
Optimizing	Database	Performance



Optimizing	Database	Performance	Overview
The	goal	of	performance	tuning	is	to	minimize	the	response	time	for	each	query
and	to	maximize	the	throughput	of	the	entire	database	server	by	reducing
network	traffic,	disk	I/O,	and	CPU	time.	This	goal	is	achieved	through
understanding	application	requirements,	the	logical	and	physical	structure	of	the
data,	and	tradeoffs	between	conflicting	uses	of	the	database,	such	as	online
transaction	processing	(OLTP)	versus	decision	support.

Performance	issues	should	be	considered	throughout	the	development	cycle,	not
at	the	end	when	the	system	is	implemented.	Many	performance	issues	that	result
in	significant	improvements	are	achieved	by	careful	design	from	the	outset.	To
most	effectively	optimize	the	performance	of	Microsoft®	SQL	Server™	2000,
you	must	identify	the	areas	that	will	yield	the	largest	performance	increases	over
the	widest	variety	of	situations	and	focus	analysis	on	those	areas.

Although	other	system-level	performance	issues,	such	as	memory,	hardware,	and
so	on,	are	certainly	candidates	for	study,	experience	shows	that	the	performance
gain	from	these	areas	is	often	incremental.	Generally,	SQL	Server	automatically
manages	available	hardware	resources,	reducing	the	need	(and	thus,	the	benefit)
for	extensive	system-level	manual	tuning.

Topic Description
Designing
Federated
Database	Servers

Describes	how	to	achieve	high	levels	of	performance,
such	as	those	required	by	large	Web	sites,	by	balancing
the	processing	load	across	multiple	servers.

Database	Design Describes	how	database	design	is	the	most	effective
way	to	improve	overall	performance.	Database	design
includes	the	logical	database	schema	(such	as	tables
and	constraints)	and	the	physical	attributes	such	as	disk
systems,	object	placement,	and	indexes.

Query_Tuning Describes	how	the	correct	design	of	the	queries	used	by
an	application	can	significantly	improve	performance.

Application
Design

Describes	how	the	correct	design	of	the	user
application	can	significantly	improve	performance.
Application	design	includes	transaction	boundaries,



locking,	and	the	use	of	batches.
Optimizing	Utility
and	Tool
Performance

Describes	how	some	of	the	options	available	with	the
utilities	and	tools	supplied	with	Microsoft	SQL	Server
2000	can	highlight	ways	in	which	the	performance	of
these	tools	can	be	improved,	as	well	as	the	effect	of
running	these	tools	and	your	application	at	the	same
time.

Optimizing	Server
Performance

Describes	how	settings	in	the	operating	system
(Microsoft	Windows	NT®,	Microsoft	Windows®	95,
Microsoft	Windows	98	or	Microsoft	Windows	2000)
and	SQL	Server	can	be	changed	to	improve	overall
performance.



Optimizing	Database	Performance



Designing	Federated	Database	Servers
To	achieve	the	high	levels	of	performance	required	by	the	largest	Web	sites,	a
multitier	system	typically	balances	the	processing	load	for	each	tier	across
multiple	servers.	Microsoft®	SQL	Server™	2000	shares	the	database	processing
load	across	a	group	of	servers	by	horizontally	partitioning	the	SQL	Server	data.
These	servers	are	managed	independently,	but	cooperate	to	process	the	database
requests	from	the	applications;	such	a	cooperative	group	of	servers	is	called	a
federation.

A	federated	database	tier	can	achieve	extremely	high	levels	of	performance	only
if	the	application	sends	each	SQL	statement	to	the	member	server	that	has	most
of	the	data	required	by	the	statement.	This	is	called	collocating	the	SQL
statement	with	the	data	required	by	the	statement.	Collocating	SQL	statements
with	the	required	data	is	not	a	requirement	unique	to	federated	servers.I	It	is	also
required	in	clustered	systems.

Although	a	federation	of	servers	presents	the	same	image	to	the	applications	as	a
single	database	server,	there	are	internal	differences	in	how	the	database	services
tier	is	implemented.

Single	server	tier Federated	server	tier
There	is	one	instance	of	SQL
Server	on	the	production	server.

There	is	one	instance	of	SQL	Server
on	each	member	server.

The	production	data	is	stored	in	one
database.

Each	member	server	has	a	member
database.	The	data	is	spread	through
the	member	databases.

Each	table	is	typically	a	single
entity.

The	tables	from	the	original	database
are	horizontally	partitioned	into
member	tables.	There	is	one	member
table	per	member	database,	and
distributed	partitioned	views	are	used
to	make	it	appear	as	if	there	was	a	full
copy	of	the	original	table	on	each
member	server.

All	connections	are	made	to	the The	application	layer	must	be	able	to



single	server,	and	all	SQL
statements	are	processed	by	the
same	instance	of	SQL	Server.

collocate	SQL	statements	on	the
member	server	containing	most	of	the
data	referenced	by	the	statement.

While	the	goal	is	to	design	a	federation	of	database	servers	to	handle	a	complete
workload,	you	do	this	by	designing	a	set	of	distributed	partitioned	views	that
spread	the	data	across	the	different	servers.

See	Also

Federated	SQL	Server	2000	Servers

Creating	a	Partitioned	View

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Optimizing	Database	Performance



Designing	Partitions
Partitioning	works	well	if	the	tables	in	the	database	are	naturally	divisible	into
similar	partitions	where	most	of	the	rows	accessed	by	any	SQL	statement	can	be
placed	on	the	same	member	server.	Tables	are	clustered	in	related	units.	For
example,	suppose	the	entry	of	an	order	references	the	Orders,	Customers,	and
Parts	tables,	along	with	all	tables	that	record	the	relationships	between
customers,	orders,	and	parts.	Partitions	work	best	if	all	the	rows	in	a	logical
cluster	can	be	placed	on	the	same	member	server.

Symmetric	Partitions
Partitioning	is	most	effective	if	the	tables	in	a	database	can	be	partitioned
symmetrically:

Related	data	is	placed	on	the	same	member	server,	so	that	most	SQL
statements	routed	to	the	correct	member	server	will	have	minimal,	if
any,	requirements	for	data	on	other	member	servers.	A	distributed
partitioned	view	design	goal	can	be	stated	as	an	80/20	rule:	Design
partitions	so	that	most	SQL	statements	can	be	routed	to	a	member
server,	where	at	least	80	percent	of	the	data	is	on	that	server,	and
distributed	queries	are	needed	for	20	percent	or	less	of	the	data.	A	good
test	of	whether	this	can	be	achieved	is	to	see	whether	the	partition
allows	all	rows	to	be	placed	on	the	same	member	server	as	all	of	their
referencing	foreign	key	rows.	Database	designs	that	support	this	goal
are	good	candidates	for	partitioning.

The	data	is	partitioned	uniformly	across	the	member	servers.

For	example,	suppose	a	company	has	divided	North	America	into
regions.	Each	employee	works	in	one	region,	and	customers	make	most
of	their	purchases	in	the	state	or	province	where	they	live.	The	region
and	employee	tables	are	partitioned	along	regions.	Customers	are
partitioned	between	regions	by	their	state	or	province.	While	some
queries	require	data	from	multiple	regions,	the	data	needed	for	most
queries	is	on	the	server	for	one	region.	Applications	route	SQL



statements	to	the	member	server	containing	the	region	inferred	from	the
context	of	the	user	input.

Asymmetric	Partitions

Although	symmetric	partitions	are	the	ideal	goal,	most	applications	have
complex	data	access	patterns	that	prevent	symmetrical	partitioning.	Asymmetric
partitions	result	in	some	member	servers	assuming	larger	roles	than	others.	For
example,	only	some	of	the	tables	in	a	database	may	be	partitioned,	with	the
tables	that	have	not	been	partitioned	remaining	on	the	original	server.
Asymmetric	partitions	can	provide	much	of	the	performance	of	a	symmetric
partition,	with	these	important	benefits:

Dramatically	improving	the	performance	of	a	database	that	cannot	be
symmetrically	partitioned	by	asymmetrically	partitioning	some	of	its
tables.

Successfully	partitioning	a	large	existing	system	by	making	a	series	of
iterative,	asymmetric	improvements.	The	tables	chosen	for	partitioning
in	each	step	are	usually	those	that	will	give	the	highest	performance
gain	at	that	time.

In	an	asymmetric	approach,	the	original	server	usually	retains	some	tables	that
did	not	fit	the	partitioning	scheme.	The	performance	of	these	remaining	tables	is
usually	faster	than	in	the	original	system	because	the	member	tables	move	to
member	servers,	reducing	the	load	on	the	original	server.

Many	databases	can	be	partitioned	in	more	than	one	way.	The	specific	partitions
chosen	for	implementation	must	be	those	that	best	meet	the	requirements	of	the
typical	range	of	SQL	statements	executed	by	the	business	services	tier.

Distributed	Partitioned	Views
You	should	also	design	the	partitioning	in	a	way	that	produces	routing	rules	that
applications	can	use	to	determine	which	member	server	can	most	effectively
process	each	SQL	statement.	The	business	services	tier	must	be	able	to	match	a
piece	of	user	data	against	the	routing	rules	to	find	which	member	server
processes	the	SQL	statement.



There	are	four	areas	to	consider	when	designing	a	set	of	distributed	partitioned
views	to	implement	a	federation	of	database	servers:

Determine	the	pattern	of	SQL	statements	executed	by	the	application.

Develop	a	list	of	the	SQL	statements	executed	by	the	application	during
typical	processing	periods.	Divide	the	list	into	SELECT,	UPDATE,
INSERT,	and	DELETE	categories,	and	order	the	list	in	each	category	by
frequency	of	execution.	If	the	SQL	statements	reference	stored
procedures,	use	the	base	SELECT,	INSERT,	UPDATE,	and	DELETE
statements	from	the	stored	procedure.	If	you	are	partitioning	an	existing
Microsoft®	SQL	Server™	2000	database,	you	can	use	SQL	Profiler	to
get	such	a	list.

The	recommendation	for	using	the	frequency	of	SQL	statements	is	a
reasonable	approximation	in	the	typical	online	transaction	processing
(OLTP)	or	Web	site	database	in	which	distributed	partitioned	views
work	best.	These	systems	are	characterized	by	having	individual	SQL
statements	that	retrieve	relatively	small	amounts	of	data	when	compared
to	the	types	of	queries	in	a	decision	support,	or	OLAP,	system.	When
each	SQL	statement	references	a	small	amount	of	data,	simply	studying
the	frequency	of	each	statement	yields	a	reasonable	approximation	of
the	data	traffic	in	the	system.	Many	systems,	however,	have	some	group
of	SQL	statements	that	reference	large	amounts	of	data.	You	may	want
to	take	the	extra	step	of	weighting	these	queries	to	reflect	their	larger
data	requirements.

Determine	how	the	tables	are	related	to	each	other.

The	intent	is	to	find	clusters	of	tables	that	can	be	partitioned	along	the
same	dimension	(for	example,	part	number	or	department	number)	so
that	all	the	rows	related	to	individual	occurrences	of	that	dimension	will
end	up	on	the	same	member	server.	For	example,	you	may	determine
that	one	way	to	partition	your	database	is	by	region.	To	support	this,
even	tables	that	do	not	have	a	region	number	in	their	key	must	be
capable	of	being	partitioned	in	some	manner	related	to	a	region.	In	such
a	database,	even	when	the	Customer	table	does	not	have	a	region
number	column,	if	regions	are	defined	as	collections	of	whole	states	or
provinces,	then	the	Customer.StateProvince	column	can	be	used	to



partition	the	customers	in	a	manner	related	to	region.

Because	they	define	the	relationships	between	tables,	explicit	and
implicit	foreign	keys	are	the	prime	elements	to	review	in	looking	for
ways	to	partition	data.	Study	the	explicit	foreign	key	definitions	to
determine	how	queries	would	usually	use	rows	in	one	table	to	find	rows
in	another	table.	Also	study	implicit	foreign	keys,	or	ways	that	SQL
statements	use	values	in	the	rows	of	one	table	to	reference	rows	from
another	table	in	join	operations,	even	when	there	is	no	specific	foreign
key	definition.	Because	implicit	foreign	keys	are	not	explicitly	defined
as	part	of	the	database	schema,	you	must	review	the	SQL	statements
generated	by	the	application	to	understand	whether	there	are	statements
that	join	tables	using	nonkey	columns.	These	implicit	foreign	keys	are
typically	indexed	to	improve	join	performance,	so	you	should	also
review	the	indexes	defined	in	the	database.

Match	the	frequency	of	SQL	statements	against	the	partitions	defined
from	analyzing	the	foreign	keys.

Select	the	partitioning	that	will	best	support	the	mix	of	SQL	statements
in	your	application.	If	some	sets	of	tables	can	be	partitioned	in	more
than	one	way,	use	the	frequency	of	SQL	statements	to	determine	which
of	the	partitions	satisfies	the	largest	number	of	SQL	statements.	The
tables	most	frequently	referenced	by	SQL	statements	are	the	ones	you
want	to	partition	first.	Prioritize	the	sequence	in	which	you	partition	the
tables	based	on	the	frequency	in	which	the	tables	are	referenced.

The	pattern	of	SQL	statements	also	influences	the	decision	on	whether	a
table	should	be	partitioned:

Partition	a	table	if	more	than	5	percent	of	the	statements
referencing	a	table	are	INSERT,	UDATE,	or	DELETE
statements,	and	the	table	can	be	partitioned	along	the
dimension	you	have	chosen.

Maintain	complete	copies	of	tables	on	each	member	server	if
less	than	5	percent	of	the	statements	referencing	the	table	are
INSERT,	UPDATE,	or	DELETE	statements.	You	will	also	need
to	define	how	updates	will	be	made	so	that	all	the	copies	of	the



table	are	updated.	If	high	transactional	integrity	is	required,
you	can	code	triggers	that	perform	distributed	updates	of	all	the
copies	within	the	context	of	a	distributed	transaction.	If	you	do
not	need	high	transactional	integrity,	you	can	use	one	of	the
SQL	Server	replication	mechanisms	to	propagate	updates	from
one	copy	of	the	table	to	all	other	copies.

Do	not	partition	or	copy	a	table	if	more	than	5	percent	of	the
statements	referencing	a	table	are	INSERT,	UDATE,	or
DELETE	statements,	and	the	table	cannot	be	partitioned	along
the	dimension	you	have	chosen.

Define	the	SQL	statement	routing	rules.	The	routing	rules	must	be	able
to	define	which	member	server	can	most	effectively	process	each	SQL
statement.	They	must	establish	a	relationship	between	the	context	of	the
input	of	the	user	and	the	member	server	that	contains	the	bulk	of	the
data	required	to	complete	the	statement.	The	applications	must	be	able
to	take	a	piece	of	data	entered	by	the	user,	and	match	it	against	the
routing	rules	to	determine	which	member	server	should	process	the
SQL	statement.

See	Also

Federated	SQL	Server	2000	Servers

Creating	a	Partitioned	View

Designing	Applications	to	Use	Federated	Database	Servers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()


Optimizing	Database	Performance



Designing	Federated	Database	Servers	for	High
Availability
The	data	for	a	large	Web	site	or	internal	online	transaction	processing	(OLTP)
system	must	be	highly	reliable.	The	data	must	be	available	24	hours	a	day,	7
days	a	week,	52	weeks	a	year.	In	a	clustered	application	tier,	the	loss	of	one
server	may	degrade	system	performance,	but	it	will	not	stop	the	entire	system.
The	remaining	servers	in	the	cluster	rebalance	the	load	until	a	replacement	server
can	be	plugged	into	the	cluster.

Although	Microsoft®	SQL	Server™	2000	does	not	support	this	type	of	load-
balanced	clustering,	it	does	support	Microsoft	Cluster	Services	failover
clustering.	Failover	clustering	supports	one	to	four	servers	per	cluster	depending
on	the	operating	system.	The	cluster	appears	to	applications	as	a	single	virtual
server.	If	the	primary	server	node	fails,	another	node	detects	the	loss	of	the
primary	and	automatically	starts	servicing	all	requests	sent	to	the	virtual	server.
The	cluster	remains	running	under	the	alternative	node	until	the	primary	server	is
repaired	or	replaced.	Failover	clustering	helps	provide	high	availability,	but	it
does	not	perform	any	load	balancing.

See	Also

Failover	Clustering

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance



Backing	Up	and	Restoring	Federated	Database
Servers
In	a	federated-database-server	tier,	built	using	distributed	partitioned	views,	the
member	servers	form	one	logical	unit;	and	you	must	coordinate	the	recovery	of
the	member	databases	to	ensure	that	they	remain	synchronized	properly.

Microsoft®	SQL	Server™	2000	does	not	require	that	you	coordinate	backups
across	member	servers.	Backups	can	be	taken	from	each	database	independently,
without	regard	for	the	state	of	the	other	member	databases.	Because	the	backups
do	not	have	to	be	synchronized,	there	is	no	processing	overhead	for
synchronization	and	no	blockage	of	running	tasks.

The	most	important	aspect	of	recovering	a	set	of	member	databases	is	the	same
as	recovering	any	other	database:	plan	and	test	the	recovery	procedures	before
putting	the	databases	into	production.	You	must	set	up	processes	to	restore	all	the
databases	to	the	same	logical	point	in	time.	SQL	Server	includes	features	to
support	the	recovery	of	all	member	databases	to	the	same	point	in	time.

See	Also

Backing	Up	and	Restoring	Databases

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance



Database	Design
There	are	two	components	to	designing	a	database:	logical	and	physical.	Logical
database	design	involves	modeling	your	business	requirements	and	data	using
database	components,	such	as	tables	and	constraints,	without	regard	for	how	or
where	the	data	will	be	physically	stored.	Physical	database	design	involves
mapping	the	logical	design	onto	physical	media,	taking	advantage	of	the
hardware	and	software	features	available,	which	allows	the	data	to	be	physically
accessed	and	maintained	as	quickly	as	possible,	and	indexing.

It	is	important	to	correctly	design	the	database	to	model	your	business
requirements,	and	to	take	advantage	of	hardware	and	software	features	early	in
the	development	cycle	of	a	database	application,	because	it	is	difficult	to	make
changes	to	these	components	later.



Optimizing	Database	Performance



Logical	Database	Design
Using	Microsoft®	SQL	Server™	2000	effectively	begins	with	normalized
database	design.	Normalization	is	the	process	of	removing	redundancies	from
the	data.	For	example,	when	you	convert	from	an	indexed	sequence	access
method	(ISAM)	style	application,	normalization	often	involves	breaking	data	in
a	single	file	into	two	or	more	logical	tables	in	a	relational	database.	Transact-
SQL	queries	then	recombine	the	table	data	by	using	relational	join	operations.
By	avoiding	the	need	to	update	the	same	data	in	multiple	places,	normalization
improves	the	efficiency	of	an	application	and	reduces	the	opportunities	for
introducing	errors	due	to	inconsistent	data.

However,	there	are	tradeoffs	to	normalization.	A	database	that	is	used	primarily
for	decision	support	(as	opposed	to	update-intensive	transaction	processing)	may
not	have	redundant	updates	and	may	be	more	understandable	and	efficient	for
queries	if	the	design	is	not	fully	normalized.	Nevertheless,	data	that	is	not
normalized	is	a	more	common	design	problem	in	database	applications	than
over-normalized	data.	Starting	with	a	normalized	design,	and	then	selectively
denormalizing	tables	for	specific	reasons,	is	a	good	strategy.

For	more	information,	see	Normalization.

Whatever	the	database	design,	you	should	take	advantage	of	these	features	in
SQL	Server	to	automatically	maintain	the	integrity	of	your	data:

CHECK	constraints	ensure	that	column	values	are	valid.

DEFAULT	and	NOT	NULL	constraints	avoid	the	complexities	(and
opportunities	for	hidden	application	bugs)	caused	by	missing	column
values.

PRIMARY	KEY	and	UNIQUE	constraints	enforce	the	uniqueness	of
rows	(and	implicitly	create	an	index	to	do	so).

FOREIGN	KEY	constraints	ensure	that	rows	in	dependent	tables	always
have	a	matching	master	record.

JavaScript:hhobj_1.Click()


IDENTITY	columns	efficiently	generate	unique	row	identifiers.

timestamp	columns	ensure	efficient	concurrency	checking	between
multiple-user	updates.

User-defined	data	types	ensure	consistency	of	column	definitions	across
the	database.

By	taking	advantage	of	these	features,	you	can	make	the	data	rules	visible	to	all
users	of	the	database,	rather	than	hiding	them	in	application	logic.	These	server-
enforced	rules	help	avoid	errors	in	the	data	that	can	arise	from	incomplete
enforcement	of	integrity	rules	by	the	application	itself.	Using	these	facilities	also
ensures	that	data	integrity	is	enforced	as	efficiently	as	possible.

See	Also

Data	Integrity

JavaScript:hhobj_2.Click()


Optimizing	Database	Performance



Database	Design	Considerations:	Data	Types
SQL	Server	2000	treats	any	fixed-length	column	that	allows	null	values	as	fixed-
length.	Therefore,	a	char	column	that	allows	null	values	is	treated	as	a	fixed-
length	char	column.	As	a	result,	the	same	data	takes	more	disk	space	to	store
and	can	require	more	I/O	and	other	processing	operations	in	SQL	Server	2000
compared	to	earlier	versions	of	SQL	Server.	To	resolve	this	issue	,	use	variable-
length	columns	rather	than	fixed-length	columns.	For	example,	use	a	varchar
data	type	instead	of	a	char	data	type.	However,	if	all	the	values	in	a	column	are
the	same	length	or	the	lengths	of	the	values	do	not	vary	by	much,	it	is	more
efficient	to	use	a	fixed-length	column.

Text	Data	Types
Character	strings	up	to	8,000	bytes	in	length	can	be	stored	in	columns	defined
with	the	char	and	varchar	data	types.	Using	a	char	or	varchar	data	type	allows
the	system-defined	character	string	functions,	such	as	SUBSTRING,	to	be	used
on	character	strings	up	to	8,000	bytes	in	length.

See	Also

Specifying	a	Column	Data	Type

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance



Physical	Database	Design
The	I/O	subsystem	(storage	engine)	is	a	key	component	of	any	relational
database.	A	successful	database	implementation	usually	requires	careful
planning	at	the	early	stages	of	your	project.	The	storage	engine	of	a	relational
database	requires	much	of	this	planning,	which	includes	determining:

What	type	of	disk	hardware	to	use,	such	as	RAID	(redundant	array	of
independent	disks)	devices.	For	more	information,	see	RAID.

How	to	place	your	data	onto	the	disks.	For	more	information,	see	Data
Placement	Using	Filegroups.

Which	index	design	to	use	to	improve	query	performance	in	accessing
data.	For	more	information,	see	Index	Tuning	Recommendations.

How	to	set	all	configuration	parameters	appropriately	for	the	database
to	perform	well.	For	more	information,	see	Optimizing	Server
Performance.



Optimizing	Database	Performance



RAID
RAID	(redundant	array	of	independent	disks)	is	a	disk	system	that	comprises
multiple	disk	drives	(an	array)	to	provide	higher	performance,	reliability,	storage
capacity,	and	lower	cost.	Fault-tolerant	arrays	are	categorized	in	six	RAID
levels,	0	through	5.	Each	level	uses	a	different	algorithm	to	implement	fault
tolerance.

Although	RAID	is	not	a	part	of	Microsoft®	SQL	Server™	2000,	its
implementation	can	directly	affect	the	way	SQL	Server	performs.	RAID	levels	0,
1,	and	5	are	typically	used	with	SQL	Server.

Note		RAID	is	available	only	on	Microsoft	Windows	NT	4.0	and	Microsoft
Windows	2000.

