
indexnext	|pgAdmin	III	1.16.1	documentation	»

pgAdmin	III
Contents:

Introduction
Using	pgAdmin	III

pgAdmin	Main	Window
Connect	to	server
Change	Password
Control	Server
Query	tool
pgAdmin	Debugger
pgAdmin	Data	Export
Edit	Data
Maintain	a	database	object
Backup
Restore
Grant	Wizard
Report	Tool
Database	Server	Status
pgAdmin	Options
Guru	Hints
Command	Line	Parameters

pgAgent
pgAgent	Installation
pgAgent	Jobs
pgAgent	Schedules
pgAgent	Steps

Slony-I	support
Slony-I	with	pgAdmin	III	overview
Slony-I	administration	with	pgAdmin	III:	installation
Creating	paths	and	listens
Creating	sets	and	subscriptions

Execute	DDL	scripts	with	Slony-I
Slony-I	tasks
Slony-I	example

Extended	features
Appendices

Bug	Reporting
The	pgAdmin	Development	Team
Translation	team
The	PostgreSQL	Licence
The	MIT	Kerberos	Licence
The	OpenSSL	Licence

indexnext	|pgAdmin	III	1.16.1	documentation	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»

Introduction
pgAdmin	 III	 is	 a	 comprehensive	 PostgreSQL	database	 design	 and
management	 system	 for	 Unix	 and	 Windows	 systems.	 It	 is	 freely
available	under	the	terms	of	the	The	PostgreSQL	Licence	and	may
be	 redistributed	 provided	 the	 terms	 of	 the	 licence	 are	 adhered	 to.
The	project	is	managed	by	the	The	pgAdmin	Development	Team.

This	 software	 was	 written	 as	 a	 successor	 to	 the	 original	 pgAdmin
and	pgAdmin	II	products,	which	though	popular,	had	limitations	in	the
design	that	prevented	them	being	taken	to	the	‘next	level’.	pgAdmin
III	 is	 written	 in	 C++	 and	 uses	 the	 excellent	 wxWidgets	 (formerly
wxWindows)	 cross	 platform	 toolkit.	 Connection	 to	 PostgreSQL	 is
made	using	the	native	libpq	library.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://www.postgresql.org
http://www.wxwidgets.org
http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»

Using	pgAdmin	III
This	 section	 explains	 how	 you	 can	 use	 pgAdmin	 to	maintain	 your
PostgreSQL	databases.	pgAdmin	supports	database	server	versions
7.3	and	up.	Versions	older	 than	7.3	are	not	 supported,	 please	use
pgAdmin	II	for	these.

Contents:

pgAdmin	Main	Window
Getting	started

Connect	to	server
Connection	errors

Change	Password
Good	practice

Control	Server
Query	tool

Graphical	Query	builder
pgAdmin	Data	Export
Query	Tool	Macros
pgScript	Scripting	Language	Reference

pgAdmin	Debugger
pgAdmin	Data	Export
Edit	Data

View	Data	Options
Maintain	a	database	object

VACUUM
ANALYZE
REINDEX

Backup
Restore
Grant	Wizard
Report	Tool

Default	XSL	Stylesheet

Database	Server	Status
pgAdmin	Options

pgAdmin	Browser	Options
pgAdmin	Query	tool	Options
pgAdmin	Database	Designer	Options
pgAdmin	Server	Status	Options
pgAdmin	Miscellaneous	Options

Guru	Hints
Command	Line	Parameters

When	 editing	 the	 properties	 of	 a	 database	 object,	 pgAdmin	 will
support	 you	 with	 help	 about	 the	 underlying	 PostgreSQL	 SQL
commands,	if	you	press	the	F1	function	key.	In	order	for	this	to	work,
the	SQL	helpsite	setting	in	the	options	dialog	must	be	set	correctly.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

pgAdmin	Main	Window

In	the	main	window,	the	structure	of	the	databases	is	displayed.	You
can	 create	 new	 objects,	 delete	 and	 edit	 existing	 objects	 if	 the
privileges	of	the	user	that	you	are	using	on	the	current	connection	to
the	database	allow	this.

The	left	side	of	the	main	window	shows	a	tree	with	all	servers,	and
the	objects	they	contain.

The	upper	right	side	shows	details	of	the	object	currently	selected	in

the	 tree.	 Some	 objects	 might	 have	 statistics	 in	 addition	 to	 their
properties,	these	can	be	shown	if	you	select	the	Statistics	tab.

The	lower	right	side	contains	a	reverse	engineered	SQL	script.	You
can	copy	this	to	any	editor	using	cut	&	paste,	or	save	it	to	a	file	using
Save	definition...	 from	 the	File	menu,	or	use	 it	as	a	 template	 if	you
select	 the	Query	Tool.	 If	 the	Copy	SQL	from	main	window	to	query
tool	option	is	selected,	the	SQL	query	will	be	copied	automatically	to
the	tool.

The	status	line	will	show	you	some	status	information,	as	well	as	the
time	the	last	action	took	pgAdmin	III	to	complete.

You	can	resize	the	main	window,	and	change	the	sizes	of	the	three
main	 regions	 as	 you	 prefer.	 These	 adjustments	 will	 be	 preserved
when	you	exit	the	program.

pgAdmin	 is	bandwidth	friendly.	The	status	of	objects	 in	 the	browser
is	only	refreshed	on	request	or	after	changes	made	with	the	built-in
tools.	Be	aware	that	 this	does	not	cover	changes	made	via	manual
SQL	or	from	other	users	or	other	clients.	It	is	generally	advisable	to
manually	 refresh	 objects	 before	 working	 on	 them	 in	 such
environments.

Getting	started
After	you	have	added	the	desired	server(s)	to	the	tree	on	the	left	side
using	the	Add	server	menu	or	toolbar	button,	each	server	will	show
up	under	the	top	node	“Servers”.

To	 open	 a	 connection	 to	 a	 server,	 select	 the	 desired	 server	 in	 the
tree,	and	double	click	on	it	or	use	Connect	from	the	Tools	menu.	The
connection	 will	 be	 established,	 and	 the	 properties	 of	 the	 top	 level
objects	 are	 retrieved	 from	 the	 database	 server.	 If	 you’ve	 been
connected	 to	 that	 database	 previously,	 pgAdmin	 III	 will	 restore	 the
previous	 selection	 of	 database	 and	 schema	 for	 you.	 The	 current
situation	 is	 saved	when	exiting	 the	program,	 so	 that	pgAdmin	 III	 is
able	to	restore	the	previous	environment.

Using	 the	 menu	 or	 toolbar	 buttons,	 you	 can	 create	 new	 objects,
delete	objects	and	edit	properties	of	existing	objects	if	 the	user	that
you	 entered	 when	 adding	 the	 server	 connection	 has	 sufficient
privileges.	 You	 may	 find	 some	 options	 grayed	 out	 if	 displaying
properties.	 This	 means,	 that	 the	 database	 server	 you’re	 currently
using	 doesn’t	 support	 the	 feature,	 or	 that	 this	 property	 can’t	 be
changed	by	 design,	 or	 that	 your	 user	 privileges	won’t	 allow	 you	 to
change	it.

You	can	search	for	objects	in	the	database	using	the	Search	Tool

Contents:

Object	search

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	pgAdmin	Main

Window	»

Object	search

With	this	dialog,	you	can	search	for	almost	any	kind	of	objects	 in	a
database.

You	 can	 access	 it	 by	 right	 clicking	 a	 database	 and	 select	 “Search
objects”	or	by	hitting	CTRL-G.

The	minimum	pattern	 length	are	3	characters	except	 for	operators.
The	 search	performed	 is	 non-case	 sensitive	and	will	 find	all	 objets
whose	 name	 contains	 the	 pattern.	 You	 can	 only	 search	 for	 object
names.

The	result	is	presented	in	the	grid	with	object	type,	object	name	and
the	object	tree	path.	You	can	click	on	a	result	row	to	select	the	object
in	the	browser.	 If	 the	object	 is	grey,	 this	means	that	you	don’t	have
enabled	those	object	types	in	the	Browser	settings,	so	you	can’t	click

on	it.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	pgAdmin	Main

Window	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

Connect	to	server

Use	this	dialog	to	add	a	new	server	connection	to	the	pgAdmin	tree.

If	 you’re	 experiencing	 connection	 problems,	 check	 the	 connection
problems.

The	name	is	a	text	to	identify	the	server	in	the	pgAdmin	tree.

The	 host	 is	 the	 IP	 address	 of	 the	machine	 to	 contact,	 or	 the	 fully
qualified	 domain	 name.	On	Unix	 based	 systems,	 the	 address	 field
may	 be	 left	 blank	 to	 use	 the	 default	 PostgreSQL	 Unix	 Domain
Socket	 on	 the	 local	 machine,	 or	 be	 set	 to	 an	 alternate	 path
containing	a	PostgreSQL	socket.	 If	a	path	 is	entered,	 it	must	begin
with	a	“/”.	The	port	number	may	also	be	specified.

The	 service	 field	 is	 the	 name	 of	 a	 service	 configured	 in	 the
pg_service.conf	file.	For	details,	see	the	pg_service	documentation.

The	maintenance	DB	field	is	used	to	specify	the	initial	database	that
pgAdmin	connects	to,	and	that	will	be	expected	to	have	the	pgAgent
schema	 and	 adminpack	 objects	 installed	 (both	 optional).	 On
PostgreSQL	8.1	and	above,	 the	maintenance	DB	is	normally	called
‘postgres’,	and	on	earlier	versions	‘template1’	is	often	used,	though	it
is	 preferrable	 to	 create	 a	 ‘postgres’	 database	 for	 this	 purpose	 to
avoid	cluttering	the	template	database.

If	you	select	“Store	password”,	pgAdmin	stores	passwords	you	enter
in	 the	 ~/.pgpass	 file	 under	 Unix	 or
:file:%APPDATA%postgresqlpgpass.conf	 under	 Win32	 for	 later
reuse.	For	details,	see	pgpass	documentation.	 It	will	be	used	for	all
libpq	based	tools.	If	you	want	the	password	removed,	you	can	select
the	server’s	properties	and	uncheck	the	selection	any	time.

The	 colour	 field	 allows	 you	 to	 set	 a	 specific	 colour	 for	 this	 server.
This	 colour	will	 be	used	 in	 the	background	of	 the	 tree	where	each
object	of	this	server	is	displayed.

The	Group	field	is	used	to	push	your	server	in	a	specific	group.	You
can	 have	 a	 production	 group,	 and	 a	 test	 group.	 Or	 LAN	 specific
groups.	It’s	completely	up	to	you.	But	it	helps	when	you	have	lors	of
server	to	register.

The	second	 tab	has	all	 the	SSL	specific	options:	what	kind	of	SSL
connection	you	want,	your	root	certificate	file,	your	server	CRL,	your
client	certificate	file,	and	finally	your	client	key	file.

The	 third	 tab	 contains	 some	 advanced	 options	 that	 are	 seldomly
used.

The	“Connect	now?”	 field	makes	pgAdmin	attempt	a	connection	as
soon	as	you	hit	the	OK	button.

http://www.postgresql.org/docs/9.0/interactive/libpq-pgservice.html
http://www.postgresql.org/docs/current/interactive/libpq-pgpass.html

You	can	unckeck	the	“Connect	now”	checkbox	if	you	don’t	want	the
connection	 to	 the	 server	 being	 established	 immediately,	 but	 only
registered	 for	 later	 use.	 In	 this	 case,	 the	 connection	 parameters
won’t	be	validated.

The	 “Restore	env?”	option	determines	whether	or	not	pgAdmin	will
attempt	 to	 restore	 the	browser	environment	when	you	 reconnect	 to
this	 server.	 If	 you	 regularly	 use	 different	 databases	 on	 the	 same
server	you	might	want	to	turn	this	option	off.

The	Rolename	field	allows	you	to	connect	as	a	role,	and	then	get	the
permissions	of	another	one	(the	one	you	specified	in	this	field).	The
connection	role	must	be	a	member	of	the	rolename.

The	DB	 restriction	 field	 allows	 you	 to	 enter	 an	SQL	 restriction	 that
will	 be	 used	 against	 the	 pg_database	 table	 to	 limit	 the	 databases
that	 you	 see.	 For	 example,	 you	might	 enter:	 ‘live_db’,	 ‘test_db’	 so
that	 only	 live_db	 and	 test_db	 are	 shown	 in	 the	 pgAdmin	 browser.
Note	that	you	can	also	limit	the	schemas	shown	in	the	database	from
the	 Database	 properties	 dialogue	 by	 entering	 a	 restriction	 against
pg_namespace.

The	 “Service	 ID”	 field	specifies	parameters	 to	control	 the	database
service	process.	Its	meaning	is	operating	system	dependent.

If	 pgAdmin	 is	 running	 on	 a	 Windows	 machine,	 it	 can	 control	 the
postmaster	 service	 if	 you	 have	 enough	 access	 rights.	 Enter	 the
name	 of	 the	 service.	 In	 case	 of	 a	 remote	 server,	 it	 must	 be
prepended	by	the	machine	name	(e.g.	PSE1pgsql-8.0).	pgAdmin	will
automatically	discover	services	running	on	your	local	machine.

If	 pgAdmin	 is	 running	on	a	Unix	machine,	 it	 can	 control	 processes
running	 on	 the	 local	 machine	 if	 you	 have	 enough	 access	 rights.
Enter	a	full	path	and	needed	options	to	access	the	pg_ctl	program.
When	 executing	 service	 control	 functions,	 pgAdmin	 will	 append
status/start/stop	keywords	to	this.	Example:

http://www.postgresql.org/docs/current/interactive/catalog-pg-database.html
http://www.postgresql.org/docs/current/interactive/catalog-pg-namespace.html

sudo	/usr/local/pgsql/bin/pg_ctl	-D	/data/pgsql

This	 dialog	 can	 be	 launched	 at	 a	 later	 time	 to	 correct	 or	 add
parameters	 by	 executing	 “properties”	 when	 the	 server	 is	 selected.
You	should	not	be	connected	to	it	if	you	want	to	make	changes	on	its
properties.

Contents:

Connection	errors
could	not	connect	to	Server:	Connection	refused
FATAL:	no	pg_hba.conf	entry

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	Connect	to

server	»

Connection	errors
When	 connecting	 to	 a	 PostgreSQL	 server,	 you	 might	 get	 error
messages	 that	 need	 some	 more	 explanations.	 If	 you	 encounter
them,	please	read	the	following	information	carefully,	we’re	sure	they
will	help	you.

notrunning
no-hba

could	not	connect	to	Server:	Connection
refused

If	 this	 message	 appears,	 there	 are	 two	 possible	 reasons	 for	 this:
either	the	server	isn’t	running	at	all.	Simply	start	it.

The	other	non-trivial	 cause	 for	 this	message	 is	 that	 the	server	 isn’t
configured	to	accept	TCP/IP	requests	on	the	address	shown.

For	security	 reasons,	a	PostgreSQL	server	 “out	of	 the	box”	doesn’t
listen	 on	 TCP/IP	 ports.	 Instead,	 it	 has	 to	 be	 enabled	 to	 listen	 for
TCP/IP	 requests.	 This	 can	 be	 done	 by	 adding	 tcpip	 =	 true	 to	 the
postgresql.conf	 file	 for	 Versions	 7.3.x	 and	 7.4.x,	 or
listen_addresses=’*’	for	Version	8.0.x	and	above;	this	will	make	the

server	accept	connections	on	any	IP	interface.

For	 further	 information,	 please	 refer	 to	 the	 PostgreSQL
documentation	about	runtime	configuration.

http://www.postgresql.org/docs/current/interactive/runtime-config.html

FATAL:	no	pg_hba.conf	entry

If	this	message	appears,	your	server	can	be	contacted	correctly	over
the	 network,	 but	 isn’t	 configured	 to	 accept	 your	 connection.	 Your
client	isn’t	detected	as	a	legal	user	for	the	database.

You	will	have	to	add	an	entry	in	the	form	host	template1	postgres
192.168.0.0/24	 md5	 for	 IPV4	 or	 host	 template1	 postgres
::ffff:192.168.0.0/120	md5	for	IPV6	networks	to	the	pg_hba.conf	file.

For	 further	 information,	 please	 refer	 to	 the	 PostgreSQL
documentation	about	client	authentication.

http://www.postgresql.org/docs/current/interactive/client-authentication.html

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	Connect	to

server	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

Change	Password

To	change	your	password,	follow	the	following	steps:

1.	 Enter	your	current	password	in	the	Current	Password	textbox.
2.	 Enter	your	desired	password	in	the	New	Password	textbox.
3.	 Enter	 your	 desired	 password	 again,	 this	 time	 in	 the	 Confirm

Password	textbox.
4.	 Click	the	OK	button.

Good	practice
It	is	good	policy	to	set	a	password	to	protect	your	data,	even	in	‘safe’
environments	such	as	at	home.	In	the	workplace,	failure	to	apply	an
appropriate	 password	 policy	 could	 leave	 you	 in	 breach	 of	 Data
Protection	laws	in	some	circumstances.

pgAdmin	does	not	enforce	any	password	restrictions,	however	we	do
recommend	 that	 you	 consider	 the	 following	 guidelines	 when
selecting	 passwords.	 This	 is	 not	 an	 exhaustive	 list	 and	 will	 not
guarantee	security.

Ensure	 that	 passwords	 are	 of	 adequate	 length.	 6	 characters
should	be	the	absolute	minimum.
Ensure	 that	 passwords	 are	 not	 easily	 guessable	 by	 others,	 or
open	 to	 dictionary	 attacks.	 Use	 a	 mixture	 of	 upper	 and	 lower
case	 letters	 and	 numerics,	 and	 avoid	 using	 words	 or	 names.
Consider	using	 the	 first	 letter	 from	each	word	 in	a	phrase	 that
you	will	rememeber	easily	but	others	will	not	guess.
Ensure	 that	your	password	 is	change	regularly	 -	at	 least	every
ninety	days.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

Control	Server
If	 you	entered	 correct	 data	 in	 the	Server	 property	 dialogue	 service
field,	pgAdmin	will	check	if	the	service	is	running,	and	allows	to	start
and	stop	the	service.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

Query	tool

The	Query	Tool	enables	you	to	execute	arbitrary	SQL	commands.

The	upper	part	of	the	Query	Tool	contains	the	SQL	Editor	where	you
type	your	commands.	You	may	read	the	query	from	a	file,	or	write	it
out	to	a	file.	When	writing	a	file,	the	encoding	of	the	file	is	determined
by	 the	 file	 suffix:	 if	 it	 is	 *.sql,	 a	 8	 bit	 local	 character	 set	 is	 used.	 If
*.usql	is	selected,	the	file	will	be	written	in	UTF-8,	which	enables	the
storage	 of	 virtually	 all	 characters	 used	 throughout	 the	 world,
according	 to	 the	 coding	 rules	 of	 the	 Unicode	 Consortium.	 If	 you

http://www.unicode.org

select	*.*,	the	setting	from	the	read/write	unicode	option	is	used.

The	edit	entry	window	also	contains	autocompletion	code	to	help	you
write	 queries.	 To	 use	 autocomplete,	 simply	 start	 typing	 your	 query
and	then	press	Control+Space	to	see	a	list	of	possible	object	names
to	 insert.	 For	 example,	 type	 “*SELECT	 *	 FROM*	 ”	 (without	 the
quotes,	but	with	the	trailing	space),	and	then	hit	Control	and	Space
together	 to	 see	 a	 popup	 menu	 of	 autocomplete	 options.	 The
autocomplete	system	 is	based	on	code	 from	psql,	 the	PostgreSQL
command	 line	 interpreter	 and	 will	 generally	 be	 able	 to	 offer
autocomplete	options	in	the	same	places	that	it	can	in	psql.	You	can
optionally	enable	the	Tab	key	to	activate	the	autocomplete	feature	as
well	-	the	can	be	done	on	the	options	dialog.

