
OLE	DB	and	SQL	Server

Programming	OLE	DB	SQL	Server	Applications
OLE	DB	is	a	low-level,	COM	API	that	is	used	for	accessing	data.	OLE	DB	is
recommended	for	developing	tools,	utilities,	or	low-level	components	that	need
high	performance.	The	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB)	is	a
native,	high	performance	provider	that	accesses	the	SQL	Server	TDS	protocol
directly.

SQLOLEDB	exposes	interfaces	to	consumers	wanting	access	to	data	on	one	or
more	computers	running	an	instance	of	Microsoft®	SQL	Server™	2000	or	SQL
Server	version	7.0	or	earlier.

When	developing	an	OLE	DB	consumer,	select	a	provider	developed	for	the	data
source	to	consume.	Use	SQLOLEDB	to	develop	an	optimized	OLE	DB
consumer	for	SQL	Server	databases.

SQLOLEDB	is	an	OLE	DB	version	2.0–compliant	provider.

SQLOLEDB	passes	the	command	statements	(such	as	SQL-92	and	Transact-
SQL)	through	to	the	server.	The	server	rejects	invalid	commands.

OLE	DB	and	SQL	Server

Getting	Started	with	the	OLE	DB	Provider	for	SQL
Server
The	topics	in	this	section	describe	how	to	use	Microsoft	OLE	DB	Provider	for
SQL	Server	to	communicate	with	Microsoft®	SQL	Server™	2000.

OLE	DB	and	SQL	Server

OLE	DB	Syntax	Conventions

Convention Used	for
UPPERCASE Transact-SQL	functions	and	statements,	and	C	macro

names.
Monospace Sample	commands	and	program	code.

Italic Function	parameter	names	and	information	that	the
user	or	the	application	must	provide.

Bold Function	names,	parameter	keywords,	and	other	syntax
that	must	be	typed	exactly	as	shown.

OLE	DB	and	SQL	Server

System	Requirements	for	the	OLE	DB	Provider	for
SQL	Server
To	access	data	in	Microsoft®	SQL	Server™	2000,	you	must	have	the	following
software	installed:

Microsoft	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB).

An	instance	of	SQL	Server.

Network	software.

OLE	DB	consumer	development	requires	Microsoft	Visual	C++®	version	5.0.

SQLOLEDB	Requirements
SQLOLEDB	requires	one	of	the	following:

Microsoft	Windows®	95	or	Windows	98	operating	system	on	Intel®
computers.

Microsoft	Windows	2000	or	Microsoft	Windows	NT®	4.0	operating
system	on	Intel	computers.

SQL	Server	Requirements

To	use	SQLOLEDB	to	access	data	in	SQL	Server	databases,	you	must	have	an
instance	of	SQL	Server	2000	or	SQL	Server	version	6.5	or	later	installed;	the
catalog	stored	procedures	must	also	be	installed.

Network	Software	Requirements
SQLOLEDB	communicates	with	network	software	through	the	SQL	Server	Net-
Library	interface,	which	requires	a	Net-Library	dynamic-link	library	(DLL).	The
Microsoft	OLE	DB	Provider	for	SQL	Server	2000	requires	SQL	Server	2000

Net-Library	.dll	files,	which	are	installed	when	you	run	the	client	portion	of	SQL
Server	2000	Setup.

See	Also

Configuring	Client	Network	Connections

Hardware	and	Software	Requirements	for	Installing	SQL	Server

Client	Net-Libraries	and	Network	Protocols

Upgrading	the	Catalog	Stored	Procedures	(OLE	DB)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

OLE	DB	and	SQL	Server

Installing	the	OLE	DB	Provider	for	SQL	Server
The	Microsoft	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB)	is	installed
automatically	when	you	install	Microsoft®	SQL	Server™	2000.	In	a	custom
installation,	the	provider	is	installed	when	any	of	the	following	components	are
selected:

Server	Components	

Management	Tools	

Client	Connectivity

SQLOLEDB	Files

Files	necessary	to	develop	SQLOLEDB	consumers	are	installed	when	the
appropriate	option	is	selected	during	a	custom	installation;	several	SQLOLEDB
sample	applications	are	included.	The	samples	implement	SQLOLEDB
consumers	in	C++.

Directory File Description
Program	files\Common
files\System\Ole	db

Sqloledb.dll Dynamic-link	library	that
implements	the
SQLOLEDB	provider.

Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Include

Oledb.h OLE	DB	SDK	header	file
for	OLE	DB	providers	and
consumers.

Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Include

Sqloledb.h Header	file	used	for
developing	SQLOLEDB
consumers.

Program	Files\Microsoft	SQL
Server\80\Tools\Dev	Tools\Lib

Oledb.lib Library	file	used	for
developing	SQLOLEDB
consumers.

OLE	DB	SDK
The	primary	source	of	information	for	OLE	DB	is	the	OLE	DB	Software
Development	Kit	(SDK),	which	can	be	downloaded	from	Microsoft	Web	site.

The	OLE	DB	SDK	is	not	installed	with	SQL	Server	2000.	To	develop	OLE	DB
applications,	you	need	the	OLE	DB	SDK	from	Microsoft	Web	site.

See	Also

Overview	of	Installing	SQL	Server	2000

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red
http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red
JavaScript:hhobj_1.Click()

OLE	DB	and	SQL	Server

Upgrading	the	Catalog	Stored	Procedures	(OLE	DB)
The	Microsoft	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB)	uses	a	set	of
system	stored	procedures	known	as	catalog	stored	procedures	to	obtain
information	from	the	system	catalog.	Microsoft®	SQL	Server™	2000	installs	the
catalog	stored	procedures	automatically	when	you	install	or	upgrade	an	instance
of	SQL	Server.	The	Instcat.sql	file	included	with	this	provider	includes	updates
to	the	catalog	stored	procedures.	If	this	version	of	SQLOLEDB	will	be	used	with
SQL	Server	version	6.5,	the	SQL	Server	system	administrator	must	upgrade	the
catalog	stored	procedures	on	the	earlier	instance	of	SQL	Server	by	running
Instcat.sql.	Upgrading	the	catalog	stored	procedures	does	not	affect	the
operations	of	SQL	Server	clients.

To	upgrade	the	catalog	stored	procedures

OLE	DB	and	SQL	Server

Creating	an	OLE	DB	Application
Creating	an	OLE	DB	application	involves	these	steps:

1.	 Establishing	a	connection	to	a	data	source.

2.	 Executing	a	command.

3.	 Processing	the	results.

OLE	DB	and	SQL	Server

Establishing	a	Connection	to	a	Data	Source
To	access	the	Microsoft	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB),	the
consumer	must	first	create	an	instance	of	a	data	source	object	by	calling	the
CoCreateInstance	method.	A	unique	class	identifier	(CLSID)	identifies	each
OLE	DB	provider.	For	SQLOLEDB,	the	class	identifier	is	CLSID_SQLOLEDB.

The	data	source	object	exposes	the	IDBProperties	interface,	which	the
consumer	uses	to	provide	basic	authentication	information	such	as	server	name,
database	name,	user	ID,	and	password.	The	IDBProperties::SetProperties
method	is	called	to	set	these	properties.

If	there	are	multiple	instances	of	Microsoft®	SQL	Server™	running	on	the
computer,	the	server	name	is	specified	as	ServerName\\InstanceName	(the
escape	sequence	\\	is	used	for	the	backslash).

The	data	source	object	also	exposes	the	IDBInitialize	interface.	After	the
properties	are	set,	connection	to	the	data	source	is	established	by	calling	the
IDBInitialize::Initialize	method.	For	example:

CoCreateInstance(CLSID_SQLOLEDB,	
																	NULL,	
																	CLSCTX_INPROC_SERVER,
																	IID_IDBInitialize,	
																	(void	**)	&pIDBInitialize)

This	call	to	CoCreateInstance	creates	a	single	object	of	the	class	associated
with	CLSID_SQLOLEDB	(CSLID	associated	with	the	data	and	code	that	will	be
used	to	create	the	object).	IID_IDBInitialize	is	a	reference	to	the	identifier	of	the
interface	(IDBInitialize)	to	be	used	to	communicate	with	the	object.

This	is	a	sample	function	that	initializes	and	establishes	a	connection	to	the	data
source:

void	InitializeAndEstablishConnection()
{				
				//Initialize	the	COM	library.

				CoInitialize(NULL);
				//Obtain	access	to	the	SQLOLEDB	provider.
				hr	=	CoCreateInstance(CLSID_SQLOLEDB,	
																										NULL,	
																										CLSCTX_INPROC_SERVER,
																										IID_IDBInitialize,	
																										(void	**)	&pIDBInitialize);
				/*
				Initialize	the	property	values	needed	
				to	establish	the	connection.
				*/
				for(i	=	0;	i	<	4;	i++)	
								VariantInit(&InitProperties[i].vValue);
				//Server	name.
				InitProperties[0].dwPropertyID		=	DBPROP_INIT_DATASOURCE;
				InitProperties[0].vValue.vt					=	VT_BSTR;
				InitProperties[0].vValue.bstrVal=	
																												SysAllocString(L"Server");
				InitProperties[0].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[0].colid									=	DB_NULLID;
				//Database.
				InitProperties[1].dwPropertyID		=	DBPROP_INIT_CATALOG;
				InitProperties[1].vValue.vt					=	VT_BSTR;
				InitProperties[1].vValue.bstrVal=	SysAllocString(L"database");
				InitProperties[1].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[1].colid									=	DB_NULLID;
				//Username	(login).
				InitProperties[2].dwPropertyID		=	DBPROP_AUTH_USERID;	
				InitProperties[2].vValue.vt					=	VT_BSTR;
				InitProperties[2].vValue.bstrVal=	SysAllocString(L"sa");
				InitProperties[2].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[2].colid									=	DB_NULLID;
				//Password.

				InitProperties[3].dwPropertyID		=	DBPROP_AUTH_PASSWORD;
				InitProperties[3].vValue.vt					=	VT_BSTR;
				InitProperties[3].vValue.bstrVal=	SysAllocString(L"");
				InitProperties[3].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[3].colid									=	DB_NULLID;
				/*
				Construct	the	DBPROPSET	structure(rgInitPropSet).	The	
				DBPROPSET	structure	is	used	to	pass	an	array	of	DBPROP	
				structures	(InitProperties)	to	the	SetProperties	method.
				*/
				rgInitPropSet[0].guidPropertySet	=	DBPROPSET_DBINIT;
				rgInitPropSet[0].cProperties				=	4;
				rgInitPropSet[0].rgProperties			=	InitProperties;
				//Set	initialization	properties.
				hr	=	pIDBInitialize->QueryInterface(IID_IDBProperties,	
																																			(void	**)&pIDBProperties);
				hr	=	pIDBProperties->SetProperties(1,	rgInitPropSet);	
				pIDBProperties->Release();
				//Now	establish	the	connection	to	the	data	source.
				pIDBInitialize->Initialize()
}

OLE	DB	and	SQL	Server

Executing	a	Command
After	the	connection	to	a	data	source	is	established,	the	consumer	calls	the
IDBCreateSession::CreateSession	method	to	create	a	session.	The	session	acts
as	a	command,	rowset,	or	transaction	factory.

To	work	directly	with	individual	tables	or	indexes,	the	consumer	requests	the
IOpenRowset	interface.	The	IOpenRowset::OpenRowset	method	opens	and
returns	a	rowset	that	includes	all	rows	from	a	single	base	table	or	index.

To	execute	a	command	(such	as	SELECT	*	FROM	Authors),	the	consumer
requests	the	IDBCreateCommand	interface.	The	consumer	can	execute	the
IDBCreateCommand::CreateCommand	method	to	create	a	command	object
and	request	for	the	ICommandText	interface.	The
ICommandText::SetCommandText	method	is	used	to	specify	the	command
that	is	to	be	executed.

The	Execute	command	is	used	to	execute	the	command.	The	command	can	be
any	SQL	statement,	procedure	name,	and	so	on.	Not	all	commands	produce	a
result	set	(rowset)	object.	Commands	such	as	SELECT	*	FROM	authors
produce	a	result	set.

OLE	DB	Extensions	for	XML
The	ICommandText::SetCommandText	and	ICommand::Execute	statements
can	be	used	to	set	XML	documents	as	command	text,	execute	the	command,	and
retrieve	the	result	as	a	stream,	which	can	then	be	used	in	further	processing,	such
as	passing	the	XML	to	the	Document	Object	Model	(DOM).

Templates	are	valid	XML	documents	that	contain	one	or	more	SQL	command
tags.	These	XML	templates	can	be	passed	to
ICommandText::SetCommandText.	When	XML	templates	are	set	as
command	text	using	ICommandText::SetCommandText,	the	consumer	must
pass	DBGUID_MSSQLXML	as	the	globally	unique	identifier	(GUID)	of	the
command	syntax.	This	GUID	indicates	that	the	command	text	is	an	XML
template.

The	consumer	must	call	ICommand::Execute	to	execute	XML	templates.	To

obtain	XML	documents	as	a	result	set,	riid	must	be	set	to	IStream.

OLE	DB	and	SQL	Server

Processing	Results
If	a	rowset	object	is	produced	by	either	the	execution	of	a	command	or	the
generation	of	a	rowset	object	directly	from	the	provider,	the	consumer	needs	to
retrieve	and	access	data	in	the	rowset.	

Rowsets	are	central	objects	that	enable	all	OLE	DB	data	providers	to	expose
data	in	tabular	form.	Conceptually,	a	rowset	is	a	set	of	rows	in	which	each	row
has	column	data.	A	rowset	object	exposes	interfaces	such	as	IRowset	(contains
methods	for	fetching	rows	from	the	rowset	sequentially),	IAccessor	(permits	the
definition	of	a	group	of	column	bindings	describing	the	way	tabular	data	is
bound	to	consumer	program	variables),	IColumnInfo	(provides	information
about	columns	in	the	rowset),	and	IRowsetInfo	(provides	information	about
rowset).

A	consumer	can	call	the	IRowset::GetData	method	to	retrieve	a	row	of	data
from	the	rowset	into	a	buffer.	Before	GetData	is	called,	the	consumer	describes
the	buffer	using	a	set	of	DBBINDING	structures.	Each	binding	describes	how	a
column	in	a	rowset	is	stored	in	a	consumer	buffer	and	contains	information	such
as:

Ordinal	of	the	column	(or	parameter)	to	which	the	binding	applies.

What	is	bound	(data	value,	length	of	the	data,	and	its	binding	status).	

What	is	offset	in	the	buffer	to	each	of	these	parts.

Length	and	type	of	the	data	values	as	they	exist	in	the	consumer	buffer.

When	getting	the	data,	the	provider	uses	information	in	each	binding	to
determine	where	and	how	to	retrieve	data	from	the	consumer	buffer.	When
setting	data	in	the	consumer	buffer,	the	provider	uses	information	in	each
binding	to	determine	where	and	how	to	return	data	in	the	consumer's	buffer.

After	the	DBBINDING	structures	are	specified,	an	accessor	is	created
(IAccessor::CreateAccessor).	An	accessor	is	a	collection	of	bindings	and	is

used	to	get	or	set	the	data	in	the	consumer	buffer.

OLE	DB	and	SQL	Server

Compiling	OLE	DB	Applications
OLE	DB	applications	must	include	Oledb.h,	Sqloledb.h,	and	Oledberr.h	(if	using
error	constants	defined	in	this	file)	files.	Most	applications	use	wide	character
strings	to	make	OLE	DB	function	calls.	If	applications	are	using	TCHAR
variables,	the	application	must	include	#define	UNICODE	in	the	application.	It
converts	the	TCHAR	variables	to	wide	character	strings.	OLE	DB	applications
must	be	linked	with	the	Oledb.lib	file.	In	a	custom	installation	of	Microsoft®
SQL	Server™	2000,	the	header	files	are	installed	in	the	C:\Program
Files\Microsoft	SQL	Server\80\Tools\Dev	Tools\Include	directory	and	the	library
files	are	installed	in	the	C:\Program	Files\Microsoft	SQL	Server\80\Tools\Dev
Tools\Lib	directory.	The	SQL	Server	Include	and	Lib	directories	are	located	in
the	INCLUDE	and	LIB	path	on	the	compiler.

The	latest	versions	of	these	files	can	be	downloaded	with	the	latest	Microsoft
Data	Access	SDK	from	Microsoft	Web	site.	If	you	have	downloaded	a	version	of
the	Microsoft	Data	Access	SDK	and	the	dates	are	later	than	the	dates	for	SQL
Server	2000,	place	the	MSDA	directories	before	the	SQL	Server	2000
directories.	For	example:

LIB=c:\msdasdk\oledb\lib;c:\Program	Files\Microsoft	SQL	Server\80\Tools\Dev	Tools\lib;c:\msdev\lib;
			c:\msdev\mfc\lib
INCLUDE=c:\msdasdk\oledb\include;c:\Program	Files\Microsoft	SQL	Server\80\Tools\Dev	Tools\include;
			c:\msdev\include;c:\msdev\mfc\include

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

OLE	DB	and	SQL	Server

About	OLE	DB	Properties
Consumers	set	property	values	to	request	specific	object	behavior.	For	example,
consumers	use	properties	to	specify	the	interfaces	to	be	exposed	by	a	rowset.
Consumers	get	the	property	values	to	determine	the	capabilities	of	an	object	such
as	rowset,	session,	or	a	data	source	object.

Each	property	has	a	value,	type,	description,	and	read/write	attribute,	and	for
rowset	properties,	an	indicator	of	whether	it	can	be	applied	on	a	column-by-
column	basis.

A	property	is	identified	by	a	GUID	and	an	integer	representing	the	property	ID.
A	property	set	is	a	set	of	all	properties	that	share	the	same	GUID.	In	addition	to
the	predefined	OLE	DB	property	sets,	SQLOLEDB	implements	provider-
specific	property	sets	and	properties	in	them.	Each	property	belongs	to	one	or
more	property	groups.	A	property	group	is	the	group	of	all	properties	that	apply
to	a	particular	object.	Some	property	groups	include	the	initialization	property
group,	data	source	property	group,	session	property	group,	rowset	property
group,	table	property	group,	column	property	group,	and	so	on.	There	are
properties	in	each	of	these	property	groups.

Setting	property	values	involves:

1.	 Determining	the	properties	for	which	to	set	values.

2.	 Determining	the	property	sets	that	contain	the	identified	properties.

3.	 Allocating	an	array	of	DBPROPSET	structures,	one	for	each	identified
property	set.

4.	 Allocating	an	array	of	DBPROP	structures	for	each	property	set.	The
number	of	elements	in	each	array	is	the	number	of	properties
(identified	in	Step	1)	that	belong	to	that	property	set.

5.	 Filling	in	the	DBPROP	structure	for	each	property.

6.	 Filling	in	information	(property	set	GUID,	count	of	number	of
elements,	and	a	pointer	to	the	corresponding	DBPROP	array)	in	the
DBPROPSET	structure	for	each	property	set.

7.	 Calling	a	method	to	set	properties	and	passing	the	count	and	the	array
of	DBPROPSET	structures.

OLE	DB	and	SQL	Server

Data	Source	Objects
OLE	DB	uses	the	term	data	source	for	the	set	of	OLE	DB	interfaces	used	to
establish	a	link	to	a	data	store,	such	as	Microsoft®	SQL	Server™	2000.	Creating
an	instance	of	the	data	source	object	of	the	provider	is	the	first	task	of	an	OLE
DB	consumer.

Every	OLE	DB	provider	declares	a	class	identifier	(CLSID)	for	itself.	The
CLSID	for	SQLOLEDB	is	the	C/C++	GUID	CLSID_SQLOLEDB.	With	the
CLSID,	the	consumer	uses	the	OLE	CoCreateInstance	function	to	manufacture
an	instance	of	the	data	source	object.

SQLOLEDB	is	an	in-process	server.	Instances	of	SQLOLEDB	objects	are
created	using	the	CLSCTX_INPROC_SERVER	macro	to	indicate	the	executable
context.

The	SQLOLEDB	data	source	object	exposes	the	OLE	DB	initialization
interfaces	that	allow	the	consumer	to	connect	to	existing	SQL	Server	databases.

Every	connection	made	through	SQLOLEDB	sets	these	options	automatically:

SET	ANSI_WARNINGS	ON

SET	ANSI_NULLS	ON

SET	ANSI_PADDING	ON

SET	ANSI_NULL_DFLT_ON	ON

SET	QUOTED_IDENTIFIER	ON

SET	CONCAT_OF_NULL_YIELDS_NULL	ON

This	example	uses	the	class	identifier	macro	to	create	a	SQLOLEDB	data	source
object	and	get	a	reference	to	its	IDBInitialize	interface.

IDBInitialize*			pIDBInitialize;
HRESULT										hr;

hr	=	CoCreateInstance(CLSID_SQLOLEDB,	NULL,	CLSCTX_INPROC_SERVER,
				IID_IDBInitialize,	(void**)	&pIDBInitialize);

if	(SUCCEEDED(hr))
{
				//		Perform	necessary	processing	with	the	interface.
				pIDBInitialize->Uninitialize();
				pIDBInitialize->Release();
}
else
{
				//	Display	error	from	CoCreateInstance.
}

With	successful	creation	of	an	instance	of	a	SQLOLEDB	data	source	object,	the
consumer	application	can	continue	by	initializing	the	data	source	and	creating
sessions.	OLE	DB	sessions	present	the	interfaces	that	allow	data	access	and
manipulation.

SQLOLEDB	makes	its	first	connection	to	a	specified	instance	of	SQL	Server
2000	as	part	of	a	successful	data	source	initialization.	The	connection	is
maintained	as	long	as	a	reference	is	maintained	on	any	data	source	initialization
interface,	or	until	the	IDBInitialize::Uninitialize	method	is	called.

OLE	DB	and	SQL	Server

Data	Source	Properties
SQLOLEDB	implements	data	source	properties	as	follows.

Property	ID Description
DBPROP_CURRENTCATALOG R/W:	Read/write

Default:	None
Description:	The	value	of
DBPROP_CURRENTCATALOG
reports	the	current	database	for	a
SQLOLEDB	session.	Setting	the
property	value	has	the	identical	effect	as
setting	the	current	database	by	using	the
Transact-SQL	USE	database	statement.

DBPROP_MULTIPLECONNECTIONSR/W:	Read/write
Default:	VARIANT_TRUE
Description:	If	the	connection	is	running
a	command	that	does	not	produce	a
rowset,	or	produces	a	rowset	that	is	not
a	server	cursor	and	you	execute	another
command,	a	new	connection	will	be
created	to	execute	the	new	command	if
DBPROP_MULTIPLECONNECTIONS
is	VARIANT_TRUE.

SQLOLEDB	will	not	create	another
connection	if
DBPROP_MULTIPLECONNECTION
is	VARIANT_FALSE	or	if	a	transaction
is	active	on	the	connection.
SQLOLEDB	returns
DB_E_OBJECTOPEN	if
DBPROP_MULTIPLECONNECTIONS
is	VARIANT_FALSE	and	returns
E_FAIL	if	there	is	an	active	transaction.
Transactions	and	locking	are	managed

by	Microsoft®	SQL	Server™	2000	on	a
per	connection	basis.	If	a	second
connection	is	generated,	the	commands
on	the	separate	connections	do	not	share
locks.	Ensure	that	one	command	does
not	block	another	by	holding	locks	on
rows	requested	by	the	other	command.
This	is	also	true	for	creating	multiple
sessions.

Each	session	has	a	separate	connection.

In	the	provider-specific	property	set
DBPROPSET_SQLSERVERDATASOURCE,	SQLOLEDB	defines	the
following	additional	data	source	property.

Property	ID Description
SSPROP_ENABLEFASTLOADR/W:	Read/write

Default:	VARIANT_FALSE
Description:	To	bulk	copy,
SSPROP_ENABLEFASTLOAD	property
is	set	to	VARIANT_TRUE.	With	this
property	set	on	the	data	source,	the	newly
created	session	allows	consumer	access	to
the	IRowsetFastLoad	interface.

If	the	property	is	set	to
VARIANT_FALSE,	IRowsetFastLoad
interface	is	available	through
IopenRowset::OpenRowset	by	requesting
IID_IRowsetFastLoad	interface	or	by
setting	SSPROP_IRowsetFastLoad	to
VARIANT_TRUE.

OLE	DB	and	SQL	Server

Data	Source	Information	Properties
In	the	provider-specific	property	set
DBPROPSET_SQLSERVERDATASOURCEINFO,	SQLOLEDB	defines	the
following	data	source	information	properties.

Property	ID Description
SSPROP_CHARACTERSET Type:	VT_BSTR

R/W:	R
Default:	NULL
Description:	The	character
set	in	the	server.	Apply	to
only	Microsoft®	SQL
Server™	version	7.0	and
earlier.

SSPROP_CURRENTCOLLATION Type:	VT_BSTR
R/W:	R
Default:	NULL
Description:	The	current
database	collation	name.
Apply	to	only	SQL	Server
2000.

SSPROP_SORTORDER Type:	VT_BSTR
R/W:	R
Default:	NULL
Description:	The	sort	order	in
the	server.	Apply	to	only
SQL	Server	7.0	and	earlier.

SSPROP_UNICODELCID Type:	VT_I4
R/W:	Read	
Description:	Unicode	locale
ID.

This	is	the	locale	used	for
Unicode	data	sorting.	The
value	of	this	property	is	0	for

Microsoft	SQL	Server
version	6.5.

SSPROP_UNICODECOMPARISONSTYLEType:	VT_I4
R/W:	Read	
Description:	Unicode
comparison	style.

The	sorting	options	used	for
Unicode	data	sorting.	The
value	of	this	property	is	0	for
SQL	Server	6.5.

In	the	provider-specific	property	set	DBPROPSET_SQLSERVERSTREAM,
SQLOLEDB	defines	the	following	additional	properties.

Property	ID Description
SSPROP_STREAM_BASEPATH Type:	VT_BSTR

R/W:	Read/Write
Description:	Is	used	for	resolving	relative	paths	like	XSL,
mapping	schema	or	external	schema	references	in	a
template.

SSPROP_STREAM_CONTENTTYPE Type:	VT_BSTR
R/W:	Read	Only
Description:	If	XSL	is	applied	to	the	result,	the	media-
type	property	on	<xsl:output>	in	the	XSL	is	returned	as
the	value	of	this	property.

SSPROP_STREAM_FLAGS Type:	dword
R/W:	Read/Write
Description:	Following	values	can	be	assigned	to	this
property	(multiple	values	can	be	ORed	together).

STREAM_FLAGS_DISALLOW_URL
No	URL	reference	to	any	files	is	allowed.
For	example,	in	a	template	you	can	specify	XSL	or
mapping	schema	files.	When
STREAM_FLAGS_DISALLOW_URL	value	is	set	for

the	property,	no	URL	references	to	these	files	is	allowed
in	the	templates.
URL	references	to	files	can	slow	down	the	performance
and	it	is	also	a	security	risk	because	if	it	is	not	your	server
you	may	not	be	sure	about	the	file	content.

STREAM_FLAGS_DISALLOW_ABSOLUTE_PATH
No	absolute	path	to	files	is	allowed.	The	file	path	must	be
relative	to	the	template	in	which	the	file	is	specified.	
Absolute	paths	such	as	references	to	external	sites	are
security	risk.	Therefore,
STREAM_FLAGS_DISALLOW_ABSOLUTE_PATH	is
set	to	disallow	absolute	paths.

STREAM_FLAGS_DISALLOW_QUERY
No	queries	are	allowed	in	the	templates	(for	example,	the
<sql:query>	tag	is	not	allowed	in	a	template).	For
security	reasons	you	may	not	want	to	allow	an	SQL	query
in	a	template.

SSPROP_STREAM_MAPPINGSCHEMAType:	VT_BSTR
R/W:	Read/Write
Description:	Is	used	for	specifying	a	schema	for	the
XPath	queries.	The	path	specified	can	be	relative	or
absolute.	
If	the	path	specified	is	relative,	base	path	specified	in
SSPROP_STREAM_BASEPATH	is	used	to	resolve	the
relative	path.
If	the	base	path	is	not	specified,	the	relative	path	is
relative	to	the	current	directory.

SSPROP_STREAM_XMLROOT Type:	VT_BSTR
R/W:	Read/Write
Description:	The	result	of	a	query	(SQL	or	XPath)	may
not	be	a	well-formed	document.	When	this	property	is
specified,	the	query	result	is	wrapped	in	the	root	tag
provided	by	this	property	to	return	a	well	formed
document	(if	query	is	executed	in	the	browser	it	may
cause	the	browser	to	display	parser	errors	when	loading

the	result.	To	avoid	the	error,	SQL	ISAPI	supports	the
keyword	ROOT.	This	keyword	maps	to
SSPROP_STREAM_XMLROOT	property.	For	more
information,	see	URL	Access.)

SSPROP_STREAM_XSL Type:	VT_BSTR
R/W:	Read/Write
Description:	Is	used	for	specifying	an	XSL	file.	The	path
specified	can	be	relative	or	absolute.	
If	the	path	specified	is	relative,	the	base	path	specified	in
SSPROP_STREAM_BASEPATH	is	used	to	resolve	the
relative	path.
If	the	base	path	is	not	specified,	the	relative	path	is
relative	to	the	current	directory.

JavaScript:hhobj_1.Click()

OLE	DB	and	SQL	Server

Initialization	and	Authorization	Properties
SQLOLEDB	interprets	OLE	DB	initialization	and	authorization	properties	as
follows.

Property	ID Description
DBPROP_AUTH_CACHE_AUTHINFO SQLOLEDB	does	not	cache

authentication	information.

SQLOLEDB	returns
DB_S_ERRORSOCCURRED	on	an
attempt	to	set	the	property	value.	The
property	structure	dwStatus
indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_AUTH_CACHE_AUTHINFO SQLOLEDB	uses	standard	Microsoft®
SQL	Server™	2000	security
mechanisms	to	ensure	password
privacy.

SQLOLEDB	returns
DB_S_ERRORSOCCURRED	on	an
attempt	to	set	the	property	value.	The
property	structure	dwStatus
indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_AUTH_INTEGRATED If	DBPROP_AUTH_INTEGRATED	is
set	to	a	NULL	pointer,	a	null	string,	or
'SSPI'	VT_BSTR	value,	SQLOLEDB
uses	Windows	Authentication	Mode	to
authorize	user	access	to	the	SQL	Server
database	specified	by	the
DBPROP_INIT_DATASOURCE	and
DBPROP_INIT_CATALOG
properties.

If	it	is	set	to	VT_EMPTY	(the	default),
SQL	Server	2000	security	is	used.	The
SQL	Server	2000	login	and	password
are	specified	in	the
DBPROP_AUTH_USERID	and
DBPROP_AUTH_PASSWORD
properties.

DBPROP_AUTH_MASK_PASSWORD SQLOLEDB	uses	standard	SQL	Server
2000	security	mechanisms	to	ensure
password	privacy.

SQLOLEDB	returns
DB_S_ERRORSOCCURRED	on	an
attempt	to	set	the	property	value.	The
property	structure	dwStatus
indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_AUTH_PASSWORD Password	assigned	to	a	SQL	Server
2000	login.	This	property	is	used	when
SQL	Server	Authentication	is	selected
for	authorizing	access	to	a	SQL	Server
database.

DBPROP_AUTH_PERSIST_ENCRYPTED SQLOLEDB	does	not	encrypt
authentication	information	when
persisted.

SQLOLEDB	returns
DB_S_ERRORSOCCURRED	on	an
attempt	to	set	the	property	value.	The
property	structure	dwStatus
indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_AUTH_PERSIST_SENSITIVE_AUTHINFO SQLOLEDB	persists	authentication
values,	including	an	image	of	a
password,	if	requested	to	do	so.	No
encryption	is	provided.

DBPROP_AUTH_USERID SQL	Server	login.	This	property	is	used
when	SQL	Server	Authentication	is
selected	for	authorizing	access	to	a
SQL	Server	database.

DBPROP_INIT_ASYNCH SQLOLEDB	does	not	support
asynchronous	initiation.

SQLOLEDB	returns
DB_S_ERRORSOCCURRED	on	an
attempt	to	set	the	property	value.	The
property	structure	dwStatus
indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_INIT_CATALOG Name	of	an	existing	SQL	Server
database	to	which	to	connect.

DBPROP_INIT_DATASOURCE Network	name	of	a	server	running	an
instance	of	Microsoft®	SQL	Server™.
If	there	are	multiple	instances	of	SQL
Server	2000	running	on	the	computer,
then	to	connect	to	a	specific	instance	of
SQL	Server,	the	value
DBPROP_INIT_DATASOURCE	is
specified	as
\\ServerName\InstanceName.	The
escape	sequence	\\	is	used	for	backslash
itself.

DBPROP_INIT_HWND Window	handle	from	the	calling
application.	A	valid	window	handle	is
required	for	the	initialization	dialog
box	displayed	when	prompting	for
initialization	properties	is	allowed.

DBPROP_INIT_IMPERSONATION_LEVEL SQLOLEDB	does	not	support
impersonation	level	adjustment.

SQLOLEDB	returns
DB_S_ERRORSOCCURRED	on	an
attempt	to	set	the	property	value.	The

property	structure	dwStatus
indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_INIT_LCID SQLOLEDB	validates	the	locale	ID
and	returns	an	error	if	the	locale	ID	is
not	supported	or	is	not	installed	on	the
client.

DBPROP_INIT_LOCATION SQLOLEDB	returns
DB_S_ERRORSOCCURRED	on	an
attempt	to	set	the	property	value.	The
property	structure	dwStatus
indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_INIT_MODE SQLOLEDB	returns
DB_S_ERRORSOCCURRED	on	an
attempt	to	set	the	property	value.	The
property	structure	dwStatus
indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_INIT_PROMPT SQLOLEDB	supports	all	prompting
modes	for	data	source	initialization.
SQLOLEDB	uses
DBPROMPT_NOPROMPT	as	its
default	setting	for	the	property.

