title'	option.
The	slider	now	replaces	'@VAL'	in	the	slider	callback	with	the
current	slider	value.
Biased	'metricp'	call	to	favor	no	prefix	between	.1	and
9999
Changed	order	of	ancillary	cursor	readout	functions	(now	Avg,
RMS,	Y/X)
Added	the	plt('rename',s)	function
Added	the	plt('cursor','set','activeLine')
function
Enhanced	the		plt('cursor','Maincur')	call	by

allowing	optional	parameters
Added	the		plt('cursor','init'	...)	call	to	the
documentation
Added	a	new	example	program	called	weight.m

26Jan06
Changed	default	color	order	for	better	hardcopy	results
Fixed	minor	bug	in	the	workspace	plotter

17Dec05
Added	the	Zout	and	Print	tags	to	the	menu	box
Minor	bug	fixes	and	documentation	updates

06Nov05 Minor	improvements	to	the	pseudo	slider	object

18Sep05

Added	support	for	plotting	vector	arrows	(quiver)
Added	the	option	to	use	cell	arrays	of	strings	in	place	of
character	arrays	in	argument	lists
Extended	the	use	of	the	'AxisPos'	parameter	(position	of
TraceID)
The	workspace	plotter	recognizes	the	new	TraceIDlen
parameter
Added		plt	close	as	an	alternative	to	plt	closefigs
Added	a	new	programming	example	(pltquiv.m)	to
demonstrate	quiver	and	several	other	plt	features
Minor	bug	fixes	and	documentation	updates

11May05

Added	the	auxiliary	function	plt('edit')	for	creating	edit
text	objects
Added	the	auxiliary	function	plt('pop')	for	creating	popup
text	objects
Added	a	new	programming	example	(curves.m)	to
demonstrate	the	use	of	the	plt('edit')	and	plt('pop')
commands.
Fixed	a	bug	in	the	data	editing	capability	that	caused	it	to	work

only	with	large	fonts	selected	in	windows.

29Mar05

Two	new	programming	examples	have	been	added	(tasplt.m
and	winplt.m).
Added	the	slider	component	plt('slider',...).	See
winplt.m	for	an	example	of	its	use.
Added	auxiliary	functions	plt('ftoa'),	plt('vtoa'),
plt('closefigs'),	plt('help'),	and
plt('version').

The	workspace	plotter	now	can	plot	vectors	contained	inside
structures.
The	default	figure	window	position	was	changed	so	it	doesn't
overlap	the	start	menu.
Minor	bug	fixes	and	documentation	updates

03Aug04 A	new	programming	example	(editz.m)	has	been	included	to
demonstrate	the	utility	of	the	data	editing	capability.

14Jul04

Eliminated	the	commercial	version	of	plt	and	integrated	the
enhanced	features	into	the	free	version.	The	public	domain
version	of	plt	now	supports	delta	cursors	and	up	to	99	traces	(an
increase	from	five	traces).
The	workspace	plotter	has	been	added,	which	allows	you	to
interactively	select	the	vectors	in	your	Matlab	workspace	that
you	want	to	plot.	This	is	activated	by	calling	plt	with	no
arguments.	A	new	sample	script	(pltvar.m)	was	added	to
demonstrate	this	feature.	It	simply	creates	several	vectors	in	the
workspace	and	calls	plt	with	no	arguments.
The	cursor	ID	tag	is	now	always	to	the	left	of	the	cursor	y	label.
Changing	the	cursor	ID	tag	to	Avg	or	RMS	is	now	accomplished
by	clicking	on	the	cursor	ID	tag	itself	to	rotate	among	the
options.	Also	an	additional	option	(Y/X)	has	been	added	to	this
selection,	which	displays	the	ratio	of	the	y	and	x	cursor	values.
(In	delta	cursor	mode,	this	can	be	used	to	display	the	slope	of	a
trace	segment.)

Data	editing	has	been	added.	The	data	editing	mode	is	entered
by	right-clicking	on	the	x	or	y	cursor	edit	boxes.	See	the
documentation	for	additional	details.

24May04

Modified	the	plt5	and	pltn	examples	so	they	didn't	use
interp	(interp	requires	the	signal	processing	toolbox)
Renamed	PLT.p	to	plt.p	in	the	zip	file	(unix	is	case
sensitive)
Added	the	release	notes	section	to	the	documentation

16May04

Added	a	more	obvious	way	to	restore	zoomed	axis	limits
	Fixed	minor	bug	with	the	Styles	argument
Improved	the	Options	argument	and	made	it	less	cryptic
Supply	documentation	as	html	in	addition	to	chm
Provided	an	easy	way	to	use	Matlab's	default	colors
Improved	the	organization	of	the	help	file

09May04 First	public	release	of	plt

	

Adding	traces

From	the	command	window,	the	most	common	way	to	start	plt	is	with	a
command	such	as:	

plt(x,y)	

where	x	and	y	contain	the	data	that	you	want	to	plot.	Of	course	this	is	the	same
as	you	would	have	done	before	being	exposed	to	plt,	except	that	you	would	have
spelled	it	"plot".	This	command	opens	a	new	axis	in	a	new	figure	window
containing	just	the	single	trace	defined	by	the	x,y	parameter	pair.	There	are	many
ways	to	call	plt	so	that	multiple	traces	are	defined,	and	most	of	these	methods	are
also	shared	with	the	native	Matlab	plot	command.	These	methods	are	reviewed
in	the	Calling	sequence	section.	

Where	plt	and	plot	diverge	more	noticeably	is	how	you	add	traces	to	a	figure
that	has	already	been	created.	With	plot	this	is	done	using	the	hold	on	and
hold	off	commands	that	I	think	you	will	recognize	as	cumbersome	after
learning	how	it	is	done	with	plt.	The	more	traces	you	add,	the	more	you	will
recognize	the	advantage	of	the	active	legend	automatically	provided	by	plt,	both
for	identifying	the	traces	and	controlling	which	traces	are	visible.	(Soon	you	may
begin	to	wonder	how	you	managed	without	plt.)	

Assuming	a	single	trace	was	defined	using	the	plt	command	mentioned	above,
the	command:	

pltt(x1,y1,'TraceName')	

will	cause	a	new	trace	defined	by	the	x1,y1	pair	to	appear	on	the	plot.	Also	a
second	entry	will	appear	in	the	TraceID	box	with	the	trace	name	specified	in	the
call	to	pltt.	If	you	are	feeling	lazy,	you	could	omit	the	trace	name	in	the	argument
list,	in	which	case	a	default	(incrementing)	trace	name	will	be	used.	The	more
traces	you	add,	the	more	you	will	realize	that	you	should	have	specified	the	trace

names	all	along.	

When	you	type	the	plt	command	in	the	command	window,	space	will	be
reserved	in	the	TraceID	box	for	eight	additional	traces	(beyond	those	defined	in
the	plt	command	itself)	to	be	added	using	the	pltt	command.	This	is	usually
enough,	but	if	you	go	beyond	this	limit,	pltt	will	overwrite	the	trace	data	and
traceID	of	the	previously	added	trace	to	make	room	for	the	new	trace	being
added.	If	you	anticipate	needing	to	add	more	than	eight	traces,	you	can	allocate
more	space	in	the	TraceID	box	using	the	+	parameter	in	the	plt	argument	list.
(The	+	is	the	last	parameter	described	in	the	Trace	properties	section.)	

Usually	you	will	probably	find	it	most	convenient	to	add	just	one	trace	at	a	time,
however	pltt	also	provides	a	few	ways	to	add	more	than	one	trace	at	a	time.
(This	is	especially	useful	inside	script	files).	For	example,	both	of	these
commands:	

pltt(x,{y1	y2	y3},{'new1'	'new2'	'new3'});

pltt(x,[y1;y2;y3],{'new1'	'new2'	'new3'});	

are	equivalent	to	the	three	separate	commands:	

pltt(x,y1,'new1');

pltt(x,y2,'new2');

pltt(x,y3,'new3');

Note	that	in	the	2nd	form	above,	it	was	assumed	that	y1,y2,y3	were	row	vectors.
(If	they	were	column	vectors	they	would	need	to	be	delimited	with	spaces	or
commas	in	place	of	the	semicolons.)	

And	one	last	form	to	consider	for	when	you	are	adding	traces	with	differing	x
data.	The	command:	

pltt({x1	x2	x3},{y1	y2	y3},{'new1'	'new2'	'new3'});	

is	equivalent	to	these	three	commands:	

pltt(x1,y1,'new1');

pltt(x2,y2,'new2');

pltt(x3,y3,'new3');

Selecting	traces

If	more	than	one	y-vector	argument	was	given	to	plt,	a	trace
selection	box	will	appear	in	the	upper	left	corner	of	the	plt	window.
Note:	when	using	sub-plots,	only	the	main	plot	(lower	left)	includes
a	trace	selection	box.	(Note:	sometimes	I	call	this	the	TraceID	box).

In	the	example	shown	to	the	left,	plt	has	been	given	five	y-vectors	to
plot.	The	name	of	each	trace	and	the	colors	used	to	plot	them	are

also	given.	Usually	you	should	give	each	trace	a	more	informative	name,	but	in
this	case	no	trace	names	were	specified	on	the	command	line,	so	plt	just	named
each	trace	with	a	number.	The	trace	IDs	associated	with	traces	2	and	3	are	shown
in	an	italic	normal	weight	font,	indicating	that	they	are	currently	disabled	(not
visible).	The	other	three	trace	IDs	are	shown	in	a	bold	upright	font,	indicating
that	those	traces	are	enabled	in	the	plot	area.	

Below	is	a	list	of	the	ways	you	can	control	which	traces	are	displayed.	If	you	are
plotting	just	a	few	traces,	the	first	bullet	should	cover	all	that	you	need	to	know.
However	since	plt	can	plot	up	to	99	traces,	the	remaining	tricks	may	come	in
handy:

When	you	left-click	on	one	of	the	trace	names	in	the	trace	selection	box,	the
associated	trace	is	toggled	on	or	off.
To	view	a	single	trace	all	by	itself,	right-click	on	the	trace	name	of	interest.
That	trace	will	be	enabled	and	all	the	others	will	be	disabled.
Double	click	on	any	of	the	trace	names	to	enable	all	traces	at	once.

The	default	trace	color	order	used	by	plt	(shown	in	this	figure)	is	quite	different
from	Matlab's	usual	default	in	that	it	allows	you	to	distinguish	many	traces	based
on	color	alone.	Since	the	color	used	for	the	trace	IDs	match	the	color	of	the
corresponding	trace,	you	can	easily	identify	each	trace	by	name	for	plots	with	a

dozen	or	so	traces
and	perhaps	even
many	times	that
amount	depending
on	the	acuity	of
your	color
perception.	Read
more	about	this	in
the	Default	colors
section	If	you	have
any	doubt	about	the
name	of	a	particular
trace,	simply	click
on	the	trace,	and	its
trace	ID	will	appear
in	the	"cursor	ID"
tag	just	to	the	left	of
the	y-axis	cursor
readout.	(See
"Cursoring"	on	the
next	page).	Another
way	to	verify	the

name	of	a	trace	is	to	click	on	the	name	of	the	trace	in	the	trace	ID	box.	As
mentioned	above,	the	corresponding	trace	will	become	invisible,	and	then
restored	when	you	click	on	the	trace	ID	a	second	time.	To	see	the	list	of	RGB
triples	used	to	generate	this	default	color	order,	see	the	description	of	the
TRACEc	parameter.	Note	that	only	the	colors	for	traces	1	thru	40	are	defined	by
this	array.	The	defaults	for	lines	41	to	80	are	the	same	as	the	colors	listed	above
for	lines	1	to	40	except	that	they	are	26%	dimmer.	The	defaults	for	the	lines	81
to	99	are	again	26%	dimmer	than	the	trace	colors	for	lines	41	to	59.	

If	the	plot	uses	a	right	hand	axis,	plt	indicates	which	traces	are	plotted	on	the
right	hand	axis	by	adding	some	shading	to	the	background	of	the	trace	ID.	For
instance,	in	this	example,	traces	1,3,4,	and	5	are	plotted	on	the	right	hand	axis.
The	use	of	italics	to	indicate	inactive	traces,	and	the	methods	for
enabling/disabling	traces	are	the	same	no	matter	which	axes	are	used.	(Traces	2
and	4	are	disabled	in	this	example.)

If	the	TraceMK	argument	was	used,	then	the	line	types	are
also	shown	in	the	trace	selection	box.	An	example	of	this	is
shown	here	which	used	'TraceMK',.6	in	the	plt	argument
list.	The	.6	indicates	that	the	first	60%	of	the	width	is	used	for
the	trace	names	and	the	remaining	width	is	used	to	show	the
line	types.	See	Trace	Properties	for	more	detail	on	the
TraceMK	parameter.

When	the	line	types	are	included	in	the	trace	selection	box,	you
may	enable/disable	traces	by	clicking	on	the	trace	name	as
described	above,	or	by	clicking	on	the	line	type	to	the	right	of
the	trace	name.	In	this	example	traces	3,4	and	5	have	been
disabled.	The	trace	names	for	the	disabled	traces	are	shown	in
italics	as	usual	and	the	line	types	are	also	grayed	out	(actually
blue/green)	to	make	it	clear	that	these	traces	are	not	currently

visible	in	the	plot	area.	

Since	left	or	right	clicking	on	the	line	types	serves	the	same
purpose	as	left/right	clicking	on	the	trace	names,	you	can
dispense	with	the	trace	names	altogether	if	you	like.	(This
mode	is	selected	by	specifying	assigning	less	than	25%	of	the
width	to	the	trace	names,	i.e.	a	TraceMK	parameter	of	less
than	.25).	In	the	example	to	the	left,	the	TraceMK	parameter
was	0.1	and	note	that	the	first	trace	has	been	disabled.

Zooming	and	panning

Panning

The	simplest	way	to	pan	the	x	or	y	axis	is	to	click	on	one	of	the	axis	tick	labels
(actually	anywhere	outside	the	plot	area	will	work)	and	drag	it	until	the	part	of
the	display	you	wish	to	view	is	visible.	Sometimes	you	may	want	to	pan	both	the
x	and	y	axes	at	the	same	time.	Instead	of	doing	separate	pans	on	each	axis	you
can	do	both	at	the	same	time	by	clicking	anywhere	in	the	plot	area	(but	NOT	on
any	of	the	traces)	and	dragging	that	point	until	the	desired	view	is	achieved.	Yet
another	way	to	pan	the	x	axis	is	to	use	the	optional	x-axis	cursor	slider	that	is
described	in	the	next	section	(cursoring)	One	panning	issue	you	should	be	aware
of	is	that	its	performance	will	suffer	when	plotting	very	large	arrays.	For
example,	try	the	following	command:	

plt(humps((1:1e6)/1e6)'*(1:4));	

This	will	plot	4	traces	each	of	which	contains	a	million	points.	(These	vectors
are	far	bigger	than	what	you	will	usually	want	to	plot.)	The	display	update	rate
while	panning	this	plot	on	my	2011	era	desktop	computer	is	about	3	times	per
second,	which	is	noticeably	jerky	but	certainly	useable.	However	if	you	want	to
plot	even	more	data	than	this	it	may	make	sense	to	decimate	it	before	plotting.
Your	eye	won't	know	the	difference	by	the	time	you	are	plotting	more	than	a
couple	of	hundred	points	per	trace,	so	you	won't	really	be	missing	anything
unless	you	zoom	in	dramatically.

Zooming

Try	the	same	thing	as	with	panning,	except	drag	with	the	right	mouse	button
instead	of	the	left.	You	will	find	that	dragging	towards	the	origin	compresses	the
axis	(for	zooming	out)	and	dragging	away	from	the	origin	expands	the	axis	(for
zooming	in).	As	with	panning	you	can	zoom	both	axes	at	once	by	a	right	click

and	drag	in	the	plot	area.	(Unlike	panning	you	don't	have	to	worry	about	whether
you	are	on	a	trace	or	not.	The	same	thing	will	happen	in	either	case.)	

Often	to	get	the	desired	view	requires	two	mouse	movements.	The	first,	with	a
right	click	and	drag	to	expand	or	contract	the	axis	(or	axes)	and	the	second,	with
a	left	click,	to	re-center	the	display.	You	may	find	that	this	is	the	most	convenient
method,	or	perhaps	you	will	like	one	of	the	seven	other	methods	described
below.

The	expansion	box

If	the	portion	of	the	graph	that	you	want	to	zoom	in	on	is
completely	visible	on	the	graph,	the	fastest	way	to
display	the	desired	area	is	to	draw	an	expansion	box.
This	is	the	way	you	will	likely	use	most	often,	so	you
should	try	all	four	ways	to	draw	the	expansion	box	that
are	listed	below	to	see	which	ones	you	like	best.

1.	 Position	the	mouse	in	the	plot	area	over	one	corner
of	the	area	you	wish	to	zoom	in	on.	Then	click	both
mouse	buttons	at	the	same	time,	holding	them	both
down	while	dragging	the	mouse	towards	the
opposite	corner	of	the	desired	zoom	area.	A	yellow	box	will	be	drawn,
which	will	be	stretched	or	contracted	as	you	drag	the	mouse	around.	When
you	let	go	of	the	mouse,	the	display	will	look	similar	to	the	picture	to	the
left.

2.	 An	alternate	method	which	you	may	find	easier	is	double	click	the	left
mouse	button,	but	don't	release	the	button	after	the	second	click.	Hold	the
mouse	button	down	while	you	drag	to	create	the	expansion	box.

3.	 A	method	which	requires	less	coordination	is	to	press	and	hold	the
keyboard	shift	key,	then	click	and	drag	with	the	mouse	until	the	expansion
box	is	the	size	you	want.

4.	 And	finally	you	can	left-click	the	grey	"x"	label	in	front	of	the	x-cursor	edit
box.	(Actually	using	the	grey	"y"	label	in	front	of	the	y-cursor	edit	box	does
exactly	the	same	thing.)	This	draws	the	expansion	box	covering	the	exact
same	area	as	the	current	axis	limits,	and	then	zooms	the	display	out	by
about	20%	so	that	you	can	see	the	expansion	box.	This	method	makes	more
sense	when	you	which	to	make	small	changes	to	the	x	or	y	axis	limits	or
when	you	are	planning	to	type	in	the	new	limits	numerically.

If	you	are	happy	with	the	expansion	box	you	have	drawn,	left-click	the	mouse
anywhere	in	the	plot	area	(or	even	outside	the	plot	area	if	you	avoid	the	edit
boxes)	and	the	display	will	expand	to	show	only	the	data	inside	the	expansion
box.	If	you	are	not	happy	with	the	expansion	box,	you	can	modify	it	using	one	of
the	methods	mentioned	below	...	or	simply	right-click	anywhere	to	remove	the
expansion	box	and	start	again.	

If	plt	was	called	with	the	MotionZoom	or	the	MotionZup	parameter,	the
function	specified	with	that	parameter	can	cause	additional	text,	plots	or	other
visual	effects	to	appear	and	be	modified	as	you	adjust	the	size	of	the	expansion
box.	(See	Mouse	Motion	Functions)

Accepting	or	cancelling	the	limits	indicated	by	the	expansion	box

After	an	expansion	box	is
drawn	using	any	of	the	four
methods	described	above,	both
the	x	and	y-cursor	edit	boxes
double	up	and	contain	the
limits	of	the	expansion	box	(as
shown	in	this	figure).	To
accept	the	current	limits
shown,	simply	LEFT	click
anywhere	inside	the	plot	area.	To	remove	the	expansion	box	keeping	the	axis
limits	the	way	they	were,	simply	right-click	anywhere	inside	the	plot	area.	

You	may	want	to	modify	the	expansion	box	size	or	position	before	accepting	it.
Several	methods	of	doing	this	are	described	below.	

Adjusting	the	expansion	box

The	most	precise	way	of	setting	the	expansion	box	limits	is	to	simply	type	them
in.	For	example,	suppose	you	want	to	change	the	x-limits	shown	in	the	figure
above	(7.1866	to	7.9650)	to	the	values	7.1	to	7.9.	Simply	highlight	the	lower
limit	x	limit	(7.1866)	by	dragging	the	mouse	over	it	and	then	type	in	the	desired
value	(7.1).	Then	press	"tab"	which	will	accept	that	value	and	automatically
highlight	the	next	value	(upper	x-limit).	Then	after	entering	the	upper	limit,	press
tab	again	to	highlight	the	y-axis	lower	limit	...	or	if	you	don't	want	to	edit	the	y

limits	as	well,	hit	enter	instead	of	tab.	As	soon	as	you	hit	enter	or	tab	each	time
you	will	see	the	edit	box	change	in	the	plot	area	to	reflect	the	entered	values.
Note	that	the	limits	are	shown	in	increasing	order,	however	you	are	not	restricted
by	that	convention.	(i.e.	entering	the	limits	4,3	draws	the	same	expansion	box	as
if	you	entered	3,4).	Although	this	method	is	by	far	the	most	precise	way	to	adjust
the	expansion	box,	it	is	usually	more	convenient	to	do	this	using	the	mouse	as
described	below:

1.	 Adjusting	the	expansion	box	size
Simply	click	and	drag	on	any	of	the	four	corners	of	the	expansion	box.	The
corner	you	clicked	on	will	follow	the	mouse	while	the	diagonally	opposite
corner	will	remain	fixed.	Note	that	the	mouse	behaves	in	the	same	way	as
when	the	expansion	box	was	first	drawn.

2.	 Adjusting	the	expansion	box	position	(preserving	its	size)
Click	on	the	midpoint	of	any	edge	of	the	expansion	box	and	simply	drag	the
expansion	box	to	its	desired	location.	The	expansion	box	size	does	not
change	during	this	operation.

When	adjusting	the	expansion	box	size	or	position	in	this	way,	you	should	click
reasonably	close	to	the	corners	or	the	edge	midpoints.	If	you	click	too	far	away
from	these	points	then	as	mentioned	above,	the	click	indicates	that	the	limits
indicated	by	the	expansion	box	should	be	accepted	as	the	new	axis	limits,	and	of
course	the	expansion	box	is	cleared	after	the	new	limits	are	set.	

Alternate	method
In	earlier	versions	of	plt	(before	the	above	method	was	devised)	a	different
method	was	used	to	adjust	the	expansion	box	with	the	mouse.	Although	it	allows
you	to	adjust	a	single	edge	at	a	time	(as	well	as	moving	the	position	while
preserving	size),	you	will	probably	find	this	older	method	less	natural.	Never-
the-less	I	did	not	remove	this	method	in	case	you	became	used	to	it	with	older
versions	of	plt.	Newer	users	will	probably	stick	to	the	method	described	above,
but	for	completeness	the	older	method	is	described	below:

Right-click	anywhere	near	the	middle	of	the	lower	x	limit	(the	7.1866
number	in	this	figure)	but	don't	release	the	mouse	button.	As	you	are
holding	the	mouse	button	down,	drag	the	mouse	to	the	left	or	the	right.	(You
don't	have	to	remain	inside	the	edit	box,	or	even	inside	the	figure	window
for	that	matter).	As	you	drag	to	the	left	you	will	see	the	7.1866	number
decreasing	and	also	the	left	edge	of	the	expansion	box	will	move	to	the	left.

As	you	drag	the	mouse	to	the	right	of	center,	number	will	start	increasing
and	the	expansion	box	moves	accordingly.	The	farther	you	drag	the	mouse
from	the	center	of	the	edit	box,	the	faster	the	left	edge	of	the	zoom	box
moves.	Any	vertical	movement	of	the	mouse	in	this	situation	is	ignored.
Right-click	anywhere	near	the	middle	of	the	upper	x	limit	(the	7.9650
number	in	this	figure),	hold	the	mouse	down	and	drag	left	or	right.	This
time	the	right	side	of	the	edit	box	moves	in	a	similar	manner	to	that
described	above.
Right-click	near	the	middle	of	the	lower	y	limit	(the	2.2735	number)	to
adjust	the	lower	edge	of	the	expansion	box	in	a	similar	manner	except	now
only	the	vertical	movement	of	the	mouse	matters.	Any	horizontal
movement	is	ignored.
Right-click	near	the	middle	of	upper	y	limit	(the	5.4595	number)	to	adjust
the	upper	edge	of	the	expansion	box.	Again,	any	horizontal	movement	is
ignored.
Note	that	the	mouse	methods	for	adjusting	the	four	edges	described	so	far
alter	the	size	of	the	expansion	box.	There	is	one	final	method	to	describe
that	doesn't	change	the	size	of	the	expansion	box,	but	only	its	position.
Right-click	on	the	left	or	right	edge	of	any	of	the	four	edit	boxes,	leaving
the	mouse	button	down	while	dragging	the	mouse	as	before.	(You	might
have	to	be	pretty	close	to	one	of	these	edges	for	this	to	work.)	This	time,	as
you	drag,	the	position	of	the	expansion	box	moves	in	the	same	direction	as
the	mouse	offset	from	the	original	clicked	position.	The	farther	the	mouse	is
moved	from	this	original	position	the	faster	the	expansion	box	position
changes.	Unlike	the	previous	four	situations,	here	both	the	horizontal	and
vertical	movements	of	the	mouse	have	an	effect,	so	you	can	even	move	the
box's	position	diagonally	if	you	choose.	Note	that	the	behavior	is	the	same
no	matter	which	of	the	four	edit	boxes	you	use	to	initiate	the	action.	The
size	of	the	expansion	box	will	not	change	during	this	movement	with	one
exception.	If	you	bump	the	expansion	box	into	one	of	the	edges	the	box
becomes	smaller	because	the	trailing	edge	will	continue	to	move	even	after
the	leading	edge	has	hit	the	wall.

When	using	the	alternate	mouse	methods,	sometimes	the	edit	box	may	be	too
close	to	a	screen	edge	to	allow	a	reasonably	fast	movement	of	the	expansion	box
because	the	mouse	travel	is	limited.	In	that	situation	you	may	want	to	move	the
figure	slightly	farther	away	from	the	edge	of	the	screen.

Auto	scaling

If	plt	is	called	without	any	'xlim'	or	'ylim'	arguments,	both	axes	are
initially	auto-scaled	to	show	the	entire	data	range.	At	any	later	time	you	can
auto-scale	the	x-axis	by	right-clicking	on	the	grey	"x"	label	in	front	of	the	x-
cursor	edit	box.	Right	clicking	on	the	grey	"y"	label	is	similar	for	auto-scaling
the	y-axis,	although	there	is	one	difference.	The	difference	is	that	the	y-axis	is
scaled	to	insure	that	the	data	associated	with	the	active	trace	is	visible.	There	is
an	alternate	way	to	auto-scale	that	picks	display	limits	to	insure	that	all	the	traces
are	visible	instead	of	just	the	active	trace.	(See	"Expansion	history"	below).

Expansion	history

Whenever	you	change	the	x	or	y	axis	limits	by	any	of	the	above	methods,	the
previous	limits	are	stored	in	a	expansion	history	list.	You	can	cycle	through	these
stored	limits	by	left-clicking	on	the	XY↔	tag	in	the	menu	box.	(See	"Menu	box"
below).	This	list	is	4	elements	deep,	so	when	you	zoom	or	pan	the	fifth	time	the
oldest	display	limits	fall	off	the	bottom	of	the	stack.	Assuming	the	expansion
history	list	is	full	(which	is	usual)	clicking	on	the	XY↔	tag	four	times	in	a	row
will	show	you	the	last	four	display	limits.	On	the	fifth	click,	plt	will	auto-scale
both	the	x	and	y	axes	in	a	way	that	insures	that	all	the	data	for	all	traces	falls
inside	the	display	area.	On	the	sixth	click,	plt	goes	back	to	using	the	axis	limits
stored	in	the	expansion	history	list.	Although	you	can	auto-scale	by	clicking	on
the	XY↔	tag	a	suitable	number	of	times	that	can	be	cumbersome	since	you
usually	don't	know	where	you	are	in	the	rotation.	For	this	reason	a	faster	way	to
auto-scale	is	provided	...	simply	right	click	once	on	the	XY↔	tag.

Doubling	or	halving	the	display	area

Left-clicking	the	Zout	tag	in	the	menu	box	(see	"Menu	box"	below)	expands
each	axis	by	40%	which	increases	the	display	area	by	1.42	(1.96)	i.e.
approximately	doubling	the	display	area.	Right-clicking	zooms	in,	halving	the
display	area.	In	both	directions	the	center	point	of	the	display	remains	in	the
center	after	the	zoom	operation.

xView	slider

The	black	horizontal	bar	with	the	short	gray	segment	that	appears	above	the	plot
is	called	the	xView	slider.	It	provides	yet	another	way	of	panning	and	zooming

the
x-
axis
and
is

particularly	useful	when	you	want	to	view	a	small	segment	of	a	long	data	set.
The	whole	bar	represents	the	entire	data	set	and	the	gray	segment	represents	the
portion	of	the	data	currently	in	view.	If	10%	of	the	data	is	currently	in	view,	then
the	length	of	the	gray	segment	will	be	1/10	the	length	of	the	whole	bar.	Similarly
the	position	of	the	gray	segment	within	the	bar	represents	the	position	of	the
displayed	data	relative	to	the	whole	data	set.	

To	bring	up	the	xView	slider,	first	right-click	on	the	Ycursor	edit
box.	This	will	bring	up	the	Yedit	popup	menu	shown	here.	Then
select	the	third	item	in	this	menu	(xView	slider)	and	the	slider	will
appear.	This	is	a	toggle,	so	selecting	it	again	will	make	the	xView
slider	disappear.	

If	you	wanted	to	the	xView	slider	to	appear	when	your	program
starts	up,	you	can	include	the	string	xView	in	the	'Options'
parameter.	Also	you	can	enable	or	disable	the	xView	slider	from
the	command	line	or	in	a	program	with	the	command
plt	click	Yedit	3;	or	its	functional	form

plt('click','Yedit',3);	

Moving	the	gray	segment	left	or	right	is	as	easy	and	natural	as	you	would	expect.
Simply	click	on	the	gray	segment	and	drag	it	left	or	right.	The	plot	underneath
will	update	as	you	are	sliding	allowing	you	to	easily	search	for	the	data	portion
that	interests	you.	You	can	also	make	the	gray	segment	larger	so	that	a	larger
portion	of	the	data	is	displayed.	To	do	this	simply	click	in	the	black	area	to	the
left	of	the	gray	segment	and	the	left	edge	of	the	gray	segment	will	immediately
be	extended	to	the	point	where	you	clicked.	(Similar	for	the	right	edge	of
course.)	But	notice	that	this	method	won't	work	if	you	want	to	make	the	gray
segment	smaller.	So	how	do	we	do	it?	Simple,	just	click	in	the	black	area,	hold
down	the	mouse	and	drag.	The	edge	that	you	selected	will	follow	the	mouse

allowing	you	to	place	it	wherever	you	want.	(An	alternate	method	of	making	the
gray	segment	smaller	is	to	right-click	inside	the	gray	segment,	but	the	first
method	I	mentioned	is	usually	easier.)	And	finally	there	is	one	more	trick	you
can	do	with	the	gray	segment.	Double	clicking	on	it	expands	the	gray	segment	to
fill	the	entire	black	bar	(i.e.	it	resets	the	x-axis	limits	to	cover	the	full	extent	of
the	x	data).	This	is	somewhat	similar	to	right-clicking	on	the	menubox	XY↔	tag
except	that	the	XYrotate	tag	effects	both	the	x	and	y	axis	where	as	the	xView
slider	never	effects	the	y	axis.	(Double	clicking	on	the	gray	segment	a	second
time	undoes	the	effect	of	the	first	double	click.)	

Notice	that	when	the	x-axis	is	zoomed	or	panned	by	any	of	the	other	methods
provided,	the	xView	slider	will	automatically	be	updated	so	that	the	gray
segment	properly	represents	the	visible	portion	of	the	data.	

The	appearance	of	the	xView	cursor	is	probably	suitable	for	most	situations,	but
you	can	modify	its	appearance	by	using	the	xvProps	figure	application	data.	This
is	best	illustrated	with	an	example.	Suppose	we	follow	the	call	to	plt	with	the
expression:	

setappdata(gcf,'xvProps',	...

		{'color'	'red'	'+color'	'blue'	'+'	[0	-.01	0	.02]});

The	cell	array	consists	of	property	name/value	pairs.	If	the	property	name	does
not	have	the	"+"	prefix	the	property	is	applied	to	the	short	gray	segment,	so	the
first	property	pair	above	changes	the	gray	segment	into	a	red	segment.	If	the
property	name	does	include	a	"+"	prefix	then	the	property	is	applied	to	the	long
horizontal	black	bar	(which	actually	is	an	axis).	So	the	second	property	pair
changes	the	black	bar	into	a	blue	one.	Any	axis	property	name	may	be	used.	The
last	property	pair	is	a	special	case	since	it	has	the	prefix	without	a	property
name.	The	meaning	of	this	special	case	is	that	the	value	specified	is	to	be	added
to	current	position	value	for	the	horizontal	bar	(axis).	So	what	this	example	does
is	to	move	the	(blue)	horizontal	bar	down	by	1%	of	the	figure	height	and	to	make
the	bar	thicker	by	2%	of	the	figure	height.	(Note	that	you	could	also	specify	the
position	in	absolute	terms	be	replacing	the	'+'	with	'+pos')	

Right-hand	axis

Enabling

You	specify	which	traces	should	appear	on	the	right-hand	axis	with	the
'Right'	parameter.	For	example	if	you	included	'Right',
[1	4:2:10	17]	in	the	parameter	list,	then	plt	would	put	trace	numbers
1,4,6,8,10,	and	17	on	the	right	axis	and	all	other	traces	on	the	left	axis.	A	slight
shading	is	used	behind	the	Trace	IDs	associated	with	the	right	hand	axis	so	you
can	tell	at	a	glance	which	traces	belong	to	which	axis.	(You	may	disable	that
shading	if	you	prefer.	To	see	how	to	do	that,	look	at	the	details	of	the	TraceID
parameter	at	Trace	properties.)	You	can	also	tell	which	axis	a	trace	is	on	by	the
shape	of	its	cursor	('+'	for	left	axis	and	'o'	for	the	right	axis).	You	can	optionally
specify	the	label	or	the	limits	for	the	right	hand	axis	by	using	the	'LabelYR'
or	'YlimR'	parameters	respectively	or	by	using	cell	array	inputs	with	the
'LabelY'	or	'Ylim'	parameters.	Note	that	if	you	enabled	metric	prefixes	on
the	y-axis,	this	applies	only	to	the	left	hand	axis.	The	right	hand	axis	uses
standard	scaling.

Cursoring

Cursoring	the	traces	on	the	right	or	left	hand	axes	is	identical	except	for	the
shape	of	the	cursor	-	a	'+'	for	traces	on	the	left	axis	and	a	'o'	for	traces	on	the
right	axis.	Different	cursor	shapes	are	used	for	the	dual	cursor.

Panning	and	zooming

The	following	controls	affect	both	the	main	and	auxiliary	axes	simultaneously:

LinX/LogX	(menu	box)
LinY/LogY	(menu	box)
Panning	the	x-axis

Zooming	the	x-axis

Panning	and	zooming	the	y-axis	(which	includes	zooming	with	an
expansion	box	and	left/right	clicking	on	the	"zout"	tag)	is	also
normally	done	simultaneously	on	the	right	and	left	hand	axes.	This	is
called	the	"linked"	mode.	Sometimes	however	it	is	more	convenient
to	adjust	the	left	and	right	axes	separately	(i.e	"unlinked").	To	unlink
the	axes,	simply	click	on	the	right	hand	axis	label.	The	label	will	then
appear	between	two	divide	signs	as	shown	in	this	picture	(i.e.	the	axes
are	"divided").	Click	on	the	label	again	and	the	divide	signs	will
disappear	indicating	that	the	axes	are	again	linked.	

Normally	the	axes	are	linked	when	plt	initializes.	However	if		you
want	plt	to	start	in	unlinked	mode,	include	the	parameter	'AxisLink',0		in
the	plt	argument	list.	Including	'AxisLink',1		tells	plt	to	start	in	linked
mode,	although	you	will	rarely	do	that	since	linked	mode	is	the	default	anyway.	

Regardless	of	the	linked/unlinked	status	you	can	pan	or	zoom	the	right	hand	axis
by	right	or	left	clicking	on	or	near	one	of	the	right-hand	axis	tick	labels	(i.e.	the
20,40,60,80,	or	100	in	this	picture)	and	dragging	them	to	the	desired	position.
(As	before	left	click/drag	is	for	panning	and	right	click/drag	is	for	zooming).

Menu	box

By	default,	the	menu	box	contains	the	8	items	shown	in	this	figure.
Some	or	all	of	these	items	may	be	missing	if	they	were	specifically
excluded	by	using	the	'Options'	argument	in	the	calling
sequence.	The	name	of	each	menu	box	items	are	chosen	to	identify
the	action	when	you	left	click	on	the	item.	The	action	corresponding
to	a	right	click	are	less	obvious,	but	a	quick	look	at	the	plt	menu	(see
below)	will	remind	you	what	these	actions	are.	

See	pltquiv.m		for	an	example	of	how	you	can	change	one	of	the
menu	box	items	to	perform	an	alternate	function.	

Details	about	each	menu	box	item	follows:	

Help

On	Windows	systems	when	you	left	or	right	click	on	the	the	Help	tag,	plt	will
display	the	file	plt.chm.	On	Unix	and	other	systems	the	browser	will	be
opened	to	display	the	file	plt.htm	(since	these	systems	don't	support	the	chm
file	format).	The	left	click	behavior	may	be	modified	by	including	the
'HelpFile'	parameter	on	the	command	line	and	the	right	click	behavior	may
be	modified	by	including	the	'HelpFileR'	parameter.	Those	parameters	are
described	here.

LinX

Left-clicking	this	tag	changes	the	x-axis	scale	from	linear	to	logarithmic.	The
name	of	the	tag	itself	also	toggles	between	LinX	and	LogX	so	that	it	the	tag
name	always	matches	the	current	x-axis	scaling	type.	Left-clicking	again	toggles
it	back	to	LinX.	

Right-clicking	this	tag	swaps	the	x	and	y	data	for	all	the	traces	which	has	the
effect	of	displaying	the	inverse	function	of	the	original	display.	This	swapping
works	best	when	only	a	single	axis	is	being	used.	For	multiple	axes	(i.e.	with	a
right	hand	axis	or	with	subplots)	the	effect	might	not	quite	what	you	expect.

LinY

The	y-axis	scale	changes	from	linear	to	logarithmic.	This	tag	also	changes	to
LogY	so	that	it	always	matches	the	current	scaling	of	the	y-axis.	Clicking	again
toggles	it	back	to	LinY.	Right-clicking	on	this	tag	opens	the	plt	HardCopy
dialog	box.	See	the	description	of	the	HardCopy	dialog	box	below	(under	the
Print	menu	item).

Grid

Left-clicking	on	the	Grid	tag	alternates	between	no	grids	(tick	marks	only)	and
full	grids	on	both	x	and	y	axes.	By	default,	the	grids	are	solid	dim	grey	lines.
(This	may	be	modified	by	the	GRIDc	and	GridStyle	parameters.)	Grid	lines	with
high	contrast	colors	and	brightness	(such	as	what	you	get	with	the	native	Matlab
plot	command)	makes	it	more	difficult	to	observe	the	main	data	traces.	

Assuming	the	grid	style	has	not	been	modified	with	the	GRIDc	or	GridStyle
parameters,	right-clicking	on	the	Grid	tag	will	alternate	between	the	following
two	grid	modes:

	Color	=	[.13	.13	.13],		LineStyle	=	'-'

	Color	=	[.26	.26	.26],		LineStyle	=	':'

Zout

Each	left	click	of	the	Zout	(Zoom	out)	tag	expands	the	x	and	y	axes	by	40%
(20%	at	each	end).	This	approximately	doubles	the	area	of	the	Cartesian	plane
displayed	within	the	axis	limits.	(1.42	=	1.96).	Right-clicking	on	the	Zout
reverses	the	effect	of	a	left	click	(i.e.	zooms	in).

XY↔

Each	click	on	the	XY↔	(XYrotate)	tag	cycles	the	x	and	y	axis	limits	to	the	next

display	expansion	stored	in	a	history	list.	(The	axis	limits	from	the	last	four
zooms	or	pans	are	saved	in	this	list).	After	all	the	display	limits	in	the	history	list
are	used,	the	next	click	autoscales	both	axes	so	that	all	the	data	is	displayed.	The
next	click	again	uses	the	first	display	expansion	in	the	history	list.	Right-clicking
on	this	tag	skips	the	rotation	through	the	history	list	and	directly	autoscales	the
axes	to	show	the	full	x	and	y	extent	of	the	trace	data.

Print

Note	that	the	Print	tag	does	not	appear	in	the	menu	box	by	default.	It	will	only
appear	if	enabled	by	an	'Options'	argument	in	the	calling	sequence.	This	is
done	to	reduce	clutter	and	is	justified	since	this	is	not	a	commonly	used	dialog
and	because	you	may	also	access	this	by	right-clicking	on	the	LinY	tag
(mentioned	above)	as	well	a	from	the	Hardcopy	selection	in	the	plt	menu	of	the
menu	bar.	(If	you	don't	see	the	menu	bar,	click	on	the	Menu	tag	in	the	menu	box
to	make	the	menu	bar	visible.)	

This	is	what	the	hardcopy	dialog
looks	like	when	opened.	The
primary	use	of	this	dialog	box	is
to	create	BMP	bitmapped	images
of	the	plt	window.	You	will	see
from	the	popup	menu,	that	you

can	select	other	graphics	formats	as	well,	although	not	all	of	them	are	well
tested.	(This	image	shows	the	dialog	setup	for	making	a	windows	meta	file
format.)	For	all	file	types	except	BMP,	the	colors	are	inverted	if	the	background
is	dark.	On	most	printers	this	makes	the	copy	far	more	readable	and	saves	large
amounts	of	toner.	

You	can	also	print	directly	to	the	default	windows	printing	device	from	the
HardCopy	dialog,	although	an	easier	(and	possibly	more	reliable)	way	of	doing
this	is	to	select	"print"	from	the	File	menu.	And	for	a	bitmapped	image,	yet
another	method	is	to	use	the	screen	capture	facility	(via	the	PrintScreen	key	on
Windows	based	systems).	Before	capturing	your	bit	map	you	may	want	to	right-
click	on	the	y-axis	label	to	hide	the	menu	box	and	cursor	objects	so	these	objects
won't	distract	from	the	basic	plot	data.	Right-clicking	on	the	y-axis	label	a
second	time	re-enables	the	cursor	objects.

Mark

When	you	left-click	on	the	Mark	tag,	a	square
marker	is	placed	at	the	current	cursor	location
and	a	marker	string	is	added	to	the	plot
containing	the	x	and	y	coordinates	of	the
cursor	location.	The	text	string	will	be	the
same	color	as	the	active	trace.	If	the	text	label
is	not	positioned	where	you	want	it,	click	on

the	label	and	drag	it	to	the	location	you	want.

If	you	right-click	on	the	marker	string
(which	is	(7.675,	2.95902)	in
this	example),	a	new	dialog	box	will
appear	which	allows	you	to	change	any
or	all	of	the	properties	of	both	the	trace

marker	(with	the	left	popup	and	edit	box)	and	the	marker	string	(with	the	right
popup	and	edit	box).	The	two	pictures	below	show	the	Marker	and	String
properties	respectively	that	you	can	edit.	

Note	that	you	can	have	many	of	these	Edit	Marker	dialog	boxes	open	at	same
time	-	as	many	as	one	per	text	string	(or	even	more,	although	there	is	probably
little	benefit	to	that).	All	these	dialog	boxes	will	be	deleted	automatically	if	the
main	plot	window	is	deleted.	

Once	you	select	one	of	the	8	marker
properties,	or	one	of	the	10	string
properties,	the	current	value	of	the
property	appears	in	the	respective	edit
box.	To	change	the	property	value,
click	in	the	edit	box,	and	type	in	a
new	value.	

Note	that	both	the	Marker	and	the
String	popups	have	delete	as	one
of	the	options.	This	is	useful	if	you

want	to	add	a	marker	without	a	string	or	a	string	without	a	marker.	You	may
delete	all	the	markers	you	have	added	this	way	by	selecting	delete	and	then
typing	all	into	the	edit	box	below	the	popup.	The	same	trick	works	for	deleting
all	the	strings	added	to	the	figure	via	the	Mark	tag.	If	you	want	to	delete	all	the
markers	and	all	the	strings	at	once	choose	the	"Delete	cursor	annotations"
selection	in	the	plt	menu	of	the	menu	bar.	(See	below,	and	also	note	the	mouse
shortcut	for	this	function.)	

Note	that	when	you	select	the	color
property,	the	property	value	is	a	set	of
three	numbers	corresponding	to	red,
green,	and	blue	respectively.	Each
number	is	an	intensity	value	and	must
range	from	zero	(off)	to	1.0	(full
intensity).	You	may	change	the	color
by	entering	the	desired	rgb	values.
When	you	press	<Enter>	the	new
value	will	be	accepted	and	you	will
see	the	marker	or	string	change	to	the
new	color.	However	since	it	is	often
difficult	to	predict	exactly	what	these

colors	look	like,	plt	provides	an	easier	way	to	select	new	colors.	Instead	of	left-
clicking	on	the	rgb	triple,	use	a	right	click.	A	new	color	selection	box	will
appear.	The	use	of	the	color	selection	box	(also	called	a	ColorPick	pseudo
object)	appears	below.	

Menu

Left-clicking	on	this	tag	toggles	the	menu	bar	on	or	off.	(See	the	description	of
the	menu	bar	below).	Note	that	the	initial	state	of	the	menu	bar	is	off	unless	the
(unless	'options','Menu'	appears	in	the	argument	list).	

Right-clicking	on	the	Menu	tag
opens	up	a	new	window	similar
to	this	one	shown	called	the
Cursor	Data	Window	.	This
window	shows	the	x	and	y
values	of	all	visible	plot	traces.
The	down	arrows	(vvvvvv)
highlighted	in	the	middle	of	this
window	indicate	that	the	cursor
is	currently	pointing	to	the
200th	data	element	of	the	trace
whose	trace	ID	is	"Line	1".	As
you	move	the	cursor	around	(by
any	of	the	many	methods)	the
cursor	data	window	will
automatically	be	updated	so
that	arrows	always	point	to	the
current	cursor	location.	The
cursor	index	will	always	be
shown	near	the	middle	of	the

window	but	you	can	use	the	scrollbar	on	the	right	side	of	the	figure	to	view	any
of	the	data	values	that	appear	on	the	plot.	

The	first	column	heading	is	always	"index"	and	the	index	column	will	contain	all
the	integers	between	1	and	n,	where	n	is	the	data	length	of	the	longest	visible
trace.	The	second	column	heading	is	always	"X"	which	indicates	that	this
column	contains	the	Xdata	values	of	the	first	visible	trace.	The	3rd	column	will
contain	the	y	values	of	the	first	visible	trace	and	the	column	heading	will	be	the
traceID.	The	4th	column	will	again	have	a	heading	of	"X"	and	will	contain	the	x
data	for	the	2nd	visible	trace	except	(as	in	this	example)	when	the	x	values	are
the	same	as	for	the	previous	trace	in	which	case	the	X	column	is	omitted.	In	this
example	all	3	traces	had	the	same	x	vector	so	only	one	column	is	needed	for	it.
However	if	the	3	traces	each	had	different	x	vectors	then	the	column	headings
would	have	been	"index,X,Line1,X,Line2,X,Line3".	

If	the	characters	are	two	big	or	small	for	your	taste	you	can	adjust	the	size	with
the	fontsize	popup.	Click	the	save	button	to	create	a	text	file	that	contains	the

exact	text	that	appears	in	the	list	box	(from	index	1	all	the	way	to	the	end	of	each
plotted	array).	The	column	headings	will	appear	at	the	very	top	of	the	text	file.	

Note	that	if	you	are	using	subplots,	some	of	the	column	headings	may	be	blank
since	the	subplot	traces	do	not	use	TraceIDs.	However	if	a	subplot	has	a	y-axis
label	then	that	label	will	be	used	as	column	heading	for	the	trace	inside	the
subplot.	

Menu	Bar

Usually	you	will	select	the	desired	menu	with	the	mouse.	However	you	may	also
use	the	keyboard.	The	underlines	shown	in	this	figure	and	in	the	drop	down
menus	below	only	appear	when	you	press	the	ALT	key.	When	you	press	the	ALT
key	followed	by	one	of	the	underlined	characters,	the	respective	dropdown	menu
will	appear.	You	can	then	select	one	of	the	dropdown	menu	items	with	the	mouse
or	by	pressing	one	of	the	underlined	characters	in	the	dropdown	menu.	

One	of	the	most	useful	functions	of	the
menu	bar	is	Print	(the	last	item	under
the	File	menu).	This	is	probably	the
easiest	and	most	reliable	way	to	make	a
hardcopy	of	the	plt	window.	

As	you	can	see	from	the	figure	to	the
right,	plt	adds	the	following	two	items	to
the	File	menu:

plt	save	saves	the	current	figure
so	that	that	it	can	be	opened	later
(see	plt	open	below).	A	dialog	box
opens	allowing	you	to	choose	the
name	of	the	file.	A	.plt	extension	is
used	for	these	files	although	in	fact
they	are	ordinary	.mat	files.	This
menu	item	is	equivalent	to	typing
plt	save	at	the	Matlab	command
prompt.	Also	at	the	command
prompt,	you	may	type	plt	save	filename	which	avoids	the	file
dialog	box	by	specifying	the	file	directly	and	of	course	the	functional	form
plt('save','filename')	works	also.

plt	open	opens	a	dialog	box	that	allows	you	to	select	a	.plt	figure	file
that	was	saved	with	the	plt	save	menu.	The	new	window	should	look	and
behave	the	same	as	the	original	plt	window.	(Note	that	if	the	original	plt
window	was	created	with	a	function	that	provided	additional	plotting
features	to	the	plt	window,	those	features	will	not	be	available	after	opening
the	figure.)	This	menu	item	is	equivalent	to	typing	plt	open	at	the
Matlab	command	prompt.	Also	at	the	command	prompt,	you	may	type
plt	open	filename	which	avoids	the	file	dialog	box	by	specifying	the
file	directly.	A	new	window	is	opened	containing	the	data	that	was	saved.

The	last	menu	item	(plt)	is
unique	to	plt.	When	you	click
on	this	menu	item	you	will
see	these	twelve	submenus.	

The	accelerator	keys	for
selecting	one	of	these
submenus	are	shown	in
parentheses.	For	example	to
select	the	"Save	figure
colors"	submenu	using	the
keyboard,	you	would	first
press	ALT	key	followed	by
the	p	key	(to	select	the	plt
menu)	and	finally	press	the	s
key	to	select	the	"Save	figure
colors"	submenu.	(You	don't

have	to	release	the	ALT	key	before	the	p	key	is	pressed	if	you	prefer.)	

Note	that	all	but	three	of	these	submenus	have	some	blue	text	after	them.	These
are	directions	for	selecting	the	submenu	action	without	using	the	menu	bar
(which	may	be	easier,	especially	when	the	menu	bar	is	hidden).	For	example,	the
first	submenu	(Edit	line)	contains	the	string	Rclick	Mark.	This	means	that	you
can	invoke	the	Edit	line	function	by	right-clicking	on	the	Mark	tag	inside	the
menubox.	The	next	submenu	(Edit	all	lines)	contains	the	string	Delta+Rclick
Mark.	What	this	means	is	that	you	can	invoke	this	menu	by	first	left-clicking	on

the	Delta	(∆)	button	and	then	right-clicking	on	the	Mark	button.	The	third
submenu	(Edit	figure	colors)	contains	the	string	Rclick	Properties	in	Ypopup.
This	means	that	you	should	right-click	on	the	Properties	selection	that	appears	in
the	Yedit	popup	(that	opens	when	you	right-click	on	the	Ycursor	edit	box).	Of
course	you	won't	remember	these	shortcuts	unless	you	use	them	often,	but	you
can	always	use	this	menu	as	a	reminder.	

These	twelve	submenus	are	described	in	order	below:	

1.)	Edit	line	Rclick	Mark	or	Lclick	Properties	in	Yedit	popup

To	change	the	color	or	other	property	of
a	trace	or	of	its	associated	cursor,	first
click	on	the	trace	that	you	want	to
modify	(i.e.	make	the	trace	active)	and
then	click	on	the	Edit	line

submenu.	You	will	see	a	new	figure	similar	to	the	this	one.	

The	left	side	of	the	Edit	Line	dialog	box	controls	the	properties	of	the	active
trace	and	the	right	side	controls	the	properties	of	the	cursor	attached	to	that	trace.
The	properties	that	appear	in	both	these	popups	are	the	same	as	those	under
"Marker	properties"	in	the	Edit	Marker	dialog	box	shown	above.	Note	that	one
can	edit	the	data	plotted	by	selecting	and	editing	the	Xdata	or	Ydata	line
properties.	This	works	well	for	simple	traces	with	less	than	a	few	dozen	data
elements.	For	longer	sequences	you	will	be	better	off	using		the	data	editing
technique	described	in	the	data	editing	section.	Note	that	(for	example)	if	you
modify	the	Ydata	property	by	removing	or	adding	data	elements	that	the	line
will	disappear	until	you	also	modify	the	Xdata	property	by	removing	or	adding
the	same	number	of	points.	This	is	because	the	line	object	can't	be	rendered
unless	the	lengths	of	the	Xdata	and	Ydata	properties	are	the	same.

2.)	Edit	all	lines	Delta+Rclick	Mark

When	you	select	the	Edit	all
lines	submenu	a	dialog	box	such	as
this	will	appear.	When	you	change	the
popup	menu	to	select	a	new	property,
the	edit	box	will	be	updated	to	show	the

current	value	of	that	property	for	the	active	trace	just	as	before.	However	if	you
then	change	the	property	value	in	the	edit	box,	this	property	will	get	changed	for
all	the	traces	on	the	plot,	not	just	the	active	trace.	This	is	probably	not
appropriate	for	the	color	property,	but	it	may	be	useful	for	some	of	the	other
trace	properties,	such	as	linewidth.	You	can	also	use	this	dialog	box	to	make	all
the	cursors	larger	or	a	different	shape	for	instance.	

3.)	Edit	figure	colors	Rclick	Properties	in	Yedit	popup

When	you	select	this	submenu	this
dialog	box	will	appear	which	allows
you	to	change	all	of	the	figure	colors
which	are	not	accessible	from	the	edit

lines	dialog	boxes	described	above.	

This	shows	the	eight	items	that	you
can	modify	from	this	dialog	box.	After
selecting	one	of	these	items,	the
current	color	of	that	item	appears	in
the	edit	box	below	the	popup	as	a	set
of	three	intensity	numbers
corresponding	to	red,	green,	and	blue
respectively.	You	may	change	the
color	by	left-clicking	the	edit	box	and

entering	the	desired	rgb	values	or	by	right-clicking	the	edit	box	which	will	bring
up	the	color	selection	box	described	at	the	bottom	of	this	page.	

Note	that	the	three	property	editing	windows	shown	above	for	the	first	three
submenus	may	also	be	opened	from	the	"Properties"	selection	that	appears	when
you	right-click	on	the	Yedit	cursor.	(See	Data	editing.)	

4.	Save	figure	colors
Changing	colors	inside	the	plt	figure	using	the	color	selection	box	is	not
permanent	(i.e.	those	colors	will	be	forgotten	once	the	application	is	closed).
However	you	can	make	the	changes	permanent	by	selecting	this	submenu	which
will	save	the	current	colors	to	the	file	(which	we	call	a	"color	selection	file").
You	will	find	the	rules	that	plt	uses	to	determine	the	color	file	name	in	the
description	of	the	'ColorFile'	parameter	here.	

When	plt	starts,	the	color	for	each	screen	element	is	determined	as	follows:

If	a	color	file	is	found,	the	color	for	all	screen	elements	will	be	determined
by	the	file	contents.
If	no	color	file	exists,	the	colors	for	particular	screen	elements	are
determined	by	the	color	parameters	included	in	the	plt	function	call.	These
parameters	are	described	in	the	Colors	section.
If	such	a	parameter	is	not	included	in	the	function	call,	then	the	color	for
that	particular	screen	element	will	be	specified	by	the	plt	default	color
scheme.

These	color	selection	files	are	in	a	consistent	format	so	a	color	file	generated	in
one	application	can	be	used	in	another	application	by	renaming	the	color	file,	or
by	using	the	name	of	the	desired	color	file	explicitly	with	the	'ColorFile'
parameter.	More	detailed	instructions	about	how	to	modify	a	color	selection	file
are	given	in	the	Default	colors	section.

5.)	Cursor	Data	Window	Rclick	Menu
This	submenu	opens	a	cursor	data	window	which	is	described	above	under	the
right	click	action	of	the	Menubox	Menu	tag.

6.)	Swap	X/Y	axes	Rclick	LinX
This	submenu	performs	the	action	described	above	under	the	right	click	action	of
the	Menubox	LinX	tag.

7.)	Hardcopy	Rclick	LinY
This	submenu	menu	opens	a	dialog	box	used	for	printing	and	creating	screen
captures	of	plt	figures.	The	use	of	this	dialog	box	is	described	above	in	the
description	of	the	menubox	Print	tag.

8.)	Toggle	line	smoothing	Rclick	"o"
This	submenu	toggles	the	line	smoothing	property	of	all	plot	traces	from	off	to
on	or	visa	versa.	This	is	described	in	more	detail	here:	The	Cursor	button	group

9.)	Delete	cursor	annotations	Delta+Rclick	"o"
If	you	have	added	many	plot	annotations	(with	the	menubox	Mark	tag)	you	can
delete	them	one	by	one	by	selecting	delete	for	the	string	and/or	marker	from	the

Edit	Marker	window.	However	this	would	be	tedious	if	you	have	had	many
annotations.	This	submenu	provides	a	way	to	delete	all	of	them	with	one	simple
action.

10.)	Set	dual	cursor
The	dual	cursor	mode	allows	you	to	simultaneously	cursor	two	traces	on	the
same	plot.	Usually	this	is	set	up	using	the	'DualCur'	parameter.	(see	Dual
Cursor).	However	you	may	also	use	this	menu	to	set	the	dual	cursor
interactively.	Simply	put	the	cursor	on	the	trace	that	you	want	as	the	dual	cursor
(by	clicking	on	it)	and	then	select	this	submenu.	After	that	the	Dual	Cursor	will
become	active	on	the	selected	trace.	This	submenu	acts	as	a	toggle,	which	means
that	if	the	dual	cursor	was	already	enabled,	it	will	be	disabled.

