Copyright © 2017, Paul
Mennen

ion 01- '
plthelp [-°" PH‘(/V \/‘)

Getting started

Introduction
Installation instructions
Experiment with plt5
Default colors
Workspace plotting
Release notes

Using the plt window

Preliminaries

Adding traces
Selecting traces
Zooming and panning
Cursoring

Right hand axis

Menu box and menu bar

Data editing

Programming with plt

Calling sequence and line styles

GUI building with plt

Trace properties

AXis properties

Labels and figure properties
Colors

Options

Cursor commands

Pseudo objects

Auxiliary plt functions and .m files

Programming examples

plt

Introduction version H Pa A
01Janl17 P

Copyright © 2017,
Paul Mennen

Matlab users may be interested in this toolbox for its focus in one or more of
these three areas:

1. A plotting interface. An alternative to Matlab's plot and plotyy
routines

Like plot, plt commands can be typed at the command prompt to
display your workspace arrays. For simple commands the interface is
the same.

Optimized for data exploration.

o Improved zooming, panning, linear/log toggling, & auto-scaling

0O O O O O

controls.

You can interactively select which variables to plot (workspace
plotting).

Automatically generates a legend that also provides trace selection
controls.

Up to 999 traces on a single axis. (Limited to 99 traces if a legend is
required).

Fast and easy cursor movement with delta, rms, mean, y/x, and
magnitude readouts.

Support for dual y-axes and sub-plots, each with individual cursor
control & readout.

Peak/Valley finder, display expansion history, and support for metric
prefixes.

Better looking grid lines with selectable color and style.

Interactive editing of trace properties, figure colors, and annotations.
Data editing (mouse or keyboard driven).

Regular updates based suggestions from users.

A major advantage of plt is the consistency and flexibility of the
command line interface, all explained in a single help file with
includes example code for every important option. You no longer will

you have to hunt for the many obscure handle graphics commands
used by the native Matlab commands that are scattered throughout the
Matlab documentation.

2. A GUI building framework. An alternative to Matlab's guide

o

Provides a framework for developing graphical user interfaces, usually
involving 2D or 3D plotting

Provides these pseudo objects (collections of Matlab graphical objects
with a single purpose):

m cursor = image m slider
= grid = color picker = popup
= plt = help text = edit object

Provides these auxiliary functions which perform tasks commonly
needed in plot oriented GUIs:

= pltt = metricp = Pvbar

= prin = figpos = Pebar

m datestr = pltwater = Pquiv
The capability to move and resize the pseudo objects and native
Matlab objects while recording the positions so that they can be made
permanent.
A methodology for combining these elements presented with a series
of examples & demo programs. These examples are designed to
demonstrate the use of the various pseudo objects.

3. Signal Processing. Fourteen of the example programs, in
addition to their role in demonstrating various plt features, were
also designed to have an educational value in the signal
processing field:

bounce.m (random walks)

curves.m (classic plane curves)

dice.m (Monte Carlo simulation)
editz.m (z-plane analysis)

gauss.m (summation of random variables)
gui2.m (classical analog filters)

julia.m (Mandelbrot & Julia set fractals)
pltquiv.m (Hermite polynomial interpolation)
pltmap.m (2-dimensional cubic interpolation)
square.m (synthesis of harmonic functions)
tas.m (aircraft performance modeling)
weight.m (classic sound level weighting curves)
wfall.m (clipping distortion effects)
winplt.m (fft windowing)

This toolbox has been extensively tested and verified to run under all Matlab
releases from 12.1 (ver 6.1) to R2016a under Windows 10, Windows 8,
Windows 7, Windows Vista, and Windows XP. Brief testing has also been done
under the Mac and other Unix based platforms.

I hope using plt enhances your Matlab experience.

I'm interested in hearing about your problems and suggestions.

You can reach me at paul@mennen.org.

mailto:paul@mennen.org

P|1'(/v "‘)

Installation instructions

e If you are using Matlab R2014b or later, you may select "Download
Toolbox" from the file exchange and all the installation details will be taken
care of for you (and you can ignore all the instructions below). If you have
an older version of Matlab select "Download Zip" from the file exchange
and then follow the instructions below. (Don't be intimidated however - it is
not difficult at all.)

e Create a new folder called p1t in any convenient place on your disk.
¢ Add this new folder to your Matlab path.

¢ Extract the downloaded archive file (plt . z1p) into this new folder. It is
important that your unzipper preserves the directory structure. (Most
unzippers will do this properly by default.) After the unzip operation the
new folder will contain the files and folders shown below.

plt.m Matlab code for plt

Auxiliary function: for adding traces to an
existing plt figure

pltt.m Auxiliary function: for displaying functions as
Pvbar.m vertical bars
Pebar.m Auxiliary function: for displaying error bar plots
Pquiv.m Auxiliary function: for displaying vector fields
pltwater.m (arrows)
Auxiliary function: for displaying 3D waterfall
plots
Auxiliary function: for positioning figure
windows (called by plt)
figpos.m Auxiliary function: called from figpos to
screencfg.m determine screen layout (size, taskbar, etc).

TaskbarSz.m Auxiliary function: used by screencfg.m if

pltColorl.mat automatic method fails
Color specification file: Rename this file to
pltColor.mat to use Matlab's default colors.

A powerful alternative to sprintf & fprintf.

prin.m (Called by plt and its demo programs.)

prin.pdf A complete description of the prin function.

Pftoa.m Called by prin. (Implements the additional
floating point conversion formats.)

contents.m brief help text

plt.htm Top level html help file

plt f iles* . * A folder containing all lower level html files and
images.

full plt help documentation (compiled from above

1t.ch
P cnm plt.htm and pltfiles\)

demo\plt5.m
demo\bounce.m
demo\circlesl12.m
demo\curves.m
demo\dice.m
demo\editz.m
demo\gauss.m
demo\guil.m
demo\gui2.m
demo\julia.m
demo\movbar.m
demo\plt50.m
demo\pltmap.m
demo\pltn.m
demo\pltquiv.m
demo\pltsqg.m
demo\pltvar.m
demo\pltvbar.m
demo\pub.m
demo\pub2.m
demo\pub3.m
demo\subplt.m
demo\subplt8.m

Example programs. For descriptions, click here

demo\subpltl6.m
demo\subplt20.m
demo\tasplt.m
demo\trigplt.m
demo\weight.m
demo\wfall.m
demo\wfalltst.m
demo\winplt.m

Auto sequences through all 31 examples (in the

demo\demoplt.m order of the files shown above)

Alternative versions of some of the example
programs listed above.

These alternative programs are also described
here

demo\guilv6.m
demo\gui2v6.m
demo\qui2ALT.m

¢ Note that demoplt.m and the 31 example programs that it runs appear in a
subfolder called demo. It's usually convenient to also add this demo
directory to your Matlab path. If you prefer not to do that, you can still run
the demo programs by using the Matlab cd command to make the demo
folder active.

¢ You may delete the downloaded plt.z1ip if you prefer.

Notes for PC based systems:

If you type p1lt help or if you click on the "Help" tag in the plt menu box,
then plt.chm is opened with the Windows help system hh.exe. (which
usually resides in the C:\Windows folder) If hh.exe is missing or if you prefer
not to use the chm compiled help file, just delete the chm file and plt will instead
open plt.htm using your browser.

Notes for Unix based systems:

If you type plt help orif you click on the "Help" tag in the plt menu box,
then plt.htm is opened in your browser. This file points to many other html
files and images inside the p1tfiles\ folder. If your browser supports chm
help files and you prefer to use it, you can do that by deleting or renaming the

plt.htm file.

P|1'(/v "‘)

Experiment with plts.m

The easiest way to start learning about plt is to start the sample script plt5.m.
Just type p1t5 at the command prompt. This simple script plots five traces.
Note that he last trace (Line 5) is plotted on the right hand axis. Experiment by
trying the following;:

Click on all the objects in the plt window including the trace IDs.

Try that again with the right mouse button (which usually does something
different).

Click and drag on the x and y axes tick labels (again ... try both left and
right buttons)

Left or right click and drag in the plot area. (On and off the traces do
different things).

Hold down both mouse buttons in the plot area and drag (creates an
expansion box).

Expand on what you have learned playing with plt5 by:

Using plt with some data you are currently working with. Type p1lt(x,y)
just as you would with Matlab's plot routine.

Use the plt workspace plotter by typing plt with no arguments. Then you
can interactively select the variables you wish to plot.

Run the other programming examples. (demoplt . m sequences through all
the examples.)

Explore the topics in "Using the plt window" from the plt help home page.

P|1'(/v "‘)

Default colors

The first thing most users notice when running plt for the first time is that the
traces are plotted on a black background. In fact this can be shocking at first
because it is so different from the traditional Windows and Matlab standard color
scheme that you may have grown used to. Rest assured however that you are not
forced into any color scheme. The next section explains why you may not want
to change the defaults, and the section after that explains how this is easily done
if you prefer to ignore that advice.

The advantage of the default plt color scheme

The primary virtue of
plt's default black
plotting background is
that you can distinguish
far more traces based on
color alone when
compared with Matlab's
default white plotting
background.

Why is this? Consider
the green trace for
example. The plt default
uses [0 1 O] for the
green trace as you
would expect. However with the standard Matlab color scheme, the green trace
isnot [@ 1 O] because that is too bright and yields low contrast against the
white background. So instead they use [@ .5 O]. But this means that the
green is less saturated making it more difficult to distinguish the green from say
a black or dark grey. Similar problems happen with some other colors. This is
why the Matlab default trace color order only includes seven different colors.
Once you define an 8th trace it cycles back around and uses the same color as
the first trace. Especially with the thin traces commonly used, seven is about the
maximum number of colors most people can distinguish and even that is not
easy. However with a black background and when using plt's carefully chosen
default trace colors it is not difficult to distinguish at least three times as many
traces based on color alone.

To see that this is true, open the pltn example with 20 traces enabled (i.e. type
pltn(20) at the command prompt). Now see if you can match up all 20 traces
with the respective trace labels in the TracelD box. If you aren't seriously color
blind you probably will find this task easy. Now use the edit box below the
TracelD box to change the number of lines to 40. (The 40 trace colors that will
be used are shown to the left.) If you have sharp color vision you still probably
can identify all 40 traces just by the trace color. You will find that if you switch

to a white plotting background, you will be able to identify far fewer traces
based on the trace color no matter what trace color sequence you choose.
Matlab's standard plot routine doesn't have features that encourage the use of so
many traces, and so you probably haven't noticed this problem with the white
plot background. However, plt was designed to work well with many dozens of
traces and you will likely take advantage of this capability soon ... and in the
process you will come to appreciate plt's default color scheme.

Configuring plt to use Matlab default colors (color
specification files)

When you type a command into the command window such as plt (X, y) the
data specified will be plotted using plt's default colors (i.e. dark background).
However if even after reading the previous section you would rather it plot the
data using Matlab's default colors, the easiest way to do this is to rename the file
pltColorl.mat in the plt folder to pltColor.mat. This is a "color
specification file" whose contents are described in the section below. Every time
you enter a plt command from the command window, plt will look for this file
(pltColor.mat in the plt folder) and will use the specified colors if the file
exists. This particular file (until you change it with the methods described
below) specifies colors that are the same as Matlab's default color selections.

If you call plt from a Matlab script or function file then plt will not use the
pltColor.mat file; however, it will look for a different color specification
file. Suppose you write a Matlab script called FooP1lot . m that contains a call
to plt. Then plt will look for a color specification file called

FooPlotColor .mat. This file must be located in the same folder that
contains FooPlot.m. So to make FooPlot use the default colors, you could copy
pltColorl.mat to FooPlot.m. This can also be accomplished by including the
"ColorDef', O parameter in the plt argument list, however the color
specification file method is better if you want to allow the user to easily modify
the program's colors from the its graphical interface.

There is one other special color specification file that you can use named
pltColorAll.mat. If this file exists in the plt folder it will be used by plt no
matter which script or function it is called from and even when plt is entered
from the command line. However the colors specified by pltColorAll.mat
may be overridden by several methods:

e A color file whose name is derived from the name of the script as explained
above will take precedence over the pltColorAll.mat file

e If a color specification file is included in the plt command line (via the
"ColorFile' parameter, of course that is the file that will be used. If the
'ColorFile' parameter includes a null argument (i.e. [| or ' ', then plt will

ignore all color specification files, thereby reverting to the usual plt
defaults. Equivalent to the 'ColorFile' parameter with the null argument is to
include the string ' IgnoreColorfile' in the argument to the
'Options' parameter.

Even when a color specification file is being used, any particular color
characteristic may be overridden by the specific plt parameter that controls
that feature. All these parameters are defined in the Colors section.

Creating or modifying a color specification file

Start by opening any plt figure. It will be easier if you choose a plt figure that is
already using colors that is close to what you want. To edit one of the trace
colors:

Frist click on the trace that you want to change color.

Then right-click on the y-cursor edit box

Select "Properties" from the popup menu by left-clicking on it.

The edit box in the lower left corner of the small figure that appears
contains the color triple for the selected trace. Simply edit the color triple
with the value you have in mind. As soon as you hit enter, the color of the
selected trace and its associated TracelD label will be changed to the color
you entered.

Or if you don't know the color triple that you want, right-click on the color
triple edit box and a "Color Pick" palette will appear allowing you to
choose the color you want by changing the sliders and then clicking on one
of the 100 colors visible in the palette. Learn more about this palette in the
description of the Color Pick pseudo object in the pseudo object section.
Repeat step one and two, but instead of left-clicking on "Properties", right
click instead. A small figure will appear that will allow you to edit the
figure colors.

Select the figure element you want to change with the popup menu.

As before you can change the color by entering the color triple or by using
the color palette.

After all the colors have been adjusted to your satisfaction, enable the top
menu bar by clicking on the "Menu" tag in the MenuBox, then click on the
last menu (plt). Select "Save figure colors". You will see a message box that
tells you the name and location of the file that was saved. (If your script
was called FooPlot, the file will be FooPlotColor.mat. If you called plt from
the command line the file will be called pltColor.mat.) If the color file had
already existed, it will be overwritten without warning.

Once the color file is created, you may rename it to pltColorAll.mat if you want
it to apply to all your script and function files. Although it is usually easier to
edit the colors by the method described above, you can also manually edit the
colors in the Matlab command window. For example, if you type:

clear; cd plt; load pltColor; who;
you will see the following list of variables from the file:

CTRACE - Trace colors (an N x 3 matrix, where N is the number of traces in the
TracelD box)

CFIGbk - Figure background color

cPLTbk - Plot background color

cXYax - Axis border color

cXY1lbl - Axis label color

CDELTA - Delta cursor color

After editing the variables you want to modify, type save pltColor to make
the changes permanent.

The menus used to edit these colors are also described in the
Menu box and menu bar section. There you will also find that there are other
ways of accessing those menus which perhaps you will find more convenient.

P|1'(/v "‘)

Workspace plotting

,
Starting the workspace plotter

The workspace plotter is a fast way to plot the
variables in your current workspace. No more
blcatb3 (1,800) errors from mistyping those long variable names.
b2catbd (1,800) Just type plt (with no arguments) at the
F (1,167) command prompt and a window will appear such
: as the one shown to the left. (This window was
actually generated with the included pltvar.m
script example which creates the variables listed
and then calls plt with no arguments.) All the
variables in your workspace (except for scalars
and strings) will be listed in the workspace plotter
figure. The size of the variable (row, column)
appears right after the variable name. If your
workspace contains many variables, the variable
list may appear in several columns. If your workspace includes 1x1 structures
with vector fields (such as the bottom two variables in this figure), then these
fields will also appear in the workspace plotter figure using the usual structure
notation (struct.field)

psvb1 (1,400)
psvb2 (1,400)
psvb3 (1,400)
sec (1,400)
seconds (1,800)
vbZrep (1,800)
s.psvbd (1,400)
s.psvbbd (1,400)

Choosing an x-vector

The first thing you should do is select the x-vector that you want to plot along
the x-axis. As you can see from the instructions (in green) at the top of the
figure, you should do this by clicking on the desired x-vector using the right!
mouse button. You may click on any of the variables shown in white. Note that
in this example, the variable called 1ong_variable_name is grayed out.
This is because only row or column vectors can be x-vectors. Since
long_variable_name has three rows of 400 elements it can't be selected as

an x-vector.

1 Actually in this initial situation you may also select the x-vector with a left click. Usually a left click is
used for selecting y-vectors, but since you can't do that without at least on selected x-vector it assumes that
you are choosing an x-vector in either case. For consistency, you still might want to stick with the right

click for selecting the x-vector - a habit that probably will make workspace plotting easier.

<} PLT select _ O] x|
CloseAll

long_variable_name (3,400)
psvb1 (1,400)
psvb2 (1,400)
psvb3 (1,400)

s.psvbd (1,400)
s.psvbbd (1,400)

Suppose you choose to plot the 400 element row
vector sec along the x axis. After you click on
that vector, it turns red for identification and
visibility and the tag —X is placed after the
variable name indicating this is the chosen x
vector as shown to the left.

Choosing a y-vector

Next you must choose the array (or arrays) to plot
along the y axis. The plot routine requires that
one of the dimensions of the y array match the
length of the x vector. So in this example, the y
arrays must have either 400 rows or 400 columns.
In this example five of the variables do not meet
this condition, so they are grayed out and you will
not be allowed to select them.

<} PLT select

CloseAll

long_variable name (3,400) «vy
psvb1 {1,400) vy

psvb2 (1,400)

psvb3 (1,400)

s.psvbd (1,400) <y
s.psvbSd (1,400)

Suppose you then click on these 3 array names:
long_variable_name, psvbl, and
S.psvb4. As you click on them, the names will
turn yellow and the tag —V is placed after the
variable names to indicate that these arrays are to
be plotted along the y axis.

If you then click on the "Plot" button
plt will create a plot containing five
traces. The first 3 traces will be the 3
[ILVEC rows of the array
long_variable_name. The
fourth trace will contain the data
from psvb3 and the last trace will
contain the data from s . psvb4. (Note that the
order of the traces will be according to the order
that the variables appear in the list and not on the

longve1

order that you clicked on them.) By default, a maximum of 7 characters are used
in the TraceID box which means that some characters may be removed to make
it fit. Note that the last character is always included and underscores are removed
to save space. Also note that for arrays with more than one row or column a row
or column index is attached to the end of the name.

Since a single x vector is being used, the x vector name (SecC) is used as the x-
axis label. In this example, the y-axis is labeled with Y ax1s for lack of
anything better. If you had selected just a single y-axis variable for plotting, that
variable name would be used as the y-axis label.

<} PLT select

CloseAll

long_variable name (3,400) «vy
psvb1 {1,400) «yR

psvb2 (1,400)

psvb3 (1,400)

s.psvbd (1,400) <y
s.psvbSd (1,400)

Starting from the previous situation, suppose the
numbers in psvb1 were far bigger than the other
selected y variables. Then the other traces would
be too small when plotted on the same y-axis
scale. One way to solve this problem is to plot
psvb1 on the right hand axis and leave the other
variables on the left side. To do this, double click
on psvb1l. Note that its color changes to orange
and the «V changes to —VYR to indicate that this
variable will be plotted on the right hand axis.
You may select as many traces as you want for
either the left or right hand axes. To change a
<YR (orange) to a —y (yellow) single click a few
times on the variable name. (The exact number of
clicks depends somewhat on the situation.)

<} PLT select

CloseAll

o

bicatb3 {1,800) « y2
b2catb4 {1,800) « y3

long_variable name (3,400) « y1
psvb1 {1,400) « y1R

psvb2 (1,400)

psvb3 (1,400)

s.psvbd (1,400) « y1
s.psvbSd (1,400)

So far we have only selected a single x vector.
Although this will be sufficient most of the time,
the workspace plotter allows multiple x vectors to
be selected. Suppose you now right-click on
seconds and vb2rep. (Since they are grayed
out, they won't accept a left click, but in this
situation they will accept a right click). These two
variables will then turn red to indicate that they
are to be used as x vectors. They will also be
marked with —x2 and X3 respectively and the
~x marking on sec will change to —x1. The
digits after the "X" make it easier to know which
x vector you have selected for each y vector. Also
the first two variables (b1catb3 and
b2cathb4), which were grayed out before, now
turn white because these 800 element row vectors
now can be plotted versus either x2 or x3.

Suppose you then click once on both blcatb3 and b2catb4. They will both
turn yellow and be marked with —y2 indicating that they should be plotted with
respect to X2 (seconds). In this case there is more than one choice of x
vectors, so if you click on b2catb4 again, its mark changes from «Vy2 to ~y3
as shown in the figure to the left. Since there are no other possible x vectors to
choose from, if you click on b2catb4 one more time the —y3 mark will
disappear and the variable name will change back to white, indicating that it is
no longer selected.

Every time you click the "Plot" button, the workspace plotter will create a new
figure window containing the plot you specified by the various —x and Y tags.
When you have created many plots, pressing the "CloseAll" button is a
convenient way to close all of these figure windows (although the workspace
browser window itself remains open). If you have many long variable names,
you may not be happy with TracelDs of only 7 characters. In that case, you can
specify longer TracelD's tags by typing a command such as TraceIDlen=17;
before calling the workspace plotter. (Try this before typing pltvar). However
you will notice one problem. The longer trace names will not fit in the space
reserved for the TracelD box and the characters will run into the main plot axis.
You could solve this problem by using a plt option variable, which is any
variable containing the characters pltvar in the variable name. So for example
the variables pltopt, pltopt2, another_pltoption would all be recognized as plt
option variables where as variables pltOpt2 and another_plt_option would not be
so recognized because it must contain the string "pltopt" exactly (including
case).

So before starting pltvar, try typing the following two lines at the command
prompt:

TraceIDlen=17;
pltopt = {'xy', [0 .24 .12 .74 .86; -1 .01 .83 .2

.15]};

The first row of the xy parameter gives new coordinate locations for the plot
(both left & right axes) and the second row gives new coordinates for the
TracelD box. These coordinates can be generated easily by moving/resizing the

objects with the mouse. (To see how, look at the manual section GUI building
with plt).

If you wanted to make the two commands above permanent for all workspace
plotting, create a file on your Matlab path named pltdef . m which contain
those two lines. Below are more details about how to use pltdef.m

As an alternative to the 'xy' parameter used above you could use the 'AxisPos'
parameter as follows:

pltopt = {'AxisPos',[1.8 1 .86 1 2.8]};

This would increase the width of the TracelD box by a factor of 2.8 while letting
plt choose the height of the TraceID box appropriately (an advantage over the
'xy' command). Unfortunately the AxisPos parameters can't be determined
automatically with the GUI building tools. (The "1.8" tells plt to make the blank
space to the left of the axis 80% bigger to make more room for the TracelDs and
the ".86" tells plt to make the plot width 86% of the former size so that the plot
doesn't run off the right edge.)

To see a list of all the possible commands you can insert into pltopt variables,
see these sections of the manual

Trace properties.htm

Axis properties.htm
Labels and figure properties.htm
Colors

Options

pltdef.m

If a file named pltdef .m exists on your Matlab path then that file will be run
before the workspace plotter is opened. This file may contain any Matlab
commands, and are usually used to defining workspace plotter defaults and
variables.

The workspace plotter looks for any variable that contains the characters

pltopt anywhere in its name. If it finds any such variables it will use the
parameters they contain as arguments to plt when you press the "Plot" button.
For example suppose pltdef .m contains these two lines:

pltoptl = {'Options', 'Menu', 'Title', 'This is a plot
title'};
pltopt2 = {'FigName', 'Workspace plotter'},;

Then any plot created by the workspace plotter will have its figure menu bar
enabled (from Options), its axis label will be set to 'Frame data' and its figure
name will be set to "Workspace plotter'.

pltdef.m may also include other variables or commands unrelated to plotting
options. For example suppose pltdef.m included these three lines:

circleY = exp((0:.04:2)*pi*1j); % 50 point unit circle
circleX = real(circleY);
circleY = 1imag(circleY);

Then whenever you started the workspace plotter you would see circleX and
circleY in the workspace variables list. This would allow you to add a unit circle
to your plot by selecting these variables from the list (x vs. y) This would be
quite useful if you were often plotting z-plane poles and zeros, Nyquist data, or
other data that lives in the complex plane.

P|1'(/v "‘)

Release notes

Version

e New features have been added to the image pseudo object

which also has been generalized so that it now allows the use of
more than more than one image object in a single figure
window. The default positioning of the optional components
have been improved. The number of colormap selections has
been increased (from 7 to 10). A new meaning has been added
to the Edge parameter. (Specifying "Edge=0" indicates that the
complete data range of the input should be used.) A new demo
program called julia.m was added to demonstrate some of
these new features and also demonstrates several mouse driven
gui programming techniques.

plt.m was a mere 1440 lines of code for its first release back in
2004, but now it has grown to about 4900 lines which is pretty
large for a single function. To make this function more
manageable it has been split this into two parts. The first part
(pltinit.m) includes the code which creates a new plot (a
new plt pseudo object ... if you will). The second part (p1t .m)
contains everything else, i.e. the code to create, access, or
modify all the other pseudo objects. This change also makes plt
applications clearer, although you can continue to call plt the
same way you used to with previous releases if you prefer. This
is explained more clearly in the

Calling sequence and line styles section.

A simpler and more natural method of using the mouse to adjust
the size of an expansion box was added. (The older method is
still available). See "Adjusting the expansion box" in the

Zooming and panning section of the help file.

0@1Janl7

e All eight of the demo programs that display moving traces now
also show the number of updates per second. Also programs
that include automatic sequencing (curves.m and demoplt.m)
display the elapsed time required for the sequence to complete.
These measures are useful for comparing GUI speeds between
different computers and different Matlab versions. demoplt.m
was enhanced, to allow all the demos to be run in sequence
without having to click "continue" for each program. This is
useful for the above mentioned speed measurements, as well as
providing a way to quickly check that no errors where
introduced by changes to plt.m or pltinit.m.

e Many of the cursor commands have been simplified

1. Commands of the form:
plt('cursor',cid, 'set', 'param')
have been shortened to:
plt('cursor',cid, 'param').

The only exceptions to that are that

'set', 'position' changesto 'setObjPos'
and 'set', "activelLline' has been changed to
'setActive’

and 'set', "expHist' has been changed to
'exRestore’

2. Commands of the form:
plt('cursor',cid, 'get', 'param')
have been shortened to:
plt('cursor',cid, 'param').

The only exceptions to that are that:

'get', 'position' changes tojust 'get’
and 'get', "activelLlne' was changed to:
'getActive'.

3. The "axisCBaux' cursor command was changed to
'ax1isCBr'

4. Anew option was added to the 'x1im', "y1lim', and
"Xylim' commands to allow bypassing the axis change
callback.

5. All the cursor commands used to be case sensitive,
however now they are case insensitive.

6. The use of the MotionEdit and MotionZoom

parameters has been slightly simplified. Also a similar
parameter called MOt 1onZup has been added. The
julia.m demo program demonstrates the use of this new
parameter.
These new parameters and the simplified cursor command
structure are all described in the Cursor commands section
The slider pseudo object commands have been simplified by
allowing the 'set ' argument to be optional.
A new optional modifier (j or k) is now allowed with the %w
and %v formats in prin and Pftoa. Also cell array arguments are
now allowed in the input parameter list. This is described fully
in the prin help file (prin.pdf) which you can view by simply
typing "prin" (i.e. no arguments) at the Matlab command
prompt.
Added a new item to the plt menu in the menu bar (Hide/Show
cursor controls)
The enable parameter of the edit and pop pseudo objects was
changed from a two way switch to a three way switch
(hide/disabled/enabled).
When you click on the menubox He 1p tag, plt used to search
for just two possible help files (plt.chm and plt.htm). This list
has been expanded to search for three other possible help files
all having the same name as the application followed with the
extension .chm, .htm, or .pdf. Also when a chm help file is
specified, you now have the ability to specify that the chm file
be opened starting at a particular topic. Details are found in the
description of the He 1pF1ile parameter in the Options section.
Several improvements were made to the HelpText pseudo
object. The ' text ' command was added to the pseudo object.
Also a new option was added for how the text properties are
applied. HelpText objects sometimes interfered with the axis
callback function, but this problem was solved by assigning the
axis callback to the helptext as well.
A bug was fixed that prevented you from moving some axes in
the mouse driven repositioning mode.
Other minor bug fixes.
Improved the formatting of the help file, and corrected several
documentation errors.

e A compiled version of demoplt.m is now available (for
Windows computers only) which allows you to run all the demo
programs without having to install plt (and in fact Matlab
doesn't even need to be installed). This may be useful if you are
unsure if you want to install plt, but still want to investigate its
features. It's also useful so that you can run the demos with
signal processing educational value on computers that don't
have Matlab. This is not included in the file exchange
submission since the file exchange does not permit executable
files, but you can download it from my web site
(www.mennen.org). It's the first entry in the "Other Stuff"
category. Amazingly enough it's only a 5 MByte zip file. Noting
to install. Simply unzip the file to the folder of your choice and
start it by clicking on the "demopltC.exe" file.

e The editz.m example program was improved by combining
the two figures into one, both to demonstrate the use of the
"Fig' parameter and to make the application easier to use.

e The pltsq.m example program was rewritten to make it
clearer and more concise. A new checkbox was added (called
"Live cursor") which when checked allows the cursor to follow
its trace as it changes amplitude. Also a smoothing function was
applied to the update rate readout to make it easier to read.

e The bounce . m example program was enhanced so that it also
can display arrows representing the velocity of each marker.
This was to demonstrate the use of the Pquiv . m auxiliary
function as well as the use of the super button mode of the
popup pseudo object (used to control the length of the velocity
arrows).

¢ Enhanced the gauss.m example program to alternatively
display the error terms instead of the convolution functions. A
checkbox was added to select whether the error terms should be
displayed. These error terms are stored in the lines' Zdata
property and shows the value of this technique for storing
alternative plot values.

e Added comments and made other minor changes to several of
the other example programs.

http://www.mennen.org

02Nov16

Added a new OID code of - 3. These OID (Object ID) codes are
used by the ' xy ' parameter and this new code allows control
of the position of the main axes as well as its associated cursor
controls. Unlike the other OID codes, the position argument
may be complex. The complex component adjusts the scaling of
the cursor controls. The editz, p1t50 and pltvar
examples were modified to take advantage of the flexibility
provided by the complex position parameter. A full description
of the new OID code can be found under the 'xy' parameter in
the Axis properties section. Actually this OID code was added
for the October release, but I forgot to document it.

Some of plt's components and pseudo objects operate repeatedly
when the mouse button is held down. The repeat rate of these
objects were controlled globally, but now each of these objects
may be controlled individually, so that different objects can use
different rates. Also a means of disabling the repeat feature is
now available. This is explained fully in the description of the
edit pseudo object in the Pseudo objects section. (Look for the
description of the repeat application data property.)

Added an option to the cursor ZoomOut command to control
the zoom amount (formerly fixed at 40%).

Fixed bugs in pltwater.m which could cause a crash when
stopping an updating plot or when closing a figure while the
plot is updating.

Fixed a bug which created a small memory leak when closing a
window that was created using the ' F1ig' parameter.

Clicking on the "x" or "y" labels in front of the cursor readouts
is used allow the use of the edit readout boxes for modifying the
axis limits. There was a bug preventing that from working,
however that bug has been fixed in this release.

Fixed a bug related to using HelpText along with the 'Fig'
parameter.

Fixed a bug related to using the 'xstr' or 'ystr' parameters along
with the 'Fig' parameter.

Fixed a bug in pltwater .m relating to its close request
function. (This could have caused a crash when exiting a
program while the water fall plot was running.)

Added help text to the top of the p1ltmap . m example program.

190ctl16

e Added the use of the Link to the circles12.m example program

so that closing any one of its four figure windows will close all
of them.

Substantially rewrote the Zooming and panning section to
describe these features more clearly and to update it to agree
with some minor recent changes in the way these features work.

In earlier releases, the ' Fig' parameter existed, but plt could
not be called more than once using the same figure. That
restriction has now been lifting making this parameter far more
useful. The expanded use of the 'Fig' parameter is described at
the end of the Labels and figure properties section. That section
describes how the 'Fig' parameter may be used to create
multiple plots in a single figure and contrasts that with the
"Subplot ' parameter which is used for the same purpose.
(Each method has different advantages.)

The p1t50.m example program was rewritten to demonstrate
the new use of the ' F1g' parameter. Since that example is
focused on data exploration, both of its plots support the full
generality of the plt cursoring system with none of restrictions
imposed by the use of the 'Subplot ' parameter. A new
example program called pub3. m was also added to
demonstrate the use of the 'F1g' parameter for plots focused
on publication quality. The ability to create multiple plots each
containing both left and right hand axes made the 'Fig"'
parameter the right choice for that example. Both examples are
described in more detail in the Programming examples section.
The use of color selection files has been generalized. A new
section of the help file (Default colors) has been added to
describe the default color scheme and the use of the color
selection files.

The default trace color order has been modified somewhat
(although the first 13 colors remain the same as before).

The cursor behavior when a number is entered into the Y cursor
edit box has been changed to be more useful and also more
consistent with the behavior of the Xcursor edit box. This
behavior is described under "Typing in a cursor location" in the

Cursoring section.
e As before, the dual cursor may be enabled using the "Set dual

cursor” submenu of plt menu in the menu bar. However now the
"Set dual cursor" submenu acts as a toggle, i.e. if the dual cursor
was already enabled, selecting this submenu again will disable
it.

e Enhanced the p1tn.m' example program by adding a pseudo
popup menu to control the trace thickness.

e Minor bug fixes and documentation corrections.

e The reach of the plt toolbox has been dramatically extended
from its historical 2D roots into the domain of 3D function
plotting by including a new pseudo object called image
(primarily for displaying intensity maps) as well as a new
auxiliary function called pltwater . m (for waterfall plots).
Matlab already has many tools for 3D plotting (mesh, meshc,
meshz, waterfall, surf, shading, surfc, surfl, surfnorm, ezsurf,
contour, contour3, contourf, plot3, slice, isosurface, smooth3,
isocaps, isonormals, ribbon, quiver, quiver3, fill3, stem3,
sphere, cylinder), yet when you need to scroll thru slices of a
massive 3D data set in detail and use the cursors to identify or
mark particular values or features, plt now offers something that
those other plotting tools can't provide. For now plt only
supports 3D plots of single valued functions, i.e. z = f(x,y). The
image pseudo object is fully described in the
Pseudo objects section. pltwater .mis fully described at the
end of the Auxiliary functions section.

¢ A new example program pltmap .m was added to the demo
folder to demonstrate the use of the new image pseudo object.
Because this example and its underlying pseudo object have
such a wide variety of features, a tutorial of sorts is available to
help you learn about these features. For the other examples, this
information is included as comments in the program header, but
this was not done for pltmap.m because of its length. So to find
this tutorial, please see the description of pltmap.m in the

Programming examples section.
e A new example program wfalltst.m was added to the demo

folder to demonstrate how to use the pltwater.m function
mentioned above. Note that all of the controls on the screen
were added by plt & pltwater, so wfalltst only had to supply the
data to plot. Some help text is added to the plot to get you
started, but eventually you will want to read the full pltwater.m
documentation at the location mentioned above. The previous
plt release included a demo program called wfall.m which
demonstrates the basic ideas involved with creating a waterfall
plot, and this demo is still included in the demo folder.
However, unlike pltwater.m, wfall.m doesn't have the control,
cursoring, scaling, scrolling, and annotating options needed to
serve as a general-purpose plotting tool.

A new auxiliary function pltt.m (which stands for "plt trace")
has been added to the plt folder. This function can be used to
add traces to an existing plt figure, which makes it the moral
equivalent of the hold onand hold off commands that are
used with Matlab's native plot command. p1tt.m spares you
from having to type these extra hold on/off commands and
alleviates the confusion that can result from forgetting the hold
status. The pltt function is described fully in the new

Adding traces section. Related to this new auxiliary function is
a new plt parameter, concisely named '+ ' which allocates
space in the TraceID box for traces that are added later with the
pltt function. The '+" is the last parameter described in the
Trace properties section.

A new auxiliary function figpos . m has been added to the plt
folder to aid in figure window positioning. The main advantage
of figpos is that one can position figures relative to the free
space available on the screen. The traditional Matlab
positioning coordinates don't take into account the taskbar
position, the figure borders, and the title bar size. This makes it
difficult to avoid overlapping figure windows with the taskbar
when you are trying to take advantage of the entire screen real
estate. When you supply a position vector to plt (with the 'pos'
or 'position' parameter), plt automatically runs these coordinates
through figpos. figpos.m calls on screencfg.m (also in the
plt folder) to determine the screen coordinates of the area that is
available for the figure windows. Both of these new functions

24May16

are fully described in the Auxiliary functions section. Many of
the demo routines were simplified by taking advantage of this
new feature.

Quite often you will want to add annotations to the figure
(permanent, temporary, or toggleable) to identify certain
elements of the plot, list equations used, or to provide the user
some help in determining how to control or interpret the plot.
To avoid having to repeat similar code for this purpose in many
of your GUIs, a new pseudo object was added called
"HelpText' which provides these functions. This pseudo
object is summarized in the GUI building with plt section and
described more fully in the Pseudo objects section. Many of the
demo programs (including curves, editz, gauss, gui2, pltquiv,
subplt, tasplt, trigplt, and wfalltst) make good use of this
feature.

With previous versions, once you drew an expansion box you
only had two choices - either left-click to accept the result (i.e.
expand the axis to the limits indicated by the zoom box) or
right-click to cancel the zoom box, probably to begin again in
an attempt to draw the desired zoom box. With this release, you
may also choose to make fine adjustments to either the size or
the position of the zoom box ... which is usually far easier than
simply starting over again. To see exactly how to make these
adjustments, consult the paragraph titled " Adjusting the
expansion box" in the Zooming and panning section.

A few alternative methods of specifying the position and shape
of the slider pseudo object were added which provide more
flexibility as well as a more compact form for the pseudo slider
(in both vertical and horizontal formats). Details can be found in
the Pseudo objects section. The bounce . m example program
was substantially rewritten to show the use of the new pseudo
slider forms (both vertical and horizontal) as well as to
demonstrate more sophisticated plotting techniques. Also the
new pltmap.m uses many of the vertically oriented pseudo
sliders. So many in fact that there would not have been room to
fit them all using the full original horizontal style.

A simplified method of using the ' TIDcolumn' parameter
was added. For full details, see the description of this parameter

in the Trace properties section. The p1tn.m example program
was simplified by taking advantage of this new method.

In the prin command, two optional modifiers (+/-) for the W
format were added that allow the output to be padded with
blanks. Also an easier way to view the prin help file
(prin.pdf) was added - simply type prin (i.e. without
arguments) at the Matlab command prompt, and the help file
will appear.

The ability to change the name of the trace (as it appears in the
TracelD box) after the initial plt call that specified these trace
names. See "Right-clicking on the Cursor ID Tag" near the
end of the Cursoring section.

A new cursor command (' updateN ') was added which has
the same effect as the 'updateH' command except that the
cursor callback (defined by 'MoveCB ") is not executed.
Details in the Cursor commands section

The default figure name (if none was specified with the
"FigName ' parameter) used to be p1t but now the name of
the function that is calling plt is used as the default name.
plt('pop',H, "get") which is already an abbreviation for
plt('pop',H, "'get', "index ") may now be further
abbreviated as p1t('pop',H).

plt('edit',H, 'get') which is already an abbreviation
forplt('edit',H, "get', 'value') may now be further
abbreviated as plt('edit',H).

plt('slider',H, "get') which is already an
abbreviation for p1lt('slider',H, 'get', "value')
may now be further abbreviated as plt('slider',H).
The argument for the 'HelpFile' and 'HelpFileR'
parameters normally specifies document to display, however,
now the parameter may also be a Matlab command to be
executed.

Many improvements to the demoplt . m program including:

o Added a string (lower right corner) that shows the number
of (uncommented) lines of code used in the currently-
selected example program. At a glance, this number gives
you an idea of the complexity of the example relative to
the other demos.

o Added a modal dialog on exit to control whether changes
to the setup should be saved in the demoplt.mat
configuration file. (If no changes were made to the
configuration, the modal dialog is skipped.)

o A history of the changes to the color configuration is
displayed at the top of the listbox. This is partly done just
to demonstrate the use of the ColorPick callback function.

o The size of the figure window is preserved in the
configuration file, but the figure window is always placed
in the far lower right corner of the screen to minimize the
overlap between the demoplt figure and the example
programs being displayed.

e Many improvements to the Curves . m example program
including:

o Added four additional interesting curves to the collection.

o Greatly enhanced the program's educational value by
adding annotations to the plot area describing many details
of the currently displayed set of curves.

o Added a way to reset the curve parameters to the default
settings. (Default button)

o Improved the way functions may be defined in complex or
parametric form.

¢ Fixed a bug introduced a few years ago causing plt to crash
when improperly editing an edit pseudo object. Also fixed a
dozen or so other minor bugs in plt and the demo programs.

e Major enhancements to the subplot capabilities:

o Previously you were limited to two columns of plots. As of
this release any number of columns are allowed. A new
example program called subpltl16.m was added to
demonstrate this new flexibility.

o A way of altering the default vertical spacing between plots
is now provided. (Previously only the horizontal spacing
was adjustable.)

o Previously the cursors and x-axis limits for all the plots
within a column were synchronized. With this release, this
synchronization is optional and is referred to as "linked"
mode. The new alternative mode is called "independent"

O8Nov15

mode, and as the name implies, all plots may have different
x-axis limits and different cursor locations. A new example
program called subplt20.m was added to demonstrate
this new mode. Note that the independent mode allows you
to pack even more plots into a given area.

o Since subplots were added late in the development of plt,
many plt features did not work appropriately when
subplots were enabled. For example the peak/valley finder
and marker select button did not work. Also 5 of the tags in
the menu box did not work for subplots (LinX, LinY,
Mark, Zout, XYrotate). I'm happy to report that all those
problems are now fixed. The delta cursors now also work
when subplots are enabled, however you can only use them
on the (lower left) main plot since there isn't enough room
to display the delta cursor readouts for all the subplots.

o A few enhancements to the subplt8.m example
program, which now uses the default Matlab color scheme
with a modified trace color order (accomplished using plt's
"ColorDef' argument).

o The order of the y-axis cursor readout edit boxes was
swapped (left to right) as that felt more natural. In any
case, the color of the cursor readout edit boxes are linked
to the color of the trace that is being cursored making
confusion unlikely.

e Trace data may now be included in the plt argument list using
cell arrays. Full details on how to use this are included in the
Calling sequence section. The gauss . m demo program was
modified (and simplified) by taking advantage of this new
option.

¢ When the multiCursor is enabled, plt previously added a cursor
marker to every trace. Now however, cursor markers are not
added to disabled traces or to traces whose Xdata differs from
the currently active trace. The full details are in the
Cursoring section.

e The trace color order was modified slightly. To see what the
new trace color order looks like for the first 99 traces, see the
section called Selecting traces. To see a list of the trace colors in
terms of the RGB triples, see the description of the TRACECc

parameter.

The "Position' or 'Pos' argument specifies the [xleft
ybottom width height] position of the plt figure window as
before, however now you may specify just the size by using a 2
element vector in which case the xleft and ybottom values will
be set to their default values. For example 'Pos', [500
600 | would be equivalentto 'Pos', [9 55 500 600]
since the default values of xleft & ybottom are 9 & 55
respectively.

A new option (replace vs. append) was added to the
"ColorDef ' argument. Also the default changed from
append to replace. See the details in the Colors section.

The FigBKc, PItBKc, TraceC, xyAXc, xyLBLc, GRIDc, and
TraceC parameters continue to accept standard Matlab color
triples as before (i.e. a row vector of 3 numbers all between zero
and one). But now there are two additional color specification
formats allowed. The first is "percent”, meaning that [15 35 92]
is equivalent to the matlab color triple [.15 .35 .92]. The 2nd
alternative method is to use a single number to represent all
three colors. Using that method the color above would be
represented by the number 153592. Of course if you prefer the
standard Matlab style, you can ignore all this, but otherwise,
check out the full description in the Colors section.

Various improvements to the curves . m demo program. These
improvements don't demonstrate any additional plt features,
however the new curves that have been added rounds out this
collection of classic and unusual plane curves ... perhaps
providing some educational or recreational value.

Fixed several problems relating to the screen positioning of
objects when using the new graphics engine of R2014b or later.
Fixed errors in the documentation describing the Cursor
commands, the Xy parameter, and the Opt1ons parameter.
Also made other minor documentation corrections and
improvements.

Enhanced the pltquiv.m example program to demonstrate
data editing on quiver plots, the use of the Mot ionEdit

03Jull5s

parameter, and real time Hermite polynomial interpolation.
Added a default for the Cursor ID, simplifying many of the
demo programs.

Simplified data editing routines by adding the cursor index to
the 'Dedit ' figure application data. Added a full description
of the Dedit array in a table at the end of the Data editing
section.

Minor improvements to the grid pseudo object.

Multi-line titles are now allowed. See the T1t 1le parameter in

the Labels and figure properties section.
Added the title property prefix () which is described in

AXis properties section.

Added right click actions to the "pub" button of the pub2.m
example and to the "Delete P/Z" button of the editz.m
example

Improvements in the p1t('datestr') function

Fixed bugs relating to the use of the 'Fig' parameter.

Fixed a bug which caused the right click action to be executed
when double clicking on the LinX/LogX or LinY/LogY
menubox tags.

Fixed a bug in the xView slider feature that caused it to interfere
with the graph title.

Fixed a bug in the 'Nocursor ' option that unintentionally
left the cursor marker visible.

Fixed bugs causing error messages when cycling quickly thru
demoplt.

Many corrections and improvements to the help file especially
in the Pseudo objects section which was substantially rewritten
to include the motivation behind these objects.

Added the "multiCursor" feature which allows you to cursor all
plot traces simultaneously. Usually this cursoring mode is
enabled from the Yedit menu, but sometimes you may want to
have this mode enabled at startup. This can be done using the
new "multiCursor” Options item. (As with all the other option
items, only capital letters are significant so if you want to be
concise just the letter C is sufficient). The trigplt.m demo

13Marl5

program was modified to use this new options item to enable
the multiCursor feature. The multiCursor feature is more
completely described in the Cursoring section.

Added the "xView slider" feature that offers yet another way to
pan and zoom the display horizontally. It is especially useful
with long time records because of how easy it is to use and how
well it gives you feedback about where and how much of the
data you are viewing. Usually this feature is enabled from the
Yedit menu, but sometimes you may want to have the xView
slider visible at startup. This can be done using the new
"xView" Options item. (As with all the other option items, only
capital letters are significant so if you want to be concise just
the letter V is sufficient). The pub2.m demo program was
modified to use this new options item to enable the xView
slider. The xView slider feature is more completely described in
the Zooming and panning section.

Modified the p1t50 . m demo program to demonstrate how to
modify the cursor size and shape.

Fixed a bug in the implementation of the Link parameter (with
pre-R2014b versions)

Fixed a bug in the initialization of the cursor data window (with
R2014b only)

Fixed a bug which caused plt to behave improperly when given
an empty 'Right' parameter.

Various documentation improvements

Although plt retains all its previous capabilities p1t has been
expanded and refocused as a GUI building tool, primarily for
applications which include one or more 2D plots. This was
accomplished by enhancing the pseudo objects and by adding
the p1t move command to allow you to move or resize all the
graphical objects using the mouse. When you reposition or
resize an object, its new coordinates are displayed in the
command window so that you can make the new locations
permanent by embedding these coordinates into your program.
These operations are described in a new section of the manual:
GUI building with plt

¢ In addition to the p1t move command, you may also enter the
repositioning mode by right-clicking on the cursor delta button.
When you do this, the delta symbol on the button changes to a
double right arrow to indicate that you are now in repositioning
mode. Also the uicontrols will be grayed out to indicate that
these controls may be repositioned/resized. Right-clicking on
this button a second time cancels the repositioning mode,
changes the button symbol back to delta, and restores all the
controls to their original functions.

e Two new example programs (guil.mand guiZ2.m) where
added to help you learn how to use the new plt GUI building
features. An alternate version of gui2.m called gui2ALT.m is
also included in the demo folder to demonstrate an additional
approach to the problem that may be instructive. Both of these
new examples use Matlab features not found in Matlab v6.1 so
alternate versions (called guilv6 and gui2v6) are available for
running on that version. demoplt queries the Matlab version and
automatically runs the appropriate version of guil and gui2.)

e Support for the latest version of Matlab (R2014b) has been
added. The plt options related to the line erasemode are ignored
when running R2014b since The Mathworks has abandoned
support for the erasemode line property. The erasemode options
continue to work as before for all older versions of Matlab
(dating back to Matlab 6.1). The defaults for the grid style and
color have changed somewhat because of this, and this is
described in the default section of the GRIDc parameter. As
before right-clicking on the Grid tag in the menu box toggles
the grid style between solid and dashed lines.

e Reorganized the plt item in the menu bar. (Also plt Hardcopy
was moved from the file menu to the plt menu.) The new plt
menu now shows the mouse shortcuts (in blue) for most of the
submenus. These shortcuts are often more convenient since the
menubar is hidden by default.

e The AX1sPos parameter which provides a way to
reposition/resize the main plotting axis and/or the TraceID box
is still supported for backwards compatibility, but for new
programs a more versatile Xy parameter was added. It serves
similar functions but also allows you to reposition the menu box

19Janl15

as well as any plotting axis inside the plt window. The xy
method of specifying the axis size and positions is simpler and
easier to use and is also compatible with the new repositioning
mode mentioned above. (All the objects that can be moved and
resized via the Xy parameter may also be moved and resized
using the mouse.) The demo programs that used the AxisPos
parameter were modified to use the xy parameter instead. A
complete description of the new Xy parameter may be found at

AXis properties
e Several enhancements to the Edit pseudo object:

o

Edit objects may be incremented or decremented by a fixed
value as before, but now may also be incremented or
decremented by a percentage of the current value.

The value property was split into two different properties
(value and val). They differ only in that when you set
the latter one (val) the edit object's callback does not get
called.