A	hardware	disk	array	improves	I/O	performance	because	I/O	functions,	such	as
striping	and	mirroring,	are	handled	efficiently	in	firmware.	Conversely,	an
operating	system–based	RAID	offers	lower	cost	but	consumes	processor	cycles.
When	cost	is	a	consideration	and	redundancy	and	high	performance	are	required,
Microsoft	Windows®	NT®	stripe	sets	with	parity	or	Windows	2000	RAID-5
volumes	are	a	good	solution.

Data	striping	(RAID	0)	is	the	RAID	configuration	with	the	highest	performance,
but	if	one	disk	fails,	all	the	data	on	the	stripe	set	becomes	inaccessible.	A
common	installation	technique	for	relational	database	management	systems	is	to
configure	the	database	on	a	RAID	0	drive	and	then	place	the	transaction	log	on	a
mirrored	drive	(RAID	1).	You	can	get	the	best	disk	I/O	performance	for	the
database	and	maintain	data	recoverability	(assuming	you	perform	regular
database	backups)	through	a	mirrored	transaction	log.

If	data	must	be	quickly	recoverable,	consider	mirroring	the	transaction	log	and
placing	the	database	on	a	RAID	5	disk.	RAID	5	provides	redundancy	of	all	data
on	the	array,	allowing	a	single	disk	to	fail	and	be	replaced	in	most	cases	without
system	downtime.	RAID	5	offers	lower	performance	than	RAID	0	or	RAID	1
but	higher	reliability	and	faster	recovery.



Optimizing	Database	Performance

Developing	a	Drive	Performance	Strategy
By	managing	the	placement	of	data	on	drives,	you	can	both	improve
performance	and	implement	fault	tolerance.	In	the	context	of	managing	drive
storage	for	a	Microsoft®	SQL	Server™	2000	installation,	performance	refers	in
part	to	the	speed	of	read	and	write	operations,	and	fault	tolerance	refers	to	the
ability	of	the	system	to	continue	functioning	without	data	loss	when	part	of	the
system	fails.

You	can	use	the	following	methods	to	manage	the	placement	of	data	on	disk
drives:

Hardware-based	RAID	(redundant	array	of	independent	disks)	above
level	0	can	protect	against	data	loss	in	the	event	of	media	failure,	and
can	improve	performance.	For	more	information,	see	the	documentation
provided	by	the	vendor.

Both	Microsoft	Windows	NT®	and	Microsoft	Windows®	2000-based
disk	striping,	and	striping	with	parity,	can	improve	performance.	Disk
striping	with	parity	also	protects	against	data	loss	in	the	event	of	media
failure.

Windows	NT	and	Windows	2000-based	disk	mirroring	and	duplexing
are	both	fault-tolerance	mechanisms	that	protect	against	data	loss	in	the
event	of	media	failure.	They	can	also	improve	read	performance.

IMPORTANT		These	fault-tolerance	methods	do	not	replace	proper	backup
strategies.	You	must	perform	periodic	backups	to	protect	your	databases	and	data
against	catastrophic	loss.

For	more	information	about	Windows	NT	and	Windows	2000	disk	striping,
mirroring,	and	duplexing,	see	the	Windows	NT	or	Windows	2000
documentation.

See	Also



Backing	Up	and	Restoring	Databases

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

RAID	Levels	and	SQL	Server
RAID	(redundant	array	of	independent	disks)	levels	0,	1,	and	5	are	typically
implemented	with	Microsoft®	SQL	Server™	2000.

Note		RAID	levels	greater	than	10	(1	+	0)	offer	additional	fault	tolerance	or
performance	enhancements.	These	tend	to	be	proprietary	systems.	For	more
information	about	these	types	of	RAID	systems,	contact	the	hardware	vendor.

Level	0

This	level	is	also	known	as	disk	striping	because	of	its	use	of	a	disk	file
system	called	a	stripe	set.	Data	is	divided	into	blocks	and	spread	in	a	fixed
order	among	all	disks	in	an	array.	RAID	0	improves	read/write	performance
by	spreading	operations	across	multiple	disks,	so	that	operations	can	be
performed	independently	and	simultaneously.

RAID	0	is	similar	to	RAID	5,	but	RAID	5	also	provides	fault	tolerance.

				

Level	1

This	level	is	also	known	as	disk	mirroring	because	of	its	use	of	a	disk	file
system	called	a	mirror	set.	Disk	mirroring	provides	a	redundant,	identical
copy	of	a	selected	disk.	All	data	written	to	the	primary	disk	is	written	to	the
mirror	disk.	RAID	1	provides	fault	tolerance	and	generally	improves	read
performance	(but	may	degrade	write	performance).



				

Level	2

This	level	adds	redundancy	by	using	an	error	correction	method	that	spreads
parity	across	all	disks.	It	also	employs	a	disk-striping	strategy	that	breaks	a
file	into	bytes	and	spreads	it	across	multiple	disks.	This	strategy	offers	only	a
marginal	improvement	in	disk	utilization	and	read/write	performance	over
mirroring	(RAID	1).	RAID	2	is	not	as	efficient	as	other	RAID	levels	and	is
not	generally	used.

Level	3

This	level	uses	the	same	striping	method	as	RAID	2,	but	the	error	correction
method	requires	only	one	disk	for	parity	data.	Use	of	disk	space	varies	with
the	number	of	data	disks.	RAID	3	provides	some	read/write	performance
improvement.

Level	4

This	level	employs	striped	data	in	much	larger	blocks	or	segments	than
RAID	2	or	RAID	3.	Like	RAID	3,	the	error	correction	method	requires	only
one	disk	for	parity	data.	It	keeps	user	data	separate	from	error-correction
data.	RAID	4	is	not	as	efficient	as	other	RAID	levels	and	is	not	generally
used.

Level	5

Also	known	as	striping	with	parity,	this	level	is	the	most	popular	strategy	for
new	designs.	It	is	similar	to	RAID	4	in	that	it	stripes	the	data	in	large	blocks
across	the	disks	in	an	array.	It	differs	in	that	it	writes	the	parity	across	all	the
disks.	Data	redundancy	is	provided	by	the	parity	information.	The	data	and



parity	information	are	arranged	on	the	disk	array	so	that	the	two	are	always
on	different	disks.	Striping	with	parity	offers	better	performance	than	disk
mirroring	(RAID	1).	However,	when	a	stripe	member	is	missing,	read
performance	degrades	(for	example,	when	a	disk	fails).

				

Level	10	(1+0)

This	level	is	also	known	as	mirroring	with	striping.	This	level	uses	a	striped
array	of	disks,	which	are	then	mirrored	to	another	identical	set	of	striped
disks.	For	example,	a	striped	array	can	be	created	using	five	disks.	The
striped	array	of	disks	is	then	mirrored	using	another	set	of	five	striped	disks.
RAID	10	provides	the	performance	benefits	of	disk	striping	with	the	disk
redundancy	of	mirroring.	RAID	10	provides	the	highest	read/write
performance	of	any	of	the	RAID	levels	at	the	expense	of	using	twice	as
many	disks.



Optimizing	Database	Performance

Comparing	Different	Implementations	of	RAID
Levels
There	are	advantages	and	disadvantages	to	using	the	various	implementations	of
RAID	(redundant	array	of	independent	disks).

RAID	implementation Advantage Disadvantage
Microsoft®
WindowsNT®-based
striping	or	Windows
2000	RAID-5	volumes

No	added	hardware	cost. Uses	system
processing
resources.

Hardware-based
striping

Does	not	compete	for
processor	cycles.	Best
performance	of	all	RAID
implementations.

Additional	cost	of
specialized
hardware.

RAID	solutions	typically	used	with	Microsoft	SQL	Server™	2000	provide
varying	levels	of	redundancy	and	fault	tolerance.

RAID	implementation Advantage Disadvantage
Hardware-based	RAID
3,	5,	or	10

Excellent	performance.	Does
not	compete	for	processor
cycles.

Cost.

Hardware-based	RAID
1

Excellent	redundancy.	Does
not	compete	for	processor
cycles.

Additional	cost	due
to	more	hardware.

Hardware-based	RAID
10

Excellent	performance.
Excellent	redundancy.

Additional	cost	due
to	more	hardware.

Windows	NT–based
RAID	1	or	Windows
2000	mirrored	volumes

Good	redundancy.	Low	cost. Uses	system
processing
resources.

Windows	NT–	or
Windows	2000-based
RAID	5

Excellent	read	performance.
Low	cost.

Uses	system
processing
resources.





Optimizing	Database	Performance

About	Hardware-Based	Solutions
RAID	(redundant	array	of	independent	disks)	levels	0,	1,	3,	and	5	are	the	levels
typically	implemented	in	hardware-based	solutions.

Hardware-based	RAID	uses	an	intelligent	drive	controller	and	a	redundant	array
of	disk	drives	to	protect	against	data	loss	in	the	event	of	media	failure	and	to
improve	the	performance	of	read/write	operations.	A	disk	array	is	an	effective
disk-storage	solution	for	computers	running	Microsoft®	SQL	Server™2000.

Hardware-based	RAID	levels	1	through	5	automate	redundancy	and	fault
tolerance	at	the	hardware	level.	All	levels	(0	through	5)	incur	no	overhead	on	the
system	processor.	Individual	data	files	are	typically	spread	across	more	than	one
disk.	It	is	possible	to	implement	a	hardware-based	RAID	solution	that	provides
your	system	with	seamless,	nonstop	recovery	from	media	failure.

In	general,	hardware-based	RAID	offers	performance	advantages	over	Microsoft
Windows	NT®	or	Windows®	2000	software-based	RAID.	For	example,	you	can
improve	data	throughput	significantly	by	implementing	RAID	5	through
hardware	that	does	not	use	system	software	resources.	This	is	accomplished	by
using	more	disks	at	a	given	capacity	than	in	conventional	storage	solution.
Read/write	performance	and	total	storage	size	can	be	further	improved	by	using
multiple	controllers.

Depending	on	the	configuration,	hardware-based	RAID	generally	provides	good
performance.	It	also	makes	it	much	easier	to	manage	multiple	disks,	allowing
you	to	treat	an	array	of	disks	as	one	disk.	You	may	even	be	able	to	replace	a
failed	drive	without	shutting	down	the	system.	The	disadvantages	of	a	hardware-
based	solution	are	cost,	and	it	may	lock	you	into	a	single	vendor.

For	more	information	about	implementing	hardware-based	RAID,	contact	the
hardware	vendor.



Optimizing	Database	Performance

About	Windows	NT–	and	Windows	2000-Based	Disk
Striping	and	Striping	with	Parity
Microsoft®	Windows	NT®–based	disk	striping	and	striping	with	parity	and
Windows®	2000	RAID-5	volumes	implement	RAID	features	in	software,	using
any	hardware	compatible	with	the	operating	system.	Because	these	are	software-
based	solutions	provided	with	the	operating	system,	they	offer	a	cost	advantage.

Disk	striping	writes	data	in	stripes	across	a	volume	(created	from	areas
of	free	space).	For	more	information	about	volumes,	see	the	Windows
NT	or	Windows	2000	documentation.

These	areas	are	all	the	same	size	and	are	spread	over	an	array	of	disks
(up	to	32	disks).	Striping	writes	files	across	all	disks,	so	data	is	added	to
all	partitions	in	the	set	at	the	same	rate.

Windows	NT-based	disk	striping	and	Windows	2000	volume	sets
implement	RAID	0.	Disk	striping	provides	the	best	performance	of	all
Windows	NT	Server	disk-management	strategies,	but	does	not	provide
any	fault-tolerance	protection.

Disk	striping	with	parity	is	similar	to	disk	striping.	Disk	striping	with
parity	adds	a	parity-information	stripe	to	each	disk	partition	in	the
volume.	This	provides	fault-tolerance	protection	equivalent	to	that	of
disk	mirroring,	but	requires	much	less	space	for	the	redundant	data.
Windows	NT-based	disk	striping	with	parity	and	Windows	2000	RAID-
5	volumes	implement	RAID	5.

When	a	member	of	a	stripe	set	with	parity	or	RAID-5	volume	fails	in	a	severe
manner	(for	example,	from	a	loss	of	power	or	a	complete	head	crash),	you	can
regenerate	the	data	for	that	member	of	the	stripe	set	from	the	remaining
members.

Stripe	sets	with	parity	and	RAID-5	volumes	are	a	good	solution	for	data
redundancy	in	a	computing	environment	in	which	most	activity	consists	of
reading	data.	Disk	stripe	sets	with	parity	and	RAID-5	volumes	also	improve
write	performance,	but	not	as	much	as	striping	alone.	Creating	a	disk	stripe	set



with	parity	or	a	RAID-5	volume	requires	at	least	three	physical	disks	on	the
server.

Disk	striping	is	available	on	Windows	NT	Server,	Windows	NT	Workstation	and
Windows	2000.	However,	disk	striping	with	parity	is	supported	only	for
Windows	NT	Server	and	Windows	2000.	On	a	dual-boot	computer,	stripe	sets,
including	those	with	parity,	are	not	accessible	when	running	the	Microsoft	MS-
DOS®	operating	system.

Disk	striping	with	parity	or	Windows	2000	RAID-5	volumes	are	recommended
over	mirroring	for	applications	that	require	redundancy	and	are	read-oriented,
although	disk	striping	with	parity	and	RAID-5	volumes	require	more	system
memory.

Disk	striping	and	disk	striping	with	parity	are	set	up	and	managed	using	the
Windows	NT	Disk	Administrator	application,	which	can	be	started	from	the
Administrative	Tools	program	group.	RAID-5	volumes	are	set	up	and	managed
using	the	Windows	2000	Disk	Management	application,	which	can	be	started
from	the	Computer	Management	program.

For	more	information	about	setting	up	disk	striping	or	disk	striping	with	parity,
see	the	Windows	NT	Server	or	Windows	2000	documentation.



Optimizing	Database	Performance

About	Windows	NT-	and	Windows	2000-Based	Disk
Mirroring	and	Duplexing
Microsoft®	Windows	NT®	and	Windows®	2000-based	disk	mirroring	and
duplexing	implement	RAID	(redundant	array	of	independent	disks)	features	in
software	using	any	hardware	compatible	with	the	operating	system.	Because
these	are	software-based	solutions	provided	with	the	operating	system,	they	offer
a	cost	advantage.

Disk	mirroring	protects	against	media	failure	by	maintaining	a	fully
redundant	copy	of	a	partition	on	another	disk.	This	provides	protection
from	the	downtime	and	expense	involved	in	recovering	lost	data	and
restoring	data	from	a	backup	storage	facility.	In	a	sense,	mirroring	is
continual	backup.	Mirroring	also	provides	some	performance	benefits
when	reading	data	from	disks	under	heavy	I/O	loads.	Windows	NT–
based	disk	mirroring	and	Windows	2000	mirrored	volume	implement
RAID	1.	

Disk	duplexing	is	a	form	of	mirroring	that	provides	protection	against
controller	failures	(in	addition	to	protecting	against	media	failures)	by
using	a	different	disk	controller	on	the	mirror	disk.

Disk	mirroring	and	duplexing	are	features	of	Windows	NT	Server.	They	are	not
supported	for	Windows	NT	Workstation.	Mirrored	volume	is	a	feature	of
Windows	2000.	On	a	dual-boot	computer,	they	are	not	accessible	when	running
the	Microsoft	MS-DOS®	operating	system.

Windows	NT–based	disk	mirroring,	or	duplexing,	and	Windows	2000	mirrored
volumes	offer	better	write	performance	than	Windows	NT–based	disk	striping
with	parity	and	Windows	2000	RAID-5	volumes.	They	also	require	less	system
memory	and	do	not	show	performance	degradation	during	a	failure.

The	entry	cost	of	Windows	NT	and	Windows	2000-based	disk	mirroring	or
duplexing	is	lower	because	they	require	only	two	or	more	disks	(compared	to
disk	striping	with	parity	and	RAID-5	volume,	which	require	three	or	more



disks).	However,	mirroring	provides	less	usable	disk	space	(compared	to	disk
striping	with	parity	or	RAID-5	volume),	so	the	cost	per	megabyte	is	higher.

Disk	mirroring	and	duplexing	are	implemented	by	using	the	Windows	NT	Disk
Administrator	application,	which	can	be	started	from	the	Administrative	Tools
program	group.	Mirrored	volumes	are	set	up	and	managed	using	the	Windows
2000	Disk	Management	application,	which	can	be	started	from	the	Computer
Management	program.

For	more	information	about	setting	up	disk	mirroring	or	duplexing,	see	the
Windows	NT	Server	documentation.

Note		The	term	mirroring	is	frequently	used	in	Windows	NT	Server
documentation	to	describe	both	disk	mirroring	and	duplexing.



Optimizing	Database	Performance



Partitioning
Partitioning	a	database	improves	performance	and	simplifies	maintenance.	By
splitting	a	large	table	into	smaller,	individual	tables,	queries	accessing	only	a
fraction	of	the	data	can	run	faster	because	there	is	less	data	to	scan.	Maintenance
tasks,	such	as	rebuilding	indexes	or	backing	up	a	table,	can	execute	more
quickly.

Partitioning	can	be	achieved	without	splitting	tables	by	physically	placing	them
on	individual	disk	drives.	Placing	a	table	on	one	physical	drive	and	related	tables
on	a	separate	drive,	for	example,	can	improve	query	performance	because	when
queries	involving	joins	between	the	tables	are	executed,	multiple	disk	heads	read
data	at	the	same	time.	Microsoft®	SQL	Server™	2000	filegroups	can	be	used	to
specify	on	which	disks	to	place	the	tables.

Hardware	Partitioning
Hardware	partitioning	designs	the	database	to	take	advantage	of	the	available
hardware	architecture.	Examples	of	hardware	partitioning	include:

Multiprocessors	that	allow	multiple	threads	of	execution,	permitting
many	queries	to	execute	at	the	same	time.	Alternatively,	a	single	query
may	be	able	to	run	faster	on	multiple	processors	by	allowing
components	of	the	query	to	be	executed	simultaneously.	For	example,
each	table	referenced	in	the	query	can	be	scanned	at	the	same	time	by	a
different	thread.

RAID	(redundant	array	of	independent	disks)	devices	that	allow	data	to
be	striped	across	multiple	disk	drives,	permitting	faster	access	to	the
data	because	more	read/write	heads	read	data	at	the	same	time.	A	table
striped	across	multiple	drives	can	typically	be	scanned	faster	than	the
same	table	stored	on	one	drive.	Alternatively,	storing	tables	on	separate
drives	from	related	tables	can	significantly	improve	the	performance	of
queries	joining	those	tables.

Horizontal	Partitioning



Horizontal	partitioning	segments	a	table	into	multiple	tables,	each	containing	the
same	number	of	columns	but	fewer	rows.	For	example,	a	table	containing	1
billion	rows	could	be	partitioned	horizontally	into	12	tables,	with	each	smaller
table	representing	one	month	of	data	for	a	given	year.	Any	queries	requiring	a
specific	month's	data	reference	the	appropriate	table	only.

Determining	how	to	partition	the	tables	horizontally	depends	on	how	data	is
analyzed.	Partition	the	tables	so	that	queries	reference	as	few	tables	as	possible.
Otherwise,	excessive	UNION	queries,	used	to	merge	the	tables	logically	at	query
time,	can	impair	performance.	For	more	information	about	querying	horizontally
partitioned	tables,	see	Scenarios	for	Using	Views.

Partitioning	data	horizontally	based	on	age/use	is	common.	For	example,	a	table
may	contain	data	for	the	last	five	years,	but	only	data	from	the	current	year	is
regularly	accessed.	In	this	case,	you	may	consider	partitioning	the	data	into	five
tables,	with	each	table	containing	data	from	only	one	year.

Vertical	Partitioning
Vertical	partitioning	segments	a	table	into	multiple	tables	containing	fewer
columns.	The	two	types	of	vertical	partitioning	are	normalization	and	row
splitting.

Normalization	is	the	standard	database	process	of	removing	redundant	columns
from	a	table	and	placing	them	in	secondary	tables	linked	to	the	primary	table	by
primary	key	and	foreign	key	relationships.

Row	splitting	divides	the	original	table	vertically	into	tables	with	fewer	columns.
Each	logical	row	in	a	split	table	matches	the	same	logical	row	in	the	others.	For
example,	joining	the	tenth	row	from	each	split	table	re-creates	the	original	row.

Like	horizontal	partitioning,	vertical	partitioning	allows	queries	to	scan	less	data,
hence	increasing	query	performance.	For	example,	a	table	containing	seven
columns,	of	which	only	the	first	four	are	commonly	referenced,	may	benefit
from	splitting	the	last	three	columns	into	a	separate	table.

Vertical	partitioning	should	be	considered	carefully	because	analyzing	data	from
multiple	partitions	requires	queries	joining	the	tables,	possibly	affecting
performance	if	partitions	are	very	large.

JavaScript:hhobj_1.Click()


See	Also

Using	Views	with	Partitioned	Data

JavaScript:hhobj_2.Click()


Optimizing	Database	Performance



Data	Placement	Using	Filegroups
Microsoft®	SQL	Server™	2000	allows	you	to	create	tables	or	indexes	on	a
specific	filegroup	within	your	database,	rather	than	across	all	filegroups	in	a
database.	By	creating	a	filegroup	on	a	specific	disk	or	RAID	(redundant	array	of
independent	disks)	device,	you	can	control	where	tables	and	indexes	in	your
database	are	physically	located.	Reasons	for	placing	tables	and	indexes	on
specific	disks	include:

Improved	query	performance.

Parallel	queries.

See	Also

Files	and	Filegroups

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Placing	Tables	on	Filegroups
A	table	can	be	created	on	a	specific	filegroup	rather	than	the	default	filegroup.	If
the	filegroup	comprises	multiple	files	spread	across	various	physical	disks,	each
with	its	own	disk	controller,	then	queries	for	data	from	the	table	will	be	spread
across	the	disks,	thereby	improving	performance.	The	same	effect	can	be
accomplished	by	creating	a	single	file	on	a	RAID	(redundant	array	of
independent	disks)	level	0,	1,	or	5	device.

If	the	computer	has	multiple	processors,	Microsoft®	SQL	Server™	2000	can
perform	parallel	scans	of	the	data.	Multiple	parallel	scans	can	be	executed	for	a
single	table	if	the	filegroup	of	the	table	contains	multiple	files.	Whenever	a	table
is	accessed	sequentially,	a	separate	thread	is	created	to	read	each	file	in	parallel.
For	example,	a	full	scan	of	a	table	created	on	a	filegroup	comprising	of	four	files
will	use	four	separate	threads	to	read	the	data	in	parallel.	Therefore,	creating
more	files	per	filegroup	can	help	increase	performance	because	a	separate	thread
is	used	to	scan	each	file	in	parallel.	Similarly,	when	a	query	joins	tables	on
different	filegroups,	each	table	can	be	read	in	parallel,	thereby	improving	query
performance.

Additionally,	any	text,	ntext,	or	image	columns	within	a	table	can	be	created	on
a	filegroup	other	than	the	one	that	contains	the	base	table.

Eventually,	there	is	a	saturation	point	when	there	are	too	many	files	and
therefore	too	many	parallel	threads	causing	bottlenecks	in	the	disk	I/O
subsystem.	These	bottlenecks	can	be	identified	by	using	Windows	NT®
Performance	Monitor	to	monitor	the	PhysicalDisk	object	and	Disk	Queue
Length	counter.	If	the	Disk	Queue	Length	counter	is	greater	than	three,
consider	reducing	the	number	of	files.	For	more	information,	see	Monitoring
Disk	Activity.

It	is	advantageous	to	get	as	much	data	spread	across	as	many	physical	drives	as
possible	in	order	to	improve	throughput	through	parallel	data	access	using
multiple	files.	To	spread	data	evenly	across	all	disks,	first	set	up	hardware-based
disk	striping,	and	then	use	filegroups	to	spread	data	across	multiple	hardware
stripe	sets	if	needed.