11.)	Toggle	Reposition	mode	Rclick	Delta
The	reposition	mode	a	key	feature	of	plt's	GUI	building	tool	set	which	allows
you	to	move	and	resize	screen	objects	with	the	mouse.	This	submenu	toggles
between	the	normal	GUI	mode	and	the	reposition	mode	and	back.	The	reposition
mode	is	described	in	more	detail	here:	GUI	building	with	plt

12.)	Reposition	Grid	size	Delta+Rclick	Delta
This	submenu	brings	up	a	small	auxiliary	figure	titled	SnapTo	containing	two
sliders,	one	for	controlling	the	x	step	size	and	the	other	controlling	the	y	step	size
of	the	GUI	object	repositioning	mode.	An	example	of	what	this	figure	looks	like
and	what	the	values	mean	can	be	found	here:	GUI	building	with	plt

The	Color	Selection	box

When	using	the	"Edit	Marker",
"Edit	line",	"Edit	all	lines",	or
"Edit	figure	colors"	dialog	boxes
described	above,	if	you	right-click	on
an	edit	box	containing	an	rgb	triple,	the
color	selection	box	will	appear.	

As	with	the	rgb	triples,	the	three	sliders
represent	the	intensity	values	(except
in	percent)	and	will	initially	be	set	to

the	same	values	that	were	in	the	edit	box.	You	can	move	the	sliders	(or	type	in
new	values)	to	give	the	proportion	of	each	color	that	you	want.	Only	integer
values	between	0	and	100	are	accepted	giving	you	more	than	a	million	different
colors	(101	cubed).	As	you	move	the	sliders,	the	color	of	the	marker,	line,	or
figure	element	selected	is	continually	adjusted	to	reflect	the	slider	settings.	The
color	of	the	large	rectangular	patch	to	the	right	of	the	red	slider	(called	the
"current	color	patch")		is	also	adjusted	at	the	same	time	which	makes	it	easier
especially	for	the	smaller	screen	elements.	

To	make	it	easier	to	find	the	most	pleasing	color,	the	11	by	11	grid	of	colors	is
also	updated	every	time	a	slider	is	moved.	What	this	grid	shows	you	are	the
colors	that	result	when	the	intensity	value	of	the	active	slider	is	mixed	with	1	of
11	different	intensity	values	of	the	two	inactive	sliders.	The	active	slider	(i.e.	the
slider	that	was	last	moved)	is	shown	highlighted	in	yellow.	

So	for	example,	in	the	figure	above,	the	bottom	slider	(blue)	is	active	and
happens	to	be	set	to	0%.	This	means	that	all	121	squares	of	the	grid	are	made	up
of	colors	containing	no	blue.	Each	row	of	the	grid	contains	a	different	intensity
percentage	of	red	(0%	for	the	bottom	row,	10%	for	the	next	row,	and	100%	for
the	top	row).	Likewise	each	column	of	the	grid	contains	a	different	intensity
percentage	of	green	(0%	for	the	left	column	and	100%	for	the	right	column).
Thus,	the	upper	right	square	in	this	example	then	would	be	yellow	(rgb	=	[1	1
0]).	

When	you	see	a	color	in	the	grid	that	you	like,	just	click	on	it.	The	screen
element	selected	as	well	as	the	current	color	patch	will	instantly	change	to	be	the
same	as	the	color	you	clicked	on.	Of	course	the	two	inactive	sliders	move	to
show	the	intensity	values	of	the	color	you	just	selected.	If	you	can't	find	a	better
color,	you	can	revert	to	the	color	in	effect	when	you	right-clicked	on	the	rgb
triple	by	clicking	on	the	current	color	patch.	

All	this	may	sound	somewhat	complicated,	however	it	is	far	easier	to	do	than	to
explain.	Generally	you	can	pick	any	of	the	three	sliders,	move	it	around	a	bit,
and	you	will	quickly	see	the	color	you	want	in	the	grid.	By	the	way,	clicking	on
the	slider	trough	area	moves	the	slider	by	10%,	so	if	you	want	to	limit	yourself
to	the	1,331	colors	formed	with	the	intensities	0,10,20,30,...100%,	then	you	can
see	all	such	colors	after	just	10	clicks	of	the	mouse.

Data	editing

plt	has	the	capability	to	modify	the	plotted	data,	either	one	point	at	a	time	or	over
a	specified	range.	Data	entry	is	accomplished	by	entering	the	coordinates	via	the
keyboard	or	by	using	the	mouse	when	keyboard	accuracy	is	not	required.	(An
alternate	method	of	data	editing	appropriate	for	short	data	sequences	is	described
in	the	Menu	box	section.)	

The	first	step	is	to	click	on	the	trace	containing	the	data	that	you
wish	to	edit.	The	second	step	is	to	right-click	on	the	Ycursor	edit
box.	(This	is	the	edit	box	closest	to	the	lower	right	corner	of	the
figure.)	When	you	do	that,	a	popup	menu	will	appear	with	the	list
of	13	choices	shown	here.	The	first	three	items	in	this	menu,	don't
really	have	anything	to	do	with	data	editing,	but	this	was	a
convenient	place	to	put	them.	When	you	select	the	first	menu	item
(Properties)	one	of	three	different	property	editing	windows
will	appear	depending	on	how	it	is	selected.	When	you	left-click
on	"Properties"	a	window	appears	which	allows	you	to	modify	the
color	and	other	properties	of	the	currently	selected	line	and	its

cursor.	If	before	clicking	on	"Properties"	you	enable	delta	cursor	mode	(Δ
button)	then	a	property	windows	appears	which	allows	you	to	edit	all	the	lines	at
once.	This	is	often	appropriate	for	the	color	property,	but	it	also	may	be	useful
for	some	of	the	other	trace	properties,	such	as	linewidth.	And	finally,	if	instead
of	left-clicking	you	right-click	on	"Properties"	then	a	window	appears	that
allows	you	to	edit	the	figure	colors.	This	is	the	easiest	method	of	accessing	the
three	property	editing	windows,	although	for	historical	reasons	there	are	two
additional	ways	of	opening	these	windows.	One	is	via	the	"Colors/Lines"
selection	of	the	menu	bar	and	the	other	is	via	right-clicking	the	"Mark"	tag	in	the
menu	box.	Both	of	these	methods	are	mentioned	in	the	Menu	box		section	which
also	has	a	full	description	of	the	three	different	property	editing	windows	and
how	to	use	them.	

The	second	menu	choice	(multiCursor)	toggles	the	multiCursor	mode	which
is	described	here	in	the	Cursoring	section	and	third	menu	choice	(xView
slider)	toggles	the	xView	slider	which	is	described	here	in	the	Zooming	and
panning	section	

The	fourth	menu	choice	(Cancel)	is	useful	if	you	opened	this	popup	menu
accidentally	or	when	you	want	to	abort	an	already	initiated	data	editing
operation.	

The	remaining	nine	selections	in	this	popup	contain	the	actual	data	editing
commands.	The	descriptions	below	are	written	for	completeness	rather	than
brevity	so	don't	be	scared	off.	The	commands	are	intuitive,	so	you	may	be	better
off	skipping	the	descriptions	at	first	in	favor	of	experimentation.	The	nine	editing
commands	are	divided	into	these	three	types:	

Modify
The	modify	commands	change	the	x	or	y	(or	both)	coordinates	of	a
single	data	point.	When	using	these	commands,	the	length	of	the	x	and
y	vectors	do	not	change.

Insert

The	insert	commands	add	a	new	xy	data	pair	to	the	data	at	the	current
cursor	point.	When	using	these	data	editing	commands,	the	length	of
the	x	and	y	vectors	increase	by	one.	The	one	exception	to	that	is	that
when	you	attempt	to	add	a	new	data	pair	with	its	y	value	less	than	the
current	minimum	y-axis	limit,	then	the	data	at	the	current	cursor	point
is	removed	from	the	data	set	(i.e.	the	length	of	the	x	and	y	vectors
decrease	by	one).

Range

With	the	range	commands	(as	with	modify)	the	length	of	the	x	and	y
vectors	remain	the	same.	However	in	this	case	more	than	one	data
point	is	changed.	All	the	data	points	between	the	current	cursor
location	and	the	location	modified	during	the	previous	data	editing
command	are	modified	so	that	all	these	points	lie	on	a	straight	line
connecting	the	two	end	locations.	For	this	to	work,	the	previously
edited	point	and	the	current	cursor	location	must	both	lie	on	the	same
line.	If	this	is	not	true,	then	the	Range	commands	behave	just	like	the
Modify	commands	described	above,	and	you	will	know	happened
because	the	cursor	shape	will	be	consistent	with	a	Modify	command.
(See	cursor	shapes	table	below).

The	nine	commands	are	also	categorized	into	three	modes	identified	by	the

arrows	next	to	each	command	as	follows:	

Modify↑↓
Insert↑↓
Range↑↓

These	are	the	three	most	commonly	used	data	editing	modes.	As
soon	as	you	select	the	editing	mode,	the	regular	data	cursor
disappears	and	is	replaced	by	an	editing	cursor	with	a	different
shape.	(See	data	editing	cursor	shapes	below).	Then	you	can	grab
the	edit	cursor	with	the	mouse	and	drag	it	to	the	desired	location.
However	you	will	only	be	able	to	move	the	cursor	up	and	down
(i.e.	only	the	y	coordinate	is	allowed	to	change).	Normally	as	soon
as	you	release	the	mouse	button	(after	the	edit	cursor	has	been
dragged	to	its	new	location)	the	edit	command	will	take	effect,	the
edit	cursor	will	disappear,	and	the	normal	data	cursor	will	reappear.
However	if	instead	of	using	the	normal	left	mouse	button,	you	drag
the	edit	cursor	using	the	right	mouse	button,	then	when	you	release
the	mouse	the	edit	command	will	take	effect	but	the	edit	cursor
will	remain	active.	This	makes	it	easier	to	see	the	effect	of	the	edit
and	easily	re-adjust	if	necessary.	Once	you	are	satisfied	with	the
edit	command	you	can	regain	the	normal	data	cursor	mode	by
selecting	"Cancel"	(the	second	popup	option	mentioned	above)	or
more	quickly	just	by	clicking	anywhere	in	the	plot	area	other	than
the	edit	cursor	itself.	In	addition	to	moving	the	edit	cursor	with	the
mouse,	you	can	also	move	the	edit	cursor	more	precisely	by	typing
a	new	y	value	into	the	Ycursor	edit	box.	(You	can	also	modify	the
x	coordinate	by	typing	a	new	x	value	into	the	Xcursor	edit	box
despite	the	fact	that	you	can't	change	the	x	value	when	using	the
mouse.)	After	you	type	a	value	into	either	the	x	or	y	cursor	edit
box,	the	edit	command	takes	effect	and	the	data	edit	mode	is
immediately	canceled	and	the	original	data	cursor	is	restored	(i.e.
there	is	no	provision	for	a	delayed	exit	from	edit	mode	like	you	get
using	the	right	mouse	button).	If	you	would	rather	stay	in	edit
mode	until	cancelled	explicitly,	just	use	one	of	the	three	commands
without	any	arrows	after	it	(described	below).

Modify↔
Insert↔
Range↔

These	three	commands	behave	identically	to	the	three	commands
described	above	except	for	the	fact	that	with	the	mouse	you	can
only	drag	the	cursor	left	or	right	(i.e.	only	the	x	coordinate	is
allowed	to	change).
When	using	these	three	commands	you	can	use	the	mouse	to	drag
the	edit	cursor	anywhere.	As	before	the	editing	mode	is	cancelled

Modify
Insert
Range

as	soon	as	you	release	the	mouse	button	(unless	you	used	the	right
mouse	button).	As	mentioned	above,	the	use	of	the	X	and	Y	cursor
edit	boxes	is	slightly	different	in	that	it	stays	in	edit	mode	until	you
cancel	it	explicitly	(usually	by	clicking	anywhere	in	the	plot	area).

The	currently	enabled	cursor	can	be	put	into	data	editing	mode	from	a	program
as	well.	For	example	the	command	plt	click	Yedit	12;	or	its	functional
form	plt('click','Yedit',12);	puts	the	cursor	into	the	"modify
left/right"	mode,	since	that	is	the	12th	selection	in	the	menu	shown	above.	

The	usual	data	cursor	is	a	plus	sign	or	a	small	circle.	Once	you
select	one	of	the	nine	editing	modes,	the	data	cursor	changes	to
one	of	the	nine	edit	cursors	shown	in	this	figure.	Although	it
wouldn't	really	be	necessary	to	have	a	different	cursor	for	each
mode,	it	does	help	you	remember	what	mode	you	are	currently	in.
If	you	don't	like	the	default	size	that	plt	chooses	for	the	data	edit
cursors,	you	can	change	this	with	a	command	such	as:
setappdata(gcf,'CurEdit',14).	The	new	size	will	be
used	the	next	time	a	cursor	edit	mode	is	selected.	

If	plt	was	called	using	the	MotionEdit	parameter,	the	function	specified	with
that	parameter	will	be	called	continuously	as	you	drag	the	edit	cursor	around.
This	function	may	be	used	to	create	or	modify	text,	plots	or	other	gui	objects	on
the	screen.	Both	the	editz.m	and	pltquiv.m	examples	demonstrate	the	use
of	the	MotionEdit	parameter.	(Also	see	Mouse	Motion	Functions)	

If	you	want	to	save	the	altered	data	(to	a	file	for	example)	you	have	to	get	the
data	from	the	'xdata'	and	'ydata'	properties	of	the	line	handle.	(Remember	the	line
handles	are	returned	by	the	plt	call.)	When	the	user	modifies	any	data	using
these	data	editing	functions,	plt	executes	the	user	specified	move	cursor
callback.	(See	the	description	of	the	'set','moveCB'	function	here.)	The
callback	routine	or	any	other	part	of	your	application	can	use	the	'NewData'
application	property	of	the	current	figure	window	to	determine	if	data	has	been
modified	by	one	of	the	data	edit	commands.	For	example:	

index	=	getappdata(gcf,'NewData');	%	returns	the	index	where

xdata/ydata	was	modified	
if	index																											%	is	there	any	new	data?	
		DataWasModifiedAction(index);				%	yes,	process	the	new	data	
		setappdata(gcf,'NewData',0);					%	indicate	that	the	data	was
already	processed	
end;	

Note	that	the	NewData	property	only	gets	set	after	a	data	edit	operation	is
complete,	unlike	the	MotionEdit	function	which	gets	called	as	you	are
dragging	a	cursored	value	to	its	new	location.	There	is	one	additional	figure
application	data	variable	called	Dedit	that	may	also	be	useful	for	an	application
using	the	data	editing	feature.	The	command	getappdata(gcf,'Dedit')
will	return	the	following	9	element	row	vector:

'Dedit'	figure	application	data	(row	vector)
1 The	CursorID	associated	with	the	edited	trace

2
A	number	from	1	to	9	which	identifies	which	data	edit	command	is	being
used.	(This	is	starting	from	the	top	of	the	popup,	so	1	indicates	the
"Range"	selection	and	9	indicates	the	"Modify↑↓"	selection).

3 The	handle	of	the	cursor	object	associated	with	the	modified	data.

4,5,6
For	internal	use.	(This	saves	the	cursor	marker	shape,	size,	and	linewidth
so	that	the	normal	cursor	can	be	restored	when	the	data	edit	operation	is
complete.)

7,8
For	internal	use.	(This	saves	the	position	index	and	trace	number	of	the
previously	edited	trace	-	information	is	needed	for	the	modify	range
operations.)

9 The	position	index	of	the	cursor	into	the	edited	trace

After	performing	a	data	edit	operation	it	is	likely	that	you	will	want	to	perform
another	data	edit	using	the	same	data	edit	command.	Thus	it	would	be	nice	if	you
could	initiate	another	data	edit	operation	without	having	to	again	select	one	of
the	nine	data	editing	operations.	In	fact	there	is	a	way	to	do	this	-	simply	right-
click	on	the	Xcursor	edit	box.	This	behaves	similarly	to	what	happens	when	you
right-click	on	the	Ycursor	edit	box	except	you	don't	get	the	menu	of	data	editing
choices,	since	it	will	use	your	previous	selection.	There	has	to	be	a	default	for
this	operation	in	case	the	user	right-clicks	on	the	Xcursor	edit	box	before	doing

any	other	data	edit	operation.	The	default	is	"Modify"	since	this	is	the	most
commonly	used	operation.	It	is	rare	to	want	to	change	this	default,	although	it	is
not	difficult	to	do	so.	In	fact	the	demo\editz.m	demo	program	changes	this
default,	so	refer	to	that	example	to	see	how	it	is	done.

Calling	sequence	and	line	styles

This	section	(not	including	the	two	large	tables	at	the	end)	is	a	good
introduction	to	how	to	use	plt	and	the	differences	between	plt	and
the	native	Matlab	plot.	

Usually	you	will	call	plt	with	at	least	two	arguments:	

plt(x,y);	

This	plots	the	data	in	vector	x	along	the	horizontal	axis	and	the	data	in	vector	y
along	the	vertical	axis.	x	and	y	may	be	row	or	column	vectors.	plt	will	transpose
one	of	the	arguments	if	needed	to	line	things	up,	so	x	could	be	a	row	vector
while	y	was	a	column	vector.	x	and	y	must	be	the	same	length	however.	If	not
you	will	get	an	error	message	saying	that	the	vectors	must	be	the	same	length.	

If	y	is	a	real	vector,	plt(y)	is	equivalent	to	plt(1:length(y),y).	

To	plot	more	than	one	trace,	include	the	x	and	y	vectors	for	each	trace	in	the
argument	list.	For	example	this	command	plots	three	traces:

plt(x1,y1,x2,y2,x3,y3)	

Quite	often	several	traces	share	the	same	x	vector.	In	this	case	we	can	simply
repeat	the	x	vector	in	the	argument	list,	as	in:

plt(x,y1,x,y2,x,y3)

		or
plt(x,[y1;y2;y3]).	(a	shorthand	way	of	writing	the	above).	

That	would	work	only	if	the	y1,y2,y3	were	row	vectors.	If	they	were	column
vectors	you	would	need	to	write:

plt(x,[y1	y2	y3])	

You	can	call	plt	using	an	output	argument,	which	will	return	a	column	vector
of	trace	handles.	For	example:	

h	=	plt(x,[y1	y2	y3])	

will	return	a	3	by	1	column	vector	h	of	handles.	h(1)	of	course	would	be	the
line	handle	associated	with	the	y1	trace.	Most	often	when	you	type	the	plt
command	at	the	command	prompt	you	don't	need	to	save	plt's	return	value.
However	when	plt	is	called	from	a	program	sometimes	the	line	handles	are
needed	to	allow	further	manipulations	of	the	plot.	

If	x	and	y	are	both	matrices	of	the	same	size,	plt(x,y)	will	create	one	trace
per	column.	

None	of	this	so	far	should	come	as	a	surprise	since	it	is	identical	to
Matlab's	plot	command.
Some	of	the	ways	that	plt	and	plot	differ	will	become	clear	from
what	follows.	

With	plot	the	data	to	be	plotted	must	be	passed	in	via	the	argument	list.
However,	you	may	call	plt	without	any	arguments,	allowing	you	to	choose	the
data	to	plot	interactively.
Find	out	about	this	method	here:	The	Workspace	Plotter.	

Unlike	plot,	plt	will	accept	data	passed	in	cell	arrays.	For	example	the	following
two	commands	do	the	same	thing:	

plt(x,[y1;	y2;	y3])

plt(x,{y1;	y2;	y3})	

Although	in	the	example	above,	y1,	y2,	and	y3	must	be	the	same	length	so	there
really	isn't	a	big	advantage	for	the	cell	array	input.	However,	now	consider	these
two	commands	(again,	these	two	lines	are	equivalent	to	each	other):	

plt(x1,y1,x2,y2,x3,y3)

plt({x1	x2	x3},{y1	y2	y3})	

With	plot	you	must	use	the	first	form	because	cell	arrays	are	not	allowed.	You
can't	combine	the	arguments	into	vectors	because	they	may	be	different	lengths.
When	typing	in	the	command	window	the	first	form	is	probably	easier	anyway,
but	inside	a	program	the	second	form	is	far	more	convenient,	especially	when
the	data	is	be	read	from	files.	

If	y	is	a	complex	vector,	plt(y)	is	equivalent	to	plt(real(y),imag(y)).
Matlab's	native	plot	works	that	way	too.	Unlike	plot	however,	plt	treats	complex
arguments	this	way	no	matter	where	they	appear	in	the	argument	list.	For
instance	if	a	and	b	are	both	complex,	plt(a,b)	is	equivalent	to	
plt(real(a),imag(a),real(b),imag(b)).	(Why	this	doesn't	work
with	plot	has	sometimes	been	a	mystery	and	an	annoyance	to	me.)	

Also	like	the	plot	command	you	can	include	any	line	property	in	the	argument
list.	For	example:	

plt(x,y,'LineWidth',2)	is	equivalent	to
set(plt(x,y),'LineWidth',2)	

However	the	behaviors	of	plt	and	plot	differs	in	that	with	plot	these	line
properties	must	appear	after	all	the	data	vectors	in	the	argument	list.	(plot	gives
an	error	otherwise).	With	plt	the	line	properties	may	occur	in	the	middle	of	the
argument	list.	In	that	case,	the	line	property	is	applied	only	to	the	lines	defined
earlier	in	the	argument	list.	For	example:	

plt(x,[y1;y2],'Marker','Diamond',x,[y3;y4]);	

only	sets	the	Marker	property	for	the	first	two	traces.	An	equivalent	to	the	above
is:	

a=plt(x,[y1;y2;y3;y4]);

set(a(1:2),'Marker','Diamond');	

By	using	cell	arrays,	you	can	set	properties	differently	on	each	trace.	For
example:	

plt(x,[y1;y2;y3;y4],'LineWidth',{2	2	4	2});	

This	would	set	the	LineWidth	of	the	trace	associated	with	y3	to	4	and	the	other
three	traces	to	2.	A	column	({2;2;4;2})	would	have	worked	equally	as	well.
The	number	of	elements	in	the	row	or	column	vector	must	identical	to	the
number	of	traces	defined	so	far	in	the	argument	list.	(so	as	above,	traces	defined
after	the	LineWidth	parameter	will	just	be	assigned	to	the	default	LineWidth.
Note	that	this	is	not	possible	with	plot,	unless	you	collect	the	various	trace
handles	and	use	set	commands	to	set	the	LineWidths	as	desired.	(plt	tries	to
insulate	you	from	this	need	to	become	familiar	with	handle	graphics).	

Two	more	examples:	

plt(x,[y1;y2;y3;y4],'LineStyle',{'-'	':'	'-.'

'none'});	

plt(x,[y1;y2;y3],'Marker',{'square','none','+'});	

This	method	of	assigned	properties	works	with	any	line	property.	In	the	two
particular	line	properties	used	above,	you	could	have	replaced	'LineStyle'
with	'Styles'	and	'Marker'	with	'Markers'	and	the	results	would	be
the	same.	Styles	and	Markers	are	not	really	line	properties,	however	plt	allows
you	to	use	those	alternate	forms	to	allow	some	additional	flexibility	in	how	you
write	the	parameter	that	follows	it.	(For	example	a	character	array	may	be	used
in	place	of	the	cell	array.)		The	details	of	the	additional	flexibility	provided	by
using	these	two	alternate	parameters	are	described	in	the	Trace	properties
section.	

The	special	plot	types	vertical	bars,	error	bars,	and	vector	fields	(arrows)	are
plotted	with	the	help	of	auxiliary	functions	Pvbar,	Pebar	and	Pquiv.	The	use
of	these	functions	is	described	in	the	Auxiliary	functions	section.

plt	vs.	pltinit

Most	of	the	code	for	this	toolbox	is	broken	up	into	these	two	routines:

Contains	the	code	used	to	create	a	new	plt	pseudo	object	which
means	creating	a	new	plot	axis	or	set	of	axes.	This	also	normally

pltinit.m means	creating	a	new	figure	window	as	well.	(The	only
exception	to	that	is	when	the	'Fig'	parameter	is	included	in	the
parameter	list.)

plt.m

Contains	the	code	used	to	create	or	modify	any	of	the	remaining
pseudo	objects	(including	cursor,	grid,	edit,	pop,	slider,	image,
ColorPick,	and	HelpText).

From	this	description	you	might	expect	that	since	all	the	command	examples
shown	above	create	a	new	plot,	that	they	should	really	be	calling	pltinit()
instead	of	plt().	While	this	is	technically	true,	plt	recognizes	from	the	syntax
when	a	new	plot	is	being	created	and	simply	passes	all	of	its	arguments	on	to
pltinit.	The	advantage	of	this	is	that	"plt"	is	shorter	and	faster	to	type	which	is
especially	important	when	used	from	the	command	window.	To	create	a	new	plot
from	a	script	or	function,	it	is	more	a	matter	of	taste	which	function	you	use.	For
a	complicated	gui,	pltinit	would	be	a	better	choice	because	your	gui	will	likely
have	many	calls	to	plt	as	well	and	it	will	be	a	lot	easier	to	see	where	the	plots	are
created	if	a	different	function	call	is	used.	

This	completes	the	introduction.	What	remains	in	this	section	and	in
fact	all	the	remaining	help	file	sections	might	be	too	long	and
detailed	to	serve	as	an	ideal	way	to	learn	about	these	parameters	and
commands.	Perhaps	an	easier	way	to	learn	how	to	program	with	plt
is	to	run	thru	all	the	demo	programs	(conveniently	done	with
demoplt.m)	while	reading	the	comments	at	the	top	of	each	example
program.	The	program	comments	may	also	be	found	next	to	a
screen	capture	of	each	demo	program	in	the
Programming	examples	section	.	You	will	learn	about	nearly	every	plt
parameter	and	option	this	way.	Then	you	can	use	what	follows
merely	as	reference	material.

Figure	application	data:

After	a	call	to	plt,	the	following	information	is	available	from	the	figure
application	data:
(The	quoted	strings	are	case	sensitive.)

getappdata(gcf,'axis')

Returns	a	row	vector	of	handles	of	the	axes	containing	the
plotted	data.	The	first	handle	in	the	vector	is	the	left	hand
main	plot.	This	is	followed	by	the	subplot	axes	(if	any)	from
the	bottom	up.	Finally,	the	last	element	of	the	vector	will	be
the	handle	of	the	main	plot	right	hand	axis	(if	any).

get(ax,'user')

Returns	the	cursor	ID	for	the	axis	with	handle	
be	any	axis	that	appears	in	the	vector	returned	from	the
command	above.

getappdata(gcf,'cid')

Returns	the	cursor	IDs	for	each	axis,	starting	with	the	main
(lower)	axis	and	working	upwards	to	include	all	the	subplot
axes.	(There	is	not	a	cursor	object	associated	with	the	right
hand	axis	since	the	main	axis	cursor	also	displays	data	from
the	right	hand	axis.)

getappdata(gcf,'Lhandles')
Returns	a	list	of	all	handles	of	all	data	traces	created	by	
Note	that	this	is	identical	to	the	plt	return	value.

getappdata(ax,'Lhandles')	

Each	axis	(including	the	right	hand	axis)	also	has	a
'Lhandles'	application	data	value.	This	contains	a	list	of	all
lines	contained	in	that	axis.	The	main	(lower)	plot	is	an
exception	since	its	Lhandles	list	includes	
the	left	and	right	hand	axis.

findobj('name','Abc')

If	the	plt	call	includes	a	parameter	such	as
'FigName','Abc'	then	this	command	will	return	the
handle	of	the	figure	window	that	plt	created.	This	can	
useful	in	programs	that	create	multiple	plt	figures.

findobj(gcf,'user','TraceID')

Various	plt	arguments	may	be	used	to	modify	the	location,
appearance,	or	contents	of	the	TraceID	box.	However
occasionally	you	may	want	to	make	further	modifications
after	the	plt	call	and	this	command	will	allow	you	to	do	that
by	returning	the	handle	of	the	TraceID	box.

findobj(gcf,'tag','MenuBox')

This	command	will	return	the	handle	of	the	MenuBox.
Assuming	the	menu	box	is	in	it's	default	configuration,	a
command	such	as
get(findobj(gcf,'tag','MenuBox'),'child')

will	return	a	list	of	text	objects	with	string	properties	of
'Help',	'LinX',	'LinY',	'Grid'
and	'XY<->'	.

findobj(gcf,'user','grid')
This	command	returns	a	column	vector	containing	the	line
handles	of	the	plot	grids	for	all	the	axes	in	the	figure.	If	there
is	just	a	single	axis	(i.e.	one	grid	object)	
equivalent	to	plt('grid',0,'get')

getappdata(gcf,'params')

Returns	a	cell	array	list	of	the	parameters	specified	on	the	plt
command	line.	(All	plt	arguments	are	included	except	the
arguments	specifying	the	data	arrays.)

getappdata(ax,'xstr')

Returns	the	value	that	was	specified	in	the	
parameter	when	plt	was	called.	ax	refers	to	the	primary	left
hand	axis.

getappdata(ax,'ystr')

Returns	the	value	that	was	specified	in	the	
parameter	when	plt	was	called.	ax	refers	to	the	primary	left
hand	axis.

getappdata(gcf,'multi')

Returns	a	column	vector	of	handles	to	the	objects	used	to
render	the	Multi-cursor	(the	text	objects,	followed	by	the
markers,	followed	by	the	dotted	vertical	line).	
cursor	is	not	currently	enabled,	then	this	vector	will	be
empty.

Single	argument	actions:

The	command	strings	here	(as	with	most	plt	commands)	are	not	case	sensitive.
So	for	example	"plt	help"	and	"plt	HELP"	are	equivalent.

plt	help

Displays	the	plt	help	file.	You	could	also	use	the
functional	form	of	this	command:	plt('help').
Alternatively,	if	you	just	want	a	one	page	list	of	the	plt
parameters	type	type	help	plt.

plt	version Returns	the	plt	version.	Same	as:	plt('version')

plt	save

Opens	a	dialog	box	allowing	you	to	select	a	.plt	figure
file	that	can	be	opened	later	using	the	plt	open	item
in	the	file	menu.	If	you	want	to	avoid	the	file	dialog
box	add	the	file	name	as	a	3rd	argument
(i.e.	plt	save	filename).	The	use	of	these	plt
figure	files	are	described	in	more	detail	in	the	Menu
box	section.	Note	that	this	command	is	also	available

from	the	file	menu.

plt	open

Opens	a	dialog	box	allowing	you	to	select	a	.plt	figure
file	that	was	saved	using	the	plt	save	item	in	the
file	menu.	If	you	want	to	avoid	the	file	dialog	box	add
the	file	name	as	a	3rd	argument
(i.e.	plt	open	filename).	Note	that	this
command	is	also	available	from	the	file	menu.

plt	close

If	a	programming	error	causes	plt	to	crash,	you	may
find	it	difficult	to	close	the	plt	figure	windows
(because	they	use	the	close	request	function).	This
command	solves	the	problem	by	closing	all	currently
open	plt	figure	windows.	Figure	windows	not	created
by	plt	are	not	closed.	(And	of	course	you	may	also	use
the	functional	form.)

plt	show

If	the	current	figure	was	created	by	plt,	then	this
command,	or	the	equivalent	functional	form
plt('show'),	will	return	a	list	of	trace	numbers
that	are	currently	being	displayed.	For	example	if	you
run	the	demo	program	"plt5.m"	(which	has	five	traces)
and	then	turn	off	traces	3	and	4	(by	clicking	on	their
trace	IDs)	then	this	command	will	return	[1	2	5]
showing	that	those	three	traces	are	currently	active.
You	can	also	use	this	command	with	an	argument	(the
functional	form	only)	from	a	program	or	the	command
window	to	set	the	traces	you	want	active	for	the
current	figure.	For	example	after	running	plt5.m,	the
command	plt('show',2:5)	will	turn	off	the	first
trace	while	leaving	the	remaining	four	traces	on.	Note
that	the	TraceIDs	will	change	their	appearance	to
indicate	which	traces	are	enabled	just	as	if	you	had
done	the	same	operation	by	clicking	on	the	trace
names	in	the	TraceID	box.	To	disable	all	traces,	use
plt('show','')	and	to	enable	all	traces,	use
plt('show','all')	or	plt('show',1:n)
where	n	is	the	number	of	traces	defined.
The	first	two	forms	to	the	left	(off	or	with	no
argument)	deletes	the	help	text	and	the	last	form	(on)

plt	HelpText

plt	HelpText	off

plt	HelpText	on

recreates	that	help	text	again	(which	it	can	do	by
retrieving	the	help	text	information	using
getappdata(gcf,'helptext')).	Help	text	is
usually	created	by	using	the	'HelpText'	parameter
when	the	plt	window	is	created	(this	is	described	in	the
Labels	and	figure	properties	section.)	(And	of	course
you	may	also	use	the	functional	form,	i.e.
plt('HelpText','on');).

plt	move

This	command	(which	has	the	same	effect	as	right-
clicking	on	the	delta	cursor	button)	sets	the	current	plt
figure	into	its	repositioning	mode.	This	allows	all	gui
objects	to	be	resized	and/or	repositioned	using	the
mouse.	The	new	positions	are	displayed	in	the
command	window.	Typing	plt	move	a	second	time
cancels	the	repositioning	mode	and	returns	the	controls
to	their	prior	functions.	Details	may	be	found	here:
GUI	building	with	plt

GUI	building	with	plt

Over	the	years	I	have	created	dozens	of	GUIs	using	Matlab,	nearly	all	of	which
involved	collecting	and/or	viewing	data	and	interacting	with	the	data	or	data
collection	process	in	some	way,	and	I	suspect	the	same	is	true	for	the	GUIs	that
you	need	to	create.	The	first	GUIs	I	created	were	quite	difficult,	but	as	I	built	up
my	bag	of	tools	each	new	program	became	easier	and	quicker	to	write.	The	key	I
found	was	to	avoid	re-inventing	the	wheel	each	time	and	the	best	way	to	do	that
was	to	create	a	series	of	"pseudo	objects".	A	pseudo	object	is	a	collection	of
Matlab	graphics	objects	embedded	with	features	commonly	needed	in	Matlab
GUI	applications.	(I	chose	to	call	them	pseudo	objects	to	distinguish	them	from
the	graphics	objects	supplied	in	the	standard	Matlab	environment.)	These	pseudo
objects	are	combined	into	one	file	exchange	submission	called	(for	historical
reasons)	plt.	My	primary	goal	for	plt	is	to	make	building	GUI	applications	in
Matlab	easier,	faster,	and	more	fun	while	enabling	you	to	create	clearer,	more
concise	code	that	is	compatible	across	all	Matlab	platforms	and	versions.	

The	two	main	tasks	in	creating	a	GUI	application	are:

1.	 Choosing	the	graphical	elements	and	configuring	the	sizes	and	positions	of
these	elements.

2.	 Writing	the	code	that	enables	these	graphical	elements	to	serve	their
intended	purpose.

Matlab's	GUI	building	tool	(called	Guide)	helps	a	lot	with	the	first	task	but
contributes	little	to	the	second.	However	I've	found	that	for	all	but	the	most
trivial	applications,	the	second	task	accounts	for	most	of	the	frustrations	and
time	spent.	My	strategy	is	to	aid	the	second	task	by	providing	a	rich	set	of	the
pseudo	objects	mentioned	above.	It	may	seem	like	this	is	a	tall	order	for	these
new	objects,	but	I	hope	the	examples	that	follow	will	convince	you	that	they	can
impressively	reduce	the	amount	of	code	you	need	to	write.	The	current	set	of
pseudo	objects	is	merely	a	start.	I	plan	to	continue	implementing	new	pseudo
objects	...	hopefully	many	of	them	conceived	by	Matlab	users	such	as	yourself.	

A	parallel	goal	is	to	make	it	easier	to	learn	Matlab	GUI	programming	by

providing	many	well	commented	examples	that	demonstrate	as	many	of	the
pseudo	object	features	as	possible.	It's	easier	to	begin	a	new	GUI	application	by
starting	with	an	example	that	has	at	least	some	of	the	graphical	features	that	you
need.	To	this	end,	plt	includes	26	example	programs	covering	a	wide	variety	of
GUI	features	and	programming	techniques.	New	example	programs	have	been
steadily	added	to	the	list	over	the	years	since	the	first	version	of	plt,	often
initiated	by	questions	and	requests	sent	to	me	by	plt	users.	Although	the	standard
Matlab	plotting	and	graphical	elements	are	thoroughly	documented,	a	common
complaint	is	that	this	information	is	spread	out	over	thousands	of	pages	of
Matlab	documentation	making	it	difficult	to	find	what	you	are	looking	for.	Also
it	is	difficult	to	find	examples	for	most	features.	This	inspired	me	to	design	the
plt	help	file	to	avoid	these	pitfalls	by	organizing	plt's	many	features	into	one
coherent	help	file	including	many	examples.	Every	question	from	a	plt	user	leads
me	to	reexamine	the	documentation	to	see	if	I	have	described	each	feature	and
example	as	completely	and	clearly	as	possible.	

Although	the	first	task	mentioned	above	(configuring	sizes	and	positions	of
graphical	elements)	is	not	where	most	of	the	time	is	spent,	without	an
appropriate	tool	this	could	be	a	painstaking	task.	Matlab's	Guide	tool	does
provide	a	reasonable	solution	to	this	problem	however	I	found	several
annoyances	with	this	tool:

1.	 Guide	forces	me	to	adopt	a	particular	programming	methodology	and	style.
Although	plt	offers	unique	pseudo	objects	you	are	free	to	use	all	or	none	of
them	to	suit	your	purpose	and	no	demands	are	made	on	your	programming
style.	My	preferences	lean	towards	conciseness	and	clarity,	as	you	can	see
from	my	programming	examples.

2.	 Guide	has	evolved	over	the	years	and	works	somewhat	differently	in
different	Matlab	versions	which	can	cause	compatibility	issues.	I	often
support	my	Matlab	applications	for	use	with	older	Matlab	versions,	some	of
which	were	released	even	before	Guide	was	invented.

3.	 I	sometimes	find	it	inconvenient	that	the	program	definition	is	split	between
the	.m	and	.fig	files.	The	.fig	file	format	can	also	lead	to	Matlab	version
dependencies.	(GUIs	designed	with	plt	don't	depend	on	.fig	files.)

4.	 And	most	importantly	Guide	was	not	compatible	with	the	powerful	pseudo
objects	that	I	had	created.

In	addition,	to	the	Guide	compatibility	issues	mentioned	in	point	2	above,	the
graphics	objects	themselves	have	changed	between	versions.	For	example	the

latest	Matlab	version	(R2014b)	finally	allows	you	to	set	the	grid	line	color
independently	allowing	you	to	create	far	more	pleasing	plots.	However	this
won't	help	when	you	try	to	run	your	program	on	previous	Matlab	versions
(which	in	fact	represent	the	majority	of	the	user	base).	On	the	other	hand,	plt	is
designed	to	work	the	same	across	all	Matlab	versions,	so	you	can	share	your
code	with	colleagues	running	older	Matlab	versions.	I	have	tested	plt	on	most
Matlab	releases	dating	as	far	back	as	June	2001	(Matlab	6.1)	and	of	course	it
works	with	Matlab's	most	recent	R2014b	version	as	well.	You	might	think	that
supporting	older	versions	would	limit	plt's	flexibility,	however	as	you	will	see	plt
generally	meets	or	exceeds	the	flexibility	available	with	even	the	latest	native
Matlab	plot	commands	(including	grid	lines	of	course).	

After	abandoning	Guide	for	the	above	reasons,	at	first	I	simply	entered	position
coordinates	by	hand,	often	iterating	many	times	to	adjust	controls	to	achieve	the
desired	look.	But	for	complicated	GUIs	with	many	objects,	this	is	too	time
consuming.	This	led	me	to	develop	a	more	automated	method	of	positioning
pseudo	objects	as	well	as	native	Matlab	objects	without	using	Guide.	This
method	is	not	quite	as	automated	as	Guide,	but	I	hope	you	will	see	from	the
following	examples	that	it	strikes	a	good	balance	between	automation,	power,
and	flexibility.	The	basic	idea	was	to	give	plt	the	the	ability	to	reposition	and
resize	the	graphical	objects	and	to	display	the	results	in	a	way	that	allows	you	to
copy	the	positions	of	all	your	objects	into	your	program	with	a	single	cut	and
paste.	

Since	the	pseudo	objects	are	the	key	innovation	that	simplifies	Matlab	GUI
programming,	let's	briefly	summarize	the	nine	pseudo	objects	that	have	been
implemented	so	far:

Cursor	-	My	goal	for	the	cursor	pseudo	object	was	to	tailor	plt	for	its	role
in	data	exploration.	The	ease	and	responsiveness	of	the	cursoring,	panning,
and	zooming	operations	is	unmatched	by	any	other	Matlab	plotting	package
(at	least	according	to	reports	from	some	plt	users).	Although	you	can	create
cursor	pseudo	objects	independently,	by	default	a	cursor	object	is	created
for	you	when	you	define	a	plt	pseudo	object.	This	relieves	you	of	the	need
to	know	about	the	many	details	of	the	cursor	object.
Grid	-	In	the	latest	Matlab	release	(R2014b)	you	can	change	the	grid	color
using	the	axis	'gridcolor'	property.	However	as	I	mentioned	earlier,	using
this	property	will	give	an	error	if	you	run	the	program	on	any	earlier	Matlab

release.	If	you	are	using	any	release	earlier	than	R2014b,	you	can	see	the
problem	by	typing	plot(rand(1,100));	grid	on;.	and	note	how	the	grid
lines	are	so	overpowering	it	is	hard	to	see	the	trace	underneath.	Now	try
changing	the	grid	line	color	to	something	less	overwhelming	by	typing
set(gca,'xcolor',[.7	.7	.7],'ycolor',[.7	.7	.7]);.	Now	the	grid	lines
look	pretty	nice	but	the	tick	labels	become	so	faint	you	can	barely	see	them.
(This	insanity	was	an	annoyance	and	embarrassment	to	Matlab	users	for	at
least	two	decades	and	in	fact	was	one	of	my	motivations	for	creating	the
first	version	of	plt	a	decade	ago).	The	plt	grid	pseudo	object	gives	you	even
more	flexibility	than	the	latest	Matlab	release	by	allowing	you	to	select	the
grid	color,	thickness,	line	style,	and	erase	mode	without	affecting	any	other
graphic	element.	As	with	the	cursor	pseudo	object,	you	will	rarely	need	to
define	a	grid	pseudo	object	explicitly	since	it	is	also	created	by	the	plt
pseudo	object.	The	defaults	are	to	most	people's	liking	so	you	may	never
need	to	adjust	them.
plt	-	This	can	be	thought	of	a	super	axis	(or	collection	of	axes).	In	that
respect	it	is	similar	to	Matlab's	plot	and	data	is	passed	to	plt	in	the	same
way	making	simple	calls	to	plt	look	the	same	as	the	call	to	plot	(except	for
the	missing	"o").	However	unlike	plot,	plt	also	(by	default	anyway)	creates:

a	cursor	pseudo	object.
a	grid	pseudo	object.
a	menu	box	containing	various	plotting	controls.
a	TraceID	box	which	serves	both	as	a	legend	and	as	a	way	to	enable
and	disable	individual	traces.
a	menu	bar	containing	the	traditional	Matlab	menus
(File,Edit,View,Tools,etc)	as	well	as	a	plt	menu	containing	items
unique	to	plt.

The	plt	pseudo	object	integrates	all	these	elements	together	in	a	consistent
logical	manner	with	the	defaults	oriented	towards	the	typical	data
exploration	needs	of	the	most	common	graphical	interfaces.	This	allows
you	to	take	advantage	of	the	plt	features	in	your	design	even	before	learning
about	the	many	ways	to	tailor	plt	to	your	needs.	It	might	seem	strange	that	I
use	"plt"	both	as	the	name	of	this	pseudo	object	as	well	as	the	name	of	the
entire	toolbox,	however	I	think	you	will	find	that	you	can	tell	which	one	I'm
referring	to	by	context.
Slider	-	Matlab's	slider	is	the	most	versatile	uicontrol	because	of	the	many
ways	you	can	change	the	value	(dragging	the	slider	bar,	clicking	the	left	or
right	arrow,	clicking	the	trough).	Plus	it	is	the	only	uicontrol	whose	action

can	repeat	continuously	as	you	hold	down	the	mouse	button.	This	allows
you	to	smoothly	vary	a	parameter	over	a	range	while	observing	its	effect.
However	the	slider	control	rarely	can	stand	alone.	At	a	minimum	you	need
a	label	to	identify	what	the	control	is	for	and	usually	you	also	need	a	more
precise	representation	of	the	slider	value	than	the	slider	bar	itself	provides.
A	text	box	is	often	used	for	this	purpose,	although	an	edit	box	is	better	since
it	allows	a	way	to	set	the	slider	value	precisely.	It	is	also	common	to	want
labels	to	identify	the	minimum	and	maximum	values	associated	with	the
left	and	right	slider	bar	positions.	Furthermore	sometimes	the	slider	value
must	be	restricted	to	be	an	integer	or	a	multiple	of	some	other	factor	or
other	condition	(such	as	a	power	of	2	for	example).	Also	you	may	want	to
adjust	the	step	size	for	the	arrows	or	trough	or	to	make	the	steps
logarithmically	spaced.	These	requirements	mean	that	you	usually	need	to
write	a	lot	of	code	to	make	a	slider	useful	for	your	application.	The	pseudo
slider	solves	this	problem	by	integrating	all	the	elements	and	options	just
mentioned	into	one	object	that	you	can	simply	drop	into	your	application
and	move	around	as	a	unit.	All	the	code	you	need	to	make	it	useful	is
already	done	for	you!
Edit	-	As	mentioned	above,	the	ability	of	the	slider	and	the	pseudo	slider
to	respond	continuously	as	the	mouse	button	is	held	down	is	a	powerful
feature.	The	one	drawback	of	these	objects	is	that	they	take	up	quite	a	bit	of
space.	For	a	GUI	with	many	controls,	you	may	not	have	room	to	use	sliders
for	many	of	them.	The	edit	pseudo	object	is	the	answer	to	such	a	problem.
It	takes	up	even	less	space	than	a	uicontrol	edit	box.	It	doesn't	have	all	the
features	of	the	pseudo	slider,	but	you	can	continuously	increment	its	value
by	holding	down	the	mouse	on	the	right	side	of	the	object,	and	likewise
decrement	its	value	on	the	left	side.	Like	the	pseudo	slider,	you	can	select
the	increment	amount	as	well	as	the	min/max	limits.	The	edit	object	may
also	be	used	to	contain	vectors	or	strings.	(The	auto-increment	features	do
not	apply	in	that	case.)	Usually	edit	objects	require	a	label	to	identify	the
purpose	of	the	control.	The	edit	pseudo	object	includes	a	label	(optionally)
as	an	integrated	feature.	When	you	reposition	the	edit	control,	the	label
moves	right	along	with	it.	One	less	graphical	object	to	define,	size,	and
position.	Other	advantages	over	the	uicontrol	edit	box	include:

Auto	evaluations
More	flexible	formatting
More	powerful	callbacks
Tex	interpreter	support

Choice	of	figure	or	axis	coordinates
As	an	example	of	an	Auto	evaluation,	consider	that	typing	"cos(pi/6)"	into
the	pseudo	object	would	set	its	value	to	0.866025	(with	fewer	or	more	digits
depending	on	the	format	code).	The	last	point	also	deserves	elaboration.
Normally	you	will	want	to	define	the	edit	pseudo	object	in	figure
coordinates	(what	I	call	a	type	I	edit	pseudo	object)	just	as	you	do	with	a
uicontrol.	However	if	you	want	to	associate	the	object	with	a	plot	(so	it
moves	with	the	plot	if	it	is	repositioned,	or	if	you	want	to	create	an	array	of
edit	objects	it	is	more	convenient	to	use	axis	coordinates	(i.e.	a	type	II	edit
pseudo	object).
Popup	-	The	popup	pseudo	object	closely	mimics	the	function	of	Matlab's
popup	uicontrol	but	has	these	advantages:

You	can	fit	twice	as	many	pseudo	popups	into	a	given	space	as
uicontrol	popups.
You	can	cycle	through	the	popup's	options	without	opening	the	popup
by	right	clicking	on	the	object.	When	you	want	to	see	the	effect	of	all
the	possible	selections,	it	is	far	faster	with	the	pseudo	popup	than	with
the	uicontrol.
Optionally	swap	the	role	of	left	&	right	clicks	(super-button	mode).
Integrated	label	(optional).
More	powerful	callbacks.
Independent	control	of	the	location/appearance	of	the	opened	and
closed	view	of	the	popup.
More	flexible	formatting.
Tex	interpreter	support.
Ability	to	open	or	close	the	popup	from	a	program.

Of	course	uicontrol	popups	and	uicontrol	edit	boxes	may	still	be	used	and
may	be	preferred	when	you	don't	need	any	of	the	advantages	listed	above.
Image	-	Most	of	plt's	features	are	tailored	toward	2D	plotting	(functions	of
a	single	variable).	However	plt	provides	two	methods	to	plot	functions	of
two	variables.	One	is	to	use	a	waterfall	plot	which	makes	use	of	the
auxiliary	function	pltwater.m.	The	other	method	is	to	use	the	Image	pseudo
object.	The	Image	pseudo	object	provides	cursoring	methods	appropriate
for	this	object	type	and	also	includes	several	optional	components
including:

A	color	bar	which	serves	as	a	legend	for	the	z-axis	values	as	well	as
providing	a	method	of	changing	the	colormap	used	to	represent	the	z
data.

A	slider	(labeled	'edge')	that	allows	you	to	control	how	wide	a	range
around	a	midpoint	is	used	when	determining	the	color	used	to
represent	each	array	element.
A	slider	(labeled	''mid'')	that	allows	you	to	control	the	center	value	of
the	range	of	values	used	to	determine	the	color	for	each	array	element.
A	checkbox	that	allows	you	to	control	the	visibility	of	the	axis
gridlines.
A	'view	all'	button,	that	when	clicked	on	resets	the	axis	limits	so	that
all	the	data	is	visible.	A	secondary	feature	of	this	button	is	activated	by
right-clicking	on	it	instead	which	zooms	in	on	the	center	of	the	region
currently	in	view.

ColorPick	-	Nothing	is	quite	as	individual	as	the	colors	we	prefer	in	our
applications,	and	allowing	the	user	to	choose	the	application	colors	is	a	true
sign	that	the	programmer	cares	about	the	user.	However	choosing	several
colors	that	have	to	blend	together	in	a	pleasing	way	is	not	a	simple	matter
and	providing	a	substandard	interface	for	color	choice	can	be	more	of	a
curse	than	a	blessing.	The	ColorPick	pseudo	object	was	carefully	designed
to	make	it	as	easy	as	possible	to	give	your	application	this	flexibility.	I've
found	it	is	important	to	present	the	user	with	palettes	of	colors	to	choose
from	and	have	the	selected	objects	change	instantly	when	a	new	choice	is
made.	A	very	simple	example	of	the	use	of	the	ColorPick	object	is	given	in
gui2.m.	A	more	elaborate	example	is	the	demoplt.m	program	which	also
includes	the	code	to	save	the	selected	colors	in	a	setup	file	so	that	the
chosen	colors	remain	permanent	until	changed	again.
HelpText	-	To	make	our	GUIs	as	easy	to	use	as	possible,	it	is	nice	to
show	help	messages	right	on	the	main	GUI	figure.	Even	if	the	GUI	is
complicated	enough	to	need	a	manual,	most	people	won't	read	it	and	even	if
they	do,	some	reminders	of	the	basics	when	the	program	starts	up	can	be
useful.	Of	course	these	reminders	will	quickly	become	annoying	if	they	get
in	the	way	or	take	up	valuable	screen	area	that	could	be	better	used	by	the
application.	The	HelpText	pseudo	object	was	designed	to	solve	this	need	by
making	it	easy	to	format	and	position	the	help	messages	as	well	as	to	make
them	disappear	as	soon	as	you	start	using	the	GUI.	When	this	pseudo	object
is	created	along	with	the	plt	pseudo	object	(by	using	the	'HelpText'
parameter),	right-clicking	on	the	menu	box	help	tag	will	make	the	help	text
reappear,	although	it	is	easy	to	create	a	dedicated	button	for	that	purpose	if
you	prefer.

A	more	complete	description	of	these	pseudo	objects	from	a	programming
perspective	can	be	found	here:	Pseudo	objects.	

Now	you	are	prepared	to	dive	into	the	examples	that	follow:

A	first	example

Our	first	GUI	example	doesn't	do	any	plotting	or	anything	else	useful	for	that
matter,	so	it	may	not	present	a	compelling	case	for	the	GUI	tools	provided	by	plt.
However	since	it	consists	of	just	a	few	dozen	lines	of	code	it	is	simple	enough
that	you	can	quickly	see	how	to	use	plt	to	arrange	graphic	elements	inside	a
figure	window.	

I	find	that	it	is	best	to	start
working	on	a	new	GUI	with
pencil	and	paper.	Imagine	the
control	types	and	arrangement
for	the	application	and	then
sketch	a	mock	up	such	as	this.
Your	finished	application
rarely	will	look	much	like	your
first	sketch,	but	with	the	rapid
prototyping	possible	with
Matlab	and	plt	you	can	quickly
iterate	improvements	in	form,
concept	and	implementation.	

Here	I	have	decided	on	3
pseudo	sliders	across	the	top	followed	below	by	a	uitable	on	the	left	and	a	frame
on	the	right	containing	4	uicontrols	(a	popup,	slider,	button,	and	checkbox).	

The	bottom	part	of	the	GUI	consists	of	two	large	objects	for	displaying	lists	of
numbers.	The	right	most	one	is	a	simple	text	box	with	room	to	show	about	10
lines	of	text.	The	left	most	one	is	a	listbox	which	by	virtue	of	its	scroll	bar	can
display	a	far	larger	data	set	(80	lines	of	text	in	this	example).	

First	we	create	the	figure	window.	I	usually	start	by	typing	"figure"	in	the
command	window	and	adjust	the	figure	size	to	get	a	first	guess.	In	this	example	I
decide	on	430	by	350	pixels.	The	menu	bar	is	not	needed	for	such	a	simple	GUI
so	the	menu	property	is	set	to	'none'.	I	chose	a	dark	blue-green	for	the	figure
background:	

function	gui1(in1)		
		figure('name','gui1','menu','none','pos',[60	60	430	350],'color',[0	.1	.2]);

The	next	line	defines	the	choices	for	the	popup	menu.	Then	we	create	the	array
which	contains	the	positions	for	the	three	pseudo	sliders	followed	by	a	single
position	which	is	(initially)	used	for	all	the	uicontrols	as	well	as	the	uitable.	Note
that	all	three	slider	positions	are	exactly	the	same	(in	the	middle	of	the	figure).
This	is	easy	and	convenient	at	the	moment,	but	means	that	all	three	sliders	will
appear	on	top	of	each	other.	Not	a	problem	however,	as	it	will	be	easy	to	use	the
mouse	to	move	and	resize	the	sliders	to	an	appropriate	position.	We	will	use	the
fourth	(and	last)	position	in	this	array	for	all	the	uicontrols.	So	of	course	all	these
controls	will	also	appear	on	top	of	each	other,	but	again	we	will	use	the	mouse	to
move	them	to	the	desired	locations.	

		cho	=	{'choice	A'	'choice	B'	'choice	C'};									%	choices	for	popup	control
		p	=	{[.5	.5];	[.5	.5];	[.5	.5];	[.1	.1	.1	.1]};			%	initial	positions:	Slider1;	Slider2;	Slider3;	All	uicontrols

Next,	the	three	pseudo	sliders	and	the	uitable	are	created.	@CBsli,	the	last
parameter	of	the	slider	call,	specifies	the	callback	-	a	function	that	will	be	called
when	the	slider	value	is	changed.	Note	that	we	save	the	handles	of	these	four
objects	even	though	we	don't	really	use	them.	(In	a	real	GUI	we	would	almost
always	need	them.)	

		h1	=	plt('slider',p{1},	10,'PseudoSlider	1',@CBsli);		%	create	the	pseudo	sliders
		h2	=	plt('slider',p{2},	60,'PseudoSlider	2',@CBsli);	
		h3	=	plt('slider',p{3},800,'PseudoSlider	3',@CBsli);	
		h4	=	uitable('units','norm','pos',p{4});														%	create	the	uitable	

Since	the	uitable	hadn't	been	invented	yet	for	Matlab	6,	there	is	an	alternate
version	of	gui1.m	in	the	demo	folder	called	gui1v6.m	where	this	uitable	is
replaced	by	a	radio	button.	Of	course	these	two	objects	don't	serve	the	same
function,	but	since	we	aren't	worried	yet	about	functionality	with	this	example,
this	is	not	a	problem.	

Next,	let's	create	all	seven	uicontrols	in	a	single	line	while	collecting	the	handles
in	a	variable	named	"h".	(A	long	variable	name	I	know	...)	The	spaces	after	the
"h	=	"	are	there	so	that	the	property	values	(style,	string,	and	callback)	in	the
following	three	lines	line	up	under	the	respective	uicontrol	command.	This
makes	it	easier	to	follow	what	is	going	on.	

		h	=												[uicontrol	uicontrol	uicontrol	uicontrol	uicontrol	uicontrol	uicontrol];

		set(h,{'style'},{'frame'	;'popup';		'slider';'pushb'		;'checkbox';'listbox';'text';},...;

							{'string'},{'frame1';	cho			;		'slider';'button1';'check001';''							;''					},...;

							{	'callb'},{''						;	@CBpop;		@CBsli		;@CBpush		;	@CBcheck	;''							;''					},...;

							'backgr',[.5	1	1],'units','norm','pos',p{4});	

Finally	we	save	all	11	handles	in	the	figure	user	data	so	the	callbacks	can	easily
find	them	(h1,h2,h3,h4	followed	by	the	seven	uicontrols	we	just	created).	This
method	works	fine	for	such	a	simple	program,	but	in	the	next	example	we	will
see	the	advantages	of	using	a	structure	for	this	purpose	instead	of	an	array.	We
also	execute	the	callback	function	to	initialize	the	random	data	tables:	

		set(gcf,'user',[h1	h2	h3	h4	h]);	CBsli;	%	save	the	handles	and	execute	the	slider	callback

That's	it	for	the	main	function,	just	14	lines	of	code!	(Although	we	will	add	a
few	more	lines	later.)	We	finish	up	by	writing	the	control	callbacks.	The	first
three	are	just	stubs	to	remind	us	to	eventually	put	some	useful	action	there.	The
last	one	(the	slider	callback)	is	the	only	one	that	does	anything,	which	is	to
update	the	data	tables	with	new	random	data.	The	reason	the	random	numbers
are	in	the	exponent	is	to	create	numbers	with	a	widely	varying	magnitude	so	that
the	table	looks	more	interesting.	(The	same	random	numbers	get	put	into	both
the	textbox	and	the	listbox).	Note	that	the	random	numbers	are	converted	to
strings	using	"prin"	a	substitute	for	"sprintf"	that	includes	features	commonly
needed	in	GUI	programming.	(prin.m	and	its	documentation	prin.pdf	are
included	with	plt.)	

function	CBpop(a,b)			%	popup	callback	-------------
		disp('popup	callback');	
function	CBcheck(a,b)	%	checkbox	callback	---------	
		disp('checkbox	callback');	
function	CBpush(a,b)		%	button	callback	-------------	
		disp('pushbutton	callback');	
function	CBsli(a,b)																					%	slider	callback	-----------------------------	
		h	=	get(gcf,'user');																		%	get	the	object	handles
		t	=	1e20.^(rand(3,80))/1e6;											%	generate	the	random	data
		set(h(10:11),'fontname','courier',...	%	convert	random	data	to	a	cell	array
				'string',prin('3{%6V	}~,	',t));					%	of	strings	for	the	listbox	and	the	textbox
		set(h(4),'data',100*rand(3,2));							%	more	random	data	for	the	uitable

		

Now	that	we	are	done	with	the	coding,	start	the
GUI	by	typing	gui1	in	the	command	window.
The	figure	window	on	the	left	will	appear.	As
we	mentioned	above,	the	uitable	and	all	seven
uicontrols	are	on	top	of	each	other	near	the
lower	left	corner,	so	we	only	see	the	last	one.
Likewise	all	three	pseudo	sliders	are	also	on	top
of	each	other	in	the	middle	of	the	figure.	Now	its
time	to	fix	this	problem.	Type	plt	move	in	the

command	window	to	enable	the	mouse	driven	repositioning	mode.	