DBPROP_INIT_PROTECTION_LEVEL SQLOLEDB	does	not	support	a
protection	level	on	connections	to
instances	of	SQL	Server.

SQLOLEDB	returns
DB_S_ERRORSOCCURRED	on	an
attempt	to	set	the	property	value.	The
property	structure	dwStatus
indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_INIT_PROVIDERSTRING See	SQLOLEDB	Provider	String	later
in	this	topic.

DBPROP_INIT_TIMEOUT SQLOLEDB	returns	an	error	on
initialization	if	a	connection	to	the
instance	of	SQL	Server	cannot	be
established	within	the	number	of
seconds	specified.

In	the	provider-specific	property	set	DBPROPSET_SQLSERVERDBINIT,
SQLOLEDB	defines	these	additional	initialization	properties.

Property	ID Description
SSPROP_AUTH_REPL_SERVER_NAME Type:	VT_BSTR

R/W:	W
Default:	NULL
Description:	Replication	server	name	connect
option.

SSPROP_INIT_APPNAME Type:	VT_BSTR
R/W:	Read/write
Description:	The	client	application	name.

SSPROP_INIT_AUTOTRANSLATE Type:	VT_BOOL
R/W:	Read/write
Default:	VARIANT_TRUE
Description:	OEM/ANSI	character	conversion.

VARIANT_TRUE:	SQLOLEDB	translates	ANSI
character	strings	sent	between	the	client	and
server	by	converting	through	Unicode	to	minimize
problems	in	matching	extended	characters
between	the	code	pages	on	the	client	and	the
server:

Client	DBTYPE_STR	data	sent	to	an	instance	of
SQL	Server	char,	varchar,	or	text
parameter,	or	column	is	converted	from	character
to	Unicode	using	the	client	ANSI	code	page
(ACP),	and	then	converted	from	Unicode	to
character	using	the	ACP	of	the	server.

SQL	Server	2000	char,	varchar,	or	
to	a	client	DBTYPE_STR	variable	is	converted

from	character	to	Unicode	using	the	server	ACP,
and	then	converted	from	Unicode	to	character
using	the	client	ACP.

These	conversions	are	performed	on	the	client	by
SQLOLEDB.	This	requires	that	the	same	ANSI
code	page	(ACP)	used	on	the	server	be	available
on	the	client.

These	settings	have	no	effect	on	the	conversions
that	occur	for	these	transfers:

Unicode	DBTYPE_WSTR	client	data	sent	to
char,	varchar,	or	text	on	the	server.

char,	varchar,	or	text	server	data	sent	to	a
Unicode	DBTYPE_WSTR	variable	on	the	client.

ANSI	DBTYPE_STR	client	data	sent	to	Unicode
nchar,	nvarchar,	or	ntext	on	the	server.

Unicode	char,	varchar,	or	text	server	data	sent	to
an	ANSI	DBTYPE_STR	variable	on	the	client.

VARIANT_FALSE:		SQLOLEDB	does	not
perform	character	translations.

SQLOLEDB	does	not	translate	client	ANSI
character	DBTYPE_STR	data	sent	to	
varchar,	or	text	variables,	parameters,	or	columns
on	the	server.	No	translation	is	performed	on
char,	varchar,	or	text	data	sent	from	the	server	to
DBTYPE_STR	variables	on	the	client.

If	the	client	and	the	instance	of	SQL	Server	2000
are	using	different	ACPs,	extended	characters	can
be	misinterpreted.

SSPROP_INIT_CURRENTLANGUAGE Type:	VT_BSTR
R/W:	Read/write
Description:	A	SQL	Server	language	name.
Identifies	the	language	used	for	system	message

selection	and	formatting.	The	language	must	be
installed	on	the	computer	running	an	instance	of
SQL	Server	or	data	source	initialization	fails.

SSPROP_INIT_ENCRYPT Type:	VT_BOOL
R/W:	Read/Write
Default:	VARIANT_FALSE
Description:	To	encrypt	the	data	going	over	the
network,	SSPROP_INIT_ENCRYPT	property	is
set	to	VARIANT_TRUE.

Error	occurs	if	the	Enable	Protocol	Encryption	is
set	to	ON	on	the	client,	and	the
SSPROP_INIT_ENCRYPT	is	set	to
VARIANT_FALSE.

If	Enable	Protocol	Encryption	is	set	to	OFF	on	the
client	side,	and	SSPROP_INIT_ENCRYPT	is	set
to	VARIANT_TRUE,	encryption	will	be	enabled
on	that	particular	connection.

SSPROP_INIT_FILENAME Type:	VT_BSTR
R/W:	Read/write
Description:	Specifies	the	primary	file	name	of	an
attachable	database.	This	database	is	attached	and
becomes	the	default	database	for	the	connection.
To	use	SSPROP_INIT_FILENAME,	you	must
specify	the	name	of	the	database	as	the	value	of
the	initialization	property
DBPROP_INIT_CATALOG.	If	the	database	name
does	not	exist,	then	it	looks	for	the	primary	file
name	specified	in	SSPROP_INIT_FILENAME
and	attaches	that	database	with	the	name	specified
in	DBPROP_INIT_CATALOG.	If	the	database
was	previously	attached,	SQL	Server	does	not
reattach	it.	This	option	is	valid	only	when
connected	to	SQL	Server	2000.	

SSPROP_INIT_NETWORKADDRESS Type:	VT_BSTR
R/W:	Read/write

Description:	The	network	address	of	the	server
running	an	instance	of	SQL	Server	specified	by
the	DBPROP_INIT_DATASOURCE	property.

SSPROP_INIT_NETWORKLIBRARY Type:	VT_BSTR
R/W:	Read/write
Description:	The	name	of	the	Net-Library	(DLL)
used	to	communicate	with	an	instance	of	SQL
Server	2000.	The	name	should	not	include	the
path	or	the	.dll	file	name	extension.

The	default	is	provided	by	the	SQL	Server	Client
Network	Utility.

SSPROP_INIT_PACKETSIZE Type:	VT_I4
R/W:	Read/write
Description:	A	network	packet	size	in	bytes.	The
packet	size	property	value	must	be	between	512
and	32,767.	The	default	SQLOLEDB	network
packet	size	is	4,096.

SSPROP_INIT_TAGCOLUMNCOLLATIONType:	BOOL
R/W:W
Default:	FALSE
Description:	Is	used	during	a	database	update
when	server-side	cursors	are	used.	This	property
tags	the	data	with	collation	information	obtained
from	the	server	instead	of	the	code	page	on	the
client.	Currently,	this	property	is	used	only	by	the
distributed	query	process	because	it	knows	the
collation	of	destination	data	and	converts	it
correctly.

SSPROP_INIT_USEPROCFORPREP Type:	VT_I4
R/W:	Read/write
Default:
SSPROPVAL_USEPROCFORPREP_ON
Description:	SQL	Server	stored	procedure	use.
Defines	the	use	of	SQL	Server	temporary	stored
procedures	to	support	the	ICommandPrepare
interface.	This	property	is	meaningful	only	when

connecting	to	SQL	Server	6.5.	The	property	is
ignored	for	later	versions.

SSPROPVAL_USEPROCFORPREP_OFF:	A
temporary	stored	procedure	is	not	created	when	a
command	is	prepared.

SSPROPVAL_USEPROCFORPREP_ON:	A
temporary	stored	procedure	is	created	when	a
command	is	prepared.	The	temporary	stored
procedures	are	dropped	when	the	session	is
released.

SSPROPVAL_USEPROCFORPREP_ON_DROP:
A	temporary	stored	procedure	is	created	when	a
command	is	prepared.	The	procedure	is	dropped
when	the	command	is	unprepared	with
ICommandPrepare::Unprepare,	or	when	a	new
command	is	specified	for	the	command	object
with	ICommandText::SetCommandText
when	all	application	references	to	the	command
are	released.

SSPROP_INIT_WSID Type:	VT_BSTR
R/W:	Read/write
Description:	A	string	identifying	the	workstation.

In	the	provider-specific	property	set
DBPROPSET_SQLSERVERDATASOURCEINFO,	SQLOLEDB	defines	the
following	additional	properties.

Property	ID Description
SSPROP_COLUMNLEVELCOLLATIONType:	VT_BOOL

R/W:	Read
Default:	VARIANT_TRUE
Description:	Used	to	determine
if	column	collation	is
supported.

VARIANT_TRUE:	Column
level	collation	is	supported	(in
case	of	SQL	Server	2000)

VARIANT_FALSE:	Column
level	collation	is	not	supported.

SQLOLEDB	Provider	String
SQLOLEDB	recognizes	an	ODBC-like	syntax	in	provider	string	property
values.	The	provider	string	property	is	provided	as	the	value	of	the	OLE	DB
initialization	property	DBPROP_INIT_PROVIDERSTRING	when	a	connection
is	established	to	the	OLE	DB	data	source.	This	property	specifies	OLE	DB
provider-specific	connection	data	required	to	implement	a	connection	to	the
OLE	DB	data	source.	Within	the	string,	elements	are	delimited	by	using	a
semicolon.	The	final	element	in	the	string	must	be	terminated	with	a	semicolon.
Each	element	consists	of	a	keyword,	an	equal	sign	character,	and	the	value
passed	on	initialization.	For	example:

Server=London1;UID=nancyd;

With	SQLOLEDB,	the	consumer	never	needs	to	use	the	provider	string	property.
The	consumer	can	set	any	initialization	property	reflected	in	the	provider	string
by	using	either	OLE	DB	or	SQLOLEDB-specific	initialization	properties.

SQLOLEDB	recognizes	the	following	keywords	in	the	provider	string	property.

Keyword PropertyID Description
Address SSPROP_INIT_NETWORKADDRESS Network	address	of

an	instance	of	SQL
Server	in	the
organization.

APP SSPROP_INIT_APPNAME String	identifying
the	application.

AttachDBFileName DBPROP_INIT_PROVIDERSTRING Name	of	the
primary	file

(include	the	full
path	name)	of	an
attachable	database.
To	use
AttachDBFileName,
you	must	also
specify	the	database
name	with	the
provider	string
DATABASE
keyword.	If	the
database	was
previously	attached,
SQL	Server	does
not	reattach	it	(it
uses	the	attached
database	as	the
default	for	the
connection).

AutoTranslate SSPROP_INIT_AUTOTRANSLATE Configures
OEM/ANSI
character
translation.
Recognized	values
are	"yes"	and	"no."

Database DBPROP_INIT_CATALOG Database	name.
Encrypt SSPROP_INIT_ENCRYPT Specifies	if	data

should	be	encrypted
before	sending	it
over	the	network.

Language SSPROPT_INIT_CURRENTLANGUAGESQL	Server
language	record
name.	

Network SSPROP_INIT_NETWORKLIBRARY Net-Library	used	to
establish	a
connection	to	an

instance	of	SQL
Server	in	the
organization.	

PWD DBPROP_AUTH_PASSWORD SQL	Server	login
password.

Server DBPROP_INIT_DATASOURCE Name	of	an	instance
of	SQL	Server	in
the	organization.	

Trusted_ConnectionDBPROP_AUTH_INTEGRATED Accepts	the	strings
"yes"	and	"no"	as
values.

UID DBPROP_AUTH_USERID SQL	Server	login
record	name.

UseProcForPrepare SSPROP_INIT_USEPROCFORPREP Accepts	0,	1,	and	2
as	values.	This
keyword	is
meaningful	only
when	connecting	to
SQL	Server	6.5.	It	is
ignored	for	any
newer	versions.

WSID SSPROP_INIT_WSID Workstation
identifier.

OLE	DB	and	SQL	Server

Sessions
A	SQLOLEDB	session	represents	a	single	connection	to	an	instance	of
Microsoft®	SQL	Server™	2000.

OLE	DB	requires	that	sessions	delimit	transaction	space	for	a	data	source.	All
command	objects	created	from	a	specific	session	object	participate	in	the	local	or
distributed	transaction	of	the	session	object.

The	first	session	object	created	on	the	initialized	data	source	receives	the	SQL
Server	connection	established	at	initialization.	When	all	references	on	the
interfaces	of	the	session	object	are	released,	the	connection	to	the	instance	of
SQL	Server	becomes	available	to	another	session	object	created	on	the	data
source.

An	additional	session	object	created	on	the	data	source	establishes	its	own
connection	to	the	instance	of	SQL	Server	as	specified	by	the	data	source.	The
connection	to	the	instance	of	SQL	Server	is	dropped	when	the	application
releases	all	references	to	objects	created	that	session.

This	example	shows	SQLOLEDB	SQL	Server	connection	usage:

int	main()
{
				//	Interfaces	used	in	the	example.
				IDBInitialize*						pIDBInitialize						=	NULL;
				IDBCreateSession*			pIDBCreateSession			=	NULL;
				IDBCreateCommand*			pICreateCmd1								=	NULL;
				IDBCreateCommand*			pICreateCmd2								=	NULL;
				IDBCreateCommand*			pICreateCmd3								=	NULL;

				//	Initialize	COM.
				if	(FAILED(CoInitialize(NULL)))
				{
								//	Display	error	from	CoInitialize.
								return	(-1);

				}

				//	Get	the	memory	allocator	for	this	task.
				if	(FAILED(CoGetMalloc(MEMCTX_TASK,	&g_pIMalloc)))
				{
								//	Display	error	from	CoGetMalloc.
								goto	EXIT;
				}

				//	Create	an	instance	of	the	data	source	object.
				if	(FAILED(CoCreateInstance(CLSID_SQLOLEDB,	NULL,
								CLSCTX_INPROC_SERVER,	IID_IDBInitialize,	(void**)
								&pIDBInitialize)))
				{
								//	Display	error	from	CoCreateInstance.
								goto	EXIT;
				}

				//	The	InitFromPersistedDS	function	
				//	performs	IDBInitialize->Initialize()	establishing
				//	the	first	application	connection	to	the	instance	of	SQL	Server.
				if	(FAILED(InitFromPersistedDS(pIDBInitialize,	L"MyDataSource",
								NULL,	NULL)))
				{
								goto	EXIT;
				}

				//	The	IDBCreateSession	interface	is	implemented	on	the	data	source
				//	object.	Maintaining	the	reference	received	maintains	the	
				//	connection	of	the	data	source	to	the	instance	of	SQL	Server.
				if	(FAILED(pIDBInitialize->QueryInterface(IID_IDBCreateSession,
								(void**)	&pIDBCreateSession)))
				{

								//	Display	error	from	pIDBInitialize.
								goto	EXIT;
				}

				//	Releasing	this	has	no	effect	on	the	SQL	Server	connection
				//	of	the	data	source	object	because	of	the	reference	maintained	by
				//	pIDBCreateSession.
				pIDBInitialize->Release();
				pIDBInitialize	=	NULL;

				//	The	session	created	next	receives	the	SQL	Server	connection	of
				//	the	data	source	object.	No	new	connection	is	established.
				if	(FAILED(pIDBCreateSession->CreateSession(NULL,
								IID_IDBCreateCommand,	(IUnknown**)	&pICreateCmd1)))
				{
								//	Display	error	from	pIDBCreateSession.
								goto	EXIT;
				}

				//	A	new	connection	to	the	instance	of	SQL	Server	is	established	to	support	the
				//	next	session	object	created.	On	successful	completion,	the
				//	application	has	two	active	connections	on	the	SQL	Server.
				if	(FAILED(pIDBCreateSession->CreateSession(NULL,
								IID_IDBCreateCommand,	(IUnknown**)	&pICreateCmd2)))
				{
								//	Display	error	from	pIDBCreateSession.
								goto	EXIT;
				}

				//	pICreateCmd1	has	the	data	source	connection.	Because	the
				//	reference	on	the	IDBCreateSession	interface	of	the	data	source
				//	has	not	been	released,	releasing	the	reference	on	the	session
				//	object	does	not	terminate	a	connection	to	the	instance	of	SQL	Server.

				//	However,	the	connection	of	the	data	source	object	is	now	
				//	available	to	another	session	object.	After	a	successful	call	to	
				//	Release,	the	application	still	has	two	active	connections	to	the	
				//	instance	of	SQL	Server.
				pICreateCmd1->Release();
				pICreateCmd1	=	NULL;

				//	The	next	session	created	gets	the	SQL	Server	connection
				//	of	the	data	source	object.	The	application	has	two	active
				//	connections	to	the	instance	of	SQL	Server.
				if	(FAILED(pIDBCreateSession->CreateSession(NULL,
								IID_IDBCreateCommand,	(IUnknown**)	&pICreateCmd3)))
				{
								//	Display	error	from	pIDBCreateSession.
								goto	EXIT;
				}

EXIT:
				//	Even	on	error,	this	does	not	terminate	a	SQL	Server	connection	
				//	because	pICreateCmd1	has	the	connection	of	the	data	source	
				//	object.
				if	(pICreateCmd1	!=	NULL)
								pICreateCmd1->Release();

				//	Releasing	the	reference	on	pICreateCmd2	terminates	the	SQL
				//	Server	connection	supporting	the	session	object.	The	application
				//	now	has	only	a	single	active	connection	on	the	instance	of	SQL	Server.
				if	(pICreateCmd2	!=	NULL)
								pICreateCmd2->Release();

				//	Even	on	error,	this	does	not	terminate	a	SQL	Server	connection	
				//	because	pICreateCmd3	has	the	connection	of	the	
				//	data	source	object.

				if	(pICreateCmd3	!=	NULL)
								pICreateCmd3->Release();

				//	On	release	of	the	last	reference	on	a	data	source	interface,	the
				//	connection	of	the	data	source	object	to	the	instance	of	SQL	Server	is	broken.
				//	The	example	application	now	has	no	SQL	Server	connections	active.
				if	(pIDBCreateSession	!=	NULL)
								pIDBCreateSession->Release();

				//	Called	only	if	an	error	occurred	while	attempting	to	get	a	
				//	reference	on	the	IDBCreateSession	interface	of	the	data	source.
				//	If	so,	the	call	to	IDBInitialize::Uninitialize	terminates	the	
				//	connection	of	the	data	source	object	to	the	instance	of	SQL	Server.
				if	(pIDBInitialize	!=	NULL)
				{
								if	(FAILED(pIDBInitialize->Uninitialize()))
								{
												//	Uninitialize	is	not	required,	but	it	fails	if	an
												//	interface	has	not	been	released.	Use	it	for
												//	debugging.
								}
								pIDBInitialize->Release();
				}

				if	(g_pIMalloc	!=	NULL)
								g_pIMalloc->Release();

				CoUninitialize();
				
				return	(0);
}

Connecting	SQLOLEDB	session	objects	to	an	instance	of	SQL	Server	can

generate	significant	overhead	for	applications	that	continually	create	and	release
session	objects.	The	overhead	can	be	minimized	by	managing	SQLOLEDB
session	objects	efficiently.	SQLOLEDB	applications	can	keep	the	SQL	Server
connection	of	a	session	object	active	by	maintaining	a	reference	on	at	least	one
interface	of	the	object.

For	example,	maintaining	a	pool	of	command	creation	object	references	keeps
active	connections	for	those	session	objects	in	the	pool.	As	session	objects	are
required,	the	pool	maintenance	code	passes	a	valid	IDBCreateCommand
interface	pointer	to	the	application	method	requiring	the	session.	When	the
application	method	no	longer	requires	the	session,	the	method	returns	the
interface	pointer	back	to	the	pool	maintenance	code	rather	than	releasing	the
application's	reference	to	the	command	creation	object.

Note		In	the	preceding	example,	the	IDBCreateCommand	interface	is	used
because	the	ICommand	interface	implements	the	GetDBSession	method,	the
only	method	in	command	or	rowset	scope	that	allows	an	object	to	determine	the
session	on	which	it	was	created.	Therefore,	a	command	object,	and	only	a
command	object,	allows	an	application	to	retrieve	a	data	source	object	pointer
from	which	additional	sessions	can	be	created.

OLE	DB	and	SQL	Server

Session	Properties
SQLOLEDB	interprets	OLE	DB	session	properties	as	follows.

Property	ID Description
DBPROP_SESS_AUTOCOMMITISOLEVELS SQLOLEDB	supports	all

autocommit	transaction
isolation	levels	with	the
exception	of	the	chaos
level,
DBPROPVAL_TI_CHAOS.

In	the	provider-specific	property	set	DBPROPSET_SQLSERVERSESSION,
SQLOLEDB	defines	the	following	additional	session	property.

Property	ID Description
SSPROP_QUOTEDCATALOGNAMESType:	VT_BOOL

R/W:	Read/write
Default:	VARIANT_FALSE
Description:	Quoted	identifiers
allowed	in	CATALOG	restriction.

VARIANT_TRUE:	Quoted
identifiers	are	recognized	for	a
catalog	restriction	for	the	schema
rowsets	that	supply	distributed
query	support.

VARIANT_FALSE:	Quoted
identifiers	are	not	recognized	for	a
catalog	restriction	for	the	schema
rowsets	that	supply	distributed
query	support.

For	more	information	about
schema	rowsets	that	supply
distributed	query	support,	see

Distributed	Query	Support	in
Schema	Rowsets.

OLE	DB	and	SQL	Server

Persisted	Data	Source	Objects
SQLOLEDB	supports	persisted	data	source	objects	with	the	IPersistFile
interface.

Examples

A.		Persist	data	source	initialization	properties
This	example	shows	a	function	that	persists	data	source	initialization	properties
defining	a	server,	database,	and	the	use	of	the	Windows	Authentication	Mode	for
connection.	The	server	name	and	database	name	are	received	in	the	pLocation
and	pDatasource	parameters	of	the	function.

HRESULT	SetAndSaveInitProps
				(
				IDBInitialize*	pIDBInitialize,
				WCHAR*	pDataSource,
				WCHAR*	pCatalog,
				BOOL	bUseWinNTAuth
)
				{
				const	ULONG					nProps	=	4;
				ULONG											nSSProps;
				ULONG											nPropSets;
				ULONG											nProp;
				IDBProperties*		pIDBProperties		=	NULL;
				IPersistFile*			pIPersistFile			=	NULL;
				DBPROP										aInitProps[nProps];
				DBPROP*									aSSInitProps				=	NULL;
				DBPROPSET*						aInitPropSets			=	NULL;
				HRESULT									hr;

								nSSProps	=	0;

								nPropSets	=	1;

				aInitPropSets	=	new	DBPROPSET[nPropSets];

				//	Initialize	common	property	options.
				for	(nProp	=	0;	nProp	<	nProps;	nProp++)
								{
								VariantInit(&aInitProps[nProp].vValue);
								aInitProps[nProp].dwOptions	=	DBPROPOPTIONS_REQUIRED;
								aInitProps[nProp].colid	=	DB_NULLID;
								}

				//	Level	of	prompting	that	will	be	done	to	complete	the	connection
				//	process.
				aInitProps[0].dwPropertyID	=	DBPROP_INIT_PROMPT;
				aInitProps[0].vValue.vt	=	VT_I2;
				aInitProps[0].vValue.iVal	=	DBPROMPT_NOPROMPT;					

				//	Server	name.
				aInitProps[1].dwPropertyID	=	DBPROP_INIT_DATASOURCE;				
				aInitProps[1].vValue.vt	=	VT_BSTR;
				aInitProps[1].vValue.bstrVal	=	SysAllocString(pDataSource);

				//	Database.
				aInitProps[2].dwPropertyID	=	DBPROP_INIT_CATALOG;
				aInitProps[2].vValue.vt	=	VT_BSTR;
				aInitProps[2].vValue.bstrVal	=	SysAllocString(pCatalog);

				aInitProps[3].dwPropertyID	=	DBPROP_AUTH_INTEGRATED;
				if	(bUseWinNTAuth	==	TRUE)
				{
								aInitProps[3].vValue.vt	=	VT_BSTR;
								aInitProps[3].vValue.bstrVal	=	SysAllocString(L"SSPI");

				}	//end	if

				//	Now	that	properties	are	set,	construct	the	PropertySet	array.
				aInitPropSets[0].guidPropertySet	=	DBPROPSET_DBINIT;
				aInitPropSets[0].cProperties	=	nProps;
				aInitPropSets[0].rgProperties	=	aInitProps;

				//	Set	initialization	properties
				pIDBInitialize->QueryInterface(IID_IDBProperties,
								(void**)	&pIDBProperties);
				hr	=	pIDBProperties->SetProperties(nPropSets,	aInitPropSets);
				if	(FAILED(hr))
								{
								//	Display	error	from	failed	SetProperties.
								}
				pIDBProperties->Release();

				//	Free	references	on	OLE	known	strings.
				for	(nProp	=	0;	nProp	<	nProps;	nProp++)
								{
								if	(aInitProps[nProp].vValue.vt	==	VT_BSTR)
												SysFreeString(aInitProps[nProp].vValue.bstrVal);
								}

				for	(nProp	=	0;	nProp	<	nSSProps;	nProp++)
								{
								if	(aSSInitProps[nProp].vValue.vt	==	VT_BSTR)
												SysFreeString(aInitProps[nProp].vValue.bstrVal);
								}

				//	Free	dynamically	allocated	memory.
				delete	[]	aInitPropSets;
				delete	[]	aSSInitProps;

				//	On	success,	persist	the	data	source.
				if	(SUCCEEDED(hr))
								{
								pIDBInitialize->QueryInterface(IID_IPersistFile,
												(void**)	&pIPersistFile);

								hr	=	pIPersistFile->Save(OLESTR("MyDataSource.txt"),	FALSE);

								if	(FAILED(hr))
												{
												//	Display	errors	from	IPersistFile	interface.
												}
								pIPersistFile->Release();
								}

				return	(hr);
				}

B.		Use	persisted	data	source	initialization	properties
This	example	uses	a	persisted	data	source	object	with	additional	initialization
properties	that	provide	a	Microsoft®	SQL	Server™	2000	login	ID	and	password.

HRESULT	InitFromPersistedDS
				(
				IDBInitialize*	pIDBInitialize,
				WCHAR*	pPersistedDSN,
				WCHAR*	pUID,
				WCHAR*	pPWD
)
				{
				//const	ULONG			nProps	=	3;
				const	ULONG					nProps	=	1;

				const	ULONG					nPropSets	=	1;
				ULONG											nProp;
				IDBProperties*		pIDBProperties		=	NULL;
				IPersistFile*			pIPersistFile			=	NULL;
				DBPROP										aInitProps[nProps];
				DBPROPSET							aInitPropSets[nPropSets];
				HRESULT									hr;

				//	First	load	the	persisted	data	source	information.
				pIDBInitialize->QueryInterface(IID_IPersistFile,
								(void**)	&pIPersistFile);

				hr	=	pIPersistFile->Load(pPersistedDSN,	STGM_DIRECT);

				if	(FAILED(hr))
								{
								//	Display	errors	from	IPersistFile	interface.
								}
				pIPersistFile->Release();

				if	(FAILED(hr))
								{
								return	(hr);
								}

				//	Initialize	common	property	options.
				for	(nProp	=	0;	nProp	<	nProps;	nProp++)
								{
								VariantInit(&aInitProps[nProp].vValue);
								aInitProps[nProp].dwOptions	=	DBPROPOPTIONS_REQUIRED;
								aInitProps[nProp].colid	=	DB_NULLID;
								}

				//	Level	of	prompting	that	will	be	done	to	complete	the	connection
				//	process.
				aInitProps[0].dwPropertyID	=	DBPROP_INIT_PROMPT;
				aInitProps[0].vValue.vt	=	VT_I2;
				aInitProps[0].vValue.iVal	=	DBPROMPT_NOPROMPT;				

				//	Now	that	properties	are	set,	construct	the	PropertySet	array.
				aInitPropSets[0].guidPropertySet	=	DBPROPSET_DBINIT;
				aInitPropSets[0].cProperties	=	nProps;
				aInitPropSets[0].rgProperties	=	aInitProps;

				//	Set	initialization	properties
				pIDBInitialize->QueryInterface(IID_IDBProperties,
								(void**)	&pIDBProperties);
				hr	=	pIDBProperties->SetProperties(nPropSets,	aInitPropSets);
				if	(SUCCEEDED(hr))
								{
								hr	=	pIDBInitialize->Initialize();
								if	(FAILED(hr))
												{
												DumpError(pIDBInitialize,	IID_IDBInitialize);
												}
								}
				else
								{
								//	Display	error	from	failed	SetProperties.
								}
				pIDBProperties->Release();

				//	Free	references	on	OLE	known	strings.
				for	(nProp	=	0;	nProp	<	nProps;	nProp++)
								{
								if	(aInitProps[nProp].vValue.vt	==	VT_BSTR)

												SysFreeString(aInitProps[nProp].vValue.bstrVal);
								}

				return	(hr);
				}

The	IPersistFile::Save	method	can	be	called	before	or	after	calling
IDBInitialize::Initialize.	Calling	the	method	after	a	successful	return	from
IDBInitialize::Initialize	ensures	persisting	a	valid	data	source	specification.

OLE	DB	and	SQL	Server

Commands
SQLOLEDB	exposes	the	ICommand	interface	and	command	objects.

OLE	DB	and	SQL	Server

Command	Syntax
SQLOLEDB	recognizes	command	syntax	specified	by	the	DBGUID_SQL
macro.	For	SQLOLEDB,	the	specifier	indicates	that	an	amalgam	of	ODBC	SQL,
SQL-92,	and	Transact-SQL	is	valid	syntax.	For	example,	the	following	SQL
statement	uses	an	ODBC	SQL	escape	sequence	to	specify	the	LCASE	string
function:

SELECT	customerid={fn	LCASE(CustomerID)}	FROM	Customers

LCASE	returns	a	character	string,	converting	all	uppercase	characters	to	their
lowercase	equivalents.	The	SQL-92	string	function	LOWER	performs	the	same
operation,	so	the	following	SQL	statement	is	a	SQL-92	equivalent	to	the	ODBC
statement	presented	above:

SELECT	customerid=LOWER(CustomerID)	FROM	Customers

SQLOLEDB	processes	either	form	of	the	statement	successfully	when	specified
as	text	for	a	command.

Stored	Procedures
When	executing	a	Microsoft®	SQL	Server™	2000	stored	procedure	using	a
SQLOLEDB	command,	use	the	ODBC	CALL	escape	sequence	in	the	command
text.	SQLOLEDB	then	uses	the	remote	procedure	call	mechanism	of	SQL	Server
2000	to	optimize	command	processing.	For	example,	the	following	ODBC	SQL
statement	is	preferred	command	text	over	the	Transact-SQL	form:

ODBC	SQL
{call	SalesByCategory('Produce',	'1995')}

Transact-SQL
EXECUTE	SalesByCategory	'Produce',	'1995'

OLE	DB	and	SQL	Server

Command	Parameters
Parameters	are	marked	in	command	text	with	the	ODBC-specified	question
mark	character.	For	example,	the	following	ODBC	SQL	statement	is	marked	for
a	single	input	parameter:

{call	SalesByCategory('Produce',	?)}

To	improve	performance	by	reducing	network	traffic,	SQLOLEDB	does	not
automatically	derive	parameter	information	unless
ICommandWithParameters::GetParameterInfo	or
ICommandPrepare::Prepare	is	called	before	executing	a	command.	This
means	that	SQLOLEDB	does	not	automatically:

Verify	the	correctness	of	the	data	type	specified	with
ICommandWithParameters::SetParameterInfo.

Map	from	the	DBTYPE	specified	in	the	accessor	binding	information	to
the	correct	Microsoft®	SQL	Server™	2000	data	type	for	the	parameter.

Applications	will	receive	possible	errors	or	loss	of	precision	with	either	of	these
methods	if	they	specify	data	types	that	are	not	compatible	with	the	SQL	Server
2000	data	type	of	the	parameter.

To	ensure	this	does	not	happen,	the	application	should:

If	hard-coding	ICommandWithParameters::SetParameterInfo,
ensure	that	pwszDataSourceType	matches	the	SQL	Server	data	type	for
the	parameter.

If	hard-coding	an	accessor,	ensure	that	the	DBTYPE	value	being	bound
to	the	parameter	is	of	the	same	type	as	the	SQL	Server	data	type	for	the
parameter.

Code	the	application	to	call
ICommandWithParameters::GetParameterInfo	so	the	provider	can

obtain	the	SQL	Server	data	types	of	the	parameters	dynamically.	Note
that	this	causes	an	extra	network	roundtrip	to	the	server.

SQLOLEDB	supports	input	parameters	in	SQL	statement	commands.	On
procedure-call	commands,	SQLOLEDB	supports	input,	output,	and	input/output
parameters.	Output	parameter	values	are	returned	to	the	application	either	on
execution	or	when	all	returned	rowsets	are	exhausted	by	the	application.	To
ensure	that	returned	values	are	valid,	use	IMultipleResults	to	force	rowset
consumption.