The	 editor	 also	 offers	 a	 number	 of	 features	 for	 helping	 with	 code
formatting:

The	 auto-indent	 feature	 will	 automatically	 indent	 text	 to	 the
same	depth	as	the	previous	line	when	you	press	return.
Block	indent	text	by	selecting	two	or	more	lines	and	pressing	the
Tab	key.
Block	outdent	text	that	has	been	indented	using	the	current	tab
settings	using	Shift+Tab.
Comment	 out	 SQL	 by	 selecting	 some	 text	 and	 pressing	 the
Control+K.
Uncomment	 SQL	 by	 selecting	 some	 text	 starting	 with	 a
comment	and	pressing	Control+Shift+K.
Shift	 the	 selected	 text	 to	 upper	 case	 by	 pressing
Control+Shift+U.
Shift	the	selected	text	to	lower	case	by	pressing	Control+U.

If	 you	 prefer	 to	 build	 your	 queries	 graphically,	 you	 can	 use	 the
Graphical	Query	builder	to	generate	the	SQL	for	you.

To	execute	a	query,	select	Execute	from	the	Query	menu,	press	the

execute	 toolbar	button,	or	press	 the	F5	 function	key.	The	complete
contents	 of	 the	window	will	 be	 sent	 to	 the	 database	 server,	 which
executes	it.	You	may	also	execute	just	a	part	of	the	text,	by	selecting
only	the	text	that	you	want	the	server	to	execute.

Explain	 from	 the	Query	menu,	 or	 F7	 function	 key	 will	 execute	 the
EXPLAIN	 command.	 The	 database	 server	 will	 analyze	 the	 query
that’s	sent	to	it,	and	will	return	the	results.

The	 result	 is	 displayed	 as	 text	 in	 the	 Data	 Output	 page,	 and
graphically	visualized	on	the	Explain	page.	This	enables	you	to	find
out	 how	 the	 query	 is	 parsed,	 optimized	 and	 executed.	 You	 can

modify	the	degree	of	inspection	by	changing	the	Explain	options	for
this	in	the	Query	menu.	Please	note	that	“EXPLAIN	VERBOSE”	can
not	be	displayed	graphically.

In	case	the	query	you	sent	to	the	server	using	the	Execute	or	Explain
command	takes	longer	than	you	expect,	and	you	would	like	to	abort
the	 execution,	 you	 can	 select	Cancel	 from	 the	Query	menu,	 press
the	Cancel	toolbar	button	or	use	Alt-Break	function	key	to	abort	the
execution.

You	can	run	pgScript	scripts	by	selecting	Execute	pgScript	from	the
Query	menu	instead	of	Execute,	or	you	press	the	Execute	pgScript
toolbar	 button,	 or	 you	 press	 the	 F6	 function	 key.	 The	 complete
contents	of	the	edit	entry	window	will	be	sent	to	the	pgScript	engine,
which	 interprets	 it.	 pgScript	 scripts	 are	 composed	 of	 regular	 SQL
commands	but	add	some	enhancements:

Control-of-flow	language	(IF	and	WHILE	structures)
Local	variables	(SET	@VARIABLE	=	5)
Random	data	generators	(INTEGER(10,	20)	or	REFERENCE(table,
column))

For	more	 information	 on	 the	 pgScript	 language,	 please	 look	 at	 the
pgScript	scripting	language	reference.

If	 you	 want	 to	 have	 help	 about	 a	 SQL	 command	 you	 want	 to
execute,	you	can	mark	a	SQL	keyword	and	select	SQL	Help	from	the
Help	menu,	the	SQL	Help	toolbar	button	or	simply	press	the	F1	key.
pgAdmin	 III	 will	 try	 to	 locate	 the	 appropriate	 information	 in	 the
PostgreSQL	documentation	for	you.

The	result	of	 the	database	server	execution	will	be	displayed	in	the
lower	part	of	the	Query	Tool.	If	the	last	command	in	the	chain	of	SQL
command	sent	to	the	server	was	as	command	returning	a	result	set,
this	 will	 be	 shown	 on	 the	 Data	 Output	 page.	 All	 rowsets	 from

previous	commands	will	be	discarded.

To	save	the	data	in	the	Data	Output	page	to	a	file,	you	can	use	the
Export	dialog.

Information	 about	 all	 commands	 just	 executed	 will	 go	 to	 the
Messages	 page.	 The	 History	 page	 will	 remember	 all	 commands
executed	and	the	results	from	this,	until	you	use	Clear	History	from
the	Query	menu	to	clear	the	window.	If	you	want	to	retain	the	history
for	later	inspection,	you	can	save	the	contents	of	the	History	page	to
a	file	using	the	Save	history	option	from	the	Query	menu.

The	status	line	will	show	how	long	the	last	query	took	to	complete.	If
a	 dataset	 was	 returned,	 not	 only	 the	 elapsed	 time	 for	 server
execution	 is	displayed,	but	also	 the	 time	 to	 retrieve	 the	data	about
your	current	selection.

In	 the	 toolbar	 combobox	 you	 can	 quickly	 change	 your	 database
connection	from	one	database	to	another,	without	launching	another
instance	 of	 the	 query	 tool.	 Initially,	 only	 one	 database	 will	 be
available,	 but	 by	 selecting	 <new	 connection>	 from	 the	 combobox,
you	can	add	another	connection	to	it.

In	 the	options	dialog,	 you	 can	 specify	 a	default	 limit	 for	 the	 rowset
size	 to	 retrieve.	By	default,	 this	value	will	 be	100.	 If	 the	number	of
rows	to	retrieve	from	the	server	exceeds	this	value,	a	message	box
will	appear	asking	what	 to	do	 to	prevent	 retrieval	of	an	unexpected

high	amount	of	data.	You	may	decide	 to	retrieve	 just	 the	 first	 rows,
as	configured	with	 the	max	 rows	setting,	or	 retrieving	 the	complete
rowset	 regardless	 of	 the	 setting,	 or	 abort	 the	 query,	 effectively
retrieving	zero	rows.

If	you	have	queries	that	you	execute	often,	you	can	add	these	to	the
favourites	menu,	and	have	them	automatically	put	in	the	buffer	when
you	 select	 them	 from	 the	 menu.	 The	 Manage	 Favourites	 menu
option	may	 be	 used	 to	 organise	 your	 favourites.	 Alternatively,	 you
can	store	them	as	Query	Tool	Macros.

The	Query	Tool	also	 includes	a	powerful	Find	and	Replace	 tool.	 In
addition	to	offering	the	normal	options	found	in	most	tools,	a	Regular
Expression	 search	 mode	 is	 included	 which	 allows	 you	 to	 perform
extremely	 powerful	 search	 (and	 replace)	 operations.	 Unless	 your
copy	 of	 pgAdmin	 was	 built	 against	 a	 non-standard	 build	 of
wxWidgets,	a	built	in	version	of	Henry	Spencer’s	regular	expression
library	is	used	based	on	the	1003.2	spec	and	some	(not	quite	all)	of
the	Perl5	extensions.

For	more	details	of	the	regular	expression	syntax	offered,	please	see
the	wxWidgets	documentation.

Contents:

Graphical	Query	builder
pgAdmin	Data	Export
Query	Tool	Macros
pgScript	Scripting	Language	Reference

Overview
Examples
SQL	Commands
Variables
Control-of-flow	structures
Additional	functions	and	procedures

http://www.wxwindows.org/manuals/2.6.3/wx_wxresyn.html#wxresyn

Random	data	generators

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	Query	tool	»

Graphical	Query	builder

The	Graphical	Query	Builder	(GQB)	is	part	of	the	Query	Tool	which
allows	you	to	build	simple	SQL	queries	visually.

There	are	three	main	parts	of	the	GQB.	The	relation	browser	on	the
left	 hand	 side	 allows	 you	 to	 select	 catalogs,	 classes	 and	 views	 to
include	 in	 your	 queries.	 Along	 the	 bottom	 are	 a	 set	 of	 tabs	 which
allow	you	to	specify	selection	criteria,	output	format	and	sorting.	The
third	 section	 is	 the	 canvas	 on	 which	 you	 draw	 the	 relationships
between	the	relations	in	your	tables.	You	can	adjust	the	relative	size

of	each	section	by	dragging	the	join	(or	sash)	between	the	panes.

To	add	relations	to	the	query,	either	double	click	them	in	the	relation
browser,	 or	 drag	 them	 from	 the	browser	 onto	 the	 canvas.	You	 can
arrange	relations	on	the	canvas	by	selecting	the	relation	name	with
the	mouse	and	moving	the	relation	to	the	desired	position.

To	create	 joins	between	 relations,	drag	a	column	 from	one	 relation
onto	another.	A	line	will	be	drawn	between	them	to	indicate	the	join.
Right-clicking	the	join	will	present	a	popup	menu	from	where	you	can
select	the	join	operator	or	delete	it.

To	select	the	columns	that	will	appear	in	the	query	results,	check	the
desired	 columns	 within	 the	 relation	 on	 the	 canvas.	 Each	 column
selected	will	be	added	to	 the	 list	on	the	Columns	tab	on	which	you
can	adjust	the	ordering,	and	specify	column	aliases.

To	specify	selection	criteria,	add	rows	to	the	grid	on	the	Criteria	tab.
The	 restricted	 value	 can	 be	 set	 to	 a	 column	 name,	 or	 a	 constant
value.	The	Operator	column	allows	you	to	select	a	simple	operator	to
be	used	 to	compare	 the	 restricted	value	with	 the	value	specified	 in
the	Value	 column.	The	Connector	 specifies	 how	 the	 criteria	will	 be
joined	to	the	next	(if	any).

The	 query	 results	may	 be	 ordered	 on	 the	Ordering	 tab.	Select	 the
columns	 required	 on	 the	 left,	 and	 use	 the	 buttons	 in	 the	middle	 to
add	 them	 to	 the	 ordering	 list	 on	 the	 right.	 You	 can	 also	 remove
columns	 in	 the	 same	way.	For	 each	 column	added	 to	 the	ordering
list,	 you	 can	 specify	 the	 sorting	 direction.	 You	 can	 also	 adjust	 the
priority	of	each	ordering	column	by	selecting	it,	and	moving	it	up	or
down	the	list	using	the	buttons	on	the	right.

When	 you	 have	 designed	 your	 query,	 you	 can	 use	 the	 Execute,
Execute	to	File,	or	Explain	options	on	the	toobar	(and	Query	menu)
to	generate	and	execute	the	query.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	Query	tool	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

pgAdmin	Data	Export

Data	is	written	to	a	file,	using	the	selected	options.

The	 row	 separator	 option	 selects	 the	 character	 used	 to	 separate
rows	of	data.	On	Unix	systems,	usually	a	 linefeed	character	(LF)	 is
used,	 on	 Windows	 system	 a	 carriage	 return/linefeed	 (CR/LF)
combination.

The	separating	character	between	columns	can	be	selected	between
colon,	semicolon	and	a	vertical	bar.

The	 individual	columns	can	be	enclosed	 in	quotes.	Quoting	can	be
applied	 to	 string	 columns	 only	 (i.e.	 numeric	 columns	 will	 not	 be
quoted)	or	all	columns	regardless	of	data	 type.	The	character	used
for	quoting	can	be	a	single	quote	or	a	double	quote.

If	the	“Column	names”	option	is	selected,	the	first	row	of	the	file	will
contain	the	column	names.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	Query	tool	»

Query	Tool	Macros

Query	Tool	Macros	enable	you	to	execute	pre-defined	SQL	queries
with	 single	 key	 press.	 Pre-defined	 queries	 can	 contain	 the
placeholder	$SELECTION$.	Upon	macro	execution,	the	placeholder
will	be	 replaced	with	 the	currently	selected	 text	 in	 the	SQL	pane	of
the	Query	Tool.

To	 create	 a	 macro,	 select	 the	 Manage	 Macros	 option	 from	 the
Macros	menu	 on	 the	Query	 Tool.	 Select	 the	 key	 you	wish	 to	 use,
enter	the	name	of	the	macro,	and	the	query,	optionally	including	the
selection	 placeholder,	 and	 then	 click	 the	 Save	 button	 to	 store	 the
macro.

To	clear	a	macro,	select	the	macro	on	the	Manage	Macros	dialogue,
and	then	click	the	Clear	button.

To	execute	a	macro,	simply	press	 the	appropriate	shortcut	keys,	or
select	it	from	the	Macros	menu.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	Query	tool	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	Query	tool	»

pgScript	Scripting	Language
Reference

Overview
pgScript	is	composed	of	pgScript	commands:

pgScript	command

				:	Regular	PostgreSQL	SQL	Command	(SELECT	INSERT	CREATE	...)

				|	Variable	declaration	or	assignment	(DECLARE	SET)

				|	Control-of-flow	structure	(IF	WHILE)

				|	Procedure	(ASSERT	PRINT	LOG	RMLINE)

Command	 names	 (SELECT,	 IF,	SET,	 ...)	 are	 case-insensitive	 and
must	be	ended	with	a	semi-column	;.	Identifiers	are	case-sensitive.

Examples

Batch	table	creations

DECLARE	@I,	@T;	--	Variable	names	begin	with	a	@

SET	@I	=	0;	--	@I	is	an	integer

WHILE	@I	<	20

BEGIN

			SET	@T	=	'table'	+	CAST	(@I	AS	STRING);	--	Casts	@I

			CREATE	TABLE	@T	(id	integer	primary	key,	data	text);

			SET	@I	=	@I	+	1;

END

Insert	random	data

DECLARE	@I,	@J,	@T,	@G;

SET	@I	=	0;

SET	@G1	=	INTEGER(10,	29,	1);	/*	Random	integer	generator

																													Unique	numbers	between	10	and	29	*/

SET	@G2	=	STRING(10,	20,	3);	/*	Random	string	generator

																													3	words	between	10	and	20	characters	*/

WHILE	@I	<	20

BEGIN

				SET	@T	=	'table'	+	CAST	(@I	AS	STRING);

SET	@J	=	0;

				WHILE	@J	<	20

				BEGIN

								INSERT	INTO	@T	VALUES	(@G1,	'@G2');

								SET	@J	=	@J	+	1;

				END

SET	@I	=	@I	+	1;

END

Batch	table	deletions

DECLARE	@I,	@T;	--	Declaring	is	optional

SET	@I	=	0;

WHILE	1	--	Always	true

BEGIN

				IF	@I	>=	20

						BREAK;	--	Exit	the	loop	if	@I	>	20

	SET	@T	=	'table'	+	CAST	(@I	AS	STRING);

				DROP	TABLE	@T;

	SET	@I	=	@I	+	1;

END

Print	information	on	screen

SET	@PROGR@M#TITLE	=	'pgScript';

PRINT	'';

PRINT	@PROGR@M#TITLE	+	'	features:';

PRINT	'';

PRINT	'		*	Regular	PostgreSQL	commands';

PRINT	'		*	Control-of-flow	language';

PRINT	'		*	Local	variables';

PRINT	'		*	Random	data	generators';</pre>

SQL	Commands
You	can	run	ANY	PostgreSQL	query	from	a	pgScript	EXCEPT	those
ones:

BEGIN;

END;

This	 is	 because	BEGIN	 and	 END	 are	 used	 for	 delimiting	 blocks.
Instead	use:

BEGIN	TRANSACTION;

END	TRANSACTION;

For	 a	 list	 of	 PostgreSQL	 commands:
http://www.postgresql.org/docs/8.3/interactive/sql-commands.html

http://www.postgresql.org/docs/8.3/interactive/sql-commands.html

Variables
There	are	two	main	types	of	variables	:	simple	variables	and	records
(result	sets	composed	of	lines	and	columns).

Variable	 names	 begin	 with	 a	 @	 and	 can	 be	 composed	 of	 letters,
digits,	_,	#,	@.

Variable	type	is	guessed	automatically	according	to	the	kind	of	value
it	 contains.	 This	 can	 be	 one	 of:	 number	 (real	 or	 integer),	 string,
record.

Simple	variables

Simple	variable	declaration

Declaring	simple	variable	is	optional:

DECLARE	@A,	@B;

DECLARE	@VAR1;

Simple	variable	affectation

This	is	done	with	the	SET	command.	The	variable	type	depends	on
the	value	assigned	to	this	variable:

SET	@A	=	1000,	@B	=	2000;			--	@A	and	@B	are	integer	numbers**

SET	@C	=	10e1,	@D	=	1.5;				--	@C	and	@D	are	real	numbers**

SET	@E	=	'ab',	@F	=	'a''b';	--	@E	and	@F	are	strings**

SET	@G	=	"ab",	@H	=	"a\"b";	--	@G	and	@H	are	strings**

An	uninitialized	variable	defaults	to	an	empty	string.	It	 is	possible	to
override	variables	as	many	times	as	wanted:

PRINT	@A;						--	Prints	an	empty	string

SET	@A	=	1000;	--	@A	is	initialized	an	integer

PRINT	@A;						--	Prints	1000

SET	@A	=	'ab';	--	@A	becomes	a	string

PRINT	@A;						--	Prints	ab

Data	generators

Data	generators	allows	users	to	generate	random	values.	There	are
various	 types	 of	 generators,	 each	 one	 producing	 different	 type	 of
data.	 A	 variable	 initialized	 with	 a	 data	 generator	 behaves	 like	 a
regular	simple	variable	except	that	it	has	a	different	value	each	time
it	is	used:

SET	@A	=	INTEGER(100,	200);

PRINT	@A;	--	Prints	an	integer	between	100	and	200

PRINT	@A;	--	Prints	another	integer	between	100	and	200

A	 variable	 can	 contain	 a	 generator	 but	 its	 type	 is	 one	 of:	 number
(real	 or	 integer),	 string.	 For	 a	 list	 of	 available	 generators	 and	 their
associated	type,	see	generators.

Records

Record	declaration

Declaring	 a	 record	 is	 required.	 A	 name	 for	 each	 column	must	 be
specified	even	if	they	will	not	be	used	anymore	afterwards:

DECLARE	@R1	{	@A,	@B	},	@R2	{	@A,	@C	};	--	Two	records	with	two		columns

DECLARE	@R3	{	@A,	@B,	@C,	@D	};									--	One	record		with	four	columns

The	number	of	lines	is	dynamic:	see	the	next	section.

Record	affectation

To	 access	 a	 specific	 location	 in	 a	 record,	 one	 must	 use	 the	 line
number	(starts	at	0)	and	can	use	either	the	column	name	(between
quotes)	 or	 the	 column	 number	 (starts	 at	 0).	 This	 specific	 location
behaves	like	a	simple	variable.	Note	that	a	record	cannot	contain	a
record:

SET	@R1[0]['@A']	=	1;	--	First	line	&	first	column

SET	@R1[0][0]	=	1;				--	Same	location

SET	@R1[4]['@B']	=	1;	--	Fifth	line	&	second	column

SET	@R1[0][1]	=	1;				--	Same	location

In	 the	above	example,	 three	empty	 lines	are	automatically	 inserted
between	 the	 first	 and	 the	 fifth.	Using	 an	 invalid	 column	 number	 or
name	results	in	an	exception.

Specific	location	can	be	used	as	right	values	as	well.	A	specific	line
can	also	be	used	as	right	value:

SET	@R1[0][0]	=	@R3[0][1],	@A	=	@R2[0][0];	--	Behaves	like	simple	variables

SET	@A	=	@R1[1];	--	@A	becomes	a	record	which	is	the	first	line	of	@R1

Remember	that	SET	@R1[0][0]	=	@R2	is	impossible	because	a	record
cannot	contain	a	record.

It	is	possible	to	assign	a	record	to	a	variable,	in	this	case	the	variable
does	not	need	to	be	declared:

SET	@A	=	@R3;	--	@A	becomes	a	record	because	it	is	assigned	a	record

SQL	queries

Any	SQL	query	executed	 returns	a	 record.	 If	 the	query	 is	a	 SELECT
query	 then	 it	 returns	 the	results	of	 the	query.	 If	 it	 is	something	else
then	it	returns	a	one-line	record	(true)	if	this	is	a	success	otherwise
a	zero-line	record	(false):

SET	@A	=	SELECT	*	FROM	table;			--	@A	is	a	record	with	the	results	of	the	query

SET	@B	=	INSERT	INTO	table	...;	--	@B	is	a	one-line	record	if	the	query	succeeds

Record	functions

See	function2.

Cast

It	is	possible	to	convert	a	variable	from	one	type	to	another	with	the
cast	function:

SET	@A	=	CAST	(@B	AS	STRING);

SET	@A	=	CAST	(@B	AS	REAL);

SET	@A	=	CAST	(@B	AS	INTEGER);

SET	@A	=	CAST	(@B	AS	RECORD);

When	 a	 record	 is	 converted	 to	 a	 string,	 it	 is	 converted	 to	 its	 flat
representation.	 When	 converted	 to	 a	 number,	 the	 record	 is	 first
converted	to	a	string	and	then	to	a	number	(see	string	conversion	for
more	details).