The	graphical	objects	inside	the	current	figure
are	grayed	out	to	indicate	that	the	repositioning
mode	is	active.	Now	we	can:	

						•			left-click,	hold,	and	drag	to	move	an
object.
						•			right-click,	hold	and	drag	to	resizes	an
object.
						•			Double	click	to	open	an	object's	property

inspector	window.	

At	the	stage	shown	here	we	at	least	have	moved	and	resized	all	the	objects	so	we
can	see	all	the	individual	items,	none	of	them	overlap,	and	they	are	at	least	close
to	the	positions	we	outlined	in	our	sketch.	

I	notice	that	the	frame	is	too	bright	since	I	intended	it	to	be	a	subtle	grouping.
One	way	to	adjust	this	is	by	typing	commands	into	the	command	window.	After
clicking	on	an	object	(in	repositioning	mode)	a	variable	called	"hhh"	is	added	to
the	base	workspace	containing	the	object's	handle.	So	now	I	can	experiment	with
colors	or	other	properties	by	typing	commands	such	as:	

set(hhh,'backgr',[1	1	2]/6,'foregr',[1	1	1]/2);.	

Once	I	get	the	look	I	want	I	can	copy	and	paste	the	command	from	the	command

window	into	the	program	(right	before	the	line	that	saves	the	handles	to	the
figure	userdata):	

set(h(1),'backgr',[1	1	2]/6,'foregr',[1	1	1]/2);.	

Note	that	I	changed	the	"hhh"	to	h(1)	before	inserting	the	line	into	the	program.
A	second	method	for	doing	this	(instead	of	typing	the	commands	in	the
command	window)	is	to	double	click	on	the	object	which	will	bring	up	the
property	inspector	for	that	object.	Then	as	you	change	the	property	values	in	the
inspector	you	will	immediately	see	the	effect	on	the	GUI.	(The	second	method	is
certainly	easier	if	you	don't	know	the	exact	property	names	for	the	objects	you
are	working	with.)	

With	a	little	more	rearranging	we	finally	get	the
look	we	are	aiming	for	as	shown	here.	Note	that
the	controls	are	still	grayed	out	since	the
repositioning	mode	is	still	active.	One	thing	that
you	will	notice	while	repositioning	objects	is
that	moving	the	frame	also	moves	all	the	objects
inside	the	frame.	Unless	you	have	a	very	old
version	of	Matlab	you	may	also	use	a	uitable	to
allow	this	grouping	effect.	The	main	advantage

of	the	uitable	is	that	you	can	optionally	specify	a	label	for	the	grouping	that	will
appear	along	the	top	edge.	(The	second	example	demonstrates	this.)	

Before	exiting	the	program	or	canceling	the	repositioning	mode	click	on	each	of
the	graphical	objects	once	in	the	order	that	you	created	them	in	the	program	(left
to	right	and	top	to	bottom	in	the	GUI).	As	you	are	clicking	each	item,	plt	will	be
displaying	the	positions	of	the	objects	in	the	command	window.	When	you	are
done	the	command	window	will	contain	something	similar	to	this:	

uic:	207		.540	.500	.440	.280;		%	frame1	
uic:	206		.680	.710	.170	.050;		%	choice	A	
uic:	205		.570	.610	.380	.060;		%	slider	
uic:	204		.570	.520	.170	.060;		%	button1	
uic:	203		.780	.520	.170	.060;		%	check001	
uic:	202		.020	.050	.480	.400;		%	1.79e9			8.4e-6			2.5e12	
uic:	201		.540	.050	.440	.400;		%	1.79e9			8.4e-6			2.5e12	
sli:	401		.020	.920	.300;							%	PseudoSlider	1	

sli:	406		.350	.920	.300;							%	PseudoSlider	2	
sli:	411		.680	.920	.300;							%	PseudoSlider	3	
uit:	208		.020	.500	.480	.280;		%	uitable		

The	first	column	is	a	three	letter	identifier	for	the	object	type.	The	native	Matlab
types	-	uicontrol,	uitable,	uipanel,	axis,	and	text	are	identified	as	uic,	uit,	uip,	axi,
txt	respectively	and	plt's	pseudo	objects	are	identified	as	sli,	edi,	pop,	and	xy.	(xy
refers	to	elements	created	by	the	cursor	and	plot	pseudo	objects.)	The	next
column	is	a	unique	integer	associated	with	the	object.	We	won't	need	that	now,
but	example	2	will	show	how	that	is	used.	The	next	four	columns	(or	three
columns	for	the	pseudo	sliders)	specify	the	size	and	position	of	each	object	in
normalized	units.	At	the	end	of	the	line,	the	object	type	or	string	property	of	the
object	is	included	as	a	comment	to	make	it	clear	which	object	the	line	refers	to.

Now	we	are	going	to	make	the	hard	work	we	did	to	reposition	the	controls
permanent.	First	cut	and	paste	the	11	lines	of	coordinates	from	the	command
window	(shown	above	in	blue)	directly	into	the	gui1.m	source	code.	

Then	we	fix	up	the	11
imported	lines	by	deleting
everything	except	the
coordinates	and
comments,	and	adding
brackets	as	appropriate.
I've	also	made	slight
changes	to	the	comments

for	clarity.	I	find	it	handy	to	turn	on	my	editor's	keystroke	recording	while	fixing
up	the	first	line.	Then	I	can	replay	this	record	to	fix	up	the	remaining	ten	lines	by
hitting	the	"play	macro"	button	ten	times.	Most	editors	have	this	feature	...	but
even	if	you	do	each	line	manually,	it's	not	a	big	deal.	

Finally,	in	this	line	where
we	are	setting	the
position	of	all	seven

uicontrols	to	the	same	value	...	we	have	to	change	that	(as	shown	here)	so	that
the	last	seven	entries	of	the	position	array	are	used	in	sequence.	

Hit	save	on	your	editor,	close	the	gui1
figure	window,	type	"gui1"	in	the
command	window	to	restart	it	...	and	as	we
hoped	the	GUI	appears	just	as	we	had
organized	it.	Try	expanding	the	size	of	the
figure	window	and	note	how	all	the	objects
grow	in	proportion	to	the	figure	size.	This
is	because	we	used	normalized	coordinates
throughout.	If	you	want	to	convert	this
GUI	to	pixel	coordinates,	enter
repositioning	mode,	type

set(findobj(gcf),'units','pix'),	and	then	click	on	every	graphics	object,
again	in	the	same	order	as	they	are	defined.	Again,	cut	and	paste	the	coordinates
(which	now	are	integer	pixels)	into	the	program	as	we	did	before.	Also	remove
the	two	instances	of	'units','norm'	(since	pixels	is	the	default	when	the	units
aren't	specified).	When	you	run	it,	the	GUI	will	at	first	look	the	same,	but	when
you	stretch	the	figure	size,	all	the	objects	will	stay	exactly	the	same	size	in	the

same	position,	thus	creating	empty	space	inside	the	figure.	Generally	you	will
stick	with	either	pixels	or	normalized	coordinates,	although	you	can	mix	them	if
it	suits	your	purposes.	

This	concludes	our	example,	although	if	this	was	a	real	GUI	you	would	not
likely	be	satisfied	yet.	But	using	the	methods	we	just	demonstrated	you	will	be
able	to	iterate	until	you	are	satisfied	with	the	control	types	and	positions.	

A	second	example

Now	that	we	have	covered	most	of	the	basic	concepts	and	techniques,	its	time	to
explore	the	true	power	of	plt	by	reviewing	the	design	of	a	real	GUI	in	one	of	the
application	areas	that	Matlab	was	designed	for.	The	application	I	have	chosen	is
the	display	and	analysis	of	the	classical	analog	filters.	Granted	this	is	not	a
particularly	novel	idea	as	it	probably	has	been	done	before	in	Matlab	and	other
languages,	but	nonetheless	it	serves	various	educational	and	practical	needs	and
there	is	always	room	to	apply	our	own	slant	to	the	project.	I'll	start	out	with	a
relatively	modest	set	of	goals:

Display	the	magnitude	frequency	response	for	the	five	"classical"	analog
filters	(Butterworth,	Bessel,	Chebyshev	type	1	&	2,	and	Elliptic).	The	user
should	be	able	to	easily	select	which	of	these	filters	to	display,	as	well	as
allowing	all	of	them	(or	any	subset)	to	be	plotted	at	the	same	time.
Interactive	selection	of	the	filter	order	and	type	(lowpass,	highpass,
bandpass,	stopband).
Interactive	selection	of	the	number	of	decades	to	plot	as	well	as	the
frequency	resolution.
Both	numerical	entry	and	slider	control	of	cutoff	frequencies	and	pass/stop
band	ripple.
Cursors	should	be	provided	which	allow	for	the	easy	readout	of	the
frequency	response	at	any	point	as	well	as	delta	readouts	to	verify	stop	band
and	pass	band	ripples.	Peak	finding	should	be	provided	as	well	as	the	ability
to	annotate	the	plot	with	text	and	markers	to	document	features	of	interest.

As	is	my	habit,	I	start	with	a	sketch	to	clarify	my	thoughts.	I	decide	to	use	an
array	of	four	pseudo	sliders	along	the	top	to	control	the	continuously	adjustable
parameters	(edge	frequencies	&	ripple)	The	four	remaining	filter	and	display
parameters	are	grouped	to	the	left	of	the	sliders	inside	a	uipanel	unimaginatively
labeled	"Parameters".	The	Trace	IDs	to	the	left	of	that	will	be	named	after	the
classical	filter	types	and	be	used	to	select	which	filters	to	display.	The	plot	and
the	cursor	controls	and	readouts	along	the	bottom	edge	are	the	standard	ones
created	by	the	plt	pseudo	object.	

Ok	...	it's	time	to	start	writing	code.	First	I	have	to	come	up	with	some	first	guess
for	the	object	positions,	and	then	I	define	the	choices	for	filter	type	and	number
of	points	to	display:	

function	gui2()

		p	=	{[.4	.3	.5	.5];		%	plot	position	
							[.2	.5	.1	.2];		%	uipanel	position:	Parameters	
							[.2	.5	.1	.2];		%	edit	position:	filter	order	
							[.2	.5	.1	.2];		%	popup	position:	filter	type	
							[.2	.5	.1	.2];		%	popup	position:	#	of	decades	
							[.2	.5	.1	.2];		%	popup;	position:	#	of	points	
							[.2	.2];		%	slider	position:	Passband	ripple	
							[.2	.2];		%	slider	position:	Stopband	ripple	
							[.2	.2];		%	slider	position:	Cutoff	frequency	
							[.2	.2]};	%	slider		position:	frequency	2	

		typ	=	{'low	pass'	'high	pass'	'band	pass'	'stop	band'};		pts	=	100*[1	2	4	8	16];

So	how	good	are	my	guesses?	Look	at	the	first	screen	shot	below	to	find	out.
Clearly	not	so	good.	The	plot	is	way	too	small	compared	to	my	sketch.	All	the

pseudo	sliders	are	on	top	of	each	other	...	and	they	are	near	the	bottom	instead	of
near	the	top	as	shown	in	the	sketch.	Plus	all	the	pseudo	popups	and	edit	objects
are	also	on	top	of	each	other.	But	as	you	will	see,	this	will	not	be	a	problem	at
all.	In	fact,	it	would	be	a	waste	of	time	to	spend	more	than	a	minute	coming	up
with	the	initial	guess.	Ok,	now	it	is	time	to	create	the	plotting	pseudo	object
(figure,	axis,	cursor,	grid,	traces,	etc):	

		S.tr	=	plt(0,zeros(1,5),'Options','LogX','Ylim',[-80	10],...		
												'TraceID',{'butter'	'bessel'	'cheby1'	'cheby2'	'elliptic'},...	

												'xy',p{1},'LabelX','radians/sec','LabelY','dB');			

The	'xy'	parameter	is	used	to	position	the	plot	within	the	figure	window
(although	you	will	soon	learn	that	this	parameter	can	do	far	more	than	that).	The
data	to	be	plotted	for	all	5	traces	is	defined	in	the	plt	call	(as	it	must),	but	notice
that	each	trace	just	contains	the	single	point	(0,0).	When	calling	plt	from	the
command	line,	you	almost	always	include	the	actual	plot	data	in	the	argument
list,	however	in	a	GUI	more	often	than	not	the	data	supplied	is	just	a	place
holder.	The	real	data	is	loaded	later	(in	the	callback	in	this	example)	by	using	the
trace	handles	returned	by	plt.	Note	that	we	save	these	handles	in	S.tr	(a	1x5
array).	S	is	the	structure	where	we	will	store	the	handles	of	all	the	objects	we
define	in	the	GUI.	The	remaining	plt	parameters	should	be	reasonably	self
explanatory.	Next	we	create	the	uipanel	and	the	four	pseudo	objects	that	we	will
put	inside	it:	

		uipanel('units','norm','title','Parameters','backgr',get(gcf,'color'),...

																	'pos',p{2}	,'high',[.4	.4	.4],'foregr',[.4	.4	.4]);	
		S.n			=	plt('edit',		p{3}	,[6	1	25],'callbk',@clb,'label',{'Order:'	.05});

		S.typ	=	plt('pop',			p{4}	,typ,'callbk',@clb,'swap');	
		S.dec	=	plt('pop',			p{5}	,1:5,'callbk',@clb,'index',3,'label','Decades:');

		S.pts	=	plt('pop',			p{6}	,pts,'callbk',@clb,'index',2,'label','Points:');

For	the	uipanel,	I	set	the	background	color	to	be	the	same	as	the	figure	color	to
give	it	a	transparent	look.	For	both	the	border	outline	and	the	text	label	of	the
uipanel	I	used	light	grey	(rgb	=	.4	.4	.4).	The	uipanel	wasn't	invented	yet	for
Matlab	6,	so	there	is	an	alternate	version	of	gui2.m	called	gui2v6.m	in	the	demo
folder	where	this	uipanel	was	replaced	by	an	axis.	Note	that	the	tag	property	of
the	axis	was	set	to	'frame'.	This	is	to	tell	plt	that	moving	the	axis	in	repositioning
mode	should	also	move	all	the	objects	inside	it	(even	objects	not	children	of	the
axis).	

The	[6	1	25]	parameter	of	the	pseudo	edit	object	means	that	its	initial	value	will
be	six	with	min/max	limits	of	1	and	25.	The	string	'Order'	is	used	as	a	label	for
the	edit	object,	and	the	".05"	tells	it	how	much	space	to	allocate	for	the	label	(in
normalized	coordinates).	The	parameters	for	the	three	pseudo	popup	objects	are
probably	more	obvious,	but	if	not,	consult	the	Pseudo	objects	page.	Next	we
create	the	pseudo	sliders:	

		S.Rp		=	plt('slider',p{7}	,[2		.01			9],'Passband	ripple',	@clb);	
		S.Rs		=	plt('slider',p{8}	,[40		10	120],'Stopband	ripple',	@clb);	
		S.Wn		=	plt('slider',p{9}	,[.02	.001		1],'Cutoff	frequency',@clb,5,'%4.3f	6	2');

		S.Wm		=	plt('slider',p{10},[.2		.001		1],'frequency	2',					@clb,5,'%4.3f	6	2');

The	[2	.01	9]	on	the	first	slider	has	the	same	meaning	as	the	similar	pseudo	edit
parameter	mentioned	above	-	i.e.	2	is	the	initial	value	with	min/max	limits	of	.01
and	9.	The	@clb	specifies	the	callback	function.	(Note	that	same	callback
function	is	used	for	all	the	controls.)	The	"5"	after	the	callback	function	indicates
that	the	slider	will	move	logarithmically	(so	for	example	the	slider	will	move	the
same	number	of	pixels	going	from	.01	to	.1	as	it	does	when	changing	from	.1	to
1.	The	final	parameter	'%4.3f	6	2'	is	shorthand	for	'%4.3f	%6v	%2v'	and
specifies	the	display	format	for	the	min	value,	current	value,	and	max	value
respectively.	Now	we	have	just	a	few	more	lines	left	to	complete	the	gui2.m
function:	

		set(gcf,'user',S);	
		clb;	
%	end	function	gui2		

The	first	line	saves	the	handle	structure	in	the	figure	user	data	where	the	callback
function	can	easily	retrieve	it.	The	next	line	(the	last	of	the	gui2	function)
executes	the	callback	function	to	initialize	the	display	to	agree	with	the	initial
values	of	the	controls.	After	just	17	lines	of	code,	we're	finished	writing	the	main
line	function,	plus	10	more	lines	for	our	initial	guess	for	the	control	positions.
But	now	the	real	work	begins	-	the	callback	function	that	makes	the	GUI	come
alive:	

function	clb()	%	callback	function	for	all	objects;	
		S	=	get(gcf,'user');																																		%	get	handle	structure
		ty	=	plt('pop',S.typ);																																%	get	filter	type	index

		t	=	{'low'	'high'	'bandpass'	'stop'};		t	=	t{ty};					%	get	filter	type	name
		N		=	plt('edit',S.n);																																	%	get	filter	order
		dec	=	plt('pop',S.dec);																															%	get	number	of	decades	to	plot
		pts	=	str2num(get(S.pts,'string'));																			%	get	#	of	points	to	plot
		X		=	logspace(-dec,0,pts);		W	=	X*1i;																	%	X-axis	data	(radians/sec)

First	we	pick	up	the	filter	parameters	that	are	inside	the	uipanel	(filter	type,
order,	number	of	points,	number	of	decades).	You	might	wonder	why	I	seem	to
repeat	myself	by	defining	the	filter	types	again	since	it	would	seem	more	logical
to	simply	get	the	filter	type	with	get(S.typ,'string').	That	command	would
retrieve	one	of	the	following	strings:
{'low	pass'	'high	pass'	'band	pass'	'stop	band'},	but	the	strings	accepted	by	the
Matlab	filter	functions	are	slightly	different:	{'low'	'high'	'bandpass'	'stop'}.	It
would	have	been	much	easier	just	to	use	the	strings	that	Matlab	requires	for	the
popup	control,	but	I	was	too	picky	about	the	look	of	the	popup	control	to	use
those	somewhat	inconsistent	strings.	Finally	the	logspace	command	generates
the	requested	number	of	points	logarithmically	spaced	between	.001	and	1	(for
the	3	decades	example).	W	is	this	same	vector	on	the	imaginary	axis,	which	is
used	with	polyval	to	compute	the	frequency	response	function.	

		Wn	=	plt('slider',S.Wn);																								%	get	filter	freq
		Rp	=	plt('slider',S.Rp);																								%	get	passband	ripple
		Rs	=	plt('slider',S.Rs);		Rs2	=	max(Rp+.1,Rs);		%	get	stopband	ripple	(must	be	>	passband)
		if	ty>2	Wn	=	[Wn	plt('slider',S.Wm)];											%	get	frequency	2
										plt('slider',S.Wm,'visON');													%	make	frequency	2	slider	visible
		else				plt('slider',S.Wm,'visOFF');												%	make	frequency	2	slider	invisible
		end;		

Next	we	pick	up	the	filter	parameters	from	the	four	pseudo	sliders.	Note	that	for
the	last	two	filter	types	(bandpass	and	stopband)	we	need	the	second	frequency
slider	("frequency	2")	and	so	this	slider	is	only	visible	when	one	of	those	filter
types	is	selected.	

		[B,A]	=	butter(N,Wn,t,'s');								H{1}	=	polyval(B,W)./polyval(A,W);	
		[B,A]	=	besself(N,Wn(1));										H{2}	=	polyval(B,W)./polyval(A,W);	
		[B,A]	=	cheby1(N,Rp,Wn,t,'s');					H{3}	=	polyval(B,W)./polyval(A,W);	
		[B,A]	=	cheby2(N,Rs,Wn,t,'s');					H{4}	=	polyval(B,W)./polyval(A,W);	
		[B,A]	=	ellip(N,Rp,Rs2,Wn,t,'s');		H{5}	=	polyval(B,W)./polyval(A,W);	
		if	ty~=1	H{2}=H{2}+NaN;	end;									%	bessel	filter	only	applicable	for	low	pass	

Then	we	use	the	Matlab	classical	filter	functions	to	compute	the	numerator	and
denominator	s-plane	polynomials	(B,A)	and	compute	the	frequency	response
using	polyval.	Although	it	would	have	been	slightly	shorter	to	use	freqs()	instead
of	polyval(),	I	didn't	do	that	since	freqs	is	part	of	a	toolbox	that	some	users	will
not	have.	If	a	filter	type	other	than	low	pass	is	selected,	the	last	line	changes	the
Bessel	transfer	function	to	"NaN"	so	that	the	trace	will	not	appear	on	the	plot.
(The	Bessel	filter	is	only	defined	for	low	pass.)	

		for	k=1:5	set(S.tr(k),'x',X,'y',20*log10(abs(H{k})));	end;	%	set	trace	data
		plt('cursor',-1,'xlim',X([1	end]));																									%	set	Xaxis	limits
%	end	function	clb		

Then	we	use	the	absolute	value	function	to	compute	the	magnitude	of	the
frequency	response,	and	convert	to	dB	(20*log10)	before	placing	the	result	in
the	y-axis	property	of	the	5	traces.	Finally	to	set	the	x-axis	limits	in	case	they
have	changed	(which	happens	when	the	callback	is	in	response	to	the	"number	of

decades"	control).	

Finally	we	are	done	with
the	initial	coding	and	we
can	try	it	out.	Typing
"gui2"	to	start	the
program	brings	up	this
figure.	Although	all	the
controls	are	there	as
promised,	they	are	not
anywhere	close	to	being
in	the	right	place,	but	it
will	take	only	a	few
minutes	to	fix	this.	Begin
by	entering
"repositioning	mode"	by

right-clicking	on	the	delta	button	(or	if	you	prefer,	by	typing	plt	move.)	Then	as	I
described	in	the	previous	example,	use	a	left	click	and	drag	to	move	the	objects
around	and	a	right	click	and	drag	to	resize	them.	

I	still	don't	have	the	final
positioning,	but	it's
close.	The	uipanel
contains	the	controls	it
should	and	the	other
objects	are	also	at	least
in	the	vicinity	of	where
they	should	be.	Note	that
once	objects	are	placed
inside	the	uipanel,
moving	the	uipanel	will
also	move	all	the	objects
inside	it.	After	a	few
more	tweaks,	we	will
have	at	least	our	first	cut

positioning.	Before	closing	this	figure	it	is	important	to	remember	to	left-click
once	on	every	object,	in	the	order	that	they	were	created	in	our	program.	As	we
are	doing	this,	the	text	below	will	appear	in	the	command	window:	

	xy:			1		.130	.105	.840	.760;		%	axes	
uip:	213		.100	.885	.240	.110;		%	uipanel	
edi:	211		.165	.935	.040	.030;		%			6	
pop:	102		.110	.710	.100	.200;		%	band	pass	
pop:	103		.310	.750	.020	.200;		%	3	
pop:	104		.287	.710	.054	.200;		%	200	
sli:	401		.350	.946	.150					;		%	Passband	ripple	
sli:	406		.510	.946	.150					;		%	Stopband	ripple	
sli:	411		.670	.946	.150					;		%	Cutoff	frequency	
sli:	416		.830	.946	.150					;		%	frequency	2	

Then
as

before,	we	copy	and	paste	those	lines	into	the	source	code	as	shown	here.	

We	could	fix	up	the	brackets	and
comments	line	by	line	as	we	did
in	the	previous	example,	however
since	my	editor	has	a	column
select	mode	(as	pretty	much
every	programmers	editor	does)	I
find	it	easier	to	block	delete	the
old	coordinates	(our	rough	first
guess)	and	then	do	a	block	move
(as	shown	by	the	red	arrow)	the
new	coordinates	into	the	blank
array.	

We're	done	with	the	repositioning	step,	so	we	hit	save	in	our	editor,	restart	the
application	and	we	should	see	a	figure	similar	to	the	one	below.	

Now	we	can	play	with
all	the	controls	and	make
sure	everything	is
behaving	as	we
imagined.	Not	bad
considering	we've
written	a	non-trivial	GUI
applications	involving
non-trivial	filter
computations	by	writing
only	51	lines	of	code.
(Fewer	if	you	don't	count
the	automatically
generated	table	of
numbers	that	specify	the
object	positions.)	It's	the	power	of	the	pseudo	objects	that	allows	the	program	to
be	written	so	quickly	and	concisely.	

Of	course	what	nearly	always	happens	the	first	time	you	get	to	experiment	with
your	GUI	is	that	you	will	have	some	new	ideas:

Perhaps	this	isn't	the	most	convenient	set	of	controls.	Would	it	be	more
useful	to	have	fewer	controls,	more	controls,	...	or	just	different	controls?
Even	if	the	controls	seem	appropriate,	perhaps	it	would	be	more	esthetically
pleasing	to	rearrange	and	resize	them?
Do	we	have	features	that	we	don't	really	need?	Or	can	we	add	useful
features	without	making	the	GUI	too	complicated?
Can	we	rearrange	or	refactor	the	code	to	make	it	easier	to	understand	and
adapt?

Indeed	when	I	got	to	this	stage	of	testing	the	application	I	did	have	a	few
enhancement	ideas:

1.	 I	was	curious	(mostly	for	the	elliptic	filter)	how	the	width	of	the	transition
band	(the	space	between	the	passband	and	the	stopband)	varied	as	the	filter
order	changed	as	well	as	the	four	slider	parameters.	Could	I	define	such	a
measure,	figure	out	how	to	compute	it	and	find	a	place	on	the	GUI	to

display	it?
2.	 My	second	idea	was	to	allow	the	user	to	control	at	least	some	aspect	of	the

color	choices	used	in	the	application.	Actually	I	don't	think	such	a	simple
application	like	this	really	needs	this	flexibility,	but	my	ulterior	motive	was
to	showcase	the	ColorPick	pseudo	object	and	how	easy	it	is	to	add	to	your
GUI	and	how	easy	it	is	to	select	the	color	you	find	most	pleasing	for	any
display	element.

3.	 What	does	the	phase	response	of	these	filters	look	like?	Could	I	add	a
display	of	the	phase	response	without	cluttering	up	the	plot	or	obscuring	the
magnitude	response	(which	is	still	the	primary	interest).

4.	 It	would	be	nice	if	whenever	we	made	a	change	to	the	figure	size/position
or	the	color	selection,	that	these	changes	would	be	recorded	so	that	the
application	looks	the	same	the	next	time	it	is	restarted.	While	we	are	at	it,
we	might	as	well	remember	the	state	of	the	eight	filter	parameters	(shown
above	the	plot)	so	that	on	start	up,	the	figure	looks	identical	to	the	way	it
was	when	it	was	shut	down.

5.	 Finally	lets	add	a	very	brief	set	of	help	messages	to	allow	a	new	user	of	the
program	to	get	started	without	having	to	consult	any	help	files	or	manuals.
The	most	important	consideration	should	be	that	the	help	messages	are	not
distracting	in	any	way	to	the	user	who	is	already	familiar	with	the	help
information	presented.

These	enhancements	turned	out	to	be	fairly	easy	to	implement.	You	can	look	at
the	final	code	which	includes	these	enhancements	(gui2.m	in	the	plt\demo
folder)	or	read	on	to	find	out	more	about	the	process.

1.)	Adding	a	multi-line	text	string	(elliptic	transition	ratio)

For	a	low	pass	filter,	I	characterized	the	transition	width	in
terms	of	the	ratio	of	these	two	frequencies:
						•			The	frequency	where	the	stop	band	spec	is	first	achieved
						•			divided	by	the	last	frequency	where	the	passband	spec	is
still	achieved
For	a	high	pass	filter,	the	ratio	is:

						•			The	frequency	where	the	pass	band	spec	is	first	achieved
						•			divided	by	the	last	frequency	where	the	stopband	spec	is	still	achieved	

I	added	an	11th	line	to	the	position	array	at	the	beginning	of	the	program,	to
define	the	location	for	the	new	text	object.	Initially	it	was	just	a	wild	guess	as
usual	which	was	refined	using	the	repositioning	mode:	

		[-.09	.650];	%	text	position:	elliptic	transition	ratio	

The	text	object	was	created	with	this	line	(added	after	the	slider	definitions):	

		S.etr	=	text(0,0,'','pos',p{11},'units','norm','horiz','center','color',[.2	.6	1]);

Note	that	the	string	to	display	was	set	to	null,	because	the	actual	string	to	display
will	be	set	in	the	callback	function	as	follows:	

		h	=	find(get(S.tr(5),'y')	<	-Rs2);																						%	find	indices	where	the	stopband	spec	is	satisfied
		if					isempty(h)																				h	=	0;													%	stopband	specification	not	achieved
		elseif	(ty-2)*(ty-3)																	h	=	X(h(1))/Wn(1);	%	computation	for	lowpass	&	stopband	filters
		else				h	=	find(diff([h	inf])>1);			h	=	Wn(1)/X(h(1));	%	computation	for	highpass	&	passband	filters
		end;	
		set(S.etr,'string',prin('Elliptic	~,	transition	~,	ratio:	~,	%5v',h));	

This	last	line	takes	advantage	of	prin's	cell	array	delimiter	feature	to	create	the
multi-line	string	used	to	display	the	elliptic	transition	ratio	in	the	small	space
available	on	the	left	side	of	the	plot.	To	learn	more	about	prin	and	the	%v	format
used	here,	check	out	the	Auxiliary	functions.

2.)	Selecting	colors

This	was	one	of	the	simplest	of	the	five	enhancements	requiring	just	the	three
extra	lines	shown	below.	I	decided	to	enable	color	adjustment	of	just	the	pseudo
sliders	(the	most	prominent	controls),	although	it	would	be	easy	to	extend	this	to
other	graphic	elements.	In	this	figure	I	have	changed	the	background	color	of	the
sliders	from	its	default	gray	to	orange.	I	encourage	you	to	play	around	with	this
ColorPick	figure.	(Just	right-click	on	any	of	gui2's	pseudo	sliders	to	bring	up
ColorPick.)	If	you	have	ever	dealt	with	the	frustrations	of	assigning	screen
colors,	I	think	you	will	be	pleasantly	surprised	about	how	easy	it	can	be.	Also
you	can	read	about	the	ColorPick	details	near	the	bottom	of	this	page:	Pseudo
objects	

The	first	line
(below)	gets	puts
the	handles	of	all
the	objects
associated	with
pseudo	sliders	into
"h".	Then	the	5th
element	of	each
slider	is	removed,
since	that	is	the	edit
box	portion	which
generally	is	set	to	a
contrasting	color.
The	second	line
assigns	the
ColorPick	object	as
the	buttondown
function	(the	action

associated	with	right	clicking	on	the	pseudo	slider).	The	third	line	is	necessary
to	tell	ColorPick	which	property	of	these	objects	should	be	adjusted	when	a	new
color	is	chosen	(the	background	color	in	this	example).	

		h	=	getappdata(gcf,'sli');		h(5:5:end)	=	[];	
		set(h,'buttondown','plt	ColorPick;');	
		for	k	=	1:length(h)	setappdata(h(k),'m',{'backgr'	h});	end;	

3.)	Linking	traces	(adding	the	phase	display)

To	add	the	phase	display,	the	most	important	change	is	in	the	callback	function.
Before	we	set	trace	data	for	5	traces,	but	now	we	must	set	trace	data	for	10	traces
(the	first	five	for	magnitude	and	the	last	five	for	phase):	

		for	k=1:5			%	set	trace	data
				set(S.tr([k	k+5]),'x',X,{'y'},{20*log10(abs(H{k}));	angle(H{k})*180/pi});

		end;		

Then	we	just	need	to	increase	the	data	array	defining	the	traces	in	the	plt	call
from	5	to	10,	specify	that	the	last	5	traces	should	be	on	the	right	hand	axis	...	and
we	would	be	done.	However	then	we	would	need	10	TraceIDs	up	there	as	well.	I

didn't	want	that	because	then	to	enable	or	disable	the	trace	for	the	cheby1	filter
(for	example),	I	would	have	to	click	on	two	TraceID	tags.	Not	so	convenient.
Also	by	default,	ten	different	colors	would	be	chosen	for	the	ten	traces.	This
would	make	it	more	difficult	to	tell	which	phase	trace	was	associated	with	which
magnitude	trace.	Both	these	problems	are	fixable	of	course:	

		c	=	[0	1	0;	1	0	1;	0	1	1;	1	0	0;	.2	.6	1];	%	trace	colors
		lbl	=	{'dB'	[blanks(70)	'Phase	\circ']};			%	y-axis	labels:	{left,	right}	

The	first	line	above	defines	the	trace	colors	that	also	happen	to	be	the	default
colors	normally	used	for	the	first	five	traces.	Only	we	are	going	to	use	them
below	for	both	the	first	five	traces	as	well	as	for	the	last	five	traces.	The	next	line
defines	the	y-axis	labels	for	both	the	left	axis	(magnitude	response	in	dB)	and	for
the	right	axis	(phase	response	in	degrees).	Note	the	Tex	command	"\circ"	in	the
right	axis	which	inserts	a	small	circle	(the	degree	symbol)	into	the	label.	The	70
blanks	that	are	inserted	in	front	of	the	right	hand	label	is	used	to	push	the	label
up	towards	the	top	of	the	display	where	the	phase	information	will	be	plotted.
And	finally	we	have	to	fix	up	the	main	plt	call:	

		S.tr	=	plt(0,zeros(1,10),'Right',6:10,'Options','LogX',...	
										'DualCur',-5,'TraceID',{'butter'	'bessel',	'cheby1'		'cheby2'	'elliptic'},...

										'Ylim',{[-90	60]	[-1000	200]},'LabelX','radians/sec','LabelY',lbl,...

										'TIDcback','t=plt("show");	t=t(find(t<6));	plt("show",[t	t+5]);',...

										'xy',p{1},'TraceC',[c;c],'+Ytick',-140:20:0,'-Ytick',[-180	0	180]);

Some	of	the	parameter	changes	in	the	plt	call	were	already	mentioned,	but	some
others	merit	mention:

The	'DualCur'	parameter	with	minus	five	as	an	argument	tells	plt	that	the
second	trace	number	that	should	be	cursored	is	offset	from	the	first	one	by
five.	This	means	for	example,	if	you	click	on	trace	2,	not	only	will	a	cursor
appear	on	trace	2,	but	trace	7	will	also	have	a	cursor.	(And	each	cursor	will
have	a	separate	readout	edit	box	as	well.)
The	'Ylim'	parameter	now	includes	two	sets	of	y	limits.	As	with	the
'LabelY'	command,	the	first	entry	is	for	the	left	axis	and	the	second	is	for
the	right	axis.	The	limits	have	been	chosen	to	position	the	magnitude
response	on	the	lower	portion	of	the	graph	and	the	phase	response	on	the
upper	portion.
The	'+Ytick'	and	'-Ytick'	parameters	specify	the	tick	marks	to	be	used	on

the	left	and	right	hand	axis	(respectively).	We	don't	technically	need	these
parameters,	but	it	looks	better	to	include	tick	marks	only	in	the	area	where
the	data	can	be	located.
The	addition	of	the	'TIDcback'	parameter	is	perhaps	the	most	interesting.
This	defines	a	callback	function	that	is	executed	every	time	you	click	on
any	one	of	the	TraceID	text	strings.	Here,	the	plt('show')	function	(see
"Single	argument	actions"	near	the	end	of	this	page)	is	used	to	enable	only
those	phase	traces	that	correspond	to	magnitude	traces	that	are	also	enabled.

4.)	Saving/restoring	the	GUI	state	using	a	configuration	file

Before	the	call	to	plt,	let's	choose	a	file	name	and	path	for	saving	the
configuration	data:			S.cfg	=	[which(mfilename)	'at'];		

Next	let's	add	a	new	function,	called	cfg	which	saves	the	current	configuration	to
the	file:	

		function	cfg()	
				S	=	get(gcf,'user');	sli	=	findobj(gcf,'style','slider');	
				cf	=	{	plt('edit',S.n);						plt('pop',S.typ);	
											plt('pop',S.dec);					plt('pop',S.pts);	
											plt('slider',S.Rp);			plt('slider',S.Rs);	
											plt('slider',S.Wn);			plt('slider',S.Wm);	
											get(sli(1),'backgr');	get(gcf,'pos')											};	
				save(S.cfg,'cf');		

Then	right	before	we	initialize	the	plot,	we	load	the	configuration	file	if	it	exists
and	set	the	GUI	elements	to	agree	with	the	data	in	the	file:	

				if	exist(S.cfg)	load(S.cfg);	
																				plt('edit',S.n,'value',	cf{1});	plt('pop',S.typ,'index',cf{2});

																				plt('pop',S.pts,'index',cf{3});	plt('pop',S.dec,'index',cf{4});

																				plt('slider',S.Rp,'set',cf{5});	plt('slider',S.Rs,'set',cf{6});

																				plt('slider',S.Wn,'set',cf{7});	plt('slider',S.Wm,'set',cf{8});

																				set(h,'background',	cf{9});	set(gcf,'position',	cf{10});

				end;		

And	finally	we	add	this	parameter	to	the	plt	call:	

				'closeReq',@cfg		

This	instructs	plt	to	call	the	function	that	saves	the	configuration	data	when	the
user	closes	the	figure	window	to	exit	the	application.

5.)	Adding	temporary	user	help	message

The	HelpText	pseudo	object	is	ideal	for
this	task	since	it	provides	a	mechanism
for	removing	the	messages	once	you	start
using	the	program.	To	define	the	help	text
and	make	it	visible	on	the	screen,	these
three	lines	were	added	to	the	end	of	the
main	gui2	routine:	

htxt	=	{'Select	the	filter	order	&	type'	...

								'in	the	parameter	box	above.'	''	...	
								'Vary	the	ripple	&	frequency'	...

								'parameters	using	the	sliders.'	.6+.62i};	
plt('HelpText','on',htxt);		%	show	help	text	

Note	that	we	have	defined	a	help	message	consisting	of	five	lines	of	text	(with
the	middle	line	is	blank).	The	complex	number	at	the	end	specifies	the	position
relative	to	the	main	axis	where	we	want	the	help	text	to	appear.	The	real	part
specifies	the	horizontal	position	and	the	imaginary	part	specifies	the	vertical
position	(in	normalized	units).	And	lastly,	this	line	was	added	to	the	and	of	the
callback	function	(clb):	

plt('HelpText','off');	

That	line	insures	that	as	soon	as	the	user	starts	doing	anything	with	the	program,

the	HelpText	will	disappear	insuring	that	it	does	not	become	a	distraction.	

This	concludes	our	discussion	of	the	gui2	example.	Although	it	might	seem	like
coding	this	example	was	a	lot	of	work,	only	about	85	lines	of	code	were	needed
to	implement	a	fairly	complex	set	of	display	and	computational	requirements.
GUI	programming	is	notorious	for	its	complexity,	and	I	believe	that	if	you	tried
to	implement	a	this	application	in	other	programming	languages	you	would	be
looking	at	a	far	larger	effort	with	source	code	running	into	the	many	hundreds	of
lines.	I	would	like	to	be	able	to	report	how	long	the	program	would	be	in	Matlab
using	GUIDE	(without	using	plt),	so	I	would	be	thrilled	if	one	of	the	guide
experts	out	there	would	take	up	this	challenge	by	implementing	the	original	five
goals	of	gui2	as	well	as	the	five	enhancements.	If	you	manage	to	do	this,	I	would
gladly	include	your	GUI	(with	credit	of	course)	to	contrast	the	Guide
programming	style	with	the	one	I	present	here.	

To	further	your	education	of	GUI	programming	with	plt,	I	especially	recommend
reviewing	the	pltsq.m	application	if	you	are	interested	in	moving	plots	(i.e.	real-
time	updating).	Also	the	curves.m,	editz.m,	pltmap.m,	and	winplt.m
applications	are	worth	reviewing	since	they	each	have	a	fairly	rich	GUI	design
with	lots	of	opportunities	for	using	various	plt	features	in	interesting	ways.

SnapTo	resolution

You	may	have	noticed	that	in	repositioning	mode,	the	objects	when	dragged
don't	move	or	resize	smoothly,	but	rather	move	in	steps	of	a	fixed	size.	This
makes	it	easier	to	align	related	objects	and	generally	gives	a	more	pleasing
result.	The	default	grid	size	is	100	by	100	which	means	that	there	are	100
useable	positions	inside	the	figure	in	both	the	x	and	y	directions.	This	also	means
that	if	you	are	using	normalized	coordinates	the	third	decimal	place	for	all
position	vector	elements	will	be	zero.	

There	are	three	ways	to	bring	up	the	SnapTo	figure	shown	below:

1.	 Type	plt	move	res	in	the	command	window.	(This	is	the	only	method	if
you	are	not	using	a	plot	pseudo	object).

2.	 First	left-click	on	the	delta	button,	followed	by	a	right	click	on	the	same
button.

3.	 It's	easy	to	forget	the	sequence	for	method	two,	so	you	can	also	go	to	the	plt
menu	in	the	menu	bar.	There	you	will	see	the	option	"Reposition	grid	size"
which	will	bring	up	the	SnapTo	figure.

The	default	resolution	is	usually	enough,
but	if	you	want	finer	control,	move	one	or
both	of	these	sliders	to	the	right	edge	(i.e.
200).	This	is	nearly	always	enough,

although	if	you	like	you	can	type	in	a	number	bigger	than	200	into	either	edit
box.	Or	you	can	move	the	slider	all	the	way	to	the	left	(i.e.	zero)	which	disables
the	snap-to	feature	altogether.

Trace	properties

Right

You	specify	which	traces	should	appear	on	the	right-hand	axis
with	the	'Right'	parameter.	For	example	if	you	included
'Right',[1	4:2:10	17]	in	the	parameter	list,	then	plt
would	put	trace	numbers	1,4,6,8,10,	and	17	on	the	right	axis
and	all	other	traces	on	the	left	axis.	A	slight	shading	is	used
behind	the	Trace	IDs	associated	with	the	right	hand	axis	so
you	can	tell	at	a	glance	which	traces	belong	to	which	axis.
(You	can	disable	this	shading	if	you	prefer.	To	see	how,	read
the	description	of	the	TraceID	parameter	below).	You	can	also
tell	which	axis	a	trace	is	on	by	the	shape	of	its	cursor	('+'	for
left	axis	and	'o'	for	the	right	axis).	You	can	optionally	specify	a
label	for	the	right	hand	axis	(see	LabelY)	as	well	as	the	axis
limits	(see	YlimR).	Specifying	an	empty	list,	as	in
'Right',[]	tells	plt	to	use	the	left	axis	for	all	the	traces
(the	same	as	if	you	omitted	the	Right	parameter	altogether.)

The	Markers	parameter	is	a	shorthand	way	of	setting	a
different	marker	property	for	each	line.	For	example:	

plt(x,y,'Markers',s)	

is	equivalent	to:	

a	=	plt(x,y);

for	k=1:length(a)

set(a(k),'Marker',s(k,:));	end;	

Markers

The	argument	may	be	an	array	of	characters	or	a	cell	array	of
strings.	The	latter	method	is	easier	when	the	elements	are
different	sizes	because	you	don't	have	to	pad	with	blanks	as
with	the	character	array.	(Wherever	a	character	array	is
allowed	in	a	plt	argument	list,	a	cell	array	of	strings	is	also
allowed	and	visa	versa.)	For	example,	these	two	lines	have
give	the	same	result:	

plt(...,'Markers',['square';'+				';'none

']);

plt(...,'Markers',{'square','+','none'});	

This	sets	the	marker	for	the	first	two	lines	to	a	square	and	a
plus	sign	respectively	while	the	third	line	will	be	rendered
without	any	markers.	

The	following	example	shows	two	ways	to	set	the	markers	of
the	six	traces	to	x,+,square,o,asterisk,x	(respectively).	The
shorter	method	used	in	the	2nd	line	is	possible	because	every
marker	may	be	represented	with	a	single	character:	

plt(...,'Markers',

['x';'+';'s';'o','*','x']);

plt(...,'Markers','x+so*x');

The	Styles	parameter	is	a	shorthand	way	of	setting	the
LineStyle	property	in	a	similar	way	that	the	Markers
parameter	is	used	to	set	the	Marker	property.	For	example,	to
set	the	first	trace	to	normal,	the	2nd	and	3rd	traces	to	dotted
and	dashed	respectively,	and	the	4th	trace	to	none	(useful
when	you	want	the	markers	with	no	lines	connecting	them)
you	would	use	the	following	command:	

plt(...,'Styles',{'-',':','--','none'});	

The	shorthand	for	single	character	styles	mentioned	above
also	works.	For	instance,	to	alternate	between	normal	and
dotted	among	eight	traces	one	could	use:	

Styles plt(...,'Styles','-:-:-:-:');	

One	additional	trick	applies	to	the	Styles	parameter.	If	a	single
character	is	given	which	is	not	a	valid	line	style,	then	the
linestyle	property	is	set	to	none	and	the	given	character	is
applied	to	the	marker	property.	As	an	example,	the	following
command	defines	eight	traces	of	which	the	first	four	are
rendered	as	continuous	lines	(i.e.	without	markers)	and	the	last
four	are	rendered	with	plus	sign	markers	placed	at	each	x,y
location	specified	by	the	data	arrays	but	with	no	lines
connecting	the	markers:	

plt(...,'Styles','----++++');	

Since	there	are	no	marker	property	values	which	can	also	be
linestyle	property	values,	there	is	never	any	ambiguity	as	to
which	property	should	be	set.

GridStyle

This	parameter	allows	you	to	select	the	grid	line	style.	For
example:	

plt(...,'GridStyle',':');	

will	select	a	dotted	or	dashed	line	(depending	on	the	graphics
renderer).	If	this	parameter	is	not	included	the	default	is
usually	a	solid	line	('-')	although	there	is	one	somewhat
complicated	exception	to	this	which	is	described	in	the	default
section	of	the	GRIDc	parameter	which	you	can	find	here.

This	parameter	allows	you	to	assign	a	name	to	each	trace.	This
name	will	appear	in	the	trace	selection	box	(also	sometimes
called	the	TraceID	box).	The	number	of	characters	that	will	fit
in	the	trace	selection	box	depends	on	the	size	you	choose	for
the	plt	window.	For	the	default	figure	size	there	is	room	for
about	5	uppercase	or	6	lowercase	characters.	In	the	example
below,	both	forms	are	equivalent:	

TraceID

plt(...,'TraceID',['Rtemp';'Ltemp';'RV1	

']);

plt(...,'TraceID',

{'Rtemp';'Ltemp';'RV1'});	

Default:	['Line	1';'Line	2';	...	'Line	n'];	

If	you	want	the	plot	to	be	created	without	a	TraceID	box,	call
plt	with	a	TraceID	parameter	of	zero	or	the	empty	set	([]	or	'').
Since	plt	can't	create	a	TraceID	box	containing	more	than	99
IDs,	if	you	want	to	plot	more	than	99	traces,	you	must	include
'TraceID',0		(or	with	the	equivalent	empty	set	value)	in
the	parameter	list.	

When	specifying	traceIDs,	you	must	have	one	trace	ID	for
every	trace	on	the	main	and	right	hand	axes.	However	if	you
don't	want	a	trace	ID	for	a	specific	trace	to	appear,	just	use	the
null	string	('')	for	the	trace	name.	If	you	do	that,	the	trace	ID
box	will	be	made	smaller	to	account	for	the	fewer	number	of
IDs	displayed.	

Normally	traceIDs	associated	with	the	right	hand	axis	will
appear	in	the	traceID	box	with	a	slight	shading	so	you	can
identify	those	traces	at	a	glance.	If	you	want	to	disable	this
shading,	insert	the	special	character	']'	at	the	beginning	of	the
first	TraceID	name.	The	right	bracket	will	be	removed	from
the	trace	name	before	it	is	used.	The	third	plot	of	the	pub.m
demo	program	demonstrates	the	use	of	this	special	character.	

You	may	specify	a	callback	function	(fcn)	to	execute	when	the
user	clicks	on	any	of	the	TraceID	tags	by	including	the	
parameter	'TIDcback',fcn	in	the	argument	list.	If	the
string	'@TID'	occurs	anywhere	inside	the	function	string
then	it's	replaced	with	the	handle	of	the	trace	ID	string.
Likewise	if	the	string	'@LINE'	occurs	anywhere	inside	fcn,	it
is	replaced	with	the	handle	of	the	trace	itself	and	occurrences
of	'@IDX'	are	replaced	with	the	index	of	the	selected	trace.
(i.e.	2	for	the	second	trace	listed	in	the	TraceID	box).	See	the

demo	program	pltquiv.m	for	an	example	using	the
TIDcback	parameter.	In	that	example,	the	name	and	color	of
a	trace	is	displayed	in	the	command	window	when	you	click
on	a	Trace	ID	tag.	(Not	particularly	useful,	but	this	example
was	contrived	to	demonstrate	all	the	possible	substitutions.)	To
define	a	quote	within	a	quote	in	Matlab,	one	uses	two	single
quote	characters	in	a	row.	Since	this	can	get	confusing	at
times,	callbacks	defined	within	plt	may	use	a	double	quote
character	instead	of	two	successive	single	quotes.	The
pltquiv.m	example	uses	this	alternative	form.	In	addition	to	a
string,	fcn	may	also	be	a	function	handle	of	the	form	@func
or	{@func,arg1,arg2,...,argn}.	Note	that	the	string
substitutions	can't	be	used	with	the	function	handle	form	of
this	parameter.	

You	also	may	change	the	traceIDs	after	the	plot	has	been
created.	For	example,	if	the	current	figure	contains	a	plot	with
four	traces,	these	traces	can	be	renamed	with	a	command	such
as:	

plt('rename',

{'First'	'Second'	'3rd'	'4th'});	

If	there	are	other	changes	you	want	to	make	to	the	TraceID
box	from	your	program	(as	in	the	curves.m	example),	you
can	get	the	handle	of	the	axis	that	contains	all	the	TraceID
objects	with	the	following	command:	

tbox	=	findobj(gcf,'user','TraceID');	

Then,	for	example	the	following	command	would	make	the
TraceID	box	invisible:	

set([tbox;	get(tbox,'child')],'vis','off')

An	easier	way	to	make	the	TraceID	box	invisible	would	be	to
simply	move	it	outside	the	figure	area:	

set(tbox,'pos',[-2	0	1	1]).	

Or	in	the	unlikely	event	you	wanted	to	reverse	the	order	of	the
TraceIDs	(i.e.	bottom	to	top	ordering	in	the	TraceID	box),	use
the	command:	

set(tbox,'view',[0	270]).

TraceMK

This	parameter	allows	you	to	show	the	line	types	in	the	trace
selection	box	to	help	identify	the	traces.	This	can	be	visually
pleasing	and	is	especially	helpful	if	you	are	color	blind.	If	the
argument	is	a	vector,	it	specifies	the	marker	positions	within
the	trace	selection	box.	For	example
'TraceMK',[.6	.7	.8	.9]	would	tell	plt	to	place	a
horizontal	line	next	to	each	TraceID	label	beginning	and
ending	at	x	=	.6	and	.9	with	markers	at	the	four	locations
specified	(assuming	the	line	type	in	the	plot	included
markers).	The	area	between	x	=	0	and	.6	(i.e.	the	first	60%)
would	be	used	for	the	text	label.	If	the	first	element	of	the
vector	is	less	than	.25	then	plt	will	not	display	the	text	labels
since	there	probably	would	not	be	room	for	them	anyway.
(Clicking	on	the	lines	in	the	TraceID	box	have	the	same	effect
as	clicking	on	the	labels,	so	the	labels	can	be	removed	without
loss	of	functionality).	If	the	argument	is	a	scalar,	plt	will	use
that	value	as	the	first	element	of	a	length	3	vector	whose	last
element	is	.9.	Thus	'TraceMK',.6	is	shorthand	for
'TraceMK',[.6	.75	.9].	A	special	case	is	when	the
scalar	argument	is	zero,	in	which	case	no	lines	are	inserted
into	the	trace	selection	box	(as	if	the	TraceMK	parameter	was
not	used	at	all).	See	the	demo	programs	trigplt.m	and
subplt.m		for	examples	of	using	the	TraceMK	parameter.

All	TraceIDs	will	appear	in	the	trace	selection	box	(aka
TraceID	box)	in	a	single	column	except	when	the	TIDcolumn
parameter	is	included.	This	is	useful	when	you	are	using	so
many	traces	that	the	TraceID	box	becomes	too	crowded	to	fit
all	the	trace	names	in	a	single	column.	The	simplest	way	to
use	the	TIDcolumn	parameter	is	to	supply	an	empty	argument

TIDcolumn		

to	the	parameter	(i.e.	''	or	[]).	When	this	is	done	plt	will	use
just	a	single	column	for	the	TraceID	box	when	the	number	of
traces	is	24	or	less.	Two	columns	will	be	used	when	the
number	of	traces	is	between	25	and	48,	and	three	columns	will
be	used	when	there	are	more	than	48	traces.	(The	TraceID	box
will	not	appear	when	more	than	99	traces	have	been	defined).
This	default	will	probably	work	in	nearly	all	situations	but	if
you	want	exact	control	over	how	many	columns	are	used	and
how	many	traceIDs	appear	in	each	column,	you	can	do	that	by
specifying	a	non-empty	argument	to	the	TIDcolumn	parameter
as	follows:	If	TIDcolumn	is	a	scalar,	it	specifies	the	number
of	TraceIDs	to	put	in	the	second	column.	If	it	is	a	vector,	it
specifies	the	number	of	TraceIDs	to	put	in	columns	2,3,etc,
with	the	remaining	going	into	column	1.	For	example,	if	30
traces	are	displayed,	and	you	use	'TIDcolumn',8		then	the
first	22	TraceIDs	appear	in	the	first	column	and	the	last	8
appear	in	the	second	column.	'TIDcolumn',[5	5	5]
would	tell	plt	to	arrange	the	30	IDs	in	four	columns	as
follows:	(1-15,	16-20,	21-25,	26-30).

DIStrace

By	default,	all	the	traces	defined	by	plt	are	visible	until	you
change	that	from	the	trace	selection	box.	You	can	change	the
default	by	disabling	some	traces	from	the	plt	call.	For
example:	

plt(...,'DIStrace',[1	1	0	0	0]);	

This	tells	plt	to	start	the	display	with	the	first	two	traces
disabled	and	the	remaining	3	traces	enabled.	Of	course	you
can	later	enable	the	first	two	traces	via	the	trace	selection	box.
If	the	parameter	has	fewer	elements	than	the	number	of	traces,
it	is	extended	by	adding	zeros.	This	means	that	we	could	have
used	[1	1]	above	to	the	same	effect.	After	the	call	to	plt	has
been	made,	if	you	want	to	change	which	traces	are
enabled/disabled	you	can	click	on	the	TraceIDs	as	described	in
Selecting	traces.	However	if	you	want	to	do	that	from	a
program	you	can	use	the	plt('show',...)	command
which	is	described	at	the	very	bottom	of	the

Calling	sequence	and	line	styles	section.

ENAcur

By	default	you	will	be	allowed	to	cursor	every	visible	trace	in
the	plot	area.	You	can	change	this	default	using	this	parameter.
For	example,	if	we	had	five	traces,	but	wanted	to	use	cursors
only	on	traces	1,4,	and	5	you	would	use:	

plt(...,'ENAcur',[1	0	0	1	1]);	

If	the	parameter	has	fewer	elements	than	the	number	of	traces,
it	is	extended	by	adding	ones.	This	means	that	we	could	have
used	'ENAcur',[1	0	0]	above	to	the	same	effect.

+

This	parameter	allows	you	to	reserve	space	for	additional	traces	to	be	added
to	the	figure	after	the	plt	window	has	been	started.	For	example
plt(x1,y1,x2,y2,'+',5);	opens	the	plt	window	with	two	traces,
the	first	one	defined	by	x1,y1	and	the	second	one	by	x2,y2.	Then	room	is
reserved	in	the	TraceID	box	for	up	to	5	more	traces	that	can	be	added	using
the	pltt.m	function.	This	parameter	is	normally	only	used	inside	script	or
function	files	because	when	you	type	the	plt	command	in	the	Matlab
command	window	an	automatic	'+',8	is	assumed.	You	could	still	include
the	+	parameter	from	the	command	window	in	the	unlikely	event	you	were
planning	on	adding	more	than	8	traces.	When	plt	is	called	from	a	script	or
function,	you	can't	add	traces	after	the	plt	window	has	opened	unless	you
had	included	the	+	parameter	in	the	argument	list.	

It	is	unusual	to	want	to	add	dozens	of	traces	with	the	pltt	function,	but	it	is
possible.	For	example	with	the	command
plt(x,y,'+',39,'TIDcolumn','');	plt	will	reserve	space	in	the
TraceID	box	for	40	traces.	The	first	is	specified	in	the	plt	command	and	the
remaining	39	can	be	added	using	the	pltt	function.	The	TIDcolumn
parameter	was	needed	in	this	case	because	without	it,	plt	would	attempt	to
cram	all	40	TraceIDs	into	one	column	which	would	probably	be
unreadable.	

You	may	include	the	TraceID	parameter	in	the	argument	list	as	well	if
you	like,	and	you	should	be	aware	that	there	are	two	ways	of	doing	this.
The	first	(and	by	far	the	most	common)	way	of	doing	this	is	to	put	the
'TraceID'	parameter	before	the	'+'	in	the	argument	list.	When	done	in	that
order,	that	TraceID	argument	specifies	the	trace	names	only	for	the	traces
defined	in	the	argument	list.	Then	when	the	'+'	parameter	is	encountered,
plt	expands	the	TraceID	list	using	default	names	that	will	usually	be
overwritten	by	the	trace	names	included	in	the	calls	to	pltt.	When	done	in
the	opposite	order,	the	TraceID	argument	should	include	the	trace	names
you	want	for	the	traces	that	will	be	added	later	(even	though	the	trace
names	will	be	invisible	until	those	traces	are	added).	And	if	the	TraceID
argument	does	not	include	enough	trace	names	for	this,	when	a	trace	is
added	after	the	list	has	been	exhausted,	the	new	trace	will	be	added	without
any	corresponding	entry	in	the	TraceID	box	(which	occasionally	might
even	be	what	you	wanted).	

