
Analysis	Services	Programming

Programming	Analysis	Services	Applications
Microsoft®	SQL	Server™	2000	Analysis	Services	provides	support	for	you	to
create	and	integrate	custom	applications	that	enhance	your	online	analytical
processing	(OLAP)	and	data	mining	installation.

Analysis	Services	includes	the	Analysis	server	and	PivotTable®	Service.	The
Analysis	server	manages	and	stores	multidimensional	information	and	serves
client	application	requests	for	OLAP	data.	PivotTable	Service	is	an	OLE	DB	for
OLAP	provider	that	connects	client	applications	to	the	Analysis	server	and
manages	offline	cubes.	A	repository	of	meta	data	contains	definitions	of	OLAP
data	objects	such	as	cubes	and	their	elements.

An	object	model,	Decision	Support	Objects	(DSO),	provides	support	for	the
Analysis	Manager	user	interface	and	for	custom	applications	that	manage	OLAP
meta	data	and	control	the	server.	An	interface,	IOlapAddIn,	enables	your
applications	to	extend	and	interact	with	the	user	interface.	PivotTable	Service
provides	access	to	OLAP	data	from	the	server	and	the	ability	to	create	local
cubes.

You	can	create	applications	that:

Manage	the	Analysis	server	and	create	and	maintain	OLAP	and	data
mining	objects	such	as	cubes,	dimensions,	security	roles,	and	data
mining	models.

Extend	the	user	interface	by	adding	new	objects	to	the	object	tree	pane
and	by	adding	and	responding	to	new	menu	choices.

Connect	to	the	Analysis	server,	query	data	in	cubes,	and	create	local
cubes.

Combine	any	or	all	of	these	functions.

This	section	contains	the	following	topics.

Topic Description
Analysis	Services
Architecture

Information	about	the	architecture	of	Analysis
Services	and	its	components

Analysis	Services
Component	Tools

Information	about	the	tools	in	Analysis	Services
that	you	can	use	to	create	administrative	support
applications	and	client	data	access	applications

SQL	in	Analysis	Services Details	of	the	implementation	of	SQL	in
Analysis	Services

Decision	Support	Objects Information	about	the	Analysis	Services	server
object	model,	the	component	tool	for	managing
OLAP,	and	data	mining	objects

Add-ins Information	about	the	IOlapAddIn	interface
you	can	use	in	your	applications	to	interact	with
the	Analysis	Manager	user	interface

PivotTable	Service Information	about	the	client	application	service
you	can	use	with	applications	that	query	OLAP
and	data	mining	data	and	create	local	cubes	and
mining	models

Analysis	Services
Programming	Samples

Information	about	the	samples	that	illustrate
development	of	applications	for	Analysis
Services

Analysis	Services	Programming

Analysis	Services	Architecture
Microsoft®	SQL	Server™	2000	Analysis	Services	includes	the	Analysis	server
and	PivotTable®	Service.	The	Analysis	server	creates	and	manages
multidimensional	data	cubes	for	online	analytical	processing	(OLAP)	and
provides	multidimensional	data	to	PivotTable	Service,	which	in	turn	provides
this	data	to	clients	through
Microsoft	ActiveX®	Data	Objects	(Multidimensional)	(ADO	MD)	and	OLE	DB
for	OLAP	provider	services.

The	server	stores	cube	meta	data	(cube	definition	specifications)	in	a	repository.
Completed	cubes	can	be	stored	in	a	variety	of	storage	modes:	as
multidimensional	database	files	(MOLAP),	as	tables	in	a	relational	database
(ROLAP),	or	as	a	hybrid	of	multidimensional	database	files	and	relational	tables
(HOLAP).

Source	data	for	multidimensional	cubes	resides	in	relational	databases	where	the
data	has	been	transformed	into	a	star	or	snowflake	schema	typically	used	in
OLAP	data	warehouse	systems.	Analysis	Services	can	work	with	many
relational	databases	that	support	connections	using	ODBC	or	OLE	DB.	When
used	as	part	of	SQL	Server	2000,	Analysis	Services	offers	enhanced	security	and
other	capabilities.	The	Data	Transformation	Services	(DTS)	feature	of	SQL
Server	2000	provides	a	means	to	manage	the	data	warehouse	from	which
Analysis	Services	creates	cubes.

Control	of	the	server	is	accomplished	through	the	Analysis	Manager	user
interface,	or	through	custom	applications	developed	using	the	Decision	Support
Objects	(DSO)	object	model.	DSO	controls	the	creation	and	management	of
cubes	by	the	server,	and	manages	the	cube	meta	data	in	the	repository.	The
object	model	is	used	by	the	Analysis	Manager	program	that	provides	the	user
interface	through	a	snap-in	to	Microsoft	Management	Console	(MMC).	The
DSO	object	model	can	be	used	by	applications	written	in	Microsoft	Visual
Basic®	to	provide	custom	programmatic	control	of	the	server.	You	can	also
develop	custom	applications	to	interact	with	the	Analysis	Manager	user
interface.

The	following	diagram	illustrates	the	elements	and	functions	of	the	Analysis
server	and	its	use	of	PivotTable	Service	to	provide	multidimensional	data	to

client	consumer	applications.	The	Analysis	Manager	user	interface	uses
PivotTable	Service	to	obtain	multidimensional	data	from	the	server	for	browsing
by	the	server	administrator.	For	more	information	about	client	applications,	see
PivotTable	Service.

Analysis	Services	Programming

Analysis	Services	Component	Tools
Microsoft®	SQL	Server™	2000	Analysis	Services	provides	three	component
tools	you	can	use	with	your	custom	applications.	You	can	use	any	combination
of	these	tools	to	create	applications	that	help	you	manage	your	Analysis	Services
installation	and	provide	OLAP	data	to	your	end	users.

DSO
Decision	Support	Objects	(DSO)	exposes	the	object	model	for	the	Analysis
server.	Your	applications	can	use	DSO	to	control	and	automate	functionality	on
the	server.	You	can	also	create	and	maintain	OLAP	objects	such	as	cubes,
dimensions,	and	roles.

The	DSO	object	model	consists	of	interfaces,	objects,	collections,	methods,	and
properties.	You	create	and	manipulate	DSO	objects	to	manage	the	meta	data	for
OLAP	data.	This	meta	data	is	stored	in	a	repository	in	a	relational	database	and
is	accessed	by	the	Analysis	server	and	DSO.

DSO	uses	hierarchically	arranged	groups	of	objects	to	define	basic	elements	of
OLAP	data.	These	basic	elements	include	databases,	dimensions,	cubes,
partitions,	aggregations,	and	virtual	cubes.	DSO	addresses	these	basic	elements
in	a	hierarchical	structure	where	elements	contain	other	elements	in	a	tree,	with
the	server	at	the	root	of	the	tree.	You	can	observe	the	hierarchy	of	this	structure
in	the	Analysis	Manager	tree	pane.

Your	application	can	use	DSO	in	combination	with	other	component	tools	of
Analysis	Services	to	enhance,	augment,	and	automate	your	Analysis	Services
installation.

You	can	develop	your	DSO	applications	in	Microsoft	Visual	Basic®	and	other
languages	that	support	the	Component	Object	Model	(COM).	The	DSO	object
model	was	developed	in	Visual	Basic	and	is	easiest	to	use	with	that	language.

For	more	information,	see	Decision	Support	Objects.

Add-ins	Interface	and	Objects
You	can	create	applications	that	interact	with	and	enhance	the	Analysis	Services

user	interface.	Analysis	Manager	can	call	various	routines	in	your	application	in
response	to	user	activity	in	the	user	interface.	Your	add-in	can	add	nodes	to	the
structure	in	the	tree	pane	as	the	user	selects	or	expands	a	node;	it	can	also
augment	node	menus	with	items	that	cause	your	program	to	be	called	when
those	items	are	selected.	Multiple	custom	add-ins	can	be	registered	and	operating
at	the	same	time.

The	Analysis	Manager	user	interface	is	implemented	as	an	add-in	and	is	called
by	the	Analysis	Services	Add-in	Manager	in	the	same	way	that	your	custom	add-
in	will	be	called.

Your	add-in	can	use	other	Analysis	Services	component	tools	to	enhance,
augment,	and	automate	your	Analysis	Services	installation.

For	more	information	about	creating	and	registering	your	add-ins,	see	Add-ins.

PivotTable	Service
PivotTable®	Service,	which	is	included	with	Analysis	Services,	is	an	OLE	DB
provider	that	supports	the	optional	OLE	DB	for	OLAP	extensions.	It	functions	as
a	connection	interface	with	cache	management	functionality	to	Analysis
Services	to	support	client	application	access	to	OLAP	data.

PivotTable	Service	is	also	an	in-process	desktop	Analysis	server	designed	to
provide	offline	data	analysis,	cube	building,	and	functionality	to	manipulate	data.
PivotTable	Service	stores	data	locally	on	the	client	for	offline	analysis	and	offers
connectivity	to	the	multidimensional	data	managed	by	Analysis	Services,	other
OLE	DB-compliant	providers,	and	to	non-OLAP	relational	data	sources.

PivotTable	Service	supports	OLE	DB	Multidimensional	Expressions	(MDX)	as
its	native	consumer	interface,	and	a	subset	of	SQL.	PivotTable	Service	also
extends	the	language	defined	in	OLE	DB	by	adding	data	definition	language
(DDL)	and	data	manipulation	language	(DML)	statements	to	define	the	structure
of	local	multidimensional	data	cubes.

Your	applications	that	use	PivotTable	Service	to	communicate	with	the	Analysis
server	or	to	manage	local	cubes	can	use	OLE	DB	interfaces	for	C++	or
Microsoft	ActiveX®	Data	Objects	(ADO)	and	ADO	(Multidimensional)	(ADO
MD)	with	any	COM	automation	language,	including	Visual	Basic.

You	can	use	PivotTable	Service	with	OLE	DB-compliant	data	sources	or	ODBC-

compliant	data	sources.	PivotTable	Service	supports	the	following	relational
database	products:

SQL	Server	version	7.0	and	earlier	and	SQL	Server	2000

Microsoft	Access	97	and	later

Oracle	versions	7.3	and	8.0

See	Also

Decision	Support	Objects

Add-ins

PivotTable	Service

Analysis	Services	Programming

SQL	in	Analysis	Services
Microsoft®	SQL	Server™	2000	Analysis	Services	is	both	a	multidimensional
data	provider	and	a	tabular	data	provider.	Therefore,	executing	a	query	returns
either	a	multidimensional	dataset	or	a	flattened	rowset,	depending	on	the	query
language	used.	Analysis	Services	can	interpret	and	process	queries	in	both	SQL
and	Multidimensional	Expressions	(MDX).

In	addition	to	querying,	you	can	use	certain	data	definition	language	(DDL)
statements	to	create	local	cubes,	calculated	members,	user-defined	sets,	and
cache.	For	more	information,	see	PivotTable	Service.

For	more	information	about	OLE	DB,	OLE	DB	for	OLAP,	and	the	MDX	syntax
as	defined	by	OLE	DB	for	OLAP,	see	the	OLE	DB	documentation.	For	more
information	about	Microsoft	ActiveX®	Data	Objects	(ADO)	and	ADO
(Multidimensional)	(ADO	MD),	see	the	ADO	documentation.

See	Also

MDX

SQL

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Analysis	Services	Programming

Executing	an	SQL	Query
SQL	queries	can	be	passed	to	Microsoft®	SQL	Server™	2000	Analysis	Services
using	either	of	the	following	data	connectivity	tools:

Microsoft	OLE	DB,	including	OLE	DB	for	Online	Analytical
Processing	(OLE	DB	for	OLAP)

Microsoft	ActiveX®	Data	Objects	(ADO)	and
ADO	(Multidimensional)	(ADO	MD).

OLE	DB	for	OLAP	extends	OLE	DB	to	include	objects	specific	to
multidimensional	data.	ADO	MD	extends	ADO	in	the	same	way.

All	three	data	connectivity	tools	provide	objects	that	support	SQL	queries;	OLE
DB	provides	the	Command	object,	ADO	provides	the	Recordset	object,	and
ADO	MD	provides	the	Cellset	object.	Each	data	connectivity	tool,	however,
provides	support	in	a	different	manner.

OLE	DB
The	OLE	DB	for	OLAP	Command	object	supports	text	commands	in	the
Multidimensional	Expressions	(MDX)	syntax	by	using	the	OLE	DB
ICommandText	interface.	The	ICommandText::SetCommandText	method
specifies	the	command	and	the	ICommand::Execute	method	processes	the
command.	For	commands	that	may	be	used	several	times,	the
ICommandPrepare::Prepare	method	prepares	the	command.

OLE	DB	for	OLAP	defines	a	language	dialect	identifier	GUID
(MDGUID_MDX)	that	denotes	the	MDX	syntax.	This	GUID	is	used	in
ICommandText::SetCommandText	to	identify	to	the	provider	that	the	query
language	being	used	is	the	MDX	syntax.

OLE	DB	also	defines	another	language	dialect	identifier,	DBGUID_DEFAULT,
which	denotes	the	default	language	dialect.	The	following	rules	apply	to	the	use
of	this	identifier	(from	the	OLE	DB	for	OLAP	specification):

If	the	provider	is	both	a	multidimensional	data	provider	and	a	tabular

data	provider,	it	must	interpret	the	command	string	as	SQL	when
DBGUID_DEFAULT	is	passed	as	the	dialect	identifier.

If	the	provider	is	a	multidimensional	data	provider,	it	should	interpret
the	command	string	as	MDX	when	DBGUID_DEFAULT	is	passed	as
the	dialect	identifier.

IMPORTANT		Analysis	Services	does	not	simultaneously	conform	to	both	of	these
semantics.	Instead,	when	DBGUID_DEFAULT	is	passed,	Analysis	Services
analyzes	the	query	string	text	and	attempts	to	determine	which	dialect	is	being
used.

If	the	SQL	dialect	is	used,	a	flattened	rowset	is	returned.	If	the	MDX	dialect	is
used,	Analysis	Services	analyzes	the	rowset	interface	identifier	(IID)	to
determine	whether	a	multidimensional	dataset	or	a	flattened	rowset	is	returned.

ADO
The	Open	method	of	the	ADO	Recordset	object	retrieves	the	results	of	an	SQL
query.

Syntax
object.Open	[Source],	[ActiveConnection],	CursorType	As	CursorTypeEnum	=
adOpenUnspecified],	[LockType	As	LockTypeEnum	=	adLockUnspecified],
[Options	As	Long	=	-1]

Parameters
object

An	instance	of	the	ADO	Recordset	object.

Source

(Optional)	A	Variant	that	evaluates	to	a	valid	ADO	Command	object,	valid
SQL	query,	table	name,	stored	procedure	call,	URL,	or	the	name	of	a	file
containing	a	persistently	stored	ADO	Recordset	object.	This	argument
corresponds	to	the	Source	property.

ActiveConnection

(Optional)	A	Variant	that	evaluates	to	a	valid	ADO	Connection	object
variable	name	or	a	string	that	contains	a	connection	definition.	The
ActiveConnection	argument	specifies	the	connection	in	which	to	open	the
Cellset	object.	If	you	pass	a	connection	definition	for	this	argument,	ADO
opens	a	new	connection	using	the	specified	parameters.	The
ActiveConnection	argument	corresponds	to	the	ActiveConnection	property.

CursorType

(Optional)	A	CursorTypeEnum	value	that	determines	the	type	of	cursor	that
the	provider	should	use	when	opening	the	ADO	Recordset	object.

LockType

(Optional)	A	LockTypeEnum	value	that	determines	what	type	of	locking
(concurrency)	the	provider	should	use	when	opening	the	ADO	Recordset
object.

Options

(Optional)	A	value	that	indicates	how	the	provider	should	evaluate	the
Source	argument	if	it	represents	something	other	than	an	ADO	Command
object,	or	if	the	ADO	Recordset	object	should	be	restored	from	a	file	where
it	was	previously	saved.	This	value	may	be	set	to	a	value	supplied	from
either	the	ADO	CommandTypeEnum	or	ExecuteOptionEnum
enumerations.

Remarks
The	Open	method	fails	if	either	the	Source	or	Active	Connection	parameters
are	missing	or	their	corresponding	properties	are	not	set.

The	default	value	for	the	CursorType	property	is	adOpenUnspecified.

The	default	value	for	the	LockType	is	adLockUnspecified.

ADO	MD
The	Open	method	of	the	ADO	MD	Cellset	object	retrieves	the	results	of	a
multidimensional	query.

Syntax
object.Open	[DataSource],	[ActiveConnection]

Parameters
object

An	instance	of	the	ADO	MD	Cellset	object.

DataSource

(Optional)	A	Variant	that	evaluates	to	a	valid	multidimensional	query,	such
as	an	MDX	query.	The	DataSource	argument	corresponds	to	the	Source
property.

ActiveConnection

(Optional)	A	Variant	that	evaluates	to	a	string	specifying	either	a	valid	ADO
Connection	object	variable	name	or	a	definition	for	a	connection.	The
ActiveConnection	argument	specifies	the	connection	in	which	to	open	the
Cellset	object.	If	you	pass	a	connection	definition	for	this	argument,	ADO
opens	a	new	connection	using	the	specified	parameters.	The
ActiveConnection	argument	corresponds	to	the	ActiveConnection	property.

Remarks
The	Open	method	generates	an	error	if	either	of	its	parameters	is	omitted	and	its
corresponding	property	value	has	not	been	set	prior	to	an	attempt	to	open	the
Cellset.

Analysis	Services	Programming

Exposed	Schema
Some	of	the	OLE	DB	schema	rowsets	that	are	common	to	tabular	data	providers
are	interpreted	differently	when	they	are	used	with	Microsoft®	SQL	Server™
2000	Analysis	Services.	The	interpretation	that	Analysis	Services	ascribes	to
each	one	is	listed	in	the	following	table.

Rowset Meaning	in	Analysis	Services
CATALOGS The	list	of	catalogs	(databases).
TABLES The	list	of	cubes.	For	SQL	queries,	each	cube	can	function	as

a	table.
COLUMNS The	list	of	levels	and	measures	for	each	cube.	Column	names

are	of	the	form	dimension_name:level_name	and
dimension_name:measure_name.	For	SQL	queries,	each
level	and	each	measure	can	function	as	an	SQL	column.

Analysis	Services	Programming

Supported	SQL	SELECT	Syntax
Microsoft®	SQL	Server™	2000	Analysis	Services	supports	the	following	subset
of	the	SQL	SELECT	command	syntax.

Syntax
SELECT	[<options_clause>]	<select_list>	FROM	<from_clause>	[WHERE
<where_clause>]	[GROUP	BY	<groupby_clause>]

<options_clause>	::=	<empty_clause>	|	DISTINCT

<select_list>	::=	<scalar_exp_commalist>	|	ASTERISK

<scalar_exp_commalist>	::=	<scalar_expression>	[,	<scalar_expression>	[,
<scalar_expression>	[...]]]

<scalar_expression>	::=	<column_ref>

				|	<aggregate>

				|	(<column_ref>)	AS	IDENTIFIER

<aggregate>	::=	<aggregate_func>	(<column_ref>)

Note		In	the	preceding	line,	<column_ref>	must	be	a	measure	name.
<aggregate_func>	must	agree	with	the	Aggregate	Function	property	of	the
measure.

<aggregate_func>	::=	COUNT	|	MIN	|	MAX|	SUM

Note		<select_list>	can	contain	references	only	to	levels	or	measures.	If
measures	are	specified,	you	must	also	specify	<aggregate>.

<from_clause>	::=	cube_name

<where_clause>	::=	empty_clause	|	<search_condition>

<groupby_clause>	::=	<column_ref_commalist>

<column_ref_commalist>	::=	(<column_ref>)	[,	(<column_ref>)	[,
(<column_ref>)	[...]]]

<search_condition>	::=	<empty_clause>

				|	<search_condition>	AND	<search_condition>

				|	<search_condition>	OR	<search_condition>

				|	(<search_condition>)

				|	<comparison_predicate>

<comparison_predicate>	::=	(<column_ref>)	=	VALUE	|	VALUE	=
(<column_ref>)

Note		In	the	preceding	line,	<column_ref>	must	be	a	valid	level	name.

Remarks
There	are	some	limitations	of	the	SQL	SELECT	statement	in	Analysis	Services.

You	cannot	use	DISTINCT	or	GROUP	BY	if	<select_list>	contains
members.

Using	the	DISTINCT	option	with	levels	in	<select_list>	can	cause	the
following	problems:

If	a	parent	level	has	more	than	one	member,	and	not	all	parents
are	listed,	Analysis	Services	may	return	duplicate	rows.	Be
sure	to	explicitly	include	all	parents.

If	the	root	level	for	a	dimension	contains	more	than	one
member,	Analysis	Services	may	return	duplicate	rows.	Include
all	dimensions	with	root	levels	having	more	than	one	member
as	columns.

DISTINCT	and	GROUP	BY	may	return	multiple	rows	if	the	server
contains	more	than	one	segment.

You	cannot	use	SQL	syntax	to	query	a	virtual	dimension	that	was
created	in	SQL	Server	version	7.0	OLAP	Services.	You	must	use
Multidimensional	Expressions	(MDX)	to	query	this	type	of	virtual

dimension.

Analysis	Services	Programming

Passing	Queries	from	SQL	Server	to	a	Linked
Analysis	Server
The	linked	server	feature	of	Microsoft®	SQL	Server™	2000	allows	you	to
execute	queries	against	OLE	DB	data	sources	that	are	hosted	on	remote
computers.	There	are	no	special	requirements	for	using	this	feature	with	SQL
Server	2000	Analysis	Services,	but	there	are	some	important	points	to	note	when
configuring	the	two	systems.

Security
Analysis	Services	uses	security	that	is	integrated	with	Microsoft	Windows	NT®
4.0	and	Windows®	2000	to	identify	user	accounts.	It	cannot	be	configured	to
recognize	accounts	created	for	use	with	SQL	Server	authentication.	However,
the	MSSQLServer	service	on	the	linked	server	can	be	configured	to	log	on	using
an	account	that	has	sufficient	permissions	to	access	Analysis	Services.

Using	the	OPENQUERY	Function
For	best	results	with	pass-through	queries	from	SQL	Server	to	Analysis	Services,
use	the	Transact-SQL	function	OPENQUERY	to	execute	SQL	commands
between	servers.	OPENQUERY	sends	the	commands	of	the	query	directly	to	the
Analysis	server,	which	then	returns	flattened	rowsets	(as	described	in	the	OLE
DB	documentation)	that	contain	the	requested	data.	The	syntax	of	the	passed
query	is	not	limited	to	the	abbreviated	SQL	SELECT	options	supported	by
Analysis	Services,	but	can	also	include	Multidimensional	Expressions	(MDX)
commands.

Executing	SQL	Queries	using	the	OPENQUERY	Function
The	OPENQUERY	function	accepts	two	parameters:	the	name	of	the	linked
server	and	the	text	of	the	query	to	pass.

Examples

A.	Returning	Total	Sales	Grouped	by	Customer	Gender
This	query	returns	the	total	sales	grouped	by	customer	gender:

select	*	from	openquery(LINKED_OLAP,	'select	[Customer	Gender:Gender],	
sum([measures:unit	sales])	from	sales	group	by	[Customer	Gender:Gender]')

B.	Returning	Total	Sales	Grouped	by	Gender	and	Education
This	query	returns	the	total	sales	grouped	by	customer	gender	and	education
level:

select	*	from	openquery(LINKED_OLAP,	
'select	[Customer	Education	Level:Education],	[Customer	Gender:Gender],	
sum([measures:unit	sales])	from	sales	
group	by	[Customer	Education	Level:Education],	
[Customer	Gender:Gender]')

Because	there	is	a	limitation	in	Analysis	Services	that	causes	GROUP	BY	and
DISTINCT	queries	to	produce	multiple	rows	that	satisfy	the	grouping	and/or
distinct	functions	(instead	of	just	one),	it	may	be	necessary	to	copy	the	rows	to	a
temporary	table	and	reduce	them	further.

The	following	examples	show	how	SQL	Server	can	be	used	to	merge	the	results
of	a	query	from	Analysis	Services.

C.	Performing	a	DISTINCT	Operation
In	this	query,	SQL	Server	performs	an	additional	DISTINCT	operation	on	the
data	retrieved	by	Analysis	Services:

select	distinct	*	from	openquery(LINKED_OLAP,	
'select	distinct	[Customer	Location:Country],	
[Customer	Location:State	Province],	
[Customer	Location:City]	
from	sales')

D.	Using	the	ORDER	BY	Command

In	this	query,	the	ORDER	BY	command	sorts	the	values	retrieved	by	Analysis
Services:

select	distinct	*	from	openquery(LINKED_OLAP,	
'select	distinct	[Customer	Location:Country!name],	
[Customer	Location:State	Province!name],	
[Customer	Location:City!name]	
from	sales')	
order	by
[Customer	Location:Country!name],	
[Customer	Location:State	Province!name],	
[Customer	Location:City!name]

E.	Guaranteeing	the	Correctness	of	the	GROUP	BY	Command
In	this	query,	SQL	Server	guarantees	the	correctness	of	the	GROUP	BY
command	(because	Analysis	Services	might	not	coalesce	all	of	the	returned
rows):

select	[Customer	Location:Country!name],	[Customer	Gender:Gender!name],	
sum([measures:unit	sales])	
from	openquery(LINKED_OLAP,	
'select	[Customer	Location:Country!name],	[Customer	Gender:Gender!name],	
sum([measures:unit	sales])	from	sales	
group	by	[Customer	Location:Country!name],	
[Customer	Gender:Gender!name]')	
group	by	[Customer	Location:Country!name],	[Customer	Gender:Gender!name]

F.	Using	a	WHERE	Clause
This	query	combines	all	elements	of	the	preceding	examples	and	includes	a
WHERE	clause:

select	
[Customer	Location:Country!name],	
[Customer	Gender:Gender!name],	

[Product:Product	Family!name],	
[Product:Product	Department!name],	
[Product:Product	Category!name],	
[Product:Product	Subcategory!name],	
sum([measures:unit	sales])	
from	openquery(LINKED_OLAP,	
'select	
[Customer	Location:Country!name],	
[Customer	Gender:Gender!name],	
[Product:Product	Family!name],	
[Product:Product	Department!name],	
[Product:Product	Category!name],	
[Product:Product	Subcategory!name],	
sum([measures:unit	sales])	
from	sales	
where	
[Product:Product	Family!name]	=	''Food''	and	
[Product:Product	Department!name]	=	''Baked	Goods'	'
group	by	
[Customer	Location:Country!name],	
[Customer	Gender:Gender!name],	
[Product:Product	Family!name],	
[Product:Product	Department!name],	
[Product:Product	Category!name],	
[Product:Product	Subcategory!name]	')	
group	by	
[Customer	Location:Country!name],	
[Customer	Gender:Gender!name],	
[Product:Product	Family!name],	
[Product:Product	Department!name],	
[Product:Product	Category!name],	
[Product:Product	Subcategory!name]	
order	by	

[Customer	Location:Country!name],	
[Customer	Gender:Gender!name],	
[Product:Product	Family!name],	
[Product:Product	Department!name],	
[Product:Product	Category!name],	
[Product:Product	Subcategory!name]

Executing	MDX	Queries	Using	the	OPENQUERY	Function
Because	the	OPENQUERY	function	causes	SQL	Server	to	pass	the	text	of	the
query	directly	to	Analysis	Services,	you	can	use	MDX	syntax	for	complex
multidimensional	queries.	The	result	sets	from	MDX	queries	appear	as	flattened
rowsets.	For	more	information	about	how	a	multidimensional	result	set	is
mapped	to	a	tabular	rowset	in	OLE	DB	for	OLAP,	see	the	OLE	DB
documentation.

Example
The	following	example	submits	an	MDX	query	using	the	OPENQUERY
function.

select	*	from	openquery	
(LINKED_OLAP,	'select	{	measures.[unit	sales]	}	on	columns,
	non	empty	nest(nest([customer	location].[country].members,	
[gender].members),	[product	category].[bread].children)	on	rows	
from	sales	')

Avoiding	Four-Part	Naming
It	is	possible	to	access	the	data	of	a	cube	directly	from	SQL	Server	using	queries
with	four-part	naming.	(The	four	parts	are	linked-server-name,	catalog,	schema,
and	table.)	However,	this	option	is	not	recommended	because	SQL	Server
attempts	to	copy	the	contents	of	the	entire	fact	table	and	then	perform	the
calculations	for	aggregating	the	data	itself,	substantially	increasing	the	query
response	time.

Analysis	Services	Programming

Adding	a	Linked	Server
There	are	two	ways	to	add	a	linked	server.	You	can	create	one	by	using	SQL
Server	Enterprise	Manager	interface	or	by	issuing	SQL	commands.	If	you	use
SQL	Server	Enterprise	Manager,	you	can	configure	a	wider	set	of	options.	For
more	information	about	adding	and	using	linked	servers,	see	Configuring	Linked
Servers	and	Establishing	Security	for	Linked	Servers.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Analysis	Services	Programming

Decision	Support	Objects
The	Decision	Support	Objects	(DSO)	library	of	Microsoft®	SQL	Server™	2000
Analysis	Services	provides	a	robust	set	of	Component	Object	Model	(COM)
objects	and	interfaces	that	you	can	use	to	create	applications	that	can
programmatically	administer	Analysis	Services	objects.	With	the	DSO	library,
you	can	manage	Analysis	Services	objects,	such	as	servers,	databases,	data
sources,	dimensions,	cubes,	mining	models,	and	roles.	You	can	also	administer
security,	process	cubes	and	mining	models,	and	so	on.	For	more	information
about	the	features	of	Analysis	Services,	see	Analysis	Services	Features.

The	following	table	lists	topics	in	this	section,	and	describes	their	contents.

Topic Description
Introducing	Decision	Support
Objects

Gives	a	brief	overview	of	DSO.

Redistributing	Decision
Support	Objects

Describes	the	files	used	to	support	DSO,
including	prerequisites	and	redistribution
instructions.

Decision	Support	Objects
Architecture

Provides	information	about	the
implementation	of	the	DSO	object	model,
including	discussion	of	the	MDStore
interface	and	a	brief	description	of	each
object	supported	by	DSO.

Using	Decision	Support
Objects

Explains	how	you	can	use	DSO	to	perform
common	and	advanced	tasks	in	Analysis
Services.	Sample	programs	are	provided	to
get	you	started.

Decision	Support	Objects
Programmer's	Reference

Details	the	interfaces,	objects,	collections,
methods,	and	properties	in	DSO.

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Introducing	Decision	Support	Objects
Microsoft®	SQL	Server™	2000	Analysis	Services	provides	a	wide	range	of
online	analytical	processing	(OLAP)	and	data	mining	functionality.	As	it	is	also
designed	to	be	very	flexible	and	extensible,	you	can	also	add	third-party	services
and	packages,	such	as	data	mining	algorithm	providers,	to	extend	the	capabilities
of	Analysis	Services	even	further.	However,	with	a	wide	range	of	functionality
comes	a	wide	range	of	complexity,	and	Analysis	Services	provides	a	complex
and	robust	set	of	OLAP	and	data	mining	features.

To	access	such	a	rich,	extensible,	wide-ranging	set	of	features	in	a	simple,
straightforward	fashion,	the	Decision	Support	Objects	(DSO)	library	supplies	a
hierarchical	object	model	for	use	with	any	development	environment	that	can
support	Component	Object	Model	(COM)	objects	and	interfaces,	such	as
Microsoft	Visual	C++®,	Microsoft	Visual	Basic®,	and	Microsoft	Visual	Basic
Scripting	Edition.

One	of	the	features	of	the	DSO	object	model,	discussed	in	another	topic,	is	the
use	of	the	MDStore	interface.	This	shared	interface	allows	development
environments	that	use	late	binding,	such	as	Visual	Basic	Scripting	Edition,	to
easily	support	such	a	complex	hierarchical	model.	The	MDStore	interface	is
used	in	DSO	by	objects	that	supply	functionality	for	databases,	cubes,	partitions,
and	aggregations	in	Analysis	Services.	For	more	information	about	the	MDStore
interface,	see	MDStore	Interface.

See	Also

Decision	Support	Objects	Architecture

Analysis	Services	Programming

Redistributing	Decision	Support	Objects
Decision	Support	Objects	(DSO)	is	an	object	library	that	enables	applications	to
manipulate	objects	on	the	Analysis	server	directly.	DSO	can	be	redistributed
with	custom	applications	as	needed.

Before	installing	DSO,	ensure	that	Microsoft®	Data	Access	Components
(MDAC)	and	PivotTable®	Service	have	been	installed.	Then,	install	the
following	files.

File Description
Msmddo80.dll The	DSO	library,	version	8.0.
Msmdso.rll The	DSO	resource	file,	version	8.0.
Msmdnet.dll The	Analysis	Services	network	interface.
Msmdlock.dll The	Analysis	Services	lock	manager.
Msmddo.dll The	Microsoft	SQL	Server™	version	7.0	OLAP	Services

compatibility	file.	This	file	is	not	required	if	the	application
will	only	use	features	available	in	SQL	Server	2000
Analysis	Services.

The	DLLs	are	installed	in	the	following	location:

C:\Program	Files\Common	Files\Microsoft	Shared\DSO

The	resource	file,	Msmdso.rll,	does	not	need	to	be	registered	and	is	installed	by
default	in	the	following	location:

C:\Program	Files\Common	Files\Microsoft	Shared\DSO\Resources\1033

To	register	the	DLL	files,	you	should	use	Regsvr32.exe	or	use	the
DLLSelfRegister()	functions	of	the	DLL	files.	Additionally,	registry	entries	for
each	file	should	be	made	under	the	following	registry	key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\SharedDLLs

If	this	registry	value	(known	as	the	reference	counter)	already	exists,	it	should	be
incremented	by	one	during	installation	of	the	DSO	files.	When	uninstalling	the
DSO	files,	the	reference	counter	should	be	decremented	by	one.	The	DSO	files

should	not	be	deleted	if	the	corresponding	reference	counter	is	greater	than	zero.

Maintaining	Backward	Compatibility
The	backward	compatibility	files	that	are	included	with	Analysis	Services	(that
is,	Msmddo.dll	and	Msmdsgn.dll)	are	not	compatible	with	the	files	of	the	same
name	that	were	included	with	SQL	Server	7.0	OLAP	Services	(that	is,	the	7.0
versions	of	these	files).	Use	the	following	rules	to	assist	you	in	determining
which	files	to	install:

If	the	application	will	only	be	used	with	SQL	Server	2000	Analysis
Services,	Msmddo80.dll,	Msmdnet.dll,	Msmdlock.dll,	and	Msmdso.rll
must	be	installed	on	the	target	computer.

If	the	application	will	also	be	used	with	SQL	Server	7.0	OLAP	Services,
Msmddo.dll	must	be	installed.	If	the	7.0	version	of	this	file	already
exists	on	the	target	computer,	it	must	be	replaced	with	the	newer
version.

CAUTION		Installing	the	DSO	library	included	with	SQL	Server	2000	Analysis
Services	on	an	Analysis	server	using	SQL	Server	7.0	OLAP	Services,	without
upgrading	OLAP	Manager	to	Analysis	Manager,	will	cause	OLAP	Manager	to
stop	functioning.

Analysis	Services	Programming

Decision	Support	Objects	Architecture
Decision	Support	Objects	(DSO)	is	a	library	of	Component	Object	Model
(COM)	classes	and	interfaces	that	provide	access	to	the	Analysis	server.	These
classes	and	interfaces,	when	used	together,	form	an	object	model	that
corresponds	to	the	internal	structure	of	the	objects	managed	by	Microsoft®	SQL
Server™	2000	Analysis	Services	and	can	be	used	to	manage	them
programmatically.

Conceptually,	DSO	uses	hierarchically	arranged	groups	of	objects	to	define	basic
elements	of	Analysis	Services	data	storage,	as	implemented	by	the	Analysis
server.	These	basic	elements	are	databases,	data	sources,	dimensions,	cubes,	data
mining	models,	and	roles.	DSO	maintains	these	basic	elements	in	a	hierarchical
structure	where	elements	contain	other	elements	in	a	tree,	with	the	server	object
at	the	root	of	the	tree.	Other	objects	support	this	basic	structure.	For	example,
databases,	cubes,	partitions,	and	aggregations	support	dimensions.	The	following
diagram	shows	an	overview	of	the	DSO	object	model	hierarchy.

The	DSO	Server	object	contains	a	collection	that	defines	databases	accessed	by
the	server.	Each	database	can	contain	groups	of	objects	that	define	cubes,	linked
cubes,	or	virtual	cubes.	A	cube	contains	one	or	more	partitions,	which	contain
one	or	more	aggregations.	Linked	cubes	serve	to	provide	local	server	access	to	a
cube	on	another	server;	the	remote	server	publishes	the	cube,	and	the	local	server
subscribes	to	it	by	creating	a	linked	cube.	A	virtual	cube	is	a	special	case	of	a
cube,	combining	portions	of	the	cubes	it	contains,	similar	to	the	way	a	relational
database	view	combines	portions	of	tables.	A	database	can	also	contain	one	or
more	relational	or	OLAP	data	mining	models,	represented	in	DSO	by	the
MiningModel	object.	Data	mining	models	can	contain	one	or	more	data	mining
columns.	Databases	also	can	contain	roles,	used	to	manage	security	on	the
database	and	its	associated	cubes	and	data	mining	models.

MDStore	Interface
You	will	notice	in	the	diagram	that	two	of	the	most	important	collections	of
objects	in	DSO,	databases	and	cubes,	are	supplied	with	a	collection	named
MDStores,	unlike	other	objects	in	DSO,	such	as	data	mining	models	or

commands.

Databases,	cubes,	partitions,	and	aggregations	expose	a	common	interface,
called	MDStore,	that	provides	the	methods	and	properties	you	use	to	manipulate
the	objects.	These	objects	must	be	referenced	from	its	parent	object,	and	they
cannot	be	created	independently;	the	only	way	to	create	a	database,	cube,
partition,	or	aggregation	is	through	the	MDStores	collection	of	the	parent	object.
For	example,	the	only	way	to	obtain	an	object	reference	to	a	database	in	DSO,	or
to	create	a	new	database	using	DSO,	is	through	the	MDStores	collection	of	the
DSO	Server	object.

This	special	collection	maintains	references	to	the	objects	that	make	up	the
elements	of	this	hierarchy	beneath	the	server.	The	MDStores	collection	provides
special	implementations	of	Add,	Find,	and	Remove	methods,	and	a	convenient
AddNew	method,	which	maintain	parent-child	relationships	among	the	various
DSO	objects.	The	ContainedClassType	property	determines	what	type	of
objects	the	MDStores	collection	can	contain;	the	value	of	this	property	directly
corresponds	to	the	ClassType	property	of	the	MDStore	objects	contained	by	the
collection.

The	MDStore	interface	also	uses	the	SubClassType	property	to	further
differentiate	DSO	objects.	For	example,	this	property	is	used	to	tell	the
difference	between	a	cube,	a	linked	cube,	and	a	virtual	cube.

This	figure	shows	an	expanded	view	of	the	DSO	structure	as	viewed	by	its
collections,	including	the	value	of	the	ClassType	property	of	the	objects
contained	in	each	collection.

Objects	and	Interfaces
There	are	two	major	object	classifications	in	DSO:	objects	that	can	be	accessed
and	managed	directly	using	their	default	interface,	and	objects	that	implement
other	DSO	interfaces	in	addition	to	their	default	interface.

Objects	that	can	be	accessed	and	managed	directly	have	their	own	collections,
methods,	and	properties,	and	they	fully	implement	their	default	interface;	there	is
no	change	in	the	behavior	of	the	interface	based	on	its	usage	or	parent-child
association.	For	example,	the	DSO	DataSource	object	behaves	the	same	way
whether	the	parent	is	the	DSO	Server	object	or	the	DSO	Cube	object.

The	following	table	lists	the	eight	directly	accessible	DSO	interfaces	and	the
ClassType	property	values	associated	with	them.

Interface ClassType	property	value
Column clsColumn
CubeAnalyzer clsCubeAnalyzer
DataSource clsDataSource
MemberProperty clsMemberProperty
MiningModel clsMiningModel
PartitionAnalyzer clsPartitionAnalyzer
Server clsServer

Objects	that	are	implemented	with	more	than	one	interface	use	a	subset	of	the
collections,	methods,	and	properties	associated	with	the	interface	for	the
implemented	variation	of	a	DSO	object;	for	example,	the	Command	interface	is
implemented	differently	for	database	commands,	cube	commands,	and	role
commands.	Each	collection,	method,	and	property	description	contains	the
names	of	the	objects	in	which	it	appears.	Conversely,	each	object	description
contains	the	names	of	the	collections,	methods,	and	properties	that	it
implements.

The	following	table	lists	the	six	DSO	interfaces	and	the	ClassType	property
values	associated	with	them.

Interface ClassType	property	value
Command clsDatabaseCommand

clsCubeCommand

clsRoleCommand

Dimension clsDatabaseDimension

clsCubeDimension

clsPartitionDimension

clsAggregationDimension

Level clsDatabaseLevel

clsCubeLevel

clsPartitionLevel

clsAggregationLevel

MDStore clsDatabase

clsCube

clsPartition

clsAggregation

Measure clsCubeMeasure

clsPartitionMeasure

clsAggregationMeasure

Role clsDatabaseRole

clsCubeRole

clsMiningModelRole

For	more	information,	see	Objects	and	Interfaces.

See	Also

MDStores

MDStore	Interface

Analysis	Services	Programming

Server	(Decision	Support	Objects)
The	Server	object	in	the	Decision	Support	Objects	(DSO)	hierarchy	represents
the	root	object	in	the	model	tree	and	handles	the	functionality	related	to	the
Analysis	server.	The	Server	object	uses	the	Server	interface,	with	a	ClassType
property	of	clsServer.

The	Server	object	is	used	to:

Connect	to	and	disconnect	from	an	Analysis	server.

Start,	pause,	and	stop	the	Analysis	server	service
(MSSQLServerOLAPService)	provider.

Provide	detailed	information,	such	as	the	version	and	edition,	of	an
Analysis	server.

Create	other	Microsoft®	SQL	Server™	2000	Analysis	Services	objects,
such	as	databases,	data	sources,	commands,	dimensions,	cubes,	data
mining	models,	and	roles.

Manage	object	locking	in	Analysis	Services,	controlling	read/write
access	in	a	multiple	user	situation.

Provide	access	to	DSO	Database	objects	using	the	MDStores
collection.

See	Also

Analysis	Server

clsServer

Database	(Decision	Support	Objects)

JavaScript:hhobj_1.Click()

MDStore	Interface

Working	with	Servers

Analysis	Services	Programming

Database	(Decision	Support	Objects)
The	Database	object	in	Decision	Support	Objects	(DSO)	represents	a	database
in	Microsoft®	SQL	Server™	2000	Analysis	Services.	Database	objects	are
accessed	in	DSO	through	the	MDStores	collection	of	the	DSO	Server	object.
As	such,	the	Database	object	is	supported	by	the	MDStore	interface,	with	the
ClassType	property	set	to	clsDatabase,	and	the	Database	interface.

The	Database	object	is	used	to:

Create,	edit,	and	delete	commands,	data	sources,	cubes,	dimensions,
data	mining	models,	and	roles	applicable	to	a	database	in	Analysis
Services.

Manage	transactions	involving	objects	that	belong	to	the	database,	such
as	cubes,	dimensions,	and	mining	models.

Provide	access	to	events,	using	the	Database	interface,	which	is	used	to
supply	client	applications	with	progress	information	on	currently
executing	database	tasks.

See	Also

clsDatabase

Command	(Decision	Support	Objects)

Cube	(Decision	Support	Objects)

Data	Mining	Model	(Decision	Support	Objects)

Databases

DataSource	(Decision	Support	Objects)

Dimension	(Decision	Support	Objects)

MDStore	Interface

JavaScript:hhobj_1.Click()

Role	(Decision	Support	Objects)

Server	(Decision	Support	Objects)

Working	with	Databases

Analysis	Services	Programming

DataSource	(Decision	Support	Objects)
The	DataSource	object	in	Decision	Support	Objects	(DSO)	provides	access	to
the	data	sources	associated	with	a	database,	cube,	partition,	or	aggregation	in
Microsoft®	SQL	Server™	2000	Analysis	Services,	under	the	DataSources
collection	for	each	DSO	object.	The	DataSource	object	uses	the	DataSource
interface,	with	a	ClassType	property	of	clsDataSource.

The	DataSource	object	is	used	to:

Retrieve	data	source-specific	information	such	as	connection	strings	and
quote	characters	for	use	by	client	applications.

Determine	various	states,	such	as	connection	state,	of	the	data	source	in
Analysis	Services.

See	Also

Aggregation	(Decision	Support	Objects)

clsDataSource

Cube	(Decision	Support	Objects)

Data	Sources

Database	(Decision	Support	Objects)

Partition	(Decision	Support	Objects)

Working	with	Data	Sources

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Cube	(Decision	Support	Objects)
The	Cube	object	in	Decision	Support	Objects	(DSO)	provides	access	to	cubes,
virtual	cubes,	and	linked	cubes	associated	with	a	database	in	Microsoft®	SQL
Server™	2000	Analysis	Services,	supplied	by	the	MDStores	collection	of	the
DSO	Database	object	using	the	MDStore	interface.	The	Cube	object	uses	the
MDStore	interface,	with	a	ClassType	property	of	clsCube.

The	Cube	object	is	used	to:

Provide	access	to	the	commands,	data	sources,	dimensions,	measures,
partitions,	and	roles	associated	with	a	cube,	virtual	cube,	or	linked	cube
in	Analysis	Services.

Edit	the	structure	of	a	cube,	virtual	cube,	or	linked	cube.

Process	a	cube,	virtual	cube,	or	linked	cube.

Manage	object	locks	for	a	cube,	virtual	cube,	or	linked	cube.

See	Also

clsCube

Command	(Decision	Support	Objects)

Cubes

Database	(Decision	Support	Objects)

DataSource	(Decision	Support	Objects)

Dimension	(Decision	Support	Objects)

MDStore	Interface

Measure	(Decision	Support	Objects)

Partition	(Decision	Support	Objects)

JavaScript:hhobj_1.Click()

Role	(Decision	Support	Objects)

Working	with	Cubes	and	Measures

Analysis	Services	Programming

Dimension	(Decision	Support	Objects)
The	Dimension	object	in	Decision	Support	Objects	(DSO)	provides	access	to
shared	dimensions,	virtual	dimensions,	and	private	dimensions	in	Microsoft®
SQL	Server™	2000	Analysis	Services	for	several	objects,	including	databases,
cubes,	partitions,	and	aggregations.	Shared	dimensions	and	virtual	dimensions
are	accessed	using	the	Dimensions	collection	of	the	DSO	Database	object,
while	private	dimensions	are	accessed	using	the	Dimensions	collection	of	the
DSO	Cube	object.	Partitions	and	aggregations,	associated	with	a	source	cube,
also	support	access	to	the	dimensions	related	to	them.	Partition	and	aggregation
dimensions	are	also	accessed	by	the	Dimensions	collection	of	the	Partition	and
Aggregation	DSO	objects,	respectively.

All	four	types	of	dimensions	are	supported	with	DSO	objects.	Each	dimension
object	detailed	in	the	following	table	uses	the	Dimension	interface,	with	the
ClassType	property	set	to	the	appropriate	value	for	the	dimension	type	as
shown.

Dimension	type Dimension	object Dimension	class	type
Database	dimensions DbDimension clsDatabaseDimension
Cube	dimensions CubeDimension clsCubeDimension
Partition	dimension PartitionDimension clsPartitionDimension
Aggregation
dimension

AggregationDimension clsAggregationDimension

The	Dimension	object	is	used	to:

Provide	access	to	shared	dimensions,	virtual	dimensions,	and	private
dimensions	in	Analysis	Services.

Create	and	edit	levels	for	a	shared	dimension	or	private	dimension.

Determine	the	various	states	of	a	shared	dimension,	virtual	dimension,
or	private	dimension,	such	as	the	temporary	status	and	validity.

Process	a	shared	dimension,	virtual	dimension,	or	private	dimension.

See	Also

Aggregation	(Decision	Support	Objects)

clsDatabaseDimension

clsCubeDimension

clsPartitionDimension

clsAggregationDimension

Cube	(Decision	Support	Objects)

Database	(Decision	Support	Objects)

Dimension	Interface

Dimensions

Partition	(Decision	Support	Objects)

Working	with	Dimensions	and	Levels

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Data	Mining	Model	(Decision	Support	Objects)
The	MiningModel	object	in	Decision	Support	Objects	(DSO)	provides	support
for	data	mining	models	in	Microsoft®	SQL	Server™	2000	Analysis	Services.	To
access	data	mining	models,	the	MiningModels	collection	of	the	DSO	Database
object	is	used.	The	MiningModel	object	uses	the	MiningModel	interface,	with
a	ClassType	property	of	clsMiningModel.

The	MiningModel	object	is	used	to:

Provide	access	to	data	mining	columns	for	a	relational	or	OLAP	data
mining	model.

Construct	and	modify	relational	or	OLAP	data	mining	models.

Process	a	relational	or	OLAP	data	mining	model.

Provide	access	to	mining	model	roles.

See	Also

clsMiningModel

Column	(Decision	Support	Objects)

Data	Mining	Models

Data	Mining	Examples

Database	(Decision	Support	Objects)

Role	(Decision	Support	Objects)

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Role	(Decision	Support	Objects)
The	Role	object	in	Decision	Support	Objects	(DSO)	provides	access	to	role-
based	security	for	databases,	cubes,	and	data	mining	models.	The	DSO
Database,	Cube,	and	MiningModel	objects	all	support	the	Roles	collection,
making	security	functions	available	for	each	DSO	object.

All	three	types	of	roles	are	supported	with	DSO	objects.	Each	role	object
detailed	in	the	following	table	uses	the	Role	interface,	with	the	ClassType
property	set	to	the	appropriate	value	for	the	role	type	as	shown.

Role	type Role	object Role	class	type
Database	role DbGroup clsDatabaseRole
Cube	role CubeGroup clsCubeRole
Mining	model	role MiningModelGroup clsMiningModelRole

The	Role	object	is	used	to:

Provide	access	to	the	list	of	users	for	a	role	associated	with	a	database,
cube,	or	data	mining	model.

Create	or	modify	permissions	on	a	role	associated	with	a	database,
cube,	or	data	mining	model.

Provide	access	to	commands	for	a	role	associated	with	a	database,	cube,
or	data	mining	model.

See	Also

clsDatabaseRole

clsCubeRole

clsMiningModelRole

Cube	(Decision	Support	Objects)

Data	Mining	Model	(Decision	Support	Objects)

Database	(Decision	Support	Objects)

Command	(Decision	Support	Objects)

Roles

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Aggregation	(Decision	Support	Objects)
The	Aggregation	object	in	Decision	Support	Objects	(DSO)	provides	access	to
aggregations	associated	with	a	partition	in	Microsoft®	SQL	Server™	2000
Analysis	Services.	The	MDStores	collection	of	the	DSO	Partition	object	allows
access	to	aggregations.	The	Aggregation	object	uses	the	MDStore	interface,
with	a	ClassType	property	of	clsAggregation.

The	Aggregation	object	is	used	to:

Provide	access	to	the	dimensions,	data	sources,	and	measures	associated
with	an	aggregation.

Edit	the	properties	and	objects	associated	with	an	aggregation.

Determine	the	various	states	of	an	aggregation,	such	as	validity	and
processing	status.

See	Also

Aggregations

clsAggregation

DataSource	(Decision	Support	Objects)

Dimension	(Decision	Support	Objects)

MDStore	Interface

Measure	(Decision	Support	Objects)

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Command	(Decision	Support	Objects)
The	Command	object	in	Decision	Support	Objects	(DSO)	provides	access	to
commands	associated	with	databases,	cubes,	and	roles	in	Microsoft®	SQL
Server™	2000	Analysis	Services.	The	DSO	Database,	Cube,	and	Role	objects
support	the	Commands	collection	for	access	to	associated	commands.

All	three	types	of	commands	are	supported	with	DSO	objects.	Each	command
object	detailed	in	the	following	table	uses	the	Command	interface,	with	the
ClassType	property	set	to	the	appropriate	value	for	the	command	type	as	shown.

Command	type Command	object Command	class	type
Database	command DbCommand clsDatabaseCommand
Cube	command CubeCommand clsCubeCommand
Role	command RoleCommand clsRoleCommand

The	Command	object	is	used	to:

Provide	access	to	the	properties,	such	as	the	statement	and	ordinal
position,	of	a	command	associated	with	a	database,	cube,	or	role.

Manage	locks	for	a	command	associated	with	a	database,	cube,	or	role.

See	Also

Commands

clsDatabaseCommand

clsCubeCommand

clsRoleCommand

Cube	(Decision	Support	Objects)

Database	(Decision	Support	Objects)

Role	(Decision	Support	Objects)

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Level	(Decision	Support	Objects)
The	Level	object	in	Decision	Support	Objects	(DSO)	provides	access	to	levels
associated	with	dimensions	in	Microsoft®	SQL	Server™	2000	Analysis
Services.	The	Levels	collection	of	the	DSO	Dimension	object	provides	access	to
DSO	Level	objects.	In	addition,	the	Levels	collection	is	supported	by	the	Cube,
Aggregation,	and	Partition	DSO	objects.

All	four	types	of	levels	are	supported	with	DSO	objects.	Each	level	object
detailed	in	the	following	table	uses	the	Level	interface,	with	the	ClassType
property	set	to	the	appropriate	value	for	the	level	type	as	shown.

Level	type Level	object Level	class	type
Database	level DbLevel clsDatabaseLevel
Cube	level CubeLevel clsCubeLevel
Partition	level PartitionLevel clsPartitionLevel
Aggregation	level AggregationLevel clsAggregationLevel

The	Level	object	is	used	to:

Provide	access	to	the	member	properties	associated	with	a	level.

Edit	the	properties,	such	as	level	type	and	custom	rollup	expression,
associated	with	a	level.

See	Also

clsDatabaseLevel

clsCubeLevel

clsPartitionLevel

clsAggregationLevel

Dimension	(Decision	Support	Objects)

Levels

JavaScript:hhobj_1.Click()

Working	with	Dimensions	and	Levels

Analysis	Services	Programming

Measure	(Decision	Support	Objects)
The	Measure	object	in	Decision	Support	Objects	(DSO)	provides	support	for
measures.	The	Measures	collection	of	the	DSO	Cube,	Partition,	and
Aggregation	objects	provides	access	to	cube,	partition,	and	aggregation
measures,	respectively.

All	three	types	of	measures	are	supported	with	DSO	objects.	Each	measure
object	detailed	in	the	following	table	uses	the	Measure	interface,	with	the
ClassType	property	set	to	the	appropriate	value	for	the	level	type	as	shown.

Measure	type Measure	object Measure	class	type
Cube	measure CubeMeasure clsCubeMeasure
Partition	measure PartitionMeasure clsPartitionMeasure
Aggregation	measure AggregationMeasure clsAggregationMeasure

The	Measure	object	is	used	to	edit	the	properties,	such	as	the	aggregation
function	and	source	column,	associated	with	a	measure	in	Microsoft®	SQL
Server™	2000	Analysis	Services.

See	Also

Aggregation	(Decision	Support	Objects)

clsCubeMeasure

clsPartitionMeasure

clsAggregationMeasure

Cube	(Decision	Support	Objects)

Measures

Partition	(Decision	Support	Objects)

Working	with	Cubes	and	Measures

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Member	Property	(Decision	Support	Objects)
The	MemberProperty	object	in	Decision	Support	Objects	(DSO)	provides
access	to	member	properties	associated	with	levels	in	Microsoft®	SQL	Server™
2000	Analysis	Services.	The	MemberProperties	collection	of	the	DSO	Level
object	supports	access	to	the	member	properties	associated	with	a	level.	The
MemberProperty	object	uses	the	MemberProperty	interface,	with	a
ClassType	property	of	clsMemberProperty.

The	MemberProperty	object	is	used	to	edit	the	properties,	such	as	column	type
and	language,	of	a	member	property	in	Analysis	Services.

See	Also

clsMemberProperty

Dimension	(Decision	Support	Objects)

Level	(Decision	Support	Objects)

Member	Properties

Working	with	Dimensions	and	Levels

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Partition	(Decision	Support	Objects)
The	Partition	object	in	Decision	Support	Objects	(DSO)	provides	access	to
partitions	in	Microsoft®	SQL	Server™	2000	Analysis	Services.	Access	to
partitions	associated	with	cubes	in	Analysis	Services	is	supplied	by	the
MDStores	collection	of	the	DSO	Cube	object.	As	such,	the	Partition	object
uses	the	MDStore	interface,	with	a	ClassType	property	of	clsPartition.

The	Partition	object	is	used	to:

Provide	access	to	data	sources,	dimensions,	aggregations,	and	measures
associated	with	a	partition	in	Analysis	Services.

Update	partitions	programmatically.

Manage	locks	on	partitions.

See	Also

Aggregation	(Decision	Support	Objects)

clsPartition

Cube	(Decision	Support	Objects)

DataSource	(Decision	Support	Objects)

Dimension	(Decision	Support	Objects)

MDStore	Interface

Measure	(Decision	Support	Objects)

Partitions

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Column	(Decision	Support	Objects)
The	Column	object	in	Decision	Support	Objects	(DSO)	provides	access	to	data
mining	columns	in	Microsoft®	SQL	Server™	2000	Analysis	Services.	The
Columns	collection	of	the	MiningModel	and	Column	objects	are	used	to
access	data	mining	columns	and	nested	data	mining	columns,	respectively,	in
Analysis	Services.	The	Column	object	uses	the	Column	interface,	with	a
ClassType	property	of	clsColumn.

The	Column	object	is	used	to:

Provide	access	to	nested	data	mining	columns	associated	with	a	column
in	a	data	mining	model.

Edit	properties,	such	as	content	type	and	modeling	flags,	for	a	column
in	Analysis	Services.

See	Also

clsColumn

Data	Mining	Columns

Data	Mining	Examples

Data	Mining	Model	(Decision	Support	Objects)

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Cube	Analyzer	(Decision	Support	Objects)
The	CubeAnalyzer	object	in	Decision	Support	Objects	(DSO)	provides	access
to	analysis	functions	for	cubes	in	Microsoft®	SQL	Server™	2000	Analysis
Services.	The	Analyzer	property	of	the	DSO	Cube	object	provides	access	to	the
CubeAnalyzer	object.	The	CubeAnalyzer	object	uses	the	CubeAnalyzer
interface,	with	a	ClassType	property	of	clsCubeAnalyzer.

The	CubeAnalyzer	object	is	used	to	provide	access	to	the	query	log	of	a	cube	in
Analysis	Services.

See	Also

clsCubeAnalyzer

Cube	(Decision	Support	Objects)

Analysis	Services	Programming

Partition	Analyzer	(Decision	Support	Objects)
The	PartitionAnalyzer	object	in	Decision	Support	Objects	(DSO)	provides
access	to	the	partition	analysis	tools	for	a	partition	in	Microsoft®	SQL	Server™
2000	Analysis	Services.	It	is	accessed	through	the	Analyzer	property	of	the
DSO	Partition	object.	The	PartitionAnalyzer	object	uses	the
PartitionAnalyzer	interface,	with	a	ClassType	property	of
clsPartitionAnalyzer.

The	PartitionAnalyzer	object	is	used	to:

Provide	access	to	the	aggregation	analysis	capabilities	for	a	partition	in
Analysis	Services.

Provide	additional	information,	such	as	existing	designed	aggregations
and	goal	queries,	to	the	aggregation	analysis	process	for	a	partition.

See	Also

clsPartitionAnalyzer

Partition	(Decision	Support	Objects)

Analysis	Services	Programming

Using	Decision	Support	Objects
You	can	use	Decision	Support	Objects	(DSO)	in	your	applications	to	administer
the	server	and	to	create	and	maintain	OLAP	and	data	mining	objects.	DSO
objects	can	also	be	created	and	used	to	incorporate	the	server	functions	of
Microsoft®	SQL	Server™	2000	Analysis	Services	into	client	applications.	For
information	about	the	programming	environments	in	which	you	can	use	DSO	to
create	such	client	applications,	see	Development	Environments.

A	common	sequence	of	operations	for	an	application	using	DSO	is:

1.	 Connect	to	an	Analysis	server.

2.	 Create	a	database	object	to	contain	dimensions	and	cubes.

3.	 Add	a	data	source	that	contains	the	data.

4.	 Create	dimensions	and	their	levels.

5.	 Create	a	cube	and	specify	dimensions	and	measures.

6.	 Process	a	cube	to	load	its	structure	and	data.

These	operations	are	described	and	illustrated	using	Microsoft	Visual	Basic®,
Microsoft	Visual	Basic	Scripting	Edition,	and	Microsoft	Visual	C++®	code	in
Common	Operations	and	Examples.

Analysis	Services	Programming

Development	Environments
You	can	use	Decision	Support	Objects	(DSO)	with	any	language	that	supports
COM	Automation,	such	as	Microsoft®	Visual	Basic®,	Microsoft	Visual	Basic
Scripting	Edition,	or	Microsoft	Visual	C++®.

Visual	Basic
You	can	use	the	DSO	library	in	Visual	Basic	simply	by	setting	the	Decision
Support	Objects	library	as	a	project	reference.

Example

Dim	dsoServer	As	New	DSO.Server
dsoServer.Connect	"LocalHost"

Setting	Program	References
To	use	the	DSO	library	in	a	Visual	Basic	application,	add	it	as	a	reference	to	the
project.	On	the	Project	menu,	click	References,	and	then	select	Microsoft
Decision	Support	Objects.

Visual	Basic	Scripting	Edition
Visual	Basic	Scripting	Edition	programmers	can	use	DSO	by	using	the
CreateObject	method.	This	method	can	be	used	to	create	any	needed	object	in
the	DSO	libraries.

Example
The	following	example	creates	a	DSO.Server	object:

Dim	dsoServer
Set	dsoServer	=	CreateObject("DSO.Server")
dsoServer.Connect	"LocalHost"

In	order	to	support	scripting,	the	DSO	Database,	Cube,	Partition,	and

Aggregation	objects	implement	the	MDStore	class	interface	as	well	as	their
own	class	interface;	this	is	the	default	interface	used	for	MDStores	collections
of	DSO	objects.	The	following	code	example	illustrates	the	retrieval	of	a
database	from	a	server	using	the	MDStores	collection:

Dim	dsoDatabase
Set	dsoDatabase	=	dsoServer.MDStores(1)

The	ClassType	and	SubClassType	properties	of	the	MDStore	interface	allow
for	class	determination.	If	the	class-specific	interface	for	a	particular	object	is
needed,	first	use	the	CreateObject	command	to	create	an	instance	of	the	object,
then	set	it	to	the	required	object	in	the	MDStores	collection.	This	is
demonstrated	in	the	following	code	example:

Dim	dsoServer
Dim	dsoDatabase
Set	dsoServer	=	CreateObject("DSO.Server")
dsoServer.Connect	"LocalHost"
Set	dsoDatabase	=	CreateObject("DSO.Database")
Set	dsoDatabase	=	dsoServer.MDStores(1)

CAUTION		It	is	recommended	that,	for	any	DSO	object	supporting	the	MDStore
interface,	the	class-specific	interface	not	be	used.

Analysis	Services	Programming

Common	Operations	and	Examples
This	topic	provides	basic	and	advanced	examples,	in	a	step-by-step	format,	that
show	you	how	to	perform	common	operations	using	Decision	Support	Objects
(DSO).	These	examples	assume	that	you	have	some	experience	in	creating
Microsoft®	Visual	Basic®	or	Visual	C++®	database	applications.	The	examples
provide	complete	routines	in	Visual	Basic	that	perform	the	following	functions:

Connects	to	your	Analysis	server

Accesses	the	FoodMart	2000	sample	database

Adds	a	new	database	and	data	source

Adds	dimensions	and	levels

Adds	a	cube	and	measures

Processes	the	cube

Creates	a	virtual	cube

Creates	a	linked	cube

Creates	virtual	dimensions

Performs	incremental	updates	on	a	cube

Note		You	can	also	find	sample	applications	on	the	Microsoft	SQL	Server™
2000	CD-ROM	in	the	\MSOLAP\Samples	directory.	These	illustrate	some	of	the
techniques	you	can	use	for	developing	your	own	applications	that	use	DSO	or

PivotTable®	Service.	The	Readme.txt	file	in	the	folder	provides	descriptions	of
the	individual	samples	and	instructions	for	installing	them	on	your	computer.
Examples	include	displaying	meta	data	and	data	over	the	Web,	creating	and
processing	cubes	with	DSO,	and	creating	a	write-enabled	cube.

The	examples	use	DSO	objects	to	create	a	cube	derived	from	the	FoodMart
2000	sample	database,	which	is	provided	with	Microsoft	SQL	Server	2000
Analysis	Services.	It	uses	the	Sales_Fact_1997,	Product,	Store,	and
Time_By_Day	tables	in	a	star	schema,	as	shown	here.

The	following	dimensions	and	measures	are	also	used,	as	shown	here.

Remarks
You	may	also	find	it	helpful	to	review	the	structure	of	the	FoodMart	2000
database	itself	by	examining	it	either	in	Microsoft	Access	or	in	a	third-party
computer-aided	software	engineering	(CASE)	tool.	This	will	help	you	to
understand	how	the	preceding	steps	are	applied	to	the	specific	instance	of	the
FoodMart	2000	database.

Some	of	these	exercises	can	modify	the	FoodMart	2000	sample	database.	We
recommend	that	you	make	backup	copies	of	the	following	directories	before	you
proceed:

C:\Program	Files\Microsoft	Analysis	Services\Bin

C:\Program	Files\Microsoft	Analysis	Services\Data

Analysis	Services	Programming

OLAP	Examples
The	basic	examples	provided	in	this	topic	cover	the	most	commonly	employed
functions	of	the	Decision	Support	Objects	(DSO)	library.	All	of	the	examples	are
written	in	Microsoft®	Visual	Basic®,	with	additional	code	examples	in
Microsoft	Visual	C++®	given	on	selected	topics.	The	following	table	lists	the
topics	covered.

Topic Description
Working	with	Servers Describes	how	to	connect	to	an	Analysis	server
Working	with	Databases Explains	how	to	list,	add,	and	delete	databases	for

an	Analysis	server
Working	with	Data
Sources

Shows	how	to	list	data	sources	on,	add	new	data
sources	to,	or	delete	existing	data	sources	for	a
database

Working	with
Dimensions	and	Levels

Demonstrates	how	to	list,	add,	and	delete	shared
dimensions	for	a	database

Working	with	Cubes	and
Measures

Describes	how	to	list,	add,	delete,	and	process
cubes	for	a	database,	including	examples	on	how
to	list	and	add	measures	to	a	cube

Note		The	examples	presented	in	this	topic	are	for	educational	purposes.	The
code	is	intended	to	illustrate	the	functionality	of	the	DSO	library,	and	it	does	not
contain	error-handling	routines.

Analysis	Services	Programming

Working	with	Servers
The	example	code	in	this	topic	shows	you	how	to	connect	to	an	Analysis	server
using	Decision	Support	Objects	(DSO)	and	list	some	of	its	property	values.

If	the	Analysis	server	is	not	installed	on	the	computer	on	which	you	are	running
this	example,	change	LocalHost	to	the	name	of	the	Microsoft®	Windows	NT®
Server	4.0	or	Windows®	2000	computer	where	the	Analysis	server	is	installed
and	running.

List	Servers
The	following	code	example	illustrates	the	use	of	the	DSO.Server	object	in
connecting	to	and	retrieving	attributes	from	an	Analysis	server.

Example
The	following	code	example	connects	to	the	local	Analysis	server	using	the
Connect	method	of	the	DSO.Server	object,	and	then	it	displays	some	of	the
basic	server	properties	in	the	Immediate	window:

Private	Sub	ListServerProps()
				Dim	dsoServer	As	DSO.Server
				Dim	enuClassType	As	DSO.ClassTypes

				'	Create	instance	of	server	and	connect.
				'	"LocalHost"	will	default	to	the
				'	local	Windows	NT	Server	4.0	where	the
				'	Analysis	server	is	installed.
				Set	dsoServer	=	New	DSO.Server
				dsoServer.Connect	"LocalHost"

				'	Show	the	server's	information	to	the	user.
				If	dsoServer.ClassType	=	clsServer	Then

								Debug.Print	"Server	Properties:"
								Debug.Print	"							Name:	"	&	dsoServer.Name
								Debug.Print	"Description:	"	&	dsoServer.Description
								'	The	Machine	property	is	a	hidden	property	of	the
								'	DSO.Server	object.
								Debug.Print	"				Machine:	"	&	dsoServer.Machine
				End	If

End	Sub

Analysis	Services	Programming

Working	with	Databases
Each	Analysis	server	contains	an	MDStores	collection	of	database	objects	(that
is,	objects	of	ClassType	clsDatabase).	A	database	in	Decision	Support	Objects
(DSO)	contains	dimensions	and	their	subordinate	levels,	data	sources,	roles,	and
commands.	Each	database	object	also	contains	an	MDStores	collection	of	cube
objects	(that	is,	objects	of	ClassType	clsCube.)

The	following	examples	discuss	the	methods	used	to	list,	add,	and	delete
databases	on	an	Analysis	server.

List	Databases
The	following	code	example	connects	to	the	specified	DSO	server	and	iterates
through	all	of	the	databases	on	that	server,	using	the	MDStores	collection	for	the
Analysis	server	object.

Example
When	executed,	the	following	code	example	prints	the	name	and	description	of
every	database	defined	for	the	specified	Analysis	server:

Private	Sub	ListDatabases()
				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore

				'	Connect	to	the	server.
				dsoServer.Connect	"LocalHost"

				'	For	each	MDStore	database	object	on	the	server,
				'	print	its	name.
				For	Each	dsoDB	In	dsoServer.MDStores
								Debug.Print	"Database:	"	&	dsoDB.Name	&	_
												"	-	"	&	dsoDB.Description

				Next

End	Sub

Create	a	New	Database
To	create	an	MDStore	object	of	ClassType	clsDatabase	on	the	server,	the
AddNew	method	of	the	Server.MDStores	database	object	collection	is	used	in
the	following	code	example.

Example
The	following	code	example	creates	a	new	database,	TestDB,	on	the	local
Analysis	server:

Private	Sub	CreateDatabase()
				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore

				Dim	strDBName	As	String
				Dim	strDBDesc	As	String

				'	Create	a	connection	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"

				'	Initialize	the	string	variables	for	the
				'	new	database	name	and	description.
				strDBName	=	"TestDB"
				strDBDesc	=	"Test	Database"

				'	Is	there	already	a	database	by	this	name?
				If	dsoServer.MDStores.Find(strDBName)	Then
								MsgBox	strDBName	&	"	already	exists."
								Exit	Sub
				End	If

				'	Add	new	database	to	server	object	collection.
				'	Using	the	AddNew	method	from	MDStores.
				Set	dsoDB	=	dsoServer.MDStores.AddNew(strDBName)

				'Assign	the	description	to	the	MDStore's
				'Description	property,	and	then	call	the	Update	method.
				dsoDB.Description	=	strDBDesc
				dsoDB.Update

				'Inform	the	user	that	the	database	was	added	to	the	server.
				MsgBox	(strDBName	&	"	added	to	server	"	&	dsoServer.Name)

End	Sub

Remove	a	Database
To	remove	a	database,	use	the	Remove	method	of	the	Server.MDStores
collection	as	demonstrated	in	the	following	code	example.

Example
The	following	code	example	removes	the	TestDB	database	from	the	local
Analysis	server:

Private	Sub	RemoveDatabase()
				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore

				Dim	strDBName	As	String
				Dim	blnResult	As	Boolean

				'	Create	a	connection	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"

				'	Set	the	database	name	variable	to	TestDB.
				strDBName	=	"TestDB"

				'	Check	to	make	sure	that	the	TestDB	database	is	on	
				'	the	Analysis	server.
				If	dsoServer.MDStores.Find(strDBName)	Then
								'	The	database	was	on	the	server.

								'	Delete	the	TestDB	database.
								dsoServer.MDStores.Remove	strDBName

								'	Inform	the	user.
								MsgBox	strDBName	&	"	removed	from	server	"	&	dsoServer.Name
				Else
								'	The	database	was	not	on	the	server.

								'	Inform	the	user.
								MsgBox	strDBName	&	"	not	found	on	server	"	&	dsoServer.Name
				End	If

End	Sub

Note		The	TestDB	database	is	referred	to	in	other	examples.	Use	the	code
example	provided	earlier	in	this	topic	to	re-create	the	database	for	other
examples.

See	Also

Databases

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Working	with	Data	Sources
Collections	of	data	sources	(that	is,	MDStore	objects	of	ClassType
clsDataSource)	are	contained	in	MDStore	objects	of	ClassType	clsDatabase,
clsCube,	and	clsPartition.	Each	object's	data	source	specifies	an	external
database	that	will	be	used	as	the	source	of	data.

A	database	can	contain	multiple	data	sources	in	its	DataSources	collection.
However,	each	cube	and	partition	contains	only	a	single	data	source.

The	two	examples	in	this	topic	demonstrate	how	to	list	and	add	a	data	source	to
the	database's	DataSources	collection.

List	Data	Sources
The	easiest	way	to	list	data	sources	is	to	iterate	through	the	DataSources
collection	of	an	MDStore	database	object,	as	shown	in	the	following	code
example	which	lists	the	Name	and	ConnectionString	properties	of	each	data
source	for	every	database	on	a	given	Analysis	server.

Example
The	following	code	example	loops	through	the	DataSources	collection	of	each
database	on	the	local	Analysis	server,	printing	some	of	the	basic	properties	for
each	data	source	in	the	Immediate	window:

Private	Sub	ListDataSources()
				Dim	dsoServer	As	New	dso.Server
				Dim	dsoDB	As	dso.MDStore
				Dim	dsoDS	As	dso.DataSource

				'	Create	a	connection	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"

				'	Step	through	the	databases	in	the

				'	MDStores	collection	of	the	server.
				For	Each	dsoDB	In	dsoServer.MDStores

								'	Print	the	name	&	description	of	the	database.
								Debug.Print	"DATABASE:	"	&	dsoDB.Name	&	"	-	"	&	_
												dsoDB.Description

								'	Determine	whether	the	database	has	data	sources.
								If	dsoDB.DataSources.Count	=	0	Then
												Debug.Print	"						Data	source:	None"
								Else
												'	Iterate	through	and	print	the	data	source
												'	information.
												For	Each	dsoDS	In	dsoDB.DataSources
															Debug.Print	"						Data	source:	"	&	dsoDS.Name
															Debug.Print	"			Connect	String:	"	&	dsoDS.ConnectionString
												Next
								End	If
				Next

End	Sub

Add	a	Data	Source
The	process	to	add	a	new	data	source	is	similar	to	the	process	for	adding	a	new
database.	The	AddNew	method	of	the	DataSources	collection	for	a	given
database	creates	a	new	data	source	for	the	database.

Example
The	following	code	example	adds	a	data	source	named	FoodMart	to	the	TestDB
database	object	on	the	local	Analysis	server:

Private	Sub	AddDataSource()
				Dim	dsoServer	As	New	DSO.Server

				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoDS	As	DSO.DataSource

				Dim	strDBName	As	String
				Dim	strDSName	As	String
				Dim	strDSConnect	As	String

				'	Initialize	variables	for	the	database	name,
				'	data	source	name,	and	the	ConnectionString	property
				'	for	the	data	source.
				strDBName	=	"TestDB"
				strDSName	=	"FoodMart"
				strDSConnect	=	"Provider=MSDASQL.1;User	ID=sa;"	&	_
								"Data	Source=FoodMart;Connect	Timeout=15"

				'	Create	a	connection	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"

				'	Locate	the	database	first.
				If	dsoServer.MDStores.Find(strDBName)	Then
								Set	dsoDB	=	dsoServer.MDStores(strDBName)

								'	Check	to	see	whether	the	data	source	already	exists.
								If	dsoDB.DataSources.Find(strDSName)	Then
												MsgBox	"Data	source	"	&	strDSName	&	_
																"	already	exists	for	database	"	&	strDBName
								Else
												'	Create	a	new	data	source.
												Set	dsoDS	=	dsoDB.DataSources.AddNew(strDSName)
												'	Add	the	ConnectionString	properties
												dsoDS.ConnectionString	=	strDSConnect
												'	Update	the	data	source.
												dsoDS.Update

												'	Inform	the	user
												MsgBox	"Data	source	"	&	strDSName	&	_
																"	has	been	added	to	database	"	&	strDBName
								End	If
				Else
								MsgBox	strDBName	&	"	is	missing."
				End	If

End	Sub

See	Also

Data	Sources

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Working	with	Dimensions	and	Levels
The	dimensions	of	a	cube	store	data	derived	from	relational	database	tables	and
contain	the	categorical	data	you	want	to	analyze.