An option was added to allow a label to be associated with
the edit pseudo object.

A more concise form for creating the edit pseudo object
was added for convenience.

Several get commands where added allowing you to
query the current setting for any of the edit pseudo object
parameters.

Edit objects now come in two types, type 1/2 using
figure/axis coordinates respectively. Type 1 is usually the
most convenient. (Previously only type 2 was supported).
See details at Pseudo objects

e Several enhancements to the Popup pseudo object:

(@)

O

The right click operation of Popup pseudo object (which
advances the popup without opening it) was enhanced so
that holding down the right mouse button continues to
advance to the next selection for as long as you hold down
the button. The repeat rate may be altered by the same
method used to control the edit pseudo object repeat rate.
An option was added to allow a label to be associated with
the popup pseudo object.

An option was added for swapping the role of the left &

right buttons (super-button mode).

o A method for opening or closing the popup from a program
was added.

o Setting the index of the popup using the 'index'
parameter used to call the popup's callback function after
the index was set, just as if you had clicked on that
selection from an opened popup. Now the callback will not
be called. However if you want the callback to be called in
this circumstance, specify the negative of the index as the
index parameter.

o A more concise form for creating the popup pseudo object
was added for convenience. See details at Pseudo objects

Several enhancements to the Slider pseudo object mostly related
to the log increment mode. Also the calling sequence was
altered to allow easier use of the optional parameters.

A new mode was added to the DualCur parameter that allows
specifying the dual cursor trace as an offset from the primary
cursor. See the demo program gui2.m for an example showing
the utility of using this mode. Also the ability to select the
DualCur trace interactively was added to the plt menu. See the
Dual Cursor section for more information.

A new parameter (CloseRe() was added which allows you to
specify a function to be executed when the plt window is
closed. Details about this new parameter may be found at
Labels and figure properties. The p1t50.m, wfall.m, and
gui2.m example programs where modified to demonstrate the
use of this new parameter.

A new parameter (TIDc) was added which allows you to
choose the background color for the TracelD box. Details about
this new parameter may be found at Colors Also the solid patch
used in the TracelD box to indicate that the trace is on the right
hand axis is now optional. To see how to do that, look at the
details of the TracelD parameter here: Trace properties

The demo program pltsq.m was rewritten to use pseudo
popups in place of the uicontrol popups of the previous version.
Also the two buttons (start & stop) were replaced with a single
pseudo popup in the "super button" mode. The older version
was renamed to p1tSQALT . m and is also included in the demo

folder so you can compare the relative merits of these control
types.

A new example program (pub2 . m) was added which
demonstrates how to create a plot optimized for publication by
first setting up the desired viewing window using the cursors on
a data exploration mode plot. Another goal of this particular
example was to demonstrate as many unusual plt parameters
and programming techniques as possible.

The cursor mainCur command was renamed to update and
the cursor updateH (update hold) command was added
(similar to the update command except that y-axis limits are not
permitted to change.

The showTrace command was renamed to Show. Also new is
that this command may now be used for both setting and
reading which traces are currently visible. The example
program gui2 . m demonstrates both uses of the show
command. See details at Calling sequence

All the pseudo objects that accept a ' position' argument
will also now accept the more concise ' pos' form of this
parameter.

Several enhancements and bug fixes to the various example
programs.

Many improvements and corrections to the plt help file.

Enhancements to edit pseudo object: Values can now be
continually incremented or decremented by holding down the
mouse button. Absolute incr/decr values may be specified (as
before) or now they may be specified as a percentage of the
current value. incr/decr values may now be used with floating
point edit pseudo objects as well. (Zero increment disables this
feature.) Position may be specified in normalized units (as
before) and now data units may be used as well. The slider in
the circles12.m demo program was changed to an edit pseudo
object to illustrated its use.

Improved log grid lines. Now includes subdecade grids for 6
decades or less

HardCopy figure window now defaults properly for bmp files

13Mar14

Improved appearance of the menu box (background and border
colors)

Added right click action to "LinY/LogY" tag. It now brings up
the hard copy dialog.

Added 'Link' parameter to force groups of plt figures to close
together. The demo programs editz.m and tasplt.m were
modified to take advantage of this new parameter

Enhanced a few of the functions plotted in curves.m

Added images & thumbnails of all the example programs to the
help file

Fixed various bugs related to log axis scaling and panning
Fixed LinX/LogX switching bug for subplots

Fixed bug which prevented data editing of subplots

Fixed bugs with the subplot parameter and in the weight.m
demo program

Fixed bug occurring when using the "MoveCB' parameter with
subplots

Fixed bug occurring when right-clicking on the grid tag using
default colors

Other minor bug fixes.

Renamed vbar.m, ebar.m, quiv.m, and ftoa.m
to Pvbar, Pebar, Pquiv, and Pftoa toreduce the
probability of name collisions (since these files typically reside
in the plt folder on the Matlab path).

Added Linesmoothing to the list of strings that may appear
in the Options parameter. When this option is specified, the
Linesmoothing property of the traces is set which tells Matlab
to use anti-aliasing techniques to make the traces look smoother.
You can also toggle the Linesmoothing property by right-
clicking on the marker button (labeled with "0™). See important
details about this property in the Cursoring section

Changed the default characteristics of the grid lines. The new
default is solid lines instead of dashed lines and the default
color has changed from dim grey (30%) to very dim gray
(13%). Also the default erase mode for the grid lines has
changed from 'morm' to 'xor', The grid linestyle may now be
selected by using the new GridStyle parameter. The

03Janl4

Linestyle parameter was also added to the 'init' action of the
grid pseudo object. The grid lines used to update only when a
zoom or pan operation was complete, but this has been changed
so that the grid lines are now updated during the pan and zoom
operations. The color file format was updated to include the grid
lines erase mode as well as the new GridStyle parameter
Left-clicking on the Grid tag in the menu box has the same
meaning as before (i.e. toggling between grid lines and ticks)
however now you can also right click on the Grid tag. The
effect of this right click is to toggle back and forth between the
current default grid style and something similar to the older grid
style (i.e. slightly brighter grey dashed lines in normal erase
mode).

Left-clicking on the Menu tag in the menu box has the same
meaning as before (i.e. toggling the menu bar visibility) but
there is a new meaning to right clicking on the Menu tag. The
effect of this right click is to open a new figure window
containing a textual view of the trace data. See Cursor Data
Window in the Menu box section

Replaced the "Color/Lines" heading in the menu bar (which
included 4 submenus) with the "plt" heading containing the
original 4 submenus and 4 additional ones. Three of the new
menus mirror right click actions of the GUI objects, but the
menu bar makes the actions easier to discover and remember.
The 4th action (Delete Cursor Annotations) is a new feature
which allows you to quickly delete all annotations entered using
the Mark tag. (Previously these annotations could only be
deleted one at a time.)

Added the swap x/y action which swaps the x and y data of all
traces (i.e. displays inverse functions). This action is available
from the menu bar (plt menu) as well as by right clicking on the
LinX tag

The installation has been simplified by always including both
the compiled help file (plt.chm) as well as the all individual
html files used to create it. By default PC systems will open the
plt.chm compiled help file and Unix based systems will open
plt.htm (the top level html file). However you can change these
defaults. See the Installation instructions for details.

As before the He 1 pF1le parameter modifies the help tag left

03Dec13

click action. In a similar manner, the new HelpFileR
parameter modifies help tag right click action. For a full
description of these parameters see Options.
Enhancements to the ColorPick pseudo object.
Improvements to the example programs include:

o Fontsize popup added to demoplt.m

o # of lines control added to p1tn.m

o Cycle button added to curves.m

o The upper plot in ed1tz.m now demonstrates the use of

Dual Cursors.

o Other more minor enhancements.
Y-axis metric prefixes are now disabled when using the
SubTrace parameter
Fixed a bug which sometimes prevented you from being able to
close the plt window.
Many other bug fixes and documentation improvements.

Removed the plt('ftoa') and plt('vtoa')

commands and replaced and expanded on this functionality with
the separate functions prin.mand ftoa.m. (ftoa is called by
prin and is not usually called directly) See the new file prin.pdf
for a description. Modified demo\pub . m as well as several of
the other example programs to take advantage of the new
features provided by the prin() function.

The cursor control buttons (a group of buttons in lower left
corner) previously consisted of 3 buttons (peak finder, valley
finder, and delta cursor). As of this release a 4th button is
included in this group (called the marker button) and is labeled
with the letter "0". The function of this new button is described
in the Cursoring section but if you click on this button 3 times
you will already know all it does.

e Left/right-clicking on the x-axis label still moves the cursor

left/right one data element as it did before, but now this has
been enhanced so that the cursor continues to move as long as
you hold down the mouse button. The default repeat rate is 33
times a second, but this is adjustable. See the full description in
the Cursoring section. This gives the x-axis label nearly all the

06Junl2

features of the optional x-axis slider without taking up any extra
space.

Including the letters H or Hidden in the options string now
instructs plt to leave the plt figure hidden until the figure
visibility property is latter set to 'on'.

Fixed a bug that appeared only on MACs that caused incorrect
displays of some floating point numbers in edit boxes.

Other minor bug fixes.

Changed the focus of plt somewhat (in the Introduction) from
plotting to GUI tools although many users will still think of plt
primarily as a substitute for plot and plotyy.

Added the ColorPick pseudo object. (See Pseudo objects). The
demoplt.m function was modified to demonstrate how to use
this new pseudo object.

The data editing capabilities of plt (See Data editing) were
completely revamped, both to make it easier to use and to allow
its use with subplots. The demo\editz.m demo routine was
substantially rewritten to take advantage of the new data editing
interface.

Modified the demo\trigplt.m demo routine to show how to
create a "clipboard" button as well as how to modify the
position and appearance of the tracelD box.

Modified the demo\pltvbar.m demo routine to show how
to use the Grid pseudo object to display some tabular character
data.

The plt('ftoa') function was enhanced to include an
additional formatting code ('c') which is useful for
displaying color triples.

Many minor bug fixes.

Added the 'SubTrace' parameter to allow more flexibility
on how traces are assigned to the various subplot axes. (See
SubTrace Parameter)

Added a new interpretation of the 'SubPlot ' parameter
which allows you to adjust the spacing between two columns of

02Decll

11Marl10

subplots. (See Subplot Parameter)
The demo program demo\pub . m was expanded to include yet

one more plot to show how subplots can be used when
formatting plots for publication and to show how the SubTrace
parameter is used.

Fixed bugs which were causing the delta cursor and peak/valley
finder features to work incorrectly when using Matlab 2009b or
newer.

Fixed bugs which caused the AX1SP0S parameter to be
interpreted incorrectly when used with subplots.

Added the "MotionEdit ' parameter which allows you to
specify a function to be executed while the mouse is being
moved during a data edit operation. (See

Mouse Motion Functions.) The demo\editz.m program was
updated to take advantage of this feature. If you have used
previous versions of editz (which updated the plots only after
you have selected the final root location), you will recognize the
benefit of seeing the transfer function plot update in real time as
you drag a root to a new location.

In a similar vain to 'MotionEdit' the 'MotionZoom'
parameter was added which allows you to specify a function to
be executed while the mouse is being moved during a display
zoom operation (i.e. while the zoom box is being dragged). (See
Mouse Motion Functions.) The demo\gauss .m function was
updated to take show how to use this feature.

Fixed a bug which caused the display to flicker while a plt
window was being initialized.

Added more useful information to the "Calling sequence"
section of the documentation.

The demo program demo\pub . m was expanded to include an
additional plot (bar chart).

A bug was fixed that caused an error when null strings were
specified in the TraceID parameter.

The cursor ID (cid) is now saved in the axis user data even for
subplot axes.

Changes for compatibility with Matlab ver 2009b

25Feb10

03DecO9

Added a cursor mode to show distance from cursor to the origin
or to the marked location, i.e. abs(x+iy). See Average, RMS,
Slope, & Distance readout section in Cursoring.

Improvements and bug fixes to the "plt hardcopy" function
(from the file menu or optionally in the menu box). Defaults are
now saved in pltHcpy.mat in the folder containing plt.m.

Fixed a bug that caused the cursor to misbehave when cursoring
non-monotonic traces on the right hand axis.

e Fixed a bug that caused annotations added with the "mark"

feature to sometimes be associated with the incorrect axis.
Fixed a bug that sometimes caused the grid lines to not initialize
properly until the first time you clicked on the figure window.
Fixed some bugs related to grid lines on subplots (turning on/off
via the menu box tag or via the "Ticks' options argument).

Fixed bug in setting x-axis limits for right hand column of
subplots ('Xlim' parameter).

Improved cursor hiding feature (right click of y-axis label) to
work with subplots as well.

Added a new example (pub . m) to the demo folder to show how
to optimize a plot for publication (instead of the typical data
exploration uses of plt). Also demonstrates the use of the new
property prefix characters described below.

Previously there were two property prefix characters ('+', '-")
which refer to the left and right axis properties. (Without the
prefix characters plt assumes properties are to be applied to the
line objects.) Now three additional prefix characters have been
added ('<', ">', ".") which refer the properties to the left y-label,
right y-label and x-label respectively. A property may be
preceded by more than one prefix character. For example '>. -
FontSize', 14 will change the font size of the right y-label,
the x-label and the tick marks of the right hand axis. See

Axis properties for details.

Improved demoplt.m so that it is easier to tell which demo is
currently running.

Fixed a bug with the workspace plotter that occurred when the

©7Nov0e9

250cto9

workspace contained a large number of variables.

Fixed a bug in plt's Ed1t line selection from the color menu.
Fixed a bug in demoplt . m that would sometimes cause an
error if you clicked in the listbox window.

Fixed a bug in the p1t('open') command for non Windows
systems

Significant enhancements to the winplt .m demo program
including the use of an application specific help file as well as
the use of a popup control to edit a vector (the window kernel in
this example).

Added the plt hideCur command. Equivalent to right-
clicking on the y-axis label. See Cursor commands.

Added the plt('showTrace', e) command. For details see
the "DIStrace" section at Trace properties.

Documentation updates

All the example routines in the demo folder (except the scripts)
were substantially rewritten for improved clarity.

The winplt demo now demonstrates how to include two help
tags in the menu box (one for plotting help and the other for
application specific help). The files winplt.chm and
winplt.pdf were added both to demonstrate this feature and
to provide more extensive information about the winplt demo
program.

The demoplt.m program was rewritten to make it easier to
run the individual examples as well as auto-sequence thru them.
A listbox was added to allow easy viewing of the demo
programs help text.

In addition to pure strings to be evaluated, the plt callback
functions now allows you to specifying a function handle of the
form @func as well as the cell array form

{@func, argl, ar2, ... argn} which lets you
provide arguments to the callback function. This applies to the
plt parameters moveCB, axi1sCB, TIDcback, Xstring,
and Ystring as well as the callbacks for the auxiliary plt

11Aug09

functions edit, pop,and slider. Note that you can't take
advantage of the string substitution features of these callbacks
when using the function handle forms. This form is now used in
many of the Programming examples.

Added the ability to modify properties of the left or right axis
using plt parameters. (See +AxisProp, -AxisProp). This feature
is demonstrated in the demo\pltvbar .m example program.
Enhanced the data editing features to include the ability to add
or remove data points from a trace. Also added a more natural
way of entering the data edit mode. See data editing for details.
Added a new set command ('val')tothe plt('slider')
pseudo object. See Pseudo objects

Added the plt('save', file) command. See menu box for
details.

Fixed a bug that caused the right hand axis to be missing from
getappdata(gcf, "axis'), as well as a minor bug fix in
the data editing mode and a bug fix relating to a rare crash when
saving a file from the menu bar.

This is the first release which includes the full . m source code.
The pcode or d11 versions are no longer needed.

Added the TraceMK parameter to allow you to include the line
types in the trace selection box. See the demo programs
demo\trigplt.m and demo\subplt.m for examples of
using this parameter. See Trace properties for a complete
description of the TraceM X parameter.

Added a new example to the demo folder (trigplt.m)to
demonstrate the use of the TraceMK parameter as well as the
use of the slider pseudo object.

Added the F1g parameter to allow plt to use an already opened
figure window instead of creating a new one. See

Labels and figure properties for a complete description of the
Fig parameter.

Fixed a bug which caused plt to crash when called from a guide
application.

11May09

18Jan09

Fixed a bug which sometimes caused the wrong foreground
color in the cursor edit boxes.

Fixed a bug which sometimes caused the X1imor Y1im
parameter to be ignored.

Improved the operation of the x-axis slider.

The SubPlot parameter was added, a major enhancement in
plt's ability to place multiple plots in a figure window. This is
more flexible and far easier to use than the subplot method
introduced in version 19Aug08. The demo\subplt.m and
subplt8.m examples were rewritten to use the new SubPlot
parameter. The weight . m example (which was also simplified
by using the new parameter) also demonstrates a trick for
allowing multiple traces in each subplot. See Axis properties for
a complete description of the SubPlot parameter.

The X1im and LabelX parameters now allow cell array inputs
so that they may specify values for the right hand column of
subplots. The LabelY parameter now allows a cell array input
so that you can specify labels for all the subplots as well as for
the right hand axis of the main plot, and Y11im parameter can
take a cell array input to specify limits for both the left and right
hand axis of the main plot.

Added an easier way to remove cursor objects for production
plots. See the -All and the Nocursor items under the
Options parameter. (The last figure of the circles12.m
example demonstrates this usage.)

¢ right-clicking on the Menu tag in the menu box will now toggle

the line style used for of all traces. (See Menu box)

Added the Lhandles, axis, and cid cid figure
application properties. (See Calling sequence)

Added the "tag', "MenuBox ' property to the menu box axis
to make it easier to find.

Added a new parameter to the p1lt('grid', "init"', ...
command (the erase mode). (See Auxiliary plt functions). Also
the default erase mode for the grids has changed from xor to
normal. You may select the exclusive-or erase mode for the
grids by specifying a grid color containing a negative value (e.g.

030cto8

"GRIDc', [0 -.2 .4]). The actual grid color used in this
example is [0 .2 .4]).

Added a special case to the
plt('cursor',cid, 'set', 'activelLine', a, k)
command for when a is zero. (See Cursor commands)

Added a special case for null trace ID strings. (See

Trace properties)

Fixed bug that could cause a crash when selecting logarithmic
y-axis.

Fixed bug that caused a crash when using the color selection
box to edit plot colors.

A zero is now allowed for the 3rd or 4th element of the
"position’' parameter to indicated that the width or height
of the window should be chosen so that circles will look
symmetric. However after stretching the figure size with the
mouse, the circle will then look like an ellipse. If you want the
circle to look symmetric even after the figure window is resized,
you should follow the plt command with the command
axis('equal').

The example programs circlel2.m and editz.m were
enhanced to demonstrate the feature mentioned above.

The TracelID box has been made wider in situations where it
will not run into the y-axis label.

The file p1t.d11 is now compressed into a zip file called
pltdll.zip. This replaces a different type of compression used in
earlier releases that caused some errant virus protection
programs to flag this file as a virus. (For a description of this
file, see the installation instructions or see the last item in the
12-Mar-08 release notes).

Added two new example programs (demo\subplt.m and
subplt8.m) which show how to put several plots (each with
its own cursor) in a single figure window. The cursor move
callback (moveCB) and the axis callback (ax1sCB) are used to
keep the plots synchronized.

19AuUg08

13Jun0O8

The way that p1t .chm is opened when you click on the help
tag has been improved. Previously plt and any application
calling plt would hang until the help window was closed. Now
you can continue to use plt while the help window is open.

The axis change (ax1sCB) callback is now called (as it should)
when you click on the Zout or XY<-> tags in the menu box.
Now when you right-click on the y-axis label, the menu box and
all cursor objects disappear. Right-clicking again causes the
objects to reappear. This is useful for making screen captures of
the plots since these objects are used for data exploration and
are normally just a distraction in a hardcopy. See cursoring.

The cursor('get', 'obj ') call was added so that one can
easily get the handles of the cursor objects.

The cursor('set', 'VISon') and VISoff calls were
improved so that they now include control of the xstring and
ystring objects, the x-cursor slider and the cursor id string.

A bug was fixed which caused plt to render some text
improperly when the default text interpreter was changed.

A bug was fixed which sometimes caused the plt cursor to
change shape after the data editing feature was used.

Added a new example program (demo\movbar . m) which
shows a simple way to start and stop a moving plot as well as
demonstrating the use of the Xxstring parameter.

Added the ability to set properties of the main axis from within
the plt call. (Just add a "+" in front of the axis property name.
For example +FontSize will set the axis font size property.
For an example of how you might use this feature, see the
demo\pltvbar .m demo program.

Added a cursor function to call the user defined cursor
callbacks. (See the mainCur function and demo\movbar .m)

Added the ability to link the left and right axes for panning and
zooming. This option is enabled by default. Use the new
AxisLink parameter to turn off linking by default. Regardless

11Apros

12Maro8

of the status of the default you may toggle the axis linking by
clicking on the right-hand y-axis label. The divide sign indicates
the axes are unlinked (i.e. divided).

Improved the demo\editz.m demo program, which now
displays phase as well as magnitude. It also demonstrates the
use of the new Ax1sLink parameter

Previously although a plt figure could be saved (.fig), when the
figure was reopened the usual plt cursor controls would not be
available. In this release, plt save and plt open items
have been added to the file menu. Figures saved via the plt save
menu are saved with a . p1t extension (although like .fig files
they are actually ordinary .mat files). You can reopen the figure
from a file browser dialog box by selecting the plt open menu or
by typing p1t open at the command prompt. Or at the
command prompt you can type plt open filename.
Fixed a bug relating to metric prefixes on the y-axis. (The
scaling was improperly applied to the right hand axis where as
the intention was that it should be applied only to the left hand
axis.)

Fixed a bug relating to the modification and saving of color
schemes when a right hand axis was being used.

Changed the method of rendering the right-hand axes to avoid
the problem when plotting overlapping or very dense data sets.
Changes for compatibility with Matlab ver 7.5

Previously data editing only worked on traces on the left axis.
Now it works on the right axis as well.

Renamed the "COLORCc" parameter to "COLORdef" for clarity.
Eliminated the flicker and window movement you used to see
when starting plt.

Fixed bug in plt('datestr') and other minor bug fixes.

Added the plt.d file to this release. This dll is only useful for
compiled applications using the older Matlab compiler (ver 2.2)
that shipped with Matlab 6.1. Feel free to delete this file if you
are not using that compiler. (To use this file, rename it to plt.dll)

Many of the example programs where modified to improve

02DecO7

08Julo7

17May07

clarity.

A new example program (demo\dice.m) was added that
shows how to plot a function as it is as it is being computed (i.e.
the plot shows the function growing in length).

A new feature was added to the x-axis label. Now when you
left/right click on this label the cursor x-axis position
increments/decrements by one data index. See the cursoring
section for details.

The x-axis slider now provides a more natural functionality. See
the cursoring section for details.

The cursor 'maincur ' call now changes the axis limits if
necessary to keep the cursor in view.

Modified the default trace color ordering. The most significant
change is that yellow is now used as the color of the 13th trace
instead of the 7th. This means that yellow will be used less
often (which is good since yellow doesn't normally print well).

Expanded the pltsq.m example to show how all the traces
can be cursored at once

Several of the demo examples were edited to improve
readability

Removed the 'noshift' option that was added in the previous
version. (This proved to be misguided).

The plt('datestr ') function has been modified slightly.
For dates between 2000 and 2099, it now uses two digits for the
year instead of four. For example "12-Jan-2007" becomes "12-
Jan-07". This only applies to date string formats 0 and 1.

¢ A new method of drawing a zoom expansion box is provided ...

hold both mouse buttons down, and drag. (Actually this method
was previously available as an undocumented feature.)

The demo\tasplt.m example program was updated and
simplified. It now shows how to use a right hand or top axis to
plot in more than one unit.

04Maro7

28Jan07

The plt('slider ') function has been reworked to be easier
to use. Several arguments were reordered with improved
defaults. See winplt.m and the new wfall.m for examples of
how to use the slider object.

A new example program (demo\wfall.m) was added to
demonstrate waterfall plotting as well as extensive use of the
plt('slider ") function.

Now the callback function defined by 'moveCB"' is not called
by events initiated from outside the figure window containing
the cursor. (For example a button push that moves the cursor in
another figure window would not activate the callback.) The
reason for this change was to prevent infinite loops when figure
A modifies figure B's cursor and visa versa. If you do want to
enable the callback for external events, insert an extra
semicolon as the first character of the moveCB callback string.
Fixed bug causing the cursor to move to the wrong y-axis
position for traces on the right hand axis (only a problem when
clicking in the axis area). Also improved the ability to select the
desired line when several right hand traces are close together.
Removed the 'NewLimit ' parameter. (It had the same
function as 'axisCB"'.)

Removed the 99 trace limitation for cases where the TracelD
box is not used.

Added the "'moveCB' and 'ax1sCB' parameters to plt as an
alternate to the equivalent p1t('cursor', ...) commands.
The ed1tz.m example was modified to take advantage of this.
Added a new example (demo\bounce . m) showing how to
use matrix arguments to create many line objects at once. Also
shows how to avoid plt's 99 trace limit by disabling the
TracelDs.

Modified the p1tn example to allow displaying an unlimited
number of traces.

The colors specified by TRACEC are now used in a cyclical
fashion to allow specifying fewer colors than traces.

The ENAcur and DIStrace parameters are now extended if
they contain fewer elements than the number of traces.

23Jan07

Added TIDcolumn to the documentation (inadvertent
omission).

Fixed a bug causing the "Mark" function to crash when
TracelDs are disabled.

Fixed a bug causing incorrect colors when choosing
COLORc, 'default".

The 'Xstring' and 'Ystring' parameters where added to
provide additional textual information related to the plotted data
including customized cursor readouts. The pt1n.m,
tasplt.m, editz.m examples now use this feature to good
advantage.

The callback functions defined by ' TIDcback',
"Xstring', 'Ystring', 'moveCB',and 'axisCB' can
now contain strings within strings defined using a single double
quote character on either side of the string, instead of the usual
and more cumbersome method using two single quote
characters on each side.

The "pltquiv.m' example was updated to demonstrate the
use of the ' TIDcback' parameter.

Added a right click action to the XY « (XYrotate) tag in the
menu box.

Improved the avg and rms cursor readout so that NaN values are
ignored.

Added an additional plot to the circles12.m example program.
Added the @CID tag to the 'moveCB"' cursor callback
function. The weight .mand tasplt.m examples now make
use of this tag.

The XYy output from

plt('cursor',cid, 'get', "position') is now
complex.

Improved the look of the cursor peak/valley buttons and delta
cursor button by removing the rectangular dotted line around
the string.

Fixed bug in Y/X cursor value

Added "HardCopy" as the fourth item of the File menu. (See
"print" under "Menu box").

26Nov0O6

Many documentation improvements and updates

Added the capability of assigning different line property values
for each trace

A new parameter (TIDcolumn) was added to allow you to
arrange the trace IDs in multiple columns.

Added a new demo program (circles12.m)

Fixed a bug that prevented assigning a color to two different
traces.

Fixed a bug that caused incorrect positioning for the "Mark"
function (right hand axis).

Added a default to the color property of the 'pop’ and 'edit’
objects ([1 1 .4]). Fixed the default color for the background of
an open 'pop' menu to agree with the documentation.

Added the Fresnel function to curves.m demo so that the
symbolic toolbox is not called.

Modified the editz.m example so that the signal processing
toolbox is not required.

Modified the winplt.m example program so that it can run
without the signal processing toolbox, however in that case it
will not be able to display all the window types.

The way plt handles complex arguments was changed. Now
including w in the argument list (where w is complex) is
equivalent to including the two arguments

"real(w), imag(w)". In earlier revisions this was only true
sometimes.

The delta button is now highlighted whenever the delta cursor
mode has been selected.

Left-clicking on the up/down arrow buttons moves to the next
peak/valley respectively as before. Also as before, clicking on
the trace resets the peak or valley finder so that the next click of
the up/down arrow brings you to the largest peak or smallest
valley. Now, the resetting of the peak or valley finder may also
be accomplished by right clicking on the up/down arrow button.
Added files:

04Sep06

vbar . m - for displaying functions as vertical bars

ebar .m - for displaying error bars

guiv.m - for displaying vector fields (arrows)

The functionality of quiv.m is similar to Matlab's quiver.m
although unlike quiver, quiv doesn't call plot. Therefore you
must call plot or plt with the data generated by quiv. In earlier
versions of plt, the code in quiv.m was inside plt.p, but I
extracted it to a separate function to provide more flexibility
and a cleaner user interface.

In the previous release, all the files were in the same folder. In
this release a new folder named "demo" was added to contain
all the example programs.

A new program named demoplt.m was added (in the demo
folder) which runs all 12 example programs in succession.
Every time you press <Enter> demoplt will close the current
example and start up the next one.

A new example program named pltvbar .m was added to
demonstrate the use of vbar .mand ebar.m.

The pltguiv.m example program was modified to use the
new quiv.m function.

A new parameter (' Right ') was added to specify which
traces should be on the right hand axis. In earlier plt versions,
only one trace was allowed on the right hand axis and it had to
be the last trace. Now you may place any or all of the traces on
the right axis. For example, in the argument list you could
specify 'Right', [1 4:2:10 17]. Then plt would put
trace numbers 1,4,6,8,10, and 17 on the right axis and all other
traces on the left axis. A slight shading is used behind the Trace
IDs associated with the right hand axis so you can tell at a
glance which traces belong to which axis. You can also tell
which axis a trace is on by the shape of its cursor (+/o for
left/right axis). As with earlier revisions, a right axis is created
if you include the 'LabelYR", or ' Y1imR' parameters in the
argument list. For clarity, you should also include the 'Right'
parameter in that case, however if omitted, plt will put the last
trace on the right axis.

17Augo6

A new parameter (' DualCur ') was added to control a feature
I now call a dual cursor. The usual cursor can only show the
value of one of the visible traces on the plot. With a dual cursor,
two such values can be shown at the same time - especially
useful when displaying two tightly linked values (for example,
the magnitude and phase of a complex quantity). In earlier
versions of plt, a dual cursor was provided, however it was
forced to be on the last trace only which was also forced to be
on the right hand axis. (Moreover the dual cursor was not
optional. If you wanted to use a right hand axis, you
automatically got a dual cursor). As of this version, you specify
a dual cursor for the Nth trace by including 'DualCur', Nin
the parameter list. This means that trace N will never be the
active trace and so its value will never appear in the usual y
value readout location (immediately to the right of the "y:"
cursor label). However when you cursor any other trace, a
cursor will also appear on trace N at the same x-axis location
and the value of trace N will appear just to the right of the value
for the active trace. The dual cursor is easily distinguished from
the usual cursor by its shape - an asterisk if the dual cursored
trace is on the left axis or a square if it is on the right axis.

A new parameter (' TIDcback', fcn) was added to that one
can define a callback function to be executed whenever the user
clicks on a Trace ID (i.e. a trace is enabled or disabled).

The winplt example program was updated to show
comparisons between previous window time shapes as well as
the previous frequency shapes. (In the earlier revision, only the
previous frequency shapes were saved). This takes advantage of
plt's new ability to put multiple traces on the right hand axis.

Added the Color menu to the menu bar providing the ability to
change any of the colors used by plt and optionally to make
those changes permanent.

Enhanced the ability to edit strings created with the
plt('edit') command by using the left and right arrow
keys.

Enhanced the functionality of the winplt example program.

25Jun0B6

11Apro6

Changed the default alignment of plt('edit') strings to
‘center'. (Required to make the increment/decrement
feature to work.)

Set foreground (text) color of x/y cursor readout objects to
white or black, whichever enhances contrast.

Swapped execution order of MoveCB and MoveCB2 callbacks.
This appears to fix the problem of mouse button up events
getting lost (which was only a problem with Matlab ver 2006a
or later).

Swapped viewing order of the menu and TracelID boxes. This
fixed the problem where the top menu box item was
inaccessible.

Fixed bug with ' @VAL " substitution in p1lt('slider').
Fixed bug in plt('slider ') relating to the '%d' format.
Fixed bug relating to accidentally redefining the exp ()
function

Fixed bug relating to finding the help file.

Added a new option plt('Options', 'Slider', ... to
create a slider used for changing the cursor x position

Added a dialog box (via a right click on the Mark tag) that
allows the editing of line and cursor properties

Fixed delta cursors so they can work between different traces
Extended plt('ftoa', ...) towork with vectors as well as
scalars and added a delimiter option. The p1lt('vtoa', ...)
function was also enhanced.

Added the [TexOff] specifierinthe 'title" option.

The slider now replaces '@VAL " in the slider callback with the
current slider value.

Biased 'metricp' call to favor no prefix between .1 and
9999

Changed order of ancillary cursor readout functions (now Avg,
RMS, Y/X)

Added the plt('rename', s) function

Added the plt('cursor', 'set', "activelLline')
function

Enhanced the plt('cursor', '"Maincur') call by

26Jan06

17DecO5

O6NoVvO5

18Sep05

11May05

allowing optional parameters

Added the plt('cursor', 'init"' ...) calltothe
documentation

Added a new example program called weight .m

Changed default color order for better hardcopy results
Fixed minor bug in the workspace plotter

Added the Zout and Print tags to the menu box
Minor bug fixes and documentation updates

Minor improvements to the pseudo slider object

Added support for plotting vector arrows (quiver)

Added the option to use cell arrays of strings in place of
character arrays in argument lists

Extended the use of the 'Ax1sPos' parameter (position of
TracelD)

The workspace plotter recognizes the new TraceIDlen
parameter

Added plt close asan alternativeto plt closefigs
Added a new programming example (pltquiv.m) to
demonstrate quiver and several other plt features

Minor bug fixes and documentation updates

Added the auxiliary function plt('edit') for creating edit
text objects

Added the auxiliary function plt("pop') for creating popup
text objects

Added a new programming example (Curves.m) to
demonstrate the use of the p1lt('edit') and plt('pop"')
commands.

Fixed a bug in the data editing capability that caused it to work

29Maro5

03Aug04

14Julo4

only with large fonts selected in windows.

Two new programming examples have been added (tasplt.m
and winplt.m).

Added the slider component plt('slider',...). See
winplt.m for an example of its use.

Added auxiliary functions plt('ftoa'), plt('vtoa'),
plt('closefigs'), plt('help'), and
plt('version').

The workspace plotter now can plot vectors contained inside
structures.

The default figure window position was changed so it doesn't
overlap the start menu.

Minor bug fixes and documentation updates

A new programming example (ed1tz.m) has been included to
demonstrate the utility of the data editing capability.

Eliminated the commercial version of plt and integrated the
enhanced features into the free version. The public domain
version of plt now supports delta cursors and up to 99 traces (an
increase from five traces).

The workspace plotter has been added, which allows you to
interactively select the vectors in your Matlab workspace that
you want to plot. This is activated by calling plt with no
arguments. A new sample script (pltvar . m) was added to
demonstrate this feature. It simply creates several vectors in the
workspace and calls plt with no arguments.

e The cursor ID tag is now always to the left of the cursor y label.

Changing the cursor ID tag to Avg or RMS is now accomplished
by clicking on the cursor ID tag itself to rotate among the
options. Also an additional option (Y /X) has been added to this
selection, which displays the ratio of the y and x cursor values.
(In delta cursor mode, this can be used to display the slope of a
trace segment.)

24May04

16May04

09May04

Data editing has been added. The data editing mode is entered
by right-clicking on the x or y cursor edit boxes. See the
documentation for additional details.

Modified the p1t5 and pltn examples so they didn't use
interp (interp requires the signal processing toolbox)
Renamed PLT.p to plt.p in the zip file (unix is case
sensitive)

Added the release notes section to the documentation

Added a more obvious way to restore zoomed axis limits
Fixed minor bug with the Styles argument

Improved the Options argument and made it less cryptic
Supply documentation as html in addition to chm
Provided an easy way to use Matlab's default colors
Improved the organization of the help file

First public release of plt

P|1'(/v "‘)

Adding traces

From the command window, the most common way to start plt is with a
command such as:

plt(x,y)

where x and y contain the data that you want to plot. Of course this is the same
as you would have done before being exposed to plt, except that you would have
spelled it "plot". This command opens a new axis in a new figure window
containing just the single trace defined by the x,y parameter pair. There are many
ways to call plt so that multiple traces are defined, and most of these methods are
also shared with the native Matlab p1ot command. These methods are reviewed

in the Calling sequence section.

Where plt and plot diverge more noticeably is how you add traces to a figure
that has already been created. With plot this is done using the hold on and
hold off commands that I think you will recognize as cumbersome after
learning how it is done with p1t. The more traces you add, the more you will
recognize the advantage of the active legend automatically provided by plt, both
for identifying the traces and controlling which traces are visible. (Soon you may
begin to wonder how you managed without plt.)

Assuming a single trace was defined using the plt command mentioned above,
the command:

pltt(x1,yl, 'TraceName')

will cause a new trace defined by the x1,y1 pair to appear on the plot. Also a
second entry will appear in the TraceID box with the trace name specified in the
call to pltt. If you are feeling lazy, you could omit the trace name in the argument
list, in which case a default (incrementing) trace name will be used. The more
traces you add, the more you will realize that you should have specified the trace

names all along.

When you type the plt command in the command window, space will be
reserved in the TraceID box for eight additional traces (beyond those defined in
the plt command itself) to be added using the pltt command. This is usually
enough, but if you go beyond this limit, pltt will overwrite the trace data and
tracelD of the previously added trace to make room for the new trace being
added. If you anticipate needing to add more than eight traces, you can allocate
more space in the TracelD box using the + parameter in the plt argument list.
(The + is the last parameter described in the Trace properties section.)

Usually you will probably find it most convenient to add just one trace at a time,
however pltt also provides a few ways to add more than one trace at a time.
(This is especially useful inside script files). For example, both of these
commands:

pltt(x, {yl y2 y3},{'newl' 'new2' 'new3'});
pltt(x, [y1;y2;y3],{'newl' 'new2' 'new3'});

are equivalent to the three separate commands:

pltt(x,yl, 'newl');
pltt(x,y2, 'new2'");
pltt(x,y3, 'new3d');

Note that in the 2nd form above, it was assumed that y1,y2,y3 were row vectors.
(If they were column vectors they would need to be delimited with spaces or
commas in place of the semicolons.)

And one last form to consider for when you are adding traces with differing x
data. The command:

pltt({x1 x2 x3},{y1l y2 y3},{'newl' 'new2' 'new3'});
is equivalent to these three commands:

pltt(x1,yl, 'newl');
pltt(x2,y2, 'new2');

pltt(x3,y3, 'new3');

P|1'(/v "‘)

Selecting traces

If more than one y-vector argument was given to plt, a trace
selection box will appear in the upper left corner of the plt window.
Note: when using sub-plots, only the main plot (lower left) includes
a trace selection box. (Note: sometimes I call this the TraceID box).

In the example shown to the left, plt has been given five y-vectors to
plot. The name of each trace and the colors used to plot them are
also given. Usually you should give each trace a more informative name, but in
this case no trace names were specified on the command line, so plt just named
each trace with a number. The trace IDs associated with traces 2 and 3 are shown
in an italic normal weight font, indicating that they are currently disabled (not
visible). The other three trace IDs are shown in a bold upright font, indicating
that those traces are enabled in the plot area.

Below is a list of the ways you can control which traces are displayed. If you are
plotting just a few traces, the first bullet should cover all that you need to know.
However since plt can plot up to 99 traces, the remaining tricks may come in
handy:

e When you left-click on one of the trace names in the trace selection box, the
associated trace is toggled on or off.

e To view a single trace all by itself, right-click on the trace name of interest.
That trace will be enabled and all the others will be disabled.

e Double click on any of the trace names to enable all traces at once.

The default trace color order used by plt (shown in this figure) is quite different
from Matlab's usual default in that it allows you to distinguish many traces based
on color alone. Since the color used for the trace IDs match the color of the
corresponding trace, you can easily identify each trace by name for plots with a

dozen or so traces
and perhaps even
many times that

3 : amount depending
ID06 .
ID07 _ D73 on the acuity of
your color

ID10 _ perception. Read
ID11

more about this in
ID13 I | D46 I the Default colors
section If you have
any doubt about the
ID51 I name of a particular
trace, simply click
on the trace, and its
trace ID will appear
in the "cursor ID"
D26 I tag just to the left of
the y-axis cursor
ey readout. (See
"Cursoring" on the
next page). Another
way to verify the
name of a trace is to click on the name of the trace in the trace ID box. As
mentioned above, the corresponding trace will become invisible, and then
restored when you click on the trace ID a second time. To see the list of RGB
triples used to generate this default color order, see the description of the
TRACECc parameter. Note that only the colors for traces 1 thru 40 are defined by
this array. The defaults for lines 41 to 80 are the same as the colors listed above
for lines 1 to 40 except that they are 26% dimmer. The defaults for the lines 81
to 99 are again 26% dimmer than the trace colors for lines 41 to 59.

1001 I |D34
D03 I

1053 I

If the plot uses a right hand axis, plt indicates which traces are plotted on the
right hand axis by adding some shading to the background of the trace ID. For
instance, in this example, traces 1,3,4, and 5 are plotted on the right hand axis.
The use of italics to indicate inactive traces, and the methods for
enabling/disabling traces are the same no matter which axes are used. (Traces 2
and 4 are disabled in this example.)

If the TraceMK argument was used, then the line types are
also shown in the trace selection box. An example of this is
shown here which used ' TraceMK', .6 in the plt argument
list. The .6 indicates that the first 60% of the width is used for
the trace names and the remaining width is used to show the
line types. See Trace Properties for more detail on the
TraceMK parameter.

When the line types are included in the trace selection box, you
may enable/disable traces by clicking on the trace name as
described above, or by clicking on the line type to the right of
the trace name. In this example traces 3,4 and 5 have been
disabled. The trace names for the disabled traces are shown in
italics as usual and the line types are also grayed out (actually
blue/green) to make it clear that these traces are not currently
visible in the plot area.

Since left or right clicking on the line types serves the same
purpose as left/right clicking on the trace names, you can
dispense with the trace names altogether if you like. (This
mode is selected by specifying assigning less than 25% of the
width to the trace names, i.e. a TraceMK parameter of less
than .25). In the example to the left, the TraceMK parameter
was 0.1 and note that the first trace has been disabled.

P|1'(/v "‘)

Zooming and panning

Panning

The simplest way to pan the x or y axis is to click on one of the axis tick labels
(actually anywhere outside the plot area will work) and drag it until the part of
the display you wish to view is visible. Sometimes you may want to pan both the
x and y axes at the same time. Instead of doing separate pans on each axis you
can do both at the same time by clicking anywhere in the plot area (but NOT on
any of the traces) and dragging that point until the desired view is achieved. Yet
another way to pan the x axis is to use the optional x-axis cursor slider that is
described in the next section (cursoring) One panning issue you should be aware
of is that its performance will suffer when plotting very large arrays. For
example, try the following command:

plt(humps((1:1e6)/1e6)'*(1:4));

This will plot 4 traces each of which contains a million points. (These vectors
are far bigger than what you will usually want to plot.) The display update rate
while panning this plot on my 2011 era desktop computer is about 3 times per
second, which is noticeably jerky but certainly useable. However if you want to
plot even more data than this it may make sense to decimate it before plotting.
Your eye won't know the difference by the time you are plotting more than a
couple of hundred points per trace, so you won't really be missing anything
unless you zoom in dramatically.

Zooming

Try the same thing as with panning, except drag with the right mouse button
instead of the left. You will find that dragging towards the origin compresses the
axis (for zooming out) and dragging away from the origin expands the axis (for
zooming in). As with panning you can zoom both axes at once by a right click

and drag in the plot area. (Unlike panning you don't have to worry about whether
you are on a trace or not. The same thing will happen in either case.)

Often to get the desired view requires two mouse movements. The first, with a
right click and drag to expand or contract the axis (or axes) and the second, with
a left click, to re-center the display. You may find that this is the most convenient
method, or perhaps you will like one of the seven other methods described
below.

The expansion box

If the portion of the graph that you want to zoom in on is
completely visible on the graph, the fastest way to
display the desired area is to draw an expansion box.
This is the way you will likely use most often, so you
should try all four ways to draw the expansion box that
are listed below to see which ones you like best.

1. Position the mouse in the plot area over one corner
of the area you wish to zoom in on. Then click both
mouse buttons at the same time, holding them both
down while dragging the mouse towards the
opposite corner of the desired zoom area. A yellow box will be drawn,
which will be stretched or contracted as you drag the mouse around. When
you let go of the mouse, the display will look similar to the picture to the
left.

2. An alternate method which you may find easier is double click the left
mouse button, but don't release the button after the second click. Hold the
mouse button down while you drag to create the expansion box.

3. A method which requires less coordination is to press and hold the
keyboard shift key, then click and drag with the mouse until the expansion
box is the size you want.

4. And finally you can left-click the grey "x" label in front of the x-cursor edit
box. (Actually using the grey "y" label in front of the y-cursor edit box does
exactly the same thing.) This draws the expansion box covering the exact
same area as the current axis limits, and then zooms the display out by
about 20% so that you can see the expansion box. This method makes more
sense when you which to make small changes to the x or y axis limits or
when you are planning to type in the new limits numerically.

If you are happy with the expansion box you have drawn, left-click the mouse
anywhere in the plot area (or even outside the plot area if you avoid the edit
boxes) and the display will expand to show only the data inside the expansion
box. If you are not happy with the expansion box, you can modify it using one of
the methods mentioned below ... or simply right-click anywhere to remove the
expansion box and start again.

If plt was called with the Mot 1onZoom or the Mot 10nZup parameter, the
function specified with that parameter can cause additional text, plots or other
visual effects to appear and be modified as you adjust the size of the expansion
box. (See Mouse Motion Functions)

Accepting or cancelling the limits indicated by the expansion box

After an expansion box is
drawn using any of the four
methods described above, both
the x and y-cursor edit boxes
double up and contain the
limits of the expansion box (as
shown in this figure). To
accept the current limits
shown, simply LEFT click
anywhere inside the plot area. To remove the expansion box keeping the axis
limits the way they were, simply right-click anywhere inside the plot area.

You may want to modify the expansion box size or position before accepting it.
Several methods of doing this are described below.

Adjusting the expansion box

The most precise way of setting the expansion box limits is to simply type them
in. For example, suppose you want to change the x-limits shown in the figure
above (7.1866 to 7.9650) to the values 7.1 to 7.9. Simply highlight the lower
limit x limit (7.1866) by dragging the mouse over it and then type in the desired
value (7.1). Then press "tab" which will accept that value and automatically
highlight the next value (upper x-limit). Then after entering the upper limit, press
tab again to highlight the y-axis lower limit ... or if you don't want to edit the y

limits as well, hit enter instead of tab. As soon as you hit enter or tab each time
you will see the edit box change in the plot area to reflect the entered values.
Note that the limits are shown in increasing order, however you are not restricted
by that convention. (i.e. entering the limits 4,3 draws the same expansion box as
if you entered 3,4). Although this method is by far the most precise way to adjust
the expansion box, it is usually more convenient to do this using the mouse as
described below:

1. Adjusting the expansion box size
Simply click and drag on any of the four corners of the expansion box. The
corner you clicked on will follow the mouse while the diagonally opposite
corner will remain fixed. Note that the mouse behaves in the same way as
when the expansion box was first drawn.

2. Adjusting the expansion box position (preserving its size)
Click on the midpoint of any edge of the expansion box and simply drag the
expansion box to its desired location. The expansion box size does not
change during this operation.

When adjusting the expansion box size or position in this way, you should click
reasonably close to the corners or the edge midpoints. If you click too far away
from these points then as mentioned above, the click indicates that the limits
indicated by the expansion box should be accepted as the new axis limits, and of
course the expansion box is cleared after the new limits are set.

Alternate method

In earlier versions of plt (before the above method was devised) a different
method was used to adjust the expansion box with the mouse. Although it allows
you to adjust a single edge at a time (as well as moving the position while
preserving size), you will probably find this older method less natural. Never-
the-less I did not remove this method in case you became used to it with older
versions of plt. Newer users will probably stick to the method described above,
but for completeness the older method is described below:

e Right-click anywhere near the middle of the lower x limit (the 7.1866
number in this figure) but don't release the mouse button. As you are
holding the mouse button down, drag the mouse to the left or the right. (You
don't have to remain inside the edit box, or even inside the figure window
for that matter). As you drag to the left you will see the 7.1866 number
decreasing and also the left edge of the expansion box will move to the left.

As you drag the mouse to the right of center, number will start increasing
and the expansion box moves accordingly. The farther you drag the mouse
from the center of the edit box, the faster the left edge of the zoom box
moves. Any vertical movement of the mouse in this situation is ignored.

e Right-click anywhere near the middle of the upper x limit (the 7.9650
number in this figure), hold the mouse down and drag left or right. This
time the right side of the edit box moves in a similar manner to that
described above.

e Right-click near the middle of the lower y limit (the 2.2735 number) to
adjust the lower edge of the expansion box in a similar manner except now
only the vertical movement of the mouse matters. Any horizontal
movement is ignored.

e Right-click near the middle of upper y limit (the 5.4595 number) to adjust
the upper edge of the expansion box. Again, any horizontal movement is
ignored.

¢ Note that the mouse methods for adjusting the four edges described so far
alter the size of the expansion box. There is one final method to describe
that doesn't change the size of the expansion box, but only its position.
Right-click on the left or right edge of any of the four edit boxes, leaving
the mouse button down while dragging the mouse as before. (You might
have to be pretty close to one of these edges for this to work.) This time, as
you drag, the position of the expansion box moves in the same direction as
the mouse offset from the original clicked position. The farther the mouse is
moved from this original position the faster the expansion box position
changes. Unlike the previous four situations, here both the horizontal and
vertical movements of the mouse have an effect, so you can even move the
box's position diagonally if you choose. Note that the behavior is the same
no matter which of the four edit boxes you use to initiate the action. The
size of the expansion box will not change during this movement with one
exception. If you bump the expansion box into one of the edges the box
becomes smaller because the trailing edge will continue to move even after
the leading edge has hit the wall.