Typically	the	+	parameter	is	placed	after	all	the	traces	defined	inside	the	plt
argument	list,	however	this	is	not	strictly	necessary.	In	fact	multiple	+
parameters	may	be	included	and	they	may	be	interspersed	with	the	trace
definitions	in	the	parameter	list.	When	you	do	that,	the	space	reserved	in
the	TraceID	box	for	the	traces	to	be	added	later	will	be	interspersed	with
the	defined	traces	in	the	order	in	which	they	appeared.	This	flexibility	is
rarely	needed,	but	nevertheless	it	is	available	if	you	want	it.	Note	that	when
traces	are	added	with	the	pltt	function,	the	reserved	slots	are	used	in	order
(top	to	bottom,	as	well	as	left	to	right	if	multiple	columns	were	enabled).	

You	might	expect	that	when	all	the	free	slots	in	the	TraceID	box	have	been
used	up,	you	can	no	longer	add	a	new	trace	with	the	pltt	function	...	but	in
fact	you	can.	What	happens	is	that	in	this	situation,	pltt	will	overwrite	the
data	and	the	trace	name	of	the	last	trace	that	was	added,	so	effectively	you
can	never	run	out	of	free	slots	(unless	you	never	allocated	any	in	the	first
place).

Axis	properties

Xlim

plt(...,'Xlim',[xmin	xmax]);

Specifies	the	x-axis	limits.	If	you	are	using	a	2	column
subplot,	you	can	specify	the	x-limits	for	both	both
columns	by	using	a	cell	array.	i.e.
'Xlim',{[xminL	xmaxL];	[xminR	xmaxR]};

If	you	want	to	specify	just	the	right	column	limits,
replace	the	left	column	limits	with	the	string
'default'.

Ylim

plt(...,'Ylim',[ymin	ymax]);

Specifies	the	y-axis	limits	for	the	left-hand	y	axis	of	the
main	plot.	Alternatively	you	may	specify	the	limits	for
both	the	left	and	right	hand	y-axes	of	the	main	plot	using
a	cell	array	as	in:
'Ylim',{[ymin	ymax]	[yminR	ymaxR]}.	The
'Right'	parameter	should	also	be	included	in	this
case,	however	if	you	don't,	plt	will	default	to	placing	the
last	trace	on	the	right	hand	axis.	Note	that	this	parameter
only	specifies	limits	for	the	main	plot	and	never	for	any
of	the	other	subplots.	If	you	need	to	set	the	y-axis	limits
for	the	other	subplots,	use	the	set	command	with	the	axis
handles	obtained	from	getappdata(gcf,'axis').

YlimR

plt(...,'YlimR',[ymin	ymax]);

Usually	the	y-axis	limits	are	specified	using	the	Ylim
parameter	(above)	however	if	you	only	need	to	specify
the	limits	for	right-hand	y	axis	use	the	YlimR

OID1 x y w h
OID2 x y w h
... 	 	 	 	

OIDn x y w h

parameter.	The	'Right'	parameter	should	also	be
included,	however	if	you	don't,	plt	will	default	to
placing	the	last	trace	on	the	right	hand	axis.

xy

plt(...,'xy',p]);

where	p	specifies	new	xy	position/size	coordinates	for
various	graphical	objects	created	by	plt.
p	is	a	5	column	matrix	in	the	following	format:

OID1	thru	OIDn	(Object	IDs)	are
integers	that	specify	the	objects
(often	an	axis)	to	be	resized	and
repositioned.	x	and	y	represent	the
coordinates	of	the	lower	left	edge	of
the	object	and	w	and	h	specify	the

width	and	height.	(x,y,w,h	may	be	in	pixels	or	in
normalized	units	i.e.	as	a	fraction	of	the	window	size).
The	OIDs	are	described	in	the	following	table:

OID 	
1 The	main	(left)	plot	axis

2

This	usually	represents	the	right
hand	axis.	However	if	subplots
have	been	specified	
represents	the	first	subplot.	The
remaining	subplots	are
numbered	sequentially	
the	next	number	after	the	last
subplot	is	assigned	to	the	right
hand	axis.	(Note	that	this	means
that	the	OID	for	an	axis	will	be
it's	index	into	the
getappdata(gcf,'axis')

array	since	it	is	ordered	the	same
way.)

0

This	is	the	only	OID	that	refers	to	more	than	one	object,
i.e.	both	the	main	left	and	right	hand	axes.	If	there	is	no
right	hand	axis,	OIDs	0	and	1	are	equivalent.	Also	this	is
the	default	OID	if	none	is	given	(which	is	only	allowed
if	the	OID	parameter	contains	only	a	single	row).	This
means	that	plt(...,'xy',[x	y	w	h])	is
equivalent	to	plt(...,'xy',[0	x	y	w	h]).

-1 Represents	the	axis	containing	the	traceIDs.
-2 Represents	the	axis	containing	the	menu	box	items.

This	is	similar	to	OID	0	except	that	in	addition	to
adjusting	the	positions	of	the	left	&	right	axes,	it	also
adjusts	the	associated	cursor	object	positions	and	sizes
(TraceID	box,	menubox,	cursor	readouts,	etc.).	For	small
axes,	this	can	sometimes	scale	the	cursor	object	to	small
or	close	to	the	axis	so	there	is	a	way	to	define	this

-3

scaling	independently	as	follows:
		AxisSize			=	[.3	.3];	AxisPosition	=

[.2	.4];

		CursorSize	=	[.5	.5];

		plt(...,'xy',[-3	AxisPosition

AxisSize	+	CursorSize*1i]);

The	correction	for	the	cursor	size	(using	the	imaginary
component)	may	be	applied	in	both	x	&	y	directions	as
in	the	above	example,	or	it	may	be	applied	to	either
direction	alone.	Both	the	plt50.m	and	editz.m	example
programs	demonstrate	the	use	of	the	imaginary
component	in	the	y	direction	only.

other

All	graphical	objects	created	by	plt	as	well	as	those	later
created	in	the	same	figure	window	have	a	unique	OID
and	therefore	may	be	repositioned	using	the	xy
parameter.	To	determine	an	object's	OID,	enter	the
repositioning	mode	by	right-clicking	on	the	delta	cursor
button.	Then	clicking	on	any	other	object	will	display	its
OID	followed	by	its	current	position	coordinates.

For	example:
plt(...,'xy',[-1	.01	.8	.12	.18;	1	.2	.16	.7	.8]);

will	set	the	traceID	box	to	normalized	position	[.01	.8	.12	.18]	and	set	the	main
axis	to	normalized	position	[.2	.16	.7	.8].	

Although	you	can	determine	and	enter	these	position	coordinates	manually,	it	is
usually	far	easier	to	use	the	plt	repositioning	mode	to	determine	the	coordinates.
See	GUI	building	with	plt	to	learn	how	this	is	done.	That	section	also
demonstrates	in	detail	how	to	use	the	xy	parameter	to	reposition	any	of	the
graphical	objects	in	the	plt	figure	window.

AxisPos

plt(...,'AxisPos',p);

Usually	the	size	and	position	of	the	plot	and	TraceID	box	are	modified	using	the
xy	parameter	described	above,	however	AxisPos	provides	an	alternate	method

that	is	included	primarily	for	backwards	compatibility	with	older	programs
written	before	the	xy	parameter	was	added.	Although	on	rare	occasions	the
AxisPos	parameter	may	actually	be	easier	to	use	than	the	xy	parameter.	p	is	a	4
element	vector	that	modifies	the	size	and	position	of	the	plot	axis	in	the	figure
window.	The	first	two	elements	modify	the	x	and	y	coordinates	of	the	lower	left
corner	of	the	axis.	The	last	two	elements	modify	the	axis	width	and	height
respectively.	For	example	if	p	=	[1	1	.9	1],	the	width	of	the	plot	will
shrink	by	10%.	If		p	=	[1	2	1	.8]	then	the	space	between	the	bottom	of	the
figure	window	and	the	bottom	of	the	x-axis	will	double	and	the	plot	height	will
shrink	by	20%.	Changing	the	size	and	position	of	the	axis	is	often	useful	when
building	applications	to	make	room	for	additional	GUI	objects.	If	p	is	a	5
element	vector,	the	width	of	the	trace	ID	box	is	increased	by	a	factor	of	p(5)	to
allow	longer	trace	names.	If	p	is	an	8	element	vector,	the	position	of	the	trace	ID
box	(xLeft,yBottom,width,height)	is	multiplied	by	last	four	elements	of	p	(i.e.
p(5:8))

axisCB

plt(...,'axisCB',s);

Evaluate	string	s	when	either	the	x	or	y-axis	limits	are	changed.	This	callback
function	can	be	also	be	specified	by	the	cursor	command
plt('cursor',cid,'set','axisCB',fcn)	which	is	described	in
more	detail	in	the	cursor	commands	section.	At	the	top	of	that	section	there	is
also	a	table	that	describes	the	string	substitutions	that	plt	performs	on	the	string
before	evaluating	it.	These	substitutions	can	make	the	callback	more	powerful
while	using	less	code.	In	addition	to	a	string,	s	may	also	be	a	function	handle	of
the	form	@func	or	{@func,arg1,arg2,...,argn}.	Note	that	the	string
substitutions	can't	be	used	with	the	function	handle	form	of	this	parameter.	

Note	that	if	the	function	is	defined	as	a	string	argument	often	consecutive	single
quote	characters	are	required	(quotes	within	quotes).	In	that	case	readability	can
be	improved	by	replacing	all	sequences	of	two	consecutive	single	quotes	with	a
double	quote	character.	For	example	'disp(''ABC'');'	could	be	written	as
'disp("ABC");'.	Note	that	this	trick	does	not	work	for	Matlab	callbacks	in
general,	but	it	does	work	for	any	callback	defined	within	a	plt(...)	function
call.

moveCB

plt(...,'moveCB',s);

Evaluate	string	s	whenever	the	cursor	is	moved.	This	callback	function	can	also
be	specified	by	the	the	cursor	command
plt('cursor',cid,'set','moveCB',fcn)	which	is	described	in
more	detail	in	the	cursor	commands	section.	The	moveCB	is	not	really	an	axis
property,	but	is	included	in	this	section	because	of	the	parallels	with	the	above
axisCB	parameter.	As	with	the	axisCB	parameter,	the	string	substitutions	are
performed	before	evaluation.	You	may	use	function	handle	forms	as	well	if	you
don't	need	the	string	substitutions.

ENApre

plt(...,'ENApre',[ENAx	ENAy]);

							ENAx	or	ENAy	=	0	to	disable	metric	prefixes	on	the	x/y	axis.
							ENAx	or	ENAy	=	1	to	enable	metric	prefixes	on	the	x/y	axis	(default).
When	metric	prefixes	are	enabled	plt	will	choose	the	best	unit	for	the	respective
axis.	As	an	example,	suppose	the	x-axis	label	is	'seconds'	and	the	x-axis	data	is
[0	1	2	3	4	5]*1e-8.	With	metric	prefixes	disabled,	the	x-axis	tick-labels	and
cursor	readout	will	be	in	scientific	notation.	With	metric	prefixes	enabled,	the	x-
axis	label	will	change	to	"nano-seconds"	and	scientific	notation	will	no	longer	be
required	making	the	graph	and	cursors	far	more	readable.	(Note:	metric	prefixes
are	not	used	on	the	right	hand	axis).

AxisLink

plt(...,'AxisLink',m);

Tells	plt	to	start	with	the	left/right	axes	linked	if	m=1	or	unlinked	if	m=0.	For
more	details	about	linking	the	axes,	see	the	right	hand	axis	section.

+AxisProp

-AxisProp
<LabelProp
>LabelProp
.LabelProp
^TitleProp

If	a	property	name	is	prefixed	with	a	+	or	a	-	character	then	the	property	value
will	be	applied	to	the	left	or	right	hand	axis	respectively.	

If	a	property	name	is	prefixed	with	a	>,	<,	.	or	a	^	character	then	the	property
value	will	be	applied	to	the	left	hand	axis	label,	right	hand	axis	label,	x	axis
label,	or	the	axis	title	respectively.	Some	examples:	

plt(...,'+Ycolor',[0	0	1],'-Yscale','Log');

In	this	example	plt	will	assign	the	value	[0	0	1]	(blue)	to	the	Ycolor
property	of	the	main	(left	hand)	axis,	and	it	will	apply	the	value	'Log'	to	the
Yscale	property	of	the	right	hand	axis.	The	plus	and	minus	signs	are	called	a
property	prefix	characters	and		are	required	so	that	plt	knows	which	axis	you
want	to	modify.	

plt(...,'>FontName','Lucida	Handwriting');

In	this	example	the	font	used	for	the	right	hand	axis	label	is	changed	to	Lucida
Handwriting.	

plt(...,'+<.^FontSize',13);

This	example	shows	that	more	than	one	property	prefix	character	may	be
included	in	front	of	a	property	name.	In	this	case,	the	font	size	for	the	left	hand
axis	tick	labels,	the	left	y-label,	the	x-label,	and	the	axis	title	are	all	increased	to
13.	

The	example	program	demo\pub.m	demonstrates	the	use	of	these	prefix
characters.	Note	that	if	a	property	name	appears	without	one	of	these	six	leading
prefix	characters	(+-<>.^),	then	property	value	will	be	assigned	to	all	the	lines
that	have	been	defined	so	far	in	the	argument	list.

SubPlot

plt(...,'SubPlot',v);

Normally	plt	puts	all	the	defined	traces	on	a	single	plot	(which	may	have	left	and
right	hand	y-axes)	that	fills	most	of	the	figure	area.	However	there	are	two
methods	(each	with	their	unique	advantages)	to	create	more	than	one	plot	in	a
single	figure.	The	first	method	is	by	using	the	'Fig'	parameter	which	is
described	at	the	end	of	the	Labels	and	figure	properties	section.	The	second
method	is	to	use	the	SubPlot	parameter	which	is	described	here.	

When	the	SubPlot	parameter	is	used,	all	the	plots	in	the	figure	will	be	arranged
in	either	one	or	multiple	columns.	All	plots	in	a	column	usually	use	the	same	x-
axis	which	allow	all	the	cursors	in	the	column	to	move	left	or	right	together.
(This	is	called	the	"Linked"	mode).	With	the	alternate	mode	(called
"Independent")	however,	each	plot	even	within	the	same	column	may	have
different	x-axis	values.	The	subplot	in	the	lower	left	corner	has	a	special
designation	(the	main	plot)	since	that	is	the	only	plot	that	includes	a	traceID	box.
Also	some	of	the	cursoring	features	are	only	available	on	the	main	plot
(peak/valley	finder,	delta	cursors,	expansion	history,	the	Mark/Zout/LinX/LinY
tags,	the	x-axis	slider,	multi-cursors	and	the	xView	slider.	(The	'Fig'	parameter
method	doesn't	suffer	from	any	of	these	restrictions	since	each	plot	is	a	"main"
plot,	although	linked	cursors	are	not	available	with	that	method.)	Each	subplot
however	has	its	own	y-axis	cursor	readout.	These	cursor	readouts	are	easy	to
identify	since	its	background	color	matches	the	trace	and	axis	colors.	The	full
panning	and	zooming	features	of	plt	are	supported	for	each	subplot.	When	any
subplot	is	panned	or	zoomed	in	the	x-axis,	all	the	x-axis	limits	of	all	the	other
subplots	in	the	same	column	are	set	to	match	the	newly	chosen	values.	

Single	column
To	create	a	single	column	of	plots	(all	using	the	same	x	axis),	the	subplot
parameter	should	consist	of	n	positive	numbers,	where	n	is	the	number	of	plots
desired.	Each	number	specifies	the	percent	of	the	area	to	be	occupied	by	each
plot	(starting	from	the	bottom).	Normally	the	sum	of	the	array	should	be	100,
although	if	the	sum	is	less	than	100,	there	will	be	some	unused	space	at	the	top
of	the	figure.	For	example,	'SubPlot',[40	30	15	15]	tells	plt	to	create
four	plots.	The	bottom	one	(the	"main"	plot)	will	use	40%	of	the	available
height.	The	plot	above	that	will	use	30%	of	the	height,	and	the	remaining	two
will	take	15%	each.	Each	subplot	except	the	main	(lower)	plot	is	normally
assigned	a	single	trace,	with	the	last	trace	defined	appearing	in	the	upper	most

axis,	the	second	to	last	trace	appearing	in	the	axis	below	that,	etc.	For	example,
the	command	plt(1:50,rand(7,50),'SubPlot',[40	30	15	15])
will	create	seven	traces	containing	random	data,	with	the	first	four	traces
displayed	on	the	main	(lower)	plot	(with	a	traceID	box	containing	four	labels)
and	the	last	three	traces	are	displayed	in	the	other	three	subplots.	The	example
script	demo\subplt.m	demonstrates	the	use	of	single	column	subplots.
Usually	only	the	main	plot	may	contain	multiple	traces,	although	the
SubTrace	parameter	(see	below)	allows	you	to	change	this	behavior.	

Dual	column
The	example	script	demo\subplt8.m	demonstrates	the	use	of	dual	column
subplots.	To	create	two	columns	of	plots,	insert	a	negative	number	into	the
subplot	argument.	The	number	of	entries	to	the	left	of	the	negative	number
indicates	how	many	plots	will	appear	in	the	left	column,	and	similarly,	the
number	of	entries	to	the	right	of	the	negative	number	indicates	the	number	of
plots	in	the	right	column.	The	negative	number	itself	specifies	the	width	(in
percent)	of	the	left	column.	Some	examples	will	help	clarify	this.	In	all	the
examples	below,	assume	that	y	=	[a	b	c	d	e	f]	where	a	through	f	are
column	vectors	of	the	same	length	as	x.	

plt(x,y,'SubPlot',[100	-60	100],'Right',[2	3]);

The	subplot	parameters	tells	plt	to	create	two	plots	both	of	which	fill	the	entire
height	available	in	the	plotting	area	of	the	figure.	The	left	(main)	plot	fills	60%
of	the	width	with	the	second	plot	filling	the	remaining	40%.	Since	six	traces	are
defined,	the	first	five	traces	(a	through	e)	appear	on	the	main	plot	and	the	last
trace	(f)	appears	on	the	right	plot.	Since	the	TraceID	parameter	was	not
included,	the	TraceID	box	next	to	the	main	plot	will	contain	the	default	trace
labels	(Line1	thru	Line5).	To	label	the	traces	more	informatively,	a	parameter
such	as	'TRACEid',{'a'	'b'	'c'	'd'	'e'}	could	be	added	to	the	plt
argument	list.	Since	the	'Right'	parameter	was	included,	the	main	plot	will
include	both	right	and	left	axes,	with	the	2nd	and	3rd	traces	(b	and	c)	on	the
right	and	the	remaining	three	traces	(a,	d,e)	on	the	left.	The	left	and	right	axes
will	be	separated	by	enough	space	to	leave	room	for	the	axis	labels,	and	this
space	will	be	increased	when	the	'Right'	parameter	is	used	so	that	there	is
room	for	an	axis	label	on	the	right	side	of	the	main	(i.e.	left)	axis.	

plt(x,y,'SubPlot',[50	30	20	-55	70	20]);

In	this	example	three	plots	will	be	created	in	the	left	column	which	fills	55%	of

the	width	of	the	plotting	area.	The	main	plot	on	the	bottom	(containing	traces	a
&	b)	fills	50%	of	the	height,	the	middle	plot	(trace	c)	fills	30%	and	the	top	plot
(trace	d)	fills	the	remaining	20%	of	the	height.	Two	plots	are	created	in	the	right
column	which	fills	the	remaining	45%	of	the	width.	The	lower	of	these	(trace	e)
fills	70%	of	the	height,	and	the	upper	(trace	f)	fills	20%,	with	the	upper	10%
remaining	blank.	Note	that	both	traces	in	the	main	plot	use	the	left-hand	axis
since	no	'Right'	parameter	was	given	and	no	limits	or	labels	were	specified
for	the	right-hand	axis.	(With	this	many	subplots	it's	best	not	to	use	a	right-hand
axis	since	it	makes	all	the	subplots	significantly	narrower	to	make	room	for	the
right-hand	axis	ticks	and	labels.)	

plt(x,y,'LabelX',{'meters'	'pascals'},'Ylim'{[0	5]	[0	.1]});

Even	though	the	subplot	argument	is	not	included	here,	plt	will	split	the	plot
horizontally	as	if	you	had	included	'SubPlot',[100	50	100]	in	the
argument	list.	This	is	because	two	different	x-axis	labels	are	specified	with	the
'LabelX'	parameter	and	so	plt	recognizes	that	a	second	column	is	needed.	The
right	column	plot	will	contain	trace	f	and	the	left	column	(main)	plot	will
contain	traces	a	thru	e.	Since	two	y-axis	limits	are	specified,	plt	will	put	both
left	and	right	axes	on	the	main	plot.	In	this	example	the	'Right'	parameter	is
not	included,	plt	will	default	to	putting	the	last	trace	of	the	main	plot	(trace	e)	on
the	right	axis	with	the	other	four	traces	on	the	left	axis.	(Be	careful	not	to
confuse	the	concepts	of	the	right	and	left	axes	of	the	main	plot,	with	the	right
and	left	columns	of	subplots.)	Also	remember	that	the	'Ylim'	parameter	can't
specify	axis	limits	for	a	subplot.	To	set	the	y-axis	limits	for	the	subplots,	use	the
set	command	with	the	axis	handles	obtained	from	getappdata(gcf,'axis')	or	use
the	plt('cursor',cid,'set','position',p)	command	described
here.	

More	than	two	columns
As	you	can	see	from	the	example	script	demo\subplt16.m	you	may	use	as
many	columns	as	you	want.	The	negative	numbers	in	the	subplot	parameter	are
used	to	separate	the	plots	into	columns.	For	example
'SubPlot',[50	50	-30	50	50	-30	50	50	-30]	specifies	an	array
of	six	plots	(2	rows	and	3	columns).	Each	column	is	split	50/50	between	the	two
plots.	Since	each	of	the	3	columns	occupies	30%	of	the	available	plot	width
about	10%	of	the	available	width	to	the	right	of	the	last	column	will	be	blank
(possibly	to	be	filled	in	later	with	other	graphic	elements	or	controls).	The	width
of	the	last	column	does	not	need	to	be	specified.	In	this	example,	if	the	last

number	(-30)	was	omitted,	the	last	column	would	take	40%	of	the	available
width	since	plt	wants	to	fill	the	whole	plot	area	unless	instructed	otherwise.	

Plot	spacing
By	default,	plt	allows	plenty	of	space	between	the	subplots	to	allow	for	axis	ticks
and	labels.	Sometimes	you	may	want	to	decrease	the	horizontal	or	vertical
spacing	so	that	you	can	fit	more	plots	into	a	given	space	or	to	allow	each	plot	to
have	as	much	area	as	possible.	Or	you	may	want	to	increase	the	spacing	to	allow
room	to	add	additional	controls	or	graphic	elements.	It	would	be	awkward	to
require	an	additional	array	the	size	of	SubPlot	to	specify	the	desired	row	and
column	spacing,	so	this	information	is	embedded	into	the	SubPlot	argument.
This	is	done	by	using	the	integer	part	to	specify	the	plot	heights	and	widths	(as
described	above)	and	by	using	the	fractional	part	to	specify	the	deviations	from
the	default	inter-plot	spacing.	Fractional	parts	from	0	to	.5	indicate	the	default
spacing	should	be	increased.	Fractional	parts	from	.5	to	.9999	indicate	the
default	spacing	should	be	decreased.	This	is	best	shown	by	example.	Consider	a
slight	change	from	the	previous	example:
'SubPlot',[50.02	50.97	-30.96	50	50	-30.01	50	50]	The
first	two	fractional	parts	(.02	and	.97)	tells	plt	to	increasing	spacing	below	the
first	plot	by	2%	and	to	decrease	the	spacing	below	the	second	plot	by	3%	(of	the
available	plot	height).	The	fractional	parts	of	the	two	negative	numbers	(.96	and
.01)	tells	plt	to	decrease	the	spacing	to	the	left	of	the	first	column	by	4%	and	to
increase	the	spacing	to	the	left	of	the	second	column	by	1%	(of	the	available	plot
width).	At	first	this	may	seem	confusing,	but	with	a	little	practice	you	will	find
that	the	SubPlot	parameter	gives	you	complete	flexibility	of	the	subplot
positioning.	In	the	rare	situations	where	you	can't	get	the	subplots	positioned	as
desired,	you	can	always	use	the	'xy'	parameter	to	move	or	resize	any	or	all	of
the	subplots.	

Linked	vs.	Independent	mode
The	three	sample	scripts	mentioned	so	far	use	the	default	"linked"	mode	which	is
intended	to	be	used	when	all	the	plots	in	each	column	have	the	same	number	of
elements	and	the	same	x-axis	limits.	When	you	move	a	cursor,	all	the	cursors	for
the	remaining	subplots	in	the	same	column	will	be	moved	left	or	right	so	all	the
cursors	in	the	column	remain	vertically	aligned.	Likewise,	if	you	change	the	x-
axis	limits	of	any	plot	(by	panning	or	zooming)	then	the	x-axis	limits	of	the
remaining	plots	in	that	column	will	also	change	so	that	all	the	plots	in	the
column	share	the	same	x-axis	limits.	Note	that	changes	in	one	column	will	never

affect	any	of	the	other	columns.	When	you	don't	want	the	cursors	and	x-axis
limits	to	be	linked	in	this	manner,	you	should	specify	the	"Independent	mode"
which	is	done	by	putting	an	"i"	after	the	first	SubPlot	element.	The	sample	script
demo\subplt20.m	demonstrates	the	use	of	the	independent	mode.

SubTrace

When	using	subplots,	it	is	important	to	understand	that	the	default	behavior	is	to
allow	only	a	single	trace	on	each	subplot	except	for	the	main	axis	(lower	left).
The	main	reason	for	this	is	to	allow	plt	to	provide	a	simple	cursoring	mechanism
which	allows	every	trace	to	be	cursored.	However	there	are	two	situations	where
you	may	want	to	change	this	default	behavior.	The	first	is	where	cursoring	is
disabled	(usually	because	the	plot	is	to	be	used	for	publication	instead	of	for	data
exploration).	Since	cursoring	is	not	an	issue,	there	is	no	reason	to	stick	with	the
default	behavior	for	assigning	the	traces	to	the	axes.	The	second	plot	in	the	script
demo\pub.m		is	an	example	of	how	the	SubTrace	parameter	might	by	used
in	this	situation.	The	second	situation	where	you	might	want	to	use	this
parameter	is	when	you	plan	on	modifying	the	cursor	behavior	to	make	sense	for
the	particular	trace	arrangement	you	have	in	mind.	This	requires	a	detailed
understanding	of	plt's	cursoring	commands,	but	is	doable	when	the	trace
configuration	and	desired	cursoring	scheme	are	reasonably	simple.An	example
of	this	second	situation	can	be	found	in	the	script	demo\weight.m.

There	are	two	ways	to	use	this	parameter	to	assign	the	traces	to	the	various
subplots.	For	either	method	you	must	know	how	plt	numbers	the	axes.	Axis
number	one	is	always	the	main	axis	(lower	left).	Then	axis	two	is	the	one
directly	above	the	main	axis	and	axis	three	is	the	one	above	that,	continuing	to
the	top	of	the	left	column.	Then	the	lowest	axis	of	the	second	column	(if	it
exists)	is	assigned	to	the	next	number,	and	continuing	upwards	as	before.	Finally
after	all	the	subplots	have	been	assigned	a	number	in	this	manner,	the	right	hand
axis	of	the	main	plot	(if	it	exists)	is	assigned	to	the	next	higher	integer.

Suppose	for	example,	you	have	4	axes	and	9	traces	and	that	you	want	to	put	two
traces	on	each	of	the	first	3	axes	and	then	put	the	remaining	3	traces	on	the	last
axis.	The	first	way	to	do	this	is	to	specify	how	many	traces	to	put	on	each	axis,
i.e.	'SubTrace',[2	2	2	3].	Instead	of	specifying	how	many	traces	are	on
each	axis,	an	alternate	way	to	do	this	is	to	specify	which	axis	each	trace	goes	on.

So	an	equivalent	to	the	previous	parameter	you	could	use
'SubTrace',[1	1	2	2	3	3	4	4	4].	Of	course	this	second	method	is
always	going	to	be	longer	than	the	first	method,	so	you	would	likely	only	use	it
if	you	needed	to	assign	the	traces	to	the	axes	in	a	different	order,	for	example
'SubTrace',[1	2	3	1	2	3	4	4	4]	(which	is	not	possible	to	specify
using	the	first	method).	plt	will	always	be	able	to	figure	out	with	method	you	are
using.

Labels	and	figure	properties

Title

plt(...,'Title',t);

Inserts	the	title	string	t	above	the	plot	area.
t	may	be	a	cell	array	to	specify	a	multi-line	title.

The	Tex	interpreter	is	used	to	render	the	string	allowing	entry	of	Greek
and	other	special	characters.	If	you	don't	want	the	Tex	interpreter	to	be
used,	include	the	string	[TexOff]	anywhere	in	the	first	line	of	the	title.
(The	[TexOff]	string	will	be	deleted	from	the	title	before	display).
Alternatively	you	could	disable	the	Tex	interpreter	after	the	call	to	plt
using	the	command:

set(get(gca,'title'),'interpreter','none');

A	set	command	similar	to	the	one	above	may	be	used	to	change	the
fontsize	or	other	title	properties.	The	plot	height	is	automatically	shrunk
by	the	amount	needed	to	make	room	for	the	title	assuming	the	default	font
size.	If	you	increase	the	title	font	size	you	may	need	to	adjust	the	plot	size
using	the	xy	parameter	described	in	the	Axis	properties	section.

If	t	is	a	number	is	will	be	converted	to	a	string.
For	example	plt(...,'Title',{123	7.88})
will	create	a	two	line	title	with	'123'	as	the	first	line	and	'7.88'	as	the
second	line.	

Default:	no	title

plt(...,'LabelX',s);

LabelX
Uses	string	s	as	the	x-axis	label.	If	you	are	using	subplots	with	two
columns,	you	may	also	specify	the	x-axis	label	for	both	the	left	and	right
columns	of	plots	by	using	a	cell	array:
plt(...,'LabelX',{'left	x	label'	'right	x	label');

Default:	'x	axis'

LabelY

plt(...,'LabelY',s);

Uses	string	s	as	the	left	hand	y-axis	label	of	the	main	plot.	You	can
specify	both	the	left	and	right	labels	by	using	a	cell	array.	For	example,	if
there	are	no	subplots,	'LabelY',{'ab'	'cd'}	is	equivalent	to
'LabelY','ab','LabelYR','cd'.	If	there	are	subplots,	the	right
hand	axis	label	must	come	last.	For	example	with	3	subplots:
plt(...,'SubPlot',[50	20	30],'LabelY',...

			{'lower-axis'	'middle-axis'	'upper-axis'

'right-hand-axis'});	

Default:	'Y	axis	(Left)'

LabelYR

plt(...,'LabelYR',s);

Uses	string	s	as	the	right	hand	y-axis	label.	The	'right'	parameter
should	also	be	included	in	this	case,	however	if	you	don't,	plt	will	default
to	placing	the	last	trace	on	the	right	hand	axis.	Note	that	using	a	cell	array
argument	to	the	'LabelY'	parameter	(described	above)	is	usually	a	more
convenient	way	to	specify	the	y-axis	label,	and	the	'LabelYR'
parameter	is	primarily	used	in	legacy	code.	

Default:	'Y	axis	(Right)'

FigName		
plt(...,'FigName',f);

Uses	string	f	as	the	name	for	the	plt	figure	window.	

Default:	'plt'

plt(...,'Position',[xLeft	yBottom	height	width]);

plt(...,'Position',[height	width]);

Specifies	the	figure	size	and	position	on	the	screen	in	pixels.

Position
Pos

Since	9	and	55	are	the	default	values	for	xLeft	&	yBottom	respectively,
the	second	form	above	(with	xLeft	and	yBottom	omitted)	is	equivalent	to:
plt(...,'Position',[9	55	height	width])	

If	you	prefer	conciseness,	you	may	use	'Pos'	as	an	abbreviation	for
'Position'.	

If	the	height	is	specified	as	zero,	plt	will	choose	a	height	so	that	a	unit
along	the	x-axis	is	the	same	as	a	unit	along	the	y-axis	(i.e.if	you	plot	a
circle,	it	would	look	like	a	circle	and	not	an	ellipse).	If	the	width	is
specified	as	zero,	plt	chooses	the	width	to	meet	the	same	condition.	(You
can't	specify	zero	for	both	the	height	and	the	width).	If	you	resize	the
figure	window	with	the	mouse,	then	the	units	along	the	x	and	y	axes	will
no	longer	be	equal	(and	a	plotted	circle	may	appear	to	be	an	ellipse).	If
you	wish	that	the	equal	units	property	to	be	maintained	even	after	the
figure	window	is	resized,	you	should	follow	the	plt	command	with	the
command	axis('equal').	

If	you	specify	the	same	position	vector	for	more	than	one	plt	command,	plt
will	add	a	small	offset	to	all	the	figure	window	positions	(except	the	first
one)	so	that	no	two	figures	are	exactly	on	top	of	each	other.	This	feature
makes	it	less	likely	that	you	will	completely	loose	sight	of	one	of	the
figures	and	also	makes	it	much	easier	to	select	or	move	any	figure	with	the
mouse.	If	a	second	plt	command	specifies	a	position	that	differs	from	the
first	plt	command	by	even	one	pixel,	then	this	feature	will	not	be	engaged.	

Default:	[9	55	700	525]	(if	sublots	are	not	used).	With	subplots,	as
you	add	more	columns	of	axes	the	default	width	increases	from	700	to	a
maximum	of	980.	As	you	add	more	axes	to	a	column	the	default	height
increases	slightly	from	525	to	a	maximum	of	600.

HelpText

plt(...,'HelpText',v);

This	parameter	creates	a	HelpText	pseudo	object	at	the	same	time	as	
plt	pseudo	is	being	created.	v	is	a	string	or	cell	array	specifying	the
displayed	text.	See	the	Pseudo	objects	section	for	a	description	of	the
format	of	the	v	argument.	Also	look	at	the	following	demo	programs
which	use	the	HelpText	parameter:	curves,	editz,	gauss,	pltquiv,	subplt,

tasplt,	trigplt,	and	wfalltst.

Link

This	parameter	is	used	to	force	a	group	of	plt	figures	to	close	when	any
member	of	the	group	is	closed.	Consider	the	following	sequence:

plt(x1,y1);

g	=	gcf;

plt(x2,y2,'Link',g);

plt(x3,y3,'Link',g);

This	of	course	will	create	3	plotting	figures.	Closing	any	one	of	the	three
figures	will	also	cause	the	other	two	to	close.	

The	link	parameter	is	ignored	if	it	is	empty.	This	makes	it	easier	to	link
figures	created	in	a	loop.	For	example,	this	loop	creates	five	linked
figures:	

g	=	'';

for	k=1:5

		plt(x{k},y{k},'Link',g);

		if	isempty(g)	g=gcf;	end;

end;

The	demo	programs	editz,	tasplt,	pub,	and	pub2	take	advantage	of
this	parameter.

CloseReq

This	parameter	specifies	a	function	that	will	be	run	when	the	plt	window	is
closed.	The	argument	may	be:

a	string	(as	shown	in	the	plt50.m	example).
a	function	handle	(as	shown	in	the	gui2.m	example).
a	cell	array	containing	a	function	handle	and	its	arguments	(as	shown
in	the	wfall.m	example).

Note	that	if	the	function	is	defined	as	a	string	argument	often	consecutive
single	quote	characters	are	required	(quotes	within	quotes).	In	that	case
readability	can	be	improved	by	replacing	all	sequences	of	two	consecutive
single	quotes	with	a	double	quote	character.	For	example

'disp(''ABC'');'	could	be	written	as	'disp("ABC");'.	Note
that	this	trick	does	not	work	for	Matlab	callbacks	in	general,	but	it	does
work	for	any	callback	defined	within	a	plt(...)	function	call.

Fig

Normally	plt	opens	a	new	figure	window	when	it	is	called.	In	some
situations	you	may	want	to	tell	plt	to	use	a	pre-existing	figure	instead.
(The	most	common	reason	this	is	done	is	to	put	more	than	one	plot	into	a
single	figure.)	This	parameter	tells	plt	to	do	this	and	specifies	which	figure
window	should	be	used.	For	example,	to	open	plt	using	figure	number	4,
you	would	use	plt('Fig',4,...);.	More	often	you	will	probably
use	plt('Fig',gcf,...);	which	will	open	plt	in	the	current	figure.
Generally	the	plt	parameters	may	be	placed	anywhere	in	the	parameter	list,
and	in	fact	the	Fig	parameter	is	the	only	exception	to	this.	The	Fig
parameter	must	be	placed	either	as	the	first	or	the	last	parameter	in	
argument	list.	The	Fig	parameter	is	ignored	otherwise.	This	restriction	is
due	to	lazy	programming	more	than	any	other	reason,	and	the	restriction
might	be	removed	in	a	later	release.	

There	are	two	example	programs	(plt50.m	and	pub3.m)	which	are
described	in	the	Programming	examples	section	that	demonstrate	the	use
of	the	Fig	parameter	to	put	multiple	plots	in	a	single	figure.	The	first	one
(plt50)	is	oriented	towards	data	exploration	and	takes	advantage	of	the	
generality	of	plt's	cursoring	system	for	both	plots.	The	second	one	(pub3)
is	oriented	towards	creating	a	figure	for	publication	and	so	the	cursors
have	been	disabled	to	create	a	clutter	free	result.	

There	is	also	another	method	to	create	multiple	plots	in	a	single	figure,	and
this	makes	use	of	the	subplot	parameter.	(This	is	demonstrated	by	the
subplt.m,	subplt8.m,	subplt16.m,	subplt20.m,	pub.m
pub2.m,	pltmap.m,	and	weight.m	programming	examples).	
might	not	expect	that	there	would	be	a	need	for	two	different	methods	for
achieving	the	same	end,	but	it	turns	out	that	each	of	these	methods	have
their	unique	advantages.	The	subplot	method	is	sometimes	simpler
because	all	the	plots	are	created	with	a	single	call	to	plt.	The	subplot
method	imposes	significant	restrictions	on	the	plots,	but	in	turn	this	allows
the	cursor	controls	to	be	more	compact	which	makes	cursoring	possible	on
a	figure	with	many	more	plots	than	would	be	possible	with	the	Fig
method.	The	subplot	method	also	provides	an	option	for	linking	the

cursors	of	the	plots	in	a	single	column.	Most	of	the	programming
examples	with	multiple	plots	per	figure	would	have	been	difficult	to
impossible	without	the	correct	choice	between	the	subplot	and	Fig
parameter	methods.

Options

HelpFile

plt(...,'HelpFile','filename');	Specifies	the	left	click
actions	of	the	Help	tag:	

If	the	filename	is	specified	with	complete	path	information	the
helpfile	will	be	read	from	the	specified	location.	If	no	path
information	is	included,	plt	looks	for	this	file	on	the	Matlab	path
(except	for	compiled	applications	in	which	case	plt	looks	for	the	file
in	the	same	folder	that	contains	the	executable).	The	file	extension
must	be	included	in	the	filename	string	since	the	extension
determines	which	application	is	used	to	open	the	help	file.	(If	you
don't	include	an	extension	plt	will	assume	that	it	is	an	executable
command,	and	plt	will	simply	call	that	executable	when	you	click	on
the	Help	tag.)	The	extension	may	be	.html,	.pdf,	or	.chm,	or	any
file	type	that	your	operating	system	knows	how	to	open.	(Usually
chm	files	are	only	supported	on	PC	systems.)	Assuming	the	help	file
is	found,	it	will	be	opened	when	you	left-click	on	the	help	tag.	Also	if
the	file	specified	is	a	chm	file,	then	it	also	may	be	followed	by	a	topic
specifier	which	causes	the	chm	file	to	open	pointed	at	the	chosen
topic.	(The	examples	plt.m	and	julia.m	demonstrate	how	to	specify	a
chm	topic.)	If	this	parameter	is	not	included,	left-clicking	on	the	help
tag	will	open	the	default	plt	help	file	(plt.chm	on	Windows
systems	and	the	file	plt.htm	otherwise).	If	both	plt.chm	and
plt.htm	are	not	found,	then	one	of	the	files	xxx.chm,	xxx.htm,	or
xxx.pdf	will	be	opened	where	"xxx"	is	the	current	figure	name.	If
none	of	those	files	are	found,	a	warning	message	will	appear
indicating	that	no	help	files	were	found.	The	demo	programs
demo\plt5.m	and	demo\julia.m	demonstrate	the	use	of	the
HelpFile	parameter	to	open	a	chm	file	at	a	specified	topic.

HelpFileR

plt(...,'HelpFileR','filename');	Specifies	the	right
click	actions	of	the	Help	tag:	

The	rules	for	finding	the	help	file	are	the	same	as	described	above	for
the	HelpFile	parameter.	Assuming	the	help	file	is	found,	it	will	be
opened	when	you	right-click	on	the	help	tag.	If	this	parameter	is	not
included,	right-clicking	on	the	help	tag	will	open	the	default	plt	help
file.	Often	the	help	tag	left	click	will	be	used	for	help	on	the	plt
plotting	package	and	the	right	click	will	be	used	for	help	on	the
currently	running	program.	Or	the	roles	of	left	and	right	clicks	may
be	reversed.	The	demo	program	demo\plt50.m	gives	an	example
of	using	the	HelpFileR	option.

plt(...,'Options',s);	

s	is	a	string	specifying	one	or	more	options.	The	options	allowed	are:

'Ticks' Use	tick	marks	(i.e.	no	grid	lines)
'Menu' Enable	the	figure	menu	bar
'xView' Enable	the	xView	slider
'Slider' Enable	the	x-axis	control	slider
'Xlog' use	logarithmic	scaling	on	the	x	axis
'Ylog' use	logarithmic	scaling	on	the	y	axis
'multiCur' Enable	the	multiCursor

'Nocursor'

Tells	plt	to	hide	all	cursor	objects.	They	may
be	re-enabled	with	the	command:
plt('cursor',0,'set','visON')

'Hidden'
Tells	plt	to	exit	with	the	plot	figure	as	usual,
but	leave	the	figure	window	hidden.
Tells	plt	to	use	Matlab's	line	smoothing
algorithm	(anti-aliasing)	for	all	traces.	The
line	smoothing	property	may	also	be
controlled	from	the	cursor	button	group
which	is	described	in	the	Cursoring	section.

Options

'Linesmoothing'

Be	aware	that	line	smoothing	probably	will
not	work	on	versions	of	Matlab	older	than
about	2008.	Also	the	line	smoothing
property	is	ignored	in	version	Matlab
R2014b	or	later.	I	believe	this	is	because	the
newer	graphics	engine	introduced	with
R2014b	is	supposed	to	smooth	the	lines	all
the	time.	(It	doesn't	work	on	my	five	year
old	computer	however,	even	with	updated
graphics	drivers.	I	actually	get	better	looking
plots	using	R2014a	or	earlier	although	I
suspect	with	newer	hardware	R2014b	will
have	the	advantage.)

'-Help'

'+Help'

removes/adds	the	Help	tag	from	the	menu
box

'-Xlog'

'+Xlog'

removes/adds	the	LinX/LogX	tag	from	the
menu	box

'-Ylog'

'+Ylog'

removes/adds	the	LinY/LogY	tag	from	the
menu	box

'-Print'

'+Print'

removes/adds	the	Print	tag	from	the	menu
box

'-Grid'

'+Grid'

removes/adds	the	Grid	tag	from	the	menu
box

'-Figmenu'

'+Figmenu'

removes/adds	the	Menu	tag	from	the	menu
box

'-Mark

'+Mark'

removes/adds	the	Mark	tag	from	the	menu
box

'-Zout

'+Zout'

removes/adds	the	Zout	tag	from	the	menu
box

'-Rotate'

'+Rotate'

removes/adds	the	XYrotate	(XY↔)	tag	from
the	menu	box

'-All'

'+All'
removes	/adds	all	menu	box	items

These	options	strings	are	case	sensitive	and	in	fact	only	the	capital
letters	are	significant.	You	can	add	whatever	lower	case	letters,

spaces	and	other	delimiters	that	you	want	to	make	the	string	more
readable.	For	example	suppose	you	wanted	the	display	to	initialize
with	the	menu	bar	and	multiCursor	enabled	and	the	grid	lines	off.
Any	of	these	commands	would	achieve	that	goal:	
		

plt(...,'Options','Menu','Options','multiCur,

Ticks');

			plt(...,'Options','Menu	multiCursor

Ticks');

			plt(...,'Options','MCT');

			plt(...,'Options','M,C,T');

In	addition	to	those	options,	suppose	you	wanted	to	remove	the
"Grid"	tag	from	the	menuBox.	Then	we	would	use	something	like
one	of	the	following:
			plt(...,'Options','Menu	Cur	Tick	-Grid');

			plt(...,'Options','MCT-G');

You	can	also	use	a	plus	sign	on	the	menu	box	tags	if	you	would	rather
specify	which	tags	to	include	instead	of	which	tags	to	remove.	For
example,	both	of	the	following	commands	would	remove	all	the
menu	box	items	except	for	the	x	and	y	axis	lin/log	controls:
			plt(...,'Options','-H-G-F-M-Z-R');

			plt(...,'Options','+X+Y');

Note	that	the	Print	menu	box	tag	is	unique	in	that	it	is	off	by	default
and	will	only	appear	when	+P	appears	in	the	Options	string.	If	you
remove	all	menu	box	items	(i.e.		'Options','-A'),	the	box
outline	is	not	displayed	as	well.

Colors

All	the	arguments	below	identified	by	rgb	refer	to	a	color	specified	in	the	usual
Matlab	way,	i.e.	as	a	3	element	row	vector	where	each	element	is	between	zero
and	one.	However	for	convenience,	you	may	also	use	two	alternative	formats
when	specifying	colors	with	plt.

The	first	alternative	is	to	specify	the	color	values	as	percents	instead	of
fractions.	For	example	the	Matlab	color	triple	[.23	.45	.67]	may	also
be	written	as	[23	45	67].	Whenever	you	include	a	number	bigger	than
one	in	a	color	triple,	plt	assumes	that	you	are	using	this	entry	style.
The	second	alternative	is	to	specify	the	red,	green,	and	blue	components	as
a	single	number	with	two	digits	assigned	to	each	value.	For	example	the
color	triple	shown	above	could	also	be	written	as	234567.	For	clarity,	you
may	choose	to	always	use	six	digits	by	using	leading	zeros	when	necessary,
although	the	leading	zeros	are	not	required.

Using	the	second	alternative	shown	above,	you	might	expect	that	the	largest
fraction	you	can	enter	is	0.99	since	only	two	digits	are	allowed	for	each	color.
However	actually	you	can	use	1.00	because	the	digits	"01"	(treated	as	a	special
case)	is	interpreted	to	mean	1.00.	This	means	that	you	can't	specify	the	fraction
0.01	using	this	entry	method,	although	that	will	rarely	if	ever	be	a	problem.	So
for	example,	a	TRACEc	argument	that	would	specify	a	10	color	trace	sequence
using	the	first	10	colors	shown	in	the	default	color	list	below,	a	concise	way	of
specifying	such	an	argument	would	be	as	follows:	

plt(...,'TRACEc',[100;	10001;				101;	10000;	206001;

																10101;	16020;	303001;	12060;	200160])	

plt(...,'TRACEc',ct);

TRACEc

Specify	trace	colors.	Usually	you	will	have	at	least	as	many	rows	in
ct	as	there	are	traces,	however	if	ct	doesn't	have	enough	rows,	plt	will
start	over	from	the	beginning.	For	example	if	you	specify:
TRACEc,[1	0	0;	1	1	0;	1	1	1]	then	plt	will	use	red,
yellow,	and	white	respectively	for	traces	1,2,	and	3.	If	you	had	a
fourth	trace,	plt	would	use	red	for	that	trace	and	continue	cyclically.
If	ct	is	a	single	3	element	vector,	plt	will	use	that	color	for	all	traces.
If	the	TRACEc	parameter	is	not	included	and	color	files	are	not
being	used	(see	'ColorFile'	below),	then	the	following	default
colors	are	used:	

Default	(for	the	first	40	lines):

			[0		1		0;			1		0		1;			0		1		1;			1		0		0;		.2	.6		1;		

				1		1		1;			1	.6	.2;		.3	.3		1;			1	.2	.6;		.2		1	.6;		

			.8		1	.5;		.6	.2		1;			1		1		0;			0	.5		0;		.5		0	.5;		

				0	.6	.6;			0		0	.9;			0	.3	.3;		.5		0		0;		.3	.3		0;		

			.7	.2	.2;		.2	.7	.2;		.3	.3	.3;		.4	.4	.7;			0	.6	.3;		

			.8	.5	.5;		.4	.6	.3;		.5	.5		0;		.7	.7	.2;		.5	.5	.5;		

			.7	.2	.7;			1	.4	.4;		.4		1	.4;		.4	.9		0;		.5	.1	.3;		

			.3		0	.8;			0		0	.5;		.5	.5		1;			0	.3	.8;		.7	.2		0];

You	will	find	a	picture	showing	what	these	40	colors	look	like	in	the
Default	colors	section.	

The	defaults	for	lines	41	to	80	are	the	same	as	the	colors	listed	above
for	lines	1	to	40	except	that	they	are	26%	dimmer.	The	defaults	for
the	lines	81	to	99	are	again	26%	dimmer	than	the	trace	colors	for
lines	41	to	59.	Default	colors	are	defined	only	for	up	to	99	traces.	If
you	have	more	than	99	traces,	plt	will	start	assigning	colors
cyclically	as	described	above.

CURSORc

plt(...,'CURSORc',rgb);

Specify	the	cursor	color.	Here,	and	on	the	rest	of	this	page,rgb	must
be	a	3	element	row	or	column	vector.	

Defaults:
				Only	one	trace	(dark	plot	backgrounds):	[1	1	.5]
				Only	one	trace	(light	plot	backgrounds):		[0	0	.5]
				More	than	one	trace:					Cursor	color	is	set	to	match	trace	color

DELTAc
plt(...,'DELTAc',rgb);

Specify	color	indicating	the	delta	cursor.
Default:	[1	0	0]

PltBKc
plt(...,'PltBKc',rgb);

Specify	the	plot	area	background	color.
Default:	[0	0	0]

FigBKc
plt(...,'FigBKc',rgb);

Specify	the	figure	window	background	color.
Default:	[.25	.15	.15]

xyAXc
plt(...,'xyAXc',rgb);

Specify	the	color	of	the	x	and	y	axes.
Default:	[1	1	1]

xyLBLc
plt(...,'xyLBLc',rgb);

Specify	the	color	of	the	x	and	y	axis	labels.
Default:	[.64	.78	.94]

plt(...,'GRIDc',rgb);

Specify	the	color	of	the	grid	lines.	(See	also	GridStyle.)	Normally	the
grid	lines	are	drawn	in	exclusive-or	erase	mode,	however	if	any	of
the	rgb	values	are	negative	(e.g.	'GRIDc',[0	-.2	.4]),	then
the	grids	are	drawn	in	normal	mode	(which	is	often	preferable
especially	if	the	right	hand	axis	is	not	being	used).	The	actual	grid
color	used	in	the	above	example	is	[0	.2	.4]).	

Default:
If	no	right	hand	axis	is	enabled	then	the	default	is	[-.13	.13
.13]	i.e.	a	very	dim	gray	line	using	normal	erase	mode.	(The	grid
lines	will	be	solid	unless	the	GridStyle	parameter	is	included).	If	a

GRIDc
right	hand	axis	is	enabled	the	defaults	(again	assuming	that	the
GridStyle	parameter	is	not	specified),	depend	on	the	Matlab	version.
For	Matlab	versions	earlier	than	R2014b	the	default	GRIDc	is
[.13	.13	.13],	and	the	default	GridStyle	is	-	i.e.	a	very	dim
solid	gray	line	drawn	using	xor	erase	mode.	For	Matlab	version
R2014b	or	later	the	default	GRIDc	is	[-.26	.26	.26],	and	the
default	GridStyle	is	:	i.e.	a	dim	gray	dotted	line	in	normal	erase
mode	(which	actually	is	the	only	erase	mode	supported	in	the	newer
Matlab	versions).	

The	defaults	described	above	apply	only	if	a	very	dark	plot
background	is	being	used,	including	of	course	the	default	plot
background	(black).	If	a	bright	background	has	been	selected	(by
using	either	the	'PltBKc'	or	'COLORdef',0	parameters)	then
the	defaults	above	are	inverted	(i.e.	subtracted	from	one).	These
defaults	may	sound	complicated	but	they	have	been	chosen	to	be
pleasing	to	most	people	under	the	various	circumstances.

TIDc
plt(...,'TIDc',rgb);

Specify	the	background	color	of	TraceID	box.
Default:	If	this	parameter	is	not	included,	the	color	specified	by	the
PltBKc	parameter	(or	its	default)	is	used.

plt(...,'COLORdef',c);

Sets	the	PltBKc,	FigBKc,	xyAXc,	and	xyLBLc	colors	mentioned
above	to	be	consistent	with	Matlab's	current	default	colors.
Trace	colors	are	set	as	follows:

c	=	0	or	'default'

Matlab's	current	default	trace	colors	are
used.
i.e.		TRACEc	=
get(0,'DefaultAxesColorOrder')

c	is	a	3	column	array

c	is	used	instead	of	Matlab's	default	trace
color	order.	Note	that	you	may	use	the
traditional	Matlab	color	triple	entry	or	one
of	the	alternate	styles	described	above.	The
example	program	subplt8.m

COLORdef demonstrates	how	to	use	both	the	traditional
and	alternate	color	entry	styles	for	this
argument.

c	is	a	3	column	array
with	a	special	first
entry	[.99	.99	.99]

The	special	case	for	the	first	entry	(which	is
999999	if	using	the	alternate	style)	means
that	the	remaining	colors	in	the	array	will	be
appended	to	the	current	Matlab	default	trace
colors.	This	is	useful	if	you	like	Matlab's
default	colors,	but	the	color	sequence	is	not
quite	long	enough	and	you	just	want	to	add	a
few	colors	to	that	sequence.

If	TRACEc	so	defined	has	fewer	rows	than	the	number	of	traces	to	be
plotted	the	colors	will	be	used	cyclically	as	described	above.

plt(...,'ColorFile','filename');

The	normal	behavior	of	plt	(i.e.	when	the	ColorFile	argument	is
not	included)	is	as	follows.

If	plt	is	called	from	the	Matlab	command	line,	when	plt
initializes	it	looks	for	a	file	called	pltcolor.mat	in	the
folder	where	you	installed	plt.	If	this	file	isn't	found,	no	action	
taken.	If	it	is	found,	the	file	is	loaded	causing	all	the	default
colors	and	the	colors	specified	by	all	the	other	parameters
shown	on	this	page	to	be	overwritten	with	the	data	saved	in	the
.mat	file.	When	you	select	the	"Save	figure	colors"	selection
under	the	Color	menu,	plt	saves	the	current	colors	to	this	same
file	(pltcolor.mat).
If	plt	is	called	from	a	Matlab	function	or	script	file,	the	behavior
is	similar	except	that	the	file	name	used	is	fnameColor.mat
where	fname	is	the	name	of	the	top	level	Matlab	command	or
script.	Again,	plt	looks	for	this	file	in	the	folder	containing	the
.m	file	defining	fname	(or	in	the	folder	containing	the	fname.exe
file	for	compiled	applications).

When	the	'ColorFile'	parameter	is	included	in	the	plt	argument
list,	the	above	behavior	is	modified	as	follows:

ColorFile
'ColorFile','filename'

If	the	filename	is	specified
without	any	path,	plt	uses	the
specified	file	name	both	on
startup	(to	load	the	color	scheme)
and	when	"Save	figure	colors"	is
selected.	plt	looks	for	this	file	in
the	folder	containing	the	.m	file
defining	fname	(or	in	the	folder
containing	the	fname.exe	file	for
compiled	applications).	The
extension	used	is	always	.mat
and	you	may	not	include	an
extension	or	a	period	in	the
filename	string.

'ColorFile',

'drive:\path\filename'

As	above,	plt	uses	the	specified
file	both	on	startup	(to	load	the
color	scheme)	and	when	"Save
figure	colors"	is	selected.
However	when	path	information
is	supplied,	plt	will	look	for	the
file	only	in	the	location	given.	As
before,	you	may	not	include	an
extension	in	the	filename	string

'ColorFile',''

plt	will	use	its	default	colors,	and
any	colors	specified	by	the	other
parameters	in	this	section.	A
color	file	will	never	supersede
them	on	startup,	even	if
fnameColor.mat	exists.	If
you	select	"Save	figure	colors",
plt	will	allow	you	to	save	the
current	colors	to	any	file	of	your
choosing	(by	opening	a	file
selection	box),	but	these	colors
will	not	be	loaded	unless	you
change	to	one	of	the	above
'ColorFile'	options,	or

remove	the	'ColorFile'
parameter	altogether.

Cursor	commands

The	cursor	pseudo	object,	the	most	complex	pseudo	object	supported	by	plt,
consists	of	one	or	more	markers	and	several	uicontrols	with	complex
interactions.	Because	of	this	you	normally	will	not	create	cursor	objects	on	your
own,	but	will	rely	on	plt	to	create	them	automatically	when	you	specify	the	data
to	be	plotted.	However	it	is	possible	to	create	a	cursor	object	manually	with	the
cursor	init	command	described	at	the	end	of	this	section.	For	many	casual
plotting	applications,	the	plt	cursors	will	behave	as	desired	out	of	the	box.	For
more	sophisticated	applications	you	may	want	to	modify	the	cursoring	behavior
using	the	plt	parameters	(DualCur,	Xstring,	Ystring,	Options)	or	the	independent
cursor	commands	shown	below.

DualCur	parameter:
Normally	the	cursor	value	for	only	a	single	trace	(referred	to	as	the	active	trace)
is	shown	in	an	edit	box	below	the	plot.	However	sometimes	it	is	convenient	to
show	the	y-value	for	two	traces	simultaneously.	This	is	done	by	using	the
'DualCur'	parameter	which	specifies	a	trace	which	will	always	have	a	display
of	its	y-value	on	the	screen	in	addition	to	the	display	of	the	active	trace.	Try	out
the	editz.m	demo	program	which	uses	Dual	Cursors	to	simultaneously	display
the	magnitude	and	phase	of	a	transfer	function.	(In	fact,	transfer	function
displays	were	the	problem	that	inspired	the	Dual	Cursor	feature.)	The	alternate
method	of	specifying	the	dual	cursor	trace	(as	an	offset	from	the	active	trace)	is
indicated	by	using	a	negative	number	for	the	DualCur	parameter.	The	demo
program	gui2.m	demonstrates	the	use	of	that	mode.	The	use	of	the	DualCur
mode	is	covered	in	more	detail	near	the	end	of	the	cursoring	guide	found	here:
Cursoring.