The	dimensions	you	build	should	be	distinct	categories	that	you	want	to	add	to
cubes	in	your	database	(such	as	Time,	Customer	Education,	and	Customer	Age).
A	dimension	can	be	created	from	a	single	dimension	table	(star	schema)	or	from
multiple	dimension	tables	(snowflake	schema).	Dimensions	are	classified	as
either	standard	or	time	dimensions,	depending	upon	the	data	type	of	the
corresponding	column	in	the	dimension	table.

Collections	of	dimensions	are	contained	within	objects	of	ClassType
clsDatabase,	clsCube,	clsPartition,	and	clsAggregation.	The	dimension	objects
contained	within	each	of	these	collections	are	of	respective	ClassTypes
clsDatabaseDimension,	clsCubeDimension,	clsPartitionDimension,	and
clsAggregationDimension.

The	List	Dimensions	example	lists	existing	dimensions	and	their	related	levels.
The	Add	Dimensions	example	creates	new	dimensions	and	levels.

List	Dimensions
The	Dimensions	collection	of	the	DSO.Server	object	contains	all	shared
dimensions	on	an	Analysis	server,	as	illustrated	by	the	following	code	example.

Example
The	following	code	example	illustrates	the	hierarchical	nature	of	dimensions	and
levels	by	listing	the	levels	in	order	of	precedence	for	every	dimension	contained
in	every	database	on	a	given	Analysis	server,	printing	basic	properties	of	each
dimension	and	level	in	the	Immediate	window:

Private	Sub	ListDimensions()
				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoDim	As	DSO.Dimension

				Dim	dsoLev	As	DSO.Level

				'	Create	a	connection	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"

				'	Enumerate	databases	on	a	server.
				For	Each	dsoDB	In	dsoServer.MDStores
								Debug.Print	"DATABASE:	"	&	dsoDB.Name	&	"	-	"	&	_
												dsoDB.Description

								'	Enumerate	dimensions	in	a	database.
								For	Each	dsoDim	In	dsoDB.Dimensions
												Debug.Print	"				Dimension:	"	&	dsoDim.Name

												'	Enumerate	levels	in	a	dimension.
												For	Each	dsoLev	In	dsoDim.Levels
																Debug.Print	"								Level:	"	&	dsoLev.Name
												Next
								Next
				Next

End	Sub

Add	Dimensions	and	Levels
To	add	a	dimension,	the	AddNew	method	of	the	Dimensions	collection	for	an
MDStore	database	object	is	used.	After	a	new	dimension	has	been	created	in
this	way,	levels	are	added	using	the	AddNew	method	of	the	Levels	collection	for
the	new	Dimension	object.

The	following	code	example	adds	the	Products	dimension	with	two	levels,
Brand	Name	and	Product	Name,	and	the	Stores	dimension	with	four	levels,
Store	Country,	Store	State,	Store	City	and	Store	ID,	to	the	TestDB	database.
In	addition,	the	Store	ID	level	has	a	member	property	named	Store	SQFT
associated	with	it.	The	following	diagram	graphically	displays	the	relationships.

For	more	information	about	member	properties,	see	clsMemberProperty.

Note		The	TestDB	database	is	created	using	some	of	the	prior	examples	in	this
topic.	For	more	information,	see	Working	with	Databases.

Example
The	following	code	example	adds	two	new	dimensions	to	the	TestDB	database:

Private	Sub	AddDimensions()
				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoDS	As	DSO.DataSource
				Dim	dsoDim	As	DSO.Dimension
				Dim	dsoLev	As	DSO.Level
				Dim	dsoMember	As	DSO.MemberProperty

				Dim	strDBName	As	String

				'	Constants	used	for	ColumnType	property
				'	of	the	DSO.Level	object.
				'	Note	that	these	constants	are	identical	to
				'	those	used	in	ADO	in	the	DataTypeEnum	enumeration.
				Const	adWChar	=	130
				Const	adInteger	=	3
				Const	adDouble	=	5

				'	Initialize	variables	for	the	database	name.
				strDBName	=	"TestDB"

				'	Create	a	connection	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"

				'	Set	the	database	object.

				Set	dsoDB	=	dsoServer.MDStores(strDBName)

				'	Set	the	data	source	for	the	database	object.
				'	A	data	source	is	required	to	run	this	example.
				If	dsoDB.DataSources.Count	=	0	Then
								MsgBox	"Database	"	&	dsoDB.Name	&	_
												"	has	no	data	sources."
				Else
								Set	dsoDS	=	dsoDB.DataSources(1)
				End	If

				'	Create	Products	dimension	and	levels.
				Set	dsoDim	=	dsoDB.Dimensions.AddNew("Products")
				Set	dsoDim.DataSource	=	dsoDS			'	Dimension	data	source
				dsoDim.FromClause	=	"product"			'	Related	table
				dsoDim.JoinClause	=	""										'	Used	in	snowflake	schema

				'	Add	Brand	Name	level.
				Set	dsoLev	=	dsoDim.Levels.AddNew("Brand	Name")
				dsoLev.MemberKeyColumn	=	"""product"".""brand_name"""
				dsoLev.ColumnSize	=	255									'	Column	data	size	in	bytes
				dsoLev.ColumnType	=	adWChar					'	Column	data	type
				dsoLev.EstimatedSize	=	1								'	Distinct	members	in	column

				'	Add	Product	Name	level.
				Set	dsoLev	=	dsoDim.Levels.AddNew("Product	Name")
				dsoLev.MemberKeyColumn	=	"""product"".""product_name"""
				dsoLev.ColumnSize	=	255
				dsoLev.ColumnType	=	adWChar
				dsoLev.EstimatedSize	=	1

				'	Update	the	Products	dimension.
				dsoDim.Update

				'	Inform	the	user.
				MsgBox	"Dimension	"	&	dsoDim.Name	&	"	added	to	"	&	_
								dsoDim.DataSource.Name	&	"	data	source."

				'	Create	Stores	dimension	and	levels.
				Set	dsoDim	=	dsoDB.Dimensions.AddNew("Stores")
				Set	dsoDim.DataSource	=	dsoDS			'	Dimension	data	source
				dsoDim.FromClause	=	"store"					'	Related	table
				dsoDim.JoinClause	=	""										'	Used	in	snowflake	schema

				'	Add	Store	Country	level.
				Set	dsoLev	=	dsoDim.Levels.AddNew("Store	Country")
				dsoLev.MemberKeyColumn	=	"""store"".""store_country"""
				dsoLev.ColumnSize	=	50										'	Column	data	size	in	bytes
				dsoLev.ColumnType	=	adWChar					'	Column	data	type
				dsoLev.EstimatedSize	=	1								'	Distinct	members	in	column

				'	Add	Store	State	level.
				Set	dsoLev	=	dsoDim.Levels.AddNew("Store	State")
				dsoLev.MemberKeyColumn	=	"""store"".""store_state"""
				dsoLev.ColumnSize	=	50
				dsoLev.ColumnType	=	adWChar
				dsoLev.EstimatedSize	=	1

				'	Add	Store	City	level.
				Set	dsoLev	=	dsoDim.Levels.AddNew("Store	City")
				dsoLev.MemberKeyColumn	=	"""store"".""store_city"""
				dsoLev.ColumnSize	=	50
				dsoLev.ColumnType	=	adWChar
				dsoLev.EstimatedSize	=	1

				'	Add	Store	ID	level.

				Set	dsoLev	=	dsoDim.Levels.AddNew("Store	ID")
				dsoLev.MemberKeyColumn	=	"""store"".""store_ID"""
				dsoLev.ColumnSize	=	4
				dsoLev.ColumnType	=	adInteger
				dsoLev.EstimatedSize	=	1

				'	Add	a	member	property	to	the	Store	ID	level.
				Set	dsoMember	=	dsoLev.MemberProperties.AddNew("Store	SQFT",	_
								sbclsRegular)
				dsoMember.Description	=	"Store	size	in	square	feet"
				dsoMember.SourceColumn	=	"""store"".""store_sqft"""
				dsoMember.ColumnSize	=	4
				dsoMember.ColumnType	=	adDouble

				'	Update	the	Stores	dimension.
				dsoDim.Update

				'	Inform	the	user.
				MsgBox	"Dimension	"	&	dsoDim.Name	&	"	added	to	"	&	_
								dsoDim.DataSource.Name	&	"	data	source."

End	Sub

See	Also

Dimensions

Levels	and	Members

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Analysis	Services	Programming

Working	with	Cubes	and	Measures
Each	database	contains	an	MDStores	collection	of	cubes	(that	is,	objects	of
ClassType	clsCube).	A	cube	is	the	central	object	in	a	multidimensional
database.	A	cube	contains	dimensions	and	their	levels,	measures,	data	sources,
roles,	and	commands.	Each	cube	also	contains	an	MDStores	collection	of
partitions	(that	is,	objects	of	ClassType	clsPartition).

The	previous	examples	created	a	new	database,	added	a	data	source,	and	added
shared	dimensions	and	levels.	The	following	three	examples	demonstrate	how	to
list,	add,	and	remove	a	cube.

List	Cubes
Because	each	MDStore	database	object	contains	a	collection	of	MDStore	cube
objects,	it	is	easy	to	list	the	cubes	and	their	properties	for	each	database.

Example
The	following	code	example	prints	a	list	of	cubes	for	each	database	on	a	given
server	to	the	Immediate	window.	The	SubClassType	and	SourceTable
properties	for	each	cube	are	also	printed.

Private	Sub	ListCubes()
				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoCube	As	DSO.MDStore

				'	Create	a	connection	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"

				'	Step	through	the	databases	in	the	server	object.
				For	Each	dsoDB	In	dsoServer.MDStores
								'	Print	the	name	and	description	of	the	database
								Debug.Print	"DATABASE:	"	&	dsoDB.Name	&	"	-	"	&	_

								dsoDB.Description

								'	Step	through	the	cubes	in	the	database	object.
								If	dsoDB.MDStores.Count	=	0	Then
												Debug.Print	"		Cube:	None"
								Else
												For	Each	dsoCube	In	dsoDB.MDStores
																'	Print	the	name	of	the	cube.
																Debug.Print	"		Cube:	"	&	dsoCube.Name

																'	Check	to	see	whether	the	cube	is	regular	or	virtual.
																If	dsoCube.SubClassType	=	sbclsRegular	Then
																			Debug.Print	"							SubClassType:	Regular"
																			Debug.Print	"								SourceTable:	"	&	_
																					dsoCube.SourceTable
																Else
																				Debug.Print	"							SubClassType:	Virtual"
																End	If
													Next
								End	If
				Next

End	Sub

Add	a	Cube
The	following	example	illustrates	how	to	add	a	cube,	named	TestCube,	to	the
MDStores	collection	of	the	database:

1.	 Add	the	cube	to	the	MDStores	collection	of	the	database	using	the
AddNew	method.

2.	 Add	a	data	source	to	the	new	cube.

3.	 Set	the	SourceTable	property	of	the	cube.

4.	 Set	the	EstimatedRows	property	to	the	approximate	number	of	rows
in	the	table.

5.	 Add	the	shared	dimensions	that	you	created	in	the	Working	With
Dimensions	and	Levels	topic	to	the	cube's	Dimensions	collection	with
the	AddNew	method.

6.	 Create	an	SQL	INNER	JOIN	clause	for	connecting	the	dimension	table
to	the	source	table,	and	then	assign	it	to	the	cube's	JoinClause
property.

7.	 Make	the	changes	to	this	cube	permanent	by	calling	the	cube's	Update
method.

Example

The	following	code	example	adds	a	new	cube,	TestCube,	to	the	TestDB
database:

Private	Sub	AddCube()
				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoCube	As	DSO.MDStore

				Dim	strDBName	As	String
				Dim	strCubeName	As	String
				Dim	strJoin	As	String

				'	Initialize	variables	for	the	database	and
				'	cube	names.
				strDBName	=	"TestDB"

				strCubeName	=	"TestCube"

				'	Define	joins	between	the	fact	table	and	the	dimension	tables
				'	to	be	used	later	in	the	subroutine.

				'	Join	the	fact	table	to	the	Product	table.
				'	sales_fact_1998.product_id	=	product.product_id
				strJoin	=	"(""sales_fact_1997"".""product_id""=""product"".""product_id"")"
				strJoin	=	strJoin	&	"	AND	"

				'	Join	the	fact	table	to	the	Store	table.
				'	sales_fact_1998.store_id	=	store.store_id
				strJoin	=	strJoin	&	"(""sales_fact_1997"".""store_id""=""store"".""store_id"")"

				'	Create	a	connection	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"

				'	Ensure	the	database	exists	first.
				If	dsoServer.MDStores.Find(strDBName)	=	False	Then
								MsgBox	"Database	"	&	strDBName	&	"	is	not	found."
				Else
								Set	dsoDB	=	dsoServer.MDStores(strDBName)

								'	Check	for	existing	data	sources,	dimensions,	and
								'	cubes.
								If	dsoDB.DataSources.Count	=	0	Then
												'	No	data	source
												MsgBox	"Database	"	&	strDBName	&	"	has	no	data	sources."
								ElseIf	dsoDB.Dimensions.Count	=	0	Then
												'	No	dimensions
												MsgBox	"Database	"	&	strDBName	&	"	has	no	dimensions."
								ElseIf	dsoDB.MDStores.Find(strCubeName)	Then
												'	Cube	already	exists

												MsgBox	"Cube	"	&	strCubeName	&	"	already	exists	"	&	_
																"in	database"	&	strDBName
								Else
												'	Add	the	cube	to	the	database.
												Set	dsoCube	=	dsoDB.MDStores.AddNew(strCubeName)

												'	Further	define	the	cube.
												With	dsoCube
																'	Provide	the	data	source	for	the	cube.
																.DataSources.AddNew	dsoDB.DataSources(1).Name

																'	Provide	the	fact	table	for	the	cube.
																.SourceTable	=	"""sales_fact_1997"""

																'	Provide	an	estimated	number	of	rows.
																.EstimatedRows	=	100000

																'	Add	the	Products	and	Stores	shared	dimensions.
																.Dimensions.AddNew	"Products"
																.Dimensions.AddNew	"Stores"

																'	Join	the	fact	table	with	the	dimension	tables.
																.JoinClause	=	strJoin

																'	Update	the	database.
																.Update
												End	With

												'	Inform	the	user.
												MsgBox	"Cube	"	&	strCubeName	&	_
																"	created	and	dimensions	added"

								End	If

				End	If

End	Sub

Remove	a	Cube
The	process	of	removing	a	cube	from	a	database	is	performed	by	the	Remove
method	of	the	database	object's	MDStores	collection.	The	following	example
code	illustrates	this	by	removing	the	TestCube	cube	created	in	the	previous	code
example.

Example
The	following	code	example	removes	the	TestCube	cube	from	the	TestDB
database:

Private	Sub	RemoveCube()
				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore

				Dim	strDBName	As	String
				Dim	strCubeName	As	String

				'	Initialize	variables	for	the	database	and
				'	cube	names.
				strDBName	=	"TestDB"
				strCubeName	=	"TestCube"

				'	Create	a	connection	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"

				'	Ensure	the	database	exists	on	the	server.
				If	dsoServer.MDStores.Find(strDBName)	=	False	Then
								MsgBox	"Database	"	&	strDBName	&	_
												"	is	not	found	on	this	server."

				Else
								Set	dsoDB	=	dsoServer.MDStores(strDBName)

								'	Ensure	the	cube	exists	in	the	database.
								If	dsoDB.MDStores.Find(strCubeName)	=	False	Then
												MsgBox	"Cube	"	&	strCubeName	&	"	is	not	found"	&	_
																"	in	database	"	&	strDBName	&	"."
								Else
												'	Remove	the	cube	from	the	database.
												dsoDB.MDStores.Remove	strCubeName

												'	Inform	the	user.
												MsgBox	"Cube	"	&	strCubeName	&	"	removed"	&	_
																"	from	database	"	&	strDBName
								End	If
				End	If

End	Sub

List	Measures
Collections	of	measures	are	contained	within	objects	of	ClassType	clsCube,
clsPartition,	and	clsAggregation.	The	measure	objects	contained	within	each	of
these	collections	are	ClassTypes	clsCubeMeasure,	clsPartitonMeasure,	and
clsAggregationMeasure.

The	following	code	example	uses	the	Measures	collection	of	an	MDStore	cube
object	to	list	the	measures	associated	with	the	cubes	of	each	database	on	a	given
Analysis	server.

Example
The	following	code	example	lists	each	measure	of	each	cube	in	each	database	on
the	local	Analysis	server,	printing	basic	properties	to	the	Immediate	window:

Private	Sub	ListMeasures()

				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoCube	As	DSO.MDStore
				Dim	dsoMea	As	DSO.Measure

				'	Create	a	connection	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"

				'	Step	through	the	databases	in	the	MDStores	collection
				'	of	the	server	object.
				For	Each	dsoDB	In	dsoServer.MDStores
								Debug.Print	"DATABASE:	"	&	dsoDB.Name	&	"	-	"	&	_
								dsoDB.Description

								'Step	through	the	cubes	in	the	database	collection.
								For	Each	dsoCube	In	dsoDB.MDStores
												Debug.Print	"				Cube:	"	&	dsoCube.Name

												'Step	through	measures	for	the	cube.
												For	Each	dsoMea	In	dsoCube.Measures
																Debug.Print	"								Measure:	"	&	dsoMea.Name
												Next
								Next
				Next

End	Sub

Add	Measures
The	task	of	adding	measures	to	an	MDStore	cube	object	is	performed	by	the
AddNew	method	of	the	Measures	collection,	as	illustrated	by	the	following
code	example.

Example

The	following	code	example	adds	four	measures,	Product	ID,	Store	Sales,
Store	Cost,	and	Unit	Sales,	to	the	TestCube	cube	created	by	previous	code
examples:

Private	Sub	AddMeasures()
				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoCube	As	DSO.MDStore
				Dim	dsoMea	As	DSO.Measure

				Dim	strDBName	As	String
				Dim	strCubeName	As	String

				'	Constants	used	for	ColumnType	property
				'	of	the	DSO.Level	object.
				'	Note	that	these	constants	are	identical	to
				'	those	used	in	ADO	in	the	DataTypeEnum	enumeration.
				Const	adSmallInt	=	2

				'	Initialize	variables	for	the	database	and
				'	cube	names.
				strDBName	=	"TestDB"
				strCubeName	=	"TestCube"

				'	Create	a	connection	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"

				'	Ensure	the	database	exists	first.
				If	dsoServer.MDStores.Find(strDBName)	=	False	Then
								MsgBox	"Database	"	&	strDBName	&	"	is	not	found."
				Else
								Set	dsoDB	=	dsoServer.MDStores(strDBName)

								'	Check	for	existing	data	sources,	dimensions	and

								'	cubes.
								If	dsoDB.DataSources.Count	=	0	Then
												'	No	data	source
												MsgBox	"Database	"	&	strDBName	&	"	has	no	data	sources."
								ElseIf	dsoDB.Dimensions.Count	=	0	Then
												'	No	dimensions
												MsgBox	"Database	"	&	strDBName	&	"	has	no	dimensions."
								ElseIf	dsoDB.MDStores.Find(strCubeName)	=	False	Then
												'	Cube	already	exists
												MsgBox	"Cube	"	&	strCubeName	&	"	does	not	exist	"	&	_
																"in	database"	&	strDBName
								Else
												'	Add	the	cube	to	the	database.
												Set	dsoCube	=	dsoDB.MDStores(strCubeName)

												Set	dsoMea	=	dsoCube.Measures.AddNew("Product	ID")
												dsoMea.SourceColumn	=	"""sales_fact_1997"".""product_id"""
												dsoMea.SourceColumnType	=	adSmallInt		'The	data	type	for	the	column
												dsoMea.AggregateFunction	=	aggSum					'The	method	for	the	column
												'aggSum	aggregates	the	column	by	summation.

												Set	dsoMea	=	dsoCube.Measures.AddNew("Store	Sales")
												dsoMea.SourceColumn	=	"""sales_fact_1997"".""store_sales"""
												dsoMea.SourceColumnType	=	adSmallInt
												dsoMea.AggregateFunction	=	aggSum

												Set	dsoMea	=	dsoCube.Measures.AddNew("Store	Cost")
												dsoMea.SourceColumn	=	"""sales_fact_1997"".""store_cost"""
												dsoMea.SourceColumnType	=	adSmallInt
												dsoMea.AggregateFunction	=	aggSum

												Set	dsoMea	=	dsoCube.Measures.AddNew("Unit	Sales")
												dsoMea.SourceColumn	=	"""sales_fact_1997"".""unit_sales"""

												dsoMea.SourceColumnType	=	adSmallInt
												dsoMea.AggregateFunction	=	aggSum

												dsoCube.Update
								End	If
				End	If

End	Sub

Process	a	Cube
A	database,	shared	dimensions	and	their	levels,	and	a	cube	and	its	measures	are
now	in	place,	and	the	cube	can	be	processed.

To	process	a	cube,	use	the	Process	method	of	the	MDStore	cube	object	as
shown	in	the	following	code	example.

Processing	the	cube	can	take	several	minutes.	You	can	view	the	cube	data	using
Analysis	Manager	after	processing	is	complete.

Example
The	following	code	example	processes	the	TestCube	cube	created	in	the
previous	code	examples:

Private	Sub	ProcessCube()
				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoCube	As	DSO.MDStore
				Dim	dsoMea	As	DSO.Measure

				Dim	strDBName	As	String
				Dim	strCubeName	As	String

				'	Initialize	variables	for	the	database	and
				'	cube	names.
				strDBName	=	"TestDB"

				strCubeName	=	"TestCube"

				'	Create	a	connection	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"

				'	Ensure	the	database	exists	first.
				If	dsoServer.MDStores.Find(strDBName)	=	False	Then
								MsgBox	"Database	"	&	strDBName	&	"	is	not	found."
				Else
								Set	dsoDB	=	dsoServer.MDStores(strDBName)

								'	Check	for	existing	data	sources,	dimensions,	and
								'	cubes.
								If	dsoDB.DataSources.Count	=	0	Then
												'	No	data	source
												MsgBox	"Database	"	&	strDBName	&	"	has	no	data	sources."
								ElseIf	dsoDB.MDStores.Find(strCubeName)	=	False	Then
												'	Cube	already	exists
												MsgBox	"Cube	"	&	strCubeName	&	"	does	not	exist	"	&	_
																"in	database"	&	strDBName
								Else
												'	Retrieve	the	cube	from	the	database.
												Set	dsoCube	=	dsoDB.MDStores(strCubeName)

												'	Ensure	the	cube	is	correctly	constructed.
												If	dsoCube.Dimensions.Count	=	0	Then
																'	No	dimensions	associated	with	the	cube
																MsgBox	"Cube	"	&	strCubeName	&	_
																				"	has	no	dimensions."
												ElseIf	dsoCube.Measures.Count	=	0	Then
																'	No	measures	associated	with	the	cube
																MsgBox	"Cube	"	&	strCubeName	&	_
																				"	has	no	measures."

												Else
																'	Process	the	cube.
																dsoCube.Process

																'	Inform	the	user.
																MsgBox	"Cube	"	&	strCubeName	&	_
																				"has	been	processed."
												End	If
								End	If
				End	If

End	Sub

Analysis	Services	Programming

Data	Mining	Examples
The	basic	example	provided	in	this	topic	illustrates	the	common	data	mining
operations,	such	as	the	creation	of	data	mining	models,	that	can	be	performed
with	Decision	Support	Objects	(DSO).	The	following	table	lists	the	topic
covered.

Topic Description
Building	Data	Mining
Models

Details	how	to	create	relational	and	OLAP	data
mining	models,	including	the	use	of	mining
model	roles

Analysis	Services	Programming

Building	Data	Mining	Models
To	create	a	new	relational	or	OLAP	data	mining	model	programmatically	using
Decision	Support	Objects	(DSO),	follow	these	basic	steps:

1.	 Connect	to	the	target	Analysis	server	and	select	a	database	from	the
MDStores	collection	of	the	Server	object.

2.	 Create	a	new	data	mining	model	object	using	the	MiningModels
collection	of	the	Database	object,	with	the	appropriate	SubClassType
for	the	relational	or	OLAP	data	mining	model.

3.	 If	needed,	create	and	assign	mining	model	roles	to	the	new	relational
or	OLAP	mining	model	object.

4.	 Set	the	properties	needed	for	the	relational	or	OLAP	mining	model
object.	The	following	table	displays	the	differences	between	the
needed	properties	for	relational	and	OLAP	data	mining	models.

Property OLAP	mining	model
Relational	mining
model

CaseDimension Defines	the	case
dimension	used	by	the
data	mining	model.

Not	used.

CaseLevel Defines	the	case	level
within	the	case
dimension	used	by	the
data	mining	model.	A
read-only	property,	it
identifies	the	lowest
level	in	the	dimension
whose	data	mining
model	column	has	its

Not	used.

IsDisabled	property
set	to	False.

Description Contains	a	user-friendly	description	of	the	data
mining	model.

FromClause Not	used. Defines	the	case	table,
in	the	form	of	a
FROM	clause,	used	by
the	data	mining	model.

JoinClause Not	used. Defines	any
supporting	tables,	in
the	form	of	a	JOIN
clause,	used	by	the
data	mining	model.

MiningAlgorithmDefines	the	data	mining	algorithm	provider,
such	as	Microsoft_Decision_Trees	or
Microsoft_Clustering,	used	by	both	types	of
data	mining	models.

SourceCube Defines	the	OLAP
cube	used	by	the	data
mining	model	for
training	data.

Not	used.

SubClassType Is	set	to	sbclsOlap
when	the
MiningModel	object
is	created.

Is	set	to
sbclsRelational	when
the	MiningModel
object	is	created.

TrainingQuery Defines	the	Multidimensional	Expressions
(MDX)	query	used	to	insert	training	data	into
the	data	mining	model.	In	most	instances,	this
property	is	left	blank;	DSO	will	construct	an
appropriate	training	query	if	this	property	is
not	used.

5.	 Create	a	new	data	mining	model	column	in	the	Columns	collection	of
the	MiningModel	object.

6.	 Set	the	properties	needed	for	the	new	data	mining	model	column.	The
following	table	displays	the	differences	between	the	needed	column
properties	for	relational	and	OLAP	data	mining	models.

Property OLAP	mining	model
Relational	mining
model

DataType Defines	the	expected	data	type	of	the	data
mining	column.

Description Contains	a	user-friendly	description	of	the
data	mining	model	column.

ContentType Should	contain	a	value	from	the
SUPPORTED_CONTENT_TYPES	column
of	the	MINING_SERVICES	schema	rowset.
For	example,	if	the	column	contained	text
data	that	corresponded	to	income	ranges	for
customers,	the	ContentType	property	would
be	set	to	DISCRETE	to	reflect	the	discrete
valuations	of	the	data.	If,	on	the	other	hand,
the	column	contained	actual	salaries,	the
property	would	be	set	to	either
CONTINUOUS	or	DISCRETIZED,
depending	on	the	capabilities	of	the	data
mining	algorithm	provider.

IsKey Not	used.	This
property	is	read-only,
and	is	automatically
set	to	True	for	the
lowest	enabled	level	in
the	case	dimension
specified	in	the
CaseDimension
property	of	the	mining
model.

Defines	the	key
columns	for	the	data
mining	model.	Set	to
True	to	specify	a	key
column	in	the	case
set.

IsInput Defines	the	input	columns	for	the	data	mining
model.	For	a	set	of	related	columns,	changing
the	IsInput	property	for	one	of	the	columns

automatically	changes	the	property	for	the
other	related	columns.

IsPredictable Defines	the	predictable	columns	for	the	data
mining	model.	A	column	can	have	both
IsInput	and	IsPredictable	set	to	True.	For	a
set	of	related	columns,	changing	the
IsPredictable	property	for	one	of	the
columns	automatically	changes	the	property
for	the	other	related	columns.

IsDisabled Defines	the	columns	to	be	used	in	analysis	for
the	data	mining	model.

Distribution This	property	is	used	to	optimize	the	mining
model	by	giving	the	mining	model	algorithm
some	indication	of	the	statistical	nature	of	the
data	in	the	column.	The	values	for	this
property	should	come	from	the
SUPPORTED_DISTRIBUTION_FLAGS
of	the	MINING_SERVICES	schema	rowset.

SourceOlapObjectThe	value	of	this
property	is	an	object
within	the	OLAP	cube.
For	instance,	this
property	might	contain
a	DSO	level	object	or
a	DSO	member
property	object.

Not	used.

SourceColumn Not	used. The	value	of	this
property	is	the	fully
qualified	name	of	a
field	in	the	case	or
supporting	table	for
the	data	mining
model.

There	are	other	differences	in	how	column	properties	are	handled

between	OLAP	and	relational	models.	For	more	information	about
data	mining	model	columns,	see	clsColumn.

7.	 Save	the	mining	model	object	using	the	Update	method.

To	optionally	train	the	newly	created	data	mining	model,	the	following
additional	steps	should	be	used.	Although	a	new	data	mining	model
does	not	need	to	be	processed,	the	data	mining	model	cannot	be
browsed	until	processing	is	completed.

8.	 Lock	the	mining	model	object	using	the	olapLockProcess	flag.

9.	 Train	the	mining	model	object	using	the	Process	method.

10.	 Unlock	the	mining	model	object.

Locking	the	data	mining	model	during	processing	prevents	access	by	other	users
until	the	mining	model	is	unlocked,	improving	performance	during	the	training
of	the	mining	model	and	ensuring	that	repository	integrity	is	maintained.

Creating	an	OLAP	Data	Mining	Model
The	following	code	example	creates	an	OLAP	data	mining	model,	following	the
steps	outlined	earlier	in	this	topic,	that	attempts	to	predict	the	salary	range	of	a
customer	in	the	Sales	cube	of	the	FoodMart	2000	database	based	on	gender,
marital	status	and	education.

Unlike	the	process	of	creating	a	relational	data	mining	model,	the	column
structure	is	directly	drawn	from	the	source	cube	specified	in	the	SourceCube
property	of	the	mining	model	object.	To	determine	which	columns	are	to	be
processed	by	the	data	mining	model,	the	column	objects	stored	in	the	Columns
collection	of	the	mining	model	object	can	be	changed.	The	IsDisabled	property
determines	which	columns	are	to	be	used	as	part	of	the	analysis,	while	the
IsInput	and	IsPredictive	properties	of	each	column	object	can	be	set	to
determine	the	behavior	of	the	column,	including	whether	it	will	serve	as	an
input,	predictive,	or	input	and	predictive	column	in	the	data	mining	model.

Because	the	structure	of	the	OLAP	data	mining	model	is	drawn	from	the
structure	of	the	source	cube,	all	source	OLAP	objects	used	by	the	mining	model

must	be	visible	to	the	mining	model.	The	following	requirements	must	be	met:

The	source	cube	must	be	visible.

The	case	dimension	must	be	visible.

The	SourceOlapObject	property	for	each	data	mining	column	must
contain	a	visible	source	OLAP	object.

Example

This	code	example	creates	and	processes	an	OLAP	data	mining	model	named
CustSalesModelOLAP,	based	on	the	Sales	cube	of	the	FoodMart	2000
database,	that	analyzes	salaries	for	customers	based	on	gender,	marital	status	and
education:

Public	Sub	CreateOLAPMiningModel()
			Dim	dsoServer	As	New	DSO.Server
			Dim	dsoDB	As	DSO.MDStore
			Dim	dsoDMM	As	DSO.MiningModel
			Dim	dsoColumn	As	DSO.Column
			Dim	dsoRole	As	DSO.Role

			'	Constants	used	for	DataType	property
			'	of	the	DSO.Column	object.
			'	Note	that	these	constants	are	identical	to
			'	those	used	in	ADO	in	the	DataTypeEnum	enumeration.
			Const	adInteger	=	3
			Const	adWChar	=	130
			
			'	Connect	to	the	server	on	this	computer.
			dsoServer.Connect	"LocalHost"
			
			'	Select	the	FoodMart	2000	database.

			Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")
			
			'	Check	for	the	existence	of	the	model	on	this	computer.
			If	Not	dsoDB.MiningModels("CustSalesModelOLAP")	Is	Nothing	Then
							'	If	this	model	exists,	delete	it.
							dsoDB.MiningModels.Remove	"CustSalesModelOLAP"
			End	If
			
			'	Create	a	new	OLAP	mining	model
			'	called	CustSalesModelOLAP.
			Set	dsoDMM	=	dsoDB.MiningModels.AddNew("CustSalesModelOLAP",	_
						sbclsOlap)
			
			'	Create	a	new	mining	model	role	called	All	Users
			Set	dsoRole	=	dsoDMM.Roles.AddNew("All	Users")
			
			'	Set	the	needed	properties	for	the	new	mining	model.
			With	dsoDMM
						.DataSources.AddNew	"FoodMart",	sbclsRegular
						'	Set	the	description	of	the	model.
						.Description	=	"Analyzes	the	salaries	"	&	_
									"of	customers"
						'	Select	the	algorithm	provider	for	the	model.
						.MiningAlgorithm	=	"Microsoft_Decision_Trees"
						'	Set	the	source	cube	for	the	model	to	the	Sales	cube.
						.SourceCube	=	"Sales"
						'	Set	the	case	dimension	for	the	model	to	the
						'	Customers	shared	dimension.
						.CaseDimension	=	"Customers"
						'	Let	DSO	define	the	training	query.
						.TrainingQuery	=	""
						'	Let	DSO	add	the	cube	structure	to	the
						'	data	mining	model	structure,	automatically

						'	creating	needed	data	mining	model	columns.
						.Update
			End	With
			
			'	Set	the	column	properties	pertinent	to	the	new	model.
			'	Note	that,	when	columns	are	automatically	added	to
			'	the	model	in	this	fashion,	the	are	disabled.	You
			'	must	choose	which	columns	are	to	be	enabled
			'	before	you	can	process	the
			'	model,	and	at	least	one	column	must	be	enabled,
			'	or	an	error	will	result.
			
			'	Enable	the	Name	column.	As	this	column	is	the
			'	lowest	enabled	level	on	the	Customers	case	dimension,
			'	it	becomes	the	case	level	for	the	data	mining	model.
			Set	dsoColumn	=	dsoDMM.Columns("Name")
			dsoColumn.IsDisabled	=	False
			
			'	Enable	the	Gender	column	as	an	input	column.
			Set	dsoColumn	=	dsoDMM.Columns("Gender")
			dsoColumn.IsInput	=	True
			dsoColumn.IsDisabled	=	False
			
			'	Enable	the	Marital	Status	column	as	an	input	column.
			Set	dsoColumn	=	dsoDMM.Columns("Marital	Status")
			dsoColumn.IsInput	=	True
			dsoColumn.IsDisabled	=	False
			
			'	Enable	the	Education	column	as	an	input	column.
			Set	dsoColumn	=	dsoDMM.Columns("Education")
			dsoColumn.IsInput	=	True
			dsoColumn.IsDisabled	=	False
			

			'	Enable	the	Unit	Sales	column	as	a	predictable	column.
			Set	dsoColumn	=	dsoDMM.Columns("Yearly	Income")
			dsoColumn.IsPredictable	=	True
			dsoColumn.IsDisabled	=	False
			
			'	Save	the	data	mining	model.
			With	dsoDMM
						'	Set	the	LastUpdated	property	of	the	new	mining	model
						'	to	the	present	date	and	time.
						.LastUpdated	=	Now
						'	Save	the	model	definition.
						.Update
			End	With
			
			'	Process	the	data	mining	model.
			With	dsoDMM
						'	Lock	the	mining	model	for	processing
						.LockObject	olapLockProcess,	_
									"Processing	the	data	mining	model	in	sample	code"
						'	Fully	process	the	new	mining	model.
						'	This	may	take	up	to	several	minutes.
						.Process	processFull
						'	Unlock	the	model	after	processing	is	complete.
						.UnlockObject
			End	With
			
			'	Clean	up	objects	and	close	server	connection
			Set	dsoRole	=	Nothing
			Set	dsoColumn	=	Nothing
			Set	dsoDMM	=	Nothing
			
			dsoServer.CloseServer
			Set	dsoServer	=	Nothing

			
End	Sub

Creating	a	Relational	Data	Mining	Model
The	process	of	creating	a	relational	data	mining	model	is	similar	to	the	process
of	creating	an	OLAP	data	mining	model,	covered	earlier	in	this	topic.	The	major
difference	between	the	two,	other	than	the	type	of	data	the	model	will	process,	is
the	handling	of	data	mining	model	columns.	Unlike	an	OLAP	data	mining
model,	a	relational	data	mining	model	does	not	draw	its	structure	directly	from
its	case	and	supporting	tables.	Instead,	each	column	is	manually	created	and
defined.	The	following	code	example	demonstrates	the	difference	in	creating	a
relational	data	mining	model	by	creating	a	mining	model	that	duplicates	the
analysis	of	the	OLAP	data	mining	model	created	earlier.

This	duplication	is	by	design,	to	give	you	a	direct	comparison	in	structural
differences	between	an	OLAP	and	a	relational	data	mining	model.

Example
The	following	code	example	creates	the	CustSalesModelRel	relational	data
mining	model	that	analyzes	salaries	for	customers	in	the	Customer	table	based
on	gender,	marital	status,	and	education	in	the	FoodMart	2000	database:

Public	Sub	CreateRelMiningModel()
			Dim	dsoServer	As	New	DSO.Server
			Dim	dsoDB	As	DSO.MDStore
			Dim	dsoDS	As	DSO.DataSource
			Dim	dsoDMM	As	DSO.MiningModel
			Dim	dsoColumn	As	DSO.Column
			Dim	dsoRole	As	DSO.Role

			Dim	strLQuote	As	String,	strRQuote	As	String
			Dim	strFromClause	As	String
			
			'	Constants	used	for	DataType	property
			'	of	the	DSO.Column	object.

			'	Note	that	these	constants	are	identical	to
			'	those	used	in	ADO	in	the	DataTypeEnum	enumeration.
			Const	adInteger	=	3
			Const	adWChar	=	130
			
			'	Connect	to	the	server	on	this	computer.
			dsoServer.Connect	"LocalHost"
			
			'	Select	the	FoodMart	2000	database.
			Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")
			
			'	Retrieve	the	open	and	close	quote	characters	for
			'	the	FoodMart	data	source.
			strLQuote	=	dsoDB.DataSources("FoodMart").OpenQuoteChar
			strRQuote	=	dsoDB.DataSources("FoodMart").CloseQuoteChar
			
			'	The	Customer	table	is	the	fact	table	for	this
			'	relational	data	mining	model;	this	variable	will
			'	make	it	easier	to	understand	the	code	that
			'	follows.
			strFromClause	=	strLQuote	&	"customer"	&	strRQuote
			
			'	Check	for	the	existence	of	the	model	on	this	computer.
			If	Not	dsoDB.MiningModels("CustSalesModelRel")	Is	Nothing	Then
							'	If	this	model	exists,	delete	it.
							dsoDB.MiningModels.Remove	"CustSalesModelRel"
			End	If
			
			'	Create	a	new	relational	mining	model
			'	called	CustSalesModelRel.
			Set	dsoDMM	=	dsoDB.MiningModels.AddNew("CustSalesModelRel",	_
						sbclsRelational)
			

			'	Create	a	new	mining	model	role	called	All	Users
			Set	dsoRole	=	dsoDMM.Roles.AddNew("All	Users")
			
			'	Set	the	needed	properties	for	the	new	mining	model.
			With	dsoDMM
						.DataSources.AddNew	"FoodMart",	sbclsRegular
						'	Set	the	description	of	the	model.
						.Description	=	"Analyzes	the	salaries	"	&	_
									"of	customers"
						'	Set	the	case	table	for	the	model	to	the
						'	Customer	table.
						.FromClause	=	strFromClause
						'	Select	the	algorithm	provider	for	the	model.
						.MiningAlgorithm	=	"Microsoft_Decision_Trees"
						'	Let	DSO	define	the	training	query.
						.TrainingQuery	=	""
						'	Save	the	existing	structure.
						.Update
			End	With
			
			'	Create	the	columns	pertinent	to	the	new	model.
			
			'	Create	the	CustomerID	column	as	a	key	column.
			Set	dsoColumn	=	dsoDMM.Columns.AddNew("CustomerID",	_
						sbclsRegular)
			'	Set	the	column	properties	for	the	new	column.
			With	dsoColumn
						'	Set	the	source	field	from	the	case	table	for
						'	the	column.
						.SourceColumn	=	strFromClause	&	"."	&	strLQuote	&	_
									"customer_id"	&	strRQuote
						.DataType	=	adInteger
						.IsKey	=	True

						.IsDisabled	=	False
			End	With
			
			'	Create	the	Gender	column	as	an	attribute	column.
			Set	dsoColumn	=	dsoDMM.Columns.AddNew("Gender",	_
						sbclsRegular)
			With	dsoColumn
						.ContentType	=	"DISCRETE"
						.SourceColumn	=	strFromClause	&	"."	&	strLQuote	&	_
									"gender"	&	strRQuote
						.DataType	=	adWChar
						.IsDisabled	=	False
			End	With
			
			'	Create	the	Marital	Status	column	as	an	attribute	column.
			Set	dsoColumn	=	dsoDMM.Columns.AddNew("Marital	Status",	_
						sbclsRegular)
			With	dsoColumn
						.ContentType	=	"DISCRETE"
						.SourceColumn	=	strFromClause	&	"."	&	strLQuote	&	_
									"marital_status"	&	strRQuote
						.DataType	=	adWChar
						.IsDisabled	=	False
			End	With
			
			'	Create	the	Education	column	as	an	attribute	column.
			Set	dsoColumn	=	dsoDMM.Columns.AddNew("Education",	_
						sbclsRegular)
			With	dsoColumn
						.ContentType	=	"DISCRETE"
						.SourceColumn	=	strFromClause	&	"."	&	strLQuote	&	_
									"education"	&	strRQuote
						.DataType	=	adWChar

						.IsDisabled	=	False
			End	With
			
			'	Create	the	Yearly	Income	column	as	an	predictable	column.
			Set	dsoColumn	=	dsoDMM.Columns.AddNew("Yearly	Income",	_
						sbclsRegular)
			With	dsoColumn
						.ContentType	=	"DISCRETE"
						.SourceColumn	=	strFromClause	&	"."	&	strLQuote	&	_
									"yearly_income"	&	strRQuote
						.DataType	=	adWChar
						.IsInput	=	False
						.IsPredictable	=	True
						.IsDisabled	=	False
			End	With
			
			'	Save	the	data	mining	model.
			With	dsoDMM
						'	Set	the	LastUpdated	property	of	the	new	mining	model
						'	to	the	present	date	and	time.
						.LastUpdated	=	Now
						'	Save	the	model	definition.
						.Update
			End	With
			
			'	Process	the	data	mining	model.
			With	dsoDMM
						'	Lock	the	mining	model	for	processing
						.LockObject	olapLockProcess,	_
									"Processing	the	data	mining	model	in	sample	code"
						'	Fully	process	the	new	mining	model.
						'	This	may	take	up	to	several	minutes.
						.Process	processFull

						'	Unlock	the	model	after	processing	is	complete.
						.UnlockObject
			End	With
			
			'	Clean	up	objects	and	close	server	connection
			Set	dsoRole	=	Nothing
			Set	dsoColumn	=	Nothing
			Set	dsoDMM	=	Nothing
			
			dsoServer.CloseServer
			Set	dsoServer	=	Nothing
			
End	Sub

Analysis	Services	Programming

Advanced	Examples
The	examples	in	this	topic	assume	that	you	are	familiar	with	using	Decision
Support	Objects	(DSO)	to	create	databases,	data	sources,	dimensions	and	cubes.
These	advanced	examples	include	the	creation	of	virtual	and	linked	cubes	and
virtual	dimensions,	as	well	as	the	capability	to	perform	incremental	updates	on	a
cube.	The	following	table	lists	the	examples	covered.

Topic Description
Working	with	Virtual
Cubes

Gives	information	and	examples	on	creating
virtual	cubes	in	DSO

Working	with	Linked
Cubes

Provides	information	and	examples	in	DSO	on
creating	linked	cubes

Working	with	Virtual
Dimensions

Describes	the	creation	of	virtual	dimensions	in
DSO

Working	with	Roles Details	the	differences	between	database,	cube,
and	mining	model	roles,	providing	examples	on
the	creation	of	roles	in	DSO

Incremental	Updates Provides	information	and	examples	on
processing	incremental	updates	in	DSO

Analysis	Services	Programming

Working	with	Virtual	Cubes
A	cube	object	with	a	SubClassType	of	sbclsVirtual	is	a	virtual	cube.	A	virtual
cube	is	used	to	encapsulate	a	subset	of	the	measures,	dimensions,	and	levels
contained	in	one	or	more	cubes.	A	virtual	cube,	like	a	view	in	a	relational
database,	is	a	logical	construct	that	itself	contains	no	data.	Just	as	a	view	is	a	join
of	multiple	relations,	a	virtual	cube	is	a	join	of	multiple	cubes.

The	basic	rule	for	using	virtual	cubes	is	that	you	add	them	to	a	database	as	a
cube	with	the	SubClassType	parameter	set	to	sbclsVirtual,	and	then	add
dimensions	and	measures	to	them	as	needed.	However,	the	dimensions	and
measures	are	derived	from	previously	defined	cubes	within	the	database	rather
than	from	a	dimension	table.	Any	levels	associated	with	a	dimension	that	has
been	added	to	a	virtual	cube	automatically	apply	to	the	dimension	in	the	virtual
cube.	Partitions	and	aggregations	do	not	apply	to	virtual	cubes.

If	the	structure	for	a	virtual	cube	is	changed,	you	must	reprocess	the	virtual	cube
so	that,	just	as	with	a	regular	cube,	the	data	supporting	the	structure	change	can
be	reprocessed.	The	same	holds	true	if	you	alter	the	structure	of	a	regular	cube
used	by	a	virtual	cube;	the	regular	cube	needs	to	be	reprocessed,	and	then	the
virtual	cube	also	needs	to	be	reprocessed.

Source	Cubes	and	Source	Dimensions
A	virtual	cube	can	contain	any	number	of	source	cubes,	including	linked	cubes,
as	long	as	they	are	from	the	same	database.

Virtual	cubes	do	not	inherit	the	roles,	calculated	members,	or	actions	that	are
assigned	to	their	source	cubes.	After	a	virtual	cube	has	been	created,	you	must
re-create	these	objects	(or	design	different	ones).	The	information	needed	to	re-
create	the	roles,	calculated	members	or	actions	can	be	derived	by	reading	the
structures	of	the	underlying	regular	cubes.

Other	shared	dimensions	from	the	database	but	not	from	an	included	cube	are
also	acceptable	in	a	virtual	cube.	These	dimensions	require	custom	rollup
expressions	on	their	levels.	Without	the	custom	expressions,	the	server	will	not
be	able	to	find	the	dimension's	data	because	the	dimension	references	columns

are	not	in	the	fact	table.

Differences	of	Virtual	Cubes
Because	a	virtual	cube	is	based	on	the	contents	of	one	or	more	existing	cubes,
some	of	the	properties	and	collections	for	a	virtual	cube	object	are	not	available,
or	they	have	a	different	meaning	from	their	counterparts	in	a	regular	cube.	An
attempt	to	set	or	retrieve	an	unavailable	property	results	in	an	error.	The
following	table	lists	the	properties	and	collections	that	are	different	for	virtual
cubes.

Property	or	collection Description
AggregationPrefix A	virtual	cube	does	not	use	aggregation	prefixes.
Analyzer A	virtual	cube	does	not	have	an	analyzer	object.
DataSources A	virtual	cube	does	not	have	a	DataSources

collection.
EstimatedRows For	a	virtual	cube,	this	property	is	read-only	and

contains	the	number	of	rows	in	all	underlying
cubes.

FromClause A	virtual	cube	does	not	have	a	FROM	clause.
JoinClause A	virtual	cube	does	not	have	a	JOIN	clause.
MDStores For	a	virtual	cube,	this	collection	contains	the

underlying	cubes	instead	of	the	cube	partitions.
OlapMode A	virtual	cube	does	not	use	the	OlapMode

property.
SourceTable A	virtual	cube	does	not	have	its	own	fact	table.
SourceTableAlias A	virtual	cube	does	not	have	its	own	fact	table.
SourceTableFilter A	virtual	cube	does	not	have	its	own	fact	table.
Dimension.DataSource The	dimensions	in	a	virtual	cube	do	not	have	data

sources.

Add	a	Virtual	Cube
The	process	of	adding	a	virtual	cube	is	largely	the	same	as	the	process	of	adding
a	regular	cube.	There	are	minor	differences	as	noted	in	the	table	and	as
illustrated	in	the	following	code	example.

Example
Note		The	following	example	depends	on	the	existence	of	the	TestCube	regular
cube,	created	in	previous	code	examples.

The	following	code	example	creates	a	new	virtual	cube,	named	VirtualCube,
based	on	the	TestCube	cube	in	the	TestDB	database,	created	in	earlier	code
examples:

Private	Sub	AddVirtualCube()
				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoCube	As	DSO.MDStore
				Dim	dsoDim	As	DSO.Dimension
				Dim	dsoMea	As	DSO.Measure

				Dim	strDBName	As	String
				Dim	strCubeName	As	String

				'	Initialize	variables	for	the	database	and
				'	virtual	cube	names.
				strDBName	=	"TestDB"
				strCubeName	=	"VirtualCube"

				'	Create	a	connection	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"

				If	dsoServer.MDStores.Find(strDBName)	=	False	Then
								MsgBox	"Database	"	&	strDBName	&	_
												"	is	not	found."
				Else
								'	Retrieve	the	database	from	the	server.
								Set	dsoDB	=	dsoServer.MDStores(strDBName)

								'	Create	the	virtual	cube	in	the	MDStores	collection

								'	of	the	database	object.
								Set	dsoCube	=	dsoDB.MDStores.AddNew(strCubeName,	sbclsVirtual)

								'	Set	the	description	for	the	virtual	cube.
								dsoCube.Description	=	"The	TestDB	virtual	cube"

								'	Set	the	source	dimensions	for	the	virtual	cube	by
								'	copying	the	dimensions	from	the	underlying	cube.
								For	Each	dsoDim	In	dsoDB.MDStores("TestCube").Dimensions
												dsoCube.Dimensions.AddNew	dsoDim.Name
								Next

								'	Add	measures	to	the	virtual	cube	from	the	underlying	cube.
								'	Measures	for	virtual	cubes	have	the	format
								'	[Cube	Name].[Measure	Name]

								'	Create	the	Unit	Sales	measure.
								Set	dsoMea	=	dsoCube.Measures.AddNew("Unit	Sales")
								dsoMea.SourceColumn	=	"[TestCube].[Unit	Sales]"

								'	Create	the	Store	Sales	measure.
								Set	dsoMea	=	dsoCube.Measures.AddNew("Store	Sales")
								dsoMea.SourceColumn	=	"[TestCube].[Store	Sales]"

								'	Save	cube	structure	changes.
								dsoCube.Update

								'	Process	the	cube	so	that	it	can	be	used	by	client	applications.
								dsoCube.Process

				End	If

End	Sub

See	Also

Virtual	Cubes

Working	with	Dimensions	and	Levels

Working	with	Cubes	and	Measures

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Working	with	Linked	Cubes
A	linked	cube	is	an	MDStore	cube	object	with	a	SubClassType	of	sbclsLinked.
The	contents	of	a	linked	cube	are	based	on	another	cube	that	is	defined	and
stored	on	a	different	Analysis	server.	Unlike	a	virtual	cube,	which	can	contain
portions	of	one	or	more	cubes,	a	linked	cube	references	the	entire	contents	of	a
single	cube.

A	subscribing	server	is	an	Analysis	server	that	contains	a	linked	cube.	A
publishing	server	contains	the	source	cube	upon	which	the	linked	cube	is	based.
To	be	a	subscribing	server,	the	Analysis	server	service
(MSSQLServerOLAPService)	must	run	under	an	account	that	has	query
permissions	on	each	publishing	server	to	which	it	connects.	This	account	can	be
an	account	that	belongs	to	the	OLAP	Administrators	group	on	the	publishing
server,	or	an	account	that	has	query	permissions	established	by	a	role	on	each
source	cube	to	which	the	subscribing	server	needs	access.	There	are	no
requirements	an	Analysis	server	has	to	meet	in	order	to	become	a	publisher.	Any
processed	cube	on	the	publishing	server	can	be	made	available	for	linking,
subject	to	network	and	cube	security;	the	cube	must	be	available	for	use	by	the
subscribing	server	as	if	the	subscribing	server	were	a	client	querying	the	cube	on
the	publishing	server.

All	dimensions	in	a	linked	cube	are	treated	as	private	dimensions	on	the
subscribing	server.	This	means	that	other	regular	cubes	in	the	subscribing
database	cannot	use	these	dimensions.	A	linked	cube	can	be	included	in	a	virtual
cube.

Linked	cubes	cannot	be	created	from	regular	cubes	that	employ	shared	or	private
ROLAP	dimensions.

Differences	of	Linked	Cubes
Because	a	linked	cube	is	based	on	the	contents	of	an	existing	cube,	some	of	the
properties	for	the	linked	cube	object	are	not	supported,	or	they	have	a	meaning
that	is	different	from	their	counterparts	in	a	regular	cube.	An	attempt	to	set	or
retrieve	an	unsupported	property	results	in	an	error.	The	properties	that	are

different	for	linked	cubes	are	listed	in	the	following	table.

Property Description
Cube.OlapMode Read-only.	It	is	taken	from	the	published

cube.
Dimension.SubClassType Always	sbclsLinked	for	a	dimension	in	a

linked	cube.
Measure.AggregateFunctionRead-only.	It	is	taken	from	the	measure	in

the	published	cube.
Measure.ColumnType Read-only.	It	is	taken	from	the	measure	in

the	published	cube.
Partition.OlapMode Always	olapmodeROLAP	for	a	partition	in

a	linked	cube.

Add	a	Linked	Cube
The	following	code	example	illustrates	the	steps	needed	to	create	a	linked	cube.

Note		This	procedure	must	involve	two	different	servers:	a	publishing	server	and
a	subscribing	server.	Attempting	to	create	a	link	to	a	cube	on	the	same	server
causes	an	error.

Example
The	following	code	example	creates	a	linked	cube	by	joining	the	Sales	cube
from	the	FoodMart	2000	database	on	the	publishing	server	to	a	new	cube,
named	LinkedCube,	to	the	TestDB	database	on	the	subscribing	server:

Private	Sub	AddLinkedCube()
				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoCube	As	DSO.MDStore
				Dim	dsoLDS	As	DSO.DataSource

				Dim	strDBName	As	String
				Dim	strCubeName	As	String
				Dim	strServerName	As	String

				'	Initialize	variables	for	the	database	and
				'	linked	cube	names.
				strDBName	=	"TestDB"
				strCubeName	=	"LinkedCube"

				'	The	following	variable	should	be	set	to	the	name
				'	of	the	publishing	server.
				strServerName	=	"servername"

				'	Create	a	connection	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"

				If	dsoServer.MDStores.Find(strDBName)	=	False	Then
								MsgBox	"Database	"	&	strDBName	&	_
												"	is	not	found."
				Else
								'	Get	a	reference	for	the	database	that
								'	will	contain	the	linked	cube.
								Set	dsoDB	=	dsoServer.MDStores(strDBName)

								'	Create	a	new	data	source	for	the	linked	cube.
								Set	dsoLDS	=	dsoDB.DataSources.AddNew("PublishingServer")

								'	Set	the	connection	string,	so	that	the	data	source	points
								'	to	an	Analysis	server	running	SQL	Server	2000	Analysis	Services	
								'	or	later,	installed	with	the	FoodMart	2000	database.
								dsoLDS.ConnectionString	=	"Provider=MSOLAP;"	&	_
												"Data	Source="	&	strServerName	&	";"	&	_
												"Initial	Catalog=FoodMart	2000;"

								'	Save	this	data	source	in	the	repository.
								dsoLDS.Update

								'	Create	a	new	cube	on	the	local	server,	mark	it	as	linked.
								Set	dsoCube	=	dsoDB.MDStores.AddNew(strCubeName,	sbclsLinked)

								'	Add	dsoLDS	to	the	DataSources	collection	of	the	linked	cube.
								dsoCube.DataSources.Add	dsoLDS

								'	Use	the	name	of	the	published	cube	as	the
								'	source	table	for	the	subscribed	cube.
								dsoCube.SourceTable	=	""""	&	"Sales"	&	""""

								'	Update	the	cube.	This	creates	the	link.
								dsoCube.Update

								'	Commit	the	changes	to	the	subscribing	server.
								dsoCube.Process	processFull
				End	If

End	Sub

See	Also

Linked	Cubes

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Working	with	Virtual	Dimensions
The	steps	for	creating	virtual	dimensions	with	Decision	Support	Objects	(DSO)
are	similar	to	those	used	to	create	regular	dimensions.	To	create	a	virtual
dimension	based	on	the	columns	of	another	dimension,	create	the	dimension
normally,	but	set	the	IsVirtual	property	to	True	and	set	the
DependsOnDimension	property	to	the	name	of	the	source	dimension.	Creating
a	virtual	dimension	based	on	the	member	properties	of	a	regular	dimension	is
more	complicated.	The	procedure	is	outlined	in	the	code	sample	at	the	end	of
this	topic.

Differences	of	Virtual	Dimensions
Because	a	virtual	dimension	is	based	on	the	contents	of	an	existing	dimension,
many	of	the	properties	for	the	virtual	dimension	object	and	its	level	objects	are
read-only	and	do	not	need	to	be	set	before	the	dimension	is	processed.	The
remaining	properties	for	the	dimension	and	level	objects	must	be	set	to	refer	to
the	underlying	dimension	and/or	member	properties	that	provide	the	source	data
for	the	virtual	dimension.

The	following	table	lists	dimension	and	level	properties	that	are	read-only	or
ignored	for	virtual	dimensions.

Object	property Description
Dimension.FromClause Read-only.	It	is	taken	from	the	source

dimension.
Dimension.IsChanging Always	True	for	a	virtual	dimension	created

using	Microsoft®	SQL	Server™	2000
Analysis	Services.

Dimension.JoinClause Read-only.	It	is	taken	from	the	source
dimension.

Dimension.StorageMode Always	storeasMOLAP	for	a	virtual
dimension.

Dimension.SourceTableFilterRead-only.	It	is	taken	from	the	source
dimension.

Dimension.SourceTableAlias Read-only.	It	is	taken	from	the	source
dimension.

Level.EstimatedSize Not	used	for	a	level	in	a	virtual	dimension.
Level.Grouping Always	groupingNone	for	a	level	in	a

virtual	dimension.
Level.HideMemberIf Always	hideNever	for	a	level	in	a	virtual

dimension.

Add	a	Virtual	Dimension
Use	the	following	code	example	to	create	a	virtual	dimension.	The	virtual
dimension,	except	as	noted	in	the	table,	is	treated	as	any	other	dimension.

Example
The	following	code	example	creates	the	Store	Size	in	SQFT	virtual	dimension	in
the	TestDB	database.	This	virtual	dimension	is	based	on	a	member	property,
Store	SQFT,	of	the	Stores	source	dimension:

Private	Sub	AddVirtualDimension()
				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoDS	As	DSO.DataSource
				Dim	dsoDim	As	DSO.Dimension
				Dim	dsoLevel	As	DSO.Level

				Dim	strDBName	As	String
				Dim	strLQuote	As	String
				Dim	strRQuote	As	String

				'	Define	constants	used	for	the	ColumnType	property
				'	of	the	DSO.Level	object.
				'	Note	that	these	constants	are	identical	to
				'	those	used	in	ADO	in	the	DataTypeEnum	enumeration.
				Const	adDouble	=	5

				'	Initialize	variable	for	the	database.
				strDBName	=	"TestDB"

				'	Create	a	connection	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"

				'	Ensure	that	the	server	has	an	existing	database.
				If	dsoServer.MDStores.Find(strDBName)	=	False	Then
								MsgBox	"Database	"	&	strDBName	&	_
												"	is	not	found."
				Else
								'	Retrieve	the	database	from	the	server.
								Set	dsoDB	=	dsoServer.MDStores(strDBName)

								'	Retrieve	a	data	source	from	the	database.
								Set	dsoDS	=	dsoDB.DataSources("FoodMart")

								'	Get	the	delimiter	characters	from	the	data	source.
								strLQuote	=	dsoDS.OpenQuoteChar
								strRQuote	=	dsoDS.CloseQuoteChar

								'	Create	the	new	dimension	in	the	Dimensions
								'	collection	of	the	database	object.
								Set	dsoDim	=	dsoDB.Dimensions.AddNew("Store	Size	in	SQFT")

								'	Set	the	description	of	the	dimension.
								dsoDim.Description	=	"The	Store	Size	in	SQFT	virtual	dimension"

								'	Set	the	data	source	of	the	dimension.
								Set	dsoDim.DataSource	=	dsoDS

								'	Set	the	dimension	type,	make	it	virtual,

								'	and	identify	its	underlying	source	dimension.
								dsoDim.DimensionType	=	dimRegular
								dsoDim.IsVirtual	=	True
								dsoDim.DependsOnDimension	=	"Stores"

								'	Next,	create	the	levels.
								'	Start	with	the	(All)	level.
								Set	dsoLevel	=	dsoDim.Levels.AddNew("(All)")

								'	Set	the	level	type.
								dsoLevel.LevelType	=	levAll

								'	Set	the	MemberKeyColumn	of	the	(All)	level	to	a	constant
								'	that	also	acts	as	the	name	of	the	level's	only	member.
								dsoLevel.MemberKeyColumn	=	"(All	Store	Sizes)"

								'	Create	the	Store	SQFT	level.	This	holds	the	SQFT	value.
								Set	dsoLevel	=	dsoDim.Levels.AddNew("Store	Size")

								'	Name	the	source	column	for	this	level.
								'	The	format	for	this	is	"table_name"."column_name".
								'	Database-specific	delimiter	characters	are	required.
								dsoLevel.MemberKeyColumn	=	strLQuote	&	"store"	&	strRQuote	&	"."	&	_
																																			strLQuote	&	"store_sqft"	&	strRQuote

								'	Set	the	following	properties	to	be	identical	to	their
								'	counterparts	in	the	member	property	object	that	provides
								'	this	level	with	its	data.
								dsoLevel.ColumnType	=	adDouble
								dsoLevel.ColumnSize	=	4

								'	Check	to	see	that	you	set	the	level	and
								'	dimension	properties	correctly,	and	that	the	rest

								'	of	the	dimension	structure	is	correct.	If	so,
								'	update	the	repository	and	exit	the	function.
								If	dsoLevel.IsValid	And	dsoDim.IsValid	Then
												'	Update	the	dimension.
												dsoDim.Update

												'	Inform	the	user.
												MsgBox	"Virtual	dimension	has	been	added."
								End	If
				End	If

End	Sub

See	Also

Virtual	Dimensions

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Working	with	Roles
Roles	are	used	in	Microsoft®	SQL	Server™	2000	Analysis	Services	to	provide
security	for	databases,	cubes,	and	mining	models.	Decision	Support	Objects
(DSO)	provides	the	Role	object	for	administering	all	three	types	of	roles.

Database	Roles
A	database	role	applies	to	a	single	Analysis	Services	database,	and	it	includes	a
list	of	Microsoft	Windows	NT®	4.0	or	Microsoft	Windows®	2000	user	accounts
and	groups.	A	database	role	does	not	control	administrative	access	to	an
Analysis	Services	object;	instead	it	determines	read	and	write	capabilities	when
a	user	is	connected	to	an	Analysis	Services	database	through	a	client	application.
Database	roles	can	be	used	to	manage	the	dimension	security	for	shared
dimensions	in	a	database	for	multiple	cubes.	For	more	information	about
dimension	security,	see	Dimension	Security.

When	a	database	role	is	assigned	to	a	cube	or	mining	model,	Analysis	Services
creates	a	corresponding	cube	or	mining	model	role.	The	property	values
specified	in	the	database	role	are	then	propagated	to	the	newly	created	cube	or
mining	model	role.	A	cube	or	mining	model	role	cannot	exist	without	a
corresponding	database	role.

If	the	property	value	of	a	database	role	is	changed,	any	cube	or	mining	model
role	based	on	that	database	role	is	also	changed,	but	only	if	the	cube	or	mining
model	role	still	uses	the	value	propagated	from	the	database	role.	In	other	words,
if	you	change	a	cube	or	mining	model	role	property	directly,	changing	the
corresponding	database	role	property	does	not	override	the	changed	cube	or
mining	model	role	property.

For	more	information	about	database	roles,	see	Database	Roles.

A	database	role	is	represented	in	DSO	by	a	Role	object	of	ClassType
clsDatabaseRole.	The	available	properties	for	the	Role	object	are	different	for
each	type	of	role,	and	the	behavior	of	some	properties	changes	as	well.	For	more
information	about	the	Role	object,	see	Role	Interface.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Use	the	following	example	to	create	a	new	database	role.	The	database	role
created	in	the	example	will	be	used	by	the	other	examples	in	this	topic.

Example
This	code	example	creates	a	new	database	role,	named	TestRole,	in	the
FoodMart	2000	database:

Private	Sub	CreateDatabaseRole()
			Dim	dsoServer	As	New	DSO.Server
			Dim	dsoDB	As	DSO.MDStore
			Dim	dsoCube	As	DSO.MDStore
			Dim	dsoRole	As	DSO.Role
			
			Dim	sDimensionSecurity	As	String

			'	Connect	to	the	local	server.
			dsoServer.Connect	"LocalHost"

			'	Connect	to	the	FoodMart	2000	database.
			Set	dsoDB	=	dsoServer.MDStores.Item("FoodMart	2000")
			
			'	Create	a	new	database	role	named	TestRole.
			Set	dsoRole	=	dsoDB.Roles.AddNew("TestRole",	sbclsRegular)
			
			'	Create	the	XML	syntax	to	be	used	for	the	SetPermissions	method
			'	of	the	Role	object.
			sDimensionSecurity	=	"<MEMBERSECURITY	"	&	_
						"DefaultMember=""[Store].[Store	Country].&[USA]""	"	&	_
						"VisualTotalsLowestLevel=""[Store].[Store	City]"">"	&	_
									"<PERMISSION	Access=""Read""	"	&	_
									"DeniedSet=""{[Store].[Store	Country].&[Canada],"	&	_
									"[Store].[Store	Country].&[Mexico]}""	"	&	_
									"Description=""USA	Store	Restriction""/>"	&	_

						"</MEMBERSECURITY>"
						
			'	The	preceding	XML	syntax	limits	the	users	of	the	database	role
			'	to	viewing	only	stores	in	the	USA,	by	denying	read	access	to
			'	stores	associated	with	the	Mexico	and	Canada	members	of	the
			'	[Store	Country]	level	of	the	Stores	dimension.
			
			'	Change	the	role	properties	for	TestRole
			With	dsoRole
						'	Lock	the	database	role.
						.LockObject	olapLockRead,	"Creating	Role"
						
						'	Set	the	list	of	users	assigned	to	this	role.
						.UsersList	=	"Everyone"
						
						'	Set	the	role	description.
						.Description	=	"Test	role"
						
						'	Set	the	EnforcementLocation	permission	key	to	enforce
						'	the	role	on	the	server	side.
						.SetPermissions	"EnforcementLocation",	"Server"
						
						'	Set	the	Dimension	key	for	the	Store	dimension	to
						'	restrict	users	to	viewing	only	USA	stores.
						.SetPermissions	"Dimension:Store",	sDimensionSecurity
						
						'	Unlock	the	database	role.
						.UnlockObject
			End	With
			
			'	Update	the	database	role.
			dsoRole.Update
						

End	Sub

A	database	role,	as	a	major	object,	can	update	itself	using	the	Update	method	as
shown	in	the	preceding	code	example.	The	code	example	also	features	the	use	of
Extensible	Markup	Language	(XML)	to	set	dimension	security	with	the
SetPermissions	method	of	the	Role	object.	For	more	information	about	the
XML	syntax	of	the	Dimension	key	for	the	SetPermissions	method,	see
SetPermissions.

Cube	Roles
A	cube	role	applies	to	a	single	cube	in	an	Analysis	Services	database,	includes	a
list	of	Windows	NT	4.0	or	Windows	2000	user	accounts	and	groups,	and
indicates	the	objects	in	the	cube	those	accounts	can	access	and	the	kind	of	access
they	have	to	those	objects.	The	cube	role	is	based	on	a	database	role,	but	it
supplies	additional	security	measures	for	restricting	the	viewing	of	cells	within	a
cube	as	well.	For	more	information	about	cell	security,	see	Cell	Security.

Properties	in	a	cube	role	can	be	changed	to	reflect	different	security	options	for	a
single	cube.	However,	changes	to	some	specifications	in	a	cube	role	propagate	to
the	corresponding	database	role	and	all	cube	roles	with	the	same	name	as	the
changed	cube	role.	These	specifications	include	the	list	of	user	accounts	and
groups	and	read/write	permissions	for	dimensions.

For	more	information	about	cube	roles,	see	Cube	Roles.

A	cube	role	is	represented	in	DSO	by	a	Role	object	of	ClassType	clsCubeRole.
The	following	example	creates	a	new	cube	role	for	the	TestCube	cube,	using	the
new	TestRole	database	role	created	in	the	previous	code	example.

Example
The	TestRole	cube	role	is	created	in	the	Sales	cube,	and	receives	its	default
property	values	from	the	TestRole	database	role	created	in	the	FoodMart	2000
database.

Private	Sub	CreateCubeRole()
			Dim	dsoServer	As	New	DSO.Server
			Dim	dsoDB	As	DSO.MDStore

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

			Dim	dsoCube	As	DSO.MDStore
			Dim	dsoRole	As	DSO.Role
			
			'	Connect	to	the	local	server.
			dsoServer.Connect	"LocalHost"

			'	Connect	to	the	TestDB	database.
			Set	dsoDB	=	dsoServer.MDStores.Item("FoodMart	2000")
			
			'	Connect	to	the	TestCube	cube.
			Set	dsoCube	=	dsoDB.MDStores("Sales")
			
			'	As	the	cube	is	about	to	be	changed,	lock	the	cube.
			dsoCube.LockObject	olapLockRead
			
			'	Create	a	new	cube	role	named	TestRole,	based	on	the	database	role
			'	named	TestRole.
			Set	dsoRole	=	dsoCube.Roles.AddNew("TestRole",	sbclsRegular)
			
			'	Change	the	role	properties	for	the	cube	role.
			With	dsoRole
						'	All	of	the	other	properties	are	propagated	from	the
						'	TestRole	database	role.
						
						'	Prevent	the	users	associated	with	this	role	from
						'	reading	the	[Store	Cost]	measure.
						.SetPermissions	"CubeRead",	_
									"Measures.CurrentMember.Name	<>	""[Store	Cost]"""
			End	With
			
			'	Update	the	cube	role	by	updating	the	cube.
			dsoCube.Update

			'	Unlock	the	cube.
			dsoCube.UnlockObject
						
End	Sub

Because	it	is	a	minor	object,	a	cube	role	cannot	update	itself	using	the	Update
method.	A	cube	role	is	saved	when	the	cube	to	which	it	is	associated	is	updated,
as	demonstrated	by	the	preceding	code	example.	The	code	example	also
demonstrates	the	use	of	Multidimensional	Expressions	(MDX)	syntax	to	set	cell
security	with	the	SetPermissions	method	of	the	Role	object.	For	more
information	about	the	use	of	MDX	syntax	of	the	CellRead	key	for	the
SetPermissions	method,	see	SetPermissions.

Mining	Model	Roles
A	mining	model	role	applies	to	a	single	data	mining	model	and	includes	a	list	of
Windows	NT	4.0	or	Windows	2000	user	accounts	and	groups	that	have	access	to
the	data	mining	model.

A	mining	model	role	is	similar	in	many	respects	to	a	cube	role.	The	user
membership	of	a	mining	model	role	is	directly	related	to	its	corresponding
database	role;	changes	to	role	membership	in	a	mining	model	role	propagate	to
the	database	role	and	all	mining	model	roles	with	the	same	name	as	the	changed
mining	model	role.

For	more	information	about	mining	model	roles,	see	Mining	Model	Roles.

A	mining	model	role	is	represented	in	DSO	by	a	Role	object	of	ClassType
clsMiningModelRole.	The	following	code	example	creates	a	mining	model	role,
also	based	on	the	TestRole	database	role	created	in	an	earlier	code	example.

Example
This	code	example	creates	a	new	mining	model	role,	named	TestRole,	in	the
Member	Card	RDBMS	mining	model	of	the	FoodMart	2000	database.

Private	Sub	CreateMiningModelRole()
			Dim	dsoServer	As	New	DSO.Server
			Dim	dsoDB	As	DSO.MDStore

JavaScript:hhobj_5.Click()

			Dim	dsoDMM	As	DSO.MiningModel
			Dim	dsoRole	As	DSO.Role
			
			'	Connect	to	the	local	server.
			dsoServer.Connect	"LocalHost"

			'	Connect	to	the	TestDB	database.
			Set	dsoDB	=	dsoServer.MDStores.Item("FoodMart	2000")
			
			'	Connect	to	the	Member	Card	RDBMS	mining	model.
			Set	dsoDMM	=	dsoDB.MiningModels("Member	Card	RDBMS")
			
			'	Because	the	mining	model	is	about	to	be	changed,	lock	the
			'	mining	model.
			dsoDMM.LockObject	olapLockProcess,	"Changing	mining	model"
			
			'	Create	a	new	mining	model	role	named	TestRole,	based	on
			'	the	database	role	named	TestRole.
			Set	dsoRole	=	dsoDMM.Roles.AddNew("TestRole",	sbclsRegular)
			'	All	of	the	other	properties	are	propagated,	such	as	the
			'	user	list,	from	the	TestRole	database	role.
			
			'	Update	the	mining	model	role	by	updating	the	mining	model.
			dsoDMM.Update
			
			'	Unlock	the	mining	model.
			dsoDMM.UnlockObject
						
End	Sub

A	mining	model	role,	like	a	cube	role,	is	a	minor	object.	A	mining	model	role
cannot	update	itself	using	the	Update	method;	the	role	is	written	to	the	database
when	its	associated	data	mining	model	is	updated.

Analysis	Services	Programming

Incremental	Updates
Incremental	updates	allow	you	to	keep	the	contents	of	a	cube	current	without
requiring	you	to	reprocess	the	cube	in	full	when	you	add	new	data.	An
incremental	update	involves	creating	a	temporary	partition,	filling	it	with
updated	source	data,	processing	the	temporary	partition,	and	then	merging	it	into
another	partition	in	the	cube.

Data	to	be	added	to	a	cube	can	come	from	the	original	fact	table	or	from	a
separate	fact	table	with	a	structure	identical	to	the	original.	If	you	add	data	from
the	original	fact	table,	take	care	not	to	duplicate	data	that	already	exists	in	the
cube.	Set	the	SourceTableFilter	property	before	processing	the	created
temporary	partition	to	restrict	the	data	that	is	imported	from	the	fact	table.
Temporary	partitions	created	for	this	purpose	are	indicated	by	a	tilde	(~)
character	preceding	the	name	of	the	temporary	partition.

If	data	to	be	added	to	a	cube	comes	from	the	fact	table	from	which	the	cube	was
originally	created,	a	risk	of	duplicate	aggregation	occurs.	The	cube	uses	the
SourceTableFilter	property	to	screen	incoming	data	from	a	fact	table;	when
performing	an	incremental	update,	it	adds	the	aggregations	computed	from	the
fact	table	to	the	aggregations	stored	by	the	cube.	If	the	same	table	is	run	twice,
once	to	construct	the	original	aggregations,	and	again	as	part	of	an	incremental
update,	you	will	receive	the	same	data	twice,	added	together	in	the	cube.	The
SourceTableFilter	property	can	be	used	to	screen	out	existing,	already
aggregated	data	in	the	fact	table,	preventing	duplicate	aggregation.

If	you	add	data	from	a	fact	table	that	includes	new	members	of	a	dimension,	you
must	also	reprocess	the	affected	dimension	using	the	processRefreshData	for
the	Process	method	of	the	dimension	object.

Perform	an	Incremental	Update
The	following	code	example	shows	how	to	do	an	incremental	update	using	a
temporary	partition	based	on	a	separate	fact	table.