When using the alternate mouse methods, sometimes the edit box may be too
close to a screen edge to allow a reasonably fast movement of the expansion box
because the mouse travel is limited. In that situation you may want to move the
figure slightly farther away from the edge of the screen.

Auto scaling

If plt is called without any 'x1im' or 'ylim' arguments, both axes are
initially auto-scaled to show the entire data range. At any later time you can
auto-scale the x-axis by right-clicking on the grey "x" label in front of the x-
cursor edit box. Right clicking on the grey "y" label is similar for auto-scaling
the y-axis, although there is one difference. The difference is that the y-axis is
scaled to insure that the data associated with the active trace is visible. There is
an alternate way to auto-scale that picks display limits to insure that all the traces
are visible instead of just the active trace. (See "Expansion history" below).

Expansion history

Whenever you change the x or y axis limits by any of the above methods, the
previous limits are stored in a expansion history list. You can cycle through these
stored limits by left-clicking on the XY - tag in the menu box. (See "Menu box"
below). This list is 4 elements deep, so when you zoom or pan the fifth time the
oldest display limits fall off the bottom of the stack. Assuming the expansion
history list is full (which is usual) clicking on the XY « tag four times in a row
will show you the last four display limits. On the fifth click, plt will auto-scale
both the x and y axes in a way that insures that all the data for all traces falls
inside the display area. On the sixth click, plt goes back to using the axis limits
stored in the expansion history list. Although you can auto-scale by clicking on
the XY « tag a suitable number of times that can be cumbersome since you
usually don't know where you are in the rotation. For this reason a faster way to
auto-scale is provided ... simply right click once on the XY - tag.

Doubling or halving the display area

Left-clicking the Zout tag in the menu box (see "Menu box" below) expands
each axis by 40% which increases the display area by 1.4% (1.96) i.e.
approximately doubling the display area. Right-clicking zooms in, halving the
display area. In both directions the center point of the display remains in the
center after the zoom operation.

xView slider

The black horizontal bar with the short gray segment that appears above the plot
is called the xView slider. It provides yet another way of panning and zooming

particularly useful when you want to view a small segment of a long data set.
The whole bar represents the entire data set and the gray segment represents the
portion of the data currently in view. If 10% of the data is currently in view, then
the length of the gray segment will be 1/10 the length of the whole bar. Similarly
the position of the gray segment within the bar represents the position of the
displayed data relative to the whole data set.

Properties
et To bring up the xView slider, first right-click on the Ycursor edit

LU CCM box. This will bring up the Yedit popup menu shown here. Then
e select the third item in this menu (xView slider) and the slider will
s appear. This is a toggle, so selecting it again will make the xView

Range T slider disappear.
Insert

Insert«s
Insert’

Modify starts up, you can include the string xView in the 'Options'’
Modify<> parameter. Also you can enable or disable the xView slider from

If you wanted to the xView slider to appear when your program

e b the command line or in a program with the command

plt click Yedit 3; orits functional form
plt('click', 'Yedit', 3);

Moving the gray segment left or right is as easy and natural as you would expect.
Simply click on the gray segment and drag it left or right. The plot underneath
will update as you are sliding allowing you to easily search for the data portion
that interests you. You can also make the gray segment larger so that a larger
portion of the data is displayed. To do this simply click in the black area to the
left of the gray segment and the left edge of the gray segment will immediately
be extended to the point where you clicked. (Similar for the right edge of
course.) But notice that this method won't work if you want to make the gray
segment smaller. So how do we do it? Simple, just click in the black area, hold
down the mouse and drag. The edge that you selected will follow the mouse

allowing you to place it wherever you want. (An alternate method of making the
gray segment smaller is to right-click inside the gray segment, but the first
method I mentioned is usually easier.) And finally there is one more trick you
can do with the gray segment. Double clicking on it expands the gray segment to
fill the entire black bar (i.e. it resets the x-axis limits to cover the full extent of
the x data). This is somewhat similar to right-clicking on the menubox XY « tag
except that the XYrotate tag effects both the x and y axis where as the xView
slider never effects the y axis. (Double clicking on the gray segment a second
time undoes the effect of the first double click.)

Notice that when the x-axis is zoomed or panned by any of the other methods
provided, the xView slider will automatically be updated so that the gray
segment properly represents the visible portion of the data.

The appearance of the xView cursor is probably suitable for most situations, but
you can modify its appearance by using the xvProps figure application data. This
is best illustrated with an example. Suppose we follow the call to plt with the
expression:

setappdata(gcf, 'xvProps', :
{'color' 'red' '+color' 'blue' '+' [0 -.01 0 .02]});

The cell array consists of property name/value pairs. If the property name does
not have the "+" prefix the property is applied to the short gray segment, so the
first property pair above changes the gray segment into a red segment. If the
property name does include a "+" prefix then the property is applied to the long
horizontal black bar (which actually is an axis). So the second property pair
changes the black bar into a blue one. Any axis property name may be used. The
last property pair is a special case since it has the prefix without a property
name. The meaning of this special case is that the value specified is to be added
to current position value for the horizontal bar (axis). So what this example does
is to move the (blue) horizontal bar down by 1% of the figure height and to make
the bar thicker by 2% of the figure height. (Note that you could also specify the
position in absolute terms be replacing the '+' with '+pos')

P|1'(/v "‘)

Right-hand axis

Enabling

You specify which traces should appear on the right-hand axis with the
"Right' parameter. For example if you included 'Right’',

[1 4:2:10 17] in the parameter list, then plt would put trace numbers
1,4,6,8,10, and 17 on the right axis and all other traces on the left axis. A slight
shading is used behind the Trace IDs associated with the right hand axis so you
can tell at a glance which traces belong to which axis. (You may disable that
shading if you prefer. To see how to do that, look at the details of the TraceIlD
parameter at Trace properties.) You can also tell which axis a trace is on by the
shape of its cursor ('+' for left axis and 'o' for the right axis). You can optionally
specify the label or the limits for the right hand axis by using the 'LabelYR'
or 'Y1imR' parameters respectively or by using cell array inputs with the
"LabelY' or 'Y1im' parameters. Note that if you enabled metric prefixes on
the y-axis, this applies only to the left hand axis. The right hand axis uses
standard scaling.

Cursoring

Cursoring the traces on the right or left hand axes is identical except for the
shape of the cursor - a '+' for traces on the left axis and a '0' for traces on the
right axis. Different cursor shapes are used for the dual cursor.

Panning and zooming

The following controls affect both the main and auxiliary axes simultaneously:

e LinX/LogX (menu box)
e LinY/LogY (menu box)
¢ Panning the x-axis

e Zooming the x-axis

Panning and zooming the y-axis (which includes zooming with an
expansion box and left/right clicking on the "zout" tag) is also
normally done simultaneously on the right and left hand axes. This is
called the "linked" mode. Sometimes however it is more convenient
to adjust the left and right axes separately (i.e "unlinked"). To unlink
the axes, simply click on the right hand axis label. The label will then
appear between two divide signs as shown in this picture (i.e. the axes
are "divided"). Click on the label again and the divide signs will
disappear indicating that the axes are again linked.

{E
=
o
O
=

ohe
w
=

it o

I

Normally the axes are linked when plt initializes. However if you
want plt to start in unlinked mode, include the parameter 'AxisLink', 0 in
the plt argument list. Including 'AxisLink', 1 tells plt to start in linked
mode, although you will rarely do that since linked mode is the default anyway.

Regardless of the linked/unlinked status you can pan or zoom the right hand axis
by right or left clicking on or near one of the right-hand axis tick labels (i.e. the
20,40,60,80, or 100 in this picture) and dragging them to the desired position.
(As before left click/drag is for panning and right click/drag is for zooming).

P|1'(/v "‘)

Menu box

By default, the menu box contains the 8 items shown in this figure.
Some or all of these items may be missing if they were specifically
excluded by using the 'Options' argument in the calling
sequence. The name of each menu box items are chosen to identify
the action when you left click on the item. The action corresponding
to a right click are less obvious, but a quick look at the plt menu (see
below) will remind you what these actions are.

See pltquiv.m for an example of how you can change one of the
menu box items to perform an alternate function.

Details about each menu box item follows:

Help

On Windows systems when you left or right click on the the He 1p tag, plt will
display the file p1t.chm. On Unix and other systems the browser will be
opened to display the file plt . htm (since these systems don't support the chm
file format). The left click behavior may be modified by including the
"HelpFile' parameter on the command line and the right click behavior may
be modified by including the 'HelpFileR' parameter. Those parameters are
described here.

LinX

Left-clicking this tag changes the x-axis scale from linear to logarithmic. The
name of the tag itself also toggles between LinX and LogX so that it the tag
name always matches the current x-axis scaling type. Left-clicking again toggles
it back to L1nX.

Right-clicking this tag swaps the x and y data for all the traces which has the
effect of displaying the inverse function of the original display. This swapping
works best when only a single axis is being used. For multiple axes (i.e. with a
right hand axis or with subplots) the effect might not quite what you expect.

LinY

The y-axis scale changes from linear to logarithmic. This tag also changes to
LogY so that it always matches the current scaling of the y-axis. Clicking again
toggles it back to LinY. Right-clicking on this tag opens the plt HardCopy
dialog box. See the description of the HardCopy dialog box below (under the
Print menu item).

Grid

Left-clicking on the Grid tag alternates between no grids (tick marks only) and
full grids on both x and y axes. By default, the grids are solid dim grey lines.
(This may be modified by the GRIDc and GridStyle parameters.) Grid lines with
high contrast colors and brightness (such as what you get with the native Matlab
plot command) makes it more difficult to observe the main data traces.

Assuming the grid style has not been modified with the GRIDc or GridStyle
parameters, right-clicking on the Grid tag will alternate between the following
two grid modes:

e Color = [.13 .13 .13], LineStyle = '-'
® Color = [.26 .26 .26], LineStyle = ':'
Zout

Each left click of the Zout (Zoom out) tag expands the x and y axes by 40%
(20% at each end). This approximately doubles the area of the Cartesian plane
displayed within the axis limits. (1.4% = 1.96). Right-clicking on the Zout
reverses the effect of a left click (i.e. zooms in).

XY o

Each click on the XY « (XYrotate) tag cycles the x and y axis limits to the next

display expansion stored in a history list. (The axis limits from the last four
zooms or pans are saved in this list). After all the display limits in the history list
are used, the next click autoscales both axes so that all the data is displayed. The
next click again uses the first display expansion in the history list. Right-clicking
on this tag skips the rotation through the history list and directly autoscales the
axes to show the full x and y extent of the trace data.

Print

Note that the Print tag does not appear in the menu box by default. It will only
appear if enabled by an 'Options' argument in the calling sequence. This is
done to reduce clutter and is justified since this is not a commonly used dialog
and because you may also access this by right-clicking on the LinY tag
(mentioned above) as well a from the Hardcopy selection in the plt menu of the
menu bar. (If you don't see the menu bar, click on the Menu tag in the menu box
to make the menu bar visible.)

This is what the hardcopy dialog
e R looks like when opened. The
-PathJFiIe: @ Device primary use of this dialog box is
SR] to create BMP bitmapped images
| print | of the plt window. You will see

from the popup menu, that you
can select other graphics formats as well, although not all of them are well
tested. (This image shows the dialog setup for making a windows meta file
format.) For all file types except BMP, the colors are inverted if the background

is dark. On most printers this makes the copy far more readable and saves large
amounts of toner.

You can also print directly to the default windows printing device from the
HardCopy dialog, although an easier (and possibly more reliable) way of doing
this is to select "print" from the File menu. And for a bitmapped image, yet
another method is to use the screen capture facility (via the PrintScreen key on
Windows based systems). Before capturing your bit map you may want to right-
click on the y-axis label to hide the menu box and cursor objects so these objects
won't distract from the basic plot data. Right-clicking on the y-axis label a
second time re-enables the cursor objects.

Mark

When you left-click on the Mark tag, a square
marker is placed at the current cursor location
and a marker string is added to the plot
containing the x and y coordinates of the
cursor location. The text string will be the
same color as the active trace. If the text label
is not positioned where you want it, click on
the label and drag it to the location you want.

If you right-click on the marker string
arier properes (which is (7.675, 2.95902) in

oo - this example), a new dialog box will

square appear which allows you to change any
or all of the properties of both the trace

marker (with the left popup and edit box) and the marker string (with the right
popup and edit box). The two pictures below show the Marker and String
properties respectively that you can edit.

Note that you can have many of these Edit Marker dialog boxes open at same
time - as many as one per text string (or even more, although there is probably
little benefit to that). All these dialog boxes will be deleted automatically if the
main plot window is deleted.

< Edit Marker =1I00X) Once you select one of the 8 marker
properties, or one of the 10 string

properties, the current value of the

Delete property appears in the respective edit
E_“'”[m box. To change the property value,
inestyle

LineWidth click in the edit box, and type in a
Marker new value.

MarkerSize

Xdata

ek Note that both the Marker and the
Zdata String popups have delete as one
of the options. This is useful if you

want to add a marker without a string or a string without a marker. You may
delete all the markers you have added this way by selecting delete and then
typing all into the edit box below the popup. The same trick works for deleting
all the strings added to the figure via the Mark tag. If you want to delete all the
markers and all the strings at once choose the "Delete cursor annotations"
selection in the plt menu of the menu bar. (See below, and also note the mouse
shortcut for this function.)

) Edit Marker 100X Note that when you select the color
property, the property value is a set of

three numbers corresponding to red,
Eﬂ:ﬂtﬂ green, and blue respectively. Each
olor

S number is an intensity value and must

FontName range from zero (off) to 1.0 (full
FontSize intensity). You may change the color
FontWeight . .

o - by entering the desired rgb values.
Position When you press <Enter> the new
Lok value will be accepted and you will

String

see the marker or string change to the
new color. However since it is often
difficult to predict exactly what these
colors look like, plt provides an easier way to select new colors. Instead of left-
clicking on the rgb triple, use a right click. A new color selection box will
appear. The use of the color selection box (also called a ColorPick pseudo
object) appears below.

Vertical&lign

Menu

Left-clicking on this tag toggles the menu bar on or off. (See the description of
the menu bar below). Note that the initial state of the menu bar is off unless the
(unless 'options', '"Menu' appears in the argument list).

Right-clicking on the Menu tag
opens up a new window similar
el iincllil - | | to this one shown called the
Cursor Data Window . This
window shows the x and y
. values of all visible plot traces.
{09348 358 - The down arrows (VVVVVV)
highlighted in the middle of this
window indicate that the cursor
is currently pointing to the
200th data element of the trace
whose trace ID is "Line 1". As
you move the cursor around (by
any of the many methods) the
cursor data window will
e automatically be updated so
ARG £ A 1 i that arrows always point to the
st ac o ok il current cursor location. The
.075000 5.433874 3. : cursor index will always be
shown near the middle of the
window but you can use the scrollbar on the right side of the figure to view any
of the data values that appear on the plot.

. 400000
. 425000
. 450000
. 475000

. 575000
600000
625000

4.
4.
4.
4.
4.
L
5.
5
5
-
5.
5
5
5
5

MM A AW w W e e e

The first column heading is always "index" and the index column will contain all
the integers between 1 and n, where n is the data length of the longest visible
trace. The second column heading is always "X" which indicates that this
column contains the Xdata values of the first visible trace. The 3rd column will
contain the y values of the first visible trace and the column heading will be the
tracelD. The 4th column will again have a heading of "X" and will contain the x
data for the 2nd visible trace except (as in this example) when the x values are
the same as for the previous trace in which case the X column is omitted. In this
example all 3 traces had the same x vector so only one column is needed for it.
However if the 3 traces each had different x vectors then the column headings
would have been "index,X,Linel,X,Line2,X,Line3".

If the characters are two big or small for your taste you can adjust the size with
the fontsize popup. Click the save button to create a text file that contains the

exact text that appears in the list box (from index 1 all the way to the end of each
plotted array). The column headings will appear at the very top of the text file.

Note that if you are using subplots, some of the column headings may be blank
since the subplot traces do not use TracelDs. However if a subplot has a y-axis
label then that label will be used as column heading for the trace inside the
subplot.

Menu Bar

< plt5 M=]

Eile Edit View Insert Tools Desktop Window Help plt o

Usually you will select the desired menu with the mouse. However you may also
use the keyboard. The underlines shown in this figure and in the drop down
menus below only appear when you press the ALT key. When you press the ALT
key followed by one of the underlined characters, the respective dropdown menu
will appear. You can then select one of the dropdown menu items with the mouse
or by pressing one of the underlined characters in the dropdown menu.

<} plt5
File Edit View Insert Tools Desktop Win

One of the most useful functions of the
menu bar is Print (the last item under
the File menu). This is probably the Hew ’
easiest and most reliable way to make a QOpen... Selt
hardcopy of the plt window. Close i)

plt save
As you can see from the figure to the pit open
right, plt adds the following two items to Save Ctrl+s
the File menu: Save As..
Generate M-File...
e plt save saves the current figure Import Data...
so that that it can be opened later Save Workspace As...
(see plt open below). A dialog box Preferences..
opens allowing you to choose the Export Setup..
name of the file. A .plt extension is Eikk f e i

used for these files although in fact
they are ordinary .mat files. This
menu item is equivalent to typing
plt save at the Matlab command
prompt. Also at the command
prompt, you may type plt save filename which avoids the file
dialog box by specifying the file directly and of course the functional form
plt('save', 'filename') works also.

Print...

e plt open opens a dialog box that allows you to select a .plt figure file
that was saved with the plt save menu. The new window should look and
behave the same as the original plt window. (Note that if the original plt
window was created with a function that provided additional plotting
features to the plt window, those features will not be available after opening
the figure.) This menu item is equivalent to typing plt open at the
Matlab command prompt. Also at the command prompt, you may type
plt open filename which avoids the file dialog box by specifying the
file directly. A new window is opened containing the data that was saved.

The last menu item (plt)is
unique to plt. When you click
on this menu item you will
see these twelve submenus.

Edit line {g) Relick Mark
Edit all lines (a) Delta+Rclick Mark
Edit figure colors {f) Rclick Properties in Ypopup

b The accelerator keys for
Cursor Data Window () Relick Menu selecting one of these

Swap X/Y axes () Relick LinX submenus are shown in
Hardcopy () Rclick Lin¥ parentheses. For example to
Toggle line smoothing &) Relick "o” select the "Save figure

Celete cursor annotations (d} Delta+Rclick "o” colors" submenu using the
Set dual cursor (W) keyboard, you would first
Toggle Reposition mode (1) Relick Delta press ALT key followed by
Reposition Grid size (g) Delta+Rclick Delta the p key (to select the plt

gl menu) and finally press the s
key to select the "Save figure
colors" submenu. (You don't
have to release the ALT key before the p key is pressed if you prefer.)

Note that all but three of these submenus have some blue text after them. These
are directions for selecting the submenu action without using the menu bar
(which may be easier, especially when the menu bar is hidden). For example, the
first submenu (Edit line) contains the string Rclick Mark. This means that you
can invoke the Edit line function by right-clicking on the Mark tag inside the
menubox. The next submenu (Edit all lines) contains the string Delta+Rclick
Mark. What this means is that you can invoke this menu by first left-clicking on

the Delta (A) button and then right-clicking on the Mark button. The third
submenu (Edit figure colors) contains the string Rclick Properties in Ypopup.
This means that you should right-click on the Properties selection that appears in
the Yedit popup (that opens when you right-click on the Ycursor edit box). Of
course you won't remember these shortcuts unless you use them often, but you
can always use this menu as a reminder.

These twelve submenus are described in order below:

1.) Edit line Rclick Mark or Lclick Properties in Yedit popup

) Edit Line 1 (Line 1) _ O] x]
Line properties: Cursar propetties

To change the color or other property of
a trace or of its associated cursor, first

click on the trace that you want to
| o010 & N modify (i.e. make the trace active) and

then click on the Edit line
submenu. You will see a new figure similar to the this one.

The left side of the Edit Line dialog box controls the properties of the active
trace and the right side controls the properties of the cursor attached to that trace.
The properties that appear in both these popups are the same as those under
"Marker properties” in the Edit Marker dialog box shown above. Note that one
can edit the data plotted by selecting and editing the Xdata or Ydata line
properties. This works well for simple traces with less than a few dozen data
elements. For longer sequences you will be better off using the data editing
technique described in the data editing section. Note that (for example) if you
modify the Ydata property by removing or adding data elements that the line
will disappear until you also modify the Xdata property by removing or adding
the same number of points. This is because the line object can't be rendered
unless the lengths of the Xdata and Ydata properties are the same.

2.) Edit all lines Delta+Rclick Mark

J Edit all lines)
. =il When you select the Ed1it all

1ines submenu a dialog box such as

this will appear. When you change the
[} popup menu to select a new property,

the edit box will be updated to show the

current value of that property for the active trace just as before. However if you
then change the property value in the edit box, this property will get changed for
all the traces on the plot, not just the active trace. This is probably not
appropriate for the color property, but it may be useful for some of the other
trace properties, such as linewidth. You can also use this dialog box to make all
the cursors larger or a different shape for instance.

3.) Edit figure colors Rclick Properties in Yedit popup

When you select this submenu this
dialog box will appear which allows
5.15.15

you to change all of the figure colors

which are not accessible from the edit

lines dialog boxes described above.

) Edit figure colors =ICUX) This shows the eight items that you

can modify from this dialog box. After
Figure background selecting one of these items, the

Plot background . .

e current color of that item appears in
Axis color .

Axis color (right) the edit box below the popup as a set
Pt D of three intensity numbers

Delta cursor d d d bl
e corresponding to red, green, and blue
Grid style respectively. You may change the

color by left-clicking the edit box and
entering the desired rgb values or by right-clicking the edit box which will bring
up the color selection box described at the bottom of this page.

Note that the three property editing windows shown above for the first three
submenus may also be opened from the "Properties” selection that appears when
you right-click on the Yedit cursor. (See Data editing.)

4. Save figure colors

Changing colors inside the plt figure using the color selection box is not
permanent (i.e. those colors will be forgotten once the application is closed).
However you can make the changes permanent by selecting this submenu which
will save the current colors to the file (which we call a "color selection file").
You will find the rules that plt uses to determine the color file name in the
description of the 'ColorFile' parameter here.

When plt starts, the color for each screen element is determined as follows:

e If a color file is found, the color for all screen elements will be determined
by the file contents.

¢ If no color file exists, the colors for particular screen elements are
determined by the color parameters included in the plt function call. These
parameters are described in the Colors section.

e If such a parameter is not included in the function call, then the color for
that particular screen element will be specified by the plt default color
scheme.

These color selection files are in a consistent format so a color file generated in
one application can be used in another application by renaming the color file, or
by using the name of the desired color file explicitly with the 'ColorFile'
parameter. More detailed instructions about how to modify a color selection file
are given in the Default colors section.

5.) Cursor Data Window Rclick Menu

This submenu opens a cursor data window which is described above under the
right click action of the Menubox Menu tag.

6.) Swap X/Y axes Rclick LinX

This submenu performs the action described above under the right click action of
the Menubox LinX tag.

7.) Hardcopy Rclick LinY

This submenu menu opens a dialog box used for printing and creating screen
captures of plt figures. The use of this dialog box is described above in the
description of the menubox Print tag.

8.) Toggle line smoothing Rclick "o0"
This submenu toggles the line smoothing property of all plot traces from off to
on or visa versa. This is described in more detail here: The Cursor button group

9.) Delete cursor annotations Delta+Rclick "o"
If you have added many plot annotations (with the menubox Mark tag) you can
delete them one by one by selecting delete for the string and/or marker from the

Edit Marker window. However this would be tedious if you have had many
annotations. This submenu provides a way to delete all of them with one simple
action.

10.) Set dual cursor

The dual cursor mode allows you to simultaneously cursor two traces on the
same plot. Usually this is set up using the ' DualCur ' parameter. (see Dual
Cursor). However you may also use this menu to set the dual cursor
interactively. Simply put the cursor on the trace that you want as the dual cursor
(by clicking on it) and then select this submenu. After that the Dual Cursor will
become active on the selected trace. This submenu acts as a toggle, which means
that if the dual cursor was already enabled, it will be disabled.

11.) Toggle Reposition mode Rclick Delta

The reposition mode a key feature of plt's GUI building tool set which allows
you to move and resize screen objects with the mouse. This submenu toggles
between the normal GUI mode and the reposition mode and back. The reposition
mode is described in more detail here: GUI building with plt

12.) Reposition Grid size Delta+Rclick Delta

This submenu brings up a small auxiliary figure titled SnapTo containing two
sliders, one for controlling the x step size and the other controlling the y step size
of the GUI object repositioning mode. An example of what this figure looks like
and what the values mean can be found here: GUI building with plt

The Color Selection box

i Sl When using the "Edit Marker",

Figure background "Edit line", "Edit all lines", or

0 o o "Edit figure colors" dialog boxes

T i described above, if you right-click on

Sreem = - an edit box containing an rgb triple, the

o [100 color selection box will appear.

4 [
Biue (%) As with the rgb triples, the three sliders

15 100
BC

represent the intensity values (except
in percent) and will initially be set to

the same values that were in the edit box. You can move the sliders (or type in
new values) to give the proportion of each color that you want. Only integer
values between 0 and 100 are accepted giving you more than a million different
colors (101 cubed). As you move the sliders, the color of the marker, line, or
figure element selected is continually adjusted to reflect the slider settings. The
color of the large rectangular patch to the right of the red slider (called the
"current color patch") is also adjusted at the same time which makes it easier
especially for the smaller screen elements.

To make it easier to find the most pleasing color, the 11 by 11 grid of colors is
also updated every time a slider is moved. What this grid shows you are the
colors that result when the intensity value of the active slider is mixed with 1 of
11 different intensity values of the two inactive sliders. The active slider (i.e. the
slider that was last moved) is shown highlighted in yellow.

So for example, in the figure above, the bottom slider (blue) is active and
happens to be set to 0%. This means that all 121 squares of the grid are made up
of colors containing no blue. Each row of the grid contains a different intensity
percentage of red (0% for the bottom row, 10% for the next row, and 100% for
the top row). Likewise each column of the grid contains a different intensity
percentage of green (0% for the left column and 100% for the right column).
Thus, the upper right square in this example then would be yellow (rgb =[1 1
o).

When you see a color in the grid that you like, just click on it. The screen
element selected as well as the current color patch will instantly change to be the
same as the color you clicked on. Of course the two inactive sliders move to
show the intensity values of the color you just selected. If you can't find a better
color, you can revert to the color in effect when you right-clicked on the rgb
triple by clicking on the current color patch.

All this may sound somewhat complicated, however it is far easier to do than to
explain. Generally you can pick any of the three sliders, move it around a bit,
and you will quickly see the color you want in the grid. By the way, clicking on
the slider trough area moves the slider by 10%, so if you want to limit yourself
to the 1,331 colors formed with the intensities 0,10,20,30,...100%, then you can
see all such colors after just 10 clicks of the mouse.

P|1'(/v "‘)

Data editing

plt has the capability to modify the plotted data, either one point at a time or over
a specified range. Data entry is accomplished by entering the coordinates via the
keyboard or by using the mouse when keyboard accuracy is not required. (An
alternate method of data editing appropriate for short data sequences is described
in the Menu box section.)

Properties

The first step is to click on the trace containing the data that you
wish to edit. The second step is to right-click on the Ycursor edit
e box. (This is the edit box closest to the lower right corner of the
lange .] . .
ey figure.) When you do that, a popup menu will appear with the list
RangeT. of 13 choices shown here. The first three items in this menu, don't

really have anything to do with data editing, but this was a
convenient place to put them. When you select the first menu item
(Properties) one of three different property editing windows
will appear depending on how it is selected. When you left-click
on "Properties" a window appears which allows you to modify the
color and other properties of the currently selected line and its
cursor. If before clicking on "Properties” you enable delta cursor mode (A
button) then a property windows appears which allows you to edit all the lines at
once. This is often appropriate for the color property, but it also may be useful
for some of the other trace properties, such as linewidth. And finally, if instead
of left-clicking you right-click on "Properties" then a window appears that
allows you to edit the figure colors. This is the easiest method of accessing the
three property editing windows, although for historical reasons there are two
additional ways of opening these windows. One is via the "Colors/Lines"
selection of the menu bar and the other is via right-clicking the "Mark" tag in the
menu box. Both of these methods are mentioned in the Menu box section which
also has a full description of the three different property editing windows and
how to use them.

The second menu choice (nultiCursor) toggles the multiCursor mode which
is described here in the Cursoring section and third menu choice (xView
slider) toggles the xView slider which is described here in the Zooming and

anning section

The fourth menu choice (Cancel) is useful if you opened this popup menu
accidentally or when you want to abort an already initiated data editing
operation.

The remaining nine selections in this popup contain the actual data editing
commands. The descriptions below are written for completeness rather than
brevity so don't be scared off. The commands are intuitive, so you may be better
off skipping the descriptions at first in favor of experimentation. The nine editing
commands are divided into these three types:

The modify commands change the x or y (or both) coordinates of a
Modify single data point. When using these commands, the length of the x and
y vectors do not change.

The insert commands add a new xy data pair to the data at the current
cursor point. When using these data editing commands, the length of
the x and y vectors increase by one. The one exception to that is that

Insert 'when you attempt to add a new data pair with its y value less than the
current minimum y-axis limit, then the data at the current cursor point
is removed from the data set (i.e. the length of the x and y vectors
decrease by one).

With the range commands (as with modify) the length of the x and y
vectors remain the same. However in this case more than one data
point is changed. All the data points between the current cursor
location and the location modified during the previous data editing
command are modified so that all these points lie on a straight line

Range connecting the two end locations. For this to work, the previously
edited point and the current cursor location must both lie on the same
line. If this is not true, then the Range commands behave just like the
Modify commands described above, and you will know happened
because the cursor shape will be consistent with a Modify command.
(See cursor shapes table below).

The nine commands are also categorized into three modes identified by the

arrows next to each command as follows:

Modify1 |
Insertt |
Range1 |

Modify
Insert -
Range -

These are the three most commonly used data editing modes. As
soon as you select the editing mode, the regular data cursor
disappears and is replaced by an editing cursor with a different
shape. (See data editing cursor shapes below). Then you can grab
the edit cursor with the mouse and drag it to the desired location.
However you will only be able to move the cursor up and down
(i.e. only the y coordinate is allowed to change). Normally as soon
as you release the mouse button (after the edit cursor has been
dragged to its new location) the edit command will take effect, the
edit cursor will disappear, and the normal data cursor will reappear.
However if instead of using the normal left mouse button, you drag
the edit cursor using the right mouse button, then when you release
the mouse the edit command will take effect but the edit cursor
will remain active. This makes it easier to see the effect of the edit
and easily re-adjust if necessary. Once you are satisfied with the
edit command you can regain the normal data cursor mode by
selecting "Cancel" (the second popup option mentioned above) or
more quickly just by clicking anywhere in the plot area other than
the edit cursor itself. In addition to moving the edit cursor with the
mouse, you can also move the edit cursor more precisely by typing
a new y value into the Ycursor edit box. (You can also modify the
x coordinate by typing a new x value into the Xcursor edit box
despite the fact that you can't change the x value when using the
mouse.) After you type a value into either the x or y cursor edit
box, the edit command takes effect and the data edit mode is
immediately canceled and the original data cursor is restored (i.e.
there is no provision for a delayed exit from edit mode like you get
using the right mouse button). If you would rather stay in edit
mode until cancelled explicitly, just use one of the three commands
without any arrows after it (described below).

These three commands behave identically to the three commands
described above except for the fact that with the mouse you can
only drag the cursor left or right (i.e. only the x coordinate is
allowed to change).

When using these three commands you can use the mouse to drag
the edit cursor anywhere. As before the editing mode is cancelled

Modify |as soon as you release the mouse button (unless you used the right
Insert AMmouse button). As mentioned above, the use of the X and Y cursor
edit boxes is slightly different in that it stays in edit mode until you

Range cancel it explicitly (usually by clicking anywhere in the plot area).

The currently enabled cursor can be put into data editing mode from a program
as well. For example the command plt click Yedit 12; or its functional
formplt('click', "Yedit', 12); puts the cursor into the "modify
left/right" mode, since that is the 12th selection in the menu shown above.

Range

The usual data cursor is a plus sign or a small circle. Once you
) select one of the nine editing modes, the data cursor changes to
— one of the nine edit cursors shown in this figure. Although it
Insertes wouldn't really be necessary to have a different cursor for each
InsertT. mode, it does help you remember what mode you are currently in.
(EELNE®Y 1f you don't like the default size that plt chooses for the data edit
LEELE N IBd cursors, you can change this with a command such as:

WEDAPSN sctappdata(gef, 'CurEdit', 14). The new size will be
used the next time a cursor edit mode is selected.

Range«s

If plt was called using the Mot 10nEdit parameter, the function specified with
that parameter will be called continuously as you drag the edit cursor around.
This function may be used to create or modify text, plots or other gui objects on
the screen. Both the editz.mand pltquiv.m examples demonstrate the use
of the MotionEdit parameter. (Also see Mouse Motion Functions)

If you want to save the altered data (to a file for example) you have to get the
data from the 'xdata' and 'ydata' properties of the line handle. (Remember the line
handles are returned by the plt call.) When the user modifies any data using
these data editing functions, plt executes the user specified move cursor
callback. (See the description of the 'set', "'moveCB' function here.) The
callback routine or any other part of your application can use the 'NewData'
application property of the current figure window to determine if data has been
modified by one of the data edit commands. For example:

index = getappdata(gcf, '"NewData'); % returns the index where

xdata/ydata was modified

if index % is there any new data?
DatawWasModifiedAction(index); % yes, process the new data
setappdata(gcf, 'NewData',0); % indicate that the data was

already processed

end;

Note that the NewData property only gets set after a data edit operation is
complete, unlike the Mot 1onEd1it function which gets called as you are
dragging a cursored value to its new location. There is one additional figure
application data variable called Dedit that may also be useful for an application
using the data editing feature. The command getappdata(gcf, 'Dedit")
will return the following 9 element row vector:

'Dedit’ figure application data (row vector)
1 The CursorID associated with the edited trace

A number from 1 to 9 which identifies which data edit command is being
2 used. (This is starting from the top of the popup, so 1 indicates the
"Range" selection and 9 indicates the "Modify 1 |" selection).

3 The handle of the cursor object associated with the modified data.

For internal use. (This saves the cursor marker shape, size, and linewidth
4,5,6/so that the normal cursor can be restored when the data edit operation is
complete.)

For internal use. (This saves the position index and trace number of the
7,8 previously edited trace - information is needed for the modify range
operations.)

9 | The position index of the cursor into the edited trace

After performing a data edit operation it is likely that you will want to perform
another data edit using the same data edit command. Thus it would be nice if you
could initiate another data edit operation without having to again select one of
the nine data editing operations. In fact there is a way to do this - simply right-
click on the Xcursor edit box. This behaves similarly to what happens when you
right-click on the Ycursor edit box except you don't get the menu of data editing
choices, since it will use your previous selection. There has to be a default for
this operation in case the user right-clicks on the Xcursor edit box before doing

any other data edit operation. The default is "Modify" since this is the most
commonly used operation. It is rare to want to change this default, although it is
not difficult to do so. In fact the demo\editz.m demo program changes this
default, so refer to that example to see how it is done.

P|1'(/v "‘)

Calling sequence and line styles

This section (not including the two large tables at the end) is a good
introduction to how to use plt and the differences between plt and
the native Matlab plot.

Usually you will call plt with at least two arguments:

plt(x,y);

This plots the data in vector x along the horizontal axis and the data in vector y
along the vertical axis. x and y may be row or column vectors. plt will transpose
one of the arguments if needed to line things up, so x could be a row vector
while y was a column vector. x and y must be the same length however. If not
you will get an error message saying that the vectors must be the same length.

If y is a real vector, p1t (y) is equivalentto plt(1:1length(y),vy).

To plot more than one trace, include the x and y vectors for each trace in the
argument list. For example this command plots three traces:

plt(x1,y1,x2,y2,x3,y3)

Quite often several traces share the same x vector. In this case we can simply
repeat the x vector in the argument list, as in:

plt(x,y1,x,y2,x,y3)
or
plt(x,[yl,;y2;y3]). (ashorthand way of writing the above).

That would work only if the y1,y2,y3 were row vectors. If they were column
vectors you would need to write:

plt(x, [yl y2 y3])

You can call plt using an output argument, which will return a column vector
of trace handles. For example:

h = plt(x, [yl y2 y3])

will return a 3 by 1 column vector h of handles. h(1) of course would be the
line handle associated with the y1 trace. Most often when you type the plt
command at the command prompt you don't need to save plt's return value.
However when plt is called from a program sometimes the line handles are
needed to allow further manipulations of the plot.

If X and y are both matrices of the same size, p1t (X, Yy) will create one trace
per column.

None of this so far should come as a surprise since it is identical to
Matlab's plot command.

Some of the ways that plt and plot differ will become clear from
what follows.

With plot the data to be plotted must be passed in via the argument list.
However, you may call p1t without any arguments, allowing you to choose the
data to plot interactively.

Find out about this method here: The Workspace Plotter.

Unlike plot, plt will accept data passed in cell arrays. For example the following
two commands do the same thing:

plt(x, [yl; y2; y3])
plt(x,{yl; y2; y3})

Although in the example above, y1, y2, and y3 must be the same length so there
really isn't a big advantage for the cell array input. However, now consider these
two commands (again, these two lines are equivalent to each other):

plt(x1,yl,x2,y2,Xx3,y3)

plt({x1 x2 x3},{yl y2 y3})

With plot you must use the first form because cell arrays are not allowed. You
can't combine the arguments into vectors because they may be different lengths.
When typing in the command window the first form is probably easier anyway,
but inside a program the second form is far more convenient, especially when
the data is be read from files.

If y is a complex vector, pLlt (y) is equivalentto plt(real(y), imag(y)).
Matlab's native plot works that way too. Unlike plot however, plt treats complex
arguments this way no matter where they appear in the argument list. For
instance if a and b are both complex, plt(a, b) is equivalent to
plt(real(a),imag(a),real(b),imag(b)). (Why this doesn't work
with plot has sometimes been a mystery and an annoyance to me.)

Also like the plot command you can include any line property in the argument
list. For example:

plt(x,y, 'LinewWidth', 2) is equivalent to
set(plt(x,y), 'Linewidth', 2)

However the behaviors of plt and plot differs in that with plot these line
properties must appear after all the data vectors in the argument list. (plot gives
an error otherwise). With plt the line properties may occur in the middle of the
argument list. In that case, the line property is applied only to the lines defined
earlier in the argument list. For example:

plt(x,[yl;y2], '"Marker', 'Diamond', X, [y3;vy4]);

only sets the Marker property for the first two traces. An equivalent to the above
is:

a=plt(x, [y1;y2;y3;y4]);
set(a(1:2), 'Marker', 'Diamond');

By using cell arrays, you can set properties differently on each trace. For
example:

plt(x,[yl;y2;y3;y4], 'LineWidth', {2 2 4 2});

This would set the LineWidth of the trace associated with y3 to 4 and the other
three traces to 2. A column ({2; 2; 4; 2}) would have worked equally as well.
The number of elements in the row or column vector must identical to the
number of traces defined so far in the argument list. (so as above, traces defined
after the LineWidth parameter will just be assigned to the default LineWidth.
Note that this is not possible with plot, unless you collect the various trace
handles and use set commands to set the LineWidths as desired. (plt tries to
insulate you from this need to become familiar with handle graphics).

Two more examples:

plt(x, [y1;y2;y3;y4], 'LineStyle', {'-' ":"' '-."
'none'}),

plt(x,[yl;y2;y3], 'Marker', {'square', 'none', '+'});

This method of assigned properties works with any line property. In the two
particular line properties used above, you could have replaced 'LineStyle'
with 'Styles' and 'Marker' with "Markers' and the results would be
the same. Styles and Markers are not really line properties, however plt allows
you to use those alternate forms to allow some additional flexibility in how you
write the parameter that follows it. (For example a character array may be used
in place of the cell array.) The details of the additional flexibility provided by
using these two alternate parameters are described in the Trace properties
section.

The special plot types vertical bars, error bars, and vector fields (arrows) are
plotted with the help of auxiliary functions Pvbar, Pebar and Pquiv. The use
of these functions is described in the Auxiliary functions section.

plt vs. pltinit

Most of the code for this toolbox is broken up into these two routines:

Contains the code used to create a new plt pseudo object which
means creating a new plot axis or set of axes. This also normally

pltinit.m means creating a new figure window as well. (The only
exception to that is when the 'F1g' parameter is included in the
parameter list.)

Contains the code used to create or modify any of the remaining
plt.m pseudo objects (including cursor, grid, edit, pop, slider, image,
ColorPick, and HelpText).

From this description you might expect that since all the command examples
shown above create a new plot, that they should really be calling p1ltinit()
instead of p1t (). While this is technically true, plt recognizes from the syntax
when a new plot is being created and simply passes all of its arguments on to
pltinit. The advantage of this is that "plt" is shorter and faster to type which is
especially important when used from the command window. To create a new plot
from a script or function, it is more a matter of taste which function you use. For
a complicated gui, pltinit would be a better choice because your gui will likely
have many calls to plt as well and it will be a lot easier to see where the plots are
created if a different function call is used.

This completes the introduction. What remains in this section and in
fact all the remaining help file sections might be too long and
detailed to serve as an ideal way to learn about these parameters and
commands. Perhaps an easier way to learn how to program with plt
is to run thru all the demo programs (conveniently done with
demoplt.m) while reading the comments at the top of each example
program. The program comments may also be found next to a
screen capture of each demo program in the

Programming examples section . You will learn about nearly every plt
parameter and option this way. Then you can use what follows
merely as reference material.

Figure application data:

After a call to plt, the following information is available from the figure
application data:
(The quoted strings are case sensitive.)

getappdata(gcf, 'axis')

get(ax, 'user')

getappdata(gcf, 'cid')

getappdata(gcf, 'Lhandles')

getappdata(ax, 'Lhandles')

findobj('name', 'Abc')

findobj(gcf, 'user', 'TraceID')

findobj(gcf, 'tag', 'MenuBox')

Returns a row vector of handles of tl
plotted data. The first handle in the \
main plot. This is followed by the su
the bottom up. Finally, the last elem¢
the handle of the main plot right han

Returns the cursor ID for the axis wi
be any axis that appears in the vecto
command above.

Returns the cursor IDs for each axis,
(lower) axis and working upwards tc
axes. (There is not a cursor object as
hand axis since the main axis cursor
the right hand axis.)

Returns a list of all handles of all dat
Note that this is identical to the plt re

Each axis (including the right hand ¢
'Lhandles' application data value. Th
lines contained in that axis. The mai
exception since its Lhandles list incl
the left and right hand axis.

If the plt call includes a parameter st
"FigName', "Abc' then this com
handle of the figure window that plt
useful in programs that create multif

Various plt arguments may be used t
appearance, or contents of the Trace
occasionally you may want to make
after the plt call and this command v
by returning the handle of the Tracel

This command will return the handle
Assuming the menu box is in it's def
command such as
get(findobj(gcf, 'tag', 'M
will return a list of text objects with
"Help', 'LinX', 'LinY"', 'Gri
and 'XY<->".

findobj(gcf, 'user', 'grid")

getappdata(gcf, 'params')

getappdata(ax, 'xstr')

getappdata(ax, 'ystr')

getappdata(gcf, 'multi')

Single argument actions:

This command returns a column vec
handles of the plot grids for all the a
is just a single axis (i.e. one grid obji
equivalentto plt('grid', 0, 'g
Returns a cell array list of the param
command line. (All plt arguments ar
arguments specifying the data arrays

Returns the value that was specified
parameter when plt was called. ax r
hand axis.

Returns the value that was specified
parameter when plt was called. ax r
hand axis.

Returns a column vector of handles
render the Multi-cursor (the text objt
markers, followed by the dotted vert
cursor is not currently enabled, then
empty.

The command strings here (as with most plt commands) are not case sensitive.
So for example "plt help" and "plt HELP" are equivalent.

Displays the plt help file. You could also use the

plt help

functional form of this command: plt('help').
Alternatively, if you just want a one page list of the plt

parameters type type help plt.

plt version

Returns the plt version. Same as: p1lt('version')

Opens a dialog box allowing you to select a .plt figure
file that can be opened later using the p1t open item
in the file menu. If you want to avoid the file dialog
box add the file name as a 3rd argument

plt save

(i.e. plt save filename). The use of these plt

figure files are described in more detail in the Menu
box section. Note that this command is also available

plt open

plt close

plt show

from the file menu.

Opens a dialog box allowing you to select a .plt figure
file that was saved using the p1t save item in the
file menu. If you want to avoid the file dialog box add
the file name as a 3rd argument

(i.e. plt open filename). Note that this
command is also available from the file menu.

If a programming error causes plt to crash, you may
find it difficult to close the plt figure windows
(because they use the close request function). This
command solves the problem by closing all currently
open plt figure windows. Figure windows not created
by plt are not closed. (And of course you may also use
the functional form.)

If the current figure was created by plt, then this
command, or the equivalent functional form
plt('show'), will return a list of trace numbers
that are currently being displayed. For example if you
run the demo program "plt5.m" (which has five traces)
and then turn off traces 3 and 4 (by clicking on their
trace IDs) then this command will return [1 2 5]
showing that those three traces are currently active.
You can also use this command with an argument (the
functional form only) from a program or the command
window to set the traces you want active for the
current figure. For example after running plt5.m, the
command plt('show', 2:5) will turn off the first
trace while leaving the remaining four traces on. Note
that the TracelDs will change their appearance to
indicate which traces are enabled just as if you had
done the same operation by clicking on the trace
names in the TraceID box. To disable all traces, use
plt('show',"") and to enable all traces, use
plt('show', 'all') or plt('show',1:n)
where n is the number of traces defined.

The first two forms to the left (off or with no
argument) deletes the help text and the last form (on)

plt HelpText

recreates that help text again (which it can do by
retrieving the help text information using

plt HelpText off|getappdata(gcf, "helptext')). Help textis
plt HelpText on |uysually created by using the 'HelpText ' parameter

plt move

when the plt window is created (this is described in the
Labels and figure properties section.) (And of course
you may also use the functional form, i.e.
plt('HelpText', 'on');).

This command (which has the same effect as right-
clicking on the delta cursor button) sets the current plt
figure into its repositioning mode. This allows all gui
objects to be resized and/or repositioned using the
mouse. The new positions are displayed in the
command window. Typing p1t move a second time
cancels the repositioning mode and returns the controls
to their prior functions. Details may be found here:

GUI building with plt

P|1'(/v "‘)

GUI building with plt

Over the years I have created dozens of GUIs using Matlab, nearly all of which
involved collecting and/or viewing data and interacting with the data or data
collection process in some way, and I suspect the same is true for the GUISs that
you need to create. The first GUIs I created were quite difficult, but as I built up
my bag of tools each new program became easier and quicker to write. The key I
found was to avoid re-inventing the wheel each time and the best way to do that

was to create a series of "pseudo objects". A pseudo object is a collection of
Matlab graphics objects embedded with features commonly needed in Matlab
GUI applications. (I chose to call them pseudo objects to distinguish them from
the graphics objects supplied in the standard Matlab environment.) These pseudo
objects are combined into one file exchange submission called (for historical
reasons) plt. My primary goal for plt is to make building GUI applications in
Matlab easier, faster, and more fun while enabling you to create clearer, more
concise code that is compatible across all Matlab platforms and versions.

The two main tasks in creating a GUI application are:

1. Choosing the graphical elements and configuring the sizes and positions of
these elements.

2. Writing the code that enables these graphical elements to serve their
intended purpose.

Matlab's GUI building tool (called Guide) helps a lot with the first task but
contributes little to the second. However I've found that for all but the most
trivial applications, the second task accounts for most of the frustrations and
time spent. My strategy is to aid the second task by providing a rich set of the
pseudo objects mentioned above. It may seem like this is a tall order for these
new objects, but I hope the examples that follow will convince you that they can
impressively reduce the amount of code you need to write. The current set of
pseudo objects is merely a start. I plan to continue implementing new pseudo
objects ... hopefully many of them conceived by Matlab users such as yourself.

A parallel goal is to make it easier to learn Matlab GUI programming by

providing many well commented examples that demonstrate as many of the
pseudo object features as possible. It's easier to begin a new GUI application by
starting with an example that has at least some of the graphical features that you
need. To this end, plt includes 26 example programs covering a wide variety of
GUI features and programming techniques. New example programs have been
steadily added to the list over the years since the first version of plt, often
initiated by questions and requests sent to me by plt users. Although the standard
Matlab plotting and graphical elements are thoroughly documented, a common
complaint is that this information is spread out over thousands of pages of
Matlab documentation making it difficult to find what you are looking for. Also
it is difficult to find examples for most features. This inspired me to design the
plt help file to avoid these pitfalls by organizing plt's many features into one
coherent help file including many examples. Every question from a plt user leads
me to reexamine the documentation to see if I have described each feature and
example as completely and clearly as possible.

Although the first task mentioned above (configuring sizes and positions of
graphical elements) is not where most of the time is spent, without an
appropriate tool this could be a painstaking task. Matlab's Guide tool does
provide a reasonable solution to this problem however I found several
annoyances with this tool:

1. Guide forces me to adopt a particular programming methodology and style.
Although plt offers unique pseudo objects you are free to use all or none of
them to suit your purpose and no demands are made on your programming
style. My preferences lean towards conciseness and clarity, as you can see
from my programming examples.

2. Guide has evolved over the years and works somewhat differently in
different Matlab versions which can cause compatibility issues. I often
support my Matlab applications for use with older Matlab versions, some of
which were released even before Guide was invented.

3. I sometimes find it inconvenient that the program definition is split between
the .m and .fig files. The .fig file format can also lead to Matlab version
dependencies. (GUIs designed with plt don't depend on .fig files.)