JavaScript:hhobj_1.Click()


To	create	a	new	table	on	a	specific	filegroup

Transact-SQL

Enterprise	Manager

SQL-DMO

To	place	an	existing	table	on	a	different	filegroup

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


Optimizing	Database	Performance

Placing	Indexes	on	Filegroups
By	default,	indexes	are	created	on	the	same	filegroup	as	the	base	table	on	which
the	index	is	created.	However,	it	is	possible	to	create	nonclustered	indexes	on	a
filegroup	other	than	the	filegroup	of	the	base	table.	By	creating	the	index	on	a
different	filegroup,	you	can	realize	performance	gains	if	the	filegroups	make	use
of	different	physical	drives	with	their	own	controllers.	Data	and	index
information	can	then	be	read	in	parallel	by	multiple	disk	heads.	For	example	if
Table_A	on	filegroup	f1	and	Index_A	on	filegroup	f2	are	both	being	used	by	the
same	query,	performance	gains	can	be	achieved	because	both	filegroups	are
being	fully	used	with	no	contention.	However,	if	Table_A	is	scanned	by	the
query	but	Index_A	is	not	referenced,	only	filegroup	f1	is	used,	resulting	in	no
performance	gain.

Because	you	cannot	predict	what	type	of	access	will	take	place	and	when	it	will
take	place,	it	could	be	a	safer	decision	to	spread	your	tables	and	indexes	across
all	filegroups.	This	would	guarantee	that	all	disks	are	being	accessed	since	all
data	and	indexes	are	spread	evenly	across	all	disks,	no	matter	which	way	the
data	is	accessed.	This	is	also	a	simpler	approach	for	system	administrators.

If	there	is	a	clustered	index	on	a	table,	the	data	and	the	clustered	index	always
reside	in	the	same	filegroup.	Therefore,	you	can	move	a	table	from	one	filegroup
to	another	by	creating	a	clustered	index	on	the	base	table	that	specifies	a
different	filegroup	on	which	to	create	the	index	(the	index	can	then	be	dropped,
leaving	the	base	table	in	the	new	filegroup).

If	the	indexes	of	a	table	span	multiple	filegroups,	all	filegroups	containing	the
table	and	its	indexes	must	be	backed	up	together,	after	which	a	transaction	log
backup	must	be	created.	Otherwise,	only	some	of	the	indexes	may	be	backed	up,
preventing	the	index	from	being	recovered	if	the	backup	is	restored	later.	For
more	information,	see	Using	File	Backups.

Note		An	individual	table	or	index	can	belong	to	only	one	filegroup;	it	cannot
span	filegroups.

To	create	a	new	index	on	a	specific	filegroup

Transact-SQL

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Enterprise	Manager

SQL-DMO

To	place	an	existing	index	on	a	different	filegroup

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


Optimizing	Database	Performance



Index	Tuning	Recommendations
Indexes	can	be	dropped,	added,	and	changed	without	affecting	the	database
schema	or	application	design.	Efficient	index	design	is	paramount	to	achieving
good	performance.	For	these	reasons,	you	should	not	hesitate	to	experiment	with
different	indexes.	The	Index	Tuning	Wizard	can	be	used	to	analyze	your	queries
and	suggest	the	indexes	that	should	be	created.	For	more	information,	see	Index
Tuning	Wizard.

The	query	optimizer	in	Microsoft®	SQL	Server™	2000	reliably	chooses	the
most	effective	index	in	the	majority	of	cases.	The	overall	index	design	strategy
should	provide	a	good	selection	of	indexes	to	the	query	optimizer	and	trust	it	to
make	the	right	decision.	This	reduces	analysis	time	and	results	in	good
performance	over	a	wide	variety	of	situations.

Do	not	always	equate	index	usage	with	good	performance,	and	vice-versa.	If
using	an	index	always	produced	the	best	performance,	the	job	of	the	query
optimizer	would	be	simple.	In	reality,	incorrect	choice	of	indexed	retrieval	can
result	in	less	than	optimal	performance.	Therefore,	the	task	of	the	query
optimizer	is	to	select	indexed	retrieval	only	when	it	will	improve	performance
and	to	avoid	indexed	retrieval	when	it	will	affect	performance.

Recommendations	for	creating	indexes	include:

Write	queries	that	update	as	many	rows	as	possible	in	a	single
statement,	rather	than	using	multiple	queries	to	update	the	same	rows.
By	using	only	one	statement,	optimized	index	maintenance	can	be
exploited.

Use	the	Index	Tuning	Wizard	to	analyze	your	queries	and	make	index
recommendations.	For	more	information,	see	Index	Tuning	Wizard.	

Use	integer	keys	for	clustered	indexes.	Additionally,	clustered	indexes
benefit	from	being	created	on	unique,	nonnull,	or	IDENTITY	columns.
For	more	information,	see	Using	Clustered	Indexes.	

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()


Create	nonclustered	indexes	on	all	columns	frequently	used	in	queries.
This	can	maximize	the	use	of	covered	queries.	For	more	information,
see	Using	Nonclustered	Indexes.	

The	time	taken	to	physically	create	an	index	is	largely	dependent	on	the
disk	subsystem.	Important	factors	to	consider	are:

RAID	(redundant	array	of	independent	disks)	level	used	to
store	the	database	and	transaction	log	files.

Number	of	disks	in	the	disk	array	(if	RAID	was	used).

Size	of	each	data	row	and	the	number	of	rows	per	page.	This
determines	the	number	of	data	pages	that	must	be	read	from
disk	to	create	the	index.

The	columns	in	the	index	and	the	data	types	used.	This
determines	the	number	of	index	pages	that	have	to	be	written	to
disk.

Examine	column	uniqueness.	For	more	information,	see	Using	Unique
Indexes.	

Examine	data	distribution	in	indexed	columns.	Often,	a	long-running
query	is	caused	by	indexing	a	column	with	few	unique	values,	or	by
performing	a	join	on	such	a	column.	This	is	a	fundamental	problem
with	the	data	and	query,	and	usually	cannot	be	resolved	without
identifying	this	situation.	For	example,	a	physical	telephone	directory
sorted	alphabetically	on	last	name	will	not	expedite	locating	a	person	if
all	people	in	the	city	are	named	Smith	or	Jones.

See	Also

Statistical	Information

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()


Optimizing	Database	Performance



Optimizing	Transaction	Log	Performance
General	recommendations	for	creating	transaction	log	files	include:

Create	the	transaction	log	on	a	physically	separate	disk	or	RAID
(redundant	array	of	independent	disks)	device.	The	transaction	log	file
is	written	serially;	therefore,	using	a	separate,	dedicated	disk	allows	the
disk	heads	to	stay	in	place	for	the	next	write	operation.

Set	the	original	size	of	the	transaction	log	file	to	a	reasonable	size	to
prevent	the	file	from	automatically	expanding	as	more	transaction	log
space	is	needed.	As	the	transaction	log	expands,	a	new	virtual	log	file	is
created,	and	write	operations	to	the	transaction	log	wait	while	the
transaction	log	is	expanded.	If	the	transaction	log	expands	too
frequently,	performance	can	be	affected.

Set	the	file	growth	increment	percentage	to	a	reasonable	size	to	prevent
the	file	from	growing	by	too	small	a	value.	If	the	file	growth	is	too
small	compared	to	the	number	of	log	records	being	written	to	the
transaction	log,	then	the	transaction	log	may	need	to	expand	constantly,
affecting	performance.

Manually	shrink	the	transaction	log	files	rather	than	allowing
Microsoft®	SQL	Server™	2000	to	shrink	the	files	automatically.
Shrinking	the	transaction	log	can	affect	performance	on	a	busy	system
due	to	the	movement	and	locking	of	data	pages.

See	Also

Transaction	Logs

Virtual	Log	Files

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Optimizing	Database	Performance



Optimizing	tempdb	Performance
General	recommendations	for	the	physical	placement	and	database	options	set
for	the	tempdb	database	include:

Allow	the	tempdb	database	to	automatically	expand	as	needed.	This
ensures	that	queries	that	generate	larger	than	expected	intermediate
result	sets	stored	in	the	tempdb	database	are	not	terminated	before
execution	is	complete.

Set	the	original	size	of	the	tempdb	database	files	to	a	reasonable	size	to
avoid	the	files	from	automatically	expanding	as	more	space	is	needed.	If
the	tempdb	database	expands	too	frequently,	performance	can	be
affected.

Set	the	file	growth	increment	percentage	to	a	reasonable	size	to	avoid
the	tempdb	database	files	from	growing	by	too	small	a	value.	If	the	file
growth	is	too	small	compared	to	the	amount	of	data	being	written	to	the
tempdb	database,	then	tempdb	may	need	to	constantly	expand,	thereby
affecting	performance.

Place	the	tempdb	database	on	a	fast	I/O	subsystem	to	ensure	good
performance.	Stripe	the	tempdb	database	across	multiple	disks	for
better	performance.	Use	filegroups	to	place	the	tempdb	database	on
disks	different	from	those	used	by	user	databases.

See	Also

Expanding	a	Database

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance



File	Systems
Server	performance	is	not	affected	by	the	file	system	used	(FAT	or	NTFS).	Your
choice	of	file	system	should	be	determined	by	factors	other	than	performance.

The	File	Allocation	Table	(FAT)	file	system	allows	dual	booting	with
computers	running	Microsoft®	MS-DOS®,	Microsoft	Windows®	95,
or	Microsoft	Windows	98.

The	Microsoft	Windows	NT®	file	system	(NTFS)	has	security	and
recovery	advantages.

If	you	do	not	need	to	dual-boot	Windows	NT	or	Windows	2000	with
MS-DOS,	Windows	95,	or	Windows	98,	NTFS	is	recommended.

WARNING		Microsoft	SQL	Server™	2000	data	and	transaction	log	files	must	not
be	placed	on	compressed	file	systems.

For	more	information	about	choosing	the	appropriate	file	system,	see	the
operating	system	documentation.

Note		When	running	on	Windows	NT,	SQL	Server	performance	can	be	improved
further	if	the	databases	are	created	on	disks	formatted	using	NTFS	and,
specifically,	64-KB	extent	sizes.	For	more	information	about	formatting	an
NTFS	disk,	see	the	Windows	NT	documentation.



Optimizing	Database	Performance



Query	Tuning
It	may	be	tempting	to	address	a	performance	problem	solely	by	system-level
server	performance	tuning;	for	example,	memory	size,	type	of	file	system,
number	and	type	of	processors,	and	so	forth.	Experience	has	shown	that	most
performance	problems	cannot	be	resolved	this	way.	They	must	be	addressed	by
analyzing	the	application,	queries,	and	updates	that	the	application	is	submitting
to	the	database,	and	how	these	queries	and	updates	interact	with	the	database
schema.

Unexpected	long-lasting	queries	and	updates	can	be	caused	by:

Slow	network	communication.

Inadequate	memory	in	the	server	computer,	or	not	enough	memory
available	for	Microsoft®	SQL	Server™	2000.

Lack	of	useful	statistics.

Out-of-date	statistics.

Lack	of	useful	indexes.

Lack	of	useful	data	striping.

When	a	query	or	update	takes	longer	than	expected,	use	the	following	checklist
to	improve	performance.

Note		It	is	recommended	that	this	checklist	be	consulted	prior	to	contacting	your
technical	support	provider.

1.	 Is	the	performance	problem	related	to	a	component	other	than	queries?
For	example,	is	the	problem	slow	network	performance?	Are	there	any
other	components	that	might	be	causing	or	contributing	to
performance	degradation?	Windows	NT	Performance	Monitor	can	be



used	to	monitor	the	performance	of	SQL	Server	and	non-SQL	Server
related	components.	For	more	information,	see	Monitoring	with
System	Monitor.

2.	 If	the	performance	issue	is	related	to	queries,	which	query	or	set	of
queries	is	involved?	Use	SQL	Profiler	to	help	identify	the	slow	query
or	queries.	For	more	information,	see	Monitoring	with	SQL	Profiler.

The	performance	of	a	database	query	can	be	determined	by	using	the
SET	statement	to	enable	the	SHOWPLAN,	STATISTICS	IO,
STATISTICS	TIME,	and	STATISTICS	PROFILE	options.

SHOWPLAN	describes	the	method	chosen	by	the	SQL	Server
query	optimizer	to	retrieve	data.	For	more	information,	see
SET	SHOWPLAN_ALL.	

STATISTICS	IO	reports	information	about	the	number	of
scans,	logical	reads	(pages	accessed	in	cache),	and	physical
reads	(number	of	times	the	disk	was	accessed)	for	each	table
referenced	in	the	statement.	For	more	information,	see	SET
STATISTICS	IO.	

STATISTICS	TIME	displays	the	amount	of	time	(in
milliseconds)	required	to	parse,	compile,	and	execute	a	query.
For	more	information,	see	SET	STATISTICS	TIME.	

STATISTICS	PROFILE	displays	a	result	set	after	each
executed	query	representing	a	profile	of	the	execution	of	the
query.	For	more	information,	see	SET	STATISTICS
PROFILE.

In	SQL	Query	Analyzer,	you	can	also	turn	on	the	graphical	execution
plan	option	to	view	a	graphical	representation	of	how	SQL	Server
retrieves	data.

The	information	gathered	by	these	tools	allows	you	to	determine	how
a	query	is	executed	by	the	SQL	Server	query	optimizer	and	which

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()


indexes	are	being	used.	Using	this	information,	you	can	determine	if
performance	improvements	can	be	made	by	rewriting	the	query,
changing	the	indexes	on	the	tables,	or	perhaps	modifying	the	database
design.	For	more	information,	see	Analyzing	a	Query.

3.	 Was	the	query	optimized	with	useful	statistics?

Statistics	on	the	distribution	of	values	in	a	column	are	automatically
created	on	indexed	columns	by	SQL	Server.	They	can	also	be	created
on	nonindexed	columns	either	manually,	using	SQL	Query	Analyzer	or
the	CREATE	STATISTICS	statement,	or	automatically,	if	the	auto
create	statistics	database	option	is	set	to	true.	These	statistics	can	be
used	by	the	query	processor	to	determine	the	optimal	strategy	for
evaluating	a	query.	Maintaining	additional	statistics	on	nonindexed
columns	involved	in	join	operations	can	improve	query	performance.
For	more	information,	see	Statistical	Information.

Monitor	the	query	using	SQL	Profiler	or	the	graphical	execution	plan
in	SQL	Query	Analyzer	to	determine	if	the	query	has	enough	statistics.
For	more	information,	see	Error	and	Warning	Event	Category.

4.	 Are	the	query	statistics	up-to-date?	Are	the	statistics	automatically
updated?

SQL	Server	automatically	creates	and	updates	query	statistics	on
indexed	columns	(as	long	as	automatic	query	statistic	updating	is	not
disabled).	Additionally,	statistics	can	be	updated	on	nonindexed
columns	either	manually,	using	SQL	Query	Analyzer	or	the	UPDATE
STATISTICS	statement,	or	automatically,	if	the	auto	update	statistics
database	option	is	set	to	true.	Up-to-date	statistics	are	not	dependent
upon	date	or	time	data.	If	no	UPDATE	operations	have	taken	place,
then	the	query	statistics	are	still	up-to-date.

If	statistics	are	not	set	to	update	automatically,	then	set	them	to	do	so.
For	more	information,	see	Statistical	Information.

5.	 Are	suitable	indexes	available?	Would	adding	one	or	more	indexes
improve	query	performance?	For	more	information,	see	Index	Tuning
Recommendations.	

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()


6.	 Are	there	any	data	or	index	hot	spots?	Consider	using	disk	striping.
For	more	information,	see	Data	Placement	Using	Filegroups	and
RAID.	

7.	 Is	the	query	optimizer	provided	with	the	best	opportunity	to	optimize	a
complex	query?	For	more	information,	see	Query	Tuning
Recommendations.

See	Also

Advanced	Query	Concepts

Query	Processor	Architecture

Monitoring	with	SQL	Server	Enterprise	Manager

SET

Parallel	Query	Processing

JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()


Optimizing	Database	Performance



Analyzing	a	Query
Microsoft®	SQL	Server™	2000	offers	these	ways	to	present	information	on	how
it	navigates	tables	and	uses	indexes	to	access	the	data	for	a	query:

Graphically	display	the	execution	plan	using	SQL	Query	Analyzer

In	SQL	Query	Analyzer,	click	Query	and	select	Display	Execution
Plan.	After	executing	a	query,	you	can	select	the	Execution	Plan	tab	to
see	a	graphical	representation	of	execution	plan	output.	For	more
information,	see	Graphically	Displaying	the	Execution	Plan	Using	SQL
Query	Analyzer.

SET	SHOWPLAN_TEXT	ON

After	this	statement	is	executed,	SQL	Server	returns	the	execution	plan
information	for	each	query.	For	more	information,	see	SET
SHOWPLAN_TEXT.

SET	SHOWPLAN_ALL	ON

This	statement	is	similar	to	SET	SHOWPLAN_TEXT,	except	that	the
output	is	in	a	concise	format.	For	more	information,	see	SET
SHOWPLAN_ALL.

When	you	display	the	execution	plan,	the	statements	you	submit	to	the	server	are
not	executed;	instead,	SQL	Server	analyzes	the	query	and	displays	how	the
statements	would	have	been	executed	as	a	series	of	operators.

Note		Because	statements	are	not	executed	when	the	execution	plan	is	displayed,
Transact-SQL	operations	such	as	creating	a	table	do	not	cause	the	table	to	be
created.	Therefore,	subsequent	operations	involving	the	table	return	errors
because	the	table	does	not	exist.

The	best	execution	plan	used	by	the	query	engine	for	individual	data
manipulation	language	(DML)	and	Transact-SQL	statements	is	displayed,	and
reveals	compile-time	information	about	stored	procedures,	triggers	invoked	by	a
batch,	and	called	stored	procedures	and	triggers	invoked	to	an	arbitrary	number
of	calling	levels.	For	example,	executing	a	SELECT	statement	can	show	that
SQL	Server	uses	a	table	scan	to	obtain	the	data.	Alternatively,	an	index	scan	may

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


have	been	used	instead	if	the	index	was	determined	to	be	a	faster	method	of
retrieving	the	data	from	the	table.

The	results	returned	by	the	SHOWPLAN_TEXT	and	SHOWPLAN_ALL
statements	are	a	tabular	representation	(rows	and	columns)	of	a	tree	structure.
The	execution	plan	tree	structure	uses	one	row	in	the	result	set	for	each	node	in
the	tree,	each	node	representing	a	logical	or	physical	operator	used	to	manipulate
the	data	to	produce	expected	results.	SQL	Query	Analyzer	instead	graphically
displays	each	logical	and	physical	operator	as	an	icon.	For	more	information,	see
Logical	and	Physical	Operators.



Optimizing	Database	Performance



Graphically	Displaying	the	Execution	Plan	Using	SQL
Query	Analyzer
SQL	Query	Analyzer	is	an	interactive,	graphical	tool	that	enables	a	database
administrator	or	developer	to	write	queries,	execute	multiple	queries
simultaneously,	view	results,	analyze	the	query	plan,	and	receive	assistance	to
improve	the	query	performance.	The	Execution	Plan	options	graphically	display
the	data	retrieval	methods	chosen	by	the	Microsoft®	SQL	Server™	2000	query
optimizer.	The	graphical	execution	plan	uses	icons	to	represent	the	execution	of
specific	statements	and	queries	in	SQL	Server	rather	than	the	tabular
representation	produced	by	the	SET	SHOWPLAN_ALL	or	SET
SHOWPLAN_TEXT	statements.	This	is	very	useful	for	understanding	the
performance	characteristics	of	a	query.	Additionally,	SQL	Query	Analyzer
shows	suggestions	for	additional	indexes	and	statistics	on	nonindexed	columns
that	would	improve	the	ability	of	the	query	optimizer	to	process	a	query
efficiently.	In	particular,	SQL	Query	Analyzer	shows	which	statistics	are
missing,	thereby	forcing	the	query	optimizer	to	make	estimates	about	predicate
selectivity,	and	then	permits	those	missing	statistics	to	be	easily	created.

The	following	icons	displayed	in	the	graphical	execution	plan	represent	the
physical	operators	used	by	SQL	Server	to	execute	statements.	For	more
information,	see	Logical	and	Physical	Operators.

Icon Physical	operator
Assert

Bookmark	Lookup

Clustered	Index	Delete

Clustered	Index	Insert

Clustered	Index	Scan

Clustered	Index	Seek

Clustered	Index	Update

Collapse



Compute	Scalar

Concatenation

Constant	Scan

Deleted	Scan

Filter	(clsColumn)

Hash	Match

Hash	Match	Root

Hash	Match	Team

Index	Delete

Index	Insert

Index	Scan

Index	Seek

Index	Spool

Index	Update

Inserted	Scan

Log	Row	Scan

Merge	Join

Nested	Loops

Parallelism

Parameter	Table	Scan

Remote	Delete

Remote	Insert

Remote	Query

Remote	Scan

Remote	Update

Row	Count	Spool

JavaScript:hhobj_1.Click()


Sequence

Sort

Stream	Aggregate

Table	Delete

Table	Insert

Table	Scan

Table	Spool

Table	Update

Top

The	following	icons	displayed	in	the	graphical	execution	plan	represent	the
cursor	physical	operators	used	by	SQL	Server	to	execute	statements.

Icon Cursor	physical	operator
Dynamic

Fetch	Query

Keyset

Population	Query

Refresh	Query

Snapshot

Reading	the	Graphical	Execution	Plan	Output
The	graphical	execution	plan	output	in	SQL	Query	Analyzer	is	read	from	right	to
left	and	from	top	to	bottom.	Each	query	in	the	batch	that	is	analyzed	is
displayed,	including	the	cost	of	each	query	as	a	percentage	of	the	total	cost	of	the
batch.

Each	node	in	the	tree	structure	is	represented	as	an	icon	that	specifies



the	logical	and	physical	operator	used	to	execute	part	of	the	query	or
statement.

Each	node	is	related	to	a	parent	node.	All	nodes	with	the	same	parent
are	drawn	in	the	same	column.	Rules	with	arrowheads	connect	each
node	to	its	parent.

Recursive	operations	are	shown	with	an	iteration	symbol.

Operators	are	shown	as	symbols	related	to	a	specific	parent.

When	the	query	contains	multiple	statements,	multiple	query	execution
plans	are	drawn.

The	parts	of	the	tree	structures	are	determined	by	the	type	of	statement
executed.

Type	of	statement Tree	structure	element
Transact-SQL	and	stored
procedures

If	the	statement	is	a	stored	procedure	or
Transact-SQL	statement,	it	becomes	the	root	of
the	graphical	execution	plan	tree	structure.	The
stored	procedure	can	have	multiple	children	that
represent	statements	called	by	the	stored
procedure.	Each	child	is	a	node	or	branch	of	the
tree.

Data	manipulation
language	(DML)

If	the	statement	analyzed	by	the	SQL	Server
query	optimizer	is	a	DML	statement,	such	as
SELECT,	INSERT,	DELETE,	or	UPDATE,	the
DML	statement	is	the	root	of	the	tree.	DML
statements	can	have	up	to	two	children.	The	first
child	is	the	execution	plan	for	the	DML
statement.	The	second	child	represents	a	trigger,
if	used	in	or	by	the	statement.

Conditional The	graphical	execution	plan	divides	conditional



statements	such	as	IF...ELSE	statements	(if
condition	exists,	then	do	the	following,	else	do
this	statement	instead)	into	three	children.	The
IF...ELSE	statement	is	the	root	of	the	tree.	The	if
condition	becomes	a	subtree	node.	The	then	and
else	conditions	are	represented	as	statement
blocks.	WHILE	and	DO-UNTIL	statements	are
represented	using	a	similar	plan.

Relational	operators Operations	performed	by	the	query	engine,	such
as	table	scans,	joins,	and	aggregations,	are
represented	as	nodes	on	the	tree.