Example

The	following	code	example	performs	an	incremental	update	on	the	TestCube
cube	of	the	TestDB	database	by	creating	a	temporary	partition,	adding	a	new
table,	and	combining	the	partitions:

Private	Sub	IncrementalUpdate()
				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoCube	As	DSO.MDStore
				Dim	dsoPartition	As	DSO.MDStore
				Dim	dsoClonePartition	As	DSO.MDStore
				Dim	dsoMeasure	As	DSO.Measure

				'	Connect	to	the	local	server.
				dsoServer.Connect	"LocalHost"

				'	Set	up	the	MDStore	objects:
				'	database,	cube,	and	partition.
				Set	dsoDB	=	dsoServer.MDStores.Item("TestDB")
				Set	dsoCube	=	dsoDB.MDStores.Item("TestCube")
				Set	dsoPartition	=	dsoCube.MDStores.Item("TestCube")

				'	Create	a	temporary	partition	to	store	the	new	data.
				'	Use	the	tilde	character	to	indicate	to	the	server
				'	that	the	partition	is	not	permanent.
				Set	dsoClonePartition	=	dsoCube.MDStores.AddNew("~New	TestCube	Data")

				'	Clone	the	main	partition	to	the	temporary	one.
				dsoPartition.Clone	dsoClonePartition,	cloneMinorChildren

				'	Because	this	partition	uses	a	different	source	table,
				'	the	properties	that	identify	the	table	must	be	changed
				'	(sales_fact_1997	becomes	sales_fact_1998).
				'	If	this	update	involved	the	original	fact	table,	these
				'	properties	would	remain	unchanged,	but	the	SourceTableFilter

				'	property	would	have	to	be	updated	to	prevent	duplicate	data
				'	from	being	imported	during	processing.
				dsoClonePartition.SourceTable	=	"sales_fact_1998"
				dsoClonePartition.FromClause	=	_
																			Replace(dsoClonePartition.FromClause,	"1997",	"1998")
				dsoClonePartition.JoinClause	=	_
																			Replace(dsoClonePartition.JoinClause,	"1997",	"1998")

				'	It	is	also	necessary	to	update	the	measures	in	the
				'	partition,	because	they	reference	the	old	fact	table,	too.
				For	Each	dsoMeasure	In	dsoClonePartition.Measures
								dsoMeasure.SourceColumn	=	_
																			Replace(dsoMeasure.SourceColumn,	"1997",	"1998")
				Next

				'	Although	this	is	not	the	case	in	this	example,	if	the
				'	MemberKeyColumn	or	MemberNameColumn	properties	of	any	of	the
				'	dimension	levels	are	based	on	the	fact	table,	they	too	must
				'	be	updated.

				'	Process	the	temporary	partition.
				dsoClonePartition.Process	processDefault

				'	Merge	the	two	partitions.
				dsoPartition.Merge	"~New	TestCube	Data"

				'	Close	the	server	object	and	exit	the	subroutine.
				dsoServer.CloseServer

End	Sub

See	Also

Merging	Partitions

Merge

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Additional	Considerations
This	topic	contains	additional	information,	examples,	and	suggestions	to	help
you	use	Decision	Support	Objects	(DSO)	more	effectively.

Topic Description
Considerations	for	Naming
Decision	Support	Objects

Covers	the	naming	conventions	for	DSO
objects,	and	discusses	the	importance	of
unique	object	names

Object	Locking	with	Decision
Support	Objects

Discusses	the	process	of	object	locking
in	DSO	in	multiuser	situations

Tips	for	Creating	Member
Properties	in	Multiple	Languages

Explains	the	support	for	member
properties	to	handle	multiple	language
requirements

Using	Earlier	Versions	of
Analysis	Services

Discusses	the	use	of	previous	versions	of
Microsoft®	SQL	Server™	2000
Analysis	Services	with	the	current
version	of	the	DSO	library

Analysis	Services	Programming

Considerations	For	Naming	Decision	Support	Objects
When	naming	Decision	Support	Objects	(DSO)	objects,	you	should	follow	a
consistent	naming	convention	and	ensure	that	the	name	of	each	object	is	unique.
Most	of	the	naming	conventions	supplied	in	this	topic	are	optional;	some	are
required,	as	in	the	cases	of	virtual	and	private	dimensions.	The	following	naming
convention	assists	in	understanding	the	sometimes	complex	hierarchies	formed
by	the	DSO	object	model;	the	use	of	unique	DSO	object	names	also	speeds
performance.

DSO	Object	Naming	Requirements
When	you	create	a	DSO	object	in	an	application,	you	must	set	a	value	for	the
object's	Name	property	to	differentiate	it	from	similar	objects	in	use	and/or
stored	on	the	Analysis	server.	To	prevent	errors	during	execution	time	caused	by
characters	that	are	not	valid,	follow	these	guidelines	when	you	name	objects:

All	names	must	begin	with	a	letter,	with	the	exception	of	virtual
dimensions.	The	name	of	a	virtual	dimension	must	start	with	a	tilde	(~)
character.

A	dimension	can	contain	a	single	period	(.)	in	its	name	if	it	contains
multiple	hierarchies.	This	period	serves	to	separate	the	dimension	name
from	the	hierarchy	name.	(For	example,	consider	MyDim.Hier1	and
MyDim.Hier2,	where	MyDim	is	a	dimension	with	two	hierarchies,
named	Hier1	and	Hier2.)	Private	dimensions	must	contain	the	cube
name	followed	by	a	caret	(^)	character	and	the	dimension	name.

Avoid	most	symbol	characters.	Some	objects	have	specific	limitations
regarding	nonalphanumeric	characters,	while	other	objects	supply
meaning	to	certain	nonalphanumeric	characters,	such	as	the	tilde	(~)	and
caret	(^)	characters.	The	following	table	lists	characters	that	are	not
allowed.

The	following	reserved	names	should	not	be	used	for	DSO	objects:

AUX

CLOCK$

COM1	through	COM9	(COM1,	COM2,	COM3,	and	so	on)

CON

LPT1	through	LPT9	(LPT1,	LPT2,	LPT3,	and	so	on)

NUL

PRN

Object Invalid	characters
Server The	name	must	follow	the	rules	for	Microsoft®	Windows

NT®	4.0	and	Windows®	2000	computer	names.	(IP
addresses	are	not	valid.)

Data	source :	/	\	*	|	?	"	()	[]	{}	<>
Level .	,	;	'	`	:	/	\	*	|	?	"	&	%	$!	-	+	=	[]	{}
Dimension ,	;	'	`	:	/	\	*	|	?	"	&	%	$!	-	+	=	()	[]	{}
All	other
objects

.	,	;	'	`	:	/	\	*	|	?	"	&	%	$!	-	+	=	()	[]	{}

The	Importance	of	Unique	Names

Object	names	in	Multidimensional	Expressions	(MDX)	queries	are	resolved	in	a
specific	order.	For	best	results	with	cube	speed	and	accuracy,	make	the	effort	to
use	unique	names	for	all	objects	you	create	in	a	database	on	an	Analysis	server.
If	using	unique	names	is	not	an	option,	make	an	effort	to	qualify	names	as

completely	as	possible	in	your	queries,	especially	in	cases	where	identical	names
appear	in	different	dimensions	and	levels.	The	following	paragraphs	outline	the
order	in	which	name	conflicts	in	MDX	statements	are	resolved.

When	matching	names	to	cube	objects	in	an	MDX	query,	the	Analysis	server
first	tries	to	match	the	initial	portion	of	the	name	to	a	dimension,	then	a	level,
and	finally,	a	member.	When	the	server	is	satisfied	that	it	has	located	one	of
these	objects,	it	then	uses	the	final	element	in	the	name	to	search	within	the
bound	object.	For	example,	suppose	there	is	a	dimension	[D1],	a	level	[L1],	and
a	member	[M].	The	statement	[D1].[L1].[M]	is	broken	down	and	[D1].[L1]	is
bound	to	the	level.	The	server	then	searches	the	level	for	the	member	[M].

If	a	level	in	a	dimension	has	a	name	identical	to	another	dimension	that	is	not	its
parent,	that	level	will	not	be	searched	by	a	poorly	constructed	query.	For
example,	suppose	there	are	two	dimensions	[D1]	and	[D2].	[D2]	has	a	level
named	[D1].	If	a	query	refers	to	a	member	as	[D1].[M],	the	Analysis	server
binds	the	name	[D1]	to	the	dimension	and	searches	for	[M]	there.	If	it	cannot
find	[M]	in	[D1],	the	query	fails	(once	the	server	has	bound	a	name	to	an	object,
it	does	not	continue	to	the	next	object	in	the	collection	if	the	search	fails).	For
this	type	of	query	to	succeed,	it	should	include	the	complete	hierarchy	of	the
dimension	to	locate	the	member:	[D2].[D1].[M].

The	same	rules	apply	to	members	with	children.	Suppose	there	is	a	dimension
[D1]	with	both	a	level	and	a	member	named	[L1].	The	member	[L1]	also	has	a
child	[C].	In	an	attempt	to	reference	[C],	[D1].[L1].[C]	fails	because	the	server
binds	[D1].[L1]	to	the	level	and	searches	for	[C]	as	a	member.	For	this	type	of
query	to	succeed,	it	should	include	the	complete	hierarchy	of	the	dimension	to
locate	the	child:	[D1].[L1].[L1].[C].

A	first-fit	algorithm	solves	ambiguities	in	member	names.	If	a	member	is
referred	to	as	[M]	(without	a	corresponding	parent	dimension),	the	server
searches	the	dimensions	in	the	order	they	are	listed	in	the	cube's	Dimensions
collection	until	it	finds	the	member.	Although	this	can	help	resolve	ambiguous
member	names,	this	process	is	slow	and	can	affect	performance.	If	the	member
is	located	in	two	different	levels	of	the	same	dimension,	the	server	returns	the
member	closest	to	the	root	of	the	dimension	tree.

Analysis	Services	Programming

Object	Locking	with	Decision	Support	Objects
If	you	are	developing	applications	for	use	in	a	multiple-administrator
environment,	you	should	become	familiar	with	the	LockObject	and
UnlockObject	methods.	These	methods	provide	for	repository	stability	when
changes	are	made	to	Microsoft®	SQL	Server™	2000	Analysis	Services	objects.
When	one	application	obtains	a	lock	on	an	object,	the	options	available	to	other
applications	are	restricted	until	the	lock	is	released.	The	use	of	object	locking
can	provide	performance	benefits	when	working	with	Decision	Support	Objects
(DSO)	objects,	and	it	can	forestall	some	errors	in	multiple	user	object	access
situations.

When	an	application	disconnects	from	the	server,	all	locks	it	left	in	place	are
automatically	released.	This	prevents	objects	from	being	locked	indefinitely
from	unexpected	circumstances.

The	types	of	locks	defined	by	the	OlapLockTypes	enumeration	are:
olapLockExtendedRead,	olapLockProcess,	olapLockRead,	and
olapLockWrite.

olapLockExtendedRead

The	object's	properties	can	be	read	by	other	applications,	but	cannot	be
changed	or	processed.	This	lock	is	used	to	prevent	processing	of	dependent
objects	of	an	object	that	is	being	processed,	such	as	dimensions	that	are
shared	by	multiple	cubes.	Multiple	olapLockExtendedRead	locks	may	be
applied	to	an	object	by	multiple	applications.	However,	no	application	can
lock	the	object	for	processing	or	writing	until	all	olapLockExtendedRead
locks	have	been	released.

olapLockProcess

The	object's	Process	method	can	be	called	and	other	applications	can	read
the	object's	properties	only	until	the	lock	is	released.	Only	one
olapLockProcess	lock	can	be	applied	to	an	object	at	a	time,	and	other
applications	can	apply	olapLockRead	locks	only	while	the
olapLockProcess	lock	is	in	place.

olapLockRead

The	properties	of	the	object	can	be	read	from	the	repository	and	cannot	be
changed	by	another	application	until	the	lock	is	released.	Other	applications
can	issue	olapLockRead,	olapLockExtendedRead,	and	olapLockProcess
locks,	but	not	olapLockWrite	locks,	while	the	initial	olapLockRead	lock	is
in	place.

olapLockWrite

The	properties	of	the	object	can	be	modified	in	the	repository	using	the
Update	method,	and	are	not	available	to	other	applications	for	any	use	until
the	lock	is	released.	No	other	locks	of	any	type	can	be	applied	to	the	object
by	another	DSO	client	until	the	olapLockWrite	lock	is	released.

The	different	lock	types	are	not	valid	for	all	objects	that	have	a	LockObject
method.	Review	the	different	method	descriptions	for	information	about	the	lock
types	each	object	supports.

It	is	sometimes	possible	for	an	application	to	obtain	an	additional	lock	on	an
already	locked	object.	The	following	table	defines	what	lock	options	are
available	to	an	application	(App2)	that	wants	to	request	a	lock	on	an	object	that
is	currently	locked	by	another	application	(App1).

	 App2	can	obtain	lock
App1	lock
obtained

olapLockRead olapLock
ExtendedRead olapLockProcess olapLockWrite

olapLockRead Yes Yes Yes No
olapLock
ExtendedRead

Yes Yes No No

olapLockProcessYes No No No
olapLockWrite No No No No

If	a	lock	request	is	denied,	DSO	raises	the	error
mderrLockCannotBeObtained.	If	the	lock	request	was	denied	because	the
object	is	already	locked	by	another	application,	the	Description	property	of	the
Error	object	contains	the	name	of	the	user	holding	the	lock,	the	computer	name
where	the	lock	was	obtained,	and	the	description	the	application	provided	when

it	obtained	the	lock.

In	certain	situations,	an	application	can	delete	an	object	and	cause	another
application	to	fail	if	both	applications	are	using	the	same	object.	For	example,
assume	that	App1	creates	an	object	and	obtains	an	olapLockWrite	lock,	and
App2	obtains	an	olapLockRead	lock	on	the	same	object.	If	App1	deletes	the
object,	the	object	reference	in	App2	will	now	not	be	valid.	You	can	check	the
validity	of	an	object	in	this	situation	by	examining	its	Parent	property,	which
does	not	contain	a	valid	parent	object	if	the	object	reference	is	not	valid.

See	Also

OlapLockTypes

LockObject

UnlockObject

Analysis	Services	Programming

Tips	for	Creating	Member	Properties	for	Multiple
Languages
The	Caption	and	Language	properties	of	the	DSO.MemberProperty	object
allow	you	to	tailor	member	properties	to	users	with	specific	language
requirements.	With	this	feature,	a	single	cube	can	serve	groups	of	users	without	a
common	language.

When	a	client	application's	query	involves	member	properties	with	identical
captions,	the	Analysis	server	uses	the	member	property	object	whose	Language
property	most	closely	matches	the	application's	LocaleID	value.	Multiple
member	properties	can	have	identical	values	for	Caption	only	if	they	each	have
a	different	value	for	the	Language	property,	so	that	the	member	property	most
appropriate	for	the	LocaleID	value	of	the	client	application	can	be	used.	For	a
cube	that	serves	client	applications	in	only	one	language,	the	Language	property
for	each	member	property	object	should	be	set	to	languageAny.

The	Name	property	of	a	clsMemberProperty	object	contains	the	name	of	the
source	column	for	the	data	contained	in	the	member	property.	The	Caption
property	contains	the	name	of	the	member	property	as	it	appears	to	the	client
application.

Add	Members	Properties	for	Multiple	Languages
The	following	code	example	creates	two	member	properties	for	Store	Manager
in	the	TestDB	database.	One	is	for	English-speaking	users,	the	other	for
Spanish-speaking	users.

Example
The	following	code	example	adds	a	new	member	property,	Store	Manager,	for
English	and	Spanish	languages:

Private	Sub	AddMultiLangMembers()
				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore

				Dim	dsoDS	As	DSO.DataSource
				Dim	dsoDim	As	DSO.Dimension
				Dim	dsoLevel	As	DSO.Level
				Dim	dsoMember	As	DSO.MemberProperty
				
				Dim	strDBName	As	String
				Dim	strLQuote	As	String
				Dim	strRQuote	As	String
				
				'	Define	constants	used	for	the	ColumnType	property
				'	of	the	DSO.Level	object.
				'	Note	that	these	constants	are	identical	to
				'	those	used	in	ADO	in	the	DataTypeEnum	enumeration.
				Const	adWChar	=	130
				
				'	Initialize	variables	for	the	database	name.
				strDBName	=	"TestDB"
				
				'	Create	a	connection	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"
				
				'	Set	the	database	object.
				Set	dsoDB	=	dsoServer.MDStores(strDBName)
				
				'	Set	the	data	source	for	the	database	object.
				'	A	data	source	is	required	to	run	this	example.
				If	dsoDB.DataSources.Count	=	0	Then
								MsgBox	"Database	"	&	dsoDB.Name	&	_
												"	has	no	data	sources."
				Else
								Set	dsoDS	=	dsoDB.DataSources(1)
				End	If
			

				'	Get	database-specific	delimiter	characters.
				strLQuote	=	dsoDS.OpenQuoteChar
				strRQuote	=	dsoDS.CloseQuoteChar
				
				'	Retrieve	the	Store	dimension.
				Set	dsoDim	=	dsoDB.Dimensions("Stores")
				
				'	Retrieve	the	Store	ID	level.
				Set	dsoLevel	=	dsoDim.Levels("Store	ID")
				
				'	First,	create	the	English	(and	default)	member	property.
				Set	dsoMember	=	dsoLevel.MemberProperties.AddNew("Store	Manager")
				dsoMember.SourceColumn	=	strLQuote	&	"store"	&	strRQuote	&	"."	&	_
																															strLQuote	&	"store_manager"	&	strRQuote
				dsoMember.ColumnSize	=	255
				dsoMember.ColumnType	=	adWChar
				dsoMember.Caption	=	"Store	Manager"
				dsoMember.Language	=	languageAny
				'	Next,	create	an	identical	one	for	Spanish	users.
				Set	dsoMember	=	_
																dsoLevel.MemberProperties.AddNew("Encargado	de	Almacén")
				dsoMember.SourceColumn	=	strLQuote	&	"store"	&	strRQuote	&	"."	&	_
																															strLQuote	&	"store_manager"	&	strRQuote
				dsoMember.ColumnSize	=	255
				dsoMember.ColumnType	=	adWChar
				dsoMember.Caption	=	"Store	Manager"
				dsoMember.Language	=	languageSpanish
				
				'	Update	the	Stores	dimension.
				If	dsoLevel.IsValid	And	dsoDim.IsValid	Then
								dsoDim.Update
				End	If

End	Sub

Analysis	Services	Programming

Using	Earlier	Versions	of	Analysis	Services
You	can	create	objects	supported	by	previous	versions	of	Microsoft®	SQL
Server™	2000	Analysis	Services.	Decision	Support	Objects	(DSO)	can	read	and
process	objects	created	in	previous	versions	of	Analysis	Services	that	support
such	objects.	In	particular,	the	creation	of	virtual	dimensions	is	now	supported	in
a	more	efficient	fashion;	although	code	written	for	SQL	Server	7.0	OLAP
Services	to	create	virtual	dimensions	will	continue	to	function,	the	more	efficient
process	of	virtual	dimension	creation	supported	in	SQL	Server	2000	Analysis
Services	is	recommended.

See	Also

Virtual	Dimensions	Created	in	Version	7.0

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Decision	Support	Objects	Programmer's	Reference
Microsoft®	SQL	Server™	2000	Analysis	Services	offers	substantial	opportunity
for	you	to	create	and	integrate	custom	applications.	The	server	object	model,
Decision	Support	Objects	(DSO),	provides	interfaces	and	objects	that	can	be
used	with	any	COM	automation	programming	language	such	as	Microsoft®
Visual	Basic®	(version	5.0	and	later).	Additionally,	Microsoft	Visual	C++®
programmers	can	use	DSO.	DSO	objects	support	both	early	and	late	binding.

The	Programmer's	Reference	provides	detailed	information	about	DSO	for	use	in
developing	custom	applications	that	interact	with	the	Analysis	server.	For	more
information	about	other	programming	tools	for	Analysis	Services,	see
Programming	Analysis	Services	Applications.

Topics	in	this	section	cover	the	following	subjects.

Topic Description
Interfaces The	specifics	of	each	interface	that	your	program	uses	to

manipulate	DSO	objects,	including	collections,	methods,
and	properties	managed	by	the	interface.

Events Details	on	events	supported	by	DSO	objects,	including
database	reporting	and	object	processing	events.

Objects Information	about	DSO	objects.	Topics	for	objects	that
provide	their	own	default	interfaces	also	include
collections,	methods,	and	properties	specific	to	those
objects.

Enumerations The	details	of	the	enumerations	provided	by	DSO,	and
information	about	how	to	use	them.

Collections Information	about	the	collections	used	in	DSO,	including
the	generic	methods	and	properties	that	apply	to	these
collections.

Analysis	Services	Programming

Interfaces
There	are	a	number	of	interfaces	in	Decision	Support	Objects	(DSO).	Objects
that	have	similar	functionality	implement	a	common	interface.

For	example,	databases,	cubes,	partitions,	and	aggregations	implement	the
MDStore	interface.	An	MDStore	object	is	a	container	of	multidimensional	data.
Databases	contain	cubes	of	related	information,	cubes	contain	partitions	that
store	data,	and	aggregations	are	precalculated	summaries	of	data	associated	with
partitions.	MDStore	objects	have	similar	structures.	They	contain	collections	of
dimensions	that	categorize	the	data,	the	data	sources	that	specify	which
relational	database	management	system	(RDBMS)	contains	fact	and	dimension
tables,	the	roles	that	define	the	security	permissions,	and	so	on.

Given	a	reference	to	an	MDStore	interface	or	any	other	DSO	interface,	you	can
determine	which	type	of	the	object	you	are	dealing	with	by	examining	the
ClassType	property.	The	objects	that	implement	the	MDStore	interface	can
have	the	following	class	types:	clsDatabase,	clsCube,	clsPartition,	and
clsAggregation.	Throughout	the	programmer's	reference,	DSO	objects	are
identified	using	the	notational	prefix	"cls."	The	DSO	ClassTypes	enumeration
contains	the	complete	list	of	all	DSO	class	types.

Not	all	objects	that	implement	a	common	interface	implement	the	interface	in
the	same	way.	Some	objects	do	not	implement	all	of	the	interface	properties,
methods,	and	collections.	For	example,	database	objects	(clsDatabase)
implement	the	BeginTrans	method	of	the	MDStore	interface,	but	cube	objects
(clsCube)	do	not.	Some	objects	restrict	access	to	certain	properties	so	that	they
become	read-only	rather	than	read/write.	If	you	attempt	to	access	a	property	or
invoke	a	method	that	is	not	implemented,	DSO	raises	an	error.

DSO	exposes	the	Command,	Dimension,	Level,	MDStore,	Measure,	and	Role
interfaces.

The	following	table	lists	the	DSO	interfaces	and	the	types	of	objects	that
implement	them.

Interface Description Implemented	by
Command The	Command	interface	exposes clsDatabaseCommand

functionality	for	defining	and
managing
Multidimensional	Expressions	(MDX)
statements	to	be	executed	on	the
Analysis	server.

clsCubeCommand
clsRoleCommand

Dimension The	Dimension	interface	defines	the
properties,	methods,	and	collections
that	you	can	use	to	manipulate
different	types	of	dimensions:
database	dimensions,	cube
dimensions,	partition	dimensions,	and
aggregation	dimensions.

clsDatabaseDimension
clsCubeDimension
clsPartitionDimension
clsAggregationDimension

Level The	Level	interface	defines	objects
that	specify	the	dimension	hierarchy.

clsDatabaseLevel
clsCubeLevel
clsPartitionLevel
clsAggregationLevel

MDStore Objects	that	implement	the	MDStore
interface	are	those	that	contain
dimensions:	databases,	cubes,
partitions,	and	aggregations.

clsDatabase
clsCube
clsPartition
clsAggregation

Measure Objects	that	implement	the	Measure
interface	describe	the	values	stored	in
cubes,	partitions,	and	aggregations.

clsCubeMeasure
clsPartitionMeasure
clsAggregationMeasure

Role Objects	that	implement	the	Role
interface	contain	access	permissions
on	databases,	cubes,	and	data	mining
models.

clsDatabaseRole
clsCubeRole
clsMiningModelRole

Some	DSO	objects	do	not	implement	a	common	interface.	You	access	these
objects	by	using	their	default	interface:	clsServer,	clsDataSource,
clsMiningModel,	clsColumn,	clsCubeAnalyzer,	clsPartitionAnalyzer,	and
clsMemberProperty.

Remarks
The	DSO	type	library	exposes	several	object	classes,	such	as	Cube,	Database,

Partition,	CubeDimension,	and	so	on.	These	objects	are	reserved	for	future	use
and	are	not	intended	to	be	used	in	DSO	applications.	You	should	use	the	named
interfaces	instead.	For	example,	use	the	following	code	to	create	a	new	object	of
ClassType	clsDatabase	(a	database	object	implements	the	MDStore	interface):

'Assume	an	object	(dsoServer)	of	ClassType	clsServer	exists.
'Add	database	object	to	server's	MDStores	collection.
Dim	dsoDB	As	MDStore			'	Declare	the	object	by	the	interface.
Set	dsoDB	=	dsoServer.MDStores.AddNew("MyDB")

Always	use	the	appropriate	interface	for	the	object.	For	example,	major	objects
typically	use	the	MDStore	interface	as	their	appropriate	interface.	The	following
code	example	shows	the	appropriate	interface	to	use	for	cube	objects:

Private	dsoCube	As	DSO.Cube		'	INCORRECT	-	DO	NOT	USE.
Private	dsoCube	As	DSO.MDStore			'	CORRECT

The	only	exceptions	to	this	rule	are	Database	objects.	If	your	client	application
needs	to	trap	database	events,	the	internal	interface	of	the	object	should	be	used
instead	of	the	MDStore	interface,	as	shown	in	the	following	code	example:

Public	dsoDB	as	DSO.MDStore	'	Use	this	statement	if	you	do	not	need	to	trap	events.
Public	WithEvents	dsoDB	as	DSO.Database	'	Use	this	statement	if	you	need	to	trap	events.

Analysis	Services	Programming

Command	Interface
In	Decision	Support	Objects	(DSO),	certain	objects	can	contain	a	series	of	user-
defined	commands	that	are	automatically	executed	on	the	PivotTable®	Service
client	when	you	access	the	object.	These	commands	can	include	expressions
written	in	Multidimensional	Expressions	(MDX)	that	define	calculated
members,	named	sets,	library	references,	and	other	commands.

The	objects	that	implement	the	Command	interface,	CubeCommand,
DBCommand,	and	RoleCommand,	have	a	ClassType	property	value	of
clsCubeCommand,	clsDatabaseCommand,	or	clsRoleCommand	respectively.
The	Command	interface	provides	collections,	methods,	and	properties	to
manipulate	these	objects.

Applies	To
clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Collections
The	Command	interface	contains	the	following	collection.

Collection Description
CustomProperties The	collection	of	user-defined	properties	for	the

command	object

Methods
The	Command	interface	contains	the	following	methods.

Method Description
Clone Copies	an	existing	object	to	a	target	object	of	the	same

class	type

LockObject Locks	an	object
UnlockObject Unlocks	a	previously	locked	object
Update Saves	the	definition	of	the	command	object	in	the	meta

data	repository

Properties
The	Command	interface	supports	the	following	properties.

Property Description
ClassType Returns	an	enumeration	constant	that	identifies	the

specific	class	type
CommandType Returns	an	enumeration	constant	that	identifies	the

command's	use
Description Sets	or	returns	the	description	of	the	command	object
IsValid Indicates	whether	the	Name	and	Statement	properties

are	empty	and	whether	the	command	object	belongs	to
a	collection

Name Sets	or	returns	the	name	of	the	command	object
OrdinalPosition Returns	the	ordinal	position	of	the	command	object	in

the	Commands	collection	of	the	parent	MDStore
object

Parent Returns	a	reference	to	the	parent	MDStore	object
ParentObject Returns	a	reference	to	the	parent	object	of	which	this

object	is	a	child
Statement Sets	or	returns	the	text	of	the	command	statement
SubClassType Returns	an	enumeration	constant	that	identifies	the

subclass	type	of	the	object

See	Also

Commands

JavaScript:hhobj_1.Click()

MDX

JavaScript:hhobj_2.Click()

Analysis	Services	Programming

Collections,	Command	Interface
The	Command	interface	contains	the	following	collection.

Collection Description
CustomProperties The	collection	of	user-defined	properties

for	the	command	object

Access
Read/write

See	Also

Command	Interface

Analysis	Services	Programming

Methods,	Command	Interface
The	Command	interface	contains	the	following	methods.

Method Description
Clone Copies	an	existing	object	to	a	target	object	of	the

same	class	type
LockObject Locks	an	object
UnlockObject Unlocks	a	previously	locked	object
Update Saves	the	definition	of	the	command	object	in	the

meta	data	repository

For	the	Command	interface,	these	methods	apply	only	to	objects	of	ClassType
clsDatabaseCommand.

See	Also

Command	Interface

Analysis	Services	Programming

Clone	(Command	Interface)
The	Clone	method	of	the	Command	interface	copies	the	properties	of	an
existing	object	to	a	target	object	of	the	same	class	type.	The	target	object	must
exist	prior	to	using	the	Clone	method.

Applies	To
clsDatabaseCommand

Syntax
object.Clone(ByVal	TargetObject	As	Command,	[ByVal	Options	As
CloneOptions	=	cloneMajorChildren])

object

The	object	whose	property	values	are	to	be	copied.

TargetObject

A	previously	created	object	of	the	same	class	type.

Options

For	objects	of	ClassType	clsDatabaseCommand,	the	CloneOptions
argument	has	no	effect	and	is	ignored.

Example
The	following	example	clones	a	command	object:

'Assume	a	command	object	(dsoCmd)	exists.
Dim	dsoCmdCopy	as	new	DSO.Command
dsoCmd.Clone	dsoCmdCopy

See	Also

Command	Interface

Analysis	Services	Programming

LockObject	(Command	Interface)
The	LockObject	method	of	the	Command	interface	locks	an	object	to	prevent
multiple	users	from	concurrently	changing	the	object.

Applies	To
clsDatabaseCommand

Syntax
object.LockObject(ByVal	LockType	As	OlapLockTypes,	ByVal
LockDescription	As	String)

object

The	object	to	lock.

LockType

One	of	the	lock	types	of	the	OlapLockTypes	enumeration.	For	more
information,	see	OlapLockTypes.

LockDescription

A	string	that	contains	a	description	of	the	lock.	This	argument	is	available	to
other	applications	attempting	to	obtain	a	lock.

Remarks
Of	the	four	types	of	locks	defined	by	the	OlapLockTypes	enumeration,	only
OlapLockRead	and	OlapLockWrite	apply	to	the	Command	interface.

Lock	type Applies	to
OlapLockRead Applications	can	read	the	properties	of	the	command

object	from	the	repository	but	cannot	make	changes
until	the	lock	is	released	(this	includes	the	application
that	created	the	lock).

OlapLockWrite The	application	that	created	the	lock	can	modify	the
object's	properties	and	save	them	in	the	repository
using	the	Update	method.	Other	applications	cannot
read	the	properties	of	the	object	until	the	lock	is
released.

For	more	information	about	object	locking,	see	LockObject.

Example
The	following	example	locks	a	command	object	so	that	it	can	be	modified.	It
then	unlocks	the	object	and	updates	the	repository	information	for	that	object.

'Assume	a	command	object	(dsoCmd)	exists.
dsoCmd.LockObect	OlapLockRead,	"Updating	command,	please	wait."
'	(Insert	code	to	change	command	object	here.)
dsoCmd.Update
dsoCmd.UnlockObject

See	Also

Command	Interface

Analysis	Services	Programming

UnlockObject	(Command	Interface)
The	UnlockObject	method	of	the	Command	interface	releases	the	lock
previously	established	on	a	command	object	by	the	LockObject	method.

Applies	To
clsDatabaseCommand

Syntax
object.UnlockObject

object

The	object	to	unlock.

Remarks
If	an	application	that	created	one	or	more	locks	terminates	before	it	can	free
them	using	the	UnlockObject	method,	the	Analysis	server	automatically
releases	the	locks	when	the	connection	with	the	application	is	closed.

Example
The	following	example	locks	a	command	object	so	that	it	can	be	modified.	It
then	unlocks	the	object	and	updates	its	repository	information.

'Assume	a	command	object	(dsoCmd)	exists.
dsoCmd.LockObect	OlapLockRead,	"Updating	command,	please	wait."
'	(Insert	code	to	change	command	object	here.)
dsoCmd.Update
dsoCmd.UnlockObject

See	Also

Command	Interface

Analysis	Services	Programming

Update	(Command	Interface)
The	Update	method	of	the	Command	interface	saves	the	definition	of	a
command	object	in	the	meta	data	repository.

Applies	To
clsDatabaseCommand

Syntax
object.Update

object

The	command	object	to	update.

Remarks
Use	this	method	when	you	want	to	save	changes	to	an	object.	Any	changes	made
to	an	object	will	have	session	scope	until	this	method	is	executed.

Example
The	following	example	locks	a	command	object	so	that	it	can	be	modified.	It
then	unlocks	the	object	and	updates	its	repository	information.

'Assume	a	command	object	(dsoCmd)	exists.
dsoCmd.LockObect	OlapLockRead,	"Updating	command,	please	wait."
'	(insert	code	to	change	command	object	here)
dsoCmd.Update
dsoCmd.UnlockObject

See	Also

Command	Interface

Analysis	Services	Programming

Properties,	Command	Interface
The	Command	interface	supports	the	following	properties.

Property Description
ClassType Returns	an	enumeration	constant	that	identifies	the

specific	class	type
CommandType Returns	an	enumeration	constant	that	identifies	the

command	option
Description Sets	or	returns	the	description	of	the	command	object
IsValid Indicates	whether	the	Name	and	Statement

properties	are	empty	and	whether	the	command	object
belongs	to	a	collection

Name Sets	or	returns	the	name	of	the	command	object
OrdinalPosition Returns	the	ordinal	position	of	the	command	object	in

the	Commands	collection	of	the	parent	MDStore
object

Parent Returns	a	reference	to	the	parent	MDStore	object
ParentObject Returns	a	reference	to	the	parent	object	of	which	this

object	is	a	child
Statement Sets	or	returns	the	text	of	the	command	statement
SubClassType Returns	an	enumeration	constant	that	identifies	the

subclass	type	of	the	object

Access	Cross-Reference
The	following	table	shows	whether	the	property	is	read/write	(R/W)	or	read-only
(R)	for	different	objects.

Property clsDatabaseCommand clsCubeCommand clsRoleCommand
ClassType R R R
CommandType R/W R/W R/W
Description R/W R/W R/W

IsValid R R R
Name R/W	(R	after	the	object

has	been	named)
R/W	(R	after	the
object	has	been
named)

R/W	(R	after	the
object	has	been
named)

OrdinalPosition R R R
Parent R R R
ParentObject R R R
Statement R/W R/W R/W
SubClassType R R R

See	Also

Command	Interface

Analysis	Services	Programming

ClassType	(Command	Interface)
The	ClassType	property	of	the	Command	interface	contains	an	enumeration
constant	that	identifies	the	class	designation	in	the	Decision	Support	Objects
(DSO)	object	model.

Applies	To
clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data	Type
ClassTypes

Access
Read-only

Example
Use	the	following	code	to	return	the	class	type	of	a	command	object	and
determine	which	object	class	has	been	returned:

'Assume	an	object	(dsoCommand)	of	ClassType	clsCommand	exists.
Dim	enuClassType	As	DSO.ClassTypes
enuClassType	=	dsoCommand.ClassType
Select	Case	enuClassType
				Case	clsDatabaseCommand
								'	Insert	code	for	a	database	command.
				Case	clsCubeCommand
								'	Insert	code	for	a	cube	command.
				Case	clsRoleCommand

								'	Insert	code	for	a	role	command
				Case	Else
								'	Insert	code	for	when	this	is	not	a	command	object.
End	Select

See	Also

Command	Interface

Analysis	Services	Programming

CommandType	(Command	Interface)
The	CommandType	property	of	the	Command	interface	contains	an
enumeration	constant	that	identifies	the	command	option.

Applies	To
clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data	Type
CommandTypes

Access
Read/write

Remarks
The	value	of	CommandType	determines	how	the	Analysis	server	interprets	the
command	object.	The	following	table	lists	the	possible	values.

Command	type Description
cmdCreateAction The	command	contains	a	CREATE	ACTION

statement.	For	more	information,	see	CREATE
ACTION	Statement.

cmdCreateMember The	command	defines	one	or	more	calculated
members.

cmdCreateSet The	command	defines	one	or	more	sets	of
existing	members.

cmdUseLibrary The	command	specifies	a	third-party	DLL	that
contains	functions	to	be	registered	for	use	in

Multidimensional	Expressions	(MDX).
cmdUnknown The	command	defines	statements	that	are	not

included	in	any	of	the	other	command	types,
such	as	DROP	MEMBER	statements	or	new
statements	that	may	be	added	to	future
versions.

cmdCreateCellCalculation The	command	defines	a	calculated	cells
definition.

IMPORTANT		To	ensure	compatibility	with	Analysis	Manager,	you	should	create
only	one	action,	calculated	member,	named	set,	or	calculated	cells	definition	per
command.

Examples

A.	Specifying	the	Command	Type
Use	the	following	code	to	specify	a	command	type	for	an	existing	command
object:

CommandObject.CommandType	=	cmdCreateMember

B.	Determining	the	Command	Type
Use	the	following	code	to	determine	the	type	of	command	in	use:

Dim	CommandType	As	DSO.CommandTypes
CommandType	=	CommandObject.CommandType
Select	Case	CommandType
				Case	cmdCreateAction
								'	Insert	code	to	create	an	action.
				Case	cmdCreateMember
								'	Insert	code	to	define	a	calculated	member.		
				Case	cmsCreateSet
								'	Insert	code	to	define	a	named	set	of	existing	members.	
				Case	cmdUseLibrary
								'	Insert	code	to	use	a	third-party	library.	

				Case	cmdCreateCellCalculation
								'	Insert	code	to	create	a	calculated	cells	definition.
			Case	cmdUnknown
								'	Insert	code	to	define	other	statements.	
End	Select

See	Also

Command	Interface

Analysis	Services	Programming

Description	(Command	Interface)
The	Description	property	of	the	Command	interface	contains	the	description	of
the	command	object.

Applies	To
clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data	Type
String

Access
Read/write

Remarks
The	primary	mechanism	for	identifying	individual	command	objects	is	the
Name	property.	The	purpose	of	the	Description	property	is	to	provide	additional
descriptive	information.

Example
Use	the	following	code	to	set	a	command	object	description:

'Assume	a	command	object	(dsoCmd)	exists.
dsoCmd.Description	=	"Create	a	new	profit	member	as	sales-cost."

See	Also

Command	Interface

Name

Analysis	Services	Programming

IsValid	(Command	Interface)
The	IsValid	property	of	the	Command	interface	indicates	whether	the	Name
and	Statement	properties	are	empty	and	whether	the	command	object	belongs	to
a	collection.

Applies	To
clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data	Type
Boolean

Access
Read-only

Remarks
Because	of	the	flexible	nature	of	command	objects,	only	the	following	checks
are	performed:

The	Name	property	of	the	command	object	is	not	empty.

The	Command	object	belongs	to	a	Commands	collection.

The	Statement	property	of	the	command	object	is	not	empty.

Executing	a	command	is	the	only	way	to	determine	whether	the	command
functions	correctly.

Example
Use	the	following	code	to	return	the	validity	status	of	a	command	object:

'Assume	a	command	object	(dsoCmd)	exists.
If	dsoCmd.IsValid	Then
			'Insert	code	to	save	the	command.
Else
			'Return	an	error	with	one	or	more	properties.
End	If

See	Also

Command	Interface

Name

Statement

Analysis	Services	Programming

Name	(Command	Interface)
The	Name	property	of	the	Command	interface	contains	the	name	of	a	command
object.	This	property	is	the	primary	mechanism	for	identifying	individual
command	objects.

Applies	To
clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data	Type
String

Access
Read/write	(read-only	after	the	object	has	been	named)

Remarks
Within	a	cube,	each	command	must	have	a	unique	name.	For	more	information
about	naming	conventions	for	Decision	Support	Objects	(DSO)	objects,	see
Considerations	For	Naming	Decision	Support	Objects.

Example
Use	the	following	code	to	print	a	command	object's	name	in	the	immediate
window:

'Assume	a	command	object	(dsoCmd)	exists.
debug.print	dsoCmd.Name

See	Also

Command	Interface

Analysis	Services	Programming

OrdinalPosition	(Command	Interface)
The	OrdinalPosition	property	of	the	Command	interface	contains	the	ordinal
position	of	a	command	in	the	Commands	collection	in	the	parent	MDStore
object.

Applies	To
clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data	Type
Integer

Access
Read-only

Remarks
Ordinal	position	determines	the	order	in	which	commands	are	executed.	This
order	is	important	when	one	command	depends	on	another	command	(for
example,	a	CREATE	SET	command	that	uses	a	member	defined	in	a	CREATE
MEMBER	command).	In	this	case,	the	CREATE	MEMBER	command	should
have	a	lower	OrdinalPosition	property	value	than	the	CREATE	SET	command.
However,	the	ordinal	position	of	the	command	does	not	affect	the	solve	order	of
the	calculated	member	or	calculated	cells	definition	the	command	may	create.
For	more	information	on	how	solve	order	affects	calculated	cells	and	calculated
members,	see	Understanding	Pass	Order	and	Solve	Order.

Example
The	following	code	creates	three	new	commands	in	the	Commands	collection

JavaScript:hhobj_1.Click()

of	the	FoodMart	2000	database.	It	then	enumerates	the	collection,	printing	the
OrdinalPosition	and	Name	properties	to	the	Debug	window.	Then,	the	code
example	deletes	and	re-creates	the	first	command,	and	again	enumerates	the
collection	to	demonstrate	the	change	in	ordinal	position	on	the	other	commands.

				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoCmd	As	DSO.Command
				
				'	Connect	to	the	local	Analysis	server.
				dsoServer.Connect	"LocalHost"
				
				'	Open	the	FoodMart	2000	database.
				Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")
				
				'	Add	three	sample	commands.
				Set	dsoCmd	=	dsoDB.Commands.AddNew("Command3")
				Set	dsoCmd	=	dsoDB.Commands.AddNew("Command1")
				Set	dsoCmd	=	dsoDB.Commands.AddNew("Command2")
				
				'	Iterate	through	the	commands	for	the	database.
				For	Each	dsoCmd	In	dsoDB.Commands
								'	Print	its	name	and	ordinal	position
								Debug.Print	dsoCmd.OrdinalPosition	&	"	=	"	&	dsoCmd.Name
				Next

				'	Now,	delete	the	Command3	command	and	add	it	again.
				dsoDB.Commands.Remove	"Command3"
				Set	dsoCmd	=	dsoDB.Commands.AddNew("Command3")
				
				'	Iterate	again	through	the	commands	for	the	database.
				Debug.Print	"-----"
				For	Each	dsoCmd	In	dsoDB.Commands
								'	Print	its	name	and	ordinal	position

								Debug.Print	dsoCmd.OrdinalPosition	&	"	=	"	&	dsoCmd.Name
				Next

See	Also

Command	Interface

CREATE	SET	Statement

CREATE	MEMBER	Statement

Analysis	Services	Programming

Parent	(Command	Interface)
The	Parent	property	of	the	Command	interface	contains	a	reference	to	the
parent	MDStore	object	of	which	this	object	is	a	child.

Applies	To
clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data	Type
MDStore

Access
Read-only

Remarks
The	class	of	the	parent	object	depends	on	the	class	of	the	command	object.

Command	object	class Parent	object	class
ClsDatabaseCommand clsDatabase
ClsCubeCommand clsCube
ClsRoleCommand clsCubeRole	clsDatabaseRole

clsMiningModelRole

Example
The	following	example	creates	a	cube	command	and	assigns	it	to	the	first	cube
in	the	MDStores	collection	of	the	FoodMart	2000	database.	It	then	prints	some

of	the	properties	of	the	parent	object	by	using	the	Parent	property	of	the	cube
command	object.

Dim	dsoServer	As	New	DSO.Server
Dim	dsoDB	As	DSO.MDStore
Dim	dsoCube	As	DSO.MDStore
Dim	dsoDBCmd	As	DSO.Command
Dim	dsoCubeCmd	As	DSO.Command

'	Connect	to	the	Analysis	server.
				dsoServer.Connect	"LocalHost"

'	Get	a	reference	to	the	FoodMart	2000	database.
				Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")

'	Get	the	first	cube	in	the	database's	collection.
				Set	dsoCube	=	dsoDB.MDStores(1)
				Debug.Print	"Cube.Name	=	"	&	dsoCube.Name

'	Add	the	command	to	the	cube's	collection.
				Set	dsoCubeCmd	=	dsoCube.Commands.AddNew("TempCommand")
				Debug.Print	"Cube.Commands(""TempCommand"").Name	="	&	_
								dsoCube.Commands("TempCommand").Name

'	Print	the	properties	of	the	command's	
'	Parent	object.
				Debug.Print	"			.Parent	properties"	&	vbCrLf	&	_
								"			-----------"
				Debug.Print	"			TypeName(dsoCubeCmd.Parent)	=	"	&	_
								TypeName(dsoCubeCmd.Parent)
				If	dsoCubeCmd.Parent.ClassType	=	clsCube	Then
								Debug.Print	"			.ClassType	=	clsCube"
				Else
								Debug.Print	"This	line	should	never	be	executed."

				End	If
				Debug.Print	"			.Description	=	"	&	dsoCubeCmd.Parent.Description
				Debug.Print	"			.Name	=	"	&	dsoCubeCmd.Parent.Name

				dsoCube.Commands.Remove	("TempCommand")

See	Also

Command	Interface

Analysis	Services	Programming

ParentObject	(Command	Interface)
The	ParentObject	property	returns	a	reference	to	the	default	interface	of	the
parent	object.

Applies	To
clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data	Type
Object

Access
Read-only

Remarks
This	property	returns	the	default	interface	for	the	parent	of	the	command	object.
For	objects	whose	ClassType	property	is	clsRoleCommand,	this	property
returns	an	object	of	ClassType	clsCubeRole	or	clsDatabaseRole.

The	returned	object	and	its	class	type	depend	on	the	class	type	of	the	current
command	object.

Class	type
Parent	object
interface Parent	object	class	type

clsDatabaseCommandMDStore clsDatabase
clsCubeCommand MDStore clsCube
clsRoleCommand Role clsDatabaseRole

clsCubeRole
clsMiningModelRole

Example

Comparing	the	Parent	and	ParentObject	Properties
The	following	example	compares	the	use	of	the	Parent	property	with	the
ParentObject	property:

Dim	dsoDB	As	DSO.MDStore
Dim	dsoRole	As	DSO.Role
Dim	dsoRoleCmd	As	DSO.Command
Dim	dsoDatabaseRole	As	DSO.Role

		dsoServer.Connect	"LocalHost"
		Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")

'Get	the	first	role	in	the	database.
'This	should	be	the	Everyone	role.
		Set	dsoRole	=	dsoDB.Roles(1)

		Debug.Print	"DatabaseRole.Name	=	"	&	dsoRole.Name
'Add	a	new	command	to	the	role.
		Set	dsoRoleCmd	=	dsoRole.Commands.AddNew("RoleCmd")
		
		'Print	the	properties	of	the	Parent	object.
		Debug.Print	".Parent	properties"	&	vbCrLf	&	"---------"
		Debug.Print	"Interface	type	=	"	&	TypeName(dsoRoleCmd.Parent)
		If	dsoRoleCmd.Parent.ClassType	=	clsDatabase	Then
				Debug.Print	".ClassType	=	clsDatabase"
		Else
				Debug.Print	"This	should	never	be	printed."
		End	If
		Debug.Print	".Description	=	"	&	dsoRoleCmd.Parent.Description

		Debug.Print	".Name	=	"	&	dsoRoleCmd.Parent.Name

'Print	the	properties	of	the	ParentObject	object
		Debug.Print	".ParentObject	properties"	&	vbCrLf	&	"---------"
		Debug.Print	"Interface	type	=	"	&	TypeName(dsoRoleCmd.ParentObject)
		Set	dsoDatabaseRole	=	dsoRoleCmd.ParentObject
		If	dsoDatabaseRole.ClassType	=	clsDatabaseRole	Then
						Debug.Print	".ClassType	=	clsDatabaseRole"
		Else
				Debug.Print	"This	should	never	be	printed."
		End	If
		Debug.Print	".ClassType	=	"	&	dsoDatabaseRole.ClassType
		Debug.Print	".Description	=	"	&	dsoDatabaseRole.Description
		Debug.Print	".Name	=	"	&	dsoDatabaseRole.Name

See	Also

Command	Interface

Analysis	Services	Programming

Statement	(Command	Interface)
The	Statement	property	of	the	Command	interface	contains	the	text	of	the
command	statement.

Applies	To
clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data	Type
String

Access
Read/write

Remarks
For	more	information	about	types	of	command	statements,	see	CommandType.

The	names	used	in	statements	that	define	actions,	calculated	members,	named
sets,	and	calculated	cells	must	be	unique	within	a	cube.	For	example,	if	you
create	an	action	named	Test,	you	cannot	create	a	calculated	cells	definition
named	Test.	For	more	information	about	naming	conventions	for	Decision
Support	Objects,	see	Considerations	For	Naming	Decision	Support	Objects.

Examples

A.	Creating	a	Command	Object	(cmdCreateAction)
Use	the	following	code	to	create	a	cmdCreateAction	command	object:

CommandObject.Statement	=	"CREATE	ACTION	Sales.ShowCustDetails	"	&	_
				"FOR	[Customer]	MEMBERS	As	"	&	_
				"'IIf(Customers.CurrentMember.Properties(""Existing	Customer"")"	&	_
				"	=	""True"","	&	_
				"""http://MyServer/CustomerDetails.ASP?CustID=""	+	"	&	_
				"Customers.CurrentMember.ID,'')	"	&	_
				"TYPE	=	URL	"	&	_
				"APPLICATION	=	'IE'	"	&	_
				"DESCRIPTION	=	'Launch	the	customer	details	page	for	"	&	_
				"this	specific	customer.'"

You	can	use	CURRENTCUBE	in	command	statements	to	refer	to	the	cube	that
contains	the	command	object.	This	syntax	makes	it	easier	to	copy	command
objects	between	cubes.	For	example,	you	can	reconstruct	the	previous	statement
as:

CommandObject.Statement	=	"CREATE	ACTION	CURRENTCUBE.ShowCustDetails	"	&	_
				"FOR	[Customer]	MEMBERS	As	"	&	_
				"'IIf(Customers.CurrentMember.Properties(""Existing	Customer"")"	&	_
				"	=	""True"","	&	_
				"""http://MyServer/CustomerDetails.ASP?CustID=""	+	"	&	_
				"Customers.CurrentMember.ID,'')	"	&	_
				"TYPE	=	URL	"	&	_
				"APPLICATION	=	'IE'	"	&	_
				"DESCRIPTION	=	'Open	the	customer	details	page	for	"	&	_
				"this	specific	customer.'"

B.	Creating	a	Command	Object	(cmdCreateMember)
Use	the	following	code	to	create	a	cmdCreateMember	command	object:

CommandObject.Statement	=	"CREATE	MEMBER	Sales.Measures.PROFIT	AS	"	&	_
				"'Measures.Sales	-	Measures.Cost'"

C.	Creating	a	Command	Object	(cmdCreateSet)

Use	the	following	code	to	create	a	cmdCreateSet	command	object:

CommandObject.Statement	=	"CREATE	SET	CURRENTCUBE.[ImportedBeer]	AS	"	&	_
				"'Filter(Product.Members,	"	&	_
				"(InStr(1,	Product.CurrentMember.Name,	""Imported	Beer"")))'"

D.	Creating	a	Command	Object	(cmdUseLibrary)
Use	the	following	code	to	create	a	cmdUseLibrary	command	object:

CommandObject.Statement	=	"USE	LIBRARY	""MyStatFunctions.dll"""

E.	Creating	a	Command	Object	(cmdCreateCellCalculation)
Use	the	following	code	to	create	a	cmdCreateCellCalculation	command	object:

CommandObject.Statement	=	CREATE	SESSION	CELL	CALCULATION	"	&	_
				"[Sales].[Mexico	Adjustments]	FOR	"	&	_
				"'(Descendants([Mexico],	[City],	SELF))'	&	_
				"AS	'<expression>',"	&	_
				"CONDITION	=	'[Time].CURRENTMEMBER.NAME=[2000]'"

F.	Returning	a	Command	Object	Statement
Use	the	following	code	to	return	a	command	object	statement:

Dim	strCommandStatement	As	String
strCommandStatement	=	CommandObject.Statement

See	Also

Command	Interface

CREATE	MEMBER	Statement

CREATE	SET	Statement

MDX	(Administrative	Tools)

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

SubClassType	(Command	Interface)
The	SubClassType	property	of	the	Command	interface	contains	an
enumeration	constant	that	identifies	the	subclass	type	of	the	object.	Objects	that
implement	the	Command	interface	always	have	a	SubClassType	of
sbclsRegular.

Applies	To
clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data	Type
SubClassTypes

Access
Read-only

See	Also

Command	Interface

CREATE	MEMBER	Statement

CREATE	SET	Statement

MDX	(Administrative	Tools)

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Dimension	Interface
In	Decision	Support	Objects	(DSO),	dimensions	are	represented	by	objects	that
contain	collections	of	other	objects	that,	in	turn,	represent	levels	in	the
dimensions.	For	example,	a	Time	dimension	often	contains	the	levels	Year,
Quarter,	Month,	and	Day.	The	levels	of	a	cube	are	defined	by	columns	in	a
dimension	table	that	is	stored	in	the	data	warehouse	database.	When	a	dimension
object	is	processed,	the	Analysis	server	constructs	the	dimension	and	its	levels
and	then	populates	them	with	members	from	the	dimension	table.	For	more
information	about	DSO,	see	Introducing	Decision	Support	Objects.

All	DSO	dimension	objects	implement	the	Dimension	interface,	and	you
manipulate	these	objects	through	this	interface.	The	ClassType	property	of	the
dimension	object	specifies	the	dimension's	type.	The	ClassType	value	of	a
database	dimension	is	clsDatabaseDimension.	The	ClassType	values	of	cube,
partition,	and	aggregation	dimensions	(supported	by	the	CubeDimension,
PartitionDimension,	DbDimension,	and	AggregationDimension	objects)	are
clsCubeDimension,	clsPartitionDimension,	and	clsAggregationDimension,
respectively.	The	Dimension	interface	provides	collections,	methods,	and
properties	to	manipulate	these	objects.	Dimensions	reside	in	the	Dimensions
collection	of	the	MDStore	object	that	represents	a	database,	cube,	partition,	or
aggregation.

To	use	dimensions,	create	them	in	the	Dimensions	collection	of	a	database
object.	Then	assign	some	or	all	of	the	dimensions	to	a	cube.	The	dimensions
assigned	to	a	cube	automatically	apply	to	its	partitions	and	aggregations,	and	you
can	explicitly	associate	them	with	virtual	cubes	that	use	the	cube.

This	topic	discusses	different	types,	varieties,	and	uses	of	dimensions	and
provides	information	about	how	to	work	with	them	in	DSO.	For	more
information	about	dimensions,	see	Dimensions.

Types	of	DSO	Dimensions
The	following	table	describes	each	type	of	dimension	and	the	context	in	which	it
is	used.

JavaScript:hhobj_1.Click()

Dimension	type Description
Database	dimension The	dimensions	are	contained	in	a	database
Cube	dimension The	dimensions	are	contained	in	a	cube
Partition	dimension The	dimensions	are	used	in	a	partition
Aggregation	dimension The	dimensions	are	contained	in	an	aggregation

Database	dimensions	define	the	structure	of	the	dimension	and	the	data	source
where	the	dimension	tables	exist.

Any	of	the	database	dimensions	can	be	used	in	a	cube,	if	a	join	can	be	made
between	the	dimension	table	and	the	fact	table	of	the	cube.	Cube	dimensions
have	the	same	name	as	their	corresponding	database	dimensions.	When	an
existing	database	dimension	is	added	to	the	Dimensions	collection	of	a	cube,
DSO	automatically	defines	and	creates	all	of	the	cube	level	objects	for	the	cube
dimension.	A	cube	dimension	inherits	its	properties	from	the	corresponding
database	dimension;	some	of	those	properties	can	be	customized	in	the	cube.	For
example,	you	can	specify	how	a	cube	dimension	is	used	in	the	design	of
aggregations	by	setting	the	AggregationUsage	property	of	the	dimension.

The	dimensions	of	a	partition	relate	to	the	dimensions	of	its	parent	cube	in	the
same	way	that	cube	dimensions	relate	to	database	dimensions.	Each	partition
dimension	has	a	corresponding	cube	dimension	and	has	the	same	number	of
levels	as	the	cube	dimension.

Aggregation	dimensions	are	the	dimensions	used	within	an	aggregation.	They
are	different	from	their	corresponding	partition	dimensions	in	that	they	usually
have	fewer	levels.	This	is	because	the	aggregation	dimensions	represent	the	level
of	granularity	of	the	data	in	that	aggregation.

For	example,	the	following	illustration	represents	two	aggregations.	The	first
summarizes	sales	by	year	for	store	cities	and	product	brand.	The	Time
aggregation	dimension	in	this	case	has	only	one	level:	Year.	The	Store	and
Product	dimensions	have	all	of	their	respective	levels.	The	second	aggregation
summarizes	sales	by	Quarter	and	Region	for	products	by	category.	The	Time
aggregation	dimension	has	two	levels:	Year	and	Quarter.	The	Store	and	Products
dimensions,	on	the	other	hand,	contain	only	the	first	levels	of	each	dimension:
Region	and	Category.

Shared	and	Private	Dimensions
DSO	dimensions	can	be	either	shared	or	private.	A	shared	dimension	is	one	that
can	be	used	in	multiple	cubes,	but	a	private	dimension	can	only	be	used	in	a
single	cube.	For	more	information	about	shared	and	private	dimensions,	see
Shared	and	Private	Dimensions.

Private	dimensions	use	a	special	naming	convention	to	identify	the	cubes	to
which	they	belong.	In	all	other	aspects,	private	dimensions	are	identical	to
shared	dimensions.	The	name	of	a	private	dimension	is	constructed	by	using	the
cube	name,	followed	by	the	caret	character	(^),	followed	by	the	dimension	name.
To	create	a	private	dimension	in	DSO,	name	the	dimension	according	to	this
convention.	This	naming	convention	allows	private	dimensions	in	different
cubes	to	have	the	same	name,	and	the	cube	name	prefix	ensures	uniqueness
within	the	dimension	collection	of	the	database.	For	example,
NorthWestSales^Stores	represents	a	private	dimension	of	stores	created	for	use
in	the	NorthWestSales	cube.

You	can	programmatically	determine	whether	a	dimension	is	shared	or	private
by	reading	its	IsShared	property.	DSO	determines	the	value	of	this	property	by
examining	the	name	of	the	dimension.	All	cubes,	partitions,	and	aggregations
that	use	the	dimension	inherit	its	IsShared	property.

Parent-Child	Dimensions
Parent-child	dimensions	contain	self-joining	hierarchies.	Because	the	level
hierarchy	is	variable,	rather	than	rigidly	set,	parent-child	dimensions	are	more
flexible	than	regular	dimensions.	For	more	information	about	parent-child
dimensions,	see	Parent-Child	Dimensions.

In	DSO,	a	parent-child	dimension	has	a	maximum	of	two	levels:	the	(All)	level,
which	is	optional,	and	a	second	level	that	acts	as	a	template	for	building	other
levels.

You	can	create	a	parent-child	dimension	by	setting	the	SubClassType	property
to	sbclsParentChild.	When	you	define	a	parent-child	dimension,	the	system
uses	source	table	data	to	build	a	dimension	that	has	a	level	hierarchy	of	variable
depth.

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Virtual	Dimensions
Virtual	dimensions	are	based	on	the	columns	or	member	properties	of	existing
regular	dimensions,	and	they	can	provide	additional	information	in	cubes	that
use	these	regular	dimensions.	For	more	information	about	virtual	dimensions,
see	Virtual	Dimensions.

To	build	a	virtual	dimension	using	DSO,	create	a	regular	dimension	and	set	its
IsVirtual	property	to	True.	Next,	set	the	DependsOnDimension	property	to
refer	to	the	underlying	source	dimension.	Finally,	create	levels	for	the	virtual
dimension	and	configure	the	MemberKeyColumn	property	of	each	virtual	level
to	point	to	a	source	level	or	member	property	in	the	source	dimension.

Although	it	is	possible	to	create	a	shared	virtual	dimension	that	is	based	on	a
private	dimension,	this	virtual	dimension	will	work	only	in	the	cube	that
contains	the	private	dimension.

Note		In	earlier	versions	of	Microsoft®	SQL	Server™	2000	Analysis	Services,
virtual	dimensions	were	limited	to	having	an	(All)	level	and	a	second	level
whose	SubClassType	was	set	to	sbclsVirtual.	The	dimension	itself	had	a
SubClassType	of	sbclsRegular.	This	convention	is	still	supported	for
compatibility,	but	the	new	method	of	setting	the	dimension's	IsVirtual	property
to	True	should	be	used,	because	it	is	more	flexible	and	efficient.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Examples

A.	Adding	a	Parent-Child	Dimension	to	a	Database
The	following	example	shows	the	addition	of	a	parent-child	dimension	to	a
database:

JavaScript:hhobj_4.Click()

				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoDim	As	DSO.Dimension
				Dim	dsoLevel	As	DSO.Level
				
				'	Connect	to	local	Analysis	server
				dsoServer.Connect	"LocalHost"
				
				'	Open	FoodMart	2000	database
				Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")
				
				'	Add	a	new	dimension	and	set	the	data	source
				Set	dsoDim	=	dsoDB.Dimensions.AddNew("ParentChild	Dimension",	_
								sbclsParentChild)
				
				Set	dsoDim.DataSource	=	dsoDB.DataSources("FoodMart")

				'	Add	a	new	level	to	the	new	dimension.
				Set	dsoLevel	=	dsoDim.Levels.AddNew("Template	Level",	_
								sbclsParentChild)
				
				'	Set	the	member	key,	parent	key,	and	member	name
				'	columns	for	the	new	level.
				With	dsoLevel
								.MemberKeyColumn	=	"""Account"".""account_id"""
								.ParentKeyColumn	=	"""Account"".""account_parent"""
								.MemberNameColumn	=	"""Account"".""account_description"""
				End	With

				'	Update	the	dimension.
				dsoDim.Update

B.	Creating	a	Database	with	Two	Dimensions

This	example	shows	how	to	create	a	database	with	two	dimensions,	DbDimA
and	DbDimB,	and	three	cubes,	CubeX,	CubeY,	and	CubeZ.	DbDimA	is	shared,
but	DbDimB	is	private	to	CubeZ.	DbDimA	can	be	associated	with	any	or	all	of
the	cubes,	but	DbDimB	can	be	associated	only	with	CubeZ.

				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDS	As	DSO.DataSource
				Dim	dsoCubeX	As	DSO.MDStore
				Dim	dsoCubeY	As	DSO.MDStore
				Dim	dsoCubeZ	As	DSO.MDStore
				Dim	dsoDbDimA	As	DSO.Dimension
				Dim	dsoDbDimB	As	DSO.Dimension
				
				Dim	strDSName	As	String,	strDSConnect	As	String
				
				'	Set	data	source	name	and	connection	string
				'	to	be	used	later.
				strDSName	=	"FoodMart"
				strDSConnect	=	"Provider=MSDASQL.1;User	ID=sa;"	&	_
								"Data	Source=FoodMart;Connect	Timeout=15"
				
				'	Connect	to	local	Analysis	server.
				dsoServer.Connect	"LocalHost"
				
				'	Create	a	new	database.
				Set	dsoDB	=	dsoServer.MDStores.AddNew("TestDB")
				
				'	Create	a	new	data	source.
				Set	dsoDS	=	dsoDB.DataSources.AddNew(strDSName)
				'	Set	the	data	source	name	and	connection	string
				'	properties	for	the	data	source.
				With	dsoDS
								.Name	=	strDSName
								.ConnectionString	=	strDSConnect

								.Update
				End	With

				'	Create	three	new	cubes.
				Set	dsoCubeX	=	dsoDB.MDStores.AddNew("CubeX")
				Set	dsoCubeY	=	dsoDB.MDStores.AddNew("CubeY")
				Set	dsoCubeZ	=	dsoDB.MDStores.AddNew("CubeZ")

				'	Create	a	shared	dimension.
				Set	dsoDbDimA	=	dsoDB.Dimensions.AddNew("DbDimA")	'Shared

				'	Associate	the	shared	dimension	with	CubeX	and	CubeY.
				dsoCubeX.Dimensions.AddNew	"DbDimA"
				dsoCubeY.Dimensions.AddNew	"DbDimA"

				'	Create	a	private	dimension.	The	use	of	the
				'	caret	(^)	character	separates	the	cube	name
				'	and	the	private	dimension	name.
				Set	dsoDbDimB	=	dsoDB.Dimensions.AddNew("CubeZ^DbDimB")

				'	Associate	the	private	dimension	with	CubeZ.
				dsoCubeZ.Dimensions.AddNew	("CubeZ^DbDimB")

See	Also

AggregationUsage

Collections,	Dimension	Interface

Dimensions

IsShared

IsVirtual

MDStore	Interface

JavaScript:hhobj_5.Click()

Methods,	Dimension	Interface

Properties,Dimension	Interface

SubClassType

Analysis	Services	Programming

Collections,	Dimension	Interface
The	Dimension	interface	implements	the	following	collections.

Collection Description
CustomProperties The	collection	of	user-defined	properties
Levels The	set	of	level	objects	associated	with	a	dimension

object

Access	Cross-Reference
The	following	table	shows	whether	the	collection	is	read/write	(R/W)	or	read-
only	(R)	for	different	objects.

	
Database
dimension

Cube
dimension

Partition
dimension

Aggregation
dimension

CustomProperties R/W R/W R/W R/W
Levels R/W R R R

See	Also

Dimension	Interface

Analysis	Services	Programming

CustomProperties	(Dimension	Interface)
The	CustomProperties	collection	allows	you	to	assign	unique	properties	to
objects	that	implement	the	Dimension	interface.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Access
Read/write

Remarks
The	CustomProperties	collection	contains	properties	that	accept	user-defined
values	that	are	stored	in	the	repository	and	can	be	used	as	needed.	For	example,
an	application	can	use	this	collection	to	store	user	interface	parameters	that	are
specific	to	this	dimension	(and	might	change)	rather	than	storing	them	in	the
registry.

Example
The	following	example	associates	a	custom	property	called	Icon	with	a
Geography	dimension	and	gives	it	a	string	value	of	"GeographyIcon":

'	Assume	the	existence	of	a	Geography	dimension	object	(dsoGeographyDim)
'	of	ClassType	clsDimension.
'	Add	a	custom	property	to	the	dimension.
		Dim	dsoProp	As	DSO.Property
		Set	dsoProp	=	dsoGeographyDim.CustomProperties.Add("GeographyIcon",	"Icon",	vbString)

'	Retrieve	custom	property	values.
		Dim	dsoProp2	As	DSO.Property
		Set	dsoProp2	=	dsoDim.CustomProperties("Icon")
		Debug.Print	dsoProp2.Name,	dsoProp2.Value

See	Also

CustomProperties

Dimension	Interface

Analysis	Services	Programming

Levels	(Dimension	Interface)
The	Levels	collection	of	the	Dimension	interface	defines	the	set	of	level	objects
associated	with	a	dimension	object.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
clsAggregationDimension R

See	Also

ClassType

Dimension	Interface

Analysis	Services	Programming

Methods,	Dimension	Interface
The	Dimension	interface	supports	the	following	methods.

Method Description
Clone Copies	an	existing	object	to	a	target	object	of	the	same

class	type
LockObject Locks	an	object	to	prevent	multiple	users	from

concurrently	changing	the	object
Process Processes	a	dimension	object
UnlockObject Unlocks	a	previously	locked	dimension	object
Update Updates	the	definition	of	a	dimension	object	in	the	meta

data	repository

For	the	Dimension	interface,	these	methods	apply	only	to	objects	of	ClassType
clsDatabaseDimension.

See	Also

Dimension	Interface

Analysis	Services	Programming

Clone	(Dimension	Interface)
The	Clone	method	of	the	Dimension	interface	copies	the	properties	and	levels
of	an	existing	object	to	a	target	object	of	the	same	class	type.

Applies	To
clsDatabaseDimension

Syntax
object.Clone(ByVal	TargetObject	As	Dimension,	[ByVal	Options	As
CloneOptions	=	cloneMajorChildren])

object

The	Dimension	object	whose	properties	and	levels	are	to	be	copied.

TargetObject

A	previously	created	object	of	the	same	class	type.

Options

The	options	to	tell	the	method	to	what	extent	the	source	object	should	be
duplicated.	If	no	value	is	specified,	the	cloneMajorChildren	option	is	used.

Remarks
The	following	values	for	Options	are	valid	for	cloning	a	dimension.

Clone	option Description
cloneObjectProperties The	values	of	the	properties	of	the	source

dimension	are	copied	to	the	target	dimension
cloneMinorChildren The	values	of	the	properties	and	levels	contained

in	the	source	dimension	are	copied	to	the	target
dimension

cloneMajorChildren For	dimension	objects,	this	is	the	same	as

cloneMinorChildren

Example
The	following	example	copies	the	properties	and	levels	of	dimension	DimA	to
dimension	DimB:

				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoDimA	As	DSO.Dimension
				Dim	dsoDimB	As	DSO.Dimension
				
				'	Connect	to	local	Analysis	server.
				dsoServer.Connect	"LocalHost"
				
				'	Open	the	FoodMart	2000	database.
				Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")
				
				'	Create	a	new	dimension,	named	DimA,	to	be	used
				'	as	a	source	dimension	from	which	to	clone.
				Set	dsoDimA	=	dsoDB.Dimensions.AddNew("DimA")
				dsoDimA.Description	=	"First	dimension"
				
				'	Create	the	target	dimension,	named	DimB,	and
				'	give	it	a	different	description.
				Set	dsoDimB	=	dsoDB.Dimensions.AddNew("DimB")
				dsoDimB.Description	=	"Second	dimension"
				
				'	Now,	clone	the	DimA	dimension	into	DimB.
				dsoDimA.Clone	dsoDimB,	cloneMajorChildren
				
				'	Print	the	description	of	the	DimB	dimension
				'	to	the	Debug	window.
				Debug.Print	dsoDimB.Description

See	Also

Dimension	Interface

Analysis	Services	Programming

LockObject	(Dimension	Interface)
The	LockObject	method	of	the	Dimension	interface	locks	an	object	to	prevent
multiple	users	from	concurrently	changing	the	object.

Applies	To
clsDatabaseDimension

Syntax
object.LockObject(ByVal	LockType	As	OlapLockTypes,	ByVal
LockDescription	As	String)

object

The	Dimension	object	to	lock.

LockType

One	of	the	enumerated	constants	of	the	OlapLockTypes	enumeration.	For
more	information,	see	OlapLockTypes.

LockDescription

A	string	containing	the	description	of	the	lock,	available	to	other	applications
attempting	to	obtain	a	lock.

Remarks
This	table	explains	how	each	value	that	can	be	specified	in	LockType	affects	a
lock	made	on	a	dimension	object.

Lock	type Description
OlapLockRead Applications	can	read	the	properties	of	the

dimension	object	from	the	repository	but	cannot
make	changes	until	the	lock	is	released	(this
includes	the	application	that	created	the	lock).

This	lock	does	not	affect	dependent	objects	of
the	dimension	(data	source	objects).

OlapLockWrite The	application	that	created	the	lock	can	modify
the	dimension	object's	properties	and	save	them
in	the	repository	using	the	Update	method.
Other	applications	cannot	read	the	properties	of
the	object	until	the	lock	is	released.

OlapLockExtendedReadThe	properties	of	the	dimension	object	and	all	of
its	dependent	objects	can	be	read	(but	not
changed	or	processed)	by	other	applications
until	the	lock	is	released.	This	lock	is	used	to
prevent	processing	of	dependent	objects	of	a
locked	object	(for	example,	dimensions	that	are
shared	by	multiple	cubes).

OlapLockProcess This	lock	is	similar	to	olapLockExtendedRead,
except	the	dimension	object's	Process	method
can	be	called	by	the	application	that	created	the
lock.	Other	applications	can	read	(but	cannot
change)	the	object's	properties	while	the	lock	is
in	effect.

Example
The	following	example	locks	the	Product	dimension	of	the	FoodMart	2000
database,	completely	reprocesses	it,	and	then	unlocks	it	so	others	can	make
changes:

				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoDim	As	DSO.Dimension
				
				'	Connect	to	local	Analysis	server.
				dsoServer.Connect	"LocalHost"
				
				'	Open	FoodMart	2000	database.
				Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")

				'	Open	the	Product	dimension.
				Set	dsoDim	=	dsoDB.Dimensions("Product")
				
				'	Lock	the	dimension	for	processing.
				dsoDim.LockObject	olapLockProcess,	"Locked	for	processing."
				
				'	Completely	reprocess	the	dimension.
				dsoDim.Process	processFull
				
				'	Once	complete,	unlock	the	dimension.
				dsoDim.UnlockObject
				
				'	Clean	up.
				Set	dsoDim	=	Nothing
				Set	dsoDB	=	Nothing
				dsoServer.CloseServer
				Set	dsoServer	=	Nothing

See	Also

UnlockObject

Analysis	Services	Programming

Process	(Dimension	Interface)
The	Process	method	of	the	Dimension	interface	creates	and	populates	a
dimension	on	the	Analysis	server.

Applies	To
clsDatabaseDimension

Syntax
object.Process(ByVal	Options	As	ProcessTypes)

object

The	Dimension	object	to	process.

Options

One	of	the	valid	ProcessTypes	enumeration	constants.	For	more
information,	see	ProcessTypes.

Remarks
The	following	values	for	Options	are	valid	for	processing	a	dimension.

Process	type Description
processDefault The	default	option.	Setting	this	option	causes	the

system	to	default	to	the	necessary	processing	option
based	on	the	changes	found	in	the	data.	In	most
cases,	the	system	refreshes	the	dimension	object's
data	(processRefreshData).	However,	if	the
structure	of	the	dimension	has	changed,	or	the
dimension	has	not	yet	been	processed,	the	system
fully	processes	the	dimension	(processFull).

processFull Causes	the	dimension	object	to	be	fully	processed	or
rebuilt.	The	object's	structure	is	changed	if	needed

and	its	data	is	refreshed	(that	is,	discarded	and
repopulated).	This	is	the	most	complete	type	of
processing	supported.	This	operation	occurs	inside	a
transaction,	allowing	users	to	continue	using	current
data	while	the	transaction	takes	place.	After	the
transaction	is	committed,	the	new	data	is	available.

processRefreshData Causes	the	dimension	object	data	to	be	refreshed
(that	is,	discarded	and	repopulated),	but	does	not
change	the	object's	structure.	This	operation	occurs
inside	a	transaction,	allowing	users	to	continue	using
current	data	while	the	transaction	takes	place.	After
the	transaction	is	committed,	the	new	data	is
available.

Example
The	following	example	locks	the	Product	dimension	of	the	FoodMart	2000
database,	completely	reprocesses	it,	and	then	unlocks	it	so	others	can	make
changes:

				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoDim	As	DSO.Dimension
				
				'	Connect	to	local	Analysis	server.
				dsoServer.Connect	"LocalHost"
				
				'	Open	FoodMart	2000	database.
				Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")

				'	Open	the	Product	dimension.
				Set	dsoDim	=	dsoDB.Dimensions("Product")
				
				'	Lock	the	dimension	for	processing.
				dsoDim.LockObject	olapLockProcess,	"Locked	for	processing."
				

				'	Completely	reprocess	the	dimension.
				dsoDim.Process	processFull
				
				'	Once	complete,	unlock	the	dimension.
				dsoDim.UnlockObject
				
				'	Clean	up.
				Set	dsoDim	=	Nothing
				Set	dsoDB	=	Nothing
				dsoServer.CloseServer
				Set	dsoServer	=	Nothing

See	Also

Dimension	Interface

Dimension	Processing

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

UnlockObject	(Dimension	Interface)
The	UnlockObject	method	of	the	Dimension	interface	releases	a	lock	on	a
dimension	object	previously	established	by	the	LockObject	method.