4. And most importantly Guide was not compatible with the powerful pseudo
objects that I had created.

In addition, to the Guide compatibility issues mentioned in point 2 above, the
graphics objects themselves have changed between versions. For example the

latest Matlab version (R2014b) finally allows you to set the grid line color
independently allowing you to create far more pleasing plots. However this
won't help when you try to run your program on previous Matlab versions
(which in fact represent the majority of the user base). On the other hand, plt is
designed to work the same across all Matlab versions, so you can share your
code with colleagues running older Matlab versions. I have tested plt on most
Matlab releases dating as far back as June 2001 (Matlab 6.1) and of course it
works with Matlab's most recent R2014b version as well. You might think that
supporting older versions would limit plt's flexibility, however as you will see plt
generally meets or exceeds the flexibility available with even the latest native
Matlab plot commands (including grid lines of course).

After abandoning Guide for the above reasons, at first I simply entered position
coordinates by hand, often iterating many times to adjust controls to achieve the
desired look. But for complicated GUIs with many objects, this is too time
consuming. This led me to develop a more automated method of positioning
pseudo objects as well as native Matlab objects without using Guide. This
method is not quite as automated as Guide, but I hope you will see from the
following examples that it strikes a good balance between automation, power,
and flexibility. The basic idea was to give plt the the ability to reposition and
resize the graphical objects and to display the results in a way that allows you to
copy the positions of all your objects into your program with a single cut and
paste.

Since the pseudo objects are the key innovation that simplifies Matlab GUI
programming, let's briefly summarize the nine pseudo objects that have been
implemented so far:

e Cursor - My goal for the cursor pseudo object was to tailor plt for its role
in data exploration. The ease and responsiveness of the cursoring, panning,
and zooming operations is unmatched by any other Matlab plotting package
(at least according to reports from some plt users). Although you can create
cursor pseudo objects independently, by default a cursor object is created
for you when you define a plt pseudo object. This relieves you of the need
to know about the many details of the cursor object.

e Grid - In the latest Matlab release (R2014b) you can change the grid color

using the axis 'gridcolor’ property. However as I mentioned earlier, using
this property will give an error if you run the program on any earlier Matlab

release. If you are using any release earlier than R2014b, you can see the
problem by typing plot(rand(1,100)); grid on;. and note how the grid
lines are so overpowering it is hard to see the trace underneath. Now try
changing the grid line color to something less overwhelming by typing
set(gca, 'xcolor',[.7 .7 .7],'ycolor',[.7 .7 .7]);. Now the grid lines
look pretty nice but the tick labels become so faint you can barely see them.
(This insanity was an annoyance and embarrassment to Matlab users for at
least two decades and in fact was one of my motivations for creating the
first version of plt a decade ago). The plt grid pseudo object gives you even
more flexibility than the latest Matlab release by allowing you to select the
grid color, thickness, line style, and erase mode without affecting any other
graphic element. As with the cursor pseudo object, you will rarely need to
define a grid pseudo object explicitly since it is also created by the plt
pseudo object. The defaults are to most people's liking so you may never
need to adjust them.

plt - This can be thought of a super axis (or collection of axes). In that
respect it is similar to Matlab's plot and data is passed to plt in the same
way making simple calls to plt look the same as the call to plot (except for
the missing "0"). However unlike plot, plt also (by default anyway) creates:
a cursor pseudo object.
a grid pseudo object.
a menu box containing various plotting controls.
a TraceID box which serves both as a legend and as a way to enable
and disable individual traces.
o a menu bar containing the traditional Matlab menus

(File,Edit,View, Tools,etc) as well as a plt menu containing items

unique to plt.
The plt pseudo object integrates all these elements together in a consistent
logical manner with the defaults oriented towards the typical data
exploration needs of the most common graphical interfaces. This allows
you to take advantage of the plt features in your design even before learning
about the many ways to tailor plt to your needs. It might seem strange that I
use "plt" both as the name of this pseudo object as well as the name of the
entire toolbox, however I think you will find that you can tell which one I'm
referring to by context.

Slider - Matlab's slider is the most versatile uicontrol because of the many
ways you can change the value (dragging the slider bar, clicking the left or
right arrow, clicking the trough). Plus it is the only uicontrol whose action

O O O O

can repeat continuously as you hold down the mouse button. This allows
you to smoothly vary a parameter over a range while observing its effect.
However the slider control rarely can stand alone. At a minimum you need
a label to identify what the control is for and usually you also need a more
precise representation of the slider value than the slider bar itself provides.
A text box is often used for this purpose, although an edit box is better since
it allows a way to set the slider value precisely. It is also common to want
labels to identify the minimum and maximum values associated with the
left and right slider bar positions. Furthermore sometimes the slider value
must be restricted to be an integer or a multiple of some other factor or
other condition (such as a power of 2 for example). Also you may want to
adjust the step size for the arrows or trough or to make the steps
logarithmically spaced. These requirements mean that you usually need to
write a lot of code to make a slider useful for your application. The pseudo
slider solves this problem by integrating all the elements and options just
mentioned into one object that you can simply drop into your application
and move around as a unit. All the code you need to make it useful is
already done for you!

Edit - As mentioned above, the ability of the slider and the pseudo slider
to respond continuously as the mouse button is held down is a powerful
feature. The one drawback of these objects is that they take up quite a bit of
space. For a GUI with many controls, you may not have room to use sliders
for many of them. The edit pseudo object is the answer to such a problem.
It takes up even less space than a uicontrol edit box. It doesn't have all the
features of the pseudo slider, but you can continuously increment its value
by holding down the mouse on the right side of the object, and likewise
decrement its value on the left side. Like the pseudo slider, you can select
the increment amount as well as the min/max limits. The edit object may
also be used to contain vectors or strings. (The auto-increment features do
not apply in that case.) Usually edit objects require a label to identify the
purpose of the control. The edit pseudo object includes a label (optionally)
as an integrated feature. When you reposition the edit control, the label
moves right along with it. One less graphical object to define, size, and
position. Other advantages over the uicontrol edit box include:

Auto evaluations

More flexible formatting

More powerful callbacks

Tex interpreter support

o

O O O

o Choice of figure or axis coordinates
As an example of an Auto evaluation, consider that typing "cos(pi/6)" into
the pseudo object would set its value to 0.866025 (with fewer or more digits
depending on the format code). The last point also deserves elaboration.
Normally you will want to define the edit pseudo object in figure
coordinates (what I call a type I edit pseudo object) just as you do with a
uicontrol. However if you want to associate the object with a plot (so it
moves with the plot if it is repositioned, or if you want to create an array of
edit objects it is more convenient to use axis coordinates (i.e. a type II edit
pseudo object).

Popup - The popup pseudo object closely mimics the function of Matlab's
popup uicontrol but has these advantages:

o You can fit twice as many pseudo popups into a given space as

uicontrol popups.

o You can cycle through the popup's options without opening the popup
by right clicking on the object. When you want to see the effect of all
the possible selections, it is far faster with the pseudo popup than with
the uicontrol.

Optionally swap the role of left & right clicks (super-button mode).
Integrated label (optional).

More powerful callbacks.

Independent control of the location/appearance of the opened and
closed view of the popup.

o More flexible formatting.

o Tex interpreter support.

o Ability to open or close the popup from a program.

Of course uicontrol popups and uicontrol edit boxes may still be used and
may be preferred when you don't need any of the advantages listed above.

Image - Most of plt's features are tailored toward 2D plotting (functions of
a single variable). However plt provides two methods to plot functions of
two variables. One is to use a waterfall plot which makes use of the
auxiliary function pltwater.m. The other method is to use the Image pseudo
object. The Image pseudo object provides cursoring methods appropriate
for this object type and also includes several optional components
including:
o A color bar which serves as a legend for the z-axis values as well as
providing a method of changing the colormap used to represent the z
data.

O O O O

o Aslider (labeled 'edge') that allows you to control how wide a range
around a midpoint is used when determining the color used to
represent each array element.

o Aslider (labeled "mid'") that allows you to control the center value of
the range of values used to determine the color for each array element.

o A checkbox that allows you to control the visibility of the axis
gridlines.

o A 'view all' button, that when clicked on resets the axis limits so that
all the data is visible. A secondary feature of this button is activated by
right-clicking on it instead which zooms in on the center of the region
currently in view.

e ColorPick - Nothing is quite as individual as the colors we prefer in our
applications, and allowing the user to choose the application colors is a true
sign that the programmer cares about the user. However choosing several
colors that have to blend together in a pleasing way is not a simple matter
and providing a substandard interface for color choice can be more of a
curse than a blessing. The ColorPick pseudo object was carefully designed
to make it as easy as possible to give your application this flexibility. I've
found it is important to present the user with palettes of colors to choose
from and have the selected objects change instantly when a new choice is
made. A very simple example of the use of the ColorPick object is given in
gui2.m. A more elaborate example is the demoplt.m program which also
includes the code to save the selected colors in a setup file so that the
chosen colors remain permanent until changed again.

e HelpText - To make our GUISs as easy to use as possible, it is nice to
show help messages right on the main GUI figure. Even if the GUI is
complicated enough to need a manual, most people won't read it and even if
they do, some reminders of the basics when the program starts up can be
useful. Of course these reminders will quickly become annoying if they get
in the way or take up valuable screen area that could be better used by the
application. The HelpText pseudo object was designed to solve this need by
making it easy to format and position the help messages as well as to make
them disappear as soon as you start using the GUI. When this pseudo object
is created along with the plt pseudo object (by using the 'HelpText'
parameter), right-clicking on the menu box help tag will make the help text
reappear, although it is easy to create a dedicated button for that purpose if
you prefer.

A more complete description of these pseudo objects from a programming
perspective can be found here: Pseudo objects.

Now you are prepared to dive into the examples that follow:

A first example

Our first GUI example doesn't do any plotting or anything else useful for that
matter, so it may not present a compelling case for the GUI tools provided by plt.
However since it consists of just a few dozen lines of code it is simple enough
that you can quickly see how to use plt to arrange graphic elements inside a
figure window.

I find that it is best to start
seuds slider working on a new GUI with
f pencil and paper. Imagine the
control types and arrangement
[Popp |1 for the application and then
[slde - | sketch a mock up such as this.
Your finished application
rarely will look much like your
first sketch, but with the rapid
prototyping possible with
/ ; 37%6 x fm%o?(Matlab and plt you can quickly
iterate improvements in form,
concept and implementation.

Pjeuofe S’\'O(G‘r /DY’Q\JL‘L S/fﬂ(\"f

v)'%a /)/e

[guron

Here I have decided on 3
pseudo sliders across the top followed below by a uitable on the left and a frame
on the right containing 4 uicontrols (a popup, slider, button, and checkbox).

The bottom part of the GUI consists of two large objects for displaying lists of
numbers. The right most one is a simple text box with room to show about 10

lines of text. The left most one is a listbox which by virtue of its scroll bar can
display a far larger data set (80 lines of text in this example).

First we create the figure window. I usually start by typing "figure" in the
command window and adjust the figure size to get a first guess. In this example I
decide on 430 by 350 pixels. The menu bar is not needed for such a simple GUI
so the menu property is set to 'none'. I chose a dark blue-green for the figure
background:

function guil(inil)
figure('name', 'guil', 'menu', 'none', 'pos', [60 60 430 350], 'color',[0 .1

The next line defines the choices for the popup menu. Then we create the array
which contains the positions for the three pseudo sliders followed by a single
position which is (initially) used for all the uicontrols as well as the uitable. Note
that all three slider positions are exactly the same (in the middle of the figure).
This is easy and convenient at the moment, but means that all three sliders will
appear on top of each other. Not a problem however, as it will be easy to use the
mouse to move and resize the sliders to an appropriate position. We will use the
fourth (and last) position in this array for all the uicontrols. So of course all these
controls will also appear on top of each other, but again we will use the mouse to
move them to the desired locations.

cho = {'choice A' 'choice B' 'choice C'}; % choices for popup control
p={[.5.5];, [.5 .5]; [.5 .5]; [.2 .1 .1 .1]}; % initial positions: Slider1; Sli

Next, the three pseudo sliders and the uitable are created. @CBsli, the last
parameter of the slider call, specifies the callback - a function that will be called
when the slider value is changed. Note that we save the handles of these four
objects even though we don't really use them. (In a real GUI we would almost
always need them.)

hli = plt('slider',p{1}, 10, 'PseudoSlider 1',6@CBsli); % create the pseudo slid
h2 = plt('slider',p{2}, 60, 'PseudoSlider 2',6@CBsli);

h3 = plt('slider', p{3},800, 'PseudoSlider 3',6@CBsli);

h4 = uitable('units', 'norm', 'pos',p{4}); % create the uitable

Since the uitable hadn't been invented yet for Matlab 6, there is an alternate
version of guil.m in the demo folder called guilv6.m where this uitable is
replaced by a radio button. Of course these two objects don't serve the same
function, but since we aren't worried yet about functionality with this example,
this is not a problem.

Next, let's create all seven uicontrols in a single line while collecting the handles
in a variable named "h". (A long variable name I know ...) The spaces after the
"h =" are there so that the property values (style, string, and callback) in the
following three lines line up under the respective uicontrol command. This
makes it easier to follow what is going on.

h = [uicontrol uicontrol uicontrol uicontrol uicontrol uico
set(h, {'style'}, {'frame' ;'popup'; 'slider';'pushb' ;'checkbox';'lis
{'string'}, {'framel'; cho ; 'slider';'buttoni'; 'checkoo1l'; "'
{ 'callb'}, {"' ; @CBpop; @CBsli ;@CBpush ; @CBcheck ;'

'"backgr',[.5 1 1], 'units', 'norm', 'pos"', p{4});

Finally we save all 11 handles in the figure user data so the callbacks can easily
find them (h1,h2,h3,h4 followed by the seven uicontrols we just created). This
method works fine for such a simple program, but in the next example we will
see the advantages of using a structure for this purpose instead of an array. We
also execute the callback function to initialize the random data tables:

set(gcf, 'user',[h1 h2 h3 h4 h]); CBsli; % save the handles and execute the slider call

That's it for the main function, just 14 lines of code! (Although we will add a
few more lines later.) We finish up by writing the control callbacks. The first
three are just stubs to remind us to eventually put some useful action there. The
last one (the slider callback) is the only one that does anything, which is to
update the data tables with new random data. The reason the random numbers
are in the exponent is to create numbers with a widely varying magnitude so that
the table looks more interesting. (The same random numbers get put into both
the textbox and the listbox). Note that the random numbers are converted to
strings using "prin" a substitute for "sprintf" that includes features commonly
needed in GUI programming. (prin.m and its documentation prin.pdf are
included with plt.)

function CBpop(a,b) % popup callback -------------
disp('popup callback');

function CBcheck(a,b) % checkbox callback ---------
disp('checkbox callback');

function CBpush(a,b) % button callback -------------
disp('pushbutton callback');

function CBsli(a,b) % slider callback
h = get(gcf, 'user'); % get the object handles
t = 1e20./A(rand(3,80))/1e6; % generate the random data
set(h(10:11), 'fontname', 'courier’', ... % convert random data to a cell array
'string', prin('3{%6VvV }~, ', t)); % of strings for the listbox and the textbox

set(h(4), 'data',100*rand(3,2)); % more random data for the uitable

<} Figure 1: guil

Now that we are done with the coding, start the
GUI by typing gui1 in the command window.
The figure window on the left will appear. As
we mentioned above, the uitable and all seven
o [= uicontrols are on top of each other near the
lower left corner, so we only see the last one.
Likewise all three pseudo sliders are also on top
of each other in the middle of the figure. Now its
time to fix this problem. Type p1t move in the
command window to enable the mouse driven repositioning mode.

<} Figure 1: guil

The graphical objects inside the current figure
are grayed out to indicate that the repositioning
mode is active. Now we can:

* left-click, hold, and drag to move an
object.

* right-click, hold and drag to resizes an
object.

* Double click to open an object's property

inspector window.

At the stage shown here we at least have moved and resized all the objects so we
can see all the individual items, none of them overlap, and they are at least close
to the positions we outlined in our sketch.

I notice that the frame is too bright since I intended it to be a subtle grouping.
One way to adjust this is by typing commands into the command window. After
clicking on an object (in repositioning mode) a variable called "hhh" is added to
the base workspace containing the object's handle. So now I can experiment with
colors or other properties by typing commands such as:

set(hhh, 'backgr',[1 1 2]/6, 'foregr',[1 1 1]/2);.

Once I get the look I want I can copy and paste the command from the command

window into the program (right before the line that saves the handles to the
figure userdata):

set(h(1), "backgr',[1 1 2]/6, 'foregr',[1 1 1]/2);.

Note that I changed the "hhh" to h(1) before inserting the line into the program.
A second method for doing this (instead of typing the commands in the
command window) is to double click on the object which will bring up the
property inspector for that object. Then as you change the property values in the
inspector you will immediately see the effect on the GUI. (The second method is
certainly easier if you don't know the exact property names for the objects you
are working with.)

<} Figure 1: guil

With a little more rearranging we finally get the

look we are aiming for as shown here. Note that
the controls are still grayed out since the
repositioning mode is still active. One thing that
you will notice while repositioning objects is
that moving the frame also moves all the objects
inside the frame. Unless you have a very old
version of Matlab you may also use a uitable to
allow this grouping effect. The main advantage
of the uitable is that you can optionally specify a label for the grouping that will
appear along the top edge. (The second example demonstrates this.)

Before exiting the program or canceling the repositioning mode click on each of
the graphical objects once in the order that you created them in the program (left
to right and top to bottom in the GUI). As you are clicking each item, plt will be
displaying the positions of the objects in the command window. When you are
done the command window will contain something similar to this:

uic: 207 .540 .500 .440 .280; % framel

uic: 206 .680 .710 .170 .050; % choice A

uic: 205 .570 .610 .380 .060; % slider

uic: 204 .570 .520 .170 .060; % buttoni

uic: 203 .780 .520 .170 .060; % checkoo1l

uic: 202 .020 .050 .480 .400; % 1.79e9 8.4e-6 2.5el12
uic: 201 .540 .050 .440 .400; % 1.79e9 8.4e-6 2.5el12
sli: 401 .020 .920 .300; % PseudoSlider 1

sli: 406 .350 .920 .300; % PseudoSlider 2
sli: 411 .680 .920 .300; % PseudoSlider 3
uit: 208 .020 .500 .480 .280; % uitable

The first column is a three letter identifier for the object type. The native Matlab
types - uicontrol, uitable, uipanel, axis, and text are identified as uic, uit, uip, axi,
txt respectively and plt's pseudo objects are identified as sli, edi, pop, and xy. (xy
refers to elements created by the cursor and plot pseudo objects.) The next
column is a unique integer associated with the object. We won't need that now,
but example 2 will show how that is used. The next four columns (or three
columns for the pseudo sliders) specify the size and position of each object in
normalized units. At the end of the line, the object type or string property of the
object is included as a comment to make it clear which object the line refers to.

plt(-, 16 ,@CBsl1);
plt({2 ,@CBsl1);
plt({3 ,@CBsl1);
uitable(‘ ,pial);

rol -uicontrol uicontrol uicontrol uicontrol uicontrol uicontroll;

;cho ; ; : ;
; @CBpop; @CBsli - ;@CBpush - ; @CBcheck ; : .
plal});

¥; CBsii;

Now we are going to make the hard work we did to reposition the controls
permanent. First cut and paste the 11 lines of coordinates from the command
window (shown above in blue) directly into the guil.m source code.

Then we fix up the 11
imported lines by deleting
everything except the
coordinates and
comments, and adding
brackets as appropriate.
I've also made slight
changes to the comments
for clarity. I find it handy to turn on my editor's keystroke recording while fixing
up the first line. Then I can replay this record to fix up the remaining ten lines by
hitting the "play macro" button ten times. Most editors have this feature ... but
even if you do each line manually, it's not a big deal.

Finally, in this line where
we are setting the
position of all seven
uicontrols to the same value ... we have to change that (as shown here) so that
the last seven entries of the position array are used in sequence.

— e RO Hit save on your editor, close the guil
figure window, type "guil" in the
. . e command window to restart it ... and as we
o AT =3 hoped the GUI appears just as we had
organized it. Try expanding the size of the

_ figure window and note how all the objects
= . e e s Ml orow in proportion to the figure size. This

Z_.5ell fhoaliefiis
oodlia=n §.3el2

25 s ciiec ee ames oo f| is because we used normalized coordinates

== = We== == o= N throughout. If you want to convert this

i ; GUI to pixel coordinates, enter

repositioning mode, type

set(findobj(gcf), 'units', 'pix'), and then click on every graphics object,
again in the same order as they are defined. Again, cut and paste the coordinates
(which now are integer pixels) into the program as we did before. Also remove
the two instances of 'units', 'norm' (since pixels is the default when the units
aren't specified). When you run it, the GUI will at first look the same, but when

you stretch the figure size, all the objects will stay exactly the same size in the

same position, thus creating empty space inside the figure. Generally you will
stick with either pixels or normalized coordinates, although you can mix them if
it suits your purposes.

This concludes our example, although if this was a real GUI you would not
likely be satisfied yet. But using the methods we just demonstrated you will be
able to iterate until you are satisfied with the control types and positions.

A second example

Now that we have covered most of the basic concepts and techniques, its time to
explore the true power of plt by reviewing the design of a real GUI in one of the
application areas that Matlab was designed for. The application I have chosen is
the display and analysis of the classical analog filters. Granted this is not a
particularly novel idea as it probably has been done before in Matlab and other
languages, but nonetheless it serves various educational and practical needs and
there is always room to apply our own slant to the project. I'll start out with a
relatively modest set of goals:

e Display the magnitude frequency response for the five "classical”" analog
filters (Butterworth, Bessel, Chebyshev type 1 & 2, and Elliptic). The user
should be able to easily select which of these filters to display, as well as
allowing all of them (or any subset) to be plotted at the same time.

¢ Interactive selection of the filter order and type (lowpass, highpass,
bandpass, stopband).

¢ Interactive selection of the number of decades to plot as well as the
frequency resolution.

e Both numerical entry and slider control of cutoff frequencies and pass/stop
band ripple.

e Cursors should be provided which allow for the easy readout of the
frequency response at any point as well as delta readouts to verify stop band
and pass band ripples. Peak finding should be provided as well as the ability
to annotate the plot with text and markers to document features of interest.

As is my habit, I start with a sketch to clarify my thoughts. I decide to use an
array of four pseudo sliders along the top to control the continuously adjustable
parameters (edge frequencies & ripple) The four remaining filter and display
parameters are grouped to the left of the sliders inside a uipanel unimaginatively
labeled "Parameters". The Trace IDs to the left of that will be named after the
classical filter types and be used to select which filters to display. The plot and
the cursor controls and readouts along the bottom edge are the standard ones
created by the plt pseudo object.

F) | ;_..-—-— PSFud?n ~g|{:fi":q:§ ‘:'_—"‘_\

S | p— - I RPN \—g——

. FGFJ’;“ # o decdes b ri i:«h'. 5.b. r,'rpm C»'Tugf fr‘ni 2 ! Frey.
froce | | Tipe g peots | (P2 O0PT 122 T[0T | ok pass)

B 5 B e

;Rwuéhf{. /

g P@EP*NSé
' PLOHT'

T o Culser W —— .

Ok ... it's time to start writing code. First I have to come up with some first guess
for the object positions, and then I define the choices for filter type and number
of points to display:

function gui2()
p={[.4 .3 .5 .5];, % plotposition
[.2 .5 .1 .2]; % uipanel position: Parameters
[.2 .5 .1 .2]; % edit position: filter order
[.2 .5 .1 .2]; % popup position: filter type
[.2 .5 .1 .2]; % popup position: # of decades
[.2 .5 .1 .2]; % popup; position: # of points
2 . ;% slider position: Passband ripple
2 .2 % slid ition: Passband rippl
[.2 .2 1; % slider position: Stopband ripple
2 . ;% slider position: Cutoff frequenc
2 .2 % slid ition: Cutoff f y
2 . ; % slider position: frequenc
2 .2 % slid ition: f y 2

typ = {'low pass' 'high pass' 'band pass' 'stop band'}; pts = 100*[1

So how good are my guesses? Look at the first screen shot below to find out.
Clearly not so good. The plot is way too small compared to my sketch. All the

pseudo sliders are on top of each other ... and they are near the bottom instead of
near the top as shown in the sketch. Plus all the pseudo popups and edit objects
are also on top of each other. But as you will see, this will not be a problem at
all. In fact, it would be a waste of time to spend more than a minute coming up
with the initial guess. Ok, now it is time to create the plotting pseudo object
(figure, axis, cursor, grid, traces, etc):

S.tr = plt(0,zeros(1,5), 'Options', 'LogX', 'Ylim',6[-80 10], ...
'TraceID', {'butter' 'bessel' 'chebyl' 'cheby2' 'elliptic'}, .
'xy',p{1}, 'LabelX', 'radians/sec', 'LabelY', 'dB');

The 'xy' parameter is used to position the plot within the figure window
(although you will soon learn that this parameter can do far more than that). The
data to be plotted for all 5 traces is defined in the plt call (as it must), but notice
that each trace just contains the single point (0,0). When calling plt from the
command line, you almost always include the actual plot data in the argument
list, however in a GUI more often than not the data supplied is just a place
holder. The real data is loaded later (in the callback in this example) by using the
trace handles returned by plt. Note that we save these handles in s. tr (a 1x5
array). S is the structure where we will store the handles of all the objects we
define in the GUI. The remaining plt parameters should be reasonably self
explanatory. Next we create the uipanel and the four pseudo objects that we will
put inside it:

uipanel('units', 'norm', 'title', 'Parameters', 'backgr', get(gcf, 'color'),
'pos',p{2} , 'high',[.4 .4 .4],'foregr',[.4 .4 .4]);

S.n = plt('edit', p{3} ,[6 1 25], 'callbk',@clb, 'label',{'Order:"' .0
S.typ = plt('pop', p{4} ,typ, 'callbk',@clb, 'swap');

S.dec = plt('pop', p{5} ,1:5,'callbk',@clb, 'index', 3, 'label', 'Decade
S.pts = plt('pop', p{6} ,pts, 'callbk',@clb, 'index', 2, 'label', 'Points

For the uipanel, I set the background color to be the same as the figure color to
give it a transparent look. For both the border outline and the text label of the
uipanel I used light grey (rgb = .4 .4 .4). The uipanel wasn't invented yet for
Matlab 6, so there is an alternate version of gui2.m called gui2v6.m in the demo
folder where this uipanel was replaced by an axis. Note that the tag property of
the axis was set to 'frame'. This is to tell plt that moving the axis in repositioning
mode should also move all the objects inside it (even objects not children of the
axis).

The [6 1 25] parameter of the pseudo edit object means that its initial value will
be six with min/max limits of 1 and 25. The string 'Order’ is used as a label for
the edit object, and the ".05" tells it how much space to allocate for the label (in
normalized coordinates). The parameters for the three pseudo popup objects are
probably more obvious, but if not, consult the Pseudo objects page. Next we
create the pseudo sliders:

S.Rp = plt('slider',p{7} ,[2 .01 9], 'Passband ripple', @clb);
S.Rs = plt('slider',p{8} ,[40 10 120], 'Stopband ripple', @clb);
S.wWn = plt('slider',p{9} ,[.02 .001 1], 'Cutoff frequency',6@clb,5, '%4
S.Wm = plt('slider',6p{10},[.2 .001 1], 'frequency 2', @clb,5, '%4

The [2 .01 9] on the first slider has the same meaning as the similar pseudo edit
parameter mentioned above - i.e. 2 is the initial value with min/max limits of .01
and 9. The @clb specifies the callback function. (Note that same callback
function is used for all the controls.) The "5" after the callback function indicates
that the slider will move logarithmically (so for example the slider will move the
same number of pixels going from .01 to .1 as it does when changing from .1 to
1. The final parameter '%4.3f 6 2' is shorthand for '%4.3f %6v %2v' and
specifies the display format for the min value, current value, and max value
respectively. Now we have just a few more lines left to complete the gui2.m
function:

set(gcf, 'user',S);
clb;
% end function gui2

The first line saves the handle structure in the figure user data where the callback
function can easily retrieve it. The next line (the last of the gui2 function)
executes the callback function to initialize the display to agree with the initial
values of the controls. After just 17 lines of code, we're finished writing the main
line function, plus 10 more lines for our initial guess for the control positions.
But now the real work begins - the callback function that makes the GUI come
alive:

function clb() % callback function for all objects;
S = get(gcf, 'user'); % get handle structure
ty = plt('pop',S.typ); % get filter type index

t = {"low' 'high' 'bandpass' 'stop'}; t = t{ty}; % get filter type name

N = plt('edit',S.n); % get filter order

dec = plt('pop',S.dec); % get number of decades
pts = str2num(get(S.pts, 'string')); % get # of points to plot
X = logspace(-dec,0,pts); W = X*1i; % X-axis data (radians/se

First we pick up the filter parameters that are inside the uipanel (filter type,
order, number of points, number of decades). You might wonder why I seem to
repeat myself by defining the filter types again since it would seem more logical
to simply get the filter type with get(s.typ, 'string'). That command would
retrieve one of the following strings:

{'low pass' 'high pass' 'band pass' 'stop band'}, but the strings accepted by the
Matlab filter functions are slightly different: {"low' 'high' 'bandpass' 'stop'}. It
would have been much easier just to use the strings that Matlab requires for the
popup control, but I was too picky about the look of the popup control to use
those somewhat inconsistent strings. Finally the logspace command generates
the requested number of points logarithmically spaced between .001 and 1 (for
the 3 decades example). W is this same vector on the imaginary axis, which is
used with polyval to compute the frequency response function.

Wn = plt('slider',S.wn); % get filter freq

Rp = plt('slider',S.Rp); % get passband ripple

Rs = plt('slider',S.Rs); Rs2 = max(Rp+.1,Rs); % getstopband ripple (must be >"

if ty>2 Wn = [Wn plt('slider',S.wm)]; % get frequency 2
plt('slider',S.Wm, 'visON'); % make frequency 2 slider visible

else plt('slider',S.Wm, 'visOFF"); % make frequency 2 slider invisib

end;

Next we pick up the filter parameters from the four pseudo sliders. Note that for
the last two filter types (bandpass and stopband) we need the second frequency
slider ("frequency 2") and so this slider is only visible when one of those filter
types is selected.

[B,A] = butter(N,Wn,t,'s"); H{1} = polyval(B,W)./polyval(A,W);
[B,A] = besself(N,Wn(1)); H{2} = polyval(B,W)./polyval(A,W);
[B,A] = chebyl1(N,Rp,Wn,t,"'s"); H{3} = polyval(B,W)./polyval(A,W);
[B,A] = cheby2(N,Rs,Wn,t,"'s"'); H{4} = polyval(B,W)./polyval(A,W);
[B,A] = ellip(N,Rp,Rs2,Wn,t,"'s"'); H{5} = polyval(B,W)./polyval(A,W);

if ty~=1 H{2}=H{2}+NaN; end; % bessel filter only applicable for low pass

Then we use the Matlab classical filter functions to compute the numerator and
denominator s-plane polynomials (B,A) and compute the frequency response
using polyval. Although it would have been slightly shorter to use fregs() instead
of polyval(), I didn't do that since fregs is part of a toolbox that some users will
not have. If a filter type other than low pass is selected, the last line changes the
Bessel transfer function to "NaN" so that the trace will not appear on the plot.
(The Bessel filter is only defined for low pass.)

for k=1:5 set(S.tr(k), 'x',X,"'y',20*1og10(abs(H{k}))); end; % set trace data
plt('cursor', -1, 'xlim',X([1 end])); % set Xaxis lim
% end function clb

Then we use the absolute value function to compute the magnitude of the

frequency response, and convert to dB (20*log10) before placing the result in

the y-axis property of the 5 traces. Finally to set the x-axis limits in case they

have changed (which happens when the callback is in response to the "number of
gy ==rg| decades" control).

Finally we are done with
the initial coding and we
can try it out. Typing
"gui2" to start the
program brings up this
figure. Although all the
controls are there as
promised, they are not
anywhere close to being
S - in the right place, but it
. will take only a few
minutes to fix this. Begin
el | by entering
"repositioning mode" by
right-clicking on the delta button (or if you prefer, by typing p1t move.) Then as I
described in the previous example, use a left click and drag to move the objects
around and a right click and drag to resize them.

D

Foints: 100

StaptEn R e
20

PesstEn Hppe

10|

CUtatfifregueney, 0]

. con I g 2 pOSitiOHing, but it's

B] still don't have the final
close. The uipanel
contains the controls it
should and the other
objects are also at least
in the vicinity of where
they should be. Note that
once objects are placed
inside the uipanel,
moving the uipanel will
also move all the objects
inside it. After a few
more tweaks, we will

lis

butter _

have at least our first cut

positioning. Before closing this figure it is important to remember to left-click
once on every object, in the order that they were created in our program. As we
are doing this, the text below will appear in the command window:

Xy
uip:
edi:
pop:
pop:
pop:
sli:
sli:
sli:
sli:

213
211
102
103
104
401
406
411
416

.130
.100
.165
.110
.310
. 287
.350
.510
.670
.830

.105
.885
.935
.710
. 750
.710
.946
.946
.946
.946

.840
.240
.040
.100
.020
.054
.150
.150
.150
.150

.760;
.110;
.030;
.200;
.200;
.200;

.
14
.
14

.
14

%
%
%
%
%
%
%
%
%
%

axes
uipanel

6
band pass
3
200
Passband ripple
Stopband ripple
Cutoff frequency
frequency 2

Then
as

=
(=
[N
—
—

We could fix up the brackets and
comments line by line as we did
in the previous example, however
since my editor has a column
select mode (as pretty much
every programmers editor does) I
find it easier to block delete the
old coordinates (our rough first
guess) and then do a block move
(as shown by the red arrow) the
new coordinates into the blank
array.

[P PR R — Y
L

We're done with the repositioning step, so we hit save in our editor, restart the
application and we should see a figure similar to the one below.

Now we can play with Busor [
all the controls and make (SRR
sure everything is
behaving as we
imagined. Not bad
considering we've
written a non-trivial GUI
applications involving
non-trivial filter
computations by writing
only 51 lines of code.
(Fewer if you don't count
the automatically
generated table of

B Passhand ripple Stopband ripple Cutoft frequency fregue
3
01 3 all1o [ap 1z0f o001 [g9 1Qooo [g
4 B K T4 G K

radians/sec

[_ o] x|

ncy 2

15 1
r

10

9 -
butter

numbers that specify the

object positions.) It's the power of the pseudo objects that allows the program to

be written so quickly and concisely.

Of course what nearly always happens the first time you get to experiment with
your GUI is that you will have some new ideas:

¢ Perhaps this isn't the most convenient set of controls. Would it be more
useful to have fewer controls, more controls, ... or just different controls?
e Even if the controls seem appropriate, perhaps it would be more esthetically

pleasing to rearrange and resize them?

e Do we have features that we don't really need? Or can we add useful
features without making the GUI too complicated?
e Can we rearrange or refactor the code to make it easier to understand and

adapt?

Indeed when I got to this stage of testing the application I did have a few

enhancement ideas:

1. I was curious (mostly for the elliptic filter) how the width of the transition
band (the space between the passband and the stopband) varied as the filter
order changed as well as the four slider parameters. Could I define such a
measure, figure out how to compute it and find a place on the GUI to

display it?

2. My second idea was to allow the user to control at least some aspect of the
color choices used in the application. Actually I don't think such a simple
application like this really needs this flexibility, but my ulterior motive was
to showcase the ColorPick pseudo object and how easy it is to add to your
GUI and how easy it is to select the color you find most pleasing for any
display element.

3. What does the phase response of these filters look like? Could I add a
display of the phase response without cluttering up the plot or obscuring the
magnitude response (which is still the primary interest).

4. It would be nice if whenever we made a change to the figure size/position
or the color selection, that these changes would be recorded so that the
application looks the same the next time it is restarted. While we are at it,
we might as well remember the state of the eight filter parameters (shown
above the plot) so that on start up, the figure looks identical to the way it
was when it was shut down.

5. Finally lets add a very brief set of help messages to allow a new user of the
program to get started without having to consult any help files or manuals.
The most important consideration should be that the help messages are not
distracting in any way to the user who is already familiar with the help
information presented.

These enhancements turned out to be fairly easy to implement. You can look at
the final code which includes these enhancements (gui2.m in the plt\demo
folder) or read on to find out more about the process.

1.) Adding a multi-line text string (elliptic transition ratio)

Bl For alow pass filter, I characterized the transition width in
Rl terms of the ratio of these two frequencies:

* The frequency where the stop band spec is first achieved
* divided by the last frequency where the passband spec is

still achieved
For a high pass filter, the ratio is:

* The frequency where the pass band spec is first achieved

* divided by the last frequency where the stopband spec is still achieved

I added an 11th line to the position array at the beginning of the program, to
define the location for the new text object. Initially it was just a wild guess as
usual which was refined using the repositioning mode:

[-.09 .650 1; % text position: elliptic transition ratio
The text object was created with this line (added after the slider definitions):
S.etr = text(0,0,"'"', 'pos',p{11}, "units', "'norm', "horiz', 'center', 'color

Note that the string to display was set to null, because the actual string to display
will be set in the callback function as follows:

h = find(get(S.tr(5),'y"') < -Rs2); % find indices where
if isempty(h) 0; % stopband specifica
elseif (ty-2)*(ty-3) X(h(1))/Wn(1); % computation for lo
else h = find(diff([h inf])>1); h = Wn(1)/X(h(1)); % computation for hi

end;

>0 T
I

set(S.etr, 'string', prin('Elliptic ~, transition ~, ratio: ~, %5v',h));

This last line takes advantage of prin's cell array delimiter feature to create the
multi-line string used to display the elliptic transition ratio in the small space
available on the left side of the plot. To learn more about prin and the %v format
used here, check out the Auxiliary functions.

2.) Selecting colors

This was one of the simplest of the five enhancements requiring just the three
extra lines shown below. I decided to enable color adjustment of just the pseudo
sliders (the most prominent controls), although it would be easy to extend this to
other graphic elements. In this figure I have changed the background color of the
sliders from its default gray to orange. I encourage you to play around with this
ColorPick figure. (Just right-click on any of gui2's pseudo sliders to bring up
ColorPick.) If you have ever dealt with the frustrations of assigning screen
colors, I think you will be pleasantly surprised about how easy it can be. Also
you can read about the ColorPick details near the bottom of this page: Pseudo

objects

The first line
AEE (below) gets puts
ncy 2
: :
I

associated with
pseudo sliders into
"h". Then the 5th

-} Color Pick H=E3).

Paszhand ripple Stophband ripple Cutoff frequency freque the handles Of au
gl ¥ a0 40 120 9 0.001 I3.E1e—3 100001 | 02950 .
y ol « ol « s B the objects

Red (%) element of each
0[S 100 3 slider is removed,
4 3 | . . .
_ since that is the edit
Green (%)] . .
o [| 10 - box porthn which
y b | — generally is set to a

T contrasting color.
o [Ta | 100 The second line
- .] assigns the
ColorPick object as
the buttondown
function (the action
associated with right clicking on the pseudo slider). The third line is necessary
to tell ColorPick which property of these objects should be adjusted when a new
color is chosen (the background color in this example).

h = getappdata(gcf, 'sli'); h(5:5:end) = [];
set(h, 'buttondown', 'plt ColorPick;");
for k = 1:1ength(h) setappdata(h(k), 'm', {'backgr' h}); end;

3.) Linking traces (adding the phase display)

To add the phase display, the most important change is in the callback function.
Before we set trace data for 5 traces, but now we must set trace data for 10 traces
(the first five for magnitude and the last five for phase):

for k=1:5 % set trace data
set(S.tr([k k+5]), 'x"',X,{'y'},{20*1logl0(abs(H{k})); angle(H{k})*180/
end;

Then we just need to increase the data array defining the traces in the plt call
from 5 to 10, specify that the last 5 traces should be on the right hand axis ... and
we would be done. However then we would need 10 TraceIDs up there as well. I

didn't want that because then to enable or disable the trace for the cheby1 filter
(for example), I would have to click on two TracelD tags. Not so convenient.
Also by default, ten different colors would be chosen for the ten traces. This
would make it more difficult to tell which phase trace was associated with which
magnitude trace. Both these problems are fixable of course:

c=[010; 101, 011; 10 0; .2 .6 1]; % trace colors
1bl = {'dB' [blanks(70) 'Phase \circ']}; % y-axis labels: {left, right}

The first line above defines the trace colors that also happen to be the default
colors normally used for the first five traces. Only we are going to use them
below for both the first five traces as well as for the last five traces. The next line
defines the y-axis labels for both the left axis (magnitude response in dB) and for
the right axis (phase response in degrees). Note the Tex command "\circ" in the
right axis which inserts a small circle (the degree symbol) into the label. The 70
blanks that are inserted in front of the right hand label is used to push the label
up towards the top of the display where the phase information will be plotted.
And finally we have to fix up the main plt call:

S.tr = plt(0,zeros(1,10), 'Right',6:10, 'Options', "LogX', ...
'DualCur', -5, 'TraceID', {'butter' 'bessel', 'chebyl' ‘'cheby2'
'Ylim',{[-90 60] [-1000 200]}, 'LabelX"', 'radians/sec', 'LabelY"',.
'TIDcback', "t=plt("show"); t=t(find(t<6)); plt("show",[t t+5])
'xy',p{1}, 'TraceC', [c;c], '+Ytick',6 -140:20:0, '-Ytick',[-180 0 1

Some of the parameter changes in the plt call were already mentioned, but some
others merit mention:

e The 'DualCur' parameter with minus five as an argument tells plt that the
second trace number that should be cursored is offset from the first one by
five. This means for example, if you click on trace 2, not only will a cursor
appear on trace 2, but trace 7 will also have a cursor. (And each cursor will
have a separate readout edit box as well.)

e The 'Ylim' parameter now includes two sets of y limits. As with the
'Label Y' command, the first entry is for the left axis and the second is for
the right axis. The limits have been chosen to position the magnitude
response on the lower portion of the graph and the phase response on the
upper portion.

e The '+Ytick' and '-Ytick' parameters specify the tick marks to be used on

the left and right hand axis (respectively). We don't technically need these
parameters, but it looks better to include tick marks only in the area where
the data can be located.

e The addition of the "TIDcback' parameter is perhaps the most interesting.
This defines a callback function that is executed every time you click on
any one of the TracelD text strings. Here, the plt('show') function (see
"Single argument actions" near the end of this page) is used to enable only
those phase traces that correspond to magnitude traces that are also enabled.

4.) Saving/restoring the GUI state using a configuration file

Before the call to plt, let's choose a file name and path for saving the
configuration data: sS.cfg = [which(mfilename) 'at'];

Next let's add a new function, called cfg which saves the current configuration to
the file:

function cfg()

S = get(gcf, 'user'),; sli = findobj(gcf, 'style', 'slider');

cf = { plt('edit',S.n); plt('pop',S.typ);
plt('pop',S.dec); plt('pop',S.pts);
plt('slider',S.Rp); plt('slider',S.Rs);
plt('slider',S.Wn); plt('slider',S.Wm);
get(sli(1), 'backgr'); get(gcf, 'pos') 1,

save(S.cfg, 'cf');

Then right before we initialize the plot, we load the configuration file if it exists
and set the GUI elements to agree with the data in the file:

if exist(S.cfg) load(S.cfg);
plt('edit',S.n, 'value', cf{1}); plt('pop',S.typ, 'ind
plt('pop',S.pts, 'index',cf{3}); plt('pop',S.dec, 'ind
plt('slider',S.Rp, 'set',cf{5}); plt('slider',S.Rs, 'si
plt('slider',S.Wn, 'set',cf{7}); plt('slider',S.Wm, 's:
set(h, 'background', cf{9}); set(gcf, 'position', cf{1
end;

And finally we add this parameter to the p1t call:

'closeReq', @cfg

This instructs plt to call the function that saves the configuration data when the
user closes the figure window to exit the application.

5.) Adding temporary user help message

The HelpText pseudo object is ideal for
this task since it provides a mechanism
for removing the messages once you start
using the program. To define the help text
and make it visible on the screen, these
three lines were added to the end of the
main gui2 routine:

_o

10

Butter

htxt = {'Select the filter order & type'

'in the parameter box above.' ''
'Vary the ripple & frequency'
'parameters using the sliders.' .6+.621i};

plt('HelpText', 'on',htxt); % show help text

Note that we have defined a help message consisting of five lines of text (with
the middle line is blank). The complex number at the end specifies the position
relative to the main axis where we want the help text to appear. The real part
specifies the horizontal position and the imaginary part specifies the vertical
position (in normalized units). And lastly, this line was added to the and of the
callback function (clb):

plt('HelpText', 'off');

That line insures that as soon as the user starts doing anything with the program,

the HelpText will disappear insuring that it does not become a distraction.

This concludes our discussion of the gui2 example. Although it might seem like
coding this example was a lot of work, only about 85 lines of code were needed
to implement a fairly complex set of display and computational requirements.
GUI programming is notorious for its complexity, and I believe that if you tried
to implement a this application in other programming languages you would be
looking at a far larger effort with source code running into the many hundreds of
lines. I would like to be able to report how long the program would be in Matlab
using GUIDE (without using plt), so I would be thrilled if one of the guide
experts out there would take up this challenge by implementing the original five
goals of gui2 as well as the five enhancements. If you manage to do this, I would
gladly include your GUI (with credit of course) to contrast the Guide
programming style with the one I present here.

To further your education of GUI programming with plt, I especially recommend
reviewing the p1ltsq.m application if you are interested in moving plots (i.e. real-
time updating). Also the curves.m, editz.m, pltmap.m, and winplt.m

applications are worth reviewing since they each have a fairly rich GUI design
with lots of opportunities for using various plt features in interesting ways.

SnapTo resolution

You may have noticed that in repositioning mode, the objects when dragged
don't move or resize smoothly, but rather move in steps of a fixed size. This
makes it easier to align related objects and generally gives a more pleasing
result. The default grid size is 100 by 100 which means that there are 100
useable positions inside the figure in both the x and y directions. This also means
that if you are using normalized coordinates the third decimal place for all
position vector elements will be zero.

There are three ways to bring up the SnapTo figure shown below:

1. Type plt move res in the command window. (This is the only method if
you are not using a plot pseudo object).

2. First left-click on the delta button, followed by a right click on the same
button.

3. It's easy to forget the sequence for method two, so you can also go to the plt
menu in the menu bar. There you will see the option "Reposition grid size"
which will bring up the SnapTo figure.

SnapTo resolution

— i The default resolution is usually enough,
MNo. of X grid pointz No. of ¥ grid pointz . .
o TS o 1o 200 butif you want finer control, move one or
4 3 K ~ » B both of these sliders to the right edge (i.e.
200). This is nearly always enough,
although if you like you can type in a number bigger than 200 into either edit
box. Or you can move the slider all the way to the left (i.e. zero) which disables

the snap-to feature altogether.

P|1'(/v "‘)

Trace properties

Right

You specify which traces should appear on the right-hand axis
with the "Right ' parameter. For example if you included
'"Right', [1 4:2:10 17] inthe parameter list, then plt
would put trace numbers 1,4,6,8,10, and 17 on the right axis
and all other traces on the left axis. A slight shading is used
behind the Trace IDs associated with the right hand axis so
you can tell at a glance which traces belong to which axis.
(You can disable this shading if you prefer. To see how, read
the description of the TracelD parameter below). You can also
tell which axis a trace is on by the shape of its cursor ('+' for
left axis and 'o' for the right axis). You can optionally specify a
label for the right hand axis (see Labe 1Y) as well as the axis
limits (see Y11mR). Specifying an empty list, as in
"Right', [] tells plt to use the left axis for all the traces
(the same as if you omitted the Right parameter altogether.)

The Markers parameter is a shorthand way of setting a
different marker property for each line. For example:

plt(x,y, 'Markers',s)
is equivalent to:

a = plt(x,y);
for k=1:1length(a)
set(a(k), 'Marker',s(k,:)); end;

Markers

The argument may be an array of characters or a cell array of
strings. The latter method is easier when the elements are
different sizes because you don't have to pad with blanks as
with the character array. (Wherever a character array is
allowed in a plt argument list, a cell array of strings is also
allowed and visa versa.) For example, these two lines have
give the same result:

plt(..., '"Markers',['square'; '+ ';'none
1)

plt(..., 'Markers', {'square','+', 'none'});

This sets the marker for the first two lines to a square and a
plus sign respectively while the third line will be rendered
without any markers.

The following example shows two ways to set the markers of
the six traces to x,+,square,o,asterisk,x (respectively). The
shorter method used in the 2nd line is possible because every
marker may be represented with a single character:

plt(..., 'Markers',
[|X|;|+I;|SI;|O|,|*|,|XI])
plt(..., "Markers', 'x+so*x'

);

The Styles parameter is a shorthand way of setting the
LineStyle property in a similar way that the Markers
parameter is used to set the Marker property. For example, to
set the first trace to normal, the 2nd and 3rd traces to dotted
and dashed respectively, and the 4th trace to none (useful
when you want the markers with no lines connecting them)
you would use the following command:

plt("'l'Styles'l{'_'l':'I'__'I'none'});
The shorthand for single character styles mentioned above

also works. For instance, to alternate between normal and
dotted among eight traces one could use:

Styles

plt(..., 'Styles’, '-:-:1-:1-:11);

One additional trick applies to the Styles parameter. If a single
character is given which is not a valid line style, then the
linestyle property is set to none and the given character is
applied to the marker property. As an example, the following
command defines eight traces of which the first four are
rendered as continuous lines (i.e. without markers) and the last
four are rendered with plus sign markers placed at each x,y
location specified by the data arrays but with no lines
connecting the markers:

plt(..., 'Styles’, '----++++"),
Since there are no marker property values which can also be

linestyle property values, there is never any ambiguity as to
which property should be set.

GridStyle

This parameter allows you to select the grid line style. For
example:

plt(...,'GridStyle’',"':");

will select a dotted or dashed line (depending on the graphics
renderer). If this parameter is not included the default is
usually a solid line (' - ") although there is one somewhat
complicated exception to this which is described in the default
section of the GRIDC parameter which you can find here.