//	Macro	used	in	the	example.
#define	COUNTRY_MAX_CHARS											15

//	Structure	supporting	the	parameters	of	the	example	stored	procedure.
typedef	struct	tagSPROCPARAMS
				{
				long								lReturnValue;
				char								acCountry[COUNTRY_MAX_CHARS	+	1];
				}	SPROCPARAMS;

				//	Interfaces	used	in	the	example.
				ICommandText*							pICommandText	=	NULL;
				ICommandWithParameters*	pICommandWithParameters	=	NULL;
				IAccessor*										pIAccessor	=	NULL;
				IMultipleResults*			pIMultipleResults	=	NULL;
				IRowset*												pIRowset	=	NULL;

				//	Command	parameter	data.
				DBPARAMS												Params;
				const	ULONG									nParams	=	2;
				DBPARAMBINDINFO					rgParamBindInfo[nParams]	=	
								{
								L"DBTYPE_I4",
								L"ReturnVal",
								sizeof(long),

								DBPARAMFLAGS_ISOUTPUT,
								11,
								0,
								L"DBTYPE_VARCHAR",
								L"@Country",
								COUNTRY_MAX_CHARS,
								DBPARAMFLAGS_ISINPUT,
								0,
								0	};
				ULONG															rgParamOrdinals[nParams]	=	{1,2};

				//	Parameter	accessor	data.
				HACCESSOR											hAccessor;
				DBBINDING											acDBBinding[nParams];
				DBBINDSTATUS								acDBBindStatus[nParams];

				//	The	command	and	parameter	data.
				WCHAR*														wszSQLString	=
								L"{?	=	call	CustomersInCountry(?)}";
				SPROCPARAMS									sprocparams	=	{0,	"USA"};

				//	Returned	count	of	rows	affected.
				LONG																cRowsAffected	=	0;

				HRESULT													hr;
				
				//	Create	the	command.
				if	(FAILED(hr	=	pIDBCreateCommand->CreateCommand(NULL,	
								IID_ICommandText,	(IUnknown**)	&pICommandText)))
								{
								//	Process	error	from	IDBCreateCommand	and	return.
								}

				//	Set	the	command	text	value.
				if	(FAILED(hr	=	pICommandText->SetCommandText(DBGUID_DBSQL,
								wszSQLString)))
								{
								//	Process	error	from	ICommand	and	return.
								}

				//	Get	the	ICommandWithParameters	interface	to	set	up	parameter
				//	values.
				if	(FAILED(hr	=	pICommandText->QueryInterface(
								IID_ICommandWithParameters,
								(void**)	&pICommandWithParameters)))
								{
								//	Process	error	from	ICommand	and	return.
								}

				//	Set	parameter	information.
				if	(FAILED(hr	=	pICommandWithParameters->SetParameterInfo(nParams,	
								rgParamOrdinals,	rgParamBindInfo)))
								{
								//	Process	error	from	ICommandWithParameters	and	return.
								}

				//	Create	parameter	accessor,	but	first	set	binding	structures
				//	to	indicate	the	characteristics	of	each	parameter.
				for	(ULONG	i	=	0;	i	<	nParams;	i++)
								{
								acDBBinding[i].obLength	=	0;
								acDBBinding[i].obStatus	=	0;
								acDBBinding[i].pTypeInfo	=	NULL;
								acDBBinding[i].pObject	=	NULL;
								acDBBinding[i].pBindExt	=	NULL;
								acDBBinding[i].dwPart	=	DBPART_VALUE;

								acDBBinding[i].dwMemOwner	=	DBMEMOWNER_CLIENTOWNED;
								acDBBinding[i].dwFlags	=	0;
								acDBBinding[i].bScale	=	0;
								}

				acDBBinding[0].iOrdinal	=	1;
				acDBBinding[0].obValue	=	offsetof(SPROCPARAMS,	lReturnValue);
				acDBBinding[0].eParamIO	=	DBPARAMIO_OUTPUT;
				acDBBinding[0].cbMaxLen	=	sizeof(long);
				acDBBinding[0].wType	=	DBTYPE_I4;
				acDBBinding[0].bPrecision	=	11;

				acDBBinding[1].iOrdinal	=	2;
				acDBBinding[1].obValue	=	offsetof(SPROCPARAMS,	acCountry);
				acDBBinding[1].eParamIO	=	DBPARAMIO_INPUT;
				acDBBinding[1].cbMaxLen	=	COUNTRY_MAX_CHARS;
				acDBBinding[1].wType	=	DBTYPE_STR;
				acDBBinding[1].bPrecision	=	0;

				//	Get	the	IAccessor	interface,	then	create	the	accessor	for
				//	the	defined	parameters.
				pICommandWithParameters->QueryInterface(IID_IAccessor,
								(void**)	&pIAccessor);

				hr	=	pIAccessor->CreateAccessor(DBACCESSOR_PARAMETERDATA,
								nParams,	acDBBinding,	sizeof(SPROCPARAMS),	&hAccessor,
								acDBBindStatus);
				if	(FAILED(hr))
								{
								//	Process	error	from	IAccessor	and	return.
								}

				//	Fill	the	DBPARAMS	structure	for	the	command	execution.

				Params.pData	=	&sprocparams;
				Params.cParamSets	=	1;
				Params.hAccessor	=	hAccessor;
				
				//	Execute	the	command.
				if	(FAILED(hr	=	pICommandText->Execute(NULL,	IID_IMultipleResults,
								&Params,	&cRowsAffected,	(IUnknown**)	&pIMultipleResults)))
								{
								//	Process	error	from	ICommand	and	return.
								}

				//	For	each	rowset	or	count	of	rows	affected...
				do
								{
								hr	=	((IMultipleResults*)	pIResults)->GetResult(NULL,	0,
												IID_IRowset,	&cRowsAffected,	(IUnknown**)	&pIRowset);

								switch	(hr)
												{
												case	S_OK:
																{
																if	(pIRowset	!=	NULL)
																				{
																				//	Process	data	from	the	rowset	and	release.
																				pIRowset->Release();
																				}
																else	if	(cRowsAffected	!=	-1)
																				{
																				printf("Command	succeeded.	%ld	rows	affected.\n\n",
																								cRowsAffected);
																				}
																else
																				{

																				printf("Command	succeeded.\n\n");
																				}

																break;
																}

												case	DB_S_NORESULT:
												case	DB_S_STOPLIMITREACHED:
																break;

												default:
																{
																DumpError(pIResults,	IID_IMultipleResults);
																break;
																}
												}
								}
				while	(hr	==	S_OK);

				if	(SUCCEEDED(hr))
								{
								//	At	this	point,	the	value	of	the	return	is	guaranteed	correct.
								//	If	any	other	output	parameters	had	been	specified,	then	they
								//	too	would	now	contain	their	correct	values.
								printf("Return	value	%d\n",	sprocparams.lReturnValue);
								}

The	names	of	stored	procedure	parameters	need	not	be	specified	in	a
DBPARAMBINDINFO	structure.	Use	NULL	for	the	value	of	the	pwszName
member	to	indicate	that	SQLOLEDB	should	ignore	the	parameter	name	and	use
only	the	ordinal	specified	in	the	rgParamOrdinals	member	of
ICommandWithParameters::SetParameterInfo.	If	the	command	text	contains
both	named	and	unnamed	parameters,	all	the	unnamed	parameters	must	be
specified	before	any	named	parameters.

If	the	name	of	a	stored	procedure	parameter	is	specified,	SQLOLEDB	checks	the
name	to	ensure	that	it	is	valid.	SQLOLEDB	returns	an	error	when	it	receives	an
erroneous	parameter	name	from	the	consumer.

OLE	DB	and	SQL	Server

Preparing	Commands
SQLOLEDB	supports	command	preparation	for	optimized	multiple	execution	of
a	single	command;	however,	command	preparation	generates	overhead,	and	a
consumer	does	not	need	to	prepare	a	command	to	execute	it	more	than	once.	In
general,	a	command	should	be	prepared	if	it	will	be	executed	more	than	three
times.

For	performance	reasons,	the	command	preparation	is	deferred	until	the
command	is	executed.	This	is	the	default	behavior.	Any	errors	in	the	command
being	prepared	are	not	known	until	the	command	is	executed	or	a	metaproperty
operation	is	performed.	Setting	the	Microsoft®	SQL	Server™	2000	property
SSPROP_DEFERPREPARE	to	FALSE	can	turn	off	this	default	behavior.

In	SQL	Server	2000,	when	a	command	is	executed	directly	(without	preparing	it
first),	an	execution	plan	is	created	and	cached.	If	the	SQL	statement	is	executed
again,	SQL	Server	has	an	efficient	algorithm	to	match	the	new	statement	with
the	existing	execution	plan	in	the	cache,	and	reuses	the	execution	plan	for	that
statement.

For	prepared	commands,	SQL	Server	provides	native	support	for	preparing	and
executing	command	statements.	When	you	prepare	a	statement,	SQL	Server
creates	an	execution	plan,	caches	it,	and	returns	a	handle	to	this	execution	plan	to
the	provider.	The	provider	then	uses	this	handle	to	execute	the	statement
repeatedly.	No	stored	procedures	are	created.	Because	the	handle	directly
identifies	the	execution	plan	for	an	SQL	statement	instead	of	matching	the
statement	to	the	execution	plan	in	the	cache	(as	is	the	case	for	direct	execution),
it	is	more	efficient	to	prepare	a	statement	than	to	execute	it	directly,	if	you	know
the	statement	will	be	executed	more	than	a	few	times.

In	SQL	Server	2000	and	SQL	Server	version	7.0,	the	prepared	statements	cannot
be	used	to	create	temporary	objects	and	cannot	reference	system	stored
procedures	that	create	temporary	objects,	such	as	temporary	tables.	These
procedures	must	be	executed	directly.

When	connected	to	SQL	Server	version	6.5,	SQLOLEDB	may	create	a
temporary	stored	procedure	when	command	text	is	prepared.	Some	commands
should	never	be	prepared.	For	example,	commands	that	specify	stored	procedure

execution	or	include	invalid	text	for	SQL	Server	stored	procedure	creation
should	not	be	prepared.

If	a	temporary	stored	procedure	is	created,	SQLOLEDB	executes	the	temporary
stored	procedure,	returning	results	as	if	the	statement	itself	was	executed.

Temporary	stored	procedure	creation	is	controlled	by	the	SQLOLEDB-specific
initialization	property	SSPROP_INIT_USEPROCFORPREP.	If	the	property
value	is	either	SSPROPVAL_USEPROCFORPREP_ON	or
SSPROPVAL_USEPROCFORPREP_ON_DROP,	SQLOLEDB	attempts	to
create	a	stored	procedure	when	a	command	is	prepared.	Stored	procedure
creation	succeeds	if	the	application	user	has	sufficient	SQL	Server	permissions.

For	consumers	that	infrequently	disconnect,	creation	of	temporary	stored
procedures	can	require	significant	resources	of	tempdb,	the	SQL	Server	system
database	in	which	temporary	objects	are	created.	When	the	value	of
SSPROP_INIT_USEPROCFORPREP	is	SSPROPVAL_USEPROCFORPREP_
ON,	temporary	stored	procedures	created	by	SQLOLEDB	are	dropped	only
when	the	session	that	created	the	command	loses	its	connection	to	the	instance
of	SQL	Server.	If	that	connection	is	the	default	connection	created	on	data	source
initialization,	the	temporary	stored	procedure	is	dropped	only	when	the	data
source	becomes	uninitialized.

When	the	value	of	SSPROP_INIT_USEPROCFORPREP	is
SSPROPVAL_USEPROCFORPREP_ON_DROP,	SQLOLEDB	temporary
stored	procedures	are	dropped	when	one	of	the	following	occurs:

The	consumer	uses	ICommandText::SetCommandText	to	indicate	a
new	command.

The	consumer	uses	ICommandPrepare::Unprepare	to	indicate	that	it
no	longer	requires	the	command	text.

The	consumer	releases	all	references	to	the	command	object	using	the
temporary	stored	procedure.

A	command	object	has	at	most	one	temporary	stored	procedure	in	tempdb.	Any
existing	temporary	stored	procedure	represents	the	current	command	text	of	a
specific	command	object.

OLE	DB	and	SQL	Server

Commands	Generating	Multiple-Rowset	Results
SQLOLEDB	can	return	multiple	rowsets	from	Microsoft®	SQL	Server™	2000
statements.	SQL	Server	2000	statements	return	multiple-rowset	results	under	the
following	conditions:

Batched	SQL	statements	are	submitted	as	a	single	command.

Stored	procedures	implement	a	batch	of	SQL	statements.

SQL	statements	include	the	Transact-SQL	COMPUTE	or	COMPUTE
BY	clause.

Batches

SQLOLEDB	recognizes	the	semicolon	character	as	a	batch	delimiter	for	SQL
statements:

WCHAR*							wSQLString	=	L"SELECT	*	FROM	Categories;	"
																										L"SELECT	*	FROM	Products";

Sending	multiple	SQL	statements	in	one	batch	is	more	efficient	than	executing
each	SQL	statement	separately.	Sending	one	batch	reduces	the	network
roundtrips	from	the	client	to	the	server.

Stored	Procedures
SQL	Server	2000	returns	a	result	set	for	each	statement	in	a	stored	procedure,	so
most	SQL	Server	2000	stored	procedures	return	multiple	result	sets.

COMPUTE	BY	and	COMPUTE
The	Transact-SQL	COMPUTE	BY	clause	generates	subtotals	within	a	SELECT
statement	result	set.	The	COMPUTE	clause	generates	a	total	at	the	end	of	the
result	set.	SQLOLEDB	returns	each	COMPUTE	BY	subtotal	and	the
COMPUTE	total	as	a	separate	rowset	result.

OLE	DB	and	SQL	Server

Using	IMultipleResults	to	Process	Multiple	Result
Sets
In	general,	consumers	should	use	the	IMultipleResults	interface	to	process	the
rowset	or	rowsets	returned	by	SQLOLEDB	command	execution.

When	SQLOLEDB	submits	a	command	for	execution,	Microsoft®	SQL
Server™	2000	executes	the	statement	or	statements	and	returns	any	results.	The
complete	process	is	a	round	trip	between	the	client	and	the	instance	of	SQL
Server.	Each	client	connection	to	an	instance	of	SQL	Server	can	have	at	most
one	active	round	trip.	That	is,	within	a	SQLOLEDB	session,	only	a	single
command	object	can	be	actively	executing	or	returning	results	on	the	connection.
This	is	the	default	result	set	behavior	of	SQL	Server	client	connections.

To	complete	a	round	trip,	a	client	must	process	all	results	from	command
execution.	Because	SQLOLEDB	command	execution	can	generate	multiple-
rowset	objects	as	results,	use	the	IMultipleResults	interface	to	ensure	that
application	data	retrieval	completes	the	client-initiated	roundtrip.

The	following	Transact-SQL	statement	generates	multiple	rowsets,	some
containing	row	data	from	the	OrderDetails	table	and	some	containing	results	of
the	COMPUTE	BY	clause:

SELECT	OrderID,	FullPrice	=	(UnitPrice	*	Quantity),	Discount,
		Discounted	=	UnitPrice	*	(1	-	Discount)	*	Quantity
FROM	OrderDetails
ORDER	BY	OrderID
COMPUTE
		SUM(UnitPrice	*	Quantity),	SUM(UnitPrice	*	(1	-	Discount)	*	Quantity)
		BY	OrderID

If	a	consumer	executes	a	command	containing	this	text	and	requests	a	rowset	as
the	returned	results	interface,	only	the	first	set	of	rows	is	returned.	The	consumer
may	process	all	rows	in	the	rowset	returned	but	if	the
DBPROP_MULTIPLECONNECTIONS	data	source	property	is	set	to

VARIANT_FALSE,	until	the	command	is	canceled,	no	other	commands	can	be
executed	on	the	session	object	(SQLOLEDB	will	not	create	another	connection).
SQLOLEDB	returns	a	DB_E_OBJECTOPEN	error	if
DBPROP_MULTIPLECONNECTIONS	is	VARIANT_FALSE	and	returns
E_FAIL	if	there	is	an	active	transaction.

If	the	connection	is	busy	running	a	command	that	does	not	produce	a	rowset	or
produces	a	rowset	that	is	not	a	server	cursor	and	the
DBPROP_MULTIPLECONNECTIONS	data	source	property	is	set	to
VARIANT_TRUE,	SQLOLEDB	creates	additional	connections	to	support
concurrent	command	objects	unless	a	transaction	is	active,	in	which	case	it
returns	an	error.	Transactions	and	locking	are	managed	by	SQL	Server	2000	on	a
per	connection	basis.	If	a	second	connection	is	generated,	the	command	on	the
separate	connections	do	not	share	locks.	Care	must	be	taken	to	ensure	that	one
command	does	not	block	another	by	holding	locks	on	rows	requested	by	the
other	command.

The	consumer	can	cancel	the	command	either	by	using	ICommand::Cancel	or
by	releasing	all	references	held	on	the	command	object	and	the	derived	rowset.

Using	IMultipleResults	in	all	instances	allows	the	consumer	to	get	all	rowsets
generated	by	command	execution	and	allows	consumers	to	appropriately
determine	when	to	cancel	command	execution	and	free	a	session	object	for	use
by	other	commands.

Note		When	you	use	SQL	Server	2000	cursors,	command	execution	creates	the
cursor.	SQL	Server	2000	returns	success	or	failure	on	the	cursor	creation;
therefore,	the	round	trip	to	the	instance	of	SQL	Server	is	complete	upon	the
return	from	command	execution.	Each	GetNextRows	call	then	becomes	a	round
trip.	In	this	way,	multiple	active	command	objects	can	exist,	each	processing	a
rowset	that	is	the	result	of	a	fetch	from	the	server	cursor.	For	more	information,
see	Rowsets	and	SQL	Server	Cursors.

OLE	DB	and	SQL	Server

Rowsets
A	rowset	is	a	set	of	rows	that	contain	columns	of	data.	Rowsets	are	central
objects	that	enable	all	OLE	DB	data	providers	to	expose	result	set	data	in	tabular
form.

After	a	consumer	creates	a	session	by	using	the
IDBCreateSession::CreateSession	method,	the	consumer	can	use	either	the
IOpenRowset	or	IDBCreateCommand	interface	on	the	session	to	create	a
rowset.	The	SQLOLEDB	provider	supports	both	of	these	interfaces.	Both	of
these	methods	are	described	here.

Create	a	rowset	by	calling	the	IOpenRowset::OpenRowset	method.

This	is	equivalent	to	creating	a	rowset	over	a	single	table.	This	method
opens	and	returns	a	rowset	that	includes	all	the	rows	from	a	single	base
table.	One	of	the	arguments	to	OpenRowset	is	a	table	ID	that	identifies
the	table	from	which	to	create	the	rowset.

Create	a	command	object	by	calling	the
IDBCreateCommand::CreateCommand	method.

The	command	object	executes	commands	that	the	provider	supports.	In
SQLOLEDB,	the	consumer	can	specify	any	Transact-SQL	statement
(such	as	a	SELECT	statement	or	a	call	to	a	stored	procedure).	The	steps
for	creating	a	rowset	by	using	a	command	object	are:

1.	 The	consumer	calls	the
IDBCreateCommand::CreateCommand	method	on	the
session	to	get	a	command	object	requesting	the
ICommandText	interface	on	the	command	object.	This
ICommandText	interface	sets	and	retrieves	the	actual
command	text.	The	consumer	fills	in	the	text	command	by
calling	the	ICommandText::SetCommandText	method.	

2.	 The	user	calls	the	ICommand::Execute	method	on	the
command.	The	rowset	object	built	when	the	command
executes	contains	the	result	set	from	the	command.

The	consumer	can	use	the	ICommandProperties	interface	to	get	or	set	the
properties	for	the	rowset	returned	by	the	command	executed	by	the
ICommand::Execute	interfaces.	The	most	commonly	requested	properties	are
the	interfaces	the	rowset	must	support.	In	addition	to	interfaces,	the	consumer
can	request	properties	that	modify	the	behavior	of	the	rowset	or	interface.

Consumers	release	rowsets	with	the	IRowset::Release	method.	Releasing	a
rowset	releases	any	row	handles	held	by	the	consumer	on	that	rowset.	Releasing
a	rowset	does	not	release	the	accessors.	If	you	have	an	IAccessor	interface,	it
still	has	to	be	released.

OLE	DB	and	SQL	Server

Creating	a	Rowset	with	IOpenRowset
SQLOLEDB	supports	the	IOpenRowset::OpenRowset	method	with	the
following	restrictions:

A	base	table	or	view	must	be	specified	in	a	DBID	structure	that	the
pTableID	parameter	points	to.

The	DBID	eKind	member	must	indicate	DBKIND_NAME.

The	DBID	uName	member	must	specify	name	of	an	existing	base	table
or	a	view	as	a	Unicode	character	string.

The	pIndexID	parameter	of	OpenRowset	must	be	NULL.

The	result	set	of	IOpenRowset::OpenRowset	contains	a	single	rowset.	Result
sets	containing	a	single	rowset	can	be	supported	by	Microsoft®	SQL	Server™
2000	cursors.	Cursor	support	allows	the	developer	to	use	SQL	Server
concurrency	mechanisms.

OLE	DB	and	SQL	Server

Creating	Rowsets	with	ICommand::Execute
For	rowsets	created	with	the	ICommand::Execute	method,	the	properties
desired	in	the	resulting	rowset	can	constrain	the	text	of	the	command.	This	is
especially	critical	for	consumers	that	support	dynamic	command	text.

SQLOLEDB	cannot	use	Microsoft®	SQL	Server™	2000	cursors	to	support	the
multiple-rowset	results	generated	by	many	commands.	If	a	consumer	requests	a
rowset	requiring	SQL	Server	2000	cursor	support,	an	error	occurs	if	the
command	text	used	generates	more	than	a	single	rowset	as	its	result.	For	more
information,	see	Commands	Generating	Multiple-Rowset	Results.

Scrollable	SQLOLEDB	rowsets	are	supported	by	SQL	Server	2000	cursors.	SQL
Server	2000	imposes	limitations	on	cursors	that	are	sensitive	to	changes	made	by
other	users	of	the	database.	Specifically,	the	rows	in	some	cursors	cannot	be
ordered,	and	attempting	to	create	a	rowset	by	using	a	command	containing	an
SQL	ORDER	BY	clause	can	fail.	For	more	information,	see	Rowsets	and	SQL
Server	Cursors.

OLE	DB	and	SQL	Server

Rowset	Properties	and	Behaviors
These	are	the	SQLOLEDB	rowset	properties.

Property	ID Description
DBPROP_ABORTPRESERVE R/W:	Read/write

Default:	VARIANT_FALSE
Description:	The	behavior	of	a	rowset	after	an	abort
operation	is	determined	by	this	property.

VARIANT_FALSE:	SQLOLEDB	invalidates	rowsets	after
an	abort	operaton.	The	rowset	object's	functionality	is
virtually	lost.	It	supports	only	IUnknown
the	release	of	outstanding	row	and	accessor	handles.	

VARIANT_TRUE:	SQLOLEDB	maintains	a	valid	rowset.

DBPROP_ACCESSORDER R/W:	Read/write
Default:	DBPROPVAL_AO_RANDOM
Description:	Access	order.	Order	in	which	columns	must
be	accessed	on	the	rowset.

DBPROPVAL_AO_RANDOM:	Column	can	be	accessed
in	any	order.	

DBPROPVAL_AO_SEQUENTIALSTORAGEOBJECTS:
Columns	bound	as	storage	objects	can	only	be	accessed	in
sequential	order	determined	by	the	column	ordinal.	

DBPROPVAL_AO_SEQUENTIAL:	All	columns	must	be
accessed	in	sequential	order	determined	by	column
ordinal.

DBPROP_APPENDONLY This	rowset	property	is	not	implemented	by	SQLOLEDB.
Attempting	to	read	or	write	the	property	value	generates
an	error.

DBPROP_BLOCKINGSTORAGEOBJECTS R/W:	Read-only
Default:	VARIANT_TRUE
Description:	SQLOLEDB	storage	objects	block	the	use	of

other	rowset	methods.
DBPROP_BOOKMARKS
DBPROP_LITERALBOOKMARKS

R/W:	Read/write
Default:	VARIANT_FALSE
Description:	SQLOLEDB	supports	bookmarks	for	rowset
row	identification	when	DBPROP_BOOKMARKS	or
DBPROP_LITERALBOOKMARKS	is
VARIANT_TRUE.

Setting	either	property	to	VARIANT_TRUE	does	not
enable	rowset	positioning	by	bookmark.	Set
DBPROP_IRowsetLocate	or	DBPROP_IRowsetScroll	to
VARIANT_TRUE	to	create	a	rowset	supporting	rowset
positioning	by	bookmark.

SQLOLEDB	uses	a	Microsoft®	SQL	Server™	2000
cursor	to	support	a	rowset	containing	bookmarks.	For
more	information,	see	Rowsets	and	SQL	Server	Cursors

Note:	Setting	these	properties	in	conflict	with	other
SQLOLEDB	cursor-defining	properties	results	in	an	error.
For	example,	setting	the	DBPROP_BOOKMARKS	to
VARIANT_TRUE	when	DBPROP_OTHERINSERT	is
also	VARIANT_TRUE	generates	an	error	when	the
consumer	attempts	to	open	a	rowset.

DBPROP_BOOKMARKSKIPPED R/W:	Read-only
Default:	VARIANT_FALSE
Description:	SQLOLEDB	returns
DB_E_BADBOOKMARK	if	the	consumer	indicates	an
invalid	bookmark	when	positioning	or	searching	a
bookmarked	rowset.

DBPROP_BOOKMARKTYPE R/W:	Read-only
Default:	DBPROPVAL_BMK_NUMERIC
Description:	SQLOLEDB	implements	numeric	bookmarks
only.	A	SQLOLEDB	bookmark	is	32-bit	unsigned	integer,
type	DBTYPE_UI4.

DBPROP_CACHEDEFERRED This	rowset	property	is	not	implemented	by	SQLOLEDB.
Attempting	to	read	or	write	the	property	value	generates
an	error.

DBPROP_CANFETCHBACKWARDS
DBPROP_CANSCROLLBACKWARDS

R/W:	Read/write
Default:	VARIANT_FALSE
Description:	SQLOLEDB	supports	backward	fetching	and
scrolling	in	nonsequential	rowsets.	SQLOLEDB	creates	a
cursor-supported	rowset	when	either
DBPROP_CANFETCHBACKWARDS	or
DBPROP_CANSCROLLBACKWARDS	is
VARIANT_TRUE.	For	more	information,	see	
and	SQL	Server	Cursors.

DBPROP_CANHOLDROWS R/W:	Read/write
Default:	VARIANT_FALSE
Description:	By	default,	SQLOLEDB	returns
DB_E_ROWSNOTRELEASED	if	the	consumer	attempts
to	obtain	more	rows	for	a	rowset	while	pending	changes
exist	on	those	currently	in	the	rowset.	This	behavior	can
be	altered.

Setting	both	DBPROP_CANHOLDROWS	and
DBPROP_IRowsetChange	to	VARIANT_TRUE	implies	a
bookmarked	rowset.	If	both	properties	are
VARIANT_TRUE,	the	IRowsetLocate
available	on	the	rowset	and	DBPROP_BOOKMARKS
and	DBPROP_LITERALBOOKMARKS	are	both
VARIANT_TRUE.

SQLOLEDB	rowsets	containing	bookmarks	are	supported
by	SQL	Server	cursors.

DBPROP_CHANGEINSERTEDROWS R/W:	Read/write
Default:	VARIANT_FALSE
Description:	This	property	can	only	be	set	to
VARIANT_TRUE	if	the	rowset	is	using	a	keyset-driven
cursor.

DBPROP_COLUMNRESTRICT R/W:	Read-only
Default:	VARIANT_FALSE
Description:	SQLOLEDB	sets	the	property	to
VARIANT_TRUE	when	a	column	in	a	rowset	cannot	be
changed	by	the	consumer.	Other	columns	in	the	rowset

may	be	updatable	and	the	rows	themselves	may	be
deleted.

When	the	property	is	VARIANT_TRUE,	the	consumer
examines	the	dwFlags	member	of	the	DBCOLUMNINFO
structure	to	determine	whether	the	value	of	an	individual
column	can	be	written	or	not.	For	modifiable	columns,
dwFlags	exhibits	DBCOLUMNFLAGS_WRITE.

DBPROP_COMMANDTIMEOUT R/W:	Read/write
Default:	0
Description:	By	default,	SQLOLEDB	does	not	time	out	on
the	ICommand::Execute	method.

DBPROP_COMMITPRESERVE R/W:	Read/write
Default:	VARIANT_FALSE
Description:	The	behavior	of	a	rowset	after	a	commit
operation	is	determined	by	this	property.	

VARIANT_TRUE:	SQLOLEDB	maintains	a	valid	rowset.

VARIANT_FALSE:	SQLOLEDB	invalidates	rowsets	after
a	commit	operation.	The	rowset	object's	functionality	is
virtually	lost.	It	supports	only	IUnknown
the	release	of	outstanding	row	and	accessor	handles.

DBPROP_DEFERRED R/W:	Read/write
Default:	VARIANT_FALSE
Description:	When	set	to	VARIANT_TRUE	SQLOLEDB
attempts	to	use	a	server	cursor	for	the	rowset.	
and	image	columns	are	not	returned	from	the	server	until
they	are	accessed	by	the	application.

DBPROP_DELAYSTORAGEOBJECTS R/W:	Read-only
Default:	VARIANT_FALSE
Description:	SQLOLEDB	supports	immediate	update
mode	on	storage	objects.

Changes	made	to	data	in	a	sequential	stream	object	are
immediately	submitted	to	SQL	Server	2000.	Modifications
are	committed	based	on	the	rowset	transaction	mode.

DBPROP_IAccessor
DBPROP_IColumnsInfo
DBPROP_IConvertType
DBPROP_IRowset
DBPROP_IrowsetInfo

R/W:	Read-only
Default:	VARIANT_TRUE
Description:	SQLOLEDB	supports	these	interfaces	on	all
rowsets.

DBPROP_IColumnsRowset R/W:	Read/write
Default:	VARIANT_TRUE
Description:	SQLOLEDB	supports	the	
interface.

DBPROP_IconnectionPointContainer R/W:	Read/write
Default:	VARIANT_FALSE

DBPROP_IMultipleResults R/W:	Read/write
Default:	VARIANT_FALSE
Description:	SQLOLEDB	supports	the	
interface.

DBPROP_IRowsetChange
DBPROP_IRowsetUpdate

R/W:	Read/write
Default:	VARIANT_FALSE
Description:	SQLOLEDB	supports	the	
and	IRowsetUpdate	interfaces.

A	rowset	created	with	DBPROP_IRowsetChange	equal	to
VARIANT_TRUE	exhibits	immediate	update	mode
behaviors.

When	DBPROP_IRowsetUpdate	is	VARIANT_TRUE,
DBPROP_IRowsetChange	is	also	VARIANT_TRUE.	The
rowset	exhibits	delayed	update	mode	behavior.

SQLOLEDB	uses	a	SQL	Server	2000	cursor	to	support
rowsets	exposing	either	IRowsetChange
IRowsetUpdate.	For	more	information,	see	
SQL	Server	Cursors.

DBPROP_IRowsetIdentity R/W:	Read/write
Default:	VARIANT_TRUE
Description:	SQLOLEDB	supports	the	
interface.	If	a	rowset	supports	this	interface,	any	two	row
handles	representing	the	same	underlying	row	will	always

reflect	the	same	data	and	state.	Consumers	can	call	the
IRowsetIdentity::	IsSameRow	method	to	compare	two
row	handles	to	see	if	they	refer	to	the	same	row	instance.

DBPROP_IRowsetLocate
DBPROP_IRowsetScroll

R/W:	Read/write
Default:	VARIANT_FALSE
Description:	SQLOLEDB	can	expose	the	
and	IRowsetScroll	interfaces.

When	DBPROP_IRowsetLocate	is	VARIANT_TRUE,
DBPROP_CANFETCHBACKWARDS	and
DBPROP_CANSCROLLBACKWARDS	are	also
VARIANT_TRUE.

When	DBPROP_IRowsetScroll	is	VARIANT_TRUE,
DBPROP_IRowsetLocate	is	also	VARIANT_TRUE,	and
both	interfaces	are	available	on	the	rowset.

Bookmarks	are	required	for	either	interface.	SQLOLEDB
sets	DBPROP_BOOKMARKS	and
DBPROP_LITERALBOOKMARKS	to
VARIANT_TRUE	when	the	consumer	requests	either
interface.

SQLOLEDB	uses	SQL	Server	2000	cursors	to	support
IRowsetLocate	and	IRowsetScroll
information,	see	Rowsets	and	SQL	Server	Cursors

Setting	these	properties	in	conflict	with	other	SQLOLEDB
cursor-defining	properties	results	in	an	error.	For	example,
setting	DBPROP_IRowsetScroll	to	VARIANT_TRUE
when	DBPROP_OTHERINSERT	is	also
VARIANT_TRUE	generates	an	error	when	the	consumer
attempts	to	open	a	rowset.

DBPROP_IRowsetResynch R/W:	Read/write
Default:	VARIANT_FALSE
Description:	SQLOLEDB	exposes	the	
interface	on	demand.	SQLOLEDB	can	expose	the
interface	on	any	rowset.

DBPROP_ISupportErrorInfo R/W:	Read/write

Default:	VARIANT_TRUE
Description:	SQLOLEDB	exposes	the
ISupportErrorInfo	interface	on	rowsets.

DBPROP_IlockBytes This	interface	is	not	implemented	by	SQLOLEDB.
Attempting	to	read	or	write	the	property	generates	an
error.

DBPROP_ISequentialStream R/W:	Read/write
Default:	VARIANT_FALSE
Description:	SQLOLEDB	exposes	the	
interface	to	support	long,	variable-length	data	stored	in
SQL	Server	2000.

DBPROP_Istorage This	interface	is	not	implemented	by	SQLOLEDB.
Attempting	to	read	or	write	the	property	generates	an
error.

DBPROP_Istream This	interface	is	not	implemented	by	SQLOLEDB.
Attempting	to	read	or	write	the	property	generates	an
error.

DBPROP_IMMOBILEROWS R/W:	Read/write
Default:	VARIANT_TRUE
Description:	The	property	is	only	VARIANT_TRUE	for
SQL	Server	keyset	cursors;	it	is	VARIANT_FALSE	for	all
other	cursors.