Applies	To
clsDatabaseDimension

Syntax
object.UnlockObject

object

The	Dimension	object	to	unlock.

Remarks
Calling	the	UnlockObject	method	without	first	calling	the	LockObject	method
raises	an	error.

Example
The	following	example	locks	the	Product	dimension	of	the	FoodMart	2000
database,	completely	reprocesses	it,	and	then	unlocks	it	so	others	make	changes:

				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoDim	As	DSO.Dimension
				
				'	Connect	to	local	Analysis	server.
				dsoServer.Connect	"LocalHost"
				
				'	Open	FoodMart	2000	database.
				Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")

				'	Open	the	Product	dimension.
				Set	dsoDim	=	dsoDB.Dimensions("Product")
				
				'	Lock	the	dimension	for	processing.
				dsoDim.LockObject	olapLockProcess,	"Locked	for	processing."
				
				'	Completely	reprocess	the	dimension.
				dsoDim.Process	processFull
				
				'	Once	complete,	unlock	the	dimension.
				dsoDim.UnlockObject
				
				'	Clean	up.
				Set	dsoDim	=	Nothing
				Set	dsoDB	=	Nothing
				dsoServer.CloseServer
				Set	dsoServer	=	Nothing

See	Also

Dimension	Interface

LockObject

Analysis	Services	Programming

Update	(Dimension	Interface)
The	Update	method	of	the	Dimension	interface	updates	the	definition	of	a
dimension	object	in	the	meta	data	repository.

Applies	To
clsDatabaseDimension

Syntax
object.Update

object

The	Dimension	object	to	update.

Remarks
Objects	of	ClassType	clsAggregationDimension,	clsCubeDimension,	and
clsPartitionDimension	do	not	implement	the	Update	method.	They	are
automatically	updated	when	the	Update	method	of	the	parent	MDStore	object	is
called.

Example
The	following	example	changes	the	Description	and	LastUpdated	properties
for	the	Product	dimension	of	the	FoodMart	2000	database	and	updates	the
dimension	on	the	Analysis	server:

				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoDim	As	DSO.Dimension
				
				'	Connect	to	local	Analysis	server.
				dsoServer.Connect	"LocalHost"

				
				'	Open	FoodMart	2000	database.
				Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")

				'	Open	the	Product	dimension.
				Set	dsoDim	=	dsoDB.Dimensions("Product")
				
				'	Change	the	description	and	update	date
				'	of	the	dimension.
				dsoDim.Description	=	"Product	dimension"
				dsoDim.LastUpdated	=	Now
				
				'	Update	the	dimension.
				dsoDim.Update
				
				'	Clean	up.
				Set	dsoDim	=	Nothing
				Set	dsoDB	=	Nothing
				dsoServer.CloseServer
				Set	dsoServer	=	Nothing

See	Also

clsAggregationDimension

clsCubeDimension

clsPartitionDimension

Dimension	Interface

Analysis	Services	Programming

Properties,	Dimension	Interface
The	Dimension	interface	supports	the	following	properties.

Property Description
AggregationUsage Specifies	how	aggregations	are	to	be

designed	for	a	dimension.
AllowSiblingsWithSameName Indicates	whether	two	or	more	children	of

the	same	parent	member	can	have	the	same
name.

AreMemberKeysUnique Indicates	whether	member	keys	are	unique
for	all	members	in	the	dimension.

AreMemberNamesUnique Indicates	whether	member	names	are	unique
for	all	members	in	the	dimension.

ClassType Returns	an	enumeration	constant	that
identifies	the	specific	object	type.

DataMemberCaption
Template

Contains	a	template	string	that	is	used	to
generate	captions	for	system-generated	data
members.

DataSource The	data	source	object	of	a	dimension
object.

DefaultMember Defines	the	default	member	of	the
dimension.

DependsOnDimension Names	a	dimension	to	which	the	current
dimension	is	related.

Description The	description	of	a	dimension.
DimensionType Returns	an	enumeration	constant	identifying

the	specific	type	of	dimension.
EnableRealTimeUpdates Indicates	whether	or	not	the	dimension

supports	real-time	updates.
FromClause The	SQL	FROM	clause	for	a	dimension.
IsChanging Indicates	whether	members	and/or	levels	are

expected	to	change	on	a	regular	basis.

IsReadWrite Indicates	whether	dimension	writebacks	are
available	to	client	applications	that	have
appropriate	permissions.

IsShared Indicates	whether	a	dimension	can	be
shared	among	cubes.

IsTemporary Indicates	whether	an	object	is	temporary.
IsValid Indicates	whether	a	dimension	structure	is

valid.
IsVirtual Indicates	whether	a	dimension	is	virtual.
IsVisible Indicates	whether	the	dimension	is	visible	to

clients.
JoinClause The	SQL	JOIN	clause	for	a	dimension.
LastProcessed The	date	and	time	when	a	dimension	was

last	processed.
LastUpdated A	user-specified	date.	It	is	not	used	by

Microsoft®	SQL	Server™	2000	Analysis
Services.

MembersWithData Determines	which	members	in	a	dimension
can	have	associated	data	in	the	fact	table.

Name The	dimension	name.
OrdinalPosition Returns	the	ordinal	position	of	the

dimension	object	in	the	Dimensions
collection	of	its	parent	object.

Parent Returns	a	reference	to	the	parent	MDStore
object.

SourceTable Returns	the	name	of	the	source	table	for	the
dimension.

SourceTableAlias Returns	the	alias	of	the	source	table	for	the
dimension.

SourceTableFilter Restricts	members	included	in	a	dimension.
State Returns	an	enumeration	constant	that

indicates	the	difference	between	the
dimension	object	referenced	by	the	client
application	and	the	corresponding
dimension	on	the	Analysis	server.

StorageMode Determines	the	method	of	storing
dimension	contents.

SubClassType Returns	an	enumeration	constant	that
identifies	the	subclass	type	of	the	object.

Access	Cross-Reference
The	following	table	shows	whether	the	property	is	read/write	(R/W),	read-only
(R),	or	not	applicable	(n/a)	for	different	objects.

Property
clsDatabase
dimension

clsCube
dimension

clsPartition
dimension

clsAggregation
dimension

AggregationUsage n/a R/W R n/a
AllowSiblingsWithSameNameR/W R R R
AreMemberKeysUnique R/W R R R
AreMemberNamesUnique R/W R R R
ClassType R R R R
DataMemberCaptionTemplate R/W* R R R
DataSource R/W R R R
DefaultMember R/W R R R
DependsOnDimension R/W R R R
Description R/W R R/W n/a
DimensionType R/W R R R
EnableRealTimeUpdates R/W R R R
FromClause R/W R R R/W
IsChanging R/W R R R
IsReadWrite R/W R R R
IsShared R R R R
IsTemporary R R R R
IsValid R R R R
IsVirtual R/W R R R
IsVisible n/a R/W R R

JoinClause R/W R R R/W
LastProcessed** R R R R
LastUpdated R/W R R R
MembersWithData R/W* R R R
Name R/W	(R

after	the
object	has
been
named)

R/W	(R
after	the
object	has
been
named)

R/W	(R
after	the
object	has
been
named)

R/W	(R	after
the	object	has
been	named)

OrdinalPosition R R R R
Parent R R R R
SourceTable R R R n/a
SourceTableAlias R R R n/a
SourceTableFilter R/W R R R
State R n/a n/a R
StorageMode R/W R R R
SubClassType R R R R
*			This	property	is	read/write	only	for	objects	of	SubClassType	sbclsParentChild.
**			The	LastProcessed	property	of	objects	that	implement	the	Dimension	interface	are	not	initialized	until
the	dimension	is	processed	for	the	first	time.	An	error	is	raised	if	LastProcessed	is	accessed	when	the	State
property	of	the	dimension	object	equals	olapStateNeverProcessed.

See	Also

Dimension	Interface

Analysis	Services	Programming

AggregationUsage	(Dimension	Interface)
The	AggregationUsage	property	of	the	Dimension	interface	specifies	how
aggregations	are	to	be	designed	for	the	dimension	levels.

Applies	To
clsCubeDimension

clsPartitionDimension

Data	Type
DimensionAggUsageTypes

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsCubeDimension R/W
ClsPartitionDimension R

Remarks
When	aggregations	are	desig

ned	for	a	dimension,	the	value	of	this	property	determines	which	levels	of	a
dimension	may	have	aggregations	created	for	them.	The	following	table
describes	how	the	value	of	this	property	affects	the	consideration	of	levels	for
aggregation.

Aggregation	usage Description
dimAggUsageCustom Aggregations	are	created	only	for

those	levels	whose
EnableAggregations	property	is	set	to

True.
dimAggUsageDetailsOnly Aggregations	are	created	only	for	the

lowest	level	in	the	dimension.
dimAggUsageStandard All	levels	are	considered	by	the

aggregation	design	algorithm.
dimAggUsageTopOnly Aggregations	are	created	only	for	the

top	(All)	level.
dimAggUsageTopAndDetailsOnlyAggregations	are	created	only	for	the

top	(All)	and	lowest	levels	in	the
dimension.

Note		For	virtual	dimensions,	AggregationUsage	is	read-only	and	automatically
set	to	dimAggUsageStandard.	An	error	is	raised	if	you	attempt	to	set	this
property	on	a	virtual	dimension.

Example
The	following	example	changes	the	aggregation	behavior	of	the	Product
dimension	for	the	Sales	cube	in	the	FoodMart	2000	database	to	create
aggregations	only	for	the	topmost	level,	and	then	it	updates	and	reprocesses	the
Sales	cube:

				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoCube	As	DSO.MDStore
				Dim	dsoDim	As	DSO.Dimension
								
				'	Connect	to	local	Analysis	server.
				dsoServer.Connect	"LocalHost"
				
				'	Open	FoodMart	2000	database.
				Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")

				'	Open	the	Sales	cube.
				Set	dsoCube	=	dsoDB.MDStores("Sales")

				
				'	Open	the	Product	dimension	in	the	Sales	cube.
				Set	dsoDim	=	dsoCube.Dimensions("Product")
				
				'	Set	the	dimension	to	create	aggregations	only
				'	for	the	topmost	(or	All)	level.
				dsoDim.AggregationUsage	=	dimAggUsageTopOnly
				
				'	Update	the	cube.
				dsoCube.Update
				
				'	Process	the	cube.
				dsoCube.Process	processFull
								
				'	Clean	up.
				Set	dsoDim	=	Nothing
				Set	dsoCube	=	Nothing
				Set	dsoDB	=	Nothing
				dsoServer.CloseServer
				Set	dsoServer	=	Nothing

See	Also

Dimension	Interface

EnableAggregations

Analysis	Services	Programming

AllowSiblingsWithSameName	(Dimension	Interface)
The	AllowSiblingsWithSameName	property	of	the	Dimension	interface
determines	whether	children	of	a	single	member	in	a	hierarchy	can	have
identical	names.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks
If	this	property	is	set	to	True,	different	members	of	a	dimension	can	have
identical	names	and	positions.	The	members	are	distinguished	by	their	key
values.	For	example,	two	John	Smiths	may	live	in	Seattle.	In	this	case,	the
members	are	siblings	because	they	are	children	of	the	same	parent	member,
Seattle.	If	you	set	this	property	to	True,	the	Analysis	server	disambiguates	the

members	using	their	key	values	rather	than	raising	an	error.

Example
The	following	example	creates	a	dimension	called	Customers	and	sets	its
AllowSiblingsWithSameName	property	to	True:

'Assume	an	object	(dsoDimCust)	of	ClassType	clsDatabase	exists.
Dim	dsoDimCust	As	DSO.Dimension
Set	dsoDimCust	=	dsoDB.Dimensions.AddNew("Customer")
DsoDimCust.AllowSiblingsWithSameName	=	TRUE

See	Also

Dimension	Interface

Analysis	Services	Programming

AreMemberKeysUnique
The	AreMemberKeysUnique	property	of	the	Dimension	interface	indicates
whether	member	keys	are	unique	throughout	the	dimension	and	whether	these
members	can	be	referred	to	by	their	keys.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks
This	property	can	be	set	to	True	only	if	the	AreMemberKeysUnique	property	is
set	to	True	for	all	of	the	levels	in	the	dimension.

This	property	can	be	used	in	two	situations:

When	you	know	that	the	position	of	a	member	(and	that	of	the	children

of	the	member)	may	move	within	a	dimension	hierarchy.	You	can	make
the	method	for	generating	unique	names	more	consistent	by	using	this
property	to	determine	whether	or	not	a	member,	name,	or	key	is
guaranteed	to	be	unique	within	the	dimension	(or	level).

When	you	need	to	improve	server	performance.	Data	can	be	more	easily
validated	if	you	use	this	property	to	inform	the	server	that	a	dimension
key	is	not	unique	within	the	dimension	or	level.

Example

'	Assume	the	existence	of	a	database	dimension	named	dsoDim.
dsoDim.AreMemberKeysUnique	=	True

See	Also

AreMemberNamesUnique

AreMemberKeysUnique

Dimension	Interface

Analysis	Services	Programming

AreMemberNamesUnique	(Dimension	Interface)
The	AreMemberNamesUnique	property	of	the	Dimension	interface	determines
whether	member	names	are	unique	throughout	the	dimension.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks
This	property	can	be	set	to	True	only	if	the	AreMemberNamesUnique	property
is	set	to	True	for	all	of	the	levels	in	the	dimension.

If	AreMemberNamesUnique	is	set	to	False,	each	member	name	is	assumed	to
be	unique	only	among	the	siblings	of	that	member.	In	this	case,	the	unique	name
of	a	member	includes	the	names	of	its	ancestors	to	ensure	uniqueness	throughout

the	dimension.	If	AreMemberNamesUnique	is	set	to	True,	each	member	name
is	assumed	to	be	unique	throughout	the	entire	dimension.	In	this	case,	the	unique
name	of	the	member	includes	the	dimension	name	and	the	member	name.

Note		Setting	AreMemberNamesUnique	to	True	is	important	in	changing
dimensions	to	preserve	the	identity	of	members	in	calculated	members	on	other
persistent	expressions.	For	example,	if	a	product	[Product	1]	is	moved	from
[Category	A]	to	[Category	B],	the	old	name	[Products].[Category	A].[Product	1]
is	no	longer	valid.	However,	if	AreMemberNamesUnique	is	set	to	True,	the
unique	name	remains	[Products].[Product	1]	and	is	valid	before	and	after	the
change.

The	following	table	provides	examples	for	each	setting	of
AreMemberNamesUnique.

AreMemberNamesUnique Member	names
False [Product].[All	Products].[Drink].

[Beverages]
[Time].[1997].[Q1].[1/1/1997]
[Regions].[All	Regions].[Asia]

True [Product].[Beverages]
[Time].[1/1/1997]
[Regions].[Asia]

Example

'	Assume	the	existence	of	a	database	dimension	named	dsoDim.
dsoDim.AreMemberNamesUnique	=	True

See	Also

AreMemberKeysUnique

AreMemberNamesUnique

Dimension	Interface

Analysis	Services	Programming

ClassType	(Dimension	Interface)
The	ClassType	property	of	the	Dimension	interface	contains	an	enumeration
constant	that	identifies	the	specific	class	type.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
ClassTypes

For	dimension	objects,	ClassType	returns	one	of	the	following:

clsDatabaseDimension

clsCubeDimension	

clsPartitionDimension

clsAggregationDimension

Access

Read-only

Example
Use	the	following	code	to	obtain	the	class	type	of	a	dimension	object:

				Dim	dsoDim	As	DSO.Dimension
				Dim	objClassType	As	DSO.ClassTypes

				'	Insert	code	here	for	setting	the	dsoDim
				'	dimension	object	to	a	valid	dimension.

				'	Get	the	ClassType	property	of	the	dimension.
				objClassType	=	dsoDimDimensionObject.ClassType

				'	Check	the	class	type.
				Select	Case	objClassType
								Case	clsDatabaseDimension
								'	Insert	commands	for	a	database	dimension.
								Case	clsCubeDimension
								'	Insert	commands	for	a	cube	dimension	or	virtual	cube	dimension.
								Case	clsPartitionDimension
								'	Insert	commands	for	a	partition	dimension.
								Case	clsAggregationDimension
								'	Insert	commands	for	an	aggregation	dimension.
								Case	Else
								'	Insert	other	commands.
				End	Select

See	Also

Dimension	Interface

Analysis	Services	Programming

DataMemberCaptionTemplate	(Dimension	Interface)
The	DataMemberCaptionTemplate	property	of	the	Dimension	interface
contains	a	template	string	that	is	used	to	create	captions	for	system-generated
data	members.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W*
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R*Read/write	for	objects	of	ClassType	clsDatabaseDimension	with	a	SubClassType	of	sbclsParentChild	or
sbclsMining,	read-only	for	all	others.

Remarks
This	property	is	used	in	conjunction	with	the	MembersWithData	property.	It	is
used	to	automatically	generate	captions	for	system-generated	data	members.

The	data	member	captions	are	generated	by	substituting	the	caption	of	the

associated	member	for	the	asterisk	(*)	placeholder	character	in	the	property
string.	The	default	data	member	caption	template	is	"(*	Data)".

For	example,	the	template	"(*	Salary)"	produces	the	caption	"(John	Doe	Salary)"
for	the	system-generated	data	member	associated	with	the	member	John	Doe.

This	property	is	ignored	when	the	MembersWithData	property	is
dataforLeafMembersOnly.

Example
The	following	code	example	constructs	a	template	for	data	members	that	will
supply	captions	similar	to	(Subtotals	for	John	Doe):

'	Assume	the	existence	of	a	database	dimension	named	dsoDim.
dsoDim.DataMemberCaptionTemplate	=	"(Subtotals	for	*)"

See	Also

Dimension	Interface

MembersWithData

Analysis	Services	Programming

DataSource	(Dimension	Interface)
The	DataSource	property	of	the	Dimension	interface	specifies	the	source	of	the
data	to	be	used	by	a	dimension	object.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
clsDataSource

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W*
ClsCubeDimension R**
ClsPartitionDimension R**
ClsAggregationDimension R*	Not	implemented	for	virtual	dimensions	created	in	previous	versions	of	Microsoft®	SQL	Server™	2000
Analysis	Services.
**	Not	implemented	for	virtual	dimensions.

Example
Use	the	following	code	to	add	a	data	source	to	a	database	object:

'Assume	an	object	(dsoDB)	of	ClassType	clsDatabase	exists.
'Add	a	new	data	source	to	database.

Dim	dsoDS	as	DSO.DataSource
Set	dsoDS	=	dsoDB.DataSources.AddNew("FoodMart	2000")

dsoDS.Name	=	"FoodMart"
dsoDS.ConnectionString	=	"Provider=MSDASQL.1;"	&_
"Persist	Security	Info=False;"	&_
"Data	Source=FoodMart;	"	&_
"Connect	Timeout=15"

'Update	the	database.
dsoDB.Update

See	Also

Dimension	Interface

Analysis	Services	Programming

DefaultMember	(Dimension	Interface)
The	DefaultMember	property	of	the	Dimension	interface	defines	the	default
member	of	the	dimension.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks
DefaultMember	is	used	to	evaluate	Multidimensional	Expressions	(MDX)
expressions	in	which	no	context	for	the	dimension	is	available.	This	property
contains	an	MDX	expression	that	evaluates	to	a	single	member	of	the	dimension
to	which	the	property	belongs.	If	blank,	the	Analysis	server	uses	one	of	the
members	on	the	topmost	level	of	the	dimension	as	the	default	member.	For
example,	if	you	define	Redmond	as	the	default	member	of	the	Geography

dimension,	tuples	such	as	(Sales,	1997)	can	be	evaluated	as	(Sales,	1997,
Redmond).

Example
The	following	code	example	sets	the	default	member	to	Food	for	the	Product
dimension	in	the	FoodMart	2000	database:

'	Assume	the	existence	of	a	database	dimension	named	dsoDim.
dsoDim.DefaultMember	=	"Food"

See	Also

Dimension	Interface

Custom	Rules	in	Dimension	Security

Set	Default	Member	Dialog	Box

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Analysis	Services	Programming

DependsOnDimension	(Dimension	Interface)
The	DependsOnDimension	property	of	the	Dimension	interface	contains	the
name	of	a	dimension	to	which	the	current	dimension	depends.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks
The	value	of	this	property	tells	the	Analysis	server	that	the	contents	of	the
current	dimension	are	dependent	on	the	contents	of	another	dimension.	The
Analysis	server	uses	this	property	to	more	accurately	predict	the	size	of	cubes
and	better	optimize	the	design	of	aggregations.

Usually,	a	dimension	is	related	to	another	dimension	if	the	two	represent

different	aspects	of	the	same	entity.	For	example,	if	the	Customers	dimension
contains	ten	customers	and	the	Customer	Gender	dimension	contains	two
genders,	the	cross	product	contains	only	ten	customer-gender	combinations	(no
customer	is	measured	once	as	male	and	once	as	female).	In	this	case,	the
Customer	Gender	dimension	depends	on	the	Customers	dimension.	In	contrast,
if	there	are	five	items	in	the	Products	dimension,	the	cross	product	of	Products
and	Customers	contains	a	maximum	of	fifty	customer-product	combinations.	In
this	case,	Customers	and	Products	are	independent	dimensions.

The	property	has	different	implications	for	virtual	dimensions	(those	with	the
IsVirtual	property	set	to	True).	The	DependsOnDimension	property	for	a
virtual	dimension	contains	the	name	of	the	underlying	source	dimension.	All	of
the	member	key	columns	in	the	virtual	dimension	must	appear	in	the	source
dimension.

See	Also

Dimension	Interface

Dependent	Dimensions

Virtual	Dimensions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Analysis	Services	Programming

Description	(Dimension	Interface)
The	Description	property	of	the	Dimension	interface	contains	the	description	of
a	dimension	object.

Applies	To
clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R

Remarks
The	primary	mechanism	for	identifying	the	data	in	a	dimension	is	the	Name
property.	The	purpose	of	the	Description	property	is	to	provide	additional
descriptive	information.

Example
Use	the	following	code	to	set	the	description	of	a	dimension	object:

'Assume	an	object	(dsoDim)	of	ClassType	clsDatabaseDimension	exists.

dsoDim.Description	=	"Total	dollar	sales"

See	Also

Dimension	Interface

Name

Analysis	Services	Programming

DimensionType	(Dimension	Interface)
The	DimensionType	property	of	the	Dimension	interface	contains	an
enumeration	constant	that	identifies	the	specific	type	of	dimension.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
DimensionTypes

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks
The	DimensionType	property	provides	both	the	Analysis	server	and	client
applications	with	information	about	the	contents	of	the	dimension.	For	example,
a	client	application	may	benefit	from	knowing	that	a	dimension	is	based	upon
geography,	and	another	on	time.	When	accepting	user	inputs	for	these
dimensions	(say,	in	a	filter	statement),	the	client	application	can	use	a	Map
control	for	the	Geography	dimension	and	a	Calendar	control	for	the	Time

dimension.

Example
Use	the	following	code	to	set	the	DimensionType	property	of	a	dimension
object:

'Assume	an	object	(dsoDim)	of	ClassType	clsDatabaseDimension	exists.
dsoDim.DimensionType	=	dimRegular

See	Also

Dimension	Interface

Analysis	Services	Programming

EnableRealTimeUpdates	(Dimension	Interface)
The	EnableRealTimeUpdates	property	of	the	Dimension	interface	indicates
whether	or	not	the	object	supports	real-time	updates.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks
To	enable	a	clsDatabaseDimension	object	to	support	real-time	updates	for	real-
time	cubes,	the	object	must	use	a	ROLAP	partition	(the	StorageMode	property
of	the	clsDatabaseDimension	object	must	be	storeasROLAP)	and	a
Microsoft®	SQL	Server™	2000	data	source.

See	Also

Dimension	Interface

Real-Time	Cubes

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

FromClause	(Dimension	Interface)
The	FromClause	property	of	the	Dimension	interface	contains	the	SQL	FROM
clause	for	the	dimension.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R/W

Example
A	database	contains	the	following	tables:

Sales_Facts

Customer

Product

Product_Class

Promotion

Store

Calendar

The	following	diagram	illustrates	the	relationships	of	these	tables.

Use	the	following	code	to	create	a	dimension,	assign	a	data	source,	and	set	the
FromClause	property:

				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoDS	As	DSO.DataSource
				Dim	dsoDim	As	DSO.Dimension
				
				'	Connect	to	local	Analysis	server.
				dsoServer.Connect	"LocalHost"
				

				'	Open	TestDB	database.
				Set	dsoDB	=	dsoServer.MDStores("TestDB")

				'	Create	a	Product	dimension	for	the	database.
				Set	dsoDim	=	dsoDB.Dimensions.AddNew("Products")

				'	Create	a	data	source.
				Set	dsoDS	=	dsoDB.DataSources.AddNew("FoodMart	2000")
				dsoDS.ConnectionString	=	"Provider=MSDASQL.1;"	&	_
								"Persist	Security	Info=False;"	&	_
								"Data	Source=FoodMart;"	&	_
								"Connect	Timeout=15"

				'	Assign	the	data	source	to	the	dimension.
				Set	dsoDim.DataSource	=	dsoDS			'Set	the	dimension	data	source.
				dsoDim.FromClause	=	"product"			'Set	the	source	dimension	table.

				'	Update	the	database.
				dsoDB.Update

See	Also

Dimension	Interface

Analysis	Services	Programming

IsChanging	(Dimension	Interface)
The	IsChanging	property	of	the	Dimension	interface	indicates	whether	the
members	and/or	levels	of	the	dimension	are	expected	to	change	on	a	regular
basis.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W*
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

*	For	more	information	about	read/write	access,	see	Remarks	later	in	this	topic.

Remarks
For	all	Dimension	objects,	the	IsChanging	property	always	returns	a	certain
value	depending	on	other	property	settings	for	the	object:

If	the	SubClassType	property	is	sbclsLinked,	the	IsChanging	property

returns	False.	

If	the	SubClassType	property	is	sbclsParentChild	or	sbclsMining,	or
if	the	object	is	a	virtual	dimension,	or	if	the	StorageMode	property	is
storeasROLAP,	the	IsChanging	property	returns	True.

If	the	object	is	a	virtual	dimension	created	by	an	earlier	version	of
Microsoft®	SQL	Server™	2000	Analysis	Services,	the	property	returns
False.

For	objects	of	ClassType	clsDatabaseDimension,	read/write	access	is	further
qualified	by	several	other	factors.	The	IsChanging	property	for	objects	of
ClassType	clsDatabaseDimension	is	read-only	if:

The	SubClassType	property	is	sbclsParentChild,	sbclsMining,	or
sbclsLinked.

-or-

The	StorageMode	property	is	set	to	storeasROLAP.

-or-

The	object	of	ClassType	clsDatabaseDimension	is	a	virtual	dimension
created	using	an	earlier	version	of	Analysis	Services.

If	IsChanging	is	set	to	True,	levels	other	than	the	first	and	last	of	the	dimension
can	be	added,	moved,	deleted,	or	changed	without	requiring	that	you	fully
reprocess	all	cubes	that	use	the	dimension.	Also,	members	that	belong	to	any
level	other	than	the	first	or	last	level	can	be	added,	moved,	deleted,	or	changed
without	reprocessing	cubes	that	use	the	dimension.

For	dimensions	that	are	not	virtual,	the	IsUnique	property	must	be	set	to	True
for	the	last	level	of	the	dimension	before	the	IsChanging	property	can	be	set	to
True.

In	addition	to	these	requirements,	the	value	of	the	IsChanging	property	can
restrict	the	acceptable	values	for	the	AggregationUsage	property	of	a	dimension
that	is	not	virtual.	The	following	table	shows	the	values	that	are	valid	for
dimensions	with	the	IsChanging	property	set	to	True.

Aggregation	usage

Dimensions
with	an	(All)
level

Dimensions	without
an	(All)	level

DimAggUsageCustom n/a n/a
DimAggUsageDetailsOnly valid valid
DimAggUsageStandard valid valid
DimAggUsageTopOnly valid n/a
dimAggUsageTopAndDetailsOnly valid n/a
DimAggUsageStandard valid valid

For	more	information	about	processing	requirements	for	ROLAP	dimensions,
see	StorageMode.

See	Also

Dimension	Interface

StorageMode

Analysis	Services	Programming

IsReadWrite	(Dimension	Interface)
The	IsReadWrite	property	of	the	Dimension	interface	determines	whether
dimension	writebacks	are	available	to	end	users	who	have	been	granted
appropriate	permissions.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W*
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R*	Read/write	for	clsDatabaseDimension	objects	with	a	SubClassType	of	sbclsParentChild,	read-only	for
all	other	clsDatabaseDimension	objects.

Remarks
Setting	the	IsReadWrite	property	to	True	allows	end	users	who	have	been
granted	appropriate	permissions	to	modify	the	contents	of	a	parent-child
dimension.	They	can	add	or	remove	dimension	levels,	members,	and	member
properties.

A	write-enabled	dimension	cannot	be	added	to	a	cube	that	contains	a	remote
partition.	An	error	occurs	if	you	try	to:

Add	a	write-enabled	dimension	to	a	cube	with	at	least	one	remote
partition.

Add	a	remote	partition	to	a	cube	that	contains	at	least	one	write-enabled
dimension.

Set	the	IsReadWrite	property	to	True	for	a	dimension	used	by	a	cube
that	has	a	remote	partition.

See	Also

Dimension	Interface

Analysis	Services	Programming

IsShared	(Dimension	Interface)
The	IsShared	property	of	the	Dimension	interface	indicates	whether	a
dimension	object	can	be	shared	among	multiple	MDStore	objects.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
Boolean

Access
Read-only

Remarks
DSO	sets	the	IsShared	property	by	reading	the	Name	property	of	the
Dimension	object.	A	dimension	that	is	private	to	a	cube	has	a	name	of	the	form
MyCube^MyDim,	where	MyCube	is	the	cube	that	contains	the	dimension.	A
dimension	object	that	can	be	shared	does	not	have	the	cube	name	as	a	prefix.

The	value	of	the	IsShared	dimension	of	a	database	property	is	inherited	by	the
associated	cubes	(and	their	partitions,	aggregations,	and	virtual	cubes).

Example
Use	the	following	code	to	determine	whether	a	dimension	object	can	be	shared
with	other	dimension	objects:

'Assume	an	object	(dsoDim)	of	ClassType	clsDatabaseDimension	exists.
Dim	bShared	As	Boolean
bShared	=	dsoDim.IsShared
If	bShared	Then
				'Insert	code	for	a	shared	dimension.
Else
				'Insert	code	for	a	private	dimension.
End	If

See	Also

Dimension	Interface

Analysis	Services	Programming

IsTemporary	(Dimension	Interface)
The	IsTemporary	property	of	the	Dimension	interface	indicates	whether	an
object	is	temporary.	Temporary	objects	are	local	to	the	session	in	which	they	are
created,	cannot	be	saved,	and	are	not	available	to	other	users.	To	create	a
temporary	dimension	object,	preface	the	name	with	the	tilde	(~)	character.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
Boolean

Access
Read-only

Remarks
A	temporary	object	is	not	stored	in	the	repository	and	is	not	available	to	other
users.	Temporary	objects	persist	only	during	the	session	in	which	they	are
created,	unless	they	are	renamed	or	cloned	to	another	object	that	has	the	same
class	type.	Objects	that	are	subordinate	to	a	temporary	object,	such	as	levels	for	a
dimension,	internally	inherit	the	IsTemporary	setting	of	the	parent	object.

Note		Only	temporary	objects	can	be	renamed	by	changing	the	Name	property.
Removing	the	tilde	character	from	the	name	of	a	temporary	object	means	that	it
is	no	longer	temporary	and	prevents	any	subsequent	renaming	of	the	object.
Also,	executing	the	Update	method	of	a	temporary	object	has	no	effect.	The
object	is	not	saved	to	the	repository	until	it	is	renamed	without	the	tilde	prefix.

Example
Use	the	following	code	to	create	a	temporary	dimension	and	then	make	it
permanent:

				'	Assume	an	object	(dsoCube)	of	ClassType	clsCube	exists.
				Dim	tmpDim	As	DSO.Dimension
				'	Create	a	temporary	dimension,	using	the	tilde	character	in	
				'	the	dimension	name.
				Set	tmpDim	=	dsoCube.Dimensions.AddNew("~MyDim")

				'	Add	levels,	add	member	properties,	process,	and	so	on.

				'	If	you	want	to	save	the	dimension	permanently,	
				'	drop	the	tilde	prefix.
				tmpDim.Name	=	"MyDim"
				'	Update	the	dimension.
				tmpCube.Update

See	Also

Dimension	Interface

Analysis	Services	Programming

IsValid	(Dimension	Interface)
The	IsValid	property	of	the	Dimension	interface	indicates	whether	the	structure
of	a	dimension	object	is	valid.	A	structure	is	valid	if	it	is	fully	and	correctly
defined.	For	example,	a	dimension	object	whose	data	source	has	not	been
defined	is	not	valid.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
Boolean

Access
Read-only

Remarks
Depending	on	the	value	of	the	ClassType	property	of	the	object,	the	IsValid
property	checks	different	structure	elements	to	confirm	validity,	as	described	in
the	following	table.

Class	type Checks
ClsDatabaseDimension The	Name	and	Parent	properties;	the	database
ClsCubeDimension The	Name	and	Parent	properties;	the	source

cube;	the	dimension	and	levels
ClsPartitionDimension The	Name	and	Parent	properties
ClsAggregationDimensionThe	Name	and	Parent	properties;	the	IsValid

property	of	the	parent	object	of	ClassType
clsPartitionDimension

Example
Use	the	following	code	to	determine	whether	the	structure	of	a	dimension	object
is	valid:

'Assume	an	object	(dsoDim)	of	ClassType	clsDimension	exists.
Dim	bValid	As	Boolean
bValid	=	dsoDim.IsValid
If	bValid	Then
				'Insert	code	to	process	a	valid	dimension.
Else
				'Something	is	not	valid	-	handle	errors.
End	If

See	Also

Dimension	Interface

Analysis	Services	Programming

IsVirtual	(Dimension	Interface)
The	IsVirtual	property	of	the	Dimension	interface	indicates	whether	the
dimension	is	virtual.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks
A	virtual	dimension	is	based	upon	the	contents	of	another	dimension.	The
DependsOnDimension	property	contains	the	name	of	source	dimension	of	the
virtual	dimension.

For	objects	of	ClassType	clsDatabaseDimension,	the	IsVirtual	property	cannot
be	set	to	True	if	the	SubClassType	is	sbclsParentChild	or	sbclsMining,	or	if

the	IsVirtual	property	is	set	to	True	for	any	level	of	the	dimension.

See	Also

DependsOnDimension

Dimension	Interface

Analysis	Services	Programming

IsVisible	(Dimension	Interface)
The	IsVisible	property	of	the	Dimension	interface	determines	whether	the
dimension	is	visible	to	client	applications.	Calculated	members	can	still	refer	to
the	dimension.

Applies	To
clsAggregationDimension

clsCubeDimension

clsPartitionDimension

Data	Type
Boolean

The	default	value	is	True.

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsCubeDimension R/W
ClsPartitionDimension R
ClsAggregationDimension R

Remarks
This	property	is	used	to	hide	a	dimension	from	the	client	application.	For
example,	you	might	decide	that	it	is	useful	to	include	a	gender	virtual	dimension
in	a	cube	but	hide	the	customer	source	dimension	on	which	it	is	based.

See	Also

Dimension	Interface

Analysis	Services	Programming

JoinClause	(Dimension	Interface)
The	JoinClause	property	of	the	Dimension	interface	contains	the	SQL	JOIN
clause	for	the	dimension.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W*
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R/W*	Read-only	for	objects	of	ClassType	clsDatabaseDimension	that	represent	a	virtual	dimension	created	in
an	earlier	version	of	Microsoft®	SQL	Server™	2000	Analysis	Services.

Remarks
For	objects	of	ClassType	clsDatabaseDimension,	if	it	represents	a	virtual
dimension	created	in	an	earlier	version	of	Analysis	Services,	the	JoinClause
property	returns	an	empty	string.

Example

A	database	contains	the	following	tables:

Sales_Facts

Customer

Product

Product_Class

Promotion

Store

Calendar

The	following	diagram	illustrates	the	relationships	of	these	tables.

Use	the	following	code	to	return	the	JoinClause	of	the	dimension	object:

'Assume	an	object	(dsoDim)	of	ClassType	clsDimension	exists
'and	is	associated	with	the	Product	dimension.
Dim	strJoinClause	As	String

strJoinClause	=	dsoDim.JoinClause

'The	immediate	window	displays	the	following:	
'"product"."SKU"="product_class"."SKU"
Debug.Print	"		Join	Clause:	"	&	strJoinClause

See	Also

Dimension	Interface

Analysis	Services	Programming

LastProcessed	(Dimension	Interface)
The	LastProcessed	property	of	the	Dimension	interface	contains	the	date	and
time	when	a	dimension	was	last	processed.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
Date

Access
Read-only

Remarks
If	the	value	of	the	State	property	is	olapStateNeverProcessed,	the
LastProcessed	property	for	an	object	is	undefined,	and	it	raises	an	error.

Example
Use	the	following	code	to	determine	when	a	dimension	object	was	last
processed:

'Assume	an	object	(dsoDim)	of	ClassType	clsDimension	exists.
If	dsoDim.State	<>	olapStateNeverProcessed	Then
				If	dsoDim.LastProcessed	<	Date	Then
								'Insert	code	to	process	the	dimension.

				End	If
End	If

See	Also

Dimension	Interface

LastUpdated

Analysis	Services	Programming

LastUpdated	(Dimension	Interface)
The	LastUpdated	property	of	the	Dimension	interface	is	not	used	by
Microsoft®	SQL	Server™	2000	Analysis	Services.	You	can	set	this	to	any
date/time	value	you	want.	For	example,	you	can	use	it	to	indicate	when	the
source	data	was	last	changed.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
Date

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks
The	LastUpdated	property	is	not	automatically	set	by	any	Decision	Support
Objects	(DSO)	method.	It	is	provided	as	a	means	for	client	applications	to
indicate	a	date	or	time	that	can	assist	in	validating	information.	For	example,	a
date	of	12/31/96	may	mean	that	the	information	stored	in	a	cube	is	not	valid	after

December	of	1996.

Example
Use	the	following	code	to	update	an	out-of-date	dimension:

'Assume	an	object	(dsoDim)	of	ClassType	clsDatabaseDimension	exists.
If	dsoDim.LastUpdated	<	date	Then
				'Insert	ode	to	update	dimension.
End	If

See	Also

Dimension	Interface

LastProcessed

Analysis	Services	Programming

MembersWithData	(Dimension	Interface)
The	MembersWithData	property	of	the	Dimension	interface	determines	which
members	in	a	dimension	can	have	associated	data	in	the	fact	table.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
MembersWithDataValues

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W*
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R*	Read/write	for	objects	of	ClassType	clsDatabaseDimension	with	a	SubClassType	of	sbclsParentChild
or	sbclsMining,	read-only	for	all	other	objects.

Remarks
When	a	nonleaf	member	has	associated	data	in	the	fact	table,	a	processing	error
occurs	if	this	property	is	equal	to	dataforLeafMembersOnly.	Otherwise,	that
nonleaf	data	is	associated	with	a	system-generated	leaf	member.	Depending	on
the	property	setting,	this	system-generated	data	member	may	or	may	not	be
visible	on	query	axes	and	in	schema	rowsets.

By	default,	the	data	for	nonleaf	members	is	aggregated	with	the	values	of	the
regular	children	of	that	member.	This	behavior	can	be	overridden	by	defining	a
custom	rollup	function	for	the	member	(or	the	entire	level).	The	system-
generated	data	member	is	always	available	through	a	Multidimensional
Expressions	(MDX)	statement	by	way	of	the	<Member>.DataMember	syntax.
(This	syntax	returns	the	original	member	if	that	member	is	already	a	leaf.)

Consider	the	example	of	a	cube	based	on	human	resources	data.	If	a	parent-child
dimension	contains	all	of	the	employees	of	an	organization,	a	problem	will	exist
in	tracking	the	salaries	for	people	at	higher	levels	of	the	organization's	hierarchy.
Their	salaries	will	be	an	aggregate	of	the	salaries	of	the	people	who	report	to
them	(that	is,	the	value	of	their	member	will	be	the	aggregate	of	all	the	children
of	that	member).	By	setting	the	value	of	this	property	to
DataForNonLeafMembersHidden,	you	can	build	a	cube	in	which	nonleaf
members	of	the	dimension	will	also	have	data.

Using	this	method	may	present	a	problem,	however,	because	the	numbers	for
nonleaf	nodes	no	longer	add	up	as	might	be	expected.	You	can	solve	the	problem
by	setting	this	property	to	DataForNonLeafMembersVisible.	In	this	scenario,
the	members	at	each	level	contain	the	correct	numbers	for	the	aggregation,	but
the	data	for	that	individual	member	is	available	under	the	DataMember
property.

See	Also

Dimension	Interface

DataMemberCaptionTemplate

Analysis	Services	Programming

Name	(Dimension	Interface)
The	Name	property	of	the	Dimension	interface	contains	the	name	of	a
dimension	object.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
String

Access
Read/write	(read-only	after	the	object	has	been	named)

Remarks
The	primary	mechanism	for	identifying	the	data	in	a	dimension	is	the	Name
property.	The	purpose	of	the	Description	property	is	to	provide	additional
descriptive	information.

Example
Use	the	following	code	to	print	the	names	of	the	dimensions	in	a	database:

'Assume	an	object	(dsoDB)	of	ClassType	clsDatabase	exists.
Dim	dsoDim	As	DSO.Dimension
Dim	dimCounter	As	Integer
For	dimCounter	=	1	To	dsoDB.Dimensions.Count

				Set	dsoDim	=	dsoDB.Dimensions(dimCounter)
				Debug.Print	dsoDim.Name	
Next	dimCounter

See	Also

Dimension	Interface

Description

IsShared

IsTemporary

Analysis	Services	Programming

OrdinalPosition	(Dimension	Interface)
The	OrdinalPosition	property	of	the	Dimension	interface	contains	the	ordinal
position	of	the	dimension	object	within	the	Dimensions	collection	of	its	parent
object.

Note		The	ordinal	position	is	1	for	all	dimension	objects	in	the	collection	of
dimensions	for	a	database.	The	position	of	a	dimension	within	the	collection	is
significant	only	when	it	is	used	in	a	cube,	partition,	or	aggregation.

The	OrdinalPosition	property	for	dimensions	is	different	from	the
OrdinalPosition	property	for	levels.	Dimensions	are	ordered	by	the	time
sequence	in	which	you	add	them	to	their	parent	object.	The	ordinal	position	of
levels	determines	the	hierarchy	of	the	dimension.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
Integer

Access
Read-only

Example
Use	the	following	code	to	identify	the	first	dimension	in	the	Dimensions
collection:

'Assume	an	object	(dsoDim)	of	ClassType	clsCubeDimension	exists.
If	dsoDim.OrdinalPosition	=	1	Then
				'Insert	code	to	handle	the	first	dimension	in	the	cube.
Else
				'Insert	code	to	handle	other	dimensions.
End	If

See	Also

Dimension	Interface

Analysis	Services	Programming

Parent	(Dimension	Interface)
The	Parent	property	of	the	Dimension	interface	contains	a	reference	to	the
parent	MDStore	object.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
MDStore

Access
Read-only

Remarks
The	value	of	the	ClassType	property	of	the	parent	object	depends	on	the	value
of	the	ClassType	property	of	the	object.

Dimension	object	ClassType Parent	object	ClassType
ClsDatabaseDimension clsDatabase
ClsCubeDimension clsCube
ClsPartitionDimension clsPartition
ClsAggregationDimension clsAggregation

Example
Use	the	following	code	to	obtain	the	parent	of	a	dimension	object:

'Assume	an	object	(dsoDim)	of	ClassType	clsDimension	exists.
Dim	objClassType	As	ClassTypes
objClassType	=	dsoDim.Parent.ClassType
Select	Case	objClassType
				Case	clsDatabase
								'Insert	code	for	the	database	parent	object.
				Case	clsCube
								'Insert	code	for	the	cube/virtual	cube	parent	object.
				Case	clsPartiton
								'Insert	code	for	the	partition	parent	object.
				Case	clsAggregation
								'Insert	code	for	the	aggregation	parent	object.
End	Select

See	Also

Dimension	Interface

Analysis	Services	Programming

SourceTable	(Dimension	Interface)
The	SourceTable	property	of	the	Dimension	interface	contains	the	name	of	a
dimension	object's	primary	source	table.

Applies	To
clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
String

Access
Read-only

Remarks
This	property	returns	the	name	of	the	source	table	associated	with	the	lowest
level	in	the	dimension.	For	example,	if	your	cube	has	a	dimension	called
Product,	and	the	dimension	has	levels	called	ProductCategory,
ProductSubCategory,	and	ProductName,	with	ordinal	positions	1,	2,	and	3,
respectively,	the	SourceTable	property	for	the	Product	dimension	returns	the
name	of	the	source	table	associated	with	level	ProductName.

Example
Use	the	following	code	to	obtain	the	name	of	the	source	table	associated	with
level	ProductName	in	dimension	Product:

'Assume	an	object	(dsoDim)	of	ClassType	clsDimension	exists.
If	dsoDim.SourceTable	=	"Product"	Then

				'Insert	code	to	handle	the	dimension.
End	If

See	Also

Dimension	Interface

Analysis	Services	Programming

SourceTableAlias	(Dimension	Interface)
The	SourceTableAlias	property	of	the	Dimension	interface	contains	the	alias	of
the	source	table	for	the	dimension.

Applies	To
clsDatabaseDimension

clsCubeDimension

clsPartitionDimension

Data	Type
String

Access
Read-only

Remarks
If	the	source	table	has	no	alias,	the	contents	of	this	property	are	identical	to	the
SourceTable	property.

See	Also

Dimension	Interface

Analysis	Services	Programming

SourceTableFilter	(Dimension	Interface)
The	SourceTableFilter	property	of	the	Dimension	interface	restricts	the
members	included	in	a	dimension.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W*
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R*	Read-only	for	virtual	dimensions.

Remarks
Use	this	property	to	filter	dimension	members.	For	example,	suppose	you	want
to	build	a	sales	cube	that	only	contains	customer	information	from	the	state	of
California.	You	can	set	this	property	equal	to	the	following	SQL	expression	to
solve	this	problem:

"Customer"."State"	=	'California'

Note		The	expression	must	be	entered	in	terms	of	the	SQL	dialect	used	on	the
source	server,	not	Multidimensional	Expressions	(MDX).	Thus
"Customer"."State"	refers	to	the	State	column	of	the	Customer	table	in	a
Microsoft®	SQL	Server™	2000	database.

The	SourceTableFilter	property	contains	an	SQL	expression	such	as	those
found	in	SQL	WHERE	clauses.	That	is,	it	must	contain	an	SQL	expression	that
evaluates	to	either	True	or	False.

For	virtual	dimensions,	this	property	is	always	read-only	and	empty.

See	Also

Dimension	Interface

Analysis	Services	Programming

State	(Dimension	Interface)
The	State	property	of	the	Dimension	interface	contains	an	enumeration	constant
that	indicates	the	difference	between	the	dimension	object	referenced	by	the
client	application	and	the	corresponding	dimension	on	the	Analysis	server.

Applies	To
clsDatabaseDimension

Data	Type
OlapStateTypes

Access
Read-only

Remarks
The	State	property	indicates	the	current	status	of	an	object	of	ClassType
clsDimension.	It	is	also	used	to	determine	whether	the	dimension	needs	to	be
processed.	The	following	table	lists	the	possible	values	for	the	State	property.

State Description
OlapStateNeverProcessed The	database	dimension	has	never

been	processed.
olapStateStructureChanged The	structure	of	the	database

dimension	has	changed.
olapStateMemberPropertiesChanged The	member	properties	have

changed.
olapStateSourceMappingChanged The	source	mappings	for	the

database	dimension	have	changed.
OlapStateCurrent The	database	dimension	has	been

processed	and	is	current.

See	Also

Dimension	Interface

Analysis	Services	Programming

StorageMode	(Dimension	Interface)
The	StorageMode	property	of	the	Dimension	interface	determines	how	the
contents	of	a	dimension	are	stored.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
StorageModeValues

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseDimension R/W*
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R*	Read-only	for	virtual	dimensions	and	objects	with	a	SubClassType	of	sbclsLinked,	sbclsMining,	or
sbclsParentChild.

Remarks
If	the	StorageMode	property	is	set	to	storeasMOLAP,	the	contents	of	the
dimension	are	processed	and	stored	on	the	Analysis	server.	If	StorageMode	is
set	to	storeasROLAP,	the	dimension	contents	are	not	read	during	processing;
they	are	left	in	the	source	relational	database	and	retrieved	as	required.	ROLAP
storage	mode	provides	for	improved	scalability	of	dimensions	at	the	expense	of

slower	query	performance.

The	StorageMode	property	uses	one	of	the	constants,	defined	in	the
StorageModeValues	enumeration,	shown	in	the	following	table.

Storage	mode Result
storeasMOLAP Dimension	members	are	read	during	processing

and	are	stored	in	the	Analysis	server.
storeasROLAP Dimension	members	are	not	read	during

processing	and	are	left	in	the	relational	data
source.

Before	the	StorageMode	property	for	a	dimension	can	be	set	to
storeasROLAP,	the	AreMemberKeysUnique	property	must	be	set	to	True	for
the	last	level	in	the	dimension.

When	the	StorageMode	property	is	set	to	storeasROLAP,	the	value	of	the
IsChanging	property	for	the	dimension	automatically	becomes	read-only	and
True.

CAUTION		Any	changes	to	the	relational	source	table	of	a	ROLAP	dimension
must	be	followed	by	an	immediate	reprocessing	of	the	dimension.	Failure	to	do
so	may	result	in	inconsistent	results	to	queries	of	the	cubes	that	use	the
dimension.	To	ensure	correct	processing	of	both	the	source	table	and	the
dimension,	use	nested	transactions	to	link	the	two	changes	together.	Because	an
incremental	update	is	all	that	is	necessary,	use	the	processRefreshData	option
with	the	Process	method	to	update	the	dimension.

To	set	the	StorageMode	property	to	storeasROLAP,	the	Grouping	property	for
all	levels	in	the	dimension	must	be	set	to	None.	Member	groups	are	not
supported	for	ROLAP	dimensions.

See	Also

Dimension	Interface

Analysis	Services	Programming

SubClassType	(Dimension	Interface)
The	SubClassType	property	of	the	Dimension	interface	contains	an
enumeration	constant	that	identifies	the	subclass	type	of	the	object.

Applies	To
clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data	Type
SubClassTypes

Access
Read-only

Remarks
For	objects	of	ClassType	clsDimension,	SubClassType	can	be	sbclsRegular	or
sbclsParentChild.

See	Also

Dimension	Interface

Analysis	Services	Programming

Level	Interface
Levels	describe	the	hierarchy	within	a	dimension	from	the	highest	(most
precalculated)	to	the	lowest	(most	detailed)	levels	of	data.

The	following	table	shows	an	example	of	level	positions	of	a	time	dimension	in
which	the	most	detailed	(day)	values	are	included	in	the	next	level	(week),	which
are,	in	turn,	included	in	the	next	level	(quarter),	and	so	on.	If	the	Year	level	has	4
members,	1994	through	1997,	then	the	Quarter	level	has	4	members	for	each
year,	and	the	Week	level	has	52	members	for	each	year.

Level Position	in	hierarchy
Year 1
Quarter 2
Week 3
Day 4

In	Decision	Support	Objects	(DSO),	objects	that	implement	the	Level	interface
have	one	of	the	following	ClassType	property	values.

ClassType Description
clsAggregationLevel The	levels	contained	within	an

aggregation	dimension	objects	levels
collection

clsCubeLevel The	levels	of	all	dimensions	assigned	to	a
cube

clsDatabaseLevel The	levels	of	all	dimensions	within	a
database

clsPartitionLevel The	levels	of	all	of	the	dimensions
contained	within	a	partition

Additionally,	the	SubClassType	property	for	level	objects	can	have	the
following	values.

Subclass	type Description
sbclsRegular A	regular	level
sbclsParentChild A	parent-child	level

The	Level	interface	provides	a	number	of	properties	to	manipulate	these	objects.
For	more	information	about	levels	and	other	objects,	see	Introducing	Decision
Support	Objects.

Differences	in	the	implementation	of	the	Level	interface	exist	between	the
derived	objects.	Some	objects	provide	read-only	access	to	a	few	Level
properties,	while	others	implement	a	subset	of	the	properties	contained	in	the
interface.	For	example,	a	clsDatabaseLevel	object	allows	read	and	write	access
to	its	LevelType	property,	whereas,	for	a	clsPartitionLevel	object,	access	to	this
property	is	read-only.	For	more	information	about	the	Level	interface	properties
and	their	applicability	to	the	associated	objects,	see	Collections,	Level	Interface
and	Properties,	Level	Interface.

There	are	no	methods	associated	with	the	Level	interface.

Parent-Child	Levels
Parent-child	levels	appear	only	in	parent-child	dimensions	(those	whose
SubClassType	is	sbclsParentChild).	Unlike	regular	levels	that	are	constructed
using	predefined	member	columns,	parent-child	levels	function	as	templates	for
hierarchies	that	are	dynamically	built	from	source	tables	with	parent-child
relationships.	Parent-child	levels	identify	the	MemberKeyColumn,
MemberNameColumn,	and	ParentKeyColumn	properties	of	the	data	source,
which	are	used	to	dynamically	build	variable-level	hierarchies.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

See	Also

Dimension	Interface

Levels	and	Members

MemberKeyColumn

Parent-Child	Dimensions

SubClassType

SubClassTypes

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Analysis	Services	Programming

Collections,	Level	Interface
The	Level	interface	supports	the	following	collections.

Collection Description
CustomProperties The	collection	of	user-defined	properties
MemberProperties The	collection	of	objects	of	ClassType

clsMemberProperty

Access	Cross-Reference
The	following	table	shows	whether	the	collection	is	read/write	(R/W),	read-only
(R),	or	not	applicable	(n/a)	for	different	objects.

Collection
clsDatabase
Level clsCubeLevel

clsPartition
Level

clsAggregation
Level

CustomProperties R/W R/W R/W R/W
MemberProperties R/W R R n/a

See	Also

clsMemberProperty

Level	Interface

Analysis	Services	Programming

Properties,	Level	Interface
The	Level	interface	supports	the	following	properties.

Property Description
AreMemberKeysUnique Indicates	whether	the	members	of	a	level

are	uniquely	identified	by	their	member
key	column

AreMemberNamesUnique Indicates	whether	the	members	of	a	level
are	uniquely	identified	by	their	member
name	column

ClassType Returns	an	enumeration	constant	that
identifies	the	specific	object	type

ColumnSize The	size	(in	bytes)	of	members	in	the
level	member	key	column

ColumnType The	data	type	of	the	level	member	key
column	in	an	aggregation	table

CustomRollUpColumn Contains	the	name	of	the	column	that
contains	member-specific	rollup
instructions

CustomRollUpExpression Contains	a	Multidimensional	Expressions
(MDX)	expression	used	to	override	the
default	rollup	mode

CustomRollUpPropertiesColumnContains	the	name	of	the	column	that
contains	member-specific	rollup
properties

Description The	description	of	the	level
EnableAggregations Determines	whether	aggregations	can	be

created	for	a	level	in	a	dimension	whose
AggregationUsage	property	is	set	to
dimAggUsageCustom

EstimatedSize The	estimated	number	of	members	in	the
level

FromClause The	SQL	FROM	clause	for	a	level
Grouping Indicates	the	type	of	grouping	used	by	the

Analysis	server
HideMemberIf Indicates	whether	a	member	should	be

hidden	from	client	applications
IsDisabled Indicates	whether	the	level	is	disabled
IsValid Indicates	whether	the	level	structure	is

valid
IsVisible Indicates	whether	the	level	is	visible	to

client	applications
JoinClause The	SQL	JOIN	clause	for	the	level
LevelNamingTemplate Defines	how	levels	in	a	parent-child

hierarchy	are	named
LevelType Returns	an	enumeration	constant	that

identifies	the	specific	type	of	level
MemberKeyColumn The	name	of	the	column	or	expression

that	contains	member	keys
MemberNameColumn The	name	of	the	column	or	expression

that	contains	member	names
Name The	name	of	the	level
Ordering Specifies	how	the	level	should	be	ordered
OrderingMemberProperty Specifies	a	member	property	used	to

determine	the	ordering	of	members
OrdinalPosition Returns	the	ordinal	position	of	the	level

in	the	collection	of	levels
Parent Returns	a	reference	to	the	parent

Dimension	object
ParentKeyColumn Identifies	the	parent	of	a	member	in	a

parent-child	hierarchy
RootMemberIf Determines	how	the	root	member	or

members	of	a	parent-child	hierarchy	are
identified

SkippedLevelsColumn Identifies	the	column	that	holds	the
number	of	empty	levels	between	a
member	and	its	parent	in	a	parent-child

hierarchy

SliceValue The	name	of	the	level	member	used	to
define	a	partition	slice

SubClassType Returns	an	enumeration	constant
identifying	the	subclass	type	of	an	object

UnaryOperatorColumn The	name	of	the	column	that	contains
member-specific	rollup	instructions	in	the
form	of	mathematical	operators

Access	Cross-Reference
The	following	table	shows	whether	the	property	is	read/write	(R/W),	read-only
(R),	or	not	applicable	(n/a)	for	different	objects.

Property
clsDatabase
Level

clsCube
Level

clsPartition
Level

clsAggregation
Level

AreMemberKeysUnique R/W R R R
AreMemberNamesUnique R/W R R R
ClassType R R R R
ColumnSize R/W R R R
ColumnType R/W R R R
CustomRollUpColumn R/W R R R
CustomRollUpExpression R/W R/W R R
CustomRollUpPropertiesColumnR/W R R R
Description R/W R R R
EnableAggregations n/a R/W R n/a
EstimatedSize R/W R R R
FromClause R R R R
Grouping R/W R R R
HideMemberIf** R/W R R R
IsDisabled n/a R/W R R
IsValid R R R R
IsVisible R/W R/W R R
JoinClause R R R R

LevelNaming
Template†

R/W R R R

LevelType R/W R R R
MemberKey
Column

R/W R/W R/W R/W

MemberName
Column

R/W R R R

Name R/W	(R
after	the
object	has
been
named)

R/W	(R
after	the
object
has
been
named)

R/W	(R
after	the
object	has
been
named)

R/W	(R	after
the	object	has
been	named)

Ordering R/W R R R
OrderingMemberProperty R/W R R R
OrdinalPosition R R R R
Parent R R R R
ParentKeyColumn† R/W R R R
RootMemberIf R/W R R R
SkippedLevelsColumn R/W R R R
SliceValue n/a n/a R/W n/a
SubClassType R R R R
UnaryOperatorColumn R/W R R R
**	This	property	does	not	apply	to	levels	of	SubClassType	sbclsParentChild	or	sbclsMining.
†			This	property	applies	only	to	levels	of	SubClassType	sbclsParentChild	or	sbclsMining.

See	Also

AggregationUsage

Level	Interface

Analysis	Services	Programming

AreMemberKeysUnique	(Level	Interface)
The	AreMemberKeysUnique	property	of	the	Level	interface	indicates	whether
the	members	of	a	level	can	be	uniquely	identified	within	the	dimension	by	their
member	key	column	and	without	a	reference	to	a	higher	level.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsDatabaseLevel R/W*
clsCubeLevel R
clsPartitionLevel R
clsAggregationLevel R*	For	more	information	about	read/write	access,	see	Remarks	later	in	this	topic.

Remarks
For	objects	of	ClassType	clsDatabaseLevel,	the	AreMemberKeysUnique
column	is	read-only	if	the	object	meets	one	of	the	following	criteria:

The	level	is	the	first	level	in	the	dimension,	or	the	LevelType	property
of	the	object	is	levAll.

The	Grouping	property	of	the	object	is	groupingAutomatic.

The	AreMemberKeysUnique	property	is	always	read-only	for	objects	of
ClassType	clsDatabaseLevel	objects	with	a	SubClassType	of
sbclsParentChild	or	sbclsMining.

If	the	AreMemberKeysUnique	property	is	True,	the	MemberKeyColumn
property	of	the	level	uniquely	identifies	all	level	members.	For	example,	the
following	diagram	shows	the	hierarchy	of	a	time	dimension.	Because	the
members	of	Level	3	-	Quarters	are	duplicated	under	each	year	level,	it	is	not
possible	to	determine	the	exact	time	slice	to	query	without	also	reading	the
corresponding	value	for	Level	2	-	Years.	To	uniquely	identify	the	time	period
1997	-	Q1,	the	member	key	columns	for	Level	2	-	Years	and	Level	3	-	Quarters
must	be	combined.

A	similar	example	can	be	made	for	a	geographic	hierarchy.	While	the	names	of
states	or	provinces	are	unique	within	a	single	country,	one	or	more	cities	in
different	countries	may	share	the	same	name.	In	this	case,	the	city	level	does	not
have	unique	values.

Example
If	a	level	for	months	of	the	year	with	members	named	Month1,	Month2,	...
Month12	is	added	to	a	dimension	below	a	quarter	level,	the
AreMemberKeysUnique	property	is	set	to	False.	This	is	because	the	values	in
MemberKeyColumn	do	not	uniquely	identify	each	member	in	the	month	level
within	the	dimension.

'	Assume	an	object	(dsoDim)	of	ClassType	clsDimension	exists
Dim	dsoLevel	As	DSO.Level
Set	dsoLevel	=	dsoDim.Levels.AddNew("Months")

dsoLevel.AreMemberKeysUnique	=	False

See	Also

Level	Interface

MemberKeyColumn

Analysis	Services	Programming

AreMemberNamesUnique	(Level	Interface)
The	AreMemberNamesUnique	property	of	the	Level	interface	indicates
whether	the	names	of	members	are	unique	throughout	the	level	and	then
determines	a	naming	scheme	based	on	the	indication.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsDatabaseLevel R/W
clsCubeLevel R
clsPartitionLevel R
clsAggregationLevel R

Remarks
If	AreMemberNamesUnique	is	False,	each	member	name	is	assumed	to	be
unique	only	among	its	siblings.	In	this	case,	the	unique	name	for	the	member	is
constructed	using	the	name	of	the	member	and	the	names	of	its	ancestors.	If	the
property	for	the	level	is	True,	each	member	name	is	assumed	to	be	unique	for	the
entire	level.	In	this	case,	the	unique	name	for	the	member	is	constructed	using

only	the	dimension	name,	the	level	name,	and	the	member	name.	Other
properties,	such	as	connection	string	and	Registry	settings,	can	influence	the
method	by	which	unique	member	names	are	generated.	This	property	is	read-
only	and	always	True	for	the	(All)	level	of	a	dimension	(that	is,	the	level	that	has
a	LevelType	of	levAll).	Additionally,	this	property	is	read-only	and	always	False
for	levels	with	automatic	grouping	(that	is,	a	level	that	has	a	Grouping	property
of	groupingAutomatic).

See	Also

AreMemberNamesUnique

Level	Interface

Analysis	Services	Programming

ClassType	(Level	Interface)
The	ClassType	property	of	the	Level	interface	contains	an	enumeration	constant
that	identifies	the	specific	class	type.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
ClassTypes

For	level	objects,	ClassType	is	set	to	one	of	the	following	values:

clsDatabaseLevel

clsCubeLevel

clsPartitionLevel

clsAggregationLevel

Access

Read-only

Example
Use	the	following	code	to	return	the	class	type	of	a	level	object	and	to	determine
which	object	class	has	been	returned:

'Assume	an	object	(dsoLevel)	of	ClassType	clsLevel	exists
Dim	objClass	As	DSO.ClassTypes
objClassType	=	dsoLevel.ClassType
Select	Case	objClassType
		Case	clsAggregationLevel
				'	Insert	commands	for	an	aggregation	level.
		Case	clsCubeLevel
				'	Insert	commands	for	a	cube	level.
		Case	clsDatabaseLevel
				'	Insert	commands	for	a	database	level.
		Case	clsPartitionLevel
				'	Insert	commands	for	a	partition	level.
End	Select

See	Also

ClassTypes

Level	Interface

Analysis	Services	Programming

ColumnSize	(Level	Interface)
The	ColumnSize	property	of	the	Level	interface	contains	the	size	(in	bytes)	of
the	members	in	the	level	aggregation	column	in	an	aggregation	table.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
Integer

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseLevel R/W
ClsCubeLevel R/W*
ClsPartitionLevel R
ClsAggregationLevel R*	Read-only	for	virtual	cube	levels	and	cube	levels	of	a	shared	dimension	(a	parent	Dimension	object
whose	IsShared	property	is	True).

Remarks
The	ColumnSize	property	always	returns	0	for	(All)	levels	(that	is,	levels	whose
LevelType	property	is	levAll)	with	a	SubClassType	of	sbclsRegular,
sbclsParentChild,	sbclsLinked	or	sbclsMining,	and	for	levels	whose
LevelType	property	is	set	to	sbclsVirtual.

Set	ColumnSize	to	be	large	enough	to	store	the	data	type	of	the	level.	Integer
values,	for	example,	require	a	minimum	of	four	bytes.	If	the	level	contains	string
values,	find	the	length	of	the	member	with	the	longest	string.	Set	ColumnSize
greater	than	or	equal	to	the	length	of	that	string	multiplied	by	the	byte	size	of	an
individual	character.	The	ColumnSize	property	cannot	be	set	to	zero.

Example
Use	the	following	code	to	specify	a	column	size	of	40:

'Assume	an	object	(dsoLev)	of	ClassType	clsDatabaseLevel	exists
dsoLev.ColumnSize	=	40

See	Also

ColumnType

Level	Interface

Analysis	Services	Programming

ColumnType	(Level	Interface)
The	ColumnType	property	of	the	Level	interface	contains	the	data	type	of	the
level	member	key	column.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
ADODB.DataTypeEnum

The	ColumnType	property	is	set	to	one	of	the	following	enumerated	values.

Column	type Value
Big	integer adBigInt
Binary adBinary
Boolean adBoolean
String	(Unicode) adBSTR
Char adChar
Currency adCurrency
Date adDate
Date adDBDate
Time adDBTime
Timestamp adDBTimeStamp
Decimal adDecimal
Double adDouble
Integer adInteger

Numeric adNumeric
Single adSingle
Small	integer adSmallInt
Tiny	integer adTinyInt
Unsigned	big	integer adUnsignedBigInt
Unsigned	integer adUnsignedInt
Unsigned	small	integer adUnsignedSmallInt
Unsigned	tiny	integer adUnsignedTinyInt
Text	(Unicode) adWChar
Text adChar

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsDatabaseLevel R/W*
clsCubeLevel R/W**
clsPartitionLevel R
clsAggregationLevel R
*	Read-only	for	levels	with	automatic	grouping	(a	level	whose	Grouping	property	is	groupingAutomatic).**	Read-only	for	virtual	cube	levels	and	cube	levels	of	a	shared	dimension	(a	parent	Dimension	object
whose	IsShared	property	is	True).

Remarks
The	ColumnType	property	determines	how	the	server	will	bind	the	member	key
column.	This	property	must	be	set	to	a	compatible	type	or	processing	the
dimension	or	cube	will	result	in	an	error.

The	ColumnSize	property	always	returns	adInteger	for	levels	with	a
SubClassType	of	sbclsRegular,	sbclsParentChild,	sbclsLinked,	or
sbclsMining	that	use	automatic	grouping	(that	is,	the	Grouping	property	is
groupingAutomatic).	Additionally,	this	property	always	returns	adVarChar	for
levels	with	a	SubClassType	of	sbclsVirtual.

Example

Use	the	following	code	to	specify	an	integer	ColumnType:

'	Assume	an	object	(dsoDim)	of	ClassType	clsDimension	exists
Set	dsoLev	=	dsoDim.Levels.AddNew("Store	Id")
dsoLev.MemberKeyColumn	=	"""store"".""store_number"""
dsoLev.ColumnSize	=	4
dsoLev.ColumnType	=	adInteger
dsoLev.EstimatedSize	=	24

See	Also

ColumnSize

Level	Interface

Partition	Storage

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

CustomRollupColumn	(Level	Interface)
The	CustomRollupColumn	property	of	the	Level	interface	contains	the	name
of	the	column	that	stores	member-specific	rollup	instructions.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseLevel R/W
ClsCubeLevel R
ClsPartitionLevel R
ClsAggregationLevel R

Remarks
The	string	values	in	this	column	should	contain	valid	Multidimensional
Expressions	(MDX)	expressions.	If	a	column	is	empty,	the	corresponding
member	is	calculated	normally.	If	the	formula	in	the	column	is	invalid,	a	run-
time	error	occurs	when	a	cell	value	using	the	member	is	retrieved.

Order	of	evaluation	among	dimensions	with	custom	rollups	is	determined	by	the

order	of	the	dimensions	in	the	Dimensions	collection	of	the	parent	cube.
Calculated	members	are	always	evaluated	before	custom	rollups.

Note		Because	the	DISTINCT	COUNT	aggregation	function	does	not	support
custom	aggregations,	the	use	of	this	aggregation	function	in	combination	with
the	CustomRollupExression	and	CustomRollupColumn	properties	is	not
supported.	If	a	cube	uses	the	DISTINCT	COUNT	aggregation	function	and	any
of	the	dimensions	in	that	cube	use	either	the	CustomRollupExpression	property
or	the	CustomRollupColumn	property	then	the	cube	is	considered	to	be	invalid.
Processing	such	a	cube	will	raise	a	validation	error	with	an	error	code	of
mderrInvalidCubeDistinctCountWithCustomRollups.

See	Also

Level	Interface

Custom	Rollup	Formulas	and	Custom	Member	Formulas

CustomRollupExpression	(Level	Interface)

CustomRollupPropertiesColumn	(Level	Interface)

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

CustomRollupExpression	(Level	Interface)
The	CustomRollupExpression	property	of	the	Level	interface	contains	a
Multidimensional	Expressions	(MDX)	expression	that	is	used	to	override	the
default	rollup	mode	for	the	level.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseLevel R/W
ClsCubeLevel R/W
ClsPartitionLevel R
ClsAggregationLevel R

Remarks
If	the	CustomRollupExpression	property	is	blank,	member	values	are	rolled	up
normally	using	the	aggregation	function	of	the	current	measure.	If	the	property
contains	an	MDX	expression,	that	expression	is	used	to	evaluate	each	member	of
the	level.	The	formulas	contained	in	this	member	property	are	resolved	in	the
same	way	as	regular	calculated	members.

CustomRollupExpression	can	be	set	on	both	database	and	cube	levels.	If	set	on
both	types	of	levels	for	a	given	cube,	the	CustomRollupExpression	for	the	cube
level	overrides	the	CustomRollupExpression	for	the	database	level.	Member-
specific	rollup	expressions	in	the	column	specified	by	the
CustomRollupExpression	for	the	level	always	override	this	property.

A	common	usage	scenario	for	this	property	involves	tracking	inventory	over
time.	Inventory	counts	do	not	aggregate	along	time	dimensions,	but	they	do
aggregate	along	other	types	of	dimensions,	such	as	geography	or	sales.	By
defining	a	CustomRollupExpression	property	to	use	the	last	member	of	its
respective	level	within	a	time	dimension,	closing	inventory	counts	can	be	rolled
up	over	time.

Note		Because	the	DISTINCT	COUNT	aggregation	function	does	not	support
custom	aggregations,	the	use	of	this	aggregation	function	in	combination	with
the	CustomRollupExression	and	CustomRollupColumn	properties	is	not
supported.	If	a	cube	uses	the	DISTINCT	COUNT	aggregation	function	and	any
of	the	dimensions	in	that	cube	use	either	the	CustomRollupExpression	property
or	the	CustomRollupColumn	property	then	the	cube	is	considered	to	be	invalid.
Processing	such	a	cube	will	raise	a	validation	error	with	an	error	code	of
mderrInvalidCubeDistinctCountWithCustomRollups.

For	more	information	about	CREATE	MEMBER,	see	CREATE	MEMBER
Statement.

See	Also

Custom	Rollup	Formulas	and	Custom	Member	Formulas

Custom	Rollup	Operators

CustomRollupColumn

CustomRollupPropertiesColumn

Level	Interface

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Analysis	Services	Programming

CustomRollupPropertiesColumn	(Level	Interface)
The	CustomRollupPropertiesColumn	property	of	the	Level	interface	is	used	to
provide	properties	associated	with	the	member	formulas	provided	in	the
CustomRollupColumn	property.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseLevel R/W
ClsCubeLevel R
ClsPartitionLevel R
ClsAggregationLevel R

Remarks
Any	properties	that	can	be	specified	for	a	calculated	member	can	also	be
specified	for	the	member	formulas.	The	column	assigned	to	this	property	should
contain	a	comma-delimited	list	of	the	properties,	employing	the	following
syntax:

<property	identifier>	=	'<property	value>'	[,	<property	identifier>	=	'<property	value>'...]

The	<property	identifier>	contains	the	name	of	a	valid	property,	while	the
<property	value>	contains	the	string	representation	of	the	value	of	the
specified	property.	For	example,	the	FORE_COLOR	cell	property	accepts	a	long
integer	containing	the	RGB	value	of	a	given	color.	To	set	the	foreground	color	of
the	member	to	red,	the	syntax	would	resemble	the	following	statement.

FORE_COLOR='255'

As	with	calculated	members,	these	properties	are	optional.	If	the
CustomRollupColumn	property	of	the	Level	object	is	empty,	the	contents	of	its
CustomRollupPropertiesColumn	property	are	ignored.

See	Also

Custom	Rollup	Formulas	and	Custom	Member	Formulas

Custom	Rollup	Operators

CustomRollupColumn

Level	Interface

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Analysis	Services	Programming

Description	(Level	Interface)
The	Description	property	of	the	Level	interface	contains	the	level	description.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseLevel R/W
ClsCubeLevel R
ClsPartitionLevel R
ClsAggregationLevel R/W

Example
Use	the	following	code	to	set	the	Description	property	for	a	level	object:

'	Assume	an	object	(dsoLevel)	of	ClassType	clsLevel	exists
dsoLevel.Description	=	"Sales	for	1998"

See	Also

Level	Interface

Analysis	Services	Programming

EnableAggregations	(Level	Interface)
The	EnableAggregations	property	of	the	Level	interface	specifies	whether
aggregations	can	be	created	for	the	level	by	the	aggregation	design	algorithm.

Applies	To
clsCubeLevel

clsPartitionLevel

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsCubeLevel R/W
clsPartitionLevel R

Remarks
To	create	aggregations	for	a	level	when	aggregations	are	designed	for	the	parent
dimension,	set	the	EnableAggregations	property	of	the	level	to	True	and	set	the
AggregationUsage	property	of	the	dimension	to	dimAggUsageCustom.

See	Also

AggregationUsage

Level	Interface

Analysis	Services	Programming

EstimatedSize	(Level	Interface)
The	EstimatedSize	property	of	the	Level	interface	contains	the	estimated
number	of	members	in	the	level	object.	This	property	is	used	by	the	partition
analyzer	when	aggregations	are	designed.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
Long

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsDatabaseLevel R/W
clsCubeLevel R/W*
clsPartitionLevel R
clsAggregationLevel R*	Read-only	for	virtual	cube	levels.

Remarks
The	EstimatedSize	property	is	used	during	analysis	of	a	partition	when
aggregations	are	designed.	The	value	provided	does	not	need	to	be	precise,	but	it
should	be	a	close	approximation.

Note		The	EstimatedSize	property	for	an	(All)	level	is	read-only	and	always	set

to	one	(1).	This	is	also	true	for	levels	that	belong	to	a	virtual	dimension	created
by	earlier	versions	of	Microsoft®	SQL	Server™	2000	Analysis	Services.

Example
Use	the	following	code	to	set	the	size	and	type	values	for	a	new	level	object:

'	Assume	an	object	(dsoDim)	of	ClassType	clsDimension	exists
Set	dsoLev	=	dsoDim.Levels.AddNew("Store	Id")
dsoLev.MemberKeyColumn	=	"""store"".""store_number"""
dsoLev.ColumnSize	=	4
dsoLev.ColumnType	=	adInteger
dsoLev.EstimatedSize	=	24

See	Also

clsPartitionAnalyzer

Level	Interface

Analysis	Services	Programming

FromClause	(Level	Interface)
The	FromClause	property	of	the	Level	interface	contains	the	SQL	FROM
clause	for	the	level.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
String

Access
Read-only

Remarks
This	property	returns	a	table	name	that	is	the	same	value	as	the	SourceTable
property	of	the	parent	dimension	object.