This parameter allows you to assign a name to each trace. This
name will appear in the trace selection box (also sometimes
called the TraceID box). The number of characters that will fit
in the trace selection box depends on the size you choose for
the plt window. For the default figure size there is room for
about 5 uppercase or 6 lowercase characters. In the example
below, both forms are equivalent:

TracelD

plt(...,'TraceID',['Rtemp'; 'Ltemp'; 'RV1
1)

plt(..., 'TracelID',

{'Rtemp'; '"Ltemp'; 'RV1'});

Default: ['Line 1';'Line 2'; ... 'Line n'];

If you want the plot to be created without a TracelD box, call
plt with a TracelD parameter of zero or the empty set ([] or ").
Since plt can't create a TracelD box containing more than 99
IDs, if you want to plot more than 99 traces, you must include
"TraceID', 0 (or with the equivalent empty set value) in
the parameter list.

When specifying tracelDs, you must have one trace ID for
every trace on the main and right hand axes. However if you
don't want a trace ID for a specific trace to appear, just use the
null string (' ') for the trace name. If you do that, the trace ID
box will be made smaller to account for the fewer number of
IDs displayed.

Normally tracelDs associated with the right hand axis will
appear in the traceID box with a slight shading so you can
identify those traces at a glance. If you want to disable this
shading, insert the special character ']' at the beginning of the
first TraceID name. The right bracket will be removed from
the trace name before it is used. The third plot of the pub.m
demo program demonstrates the use of this special character.

You may specify a callback function (fcn) to execute when the
user clicks on any of the TracelD tags by including the
parameter ' TIDcback', fcn in the argument list. If the
string '@TID' occurs anywhere inside the function string
then it's replaced with the handle of the trace ID string.
Likewise if the string '@LINE ' occurs anywhere inside fcn, it
is replaced with the handle of the trace itself and occurrences
of '@IDX"' are replaced with the index of the selected trace.
(i.e. 2 for the second trace listed in the TracelD box). See the

demo program pltquiv.m for an example using the
TIDcback parameter. In that example, the name and color of
a trace is displayed in the command window when you click
on a Trace ID tag. (Not particularly useful, but this example
was contrived to demonstrate all the possible substitutions.) To
define a quote within a quote in Matlab, one uses two single
quote characters in a row. Since this can get confusing at
times, callbacks defined within plt may use a double quote
character instead of two successive single quotes. The
pltquiv.m example uses this alternative form. In addition to a
string, Tcn may also be a function handle of the form @func
or {@func,argl,arg2, ...,argn}. Note that the string
substitutions can't be used with the function handle form of
this parameter.

You also may change the tracelDs after the plot has been
created. For example, if the current figure contains a plot with
four traces, these traces can be renamed with a command such
as:

plt('rename',
{'First' 'Second' '3rd' '4th'});

If there are other changes you want to make to the TracelD
box from your program (as in the curves. m example), you
can get the handle of the axis that contains all the TraceIlD
objects with the following command:

tbox = findobj(gcf, 'user', 'TracelD');

Then, for example the following command would make the
TracelD box invisible:

set([tbox: get(tbox,'child')], 'vis', 'off")

An easier way to make the TracelD box invisible would be to
simply move it outside the figure area:

set(tbox, 'pos',[-2 0 1 1]).

Or in the unlikely event you wanted to reverse the order of the
TracelDs (i.e. bottom to top ordering in the TraceID box), use
the command:

set(tbox, 'view', [0 270]).

TraceMK

This parameter allows you to show the line types in the trace
selection box to help identify the traces. This can be visually
pleasing and is especially helpful if you are color blind. If the
argument is a vector, it specifies the marker positions within
the trace selection box. For example

"TraceMK',[.6 .7 .8 .9] would tell plt to place a
horizontal line next to each TracelD label beginning and
ending at x = .6 and .9 with markers at the four locations
specified (assuming the line type in the plot included
markers). The area between x = 0 and .6 (i.e. the first 60%)
would be used for the text label. If the first element of the
vector is less than .25 then plt will not display the text labels
since there probably would not be room for them anyway.
(Clicking on the lines in the TraceID box have the same effect
as clicking on the labels, so the labels can be removed without
loss of functionality). If the argument is a scalar, plt will use
that value as the first element of a length 3 vector whose last
element is .9. Thus 'TraceMK', .6 is shorthand for
"TraceMK',[.6 .75 .9]. Aspecial case is when the
scalar argument is zero, in which case no lines are inserted
into the trace selection box (as if the TraceMK parameter was
not used at all). See the demo programs trigplt.m and
subplt.m for examples of using the TraceMK parameter.

All TracelDs will appear in the trace selection box (aka
TracelD box) in a single column except when the TIDcolumn
parameter is included. This is useful when you are using so
many traces that the TracelD box becomes too crowded to fit
all the trace names in a single column. The simplest way to
use the TIDcolumn parameter is to supply an empty argument

TIDcolumn

to the parameter (i.e. ' ' or []). When this is done plt will use
just a single column for the TraceID box when the number of
traces is 24 or less. Two columns will be used when the
number of traces is between 25 and 48, and three columns will
be used when there are more than 48 traces. (The TracelD box
will not appear when more than 99 traces have been defined).
This default will probably work in nearly all situations but if
you want exact control over how many columns are used and
how many tracelDs appear in each column, you can do that by
specifying a non-empty argument to the TIDcolumn parameter
as follows: If TIDcolumn is a scalar, it specifies the number
of TracelDs to put in the second column. If it is a vector, it
specifies the number of TracelDs to put in columns 2,3,etc,
with the remaining going into column 1. For example, if 30
traces are displayed, and youuse ' TIDcolumn', 8 then the
first 22 TracelDs appear in the first column and the last 8
appear in the second column. ' TIDcolumn', [5 5 5]
would tell plt to arrange the 30 IDs in four columns as
follows: (1-15, 16-20, 21-25, 26-30).

DIStrace

By default, all the traces defined by plt are visible until you
change that from the trace selection box. You can change the
default by disabling some traces from the plt call. For
example:

plt(...,'DIStrace',[1 1 0 0 0]);

This tells plt to start the display with the first two traces
disabled and the remaining 3 traces enabled. Of course you
can later enable the first two traces via the trace selection box.
If the parameter has fewer elements than the number of traces,
it is extended by adding zeros. This means that we could have
used [1 1] above to the same effect. After the call to plt has
been made, if you want to change which traces are
enabled/disabled you can click on the TracelDs as described in
Selecting traces. However if you want to do that from a
program you can use the p1t('show', ...) command
which is described at the very bottom of the

Calling sequence and line styles section.

By default you will be allowed to cursor every visible trace in
the plot area. You can change this default using this parameter.
For example, if we had five traces, but wanted to use cursors
only on traces 1,4, and 5 you would use:

ENAcur plt(..., "ENAcur',[1 0 0 1 1]);

If the parameter has fewer elements than the number of traces,
it is extended by adding ones. This means that we could have
used 'ENAcur',[1 O O] above to the same effect.

This parameter allows you to reserve space for additional traces to be added
to the figure after the plt window has been started. For example
plt(x1,yl,x2,y2,"'+"',5); opens the plt window with two traces,
the first one defined by x1,y1 and the second one by x2,y2. Then room is
reserved in the TracelD box for up to 5 more traces that can be added using
the pLltt.m function. This parameter is normally only used inside script or
function files because when you type the plt command in the Matlab
command window an automatic '+"', 8 is assumed. You could still include
the + parameter from the command window in the unlikely event you were
planning on adding more than 8 traces. When plt is called from a script or
function, you can't add traces after the plt window has opened unless you
had included the + parameter in the argument list.

It is unusual to want to add dozens of traces with the pltt function, but it is
possible. For example with the command

plt(x,y,"'+',39, '"TIDcolumn', ""); plt will reserve space in the
TracelD box for 40 traces. The first is specified in the plt command and the
remaining 39 can be added using the p1tt function. The TIDcolumn
parameter was needed in this case because without it, plt would attempt to
cram all 40 TracelDs into one column which would probably be
unreadable.

You may include the TraceID parameter in the argument list as well if
you like, and you should be aware that there are two ways of doing this.
The first (and by far the most common) way of doing this is to put the
"TracelD' parameter before the '+ ' in the argument list. When done in that
order, that TraceID argument specifies the trace names only for the traces
defined in the argument list. Then when the '+' parameter is encountered,
plt expands the TracelD list using default names that will usually be
overwritten by the trace names included in the calls to p1tt. When done in
the opposite order, the TraceID argument should include the trace names
you want for the traces that will be added later (even though the trace
names will be invisible until those traces are added). And if the TraceID
argument does not include enough trace names for this, when a trace is
added after the list has been exhausted, the new trace will be added without
any corresponding entry in the TracelD box (which occasionally might
even be what you wanted).

Typically the + parameter is placed after all the traces defined inside the plt
argument list, however this is not strictly necessary. In fact multiple +
parameters may be included and they may be interspersed with the trace
definitions in the parameter list. When you do that, the space reserved in
the TraceID box for the traces to be added later will be interspersed with
the defined traces in the order in which they appeared. This flexibility is
rarely needed, but nevertheless it is available if you want it. Note that when
traces are added with the pltt function, the reserved slots are used in order
(top to bottom, as well as left to right if multiple columns were enabled).

You might expect that when all the free slots in the TraceID box have been
used up, you can no longer add a new trace with the pltt function ... but in
fact you can. What happens is that in this situation, pltt will overwrite the
data and the trace name of the last trace that was added, so effectively you
can never run out of free slots (unless you never allocated any in the first
place).

P|1'(/v "‘)

Axis properties

Xlim

plt(..., 'X1im', [xmin xmax]);

Specifies the x-axis limits. If you are using a 2 column
subplot, you can specify the x-limits for both both
columns by using a cell array. i.e.

'X1im', {[xminL xmaxL]; [XminR xmaxR]};
If you want to specify just the right column limits,
replace the left column limits with the string
‘default’.

Ylim

plt(...,'Ylim', [ymin ymax]);

Specifies the y-axis limits for the left-hand y axis of the
main plot. Alternatively you may specify the limits for
both the left and right hand y-axes of the main plot using
a cell array as in:

'Ylim', {[ymin ymax] [yminR ymaxR]}. The
"Right' parameter should also be included in this
case, however if you don't, plt will default to placing the
last trace on the right hand axis. Note that this parameter
only specifies limits for the main plot and never for any
of the other subplots. If you need to set the y-axis limits
for the other subplots, use the set command with the axis
handles obtained from getappdata(gcf, 'axis').

plt(...,'Y1limR', [ymin ymax]);
Usually the y-axis limits are specified using the Y11im
parameter (above) however if you only need to specify

YlimR the limits for right-hand y axis use the Y1imR

parameter. The 'Right' parameter should also be
included, however if you don't, plt will default to
placing the last trace on the right hand axis.

Xy

plt(..., 'xy',pl);

where p specifies new xy position/size coordinates for
various graphical objects created by plt.

p is a 5 column matrix in the following format:

OID1 xy w h
OID2 xy w h

OID1 thru OIDn (Object IDs) are
integers that specify the objects
(often an axis) to be resized and
repositioned. x and y represent the
coordinates of the lower left edge of
the object and w and h specify the
width and height. (x,y,w,h may be in pixels or in
normalized units i.e. as a fraction of the window size).
The OIDs are described in the following table:

OIDn x|y w h

OID
1 |The main (left) plot axis

This is the only OID that refers to more than one object,
i.e. both the main left and right hand axes. If there is no
right hand axis, OIDs 0 and 1 are equivalent. Also this is
the default OID if none is given (which is only allowed
if the OID parameter contains only a single row). This
means that plt (..., 'xy"',[x y w h])is
equivalentto plt (..., 'xy', [0 x y w h]).
Represents the axis containing the tracelDs.

Represents the axis containing the menu box items.

This is similar to OID 0 except that in addition to
adjusting the positions of the left & right axes, it also
adjusts the associated cursor object positions and sizes
(TraceID box, menubox, cursor readouts, etc.). For small
axes, this can sometimes scale the cursor object to small
or close to the axis so there is a way to define this

This usuall
hand axis. |
have been ¢
represents
remaining ¢
numbered ¢
the next nu
subplot is a
hand axis. |
that the OII
it's index ir
getappd:

array since
way.)

scaling independently as follows:

AxisSize = [.3 .3]; AxisPosition =
[.2 .4];

CursorSize = [.5 .5];

plt(...,'xy'"',[-3 AxisPosition
AxisSize + CursorSize*11i]);
The correction for the cursor size (using the imaginary
component) may be applied in both x & y directions as
in the above example, or it may be applied to either
direction alone. Both the plt50.m and editz.m example
programs demonstrate the use of the imaginary
component in the y direction only.

All graphical objects created by plt as well as those later
created in the same figure window have a unique OID
and therefore may be repositioned using the xy

other parameter. To determine an object's OID, enter the
repositioning mode by right-clicking on the delta cursor
button. Then clicking on any other object will display its
OID followed by its current position coordinates.

For example:

plt(...,'xy',[-1 .01 .8 .12 .18; 1 .2 .16 .7 .8]);
will set the traceID box to normalized position [.01 .8 .12 .18] and set the main
axis to normalized position [.2 .16 .7 .8].

Although you can determine and enter these position coordinates manually, it is
usually far easier to use the plt repositioning mode to determine the coordinates.
See GUI building with plt to learn how this is done. That section also
demonstrates in detail how to use the xy parameter to reposition any of the
graphical objects in the plt figure window.

AxisPos

plt(..., '"AxisPos',p);
Usually the size and position of the plot and TraceID box are modified using the
XYy parameter described above, however AX1sPo0s provides an alternate method

that is included primarily for backwards compatibility with older programs
written before the xy parameter was added. Although on rare occasions the
AxisPos parameter may actually be easier to use than the xy parameter. p is a 4
element vector that modifies the size and position of the plot axis in the figure
window. The first two elements modify the x and y coordinates of the lower left
corner of the axis. The last two elements modify the axis width and height
respectively. For exampleif p = [1 1 .9 1], the width of the plot will
shrink by 10%. If p = [1 2 1 .8] then the space between the bottom of the
figure window and the bottom of the x-axis will double and the plot height will
shrink by 20%. Changing the size and position of the axis is often useful when
building applications to make room for additional GUI objects. If pisa 5
element vector, the width of the trace ID box is increased by a factor of p(5) to
allow longer trace names. If p is an 8 element vector, the position of the trace ID
box (xLeft,yBottom,width,height) is multiplied by last four elements of p (i.e.

p(5:8))

axisCB

plt(...,'axisCB',s);

Evaluate string s when either the x or y-axis limits are changed. This callback
function can be also be specified by the cursor command
plt('cursor',cid, 'set', 'axisCB', fcn) which is described in
more detail in the cursor commands section. At the top of that section there is
also a table that describes the string substitutions that plt performs on the string
before evaluating it. These substitutions can make the callback more powerful
while using less code. In addition to a string, S may also be a function handle of
the form @func or {@func, argl,arg2, ..., argn}. Note that the string
substitutions can't be used with the function handle form of this parameter.

Note that if the function is defined as a string argument often consecutive single
quote characters are required (quotes within quotes). In that case readability can
be improved by replacing all sequences of two consecutive single quotes with a
double quote character. For example 'disp(' 'ABC'"); ' could be written as
"disp("ABC"); ". Note that this trick does not work for Matlab callbacks in
general, but it does work for any callback defined withina plt (...) function
call.

moveCB

plt(..., 'moveCB',s);

Evaluate string s whenever the cursor is moved. This callback function can also
be specified by the the cursor command

plt('cursor',cid, 'set', 'moveCB', fcn) which is described in
more detail in the cursor commands section. The moveCB is not really an axis
property, but is included in this section because of the parallels with the above
ax1sCB parameter. As with the axisCB parameter, the string substitutions are
performed before evaluation. You may use function handle forms as well if you
don't need the string substitutions.

ENApre

plt(..., '"ENApre', [ENAX ENAyY]);

ENAx or ENAy = 0 to disable metric prefixes on the x/y axis.

ENAx or ENAy = 1 to enable metric prefixes on the x/y axis (default).
When metric prefixes are enabled plt will choose the best unit for the respective
axis. As an example, suppose the x-axis label is 'seconds' and the x-axis data is
[0 12 34 5]*1e-8. With metric prefixes disabled, the x-axis tick-labels and
cursor readout will be in scientific notation. With metric prefixes enabled, the x-
axis label will change to "nano-seconds" and scientific notation will no longer be
required making the graph and cursors far more readable. (Note: metric prefixes
are not used on the right hand axis).

AxisLink

plt(..., "AxisLink',m);
Tells plt to start with the left/right axes linked if m=1 or unlinked if m=0. For
more details about linking the axes, see the right hand axis section.

+AxisProp

-AxisProp
<LabelProp
>LabelProp
.LabelProp
ATitleProp

If a property name is prefixed with a + or a - character then the property value
will be applied to the left or right hand axis respectively.

If a property name is prefixed with a >, <, . or a / character then the property
value will be applied to the left hand axis label, right hand axis label, x axis
label, or the axis title respectively. Some examples:

plt(...,'+Ycolor',[0 @ 1], "'-Yscale', 'Log');

In this example plt will assign the value [0 © 1] (blue) to the Ycolor
property of the main (left hand) axis, and it will apply the value 'Log' to the
Yscale property of the right hand axis. The plus and minus signs are called a
property prefix characters and are required so that plt knows which axis you
want to modify.

plt(..., '>FontName', 'Lucida Handwriting');
In this example the font used for the right hand axis label is changed to Lucida
Handwriting.

plt(..., '+<.AFontSize',13);

This example shows that more than one property prefix character may be
included in front of a property name. In this case, the font size for the left hand
axis tick labels, the left y-label, the x-label, and the axis title are all increased to
13.

The example program demo\pub . m demonstrates the use of these prefix
characters. Note that if a property name appears without one of these six leading
prefix characters (+-<>. /), then property value will be assigned to all the lines
that have been defined so far in the argument list.

SubPlot

plt(..., 'SubPlot',v);

Normally plt puts all the defined traces on a single plot (which may have left and
right hand y-axes) that fills most of the figure area. However there are two
methods (each with their unique advantages) to create more than one plot in a
single figure. The first method is by using the ' F1g' parameter which is
described at the end of the Labels and figure properties section. The second
method is to use the SubPlot parameter which is described here.

When the SubPlot parameter is used, all the plots in the figure will be arranged
in either one or multiple columns. All plots in a column usually use the same x-
axis which allow all the cursors in the column to move left or right together.
(This is called the "Linked" mode). With the alternate mode (called
"Independent") however, each plot even within the same column may have
different x-axis values. The subplot in the lower left corner has a special
designation (the main plot) since that is the only plot that includes a traceID box.
Also some of the cursoring features are only available on the main plot
(peak/valley finder, delta cursors, expansion history, the Mark/Zout/LinX/LinY
tags, the x-axis slider, multi-cursors and the xView slider. (The 'Fig' parameter
method doesn't suffer from any of these restrictions since each plot is a "main"
plot, although linked cursors are not available with that method.) Each subplot
however has its own y-axis cursor readout. These cursor readouts are easy to
identify since its background color matches the trace and axis colors. The full
panning and zooming features of plt are supported for each subplot. When any
subplot is panned or zoomed in the x-axis, all the x-axis limits of all the other
subplots in the same column are set to match the newly chosen values.

Single column

To create a single column of plots (all using the same x axis), the subplot
parameter should consist of n positive numbers, where n is the number of plots
desired. Each number specifies the percent of the area to be occupied by each
plot (starting from the bottom). Normally the sum of the array should be 100,
although if the sum is less than 100, there will be some unused space at the top
of the figure. For example, ' SubPlot', [40 30 15 15] tells plt to create
four plots. The bottom one (the "main" plot) will use 40% of the available
height. The plot above that will use 30% of the height, and the remaining two
will take 15% each. Each subplot except the main (lower) plot is normally
assigned a single trace, with the last trace defined appearing in the upper most

axis, the second to last trace appearing in the axis below that, etc. For example,
the command plt(1:50, rand(7,50), 'SubPlot', [40 30 15 15])
will create seven traces containing random data, with the first four traces
displayed on the main (lower) plot (with a traceID box containing four labels)
and the last three traces are displayed in the other three subplots. The example
script demo\subplt .m demonstrates the use of single column subplots.
Usually only the main plot may contain multiple traces, although the
SubTrace parameter (see below) allows you to change this behavior.

Dual column

The example script demo\subplt8.m demonstrates the use of dual column
subplots. To create two columns of plots, insert a negative number into the
subplot argument. The number of entries to the left of the negative number
indicates how many plots will appear in the left column, and similarly, the
number of entries to the right of the negative number indicates the number of
plots in the right column. The negative number itself specifies the width (in
percent) of the left column. Some examples will help clarify this. In all the
examples below, assume thaty = [a b ¢ d e f] where a through f are
column vectors of the same length as X.

plt(x,y, 'SubPlot',[100 -60 100], 'Right',[2 3]);

The subplot parameters tells plt to create two plots both of which fill the entire
height available in the plotting area of the figure. The left (main) plot fills 60%
of the width with the second plot filling the remaining 40%. Since six traces are
defined, the first five traces (a through €) appear on the main plot and the last
trace (T) appears on the right plot. Since the TraceID parameter was not
included, the TraceID box next to the main plot will contain the default trace
labels (Linel thru Line5). To label the traces more informatively, a parameter
suchas '"TRACEid',{'a' 'b' 'c' 'd' 'e'} couldbe added to the plt
argument list. Since the 'Right ' parameter was included, the main plot will
include both right and left axes, with the 2nd and 3rd traces (b and c) on the
right and the remaining three traces (a, d,e) on the left. The left and right axes
will be separated by enough space to leave room for the axis labels, and this
space will be increased when the 'Right ' parameter is used so that there is
room for an axis label on the right side of the main (i.e. left) axis.

plt(x,y, 'SubPlot',[50 30 20 -55 70 20]);
In this example three plots will be created in the left column which fills 55% of

the width of the plotting area. The main plot on the bottom (containing traces a
& b) fills 50% of the height, the middle plot (trace ¢) fills 30% and the top plot
(trace d) fills the remaining 20% of the height. Two plots are created in the right
column which fills the remaining 45% of the width. The lower of these (trace €)
fills 70% of the height, and the upper (trace T) fills 20%, with the upper 10%
remaining blank. Note that both traces in the main plot use the left-hand axis
since no 'Right ' parameter was given and no limits or labels were specified
for the right-hand axis. (With this many subplots it's best not to use a right-hand
axis since it makes all the subplots significantly narrower to make room for the
right-hand axis ticks and labels.)

plt(x,y, 'LabelX',{'meters' 'pascals'}, 'Ylim'{[O 5] [0
Even though the subplot argument is not included here, plt will split the plot
horizontally as if you had included 'SubPlot', [100 50 100] in the
argument list. This is because two different x-axis labels are specified with the
'Label X' parameter and so plt recognizes that a second column is needed. The
right column plot will contain trace T and the left column (main) plot will
contain traces a thru e. Since two y-axis limits are specified, plt will put both
left and right axes on the main plot. In this example the 'Right ' parameter is
not included, plt will default to putting the last trace of the main plot (trace €) on
the right axis with the other four traces on the left axis. (Be careful not to
confuse the concepts of the right and left axes of the main plot, with the right
and left columns of subplots.) Also remember that the 'Y1im' parameter can't
specify axis limits for a subplot. To set the y-axis limits for the subplots, use the
set command with the axis handles obtained from getappdata(gcf,'axis’) or use
the plt('cursor',cid, 'set', "position', p) command described
here.

More than two columns

As you can see from the example script demo\subplt16.m you may use as
many columns as you want. The negative numbers in the subplot parameter are
used to separate the plots into columns. For example

"'SubPlot',[50 50 -30 50 50 -30 50 50 -30] specifies an array
of six plots (2 rows and 3 columns). Each column is split 50/50 between the two
plots. Since each of the 3 columns occupies 30% of the available plot width
about 10% of the available width to the right of the last column will be blank
(possibly to be filled in later with other graphic elements or controls). The width
of the last column does not need to be specified. In this example, if the last

number (-30) was omitted, the last column would take 40% of the available
width since plt wants to fill the whole plot area unless instructed otherwise.

Plot spacing

By default, plt allows plenty of space between the subplots to allow for axis ticks
and labels. Sometimes you may want to decrease the horizontal or vertical
spacing so that you can fit more plots into a given space or to allow each plot to
have as much area as possible. Or you may want to increase the spacing to allow
room to add additional controls or graphic elements. It would be awkward to
require an additional array the size of SubPlot to specify the desired row and
column spacing, so this information is embedded into the SubPlot argument.
This is done by using the integer part to specify the plot heights and widths (as
described above) and by using the fractional part to specify the deviations from
the default inter-plot spacing. Fractional parts from O to .5 indicate the default
spacing should be increased. Fractional parts from .5 to .9999 indicate the
default spacing should be decreased. This is best shown by example. Consider a
slight change from the previous example:

'SubPlot',[50.02 50.97 -30.96 50 50 -30.01 50 50] The
first two fractional parts (.02 and .97) tells plt to increasing spacing below the
first plot by 2% and to decrease the spacing below the second plot by 3% (of the
available plot height). The fractional parts of the two negative numbers (.96 and
.01) tells plt to decrease the spacing to the left of the first column by 4% and to
increase the spacing to the left of the second column by 1% (of the available plot
width). At first this may seem confusing, but with a little practice you will find
that the SubPlot parameter gives you complete flexibility of the subplot
positioning. In the rare situations where you can't get the subplots positioned as
desired, you can always use the ' Xy ' parameter to move or resize any or all of
the subplots.

Linked vs. Independent mode

The three sample scripts mentioned so far use the default "linked" mode which is
intended to be used when all the plots in each column have the same number of
elements and the same x-axis limits. When you move a cursor, all the cursors for
the remaining subplots in the same column will be moved left or right so all the
cursors in the column remain vertically aligned. Likewise, if you change the x-
axis limits of any plot (by panning or zooming) then the x-axis limits of the
remaining plots in that column will also change so that all the plots in the
column share the same x-axis limits. Note that changes in one column will never

affect any of the other columns. When you don't want the cursors and x-axis
limits to be linked in this manner, you should specify the "Independent mode"
which is done by putting an "i" after the first SubPlot element. The sample script

demo\subplt20.m demonstrates the use of the independent mode.

SubTrace

When using subplots, it is important to understand that the default behavior is to
allow only a single trace on each subplot except for the main axis (lower left).
The main reason for this is to allow plt to provide a simple cursoring mechanism
which allows every trace to be cursored. However there are two situations where
you may want to change this default behavior. The first is where cursoring is
disabled (usually because the plot is to be used for publication instead of for data
exploration). Since cursoring is not an issue, there is no reason to stick with the
default behavior for assigning the traces to the axes. The second plot in the script
demo\pub.m is an example of how the SubTrace parameter might by used
in this situation. The second situation where you might want to use this
parameter is when you plan on modifying the cursor behavior to make sense for
the particular trace arrangement you have in mind. This requires a detailed
understanding of plt's cursoring commands, but is doable when the trace
configuration and desired cursoring scheme are reasonably simple.An example
of this second situation can be found in the script demo\weight .m.

There are two ways to use this parameter to assign the traces to the various
subplots. For either method you must know how plt numbers the axes. Axis
number one is always the main axis (lower left). Then axis two is the one
directly above the main axis and axis three is the one above that, continuing to
the top of the left column. Then the lowest axis of the second column (if it
exists) is assigned to the next number, and continuing upwards as before. Finally
after all the subplots have been assigned a number in this manner, the right hand
axis of the main plot (if it exists) is assigned to the next higher integer.

Suppose for example, you have 4 axes and 9 traces and that you want to put two
traces on each of the first 3 axes and then put the remaining 3 traces on the last
axis. The first way to do this is to specify how many traces to put on each axis,
i.e. 'SubTrace',[2 2 2 3].Instead of specifying how many traces are on
each axis, an alternate way to do this is to specify which axis each trace goes on.

So an equivalent to the previous parameter you could use
'SubTrace',[1 1 2 2 3 3 4 4 4]. Of course this second method is

always going to be longer than the first method, so you would likely only use it
if you needed to assign the traces to the axes in a different order, for example
'SubTrace',[1 2 3 1 2 3 4 4 4] (which is not possible to specify
using the first method). plt will always be able to figure out with method you are
using.

P|1'(/v "‘)

Labels and figure properties

Title

plt(...,'Title', t);
Inserts the title string € above the plot area.
t may be a cell array to specify a multi-line title.

The Tex interpreter is used to render the string allowing entry of C
and other special characters. If you don't want the Tex interpreter 1
used, include the string [TexOff] anywhere in the first line of tt
(The [TexOff] string will be deleted from the title before display).
Alternatively you could disable the Tex interpreter after the call to
using the command:

set(get(gca, 'title'), 'interpreter', 'none');

A set command similar to the one above may be used to change th
fontsize or other title properties. The plot height is automatically s
by the amount needed to make room for the title assuming the def.
size. If you increase the title font size you may need to adjust the |
using the Xy parameter described in the Axis properties section.

If € is a number is will be converted to a string.

For example plt(..., 'Title', {123 7.88})

will create a two line title with '123" as the first line and '7.88' as tt
second line.

Default: no title

plt(..., 'LabelX',s);

Uses string S as the x-axis label. If you are using subplots with tw

LabelX columns, you may also specify the x-axis label for both the left an
columns of plots by using a cell array:
plt(..., 'LabelX', {'left x label' 'right x la
Default: 'x axis'
plt(..., 'LabelY',s);
Uses string s as the left hand y-axis label of the main plot. You ca
specify both the left and right labels by using a cell array. For exai
there are no subplots, 'LabelY"', {"ab' 'cd'} isequivalent
"LabelY', 'ab', 'LabelYR', "cd'. If there are subplots, tk
LabelY hand axis label must come last. For example with 3 subplots:
plt(..., 'SubPlot',[50 20 30], 'LabelY’, ...
{'lower-axis' 'middle-axis' 'upper-axis'
'right-hand-axis'});
Default: 'Y axis (Left)'
plt(..., 'LabelYR',s);
Uses string S as the right hand y-axis label. The 'right' param
should also be included in this case, however if you don't, plt will
to placing the last trace on the right hand axis. Note that using a ce
LabelYR argument to the 'LabelY' parameter (described above) is usuall
convenient way to specify the y-axis label, and the 'LabelYR'
parameter is primarily used in legacy code.
Default: 'Y axis (Right)'
plt(..., '"FigName',6 f);
FigName Uses string T as the name for the plt figure window.

Default: "plt'

plt(..., '"Position', [xLeft yBottom height wid
plt(..., 'Position', [height width]);
Specifies the figure size and position on the screen in pixels.

Position
Pos

Since 9 and 55 are the default values for xLeft & yBottom respect
the second form above (with xLeft and yBottom omitted) is equiv.
plt(..., 'Position', [9 55 height width])

If you prefer conciseness, you may use 'P0s' as an abbreviation
'"Position’.

If the height is specified as zero, plt will choose a height so that a
along the x-axis is the same as a unit along the y-axis (i.e.if you pl
circle, it would look like a circle and not an ellipse). If the width it
specified as zero, plt chooses the width to meet the same conditior
can't specify zero for both the height and the width). If you resize
figure window with the mouse, then the units along the x and y ax
no longer be equal (and a plotted circle may appear to be an ellips
you wish that the equal units property to be maintained even after
figure window is resized, you should follow the plt command witt
command axis('equal').

If you specify the same position vector for more than one plt comi
will add a small offset to all the figure window positions (except t!
one) so that no two figures are exactly on top of each other. This f
makes it less likely that you will completely loose sight of one of i
figures and also makes it much easier to select or move any figure
mouse. If a second plt command specifies a position that differs fr
first plt command by even one pixel, then this feature will not be €

Default: [9 55 700 525] (if sublots are not used). With subp]
you add more columns of axes the default width increases from 7(
maximum of 980. As you add more axes to a column the default h
increases slightly from 525 to a maximum of 600.

HelpText

plt(..., 'HelpText',v);

This parameter creates a HelpText pseudo object at the same time
plt pseudo is being created. V is a string or cell array specifying th
displayed text. See the Pseudo objects section for a description of
format of the v argument. Also look at the following demo progra
which use the HelpText parameter: curves, editz, gauss, pltquiv, st

tasplt, trigplt, and wfalltst.

This parameter is used to force a group of plt figures to close whei
member of the group is closed. Consider the following sequence:

plt(x1,yl);

g = gcf;

plt(x2,y2, "Link',g);
plt(x3,y3, 'Link',g);

This of course will create 3 plotting figures. Closing any one of th
figures will also cause the other two to close.

Link The link parameter is ignored if it is empty. This makes it easier tc
figures created in a loop. For example, this loop creates five linkec
figures:
g=""
for k=1:5

plt(x{k},y{k}, 'Link",g);

if isempty(g) g=gcf; end;
end;
The demo programs editz, tasplt, pub, and pub2 take adva
this parameter.
This parameter specifies a function that will be run when the plt w
closed. The argument may be:

e a string (as shown in the p1t50.m example).

¢ a function handle (as shown in the guiZ2 . m example).

¢ a cell array containing a function handle and its arguments (a

in the wfall.m example).
CloseReq

Note that if the function is defined as a string argument often cons
single quote characters are required (quotes within quotes). In that
readability can be improved by replacing all sequences of two con
single quotes with a double quote character. For example

"disp(""ABC''"); ' could be writtenas 'disp("ABC"); .
that this trick does not work for Matlab callbacks in general, but it
work for any callback defined withina plt(...) function call.

Fig

Normally plt opens a new figure window when it is called. In som
situations you may want to tell plt to use a pre-existing figure inst
(The most common reason this is done is to put more than one plo
single figure.) This parameter tells plt to do this and specifies whi
window should be used. For example, to open plt using figure nun
you would use plt('Fig', 4, ...);.More often you will pro
use plt('Fig',gcf, ...); which will open plt in the current
Generally the plt parameters may be placed anywhere in the paran
and in fact the Fig parameter is the only exception to this. The Fig
parameter must be placed either as the first or the last parameter ir
argument list. The Fig parameter is ignored otherwise. This restric
due to lazy programming more than any other reason, and the rest
might be removed in a later release.

There are two example programs (pLt50.m and pub3.m) whick
described in the Programming examples section that demonstrate |
of the Fig parameter to put multiple plots in a single figure. The fi
(plt50) is oriented towards data exploration and takes advantage o
generality of plt's cursoring system for both plots. The second one
is oriented towards creating a figure for publication and so the cur
have been disabled to create a clutter free result.

There is also another method to create multiple plots in a single fij
this makes use of the subplot parameter. (This is demonstrated by
subplt.m, subplt8.m, subpltl16.m, subplt20.m, pub.
pub2.m, pltmap.m, and weight . m programming examples).
might not expect that there would be a need for two different mett
achieving the same end, but it turns out that each of these methods
their unique advantages. The subplot method is sometimes simple
because all the plots are created with a single call to plt. The subp]
method imposes significant restrictions on the plots, but in turn thi
the cursor controls to be more compact which makes cursoring po
a figure with many more plots than would be possible with the Fig
method. The subplot method also provides an option for linking tt

cursors of the plots in a single column. Most of the programming
examples with multiple plots per figure would have been difficult
impossible without the correct choice between the subplot and Fig
parameter methods.

P|1'(/v "‘)

Options

HelpFile

plt(..., 'HelpFile', "filename'); Specifies the left cl
actions of the Help tag:

If the filename is specified with complete path information the
helpfile will be read from the specified location. If no path
information is included, plt looks for this file on the Matlab path
(except for compiled applications in which case plt looks for the fi
in the same folder that contains the executable). The file extensior
must be included in the filename string since the extension
determines which application is used to open the help file. (If you
don't include an extension plt will assume that it is an executable
command, and plt will simply call that executable when you click
the Help tag.) The extension may be . html, . pdf, or . chm, or:
file type that your operating system knows how to open. (Usually
chm files are only supported on PC systems.) Assuming the help f
is found, it will be opened when you left-click on the help tag. Als
the file specified is a chm file, then it also may be followed by a tc
specifier which causes the chm file to open pointed at the chosen
topic. (The examples plt.m and julia.m demonstrate how to specif'
chm topic.) If this parameter is not included, left-clicking on the h
tag will open the default plt help file (p1t .chm on Windows
systems and the file p1t . htm otherwise). If both plt.chm and
plt.htm are not found, then one of the files xxx.chm, xxx.htm,
XXX . pdf will be opened where "xxx" is the current figure name.
none of those files are found, a warning message will appear
indicating that no help files were found. The demo programs
demo\plt5.mand demo\julia.m demonstrate the use of the
HelpFile parameter to open a chm file at a specified topic.

HelpFileR

plt(..., 'HelpFileR', '"filename'); Specifies the righ
click actions of the Help tag:

The rules for finding the help file are the same as described above
the He1pFile parameter. Assuming the help file is found, it will
opened when you right-click on the help tag. If this parameter is n
included, right-clicking on the help tag will open the default plt he
file. Often the help tag left click will be used for help on the plt
plotting package and the right click will be used for help on the
currently running program. Or the roles of left and right clicks ma
be reversed. The demo program demo\plt50.m gives an exam
of using the HelpFileR option.

plt(..., 'Options',s);

s is a string specifying one or more options. The options allowed ¢

'Ticks' Use tick marks (i.e. no grid lines)
"Menu’ Enable the figure menu bar
"xView' Enable the xView slider
'Slider' Enable the x-axis control slider
'Xlog' use logarithmic scaling on the x axis
'Ylog' use logarithmic scaling on the y axis
"'multiCur’ Enable the multiCursor

Tells plt to hide all cursor objects. They m
"Nocursor' be re-enabled with the command:

plt('cursor',0, 'set', 'visON'

'Hidden' Tells plt to exit with the plot figure as usu
but leave the figure window hidden.

Tells plt to use Matlab's line smoothing
algorithm (anti-aliasing) for all traces. The
line smoothing property may also be
controlled from the cursor button group

which is described in the Cursoring sectio

Options

'"Linesmoothing'

'-Help'
"+Help'
'-Xlog'
"+X1log'
"-Ylog'
"+Ylog'
"-Print'
"+Print’
'-Grid'
'+Grid’
'"-Figmenu'
"+Figmenu'
'-Mark
"+Mark'

'-Zout
'+Zout'

'-Rotate'
'+Rotate'
'-All'
'+A11"

Be aware that line smoothing probably wi
not work on versions of Matlab older than
about 2008. Also the line smoothing
property is ignored in version Matlab
R2014b or later. I believe this is because t
newer graphics engine introduced with
R2014b is supposed to smooth the lines al
the time. (It doesn't work on my five year
old computer however, even with updated
graphics drivers. I actually get better look
plots using R2014a or earlier although I
suspect with newer hardware R2014b will
have the advantage.)

removes/adds the Help tag from the menu
box

removes/adds the LinX/LogX tag from ths
menu box

removes/adds the LinY/LogY tag from the
menu box

removes/adds the Print tag from the menu
box

removes/adds the Grid tag from the menu
box

removes/adds the Menu tag from the men
box

removes/adds the Mark tag from the ment
box

removes/adds the Zout tag from the menu
box

removes/adds the XYrotate (XY «) tag fr
the menu box

removes /adds all menu box items

These options strings are case sensitive and in fact only the capital
letters are significant. You can add whatever lower case letters,

spaces and other delimiters that you want to make the string more
readable. For example suppose you wanted the display to initialize
with the menu bar and multiCursor enabled and the grid lines off.
Any of these commands would achieve that goal:

plt(..., 'Options', '"Menu', 'Options', 'multiCur
Ticks');
plt(..., 'Options', '"Menu multiCursor
Ticks');
plt(..., 'Options', '"MCT");
plt(..., 'Options', 'M,C, T");
In addition to those options, suppose you wanted to remove the
"Grid" tag from the menuBox. Then we would use something like
one of the following:
plt(..., 'Options', '"Menu Cur Tick -Grid');
plt(..., 'Options', '"MCT-G');
You can also use a plus sign on the menu box tags if you would ra
specify which tags to include instead of which tags to remove. Fo1
example, both of the following commands would remove all the
menu box items except for the x and y axis lin/log controls:
plt(..., 'Options','-H-G-F-M-Z-R");
plt(..., 'Options', "+X+Y');
Note that the Print menu box tag is unique in that it is off by defau
and will only appear when +P appears in the Options string. If yc
remove all menu box items (i.e. 'Options', '-A"), the box
outline is not displayed as well.

P|1'(/v "‘)

Colors

All the arguments below identified by rgb refer to a color specified in the usual
Matlab way, i.e. as a 3 element row vector where each element is between zero
and one. However for convenience, you may also use two alternative formats
when specifying colors with plt.

e The first alternative is to specify the color values as percents instead of
fractions. For example the Matlab color triple [.23 .45 .67] may also
be written as [23 45 67]. Whenever you include a number bigger than
one in a color triple, plt assumes that you are using this entry style.

e The second alternative is to specify the red, green, and blue components as
a single number with two digits assigned to each value. For example the
color triple shown above could also be written as 234567. For clarity, you
may choose to always use six digits by using leading zeros when necessary,
although the leading zeros are not required.

Using the second alternative shown above, you might expect that the largest
fraction you can enter is 0.99 since only two digits are allowed for each color.
However actually you can use 1.00 because the digits "01" (treated as a special
case) is interpreted to mean 1.00. This means that you can't specify the fraction
0.01 using this entry method, although that will rarely if ever be a problem. So
for example, a TRACEc argument that would specify a 10 color trace sequence
using the first 10 colors shown in the default color list below, a concise way of
specifying such an argument would be as follows:

plt(..., 'TRACEc',[100; 10001; 101; 10000; 206001;
10101; 16020; 303001; 12060; 200160])

plt(..., '"TRACEc',ct);

TRACECc

Specify trace colors. Usually you will have at least as many row
ct as there are traces, however if ct doesn't have enough rows, pl
start over from the beginning. For example if you specify:
TRACEc,[1 0 0; 1 1 0; 1 1 1] then pltwill use red,
yellow, and white respectively for traces 1,2, and 3. If you had a
fourth trace, plt would use red for that trace and continue cyclice
If ct is a single 3 element vector, plt will use that color for all tr
If the TRACEc parameter is not included and color files are not
being used (see 'ColorFile' below), then the following defe
colors are used:

Default (for the first 40 lines):

[0

~=

4

~

~=

4

~

= N= - -
- ~=
~

= N= -
~= - -
N= N= N

WNWO~N® LR

ONUONORRR
O~NUINO RO
ORrRANOORR
oho~NONOO
ORAWNORNR
ORAUOWOR WO
R OWWR wWR
RROowWwoRrRr
OR~NDNOORR
WO~NNOUINOG
PON~NOO®OO
NUIgIe WwONN
NRUOWO RO

4
4

You will find a picture showing what these 40 colors look like ir
Default colors section.

The defaults for lines 41 to 80 are the same as the colors listed a
for lines 1 to 40 except that they are 26% dimmer. The defaults {
the lines 81 to 99 are again 26% dimmer than the trace colors fo
lines 41 to 59. Default colors are defined only for up to 99 traces
you have more than 99 traces, plt will start assigning colors
cyclically as described above.

CURSORCc

plt(..., '"CURSORc', rgb);
Specify the cursor color. Here, and on the rest of this page,rgb 1
be a 3 element row or column vector.

Defaults:
Only one trace (dark plot backgrounds): [1 1 .5]
Only one trace (light plot backgrounds): [0 0 .5]
More than one trace: Cursor color is set to match trace colc

DELTAC

plt(..., 'DELTAc',rgb);
Specify color indicating the delta cursor.
Default: [1 0 0]

PItBKc

plt(..., '"P1tBKc', rgb);
Specify the plot area background color.
Default: [0 0 O]

FigBKc

plt(..., '"FigBKc', rgb);
Specify the figure window background color.
Default: [.25 .15 .15]

xyAXc

plt(..., 'xXyAXc',rgh),
Specify the color of the x and y axes.
Default: [1 1 1]

xyLBLc

plt(..., 'xyLBLc',rgb);
Specify the color of the x and y axis labels.
Default: [.64 .78 .94]

plt(..., 'GRIDc',rgb);

Specify the color of the grid lines. (See also GridStyle.) Normall
grid lines are drawn in exclusive-or erase mode, however if any
the rgb values are negative (e.g. 'GRIDc', [0 -.2 .4]),th
the grids are drawn in normal mode (which is often preferable
especially if the right hand axis is not being used). The actual gr
color used in the above example is [0 .2 .4]).

Default:

If no right hand axis is enabled then the defaultis [- .13 .13
.13] i.e. a very dim gray line using normal erase mode. (The g
lines will be solid unless the GridStyle parameter is included). If

GRIDc

right hand axis is enabled the defaults (again assuming that the
GridStyle parameter is not specified), depend on the Matlab vers
For Matlab versions earlier than R2014b the default GRIDc is

[.13 .13 .13], and the default GridStyle is - i.e. a very dir
solid gray line drawn using xor erase mode. For Matlab version
R2014b or later the default GRIDcis [- .26 .26 .26], and
default GridStyle is : i.e. a dim gray dotted line in normal erase
mode (which actually is the only erase mode supported in the ne
Matlab versions).

The defaults described above apply only if a very dark plot
background is being used, including of course the default plot
background (black). If a bright background has been selected (b
using either the 'P1tBKc ' or 'COLORdef ', O parameters) th
the defaults above are inverted (i.e. subtracted from one). These
defaults may sound complicated but they have been chosen to be
pleasing to most people under the various circumstances.

TIDc

plt(...,'TIDc',rgb);

Specify the background color of TracelD box.

Default: 1f this parameter is not included, the color specified by
P1tBKc parameter (or its default) is used.

plt(..., 'COLORdef',c);

Sets the PItBKc, FigBKc, xyAXc, and xyLBLc colors mentione:
above to be consistent with Matlab's current default colors.
Trace colors are set as follows:

Matlab's current default trace colors are
used.

i.e. TRACEc =

get (0, 'DefaultAxesColorOrde

c is used instead of Matlab's default trace
color order. Note that you may use the
traditional Matlab color triple entry or or
of the alternate styles described above. T
example program subplt8.m

c=0or 'default'

c is a 3 column array

COLORdef

demonstrates how to use both the traditic
and alternate color entry styles for this
argument.

The special case for the first entry (whic
999999 if using the alternate style) mean
that the remaining colors in the array wil
appended to the current Matlab default t
colors. This is useful if you like Matlab's
default colors, but the color sequence is
quite long enough and you just want to a
few colors to that sequence.

c is a 3 column array
with a special first
entry [.99 .99 .99]

If TRACECc so defined has fewer rows than the number of traces
plotted the colors will be used cyclically as described above.

plt(..., 'ColorFile', 'filename');
The normal behavior of plt (i.e. when the ColorFile argumen
not included) is as follows.

e If pltis called from the Matlab command line, when plt
initializes it looks for a file called pltcolor.mat in the
folder where you installed plt. If this file isn't found, no acti
taken. If it is found, the file is loaded causing all the default
colors and the colors specified by all the other parameters
shown on this page to be overwritten with the data saved in
.mat file. When you select the "Save figure colors" selectio
under the Color menu, plt saves the current colors to this sa
file (pltcolor.mat).

o If plt is called from a Matlab function or script file, the beh
is similar except that the file name used is fnameColor .|
where fname is the name of the top level Matlab command
script. Again, plt looks for this file in the folder containing
.m file defining fname (or in the folder containing the fnam
file for compiled applications).

When the 'ColorFile' parameter is included in the plt argur
list, the above behavior is modified as follows:

ColorFile

'"ColorFile', 'filename'

'"ColorFile',
"drive:\path\filename'

'"ColorFile', "'

If the filename is specified
without any path, plt uses the
specified file name both on
startup (to load the color sche
and when "Save figure colors
selected. plt looks for this file
the folder containing the .m fi
defining fname (or in the fold
containing the fname.exe file
compiled applications). The
extension used is always . ma
and you may not include an
extension or a period in the
filename string.

As above, plt uses the specific
file both on startup (to load th
color scheme) and when "Sav
figure colors" is selected.

However when path informat
is supplied, plt will look for tl
file only in the location given
before, you may not include a
extension in the filename strir

plt will use its default colors,
any colors specified by the ot
parameters in this section. A
color file will never supersede
them on startup, even if
fnameColor.mat exists. [
you select "Save figure colors
plt will allow you to save the
current colors to any file of y«
choosing (by opening a file
selection box), but these color
will not be loaded unless you
change to one of the above
'ColorFile' options, or

remove the 'ColorFile’
parameter altogether.

P|1'(/v "‘)

Cursor commands

The cursor pseudo object, the most complex pseudo object supported by plt,
consists of one or more markers and several uicontrols with complex
interactions. Because of this you normally will not create cursor objects on your
own, but will rely on plt to create them automatically when you specify the data
to be plotted. However it is possible to create a cursor object manually with the
cursor init command described at the end of this section. For many casual
plotting applications, the plt cursors will behave as desired out of the box. For
more sophisticated applications you may want to modify the cursoring behavior
using the plt parameters (DualCur, Xstring, Ystring, Options) or the independent
cursor commands shown below.

DualCur parameter:

Normally the cursor value for only a single trace (referred to as the active trace)
is shown in an edit box below the plot. However sometimes it is convenient to
show the y-value for two traces simultaneously. This is done by using the
"DualCur ' parameter which specifies a trace which will always have a display
of its y-value on the screen in addition to the display of the active trace. Try out
the ed1itz.m demo program which uses Dual Cursors to simultaneously display
the magnitude and phase of a transfer function. (In fact, transfer function
displays were the problem that inspired the Dual Cursor feature.) The alternate
method of specifying the dual cursor trace (as an offset from the active trace) is
indicated by using a negative number for the DualCur parameter. The demo
program gui2 .m demonstrates the use of that mode. The use of the DualCur
mode is covered in more detail near the end of the cursoring guide found here:

Cursoring.