When	a	number	 is	converted	to	a	string,	 it	 is	converted	to	 its	string
representation.	When	converted	to	a	record,	it	is	converted	to	a	one-
line-one-column	record	whose	value	is	the	number.

When	 a	 string	 is	 converted	 to	 a	 number,	 if	 the	 string	 represents	 a
number	 then	 this	 number	 is	 returned	 else	 an	 exception	 is	 thrown.
When	converted	 to	a	 record,	either	 the	program	can	 find	a	 record
pattern	in	the	string	or	it	converts	it	to	a	one-line-one-column	record
whose	value	is	the	string.	A	record	pattern	is:

SET	@B	=	'(1,	"abc",	"ab\\"")(1,	"abc",	"ab\\"")';	--	@B	is	a	string

SET	@B	=	CAST	(@B	AS	RECORD);	@B	becomes	a	two-line-three-column	record

Remember	 a	 string	 is	 surrounded	 by	 simple	 quotes.	 Strings
composing	a	record	must	be	surrounded	by	double	quotes	which	are
escaped	with	\\	(we	double	the	slash	because	it	is	already	a	special
character	for	the	enclosing	simple	quotes).

Operations

Operations	 can	 only	 be	 performed	 between	 operands	 of	 the	 same
type.	Cast	values	in	order	to	conform	to	this	criterion.

Comparisons	result	in	a	number	which	is	0	or	1.

Strings

Comparisons:	=	<>	>	<	<=	>=	AND	OR

Concatenation:	+

SET	@B	=	@A	+	'abcdef';	--	@A	must	be	a	string	and	@B	will	be	a	string

Boolean	value:	non-empty	string	is	true,	empty	string	is	false

Inverse	boolean	value:	NOT

Case-insensitive	comparison:	~=

Numbers

Comparisons:	=	<>	>	<	<=	>=	AND	OR

Arithmetic:	+	-	*	/	%

SET	@A	=	CAST	('10'	AS	INTEGER)	+	5;	--	'10'	string	is	converted	to	a	number

Boolean	value:	0	is	false,	anything	else	is	true

Inverse	boolean	value:	NOT	(note	that	NOT	NOT	10	=	1)

An	 arithmetic	 operation	 involving	 at	 least	 one	 real	 number	 gives	 a
real	number	as	a	result:

SET	@A	=	10	/	4.;	--	4.	is	a	real	so	real	division:	@A	=	2.5

SET	@A	=	10	/	4;		--	4	is	an	integer	so	integer	division:	@A	=	2

Records

Comparisons:	=	<>	>	<	<=	>=	AND	OR

Boolean	value:	zero-line	record	is	false,	anything	else	is	true

Inverse	boolean	value:	NOT

Comparisons	for	records	are	about	inclusion	and	exclusion.	Order	of
lines	 does	 not	matter.	 <=	means	 that	 each	 row	 in	 the	 left	 operand
has	a	match	in	the	right	operand.	>=	means	the	opposite.	 =	means
that	<=	and	>=	are	both	true	at	the	same	time...

Comparisons	 are	 performed	 on	 strings:	 even	 if	 a	 record	 contains
numbers	like	10	and	1e1	we	will	have	'10'	<>	'1e1'.

Control-of-flow	structures

Conditional	structure

IF	condition

BEGIN

				pgScript	commands

END

ELSE

BEGIN

				pgScript	commands

END

pgScript	 commands	 are	 optional.	 BEGIN	 and	 END	 keywords	 are
optional	if	there	is	only	one	pgScript	command.

Loop	structure

WHILE	condition

BEGIN

				pgScript	commands

END

pgScript	 commands	 are	 optional.	 BEGIN	 and	 END	 keywords	 are
optional	if	there	is	only	one	pgScript	command.

BREAK	ends	 the	enclosing	WHILE	 loop,	while	CONTINUE	 causes
the	 next	 iteration	 of	 the	 loop	 to	 execute.	 RETURN	 behaves	 like
BREAK:

WHILE	condition1

BEGIN

				IF	condition2

				BEGIN

								BREAK;

				END

END

Conditions

Conditions	are	 in	 fact	 results	of	 operations.	For	example	 the	 string
comparison	'ab'	=	'ac'	will	 result	 in	a	number	which	 is	 false	 (the
equality	is	not	true):

IF	'ab'	~=	'AB'	--	Case-insensitive	comparison	which	result	in	1	(true)	which	is	true

BEGIN

				--	This	happens

END

IF	0	--	false

BEGIN

				--	This	does	**not**	happen

END

ELSE

BEGIN

				--	This	happens

END

WHILE	1

BEGIN

				--	Infinite	loop:	use	BREAK	for	exiting

END

It	 is	 possible	 to	 the	 result	 of	 a	 SQL	 SELECT	 query	 directly	 as	 a
condition.	The	query	needs	to	be	surrounded	by	parenthesis:

IF	(SELECT	1	FROM	table)

BEGIN

				--	This	means	that	table	exists	otherwise	the	condition	would	be	false

END

Additional	functions	and	procedures

Procedures

Procedures	do	not	return	a	result.	They	must	be	used	alone	on	a	line
and	cannot	be	assigned	to	a	variable.

Print

Prints	an	expression	on	the	screen:

PRINT	'The	value	of	@A	is'	+	CAST	(@A	AS	STRING);

Assert

Throws	an	exception	if	the	expression	evaluated	is	false:

ASSERT	5	>	3	AND	'a'	=	'a';

Remove	line

Removes	the	specified	line	of	a	record:

RMLINE(@R[1]);	--	Removes	@R	second	line

Functions

Functions	do	return	a	result.	Their	return	value	can	be	assigned	to	a
variable,	like	the	CAST	operation.

Trim

Removes	extra	spaces	surrounding	a	string:

SET	@A	=	TRIM('	a	');	--	@A	=	'a'</pre>

Lines

Gives	the	number	of	lines	in	a	record:

IF	LINES(@R)	>	0

BEGIN

				--	Process

END

Columns

Gives	the	number	of	columns	in	a	record:

IF	COLUMNS(@R)	>	0

BEGIN

				--	Process

END

Random	data	generators

Overview	of	the	generators

One	 can	 assign	 a	 variable	 (SET)	 with	 a	 random	 data	 generators.
This	means	each	time	the	variable	will	be	used	it	will	have	a	different
value.

However	the	variable	is	still	used	as	usual:

SET	@G	=	STRING(10,	20,	2);

SET	@A	=	@G;	--	@A	will	hold	a	random	string

SET	@B	=	@G;	--	@B	will	hold	another	random	string

PRINT	@G,				--	This	will	print	another	third	random	string

Sequence	and	seeding

Common	parameters	for	data	generators	are	sequence	and	seed.

sequence	 means	 that	 a	 sequence	 of	 values	 is	 generated	 in	 a
random	order,	 in	other	words	each	value	appears	only	once	before
the	sequence	starts	again:	 this	 is	useful	 for	 columns	with	a	 UNIQUE
constraint.	For	example,	this	generator:

SET	@G	=	INTEGER(10,	15,	1);	--	1	means	generate	a	sequence

It	can	generate	such	values:

14	12	10	13	11	15	14	12	10	13	11

Where	 each	 number	 appears	 once	 before	 the	 sequence	 starts
repeating.

sequence	parameter	must	be	an	integer:	if	it	 is	0	then	no	sequence

is	generated	(default)	and	if	something	other	than	0	then	generate	a
sequence.

seed	 is	 an	 integer	 value	 for	 initializing	a	generator:	 two	generators
with	the	same	parameters	and	the	same	seed	will	generate	exactly
the	same	values.

seed	must	be	an	 integer:	 it	 is	used	directly	 to	 initialize	 the	 random
data	generator.

Data	generators

Optional	parameters	are	put	into	brackets:

Generator

	:	INTEGER	(min,	max,	[sequence],	[seed]);

	|	REAL	(min,	max,	precision,	[sequence],	[seed]);

	|	DATE	(min,	max,	[sequence],	[seed]);

	|	TIME	(min,	max,	[sequence],	[seed]);

	|	DATETIME	(min,	max,	[sequence],	[seed]);

	|	STRING	(min,	max,	[nb],	[seed]);

	|	REGEX	(regex,	[seed]);

	|	FILE	(path,	[sequence],	[seed],	[encoding]);

	|	REFERENCE	(table,	column,	[sequence],	[seed]);

Integer	numbers

INTEGER	(min,	max,	[sequence],	[seed]);

INTEGER	(-10,	10,	1,	123456);

min	is	an	integer,	max	is	an	integer,	sequence	is	an	integer	and	seed	is
an	integer.

Real	numbers

REAL	(min,	max,	precision,	[sequence],	[seed]);

REAL	(1.5,	1.8,	2,	1);

min	 is	 a	 number,	 max	 is	 a	 number,	 precision	 is	 an	 integer	 that
indicates	the	number	of	decimals	(should	be	less	than	30),	sequence
is	an	integer	and	seed	is	an	integer.

Dates

DATE	(min,	max,	[sequence],	[seed]);

DATE	('2008-05-01',	'2008-05-05',	0);

min	 is	 a	 string	 representing	 a	 date,	 max	 is	 a	 string	 representing	 a
date,	sequence	is	an	integer	and	seed	is	an	integer.

Times

TIME	(min,	max,	[sequence],	[seed]);

TIME	('00:30:00',	'00:30:15',	0);

min	 is	 a	 string	 representing	 a	 time,	 max	 is	 a	 string	 representing	 a
time,	sequence	is	an	integer	and	seed	is	an	integer.

Timestamps	(date/times)

DATETIME	(min,	max,	[sequence],	[seed]);

DATETIME	('2008-05-01	14:00:00',	'2008-05-05	15:00:00',	1);

min	is	a	string	representing	a	timestamp,	max	is	a	string	representing
a	timestamp,	sequence	is	an	integer	and	seed	is	an	integer.

Strings

STRING	(min,	max,	[nb],	[seed]);

STRING	(10,	20,	5);

min	 is	an	integer	representing	the	minimum	length	of	a	word,	max	is
an	 integer	 representing	 the	 maximum	 length	 of	 a	 word,	 nb	 is	 an

integer	representing	the	number	of	words	(default:	1)	and	seed	is	an
integer.

In	the	above	example	we	generate	5	words	(separated	with	a	space)
whose	size	is	between	10	and	20	characters.

Strings	from	regular	expressions

REGEX	(regex,	[seed]);

REGEX	('[a-z]{1,3}@[0-9]{3}');

regex	 is	 a	 string	 representing	 a	 simplified	 regular	 expressions	 and
seed	is	an	integer.

Simplified	regular	expressions	are	composed	of:

Sets	of	possible	characters	like	[a-z_.]	for	characters	between
a	and	z	+	_	and	.
Single	characters

It	 is	 possible	 to	 specify	 the	 minimum	 and	 maximum	 length	 of	 the
preceding	set	or	single	character:

{min,	max}	like	{1,3}	which	stands	for	length	between	1	and	3
{min}	like	{3}	which	stands	for	length	of	3
Default	(when	nothing	is	specified)	is	length	of	1

Note:	be	careful	with	spaces	because	'a	{3}'	means	one	a	followed
by	three	spaces	because	the	3	 is	about	 the	 last	character	or	set	of
characters	which	is	a	space	in	this	example.

If	you	need	to	use	[]	\	{	or	},	they	must	be	escaped	because	they
are	 special	 characters.	 Remember	 to	 use	double	 backslash:	 '\\
[{3}'	for	three	[.

Strings	from	dictionary	files

FILE	(path,	[sequence],	[seed],	[encoding]);

FILE	('file.txt',	0,	54321,	'utf-8');

path	 is	 a	 string	 representing	 the	 path	 to	 a	 text	 file,	 sequence	 is	 an
integer,	seed	 is	an	integer	and	encoding	 is	a	string	representing	the
file	character	set	(default	is	system	encoding).

This	generates	a	random	integer	between	1	and	the	number	of	lines
in	the	file	and	then	returns	that	line.	If	the	file	does	not	exist	then	an
exception	is	thrown.

encoding	supports	 the	most	known	encoding	 like	utf-8,	utf-16le,	utf-
16be,	iso-8859-1,	...

Reference	to	another	field

REFERENCE	(table,	column,	[sequence],	[seed]);

REFERENCE	('tab',	'col',	1);

table	is	a	string	representing	a	table,	column	is	a	string	representing
a	column	of	the	table,	sequence	is	an	integer	and	seed	is	an	integer.

This	is	useful	for	generating	data	to	put	into	foreign-key-constrained
columns.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	Query	tool	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

pgAdmin	Debugger

The	 debugger	 may	 be	 used	 to	 debug	 pl/pgsql	 functions	 in
PostgreSQL,	as	well	as	EDB-SPL	functions,	stored	procedures	and
packages	in	EnterpriseDB.

Note:	 The	 debugger	 may	 only	 be	 used	 by	 roles	 with	 ‘superuser’
privileges.

In	 order	 to	 use	 the	 debugger,	 a	 plugin	 is	 required	 on	 your	 server.
This	 is	 included	 by	 default	 with	 EnterpriseDB,	 and	 is	 available	 for
download	on	pgFoundry.	 It	 is	 installed	as	a	contrib	module	with	the
Windows	distribution	of	PostgreSQL	8.3	and	above.

The	debugger	may	be	used	for	both	in-context	and	direct	debugging.

http://pgfoundry.org/projects/edb-debugger/

To	debug	an	object	 in-context,	 right	click	 it	 in	 the	pgAdmin	browser
treeview,	 and	 select	 the	 “Global	 breakpoint”	 option.	 The	 debugger
will	then	wait	for	the	next	session	to	execute	the	object,	and	break	on
the	 first	 line	 of	 executable	 code.	 To	 directly	 debug	 an	 object,	 right
click	it	and	select	the	“Debug”	option.	The	debugger	will	prompt	you
for	 any	 parameter	 values	 that	may	 be	 required,	 invoke	 the	 object,
and	break	on	the	first	line	of	executable	code.

When	entering	parameter	values,	type	the	value	into	the	appropriate
cell	on	the	grid,	or,	 leave	the	cell	empty	to	represent	NULL,	enter	 ‘’
(two	single	quotes)	to	represent	an	empty	string,	or	to	enter	a	literal
string	consisting	of	 just	 two	single	quotes,	enter	 ‘’.	PostgreSQL	8.4
and	 above	 supports	 variadic	 function	 parameters.	 These	 may	 be
entered	as	a	comma-delimited	 list	of	values,	quoted	and/or	cast	as
required.

Once	 the	 debugger	 session	 has	 started,	 you	 can	 step	 through	 the
code	using	the	menu	options,	keyboard	shortcuts	or	toolbar	buttons.
Breakpoints	may	be	set	or	 cleared	by	clicking	 in	 the	margin	of	 the
source	window,	or	by	clicking	on	the	desired	code	line	and	using	the
“Toggle	 breakpoint”	 button	 or	 menu	 option.	 If	 you	 step	 into	 other
functions,	the	Stack	pane	may	be	used	to	navigate	to	different	stack
frames	-	simply	select	the	frame	you	wish	to	view.

When	the	debugger	has	reached	the	end	of	the	executable	code,	 if
running	 in-context	 it	 will	 wait	 for	 the	 next	 call	 to	 the	 function,
otherwise	 it	 will	 prompt	 for	 parameter	 values	 again	 and	 restart
execution.	You	may	exit	the	debugger	at	any	time.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

Edit	Data

The	Edit	Grid	tool	allows	you	to	view	the	data	that’s	stored	in	a	table
or	view,	and	to	edit	the	content	if	technically	possible.

The	header	of	the	grid	will	show	the	name	of	each	column,	together
with	 the	 data	 type.	 A	 column	 that’s	 part	 of	 the	 primary	 key	 will
additionally	be	marked	with	[PK].

Important:	 In	order	 to	edit	 the	data,	each	row	 in	 the	 table	must	be
uniquely	 identifiable.	This	can	be	done	using	 the	OID,	or	a	primary
key.	If	none	of	them	exist,	the	table	is	read	only.	Note	that	views	can’t
be	edited	and	are	read	only	by	design;	updatable	views	(using	rules)
are	not	supported	at	this	time.

To	change	the	value	of	a	field,	you	select	that	field	and	enter	the	new
text.	The	Store	 toolbar	button	allows	 the	data	 to	be	written	back	 to
the	 server.	 The	 row	 will	 be	 written	 automatically,	 if	 you	 select	 a
different	row.

To	enter	a	new	row	into	the	table,	you	enter	the	data	into	the	last	row
that	 has	 a	 row	 number	 marked	 with	 an	 asterisk.	 As	 soon	 as	 you
store	 the	 data,	 the	 row	 will	 get	 a	 row	 number,	 and	 a	 fresh	 empty
asterisk	line	is	created.

If	an	SQL	NULL	 is	 to	be	written	 to	 the	 table,	 simply	 leave	 the	 field
empty.	If	you	store	a	new	row,	this	will	let	the	server	fill	in	the	default
value	 for	 that	column.	 If	you	store	a	change	 to	an	existing	row,	 the
value	NULL	will	explicitly	be	written.

To	enter	a	newline	into	a	field,	press	Ctrl-Enter.

If	 you	 want	 pgAdmin	 III	 to	 write	 an	 empty	 string	 to	 the	 table,	 you
enter	the	special	string	‘’	(two	single	quotes)	in	the	field.	If	you	want
to	write	a	string	containing	solely	two	single	quotes	to	the	table,	you
need	to	escape	these	quotes,	by	typing	‘’

To	delete	a	row,	press	the	Delete	toolbar	button.

The	Refresh	toolbar	button	allows	to	reread	the	contents	of	the	table,
refreshing	the	display.

You	can	select	one	or	more	rows,	and	copy	them	with	Ctrl-C	or	the
Copy	toolbar	button	to	the	clipboard.

The	Sort/Filter	toolbar	button	will	open	the	View	Data	Options	dialog.

The	context	menu	can	also	be	used	 to	quick-sort	or	quick-filter	 the
data	set.	When	a	cell	in	the	grid	is	right-clicked,	the	following	options
allow	the	user	to	selectively	view	the	data:

Filter	by	Selection:	When	selected,	 refreshes	 the	data	 set	 and
displays	 only	 those	 rows	 whose	 column	 value	 matches	 the
value	in	the	cell	currently	selected.
Exclude	 by	 Selection:	 When	 selected,	 refreshes	 the	 data	 set
and	 excludes	 those	 rows	 whose	 column	 value	 matches	 the
value	in	the	cell	currently	selected.
Remove	Filter:	When	selected,	removes	all	selection	/	exclusion
filter	conditions.
Sort	 Ascending:	 When	 selected,	 refreshes	 the	 data	 set	 and
displays	 the	 currently	 selected	 rows	 in	 the	 ascending	 order	 of
the	 selected	 column	 values.	 If	 a	 sorting	 preference	 is	 already
present	for	this	data	set,	this	sorting	preference	is	appended	to
the	current	sort	order.
Sort	 Descending:	 When	 selected,	 refreshes	 the	 data	 set	 and
displays	 the	currently	selected	rows	 in	 the	descending	order	of
the	 selected	 column	 values.	 If	 a	 sorting	 preference	 is	 already
present	for	this	data	set,	this	sorting	preference	is	appended	to
the	current	sort	order.
Remove	 Sorting:	 When	 selected,	 removes	 all	 sorting
preferences	for	this	data	set.

Note:	 If	a	column	 is	already	selected	 for	sorting,	 it’s	position	 in	 the
sort	list	will	remain	the	same,	only	the	direction	will	be	changed.

Contents:

View	Data	Options

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	Edit	Data	»

View	Data	Options
When	“Apply	Filter	and	View	Data”	is	selected	from	the	main	menu,
or	 the	 “Sort/Filter”	 toolbar	button	 is	pressed	 in	 the	data	viewer,	 this
dialogue	appears.	It	allows	changing	the	sort	order	of	the	data,	and
applying	a	filter	to	narrow	the	displayed	data.