Example
A	database	contains	the	following	tables:

Sales_Facts

Customer

Product

Product_Class

Promotion

Store

Calendar

This	diagram	illustrates	the	relationships	of	these	tables.

Use	the	following	code	to	print	the	FROM	clause	for	a	level	object:

'	Assume	an	object	(dsoLevel)	of	ClassType	clsLevel
'	and	is	associated	with	the	Store	dimension	and	
'	Store_Name	level
Debug.Print	"								Level:	"	&	dsoLevel.Name
Debug.Print	"		From	Clause:	"	&	dsoLevel.FromClause

The	immediate	window	displays	the	following:

								Level:	Store_Name
		From	Clause:	"store"

See	Also

Level	Interface

Analysis	Services	Programming

Grouping	(Level	Interface)
The	Grouping	property	of	the	Level	interface	determines	whether	members	in
the	level	are	used	individually	or	are	part	of	groups.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
GroupingValues

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsDatabaseLevel R/W
clsCubeLevel R
clsPartitionLevel R
clsAggregationLevel R

Remarks
You	can	group	level	members	to	segment	and	organize	the	data	contained	in	a
cube.	For	example,	a	department	store	chain	may	want	to	use	a	cube	to	monitor
customer	purchasing	trends.	Querying	for	data	on	the	customers	dimension
without	grouping	might	return	long	lists	of	individual	purchase	events	that	are
impractical	to	view	or	analyze.	Grouping	level	members	based	on	gender,	age
group,	credit	history,	or	payment	method	returns	more	manageable	and

meaningful	data.	When	such	natural	groupings	are	not	available,	this	property
can	still	be	used	to	artificially	impose	organization	on	the	data.

Member	groups	allow	you	to	circumvent	the	maximum	limit	of	64,000	members
per	level.	When	members	are	grouped,	queries	return	smaller	segments	of	data.
Each	level	can	contain	64,000	groups,	and	each	group	can	contain	64,000
members.

This	feature	provides	support	for	very	large	levels.	A	level	can	be	added	(visible
or	invisible)	that	provides	grouping	for	a	large	level.	If	you	create	a	duplicate	of
a	large	level	and	set	the	Grouping	property	to	groupingAutomatic,	you	can
ignore	the	64,000	member	limit.

When	this	property	is	set	to	groupingAutomatic,	the	Analysis	server
automatically	creates	and	names	the	member	groups	each	time	the	dimension	is
processed.	The	number	and	names	of	the	groups	can	change	as	the	data	in	the
cube	changes.

If	Grouping	is	set	to	groupingAutomatic,	Decision	Support	Objects	(DSO)
changes	the	following	properties	for	the	level:

The	AreMemberNamesUnique	property	is	read-only	and	set	to	False.

The	AreMemberKeysUnique	property	is	read-only	and	set	to	False.	

The	Ordering	property	is	read-only	and	set	to	orderName.

You	cannot	set	Grouping	to	groupingAutomatic	for	a	level	when	any	of	the
following	conditions	occur:

The	IsChanging	property	for	the	parent	dimension	is	False.	

The	level	is	the	first	or	last	within	the	dimension.	

The	Grouping	property	of	an	adjacent	level	in	the	dimension	is	set	to
groupingAutomatic.

The	StorageMode	property	for	the	parent	dimension	is
storeasROLAP.	Member	groups	are	not	supported	for	ROLAP
dimensions.

See	Also

AreMemberKeysUnique

AreMemberNamesUnique

IsChanging

Level	Interface

Member	Groups

Ordering

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

HideMemberIf	(Level	Interface)
The	HideMemberIf	property	of	the	Level	interface	indicates	whether	and	when
a	level	member	should	be	hidden	from	client	applications.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
HideIfValues

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.	This
property	does	not	apply	to	levels	whose	SubClassType	is	sbclsParentChild	or
sbclsMining.

Class	type Access
ClsDatabaseLevel R/W*
ClsCubeLevel R
ClsPartitionLevel R
ClsAggregationLevel R*	Always	read-only	and	set	to	hideNever	for	levels	of	virtual	dimensions	created	in	earlier	versions	of
Microsoft®	SQL	Server™	2000	Analysis	Services.

Remarks
Hidden	members	represent	empty	positions	in	a	ragged	hierarchy.	The	members
are	hidden	to	function	as	placeholders	for	a	branch	of	a	hierarchy	that	contains
no	real	members	at	that	level.	For	example,	a	geography	dimension	may	have

cities	at	its	lowest	level.	Members	on	this	level	roll	up	into	a	state/province	level,
which,	in	turn,	rolls	up	into	a	countries	level.	Some	countries,	however,	do	not
have	states	or	provinces.	In	such	cases	a	placeholder	occupies	the	position.

See	Also

Level	Interface

Ragged	Dimension	Support

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

IsDisabled	(Level	Interface)
The	IsDisabled	property	of	the	Level	interface	indicates	whether	the	level	is
disabled.

Applies	To
clsAggregationLevel

clsCubeLevel

clsPartitionLevel

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.	This
property	does	not	apply	to	levels	whose	SubClassType	is	sbclsParentChild	or
sbclsMining.

Class	type Access
clsCubeLevel R/W*
clsPartitionLevel R
clsAggregationLevel R*	Read-only	for	virtual	cube	levels.

Remarks
If	a	level	is	disabled,	it	does	not	show	up	in	a	processed	cube.	That	is,	you
cannot	see	the	level	when	querying	the	cube	using
Multidimensional	Expressions	(MDX).

This	property	is	useful	in	certain	cases	involving	shared	dimensions	and	multiple
cubes.	For	example,	if	a	parent	dimension	is	shared	between	two	different	cubes
and	a	child	level	has	corresponding	values	in	only	one	of	the	cubes,	you	can	set

the	IsDisabled	property	of	the	level	object	in	the	other	cube	to	True	to	prevent
queries	against	nonexistent	level	members.

Note		When	a	level	is	disabled,	all	subordinate	levels	must	already	be	disabled.
When	a	level	is	enabled,	all	higher	levels	must	already	be	enabled.	At	least	one
level	must	be	enabled.

Example
Use	the	following	code	to	disable	a	level	object:

'	Assume	an	object	(dsoCubeLevel)	of	ClassType	clsCubeLevel	exists
dsoCubeLevel.IsDisabled	=	True

See	Also

Level	Interface

Analysis	Services	Programming

IsValid	(Level	Interface)
The	IsValid	property	of	the	Level	interface	indicates	whether	the	level	structure
is	valid.	A	level	is	valid	if	it	is	fully	and	correctly	defined.	For	example,	a	level
for	which	the	FromClause	has	not	been	defined	is	not	valid.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
Boolean

Access
Read-only

Example
Use	the	following	code	to	have	Decision	Support	Objects	(DSO)	determine	the
validity	of	a	level	object:

'	Assume	an	object	(dsoLevel)	of	ClassType	clsLevel	exists
If	Not	dsoLevel.IsValid	Then
		'Code	to	validate	level	definition
End	If

See	Also

Level	Interface

Analysis	Services	Programming

IsVisible	(Level	Interface)
The	IsVisible	property	of	the	Level	interface	determines	whether	the	level	is
visible	to	client	applications.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseLevel R/W
ClsCubeLevel R/W
ClsPartitionLevel R
ClsAggregationLevel R

Remarks
Setting	this	property	for	a	level	of	ClassType	clsCubeLevel	overrides	the
database	setting	of	this	property.	Unlike	other	objects	in	the	Decision	Support
Objects	(DSO)	library,	a	level	cannot	be	referenced	by	calculated	members	or
other	Multidimensional	Expressions	(MDX)	statements	if	its	IsVisible	property
is	False.

At	least	one	level	in	a	dimension	must	be	visible.	DSO	raises	an	error	if	all	the
levels	of	a	dimension	have	their	IsVisible	property	set	to	False.

See	Also

Level	Interface

Analysis	Services	Programming

JoinClause	(Level	Interface)
The	JoinClause	property	of	the	Level	interface	describes	how	related	tables	that
define	the	parent	Dimension	object	are	linked	and	takes	the	form	of	a	SQL	JOIN
clause.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
String

Access
Read-only

Remarks
The	JoinClause	property	of	a	level	returns	a	nonempty	string	only	when
multiple	dimension	tables	are	used	to	define	the	parent	Dimension	object	of	the
level.	This	type	of	definition	results	from	the	snowflake	schema	of	fact	and
dimension	tables	in	the	cube.

Example
A	database	contains	the	following	tables:

Sales_Facts

Customer

Product

Product_Class

Promotion

Store

Calendar

This	diagram	illustrates	the	relationships	of	these	tables.

Use	the	following	code	to	return	the	JoinClause	of	the	level	object:

'	Assume	an	object	(dsoLevel)	of	ClassType	clsLevel
'	and	is	associated	with	the	Product	dimension	and
'	SKU	level
Debug.Print	"								Level:	"	&	dsoLevel.Name
Debug.Print	"		Join	Clause:	"	&	dsoLevel.JoinClause

The	display	in	the	immediate	window	would	show	the	following:

								Level:	SKU

		Join	Clause:	"product"."SKU"="product_class"."SKU"

See	Also

Level	Interface

Analysis	Services	Programming

LevelNamingTemplate	(Level	Interface)
The	LevelNamingTemplate	property	of	the	Level	interface	defines	how	levels
in	a	parent-child	hierarchy	are	named.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.	This
property	applies	only	to	levels	whose	SubClassType	is	sbclsParentChild	or
sbclsMining.

Class	type Access
ClsDatabaseLevel R/W
ClsCubeLevel R
ClsPartitionLevel R
ClsAggregationLevel R

Remarks
There	are	two	ways	to	create	a	level-naming	template.	You	can	design	a	naming
pattern	or	you	can	specify	a	list	of	names.	A	naming	pattern	contains	an	asterisk
(*)	as	a	placeholder	character	for	a	counter	that	is	incremented	and	inserted	into
the	name	of	each	new	and	deeper	level.	For	example,	a	LevelNamingTemplate

value	of	Level	*	results	in	the	level	names	Level	1,	Level	2,	Level	3,	and	so	on,
if	no	(All)	level	is	defined.	If	a	naming	pattern	does	not	contain	the	placeholder,
it	is	first	used	as	is,	and	then	subsequent	level	names	are	formed	by	appending	a
space	and	a	number	to	the	end	of	the	pattern.	For	example,	the
LevelNamingTemplate	Level	results	in	the	level	names	Level,	Level	1,	Level	2,
and	so	on.

To	use	a	specific	set	of	names	for	the	LevelNamingTemplate	property,	create	a
list	of	level	names	and	separate	them	with	semicolons.	Each	member	of	the	list
is	used	for	a	subsequent	level	name.	If	the	number	of	levels	exceeds	the	number
of	names	in	the	list,	the	last	name	in	the	list	is	used	as	a	template	for	any
additional	level	names.	For	example,	a	LevelNamingTemplate	value	of
Division;Group;Unit	results	in	the	level	names	Division,	Group,	Unit,	Unit	1,
Unit	2,	and	so	on.	By	contrast,	a	LevelNamingTemplate	value	of
Division;Group;Unit	*	results	in	the	level	names	Division,	Group,	Unit	3,	Unit	4,
and	so	on.

Each	name	in	the	list	is	treated	as	a	template	to	ensure	uniqueness	of	level
names.	A	LevelNamingTemplate	value	of	Manager;Team	Lead;Manager;Team
Lead;Worker	*	results	in	the	level	names	Manager,	Team	Lead,	Manager	1,
Team	Lead	1,	Worker	5,	Worker	6.

To	use	the	asterisk	(*)	character	in	a	level	name	using	LevelNamingTemplate,
use	two	asterisks	(**).

See	Also

Level	Interface

Analysis	Services	Programming

LevelType	(Level	Interface)
The	LevelType	property	of	the	Level	interface	returns	an	enumeration	constant
that	identifies	the	specific	type	of	level.	It	tells	client	applications	that	encounter
this	level	what	kind	of	content	the	level	contains.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
LevelTypes

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsDatabaseLevel R/W*
clsCubeLevel R
clsPartitionLevel R
clsAggregationLevel R*	Read-only	for	virtual	cube	levels	and	for	levels	with	a	SubClassType	of	sbclsParentChild	or
sbclsMining.

Remarks
The	LevelType	property	can	be	set	to	one	of	the	constants	enumerated	by	the
LevelTypes	enumeration.	If	the	level	is	part	of	a	relational	OLAP	(ROLAP)
dimension,	the	first	level	must	be	unique	and	must	always	be	of	type	levAll.
Time	levels	have	their	LevelType	property	set	to	one	of	the	time	level	constants,

such	as	levTimeYears	or	levTimeMonths.	Time	levels	must	be	created
according	to	the	time	hierarchy:	For	example,	a	level	of	type	levTimeYears	must
be	above	a	level	of	type	levTimeMonths.

Examples

A.	Setting	Level	Type
Use	the	following	code	to	set	the	level	type	of	a	level	object	to	days:

LevelObject.LevelType	=	levTimeDays

B.	Setting	and	Determining	Level	Type
Use	the	following	code	to	return	the	level	type	of	a	level	object	and	to	determine
which	level	type	has	been	returned:

'Assume	an	object	(dsoLevel)	of	ClassType	clsDatabaseLevel	exists
Dim	objType	As	DSO.LevelTypes
objType	=	dsoLevel.LevelType
Select	Case	objType
		Case	levRegular
				'	Commands	for	levRegular,	a	level	not	time-related
		Case	levAll
				'	Commands	for	levAll,	the	topmost	level
		Case	levTimeQuarters
				'	Commands	for	levTimeQuarters,	a	calendar	quarter	level
..Case	levCompany
				'	Commands	for	levCompany,	a	company	information	level
..Case	levGeoCity
				'	Commands	for	levGeoCity,	a	city	name	level
		Case	levProduct
				'	Commands	for	levProduct,	an	individual	products	level
		Case	Else
				'	Commands	for	other	LevelTypes
End	Select

See	Also

Level	Interface

Analysis	Services	Programming

MemberKeyColumn	(Level	Interface)
The	MemberKeyColumn	property	of	the	Level	interface	contains	the	name	or
expression	of	the	column	that	contains	member	keys.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsDatabaseLevel R/W
clsCubeLevel R/W*
clsPartitionLevel R/W
clsAggregationLevel R/W*	Read-only	for	virtual	cube	levels.

Remarks
Some	general	considerations	concerning	the	MemberKeyColumn	property	are
as	follows:

In	relational	terms,	a	key	is	a	set	of	one	or	more	columns	that	uniquely
identify	an	entity.	MemberKeyColumn	is	a	key	in	this	sense	if	the
AreMemberKeysUnique	property	of	a	level	is	True.	If

AreMemberKeysUnique	is	False,	MemberKeyColumn	uniquely
identifies	a	member	within	the	context	of	a	parent	member	only.	For
example,	months	are	unique	only	within	the	context	of	a	given	year.

The	MemberKeyColumn	property	controls	the	way	the	dimensions
within	a	cube	are	processed.	To	improve	cube-processing	efficiency,
when	you	create	levels,	make	sure	the	lowest	level	has	unique	members.

Often,	the	fact	table	will	contain	member	key	values	but	not	necessarily
member	names.	The	user,	however,	sees	the	member	names	rather	than
the	keys.

MemberKeyColumn	can	contain	any	valid	SQL	expression	that
involves	one	or	more	columns	from	a	single	table.	For	example,	either
of	the	following	is	a	valid	expression	that	uses	the	Product.Prod_Year
column:
"""Product"".""Prod_Year"""
DatePart('q',"Product"."Prod_Year")

Note		If	this	property	contains	an	SQL	expression,	the	expression	must	be
compatible	with	the	SQL	dialect	supported	by	the	OLE	DB	provider.	Using	an
incompatible	expression	will	result	in	an	error	when	the	cube	is	processed.

Example
Use	the	following	code	to	set	a	level	object	MemberKeyColumn	to	the
Customer_Number	column	in	table	Customer:

LevelObject.MemberKeyColumn	=	"""Customer"".""Customer_Number"""

See	Also

AreMemberKeysUnique

Level	Interface

Member	Names	and	Member	Keys

JavaScript:hhobj_1.Click()

MemberNameColumn

Analysis	Services	Programming

MemberNameColumn	(Level	Interface)
The	MemberNameColumn	property	of	the	Level	interface	contains	the	name	of
the	column	that	contains	member	names.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsDatabaseLevel R/W*
clsCubeLevel R
clsPartitionLevel R
clsAggregationLevel R*	Read-only	for	virtual	cube	levels,	levels	with	a	LevelType	property	of	levAll,	and	levels	with	a	Grouping
of	groupingAutomatic.

Remarks
This	property	is	useful	when	the	member	key	column	may	not	contain
information	recognizable	to	the	user.

For	example,	a	table	may	contain	the	columns	SKU	and	Product_Name.	When
you	generate	queries	by	SKU	number,	you	may	want	to	display	the

corresponding	product	name	for	the	sake	of	clarity.	In	this	case,	the	member	key
column	is	SKU,	but	the	member	name	column	is	Product_Name.

If	you	do	not	assign	a	value	to	MemberNameColumn,	the	Analysis	server	uses
the	MemberKeyColumn	values	for	the	member	names.

Be	careful	when	using	expressions	in	MemberNameColumn	that	are	based	on
columns	other	than	those	specified	by	MemberKeyColumn.	Ensure	that	there	is
always	a	one-to-one	correspondence	in	the	values	produced	by	the	expressions
in	MemberNameColumn	and	MemberKeyColumn.

The	MemberNameColumn	property	can	contain	any	valid	SQL	expression
involving	one	or	more	columns	from	the	table	that	contains	the	member	key
column.	Such	an	expression	can	be	used	to	produce	a	calculated	or	concatenated
string	expression.	For	example,	the	following	is	a	valid	expression	for	a
Product.Prod_Year	member	key	column:

'Quarter	'	&	Format(DatePart('q',"Product"."Prod_Year"))

The	following	is	another	example	from	an	Employees	table:

"Employees"."LastName"	+	',	'	+	"Employees"."Firstname"

Note		If	this	property	contains	an	SQL	expression,	the	expression	must	be
compatible	with	the	SQL	dialect	supported	by	the	OLE	DB	provider.	Using	an
incompatible	expression	will	result	in	an	error	when	the	cube	is	processed.

Example
Use	the	following	code	to	set	the	MemberNameColumn	property	of	a	level
object	to	the	Product_Name	column	in	table	Sales:

'	Assume	an	object	(dsoLev)	of	ClassType	clsLevel	exists
dsoLev.MemberNameColumn	=	"""Sales"".""Product_Name"""

See	Also

Level	Interface

MemberKeyColumn

Analysis	Services	Programming

Name	(Level	Interface)
The	Name	property	of	the	Level	interface	contains	the	name	of	the	level	object.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
String	(maximum	length	of	50	characters)

Access
Read/write	(read-only	after	the	object	has	been	named)

Example
Use	the	following	code	to	return	a	level	object	name:

Dim	sName	As	String
sName	=	LevelObject.Name

See	Also

Level	Interface

Analysis	Services	Programming

Ordering	(Level	Interface)
The	Ordering	property	of	the	Level	interface	specifies	the	method	to	use	when
ordering	the	members	of	a	level.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
OrderTypes

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsDatabaseLevel R/W
clsCubeLevel R
clsPartitionLevel R
clsAggregationLevel R

Remarks
Values	of	the	Ordering	property	affect	the	access	and	values	of	the
OrderingMemberProperty.	For	example,	to	enable	read/write	access	for
OrderingMemberProperty,	specify	orderMemberProperty	for	the	Ordering
OrderType.	If	orderKey	or	orderName	are	specified,
OrderingMemberProperty	has	read-only	access	with	respective	values	of
"Key"	and	"Name".

See	Also

Level	Interface

Ordering

OrderingMemberProperty

Analysis	Services	Programming

OrderingMemberProperty	(Level	Interface)
The	OrderingMemberProperty	of	the	Level	interface	specifies	the	member
property	that	is	used	to	determine	the	ordering	of	level	members.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsDatabaseLevel R/W*
clsCubeLevel R
clsPartitionLevel R
clsAggregationLevel R*	Read-only	for	levels	with	an	Ordering	of	orderKey	or	orderName.

Remarks
This	property	allows	the	level	to	be	ordered	by	a	member	property	instead	of	by
name	or	by	key.	To	order	by	member	property,	set	the	value	of	the	Ordering
property	to	orderMemberProperty,	and	then	set	the	value	of	the
OrderMemberProperty	property	to	the	name	of	the	member	property.	If	the
Ordering	property	of	the	object	is	set	to	orderName	or	orderKey,	this	property
is	read-only,	and	the	value	of	this	property	is	set	to	"Name"	or	"Key",

respectively.

See	Also

Level	Interface

Ordering

OrderTypes

Analysis	Services	Programming

OrdinalPosition	(Level	Interface)
The	OrdinalPosition	property	of	the	Level	interface	contains	the	ordinal
position	of	the	level	in	the	Levels	collection.

	Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
Integer

Access
Read-only

Remarks
The	OrdinalPosition	property	for	a	level	determines	the	relative	position	of	the
level	in	the	dimension	hierarchy:	A	value	of	1	defines	the	most	aggregated	level,
and	the	maximum	value	defines	the	most	detailed	level.	Decision	Support
Objects	(DSO)	sets	the	value	of	this	property	when	you	add	the	level	to	a
dimension.

The	following	table	shows	an	example	of	relative	ordinal	positions.

Level Ordinal	position
All 1
Yearly 2
Quarterly 3

Weekly 4
Daily 5

Example
Use	the	following	code	to	return	the	ordinal	position	of	a	level	object:

'	Assume	an	object	(dsoLev)	of	ClassType	clsLevel	exists
If	dsoLev.OrdinalPosition	=	1	Then
		'Code	to	handle	top	level
Else
		'Code	to	handle	remaining	levels
End	If

See	Also

Level	Interface

Analysis	Services	Programming

Parent	(Level	Interface)
The	Parent	property	of	the	Level	interface	returns	a	reference	to	the	parent
Dimension	object.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
Dimension

Access
Read-only

Remarks
For	each	level,	the	ClassType	of	the	parent	object	depends	on	the	ClassType	of
the	level	object.

Class	type Parent	object	class	type
clsDatabaseLevel clsDatabaseDimension
ClsCubeLevel clsCubeDimension
ClsPartitionLevel clsPartitionDimension
ClsAggregationLevel clsAggregationDimension

See	Also

Dimensions

JavaScript:hhobj_1.Click()

Level	Interface

Analysis	Services	Programming

ParentKeyColumn	(Level	Interface)
The	ParentKeyColumn	of	the	Level	interface	contains	the	name	of	the	parent
column	in	a	parent-child	level.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.	This
property	applies	only	to	levels	whose	SubClassType	is	sbclsParentChild	or
sbclsMining.

Class	type Access
ClsDatabaseLevel R/W*
ClsCubeLevel R
ClsPartitionLevel R
ClsAggregationLevel R

Remarks
The	ParentKeyColumn	property	contains	the	name	of	the	column	that	stores
the	key	values	for	the	parents	of	individual	members.	This	setting	tells	the
Analysis	server	how	to	find	the	relationship	information	necessary	to	build	the
hierarchy	of	members	in	a	parent-child	dimension.

Note		Because	the	ParentKeyColumn	defines	a	parent-child	relationship,	the
column	named	in	the	ParentKeyColumn	property	must	contain	data	of	the	same
type	as	the	column	named	in	the	MemberKeyColumn	property.

See	Also

Level	Interface

LevelTypes

MemberKeyColumn

Parent-Child	Dimensions

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

RootMemberIf	(Level	Interface)
The	RootMemberIf	property	of	the	Level	interface	determines	how	the	root
member	or	members	of	a	parent-child	hierarchy	are	identified.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
RootIfValues

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.	This
property	applies	only	to	levels	whose	SubClassType	is	sbclsParentChild	or
sbclsMining.

Class	type Access
ClsDatabaseLevel R/W
ClsCubeLevel R
ClsPartitionLevel R
ClsAggregationLevel R

Remarks
This	property	determines	how	root	members	are	identified	within	the	level.	A
root	member	is	a	top-level	member	within	a	parent-child	dimension.

See	Also

Level	Interface

Parent-Child	Dimensions

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

SkippedLevelsColumn	(Level	Interface)
The	SkippedLevelsColumn	of	the	Level	interface	is	used	to	define	empty
positions	in	a	parent-child	dimension.

Applies	To
clsAggregationLevel

clsDatabaseLevel

clsCubeLevel

clsPartitionLevel

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.	This
property	applies	only	to	levels	whose	SubClassType	is	sbclsParentChild	or
sbclsMining.

Class	type Access
ClsDatabaseLevel R/W
ClsCubeLevel R
ClsPartitionLevel R
ClsAggregationLevel R

Remarks
This	property	contains	the	name	of	a	column	that	stores	the	number	of	skipped
(empty)	levels	between	each	member	and	its	parent.	This	allows	a	parent-child
hierarchy	to	skip	levels	between	members.	The	values	contained	in	this	column
must	be	nonnegative	integers;	otherwise	a	processing	error	occurs.	If	the	column

contains	no	value,	the	current	member	has	a	level	depth	one	below	its	parent.

See	Also

Level	Interface

Parent-Child	Dimensions

Ragged	Dimension	Support

SubClassType

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Analysis	Services	Programming

SliceValue	(Level	Interface)
The	SliceValue	property	of	the	Level	interface	contains	the	level	slice	value.

Applies	To
clsPartitionLevel

Data	Type
String

Access
Read/write

Remarks
This	property	applies	only	to	levels	whose	SubClassType	is	sbclsRegular,
sbclsParentChild,	or	sbclsMining.	For	all	other	levels,	this	property	returns	an
empty	string.

Examples
Use	the	following	code	to	set	a	level	object	slice	value	to	the	member	name
May_Sales:

'	Assume	an	object	(dsoLevel)	of	ClassType	clsPartitionLevel	exists
dsoLevel.SliceValue	=	"May_Sales"

Use	the	following	code	to	return	the	slice	value	for	a	level	object:

Dim	sSliceVal	As	String
sSliceVal	=	LevelObject.SliceValue

See	Also

clsPartitionLevel

Dimensions

Level	Interface

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

SubClassType	(Level	Interface)
The	SubClassType	property	of	the	Level	interface	contains	an	enumeration
constant	that	identifies	the	subclass	type	of	the	object.

Applies	To
clsAggregationLevel

clsDatabaseLevel

clsCubeLevel

clsPartitionLevel

Data	Type
SubClassTypes

Access
Read-only

Remarks
Objects	that	implement	the	Level	interface	can	have	a	SubClassType	property
of	sbclsRegular,	sbclsLinked,	sbclsVirtual,	sbclsMining,	or
sbclsParentChild.

Example
Use	the	following	code	to	check	the	SubClassType	property	of	a	level	object.

'	Assume	an	object	(dsoLevel)	of	ClassType	clsCubeLevel	exists
If	dsoLevel.SubClassType	=	sbclsParentChild	Then
		'Code	to	handle	a	parent-child	level
Else

		'Code	to	handle	other	types	of	levels
End	If

See	Also

Level	Interface

Analysis	Services	Programming

UnaryOperatorColumn	(Level	Interface)
The	UnaryOperatorColumn	property	of	the	Level	interface	contains	the	name
of	a	column	that	stores	mathematical	operators	serving	as	member-specific
rollup	instructions	for	a	specified	level.

Applies	To
clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

ClassType Access
clsDatabaseLevel R/W
clsCubeLevel R
clsPartitionLevel R
clsAggregationLevel R

Remarks
The	UnaryOperatorColumn	property	provides	a	simple	way	to	control	how
member	values	are	rolled	up	to	the	values	of	their	parents.	When	the	value	of
this	property	is	assigned	to	the	name	of	a	column,	the	contents	of	that	column	are
used	as	the	unary	operator	for	the	member.	This	unary	operator	is	applied	to	the
member	when	evaluating	the	value	of	the	member's	parent.

This	property	provides	similar	but	simplified	functionality	of	the
CustomRollupColumn	property.	In	comparison	to	the	CustomRollupColumn
property,	which	uses	Multidimensional	Expressions	(MDX)	expressions	to
determine	how	the	member	itself	is	evaluated,	the	UnaryOperatorColumn
contains	simple	math	operators	to	determine	how	the	value	of	a	member	affects
the	parent.	This	property	may	be	overridden	by	the	values	in	the	column
specified	in	the	CustomRollupColumn	property.	However,	the
UnaryOperatorColumn	property	overrides	the	CustomRollupExpression
property.

The	following	table	lists	available	unary	operators	and	describes	how	they
behave.

Unary	operator Description
+ The	value	of	the	member	is	added	to	the	aggregate

value	of	the	preceding	sibling	members.
- The	value	of	the	member	is	subtracted	from	the

aggregate	value	of	the	preceding	sibling	members.
* The	value	of	the	member	is	multiplied	by	the	aggregate

value	of	the	preceding	sibling	members.
/ The	value	of	the	member	is	divided	by	the	aggregate

value	of	the	preceding	sibling	members.
~ The	value	of	the	member	is	ignored.

Blank	values	and	any	other	values	not	found	in	the	table	are	treated	as	the	plus
sign	(+)	unary	operator.	There	is	no	operator	precedence,	so	the	order	of
members	among	their	siblings	is	important.

See	Also

CustomRollUpColumn

Level	Interface

Analysis	Services	Programming

MDStore	Interface
The	MDStore	interface	is	implemented	by	objects	in	Decision	Support	Objects
(DSO)	that	contain	multidimensional	data.	The	following	table	describes	these
objects.

Object Description
Database An	object	that	represents	a	database	on	the	Analysis	server.

Databases	contain	cubes,	dimensions,	mining	models,	and
roles.

Cube An	object	that	represents	a	cube	on	the	Analysis	server.	Cubes
contain	dimensions,	measures,	and	commands.

Partition An	object	that	represents	the	physical	storage	for	the	data	in	a
cube.	Partitions	contain	dimensions,	measures,	and
aggregations.

Aggregation An	object	that	represents	the	tables	of	aggregated	(that	is,
precalculated)	data	in	a	cube.	Aggregations	contain
dimensions,	measures,	and	member	properties.

Although	all	of	these	objects	implement	their	own	internal	interfaces,	the
MDStore	interface	is	the	primary	interface	to	be	used	when	using	these	objects.
To	differentiate	between	the	objects	implementing	the	MDStore	interface,	the
ClassType	property	is	used.	The	following	table	lists	the	objects	implementing
the	MDStore	interface	and	associated	ClassType	property	values.

Object Class	type
Database clsDatabase
Cube clsCube
Partition clsPartition
Aggregation clsAggregation

The	relationships	among	these	objects	are	maintained	through	hierarchical
linkages	using	the	MDStores	collections	of	each	of	these	objects	and	the	server

object.	The	MDStores	collection	of	a	server	object	contains	database	objects.
Database	objects	contain	cube	objects.	Cubes	contain	partitions,	and	partitions
contain	aggregations.	Together,	the	MDStore	interface	and	the	MDStores
collections	establish	and	maintain	the	hierarchy	that	defines	the	structure	of
OLAP	data.

The	MDStore	interface	provides	collections,	methods,	and	properties	to
manipulate	these	objects,	their	contained	objects,	and	data.	The	four	objects	that
implement	the	MDStore	interface	do	not	necessarily	implement	all	of	the
MDStores	collections,	properties,	and	methods.	For	example,	only	objects	of
ClassType	clsDatabase	have	MiningModels	collections.	Also,	some	MDStore
properties	and	collections	may	be	restricted	to	read-only	access	by	some	objects.
For	example,	an	object	of	ClassType	clsDatabase	allows	read/write	access	to	its
DataSources	collection,	whereas	access	to	the	DataSources	collection	of	an
object	of	ClassType	clsAggregation	is	read-only.

You	create	objects	that	implement	the	MDStore	interface	by	declaring	a	variable
as	an	MDStore	data	type	and	then	creating	an	instance	of	the	object	and	adding
it	to	the	MDStores	collection	of	another	object.	The	AddNew	method	of	the
MDStores	collection	creates	the	instance,	sets	the	object's	name	to	the	name	you
provide,	adds	the	object	to	the	collection,	and	sets	its	parent	property	to
reference	the	owner	of	the	collection.	At	the	same	time,	the	new	object's
ClassType	is	automatically	initialized	to	the	appropriate	value	depending	on	the
object's	parent.	For	example,	if	you	use	the	AddNew	method	to	create	an	object
in	a	cube's	MDStores	collection,	the	new	object's	ClassType	will	be	set	to
clsPartition.

For	more	information	about	DSO,	see	Introducing	Decision	Support	Objects	and
Interfaces.

Applies	To
clsAggregation

clsCube

clsDatabase

clsPartition

Examples
The	following	examples	walk	through	the	hierarchy	of	usage	for	the	MDStore
object.	First,	a	server	object	is	created,	which	contains	an	MDStores	collection
of	databases.	Next,	a	database	is	created	in	the	server's	MDStores	database
collection.	Then,	a	cube	is	created	in	this	new	database's	own	collection	of
MDStores	objects.	The	same	process	continues	by	creating	a	new	partition	and	a
new	aggregation	using	the	same	method.	Each	time,	an	interface	(or	placeholder)
is	defined	to	hold	an	MDStore	object.	Then	the	AddNew	method	of	the	parent
object's	MDStores	collection	is	used	to	create	the	MDStore	object.

A.	Creating	a	Server	Object
In	this	example,	a	new	server	object	is	created	and	a	connection	is	established	to
a	server	named	LocalHost:

Dim	dsoServer	As	DSO.Server
'	Create	a	server	object	and	connect	to	an	OLAP	server.
Set	dsoServer	=	New	DSO.Server
dsoServer.Connect("LocalHost")	

B.	Adding	a	Database
The	following	example	declares	an	MDStore	interface	(dsoDB)	and	calls	the
AddNew	method	of	the	server	object's	MDStores	collection.	This	creates	an
object	whose	ClassType	property	is	set	to	clsDatabase	and	is	interacted	with	by
means	of	the	MDStore	interface	that	was	created	for	it.

IMPORTANT		In	DSO,	MDStore	is	used	in	different	contexts	to	indicate	different
meanings.	For	example,	in	the	preceding	paragraph,	MDStore	refers	to	an
interface	and	a	collection.	The	MDStore	interface	is	created	first.	Because	it	is
an	interface,	the	Microsoft®	Visual	Basic®	keyword	new	is	not	used	when
defining	the	variable.	The	MDStores	collection	is	the	server	object's	collection
of	databases	(that	is,	MDStore	objects	whose	ClassType	property	has	been	set
to	clsDatabase).

'	Create	and	add	a	database	to	the	server's	MDStores	collection.
Dim	dsoDB	As	DSO.MDStore
Set	dsoDB	=	dsoServer.MDStores.AddNew("MyDatabase")

'...	additional	code	to	set	other	database	object	properties

C.	Adding	a	Cube
The	following	example	creates	an	MDStore	interface	to	hold	the	MDStore
object	created	by	the	AddNew	method	of	the	database's	MDStores	collection.
The	resulting	object's	ClassType	property	is	automatically	set	to	clsCube.

'	Create	and	add	a	cube	to	the	database's	MDStores	collection.
Dim	dsoCube	As	DSO.MDStore
Set	dsoCube	=	dsoDB.MDStores.AddNew("MyCube")
'...	additional	code	to	set	other	cube	properties

D.	Adding	a	Partition
The	following	example	creates	an	MDStore	interface	to	hold	the	MDStore
object	created	by	the	AddNew	method	of	the	cube's	MDStores	collection.	The
resulting	object's	ClassType	property	is	automatically	set	to	clsPartition.

'	Create	and	add	a	partition	to	the	cube's	MDStores	collection.
Dim	dsoPart	As	DSO.Partition
Set	dsoPart	=	dsoCube.MDStores.AddNew("MyPartition")
'...	additional	code	to	set	other	partition	properties

E.	Adding	an	Aggregation
The	following	example	creates	an	MDStore	interface	to	hold	the	MDStore
object	created	by	the	AddNew	method	of	the	partition's	MDStores	collection.
The	resulting	object's	ClassType	property	is	automatically	set	to
clsAggregation.

'	Create	and	add	an	aggregation	to	the	partition's	MDStores	collection.
Dim	dsoAgg	As	DSO.MDStore
Set	dsoAgg	=	dsoPart.MDStores.AddNew("MyAggregation")
'...	additional	code	to	set	other	aggregation	properties

See	Also

Aggregations

Collections,	MDStore	Interface

Cubes

Databases

Methods,	MDStore	Interface

Partitions

Properties,	MDStore	Interface

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Analysis	Services	Programming

Collections,	MDStore	Interface
The	MDStore	interface	supports	the	following	collections.

Collection Description
Commands The	collection	of	user-defined	commands	or	sequence

of	commands
CustomProperties The	collection	of	user-defined	properties
DataSources The	collection	of	objects	specifying	a	data	provider
Dimensions The	collection	that	holds	the	dimension	definitions	for

an	object
MDStores The	collection	that	holds	MDStore	objects
Measures The	collection	that	holds	the	measures
MiningModels The	collection	of	data	mining	models	contained	within

a	database
Roles The	collection	that	holds	the	user	role	definitions	for	a

database

The	following	table	shows	the	class	types	of	the	objects	that	each	collection	can
contain.

Collection Class	type	of	contained	objects
Commands clsCubeCommand

clsDatabaseCommand
CustomProperties Property
DataSources clsDataSource
Dimensions clsAggregationDimension

clsCubeDimension
clsDatabaseDimension
clsPartitionDimension

MDStores clsAggregation
clsCube
clsDatabase
clsPartition

Measures clsAggregationMeasure
clsCubeMeasure
clsPartitionMeasure

MiningModels clsMiningModel
Roles clsCubeRole

clsDatabaseRole
clsMiningModelRole

Access	Cross-Reference
The	following	table	shows	whether	a	collection	is	read/write	(R/W),	read-only
(R),	or	not	applicable	(n/a)	for	each	of	the	MDStore	objects.

Collection clsDatabase clsCube clsPartition clsAggregation
Commands R/W R/W n/a n/a
Custom
Properties

R/W R/W R/W R/W

DataSources R/W R/W* R/W n/a
Dimensions R/W R/W R R
MDStores R/W R/W R/W R
Measures n/a R/W R R
MiningModelsR/W n/a n/a n/a
Roles R/W R/W n/a n/a
*This	property	is	not	applicable	(n/a)	for	virtual	cubes	(that	is,	those	of	SubClassType	sbclsVirtual).

See	Also

MDStore	Interface

Analysis	Services	Programming

Methods,	MDStore	Interface
The	MDStore	interface	supports	the	following	methods.

Method Description
BeginTrans Begins	a	transaction	on	a	database.
Clone Copies	an	existing	object	to	a	target	object	of	the	same

class	type.
CommitTrans Commits	a	transaction.
LockObject Locks	an	object	to	prevent	multiple	users	from

concurrently	changing	the	object.	This	method	is
administered	through	the	Command	interface.

Merge Merges	two	partitions.
Process Processes	an	MDStore	object.
Rollback Rolls	back	a	transaction.
UnlockObject Unlocks	a	previously	locked	object.
Update Updates	the	definition	of	an	object	in	the	meta	data

repository.

Method/Class	Cross-Reference
The	following	table	shows	the	implementation	of	methods	by	object.	X	indicates
applicable;	n/a	indicates	not	applicable.

Method Database Cube Partition Aggregation
BeginTrans X n/a n/a n/a
Clone X X X X
CommitTrans X n/a n/a n/a
LockObject X X X n/a
Merge n/a n/a X n/a
Process X X X n/a
Rollback X n/a n/a n/a
UnlockObject X X X n/a

Update X X X n/a

See	Also

MDStore	Interface

Analysis	Services	Programming

BeginTrans	(MDStore	Interface)
The	BeginTrans	method	of	the	MDStore	interface	initiates	a	transaction	on	the
Analysis	server	database.

Applies	To
clsDatabase

Syntax
object.BeginTrans

object

The	Database	object	to	which	changes	are	to	be	applied.

Remarks
Transactions	group	the	processing	of	objects	on	the	Analysis	server	by	using	the
Process	method	for	Database,	Cube,	Partition,	or	Dimension	objects	after
executing	the	BeginTrans	method.	Processing	actions	within	a	transaction	are
not	initiated	on	the	server	until	you	execute	the	CommitTrans	method.	You	can
use	the	Rollback	method	to	void	a	transaction	and	leave	the	state	of	the	objects
on	the	server	in	the	same	condition	they	were	in	before	the	transaction	was
initiated.	The	processing	of	all	objects	on	which	you	execute	the	Process	method
within	the	same	transaction	is	completed	as	a	single	atomic	operation.	All	of	the
specified	processing	is	completed	if	the	transaction	completes	successfully;	none
of	it	is	completed	if	you	roll	back	the	transaction	or	if	it	terminates	abnormally.

If	you	invoke	a	Process	method	on	an	object	without	first	explicitly	beginning	a
transaction	using	the	BeginTrans	method,	Decision	Support	Objects	(DSO)
creates	a	single	transaction	for	you	so	that	the	object	you	are	processing	is
always	processed	inside	a	transaction.

Example

The	following	code	example	begins	a	transaction	on	the	FoodMart	2000
database,	processes	the	Sales	and	Budget	cubes,	and	commits	the	transaction:

				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoCube	As	DSO.MDStore

				'	Connect	to	the	local	Analysis	server.
				dsoServer.Connect	"LocalHost"
				
				'	Open	the	FoodMart	2000	database.
				Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")
				
				'	Begin	a	transaction	on	the	database.
				dsoDB.BeginTrans
				
				'	Create	a	reference	to	the	Sales	cube.
				Set	dsoCube	=	dsoDB.MDStores("Sales")
				
				'	Process	the	cube,	refreshing	data.
				dsoCube.Process	processRefreshData
				
				'Creae	a	reference	to	the	Budget	cube.
				Set	dsoCube	=	dsoDB.MDStores("Budget")
				
				'	Process	the	cube	completely.
				dsoCube.Process	processFull
				
				'	Commit	the	transaction.
				dsoDB.CommitTrans

See	Also

CommitTrans

MDStore	Interface

Rollback

Analysis	Services	Programming

Clone	(MDStore	Interface)
The	Clone	method	of	the	MDStore	interface	copies	the	property	values	and
optionally	the	collections	of	major	and	minor	objects	of	an	existing	object	to	a
target	object	of	the	same	class	type.

Applies	To
clsAggregation

clsCube

clsDatabase

clsPartition

Syntax
object.Clone(ByVal	TargetObject	As	MDStore,	[ByVal	Options	As
CloneOptions	=	cloneMajorChildren])

object

The	MDStore	object	whose	property	values	and	collections	of	major	and
minor	objects	are	to	be	copied.

TargetObject

An	existing	MDStore	object.

Options

One	of	the	values	of	the	CloneOptions	enumeration.	If	no	value	is	specified,
the	cloneMajorChildren	option	is	used.	For	more	information,	see
CloneOptions.

Remarks
The	Clone	method,	depending	on	the	clone	option	specified	in	Options,	copies
properties	and	minor	objects	to	a	new	MDStore	object	with	the	same	ClassType

property	value.

See	Also

MDStore	Interface

Analysis	Services	Programming

CommitTrans	(MDStore	Interface)
The	CommitTrans	method	of	the	MDStore	interface	commits	a	transaction
previously	initiated	by	the	BeginTrans	method	on	a	Database	object.

Applies	To
clsDatabase

Syntax
object.CommitTrans

object

The	Database	object	associated	with	the	transaction.

Remarks
The	CommitTrans	method	commits	the	transaction	started	with	the	BeginTrans
method.	The	Rollback	method	can	be	used	if	the	objects	involved	in	the
transaction	are	rolled	back	to	the	state	prior	to	the	execution	of	the	BeginTrans
method.	If	the	CommitTrans	method	is	called	before	the	BeginTrans	method	is
called,	an	error	occurs.

Example
The	following	code	example	begins	a	transaction	on	the	FoodMart	2000
database,	processes	the	Sales	and	Budget	cubes,	and	commits	the	transaction.

				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoCube	As	DSO.MDStore

				'	Connect	to	the	local	Analysis	server.
				dsoServer.Connect	"LocalHost"

				
				'	Open	the	FoodMart	2000	database.
				Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")
				
				'	Begin	a	transaction	on	the	database.
				dsoDB.BeginTrans
				
				'	Create	a	reference	to	the	Sales	cube.
				Set	dsoCube	=	dsoDB.MDStores("Sales")
				
				'	Process	the	cube,	refreshing	data.
				dsoCube.Process	processRefreshData
				
				'Create	a	reference	to	the	Budget	cube.
				Set	dsoCube	=	dsoDB.MDStores("Budget")
				
				'	Process	the	cube	completely.
				dsoCube.Process	processFull
				
				'	Commit	the	transaction.
				dsoDB.CommitTrans

See	Also

BeginTrans

MDStore	Interface

Rollback

Analysis	Services	Programming

LockObject	(MDStore	Interface)
The	LockObject	method	of	the	MDStore	interface	locks	an	object	to	prevent
multiple	users	from	concurrently	changing	the	object.

Applies	To
clsCube

clsDatabase

clsPartition

Syntax
object.LockObject(ByVal	LockType	As	OlapLockTypes,	ByVal
LockDescription	As	String))

object

The	object	to	lock.

LockType

One	of	the	lock	types	defined	in	the	OlapLockTypes	enumeration.	For	more
information,	see	OlapLockTypes.

LockDescription

A	string	containing	a	description	of	the	lock,	available	to	other	applications
attempting	to	obtain	a	lock.

Remarks
It	is	sometimes	possible	for	an	application	to	request	an	additional	lock	on	an
already	locked	object.	For	example,	other	applications	can	request	and	receive
an	olapLockRead	lock	on	an	object	already	locked	using	the	olapLockProcess
lock.	For	more	information	on	how	lock	types	interact,	see	OlapLockTypes.

See	Also

MDStore	Interface

UnlockObject

Analysis	Services	Programming

Merge	(MDStore	Interface)
The	Merge	method	of	the	MDStore	interface	merges	two	partitions	into	a	single
partition.	The	partitions	must	have	the	same	aggregations	and	storage	modes.

Applies	To
clsPartition

Syntax
object.Merge(ByVal	SourceName	As	String)

object

The	partition	object	into	which	to	merge	the	source	partition	object.

SourceName

A	string	that	contains	the	name	of	the	source	partition	object.

Remarks
Before	merging	two	partitions	that	specify	data	slices,	you	must	first	set	the	slice
of	the	receiving	partition	to	the	slice	that	will	apply	after	the	merge	has	been
completed.	Otherwise,	the	partitions	will	not	be	successfully	merged.	The	slice
for	the	receiving	partition	must	be	the	parent	of	the	first	level,	where	the	slice
values	for	the	two	partitions	differ.

For	example,	if	you	are	merging	a	partition	that	contains	data	based	on	the	slice
[AllTime].[1998].[Quarter2]	into	a	partition	that	contains	[AllTime].[1998].
[Quarter1],	the	target	partition's	slice	must	be	set	to	the	parent	of	the	two	slices
that	differ,	in	this	case	[AllTime].[1998].	The	target	partition's	slice	must	be	set
to	this	value	before	merging	the	partitions.	For	more	information,	see	Managing
Partitions	and	Merging	Partitions.

Note		This	adjustment	is	done	automatically	when	you	merge	partitions	using
the	Analysis	Manager	user	interface.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Examples

Merging	Data	Slices
The	following	code	prepares	two	partitions	for	a	merge	by	merging	the	data	slice
values	so	they	are	equal:

Sub	MergeDataSlices(SourcePart	As	DSO.MDStore,	_
				TargetPart	As	DSO.MDStore)
				'	This	example	code	merges	the	data	slices	of	two	partitions.
				'	This	subroutine	does	not	merge	the	partitions;	instead,
				'	it	compares	the	source	and	target	partitions,	changing
				'	the	target	partition	to	match	the	source	partition	to
				'	prepare	it	for	merging.
				
				Dim	dsoDimSource	As	DSO.Dimension
				Dim	dsoLevelSource	As	DSO.Level
				Dim	dsoDimTarget	As	DSO.Dimension
				Dim	dsoLevelTarget	As	DSO.Level
				
				Dim	nDim	As	Integer,	nLev	As	Integer,	nLev2	As	Integer
				
				'	Search	for	the	first	level	where	the	slice	differs.
				'	Then	use	the	parent	level	just	above	it.
				'	Loop	through	each	dimension	in	the	source	partition.
				For	nDim	=	1	To	SourcePart.Dimensions.Count
								Set	dsoDimSource	=	SourcePart.Dimensions(nDim)
								Set	dsoDimTarget	=	TargetPart.Dimensions(nDim)
								
								'	For	each	source	and	target	dimension,	compare	the	two
								'	and	find	the	first	level	where	the	data	slice	differs.
								For	nLev	=	1	To	dsoDimSource.Levels.Count
												Set	dsoLevelSource	=	dsoDimSource.Levels(nLev)
												Set	dsoLevelTarget	=	dsoDimTarget.Levels(nLev)

												
												If	dsoLevelSource.SliceValue	<>	dsoLevelTarget.SliceValue	Then
												
																'	Clear	the	slice	values	for	all	of	the	levels	below
																'	in	the	target	partition.
																For	nLev2	=	nLev	To	dsoDimSource.Levels.Count
																				Set	dsoLevelTarget	=	dsoDimTarget.Levels(nLev2)
																				dsoLevelTarget.SliceValue	=	""
																Next
												
																'	Stop	looping	through	levels.
																Exit	For
												
												End	If
								Next
				Next
				
				'	Now	that	the	target	partition	is	ready	for	merge,
				'	update	it.
				TargetPart.Update
End	Sub

See	Also

MDStore	Interface

UnlockObject

Analysis	Services	Programming

Process	(MDStore	Interface)
The	Process	method	of	the	MDStore	interface	creates	and	populates	an
MDStore	object	on	the	Analysis	server.

Applies	To
clsCube

clsDatabase

clsPartition

Syntax
object.Process([ByVal	Options	As	ProcessTypes])

object

The	MDStore	object	to	process.

Options

An	optional	parameter	specifying	one	of	the	values	enumerated	by	the
ProcessTypes	enumeration.	For	more	information,	see	ProcessTypes.

Remarks
Databases,	cubes,	and	partitions	can	be	processed.	Processing	each	of	these
objects	means	that	all	subordinate	objects	are	processed.	For	example,	invoking
the	Process	method	for	a	database	processes	all	of	the	associated	dimensions,
cubes,	and	data	mining	models.	For	more	information	about	processing	and	the
differences	between	processing	and	updating,	see	Maintaining	OLAP	Data,	Cube
Processing,	and	Dimension	Processing.

Processing	an	MDStore	object	causes	the	Analysis	server	to	read	source	data,
perform	calculations,	and	store	aggregated	data.	For	example,	processing	an
object	of	ClassType	clsCube	causes	the	server	to	read	all	source	data
corresponding	to	the	definition	of	the	cube	and	to	create	the	resulting

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

multidimensional	cube	of	data.	If	you	use	the	Process	method	on	a	Database
object,	all	cubes,	dimensions,	and	mining	models	in	the	database	are	processed.
Processing	a	cube	automatically	causes	the	processing	of	all	subordinate
partitions.	In	addition,	any	of	the	cube's	dimensions	whose	State	property	is	not
set	to	olapStateCurrent	will	also	be	processed,	including	shared	dimensions.

Processing	a	cube	whose	SubClassType	is	sbclsVirtual	causes	cubes	used	by
the	virtual	cube	to	be	processed	only	if	their	State	property	is	not	set	to
olapStateCurrent.

See	Also

MDStore	Interface

UnlockObject

Analysis	Services	Programming

Rollback	(MDStore	Interface)
The	Rollback	method	of	the	MDStore	interface	rolls	back	a	transaction	on	a
database.	All	changes	made	to	the	object	subsequent	to	the	initiation	of	the
transaction	with	the	BeginTrans	method	are	voided	and	the	object	remains	in
the	state	it	was	in	at	the	time	of	the	beginning	of	the	transaction.

Applies	To
clsDatabase

Syntax
object.Rollback

object

The	database	object	on	which	to	roll	back	the	transaction.

Remarks
If	the	Rollback	method	is	called	without	first	calling	the	BeginTrans	method,	an
error	occurs.

Example
The	following	code	example	begins	a	transaction	on	the	FoodMart	2000
database,	processes	the	Sales	and	Budget	cubes,	and	rolls	back	the	transaction.
Executing	the	Rollback	method	for	the	database	restores	the	Sales	and	Budget
cubes	to	the	state	prior	to	the	execution	of	the	BeginTrans	method.

				Dim	dsoServer	As	New	DSO.Server
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoCube	As	DSO.MDStore

				'	Connect	to	the	local	Analysis	server.

				dsoServer.Connect	"LocalHost"
				
				'	Open	the	FoodMart	2000	database.
				Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")
				
				'	Begin	a	transaction	on	the	database.
				dsoDB.BeginTrans
				
				'	Create	a	reference	to	the	Sales	cube.
				Set	dsoCube	=	dsoDB.MDStores("Sales")
				
				'	Process	the	cube,	refreshing	data.
				dsoCube.Process	processRefreshData
				
				'Create	a	reference	to	the	Budget	cube.
				Set	dsoCube	=	dsoDB.MDStores("Budget")
				
				'	Process	the	cube	completely.
				dsoCube.Process	processFull
				
				'	Rollback	the	transaction
				dsoDB.Rollback

See	Also

BeginTrans

CommitTrans

MDStore	Interface

UnlockObject

Analysis	Services	Programming

UnlockObject	(MDStore	Interface)
The	UnlockObject	method	of	the	MDStore	interface	releases	a	lock	on	an
MDStore	object	previously	established	by	the	LockObject	method.

Applies	To
clsCube

clsDatabase

clsPartition

Syntax
object.UnlockObject

object

The	MDStore	object	to	unlock.

Remarks
If	an	application	that	created	one	or	more	locks	terminates	before	freeing	them
with	the	UnlockObject	method,	the	Analysis	server	automatically	releases	the
locks	when	the	connection	with	the	application	is	closed.

See	Also

LockObject

MDStore	Interface

Analysis	Services	Programming

Update	(MDStore	Interface)
The	Update	method	of	the	MDStore	interface	updates	the	definition	of	an
MDStore	object	in	the	meta	data	repository.	Changes	made	to	the	values	of	an
object's	properties	are	not	saved	to	the	repository	until	the	object's	Update
method	is	executed.

Applies	To
clsCube

clsDatabase

clsPartition

Syntax
object.Update

object

The	MDStore	object	to	be	updated.

Remarks
The	Update	method	has	no	effect	on	an	object	whose	IsTemporary	property	is
set	to	True,	which	means	these	objects	are	not	stored	in	the	repository.

See	Also

IsTemporary

LockObject

MDStore	Interface

Analysis	Services	Programming

Properties,	MDStore	Interface
The	MDStore	interface	supports	the	following	properties.

Property Description
AggregationPrefix Contains	the	prefix	that	associates	the

MDStore	object	with	an	aggregation	in
the	store.

AllowDrillThrough Indicates	whether	drillthrough	is	allowed
on	the	cube.

Analyzer The	analyzer	object	for	the	store.
ClassType Returns	an	enumeration	constant

identifying	the	specific	object	type.
DefaultMeasure The	name	of	the	default	measure	for	the

object.
Description The	description	of	the	store.
DrillThroughColumns The	columns	that	are	included	in	a

drillthrough	query.
DrillThroughFilter The	statement	restricting	rows	that	are

returned	by	a	drillthrough	query.
DrillThroughFrom An	SQL	FROM	clause	with	the	names

of	the	tables	used	in	drillthrough	queries.
DrillThroughJoins An	SQL	JOIN	clause	with	the	names	of

the	tables	used	in	drillthrough	queries.
EstimatedRows The	estimated	number	of	rows	in	the

store.
EstimatedSize Estimated	size	of	all	rows,	in	bytes,	in

the	store.
FromClause A	comma-separated	list	of	the	tables

from	which	the	store	data	is	obtained.
IsDefault Indicates	whether	the	store	is	the	default

store.

IsReadWrite Indicates	whether	the	MDStore	object	is
writable.

IsTemporary Indicates	whether	the	object	is
temporary.

IsValid Indicates	whether	the	store	object	is
valid.

IsVisible Indicates	whether	a	cube	is	visible	to
clients.

JoinClause A	list	of	join	conditions	separated	by
AND.

LastProcessed The	date	and	time	a	store	was	last
processed.

LastUpdated A	user-defined	date.	This	property	is	not
used	by	Microsoft®	SQL	Server™	2000
Analysis	Services.

Name The	name	of	the	store.
OlapMode Returns	an	enumeration	constant	that

identifies	the	type	of	OLAP	mode	of	the
store.

Parent Returns	a	reference	to	the	parent
MDStore	object.

ProcessingKeyErrorLimit Sets	the	number	of	allowable	errors	that
can	occur	before	processing	will	be
stopped.

ProcessingKeyErrorLogFileName The	UNC	path	to	a	file	for	logging
dimension	key	errors	encountered	during
processing.

ProcessOptimizationMode Indicates	whether	the	Analysis	server
creates	indexes	and	aggregations	during
or	after	processing.

RemoteServer The	name	of	the	remote	server	where	the
data	for	the	MDStore	object	is	stored.

Server Returns	a	reference	to	the	DSO.Server
object.

SourceTable The	name	of	the	source	table	for	the

store.
SourceTableAlias The	alias	of	the	source	table	for	the

MDStore	object.
SourceTableFilter The	SQL	expression	that	specifies	the

source	table	records	to	include	in	the
store.

State Returns	an	enumeration	constant
indicating	the	difference	between	the
MDStore	object	that	is	referenced	by	the
DSO	client	application	and	the
corresponding	MDStore	object	on	the
Analysis	server.

SubClassType Returns	an	enumeration	constant	that
identifies	the	subclass	type	of	the	object.

Property	Cross-Reference
The	following	table	shows	whether	the	property	is	read/write	(R/W),	read-only
(R),	or	not	applicable	(n/a)	for	different	objects.

Property Database Cube Partition Aggregation
AggregationPrefix R R/W R/W R
AllowDrillThrough n/a R/W R n/a
Analyzer n/a R* R n/a
ClassType R R R R
DefaultMeasure n/a R/W R n/a
Description R/W R/W R/W R/W
DrillThroughColumns n/a R/W R/W n/a
DrillThroughFilter n/a R/W R/W n/a
DrillThroughFrom n/a R/W R/W n/a
DrillThroughJoins n/a R/W R/W n/a
EstimatedRows n/a R/W** R/W R/W
EstimatedSize R R R R
FromClause n/a R/W* R/W R/W
IsDefault n/a n/a R R/W

IsReadWrite R R R/W n/a
IsTemporary n/a R R R
IsValid R R R R
IsVisible n/a R/W n/a n/a
JoinClause n/a R/W* R/W R/W
LastProcessed R R R R
LastUpdated R/W R/W R/W R
Name R/W	(R

after	the
object	has
been
named)

R/W	(R
after	the
object	has
been
named)

R/W	(R	after
the	object
has	been
named)

R/W	(R	after
the	object	has
been	named)

OlapMode R/W R/W* R/W R/W
Parent R R R R
RemoteServer n/a n/a R/W n/a
Server R R R R
SourceTable n/a R/W* R/W R/W
SourceTableAlias n/a R/W R/W n/a
SourceTableFilter n/a R/W* R/W n/a
State R R R n/a
SubClassType R R R R
*	This	property	is	not	applicable	(n/a)	for	virtual	cubes	(that	is,	those	of	SubClassType	sbclsVirtual).
**	This	property	is	read-only	(R)	for	virtual	cubes	(that	is,	those	of	SubClassType	sbclsVirtual).

See	Also

MDStore	Interface

Analysis	Services	Programming

AggregationPrefix	(MDStore	Interface)
The	AggregationPrefix	property	of	the	MDStore	interface	contains	the	prefix
associated	with	an	aggregation	in	an	MDStore	object.

Applies	To
clsAggregation

clsCube

clsDatabase

clsPartition

Data	Type
String	(maximum	length	50	characters,	exclusive	of	any	plus	signs)

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsCube R/W
clsDatabase R/W
clsPartition R/W
clsAggregation R

Remarks
The	default	value	for	this	property	depends	on	the	value	of	the	ClassType
property	of	the	object.

Class	type Default	value
clsDatabase None.

clsCube None.
clsPartition If	not	provided	by	user,	a	unique	name	is	derived	from	the

parent	cube	name	and	partition	name.
clsAggregation The	name	of	the	parent	partition.

Aggregation	prefixes	are	used	to	generate	aggregation	names,	and	they	are	used
for	table	names	in	the	relational	database.

A	fully	expanded	aggregation	name	has	four	parts:

<DatabasePrefix><CubePrefix><PartitionPrefix><AggregationID>

The	first	three	parts	of	the	name	are	provided	by	the	user	and	make	up	the
aggregation	prefix;	the	fourth	part	of	the	name	is	a	system-defined	ID	over
which	users	have	no	control.	The	first	two	prefixes	(DatabasePrefix	and
CubePrefix)	are	optional.	CubePrefix	is	used	only	if	PartitionPrefix	begins	with
a	plus	sign	(+),	and	DatabasePrefix	is	used	only	if	CubePrefix	begins	with	a	plus
sign.	For	example,	if	PartitionPrefix	is	+_Partition1,	CubePrefix	is	+_1995,	and
DatabasePrefix	is	Sales,	the	aggregation	prefix	is	Sales_1995_Partition1.

See	Also

MDStore	Interface

Analysis	Services	Programming

AllowDrillThrough	(MDStore	Interface)
The	AllowDrillThrough	property	of	the	MDStore	interface	indicates	whether
drillthrough	is	enabled	on	the	cube.

Applies	To
clsCube

clsPartition

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsCube R/W
ClsPartition R

Remarks
If	this	property	is	set	to	True,	a	user	with	drillthrough	permissions	on	the	cube
can	issue	a	drillthrough	query	requesting	source	rows	for	a	cell.

See	Also

MDStore	Interface

Analysis	Services	Programming

Analyzer	(MDStore	Interface)
The	Analyzer	property	of	the	MDStore	interface	contains	a	reference	to	the
analyzer	object	associated	with	an	MDStore	object.	The	system	automatically
associates	one	analyzer	with	an	MDStore	object.

Applies	To
clsCube	(excluding	virtual	cubes)

clsPartition

Data	Type
Object

The	ClassType	value	of	the	returned	object	depends	on	the	value	of	the
ClassType	property	of	the	object.

Class	type Returned	object	class	type
ClsCube clsCubeAnalyzer
ClsPartition clsPartitionAnalyzer

Access
Read-only

Remarks
The	analyzer	object	is	used	to	perform	structure	and	data	analysis	for	the	cube	or
partition	to	which	it	is	associated.	For	more	information,	see	clsCubeAnalyzer
and	clsPartitionAnalyzer.	

See	Also

MDStore	Interface

Analysis	Services	Programming

ClassType	(MDStore	Interface)
The	ClassType	property	of	the	MDStore	interface	contains	an	enumeration
constant	identifying	the	specific	class	type.

Applies	To
clsAggregation

clsCube

clsDatabase

clsPartition

Data	Type
ClassTypes

Access
Read-only

Remarks
Most	objects	in	Decision	Support	Objects	(DSO)	have	a	ClassType	and	a
SubClassType	property.	The	SubClassType	property	uses	an	enumerated	value
to	provide	additional	information	about	the	object.	This	property	supports	four
values	from	the	ClassTypes	enumeration:

clsAggregation

clsCube

clsDatabase

clsPartition

See	Also

MDStore	Interface

SubClassTypes

Analysis	Services	Programming

DefaultMeasure	(MDStore	Interface)
The	DefaultMeasure	property	of	the	MDStore	interface	contains	the	name	of
the	default	measure	for	the	MDStore	object.

Applies	To
clsCube

clsPartition

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsCube R/W
clsPartition R

See	Also

MDStore	Interface

Analysis	Services	Programming

Description	(MDStore	Interface)
The	Description	property	of	the	MDStore	interface	contains	a	user-supplied
description	of	the	MDStore	object	or	its	contents.

Applies	To
clsAggregation

clsCube

clsDatabase

clsPartition

Data	Type
String

Access
Read/write

See	Also

MDStore	Interface

Analysis	Services	Programming

DrillThroughColumns	(MDStore	Interface)
The	DrillThroughColumns	property	of	the	MDStore	interface	contains	a	list	of
columns	that	will	be	included	in	a	drillthrough	query.

Applies	To
clsCube

clsPartition

Data	Type
String

Access
Read/write

Remarks
The	format	of	the	string	is	identical	to	the	format	of	the	column	list	contained	in
an	SQL	SELECT	clause.	It	includes	the	ability	to	define	aliases.	The	format	of
the	string	in	this	property	is	provider-specific;	it	must	be	formatted	according	to
the	rules	of	the	data	source	associated	with	the	cube	or	partition.

See	Also

MDStore	Interface

Analysis	Services	Programming

DrillThroughFilter	(MDStore	Interface)
The	DrillThroughFilter	property	of	the	MDStore	interface	contains	a	filter
restricting	the	rows	that	can	be	returned	by	a	drillthrough	query.

Applies	To
clsCube

clsPartition

Data	Type
String

Access
Read/write

Remarks
This	property	contains	a	filter	restricting	the	rows	that	can	be	returned	by	a
drillthrough	query.	The	format	of	the	string	is	identical	to	the	format	of	the
Boolean	expression	contained	in	an	SQL	WHERE	clause.	If	a	filter	is	specified,
it	is	logically	combined	using	AND	with	the	tables	specified	by	the
DrillThroughJoins	property.	The	format	of	the	string	in	this	property	is
provider-specific;	it	must	be	formatted	according	to	the	rules	of	the	data	source
associated	with	the	cube	or	partition.

See	Also

MDStore	Interface

Analysis	Services	Programming

DrillThroughFrom	(MDStore	Interface)
The	DrillThroughFrom	property	of	the	MDStore	interface	contains	an	SQL
FROM	clause	with	the	names	of	the	tables	used	in	drillthrough	queries.

Applies	To
clsCube

clsPartition

Data	Type
String

Access
Read/write

Remarks
This	property	contains	the	names	of	the	tables	to	be	used	in	the	drillthrough
query.	The	format	of	the	string	is	identical	to	the	format	of	the	expression
contained	in	an	SQL	FROM	clause.	The	format	of	the	string	in	this	property	is
provider-specific;	it	must	be	formatted	according	to	the	rules	of	the	data	source
associated	with	the	cube	or	partition.

See	Also

MDStore	Interface

Analysis	Services	Programming

DrillThroughJoins	(MDStore	Interface)
The	DrillThroughJoins	property	of	the	MDStore	interface	contains	a	series	of
joins	between	the	tables	used	in	drillthrough	queries.

Applies	To
clsCube

clsPartition

Data	Type
String

Access
Read/write

Remarks
This	property	contains	the	names	of	the	tables	to	be	used	in	the	query.	The
format	of	the	string	is	identical	to	the	format	of	the	Boolean	expression
contained	in	an	SQL	FROM	clause.	The	format	of	the	string	in	this	property	is
provider-specific;	it	must	be	formatted	according	to	the	rules	of	the	data	source
associated	with	the	cube	or	partition.

See	Also

MDStore	Interface

Analysis	Services	Programming

EnableRealTimeUpdates	(MDStore	Interface)
The	EnableRealTimeUpdates	property	of	the	MDStore	interface	indicates
whether	or	not	the	object	supports	real-time	updates.

Applies	To
clsAggregation

clsPartition

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsPartition R/W
ClsAggregation R

Remarks
To	enable	an	object	of	ClassType	clsPartition	object	to	support	real-time
updates,	which	are	used	by	real-time	cubes,	the	object	must	use	a	relational
OLAP	(ROLAP)	storage	mode	(the	StorageMode	property	of	the	object	of
ClassType	clsPartition	must	be	storeasROLAP)	and	a	Microsoft®	SQL
Server™	2000	data	source.

See	Also

MDStore	Interface

Real-Time	Cubes

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

EstimatedRows	(MDStore	Interface)
The	EstimatedRows	property	of	the	MDStore	interface	contains	the	estimated
number	of	rows	in	the	MDStore	object.	This	property	value	is	used	in	the
algorithm	that	designs	aggregations.

Applies	To
clsAggregation

clsCube

clsPartition

Data	Type
Double

Access
Read/write

Remarks
The	interpretation	of	this	property	value	depends	on	the	value	of	the	ClassType
and	SubClassType	properties	of	the	object.

Class	type Subclass	type Interpretation	of	property	value
clsCube Any	(except

sbclsVirtual)
Number	of	rows	in	the	fact	table	of
the	cube

clsCube sbclsVirtual Sum	of	number	of	rows	in	the
underlying	cubes

clsPartition Any Number	of	rows	in	the	fact	table	of
the	parent	cube

clsAggregation Any Number	of	rows	in	the	aggregation
table

See	Also

EstimatedSize

MDStore	Interface

Analysis	Services	Programming

EstimatedSize	(MDStore	Interface)
The	EstimatedSize	property	of	the	MDStore	interface	contains	the	estimated
size,	in	bytes,	of	the	MDStore	object.

Applies	To
clsAggregation

clsCube

clsDatabase

clsPartition

Data	Type
Double

Access
Read-only

Remarks
Note		The	EstimatedSize	property	for	a	relational	OLAP	(ROLAP)	cube	does
not	include	the	size	of	the	tables	in	the	relational	database.	For	a	hybrid	OLAP
(HOLAP)	cube,	the	EstimatedSize	property	does	not	include	the	size	of	the	fact
table.	For	more	information	about	partition	storage	modes,	see	Partition	Storage.

The	EstimatedSize	property	is	valid	only	after	an	object	is	processed.	The
interpretation	of	this	property	value	depends	on	the	value	of	the	ClassType	and
SubClassType	properties	of	the	object.

Class	type Subclass	type Interpretation	of	property	value
ClsCube Any	(except

sbclsVirtual)
The	size	of	the	cube	data	and
aggregations

JavaScript:hhobj_1.Click()

ClsCube sbclsVirtual The	size	of	the	virtual	cube
clsPartition Any The	size	of	the	partition
clsAggregation Any The	size	of	the	aggregation	table

See	Also

EstimatedRows

MDStore	Interface

Analysis	Services	Programming

FromClause	(MDStore	Interface)
The	FromClause	property	of	the	MDStore	interface	contains	a	comma-
separated	list	of	the	fact	table	and	the	dimension	tables	from	which	store	data	is
obtained.

Applies	To
clsAggregation

clsCube	(excluding	virtual	cubes)

clsPartition

Data	Type
String

Access
Read/write

Remarks
The	FromClause	property	contains	the	string	used	by	the	data	source	provider
to	construct	an	SQL	FROM	clause.

Note		You	must	separate	the	table	and	column	names	with	the	delimiters
appropriate	to	the	source	database.	You	can	use	the	CloseQuoteChar	and
OpenQuoteChar	properties	of	the	DataSource	object	to	determine	the	correct
delimiters.

Example

				'	Assume	the	existence	of	a	clsCube	object,	named	dsoCube.
				dsoCube.FromClause	=	"""tblFacts"",	""tblProduct"",	""tblCustomer"""

The	previous	code	example	sets	the	FromClause	property	to	the	following
string:

"tblFacts",	"tblProduct",	"tblCustomer"

See	Also

EstimatedRows

MDStore	Interface

Analysis	Services	Programming

IsDefault	(MDStore	Interface)
The	IsDefault	property	of	the	MDStore	interface	indicates	that	an	MDStore
object	is	the	default	partition	of	a	cube	or	the	default	aggregation	of	a	partition.

Applies	To
clsAggregation

clsPartition

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsAggregation R/W
clsPartition R

Remarks
The	default	value	for	this	property	depends	on	the	value	of	the	ClassType
property	of	the	object.

Class	type Default	value
clsAggregation If	you	generate	the	aggregation	by	using	an	object	of

ClassType	clsPartitionAnalyzer,	the	system	automatically
sets	IsDefault	to	True.	Generating	aggregations	in	this	way
has	performance	benefits	and	is	the	recommended	method
for	generating	aggregations.

If	you	generate	the	aggregation	without	using	a	partition

analyzer	object,	you	should	set	IsDefault	to	False.

clsPartition True	if	the	partition	is	the	only	one	in	the	cube,	False
otherwise.

Note		This	property	does	not	indicate	that	an	aggregation	object	is	the	default
within	a	collection	of	aggregations.	If	set	to	True,	it	indicates	that	the
aggregation	object	contains	the	default	dimensions	and	measures	of	the	partition,
which	are	already	stored	in	the	repository.	This	reduces	the	size	of	aggregation
meta	data,	which	can	become	important	when	a	partition	contains	a	large	number
of	aggregations.

See	Also

MDStore	Interface

Analysis	Services	Programming

IsReadWrite	(MDStore	Interface)
The	IsReadWrite	property	of	the	MDStore	interface	indicates	whether	the
MDStore	object	is	read-only	or	write-enabled.

Applies	To
clsCube

clsDatabase

clsPartition

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsCube R
clsDatabase R
clsPartition R/W

Remarks
The	IsReadWrite	property	for	objects	of	ClassType	clsCube	is	set	to	True	if	the
IsReadWrite	property	is	set	to	True	for	at	least	one	of	the	partitions	associated
with	the	cube.	The	IsReadWrite	property	for	objects	of	ClassType	clsDatabase
is	set	to	True	if	the	IsReadWrite	property	is	set	to	True	for	at	least	one	of	the
cubes	associated	with	the	database.

See	Also

MDStore	Interface

Write-Enabled	Cubes

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

IsTemporary	(MDStore	Interface)
The	IsTemporary	property	of	the	MDStore	interface	indicates	whether	an
object	is	temporary.	Temporary	objects	are	local	to	the	session	in	which	they	are
created,	cannot	be	saved,	and	are	not	available	to	other	users.	To	create	a
temporary	object,	preface	the	name	with	the	tilde	(~)	character.

Applies	To
clsAggregation

clsCube

clsPartition

Data	Type
Boolean

Access
Read-only

Remarks
A	temporary	object	is	not	stored	in	the	repository	and	is	not	available	to	other
users.	Temporary	objects	persist	only	during	the	session	in	which	they	are
created	unless	renamed	or	cloned	to	another	existing	object	having	the	same
class	type.	Objects	subordinate	to	a	temporary	object,	such	as	levels	for	a
dimension,	internally	inherit	the	parent	object's	IsTemporary	setting.

Note		Only	temporary	objects	can	be	renamed	by	changing	the	Name	property.
Removing	the	tilde	(~)	character	from	the	name	of	a	temporary	object	means	that
it	is	no	longer	temporary	and	prevents	subsequent	renaming	of	the	object.	Also,
executing	the	Update	method	of	a	temporary	object	has	no	effect;	the	object	is
not	saved	to	the	repository	unless	the	tilde	prefix	is	removed	by	changing	the
Name	property.

Examples

Creating	a	Temporary	Object
Use	the	following	code	to	create	a	temporary	dimension	object	that	is	renamed
and	saved	to	the	repository:

'Assume	an	object	(dsoCube)	of	ClassType	clsCube	exists.
Dim	tmpDim	As	DSO.Dimension
Set	tmpDim	=	dsoCube.Dimensions.AddNew("~MyDim")	'Temporary
'Add	levels,	member	properties,	process,	etc.
...
'This	is	something	we	want	to	keep	-	so	drop	"~".
tmpDim.Name	=	"MyDim"	'No	longer	temporary
tmpCube.Update

See	Also

Dimension	Interface

MDStore	Interface

Analysis	Services	Programming

IsValid	(MDStore	Interface)
The	IsValid	property	of	the	MDStore	interface	indicates	whether	the	MDStore
object	and	its	dependent	objects	are	valid.

Applies	To
clsAggregation

clsCube

clsDatabase

clsPartition

Data	Type
Boolean

Access
Read-only

Remarks
Validation	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Validation
clsAggregation The	name,	parent,	and	prefix	of	the	aggregation
clsCube The	measures,	dimensions,	data	source,	fact	table,	and	other

properties	of	the	cube
clsDatabase The	cubes,	virtual	cubes,	dimensions,	roles,	and	commands

of	the	database
clsPartition The	measures,	dimensions,	fact	table,	aggregation	prefix,

and	other	properties	of	the	partition

See	Also

MDStore	Interface

Analysis	Services	Programming

IsVisible	(MDStore	Interface)
The	IsVisible	property	of	the	MDStore	interface	indicates	whether	a	cube	is
visible	to	client	applications.