Xstring	and	Ystring	parameters:
The	'Xstring'	and	'Ystring'	plt	arguments	allow	you	to	add	text	strings

String Replacement	value
@CID cursor	ID
@XVAL active	cursor	X	position
@YVAL active	cursor	Y	position
@XY same	as	complex(@XVAL,@YVAL)
@IDX active	cursor	index
@HAND handle	of	active	trace
@LNUM	 line	number	of	active	trace
@XU Xstring	user	value
@YU Ystring	user	value

just	to	the	right	of	the	cursor	X	or	Y	readout	values.	Since	these	strings	occupy
the	same	screen	area	as	the	delta	cursor	readouts,	they	get	covered	up	when	you
are	in	delta	cursor	mode	(or	a	if	a	zoom	window	is	visible).	However	those	are
usually	temporary	modes,	so	as	you	will	see,	these	strings	still	prove	useful.

Most	of	the	power	of	the
Xstring	and	Ystring
parameters	stem	from	their
string	replacement	feature
described	in	this	table.
Strings	in	the	first	column
of	the	table	are	replaced
with	the	value	shown	in	the
second	column.	(The
Xstring	and	Ystring	are	both
updated	every	time	the
cursor	is	moved.)	

Xstring/Ystring	Examples:
Suppose	it	was	important	to	see	the	cursor	index	as	well	as	the	usual	cursor	x
and	y	values	(i.e.	you	want	to	know	that	your	are	looking	at	the	sixty	fifth	data
element	for	instance).	You	could	do	this	as	follows:	

plt(x,y,'xstring','sprintf("index	=	%d",@IDX)');	

A	string	within	a	string	(such	as	the	'index	=	%d'	above)	is	normally	written
in	Matlab	using	two	consecutive	single	quote	characters	on	both	sides	of	the
string.	Since	this	can	get	verbose	and	confusing	at	times,	callbacks	defined
within	plt	may	use	a	double	quote	character	instead	of	two	successive	single
quotes.	That's	why	the	double	quotes	appear	in	the	line	above.	

Although	the	mean	of	the	active	trace	y	values	can	be	shown	using	one	of	the
usual	cursor	features,	suppose	you	wanted	to	display	the	mean	of	the	entire	data
set	(independent	of	the	viewing	window).	Suppose	also	that	you	want	to
continuously	display	the	y/x	ratio.	(This	ratio	is	also	a	standard	cursor	feature,
but	its	not	continuously	visible.)	You	could	accomplish	both	of	those	feats	as
follows:	

plt(x,y,'xstring','sprintf("mean:

%f",mean(get(@HAND,"y")))',...

								'ystring','prin("Y/X:	%5w",@YVAL/@XVAL)');	

Suppose	your	x	axis	is	measured	in	seconds	with	a	zero	reference	of	5pm,	21-
Jan-2007	UTC.	The	cursor	x-axis	readout	will	be	in	seconds	past	the	reference,
but	you	may	want	an	additional	cursor	readout	that	shows	the	actual	time	of	day.
This	can	be	accomplished	as	follows:	

plt(t,y,'xstring',...

		'sprintf("utc:%s",datestr(datenum("21-Jan-07

17:00")+@XVAL/86400,13))');	

Note	the	86400	(the	number	of	seconds	in	a	day)	is	needed	because	date
numbers	are	measured	in	days.	If	your	x	axis	unit	was	"weeks",	you	would
replace	/86400	with	*7.		If	you	removed	the	,13	near	the	end	of	the	line	(date
string	format),	then	the	readout	would	show	the	complete	date	and	time	instead
of	just	the	time.	Another	way	to	code	the	statement	above	is:	

plt(t,y,'xstring','sprintf("utc:

%s",datestr(@XU+@XVAL/86400,13))');

set(findobj(gcf,'tag','xstr'),'User',datenum(2007,1,21,17,0,0));

The	second	statement	puts	the	reference	time	in	the	Xstring	user	value	which	is
used	by	plt	when	updating	the	Xstring.	This	method	is	much	more	convenient
when	the	reference	time	can	change.	Note	that	the	reference	time	is	identical	to
that	used	above,	although	it's	written	in	the	vector	format	instead	of	the	character
format.	

Sometimes	the	1	second	resolution	provided	by	datestr	is	not	sufficient.	You
can	increase	this	resolution	to	1	millisecond	by	using	the	date	string	function
provided	by	plt	as	follows:	

plt(t,y,'xstring','sprintf("utc:

%s",plt("datestr",@XU+@XVAL/86400,13))');	

Occasionally	its	useful	to	use	an	edit	box	instead	of	a	string	for	one	or	both	of

these	customized	cursor	controls.	(The	pltn.m	example	does	this	for	the
Xstring,	although	the	Ystring	is	still	rendered	as	a	text	string.)	To	do	that,	simply
insert	a	question	mark	before	the	string.	The	first	example	above	is	rewritten
below	to	use	an	edit	box.	

plt(x,y,'xstring','?sprintf("index	=	%d",@IDX)');

Cursor	commands

Notes:

The	cid	(cursor	ID)	that	appears	in	all	the	commands	shown	below
is	an	integer	that	identifies	the	cursor	the	command	is	to	act	on.	This
integer	is	returned	from	the	cursor	initialization	command	used	to
create	the	cursor.	If	an	axis	contains	a	cursor,	its	cid	is	saved	in	the
axis	user	data.	(The	cid	stored	in	the	axis	user	data	is	always	a	scalar
since	an	axis	may	only	contain	a	single	cursor	object.)	You	can
specify	that	the	cid	should	be	retrieved	from	the	axis	user	data	by
specifying	a	zero	for	the	cid.	So	for	example	the	following	two
commands	have	the	same	effect:	

plt('cursor',0,'set','visON')	
plt('cursor',get(gca,'user'),'set','visON')

	

The	figure	'cid'	application	data	variable	contains	a	vector	with
the	cursor	IDs	for	all	the	cursor	objects	in	the	figure.	You	can	specify
that	the	cid	should	be	retrieved	from	this	vector	by	supplying	a
negative	number	as	the	cid	(for	example	-2	specifies	the	2nd	element
of	this	vector).	This	means	that	the	following	two	lines	have	the	same
effect:	

xy=plt('cursor',-2,'get');	
c=getappdata(gcf,'cid');

xy=plt('cursor',c(2),'get');

	
All	the	following	commands	are	case	sensitive	(unlike	all	the	other
plt	parameters	previously	described)	and	must	use	the	exact	case
shown	below.

	

All	the	cursor	commands	below	may	return	up	to	two	arguments.	If
the	return	arguments	are	listed	for	a	cursor	command,	the	return
values	will	be	as	specified.	However	if	the	return	arguments	are	not
listed	for	a	particular	command,	the	first	return	value	(if	requested)

will	be	the	active	cursor	handle	and	the	second	return	value	(if
requested)	will	be	the	active	line	handle.

[xy	k]	=	plt('cursor',cid,'get',n);

Get	x	and	y	coordinates	of	the	cursor	location	the	last	time	it	was	on	trace	#n.
The	trace	number	is	optional	-	if	it	is	not	specified	then	the	position	of	the	active
trace	is	returned.	xy	is	a	complex	value.	Its	real	part	is	the	cursor	x-coordinate
and	its	imaginary	part	is	the	y	coordinate.	The	second	return	value	(if	requested)
is	the	index	into	the	x	data	vector	of	the	cursor	position.	

[n	h]	=	plt('cursor',cid,'getActive');

Returns	the	line	number	of	the	active	cursor.	The	second	return	value	(if
requested)	is	the	handle	of	the	active	trace.	

h	=	plt('cursor',cid,'obj');

Returns	an	13	element	vector	of	handles	to	the	following	cursor	objects:	

				1:		x	label 				5:		y	cursor
readout

				09:		marker	line-style
button

				13:		cursor
marker

				2:		y	label 				6:		y	cursor
expansion 				10:		delta	button

				3:		x	cursor
readout 				7:		peak	button 				11:		expansion	box

				4:		x	cursor
expansion

				8:		valley
button 				12:		delta	cursor 	

u	=	plt('cursor',cid,'expHis');

Returns	an	array	containing	the	display	expansion	history.
Each	row	contains	one	display	expansion	as	[xmin,	xmax,	ymin,	ymax,	code]
where:

code	=	-1			indicates	the	row	was	not	used
code	=		0			indicates	a	valid	display	expansion
code	=		1			indicates	the	current	display	limits

plt('cursor',cid,'visON');

plt('cursor',cid,'visOFF');

Shows	or	hides	the	following	objects:
peak/valley/delta	cursor	buttons

active	trace	cursor
auxiliary	trace	cursor	(dual	cursor)
x	and	y	axis	edit	boxes	and	respective	labels
xstring	and	ystring	objects
x-cursor	slider
cursor	id	string

Note	that	this	function	is	invoked	alternately	(visOFF/visON)	when	you	right-
click	on	the	plot	y-axis	label	(which	also	hides/shows	the	menu	box).

plt('cursor',cid,'aux','on');

plt('cursor',cid,'aux','off');

Shows	or	hides	the	auxiliary	(dual)	cursor	and	its	edit	box

plt('cursor',cid,'setObjPos',p);

Sets	the	cursor	object	positions	to	p,	where	p	is	a	9	by	4	element	array.	Each	row
contains	(x,y,width,height)	which	represents	the	position	and	size	of	the
following	objects:
1.	 x-axis	edit	box	label
2.	 y-axis	edit	box	label
3.	 x-axis	edit	box	(cursor	readout)
4.	 x-axis	cursor	expansion	edit	box
5.	 y-axis	edit	box	(cursor	readout)
6.	 y-axis	cursor	expansion	edit	box
7.	 peak	button
8.	 valley	button
9.	 delta	cursor	button

Note	that	this	command	does	not	set	the	position	of	the	optional	x-axis	control
slider.	However	you	can	set	this	position	using	the	plt	'xy'	parameter,	or	with	a
command	such	as:
set(findobj(gcf,'tag','xslider'),'position',p);

plt('cursor',cid,'xlim',p);

Set	new	x	axis	limits	and	update	expansion	history,	where	p=[xmin,xmax]	

plt('cursor',cid,'ylim',p,pAux);

Set	new	y	axis	limits	and	update	expansion	history,	where	p=[ymin,ymax].
and	optionally	pAux=[ymin,ymax]	(for	the	right	hand	axis).	

plt('cursor',cid,'xylim',p,pAux);

Set	new	x	and	y	axis	limits	and	update	expansion	history,	where	p=
[xmin,xmax,ymin,ymax].
and	optionally	pAux=[ymin,ymax]	(for	the	right	hand	axis).	

plt('cursor',cid,'exRestore',u);

Restores	an	expansion	history	previously	saved	in	u.	

plt('cursor',cid,'axisCB',fcn);

String	fcn	will	be	evaluated	whenever	an	axis	limit	is	changed.	This	cursor
command	overwrites	any	axis	callback	function	entered	using	the	'axisCB'
parameter	on	the	plt	command	line.	The	rules	for	string	substitutions	and
function	handles	are	the	same	as	mentioned	below	in	the	moveCB	command.	

plt('cursor',cid,'moveCB',fcn);

String	fcn	will	be	evaluated	whenever	the	cursor	is	moved.	Before	the	fcn
string	is	evaluated	all	occurrences	of		the	strings	in	the	1st	column	of	the	table
above	(@CID,	@XVAL,	@YVAL,	@XY,	@IDX,	@HAND,	@LNUM,
@XU,	@YU)	are	replaced	with	the	values	in	the	2nd	column	of	that	table.	fcn	is
not	called	by	events	initiated	from	outside	the	figure	window	containing	the
cursor.	(For	example	a	button	push	that	moves	the	cursor	in	another	figure
window	would	not	activate	the	callback.	This	prevents	infinite	loops	when	figure
A	modifies	figure	B's	cursor	and	visa	versa.)	If	you	do	want	to	enable	the
callback	for	external	events,	insert	an	extra	semicolon	as	the	first	character	of	the
moveCB	callback	string.	This	cursor	command	overwrites	any	axis	callback
function	entered	using	the	'moveCB'	parameters	on	the	plt	command	line.	In
addition	to	a	string,	fcn	may	also	be	a	function	handle	of	the	form	@func	or
{@func,arg1,arg2,...,argn}.	Note	that	the	string	substitutions	can't	be
used	with	the	function	handle	form	of	this	parameter.	Also	note	that	a	similar
callback	is	provided	for	the	TraceID	fields,	although	the	string	substitutions
allowed	are	different	than	the	ones	mentioned	above.	See	the	'TIDcback'
parameter	under	Trace	properties.	

plt('cursor',cid,'moveCB2',fcn);

This	call	operates	similarly	to	the	set	moveCB	command	shown	above	and	the
functions	specified	in	both	these	calls	are	executed	whenever	the	cursor	is
moved.	However	normally	you	will	not	want	to	use	this	call	because	the
moveCB2	function	is	used	internally	by	plt	to	keep	the	CursorID	tag	(just	to	the

left	of	the	y-axis	cursor	readout)	so	that	it	always	identifies	the	cursored	trace
name.	It's	also	used	by	plt	in	the	linked	subplot	mode	to	keep	the	plots	in	a
column	synchronized.	In	rare	situations	you	may	wish	to	modify	those
behaviors,	which	you	can	do	with	the	moveCB2	function.	

plt('cursor',cid,'setActive',a,k);

Switches	the	active	cursor	to	the	line	specified	by		a	(a	must	be	an	integer
between	1	and	the	number	of	lines	in	the	plot).	The	cursor	will	be	placed	at
index	k.	If	k	(optional)	is	out	of	bounds	or	not	supplied,	then	the	cursor	will	be
placed	in	the	center	of	the	array.	When	a	is	zero	(a	special	case),	the	active	line
remains	the	same	and	only	the	cursor	index	is	changed	-	which	would	have	the
the	same	as	calling	the	update	command	(below).	

plt('cursor',cid,'update',k);

plt('cursor',cid,'updateH',k);

plt('cursor',cid,'updateN',k);

Moves	the	active	cursor	to	index	k	in	the	data	set	and	calls	any	user	defined
cursor	callbacks	(moveCB,	xstring,	ystring).	If	k	is	out	of	bounds,	the	cursor	is
set	to	the	middle	of	the	array	associated	with	the	active	trace.	If	you	do	not
supply	the	argument	k,	then	the	command	does	not	move	the	cursor,	however	it
does	execute	the	cursor	callbacks.	If	update	moves	the	cursor	to	an	area	that	is
not	inside	the	current	axis	limits,	it	will	shift	the	axis	limits	to	make	the	cursored
data	element	visible.	However	when	the	cursor	is	moved	by	updateH	the	axis
limits	will	never	be	adjusted.	(Think	of	this	as	"Update,	Hold".)	Also	updating
the	cursor	with	the	updateN	command	has	the	same	effect	as	using	the
updateH	command	except	that	the	cursor	callback	function	(defined	by
'MoveCB')	is	not	called	like	it	is	with	the	update	and	updateH	commands.	

When	the	index	is	not	needed	we	can	abbreviate	the	update	command	by
omitting	the	'update'	string.	This	means	that	the	following	two	lines	are
equivalent:
				plt('cursor',cid);

				plt('cursor',cid,'update');

We	can	abbreviate	the	update	command	even	more	by	omitting	the	cursor	ID
which	defaults	to	-1.	This	means	that	the	following	two	lines	are	equivalent:
				plt('cursor');

				plt('cursor',-1);

And	finally	there	is	one	more	variant	of	the	update	and	updateH	commands:

				plt('cursor',cid,'update',k,x,y);

				plt('cursor',cid,'updateH',k,x,y);

The	moves	the	active	cursor	to	the	index	k	as	above.	Normally	x	and	y	would	be
the	position	of	the	kth	element	of	the	array	associated	with	the	active	trace,	in
which	case	this	command	behaves	the	same	as	if	you	didn't	include	the	last	two
parameters.	However	x	and	y	can	be	any	position	on	the	axis,	and	the	visible
cursor	marker	will	be	moved	to	those	coordinates.	(It's	rare	to	want	to	move	the
cursor	off	the	line,	but	it	may	sometimes	be	useful.)	

plt('cursor',cid,'peakval',0);

plt('cursor',cid,'peakval',1);

Moves	the	active	cursor	to	the	next	peak	(0)	or	to	the	next	valley	(1)	

plt('cursor',cid,'clear');

All	the	cursor	objects	are	deleted.	

plt	hideCur;

Has	the	same	effect	as	right-clicking	on	the	y-axis	label.	See	cursoring.	If	you
also	want	to	hide	the	TraceID	box,	use	the	commands:
tbox=findobj('user','TraceID');	set([tbox;	get(tbox,'child')],'vis','off')

Note:	The	following	cursor	commands	were	designed	primarily	for	plt	internal
use,	although	sometimes	they	may	also	be	useful	in	your	programs.	(These
commands	are	case	sensitive.)	The	"0"	in	the	first	seven	commands	below	refers
to	the	current	cursor.	You	may	replace	the	"0"	with	the	actual	cursor	ID	number,
or	"-n"	to	refer	to	the	nth	cursor.

plt	cleft	0	ZoomOut; Zoom	out	both	x	&	y	axis	by	40%.

plt	cright	0	ZoomOut;		

Zoom	in	both	x	&	y	axis	by	40%.	With	the
functional	form	(which	applies	to	the
command	above	as	well),	you	may	also
include	an	additional	argument	which
specifies	the	zoom	ratio.	For	example,	this
command	specifies	a	20%	ratio	(half	of	the
default	amount):
plt('cright',0,'ZoomOut',.2);

plt	cleft	0	peakval	0; Move	the	cursor	to	the	next	peak.	(The	last
argument	may	be	omitted	in	this	case.)

plt	cleft	0	peakval	1; Move	the	cursor	to	the	next	valley

plt	cleft	0	peakval	2;
Reset	the	peak	finder	(i.e.	move	the	cursor	to
the	highest	peak)

plt	cleft	0	peakval	3;
Reset	the	valley	finder	(i.e.	move	the	cursor
to	the	lowest	valley)

plt	cleft	0	TGLlogy; Toggle	the	y-axis	between	linear/log
plt	cleft	0	TGLlogx; Toggle	the	x-axis	between	linear/log
plt	cright	0	TGLlogy; Open	Hardcopy	menu
plt	cright	0	TGLlogx; Swap	x	&	y	axes
plt	cleft	0	markCB; Toggle	the	delta	cursor	mode	on	or	off

plt	cleft	0	mlsCB;
3	way	toggle	of	all	traces	between	markers
only,	lines	only,	and	both	lines	&	markers

plt	cleft	0	mark;
Adds	a	text	label	identifying	the	current
cursor	location

plt	xleft	TGLgrid; Toggle	between	grid	lines	and	ticks

plt	xright	TGLgrid;
Toggle	between	default	and	alternate	grid
style

plt	xleft	TGLmenu; Toggle	the	menu	bar	on/off
plt	xright	TGLmenu; Open	a	cursor	data	window

plt	xleft	mark	2;
Open	a	window	allowing	editing	plt	figure
colors

plt	xleft	mark	3;
Write	a	file	saving	the	current	plt	figure
colors

plt	xleft	EDIT	1;
Enter	data	editing	(using	last	used	editing
mode)

plt	xleft	EDIT	2; Open	up	data	edit	y-popup
plt	xleft	EDIT	5; Exit	data	editing	mode

plt	xleft	Yedit	1;

Open	a	window	allowing	editing	the	line
properties	of	cursored	trace.	(The	command
plt	xright	mark;)	also	does	the	same
thing.

plt	xright	Yedit	1;
Open	a	window	allowing	editing	the	plt
figure	properties

plt	xleft	Yedit	2; Toggle	multiCursor	mode

plt	xleft	Yedit	3; Toggle	xView	slider
plt	xleft	Yedit	4; Cancel	data	editing	mode
plt	xleft	Yedit	5; Enter	data	edit	mode	(Range)
plt	xleft	Yedit	6; Enter	data	edit	mode	(Range	left/right)
plt	xleft	Yedit	7; Enter	data	edit	mode	(Range	up/down)
plt	xleft	Yedit	8; Enter	data	edit	mode	(Insert)
plt	xleft	Yedit	9; Enter	data	edit	mode	(Insert	left/right)
plt	xleft	Yedit	10; Enter	data	edit	mode	(Insert	up/down)
plt	click	Yedit	11; Enter	data	edit	mode	(Modify)
plt	xleft	Yedit	12; Enter	data	edit	mode	(Modify	left/right)
plt	xleft	Yedit	13; Enter	data	edit	mode	(Modify	up/down)
plt	xleft	link; Toggle	right	hand	axis	link	status

plt	xleft	RMS;

Equivalent	to	clicking	on	the	cursorID	tag
which	rotates	between	the	five	cursor	modes
[normal,	Avg,	RMS,	y/x,	sqrt(x^2+y^2)].
After	five	of	these	commands	the	cursor
mode	will	be	the	same	as	it	was	before	the
first	of	those	commands	(having	rotated	thru
all	the	modes).

Mouse	motion	functions:
If	you	create	a	figure	with	a	plt	command	that	includes	the	parameter
'MotionZoom','funcname',	then	if	you	create	a	zoom	box	(see	The
expansion	box)	while	you	are	adjusting	the	size	of	the	zoom	box	the	function
funcname([x1	x2	y1	y2])	will	be	continually	called	as	the	mouse	is
moved	(i.e.		for	as	long	as	the	mouse	button	is	held	down).	The	coordinate	[x1
y1]	is	the	position	of	the	lower	left	corner	of	the	zoom	box	and	[x2	y2]	is	the
coordinate	of	the	upper	right	corner.	It	may	require	some	imagination	to	see	how
using	such	a	parameter	would	enhance	your	user	interface.	The	example
demo\gauss.m	shows	how	to	use	the	'MotionZoom'	function.	Although	the	use	of
the	MotionZoom	feature	in	this	program	is	not	inspirational,	at	least	when	you
create	a	zoom	box	inside	the	gauss	figure	you	will	see	the	effect	that	the
MotionZoom	parameter	creates.	A	more	practical	demonstration	of	the	use	of

this	parameter	can	be	seen	in	the	pltmap.m	example.	

In	place	of	the	character	string	'funcname'	you	may	also	use	@funcname	or
to	insert	extra	parameters	to	the	function,	use
{@funcname	param1	param2}.	(The	4	element	vector	specifying	the
zoombox	corners	will	be	the	3rd	parameter	of	the	function	in	this	example.)
These	alternate	forms	also	apply	to	the	other	mouse	motion	functions	

Including	the	parameter	'MotionZup','funcname'	has	a	similar	effect
except	that	the	function	'funcname'	only	is	called	when	the	mouse	button	is
released.	The	MotionZoom	and	MotionZup	functions	are	called	when	the	zoom
box	moved	or	resized	as	well	as	when	it	is	first	created.	

If	you	create	a	figure	with	a	plt	command	that	includes	the	parameter
'MotionEdit','funcname',	then	if	you	use	the	data	editing	feature		(see
Data	Editing)	while	you	are	modifying	a	data	value	by	dragging	it	with	the
mouse,	the	function	funcname(a)	will	be	continually	called	as	the	mouse	is
moved	(i.e.		for	as	long	as	the	mouse	button	is	held	down).	The	parameter	"a"	is
a	nine	element	cell	array	containing	information	related	to	the	edited	trace.	The
first	six	of	these	might	be	useful:

a{1}:	Cursor	ID
a{2}:	index	of	edited	point
a{3}:	edit	cursor	handle
a{4}:	edit	cursor	shape	(index)
a{5}:	edit	cursor	marker	size
a{6}:	edit	cursor	line	width

As	with	the	MotionZoom	parameter,	it	may	require	some	imagination	to	see	how
to	use	it	to	enhance	your	user	interface.	The	example	demo\editz.m	shows	one
way	to	use	the	MotionEdit	function	to	enhance	the	user	interface.	In	this
example	you	can	see	the	advantage	of	the	MotionEdit	function	and	how	useful
(and	impressive)	it	is	when	the	the	plots	are	updated	while	the	data	is	being
edited,	instead	of	afterwards.	The	pltquiv.m	example	also	demonstrates	the
use	of	the	MotionEdit	parameter	to	update	the	polynomial	interpolation	of	a
vector	field	in	real	time.	

You	may	also	create,	modify,	or	remove	these	mouse	motion	functions	after	the

Row 		[x	y	w	h]
1 		label	for	x	cursor	readout
2 		label	for	y	cursor	readout
3 		x	cursor	readout
4 		x	cursor	expansion
5 		y	cursor	readout
6 		y	cursor	expansion
7 		peak	find	button
8 		valley	find	button
9 		delta	cursor	button
10 		x-axis	cursor	slider	(optional)		

call	to	plt	by	modifying	the	corresponding	application	data	variable	associated
an	axis.	For	example	these	commands	will	set	the	mouse	motion	functions	as
expected:
				setappdata(gca,'MotionZoom','funcA');

				setappdata(gca,'MotionZup',@funcB);

				setappdata(gca,'MotionEdit',{@funcC	param1});

Creating	a	cursor	pseudo	object:
Usually	the	cursor	objects	are	initialized	from	the	main	plt()	call	that	specifies
the	data	arrays	to	be	plotted.	However	you	may	also	create	the	cursor	objects
using	this	cursor	'init'	call	after	creating	a	figure	on	your	own	(i.e.	without	using
the	plt	pseudo	object).	

Ret1	=

plt('cursor',axis,'init',In1,In2,In3,In4,In5,In6,In7,In8,In9);

where:
Ret1:	the	cursor	ID	(cid)	used	to	control	the	cursor	with	additional	calls
to	plt.
axis:	a	scalar	if	the	cursor	is	assigned	to	a	single	axis.	A	two	element
row	vector	is	used	to	assign	the	cursor	to	a	pair	of	axes.	The	second	axis
(right	hand	axis)	is	normally	overlaid	on	top	of	the	primary	axis	and	is	used
to	provide	a	separate	y-coordinate	axis	on	the	right	and	side	of	the	graph.
In1:	a	10	by	4	array	containing
the	positions	of	the	cursor
controls.	Each	row	contains
[x	y	w	h]	where	x,y	is	the
position	of	the	control	and	w,h	is
its	size.	The	units	for	all	the
values	in	the	In1	array	must	be
either	pixels	or	normalized	(no
mixing	units).	The	last	row
specifies	the	position	of	the	slider
and	is	the	only	optional	row.	If
In1	contains	only	nine	rows	then
the	x-axis	cursor	slider	will	not
be	created.	The	rows	of	In1	are
assigned	as	described	in	this

Row 		[r	g	b]
1 		x/y	cursor	label	color
2 		cursor	readout	color	[*1]

3 		expansion	box	color
4 		delta	cursor	color
5 		line	#1	cursor	color	[*1]

6 		line	#2	cursor	color	[*1]

... 		[*1]

4+n
(Must	have	a	row	for
each	line	object
that	has	a	cursor)

		line	#n	cursor	color	[*1]

table.	
In2:	a	3	column	array
[red	green	blue]
specifying	the	colors	for
the	cursors	and	cursor
readout	text.	The	rows
of	In2	are	defined	as
shown	in	this	table.

[*1]	Set	to	[0	0	0]	to
make	the	color	of	this
element	track	its
associated	line	color.	

In3:	Text	for	the	x/y	cursor	labels.	['xlabel';'ylabel']	or
{'xlabel',	'ylabel'}

In4:	Cursor	markers.	Must	have	one	marker	for	each	line	that	has	a
cursor.
	 	 			For	example	for	3	lines	one	could	use	'+ox'	
	 	 			or	to	use	the	same	symbol	for	all	3	cursors	use	'+++'.
In5:	Cursor	size	(in	points)
In6:	Format	strings	for	x	and	y	cursor	readouts.
	 	 			e.g.	['%2.1f';	'%5w		']	or		{'%2.1f','%5w'}.
	 	 			(Type	"help	prin"	for	a	description	of	these	format	strings.)
In7:	Visible	flag	(first	optional	argument).			'on'	or	'off'.
In8:	(optional)	Monotonic	flag.
	 	 			Set	to	1	if	the	x	data	is	monotonically	increasing,		and	0	otherwise
(such	as	with	Nyquist	plots).
In9:	(optional)	Axis	limit	change	callback	function.
	 	 			Executed	when	the	axis	limits	are	changed.

Notes:

When	the	plt('cursor','init'	function	is	called,	plt	will
attempt	to	add	cursors	to	all	lines	of	the	axis	created	by	plt.	If	you
want	plt	to	skip	adding	cursors	to	some	of	the	lines,	you	should	tag
the	line	with	the	string	'SkipCur'.	For	example,	a	cursor	would

not	be	created	for	a	line	created	with	the	following	command:
line(x,y,'tag','SkipCur');

	

Another	way	to	restrict	which	lines	are	to	be	cursored	is	to	add	the
application	data	key	'Lhandles'	to	the	axis.	(For	example:
setappdata(ax,'Lhandles',[h1	h3]);	would	tell	the
cursor	initialization	routine	to	add	cursors	only	to	those	two	handles.)

Pseudo	objects

The	table	below	describes	the	GUI	building	pseudo	objects	provided	with	the	plt
toolbox.	Since	this	section	jumps	immediately	into	the	details,	it	would	be	best	if
you	first	read	the	overview	of	these	pseudo	objects	provided	here	

plt
(pseudo
plot
object)

The	plt	pseudo	object	can	be	thought	of	as	a	super	axis	and	in	that	respect	it's	
Matlab's	plot	and	plotyy	functions	but	as	you	will	learn	it	is	much	more	than	that.	

It	may	be	confusing	at	first	that	plt	is	both	the	name	of	a	pseudo	object	as	well	
the	whole	toolbox.	In	fact	all	the	pseudo	objects	describe	here	are	
queried	by	using	calls	to	the	same	plt()	function.	The	plt	pseudo	object	differs	from	the
remaining	pseudo	objects	in	that:

For	the	remaining	pseudo	objects,	the	first	plt	argument	will	always	be	the	name	of	
pseudo	object	(as	a	string)	but	this	is	not	true	for	the	plt	pseudo	object.	
pseudo	object,	one	or	more	numeric	arrays	are	always	required	to	specify	
plotted	and	usually	we	put	these	arrays	at	the	beginning	of	the	argument	list	which	makes
it	more	obvious	that	we	are	creating	a	plt	pseudo	object.	It	is	not	strictly	necessary	to	put
the	numeric	arrays	first	and	a	call	to	plt	will	still	create	a	plt	pseudo	object	when	the	first
argument	is	a	string,	as	long	as	that	string	is	not	one	of	the	following	21	strings	(not	case
sensitive):
		click dateStr		 help metricp		 rename		 version

		close edit helpText		 misc select

		colorPick		 grid hideCur move show

		cursor hcpy markEdit pop slider

When	a	plt	pseudo	object	is	created,	two	other	pseudo	objects	are	automatically	
well	(namely	cursor	and	grid)
A	new	figure	window	is	immediately	created	to	contain	the	plt	pseudo	object.
The	plt	pseudo	object	may	be	called	from	the	command	line	(similar	to	Matlab's	
command)	whereas	it	only	makes	sense	to	use	the	other	pseudo	objects	inside	a	
Nearly	every	other	section	of	this	help	file	is	dedicated	to	describing	the	details	of	the	plt

pseudo	object.

cursor
(pseudo
cursor
object)

The	cursor	pseudo	object,	more	than	any	of	the	others	is	what	gives	the	plt	toolbox	such	
advantage	for	GUIs	involving	plotting	and	data	exploration.	Once	you	get	used	
and	natural	methods	provided	for	cursoring,	zooming	and	panning	you	will	wonder	
lived	without	them	and	you	will	want	all	your	GUI	tools	to	be	similarly	equipped.	

The	description	of	the	cursor	pseudo	object	is	long	to	fit	comfortably	in	this	table,	so	a	
section	of	the	help	file	(which	you	will	find	here)	is	dedicated	for	that	purpose.	That	section
describes	how	to	query	and	modify	the	cursor	objects	as	well	as	how	to	create	a	cursor	object
using	the	'init'	action.	(It's	not	likely	worth	your	time	to	review	the	'init'	action	details
because	normally	you	will	let	the	plt	pseudo	object	create	the	cursor	object	for	you.)

The	trace	color	of	the	native	Matlab	axis	grid	lines	can't	be	independently	set	leading	to	grid
lines	that	over	power	the	display.	The	grid	line	pseudo	object	is	designed	to	solve	this	problem
by	providing	grid	lines	of	whatever	color	and	style	you	choose.	Actually	the	grid	line	problem	I
referred	to	is	mostly	solved	in	the	latest	R2014b	version	of	Matlab,	however	you	can't	use	that
capability	if	you	need	to	remain	compatible	with	older	Matlab	versions.	plt	doesn't	have	this
problem	and	the	grid	lines	will	look	wonderful	on	all	supported	Matlab	versions	(ver	6.1	thru
R2014b).	

Grid	lines	are	positioned	at	each	tick	label.	Additional	(sub-decade)	grid	lines	will	also	
for	logarithmically	scaled	axes	that	span	six	or	fewer	decades.	(The	
changed	by	adjusting	the	logTR	figure	application	data	property	which	defaults	to	

The	grid	line	functions	are:	

plt('grid',ax,'init',color,erMode,LineStyle,In7,In8,In9,In10)

 	-	Initializes	grid	lines	on	axis	ax	of	color	color	with	erase	mode	
LineStyle.
 	-	color	is	optional	with	default	[.13	.13	.13]
 	-	erMode	is	optional	with	default	'xor'.
 	-	LineStyle	is	optional	with	default	'-'
 	-	In7,In8	is	an	optional	parameter/value	pair	to	apply	to	the	grid	lines
 	-	In9,In10	is	an	optional	parameter/value	pair	to	apply	to	the	grid	lines
 	 	 	The	pltvbar.m	demo	program	uses	this	call	to	create	a	tabular
 	 	 	list	next	to	the	main	plot	area.	Although	that	demo	as	well	as	the

grid
(pseudo
grid	line
object)

 	 	 	three	line	example	below	calls	this	'init'	action,	you	will	rarely
 	 	 	if	ever	do	this	because	the	grid	pseudo	object	created	automatically
 	 	 	by	the	plt	pseudo	object	is	usually	sufficient.	

plt('grid',ax,'toggle')		-	toggle	grids	(on/off)	

plt('grid',ax,'get')					-	get	grid	line	handle	

plt('grid',ax,'off')					-	turn	grids	off	

plt('grid',ax,'on')						-	turn	grids	on	

plt('grid',ax,'update')		-	update	grids	

plt('grid',ax)											-	same	as	above	

plt('grid')														-	equivalent	to	plt('grid',gca)

All	the	above	calls	return	the	grid	line	handle.	Setting	ax	to	zero	in	any	of	these	commands	is
equivalent	to	specifying	gca.
To	experiment	with	these	functions,	try	typing	this	at	the	command	prompt:	

>>	plt('grid',axes,'init',[.7	1	1]);	%	create	axis	&	grid	pseudo	object
>>	set(gca,'ylim',[0	6]);												%	change	axis	limits
>>	plt('grid');																						%	update	grid	lines

The	slider	control	is	Matlab's	most	versatile	ways	to	control	a	numeric	parameter	because	it
allows	us	to	change	a	value	continuously	and	repeatedly	using	several	different	methods	
&	hold	on	an	arrow,	click	&	hold	in	the	trough,	and	dragging	the	slider	bar).	The	pseudo	
object	(described	later	in	this	table)	enhances	this	capability	further	by	providing	more
movement	options	and	coupling	it	with	the	labels	and	numeric	readout	normally	needed	with
the	slider.	The	only	downside	to	the	pseudo	slider	is	that	it	takes	up	too	much	space	to	use	it
everywhere	in	a	GUI	containing	many	numeric	controls.	For	this	reason	an	edit	box	
uicontrol('Style','Edit'))	is	often	used	to	control	a	numeric	parameter.	
because	the	only	way	to	change	the	value	of	an	edit	box	is	to	type	in	a	new	number,	it	is
difficult	to	use	when	many	adjustments	are	needed	to	arrive	at	an	optimal	setting	or	when	you
want	to	develop	a	feel	for	the	effect	of	small	changes	in	the	parameter.	The	

was	designed	primarily	to	overcome	that	difficulty,	although	it	also	has	the	following	
advantages	over	the	uicontrol	edit	box:

A	label	is	almost	always	required	for	a	numeric	parameter	and	is	sometimes	needed	for
string	parameters	as	well.	The	uicontrol	edit	box	doesn't	have	this	label	so	you	must	add
another	uicontrol	for	that	purpose,	complicating	your	program	and	making	it	more	difficult
to	reposition.	The	edit	pseudo	object	includes	an	optional	label	so	when	you	move	the	edit
object	its	label	automatically	moves	along	with	it.
The	edit	pseudo	object	may	be	positioned	using	figure	coordinates	or	using	the	normalized
or	data	coordinates	of	an	axis.	Which	coordinates	to	use	is	usually	obvious	and	depends	on
the	use	of	the	particular	control.	(The	uicontrol	edit	box	may	only	use	figure	coordinates.)
The	edit	pseudo	object	takes	up	even	less	space	in	your	GUI	than	an	uicontrol	edit	box	
you	can	fit	more	controls	into	a	given	area.	This	often	simplifies	your	GUI	design	by
avoiding	the	need	for	additional	modes	to	control	which	parameters	are	in	view.
The	edit	pseudo	object	has	the	(optional)	ability	to	honor	set	minimum	and	maximum
values.
The	string	substitutions	of	the	edit	pseudo	object's	callback	function	often	greatly	simplify
the	callback	routines.

There	are	two	types	of	edit	pseudo	objects:

Type	1:	Two	uicontrol	objects	are	created	(text	style)	inside	the	current	figure.	
 	 					(If	a	label	is	not	specified,	only	a	single	uicontrol	is	created.)	
 	 					This	type	is	created	if	the	'pos'	property	has	length	4	
height]).
Type	2:	Two	text	objects	are	created	inside	the	current	axis.	
 	 					(If	a	label	is	not	specified,	only	a	single	text	object	is	created.)	
 	 					This	type	is	created	if	the	'pos'	property	value	has	length	2	

For	reference,	this	first	table	describes	the	edit	pseudo	object	properties	that	you	may	set	and
query.	How	to	use	these	properties	will	become	clear	later	when	the	commands	are	discussed:

Property
Name

Property
Value

v	(scalar) Sets	the	edit	object's	numerical	value	to	
(default	=	1)

[min	max]

(length	2	vector)
Sets	the	edit	object's	allowed	min/max	values
(default	=	[-1e99,	1e99])

value [v	min	max]

(length	3	vector)
Sets	both	of	the	above.

Except	for	the	length	2	argument	case,	the	callback	function	is	called	
been	provided	earlier	in	the	argument	list	or	in	a	previous	
plt('edit').

val
Equivalent	to	the	value	property	above,	except	that	the	callback	is	never
called.

minmax
Equivalent	to	the	val	property	above.	(For	clarity,	use	this	only	when	the
argument	has	length	2	(i.e.	[min	max]).

callbk

A	callback	to	be	executed	when	the	edit	text	object	is	changed.
If	the	callback	is	defined	with	a	string,	then:
Occurrences	of	'@VAL'	will	be	replaced	with	the	current	value.
Occurrences	of	'@OBJ'	will	be	replaced	with	the	edit	text	handle.
Also	note	that	if	the	function	is	defined	as	a	string	argument	often	consecutive
single	quote	characters	are	required	(quotes	within	quotes).	In	that	case
readability	can	be	improved	by	replacing	all	sequences	of	two	consecutive
single	quotes	with	a	double	quote	character.	For	example
'disp(''ABC'');'	could	be	written	as	'disp("ABC");'
this	trick	does	not	work	for	Matlab	callbacks	in	general,	but	it	does	work	for
any	callback	defined	within	a	plt(...)	function	call.

enable
0=disable,	1=enable	(default=1).	If	disabled,	the	text	will	
may	not	be	modified.

incr

The	increment	value	for	a	numeric	edit	pseudo	object.	(default	=	1)	
click	on	the	right/left	side	of	the	center	of	the	object,	
edit	object	is	increased/decreased	by	"incr".	A	negative	value	of	"incr"	is	used
to	indicate	that	the	increment	factor	is	in	percentage	terms	instead	of	absolute.
For	example,	if	incr	=	-0.1	then	clicking	on	the	right/left	side	of	the	edit	object
will	increase/decrease	the	edit	object's	value	by	0.1	percent	(i.e.	from	1000	to
1001	or	999).	Setting	incr	to	zero	disables	the	incr/decr	feature	which	means
the	left	clicking	on	the	object	will	have	the	same	effect	as	right-clicking.	Note
that	the	incr/decr	feature	is	also	disabled	if	the	length	parameter	
to	anything	other	than	one.

length

The	length	of	the	vector	allowed	as	the	edit	value.	Usually	
the	edit	value	must	be	a	scalar.	If	length=4	(for	example),	an	allowed	edit
value	must	be	a	row	or	column	vector	of	length	4.	Two	special	cases	are
length=-1	and	length=0.	length=-1	is	used	to	indicate	

any	length	is	a	legal	value.	length=0	is	used	for	string	edit	objects	i.e.	the	edit
string	is	not	interpreted	as	a	number	or	vector.	(default	=	1)

format
The	format	conversion	string	used	to	display	numeric	edit	
(default	=	'%6w').	Type	"help	prin"	for	a	description	of	the	formatting	codes.

label

If	the	argument	is	a	string,	that	string	will	become	the	edit	pseudo	object's
label.	Usually	this	is	sufficient,	but	if	you	want	more	control	of	the	label's
position	or	appearance	the	argument	may	be	a	cell	array	of	the	form:
{'LabelString',	offset,

'Property1',Value1,'Property2',Value2,	...}

Note	that	the	label	will	be	created	with	the	same	type	as	the	main	edit	object
(i.e.	a	uicontrol	for	type	1	and	a	text	object	for	type	2).	The	property	names	in
the	cell	array	must	be	valid	properties	for	that	object	type.	

Note	that	the	label	will	be	created	as	a	text	object	in	the	same	axis	that	is	used
to	display	the	popup	choices.	Property1,	Property2,	etc.	must	all	be	valid	text
object	property	names.	The	meaning	of	the	offset	parameter	depends	on	its
length	as	follows:

Offset Meaning	for	Type	1

''	or	[]
plt	estimates	the	best	label	size	&
position	based	on	the	#	of	characters
in	the	label.

q

The	label	width	is	set	to	q.
plt	estimates	the	best	label	height	&
position.

[q1	q2]

The	label	width	is	set	to	q1.
The	label	position	is	set	to:
edit	object	position	+
[real(q2)	imag(q2)]

[q1	q2	q3] NA

[q1	q2	q3	q4]
The	label	position/size	is	set	to

edit
(pseudo
edit
object)

[q1	q2	q3	q4]
For	a	type	1	edit	object,	if	the	estimated	width	of	the	label	based	on	its
character	length	is	too	big	or	too	small	you	may	adjust	it	using	the	"q"
parameter	as	described	above.	However	an	alternate	method	is	to	use	the	label
itself.	You	can	make	the	width	bigger	by	padding	the	label	
can	also	make	the	width	smaller	by	using	the	tilde	character.	For	example	if
the	desired	label	is	"Abcdef",	you	can	make	it	slightly	smaller	by	specifying
the	label	as	"Abcde~f"	or	smaller	still	by	using	"Abcd~ef",	or	"Abc~def"	etc.
(Note	the	tilde	character	itself	does	not	appear	in	the	label.)

If	a	property	name	is	given	which	isn't	in	the	list	above	
applied	to	the	main	uicontrol	or	text	object	itself.	(It	must	be	a	valid	
name	for	type	of	object	being	used.)	The	position	('pos'
object	must	be	set	this	way.	For	a	type	1	edit	pseudo	object	the
foreground/background	colors	('foregr'	/	'backgr'
usually	set	this	way,	however	if	these	properties	are	not	specified	the
background	color	defaults	to	0.8	times	the	figure	background	color	and
foreground	color	defaults	to	[1	1	.4]	or	[0	0	.6]	(whichever	provides	the	most
contrast).	The	text	color	of	a	type	2	edit	pseudo	object	can	be	
well	('color'	property)	with	its	default	handled	in	the	same	manner	the
foreground	color	for	the	type	1	object.

The	following	commands	are	used	to	create	an	edit	pseudo	object:	

H	=	plt('edit',

				'Poperty1',Value1,	

				'Poperty2',Value2,...)

The	property	names	allowed	and	the
interpretation	of	the	property	values	are
shown	in	the	table	above.	
many	or	as	few	properties	as	you	need	in
whatever	order	you	choose.

H	=	plt('edit',

				[x	y	width	height],v,	

				'Poperty3',Value3,...)

Usually	both	the	'position'	and	'value'
properties	are	needed,	so	for	conciseness
you	may	omit	those	
property	values	appear	first	and	in	this	order.
Note	that	v	in	this	form	may	also	be	a	length
3	vector	if	you	want	to	specify	the	min/max
values.	Property	names	other	than	these	two
may	not	be	omitted.

H	=	plt('edit', Assuming	at	least	one	of	the	4	position

				'pos',[x	y	width	height],

				'value',v,	

				'Poperty3',Value3,...)

values	is	greater	than	3	(indicating	pixel
units	are	being	used),	
translated	into	this	line	before	execution.

H	=	plt('edit','unit','norm',

				'pos',[x	y	width	height],

				'value',v,	

				'Poperty3',Value3,...)

If	all	of	the	position	values	are	less	than	3
(indicating	that	normalized	units	are	being
used),	a	slightly	different	translation	is	used.
(Note	the	addition	of	the	units	property.)

The	above	calls	create	an	edit	pseudo	object	and	returns	the	handle	of	the	
type	1)	or	main	text	object	(for	type	2)	created.	(By	"main"	I	mean	the	object	containing	
value,	not	the	label).	This	handle	(H)	may	be	used	to	modify	or	query	the	edit	pseudo	object
parameters	using	the	forms	below:

plt('edit',H,

				'Poperty1',Value1,

				'Poperty2',Value2,...)

If	H	is	a	scalar,	the	specified	property	values
are	applied	to	the	edit	pseudo	object	identified
by	handle	H.	The	property	names	are	the
same	ones	described	in	the	table	above.	

If	H	is	a	vector	then	Property1	of	H(k)	is	set
to	the	kth	row	of	Value1.	
have	that	many	rows,	the	last	row	will	be
used.	Only	one	property	is	allowed	for	the
case	where	H	is	a	vector.

plt('edit',H,'get','value')

returns	the	numeric	value	of	the	specified	edit
pseudo	object.	For	conciseness,	this	command
may	also	be	written	without	the	last	argument:
plt('edit',H,'get')

the	last	two	arguments:	

plt('edit',H,'get','minmax')
returns	[min	max]	-	the	allowed	limits	for	the
value

plt('edit',H,'get','callbk')
returns	the	string	or	function	handle	that	was
set	via	the	'callbk'	parameter

plt('edit',H,'get','enable')
returns	0/1	if	the	pseudo	object	is
disabled/enabled

plt('edit',H,'get','incr')
returns	the	value	that	was	set	via	the	'incr'
parameter

plt('edit',H,'get','length') returns	the	value	that	was	set	via	the	'length'
parameter

plt('edit',H,'get','format')
returns	the	string	that	was	set	via	the	'format'
parameter

plt('edit',H,'get','label') returns	the	label	handle

plt('edit',H,'get','cell')

returns	an	9	element	cell	array	that	is	a
concatenation	of	the	
commands:	{val	min	max	callback	enable	incr
length	format	label}.	
may	be	replaced	by	any	string	other	than	one
of	the	other	8	valid	'get'	arguments.

Keyboard	and	mouse	behavior:
Right-clicking	on	the	edit	text	object	always	"opens"	the	object	for	editing.	
that	the	old	edit	string	appears	with	the	cursor	(underscore)	at	the	end	of	the	string	indicating
that	it	is	ready	to	accept	keys	typed	at	the	keyboard.	If	you	start	typing	right	away,	the	new
characters	typed	will	be	appended	to	the	end	of	the	old	string.	To	insert	the	new	characters	at	a
point	other	than	the	end,	simply	move	the	cursor	to	the	desired	point	using	the	
keys.	To	remove	characters,	press	<Backspace>	or	<Delete>	to	remove	a	character	before	or
after	the	cursor.	Pressing	<Delete>	when	the	cursor	is	at	the	end	of	the	string	deletes	all	the
characters.	This	special	case	makes	it	easier	to	enter	a	new	string	that	bears	little	resemblance	to
the	previous	entry.	Note	that	while	typing,	the	text	object	is	shown	in	a	different	color	to	
you	that	a	new	value	is	being	entered.	When	you	press	<Enter>,	the	new	
the	color	returns	to	the	original.	If	you	type	an	invalid	entry,	the	word	"error"	will	appear.	Click
again	on	the	"error"	string	to	try	the	entry	again	or	to	recover	the	previous	entry	(via	<Esc>).	A
summary	of	the	special	keys	follow:

<Esc> The	edit	text	object	is	closed	for	editing	and	the	original	
restored	as	if	the	edit	object	was	never	opened	for	editing.

<Backspace> Deletes	the	character	on	the	left	side	of	the	cursor.

<Delete>
Deletes	the	character	on	the	right	side	of	the	cursor.	If	the	cursor	is	at	the
end	of	the	string,	all	the	characters	are	deleted	leaving	only	the	underscore
cursor.

<Right
arrow> Moves	the	underscore	cursor	one	position	to	the	right.

<Left	arrow> Moves	the	underscore	cursor	one	position	to	the	left.

<Enter> Closes	the	edit	text	object,	accepting	the	current	entry	(without	the
underscore	cursor)	as	the	new	value.

<Click> Clicking	the	mouse	on	the	edit	text	object	while	it	is	open	
effect	as	pressing	<Esc>	on	the	keyboard.

i

When	entering	a	scalar	value,	if	lower	case	"i"	(increment)	
the	last	character,	this	indicates	that	the	entered	value	
new	"incr"	parameter	for	the	object.	In	this	case	the	
before	the	object	was	opened	is	retained.

Left-clicking	on	the	edit	text	object	also	opens	the	object	for	editing	
exception.	This	exception	happens	when	the	edit	text	object	is	a	scalar	(i.e.	the	length	parameter
is	equal	to	one).	In	fact	this	is	more	the	rule	than	the	exception	since	that	is	the	most	commonly
used	(and	default)	value	for	the	length	parameter.	

In	this	(scalar	parameter)	case,	when	you	left-click	on	the	edit	text	object,	its	
incremented	or	decremented	by	the	object's	"incr"	parameter.	Whether	
or	decremented	depends	on	the	position	of	the	mouse	click.	If	you	click	to	the	right	of	the	edit
object's	center,	the	value	will	be	incremented.	Likewise,	the	value	will	be	decremented	for
clicks	to	the	left	of	center.	As	an	example,	suppose	the	current	edit	text	object	has	a	value	of
259,	and	the	increment	parameter	is	1.	Left-clicking	on	the	9	will	change	the	
to	260	(because	the	9	is	right	of	the	center	of	the	text	string).	On	the	other	hand,	left-clicking	on
the	two	will	decrement	the	value	by	one.	Remember	that	if	the	increment	amount	is	not
convenient,	you	can	change	the	increment	amount	on	the	fly	by	using	the	"i"	character	as
described	above.	

An	important	property	of	the	scalar	increment/decrement	feature	is	that	the	edit	object	
continue	to	increment	as	long	as	you	hold	down	the	mouse	button.	This	is	useful	
interactive	controls	and	allows	the	edit	objects	to	take	the	place	of	sliders	
graphic	object	to	have	this	repeat	property).	When	you	hold	down	
be	a	delay	of	0.4	seconds	before	the	auto-incrementing	begins.	After	that	delay,	the	value	will
be	incremented	once	every	0.03	seconds.	You	can	alter	the	repeat	rate	by	setting	the	pseudo
object's	application	data	repeat	property.	For	example,	if	you	want	a	slower	repeat	rate	
the	speed	of	the	default)	use	the	command:

setappdata(H,'repeat',0.06);

where	H	is	the	handle	of	the	pseudo	edit	object.	You	can	also	change	the	default	repeat	delay	as
well.	For	example,	the	command	setappdata(H,'repeat',[0.06	0.25]);

the	repeat	rate	to	0.06	seconds	and	the	repeat	delay	to	0.25	seconds.	
repeat	feature	by	setting	the	repeat	delay	to	a	negative	number,	for	example:
setappdata(H,'repeat',-1);.	

The	easiest	way	to	reset	back	to	the	default	repeat	and	repeat	delay	values	is	to	set	the	'repeat'
property	to	null	([]	or	'')	or	simply	remove	this	property	altogether,	i.e.
rmappdata(H,'repeat').	

Whenever	a	number	is	being	typed	in,	you	may	also	type	an	expression	
the	following	entries	are	all	equivalent:

5

abs(3+4i)

[2	1]	*	[2	1]'

sqrt(3*2^3-cos(pi))

Typing	sum(get(gca,'xlim').*[0	1])'would	be	equivalent	
upper	x	axis	limit.	And	to	be	really	perverse,	typing	log(-1)/(2*pi)
to	typing	".5i"	which	as	mentioned	above	would	change	the	auto	increment	value	to	one	half.	

See	both	the	gui2.m	and	the	curves.m	example	programs	for	ideas	on	how	to	use	these
pseudo	edit	objects	as	well	as	the	pseudo	popup	objects	described	below.	
example	also	uses	an	edit	text	object	for	controlling	the	rotation	speed	of	the	circle	plotted	in
the	last	figure	window.

Just	as	the	pseudo	edit	object	described	above	may	replace	an	edit	uicontrol,	the	pseudo	
object	described	here	may	be	used	to	replace	a	popup	uicontrol
(uicontrol('Style','Popup')).	The	pop	pseudo	object	has	the	same	advantages	as
those	listed	above	for	the	edit	pseudo	object.

The	popup	pseudo	object	is	highly	customizable,	but	here	is	a
typical	example.	On	the	left	is	the	popup	in	its	
on	the	current	selection	("normal"	in	this	example)	and	the	popup
will	open	as	shown	to	the	right.	Note	that	in	its	opened	state	the
currently	selected	item	is	shown	in	bold.	As	you	would	expect,
simply	clicking	on	the	new	selection	you	want,	closes	the	popup
with	the	new	selection.	

The	following	table	describes	the	popup	pseudo	object	properties	that	you	may	set	and	query,
although	how	to	use	these	properties	may	not	become	clear	until	later	when	the	commands	are
discussed:

Property
Name

Property
Value

choices

A	cell	array	of	strings	specifying	the	choices	given	when	the	popup	is
selected.	If	all	the	choices	are	numeric	you	can	use	a	numeric	array	instead
of	the	cell	array.	For	example	[3	5	7.5]	is	equivalent	to	
'7.5'}.

index

An	integer	specifying	the	current	choice	(default	=	1,	i.e.	the	1st	element	of
the	choices	cell	array).	After	the	popup	is	set	to	the	specified	index,	the
popup	is	closed	if	it	had	been	open.	The	callback	is	not	normally	called
when	the	popup	choice	is	set	using	the	index	parameter,	however	if	you
specify	the	negative	of	the	index	desired,	then	the	callback	will	be	called
after	the	index	is	set.

callbk

A	callback	to	be	executed	when	the	popup	value	is	changed.
If	the	callback	is	defined	with	a	string,	then:
Occurrences	of	'@IDX'	will	be	replaced	with	the	popup	index.
Occurrences	of	'@STR'	will	be	replaced	with	the	popup	string.

position

or
pos

[x	y	width	height]	for	the	opened	popup	in	pixels	or	normalized
units.	

Two	other	options	may	be	enabled	by	making	the	x	or	y	value	negative.
Therefore	these	two	lines	are	equivalent:	

plt('pop','pos',[-.3	.5	.1	.2],...)	

plt('pop','pos',[.3	.5	.1	.2],'offset',0,...)	

Likewise	the	following	two	lines	are	also	equivalent:	

plt('pop','pos',[.3	-.5	.1	.2],...)	

plt('pop','pos',[.3		.5	.1	.2],'swap',0,...)	

In	both	these	examples	the	second	line	is	preferred	for	its	clarity.	Refer	to
the	descriptions	of	the	offset	and	swap	parameters	below.	Note	that	you	also
can	make	both	x	and	y	negative	to	enable	both	the	offset	and	swap	options.	

If	the	position	was	specified	previously	you	can	use	a	scalar	argument	to
modify	just	the	height	component	or	a	two	element	vector	to	modify	just	the
width	and	height	components.

offset

y	or	[x	y]	which	specifies	the	location	of	the	closed	popup	relative	to	the
opened	popup.
x	is	set	to	0.08	if	it	is	not	specified	(where	0/1	represent	horizontal	position
of	the	left/right	edges	of	the	opened	popup).	The	meaning	of	the	y	variable
becomes	clear	by	considering	the	example	where	the	choices	cell	array
contained	4	elements.	Then:

y	=	0:			represents	the	vertical	position	of	the	bottom	of	the
opened	popup
y	=	0.5:	represents	the	vertical	position	of	choice{1}	of	the
opened	popup
y	=	1.5:	represents	the	vertical	position	of	choice{2}	of	the
opened	popup
y	=	2.5:	represents	the	vertical	position	of	choice{3}	of	the
opened	popup
y	=	3.5:	represents	the	vertical	position	of	choice{4}	of	the
opened	popup
y	=	4.0:	represents	the	vertical	position	of	the	top	of	the	opened
popup

Note	that	negative	values	for	x	or	y	may	be	used	to	indicate	that	the	closed
popup	position	should	be	to	the	left	of	or	above	the	position	of	the	opened
popup.	