DECLARE	CURSOR The	DECLARE	CURSOR	statement	is	the	root
of	the	graphical	execution	plan	tree,	with	its
related	statement	as	a	child	or	node.

Each	node	displays	ToolTip	information	when	the	cursor	is	pointed	at	it.	The
ToolTip	information	can	include:

The	physical	operator	(Physical	Operation)	used,	such	as	Hash	Join	or
Nested	Loops.	Physical	operators	displayed	in	red	indicate	that	the
query	optimizer	has	issued	a	warning,	such	as	missing	column	statistics
or	missing	join	predicates.	This	can	cause	the	query	optimizer	to	choose
a	less-efficient	query	plan	than	otherwise	expected.	For	more
information	about	column	statistics,	see	Statistical	Information.	The
graphical	execution	plan	suggests	remedial	action,	such	as	creating	or
updating	statistics,	or	creating	an	index.	The	missing	column	statistics
and	indexes	can	be	immediately	created	or	updated	using	the	context
menus	of	SQL	Query	Analyzer.

The	logical	operator	(Logical	Operation)	that	matches	the	physical
operator,	such	as	the	Join	operator.	The	logical	operator,	if	different
from	the	physical	operator,	is	listed	after	the	physical	operator	at	the	top
of	the	ToolTip	and	separated	by	a	forward	slash	(	/	).

The	number	of	rows	(Row	Count)	output	by	the	operator.

JavaScript:hhobj_2.Click()


The	estimated	size	of	the	row	(Estimated	Row	Size)	output	by	the
operator.

The	estimated	cost	(I/O	Cost)	of	all	I/O	activity	for	the	operation.	This
value	should	be	as	low	as	possible.

The	estimated	cost	for	all	CPU	activity	(CPU	Cost)	for	the	operation.

The	number	of	times	the	operation	was	executed	(Number	of	executes)
during	the	query.

The	cost	to	the	query	optimizer	(Cost)	in	executing	this	operation,
including	cost	of	this	operation	as	a	percentage	of	the	total	cost	of	the
query.	Because	the	query	engine	selects	the	most	efficient	operation	to
perform	the	query	or	execute	the	statement,	this	value	should	be	as	low
as	possible.

The	total	cost	to	the	query	optimizer	(Subtree	cost)	in	executing	this
operation	and	all	operations	preceding	it	in	the	same	subtree.

The	predicates	and	parameters	(Argument)	used	by	the	query.

To	create	statistics



Optimizing	Database	Performance



Logical	and	Physical	Operators
The	logical	and	physical	operators	describe	how	a	query	or	update	was	executed.
The	physical	operators	describe	the	physical	implementation	algorithm	used	to
process	a	statement,	for	example,	scanning	a	clustered	index.	Each	step	in	the
execution	of	a	query	or	update	statement	involves	a	physical	operator.	The
logical	operators	describe	the	relational	algebraic	operation	used	to	process	a
statement,	for	example,	performing	an	aggregation.	Not	all	steps	used	to	process
a	query	or	update	involve	logical	operations.



Optimizing	Database	Performance

Assert
The	Assert	logical	and	physical	operator	verifies	a	condition.	For	example,	it
validates	referential	integrity	or	check	constraints,	or	ensures	that	a	scalar
subquery	returns	one	row.	For	each	input	row,	the	Assert	operator	evaluates	the
expression	in	the	Argument	column.	If	this	expression	evaluates	to	NULL,	the
row	is	passed	through	the	Assert	operator.	If	this	expression	evaluates	to	a
nonnull	value,	the	appropriate	error	will	be	raised.



Optimizing	Database	Performance

Aggregate
The	Aggregate	logical	operator	groups	the	input	by	a	set	of	columns	and
calculates	aggregate	expressions	(MIN,	MAX,	SUM,	and	so	on).

See	Also

Aggregate	Functions

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Bookmark	Lookup
The	Bookmark	Lookup	logical	and	physical	operator	uses	a	bookmark	(row	ID
or	clustering	key)	to	look	up	the	corresponding	row	in	the	table	or	clustered
index.	The	Argument	column	contains	the	bookmark	label	used	to	look	up	the
row	in	the	table	or	clustered	index.	The	Argument	column	also	contains	the
name	of	the	table	or	clustered	index	in	which	the	row	is	looked	up.	If	the	WITH
PREFETCH	clause	appears	in	the	Argument	column,	then	the	query	processor
has	determined	that	it	is	optimal	to	use	asynchronous	prefetching	(read-ahead)
when	looking	up	bookmarks	in	the	table	or	clustered	index.



Optimizing	Database	Performance

Clustered	Index	Delete
The	Clustered	Index	Delete	physical	operator	deletes	rows	from	the	clustered
index	specified	in	the	Argument	column.	If	a	WHERE:()	predicate	is	present	in
the	Argument	column,	then	only	those	rows	that	satisfy	the	predicate	are
deleted.

See	Also

Using	Clustered	Indexes

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Clustered	Index	Insert
The	Clustered	Index	Insert	physical	operator	inserts	rows	from	its	input	into	the
clustered	index	specified	in	the	Argument	column.	The	Argument	column	will
also	contain	a	SET:()	predicate,	which	indicates	the	value	to	which	each	column
is	set.

See	Also

Using	Clustered	Indexes

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Clustered	Index	Update
The	Clustered	Index	Update	physical	operator	updates	input	rows	in	the
clustered	index	specified	in	the	Argument	column.

If	a	WHERE:()	predicate	is	present,	only	those	rows	that	satisfy	this	predicate
are	updated.	If	a	SET:()	predicate	is	present,	it	indicates	the	value	to	which	each
updated	column	is	set.	If	a	DEFINE:()	predicate	is	present,	this	lists	the	values
that	this	operator	defines.	These	values	may	be	referenced	in	the	SET	clause	or
elsewhere	within	this	operator	and	elsewhere	within	this	query.

See	Also

Using	Clustered	Indexes

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Clustered	Index	Scan
The	Clustered	Index	Scan	logical	and	physical	operator	scans	the	clustered	index
specified	in	the	Argument	column.	When	an	optional	WHERE:()	predicate	is
present,	only	those	rows	that	satisfy	the	predicate	are	returned.	If	the	Argument
column	contains	the	ORDERED	clause,	the	query	processor	has	requested	that
the	rows'	output	be	returned	in	the	order	in	which	the	clustered	index	has	sorted
them.	If	the	ORDERED	clause	is	not	present,	the	storage	engine	will	scan	the
index	in	the	optimal	way	(not	guaranteeing	the	output	to	be	sorted).

See	Also

Using	Clustered	Indexes

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Clustered	Index	Seek
The	Clustered	Index	Seek	logical	and	physical	operator	uses	the	seeking	ability
of	indexes	to	retrieve	rows	from	a	clustered	index.

The	Argument	column	contains	the	name	of	the	clustered	index	being	used	and
the	SEEK:()	predicate.	The	storage	engine	uses	the	index	to	process	only	those
rows	that	satisfy	this	SEEK:()	predicate.	It	optionally	can	include	a	WHERE:()
predicate,	which	the	storage	engine	evaluates	against	all	rows	satisfying	the
SEEK:()	predicate	(it	does	not	use	indexes	to	do	this).

If	the	Argument	column	contains	the	ORDERED	clause,	the	query	processor
has	determined	that	the	rows	must	be	returned	in	the	order	in	which	the	clustered
index	has	sorted	them.	If	the	ORDERED	clause	is	not	present,	the	storage	engine
searches	the	index	in	the	optimal	way	(not	guaranteeing	the	output	to	be	sorted).
Allowing	the	output	to	retain	its	ordering	can	be	less	efficient	than	producing
nonsorted	output.

See	Also

Using	Clustered	Indexes

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Collapse
The	Collapse	logical	and	physical	operator	optimizes	update	processing.	When
an	update	is	performed,	it	can	be	split	(using	the	Split	operator)	into	a	delete	and
an	insert.	If	the	Argument	column	contains	a	GROUP	BY:()	predicate	and	a	list
of	key	columns	being	grouped,	the	query	processor	groups	by	the	set	of	key
columns	to	optimize	these	update	operations	by	removing	any	temporary,
unnecessary	intermediate	changes	to	each	row.

See	Also

Split



Optimizing	Database	Performance

Compute	Scalar
The	Compute	Scalar	logical	and	physical	operator	evaluates	an	expression	to
produce	a	computed	scalar	value,	which	may	be	returned	to	the	user	and/or
referenced	elsewhere	in	the	query,	for	example,	in	a	filter	predicate	or	join
predicate.

See	Also

Functions

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Concatenation
The	Concatenation	logical	and	physical	operator	scans	multiple	inputs,	returning
each	row	scanned.



Optimizing	Database	Performance

Constant	Scan
The	Constant	Scan	logical	and	physical	operator	introduces	a	constant	row	into	a
query.	It	will	return	either	zero	or	one	row,	which	usually	contains	no	columns.	A
Compute	Scalar	operator	is	often	used	to	add	columns	to	the	row	produced	by	a
Constant	Scan.

See	Also

Compute	Scalar



Optimizing	Database	Performance

Cross	Join
The	Cross	Join	logical	operator	joins	each	row	from	the	first	(top)	input	with
each	row	from	the	second	(bottom)	input.

See	Also

Using	Cross	Joins

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Delete
The	Delete	logical	operator	deletes	from	an	object	rows	that	satisfy	the	optional
predicate	in	the	Argument	column.

See	Also

DELETE

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Deleted	Scan
The	Deleted	Scan	logical	and	physical	operator	scans	the	deleted	table	within	a
trigger.

See	Also

Using	the	inserted	and	deleted	Tables

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Distinct
The	Distinct	logical	operator	scans	the	input,	removing	duplicates.

See	Also

Eliminating	Duplicates	with	DISTINCT

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Distinct	Sort
The	Distinct	Sort	logical	operator	scans	the	input,	removing	duplicates	and
sorting	by	the	columns	specified	in	the	DISTINCT	ORDER	BY:()	predicate	of
the	Argument	column.

See	Also

Distinct

Eliminating	Duplicates	with	DISTINCT

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Distribute	Streams
The	Distribute	Streams	logical	operator	is	used	only	in	parallel	query	plans.	The
Distribute	Streams	operator	consumes	a	single	input	stream	of	records	and
produces	multiple	output	streams.	The	record	contents	and	format	are	not
changed.	Each	record	from	the	input	stream	appears	in	one	of	the	output	streams.
This	operator	automatically	preserves	the	relative	order	of	the	input	records	in
the	output	streams.	Usually,	hashing	is	used	to	decide	to	which	output	stream	a
particular	input	record	belongs.

If	the	output	is	partitioned,	then	the	Argument	column	contains	a	PARTITION
COLUMNS:()	predicate	and	the	partitioning	columns.

See	Also

Gather	Streams

Parallel	Query	Processing

Parallelism

Repartition	Streams

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Eager	Spool
The	Eager	Spool	logical	operator	will	consume	the	entire	input,	storing	each	row
in	a	hidden	temporary	object	stored	in	the	tempdb	database.	If	the	operator	is
rewound	(for	example,	by	a	Nested	Loops	operator)	but	no	rebinding	is	needed,
the	spooled	data	is	used	instead	of	rescanning	the	input.	If	rebinding	is	needed,
the	spooled	data	is	discarded	and	the	spool	object	is	rebuilt	by	rescanning	the
(rebound)	input.

The	Eager	Spool	operator	will	build	its	spool	file	eagerly.	When	the	spool's
parent	operator	asks	for	the	first	row,	the	spool	operator	will	consume	all	rows
from	its	input	operator	and	store	them	in	the	spool.

Note		An	alternative	way	of	building	a	spool	file	is	with	the	Lazy	Spool	operator.



Optimizing	Database	Performance

Filter
The	Filter	logical	and	physical	operator	scans	the	input,	returning	only	those
rows	that	satisfy	the	filter	expression	(predicate)	that	appears	in	the	Argument
column.



Optimizing	Database	Performance

Flow	Distinct
The	Flow	Distinct	logical	operator	scans	the	input,	removing	duplicates.
Whereas	the	Distinct	operator	consumes	all	input	before	producing	any	output,
the	Flow	Distinct	operator	returns	each	row	as	it	is	obtained	from	the	input
(unless	that	row	is	a	duplicate,	in	which	case	it	is	discarded).

See	Also

Distinct

Eliminating	Duplicates	with	DISTINCT

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Full	Outer	Join
The	Full	Outer	Join	logical	operator	returns	each	row	satisfying	the	join
predicate	from	the	first	(top)	input	joined	with	each	row	from	the	second
(bottom)	input.	It	also	returns	rows	from:

The	first	input	that	had	no	matches	in	the	second	input.

The	second	input	that	had	no	matches	in	the	first	input.

The	input	that	does	not	contain	the	matching	values	is	returned	as	a	null	value.

See	Also

Using	Outer	Joins

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Gather	Streams
The	Gather	Streams	logical	operator	is	only	used	in	parallel	query	plans.	The
Gather	Streams	operator	consumes	several	input	streams	and	produces	a	single
output	stream	of	records	by	combining	the	input	streams.	The	record	contents
and	format	are	not	changed.	If	this	operator	is	order-preserving,	then	all	input
streams	must	be	ordered.

If	the	output	is	ordered,	then	the	Argument	column	contains	an	ORDER	BY:()
predicate	and	the	names	of	columns	being	ordered.

See	Also

Distribute	Streams

Parallel	Query	Processing

Parallelism

Repartition	Streams

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Hash	Match
The	Hash	Match	physical	operator	builds	a	hash	table	by	computing	a	hash	value
for	each	row	from	its	build	input.	A	HASH:()	predicate	with	a	list	of	columns
used	to	create	a	hash	value	appears	in	the	Argument	column.	Then,	for	each
probe	row	(as	applicable),	it	computes	a	hash	value	(using	the	same	hash
function)	and	looks	in	the	hash	table	for	matches.	If	a	residual	predicate	is
present	(identified	by	RESIDUAL:()	in	the	Argument	column),	that	predicate
must	also	be	satisfied	for	rows	to	be	considered	a	match.	Behavior	is	slightly
different	based	on	the	logical	operation	being	performed:

For	any	joins,	use	the	first	(top)	input	to	build	the	hash	table	and	the
second	(bottom)	input	to	probe	the	hash	table.	Output	matches	(or
nonmatches)	as	dictated	by	the	join	type.	If	multiple	joins	use	the	same
join	column,	these	operations	are	grouped	into	a	hash	team.

For	the	distinct	or	aggregate	operators,	use	the	input	to	build	the	hash
table	(removing	duplicates	and	computing	any	aggregate	expressions).
When	the	hash	table	is	built,	scan	the	table	and	output	all	entries.

For	the	union	operator,	use	the	first	input	to	build	the	hash	table
(removing	duplicates).	Use	the	second	input	(which	must	have	no
duplicates)	to	probe	the	hash	table,	returning	all	rows	that	have	no
matches,	then	scan	the	hash	table	and	return	all	entries.

See	Also

Distinct

Understanding	Hash	Joins

Hash	Match	Team

Union



Optimizing	Database	Performance

Hash	Match	Root
The	Hash	Match	Root	physical	operator	coordinates	the	operation	of	all	Hash
Match	Team	operators	directly	below	it.	The	Hash	Match	Root	operator	and	all
Hash	Match	Team	operators	directly	below	it	share	a	common	hash	function	and
partitioning	strategy.	The	Hash	Match	Root	operator	always	returns	output	to	an
operator	that	is	not	a	member	of	its	team.

See	Also

Hash	Match	Team

Understanding	Hash	Joins



Optimizing	Database	Performance

Hash	Match	Team
The	Hash	Match	Team	physical	operator	is	part	of	a	team	of	connected	hash
operators	sharing	a	common	hash	function	and	partitioning	strategy.

See	Also

Hash	Match	Root

Understanding	Hash	Joins



Optimizing	Database	Performance

Index	Delete
The	Index	Delete	physical	operator	will	delete	input	rows	from	the	nonclustered
index	specified	in	the	Argument	column.	If	a	WHERE:()	predicate	is	present,
only	those	rows	that	satisfy	this	predicate	will	be	deleted.

See	Also

DELETE

Using	Nonclustered	Indexes

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Optimizing	Database	Performance

Index	Insert
The	Index	Insert	physical	operator	inserts	rows	from	its	input	into	the
nonclustered	index	specified	in	the	Argument	column.	The	Argument	column
will	also	contain	a	SET:()	predicate,	which	indicates	the	value	to	which	each
column	is	set.

See	Also

INSERT

Using	Nonclustered	Indexes

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Optimizing	Database	Performance

Index	Scan
The	Index	Scan	logical	and	physical	operator	retrieves	all	rows	from	the
nonclustered	index	specified	in	the	Argument	column.	If	an	optional	WHERE:()
predicate	appears	in	the	Argument	column,	only	those	rows	that	satisfy	the
predicate	are	returned.

If	the	Argument	column	must	contain	the	ORDERED	clause,	the	query
processor	has	determined	that	the	rows	be	returned	in	the	order	in	which	the
nonclustered	index	has	sorted	them.	If	the	ORDERED	clause	is	not	present,	the
storage	engine	will	search	the	index	in	the	optimal	way	(which	does	not
guarantee	that	the	output	will	be	sorted).

See	Also

SELECT

Using	Nonclustered	Indexes

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Optimizing	Database	Performance

Index	Seek
The	Index	Seek	logical	and	physical	operator	uses	the	seeking	ability	of	indexes
to	retrieve	rows	from	a	nonclustered	index.

The	Argument	column	contains	the	name	of	the	nonclustered	index	being	used.
It	also	contains	the	SEEK:()	predicate.	The	storage	engine	uses	the	index	to
process	only	those	rows	that	satisfy	the	SEEK:()	predicate.	It	optionally	may
include	a	WHERE:()	predicate,	which	the	storage	engine	will	evaluate	against	all
rows	that	satisfy	the	SEEK:()	predicate	(it	does	not	use	the	indexes	to	do	this).

If	the	Argument	column	contains	the	ORDERED	clause,	the	query	processor
has	determined	that	the	rows	must	be	returned	in	the	order	in	which	the
nonclustered	index	has	sorted	them.	If	the	ORDERED	clause	is	not	present,	the
storage	engine	searches	the	index	in	the	optimal	way	(which	does	not	guarantee
that	the	output	will	be	sorted).	Allowing	the	output	to	retain	its	ordering	may	be
less	efficient	than	producing	nonsorted	output.

See	Also

SELECT

Using	Nonclustered	Indexes

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Optimizing	Database	Performance

Index	Spool
The	Index	Spool	physical	operator	contains	a	SEEK:()	predicate	in	the
Argument	column.	The	Index	Spool	operator	scans	its	input	rows,	placing	a
copy	of	each	row	in	a	hidden	spool	file	(stored	in	the	tempdb	database	and
existing	only	for	the	lifetime	of	the	query),	and	builds	an	index	on	the	rows.	This
allows	you	to	use	the	seeking	capability	of	indexes	to	output	only	those	rows	that
satisfy	the	SEEK:()	predicate.

If	the	operator	is	rewound	(for	example,	by	a	Nested	Loops	operator)	but	no
rebinding	is	needed,	the	spooled	data	is	used	instead	of	rescanning	the	input.

See	Also

Creating	an	Index

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Index	Update
The	Index	Update	physical	operator	updates	rows	from	its	input	in	the
nonclustered	index	specified	in	the	Argument	column.

If	a	WHERE:()	predicate	is	present,	only	those	rows	that	satisfy	this	predicate
are	updated.	If	a	SET:()	predicate	is	present,	it	indicates	the	value	to	which	each
updated	column	is	set.	If	a	DEFINE:()	predicate	is	present,	it	lists	the	values	that
this	operator	defines.	These	values	may	be	referenced	in	the	SET	clause,	or
elsewhere	within	this	operator	and	elsewhere	within	this	query.

See	Also

UPDATE

Using	Nonclustered	Indexes

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Optimizing	Database	Performance

Inner	Join
The	Inner	Join	logical	operator	returns	each	row	that	satisfies	the	join	of	the	first
(top)	input	with	the	second	(bottom)	input.

See	Also

Using	Inner	Joins

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Insert
The	Insert	logical	operator	inserts	each	row	from	its	input	into	the	object
specified	in	the	Argument	column.	The	physical	operator	will	be	either	the
Table	Insert,	Index	Insert,	or	Clustered	Index	Insert	operator.

See	Also

Clustered	Index	Insert

Table	Insert

Index	Insert



Optimizing	Database	Performance

Inserted	Scan
The	Inserted	Scan	logical	and	physical	operator	scans	the	inserted	table	within	a
trigger.

See	Also

Using	the	inserted	and	deleted	Tables

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Lazy	Spool
The	Lazy	Spool	logical	operator	stores	each	row	from	its	input	in	a	hidden
temporary	object	stored	in	the	tempdb	database.	If	the	operator	is	rewound	(for
example,	by	a	Nested	Loops	operator)	but	no	rebinding	is	needed,	the	spooled
data	is	used	instead	of	rescanning	the	input.	If	rebinding	is	needed,	the	spooled
data	is	discarded	and	the	spool	object	is	rebuilt	by	rescanning	the	(rebound)
input.

The	Lazy	Spool	operator	will	build	its	spool	file	in	a	lazy	(noneager)	manner.
Each	time	the	spool's	parent	operator	asks	for	a	row,	the	spool	operator	gets	a
row	from	its	input	operator	and	stores	it	in	the	spool.

See	Also

Eager	Spool



Optimizing	Database	Performance

Left	Anti	Semi	Join
The	Left	Anti	Semi	Join	logical	operator	returns	each	row	from	the	first	(top)
input	when	there	is	no	matching	row	in	the	second	(bottom)	input.	If	no	join
predicate	exists	in	the	Argument	column,	each	row	is	a	matching	row.

See	Also

Using	Joins

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Left	Outer	Join
The	Left	Outer	Join	logical	operator	returns	each	row	that	satisfies	the	join	of	the
first	(top)	input	with	the	second	(bottom)	input.	It	also	returns	any	rows	from	the
first	input	that	had	no	matching	rows	in	the	second	input.	The	nonmatching	rows
in	the	second	input	are	returned	as	null	values.	If	no	join	predicate	exists	in	the
Argument	column,	each	row	is	a	matching	row.

See	Also

Using	Outer	Joins

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Left	Semi	Join
The	Left	Semi	Join	logical	operator	returns	each	row	from	the	first	(top)	input
when	there	is	a	matching	row	in	the	second	(bottom)	input.	If	no	join	predicate
exists	in	the	Argument	column,	each	row	is	a	matching	row.

See	Also

Using	Joins

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Log	Row	Scan
The	Log	Row	Scan	logical	and	physical	operator	scans	the	transaction	log.

See	Also

Transaction	Logs

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Merge	Interval
The	Merge	Interval	logical	and	physical	operator	merges	multiple	(potentially
overlapping)	intervals	to	produce	minimal,	nonoverlapping	intervals	that	are
then	used	to	seek	index	entries.	This	operator	typically	appears	above	one	or
more	Compute	Scalar	operators	over	Constant	Scan	operators,	which	construct
the	intervals	(represented	as	columns	in	a	row)	that	this	operator	merges.

See	Also

Compute	Scalar

Constant	Scan



Optimizing	Database	Performance

Merge	Join
The	Merge	Join	physical	operator	performs	the	Inner	Join,	Left	Outer	Join,	Left
Semi	Join,	Left	Anti	Semi	Join,	Right	Outer	Join,	Right	Semi	Join,	Right	Anti
Semi	Join,	and	Union	logical	operations.