Applies	To
clsCube	(excluding	virtual	cubes)

Data	Type
Boolean

Access
Read/write

Remarks
You	can	create	virtual	cubes	whose	source	cubes	are	not	visible	to	client
applications.	This	provides	you	with	greater	control	over	the	data	available	to
client	users.

See	Also

MDStore	Interface

Virtual	Cubes

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

JoinClause	(MDStore	Interface)
The	JoinClause	property	of	the	MDStore	interface	contains	the	list	of	join
conditions	currently	defined	for	an	MDStore	object.

Applies	To
clsAggregation

clsCube	(excluding	virtual	cubes)

clsPartition

Data	Type
String

Access
Read/write

Remarks
The	JoinClause	property	stores	the	list	of	join	conditions	for	the	data	source	in
the	format	used	to	define	an	SQL	INNER	JOIN	clause	for	the	data	source
provider.

Note		You	must	separate	the	table	and	column	names	with	the	delimiters	that	are
appropriate	to	the	source	database.	You	can	use	the	CloseQuoteChar	and
OpenQuoteChar	properties	of	the	DataSource	object	to	determine	the	correct
quoting	characters.

Example

				'	Assume	the	existence	of	a	clsCube	object	named	dsoCube.
				dsoCube.JoinClause	=	"""FactTable"".""CustomerId""="	&	_
								"""CustTable"".""CustomerId""	AND	"	&	_

								"""FactTable"".""ProductId""=""ProductTable"".""SKU"""

The	previous	code	example	sets	the	JoinClause	property	to	the	following	string:

"FactTable"."CustomerId"="CustTable"."CustomerId"	AND	"FactTable"."ProductId"="ProductTable"."SKU"

See	Also

MDStore	Interface

Analysis	Services	Programming

LastProcessed	(MDStore	Interface)
The	LastProcessed	property	of	the	MDStore	interface	contains	the	date	and
time	when	an	MDStore	object	was	last	processed.

Applies	To
clsAggregation

clsCube

clsDatabase

clsPartition

Data	Type
Date

Access
Read-only

Remarks
The	LastProcessed	property	for	an	object	is	undefined	and	will	raise	an	error	if
you	attempt	to	read	it	when	the	value	of	the	object's	State	property	is
olapStateNeverProcessed.	For	more	information,	see	State.

See	Also

MDStore	Interface

Process

Analysis	Services	Programming

LastUpdated	(MDStore	Interface)
The	LastUpdated	property	of	the	MDStore	interface	is	not	used	by	Microsoft®
SQL	Server™	2000	Analysis	Services.	You	can	set	this	to	any	date/time	value
you	want,	for	example,	to	indicate	when	the	source	data	was	last	changed.

Applies	To
clsAggregation

clsCube

clsDatabase

clsPartition

Data	Type
Date

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabase R/W
ClsCube R/W
ClsPartition R/W
ClsAggregation R

Remarks
Except	for	aggregation	objects,	which	inherit	the	value	of	this	property	from
their	parents,	the	LastUpdated	property	is	not	automatically	set	by	any	method
in	the	Decision	Support	Objects	(DSO)	object	model.	It	is	provided	as	a	means
for	client	applications	to	specify	a	date	or	time	that	represents	the	validity	of
information.	For	example,	a	date	of	12/31/97	may	mean	that	the	information

stored	in	a	cube	is	not	valid	after	December	of	1997.

See	Also

MDStore	Interface

Analysis	Services	Programming

LazyOptimizationProgress	(MDStore	Interface)
The	LazyOptimizationProgress	property	returns	the	progress	of	lazy
optimization	processing	for	an	object	of	ClassType	clsPartition	object
representing	a	multidimensional	OLAP	(MOLAP)	partition.

Applies	To
clsPartition

Data	Type
Integer

Access
Read-only

Remarks
This	property	reports	lazy	processing	progress	for	MOLAP	partitions	as	an
integer	between	0	and	100,	representing	the	completed	percentage	of	lazy
processing.	For	relational	OLAP	(ROLAP)	and	hybrid	OLAP	(HOLAP)
partitions,	the	returned	value	is	always	100.	For	unprocessed	partitions	or	for
partitions	whose	lazy	processing	has	not	yet	started,	this	property	returns	0.

See	Also

MDStore	Interface

State

Dimension	Storage	Modes

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Name	(MDStore	Interface)
The	Name	property	of	the	MDStore	interface	contains	the	name	of	the
MDStore	object.

Applies	To
clsAggregation

clsCube

clsDatabase

clsPartition

Data	Type
String	(maximum	length	of	50	characters)

Access
Read/write	(read-only	after	the	object	has	been	named)

Remarks
The	primary	mechanism	for	identifying	an	MDStore	object	is	the	Name
property.	You	specify	the	name	of	an	object	when	you	create	the	object.	Unless
the	object	is	temporary,	you	cannot	rename	it	after	it	has	been	created.

See	Also

MDStore	Interface

Analysis	Services	Programming

OlapMode	(MDStore	Interface)
The	OlapMode	property	of	the	MDStore	interface	contains	the	OLAP	storage
mode	assigned	to	the	MDStore	object.

Applies	To
clsAggregation

clsCube	(excluding	virtual	cubes)

clsDatabase

clsPartition

Data	Type
OlapStorageModes

Access
Read/write

Remarks
The	OlapMode	property	defines	the	storage	mode	for	each	fact	table	and
aggregation	in	an	MDStore	object.	Possible	storage	modes	are	relational	OLAP
(ROLAP)	and	multidimensional	OLAP	(MOLAP).	Hybrid	OLAP	(HOLAP)
storage	combines	ROLAP	and	MOLAP	storage	modes.	Setting	this	property	for
a	clsDatabase	object	defines	the	default	storage	mode	for	new	cubes	created
within	the	database,	whereas	setting	this	property	for	a	clsCube	object	defines
the	default	storage	mode	for	new	partitions	created	within	the	cube.

This	property	is	read-only	and	always	olapmodeROLAP	for	a	linked	cube	(that
is,	a	cube	of	SubClassType	of	sbclsLinked).

See	Also

MDStore	Interface

Storage	Modes	for	Partitions	(MOLAP,	ROLAP,	HOLAP)

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Parent	(MDStore	Interface)
The	Parent	property	of	the	MDStore	interface	contains	a	reference	to	the	parent
of	the	MDStore	object.

Applies	To
clsAggregation

clsCube

clsDatabase

clsPartition

Data	Type
Object

The	ClassType	value	of	the	returned	object	depends	on	the	value	of	the
ClassType	property	of	the	object.

Class	type Returned	object	class	type
ClsDatabase clsServer
ClsCube clsDatabase
ClsPartition clsCube
ClsAggregation clsPartition

Access
Read-only

Remarks
The	return	type	of	the	Parent	property	depends	on	the	ClassType	property	of
the	object	itself.	For	example,	an	object	of	ClassType	clsDatabase	has	an
MDStores	collection	that	contains	objects	of	ClassType	clsCube.	The	object	of

ClassType	clsDatabase	is	the	parent	of	the	clsCube	objects.

See	Also

MDStore	Interface

Analysis	Services	Programming

ProcessingKeyErrorLimit	(MDStore	Interface)
The	ProcessingKeyErrorLimit	property	of	the	MDStore	interface	sets	the
number	of	allowable	dimension	key	errors	that	cause	processing	on	the	Analysis
server	to	cease.

Applies	To
clsCube

clsPartition

Data	Type
Long

Access
Read/write

Remarks
If	the	value	of	this	property	is	0	(the	default),	processing	stops	and	an	error
description	is	written	to	the	file	specified	in	the
ProcessingKeyErrorLogFileName	property	(if	one	is	specified)	the	very	first
time	a	dimension	key	error	is	encountered	during	processing.	By	default,	this
property	is	set	for	an	entire	cube.	However,	it	can	be	overridden	by	the	value	of
this	property	for	the	individual	partitions	of	the	cube.

See	Also

Cube	Processing

MDStore	Interface

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

ProcessingKeyErrorLogFileName	(MDStore
Interface)
The	ProcessingKeyErrorLogFileName	property	of	MDStore	interface	stores	a
directory	path	to	a	file	for	logging	dimension	key	errors	encountered	during
processing.

Applies	To
clsCube

clsPartition

Data	Type
String

Access
Read/write

Remarks
Dimension	key	errors	occurring	during	processing	will	result	in	a	row	being
appended	to	the	error	log	file	if	specified	in	this	property.	This	file	is	in	comma-
separated	values	format	(.csv)	with	the	following	fields:

Date	and	time	of	the	error

The	name	of	the	database	object	containing	the	cube	being	processed

The	name	of	the	cube	being	processed

The	name	of	the	partition	of	the	cube	being	processed

The	name	of	the	dimension	with	the	key	error

The	name	of	the	level	with	the	key	error	(empty	for	parent-child
dimensions)

The	key	value	from	the	cube's	fact	table	that	failed	to	match	to	the
dimension

A	key	value	that	fails	during	processing	may	be	written	more	than	once.	Thus,	it
is	possible	for	this	value	to	fail	multiple	times	during	an	operation.

This	error	log	file	can	be	used	to	find	rows	in	the	fact	table	that	do	not
correspond	to	rows	in	the	dimension	source	table.	For	example,	you	can	import
the	log	file	into	a	table	within	Microsoft®	SQL	Server™	2000	and	construct	a
query	with	an	inner	join	between	the	fact	table	to	the	error	log	table	to	find	the
distinct	rows	that	will	not	match.

By	default,	this	property	applies	to	the	entire	cube.	However,	it	can	be
overridden	by	the	value	for	this	property	for	the	individual	partitions	of	the	cube.

See	Also

Cube	Processing

MDStore	Interface

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

ProcessOptimizationMode	(MDStore	Interface)
The	ProcessOptimizationMode	property	of	the	MDStore	interface	indicates
whether	the	Analysis	server	indexes	and	aggregates	during	or	after	processing.

Applies	To
clsCube

clsPartition

Data	Type
ProcessOptimizationModes

Access
Read/write

Remarks
This	property	can	be	used	to	expedite	the	availability	of	a	cube	or	partition	to
users	for	analysis.	By	default,	the	processOptimizationModeRegular	option
specifies	that	the	cube's	source	data	is	read,	stored,	indexed,	and	aggregated
within	the	processing	transaction.	The
processOptimizationModeLazyOptimizations	option	reads	and	stores	the
source	data	during	the	processing	transaction	and	performs	lazy	processing	of
indexes	and	aggregations	after	processing	is	complete,	when	the	Analysis	server
is	idle.

By	default,	this	property	applies	to	the	entire	cube.	However,	it	can	be
overridden	by	the	value	for	this	property	for	the	individual	partitions	of	the	cube.

See	Also

MDStore	Interface

Analysis	Services	Programming

RemoteServer	(MDStore	Interface)
The	RemoteServer	property	of	the	MDStore	interface	contains	the	name	of	the
remote	server	where	the	data	for	the	partition	is	stored,	for	remote	partitions.

Applies	To
clsPartition

Data	Type
String

Access
This	property	is	read-write	only	for	partitions	with	a	SubClassType	of
sbclsRemote.	This	property	is	read-only	for	all	others.

Remarks
When	the	partition	is	first	created,	the	value	of	this	property	is	the	empty	string.
After	the	property	has	been	changed,	it	becomes	read-only	and	cannot	be
changed	again.	If	you	want	to	change	the	remote	server,	you	must	delete	and
then	re-create	the	partition.	Remote	partitions	are	used	by	distributed	partitioned
cubes	to	store	partitioned	data	on	Analysis	servers	other	than	the	one	on	which
the	distributed	partitioned	cube	is	defined.

See	Also

MDStore	Interface

Distributed	Partitioned	Cubes

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Server	(MDStore	Interface)
The	Server	property	of	the	MDStore	interface	contains	a	reference	to	the
DSO.Server	object	that	is	the	ancestor	of	the	object.

Applies	To
clsAggregation

clsCube

clsDatabase

clsPartition

Data	Type
clsServer

Access
Read-only

Remarks
You	can	use	this	property	to	access	the	methods	and	properties	of	the	server
object.

See	Also

MDStore	Interface

Analysis	Services	Programming

SourceTable	(MDStore	Interface)
The	SourceTable	property	of	the	MDStore	interface	contains	the	name	of	the
fact	table	associated	with	the	MDStore	object.

Applies	To
clsAggregation

clsCube	(excluding	virtual	cubes)

clsPartition

Data	Type
String

Access
Read/write

See	Also

MDStore	Interface

SourceTableFilter

Analysis	Services	Programming

SourceTableAlias	(MDStore	Interface)
The	SourceTableAlias	property	of	the	MDStore	interface	contains	the	alias	of
the	source	table	for	the	cube	or	partition.

Applies	To
clsCube

clsPartition

Data	Type
String

Access
Read-write

Remarks
If	the	source	table	has	no	alias,	the	contents	of	this	property	are	identical	to	those
of	the	SourceTable	property.

Examples

Setting	the	SourceTable	and	SourceTable	Alias	Properties
The	following	example	shows	how	to	set	the	SourceTable	and
SourceTableAlias	properties:

'	Assume	that	an	MDStore	object	dsoCube	exists
'	If	the	FromClause	property	for	the	cube	is:
'	"customer,	store,	sales_fact_1997	AS	Sales"
'	Set	the	SourceTable	property	to	the	actual	name	of	the	table
dsoCube.SourceTable	=	"sales_fact_1997"

'	And	set	the	SourceTableAlias	property	to	the	name	of	the	alias
dsoCube.SourceTableAlias	=	"Sales"

See	Also

MDStore	Interface

Analysis	Services	Programming

SourceTableFilter	(MDStore	Interface)
The	SourceTableFilter	property	of	the	MDStore	interface	contains	the	WHERE
clause	of	an	SQL	statement	(without	the	WHERE	keyword)	used	to	determine
which	fact	table	records	are	to	be	included	in	the	MDStore	object.

Applies	To
clsCube	(excluding	virtual	cubes)

clsPartition

Data	Type
String

Access
Read/write

Remarks
The	SQL	statement	can	contain	multiple	conditions,	for	example:

"time_by_day"."the_year"	=	'1997'	AND	"product"."product_id"	=	'soap'	

Note		You	must	separate	the	table	and	column	names	with	the	delimiters	that	are
appropriate	to	the	source	database.	You	can	use	the	CloseQuoteChar	and
OpenQuoteChar	properties	of	the	DataSource	object	to	determine	the	correct
quoting	characters.

See	Also

MDStore	Interface

SourceTable

Analysis	Services	Programming

State	(MDStore	Interface)
The	State	property	of	the	MDStore	interface	returns	an	enumeration	constant
indicating	the	processing	state	of	the	object	on	the	server	represented	by	the
Decision	Support	Objects	(DSO)	MDStore	object.

Applies	To
clsCube

clsDatabase

clsPartition

Data	Type
OlapStateTypes

Access
Read-only

Remarks
The	State	property	indicates	the	current	status	of	an	MDStore	object.	It	is	used
to	determine	whether	processing	of	the	object	is	required.	For	more	information,
see	OlapStateTypes.

The	supported	values	of	the	State	property	depend	on	the	value	of	the	class	type
of	the	associated	MDStore	object.	The	default	value	is
olapStateNeverProcessed.

Class	type State
ClsDatabase olapStateNeverProcessed

olapStateCurrent
ClsCube olapStateNeverProcessed

olapStateSourceMappingChanged

olapStateCurrent
ClsPartition All	states	apply

See	Also

MDStore	Interface

Analysis	Services	Programming

SubClassType	(MDStore	Interface)
The	SubClassType	property	of	the	MDStore	interface	contains	the	enumeration
constant	that	identifies	the	subclass	type	of	the	object.

Applies	To
clsAggregation

clsCube

clsDatabase

clsPartition

Data	Type
SubClassTypes

Access
Read-only

Remarks
Objects	of	ClassType	clsAggregation	and	clsDatabase	can	have	a
SubClassType	property	value	of	sbclsRegular.	An	object	of	ClassType
clsCube	can	be	of	SubClassType	sbclsRegular,	sbclsVirtual,	and
sbclsLinked.	An	object	of	ClassType	clsPartition	can	be	of	SubClassType
sbclsRegular	and	sbclsRemote.

Examples

Checking	the	SubClassType	Property	of	a	Cube
Use	the	following	code	to	check	the	SubClassType	property	of	a	cube:

'Assume	an	object	(dsoCube)	of	ClassType	clsCube	exists.
If	dsoCube.SubClassType	=	sbclsVirtual	Then
				'Code	to	handle	a	virtual	cube
Else
				'Code	to	handle	a	regular	cube
End	If

See	Also

MDStore	Interface

Analysis	Services	Programming

Measure	Interface
Measures	are	the	quantitative,	numerical	columns	from	the	fact	table	of	a	cube.
When	a	cube	is	processed,	the	data	in	the	measures	is	aggregated	across	the
dimensions	in	the	cube.	The	aggregate	functions	are:	Sum,	Min,	Max,	Count,
and	Distinct	Count.	For	more	information,	see	Aggregate	Functions.

In	Decision	Support	Objects	(DSO),	the	objects	that	implement	the	Measure
interface	have	a	ClassType	property	value	of	clsCubeMeasure,
clsPartitionMeasure,	or	clsAggregationMeasure.	These	objects	serve	as
containers	for	measure	objects	within	each	respective	parent	object.	The
Measure	interface	provides	collections	and	properties	that	allow	you	to
manipulate	these	objects.	There	are	no	methods	associated	with	this	interface.
For	more	information	about	cube,	partition,	and	aggregation	objects,	and	how
they	relate	to	each	other,	see	Introducing	Decision	Support	Objects.

Not	all	of	the	objects	that	implement	the	Measure	interface	implement	all	of	the
properties	of	the	interface.	The	properties	of	some	objects	may	be	restricted	to
read-only	access,	depending	upon	their	type.	For	example,	a	clsCubeMeasure
object	allows	read	and	write	access	to	its	FormatString	property.	Access	to	this
property	for	any	other	measure	object	is	read-only.	The	collections	and
properties	of	the	Measure	interface	also	apply	to	the	measures	of	virtual	cubes,
although	no	special	class	is	implemented	for	virtual	cube	measures.	There	are	no
methods	associated	with	the	Measure	interface.

To	illustrate	the	place	of	measures	in	a	fact	table,	consider	the	case	of	a	database
that	contains	the	following	tables:

Sales_Facts

Customer

Product

Promotion

JavaScript:hhobj_1.Click()

Product_Class

Store

Calendar

The	following	diagram	illustrates	the	relationships	of	these	tables.

If	you	build	a	cube	based	upon	this	database,	the	Sales_Facts	table	will	be	the
fact	table.	The	related	tables	will	be	the	dimensions.	The	Sales_Quantity,
Unit_Price,	and	Unit_Cost	rows	are	measures	that	can	be	precalculated	across
dimensions	such	as	Store,	Customer,	or	Product.

Applies	To
clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

See	Also

Collections,	Measure	Interface

Properties,	Measure	Interface

Analysis	Services	Programming

Collections,	Measure	Interface
The	Measure	interface	supports	the	following	collection.

Collection Description
CustomProperties The	collection	of	user-defined	properties

Applies	To
clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Access
Read/write

See	Also

Measure	Interface

Analysis	Services	Programming

Properties,	Measure	Interface
The	Measure	interface	supports	the	following	properties.

Property Description
AggregateFunction Sets	or	returns	a	value	that	corresponds	to	the	type

of	aggregate	function	used	for	a	measure
ClassType Returns	an	enumeration	constant	that	identifies

the	specific	object	type
Description Sets	or	returns	the	measure	description
FormatString Sets	or	returns	the	format	used	to	display	the

measure	values
IsValid Indicates	whether	the	measure	object	is	valid
IsVisible Indicates	whether	the	measure	is	visible	to	client

applications
Name Sets	or	returns	the	measure	name
OrdinalPosition Returns	the	ordinal	position	of	the	measure	in	the

parent	object's	Measures	collection
Parent Returns	a	reference	to	the	parent	MDStore	object
SourceColumn Sets	or	returns	the	name	of	the	column	that	is

precalculated
SourceColumnType Sets	or	returns	the	data	type	of	the	measure	source

column
SubClassType Returns	an	enumeration	constant	that	identifies

the	subclass	type	of	the	object

Access	Cross-Reference
The	following	table	shows	whether	the	property	is	read/write	(R/W)	or	read-only
(R)	for	different	objects.

Property
clsCube
Measure

clsPartition
Measure

clsAggregation
Measure

AggregateFunction R/W* R R
ClassType R R R
Description R/W R R
FormatString R/W* R R
IsValid R R R
IsVisible R/W R R
Name R/W	(R	after	the

object	has	been
named)

R/W	(R	after	the
object	has	been
named)

R/W	(R	after	the
object	has	been
named)

OrdinalPosition R R R
Parent R R R
SourceColumn R/W R/W R
SourceColumnType R/W* R R
SubClassType R R R
*	This	property	is	read-only	(R)	for	virtual	cubes	(that	is,	those	of	SubClassType	sbclsVirtual).

See	Also

Measure	Interface

Analysis	Services	Programming

AggregateFunction	(Measure	Interface)
The	AggregateFunction	property	of	the	Measure	interface	contains	an
enumeration	constant	that	corresponds	to	the	type	of	aggregate	function	used	to
generate	the	precalculated	value	of	the	measure.

Applies	To
clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data	Type
AggregatesTypes

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsAggregationMeasure R
clsCubeMeasure R/W*
clsPartitionMeasure R*	Read-only	for	virtual	cube	measures	and	measures	in	fully-created	linked	cubes.

Remarks
To	create	more	sophisticated	measures	(for	example,	ratios	or	statistical
functions),	use	the	command	object	to	create	a	calculated	member.	For	more
information,	see	clsCubeCommand	and	clsDatabaseCommand.

Note		Because	the	DISTINCT	COUNT	aggregation	function	does	not	support
custom	aggregations,	the	use	of	this	aggregation	function	in	combination	with
the	CustomRollupExression	and	CustomRollupColumn	properties	is	not
supported.	If	a	cube	uses	the	DISTINCT	COUNT	aggregation	function	and	any

of	the	dimensions	in	that	cube	use	either	the	CustomRollupExpression	property
or	the	CustomRollupColumn	property,	including	data	mining	dimensions,	the
cube	is	invalid.	Processing	such	a	cube	raises	a	validation	error.

Examples

Reading	the	AggregateFunction	Property	of	a	Measure	Object
Use	the	following	code	to	read	the	value	of	the	AggregateFunction	property	of
a	measure	object:

'Assume	an	object	(dsoAggMea)	of	ClassType	clsAggregationMeasure	exists
Dim	AggType	As	DSO.AggregatesTypes
AggType	=	dsoAggMea.AggregateFunction
Select	Case	AggType
				Case	aggSum
							'	Insert	code	for	aggregation	summation.
				Case	aggCount
							'	Insert	code	for	aggregation	counts.
				Case	aggMin
							'	Insert	code	for	aggregation	min.
				Case	aggMax
							'	Insert	code	for	aggregation	max.
				Case	aggDistinctCount
							'	Insert	for	aggregation	distinct	counts.
End	Select

See	Also

AggregatesTypes

Measure	Interface

CustomRollupColumn

CustomRollupExpression

Analysis	Services	Programming

ClassType	(Measure	Interface)
The	ClassType	property	of	the	Measure	interface	returns	an	enumeration
constant	that	identifies	the	specific	object	type.

Applies	To
clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data	Type
ClassTypes

For	measure	objects,	ClassType	is	set	to	one	of	the	following	values:

clsCubeMeasure

clsPartitionMeasure

clsAggregationMeasure

Access

Read-only

Examples

Determining	the	ClassType	Property	of	a	Measure	Object
Use	the	following	code	to	return	the	class	type	of	a	measure	object	and
determine	which	object	class	has	been	returned:

'Assume	an	object	(dsoCubeMea)	of	ClassType	clsCubeMeasure	exists

Select	Case	dsoCubeMea.ClassType
			Case	clsCubeMeasure
								'	Insert	code	for	a	cube	measure.
			Case	clsPartitionMeasure
								'	Insert	code	for	a	partition	measure.
			Case	clsAggregationMeasure
								'	Insert	code	for	an	aggregation	measure.
			Case	Else
								'	other	commands
End	Select

See	Also

ClassTypes

Measure	Interface

Analysis	Services	Programming

Description	(Measure	Interface)
The	Description	property	of	the	Measure	interface	contains	the	measure
description.

Applies	To
clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsAggregationMeasure R
clsCubeMeasure R/W
clsPartitionMeasure R

Example
Use	the	following	code	to	set	the	measure	object's	description:

'Assume	an	object	(dsoCubeMea)	of	ClassType	clsCubeMeasure	exists
dsoCubeMea.Description	=	"Extended	price"

See	Also

Measure	Interface

Analysis	Services	Programming

FormatString	(Measure	Interface)
The	FormatString	property	of	the	Measure	interface	contains	the	format	used
to	display	the	measure	values.	Any	format	string	valid	for	use	with	Microsoft®
Visual	Basic®	is	acceptable.

Applies	To
clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsAggregationMeasure R
clsCubeMeasure R/W*
clsPartitionMeasure R*	Read-only	for	virtual	cube	measures.

Example
Use	the	following	code	to	set	the	format	string	for	the	measure	object
[Sales_Facts].[Price]:

'Assume	an	object	(dsoCubeMea)	of	ClassType	clsCubeMeasure	exists
dsoCubeMea.FormatString	=	"#,###.##"

See	Also

Measure	Interface

Analysis	Services	Programming

IsValid	(Measure	Interface)
The	IsValid	property	of	the	Measure	interface	indicates	whether	the	measure
structure	is	valid.

Applies	To
clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data	Type
Boolean

Access
Read-only

Remarks
Depending	on	the	value	of	the	ClassType	property	of	the	measure	object,	the
IsValid	property	validates	the	properties	and	methods	of	the	measure	as
indicated	in	the	following	table.

Class	type Validation
clsAggregationMeasure Name,	Parent,	and	SourceField

properties
clsCubeMeasure Name,	Parent,	SourceField,	and

ColumnType	properties
clsPartitionMeasure Name,	Parent,	SourceField,	and

ColumnType	properties

Example

Use	the	following	code	to	determine	whether	the	structure	of	a	measure	object	is
valid:

'Assume	an	object	(dsoCubeMea)	of	ClassType	clsCubeMeasure	exists
Dim	bValid	As	Boolean
bValid	=	dsoCube.IsValid

See	Also

Measure	Interface

Analysis	Services	Programming

IsVisible	(Measure	Interface)
The	IsVisible	property	of	the	Measure	interface	determines	whether	the
measure	is	visible	to	client	applications.

Applies	To
clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data	Type
Boolean

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsAggregationMeasure R
ClsCubeMeasure R/W
ClsPartitionMeasure R

Remarks
You	can	use	hidden	measures	to	contain	calculations	used	by	other	members,
thereby	keeping	intermediate	values	away	from	client	users.

At	least	one	measure	in	a	cube	must	be	visible.	The	Analysis	server	raises	an
error	if	all	the	measures	of	a	cube	have	their	IsVisible	property	set	to	False.

See	Also

Measure	Interface

Analysis	Services	Programming

Name	(Measure	Interface)
The	Name	property	of	the	Measure	interface	contains	the	name	of	the	measure
object.

Applies	To
clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data	Type
String

Access
Read/write	(Objects	can	be	renamed	after	their	initial	creation.)

Example
Use	the	following	code	to	create	a	cube	measure	object	and	name	it	MyMeasure:

'Assume	an	object	(dsoCube)	of	ClassType	clsCube	exists
Dim	dsoMeasure	As	DSO.Measure
Set	dsoMeasure	=	dsoCube.Measures.AddNew("MyMeasure")

See	Also

Description

Measure	Interface

Analysis	Services	Programming

OrdinalPosition	(Measure	Interface)
The	OrdinalPosition	property	of	the	Measure	interface	contains	the	ordinal
position	of	the	measure	in	the	Measures	collection	of	the	parent	object.

Applies	To
clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data	Type
Integer

Access
Read-only

Remarks
If	no	default	measure	is	specified,	the	first	measure	is	the	default	measure	for	the
cube.	If	a	Multidimensional	Expressions	(MDX)	expression	or	query	does	not
contain	an	explicit	reference	to	a	measure,	the	Analysis	server	performs	the
command	using	the	default	measure.

Example
Use	the	following	code	to	return	the	ordinal	position	of	a	measure	object:

Dim	OrdPos	As	Integer
OrdPos	=	MeasureObject.OrdinalPosition

See	Also

Measure	Interface

Analysis	Services	Programming

Parent	(Measure	Interface)
The	Parent	property	of	the	Measure	interface	contains	a	reference	to	the	parent
MDStore	object.

Applies	To
clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data	Type
MDStore

The	ClassType	value	of	the	returned	object	depends	on	the	value	of	the
ClassType	property	of	the	object.

Class	type Returned	object	class	type
ClsAggregationMeasure clsAggregation
ClsCubeMeasure clsCube
ClsPartitionMeasure clsPartition

Access
Read-only

See	Also

Measure	Interface

Analysis	Services	Programming

SourceColumn	(Measure	Interface)
The	SourceColumn	property	of	the	Measure	interface	contains	a	reference	to
the	column	in	the	fact	table	that	contains	the	measure.

Applies	To
clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsAggregationMeasure R
clsCubeMeasure R/W
clsPartitionMeasure R/W

Remarks
To	set	this	property	for	a	measure	contained	in	a	regular	cube,	use	the	delimiter
characters	for	the	data	source	when	naming	the	table	and	the	column.

For	a	virtual	cube	(a	cube	object	with	IsVirtual	=	True),	the	SourceColumn
property	is	used	to	reference	a	measure	within	an	existing	cube	rather	than	a
column	in	a	source	fact	table.	When	you	set	this	property	for	a	measure	object
within	a	virtual	cube,	you	do	not	need	to	include	the	delimiter	characters
associated	with	the	data	source	for	the	underlying	cube.

The	SourceColumn	property	works	in	conjunction	with	the
SourceColumnType	property.

Examples

Setting	the	SourceColumn	Property
Use	the	following	code	to	set	the	SourceColumn	property	for	two	measure
objects:

'	Assume	two	objects	(dsoCubeMea,	dsoVirtCubeMea)	
'	of	ClassType	clsCubeMeasure	exist.
'	The	first	object	is	a	measure	within	a	regular	cube.	
'	The	measure	contains	data	from	the	Price	column	in	
'	the	Sales_Facts	table.
dsoCubeMea.SourceColumn	=	"""Sales_Facts"".""Price"""
...
'	The	second	measure	is	for	a	virtual	cube	that	references	
'	the	Unit_Price	measure	of	a	regular	cube	named	Sales
dsoVirtCubeMea.SourceColumn	=	"[Sales].[Unit_Price]"

See	Also

Measure	Interface

SourceColumnType

Analysis	Services	Programming

SourceColumnType	(Measure	Interface)
The	SourceColumnType	property	of	the	Measure	interface	identifies	the	type
of	data	found	in	the	measure	object's	SourceColumn	property.

Applies	To
clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data	Type
ADODB.DataTypeEnum

For	more	information	about	the	ADODB.DataTypeEnum	enumeration,	see	the
Microsoft®	ActiveX®	Data	Objects	(ADO)	documentation.

SourceColumnType	is	set	to	one	of	the	following	values.

Column	type Value
Big	Integer adBigInt
Binary adBinary
Boolean adBoolean
String	(Unicode) adBSTR
Char adChar
Currency adCurrency
Date adDate
Date adDBDate
Time adDBTime
Date	&	Time adDBTimeStamp
Decimal adDecimal
Double adDouble
Integer adInteger

Numeric adNumeric
Single adSingle
Small	Integer adSmallInt
Tiny	Integer adTinyInt
Unsigned	Big	Integer adUnsignedBigInt
Unsigned	Integer adUnsignedInt
Unsigned	Small	Integer adUnsignedSmallInt
Unsigned	Tiny	Integer adUnsignedTinyInt
Char	(Unicode) adWChar
Text adChar

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
clsAggregationMeasure R
clsCubeMeasure R/W*
clsPartitionMeasure R
*	Read-only	for	virtual	cube	measures	and	measures	in	fully	created	linked	cubes.

Remarks
The	SourceColumnType	property	works	in	conjunction	with	the
SourceColumn	property.	Be	sure	to	specify	a	SourceColumn	and
SourceColumnType	for	each	measure	you	create	for	a	cube.

The	SourceColumnType	property	for	a	measure	within	a	virtual	cube	is
inherited	from	the	measure	in	the	underlying	regular	cube	and	cannot	be
changed.

Note		You	must	reference	the	ADO	library	in	your	project	to	use	the
ADODB.DataTypeEnum	enumeration.

Examples

Specifying	the	SourceColumnType	Property
Use	the	following	code	to	specify	and	read	a	value	for	the	SourceColumnType
property:

'Assume	an	object	(dsoCubeMea)	of	ClassType	clsCubeMeasure	exists
dsoCubeMea.ColumnType	=	adCurrency
...
Dim	ColType	As	ADODB.DataTypeEnum
ColType	=	dsoCubeMea.ColumnType
Select	Case	ColType
			Case	adDouble
								'	commands	for	adDouble
			Case	adSingle
								'	commands	for	adSingle
			Case	Else
								'	other	commands
End	Select

See	Also

Measure	Interface

SourceColumn

Analysis	Services	Programming

SubClassType	(Measure	Interface)
The	SubClassType	property	of	the	Measure	interface	contains	an	enumeration
constant	identifying	the	subclass	type	of	the	object.

Applies	To
clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data	Type
SubClassTypes

Access
Read-only

Remarks
Objects	that	implement	the	Measure	interface,	(that	is,	those	of	ClassType	of
clsAggregationMeasure,	clsCubeMeasure,	or	clsPartitonMeasure)	can	have	a
SubClassType	property	of	sbclsRegular	only.	For	more	information,	see
SubClassTypes.

See	Also

Measure	Interface

Analysis	Services	Programming

Role	Interface
The	Role	interface	supports	the	maintenance	of	user	groups	and	security
parameters.	Users	can	be	grouped	according	to	common	access	permissions	by
using	the	Role	interface.

Using	Decision	Support	Objects	(DSO),	you	can	use	role	objects	to	set
permissions	on	the	following	areas	in	Analysis	Services:

Server

Database

Cube

Dimensions	and	members

Individual	cube	cells

Each	role	object	also	contains	a	collection	for	Command	objects.	The	ability	to
create	role-based	commands	is	important	for	security	reasons,	and	can	also
increase	cube	flexibility.	You	can	customize	the	content	of	a	cube	to	match	the
needs	of	individual	users	or	entire	groups.

In	DSO,	the	objects	that	implement	the	Role	interface	have	a	ClassType
property	value	of	clsCubeRole,	clsMiningModelRole,	or	clsDatabaseRole.	The
Role	interface	provides	properties	and	methods	to	manipulate	these	objects.

Updating	Security	Information	on	the	Analysis	Server
Any	changes	you	make	to	role	objects	are	saved	when	any	of	the	events	listed	in
the	following	table	occur.

Event Description

Saving	a	cube	or	mining
model

Using	the	Update	method	of	a	cube	or	mining
model	object	sends	the	updated	security
information	to	the	Analysis	server	(assuming	the
cube	or	mining	model	has	been	processed	at
least	once).

Processing	a	cube	or
mining	model

Processing	a	cube	or	mining	model	updates	the
security	information	on	the	server.	All	role
configuration	data	is	saved,	regardless	of	the
processing	option	specified	with	the	Process
method.

Saving	a	database	role Using	the	Update	method	of	an	object	of
ClassType	clsDatabaseRole	sets	the	default
values	for	the	affiliated	cube	role	objects	in	the
database.	Any	changes	you	make	to	this	default
role	are	not	applied	to	the	affiliated	cube	role	or
mining	model	role	objects	that	have	values
overriding	the	default.

When	you	make	a	change	to	default	permission	settings	on	a	database	role	and
invoke	the	Update	method	on	the	role,	DSO	finds	all	cubes	that	still	use	the
default	permission	settings	and	sends	the	new	security	permissions	for	these
cubes	to	the	server.

For	more	information	about	database	and	cube	objects	and	how	they	relate	to
each	other,	see	Introducing	Decision	Support	Objects.

Applies	To
clsCubeRole

clsDatabaseRole

clsMiningModelRole

See	Also

Collections,	Role	Interface

Methods,	Role	Interface

Properties,	Role	Interface

Analysis	Services	Programming

Collections,	Role	Interface
The	Role	interface	supports	the	following	collections.

Collection Description
Commands The	collection	of	commands	for	the	role
CustomProperties The	collection	of	user-defined	properties

Access
Read/write

See	Also

Role	Interface

Analysis	Services	Programming

Methods,	Role	Interface
The	Role	interface	supports	the	following	methods.

Method Description
Clone Copies	the	properties	of	a	role	object	to	an	existing	role

object
LockObject Locks	a	role	object
SetPermissions Sets	role	permissions	for	a	given	key
UnlockObject Unlocks	a	previously	locked	role	object
Update Saves	a	role	in	the	repository

Method/Class	Cross-Reference
The	following	table	shows	the	applicability	of	each	method	to	each	object.	X
indicates	applicable;	n/a	indicates	not	applicable.

	 clsDatabaseRole clsCubeRole clsMiningModelRole
Clone X n/a n/a
LockObject X n/a n/a
SetPermissions X X X
UnlockObject X n/a n/a
Update X n/a n/a

See	Also

Role	Interface

Analysis	Services	Programming

Clone	(Role	Interface)
The	Clone	method	of	the	Role	interface	copies	the	property	values	and	the
collections	of	a	role	to	a	target	object	of	the	same	class	type.

Applies	To
clsDatabaseRole

Syntax
object.Clone(ByVal	TargetObject	As	Role,	[ByVal	Options	As	CloneOptions	=
cloneMajorChildren])

object

The	clsDatabaseRole	object	to	be	copied.

TargetObject

An	existing	clsDatabaseRole	object.

Options

One	of	values	of	the	CloneOptions	enumeration.	If	no	value	is	specified,	the
cloneMajorChildren	option	is	used.	For	more	information,	see
CloneOptions.

Remarks
Because	Role	objects	do	not	contain	major	or	minor	objects,	any	clone	option
specified	in	Options	is	treated	as	cloneObjectProperties.

See	Also

CloneOptions

Role	Interface

Analysis	Services	Programming

LockObject	(Role	Interface)
The	LockObject	method	of	the	Role	interface	locks	a	role	object	to	prevent
multiple	users	from	concurrently	changing	the	object.

Applies	To
clsDatabaseRole

Syntax
object.LockObject(ByVal	LockType	As	OlapLockTypes,	ByVal
LockDescription	As	String)

object

The	object	to	lock.

LockType

One	of	the	lock	types	defined	in	the	OlapLockTypes	enumeration.	Because
a	Role	object	has	no	dependent	objects	and	cannot	be	processed,	the	only
valid	options	for	LockType	are	olapLockRead	and	olapLockWrite.	For
more	information,	see	OlapLockTypes.

LockDescription

A	string	containing	the	description	of	the	lock,	available	to	other	applications
attempting	to	obtain	a	lock.

See	Also

OlapLockTypes

UnlockObject

LockObject

Analysis	Services	Programming

SetPermissions	(Role	Interface)
The	SetPermissions	method	of	the	Role	interface	sets	role	permissions	for	a
given	key.

Applies	To
clsCubeRole

clsDatabaseRole

clsMiningModelRole

Syntax
bRet	=	object.SetPermissions(ByVal	Key	As	String,	ByVal
PermissionExpression	As	String)

bRet

A	Boolean	variable	that	receives	the	completion	status	of	the	operation:	True
if	it	was	completed	successfully,	False	otherwise.

object

The	role	object	on	which	to	set	permissions.

Key

String	containing	the	permission	key.

PermissionExpression

String	containing	the	permission	expression	for	the	corresponding	key.

Remarks
The	Permissions	property	contains	nine	permissions	keys.	The	meaning	of	each
key	and	its	possible	PermissionExpression	string	values	follow:

Access

The	Access	key	indicates	what	type	of	access	the	users	assigned	to	the	Role
object	have	to	the	entire	cube.	Valid	PermissionExpression	values	for	the
key	are	listed	in	the	following	table.

Value Description
R The	members	of	this	role	have	read-only	access	to	the	cube.

(Default)
RW The	members	of	this	role	have	read/write	access	to	the	cube.

This	key	is	for	use	only	with	objects	of	ClassType	clsCubeRole.

AllowDrillThrough

The	AllowDrillThrough	key	indicates	whether	the	users	assigned	to	the
Role	object	can	execute	drillthrough	queries	on	the	cube.

Value Description
True Drillthrough	is	allowed	on	this	cube	for	members	of	this	role.
False Drillthrough	is	not	allowed	on	this	cube	for	members	of	this	role.

(Default)

This	key	is	for	use	only	with	objects	of	ClassType	clsCubeRole.

AllowLinking

The	AllowLinking	key	indicates	whether	the	users	assigned	to	the	Role
object	are	allowed	to	link	to	the	cube.	Setting	this	property	to	False	prevents
users	from	creating	linked	cubes	based	on	the	cube.

Value Description
True Linking	is	allowed	to	this	cube	for	members	of	this	role.	(Default)
False Linking	is	not	allowed	to	this	cube	for	members	of	this	role.

This	key	is	for	use	only	with	objects	of	ClassType	clsCubeRole.

AllowSQLQueries

The	AllowSQLQueries	key	indicates	whether	the	users	assigned	to	the	Role

object	are	allowed	to	execute	SQL	SELECT	queries	against	the	cube.	Setting
this	property	to	False	prevents	users	from	creating	local	cubes	based	on	the
cube	or	viewing	cube	data	using	an	SQL	SELECT	statement.

Value Description
True SQL	queries	are	allowed	on	this	cube	for	members	of	this	role.

(Default)
False SQL	queries	are	not	allowed	on	this	cube	for	members	of	this	role.

This	key	is	for	use	only	with	objects	of	ClassType	clsCubeRole.

EnforcementLocation

The	EnforcementLocation	key	indicates	whether	security	for	the	users
assigned	to	the	Role	object	is	enforced	on	the	server	or	on	the	client
application.

Value Description
Client Security	is	enforced	on	the	client	application	for	members	of	this

role.	(Default)
Server Security	is	enforced	on	the	server	for	members	of	this	role.

This	key	is	for	use	only	with	objects	of	ClassType	clsDatabaseRole	and
ClassType	clsCubeRole.	If	set	on	a	database	role	object,	the
PermissionExpression	value	becomes	the	default	value	for	all	cube	roles
contained	in	the	database.

CellRead

The	CellRead	key	identifies	visible,	readable	cells	for	the	users	assigned	to
the	Role	object.	The	PermissionExpression	value	contains	a	logical
Multidimensional	Expressions	(MDX)	expression,	to	be	evaluated	against	a
cell.

This	key	is	for	use	only	with	objects	of	ClassType	clsCubeRole.

CellReadContingent

The	CellReadContingent	key	identifies	contingent-readable	cells	for	the
users	assigned	to	the	Role	object.	The	PermissionExpression	value	contains
a	logical	MDX	expression,	to	be	evaluated	against	a	cell.

This	key	is	for	use	only	with	objects	of	ClassType	clsCubeRole.

CellWrite

The	CellWrite	key	identifies	writable	cells	for	the	users	assigned	to	the	Role
object.	The	PermissionExpression	value	contains	a	logical	MDX
expression,	to	be	evaluated	against	a	cell.	A	writable	cell	is	considered
readable	by	default.

This	key	is	for	use	only	with	objects	of	ClassType	clsCubeRole.

Dimension:<dimension	name>

This	key	is	used	to	specify	dimension	security	options	on	a	dimension,	using
a	string	value	containing	XML	syntax.	The	syntax	for	the	key	includes	the
name	of	the	dimension	that	will	be	secured	by	the	role	object.	This	key	can
be	set	for	objects	of	ClassType	clsDatabaseRole	and	ClassType
clsCubeRole.	If	set	on	a	database	role	object,	the	PermissionExpression
value	becomes	the	default	value	for	all	cube	roles	contained	in	the	database.

The	XML	syntax	for	the	PermissionExpression	value	is	detailed	here:

<MEMBERSECURITY
			[IsVisible="<Boolean_string>"]
			[DefaultMember="<allowed_member>"]
			[VisualTotalsLowestLevel="<level_expression>"
>
			<PERMISSION	Access="Read"
						[UpperLevel="<level_expression>"]
						[LowerLevel="<level_expression>"]
						[AllowedSet="<set_expression>"]
						[DeniedSet="<set_expression>"]
						[Description="<desc>"]
			/>
			<PERMISSION	Access="Write"

						[UpperLevel="<level_expression>"]
						[AllowedSet="<set_expression>"]
						[Description="<desc>"]
			/>
</MEMBERSECURITY>

The	<Boolean_string>	value	can	contain	either	"True"	or	"False".	The
<allowed_member>	value	contains	the	name	of	a	single	read-enabled
member.	The	<level_expression>	contains	an	MDX	expression	that	returns	a
single	level.	The	<set_expression>	value	contains	an	MDX	expression	that
returns	a	set	of	members.	The	<desc>	value	contains	a	free-form	text
description	of	the	permission.

Example
Use	the	following	code	to	set	permissions	on	an	object	of	ClassType
clsCubeRole:

'Assume	an	object	(dsoCubeRole)	of	ClassType	clsCubeRole	exists
'Set	a	read-only	permission
dsoCubeRole.SetPermissions	"Access",	"R"
'Set	a	read-write	permission
dsoCubeRole.SetPermissions	"Access",	"RW"

See	Also

Role	Interface

Dimension	Security

Cell	Security

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Analysis	Services	Programming

UnlockObject	(Role	Interface)
The	UnlockObject	method	of	the	Role	interface	releases	a	lock	on	a	role	object
that	has	been	previously	established	by	the	LockObject	method.

Applies	To
clsDatabaseRole

Syntax
object.UnlockObject

object

The	role	object	from	which	to	remove	a	lock.

Remarks
If	an	application	that	created	one	or	more	locks	terminates	before	freeing	them
with	the	UnlockObject	method,	the	Analysis	server	automatically	releases	the
locks	when	the	connection	with	the	application	is	closed.

See	Also

Role	Interface

Analysis	Services	Programming

Update	(Role	Interface)
The	Update	method	of	the	Role	interface	updates	the	definition	of	the	role
object	in	the	meta	data	repository.

Applies	To
clsDatabaseRole

Syntax
object.Update

object

The	role	object	to	update.

Remarks
When	you	make	a	change	to	default	permission	settings	on	a	database	role	and
invoke	the	Update	method	on	the	role,	Decision	Support	Objects	(DSO)	finds
all	cubes	that	did	not	overwrite	the	default	permission	setting	and	then	sends	the
new	security	permissions	to	the	server.

See	Also

Role	Interface

Analysis	Services	Programming

Properties,	Role	Interface
The	Role	interface	supports	the	following	properties.

Property Description
ClassType Returns	an	enumeration	constant	that	identifies	the	specific

object	type
Description The	description	of	a	role
IsValid Indicates	whether	a	role	structure	is	valid
Name The	name	of	a	role
Parent Returns	a	reference	to	the	parent	MDStore	object
ParentObject Returns	a	reference	to	the	parent	object	that	the	current	role

object	is	a	child	of
Permissions The	role	permissions	for	a	given	key
SubClassType Returns	an	enumeration	constant	that	identifies	the	subclass

type	of	the	object
UsersList A	semicolon-delimited	list	of	users

Access	Cross-Reference
The	following	table	shows	whether	the	property	is	read/write	(R/W),	read-only
(R),	or	not	applicable	(n/a)	for	different	objects.

Property clsDatabaseRole clsCubeRole clsMiningModelRole
ClassType R R R
Description R/W R R
IsValid R R R
Name R/W	(R	after	the

object	has	been
named)

R/W	(R	after	the
object	has	been
named)

R/W	(R	after	the
object	has	been
named)

Parent R R R
Permissions R R R
SubClassType R R R

UsersList R/W R R

See	Also

Role	Interface

Analysis	Services	Programming

ClassType	(Role	Interface)
The	ClassType	property	of	the	Role	interface	contains	an	enumeration	constant
that	identifies	the	specific	class	type.

Applies	To
clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data	Type
ClassTypes

ClassType	is	set	to	one	of	the	following	values:

clsDatabaseRole

clsCubeRole

clsMiningModelRole

Access

Read-only

Example
Use	the	following	code	to	return	the	class	type	of	a	role	object	and	determine
which	object	class	has	been	returned:

'	Assume	the	existence	of	object	RoleObject
Dim	ClassTyp	As	DSO.ClassTypes
ClassTyp	=	RoleObject.ClassType

Select	Case	ClassTyp
			Case	clsDatabaseRole
								'	Insert	code	for	a	database	role.
			Case	clsCubeRole
								'	Insert	code	for	a	cube	role.
			Case	clsMiningModelRole
								'	Insert	code	for	mining	model	roles.
			Case	Else
								'	Insert	code	for	other	objects.
End	Select

See	Also

ClassTypes

Role	Interface

SubClassType

Analysis	Services	Programming

Description	(Role	Interface)
The	Description	property	of	the	Role	interface	contains	the	description	of	the
role	object.

Applies	To
clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseRole R/W
ClsCubeRole R
ClsMiningModelRole R

Example
Use	the	following	code	to	set	a	role	object	description:

RoleObject.Description	=	"Eastern	Region	Sales	and	Marketing"

See	Also

Role	Interface

Analysis	Services	Programming

IsValid	(Role	Interface)
The	IsValid	property	of	the	Role	interface	indicates	whether	the	role	object
structure	is	valid.

Applies	To
clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data	Type
Boolean

Access
Read-only

Remarks
A	role	object	is	valid	if	the	Name	and	UsersList	properties	are	not	empty	strings
and	if	its	Parent	property	is	valid.

Example
Use	the	following	code	to	return	a	role	object	validity	status:

Dim	bRet	As	Boolean
bRet	=	RoleObject.IsValid

See	Also

Role	Interface

Analysis	Services	Programming

Name	(Role	Interface)
The	Name	property	of	the	Role	interface	contains	the	name	of	the	role	object.

Applies	To
clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data	Type
String

Access
Read/write	(read-only	after	the	object	has	been	named)

Example
Use	the	following	code	to	set	a	role	object	name:

RoleObject.Name	=	"Sales	and	Marketing"

See	Also

Role	Interface

Analysis	Services	Programming

Parent	(Role	Interface)
The	Parent	property	of	the	Role	interface	contains	a	reference	to	the	parent
MDStore	object.

Applies	To
clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data	Type
MDStore

The	ClassType	value	of	the	returned	object	depends	on	the	value	of	the
ClassType	property	of	the	object.

Class	type Returned	object	class	type
ClsDatabaseRole clsDatabase
ClsCubeRole clsCube
ClsMiningModelRole Nothing

Access
Read-only

Remarks
This	property	will	return	Nothing	for	mining	model	roles,	because	data	mining
models	do	not	support	the	MDStore	interface.	To	obtain	the	parent	object	of	a
mining	model	role,	use	the	ParentObject	property.

Examples

Using	the	Parent	and	ClassType	properties
The	following	example	creates	a	database	role	and	assigns	it	to	the	first	cube	in
the	database	object's	collection	of	cubes.	It	then	prints	some	of	the	properties	of
the	parent	object	by	using	the	role	object's	Parent	property.

Dim	dsoServer	As	New	DSO.Server
Dim	dsoDB	As	DSO.MDStore
Dim	dsoCube	As	DSO.MDStore
Dim	dsoDBRole	As	DSO.Role
Dim	dsoCubeRole	As	DSO.Role

'Connect	to	the	Analysis	Server
		dsoServer.Connect	"LocalHost"
		Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")

'Get	the	first	cube	in	the	database's	collection
		Set	dsoCube	=	dsoDB.MDStores(1)
		Debug.Print	"Cube.Name	=	"	&	dsoCube.Name
		
'Ensure	the	existence	of	TempRole	in	the	database.
		Set	dsoDBRole	=	dsoDB.Roles.AddNew("TempRole")
		
'Add	the	command	to	cube's	collection	of	commands.
		Set	dsoCubeRole	=	dsoCube.Roles.AddNew("TempRole")
		Debug.Print	"Cube.Roles(""TempRole"").Name	="	&	_
				dsoCube.Roles("TempRole").Name

'Print	the	roles	.ParentObject	properties
		Debug.Print	"			.Parent	properties"	&	vbCrLf	&	_
				"			-----------"
		Debug.Print	"			TypeName(""dsoCubeRole.Parent"")	=	"	&	_
				TypeName(dsoCubeRole.Parent)
		If	dsoCubeRole.Parent.ClassType	=	clsCube	Then

				Debug.Print	"			.ClassType	=	clsCube"
		Else
				Debug.Print	"This	line	should	never	be	executed."
		End	If
		Debug.Print	"			.Description	=	"	&	dsoCubeRole.Parent.Description
		Debug.Print	"			.Name	=	"	&	dsoCubeRole.Parent.Name
		
		dsoCube.Roles.Remove	("TempRole")
		dsoDB.Roles.Remove	("TempRole")

See	Also

Role	Interface

ParentObject

Analysis	Services	Programming

ParentObject	(Role	Interface)
The	ParentObject	property	returns	a	reference	to	the	default	interface	of	the
parent	object.

Applies	To
clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data	Type
Object

The	default	interface	and	ClassType	value	of	the	returned	object	depends	on	the
value	of	the	ClassType	property	of	the	object.

Class	type
Returned	object
interface

Returned	object	class
type

clsDatabaseRole MDStore clsDatabase
clsCubeRole MDStore clsCube
clsMiningModelRoleMiningModel clsMiningModel

Access
Read-only

Examples

Using	ParentObject	and	ClassType	properties
The	following	example	creates	a	database	role	and	assigns	it	to	the	roles
collection	of	the	first	data	mining	model	in	the	databases	collection	of	mining

models.	It	then	prints	some	of	the	properties	of	that	role's	parent	object	by	using
the	ParentObject	property.

Dim	dsoServer	As	New	DSO.Server
Dim	dsoDB	As	DSO.MDStore
Dim	dsoDMM	As	DSO.MiningModel
Dim	dsoDBRole	As	DSO.Role
Dim	dsoDMMRole	As	DSO.Role

'Connect	to	the	Analysis	Server
		dsoServer.Connect	"LocalHost"
		Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")

'Get	the	first	mining	model
		Set	dsoDMM	=	dsoDB.MiningModels(1)
		Debug.Print	"MiningModel.Name	=	"	&	dsoDMM.Name
		
'Ensure	the	existence	of	TempRole	in	the	database.
		Set	dsoDBRole	=	dsoDB.Roles.AddNew("TempRole")
		
'Ensure	the	existence	of	a	role.
		Set	dsoDMMRole	=	dsoDMM.Roles.AddNew("TempRole")
		Debug.Print	"MiningModel.Roles(""TempRole"").Name	="	&	_
				dsoDMM.Roles("TempRole").Name

'Print	the	roles	.ParentObject	properties
		Debug.Print	"			.ParentObject	properties"	&	vbCrLf	&	_
				"			-----------"
		Debug.Print	"			TypeName(""dsoDMMRole.ParentObject"")	=	"	&	_
				TypeName(dsoDMMRole.ParentObject)
		If	dsoDMMRole.ParentObject.ClassType	=	clsMiningModel	Then
				Debug.Print	"			.ClassType	=	clsMiningModel"
		Else
				Debug.Print	"This	line	should	never	be	executed."

		End	If
		Debug.Print	"			.Description	=	"	&	dsoDMMRole.ParentObject.Description
		Debug.Print	"			.Name	=	"	&	dsoDMMRole.ParentObject.Name
		
		dsoDMM.Roles.Remove	("TempRole")
		dsoDB.Roles.Remove	("TempRole")

See	Also

Role	Interface

Analysis	Services	Programming

Permissions	(Role	Interface)
The	Permissions	property	of	the	Role	interface	contains	the	role	permissions	for
a	specified	key.

Applies	To
clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data	Type
String

Access
Read-only

Remarks
The	Permissions	property	contains	nine	permissions	keys.	The	meaning	of	each
key	and	its	possible	return	values	follow:

Access

The	Access	key	indicates	what	type	of	access	the	users	assigned	to	the	Role
object	have	to	the	entire	cube.	Valid	return	values	for	the	key	are	listed	in	the
following	table.

Return	value Description
R The	members	of	this	role	have	read-only	access	to	the	cube.
RW The	members	of	this	role	have	read/write	access	to	the	cube.

This	key	is	for	use	only	with	objects	of	ClassType	clsCubeRole.

AllowDrillThrough

The	AllowDrillThrough	key	indicates	whether	the	users	assigned	to	the
Role	object	can	execute	drillthrough	queries	on	the	cube.	Valid	return	values
for	the	key	are	listed	in	the	following	table.

Return	value Description
True Drillthrough	is	allowed	on	this	cube	for	members	of	this

role.
False Drillthrough	is	not	allowed	on	this	cube	for	members	of	this

role.	(Default)

This	key	is	for	use	only	with	objects	of	ClassType	clsCubeRole.

AllowLinking

The	AllowLinking	key	indicates	whether	the	users	assigned	to	the	Role
object	are	allowed	to	link	to	the	cube.	Setting	this	property	to	False	prevents
users	from	creating	linked	cubes	based	on	the	cube.

Value Description
True Linking	is	allowed	to	this	cube	for	members	of	this	role.	(Default)
False Linking	is	not	allowed	to	this	cube	for	members	of	this	role.

This	key	is	for	use	only	with	objects	of	ClassType	clsCubeRole.

AllowSQLQueries

The	AllowSQLQueries	key	indicates	whether	the	users	assigned	to	the	Role
object	are	allowed	to	execute	SQL	SELECT	queries	against	the	cube.	Setting
this	property	to	False	prevents	users	from	creating	local	cubes	based	on	the
cube	or	viewing	cube	data	using	an	SQL	SELECT	statement.

Value Description
True SQL	queries	are	allowed	on	this	cube	for	members	of	this	role.

(Default)
False SQL	queries	are	not	allowed	on	this	cube	for	members	of	this	role.

This	key	is	for	use	only	with	objects	of	ClassType	clsCubeRole.

EnforcementLocation

The	EnforcementLocation	key	indicates	whether	security	for	the	users
assigned	to	the	Role	object	is	enforced	on	the	server	or	on	the	client
application.	Valid	return	values	for	the	key	are	listed	in	the	following	table.

Return	value Description
Client Security	is	enforced	on	the	client	application	for	members

of	this	role.	(Default)
Server Security	is	enforced	on	the	server	for	members	of	this	role.

This	key	is	for	use	only	with	objects	of	ClassType	clsDatabaseRole	and
ClassType	clsCubeRole.

CellRead

The	CellRead	key	contains	a	logical	Multidimensional	Expressions	(MDX)
expression	that	identifies	visible,	readable	cells	for	the	users	assigned	to	the
Role	object.	If	no	MDX	expression	is	specified	for	the	Role	object,	an	empty
string	is	returned.

This	key	is	for	use	only	with	objects	of	ClassType	clsCubeRole.

CellReadContingent

The	CellReadContingent	key	contains	a	logical	MDX	expression	that
identifies	contingent-readable	cells	for	the	users	assigned	to	the	Role	object.
If	no	MDX	expression	is	specified	for	the	Role	object,	an	empty	string	is
returned.

This	key	is	for	use	only	with	objects	of	ClassType	clsCubeRole.

CellWrite

The	CellWrite	key	contains	a	logical	MDX	expression	that	identifies
writable	cells	for	the	users	assigned	to	the	Role	object.	If	no	MDX
expression	is	specified	for	the	Role	object,	an	empty	string	is	returned.

This	key	is	for	use	only	with	objects	of	ClassType	clsCubeRole.

Dimension:<dimension	name>

The	Dimension	key	is	used	to	specify	dimension	security	options	on	a
dimension,	using	a	string	value	containing	XML	syntax.	The	syntax	for	the
key	includes	the	name	of	the	dimension	that	will	be	secured	by	the	role
object.	The	Dimension	key	contains	XML	syntax	that	defines	the	read	and
write	access	of	the	members	for	the	dimension.	If	no	dimension	security
options	are	specified	for	the	Role	object,	an	empty	string	is	returned.

The	XML	syntax	for	the	return	value	is	detailed	here:

<MEMBERSECURITY
			[IsVisible="<Boolean_string>"]
			[DefaultMember="<allowed_member>"]
			[VisualTotalsLowestLevel="<level_expression>"
>
			<PERMISSION	Access="Read"
						[UpperLevel="<level_expression>"]
						[LowerLevel="<level_expression>"]
						[AllowedSet="<set_expression>"]
						[DeniedSet="<set_expression>"]
						[Description="<desc>"]
			/>
			<PERMISSION	Access="Write"
						[UpperLevel="<level_expression>"]
						[AllowedSet="<set_expression>"]
						[Description="<desc>"]
			/>
</MEMBERSECURITY>

The	<Boolean_string>	value	can	contain	either	"True"	or	"False".	The
<allowed_member>	value	contains	the	name	of	a	single	read-enabled
member.	The	<level_expression>	contains	an	MDX	expression	that	returns	a
single	level.	The	<set_expression>	value	contains	an	MDX	expression	that
returns	a	set	of	members.	The	<desc>	value	contains	a	free-form	text

description	of	the	permission.

This	key	is	for	use	only	with	objects	of	ClassType	clsDatabaseRole	and
ClassType	clsCubeRole.

Example
Use	the	following	code	to	return	a	role	object's	permission	string:

Dim	strPerms	As	String
strPerms	=	RoleObject.Permissions("Access")

See	Also

Role	Interface

SetPermissions

Dimension	Security

Cell	Security

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Analysis	Services	Programming

SubClassType	(Role	Interface)
The	SubClassType	property	of	the	Role	interface	contains	an	enumeration
constant	identifying	the	subclass	type	of	the	object.

Applies	To
clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data	Type
SubClassTypes

Access
Read-only

Remarks
Objects	that	implement	the	Role	interface,	that	is,	those	of	ClassType
clsCubeRole,	clsDatabaseRole,	or	clsMiningModelRole,	can	have	a
SubClassType	property	of	sbclsRegular	only.

See	Also

ClassType

Role	Interface

SubClassTypes

Analysis	Services	Programming

UsersList	(Role	Interface)
The	UsersList	property	of	the	Role	interface	contains	a	semicolon-delimited	list
of	users	and/or	groups	assigned	to	the	role.

Applies	To
clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data	Type
String

Access
Access	depends	on	the	value	of	the	ClassType	property	of	the	object.

Class	type Access
ClsDatabaseRole R/W
ClsCubeRole R
ClsMiningModelRole R

Remarks
The	name	for	a	user	list	must	be	qualified	with	the	appropriate	domain	name.
The	general	format	is	<domain>\<user	or	group>.

Example
Use	the	following	code	to	set	the	list	of	users	of	a	role	object:

RoleObject.UsersList	=	"Domain1\Ejones;Domain1\Analysts;Domain2\RGreen"

See	Also

Role	Interface

Analysis	Services	Programming

Events
The	only	object	in	Decision	Support	Objects	(DSO)	that	directly	supports	event
trapping	is	the	Database	object.	This	object	fires	events	for	all	of	its	child
objects	including	shared	dimensions,	cubes,	partitions,	aggregations,	and	data
mining	models.

The	following	table	lists	the	events	that	this	object	supports.

Event Description
ReportAfter Called	whenever	a	processing	action	on	an	object	in

the	database	has	finished	executing
ReportBefore Called	before	a	processing	action	on	an	object	in	the

database
ReportError Called	whenever	an	error	occurs	during	a	processing

action
ReportProgress Called	to	report	the	progress	of	an	action	during	a

processing

Processing	Actions
Each	event	reports	the	status	of	the	processing	action.	This	processing	action	is
represented	by	integer	constants.	The	tense	for	each	processing	action	depends
on	the	event	being	trapped.	For	instance,	the	merge	action	(mdactMerge)
reports	that	two	partitions	or	aggregations	will	be	merged	when	trapped	in	the
ReportBefore	event.	In	contrast,	this	same	action	reports	that	two	partitions	or
aggregations	have	been	merged	when	trapped	in	the	ReportAfter	event.

The	following	is	a	list	of	actions	that	are	supported	by	the	database	object
events:

Action Constant Description
Process mdactProcess Indicates	that	the	object

referred	to	by	obj	has	been
processed.

Merge mdactMerge Reports	that	two

partitions/aggregations	have
been	merged.

Delete mdactDelete Indicates	that	an	object	has
been	deleted.

Delete	Old
Aggregations

mdactDeleteOldAggregations Indicates	that	the	existing
relational	OLAP	(ROLAP)
aggregations	of	a	partition
have	been	deleted.

Rebuild mdactRebuild Indicates	that	the	definitions
of	an	object	have	been
rebuilt.

Commit mdactCommit Indicates	that	a	transaction
has	been	committed	on	the
database.

Rollback mdactRollback Reports	that	a	transaction	has
been	rolled	back	on	the
database.

Create
Indexes

mdactCreateIndexes Indicates	that	indexes	for	a
ROLAP	aggregation	have
been	created.

Create	Table mdactCreateTable Reports	that	the	aggregation
table	for	the	ROLAP
aggregation	has	been	created.

Insert	Into mdactInsertInto Indicates	that	the	aggregation
table	for	the	ROLAP	partition
has	been	populated.

Transaction mdactTransaction Reports	that	a	transaction	has
been	started,	completed,	or
has	encountered	an
exception.

Initialize mdactInitialize Indicates	that	the	object
referred	to	by	the	obj
parameter	has	been
initialized.

Create	View mdactCreateView Reports	that	an	aggregation
view	has	been	created	for	the

ROLAP	aggregation.	This
action	is	only	valid	when
processing	a	ROLAP	cube
with	Microsoft®	SQL
Server™	2000	using	indexed
views.

Write	Data mdactWriteData Data	has	been	written	to	the
disk.

Read	Data mdactReadData Data	has	been	read	from	the
disk.

Aggregate mdactAggregate Aggregations	are	being	built.
Execute	SQLmdactExecuteSQL An	SQL	statement	has	been

executed.
Now
Executing
SQL

mdactNowExecutingSQL An	SQL	statement	is
executing	that	can	be
canceled.

Executing
Modified
SQL

mdactExecuteModifiedSQL A	modified	SQL	statement
has	been	executed.

Rows
Affected

mdactRowsAffected Reports	number	of	rows
affected	by	an	SQL
statement.

Error mdactError Indicates	that	an	error	has
occurred	during	processing.

Write
Aggregations
and	Indexes

mdactWriteAggsAndIndexes Indexes	and	aggregations	will
be	written	to	the	disk.

Write
Segment

mdactWriteSegment Segments	will	be	written	to
the	disk.

Data	Mining
Model
Processed
Percentage

mdactDataMiningProgress The	status	of	the	completion
of	processing	for	a	data
mining	model	in	percentage
terms.

For	more	information	about	the	Database	object,	see	clsDatabase.

Tutorial	-	Trapping	Database	Events
The	following	tutorial	demonstrates	trapping	processing	events.	In	examples	A
through	C,	a	Microsoft	Visual	Basic®	project	file	is	set	up	that	contains	all	of	the
information	needed	to	use	the	rest	of	the	examples.	Examples	D	through	G
demonstrate	trapping	each	of	the	events	that	are	available	from	the	database
object.

A.	Setting	up	the	Project	File
B.	Adding	the	Form_Load	Event	and	Button	Click	Events
C.	Adding	the	ProcessDatabase	Subroutine
D.	Adding	the	ReportBefore	Event	Handler
E.	Adding	the	ReportAfter	Event	Handler
F.	Adding	the	ReportProgress	Event	Handler
G.	Adding	the	ReportError	Event	Handler

Analysis	Services	Programming

ReportAfter	(clsDatabase)
This	event	is	called	after	a	processing	action	for	the	Database	object	has
finished	executing.

Applies	To
clsDatabase

Syntax
ReportAfter(obj	As	Object,	ByVal	Action	As	Integer,	ByVal	success	As
Boolean)

obj

Refers	to	the	object	being	processed	or	the	target	object	of	the	action.

Action

Refers	to	the	processing	action	that	has	been	completed.

success

Indicates	whether	the	action	succeeded.

Remarks
This	event	is	called	whenever	a	processing	action	for	a	given	Database	object
(referenced	by	obj)	or	any	of	its	subordinate	major	or	minor	objects	has	finished
executing.	The	type	of	action	can	be	determined	from	the	value	of	Action.
Whether	or	not	the	action	was	successful	can	be	determined	by	the	value	of
success.

For	more	information	about	using	this	event,	see	Events.

Analysis	Services	Programming

ReportBefore	(clsDatabase)
This	event	is	called	before	a	processing	action	for	a	given	Database	object
(referenced	by	obj)	starts	to	run.

Applies	To
clsDatabase

Syntax
ReportBefore(obj	As	Object,	ByVal	Action	As	Integer,	Cancel	As	Boolean,	Skip
As	Boolean)

obj

Refers	to	the	object	being	processed	or	the	target	object	of	the	action.

Action

Refers	to	the	processing	action	that	has	been	completed.

Cancel

Allows	the	application	to	cancel	an	action	by	setting	this	parameter	to	True.

Skip

Reserved	for	future	use.

Remarks
This	event	is	called	before	a	processing	action	for	a	given	Database	object
(referenced	by	obj)	or	any	of	its	subordinate	major	or	minor	objects	starts	to	run.
The	action	can	be	determined	from	the	value	of	Action.

For	more	information	about	using	this	event,	see	Events.

Analysis	Services	Programming

ReportError	(clsDatabase)
This	event	is	called	whenever	a	processing	error	occurs.

Applies	To
clsDatabase

Syntax
ReportError(obj	As	Object,	ByVal	Action	As	Integer,	ByVal	ErrorCode	As
Long,	ByVal	Message	As	String,	Cancel	As	Boolean)

obj

Refers	to	the	object	being	processed	or	the	target	object	of	the	action.

Action

Refers	to	the	processing	action	that	has	been	completed.

ErrorCode

A	value	in	the	ErrorCodes	enumeration.

Message

A	user	friendly	message	describing	the	error.

Cancel

Allows	the	application	to	cancel	an	action	by	setting	this	parameter	to	True.

Remarks
This	event	is	called	whenever	an	error	occurs	during	processing.

For	more	information	about	using	this	event,	see	Events.

Analysis	Services	Programming

ReportProgress	(clsDatabase)
This	event	is	called	to	report	progress	during	a	processing	action.

Applies	To
clsDatabase

Syntax
ReportProgress(obj	As	Object,	ByVal	Action	As	Integer,	Counter	As	Long,
Message	As	String,	Cancel	as	Boolean)

obj

Refers	to	the	object	being	processed	or	the	target	object	of	the	action.

Action

Refers	to	the	processing	action	that	has	been	completed.

Counter

Indicates	the	numerical	progress	of	the	operation	referred	to	by	Action.	For
cubes,	this	argument	refers	to	the	number	of	rows	that	have	been	processed.
For	data	mining	models,	this	argument	contains	a	number	between	0	and	100
indicating	the	percentage	of	the	processing	task	that	has	been	completed.

Message

A	user-friendly	message	describing	the	progress	made.

Cancel

Allows	the	application	to	cancel	an	action	by	setting	this	parameter	to	True.

Remarks
This	event	can	be	used	to	update	a	progress	bar	or	counter	in	a	user	interface.
When	using	a	progress	bar	to	track	the	progress	of	a	cube	that	is	being

processed,	the	maximum	value	of	the	progress	bar	is	determined	by	the	cube's
EstimatedRows	property.	For	tracking	the	progress	of	a	data	mining	model,	set
the	maximum	value	of	the	progress	bar	to	100.	When	processing	a	cube	this
event	will	be	fired	every	1000	rows.	For	data	mining	models	this	interval	is
inconsistent	and	cannot	be	determined	in	advance.

For	more	information	about	using	this	event,	see	Events.

See	Also

EstimatedRows

Analysis	Services	Programming

Objects
In	Decision	Support	Objects	(DSO)	there	are	two	ways	to	classify	objects:
objects	that	can	be	accessed	and	managed	directly,	and	objects	that	implement	a
DSO	interface.

Objects	that	can	be	accessed	and	managed	directly	have	their	own	collections,
methods	and	properties.	They	include	the	following	classes:

clsColumn

clsCubeAnalyzer

clsDataSource

clsMemberProperty

clsMiningModel

clsPartitionAnalyzer

clsServer

Note		Class	type	designations	that	use	the	format	clsClassType,	such	as
clsServer,	are	used	internally	by	the	DSO	ClassType	property	and	do	not
necessarily	correspond	to	a	particular	class	definition	within	Microsoft®	Visual
Basic®.

Objects	that	implement	an	interface	use	a	subset	of	the	collections,	methods,	and
properties	associated	with	the	interface.	The	DSO	ClassType	and	SubClassType
properties	determine	which	features	of	an	interface	are	implemented	by	a
particular	object.	Information	about	these	features	appears	throughout	this
document.

Each	collection,	method,	and	property	description	contains	the	names	of	the

objects	in	which	it	appears.	Conversely,	each	object	description	contains	the
names	of	the	collections,	methods,	and	properties	that	the	object	implements.

The	following	table	lists	the	six	DSO	interfaces	and	the	objects	that	implement
them.

Interface Implemented	by
Command clsDatabaseCommand

clsCubeCommand
Dimension clsDatabaseDimension

clsCubeDimension
clsPartitionDimension
clsAggregationDimension

Level clsDatabaseLevel
clsCubeLevel
clsPartitionLevel
clsAggregationLevel

MDStore clsDatabase
clsCube
clsPartition
clsAggregation

Measure clsCubeMeasure
clsPartitionMeasure
clsAggregationMeasure

Role clsDatabaseRole
clsCubeRole
clsMiningModelRole

For	more	information,	see	Interfaces.

Objects	That	Are	Accessed	Directly
The	following	objects	do	not	implement	a	shared	interface	and	are	accessed
directly.

Object ClassType

Column clsColumn
Cube	analyzer clsCubeAnalyzer
Data	mining	model clsMiningModel
Data	source clsDataSource
Member	property clsMemberProperty
Partition	analyzer clsPartitionAnalyzer
Server clsServer

Objects	That	Are	Accessed	Through	an	Interface
The	DSO	object	model	uses	interfaces	to	simplify	your	interaction	with	groups
of	related	objects,	while	maintaining	parent-child	inheritance	throughout	the
object	model	hierarchy.	For	more	information	about	the	complete	hierarchy,	see
Introducing	Decision	Support	Objects.

Each	DSO	object	that	implements	a	DSO	interface	belongs	to	one	of	the
following	categories:

Aggregations

Commands

Cubes

Databases

Dimensions

Levels

Measures

Partitions

Roles

The	uniqueness	of	multiple	DSO	objects	within	the	same	category	is	determined
by	where	each	is	contained	within	the	overall	DSO	object	model	hierarchy.	For
example,	a	cube	can	contain	several	dimensions.	These	dimension	objects	are
contained	in	the	Dimensions	collection	of	the	cube.	Each	of	these	dimension
objects	is	a	DSO	object	of	ClassType	clsCubeDimension.

Each	cube	also	contains	a	collection	of	partition	objects.	Each	of	these	partition
objects	also	contains	a	collection	of	dimension	objects	in	its	Dimensions
collection.	Each	of	these	dimension	objects	is	a	DSO	object	of	ClassType
clsPartitionDimension.

Although	the	DSO	objects	of	ClassType	clsCubeDimension	and
clsPartitionDimension	are	both	dimension	objects,	their	methods	and	properties
are	unique	because	of	the	parent	objects	in	which	their	collections	are	contained.
The	DSO	object	model	groups	such	objects	together	and	manages	them	by	the
implementation	of	a	common	interface.

Major	and	Minor	Objects
In	DSO,	most	child	objects	cannot	commit	their	own	changes	to	the	Analysis
server,	but	instead	must	rely	on	their	parent	object	to	commit	the	changes	of	their
child	objects.	Any	object	that	can	commit	itself	and	its	children	is	referred	to	in
DSO	terminology	as	a	major	object.	Any	object	that	cannot	commit	itself,	but
must	rely	on	a	major	object	to	perform	such	an	action,	is	referred	to	as	a	minor
object.