You	 can	 select	 one	 or	more	 columns	 and	 the	 sort	 direction	 which
should	be	used	to	retrieve	the	data	from	the	database.

You	can	enter	an	arbitrary	WHERE	clause,	 to	 restrict	 the	 result	set
which	is	retrieved	from	the	database.	You	can	click	“Validate”	to	have
pgAdmin	III	test	whether	the	WHERE	clause	is	valid.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	Edit	Data	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

Maintain	a	database	object

This	tool	allows	to	maintain	the	database	in	total,	or	only	a	selected
table,	or	a	selected	index.

Maintenance	comes	in	three	flavors.

VACUUM
VACUUM	will	scan	the	database	or	table	for	rows,	that	are	not	in	use
any	more.	 If	a	 row	 is	updated	or	deleted,	 the	previous	content	 isn’t
replaced,	but	rather	marked	invalid.	The	new	data	is	inserted	freshly
into	 the	 database.	 You	 need	 to	 perform	 a	 garbage	 collection
regularly,	 to	 insure	 that	 your	 database	 doesn’t	 contain	 too	 much
unused	 data,	 wasting	 disk	 space	 and	 ultimatively	 degrading
performance.

Please	press	the	Help	button	to	see	the	PostgreSQL	help	about	the
VACUUM	command	to	learn	more	about	the	options.

The	 output	 of	 the	 database	 server	 is	 displayed	 in	 the	 messages
page	as	they	arrive.	If	Verbose	is	selected,	the	server	will	send	very
detailed	info	about	what	it	did.

While	this	tool	is	very	handy	for	ad-hoc	maintenance	purposes,	you
are	encouraged	to	install	an	automatic	job,	that	performs	a	VACUUM
job	regularly	to	keep	your	database	in	a	neat	state.

ANALYZE
ANALYZE	investigates	statistical	values	about	the	selected	database
or	table.	This	enables	the	query	optimizer	to	select	the	fastest	query
plan,	to	give	optimal	performance.	Every	time	your	data	is	changing
radically,	 you	 should	 perform	 this	 task.	 It	 can	 be	 included	 in	 a
VACUUM	run,	using	the	appropriate	option.

REINDEX
REINDEX	 rebuilds	 the	 indexes	 in	 case	 these	 have	 degenerated
caused	 by	 unusual	 data	 patterns	 inserted.	 This	 can	 happen	 for
example	 if	 you	 insert	many	 rows	with	 increasing	 index	values,	and
delete	low	index	values.

The	 RECREATE	 option	 doesn’t	 call	 the	 REINDEX	 SQL	 command
internally,	 instead	 it	 drops	 the	 existing	 table	 and	 recreates	 it
according	 to	 the	current	 index	definition.This	doesn’t	 lock	 the	 table
exclusively,	as	REINDEX	does,	but	will	lock	write	access	only.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

Backup

	

	

	

The	backup	dialogue	presents	a	somewhat	simplified	interface	to	the
PostgreSQL	pg_dump	tool.	You	can	backup	a	single	table,	a	schema
or	a	complete	database,	dependent	on	 the	object	 you	select	when
starting	the	backup	tool.

pg_dump	 does	 not	 support	 all	 options	 for	 all	 backup	 file	 formats.
Particularly,	 to	 backup	 blobs	 the	 PLAIN	 format	 can	 not	 be	 used.
Also,	a	PLAIN	 file	 can	not	be	 interpreted,	and	can	not	be	 restored
using	pgAdmin.	The	PLAIN	format	will	create	an	SQL	script	that	can
be	 executed	 using	 the	 psql	 tool.	 For	 standard	 backup	 and	 restore
purposes,	the	COMPRESS	and	TAR	options	are	recommended.

In	 order	 to	 use	 backup,	 the	 pg_dump	 tool	 must	 be	 accessible	 by
pgAdmin.	This	can	be	accomplished	by	having	it	locatable	using	the
path,	 or	 by	 copying	 it	 into	 the	 same	directory	where	 the	pgadmin3
executable	resides.

http://www.postgresql.org/docs/current/interactive/app-pgdump.html

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

Restore

	

	

	

The	restore	dialogue	presents	a	somewhat	simplified	interface	to	the
PostgreSQL	pg_restore	tool.

http://www.postgresql.org/docs/current/interactive/app-pgrestore.html

After	you	selected	a	valid	backup	file,	pgAdmin	will	read	the	contents
of	the	file	when	you	press	the	View	button.	This	may	take	some	time,
dependend	on	the	size	of	the	file.	You	can	watch	the	progress	on	the
Messages	 tab.	 After	 the	 examination	 has	 completed,	 pgAdmin	will
display	the	contents	on	the	Contents	tab.

Intentionally,	 the	 tool	will	not	create	 the	database	to	be	restored.	 In
order	 to	restore	a	database,	 first	create	 it	using	pgAdmin,	and	then
start	the	restore	tool	with	that	fresh	database	selected.	The	data	will
be	restored	to	that	database.

You	can	restore	a	single	object,	when	in	restore	database	mode	(this
is	displayed	in	the	title	bar,	as	in	this	example).	After	examining	the
backup	file,	you	can	select	the	desired	table	from	the	Contents	tab,
and	check	the	Single	Object	box.	Only	that	table	will	be	restored.

You	can	select	a	table	as	restore	destination.	pgAdmin	will	restore	its
data	if	it	is	present	in	the	backup	file.

In	 order	 to	 use	backup,	 the	pg_restore	 tool	must	 be	accessible	 by
pgAdmin.	This	can	be	accomplished	by	having	it	locatable	using	the
path,	 or	 by	 copying	 it	 into	 the	 same	directory	where	 the	pgadmin3
executable	resides.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

Grant	Wizard

The	Grant	Wizard	allows	assignment	of	a	set	of	privileges	to	groups
and	 users	 to	 multiple	 objects	 (tables,	 sequences,	 views	 and
functions)	in	a	convenient	way.

The	Selection	tab	will	show	all	applicable	objects	under	the	currently
selected	object.	Check	all	objects	you	like	to	grant	privileges	on.

The	security	tab	defines	the	privileges	and	groups/users	that	should
be	granted.	Assigning	no	privileges	 to	a	group	or	user	will	 result	 in
revoking	all	rights	for	them.

The	SQL	tab	shows	the	sql	commands	that	are	generated	from	the

selected	grant	targets.

When	clicking	OK,	the	sql	commands	will	be	executed;	any	result	will
be	displayed	in	the	Messages	tab.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

Report	Tool
pgAdmin	 includes	 a	 simple	 reporting	 engine	 which	 allows	 you	 to
quickly	 generate	 reports	 from	 the	 queries	 you	 write	 in	 the	Query
Tool,	or	from	objects	or	collections	of	objects	in	the	main	application
Window	-	 for	example,	you	can	create	a	 report	of	 the	properties	of
any	 object,	 or	 a	 list	 of	 functions	 in	 a	 schema.	 To	 create	 a	 report,
select	a	node	in	the	browser	treeview,	and	select	the	report	to	create
from	 the	 context	menu,	 or	 from	 the	Reports	 submenu	of	 the	Tools
menu.	To	create	a	report	in	the	Query	Tool,	select	the	Quick	Report
option	from	the	File	menu.

Each	report	contains	a	title	and	optional	notes	that	can	be	modified

before	the	report	is	produced.	In	addition,	you	may	select	whether	or
not	to	include	any	SQL	that	may	be	relevant	to	the	report	you	have
selected.

Reports	 are	 generated	 internally	 in	 XML,	 however	 pgAdmin	 can
apply	an	XML	stylesheet	 to	 the	 report	at	processing	 time	 to	 format
the	output	as	required.	A	default	stylesheet	is	built-in	which	produces
HTML	output.	With	the	HTML	output	option	selected,	you	can	opt	to
embed	the	default	CSS	stylesheet	(which	will	render	the	report	in	the
same	 colors	 as	 the	 pgAdmin	 website),	 to	 embed	 an	 external
stylesheet	 into	 the	 report,	 or	 to	 link	 to	 an	 external	 stylesheet.	 The
following	class/object	ID’s	are	used:

#ReportHeader:	This	div	contains	the	report	header.
#ReportNotes:	This	div	contains	the	option	report	notes.
#ReportDetails:	This	div	contains	the	main	body	of	the	report.
#ReportFooter:	This	div	contains	the	report	footer.
.ReportSQL:	 This	 class	 is	 used	 by	 the	 <PRE></PRE>	 blocks
containing	SQL.
.ReportDetailsOddDataRow:	 This	 class	 is	 applied	 to	 the	 odd
numbered	rows	of	tables.
.ReportDetailsEvenDataRow:	This	class	is	applied	to	the	even
numbered	rows	of	tables.
.ReportTableHeaderCell:	This	class	 is	applied	 to	 table	header
cells.
.ReportTableValueCell:	This	class	is	applied	to	table	data	cells.
.ReportTableInfo:	This	class	is	applied	to	table	footnotes.

When	generating	reports	in	XML	format,	you	can	opt	to	output	plain
XML,	 XML	 linked	 to	 an	 external	 XSL	 stylesheet,	 or	 to	 process	 the
XML	using	an	external	stylesheet	and	save	the	resulting	output.	This
allows	complete	flexibility	to	format	reports	in	any	way.

The	 default	XSL	 stylesheet	 used	 to	 render	 XHTML	 output	 can	 be
used	 as	 a	 starting	 point	 for	 your	 own,	 and	 sample	XML	data	 may
also	be	reviewed	if	required.

Contents:

Default	XSL	Stylesheet
Sample	XML	Data

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	Report	Tool	»

Default	XSL	Stylesheet
For	reference,	and	as	a	starting	point	 for	your	own	stylesheets,	 the
builtin	stylesheet	that	pgadmin	uses	to	render	XHTML	report	output
from	XML	report	data	is	included	below.	This	stylesheet	includes	the
default	HTML	stylesheet	that	will	be	embedded	into	a	report	to	give	it
the	pgadmin	look	and	feel.

<?xml	version="1.0"?>

<xsl:stylesheet	version="1.0"	xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output	method="xml"	doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"	doctype-public="-//W3C//DTD	XHTML	1.0	Transitional//EN"	indent="yes"	encoding="utf-8"	/>

<xsl:template	match="/report">

<html>

		<head>

				<xsl:if	test="header/title	!=	''">

						<title><xsl:value-of	select="header/title"	/></title>

				</xsl:if>

				<meta	http-equiv="Content-Type"	content="text/html;	charset=utf-8"	/>

				<style	type="text/css">

						body	{		font-family:	verdana,	helvetica,	sans-serif;	margin:	0px;	padding:	0;	}

						h1	{	font-weight:	bold;	font-size:	150%;	border-bottom-style:	solid;	border-bottom-width:	2px;	margin-top:	0px;	padding-bottom:	0.5ex;	color:	#EBA525;	}

						h2	{	font-size:	130%;	padding-bottom:	0.5ex;	color:	#47678E;	border-bottom-style:	solid;	border-bottom-width:	2px;	}

						h3	{	font-size:	110%;	padding-bottom:	0.5ex;	color:	#000000;	}

						th	{	text-align:	left;	background-color:	#47678E;	color:	#EBA525;	}

						#ReportHeader	{	padding:	10px;	background-color:	#47678E;	color:	#EEEEEE;	border-bottom-style:	solid;	border-bottom-width:	2px;	border-color:	#EBA525;	}

						#ReportHeader	th	{	width:	25%;	white-space:	nowrap;	vertical-align:	top;	}

						#ReportHeader	td	{	vertical-align:	top;	color:	#EEEEEE;	}

						#ReportNotes	{	padding:	10px;	background-color:	#EEEEEE;	font-size:	80%;	border-bottom-style:	solid;	border-bottom-width:	2px;	border-color:	#EBA525;	}

						.ReportSQL	{	margin-bottom:	10px;	padding:	10px;	display:	block;	background-color:	#eeeeee;	font-family:	monospace;	}

						#ReportDetails	{	margin-left:	10px;	margin-right:	10px;	margin-bottom:	10px;	}

						#ReportDetails	td,	th	{	font-size:	80%;	margin-left:	2px;	margin-right:	2px;	}

						#ReportDetails	th	{	border-bottom-color:	#777777;	border-bottom-style:	solid;	border-bottom-width:	2px;	}

						.ReportDetailsOddDataRow	{	background-color:	#dddddd;	}

						.ReportDetailsEvenDataRow	{	background-color:	#eeeeee;	}

						.ReportTableHeaderCell	{	background-color:	#dddddd;	color:	#47678E;	vertical-align:	top;	font-size:	80%;	white-space:	nowrap;	}

						.ReportTableValueCell	{	vertical-align:	top;	font-size:	80%;	white-space:	nowrap;	}

						.ReportTableInfo	{	font-size:	80%;	font-style:	italic;	}

						#ReportFooter	{	font-weight:	bold;	font-size:	80%;	text-align:	right;	background-color:	#47678E;	color:	#eeeeee;	margin-top:	10px;	padding:	2px;	border-bottom-style:	solid;	border-bottom-width:	2px;	border-top-style:	solid;	border-top-width:	2px;	border-color:	#EBA525;	}

						#ReportFooter	a	{	color:	#EBA525;	text-decoration:	none;	}

				</style>

		</head>

		<body>

				<div	id="ReportHeader">

				<xsl:if	test="header/title	!=	''">

						<h1><xsl:value-of	select="header/title"	/></h1>

				</xsl:if>

				<xsl:if	test="header/generated	!=	''">

						Generated:	<xsl:value-of	select="header/generated"	/>

				</xsl:if>

				<xsl:if	test="header/server	!=	''">

						Server:	<xsl:value-of	select="header/server"	/>

				</xsl:if>

				<xsl:if	test="header/database	!=	''">

						Database:	<xsl:value-of	select="header/database"	/>

				</xsl:if>

				<xsl:if	test="header/catalog	!=	''">

						Catalog:	<xsl:value-of	select="header/catalog"	/>

				</xsl:if>

				<xsl:if	test="header/schema	!=	''">

						Schema:	<xsl:value-of	select="header/schema"	/>

				</xsl:if>

				<xsl:if	test="header/table	!=	''">

						Table:	<xsl:value-of	select="header/table"	/>

				</xsl:if>

				<xsl:if	test="header/job	!=	''">

						Job:	<xsl:value-of	select="header/job"	/>

				</xsl:if>

				</div>

				<xsl:if	test="header/notes	!=	''">

						<div	id="ReportNotes">

						Notes:	

						<xsl:call-template	name="substitute">

									<xsl:with-param	name="string"	select="header/notes"	/>

						</xsl:call-template>

						</div>

				</xsl:if>

				<div	id="ReportDetails">

						<xsl:apply-templates	select="section"	>

								<xsl:sort	select="@number"	data-type="number"	order="ascending"	/>

						</xsl:apply-templates>

				</div>

				<div	id="ReportFooter">

Report	generated	by	Postgres	Enterprise	Manager™

				</div>

				

		</body>

</html>

</xsl:template>

<xsl:template	match="section">

		<xsl:if	test="../section[@id	=	current()/@id]/@name	!=	''">

				<h2><xsl:value-of	select="../section[@id	=	current()/@id]/@name"	/></h2>

		</xsl:if>

		<xsl:if	test="count(../section[@id	=	current()/@id]/table/columns/column)	>	0">

				<table>

						<tr>

								<xsl:apply-templates	select="../section[@id	=	current()/@id]/table/columns/column">

										<xsl:sort	select="@number"	data-type="number"	order="ascending"	/>

										<xsl:with-param	name="count"	select="count(../section[@id	=	current()/@id]/table/columns/column)"	/>

								</xsl:apply-templates>

						</tr>

						<xsl:apply-templates	select="../section[@id	=	current()/@id]/table/rows/*"	mode="rows">

										<xsl:sort	select="@number"	data-type="number"	order="ascending"	/>

								<xsl:with-param	name="column-meta"	select="../section[@id	=	current()/@id]/table/columns/column"	/>

						</xsl:apply-templates>

				</table>

				

				<xsl:if	test="../section[@id	=	current()/@id]/table/info	!=	''">

						<p	class="ReportTableInfo"><xsl:value-of	select="../section[@id	=	current()/@id]/table/info"	/></p>

				</xsl:if>

		</xsl:if>

		<xsl:if	test="../section[@id	=	current()/@id]/sql	!=	''">

				<pre	class="ReportSQL">

						<xsl:call-template	name="substitute">

									<xsl:with-param	name="string"	select="../section[@id	=	current()/@id]/sql"	/>

						</xsl:call-template>

				</pre>

		</xsl:if>

</xsl:template>

<xsl:template	match="column">

		<xsl:param	name="count"	/>

		<th	class="ReportTableHeaderCell">

		<xsl:attribute	name="width"><xsl:value-of	select="100	div	$count"	/>%</xsl:attribute>

				<xsl:call-template	name="substitute">

							<xsl:with-param	name="string"	select="@name"	/>

				</xsl:call-template>

		</th>

</xsl:template>

<xsl:template	match="*"	mode="rows">

		<xsl:param	name="column-meta"	/>

		<tr>

		<xsl:choose>

		<xsl:when	test="position()	mod	2	!=	1">

				<xsl:attribute	name="class">ReportDetailsOddDataRow</xsl:attribute>

		</xsl:when>

		<xsl:otherwise>

				<xsl:attribute	name="class">ReportDetailsEvenDataRow</xsl:attribute>

		</xsl:otherwise>

		</xsl:choose>

				<xsl:apply-templates	select="$column-meta"	mode="cells">

						<xsl:with-param	name="row"	select="."	/>

				</xsl:apply-templates>

		</tr>

</xsl:template>

<xsl:template	match="*"	mode="cells">

		<xsl:param	name="row"	/>

				<td	class="ReportTableValueCell">

				<xsl:choose>

						<xsl:when	test="$row/@*[name()	=	current()/@id]|$row/*[name()	=	current()/@id]	!=	''">

								<xsl:call-template	name="substitute">

										<xsl:with-param	name="string"	select="$row/@*[name()	=	current()/@id]|$row/*[name()	=	current()/@id]"	/>

								</xsl:call-template>

						</xsl:when>

						<xsl:otherwise>

								<xsl:text>	</xsl:text>

						</xsl:otherwise>

				</xsl:choose>

		</td>

</xsl:template>

<xsl:template	name="substitute">

			<xsl:param	name="string"	/>

			<xsl:param	name="from"	select="'

'"	/>

			<xsl:param	name="to">

						

			</xsl:param>

			<xsl:choose>

						<xsl:when	test="contains($string,	$from)">

									<xsl:value-of	select="substring-before($string,	$from)"	/>

									<xsl:copy-of	select="$to"	/>

									<xsl:call-template	name="substitute">

												<xsl:with-param	name="string"	select="substring-after($string,	$from)"	/>

												<xsl:with-param	name="from"	select="$from"	/>

												<xsl:with-param	name="to"	select="$to"	/>

									</xsl:call-template>

						</xsl:when>

						<xsl:otherwise>

									<xsl:value-of	select="$string"	/>

						</xsl:otherwise>

			</xsl:choose>

</xsl:template>

</xsl:stylesheet>

Sample	XML	Data

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	Report	Tool	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	Report	Tool	»

Default	XSL	Stylesheet	»

Sample	XML	Data
The	 sample	 report	 below	 demonstrates	 the	 XML	 format	 that	 the
pgadmin	Report	Tool	will	produce.