If	the	offset	parameter	is	not	included,	then	the	closed	popup	will	be	at	the
top	of	the	opened	popup,	i.e.	at	position	[0.08	n]
of	popup	choices).	To	put	the	closed	popup	at	the	bottom	of	the	opened
popup	simply	include	'offset',0	in	the	parameter	list.

colorbk The	background	color	used	when	the	popup	is	open.	(default	=	[0	.3	.4]);
colorfr The	foreground	color	used	when	the	popup	is	open.	(default	=	[.1	1	.9])
enable 0=disable,	1=enable	(default=1)

Normally	a	left-click	on	the	pseudo	popup	control	opens	the	popup	to	reveal
the	list	of	choices	while	a	right	click	merely	advances	to	the	next	choice

swap

without	opening	the	popup.	Sometimes	it	is	useful	to	reverse	the	roles	of	the
left	and	right-click	-	a	mode	I	refer	to	as	the	"super-button"	
there	is	only	a	single	choice,	it	behaves	exactly	like	a	uicontrol	button	in
that	the	only	effect	from	clicking	on	it	is	that	its	callback	is	called.	If	there
are	two	choices	in	the	choices	cell	array,	it	behaves	similarly	except	that	the
button	text	toggles	between	the	two	choices	with	every	click.	Usually	if
there	are	fewer	than	four	choices,	the	super-button	mode	is	
than	the	regular	mode.	The	super-button	mode	is	selected	by	including	the
swap	parameter	in	the	argument	list.	Often	you	will	want	to	make	the	super-
button	look	at	least	somewhat	like	a	button	by	including	a	box	around	the
super-button	text.	The	color	of	this	box	is	specified	
For	example	swap,'blue'	will	draw	a	blue	box	around	
Or	instead	of	a	Matlab	color	string,	you	can	use	an	[r	g	b]	color	triple.	Set
the	parameter	to	zero	to	use	the	current	foreground	color	(which	defaults	to
[.1	1	.9]).	If	the	parameter	is	missing	(which	is	only	possible	if	the	'swap'
argument	is	at	the	end)	or	if	the	parameter	is	set	to	
then	no	box	is	drawn	around	the	button	text.	Sometimes	it	is	useful	to	be
able	to	toggle	the	super-button	mode	on	or	off	interactively.	This	is	
with	the	following	quick	procedure:

1.	 First	open	the	popup.	(A	left	or	a	right	click	will	do	this,	depending	on
which	mode	you	are	in.)

2.	 Then	use	the	mouse	to	move	the	figure	window	a	very	small	amount
(less	than	15	pixels	in	any	direction).

3.	 And	finally	close	the	popup	by	clicking	on	any	of	the	choices	in	the
drop	down	list.

The	15	pixel	requirement	makes	it	quite	unlikely	that	this	action	is
performed	unintentionally,	especially	since	one	rarely	thinks	of	moving	the
figure	while	adjusting	a	control.	The	text	swap	toggled	
the	Matlab	command	window	to	assure	you	that	the	operation	worked	as
intended.

hide

A	list	of	objects	to	hide	before	opening	the	popup.	When	the	popup	is	later
closed,	these	objects	are	shown	again	(unless	they	were	hidden	before	the
popup	opened).	The	hide	parameter	is	used	to	remove	the	distraction	of
objects	that	overlap	or	are	too	close	to	the	popup	list.	
list,	before	the	list	is	used	the	zero	will	be	replaced	with	the	
handles)	of	the	plot	grid	lines.	(This	is	convenient	because	grid	lines	are	the
most	common	object	to	overlap	with	opened	popups.)	Also	setting	the	hide

pop
(pseudo
popup
object)

parameter	to	''	or	[]	or	not	supplying	a	parameter	
the	'hide'	argument	is	the	last	one)	is	equivalent	to	setting	
zero.

interp 'none'	or	'tex'	(default='none')

label

{'LabelString',	offset,

'Property1',Value1,'Property2',Value2,	...}

A	label	for	the	popup	will	be	created	as	a	text	object	in	the	same	axis	that	is
used	to	display	the	popup	choices	and	will	contain	the	string	'LabelString'
(the	first	element	of	the	cell	array	argument).	The	2nd	element	of	the	cell
array	is	a	complex	number	containing	the	offset	for	the	label	position	in
pixels	from	the	closed	popup.	(The	real	part	is	the	x	offset	and	the
imaginary	part	is	the	y	offset).	For	example	if	the	2nd	element	of	the	cell
array	is	-10+20i,	then	the	label	will	be	positioned	10	pixels	to	the	left	
20	pixels	above	the	closed	popup.	

The	remaining	cell	array	elements	(if	any)	must	contain	property/value
pairs,	and	the	properties	must	be	valid	text	object	property	names.	The
specified	properties	will	be	applied	to	the	closed	popup	text	string.	

Specifying	an	offset	of	''	or	[]	is	equivalent	to	specifying	the	number	5
for	this	cell	array	element.	(i.e.	the	default	offset	is	5	pixels	to	the	left.)	

Instead	of	specifying	a	cell	array	for	the	label	argument,	you	may	also
specify	a	string.	For	example,	the	argument	'LabelString'
equivalent	to	{'LabelString',''}.	Since	the	default	offset	is	usually
sufficient,	it	turns	out	that	this	shorter	form	is	used	far	more	often	than	the
cell	array	parameter.

labely

This	behaves	just	like	the	label	parameter	above	except	for	the	fact	that
the	default	offset	when	it	isn't	specified	is	16i	(instead	of	5	as	is	used	by	the
label	parameter).	This	is	the	usual	offset	needed	for	placing	the	popup
label	directly	above	the	closed	popup	text.

If	a	property	name	is	given	which	isn't	in	the	list	above	then	the	property	is
applied	to	the	popup	text	object	itself.	(It	must	be	a	valid	text	property.)	
The	text	color	('color')	is	usually	set	this	way,	however	if	that	property
is	not	specified,	the	default	color	is	[1	1	.4].

The	following	commands	are	used	to	create	a	popup	pseudo	object:	

H	=	plt('pop',

				'Poperty1',Value1,	

				'Poperty2',Value2,...)

The	property	names	allowed	and	the
interpretation	of	the	property	values	are
shown	in	the	table	above.	
as	many	or	as	few	properties	as	you	need
in	whatever	order	you	choose.

H	=	plt('pop',

				[x	y	width	height],	

				{'choice1',	...	'choiceN'},

				'Poperty3',Value3,...)

Both	the	'position'	and	the	'choices'
properties	are	required,	so	for
conciseness	you	may	omit	those	
names	if	the	property	values	appear	first
and	in	this	order.	
than	these	two	may	not	be	omitted.

H	=	plt('pop',

				'pos',[x	y	width	height],	

				'choices',{'choice1',	...},

				'Poperty3',Value3,...)

The	above	command	is	translated	into
this	line	before	execution.	Note	that	in
any	of	these	commands	
either	pixel	or	normalized	units.	(You
aren't	required	to	included	the	'units'
property	since	plt	can	figure	out	this
property	from	the	size	of	the	numbers	in
the	position	vector.)

The	above	calls	create	a	popup	pseudo	object	and	returns	the	handle	of	the	text	object	that	is
visible	when	the	popup	is	closed.	This	handle	(H)	may	be	used	to	modify	or	query	the	popup
pseudo	object	parameters	using	the	forms	below:

plt('pop',H,

				'Poperty1',Value1,

				'Poperty2',Value2,...)

If	H	is	a	scalar,	the	specified	property	values
are	applied	to	the	popup	pseudo	object
identified	by	handle	H.	
are	the	same	ones	described	in	the	table
above.	

If	H	is	a	vector	then	Property1	of	H(k)	is	set
to	the	kth	row	of	Value1.	
have	that	many	rows,	the	last	row	will	be
used.	Only	one	property	is	allowed	for	the
case	where	H	is	a	vector.

plt('pop',H,'get','string')

returns	the	currently	selected	element	of	the
choices	cell	array.
Equivalent	to	the	shorter	command:
get(H,'string')

plt('pop',H,'get','axis')
returns	the	handle	of	the	axis	used	to	display
the	opened	popup.

plt('pop',H,'get','choices')
returns	the	cell	array	of	choices	that	was	set
via	the	'choices'	parameter

plt('pop',H,'get','index')

returns	the	index	number	of	the	specified	edit
pseudo	object	(between	1	and	the	
the	choices	cell	array).	
command	may	also	be	written	without	the	last
argument:	plt('pop',H,'get')
without	the	last	two	arguments:
plt('pop',H)

plt('pop',H,'get','callbk')
returns	the	function	handle	or	string	that	was
set	via	the	'callbk'	parameter

plt('pop',H,'get','offset')
returns	the	number	or	vector	that	was
specified	via	the	'offset'	parameter

plt('pop',H,'get','colorfr')
returns	the	3	element	vector	or	color	string
that	was	specified	via	the	'colorfr'	parameter

plt('pop',H,'get','enable')
returns	0/1	if	the	pseudo	object	is
disabled/enabled

plt('pop',H,'get','hide')
returns	the	vector	of	handles	that	was	set	via
the	'hide'	parameter

plt('pop',H,'get','interp')
returns	the	string	that	was	set	via	the	'interp'
parameter

plt('pop',H,'get','label') returns	the	label	handle

plt('pop',H,'get','swap')
returns	true	if	the	swap	(super-button)	mode	is
selected.

plt('pop',H,'get','cell')

returns	an	11	element	cell	array	that	is	a
concatenation	of	the	
commands:
{axis	choices	index	callbk	offset	colorfr
enable	hide	interp	label}.	Note	that	this	does

not	include	the	first	get	command	('string')
listed	above.	Also	'cell'	in	this	call	may	be
replaced	by	any	string	other	than	one	
other	12	valid	'get'	arguments.

plt('pop',H,'open') opens	the	popup	revealing	the	popup	choices.

Mouse	behavior:
Left-clicking	on	the	popup	text	object	"opens"	the	popup.	What	this	means	is	
string	is	replaced	by	a	list	of	the	popup	choices	(rendered	using	colorfr/colorbk).	The	user	then
clicks	on	the	desired	choice	which	then	becomes	the	new	text	string.	right-clicking	on	the
popup	text	object	changes	the	text	string	to	the	next	available	choice.	If	the	last	choice	is
already	selected,	then	right-clicking	will	change	the	text	string	to	the	first	available	choice	
the	"choices"	array).	If	you	hold	down	the	right	mouse	button,	the	
advance	cyclically.	You	can	alter	the	rate	at	which	the	cycling	proceeds	by	setting	the	figure
application	data	repeat	property.	The	use	of	this	property	is	more	
above	in	the	description	of	the	edit	pseudo	object.	

See	both	the	gui2.m	and	the	curves.m	example	programs	for	ideas	on	how	to	use	these
pseudo	popup	objects	as	well	as	the	pseudo	edit	objects	described	above.	
and	the	wfall.m	examples	show	how	to	use	this	pseudo	object	to	create	a	"super	button"	
to	start	and	stop	a	moving	plot.

When	using	a	uicontrol	slider	to	control	a	parameter	in	a	GUI,	besides	the	
one	generally	also	wants	an	edit	box	to	show	the	current	slider	value	as	well	as	to	allow	data
entry	by	typing	a	number.	Also	a	label	is	usually	required	to	identify	the	data	and	two	more
labels	indicating	the	minimum	and	maximum	allowed	values	are	also	desirable.	The	pseudo
slider	object	combines	those	five	objects	into	one	and	is	included	in	plt	to	make	your	GUIs
easier	to	design.	The	additional	movement	and	quantization	modes	in	particular	often	
reduce	the	amount	of	code	you	need	to	make	the	control	work	as	desired.	
pseudo	object,	use	the	command:	

H	=	plt('slider',In1,In2,In3,In4,In5,In6,In7)

This	creates	a	pseudo	object	which	usually	looks	something	like	this:
The	five	component	uicontrols	that	are	created	for	the	pseudo	object	are
identified	as:
				------------label----------

				min					ValueEditbox				max

				-----------slider----------	
The	variables	used	in	the	above	slider	initialization	command	are	described	below:

		H
The	return	value	is	the	pseudo	slider's	handle	which	is	used	to	read	and	modify
the	pseudo	slider's	properties.	(See	the	get	and	set	commands	below.)

	In1	

[x,y,width]	in	pixels	or	normalized	units.	Values	less	than	one	
to	be	normalized.	Mixing	units	is	ok	although	x	&	y	must	use	the	same	units.
[x,y]	are	the	coordinates	of	the	lower	left	corner	of	the	pseudo	
(which	is	also	the	upper	left	coordinate	of	the	min	value	text).	If	
missing	120	is	assumed.	

When	the	position	is	specified	with	a	2	or	3	element	as	just	described,	the
pseudo	slider	will	look	similar	to	the	object	shown	above	which	includes	all	5
subcomponents.	The	second	way	to	specify	the	pseudo	slider	position	is	with	a	4
element	vector	in	the	traditional	Matlab	format	(i.e.
[xLeft,yBottom,Width,Height]).	When	using	this	form,	the	position
vector	only	specifies	the	position	and	size	of	the	actual	slider	uicontrol.	plt	will
calculate	what	is	hoped	to	be	the	optimal	position	and	size	of	the	label	and	edit
box	components.	If	the	Width	value	specified	is	larger	than	the	
then	the	pseudo	slider	will	end	up	looking	similar	to	this:

Note	that	the	min/max	labels	are	not	rendered	when
the	position	is	specified	this	way	which	makes	

more	compact.	If	the	Width	value	is	smaller	than	the	Height	value	then	the	slider
will	be	oriented	vertically	with	the	label	is	placed	at	the	top	and	the	editbox
placed	at	the	bottom.	(See	the	demo	programs	bounce.m
examples	of	the	use	of	both	these	forms.	If	the	label	and	editbox	are	not	wide
enough	for	your	taste	you	can	fix	it	by	adding	spaces	to	the	left	and	right	sides	of
the	label,	since	plt	uses	the	length	of	the	label	string	to	determine	the	width	of
those	two	elements.	Alternatively	you	may	include	a	5th	
vector	which	specifies	the	width	of	both	the	label	and	the	editbox.	If	
very	picky,	you	can	set	In1	to	be	an	eight	element	vector.	
four	elements	specify	the	position	of	the	slider	component	and	the	last	
elements	specify	the	position	of	the	label	component	(using	the	traditional
Matlab	positioning	style).	The	editbox	component	will	then	be	set	to	be	the	same
size	as	the	label	component	and	placed	on	the	opposite	side	of	the	slider	from
the	label.	

slider

Finally	there	is	one	last	method	when	complete	flexibility	is	required	where	the
In1	argument	is	specified	by	a	cell	array.	This	cell	array	must	have	
which	specify	the	positions	of	the	Label,	Slider,	MinText,	MaxText,	and	EditBox
components	respectively.	These	positions	must	all	be	in	either	normalized	or
pixel	units	and	each	component	must	be	either	a	4	element	Matlab	style	position
vector	or	an	empty	vector	which	indicates	that	the	associated	element	is	to	be
invisible.	

In1	is	the	only	required	parameter	for	this	function.

	In2

[value,	smin,	smax,	emin,	emax]

value	is	the	initial	value	assigned	to	the	slider.
smin/smax	are	the	slider	values	at	its	leftmost/rightmost	position.
emin/emax	are	the	smallest/largest	values	allowed	when	entering	numbers	
the	edit	box.	If	emin	and	emax	are	missing,	1e-99	and	1e99	are	assumed.	

If	In2	is	not	supplied,	[50	0	100]	is	assumed.

	In3
Slider	label.	If	you	don't	want	a	label,	don't	supply	this	parameter,	or	set	
''.

	In4

Slider	callback.	This	expression	will	be	evaluated	whenever	the	user	moves	the
slider	control	or	enters	a	number	in	the	edit	box.	Occurrences	of	
be	replaced	with	the	current	value.	This	parameter	is	optional,	however	you
must	include	it	if	you	want	to	specify	any	of	the	three	parameters	shown	
If	you	need	to	supply	this	parameter	for	that	reason,	but	you	don't	need	the
callback,	simply	set	In4	to	''.

	

The	following	three	parameters	are	optional.	Although	they	have	been	identified
as	In5,	In6,	and	In7	in	fact	these	three	parameters	(or	any	subset	of	them)
may	be	included	in	the	argument	list	in	any	order	you	choose.	(The	data	type	is
used	to	identify	which	parameter	is	being	supplied.)

	In5

This	parameter	controls	how	the	slider	moves	when	the	slider	left/right	arrows
are	clicked	or	when	clicking	in	the	space	to	the	left	or	right	of	the	slider	button.

In5 Movement 		Quantization
	1 Linear 		none
	2 Linear 		rounded	to	nearest	integer
	3 Linear 		rounded	to	nearest	power	of	two
[4	q]		Linear 		rounded	to	nearest	multiple	of	q
	5 Logarithmic 		none

(pseudo
slider
object)

[6	q] Linear 		rounded	to	nearest	integer	for	slider	arrows
		and	to	nearest	multiple	of	q	for	slider	trough

If	In5	is	not	provided	then	1	is	assumed.
For	modes	4	&	6,	q	defaults	to	10	if	not	specified.

	In6

{fmin	fval	fmax}

fmin/fmax	are	formatting	strings	for	the	min/max	labels	and	fval	is	the
formatting	string	for	the	edit	box.	These	strings	may	contain	c	style	
formatting	codes	or	the	W,V,w,v	formats.	(Type	"help	prin"	for	a	
these	formats).	

You	may	use	a	space	to	delimit	the	formatting	codes.	For	example:
'%4w	%5.2f	%2w'.
Or	use	a	row	or	column	cell	array	if	you	prefer:	{'%4w'	'%5.2f'	'%2w'}

Since	the	w	format	is	the	most	convenient	format	to	use	for	this	parameter,	
conciseness	a	single	digit	may	be	used	as	a	shorthand	for	the	w	format.	
example	above	may	also	be	written	as	'4	%5.2f	2'
{'4'	'%5.2f'	'2'}.	

Often	it	is	sufficient	to	only	specify	the	format	for	fval	and	accept	the	
for	fmin	and	fmax	(which	are	'%2w'	and	'%3w'	respectively).	We	can	
by	simply	specifying	a	single	format	code.	For	example	
to	'2	%5.2f	3'.	

If	In6	is	not	provided,	then	'6'	(or	equivalently	'2	6	3'
w	format	is	used	for	all	three	elements.

	In7

[LabelBG;	EditBG;	LabelFR;	EditFR]

This	is	an	array	containing	3	columns	and	up	to	4	rows.	Columns	
respectively	represent	the	proportion	(0	to	1.0)	of	red/green/blue	
control.	The	first	two	rows	are	the	background	colors	for	
respectively.	The	last	two	rows	are	optional	and	contain	the	label	and	edit	field
foreground	colors.	If	the	foreground	colors	are	not	specified	then	black	is
assumed	(i.e.	[0	0	0]).	

If	In7	is	not	provided	then	[.75	.75	.75;	0	1	1]

For	the	commands	below,	H	is	the	handle	returned	from	the	above	slider	initialization

command.	

The	get	commands:

plt('slider',H,'get','value') returns	the	pseudo	slider's	current	value
plt('slider',H,'get') equivalent	to	the	above

plt('slider',H)

also	equivalent	to	the	above	(the
shortest	and	most	cryptic	method	of
getting	the	slider's	value)

plt('slider',H,'get','visible')
returns	1	if	the	slider	is	visible,	0
otherwise

plt('slider',H,'get','ena')
returns	1	if	the	slider	is	enabled,	0
otherwise

plt('slider',H,'get','position')

returns	the	slider	position	coordinates
[x	y	width]	in	the	same	units	as
originally	specified.

plt('slider',H,'get','pos') same	as	above

plt('slider',H,'get','obj')

returns	the	slider	object	handles:
[Label;			Slider;			MinText;			MaxText;
		EditBox]

The	set	commands:

plt('slider',H,'set',a)
Sets	the	slider	to	value	
Returns	a	possibly	limited	value.

plt('slider',H,'value',a)

Equivalent	to	above.	You	may	also	use	the
extra	parameter	'set'
plt('slider',H,'set','value',a)

if	you	prefer.	In	fact	this	
allowed	(immediately	after	the	slider	handle)
in	all	the	remaining	commands	
table.

plt('slider',H,'val',a)
Same	as	above	except	the	slider	callback	is
not	executed
Sets	the	slider	position.

plt('slider',H,'position',a) (See	In1	in	the	slider	initialization
description	above).

plt('slider',H,'pos',a) Same	as	above.

plt('slider',H,'minmax',a,b)

a	contains	[smin,smax,emin,emax]	(see	
above)
b	is	a	new	slider	value	(optional)
Returns	a	possibly	limited	value.

plt('slider',H,'visON') Makes	slider	visible.
plt('slider',H,'visOFF) Makes	the	slider	invisible.
plt('slider',H,'enaON') Enables	the	slider.
plt('slider',H,'enaOFF') Disables	the	slider

plt('slider',H,'label',a)
Sets	the	label	string	to	
label	is	made	invisible.

plt('slider',H,'mode',a)

Sets	the	slider	movement	mode.	(See	
above).
Returns	a	possibly	limited	value.

Before	getting	much	farther	in	this	section,	you	should	try	running	the	
program	so	that	you	have	a	better	context	for	the	information	that	follows.

The	Image	pseudo	object	provides	cursoring	methods	appropriate	
includes	several	optional	components	including:

A	color	bar	which	serves	as	a	legend	for	the	z-axis	values	as	well	as	providing	a	method	
changing	the	colormap	used	to	represent	the	z	data.
A	slider	(labeled	'edge')	that	allows	you	to	control	how	wide	a	range	around	a	midpoint	
used	when	determining	the	color	used	to	represent	each	array	element.
A	slider	(labeled	''mid'')	that	allows	you	to	control	the	center	value	of	the	range	of	values
used	to	determine	the	color	for	each	array	element.
A	checkbox	that	allows	you	to	control	the	visibility	of	the	axis	gridlines.
A	'view	all'	button,	that	when	clicked	on	resets	the	axis	limits	associated	with	the	image
object	so	that	the	entire	image	data	set	is	visible.	A	secondary	feature	of	this	button	is
activated	by	right-clicking	on	it	instead.	Each	time	you	right-click	on	this	button	the	axis
limits	are	zoomed	in	to	expose	only	the	middle	36%	of	the	visible	area.	(This	represents	a
60%	expansion	of	both	the	x	and	y	axes.).

Initialization

h	=	plt('image',axI,x,y,z,opt);

The	image	object	is	created	in	an	axis	and	figure	that	must	be	created	beforehand	using	the	plt
pseudo	object.	For	example,	suppose	we	create	a	figure	with	the	command
plt(x1,y1,x2,y2,'Subplot',[40	60]);	These	creates	two	axes,	the	smaller	one
(40%	of	the	height)	below	and	the	larger	one	on	top.	And	suppose	we	
map	in	the	larger	axis,	then	we	would	use	plt('image',2,x,y,z);
to	2	to	indicate	that	the	image	should	be	inserted	into	the	upper	plot	(using	the	usual	rules	for
the	ordering	of	the	axes).	You	wouldn't	expect	it	matters	what	is	in	x2,y2	since	
covered	over	by	the	image	object,	but	in	fact	x2	should	be	set	to	the	same	array	as	the	x	vector
specified	in	the	image	initialization.	This	insures	that	the	intensity	map	cursors	operate
correctly.	(The	data	in	y2	on	the	other	hand	does	not	matter	as	long	as	it	is	the	same	length	as
x2).	

opt	is	an	optional	cell	array	that	specifies	the	image	object	options.	This	cell	array	
contain	any	or	all	of	the	following	strings	in	the	following	table.	These	strings	are	case
insensitive,	and	actually	all	characters	except	the	first	one	are	ignored.	So	for	example
'view',	'ViewAll',	and	'V'	would	all	serve	the	same	purpose.	

'cbar'

If	this	string	is	included	the	color	bar	image	is	created	which	serves	as	a	color
key	(i.e.	for	displaying	the	current	color	map).	You	can	click	on	this	color	bar
to	cycle	through	seven	different	color	maps	as	follows:

0:			rainbow
1:			jet
2:			sometric
3:			seismic
4:			gray
5:			colorcube
6:			lines

This	entry	is	an	exception	to	the	rule	that	only	the	first	character	is	significant,
because	you	may	also	include	a	digit	between	0	and	6	as	the	last	character	of
the	string.	This	specifies	which	color	map	to	appear	when	the	image	object	is
initialized.	For	example	'cbar3',	'c3'	or	'CbarSeismic3'
initialize	the	color	map	to	"seismic".	If	the	last	digit	of	the	string	is	not	a	digit
then	the	the	rainbow	color	map	is	selected	as	the	by	default.

image
(pseudo
intensity
map
object)

'edge' If	this	string	is	included	the	"edge"	slider	will	appear	which	controls	the	range
of	the	zData	that	is	mapped	to	the	selected	color	map.

'mid'

If	this	string	is	included,	the	"mid"	slider	will	appear	which	controls	the	mid
point	of	the	zData	range	that	is	mapped	to	the	selected	color	map.	The	effect	of
adjusting	this	slider,	as	well	as	the	"edge"	slider	mentioned	above	is	described
in	more	detail	in	the	description	of	pltmap.m	in	the	
section.

'grid'

If	this	string	is	included,	a	"grid"	checkbox	will	appear	which	allows	you	to
turn	the	grid	lines	for	the	image	object	on	or	off.	This	is	an	exception	to	the
rule	that	the	case	is	insensitive	since	'Grid'	and	'grid'	have	slightly	different
meanings.	They	both	create	the	checkbox,	but	the	capitalized	version	initializes
the	check	box	to	'on'	(i.e.	the	grid	lines	are	enabled)	and	the	lower	case	version
initializes	the	box	to	'off'.

'view'

If	this	string	is	included	a	"view	all"	button	will	appear	which	when	left-
clicked	on	will	zoom	the	axis	so	that	the	entire	image	data	set	is	visible.	As
mentioned	above,	you	may	also	zoom	into	the	middle	of	the	
right-clicking	on	this	button.	(The	middle	60%	of	both	the	x	and	y	axes	will
become	visible.)

You	may	optionally	include	a	4	element	position	vector	(in	normalized	coordinates)	after	any	of
these	5	options	strings.	If	the	position	vector	is	not	included,	then	a	default	position	is	chosen
for	the	item.	For	example:

opt	=	{'Cbar'	[.5	.4	.02	.24]	'Grid'	'ViewAll'	[.91	.75	.04

.02]};	

When	this	option	cell	array	is	used	for	the	image	object	initialization,	a	color	bar,	a	grid
checkbox,	and	a	view	all	button	will	be	created,	but	the	edge	and	mid	sliders	will	not	be	since
they	are	not	included	in	the	options	list.	The	color	bar	and	view	all	button	will	be	positioned	at
the	coordinates	given,	whereas	the	grid	checkbox	will	be	positioned	at	its	default	location	since
there	is	no	position	specified	for	it	in	the	options	list.	You	may	use	a	
delimiter	between	option	elements	(i.e.	row	vector	form	as	in	the	above),	or	you	may	use
semicolons	if	you	prefer	(i.e.	column	vector	form).	

The	call	that	initializes	the	pseudo	image	object	returns	the	image	handle	
then	use	in	any	of	the	image	modification	commands	shown	below.	First	we	have	the	data
update	commands	which	come	in	seven	forms	depending	on	which	coordinates	you	want	to

update:	

				plt('image',h,'x',x);

				plt('image',h,'y',y);

				plt('image',h,'z',z);

				plt('image',h,'xy',x,y);

				plt('image',h,'xz',x,z);

				plt('image',h,'yz',y,z);

				plt('image',h,'xyz',x,y,z);

Then	we	have	commands	which	can	change	the	values	of	the	mid	and	edge	sliders	(only
allowed	if	they	were	created	by	the	image	object	initialization):	

				plt('image',h,'mid',Value);

				plt('image',h,'edge',Value);

And	finally	we	have	commands	to	change	the	x	and	y	limits:	

				plt('image',h,'xlim',[xLower	xUpper]);

				plt('image',h,'ylim',[yLower	yUpper]);

For	convenience	you	can	combine	any	of	the	above	image	modification	commands	into	a	single
command.	For	example	to	change	the	y	and	z	data	values,	adjust	the	edge	slider	and	the	y-axis
limits	you	would	use	a	command	such	as:	

				plt('image',h,'yz',y,z,'edge',1.5,'ylim',[0	5]);

Although	you	will	probably	choose	an	attractive	color
scheme	for	your	GUI	applications,	the	user's	satisfaction	with	the	application	may	be	

improved	by	allowing	them	to	choose	the	colors	used	for	the	major	screen	objects.	By	using	the
ColorPick	pseudo	object	you	allow	the	user	to	efficiently	choose	the	screen	colors	in	a
consistent	way	within	and	among	your	applications.	Also	you	will	find	that	selecting	colors
using	the	ColorPick	figure	is	much	easier	than	using	the	typical	Windows	style	
attempts	to	show	all	possible	colors	in	a	single	palette.	I've	found	you	need	to	see	a	fairly	large
area	of	your	potential	color	choice	before	you	can	decide	if	the	color	is	suitable.	It	is	not
possible	to	accomplish	that	using	a	single	palette	which	is	what	makes	it	frustrating	to	use.	By
allowing	you	to	fix	one	of	the	colors,	ColorPick	presents	an	11x11	palette	of	choices	
remaining	two	colors	which	gives	you	plenty	of	area	for	each	color	block.	
enough,	you	can	resize	the	ColorPick	figure	to	be	as	large	as	you	want.)	
that	the	instant	you	click	on	one	of	the	121	colors	in	the	current	palette	the	larger	patch	above
the	palette	AND	the	objects	in	the	gui	that	you	are	adjusting	instantly	change	to	the	selected
color.	This	instant	feedback	is	really	necessary	to	remove	the	frustration	that	usually	arises	from
the	task.	Scrolling	through	the	many	possible	palettes	is	also	very	quick.	Just	pick	any	slider
and	click	on	the	left/right	arrows	for	a	finely	changing	palette,	or	click	in	the	trough	area	of	
slider	for	a	more	coarsely	changing	palette	(which	should	be	fine	enough	all	
color	chooser).	

Any	Matlab	object	that	has	either	a	callback	property	or	a	buttondownfunction	
used	to	bring	up	the	ColorPick	window	shown	here.	Before	I	describe	
programming	perspective	I	will	give	a	few	more	details	about	how	the	user	selects	colors	from
this	window.	

The	text	above	the	sliders	is	generally	used	to	identify	the	object	or	
the	color	being	selected.	The	three	sliders	always	indicate	the	RGB	values	of	the	currently
selected	color.	In	the	example	shown	at	the	left,	the	RGB	values	are	
respectively.	In	Matlab,	this	color	would	be	represented	by	the	vector	[0.35		0.8		0.6].	The	large
rectangular	patch	object	in	the	upper	right	corner	always	indicates	the	color	that	results	when
the	proportions	are	set	to	agree	with	the	values	of	the	three	RGB	sliders.	One	
red	one	in	this	example)	will	always	be	shown	with	its	text	value	in	yellow	and	is	referred	to	as
the	"active	slider".	A	slider	will	become	the	active	slider	whenever	you	either	type	in	a	value
into	its	edit	box	or	when	you	click	on	the	left	or	right	slider	arrows.	There	are	3	
the	currently	selected	color:

You	can	simply	select	the	desired	color	using	the	RGB	sliders.	Note	that	
it	is	irrelevant	which	slider	is	identified	as	active.
You	can	click	on	any	one	of	the	121	small	square	patches	that	are	arranged	in	an	11x11
grid.	The	colors	in	this	grid	are	entirely	determined	by	the	active	slider.	In	this	
since	the	active	slider	shows	RED=35%,	every	color	in	the	11x11	

ColorPick
(pseudo
color	select
object)

=	.35	with	varying	amounts	of	the	other	two	colors.	So	in	this	example,	the	colors	of	the
the	4	corners	of	this	grid	starting	at	the	lower	left	and	moving	clockwise	are:
[.35	0	0],	[.35	1	0],	[.35	1	1],	and	[.35	0	1].	and	the	square	exactly	in	
grid	has	the	color	[.35	.5	.5].	Clicking	on	any	one	of	these	121	patches	will	change	the	two
inactive	sliders	to	the	values	associated	with	the	patch	that	you	clicked	on.	(The	active
slider	will	be	unchanged	and	will	remain	active).	Also	the	large	patch	and	all	the	objects	in
the	gui	that	are	associated	with	this	ColorPick	object	will	change	to	show	the	new	selected
color.
Clicking	on	the	large	patch	will	cause	the	sliders	to	move	to	the	"reset"	values	-	i.e.	the
color	that	was	in	effect	when	the	ColorPick	window	was	first	opened.	Note	that	this	color
never	changes	for	as	long	as	the	ColorPick	window	remains	open.	The	reset	values	
changed	to	the	values	shown	currently	by	the	sliders	by	closing	the	
re-opening	it	again.

Next	I	will	describe	how	the	ColorPick	object	is	created	from	the	programmers	viewpoint.	I
will	call	the	object	that	initiates	the	creation	of	the	ColorPick	figure	window	the	
You	must	do	the	following	two	things	to	make	a	ColorPick	figure	appear:

You	must	assign	an	application	data	variable	named	'm'	to	the	main	object	with	a	
array	of	this	form:	
{'PROP1',	H1,	'PROP2',	H2,	'PROP3',	H3,	...	'PROPn',	Hn,

'label'}	
When	the	user	selects	a	new	color	using	the	ColorPick	figure,	the	'PROP1'	property	of	the
object	with	handle	H1	will	be	set	to	the	3	element	vector	[R	G	B]
values	from	the	ColorPick	figure.	If	H1	is	a	row	vector	of	handles,	each	of	the	represented
objects	will	be	treated	similarly.	Then	in	sequence	the	objects	in	H2,	H3	
in	a	like	manner.	If	any	of	the	'PROPi'	entries	are	'str'	or	'string',	then	the	numerical	3
element	color	vector	is	converted	to	an	Ascii	string	before	being	assigned	to	that	property.
In	place	of	any	property	string,	you	may	use	a	cell	array	of	strings	in	which	case	ColorPick
will	assign	the	user	selected	color	to	all	the	properties	listed	in	the	cell	array	of	all	
handles	listed	in	the	following	argument.	Finally,	the	last	entry	'label'	is	optional,	and	if
included	will	appear	above	the	rgb	sliders	and	is	used	to	identify	what	screen	elements	are
being	controlled.
To	the	callback	or	buttondownfunction	property	(or	both)	of	the	main	object	you	must
assign	one	of	the	following	strings:
1.	 'plt	ColorPick'	This	will	cause	the	ColorPick	figure	to	be	created	when	the

callback	or	buttondownfunction	is	called	except	for	one	special	case	-	which	is	when
the	callback	of	an	'edit'	style	uicontrol	is	called.	The	reason	for	this	special	case	is
that	if	you	type	the	desired	colors	directly	into	an	edit	box	usually	this	indicates	that

you	didn't	need	the	help	of	the	ColorPick	figure.	Note	that	in	this	special	case,	the
properties	listed	in	the	'm'	application	data	cell	array	are	still	modified	as	described
above	even	though	the	ColorPick	figure	is	not	created.	Note	that	the	ColorPick
window	will	appear	when	you	right-click	on	such	an	edit	box	if	the
buttondownfunction	of	the	edit	box	has	been	similarly	assigned.

2.	 'plt	ColorPick	ccf'	This	has	the	same	effect	as	above	
user	changes	a	color	with	the	ColorPick	figure,	in	addition	to	changing	the	properties
in	the	'm'	cell	array,	the	function	ccf	is	called.	ccf	stands	for	
and	may	be	any	string	corresponding	to	a	function	name	and	may	include	numerical
arguments,	such	as	in	'plt	ColorPick	changeFunc(3,-1)'.	In	fact	the	function	can	have
string	arguments	as	well	although	this	is	less	convenient	since	you	would	need	
sets	of	quotes	around	each	string	argument.	For	example
'plt	ColorPick	changeFunc(''StringArg'')'.	You	should	especially	avoid	color	
functions	that	required	a	string	argument	containing	spaces	
wanted	to	do	that	it	would	be	possible	with	an	obscure	looking	callback	such	as
'plt(''ColorPick'',''changeFunc(''''A	string	argument'''')'')'

3.	 'plt	ColorPick	0	0'	is	similar	to	case	1	above	and	
0'	is	similar	to	case	2	except	that	the	special	case	relating	to	the	edit	box	callback
does	not	apply	(i.e.	the	ColorPick	window	will	be	created	in	every	instance).

Only	one	detail	remains	to	describe	the	operation	of	the	ColorPick	object,	
with	how	ColorPick	determines	the	starting	positions	of	the	RGB	sliders	when	the	window	is
first	opened.	This	is	a	two	step	process.	First	ColorPick	must	decide	which	object	will	be	used
to	determine	the	initial	color.	Once	the	object	is	chosen,	ColorPick	must	decide	which	
of	this	object	to	use.	Here	are	the	details	of	these	two	steps:

1.	 Picking	the	object	which	will	determine	the	initial	color.	Usually	the	
object	will	be	among	one	of	the	handles	included	in	the	'm'	application	data	cell	array	and
in	this	case	the	main	object	itself	is	used	to	determine	the	initial	RGB	slider	positions.
However	sometimes	this	is	not	the	case.	For	example,	in	the	demoplt.m	program,	we
would	like	to	open	the	ColorPick	window	when	we	click	on	the	text	object	"text	color"
which	serves	as	a	label	for	the	text	color	patch.	However	since	this	is	just	
entirely	appropriate	for	the	color	of	this	text	object	to	change	which	means	that	it	will	not
appear	in	the	list	of	handles	in	the	'm'	cell	array.	So	in	this	instance,	ColorPick	determines
the	initial	color	from	the	object	whose	handle	is	the	first	element	of	H1	in	the	'm'	cell
array.	(This	is	the	only	instance	where	the	order	of	the	handles	in	this	array	is	

2.	 Picking	the	property	of	the	selected	object	which	determines	the	initial	color.
If	the	selected	object	is	a	uicontrol.	If	the	uicontrol	is	an	edit	box	then	its	'string'
property	is	always	used	to	determine	the	initial	color.	If	the	string	includes	fewer	than

3	numbers,	then	extra	zeros	are	added	to	the	end	of	the	vector.	If	the	string	includes
any	numbers	that	are	greater	than	one,	then	these	numbers	are	clipped	at	one	
any	numbers	are	less	than	zero,	then	these	numbers	are	clipped	at	
uicontrol	is	not	an	edit	box,	then	first	the	'string'	property	
represents	a	valid	color	vector	(i.e.	it	must	have	3	elements,	all	of	which	are	between
0	and	1).	If	it	is	valid,	than	this	vector	is	used	as	the	initial	color.	If	it	is	not	valid,	the
uicontrol	'backgroundcolor'	property	is	used	as	the	initial	color.
If	the	selected	object	is	a	text	object,	its	'string'	property	is	used	if	this	
to	a	valid	color	vector.	Otherwise	the	'color'	property	of	the	text	object	is	used.
If	the	selected	object	is	a	patch	object,	its	'facecolor'	property	is	used	as	the	
color.
For	all	other	object	types,	the	'color'	property	is	used	as	the	initial	color.

This	pseudo	object	can	be	thought	of	as	a	super	text	object	...	i.e.	a	collection	
that	can	be	created	and	deleted	with	a	single	command.	The	pseudo	
on	of	the	following	two	commands:

plt('HelpText','set',v);

plt('HelpText','on',v);

where	v	is	a	string	or	more	commonly	a	cell	array	of	strings	and	string	properties.	The
HelpText	object	is	associated	with	the	current	figure	window.	Unlike	the	other	pseudo	objects,	a
figure	may	contain	only	one	HelpText	object,	which	is	why	an	object	handle	is	not	returned.	
you	create	a	new	HelpText	object	for	a	figure	that	already	has	one,	the	old	one	is	simply	
before	the	new	one	is	created.	

The	second	form	above	('on')	is	equivalent	to	the	following	two	commands:
plt('HelpText','set',v);

plt('HelpText','on');

where	the	'on'	command	is	described	below.	Thus	the	two	initialization	forms	are	similar	
that	when	the	first	form	is	used	the	text	will	not	become	visible	until	the	first	
issued,	whereas	with	the	second	form,	the	text	becomes	visible	immediately.	

As	mentioned	in	the	Labels	and	figure	properties	section	you	may	also	create	a	HelpText
pseudo	object	at	the	same	time	the	plt	pseudo	object	is	created	by	including	
in	the	parameter	list	of	the	call	to	plt.	(In	fact,	that	is	by	far	the	most	common	way	this	pseudo
object	is	created.)	Creating	the	HelpText	that	way	is	similar	to	the	'on'	command	above	in	that

HelpText
(pseudo
text
object)

the	help	text	becomes	visible	right	away	(i.e.	a	separate	HelpText	'on'	command	is	not	needed).	

The	structure	of	the	v	parameter	is	described	in	the	table	at	the	bottom	of	this	page,	but	first	I'll
list	the	commands	used	to	control	the	HelpText	object.	The	functional	form	may	be	used	but	the
command	form	is	shown	below	since	that	is	more	convenient	when	only	string	arguments	are
needed:

plt	HelpText	on

Although	the	pseudo	object	is	created	with	the	above
'set'	command,	the	individual	text	objects	defined
are	not	actually	created	until	this	
given.	Most	often	this	command	is	used	to	
Help	Text	after	it	was	turned	off	with	the	command
shown	below.

plt	HelpText

plt	HelpText	off

Both	of	these	forms	are	equivalent.	They	delete	the
text	objects	created	by	the	above	
you	will	want	the	help	text	to	disappear	
starts	using	the	plot	so	it	doesn't	get	in	the	way.	One
way	to	do	this	is	to	include
'MoveCB','plt	HelpText;'

list	when	you	are	creating	the	plt	pseudo	object.	This
sets	the	move	cursor	callback	
the	cursor	or	click	on	the	plot,	the	help	text	will	be
removed.

plt('HelpText','get')

This	returns	the	v	parameter	that	was	used	to	create	the
HelpText	object.	There	aren't	many	uses	for	this
command,	although	one	use	would	be	to	
HelpText	object	from	one	figure	to	another.

plt('HelpText','text')

This	returns	a	list	of	handles	to	text	objects	that	were
created	after	a	helptext	'on'
executed.	An	empty	list	is	returned	
object	is	currently	off.	Since	Helptext	is	marked	with	a
special	user	value,	an	equivalent	result	is	returned	from
the	command
findobj(gcf,'user',355/113);

The	easiest	way	to	describe	the	structure	of	the	v	argument	used	above	is	by	a	series	of
examples:

'abcdef'

Using	a	single	string	for	the	v	parameter	doesn't	give	
resulting	HelpText	object	much	utility	beyond	the
underlying	text	object	it	creates	
useful	because	it	is	so	easy	to	create	along	with	the	plt
pseudo	object.

{'abcdef'	-.1+.5i}

At	a	minimum	you	will	most	likely	at	least	include	a
location	for	the	text	object.	The	location	is	
complex	number	with	the	real	part	giving	the	horizontal
position	and	the	imaginary	part	giving	the	vertical
position.	In	this	example	the	horizontal	position	is	to	the
left	of	the	main	axis	(by	10%	of	the	plot)	and	the	vertical
position	is	at	the	middle	of	the	main	plot.	
not	specified	(as	in	the	example	above)	the	position	used
is	.03+.96i

{'abc'	'def'	'line3'

.5+.96i

'color'	'white'

'fontsize'	20}

Each	text	string	may	be	as	many	lines	as	you	want	(3	lines
in	this	example).	After	the	position	
specify	as	many	property	value	pairs	as	you	need.	Only
text	properties	are	allowed.	If	the	text	color	is	not
specified,	the	default	color	[1	.6	0]	is	used.	The	font	size
will	default	to	12	if	not	specified.	
(as	well	as	the	following	one	below),	the	
(complex)	is	required.	This	helptext	argument	must	be	a
row	cell	array.	(A	column	cell	array	will	not	produce	the
expected	result.)

{'ab'	'cd'	.5+.9i

'color'	[1	0	0]	2i

With	the	full	generality,	you	may	define	as	many	strings
as	you	want,	with	each	of	these	strings	being	in	different
locations	with	different	string	properties.	This	example
creates	three	strings,	the	first	of	which	is	two	lines.	The
"2i"	(which	occurs	twice)	in	this	example	
that	indicates	a	new	string	is	about	to	be	defined.	Actually
any	complex	number	will	serve	the	same	purpose,	but	my
habit	is	to	always	use	"2i"	for	this	
easy	to	recognize.

In	this	example,	the	first	two	help	lines	('ab'	&	'cd')	will	be
red	because	the	text	is	followed	
0].	However	the	next	two	lines	('line3'	&	'line4')	have	no

'line3'	.1+.1i	2i

'line4'	.9+.9i

'fontweight'	'bold'}

color	specifier,	so	they	will	be	in	the	default	color	([1	.6
0]).	However	if	you	change	the	2i
before	'line3'	to	a	-2i	then	line3	will	also	be	red.
This	is	because	a	delimiter	with	a	negative	imaginary
component	indicates	that	you	want	all	the	properties
specified	for	the	previous	helptext	line	to	apply	to	the
current	one	as	well.	If	you	changed	the	next	
as	well,	then	all	the	help	lines	defined	will	be	red.	If	the
same	property	is	included	both	after	the	text	string	and	
the	carry	over	property	list	(enabled	by	the	negative
imaginary	component)	then	the	property	value	after	the
text	string	takes	priority.

Many	of	the	demo	programs	(including	curves,	editz,	gauss,	gui2,	julia,	pltquiv,	subplt,	tasplt,
trigplt,	and	wfalltst)	create	a	HelpText	pseudo	object,	so	you	can	refer	to	these	programs	to	see
practical	examples	of	the	use	of	the	HelpText	pseudo	object.

Auxiliary	plt	functions	and	.m	files

The	first	two	functions	in	this	list	are	part	of	plt.m	and	the	remaining	functions
exist	as	as	separate	.m	files	in	the	main	plt	folder.	The	last	four	functions
(Pvbar,	Pebar,		Pquiv,	and	pltwater)	aid	in	creating	special	plot	types.
The	other	functions	help	solve	text	formatting	issues	that	often	arise	when
writing	graphical	interfaces.	

pltt
(add	plt
trace)

pltt	is	so	central	to	the	way	plt	is	used	that	this	auxiliary	function	was	given	its	own	section.	Please
refer	to	the	Adding	traces	section.

datestr
(serial	date
number	to
ascii)

s	=	plt('datestr',datenum,fmt)	is	similar	to	s	=	datestr(datenum,fmt)	
that	it	displays	the	time	with	1	millisecond	resolution	instead	of	1	second	resolution	used	by	
datestr	function.	Let's	compare	the	results	from	plt's	and	Matlab's	date	string	functions:
		a	=	now;

		datestr(a,13) 03:51:46

		plt('datestr',a,13)		 03:51:46.153

		datestr(a,14) 03:51:46	AM

		plt('datestr',a,14) 03:51:46.153	AM

		datestr(a,0) 31-Mar-2015	03:51:46

		plt('datestr',a,0) 31-Mar-2015	03:51:46.153

		datestr(a) 31-Mar-2015	03:51:46

		plt('datestr',a) 31-Mar-15	03:51:46.153

For	a	description	of	the	allowable	formats	type	help	datestr
arbitrary	formatting	strings	or	integers	representing	32	standardized	formats.	Notice	carefully	the	last
example	in	the	table	above	since	the	returned	date	format	when	no	format	code	is	specified	is	different
between	plt's	and	Matlab's	datestr	function.	(2	vs	4	character	year).

metricp
(metric
prefixes)

[Ret1,	Ret2]	=	plt('metricp',x);	

Used	to	convert	a	number	to	a	form	using	standard	metric	prefixes.	Ret1	is	
is	most	appropriate	for	displaying	the	value	x,	and	Ret2	is	the	x	multiplier.	This	is	often	useful	for
scaling	plots	to	avoid	awkward	scientific	notation	in	the	axis	labels.
		x	=	.3456E-6;

		sprintf('%.3e	Volts',x) 3.456e-007	Volts

		[pfix	mult]	=	plt('metricp',x);

		sprintf('%.1f	%sVolts',x*mult,pfix)		 345.6	Nano-Volts

prin.m
(sprintf
&	fprintf
alternative)

s	=	prin(fmtstr,OptionalArguments);	

s	=	prin(FID,fmtstr,OptionalArguments);	

Converts	the	OptionalArguments	to	a	string	s	using	the	format	specified	by	fmtstr.	Note	that	this	
the	same	thing	as	sprintf	or	fprintf	(with	the	same	calling	sequences)	except	that	prin	offers	some
additional	features	including	four	extra	formatting	codes.	prin	calls	the	Pftoa	
to	implement	the	new	formatting	codes.	FID	is	usually	a	value	returned	from	fopen	
or	a	2	to	direct	the	result	to	the	Matlab	command	window.	For	a	complete	description	of	this	function,
see	prin.pdf	(in	the	main	plt	folder).	You	can	view	that	help	file	most	quickly	by	simply	typing	
(i.e.	with	no	arguments)	at	the	Matlab	command	prompt.

Pftoa.m

s	=	Pftoa(fmtstr,x)	returns	in	string	s	an	ascii	representation	of	the	scalar	number	
according	to	the	formatting	string	fmtstr.	

If	fmtstr	is	of	the	form	'%nW'	then	swill	be	the	string	representation	of	x	with	the	
resolution	possible	while	using	at	most	n	characters.

If	fmtstr	is	of	the	form	'%nV'	then	swill	be	the	string	representation	of	x	with	the	
resolution	possible	while	using	exactly	n	characters.	

If	fmtstr	is	of	the	form	'%nw'	then	s	will	be	the	string	representation	of	x	with	the	
resolution	possible	while	using	at	most	n	characters	-	not	counting	the	decimal	point	if	one	is	needed.	

If	fmtstr	is	of	the	form	'%nv'	then	s	will	be	the	string	representation	of	x	with	the	
resolution	possible	while	using	exactly	n	characters	-	not	counting	the	decimal	point	if	one	is	needed.	

(float	to
ascii)

The	lower	case	formats	(v,w)	are	typically	used	to	generate	strings	to	fit	into	gui	
width.	The	reason	the	decimal	point	is	not	counted	is	that	with	the	proportional	fonts	generally	used	in
these	gui	objects,	the	extra	space	taken	up	by	the	decimal	point	is	insignificant.	

With	all	four	format	types,	if	the	field	width	is	too	small	to	allow	even	one	significant	digit,	then	
is	returned.	

fmtstr	may	also	use	any	of	the	numeric	formats	allowed	with	sprintf.	

Pftoa('%7.2f',x)	is	equivalent	to	sprintf('%7.2f',x)

Typing	Pftoa(0)	will	create	a	test	file	which	you	may	find	helpful	in	understanding	the	new	floating
point	formats.

This	function	is	used	to	plot	a	series	of	vertical	bars.	It	doesn't	do	any	plotting	itself,	
array	which	is	then	plotted	using	plt	(or	even	plot).	For	example,	suppose	you	want	to	
bars	at	x-axis	locations	2,3,7,8.	Each	bar	is	to	start	at	y=0	and	extend	up	to	y=6,6,5,1	respectively.	The
following	line	would	meet	this	objective:

plt(Pvbar([2	3	7	8],0,[6	6	5	1]);	

Normally	all	three	Pvbar	arguments	are	vectors	the	same	length,	however	in	this	case	since	the	lower	y
position	of	each	bar	is	the	same	a	constant	may	be	used	for	the	2nd	argument.	

Although	you	don't	have	to	know	this	to	use	it,	Pvbar	returns	a	complex	
correctly	by	plt	or	plot	to	display	the	desired	sequence	of	vertical	bars.	plt	and	plot	displays	complex
arrays	by	plotting	the	real	part	of	the	array	along	the	x-axis	and	the	imaginary	part	of	the	
the	y-axis.	The	trick	that	Pvbar	uses	to	display	a	series	of	lines	with	a	single	array	stems	from	the	fact
that	NaN	values	(not	a	number)	are	not	plotted	and	can	be	used	like	a	"pen	up"	command.	(The	Pebar
and	Pquiv	functions	described	below	use	this	same	trick.)	

The	general	form	of	the	Pvbar	function	call	is:	

v	=	Pvbar(x,y1,y2)	

If	the	inputs	are	row	or	column	vectors,	this	would	return	a	complex	
plotted	with	plt	or	plot	would	produce	a	series	of	vertical	bars	(of	the	same	color)	at	x-axis	locations

Pvbar.m
(vertical
bar	plots)		

given	by	x.	y1	and	y2	specify	the	lower	and	upper	limits	of	the	vertical	bar.	It	doesn't	matter	whether
you	list	the	upper	or	lower	limit	first.	If	y1	is	a	scalar,	Pvbar	expands	it	to	a	constant	vector	of	the	
size	as	y2.	

Suppose	you	wanted	to	plot	30	red	bars	(specified	by	length	30	column	vectors	xr,yr1,yr2)	
green	bars	(specified	by	length	30	column	vectors	xg,yg1,yg2).	You	could	do	this	with	two	calls	to
Pvbar	as	in:	

plt(Pvbar(xr,yr1,yr2),Pvbar(xg,yg1,yg2));	

That's	probably	the	first	way	you	would	think	of,	but	if	xr	and	xg	happen	
this	case)	you	can	accomplish	the	same	thing	with	a	single	call	to	Pvbar:	

plt(Pvbar([xr	xg],[yr1	yg1],[yr2	yg2]));	

The	second	form	is	especially	convenient	when	plotting	many	bar	series	
different	color).	Interestingly,	if	you	use	plot	instead	of	plt	first	form	will	not	work	so	you	must	use	the
second	form.	

Note	that	Pvbar	will	expand	the	second	argument	in	either	dimension	if	
example	above,	if	ya1	and	yb1	were	the	same	you	could	just	use	ya1	as	the	second	argument.	Or
suppose	the	base	(lower	limit)	of	the	first	series	was	always	0	and	the	base	of	the	second	series	
always	-1.	Then	you	could	use	[0	-1]	as	the	second	argument.	If	the	base	
was	the	same	value,	then	the	second	argument	may	be	a	scalar.	

To	see	Pvbar	in	action,	look	at	the	example	program	pltvbar.m
also	shows	the	use	of	the	Pebar	function	described	below.

This	function	is	used	to	plot	a	series	of	vertical	bars	similar	to	the	above	
addition	of	a	small	horizontal	"T"	section	on	the	top	and	bottom	of	each	bar.	This	is	commonly	used	to
depict	an	error	bound	of	a	function,	or	a	range	of	values	that	may	be	achieved	by	a	certain	function.
Another	difference	with	Pvbar	is	the	way	the	lower	and	upper	y	positions	of	the	
With	Pebar,	the	first	two	arguments	(x,y)	specify	a	reference	position	for	each	vertical	bar,	which	is
normally	(but	not	strictly	necessary)	somewhere	in	the	middle	of	the	bar.	The	third/fourth	arguments
(l,u)	specify	the	distance	between	the	reference	position	and	the	lower/upper	end	(respectively)	
vertical	bar.	

Pebar.m
(error	bar
plots)		

The	general	form	of	the	Pebar	function	call	is:	

e	=	Pebar(x,y,l,u,dx)	

The	position	of	the	bottom	of	the	error	bars	is	y-l	and	the	top	is	
scalar	that	specifies	the	width	of	the	horizontal	Ts	as	a	percentage	of	
two	arguments	are	optional.	If	dx	is	not	specified	it	defaults	to	30	(%).	If	
to	l	(the	3rd	argument)	in	which	case	the	reference	coordinates	become	the	midpoints	of	
e,x,y,l,u	are	generally	vectors	or	matrices	of	the	same	size,	the	only	exception	being	that	
are	are	allowed	to	be	scalar.	Read	the	description	of	Pvbar	above	for	an	explanation	of	how	vector	and
matrix	inputs	are	interpreted.	

To	see	Pebar	in	action,	look	at	the	example	program	pltvbar.m
also	shows	the	use	of	the	Pvbar	function	described	above.

This	function	is	used	to	plot	a	vector	fields	represented	by	a	set	of	arrows	
locations.	It	doesn't	do	any	plotting	itself,	but	returns	an	array	which	is	then	plotted	using	plt	(or	even
plot).	For	example,	suppose	you	wanted	to	plot	3	arrows	(all	in	the	same	color)	with	tail	locations	
(2,3)	and	(1,7).	Also	suppose	you	wanted	each	vector	to	be	of	length	one,	
the	right	respectively.	This	could	be	done	as	follows:	

plt(Pquiv([4;2;1],[9;3;7],[0;0;1],[1;-1;0]));

This	can	also	be	done	using	Pquiv's	complex	input	form	as	follows:	

tail	=	[4+9i;2+3i;1+7i];	head	=	[1i;-1i;1];

plt(Pquiv(tail,head));	

Note	that	row	vectors	could	have	been	used	instead	of	column	vectors	if	
addition	to	those	3	vectors,	you	wanted	to	plot	3	more	vectors	(in	a	second	color)	with	the	same	tail
locations	but	pointing	in	the	opposite	direction.	Using	the	previous	assignments	of	
This	could	be	done	as	follows:	

plt(Pquiv(tail,head),Pquiv(tail,-head));	

Or	you	could	do	the	same	thing	with	a	single	call	to	Pquiv:	

plt(Pquiv(tail*[1	1],head*[1	-1]));	

Pquiv.m
(vector
plots)

Of	course	the	equivalent	4	argument	(real	input)	form	of	Pquiv	could	have	been	used	as	well.	

There	are	8	possible	calling	sequences	for	Pquiv	depending	on	whether	the	
complex	and	on	whether	the	optional	arrow	head	size	argument	is	included.	Pquiv	is	smart	enough	to
figure	out	which	calling	sequence	you	are	using.

Calling	sequence Tail	coordinates Arrow	width/length
q	=	Pquiv(A,B) 		[real(A),	imag(A)]		 [real(B),	imag(B)]
q	=	Pquiv(A,B,h) [real(A),	imag(A)] [real(B),	imag(B)]
q	=	Pquiv(x,y,B) [x,y] [real(B),	imag(B)]
q	=	Pquiv(x,y,B,h) [x,	y] [real(B),	imag(B)]
q	=	Pquiv(A,u,v) [real(A),	imag(A)] [u,	v]
q	=	Pquiv(A,u,v,h) [real(A),	imag(A)] [u,	v]
q	=	Pquiv(x,y,u,v) [x,	y] [u,	v]
q	=	Pquiv(x,y,u,v,h)		 [x,	y] [u,	v]

where:
q,A,B	are	complex	vectors	or	matrices
x,y,u,v	are	real	vectors	or	matrices
h	is	a	scalar	(Arrow	head	size	-	relative	to	vector	length)	

Read	in	the	Pvbar	description	above	how	complex	values	and	NaNs	are	used	to	
display.	To	see	Pquiv	in	action,	look	at	the	example	program	pltquiv.m

Normally	the	position	of	a	figure	window	is	specified	in	pixels	as:
[xleft	ybottom	width	height]	relative	to	the	monitor,	meaning	that	
leftmost	position	of	the	monitor.	However	it	usually	is	more	convenient	to	specify	the	figure	relative	to
the	useable	screen	space,	which	takes	into	account	the	space	needed	for	
needed	for	the	window	borders	and	title	bar.	

Consider	the	following	two	methods	of	creating	a	new	figure	window:	

figure('BackgroundColor',[0	0	.1],'Position',p);

figure('BackgroundColor',[0	0	.1],'Position',figpos(p);

In	the	first	method,	the	pixel	coordinates	in	p	are	relative	to	the	full	
multi-window	GUI	makes	it	impossible	to	make	good	use	of	the	screen	area	without	knowing	where
the	taskbar	is	and	other	desktop	variables.	In	the	second	line	however	the	coordinates	
to	a	pre-defined	clear	area	of	the	screen	which	are	converted	into	absolute	screen	coordinates	by	figpos
(this	routine).	

To	accomplish	this,	figpos	must	know	the	screen	area	that	can	accommodate	
window.	It	gets	this	information	from	the	screencfg.m	routine	which	normally	can	determine	the
optimal	border	area	automatically,	however	it	may	resort	to	using	predefined	constants	if	you	are	using
a	very	old	version	of	Matlab.	It	will	warn	you	if	this	happens,	and	you	
comments	in	screencfg	to	see	if	you	want	to	adjust	any	of	the	constants.	The	way	screencfg	is	called	in
figpos	it	will	only	optimize	the	border	area	the	first	time	it	is	called.	
from	the	saved	value	(which	is	stored	both	in	the	'border'	application	data	variable	of	the	root
object	as	well	as	in	the	file	screencfg.txt.	This	means	that	if	you	move	or	resize	
type	"screencfg"	at	the	command	prompt	so	that	the	border	area	is	recalculated.	If	you	want	Matlab	to
recalculate	the	border	area	every	time	it	starts	up,	you	could	add	the	line	
startup	file,	or	the	line	delete(which('screencfg.txt'));
effect.	