VARIANT_TRUE:	The	rowset	will	not	reorder	the
inserted	or	updated	rows.	For
IRowsetChange::InsertRow,	rows	will	appear	at	the	end
of	the	rowset.	For	IRowsetChange::SetData
rowset	is	not	ordered,	then	the	position	of	the	updated
rows	is	not	changed.	If	the	rowset	is	ordered	and
IRowsetChange::SetData	changes	a	column	that	is	used
to	order	the	rowset,	the	row	is	not	moved.	If	the	rowset	is
build	on	a	set	of	key	columns	(typically	a	rowset	for	which
DBPROP_OTHERUPDATEDELETE	is
VARIANT_TRUE	but	DBPROP_OTHERINSERT	is
VARIANT_FALSE),	changing	the	value	of	a	key	column
is	generally	equivalent	to	deleting	the	current	row	and
inserting	a	new	one.	Thus,	the	row	may	appear	to	move	or

even	disappear	from	the	rowset	(if
DBPROP_OWNINSERT	is	VARIANT_FALSE),	even
though	the	DBPROP_IMMOBILEROWS	property	is
VARIANT_TRUE.

VARIANT_FALSE:	If	the	rowset	is	ordered,	inserted	rows
appear	in	the	rowset's	proper	order.	If	the	rowset	is	not
ordered,	the	inserted	row	appears	at	the	end.	If
IRowsetChange::SetData	changes	a	column	that	is	used
to	order	the	rowset,	the	row	is	moved	(if	the	rowset	is	not
ordered,	then	the	position	of	the	row	is	not	changed).

DBPROP_LITERALIDENTITY R/W:	Read-only
Default:	VARIANT_TRUE
Description:	This	property	is	always	VARIANT_TRUE.

DBPROP_LOCKMODE R/W:	Read/write
Default:	DBPROPVAL_LM_NONE
Description:	Level	of	locking	performed	by	the	rowset
(DBPROPVAL_LM_NONE,
DBPROPVAL_LM_SINGLEROW).

DBPROP_MAXOPENROWS R/W:	Read-only
Default:	0
Description:	SQLOLEDB	does	not	limit	the	number	of
rows	that	can	be	active	in	rowsets.

DBPROP_MAXPENDINGROWS R/W:	Read-only
Default:	0
Description:	SQLOLEDB	does	not	limit	the	number	of
rowset	rows	with	changes	pending.

DBPROP_MAXROWS R/W:	Read/write
Default:	0
Description:	By	default,	SQLOLEDB	does	not	limit	the
number	of	rows	in	a	rowset.	When	the	consumer	sets
DBPROP_MAXROWS,	SQLOLEDB	uses	the	SET
ROWCOUNT	statement	to	limit	the	number	of	rows	in	the
rowset.

SET	ROWCOUNT	can	cause	unintended	consequences	in
SQL	Server	2000	statement	execution.	For	more

information,	see	SET	ROWCOUNT

DBPROP_MAYWRITECOLUMN This	rowset	property	is	not	implemented	by	SQLOLEDB.
Attempting	to	read	or	write	the	property	value	generates
an	error.

DBPROP_MEMORYUSAGE This	rowset	property	is	not	implemented	by	SQLOLEDB.
Attempting	to	read	or	write	the	property	value	generates
an	error.

DBPROP_NOTIFICATIONGRANULARITYThis	rowset	property	is	not	implemented	by	SQLOLEDB.
Attempting	to	read	or	write	the	property	value	generates
an	error.

DBPROP_NOTIFICATIONPHASES R/W:	Read-only
Default:	DBPROPVAL_NP_OKTODO	|
DBPROPVAL_NP_ABOUTTODO	|	
DBPROPVAL_NP_SYNCHAFTER	|
DBPROPVAL_NP_FAILEDTODO	|	
DBPROPVAL_NP_DIDEVENT
Description:	SQLOLEDB	supports	all	notification	phases.

DBPROP_NOTIFYCOLUMNSET
DBPROP_NOTIFYROWDELETE
DBPROP_NOTIFYROWFIRSTCHANGE
DBPROP_NOTIFYROWINSERT
DBPROP_NOTIFYROWRESYNCH
DBPROP_NOTIFYROWSETRELEASE
DBPROP_NOTIFYROWSETFETCH-
POSITIONCHANGE
DBPROP_NOTIFYROWUNDOCHANGE
DBPROP_NOTIFYROWUNDODELETE
DBPROP_NOTIFYROWUNDOINSERT
DBPROP_NOTIFYROWUPDATE

R/W:	Read-only
Default:	DBPROPVAL_NP_OKTODO	|	
DBPROPVAL_NP_ABOUTTODO
Description:	SQLOLEDB	notification	phases	are
cancelable	prior	to	an	attempt	to	perform	the	rowset
modification	indicated.	SQLOLEDB	does	not	support
phase	cancellation	after	the	attempt	has	completed.

DBPROP_ORDEREDBOOKMARKS This	rowset	property	is	not	implemented	by	SQLOLEDB.
Attempting	to	read	or	write	the	property	value	generates
an	error.

DBPROP_OTHERINSERT
DBPROP_OTHERUPDATEDELETE
DBPROP_OWNINSERT
DBPROP_OWNUPDATEDELETE

R/W:	Read/write
Default:	VARIANT_FALSE
Description:	Setting	change	visibility	properties	causes
SQLOLEDB	to	use	SQL	Server	2000	cursors	to	support

JavaScript:hhobj_1.Click()

the	rowset.	For	more	information,	see	
Server	Cursors.

DBPROP_QUICKRESTART R/W:	Read/write
Default:	VARIANT_FALSE
Description:	When	set	to	VARIANT_TRUE,	SQLOLEDB
attempts	to	use	a	server	cursor	for	the	rowset.

DBPROP_REENTRANTEVENTS R/W:	Read-only
Default:	VARIANT_TRUE
Description:	SQLOLEDB	rowsets	are	reentrant	and	can
return	DB_E_NOTREENTRANT	if	a	consumer	attempts
to	access	a	nonreentrant	rowset	method	from	a	notification
callback.

DBPROP_REMOVEDELETED R/W:	Read/write
Default:	VARIANT_FALSE
Description:	SQLOLEDB	alters	the	value	of	the	property
based	on	the	visibility	of	changes	to	the	SQL	Server	2000
data	exposed	by	the	rowset.

VARIANT_TRUE:	Rows	deleted	by	the	consumer	or
other	SQL	Server	users	are	removed	from	the	rowset	when
the	rowset	is	refreshed.	DBPROP_OTHERINSERT	is
VARIANT_TRUE.

VARIANT_FALSE:	Rows	deleted	by	the	consumer	or
other	SQL	Server	2000	users	are	not	removed	from	the
rowset	when	the	rowset	is	refreshed.	The	row	status	value
for	deleted	SQL	Server	rows	in	the	rowset	is
DBROWSTATUS_E_DELETED.
DBPROP_OTHERINSERT	is	VARIANT_TRUE.

This	property	only	has	value	for	rowsets	supported	by
SQL	Server	2000	cursors.	For	more	information,	see
Rowsets	and	SQL	Server	Cursors.

When	the	DBPROP_REMOVEDELETED	property	is
implemented	on	a	keyset	cursor	rowset,	deleted	rows	are
removed	at	fetch	time	and	it	is	possible	for	row-fetching
methods	(such	as	GetNextRows	and	
return	both	S_OK	and	fewer	rows	than	requested.	Note

that	this	behavior	does	not	signify	the
DB_S_ENDOFROWSET	condition	and	that	the	number
of	rows	returned	will	never	be	zero	if	there	are	any
remaining	rows.

DBPROP_REPORTMULTIPLECHANGES This	rowset	property	is	not	implemented	by	SQLOLEDB.
Attempting	to	read	or	write	the	property	value	generates
an	error.

DBPROP_RETURNPENDINGINSERTS R/W:	Read-only
Default:	VARIANT_FALSE
Description:	When	a	method	that	fetches	rows	is	called,
SQLOLEDB	does	not	return	pending	insert	rows.

DBPROP_ROWRESTRICT R/W:	Read-only
Default:	VARIANT_TRUE
Description:	SQLOLEDB	rowsets	do	not	support	access
rights	based	on	the	row.	If	the	IRowsetChange
exposed	on	a	rowset,	then	the	SetData
called	by	the	consumer.

DBPROP_ROWSET_ASYNCH This	rowset	property	is	not	implemented	by	SQLOLEDB.
Attempting	to	read	or	write	the	property	value	generates
an	error.

DBPROP_ROWTHREADMODEL R/W:	Read-only
Default:	DBPROPVAL_RT_FREETHREAD
Description:	SQLOLEDB	supports	access	to	its	objects
from	multiple	execution	threads	of	a	single	consumer.

DBPROP_SERVERCURSOR R/W:	Read/write
Default:	VARIANT_FALSE
Description:	When	set,	a	SQL	Server	2000	cursor	is	used
to	support	the	rowset.	For	more	information,	see	
and	SQL	Server	Cursors.

DBPROP_SERVERDATAONINSERT R/W:	Read/write
Default:	VARIANT_FALSE
Description:	Server	data	on	insert.

VARIANT_TRUE:	At	the	time	an	insert	is	transmitted	to
the	server,	the	provider	retrieves	data	from	the	server	to
update	the	local	row	cache.

VARIANT_FALSE:	The	provider	does	not	retrieve	server
values	for	newly	inserted	rows.

DBPROP_STRONGIDENTITY R/W:	Read-only
Default:	VARIANT_TRUE
Description:	Strong	row	identity.	If	inserts	are	allowed	on
a	rowset	(either	IRowsetChange	or	
true),	and	DBPROP_UPDATABILITY	is	set	to	support
InsertRows,	then	the	value	of
DBPROP_STRONGIDENTITY	depends	on
DBPROP_CHANGEINSERTEDROWS	property	(will	be
VARIANT_FALSE	if
DBPROP_CHANGEINSERTEDROWS	property	value	is
VARIANT_FALSE).

DBPROP_TRANSACTEDOBJECT R/W:	Read-only
Default:	VARIANT_FALSE
Description:	SQLOLEDB	supports	only	transacted
objects.	For	more	information,	see	

DBPROP_UNIQUEROWS R/W:	Read/write
Default:	VARIANT_FALSE
Description:	Unique	rows.

VARIANT_TRUE:	Each	row	is	uniquely	identified	by	its
column	values.	The	set	of	columns	which	uniquely
identify	the	row	have	the
DBCOLUMNFLAGS_KEYCOLUMN	set	in	the
DBCOLUMNINFO	structure	returned	from	the
GetColumnInfo	method.

VARIANT_FALSE:	Rows	may	or	may	not	be	uniquely
identified	by	their	column	values.	The	key	columns	may
or	may	not	be	flagged	with
DBCOLUMNFLAGS_KEYCOLUMN.

DBPROP_UPDATABILITY R/W:	Read/write
Default:	0
Description:	SQLOLEDB	supports	all
DBPROP_UPDATABILITY	values.	Setting
DBPROP_UPDATABILITY	does	not	create	a	modifiable

rowset.	To	make	a	rowset	modifiable,	set
DBPROP_IRowsetChange	or	DBPROP_IRowsetUpdate.

SQLOLEDB	defines	the	provider-specific	property	set
DBPROPSET_SQLSERVERROWSET	as	shown	in	this	table.

Property	ID Description
SSPROP_DEFERPREPARE Column:	No

R/W:	Read/Write
Type:	VT_BOOL
Default:	VARIANT_TRUE
Description:	
VARIANT_TRUE:	In	prepared	execution,
the	command	preparation	is	deferred	until
Icommand::Execute	is	called	or	a
metaproperty	operation	is	performed.	If
the	property	is	set	to

VARIANT_FALSE:	The	statement	is
prepared	when
ICommandPrepare::Prepare	is
executed.

SSPROP_IRowsetFastLoad Column:	No
R/W:	r/w
Type:	VT_BOOL
Default:	VARIANT_FALSE
Description:	Set	this	property	to
VARIANT_TRUE	to	open	a	fast	load
rowset	through
IopenRowset::OpenRowset().	You
cannot	set	this	property	in
IcommandProperties::SetProperties().

SSPROP_MAXBLOBLENGTHColumn:	No
R/W:	Read/write
Type:	VT_I4
Default:	The	provider	does	not	restrict	the

size	of	the	text	returned	by	the	server.
Therefore,	it	is	set	to	the	maximum,	for
example,	2147483647.
Description:	SQLOLEDB	executes	a	SET
TEXTSIZE	statement	to	restrict	the	length
of	BLOB	data	returned	in	a	SELECT
statement.

See	Also

SET	TEXTSIZE

WRITETEXT

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

OLE	DB	and	SQL	Server

Rowsets	and	SQL	Server	Cursors
Microsoft®	SQL	Server™	2000	returns	result	sets	to	consumers	using	two
methods:

Default	result	sets,	which:

Minimize	overhead.

Provide	maximal	performance	in	fetching	data.

Support	only	the	default	forward-only,	read-only	cursor
functionality.

Return	rows	to	the	consumer	one	row	at	a	time.

Support	only	one	active	statement	at	a	time	on	a	connection.

After	a	statement	has	been	executed,	no	other	statements	can
be	executed	on	the	connection	until	all	of	the	results	have	been
retrieved	by	the	consumer,	or	the	statement	has	been	canceled.

Support	all	Transact-SQL	statements.

Server	cursors,	which:

Support	all	cursor	functionality.

Can	return	blocks	of	rows	to	the	consumer.

Support	multiple	active	statements	on	a	single	connection.

Balance	cursor	functionality	against	performance.

The	support	for	cursor	functionality	can	decrease	performance

relative	to	a	default	result	set.	This	can	be	offset	if	the
consumer	can	use	cursor	functionality	to	retrieve	a	smaller	set
of	rows.

Do	not	support	any	Transact-SQL	statement	that	returns	more
than	a	single	result	set.

Consumers	can	request	different	cursor	behaviors	in	a	rowset	by	setting	certain
rowset	properties.	If	the	consumer	does	not	set	any	of	these	rowset	properties,	or
sets	them	all	to	their	default	values,	SQLOLEDB	implements	the	rowset	using	a
default	result	set.	If	any	one	of	these	properties	is	set	to	a	value	other	than	the
default,	SQLOLEDB	implements	the	rowset	using	a	server	cursor.

The	following	rowset	properties	direct	SQLOLEDB	to	use	SQL	Server	2000
cursors.	Some	properties	can	be	safely	combined	with	others.	For	example,	a
rowset	that	exhibits	the	DBPROP_IRowsetScroll	and	DBPROP_IRowsetChange
properties	will	be	a	bookmark	rowset	exhibiting	immediate	update	behavior.
Other	properties	are	mutually	exclusive.	For	example,	a	rowset	exhibiting
DBPROP_OTHERINSERT	cannot	contain	bookmarks.

Property	ID Value Rowset	behavior
DBPROP_SERVERCURSOR VARIANT_TRUE Cannot	update	SQL	Server

2000	data	through	the	rowset.
The	rowset	is	sequential,
supporting	forward	scrolling
and	fetching	only.	Relative
row	positioning	is	supported.
Command	text	can	contain	an
ORDER	BY	clause.

DBPROP_CANSCROLLBACKWARDS
or
DBPROP_CANFETCHBACKWARDS

VARIANT_TRUE Cannot	update	SQL	Server
2000	data	through	the	rowset.
The	rowset	supports	scrolling
and	fetching	in	either
direction.	Relative	row
positioning	is	supported.
Command	text	can	contain	an
ORDER	BY	clause.

DBPROP_BOOKMARKS	or VARIANT_TRUE Cannot	update	SQL	Server

DBPROP_LITERALBOOKMARKS 2000	data	through	the	rowset.
The	rowset	is	sequential,
supporting	forward	scrolling
and	fetching	only.	Relative
row	positioning	is	supported.
Command	text	can	contain	an
ORDER	BY	clause.

DBPROP_OWNUPDATEDELETE	or
DBPROP_OWNINSERT	or
DBPROP_OTHERUPDATEDELETE

VARIANT_TRUE Cannot	update	SQL	Server
data	through	the	rowset.	The
rowset	supports	scrolling	and
fetching	in	either	direction.
Relative	row	positioning	is
supported.	Command	text	can
contain	an	ORDER	BY
clause.

DBPROP_OTHERINSERT VARIANT_TRUE Cannot	update	SQL	Server
2000	data	through	the	rowset.
The	rowset	supports	scrolling
and	fetching	in	either
direction.	Relative	row
positioning	is	supported.
Command	text	can	include	an
ORDER	BY	clause	if	an	index
exists	on	the	referenced
columns.

DBPROP_OTHERINSERT
cannot	be	VARIANT_TRUE
if	the	rowset	contains
bookmarks.	Attempting	to
create	a	rowset	with	this
visibility	property	and
bookmarks	results	in	an	error.

DBPROP_IRowsetLocate	or
DBPROP_IrowsetScroll

VARIANT_TRUE Cannot	update	SQL	Server
2000	data	through	the	rowset.
The	rowset	supports	scrolling
and	fetching	in	either

direction.	Bookmarks	and
absolute	positioning	through
the	IRowsetLocate	
are	supported	in	the	rowset.
Command	text	can	contain	an
ORDER	BY	clause.

DBPROP_IRowsetLocate	and
DBPROP_IRowsetScroll
require	bookmarks	in	the
rowset.	Attempting	to	create	a
rowset	with	bookmarks	and
DBPROP_OTHERINSERT
set	to	VARIANT_TRUE
results	in	an	error.

DBPROP_IRowsetChange	or
DBPROP_IRowsetUpdate

VARIANT_TRUE Can	update	SQL	Server	2000
data	through	the	rowset.	The
rowset	is	sequential,
supporting	forward	scrolling
and	fetching	only.	Relative
row	positioning	is	supported.
All	the	commands	that	support
updatable	cursors	can	support
these	interfaces.

DBPROP_IRowsetLocate	
or	DBPROP_IRowsetScroll	
and	
DBPROP_IRowsetChange
or	DBPROP_IRowsetUpdate

VARIANT_TRUE Can	update	SQL	Server	data
through	the	rowset.	The
rowset	supports	scrolling	and
fetching	in	either	direction.
Bookmarks	and	absolute
positioning	through
IRowsetLocate	are	supported
in	the	rowset.	Command	text
can	contain	an	ORDER	BY
clause.

DBPROP_IMMOBILEROWS VARIANT_FALSECannot	update	SQL	Server
2000	data	through	the	rowset.
The	rowset	supports	forward

scrolling	only.	Relative	row
positioning	is	supported.
Command	text	can	include	an
ORDER	BY	clause	if	an	index
exists	on	the	referenced
columns.

DBPROP_IMMOBILEROWS
is	only	available	in	rowsets
that	can	show	SQL	Server
2000	rows	inserted	by
commands	on	other	sessions
or	by	other	users.	Attempting
to	open	a	rowset	with	the
property	set	to
VARIANT_FALSE	on	any
rowset	for	which
DBPROP_OTHERINSERT
cannot	be	VARIANT_TRUE
results	in	an	error.

DBPROP_REMOVEDELETED VARIANT_TRUE Cannot	update	SQL	Server
2000	data	through	the	rowset.
The	rowset	supports	forward
scrolling	only.	Relative	row
positioning	is	supported.
Command	text	can	contain	an
ORDER	BY	clause	unless
constrained	by	another
property.

A	SQLOLEDB	rowset	supported	by	a	server	cursor	can	be	easily	created	on	a
SQL	Server	2000	base	table	or	view	by	using	the	IOpenRowset::OpenRowset
method.	Specify	the	table	or	view	by	name,	passing	the	required	rowset	property
sets	in	the	rgPropertySets	parameter.

Command	text	that	creates	a	rowset	is	restricted	when	the	consumer	requires	that

the	rowset	be	supported	by	a	server	cursor.	Specifically,	the	command	text	is
restricted	to	either	a	single	SELECT	statement	that	returns	a	single	rowset	result,
or	a	stored	procedure	that	implements	a	single	SELECT	statement	returning	a
single	rowset	result.

These	two	tables	show	the	mappings	of	various	OLE	DB	properties	and	the
cursor	models.	They	also	show	which	rowset	properties	should	be	set	to	use
certain	type	of	cursor	model.

Each	cell	in	the	table	contains	a	value	of	the	rowset	property	for	the	specific
cursor	model.	The	data	type	of	the	rowset	properties	listed	above	are	all
VT_BOOL	and	the	default	values	are	VARIANT_FALSE.	The	following
symbols	are	used	in	the	table.

F	=	default	value	(VARIANT_FALSE)

T	=	VARIANT_TRUE

-	=	VARIANT_TRUE	or	VARIANT_FALSE

To	use	a	certain	type	of	cursor	model,	locate	the	column	corresponding	the
cursor	model,	and	find	all	the	rowset	properties	with	value	'T'	in	the	column.	Set
these	rowset	properties	to	VARIANT_TRUE	to	use	the	specific	cursor	model.
The	rowset	properties	with	'-'	as	a	value	can	be	set	to	either	VARIANT_TRUE	or
VARIANT_FALSE.

Rowset	properties/Cursor	models

Default
result
set
(RO)

Fast
Forward-
only
(RO)

Static
(RO)

Keyset
driven
(RO)

DBPROP_SERVERCURSOR F T T T
DBPROP_DEFERRED F F - -
DBPROP_IrowsetChange F F F F
DBPROP_IrowsetLocate F F - -
DBPROP_IrowsetScroll F F - -
DBPROP_IrowsetUpdate F F F F
DBPROP_BOOKMARKS F F - -
DBPROP_CANFETCHBACKWARDS F F - -
DBPROP_CANSRCOLLBACKWARDS F F - -

DBPROP_CANHOLDROWS F F - -
DBPROP_LITERALBOOKMARKS F F - -
DBPROP_OTHERINSERT F T F F
DBPROP_OTHERUPDATEDELETE F T F T
DBPROP_OWNINSERT F T F T
DBPROP_OWNUPDATEDELETE F T F T
DBPROP_QUICKSTART F F - -
DBPROP_REMOVEDELETED F F F -
DBPROP_IrowsetResynch F F F -
DBPROP_CHANGEINSERTEDROWS F F F F
DBPROP_SERVERDATAONINSERT F F F -
DBPROP_UNIQUEROWS - F F F
DBPROP_IMMOBILEROWS - - - T

Rowset	properties/Cursor	models
Dynamic
(RO)

Keyset
(R/W)

Dynamic
(R/W)

DBPROP_SERVERCURSOR T T T
DBPROP_DEFERRED - - -
DBPROP_IrowsetChange F - -
DBPROP_IrowsetLocate F - F
DBPROP_IrowsetScroll F - F
DBPROP_IrowsetUpdate F - -
DBPROP_BOOKMARKS F - F
DBPROP_CANFETCHBACKWARDS - - -
DBPROP_CANSRCOLLBACKWARDS - - -
DBPROP_CANHOLDROWS F - F
DBPROP_LITERALBOOKMARKS F - F
DBPROP_OTHERINSERT T F T
DBPROP_OTHERUPDATEDELETE T T T
DBPROP_OWNINSERT T T T
DBPROP_OWNUPDATEDELETE T T T
DBPROP_QUICKSTART - - -

DBPROP_REMOVEDELETED T - T
DBPROP_IrowsetResynch - - -
DBPROP_CHANGEINSERTEDROWS F - F
DBPROP_SERVERDATAONINSERT F - F
DBPROP_UNIQUEROWS F F F
DBPROP_IMMOBILEROWS F T F

For	a	given	set	of	rowset	properties,	which	cursor	model	is	selected	is
determined	as	follows.

From	the	given	collection	of	rowset	properties,	obtain	a	subset	of	properties	that
is	listed	in	the	above	tables.	Divide	these	properties	into	two	subgroups
depending	on	the	flag	value	(required	(T,	F)	or	optional	(-))	of	each	of	the	rowset
properties	listed	in	the	above	tables.	For	each	cursor	model	from	left	to	right
(starting	from	the	first	table),	compare	the	values	of	the	properties	in	the	two
subgroups	with	the	values	of	the	corresponding	properties	at	that	column.	The
cursor	model	that	has	no	mismatch	with	the	required	properties	and	the	least
number	of	mismatches	with	the	optional	properties	is	selected.	If	there	is	more
than	one	cursor	model,	the	leftmost	is	chosen.

SQL	Server	Cursor	Block	Size
When	a	SQL	Server	2000	cursor	supports	a	SQLOLEDB	rowset,	the	number	of
elements	in	the	row	handle	array	parameter	of	the	IRowset::GetNextRows	or
the	IRowsetLocate::GetRowsAt	methods	defines	the	cursor	block	size.	The
rows	indicated	by	the	handles	in	the	array	are	the	members	of	the	cursor	block.

For	rowsets	supporting	bookmarks,	the	row	handles	retrieved	by	using	the
IRowsetLocate::GetRowsByBookmark	method	define	the	members	of	the
cursor	block.

Regardless	of	the	method	used	to	populate	the	rowset	and	form	the	SQL	Server
2000	cursor	block,	the	cursor	block	is	active	until	the	next	row-fetching	method
is	executed	on	the	rowset.

To	obtain	FAST_FORWARD	cursor

OLE	DB	and	SQL	Server

Fetching	Rows
The	IRowset	interface	is	the	base	rowset	interface.	The	IRowset	interface
provides	methods	for	fetching	rows	sequentially,	getting	the	data	from	those
rows,	and	managing	rows.	Consumers	use	the	methods	in	IRowset	for	all	basic
rowset	operations,	including	fetching	and	releasing	rows	and	getting	column
values.

When	a	consumer	gets	an	interface	pointer	on	a	rowset,	usually	the	first	step	is	to
determine	the	capabilities	of	the	rowset	by	using	the
IRowsetInfo::GetProperties	method.	This	returns	information	about	the
interfaces	exposed	by	the	rowset	as	well	as	capabilities	of	the	rowset	that	do	not
show	up	as	distinct	interfaces,	such	as	the	maximum	number	of	active	rows	and
how	many	rows	can	have	pending	updates	at	the	same	time.

The	next	step	for	consumers	is	to	determine	the	characteristics,	or	metadata,	of
the	columns	in	the	rowset.	For	this	they	use	the	IColumnsInfo	or
IColumnsRowset	methods,	for	simple	or	extended	column	information,
respectively.	The	GetColumnInfo	method	returns:

The	number	of	columns	in	the	result	set.

An	array	of	DBCOLUMNINFO	structures,	one	per	column.

The	order	of	the	structures	is	the	order	in	which	the	columns	appear	in
the	rowset.	Each	DBCOLUMNINFO	structure	includes	column	meta
data,	such	as	column	name,	ordinal	of	the	column,	maximum	possible
length	of	a	value	in	the	column,	data	type	of	the	column,	precision,	and
length.

The	pointer	to	a	storage	for	all	string	values	within	a	single	allocation
block.

The	consumer	determines	which	columns	it	needs,	either	from	the	meta	data	or
on	the	basis	of	the	text	command	that	generated	the	rowset.	It	determines	the
ordinals	of	the	needed	columns	from	the	ordering	of	the	column	information
returned	by	IColumnsInfo	or	from	the	ordinals	in	the	column	meta	data	rowset
returned	by	IColumnsRowset.

The	IColumnsRowset	and	IColumnsInfo	interfaces	are	used	to	extract
information	about	the	columns	in	the	rowset.	The	IColumnsInfo	interface
returns	a	limited	set	of	information,	whereas	IColumnsRowset	provides	all	the
meta	data.

Note		In	SQL	Server	version	7.0	and	earlier,	the	optional	meta	data	column
DBCOLUMN_COMPUTEMODE	returned	by
IColumnsInfo::GetColumnsInfo	returns	DBSTATUS_S_ISNULL	(instead	of
the	values	describing	if	the	column	is	computed	or	not)	because	it	cannot	be
determined	if	the	underlying	column	is	computed	column	or	not.

The	ordinals	are	used	to	specify	a	binding	to	a	column.	A	binding	is	a	structure
that	associates	an	element	of	the	consumer's	structure	with	a	column.	The
binding	can	bind	the	data	value,	length,	and	status	value	of	the	column.

A	set	of	bindings	is	gathered	together	in	an	accessor,	which	is	created	with	the
IAccessor::CreateAccessor	method.	An	accessor	can	contain	multiple	bindings
so	that	the	data	for	multiple	columns	can	be	retrieved	or	set	in	a	single	call.	The
consumer	can	create	several	accessors	to	match	different	usage	patterns	in
different	parts	of	the	application.	It	can	create	and	release	accessors	at	any	time
while	the	rowset	remains	in	existence.

To	fetch	rows	from	the	database,	the	consumer	calls	a	method,	such	as
IRowset::GetNextRows	or	IRowsetLocate::GetRowsAt.	These	fetch
operations	put	row	data	from	the	server	into	the	row	buffer	of	the	provider.	The
consumer	does	not	have	direct	access	to	the	row	buffer	of	the	provider.	The
consumer	uses	IRowset::GetData	to	copy	data	from	the	buffer	of	the	provider
to	the	consumer	buffer	and	IRowsetChange::SetData	to	copy	data	changes
from	the	consumer	buffer	to	the	provider	buffer.

The	consumer	calls	the	GetData	method	and	passes	it	the	handle	to	a	row,	the
handle	to	an	accessor,	and	a	pointer	to	a	consumer-allocated	buffer.	GetData
converts	the	data	and	returns	the	columns	as	specified	in	the	bindings	used	to
create	the	accessor.	The	consumer	can	call	GetData	more	than	once	for	a	row,
using	different	accessors	and	buffers;	therefore,	the	consumer	can	have	multiple
copies	of	the	same	data.

Data	from	variable-length	columns	can	be	treated	several	ways.	First,	such
columns	can	be	bound	to	a	finite	section	of	the	consumer's	structure,	which
causes	truncation	when	the	length	of	the	data	exceeds	the	length	of	the	buffer.

The	consumer	can	determine	that	truncation	has	occurred	by	checking	for	the
status	DBSTATUS_S_TRUNCATED.	The	returned	length	is	always	the	true
length	in	bytes,	so	the	consumer	also	can	determine	how	much	data	was
truncated.

When	the	consumer	is	finished	fetching	or	updating	rows,	it	releases	them	with
the	ReleaseRows	method.	This	releases	resources	from	the	copy	of	the	rows	in
the	rowset	and	makes	room	for	new	rows.	The	consumer	can	then	repeat	its
cycle	of	fetching	or	creating	rows	and	accessing	the	data	in	them.

When	the	consumer	is	done	with	the	rowset,	it	calls	the
IAccessor::ReleaseAccessor	method	to	release	any	accessor.	It	calls	the
IUnknown::Release	method	on	all	interfaces	exposed	by	the	rowset	to	release
the	rowset.	When	the	rowset	is	released,	it	forces	the	release	of	any	remaining
rows	or	accessors	the	consumer	may	hold.

OLE	DB	and	SQL	Server

Next	Fetch	Position
The	SQLOLEDB	provider	keeps	track	of	the	next	fetch	position	so	that	a
sequence	of	calls	to	the	GetNextRows	method	(with	no	skips,	changes	of
direction,	or	intervening	calls	to	the	FindNextRow,	Seek,	or	RestartPosition
methods)	reads	the	entire	rowset	without	skipping	or	repeating	any	row.	The	next
fetch	position	is	changed	either	by	calling	IRowset::GetNextRows,
IRowset::RestartPosition,	or	IRowsetIndex::Seek,	or	by	calling
FindNextRow	with	a	null	pBookmark	value.	Calling	FindNextRow	with	a
nonnull	pBookmark	value	has	no	effect	on	the	next	fetch	position.

To	fetch	rows	from	a	result	set

OLE	DB	and	SQL	Server

Fetching	a	Single	Row	Using	IRow
IRow	interface	implementation	in	SQLOLEDB	is	simplified	to	increase
performance.	IRow	allows	direct	access	to	columns	of	a	single	row	object.	If
you	know	ahead	of	time	that	the	result	of	a	command	execution	will	produce
exactly	one	row,	IRow	will	retrieve	the	columns	of	that	row.	If	the	result	set
includes	multiple	rows,	IRow	will	expose	only	the	first	row.

IRow	implementation	does	not	allow	any	navigation	of	the	row.	Each	column	in
the	row	is	accessed	only	once,	with	one	exception:	a	column	can	be	accessed
twice,	once	to	find	the	column	size,	and	again	to	fetch	the	data.

IRow::Open	supports	only	DBGUID_STREAM	and	DBGUID_NULL	type	of
objects	to	be	opened.

To	obtain	a	row	object	using	Icommand::Execute,	method	IID_IRow	must	be
passed.

IMultipleResults	must	be	used	to	handle	multiple	result	sets.	IMultipleResults
supports	IRow	and	IRowset.	IRowset	is	used	for	bulk	operations.

OLE	DB	and	SQL	Server

Using	IRow::GetColumns
IRow	implementation	allows	forward	only	sequential	access	to	the	columns.
You	can	either	access	all	the	columns	in	the	row	with	a	single	call	to
IRow::GetColumns,	or	call	IRow::GetColumns	multiple	times	each	time
accessing	few	columns	in	the	row.

The	multiple	calls	to	IRow::GetColumns	should	not	overlap.	For	example,	if
the	first	call	to	IRow::GetColumns	retrieves	columns	1,	2,	and	3,	the	second
call	to	IRow::GetColumns	should	call	for	columns	4,	5,	and	6.	If	subsequent
calls	to	IRow::GetColumns	overlap,	the	status	flag	(dwstatus	field	in
DBCOLUMNACCESS)	will	be	set	to	DBSTATUS_E_UNAVAILABLE.