<?xml	version="1.0"	encoding="UTF-8"?>

<?xml-stylesheet	type="text/xsl"	href="C:\stylesheet.xsl"	?>

<report>

		<header>

				<!--	All	the	values	in	the	header	section	are	optional,	apart	from	the	title.	-->

				<title>Sample	XML	file</title>

				<notes>This	is	a	sample	XML	file.</notes>

				<generated>10/05/2006	11:21:23</generated>

				<server>localhost:5432</database>

				<database>postgres</database>

				<schema>public</schema>

				<table>pg_ts_cfg</table>

				<job></job>

		</header>

		<!--	Multiple	report	sections	may	be	present,	and	must	have	a	name	-->

		<section	id="s1"	number="1"	name="Query	results">

				<!--	A	table	is	optional	within	a	section.	If	present,	the	number	-->

				<!--	of	columns	should	be	appropriate	for	the	attributes	specified	-->

				<!--	in	each	row.	A	row	needn't	specify	every	value	however.	-->

				<table>

						<columns>

								<column	id="c1"	number="1"	name="oid"	/>

								<column	id="c2"	number="2"	name="ts_name"	/>

								<column	id="c3"	number="3"	name="prs_name"	/>

								<column	id="c4"	number="4"	name="locale"	/>

						</columns>

						<rows>

								<row	id="r1"	number="1"	c1="17108"	c2="default"	c3="default"	c4="C"	/>

								<row	id="r2"	number="2"	c1="17109"	c2="default_russian"	c3="default"	c4="ru_RU.KOI8-R"	/>

								<row	id="r3"	number="3"	c1="17110"	c2="simple"	c3="default"	c4=""	/>

						</rows>

						<!--	Additional	section	specific	info	may	be	supplied.	-->

						<info>3	rows	with	4	columns	retrieved.</info>

				</table>

				<!--	Each	section	may	also	contain	some	related	SQL.	-->

				<sql>SELECT	oid,	*	FROM	pg_ts_cfg</sql>

		</section>

</report>

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	Report	Tool	»

Default	XSL	Stylesheet	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

Database	Server	Status

The	Server	Status	dialogue	displays	the	current	connections	to	each
database,	 the	 user	 that	 is	 connected,	 the	 process	 ID,	 the	 client
address	and	start	 time	(on	PostgreSQL	8.1	and	above),	the	current
query	 being	 executed	 (if	 any),	 and	 the	 query	 start	 time	 (where
appropriate)	on	PostgreSQL	7.4	and	above	on	the	Status	tab.

The	Cancel	button	allows	cancelling	the	query	running	on	a	specific
backend.	 Terminate	 will	 shutdown	 the	 backend.	 Attention:	 Both
functions	should	be	used	carefully,	as	the	interrupt	the	client’s	work
ungracefully.	 Particularly,	 the	 terminate	 function	 might	 disturb	 the
function	 of	 the	 complete	 server,	 force	 it	 to	 restart	 its	 services	 and
thus	interrupt	all	user	connections.	You	should	use	this	function	only
if	 the	 server	 is	 seriously	 injured	 by	 a	 backend	 you	 can’t	 control
otherwise.

The	 Locks	 tab	 shows	 the	 current	 locks	 outstanding	 in	 the
PostgreSQL	 Lock	 Manager.	 This	 information	 can	 be	 useful	 when

attempting	to	debug	or	track	down	deadlocks	on	your	server.	Not	all
information	 is	 necessarily	 shown	 for	 each	 lock.	 In	 particular,	 the
Relation	name	may	be	shown	as	an	OID	 instead	of	by	 it’s	name,	 if
the	relation	is	in	a	different	database	to	that	being	monitored.

Note:	When	the	pg_locks	view	is	accessed	as	is	the	case	whenever
this	 dialgue	 is	 open,	 PostgreSQL’s	 internal	 lock	 manager	 data
structures	 are	 momentarily	 locked,	 and	 a	 copy	 is	 made	 for	 the
dialogue	 to	 display.	 This	 ensures	 that	 the	 dialogue	 displays	 a
consistent	 set	 of	 results,	 while	 not	 blocking	 normal	 lock	 manager
operations	longer	than	necessary.	Nonetheless	there	could	be	some
impact	on	database	performance	if	this	view	is	read	often.

On	 a	 PostgreSQL	 server	 running	 version	 8.1	 or	 newer,	 the
Transaction	 tab	 allows	 you	 to	 view	 outstanding	 prepared
transactions.	 Prepared	 transactions	 are	 an	 aspect	 of	 Two	 Phase
Commit	 (2PC),	 used	 in	 distributed	 transaction	 managers.	 Usually,
prepared	 transactions	 are	 handled	 by	 the	 transaction	 manager.	 In
case	 of	 a	 failure,	 it	 might	 be	 necessary	 to	 commit	 or	 rollback	 a
transaction	manually;	you	can	use	the	‘Commit’	or	‘Rollback’	buttons
to	do	this.

The	 Logfile	 tab	 shows	 server	 log	 files,	 if	 configured	 in
postgresql.conf	 (redirect_stderr	 or	 logging_collector	 =	 true,
log_destination	 =	 ‘stderr’	 and	 log_filename	 =	 ‘postgresql-%Y-%m-
%d_%H%M%S.log’	 on	 PostgreSQL	 or	 ‘enterprisedb-%Y-%m-
%d_%H%M%S.log’	 on	EnterpriseDB’s	Advanced	Server).	 pgAdmin
will	extract	a	time	stamp	from	the	logfile	in	a	separate	column,	if	the
log_line_prefix	is	configured	accordingly.	We	recommend	using	‘%t:’
as	 format,	 because	 more	 complicate	 formats	 might	 not	 be
interpretable	correctly.

The	 combobox	 allows	 you	 to	 select	 historic	 logfiles	 or	 the	 current
one.	 If	 “current”	 is	 selected,	 pgAdmin	 will	 correctly	 detect	 logfile
rotation	and	continue	to	display	them.

The	 “Rotate”	 button	will	 force	 the	 server	 to	 rotate	 its	 server	 logfile.
This	function	is	currently	not	implemented	on	8.0	servers;	if	you	think
this	is	valuable	for	you	please	contact	us.

Please	 note	 that	 displaying	 the	 logfile	 requires	additional	 functions
loaded	on	the	server	side,	which	are	available	for	8.x	servers	only.

To	refresh	the	display	click	the	Refresh	button.	The	display	will	also
be	 automatically	 refreshed	 based	 on	 the	 refresh	 interval	 specified.
Note	that	you	have	one	refresh	rate	per	tab.

You	can	hide	panes	by	clicking	on	their	close	button	or	by	clicking	on
the	appropiate	menu	item	in	the	View	menu.

You	can	also	copy	some	lines	on	the	tabs’	 list.	Select	 the	 lines	you
want	to	copy	and	click	on	the	Copy	button	of	the	toolbar.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

pgAdmin	Options
pgAdmin	has	a	selection	of	configuration	options	that	you	can	use	to
personalize	your	workspace.	pgAdmin	is	usually	configured	by	using
the	Options	dialog	from	within	the	pgAdmin	application;	to	open	the
Options	dialogue,	select	Options	from	the	File	menu.

The	navigation	panel	on	 the	Options	dialog	contains	a	 tree	control;
each	 node	 of	 the	 tree	 control	 provides	 access	 to	 customizable
options	that	are	related	to	the	selected	node.	For	 information	about
the	configurable	options	on	each	node	of	 the	pgAdmin	tree	control,
please	select	from	the	links	shown	below.

Contents:

pgAdmin	Browser	Options

pgAdmin	Query	tool	Options
pgAdmin	Database	Designer	Options
pgAdmin	Server	Status	Options
pgAdmin	Miscellaneous	Options

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	pgAdmin

Options	»

pgAdmin	Browser	Options
Use	the	options	that	are	located	under	the	Browser	node	of	the	tree
control	to	personalize	your	workspace.

Use	 the	 options	 on	 the	 Display	 dialog	 to	 specify	 general	 display
preferences:

Display	the	following	database	objects	-	Check	the	box	next
to	 a	 database	 object	 type	 to	 instruct	 pgAdmin	 to	 display	 the
selected	 object	 type	 in	 the	 pgAdmin	 tree	 control.	 By	 default,
pgAdmin	displays	only	the	most	commonly	used	object	types.
Default	-	You	can	reduce	the	number	of	object	types	displayed
to	 increase	 the	 speed	 of	 pgAdmin	 when	 querying	 the	 system
catalogs.	 Use	 the	Default	 button	 to	 reset	 the	 list	 to	 its	 default
settings.

Use	 the	 options	 on	 the	 Properties	 dialog	 to	 specify	 display
properties:

Count	 rows	 if	 estimated	 less	 than	 -	 Include	 a	 value	 in	 the
Count	 rows	 if	 estimated	 less	 than	 field	 to	 perform	 a	 SELECT
count(*)	if	the	estimated	number	of	rows	in	a	table	(as	read	from
the	table	statistics)	is	below	the	specified	limit.	After	performing
the	SELECT	count(*),	pgAdmin	will	display	the	row	count.

Use	 the	 options	 on	 the	 Binary	 paths	 dialog	 to	 specify	 binary	 file
locations:

Slony-I	path	 -	To	enable	pgAdmin	 to	create	Slony-I	 replication
clusters	 from	scratch,	you	must	provide	 the	path	 to	 the	Slony-I
script	installation	directory	in	this	field.	If	no	valid	scripts	can	be
found,	you	will	only	be	allowed	to	join	existing	clusters.
PG	bin	path	-	Use	this	field	to	specify	the	path	to	the	standard
PostgreSQL	 pg_dump,	 pg_restore	 and	 pg_dumpall	 utilities.
pgAdmin	will	use	 these	utilities	when	backing	up	and	 restoring
your	PostgreSQL	databases.	If	this	path	is	not	set,	pgAdmin	will
attempt	to	locate	the	utilities	in	its	installation	directory,	the	‘hint’
directory	 set	 by	 a	 local	 PostgreSQL	 installation	 (on	Windows)
and	in	the	system	path.
EDB	 bin	 path	 -	 Use	 this	 field	 to	 specify	 the	 path	 to	 the
EnterpriseDB	 pg_dump,	 pg_restore	 and	 pg_dumpall	 utilities.

pgAdmin	will	use	 these	utilities	when	backing	up	and	 restoring
your	 EnterpriseDB	 databases.	 If	 this	 path	 is	 not	 set,	 pgAdmin
will	 attempt	 to	 find	 the	 utilities	 in	 standard	 locations	 used	 by
EnterpriseDB.
GP	 bin	 path	 -	 Use	 this	 field	 to	 specify	 the	 path	 to	 the
Greenplum	 pg_dump,	 pg_restore	 and	 pg_dumpall	 utilities.
pgAdmin	will	use	 these	utilities	when	backing	up	and	 restoring
your	Greenplum	databases.	If	this	path	is	not	set,	pgAdmin	will
attempt	 to	 find	 the	 utilities	 in	 standard	 locations	 used	 by
Greenplum.

Use	 the	 options	 on	 the	 UI	 Miscellaneous	 dialog	 to	 specify
miscellaneous	pgAdmin	preferences:

Font	 -	 Use	 the	 Font	 selector	 to	 specify	 the	 font	 used	 as	 the
standard	 font	 throughout	 pgAdmin’s	 main	 user	 interface.	 This

may	be	useful	for	countries	with	multibyte	character	sets	(where
standard	fonts	may	not	display	well),	or	if	you	wish	to	use	a	font
different	from	the	one	configured	on	your	system.

Confirm	object	deletion	-	Select	this	option	to	instruct	pgAdmin
to	 require	 confirmation	 before	 deleting	 an	 object
(recommended).

Show	System	Objects	in	the	treeview	-	Check	the	box	next	to
Show	 System	 Objects	 in	 the	 treeview	 to	 instruct	 pgAdmin	 to
display	 objects	 such	 as	 system	 schemas	 (e.g.	 pg_temp*)	 and
system	columns	(e.g.	xmin,	ctid)	in	the	tree	control.

Show	 users	 for	 privileges	 -	 Select	 this	 option	 to	 include
usernames	 as	well	 as	 groups	 in	 the	 subject	 list	 when	 viewing
the	Privileges	tab	of	an	object	that	supports	privileges.	Disabling
this	option	is	useful	on	large	systems	with	many	users	that	are
organised	in	groups.

Show	object	properties	on	double	click	in	treeview	 -	Select
this	 option	 to	 specify	 that	 double	 clicking	 an	 object	 in	 the
treeview	 should	 open	 the	 Properties	 dialogue	 for	 that	 object.
Disable	this	option	to	browse	the	treeview	using	a	double-click.

Show	 NOTICEs	 -	 Check	 the	 box	 next	 to	 Show	 NOTICEs	 to
instruct	pgAdmin	to	display	notices	from	the	server.

Refresh	on	click	 -	Use	the	Refresh	on	click	drop-down	 listbox
to	 specify	 that	 the	displayed	properties	of	 the	 selected	objects
should	 be	 updated	 in	 the	 tree	 control	 when	 the	 object	 is
selected.	Select	from:

None	to	update	no	objects.
Refresh	object	on	click	to	refresh	the	selected	object.
Refresh	 object	 and	 children	 on	 click	 to	 refresh	 the
selected	object,	and	any	objects	 that	reside	under	 the

selected	object	in	the	tree	control.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	pgAdmin

Options	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	pgAdmin

Options	»

pgAdmin	Query	tool	Options
Use	 the	 options	 that	 are	 located	 under	 the	Query	 tool	 node	 of	 the
tree	control	to	personalize	the	behavior	of	the	Query	tool.

Use	 the	 fields	 on	 the	 Query	 editor	 dialog	 to	 specify	 workspace
preferences	for	the	Query	editor:

Font	 -	 Use	 the	 Font	 selector	 to	 specify	 the	 font	 used	 in	 the
Query	tool	interface.
Max	 characters	 per	 column	 -	 Use	 the	 Max	 characters	 per
column	field	to	specify	the	maximum	length	of	data	displayed	in
a	single	column.
Indent	characters	 -	Use	 the	 Indent	 characters	 field	 to	 specify
the	number	of	characters	to	indent	with	in	SQL	text	boxes.
Use	 spaces	 instead	 of	 tabs	 -	 Check	 the	 box	 next	 to	 Use

spaces	 instead	 of	 tabs	 to	 instruct	 pgAdmin	 to	 insert	 a	 space
when	you	press	the	tab	key	in	an	SQL	text	box.
Copy	SQL	from	main	form	to	SQL	dialogue	-	Check	the	box
next	to	Copy	SQL	from	main	window	to	SQL	dialogue	to	instruct
pgAdmin	 to	 copy	 any	 object	 definition	 displayed	 on	 the	 main
object	 browser	 for	 use	 as	 a	 default	 query	 in	 the	 Query	 Tool
when	the	Query	Tool	opens.
Enable	Auto	ROLLBACK	-	Check	the	box	next	to	Enable	Auto
ROLLBACK	to	instruct	the	query	tool	to	execute	a	ROLLBACK	if
a	query	fails.
Keywords	in	uppercase	 -	Check	the	box	next	 to	Keywords	 in
uppercase	 to	 instruct	 the	 Query	 tool	 to	 convert	 any	 keywords
entered	to	an	uppercase	font.

Use	 the	 fields	displayed	on	 the	Colours	dialog	 to	select	colours	 for
items	displayed	in	the	Query	tool:

Foreground/Background	 -	 Use	 the	 color	 selectors	 in	 the
Foreground/Background	 box	 to	 specify	 background	 and
foreground	colors	for	the	Query	tool.
Caret	-	Use	the	color	selector	in	the	Caret	box	to	specify	a	color
for	the	caret	(or	cursor).
SQL	Syntax	Highlighting	-	Use	the	color	selectors	in	the	SQL
Syntax	 Highlighting	 box	 to	 specify	 display	 colors	 for	 syntax
components.

Use	 the	 fields	 on	 the	 Results	 Grid	 dialog	 to	 specify	 display
preferences	for	the	results	grid.

Result	copy	quoting	-	Use	the	Result	copy	quoting	drop-down
listbox	 to	 specify	 how	 fields	 in	 a	 result	 set	 should	 be	 quoted
when	copied	 to	 the	 clipboard	 from	 the	 result	 list.	Please	Note
Disabling	 this	option	may	prevent	 copying	and	pasting	 rows	 in

the	edit	grid	 from	 functioning	properly	 if	 the	 result	set	contains
special	characters	like	line	breaks.	Specify:

None	to	omit	quotes	when	copied.
Strings	 to	 quote	 string	 values	 when	 copied	 (numeric
columns	will	not	be	quoted).
All	to	quote	all	copied	values	(regardless	of	data	type).

Result	 copy	 quote	 character	 -	 Use	 the	 Result	 copy	 quote
character	 drop-down	 listbox	 to	 select	 a	 character	 that	 will	 be
used	to	quote	the	values	when	copied	to	the	clipboard	from	the
result	list.	It	has	no	effect	if	Result	copy	quoting	is	set	to	None.

Result	 copy	 field	 separator	 -	 Use	 the	 Result	 copy	 field
separator	 drop-down	 listbox	 to	 select	 a	 character	 that	 will	 be
used	 to	 separate	 the	 fields	 copied	 to	 the	 clipboard	 from	 the
result	list.

Show	NULL	values	as	<NULL>	-	Check	the	box	next	to	Show
NULL	values	as	<NULL>	to	cause	NULL	values	to	be	shown	as
<NULL>	 in	 the	Query	 Tool’s	 results	 grid.	 Note	 that	 this	 option
does	not	affect	data	that	is	exported	from	the	grid,	only	what	is
displayed.

Use	the	fields	on	the	Query	File	dialog	to	specify	UTF-8	details,	and
file	saving	preferences:

Read	and	write	Unicode	UTF-8	 files	 -	Check	 the	box	next	 to
Read	and	write	Unicode	UTF-8	files	to	write	Unicode	UTF-8	files
by	default.
Write	BOM	for	UTF	files	-	Check	the	box	next	to	Write	BOM	for
UTF	files	to	instruct	the	query	tool	to	write	a	byte	order	mark	at
the	beginning	of	each	file	written.
Do	not	prompt	for	unsaved	files	on	exit	-	Check	the	box	next
to	Do	not	prompt	 for	unsaved	 files	on	exit	 to	prevent	pgAdmin
from	prompting	you	to	save	SQL	queries	upon	exit.

Use	 the	 fields	on	 the	Favourites	dialog	 to	specify	a	 location	 for	 the
Query	tool’s	Favourites	file:

Favourites	file	path	-	The	Favourites	file	path	field	specifies	the
path	to	the	Query	tool’s	Favourites	file.	The	default	file	name	is
pgadmin_favourites.xml;	you	can	use	the	Browse	button	to	open
a	file	browser	and	modify	the	location	of	the	file.

Use	 the	 fields	 on	 the	Macros	 dialog	 to	 specify	 a	 location	 for	 the
Query	tool’s	Macros	file:

Macros	file	path	-	The	Macros	file	path	field	specifies	the	path
to	 the	 Query	 tool’s	 Macros	 file.	 The	 default	 file	 name	 is
pgadmin_macros.xml;	you	can	use	the	Browse	button	to	open	a
file	browser	and	modify	the	location	of	the	file.

Use	the	fields	on	the	History	File	dialog	to	specify	user	preferences
for	the	Query	tool’s	history	file:

History	file	path	-	The	History	file	path	specifies	the	path	to	the
Query	 tool’s	 history	 file.	 The	 default	 file	 name	 is
pgadmin_histoqueries.xml;	 you	 can	 use	 the	 Browse	 button	 to
open	a	file	browser	and	modify	the	location	of	the	file.
Maximum	 queries	 to	 store	 in	 history	 -	 Use	 the	 Maximum
queries	to	store	in	history	field	to	specify	the	number	of	queries
stored	 by	 pgAdmin.	When	 the	maximum	 number	 of	 queries	 is
reached,	the	oldest	query	will	be	deleted,	and	a	new	query	will
be	stored.
Maximum	 size	 of	 a	 stored	 query	 (in	 bytes)	 -	 Use	 the
Maximum	 size	 of	 a	 stored	 query	 (in	 bytes)	 field	 to	 specify	 the
size	 (in	 bytes)	 of	 the	 largest	 query	 that	 will	 be	 stored	 in	 the
history	file;	any	query	that	exceeds	the	specified	size	will	not	be

saved	in	the	history	file.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	pgAdmin

Options	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	pgAdmin

Options	»

pgAdmin	Database	Designer
Options
Use	the	options	that	are	located	under	the	Database	Designer	node
of	the	tree	control	to	specify	options	for	the	Database	Designer	tool.

Font	 -	 Open	 the	 font	 selector	 to	 specify	 the	 fonts	 displayed
within	the	Database	Designer	graphical	interface.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	pgAdmin

Options	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	pgAdmin

Options	»

pgAdmin	Server	Status	Options
Use	the	options	that	are	located	under	the	Server	Status	node	of	the
tree	control	to	customize	server	status	display	preferences.