In	the	Argument	column,	the	Merge	Join	operator	contains	a	MERGE:()
predicate	if	the	operation	is	performing	a	one-to-many	join,	or	a	MANY-TO-
MANY	MERGE:()	predicate	if	the	operation	is	performing	a	many-to-many
join.	The	Argument	column	also	includes	a	comma-separated	list	of	columns
used	to	perform	the	operation.	The	Merge	Join	operator	requires	two	inputs
sorted	on	their	respective	columns,	possibly	by	inserting	explicit	sort	operations
into	the	query	plan.	Merge	join	is	particularly	effective	if	explicit	sorting	is	not
required,	for	example,	if	there	is	a	suitable	B-tree	index	in	the	database	or	if	the
sort	order	can	be	exploited	for	multiple	operations,	such	as	a	merge	join	and
grouping	with	roll	up.

See	Also

Understanding	Merge	Joins



Optimizing	Database	Performance

Nested	Loops
The	Nested	Loops	physical	operator	performs	the	Inner	Join,	Left	Outer	Join,
Left	Semi	Join,	and	Left	Anti	Semi	Join	logical	operations.

Nested	loops	joins	perform	a	search	on	the	inner	table	for	each	row	of	the	outer
table,	typically	using	an	index.	Microsoft®	SQL	Server™	2000	decides,	based
on	anticipated	costs,	whether	to	sort	the	outer	input	in	order	to	improve	locality
of	the	searches	on	the	index	over	the	inner	input.

Any	rows	that	satisfy	the	(optional)	predicate	in	the	Argument	column	are
returned	(as	applicable	based	on	the	logical	operation	being	performed).

See	Also

Understanding	Nested	Loops	Joins



Optimizing	Database	Performance

Parallelism
The	Parallelism	physical	operator	performs	the	Distribute	Streams,	Gather
Streams,	and	Repartition	Streams	logical	operations.	The	Argument	columns
can	contain	a	PARTITION	COLUMNS:()	predicate	with	a	comma-separated	list
of	the	columns	being	partitioned.	The	Argument	columns	can	also	contain	an
ORDER	BY:()	predicate	with	a	list	of	the	columns	for	which	the	sort	order	is
preserved	during	partitioning.

See	Also

Distribute	Streams

Repartition	Streams

Gather	Streams



Optimizing	Database	Performance

Parameter	Table	Scan
The	Parameter	Table	Scan	logical	and	physical	operator	scans	a	table	that	is
acting	as	a	parameter	in	the	current	query.	Typically,	this	is	used	for	INSERT
queries	within	a	stored	procedure.

See	Also

INSERT

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Remote	Delete
The	Remote	Delete	logical	and	physical	operator	deletes	the	input	rows	from	a
remote	object.



Optimizing	Database	Performance

Remote	Insert
The	Remote	Insert	logical	and	physical	operator	inserts	the	input	rows	into	a
remote	object.



Optimizing	Database	Performance

Remote	Query
The	Remote	Query	logical	and	physical	operator	submits	a	query	to	a	remote
source.	The	text	of	the	query	sent	to	the	remote	server	appears	in	the	Argument
column.

See	Also

Optimizing	Distributed	Queries



Optimizing	Database	Performance

Remote	Scan
The	Remote	Scan	logical	and	physical	operator	will	scan	a	remote	object.	The
name	of	the	remote	object	appears	in	the	Argument	column.



Optimizing	Database	Performance

Remote	Update
The	Remote	Update	logical	and	physical	operator	updates	the	input	rows	in	a
remote	object.



Optimizing	Database	Performance

Repartition	Streams
The	Repartition	Streams	logical	operator	is	used	only	in	parallel	query	plans.
The	Repartition	Streams	operator	consumes	multiple	streams	and	produces
multiple	streams	of	records.	The	record	contents	and	format	are	not	changed.
Each	record	from	an	input	stream	is	placed	into	one	output	stream.	If	this
operator	is	order-preserving,	then	all	input	streams	must	be	ordered	and	merged
into	several	ordered	output	streams.

If	the	output	is	partitioned,	then	the	Argument	column	contains	a	PARTITION
COLUMNS:()	predicate	and	the	partitioning	columns.

If	the	output	is	ordered,	then	the	Argument	column	contains	an	ORDER	BY:()
predicate	and	the	columns	being	ordered.

See	Also

Distribute	Streams

Parallel	Query	Processing

Gather	Streams

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Right	Anti	Semi	Join
The	Right	Anti	Semi	Join	logical	operator	will	output	each	row	from	the	second
(bottom)	input	when	a	matching	row	in	the	first	(top)	input	does	not	exist.	A
matching	row	is	defined	as	a	row	that	satisfies	the	predicate	in	the	Argument
column	(if	no	predicate	exists,	each	row	is	a	matching	row).

See	Also

Using	Joins

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Right	Outer	Join
The	Right	Outer	Join	logical	operator	returns	each	row	that	satisfies	the	join	of
the	second	(bottom)	input	with	each	matching	row	from	the	first	(top)	input.	It
will	also	return	any	rows	from	the	second	input	that	had	no	matching	rows	in	the
first	input,	joined	with	NULL.	If	no	join	predicate	exists	in	the	Argument
column,	each	row	is	a	matching	row.

See	Also

Using	Outer	Joins

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Right	Semi	Join
The	Right	Semi	Join	logical	operator	returns	each	row	from	the	second	(bottom)
input	when	there	is	a	matching	row	in	the	first	(top)	input.	If	no	join	predicate
exists	in	the	Argument	column,	each	row	is	a	matching	row.

See	Also

Using	Joins

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Row	Count	Spool
The	Row	Count	Spool	physical	operator	scans	the	input,	counting	how	many
rows	are	present	and	returning	that	many	rows	without	any	data	in	them.	This
operator	is	used	when	it	is	important	to	check	for	the	existence	of	rows	rather
than	the	data	contained	in	the	rows.	For	example,	if	a	Nested	Loops	operator
performs	a	left	semi	join	operation	and	the	join	predicate	applies	to	inner	input,	a
row	count	spool	may	be	placed	at	the	top	of	the	inner	input	of	the	Nested	Loops
operator.	Then	the	Nested	Loops	operator	can	look	at	how	many	rows	are	output
by	the	row	count	spool	(because	the	actual	data	from	the	inner	side	is	not
needed)	to	determine	whether	to	return	the	outer	row.

See	Also

Left	Semi	Join

Nested	Loops



Optimizing	Database	Performance

Sequence
The	Sequence	logical	and	physical	operator	drives	wide	update	plans.
Functionally,	it	executes	each	input	in	sequence	(top	to	bottom).	Each	input	is
usually	an	update	of	a	different	object.	It	returns	only	those	rows	that	come	from
its	last	(bottom)	input.



Optimizing	Database	Performance

Sort
The	Sort	logical	and	physical	operator	sorts	all	incoming	rows.	The	Argument
column	contains	a	DISTINCT	ORDER	BY:()	predicate	if	duplicates	are	removed
by	this	operation	or	an	ORDER	BY:()	predicate	with	a	comma-separated	list	of
the	columns	being	sorted.	The	columns	are	prefixed	with	the	value	ASC	if	the
columns	are	sorted	in	ascending	order,	or	the	value	DESC	if	the	columns	are
sorted	in	descending	order.

See	Also

SELECT

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Split
The	Split	logical	and	physical	operator	is	used	to	optimize	update	processing.	It
splits	each	update	operation	into	a	delete	and	an	insert	operation.

See	Also

Collapse



Optimizing	Database	Performance

Stream	Aggregate
The	Stream	Aggregate	physical	operator	optionally	groups	by	a	set	of	columns
and	calculates	one	or	more	aggregate	expressions	returned	by	the	query	and/or
referenced	elsewhere	within	the	query.	This	operator	requires	that	input	is
ordered	by	the	columns	within	its	groups.

If	the	Stream	Aggregate	operator	groups	by	columns,	a	GROUP	BY:()	predicate
and	the	list	of	columns	appear	in	the	Argument	column.	If	the	Stream
Aggregate	operator	computes	any	aggregate	expressions,	a	list	of	them	will
appear	in	the	Defined	Values	column	of	the	output	from	the	SHOWPLAN_ALL
statement	or	the	Argument	column	of	the	graphical	execution	plan.

See	Also

Aggregate	Functions

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Table	Delete
The	Table	Delete	physical	operator	deletes	rows	from	the	table	specified	in	the
argument	column.	If	a	WHERE:()	predicate	is	present	in	the	Argument	column,
only	those	rows	that	satisfy	the	predicate	will	be	deleted.

See	Also

DELETE

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Table	Insert
The	Table	Insert	physical	operator	inserts	rows	from	its	input	into	the	table
specified	in	the	Argument	column.	The	Argument	column	also	contains	a	SET:
()	predicate,	which	indicates	the	value	to	which	each	column	is	set.

See	Also

INSERT

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Table	Scan
The	Table	Scan	logical	and	physical	operator	retrieves	all	rows	from	the	table
specified	in	the	Argument	column.	If	a	WHERE:()	predicate	appears	in	the
Argument	column,	only	those	rows	that	satisfy	the	predicate	are	returned.

See	Also

SELECT

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Table	Spool
The	Table	Spool	physical	operator	scans	the	input	and	places	a	copy	of	each	row
in	a	hidden	spool	table	(stored	in	the	tempdb	database	and	existing	only	for	the
lifetime	of	the	query).	If	the	operator	is	rewound	(for	example,	by	a	Nested
Loops	operator)	but	no	rebinding	is	needed,	the	spooled	data	is	used	instead	of
rescanning	the	input.



Optimizing	Database	Performance

Table	Update
The	Table	Update	physical	operator	updates	input	rows	in	the	table	specified	in
the	Argument	column.	If	a	WHERE:()	predicate	is	present,	only	those	rows	that
satisfy	this	predicate	are	updated.	If	a	SET:()	predicate	is	present,	it	indicates	the
value	to	which	each	updated	column	is	set.	If	a	DEFINE:()	predicate	is	present,
this	lists	the	values	that	this	operator	defines.	These	values	may	be	referenced	in
the	SET	clause	or	elsewhere	within	this	operator	and	elsewhere	within	this
query.

See	Also

UPDATE

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Top
The	Top	logical	and	physical	operator	will	scan	the	input,	returning	only	the	first
specified	number	or	percent	of	rows.	The	Argument	column	can	optionally
contain	a	list	of	the	columns	that	are	being	checked	for	ties.	In	update	plans,	the
Top	operator	is	used	to	enforce	row	count	limits.

See	Also

Limiting	Result	Sets	Using	TOP	and	PERCENT

SET	ROWCOUNT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Optimizing	Database	Performance

Union
The	Union	logical	operator	scans	multiple	inputs,	outputting	each	row	scanned
and	removing	duplicates.

See	Also

UNION

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Update
The	Update	logical	operator	updates	each	row	from	its	input	in	the	object
specified	in	the	Argument	column.	The	physical	operator	is	Table	Update,	Index
Update,	or	Clustered	Index	Update.

See	Also

UPDATE

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance

Cursor	Logical	and	Physical	Operators
The	Cursor	logical	and	physical	operators	are	used	to	describe	how	a	query,	or
update	involving	cursor	operations,	is	executed.	The	physical	operators	describe
the	physical	implementation	algorithm	used	to	process	the	cursor;	for	example,
using	a	keyset-driven	cursor.	Each	step	in	the	execution	of	a	cursor	involves	a
physical	operator.	The	logical	operators	describe	a	property	of	the	cursor,	such	as
the	cursor	is	read	only.

Logical	Operators
The	Cursor	logical	operators	include:

Asynchronous

The	cursor	table	is	populated	asynchronously.	For	more	information,	see
Asynchronous	Population.

Optimistic

This	cursor	uses	the	optimistic	mode	of	concurrency.	For	more	information,
see	Cursor	Concurrency.

Primary

This	is	the	primary	fetch	query	for	this	cursor.

Read	Only

This	cursor	uses	read-only	semantics	for	concurrency.	This	cursor	can	only
read	data,	not	insert,	update,	or	delete	it.	For	more	information,	see	Cursor
Concurrency.

Scroll	Locks

This	cursor	uses	scroll	locks	for	concurrency.	For	more	information,	see
Cursor	Concurrency.

Secondary

This	is	the	secondary	fetch	query	(used	if	the	primary	fetch	query	fails).

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


Synchronous

The	cursor	table	is	populated	synchronously.

Physical	Operators
The	Cursor	physical	operators	include:

Dynamic

This	cursor	can	see	all	changes	made	by	others.	For	more	information,	see
Dynamic	Cursors.

Fetch	Query

This	query	retrieves	rows	when	a	fetch	is	issued	against	a	cursor.

Keyset

This	cursor	can	see	updates	made	by	others,	but	not	inserts.	For	more
information,	see	Keyset-driven	Cursors.

Population	Query

This	query	populates	a	cursor's	work	table	when	the	cursor	is	opened.

Refresh	Query

This	query	fetches	current	data	for	rows	in	the	cursor	fetch	buffer.

Snapshot

This	cursor	does	not	see	changes	made	by	others.	For	more	information,	see
Static	Cursors.

See	Also

Cursors

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()


Optimizing	Database	Performance



Query	Tuning	Recommendations
Some	queries	are	inherently	resource	intensive.	This	is	related	to	fundamental
database	and	index	issues.	These	queries	are	not	inefficient,	because	the	query
optimizer	will	implement	the	queries	in	the	most	efficient	fashion	possible.
However,	they	are	resource	intensive,	and	the	set-oriented	nature	of	Transact-
SQL	can	make	them	appear	inefficient.	No	degree	of	query	optimizer
intelligence	can	eliminate	the	inherent	resource	cost	of	these	constructs.	They	are
intrinsically	costly	when	compared	to	a	less	complex	query.	Although
Microsoft®	SQL	Server™	2000	uses	the	most	optimal	access	plan,	this	is
limited	by	what	is	fundamentally	possible.	For	example,	the	following	types	of
queries	can	be	resource	intensive:

Queries	returning	large	result	sets

Highly	nonunique	WHERE	clauses

However,	recommendations	for	tuning	queries	and	improving	query
performance	include:

Add	more	memory	(especially	if	the	server	runs	many	complex	queries
and	several	of	the	queries	execute	slowly).

Run	SQL	Server	on	a	computer	with	more	than	one	processor.	Multiple
processors	allow	SQL	Server	to	make	use	of	parallel	queries.	For	more
information,	see	Parallel	Query	Processing.	

Consider	rewriting	the	query.

If	the	query	uses	cursors,	determine	if	the	cursor	query	could
be	written	more	efficiently	using	either	a	more	efficient	cursor
type,	such	as	fast	forward-only,	or	a	single	query.	Single
queries	typically	outperform	cursor	operations.	Because	a	set
of	cursor	statements	is	typically	an	outer	loop	operation,	in
which	each	row	in	the	outer	loop	is	processed	once	using	an
inner	statement,	consider	using	either	a	GROUP	BY	or	CASE

JavaScript:hhobj_1.Click()


statement	or	a	subquery	instead.

If	an	application	uses	a	loop,	consider	putting	the	loop	inside
the	query.	Often	an	application	will	contain	a	loop	that	contains
a	parameterized	query,	which	is	executed	many	times	and
requires	a	network	round	trip	between	the	computer	running
the	application	and	SQL	Server.	Instead,	create	a	single,	more
complex	query	using	a	temporary	table.	Only	one	network
round	trip	is	necessary,	and	the	query	optimizer	can	better
optimize	the	single	query.

Do	not	use	multiple	aliases	for	a	single	table	in	the	same	query
to	simulate	index	intersection.	This	is	no	longer	necessary
because	SQL	Server	automatically	considers	index	intersection
and	can	make	use	of	multiple	indexes	on	the	same	table	in	the
same	query.	For	example,	given	the	sample	query:
SELECT	*	FROM	lineitem	
WHERE	partkey	BETWEEN	17000	AND	17100	AND
						shipdate	BETWEEN	'1/1/1994'	AND	'1/31/1994"

SQL	Server	can	exploit	indexes	on	both	the	partkey	and
shipdate	columns,	and	then	perform	a	hash	match	between	the
two	subsets	to	obtain	the	index	intersection.

Make	use	of	query	hints	only	if	necessary.	Queries	using	hints
executed	against	earlier	versions	of	SQL	Server	should	be
tested	without	the	hints	specified.	The	hints	can	prevent	the
query	optimizer	from	choosing	a	better	execution	plan.	For
more	information,	see	SELECT.

Make	use	of	the	query	governor	configuration	option	and	setting.	The
query	governor	configuration	option	can	be	used	to	prevent	long-
running	queries	from	executing,	thus	preventing	system	resources	from
being	consumed.	By	default,	the	query	governor	configuration	option
allows	all	queries	to	execute,	no	matter	how	long	they	take.	However,
the	query	governor	can	be	set	to	the	maximum	number	of	seconds	that

JavaScript:hhobj_2.Click()


all	queries	for	all	connections,	or	just	the	queries	for	a	specific
connection,	are	allowed	to	execute.	Because	the	query	governor	is	based
on	estimated	query	cost,	rather	than	actual	elapsed	time,	it	does	not	have
any	run-time	overhead.	It	also	stops	long-running	queries	before	they
start,	rather	than	running	them	until	some	predefined	limit	is	hit.	For
more	information,	see	query	governor	cost	limit	Option	and	SET
QUERY_GOVERNOR_COST_LIMIT.

See	Also

CASE

Subquery	Fundamentals

GROUP	BY	Components

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()


Optimizing	Database	Performance



Advanced	Query	Tuning	Concepts
Microsoft®	SQL	Server™	2000	performs	sort,	intersect,	union,	and	difference
operations	using	in-memory	sorting	and	hash	join	technology.	Using	this	type	of
query	plan,	SQL	Server	supports	vertical	table	partitioning,	sometimes	called
columnar	storage.

SQL	Server	employs	three	types	of	join	operations:

Nested	loops	joins

Merge	joins

Hash	joins

If	one	join	input	is	quite	small	(such	as	fewer	than	10	rows)	and	the	other	join
input	is	fairly	large	and	indexed	on	its	join	columns,	index	nested	loops	are	the
fastest	join	operation	because	they	require	the	least	I/O	and	the	fewest
comparisons.	For	more	information	about	nested	loops,	see	Understanding
Nested	Loops	Joins.

If	the	two	join	inputs	are	not	small	but	are	sorted	on	their	join	column	(for
example,	if	they	were	obtained	by	scanning	sorted	indexes),	merge	join	is	the
fastest	join	operation.	If	both	join	inputs	are	large	and	the	two	inputs	are	of
similar	sizes,	merge	join	with	prior	sorting	and	hash	join	offer	similar
performance.	However,	hash	join	operations	are	often	much	faster	if	the	two
input	sizes	differ	significantly	from	each	other.	For	more	information,	see
Understanding	Merge	Joins.

Hash	joins	can	process	large,	unsorted,	nonindexed	inputs	efficiently.	They	are
useful	for	intermediate	results	in	complex	queries	because:

Intermediate	results	are	not	indexed	(unless	explicitly	saved	to	disk	and
then	indexed)	and	often	are	not	produced	suitably	sorted	for	the	next
operation	in	the	query	plan.

Query	optimizers	estimate	only	intermediate	result	sizes.	Because



estimates	can	be	an	order	of	magnitude	wrong	in	complex	queries,
algorithms	to	process	intermediate	results	not	only	must	be	efficient	but
also	must	degrade	gracefully	if	an	intermediate	result	turns	out	to	be
much	larger	than	anticipated.

The	hash	join	allows	reductions	in	the	use	of	denormalization	to	occur.
Denormalization	is	typically	used	to	achieve	better	performance	by	reducing	join
operations,	in	spite	of	the	dangers	of	redundancy,	such	as	inconsistent	updates.
Hash	joins	reduce	the	need	to	denormalize.	Hash	joins	allow	vertical	partitioning
(representing	groups	of	columns	from	a	single	table	in	separate	files	or	indexes)
to	become	a	viable	option	for	physical	database	design.	For	more	information,
see	Understanding	Hash	Joins.



Optimizing	Database	Performance



Understanding	Nested	Loops	Joins
The	nested	loops	join,	also	called	nested	iteration,	uses	one	join	input	as	the
outer	input	table	(shown	as	the	top	input	in	the	graphical	execution	plan)	and	one
as	the	inner	(bottom)	input	table.	The	outer	loop	consumes	the	outer	input	table
row	by	row.	The	inner	loop,	executed	for	each	outer	row,	searches	for	matching
rows	in	the	inner	input	table.	In	the	simplest	case,	the	search	scans	an	entire	table
or	index;	this	is	called	a	naive	nested	loops	join.	If	the	search	exploits	an	index,
it	is	called	an	index	nested	loops	join.	If	the	index	is	built	as	part	of	the	query
plan	(and	destroyed	upon	completion	of	the	query),	it	is	called	a	temporary	index
nested	loops	join.	All	these	variants	are	considered	by	the	query	optimizer.	A
nested	loops	join	is	particularly	effective	if	the	outer	input	is	quite	small	and	the
inner	input	is	preindexed	and	quite	large.	In	many	small	transactions,	such	as
those	affecting	only	a	small	set	of	rows,	index	nested	loops	joins	are	far	superior
to	both	merge	joins	and	hash	joins.	In	large	queries,	however,	nested	loops	joins
are	often	not	the	optimal	choice.



Optimizing	Database	Performance



Understanding	Merge	Joins
The	merge	join	requires	that	both	inputs	be	sorted	on	the	merge	columns,	which
are	defined	by	the	equality	(WHERE)	clauses	of	the	join	predicate.	The	query
optimizer	typically	scans	an	index,	if	one	exists	on	the	proper	set	of	columns,	or
places	a	sort	operator	below	the	merge	join.	In	rare	cases,	there	may	be	multiple
equality	clauses,	but	the	merge	columns	are	taken	from	only	some	of	the
available	equality	clauses.

Because	each	input	is	sorted,	the	Merge	Join	operator	gets	a	row	from	each	input
and	compares	them.	For	example,	for	inner	join	operations,	the	rows	are	returned
if	they	are	equal.	If	they	are	not	equal,	whichever	row	has	the	lower	value	is
discarded	and	another	row	is	obtained	from	that	input.	This	process	repeats	until
all	rows	have	been	processed.

The	merge	join	operation	may	be	either	a	regular	or	a	many-to-many	operation.
A	many-to-many	merge	join	uses	a	temporary	table	to	store	rows.	If	there	are
duplicate	values	from	each	input,	one	of	the	inputs	will	have	to	rewind	to	the
start	of	the	duplicates	as	each	duplicate	from	the	other	input	is	processed.

If	a	residual	predicate	is	present,	all	rows	that	satisfy	the	merge	predicate	will
evaluate	the	residual	predicate,	and	only	those	rows	that	satisfy	it	will	be
returned.

Merge	join	itself	is	very	fast,	but	it	can	be	an	expensive	choice	if	sort	operations
are	required.	However,	if	the	data	volume	is	large	and	the	desired	data	can	be
obtained	presorted	from	existing	B-tree	indexes,	merge	join	is	often	the	fastest
available	join	algorithm.



Optimizing	Database	Performance



Understanding	Hash	Joins
The	hash	join	has	two	inputs:	the	build	input	and	probe	input.	The	query
optimizer	assigns	these	roles	so	that	the	smaller	of	the	two	inputs	is	the	build
input.

Hash	joins	are	used	for	many	types	of	set-matching	operations:	inner	join;	left,
right,	and	full	outer	join;	left	and	right	semi-join;	intersection;	union;	and
difference.	Moreover,	a	variant	of	the	hash	join	can	do	duplicate	removal	and
grouping	(such	as	SUM(salary)	GROUP	BY	department).	These	modifications
use	only	one	input	for	both	the	build	and	probe	roles.