To	fetch	columns	using	IRow::GetColumns

OLE	DB	and	SQL	Server

Fetching	BLOB	Data	Using	IRow
BLOB	column	in	a	row	object	can	be	retrieved	using	IRow::GetColumns	or
IRow::Open	and	ISequentialStream.

OLE	DB	and	SQL	Server

Fetching	BLOB	Data	Using	IRow::GetColumns	and
ISequentialStream
The	following	function	uses	IRow::GetColumns	and	ISequentialStream	to
fetch	large	data.

void	InitializeAndExecuteCommand()
{
				ulong	iidx;
				WCHAR*	wCmdString=OLESTR("	SELECT	*	FROM	MyTable");
				//	Do	the	initialization,	create	the	session,	and	set	command	text
				hr=pICommandText->Execute(NULL,	IID_IRow,	NULL,	
																									&cNumRows,(Iunknown	**)&pIRow)))
				//Get	1	column	at	a	time
				for(ulong	i=0;	i	<	NoOfColumns;	i++)
						GetSequentialColumn(pIRow,	iidx);
				//do	the	clean	up
}
HRESULT	GetSequentialColumn(IRow*	pUnkRow,	ULONG	iCol)
{
				HRESULT	hr	=	NOERROR;
				ULONG	cbRead	=	0;
				ULONG	cbTotal	=	0;
				ULONG	cColumns	=	0;
				ULONG	cReads	=	0;
				ISequentialStream*	pIStream	=	NULL;
				WCHAR*	pBuffer[kMaxBuff];//50	chars	read	by	ISequentialStream::Read()
				DBCOLUMNINFO*	prgInfo;
				OLECHAR*	pColNames;
				IColumnsInfo*	pIColumnsInfo;
				DBID	columnid;

				DBCOLUMNACCESS	column;
				hr	=	pUnkRow->QueryInterface(IID_IColumnsInfo,	
																												(void**)	&pIColumnsInfo);
				if(FAILED(hr))
								goto	CLEANUP;
				hr	=	pIColumnsInfo->GetColumnInfo(&cColumns,	&prgInfo,	&pColNames);
				//Get	Column	ID
				columnid	=	(prgInfo	+	(iCol))->columnid;
				IUnknown*	pUnkStream	=	NULL;
				ZeroMemory(&column,	sizeof(column));
				column.columnid	=	prgInfo[iCol].columnid;
				//	Ask	for	Iunknown	interface	pointer
				column.wType				=	DBTYPE_IUNKNOWN;
				column.pData				=	(LPVOID*)	&pUnkStream;

				hr	=	pUnkRow->GetColumns(1,	&column);
				//Get	ISequentialStream	from	Iunknown	pointer	retrieved	from
				//GetColumns()
				hr	=	pUnkStream->QueryInterface(IID_ISequentialStream,	
																																			(LPVOID*)	&pIStream);
				ZeroMemory(pBuffer,	kMaxBuff	*	sizeof(WCHAR));
				//Read	50	chars	at	a	time	until	no	more	data.
				do
				{
								hr	=	pIStream->Read(pBuffer,	kMaxBuff,	&cbRead);
								cbTotal	=	cbTotal	+	cbRead;
								//Process	the	data
				}	while(cbRead	>	0);
		//Do	the	cleanup.
				return	hr;
}

To	fetch	large	data	using	IRow::GetColumns	(or	IRow::Open)	and

ISequentialStream

OLE	DB	and	SQL	Server

Fetching	BLOB	Data	Using	IRow::Open	and
ISequentialStream
IRow::Open	supports	only	DBGUID_STREAM	and	DBGUID_NULL	type	of
objects	to	be	opened.

The	following	function	uses	IRow::Open	and	ISequentialStream	to	fetch	large
data.

Large	data	can	be	bound	or	retrieved	by	using	the	ISequentialStream	interface.
For	bound	columns,	the	status	flag	indicates	if	the	data	is	truncated	by	setting
DBSTATUS_S_TRUNCATED.

void	InitializeAndExecuteCommand()
{
				ulong	iidx;
				WCHAR*	wCmdString=OLESTR("	SELECT	*	FROM	MyTable");
				//	Do	the	initialization,	create	the	session,	and	set	command	text
				hr=pICommandText->Execute(NULL,	IID_IRow,	NULL,	
																									&cNumRows,(Iunknown	**)&pIRow)))
				//Get	1	column	at	a	time
				for(ulong	i=1;	i	<=	NoOfColumns;	i++)
						GetSequentialColumn(pIRow,	iidx);
				//do	the	clean	up
}
HRESULT	GetSequentialColumn(IRow*	pUnkRow,	ULONG	iCol)
{
				HRESULT	hr	=	NOERROR;
				ULONG	cbRead	=	0;
				ULONG	cbTotal	=	0;
				ULONG	cColumns	=	0;
				ULONG	cReads	=	0;
				ISequentialStream*	pIStream	=	NULL;

				WCHAR*	pBuffer[kMaxBuff];//50	chars	read	by	ISequentialStream::Read()
				DBCOLUMNINFO*	prgInfo;
				OLECHAR*	pColNames;
				IColumnsInfo*	pIColumnsInfo;
				DBID	columnid;
				DBCOLUMNACCESS	column;

				hr	=	pUnkRow->QueryInterface(IID_IColumnsInfo,	
																												(void**)	&pIColumnsInfo);
				hr	=	pIColumnsInfo->GetColumnInfo(&cColumns,	&prgInfo,	&pColNames);
				//Get	Column	ID
				columnid	=	(prgInfo	+	(iCol	-	1))->columnid;
				//Get	sequential	stream	object	by	calling	IRow::Open
				hr	=	pUnkRow->Open(NULL,	&columnid,	DBGUID_STREAM,	0,	
																				IID_ISequentialStream,(LPUNKNOWN	*)&pIStream);
				ZeroMemory(pBuffer,	kMaxBuff	*	sizeof(WCHAR));
				//Read	50	chars	at	a	time	until	no	more	data.
				do
				{
								hr	=	pIStream->Read(pBuffer,	kMaxBuff,	&cbRead);
								cbTotal	=	cbTotal	+	cbRead;
								//Process	the	data
				}	while(cbRead	>	0);
//	do	the	clean	up
				return	hr;
}

To	fetch	large	data	using	IRow::GetColumns	(or	IRow::Open)	and
ISequentialStream

OLE	DB	and	SQL	Server

Bookmarks
Bookmarks	allow	consumers	to	return	quickly	to	a	row.	With	bookmarks,
consumers	can	access	rows	randomly	based	on	the	bookmark	value.	The
bookmark	column	is	column	0	in	the	rowset.	The	consumer	sets	the	dwFlag	field
value	of	the	binding	structure	to	DBCOLUMNSINFO_ISBOOKMARK	to
indicate	that	the	column	is	used	as	bookmark.	The	consumer	also	sets	the	rowset
property	DBPROP_BOOKMARKS	to	VARIANT_TRUE.	This	allows	column	0
to	be	present	in	the	rowset.	The	IRowsetLocate::GetRowsAt	method	is	then
used	to	fetch	rows,	starting	with	the	row	specified	as	an	offset	from	a	bookmark.

To	retrieve	rows	using	bookmarks

OLE	DB	and	SQL	Server

Running	Stored	Procedures	(OLE	DB)
A	stored	procedure	is	an	executable	object	stored	in	a	database.	Microsoft®	SQL
Server™	2000	supports:

Stored	procedures

One	or	more	SQL	statements	that	have	been	precompiled	into	a	single
executable	procedure.

Extended	stored	procedures

C	or	C++	DLLs	written	to	the	SQL	Server	Open	Data	Services	API	for
extended	stored	procedures.	The	Open	Data	Services	API	extends	the
capabilities	of	stored	procedures	to	include	C	or	C++	code.

When	executing	statements,	calling	a	stored	procedure	on	the	data	source
(instead	of	executing	or	preparing	a	statement	in	the	client	application	directly)
can	provide:

Higher	performance.

Reduced	network	overhead.

Better	consistency.

Better	accuracy.

Added	functionality.

The	OLE	DB	provider	supports	three	of	the	mechanisms	that	SQL	Server	2000
stored	procedures	use	to	return	data:

Every	SELECT	statement	in	the	procedure	generates	a	result	set.

The	procedure	can	return	data	through	output	parameters.

The	procedure	can	have	an	integer	return	code.

The	application	must	be	able	to	handle	all	of	these	outputs	from	stored
procedures.

Different	OLE	DB	providers	return	output	parameters	and	return	values	at
different	times	during	result	processing.	In	case	of	the	Microsoft	OLE	DB
Provider	for	SQL	Server	(SQLOLEDB),	the	output	parameters	and	return	codes
are	not	supplied	until	after	the	consumer	has	retrieved	or	canceled	the	result	sets
returned	by	the	stored	procedure.	The	return	codes	and	the	output	parameters	are
returned	in	the	last	TDS	packet	from	the	server.

Providers	use	the	DBPROP_OUTPUTPARAMETERAVAILABILITY	property
to	report	when	it	returns	output	parameters	and	return	values.	This	property	is	in
the	DBPROPSET_DATASOURCEINFO	property	set.

SQLOLEDB	sets	the	DBPROP_OUTPUTPARAMETERAVAILABILITY
property	to	DBPROPVAL_OA_ATROWRELEASE	to	indicate	that	return	codes
and	output	parameters	are	not	returned	until	the	result	set	is	processed	or
released.

Execute	stored	procedure	using	ODBC	CALL	syntax	and	process	return
code	and	output	parameters

OLE	DB	and	SQL	Server

Calling	a	Stored	Procedure	(OLE	DB)
A	stored	procedure	can	have	zero	or	more	parameters.	It	can	also	return	a	value.
In	OLE	DB,	parameters	to	a	stored	procedure	can	be	passed	by:

Hard-coding	the	data	value.

Using	a	parameter	marker	(?)	to	specify	parameters,	bind	a	program
variable	to	the	parameter	marker,	and	then	place	the	data	value	in	the
program	variable.

To	support	parameters,	the	ICommandWithParameters	interface	is	exposed	on
the	command	object.	To	use	parameters,	the	consumer	first	describes	the
parameters	to	the	provider	by	calling	the
ICommandWithParameters::SetParameterInfo	method	(or	optionally
prepares	a	calling	statement	that	calls	the	GetParameterInfo	method).	The
consumer	then	creates	an	accessor	that	specifies	the	structure	of	a	buffer	and
places	parameter	values	in	this	buffer.	Finally,	it	passes	the	handle	of	the
accessor	and	a	pointer	to	the	buffer	to	Execute.	On	later	calls	to	Execute,	the
consumer	places	new	parameter	values	in	the	buffer	and	calls	Execute	with	the
accessor	handle	and	buffer	pointer.

A	command	that	calls	a	temporary	stored	procedure	using	parameters	must	first
call	ICommandWithParameters::SetParameterInfo	to	define	the	parameter
information,	before	the	command	can	be	successfully	prepared.	This	is	because
the	internal	name	for	a	temporary	stored	procedure	differs	from	the	external
name	used	by	a	client	and	SQLOLEDB	cannot	query	the	system	tables	to
determine	the	parameter	information	for	a	temporary	stored	procedure.

These	are	the	steps	in	the	parameter	binding	process:

1.	 Fill	in	the	parameter	information	in	an	array	of
DBPARAMBINDINFO	structures;	that	is,	parameter	name,	provider-
specific	name	for	the	data	type	of	the	parameter,	or	a	standard	data
type	name,	and	so	on.	Each	structure	in	the	array	describes	one
parameter.	This	array	is	then	passed	to	the	SetParameterInfo	method.

2.	 Call	the	ICommandWithParameters::SetParameterInfo	method	to
describe	parameters	to	the	provider.	SetParameterInfo	specifies	the
native	data	type	of	each	parameter.	SetParameterInfo	arguments	are:

The	number	of	parameters	for	which	to	set	type	information.

An	array	of	parameter	ordinals	for	which	to	set	type
information.

An	array	of	DBPARAMBINDINFO	structures.

3.	 Create	a	parameter	accessor	by	using	the	IAccessor::CreateAccessor
command.	The	accessor	specifies	the	structure	of	a	buffer	and	places
parameter	values	in	the	buffer.	The	CreateAccessor	command	creates
an	accessor	from	a	set	of	bindings.	These	bindings	are	described	by	the
consumer	by	using	an	array	of	DBBINDING	structures.	Each	binding
associates	a	single	parameter	to	the	buffer	of	the	consumer	and
contains	information	such	as:

The	ordinal	of	the	parameter	to	which	the	binding	applies.

What	is	bound	(the	data	value,	its	length,	and	its	status).

The	offset	in	the	buffer	to	each	of	these	parts.

The	length	and	type	of	the	data	value	as	it	exists	in	the	buffer
of	the	consumer.

An	accessor	is	identified	by	its	handle,	which	is	of	type
HACCESSOR.	This	handle	is	returned	by	the	CreateAccessor
method.	Whenever	the	consumer	finishes	using	an	accessor,	the
consumer	must	call	the	ReleaseAccessor	method	to	release	the
memory	it	holds.

When	the	consumer	calls	a	method,	such	as	ICommand::Execute,	it
passes	the	handle	to	an	accessor	and	a	pointer	to	a	buffer	itself.	The

provider	uses	this	accessor	to	determine	how	to	transfer	the	data
contained	in	the	buffer.

4.	 Fill	in	the	DBPARAMS	structure.	The	consumer	variables	from	which
input	parameter	values	are	taken	and	to	which	output	parameter	values
are	written	are	passed	at	run	time	to	ICommand::Execute	in	the
DBPARAMS	structure.	The	DBPARAMS	structure	includes	three
elements:

A	pointer	to	the	buffer	from	which	the	provider	retrieves	input
parameter	data	and	to	which	the	provider	returns	output
parameter	data,	according	to	the	bindings	specified	by	the
accessor	handle.

The	number	of	sets	of	parameters	in	the	buffer.

The	accessor	handle	created	in	Step	3.

5.	 Execute	the	command	by	using	ICommand::Execute.

Methods	of	Calling	a	Stored	Procedure

When	executing	a	stored	procedure	in	SQL	Server	2000,	Microsoft	OLE	DB
Provider	for	SQL	Server	(SQLOLEDB)	supports	the:

ODBC	CALL	escape	sequence.

RPC	Escape	sequence.

Transact-SQL	EXECUTE	statement.

ODBC	CALL	Escape	Sequence

When	the	ODBC	CALL	syntax	is	used	in	calling	a	stored	procedure,	the
provider	calls	a	helper	function	to	find	the	stored	procedure	parameter
information.	Therefore,	you	do	not	need	to	call	the

ICommandWithParameters::SetParameterInfo	method	to	describe	the
parameters	to	the	provider.

If	you	are	not	sure	about	the	parameter	information	(parameter	meta	data),
ODBC	CALL	syntax	is	recommended.

The	general	syntax	for	calling	a	procedure	by	using	the	ODBC	CALL	escape
sequence	is:

{[?=]call	procedure_name[([parameter][,[parameter]]...)]}

For	example:

{call	SalesByCategory('Produce',	'1995')}

RPC	Escape	Sequence
The	PRC	escape	sequence	is	similar	to	the	ODBC	CALL	syntax	of	calling	a
stored	procedure.	The	RPC	escape	sequence	provides	most	optimal	performance
among	the	three	methods	of	calling	a	stored	procedure.

When	the	RPC	escape	sequence	is	used	to	execute	a	stored	procedure,	the
provider	does	not	call	any	helper	function	to	determine	the	parameter
information	(as	it	does	in	the	case	of	ODBC	CALL	syntax).	This	improves	the
performance.	In	this	case,	you	need	to	provide	the	parameter	information	by
executing	ICommandWithParameters::SetParameterInfo.

The	RPC	escape	sequence	requires	you	to	have	a	return	value.	If	the	stored
procedure	does	not	return	a	value,	the	server	returns	a	0	by	default.	In	addition,
you	cannot	open	a	SQL	Server	cursor	on	the	stored	procedure.	The	stored
procedure	is	prepared	implicitly	and	actual	call	the
ICommandPrepare::Prepare	will	fail.

If	you	know	all	the	parameter	meta	data,	RPC	escape	sequence	is	the
recommended	way	to	execute	stored	procedures.

This	is	an	example	of	RPC	escape	sequence	for	calling	a	stored	procedure:

{rpc	SalesByCategory}

Transact-SQL	EXECUTE	Statement

The	ODBC	CALL	escape	sequence	and	the	RPC	escape	sequence	are	the
preferred	methods	for	calling	a	stored	procedure	rather	than	the	Transact-SQL
EXECUTE	statement.	SQLOLEDB	uses	the	remote	procedure	call	(RPC)
mechanism	of	SQL	Server	2000	to	optimize	command	processing.	This	RPC
protocol	increases	performance	by	eliminating	much	of	the	parameter	processing
and	statement	parsing	done	on	the	server.

This	is	an	example	of	the	Transact-SQL	EXECUTE	statement:

EXECUTE	SalesByCategory	'Produce',	'1995'

Execute	stored	procedure	using	ODBC	CALL	syntax	and	process	return
code	and	output	parameters

OLE	DB	and	SQL	Server

Running	User-Defined	Functions	(OLE	DB)
The	syntax	for	calling	user-defined	functions	using	the	Microsoft	OLE	DB
Provider	for	SQL	Server	is	similar	to	calling	the	stored	procedures.

To	call	a	user-defined	function	and	processing	the	return	code

OLE	DB	and	SQL	Server

Bulk-Copy	Rowsets
SQLOLEDB	implements	the	provider-specific	IRowsetFastLoad	interface	to
expose	support	for	Microsoft®	SQL	Server™	2000	bulk	copy	from	a	consumer
to	a	SQL	Server	2000	table.	IRowsetFastLoad	exposes	the	two	member
functions:

InsertRow

Bulk	copies	a	single	row	of	data	to	a	SQL	Server	2000	table.

Commit

Marks	the	end	of	a	batch	of	bulk	copy	insertions	and	writes	inserted
data	to	the	SQL	Server	2000	table.

OLE	DB	and	SQL	Server

Enabling	a	Session	for	IRowsetFastLoad
The	consumer	notifies	SQLOLEDB	of	its	need	for	bulk	copy	by	setting	the
SQLOLEDB	provider-specific	data	source	property
SSPROP_ENABLEFASTLOAD	to	VARIANT_TRUE.	With	the	property	set	on
the	data	source,	the	consumer	creates	a	SQLOLEDB	session.	The	new	session
allows	consumer	access	to	the	IRowsetFastLoad	interface.

Enabling	a	session	for	bulk	copy	constrains	SQLOLEDB	support	for	interfaces
on	the	session.	A	bulk	copy-enabled	session	exposes	only	the	following
interfaces:

IDBSchemaRowset

IGetDataSource

IOpenRowset

ISupportErrorInfo

ITransactionJoin	(not	supported	for	Microsoft®	SQL	Server™	version
6.5)

To	disable	the	creation	of	bulk	copy-enabled	rowsets	and	cause	the	SQLOLEDB
session	to	revert	to	standard	processing,	reset	SSPROP_ENABLEFASTLOAD
to	VARIANT_FALSE.

Fastload	sessions	are	not	available	with	IDataInitialize	(part	of	OLE	DB	service
components).

To	bulk	copy	data	using	IRowsetFastLoad

OLE	DB	and	SQL	Server

IRowsetFastLoad	Rowsets
SQLOLEDB	bulk	copy	rowsets	are	write-only,	but	the	rowset	exposes	interfaces
that	allow	the	consumer	to	determine	the	structure	of	a	Microsoft®	SQL
Server™	2000	table.	The	following	interfaces	are	exposed	on	a	bulk	copy-
enabled	SQLOLEDB	rowset:

IAccessor

IColumnsInfo

IColumnsRowset

IConvertType

IRowsetFastLoad

IRowsetInfo

ISupportErrorInfo

The	provider-specific	properties	SSPROP_FASTLOADOPTIONS,
SSPROP_FASTLOADKEEPNULLS,	and
SSPROP_FASTLOADKEEPIDENTITY	control	behaviors	of	a	SQLOLEDB
bulk-copy	rowset.	The	properties	are	specified	in	the	rgProperties	member	of	an
rgPropertySets	IOpenRowset	parameter	member.

Property	ID Description
SSPROP_FASTLOADKEEPIDENTITYColumn:	No

R/W:	Read/write
Type:	VT_BOOL
Default:	VARIANT_FALSE
Description:	Maintains	identity
values	supplied	by	the	consumer.

VARIANT_FALSE:	Values	for	an
identity	column	in	the	SQL
Server	2000	table	are	generated
by	SQL	Server	2000.	Any	value
bound	for	the	column	is	ignored
by	SQLOLEDB.

VARIANT_TRUE:	The	consumer
binds	an	accessor	providing	a
value	for	a	SQL	Server	2000
identity	column.	The	identity
property	is	not	available	on
columns	accepting	NULL,	so	the
consumer	provides	a	unique	value
on	each
IRowsetFastLoad::Insert	call.

SSPROP_FASTLOADKEEPNULLS Column:	No
R/W:	Read/write
Type:	VT_BOOL
Default:	VARIANT_FALSE
Description:	Maintains	NULL	for
columns	with	a	DEFAULT
constraint.	Affects	only	SQL
Server	2000	columns	that	accept
NULL	and	have	a	DEFAULT
constraint	applied.

VARIANT_FALSE:	SQL	Server
2000	inserts	the	default	value	for
the	column	when	the
SQLOLEDB	consumer	inserts	a
row	containing	NULL	for	the
column.

VARIANT_TRUE:	SQL	Server
2000	inserts	NULL	for	the
column	value	when	the
SQLOLEDB	consumer	inserts	a

row	containing	NULL	for	the
column.

SSPROP_FASTLOADOPTIONS Column:	No
R/W:	Read/write
Type:	VT_BSTR
Default:	none
Description:	This	property	is	the
same	as	the	-h	"hint[,...n]"	option
of	the	bcp	utility.	The	following
string(s)	can	be	used	as	option(s)
in	the	bulk	copying	of	data	into	a
table.

ORDER(column[ASC	|	DESC]
[,...n])
Sort	order	of	data	in	the	data	file.
Bulk	copy	performance	is
improved	if	the	data	file	being
loaded	is	sorted	according	to	the
clustered	index	on	the	table.

ROWS_PER_BATCH	=	bb
Number	of	rows	of	data	per	batch
(as	bb).	The	server	optimizes	the
bulk	load	according	to	the	value
bb.	By	default,
ROWS_PER_BATCH	is
unknown.

KILOBYTES_PER_BATCH	=
cc
Number	of	kilobytes	(KB)	of	data
per	batch	(as	cc).	By	default,
KILOBYTES_PER_BATCH	is
unknown.

TABLOCK
A	table-level	lock	is	acquired	for

the	duration	of	the	bulk	copy
operation.	This	option
significantly	improves
performance	because	holding	a
lock	only	for	the	duration	of	the
bulk	copy	operation	reduces	lock
contention	on	the	table.	A	table
can	be	loaded	by	multiple	clients
concurrently	if	the	table	has	no
indexes	and	TABLOCK	is
specified.	By	default,	the	locking
behavior	is	determined	by	the
table	option	table	lock	on	bulk
load.

CHECK_CONSTRAINTS
Any	constraints	on	table_name
are	checked	during	the	bulk	copy
operation.	By	default,	constraints
are	ignored.

OLE	DB	and	SQL	Server

Updating	Data	in	Rowsets
SQLOLEDB	updates	Microsoft®	SQL	Server™	2000	data	when	a	consumer
updates	a	modifiable	rowset	containing	that	data.	A	modifiable	rowset	is	created
when	the	consumer	requests	support	for	either	the	IRowsetChange	or
IRowsetUpdate	interface.

All	SQLOLEDB	modifiable	rowsets	use	SQL	Server	2000	cursors	to	support	the
rowset.	The	OLE	DB	rowset	property	DBPROP_LOCKMODE	alters	SQL
Server	2000	concurrency	control	behavior	in	cursors	and	determines	the
behavior	of	rowset	row	fetching	and	data	integrity	error	generation	in	updatable
rowsets.

SQLOLEDB	supports	row	synchronization	before	or	after	an	update.

OLE	DB	and	SQL	Server

Updating	Data	in	SQL	Server	Cursors
When	fetching	and	updating	data	through	Microsoft®	SQL	Server™	2000
cursors,	a	SQLOLEDB	consumer	application	is	bound	by	the	same
considerations	and	constraints	that	apply	to	any	other	client	application.

Only	rows	in	SQL	Server	2000	cursors	participate	in	concurrent	data-access
control.	When	the	consumer	requests	a	modifiable	rowset,	the	concurrency
control	is	controlled	by	DBPROP_LOCKMODE.	To	alter	the	level	of	concurrent
access	control,	the	consumer	sets	the	DBPROP_LOCKMODE	property	prior	to
opening	the	rowset.

Transaction	isolation	levels	can	cause	significant	lags	in	row	positioning	if	client
application	design	allows	transactions	to	remain	open	for	long	periods	of	time.
By	default,	SQLOLEDB	uses	the	read-committed	isolation	level	specified	by
DBPROPVAL_TI_READCOMMITTED.	SQLOLEDB	supports	dirty	read
isolation	when	the	rowset	concurrency	is	read-only.	Therefore,	the	consumer	can
request	a	higher	level	of	isolation	in	a	modifiable	rowset	but	cannot	request	any
lower	level	successfully.

Immediate	and	Delayed	Update	Modes
In	immediate	update	mode,	each	call	to	IRowsetChange::SetData	results	in	a
round	trip	to	the	SQL	Server	2000.	If	the	consumer	makes	multiple	changes	to	a
single	row,	it	is	more	efficient	to	submit	all	changes	with	a	single	SetData	call.

In	delayed	update	mode,	a	roundtrip	is	made	to	the	SQL	Server	2000	for	each
row	indicated	in	the	cRows	and	rghRows	parameters	of
IRowsetUpdate::Update.

In	either	mode,	a	round	trip	represents	a	distinct	transaction	when	no	transaction
object	is	open	for	the	rowset.

When	using	IRowsetUpdate::Update,	SQLOLEDB	attempts	to	process	each
indicated	row.	An	error	occurring	due	to	invalid	data,	length,	or	status	values	for
any	row	does	not	stop	SQLOLEDB	processing.	All	or	none	of	the	other	rows
participating	in	the	update	may	be	modified.	The	consumer	must	check	the
returned	prgRowStatus	array	to	determine	failure	for	any	specific	row	when

SQLOLEDB	returns	DB_S_ERRORSOCCURED.

A	consumer	should	not	assume	that	rows	are	processed	in	any	specific	order.	If	a
consumer	requires	ordered	processing	of	data	modification	over	more	than	a
single	row,	then	the	consumer	should	establish	that	order	in	the	application	logic
and	open	a	transaction	to	enclose	the	process.

OLE	DB	and	SQL	Server

Resynchronizing	Rows
SQLOLEDB	supports	IRowsetResynch	on	Microsoft®	SQL	Server™	2000
cursor-supported	rowsets	only.	IRowsetResynch	is	not	available	on	demand.
The	consumer	must	request	the	interface	prior	to	opening	the	rowset.

OLE	DB	and	SQL	Server

BLOBs	and	OLE	Objects
SQLOLEDB	exposes	the	ISequentialStream	interface	to	support	consumer
access	to	Microsoft®	SQL	Server™	2000	ntext,	text,	and	image	data	types	as
binary	large	objects	(BLOBs).	The	Read	method	on	ISequentialStream	allows
the	consumer	to	retrieve	large	amounts	of	data	in	manageable	chunks.

SQLOLEDB	can	use	a	consumer-implemented	IStorage	interface	when	the
consumer	provides	the	interface	pointer	in	an	accessor	bound	for	data
modification.

SQLOLEDB	Storage	Object	Limitations
SQLOLEDB	can	support	only	a	single	open	storage	object.	Attempts	to
open	more	than	one	storage	object	(attempts	to	get	a	reference	on	more
than	one	ISequentialStream	interface	pointer)	return
DBSTATUS_E_CANTCREATE.

In	SQLOLEDB,	the	default	value	of	the
DBPROP_BLOCKINGSTORAGEOBJECTS	read-only	property	is
VARIANT_TRUE.	This	indicates	that	if	a	storage	object	is	active,	some
methods	(other	than	those	on	the	storage	objects)	will	fail	with
E_UNEXPECTED.

The	length	of	data	presented	by	a	consumer-implemented	storage	object
must	be	made	known	to	SQLOLEDB	when	the	row	accessor	that
references	the	storage	object	is	created.	The	consumer	must	bind	a
length	indicator	in	the	DBBINDING	structure	used	for	accessor
creation.

SQLOLEDB	supports	the	ISequentialStream::Write	method	for	zero-
length	strings	and	NULL	values	only.	Attempts	to	write	more	than	zero
bytes	through	ISequentialStream::Write	fail.

If	a	row	contains	more	than	a	single	large	data	value,	and
DBPROP_ACCESSORDER	is	not	DBPROPVAL_AO_RANDOM,	the
consumer	must	either	use	a	SQLOLEDB	cursor-supported	rowset	to
retrieve	row	data	or	process	all	large	data	values	prior	to	retrieving	other
row	values.	If	DBPROP_ACCESSORDER	is
DBPROPVAL_AO_RANDOM,	SQLOLEDB	caches	all	the	BLOB	data
so	it	can	be	accessed	in	any	order.

OLE	DB	and	SQL	Server

Getting	Large	Data
In	general,	consumers	should	isolate	code	that	creates	a	SQLOLEDB	storage
object	from	other	code	that	handles	data	not	referenced	through	an
ISequentialStream	interface	pointer.

If	the	DBPROP_ACCESSORDER	property	(in	the	rowset	property	group)	is	set
to	either	of	the	values	DBPROPVAL_AO_SEQUENTIAL	or
DBPROPVAL_AO_SEQUENTIALSTORAGEOBJECTS,	the	consumer	should
fetch	only	a	single	row	of	data	in	a	call	to	the	GetNextRows	method	because
BLOB	data	is	not	buffered.	If	the	value	of	DBPROP_ACCESSORDER	is	set	to
DBPROPVAL_AO_RANDOM,	the	consumer	can	fetch	multiple	rows	of	data	in
GetNextRows.

SQLOLEDB	does	not	retrieve	large	data	from	Microsoft®	SQL	Server™	until
requested	to	do	so	by	the	consumer.	The	consumer	should	bind	all	short	data	in
one	accessor,	and	then	use	one	or	more	temporary	accessors	to	retrieve	large	data
values	as	required.

This	example	retrieves	a	large	data	value	from	a	single	column:

HRESULT	GetUnboundData
				(
				IRowset*	pIRowset,
				HROW	hRow,
				ULONG	nCol,	
				BYTE*	pUnboundData
)
				{
				UINT																cbRow	=	sizeof(IUnknown*)	+	sizeof(ULONG);
				BYTE*															pRow	=	new	BYTE[cbRow];

				DBOBJECT												dbobject;

				IAccessor*										pIAccessor	=	NULL;
				HACCESSOR											haccessor;

				DBBINDING											dbbinding;
				ULONG															ulbindstatus;

				ULONG															dwStatus;
				ISequentialStream*		pISequentialStream;
				ULONG															cbRead;

				HRESULT													hr;

				//	Set	up	the	DBOBJECT	structure.
				dbobject.dwFlags	=	STGM_READ;
				dbobject.iid	=	IID_ISequentialStream;

				//	Create	the	DBBINDING,	requesting	a	storage-object	pointer	from
				//	SQLOLEDB.
				dbbinding.iOrdinal	=	nCol;
				dbbinding.obValue	=	0;
				dbbinding.obStatus	=	sizeof(IUnknown*);
				dbbinding.obLength	=	0;
				dbbinding.pTypeInfo	=	NULL;
				dbbinding.pObject	=	&dbobject;
				dbbinding.pBindExt	=	NULL;
				dbbinding.dwPart	=	DBPART_VALUE	|	DBPART_STATUS;
				dbbinding.dwMemOwner	=	DBMEMOWNER_CLIENTOWNED;
				dbbinding.eParamIO	=	DBPARAMIO_NOTPARAM;
				dbbinding.cbMaxLen	=	0;
				dbbinding.dwFlags	=	0;
				dbbinding.wType	=	DBTYPE_IUNKNOWN;
				dbbinding.bPrecision	=	0;
				dbbinding.bScale	=	0;

				if	(FAILED(hr	=	pIRowset->

								QueryInterface(IID_IAccessor,	(void**)	&pIAccessor)))
								{
								//	Process	QueryInterface	failure.
								return	(hr);
								}

				//	Create	the	accessor.
				if	(FAILED(hr	=	pIAccessor->CreateAccessor(DBACCESSOR_ROWDATA,	1,
								&dbbinding,	0,	&haccessor,	&ulbindstatus)))
								{
								//	Process	error	from	CreateAccessor.
								pIAccessor->Release();
								return	(hr);
								}

				//	Read	and	process	BLOCK_SIZE	bytes	at	a	time.
				if	(SUCCEEDED(hr	=	pIRowset->GetData(hRow,	haccessor,	pRow)))
								{
								dwStatus	=	*((ULONG*)	(pRow	+	dbbinding.obStatus));

								if	(dwStatus	==	DBSTATUS_S_ISNULL)
												{
												//	Process	NULL	data
												}
								else	if	(dwStatus	==	DBSTATUS_S_OK)
												{
												pISequentialStream	=	*((ISequentialStream**)	
																(pRow	+	dbbinding.obValue));

												do
																{
																if	(SUCCEEDED(hr	=
																				pISequentialStream->Read(pUnboundData,

																				BLOCK_SIZE,	&cbRead)))
																				{
																				pUnboundData	+=	cbRead;
																				}
																}
												while	(SUCCEEDED(hr)	&&	cbRead	>=	BLOCK_SIZE);

												pISequentialStream->Release();
												}
								}
				else
								{
								//	Process	error	from	GetData.
								}

				pIAccessor->ReleaseAccessor(haccessor,	NULL);
				pIAccessor->Release();
				delete	[]	pRow;

				return	(hr);
				}

OLE	DB	and	SQL	Server

Setting	Large	Data
With	the	SQLOLEDB	provider,	you	can	set	BLOB	data	by	passing	a	pointer	to	a
consumer	storage	object.