Xstring and Ystring parameters:
The 'Xstring' and 'Ystring' plt arguments allow you to add text strings

just to the right of the cursor X or Y readout values. Since these strings occupy
the same screen area as the delta cursor readouts, they get covered up when you
are in delta cursor mode (or a if a zoom window is visible). However those are
usually temporary modes, so as you will see, these strings still prove useful.

Most of the power of the String |Replacement value
Xstring and Ystring @CID |cursor ID

parameters stem from their |@x\VAL |active cursor X position
string replacement feature
described in this table.
Strings in the first column | @XY same as complex (@XVAL, @YVAL)
of the table are replaced @IDX active cursor index

with the value shown in the @HAND
second column. (The
Xstring and Ystring are both
updated every time the @xu Xstring user value

cursor is moved.) @yu Ystring user value

@YVAL | active cursor Y position

handle of active trace
@LNUM |line number of active trace

Xstring/Ystring Examples:

Suppose it was important to see the cursor index as well as the usual cursor x
and y values (i.e. you want to know that your are looking at the sixty fifth data
element for instance). You could do this as follows:

plt(x,y, 'xstring', 'sprintf("index = %d",@IDX)');

A string within a string (such as the '1ndex = %d' above) is normally written
in Matlab using two consecutive single quote characters on both sides of the
string. Since this can get verbose and confusing at times, callbacks defined
within plt may use a double quote character instead of two successive single
quotes. That's why the double quotes appear in the line above.

Although the mean of the active trace y values can be shown using one of the
usual cursor features, suppose you wanted to display the mean of the entire data
set (independent of the viewing window). Suppose also that you want to
continuously display the y/x ratio. (This ratio is also a standard cursor feature,
but its not continuously visible.) You could accomplish both of those feats as
follows:

plt(x,y, 'xstring', 'sprintf("mean:
%f",mean(get (@HAND, "y")))"', ...
'ystring', 'prin("Y/X: %5w",@YVAL/@XVAL)");

Suppose your X axis is measured in seconds with a zero reference of 5pm, 21-
Jan-2007 UTC. The cursor x-axis readout will be in seconds past the reference,
but you may want an additional cursor readout that shows the actual time of day.
This can be accomplished as follows:

plt(t,y, 'xstring', ...
"'sprintf("utc:%s",datestr(datenum("21-Jan-07
17:00")+@XVAL/86400,13))"');

Note the 86400 (the number of seconds in a day) is needed because date
numbers are measured in days. If your x axis unit was "weeks", you would
replace /86400 with *7. If you removed the , 13 near the end of the line (date
string format), then the readout would show the complete date and time instead
of just the time. Another way to code the statement above is:

plt(t,y, 'xstring', 'sprintf("utc:
%s'",datestr (@XU+@XVAL/86400,13))"');
set(findobj(gcf, 'tag', 'xstr'), 'User',datenum(2007,1, 21

The second statement puts the reference time in the Xstring user value which is
used by plt when updating the Xstring. This method is much more convenient
when the reference time can change. Note that the reference time is identical to
that used above, although it's written in the vector format instead of the character
format.

Sometimes the 1 second resolution provided by datestr is not sufficient. You
can increase this resolution to 1 millisecond by using the date string function
provided by plt as follows:

plt(t,y, 'xstring', 'sprintf("utc:
%s",plt("datestr", @XU+@XVAL/86400,13))"');

Occasionally its useful to use an edit box instead of a string for one or both of

these customized cursor controls. (The pltn.m example does this for the
Xstring, although the Ystring is still rendered as a text string.) To do that, simply
insert a question mark before the string. The first example above is rewritten
below to use an edit box.

plt(x,y, 'xstring', '?sprintf("index = %d",@IDX)"');

Cursor commands

Notes:

The c1d (cursor ID) that appears in all the commands shown below
is an integer that identifies the cursor the command is to act on. This
integer is returned from the cursor initialization command used to
create the cursor. If an axis contains a cursor, its cid is saved in the
axis user data. (The cid stored in the axis user data is always a scalar
since an axis may only contain a single cursor object.) You can
specify that the cid should be retrieved from the axis user data by
specifying a zero for the cid. So for example the following two
commands have the same effect:

plt('cursor',0, 'set', '"visON')
plt('cursor',get(gca, 'user'), 'set', 'visON')

The figure 'cid' application data variable contains a vector with
the cursor IDs for all the cursor objects in the figure. You can specify
that the cid should be retrieved from this vector by supplying a
negative number as the cid (for example -2 specifies the 2nd element
of this vector). This means that the following two lines have the same
effect:

xy=plt('cursor', -2, 'get');
c=getappdata(gcf, 'cid');
xy=plt('cursor',c(2), 'get');

All the following commands are case sensitive (unlike all the other
plt parameters previously described) and must use the exact case
shown below.

All the cursor commands below may return up to two arguments. If
the return arguments are listed for a cursor command, the return

values will be as specified. However if the return arguments are not
listed for a particular command, the first return value (if requested)

will be the active cursor handle and the second return value (if
requested) will be the active line handle.

[xy k] = plt('cursor',cid, 'get',n);

Get x and y coordinates of the cursor location the last time it was on trace #n.
The trace number is optional - if it is not specified then the position of the active
trace is returned. xy is a complex value. Its real part is the cursor x-coordinate
and its imaginary part is the y coordinate. The second return value (if requested)
is the index into the x data vector of the cursor position.

[n h] = plt('cursor',cid, 'getActive');
Returns the line number of the active cursor. The second return value (if
requested) is the handle of the active trace.

h = plt('cursor',cid, 'obj');
Returns an 13 element vector of handles to the following cursor objects:

5: y cursor 09: marker line-style 13: cursor
1: x label
readout button marker
2: y label b: y Cursor 10: delta button
expansion
3: X cursor 7: peak button 11: expansion box
readout
4: X cursor 8: valley 12: delta cursor
expansion button

u = plt('cursor',cid, 'expHis');

Returns an array containing the display expansion history.
Each row contains one display expansion as [xmin, xmax, ymin, ymax, code]
where:

e code =-1 indicates the row was not used

e code = 0 indicates a valid display expansion

e code = 1 indicates the current display limits

plt('cursor',cid, 'visON');
plt('cursor',cid, 'visOFF');
Shows or hides the following objects:

e peak/valley/delta cursor buttons

active trace cursor

auxiliary trace cursor (dual cursor)

x and y axis edit boxes and respective labels
xstring and ystring objects

x-cursor slider

cursor id string

Note that this function is invoked alternately (visOFF/visON) when you right-
click on the plot y-axis label (which also hides/shows the menu box).

plt('cursor',cid, 'aux', 'on');
plt('cursor',cid, 'aux', 'off");
Shows or hides the auxiliary (dual) cursor and its edit box

plt('cursor',cid, 'setObjPos',p);
Sets the cursor object positions to p, where p is a 9 by 4 element array. Each row
contains (X,y,width,height) which represents the position and size of the
following objects:
1. x-axis edit box label
y-axis edit box label
x-axis edit box (cursor readout)
x-axis cursor expansion edit box
y-axis edit box (cursor readout)
y-axis cursor expansion edit box
peak button
valley button
delta cursor button

LONUAEWN

Note that this command does not set the position of the optional x-axis control
slider. However you can set this position using the plt ' Xy ' parameter, or with a
command such as:
set(findobj(gcf, 'tag', 'xslider'), 'position’',p);

plt('cursor',cid, 'x1im',p);
Set new x axis limits and update expansion history, where p=[xmin, xmax]

plt('cursor',cid, 'ylim', p, pAux);
Set new y axis limits and update expansion history, where p=[ymin, ymax].
and optionally pAux=[ymin, ymax] (for the right hand axis).

plt('cursor',cid, 'xylim', p, pAux);

Set new x and y axis limits and update expansion history, where p=
[Xmin, xmax, ymin, ymax].

and optionally pAux=[ymin, ymax] (for the right hand axis).

plt('cursor',cid, 'exRestore',u);
Restores an expansion history previously saved in u.

plt('cursor',cid, 'axisCB', fcn);

String fcn will be evaluated whenever an axis limit is changed. This cursor
command overwrites any axis callback function entered using the 'ax1sCB'
parameter on the plt command line. The rules for string substitutions and
function handles are the same as mentioned below in the moveCB command.

plt('cursor',cid, 'moveCB', fcn);

String fcn will be evaluated whenever the cursor is moved. Before the fcn
string is evaluated all occurrences of the strings in the 1st column of the table
above (@CID, @XVAL, @YVAL, @XY, @IDX, @HAND, @LNUM,

@XU, @YU) are replaced with the values in the 2nd column of that table. fcn is
not called by events initiated from outside the figure window containing the
cursor. (For example a button push that moves the cursor in another figure
window would not activate the callback. This prevents infinite loops when figure
A modifies figure B's cursor and visa versa.) If you do want to enable the
callback for external events, insert an extra semicolon as the first character of the
moveCB callback string. This cursor command overwrites any axis callback
function entered using the 'moveCB' parameters on the plt command line. In
addition to a string, fcn may also be a function handle of the form @func or
{@func,argl,arg2, ...,argn}. Note that the string substitutions can't be
used with the function handle form of this parameter. Also note that a similar
callback is provided for the TracelD fields, although the string substitutions
allowed are different than the ones mentioned above. See the ' TIDcback'
parameter under Trace properties.

plt('cursor',cid, 'moveCB2', fcn);

This call operates similarly to the set mnoveCB command shown above and the
functions specified in both these calls are executed whenever the cursor is
moved. However normally you will not want to use this call because the
moveCB2 function is used internally by plt to keep the CursorID tag (just to the

left of the y-axis cursor readout) so that it always identifies the cursored trace
name. It's also used by plt in the linked subplot mode to keep the plots in a
column synchronized. In rare situations you may wish to modify those
behaviors, which you can do with the moveCB2 function.

plt('cursor',cid, 'setActive',a,k);

Switches the active cursor to the line specified by a (a must be an integer
between 1 and the number of lines in the plot). The cursor will be placed at
index K. If k (optional) is out of bounds or not supplied, then the cursor will be
placed in the center of the array. When a is zero (a special case), the active line
remains the same and only the cursor index is changed - which would have the
the same as calling the update command (below).

plt('cursor',cid, 'update',k);

plt('cursor',cid, 'updateH’', k);

plt('cursor',cid, 'updateN', k);

Moves the active cursor to index k in the data set and calls any user defined
cursor callbacks (moveCB, xstring, ystring). If k is out of bounds, the cursor is
set to the middle of the array associated with the active trace. If you do not
supply the argument k, then the command does not move the cursor, however it
does execute the cursor callbacks. If update moves the cursor to an area that is
not inside the current axis limits, it will shift the axis limits to make the cursored
data element visible. However when the cursor is moved by updateH the axis
limits will never be adjusted. (Think of this as "Update, Hold".) Also updating
the cursor with the updateN command has the same effect as using the
updateH command except that the cursor callback function (defined by
"MoveCB'") is not called like it is with the update and updateH commands.

When the index is not needed we can abbreviate the update command by
omitting the 'update' string. This means that the following two lines are
equivalent:
plt('cursor',cid);
plt('cursor',cid, 'update');
We can abbreviate the update command even more by omitting the cursor ID
which defaults to -1. This means that the following two lines are equivalent:
plt('cursor');
plt('cursor',-1);
And finally there is one more variant of the update and updateH commands:

plt('cursor',cid, 'update',k,X,y);

plt('cursor',cid, 'updateH', k,X,y);
The moves the active cursor to the index k as above. Normally x and y would be
the position of the kth element of the array associated with the active trace, in
which case this command behaves the same as if you didn't include the last two
parameters. However x and y can be any position on the axis, and the visible
cursor marker will be moved to those coordinates. (It's rare to want to move the
cursor off the line, but it may sometimes be useful.)

plt('cursor',cid, 'peakval',0);
plt('cursor',cid, 'peakval',1);
Moves the active cursor to the next peak (0) or to the next valley (1)

plt('cursor',cid, 'clear');
All the cursor objects are deleted.

plt hideCur;

Has the same effect as right-clicking on the y-axis label. See cursoring. If you
also want to hide the TraceID box, use the commands:
tbox=findobj('user', 'TraceID'); set([tbox; get(tbox, 'c

Note: The following cursor commands were designed primarily for plt internal
use, although sometimes they may also be useful in your programs. (These
commands are case sensitive.) The "0" in the first seven commands below refers
to the current cursor. You may replace the "0" with the actual cursor ID number,
or "-n" to refer to the nth cursor.

plt cleft 0 ZoomOut; Zoom out both x & y axis by 40%.

Zoom in both x & y axis by 40%. With the
functional form (which applies to the
command above as well), you may also
plt cright © Zoomout:; inclu.d.e an additional grgument which .
specifies the zoom ratio. For example, this
command specifies a 20% ratio (half of the

default amount):
plt('cright',0, 'ZoomOut', .2);

plt

plt
plt

plt

plt
plt
plt
plt
plt

plt

plt
plt
plt

plt
plt

plt
plt

plt

plt
plt

plt

plt

cleft

cleft
cleft

cleft

cleft
cleft

0 peakval 0;

o

peakval 1;

o

peakval 2;

o

peakval 3;

o

TGL1logy;
O TGLlogx;

cright 0 TGLlogy;
cright 0 TGLlogx;

cleft
cleft

cleft
xleft

O markCB;
O mlsCB;

O mark;

TGLgrid,;

xright TGLgrid;

xleft

TGLmenu;

xright TGLmenu;

xleft

xleft

xleft

xleft
xleft

xleft

mark 2;
mark 3;

EDIT 1;

EDIT 2;
EDIT 5;

Yedit 1;

xright Yedit 1,

Move the cursor to the next peak. (The last
argument may be omitted in this case.)

Move the cursor to the next valley

Reset the peak finder (i.e. move the cursor to
the highest peak)

Reset the valley finder (i.e. move the cursor
to the lowest valley)

Toggle the y-axis between linear/log
Toggle the x-axis between linear/log
Open Hardcopy menu

Swap x & y axes

Toggle the delta cursor mode on or off

3 way toggle of all traces between markers
only, lines only, and both lines & markers

Adds a text label identifying the current
cursor location

Toggle between grid lines and ticks

Toggle between default and alternate grid
style

Toggle the menu bar on/off

Open a cursor data window

Open a window allowing editing plt figure
colors

Write a file saving the current plt figure
colors

Enter data editing (using last used editing
mode)

Open up data edit y-popup

Exit data editing mode

Open a window allowing editing the line
properties of cursored trace. (The command
plt xright mark;) also does the same
thing.

Open a window allowing editing the plt
figure properties

plt xleft Yedit 2; Toggle multiCursor mode

plt xleft Yedit 3; Toggle xView slider

plt xleft Yedit 4, Cancel data editing mode

plt xleft Yedit 5; Enter data edit mode (Range)

plt xleft Yedit 6; Enter data edit mode (Range left/right)
plt xleft Yedit 7, Enter data edit mode (Range up/down)
plt xleft Yedit 8; Enter data edit mode (Insert)

plt xleft Yedit 9; Enter data edit mode (Insert left/right)
plt xleft Yedit 10; Enter data edit mode (Insert up/down)
plt click Yedit 11; Enter data edit mode (Modify)

plt xleft Yedit 12; Enter data edit mode (Modify left/right)
plt xleft Yedit 13; Enter data edit mode (Modify up/down)
plt xleft link; Toggle right hand axis link status

Equivalent to clicking on the cursorID tag
which rotates between the five cursor modes
[normal, Avg, RMS, y/x, sqrt(x \2+yA2)].
After five of these commands the cursor
mode will be the same as it was before the
first of those commands (having rotated thru
all the modes).

plt xleft RMS;

Mouse motion functions:

If you create a figure with a plt command that includes the parameter
"MotionZoom', 'funcname', then if you create a zoom box (see The
expansion box) while you are adjusting the size of the zoom box the function
funcname([x1 x2 yl1 y2]) will be continually called as the mouse is
moved (i.e. for as long as the mouse button is held down). The coordinate [x1
y1] is the position of the lower left corner of the zoom box and [x2 y2] is the
coordinate of the upper right corner. It may require some imagination to see how
using such a parameter would enhance your user interface. The example
demo\gauss.m shows how to use the 'MotionZoom' function. Although the use of
the MotionZoom feature in this program is not inspirational, at least when you
create a zoom box inside the gauss figure you will see the effect that the
MotionZoom parameter creates. A more practical demonstration of the use of

this parameter can be seen in the p1ltmap . m example.

In place of the character string ' funcname' you may also use @funcname or
to insert extra parameters to the function, use

{@funcname paraml param2}. (The 4 element vector specifying the
zoombox corners will be the 3rd parameter of the function in this example.)
These alternate forms also apply to the other mouse motion functions

Including the parameter 'MotionZup', 'funcname' has a similar effect
except that the function 'funcname’ only is called when the mouse button is
released. The MotionZoom and MotionZup functions are called when the zoom
box moved or resized as well as when it is first created.

If you create a figure with a plt command that includes the parameter
"MotionEdit', 'funcname', then if you use the data editing feature (see
Data Editing) while you are modifying a data value by dragging it with the
mouse, the function funcname (a) will be continually called as the mouse is
moved (i.e. for as long as the mouse button is held down). The parameter "a" is
a nine element cell array containing information related to the edited trace. The

first six of these might be useful:

e a{l1}: CursorID

a{2}: index of edited point
a{3}: edit cursor handle
a{4}: edit cursor shape (index)
a{5}: edit cursor marker size
a{6}: edit cursor line width

As with the MotionZoom parameter, it may require some imagination to see how
to use it to enhance your user interface. The example demo\editz.m shows one
way to use the MotionEdit function to enhance the user interface. In this
example you can see the advantage of the MotionEdit function and how useful
(and impressive) it is when the the plots are updated while the data is being
edited, instead of afterwards. The pltquiv.m example also demonstrates the
use of the MotionEdit parameter to update the polynomial interpolation of a
vector field in real time.

You may also create, modify, or remove these mouse motion functions after the

call to plt by modifying the corresponding application data variable associated
an axis. For example these commands will set the mouse motion functions as
expected:
setappdata(gca, '"Motionzoom', 'funcA');
setappdata(gca, '"MotionZup', @funcB);
setappdata(gca, '"MotionEdit', {@funcC paraml});

Creating a cursor pseudo object:

Usually the cursor objects are initialized from the main p1t () call that specifies
the data arrays to be plotted. However you may also create the cursor objects
using this cursor 'init' call after creating a figure on your own (i.e. without using
the plt pseudo object).

Retl =
plt('cursor',axis, 'init',In1,In2,In3,In4,In5,1In6,In7,1I
where:
e Retl: the cursor ID (cid) used to control the cursor with additional calls
to plt.

e axis: ascalar if the cursor is assigned to a single axis. A two element
row vector is used to assign the cursor to a pair of axes. The second axis
(right hand axis) is normally overlaid on top of the primary axis and is used
to provide a separate y-coordinate axis on the right and side of the graph.

e Inl: a 10 by 4 array containing
the positions of the cursor
controls. Each row contains 1 | label for x cursor readout

Row| [xywh]

[x y w h] where x,y is the 2 | label for y cursor readout
position of the control and w,h is
.) 3 | x cursor readout
its size. The units for all the :
values in the In1 array must be 4 | X cursor expansion
either pixels or normalized (no 5 | y cursor readout
mixing units). The last row 6 | y cursor expansion
specifies the position of the slider §
: . 7 || peak find button
and is the only optional row. If :
In1 contains only nine rows then 8 | valley find button
the x-axis cursor slider will not 9 | delta cursor button
be created. The rows of In1 are 10 | x-axis cursor slider (optional)

assigned as described in this

table.

e In2: a3 column array
[red green blue] Row r g b]
specifying the colors for x/y cursor label color
the cursors and cursor
readout text. The rows
of In2 are defined as
shown in this table.

5k
cursor readout color I
expansion box color
delta cursor color

line #1 cursor color 1]

[*11 Set to [0 0 0] to
make the color of this
element track itS ees || eeesessessssccsssssscsssscsnsne

associated line color. 4+n

(Must have a row for

each line object

that has a cursor)

QU W|N |-

line #2 cursor color !
[*1]

line #n cursor color !

In3: Text for the x/y cursor labels. ['xlabel'; "ylabel'] or
{'xlabel', 'ylabel'}
In4: Cursor markers. Must have one marker for each line that has a
cursor.

For example for 3 lines one could use '+0x"'

or to use the same symbol for all 3 cursors use '+++"'.
In5: Cursor size (in points)
In6: Format strings for x and y cursor readouts.

eg. ['%2.1F"'; "%5w '] or {'%2.1f"', '%5w'}.

(Type "help prin" for a description of these format strings.)
In7: Visible flag (first optional argument). 'on' or 'off'.
In8: (optional) Monotonic flag.

Set to 1 if the x data is monotonically increasing, and 0 otherwise
(such as with Nyquist plots).
In9: (optional) Axis limit change callback function.

Executed when the axis limits are changed.

When the plt('cursor', '"init' function is called, plt will

attempt to add cursors to all lines of the axis created by plt. If you

want plt to skip adding cursors to some of the lines, you should tag
Notes: the line with the string ' SkipCur '. For example, a cursor would

not be created for a line created with the following command:
line(x,y, 'tag', 'SkipCur');

Another way to restrict which lines are to be cursored is to add the
application data key ' Lhandles"' to the axis. (For example:
setappdata(ax, 'Lhandles', [h1 h3]); would tell the
cursor initialization routine to add cursors only to those two handles.)

P|1'(/v "‘)

Pseudo objects

The table below describes the GUI building pseudo objects provided with the plt
toolbox. Since this section jumps immediately into the details, it would be best if
you first read the overview of these pseudo objects provided here

The plt pseudo object can be thought of as a super axis and in that
Matlab's plot and plotyy functions but as you will learn it is much

It may be confusing at first that plt is both the name of a pseudo ol
the whole toolbox. In fact all the pseudo objects describe here are
queried by using calls to the same plt () function. The plt pseuds
remaining pseudo objects in that:

¢ For the remaining pseudo objects, the first plt argument will ¢

pseudo object (as a string) but this is not true for the plt pseuc

pseudo object, one or more numeric arrays are always require

plotted and usually we put these arrays at the beginning of th

plt it more obvious that we are creating a plt pseudo object. It is
the numeric arrays first and a call to plt will still create a plt

(pseudo) : . .
plot argu.n?ent is a string, as long as that string is not one of the fo
object) sen51t_1ve): _
click dateStr help metricp rename ver
close edit helpText misc select
colorPick grid hideCur move show
cursor hcpy markedit pop slider

When a plt pseudo object is created, two other pseudo object:
well (namely cursor and grid)

A new figure window is immediately created to contain the p
The plt pseudo object may be called from the command line {
command) whereas it only makes sense to use the other pseu
Nearly every other section of this help file is dedicated to des

pseudo object.

cursor
(pseudo
cursor
object)

The cursor pseudo object, more than any of the others is what give
advantage for GUIs involving plotting and data exploration. Once
and natural methods provided for cursoring, zooming and panning
lived without them and you will want all your GUI tools to be sim

The description of the cursor pseudo object is long to fit comfortal
section of the help file (which you will find here) is dedicated for 1
describes how to query and modify the cursor objects as well as he
using the '1nit ' action. (It's not likely worth your time to reviey
because normally you will let the plt pseudo object create the curs

The trace color of the native Matlab axis grid lines can't be indepe
lines that over power the display. The grid line pseudo object is de
by providing grid lines of whatever color and style you choose. Ac
referred to is mostly solved in the latest R2014b version of Matlab
capability if you need to remain compatible with older Matlab ver:
problem and the grid lines will look wonderful on all supported M
R2014b).

Grid lines are positioned at each tick label. Additional (sub-decade
for logarithmically scaled axes that span six or fewer decades. (Th
changed by adjusting the 10gTR figure application data property -

The grid line functions are:

plt('grid',ax, 'init',color,erMode, LineStyle,
- Initializes grid lines on axis ax of color color with erase mu
LineStyle.
- color is optional with default [.13 .13 .13]
- erMode is optional with default 'xor'.
- LineStyle is optional with default '-'
-In7,In8 is an optional parameter/value pair to apply to the
-In9, In10 is an optional parameter/value pair to apply to the
The pltvbar.m demo program uses this call to create a tal
list next to the main plot area. Although that demo as we.

grid
(pseudo
grid line
object)

three line example below calls this 'init" action, you will 1
if ever do this because the grid pseudo object created aui
by the plt pseudo object is usually sufficient.

plt('grid',ax, 'toggle') -toggle grids (on/off)

plt('grid',ax, 'get') - get grid line handle
plt('grid',ax, 'off') - turn grids off
plt('grid',ax, 'on') - turn grids on

plt('grid',ax, 'update') - update grids
plt('grid', ax) - same as above
plt('grid') - equivalent to p1t('grid
All the above calls return the grid line handle. Setting ax to zero i
equivalent to specifying gca.

To experiment with these functions, try typing this at the comman
>> plt('grid',axes, '"init',[.7 1 1]); % createa

>> set(gca, 'ylim', [0 6]); % change
>> plt('grid'); % update ¢

The slider control is Matlab's most versatile ways to control a numr
allows us to change a value continuously and repeatedly using sev
& hold on an arrow, click & hold in the trough, and dragging the s
object (described later in this table) enhances this capability furthe
movement options and coupling it with the labels and numeric rea
the slider. The only downside to the pseudo slider is that it takes u
everywhere in a GUI containing many numeric controls. For this r
uicontrol('Style', "Edit ")) is often used to control a nm
because the only way to change the value of an edit box is to type
difficult to use when many adjustments are needed to arrive at an ¢
want to develop a feel for the effect of small changes in the param

was designed primarily to overcome that difficulty, although it als
advantages over the uicontrol edit box:

e A label is almost always required for a numeric parameter an
string parameters as well. The uicontrol edit box doesn't have
another uicontrol for that purpose, complicating your prograr
to reposition. The edit pseudo object includes an optional lab
object its label automatically moves along with it.

e The edit pseudo object may be positioned using figure coordi
or data coordinates of an axis. Which coordinates to use is us
the use of the particular control. (The uicontrol edit box may

e The edit pseudo object takes up even less space in your GUI -
you can fit more controls into a given area. This often simplif
avoiding the need for additional modes to control which para

e The edit pseudo object has the (optional) ability to honor set
values.

e The string substitutions of the edit pseudo object's callback fu
the callback routines.

There are two types of edit pseudo objects:

e Type 1: Two uicontrol objects are created (text style) inside t
(If a label is not specified, only a single uicontrol is created.)
This type is created if the 'pos' property has lengt
height]).
e Type 2: Two text objects are created inside the current axis.
(If a label is not specified, only a single text object is created.)

This type is created if the 'pos' property value has

For reference, this first table describes the edit pseudo object prop
query. How to use these properties will become clear later when tt

Property||Property
Name |Value

Sets the edit object's numu
(default = 1)

[min max] Sets the edit object's allov
(length 2 vector) (default = [-1e99, 1e99])

V (scalar)

value

val

minmax

callbk

enable

incr

length

[V min max]

Sets both of the above.
(Iength 3 vector)

Except for the length 2 argument case, the callback f
been provided earlier in the argument list or in a pre"
plt('edit').

Equivalent to the value property above, except tha
called.

Equivalent to the val property above. (For clarity, t
argument has length 2 (i.e. [m1n max]).

A callback to be executed when the edit text object i
If the callback is defined with a string, then:

Occurrences of '@VAL " will be replaced with the c
Occurrences of '@OBJ " will be replaced with the e
Also note that if the function is defined as a string ar
single quote characters are required (quotes within q
readability can be improved by replacing all sequenc
single quotes with a double quote character. For exar
"disp(""ABC''"); ' could be writtenas 'disp|
this trick does not work for Matlab callbacks in gene
any callback defined withina plt (...) function c

O=disable, 1=enable (default=1). If disabled, the text
may not be modified.

The increment value for a numeric edit pseudo objec
click on the right/left side of the center of the object,
edit object is increased/decreased by "incr". A negati
to indicate that the increment factor is in percentage
For example, if incr = -0.1 then clicking on the right
will increase/decrease the edit object's value by 0.1 |
1001 or 999). Setting incr to zero disables the incr/d«
the left clicking on the object will have the same effe
that the incr/decr feature is also disabled if the lengtt
to anything other than one.

The length of the vector allowed as the edit value. U
the edit value must be a scalar. If length=4 (for examr
value must be a row or column vector of length 4. Ty
length=-1 and length=0. length=-1 is used to indicatt

format

label

any length is a legal value. length=0 is used for strin
string is not interpreted as a number or vector. (defat

The format conversion string used to display numeri
(default = '%6w "). Type "help prin" for a descriptio

If the argument is a string, that string will become th
label. Usually this is sufficient, but if you want more
position or appearance the argument may be a cell ai
{'LabelString', offset,

"Propertyl',Valuel, 'Property2',Valu

Note that the label will be created with the same typ
(i.e. a uicontrol for type 1 and a text object for type -
the cell array must be valid properties for that object

Note that the label will be created as a text object in
to display the popup choices. Property1, Property?2, ¢
object property names. The meaning of the offset pa
length as follows:

Offset Meaning for Type 1

plt estimates the best label siz
"Yor[] position based on the # of cha
in the label.

The label width is set to q.
q plt estimates the best label hei;
position.

The label width is set to q1.
The label position is set to:
1 g2
[al q2] edit object position +
[real(g2) imag(q2)]

[q1 92 g3] NA

[l g2 g3 g4] The label position/size is set tc

edit
(pseudo
edit
object)

*kk k%

[q1 g2 g3 q4]
For a type 1 edit object, if the estimated width of the
character length is too big or too small you may adju
parameter as described above. However an alternate
itself. You can make the width bigger by padding the
can also make the width smaller by using the tilde cl
the desired label is "Abcdef", you can make it slightl
the label as "Abcde~f" or smaller still by using "Abc
(Note the tilde character itself does not appear in the

If a property name is given which isn't in the list abo
applied to the main uicontrol or text object itself. (It
name for type of object being used.) The position ('
object must be set this way. For a type 1 edit pseudo
foreground/background colors (' foregr' / "bacl
usually set this way, however if these properties are
background color defaults to 0.8 times the figure bac
foreground color defaults to [1 1 .4] or [0 0 .6] (whic
contrast). The text color of a type 2 edit pseudo obje
well ('color ' property) with its default handled ir
foreground color for the type 1 object.

The following commands are used to create an edit pseudo object:

The property name

plt('edit’, interpretation of th

"Popertyl',Valuel, shown in the table
'"Poperty2',Vvalue2, ...) many or as few pr

plt('edit’,
[X y width height], v,
"Poperty3',Values, ...)

whatever order yor

Usually both the ¢
properties are neec
you may omit thos
property values ap
Note that Vv in this
3 vector if you wa;
values. Property n:
may not be omittes

plt('edit’, Assuming at least

'pos’', [x y width height], values is greater th

'value', v,

"Poperty3',Vvalue3, ...)

H = plt('edit', 'unit', "norm", [If all of the positio
'pos', [x y width height], (indicating that no:

'value', v,

"Poperty3',Vvalue3, ...)

units are being use
translated into this

used), a slightly di
(Note the addition

The above calls create an edit pseudo object and returns the handl
type 1) or main text object (for type 2) created. (By "main" I mean
value, not the label). This handle (H) may be used to modify or qu
parameters using the forms below:

plt('edit',H,

"Popertyl',Valuel,
"Poperty2',value2,...)

plt('edit',H, 'get',

plt('edit',H, 'get',
plt('edit',H, 'get',
plt('edit',H, 'get’,

plt('edit',H, 'get’,

'value')

"'minmax"')
'callbk')
'enable')

"incr')

If H is a scalar, the <
are applied to the ed
by handle H. The pr
same ones describec

If H is a vector then
to the kth row of Va
have that many row:
used. Only one prop
case where H is a ve

returns the numeric
pseudo object. For ¢
may also be written
plt('edit',H,

the last two argumel

returns [min max] -
value

returns the string or
set via the 'callbk’ p:

returns 0/1 if the pse
disabled/enabled

returns the value the
parameter

plt('edit',H, 'get', "length')|returns the value tha
parameter

plt('edit , H, 'get 1 , "format ') returns the Strmg the
parameter

plt('edit',H, 'get', "label") |returns the label han

returns an 9 element

concatenation of the

' . ' b . commands: {val mis
plt(’edit’, H, "get’, ‘cell’) length format label}
may be replaced by

of the other 8 valid'

Keyboard and mouse behavior:

Right-clicking on the edit text object always "opens" the object fo
that the old edit string appears with the cursor (underscore) at the «
that it is ready to accept keys typed at the keyboard. If you start ty
characters typed will be appended to the end of the old string. To i
point other than the end, simply move the cursor to the desired poi
keys. To remove characters, press <Backspace> or <Delete> to rer
after the cursor. Pressing <Delete> when the cursor is at the end of
characters. This special case makes it easier to enter a new string t
the previous entry. Note that while typing, the text object is shown
you that a new value is being entered. When you press <Enter>, tk
the color returns to the original. If you type an invalid entry, the w
again on the "error" string to try the entry again or to recover the f
summary of the special keys follow:

The edit text object is closed for editing and the

<Esc> . Ny
restored as if the edit object was never opened fc

<Backspace> Deletes the character on the left side of the cursc

Deletes the character on the right side of the curs

<Delete> |end of the string, all the characters are deleted le
cursor.

<Right

Moves the underscore cursor one position to the
arrow>

<Left arrow> Moves the underscore cursor one position to the

<Enter> Closes the edit text object, accepting the current
underscore cursor) as the new value.

Clicking the mouse on the edit text object while

<Click> effect as pressing <Esc> on the kEYbOard-

When entering a scalar value, if lower case "i" (i
the last character, this indicates that the entered v
new "incr" parameter for the object. In this case
before the object was opened is retained.

Left-clicking on the edit text object also opens the object for editir
exception. This exception happens when the edit text object is a sc
is equal to one). In fact this is more the rule than the exception sin
used (and default) value for the length parameter.

In this (scalar parameter) case, when you left-click on the edit text
incremented or decremented by the object's "incr" parameter. Whe
or decremented depends on the position of the mouse click. If you
object's center, the value will be incremented. Likewise, the value
clicks to the left of center. As an example, suppose the current edit
259, and the increment parameter is 1. Left-clicking on the 9 will «
to 260 (because the 9 is right of the center of the text string). On tl
the two will decrement the value by one. Remember that if the inc
convenient, you can change the increment amount on the fly by us
described above.

An important property of the scalar increment/decrement feature i
continue to increment as long as you hold down the mouse button.
interactive controls and allows the edit objects to take the place of
graphic object to have this repeat property). When you hold down
be a delay of 0.4 seconds before the auto-incrementing begins. Afi
be incremented once every 0.03 seconds. You can alter the repeat |
object's application data repeat property. For example, if you w.
the speed of the default) use the command:

setappdata(H, 'repeat',0.06);

where H is the handle of the pseudo edit object. You can also chan
well. For example, the command setappdata(H, 'repeat’,

the repeat rate to 0.06 seconds and the repeat delay to 0.25 second
repeat feature by setting the repeat delay to a negative number, for
setappdata(H, 'repeat', -1);.

The easiest way to reset back to the default repeat and repeat delay
property to null ([] or ' ') or simply remove this property altoget
rmappdata(H, 'repeat').

Whenever a number is being typed in, you may also type an expre
the following entries are all equivalent:

S

abs(3+41)

[2 1] * [2 1]
sqrt(3*27A3-cos(pi))

Typing sum(get(gca, "'x1lim").*[0 1]) 'would be equiva
upper x axis limit. And to be really perverse, typing 1log(-1)/ (.
to typing ".5i" which as mentioned above would change the auto i

See both the gu12.m and the curves.m example programs for |
pseudo edit objects as well as the pseudo popup objects described
example also uses an edit text object for controlling the rotation sf
the last figure window.

Just as the pseudo edit object described above may replace an edit
object described here may be used to replace a popup uicontrol
(uicontrol('Style', "Popup')). The pop pseudo object
those listed above for the edit pseudo object.

E.'.rm;[| = Bl The popup pseudo object is highly cu

s typical example. On the left is the poj

on the current selection ("normal” in
xor will open as shown to the right. Note
none currently selected item is shown in bc
simply clicking on the new selection
with the new selection.

background

The following table describes the popup pseudo object properties
although how to use these properties may not become clear until I

discussed:

Property
Name

choices

index

callbk

position
or
pos

Property
Value

A cell array of strings specifying the choices giver
selected. If all the choices are numeric you can us
of the cell array. For example [3 5 7.5] isequ
'7.5'}.

An integer specifying the current choice (default =
the choices cell array). After the popup is set to th
popup is closed if it had been open. The callback i
when the popup choice is set using the index parai
specify the negative of the index desired, then the
after the index is set.

A callback to be executed when the popup value i
If the callback is defined with a string, then:
Occurrences of '@IDX" will be replaced with the
Occurrences of '@STR' will be replaced with the
[x vy width height] for the opened popup
units.

Two other options may be enabled by making the
Therefore these two lines are equivalent:

plt('poplllposll[_'s .5 .1 '2]1"
plt('pop’, 'pos’,[.3 .5 .1 .2], "0
Likewise the following two lines are also equivale
plt('pOp','pOS',[.3 -.5 .1 '2]1"
plt('pop', 'pos',[.3 .5 .1 .2],'s\

In both these examples the second line is preferrec
the descriptions of the offset and swap parameters
can make both x and y negative to enable both the

offset

colorbk
colorfr
enable

If the position was specified previously you can u
modify just the height component or a two elemer
width and height components.

y or [x y] which specifies the location of the close
opened popup.

x is set to 0.08 if it is not specified (where 0/1 repi
of the left/right edges of the opened popup). The r
becomes clear by considering the example where 1
contained 4 elements. Then:

ey = 0: represents the vertical position «
opened popup

e ¥y = 0.5: represents the vertical position «
opened popup

e vy = 1.5: represents the vertical position «
opened popup

e y = 2.5: represents the vertical position «
opened popup

e vy = 3.5: represents the vertical position «
opened popup

e y = 4.0: represents the vertical position «
popup

Note that negative values for x or y may be used t
popup position should be to the left of or above th

popup.

If the offset parameter is not included, then the clc
top of the opened popup, i.e. at position [0.08
of popup choices). To put the closed popup at the
popup simply include 'offset', © in the parar

The background color used when the popup is ope
The foreground color used when the popup is opel
O=disable, 1=enable (default=1)

Normally a left-click on the pseudo popup control
the list of choices while a right click merely advar

swap

hide

without opening the popup. Sometimes it is useful
left and right-click - a mode I refer to as the "supe
there is only a single choice, it behaves exactly lik
that the only effect from clicking on it is that its ce
are two choices in the choices cell array, it behave
button text toggles between the two choices with €
there are fewer than four choices, the super-button
than the regular mode. The super-button mode is s
swap parameter in the argument list. Often you wi
button look at least somewhat like a button by inc
super-button text. The color of this box is specifie
For example swap, "blue’ will draw a blue bo:
Or instead of a Matlab color string, you can use ar
the parameter to zero to use the current foregrounc
[.1 1.9]). If the parameter is missing (which is onl
argument is at the end) or if the parameter is set to
then no box is drawn around the button text. Some
able to toggle the super-button mode on or off inte
with the following quick procedure:

1. First open the popup. (A left or a right click v
which mode you are in.)

2. Then use the mouse to move the figure windc
(less than 15 pixels in any direction).

3. And finally close the popup by clicking on ar
drop down list.

The 15 pixel requirement makes it quite unlikely t
performed unintentionally, especially since one ra
figure while adjusting a control. The text swap
the Matlab command window to assure you that tt
intended.

A list of objects to hide before opening the popup.
closed, these objects are shown again (unless they
popup opened). The hide parameter is used to rem
objects that overlap or are too close to the popup |
list, before the list is used the zero will be replacec
handles) of the plot grid lines. (This is convenient
most common object to overlap with opened popu

pop
(pseudo
popup
object)

interp

label

labely

*kk k%

parameter to ' ' or [] or not supplying a paramet
the 'hide' argument is the last one) is equivalent to
zero.

"'none’ or 'tex' (default="none")

{'LabelString', offset,
"Propertyl',Valuel, 'Property2', Va.

A label for the popup will be created as a text obje
used to display the popup choices and will contair
(the first element of the cell array argument). The

array is a complex number containing the offset fc
pixels from the closed popup. (The real part is the
imaginary part is the y offset). For example if the .
array is -10+20i, then the label will be positioned

20 pixels above the closed popup.

The remaining cell array elements (if any) must cc
pairs, and the properties must be valid text object
specified properties will be applied to the closed p

Specifying an offset of ' ' or [] is equivalent to s
for this cell array element. (i.e. the default offset i:

Instead of specifying a cell array for the label argt
specify a string. For example, the argument ' Lab
equivalent to { ' LabelString', ''}. Since th
sufficient, it turns out that this shorter form is usec
cell array parameter.

This behaves just like the 1abel parameter abovt
the default offset when it isn't specified is 16i (inst
label parameter). This is the usual offset needec
label directly above the closed popup text.

If a property name is given which isn't in the list a
applied to the popup text object itself. (It must be

The text color (' color ') is usually set this way,
is not specified, the default color is [1 1 .4].

The following commands are used to create a popup pseudo objec

plt('pop’,

"Popertyl',Valuel,
"Poperty2',value2,...)

plt('pop’,

[Xx y width height],

{'choicel’,

'choiceN'},

"Poperty3',Vvalue3, ...)

plt('pop’,

'pos', [x y width height],
'choices',{'choicel', ...},
"Poperty3',Vvalue3, ...)

The property ne
interpretation o
shown in the tal
as many or as fi
in whatever ord

Both the 'positit
properties are rt
conciseness yot
names if the prc
and in this orde
than these two 1

The above com
this line before
any of these co1
either pixel or r
aren't required t
property since |
property from t|
the position vec

The above calls create a popup pseudo object and returns the hand
visible when the popup is closed. This handle (H) may be used to
pseudo object parameters using the forms below:

plt('pop', H,
"Popertyl',Valuel,

"Poperty2',value2,...)

If H is a scalar, the <
are applied to the pc
identified by handle
are the same ones d¢
above.

If H is a vector then

to the kth row of Va
have that many row:
used. Only one prop
case where H is a ve

plt('pop’, H,

plt('pop’, H,

plt('pop’, H,

plt('pop’, H,

plt('pop’,H,
plt('pop’,H,
plt('pop’,H,
plt('pop’,H,
plt('pop’,H,

plt('pop’, H,
plt('pop’,H,
plt('pop’, H,

plt('pop’, H,

'string')

'axis')

'choices')

"index')

'callbk'")
'offset')
'colorfr')
'enable')
"hide')

"interp')
"label')

"swap')

'cell')

returns the currently
choices cell array.

Equivalent to the sh
get(H, 'string
returns the handle o
the opened popup.

returns the cell array
via the 'choices' pare

returns the index nu
pseudo object (betw
the choices cell arra
command may also
argument: pLt (' p:
without the last two
plt('pop',H)

returns the function
set via the 'callbk’ p:

returns the number «
specified via the 'off

returns the 3 elemen
that was specified v

returns 0/1 if the pse
disabled/enabled

returns the vector of
the 'hide' parameter

returns the string the
parameter

returns the label han

returns true if the sw
selected.

returns an 11 elemel
concatenation of the
commands:

{axis choices index
enable hide interp la

not include the first
listed above. Also 'c
replaced by any stri
other 12 valid 'get’ a

plt('pop',H, 'open') opens the popup rev

Mouse behavior:

Left-clicking on the popup text object "opens" the popup. What th
string is replaced by a list of the popup choices (rendered using co
clicks on the desired choice which then becomes the new text strir
popup text object changes the text string to the next available choi
already selected, then right-clicking will change the text string to t
the "choices" array). If you hold down the right mouse button, the
advance cyclically. You can alter the rate at which the cycling proc
application data repeat property. The use of this property is moi
above in the description of the edit pseudo object.

See both the gu12.m and the curves.m example programs for |
pseudo popup objects as well as the pseudo edit objects described
and the wfall.m examples show how to use this pseudo object ti
to start and stop a moving plot.

When using a uicontrol slider to control a parameter in a GUI, bes
one generally also wants an edit box to show the current slider val
entry by typing a number. Also a label is usually required to identi
labels indicating the minimum and maximum allowed values are &
slider object combines those five objects into one and is included i
easier to design. The additional movement and quantization mode:
reduce the amount of code you need to make the control work as ¢
pseudo object, use the command:

H = plt('slider',In1,In2,In3,In4,1In5,In6,INn7

This creates a pseudo object which usually looks something like tl

stopband ripple | The five component uicontrols that are created fo

1‘” 40 _12:3 identified as:

ValueEditbox max

The variables used in the above slider initialization command are «

Inl

The return value is the pseudo slider's handle which is
the pseudo slider's properties. (See the get and set c

[X,Yy,width] in pixels or normalized units. Values
to be normalized. Mixing units is ok although x & y m
[X, y] are the coordinates of the lower left corner of th
(which is also the upper left coordinate of the min valu
missing 120 is assumed.

When the position is specified with a 2 or 3 element as
pseudo slider will look similar to the object shown aba
subcomponents. The second way to specify the pseudc
element vector in the traditional Matlab format (i.e.

[xLeft,yBottom,Width, Height]). When usin
vector only specifies the position and size of the actual
calculate what is hoped to be the optimal position and
box components. If the Width value specified is large
then the pseudo slider will end up looking similar to th

] Note that the min/max labe]

the position is specified this
more compact. If the Width value is smaller than the H
will be oriented vertically with the label is placed at th
placed at the bottom. (See the demo programs bounct
examples of the use of both these forms. If the label an
enough for your taste you can fix it by adding spaces t
the label, since plt uses the length of the label string to
those two elements. Alternatively you may include a 5
vector which specifies the width of both the label and 1
very picky, you can set Inl to be an eight element vec
four elements specify the position of the slider compor
elements specify the position of the label component (1
Matlab positioning style). The editbox component will
size as the label component and placed on the opposite
the label.

slider

In2

In3

In4

In5

Finally there is one last method when complete flexibi
Inl argument is specified by a cell array. This cell arr
which specify the positions of the Label, Slider, MinTe
components respectively. These positions must all be i
pixel units and each component must be either a 4 elen
vector or an empty vector which indicates that the assc
invisible.

In1 is the only required parameter for this function.

[value, smin, smax, emin, emax]
value is the initial value assigned to the slider.
smin/smax are the slider values at its leftmost/rightmo
emin/emax are the smallest/largest values allowed whe
the edit box. If emin and emax are missing, 1e-99 and

If In2 is not supplied, [50 0 100] is assumed.
Slider label. If you don't want a label, don't supply this

Slider callback. This expression will be evaluated whe
slider control or enters a number in the edit box. Occu
be replaced with the current value. This parameter is o
must include it if you want to specify any of the three |
If you need to supply this parameter for that reason, bt
callback, simply set In4 to ''.

The following three parameters are optional. Although
as In5, In6, and INn7 in fact these three parameters (:
may be included in the argument list in any order you «
used to identify which parameter is being supplied.)

This parameter controls how the slider moves when th
are clicked or when clicking in the space to the left or

In5 Movement Quantization
1 Linear none
2 Linear rounded to nearest integer
3 Linear rounded to nearest power
[4 g] Linear rounded to nearest multipl
5 Logarithmic none

(pseudo
slider
object)

In6

In7

[6 g] Linear rounded to nearest integer
and to nearest multiple of
If In5 is not provided then 1 is assumed.
For modes 4 & 6, q defaults to 10 if not specified.

{fmin fval fmax}

fmin/fmax are formatting strings for the min/max labe]
formatting string for the edit box. These strings may cc
formatting codes or the W,V,w,v formats. (Type "help |
these formats).

You may use a space to delimit the formatting codes. F
"%4wW %5 .2F %2w'.
Or use a row or column cell array if you prefer: { ' %4\

Since the w format is the most convenient format to us
conciseness a single digit may be used as a shorthand {
example above may also be writtenas '4 %5.2f 2'
{'4' "%5.2f' '2'}.

Often it is sufficient to only specify the format for fval
for fmin and fmax (which are '%2w"' and '%3w' resp
by simply specifying a single format code. For exampl
to '2 %5.2f 3'.

If In6 is not provided, then '6"' (or equivalently '2 €
w format is used for all three elements.

[LabelBG; EditBG; LabelFR; EditFR]

This is an array containing 3 columns and up to 4 rows
respectively represent the proportion (0 to 1.0) of red/g
control. The first two rows are the background colors {
respectively. The last two rows are optional and contai

foreground colors. If the foreground colors are not spe
assumed (i.e. [0 0 0]).

If In7 is not provided then [.75 .75 .75; 0 1 :

For the commands below, H is the handle returned from the above

command.

The get commands:

plt('slider',H, '"get', 'value') returns the pse

plt('slider',H, 'get')

equivalent to 1

plt('slider',H)

also equivaler
shortest and r
getting the slic

plt('slider',H, 'get', 'visible')

returns 1 if the
otherwise

plt('slider',H, 'get', 'ena')

returns 1 if the
otherwise

returns the slit

plt('slider',6H, 'get', "position') [xy width]in

originally spet

plt('slider',H, 'get', 'pos')

same as above

plt('slider',H, 'get', 'obj"')

returns the slic
[Label; Slic
EditBox]

The set commands:

plt('slider',H, 'set',a)

Sets the slider to val
Returns a possibly |

plt('slider',6H, 'value', a)

Equivalent to above
extra parameter 'set
plt('slider',|
if you prefer. In fact
allowed (immediate
in all the remaining
table.

plt('slider',H, 'val',a)

Same as above exce
not executed

Sets the slider positi

plt('slider',H, '"position', a) (See In1l in the slid
description above).
plt('slider',H, 'pos',a) Same as above.

a contains [smin,sm
above)

b is a new slider val
Returns a possibly |

plt('slider',H, 'minmax',a,b)

plt('slider',H, "visON') Makes slider visible
plt('slider',H, 'visOFF) Makes the slider inv
plt('slider',H, "enaON') Enables the slider.
plt('slider',H, 'enaOFF") Disables the slider

lat s ' . | Sets the label string
plt('slider’,H, "label’, a) label is made invisit

Sets the slider move
plt('slider',H, "'mode', a) above).
Returns a possibly |

Before getting much farther in this section, you should try running
program so that you have a better context for the information that

The Image pseudo object provides cursoring methods appropriate
includes several optional components including:

e A color bar which serves as a legend for the z-axis values as »
changing the colormap used to represent the z data.

e Aslider (labeled 'edge') that allows you to control how wide
used when determining the color used to represent each array

e Aslider (labeled "mid'") that allows you to control the center
used to determine the color for each array element.