Similar	to	a	merge	join,	a	hash	join	can	be	used	only	if	there	is	at	least	one
equality	(WHERE)	clause	in	the	join	predicate.	However,	because	joins	are
typically	used	to	reassemble	relationships,	expressed	with	an	equality	predicate
between	a	primary	key	and	a	foreign	key,	most	joins	have	at	least	one	equality
clause.	The	set	of	columns	in	the	equality	predicate	is	called	the	hash	key,
because	these	are	the	columns	that	contribute	to	the	hash	function.	Additional
predicates	are	possible	and	are	evaluated	as	residual	predicates	separate	from	the
comparison	of	hash	values.	The	hash	key	can	be	an	expression,	as	long	as	it	can
be	computed	exclusively	from	columns	in	a	single	row.	In	grouping	operations,
the	columns	of	the	group	by	list	are	the	hash	key.	In	set	operations	such	as
intersection,	as	well	as	in	the	removal	of	duplicates,	the	hash	key	consists	of	all
columns.

In-Memory	Hash	Join
The	hash	join	first	scans	or	computes	the	entire	build	input	and	then	builds	a
hash	table	in	memory.	Each	row	is	inserted	into	a	hash	bucket	depending	on	the
hash	value	computed	for	the	hash	key.	If	the	entire	build	input	is	smaller	than	the
available	memory,	all	rows	can	be	inserted	into	the	hash	table.	This	build	phase
is	followed	by	the	probe	phase.	The	entire	probe	input	is	scanned	or	computed
one	row	at	a	time,	and	for	each	probe	row,	the	hash	key's	value	is	computed,	the
corresponding	hash	bucket	is	scanned,	and	the	matches	are	produced.

Grace	Hash	Join



If	the	build	input	does	not	fit	in	memory,	a	hash	join	proceeds	in	several	steps.
Each	step	has	a	build	phase	and	probe	phase.	Initially,	the	entire	build	and	probe
inputs	are	consumed	and	partitioned	(using	a	hash	function	on	the	hash	keys)
into	multiple	files.	The	number	of	such	files	is	called	the	partitioning	fan-out.
Using	the	hash	function	on	the	hash	keys	guarantees	that	any	two	joining	records
must	be	in	the	same	pair	of	files.	Therefore,	the	task	of	joining	two	large	inputs
has	been	reduced	to	multiple,	but	smaller,	instances	of	the	same	tasks.	The	hash
join	is	then	applied	to	each	pair	of	partitioned	files.

Recursive	Hash	Join
If	the	build	input	is	so	large	that	inputs	for	a	standard	external	merge	sorts	would
require	multiple	merge	levels,	multiple	partitioning	steps	and	multiple
partitioning	levels	are	required.	If	only	some	of	the	partitions	are	large,
additional	partitioning	steps	are	used	for	only	those	specific	partitions.	In	order
to	make	all	partitioning	steps	as	fast	as	possible,	large,	asynchronous	I/O
operations	are	used	so	that	a	single	thread	can	keep	multiple	disk	drives	busy.

Note		If	the	build	input	is	larger	but	not	a	lot	larger	than	the	available	memory,
elements	of	in-memory	hash	join	and	grace	hash	join	are	combined	in	a	single
step,	producing	a	hybrid	hash	join.

It	is	not	always	possible	during	optimization	to	determine	which	hash	join	will
be	used.	Therefore,	Microsoft®	SQL	Server™	2000	starts	using	an	in-memory
hash	join	and	gradually	transitions	to	grace	hash	join,	and	recursive	hash	join,
depending	on	the	size	of	the	build	input.

If	the	optimizer	anticipates	wrongly	which	of	the	two	inputs	is	smaller	and,
therefore,	should	have	been	the	build	input,	the	build	and	probe	roles	are
reversed	dynamically.	The	hash	join	makes	sure	that	it	uses	the	smaller	overflow
file	as	build	input.	This	technique	is	called	role	reversal.



Optimizing	Database	Performance



Application	Design
Application	design	plays	a	pivotal	role	in	determining	the	performance	of	a
system	using	Microsoft®	SQL	Server™	2000.	Consider	the	client	the	controlling
entity	rather	than	the	database	server.	The	client	determines	the	type	of	queries,
when	they	are	submitted,	and	how	the	results	are	processed.	This	in	turn	has	a
major	effect	on	the	type	and	duration	of	locks,	amount	of	I/O,	and	processing
(CPU)	load	on	the	server,	and	hence	on	whether	performance	is	generally	good
or	bad.

For	this	reason,	it	is	important	to	make	the	correct	decisions	during	the
application	design	phase.	However,	even	if	a	performance	problem	occurs	using
a	turn-key	application,	where	changes	to	the	client	application	seem	impossible,
this	does	not	change	the	fundamental	factors	that	affect	performance:	The	client
plays	a	dominant	role	and	many	performance	problems	cannot	be	resolved
without	making	client	changes.	A	well-designed	application	allows	SQL	Server
to	support	thousands	of	concurrent	users.	Conversely,	a	poorly	designed
application	prevents	even	the	most	powerful	server	platform	from	handling	more
than	a	few	users.

Guidelines	for	client-application	design	include:

Eliminate	excessive	network	traffic.

Network	roundtrips	between	the	client	and	SQL	Server	are	usually	the
main	reason	for	poor	performance	in	a	database	application,	an	even
greater	factor	than	the	amount	of	data	transferred	between	server	and
client.	Network	roundtrips	describe	the	conversational	traffic	sent
between	the	client	application	and	SQL	Server	for	every	batch	and
result	set.	By	making	use	of	stored	procedures,	you	can	minimize
network	roundtrips.	For	example,	if	your	application	takes	different
actions	based	on	data	values	received	from	SQL	Server,	make	those
decisions	directly	in	the	stored	procedure	whenever	possible,	thus
eliminating	network	traffic.

If	a	stored	procedure	has	multiple	statements,	then	by	default	SQL
Server	sends	a	message	to	the	client	application	at	the	completion	of
each	statement	and	details	the	number	of	rows	affected	for	each



statement.	Most	applications	do	not	need	these	messages.	If	you	are
confident	that	your	applications	do	not	need	them,	you	can	disable	these
messages,	which	can	improve	performance	on	a	slow	network.	Use	the
SET	NOCOUNT	session	setting	to	disable	these	messages	for	the
application.	For	more	information,	see	SET	NOCOUNT.

Use	small	result	sets.

Retrieving	needlessly	large	result	sets	(for	example,	thousands	of	rows)
for	browsing	on	the	client	adds	CPU	and	network	I/O	load,	makes	the
application	less	capable	of	remote	use,	and	limits	multiuser	scalability.
It	is	better	to	design	the	application	to	prompt	the	user	for	sufficient
input	so	queries	are	submitted	that	generate	modest	result	sets.	For	more
information,	see	Optimizing	Application	Performance	Using	Efficient
Data	Retrieval.

Application	design	techniques	that	facilitate	this	include	exercising
control	over	wildcards	when	building	queries,	mandating	certain	input
fields,	not	allowing	ad	hoc	queries,	and	using	the	TOP,	PERCENT,	or
SET	ROWCOUNT	Transact-SQL	statements	to	limit	the	number	of
rows	returned	by	a	query.	For	more	information,	see	Limiting	Result
Sets	Using	TOP	and	PERCENT	and	SET	ROWCOUNT.

Allow	cancellation	of	a	query	in	progress	when	the	user	needs	to	regain
control	of	the	application.

An	application	should	never	force	the	user	to	restart	the	client	computer
to	cancel	a	query.	Ignoring	this	can	lead	to	irresolvable	performance
problems.	When	a	query	is	canceled	by	an	application,	for	example,
using	the	open	database	connectivity	(ODBC)	sqlcancel	function,
proper	care	should	be	exercised	regarding	transaction	level.	Canceling	a
query,	for	example,	does	not	commit	or	roll	back	a	user-defined
transaction.	All	locks	acquired	within	the	transaction	are	retained	after
the	query	is	canceled.	Therefore,	after	canceling	a	query,	always	either
commit	or	roll	back	the	transaction.	The	same	issues	apply	to	DB-
Library	and	other	application	programming	interfaces	(APIs)	that	can
be	used	to	cancel	queries.

Always	implement	a	query	or	lock	time-out.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()


Do	not	allow	queries	to	run	indefinitely.	Make	the	appropriate	API	call
to	set	a	query	time-out.	For	example,	use	the	ODBC
SQLSetStmtOption	function.

For	more	information	about	setting	a	query	time-out,	see	the	ODBC
API	documentation.

For	more	information	about	setting	a	lock	time-out,	see	Customizing	the
Lock	Time-out.

Do	not	use	application	development	tools	that	do	not	allow	explicit
control	over	the	SQL	statements	sent	to	SQL	Server.

Do	not	use	a	tool	that	transparently	generates	Transact-SQL	statements
based	on	higher-level	objects	if	it	does	not	provide	crucial	features	such
as	query	cancellation,	query	time-out,	and	complete	transactional
control.	It	is	often	not	possible	to	maintain	good	performance	or	to
resolve	a	performance	problem	if	the	application	generates	transparent
SQL	statements,	because	this	does	not	allow	explicit	control	over
transactional	and	locking	issues,	which	are	critical	to	the	performance
picture.

Do	not	intermix	decision	support	and	online	transaction	processing
(OLTP)	queries.	For	more	information,	see	Online	Transaction
Processing	vs.	Decision	Support.

Do	not	use	cursors	more	than	necessary.

Cursors	are	a	useful	tool	in	relational	databases;	however,	it	is	almost
always	more	expensive	to	use	a	cursor	than	to	use	a	set-oriented	SQL
statement	to	accomplish	a	task.

In	set-oriented	SQL	statements,	the	client	application	tells	the	server	to
update	the	set	of	records	that	meet	specified	criteria.	The	server	figures
out	how	to	accomplish	the	update	as	a	single	unit	of	work.	When
updating	through	a	cursor,	the	client	application	requires	the	server	to
maintain	row	locks	or	version	information	for	every	row,	just	in	case	the
client	asks	to	update	the	row	after	it	has	been	fetched.

Also,	using	a	cursor	implies	that	the	server	is	maintaining	client	state

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()


information,	such	as	the	user's	current	rowset	at	the	server,	usually	in
temporary	storage.	Maintaining	this	state	for	a	large	number	of	clients	is
an	expensive	use	of	server	resources.	A	better	strategy	with	a	relational
database	is	for	the	client	application	to	get	in	and	out	quickly,
maintaining	no	client	state	at	the	server	between	calls.	Set-oriented	SQL
statements	support	this	strategy.

However,	if	the	query	uses	cursors,	determine	if	the	cursor	query	could
be	written	more	efficiently	either	by	using	a	more-efficient	cursor	type,
such	as	fast	forward-only,	or	a	single	query.	For	more	information,	see
Optimizing	Application	Performance	Using	Efficient	Data	Retrieval.

Keep	transactions	as	short	as	possible.	For	more	information,	see
Effects	of	Transactions	and	Batches	on	Application	Performance.

Use	stored	procedures.	For	more	information,	see	Effects	of	Stored
Procedures	on	Application	Performance.

Use	prepared	execution	to	execute	a	parameterized	SQL	statement.	For
more	information,	see	Prepared	Execution	(ODBC).

Always	process	all	results	to	completion.

Do	not	design	an	application	or	use	an	application	that	stops	processing
result	rows	without	canceling	the	query.	Doing	so	will	usually	lead	to
blocking	and	slow	performance.	For	more	information,	see
Understanding	and	Avoiding	Blocking.

Ensure	that	your	application	is	designed	to	avoid	deadlocks.	For	more
information,	see	Minimizing	Deadlocks.

Ensure	that	all	the	appropriate	options	for	optimizing	the	performance
of	distributed	queries	have	been	set.	For	more	information,	see
Optimizing	Distributed	Queries.

See	Also

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()


Deadlocking

Locking

Dynamic	Locking

Transactions

JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()


Optimizing	Database	Performance



Networking	and	Performance
One	key	characteristic	of	client/server	databases	is	the	limited	amount	of
network	traffic	involved.	Many	applications	using	Microsoft®	SQL	Server™
2000	allow	the	user	to	log	in	over	a	modem	link	and	still	use	the	application
effectively.	Although	network	I/O	performance	is	reduced	by	a	factor	of	1,000
compared	to	a	local	area	network	(LAN),	you	often	see	little	performance
degradation.	However,	if	large	amounts	of	data	are	transferred	between	the	client
and	the	server,	network	performance	can	be	affected.

It	is	a	good	idea	to	monitor	the	traffic	between	your	client	applications	and	the
server.	An	application	designed	and	tuned	for	slow	networks	works	great	on	a
fast	network,	but	the	opposite	is	not	true.	If	you	use	a	higher-level	development
tool	that	generates	Transact-SQL	statements	and	issues	queries	and	updates	on
your	behalf,	it	is	especially	important	to	keep	on	eye	on	what	is	going	across	the
network.



Optimizing	Database	Performance



Named	Pipes	vs.	TCP/IP	Sockets
In	a	fast	local	area	network	(LAN)	environment,	Transmission	Control
Protocol/Internet	Protocol	(TCP/IP)	Sockets	and	Named	Pipes	clients	are
comparable	in	terms	of	performance.	However,	the	performance	difference
between	the	TCP/IP	Sockets	and	Named	Pipes	clients	becomes	apparent	with
slower	networks,	such	as	across	wide	area	networks	(WANs)	or	dial-up
networks.	This	is	because	of	the	different	ways	the	interprocess	communication
(IPC)	mechanisms	communicate	between	peers.

For	named	pipes,	network	communications	are	typically	more	interactive.	A	peer
does	not	send	data	until	another	peer	asks	for	it	using	a	read	command.	A
network	read	typically	involves	a	series	of	peek	named	pipes	messages	before	it
begins	to	read	the	data.	These	can	be	very	costly	in	a	slow	network	and	cause
excessive	network	traffic,	which	in	turn	affects	other	network	clients.

It	is	also	important	to	clarify	if	you	are	talking	about	local	pipes	or	network
pipes.	If	the	server	application	is	running	locally	on	the	computer	running	an
instance	of	Microsoft®	SQL	Server™	2000,	the	local	Named	Pipes	protocol	is
an	option.	Local	named	pipes	runs	in	kernel	mode	and	is	extremely	fast.

For	TCP/IP	Sockets,	data	transmissions	are	more	streamlined	and	have	less
overhead.	Data	transmissions	can	also	take	advantage	of	TCP/IP	Sockets
performance	enhancement	mechanisms	such	as	windowing,	delayed
acknowledgements,	and	so	on,	which	can	be	very	beneficial	in	a	slow	network.
Depending	on	the	type	of	applications,	such	performance	differences	can	be
significant.

TCP/IP	Sockets	also	support	a	backlog	queue,	which	can	provide	a	limited
smoothing	effect	compared	to	named	pipes	that	may	lead	to	pipe	busy	errors
when	you	are	attempting	to	connect	to	SQL	Server.

In	general,	sockets	are	preferred	in	a	slow	LAN,	WAN,	or	dial-up	network,
whereas	named	pipes	can	be	a	better	choice	when	network	speed	is	not	the	issue,
as	it	offers	more	functionality,	ease	of	use,	and	configuration	options.

For	more	information	about	TCP/IP,	see	the	Microsoft	Windows	NT®
documentation.



See	Also

Client	Net-Libraries	and	Network	Protocols

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance



Optimizing	Application	Performance	Using	Efficient
Data	Retrieval
One	of	the	capabilities	of	the	SQL	language	is	its	ability	to	filter	data	at	the
server	so	that	only	the	minimum	data	required	is	returned	to	the	client.	Using
these	facilities	minimizes	expensive	network	traffic	between	the	server	and
client.	This	means	that	WHERE	clauses	must	be	restrictive	enough	to	retrieve
only	the	data	that	is	required	by	the	application.

It	is	always	more	efficient	to	filter	data	at	the	server	than	to	send	it	to	the	client
and	filter	it	in	the	application.	This	also	applies	to	columns	requested	from	the
server.	An	application	that	issues	a	SELECT	*	FROM...	statement	requires	the
server	to	return	all	column	data	to	the	client,	whether	or	not	the	client	application
has	bound	these	columns	for	use	in	program	variables.	Selecting	only	the
necessary	columns	by	name	avoids	unnecessary	network	traffic.	This	also	makes
your	application	more	robust	in	the	event	of	table	definition	changes,	because
newly	added	columns	are	not	returned	to	the	client	application.

Performance	also	depends	on	how	your	application	requests	a	result	set	from	the
server.	In	an	application	using	Open	Database	Connectivity	(ODBC),	statement
options	set	prior	to	executing	a	query	determine	how	the	application	requests	a
result	set	from	the	server.	When	you	leave	the	statement	options	at	default
values,	Microsoft®	SQL	Server™	2000	sends	the	result	set	the	most	efficient
way.

SQL	Server	assumes	that	your	application	will	fetch	all	the	rows	from	a	default
result	set	immediately.	Therefore,	your	application	must	buffer	any	rows	that	are
not	used	immediately	but	may	be	needed	later.	This	buffering	requirement	makes
it	especially	important	for	you	to	specify	(by	using	Transact-SQL)	only	the	data
you	need.

It	may	seem	economical	to	request	a	default	result	set	and	fetch	rows	only	as
your	application	logic	or	your	application	user	needs	them,	but	this	is	false
economy.	Unfetched	rows	from	a	default	result	set	can	tie	up	your	connection	to
the	server,	blocking	other	work	in	the	same	transaction.	Additionally,	unfetched
rows	from	a	default	result	set	can	cause	SQL	Server	to	hold	locks	at	the	server,
possibly	preventing	other	users	from	updating.	This	concurrency	problem	may



not	show	up	in	small-scale	testing,	but	it	can	appear	later	when	the	application	is
deployed.	Therefore,	immediately	fetch	all	rows	from	a	default	result	set.	For
more	information,	see	Understanding	and	Avoiding	Blocking.

Some	applications	cannot	buffer	all	the	data	they	request	from	the	server.	For
example,	an	application	that	queries	a	large	table	and	allows	the	user	to	specify
the	selection	criteria	may	return	no	rows	or	millions	of	rows.	The	user	is	unlikely
to	want	to	see	millions	of	rows.	Instead,	the	user	is	more	likely	to	reexecute	the
query	with	narrower	selection	criteria.	In	this	case,	fetching	and	buffering
millions	of	rows	only	to	have	them	thrown	away	by	the	user	wastes	time	and
resources.

For	these	applications,	SQL	Server	offers	server	cursors	that	allow	an	application
to	fetch	a	small	subset	or	block	of	rows	from	an	arbitrarily	large	result	set.	If	the
user	wants	to	see	other	records	from	the	same	result	set,	a	server	cursor	allows
the	application	to	fetch	any	other	block	of	rows	from	the	result	set,	including	the
next	n	rows,	the	previous	n	rows,	or	n	rows	starting	at	a	certain	row	number	in
the	result	set.	SQL	Server	does	the	work	to	fulfill	each	block	fetch	request	only
as	needed,	and	SQL	Server	does	not	normally	hold	locks	between	block	fetches
on	server	cursors.

Server	cursors	also	allow	an	application	to	do	a	positioned	update	or	delete	of	a
fetched	row	without	having	to	figure	out	the	source	table	and	primary	key	of	the
row.	If	the	row	data	changes	between	the	time	it	is	fetched	and	the	time	the
update	is	requested,	SQL	Server	detects	the	problem	and	prevents	a	lost	update.

However,	the	features	of	server	cursors	come	at	a	cost.	If	all	the	results	from	a
given	query	are	going	to	be	used	in	your	application,	a	server	cursor	is	always
going	to	be	more	expensive	than	a	default	result	set.	A	default	result	set	always
requires	only	one	roundtrip	between	client	and	server,	whereas	each	call	to	fetch
a	block	of	rows	from	a	server	cursor	results	in	a	roundtrip.	Moreover,	server
cursors	consume	resources	on	the	server,	and	there	are	restrictions	on	the
SELECT	statements	that	can	be	used	with	some	types	of	cursor.	For	example,
KEYSET	cursors	are	restricted	to	using	tables	with	unique	indexes	only,	while
KEYSET	and	STATIC	cursors	make	heavy	use	of	temporary	storage	at	the
server.	For	these	reasons,	only	use	server	cursors	when	your	application	needs
their	features.	If	a	particular	task	requests	a	single	row	by	primary	key,	use	a
default	result	set.	If	another	task	requires	an	unpredictably	large	or	updatable
result	set,	use	a	server	cursor	and	fetch	rows	in	reasonably	sized	blocks	(for



example,	one	screen	of	rows	at	a	time).	Additionally,	where	possible,	make	use
of	Fast	Forward-only	cursors	with	auto-fetch.	These	cursors	can	be	used	to
retrieve	small	result	sets	with	only	one	roundtrip	between	the	client	and	server,
similar	to	a	default	result	set.	For	more	information,	see	Fast	Forward-only
Cursors.

See	Also

Cursors

SELECT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()


Optimizing	Database	Performance



Effects	of	Transactions	and	Batches	on	Application
Performance
A	primary	goal	of	using	Transact-SQL	appropriately	is	to	reduce	the	amount	of
data	transferred	between	server	and	client.	Reducing	the	amount	of	data
transferred	will	usually	reduce	the	time	it	takes	to	accomplish	a	logical	task	or
transaction.	Long-running	transactions	can	be	fine	for	a	single	user,	but	they
scale	poorly	to	multiple	users.	To	support	transactional	consistency,	the	database
must	hold	locks	on	shared	resources	from	the	time	they	are	first	acquired	within
the	transaction	until	the	transaction	commits.	If	other	users	need	access	to	the
same	resources,	they	must	wait.	As	individual	transactions	get	longer,	the	queue
and	other	users	waiting	for	locks	gets	longer	and	system	throughput	decreases.
Long	transactions	also	increase	the	chances	of	a	deadlock,	which	occurs	when
two	or	more	users	are	simultaneously	waiting	on	locks	held	by	each	other.	For
more	information,	see	Deadlocking.

Techniques	you	can	use	to	reduce	transaction	duration	include:

Committing	transactional	changes	as	soon	as	possible	within	the
requirements	of	the	application.

Applications	often	perform	large	batch	jobs,	such	as	month-end
summary	calculations,	as	a	single	unit	of	work	(and	thus	one
transaction).	With	many	of	these	applications,	individual	steps	of	the	job
can	be	committed	without	compromising	database	consistency.
Committing	changes	as	quickly	as	possible	means	that	locks	are
released	as	quickly	as	possible.

Taking	advantage	of	Microsoft®	SQL	Server™	2000	statement	batches.

Statement	batches	are	a	way	of	sending	multiple	Transact-SQL
statements	from	the	client	to	SQL	Server	at	one	time,	thereby	reducing
the	number	of	network	roundtrips	to	the	server.	If	the	statement	batch
contains	multiple	SELECT	statements,	the	server	will	return	multiple
result	sets	to	the	client	in	a	single	data	stream.

Using	parameter	arrays	for	repeated	operations.

For	example,	the	Open	Database	Connectivity	(ODBC)

JavaScript:hhobj_1.Click()


SQLParamOptions	function	allows	multiple	parameter	sets	for	a
single	Transact-SQL	statement	to	be	sent	to	the	server	in	a	batch,	again
reducing	the	number	of	roundtrips.

SQL	Profiler	can	be	used	to	monitor,	filter,	and	capture	all	calls	sent	from	client
applications	to	SQL	Server.	It	will	often	reveal	unexpected	application	overhead
due	to	unnecessary	calls	to	the	server.	SQL	Profiler	can	also	reveal	opportunities
for	placing	statements	that	are	currently	being	sent	separately	to	the	server	in
batches.	For	more	information,	see	Monitoring	with	SQL	Profiler.

See	Also

Batches

Coding	Efficient	Transactions

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


Optimizing	Database	Performance



Effects	of	Stored	Procedures	on	Application
Performance
All	well-designed	Microsoft®	SQL	Server™	2000	applications	should	use
stored	procedures.	This	is	true	whether	or	not	the	business	logic	of	the
application	is	written	into	stored	procedures.	Even	standard	Transact-SQL
statements	with	no	business	logic	component	gain	a	performance	advantage
when	packaged	as	stored	procedures	with	parameters.	Transact-SQL	statements
compiled	into	stored	procedures	can	save	a	significant	amount	of	processing	at
execution	time.	For	more	information,	see	Stored	Procedures.