Objects	with	the	following	ClassType	property	values	are	considered	major
objects:

clsCube

clsDatabase

clsDatabaseCommand

clsDatabaseDimension

clsDatabaseRole

clsDataSource

clsMiningModel

clsPartition

clsServer

All	objects	not	included	in	the	previous	list	are	considered	minor	objects.	To
commit	changes	to	major	and	minor	objects,	all	major	objects	in	DSO	support
the	Update	method.	Any	change	to	a	DSO	minor	object	must	be	committed
through	the	parent	DSO	major	object	in	order	to	be	committed.	For	example,	a
change	to	a	clsCubeRole	object	is	committed	only	when	the	Update	method	of
its	parent	clsCube	object	is	executed.	Although	most	interfaces	in	the	DSO
hierarchy	have	an	Update	method,	attempting	to	use	the	Update	method	on	a
minor	object	in	DSO	will	result	in	an	error.

Analysis	Services	Programming

clsAggregation
An	object	of	ClassType	clsAggregation	provides	a	specific	implementation	of
the	Decision	Support	Objects	(DSO)	MDStore	interface.	Each	instance	of	a
clsAggregation	object	represents	a	unique	DSO	aggregation.	This	object
provides	collections,	methods,	and	properties	through	the	MDStore	interface.

Example
Use	the	following	code	to	list	the	aggregations	contained	within	a	partition:

'Assume	an	object	(dsoServer)	of	ClassType	clsServer	exists
				Dim	dsoDB	As	MDStore
				Dim	dsoCube	As	MDStore
				Dim	dsoPart	As	MDStore
				Dim	dsoAgg	As	MDStore
				
				Set	dsoDB	=	dsoServer.MDStores(1)			'Database
				Set	dsoCube	=	dsoDB.MDStores(1)					'Cube
				Set	dsoPart	=	dsoCube.MDStores(1)			'Partition
				
				'MDStores	collection	of	a	partition	object
				'contains	objects	of	ClassType	clsAggregation
				Debug.Print	"	#	Aggregations	=	"	&	dsoPart.MDStores.Count

See	Also

Aggregations

Collections,	clsAggregation

MDStore	Interface

Methods,	clsAggregation

JavaScript:hhobj_1.Click()

Properties,	clsAggregation

Analysis	Services	Programming

Collections,	clsAggregation
An	object	of	ClassType	clsAggregation	implements	the	following	collections	of
the	MDStore	interface.

Collection Description
CustomProperties The	collection	of	user-defined	properties
Dimensions The	collection	of	dimension	objects	associated

with	the	aggregation
Measures The	collection	of	objects	associated	with	the

aggregation

See	Also

clsAggregation

MDStore	Interface

Analysis	Services	Programming

Methods,	clsAggregation
An	object	of	ClassType	clsAggregation	implements	the	following	methods	of
the	MDStore	interface.

Method Description
Clone Copies	an	aggregation	object	to	an	existing	target

object	of	the	same	class	type

See	Also

clsAggregation

MDStore	Interface

Analysis	Services	Programming

Properties,	clsAggregation
An	object	of	ClassType	clsAggregation	implements	the	following	properties	of
the	MDStore	interface.

Property Description
AggregationPrefix Contains	the	prefix	associated	with	an

aggregation	in	an	MDStore	object
ClassType Returns	an	enumeration	constant	that	identifies

the	specific	object	type
Description The	description	of	the	aggregation
EnableRealTimeUpdates Indicates	whether	real-time	updates	are	enabled

for	the	aggregation
EstimatedRows The	estimated	number	of	rows	in	the	aggregation
EstimatedSize The	estimated	size	(in	bytes)	of	all	rows	in	the

aggregation
FromClause The	comma-separated	list	of	source	tables	in	the

aggregation
IsDefault Sets	or	returns	True	if	the	aggregation	is	the

default	aggregation	for	the	partition,	False	if
otherwise

IsTemporary Indicates	whether	the	aggregation	should	be
persisted	in	the	repository

IsValid Returns	True	if	the	aggregation	structure	is	valid,
False	if	otherwise

JoinClause The	list	of	join	conditions,	separated	by	AND
LastProcessed The	date	and	time	when	the	partition	containing

the	aggregation	was	last	processed
Name The	name	of	the	aggregation
OlapMode Returns	an	enumeration	constant	that	identifies

the	type	of	OLAP	mode	of	the	data	store
Parent Returns	a	reference	to	the	parent	MDStore	object
Server Returns	a	reference	to	the	DSO.Server	object

SourceTable The	name	of	the	fact	table	for	the	aggregation
SubClassType Returns	an	enumeration	constant	that	identifies

the	subclass	type	of	the	object

See	Also

clsAggregation

MDStore	Interface

Analysis	Services	Programming

clsAggregationDimension
An	object	of	ClassType	clsAggregationDimension	allows	you	to	specify	the
level	of	granularity	an	aggregation	will	have.	This	object	provides	collections
and	properties	through	a	specific	implementation	of	the	Decision	Support
Objects	(DSO)	Dimension	interface.	There	are	no	methods	associated	with	an
object	of	ClassType	clsAggregationDimension.

Remarks
By	default,	an	aggregation	for	a	partition	precalculates	values	based	on	the	top-
most	levels	within	the	partition.	To	specify	a	different	granularity,	that	is,	the
degree	to	which	an	aggregation	is	precalculated,	add	additional	levels	to	the
aggregation's	dimensions.	For	example,	in	a	default	scenario	a	cube	(and
consequently	its	partition)	may	contain	a	Time	dimension	that	has	the	levels
(All)	(default),	Year,	Quarter,	and	Month.	An	aggregation	for	this	partition
inherits	all	of	the	dimensions	of	the	partition,	but	only	the	top-most	level	or	the
default	(All)	level	is	precalculated.	To	precalculate	a	greater	detail	of	data	over
the	Time	dimension,	add	one	or	more	of	the	levels	Year,	Quarter,	and	Month.

Example
The	following	example	causes	the	aggregation	for	the	Time	dimension	to	include
data	for	the	Year,	Quarter,	and	Month	levels,	in	addition	to	the	default	level
(All):

'Assume	an	object	(dsoAgg)	of	ClassType	clsAggregation	exists
Dim	dsoAggDim	as	DSO.Dimension
Set	dsoAggDim	=	dsoAgg.Dimensions("Time")
dsoAggDim.Levels.AddNew("Year")
dsoAggDim.Levels.AddNew("Quarter")
dsoAggDim.Levels.AddNew("Month")

See	Also

Collections,	clsAggregationDimension

Dimension	Interface

Properties,	clsAggregationDimension

Analysis	Services	Programming

Collections,	clsAggregationDimension
An	object	of	ClassType	clsAggregationDimension	implements	the	following
collections	of	the	Dimension	interface.

Collection Description
CustomProperties The	collection	of	user-defined	properties
Levels The	collection	of	Level	objects	in	an	aggregation

dimension

See	Also

clsAggregationDimension

Dimension	Interface

Analysis	Services	Programming

Properties,	clsAggregationDimension
An	object	of	ClassType	clsAggregationDimension	implements	the	following
properties	of	the	Dimension	interface.

Property Description
AllowSiblingsWithSameNameSpecifies	whether	sibling	members	of	the

same	parent	within	a	dimension	can	have
the	same	name.

AreMemberKeysUnique Indicates	whether	member	keys	are	unique
within	a	particular	level	for	the	dimension.

AreMemberNamesUnique Indicates	whether	member	names	are	unique
within	a	particular	level	for	the	dimension.

ClassType Returns	an	enumeration	constant	that
identifies	the	specific	object	type.

DataMemberCaptionTemplate Contains	a	template	string	that	is	used	to
create	captions	for	system-generated	data
members.

DataSource The	name	of	the	data	source	object.
DefaultMember Defines	the	default	member	of	the

dimension.
DependsOnDimension Names	a	dimension	to	which	the	current

dimension	is	related.
DimensionType Returns	an	enumeration	constant	that

identifies	the	specific	type	of	dimension.
EnableRealTimeUpdates Indicates	whether	real-time	updates	are

enabled	for	the	dimension.
FromClause A	comma-separated	list	of	the	tables	from

which	the	store	data	is	obtained.
IsChanging Indicates	whether	members	and/or	levels	are

expected	to	change	on	a	regular	basis.
IsReadWrite Indicates	whether	dimension	writebacks	are

available	to	clients	with	appropriate

permissions.
IsShared Indicates	whether	the	dimension	is	shared

among	cubes.
IsTemporary Indicates	whether	the	dimension	is

temporary.
IsValid Indicates	whether	the	dimension	structure	is

valid.
IsVirtual Indicates	whether	the	dimension	is	virtual.
IsVisible Indicates	whether	the	dimension	is	visible	to

the	client.
JoinClause Contains	the	SQL	JOIN	clause	for	the

dimension.
LastProcessed The	date	and	time	when	the	dimension	was

last	processed.
LastUpdated User-specified	date.	It	is	not	used	by

Microsoft®	SQL	Server™	2000	Analysis
Services.

MembersWithData Determines	which	members	in	a	dimension
can	have	associated	data	in	the	fact	table.

Name The	dimension	name.
OrdinalPosition Returns	the	ordinal	position	of	the

dimension	object	within	its	parent	object's
Dimensions	collection.

Parent Returns	a	reference	to	the	parent	MDStore
object.

SourceTableFilter Restricts	members	included	in	a	dimension.
StorageMode Determines	the	method	of	storing

dimension	contents.
SubClassType Returns	an	enumeration	constant	that

identifies	the	subclass	type	of	the	object.

See	Also

clsAggregationDimension

Dimension	Interface

Analysis	Services	Programming

clsAggregationLevel
An	object	of	ClassType	clsAggregationLevel	provides	a	specific
implementation	of	the	Decision	Support	Objects	(DSO)	Level	interface.	It	is
used	to	maintain	the	level	objects	associated	with	an	MDStore	object	that	has	a
ClassType	of	clsAggregation.	This	object	provides	collections	and	properties
through	the	Level	interface.	There	are	no	methods	associated	with	an	object	of
ClassType	clsAggregationLevel.

Remarks
Levels	describe	the	dimension	hierarchy	from	the	highest	(most	aggregated)
level	to	the	lowest	(most	detailed)	level	of	data.	The	(All)	level	of	a	dimension	is
the	top	level	of	a	dimension;	it	includes	all	the	members	of	subordinate	levels.

Example
Use	the	following	code	to	reference	a	level	of	an	existing	aggregation:

'	Assume	the	existence	of	an	object	(myAgg)	of	
'	ClassType	clsAggregationDimension
Dim	myLev	As	DSO.Level
Set	myLev	=	myAgg.Levels("Brand	Name")

See	Also

Collections,	clsAggregationLevel

Level	Interface

Properties,	clsAggregationLevel

Analysis	Services	Programming

Collections,	clsAggregationLevel
An	object	of	ClassType	clsAggregationLevel	implements	the	following
collection	of	the	Level	interface.

Collection Description
CustomProperties The	collection	of	user-defined	properties

See	Also

clsAggregationLevel

Level	Interface

Analysis	Services	Programming

Properties,	clsAggregrationLevel
An	object	of	ClassType	clsAggregationLevel	implements	the	following
properties	of	the	Level	interface.

Property Description
AreMemberKeysUnique Indicates	whether	the	members	of	a	level

are	uniquely	identified	by	their	member
key	column

AreMemberNamesUnique Indicates	whether	the	members	of	a	level
are	uniquely	identified	by	their	member
name	column

ClassType Returns	an	enumeration	constant	that
identifies	the	specific	object	type

ColumnSize The	size	(in	bytes)	of	the	data	in	the
MemberKeyColumn	property	of	the
level

ColumnType The	data	type	of	the
MemberKeyColumn	property	of	the
level

CustomRollUpColumn Contains	the	name	of	the	column	that
contains	member-specific	rollup
instructions

CustomRollUpExpression Contains	a	Multidimensional	Expressions
(MDX)	expression	used	to	override	the
default	rollup	mode

CustomRollUpPropertiesColumnContains	the	name	of	the	column	that
supplies	cell	properties	for	member-
specific	rollup	instructions

Description The	description	of	the	level
EstimatedSize The	estimated	number	of	members	in	the

level
FromClause Contains	the	SQL	FROM	clause	for	the

level
Grouping Indicates	the	type	of	grouping	used	by	the

OLAP	server
HideMemberIf Indicates	whether	a	member	should	be

hidden	from	client	applications
IsDisabled Indicates	whether	the	level	is	disabled
IsValid Indicates	whether	the	level	structure	is

valid
IsVisible Indicates	whether	the	level	is	visible	to

client	applications
JoinClause Contains	the	SQL	JOIN	clause	for	the

level
LevelNamingTemplate Defines	how	levels	in	a	parent-child

hierarchy	are	named
LevelType Returns	an	enumeration	constant	that

identifies	the	specific	type	of	level
MemberKeyColumn The	name	of	the	column	that	contains	the

member	key	of	the	aggregation	level
MemberNameColumn The	name	of	the	column	that	contains

member	names.
Name The	name	of	the	level
Ordering Specifies	the	method	to	use	when

ordering	the	members	of	a	level
OrderingMemberProperty Specifies	a	member	property	used	to

determine	the	ordering	of	members
OrdinalPosition Returns	the	ordinal	position	of	the	level

in	the	Levels	collection	of	the	parent
object

Parent Returns	a	reference	to	the	parent
dimension	object

ParentKeyColumn Identifies	the	parent	of	a	member	in	a
parent-child	hierarchy

RootMemberIf Determines	how	the	root	member	or
members	of	a	parent-child	hierarchy	are
identified

SkippedLevelsColumn Identifies	the	column	that	holds	the
number	of	empty	levels	between	a
member	and	its	parent

SubClassType Returns	an	enumeration	constant	that
identifies	the	subclass	type	of	the	object

UnaryOperatorColumn Contains	the	name	of	a	column	that	stores
mathematical	operators	serving	as
member-specific	rollup	instructions	for
the	level

See	Also

clsAggregationLevel

Level	Interface

Analysis	Services	Programming

clsAggregationMeasure
An	object	of	ClassType	clsAggregationMeasure	provides	a	specific
implementation	of	the	Decision	Support	Objects	(DSO)	Measure	interface.	It	is
used	to	maintain	the	measure	objects	contained	within	an	aggregation	object.
This	object	provides	collections	and	properties	through	the	Measure	interface.
There	are	no	methods	associated	with	an	object	of	ClassType
clsAggregationMeasure.

Remarks
When	a	cube	is	processed,	measures	are	aggregated	across	the	dimensions	in	the
cube.

Example
Use	the	following	code	to	reference	a	measure	of	an	aggregation:

'Assume	an	object	(dsoAggregation)	of	ClassType	clsAggregation	exists.
Dim	dsoAggMeasure	As	DSO.Measure
Set	dsoAggMeasure	=	dsoAggregation.Measures("Unit	Sales")

See	Also

Collections,	clsAggregationMeasure

Measure	Interface

Object	Architecture

Properties,	clsAggregationMeasure

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Collections,	clsAggregationMeasure
An	object	of	ClassType	clsAggregationMeasure	implements	the	following
collection	of	the	Measure	interface.

Collection Description
CustomProperties The	collection	of	user-defined	properties

See	Also

clsAggregationMeasure

Measure	Interface

Analysis	Services	Programming

Properties,	clsAggregationMeasure
An	object	of	ClassType	clsAggregationMeasure	implements	the	following
properties	of	the	Measure	interface.

Property Description
AggregateFunction A	value	corresponding	to	the	type	of	aggregation

function	used	for	the	measure
ClassType Returns	an	enumeration	constant	that	identifies

the	specific	object	type
Description Contains	the	description	of	the	measure
FormatString Contains	the	format	used	to	display	the	measure

values
IsValid Indicates	whether	the	measure	structure	is	valid
IsVisible Indicates	whether	the	measure	is	visible	to	the

client
Name Contains	the	measure	name
OrdinalPosition Returns	the	ordinal	position	of	the	measure	in	the

Measures	collection	of	the	parent	object
Parent Returns	a	reference	to	the	parent	aggregation

object
SourceColumn Contains	the	name	of	the	measure	column	in	the

aggregated	fact	table
SourceColumnType Returns	a	Microsoft®	ActiveX®	Data	Objects

(ADO)	DB	enumeration	constant	identifying	the
data	type	of	the	column	specified	by	the
SourceColumn	property

SubClassType Returns	an	enumeration	constant	that	identifies
the	subclass	type	of	the	object

See	Also

clsAggregationMeasure

Measure	Interface

Analysis	Services	Programming

clsCollection
A	Decision	Support	Objects	(DSO)	collection	is	an	object	similar	to	a	standard
Microsoft®	Visual	Basic®	Collection	object.	Unlike	typical	Visual	Basic
collections,	however,	DSO	collections	can	contain	only	objects	of	the	same	type,
determined	by	the	ClassType	property	of	the	contained	DSO	objects.	For
example,	the	Dimensions	collection	can	contain	only	objects	of	the	object
classes	that	apply	to	dimensions,	such	as	clsDatabaseDimension,
clsCubeDimension,	clsPartitionDimension,	and	clsAggregationDimension.
Collections	are	provided	with	methods	and	properties	through	their	default
interface,	the	OlapCollection	interface,	for	interacting	with	them.

Remarks
The	ContainedClassType	property	of	the	clsCollection	object	can	be	used	to
determine	the	objects	allowed	in	a	collection.

See	Also

Collections

ClassType

ContainedClassType

Analysis	Services	Programming

Methods,	clsCollection
The	following	methods	apply	to	Decision	Support	Objects	(DSO)	collections.

Method Description
Add Adds	an	existing	object	to	a	collection
AddNew Creates	and	adds	a	new	object	to	a	collection
Find Determines	whether	a	specified	object	is	in	a

collection
Item Retrieves	an	object	from	a	collection
Remove Removes	an	object	from	a	collection

Note		These	methods	do	not	apply	to	CustomProperties	collections.	For	more
information,	see	CustomProperties.

See	Also

Collections

Analysis	Services	Programming

Add	(clsCollection)
The	Add	method	of	a	Decision	Support	Objects	(DSO)	collection	adds	an	object
to	the	collection.	This	method	does	not	apply	to	CustomProperties	collections.

Note		It	is	recommended	that	you	use	the	AddNew	method	when	adding	new
objects.	You	should	use	the	Add	method	only	when	adding	existing	objects:	for
example,	when	you	are	adding	aggregations	to	a	partition	after	you	have
designed	them.	For	more	information,	see	clsPartitionAnalyzer.

Syntax
object.Add(obj,	[sKey	As	String],	[Before])

object

An	instance	of	a	DSO	collection	object.

obj

An	instance	of	a	DSO	object.

sKey

(Reserved)	Defaults	to	Item.Name.	If	specified,	it	must	contain	the	value	of
the	item's	Name	property.

Before

(Optional)	An	expression	that	specifies	a	relative	position	in	the	collection.
The	member	to	be	added	is	placed	in	the	collection	before	the	member
identified	by	the	Before	argument.	The	value	of	Before	must	be	a	number
from	1	to	the	value	of	the	colCollection.Count	property.	If	you	omit	this
parameter,	the	item	is	appended	at	the	last	position	in	the	collection.	This
argument	is	ignored	if	the	collection	is	sorted;	the	member	to	be	added	is
placed	in	the	position	indicated	by	the	sort	order	of	the	collection.

Note		All	collections	in	the	DSO	object	model	are	one-based.	That	is,	the	first
item	in	the	collection	has	an	index	of	1	and	the	last	item	has	an	index	equal	to
the	value	of	the	Count	property.

See	Also

Collections

Analysis	Services	Programming

AddNew	(clsCollection)
The	AddNew	method	of	a	Decision	Support	Objects	(DSO)	collection	creates
and	adds	an	object	to	a	collection.

Syntax
Set	vnt	=	object.AddNew(Name	As	String,	[SubClassType	As	SubClassTypes])

vnt

A	Variant	variable	that	receives	the	instance	of	the	new	member.	Instead	of	a
variant,	you	can	use	a	variable	that	has	been	declared	to	match	the	object
being	retrieved	from	the	collection.	For	example,	a	variable	declared	as	type
MDStore,	with	its	ClassType	property	value	set	to	clsCube,	can	be	used	to
retrieve	an	object	from	an	MDStores	collection	of	clsCube	objects.

object

An	instance	of	a	DSO	collection	object.

Name

A	string	that	specifies	the	name	of	the	new	object	to	add	to	the	collection.

SubClassType

(Optional)	One	of	the	values	enumerated	by	the	SubClassTypes
enumeration.	For	more	information,	see	SubClassTypes.

Remarks
The	ClassType	property	of	the	new	object	is	set	automatically	and	depends	on
the	parent	of	the	collection	to	which	the	object	is	being	added.	For	example,
objects	added	to	the	MDStores	collection	of	an	object	of	ClassType
clsDatabase	automatically	receive	a	ClassType	value	of	clsCube.

The	AddNew	method	maintains	hierarchical	relationships	and	ordering	within
the	collection.

Note		The	AddNew	method	should	be	used	when	adding	new	objects	to	a
collection.	You	should	use	the	Add	method	only	when	adding	existing	objects:
for	example,	when	you	are	adding	aggregations	to	a	partition	after	you	have
designed	them.	For	more	information,	see	clsPartitionAnalyzer.

Example
Use	the	following	code	to	create	a	new	cube	and	add	it	to	the	MDStores
collection	of	cubes:

'	Assume	the	existence	of	an	object	objDB
'	of	ClassType	clsDatabase.	
Dim	objNewCube	As	MDStore	
Set	objNewCube	=	objDB.MDStores.AddNew("NewCube")	
	

See	Also

Collections

SubClassTypes

Analysis	Services	Programming

Find	(clsCollection)
The	Find	method	of	a	Decision	Support	Objects	(DSO)	collection	locates	an
item	in	a	collection.	This	method	does	not	apply	to	CustomProperties
collections.

Syntax
bPresent	=	object.Find(vKey)

bPresent

A	Boolean	variable	that	receives	the	returned	value:	True	if	the	item	was
found,	False	otherwise.

object

An	instance	of	a	DSO	collection	object.

vKey

The	key	or	index	of	the	item	to	be	found.

Example
Use	the	following	code	to	check	for	the	existence	of	a	partition	named	EastCoast
in	the	MDStores	collection	of	partitions	for	a	cube:

'	Assume	the	existence	of	an	object	cubCube
'	of	ClassType	clsCube.
Dim	bPresent	As	Boolean	
bPresent	=	cubCube.MDStores.Find("EastCoast")	
	

See	Also

Collections

Analysis	Services	Programming

Item	(clsCollection)
The	Item	method	of	a	Decision	Support	Objects	(DSO)	collection	returns	an
instance	of	an	item	in	the	collection.	This	method	does	not	apply	to
CustomProperties	collections.

Syntax
Set	vnt	=	object.Item(vntIndexKey)

vnt

A	Variant	variable	that	receives	the	instance	of	the	member.	Instead	of	a
variant,	you	can	use	a	variable	that	has	been	declared	to	match	the	object
being	retrieved	from	the	collection.	For	example,	a	variable	declared	as	type
MDStore,	with	its	ClassType	property	value	set	to	clsCube,	can	be	used	to
retrieve	an	object	from	an	MDStores	collection	of	clsCube	objects.

object

An	instance	of	a	DSO	collection	object.

vntIndexKey

Can	be	either	the	index	(integer)	or	key	(string)	to	the	collection.

Note		All	collections	in	the	DSO	object	model	are	one-based.	That	is,	the	first
item	in	the	collection	has	an	index	of	1	and	the	last	item	has	an	index	of	Count.

Example
Use	the	following	code	to	return	the	partition	named	EastCoast	from	the
MDStores	collection	of	partitions	for	a	cube:

'	Assume	the	existence	of	an	object	cubCube
'	of	ClassType	clsCube.
Dim	Temp_Partition	As	MDStore	
'	Retrieve	using	the	key

Set	Temp_Partition	=	cubCube.MDStores.Item("EastCoast")	
'	OR	Retrieve	using	the	Index
Set	Temp_Partition	=	cubCube.MDStores.Item(2)	
	

See	Also

Collections

Analysis	Services	Programming

Remove	(clsCollection)
The	Remove	method	of	a	Decision	Support	Objects	(DSO)	collection	removes
an	item	from	the	collection.	This	method	does	not	apply	to	CustomProperties
collections.

Syntax
object.Remove(vntIndexKey)

object

An	instance	of	a	DSO	collection	object.

vntIndexKey

Either	the	index	(integer)	or	key	(string)	to	the	collection.

Note		All	collections	in	the	DSO	object	model	are	one-based.	That	is,	the	first
item	in	the	collection	has	an	index	of	1	and	the	last	item	has	an	index	of	Count.

Remarks
The	Remove	method,	by	removing	the	selected	member	from	the	collection,
removes	the	selected	member	from	both	the	Analysis	server	and	the	repository.

Example
Use	the	following	code	to	remove	the	partition	named	EastCoast	from	the
MDStores	collection	of	partitions	for	a	cube:

'	Assume	the	existence	of	an	object	dsoCube
'	of	ClassType	clsCube.
'	Remove	using	the	key	
dsoCube.MDStores.Remove	"EastCoast"	
'	OR	Remove	using	the	Index
dsoCube.MDStores.Remove	2	

	

See	Also

Collections

Analysis	Services	Programming

Properties,	clsCollection
The	following	properties	apply	to	Decision	Support	Objects	(DSO)	collections.

Property Description
ClassType The	class	type	of	a	collection
ContainedClassType The	class	type	of	the	items	contained	in	a

collection
Count The	number	of	items	in	a	collection

Note		These	properties	do	not	apply	to	CustomProperties	collections.	For	more
information,	see	CustomProperties.

See	Also

Collections

Analysis	Services	Programming

ClassType	(clsCollection)
The	ClassType	property	of	a	Decision	Support	Objects	(DSO)	collection	returns
the	class	type	of	the	collection	object.	This	property	does	not	apply	to
CustomProperties	collections.

Data	Type
ClassTypes

This	property	returns	clsCollection	for	all	collections,	regardless	of	the	value	of
the	ClassType	property	for	the	objects	contained	by	the	collection.

Access
Read-only

Remarks
Use	the	ContainedClassType	property	to	determine	the	value	of	the	ClassType
objects	accepted	by	the	collection.

See	Also

ContainedClassType	(clsCollection)

ClassTypes

clsDataSource

Collections

Command	Interface

Dimension	Interface

Level	Interface

MDStore	Interface

Role	Interface

Analysis	Services	Programming

ContainedClassType	(clsCollection)
The	ContainedClassType	property	of	a	Decision	Support	Objects	(DSO)
collection	returns	the	class	type	of	the	items	contained	within	the	collection.	This
property	does	not	apply	to	CustomProperties	collections.

Data	Type
ClassTypes

Access
Read-only

Remarks
The	DSO	object	model	uses	the	properties	ClassType	and	SubClassType	to
identify	the	object.	All	DSO	objects,	with	the	exception	of	those	of	ClassType
clsCube,	clsLevel,	and	clsMiningModel,	return	a	SubClassType	of
sbclsRegular.	In	addition	to	sbclsRegular,	an	object	of	ClassType	clsCube	or
clsLevel	can	have	a	SubClassType	of	sbclsVirtual,	which	identifies	the	object
as	a	virtual	cube	or	a	virtual	(calculated)	level.	Objects	of	ClassType
clsMiningModel	return	a	SubClassType	of	sbclsOLAP	or	sbclsRelational,
depending	on	the	type	of	mining	model	defined	by	the	object.

Example
Use	the	following	code	to	return	a	collection	object's	ContainedClassType	and
determine	which	class	type	has	been	returned:

Dim	ctVar	As	ClassTypes	
ctVar	=	CollectionObject.ContainedClassType	
Select	Case	ctVar	
			Case	clsCubeMeasure	
						'	Insert	code	for	a	cube	measure.

			Case	clsCubeDimension	
						'	Insert	code	for	a	cube	dimension.
			Case	clsCubeLevel	
						'	Insert	code	for	a	cube	level.
			Case	clsCubeCommand	
						'	Insert	code	for	a	cube	command.
			Case	clsCubeRole	
						'	Insert	code	for	a	cube	role.
			Case	Else	
								'	Insert	code	for	other	objects.
End	Select	
	

See	Also

ClassTypes

clsDataSource

Collections

Command	Interface

Dimension	Interface

Level	Interface

MDStore	Interface

Role	Interface

Analysis	Services	Programming

Count	(clsCollection)
The	Count	property	of	a	Decision	Support	Objects	(DSO)	collection	returns	the
number	of	items	in	the	collection.	This	property	does	not	apply	to
CustomProperties	collections.

Data	Type
Integer

Access
Read-only

Note		All	collections	in	the	DSO	object	model	are	one-based.	That	is,	the	first
item	in	the	collection	has	an	index	of	1	and	the	last	item	has	an	index	of	Count.

Example
Use	the	following	code	to	return	the	number	of	cubes	in	an	MDStores	collection
of	cubes:

'Assume	an	object	(dsoDB)	of	ClassType	clsDatabase	exists
Dim	dsoCube	As	DSO.MDStore
Dim	cubeCounter	As	Integer
For	cubeCounter	=	1	to	dsoDB.MDStores.Count
				Set	dsoCube	=	dsoDB.MDStores(cubeCounter)
				Debug.Print	"						Cube	Name:	"	&	dsoCube.Name
Next	cubeCounter
	

See	Also

Collections

Analysis	Services	Programming

clsColumn
Data	mining	column	objects	(that	is,	objects	of	ClassType	clsColumn),	along
with	data	mining	model	objects,	provide	a	programmatic	interface	to	data	mining
capabilities.	Data	mining	automates	data	analysis	by	applying	algorithms	to
reveal	historical	and	predictive	patterns	within	large	databases.	The	class	type
clsMiningModel	is	provided	by	Decision	Support	Objects	(DSO)	to	represent
data	mining	models.	Data	mining	models	are	the	primary	objects	for	predictive
analysis,	just	as	a	cube	is	the	primary	object	for	OLAP	analysis.	Objects	of
ClassType	clsColumn	are	used	to	define	the	structure	of	mining	model	objects
through	the	Columns	collection	of	the	model.	Columns	are	provided	with
collections	and	properties	through	their	default	interface,	the	Column	interface,
for	interacting	with	them.	There	are	no	methods	associated	with	clsColumn
objects.

Remarks
An	object	of	ClassType	clsColumn	can	have	a	SubClassType	of	sbclsRegular
or	sbclsNested.	A	column	of	SubClassType	sbclsRegular	is	an	individual	data
column,	whereas	a	column	of	SubClassType	sbclsNested	represents	a	nested
table	composed	of	multiple	individual	data	columns.

You	create	column	objects	by	declaring	a	variable	as	a	clsColumn	data	type	and
then	creating	an	instance	of	the	object	and	adding	it	to	the	Columns	collection	of
either	a	mining	model	object	or	another	column	object.	The	AddNew	method	of
the	Columns	collection	creates	the	instance,	sets	the	name	of	the	object	to	the
name	you	provide,	adds	the	object	to	the	collection,	establishes	the
SubClassType	of	the	column,	and	sets	its	Parent	property	to	reference	the
owner	of	the	collection.

Examples

Adding	a	New	Column	to	a	Data	Mining	Model
The	following	example	demonstrates	how	to	add	a	new	column	to	a	data	mining

model:

'--
'	Add	a	new	column	to	the	mining	model	called	Gender	and	relate	this
'	column	to	the	Gender	member	property	of	the	Name	level	of	the
'	Customers	dimension.	Declare	that	the	data	in	this	column	is	
'	statistically	discrete.
'	Assume	the	existence	of	a	DSO	Level	object,	dsoLvl.
'--
				'Add	another	column	to	the	model.
				Set	dsoColumn	=	dsoDmm.Columns.AddNew("Gender")
				'Identify	the	member	property	of	the	Customers	dimension
				'that	this	column	is	based	on.
				Set	dsoColumn.SourceOlapObject	=	dsoLvl.MemberProperties("Gender")
				'Identify	its	type.
				dsoColumn.DataType	=	adWChar
				'Make	this	column	related	to	the	Customer	Id	column.
				dsoColumn.RelatedColumn	=	"Customer	Id"
				'Identify	this	column	as	one	containing	discrete	data.
				dsoColumn.ContentType	=	"DISCRETE"

See	Also

AddNew

clsMiningModel

Collections,	clsColumn

Data	Mining	Models

Properties,	clsColumn

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Collections,	clsColumn
An	object	of	ClassType	clsColumn	supports	the	following	collections.

Collection Description
Columns The	collection	of	column	objects	that	defines	a	nested

table	in	the	structure	of	a	data	mining	model	object.	This
collection	applies	only	to	columns	of	SubClassType
sbclsNested.

CustomProperties The	collection	of	user-defined	properties	for	the	data
mining	model.

Analysis	Services	Programming

Properties,	clsColumn
An	object	of	ClassType	clsColumn	supports	the	following	properties.

Property Description Access
AreKeysUnique Indicates	whether	key	columns	defined

in	the	Columns	collection	uniquely
identify	members	in	the	case	table.

R/W†

ClassType Returns	an	enumeration	constant	that
identifies	the	specific	object	type.

R

ContentType Describes	the	content	type	of	a	column's
data.

R/W*

DataType The	data	type	of	the	column. R/W*

Description The	description	of	the	column. R/W
Distribution Identifies	the	statistical	distribution	of	a

column's	data.
R/W

Filter Filters	the	rows	used	in	the	nested	table. R/W*

FromClause Specifies	the	FROM	clause	of	the	SQL
query	that	returns	a	nested	table	for	a
column.

R/W*

IsDisabled Specifies	whether	a	column	is	disabled
for	training	purposes.

R/W

IsInput Indicates	whether	a	column	can	accept
input	values	for	training	a	mining	model
object.	For	more	information,	see
IsPredictable.

R/W

IsKey Indicates	whether	or	not	the	column	is	a
key	column	in	a	case	table	or	a	nested
table.

R/W*

IsParentKey Indicates	whether	the	column	is	a
foreign	key	that	relates	to	the	case	table.

R	or	R/W*

IsPredictable Indicates	whether	this	column	can	be
predicted	based	on	other	input	columns.

R/W

For	more	information,	see	IsInput.
JoinClause Specifies	the	JOIN	clause	of	the	SQL

query	that	returns	a	nested	table	for	a
column.

R/W*

ModelingFlags Specifies	modeling	options	for	a
column.

R/W

Name The	name	of	the	column. R/W
Num The	ordinal	position	of	the	column. R/W
Parent The	parent	mining	model	or	column

object.
R

RelatedColumn The	column	to	which	a	column	is
related.

R/W*

SourceColumn The	name	of	the	column's	source
column	in	a	relational	table.

R/W*†

SourceOlapObject The	name	of	a	column's	source	Decision
Support	Objects	(DSO)	object.

R/W††

SpecialFlag Identifies	the	statistical	nature	of	a
column's	data.

R/W

SubClassType Returns	an	enumeration	constant	that
identifies	the	subclass	type.

R
*	This	property	applies	only	to	columns	of	SubClassType	sbclsRegular.
†	This	property	applies	only	to	columns	belonging	to	ClassType	clsMiningModel	objects	of
SubClassType	sbclsRegular.
††	This	property	applies	only	to	columns	belonging	to	ClassType	clsMiningModel	objects	of
SubClassType	sbclsOlap.

Analysis	Services	Programming

AreKeysUnique	(clsColumn)
The	AreKeysUnique	property	of	a	clsColumn	object	indicates	whether	key
columns	(that	is,	a	clsColumn	object	with	an	IsKey	property	set	to	True)	defined
in	the	Columns	collection	uniquely	identify	members	in	the	case	table.

Note		This	property	applies	only	to	columns	that	belong	to	mining	model	objects
of	SubClassType	sbclsRelational.

Data	Type
Boolean

Access
Read/write	for	columns	with	a	SubClassType	of	sbclsNested,	read-only	for	all
others.

Remarks
The	AreKeysUnique	property	determines	whether	the	relational	mining	model
adds	the	DISTINCT	keyword	to	the	SQL	SELECT	query	used	to	retrieve	the
training	data	set	from	the	case	tables.	If	the	values	for	the	key	columns	identified
in	the	data	mining	model	are	unique	in	the	case	tables,	setting	this	property	to
True	can	improve	performance	when	the	relational	data	mining	model	is	trained.

For	columns	with	a	SubClassType	of	sbclsRegular,	this	property	returns	the
AreKeysUnique	property	value	of	the	parent,	either	an	object	of	ClassType
clsColumn	with	a	SubClassType	of	sbclsNested	or	an	object	of	ClassType
clsMiningModel.

See	Also

clsColumn

Analysis	Services	Programming

ClassType	(clsColumn)
The	ClassType	property	of	a	clsColumn	object	returns	an	enumeration	constant
that	identifies	the	specific	class	type.

Data	Type
ClassTypes

Access
Read-only

Remarks
The	ClassType	property	always	returns	clsColumn	for	column	objects.

See	Also

clsColumn

Analysis	Services	Programming

ContentType	(clsColumn)
The	ContentType	property	of	an	object	of	ClassType	clsColumn	describes	the
content	type	of	a	column's	data.

Data	Type
String

Access
Read/write	for	columns	with	a	SubClassType	of	sbclsRegular	whose	IsKey
and	IsParentKey	properties	are	False,	read-only	for	all	others.

Remarks
For	columns	whose	IsKey	or	IsParentKey	properties	are	set	to	True	and
columns	with	a	SubClassType	of	sbclsNested,	this	property	returns	an	empty
string.

This	property	suggests	the	column	contents	to	the	mining	model.	This	suggestion
is	used	to	optimize	the	mining	model's	MiningAlgorithm	property	and	must	be
specified	for	each	column.

Supported	values	for	this	property	are	listed	in	the	MINING_SERVICES	schema
rowset	in	the	SUPPORTED_TYPE_FLAGS	column.

Examples

Identifying	the	Content	Type	of	a	Mining	Model	Column
The	following	example	demonstrates	how	to	create	a	new	column	and	set	its
ContentType	property	to	CONTINUOUS:

'--
'	Add	a	new	column	to	the	mining	model	called	Unit	Sales	and	relate

'	this	column	to	the	Sales	cube	measure	of	the	same	name.	Set	the
'	columns	data	type	to	Integer,	and	identify	the	data	content	in	it	as
'	being	continous	and	logarithmically	normalized.	Finally,	identify	this
'	column	as	being	predictable.
'	Assume	the	existence	of	a	DSO	Cube	object,	dsoCb.
'--
				'Add	another	column	to	the	model.
				Set	dsoColumn	=	dsoDmm.Columns.AddNew("Unit	Sales")
				'Identify	this	column	as	being	based	on	the	Unit	Sales	measure.
				Set	dsoColumn.SourceOlapObject	=	dsoCb.Measures("Unit	Sales")
				'Identify	the	column	type.
				dsoColumn.DataType	=	adInteger
				'Identify	this	column's	content	as	being	continuous.
				dsoColumn.ContentType	=	"CONTINUOUS"
				'Identify	the	statistical	distribution	of	this	data.
				dsoColumn.Distribution	=	"LOG_NORMAL"
				'Identify	the	column	as	being	predictable.
				dsoColumn.IsPredictable	=	True

See	Also

clsColumn

Data	Mining	Schema	Rowsets

MINING_SERVICES

MiningAlgorithm

Analysis	Services	Programming

DataType	(clsColumn)
The	DataType	property	identifies	the	data	type	of	an	object	of	ClassType
clsColumn.	This	property	applies	only	to	columns	of	SubClassType
sbclsRegular.

Data	Type
ADODB.DataTypeEnum

Access
Read/write

Remarks
Values	for	the	DataType	property	are	supplied	by	the	Microsoft®	ActiveX®
Data	Objects	(ADO)	DataTypeEnum	enumeration	constants.	For	more
information,	see	the	ADO	documentation.

Examples

Setting	the	DataType	Property
The	following	example	adds	a	new	column	to	a	data	mining	model	object.	It
then	sets	various	properties,	including	the	DataType	property.

'--
'	Add	a	new	column	to	the	mining	model	called	Unit	Sales	and	relate
'	this	column	to	the	Sales	cube	measure	of	the	same	name.	Set	the
'	column's	data	type	to	Integer,	and	identify	the	data	content	in	it	as
'	being	continuous	and	logarithmically	normalized.	Finally,	identify	this
'	column	as	being	predictable.
'	Assume	the	existence	of	a	DSO	Cube	object,	dsoCb.
'--

				'Add	another	column	to	the	model.
				Set	dsoColumn	=	dsoDmm.Columns.AddNew("Unit	Sales")
				'Identify	this	column	as	being	based	on	the	Unit	Sales	measure.
				Set	dsoColumn.SourceOlapObject	=	dsoCb.Measures("Unit	Sales")
				'Identify	the	column	type.
				dsoColumn.DataType	=	adInteger
				'Identify	this	column's	content	as	being	continuous.
				dsoColumn.ContentType	=	"CONTINUOUS"
				'Identify	the	statistical	distribution	of	this	data.
				dsoColumn.Distribution	=	"LOG_NORMAL"
				'Identify	the	column	as	being	predictable.
				dsoColumn.IsPredictable	=	True

See	Also

clsColumn

Analysis	Services	Programming

Description	(clsColumn)
The	Description	property	of	an	object	of	ClassType	clsColumn	sets	or	returns
the	description	of	the	column.	This	property	is	reserved	for	future	reference	in
Decision	Support	Objects	(DSO)	and	is	not	available	to	client	applications.

Data	Type
String

Access
Read/write

Examples

A.	Setting	the	Description	Property
Use	the	following	code	to	set	the	Description	property	for	a	clsColumn	object:

'	Assume	an	object	(dsoColumn)	of	ClassType	clsColumn	exists
dsoColumn.Description	=	"Number	Sold"

B.	Adding	a	Column	to	a	Mining	Model	and	Setting	the	Column	Description	Property
The	following	example	creates	a	new	column	in	the	mining	model	and	sets	a
number	of	properties,	including	the	Description	property:

'--
'	Add	a	new	column	to	the	mining	model	called	Gender	and	relate	this
'	column	to	the	Gender	member	property	of	the	Name	level	of	the
'	Customers	dimension.	Declare	that	the	data	in	this	column	is
'	statistically	discrete.

'	Assume	the	existence	of	a	DSO	Level	object,	dsoLv.

'--
				'Add	another	column	to	the	model.
				Set	dsoColumn	=	dsoDmm.Columns.AddNew("Gender")
				'Identify	the	member	property	of	the	Customers	dimension
				'that	this	column	is	based	on.
				'Set	the	column's	description	for	browsers	of	the	schema.
				Set	dsoColumn.Description	=	"Based	on	the	Gender	member	property	"	&	_
						"of	the	Name	level	of	the	Customers	dimension."
				Set	dsoColumn.SourceOlapObject	=	dsoLvl.MemberProperties("Gender")
				'Identify	its	type.
				dsoColumn.DataType	=	adWChar
				'Make	this	column	related	to	the	Customer	Id	column.
				dsoColumn.RelatedColumn	=	"Customer	Id"
				'Identify	this	column	as	containing	discrete	data.
				dsoColumn.ContentType	=	"DISCRETE"

See	Also

clsColumn

Analysis	Services	Programming

Distribution	(clsColumn)
The	Distribution	property	of	an	object	of	ClassType	clsColumn	identifies	the
statistical	distribution	of	the	column's	data.

Data	Type
String

Access
Read/write	for	columns	with	a	SubClassType	of	sbclsRegular	whose	IsKey
and	IsParentKey	properties	are	False,	read-only	for	all	others.

Remarks
For	columns	whose	IsKey	or	IsParentKey	properties	are	set	to	True	and
columns	with	a	SubClassType	of	sbclsNested,	this	property	returns	an	empty
string.

Access
Read/write

Remarks
This	property	specifies	the	column's	statistical	distribution.	This	is	used	to
optimize	performance	by	the	mining	model's	mining	algorithm	and	can	be	left
unspecified.

This	property	applies	only	to	columns	of	SubClassType	sbclsRegular,	if	they
are	not	used	as	key	or	parent	key	columns.	(That	is,	it	applies	only	to	regular
columns	whose	IsKey	and	IsParentKey	properties	are	False.)	Supported	values
for	this	property	are	listed	in	the	MINING_SERVICES	schema	rowset	in	the
SUPPORTED_DISTRIBUTION_FLAGS	column.

Examples

Setting	the	Distribution	Property
The	following	example	creates	a	new	column	and	sets	its	Distribution	property,
among	others:

'--
'	Add	a	new	column	to	the	mining	model	called	Unit	Sales	and	relate
'	this	column	to	the	Sales	cube	measure	of	the	same	name.	Set	the
'	column's	data	type	to	Integer,	and	identify	the	data	content	in	it	as
'	being	continous	and	logarithmically	normalized.	Finally,	identify	this
'	column	as	being	predictable.
'	Assume	the	existence	of	a	DSO	Cube	object,	dsoCb.
'--
				'Add	another	column	to	the	model.
				Set	dsoColumn	=	dsoDmm.Columns.AddNew("Unit	Sales")
				'Identify	this	column	as	being	based	on	the	Unit	Sales	measure.
				Set	dsoColumn.SourceOlapObject	=	dsoCb.Measures("Unit	Sales")
				'Identify	the	column	type.
				dsoColumn.DataType	=	adInteger
				'Identify	this	column's	content	as	being	continuous.
				dsoColumn.ContentType	=	"CONTINUOUS"
				'Identify	the	statistical	distribution	of	this	data.
				dsoColumn.Distribution	=	"LOG_NORMAL"
				'Identify	the	column	as	being	predictable.
				dsoColumn.IsPredictable	=	True

See	Also

clsColumn

Data	Mining	Schema	Rowsets

MiningAlgorithm

Analysis	Services	Programming

Filter	(clsColumn)
The	Filter	property	of	an	object	of	ClassType	clsColumn	specifies	a	filter
condition	that	is	applied	to	the	SQL	query	that	returns	the	cases	for	the	mining
model.

Note		This	property	applies	only	to	columns	that	belong	to	mining	model	objects
of	SubClassType	sbclsRegular.

Data	Type
String

Access
Read/write	for	columns	with	a	SubClassType	of	sbclsNested,	read-only	for	all
others.

Remarks
For	columns	with	a	SubClassType	of	sbclsRegular,	this	property	returns	the
Filter	property	of	the	parent	object.	Columns	can	be	nested,	so	the	parent	object
can	be	either	a	clsMiningModel	object	or	a	clsColumn	object.

See	Also

clsColumn

Analysis	Services	Programming

FromClause	(clsColumn)
The	FromClause	property	of	an	object	of	ClassType	clsColumn	specifies	the
FROM	clause	of	the	SQL	query	that	returns	a	nested	table.

Note		This	property	applies	only	to	columns	that	belong	to	mining	model	objects
of	SubClassType	sbclsRegular.

Data	Type
String

Access
Read/write	for	columns	with	a	SubClassType	of	sbclsNested,	read-only	for	all
others.

Remarks
For	columns	with	a	SubClassType	of	sbclsRegular,	this	property	returns	the
Filter	property	of	the	parent	object.	Columns	can	be	nested,	so	the	parent	object
can	be	either	a	clsMiningModel	object	or	a	clsColumn	object.

Examples

Creating	a	New	Nested	Column
The	following	code	creates	a	new	nested	column	called	Products.	It	uses	the
FromClause	and	JoinClause	properties	to	establish	the	SQL	joins	to	the	parent
table.	It	then	creates	a	new	column	called	CustomerID	and	establishes	that	this
column	contains	key	values	from	the	parent	table	by	setting	the	IsParentKey
property	to	TRUE.	The	clsColumn	object	that	contains	the	keys	in	the	parent
table	is	referred	to	by	the	value	of	the	RelatedColumn	property:	KeyColumn.

'	Create	a	new	nested	column.
Set	dsoNestedCol	=	dsoDmm.Columns.AddNew("Products",	sbclsNested)

dsoNestedCol.FromClause	=	"""Sales"",	""SalesReps"",	""Products"""
dsoNestedCol.JoinClause	=	"""Sales"".""SalesRep""	=	""SalesReps"".""Name"""	&	_
				"	AND	""Sales"".""Product""	=	""Products"".""Product"""
dsoNestedCol.Filter	=	""

'	Create	a	new	column	that	contains	key	values	from	the	parent	table.
Set	dsoColumn	=	dsoNestedCol.Columns.AddNew("CustomerID")
dsoColumn.SourceColumn	=	"""Products"".""CustId"""
dsoColumn.DataType	=	adInteger
dsoColumn.IsParentKey	=	True
'	The	RelatedColumn	property	is	set	to	the	clsColumn	object	used
'	as	the	key	column	for	the	data	mining	model.
dsoColumn.RelatedColumn	=	"KeyColumn"

See	Also

clsColumn

Analysis	Services	Programming

IsDisabled	(clsColumn)
The	IsDisabled	property	of	an	object	of	ClassType	clsColumn	specifies
whether	the	column	is	included	in	the	mining	model	or	is	only	used	during
training	to	specify	joins	between	tables.

Data	Type
Boolean

Access
Read/write

Remarks
Columns	where	the	IsDisabled	property	has	been	set	to	True	are	ignored	when	a
mining	model	is	being	created	or	trained	on	the	Analysis	server.	This	property
setting	is	useful	for	OLAP	data	mining	models	(that	is,	objects	of	ClassType
clsMiningModel	and	SubClassType	sbclsOlap)	when	the	Columns	collection
is	created	automatically	by	calling	the	Update	method.	After	the	Update	method
is	called,	columns	to	be	used	by	the	data	mining	model	can	be	enabled	by	setting
the	IsDisabled	property	to	False.

For	columns	of	SubClassType	sbclsNested,	setting	the	IsDisabled	property	to
True	automatically	disables	descendant	columns.	Setting	the	IsDisabled
property	to	False	automatically	enables	ancestor	columns.

See	Also

clsColumn

Update

Analysis	Services	Programming

IsInput	(clsColumn)
The	IsInput	property	of	an	object	of	ClassType	clsColumn	indicates	whether
the	column	can	accept	input	values	when	carrying	out	predictions.

Data	Type
Boolean

Access
Read/write

Remarks
A	column	can	have	both	the	IsInput	and	the	IsPredictable	properties	set	to
True.

Note		All	columns	are	considered	as	input	columns	when	training	a	mining
model	unless	they	are	disabled.	It	is	only	when	predictions	are	carried	out
against	a	mining	model	that	the	notions	of	IsInput	or	IsPredictable	have	any
meaning.

The	value	of	the	IsInput	property	can	be	related	to	other	properties	of	the	object,
as	well	as	properties	of	the	parent	object.	Changing	the	property	can	also	affect
the	properties	of	related	objects,	including	parent	objects.

For	columns	with	a	SubClassType	of	sbclsRegular,	if	the	column	is	related	to	a
column	that	is	not	a	key	column,	the	value	of	this	property	is	equal	to	the	value
of	the	IsInput	property	of	the	related	column.	If	the	parent	of	the	column	is	a
clsColumn	object	(that	is,	the	column	is	a	child	of	a	nested	column)	and	the
IsKey	property	is	True,	the	value	of	this	property	is	equal	to	the	value	of	the
IsInput	property	of	the	parent	column.	If	the	parent	of	the	column	is	a
clsMiningModel	object	and	the	IsKey	property	is	True,	the	value	of	this
property	is	False.	If	the	IsParentKey	property	of	this	column	is	True,	this
property	is	False.

Changing	the	IsInput	property	to	True	for	a	column	(other	than	a	key	column)
whose	parent	is	a	clsColumn	object	(that	is,	the	column	is	a	child	of	a	nested
column)	changes	the	IsInput	property	of	the	parent	column	to	True.

For	columns	with	a	SubClassType	of	sbclsNested,	changing	the	IsInput
property	to	False	changes	the	IsInput	property	for	all	child	columns	whose
IsKey,	IsParentKey,	and	IsRelated	properties	are	all	False.

See	Also

clsColumn

IsDisabled

IsPredictable

Analysis	Services	Programming

IsKey	(clsColumn)
The	IsKey	property	of	an	object	of	ClassType	clsColumn	indicates	whether	the
column	is	a	key	column	in	the	case	table	or	in	a	nested	table.

Data	Type
Boolean

Access
Read/write	for	columns	with	a	SubClassType	of	sbclsRegular	that	belong	to	a
clsMiningModel	object	with	a	SubClassType	of	sbclsRegular,	read-only	for	all
others.

Remarks
A	key	column	is	a	column	that	uniquely	identifies	each	row	in	the	case	table.
There	can	be	more	than	one	key	column	in	a	row.	For	example,	to	uniquely
identify	a	customer	it	may	be	necessary	to	use	both	the	name	column	and
address	column	of	a	customer	record	as	the	keys.	In	a	nested	table,	the	key
column	with	a	parent	key	column	(using	the	IsParentKey	property)	is	used	to
uniquely	identify	the	rows	of	the	nested	table	and	relate	them	to	the	case	table.

The	value	of	IsKey	can	vary	based	on	the	SubClassType	property	of	the	column
and	the	properties	of	the	parent	object.

The	IsKey	property	is	always	False	for	columns	with	a	SubClassType	of
sbclsNested.	If	the	parent	object	is	an	OLAP	mining	model	(a	clsMiningModel
object	with	a	SubClassType	of	sbclsOlap),	the	IsKey	property	returns	True
only	if	the	column	is	associated	with	the	lowest	enabled	level	of	the	case
dimension	(that	is,	the	SourceColumn	property	of	the	column	matches	the
CaseLevel	property	of	the	parent	clsMiningModel	object).

Examples

Adding	a	New	Column
The	following	example	adds	a	new	column,	Customer	Id,	to	the	Columns
collection	of	a	mining	model	object.	It	then	sets	the	IsKey	property	and	other
important	properties.

'--
'	Add	a	new	column	to	the	mining	model	called	Customer	Id	and	relate
'	this	column	to	the	Name	level	of	the	Customers	dimension.
'	Describe	the	level's	type	and	make	it	a	key	for	the	model.
'	Assume	that	a	DSO	level	object	already	exists,	called	dsoLvl.
'--
				'Add	Customer	Id	as	a	new	column	in	the	model.
				Set	dsoColumn	=	dsoDmm.Columns.AddNew("Customer	Id")
				'Identify	the	level	in	Sales	that	this	column	is	based	on.
				Set	dsoColumn.SourceOlapObject	=	dsoLvl
				'Identify	the	type	of	column	this	is.
				dsoColumn.DataType	=	adInteger	'	This	enumeration	is	from	ADO.
				'Identify	this	column	as	a	key.
				dsoColumn.IsKey	=	True

See	Also

clsColumn

Analysis	Services	Programming

IsParentKey	(clsColumn)
The	IsParentKey	property	of	an	object	of	ClassType	clsColumn	indicates
whether	the	column	is	a	foreign	key	that	relates	to	a	column	in	the	case	table.
This	property,	when	used	with	the	IsKey	property,	serves	to	uniquely	identify
the	rows	in	a	nested	table.

Data	Type
Boolean

Access
Read/write	for	columns	with	a	SubClassType	of	sbclsRegular	that	belong	to	a
clsMiningModel	object	with	a	SubClassType	of	sbclsRegular,	read-only	for	all
others.

Remarks
The	IsParentKey	property	always	returns	False	for	columns	with	a
SubClassType	of	sbclsNested	and	for	columns	belonging	to	a	mining	model
with	a	SubClassType	of	sbclsOlap.

The	IsParentKey	property	indicates	which	column	in	the	nested	table	contains
the	foreign	key	to	the	case	table,	and	it	assists	in	creating	the	SQL	JOIN	clause
used	for	the	training	query.	For	example,	if	a	data	mining	model	is	constructed
from	the	store	table,	with	a	key	column	named	Store	ID	based	on	the	store_id
field,	and	a	nested	column	based	on	the	sales_fact_1998	table	is	added,	a
column	related	to	the	Store	ID	column	(that	is,	a	clsColumn	object	with	a
RelatedColumn	property	set	to	"Store	ID")	is	created	with	the	source	column
set	to	the	store_id	field	in	the	sales_fact_1998	table	and	the	IsParentKey	set	to
True.

Examples

Creating	a	Data	Mining	Model	With	a	Nested	Column
The	following	code	example	creates	a	new	relational	data	mining	model	named
Test	Model	in	the	FoodMart	2000	database.	Test	Model	is	based	on	the	store
table	in	the	FoodMart	data	source.	The	nested	column	Sales	Fact	1998,	based
on	the	sales_fact_1998	table,	contains	a	parent	key	column	named	Parent	Store
ID.	The	Parent	Store	ID	column,	defined	from	the	store_id	column	in	the
sales_fact_1998	table,	is	related	to	the	Store	ID	column	in	the	data	mining
model	defined	from	the	store_id	column	in	the	store	table.

Public	Sub	CreateDMMWithNestedColumn()
				Dim	dsoServer	As	DSO.Server
				Dim	dsoDB	As	DSO.Database
				Dim	dsoDMM	As	DSO.MiningModel
				Dim	dsoColumn	As	DSO.Column
				Dim	dsoNestedColumn	As	DSO.Column
				
				'	Initialize	server.
				Set	dsoServer	=	New	DSO.Server
				
				'	Connect	to	the	local	Analysis	server.
				'	If	a	connection	cannot	be	made,	an	error	is	raised.
				dsoServer.Connect	"LocalHost"

				'	Connect	to	the	FoodMart	2000	database.
				Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")
				
				'	Create	a	new	relational	data	mining	model.
				Set	dsoDMM	=	dsoDB.MiningModels.AddNew("Test	Model",	sbclsRelational)
				
				'	Set	the	properties	for	the	data	mining	model.
				With	dsoDMM
								.FromClause	=	"""store"""
								.MiningAlgorithm	=	"Microsoft_Decision_Trees"
								.DataSources.Add	dsoDB.DataSources("FoodMart")

				End	With
				
				'	Create	the	key	and	predictable	columns	for	the	mining	model.
				Set	dsoColumn	=	dsoDMM.Columns.AddNew("Store	ID",	sbclsRegular)
				
				With	dsoColumn
								.SourceColumn	=	"""store"".""store_id"""
								.DataType	=	adInteger
								.IsKey	=	True
				End	With
				
				Set	dsoColumn	=	dsoDMM.Columns.AddNew("Store	Type",	sbclsRegular)
				
				With	dsoColumn
								.SourceColumn	=	"""store"".""store_type"""
								.DataType	=	adWChar
								.IsKey	=	False
								.IsInput	=	True
								.IsPredictable	=	True
								.ContentType	=	"DISCRETE"
				End	With
				
				'	Create	the	nested	column.
				Set	dsoColumn	=	dsoDMM.Columns.AddNew("Sales	Fact	1998",	sbclsNested)
				
				With	dsoColumn
								.FromClause	=	"""sales_fact_1998"""
								.IsInput	=	True
								.IsPredictable	=	False
				End	With
				
				'	Create	the	parent	key	column	for	the	nested	column.
				Set	dsoNestedColumn	=	dsoColumn.Columns.AddNew("Store	ID",	sbclsRegular)

				
				'	Set	the	properties	for	the	parent	key	column.
				With	dsoNestedColumn
								.SourceColumn	=	"""sales_fact_1998"".""store_id"""
								.DataType	=	adInteger
								.IsKey	=	False
								.IsInput	=	False
								.IsPredictable	=	False
								.IsParentKey	=	True
								.RelatedColumn	=	"Store	ID"
				End	With
				
				'	Create	the	key	and	predictable	columns	for	the	nested	column.
				Set	dsoNestedColumn	=	dsoColumn.Columns.AddNew("Product	ID",	sbclsRegular)
				
				With	dsoNestedColumn
								.SourceColumn	=	"""sales_fact_1998"".""product_id"""
								.DataType	=	adInteger
								.IsKey	=	True
								.IsInput	=	True
								.IsPredictable	=	False
								.IsParentKey	=	False
				End	With
				
				Set	dsoNestedColumn	=	dsoColumn.Columns.AddNew("Store	Sales",	sbclsRegular)
				
				With	dsoNestedColumn
								.SourceColumn	=	"""sales_fact_1998"".""store_sales"""
								.DataType	=	adInteger
								.ContentType	=	"CONTINUOUS"
								.IsKey	=	False
								.IsInput	=	True
								.IsPredictable	=	False

								.IsParentKey	=	False
				End	With
				
				'	Save	the	new	data	mining	model.
				dsoDMM.Update
				
				'	Process	the	data	mining	model.
				dsoDMM.Process
				
End	Sub

See	Also

clsColumn

Analysis	Services	Programming

IsPredictable	(clsColumn)
The	IsPredictable	property	of	an	object	of	ClassType	clsColumn	indicates
whether	the	column's	parent	mining	model	object	can	predict	the	column's	value
based	on	other	input	columns.

Data	Type
Boolean

Access
Read/write

Remarks
A	column	can	have	both	the	IsPredictable	and	the	IsInput	properties	set	to
True.

Note		All	columns	are	considered	as	input	columns	when	training	a	mining
model	unless	they	are	disabled.	It	is	only	when	predictions	are	carried	out
against	a	mining	model	that	the	notions	of	IsInput	or	IsPredictable	have	any
meaning.

The	value	of	the	IsPredictable	property	can	be	related	to	other	properties	of	the
object,	as	well	as	properties	of	the	parent	object.	Changing	the	property	can	also
affect	the	properties	of	related	objects,	including	parent	objects.

For	columns	with	a	SubClassType	of	sbclsRegular,	if	the	column	is	related	to	a
column	that	is	not	a	key	column,	the	value	of	this	property	is	equal	to	the	value
of	the	IsPredictable	property	of	the	related	column.	If	the	parent	of	the	column
is	a	clsColumn	object	(that	is,	the	column	is	a	child	of	a	nested	column)	and	the
IsKey	property	is	True,	the	value	of	this	property	is	equal	to	the	value	of	the
IsPredictable	property	of	the	parent	column.	If	the	parent	of	the	column	is	a
clsMiningModel	object	and	the	IsKey	property	is	True,	the	value	of	this
property	is	False.	If	the	IsParentKey	property	of	this	column	is	True,	this
property	is	False.

Changing	the	IsPredictable	property	to	True	for	a	column	(other	than	a	key
column)	whose	parent	is	a	clsColumn	object	(that	is,	the	column	is	a	child	of	a
nested	column)	changes	the	IsPredictable	property	of	the	parent	column	to
True.

For	columns	with	a	SubClassType	of	sbclsNested,	changing	the	IsPredictable
property	to	False	changes	the	IsPredictable	property	for	all	child	columns
whose	IsKey,	IsParentKey,	and	IsRelated	properties	are	all	False.

Examples

Adding	a	Column	to	the	Columns	Collection
The	following	example	adds	a	column	called	Unit	to	a	data	mining	model's
Columns	collection	Sales.	It	then	enables	the	column	by	setting	its	IsDisabled
property	to	False	and	makes	the	column	predictable	by	setting	its	IsPredictable
property	to	True.

'Make	the	Unit	Sales	measure	predictable.
Set	dsoColumn	=	dsoDmm.Columns("Unit	Sales")
'Enable	the	column.
dsoColumn.IsDisabled	=	False
'Make	the	column	predictable.
dsoColumn.IsPredictable	=	True

See	Also

clsColumn

Analysis	Services	Programming

JoinClause	(clsColumn)
The	JoinClause	property	of	an	object	of	ClassType	clsColumn	specifies	the
JOIN	clause	of	the	SQL	query	that	returns	a	nested	table	for	the	column.	This
property	applies	to	columns	that	belong	to	mining	model	objects	of
SubClassType	sbclsRegular.

Data	Type
String

Access
Read/write

Remarks
This	property	is	read/write	only	for	nested	columns	(columns	of	SubClassType
sbclsNested).	For	regular	columns	(columns	of	SubClassType	sbclsRegular),
this	property	is	read-only	and	returns	the	JoinClause	property	of	the	column's
parent	object.

Examples

Creating	a	Nested	Column
The	following	example	creates	a	nested	column	and	establishes	two	joins	to	the
parent	columns	based	on	the	SalesRep	column	and	the	Product	column:

Set	dsoNestedCol	=	dsoDmm.Columns.AddNew("Products",	sbclsNested)
dsoNestedCol.FromClause	=	"Sales,	SalesReps,	Products"
dsoNestedCol.JoinClause	=	"Sales.SalesRep	=	SalesReps.Name	AND	Sales.Product	=	Products.Product"
dsoNestedCol.Filter	=	""

See	Also

clsColumn

Analysis	Services	Programming

ModelingFlags	(clsColumn)
The	ModelingFlags	property	of	an	object	of	ClassType	clsColumn	specifies
options	for	modeling	a	column's	data	in	a	mining	model.

Data	Type
String

Access
Read/write	for	columns	with	a	SubClassType	of	sbclsRegular	whose	IsKey
and	IsParentKey	properties	are	False,	read-only	for	all	others.

Remarks
For	columns	whose	IsKey	or	IsParentKey	properties	are	set	to	True	and
columns	with	a	SubClassType	of	sbclsNested,	this	property	returns	an	empty
string.

Access
Read/write	for	columns	with	a	SubClassType	of	sbclsRegular	whose	IsKey
and	IsParentKey	properties	are	False,	read-only	for	all	others.

Remarks
This	property	is	a	comma-delimited	list	of	modeling	option	values	for	the
column,	used	to	optimize	the	mining	model	algorithm	(specified	by	the
MiningAlgorithm	property	of	the	clsMiningModel	object)	and	can	be	left
unspecified.

Supported	values	for	this	property	are	listed	in	the	MINING_SERVICES	schema
rowset	in	the	SUPPORTED_MODELING_FLAGS	column.

See	Also

clsColumn

Data	Mining	Schema	Rowsets

MiningAlgorithm

Analysis	Services	Programming

Name	(clsColumn)
The	Name	property	of	an	object	of	ClassType	clsColumn	contains	the	name	of
the	column	as	it	will	appear	in	the	mining	model.

Data	Type
String

Access
Read/write	(read-only	after	object	is	named)

Example
Use	the	following	code	to	return	a	level	object	name:

'	Assume	an	object	(dsoColumn)	of	ClassType	clsColumn	exists
Dim	strName	As	String
strName	=	dsoColumn.Name

See	Also

clsColumn

Analysis	Services	Programming

Num	(clsColumn)
The	Num	property	of	a	clsColumn	object	returns	the	ordinal	position	of	the
column	in	relation	to	its	parent.

Data	Type
Integer

Access
Read/write

Remarks
If	a	column	belongs	to	the	nested	table	of	another	column,	the	Num	property
indicates	the	ordinal	position	of	the	column	within	the	nested	table	of	the	parent
column.	For	a	column	that	is	used	to	define	a	mining	model,	the	Num	property
indicates	the	ordinal	position	of	the	column	within	the	mining	model.

See	Also

clsColumn

clsMiningModel

Analysis	Services	Programming

Parent	(clsColumn)
The	Parent	property	of	a	clsColumn	returns	a	reference	to	the	parent	of	the
column.

Data	Type
Object

Access
Read-only

Remarks
If	a	column	belongs	to	another	column's	nested	table,	the	Parent	property
returns	a	reference	to	a	clsColumn	object.	For	a	column	that	is	used	to	define	a
mining	model,	the	Parent	property	returns	a	reference	to	a	clsMiningModel
object.

See	Also

clsColumn

clsMiningModel

Analysis	Services	Programming

RelatedColumn	(clsColumn)
The	RelatedColumn	property	of	a	clsColumn	identifies	a	column	to	which	the
column	is	related.

Data	Type
String

Access
Read/write	for	columns	with	a	SubClassType	of	sbclsRegular	whose	IsKey
property	is	False,	read-only	for	all	others.

Remarks
For	columns	with	a	SubClassType	of	sbclsRegular	whose	IsKey	property	is	set
to	True	and	for	columns	with	a	SubClassType	of	sbclsNested,	this	property
returns	an	empty	string.

The	functionality	of	the	RelatedColumn	property	differs	depending	on	the
context	of	its	usage:

The	RelatedColumn	property	is	used	to	relate	a	column	in	a	nested
table	to	a	column	in	the	case	table	(that	is,	the	parent	table)	of	the	data
mining	model.	In	this	case,	the	column's	IsParentKey	property	is	set	to
True.

The	RelatedColumn	property	is	used	to	define	hierarchical
relationships	between	columns.	For	example,	you	can	use	it	to	define
that	the	Region	column	is	related	to	the	State	column,	the	State	column
is	related	to	the	City	column,	and	so	on.	For	another	example,	consider
a	case	set	involving	customer	purchases.	If	ProductName	is	a	column
defined	in	the	model,	a	column	called	ProductType	can	have	its
RelatedColumn	property	set	to	the	ProductName	column	to	indicate
that	its	information	is	related	to	the	ProductName	column.

The	SpecialFlag	property	is	used	with	the	RelatedColumn	property.
Consider	the	example	in	which	a	column	is	defined	using	the
SpecialFlag	property	to	contain	a	probability.	In	this	case,	the
RelatedColumn	property	is	used	to	determine	which	column	the
probability	is	based	on.	If	a	column	is	defined	that	is	related	to	the
CreditRisk	column	and	contains	a	probability,	the	column	would
contain	the	numeric	probability	of	a	given	credit	for	a	given	case.

Examples

A.	Creating	a	Key	Column	and	Relating	it	to	a	Key	in	the	Case	Table

The	following	example	creates	a	key	column	in	the	case	table	for	a	mining
model.	It	then	creates	a	nested	table	based	on	three	different	tables	and
establishes	the	relationships	between	them	(that	is,	their	joins).	Finally,	it
establishes	a	key	column	within	this	nested	table	and	relates	it	to	the	key	column
in	the	case	table.

'Define	the	key	column	for	the	case	table.
Set	dsoColumn	=	dsoDmm.Columns.AddNew("KeyColumn")
dsoColumn.SourceColumn	=	"Key"
dsoColumn.DataType	=	adInteger
dsoColumn.IsKey	=	True

'Define	a	nested	table	and	relate	the	tables	it	is	based	on	in	a	join.
Set	dsoNestedCol	=	dsoDmm.Columns.AddNew("Products",	sbclsNested)
dsoNestedCol.FromClause	=	"Sales,	SalesReps,	Products"
dsoNestedCol.JoinClause	=	"Sales.SalesRep	=	SalesReps.Name	"	&	_
				"AND	Sales.Product	=	Products.Product"
dsoNestedCol.Filter	=	""

'Create	a	parent	key	column	for	the	nested	table	and	relate	it	to	a	column	in	the	case	table.
Set	dsoColumn	=	dsoNestedCol.Columns.AddNew("CustomerID")
dsoColumn.SourceColumn	=	"CustId"

dsoColumn.DataType	=	adInteger
dsoColumn.IsParentKey	=	True
dsoColumn.RelatedColumn	=	"KeyColumn"

B.	Establishing	a	Hierarchical	Relationship	Between	Columns	in	a	Nested	Table
The	following	example	builds	a	hierarchical	relationship	between	the	columns	as
they	are	added	to	a	nested	table.	The	following	diagram	shows	their	structure.

Set	dsoColumn	=	dsoNestedCol.Columns.AddNew("Product	Name")
dsoColumn.SourceColumn	=	"Sales.Product"
dsoColumn.DataType	=	adWChar
dsoColumn.IsKey	=	True

Set	dsoColumn	=	dsoNestedCol.Columns.AddNew("Product	Type")
dsoColumn.SourceColumn	=	"Products.Type"
dsoColumn.DataType	=	adWChar
dsoColumn.RelatedColumn	=	"Product	Name"

Set	dsoColumn	=	dsoNestedCol.Columns.AddNew("Product	Category")
dsoColumn.SourceColumn	=	"Products.Category"
dsoColumn.DataType	=	adWChar
dsoColumn.RelatedColumn	=	"Product	Type"

Set	dsoColumn	=	dsoNestedCol.Columns.AddNew("Aisle")
dsoColumn.SourceColumn	=	"Products.Aisle"
dsoColumn.DataType	=	adWChar
dsoColumn.RelatedColumn	=	"Product	Name"

C.	Establishing	a	Probabilistic	Relationship
The	following	example	adds	a	column	to	a	nested	table.	It	then	adds	a	second
column	whose	contents	will	contain	a	probability	based	upon	the	first	column.

Set	dsoColumn	=	dsoNestedCol.Columns.AddNew("Quantity")
dsoColumn.SourceColumn	=	"Sales.Quantity"
dsoColumn.DataType	=	adDouble
dsoColumn.ContentType	=	"CONTINUOUS"

Set	dsoColumn	=	dsoNestedCol.Columns.AddNew("pQuantity")
dsoColumn.SourceColumn	=	"Sales.pQuantity"
dsoColumn.DataType	=	adDouble
dsoColumn.RelatedColumn	=	"Quantity"
dsoColumn.SpecialFlag	=	"PROBABILITY"

See	Also

clsColumn

Analysis	Services	Programming

SourceColumn	(clsColumn)
The	SourceColumn	property	of	an	object	of	ClassType	clsColumn	identifies
the	name	of	its	source	column	in	a	relational	table.	This	property	applies	only	to
columns	belonging	to	mining	model	objects	of	SubClassType	sbclsRegular.

Data	Type
String

Access
Read/write	for	columns	with	a	SubClassType	of	sbclsRegular,	read-only	for	all
others.

Remarks
For	columns	with	a	SubClassType	of	sbclsNested	that	belong	to	a	mining
model	object	of	SubClassType	of	sbclsRegular,	this	property	returns	an	empty
string.

To	understand	the	function	of	this	property,	consider	the	relationships	of
columns	in	a	model	to	an	SQL	query.	If	you	use	a	SELECT	query	to	define	the
structure	of	a	table	when	you	create	a	mining	model,	the	contents	of	this
property	for	each	column	in	the	model	correspond	to	a	column	designation
within	the	SELECT	query.	For	example,	consider	the	following	query:

SELECT	"Key"	AS	"CustId",	"Age"	AS	"Age"	FROM	"People"

If	a	mining	model	were	to	be	created	using	this	SELECT	statement,	the
SourceColumn	properties	for	each	column	would	be	"Key"	and	"Age"
respectively.

Examples

Creating	a	Data	Mining	Model

The	following	example	creates	a	data	mining	model	based	upon	the	People	table
of	a	relational	database.	This	table	is	specified	by	the	FromClause	property.
Because	the	model	is	based	upon	a	single	table,	no	joins	are	needed.	It	then
creates	and	adds	two	columns	to	the	model's	Columns	collection.	Each	column
is	related	to	a	field	in	the	original	relational	table	(that	is	to	say,	the	People	table)
by	setting	the	SourceColumn	property	of	each	column	to	the	appropriate	value.

dsoDmm.Description	=	"Analyzes	the	purchasing	behavior	of	customers"
dsoDmm.MiningAlgorithm	=	"Microsoft_Decision_Trees"
dsoDmm.FromClause	=	"People"
dsoDmm.JoinClause	=	""	'	None	is	needed	because	there	is	only	a	single	table.
dsoDmm.Filter	=	""
dsoDmm.TrainingQuery	=	""	'Let	DSO	figure	out	the	training	query.

Set	dsoColumn	=	dsoDmm.Columns.AddNew("CustId")
dsoColumn.SourceColumn	=	"People.Key"
dsoColumn.DataType	=	adInteger
dsoColumn.IsKey	=	True

Set	dsoColumn	=	dsoDmm.Columns.AddNew("Age")
dsoColumn.SourceColumn	=	"People.Age"
dsoColumn.DataType	=	adDouble
dsoColumn.ContentType	=	"CONTINUOUS"

See	Also

clsColumn

Analysis	Services	Programming

SourceOlapObject	(clsColumn)
The	SourceOlapObject	property	of	an	object	of	ClassType	clsColumn
identifies	the	source	Decision	Support	Objects	(DSO)	object	for	the	column.
This	property	only	applies	to	columns	that	belong	to	mining	model	objects	of
SubClassType	sbclsOlap.

Data	Type
Object

Access
Read/write

Remarks
The	SourceOlapObject	property	of	a	column	represents	the	source	object	in
DSO	from	which	the	Column	object	draws	information.	The
SourceOlapObject	property	can	be	set	to	an	object	with	a	ClassType	property
of:

clsCubeDimension

clsCubeLevel

clsCubeMeasure

clsMemberProperty

Any	object	specified	in	the	SourceOlapObject	property	must	be	visible	(that	is,
the	IsVisible	property	of	the	object	must	be	True).	If	the	IsVisible	property	of
the	object	is	False,	an	error	is	raised.

Examples

Adding	a	New	Column	to	a	Data	Mining	Model
The	following	example	adds	a	new	column	to	a	data	mining	model	and	sets	its
source	to	a	level	in	an	OLAP	cube.