¢ A checkbox that allows you to control the visibility of the axi

e A 'view all' button, that when clicked on resets the axis limit:
object so that the entire image data set is visible. A secondary
activated by right-clicking on it instead. Each time you right-
limits are zoomed in to expose only the middle 36% of the vi
60% expansion of both the x and y axes.).

Initialization

h = plt('image',axI, x,y,z,opt);

The image object is created in an axis and figure that must be crea
pseudo object. For example, suppose we create a figure with the c
plt(x1,yl,x2,y2, 'Subplot', [40 60]); These creates
(40% of the height) below and the larger one on top. And suppose
map in the larger axis, then we would use p1t('image', 2, X,
to 2 to indicate that the image should be inserted into the upper plc
the ordering of the axes). You wouldn't expect it matters what is in
covered over by the image object, but in fact x2 should be set to tt
specified in the image initialization. This insures that the intensity
correctly. (The data in y2 on the other hand does not matter as lon;
x2).

opt is an optional cell array that specifies the image object option
contain any or all of the following strings in the following table. T
insensitive, and actually all characters except the first one are ignc
'view', 'ViewAll', and 'V' would all serve the same purpos

If this string is included the color bar image is create«
key (i.e. for displaying the current color map). You c:
to cycle through seven different color maps as follow

0: rainbow
1: jet

2: sometric
3: seismic
4: gray

5: colorcube
6: lines

'cbhar'

This entry is an exception to the rule that only the fir:
because you may also include a digit between 0 and ¢
the string. This specifies which color map to appear 1
initialized. For example 'cbar3', 'c3' or 'Cbar
initialize the color map to "seismic". If the last digit «
then the the rainbow color map is selected as the by ¢

image
(pseudo
intensity
map
object)

"edge ' If this string is included the "edge" slider will appear
of the zData that is mapped to the selected color map

If this string is included, the "mid" slider will appear
point of the zData range that is mapped to the selecte

'mid’' |adjusting this slider, as well as the "edge" slider ment
in more detail in the description of pltmap . m in the
section.

If this string is included, a "grid" checkbox will appe
turn the grid lines for the image object on or off. This
rule that the case is insensitive since 'Grid' and 'grid' |
meanings. They both create the checkbox, but the caj
the check box to 'on' (i.e. the grid lines are enabled) a
initializes the box to 'off".

'grid’

If this string is included a "view all" button will appe
clicked on will zoom the axis so that the entire image

'view' mentioned above, you may also zoom into the middle
right-clicking on this button. (The middle 60% of bot
become visible.)

You may optionally include a 4 element position vector (in normal
these 5 options strings. If the position vector is not included, then .
for the item. For example:

opt = {'Cbar' [.5 .4 .02 .24] 'Grid' 'ViewAl
.02]};

When this option cell array is used for the image object initializati
checkbox, and a view all button will be created, but the edge and 1
they are not included in the options list. The color bar and view all
the coordinates given, whereas the grid checkbox will be positione
there is no position specified for it in the options list. You may use
delimiter between option elements (i.e. row vector form as in the ¢
semicolons if you prefer (i.e. column vector form).

The call that initializes the pseudo image object returns the image
then use in any of the image modification commands shown belov
update commands which come in seven forms depending on whic!

update:

plt('image',h, 'x',x);
plt('image',h,'y',y);
plt('image',h,'z',z);
plt('image', h, 'xy',x,y);
plt('image',h, 'xz',x,z);
plt('image', h,'yz',y,z);
plt('image', h, 'xyz',X,y,z);

Then we have commands which can change the values of the mid
allowed if they were created by the image object initialization):

plt('image', h, 'mid',Vvalue);
plt('image', h, 'edge',Value);

And finally we have commands to change the x and y limits:

plt('image',h, 'x1lim', [xLower xUpper]);
plt('image', h, 'ylim', [yLower yUpper]);

For convenience you can combine any of the above image modific
command. For example to change the y and z data values, adjust tl

limits you would use a command such as:

plt('image',h,'yz',y,z, 'edge',1.5, 'ylim'

| <) Color Pick
text color
Red (%)

I Although you will proba
scheme for your GUI applications, the user's satisfaction with the .

improved by allowing them to choose the colors used for the majo
ColorPick pseudo object you allow the user to efficiently choose t/
consistent way within and among your applications. Also you will
using the ColorPick figure is much easier than using the typical W
attempts to show all possible colors in a single palette. I've found
area of your potential color choice before you can decide if the col
possible to accomplish that using a single palette which is what mi
allowing you to fix one of the colors, ColorPick presents an 11x11
remaining two colors which gives you plenty of area for each colo
enough, you can resize the ColorPick figure to be as large as you 1
that the instant you click on one of the 121 colors in the current pa
the palette AND the objects in the gui that you are adjusting instar
color. This instant feedback is really necessary to remove the frust
the task. Scrolling through the many possible palettes is also very
and click on the left/right arrows for a finely changing palette, or ¢
slider for a more coarsely changing palette (which should be fine ¢
color chooser).

Any Matlab object that has either a callback property or a buttond
used to bring up the ColorPick window shown here. Before I desc
programming perspective I will give a few more details about how
this window.

The text above the sliders is generally used to identify the object o
the color being selected. The three sliders always indicate the RGl
selected color. In the example shown at the left, the RGB values ai
respectively. In Matlab, this color would be represented by the vec
rectangular patch object in the upper right corner always indicates
the proportions are set to agree with the values of the three RGB s
red one in this example) will always be shown with its text value i
the "active slider". A slider will become the active slider whenever
into its edit box or when you click on the left or right slider arrows
the currently selected color:

¢ You can simply select the desired color using the RGB slider:
it is irrelevant which slider is identified as active.

¢ You can click on any one of the 121 small square patches tha
grid. The colors in this grid are entirely determined by the aci
since the active slider shows RED=35%, every color in the 1

= .35 with varying amounts of the other two colors. So in this
the 4 corners of this grid starting at the lower left and moving
[.3500],[.3510],[.351 1], and [.35 0 1]. and the square ex:
grid has the color [.35 .5 .5]. Clicking on any one of these 12
inactive sliders to the values associated with the patch that yc
slider will be unchanged and will remain active). Also the lar
the gui that are associated with this ColorPick object will cha
color.

¢ Clicking on the large patch will cause the sliders to move to t
color that was in effect when the ColorPick window was first
never changes for as long as the ColorPick window remains ¢
changed to the values shown currently by the sliders by closi
re-opening it again.

Next I will describe how the ColorPick object is created from the |
will call the object that initiates the creation of the ColorPick figur
You must do the following two things to make a ColorPick figure

ColorPick ° You must assign an application data variable named 'm' to t/
array of this form:

(pseudo {'PROP1', H1, 'PROP2', H2, 'PROP3', H3,
color select 'label'
object) abel’}

When the user selects a new color using the ColorPick figure
object with handle H1 will be set to the 3 element vector [R (
values from the ColorPick figure. If H1 is a row vector of har
objects will be treated similarly. Then in sequence the objects
in a like manner. If any of the 'PROPI' entries are 'str' or 'strin
element color vector is converted to an Ascii string before be
In place of any property string, you may use a cell array of st
will assign the user selected color to all the properties listed i
handles listed in the following argument. Finally, the last entr
included will appear above the rgb sliders and is used to iden
being controlled.

¢ To the callback or buttondownfunction property (or both) of 1
assign one of the following strings:

1. "plt ColorPick' This will cause the ColorPick fig
callback or buttondownfunction is called except for one
the callback of an 'edit’ style uicontrol is called. The reas
that if you type the desired colors directly into an edit bc

you didn't need the help of the ColorPick figure. Note th
properties listed in the 'm' application data cell array are
above even though the ColorPick figure is not created. I
window will appear when you right-click on such an edi
buttondownfunction of the edit box has been similarly a
2. 'plt ColorPick ccf' This has the same effect as
user changes a color with the ColorPick figure, in additi
in the 'm' cell array, the function ccf is called. ccf stands
and may be any string corresponding to a function name
arguments, such as in 'plt ColorPick changeFunc(3,-1)".
string arguments as well although this is less convenient
sets of quotes around each string argument. For example
'plt ColorPick changeFunc("StringArg")". You should esj
functions that required a string argument containing spa
wanted to do that it would be possible with an obscure I«
'plt("ColorPick","changeFunc(""A string argument™')")’
3. 'plt ColorPick O 0O' issimilarto case 1 above a
0' is similar to case 2 except that the special case relatil
does not apply (i.e. the ColorPick window will be create

Only one detail remains to describe the operation of the ColorPick
with how ColorPick determines the starting positions of the RGB !
first opened. This is a two step process. First ColorPick must decic
to determine the initial color. Once the object is chosen, ColorPick
of this object to use. Here are the details of these two steps:

1. Picking the object which will determine the initial color. U
object will be among one of the handles included in the 'm' aj
in this case the main object itself is used to determine the init
However sometimes this is not the case. For example, in the
would like to open the ColorPick window when we click on t
which serves as a label for the text color patch. However sinc
entirely appropriate for the color of this text object to change
appear in the list of handles in the 'm' cell array. So in this ins
the initial color from the object whose handle is the first elerr
array. (This is the only instance where the order of the handle

2. Picking the property of the selected object which determii

o If the selected object is a uicontrol. If the uicontrol is an
property is always used to determine the initial color. If-

3 numbers, then extra zeros are added to the end of the v
any numbers that are greater than one, then these numbe
any numbers are less than zero, then these numbers are «
uicontrol is not an edit box, then first the 'string' propert
represents a valid color vector (i.e. it must have 3 eleme
0 and 1). If it is valid, than this vector is used as the initi
uicontrol 'backgroundcolor’ property is used as the initia

o [f the selected object is a text object, its 'string' property
to a valid color vector. Otherwise the 'color' property of

o If the selected object is a patch object, its 'facecolor’ pro
color.

o For all other object types, the 'color' property is used as

This pseudo object can be thought of as a super text object ... i.e. a
that can be created and deleted with a single command. The pseud
on of the following two commands:

plt('HelpText', 'set',v);
plt('HelpText',6 'on',v);

where V is a string or more commonly a cell array of strings and si
HelpText object is associated with the current figure window. Unli
figure may contain only one HelpText object, which is why an obj
you create a new HelpText object for a figure that already has one,
before the new one is created.

The second form above (‘on') is equivalent to the following two cc
plt('HelpText', 'set',v);

plt('HelpText',6 'on');

where the 'on' command is described below. Thus the two initializ.
that when the first form is used the text will not become visible un
issued, whereas with the second form, the text becomes visible im

As mentioned in the Labels and figure properties section you may
pseudo object at the same time the plt pseudo object is created by
in the parameter list of the call to plt. (In fact, that is by far the mo
object is created.) Creating the HelpText that way is similar to the

the help text becomes visible right away (i.e. a separate HelpText '

The structure of the v parameter is described in the table at the bof
list the commands used to control the HelpText object. The functic
command form is shown below since that is more convenient whe
needed:

Although the pseudo object i
'set' command, the indivi
are not actually created until
given. Most often this comm
Help Text after it was turned
shown below.

plt HelpText on

Both of these forms are equiy
text objects created by the ab
you will want the help text tc
starts using the plot so it doe:

plt HelpText way to do this is to include

plt HelpText off "MoveCB', 'plt HelpT¢
list when you are creating the
sets the move cursor callback
the cursor or click on the plotf
removed.

This returns the v parameter
) HelpText object. There aren't
command, although one use
HelpText object from one fig

plt('HelpText', 'get'

This returns a list of handles

created after a helptext 'on''

executed. An empty list is ret

plt('HelpText', 'text') objectis currently off. Since

HelpText special user value, an equival
the command

(pseudo findobj(gcf, 'user',:

text

object) _
The easiest way to describe the structure of the v argument used a
examples:

"abcdef

{'abcdef' -.1+.5i}

{'abc'
.5+.961
'color'

‘def' '"line3'

'white'

'"fontsize' 20}

{'ab' 'cd' .5+.91

'color'

[1 0 0] 2i

Using a single string for the v p.
resulting HelpText object much
underlying text object it creates
useful because it is so easy to cr
pseudo object.

At a minimum you will most lik
location for the text object. The
complex number with the real p
position and the imaginary part
position. In this example the hor
left of the main axis (by 10% of
position is at the middle of the n
not specified (as in the example
is .03+.96i

Each text string may be as many
in this example). After the posit
specify as many property value
text properties are allowed. If th
specified, the default color [1 .6
will default to 12 if not specifiec
(as well as the following one be
(complex) is required. This help
row cell array. (A column cell a1
expected result.)

With the full generality, you ma
as you want, with each of these

locations with different string pr
creates three strings, the first of
"2i" (which occurs twice) in this
that indicates a new string is abc
any complex number will serve

habit is to always use "2i" for th
easy to recognize.

In this example, the first two hel
red because the text is followed
0]. However the next two lines (

"line3' .1+.11 21 color specifier, so they will be i1

"line4' .9+.91 0]). However if you change the

'fontweight' "bold'} before 'line3' toa -21i then
This is because a delimiter with
component indicates that you w.
specified for the previous helpte
current one as well. If you chanj
as well, then all the help lines de
same property is included both ¢
the carry over property list (enal
imaginary component) then the
text string takes priority.

Many of the demo programs (including curves, editz, gauss, gui2,
trigplt, and wfalltst) create a HelpText pseudo object, so you can r
practical examples of the use of the HelpText pseudo object.

P|1'(/v "‘)

Auxiliary plt functions and .m files

The first two functions in this list are part of plt.m and the remaining functions
exist as as separate .m files in the main plt folder. The last four functions
(Pvbar, Pebar, Pqulyv, and pltwater) aid in creating special plot types.
The other functions help solve text formatting issues that often arise when
writing graphical interfaces.

pltt pltt is so central to the way plt is used that this auxiliary funct
(add plt refer to the Adding traces section.
trace)
s = plt('datestr',datenum, fmt) issimilartos =
that it displays the time with 1 millisecond resolution instead of
datestr function. Let's compare the results from plt's and Matlab'
a = now;
datestr(a,13) 03:51:46
plt('datestr',a,13) 03:51:46.153
datestr(a,14) 03:51:46 AM
datestr 1t('datestr',a,14) 03:51:46.153 AM
(serial date pLt(T B
number to datestr(a,0) 31-Mar-2015 03:51:4
ascii) plt('datestr',a,0) 31-Mar-2015 03:51:4
datestr(a) 31-Mar-2015 03:51:4
plt('datestr',a) 31-Mar-15 03:51:46.

For a description of the allowable formats type help datest
arbitrary formatting strings or integers representing 32 standardi
example in the table above since the returned date format when
between plt's and Matlab's datestr function. (2 vs 4 character ye:

[Retl, Ret2] = plt('metricp',x);

Used to convert a number to a form using standard metric prefix
is most appropriate for displaying the value x, and Ret?2 is the x

metricp scaling plots to avoid awkward scientific notation in the axis lab
(metric X = .3456E-6;
prefixes) sprintf('%.3e Volts', x) 3.4
[pfix mult] = plt('metricp', Xx);
sprintf('%.1f %sVolts',6 x*mult,pfix) 345
s = prin(fmtstr,OptionalArguments);
S = prin(FID, fmtstr,OptionalArguments);
prin.m Converts th? OptionqlArgumer}ts to a.string s using thg format s
(sprintf the same thing as sPrlntf or fprintf (with the same calling sequer
& fprintf add1t10na1 features including fpur extra forma.ttlng codes. prin ce
! to implement the new formatting codes. FID is usually a value
alternative)

or a 2 to direct the result to the Matlab command window. For a
see prin.pdf (in the main plt folder). You can view that help file
(i.e. with no arguments) at the Matlab command prompt.

Pftoa.m

s = Pftoa(fmtstr, x) returns in string S an ascii represen
according to the formatting string fmtstr.

If fmtstr is of the form '%nW' then swill be the string repres
resolution possible while using at most n characters.

If fmtstr is of the form '%NnV' then swill be the string repres
resolution possible while using exactly n characters.

If fmtstr is of the form '%nw' then s will be the string reprt
resolution possible while using at most n characters - not counti

If fmtstr is of the form '%nv' then s will be the string repre
resolution possible while using exactly n characters - not countil

(float to
ascii)

The lower case formats (v,w) are typically used to generate strin
width. The reason the decimal point is not counted is that with tl
these gui objects, the extra space taken up by the decimal point |

With all four format types, if the field width is too small to allov
is returned.

fmtstr may also use any of the numeric formats allowed with
Pftoa('%7.2f",x) isequivalentto sprintf('%7.2f"

Typing Pftoa(0) will create a test file which you may find he
point formats.

This function is used to plot a series of vertical bars. It doesn't d
array which is then plotted using plt (or even plot). For example
bars at x-axis locations 2,3,7,8. Each bar is to start at y=0 and ex
following line would meet this objective:

plt(Pvbar([2 3 7 8],0,[6 6 5 1]);

Normally all three Pvbar arguments are vectors the same length,
position of each bar is the same a constant may be used for the Z

Although you don't have to know this to use it, Pvbar returns a ¢
correctly by plt or plot to display the desired sequence of vertica
arrays by plotting the real part of the array along the x-axis and 1
the y-axis. The trick that Pvbar uses to display a series of lines v
that NaN values (not a number) are not plotted and can be used .
and Pquiv functions described below use this same trick.)

The general form of the Pvbar function call is:
v = Pvbar(x,yl,y2)

If the inputs are row or column vectors, this would return a com
plotted with plt or plot would produce a series of vertical bars (c

Pvbar.m
(vertical
bar plots)

given by x. y1 and y2 specify the lower and upper limits of the v
you list the upper or lower limit first. If y1 is a scalar, Pvbar exp
size as y2.

Suppose you wanted to plot 30 red bars (specified by length 30 «
green bars (specified by length 30 column vectors xg,ygl,yg2).
Pvbar as in:

plt(Pvbar(xr,yri,yr2),Pvbar(xg,ygl,yg2));

That's probably the first way you would think of, but if xr and x;
this case) you can accomplish the same thing with a single call t

plt(Pvbar([xr xg],[yrl ygl],[yr2 yg2]));

The second form is especially convenient when plotting many b
different color). Interestingly, if you use plot instead of plt first
second form.

Note that Pvbar will expand the second argument in either dime
example above, if yal and yb1 were the same you could just use
suppose the base (lower limit) of the first series was always 0 ar
always -1. Then you could use [0 -1] as the second argument. If
was the same value, then the second argument may be a scalar.

To see Pvbar in action, look at the example program pltvbar.
also shows the use of the Pebar function described below.

This function is used to plot a series of vertical bars similar to th
addition of a small horizontal "T" section on the top and bottom
depict an error bound of a function, or a range of values that ma
Another difference with Pvbar is the way the lower and upper y
With Pebar, the first two arguments (X,y) specify a reference pos
normally (but not strictly necessary) somewhere in the middle o
(Lu) specify the distance between the reference position and the
vertical bar.

Pebar.m
(error bar

plots)

The general form of the Pebar function call is:
e = Pebar(x,y,1,u,dx)

The position of the bottom of the error bars is y - 1 and the top i
scalar that specifies the width of the horizontal Ts as a percentag
two arguments are optional. If dX is not specified it defaults to -
to 1 (the 3rd argument) in which case the reference coordinates
e, X,Y,1l,u are generally vectors or matrices of the same size
are are allowed to be scalar. Read the description of Pvbar above
matrix inputs are interpreted.

To see Pebar in action, look at the example program pltvbar .
also shows the use of the Pvbar function described above.

This function is used to plot a vector fields represented by a set
locations. It doesn't do any plotting itself, but returns an array w
plot). For example, suppose you wanted to plot 3 arrows (all in t
(2,3) and (1,7). Also suppose you wanted each vector to be of le
the right respectively. This could be done as follows:

plt(Pquiv([4;2;1],[9;3;7],[0;0;1],[1;-1;0])
This can also be done using Pquiv's complex input form as follo

tail = [4+491;2+31;1+71]; head = [11;-11;1];
plt(Pquiv(tail, head));

Note that row vectors could have been used instead of column v
addition to those 3 vectors, you wanted to plot 3 more vectors (i

locations but pointing in the opposite direction. Using the previc
This could be done as follows:

plt(Pquiv(tail, head),Pquiv(tail, -head));
Or you could do the same thing with a single call to Pquiv:

plt(Pquiv(tail*[1 1],head*[1 -1]));

Pquiv.m
(vector
plots)

Of course the equivalent 4 argument (real input) form of Pquiv «

There are 8 possible calling sequences for Pquiv depending on v
complex and on whether the optional arrow head size argument
figure out which calling sequence you are using.

Calling sequence Tail coordinates ||Arrow width/le1
q = Pquiv(A,B) [real(A), imag(A)] | [real(B), imag(]
q = Pquiv(A,B,h) [real(A), imag(A)] | [real(B), imag(]
q = Pquiv(x,y,B) [x,y] [real(B), imag(l
q = Pquiv(x,y,B,h) [x, y] [real(B), imag(l
q = Pquiv(A,u,v) [real(A), imag(A)] [u, v]
q = Pquiv(A,u,v,h) [real(A), imag(A)] [u, v]
g = Pquiv(x,y,u,v) [x, y] [u, v]
g = Pquiv(x,y,u,v,h) [x, y] [u, v]
where:

g, A, B are complex vectors or matrices
X, VY, U, V are real vectors or matrices
h is a scalar (Arrow head size - relative to vector length)

Read in the Pvbar description above how complex values and N
display. To see Pquiv in action, look at the example program pl

Normally the position of a figure window is specified in pixels ¢
[xleft ybottom width height] relative to the monito
leftmost position of the monitor. However it usually is more con
the useable screen space, which takes into account the space nee
needed for the window borders and title bar.

Consider the following two methods of creating a new figure wi

figure('BackgroundColor', [0 O .1], 'Positior
figure('BackgroundColor', [0 O .1], 'Positior

In the first method, the pixel coordinates in p are relative to the !
multi-window GUI makes it impossible to make good use of the
the taskbar is and other desktop variables. In the second line hoy
to a pre-defined clear area of the screen which are converted int
(this routine).

To accomplish this, figpos must know the screen area that can a
window. It gets this information from the screencfg.m routine w
optimal border area automatically, however it may resort to usin
a very old version of Matlab. It will warn you if this happens, ar
comments in screencfg to see if you want to adjust any of the co
figpos it will only optimize the border area the first time it is cal
from the saved value (which is stored both in the 'border "' ar
object as well as in the file screencfg.txt. This means that if you
type "screencfg" at the command prompt so that the border area
recalculate the border area every time it starts up, you could add
startup file, or the line delete(which('screencfg. txt'
effect.

First I will first explain how figpos computes the figure position
may find it easier to understand by skipping ahead to the examp

In rare situations, you may want to specify the screen position u
[left bottom width height] referenced to the screen
Of course, then you don't need to call figpos in the first place ...
automatically by plt, so we need a way to bypass the usual figpc
simply to place an "i" after any element in the 1x4 vector. For e>

figpos([40 501 600 500]) returns the vector [40 50

It doesn't matter which element contains the "i", and in fact you
like, i.e. figpos([400 50 600 500]*11);

Suppose you call figpos([pl p2 p3 p4]) where all the t
positive. This is called "size priority mode" because the getting

over getting the left/bottom position in the specified place. In th
[left bottom width height] where:

figpos.m

(figure
positioning)

width = the smaller of p3 and the maximum clear w:
height = the smaller of p4 and the maximum clear he¢
left = pl1 + left border width. However if this p«
right edge of the figure overflow the cle:
the left edge is moved rightward just far
bottom = p2 + bottom border width. However if this

top edge of the figure overflow the clear
the bottom edge is moved down just far enc

Suppose you call figpos([pl p2 -p3 p4]),i.e. the same
that the 3rd element is negative. The height and bottom values a
(size priority), but the width and left values are now computed a

left
width

pl + left border width.

p3. However if this width would make the 1
overflow the clear space available, then f
just enough so that the figure fits.

Suppose you call figpos([pl p2 p3 -p4]),i.e. thedthe
values are computed exactly as shown in the first all positive (si
height values are now computed as follows (position priority):

bottom
height

p2 + bottom border width.

p4. However if this height would make the
overflow the clear space available, then f
by just enough so that the figure fits.

If you call figpos([pl p2 -p3 -p4]), then both horizon
position priority method described above.

An optional 5th value in the input vector is allowed to allocate e
want to do this if you know that a menu bar or toolbar will be er
larger. Since this is not accounted for in the border area set up b
could cause the top edge of the figure to fall off the top edge of

figpos([pl p2 p3 p4 48]) would allocate 48 extra pix
be enough for the menu bar (about 21 pixels high) and one toolt

The default left/bottom coordinates are [5 5] which are used i

figpos([730 550]) gives the same results as figpos([¢
figpos([730 550 21]) gives the same results as T1gpos

You also may specify only the figure length or the figure width ¢
parameter based on the most appropriate aspect ration. For exan
figpos([O 9441]) both give the same results as figpos([
ratio (1.006) was chosen so that if you plot a circle, the resulting
than elliptical. For example, this line plots a perfect circle using

plt(exp((1:600)*pi*21/599), 'pos',[800 0O])

If you move your taskbar to a new location, for figpos to contint
screencfg.m file by commenting out the appropriate lines definii
those changes type screencfg at the Matlab command promg
enable the changes.

The following examples may clarify the specification described

The first example creates 5 plots of the same size placed on the :
away from each other as possible. The first four plots are placed
four corners, except not so close that any of the figure borders d
the taskbar no matter where the taskbar is placed. On a small sc1
overlap. On a large screen, the first four figures would not overl
the corners of the other four (unless the screen had an exception

y = rand(1,100); sz = [700 480], % data to plc
plt(y,'pos', [@ 0 sz]); % bottom left
plt(y, 'pos',[Inf 0O sz]); % top left c«
plt(y, 'pos',[@ Inf sz]); % bottom rigl
plt(y, 'pos', [Inf Inf sz]); % top right

p = get(findobj('name', 'plt'), 'pos'); % get positic
plt(y, 'pos',mean(cell2mat(p))*1i); % put 5th plc

The "*1i" in the above line is strictly necessary to prevent figpo:
current border information. The raw pixel location is used becat
pixel coordinates. With the "*1i" removed, the last figure would
position, but actually the error would probably be too small to n

The next example also creates four figures at the corners of the ¢
figure is a fixed size and the remaining figures are tiled so as to
screen.

plt(y, 'pos',[© 0] 600 400]); % figure 1 is pl:
plt(y, 'pos',[© 440 600 -Inf]); % use all the rer
plt(y, 'pos',[615 O -Inf 400]); % use all the rer

plt(y, 'pos',[615 440 -Inf -Inf]); % use all the rer

Note that in the example above an extra 15 pixels in width and 4
small gap between the four figures.

In addition to the examples above, a good way to appreciate the
demoplt.m and cycle thru all the plt demo programs using the
the various windows are placed on the screen. You will apprecia
even more if you are able to rerun the demos using a different sc
location. Without the figpos function, many of the demos would
their figures at appropriate screen positions.

screencfg.m
(screen
configuration)

If called without an argument, screencfg attempts to determine t
automatically. If the automatic procedure fails, then the predefin
the file TaskbarSZ.m is assumed (which may be edited if nee
or 5 element row vector called the "border vector". This border
function's return value) is written in text form to screencfg.

screencfg.m), and is also saved in the 'border ' application pi

If called with a vector argument, then the supplied argument is t

If called with a scalar argument, then screencfg first looks for th
this property exists, then its value is returned and nothing furthe
property does not exist, then screencfg will look for the screenci
values stored there and will also save this vector in the 'border'
does not exist, then screencfg will behave as if it was called witl

When a 4 element vector is used for the border vector, its form i
where each number represents the number of pixels of clear spa
must exist at the four edges of the screen indicated. When a 5 el

: : The largest visible
[left bottom width height 0] the standard Matl:

[left bottom width height 17]|52measaboveex
are used.

pltwater.m
(waterfall

plots)

A general purpose 3D surface (waterfall) di

Calling sequence:

pltwater(z, 'Paraml',Valuel, 'Param2',Value2)

e All arguments are optional except for z which is a matrix c
e Note that the arguments are arranged in Param/Value pairs.
e However you may omit the Value part of the pair, in which

pltwater recognizes the following 12 Param/Value pairs (cas«

'go',1
Igol
"run'

"invert'
"transpose'

'delay', v

"'nT',v

'skip', v

"dx', v

The animation begins immediately as if yot
The same as above (since an omitted value

The same as above. Note that all the sliders
may be adjusted even when the display is

The surface is displayed upside down.
The surface is rotated by 90 degrees (x/y sv

A pause of v milliseconds occurs between ¢
is supplied, it may be changed later using tt

Determines how many traces will be visible
number of visible traces using the slider. If
traces will be used (initially).

Initially v records (rows of z) are skipped b
v=1 only every other record is used.) This v
slider.

Successive traces of the waterfall display a1
which adds a visual perspective. (No perspe
value may be modified with the slider.

Successive traces of the waterfall display a1
by v percent of the Zaxis limits. This value

Specifies the x values corresponding to eac
not supplied, the value 1:size(z,2) is used.

Specifies the y values corresponding to eac
supplied, the value 1:size(z,1) is used.

Line smoothing is a line property in most vi
supported in R2014b or later). If this param
smoothing is enabled when the display is rt
otherwise. That behavior may be modified

e 'smooth', 1 Line smoothing i
e 'smooth', -1 Line smoothing i
e 'smooth', 0 The default line s

'smooth',v

If you are using a version of Matlab that do
pltwater will not enable line smoothing mo
parameter.

If a parameter is included in the pltwater argument list that is no
parameter along with its corresponding value are passed onto pli
used in the pltwater argument list are:

'"TraceC' 'CursorC' 'FigBKc' "L
'"Title' "FigName' 'Linewidth' 'L

Refer to the wfalltst.m demo program to see an example
pltwater.

P|1'(/v "‘)

Programming examples

In the demo folder you will find 31 example programs to help you learn how to
take advantage of many of plt's features. Also included in the demo folder is
demoplt.m, a script which makes it easy to start any of the example programs
by clicking on the appropriate button or to run all of them in sequence (in the
order listed below) by clicking the "All Demos" button.

=} demoplt

pl bounce(0) circles12 cuves go dice(0) editz gauss
quil qui2 Julia movbar(1) plita0 pltmap(1) pltn
|__pub3 |

t5
pitsq(1) |__pub W pub2 |
subplt subplt8 subplt16 subplt20 tasplt
wfall(1) wialltst All Demos
% demoplt.m

]

This program makes 1t easy to run any of the 31 sample programs 1in
% the plt/demo folder by clicking on the button Tabled with the
program name. After installing plt for the first time, 1t 1is
dvantageous to run demoplt and to click on the "Al1l Demos™ button
which will cause demoplt to run all 31 sample programs in quence.
imply click on the "continue” button when you are ready to look at
the next program in the list. By wviewing the plots created by all
% the demos you will quickly get a overview of the types of plots that
are p le using plt. This often gives vou 1deas out how you can
ze plt for creating wour own application. plts is rst on the Tist
because it 1s the simplest most basic example. The other demos
appear in alphabetical order.
As each demo 1s run, you may peruse the code for the demo program
currently being run in the demoplt Tist b ze the Tist box
oll bars to wview any portion of the co interest. If the text
i mall for comfo adjust the T ze using the
ienu 1n the 1 or he demoplt figure.
saved (in dem) alo h the current
5 will ook the

text foregr/backgr: I button color: I figure backgr:

I strongly recommend running through the All Demos sequence at least once.
Many of the questions emailed to me about plt are something like "can plt do
xxxxx?", but if they had only clicked through the All Demos sequence once,
most likely they would quickly discover that the answer to this question was
"yes". Running demoplt is also a good way to verify that plt is working as

properly on your system. Just type cd plt\demo andthen demoplt at the
command prompt. The cd command is not necessary if you have added the
plt\demo folder to the Matlab path - which is done automatically if you have
installed plt as a toolbox. (Installing plt as a toolbox is possible with Matlab
R2014b or later.)

plt5.mis first on the list because it is the simplest most basic example. The
other demos appear in alphabetical order. As each demo is run, you may peruse
the code for the demo program currently being run in the demoplt list box. Also
the number of lines of uncommented code appears in the lower right corner of
the figure to give you an idea of the complexity of each example. Use the list
box scroll bars to view any portion of the code of interest. If the text is to big or
small for comfort, adjust the fontsize using the fontsize popup menu in the lower
right corner of the demoplt figure. This fontsize is saved (in demoplt.mat)
along with the current figure colors and screen location so that the figure will
look the same the next time demoplt is started. (Delete demoplt.mat to return to
the original default conditions.)

If you are running a version of Matlab older than 7.0 then the guil button is
replaced by the gui1v6 button because guil.m uses a uitable which is not
supported in Matlab 6. (The uitable is replaces with a radio button in quilv6).
Similarly guiz2 is replaced by gui2v6 if you are running a version of Matlab
older than 7.0 or if you are running version 8.4 (R2014b). gui2 uses a uipanel
which isn't supported in Matlab 6, so gui2v6 replaces the uipanel with a
uicontrol frame which serves pretty much the same function. R2014b supports
the uipanel, but the v6 version is run because of a bug in R2014b relating to the
stacking order of a uipanel.

In addition to its main role as a demo program launcher, demoplt demonstrates
the use the ColorPick pseudo object. (A pseudo object is a collection of more
primitive Matlab objects, assembled together to perform a common objective.)
The ColorPick pseudo object is useful whenever you want to allow the user to
have control over the color of one of the graphic elements. In demoplt there are 4
such elements: The text color, the text background color, the button color, and
the figure background color. The ColorPick window is activated when you click
on any of the three small color squares (frames) or if you right-click on the
figure background edit box. When the ColorPick window appears you can use
the sliders or the color patches to change the color of the respective graphic

element. For more details, see the Pseudo objects section in the help file.

An optional feature of the ColorPick object is the color change callback function
- a function that's called whenever a new color is selected. This feature is
demonstrated here by reporting all color changes at the top of the listbox (i.e.
before the example code listing).

Although it's unrelated to plt, demoplt also demonstrates the use of the close
request function, which in this example is assigned to demoplt(0) and gets called
when you close the demoplt figure window. If you have changed the figure size,
the fontsize popup, or any color selection this close request function brings up a
modal dialog box consisting of these three buttons:

e Save setup changes (will create a "demoplt.mat" file)
o Exit without saving
e Reset to default settings (will delete the demoplt.mat if it exists)

This is a simple script which creates a plot containing 5 tr
Hopefully you have already been running this script whil
following through the earlier sections.

e Note how the five y-vectors are combined to form a
argument.

plt5.m e Note the use of the 'X1im' and 'Y1im' argument
control the initial axis limits.

e Note the use of 'LabelX' argument to assign a lal
X axis.

e Note the use of the 'LabelY ' argument to add a la
both the left and right-hand axes.

Note that plt will use a right-hand axis since two labels w
included in the LabelY parameter. Usually the 'Right
parameter is included to specify which traces are to use tt
axis, but in this example the parameter was omitted, so pl
to putting just the last trace on the right-hand axis.

This function displays many of markers with random sha;
colors starting at the plot origin and then randomly walkii
bouncing off the walls. Click on the Walk/Stop button
and stop the motion.

e plt creates 513 line objects. All but the last line obje«
displaying the markers (each marker displayed is act
line object containing just a single point). You can c
many of these markers are visible and in motion. Th
object is used to display the arrows representing the
of each marker.

e The popup control on the left controls the size of the
arrows. This popup was created using the "super but

which means you just click on the popup to advance
next larger size. After "large" it will wrap around to

bounce.m (which inhibits the display of the velocity arrows). I
to actually open the pop menu to observe your choic
right-click on the popup. As with the other controls,
modify the control even while it is walking.

e The input argument determines the starting number «
markers, i.e. bounce(88) will display 88 markers. If |
called without an argument, a default value will be a
(128 markers).

e While the display is walking, the number of updates
second is computed and displayed in the figure title |
while the display is walking, you can change the nur
markers that are visible and moving. (The slider belc
plot).

e The slider on the left controls the walking speed. Th
update rate (which actually proceeds as fast as possil
actually controls how far each marker moves betwee
display update.

e Shows how to set line properties using cell arrays.

e Shows how plt can avoid its 99 trace limit by disabli
TracelDs.

e Demonstrates how to create moving displays by cha
trace x/y data values inside a while loop.

This is a two part script. The first part creates 3 figures ea
showing a different solution to the following problem ...

Draw 12 circles in a plane so that every circle is |
to exactly 5 others.

The second part of the script draws the solution to the fol
problem ...

circles12.m Divide a circle into n congruent parts so that at 1
part does not touch the center.
(Hint: as far as I know, the only solution uses n = 12)

An edit pseudo object is also added below the plot which
rotate the image and control the rotation speed.

e Demonstrates the utility of using complex numbers t
x and y positions of the plotted points.

e Demonstrates using prin to create the Trace IDs.

e Demonstrates how to make circles look true by using
the 'Pos' argument (width or height). Also two of
are placed as far towards the top of the screen as pos
which is done by setting the Ybot tom value equal t

¢ Note that even though the calls to plt for solutions 1
specify same screen location ('Pos' parameter) plt do
actually plot them on top of each other. Instead a sm
is added in this situation, a feature that makes it easi
create many plt windows so that any of them can be
selected with the mouse.

e The last figure (part 2) shows the use of the Nocur
A1l options to make the cursor objects and menu bc
invisible as well as the ' T1cks' option to select ax
marks instead of the full grid lines.

This function shows an example where many GUI contro
fit into a relatively small space.

e The ten controls above the graph (nine edit text obje
one popup text object) all are used to control how th
parametric curves in the graph are displayed.

e If we used the traditional Matlab/Windows GUI obje
would have had to make the graph much smaller to 1
room for all these controls.

e In addition, the plt('edit ') pseudo objects prov
much easier way to modify the numeric values, near
matching the convenience of a slider object. The
plt('edit') and plt('pop') commands are
in the Pseudo objects section.

After starting curves.m, right-click on the curve name at t

curves.m

of the figure to cycle through the 42 different cool lookin;
displays. Left-click on the curve name as well to select fr
complete list of curves. If you start it by typing "curves
then after starting it will cycle once through all 42 curves
default rate of one second per curve). demoplt .m calls:
way which explains why it starts cycling immediately. If
the cycle to proceed at a different rate, you may select the
rate with the delay popup just below the Cycle button. W]
last curve is displayed the cycling stops and the time it tor
cycle thru all the curves is displayed in the upper left corr
figure. (This a useful as a speed performance measure if y
delay to zero.)

e The equations in (reddish) orange just below the gra
above the curve name, serve as more than just the x-
This specific string is evaluated by Matlab to compu
points plotted on the graph.

e The vector t, and the constants a, b, and c that appea
equations are defined by the controls above the grap
Experiment by both right and left-clicking on these «

¢ For the cases when more than one trace is plotted, th
control on the left (labeled "trace™) indicates which t
effected by the other nine controls above the graph.

¢ Note that when you left-click on a control, it will inc
decrease depending on whether you click on the left
side of the text string.

e Separate values for a, b, and c are saved for each trac
multi-trace plot. This explains the variety of curves t
appear for a single set of equations (shown below thi
Left-clicking on the "Default" button will reset all th
parameters to their initial settings for only the functi
currently selected. It will have no effect on the settin
remaining 41 curves. However if you right-click on 1
"Default"” button, then the settings for all 42 curves v
reset to the values they were initialized to when the
program started.

e Note the help text (in purple, center left) tells you ju:
to get started using the program, even if you haven't
of the documentation. This was added using the

"HelpText' parameter. Selecting a different curve
popup pseudo object) will erase the help text and rig
clicking on the "Help" tag in the MenuBox will mak
reappear.

e For most of the curves there is also some text (in gre
plot area that describe some technical or historical in
related to the curve, hopefully making this program |
interesting and educational. The text is embedded in
table that stores the curve name, equations, and para
the beginning of the text string are some codes that s
text position and font size.

This function displays a simulation of Sam Loyd's carnivi
game. - You bet 1 dollar to play (rolling 3 dice). If one si>
you get 2 dollars, if two sixes appear, you get 3 dollars, if
sixes appear, you get 4 dollars, and otherwise, you get no
this a good bet to make?)

e Three traces are created: accumulated winnings, eart
bet, and expected earnings per bet.

e The first two traces are displayed as they are comput
every time the dice are rolled, a new value is append
trace and the plot is updated so you can watch the fu
grow in real time.

e A second axis is added near the top of the figure to s
dice. For each die, a line with dots as markers is add
each of the six faces, with only one of these lines bei
at a time. A square patch is also added for each die fi
visual effect.

There are three ways you can start the program:

e dice - sets up simulation. No bets occur until
a button.

e dice(n) -setsup simulation & makes n bets.

e dice(0) - setsup simulation & makes bets contin
until you click stop.

This function demonstrates the usefulness of plt's data ed:
capability. Two plots are created, the lower one showing t
and zeros of a z-plane transfer function and the upper one
showing the magnitude and phase of it's frequency respor
frequency response plot automatically updates even while
dragging a root to a new location. At first the updating in
(i.e. while you are dragging) may not seem so important,
you use the program its becomes clear that this allows yo
feel for how the root locations effect the frequency respor
This real time motion is accomplished by using the Mot 1
parameter (see line 131). In addition to demonstrating var
features, my other goal for this little application was to cr
to help engineering students develop a feel for how the m
& phase response reacts to a change in the positions of th
function poles & zeros. This application won't make muc|
until you have learned to think in the z-plane. If you have
learned this, I highly recommend Sitler's Notes - a paper
subject which is just about as old as the subject itself, yet
nothing else quite as good has been written since. This pa
never officially published, but the good news is you can f
my web site (www.mennen.org) in the section titled "Sigr
processing papers".

e When the program first starts, text appears in the pol
plot that tells you how you can use the mouse to mo
roots of the transfer function. However it is easy to r
important instructions since they disappear as soon a
click on anything in that figure widow. (This was ne
manage clutter). However you can re-enable the helf
any time by clicking on the yellow "editz help" tag v
centered near the left edge of the figure window. (Nc
right-clicking on the Help tag in the menu box has tt
effect.)

¢ In the frequency plot, the x-cursor edit boxes show t
location as a fraction of the sample rate. The Xstri
parameter is used to show this as an angular measure
degrees) just to the right of the x-cursor readout. Sin
DualCur parameter is used, there are two y-cursor ec
The first one (green) shows the magnitude response

http://www.mennen.org

the second one (purple) shows the phase response in
The Ystring parameter is used to show the magni
response in linear form (in percent). Note that after t
command, the Ystring is moved to the left of the plo
by default the Ystring appears in the same place as tl
cursor. The alternate location allows room for a mult
Ystring which is generated compliments of prin's
output feature. The AX1isLink parameter is used sc
default the mag/phase axes are controlled separately.
In the pole/zero plot, the x and y-cursor edit boxes sl
pole/zero locations in Cartesian form. The Xstring p.
shows the polar form just to the right of the x-cursor
Normally plt's data editing is initiated when you rigkt
either the x or the y cursor readouts. However when
editing is being used extensively (as in this program
useful to provide an easier way to enter editing mods
program, this is done with the patch object that appe
below the tracelD box. (The patch object is created c
146 of this file). The 'Dedit’ application data variable
(see lines 137 to 139) to change the default editing n
the usual default (change only the y coordinate) to tk
alternative (allow changing both the x and y coordin
the application data variable "EditCur’ (see line 140)

change the default size of the cursors used for editin
Notice that while dragging a pole or a zero to a new
the pole or zero remains inside the diamond shape ec
... EXCEPT when you get close to the x axis. At that
root jumps out of the edit cursor and sticks to the x a
long as the edit cursor remains inside the green band
this snap to behavior it would be nearly impossible t
purely real root. Similarly, when you drag a zero (bu
pole) "close" enough to the unit circle, the zero will

the circle. Without this feature it would be difficult t
transfer function with a symmetric numerator polync
How "close" is close enough for these snap to operat
Well this is determined by the Tolerance slider whicl
lower left corner of the pole/zero plot. Notice that as
move this slider, the width of the green band surrour
x-axis and the unit circle gets bigger. To disable the !

feature, simply move the tolerance slider to 0.
Shows how you can take advantage of both left and -
actions on a button. left-clicking on the "Delete P/Z"
deletes the root under the cursor as you might expec
clicking on this button undoes the previous delete. T
multi-level undo, so you could delete all the zeros ar
restore them one by one by successive right clicks o1
Delete P/Z button. These buttons can also be used to
collection of N poles to a collection of N zeros at the
locations. To do this, deleting the N poles, then click
zero, and then right-click on the Delete P/Z button N
(Of course you can similarly change zeros to poles.)
Demonstrates the use of the 'Fig' parameter to pu
in one figure with each plot possessing all the featur:
available to any single plot created by plt.

gauss.m

e

This script plots the results of combining uniform randomr
variables.

Shows the advantage passing plot data in cell arrays
traces contain different number of data points.
Shows how the line zData can be used to save an alt
data set which in this example is the error terms inst
actual correlations. A checkbox allows you to tell the
show the alternative data set. The label for the check
rotated 90 degrees so that it can fit in the small space
left of the plot.

Note the use of the 'FigName' and 'TraceID' «
Note the appearance of the Greek letter in the x-axis
Shows how to use the ' COLORC " argument to selec
default plotting colors (typically set to use a white bx
for the plotting area)

The 'Options' argument enables the x-axis curso
(which appears just below the peak/valley finder but
enables the menu bar at the top of the figure window
Print tag to the menu box, and lastly removes the Lir
and LinY/LogY selectors from the menu box.
Shows how to use the 'DIStrace’ argument to di

some traces on startup.

e Shows how to use the 'MotionZoom' argument tc
new plot showing only the zoom window. Admittedl
more contrived than useful in this particular script, b
this example will clarify the function of the MotionZ
parameter.

e The zoom window plot also demonstrates an easy w.
the trace data from one plot to another (in this case f
main plot to the zoom plot).

e The first trace is displayed using markers only to dis
the true Gaussian curve.

e Demonstrates the use of the 'HelpText ' paramet
initialize a GUI with user help information that is cle
when the user begins to use the application. In this ¢
"MoveCB' parameter is used to cause the help text
removed when you click on the plot. The help text is
removed if you click on the checkbox. If you want ti
text to reappear, simply right-click on the help tag in
MenuBox.

Usually plt is used to build gui applications which includ
however this example doesn't include plots so that it reme
making it a good example to start with if you have no pre
exposure to Matlab GUI programming. The only pseudo
used in guil is the pseudo slider which is a collection of £
uicontrols designed to work together to control a single p:
The remaining controls used in guil are standard Matlab

This GUI doesn't actually perform any useful function ot}
demonstrate how to create various controls and move thei
until the GUI appears as desired. The slider callback gene
random numbers for the listbox, textbox, and uitable. The
remaining callbacks are just stubs that notify you that yot
on the object.

You can most easily absorb the point of this example (anc
following example called gui2.m) by reading this section

help file: GUI building with plt.

guil.m uses a uitable which aren't supported in Matlab

you are running a version of Matlab older than 7.0 then y
run an alternate version of this program called guilve6.

replaces the uitable with a radio button. If you start guil {
demoplt, demoplt checks the Matlab version and runs gui
guilv6 as appropriate.

gui2.m

Unlike the previous gui building example (guil.m) this o1
includes a plot and actually performs a useful function - ¢
the frequency response of the most common traditional ai
filters. GUI controls are provided to adjust the most impo
parameters (Filter order, Cutoff frequency, & Passband/St
ripple). The capabilities of this program were kept modes
it a good introduction to GUI programming with plt.

gui? creates these eleven pseudo objects:

1. aplot

2. a cursor

3. agrid

4. an edit object (filter order)
5. a popup (filter type)

6. a popup (decades to display)
7. a popup (number of points to display)
8. a slider (passband ripple)

9. aslider (stopband ripple)
10. a slider (cutoff frequency)
11. aslider (frequency 2)

The first three pseudo objects in this list are created by th
to plt and the remaining eight pseudo objects are created
additional calls to plt.

Although Matlab already has objects with similar names,
pseudo objects are different. They provide more utility an
The pseudo objects 4 thru 7 listed above are grouped insi
uipanel titled "Parameters".

Bl You can most easily absorb the point of this example (anc
previous one called guil.m) by reading this section of the
GUI building with plt.

1 There are two alternate versions of this application includ
demo folder. The first one, called gui2v6.m uses a uiconti
in place of the uipanel. This alternate version should be u
are running a version of Matlab older than 7.0 because M
does not support the uipanel. Actually the alternate versic
also be used if you are running R2014b or newer. The rea
this is that although the uipanel is supported, a bug relatir
uipanel's stacking order prevents gui2 from working prop
those versions. If you start gui2 from demoplt, demoplt cl
Matlab version and runs gui2 or gui2v6 as appropriate.

The other alternate version is called gui2ZALT.m and is no
demoplt. This version differs from gui2.m primarily in th
of traces used. gui2 uses 10 traces (5 for magnitude on thi
and 5 for phase on the right axis) where as gui2ALT uses
axis with just 5 traces. The trick to make this work is to u
trace to display both the magnitude and the phase informs
Although I eventually decided that the 10 trace method in
simpler, the alternate version is included because in some
this trick can still be useful. Note that the tick marks are r
so that they read in degrees in the phase portion of the plc
the phase portion is highlighted with a gray patch to bette
it visually from the magnitude plot.