Use	 the	 fields	 on	 the	 Server	 Status	 dialog	 to	 specify	 the	 colors
displayed	to	indicate	the	status	of	a	server:

Idle	 Process	 Colour	 -	 Use	 the	 color	 selector	 to	 specify	 the
display	 color	 of	 an	 idle	 process.	 A	 process	 is	 considered	 idle
when	the	server	is	waiting	for	a	new	command.
Active	Process	Colour	 -	Use	 the	color	selector	 to	specify	 the
display	 color	 of	 an	 active	 process.	 A	 process	 is	 considered
active	when	the	server	is	executing	a	query.
Slow	 Process	 Colour	 -	 Use	 the	 color	 selector	 to	 specify	 the
display	 color	 of	 a	 slow	 process.	 A	 process	 is	 considered	 slow

when	a	query	exceeds	10	seconds.
Blocked	Process	Colour	-	Use	the	color	selector	to	specify	the
display	 color	 of	 a	 blocked	 process.	 A	 process	 is	 considered
blocked	an	active	query	is	waiting	because	of	a	lock.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	pgAdmin

Options	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	pgAdmin

Options	»

pgAdmin	Miscellaneous	Options
Use	the	options	that	are	located	under	the	Miscellaneous	node	of	the
tree	control	to	personalize	the	behavior	of	your	workspace.

Use	the	fields	on	the	User	 Interface	dialog	to	specify	user	 interface
preferences:

User	language	 -	Use	 the	User	 language	 drop-down	 listbox	 to
select	the	language	displayed	in	the	pgAdmin	user	interface.
System	 schemas	 -	 pgAdmin	 will	 consider	 any	 schema	 (or
schemas)	 listed	 in	 the	System	 schemas	 field	 to	 be	 a	 system
schema.	To	specify	that	a	schema	is	a	system	schema,	include
the	 schema	 name	 in	 a	 list	 of	 comma-separated	 strings	 in	 the
System	schemas	field.

Use	 the	 fields	 on	 the	Help	 paths	 dialog	 to	 specify	 the	 locations	 of
help	 files.	The	path	specified	may	be	a	URL	or	directory	containing
the	 HTML	 format	 help	 files	 (note	 that	 some	 browsers	may	 require
file:///path/to/local/files/	 notation,	 while	 others	 require
/path/to/local/files/	 notation),	 or	 the	path	 to	 a	Compiled	HTML	Help
(.chm)	file	(on	Windows),	an	HTML	Help	project	(.hhp)	file,	or	a	Zip
archive	containing	the	HTML	files	and	the	HTML	Help	project	file.

PG	help	path	-	Use	the	PG	help	path	field	to	specify	the	path	to
the	PostgreSQL	help	files.	PostgreSQL	Help	files	are	displayed
when	PostgreSQL	 HELP	 is	 selected	 from	 the	 Help	 menu,	 or
when	 accessing	 the	 help	 files	 through	many	 database	 objects
on	PostgreSQL	servers.
EDB	help	path	 -	Use	 the	EDB	help	path	option	 to	specify	 the
path	to	the	EnterpriseDB	help	files.	EnterpriseDB	Help	files	are
displayed	 when	EnterpriseDB	 Help	 is	 selected	 from	 the	 Help

menu,	or	when	accessing	the	help	files	through	many	database
objects	on	EnterpriseDB	servers.
GP	help	path	-	Use	the	GP	help	path	option	to	specify	the	path
to	the	Greenplum	help	files.	Greenplum	Help	files	are	displayed
when	 Greenplum	 Database	 Help	 is	 selected	 from	 the	 Help
menu,	or	when	accessing	the	help	files	through	many	database
objects	on	Greenplum	servers.
Slony	help	path	-	Use	the	Slony	help	path	option	to	specify	the
path	to	the	Slony	help	files.	Slony	Help	files	are	displayed	when
Slony	Help	is	selected	from	the	Help	menu.

By	default,	if	pgAdmin	suspects	you	might	need	support,	it	displays	a
guru	hint	window.	Use	the	fields	on	the	Guru	hints	dialog	to	suppress
or	display	guru	hints:

Do	not	show	guru	hints;	I’m	one	myself	-	Check	the	box	next
to	 Do	 not	 show	 guru	 hints;	 I’m	 one	 myself	 to	 suppress	 this

behaviour.
Reset	guru	hints	 -	Check	 the	box	next	 to	Reset	guru	hints	 to
instruct	pgAdmin	to	display	all	guru	hints	until	suppressed	again.

Use	 the	 fields	 on	 the	 Logging	 dialog	 to	 specify	 the	 location	 and
content	of	pgAdmin	log	files:

Logfile	 -	 Select	 this	 option	 to	 specify	 the	 name	 of	 the	 file	 in
which	pgAdmin	will	store	any	logging	data.	If	you	include	%ID	in
the	specified	 file	name,	 it	will	be	 replaced	with	 the	process	 ID,
allowing	 multiple	 instances	 of	 pgAdmin	 to	 run	 with	 logging	 to
individual	files.
No	logging	-	No	logging	will	be	performed	at	all.
Errors	only	-	pgAdmin	will	log	errors	to	the	log	file,	but	nothing
else.
Errors	 and	 Notices	 -	 pgAdmin	 will	 log	 errors	 and	 notice
messages	from	PostgreSQL	to	the	log	file,	but	nothing	else.

Errors,	Notices,	SQL	-	Error	messages,	notice	messages	from
PostgreSQL	and	SQL	queries	will	be	logged	to	the	log	file.
Debug	 -	 Error	messages,	 notice	messages	 from	PostgreSQL,
SQL	queries	and	debug	messages	will	be	logged	to	the	log	file.
This	 option	 may	 significantly	 slow	 down	 pgAdmin,	 and	 is
therefore	not	recommended	for	normal	use.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»	pgAdmin

Options	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

Guru	Hints
pgAdmin	 III	 has	 some	 functions	 included	 which	 should	 help	 to
implement	 healthy	 and	 good	 performing	 databases.	 They	 are	 the
result	 of	 the	 long	experience	of	 the	developers	worldwide,	 and	 the
design	problems	commonly	observed.

If	 pgAdmin	 III	 thinks	 it	 has	a	 valuable	hint	 for	 you,	 it	will	 pop	up	a
guru	hint	unless	you	have	chosen	to	suppress	that	individual	hint	or
all	hints	(see	options).	You	can	bring	up	the	hint	by	pressing	the	hint
button	in	the	toolbar	at	any	time,	if	enabled.

This	 is	 an	 example	 of	 a	 guru	 hint,	 as	 it	 appears	 when	 trying	 to
connect	to	a	non-running	or	misconfigured	PostgreSQL	server.

If	you	check	‘do	not	show	this	hint	again’,	the	automatic	popup	of	the
individual	hint	will	be	suppressed	in	the	future,	until	 it	 is	reset	in	the
options.	 Error	messages	will	 still	 appear,	 but	 without	 the	 extended
information	as	provided	by	the	hints.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

Command	Line	Parameters
There	are	a	number	of	command	line	options	that	may	be	passed	to
the	pgAdmin	executable	when	starting	it.

-h	Display	command	line	option	help.
-s	<server	description>	Auto	 connect	 to	 the	 specified	 server.
<server	description>	is	the	description	entered	when	you	added
the	 server	 to	 the	 treeview	 in	 pgAdmin,	 quoted	 if	 required.	 If
multiple	 servers	 are	 registered	 with	 the	 same	 description,	 the
first	found	will	be	auto-connected.
-S	 Open	 a	 Server	 Status	 window	 upon	 connection.	 If	 used
together	 with	 the	 -s	 <server	 description>	 option,	 the	 server
status	window	will	automatically	be	connected	 to	 this	server.	 If
used	 alone,	 a	 dialog	 box	 will	 appear	 prompting	 for	 the
connection	 information.	 This	 switch	 cannot	 be	 used	 together
with	the	-Sc	<connection	string>	option.
-Sc	<connection	string>	Open	a	Server	Status	window	upon
connection.	 The	 server	 status	 window	 will	 automatically	 be
connected	to	the	server	specified	in	the	connection	string.	This
option	cannot	be	used	together	with	the	-S	switch.
-q	Open	a	Query	Tool	window	upon	connection.	If	used	together
with	 the	 -s	 <server	 description>	 option,	 the	 query	 tool	 will
automatically	be	connected	to	this	server.	If	used	alone,	a	dialog
box	will	 appear	 prompting	 for	 the	 connection	 information.	 This
switch	 cannot	 be	 used	 together	 with	 the	 -qc	 <connection
string>	option.
-qc	 <connection	 string>	 Open	 a	 Query	 Tool	 window	 upon
connection.	 The	 query	 tool	 will	 automatically	 be	 connected	 to
the	server	specified	in	the	connection	string.	This	option	cannot
be	used	together	with	the	-q	switch.
-f	<SQL	script>	Automatically	open	the	specified	SQL	script	 in
the	Query	Tool.	Only	useful	with	-q	or	-qc.

-ch	<hba	file>	Edit	the	specified	pg_hba.conf	config	file.
-cm	<config	file>	Edit	the	specified	postgresql.conf	config	file.
-cp	<pgpass	file>	Edit	the	specified	.pgpass/pgpass.conf	config
file.
-c	<dir>	Edit	the	config	files	in	specified	cluster	directory.
-t	Start	in	dialogue	translation	test	mode.	This	mode	allows	each
dialogue	 to	be	viewed	without	 running	 the	application	 to	assist
with	string	translation.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Using	pgAdmin	III	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»

pgAgent
Introduced	in	pgAdmin	III	v1.4,	pgAgent	is	a	job	scheduling	agent	for
PostgreSQL,	 capable	 of	 running	 multi-step	 batch/shell	 and	 SQL
tasks	on	complex	schedules.

From	pgAdmin	1.9	onwards,	pgAgent	is	distributed	independently	of
pgAdmin.	It	may	be	downloaded	from	the	download	area.

Contents:

pgAgent	Installation
Database	setup
Daemon	installation	on	Unix
Service	installation	on	Windows
Security	concerns

pgAgent	Jobs
pgAgent	Schedules
pgAgent	Steps

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://www.pgadmin.org/download
http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	pgAgent	»

pgAgent	Installation
pgAgent	 runs	 as	 a	 daemon	 on	 Unix	 systems,	 and	 a	 service	 on
Windows	systems.	In	the	majority	of	cases	it	will	run	on	the	database
server	 itself	 -	 it	 is	 for	 this	 reason	 that	 pgAgent	 is	 not	 automatically
setup	when	pgAdmin	is	installed.	In	some	cases	however,	it	may	be
preferable	 to	 run	 pgAgent	 on	 multiple	 systems,	 against	 the	 same
database	 -	 individual	 jobs	may	be	 targetted	at	 a	particular	 host,	 or
left	 for	 execution	 by	 any	 host.	 Locking	 prevents	 execution	 of	 the
same	instance	of	a	job	by	multiple	hosts.

Database	setup
pgAgent	 stores	 its	 configuration	 in	 the	 ‘postgres’	 database	 in	 your
cluster.	This	database	exists	by	default	in	PostgreSQL	8.1	versions,
for	 earlier	 versions	 you	 need	 to	 create	 the	 database	 yourself.	 The
database	 must	 have	 the	 pl/pgsql	 procedural	 language	 installed	 -
PostgreSQL’s	‘createlang’	program	can	do	this	if	required.

Connect	 to	 the	 “postgres”	 database	 (once	 created	 if	 needed),	 and
open	the	SQL	tool.	Select	the	File	->	Open	option	from	the	menu	and
find	 the	 ‘pgagent.sql’	 script	 installed	with	 pgAdmin.	 The	 installation
location	 for	 this	 file	 varies	 from	 operating	 system	 to	 operating
system,	 however	 it	 will	 normally	 be	 found	 under	 ‘C:Program
filespgAdmin	 III’	 on	 Windows	 systems	 (or	 ‘C:Program
filesPostgreSQL8.xpgAdmin	 III’	 if	 installed	 with	 the	 PostgreSQL
server	 installer),	 or	 ‘/usr/local/pgadmin3/share/pgadmin3’	 or
‘/usr/share/pgadmin3’	on	Unix	systems.	Once	the	file	is	loaded,	click
the	‘Run’	button	to	execute	the	script.

The	 script	 will	 create	 a	 number	 of	 tables	 and	 other	 objects	 in	 a
schema	called	‘pgagent’.

Daemon	installation	on	Unix
To	 install	 the	pgAgent	daemon	on	a	Unix	system,	you	will	normally
need	 to	 have	 root	 privileges	 to	modify	 the	 system	 startup	 scripts	 -
doing	so	is	quite	system	specific	so	you	should	consult	your	system
documentation	for	further	information.

The	program	itself	takes	few	command	line	options	-	most	of	which
are	only	needed	for	debugging	or	specialised	configurations:

Usage:

		/path/to/pgagent	[options]	<connect-string>

options:

		-f	run	in	the	foreground	(do	not	detach	from	the	terminal)

		-t	<poll	time	interval	in	seconds	(default	10)>

		-r	<retry	period	after	connection	abort	in	seconds	(>=10,	default	30)>

		-s	<log	file	(messages	are	logged	to	STDOUT	if	not	specified)>

		-l	<logging	verbosity	(ERROR=0,	WARNING=1,	DEBUG=2,	default	0)>

The	 connect	 string	 required	 is	 a	 standard	 PostgreSQL	 libpq
connection	 string	 (see	 the	 PostgreSQL	 documentation	 on	 the
connection	 string	 for	 further	 details).	 For	 example,	 the	 following
command	 lilne	 will	 run	 pgAgent	 against	 a	 server	 listening	 on	 the
localhost,	using	a	database	called	‘pgadmin’,	connecting	as	the	user
‘postgres’:

/path/to/pgagent	hostaddr=127.0.0.1	dbname=postgres	user=postgres

http://www.postgresql.org/docs/current/static/libpq.html#libpq-connect

Service	installation	on	Windows
pgAgent	 is	 able	 to	 self-install	 itself	 as	 a	 service	 on	 Windows
systems.	The	command	line	options	available	are	similar	to	those	on
Unix	systems,	but	include	an	additional	parameter	to	tell	the	service
what	to	do:

Usage:

		pgAgent	REMOVE	<serviceName>

		pgAgent	INSTALL	<serviceName>	[options]	<connect-string>

		pgAgent	DEBUG	[options]	<connect-string>

		options:

				-u	<user	or	DOMAIN\user>

				-p	<password>

				-d	<displayname>

				-t	<poll	time	interval	in	seconds	(default	10)>

				-r	<retry	period	after	connection	abort	in	seconds	(>=10,	default	30)>

				-l	<logging	verbosity	(ERROR=0,	WARNING=1,	DEBUG=2,	default	0)>

The	service	may	be	quite	simply	installed	from	the	command	line	as
follows	(adjusting	the	path	as	required):

"C:\Program	Files\pgAdmin	III\pgAgent"	INSTALL	pgAgent	-u	postgres	-p	secret	hostaddr=127.0.0.1	dbname=postgres	user=postgres

The	service	may	 then	be	started	 from	 the	command	 line	using	net
start	pgAgent,	or	from	the	Services	control	panel	applet.	Any	logging
output	 or	 errors	 will	 be	 reported	 in	 the	 Application	 event	 log.	 The
DEBUG	 mode	 may	 be	 used	 to	 run	 pgAgent	 from	 a	 command
prompt.	 When	 run	 this	 way,	 log	 messages	 will	 output	 to	 the
command	window.

Security	concerns
pgAgent	 is	 a	 very	 powerful	 tool,	 but	 does	 have	 some	 security
considerations	that	you	should	be	aware	of:

Database	password	-	DO	NOT	be	tempted	to	include	a	password	in
the	pgAgent	connection	string	-	on	Unix	systems	it	may	be	visible	to
all	users	in	‘ps’	output,	and	on	Windows	systems	it	will	be	stored	in
the	registry	 in	plain	 text.	 Instead,	use	a	 libpq	~/.pgpass	 file	 to	store
the	passwords	for	every	database	that	pgAgent	must	access.	Details
of	this	technique	may	be	found	in	the	PostgreSQL	documentation	on
.pgpass	file.

System/database	access	-	all	jobs	run	by	pgAgent	will	run	with	the
security	 privileges	 of	 the	 pgAgent	 user.	 SQL	 steps	 will	 run	 as	 the
user	 that	 pgAgent	 connects	 to	 the	 database	 as,	 and	 batch/shell
scripts	will	run	as	the	operating	system	user	that	the	pgAgent	service
or	 daemon	 is	 running	 under.	 Because	 of	 this,	 it	 is	 essential	 to
maintain	 control	 over	 the	 users	 that	 are	 able	 to	 create	 and	modify
jobs.	 By	 default,	 only	 the	 user	 that	 created	 the	 pgAgent	 database
objects	will	be	able	to	do	this	-	this	will	normally	be	the	PostgreSQL
superuser.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	pgAgent	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://www.postgresql.org/docs/current/static/libpq-pgpass.html
http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	pgAgent	»

pgAgent	Jobs
pgAgent	 runs	 ‘jobs’,	 each	 of	which	 consists	 of	pgAgent	Steps	 and
pgAgent	Schedules.	To	configure	jobs	on	your	server,	browse	to	the
server	on	which	the	pgAgent	database	objects	were	created.	A	Jobs
node	will	be	displayed,	under	which	individual	jobs	are	shown.	New
jobs	may	be	created,	and	existing	jobs	modified	in	the	same	way	as
any	other	object	in	pgAdmin.

The	 properties	 tab	 in	 the	 main	 pgAdmin	 window	 will	 display	 the

details	of	the	selected	job,	and	the	Statistics	tab	will	show	the	details
of	each	run	of	the	job.

Job	themselves	are	very	simple	-	the	complexity	is	in	the	steps	and
schedules.	 When	 configuring	 a	 job,	 we	 specify	 the	 job	 name,
whether	or	not	 it	 is	enabled,	a	 job	class	or	category,	and	optionally
the	 hostname	 of	 a	 specific	 machine	 running	 pgAgent,	 if	 this	 job
should	 only	 run	 on	 that	 specific	 server.	 If	 left	 empty	 (which	 is
normally	the	case),	any	server	may	run	the	job.	This	is	not	normally
needed	 for	SQL-only	 jobs,	however	any	 jobs	with	batch/shell	steps
may	need	to	be	targetted	to	a	specific	server.	A	comment	may	also
be	included.

Note:	 It	 is	 not	 always	 obvious	 what	 value	 to	 specify	 for	 the	 Host
Agent	 in	 order	 to	 target	 a	 job	 step	 to	 a	 specific	 machine.	 With
pgAgent	 running	 on	 the	 required	 machines	 and	 connected	 to	 the
scheduler	 database,	 the	 following	 query	 may	 be	 run	 to	 view	 the
hostnames	as	reported	by	each	agent:

SELECT	jagstation	FROM	pgagent.pga_jobagent

Use	 the	 hostname	 exactly	 as	 reported	 by	 the	 query	 in	 the	 Host
Agent	field.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	pgAgent	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	pgAgent	»

pgAgent	Schedules
Each	 Job	 is	 executed	 according	 to	 one	 or	 more	 schedules.	 Each
time	the	job	or	any	of	 its	schedules	are	altered,	the	next	runtime	of
the	 job	 is	 re-calculated.	Each	 instance	of	pgAgent	periodically	polls
the	 database	 for	 jobs	 with	 the	 next	 runtime	 value	 in	 the	 past.	 By
polling	at	 least	once	every	minute,	all	 jobs	will	normally	start	within
one	 minute	 of	 the	 specified	 start	 time.	 If	 no	 pgAgent	 instance	 is
running	at	the	next	runtime	of	a	job,	it	will	run	as	soon	as	pgAgent	is
next	started,	following	which	it	will	return	to	the	normal	schedule.

Schedules	 may	 be	 added	 to	 a	 job	 through	 the	 job	 properties
dialogue,	or	added	as	a	sub-object.	The	Properties	 tab	of	 the	main
pgAdmin	window	will	display	details	of	the	selected	schedule.

Each	schedule	consists	of	the	basic	details	such	as	a	name,	whether
or	not	it	is	enable	and	a	comment.	In	addition,	a	start	date	and	time
is	specified	(before	which	the	schedule	has	no	effect),	and	optionally
an	end	date	and	time	(after	which	the	schedule	has	no	effect).