The	consumer	creates	a	storage	object	containing	the	data	and	passes	a	pointer	to
this	storage	object	to	the	provider.	The	provider	then	reads	data	from	the
consumer	storage	object	and	writes	it	to	the	BLOB	column.

To	pass	a	pointer	to	its	own	storage	object,	the	consumer	creates	an	accessor	that
binds	the	value	of	the	BLOB	column.	The	consumer	then	calls	the
IRowsetChange::SetData	or	IRowsetChange::InsertRow	method	with	the
accessor	that	binds	the	BLOB	column.	It	passes	a	pointer	to	a	storage	interface
on	the	storage	object	of	the	consumer.

To	set	large	data

OLE	DB	and	SQL	Server

Tables	and	Indexes
SQLOLEDB	exposes	the	IIndexDefinition	and	ITableDefinition	interfaces,
allowing	consumers	to	create,	alter,	and	drop	Microsoft®	SQL	Server™	2000
tables	and	indexes.	Valid	table	and	index	definitions	depend	on	the	version	of
SQL	Server.

The	ability	to	create	or	drop	tables	and	indexes	depends	on	the	SQL	Server	2000
access	rights	of	the	consumer-application	user.	Dropping	a	table	can	be	further
constrained	by	the	presence	of	declarative	referential	integrity	constraints	or
other	factors.

Most	applications	targeting	SQL	Server	2000	use	SQL-DMO	instead	of	these
OLE	DB	interfaces.	SQL-DMO	is	a	collection	of	OLE	Automation	objects	that
support	all	the	administrative	functions	of	SQL	Server	2000.	Applications
targeting	multiple	OLE	DB	providers	use	these	generic	OLE	DB	interfaces	that
are	supported	by	the	various	OLE	DB	providers.

In	the	provider-specific	property	set	DBPROPSET_SQLSERVERCOLUMN,
SQL	Server	defines	the	following	property.

Property	ID Description
SSPROP_COL_COLLATIONNAMEType:	VT_BSTR

R/W:W
Default:	Null
Description:	This	property	is	used
only	in	ITableDefinition.	The	string
specified	in	this	property	is	used
when	creating	a	CREATE	TABLE
statement.

See	Also

CREATE	TABLE

DROP	TABLE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

CREATE	INDEX

DROP	INDEX

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

OLE	DB	and	SQL	Server

Creating	SQL	Server	Tables
SQLOLEDB	exposes	the	ITableDefinition::CreateTable	function,	allowing
consumers	to	create	Microsoft®	SQL	Server™	2000	tables.	Consumers	use
CreateTable	to	create	consumer-named	permanent	tables,	and	permanent	or
temporary	tables	with	unique	names	generated	by	SQLOLEDB.

When	the	consumer	calls	ITableDefinition::CreateTable,	if	the	value	of	the
DBPROP_TBL_TEMPTABLE	property	is	VARIANT_TRUE,	SQLOLEDB
generates	a	temporary	table	name	for	the	consumer.	The	consumer	sets	the
pTableID	parameter	of	the	CreateTable	method	to	NULL.	The	temporary	tables
with	names	generated	by	SQLOLEDB	do	not	appear	in	the	TABLES	rowset,	but
are	accessible	through	the	IOpenRowset	interface.

When	consumers	specify	the	table	name	in	the	pwszName	member	of	the	uName
union	in	the	pTableID	parameter,	SQLOLEDB	creates	a	SQL	Server	2000	table
with	that	name.	SQL	Server	2000	table	naming	constraints	apply,	and	the	table
name	can	indicate	a	permanent	table,	or	either	a	local	or	global	temporary	table.
For	more	information,	see	CREATE	TABLE.	The	ppTableID	parameter	can	be
NULL.

SQLOLEDB	can	generate	the	names	of	permanent	or	temporary	tables.	When
the	consumer	sets	the	pTableID	parameter	to	NULL	and	sets	ppTableID	to	point
to	a	valid	DBID*,	SQLOLEDB	returns	the	generated	name	of	the	table	in	the
pwszName	member	of	the	uName	union	of	the	DBID	pointed	to	by	the	value	of
ppTableID.	To	create	a	temporary,	SQLOLEDB-named	table,	the	consumer
includes	the	OLE	DB	table	property	DBPROP_TBL_TEMPTABLE	in	a	table
property	set	referenced	in	the	rgPropertySets	parameter.	SQLOLEDB-named
temporary	tables	are	local.

CreateTable	returns	DB_E_BADTABLEID	if	the	eKind	member	of	the
pTableID	parameter	does	not	indicate	DBKIND_NAME.

DBCOLUMNDESC	Usage
The	consumer	can	indicate	a	column	data	type	by	using	either	the
pwszTypeName	member	or	the	wType	member.	If	the	consumer	specifies	the	data
type	in	pwszTypeName,	SQLOLEDB	ignores	the	value	of	wType.

JavaScript:hhobj_1.Click()

If	using	the	pwszTypeName	member,	the	consumer	specifies	the	data	type	by
using	SQL	Server	data	type	names.	Valid	data	type	names	are	those	returned	in
the	TYPE_NAME	column	of	the	PROVIDER_TYPES	schema	rowset.

SQLOLEDB	recognizes	a	subset	of	OLE	DB-enumerated	DBTYPE	values	in
the	wType	member.	For	more	information,	see	Data	Type	Mapping	in
ITableDefinition.

CreateTable	returns	DB_E_BADTYPE	if	consumer	sets	either	the	pTypeInfo	or
pclsid	member	to	specify	the	column	data	type.

The	consumer	specifies	the	column	name	in	the	pwszName	member	of	the
uName	union	of	the	DBCOLUMNDESC	dbcid	member.	The	column	name	is
specified	as	a	Unicode	character	string.	The	eKind	member	of	dbcid	must	be
DBKIND_NAME.	CreateTable	returns	DB_E_BADCOLUMNID	if	eKind	is
invalid,	pwszName	is	NULL,	or	if	the	value	of	pwszName	is	not	a	valid	SQL
Server	2000	identifier.

All	column	properties	are	available	on	all	columns	defined	for	the	table.
CreateTable	can	return	DB_S_ERRORSOCCURRED	or
DB_E_ERRORSOCCURRED	if	property	values	are	set	in	conflict.
CreateTable	returns	an	error	when	invalid	column	property	settings	cause	SQL
Server	table-creation	failure.

Column	properties	in	a	DBCOLUMNDESC	are	interpreted	as	follows.

Property	ID Description
DBPROP_COL_AUTOINCREMENTR/W:	Read/write

Default:	VARIANT_FALSE
Description:	Sets	the	identity	property
on	the	column	created.	For	SQL
Server	2000,	the	identity	property	is
valid	for	a	single	column	within	a
table.	Setting	the	property	to
VARIANT_TRUE	for	more	than	a
single	column	generates	an	error	when
SQLOLEDB	attempts	to	create	the
table	on	the	server.

The	SQL	Server	2000	identity

property	is	only	valid	for	the	integer,
numeric,	and	decimal	types	when	the
scale	is	0.	Setting	the	property	to
VARIANT_TRUE	on	a	column	of	any
other	data	type	generates	an	error
when	SQLOLEDB	attempts	to	create
the	table	on	the	server.

SQLOLEDB	returns
DB_S_ERRORSOCCURRED	when
DBPROP_COL_AUTOINCREMENT
and	DBPROP_COL_NULLABLE	are
both	VARIANT_TRUE	and	the
dwOption	of
DBPROP_COL_NULLABLE	is	not
DBPROPOPTIONS_REQUIRED.
DB_E_ERRORSOCCURRED	is
returned	when
DBPROP_COL_AUTOINCREMENT
and	DBPROP_COL_NULLABLE	are
both	VARIANT_TRUE	and	the
dwOption	of
DBPROP_COL_NULLABLE	equals
DBPROPOPTIONS_REQUIRED.
The	column	is	defined	with	the	SQL
Server	identity	property	and	the
DBPROP_COL_NULLABLE
dwStatus	member	is	set	to
DBPROPSTATUS_CONFLICTING.

DBPROP_COL_DEFAULT R/W:	Read/write
Default:	None
Description:	Creates	a	SQL	Server
DEFAULT	constraint	for	the	column.

The	vValue	DBPROP	member	can	be
any	of	a	number	of	types.	The
vValue.vt	member	should	specify	a

type	compatible	with	the	data	type	of
the	column.	For	example,	defining
BSTR	N/A	as	the	default	value	for	a
column	defined	as	DBTYPE_WSTR	is
a	compatible	match.	Defining	the	same
default	on	a	column	defined	as
DBTYPE_R8	generates	an	error	when
SQLOLEDB	attempts	to	create	the
table	on	the	server.

DBPROP_COL_DESCRIPTION R/W:	Read/write
Default:	None
Description:	The
DBPROP_COL_DESCRIPTION
column	property	is	not	implemented
by	SQLOLEDB.

The	dwStatus	member	of	the	DBPROP
structure	returns
DBPROPSTATUS_NOTSUPPORTED
when	the	consumer	attempts	to	write
the	property	value.

Setting	the	property	does	not	constitute
a	fatal	error	for	SQLOLEDB.	If	all
other	parameter	values	are	valid,	the
SQL	Server	table	is	created.

DBPROP_COL_FIXEDLENGTH R/W:	Read/write
Default:	VARIANT_FALSE
Description:	SQLOLEDB	uses
DBPROP_COL_FIXEDLENGTH	to
determine	data	type-mapping	when	the
consumer	defines	a	column's	data	type
by	using	the	wType	member	of	the
DBCOLUMNDESC.	For	more
information,	see	Data	Type	Mapping
in	ITableDefinition.

DBPROP_COL_NULLABLE R/W:	Read/write

Default:	None
Description:	When	creating	the	table,
SQLOLEDB	indicates	whether	the
column	should	accept	null	values	if	the
property	is	set.	When	the	property	is
not	set,	the	ability	of	the	column	to
accept	NULL	as	a	value	is	determined
by	the	SQL	Server	ANSI_NULLS
default	database	option.

SQLOLEDB	is	an	SQL-92	compliant
provider.	Connected	sessions	exhibit
SQL-92	behaviors.	If	the	consumer
does	not	set
DBPROP_COL_NULLABLE,
columns	accept	null	values.

DBPROP_COL_PRIMARYKEY R/W:	Read/write
Default:	VARIANT_FALSE
Description:	When	VARIANT_TRUE,
SQLOLEDB	creates	the	column	with	a
PRIMARY	KEY	constraint.

When	defined	as	a	column	property,
only	a	single	column	can	determine
the	constraint.	Setting	the	property
VARIANT_TRUE	for	more	than	a
single	column	returns	an	error	when
SQLOLEDB	attempts	to	create	the
SQL	Server	2000	table.

Note:	The	consumer	can	use
IIndexDefinition::CreateIndex	to
create	a	PRIMARY	KEY	constraint	on
two	or	more	columns.

SQLOLEDB	returns
DB_S_ERRORSOCCURRED	when
DBPROP_COL_PRIMARYKEY	and

DBPROP_COL_UNIQUE	are	both
VARIANT_TRUE	and	the	dwOption
of	DBPROP_COL_UNIQUE	is	not
DBPROPOPTIONS_REQUIRED.

DB_E_ERRORSOCCURRED	is
returned	when
DBPROP_COL_PRIMARYKEY	and
DBPROP_COL_UNIQUE	are	both
VARIANT_TRUE	and	the	dwOption
of	DBPROP_COL_UNIQUE	equals
DBPROPOPTIONS_REQUIRED.
The	column	is	defined	with	the	SQL
Server	identity	property	and	the
DBPROP_COL_PRIMARYKEY
dwStatus	member	is	set	to
DBPROPSTATUS_CONFLICTING.

SQLOLEDB	returns	an	error	when
DBPROP_COL_PRIMARYKEY	and
DBPROP_COL_NULLABLE	are	both
VARIANT_TRUE.

SQLOLEDB	returns	an	error	from
SQL	Server	when	the	consumer
attempts	to	create	a	PRIMARY	KEY
constraint	on	a	column	of	invalid	SQL
Server	data	type.	PRIMARY	KEY
constraints	cannot	be	defined	on
columns	created	with	the	SQL	Server
data	types	bit,	text,	ntext,	and	image.

DBPROP_COL_UNIQUE R/W:	Read/write
Default:	VARIANT_FALSE
Description:	Applies	a	SQL	Server
UNIQUE	constraint	to	the	column.

When	defined	as	a	column	property,
the	constraint	is	applied	on	a	single

column	only.	The	consumer	can	use
IIndexDefinition::CreateIndex	to
apply	a	UNIQUE	constraint	on	the
combined	values	of	two	or	more
columns.

SQLOLEDB	returns
DB_S_ERRORSOCCURRED	when
DBPROP_COL_PRIMARYKEY	and
DBPROP_COL_UNIQUE	are	both
VARIANT_TRUE	and	dwOption	is
not	DBPROPOPTIONS_REQUIRED.

DB_E_ERRORSOCCURRED	is
returned	when
DBPROP_COL_PRIMARYKEY	and
DBPROP_COL_UNIQUE	are	both
VARIANT_TRUE	and	dwOption
equals
DBPROPOPTIONS_REQUIRED.
The	column	is	defined	with	the	SQL
Server	identity	property	and	the
DBPROP_COL_PRIMARYKEY
dwStatus	member	is	set	to
DBPROPSTATUS_CONFLICTING.

SQLOLEDB	returns
DB_S_ERRORSOCCURRED	when
DBPROP_COL_NULLABLE	and
DBPROP_COL_UNIQUE	are	both
VARIANT_TRUE	and	dwOption	is
not	DBPROPOPTIONS_REQUIRED.

DB_E_ERRORSOCCURRED	is
returned	when
DBPROP_COL_NULLABLE	and
DBPROP_COL_UNIQUE	are	both
VARIANT_TRUE	and	dwOption
equals

DBPROPOPTIONS_REQUIRED.
The	column	is	defined	with	the	SQL
Server	identity	property	and	the
DBPROP_COL_NULLABLE
dwStatus	member	is	set	to
DBPROPSTATUS_CONFLICTING.

SQLOLEDB	returns	an	error	from
SQL	Server	2000	when	the	consumer
attempts	to	create	a	UNIQUE
constraint	on	a	column	of	invalid	SQL
Server	2000	data	type.	UNIQUE
constraints	cannot	be	defined	on
columns	created	with	the	SQL	Server
2000	bit	data	type.

When	the	consumer	calls	ITableDefinition::CreateTable,	SQLOLEDB
interprets	table	properties	as	follows.

Property	ID Description
DBPROP_TBL_TEMPTABLER/W:	Read/write

Default:	VARIANT_FALSE
Description:	By	default,	SQLOLEDB
creates	tables	named	by	the	consumer.
When	VARIANT_TRUE,	SQLOLEDB
generates	a	temporary	table	name	for	the
consumer.	The	consumer	sets	the	pTableID
parameter	of	CreateTable	to	NULL.	The
ppTableID	parameter	must	contain	a	valid
pointer.

If	the	consumer	requests	that	a	rowset	be	opened	on	a	successfully	created	table,
SQLOLEDB	opens	a	cursor-supported	rowset.	Any	rowset	properties	can	be
indicated	in	the	property	sets	passed.

This	example	creates	a	SQL	Server	2000	table.

//	This	CREATE	TABLE	statement	shows	the	details	of	the	table	created	by	
//	the	following	example	code.
//
//	CREATE	TABLE	OrderDetails
//	(
//				OrderID						int						NOT	NULL
//				ProductID			int						NOT	NULL
//				CONSTRAINT	PK_OrderDetails
//									PRIMARY	KEY	CLUSTERED	(OrderID,	ProductID),
//				UnitPrice			money						NOT	NULL,
//				Quantity			int						NOT	NULL,
//				Discount			decimal(2,2)			NOT	NULL
//								DEFAULT	0
//)
//
//	The	PRIMARY	KEY	constraint	is	created	in	an	additional	example.
HRESULT	CreateTable
				(
				ITableDefinition*	pITableDefinition
)
				{
				DBID												dbidTable;
				const	ULONG					nCols	=	5;
				ULONG											nCol;
				ULONG											nProp;
				DBCOLUMNDESC				dbcoldesc[nCols];
				
				HRESULT									hr;

				//	Set	up	column	descriptions.	First,	set	default	property	values	for
				//		the	columns.
				for	(nCol	=	0;	nCol	<	nCols;	nCol++)

								{
								dbcoldesc[nCol].pwszTypeName	=	NULL;
								dbcoldesc[nCol].pTypeInfo	=	NULL;
								dbcoldesc[nCol].rgPropertySets	=	new	DBPROPSET;
								dbcoldesc[nCol].pclsid	=	NULL;
								dbcoldesc[nCol].cPropertySets	=	1;
								dbcoldesc[nCol].ulColumnSize	=	0;
								dbcoldesc[nCol].dbcid.eKind	=	DBKIND_NAME;
								dbcoldesc[nCol].wType	=	DBTYPE_I4;
								dbcoldesc[nCol].bPrecision	=	0;
								dbcoldesc[nCol].bScale	=	0;

								dbcoldesc[nCol].rgPropertySets[0].rgProperties	=	
												new	DBPROP[NCOLPROPS_MAX];
								dbcoldesc[nCol].rgPropertySets[0].cProperties	=	NCOLPROPS_MAX;
								dbcoldesc[nCol].rgPropertySets[0].guidPropertySet	=
												DBPROPSET_COLUMN;

								for	(nProp	=	0;	nProp	<	NCOLPROPS_MAX;	nProp++)
												{
												dbcoldesc[nCol].rgPropertySets[0].rgProperties[nProp].
																dwOptions	=	DBPROPOPTIONS_REQUIRED;
												dbcoldesc[nCol].rgPropertySets[0].rgProperties[nProp].colid
																	=	DB_NULLID;

												VariantInit(
																&(dbcoldesc[nCol].rgPropertySets[0].rgProperties[nProp].
																				vValue));
												
												dbcoldesc[nCol].rgPropertySets[0].rgProperties[nProp].
																vValue.vt	=	VT_BOOL;
												}
								}

				//	Set	the	column-specific	information.
				dbcoldesc[0].dbcid.uName.pwszName	=	L"OrderID";
				dbcoldesc[0].rgPropertySets[0].rgProperties[0].dwPropertyID	=	
								DBPROP_COL_NULLABLE;
				dbcoldesc[0].rgPropertySets[0].rgProperties[0].vValue.boolVal	=	
								VARIANT_FALSE;
				dbcoldesc[0].rgPropertySets[0].cProperties	=	1;

				dbcoldesc[1].dbcid.uName.pwszName	=	L"ProductID";
				dbcoldesc[1].rgPropertySets[0].rgProperties[0].dwPropertyID	=	
								DBPROP_COL_NULLABLE;
				dbcoldesc[1].rgPropertySets[0].rgProperties[0].vValue.boolVal	=	
								VARIANT_FALSE;
				dbcoldesc[1].rgPropertySets[0].cProperties	=	1;

				dbcoldesc[2].dbcid.uName.pwszName	=	L"UnitPrice";
				dbcoldesc[2].wType	=	DBTYPE_CY;
				dbcoldesc[2].rgPropertySets[0].rgProperties[0].dwPropertyID	=	
								DBPROP_COL_NULLABLE;
				dbcoldesc[2].rgPropertySets[0].rgProperties[0].vValue.boolVal	=	
								VARIANT_FALSE;
				dbcoldesc[2].rgPropertySets[0].cProperties	=	1;

				dbcoldesc[3].dbcid.uName.pwszName	=	L"Quantity";
				dbcoldesc[3].rgPropertySets[0].rgProperties[0].dwPropertyID	=	
								DBPROP_COL_NULLABLE;
				dbcoldesc[3].rgPropertySets[0].rgProperties[0].vValue.boolVal	=	
								VARIANT_FALSE;
				dbcoldesc[3].rgPropertySets[0].cProperties	=	1;

				dbcoldesc[4].dbcid.uName.pwszName	=	L"Discount";
				dbcoldesc[4].wType	=	DBTYPE_NUMERIC;

				dbcoldesc[4].bPrecision	=	2;
				dbcoldesc[4].bScale	=	2;
				dbcoldesc[4].rgPropertySets[0].rgProperties[0].dwPropertyID	=	
								DBPROP_COL_NULLABLE;
				dbcoldesc[4].rgPropertySets[0].rgProperties[0].vValue.boolVal	=	
								VARIANT_FALSE;
				dbcoldesc[4].rgPropertySets[0].rgProperties[1].dwPropertyID	=	
								DBPROP_COL_DEFAULT;
				dbcoldesc[4].rgPropertySets[0].rgProperties[1].vValue.vt	=	VT_BSTR;
				dbcoldesc[4].rgPropertySets[0].rgProperties[1].vValue.bstrVal	=
								SysAllocString(L"0");
				dbcoldesc[4].rgPropertySets[0].cProperties	=	2;

				//	Set	up	the	dbid	for	OrderDetails.
				dbidTable.eKind	=	DBKIND_NAME;
				dbidTable.uName.pwszName	=	L"OrderDetails";

				if	(FAILED(hr	=	pITableDefinition->CreateTable(NULL,	&dbidTable,
								nCols,	dbcoldesc,	NULL,	0,	NULL,	NULL,	NULL)))
								{
								DumpError(pITableDefinition,	IID_ITableDefinition);
								goto	SAFE_EXIT;
								}

SAFE_EXIT:
				//	Clean	up	dynamic	allocation	in	the	property	sets.
				for	(nCol	=	0;	nCol	<	nCols;	nCol++)
								{
								for	(nProp	=	0;	nProp	<	NCOLPROPS_MAX;	nProp++)
												{
												if	(dbcoldesc[nCol].rgPropertySets[0].rgProperties[nProp].
																vValue.vt	==	VT_BSTR)
																{

																SysFreeString(dbcoldesc[nCol].rgPropertySets[0].
																				rgProperties[nProp].vValue.bstrVal);
																}
												}
								
								delete	[]	dbcoldesc[nCol].rgPropertySets[0].rgProperties;
								delete	[]	dbcoldesc[nCol].rgPropertySets;
								}
				
				return	(hr);
				}

OLE	DB	and	SQL	Server

Adding	a	Column	to	a	SQL	Server	Table
SQLOLEDB	exposes	the	ITableDefinition::AddColumn	function,	allowing
consumers	to	add	a	column	to	a	Microsoft®	SQL	Server™	2000	table.

When	adding	a	column	to	a	SQL	Server	2000	table,	the	SQLOLEDB	consumer
is	constrained	as	follows:

If	DBPROP_COL_AUTOINCREMENT	is	VARIANT_TRUE,
DBPROP_COL_NULLABLE	must	be	VARIANT_FALSE.

If	the	column	is	defined	with	the	SQL	Server	2000	timestamp	data
type,	DBPROP_COL_NULLABLE	must	be	VARIANT_FALSE.

For	any	other	column	definition,	DBPROP_COL_NULLABLE	must	be
VARIANT_TRUE.

Consumers	specify	the	table	name	as	a	Unicode	character	string	in	the
pwszName	member	of	the	uName	union	in	the	pTableID	parameter.	The	eKind
member	of	pTableID	must	be	DBKIND_NAME.

The	new	column	name	is	specified	as	a	Unicode	character	string	in	the
pwszName	member	of	the	uName	union	in	the	dbcid	member	of	the
DBCOLUMNDESC	parameter	pColumnDesc.	The	dbcid	eKind	member	must
be	DBKIND_NAME.

See	Also

ALTER	TABLE

JavaScript:hhobj_1.Click()

OLE	DB	and	SQL	Server

Removing	a	Column	from	a	SQL	Server	Table
SQLOLEDB	exposes	the	ITableDefinition::DropColumn	function,	allowing
consumers	to	remove	a	column	from	a	Microsoft®	SQL	Server™	2000	table.

Consumers	specify	the	table	name	as	a	Unicode	character	string	in	the
pwszName	member	of	the	uName	union	in	the	pTableID	parameter.	The	eKind
member	of	pTableID	must	be	DBKIND_NAME.

The	consumer	indicates	a	column	name	in	the	pwszName	member	of	the	uName
union	in	the	pColumnID	parameter.	The	column	name	is	a	Unicode	character
string.	The	eKind	member	of	pColumnID	must	be	DBKIND_NAME.

Note		Removing	a	column	is	not	supported	for	a	consumer	connected	to	a	server
running	SQL	Server	version	6.5.	ITableDefinition::DropColumn	returns
E_NOTIMPL	when	the	consumer	application	attempts	to	remove	a	column.

OLE	DB	and	SQL	Server

Dropping	a	SQL	Server	Table
SQLOLEDB	exposes	the	ITableDefinition::DropTable	function,	allowing
consumers	to	remove	a	Microsoft®	SQL	Server™	2000	table	from	a	database.

Consumers	specify	the	table	name	as	a	Unicode	character	string	in	the
pwszName	member	of	the	uName	union	in	the	pTableID	parameter.	The	eKind
member	of	pTableID	must	be	DBKIND_NAME.

OLE	DB	and	SQL	Server

Creating	SQL	Server	Indexes
SQLOLEDB	exposes	the	IIndexDefinition::CreateIndex	function,	allowing
consumers	to	define	new	indexes	on	Microsoft®	SQL	Server™	2000	tables.

SQLOLEDB	creates	table	indexes	as	either	indexes	or	constraints.	SQL	Server
2000	gives	constraint-creation	privilege	to	the	table	owner,	database	owner,	and
members	of	certain	administrative	roles.	By	default,	only	the	table	owner	can
create	an	index	on	a	table.	Therefore,	CreateIndex	success	or	failure	depends
not	only	on	the	application	user's	access	rights	but	also	on	the	type	of	index
created.

Consumers	specify	the	table	name	as	a	Unicode	character	string	in	the
pwszName	member	of	the	uName	union	in	the	pTableID	parameter.	The	eKind
member	of	pTableID	must	be	DBKIND_NAME.

The	pIndexID	parameter	can	be	NULL,	and	if	it	is,	SQLOLEDB	creates	a
unique	name	for	the	index.	The	consumer	can	capture	the	name	of	the	index	by
specifying	a	valid	pointer	to	a	DBID	in	the	ppIndexID	parameter.

The	consumer	can	specify	the	index	name	as	a	Unicode	character	string	in	the
pwszName	member	of	the	uName	union	of	the	pIndexID	parameter.	The	eKind
member	of	pIndexID	must	be	DBKIND_NAME.

The	consumer	specifies	the	column	or	columns	participating	in	the	index	by
name.	For	each	DBINDEXCOLUMNDESC	structure	used	in	CreateIndex,	the
eKind	member	of	the	pColumnID	must	be	DBKIND_NAME.	The	name	of	the
column	is	specified	as	a	Unicode	character	string	in	the	pwszName	member	of
the	uName	union	in	the	pColumnID.

SQLOLEDB	and	SQL	Server	2000	support	ascending	order	on	values	in	the
index.	SQLOLEDB	returns	E_INVALIDARG	if	the	consumer	specifies
DBINDEX_COL_ORDER_DESC	in	any	DBINDEXCOLUMNDESC	structure.

CreateIndex	interprets	index	properties	as	follows.

Property	ID Description
DBPROP_INDEX_AUTOUPDATE R/W:	Read/write

Default:	None

Description:	SQLOLEDB	does
not	support	this	property.
Attempts	to	set	the	property	in
CreateIndex	cause	a
DB_S_ERRORSOCCURED
return	value.	The	dwStatus
member	of	the	property	structure
indicates
DBPROPSTATUS_BADVALUE.

DBPROP_INDEX_CLUSTERED R/W:	Read/write
Default:	VARIANT_FALSE
Description:	Controls	index
clustering.

VARIANT_TRUE:	SQLOLEDB
attempts	to	create	a	clustered
index	on	the	SQL	Server	2000
table.	SQL	Server	2000	supports
at	most	one	clustered	index	on
any	table.

VARIANT_FALSE:	SQLOLEDB
attempts	to	create	a	nonclustered
index	on	the	SQL	Server	2000
table.

DBPROP_INDEX_FILLFACTOR R/W:	Read/write
Default:	0
Description:	Specifies	the
percentage	of	an	index	page	used
for	storage.	For	more
information,	see	CREATE
INDEX.

The	type	of	the	variant	is	VT_I4.
The	value	must	be	greater	than	or
equal	to	1	and	less	than	or	equal
to	100.

JavaScript:hhobj_1.Click()

DBPROP_INDEX_INITIALIZE R/W:	Read/write
Default:	None
Description:	SQLOLEDB	does
not	support	this	property.
Attempts	to	set	the	property	in
CreateIndex	cause	a
DB_S_ERRORSOCCURED
return	value.	The	dwStatus
member	of	the	property	structure
indicates
DBPROPSTATUS_BADVALUE.

DBPROP_INDEX_NULLCOLLATION R/W:	Read/write
Default:	None
Description:	SQLOLEDB	does
not	support	this	property.
Attempts	to	set	the	property	in
CreateIndex	cause	a
DB_S_ERRORSOCCURED
return	value.	The	dwStatus
member	of	the	property	structure
indicates
DBPROPSTATUS_BADVALUE.

DBPROP_INDEX_NULLS R/W:	Read/write
Default:	None
Description:	SQLOLEDB	does
not	support	this	property.
Attempts	to	set	the	property	in
CreateIndex	cause	a
DB_S_ERRORSOCCURED
return	value.	The	dwStatus
member	of	the	property	structure
indicates
DBPROPSTATUS_BADVALUE.

DBPROP_INDEX_PRIMARYKEY R/W:	Read/write
Default:	VARIANT_FALSE
Description:	Creates	the	index	as
a	referential	integrity,	PRIMARY

KEY	constraint.

VARIANT_TRUE:	The	index	is
created	to	support	the	PRIMARY
KEY	constraint	of	the	table.	The
columns	must	be	nonnullable.

VARIANT_FALSE:	The	index	is
not	used	as	a	PRIMARY	KEY
constraint	for	row	values	in	the
table.

DBPROP_INDEX_SORTBOOKMARKSR/W:	Read/write
Default:	None
Description:	SQLOLEDB	does
not	support	this	property.
Attempts	to	set	the	property	in
CreateIndex	cause	a
DB_S_ERRORSOCCURED
return	value.	The	dwStatus
member	of	the	property	structure
indicates
DBPROPSTATUS_BADVALUE.

DBPROP_INDEX_TEMPINDEX R/W:	Read/write
Default:	None
Description:	SQLOLEDB	does
not	support	this	property.
Attempts	to	set	the	property	in
CreateIndex	cause	a
DB_S_ERRORSOCCURED
return	value.	The	dwStatus
member	of	the	property	structure
indicates
DBPROPSTATUS_BADVALUE.

DBPROP_INDEX_TYPE R/W:	Read/write
Default:	None
Description:	SQLOLEDB	does
not	support	this	property.

Attempts	to	set	the	property	in
CreateIndex	cause	a
DB_S_ERRORSOCCURED
return	value.	The	dwStatus
member	of	the	property	structure
indicates
DBPROPSTATUS_BADVALUE.

DBPROP_INDEX_UNIQUE R/W:	Read/write
Default:	VARIANT_FALSE
Description:	Creates	the	index	as
a	UNIQUE	constraint	on	the
participating	column	or	columns.

VARIANT_TRUE:	The	index	is
used	to	uniquely	constrain	row
values	in	the	table.

VARIANT_FALSE:	The	index
does	not	uniquely	constrain	row
values.