Another	advantage	of	stored	procedures	is	that	client	execution	requests	use	the
network	more	efficiently	than	equivalent	Transact-SQL	statements	sent	to	the
server.	For	example,	suppose	an	application	needs	to	insert	a	large	binary	value
into	an	image	data	column.	To	send	the	data	in	an	INSERT	statement,	the
application	must	convert	the	binary	value	to	a	character	string	(doubling	its	size),
and	then	send	it	to	the	server.	The	server	then	converts	the	value	back	into	a
binary	format	for	storage	in	the	image	column.	In	contrast,	the	application	can
create	a	stored	procedure	of	the	form:

CREATE	PROCEDURE	P(@p1	image)	AS	INSERT	T	VALUES	(@p1)

When	the	client	application	requests	an	execution	of	procedure	P,	the	image
parameter	value	will	stay	in	binary	format	all	the	way	to	the	server,	thereby
saving	processing	time	and	network	traffic.

SQL	Server	stored	procedures	can	provide	even	greater	performance	gains	when
they	include	business	services	logic	because	it	moves	the	processing	to	the	data,
rather	than	moving	the	data	to	the	processing.

JavaScript:hhobj_1.Click()


Optimizing	Database	Performance



Understanding	and	Avoiding	Blocking
Blocking	happens	when	one	connection	from	an	application	holds	a	lock	and	a
second	connection	requires	a	conflicting	lock	type.	This	forces	the	second
connection	to	wait,	blocked	on	the	first.	One	connection	can	block	another
connection,	regardless	of	whether	they	emanate	from	the	same	application	or
separate	applications	on	different	client	computers.

Note		Some	of	the	actions	needing	locking	protection	may	not	be	obvious,	for
example,	locks	on	system	catalog	tables	and	indexes.

Most	blocking	problems	happen	because	a	single	process	holds	locks	for	an
extended	period	of	time,	causing	a	chain	of	blocked	processes,	all	waiting	on
other	processes	for	locks.

Common	blocking	scenarios	include:

Submitting	queries	with	long	execution	times.

A	long-running	query	can	block	other	queries.	For	example,	a	DELETE
or	UPDATE	operation	that	affects	many	rows	can	acquire	many	locks
that,	whether	or	not	they	escalate	to	a	table	lock,	block	other	queries.
For	this	reason,	you	generally	do	not	want	to	intermix	long-running
decision	support	queries	and	online	transaction	processing	(OLTP)
queries	on	the	same	database.	The	solution	is	to	look	for	ways	to
optimize	the	query,	by	changing	indexes,	breaking	a	large,	complex
query	into	simpler	queries,	or	running	the	query	during	off	hours	or	on	a
separate	computer.

One	reason	queries	can	be	long-running,	and	hence	cause	blocking,	is	if
they	inappropriately	use	cursors.	Cursors	can	be	a	convenient	method
for	navigating	through	a	result	set,	but	using	them	may	be	slower	than
set-oriented	queries.

Canceling	queries	that	were	not	committed	or	rolled	back.

This	can	happen	if	the	application	cancels	a	query;	for	example,	using
the	Open	Database	Connectivity	(ODBC)	sqlcancel	function	without
also	issuing	the	required	number	of	ROLLBACK	and	COMMIT
statements.	Canceling	the	query	does	not	automatically	roll	back	or



commit	the	transaction.	All	locks	acquired	within	the	transaction	are
retained	after	the	query	is	canceled.	Applications	must	properly	manage
transaction	nesting	levels	by	committing	or	rolling	back	canceled
transactions.

Applications	that	are	not	processing	all	results	to	completion.

After	sending	a	query	to	the	server,	all	applications	must	immediately
fetch	all	result	rows	to	completion.	If	an	application	does	not	fetch	all
result	rows,	locks	may	be	left	on	the	tables,	blocking	other	users.	If	you
are	using	an	application	that	transparently	submits	Transact-SQL
statements	to	the	server,	the	application	must	fetch	all	result	rows.	If	it
does	not	(and	if	it	cannot	be	configured	to	do	so),	you	may	be	unable	to
resolve	the	blocking	problem.	To	avoid	the	problem,	you	can	restrict
these	applications	to	a	reporting	or	decision-support	database.

Distributed	client/server	deadlocks.

Unlike	a	conventional	deadlock,	a	distributed	deadlock	cannot	be
automatically	detected	by	Microsoft®	SQL	Server™	2000.	A
distributed	client/server	deadlock	may	occur	if	the	application	opens
more	than	one	connection	to	SQL	Server	and	submits	a	query
asynchronously.

For	example,	a	single	client	application	thread	has	two	open
connections.	It	asynchronously	starts	a	transaction	and	issues	a	query	on
the	first	connection.	The	application	then	starts	another	transaction,
issues	a	query	on	another	connection,	and	waits	for	the	results.	When
SQL	Server	returns	results	for	one	of	the	connections,	the	application
starts	to	process	them.	The	application	processes	the	results	until	no
more	results	are	available	because	the	query	generating	the	results	is
blocked	by	the	query	executed	on	the	other	connection.	At	this	point,
the	first	connection	is	blocked,	waiting	indefinitely	for	more	results	to
process.	The	second	connection	is	not	blocked	on	a	lock,	but	tries	to
return	results	to	the	application.	However,	because	the	application	is
blocked,	waiting	for	results	on	the	first	connection,	the	results	for	the
second	connection	are	not	processed.

To	avoid	this	problem,	use	either:



A	query	time-out	for	each	query.

A	lock	time-out	for	each	query.	For	more	information,	see
Customizing	the	Lock	Time-out.

A	bound	connection.	For	more	information,	see	Using	Bound
Connections.

SQL	Server	is	essentially	a	puppet	of	the	client	application.	The	client
application	has	almost	total	control	over	(and	responsibility	for)	the	locks
acquired	on	the	server.	Although	the	SQL	Server	lock	manager	automatically
uses	locks	to	protect	transactions,	this	is	directly	instigated	by	the	query	type
sent	from	the	client	application	and	the	way	the	results	are	processed.	Therefore,
resolution	of	most	blocking	problems	involves	inspecting	the	client	application.

A	blocking	problem	frequently	requires	both	the	inspection	of	the	exact	SQL
statements	submitted	by	the	application	and	the	exact	behavior	of	the	application
regarding	connection	management,	processing	of	all	result	rows,	and	so	on.	If
the	development	tool	does	not	allow	explicit	control	over	connection
management,	query	time-out,	processing	of	results,	and	so	on,	blocking
problems	may	not	be	resolvable.

Guidelines	for	designing	applications	to	avoid	blocking	include:

Do	not	use	or	design	an	application	that	allows	users	to	fill	in	edit	boxes
that	generate	a	long-running	query.	For	example,	do	not	use	or	design
an	application	that	prompts	the	user	for	inputs	but	rather	allows	certain
fields	to	be	left	blank	or	a	wildcard	to	be	entered.	This	may	cause	the
application	to	submit	a	query	with	an	excessive	running	time,	thereby
causing	a	blocking	problem.

Do	not	use	or	design	an	application	that	allows	user	input	within	a
transaction.

Allow	for	query	cancellation.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Use	a	query	or	lock	time	out	to	prevent	a	runaway	query	and	avoid
distributed	deadlocks.

Immediately	fetch	all	result	rows	to	completion.

Keep	transactions	as	short	as	possible.

Explicitly	control	connection	management.

Stress	test	the	application	at	the	full	projected	concurrent	user	load.

See	Also

Deadlocking

Locking

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


Optimizing	Database	Performance



Optimizing	Distributed	Queries
Microsoft®	SQL	Server™	2000	distributed	queries	allow	users	to	reference
remote	tables	and	rowsets	as	though	they	are	local	tables	by	using	SELECT,
INSERT,	UPDATE,	and	DELETE	statements.	Distributed	queries	cause	data	to
be	retrieved	across	the	network	when	data	sources	are	located	on	remote
computers.	Therefore,	SQL	Server	performs	two	types	of	optimization	specific
to	distributed	queries	to	improve	performance:

Remote	query	execution	used	with	OLE	DB	SQL	Command	Providers.

Indexed	access	used	with	OLE	DB	Index	Providers.

An	OLE	DB	provider	is	considered	to	be	a	SQL	Command	Provider	if	the	OLE
DB	provider	meets	the	following	minimum	requirements:

Supports	the	Command	object	and	all	of	its	mandatory	interfaces.

Supports	DBPROPVAL	SQL	SUBMINIMUM	Syntax,	or	SQL-92	at
Entry	level	or	higher,	or	ODBC	at	Core	level	or	higher.	The	provider
should	expose	this	dialect	level	through	the	DBPROP_SQLSUPPORT
OLE	DB	property.

An	OLE	DB	Provider	is	considered	to	be	an	Index	Provider	if	the	OLE	DB
provider	meets	the	following	minimum	requirements:

Supports	the	IDBSchemaRowset	interface	with	the	TABLES,
COLUMNS	and	INDEXES	schema	rowsets.

Supports	opening	a	rowset	on	an	index	using	IOpenRowset	by
specifying	the	index	name	and	the	corresponding	base	table	name.

The	Index	object	should	support	all	its	mandatory	interfaces:	IRowset,
IRowsetIndex,	IAccessor,	IColumnsInfo,	IRowsetInfo,	and
IConvertTypes.



Rowsets	opened	against	the	indexed	base	table	(using	IOpenRowset)
should	support	the	IRowsetLocate	interface	for	positioning	on	a	row
based	off	a	bookmark	retrieved	from	the	index.

Remote	Query	Execution

SQL	Server	attempts	to	delegate	as	much	of	the	evaluation	of	a	distributed	query
to	the	SQL	Command	Provider	as	possible.	An	SQL	query	that	accesses	only	the
remote	tables	stored	in	the	provider's	data	source	is	extracted	from	the	original
distributed	query	and	executed	against	the	provider.	This	reduces	the	number	of
rows	returned	from	the	provider	and	allows	the	provider	to	use	its	indexes	in
evaluating	the	query.

Considerations	that	affect	how	much	of	the	original	distributed	query	gets
delegated	to	the	SQL	Command	Provider	include:

The	dialect	level	supported	by	the	SQL	Command	Provider

SQL	Server	delegates	operations	only	if	they	are	supported	by	the
specific	dialect	level.	The	dialect	levels	from	highest	to	lowest	are:	SQL
Server,	SQL-92	Entry	level,	ODBC	core,	and	Jet.	The	higher	the	dialect
level,	the	more	operations	SQL	Server	can	delegate	to	the	provider.

Note		The	SQL	Server	dialect	level	is	used	when	the	provider
corresponds	to	a	SQL	Server	linked	server.

Each	dialect	level	is	a	superset	of	the	lower	levels.	Therefore,	if	an
operation	is	delegated	to	a	particular	level,	then	it	is	also	delegated	to	all
higher	levels.

Queries	involving	the	following	are	never	delegated	to	a	provider	and
are	always	evaluated	locally:

bit

uniqueidentifier

The	following	operations/syntactic	elements	are	delegated	to	the	dialect



level	indicated	(and	all	higher	levels):

SQL	Server:	Outer	join,	CUBE,	ROLLUP,	modulo	operator
(%),	bit-wise	operators,	string	functions,	and	arithmetic	system
functions.

SQL-92	Entry	Level:	UNION,	and	UNION	ALL.

ODBC	Core:	Aggregation	functions	with	DISTINCT,	and
string	constants.

Jet:	Aggregate	functions	without	DISTINCT,	sorting	(ORDER
BY),	inner	joins,	predicates,	subquery	operators	(EXISTS,
ALL,	SOME,	IN),	DISTINCT,	arithmetic	operators	not
mentioned	in	higher	levels,	constants	not	mentioned	in	higher
levels,	and	all	logical	operators.

For	example,	all	operations	except	those	involving	CUBE,	ROLLUP,
outer	join,	modulo	operator	(%),	bit-wise	operators,	string	functions,
and	arithmetic	system	functions	are	delegated	to	a	SQL-92	Entry	level
provider	that	is	not	also	SQL	Server.

Collation	compatibility

For	a	distributed	query,	the	comparison	semantics	for	all	character	data
is	defined	by	the	character	set	and	sort	order	of	the	local	SQL	Server.
Microsoft	SQL	Server	2000	supports	multiple	collations,	which	can	be
different	for	each	column;	each	character	value	has	an	associated
collation	property.	SQL	Server	2000	interprets	the	collation	property	of
character	data	from	a	remote	data	source	and	treats	it	accordingly.	For
more	information	on	the	collation	of	remote	columns,	see	Collations	in
Distributed	Queries.

SQL	Server	can	delegate	comparisons	and	ORDER	BY	operations	on
character	columns	to	a	provider	only	if	it	can	determine	that:

The	underlying	data	source	uses	the	collation	sequence	and
character	set	of	the	column.

JavaScript:hhobj_1.Click()


The	character	comparison	semantics	follow	the	SQL-92	(and
SQL	Server)	standard.

Following	the	table	in	the	Collations	in	Distributed	Queries	topic,	SQL
Server	will	determine	a	collation	for	each	column.	If	the	remote	data
source	supports	that	collation,	then	the	provider	is	considered	collation
compatible.

Other	SQL	support	considerations

The	following	SQL	syntax	elements	are	not	dictated	by	the	SQL	dialect
levels:

Nested	query	support

If	the	provider	supports	nested	queries	(subqueries),	then	SQL
Server	can	delegate	these	operations	to	the	provider.	Because
nested	query	support	cannot	be	automatically	determined	from
OLE	DB	properties,	the	system	administrator	should	set	the
NestedQueries	provider	option	to	indicate	to	SQL	Server	that
the	provider	supports	nested	queries.

Parameter	marker	support

If	the	provider	supports	parameterized	query	execution	by
using	the	?	parameter	marker	in	a	query,	then	SQL	Server	can
delegate	parameterized	query	execution	to	the	provider.
Because	nested	query	support	cannot	be	automatically
determined	from	OLE	DB	properties,	the	system	administrator
should	set	the	DynamicParameters	provider	option	to	indicate
to	SQL	Server	that	the	provider	supports	nested	queries.

Indexed	Access

SQL	Server	can	use	execution	strategies	that	involve	using	the	indexes	of	the
Index	provider	to	evaluate	predicates	and	perform	sorting	operations	against
remote	tables.	Set	the	IndexAsAccessPath	provider	option	to	enable	indexed
access	against	a	provider.



Additionally,	when	using	indexes	involving	character	columns,	set	the	collation
compatible	linked	server	configuration	option	to	true	for	the	corresponding
linked	server.	For	more	information,	see	sp_serveroption.

Note		Graphically	display	the	execution	plan	using	SQL	Query	Analyzer	to
determine	the	execution	plan	for	a	given	distributed	query.	When	remote	query
execution	is	employed	in	the	execution	plan,	it	is	represented	using	the	Remote
Query	logical	and	physical	operator.	The	argument	of	this	operator	shows	the
remotely	executed	query.

See	Also

Configuring	OLE	DB	Providers	for	Distributed	Queries

Subquery	Fundamentals

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


Optimizing	Database	Performance



Optimizing	Utility	and	Tool	Performance
Three	operations	performed	on	a	production	database	that	can	benefit	from
optimal	performance	include:

Backup	and	restore	operations.

Bulk	copying	data	into	a	table.

Performing	database	console	command	(DBCC)	operations.

Generally,	these	operations	do	not	need	to	be	optimized.	However,	in	situations
where	performance	is	critical,	techniques	can	be	used	to	fine-tune	performance.



Optimizing	Database	Performance



Optimizing	Backup	and	Restore	Performance
Microsoft®	SQL	Server™	2000	offers	several	methods	for	increasing	the	speed
of	backup	and	restore	operations:

Using	multiple	backup	devices	allows	backups	to	be	written	to	all
devices	in	parallel.	Similarly,	the	backup	can	be	restored	from	multiple
devices	in	parallel.	Backup	device	speed	is	one	potential	bottleneck	in
backup	throughput.	Using	multiple	devices	can	increase	throughput	in
proportion	to	the	number	of	devices	used.	For	more	information,	see
Using	Multiple	Media	or	Devices.

Using	a	combination	of	database,	differential	database,	and	transaction
log	backups	to	minimize	the	time	necessary	to	recover	from	a	failure.
Differential	database	backups	reduce	the	amount	of	transaction	log	that
must	be	applied	to	recover	the	database.	This	is	normally	faster	than
creating	a	full	database	backup.	For	more	information,	see	Logged	and
Minimally	Logged	Bulk	Copy	Operations.

Logged	and	Minimally	Logged	Bulk	Copy	Operations

Optimizing	Database,	Differential	Database,	and	File	Backup
Performance

Creating	a	database	backup	comprises	two	steps:

Copying	the	data	from	the	database	files	to	the	backup	devices.

Copying	the	portion	of	the	transaction	log	needed	to	roll	forward	the
database	to	a	consistent	state	to	the	same	backup	devices.

Creating	a	differential	database	backup	comprises	the	same	two	steps	as	creating
a	database	backup,	except	only	the	data	that	has	changed	is	copied	(although	all
database	pages	need	to	be	read	to	determine	this).

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Backing	up	a	database	file	consists	of	one	step:	Copying	the	data	from	the
database	file	to	the	backup	devices.

The	database	files	used	to	store	the	database	are	sorted	by	a	disk	device,	and	a
reader	thread	is	assigned	to	each	device.	The	reader	thread	reads	the	data	from
the	database	files.	A	writer	thread	is	assigned	to	each	backup	device.	The	writer
thread	writes	data	to	the	backup	device.	Parallel	read	operations	can	be	increased
by	spreading	the	database	files	among	more	logical	drives.	Similarly,	parallel
write	operations	can	be	increased	by	using	more	backup	devices.

Generally,	the	bottleneck	will	be	either	the	database	files	or	the	backup	devices.
If	the	total	read	throughput	is	greater	than	the	total	backup	device	throughput,
then	the	bottleneck	is	on	the	backup	device	side.	Adding	more	backup	devices
(and	SCSI	controllers,	as	necessary)	can	improve	performance.	However,	if	the
total	backup	throughput	is	greater	than	the	total	read	throughput,	then	increase
the	read	throughput	by	adding,	for	example,	more	database	files	on	devices	or	by
using	more	disks	in	the	RAID	(redundant	array	of	independent	disks)	device.

Optimizing	Transaction	Log	Backup	Performance
Creating	a	transaction	log	backup	comprises	only	a	single	step:	copying	the
portion	of	the	log	not	yet	backed	up	to	the	backup	devices.	Even	though	there
may	be	multiple	transaction	log	files,	the	transaction	log	is	logically	one	stream
read	sequentially	by	one	thread.

A	reader/writer	thread	is	assigned	to	each	backup	device.	Higher	performance	is
achieved	by	adding	more	backup	devices.

The	bottleneck	can	be	either	the	disk	device	containing	the	transaction	log	files
or	the	backup	device,	depending	on	their	relative	speed	and	the	number	of
backup	devices	used.	Adding	more	backup	devices	will	scale	linearly	until	the
capacity	of	the	disk	device	containing	the	transaction	log	files	is	reached,
whereupon	no	further	gains	are	possible	without	increasing	the	speed	of	the	disk
devices	containing	the	transaction	log,	for	example,	by	using	disk	striping.

Optimizing	Restore	Performance
Restoring	a	database	or	differential	database	backup	comprises	four	steps:

Creating	the	database	and	transaction	log	files	if	they	do	not	already



exist.

Copying	the	data	from	the	backup	devices	to	the	database	files.

Copying	the	transaction	log	from	the	transaction	log	files.

Rolling	forward	the	transaction	log,	and	then	restarting	recovery	if
necessary.

Applying	a	transaction	log	backup	comprises	two	steps:

Copying	data	from	the	backup	devices	to	the	transaction	log	file.

Rolling	forward	the	transaction	log.

Restoring	a	database	file	comprises	two	steps:

Creating	any	missing	database	files.

Copying	the	data	from	the	backup	devices	to	the	database	files.

If	the	database	and	transaction	log	files	do	not	already	exist,	they	must	be
created	before	data	can	be	restored	to	them.	The	database	and	transaction	log
files	are	created	and	the	file	contents	initialized	to	zero.	Separate	worker	threads
create	and	initialize	the	files	in	parallel.	The	database	and	transaction	log	files
are	sorted	by	disk	device,	and	a	separate	worker	thread	is	assigned	to	each	disk
device.	Because	creating	files	and	initializing	them	requires	very	high
throughput,	spreading	the	files	evenly	across	the	available	logical	drives	yields
the	highest	performance.

Copying	the	data	and	transaction	log	from	the	backup	devices	to	the	database
and	transaction	log	files	is	performed	by	reader/writer	threads;	one	thread	is
assigned	to	each	backup	device.	Performance	is	limited	by	either	the	ability	of
the	backup	devices	to	deliver	the	data	or	the	ability	of	the	database	and
transaction	log	files	to	accept	the	data.	Therefore,	performance	increases	linearly
with	the	number	of	backup	devices	added,	until	the	ability	of	the	database	or



transaction	log	files	to	accept	the	data	is	reached.

The	performance	of	rolling	forward	a	transaction	log	is	fixed	and	cannot	be
further	optimized	apart	from	using	a	faster	computer.

Optimizing	Tape	Backup	Device	Performance
There	are	four	variables	that	affect	tape	backup	device	performance	and	that
allow	SQL	Server	backup	and	restore	performance	operations	to	roughly	scale
linearly	as	more	tape	devices	are	added:

Software	data	block	size

Number	of	tape	devices	that	share	a	small	computer	system	interface
(SCSI)	bus

Tape	device	type

The	software	data	block	size	is	computed	for	optimal	performance	by	SQL
Server	and	should	not	be	altered.

Many	high-speed	tape	drives	perform	better	if	they	have	a	dedicated	SCSI	bus
for	each	tape	drive	used.	Drives	whose	native	transfer	rate	exceeds	50	percent	of
the	SCSI	bus	speed	must	be	on	a	dedicated	SCSI	bus.

For	more	information	about	settings	that	affect	tape	drive	performance,	see	the
tape	drive	vendor's	documentation.

IMPORTANT		Never	place	a	tape	drive	on	the	same	SCSI	bus	as	disks	or	a	CD-
ROM	drive.	The	error-handling	actions	for	these	devices	are	mutually
incompatible.

Optimizing	Disk	Backup	Device	Performance
Raw	I/O	speed	of	the	disk	backup	device	affects	disk	backup	device
performance	and	allows	SQL	Server	backup	and	restore	performance	operations
to	roughly	scale	linearly	as	multiple	disk	devices	are	added.

The	use	of	RAID	(redundant	array	of	independent	disks)	for	a	disk	backup
device	needs	to	be	carefully	considered.	For	example,	RAID	5	has	low	write



performance,	approximately	the	same	speed	as	for	a	single	disk	(due	to	having	to
maintain	parity	information).	Additionally,	the	raw	speed	of	appending	data	to	a
file	is	significantly	slower	than	the	raw	device	write	speed.

If	the	backup	device	is	heavily	striped,	such	that	the	maximum	write	speed	to	the
backup	device	greatly	exceeds	the	speed	at	which	it	can	append	data	to	a	file,
then	it	can	be	appropriate	to	place	several	logical	backup	devices	on	the	same
stripe	set.	In	other	words,	backup	performance	can	be	increased	by	placing
several	backup	media	families	on	the	same	logical	drive.	However,	an	empirical
approach	is	required	to	determine	if	this	is	a	gain	or	a	loss	for	each	environment.
Usually,	it	is	better	to	place	each	backup	device	on	a	separate	disk	device.