First	I	will	first	explain	how	figpos	computes	the	figure	position	from	
may	find	it	easier	to	understand	by	skipping	ahead	to	the	examples	below.	

In	rare	situations,	you	may	want	to	specify	the	screen	position	using	the	standard	Matlab	
[left	bottom	width	height]	referenced	to	the	screen	without	reference	to	the	border	areas.
Of	course,	then	you	don't	need	to	call	figpos	in	the	first	place	...	except	for	the	fact	that	
automatically	by	plt,	so	we	need	a	way	to	bypass	the	usual	figpos	processing.	The	way	to	do	that	is
simply	to	place	an	"i"	after	any	element	in	the	1x4	vector.	For	example:	

figpos([40	50i	600	500])	returns	the	vector	[40	50	600	500]

It	doesn't	matter	which	element	contains	the	"i",	and	in	fact	you	can	put	
like,	i.e.	figpos([400	50	600	500]*1i);	

Suppose	you	call	figpos([p1	p2	p3	p4])	where	all	the	terms	are	real	and	p3	
positive.	This	is	called	"size	priority	mode"	because	the	getting	the	figure	size	correct	takes	priority
over	getting	the	left/bottom	position	in	the	specified	place.	In	this	mode,	figpos	will	return
[left	bottom	width	height]	where:

figpos.m
(figure
positioning)

			width		=	the	smaller	of	p3	and	the	maximum	clear	width	available

			height	=	the	smaller	of	p4	and	the	maximum	clear	height	available

			left			=	p1	+	left	border	width.	However	if	this	position	would	make	the

												right	edge	of	the	figure	overflow	the	clear	space	available,	then

												the	left	edge	is	moved	rightward	just	far	enough	so	the	figure	fits.

			bottom	=	p2	+	bottom	border	width.	However	if	this	position	would	make	the

												top	edge	of	the	figure	overflow	the	clear	space	available,	then

												the	bottom	edge	is	moved	down	just	far	enough	so	the	figure	fits.

Suppose	you	call	figpos([p1	p2	-p3	p4]),	i.e.	the	same	as	the	calling	
that	the	3rd	element	is	negative.	The	height	and	bottom	values	are	computed	exactly	as	shown	above
(size	priority),	but	the	width	and	left	values	are	now	computed	as	follows	(position	priority):

			left			=	p1	+	left	border	width.

			width		=	p3.	However	if	this	width	would	make	the	right	edge	of	the	figure

												overflow	the	clear	space	available,	then	the	width	is	reduced	by

												just	enough	so	that	the	figure	fits.

Suppose	you	call	figpos([p1	p2	p3	-p4]),	i.e.	the	4th	element	is	negative.	
values	are	computed	exactly	as	shown	in	the	first	all	positive	(size	priority	mode)	but	the	bottom	and
height	values	are	now	computed	as	follows	(position	priority):

			bottom	=	p2	+	bottom	border	width.

			height	=	p4.	However	if	this	height	would	make	the	top	edge	of	the	figure

												overflow	the	clear	space	available,	then	the	height	is	reduced

												by	just	enough	so	that	the	figure	fits.

If	you	call	figpos([p1	p2	-p3	-p4]),	then	both	horizontal	and	vertical	
position	priority	method	described	above.	

An	optional	5th	value	in	the	input	vector	is	allowed	to	allocate	extra	space	
want	to	do	this	if	you	know	that	a	menu	bar	or	toolbar	will	be	enabled	since	that	will	make	the	title	bar
larger.	Since	this	is	not	accounted	for	in	the	border	area	set	up	by	screencfg,	enabling	
could	cause	the	top	edge	of	the	figure	to	fall	off	the	top	edge	of	the	screen.	For	example:	

figpos([p1	p2	p3	p4	48])	would	allocate	48	extra	pixels	in	the	vertical	
be	enough	for	the	menu	bar	(about	21	pixels	high)	and	one	toolbar	(about	27	pixels	high).	

The	default	left/bottom	coordinates	are	[5	5]	which	are	used	if	they	are	not	supplied.	For	example:	

figpos([730	550])	gives	the	same	results	as	figpos([5	5	730	550])
figpos([730	550	21])	gives	the	same	results	as	figpos([5	5	730	550	21])

You	also	may	specify	only	the	figure	length	or	the	figure	width	and	let	
parameter	based	on	the	most	appropriate	aspect	ration.	For	example	
figpos([0	944])	both	give	the	same	results	as	figpos([1000	944])
ratio	(1.006)	was	chosen	so	that	if	you	plot	a	circle,	the	resulting	figure	is	actually	
than	elliptical.	For	example,	this	line	plots	a	perfect	circle	using	600	points:	

plt(exp((1:600)*pi*2i/599),'pos',[800	0])	

If	you	move	your	taskbar	to	a	new	location,	for	figpos	to	continue	to	work	
screencfg.m	file	by	commenting	out	the	appropriate	lines	defining	the	taskbar	location.	Then	to	enable
those	changes	type	screencfg	at	the	Matlab	command	prompt,	or	simply	restarting	Matlab	will
enable	the	changes.	

The	following	examples	may	clarify	the	specification	described	above:	

The	first	example	creates	5	plots	of	the	same	size	placed	on	the	screen	
away	from	each	other	as	possible.	The	first	four	plots	are	placed	right	at	the	edge	of	the	screen	at	the
four	corners,	except	not	so	close	that	any	of	the	figure	borders	disappear	
the	taskbar	no	matter	where	the	taskbar	is	placed.	On	a	small	screen	even	the	first	four	figures	would
overlap.	On	a	large	screen,	the	first	four	figures	would	not	overlap,	but	the	
the	corners	of	the	other	four	(unless	the	screen	had	an	exceptionally	high	resolution).

			y	=	rand(1,100);		sz	=	[700	480];					%	data	to	plot	and	figure	size

			plt(y,'pos',[0			0		sz]);												%	bottom	left	corner

			plt(y,'pos',[Inf		0		sz]);												%	top	left	corner

			plt(y,'pos',[0		Inf	sz]);												%	bottom	right	corner

			plt(y,'pos',[Inf	Inf	sz]);												%	top	right	corner

			p	=	get(findobj('name','plt'),'pos');	%	get	positions	of	all	4	plt	figures

			plt(y,'pos',mean(cell2mat(p))*1i);				%	put	5th	plot	at	the	average	position

The	"*1i"	in	the	above	line	is	strictly	necessary	to	prevent	figpos	from	
current	border	information.	The	raw	pixel	location	is	used	because	the	get('pos')	command	returns	raw
pixel	coordinates.	With	the	"*1i"	removed,	the	last	figure	would	not	be	at	the	exact	arithmetic	
position,	but	actually	the	error	would	probably	be	too	small	to	notice.	

The	next	example	also	creates	four	figures	at	the	corners	of	the	screen,	
figure	is	a	fixed	size	and	the	remaining	figures	are	tiled	so	as	to	fill	all	the	remaining	space	on	the
screen.

			plt(y,'pos',[0			0			600		400]);	%	figure	1	is	placed	at	the	lower	left	corner

			plt(y,'pos',[0		440		600	-Inf]);	%	use	all	the	remaining	space	above	fig1

			plt(y,'pos',[615		0		-Inf		400]);	%	use	all	the	remaining	space	to	the	right	of	fig1

			plt(y,'pos',[615	440	-Inf	-Inf]);	%	use	all	the	remaining	space	not	used	by	figs	1-3

Note	that	in	the	example	above	an	extra	15	pixels	in	width	and	40	pixels	in	
small	gap	between	the	four	figures.	

In	addition	to	the	examples	above,	a	good	way	to	appreciate	the	value	of	
demoplt.m	and	cycle	thru	all	the	plt	demo	programs	using	the	"All	Demos"	button.	Notice	how	well
the	various	windows	are	placed	on	the	screen.	You	will	appreciate	the	intelligence	
even	more	if	you	are	able	to	rerun	the	demos	using	a	different	screen	resolution	and	a	different	taskbar
location.	Without	the	figpos	function,	many	of	the	demos	would	have	to	be	more	complicated	
their	figures	at	appropriate	screen	positions.

screencfg.m
(screen
configuration)

If	called	without	an	argument,	screencfg	attempts	to	determine	the	
automatically.	If	the	automatic	procedure	fails,	then	the	predefined	taskbar	size	and	position	defined	in
the	file	TaskbarSZ.m	is	assumed	(which	may	be	edited	if	needed).	The	output	of	this	function	is	a	4
or	5	element	row	vector	called	the	"border	vector".	This	border	vector	(in	addition	to	being	this
function's	return	value)	is	written	in	text	form	to	screencfg.txt
screencfg.m),	and	is	also	saved	in	the	'border'	application	property	value	of	the	Matlab	root	object.

If	called	with	a	vector	argument,	then	the	supplied	argument	is	taken	

If	called	with	a	scalar	argument,	then	screencfg	first	looks	for	the	
this	property	exists,	then	its	value	is	returned	and	nothing	further	is	done.	However	if	the	
property	does	not	exist,	then	screencfg	will	look	for	the	screencfg.txt	file	and	if	it	exist	will	return	the
values	stored	there	and	will	also	save	this	vector	in	the	'border'	property.	If	the	
does	not	exist,	then	screencfg	will	behave	as	if	it	was	called	without	an	argument	(described	above).	

When	a	4	element	vector	is	used	for	the	border	vector,	its	form	is	
where	each	number	represents	the	number	of	pixels	of	clear	space	(i.e.	not	used	for	Matlab	figures)	that
must	exist	at	the	four	edges	of	the	screen	indicated.	When	a	5	element	vector	is	used	its	form	is:

[left	bottom	width	height	0]
The	largest	visible	screen	position	in	pixel	units	using
the	standard	Matlab	figure	positioning	scheme.

[left	bottom	width	height	1]
Same	as	above	except	that	normalized	coordinates
are	used.

pltwater.m
(waterfall
plots)

A	general	purpose	3D	surface	(waterfall)	display	routine

Calling	sequence:

pltwater(z,'Param1',Value1,'Param2',Value2);

All	arguments	are	optional	except	for	z	which	is	a	matrix	containing	the	surface	data.
Note	that	the	arguments	are	arranged	in	Param/Value	pairs.
However	you	may	omit	the	Value	part	of	the	pair,	in	which	case	the	default	value	of	1	is	used.

pltwater	recognizes	the	following	12	Param/Value	pairs	(case	insensitive):

'go',1 The	animation	begins	immediately	as	if	you	had	pressed	the	start	button.
'go' The	same	as	above	(since	an	omitted	value	is	assumed	to	be	one).

'run'
The	same	as	above.	Note	that	all	the	sliders	and	check	boxes	mentioned	
may	be	adjusted	even	when	the	display	is	running	(animation).

'invert' The	surface	is	displayed	upside	down.
'transpose' The	surface	is	rotated	by	90	degrees	(x/y	swapped).

'delay',v
A	pause	of	v	milliseconds	occurs	between	display	updates.	Whatever	value	(v)
is	supplied,	it	may	be	changed	later	using	the	slider.

'nT',v

Determines	how	many	traces	will	be	visible	initially.	Later	you	may	change	
number	of	visible	traces	using	the	slider.	If	the	nT	parameter	is	not	
traces	will	be	used	(initially).

'skip',v

Initially	v	records	(rows	of	z)	are	skipped	between	each	record	access.	
v=1	only	every	other	record	is	used.)	This	value	may	be	modified	using	the
slider.

'dx',v

Successive	traces	of	the	waterfall	display	are	displaced	by	v	pixels	to	the	
which	adds	a	visual	perspective.	(No	perspective	is	perceived	if	v	is	zero.)	
value	may	be	modified	with	the	slider.

'dy',v
Successive	traces	of	the	waterfall	display	are	displaced	in	the	vertical	direction
by	v	percent	of	the	Zaxis	limits.	This	value	may	be	modified	using	the	slider.

'x',v
Specifies	the	x	values	corresponding	to	each	column	of	z.	If	this	parameter	is
not	supplied,	the	value	1:size(z,2)	is	used.

'y',v
Specifies	the	y	values	corresponding	to	each	row	of	z.	
supplied,	the	value	1:size(z,1)	is	used.

'smooth',v

Line	smoothing	is	a	line	property	in	most	versions	of	Matlab	(although	it	is	not
supported	in	R2014b	or	later).	If	this	parameter	is	not	included	then	line
smoothing	is	enabled	when	the	display	is	running	(animating)	and	is	disabled
otherwise.	That	behavior	may	be	modified	as	follows:

'smooth',	1			Line	smoothing	is	always	enabled
'smooth',-1			Line	smoothing	is	always	disabled
'smooth',	0			The	default	line	smoothing	mode	as	described	above.

If	you	are	using	a	version	of	Matlab	that	doesn't	support	line	smoothing,
pltwater	will	not	enable	line	smoothing	mode	regardless	of	the	setting	of	this
parameter.

If	a	parameter	is	included	in	the	pltwater	argument	list	that	is	not	one	of	the	
parameter	along	with	its	corresponding	value	are	passed	onto	plt.	The	most	common	plt	parameters
used	in	the	pltwater	argument	list	are:

							'TraceC'		'CursorC'		'FigBKc'					'LabelX'		'Pos'			'HelpText'

							'Title'			'FigName'		'Linewidth'		'LabelY'		'xy'

Refer	to	the	wfalltst.m	demo	program	to	see	an	example	of	creating	an	
pltwater.

Programming	examples

In	the	demo	folder	you	will	find	31	example	programs	to	help	you	learn	how	to
take	advantage	of	many	of	plt's	features.	Also	included	in	the	demo	folder	is
demoplt.m,	a	script	which	makes	it	easy	to	start	any	of	the	example	programs
by	clicking	on	the	appropriate	button	or	to	run	all	of	them	in	sequence	(in	the
order	listed	below)	by	clicking	the	"All	Demos"	button.	

I	strongly	recommend	running	through	the	All	Demos	sequence	at	least	once.
Many	of	the	questions	emailed	to	me	about	plt	are	something	like	"can	plt	do
xxxxx?",	but	if	they	had	only	clicked	through	the	All	Demos	sequence	once,
most	likely	they	would	quickly	discover	that	the	answer	to	this	question	was
"yes".	Running	demoplt	is	also	a	good	way	to	verify	that	plt	is	working	as

properly	on	your	system.	Just	type	cd	plt\demo		and	then	demoplt	at	the
command	prompt.	The	cd	command	is	not	necessary	if	you	have	added	the
plt\demo	folder	to	the	Matlab	path	-	which	is	done	automatically	if	you	have
installed	plt	as	a	toolbox.	(Installing	plt	as	a	toolbox	is	possible	with	Matlab
R2014b	or	later.)	

plt5.m	is	first	on	the	list	because	it	is	the	simplest	most	basic	example.	The
other	demos	appear	in	alphabetical	order.	As	each	demo	is	run,	you	may	peruse
the	code	for	the	demo	program	currently	being	run	in	the	demoplt	list	box.	Also
the	number	of	lines	of	uncommented	code	appears	in	the	lower	right	corner	of
the	figure	to	give	you	an	idea	of	the	complexity	of	each	example.	Use	the	list
box	scroll	bars	to	view	any	portion	of	the	code	of	interest.	If	the	text	is	to	big	or
small	for	comfort,	adjust	the	fontsize	using	the	fontsize	popup	menu	in	the	lower
right	corner	of	the	demoplt	figure.	This	fontsize	is	saved	(in	demoplt.mat)
along	with	the	current	figure	colors	and	screen	location	so	that	the	figure	will
look	the	same	the	next	time	demoplt	is	started.	(Delete	demoplt.mat	to	return	to
the	original	default	conditions.)	

If	you	are	running	a	version	of	Matlab	older	than	7.0	then	the	gui1	button	is
replaced	by	the	gui1v6	button	because	gui1.m	uses	a	uitable	which	is	not
supported	in	Matlab	6.	(The	uitable	is	replaces	with	a	radio	button	in	qui1v6).
Similarly	gui2	is	replaced	by	gui2v6	if	you	are	running	a	version	of	Matlab
older	than	7.0	or	if	you	are	running	version	8.4	(R2014b).	gui2	uses	a	uipanel
which	isn't	supported	in	Matlab	6,	so	gui2v6	replaces	the	uipanel	with	a
uicontrol	frame	which	serves	pretty	much	the	same	function.	R2014b	supports
the	uipanel,	but	the	v6	version	is	run	because	of	a	bug	in	R2014b	relating	to	the
stacking	order	of	a	uipanel.	

In	addition	to	its	main	role	as	a	demo	program	launcher,	demoplt	demonstrates
the	use	the	ColorPick	pseudo	object.	(A	pseudo	object	is	a	collection	of	more
primitive	Matlab	objects,	assembled	together	to	perform	a	common	objective.)
The	ColorPick	pseudo	object	is	useful	whenever	you	want	to	allow	the	user	to
have	control	over	the	color	of	one	of	the	graphic	elements.	In	demoplt	there	are	4
such	elements:	The	text	color,	the	text	background	color,	the	button	color,	and
the	figure	background	color.	The	ColorPick	window	is	activated	when	you	click
on	any	of	the	three	small	color	squares	(frames)	or	if	you	right-click	on	the
figure	background	edit	box.	When	the	ColorPick	window	appears	you	can	use
the	sliders	or	the	color	patches	to	change	the	color	of	the	respective	graphic

element.	For	more	details,	see	the	Pseudo	objects	section	in	the	help	file.	

An	optional	feature	of	the	ColorPick	object	is	the	color	change	callback	function
-	a	function	that's	called	whenever	a	new	color	is	selected.	This	feature	is
demonstrated	here	by	reporting	all	color	changes	at	the	top	of	the	listbox	(i.e.
before	the	example	code	listing).	

Although	it's	unrelated	to	plt,	demoplt	also	demonstrates	the	use	of	the	close
request	function,	which	in	this	example	is	assigned	to	demoplt(0)	and	gets	called
when	you	close	the	demoplt	figure	window.	If	you	have	changed	the	figure	size,
the	fontsize	popup,	or	any	color	selection	this	close	request	function	brings	up	a
modal	dialog	box	consisting	of	these	three	buttons:

Save	setup	changes	(will	create	a	"demoplt.mat"	file)
Exit	without	saving
Reset	to	default	settings	(will	delete	the	demoplt.mat	if	it	exists)

CLICK	on	the	thumbnails	below	to	see	the	full	size
image

plt5.m

This	is	a	simple	script	which	creates	a	plot	containing	5	traces.
Hopefully	you	have	already	been	running	this	script	while
following	through	the	earlier	sections.

Note	how	the	five	y-vectors	are	combined	to	form	a	single	plt
argument.
Note	the	use	of	the	'Xlim'	and	'Ylim'	arguments	to
control	the	initial	axis	limits.
Note	the	use	of		'LabelX'	argument	to	assign	a	label	for	the
x	axis.
Note	the	use	of	the	'LabelY'	argument	to	add	a	label	for
both	the	left	and	right-hand	axes.

Note	that	plt	will	use	a	right-hand	axis	since	two	labels	were
included	in	the	LabelY	parameter.	Usually	the	'Right'
parameter	is	included	to	specify	which	traces	are	to	use	the	
axis,	but	in	this	example	the	parameter	was	omitted,	so	plt	defaults
to	putting	just	the	last	trace	on	the	right-hand	axis.

This	function	displays	many	of	markers	with	random	shapes	and
colors	starting	at	the	plot	origin	and	then	randomly	walking	
bouncing	off	the	walls.	Click	on	the	Walk/Stop	button	to	start
and	stop	the	motion.

plt	creates	513	line	objects.	All	but	the	last	line	object	are	for
displaying	the	markers	(each	marker	displayed	is	actually	a
line	object	containing	just	a	single	point).	You	can	control	how
many	of	these	markers	are	visible	and	in	motion.	The	last	line
object	is	used	to	display	the	arrows	representing	the	velocity
of	each	marker.
The	popup	control	on	the	left	controls	the	size	of	the	velocity
arrows.	This	popup	was	created	using	the	"super	button"	mode

bounce.m

which	means	you	just	click	on	the	popup	to	advance	to	the
next	larger	size.	After	"large"	it	will	wrap	around	to	"none"
(which	inhibits	the	display	of	the	velocity	arrows).	If	you	want
to	actually	open	the	pop	menu	to	observe	your	choices,	simply
right-click	on	the	popup.	As	with	the	other	controls,	you	may
modify	the	control	even	while	it	is	walking.
The	input	argument	determines	the	starting	number	of
markers,	i.e.	bounce(88)	will	display	88	markers.	If	bounce	is
called	without	an	argument,	a	default	value	will	be	assumed
(128	markers).
While	the	display	is	walking,	the	number	of	updates	per
second	is	computed	and	displayed	in	the	figure	title	bar.	
while	the	display	is	walking,	you	can	change	the	number	of
markers	that	are	visible	and	moving.	(The	slider	below	the
plot).
The	slider	on	the	left	controls	the	walking	speed.	This	isn't	the
update	rate	(which	actually	proceeds	as	fast	as	possible),	but	it
actually	controls	how	far	each	marker	moves	between	each
display	update.
Shows	how	to	set	line	properties	using	cell	arrays.
Shows	how	plt	can	avoid	its	99	trace	limit	by	disabling
TraceIDs.
Demonstrates	how	to	create	moving	displays	by	changing	the
trace	x/y	data	values	inside	a	while	loop.

circles12.m

This	is	a	two	part	script.	The	first	part	creates	3	figures	each
showing	a	different	solution	to	the	following	problem	...	
Draw	12	circles	in	a	plane	so	that	every	circle	is	tangent
to	exactly	5	others.

The	second	part	of	the	script	draws	the	solution	to	the	following
problem	...
Divide	a	circle	into	n	congruent	parts	so	that	at	least	one
part	does	not	touch	the	center.
(Hint:	as	far	as	I	know,	the	only	solution	uses	n	=	12)
An	edit	pseudo	object	is	also	added	below	the	plot	which	lets	you
rotate	the	image	and	control	the	rotation	speed.

Demonstrates	the	utility	of	using	complex	numbers	to	
x	and	y	positions	of	the	plotted	points.
Demonstrates	using	prin	to	create	the	Trace	IDs.
Demonstrates	how	to	make	circles	look	true	by	using	a	zero	in
the	'Pos'	argument	(width	or	height).	Also	two	of	
are	placed	as	far	towards	the	top	of	the	screen	as	possible,
which	is	done	by	setting	the	Ybottom	value	equal	to	
Note	that	even	though	the	calls	to	plt	for	solutions	1	&	2
specify	same	screen	location	('Pos'	parameter)	plt	doesn't
actually	plot	them	on	top	of	each	other.	Instead	a	small	offset
is	added	in	this	situation,	a	feature	that	makes	it	easier	to
create	many	plt	windows	so	that	any	of	them	can	be	easily
selected	with	the	mouse.
The	last	figure	(part	2)	shows	the	use	of	the	Nocursor
All	options	to	make	the	cursor	objects	and	menu	box	items
invisible	as	well	as	the	'Ticks'	option	to	select	axis	tick
marks	instead	of	the	full	grid	lines.

This	function	shows	an	example	where	many	GUI	controls	need	to
fit	into	a	relatively	small	space.

The	ten	controls	above	the	graph	(nine	edit	text	objects	and
one	popup	text	object)	all	are	used	to	control	how	the
parametric	curves	in	the	graph	are	displayed.
If	we	used	the	traditional	Matlab/Windows	GUI	objects,	we
would	have	had	to	make	the	graph	much	smaller	to	make
room	for	all	these	controls.
In	addition,	the	plt('edit')	pseudo	objects	provide	a
much	easier	way	to	modify	the	numeric	values,	nearly
matching	the	convenience	of	a	slider	object.	The
plt('edit')	and	plt('pop')	commands	are	described
in	the	Pseudo	objects	section.

After	starting	curves.m,	right-click	on	the	curve	name	at	the	bottom

curves.m

of	the	figure	to	cycle	through	the	42	different	cool	looking	curve
displays.	Left-click	on	the	curve	name	as	well	to	select	from	the
complete	list	of	curves.	If	you	start	it	by	typing	"curves	go
then	after	starting	it	will	cycle	once	through	all	42	curves	(at	a
default	rate	of	one	second	per	curve).	demoplt.m	calls	curves	this
way	which	explains	why	it	starts	cycling	immediately.	If	you	want
the	cycle	to	proceed	at	a	different	rate,	you	may	select	the	desired
rate	with	the	delay	popup	just	below	the	Cycle	button.	When	the
last	curve	is	displayed	the	cycling	stops	and	the	time	it	took	to
cycle	thru	all	the	curves	is	displayed	in	the	upper	left	corner	of	the
figure.	(This	a	useful	as	a	speed	performance	measure	if	you	
delay	to	zero.)

The	equations	in	(reddish)	orange	just	below	the	graph	and
above	the	curve	name,	serve	as	more	than	just	the	x-axis	label.
This	specific	string	is	evaluated	by	Matlab	to	compute	the
points	plotted	on	the	graph.
The	vector	t,	and	the	constants	a,	b,	and	c	that	appear	in	these
equations	are	defined	by	the	controls	above	the	graph.
Experiment	by	both	right	and	left-clicking	on	these	controls.
For	the	cases	when	more	than	one	trace	is	plotted,	the	first
control	on	the	left	(labeled	"trace")	indicates	which	trace	is
effected	by	the	other	nine	controls	above	the	graph.
Note	that	when	you	left-click	on	a	control,	it	will	increase	or
decrease	depending	on	whether	you	click	on	the	left	or	right
side	of	the	text	string.
Separate	values	for	a,	b,	and	c	are	saved	for	each	trace	of	a
multi-trace	plot.	This	explains	the	variety	of	curves	that	can
appear	for	a	single	set	of	equations	(shown	below	the	graph).
Left-clicking	on	the	"Default"	button	will	reset	all	these
parameters	to	their	initial	settings	for	only	the	function
currently	selected.	It	will	have	no	effect	on	the	settings	for	the
remaining	41	curves.	However	if	you	right-click	on	the
"Default"	button,	then	the	settings	for	all	42	curves	will	be
reset	to	the	values	they	were	initialized	to	when	the	curves
program	started.
Note	the	help	text	(in	purple,	center	left)	tells	you	just	enough
to	get	started	using	the	program,	even	if	you	haven't	read	any
of	the	documentation.	This	was	added	using	the

'HelpText'	parameter.	Selecting	a	different	curve	(with	the
popup	pseudo	object)	will	erase	the	help	text	and	right-
clicking	on	the	"Help"	tag	in	the	MenuBox	will	make	it
reappear.
For	most	of	the	curves	there	is	also	some	text	(in	grey)	in	the
plot	area	that	describe	some	technical	or	historical	information
related	to	the	curve,	hopefully	making	this	program	more
interesting	and	educational.	The	text	is	embedded	in	the	
table	that	stores	the	curve	name,	equations,	and	parameters.	At
the	beginning	of	the	text	string	are	some	codes	that	specify	the
text	position	and	font	size.

dice.m

This	function	displays	a	simulation	of	Sam	Loyd's	carnival	dice
game.	-	You	bet	1	dollar	to	play	(rolling	3	dice).	If	one	six	appears
you	get	2	dollars,	if	two	sixes	appear,	you	get	3	dollars,	if	three
sixes	appear,	you	get	4	dollars,	and	otherwise,	you	get	nothing.	
this	a	good	bet	to	make?)

Three	traces	are	created:	accumulated	winnings,	earnings	per
bet,	and	expected	earnings	per	bet.
The	first	two	traces	are	displayed	as	they	are	computed,	i.e.
every	time	the	dice	are	rolled,	a	new	value	is	appended	to	the
trace	and	the	plot	is	updated	so	you	can	watch	the	function
grow	in	real	time.
A	second	axis	is	added	near	the	top	of	the	figure	to	show	the
dice.	For	each	die,	a	line	with	dots	as	markers	is	added	for
each	of	the	six	faces,	with	only	one	of	these	lines	being	visible
at	a	time.	A	square	patch	is	also	added	for	each	die	for	the
visual	effect.

There	are	three	ways	you	can	start	the	program:

dice				-	sets	up	simulation.	No	bets	occur	until	you	click
a	button.
dice(n)	-	sets	up	simulation	&	makes	n	bets.
dice(0)	-	sets	up	simulation	&	makes	bets	continuously
until	you	click	stop.

This	function	demonstrates	the	usefulness	of	plt's	data	editing
capability.	Two	plots	are	created,	the	lower	one	showing	the	poles
and	zeros	of	a	z-plane	transfer	function	and	the	upper	one	other
showing	the	magnitude	and	phase	of	it's	frequency	response.	The
frequency	response	plot	automatically	updates	even	while	you	are
dragging	a	root	to	a	new	location.	At	first	the	updating	in	real	time
(i.e.	while	you	are	dragging)	may	not	seem	so	important,	but	when
you	use	the	program	its	becomes	clear	that	this	allows	you	to	gain	a
feel	for	how	the	root	locations	effect	the	frequency	response	reacts.
This	real	time	motion	is	accomplished	by	using	the	MotionEdit
parameter	(see	line	131).	In	addition	to	demonstrating	various	plt
features,	my	other	goal	for	this	little	application	was	to	create	a	tool
to	help	engineering	students	develop	a	feel	for	how	the	magnitude
&	phase	response	reacts	to	a	change	in	the	positions	of	the	transfer
function	poles	&	zeros.	This	application	won't	make	much	sense
until	you	have	learned	to	think	in	the	z-plane.	If	you	haven't	yet
learned	this,	I	highly	recommend	Sitler's	Notes	-	a	paper	on	the
subject	which	is	just	about	as	old	as	the	subject	itself,	yet	I	believe
nothing	else	quite	as	good	has	been	written	since.	This	paper	was
never	officially	published,	but	the	good	news	is	you	can	find	it	on
my	web	site	(www.mennen.org)	in	the	section	titled	"Signal
processing	papers".

When	the	program	first	starts,	text	appears	in	the	pole/zero
plot	that	tells	you	how	you	can	use	the	mouse	to	move	the
roots	of	the	transfer	function.	However	it	is	easy	to	miss	these
important	instructions	since	they	disappear	as	soon	as	you
click	on	anything	in	that	figure	widow.	(This	was	necessary	to
manage	clutter).	However	you	can	re-enable	the	help	text	at
any	time	by	clicking	on	the	yellow	"editz	help"	tag	which	
centered	near	the	left	edge	of	the	figure	window.	(Note	that
right-clicking	on	the	Help	tag	in	the	menu	box	has	the	same
effect.)
In	the	frequency	plot,	the	x-cursor	edit	boxes	show	the	cursor
location	as	a	fraction	of	the	sample	rate.	The	Xstring
parameter	is	used	to	show	this	as	an	angular	measure	(in
degrees)	just	to	the	right	of	the	x-cursor	readout.	Since	the
DualCur	parameter	is	used,	there	are	two	y-cursor	edit	boxes.
The	first	one	(green)	shows	the	magnitude	response	in	dB	and

http://www.mennen.org

editz.m

the	second	one	(purple)	shows	the	phase	response	in	degrees.
The	Ystring	parameter	is	used	to	show	the	magnitude
response	in	linear	form	(in	percent).	Note	that	after	the	plot
command,	the	Ystring	is	moved	to	the	left	of	the	plot	because
by	default	the	Ystring	appears	in	the	same	place	as	the	dual
cursor.	The	alternate	location	allows	room	for	a	multi-line
Ystring	which	is	generated	compliments	of	prin's	cell	array
output	feature.	The	AxisLink	parameter	is	used	so	that	by
default	the	mag/phase	axes	are	controlled	separately.
In	the	pole/zero	plot,	the	x	and	y-cursor	edit	boxes	show	the
pole/zero	locations	in	Cartesian	form.	The	Xstring	parameter
shows	the	polar	form	just	to	the	right	of	the	x-cursor	readout.
Normally	plt's	data	editing	is	initiated	when	you	right-click	on
either	the	x	or	the	y	cursor	readouts.	However	when	data
editing	is	being	used	extensively	(as	in	this	program)	it	is
useful	to	provide	an	easier	way	to	enter	editing	mode.	In	this
program,	this	is	done	with	the	patch	object	that	appears	just
below	the	traceID	box.	(The	patch	object	is	created	on	line
146	of	this	file).	The	'Dedit'	application	data	variable	is	used
(see	lines	137	to	139)	to	change	the	default	editing	mode	from
the	usual	default	(change	only	the	y	coordinate)	to	the
alternative	(allow	changing	both	the	x	and	y	coordinates.	Also
the	application	data	variable	'EditCur'	(see	line	140)	is	used	to
change	the	default	size	of	the	cursors	used	for	editing.
Notice	that	while	dragging	a	pole	or	a	zero	to	a	new	location,
the	pole	or	zero	remains	inside	the	diamond	shape	edit	cursor
...	EXCEPT	when	you	get	close	to	the	x	axis.	At	that	point	the
root	jumps	out	of	the	edit	cursor	and	sticks	to	the	x	axis	(for	as
long	as	the	edit	cursor	remains	inside	the	green	band).	Without
this	snap	to	behavior	it	would	be	nearly	impossible	to	create	a
purely	real	root.	Similarly,	when	you	drag	a	zero	(but	not	a
pole)	"close"	enough	to	the	unit	circle,	the	zero	will	"snap	to"
the	circle.	Without	this	feature	it	would	be	difficult	to	
transfer	function	with	a	symmetric	numerator	polynomial.
How	"close"	is	close	enough	for	these	snap	to	operations?
Well	this	is	determined	by	the	Tolerance	slider	which	is	in	the
lower	left	corner	of	the	pole/zero	plot.	Notice	that	as	you
move	this	slider,	the	width	of	the	green	band	surrounding	the
x-axis	and	the	unit	circle	gets	bigger.	To	disable	the	snap	to

feature,	simply	move	the	tolerance	slider	to	0.
Shows	how	you	can	take	advantage	of	both	left	and	right	click
actions	on	a	button.	left-clicking	on	the	"Delete	P/Z"	button
deletes	the	root	under	the	cursor	as	you	might	expect.	Right-
clicking	on	this	button	undoes	the	previous	delete.	This	is	a
multi-level	undo,	so	you	could	delete	all	the	zeros	and	then
restore	them	one	by	one	by	successive	right	clicks	on	the
Delete	P/Z	button.	These	buttons	can	also	be	used	to	change	a
collection	of	N	poles	to	a	collection	of	N	zeros	at	the	same
locations.	To	do	this,	deleting	the	N	poles,	then	click	on	any
zero,	and	then	right-click	on	the	Delete	P/Z	button	N	times.
(Of	course	you	can	similarly	change	zeros	to	poles.)
Demonstrates	the	use	of	the	'Fig'	parameter	to	put	two	plots
in	one	figure	with	each	plot	possessing	all	the	features
available	to	any	single	plot	created	by	plt.

gauss.m

This	script	plots	the	results	of	combining	uniform	random
variables.

Shows	the	advantage	passing	plot	data	in	cell	arrays	when	the
traces	contain	different	number	of	data	points.
Shows	how	the	line	zData	can	be	used	to	save	an	alternative
data	set	which	in	this	example	is	the	error	terms	instead	of	the
actual	correlations.	A	checkbox	allows	you	to	tell	the	plot	to
show	the	alternative	data	set.	The	label	for	the	checkbox	is
rotated	90	degrees	so	that	it	can	fit	in	the	small	space	to	the
left	of	the	plot.
Note	the	use	of	the	'FigName'	and	'TraceID'	arguments.
Note	the	appearance	of	the	Greek	letter	in	the	x-axis	label.
Shows	how	to	use	the	'COLORc'	argument	to	select	Matlab's
default	plotting	colors	(typically	set	to	use	a	white	background
for	the	plotting	area)
The	'Options'	argument	enables	the	x-axis	cursor	
(which	appears	just	below	the	peak/valley	finder	buttons),
enables	the	menu	bar	at	the	top	of	the	figure	window,	adds	the
Print	tag	to	the	menu	box,	and	lastly	removes	the	LinX/LogX
and	LinY/LogY	selectors	from	the	menu	box.
Shows	how	to	use	the	'DIStrace'	argument	to	disable

some	traces	on	startup.
Shows	how	to	use	the	'MotionZoom'	argument	to	create	a
new	plot	showing	only	the	zoom	window.	Admittedly	this	is
more	contrived	than	useful	in	this	particular	script,	but	at	least
this	example	will	clarify	the	function	of	the	MotionZoom
parameter.
The	zoom	window	plot	also	demonstrates	an	easy	way	to	copy
the	trace	data	from	one	plot	to	another	(in	this	case	from	the
main	plot	to	the	zoom	plot).
The	first	trace	is	displayed	using	markers	only	to	distinguish
the	true	Gaussian	curve.
Demonstrates	the	use	of	the	'HelpText'	parameter	to
initialize	a	GUI	with	user	help	information	that	is	cleared
when	the	user	begins	to	use	the	application.	In	this	case	the
'MoveCB'	parameter	is	used	to	cause	the	help	text	to	be
removed	when	you	click	on	the	plot.	The	help	text	is	also
removed	if	you	click	on	the	checkbox.	If	you	want	the	help
text	to	reappear,	simply	right-click	on	the	help	tag	in	the
MenuBox.

gui1.m

Usually	plt	is	used	to	build	gui	applications	which	include	plotting,
however	this	example	doesn't	include	plots	so	that	it	remains	trivial,
making	it	a	good	example	to	start	with	if	you	have	no	previous
exposure	to	Matlab	GUI	programming.	The	only	pseudo	object
used	in	gui1	is	the	pseudo	slider	which	is	a	collection	of	5
uicontrols	designed	to	work	together	to	control	a	single	parameter.
The	remaining	controls	used	in	gui1	are	standard	Matlab	uicontrols.

This	GUI	doesn't	actually	perform	any	useful	function	other	than	to
demonstrate	how	to	create	various	controls	and	move	them	around
until	the	GUI	appears	as	desired.	The	slider	callback	generates	new
random	numbers	for	the	listbox,	textbox,	and	uitable.	The
remaining	callbacks	are	just	stubs	that	notify	you	that	you	clicked
on	the	object.	

You	can	most	easily	absorb	the	point	of	this	example	(and	the
following	example	called	gui2.m)	by	reading	this	section	of	the
help	file:	GUI	building	with	plt.	

gui1.m	uses	a	uitable	which	aren't	supported	in	Matlab	6,	so	if
you	are	running	a	version	of	Matlab	older	than	7.0	then	you	should
run	an	alternate	version	of	this	program	called	gui1v6.m
replaces	the	uitable	with	a	radio	button.	If	you	start	gui1	from
demoplt,	demoplt	checks	the	Matlab	version	and	runs	gui1	or
gui1v6	as	appropriate.

gui2.m

Unlike	the	previous	gui	building	example	(gui1.m)	this	one
includes	a	plot	and	actually	performs	a	useful	function	-	displaying
the	frequency	response	of	the	most	common	traditional	analog
filters.	GUI	controls	are	provided	to	adjust	the	most	important	filter
parameters	(Filter	order,	Cutoff	frequency,	&	Passband/Stopband
ripple).	The	capabilities	of	this	program	were	kept	modest	to	make
it	a	good	introduction	to	GUI	programming	with	plt.	

gui2	creates	these	eleven	pseudo	objects:

1.	 a	plot
2.	 a	cursor
3.	 a	grid
4.	 an	edit	object	(filter	order)
5.	 a	popup	(filter	type)
6.	 a	popup	(decades	to	display)
7.	 a	popup	(number	of	points	to	display)
8.	 a	slider	(passband	ripple)
9.	 a	slider	(stopband	ripple)
10.	 a	slider	(cutoff	frequency)
11.	 a	slider	(frequency	2)

The	first	three	pseudo	objects	in	this	list	are	created	by	the	first	call
to	plt	and	the	remaining	eight	pseudo	objects	are	created	with	eight
additional	calls	to	plt.	

Although	Matlab	already	has	objects	with	similar	names,	these
pseudo	objects	are	different.	They	provide	more	utility	and	options.
The	pseudo	objects	4	thru	7	listed	above	are	grouped	inside	a
uipanel	titled	"Parameters".	

You	can	most	easily	absorb	the	point	of	this	example	(and	the
previous	one	called	gui1.m)	by	reading	this	section	of	the	help	file:
GUI	building	with	plt.	

There	are	two	alternate	versions	of	this	application	included	in	the
demo	folder.	The	first	one,	called	gui2v6.m	uses	a	uicontrol	frame
in	place	of	the	uipanel.	This	alternate	version	should	be	used	if	you
are	running	a	version	of	Matlab	older	than	7.0	because	Matlab	6
does	not	support	the	uipanel.	Actually	the	alternate	version	should
also	be	used	if	you	are	running	R2014b	or	newer.	The	reason	for
this	is	that	although	the	uipanel	is	supported,	a	bug	relating	to	the
uipanel's	stacking	order	prevents	gui2	from	working	properly	in
those	versions.	If	you	start	gui2	from	demoplt,	demoplt	checks	the
Matlab	version	and	runs	gui2	or	gui2v6	as	appropriate.	

The	other	alternate	version	is	called	gui2ALT.m	and	is	not	run	by
demoplt.	This	version	differs	from	gui2.m	primarily	in	the	number
of	traces	used.	gui2	uses	10	traces	(5	for	magnitude	on	the	left	axis
and	5	for	phase	on	the	right	axis)	where	as	gui2ALT	uses	a	single
axis	with	just	5	traces.	The	trick	to	make	this	work	is	to	use	each
trace	to	display	both	the	magnitude	and	the	phase	information.
Although	I	eventually	decided	that	the	10	trace	method	in	gui2	was
simpler,	the	alternate	version	is	included	because	in	some	situations
this	trick	can	still	be	useful.	Note	that	the	tick	marks	are	modified
so	that	they	read	in	degrees	in	the	phase	portion	of	the	plot.	Also
the	phase	portion	is	highlighted	with	a	gray	patch	to	better	separate
it	visually	from	the	magnitude	plot.

The	intent	of	this	example	is	to	demonstrate	the	generality	of	the
image	pseudo	object	by	including	two	of	these	objects	in	a	
figure,	and	to	demonstrate	the	use	of	the	'Fig'	parameter	as	well	as
several	other	graphical	programming	techniques.	It's	easy	to	find
dozens	of	Julia	set	graphing	programs	in	nearly	every	language
(including	Matlab)	so	I	wouldn't	fault	you	if	you	were	skeptical	of
the	need	for	yet	another	application	with	this	purpose.	However	my

julia.m

goal	was	to	leverage	the	power	of	the	plt	plotting	package	to	show
how	fun	it	is	to	explore	Julia	sets	and	to	make	this	application	more
compelling	than	any	similar	application	out	there.	I'll	let	you	be	the
judge	how	well	I	have	met	this	challenge.	

Julia	set	images	are	traditionally	generated	with	the	repeated
application	of	the	equation	z	=	z2	+	c	(z	and	c	are	complex).	
application	also	allows	exponents	other	than	2	(called	the
generalized	Julia	set).	The	color	of	the	image	is	determined	by	the
number	of	iterations	it	takes	for	the	magnitude	of	z	to	grow	larger
than	some	fixed	value	(2.0	for	this	program).	The	Mandelbrot	set
uses	the	same	equation	and	the	same	color	assignment	method,	but
differs	in	how	the	equation	is	initialized.	

Some	very	basic	instructions	appear	in	the	figure	when	the
application	starts	but	this	help	text	disappears	as	soon	as	you	click
anywhere	in	the	plot	region.	For	a	complete	description	of	this
application,	see	A	Julia	set	explorer

movbar.m

This	function	plots	a	series	of	40	random	bars	and	displays	a
horizontal	threshold	line	which	you	can	move	by	sliding	the	
along	the	vertical	green	line.	As	you	move	the	threshold	line,	a
string	below	the	plot	reports	the	number	of	bars	that	exceed	the
threshold.	(This	demonstrates	the	use	of	the	plt	xstring
parameter.)	These	two	buttons	are	created:

Rand:	Sets	the	bar	heights	to	a	new	random	data	set.
Walk:	Clicking	this	once	starts	a	random	walk	process	of	
bar	heights.	Clicking	a	second	time	halts	this	process.	The
Walk	button	user	data	holds	the	walk/halt	status	(1/0
respectively)	demonstrating	a	simple	way	to	start	and	stop	a
moving	plot.

Note	that	you	can	move	the	threshold	or	press	the	Rand	button
while	it	is	walking.	Also,	if	you	click	on	one	of	the	vertical	purple
bars,	the	horizontal	threshold	bar	will	then	follow	the	upper	end	of
that	vertical	bar.	

If	movbar	is	called	with	an	input	argument,	the	value	of	the
argument	is	ignored,	but	movbar	will	start	as	if	the	walk	button	has
been	hit.

This	script	is	an	expansion	of	the	simple	plt5.m	example	to
demonstrate	additional	features	of	plt.	

Note	that	two	plots	appear	in	this	figure.	There	are	two	methods
that	you	can	use	with	plt	to	create	figures	containing	multiple	plots.
The	first	is	to	use	the	subplot	parameter	to	create	multiple	plots
with	a	single	call	to	plt.	(This	is	demonstrated	by	the	subplt.m,
subplt8.m,	subplt16.m,	subplt20.m,	pub.m,	pub2.m,	pltmap.m,	and
weight.m	programming	examples).	The	second	method	(which	is
used	here	as	well	as	in	the	pub3.m	example)	is	to	use	a	separate	call
to	plt	for	each	plot.	The	first	plot	(upper)	is	created	by	a	call	to	plt
that	is	quite	similar	to	the	one	used	in	the	simple	plt5.m
plt	creates	the	figure	window	as	usual	and	then	creates	the	
plot	inside	the	new	figure.	Both	a	left	and	right	hand	axis	are	used
for	this	plot.	We	are	free	to	put	as	many	traces	as	we	want	on	either
the	left	or	right	hand	side,	although	in	this	example	we	put	all	the
traces	of	this	plot	on	the	left	hand	axis	except	for	the	last	one	(trace
Tr40)	which	is	put	on	the	right	hand	axis	(and	is	also	drawn	with	a
thicker	trace).	The	two	major	differences	between	this	(first)	call	to
plt	and	the	plt	call	used	in	plt5.m	are:

1.	 The	number	of	traces	has	been	expanded	from	5	to	40.
Without	additional	action,	this	would	create	a	TraceID	box
(legend)	containing	40	trace	names	in	a	single	column.
However	this	would	not	work	well	or	look	good	to	cram	
a	long	list	into	the	small	space	available.	To	solve	that	problem
the	the	TIDcolumn	parameter	has	been	used	to	create	a
TraceID	box	with	two	columns.	The	'TIDcolumn',20
included	in	the	plt	argument	list	actually	specifies	the	
of	items	to	put	in	the	second	column,	which	in	this	example
means	that	both	columns	will	contain	20	items.

2.	 The	'xy'	parameter	is	included	to	specify	the	location	of	the
plot	within	the	figure	window.	This	wasn't	needed	before	(in

plt50.m

plt5.m)	since	the	plot	was	automatically	sized	to	fill	the	entire
figure	window.	But	now	we	want	to	create	the	plot	in	only	a
portion	of	the	window	to	leave	room	for	a	second	plot	to	be
created.	The	object	ID	(-3)	in	the	first	row	indicates	that	this
position	is	to	be	used	for	both	the	left	and	right	axis	and	
that	all	the	cursor	object	positions	should	be	positioned
relative	to	these	axes.	(ID	0	also	refers	to	both	left	&	right
axes	but	does	not	cause	the	other	cursor	objects	to	be
repositioned	as	well).	Although	plt	makes	its	best	guess	for	the
positions	of	the	TraceID	and	Menu	boxes	often	you	will	want
to	reposition	them	with	the	xy	parameter	to	make	best	use	of
the	available	space.	The	2nd	row	of	the	xy	matrix	repositions
the	TraceID	box.	The	last	row	repositions	the	Yaxis	label
which	otherwise	would	have	been	covered	up	by	the	TraceID
box.	Note	that	you	don't	need	to	figure	out	the	numbers	in	the
xy	matrix	since	they	will	be	reported	to	you	as	you	adjust	
positions	of	the	screen	objects	with	the	mouse.	(See	the
description	of	the	xy	parameter	in	the	Axis	properties
of	the	help	file.)

Following	the	first	call	to	plt	which	displays	the	first	40	traces,	a
second	call	to	plt	is	used	to	display	the	remaining	10	traces	in	a	plot
below	the	first	one.	As	before	we	use	the	'xy'	parameter	to	get
the	plot	to	fit	in	the	remaining	open	space	of	the	figure.	As	with	the
first	plot,	we	also	include	both	the	left	and	right	hand	axis.	We	were
again	free	to	put	as	many	of	these	traces	as	desired	on	either	side,
but	we	choose	to	put	only	trace	5	on	the	right	hand	axis	with	all	the
remaining	traces	on	the	left	axis.	The	most	important	difference
between	the	first	and	second	plt	calls	is	that	in	the	second	call	we
include	the	'Fig',gcf	in	the	parameter	list.	(gcf	stands	for	"get
current	figure	handle").	This	tells	plt	not	to	open	a	new	figure	for
the	plot	as	usual,	but	rather	to	put	the	plot	in	the	specified	figure.
The	'Fig'	parameter	must	be	either	at	the	beginning	or	at	the	end	of
the	plt	parameter	list.	(All	other	plt	parameters	may	be	placed
anywhere	in	the	parameter	list).	You	may	notice	that	the	xy
parameter	for	this	plot	includes	an	imaginary	component	in	the	last
element	of	the	axis	position.	The	reason	for	this	is	that	since	the
sizes	of	the	cursor	objects	are	relative	to	the	plot	size.	This
sometimes	makes	the	cursor	objects	too	small	when	the	plot	

small	fraction	of	the	figure	size.	To	fix	this	problem,	one	can	enter
a	minimum	width	or	height	in	the	imaginary	component	of	the
width	and/or	height	values.	

A	few	other	features	of	the	first	(upper	plot)	are	worth	pointing	out:

With	so	many	traces,	the	ability	to	use	the	legend	(i.e.	the
TraceID	box)	to	selectively	enable	or	disable	individual	traces
becomes	even	more	compelling.	Although	the	traces	and	the
legend	are	color	coded,	it's	difficult	to	distinguish	every	trace
based	on	color,	so	clicking	on	a	legend	item	is	often	useful	to
uniquely	identify	a	trace.
The	'Pos'	parameter	is	used	to	increase	the	figure	area	about
30%	from	the	default	of	700x525	pixels	to	830x550.	This
gives	room	to	fit	both	plots	into	the	figure	area	without
overcrowding.
The	'HelpFileR''	parameter	is	used	to	specify	which	help
file	will	appear	when	you	right-click	on	the	Help	tag	in	the
menu	box.	Normally	the	file	specified	will	contain	help	for	the
currently	running	script.	In	this	case	prin.pdf	is	just	used	as	an
example	and	in	fact	has	nothing	to	do	with	plt50.
The	use	of	the	'closeReq'	parameter	is	shown,	although	in
this	case	the	function	specified	merely	displays	a	message.
Look	at	the	gui2.m	and	wfall.m	demos	to	see	examples	of	a
somewhat	more	sophisticated	close	request	functions.
In	situations	like	this	with	so	many	traces	on	the	plot	it	can	be
difficult	to	find	the	cursor.	The	line	following	the	first	call	to
plt	solves	this	problem	increasing	the	cursor	size	from	8	to	20
as	well	as	by	changing	the	cursor	shape	from	a	plus	sign	to	an
asterisk.

The	main	purpose	of	this	function	is	to	demonstrate	the	use	of	the
image	pseudo	object.	The	subplot	parameter	is	used	to	partition
the	figure	into	two	parts.	The	left	part	displays	a	conventional	2D
plot	which	includes	the	following	five	traces.

1.	 A	circle	(green	trace)	whose	radius	is	controlled	by	its
amplitude	slider	(the	leftmost	slider	above	the	plot	in	the	"Y

amplitudes"	section).
2.	 A	hyperbola	(purple	trace).	Its	amplitude	slider	controls	the

asymptote	slope.
3.	 A	polygon	(cyan	trace).	Its	amplitude	slider	controls	both	the

size	of	the	figure	and	the	number	of	sides	(which	range	from	3
to	7).

4.	 Two	lines	(red	and	blue	traces).	Their	amplitude	sliders	control
the	lines'	positions	as	well	as	determines	the	lines'	orientation
(vertical/horizontal).

The	five	Z	amplitude	sliders	assign	a	z	coordinate	to	each	of	the
five	traces,	then	these	500	points	(100	points	per	trace)	are
interpolated	using	griddata	to	create	the	two	input	function
displayed	using	an	intensity	map	on	the	right	side	of	the	figure.

The	many	features	of	pltmap	and	the	image	pseudo	object	are
intertwined	so	to	help	you	explore	these	features,	consider	starting
up	pltmap	and	running	through	these	tasks:

Adjust	some	of	the	"Y	amplitudes"	(5	sliders	near	the	upper
left	corner)	and	observe	how	they	affect	their	respective	traces
(1-5).	Note	that	the	intensity	map	changes	as	well	since	the	z
values	are	computed	from	the	shapes	of	these	five	traces.
Disable	and	enable	the	various	traces	by	clicking	on	the	trace
names	in	the	TraceID	box.	Note	that	the	intensity	map	shape	is
determined	only	from	the	enabled	traces.	A	strange	thing
happens	if	you	disable	all	the	traces	except	for	trace	4	or	trace
5	(showing	just	a	single	horizontal	or	vertical	line).	What
happens	is	that	the	intensity	map	no	longer	represents	anything
associated	with	the	2D	plot.	This	is	because	the	griddata
function	is	used	to	interpolate	the	data	from	the	2D	plot,	but	it
fails	because	it	doesn't	have	enough	data	when	provided	with
just	a	single	line	of	zero	or	infinite	slope.	So	when	this	error	is
detected,	pltmap	creates	an	alternate	intensity	map	showing	
2	dimensional	sync	function	with	a	random	center	position.
(For	variety,	this	sync	function	also	appears	for	a	the	first	few
seconds	of	a	moving	display	[see	the	description	of	the	
button	below],	but	note	that	this	happens	only	the	first	
Run	button	is	pressed	after	pltmap	is	started.	Subsequent

pltmap.m

presses	of	the	Run	button	simply	start	the	intensity	map
updating	in	the	usual	fashion.
Adjust	the	"Z	amplitudes"	for	each	of	the	5	traces	using	the
sliders.	The	z	values	of	the	traces	are	not	plotted	in	the	2D	plot
(left)	but	note	how	these	amplitudes	affect	the	intensity	map.
Click	on	the	"color	bar",	the	vertical	color	key	strip	near	the
upper	left	corner	of	the	intensity	map.	Note	that	this	cycles	the
color	map	through	seven	choices.	Some	of	the	color	maps
have	a	particular	purpose,	but	mostly	this	is	simply	a	visual
preference.
Note	that	the	intensity	map	appears	somewhat	pixelated.	This
is	because	it	is	composed	of	a	relatively	small	number	of
pixels	(200x200).	Try	zooming	in	on	an	interesting	looking
region	of	the	intensity	map	using	a	zoom	box.	Hold	the	shift
key	down	and	drag	the	mouse	to	create	the	zoom	box.	Then
click	inside	the	zoom	box	to	expand	the	display.	Even	though
you	still	have	only	200x200	pixels,	the	display	will	look
smoother	because	all	these	pixels	are	focused	on	a	smaller
region	of	the	more	quickly	changing	z	data.	You	can	also
zoom	in	by	right-clicking	on	the	"view	all"	button	in	the	lower
right	corner.	Then	left-click	on	the	view	all	button	to	expand
the	limits	back	to	their	original	values	to	show	the	entire	z	data
set.
Also	try	opening	a	zoom	box	in	the	2D	plot	(left).	You	can	do
this	as	before	(shift	key	and	mouse	drag)	or	try	the	"double
click	and	drag"	mouse	technique	which	avoids	having	to	use
the	keyboard.	You	may	be	surprised	to	see	that	the	intensity
map	zooms	to	show	the	region	inside	the	zoom	box	of	the	2D
plot	even	as	you	are	dragging	the	edge	of	the	zoom	box.	If	you
then	click	inside	the	zoom	box	the	2D	plot	will	also	expand	to
show	just	the	region	inside	the	zoom	box	...	but	let's	
this	just	yet.	First	try	moving	the	zoom	box	around.	Do	this	by
clicking	the	mouse	near	the	mid-point	of	any	edge,	and	drag
the	zoom	box	around	while	holding	the	mouse	button	down.
Also	note	that	if	you	drag	one	of	the	corners	instead	of	a
midpoint	then	the	zoom	box	changes	its	size	instead	of	its
position.	In	both	cases	the	intensity	map	continues	to	update
so	that	it	shows	only	the	zoom	box	region.	These	mouse
motions	are	further	described	in	the	paragraph	titled

"Adjusting	the	expansion	box"	in	the	Zooming	and	panning
section.
Try	sliding	the	resolution	slider	(just	to	the	left	of	the	color
bar)	all	the	way	to	the	top	of	the	slider.	This	will	select	a
resolution	of	800x800	(16	times	as	many	pixels	as	before)	so
the	display	will	look	much	smoother,	but	the	drawback	is	that
the	update	rate	will	be	much	slower.	Try	moving	the	slider	all
the	way	to	the	bottom	(50x50	pixels).	Now	the	intensity	map
will	look	very	blocky,	and	the	update	rate	will	be	very	fast.
Note	that	when	you	click	inside	the	intensity	map,	the	cursor
will	center	itself	on	one	of	the	blocks	even	if	you	click	near
the	edge	of	one	of	the	blocks.	This	makes	it	easier	to	interpret
the	Z	value	cursor	readout	(shown	below	the	intensity	map.
Also	note	the	x	and	y	cursor	readouts	are	updated	as	you
would	expect	every	time	you	click	on	the	image.	Reset	the
resolution	slider	to	200	before	continuing.
Try	adjusting	the	"edge"	slider	(right	below	the	color	bar).	The
default	value	of	the	slider	is	"1"	which	means	that	only	the	z
data	range	between	μ=σ	and	μ+σ	is	used	for	assigning	colors
of	the	z	values,	where	μ	represents	the	mean	of	the	z	data.	
means	that	all	the	data	bigger	than	1	standard	deviation	above
the	mean	is	represented	by	the	same	color.	If	you	move	the
slider	to	"2",	then	two	standard	deviations	of	the	data	are	used
so	that	you	can	see	variations	near	the	extremes	that	you
couldn't	see	before.	But	the	downside	is	that	you	will	see	less
detail	for	smaller	changes	in	the	z	values	closer	to	the	mean.
You	can	also	adjust	the	mid	point	for	the	range	of	focus	using
the	mid	slider	(just	to	the	left	of	the	edge	slider).	For	example
if	you	are	more	interested	in	getting	a	view	of	the	data	
than	the	mean	you	might	set	mid=.5	and	edge=.8.	This	would
mean	that	the	range	of	data	that	produces	different	colors	in
the	image	would	be	from	μ-.3σ	to	μ+1.3σ.
Although	it	doesn't	really	demonstrate	any	more	features	of
the	new	image	pseudo	object,	if	you	really	want	to	be
mesmerized	by	the	display,	press	the	"Run"	button.	What
happens	is	that	a	random	selection	of	the	10	sliders	above	the
2D	plot	are	selected	to	start	moving.	(The	remaining	sliders
that	are	held	fixed	are	made	invisible	so	you	can	easily	see
what	is	changing).	As	the	sliders	are	moving	up	and	down,

both	the	2D	and	3D	plots	are	continuously	updated	to	reflect
the	new	information	in	the	sliders.	As	this	is	happening	you
will	see	the	small	(blue)	frame	counter	below	the	Run/Stop
button	counting	down	from	100	to	zero.	When	zero	is	reached,
a	new	random	selection	is	made	from	the	set	of	10	sliders	and
the	frame	counter	begins	down	counting	anew	from	100.
While	all	this	is	happening,	you	may	change	the	speed	slider
to	adjust	the	motion	rates	and	you	also	may	adjust	pretty	much
everything	else	mentioned	in	the	above	bullet	points.	If	you
find	that	100	frame	count	is	too	long	or	short	for	your	taste,
simply	click	on	the	yellow	"100"	and	you	will	be	presented
with	a	popup	menu	allowing	you	to	vary	this	frame	count	from
as	small	as	five	to	as	large	as	1000.

pltn.m

Similar	to	plt5	and	plt50,	except	that	this	is	a	function	instead
of	a	script.	This	function	takes	an	argument	which	specifies	how
many	traces	to	plot.	For	instance	pltn(1)	will	plot	a	single	trace,
and	pltn(99)	will	plot	99	traces.	If	you	specify	more	traces	than
this,	the	trace	IDs	are	not	displayed	(since	there	will	not	be	room
for	them).	pltn	with	no	arguments	does	the	same	thing	as
pltn(99).	You	can	change	the	number	of	traces	plotted	even
after	pltn	is	already	running	by	entering	a	new	number	in	the	"
lines"	edit	box	(under	the	TraceID	box).	Try	entering	"1000"	into
this	edit	box	just	to	see	that	plt	can	actually	handle	such	a	large
number	of	traces!	Going	much	beyond	1000	traces	is	a	good
performance	test,	since	on	slower	computers	you	will	start	to	notice
a	significant	lag	on	pan	operations.