This	example	creates	a	primary	key	index:

//	This	CREATE	TABLE	statement	shows	the	referential	integrity	and	
//	PRIMARY	KEY	constraint	on	the	OrderDetails	table	that	will	be	created	
//	by	the	following	example	code.
//
//	CREATE	TABLE	OrderDetails
//	(
//				OrderID						int						NOT	NULL
//				ProductID			int						NOT	NULL
//								CONSTRAINT	PK_OrderDetails
//								PRIMARY	KEY	CLUSTERED	(OrderID,	ProductID),
//				UnitPrice			money						NOT	NULL,
//				Quantity			int						NOT	NULL,

//				Discount			decimal(2,2)			NOT	NULL
//								DEFAULT	0
//)
//
HRESULT	CreatePrimaryKey
				(
				IIndexDefinition*	pIIndexDefinition
)
				{
				HRESULT													hr	=	S_OK;

				DBID																dbidTable;
				DBID																dbidIndex;
				const	ULONG									nCols	=	2;
				ULONG															nCol;
				const	ULONG									nProps	=	2;
				ULONG															nProp;

				DBINDEXCOLUMNDESC			dbidxcoldesc[nCols];
				DBPROP														dbpropIndex[nProps];
				DBPROPSET											dbpropset;

				DBID*															pdbidIndexOut	=	NULL;

				//	Set	up	identifiers	for	the	table	and	index.
				dbidTable.eKind	=	DBKIND_NAME;
				dbidTable.uName.pwszName	=	L"OrderDetails";

				dbidIndex.eKind	=	DBKIND_NAME;
				dbidIndex.uName.pwszName	=	L"PK_OrderDetails";

				//	Set	up	column	identifiers.
				for	(nCol	=	0;	nCol	<	nCols;	nCol++)

								{
								dbidxcoldesc[nCol].pColumnID	=	new	DBID;
								dbidxcoldesc[nCol].pColumnID->eKind	=	DBKIND_NAME;

								dbidxcoldesc[nCol].eIndexColOrder	=	DBINDEX_COL_ORDER_ASC;
								}
				dbidxcoldesc[0].pColumnID->uName.pwszName	=	L"OrderID";
				dbidxcoldesc[1].pColumnID->uName.pwszName	=	L"ProductID";

				//	Set	properties	for	the	index.	The	index	is	clustered,
				//	PRIMARY	KEY.
				for	(nProp	=	0;	nProp	<	nProps;	nProp++)
								{
								dbpropIndex[nProp].dwOptions	=	DBPROPOPTIONS_REQUIRED;
								dbpropIndex[nProp].colid	=	DB_NULLID;

								VariantInit(&(dbpropIndex[nProp].vValue));
								
								dbpropIndex[nProp].vValue.vt	=	VT_BOOL;
								}
				dbpropIndex[0].dwPropertyID	=	DBPROP_INDEX_CLUSTERED;
				dbpropIndex[0].vValue.boolVal	=	VARIANT_TRUE;

				dbpropIndex[1].dwPropertyID	=	DBPROP_INDEX_PRIMARYKEY;
				dbpropIndex[1].vValue.boolVal	=	VARIANT_TRUE;

				dbpropset.rgProperties	=	dbpropIndex;
				dbpropset.cProperties	=	nProps;
				dbpropset.guidPropertySet	=	DBPROPSET_INDEX;

				hr	=	pIIndexDefinition->CreateIndex(&dbidTable,	&dbidIndex,	nCols,
								dbidxcoldesc,	1,	&dbpropset,	&pdbidIndexOut);

				//	Clean	up	dynamically	allocated	DBIDs.
				for	(nCol	=	0;	nCol	<	nCols;	nCol++)
								{
								delete	dbidxcoldesc[nCol].pColumnID;
								}

				return	(hr);
				}

OLE	DB	and	SQL	Server

Dropping	a	SQL	Server	Index
SQLOLEDB	exposes	the	IIndexDefinition::DropIndex	function,	allowing
consumers	to	remove	an	index	from	a	Microsoft®	SQL	Server™	2000	table.

SQLOLEDB	exposes	some	SQL	Server	2000	PRIMARY	KEY	and	UNIQUE
constraints	as	indexes.	The	table	owner,	database	owner,	and	some
administrative	role	members	can	alter	a	SQL	Server	2000	table,	dropping	a
constraint.	By	default,	only	the	table	owner	can	drop	an	existing	index.
Therefore,	DropIndex	success	or	failure	depends	not	only	on	the	application
user's	access	rights	but	also	on	the	type	of	index	indicated.

Consumers	specify	the	table	name	as	a	Unicode	character	string	in	the
pwszName	member	of	the	uName	union	in	the	pTableID	parameter.	The	eKind
member	of	pTableID	must	be	DBKIND_NAME.

Consumers	specify	the	index	name	as	a	Unicode	character	string	in	the
pwszName	member	of	the	uName	union	in	the	pIndexID	parameter.	The	eKind
member	of	pIndexID	must	be	DBKIND_NAME.	SQLOLEDB	does	not	support
the	OLE	DB	feature	of	dropping	all	indexes	on	a	table	when	pIndexID	is	null.	If
pIndexID	is	null,	E_INVALIDARG	is	returned.

See	Also

ALTER	TABLE

DROP	INDEX

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

OLE	DB	and	SQL	Server

Notifications
SQLOLEDB	supports	consumer	notification	on	rowset	modification.	The
consumer	receives	notification	at	every	phase	of	rowset	modification	and	on	any
attempted	change.

To	receive	notification,	the	consumer	queries	the	rowset	for	a	connection-point
interface,	then	connects	a	consumer-implemented	IRowsetNotify	interface	to	the
rowset.

The	consumer	can	cancel	a	rowset-modification	attempt	on	receiving
notification	from	SQLOLEDB.	Any	rowset-modification	attempt	can	be
canceled	prior	to	the	application	of	the	modification	by	SQLOLEDB.	That	is,
rowset	modifications	can	be	canceled	when	an	IRowsetNotify	member	function
indicates	the	event	phase	DBEVENTPHASE_OKTODO	or
DBEVENTPHASE_ABOUTTODO.

OLE	DB	and	SQL	Server

Data	Types	(OLE	DB)
To	execute	Transact-SQL	statements	and	process	the	results	by	using	the
SQLOLEDB	provider,	you	need	to	know	how	the	SQLOLEDB	provider	maps
Microsoft®	SQL	Server™	2000	data	types	to	OLE	DB	data	types	when	binding
parameters	or	columns	in	a	rowset,	and	when	using	the	ITableDefinition
interface	to	create	a	table	in	SQL	Server	2000.

OLE	DB	and	SQL	Server

Data	Type	Mapping	in	Rowsets	and	Parameters
In	rowsets	and	as	parameter	values,	SQLOLEDB	represents	Microsoft®	SQL
Server™	2000	data	by	using	the	following	OLE	DB	defined	data	types,	reported
in	the	functions	IColumnsInfo::GetColumnInfo	and
ICommandWithParameters::GetParameterInfo.

SQL	Server	data	type SQLOLEDB	data	type
bigint DBTYPE_I8
binary DBTYPE_BYTES
bit DBTYPE_BOOL
char DBTYPE_STR
datetime DBTYPE_DBTIMESTAMP
decimal DBTYPE_NUMERIC
float DBTYPE_R8
image DBTYPE_BYTES
int DBTYPE_I4
money DBTYPE_CY
nchar DBTYPE_WSTR
ntext DBTYPE_WSTR
numeric DBTYPE_NUMERIC
nvarchar DBTYPE_WSTR
real DBTYPE_R4
smalldatetime DBTYPE_DBTIMESTAMP
smallint DBTYPE_I2
smallmoney DBTYPE_CY
sql_variant DBTYPE_VARIANT,

DBTYPE_SQLVARIANT*
sysname DBTYPE_WSTR
text DBTYPE_STR
timestamp DBTYPE_BYTES
tinyint DBTYPE_UI1
uniqueidentifier DBTYPE_GUID

varbinary DBTYPE_BYTES
varchar DBTYPE_STR

SQLOLEDB	supports	consumer-requested	data	conversions	as	shown	in	the
illustration.

sql_variant	(OLE	DB)
The	sql_variant	data	type	column	can	contain	any	of	the	data	types	in	SQL
Server	except	large	objects	(LOBs),	such	as	text,	ntext,	and	image.	For
example,	the	column	can	contain	smallint	values	for	some	rows,	float	values	for
other	rows,	and	char/nchar	values	in	the	remainder.

The	sql_variant	data	type	is	similar	to	the	variant	data	type	in	Microsoft	Visual

Basic®	and	the	DBTYPE_VARIANT	in	OLE	DB.

When	sql_variant	data	is	fetched	as	DBTYPE_VARIANT	(defined	in	Oledb.h),
it	is	put	in	a	VARIANT	structure	(defined	in	Oaidl.h)	in	the	buffer.	But	the
subtypes	in	the	VARIANT	structure	may	not	map	to	subtypes	defined	in	the
sql_variant	data	type.	The	sql_variant	data	must	then	be	fetched	as
DBTYPE_SQLVARIANT	in	order	for	all	the	subtypes	to	match.

DBTYPE_SQLVARIANT	Data	Type
To	support	the	sql_variant	data	type,	the	Microsoft	OLE	DB	Provider	for	SQL
Server	(SQLOLEDB)	exposes	a	provider-specific	data	type	called
DBTYPE_SQLVARIANT.	When	sql_variant	data	is	fetched	in	as
DBTYPE_SQLVARIANT	(defined	in	Sqloleb.h),	it	is	stored	in	a	provider-
specific	SSVARIANT	structure	(defined	in	Sqloledb.h).	The	SSVARIANT
structure	contains	all	of	the	subtypes	that	match	the	subtypes	of	the	sql_variant
data	type.

The	session	property	SSPROP_ALLOWNATIVEVARIANT	must	also	be	set	to
TRUE.

Provider-Specific	Property	SSPROP_ALLOWNATIVEVARIANT
In	fetching	data,	you	can	specify	explicitly	what	kind	of	data	type	should	be
returned	for	a	column	or	for	a	parameter.	IColumnInfo	can	also	be	used	to	get
the	column	information	and	use	that	to	do	the	binding.	When	IColumnInfo	is
used	to	obtain	column	information	for	binding	purposes,	if	the
SSPROP_ALLOWNATIVEVARIANT	session	property	is	FALSE	(default
value),	DBTYPE_VARIANT	is	returned	for	sql_variant	columns.	If
SSPROP_ALLOWNATIVEVARIANT	property	is	FALSE
DBTYPE_SQLVARIANT	is	not	supported.	If
SSPROP_ALLOWNATIVEVARIANT	property	is	set	to	TRUE,	the	column	type
is	returned	as	DBTYPE_SQLVARIANT,	in	which	case	the	buffer	will	hold	the
SSVARIANT	structure.	In	fetching	sql_variant	data	as
DBTYPE_SQLVARIANT,	the	session	property
SSPROP_ALLOWNATIVEVARIANT	must	be	set	to	TRUE.

SSPROP_ALLOWNATIVEVARIANT	property	is	part	of	the	provider-specific
DBPROPSET_SQLSERVERSESSION	property	set,	and	is	a	session	property.

DBTYPE_VARIANT	applies	to	all	other	OLE	DB	providers.
DBTYPE_VARIANT	is	defined	in	Oledb.h,	whereas	DBTYPE_SQLVARIANT
is	specific	to	SQL	Server	and	is	defined	in	Sqloledb.h.

SSPROP_ALLOWNATIVEVARIANT
SSPROP_ALLOWNATIVEVARIANT	is	a	session	property	and	is	part	of
DBPROPSET,	SQLServer	Session	property	set.

SSPROP_ALLOWNATIVEVARIANTType:	VT_BOOL
R/W:	Read/Write	
Default:	VARIANT_FALSE
Description:	Determines	if	the	data
fetched	in	is	as
DBTYPE_VARIANT	or
DBTYPE_SQLVARIANT.

VARIANT_TRUE:	Column	type	is
returned	as
DBTYPE_SQLVARIANT	in	which
case	the	buffer	will	hold
SSVARIANT	structure.

VARIANT_FALSE:		Column	type
is	returned	as	DBTYPE_VARIANT
and	the	buffer	will	have	VARIANT
structure.

OLE	DB	and	SQL	Server

Data	Type	Mapping	in	ITableDefinition
When	creating	tables	by	using	the	ITableDefinition::CreateTable	function,	the
SQLOLEDB	consumer	can	specify	Microsoft®	SQL	Server™	2000	data	types
in	the	pwszTypeName	member	of	the	DBCOLUMNDESC	array	that	is	passed.	If
the	consumer	specifies	the	data	type	of	a	column	by	name,	then	OLE	DB	data
type	mapping,	represented	by	the	wType	member	of	the	DBCOLUMNDESC
structure,	is	ignored.

When	specifying	new	column	data	types	with	OLE	DB	data	types	using	the
DBCOLUMNDESC	structure	wType	member,	SQLOLEDB	maps	OLE	DB	data
types	as	follows.

OLE	DB	data	type
SQL	Server	
data	type Additional	information

DBTYPE_BOOL bit 	
DBTYPE_BYTES binary,

varbinary,	or
image

SQLOLEDB	inspects	the
ulColumnSize	member	of	the
DBCOLUMNDESC	structure.
Based	on	the	value,	and	version	of
the	SQL	Server	2000	instance,
SQLOLEDB	maps	the	type	to
image.

If	the	value	of	ulColumnSize	is
smaller	than	the	maximum	length
of	a	binary	data	type	column,
then	SQLOLEDB	inspects	the
DBCOLUMNDESC
rgPropertySets	member.	If
DBPROP_COL_FIXEDLENGTH
is	VARIANT_TRUE,
SQLOLEDB	maps	the	type	to
binary.	If	the	value	of	the
property	is	VARIANT_FALSE,
SQLOLEDB	maps	the	type	to

varbinary.	In	either	case,	the
DBCOLUMNDESC
ulColumnSize	member	determines
the	width	of	the	SQL	Server	2000
column	created.

DBTYPE_CY money 	
DBTYPE_DBTIMESTAMP datetime 	
DBTYPE_GUID uniqueidentifier 	
DBTYPE_I2 smallint 	
DBTYPE_I4 int 	
DBTYPE_NUMERIC numeric SQLOLEDB	inspects	the

DBCOLUMDESC	bPrecision	and
bScale	members	to	determine
precision	and	scale	for	the
numeric	column.

DBTYPE_R4 real 	
DBTYPE_R8 float 	
DBTYPE_STR char,	varchar,

or	text
SQLOLEDB	inspects	the
ulColumnSize	member	of	the
DBCOLUMNDESC	structure.
Based	on	the	value	and	version	of
the	SQL	Server	2000	instance,
SQLOLEDB	maps	the	type	to
text.

If	the	value	of	ulColumnSize	is
smaller	than	the	maximum	length
of	a	multibyte	character	data	type
column,	then	SQLOLEDB
inspects	the	DBCOLUMNDESC
rgPropertySets	member.	If
DBPROP_COL_FIXEDLENGTH
is	VARIANT_TRUE,
SQLOLEDB	maps	the	type	to
char.	If	the	value	of	the	property
is	VARIANT_FALSE,

SQLOLEDB	maps	the	type	to
varchar.	In	either	case,	the
DBCOLUMNDESC
ulColumnSize	member	determines
the	width	of	the	SQL	Server	2000
column	created.

DBTYPE_UI1 tinyint 	
DBTYPE_WSTR nchar,

nvarchar,	or
ntext

Using	DBTYPE_WSTR	to	define
a	column	is	supported	for	SQL
Server	version	7.0	servers	only.

SQLOLEDB	inspects	the
ulColumnSize	member	of	the
DBCOLUMNDESC	structure.
Based	on	the	value,	SQLOLEDB
maps	the	type	to	ntext.

If	the	value	of	ulColumnSize	is
smaller	than	the	maximum	length
of	a	Unicode	character	data	type
column,	then	SQLOLEDB
inspects	the	DBCOLUMNDESC
rgPropertySets	member.	If
DBPROP_COL_FIXEDLENGTH
is	VARIANT_TRUE,
SQLOLEDB	maps	the	type	to
nchar.	If	the	value	of	the	property
is	VARIANT_FALSE,
SQLOLEDB	maps	the	type	to
nvarchar.	In	either	case,	the
DBCOLUMNDESC
ulColumnSize	member	determines
the	width	of	the	SQL	Server	2000
column	created.

Note		When	creating	a	new	table,	SQLOLEDB	maps	only	the	OLE	DB	data	type

enumeration	values	specified	in	the	preceding	table.	Attempting	to	create	a	table
with	a	column	of	any	other	OLE	DB	data	type	generates	an	error.

OLE	DB	and	SQL	Server

Schema	Rowset	Support	in	SQLOLEDB
If	you	connect	to	an	earlier	version	of	Microsoft®	SQL	Server™	2000,	you	must
upgrade	the	catalog	stored	procedures	on	that	server	before	the	SQLOLEDB
provider	can	give	proper	results	in	schema	rowsets.	SQLOLEDB	also	supports
returning	schema	information	from	a	linked	server	when	processing	Transact-
SQL	distributed	queries.

The	following	tables	list	schema	rowsets	and	the	restriction	columns	supported
by	SQLOLEDB.

Schema	rowset Restriction	columns
DBSCHEMA_CATALOGS CATALOG_NAME
DBSCHEMA_COLUMN_PRIVILEGES All	the	restrictions	are

supported.

TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME
GRANTOR
GRANTEE

DBSCHEMA_COLUMNS All	the	restrictions	are
supported.

TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME

DBSCHEMA_FOREIGN_KEYS All	restrictions	are
supported.

PK_TABLE_CATALOG
PK_TABLE_SCHEMA
PK_TABLE_NAME
FK_TABLE_CATALOG

FK_TABLE_SCHEMA
FK_TABLE_NAME

DBSCHEMA_INDEXES Restrictions	1,	2,	3,	and	5
are	supported.

TABLE_CATALOG
TABLE_SCHEMA
INDEX_NAME
TABLE_NAME

DBSCHEMA_PRIMARYKEYS All	restrictions	are
supported.

TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME

DBSCHEMA_PROCEDURE_PARAMETERSAll	restrictions	are
supported.

PROCEDURE_CATALOG
PROCEDURE_SCHEMA
PROCEDURE_NAME
PARAMETER_NAME

DBSCHEMA_PROCEDURES Restrictions	1,	2,	and	3	are
supported.

PROCEDURE_CATALOG
PROCEDURE_SCHEMA
PROCEDURE_NAME

DBSCHEMA_PROVIDER_TYPES All	restrictions	are
supported.

DATA_TYPE
BEST_MATCH

DBSCHEMA_SCHEMATA All	restrictions	are
supported.

CATALOG_NAME
SCHEMA_NAME
SCHEMA_OWNER

DBSCHEMA_STATISTICS All	restrictions	are
supported.

TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME

DBSCHEMA_TABLE_CONSTRAINTS All	restrictions	are
supported.

CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME
TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
CONSTRAINT_TYPE

DBSCHEMA_TABLE_PRIVILEGES All	restrictions	are
supported.

TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
GRANTOR
GRANTEE

DBSCHEMA_TABLES All	restrictions	are
supported.

TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
TABLE_TYPE

DBSCHEMA_TABLES_INFO All	restrictions	are
supported.

TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
TABLE_TYPE

OLE	DB	and	SQL	Server

Catalog	Stored	Procedures
To	support	reporting	of	schema	data,	Microsoft®	SQL	Server™	2000	client
interfaces	rely	on	system	stored	procedures	that	extract	data	from	a	server's
catalog.	As	client	software	evolves,	the	catalog	stored	procedures	also	evolve.

When	a	SQLOLEDB	consumer	connects	to	SQL	Server	version	6.5,
SQLOLEDB	returns	an	informational	error	message	stating	that	the	catalog
stored	procedures	are	out	of	date.

SQLOLEDB	is	compatible	with	earlier	versions	of	SQL	Server.	However,	not	all
schema	rowsets	are	supported	on	earlier	versions	of	SQL	Server	unless	the
catalog	stored	procedures	are	upgraded	to	the	current	release	level.

To	upgrade	the	catalog	stored	procedures,	use	an	appropriate	client	utility	to	run
the	Transact-SQL	Instcat.sql	script	that	ships	with	the	most	recent	version	of
SQLOLEDB.	Instcat.sql	requires	system	administrator	privilege.

Depending	on	the	version	of	the	server,	Instcat.sql	execution	can	generate	many
error	messages.	All	generated	errors	can	be	safely	ignored	if	the	final	line	of
execution	output	indicates	success.

OLE	DB	and	SQL	Server

Distributed	Query	Support	in	Schema	Rowsets
To	support	Microsoft®	SQL	Server™	2000	distributed	queries,	the	SQLOLEDB
IDBSchemaRowset	interface	returns	meta	data	on	linked	servers.

If	the	DBPROPSET_SQLSERVERSESSION	property
SSPROP_QUOTEDCATALOGNAMES	is	VARIANT_TRUE,	a	quoted
identifier	can	be	specified	for	the	catalog	name	(for	example	"my.catalog").
When	restricting	schema	rowset	output	by	catalog,	SQLOLEDB	recognizes	a
two-part	name	containing	the	linked	server	and	catalog	name.	For	the	schema
rowsets	in	the	table	below,	specifying	a	two-part	catalog	name	as
linked_server.catalog	restricts	output	to	the	applicable	catalog	of	the	named
linked	server.

DBSCHEMA_CATALOGS CATALOG_NAME
DBSCHEMA_COLUMNS TABLE_CATALOG
DBSCHEMA_PRIMARY_KEYS TABLE_CATALOG
DBSCHEMA_TABLES TABLE_CATALOG
DBSCHEMA_FOREIGN_KEYS PK_TABLE_CATALOG

FK_TABLE_CATALOG
DBSCHEMA_INDEXES TABLE_CATALOG
DBSCHEMA_COLUMN_PRIVILEGES TABLE_CATALOG
DBSCHEMA_TABLE_PRIVILEGES TABLE_CATALOG

Note		To	restrict	a	schema	rowset	to	all	catalogs	from	a	linked	server,	use	the
syntax	linked_server.	(where	the	period	separator	is	part	of	the	name
specification).	This	syntax	is	equivalent	to	specifying	NULL	for	the	catalog
name	restriction	and	is	also	used	when	the	linked	server	indicates	a	data	source
that	does	not	support	catalogs.

SQLOLEDB	defines	the	schema	rowset	LINKEDSERVERS,	returning	a	list	of
OLE	DB	data	sources	registered	as	linked	servers.

See	Also

LINKEDSERVERS	Rowset	(OLE	DB)

OLE	DB	and	SQL	Server

Transactions
SQLOLEDB	implements	local	transaction	support.	The	consumer	can	use
distributed	or	coordinated	transactions	by	using	Microsoft	Distributed
Transaction	Coordinator	(MS	DTC).	For	consumers	requiring	transaction	control
that	spans	multiple	sessions,	SQLOLEDB	can	join	transactions	initiated	and
maintained	by	MS	DTC.

By	default,	SQLOLEDB	uses	an	autocommit	transaction	mode,	where	each
discrete	action	on	a	consumer	session	comprises	a	complete	transaction	against
an	instance	of	Microsoft®	SQL	Server™	2000.	SQLOLEDB	autocommit	mode
is	local	and	autocommit	transactions	never	span	more	than	a	single	session.

SQLOLEDB	exposes	the	ITransactionLocal	interface,	allowing	the	consumer
to	use	explicitly	and	implicitly	started	transactions	on	a	single	connection	to	an
instance	of	SQL	Server	2000.	SQLOLEDB	does	not	support	nested	local
transactions.

OLE	DB	and	SQL	Server

Supporting	Local	Transactions
A	session	delimits	transaction	scope	for	a	SQLOLEDB	local	transaction.	When,
at	the	direction	of	a	consumer,	SQLOLEDB	submits	a	request	to	a	connected
Microsoft®	SQL	Server™	2000	instance,	the	request	constitutes	a	unit	of	work
for	SQLOLEDB.	Local	transactions	always	wrap	one	or	more	units	of	work	on	a
single	SQLOLEDB	session.

Using	the	default	SQLOLEDB	autocommit	mode,	a	single	unit	of	work	is
treated	as	the	scope	of	a	local	transaction.	Only	one	unit	participates	in	the	local
transaction.	When	a	session	is	created,	SQLOLEDB	begins	a	transaction	for	the
session.	Upon	successful	completion	of	a	work	unit,	the	work	is	committed.	On
failure,	any	work	begun	is	rolled	back	and	the	error	is	reported	to	the	consumer.
In	either	case,	SQLOLEDB	begins	a	new	local	transaction	for	the	session	so	that
all	work	is	conducted	within	a	transaction.

The	SQLOLEDB	consumer	can	direct	more	precise	control	over	local
transaction	scope	by	using	the	ITransactionLocal	interface.	When	a	consumer
session	initiates	a	transaction,	all	session	work	units	between	the	transaction	start
point	and	the	eventual	Commit	or	Abort	method	calls	are	treated	as	an	atomic
unit.	SQLOLEDB	implicitly	begins	a	transaction	when	directed	to	do	so	by	the
consumer.	If	the	consumer	does	not	request	retention,	the	session	reverts	to
parent	transaction-level	behavior,	most	commonly	autocommit	mode.

SQLOLEDB	supports	ITransactionLocal::StartTransaction	parameters	as
follows.

Parameter Description
IsoLevel In	local	transactions,	SQLOLEDB	supports

ISOLATIONLEVEL_READCOMMITTED,
ISOLATIONLEVEL_REPEATABLEREAD,
ISOLATIONLEVEL_ISOLATED,	and	the	synonyms
ISOLATIONLEVEL_CURSORSTABILITY	and
ISOLATIONLEVEL_SERIALIZABLE.

IsoFlags SQLOLEDB	returns	an	error	for	any	value	other	than
zero.

POtherOptions If	not	NULL,	SQLOLEDB	requests	the	options	object

from	the	interface.	SQLOLEDB	returns
XACT_E_NOTIMEOUT	if	the	options	object's
ulTimeout	member	is	not	zero.	SQLOLEDB	ignores
the	value	of	the	szDescription	member.

PulTransactionLevel If	not	NULL,	SQLOLEDB	returns	the	nested	level	of
the	transaction.

For	local	transactions,	SQLOLEDB	implements	ITransaction::Abort
parameters	as	follows.

Parameter Description
pboidReason Ignored	if	set.	Can	safely	be	NULL.
Fretaining When	TRUE,	a	new	transaction	is	implicitly	begun	for

the	session.	The	transaction	must	be	committed	or
terminated	by	the	consumer.	When	FALSE,
SQLOLEDB	reverts	to	autocommit	mode	for	the
session.

Fasync Asynchronous	abort	is	not	supported	by	SQLOLEDB.
SQLOLEDB	returns	XACT_E_NOTSUPPORTED	if
the	value	is	not	FALSE.

For	local	transactions,	SQLOLEDB	implements	ITransaction::Commit
parameters	as	follows.

Parameter Description
fRetaining When	TRUE,	a	new	transaction	is	implicitly	begun	for

the	session.	The	transaction	must	be	committed	or
terminated	by	the	consumer.	When	FALSE,
SQLOLEDB	reverts	to	autocommit	mode	for	the
session.

GrfTC Asynchronous	and	phase	one	returns	are	not	supported
by	SQLOLEDB.	SQLOLEDB	returns
XACT_E_NOTSUPPORTED	for	any	value	other	than
XACTTC_SYNC.

GrfRM Must	be	0.

SQLOLEDB	rowsets	on	the	session	are	preserved	on	a	local	commit	or	abort
operation	based	on	the	values	of	the	rowset	properties
DBPROP_ABORTPRESERVE	and	DBPROP_COMMITPRESERVE.	By
default,	these	properties	are	both	VARIANT_FALSE	and	all	SQLOLEDB
rowsets	on	the	session	are	lost	following	an	abort	or	commit	operation.

SQLOLEDB	does	not	implement	the	ITransactionObject	interface.	A	consumer
attempt	to	retrieve	a	reference	on	the	interface	returns	E_NOINTERFACE.

This	example	uses	ITransactionLocal.

//	Interfaces	used	in	the	example.
IDBCreateSession*			pIDBCreateSession			=	NULL;
ITransaction*							pITransaction							=	NULL;
IDBCreateCommand*			pIDBCreateCommand			=	NULL;
IRowset*												pIRowset												=	NULL;

HRESULT													hr;

//	Get	the	command	creation	and	local	transaction	interfaces	for	the
//	session.
if	(FAILED(hr	=	pIDBCreateSession->CreateSession(NULL,
					IID_IDBCreateCommand,	(IUnknown**)	&pIDBCreateCommand)))
				{
				//	Process	error	from	session	creation.	Release	any	references	and
				//	return.
				}

if	(FAILED(hr	=	pIDBCreateCommand->QueryInterface(IID_ITransactionLocal,
				(void**)	&pITransaction)))
				{
				//	Process	error.	Release	any	references	and	return.
				}

//	Start	the	local	transaction.
if	(FAILED(hr	=	((ITransactionLocal*)	pITransaction)->StartTransaction(
				ISOLATIONLEVEL_REPEATABLEREAD,	0,	NULL,	NULL)))
				{
				//	Process	error	from	StartTransaction.	Release	any	references	and
				//	return.
				}

//	Get	data	into	a	rowset,	then	update	the	data.	Functions	are	not
//	illustrated	in	this	example.
if	(FAILED(hr	=	ExecuteCommand(pIDBCreateCommand,	&pIRowset)))
				{
				//	Release	any	references	and	return.
				}

//	If	rowset	data	update	fails,	then	terminate	the	transaction,	else
//	commit.	The	example	doesn't	retain	the	rowset.
if	(FAILED(hr	=	UpdateDataInRowset(pIRowset,	bDelayedUpdate)))
				{
				//	Get	error	from	update,	then	terminate.
				pITransaction->Abort(NULL,	FALSE,	FALSE);
				}
else
				{
				if	(FAILED(hr	=	pITransaction->Commit(FALSE,	XACTTC_SYNC,	0)))
								{
								//	Get	error	from	failed	commit.
								}
				}

if	(FAILED(hr))
				{
				//	Update	of	data	or	commit	failed.	Release	any	references	and

				//	return.
				}

//	Release	any	references	and	continue.

OLE	DB	and	SQL	Server

Supporting	Distributed	Transactions
SQLOLEDB	consumers	can	use	the	ITransactionJoin::JoinTransaction
method	to	participate	in	a	distributed	transaction	coordinated	by	MS	DTC.

MS	DTC	exposes	COM	objects	that	allow	clients	to	initiate	and	participate	in
coordinated	transactions	across	multiple	connections	to	a	variety	of	data	stores.
To	initiate	a	transaction,	the	SQLOLEDB	consumer	uses	the	MS	DTC
ITransactionDispenser	interface.	The	BeginTransaction	member	of
ITransactionDispenser	returns	a	reference	on	a	distributed	transaction	object.
This	reference	is	passed	to	SQLOLEDB	using	JoinTransaction.

MS	DTC	supports	asynchronous	commit	and	abort	on	distributed	transactions.
For	notification	on	asynchronous	transaction	status,	the	consumer	implements
the	ITransactionOutcomeEvents	interface	and	connects	the	interface	to	an	MS
DTC	transaction	object.

For	distributed	transactions,	SQLOLEDB	implements
ITransactionJoin::JoinTransaction	parameters	as	follows.

Parameter Description
punkTransactionCoordA	pointer	to	an	MS	DTC	transaction	object.
IsoLevel Ignored	by	SQLOLEDB.	The	isolation	level	for	MS

DTC-coordinated	transactions	is	determined	when
the	consumer	acquires	a	transaction	object	from	MS
DTC.

IsoFlags Must	be	0.	SQLOLEDB	returns
XACT_E_NOISORETAIN	if	any	other	value	is
specified	by	the	consumer.

POtherOptions If	not	NULL,	SQLOLEDB	requests	the	options
object	from	the	interface.	SQLOLEDB	returns
XACT_E_NOTIMEOUT	if	the	options	object's
ulTimeout	member	is	not	zero.	SQLOLEDB	ignores
the	value	of	the	szDescription	member.

This	example	coordinates	transaction	by	using	MS	DTC.

//	SQLOLEDB	interfaces	used	in	the	example.
IDBCreateSession*							pIDBCreateSession			=	NULL;
ITransactionJoin*							pITransactionJoin			=	NULL;
IDBCreateCommand*							pIDBCreateCommand			=	NULL;
IRowset*																pIRowset												=	NULL;

//	Transaction	dispenser	and	transaction	from	MS	DTC.
ITransactionDispenser*		pITransactionDispenser	=	NULL;
ITransaction*											pITransaction							=	NULL;

				HRESULT													hr;

//	Get	the	command	creation	interface	for	the	session.
if	(FAILED(hr	=	pIDBCreateSession->CreateSession(NULL,
					IID_IDBCreateCommand,	(IUnknown**)	&pIDBCreateCommand)))
				{
				//	Process	error	from	session	creation.	Release	any	references	and
				//	return.
				}

//	Get	a	transaction	dispenser	object	from	MS	DTC	and
//	start	a	transaction.
if	(FAILED(hr	=	DtcGetTransactionManager(NULL,	NULL,
				IID_ITransactionDispenser,	0,	0,	NULL,
				(void**)	&pITransactionDispenser)))
				{
				//	Process	error	message	from	MS	DTC,	release	any	references,
				//	and	then	return.
				}
if	(FAILED(hr	=	pITransactionDispenser->BeginTransaction(
				NULL,	ISOLATIONLEVEL_READCOMMITTED,	ISOFLAG_RETAIN_DONTCARE,
				NULL,	&pITransaction)))
				{

				//	Process	error	message	from	MS	DTC,	release	any	references,
				//	and	then	return.
				}

//	Join	the	transaction.
if	(FAILED(pIDBCreateCommand->QueryInterface(IID_ITransactionJoin,
				(void**)	&pITransactionJoin)))
				{
				//	Process	failure	to	get	an	interface,	release	any	references,	and
				//	then	return.
				}
if	(FAILED(pITransactionJoin->JoinTransaction(
				(IUnknown*)	pITransaction,	0,	0,	NULL)))
				{
				//	Process	join	failure,	release	any	references,	and	then	return.
				}

//	Get	data	into	a	rowset,	then	update	the	data.	Functions	are	not
//	illustrated	in	this	example.
if	(FAILED(hr	=	ExecuteCommand(pIDBCreateCommand,	&pIRowset)))
				{
				//	Release	any	references	and	return.
				}

//	If	rowset	data	update	fails,	then	terminate	the	transaction,	else
//	commit.	The	example	doesn't	retain	the	rowset.
if	(FAILED(hr	=	UpdateDataInRowset(pIRowset,	bDelayedUpdate)))
				{
				//	Get	error	from	update,	then	abort.
				pITransaction->Abort(NULL,	FALSE,	FALSE);
				}
else
				{

				if	(FAILED(hr	=	pITransaction->Commit(FALSE,	0,	0)))
								{
								//	Get	error	from	failed	commit.
								//
								//	If	a	distributed	commit	fails,	application	logic	could
								//	analyze	failure	and	retry.	In	this	example,	terminate.	The	
								//	consumer	must	resolve	this	somehow.
								pITransaction->Abort(NULL,	FALSE,	FALSE);
								}
				}

if	(FAILED(hr))
				{
				//	Update	of	data	or	commit	failed.	Release	any	references	and
				//	return.
				}

//	Un-enlist	from	the	distributed	transaction	by	setting	
//	the	transaction	object	pointer	to	NULL.
if	(FAILED(pITransactionJoin->JoinTransaction(
				(IUnknown*)	NULL,	0,	0,	NULL)))
				{
				//	Process	failure,	and	then	return.
				}

//	Release	any	references	and	continue.