Generally,	on	a	SCSI	bus,	only	a	few	disks	can	be	operated	at	maximum	speed,
although	Ultra-wide	and	Ultra-2	buses	can	handle	more.	However,	careful
configuration	of	the	hardware	is	likely	to	be	needed	to	obtain	optimal
performance.

For	more	information	about	settings	that	affect	disk	performance,	see	the	disk
vendor's	documentation.

Data	Compression
Modern	tape	drives	have	built-in	hardware	data	compression	that	can
significantly	increase	the	effective	transfer	rate	of	data	to	the	drive.	Data
compression	increases	the	effective	transfer	rate	to	the	tape	drives	over	what	can
be	achieved	with	hardware	compression	disabled.	The	compressibility	of	the	real
data	in	the	database	depends	both	on	the	data	itself	and	on	the	tape	drives	used.
Typical	data	compression	ratios	range	from	1.2:1	to	2:1	for	a	wide	range	of
databases.	This	compression	ratio	is	typical	of	data	in	a	wide	variety	of	business
applications,	although	some	databases	can	have	higher	or	lower	compression
ratios.	For	example,	a	database	consisting	largely	of	images	that	are	already
compressed	will	not	be	compressed	further	by	the	tape	drives.	For	more
information	about	data	compression,	see	the	tape-drive	vendor's	documentation.

By	default,	SQL	Server	supports	hardware	compression,	although	this	procedure
can	be	disabled	by	using	the	3205	trace	flag.	Disabling	hardware	compression
can,	in	rare	circumstances,	improve	backup	performance.	For	example,	if	the
data	is	already	fully	compressed,	disabling	hardware	compression	prevents	the
tape	device	from	wasting	time	trying	to	compress	the	data	further.



For	more	information	about	trace	flags,	see	Trace	Flags.

Amount	of	Data	Transferred	to	Tape
Creating	a	database	backup	captures	only	the	portion	of	the	database	containing
real	data;	unused	space	is	not	backed	up.	The	result	is	faster	backup	operations.

Although	SQL	Server	2000	databases	can	be	configured	to	grow	automatically
as	needed,	you	can	continue	to	reserve	space	within	the	database	to	guarantee
that	this	space	is	available.	Reserving	space	within	the	database	does	not
adversely	affect	backup	throughput	or	the	overall	time	needed	to	back	up	the
database.

See	Also

Handling	Large	Mission-Critical	Environments

SQL	Server:	Backup	Device	Object

SQL	Server:	Databases	Object

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()


Optimizing	Database	Performance



Optimizing	Bulk	Copy	Performance
To	bulk	copy	data	as	fast	as	possible,	several	options	are	available	to	specify
how	data	should	be	bulk	copied	into	Microsoft®	SQL	Server™	2000	using	the
bcp	utility	or	BULK	INSERT	statement,	including:

Using	logged	and	nonlogged	bulk	copies.

Using	the	bcp	utility	for	parallel	data	loading.

Controlling	the	locking	behavior.

Using	batches.

Ordering	data	files.

For	more	information,	see	Bulk	Copy	Performance	Considerations.

Note		If	possible,	use	the	BULK	INSERT	statement	rather	than	the	bcp	utility	to
bulk	copy	data	into	SQL	Server.	The	BULK	INSERT	statement	is	faster	than	the
bcp	utility.

Two	factors	determine	which	of	these	options	can	or	should	be	used	to	increase
the	performance	of	bulk-copy	operations:

Amount	of	existing	data	in	the	table	compared	to	the	amount	of	data	to
be	copied	into	the	table.

Number	and	type	of	indexes	on	the	table.

Additionally,	these	factors	depend	on	whether	data	is	bulk	copied	into	a	table
from	a	single	client	or	in	parallel	from	multiple	clients.

Loading	Data	into	an	Empty	Table	from	a	Single	Client

JavaScript:hhobj_1.Click()


When	you	are	loading	data	into	an	empty	table	from	a	single	client,	it	is
recommended	that	you	specify:

The	TABLOCK	hint.	This	causes	a	table-level	lock	to	be	taken	for	the
duration	of	the	bulk-copy	operation.

A	large,	batch	size,	using	the	ROWS_PER_BATCH	hint.	A	single
batch	representing	the	size	of	the	entire	file	is	recommended.

A	nonlogged	bulk-copy	operation.	Transaction	log	backups	should	not
be	created	after	performing	a	nonlogged	operation.	For	more
information,	see	Logged	and	Nonlogged	Bulk	Copy	Operations.

Additionally,	if	your	table	has	a	clustered	index	and	the	data	in	the	data	file	is
ordered	to	match	the	clustered	index	key	columns,	bulk	copy	the	data	into	the
table	with	the	clustered	index	already	in	place	and	specify	the	ORDER	hint.
This	is	significantly	faster	than	creating	the	clustered	index	after	the	data	is
copied	into	the	table.

If	nonclustered	indexes	are	also	present	on	the	table,	drop	these	before	copying
data	into	the	table.	It	is	generally	faster	to	bulk	copy	data	into	a	table	without
nonclustered	indexes,	and	then	to	re-create	the	nonclustered	indexes,	rather	than
bulk	copy	data	into	a	table	with	the	nonclustered	indexes	in	place.

Loading	Data	into	a	Nonempty	Table	from	a	Single	Client
When	you	are	copying	data	into	a	table	that	has	existing	data,	the
recommendation	to	perform	the	bulk	copy	operation	with	the	indexes	in	place
depends	on	the	amount	of	data	to	be	copied	into	the	table	compared	to	the
amount	of	existing	data	already	in	the	table.	As	the	percentage	of	data	to	be
copied	into	the	table	increases	(based	on	the	amount	of	existing	data	in	the
table),	the	faster	it	is	to	drop	all	indexes	on	the	table,	perform	the	bulk	copy
operation,	and	then	re-create	the	indexes	after	the	data	is	loaded.

As	a	general	guide,	the	following	table	shows	suggested	figures	for	the	amount
of	data	to	be	added	to	a	table	for	various	types	of	indexes.	If	you	exceed	these
percentages,	you	may	find	it	faster	to	drop	and	re-create	the	indexes.

JavaScript:hhobj_2.Click()


Indexes Amount	of	data	added
Clustered	index	only 30%
Clustered	and	one	nonclustered	index 25%
Clustered	and	two	nonclustered	indexes 25%
Single	nonclustered	index	only 100%
Two	nonclustered	indexes 60%

Loading	Data	in	Parallel	from	Multiple	Clients
If	SQL	Server	is	running	on	a	computer	with	more	than	one	processor	and	the
data	to	be	bulk	copied	into	the	table	can	be	partitioned	into	separate	data	files,
then	it	is	recommended	that	data	be	loaded	into	the	same	table	from	multiple
clients	in	parallel,	thereby	improving	the	performance	of	the	bulk-copy
operation.	For	example,	when	bulk	copy	loading	from	eight	clients	into	one
table,	each	client	must	have	one	input	data	file	containing	a	portion	of	the
partitioned	data.	To	achieve	maximum	performance,	the	batch	size	specified	for
each	client	should	be	the	same	as	the	size	of	the	client	data	file.

When	copying	data	into	a	table	from	multiple	clients,	consider	that:

All	indexes	on	the	table	must	be	dropped	first,	and	then	re-created	on
the	table.	Consider	re-creating	the	secondary	indexes	in	parallel	by
creating	each	secondary	index	from	a	separate	client	at	the	same	time.

Using	ordered	data	and	the	ORDER	hint	will	not	affect	performance
because	the	clustered	index	is	not	present	during	the	load.

The	data	must	be	partitioned	into	multiple	input	files,	one	file	per	client.

As	with	bulk-copy	operations	from	a	single	client,	specify:

The	TABLOCK	hint.	This	causes	a	table-level	lock	to	be	taken	for	the
duration	of	the	bulk-copy	operation.

A	large,	batch	size,	using	the	ROWS_PER_BATCH	hint.	A	single



batch	representing	the	size	of	the	entire	client	file	is	recommended	for
each	client.

Set	the	database	option	select	into/bulkcopy	to	true	to	enable
nonlogged	operations.

Copying	Data	Between	Computers	Running	SQL	Server

If	data	is	being	copied	from	one	computer	running	an	instance	of	SQL	Server	to
another,	perform	all	bulk-copy	operations	using	either	native	or	Unicode	native
format.	For	more	information,	see	Using	Native,	Character,	and	Unicode
Formats.

If	the	source	table	has	a	clustered	index	or	if	you	intend	to	bulk	copy	the	data
into	a	table	with	a	clustered	index:

1.	 Bulk	copy	the	data	out	of	the	source	table	specifying	a	SELECT
statement	and	an	appropriate	ORDER	BY	clause	to	create	an	ordered
data	file.

2.	 Use	the	ORDER	hint	when	bulk	copying	the	data	into	SQL	Server.
For	more	information,	see	Ordered	Data	Files.

See	Also

Using	bcp	and	BULK	INSERT

SQL	Server:	Databases	Object

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()


Optimizing	Database	Performance



Optimizing	DBCC	Performance
The	database	console	command	(DBCC)	tends	to	be	both	CPU	and	disk
intensive	because	DBCC	must	read	each	data	page	that	requires	checking	from
disk	into	memory	(unless	the	data	page	is	already	cached	in	memory).	Running
DBCC	when	there	is	a	lot	of	activity	on	the	system,	such	as	intensive	query
processing,	impairs	DBCC	performance	because	less	memory	is	available	and
Microsoft®	SQL	Server™	2000	is	forced	to	spool	data	pages	to	the	tempdb
database.	Therefore,	DBCC	statements	execute	faster	if	more	memory	is	made
available	for	DBCC	processing	because	more	of	the	database	can	be	cached.

Because	the	tempdb	database	resides	on	disk,	the	bottleneck	from	I/O
operations	as	data	is	written	to	and	from	disk	impairs	performance.	Regardless
of	system	activity,	running	DBCC	against	large	databases	(relative	to	the	size	of
available	memory)	causes	spooling	to	the	tempdb	database.	Therefore,	it	is
recommended	that	the	tempdb	database	be	placed	on	a	separate	fast	disk	or
disks,	such	as	a	RAID	(redundant	array	of	independent	disks)	device,	from	user
databases.	For	more	information,	see	ALTER	DATABASE	and	RAID.

Note		Executing	DBCC	CHECKDB	automatically	executes	DBCC
CHECKTABLE	for	each	table	in	the	database	and	DBCC	CHECKALLOC,
eliminating	the	need	to	run	them	separately.

See	Also

DBCC

SQL	Server:	Databases	Object

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()


Optimizing	Database	Performance



Optimizing	Server	Performance
Microsoft®	SQL	Server™	2000	automatically	tunes	many	of	the	server
configuration	options,	therefore	requiring	little,	if	any,	tuning	by	a	system
administrator.	Although	these	configuration	options	can	be	modified	by	the
system	administrator,	it	is	generally	recommended	that	these	options	be	left	at
their	default	values,	allowing	SQL	Server	to	automatically	tune	itself	based	on
run-time	conditions.

However,	if	necessary,	the	following	components	can	be	configured	to	optimize
server	performance:

SQL	Server	Memory

I/O	subsystem

Microsoft	Windows	NT®	options



Optimizing	Database	Performance



Optimizing	Server	Performance	Using	Memory
Configuration	Options
The	memory	manager	component	of	Microsoft®	SQL	Server™	2000	eliminates
the	need	for	manual	management	of	the	memory	available	to	SQL	Server.	When
SQL	Server	starts,	it	dynamically	determines	how	much	memory	to	allocate
based	on	how	much	memory	the	operating	system	and	other	applications	are
currently	using.	As	the	load	on	the	computer	and	SQL	Server	changes,	so	does
the	memory	allocated.	For	more	information,	see	Memory	Architecture.

The	following	server	configuration	options	can	be	used	to	configure	memory
usage	and	affect	server	performance:

min	server	memory

max	server	memory

max	worker	threads

index	create	memory

min	memory	per	query

The	min	server	memory	server	configuration	option	can	be	used	to	ensure	that
SQL	Server	starts	with	at	least	the	minimum	amount	of	allocated	memory	and
does	not	release	memory	below	this	value.	This	configuration	option	can	be	set
to	a	specific	value	based	on	the	size	and	activity	of	your	SQL	Server.	Always	set
the	min	server	memory	server	configuration	option	to	some	reasonable	value	to
ensure	that	the	operating	system	does	not	request	too	much	memory	from	SQL
Server,	affecting	SQL	Server	performance.

The	max	server	memory	server	configuration	option	can	be	used	to	specify	the
maximum	amount	of	memory	SQL	Server	can	allocate	when	it	starts	and	while	it
runs.	This	configuration	option	can	be	set	to	a	specific	value	if	you	know	there
are	multiple	applications	running	at	the	same	time	as	SQL	Server	and	you	want
to	guarantee	that	these	applications	have	sufficient	memory	to	run.	If	these	other

JavaScript:hhobj_1.Click()


applications,	such	as	Web	or	e-mail	servers,	request	memory	only	as	needed,
then	do	not	set	the	max	server	memory	server	configuration	option,	because
SQL	Server	will	release	memory	to	them	as	needed.	However,	applications	often
use	whatever	memory	is	available	when	they	start	and	do	not	request	more	if
needed.	If	an	application	that	behaves	in	this	manner	runs	on	the	same	computer
at	the	same	time	as	SQL	Server,	set	the	max	server	memory	server
configuration	option	to	a	value	that	guarantees	that	the	memory	required	by	the
application	is	not	allocated	by	SQL	Server.

Do	not	set	min	server	memory	and	max	server	memory	server	configuration
options	to	the	same	value,	thereby	fixing	the	amount	of	memory	allocated	to
SQL	Server.	Dynamic	memory	allocation	will	give	you	the	best	overall
performance	over	time.	For	more	information,	see	Server	Memory	Options.

The	max	worker	threads	server	configuration	option	can	be	used	to	specify	the
number	of	threads	used	to	support	the	users	connected	to	SQL	Server.	The
default	setting	of	255	can	be	slightly	too	high	for	some	configurations,
depending	on	the	number	of	concurrent	users.	Because	each	worker	thread	is
allocated,	even	if	it	is	not	being	used	(because	there	are	fewer	concurrent
connections	than	allocated	worker	threads),	memory	resources	that	can	be	better
utilized	by	other	operations,	such	as	the	buffer	cache,	can	be	unused.	Generally,
this	configuration	value	should	be	set	to	the	number	of	concurrent	connections,
but	cannot	exceed	1,024.	For	more	information,	see	max	worker	threads	Option.

Note		The	max	worker	threads	server	configuration	option	has	no	effect	when
SQL	Server	is	running	on	Microsoft	Windows®	95	or	Microsoft	Windows	98.

The	index	create	memory	server	configuration	option	controls	the	amount	of
memory	used	by	sort	operations	during	index	creation.	Creating	an	index	on	a
production	system	is	usually	an	infrequently	performed	task,	often	scheduled	as
a	job	to	execute	during	off-peak	time.	Therefore,	when	creating	indexes
infrequently	and	during	off-peak	time,	increasing	this	number	can	improve	the
performance	of	index	creation.	Keep	the	min	memory	per	query	configuration
option	at	a	lower	number,	however,	so	the	index	creation	job	will	still	start	even
if	all	the	requested	memory	is	not	available.	For	more	information,	see	index
create	memory	Option.

The	min	memory	per	query	server	configuration	option	can	be	used	to	specify
the	minimum	amount	of	memory	that	will	be	allocated	for	the	execution	of	a
query.	When	there	are	many	queries	executing	concurrently	in	a	system,

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


increasing	the	value	of	the	min	memory	per	query	can	help	improve	the
performance	of	memory-intensive	queries,	such	as	substantial	sort	and	hash
operations.	However,	do	not	set	the	min	memory	per	query	server
configuration	option	too	high,	especially	on	very	busy	systems,	because	the
query	will	have	to	wait	until	it	can	secure	the	minimum	memory	requested	or
until	the	value	specified	in	the	query	wait	server	configuration	option	is
exceeded.	If	more	memory	is	available	than	the	specified	minimum	value
required	to	execute	the	query,	the	query	is	allowed	to	make	use	of	the	additional
memory,	provided	that	the	memory	can	be	used	effectively	by	the	query.	For
more	information,	see	min	memory	per	query	Option	and	query	wait	Option.

See	Also

Monitoring	Memory	Usage

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()


Optimizing	Database	Performance



Optimizing	Server	Performance	Using	I/O
Configuration	Options
The	following	server	configuration	option	can	be	used	to	configure	I/O	usage
and	affect	server	performance:

recovery	interval

The	recovery	interval	server	configuration	option	controls	when	Microsoft®
SQL	Server™	2000	issues	a	checkpoint	in	each	database.	By	default,	SQL
Server	determines	the	best	time	to	perform	checkpoint	operations.	However,	to
determine	if	this	is	the	appropriate	setting,	monitor	disk	write	activity	on	the
database	files	using	Windows	NT	Performance	Monitor.	Spikes	of	activity	that
cause	disk	utilization	to	reach	100	percent	can	affect	performance.	Changing	this
parameter	to	cause	the	checkpoint	process	to	occur	less	often	can	improve
overall	performance	in	this	situation.	However,	continue	to	monitor	performance
to	determine	if	the	new	value	has	had	a	positive	effect	on	performance.	For	more
information,	see	recovery	interval	Option.

See	Also

Monitoring	Disk	Activity

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Optimizing	Database	Performance



Optimizing	Server	Performance	Using	Windows	NT
Options
You	can	set	Microsoft®	Windows	NT®	or	Windows®	2000	options	on	the
server	to:

Maximize	throughput.

Configure	server	tasking.

Configure	virtual	memory.



Optimizing	Database	Performance

Maximizing	Throughput
SQL	Server	Setup	automatically	configures	Microsoft®	Windows	NT®	to
maximize	throughput	for	network	applications.	This	enables	the	server	to
accommodate	more	connections.	Although	maximizing	throughput	for	network
applications	is	recommended	for	Microsoft	SQL	Server™	2000,	you	can	change
this	setting.

If	the	Full-Text	Search	feature	is	installed,	the	Windows	NT	Server	or	Windows
2000	configuration	must	be	set	for	maximizing	throughout	for	network
applications	and	must	not	be	changed.

Note		The	Windows	NT	Server	configuration	setting	does	not	apply	to
computers	running	Windows	NT	Workstation.	For	more	information,	see	the
Windows	NT	or	Windows	2000	documentation.



Optimizing	Database	Performance

Configuring	Server	Tasking
If	you	plan	to	connect	to	Microsoft®	SQL	Server™	2000	from	a	local	client	(a
client	running	on	the	same	computer	as	the	server),	you	can	improve	processing
time	by	setting	up	the	server	to	run	foreground	and	background	applications	with
equal	priority.	SQL	Server,	which	runs	as	a	background	application,	then	runs	at
equal	priority	to	other	applications	running	in	the	foreground.	For	more
information,	see	the	Windows	NT®	or	Windows	2000	documentation.

Note		When	you	run	SQL	Server	Setup,	server	tasking	is	set	to	none	in
Microsoft	Windows	NT	4.0	and	background	services	in	Microsoft	Windows
2000	(the	SQL	Server	default),	which	gives	foreground	and	background
programs	equal	processor	time.	You	can	set	the	server	tasking	setting	to
maximum	(the	Microsoft	Windows	NT	default)	or	applications	(the	Microsoft
Windows	2000	default),	which	gives	foreground	applications	the	most	processor
time.



Optimizing	Database	Performance

Configuring	Virtual	Memory
Microsoft®	Windows	NT®	or	Windows	2000	virtual	memory	size	should	be
configured	based	on	the	services	concurrently	running	on	the	computer.	When
you	are	running	Microsoft	SQL	Server™	2000,	consider	setting	the	virtual
memory	size	to	1.5	times	the	physical	memory	installed	in	the	computer.

If	you	have	additionally	installed	the	Full-Text	Search	feature	and	plan	to	run	the
Microsoft	Search	service	so	that	you	can	do	full-text	indexing	and	querying,
consider	configuring:

The	virtual	memory	size	to	at	least	3	times	the	physical	memory
installed	in	the	computer.

The	SQL	Server	max	server	memory	server	configuration	option	to	1.5
times	the	physical	memory	(half	the	virtual	memory	size	setting).

If	the	virtual	memory	setting	is	configured	too	low,	then	the	following	Windows
NT	error	can	occur:

Your	system	is	running	low	on	virtual	memory.	Please	close	some	applications.	You	can	then	start	the	System	option	in	the	Control	Panel	and	choose	the	Virtual	Memory	button	to	create	an	additional	paging	file	or	increase	the	size	of	your	current	paging	file.

Note		For	more	information,	see	the	Windows	NT	or	Windows	2000
documentation.


	Optimizing Database Performance Overview
	Designing Federated Database Servers
	Designing Partitions
	Designing Federated Database Servers for High Availability
	Backing Up and Restoring Federated Database Servers

	Database Design
	Logical Database Design
	Database Design Considerations: Data Types

	Physical Database Design
	RAID
	Developing a Drive Performance Strategy
	RAID Levels and SQL Server
	Comparing Different Implementations of RAID Levels
	About Hardware-Based Solutions
	About Windows NT- and Windows 2000-Based Disk Striping and Striping with Parity
	About Windows NT-Based Disk Mirroring and Duplexing

	Partitioning
	Data Placement Using Filegroups
	Placing Tables on Filegroups
	Placing Indexes on Filegroups

	Index Tuning Recommendations
	Optimizing Transaction Log Performance
	Optimizing tempdb Performance
	File Systems


	Query Tuning
	Analyzing a Query
	Graphically Displaying the Execution Plan Using SQL Query Analyzer
	Logical and Physical Operators
	Assert
	Aggregate
	Bookmark Lookup
	Clustered Index Delete
	Clustered Index Insert
	Clustered Index Update
	Clustered Index Scan
	Clustered Index Seek
	Collapse
	Compute Scalar
	Concatenation
	Constant Scan
	Cross Join
	Delete
	Deleted Scan
	Distinct
	Distinct Sort
	Distribute Streams
	Eager Spool
	Filter
	Flow Distinct
	Full Outer Join
	Gather Streams
	Hash Match
	Hash Match Root
	Hash Match Team
	Index Delete
	Index Insert
	Index Scan
	Index Seek
	Index Spool
	Index Update
	Inner Join
	Insert
	Inserted Scan
	Lazy Spool
	Left Anti Semi Join
	Left Outer Join
	Left Semi Join
	Log Row Scan
	Merge Interval
	Merge Join
	Nested Loops
	Parallelism
	Parameter Table Scan
	Remote Delete
	Remote Insert
	Remote Query
	Remote Scan
	Remote Update
	Repartition Streams
	Right Anti Semi Join
	Right Outer Join
	Right Semi Join
	Row Count Spool
	Sequence
	Sort
	Split
	Stream Aggregate
	Table Delete
	Table Insert
	Table Scan
	Table Spool
	Table Update
	Top
	Union
	Update
	Cursor Logical and Physical Operators


	Query Tuning Recommendations
	Advanced Query Tuning Concepts
	Understanding Nested Loops Joins
	Understanding Merge Joins
	Understanding Hash Joins


	Application Design
	Networking and Performance
	Named Pipes vs. TCP/IP Sockets

	Optimizing Application Performance Using Efficient Data Retrieval
	Effects of Transactions and Batches on Application Performance
	Effects of Stored Procedures on Application Performance
	Understanding and Avoiding Blocking
	Optimizing Distributed Queries

	Optimizing Utility and Tool Performance
	Optimizing Backup and Restore Performance
	Optimizing Bulk Copy Performance
	Optimizing DBCC Performance

	Optimizing Server Performance
	Optimizing Server Performance Using Memory Configuration Options
	Optimizing Server Performance Using I/O Configuration Options
	Optimizing Server Performance Using Windows NT Options
	Maximizing Throughput
	Configuring Server Tasking
	Configuring Virtual Memory