The	TIDcolumn	parameter	is	used	to	divide	the	trace	
into	up	to	three	columns	if	necessary.	(Showing	99	trace	IDs	in
one	column	wouldn't	be	practical.)
TraceIDs	are	disabled	when	more	than	99	traces	are
specified.	(Otherwise	plt	would	give	an	error	message.)
Uses	the	'Ystring'	parameter	to	show	a	continuous
readout	of	the	cursor	index
Uses	the	'Xstring'	parameter	to	show	a	continuous
readout	of	the	date	and	time	corresponding	to	the	cursor	X
position.	Note	the	edit	box	form	is	selected	by	placing	a

question	mark	character	at	the	beginning	of	the	string.
A	popup	menu	(pseudo	object)	is	created	below	the	x-axis
label	which	allows	you	to	adjust	the	line	thickness.	Notice	that
you	can	right-click	on	the	popup	to	increment	the	line
thickness	(which	sometimes	is	more	convenient	than	opening
the	popup	menu).
A	callback	is	written	for	the	Xstring	edit	box	that	moves	the
cursor	to	the	index	with	a	corresponding	time	as	close	as
possible	to	the	entered	value.	For	example,	try	this:
1.	 Click	on	the	top	trace	(which	makes	it	easy	to	see	the

cursor).
2.	 Enter	dates	into	the	edit	box	-	e.g.	"30	dec	2006

jan-07	9:59",	etc.
3.	 Verify	that	the	cursor	moves	to	the	corresponding	point.

This	function	demonstrates	the	plotting	of	quivers,	polynomial
interpolation,	and	the	use	of	several	of	the	plt	callback	functions
(moveCB,	TIDcback,	MotionEdit).

The	Pquiv.m	function	appears	three	times	in	the	plt
argument	list	to	plot	three	vector	fields.	The	first	two	vector
fields	(named	velocity1	&	velocity2)	both	have	their	tail
locations	specified	by	f	(also	plotted	on	the	green	trace	called
humps/20)	and	the	arrow	lengths	are	specified	by	v1
respectively.	The	first	of	these	Pquiv	calls	is	somewhat	similar
to	the	Matlab	command
quiver(real(f),imag(f),real(v1),imag(v1));

The	third	Pquiv	call	generates	the	vector	field	shown	in	yellow
which	includes	only	six	vectors.
Uses	the	xy	parameter	to	make	room	for	long	Trace	ID	names.
Uses	tex	commands	(e.g.	\uparrow)	inside	Trace	ID	names.
Reassigns	menu	box	items.	In	this	example,	the	LinX
replaced	by	a	Filter	tag.	Its	buttondown	function	(which	is
executed	when	you	click	on	'Filter')	searches	for	the	4th	trace
(using	findobj)	and	swaps	the	contents	of	its	user	data	and	y-
axis	data.
The	'HelpText'	parameter	is	used	to	identify	features	of
the	plot	and	to	explain	how	to	modify	the	Hermite	interpolated

pltquiv.m

function.	This	help	text	disappears	as	soon	as	you	move	one	of
the	yellow	arrows	(as	described	in	the	yellow	help	text).
Uses	NaNs	(not	a	number)	to	blank	out	portions	of	a	trace.	
this	case,	the	NaNs	were	inserted	into	the	x	coordinate	data,
although	using	the	y	or	z	coordinates	for	this	purpose	works
equally	as	well.
Uses	the	TraceID	callback	function	(TIDcback)	to	perform
an	action	when	you	click	on	a	trace	ID.	For	example,	when
you	click	on	the	forth	trace	ID	(humps+rand)	this	will	appear
in	the	command	window:	"A	trace	named	humps+rand	and
color	[1	0	0]	was	toggled".	Although	this	TraceID	callback	is
not	particularly	useful,	it	was	contrived	to	demonstrate	all	the
@	substitutions.
A	MotionEdit	function	is	provided	which	serves	these	3
purposes:
1.	 The	trace	data	is	updated	as	you	drag	the	edit	cursor.

Without	the	MotionEdit	function	the	trace	data	is	only
updated	when	you	release	the	mouse	button	after	the	edit
cursor	has	been	moved	to	the	desired	position.	(Trying
this	on	trace	1	will	give	you	a	good	feel	for	what	this
means.)

2.	 For	the	quiver	traces,	moving	the	arrow	position	would
not	normally	move	the	"v"	portion	of	the	arrow	head	as
you	would	hope.	This	MotionEdit	function	solves	this
problem	by	calling	Pquiv	as	the	arrow	is	being	dragged.

3.	 If	you	move	one	of	the	arrows	associated	with	trace	5
(vectorField)	then	trace	6	is	updated	based	on	a
polynomial	interpolation	which	is	designed	to	go	thru	the
tails	of	all	six	of	the	trace	5	vectors.	The	derivatives	of
this	polynomial	are	also	constrained	so	that	it	matches	
slopes	of	these	vectors	as	well.	Use	the	data	editing
feature	to	move	the	head	or	the	tail	of	any	of	these
vectors	and	watch	how	the	interpolated	data	on	trace	6
(blue)	is	updated	in	real	time	to	follow	the	vector	field.

pltsq.m	approximates	a	square	wave	by	adding	up	the	first	
odd	harmonics	of	a	sine	wave.	The	plot	displays	successive	sums	of
these	harmonics	which	approximates	a	square	wave	more	closely	as

pltsq.m

more	harmonics	are	added	together.	The	key	point	however	(and
the	reason	this	demo	was	created)	is	that	the	amplitudes	of	these
sine	waves	and	sums	are	continually	varied	(periodically	between
plus	and	minus	one)	to	produce	a	"real-time"	moving	display.	plt	is
well	suited	to	creating	real-time	displays,	but	there	are	a	few
concepts	to	learn	and	this	demo	is	an	excellent	starting	point.

Type	pltsq	or	pltsq(0)	to	start	pltsq	in	its	stopped
state.	(i.e.	the	display	is	not	updating)
Type	pltsq(1)	or	pltsq('run')	to	start	pltsq	with
the	display	dynamically	updating.
Demonstrates	how	you	can	add	GUI	controls	to	the	plt
window	-	typically	something	you	will	need	to	do	when
creating	plt	based	applications.
Five	pseudo	popup	controls	are	added	to	the	figure	to	the	left
of	the	plot	including	one	"super-button"	to	start	and	stop	the
plotting.
The	main	display	loop	is	only	6	lines	long	(lines	96-101)	and
runs	as	fast	as	possible	(i.e.	with	no	intentional	pauses.)	Once
every	second	an	additional	10	lines	of	code	is	run	(lines	85-94)
to	check	for	new	user	input	and	to	report	on	the	display	update
rate.	This	additional	code	could	be	run	every	time	the	display
is	updated,	but	that	would	needlessly	slow	down	the	update
rate.
A	text	object	appears	below	the	plot	which	displays
"updates/second"	-	a	good	measure	of	computational	&
graphics	performance.	The	color	of	this	text	object	is	toggled
every	time	it	is	refreshed	so	that	you	can	tell	the	speed	is	being
recomputed	even	if	the	result	is	the	same.
The	'xy'	argument	is	used	to	make	room	for	the	pseudo
popups	as	well	as	for	the	wider	than	usual	TraceIDs.
The	position	coordinates	for	the	five	popups	are	grouped	in	a
single	array	in	the	code	to	make	it	easy	to	update	these
coordinates	using	the	plt	move'	function.	For	details	on
how	this	is	done,	refer	to	the	gui1	&	gui2	examples.
Normalized	units	are	used	here	for	the	uicontrols.	The
"plt	move"	function	also	handles	pixel	units	which	is	useful
when	you	don't	want	the	objects	to	change	size	when	the
figure	window	is	resized.

The	cursor	callback	parameter	('moveCB')	and	the
plt('rename')	call	are	used	to	provide	simultaneous
cursor	readouts	for	all	5	traces	in	the	TraceID	box.	This	is	an
unusual	use	of	the	TraceID	box,	but	it	serves	as	an	alternative
to	the	"multiCursor"	option	(described	here)	when	you	prefer
less	clutter	inside	the	plot	axis.	Updating	the	TraceID	box	for
every	display	update	would	slow	the	display,	so	normally	the
cursor	is	not	updated	after	every	display	update.	However	if
you	want	the	cursor	to	be	updated	on	every	display,	check	the
box	labeled	"Live	cursor".
The	'Options'	argument	is	used	to	turn	off	grid	lines	
to	remove	the	x	and	y-axis	Log	selectors	from	the	menu	box.
You	can	use	the	Erasemode	popup	to	explore	the	effect	of	the
erasemode	property	on	drawing	speed.	(The	erasemode
property	is	no	longer	supported	in	Matlab	version	R2014b	or
later,	so	pltsq.m	checks	the	Matlab	version	and	disables	the
popup	appropriately.)	You	can	also	effect	the	drawing	speed
by	varying	the	number	of	points	per	plot	from	a	low	of	25
points	to	a	high	of	51200	points	(32	cycles	times	1600	points
per	cycle).

pltvbar.m

This	script	demonstrates	the	use	of	Pvbar.m	and	Pebar.m
plot	vertical	bars	and	error	bars	respectively.	Some	things	to	
about	pltvbar	are:

The	first	Pvbar	in	the	argument	list	plots	two	functions	on	a
single	trace	(green)	with	the	1st	function	(phase1)	defining	the
position	of	the	bottom	of	the	vertical	bars	and	the	2nd	function
(phase2)	defining	the	position	of	the	tops	of	the	bars.
The	second	Pvbar	in	the	list	plots	3	functions	(called	serp,
bell1,	and	bell2).	The	3	columns	of	the	first	Pvbar	argument
define	the	x	coordinates	for	those	three	functions.	The	next
argument	(0)	indicates	that	the	bottom	of	all	the	vertical	bars	is
at	y=0.	The	last	Pvbar	argument	gives	the	y	coordinate	for
each	of	the	3	functions	(one	function	per	column).
The	next	trace	definition	(the	data	argument	pair	after	the
'linewidth')	plots	two	traces	corresponding	to	the	two
columns	of	poly23.	The	1st	column	is	a	2nd	order

polynomial	and	the	2nd	column	is	3rd	order
The	next	trace	definition	uses	Pebar	function	to	create	two
error	bar	traces,	the	first	trace	defined	by	the	first	column	of
each	of	the	3	arguments	and	the	second	trace	defined	by	the
second	column.
The	'Linewidth'	argument	appears	in	the	middle	of	the	
call	to	change	the	width	of	only	the	traces	defined	earlier	in
the	argument	list.
The	'TraceID'	argument	is	used	to	assign	names	for	
trace	that	are	appropriate	for	the	data	being	displayed.
The	'xy'	argument	is	used	to	widen	the	TraceID	box	to	make
room	for	the	longer	than	usual	trace	ID	names
The	'+FontSize',	'+FontWeight',	'+FontAngle'
'+Xtick',	'+Ytick',	arguments	are	used	to	modify	the
main	axis	properties	of	the	same	name	(without	the	plus).
The	Grid	pseudo	object	is	used	to	create	a	8x3	table	of
character	data.	This	table	really	doesn't	have	anything	to	do
with	the	plot	(and	indeed	is	just	filled	with	random	gibberish),
but	it	was	included	just	to	demonstrate	an	unusual	way	to	use
this	pseudo	object.

pltvar.m
To	demonstrate	the	workspace	plotter,	this	script	creates	several
vectors	in	the	workspace	(including	a	structure	containing	two
vector	fields)	and	then	starts	the	workspace	plotter	by	calling	plt
with	no	arguments.	Workspace	plotting	is	described	here

All	the	other	plt	examples	in	the	demo	folder	use	plotting	formats
appropriate	for	data	exploration	(the	main	design	goal	of	plt).
However	plt	can	also	use	formats	appropriate	for	creating	plots	for
publication.	This	script	demonstrates	this	by	creating	three	different
figures	windows.	Note	that	all	three	windows	are	created	by	calling
pltpub()	which	simply	calls	plt()	with	several	parameters

pub.m

optimized	for	creating	publishable	plots.

The	first	window	(plot	1	-	appearing	near	the	top	of	the
screen)	is	a	bar	chart	that	demonstrates	how	to	embed	the	plot
data	inside	the	script	as	comments.	It	also	demonstrates	the
use	of	the	prin	function	to	display	a	table	of	random
numbers	in	a	text	box.	The	vertical	position	of	the	plot
depends	on	the	screen	size.
The	second	window	(plot	2	-	lower	left	portion	of	the	screen)
demonstrates	how	to	distribute	15	functions	among	5	subplots
by	using	the	'SubTrace'	parameter	and	how	to	set	the	trace
colors	and	line	styles.
The	third	window	(plot	3	-	lower	right)	contains	two	traces
with	error	bars,	shows	how	to	use	the	TraceID	box	as	a	legend.
The	special	character	']'	is	used	in	the	first	TraceID	to
disable	the	shading	of	the	trace	name	that	is	normally	used	to
indicate	the	trace	is	on	the	right	hand	axis.	Also	the
'+XtickLabel'	parameter	is	used	in	the	plt	call	to	remove
the	tick	labels	on	the	x	axis.	Then	an	array	of	text	objects	are
used	to	create	specially	formatted	tick	labels.	The	third
window	also	demonstrates	various	ways	of	modifying	the	grid
lines,	and	also	shows	the	use	of	the	"+	-	<	>	."	prefixes	to
modify	properties	of:
						+					the	left	axis
						-						the	right	axis
						<					the	left	y-label
						>					the	right	y-label
						.							the	x-label
Demonstrates	how	to	define	a	new	plotting	function	(
in	this	example)	which	has	a	different	set	of	defaults	optimized
for	a	particular	purpose.	The	pltpub	function	included	here:

Uses	the	'COLORdef'	parameter	to	select	a	white	plot
background
Uses	the	'NoCursor'	option	to	remove	the	cursor
objects
Uses	the	'LineSmoothing'	option	to	improve	plot
esthetics
Uses	the	'TraceID',''	parameter	to	remove	the

TraceID	box

pub2.m

In	this	example,	a	plt	figure	is	created	in	its	usual	data	exploration
mode	showing	6	traces	of	randomly	generated	data.	Each	trace
contains	over	50	thousand	data	points,	although	the	display	is
zoomed	to	show	only	a	small	portion	of	the	data.	The	'xView'
option	is	used	to	enable	the	xView	slider	which	is	particularly
useful	in	situations	like	this	where	you	are	viewing	only	a	small
portion	of	a	long	data	record.	(The	xView	slider	appears	above	
primary	plot.)	The	idea	is	to	use	the	xView	slider	or	other	cursor
controls	to	pan	and/or	zoom	the	display	to	some	area	of	interest	and
then	press	the	"pub"	button	to	generate	a	figure	containing	the
selected	data	and	optimized	for	publication.

What	makes	this	more	interesting	is	that	when	you	pan	to	a	new
section	of	the	data	and	again	press	the	"pub"	button,	the	publication
figure	is	redrawn	using	subplots	to	show	both	selected	portions.	In
a	like	manner,	successive	presses	of	the	pub	button	further
subdivide	the	plotting	area	with	each	new	data	range	appearing
above	the	previous	ones.	To	reset	the	pub	figure	so	that	only	a
single	axis	is	plotted	simply	right-click	on	the	pub	button.

The	x	axis	of	the	data	exploration	window	is	plotted	in	units	of
days	past	a	time	reference	(1-Jan-2013	in	this	example),	but	custom
date	ticks	are	used	on	the	x	axis	of	the	publication	plot.	To	reduce
clutter,	only	the	day	and	month	are	shown	for	all	vertical	grid	lines
except	the	last	one	(which	includes	day,	month,	&	year).

The	TraceID	box	is	typically	placed	to	the	left	of	the	plot,	although
for	the	publication	figure	in	this	demo	the	TraceID	box	is	placed
right	on	top	of	the	plot	(more	like	a	legend).	This	means	that
sometimes	the	TraceID	box	will	obscure	some	of	the	data,	but	note
that	you	can	easily	use	the	mouse	to	drag	the	legend	around	to	a
spot	that	does	not	interfere	with	the	plot.

This	example	may	seem	somewhat	contrived	-	and	indeed	it	was
conceived	mostly	to	demonstrate	as	many	unusual	plt	parameters
and	programming	techniques	as	possible.

pub3.m

As	with	the	previous	two	demos	(pub	&	pub2)	multiple	plots	are
created	in	a	single	figure,	however	a	different	mechanism	is	used.
In	pub/pub2	the	subplot	parameter	is	used,	which	has	the	advantage
of	creating	multiple	plots	with	a	single	call	to	plt.	This	program
uses	the	'Fig'	parameter	instead,	and	each	plot	is	created	with	a
separate	call	to	plt.	This	provides	some	advantages	over	the	subplot
method,	such	as	allowing	each	plot	to	include	a	traceID	box	as	well
as	a	right	hand	axis.	Also	the	position	of	the	plots	are	completely
general	and	don't	demand	fixed	column	widths	as	with	subplots.
(Note	that	the	positions	of	the	four	plots	in	this	example	would
have	been	difficult	to	create	using	subplots.)	In	this	example,	the
cursors	were	disabled	('Nocursor'	option)	since	the	main	goal	was	a
uncluttered	publication	quality	result,	but	if	they	cursors	were	left
enabled,	they	would	have	the	full	generality	and	all	the	plt	
of	single	plot	graphs	(unlike	the	restricted	set	of	subplot	options).
On	the	other	hand,	as	the	number	of	plots	required	on	the	figure
increases,	the	restrictions	of	the	subplots	are	advantageous	in	that
they	allow	a	more	compact	plot	spacing.	

The	traceID	box	is	enabled	for	each	plot	in	this	example,	primarily
as	a	legend,	but	it	can	also	be	used	to	enable	or	disable	any	trace	on
the	figure.	

Note	that	the	2nd	trace	of	each	plot	(with	traceID	"samp")	actually
consists	of	12	superimposed	traces.	(This	is	done	by	delineating
each	of	the	12	traces	with	a	NaN	element	so	that	a	line	is	not	drawn
from	the	end	of	each	trace	to	the	beginning	of	the	next.)	This	could
have	been	done	by	using	a	separate	trace	for	each	of	the	twelve
"samp"	traces,	each	with	their	own	traceID,	but	that	would	have
made	the	legend	unnecessarily	large	and	cumbersome.	The	blue
trace	is	the	average	of	the	12	superimposed	traces	and	the	red	trace
(markers	only)	is	the	standard	deviation	of	those	same	12	traces.	

The	xy	parameter	contains	the	positions	and	sizes	of	each	of	the
four	plots.	Note	that	a	-3	is	inserted	in	front	of	each	of	these
positions.	The	-3	indicates	that	this	position	refers	to	both	the	left
and	right	axes	and	also	indicates	that	the	traceID	box	(and	the
cursor	controls	if	they	were	enabled)	are	to	be	positioned	relative	to

the	positons	given	for	the	left	and	right	axes.	This	is	described	in
the	description	of	the	xy	parameter	in	the	Axis	properties	section	of
the	help	file.

subplt.m

The	'SubPlot'	argument	is	used	to	create	3	axes.	plt	puts	a
single	trace	on	each	axes	except	for	the	main	(lower)	axis	which
gets	all	the	remaining	traces.	In	this	case,	since	there	are	5	traces
defined,	the	main	axis	has	3	traces.	Note	that	the	traces	are	assigned
to	the	axes	from	the	bottom	up	so	that	the	last	trace	(serp)	appears
on	the	upper	most	axis.

The	'LabelY'	argument	defines	the	y-axis	labels	for	all
three	axes,	again	from	the	bottom	up.	You	can	also	define	
y-axis	label	for	the	right	hand	main	axis,	by	tacking	it	onto	the
end	of	the	LabelY	array	(as	done	here).
The	'Right',2	argument	is	used	to	specify	that	the	2nd
trace	of	the	main	axis	should	be	put	on	the	right	hand	axis.	
this	argument	was	omitted,	plt	would	still	have	known	that	a
right	hand	axis	was	desired	(because	of	the	extra	y-label	in	the
LabelY	array)	however	it	would	have	put	trace	3	on	the	right
hand	axis.	(By	default,	the	last	trace	goes	on	the	right	axis).
The	LineWidth	and	LineStyle	arguments	define	line
characteristics	for	all	5	traces.
The	'TraceMK'	parameter	enables	the	trace	selection	box	to
show	the	line	characteristics	and	the	'xy'	parameter	widens
the	trace	selection	box	to	make	room	for	this.
Note	that	all	three	plots	have	their	own	cursor	supporting
almost	all	the	cursor	features.	The	exceptions	are	delta	cursors,
the	xview	slider,	and	the	multi-cursor	mode.	These	modes	will
still	be	active	but	they	apply	only	the	the	main	(lower)	axis.
Only	a	single	x-axis	edit	box	is	needed	since	plt	keeps	the
cursors	of	all	three	axes	aligned.	Also	note	that	if	you	zoom	or
pan	any	of	the	3	plots,	the	other	two	plots	will	adjust	their	x-
axis	limits	to	agree.
A	brief	description	of	this	example	is	added	to	the	screen	using
the	'HelpText'	parameter.	As	you	will	see	in	the	other
demo	programs,	the	help	text	is	usually	removed	when	you
start	using	the	program,	but	in	this	case	the	help	text	is	left	in

place	since	it	doesn't	interfere	with	the	plot	area	or	controls.
(However	you	can	toggle	the	help	text	on	or	off	by	right-
clicking	on	the	Help	tag	in	the	menu	box.)

subplt8.m

This	script	shows	a	slight	expansion	of	the	ideas	found	in	subplt.m
by	increasing	the	number	of	axes	from	3	to	8.	The	axes	are
arranged	in	two	columns	which	allows	the	use	of	two	different	x
axes	(one	for	each	column).

Note	that	the	four	axes	on	the	left	are	synchronized	with	each
other	as	well	as	the	four	on	the	right,	although	the	left	and
right	halves	are	independent	of	each	other	and	have	different	x
axis	limits	and	units.
There	are	11	traces	defined	in	the	plt	argument	list	but	only	8
axes	are	specified.	The	extra	3	traces	go	to	the	main	plot
(lower	left).	This	means	that	the	first	4	traces	are	on	the	main
plot	and	the	remaining	7	traces	are	assigned	to	the	other	7
subplots.
Although	the	black	background	used	in	most	of	the	example
programs	makes	it	easier	to	distinguish	the	trace	colors,	some
people	prefer	a	white	background	and	this	script	shows	how	to
do	that	by	using	the	'ColorDef'	parameter	to	select
Matlab's	default	color	scheme.	Matlab's	default	trace	color
order	only	includes	six	colors	and	this	may	not	be	long	
or	ordered	ideally	for	a	particular	graph.	The	ColorDef
parameter	may	be	used	to	set	the	trace	colors	as	desired.	
in	this	example)	the	ColorDef	parameter	is	a	color
specification	(3	columns	of	numbers	between	zero	and	one)
this	color	spec	is	used	instead	of	Matlab's	current	trace	color
order	default.	The	first	line	of	this	script	defines	this	color
order	using	Matlab's	traditional	style.	The	2nd	line	defines	the
exact	same	color	sequence	using	an	alternate	style	allowed	by
plt	which	you	may	also	use	if	you	find	that	more	convenient
than	the	traditional	style.	There's	a	special	case	(not	used	here)
for	the	first	entry	in	this	color	array.	If	it's	[.99	.99	.99]	
999999	in	the	alternate	style)	then	the	remaining	colors	are
appended	to	the	Matlab	default	color	trace	order.	This	may	be
convenient	if	for	example	you	just	want	to	add	a	few	colors	to

the	end	of	the	list	instead	of	merely	replacing	the	whole	color
trace	sequence.
One	advantage	of	the	white	background	is	that	it	is	easier	to
publish	a	screen	capture	since	the	colors	will	not	need	to	be
inverted.	Remember	that	for	publishing	you	can	reduce	the
clutter	of	the	capture	by	temporarily	removing	all	the	cursors
and	their	associated	controls	and	readouts.	You	do	this	by
right-clicking	on	the	y-axis	label	of	the	lower	left	plot
("main").	Right-click	a	second	time	to	re-enable	the	cursors.

subplt16.m

This	short	script	again	is	a	slight	complication	from	the	previous
example	(supblt8).	Not	only	do	we	double	the	number	of	axes	
we	take	advantage	of	all	the	features	of	the	subplot	argument	by
varying	the	number	of	plots	in	each	column	as	well	as	adjusting	
vertical	and	horizontal	spacings.

Note	that	the	whole	number	parts	of	the	subplot	argument
specifies	the	plot	widths	and	heights	where	as	the	fractional
parts	specifies	the	horizontal	and	vertical	spacing	between	the
plots.
So	for	example	the	"99.04"	near	the	end	of	the	subplot
argument	(for	the	rightmost	plot)	means	that	this	plot	should
occupy	99%	of	the	available	height.	The	fractional	part	means
that	the	space	below	the	graph	should	be	increased	by	4
percent	of	the	height	of	the	available	plotting	area.
Also	remember	that	the	negative	numbers	in	the	subplot
argument	are	used	to	break	up	the	plots	into	columns.	So	for
example,	the	"-25.96"	value	tells	plt	that	the	first	column
should	contain	four	plots	(because	it	follows	four	positive
numbers).	The	whole	number	part	(25)	means	that	the	first
column	should	use	up	25%	of	the	available	plotting	width.	The
fractional	part	(.96)	means	that	we	want	to	reduce	the	
spacing	to	the	left	of	this	column	by	4%	of	the	plotting	width.
(The	default	spacing	results	in	a	comfortable	easy-on-the-eyes
layout,	but	sometimes	we	want	a	tighter	layout	so	we	can	have
bigger	plots.)	For	a	more	complete	description	of	the	subplot
argument,	refer	to	the	Axis	properties	section	as	well	as	
GUI	building	with	plt	section	of	the	help	file.

As	in	the	previous	example,	the	cursors	for	the	various	plots	in
each	column	are	linked	to	each	other,	but	are	not	linked	in	any
way	to	the	cursors	of	the	other	columns.	So	for	example	if	you
move	the	cursor	in	the	"tribell"	plot	(top	of	column	2)	all	the
cursors	of	the	four	plots	below	it	will	also	move	so	that	they
all	point	to	the	same	x	position.	Also	if	you	pan	or	zoom	the	x-
axis	of	the	tribell	plot,	the	x-axis	of	the	four	plots	below	it	will
also	be	zoomed	or	panned	so	that	the	x	limits	remain	the	same
for	the	entire	column.	This	is	what	we	call	the	subplot	"linked"
mode.	The	unlinked	(or	"independent")	mode	is	demonstrated
in	the	next	example	program	(subplt20).

subplt20.m

The	default	subplot	"linked"	mode	(demonstrated	by	the	previous	3
subplot	examples)	makes	sense	when	the	columns	share	a	common
x-axis.	However	in	this	example	the	plots	do	not	share	a	common
axis,	so	the	"independent"	subplot	mode	is	more	appropriate.	We
tell	plt	to	use	the	independent	mode	by	putting	an	"i"	after	the	first
number	of	the	subplot	argument	(Note	the	"32i"	in	the	subplot
argument	of	this	example).

The	only	thing	now	shared	between	the	columns	is	space	for
displaying	the	cursor	values.	For	example,	the	x	and	y	edit
boxes	below	the	first	column	display	the	cursor	values	for	the
plot	that	you	last	clicked	on	in	that	column.	The	color	of	these
edit	boxes	changes	to	match	the	color	of	the	trace	that	you
clicked	on	so	you	can	tell	at	a	glance	which	plot	the	cursor
values	refer	to.
One	advantage	of	the	independent	mode	is	that	we	can	fit
more	plots	into	a	given	space.	We	could	probably	display
these	20	plots	using	the	linked	mode	as	well,	but	the	figure
window	would	have	to	be	very	large	since	in	the	linked	mode
a	separate	y-axis	cursor	edit	box	is	included	for	every	axis.
As	with	the	previous	subplot	examples,	there	are	more	traces
than	axes	(21	traces	and	20	axes).	That	means	the	first	plot
(lower	left)	gets	2	traces	and	a	traceID	box	is	added	to	allow
you	to	select	which	one	to	display	(or	both).
In	this	example	all	21	traces	contain	the	same	number	of
points	(301).	However	this	was	just	done	for	the	convenience

of	the	code	generating	the	fake	data	to	display.	Each	of	the	21
traces	could	include	a	different	number	of	points	and	the	script
would	work	equally	as	well.
As	you	experiment	with	these	plots,	be	aware	of	the	concept
of	the	"current	cursor"	(or	"current	plot"	if	you	prefer)	which
is	important	since	there	are	16	different	cursors	visible.	The
current	cursor	is	the	cursor	belonging	to	the	last	plot	that	you
clicked	on.	When	you	click	on	one	of	the	five	menu	box	tags
(LinX,	LinY,	Mark,	Zout,	XY<->)	the	appropriate	menu	box
operation	will	only	be	applied	to	the	current	cursor.	Likewise
for	the	up/down	arrow	buttons	(peak/valley	finder)	as	well	as
the	"circle"	button	which	toggles	whether	markers	are
positioned	over	the	trace	data	values.	The	only	exception	is	the
Delta	button	(delta	cursor).	This	always	operates	on	the	main
plot	(lower	left)	regardless	of	which	cursor	is	current.

tasplt.m

This	script	file	creates	two	plots	each	consisting	of	9	traces.	These
plt	tricks	and	features	are	demonstrated:

Note	that	these	figures	plot	multiple	valued	functions	(i.e.
relations).
The	first	plot	(efficiency	and	range	chart)	creates	a	trace	for
each	column	of	gph	and	mpg	(9	columns	for	9	altitudes)
Demonstrates	adding	an	additional	axis	to	show	alternate	units
on	the	right	hand	and/or	top	axis
Demonstrates	adding	text	objects	to	annotate	a	graph
Demonstrates	how	the	cursors	in	two	plots	can	be	linked.
Moving	one,	moves	the	other.	Also	in	this	example	switching
the	active	trace	in	one	plot	does	the	same	in	the	other	as	well.
Uses	the	'Xstring'	and	'Ystring'	parameters	to
display	alternate	units.
Shows	how	to	close	both	figures	when	either	plot	is	closed	by
using	the	'Link'	parameter.
Shows	how	to	use	the	'pos'	parameter	to	position	
figures	as	far	apart	as	possible	given	the	available	screen	area.
The	'HelpText'	parameter	is	used	to	annotate	the	true
airspeed	chart	with	the	equations	that	are	used	to	generate	the
plotted	data.

trigplt.m

This	example	demonstrates:

showing	the	line	characteristics	in	the	TraceID	using	the
TraceMK	parameter
setting	the	cursor	callback	with	the	moveCB	parameter
setting	axis,	TraceID	box,	and	MenuBox	positons	using	the	
parameter
setting	trace	characteristics	with	the	Linewidth,	Styles
and	Markers	parameters
setting	an	initial	cursor	position
enabling	the	multiCursor	mode
modifying	the	colors	and	fonts	of	the	Trace	IDs.
The	use	of	the	slider	pseudo	object
The	use	of	the	plt	'HelpText'	parameter	to	display
temporary	help	information	at	the	top	of	the	plot	window.	This
help	text	disappears	when	any	parameter	is	changed	but	can	be
re-enabled	by	clicking	on	the	help	button	or	by	right-clicking
on	the	help	tag	in	the	MenuBox.
Shows	how	to	use	inf	in	the	'Pos'	parameter	to	position
the	figure	in	the	upper	right	corner	of	the	screen.	In	this
example	an	extra	48	pixels	is	allocated	to	the	title	bar	so	that
the	menu	bar	and	one	toolbar	can	be	enabled	without	pushing
the	title	bar	off	the	top	of	the	screen.
The	clipboard	button	captures	the	figure	as	a	bitmap	into	the
clipboard
Using	zeros(6)	in	the	plt	call	to	define	6	traces.	The	slider
callback	will	overwrite	these	zeros	with	the	actual	data	to	be
displayed.	Note	that	nan(6)	would	also	have	worked	equally
as	well	for	this	purpose.

This	script	shows	another	example	of	putting	more	than	one	plot	in
a	single	figure.	The	SubPlot	argument	is	used	to	create	three	axes.
The	lower	axis	contains	four	traces	showing	the	magnitude	in	dB
(decibels)	of	four	different	weighting	functions	used	in	sound	level
meters	(as	defined	by	IEC	651).	The	middle	axis	shows	the	same
four	traces	except	using	linear	units	instead	of	dB	as	used	for	the
lower	axis.	The	top	axis	shows	the	inverse	of	the	linear	magnitude

weight.m

traces,	which	isn't	particularly	useful	except	that	I	wanted	to
demonstrate	plotting	three	axes	in	a	single	figure.

Normally	plt	only	puts	one	trace	on	each	subplot	except	for
the	main	(lower)	axis.	So	in	this	case	(with	12	traces)	plt	puts
10	traces	on	the	lower	axis	and	one	on	the	other	two.	Since	we
really	want	4,	4,	and	4,	the	'SubTrace'	parameter	is	used
partition	the	traces	between	the	axes	as	desired.
When	using	the	SubTrace	parameter	the	native	plt	cursor
objects	will	not	behave	consistently,	so	normally	the	cursors
will	be	disabled.	Alternatively	the	program	can	modify	the
cursor	behavior	to	make	it	consistent	with	the	particular
SubTrace	settings	-	and	this	is	the	approach	used	in	this
example.	The	'moveCB'	cursor	callback	runs	the	curCB
function	which	keeps	the	cursors	on	all	three	axes
synchronized	so	that	the	cursors	in	the	upper	two	axes
automatically	move	to	the	same	trace	and	the	same	x	position
of	the	cursor	in	the	main	(lower)	plot.
	The	traceID	callback	('TIDcback')	insures	that	the	traceID
box	controls	the	the	visibility	of	the	traces	in	all	three	axes.
Note	the	'LineWidth'	argument	in	the	plt	call.	This
illustrates	how	any	line	property	may	be	included	in	the
calling	sequence.

wfall.m

This	example	has	been	largely	superseded	by	the	following
example	(wfalltst.m)	which	uses	the	general	purpose
pltwater	3D	plotting	routine.	That's	a	far	easier	way	to	create	a
waterfall	plot,	although	this	example	doesn't	do	that	since	it	
written	before	pltwater	was	created.	However	this	example	is	still
included	since	it	may	still	be	a	good	starting	point	if	you	want	to
develop	a	special	purpose	waterfall	display	that	can't	be	created
using	pltwater.

Demonstrates	how	to	do	hidden	line	removal	which	makes	a
waterfall	plot	much	easier	to	interpret.
Type	wfall	or	wfall(0)	to	start	wfall	in	its	stopped
state.	(i.e.	the	display	is	not	updating)
Type	wfall(1)	or	wfall('run')	to	start	wfall	with

the	display	dynamically	updating.
One	trace	color	(green)	is	used	for	all	30	traces	('TraceC'
parameter)
The	'TraceID'	parameter	is	set	to	empty	to	disable	the
TraceID	box.
The	figure	user	data	is	used	to	pass	the	handle	structure	(
the	callback.
Extensive	use	of	the	slider	pseudo	object	to	control	the	plotted
data.
The	'Linesmoothing'	option	is	selected	(which
surprisingly	speeds	up	the	display	dramatically	on	many
systems)
A	pseudo	popup	in	"super-button"	mode	is	used	to	start	and
stop	the	display.
The	number	of	display	updates	per	second	is	calculated	every
second	with	the	results	shown	in	a	large	font	below	the	plot.

wfalltst.m

This	program	demonstrates	the	use	of	pltwater,	a	general
purpose	3D	plotting	utility.	

A	surface	consisting	of	a	sequence	of	sync	functions	is	created	in	a
800	x	200	array	(z)	which	is	then	passed	to	pltwater.	

We	could	have	called	pltwater	with	just	a	single	argument	
containing	the	data,	but	in	this	example	we	have	included	many
additional	parameters	to	tailor	the	display,	including:

nT
skip
x
y

all	of	which	are	described	in	the	pltwater	section	of	the	help	file	
well	as	in	the	comments	in	pltwater.m.	The	remaining
parameters	included	in	the	pltwater	command	in	this	example	
not	unique	to	pltwater,	so	they	are	passed	directly	to	plt	and	are
described	in	the	main	plt	programming	section	of	the	help	file.
Those	parameters	include:

HelpText
TraceC
CursorC
Title
^Fontsize
LabelY
xy

winplt.m

Struggling	with	Matlab's	FFT	window	display	tool	(wintool),	I
found	it	cumbersome	and	limited.	I	wanted	a	way	to	quickly
change	window	parameters	and	see	the	effect	on	the	time	and
frequency	shapes	and	the	most	common	window	measures
(scalloping	and	processing	loss,	frequency	resolution,	and
equivalent	noise	bandwidth).	I	couldn't	modify	wintool	for	my	taste
since	most	of	the	code	was	hidden	(pcode).	So	I	wrote	winplt.m	to
create	a	more	useable	gui	for	displaying	windows.	winplt	
traces	showing	the	time	and	frequency	domain	shapes	of	31
different	FFT	windows	and	also	is	a	tool	for	designing	your	own
windows	by	adjusting	the	kernel	coefficients	with	a	slider.	You	can
also	use	winplt's	command	line	interface	to	return	the	window	time
shapes	for	use	in	your	Matlab	programs.	

While	working	with	this	application,	you	may	find	the	IEEE	paper
on	Windows	for	Harmonic	Analysis	(by	Harris)	useful.	This	is	the
most	cited	reference	on	FFT	windows	and	includes	descriptions	of
most	of	the	windows	plotted	by	winplt.	For	your	convenience,	you
can	get	this	paper	from	my	website	(www.mennen.org)	in	the
section	called	"Signal	processing	papers".	

Most	treatments	of	FFT	windows	are	highly	mathematical	(such	as
the	Harris	paper).	But	if	you	want	to	understand	some	of	the	basic
ideas	without	the	many	pages	of	mind	numbing	equations,	take	a
look	at	the	this	portion	of	a	signal	processing	talk	I	gave	many
years	ago.	The	file	is	called	windowsTalk.pdf	and	you	can	
my	web	site,	right	next	to	the	Harris	paper	mentioned	above.	

winplt	was	designed	primarily	for	its	signal	processing	educational
value	but	it	is	also	a	good	demonstration	of	the	use	of	plt's	pseudo

http://www.mennen.org

objects	and	these	gui	programming	techniques:

Demonstrates	how	to	provide	application	specific	help	from	a
menu	box	tag	(HelpW		in	this	example)	using	the	web
browser	to	open	an	html	document	as	well	as	by	opening	a
specific	topic	inside	a	windows	compiled	help	file	(.chm
format).
Demonstrates	a	novel	use	of	the	pseudo	popup	object	-	editing
a	vector	from	a	gui.	(See	ID30	-	adjust	kernel)
Shows	the	power	of	the	prin.m	function	[creation	of	the	4	line
window	parameter	block].
Demonstrates	how	to	add	an	application	version	string	(lower
right	corner	of	the	figure)

For	a	complete	description	of	the	winplt	application,	its	motivation,
its	command	line	interface,	and	its	graphical	interface,	click	

Trace	properties

Right

You	specify	which	traces	should	appear	on	the	right-hand	axis
with	the	'Right'	parameter.	For	example	if	you	included
'Right',[1	4:2:10	17]	in	the	parameter	list,	then	plt
would	put	trace	numbers	1,4,6,8,10,	and	17	on	the	right	axis
and	all	other	traces	on	the	left	axis.	A	slight	shading	is	used
behind	the	Trace	IDs	associated	with	the	right	hand	axis	so
you	can	tell	at	a	glance	which	traces	belong	to	which	axis.
(You	can	disable	this	shading	if	you	prefer.	To	see	how,	read
the	description	of	the	TraceID	parameter	below).	You	can	also
tell	which	axis	a	trace	is	on	by	the	shape	of	its	cursor	('+'	for
left	axis	and	'o'	for	the	right	axis).	You	can	optionally	specify	a
label	for	the	right	hand	axis	(see	LabelY)	as	well	as	the	axis
limits	(see	YlimR).	Specifying	an	empty	list,	as	in
'Right',[]	tells	plt	to	use	the	left	axis	for	all	the	traces
(the	same	as	if	you	omitted	the	Right	parameter	altogether.)

The	Markers	parameter	is	a	shorthand	way	of	setting	a
different	marker	property	for	each	line.	For	example:	

plt(x,y,'Markers',s)	

is	equivalent	to:	

a	=	plt(x,y);

for	k=1:length(a)

set(a(k),'Marker',s(k,:));	end;	

Markers

The	argument	may	be	an	array	of	characters	or	a	cell	array	of
strings.	The	latter	method	is	easier	when	the	elements	are
different	sizes	because	you	don't	have	to	pad	with	blanks	as
with	the	character	array.	(Wherever	a	character	array	is
allowed	in	a	plt	argument	list,	a	cell	array	of	strings	is	also
allowed	and	visa	versa.)	For	example,	these	two	lines	have
give	the	same	result:	

plt(...,'Markers',['square';'+				';'none

']);

plt(...,'Markers',{'square','+','none'});	

This	sets	the	marker	for	the	first	two	lines	to	a	square	and	a
plus	sign	respectively	while	the	third	line	will	be	rendered
without	any	markers.	

The	following	example	shows	two	ways	to	set	the	markers	of
the	six	traces	to	x,+,square,o,asterisk,x	(respectively).	The
shorter	method	used	in	the	2nd	line	is	possible	because	every
marker	may	be	represented	with	a	single	character:	

plt(...,'Markers',

['x';'+';'s';'o','*','x']);

plt(...,'Markers','x+so*x');

The	Styles	parameter	is	a	shorthand	way	of	setting	the
LineStyle	property	in	a	similar	way	that	the	Markers
parameter	is	used	to	set	the	Marker	property.	For	example,	to
set	the	first	trace	to	normal,	the	2nd	and	3rd	traces	to	dotted
and	dashed	respectively,	and	the	4th	trace	to	none	(useful
when	you	want	the	markers	with	no	lines	connecting	them)
you	would	use	the	following	command:	

plt(...,'Styles',{'-',':','--','none'});	

The	shorthand	for	single	character	styles	mentioned	above
also	works.	For	instance,	to	alternate	between	normal	and
dotted	among	eight	traces	one	could	use:	

Styles plt(...,'Styles','-:-:-:-:');	

One	additional	trick	applies	to	the	Styles	parameter.	If	a	single
character	is	given	which	is	not	a	valid	line	style,	then	the
linestyle	property	is	set	to	none	and	the	given	character	is
applied	to	the	marker	property.	As	an	example,	the	following
command	defines	eight	traces	of	which	the	first	four	are
rendered	as	continuous	lines	(i.e.	without	markers)	and	the	last
four	are	rendered	with	plus	sign	markers	placed	at	each	x,y
location	specified	by	the	data	arrays	but	with	no	lines
connecting	the	markers:	

plt(...,'Styles','----++++');	

Since	there	are	no	marker	property	values	which	can	also	be
linestyle	property	values,	there	is	never	any	ambiguity	as	to
which	property	should	be	set.

GridStyle

This	parameter	allows	you	to	select	the	grid	line	style.	For
example:	

plt(...,'GridStyle',':');	

will	select	a	dotted	or	dashed	line	(depending	on	the	graphics
renderer).	If	this	parameter	is	not	included	the	default	is
usually	a	solid	line	('-')	although	there	is	one	somewhat
complicated	exception	to	this	which	is	described	in	the	default
section	of	the	GRIDc	parameter	which	you	can	find	here.

This	parameter	allows	you	to	assign	a	name	to	each	trace.	This
name	will	appear	in	the	trace	selection	box	(also	sometimes
called	the	TraceID	box).	The	number	of	characters	that	will	fit
in	the	trace	selection	box	depends	on	the	size	you	choose	for
the	plt	window.	For	the	default	figure	size	there	is	room	for
about	5	uppercase	or	6	lowercase	characters.	In	the	example
below,	both	forms	are	equivalent:	

TraceID

plt(...,'TraceID',['Rtemp';'Ltemp';'RV1	

']);

plt(...,'TraceID',

{'Rtemp';'Ltemp';'RV1'});	

Default:	['Line	1';'Line	2';	...	'Line	n'];	

If	you	want	the	plot	to	be	created	without	a	TraceID	box,	call
plt	with	a	TraceID	parameter	of	zero	or	the	empty	set	([]	or	'').
Since	plt	can't	create	a	TraceID	box	containing	more	than	99
IDs,	if	you	want	to	plot	more	than	99	traces,	you	must	include
'TraceID',0		(or	with	the	equivalent	empty	set	value)	in
the	parameter	list.	

When	specifying	traceIDs,	you	must	have	one	trace	ID	for
every	trace	on	the	main	and	right	hand	axes.	However	if	you
don't	want	a	trace	ID	for	a	specific	trace	to	appear,	just	use	the
null	string	('')	for	the	trace	name.	If	you	do	that,	the	trace	ID
box	will	be	made	smaller	to	account	for	the	fewer	number	of
IDs	displayed.	

Normally	traceIDs	associated	with	the	right	hand	axis	will
appear	in	the	traceID	box	with	a	slight	shading	so	you	can
identify	those	traces	at	a	glance.	If	you	want	to	disable	this
shading,	insert	the	special	character	']'	at	the	beginning	of	the
first	TraceID	name.	The	right	bracket	will	be	removed	from
the	trace	name	before	it	is	used.	The	third	plot	of	the	pub.m
demo	program	demonstrates	the	use	of	this	special	character.	

You	may	specify	a	callback	function	(fcn)	to	execute	when	the
user	clicks	on	any	of	the	TraceID	tags	by	including	the	
parameter	'TIDcback',fcn	in	the	argument	list.	If	the
string	'@TID'	occurs	anywhere	inside	the	function	string
then	it's	replaced	with	the	handle	of	the	trace	ID	string.
Likewise	if	the	string	'@LINE'	occurs	anywhere	inside	fcn,	it
is	replaced	with	the	handle	of	the	trace	itself	and	occurrences
of	'@IDX'	are	replaced	with	the	index	of	the	selected	trace.
(i.e.	2	for	the	second	trace	listed	in	the	TraceID	box).	See	the

demo	program	pltquiv.m	for	an	example	using	the
TIDcback	parameter.	In	that	example,	the	name	and	color	of
a	trace	is	displayed	in	the	command	window	when	you	click
on	a	Trace	ID	tag.	(Not	particularly	useful,	but	this	example
was	contrived	to	demonstrate	all	the	possible	substitutions.)	To
define	a	quote	within	a	quote	in	Matlab,	one	uses	two	single
quote	characters	in	a	row.	Since	this	can	get	confusing	at
times,	callbacks	defined	within	plt	may	use	a	double	quote
character	instead	of	two	successive	single	quotes.	The
pltquiv.m	example	uses	this	alternative	form.	In	addition	to	a
string,	fcn	may	also	be	a	function	handle	of	the	form	@func
or	{@func,arg1,arg2,...,argn}.	Note	that	the	string
substitutions	can't	be	used	with	the	function	handle	form	of
this	parameter.	

You	also	may	change	the	traceIDs	after	the	plot	has	been
created.	For	example,	if	the	current	figure	contains	a	plot	with
four	traces,	these	traces	can	be	renamed	with	a	command	such
as:	

plt('rename',

{'First'	'Second'	'3rd'	'4th'});	

If	there	are	other	changes	you	want	to	make	to	the	TraceID
box	from	your	program	(as	in	the	curves.m	example),	you
can	get	the	handle	of	the	axis	that	contains	all	the	TraceID
objects	with	the	following	command:	

tbox	=	findobj(gcf,'user','TraceID');	

Then,	for	example	the	following	command	would	make	the
TraceID	box	invisible:	

set([tbox;	get(tbox,'child')],'vis','off')

An	easier	way	to	make	the	TraceID	box	invisible	would	be	to
simply	move	it	outside	the	figure	area:	

set(tbox,'pos',[-2	0	1	1]).	

Or	in	the	unlikely	event	you	wanted	to	reverse	the	order	of	the
TraceIDs	(i.e.	bottom	to	top	ordering	in	the	TraceID	box),	use
the	command:	

set(tbox,'view',[0	270]).

TraceMK

This	parameter	allows	you	to	show	the	line	types	in	the	trace
selection	box	to	help	identify	the	traces.	This	can	be	visually
pleasing	and	is	especially	helpful	if	you	are	color	blind.	If	the
argument	is	a	vector,	it	specifies	the	marker	positions	within
the	trace	selection	box.	For	example
'TraceMK',[.6	.7	.8	.9]	would	tell	plt	to	place	a
horizontal	line	next	to	each	TraceID	label	beginning	and
ending	at	x	=	.6	and	.9	with	markers	at	the	four	locations
specified	(assuming	the	line	type	in	the	plot	included
markers).	The	area	between	x	=	0	and	.6	(i.e.	the	first	60%)
would	be	used	for	the	text	label.	If	the	first	element	of	the
vector	is	less	than	.25	then	plt	will	not	display	the	text	labels
since	there	probably	would	not	be	room	for	them	anyway.
(Clicking	on	the	lines	in	the	TraceID	box	have	the	same	effect
as	clicking	on	the	labels,	so	the	labels	can	be	removed	without
loss	of	functionality).	If	the	argument	is	a	scalar,	plt	will	use
that	value	as	the	first	element	of	a	length	3	vector	whose	last
element	is	.9.	Thus	'TraceMK',.6	is	shorthand	for
'TraceMK',[.6	.75	.9].	A	special	case	is	when	the
scalar	argument	is	zero,	in	which	case	no	lines	are	inserted
into	the	trace	selection	box	(as	if	the	TraceMK	parameter	was
not	used	at	all).	See	the	demo	programs	trigplt.m	and
subplt.m		for	examples	of	using	the	TraceMK	parameter.

All	TraceIDs	will	appear	in	the	trace	selection	box	(aka
TraceID	box)	in	a	single	column	except	when	the	TIDcolumn
parameter	is	included.	This	is	useful	when	you	are	using	so
many	traces	that	the	TraceID	box	becomes	too	crowded	to	fit
all	the	trace	names	in	a	single	column.	The	simplest	way	to
use	the	TIDcolumn	parameter	is	to	supply	an	empty	argument

TIDcolumn		

to	the	parameter	(i.e.	''	or	[]).	When	this	is	done	plt	will	use
just	a	single	column	for	the	TraceID	box	when	the	number	of
traces	is	24	or	less.	Two	columns	will	be	used	when	the
number	of	traces	is	between	25	and	48,	and	three	columns	will
be	used	when	there	are	more	than	48	traces.	(The	TraceID	box
will	not	appear	when	more	than	99	traces	have	been	defined).
This	default	will	probably	work	in	nearly	all	situations	but	if
you	want	exact	control	over	how	many	columns	are	used	and
how	many	traceIDs	appear	in	each	column,	you	can	do	that	by
specifying	a	non-empty	argument	to	the	TIDcolumn	parameter
as	follows:	If	TIDcolumn	is	a	scalar,	it	specifies	the	number
of	TraceIDs	to	put	in	the	second	column.	If	it	is	a	vector,	it
specifies	the	number	of	TraceIDs	to	put	in	columns	2,3,etc,
with	the	remaining	going	into	column	1.	For	example,	if	30
traces	are	displayed,	and	you	use	'TIDcolumn',8		then	the
first	22	TraceIDs	appear	in	the	first	column	and	the	last	8
appear	in	the	second	column.	'TIDcolumn',[5	5	5]
would	tell	plt	to	arrange	the	30	IDs	in	four	columns	as
follows:	(1-15,	16-20,	21-25,	26-30).

DIStrace

By	default,	all	the	traces	defined	by	plt	are	visible	until	you
change	that	from	the	trace	selection	box.	You	can	change	the
default	by	disabling	some	traces	from	the	plt	call.	For
example:	

plt(...,'DIStrace',[1	1	0	0	0]);	

This	tells	plt	to	start	the	display	with	the	first	two	traces
disabled	and	the	remaining	3	traces	enabled.	Of	course	you
can	later	enable	the	first	two	traces	via	the	trace	selection	box.
If	the	parameter	has	fewer	elements	than	the	number	of	traces,
it	is	extended	by	adding	zeros.	This	means	that	we	could	have
used	[1	1]	above	to	the	same	effect.	After	the	call	to	plt	has
been	made,	if	you	want	to	change	which	traces	are
enabled/disabled	you	can	click	on	the	TraceIDs	as	described	in
Selecting	traces.	However	if	you	want	to	do	that	from	a
program	you	can	use	the	plt('show',...)	command
which	is	described	at	the	very	bottom	of	the

Calling	sequence	and	line	styles	section.

ENAcur

By	default	you	will	be	allowed	to	cursor	every	visible	trace	in
the	plot	area.	You	can	change	this	default	using	this	parameter.
For	example,	if	we	had	five	traces,	but	wanted	to	use	cursors
only	on	traces	1,4,	and	5	you	would	use:	

plt(...,'ENAcur',[1	0	0	1	1]);	

If	the	parameter	has	fewer	elements	than	the	number	of	traces,
it	is	extended	by	adding	ones.	This	means	that	we	could	have
used	'ENAcur',[1	0	0]	above	to	the	same	effect.

+

This	parameter	allows	you	to	reserve	space	for	additional	traces	to	be	added
to	the	figure	after	the	plt	window	has	been	started.	For	example
plt(x1,y1,x2,y2,'+',5);	opens	the	plt	window	with	two	traces,
the	first	one	defined	by	x1,y1	and	the	second	one	by	x2,y2.	Then	room	is
reserved	in	the	TraceID	box	for	up	to	5	more	traces	that	can	be	added	using
the	pltt.m	function.	This	parameter	is	normally	only	used	inside	script	or
function	files	because	when	you	type	the	plt	command	in	the	Matlab
command	window	an	automatic	'+',8	is	assumed.	You	could	still	include
the	+	parameter	from	the	command	window	in	the	unlikely	event	you	were
planning	on	adding	more	than	8	traces.	When	plt	is	called	from	a	script	or
function,	you	can't	add	traces	after	the	plt	window	has	opened	unless	you
had	included	the	+	parameter	in	the	argument	list.	

It	is	unusual	to	want	to	add	dozens	of	traces	with	the	pltt	function,	but	it	is
possible.	For	example	with	the	command
plt(x,y,'+',39,'TIDcolumn','');	plt	will	reserve	space	in	the
TraceID	box	for	40	traces.	The	first	is	specified	in	the	plt	command	and	the
remaining	39	can	be	added	using	the	pltt	function.	The	TIDcolumn
parameter	was	needed	in	this	case	because	without	it,	plt	would	attempt	to
cram	all	40	TraceIDs	into	one	column	which	would	probably	be
unreadable.	

You	may	include	the	TraceID	parameter	in	the	argument	list	as	well	if
you	like,	and	you	should	be	aware	that	there	are	two	ways	of	doing	this.
The	first	(and	by	far	the	most	common)	way	of	doing	this	is	to	put	the
'TraceID'	parameter	before	the	'+'	in	the	argument	list.	When	done	in	that
order,	that	TraceID	argument	specifies	the	trace	names	only	for	the	traces
defined	in	the	argument	list.	Then	when	the	'+'	parameter	is	encountered,
plt	expands	the	TraceID	list	using	default	names	that	will	usually	be
overwritten	by	the	trace	names	included	in	the	calls	to	pltt.	When	done	in
the	opposite	order,	the	TraceID	argument	should	include	the	trace	names
you	want	for	the	traces	that	will	be	added	later	(even	though	the	trace
names	will	be	invisible	until	those	traces	are	added).	And	if	the	TraceID
argument	does	not	include	enough	trace	names	for	this,	when	a	trace	is
added	after	the	list	has	been	exhausted,	the	new	trace	will	be	added	without
any	corresponding	entry	in	the	TraceID	box	(which	occasionally	might
even	be	what	you	wanted).	

Typically	the	+	parameter	is	placed	after	all	the	traces	defined	inside	the	plt
argument	list,	however	this	is	not	strictly	necessary.	In	fact	multiple	+
parameters	may	be	included	and	they	may	be	interspersed	with	the	trace
definitions	in	the	parameter	list.	When	you	do	that,	the	space	reserved	in
the	TraceID	box	for	the	traces	to	be	added	later	will	be	interspersed	with
the	defined	traces	in	the	order	in	which	they	appeared.	This	flexibility	is
rarely	needed,	but	nevertheless	it	is	available	if	you	want	it.	Note	that	when
traces	are	added	with	the	pltt	function,	the	reserved	slots	are	used	in	order
(top	to	bottom,	as	well	as	left	to	right	if	multiple	columns	were	enabled).	

You	might	expect	that	when	all	the	free	slots	in	the	TraceID	box	have	been
used	up,	you	can	no	longer	add	a	new	trace	with	the	pltt	function	...	but	in
fact	you	can.	What	happens	is	that	in	this	situation,	pltt	will	overwrite	the
data	and	the	trace	name	of	the	last	trace	that	was	added,	so	effectively	you
can	never	run	out	of	free	slots	(unless	you	never	allocated	any	in	the	first
place).

	Matlab plt help