OLE	DB	and	SQL	Server

Isolation	Levels	in	SQLOLEDB
Microsoft®	SQL	Server™	2000	clients	can	control	transaction-isolation	levels
for	a	connection.	To	control	transaction-isolation	level,	the	SQLOLEDB
consumer	uses:

DBPROPSET_SESSION	property
DBPROP_SESS_AUTOCOMMITISOLEVELS	for	SQLOLEDB
default	autocommit	mode.

The	SQLOLEDB	default	for	the	level	is
DBPROPVAL_TI_READCOMMITTED.

The	isoLevel	parameter	of	the	ITransactionLocal::StartTransaction
method	for	local	manual-commit	transactions.

The	isoLevel	parameter	of	the
ITransactionDispenser::BeginTransaction	method	for	MS	DTC-
coordinated	distributed	transactions.

SQL	Server	2000	allows	read-only	access	at	the	dirty	read	isolation	level.	All
other	levels	restrict	concurrency	by	applying	locks	to	SQL	Server	2000	objects.
As	the	client	requires	greater	concurrency	levels,	SQL	Server	2000	applies
greater	restrictions	on	concurrent	access	to	data.	To	maintain	the	highest	level	of
concurrent	access	to	data,	the	SQLOLEDB	consumer	should	intelligently	control
its	requests	for	specific	concurrency	levels.

See	Also

Isolation	Levels

JavaScript:hhobj_1.Click()

OLE	DB	and	SQL	Server

SQLOLEDB	Enumerator
Each	OLE	DB	provider	has	an	enumerator	that	a	consumer	can	call	to	get	a	list
of	data	sources	that	the	consumer	can	access	with	that	provider.	The
SQLOLEDB	provider	has	an	enumerator	that	lists	all	servers	you	can	connect	to
with	this	provider.

For	a	client	running	on	the	Microsoft®	Windows®	95	or	Windows	98	operating
system,	the	SQLOLEDB	enumerator	cannot	enumerate	the	list	of	servers
running	Microsoft	SQL	Server™	2000	because	the	enumerator	uses	the
NetServerEnum	API.	This	API	is	not	available	for	the	Windows	95	and
Windows	98	operating	systems	(it	is	available	only	for	the	Microsoft	Windows
NT®	4.0	and	Windows	2000	operating	systems).

To	enumerate	OLE	DB	data	sources

OLE	DB	and	SQL	Server

Errors
OLE/COM	objects	report	errors	through	the	HRESULT	return	code	of	object
member	functions.	An	OLE/COM	HRESULT	is	a	bit-packed	structure.	OLE
provides	macros	that	dereference	structure	members.

OLE/COM	specifies	the	IErrorInfo	interface.	The	interface	exposes	methods
such	as	GetDescription,	allowing	clients	to	extract	error	details	from
OLE/COM	servers.	OLE	DB	extends	IErrorInfo	to	support	the	return	of
multiple	error	information	packets	on	a	single-member	function	execution.

SQLOLEDB	exposes	the	OLE	DB	record-enhanced	IErrorInfo,	the	custom
ISQLErrorInfo,	and	the	provider-specific	ISQLServerErrorInfo	error	object
interfaces.

OLE	DB	and	SQL	Server

Return	Codes
At	the	most	basic	level,	a	member	function	either	succeeds	or	fails.	At	a
somewhat	more	precise	level,	a	function	can	succeed,	but	its	success	may	not	be
identical	to	that	intended	by	the	application	developer.

When	a	SQLOLEDB	member	function	returns	S_OK,	the	function	succeeded.

When	a	SQLOLEDB	member	function	does	not	return	S_OK,	the	OLE/COM
HRESULT-unpacking	FAILED	and	IS_ERROR	macros	can	determine	the
overall	success	or	failure	of	a	function.

If	FAILED	or	IS_ERROR	returns	TRUE,	the	SQLOLEDB	consumer	is	assured
that	member	function	execution	failed.	When	FAILED	or	IS_ERROR	return
FALSE,	and	the	HRESULT	does	not	equal	S_OK,	then	the	SQLOLEDB
consumer	is	assured	that	the	function	succeeded	in	some	sense.	The	consumer
can	retrieve	detailed	information	on	this	success-with-information	return	from
SQLOLEDB	error	interfaces.	Also,	in	the	case	where	a	function	clearly	fails	(the
FAILED	macro	returns	TRUE),	extended	error	information	is	available	from	the
SQLOLEDB	error	interfaces.

SQLOLEDB	consumers	commonly	encounter	the	DB_S_ERRORSOCCURRED
success-with-information	HRESULT	return.	Typically,	member	functions	that
return	DB_S_ERRORSOCCURRED	define	one	or	more	parameters	that	deliver
status	values	to	the	consumer.	No	error	information	may	be	available	to	the
consumer	other	than	that	returned	in	status-value	parameters,	so	consumers
should	implement	application	logic	that	retrieves	status	values	when	they	are
available.

SQLOLEDB	member	functions	do	not	return	the	success	code	S_FALSE.	Any
SQLOLEDB	member	function	always	returns	S_OK	to	indicate	success.

OLE	DB	and	SQL	Server

Information	in	OLE	DB	Error	Interfaces
SQLOLEDB	reports	some	error	and	status	information	in	the	OLE	DB-defined
error	interfaces	IErrorInfo,	IErrorRecords,	and	ISQLErrorInfo.

SQLOLEDB	supports	IErrorInfo	member	functions	as	follows.

Member	function Description
GetDescription Descriptive	error	message	string.
GetGUID GUID	of	the	interface	that	defined	the	error.
GetHelpContext Not	supported.	Returns	zero	always.
GetHelpFile Not	supported.	Returns	NULL	always.
GetSource String	Sqloledb.dll.

SQLOLEDB	supports	consumer-available	IErrorRecords	member	functions	as
follows.

Member	function Description
GetBasicErrorInfo Fills	an	ERRORINFO	structure	with	basic

information	about	an	error.	An	ERRORINFO
structure	contains	members	that	identify	the
HRESULT	return	value	for	the	error,	and	the
provider	and	interface	on	which	the	error	applies.

GetCustomErrorObjectReturns	a	reference	on	interfaces
ISQLErrorInfo,	and	ISQLServerErrorInfo.

GetErrorInfo Returns	a	reference	on	an	IErrorInfo	interface.
GetErrorParameters SQLOLEDB	does	not	return	parameters	to	the

consumer	through	GetErrorParameters.
GetRecordCount Count	of	error	records	available.

SQLOLEDB	supports	ISQLErrorInfo::GetSQLInfo	parameters	as	follows.

Parameter Description
pbstrSQLState Returns	a	SQLSTATE	value	for	the	error.

SQLSTATE	values	are	defined	in	the	SQL-92,
ODBC	and	ISO	SQL,	and	API	specifications.
Neither	Microsoft®	SQL	Server™	2000	nor
SQLOLEDB	define	implementation-specific
SQLSTATE	values.

plNativeError Returns	the	SQL	Server	2000	error	number	from
master.dbo.sysmessages	when	available.	Native
errors	are	available	after	a	successful	attempt	to
initialize	a	SQLOLEDB	data	source.	Prior	to	the
attempt,	SQLOLEDB	always	returns	zero.

OLE	DB	and	SQL	Server

SQL	Server	Error	Detail
SQLOLEDB	defines	the	provider-specific	error	interface
ISQLServerErrorInfo.	The	interface	returns	more	detail	about	a	Microsoft®
SQL	Server™	2000	error	and	is	valuable	when	command	execution	or	rowset
operations	fail.

There	are	two	ways	to	obtain	access	to	ISQLServerErrorInfo	interface.

The	consumer	may	call	IErrorRecords::GetCustomerErrorObject	(no	need
to	obtain	ISQLErrorInfo)	to	obtain	an	ISQLServerErrorInfo	pointer	(as
shown	in	the	following	code	sample).	Both	ISQLErrorInfo	and
ISQLServerErrorInfo	are	custom	OLE	DB	error	objects,	with
ISQLServerErrorInfo	being	the	interface	to	use	to	obtain	information	of	server
errors,	including	such	details	as	procedure	name	and	line	numbers.

//Get	SQLServer	custom	error	object
if(FAILED(hr=pIErrorRecords->GetCustomErrorObject(
																																nRec,
																								IID_ISQLServerErrorInfo,
																															(IUnknown**)&pISQLServerErrorErrorInfo)))
			

Another	way	to	get	an	ISQLServerErrorInfo	pointer	is	to	call	the
QueryInterface	method	on	an	already	obtained	ISQLErrorInfo	pointer.	Note
that	because	ISQLServerErrorInfo	contains	a	superset	of	the	information
available	from	ISQLErrorInfo,	it	makes	sense	to	go	directly	to
ISQLServerErrorInfo	through	GetCustomerErrorObject.

The	ISQLServerErrorInfo	interface	exposes	one	member	function,
GetErrorInfo.	The	function	returns	a	pointer	to	an	SSERRORINFO	structure
and	a	pointer	to	a	string	buffer.	Both	pointers	reference	memory	the	consumer
must	deallocate	by	using	the	IMalloc::Free	method.

SSERRORINFO	structure	members	are	interpreted	by	the	consumer	as	follows.

Member Description

pwszMessage SQL	Server	2000	error	message.	Identical	to	the	string
returned	in	IErrorInfo::GetDescription.

pwszServer Name	of	the	instance	of	SQL	Server	for	the	session.
pwszProcedure If	appropriate,	the	name	of	the	procedure	in	which	the

error	originated.	An	empty	string	otherwise.
lNative SQL	Server	native	error	number.	Identical	to	the	value

returned	in	the	plNativeError	parameter	of
ISQLErrorInfo::GetSQLInfo.

bState State	of	a	SQL	Server	2000	error	message.
bClass Severity	of	a	SQL	Server	2000	error	message.
wLineNumber When	applicable,	the	line	number	of	a	stored

procedure	on	which	the	error	occurred.

See	Also

RAISERROR

JavaScript:hhobj_1.Click()

OLE	DB	and	SQL	Server

SQLOLEDB	Example:	Retrieving	Error	Information
This	example	obtains	information	from	the	various	error	interfaces	exposed	by
SQLOLEDB.

//	DumpErrorInfo	queries	SQLOLEDB	error	interfaces,	retrieving	available
//	status	or	error	information.
void	DumpErrorInfo
				(
				IUnknown*	pObjectWithError,
				REFIID	IID_InterfaceWithError
)
				{

				//	Interfaces	used	in	the	example.
				IErrorInfo*													pIErrorInfoAll										=	NULL;
				IErrorInfo*													pIErrorInfoRecord							=	NULL;
				IErrorRecords*										pIErrorRecords										=	NULL;
				ISupportErrorInfo*						pISupportErrorInfo						=	NULL;
				ISQLErrorInfo*										pISQLErrorInfo										=	NULL;
				ISQLServerErrorInfo*				pISQLServerErrorInfo				=	NULL;

				//	Number	of	error	records.
				ULONG																			nRecs;
				ULONG																			nRec;

				//	Basic	error	information	from	GetBasicErrorInfo.
				ERRORINFO															errorinfo;

				//	IErrorInfo	values.
				BSTR																				bstrDescription;
				BSTR																				bstrSource;

				//	ISQLErrorInfo	parameters.
				BSTR																				bstrSQLSTATE;
				LONG																				lNativeError;

				//	ISQLServerErrorInfo	parameter	pointers.
				SSERRORINFO*												pSSErrorInfo	=	NULL;
				OLECHAR*																pSSErrorStrings	=	NULL;

				//	Hard-code	an	American	English	locale	for	the	example.
				DWORD																			MYLOCALEID	=	0x0409;

				//	Only	ask	for	error	information	if	the	interface	supports
				//	it.
			if	(FAILED(pObjectWithError->QueryInterface(IID_ISupportErrorInfo,
								(void**)	&pISupportErrorInfo)))
							{
								wprintf(L"SupportErrorErrorInfo	interface	not	supported");
								return;
								}
			if	(FAILED(pISupportErrorInfo->
								InterfaceSupportsErrorInfo(IID_InterfaceWithError)))
								{
								wprintf(L"InterfaceWithError	interface	not	supported");
								return;
								}

				//	Do	not	test	the	return	of	GetErrorInfo.	It	can	succeed	and	return
				//	a	NULL	pointer	in	pIErrorInfoAll.	Simply	test	the	pointer.
				GetErrorInfo(0,	&pIErrorInfoAll);

				if	(pIErrorInfoAll	!=	NULL)
								{
								//	Test	to	see	if	it's	a	valid	OLE	DB	IErrorInfo	interface	

								//	exposing	a	list	of	records.
								if	(SUCCEEDED(pIErrorInfoAll->QueryInterface(IID_IErrorRecords,
												(void**)	&pIErrorRecords)))
												{
												pIErrorRecords->GetRecordCount(&nRecs);

												//	Within	each	record,	retrieve	information	from	each
												//	of	the	defined	interfaces.
												for	(nRec	=	0;	nRec	<	nRecs;	nRec++)
																{
																//	From	IErrorRecords,	get	the	HRESULT	and	a	reference
																//	to	the	ISQLErrorInfo	interface.
																pIErrorRecords->GetBasicErrorInfo(nRec,	&errorinfo);
																pIErrorRecords->GetCustomErrorObject(nRec,
																				IID_ISQLErrorInfo,	(IUnknown**)	&pISQLErrorInfo);

																//	Display	the	HRESULT,	then	use	the	ISQLErrorInfo.
																wprintf(L"HRESULT:\t%#X\n",	errorinfo.hrError);

																if	(pISQLErrorInfo	!=	NULL)
																				{
																				pISQLErrorInfo->GetSQLInfo(&bstrSQLSTATE,	
																								&lNativeError);

																				//	Display	the	SQLSTATE	and	native	error	values.
																				wprintf(L"SQLSTATE:\t%s\nNative	Error:\t%ld\n",
																								bstrSQLSTATE,	lNativeError);
																				
																				//	SysFree	BSTR	references.
																				SysFreeString(bstrSQLSTATE);

																				//	Get	the	ISQLServerErrorInfo	interface	from
																				//	ISQLErrorInfo	before	releasing	the	reference.

																				pISQLErrorInfo->QueryInterface(
																								IID_ISQLServerErrorInfo,
																								(void**)	&pISQLServerErrorInfo);

																				pISQLErrorInfo->Release();
																				}

																//	Test	to	ensure	the	reference	is	valid,	then
																//	get	error	information	from	ISQLServerErrorInfo.
																if	(pISQLServerErrorInfo	!=	NULL)
																				{
																				pISQLServerErrorInfo->GetErrorInfo(&pSSErrorInfo,
																								&pSSErrorStrings);

																				//	ISQLServerErrorInfo::GetErrorInfo	succeeds
																				//	even	when	it	has	nothing	to	return.	Test	the
																				//	pointers	before	using.
																				if	(pSSErrorInfo)
																								{
																								//	Display	the	state	and	severity	from	the
																								//	returned	information.	The	error	message	comes
																								//	from	IErrorInfo::GetDescription.
																								wprintf(L"Error	state:\t%d\nSeverity:\t%d\n",
																																pSSErrorInfo->bState,
																																pSSErrorInfo->bClass);

																								//	IMalloc::Free	needed	to	release	references
																								//	on	returned	values.	For	the	example,	assume
																								//	the	g_pIMalloc	pointer	is	valid.
																								g_pIMalloc->Free(pSSErrorStrings);
																								g_pIMalloc->Free(pSSErrorInfo);
																								}

																				pISQLServerErrorInfo->Release();
																				}

																if	(SUCCEEDED(pIErrorRecords->GetErrorInfo(nRec,
																				MYLOCALEID,	&pIErrorInfoRecord)))
																				{
																				//	Get	the	source	and	description	(error	message)
																				//	from	the	record's	IErrorInfo.
																				pIErrorInfoRecord->GetSource(&bstrSource);
																				pIErrorInfoRecord->GetDescription(&bstrDescription);

																				if	(bstrSource	!=	NULL)
																								{
																								wprintf(L"Source:\t\t%s\n",	bstrSource);
																								SysFreeString(bstrSource);
																								}
																				if	(bstrDescription	!=	NULL)
																								{
																								wprintf(L"Error	message:\t%s\n",
																												bstrDescription);
																								SysFreeString(bstrDescription);
																								}

																				pIErrorInfoRecord->Release();
																				}
																}

												pIErrorRecords->Release();
												}
								else
												{
												//	IErrorInfo	is	valid;	get	the	source	and
												//	description	to	see	what	it	is.

												pIErrorInfoAll->GetSource(&bstrSource);
												pIErrorInfoAll->GetDescription(&bstrDescription);

												if	(bstrSource	!=	NULL)
																{
																wprintf(L"Source:\t\t%s\n",	bstrSource);
																SysFreeString(bstrSource);
																}
												if	(bstrDescription	!=	NULL)
																{
																wprintf(L"Error	message:\t%s\n",	bstrDescription);
																SysFreeString(bstrDescription);
																}
												}

								pIErrorInfoAll->Release();
								}
				else
								{
								wprintf(L"GetErrorInfo	failed.");
								}

				pISupportErrorInfo->Release();

				return;
				}

OLE	DB	and	SQL	Server

SQL	Server	Message	Results
These	Transact-SQL	statements	do	not	generate	SQLOLEDB	rowsets	or	a	count
of	affected	rows	when	executed:

PRINT

RAISERROR	with	a	severity	of	10	or	lower

DBCC

SET	SHOWPLAN

SET	STATISTICS

These	statements	either	return	one	or	more	informational	messages,	or	cause
Microsoft®	SQL	Server™	2000	to	return	informational	messages	in	place	of
rowset	or	count	results.	On	successful	execution,	SQLOLEDB	returns	S_OK	and
the	message	or	messages	are	available	to	the	SQLOLEDB	consumer.

SQLOLEDB	returns	S_OK	and	has	one	or	more	informational	messages
available	following	the	execution	of	many	Transact-SQL	statements	or	the
consumer	execution	of	a	SQLOLEDB	member	function.

The	SQLOLEDB	consumer	allowing	dynamic	specification	of	query	text	should
check	error	interfaces	after	every	member	function	execution	regardless	of	the
value	of	the	return	code,	the	presence	or	absence	of	a	returned	IRowset	or
IMultipleResults	interface	reference,	or	a	count	of	affected	rows.

OLE	DB	and	SQL	Server

SQL	Server	OLE	DB	Programmer's	Reference
SQLOLEDB,	the	Microsoft	OLE	DB	Provider	for	SQL	Server,	exposes
interfaces	to	consumers	wanting	access	to	data	on	one	or	more	computers
running	Microsoft®	SQL	Server™	2000.	SQLOLEDB	is	an	OLE	DB	version
2.0–compliant	provider.

This	OLE	DB	programming	reference	does	not	document	all	of	the	OLE	DB
interfaces	and	methods,	only	those	interfaces	and	methods	that	exhibit	provider-
specific	behavior	when	using	SQLOLEDB.	For	a	full	description	of	the	OLE	DB
API,	see	the	Microsoft	OLE	DB	Software	Development	Kit	(SDK).	The	OLE
DB	SDK	is	part	of	the	Microsoft	Developer	Network	(MSDN®)	and	can	be
downloaded	from	Microsoft	Web	site.

OLE	DB	and	SQL	Server

Interfaces	(OLE	DB)
The	SQLOLEDB	provider	supports	these	provider-specific	interfaces:

IRowsetFastLoad

ISQLServerErrorInfo

OLE	DB	and	SQL	Server

IRowsetFastLoad	(OLE	DB)
IRowsetFastLoad	exposes	support	for	Microsoft®	SQL	Server™	2000	bulk-
copy	processing.	SQLOLEDB	consumers	use	the	interface	to	rapidly	add	data	to
an	existing	SQL	Server	2000	table.

Method Description
Commit Marks	the	end	of	a	batch	of	inserted	rows	and	writes

the	rows	to	the	SQL	Server	2000	table.
InsertRow Adds	a	row	to	the	bulk-copy	rowset.

See	Also

Bulk-Copy	Rowsets

OLE	DB	and	SQL	Server

IRowsetFastLoad::Commit	(OLE	DB)
Marks	the	end	of	a	batch	of	inserted	rows	and	writes	the	rows	to	the	Microsoft®
SQL	Server™	2000	table.

Syntax
HRESULT	Commit(BOOLEAN	bDone);

Arguments
bDone	[in]

If	FALSE,	the	rowset	maintains	validity	and	can	be	used	by	the	consumer	for
additional	row	insertion.	If	TRUE,	the	rowset	loses	validity	and	no	further
insertion	can	be	done	by	the	consumer.

Return	Code	Values
S_OK

The	method	succeeded	and	all	inserted	data	has	been	written	to	the	SQL
Server	2000	table.

E_FAIL

An	error	occurred.

E_UNEXPECTED

The	method	was	called	on	a	bulk-copy	rowset	previously	invalidated	by
IRowsetFastLoad::Commit.

Remarks
A	SQLOLEDB	bulk-copy	rowset	behaves	as	a	delayed-update	mode	rowset.	As
the	user	inserts	row	data	through	the	rowset,	inserted	rows	are	treated	in	the
same	fashion	as	pending	inserts	on	a	rowset	supporting	IRowsetUpdate.

The	consumer	must	call	Commit	on	the	bulk-copy	rowset	to	write	inserted	rows
to	the	SQL	Server	2000	table	in	the	same	way	as	the	IRowsetUpdate::Update
member	function	is	used	to	submit	pending	rows	to	an	instance	of	SQL	Server
2000.

If	the	consumer	releases	its	reference	on	the	bulk-copy	rowset	without	calling
Commit,	all	inserted	rows	not	previously	written	are	lost.

The	consumer	can	batch	inserted	rows	by	calling	Commit	with	bDone	FALSE.
When	bDone	is	TRUE,	the	rowset	becomes	invalid.	An	invalid	bulk-copy	rowset
supports	only	ISupportErrorInfo	and	IRowsetFastLoad::Release.

OLE	DB	and	SQL	Server

IRowsetFastLoad::InsertRow	(OLE	DB)
Adds	a	row	to	the	bulk-copy	rowset.

Syntax
HRESULT	InsertRow(HACCESSOR	hAccessor,
void*	pData);

Arguments
hAccessor	[in]

Is	the	handle	of	the	accessor	defining	the	row	data	for	bulk	copy.	The
accessor	referenced	is	a	row	accessor,	binding	consumer-owned	memory
containing	data	values.

pData	[in]

Is	a	pointer	to	the	consumer-owned	memory	containing	data	values.

Return	Code	Values
S_OK

The	method	succeeded.	Any	bound	status	values	for	all	columns	have	value
DBSTATUS_S_OK	or	DBSTATUS_S_NULL.

E_FAIL

An	error	occurred.	Error	information	is	available	from	the	rowset's	error
interfaces.

E_INVALIDARG

pData	was	a	NULL	pointer.

E_OUTOFMEMORY

SQLOLEDB	was	unable	to	allocate	sufficient	memory	to	complete	the

request.

E_UNEXPECTED

The	method	was	called	on	a	bulk-copy	rowset	previously	invalidated	by
IRowsetFastLoad::Commit(TRUE).

DB_E_BADACCESSORHANDLE

The	hAccessor	provided	by	the	consumer	was	invalid.

DB_E_BADACCESSORTYPE

The	specified	accessor	was	not	a	row	accessor	or	did	not	specify	consumer-
owned	memory.

Remarks
An	error	converting	consumer	data	to	the	Microsoft®	SQL	Server™	2000	data
type	for	a	column	causes	an	E_FAIL	return	from	SQLOLEDB.	Data	can	be
transmitted	to	SQL	Server	on	any	InsertRow	or	only	on	Commit.	Therefore,	the
consumer	application	can	call	InsertRow	many	times	with	erroneous	data	before
it	receives	notice	that	a	data	type	conversion	error	exists.	Because	Commit
ensures	that	all	data	is	correctly	specified	by	the	consumer,	the	consumer	can	use
Commit	appropriately	to	validate	data	as	necessary.

SQLOLEDB	bulk-copy	rowsets	are	write-only.	SQLOLEDB	exposes	no
methods	allowing	consumer	query	of	the	rowset.	To	terminate	processing,	the
consumer	can	release	its	reference	on	IRowsetFastLoad	without	calling
Commit.	There	are	no	facilities	for	accessing	a	consumer-inserted	row	in	the
rowset	and	changing	its	values,	or	removing	it	individually	from	the	rowset.

Bulk-copied	rows	are	formatted	on	the	server	for	SQL	Server	version	7.0.	The
row	format	is	affected	by	any	options	that	may	have	been	set	for	the	connection
or	session	such	as	ANSI_PADDING.	This	option	is	set	on	by	default	for	any
connection	made	through	SQLOLEDB.	If	connected	to	SQL	Server	6.5,	the
bulk-copied	rows	are	formatted	on	the	client	and	none	of	the	option	settings	have
any	effect.

OLE	DB	and	SQL	Server

ISQLServerErrorInfo	(OLE	DB)
SQLOLEDB	defines	the	ISQLServerErrorInfo	error	interface.	The	interface
returns	details	from	a	Microsoft®	SQL	Server™	2000	error,	including	its
severity	and	state.

Method Description
GetErrorInfo Returns	a	pointer	to	a	SQLOLEDB	SSERRORINFO

structure	containing	SQL	Server	2000	error	detail.

See	Also

SQL	Server	Error	Detail

OLE	DB	and	SQL	Server

ISQLServerErrorInfo::GetErrorInfo	(OLE	DB)
Returns	a	pointer	to	a	SQLOLEDB	SSERRORINFO	structure	containing
Microsoft®	SQL	Server™	2000	error	detail.

Syntax
HRESULT	GetErrorInfo(SSERRORINFO**ppSSErrorInfo,
OLECHAR**ppErrorStrings);

Arguments
ppSSErrorInfo	[out]

Is	a	pointer	to	an	SSERRORINFO	structure.	If	the	method	fails	or	there	is	no
SQL	Server	2000	information	associated	with	an	error,	the	provider	does	not
allocate	any	memory,	and	ensures	that	**ppSSErrorInfo	is	a	null	pointer	on
output.

ppErrorStrings	[out]

Is	a	pointer	to	a	Unicode	character-string	pointer.	If	the	method	fails	or	there
is	no	SQL	Server	information	associated	with	an	error,	the	provider	does	not
allocate	any	memory,	and	ensures	that	**ppErrorStrings	is	a	null	pointer	on
output.	Freeing	ppErrorStrings	with	the	IMalloc::Free	function	frees	the
three	individual	string	members	of	the	returned	SSERRORINFO	structure,	as
the	memory	is	allocated	in	a	block.

Return	Code	Values
S_OK

The	method	succeeded.

E_INVALIDARG

Either	ppSSErrorInfo	or	ppErrorStrings	was	NULL.

E_OUTOFMEMORY

SQLOLEDB	was	unable	to	allocate	sufficient	memory	to	complete	the
request.

Remarks
SQLOLEDB	allocates	memory	for	the	SSERRORINFO	and	OLECHAR	strings
returned	through	the	pointers	passed	by	the	consumer.	The	consumer	must
deallocate	this	memory	by	using	IMalloc::Free	when	it	no	longer	requires
access	to	the	error	data.

The	SSERRORINFO	structure	is	defined	as	follows:

typedef	struct	tagSSErrorInfo
{
LPOLESTR	pwszMessage;
LPOLESTR	pwszServer;
LPOLESTR	pwszProcedure;
LONG	lNative;
BYTE	bState;
BYTE	bClass;
WORD	wLineNumber;
}
SSERRORINFO;

Member Description
pwszMessage Error	message	from	SQL	Server	2000.	The	message	is

returned	through	the	IErrorInfo::GetDescription
method.

pwszServer Name	of	the	instance	of	SQL	Server	2000	on	which	the
error	occurred.

pwszProcedure Name	of	the	stored	procedure	generating	the	error	if	the
error	occurred	in	a	stored	procedure;	otherwise,	an
empty	string.

lNative SQL	Server	error	number.	The	error	number	is	identical
to	that	returned	in	the	plNativeError	parameter	of	the
ISQLErrorInfo::GetSQLInfo	method.

bState State	of	a	SQL	Server	2000	error.
bClass Severity	of	a	SQL	Server	2000	error.
wLineNumber When	applicable,	the	line	of	a	SQL	Server	2000	stored

procedure	that	generated	the	error	message.	The	default
value	if	there	is	no	procedure	involved	is	1.

Pointers	in	the	structure	reference	addresses	in	the	string	returned	in
ppErrorStrings.

See	Also

RAISERROR

JavaScript:hhobj_1.Click()

OLE	DB	and	SQL	Server

Schema	Rowsets	(OLE	DB)
SQLOLEDB	exposes	the	database	schema	rowset	LINKEDSERVERS,
enumerating	organization	data	sources	that	can	participate	in	Microsoft®	SQL
Server™	2000	distributed	queries.

See	Also

Schema	Rowset	Support	in	SQLOLEDB

OLE	DB	and	SQL	Server

LINKEDSERVERS	Rowset	(OLE	DB)
The	LINKEDSERVERS	rowset	enumerates	organization	data	sources	that	can
participate	in	Microsoft®	SQL	Server™	2000	distributed	queries.

The	LINKEDSERVERS	rowset	contains	the	following	columns.

Column	name Type	indicator Description
SVR_NAME DBTYPE_WSTRName	of	a	linked	server.
SVR_PRODUCT DBTYPE_WSTRManufacturer	or	other	name

identifying	the	type	of	data	store
represented	by	the	name	of	the	linked
server.

SVR_PROVIDERNAME DBTYPE_WSTR Friendly	name	of	the	OLE	DB
provider	used	to	consume	data	from
the	server.

SVR_DATASOURCE DBTYPE_WSTROLE	DB
DBPROP_INIT_DATASOURCE
string	used	to	acquire	a	data	source
from	the	provider.

SVR_PROVIDERSTRINGDBTYPE_WSTROLE	DB
DBPROP_INIT_PROVIDERSTRING
value	used	to	acquire	a	data	source
from	the	provider.

SVR_LOCATION DBTYPE_WSTROLE	DB
DBPROP_INIT_LOCATION	string
used	to	acquire	a	data	source	from	the
provider.

The	rowset	is	sorted	on	SRV_NAME	and	a	single	restriction	is	supported	on
SRV_NAME.

	Programming OLE DB SQL Server Applications
	Getting Started with the OLE DB Provider for SQL Server
	OLE DB Syntax Conventions
	System Requirements for the OLE DB Provider for SQL Server
	Installing the OLE DB Provider for SQL Server
	Upgrading the Catalog Stored Procedures (OLE DB)

	Creating an OLE DB Application
	Establishing a Connection to a Data Source
	Executing a Command
	Processing Results
	Compiling OLE DB Applications
	About OLE DB Properties

	Data Source Objects
	Data Source Properties
	Data Source Information Properties
	Initialization and Authorization Properties
	Sessions
	Session Properties
	Persisted Data Source Objects

	Commands
	Command Syntax
	Command Parameters
	Preparing Commands
	Commands Generating Multiple-Rowset Results
	Using IMultipleResults to Process Multiple Result Sets

	Rowsets
	Creating a Rowset with IOpenRowset
	Creating Rowsets with ICommand::Execute
	Rowset Properties and Behaviors
	Rowsets and SQL Server Cursors
	Fetching Rows
	Next Fetch Position

	Fetching a Single Row Using IRow
	Using IRow::GetColumns
	Fetching BLOB Data Using IRow
	Fetching BLOB Data Using IRow::GetColumns and ISequentialStream
	Fetching BLOB Data Using IRow::Open and ISequentialStream

	Bookmarks

	Running Stored Procedures (OLE DB)
	Calling a Stored Procedure (OLE DB)
	Running User-Defined Functions (OLE DB)
	Bulk-Copy Rowsets
	Enabling a Session for IRowsetFastLoad
	IRowsetFastLoad Rowsets

	Updating Data in Rowsets
	Updating Data in SQL Server Cursors
	Resynchronizing Rows

	BLOBs and OLE Objects
	Getting Large Data
	Setting Large Data

	Tables and Indexes
	Creating SQL Server Tables
	Adding a Column to a SQL Server Table
	Removing a Column from a SQL Server Table
	Dropping a SQL Server Table
	Creating SQL Server Indexes
	Dropping a SQL Server Index

	Notifications
	Data Types (OLE DB)
	Data Type Mapping in Rowsets and Parameters
	Data Type Mapping in ITableDefinition

	Schema Rowset Support in SQLOLEDB
	Catalog Stored Procedures
	Distributed Query Support in Schema Rowsets

	Transactions
	Supporting Local Transactions
	Supporting Distributed Transactions
	Isolation Levels in SQLOLEDB

	SQLOLEDB Enumerator
	Errors
	Return Codes
	Information in OLE DB Error Interfaces
	SQL Server Error Detail
	SQLOLEDB Example: Retrieving Error Information
	SQL Server Message Results

	SQL Server OLE DB Programmer's Reference
	Interfaces (OLE DB)
	IRowsetFastLoad (OLE DB)
	IRowsetFastLoad::Commit (OLE DB)
	IRowsetFastLoad::InsertRow (OLE DB)

	ISQLServerErrorInfo (OLE DB)
	ISQLServerErrorInfo::GetErrorInfo (OLE DB)

	Schema Rowsets (OLE DB)
	LINKEDSERVERS Rowset (OLE DB)