The intent of this example is to demonstrate the generalit’
image pseudo object by including two of these objects in
figure, and to demonstrate the use of the 'Fig' parameter a
several other graphical programming techniques. It's easy
dozens of Julia set graphing programs in nearly every lan
(including Matlab) so I wouldn't fault you if you were ske
the need for yet another application with this purpose. Ho

goal was to leverage the power of the plt plotting package
how fun it is to explore Julia sets and to make this applice
compelling than any similar application out there. I'll let y
judge how well I have met this challenge.

Julia set images are traditionally generated with the repea
application of the equation z = z? + ¢ (z and c are compl
application also allows exponents other than 2 (called the
generalized Julia set). The color of the image is determine
number of iterations it takes for the magnitude of z to gro
than some fixed value (2.0 for this program). The Mandel
uses the same equation and the same color assignment me
differs in how the equation is initialized.

Some very basic instructions appear in the figure when th
application starts but this help text disappears as soon as ?
anywhere in the plot region. For a complete description o
application, see A Julia set explorer

movbar.m

This function plots a series of 40 random bars and display
horizontal threshold line which you can move by sliding 1
along the vertical green line. As you move the threshold 1
string below the plot reports the number of bars that exce:
threshold. (This demonstrates the use of the plt xstrinc
parameter.) These two buttons are created:

¢ Rand: Sets the bar heights to a new random data set.

e Walk: Clicking this once starts a random walk proce
bar heights. Clicking a second time halts this proces:
Walk button user data holds the walk/halt status (1/0
respectively) demonstrating a simple way to start an
moving plot.

Note that you can move the threshold or press the Rand b
while it is walking. Also, if you click on one of the vertic
bars, the horizontal threshold bar will then follow the upp
that vertical bar.

If movbar is called with an input argument, the value of tl
argument is ignored, but movbar will start as if the walk t
been hit.

This script is an expansion of the simple plt5.m example
demonstrate additional features of plt.

Note that two plots appear in this figure. There are two m
that you can use with plt to create figures containing mult
The first is to use the subplot parameter to create multiple
with a single call to plt. (This is demonstrated by the subr
subplt8.m, subplt16.m, subplt20.m, pub.m, pub2.m, pltm:
weight.m programming examples). The second method (3
used here as well as in the pub3.m example) is to use a se
to plt for each plot. The first plot (upper) is created by a c
that is quite similar to the one used in the simple p1t5.n
plt creates the figure window as usual and then creates the
plot inside the new figure. Both a left and right hand axis
for this plot. We are free to put as many traces as we wan!
the left or right hand side, although in this example we pu
traces of this plot on the left hand axis except for the last
Tr40) which is put on the right hand axis (and is also dre
thicker trace). The two major differences between this (fi
plt and the plt call used in plt5.m are:

1. The number of traces has been expanded from 5 to 4
Without additional action, this would create a Tracel
(legend) containing 40 trace names in a single colurmr
However this would not work well or look good to c
a long list into the small space available. To solve th
the the TIDcolumn parameter has been used to creat
TracelD box with two columns. The ' TIDcolumn
included in the plt argument list actually specifies th
of items to put in the second column, which in this e
means that both columns will contain 20 items.

2. The "xy' parameter is included to specify the locat
plot within the figure window. This wasn't needed be

plt50.m

plt5.m) since the plot was automatically sized to fill

figure window. But now we want to create the plot i1
portion of the window to leave room for a second pl
created. The object ID (-3) in the first row indicates
position is to be used for both the left and right axis .
that all the cursor object positions should be positior
relative to these axes. (ID 0 also refers to both left &
axes but does not cause the other cursor objects to be
repositioned as well). Although plt makes its best gu
positions of the TracelD and Menu boxes often you-
to reposition them with the xy parameter to make be
the available space. The 2nd row of the xy matrix re|
the TraceID box. The last row repositions the Yaxis .
which otherwise would have been covered up by the
box. Note that you don't need to figure out the numb
xy matrix since they will be reported to you as you a
positions of the screen objects with the mouse. (See

description of the xy parameter in the Axis propertie
of the help file.)

Following the first call to plt which displays the first 40 t
second call to plt is used to display the remaining 10 trace
below the first one. As before we use the ' Xy ' paramete
the plot to fit in the remaining open space of the figure. A
first plot, we also include both the left and right hand axis
again free to put as many of these traces as desired on eitl
but we choose to put only trace 5 on the right hand axis w
remaining traces on the left axis. The most important diff
between the first and second plt calls is that in the second
include the 'Fig',gcf in the parameter list. (gcf stands for "
current figure handle™). This tells plt not to open a new fi;
the plot as usual, but rather to put the plot in the specified
The 'Fig' parameter must be either at the beginning or at t
the plt parameter list. (All other plt parameters may be pl:
anywhere in the parameter list). You may notice that the >
parameter for this plot includes an imaginary component
element of the axis position. The reason for this is that sir
sizes of the cursor objects are relative to the plot size. Thi
sometimes makes the cursor objects too small when the p

small fraction of the figure size. To fix this problem, one
a minimum width or height in the imaginary component c
width and/or height values.

A few other features of the first (upper plot) are worth po

With so many traces, the ability to use the legend (i.¢
TracelD box) to selectively enable or disable individ
becomes even more compelling. Although the traces
legend are color coded, it's difficult to distinguish ev
based on color, so clicking on a legend item is often
uniquely identify a trace.

The 'Pos' parameter is used to increase the figure
30% from the default of 700x525 pixels to 830x550.
gives room to fit both plots into the figure area withc
overcrowding.

The "HelpFileR'' parameter is used to specify w
file will appear when you right-click on the Help tag
menu box. Normally the file specified will contain h
currently running script. In this case prin.pdf is just 1
example and in fact has nothing to do with plt50.
The use of the 'closeReq' parameter is shown, a
this case the function specified merely displays a me
Look at the gui2.m and wfall.m demos to see examp
somewhat more sophisticated close request function:
In situations like this with so many traces on the plof
difficult to find the cursor. The line following the fir:
plt solves this problem increasing the cursor size fro
as well as by changing the cursor shape from a plus
asterisk.

The main purpose of this function is to demonstrate the u:
image pseudo object. The subplot parameter is used to p
the figure into two parts. The left part displays a conventi
plot which includes the following five traces.

1.

A circle (green trace) whose radius is controlled by i
amplitude slider (the leftmost slider above the plot ir

amplitudes" section).

2. A hyperbola (purple trace). Its amplitude slider conti
asymptote slope.

3. A polygon (cyan trace). Its amplitude slider controls
size of the figure and the number of sides (which rar
to 7).

4. Two lines (red and blue traces). Their amplitude slid
the lines' positions as well as determines the lines' or
(vertical/horizontal).

The five Z amplitude sliders assign a z coordinate to each
five traces, then these 500 points (100 points per trace) ar
interpolated using griddata to create the two input functio
displayed using an intensity map on the right side of the f

The many features of pltmap and the image pseudo objec
intertwined so to help you explore these features, conside
up pltmap and running through these tasks:

e Adjust some of the "Y amplitudes” (5 sliders near th
left corner) and observe how they affect their respeci
(1-5). Note that the intensity map changes as well si1
values are computed from the shapes of these five tr:

¢ Disable and enable the various traces by clicking on
names in the TracelD box. Note that the intensity me
determined only from the enabled traces. A strange t
happens if you disable all the traces except for trace
5 (showing just a single horizontal or vertical line).
happens is that the intensity map no longer represent
associated with the 2D plot. This is because the grid
function is used to interpolate the data from the 2D |
fails because it doesn't have enough data when provi
just a single line of zero or infinite slope. So when tt
detected, pltmap creates an alternate intensity map sl
2 dimensional sync function with a random center pt
(For variety, this sync function also appears for a the
seconds of a moving display [see the description of t
button below], but note that this happens only the fir
Run button is pressed after pltmap is started. Subseq

presses of the Run button simply start the intensity n
updating in the usual fashion.

e Adjust the "Z amplitudes" for each of the 5 traces us
sliders. The z values of the traces are not plotted in t
(left) but note how these amplitudes affect the intens

e Click on the "color bar", the vertical color key strip 1
upper left corner of the intensity map. Note that this
color map through seven choices. Some of the color
have a particular purpose, but mostly this is simply &
preference.

¢ Note that the intensity map appears somewhat pixele
is because it is composed of a relatively small numbx
pixels (200x200). Try zooming in on an interesting |
region of the intensity map using a zoom box. Hold 1
key down and drag the mouse to create the zoom bo:
click inside the zoom box to expand the display. Eve
you still have only 200x200 pixels, the display will 1
smoother because all these pixels are focused on a si
region of the more quickly changing z data. You can
zoom in by right-clicking on the "view all" button in
right corner. Then left-click on the view all button to

= the limits back to their original values to show the er

set.

' Ve~ o e Also try opening a zoom box in the 2D plot (left). Y«

” - this as before (shift key and mouse drag) or try the "

click and drag" mouse technique which avoids havin
the keyboard. You may be surprised to see that the ir
map zooms to show the region inside the zoom box «

plot even as you are dragging the edge of the zoom t

then click inside the zoom box the 2D plot will also

show just the region inside the zoom box ... but let's
this just yet. First try moving the zoom box around.]

clicking the mouse near the mid-point of any edge, a

the zoom box around while holding the mouse butto

Also note that if you drag one of the corners instead

midpoint then the zoom box changes its size instead

position. In both cases the intensity map continues tc
so that it shows only the zoom box region. These mc
motions are further described in the paragraph titled

pltmap.m

" Adjusting the expansion box" in the Zooming an
section.

Try sliding the resolution slider (just to the left of the
bar) all the way to the top of the slider. This will sele
resolution of 800x800 (16 times as many pixels as bi
the display will look much smoother, but the drawba
the update rate will be much slower. Try moving the
the way to the bottom (50x50 pixels). Now the inten
will look very blocky, and the update rate will be vei
Note that when you click inside the intensity map, tt
will center itself on one of the blocks even if you cli
the edge of one of the blocks. This makes it easier to
the Z value cursor readout (shown below the intensit
Also note the x and y cursor readouts are updated as
would expect every time you click on the image. Re:
resolution slider to 200 before continuing.

Try adjusting the "edge" slider (right below the coloi
default value of the slider is "1" which means that or
data range between p=c and p+o is used for assignir
of the z values, where p represents the mean of the z
means that all the data bigger than 1 standard deviati
the mean is represented by the same color. If you mc
slider to "2", then two standard deviations of the dat:
so that you can see variations near the extremes that
couldn't see before. But the downside is that you wil
detail for smaller changes in the z values closer to th
You can also adjust the mid point for the range of fo
the mid slider (just to the left of the edge slider). For
if you are more interested in getting a view of the da
than the mean you might set mid=.5 and edge=.8. Tt
mean that the range of data that produces different c
the image would be from p-.30 to p+1.30.

Although it doesn't really demonstrate any more feat
the new image pseudo object, if you really want to b
mesmerized by the display, press the "Run" button.
happens is that a random selection of the 10 sliders ¢
2D plot are selected to start moving. (The remaining
that are held fixed are made invisible so you can eas
what is changing). As the sliders are moving up and

both the 2D and 3D plots are continuously updated t
the new information in the sliders. As this is happeni
will see the small (blue) frame counter below the Ru
button counting down from 100 to zero. When zero i
a new random selection is made from the set of 10 sl
the frame counter begins down counting anew from
While all this is happening, you may change the spe:
to adjust the motion rates and you also may adjust p1
everything else mentioned in the above bullet points
find that 100 frame count is too long or short for yot
simply click on the yellow "100" and you will be pre
with a popup menu allowing you to vary this frame ¢
as small as five to as large as 1000.

pltn.m

Similar to p1t5 and plt50, except that this is a functi
of a script. This function takes an argument which specifi
many traces to plot. For instance p1tn (1) will plot a sir
and p1tn(99) will plot 99 traces. If you specify more ti
this, the trace IDs are not displayed (since there will not t
for them). p1tn with no arguments does the same thing ¢
pltn(99). You can change the number of traces plottec
after pltn is already running by entering a new number in
lines" edit box (under the TraceID box). Try entering "10
this edit box just to see that plt can actually handle such a
number of traces! Going much beyond 1000 traces is a g¢
performance test, since on slower computers you will star
a significant lag on pan operations.

e The TIDcolumn parameter is used to divide the tra
into up to three columns if necessary. (Showing 99 t
one column wouldn't be practical.)

e TracelDs are disabled when more than 99 traces a
specified. (Otherwise plt would give an error messag

e Usesthe 'Ystring' parameter to show a continuc
readout of the cursor index

e Usesthe 'Xstring' parameter to show a continuc
readout of the date and time corresponding to the cu
position. Note the edit box form is selected by placir

question mark character at the beginning of the strin;

¢ A popup menu (pseudo object) is created below the :
label which allows you to adjust the line thickness. T
you can right-click on the popup to increment the lin
thickness (which sometimes is more convenient thar
the popup menu).

e A callback is written for the Xstring edit box that mc
cursor to the index with a corresponding time as clos
possible to the entered value. For example, try this:

1. Click on the top trace (which makes it easy to s
cursor).

2. Enter dates into the edit box - e.g. "30 dec 200¢€
jan-07 9:59", etc.

3. Verify that the cursor moves to the correspondis

This function demonstrates the plotting of quivers, polync
interpolation, and the use of several of the plt callback fus
(moveCB, TIDcback, MotionEdit).

e The Pquiv.m function appears three times in the pl
argument list to plot three vector fields. The first twc
fields (named velocityl & velocity2) both have their
locations specified by f (also plotted on the green tr;
humps/20) and the arrow lengths are specified by V1
respectively. The first of these Pquiv calls is somewl
to the Matlab command
quiver(real(f),imag(f), real(vl),ima
The third Pquiv call generates the vector field showr
which includes only six vectors.

e Uses the xy parameter to make room for long Trace

e Uses tex commands (e.g. \uparrow) inside Trace ID

¢ Reassigns menu box items. In this example, the L1n
replaced by a Filter tag. Its buttondown function
executed when you click on 'Filter") searches for the
(using findobj) and swaps the contents of its user dat
axis data.

e The "HelpText' parameter is used to identify fea
the plot and to explain how to modify the Hermite ir

function. This help text disappears as soon as you m
. the yellow arrows (as described in the yellow help te

pltquiv.m e Uses NaNs (not a number) to blank out portions of a
this case, the NaNs were inserted into the x coordina
although using the y or z coordinates for this purpos
equally as well.

e Uses the TracelD callback function (TIDcback) to
an action when you click on a trace ID. For example
you click on the forth trace ID (humps+rand) this wi
in the command window: "A trace named humps+ra
color [1 0 0] was toggled". Although this TracelD ca
not particularly useful, it was contrived to demonstre
@ substitutions.

e A MotionEdit function is provided which serves thes
purposes:

1. The trace data is updated as you drag the edit ct
Without the MotionEdit function the trace data
updated when you release the mouse button aftt
cursor has been moved to the desired position. |
this on trace 1 will give you a good feel for whe
means.)

2. For the quiver traces, moving the arrow positior
not normally move the "v" portion of the arrow
you would hope. This MotionEdit function solv
problem by calling Pquiv as the arrow is being

3. If you move one of the arrows associated with t
(vectorField) then trace 6 is updated based on a
polynomial interpolation which is designed to g
tails of all six of the trace 5 vectors. The derivat
this polynomial are also constrained so that it ir
slopes of these vectors as well. Use the data edi
feature to move the head or the tail of any of th
vectors and watch how the interpolated data on
(blue) is updated in real time to follow the vect«

pltsq.m approximates a square wave by adding up the
odd harmonics of a sine wave. The plot displays successi'
these harmonics which approximates a square wave more

more harmonics are added together. The key point howev
the reason this demo was created) is that the amplitudes o
sine waves and sums are continually varied (periodically
plus and minus one) to produce a "real-time" moving disf
well suited to creating real-time displays, but there are a f
concepts to learn and this demo is an excellent starting pc

Type pltsq orpltsq(O) to start pltsqin its stc
state. (i.e. the display is not updating)

Type pltsq(1l) or pltsq('run') to startpl
the display dynamically updating.

Demonstrates how you can add GUI controls to the |
window - typically something you will need to do w
creating plt based applications.

Five pseudo popup controls are added to the figure t
of the plot including one "super-button" to start and :
plotting.

The main display loop is only 6 lines long (lines 96-
runs as fast as possible (i.e. with no intentional paus
every second an additional 10 lines of code is run (li
to check for new user input and to report on the disp
rate. This additional code could be run every time th
is updated, but that would needlessly slow down the
rate.

A text object appears below the plot which displays

"updates/second"” - a good measure of computational
graphics performance. The color of this text object i
every time it is refreshed so that you can tell the spe
recomputed even if the result is the same.

The 'xy' argument is used to make room for the ps
popups as well as for the wider than usual TracelDs.
The position coordinates for the five popups are gro
single array in the code to make it easy to update the
coordinates using the p1t move' function. For def
how this is done, refer to the guil & gui2 examples.
Normalized units are used here for the uicontrols. Tt
"plt move" function also handles pixel units which is
when you don't want the objects to change size wher
figure window is resized.

e The cursor callback parameter (' moveCB ') and the

plt('rename') call are used to provide simultan
cursor readouts for all 5 traces in the TracelD box. T
unusual use of the TracelD box, but it serves as an a
to the "multiCursor” option (described here) when y:
less clutter inside the plot axis. Updating the Tracell
every display update would slow the display, so norr
cursor is not updated after every display update. Hoy
you want the cursor to be updated on every display;, «
box labeled "Live cursor".

The 'Options' argument is used to turn off grid |
to remove the x and y-axis Log selectors from the m
You can use the Erasemode popup to explore the effi
erasemode property on drawing speed. (The erasemc
property is no longer supported in Matlab version R:
later, so pltsq.m checks the Matlab version and disat
popup appropriately.) You can also effect the drawin
by varying the number of points per plot from a low
points to a high of 51200 points (32 cycles times 16(
per cycle).

pltvbar.m

This script demonstrates the use of Pvbar .m and Pebal
plot vertical bars and error bars respectively. Some things
about pltvbar are:

e The first Pvbar in the argument list plots two functio

single trace (green) with the 1st function (phasel) de
position of the bottom of the vertical bars and the 2n
(phase2) defining the position of the tops of the bars
The second Pvbar in the list plots 3 functions (called
bell1, and bell2). The 3 columns of the first Pvbar ar
define the x coordinates for those three functions. Tt
argument (0) indicates that the bottom of all the vert
at y=0. The last Pvbar argument gives the y coordine
each of the 3 functions (one function per column).

The next trace definition (the data argument pair afte
"linewidth") plots two traces corresponding to t
columns of poly23. The 1st column is a 2nd order

polynomial and the 2nd column is 3rd order

e The next trace definition uses Pebar function to crea
error bar traces, the first trace defined by the first co!
each of the 3 arguments and the second trace definec
second column.

e The 'Linewidth' argument appears in the middl
call to change the width of only the traces defined e
the argument list.

e The 'TraceID' argument is used to assign names
trace that are appropriate for the data being displaye

e The 'xy' argument is used to widen the TraceID bc
room for the longer than usual trace ID names

e The '+FontSize', '+FontWeight', '+Font,
"+Xtick', "+Ytick', arguments are used to mo
main axis properties of the same name (without the |

¢ The Grid pseudo object is used to create a 8x3 table
character data. This table really doesn't have anythin
with the plot (and indeed is just filled with random g
but it was included just to demonstrate an unusual w
this pseudo object.

pltvar.m

To demonstrate the workspace plotter, this script creates ¢
vectors in the workspace (including a structure containing
vector fields) and then starts the workspace plotter by cal
with no arguments. Workspace plotting is described here

All the other plt examples in the demo folder use plotting
appropriate for data exploration (the main design goal of
However plt can also use formats appropriate for creating
publication. This script demonstrates this by creating thre
figures windows. Note that all three windows are created
pltpub () which simply calls plt () with several para

optimized for creating publishable plots.

e The first window (plot 1 - appearing near the top of 1
screen) is a bar chart that demonstrates how to embe
data inside the script as comments. It also demonstra
use of the prin function to display a table of randoi
numbers in a text box. The vertical position of the pl
depends on the screen size.

e The second window (plot 2 - lower left portion of th
pub.m demonstrates how to distribute 15 functions among !
by using the 'SubTrace' parameter and how to se
= colors and line styles.

. i "||| |” H HH e The third window (plot 3 - lower right) contains two
[awilllIAH 1 with error bars, shows how to use the TracelID box a
- The special character ' | ' is used in the first Tracell
disable the shading of the trace name that is normall
indicate the trace is on the right hand axis. Also the
"+XtickLabel' parameter is used in the plt call
the tick labels on the x axis. Then an array of text ob
used to create specially formatted tick labels. The th
window also demonstrates various ways of modifyir
lines, and also shows the use of the "+ - < > "]
modify properties of:
+ the left axis
- the right axis
< the left y-label
> the right y-label
the x-label
e Demonstrates how to define a new plotting function
in this example) which has a different set of defaults
for a particular purpose. The pltpub function include
o Usesthe 'COLORdef ' parameter to select a w

5'_,'_':Ah Loy

AR _;.Hrlllﬂ,'\lm;ﬁ;, _ i

Y EEEEEERE]

=

background

o Usesthe "NoCursor ' option to remove the ¢
objects

o Usesthe 'LineSmoothing' option to imprc
esthetics

o Usesthe 'TraceID', '' parameter to remov

TracelD box

pub2.m

s T

In this example, a plt figure is created in its usual data ex]
mode showing 6 traces of randomly generated data. Each
contains over 50 thousand data points, although the disple
zoomed to show only a small portion of the data. The 'xV
option is used to enable the xView slider which is particu
useful in situations like this where you are viewing only &
portion of a long data record. (The xView slider appears ¢
primary plot.) The idea is to use the xView slider or other
controls to pan and/or zoom the display to some area of ir
then press the "pub” button to generate a figure containin
selected data and optimized for publication.

What makes this more interesting is that when you pan to
section of the data and again press the "pub" button, the p
figure is redrawn using subplots to show both selected po
a like manner, successive presses of the pub button furthe
subdivide the plotting area with each new data range appe
above the previous ones. To reset the pub figure so that o

s single axis is plotted simply right-click on the pub button.

The x axis of the data exploration window is plotted in ur

| days past a time reference (1-Jan-2013 in this example), t

date ticks are used on the x axis of the publication plot. Ti

| clutter, only the day and month are shown for all vertical

except the last one (which includes day, month, & year).

The TracelD box is typically placed to the left of the plot,
for the publication figure in this demo the TracelD box is
right on top of the plot (more like a legend). This means t
sometimes the TraceID box will obscure some of the data
that you can easily use the mouse to drag the legend arous
spot that does not interfere with the plot.

This example may seem somewhat contrived - and indeec
conceived mostly to demonstrate as many unusual plt par
and programming techniques as possible.

As with the previous two demos (pub & pub2) multiple p
created in a single figure, however a different mechanism
In pub/pub2 the subplot parameter is used, which has the
of creating multiple plots with a single call to plt. This prt
uses the 'Fig' parameter instead, and each plot is created v
separate call to plt. This provides some advantages over t
method, such as allowing each plot to include a tracelD b
as a right hand axis. Also the position of the plots are con
general and don't demand fixed column widths as with su
(Note that the positions of the four plots in this example v
have been difficult to create using subplots.) In this exam
cursors were disabled ("Nocursor' option) since the main §
uncluttered publication quality result, but if they cursors ¥
enabled, they would have the full generality and all the pl
of single plot graphs (unlike the restricted set of subplot c
On the other hand, as the number of plots required on the
increases, the restrictions of the subplots are advantageou
they allow a more compact plot spacing.

The tracelD box is enabled for each plot in this example,
as a legend, but it can also be used to enable or disable an
the figure.

Note that the 2nd trace of each plot (with traceID "samp"
consists of 12 superimposed traces. (This is done by delir
each of the 12 traces with a NaN element so that a line is
from the end of each trace to the beginning of the next.) 1
have been done by using a separate trace for each of the t
"samp" traces, each with their own tracelD, but that woul
made the legend unnecessarily large and cumbersome. Tt
trace is the average of the 12 superimposed traces and the
(markers only) is the standard deviation of those same 12

The xy parameter contains the positions and sizes of each
four plots. Note that a -3 is inserted in front of each of the
positions. The -3 indicates that this position refers to both
and right axes and also indicates that the traceID box (anc
cursor controls if they were enabled) are to be positioned

the positons given for the left and right axes. This is desc
the description of the xy parameter in the Axis properties
the help file.

subplt.m

The 'SubPlot' argument is used to create 3 axes. plt p
single trace on each axes except for the main (lower) axis
gets all the remaining traces. In this case, since there are :
defined, the main axis has 3 traces. Note that the traces ar
to the axes from the bottom up so that the last trace (serp)
on the upper most axis.

The 'LabelY' argument defines the y-axis labels {
three axes, again from the bottom up. You can also d
y-axis label for the right hand main axis, by tacking
end of the LabelY array (as done here).

The "'Right', 2 argument is used to specify that t
trace of the main axis should be put on the right hane
this argument was omitted, plt would still have know
right hand axis was desired (because of the extra y-I
LabelY array) however it would have put trace 3 on
hand axis. (By default, the last trace goes on the righ
The LineWidth and LineStyle arguments defii
characteristics for all 5 traces.

The 'TraceMK' parameter enables the trace select
show the line characteristics and the ' Xy ' paramete
the trace selection box to make room for this.

Note that all three plots have their own cursor suppo
almost all the cursor features. The exceptions are del
the xview slider, and the multi-cursor mode. These n
still be active but they apply only the the main (lowe
Only a single x-axis edit box is needed since plt keej
cursors of all three axes aligned. Also note that if yo
pan any of the 3 plots, the other two plots will adjust
axis limits to agree.

A brief description of this example is added to the sc
the "HelpText ' parameter. As you will see in the
demo programs, the help text is usually removed wh
start using the program, but in this case the help text

place since it doesn't interfere with the plot area or ¢
(However you can toggle the help text on or off by r
clicking on the Help tag in the menu box.)

subplt8.m

» -
T T T —

This script shows a slight expansion of the ideas found in
by increasing the number of axes from 3 to 8. The axes ar
arranged in two columns which allows the use of two dift
axes (one for each column).

e Note that the four axes on the left are synchronized 1
other as well as the four on the right, although the le
right halves are independent of each other and have «
axis limits and units.

e There are 11 traces defined in the plt argument list b
axes are specified. The extra 3 traces go to the main
(lower left). This means that the first 4 traces are on
plot and the remaining 7 traces are assigned to the ot
subplots.

e Although the black background used in most of the ¢
programs makes it easier to distinguish the trace colc
people prefer a white background and this script sho
do that by using the ' ColorDef ' parameter to sele
Matlab's default color scheme. Matlab's default trace
order only includes six colors and this may not be lo
or ordered ideally for a particular graph. The ColorC
parameter may be used to set the trace colors as desi
in this example) the ColorDef parameter is a color
specification (3 columns of numbers between zero ai
this color spec is used instead of Matlab's current tra
order default. The first line of this script defines this
order using Matlab's traditional style. The 2nd line d
exact same color sequence using an alternate style al
plt which you may also use if you find that more cor
than the traditional style. There's a special case (not
for the first entry in this color array. If it's [.99 .99 .9
999999 in the alternate style) then the remaining col
appended to the Matlab default color trace order. Th
convenient if for example you just want to add a few

the end of the list instead of merely replacing the wh
trace sequence.

¢ One advantage of the white background is that it is e
publish a screen capture since the colors will not nee
inverted. Remember that for publishing you can redt
clutter of the capture by temporarily removing all the
and their associated controls and readouts. You do th
right-clicking on the y-axis label of the lower left plc
("main"). Right-click a second time to re-enable the

This short script again is a slight complication from the p
example (supblt8). Not only do we double the number of
we take advantage of all the features of the subplot argurr
varying the number of plots in each column as well as ad]
vertical and horizontal spacings.

¢ Note that the whole number parts of the subplot argt
specifies the plot widths and heights where as the fre
parts specifies the horizontal and vertical spacing be
plots.
e So for example the "99.04" near the end of the subpl
argument (for the rightmost plot) means that this plo
occupy 99% of the available height. The fractional p
that the space below the graph should be increased b
percent of the height of the available plotting area.
e Also remember that the negative numbers in the sub
argument are used to break up the plots into column:
subplt16.m example, the "-25.96" value tells plt that the first col
should contain four plots (because it follows four po
numbers). The whole number part (25) means that tk
column should use up 25% of the available plotting -
fractional part (.96) means that we want to reduce th
spacing to the left of this column by 4% of the plotti
(The default spacing results in a comfortable easy-or
layout, but sometimes we want a tighter layout so wi
bigger plots.) For a more complete description of the
argument, refer to the Axis properties section as wel
GUI building with plt section of the help file.

e As in the previous example, the cursors for the vario
each column are linked to each other, but are not linl
way to the cursors of the other columns. So for exam
move the cursor in the "tribell" plot (top of column Z
cursors of the four plots below it will also move so tl
all point to the same x position. Also if you pan or z
axis of the tribell plot, the x-axis of the four plots be
also be zoomed or panned so that the x limits remair
for the entire column. This is what we call the subpl
mode. The unlinked (or "independent™) mode is dem
in the next example program (subplt20).

The default subplot "linked" mode (demonstrated by the |
subplot examples) makes sense when the columns share ¢
x-axis. However in this example the plots do not share a «
axis, so the "independent" subplot mode is more appropri
tell plt to use the independent mode by putting an "i" afte
number of the subplot argument (Note the "32i" in the sul
argument of this example).

e The only thing now shared between the columns is s
displaying the cursor values. For example, the x and
boxes below the first column display the cursor valu
plot that you last clicked on in that column. The colc
edit boxes changes to match the color of the trace th:
clicked on so you can tell at a glance which plot the
values refer to.

e One advantage of the independent mode is that we c
more plots into a given space. We could probably di:

subplt20.m these 20 plots using the linked mode as well, but the
window would have to be very large since in the lin}
a separate y-axis cursor edit box is included for ever

e As with the previous subplot examples, there are mo
than axes (21 traces and 20 axes). That means the fir
(lower left) gets 2 traces and a tracelD box is added
you to select which one to display (or both).

e In this example all 21 traces contain the same numbe
points (301). However this was just done for the con

of the code generating the fake data to display. Each
traces could include a different number of points anc
would work equally as well.

As you experiment with these plots, be aware of the
of the "current cursor” (or "current plot" if you prefe
is important since there are 16 different cursors visit
current cursor is the cursor belonging to the last plot
clicked on. When you click on one of the five menu
(LinX, LinY, Mark, Zout, XY <->) the appropriate m
operation will only be applied to the current cursor. |
for the up/down arrow buttons (peak/valley finder) a
the "circle" button which toggles whether markers ai
positioned over the trace data values. The only excej
Delta button (delta cursor). This always operates on
plot (lower left) regardless of which cursor is curren

tasplt.m

This script file creates two plots each consisting of 9 trace
plt tricks and features are demonstrated:

Note that these figures plot multiple valued function
relations).

The first plot (efficiency and range chart) creates a ti
each column of gph and mpg (9 columns for 9 altitus
Demonstrates adding an additional axis to show alter
on the right hand and/or top axis

Demonstrates adding text objects to annotate a grapt
Demonstrates how the cursors in two plots can be lir
Moving one, moves the other. Also in this example ¢
the active trace in one plot does the same in the othe
Usesthe 'Xstring' and 'Ystring' parameters
display alternate units.

Shows how to close both figures when either plot is
using the 'Link' parameter.

Shows how to use the 'pos ' parameter to position
figures as far apart as possible given the available sc
The 'HelpText' parameter is used to annotate the
airspeed chart with the equations that are used to ger
plotted data.

trigplt.m

This example demonstrates:

showing the line characteristics in the TracelD using
TraceMK parameter

setting the cursor callback with the moveCB parame
setting axis, TracelD box, and MenuBox positons us
parameter

setting trace characteristics with the Linewidth, S
and Mar kers parameters

setting an initial cursor position

enabling the multiCursor mode

modifying the colors and fonts of the Trace IDs.
The use of the slider pseudo object

The use of the plt "HelpText ' parameter to disple
temporary help information at the top of the plot wir
help text disappears when any parameter is changed
re-enabled by clicking on the help button or by right
on the help tag in the MenuBox.

Shows how to use 1nf inthe 'Pos' parameter to p
the figure in the upper right corner of the screen. In t
example an extra 48 pixels is allocated to the title ba
the menu bar and one toolbar can be enabled withou
the title bar off the top of the screen.

The clipboard button captures the figure as a bitmap
clipboard

Using zeros(6) in the plt call to define 6 traces. T
callback will overwrite these zeros with the actual d:
displayed. Note that nan (6) would also have work
as well for this purpose.

This script shows another example of putting more than ¢
a single figure. The SubPlot argument is used to create th
The lower axis contains four traces showing the magnituc
(decibels) of four different weighting functions used in sc
meters (as defined by IEC 651). The middle axis shows tl
four traces except using linear units instead of dB as used
lower axis. The top axis shows the inverse of the linear m

weight.m

traces, which isn't particularly useful except that I wanted
demonstrate plotting three axes in a single figure.

Normally plt only puts one trace on each subplot exc
the main (lower) axis. So in this case (with 12 traces
10 traces on the lower axis and one on the other two.
really want 4, 4, and 4, the 'SubTrace ' parametei
partition the traces between the axes as desired.
When using the SubTrace parameter the native plt ct
objects will not behave consistently, so normally the
will be disabled. Alternatively the program can mod
cursor behavior to make it consistent with the partict
SubTrace settings - and this is the approach used in t
example. The 'moveCB ' cursor callback runs the c
function which keeps the cursors on all three axes
synchronized so that the cursors in the upper two axt
automatically move to the same trace and the same x
of the cursor in the main (lower) plot.

The tracelD callback (' TIDcback ") insures that t
box controls the the visibility of the traces in all thre
Note the 'LineWidth' argument in the plt call. T
illustrates how any line property may be included in
calling sequence.

wfall.m

This example has been largely superseded by the followir
example (wfalltst.m) which uses the general purpose
pltwater 3D plotting routine. That's a far easier way tc
waterfall plot, although this example doesn't do that since
written before pltwater was created. However this examp
included since it may still be a good starting point if you
develop a special purpose waterfall display that can't be c
using pltwater.

Demonstrates how to do hidden line removal which
waterfall plot much easier to interpret.
Type wfall orwfall(0) to start wfall in its st
state. (i.e. the display is not updating)
Type wfall(1l) orwfall('run') to start wf

the display dynamically updating.

e One trace color (green) is used for all 30 traces (' Tr
parameter)

e The 'TraceID' parameter is set to empty to disab
TracelD box.

e The figure user data is used to pass the handle struct
the callback.

e Extensive use of the slider pseudo object to control t
data.

e The 'Linesmoothing' option is selected (which
surprisingly speeds up the display dramatically on m
systems)

e A pseudo popup in "super-button" mode is used to st
stop the display.

e The number of display updates per second is calcula
second with the results shown in a large font below t

wfalltst.m

This program demonstrates the use of pltwater, a gene
purpose 3D plotting utility.

A surface consisting of a sequence of sync functions is cr
800 x 200 array (z) which is then passed to pltwater.

We could have called pltwater with just a single argumen
containing the data, but in this example we have included
additional parameters to tailor the display, including;:

nT
skip
X

y

all of which are described in the pltwater section of the he
well as in the comments in pltwater .m. The remainin;
parameters included in the pltwater command in this exar
not unique to pltwater, so they are passed directly to plt a
described in the main plt programming section of the helf
Those parameters include:

HelpText
TraceC
CursorC
Title
AFontsize
LabelY

Xy

winplt.m

Struggling with Matlab's FFT window display tool (wintc
found it cumbersome and limited. I wanted a way to quic/
change window parameters and see the effect on the time
frequency shapes and the most common window measure
(scalloping and processing loss, frequency resolution, anc
equivalent noise bandwidth). I couldn't modify wintool fc
since most of the code was hidden (pcode). So I wrote wi
create a more useable gui for displaying windows. winplt
traces showing the time and frequency domain shapes of
different FFT windows and also is a tool for designing yo
windows by adjusting the kernel coefficients with a slider
also use winplt's command line interface to return the wir
shapes for use in your Matlab programs.

While working with this application, you may find the IE
on Windows for Harmonic Analysis (by Harris) useful. T
most cited reference on FFT windows and includes descr
most of the windows plotted by winplt. For your conveni
can get this paper from my website (www.mennen.org) in
section called "Signal processing papers".

Most treatments of FFT windows are highly mathematica

| the Harris paper). But if you want to understand some of -

ideas without the many pages of mind numbing equations
look at the this portion of a signal processing talk I gave 1

| years ago. The file is called windowsTalk.pdf and you can

my web site, right next to the Harris paper mentioned abc

winplt was designed primarily for its signal processing ec
value but it is also a good demonstration of the use of plt"

http://www.mennen.org

objects and these gui programming techniques:

¢ Demonstrates how to provide application specific he
menu box tag (HeLpW in this example) using the wi
browser to open an html document as well as by ope
specific topic inside a windows compiled help file (.
format).

e Demonstrates a novel use of the pseudo popup objec
a vector from a gui. (See ID30 - adjust kernel)

e Shows the power of the prin.m function [creation of
window parameter block].

e Demonstrates how to add an application version strii
right corner of the figure)

For a complete description of the winplt application, its n
its command line interface, and its graphical interface, cl

P|1'(/v "‘)

Trace properties

Right

You specify which traces should appear on the right-hand axis
with the "Right ' parameter. For example if you included
'"Right', [1 4:2:10 17] inthe parameter list, then plt
would put trace numbers 1,4,6,8,10, and 17 on the right axis
and all other traces on the left axis. A slight shading is used
behind the Trace IDs associated with the right hand axis so
you can tell at a glance which traces belong to which axis.
(You can disable this shading if you prefer. To see how, read
the description of the TracelD parameter below). You can also
tell which axis a trace is on by the shape of its cursor ('+' for
left axis and 'o' for the right axis). You can optionally specify a
label for the right hand axis (see Labe 1Y) as well as the axis
limits (see Y11mR). Specifying an empty list, as in
"Right', [] tells plt to use the left axis for all the traces
(the same as if you omitted the Right parameter altogether.)

The Markers parameter is a shorthand way of setting a
different marker property for each line. For example:

plt(x,y, 'Markers',s)
is equivalent to:

a = plt(x,y);
for k=1:1length(a)
set(a(k), 'Marker',s(k,:)); end;

Markers

The argument may be an array of characters or a cell array of
strings. The latter method is easier when the elements are
different sizes because you don't have to pad with blanks as
with the character array. (Wherever a character array is
allowed in a plt argument list, a cell array of strings is also
allowed and visa versa.) For example, these two lines have
give the same result:

plt(..., '"Markers',['square'; '+ ';'none
1)

plt(..., 'Markers', {'square','+', 'none'});

This sets the marker for the first two lines to a square and a
plus sign respectively while the third line will be rendered
without any markers.

The following example shows two ways to set the markers of
the six traces to x,+,square,o,asterisk,x (respectively). The
shorter method used in the 2nd line is possible because every
marker may be represented with a single character:

plt(..., 'Markers',
[|X|;|+I;|SI;|O|,|*|,|XI])
plt(..., "Markers', 'x+so*x'

);

The Styles parameter is a shorthand way of setting the
LineStyle property in a similar way that the Markers
parameter is used to set the Marker property. For example, to
set the first trace to normal, the 2nd and 3rd traces to dotted
and dashed respectively, and the 4th trace to none (useful
when you want the markers with no lines connecting them)
you would use the following command:

plt("'l'Styles'l{'_'l':'I'__'I'none'});
The shorthand for single character styles mentioned above

also works. For instance, to alternate between normal and
dotted among eight traces one could use:

Styles

plt(..., 'Styles’, '-:-:1-:1-:11);

One additional trick applies to the Styles parameter. If a single
character is given which is not a valid line style, then the
linestyle property is set to none and the given character is
applied to the marker property. As an example, the following
command defines eight traces of which the first four are
rendered as continuous lines (i.e. without markers) and the last
four are rendered with plus sign markers placed at each x,y
location specified by the data arrays but with no lines
connecting the markers:

plt(..., 'Styles’, '----++++"),
Since there are no marker property values which can also be

linestyle property values, there is never any ambiguity as to
which property should be set.

GridStyle

This parameter allows you to select the grid line style. For
example:

plt(...,'GridStyle’',"':");

will select a dotted or dashed line (depending on the graphics
renderer). If this parameter is not included the default is
usually a solid line (' - ") although there is one somewhat
complicated exception to this which is described in the default
section of the GRIDC parameter which you can find here.

This parameter allows you to assign a name to each trace. This
name will appear in the trace selection box (also sometimes
called the TraceID box). The number of characters that will fit
in the trace selection box depends on the size you choose for
the plt window. For the default figure size there is room for
about 5 uppercase or 6 lowercase characters. In the example
below, both forms are equivalent:

TracelD

plt(...,'TraceID',['Rtemp'; 'Ltemp'; 'RV1
1)

plt(..., 'TracelID',

{'Rtemp'; '"Ltemp'; 'RV1'});

Default: ['Line 1';'Line 2'; ... 'Line n'];

If you want the plot to be created without a TracelD box, call
plt with a TracelD parameter of zero or the empty set ([] or ").
Since plt can't create a TracelD box containing more than 99
IDs, if you want to plot more than 99 traces, you must include
"TraceID', 0 (or with the equivalent empty set value) in
the parameter list.

When specifying tracelDs, you must have one trace ID for
every trace on the main and right hand axes. However if you
don't want a trace ID for a specific trace to appear, just use the
null string (' ') for the trace name. If you do that, the trace ID
box will be made smaller to account for the fewer number of
IDs displayed.

Normally tracelDs associated with the right hand axis will
appear in the traceID box with a slight shading so you can
identify those traces at a glance. If you want to disable this
shading, insert the special character ']' at the beginning of the
first TraceID name. The right bracket will be removed from
the trace name before it is used. The third plot of the pub.m
demo program demonstrates the use of this special character.

You may specify a callback function (fcn) to execute when the
user clicks on any of the TracelD tags by including the
parameter ' TIDcback', fcn in the argument list. If the
string '@TID' occurs anywhere inside the function string
then it's replaced with the handle of the trace ID string.
Likewise if the string '@LINE ' occurs anywhere inside fcn, it
is replaced with the handle of the trace itself and occurrences
of '@IDX"' are replaced with the index of the selected trace.
(i.e. 2 for the second trace listed in the TracelD box). See the

demo program pltquiv.m for an example using the
TIDcback parameter. In that example, the name and color of
a trace is displayed in the command window when you click
on a Trace ID tag. (Not particularly useful, but this example
was contrived to demonstrate all the possible substitutions.) To
define a quote within a quote in Matlab, one uses two single
quote characters in a row. Since this can get confusing at
times, callbacks defined within plt may use a double quote
character instead of two successive single quotes. The
pltquiv.m example uses this alternative form. In addition to a
string, Tcn may also be a function handle of the form @func
or {@func,argl,arg2, ...,argn}. Note that the string
substitutions can't be used with the function handle form of
this parameter.

You also may change the tracelDs after the plot has been
created. For example, if the current figure contains a plot with
four traces, these traces can be renamed with a command such
as:

plt('rename',
{'First' 'Second' '3rd' '4th'});

If there are other changes you want to make to the TracelD
box from your program (as in the curves. m example), you
can get the handle of the axis that contains all the TraceIlD
objects with the following command:

tbox = findobj(gcf, 'user', 'TracelD');

Then, for example the following command would make the
TracelD box invisible:

set([tbox: get(tbox,'child')], 'vis', 'off")

An easier way to make the TracelD box invisible would be to
simply move it outside the figure area:

set(tbox, 'pos',[-2 0 1 1]).

Or in the unlikely event you wanted to reverse the order of the
TracelDs (i.e. bottom to top ordering in the TraceID box), use
the command:

set(tbox, 'view', [0 270]).

TraceMK

This parameter allows you to show the line types in the trace
selection box to help identify the traces. This can be visually
pleasing and is especially helpful if you are color blind. If the
argument is a vector, it specifies the marker positions within
the trace selection box. For example

"TraceMK',[.6 .7 .8 .9] would tell plt to place a
horizontal line next to each TracelD label beginning and
ending at x = .6 and .9 with markers at the four locations
specified (assuming the line type in the plot included
markers). The area between x = 0 and .6 (i.e. the first 60%)
would be used for the text label. If the first element of the
vector is less than .25 then plt will not display the text labels
since there probably would not be room for them anyway.
(Clicking on the lines in the TraceID box have the same effect
as clicking on the labels, so the labels can be removed without
loss of functionality). If the argument is a scalar, plt will use
that value as the first element of a length 3 vector whose last
element is .9. Thus 'TraceMK', .6 is shorthand for
"TraceMK',[.6 .75 .9]. Aspecial case is when the
scalar argument is zero, in which case no lines are inserted
into the trace selection box (as if the TraceMK parameter was
not used at all). See the demo programs trigplt.m and
subplt.m for examples of using the TraceMK parameter.

All TracelDs will appear in the trace selection box (aka
TracelD box) in a single column except when the TIDcolumn
parameter is included. This is useful when you are using so
many traces that the TracelD box becomes too crowded to fit
all the trace names in a single column. The simplest way to
use the TIDcolumn parameter is to supply an empty argument

TIDcolumn

to the parameter (i.e. ' ' or []). When this is done plt will use
just a single column for the TraceID box when the number of
traces is 24 or less. Two columns will be used when the
number of traces is between 25 and 48, and three columns will
be used when there are more than 48 traces. (The TracelD box
will not appear when more than 99 traces have been defined).
This default will probably work in nearly all situations but if
you want exact control over how many columns are used and
how many tracelDs appear in each column, you can do that by
specifying a non-empty argument to the TIDcolumn parameter
as follows: If TIDcolumn is a scalar, it specifies the number
of TracelDs to put in the second column. If it is a vector, it
specifies the number of TracelDs to put in columns 2,3,etc,
with the remaining going into column 1. For example, if 30
traces are displayed, and youuse ' TIDcolumn', 8 then the
first 22 TracelDs appear in the first column and the last 8
appear in the second column. ' TIDcolumn', [5 5 5]
would tell plt to arrange the 30 IDs in four columns as
follows: (1-15, 16-20, 21-25, 26-30).

DIStrace

By default, all the traces defined by plt are visible until you
change that from the trace selection box. You can change the
default by disabling some traces from the plt call. For
example:

plt(...,'DIStrace',[1 1 0 0 0]);

This tells plt to start the display with the first two traces
disabled and the remaining 3 traces enabled. Of course you
can later enable the first two traces via the trace selection box.
If the parameter has fewer elements than the number of traces,
it is extended by adding zeros. This means that we could have
used [1 1] above to the same effect. After the call to plt has
been made, if you want to change which traces are
enabled/disabled you can click on the TracelDs as described in
Selecting traces. However if you want to do that from a
program you can use the p1t('show', ...) command
which is described at the very bottom of the

Calling sequence and line styles section.

By default you will be allowed to cursor every visible trace in
the plot area. You can change this default using this parameter.
For example, if we had five traces, but wanted to use cursors
only on traces 1,4, and 5 you would use:

ENAcur plt(..., "ENAcur',[1 0 0 1 1]);

If the parameter has fewer elements than the number of traces,
it is extended by adding ones. This means that we could have
used 'ENAcur',[1 O O] above to the same effect.

This parameter allows you to reserve space for additional traces to be added
to the figure after the plt window has been started. For example
plt(x1,yl,x2,y2,"'+"',5); opens the plt window with two traces,
the first one defined by x1,y1 and the second one by x2,y2. Then room is
reserved in the TracelD box for up to 5 more traces that can be added using
the pLltt.m function. This parameter is normally only used inside script or
function files because when you type the plt command in the Matlab
command window an automatic '+"', 8 is assumed. You could still include
the + parameter from the command window in the unlikely event you were
planning on adding more than 8 traces. When plt is called from a script or
function, you can't add traces after the plt window has opened unless you
had included the + parameter in the argument list.

It is unusual to want to add dozens of traces with the pltt function, but it is
possible. For example with the command

plt(x,y,"'+',39, '"TIDcolumn', ""); plt will reserve space in the
TracelD box for 40 traces. The first is specified in the plt command and the
remaining 39 can be added using the p1tt function. The TIDcolumn
parameter was needed in this case because without it, plt would attempt to
cram all 40 TracelDs into one column which would probably be
unreadable.

You may include the TraceID parameter in the argument list as well if
you like, and you should be aware that there are two ways of doing this.
The first (and by far the most common) way of doing this is to put the
"TracelD' parameter before the '+ ' in the argument list. When done in that
order, that TraceID argument specifies the trace names only for the traces
defined in the argument list. Then when the '+' parameter is encountered,
plt expands the TracelD list using default names that will usually be
overwritten by the trace names included in the calls to p1tt. When done in
the opposite order, the TraceID argument should include the trace names
you want for the traces that will be added later (even though the trace
names will be invisible until those traces are added). And if the TraceID
argument does not include enough trace names for this, when a trace is
added after the list has been exhausted, the new trace will be added without
any corresponding entry in the TracelD box (which occasionally might
even be what you wanted).

Typically the + parameter is placed after all the traces defined inside the plt
argument list, however this is not strictly necessary. In fact multiple +
parameters may be included and they may be interspersed with the trace
definitions in the parameter list. When you do that, the space reserved in
the TraceID box for the traces to be added later will be interspersed with
the defined traces in the order in which they appeared. This flexibility is
rarely needed, but nevertheless it is available if you want it. Note that when
traces are added with the pltt function, the reserved slots are used in order
(top to bottom, as well as left to right if multiple columns were enabled).

You might expect that when all the free slots in the TraceID box have been
used up, you can no longer add a new trace with the pltt function ... but in
fact you can. What happens is that in this situation, pltt will overwrite the
data and the trace name of the last trace that was added, so effectively you
can never run out of free slots (unless you never allocated any in the first
place).

	Matlab plt help