Schedules	are	specified	using	a	cron-style	format.	For	each	selected
time	 or	 date	 element,	 the	 schedule	 will	 execute.	 For	 example,	 to
execute	at	5	minutes	past	every	hour,	simply	 tick	 ‘5’	 in	 the	Minutes
list	box.	Values	from	more	than	one	field	may	be	specified	in	order	to
further	control	 the	schedule.	For	example,	 to	execute	at	12:05	and
14:05	every	Monday	and	Thursday,	you	would	 tick	minute	5,	hours
12	 and	 14,	 and	 weekdays	 Monday	 and	 Thursday.	 For	 additional
flexibility,	 the	 Month	 Days	 check	 list	 includes	 an	 extra	 Last	 Day
option.	This	matches	the	 last	day	of	 the	month,	whether	 it	happens
to	be	the	28th,	29th,	30th	or	31st.

On	 occasion	 it	 may	 be	 desirable	 to	 specify	 an	 exception	 for	 a
schedule	 -	 for	 example,	 you	may	 not	want	 a	 schedule	 to	 fire	 on	 a
particular	national	holiday.	To	achieve	this,	each	schedule	may	have
a	 list	 of	 date	 and/or	 time	 exceptions	 attached	 to	 it.	 If	 a	 schedule
lands	 on	 an	 exception,	 that	 instance	 will	 be	 skipped,	 and	 the
following	occurance	will	become	the	next	runtime.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	pgAgent	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	pgAgent	»

pgAgent	Steps
Each	Job	consists	of	a	number	of	steps,	each	of	which	may	be	an
SQL	script,	or	an	operating	system	batch/shell	script.	Each	step	in	a
given	job	is	run	in	turn,	in	alphanumeric	name	order.

Steps	may	be	added	to	a	job	through	the	job	properties	dialogue,	or
added	 as	 a	 sub-object.	 The	 Properties	 tab	 of	 the	 main	 pgAdmin
window	will	display	details	of	the	selected	step,	and	the	Statistics	tab
will	 display	details	 of	 each	 run	of	 the	 step,	 including	and	output	 or
errors	from	the	script.

Each	 step	 consists	 of	 the	 details	 shown	 on	 the	 screenshot	 below,
most	of	which	are	self-explanatory.	If	Kind	is	set	to	SQL,	then	it	goes
without	saying	that	a	database	against	which	to	run	the	script	must
be	 selected.	 If	 set	 to	Batch,	 the	 database/connection	 string	 should
be	left	blank.	The	On	Error	option	controls	how	failure	of	this	step	will
affect	the	status	of	the	overall	job.

The	Definition	 tab	 contains	 a	 single	 text	 box	 into	 which	 the	 step
script	should	be	entered.	For	SQL	steps,	 this	should	be	a	series	of
one	 or	 more	 SQL	 statements.	 For	 batch	 jobs,	 when	 running	 on	 a
Windows	server,	standard	batch	file	syntax	must	be	used,	and	when
running	on	a	nix	server,	any	shell	script	may	be	used,	provided	that	a
suitable	interpreter	is	specified	on	the	first	line	(e.g.	*#!/bin/sh).

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	pgAgent	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»

Slony-I	support
pgAdmin	III	includes	a	frontend	to	Slony-I,	the	most	popular	master-
slave	 replication	 solution	 for	 PostgreSQL.	 pgAdmin	 III	 makes
maintaining	 the	 replication	 setup	 easier,	 and	 features	 health
information	to	monitor	the	state	of	the	cluster.

Contents:

Slony-I	with	pgAdmin	III	overview
Slony-I	administration	with	pgAdmin	III:	installation

Prerequisites
Overview
Create	cluster	and	first	node
Join	additional	nodes	to	cluster
Upgrade	node	to	new	cluster	software

Creating	paths	and	listens
Create	paths	to	other	nodes
Create	listens	to	other	nodes

Creating	sets	and	subscriptions
Create	replication	set
Define	replicated	table
Define	replicated	sequence
Subscribe	a	replication	set

Execute	DDL	scripts	with	Slony-I
Slony-I	tasks
Slony-I	example

For	 further	 information,	 please	 refer	 to	 the	 official	 Slony-I
documentation	 <http://slony.info/documentation/>	 which	 is
embedded	in	this	help.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Slony-I	support	»

Slony-I	with	pgAdmin	III	overview

The	Slony-I	 objects	 are	 integrated	 into	 pgAdmin’s	main	 object	 tree
browser,	 allowing	 a	 single	 interface	 to	 both	 database	 object	 and
replication	administration.

The	 statistics	 tab	 for	 the	 nodes	 collection	 as	 well	 as	 for	 individual
nodes	 show	 the	 status	 of	 the	 replication	 event	 queue,	 and	 allows
monitoring	of	the	functionality	of	the	slony	cluster.

As	an	example,	 the	situation	shown	above	displays	 the	status	of	a
node	that	hasn’t	been	responsive	for	about	an	hour,	with	381	events
pending	to	be	replicated	to	that	node.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Slony-I	support	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Slony-I	support	»

Slony-I	administration	with	pgAdmin
III:	installation

Prerequisites
As	 a	 prerequisite	 to	 running	 Slony-I	 on	 PostgreSQL,	 the	 slony
modules	xxid	and	slony1_funcs	must	be	present	on	all	servers	 that
have	 to	 run	a	Slony-I	 replication	node.	This	 is	usually	done	by	 the
Slony-I	installation	routine.

Overview
Setting	 up	 Slony-I	 for	 the	 first	 time	 can	 be	 a	 daunting	 task.	 The
following	sections	of	the	pgAdmin	helpfile	will	help	guide	you	through
creation	of	your	first	cluster.

Step	1:	Create	the	cluster	on	the	master	node.
Step	2:	Add	slave	nodes	to	the	cluster.
Step	3:	Setup	paths	on	each	node	to	all	other	nodes.
Step	4:	Setup	listens	on	each	node	to	all	other	nodes	(Note:	Not
required	with	Slony-I	v1.1	or	later).
Step	5:	Create	a	replication	set.
Step	6:	Add	tables	and	sequences	to	the	set.
Step	7:	Subscribe	the	slaves	to	the	set.

Note	At	this	point,	the	slon	daemons	(service	engines	on	Windows)
should	be	started.

Create	cluster	and	first	node

To	 install	 a	 Slony-I	 cluster	 on	 the	 first	 database,	 the	 “New	 Slony-I
Cluster”	dialog	is	used.	It	executes	the	official	Slony-I	cluster	creation
SQL	 scripts,	 which	 are	 located	 in	 the	 directory	 configured	 in	 the
Options	dialog.

pgAdmin	III	needs	to	store	information	how	to	contact	each	individual
node	in	the	cluster.	To	achieve	this,	pgAdmin	III	uses	the	concept	of
“Administrative	nodes”.

Join	additional	nodes	to	cluster

After	 the	 first	 node	 in	 the	 Slony-I	 replication	 cluster	 has	 been
successfully	 created,	 all	 subsequent	 nodes	 take	 their	 configuration
and	procedures	from	the	first	nodes.	This	process	is	called	“Joining	a
cluster”	 in	 pgAdmin	 III.	 Usually,	 you	 should	 also	 select	 an	 existing
node	as	admin	node,	to	insure	later	accessibility	from	pgAdmin	III.

After	you	added	a	new	node	to	the	Slony-I	cluster,	you	need	to	set
up	 replication	 paths	 between	 the	 nodes,	 to	 enable	 communication
between	the	nodes.

Upgrade	node	to	new	cluster	software

When	 a	 cluster	 is	 to	 be	 upgraded	 to	 a	 new	 version	 of	 the	 Slony-I
clustering	software,	the	upgrade	process	has	to	be	run	on	all	nodes
of	the	cluster.	For	each	node,	the	slon	daemon	needs	to	be	stopped,
then	the	upgrade	dialog	is	started	and	a	node	with	the	new	software
is	selected	(pgAdmin	III	will	extract	all	software	from	that	node),	and
finally	the	slon	daemon	is	started	again.

Currently,	 pgAdmin	 III	 does	 not	 support	 upgrading	 from	 slony
creation	 scripts.	 Instead,	 create	 an	 intermediate	 cluster	 from	 the
creation	scripts,	use	it	as	a	source	for	the	upgrade	dialog,	and	drop
the	cluster	after	usage.	You	may	also	use	the	slonik	tool	to	upgrade
the	 first	 node,	 and	 then	 use	 it	 as	 source	 for	 subsequent	 node

upgrades.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Slony-I	support	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Slony-I	support	»

Creating	paths	and	listens

Create	paths	to	other	nodes

Slony-I	needs	path	information,	that	defines	how	a	slon	process	can
communicate	 to	 other	 nodes.	 The	 conninfo	 string	 takes	 a	 connect
string	as	described	 in	 the	 libpq	connection	 documentation.	Usually,
you	 will	 need	 to	 specify	 host,	 dbname	 and	 username,	 while	 the
password	should	be	stored	in	the	.pgpass	file.

You	 must	 create	 a	 path	 to	 every	 other	 node,	 on	 each	 node.	 For
example,	in	a	two	node	cluster	you	need	to	create	a	path	to	the	slave
on	the	master,	and	one	to	the	master	on	the	slave.

http://www.postgresql.org/docs/current/static/libpq.html#LIBPQ-CONNECT
http://www.postgresql.org/docs/current/static/libpq-pgpass.html

Create	listens	to	other	nodes

After	the	communication	path	has	been	defined,	the	slon	processes
need	to	be	advised	to	listen	to	events	from	other	nodes.

Note:	This	step	is	not	necessary	for	Slony-I	v1.1	and	later,	because
listen	information	is	generated	automatically	when	paths	are	defined.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Slony-I	support	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Slony-I	support	»

Creating	sets	and	subscriptions

Create	replication	set

Slony-I	 groups	 tables	 and	 sequences	 it	 has	 to	 replicate	 from	 a
master	 to	 slaves	 into	 replication	 sets.	 The	 set	 is	 created	 on	 the
source	node	of	the	data.

Define	replicated	table

If	 the	 source	 table	 has	 triggers	 defined	 on	 it,	 these	 have	 to	 be
disabled	on	replication	target	nodes.	But	in	replication	environments,
the	 master	 and	 slave	 roles	 might	 exchange,	 so	 it	 is	 necessary	 to
enable	 and	 disable	 triggers	 in	 those	 situations.	 The	 ‘Trigger’	 page
allows	selection	of	triggers	that	Slony-I	should	enable	and	disable	if
necessary.

Attention:	 If	a	 table	you’d	 like	 to	have	replicated	doesn’t	appear	 in
the	table	combobox,	this	usually	means	that	the	table	lacks	a	unique
index.	 Slony-I	 requires	 that	 each	 row	 in	 tables	 that	 are	 to	 be
replicated	must	be	uniquely	identifyable.	Usually,	this	should	be	done
with	 a	 primary	 key,	 but	 for	 replication	 purposes	 a	 unique	 key	 is
satisfactory.

While	 Slony-I	 has	 a	 helper	 function	 to	 define	 intermediate	 unique
keys,	this	is	not	supported	with	tables	added	to	replication	sets	with
pgAdmin	III.	We	strongly	recommend	defining	a	primary	key	on	the

tables	to	be	replicated.

Define	replicated	sequence

The	sequence	allows	adding	sequences	to	a	replication	set.

Subscribe	a	replication	set

After	 a	 replication	 set	 has	 been	 defined,	 it	 can	 be	 subscribed.
Subscriptions	 have	 to	 be	 created	 on	 the	 source	 node	 (note:	 on
Slony-1	before	v1.1,	this	had	to	be	performed	on	the	target	node).

After	 a	 set	 has	 been	 subscribed,	 its	 table	 and	 sequence	 definition
can’t	be	changed	any	more.	To	add	more	 tables,	you	can	create	a
set	 that	 includes	 the	 additional	 tables	 and	 sequences	 you’d	 like	 to
have	 added	 to	 the	 first	 replication	 set,	 then	 subscribe	 exactly	 the
same	receiver	nodes	to	it,	and	finally	use	Merge	to	merge	both	sets
into	one.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Slony-I	support	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Slony-I	support	»

Execute	DDL	scripts	with	Slony-I

Most	 schema	 changes	 that	 can	 be	 executed	 with	 pgAdmin	 III	 are
replication-aware,	 i.e.	 you	 can	 advise	 pgAdmin	 III	 to	 apply	 the
change	 (create/alter)	 using	 the	 replication	 facilities,	 simply	 by
selecting	 a	 replication	 set	 that	 is	 subscribed	 to	 all	 nodes	 which
should	receive	the	PostgreSQL	object.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Slony-I	support	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Slony-I	support	»

Slony-I	tasks
In	 the	 appropriate	 context,	 pgAdmin	 III	 can	 trigger	 several
maintenance	tasks.

Restart	node	-	Under	some	conditions,	it	may	be	necessary	to
restart	 a	 slon	process	on	a	node,	 initialize	as	 if	 freshly	 started
and	 make	 it	 reload	 its	 configuration.	 This	 can	 be	 triggered
remotely	with	the	restart	node	function.

Lock	set	 -	Disables	 updates	 to	 a	 set	 to	 be	 replicated.	 This	 is
necessary	for	clean	switch	over	the	source	of	a	replication	from
one	node	to	another.

Unlock	set	-	Re-enables	updates	to	a	set	to	be	replicated	after
a	previous	lock.

Merge	set	-	Joins	two	sets,	originating	from	the	same	node	and
subscribed	by	the	same	nodes,	into	one.	This	can	be	used	as	a
workaround	to	the	fact	that	a	subscribed	set	can’t	be	extended.

Move	set	 -	Moves	a	 replication	set	 from	one	node	 to	another,
i.e.	making	 the	 target	 node	 the	new	source.	The	old	 node	will
become	subscriber	to	the	new	provider	node.	This	is	the	normal
way	how	to	switch	over	gracefully	the	master	role	from	one	node
to	another.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Slony-I	support	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Slony-I	support	»

Slony-I	example
In	this	example,	a	master	server	is	setup	with	two	direct	slaves.	This
example	 was	 written	 and	 tested	 using	 Slony-I	 v1.2.11	 and
PostgreSQL	8.2.5,	 running	 on	 a	 single	Windows	XP	machine.	 The
PostgresSQL	 pgbench	 utility	 is	 used	 to	 generate	 the	 test	 schema
and	workload.

1.	 Create	 3	 databases,	 master,	 slave1	 and	 slave2	 and	 ensure
pl/pgsql	is	setup	in	each.

2.	 Create	a	pgbench	schema	in	the	master	database:

>	pgbench	-i	-U	postgres	master

3.	 Add	a	primary	key	called	history_pkey	to	the	history	table	on	the
tid,	bid	and	aid	columns

4.	 Create	a	schema-only	dump	of	the	master	database,	and	load	it
into	slave1	and	slave2:

>	pg_dump	-s	-U	postgres	master	>	schema.sql

>	psql	-U	postgres	slave1	<	schema.sql

>	psql	-U	postgres	slave2	<	schema.sql

5.	 Create	 Slony	 config	 files	 for	 each	 slon	 engine	 (daemon	 on
Unix).	The	files	should	contain	just	the	following	two	lines:

cluster_name='pgbench'

conn_info='host=127.0.0.1	port=5432	user=postgres	dbname=master'

Create	 a	 file	 for	 each	 database,	 adjusting	 the	 dbname
parameter	as	required	and	adding	any	other	connection	options
that	may	be	needed.

6.	 (Windows	only)	Install	the	Slony-I	service:

>	slon	-regservice	Slony-I

7.	 Register	 each	 of	 the	 engines	 (this	 is	 only	 necessary	 on
Windows	 -	 on	 Unix	 the	 slon	 daemons	 may	 be	 started
individually	and	given	the	path	to	the	config	file	on	the	command
line	using	the	-f	option):

>	slon	-addengine	Slony-I	C:\slony\master.conf

>	slon	-addengine	Slony-I	C:\slony\slave1.conf

>	slon	-addengine	Slony-I	C:\slony\slave2.conf

8.	 In	 pgAdmin	 under	 the	 Slony	 Replication	 node	 in	 the	 master
database,	 create	 a	 new	 Slony-I	 cluster	 using	 the	 following
options:

Join	existing	cluster:	Unchecked

Cluster	name:										pgbench

Local	node:												1								Master	node

Admin	node:												99							Admin	node

9.	 Under	 the	 Slony	 Replication	 node,	 create	 a	 Slony-I	 cluster	 in
each	of	the	slave	databases	using	the	following	options:

Join	existing	cluster:	Checked

Server:																<Select	the	server	containing	the	master	database>

Database:														master

Cluster	name:										pgbench

Local	node:												10							Slave	node	1

Admin	node:												99	-	Admin	node

Join	existing	cluster:	Checked

Server:																<Select	the	server	containing	the	master	database>

Database:														master

Cluster	name:										pgbench

Local	node:												20							Slave	node	2

Admin	node:												99	-	Admin	node

10.	 Create	Paths	on	 the	master	 to	both	slaves,	and	on	each	slave

back	 to	 the	master.	Create	 the	paths	under	 each	node	on	 the
master,	using	the	connection	strings	specified	in	the	slon	config
files.	 Note	 that	 future	 restructuring	 of	 the	 cluster	 may	 require
additional	paths	to	be	defined.

11.	 Create	 a	 Replication	 Set	 on	 the	 master	 using	 the	 following
settings:

ID:																		1

Comment:													pgbench	set

12.	 Add	the	tables	to	the	replication	set	using	the	following	settings:

Table:															public.accounts

ID:																		1

Index:															accounts_pkey

Table:															public.branches

ID:																		2

Index:															branches_pkey

Table:															public.history

ID:																		3

Index:															history_pkey

Table:															public.tellers

ID:																		4

Index:															tellers_pkey

13.	 On	 the	master	node,	create	a	new	subscription	 for	each	slave
using	the	following	options:

Origin:														1

Provider:												1	-	Master	node

Receiver:												10	-	Slave	node	1

Origin:														1

Provider:												1	-	Master	node

Receiver:												20	-	Slave	node	2

14.	 Start	the	slon	service	(or	daemons	on	Unix):

>	net	start	Slony-I

Initial	replication	should	begin	and	can	be	monitored	on	the	statistics
tab	 in	 pgAdmin	 for	 each	 node.	 The	 pgbench	 utility	 may	 be	 run
against	the	master	database	to	generate	a	test	workload.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Slony-I	support	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»

Extended	features
pgAdmin	 III’s	 functionality	 can	 be	 further	 enhanced	 using	 the
adminpack	 contrib	 module	 for	 PostgreSQL.	 This	 is	 a	 library	 of
additional	 functions	 that	 may	 be	 installed	 on	 your	 server	 which
allows	pgAdmin	to	offer	additional	features,	such	as:

The	sizes	on	disk	of	tablespaces,	databases,	tables	and	indexes
are	displayed	on	the	Statistics	tab	in	the	main	window.
The	Status	dialogue	should	be	able	to	display	the	server	logfiles
(if	logging	is	appropriately	configured).
Running	 queries	 from	 other	 users	 may	 be	 cancelled	 from	 the
Status	dialogue.
The	server’s	configuration	files	postgresql.conf	and	pg_hba.conf
may	be	editted,	and	reloaded	remotely.

The	 adminpack	 is	 installed	 and	 activated	 by	 default	 if	 you	 are
running	 the	 ‘official’	 pgInstaller	 distribution	 of	 PostgreSQL	 for
Windows	 and	 is	 included	 as	 a	 contrib	 module	 with	 all	 versions	 of
PostgreSQL	8.2	and	above.	However,	 if	 you	are	 running	any	other
version	of	PostgreSQL	you	will	need	to	manually	install	it.	To	do	so,
simply	copy	 the	appropriate	adminpack	source	code	 to	 the	 /contrib
directory	 of	 your	 pre-configured	 PostgreSQL	 source	 tree.	 You	 can
download	the	adminpacks	here.

Run	 the	 following	 commands	 (substituting	 admin	 for	 admin81	 if
required):

#	cd	$PGSRC/contrib/admin

#	make	all

#	make	install

The	 module	 should	 now	 be	 built,	 and	 installed	 into	 your	 existing
PostgreSQL	 installation.	 To	 be	 used,	 you	 must	 now	 install	 the
module	 into	 the	 database	 you	 use	 as	 pgAdmin’s	Maintenance	DB

http://www.pgadmin.org/download/adminpacks.php

(normally	 postgres,	 though	 you	 may	 wish	 to	 use	 a	 different
database).	 To	 do	 so,	 locate	 the	 admin.sql	 or	 admin81.sql	 file
installed	 in	 the	 previous	 step	 -	 normally	 this	 may	 be	 found	 in
/usr/local/pgsql/share/contrib/	and	run	 it	against	your	database.	You
will	normally	need	to	do	this	as	the	PostgreSQL	superuser:

$	psql	postgres	<	/usr/local/pgsql/share/contrib/admin.sql

The	next	time	you	connect	to	the	server	with	pgAdmin,	it	will	detect
the	presence	of	the	adminpack	and	offer	full	functionality.

Since	PostgreSQL	9.1,	you	don’t	need	to	use	psql.	You	can	manually
add	adminpack	extension	or	make	pgAdmin	do	the	same	by	clicking
on	the	“Fix	It!”	button	of	the	guru	hint.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»

Appendices
Contents:

Bug	Reporting
The	pgAdmin	Development	Team
Translation	team
The	PostgreSQL	Licence
The	MIT	Kerberos	Licence
The	OpenSSL	Licence

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Appendices	»

Bug	Reporting
If	you	think	you	encountered	a	bug	in	pgAdmin	III,	please	check	the
following:

Is	this	behaviour	expected?	Have	a	look	at	the	FAQs.
Is	this	bug	already	reported?	Check	the	known	bugs.
Are	you	running	the	latest	version	from	the	beta	website?	If	not,
try	the	newest	stuff.

Ahh,	so	you’ve	found	a	new	one	then?

Post	your	report	to	the	support	mailing	list,	and	include	the	following
informations:

Platform	you’re	running	on
Language
Distribution	you	used	(source	tarball,	or	binary)
Version	you	tested
If	possible	and	appropriate,	include	a	backtrace	from	the	crash.
You	may	need	to	recompile	wxWidgets	and	pgAdmin	with	the	–
enable-debug	option	to	do	this.

Please	 do	not	 send	 an	 email	 directly	 to	 one	 of	 the	 programmers;
they	might	miss	it,	or	even	be	the	wrong	person	altogether.

Using	the	mailing	list	guarantees	that	your	request	isn’t	lost	and	will
be	answered	in	a	timely	fashion.

After	a	bug	has	been	 reported	on	 the	mailing	 list	 as	being	 fixed,	 it
might	 take	one	or	 two	days	until	 it	has	made	 it	 into	 the	distribution
tarballs,	please	be	patient.

Thanks	for	giving	pgAdmin3	a	chance!

http://www.pgadmin.org/pgadmin3/faq/
http://www.pgadmin.org/pgadmin3/bugs.php
http://www.pgadmin.org/snapshots
http://archives.postgresql.org/pgadmin-support/

The	pgAdmin	Development	Team

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Appendices	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Appendices	»

The	pgAdmin	Development	Team
Version	2.3,	5	March	2009

1.	 Purpose

The	pgAdmin	Development	Team	exists	for	2	reasons:

1.	 To	manage	and	maintain	the	pgAdmin	Project
2.	 To	ensure	that	pgAdmin	remains	freely	available	to	anyone

that	wants	it.
2.	 Structure

The	foundation	consists	of	the	Project	Leader	and	Members.

Project	Leader:	The	Project	Leader	is	Dave	Page,	founder
and	primary	developer	of	the	software.	The	Project	Leader
is	also	considered	a	member.
Members:	Members	 can	be	 any	 contributor	 to	 the	 project
who	 accepts	 an	 invitation	 from	 the	 existing	 Development
Team.

3.	 Division	of	Responsibilities

Any	major	decision	 regarding	 the	Project	must	be	voted	on	by
the	Development	Team.	Any	vote	will	be	made	via	email	through
the	relevant	mailing	list.	Responses	not	received	within	2	weeks
will	be	discounted	from	the	vote.

In	 the	 case	 of	 a	 hung	 vote,	 the	 Project	 Leader	 shall	 cast	 the
deciding	vote.

4.	 People

The	pgAdmin	Development	Team	includes	the	following	people:

Dave	 Page	 (Project	 Leader):	 Project	 founder	 &	 primary

mailto:dpage%40pgadmin.org

developer.
Hiroshi	Saito:	Produced	a	Japanese	port	of	pgAdmin	II,	and
countless	patches	for	pgAdmin	III.
Raphaël	Enrici:	Maintains	 the	Debian	port,	 and	helps	with
numerous	other	issues.
Guillaume	Lelarge:	Manages	 the	pgAdmin	application	and
website	 translations,	 and	 has	 added	 a	 number	 of
enhancements	to	pgAdmin.
Erwin	 Brandstetter:	 Spends	 significant	 amounts	 of	 time
testing	new	 releases	and	helping	us	 track	down	bugs	and
behavioural	issues.
Magnus	Hagander:	Has	worked	on	numerous	features	and
project	infrastructure.

The	 following	 people	 no	 longer	 work	 on	 the	 project,	 but	 we
remain	grateful	for	their	past	contributions:

Mark	 Yeatman:	 Works	 on	 controls	 and	 consults	 on	 UI
design.
Frank	 Lupo:	 Has	 made	 countless	 improvements	 to	 the
pgAdmin	 II	 code	 from	 minor	 bug	 fixes	 to	 major
enhancements.
Jean-Michel	Pouré:	translations	&	web	site	management.
Andreas	 Pflug:	 Has	 written	 vast	 amounts	 of	 pgAdmin	 III
code	and	is	responsible	for	much	of	its	design.
Adam	 H.	 Pendleton:	 Developed	 and	 maintains	 the	 build
system,	and	helps	with	various	porting	issues.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Appendices	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

mailto:z-saito%40guitar.ocn.ne.jp
mailto:raphael%40pgadmin.org
mailto:guillaume%40lelarge.info
mailto:brandstetter%40falter.at
mailto:magnus%40hagander.net
mailto:myeatman%40vale-housing.co.uk
mailto:frank_lupo%40email.it
mailto:jm%40poure.com
mailto:pgadmin%40pse-consulting.de
mailto:fmonkey%40fmonkey.net
http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Appendices	»

Translation	team
We	 are	 very	 grateful	 to	 those	 who	 commit	 time	 to	 translating
pgAdmin	III.	Here	is	the	list	of	translators,	ordered	by	language	code:

af_ZA	(Afrikaans)	by	Petri	Jooste
bg_BG	(Bulgarian)	by	Milen	A.	Radev
ca_ES	(Catalan)	by	Carme	Cerda	Torres
de_DE	(German)	by	Harald	Armin	Massa
es_ES	(Spanish)	by	mailto:diego@adminsa.com">Diego	A.	Gil
fi_FI	(Finnish)	by	Jori	Juoto
fr_FR	(French)	by	Guillaume	Lelarge	and	Raphael	Enrici
gl_ES	(Galician)	by	Antonio	Ricoy	Riego
it_IT	(Italian)	by	Giuseppe	Sacco
ja_JP	(Japanese)	by	Hiroshi	Saito
ko_KR	(Korean)	by	Kang	Hye	Won
lv_LV	(Latvian)	by	Rudolfs	Mazurs
nl_NL	(Dutch)	by	Fred	van	Bemmel
pl_PL	(Polish)	by	Slawomir	Sudnik
pt_BR	(Portuguese	Brazilian)	by	Marcos	Alves	T.	de	Azevedo
pt_PT	(Portuguese)	by	Helder	M.	Vieira
ru_RU	(Russian)	by	Vladimir	Kazimirov
sr_RS	(Serbian)	by	Bojan	Skaljac
zh_CN	(Chinese	simplified)	by	ChaoYi,	Kuo
zh_TW	(Chinese	traditional)	by	NSYSU	MIS

There	are	other	 translations	 in	progress,	you	can	check	the	current
translation	status	at	our	Translation	status	page.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Appendices	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

mailto:rkwjpj%40puknet.puk.ac.za
mailto:milen%40radev.net
mailto:carmect74%40gmail.com
mailto:haraldarminmassa%40gmail.com
mailto:diego%40adminsa.com
mailto:psql%40jorch.net
mailto:guillaume%40lelarge.info
mailto:blacknoz%40club-internet.fr
mailto:aricoy%40edu.xunta.es
mailto:giuseppe%40eppesuigoccas.homedns.org
mailto:z-saito%40guitar.ocn.ne.jp
mailto:lain13%40gmail.com
mailto:rudolfs.mazurs%40gmail.com
mailto:f.van.bemmel%40hccnet.nl
mailto:slaweks%40inbox.com
mailto:psylinux%40gmail.com
mailto:hmv%40mail.telepac.pt
mailto:v.kazimirov%40mail.ru
mailto:skaljac%40gmail.com
mailto:kuo.chaoyi%40gmail.com
mailto:learncoding%40mis.nsysu.edu.tw
http://www.pgadmin.org/translation/status.php
http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Appendices	»

The	PostgreSQL	Licence
Copyright	(C)	2002	-	2012,	The	pgAdmin	Development	Team

Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its
documentation	 for	 any	 purpose,	 without	 fee,	 and	 without	 a	 written
agreement	 is	 hereby	 granted,	 provided	 that	 the	 above	 copyright
notice	and	this	paragraph	and	the	following	two	paragraphs	appear
in	all	copies.

IN	NO	EVENT	SHALL	THE	PGADMIN	DEVELOPMENT	TEAM	BE
LIABLE	 TO	 ANY	 PARTY	 FOR	 DIRECT,	 INDIRECT,	 SPECIAL,
INCIDENTAL,	 OR	 CONSEQUENTIAL	 DAMAGES,	 INCLUDING
LOST	 PROFITS,	 ARISING	 OUT	 OF	 THE	 USE	 OF	 THIS
SOFTWARE	AND	ITS	DOCUMENTATION,	EVEN	IF	THE	PGADMIN
DEVELOPMENT	 TEAM	 HAS	 BEEN	 ADVISED	 OF	 THE
POSSIBILITY	OF	SUCH	DAMAGE.

THE	 PGADMIN	 DEVELOPMENT	 TEAM	 SPECIFICALLY
DISCLAIMS	ANY	WARRANTIES,	 INCLUDING,	BUT	NOT	LIMITED
TO,	 THE	 IMPLIED	 WARRANTIES	 OF	 MERCHANTABILITY	 AND
FITNESS	 FOR	 A	 PARTICULAR	 PURPOSE.	 THE	 SOFTWARE
PROVIDED	 HEREUNDER	 IS	 ON	 AN	 “AS	 IS”	 BASIS,	 AND	 THE
PGADMIN	 DEVELOPMENT	 TEAM	 HAS	 NO	 OBLIGATIONS	 TO
PROVIDE	 MAINTENANCE,	 SUPPORT,	 UPDATES,
ENHANCEMENTS,	OR	MODIFICATIONS.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Appendices	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Appendices	»

The	MIT	Kerberos	Licence
pgAdmin	 PostgreSQL’s	 libpq	 library	which	may	 be	 linked	with	MIT
Kerberos	Libraries	on	some	distributions.	The	MIT	Kerberos	licence
is	included	below:

Kerberos	Copyright
This	 software	 is	 being	 provided	 to	 you,	 the	 LICENSEE,	 by	 the
Massachusetts	 Institute	 of	 Technology	 (M.I.T.)	 under	 the	 following
license.	By	obtaining,	using	and/or	copying	this	software,	you	agree
that	 you	 have	 read,	 understood,	 and	 will	 comply	 with	 these	 terms
and	conditions:

Permission	 to	use,	copy,	modify	and	distribute	 this	software	and	 its
documentation	for	any	purpose	and	without	 fee	or	royalty	 is	hereby
granted,	 provided	 that	 you	 agree	 to	 comply	 with	 the	 following
copyright	 notice	 and	 statements,	 including	 the	 disclaimer,	 and	 that
the	same	appear	on	ALL	copies	of	the	software	and	documentation,
including	 modifications	 that	 you	 make	 for	 internal	 use	 or	 for
distribution:

Copyright	1992-2004	by	 the	Massachusetts	 Institute	of	Technology.
All	rights	reserved.

THIS	SOFTWARE	 IS	PROVIDED	 “AS	 IS”,	AND	M.I.T.	MAKES	NO
REPRESENTATIONS	OR	WARRANTIES,	EXPRESS	OR	IMPLIED.
By	 way	 of	 example,	 but	 not	 limitation,	 M.I.T.	 MAKES	 NO
REPRESENTATIONS	 OR	WARRANTIES	 OF	 MERCHANTABILITY
OR	FITNESS	FOR	ANY	PARTICULAR	PURPOSE	OR	THAT	THE
USE	OF	THE	LICENSED	SOFTWARE	OR	DOCUMENTATION	WILL
NOT	 INFRINGE	 ANY	 THIRD	 PARTY	 PATENTS,	 COPYRIGHTS,
TRADEMARKS	OR	OTHER	RIGHTS.

The	name	of	the	Massachusetts	Institute	of	Technology	or	M.I.T.	may
NOT	be	used	 in	advertising	or	publicity	 pertaining	 to	distribution	of
the	 software.	Title	 to	 copyright	 in	 this	 software	and	any	associated
documentation	 shall	 at	 all	 times	 remain	 with	 M.I.T.,	 and	 USER
agrees	to	preserve	same.

Project	Athena,	Athena,	Athena	MUSE,	Discuss,	Hesiod,	Kerberos,
Moira,	OLC,	X	Window	System,	and	Zephyr	are	 trademarks	of	 the
Massachusetts	Institute	of	Technology	(MIT).	No	commercial	use	of
these	 trademarks	may	be	made	without	 prior	written	permission	of
MIT.

indexnext	|previous	|pgAdmin	III	1.16.1	documentation	»	Appendices	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

indexprevious	|pgAdmin	III	1.16.1	documentation	»	Appendices	»

The	OpenSSL	Licence
pgAdmin	uses	code	from	the	OpenSSL	project	to	provide	support	for
SSL	 encrypted	 connections.	 The	 OpenSSL	 licence	 is	 included
below:

Copyright	 (c)	 1998-2011	 The	 OpenSSL	 Project.	 All	 rights
reserved.

Redistribution	 and	 use	 in	 source	 and	 binary	 forms,	with	 or	without
modification,	are	permitted	provided	that	the	following	conditions	are
met:

Redistributions	of	source	code	must	retain	 the	above	copyright
notice,	this	list	of	conditions	and	the	following	disclaimer.
Redistributions	 in	 binary	 form	 must	 reproduce	 the	 above
copyright	 notice,	 this	 list	 of	 conditions	 and	 the	 following
disclaimer	in	the	documentation	and/or	other	materials	provided
with	the	distribution.
All	 advertising	 materials	 mentioning	 features	 or	 use	 of	 this
software	 must	 display	 the	 following	 acknowledgment:	 “This
product	 includes	 software	 developed	 by	 the	 OpenSSL	 Project
for	use	in	the	OpenSSL	Toolkit.	(http://www.openssl.org/)”
The	names	“OpenSSL	Toolkit”	and	“OpenSSL	Project”	must	not
be	 used	 to	 endorse	 or	 promote	 products	 derived	 from	 this
software	without	prior	written	permission.	For	written	permission,
please	contact	openssl-core@openssl.org.
Products	 derived	 from	 this	 software	 may	 not	 be	 called
“OpenSSL”	nor	may	 “OpenSSL”	appear	 in	 their	names	without
prior	written	permission	of	the	OpenSSL	Project.
Redistributions	of	any	form	whatsoever	must	retain	the	following
acknowledgment:	“This	product	includes	software	developed	by
the	 OpenSSL	 Project	 for	 use	 in	 the	 OpenSSL	 Toolkit
(http://www.openssl.org/)”

http://www.openssl.org/
mailto:openssl-core%40openssl.org
http://www.openssl.org/

THIS	SOFTWARE	IS	PROVIDED	BY	THE	OpenSSL	PROJECT	‘’AS
IS’’	 AND	 ANY	 EXPRESSED	 OR	 IMPLIED	 WARRANTIES,
INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES
OF	 MERCHANTABILITY	 AND	 FITNESS	 FOR	 A	 PARTICULAR
PURPOSE	 ARE	 DISCLAIMED.	 IN	 NO	 EVENT	 SHALL	 THE
OpenSSL	 PROJECT	 OR	 ITS	 CONTRIBUTORS	 BE	 LIABLE	 FOR
ANY	 DIRECT,	 INDIRECT,	 INCIDENTAL,	 SPECIAL,	 EXEMPLARY,
OR	 CONSEQUENTIAL	 DAMAGES	 (INCLUDING,	 BUT	 NOT
LIMITED	 TO,	 PROCUREMENT	 OF	 SUBSTITUTE	 GOODS	 OR
SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS
INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF
LIABILITY,	 WHETHER	 IN	 CONTRACT,	 STRICT	 LIABILITY,	 OR
TORT	 (INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	 IN
ANY	 WAY	 OUT	 OF	 THE	 USE	 OF	 THIS	 SOFTWARE,	 EVEN	 IF
ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

This	product	 includes	 cryptographic	 software	written	by	Eric	Young
(eay@cryptsoft.com).	This	product	 includes	software	written	by	Tim
Hudson	(tjh@cryptsoft.com).

indexprevious	|pgAdmin	III	1.16.1	documentation	»	Appendices	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

mailto:eay%40cryptsoft.com
mailto:tjh%40cryptsoft.com
http://sphinx.pocoo.org/

indexpgAdmin	III	1.16.1	documentation	»

Index
B	|	C	|	D	|	E	|	G	|	M	|	O	|	P	|	Q	|	R	|	S	|	V

B
Backup Bug	Reporting

C
Change	Password
Command	Line	Parameters
Connect	to	server
Connection	errors

Control	Server
Creating	paths	and	listens
Creating	sets	and	subscriptions

D
Database	Server	Status Default	XSL	Stylesheet

E
Edit	Data
Execute	DDL	scripts	with	Slony-I

Extended	features

G
Grant	Wizard
Graphical	Query	builder

Guru	Hints

M
Maintain	a	database	object

O
Object	search

P
pgAdmin	Browser	Options
pgAdmin	Data	Export
pgAdmin	Database	Designer
Options
pgAdmin	Debugger
pgAdmin	Main	Window
pgAdmin	Miscellaneous	Options
pgAdmin	Options

pgAdmin	Query	tool	Options
pgAdmin	Server	Status	Options
pgAgent	Installation
pgAgent	Jobs
pgAgent	Schedules
pgAgent	Steps
pgScript	Scripting	Language
Reference

Q
Query	tool Query	Tool	Macros

R
Report	Tool Restore

S
Sample	XML	Data
Slony-I	administration	with
pgAdmin	III:	installation
Slony-I	example

Slony-I	support
Slony-I	tasks
Slony-I	with	pgAdmin	III	overview

V
View	Data	Options

indexpgAdmin	III	1.16.1	documentation	»

©	Copyright	2002	-	2012,	The	pgAdmin	Development	Team.	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

	pgAdmin III 1.16.1 documentation
	Introduction
	Using pgAdmin III
	pgAdmin Main Window
	Connect to server
	Connection errors

	Change Password
	Control Server
	Query tool
	Graphical Query builder
	pgAdmin Data Export
	Query Tool Macros
	pgScript Scripting Language Reference

	pgAdmin Debugger
	pgAdmin Data Export
	Edit Data
	View Data Options

	Maintain a database object
	Backup
	Restore
	Grant Wizard
	Report Tool
	Default XSL Stylesheet
	Sample XML Data

	Database Server Status
	pgAdmin Options
	pgAdmin Browser Options
	pgAdmin Query tool Options
	pgAdmin Database Designer Options
	pgAdmin Server Status Options
	pgAdmin Miscellaneous Options

	Guru Hints
	Command Line Parameters

	pgAgent
	pgAgent Installation
	pgAgent Jobs
	pgAgent Schedules
	pgAgent Steps

	Slony-I support
	Slony-I with pgAdmin III overview
	Slony-I administration with pgAdmin III: installation
	Creating paths and listens
	Creating sets and subscriptions
	Execute DDL scripts with Slony-I
	Slony-I tasks
	Slony-I example

	Extended features
	Appendices
	Bug Reporting
	The pgAdmin Development Team
	Translation team
	The PostgreSQL Licence
	The MIT Kerberos Licence
	The OpenSSL Licence