'Add	Customer	Id	as	a	new	column	in	the	model.
Set	dsoColumn	=	dsoDmm.Columns.AddNew("Customer	Id")
'Identify	the	level	in	Sales	that	this	column	is	based	on.
Set	dsoColumn.SourceOlapObject	=	dsoLvl
'Identify	the	type	of	column	this	is.
dsoColumn.DataType	=	adInteger	'	This	enumeration	is	from	ADO.
'Identify	this	column	as	a	key.
dsoColumn.IsKey	=	True

See	Also

clsColumn

Analysis	Services	Programming

SpecialFlag	(clsColumn)
The	SpecialFlag	property	assists	the	Distribution	property	in	identifying	the
statistical	nature	of	the	column's	data	values	for	model	optimization	purposes.

Data	Type
String

Access
Read/write	for	columns	with	a	SubClassType	of	sbclsRegular	whose	IsKey
and	IsParentKey	properties	are	False,	read-only	for	all	others.

Remarks
For	columns	whose	IsKey	or	IsParentKey	properties	are	set	to	True	and
columns	with	a	SubClassType	of	sbclsNested,	this	property	returns	an	empty
string.

This	property	suggests	the	column	contents	to	the	mining	model.	This	suggestion
is	used	to	optimize	the	mining	model's	MiningAlgorithm	and	can	be	left
unspecified.

Supported	values	for	this	property	are	listed	in	the	MINING_SERVICES	schema
rowset	in	the	SUPPORTED_SPECIAL_FLAGS	column.

Examples

Building	a	New	Column
The	following	example	builds	a	new	column	and	sets	its	SpecialFlag	property	to
PROBABILITY:

Set	dsoColumn	=	dsoNestedCol.Columns.AddNew("pOn	Sale")
dsoColumn.SourceColumn	=	"Sales.pOnSale"

dsoColumn.DataType	=	adDouble
dsoColumn.RelatedColumn	=	"On	Sale"
dsoColumn.SpecialFlag	=	"PROBABILITY"

See	Also

clsColumn

Data	Mining	Schema	Rowsets

MiningAlgorithm

Analysis	Services	Programming

SubClassType	(clsColumn)
The	SubClassType	property	of	an	object	of	ClassType	clsColumn	returns	an
enumeration	constant	identifying	the	specific	subclass	type.

Data	Type
SubClassTypes

Access
Read-only

Remarks
Objects	of	ClassType	clsColumn	can	have	a	SubClassType	property	value	of
sbclsRegular	or	sbclsNested.	A	column	has	a	SubClassType	value	of
sbclsRegular	if	it	is	an	individual	column.	If	a	column	contains	a	nested	table,	it
has	a	SubClassType	value	of	sbclsNested.

See	Also

clsColumn

Analysis	Services	Programming

clsCube
An	object	of	ClassType	clsCube	provides	an	implementation	of	the	MDStore
interface	of	the	Decision	Support	Objects	(DSO)	library	specific	to	cubes.	Each
instance	of	clsCube	provides	collections,	methods,	and	properties	through	the
MDStore	interface.

Example
Use	the	following	code	to	create	a	cube	object	(that	is,	an	object	of	ClassType
clsCube):

'	Assume	an	object	(dsoServer)	of	ClassType	clsServer	exists
'	and	contains	a	database	in	its	MDStores	collection
Dim	dsoDB	As	DSO.MDStore	'	Create	an	interface	for	the	database.
Dim	dsoCube	As	DSO.MDStore	'	Create	an	interface	for	the	cube.

'	Assign	the	database	interface	to	the	first	database
'		in	the	server's	collection	of	databases.
Set	dsoDB	=	dsoServer.MDStores(1)
'	Next,	create	the	new	cube	by	using	the	AddNew	method
'	of	the	database	object's	MDStores	collection	of	cubes.
Set	myCube	=	dsoDB.MDStores.AddNew("MyCube")
'Set	properties	and	add	dimensions,	levels,	and	measures
'	.	.	.
'	Next,	create	a	virtual	cube.
Dim	dsoVCube	as	DSO.MDStore	'	Create	an	interface	for	the	virtual	cube.
'	Use	the	AddNew	method	of	the	MDStores	collection,	
'	just	as	before,	but	specify	that	the	cube	is	virtual
'	using	the	SubClassType	argument	sbclsVirtual.
Set	dsoVCube	=	dsoDB.MDStores.AddNew("MyVCube",	sbclsVirtual)
'Add	measures,	set	properties,	and	add	dimensions

Virtual	Cubes
A	cube	object	with	a	SubClassType	of	sbclsVirtual	is	a	virtual	cube.	A	virtual
cube	is	used	to	encapsulate	a	subset	of	the	measures,	dimensions,	and	levels
contained	in	a	group	of	cubes.	A	virtual	cube,	like	a	view	in	a	relational
database,	is	a	logical	construct	that	contains	no	data.	Just	as	a	view	joins	multiple
relations,	a	virtual	cube	joins	multiple	cubes.

The	basic	method	for	managing	virtual	cubes	is	to	add	them	to	a	database	with
the	SubClassType	parameter	set	to	sbclsVirtual.	Then,	you	can	add	dimensions
and	measures	to	them	as	needed.	However,	the	dimensions	and	measures	are
derived	from	previously	defined	cubes	within	the	database,	rather	than	from	a
dimension	table.	Any	levels	associated	with	a	dimension	that	has	been	added	to	a
virtual	cube	automatically	apply	to	the	dimension	in	the	virtual	cube.	Partitions
and	aggregations	do	not	apply	to	virtual	cubes.

If	you	add	or	remove	a	dimension	or	a	measure	from	a	virtual	cube,	you	must
reprocess	the	virtual	cube	so	that	the	change	will	affect	the	Analysis	server
operations.	The	same	is	true	if	you	remove	a	dimension	or	a	measure	from	a
cube	after	assigning	it	to	a	virtual	cube,	or	if	you	remove	a	dimension	or	a
measure	from	a	database	after	assigning	it	to	a	cube	or	virtual	cube.

Linked	Cubes
A	cube	object	with	a	SubClassType	of	sbclsLinked	is	a	linked	cube.	The
contents	of	a	linked	cube	are	based	on	another	cube	that	is	defined	and	stored	on
a	different	Analysis	server.	Unlike	a	virtual	cube,	which	can	contain	portions	of
one	or	more	cubes,	a	linked	cube	references	the	entire	contents	of	a	single	cube.

Example
Use	the	following	code	to	create	a	linked	cube.	This	procedure	must	involve	two
different	servers.	Attempting	to	create	a	link	to	a	cube	on	the	same	server	results
in	an	error.

Dim	dsoServer	As	New	DSO.Server
Dim	dsoDB	As	DSO.MDStore	'	Create	an	interface	for	the	database.
Dim	dsoLCube	As	DSO.MDStore	'	Create	an	interface	for	the	linked	cube.
Dim	dsoLDS	As	DSO.DataSource

'	Connect	to	the	server
dsoServer.Connect	"localhost"
				
'	Get	a	reference	for	the	database	that
'	will	contain	the	linked	cube.
Set	dsoDB	=	dsoServer.MDStores("FoodMart")
				
'	Create	a	new	data	source	for	the	linked	cube.
Set	dsoLDS	=	dsoDB.DataSources.AddNew("Linked	Cube")
			
'	Set	the	connection	string,	so	that	the	data	source	points
'	to	an	Analysis	server	running	SQL	Server	2000	Analysis	Services.
dsoLDS.ConnectionString	=	"Provider=MSOLAP;Data	Source=servername;	_
																											Initial	Catalog=Foodmart;"
				
'	Save	this	data	source	in	the	repository.
dsoLDS.Update
				
'	Create	a	new	cube	on	the	local	server,	mark	it	as	linked.
Set	dsoLCube	=	dsoDB.MDStores.AddNew("Linked	Sales",	sbclsLinked)
	
'	Add	dsoLDS	to	the	DataSources	collection	of	the	linked	cube.
dsoLCube.DataSources.Add	dsoLDS
			
'	Use	the	name	of	the	published	cube	as	the
'	source	table	for	the	subscribed	cube.
dsoLCube.SourceTable	=	""""	&	"Sales"	&	""""
				
'	Update	the	cube.
dsoLCube.Update
				
'	Completely	process	the	linked	cube.

dsoLCube.Process	processFull

See	Also

Cubes

MDStore	Interface

Collections,	clsCube

Methods,	clsCube

Properties,	clsCube

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Collections,	clsCube
An	object	of	ClassType	clsCube	implements	the	following	collections	of	the
MDStore	interface.

Collection Description
Commands The	collection	of	command	objects	defined	in	the

cube
CustomProperties The	collection	of	user-defined	properties
DataSources The	collection	of	data	source	objects	used	by	the

cube
Dimensions The	collection	of	dimension	objects	defined	in	the

cube
MDStores The	collection	of	MDStore	objects	defined	for	the

cube
Measures The	collection	of	measure	objects	defined	in	the

cube
Roles The	collection	of	role	objects	defined	for	the	cube

See	Also

clsCube

MDStore	Interface

Analysis	Services	Programming

Methods,	clsCube
An	object	of	ClassType	clsCube	implements	the	following	methods	of	the
MDStore	interface.

Method Description
Clone Copies	an	existing	object	to	a	target	object	of	the

same	class	type.	This	method	also	creates	a	copy	of
the	property	value	and	has	the	option	of	creating
collections	of	major	and	minor	objects.

LockObject Locks	the	cube	to	prevent	multiple	users	from
concurrently	changing	the	object.

Process Processes	the	cube.
UnlockObject Releases	a	lock	previously	established	by	the

LockObject	method.
Update Updates	the	cube's	definition	in	the	meta	data

repository.

See	Also

clsCube

MDStore	Interface

Analysis	Services	Programming

Properties,	clsCube
An	object	of	ClassType	clsCube	implements	the	following	properties	of	the
MDStore	interface.

Property Description
AllowDrillThrough Indicates	whether	drillthrough	is	allowed

on	the	cube.
AggregationPrefix The	prefix	associated	with	an

aggregation	in	a	cube.
Analyzer The	cube	analyzer	object	for	this	cube.
ClassType Returns	an	enumeration	constant	that

identifies	the	specific	object	type.
DefaultMeasure The	name	of	the	default	measure	for	the

cube.
Description The	description	of	the	cube.
DrillThroughColumns List	of	columns	that	are	included	in	a

drillthrough	query.
DrillThroughFilter Statement	restricting	rows	that	are

returned	by	a	drillthrough	query.
DrillThroughFrom An	SQL	FROM	clause	with	the	names

of	the	tables	used	in	drillthrough	queries.
DrillThroughJoins An	SQL	JOIN	clause	with	the	names	of

the	tables	used	in	drillthrough	queries.
EnableRealTimeUpdates Indicates	whether	real-time	updates	are

allowed	on	the	cube.
EstimatedRows The	estimated	number	of	rows	in	the

cube.
EstimatedSize The	estimated	size	of	the	cube

(estimated	total	size	of	all	rows,	in
bytes).

FromClause Contains	the	SQL	FROM	clause
defining	the	list	of	tables	used	to	define

the	cube's	dimensions	and	measures.
IsReadWrite Indicates	whether	the	cube	is	read/write.
IsTemporary Indicates	whether	the	cube	should	be

stored	in	the	repository.
IsValid Indicates	whether	the	cube	structure	is

valid.
IsVisible Indicates	whether	the	cube	is	visible	to	a

client.
JoinClause The	JOIN	clause	(list	of	join	conditions,

separated	by	AND)	for	the	cube.
LastProcessed The	date	and	time	when	the	cube	was

last	processed.
LastUpdated User-specified	date.	It	is	not	used	by

Microsoft®	SQL	Server™	2000
Analysis	Services.

Name The	name	of	the	cube.
OlapMode Returns	an	enumeration	constant

identifying	the	type	of	OLAP	storage
mode.

Parent Returns	a	reference	to	the	parent
MDStore	object.

ProcessingKeyErrorLimit Sets	the	number	of	allowable	errors	that
cause	processing	to	cease.

ProcessingKeyErrorLogFileName The	universal	naming	convention	(UNC)
path	to	a	file	for	logging	dimension	key
errors	encountered	during	processing.

ProcessingMode Indicates	whether	the	Analysis	server
should	index	and	aggregate	during
processing	or	afterward.

Server Returns	a	reference	to	the	DSO.Server
object.

SourceTable The	name	of	the	fact	table	of	the	cube.
SourceTableAlias The	alias	of	the	source	table	for	the

cube.
SourceTableFilter The	SQL	clause	used	to	determine	which

fact	table	rows	are	included	in	the	cube.
State Returns	an	enumeration	constant	that

indicates	the	difference	between	the
MDStore	object	referenced	by	the	client
application	and	the	corresponding
MDStore	object	on	the	Analysis	server.

SubClassType Returns	an	enumeration	constant	that
identifies	the	subclass	type.

See	Also

clsCube

MDStore	Interface

Analysis	Services	Programming

clsCubeAnalyzer
A	Decision	Support	Objects	(DSO)	object	of	ClassType	clsCubeAnalyzer
contains	a	single	method	used	to	extract	information	from	the	query	log.	The
query	log	stores	the	descriptions	of	queries	executed	on	the	Analysis	server.	This
object	provides	a	method	through	its	own	internal	interface.

There	are	no	collections	or	properties	associated	with	an	object	of	ClassType
clsCubeAnalyzer.

Examples

Retrieving	the	Cube	Query	Log
The	following	code	example	retrieves	the	entire	contents	of	a	cube's	query	log
from	the	Analysis	server	and	prints	the	number	of	records	in	the	immediate
window:

Option	Explicit

Public	dsoServer	As	DSO.Server
Public	dsoDB	As	DSO.MDStore
Public	dsoCube	As	DSO.MDStore
Public	dsoCubeAnalyzer	As	DSO.CubeAnalyzer
Public	ADODBRecSet	As	ADODB.Recordset

Public	Sub	AnalyzeCube()
				If	dsoServer	Is	Nothing	Then
							Set	dsoServer	=	New	DSO.Server
									'MyServer	is	the	name	of	the	Analysis	server.
									dsoServer.Connect	("MyServer")
				End	If
				
				'Get	first	database	from	server.

				Set	dsoDB	=	dsoServer.MDStores(1)
				
				'Get	first	cube	from	database.
				Set	dsoCube	=	dsoDB.MDStores(1)
				
				'Get	analyzer	object	from	cube.
				Set	dsoCubeAnalyzer	=	dsoCube.Analyzer
				
				'Get	recordset	from	log.
				Set	ADODBRecSet	=	dsoCubeAnalyzer.OpenQueryLogRecordset	_
						("SELECT	*	FROM	QueryLog")
						
				If	ADODBRecSet.BOF	And	ADODBRecSet.EOF	Then
								Debug.Print	"<<No	records	in	query	log>>"
				Else
								ADODBRecSet.MoveLast
							Debug.Print	"			Record	count:	"	&	ADODBRecSet.RecordCount
				End	If
End	Sub
	

See	Also

Methods,	clsCubeAnalyzer

Analysis	Services	Programming

Methods,	clsCubeAnalyzer
An	object	of	ClassType	clsCubeAnalyzer	implements	the	following	method.

Method Description
OpenQueryLogRecordset Opens	a	query	log	recordset

See	Also

clsCubeAnalyzer

Analysis	Services	Programming

OpenQueryLogRecordset	(clsCubeAnalyzer)
The	OpenQueryLogRecordset	method	of	an	object	of	ClassType
clsCubeAnalyzer	returns	a	Microsoft®	ActiveX®	Data	Objects	(ADO)
recordset	containing	a	record	for	each	analysis	query	run	on	the	Analysis	server
that	satisfies	the	given	SQL	query.

Syntax
Set	ADODBRecSet	=	object.OpenQueryLogRecordset(SQLString	As	String)

ADODBRecSet

An	ADODB	recordset.

object

The	object	of	ClassType	clsCubeAnalyzer	used.

SQLString

The	SQL	query	that	returns	the	query	log	recordset.	You	can	create	an	SQL
statement	using	any	of	the	fields	in	the	query	log.	For	example:

"SELECT	*	FROM		QueryLog	WHERE	Duration	>	5"

The	following	columns	are	returned	in	ADODBRecSet.	The	ADO	data	types
specified	for	each	column	can	be	found	in	the	ADODB.DataTypeEnum
enumeration.	For	more	information	about	the	ADO	data	types,	see	the	ADO
documentation.

Column
ADO	data
type Description

MSOLAP_Database adVarWChar The	name	of	the	database	used	in	the
query

MSOLAP_Cube adVarWChar The	name	of	the	cube	used	in	the
query

MSOLAP_User adVarWChar The	name	of	the	user	that	ran	the

query
Dataset adVarWChar A	numeric	string	indicating	the	level

from	each	dimension	used	to	satisfy
the	query

Slice adVarWChar A	string	indicating	the	data	slice	for
the	query.

StartTime adDate The	time	the	query	began
Duration adInteger The	length	of	time	(in	seconds)	of	the

query	execution
MOLAPPartitions adSmallInt The	number	of	different

multidimensional	OLAP	(MOLAP)
partitions	that	were	used	to	satisfy
the	query

ROLAPPartitions adSmallInt The	number	of	different	relational
OLAP	(ROLAP)	partitions	that	were
used	to	satisfy	the	query

SamplingRate adInteger The	sampling	rate	at	the	time	the
query	was	executed

Remarks
In	order	to	create	an	instance	of	the	ADODB	Recordset	object,	you	must	add
the	Microsoft	ActiveX	Data	Objects	reference	to	your	Microsoft	Visual	Basic®
project.

The	Dataset	column	is	of	particular	interest	for	designing	aggregations.	The
values	in	the	Dataset	column	can	be	used	when	calling	the	AddGoalQuery
method	of	the	clsPartitionAnalyzer	object	to	construct	goal	queries.	Goal
queries	are	used	to	fine-tune	the	process	of	aggregation	design	for	a	partition.

See	Also

clsCubeAnalyzer

clsPartitionAnalyzer

Using	Decision	Support	Objects

Analysis	Services	Programming

clsCubeCommand
An	object	of	ClassType	clsCubeCommand	provides	a	specific	implementation
of	the	Decision	Support	Objects	(DSO)	Command	interface.	This	object
provides	collections	and	properties	through	the	Command	interface.	There	are
no	methods	associated	with	an	object	of	ClassType	clsCubeCommand.

Remarks
An	object	of	ClassType	clsCubeCommand	encapsulates	a	user-defined
command	automatically	executed	on	the	Microsoft®	SQL	Server™	2000
Analysis	Services	client	when	the	cube	containing	the	command	is	accessed.
You	add	a	command	to	a	cube	by	adding	it	to	the	cube's	Commands	collection.
Such	commands	include	calculated	members,	named	sets,	library	references,	and
others.

For	more	information,	see	Introducing	Decision	Support	Objects.

Examples

Creating	an	Object	of	ClassType	clsCubeCommand
Use	the	following	code	to	create	an	object	of	ClassType	clsCubeCommand:

'Assume	an	object	(dsoServer)	of	ClassType	clsServer	exists
'with	existing	database	and	cube
Dim	dsoDB	As	DSO.MDStore						'Database
Dim	dsoCube	As	DSO.MDStore			'Cube
Dim	dsoCmd	As	DSO.Command			'Command

Set	dsoDB	=	dsoServer.MDStores(1)
Set	dsoCube	=	dsoDB.MDStores(1)
Set	dsoCmd	=	dsoCube.Commands.AddNew("CubeCmd1")

See	Also

Collections,	clsCubeCommand

Command	Interface

Properties,	clsCubeCommand

Analysis	Services	Programming

Collections,	clsCubeCommand
An	object	of	ClassType	clsCubeCommand	implements	the	following	collection
of	the	Command	interface.

Collection Description
CustomProperties The	collection	of	user-defined	properties

See	Also

clsCubeCommand

Command	Interface

Analysis	Services	Programming

Properties,	clsCubeCommand
An	object	of	ClassType	clsCubeCommand	implements	the	following
properties	of	the	Command	interface.

Property Description
ClassType Returns	an	enumeration	constant	that	identifies

the	specific	object	type
CommandType Returns	an	enumeration	constant	that	identifies

the	specific	command	option
Description The	description	of	the	cube	command
IsValid Indicates	whether	the	Name	and	Statement

properties	are	empty	and	that	the	command	object
belongs	to	a	collection

Name The	name	of	the	cube	command
OrdinalPosition Returns	the	ordinal	position	of	the	command

object	in	Commands	collection	of	the	parent
MDStore	object

Parent Returns	a	reference	to	the	parent	object,	using	the
MDStore	interface	of	the	parent	object

ParentObject Returns	a	reference	to	the	parent	object,	using	the
default	interface	of	the	parent	object

Statement The	text	of	the	cube	command	statement,	in
Multidimensional	Expressions	(MDX)

SubClassType Returns	an	enumeration	constant	that	identifies
the	subclass	type	of	the	object

See	Also

clsCubeCommand

Command	Interface

Analysis	Services	Programming

clsCubeDimension
An	object	of	ClassType	clsCubeDimension	provides	an	implementation	of	the
Decision	Support	Objects	(DSO)	Dimension	interface	that	is	specific	to
dimensions	within	a	cube.	This	object	provides	collections	and	properties
through	the	Dimension	interface.	There	are	no	methods	associated	with	an
object	of	ClassType	clsCubeDimension.

Remarks
The	primary	difference	between	a	database	dimension	and	a	cube	dimension	is
that	in	a	cube	dimension,	certain	properties	that	are	inherited	from	the	database
dimension	can	be	overridden	by	changing	their	values.	For	example,	the
IsVisible	property	can	be	overridden	on	a	cube	dimension,	but	the	StorageType
property	cannot.

To	define	a	cube	dimension,	you	add	a	reference	to	a	dimension	that	exists
within	a	database	to	the	Dimensions	collection	of	the	cube.	A	shared	database
dimension	can	be	associated	with	multiple	cube	dimensions;	a	private	database
dimension	can	be	associated	with	only	one	cube	dimension.	In	both	cases,	the
database	dimension	is	automatically	associated	with	the	cube's	partitions	and
aggregations,	if	there	are	any.

Example
Use	the	following	code	to	create	a	clsCubeDimension	object:

'Assume	an	object	(dsoServer)	of	ClassType	clsServer	exists
'with	an	existing	database	and	cube
Dim	dsoDB	As	MDStore
Dim	dsoCube	As	MDStore
Dim	dsoCubeDim	As	DSO.Dimension
Set	dsoDB	=	dsoServer.MDStores("FoodMart")
Set	dsoCube	=	dsoDB.MDStores("Sales")
'"Employees"	is	an	existing	database	dimension

Set	dsoCubeDim	=	dsoCube.Dimensions.AddNew("Employees")

See	Also

Collections,	clsCubeDimension

Dimension	Interface

Properties,	clsCubeDimension

Analysis	Services	Programming

Collections,	clsCubeDimension
An	object	of	ClassType	clsCubeDimension	implements	the	following
collections	of	the	Dimension	interface.

Collection Description
CustomProperties The	collection	of	user-defined	properties
Levels The	collection	of	level	objects	associated	with	the

cube	dimension

See	Also

clsCubeDimension

Dimension	Interface

Analysis	Services	Programming

Properties,	clsCubeDimension
An	object	of	ClassType	clsCubeDimension	implements	the	following
properties	of	the	Dimension	interface.

Property Description
AggregationUsage Specifies	how	aggregations	are	to	be

designed	for	the	dimension.
AllowSiblingsWithSameName Indicates	whether	a	parent-child	dimension

can	contain	members	with	identical	names.
AreMemberKeysUnique Indicates	whether	member	keys	are	unique

for	the	dimension.
AreMemberNamesUnique Indicates	whether	member	names	are	unique

for	the	dimension.
ClassType Returns	an	enumeration	constant	that

identifies	the	specific	object	type,	which	in
this	case	is	clsCubeDimension.

DataMemberCaptionTemplate Contains	a	template	string	that	is	used	to
create	captions	for	system-generated	data
members.

DataSource A	reference	to	the	data	source	object	used
by	the	cube	dimension.

DefaultMember Defines	the	default	member	of	the
dimension.

DependsOnDimension Names	a	dimension	to	which	the	current
dimension	is	related.

Description The	description	of	the	cube	dimension.
DimensionType Returns	an	enumeration	constant	that

identifies	the	specific	type	of	dimension.
EnableRealTimeUpdates Indicates	whether	real-time	updates	are

enabled	for	the	dimension.
FromClause The	SQL	FROM	clause	for	the	cube

dimension.

IsChanging Indicates	whether	members	and/or	levels	are
expected	to	change	on	a	regular	basis.

IsReadWrite Indicates	whether	dimension	writebacks	are
available	to	clients	with	appropriate
permissions.

IsShared Indicates	whether	the	cube	dimension	is
shared.

IsTemporary Indicates	whether	the	cube	dimension	is
temporary.

IsValid Indicates	whether	the	structure	of	the	cube
dimension	is	valid.

IsVirtual Indicates	whether	a	dimension	is	virtual.
IsVisible Indicates	whether	the	dimension	is	visible	to

the	client.
JoinClause The	SQL	JOIN	clause	for	a	cube	dimension.
LastProcessed The	date	and	time	when	the	cube	dimension

was	last	processed.
LastUpdated User-specified	date.	This	is	not	used	by

Microsoft®	SQL	Server™	2000	Analysis
Services.

MembersWithData Determines	which	members	in	a	dimension
can	have	associated	data	in	the	fact	table.

Name The	name	of	the	cube	dimension.
OrdinalPosition Returns	the	ordinal	position	of	the

dimension	object	within	the	Dimensions
collection	of	its	parent	object.

Parent Returns	a	reference	to	the	parent	MDStore
object.

SourceTable The	name	of	the	cube	dimension's	primary
data	source	table.

SourceTableAlias Returns	the	alias	of	the	source	table	for	the
dimension.

SourceTableFilter Restricts	members	included	in	a	dimension.

StorageMode Determines	the	method	for	storing

dimension	contents.
SubClassType Returns	an	enumeration	constant	that

identifies	the	subclass	type	of	the	object.

See	Also

clsCubeDimension

Dimension	Interface

Analysis	Services	Programming

clsCubeLevel
An	object	of	ClassType	clsCubeLevel	provides	a	specific	implementation	of	the
Decision	Support	Objects	(DSO)	Level	interface.	This	object	provides
collections	and	properties	through	the	Level	interface.	There	are	no	methods
associated	with	an	object	of	ClassType	clsCubeLevel.

Remarks
When	a	dimension	within	a	database	is	assigned	to	a	cube,	the	cube	inherits	all
levels	of	the	dimension.	An	object	of	ClassType	clsCubeLevel	allows	access	to
these	levels.	Because	not	all	database	dimensions	necessarily	apply	to	a	given
cube,	one	advantage	to	accessing	the	levels	of	a	cube	directly	is	that	you	avoid
traversing	the	dimensions	and	levels	of	the	entire	database	to	determine	which
levels	are	used	in	a	cube.

Example
Use	the	following	code	to	create	a	dimension	and	levels	for	a	database	and	apply
them	to	a	cube:

'Assume	an	object	(dsoDB)	of	ClassType	clsDatabase	exists
'with	an	existing	data	source
Dim	dsoDim	As	DSO.Dimension
Dim	dsoLevel	As	DSO.Level
Dim	dsoDS	As	DSO.Datasource

'Add	a	dimension	and	levels	to	the	database
Set	dsoDS	=	dsoDB.Datasources(1)
Set	dsoDim	=	dsoDB.Dimensions.AddNew("Products")
Set	dsoDim.DataSource	=	dsoDS			'Dimension	DataSource
dsoDim.FromClause	=	"product"			'Source	Table

'Add	a	Product	Brand	Name	level

Set	dsoLev	=	dsoDim.Levels.AddNew("Brand	Name")
dsoLev.MemberKeyColumn	=	"""product"".""brand_name"""
dsoLev.ColumnSize	=	255
dsoLev.ColumnType	=	adWChar
dsoLev.EstimatedSize	=	100

'Add	a	Product	Name	level
Set	dsoLev	=	dsoDim.Levels.AddNew("Product	Name")
dsoLev.MemberKeyColumn	=	"""product"".""product_name"""
dsoLev.ColumnSize	=	255
dsoLev.ColumnType	=	adWChar
dsoLev.EstimatedSize	=	1560
dsoDim.Update
'Add	additional	dimensions	and	levels	as	required
...
'Add	cube	to	database
Dim	dsoCube	As	MDStore
Set	dsoCube	=	dsoDB.MDStores.AddNew(strCubeName)

'Create	and	configure	a	DataSource	object	for	the	cube
Set	dsoDS	=	dsoDB.DataSources(1)
dsoCube.DataSources.AddNew	(dsoDS.Name)

'Set	source	fact	table	and	estimated	rows	in	fact	table
dsoCube.SourceTable	=	"""sales_fact_1998"""
dsoCube.EstimatedRows	=	1000
												
'Add	shared	database	dimensions
'Cube	inherits	dimension	levels
dsoCube.Dimensions.AddNew	("Products")
'Add	other	shared	or	private	dimensions
	

See	Also

Collections,	clsCubeLevel

IsDisabled

Level	Interface

Properties,	clsCubeLevel

Analysis	Services	Programming

Collections,	clsCubeLevel
An	object	of	ClassType	clsCubeLevel	implements	the	following	collection	of
the	Level	interface.

Collection Description
CustomProperties The	collection	of	user-defined	properties
MemberProperties The	collection	of	objects	of	ClassType

clsMemberProperty

See	Also

clsCubeLevel

Level	Interface

Analysis	Services	Programming

Properties,	clsCubeLevel
An	object	of	ClassType	clsCubeLevel	implements	the	following	properties	of
the	Level	interface.

Property Description
AreMemberKeysUnique Indicates	whether	the	members	of	a	level

are	uniquely	identified	by	their	member
key	column	within	the	level	itself

AreMemberNamesUnique Indicates	whether	the	members	of	a	level
are	uniquely	identified	by	their	member
name	column	within	the	level	itself

ClassType Returns	an	enumeration	constant
identifying	the	specific	object	type	which,
in	this	case,	is	clsCubeLevel

ColumnSize The	size	(in	bytes)	of	the	data	in	the
MemberKeyColumn	property	of	the
level

ColumnType The	data	type	of	the
MemberKeyColumn	property	of	the
level

CustomRollUpColumn Contains	the	name	of	the	column	that
contains	member-specific	rollup
instructions

CustomRollUpExpression Contains	a	Multidimensional	Expressions
(MDX)	expression	used	to	override	the
default	rollup	mode

CustomRollUpPropertiesColumnContains	the	name	of	the	column	that
supplies	cell	properties	for	member-
specific	rollup	instructions

Description The	description	of	the	cube	level
EnableAggregations Specifies	whether	aggregations	are	to	be

enabled	for	the	level	object

EstimatedSize The	estimated	number	of	rows	of	unique
members	in	the	level

FromClause Contains	the	SQL	FROM	clause	for	the
cube	level

Grouping Indicates	the	type	of	grouping	used	by	the
Analysis	server

HideMemberIf Indicates	whether	a	member	should	be
hidden	from	client	applications

IsDisabled Indicates	whether	the	cube	level	is
disabled

IsValid Indicates	whether	the	structure	of	the
cube	level	is	valid

IsVisible Indicates	whether	the	level	is	visible	to
client	applications

JoinClause The	SQL	JOIN	clause	of	the	cube	level
LevelNamingTemplate Defines	how	levels	in	a	parent-child

hierarchy	are	named
LevelType Returns	an	enumeration	constant	that

identifies	the	specific	type	of	level
MemberKeyColumn The	name	of	the	column	that	contains	the

member	key	of	the	cube	level
MemberNameColumn The	name	of	the	column	that	contains

member	names
Name The	name	of	the	cube	level
Ordering Specifies	the	method	to	use	when

ordering	the	members	of	a	level
OrderingMemberProperty Specifies	a	member	property	used	to

determine	the	ordering	of	members
OrdinalPosition Returns	the	ordinal	position	of	the	level

in	the	parent	object's	Levels	collection
Parent Returns	a	reference	to	the	parent

Dimension	object
ParentKeyColumn Identifies	the	parent	of	a	member	in	a

parent-child	hierarchy
RootMemberIf Determines	how	the	root	member	or

members	of	a	parent-child	hierarchy	are
identified

SkippedLevelsColumn Identifies	the	column	that	holds	the
number	of	empty	levels	between	a
member	and	its	parent

SubClassType Returns	an	enumeration	constant	that
identifies	the	subclass	type	of	the	object

UnaryOperatorColumn Contains	the	name	of	a	column	that	stores
mathematical	operators	serving	as
member-specific	rollup	instructions	for
the	level

See	Also

clsCubeLevel

Level	Interface

Analysis	Services	Programming

clsCubeMeasure
An	object	of	the	ClassType	clsCubeMeasure	provides	a	specific
implementation	of	the	Decision	Support	Objects	(DSO)	Measure	interface.	This
object	provides	collections	and	properties	through	the	Measure	interface.	There
are	no	methods	associated	with	an	object	of	ClassType	clsCubeMeasure.

Remarks
A	cube	measure	corresponds	to	a	numeric	column	in	a	cube's	fact	table.	When	a
cube	is	processed,	its	measures	can	be	precalculated	across	its	dimensions.	For
example,	the	number	of	items	sold	is	a	measure	that	can	be	precalculated	across
the	dimensions	of	product,	time,	and	geography.

For	more	information	about	the	object	model	hierarchy,	see	Object	Architecture.

Example
Use	the	following	code	to	create	an	object	of	ClassType	clsCubeMeasure:

'Assume	an	object	(dsoCube)	of	ClassType	clsCube	exists
Dim	dsoMeasure	As	DSO.Measure
Set	dsoMeasure	=	dsoCube.Measures.AddNew("Salaries")
dsoMeasure.Description	=	"Employee	salaries"
dsoMeasure.SourceColumn	=	"""Employees"".""Salaries"""
dsoMeasure.SourceColumnType	=	adInteger
dsoMeasure.AggregateFunction	=	aggSum
dsoMeasure.FormatString	=	"#,###"

See	Also

Working	with	Cubes

Collections,	clsCubeMeasure

Measure	Interface

JavaScript:hhobj_1.Click()

Properties,	clsCubeMeasure

Analysis	Services	Programming

Collections,	clsCubeMeasure
An	object	of	ClassType	clsCubeMeasure	implements	the	following	collection
of	the	Measure	interface.

Collection Description
CustomProperties The	collection	of	user-defined	properties

See	Also

clsCubeMeasure

Measure	Interface

Analysis	Services	Programming

Properties,	clsCubeMeasure
An	object	of	ClassType	clsCubeMeasure	implements	the	following	properties
of	the	Measure	interface.

Property Description
AggregateFunction A	value	corresponding	to	the	type	of	aggregate

function	used	by	the	cube	measure
ClassType Returns	an	enumeration	constant	that	identifies	the

specific	object	type
Description The	description	of	the	cube	measure
FormatString The	format	used	to	display	the	values	of	the	cube

measure
IsValid Indicates	whether	the	measure	structure	is	valid
IsVisible Indicates	whether	the	measure	is	visible	to	the

client
Name The	name	of	the	cube	measure
OrdinalPosition Returns	the	ordinal	position	of	the	measure	in	the

parent	object's	Measures	collection
Parent Returns	a	reference	to	the	parent	cube	object
SourceColumn The	name	of	the	source	column	(in	the	fact	table)

for	the	cube	measure
SourceColumnType Returns	a	Microsoft®	ActiveX®	(ADO)	DB

enumeration	constant	that	identifies	the
SourceColumn	(in	the	fact	table)	data	type

SubClassType Returns	an	enumeration	constant	that	identifies	the
subclass	type	of	the	object

See	Also

clsCubeMeasure

Measure	Interface

Analysis	Services	Programming

clsCubeRole
An	object	of	the	ClassType	clsCubeRole	provides	a	specific	implementation	of
the	Decision	Support	Objects	(DSO)	Role	interface.	This	object	provides
collections,	methods,	and	properties	through	the	Role	interface.

Remarks
You	use	objects	of	ClassType	clsCubeRole	to	manage	the	set	of	users	who	can
access	a	cube	(of	any	type)	and	the	manner	in	which	they	can	access	it.	A	cube
role	has	a	name,	a	description,	a	parent	object,	a	class	type,	a	list	of	users,	and	a
set	of	permissions.	Each	permission	has	a	key	and	a	corresponding	permission
expression.

You	create	roles	at	the	database	level	(database	roles)	and	then	assign	them	to
cubes	(cube	roles)	by	adding	them	to	the	collection	of	roles	associated	with	the
cube.	The	roles	assigned	to	a	cube	automatically	apply	to	its	partitions	and
aggregations.

You	can	remove	a	database	role	by	removing	it	from	the	database's	collection	of
role	objects.	When	you	do	so,	the	system	automatically	removes	the
corresponding	cube	roles	from	the	cube's	collection	of	role	objects.

You	can	remove	a	cube	role	by	removing	it	from	the	cube's	collection	of	role
objects.	When	you	do	so,	the	corresponding	database	role	is	not	affected.
However,	the	definition	of	the	cube	role	remains	in	effect	until	you	update	or
process	the	cube.

Example
Suppose	you	want	to	define	roles	named	FinanceManagers,
ProductionManagers,	and	SalesManagers	at	the	database	level.	Suppose	also	that
you	want	to	assign	the	appropriate	vice-president	to	the	list	of	users	for	each	role
and	the	company	president	to	the	list	of	users	for	all	three	roles.	Finally,	suppose
that	you	want	to	create	a	cube	for	each	year's	financial,	production,	and	sales
data	for	the	years	1995,	1996,	and	1997.

Use	the	following	code	to	define	the	appropriate	database	and	cube	roles	for	this
situation.

Note		User	lists	defined	for	database	roles	are	automatically	associated	with	the
corresponding	cube	roles	and	cannot	be	changed	at	the	cube	role	level.

'Assume	an	object	(dsoDB)	of	ClassType	clsDatabase	exists.
'Create	database	roles.
Dim	DbRole_FinanceMgrs	As	DSO.Role
Dim	DbRole_ProductionMgrs	As	DSO.Role
Dim	DbRole_SalesMgrs	As	DSO.Role
Set	DbRole_FinanceMgrs	=	dsoDB.Roles.AddNew("FinanceManagers")
Set	DbRole_ProductionMgrs	=	dsoDB.Roles.AddNew("ProductionManagers")
Set	SbRole_SalesMgrs	=	dsoDB.Roles.AddNew("SalesManagers")

'Define	user	lists	for	database	roles.
'(In	a	real-world	situation,	actual	user	names	would	be
'used	in	place	of	titles	like	"President".)
DbRole_FinanceMgrs.UsersList	=	"President;VP_Finance"
DbRole_ProductionMgrs.UsersList	=	"President;VP_Production"
DbRole_SalesMgrs.UsersList	=	"President;VP_Sales"

'Update	the	repository	for	the	database	roles.
DbRole_FinanceMgrs.Update
DbRole_ProductionMgrs.Update
DbRole_SalesMgrs.Update

'Assume	objects	(Cube95,	Cube96	and	Cube97)	of	ClassType	clsCube	exist
'Create	cube	roles.	Cube	role	names	must	be	identical
'to	the	corresponding	database	role	names.
Dim	CubeRole_FinanceMgrs	As	DSO.Role
Dim	CubeRole_ProductionMgrs	As	DSO.Role
Dim	CubeRole_SalesMgrs	As	DSO.Role

'Add	roles	to	Cube95.
Set	CubeRole_FinanceMgrs	=	Cube95.Roles.AddNew("FinanceManagers")
Set	CubeRole_ProductionMgrs	=	Cube95.Roles.AddNew("ProductionManagers")
Set	CubeRole_SalesMgrs	=	Cube95.Roles.AddNew("SalesManagers")

'Add	roles	to	Cube96.
Set	CubeRole_FinanceMgrs	=	Cube96.Roles.AddNew("FinanceManagers")
Set	CubeRole_ProductionMgrs	=	Cube96.Roles.AddNew("ProductionManagers")
Set	CubeRole_SalesMgrs	=	Cube96.Roles.AddNew("SalesManagers")

'Add	roles	to	Cube97.
Set	CubeRole_FinanceMgrs	=	Cube97.Roles.AddNew("FinanceManagers")
Set	CubeRole_ProductionMgrs	=	Cube97.Roles.AddNew("ProductionManagers")
Set	CubeRole_SalesMgrs	=	Cube97.Roles.AddNew("SalesManagers")

'Update	the	repository	for	the	cubes.
Cube95.Update
Cube96.Update
Cube97.Update

See	Also

clsDatabaseRole

Collections,	clsCubeRole

Methods,	clsCubeRole

Properties,	clsCubeRole

Role	Interface

Security	and	Authentication

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Collections,	clsCubeRole
An	object	of	ClassType	clsCubeRole	implements	the	following	collection	of	the
Role	interface.

Collection Description
Commands The	collection	of	commands	for	the	role
CustomProperties The	collection	of	user-defined	properties

See	Also

clsCubeRole

Role	Interface

Analysis	Services	Programming

Methods,	clsCubeRole
An	object	of	ClassType	clsCubeRole	implements	the	following	method	of	the
Role	interface.

Method Description
SetPermissions Sets	the	permissions	for	the	cube	role	for	a	given

key

See	Also

clsCubeRole

Role	Interface

Analysis	Services	Programming

Properties,	clsCubeRole
An	object	of	ClassType	clsCubeRole	implements	the	following	properties	of
the	Role	interface.

Property Description
ClassType Returns	an	enumeration	constant	that	identifies

the	specific	object	type
Description The	description	of	the	cube	role
IsValid Indicates	whether	the	role	structure	is	valid
Name The	name	of	the	cube	role
Parent Returns	a	reference	to	the	parent	object,	using	the

MDStore	interface	of	the	parent	object
ParentObject Returns	a	reference	to	the	parent	object,	using	the

default	interface	of	the	parent	object
Permissions The	permissions	for	the	cube	role	for	a	given	key
SubClassType Returns	an	enumeration	constant	that	identifies

the	subclass	type	of	the	object
UsersList A	semicolon-separated	list	of	users	of	the	cube

role

See	Also

clsCubeRole

Role	Interface

Analysis	Services	Programming

clsDatabase
An	object	of	the	ClassType	clsDatabase	provides	a	specific	implementation	of
the	Decision	Support	Objects	(DSO)	MDStore	interface.	This	object	provides
collections,	methods,	and	properties	through	the	MDStore	interface.

Example
Use	the	following	code	to	create	an	object	of	ClassType	clsDatabase:

'	Assume	an	object	(dsoServer)	of	ClassType	clsServer	exists
Dim	dsoDatabase	As	DSO.MDStore	'	Create	an	interface	for	the	database.
'	Use	the	AddNew	method	of	the	server's	MDStores	collection	to	create
'	the	new	database:
Set	dsoDatabase	=	dsoServer.MDStores.AddNew("MyDatabase")

See	Also

Collections,	clsDatabase

Databases

MDStore	Interface

Methods,	clsDatabase

Properties,	clsDatabase

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Collections,	clsDatabase
An	object	of	ClassType	clsDatabase	implements	the	following	collections	of
the	MDStore	interface.

Collection Description
Commands The	collection	of	command	objects	defined	in	the

database
CustomProperties The	collection	of	user-defined	properties
DataSources The	collection	of	data	source	objects	used	by	the

database
Dimensions The	collection	of	dimension	objects	defined	in	the

database
MDStores The	collection	of	MDStore	objects	defined	for	the

database
MiningModels The	collection	of	mining	model	objects	defined	for

the	database
Roles The	collection	of	role	objects	defined	for	the

database

See	Also

clsDatabase

MDStore	Interface

Analysis	Services	Programming

Events,	clsDatabase
An	object	of	ClassType	clsDatabase	implements	the	following	methods	of	the
Database	interface.

IMPORTANT		In	order	to	access	these	events,	you	must	use	the	Database	interface,
not	the	MDStore	interface.

Event Description
ReportAfter Called	whenever	a	processing	action	on	an	object	in

the	database	has	finished	executing
ReportBefore Called	before	a	processing	action	on	an	object	in	the

database
ReportError Called	whenever	an	error	occurs	during	a	processing

action
ReportProgress Called	to	report	the	progress	of	an	action	during

processing

See	Also

clsDatabase

Analysis	Services	Programming

Methods,	clsDatabase
An	object	of	ClassType	clsDatabase	implements	the	following	methods	of	the
MDStore	interface.

Method Description
BeginTrans Begins	the	transaction	on	the	database
Clone Copies	the	property	values	and	(optionally)	the

collections	of	major	and	minor	objects	from	one
database	object	to	another

CommitTrans Commits	the	transaction	on	the	database
LockObject The	LockObject	method	of	the	Database	interface

locks	an	object	to	prevent	multiple	users	from
concurrently	changing	the	object

Process Processes	the	database
Rollback Rolls	back	the	transaction	on	the	database
UnlockObject Releases	a	lock	previously	established	by	the

LockObject	method
Update Updates	the	database	definition	in	the	meta	data

repository

See	Also

clsDatabase

MDStore	Interface

Analysis	Services	Programming

Properties,	clsDatabase
An	object	of	ClassType	clsDatabase	implements	the	following	properties	of	the
MDStore	interface.

Property Description
AggregationPrefix The	common	prefix	that	can	be	used	for	aggregation

names	for	all	of	the	partitions	in	a	database
ClassType Returns	an	enumeration	constant	that	identifies	the

specific	object	type
Description The	description	of	the	database
EstimatedSize The	estimated	size	of	the	database
IsReadWrite Indicates	the	read/write	access	status	of	the	database
IsValid Indicates	whether	the	structure	of	the	database	is

valid
IsVisible Indicates	whether	the	database	is	visible	to	other

client	applications
LastProcessed The	date	and	time	when	the	database	was	last

processed
LastUpdated A	user-specified	date.	Not	used	by	Microsoft®	SQL

Server™	2000	Analysis	Services
Name The	name	of	the	database
OlapMode Returns	an	enumeration	constant	that	identifies	the

type	of	OLAP	storage	mode
Parent Returns	a	reference	to	the	parent	server	object
Server Returns	a	reference	to	the	DSO.Server	object
State Returns	an	enumeration	constant	that	indicates	the

difference	between	the	database	object	referenced	by
the	client	application	and	corresponding	database	on
the	Analysis	server

SubClassType Returns	an	enumeration	constant	that	identifies	the
subclass	type

See	Also

clsDatabase

MDStore	Interface

Analysis	Services	Programming

clsDatabaseCommand
An	object	of	ClassType	clsDatabaseCommand	provides	a	specific
implementation	of	the	Decision	Support	Objects	(DSO)	Command	interface.
This	object	provides	collections,	methods,	and	properties	through	the	Command
interface.

Remarks
An	object	of	ClassType	clsDatabaseCommand	encapsulates	a	user-defined
command	that	is	automatically	executed	on	the	Microsoft®	SQL	Server™	2000
Analysis	Services	client	when	the	database	containing	the	command	is	accessed.
You	add	a	command	to	a	database	by	adding	it	to	the	database's	Commands
collection.	Such	commands	include	calculated	members,	named	sets,	library
references,	and	others.

Example
Use	the	following	code	to	create	an	object	of	ClassType
clsDatabaseCommand:

'Assume	an	object	(dsoServer)	of	ClassType	clsServer	exists
'with	an	existing	database
Dim	dsoDB	As	DSO.MDStore						'Database
Dim	dsoCmd	As	DSO.Command			'Command

Set	dsoDB	=	dsoServer.MDStores(1)
Set	dsoCmd	=	dsoDB.Commands.AddNew("DBCmd1")

See	Also

Collections,	clsDatabaseCommand

Command	Interface

Commands

JavaScript:hhobj_1.Click()

Methods,	clsDatabaseCommand

Properties,	clsDatabaseCommand

Analysis	Services	Programming

Collections,	clsDatabaseCommand
An	object	of	ClassType	clsDatabaseCommand	implements	the	following
collection	of	the	Command	interface.

Collection Description
CustomProperties The	collection	of	user-defined	properties

See	Also

Command	Interface

Analysis	Services	Programming

Methods,	clsDatabaseCommand
An	object	of	ClassType	clsDatabaseCommand	implements	the	following
methods	of	the	Command	interface.

Method Description
Clone Copies	an	existing	object	to	a	target	object	of	the

same	class	type
LockObject Locks	an	object
UnlockObject Unlocks	a	previously	locked	object
Update Saves	the	definition	of	the	command	object	in	the

meta	data	repository

See	Also

Command	Interface

Analysis	Services	Programming

Properties,	clsDatabaseCommand
An	object	of	ClassType	clsDatabaseCommand	implements	the	following
properties	of	the	Command	interface.

Property Description
ClassType Returns	an	enumeration	constant	that	identifies	the

specific	class	type
CommandType Returns	an	enumeration	constant	that	identifies	the

command	option
Description The	description	of	the	database	command
IsValid Indicates	whether	the	structure	of	the	Command

object	is	valid
Name The	name	of	the	database	command
OrdinalPosition Returns	the	ordinal	position	of	the	command	object

in	the	Commands	collection	of	the	parent	MDStore
object

Parent Returns	a	reference	to	the	parent	object,	using	the
MDStore	interface	of	the	parent	object

ParentObject Returns	a	reference	to	the	parent	object,	using	the
default	interface	of	the	parent	object

Statement The	text	of	the	database	command	statement,	in
Multidimensional	Expressions	(MDX)

SubClassType Returns	an	enumeration	constant	that	identifies	the
subclass	type	of	the	object

See	Also

Command	Interface

Analysis	Services	Programming

clsDatabaseDimension
An	object	of	ClassType	clsDatabaseDimension	provides	a	specific
implementation	of	the	Decision	Support	Objects	(DSO)	Dimension	interface.
This	object	provides	collections,	methods,	and	properties	through	the	Dimension
interface.

Remarks
Database	dimensions	can	be	shared	or	private.	A	shared	database	dimension	can
be	associated	with	any	number	of	cubes,	but	a	private	database	dimension	can	be
associated	with	only	a	single	cube.	When	a	database	dimension	is	associated
with	a	cube,	it	is	automatically	associated	with	the	cube's	partitions	and
aggregations,	if	there	are	any.

All	dimensions,	shared	and	private,	are	created	in	a	database	object	and	stored	in
the	database	object's	Dimensions	collection.	Private	dimensions	are	identified	by
incorporating	the	names	of	the	cubes	to	which	they	are	private	into	the	names	of
the	dimensions.	For	example,	a	dimension	named	Cube1^PrivateDimension	is
private	to	Cube1	because	its	name	begins	with	Cube1	followed	by	the	caret	(^)
character.

Example
Use	the	following	code	to	create	an	object	of	ClassType
clsDatabaseDimension:

'	Assume	an	object	(dsoDB)	of	ClassType	clsDatabase	exists
Dim	dsoDim	As	DSO.Dimension
Set	dsoDim	=	dsoDB.Dimensions.AddNew("MyDim")

See	Also

Collections,	clsDatabaseDimension

Dimension	Interface

Dimensions

Methods,	clsDatabaseDimension

Properties,	clsDatabaseDimension

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Collections,	clsDatabaseDimension
An	object	of	ClassType	clsDatabaseDimension	implements	the	following
collections	of	the	Dimension	interface.

Collection Description
CustomProperties The	collection	of	user-defined	properties
Levels The	collection	of	objects	of	level	objects	associated

with	the	database	dimension

See	Also

Dimension	Interface

Analysis	Services	Programming

Methods,	clsDatabaseDimension
An	object	of	ClassType	clsDatabaseDimension	implements	the	following
methods	of	the	Dimension	interface.

Method Description
Clone Copies	an	existing	object	to	a	target	object	of	the

same	class	type
LockObject Locks	the	database	dimension
Process Processes	the	database	dimension
UnlockObject Unlocks	the	previously	locked	database	dimension
Update Updates	the	definition	of	the	database	dimension	in

the	meta	data	repository

See	Also

Dimension	Interface

Analysis	Services	Programming

Properties,	clsDatabaseDimension
An	object	of	ClassType	clsDatabaseDimension	implements	the	following
properties	of	the	Dimension	interface.

Property Description
AllowSiblingsWithSameName Indicates	whether	a	parent-child	dimension

can	contain	members	with	identical	names.
AreMemberKeysUnique Indicates	whether	member	keys	are	unique

within	the	dimension.
AreMemberNamesUnique Indicates	whether	member	names	are	unique

within	the	dimension.
ClassType Returns	an	enumeration	constant	that

identifies	the	specific	object	type.
DataMemberCaptionTemplate Contains	a	template	string	that	is	used	to

create	captions	for	system-generated	data
members.

DataSource The	name	of	the	object	of	ClassType
clsDataSource	used	by	the	database
dimension.

DefaultMember Defines	the	default	member	of	the
dimension.

DependsOnDimension Names	a	dimension	to	which	the	current
dimension	is	related.

Description The	description	of	the	database	dimension.
DimensionType Returns	an	enumeration	constant	identifying

the	specific	type	of	dimension.
EnableRealTimeUpdates Indicates	whether	real-time	updates	are

enabled	for	the	dimension.
FromClause The	SQL	FROM	clause	for	a	database

dimension.
IsChanging Indicates	whether	members	and/or	levels	are

expected	to	change	on	a	regular	basis.

IsReadWrite Indicates	whether	end	users	that	have
appropriate	permissions	can	write	back	to
dimensions.

IsShared Indicates	whether	the	database	dimension	is
shared.

IsTemporary Indicates	whether	the	database	dimension
should	be	permanently	stored	in	the
repository.

IsValid Indicates	whether	the	structure	of	the
database	dimension	is	valid.

IsVirtual Indicates	whether	the	database	dimension	is
virtual.

JoinClause The	SQL	JOIN	clause	for	the	dimension.
LastProcessed The	date	and	time	when	the	database

dimension	was	last	processed.
LastUpdated A	user-specified	date.	This	property	is	not

used	by	Microsoft®	SQL	Server™	2000
Analysis	Services.

MembersWithData Determines	which	members	in	a	dimension
can	have	associated	data	in	the	fact	table.

Name The	name	of	the	database	dimension.
OrdinalPosition Returns	the	ordinal	position	of	the

dimension	object	within	its	parent	object's
Dimensions	collection.

Parent Returns	a	reference	to	the	parent	MDStore
object.

SourceTable The	name	of	the	primary	table	of	the
database	dimension.

SourceTableAlias Returns	the	alias	of	the	source	table	for	the
database	dimension.

SourceTableFilter Restricts	members	that	are	included	in	a
dimension.

State Indicates	the	difference	between	the
dimension	object	referenced	by	the	client
application	and	the	corresponding

dimension	on	the	Analysis	server.
StorageMode Determines	how	the	contents	of	a	cube's

dimensions	are	stored.
SubClassType Returns	an	enumeration	constant	that

identifies	the	subclass	type	of	the	object.

See	Also

Dimension	Interface

Analysis	Services	Programming

clsDatabaseLevel
An	object	of	ClassType	clsDatabaseLevel	provides	a	specific	implementation
of	the	Decision	Support	Objects	(DSO)	Level	interface.	This	object	provides
collections	and	properties	through	the	Level	interface.	There	are	no	methods
associated	with	an	object	of	ClassType	clsDatabaseLevel.

Remarks
When	you	add	a	dimension	to	a	cube,	the	cube	inherits	whatever	levels	you
defined	for	the	database	dimension;	that	is,	the	database	levels	you	defined
become	cube	levels,	as	well.	Similarly,	database	levels	are	automatically
inherited	by	the	partitions	and	aggregations	you	add	to	a	cube.

Example
Use	the	following	code	to	create	an	object	of	ClassType	clsDatabaseLevel:

'	Assume	the	existence	of	an	object	(myDim)	of	ClassType	clsDimension
Dim	myLev	As	DSO.Level
Set	myLev	=	myDim.Levels.AddNew('Brand	Name')

See	Also

Collections,	clsDatabaseLevel

Level	Interface

Properties,	clsDatabaseLevel

Analysis	Services	Programming

Collections,	clsDatabaseLevel
An	object	of	ClassType	clsDatabaseLevel	implements	the	following	collection
of	the	Level	interface.

Collection Description
CustomProperties The	collection	of	user-defined	properties
MemberProperties The	collection	of	objects	of	ClassType

clsMemberProperty

See	Also

clsDatabaseLevel

Level	Interface

Analysis	Services	Programming

Properties,	clsDatabaseLevel
An	object	of	ClassType	clsDatabaseLevel	implements	the	following	properties
of	the	Level	interface.

Property Description
AreMemberKeysUnique Indicates	whether	the	members	of	a	level

are	uniquely	identified	by	their	member
key	column

AreMemberNamesUnique Indicates	whether	the	members	of	a	level
are	uniquely	identified	by	their	member
name	column

ClassType Returns	an	enumeration	constant	that
identifies	the	specific	object	type

ColumnSize The	size	(in	bytes)	of	the	data	in	the
member	key	column	of	the	level

ColumnType The	data	type	of	the	member	key	column
of	the	level

CustomRollUpColumn Contains	the	name	of	the	column	that
contains	member-specific	rollup
instructions

CustomRollUpExpression Contains	a	Multidimensional	Expressions
(MDX)	expression	used	to	override	the
default	rollup	mode

CustomRollUpPropertiesColumnContains	the	name	of	the	column	that
supplies	cell	properties	for	member-
specific	rollup	instructions

Description The	description	of	the	database	level
EstimatedSize The	estimated	number	of	rows	in	the

database	level
FromClause The	SQL	FROM	clause	for	the	database

level
Grouping Indicates	the	type	of	grouping	used	by	the

OLAP	server
HideMemberIf Indicates	whether	a	member	should	be

hidden	from	client	applications
IsValid Indicates	whether	the	structure	of	the

database	level	is	valid
IsVisible Indicates	whether	the	level	is	visible	to

client	applications
JoinClause The	SQL	JOIN	clause	for	the	database

level	
LevelNamingTemplate Defines	how	levels	in	a	parent-child

hierarchy	are	named
LevelType Returns	an	enumeration	constant	that

identifies	the	specific	type	of	level
MemberKeyColumn The	name	of	the	column	that	contains	the

member	keys	of	the	database	level	
MemberNameColumn The	name	of	the	column	that	contains

member	names
Name The	name	of	the	database	level	
Ordering Specifies	the	method	to	use	when

ordering	the	members	of	a	level
OrderingMemberProperty Specifies	a	member	property	used	to

determine	the	ordering	of	members
OrdinalPosition Returns	the	ordinal	position	of	the	level

in	the	Levels	collection	of	the	parent
object

Parent Returns	a	reference	to	the	parent
Dimension	object

ParentKeyColumn Identifies	the	parent	of	a	member	in	a
parent-child	hierarchy

RootMemberIf Determines	how	the	root	member	or
members	of	a	parent-child	hierarchy	are
identified

SkippedLevelsColumn Identifies	the	column	that	holds	the
number	of	empty	levels	between	a
member	and	its	parent

SubClassType Returns	an	enumeration	constant	that
identifies	the	subclass	type	of	the	object

UnaryOperatorColumn Contains	the	name	of	a	column	that	stores
mathematical	operators	serving	as
member-specific	rollup	instructions	for
the	level

See	Also

clsDatabaseLevel

Level	Interface

Analysis	Services	Programming

clsDatabaseRole
An	object	of	ClassType	clsDatabaseRole	provides	a	specific	implementation	of
the	Decision	Support	Objects	(DSO)	Role	interface.	This	object	provides
collections,	methods,	and	properties	through	the	Role	interface.

Remarks
Objects	of	ClassType	clsDatabaseRole	are	used	to	manage	the	set	of	users	who
can	access	a	database	and	the	manner	in	which	they	can	access	it.	As	with	cube
roles	and	mining	model	roles,	a	database	role	has	a	name,	a	description,	a	parent
object,	a	class	type,	a	list	of	users,	and	a	set	of	permissions.	Each	permission	has
a	key	and	a	corresponding	permission	expression.

Unlike	cube	roles	and	mining	model	roles,	however,	a	database	role	serves	as	the
basis	for	cube	and	mining	model	roles.	To	create	roles	for	cubes	and	data	mining
models,	create	roles	at	the	database	level	(database	roles)	and	then	assign	them
to	cubes	or	mining	models	by	adding	them	to	the	collection	of	roles	associated
with	the	cube	or	mining	model.	The	act	of	assigning	database	roles	to	cubes	or
mining	models	creates	corresponding	cube	roles	and	mining	model	roles	based
on	the	database	role.	The	roles	assigned	to	a	cube	apply	automatically	to	its
partitions	and	aggregations.

You	can	remove	a	database	role	by	removing	it	from	the	database's	collection	of
role	objects.	When	you	do	so,	the	system	automatically	removes	the
corresponding	cube	and	mining	model	roles	from	the	cube's	collection	of	role
objects.

Example
Suppose	you	define	roles	named	FinanceManagers,	ProductionManagers,	and
SalesManagers	at	the	database	level.	Suppose	also	that	you	assign	the
appropriate	vice	president	to	the	list	of	users	for	each	role	and	the	company
president	to	the	list	of	users	for	all	three	roles.

Use	the	following	code	to	define	the	appropriate	database	and	cube	roles	for	this
situation.	After	the	code	has	been	executed,	you	can	assign	the	database	roles	to

cubes	(or	virtual	cubes)	as	needed.	For	more	information,	see	clsCubeRole.	

'	Assume	an	object	(dsoDB)	of	ClassType	clsDatabase	exists.
'	Create	database	roles.
Dim	DbRole_FinanceMgrs	As	DSO.Role
Dim	DbRole_ProductionMgrs	As	DSO.Role
Dim	DbRole_SalesMgrs	As	DSO.Role
Set	DbRole_FinanceMgrs	=	dsoDB.Roles.AddNew("FinanceManagers")
Set	DbRole_ProductionMgrs	=	dsoDB.Roles.AddNew("ProductionManagers")
Set	DbRole_SalesMgrs	=	dsoDB.Roles.AddNew("SalesManagers")

'	Define	user	lists	for	database	roles.
'	(In	a	real-world	situation,	actual	user	names	would	be
'	used	in	place	of	titles	like	"President".)
DbRole_FinanceMgrs.UsersList	=	"President;VP_Finance"
DbRole_ProductionMgrs.UsersList	=	"President;VP_Production"
DbRole_SalesMgrs.UsersList	=	"President;VP_Sales"

'	Update	the	repository	for	the	database	roles.
DbRole_FinanceMgrs.Update
DbRole_ProductionMgrs.Update
DbRole_SalesMgrs.Update

'	Assume	objects	(Cube95,	Cube96	and	Cube97)	of	ClassType	clsCube	exist.
'	Create	cube	roles.	Cube	role	names	must	be	identical
'	to	the	corresponding	database	role	names.
Dim	CubeRole_FinanceMgrs	As	DSO.Role
Dim	CubeRole_ProductionMgrs	As	DSO.Role
Dim	CubeRole_SalesMgrs	As	DSO.Role

'	Add	roles	to	Cube95.
Set	CubeRole_FinanceMgrs	=	Cube95.Roles.AddNew("FinanceManagers")
Set	CubeRole_ProductionMgrs	=	Cube95.Roles.AddNew("ProductionManagers")
Set	CubeRole_SalesMgrs	=	Cube95.Roles.AddNew("SalesManagers")

'	Add	Roles	to	Cube96.
Set	CubeRole_FinanceMgrs	=	Cube96.Roles.AddNew("FinanceManagers")
Set	CubeRole_ProductionMgrs	=	Cube96.Roles.AddNew("ProductionManagers")
Set	CubeRole_SalesMgrs	=	Cube96.Roles.AddNew("SalesManagers")

'	Add	Roles	to	Cube97.
Set	CubeRole_FinanceMgrs	=	Cube97.Roles.AddNew("FinanceManagers")
Set	CubeRole_ProductionMgrs	=	Cube97.Roles.AddNew("ProductionManagers")
Set	CubeRole_SalesMgrs	=	Cube97.Roles.AddNew("SalesManagers")

'	Update	the	repository	for	the	cubes.
Cube95.Update
Cube96.Update
Cube97.Update

See	Also

Collections,	clsDatabaseRole

Methods,	clsDatabaseRole

Properties,	clsDatabaseRole

Role	Interface

Analysis	Services	Programming

Collections,	clsDatabaseRole
An	object	of	ClassType	clsDatabaseRole	implements	the	following	collections
of	the	Role	interface.

Collection Description
Commands The	collection	of	commands	for	the	role
CustomProperties The	collection	of	user-defined	properties

See	Also

clsDatabaseRole

Role	Interface

Analysis	Services	Programming

Methods,	clsDatabaseRole
An	object	of	ClassType	clsDatabaseRole	implements	the	following	methods	of
the	Role	interface.

Method Description
Clone Copies	the	properties	of	the	role	to	a	different	role

object
LockObject Locks	the	role	object
SetPermissions Sets	role	permissions	for	a	given	key
UnlockObject Unlocks	a	previously	locked	object
Update Updates	the	definition	of	the	database	role	in	the

meta	data	repository

See	Also

clsDatabaseRole

Role	Interface

Analysis	Services	Programming

Properties,	clsDatabaseRole
An	object	of	ClassType	clsDatabaseRole	implements	the	following	properties
of	the	Role	interface.

Property Description
ClassType Returns	an	enumeration	constant	that	identifies	the

specific	object	type
Description The	description	of	a	database	role
IsValid Indicates	whether	the	role	structure	is	valid
Name The	name	of	a	database	role
Parent Returns	a	reference	to	the	parent	object,	using	the

MDStore	interface	of	the	parent	object
ParentObject Returns	a	reference	to	the	parent	object,	using	the

default	interface	of	the	parent	object
Permissions The	permissions	for	the	database	role	for	a	given

key
SubClassType Returns	an	enumeration	constant	that	identifies	the

subclass	type	of	the	object
UsersList A	semicolon-delimited	list	of	users	of	the	database

role

See	Also

clsDatabaseRole

Role	Interface

Analysis	Services	Programming

clsDataSource
An	object	of	ClassType	clsDataSource	specifies	an	external	database	that	will
be	used	as	a	source	of	data	for	an	object	of	ClassType	clsDatabase,	clsCube,	or
clsPartition.	The	object	of	ClassType	clsDataSource	provides	collections,
methods,	and	properties	though	its	own	internal	interface.

Remarks
Connections	to	data	sources	are	initiated	when	Decision	Support	Objects	(DSO)
requires	access	to	data	or	property	information	in	the	source	database.	Data
sources	are	only	connected	to	when	needed	or	when	explicitly	requested	by	the
program.	Executing	the	IsConnected	method	of	an	object	of	ClassType
clsDataSource	causes	the	Analysis	server	to	attempt	to	connect	to	the	specified
data	source.

An	object	of	ClassType	clsDatabase	may	contain	multiple	objects	of	ClassType
clsDataSource	in	its	DataSources	collection.	Objects	of	ClassType	clsCube
and	clsPartition	can	only	contain	a	single	object	of	ClassType	clsDataSource
in	their	respective	DataSources	collection.	An	aggregation	object	(ClassType
clsAggregation)	does	not	implement	the	DataSources	collection	of	the
MDStore	interface.

Examples

A.	Creating	a	New	Database
The	following	example	demonstrates	how	to	connect	to	the	Analysis	server	and
create	a	new	database,	attach	a	data	source,	and	add	a	shared	dimension	and
level.	It	uses	the	sample	FoodMart	2000	database.	After	building	and	running
the	example	code,	you	should	be	able	to	view	the	new	database	using	Analysis
Manager.

Option	Explicit
Public	dsoServer	As	DSO.Server

Const	strConnect	=	"Provider=MSDASQL.1;Persist	Security	Info=False;Data	Source=FoodMart	2000;Connect	Timeout=15"

'Note:	Add	command	control	to	form	to	enable
'						the	cmdCreateDatabase_Click	method

Private	Sub	cmdCreateDatabase_Click()
				On	Error	GoTo	CreateDatabase_Err
				
				Dim	dsoDB	As	DSO.MDStore
				Dim	dsoDS	As	DSO.Datasource
				
				'Create	database	and	add	connection	string
				Set	dsoDB	=	dsoServer.MDStores.AddNew("MyDatabase")
				Set	dsoDS	=	dsoDB.Datasources.AddNew("NewSales")
				dsoDS.ConnectionString	=	strConnect
				dsoDS.Update
				
				'Create	dimension	and	set	data	source
				Dim	dsoDim	As	DSO.Dimension
				Set	dsoDim	=	dsoDB.Dimensions.AddNew("Products")
				Set	dsoDim.Datasource	=	dsoDS
				dsoDim.FromClause	=	"product"
				dsoDim.JoinClause	=	""
				
				'Add	levels
				Dim	dsoLev	As	DSO.Level
				Set	dsoLev	=	dsoDim.Levels.AddNew("Product	Id")
				'Point	to	table	and	column
				dsoLev.MemberKeyColumn	=	"""product_class"".""product_family"""
			dsoLev.ColumnSize	=	4												'Width	of	column	in	bytes
				dsoLev.ColumnType	=	adInteger			'ADODB	Data	Type
				
				dsoDim.Update

				
				Debug.Print	"<<success>>"
				
				Exit	Sub

CreateDatabase_Err:
				Debug.Print	"Error	creating	new	database"
				Debug.Print	Err.Description
				Err.Clear
End	Sub

Private	Sub	Form_Load()
				On	Error	GoTo	FormLoad_Err
				
				'Connect	to	the	Analysis	server
				Set	dsoServer	=	New	DSO.Server
				'MyServer	is	the	name	of	the	Analysis	server	
				dsoServer.Connect	("MyServer")
				Debug.Print	("Connected")
				Exit	Sub
				
FormLoad_Err:
				Debug.Print	("Error	connecting	to	server")
				Debug.Print	Err.Description
				Err.Clear
End	Sub

B.	Connecting	to	Data	Source	Providers
Connection	string	examples	are	also	provided	for	the	following	data	source
providers:

Microsoft®	OLE	DB	Provider	for	Jet	3.51	OLE	DB:

		ConnectionString="Provider=Microsoft.Jet.OLEDB.3.51;"	&	_
		"Persist	Security	Info=False;"	&	_
		"Data	Source=C:\Program	Files\"	&	_
		"Microsoft	Analysis	Services\Samples\FoodMart	2000.mdb"	

Microsoft	OLE	DB	Provider	for	Jet	4.0:

		ConnectionString="Provider=Microsoft.Jet.OLEDB.4.0;"	&	_
		"Persist	Security	Info=False;"	&	_
		"Data	Source=C:\Program	Files\"	&	_
		"Microsoft	Analysis	Services\Samples\FoodMart	2000.mdb;"	&	_
		"JET	OLEDB:SFP=True;"

Microsoft	OLE	DB	Provider	for	ODBC	(Microsoft	Access):

		ConnectionString="Provider=MSDASQL.1;"	&	_
		"Persist	Security	Info=False;"	&	_
		"Data	Source=FoodMart	2000;"	&	_
		"Connect	Timeout=15"

Microsoft	SQL	Server™:

		ConnectionString	=	"Provider=SQLOLEDB.1;"	&	_
		"Persist	Security	Info=False;"	&	_
		"User	ID=sa;"	&	_
		"Initial	Catalog=FoodMart	2000;"	&	_
		"Data	Source={SQL	Server};"	&	_
		"Connect	Timeout=15"	

See	Also

clsDatabase

clsCube

clsPartition

Collections,	clsDataSource

Methods,	clsDataSource

Properties,	clsDataSource

Analysis	Services	Programming

Collections,	clsDataSource
An	object	of	ClassType	clsDataSource	implements	the	following	collection.

Collection Description
CustomProperties The	collection	of	user-defined	properties

Access
Read/write

See	Also

clsDataSource

Analysis	Services	Programming

Methods,	clsDataSource
An	object	of	ClassType	clsDataSource	implements	the	following	methods.

Method Description
Clone Copies	the	properties	and	collections	of	a	data

source	object	to	another	data	source	object.
IsConnected Connects	to	a	data	source.	The	method	returns	True

if	the	data	source	is	connected,	and	False	if	it	is	not
connected	and	is	unable	to	connect.

LockObject Locks	a	data	source	object.
UnlockObject Unlocks	a	previously	locked	data	source	object.
Update Updates	the	data	source	object	definition	in	the

meta	data	repository.

See	Also

clsDataSource

Analysis	Services	Programming

Clone	(clsDataSource)
The	Clone	method	of	an	object	of	ClassType	clsDataSource	copies	the	property
values	and	the	collections	of	a	data	source	object	to	a	target	data	source	object.

Syntax
object.Clone(ByVal	TargetObject	As	ICommon,	Optional	ByVal	Options	As
CloneOptions	=	cloneMajorChildren)

object

The	object	of	ClassType	clsDataSource	to	be	copied.

TargetObject

An	existing	object	of	ClassType	clsDataSource.

Options

One	of	the	values	in	the	CloneOptions	enumeration.	If	no	value	is	specified,
the	cloneMajorChildren	option	is	used.	Because	objects	of	ClassType
clsDataSource	contain	no	major	or	minor	objects,	the	entire	object	is	cloned
regardless	of	the	option	specified.	For	more	information,	see	CloneOptions.

See	Also

clsDataSource

Analysis	Services	Programming

IsConnected	(clsDataSource)
The	IsConnected	method	of	an	object	of	ClassType	clsDataSource	verifies	the
connection	to	the	data	source	specified	by	the	ConnectionString	property.	If	the
data	source	is	not	connected,	the	method	attempts	to	connect	to	the	source.

Syntax
bRet	=	object.IsConnected(ErrorMsg	As	String)

bRet

A	Boolean	variable	that	receives	the	returned	value:	True	is	returned	if	the
data	source	is	connected,	False	if	the	connection	cannot	be	established.

object

An	object	of	ClassType	clsDataSource.

ErrorMsg

An	optional	string	variable	that	receives	the	error	definition	if	the	connection
cannot	be	established.

Remarks
If	the	data	source	is	already	connected	when	the	method	is	executed,	the	method
returns	True.	If	the	data	source	is	not	connected,	the	method	attempts	to	connect
to	the	data	source,	returning	True	if	the	connection	is	established	or	False	if	the
connection	cannot	be	established.

It	is	not	necessary	to	establish	a	connection	to	a	data	source	before	it	can	be
used.	Decision	Support	Objects	(DSO)	will	automatically	establish	the
connection	when	necessary	(for	example,	to	read	a	property	value	from	the
source	database	or	to	access	data	in	the	database).

Example
Use	the	following	code	to	establish	a	connection	to	a	data	source	with	the

IsConnected	property:

'Assume	an	object	(dsoDS)	of	ClassType	clsDataSource	exists	
If	Not	dsoDS.IsConnected	Then
			'	Code	to	handle	connection	error
Else	
			'	Connection	is	established	
End	If	

See	Also

clsDataSource

ConnectionString

Analysis	Services	Programming

LockObject	(clsDataSource)
The	LockObject	method	of	an	object	of	ClassType	clsDataSource	locks	a	data
source	object	to	prevent	actions	of	multiple	users	of	the	object	from	colliding.

Syntax
object.LockObject(ByVal	LockType	As	OlapLockTypes,	ByVal
LockDescription	As	String)

object

The	data	source	object	to	lock.

LockType

One	of	the	lock	types	defined	in	the	OlapLockTypes	enumeration.	For	more
information,	see	OlapLockTypes.

LockDescription

A	string	containing	the	description	of	the	lock,	available	to	other	applications
attempting	to	obtain	a	lock.

Remarks
It	is	sometimes	possible	for	an	application	to	request	an	additional	lock	on	an
already	locked	object.	For	example,	other	applications	can	request	and	receive
an	olapLockRead	lock	on	an	object	already	locked	using	the	olapLockProcess
lock.

See	Also

clsDataSource

Analysis	Services	Programming

UnlockObject	(clsDataSource)
The	UnlockObject	method	of	an	object	of	ClassType	clsDataSource	releases	a
lock	on	a	data	source	object	previously	established	by	the	LockObject	method.

Syntax
object.UnlockObject

object

The	data	source	object	from	which	to	remove	a	lock.

Remarks
For	a	complete	discussion	of	object	locking,	see	LockObject.

See	Also

clsDataSource

Analysis	Services	Programming

Update	(clsDataSource)
The	Update	method	of	an	object	of	ClassType	clsDataSource	updates	the
definition	of	a	data	source	object	in	the	meta	data	repository.

Syntax
object.Update

object

An	object	of	ClassType	clsDataSource.

See	Also

clsDataSource

Analysis	Services	Programming

Properties,	clsDataSource
An	object	of	ClassType	clsDataSource	implements	the	following	properties.
The	table	also	shows	whether	the	property	is	read/write	(R/W)	or	read-only	(R).

Property Description Access
ClassType Returns	an	enumeration	constant	that

identifies	the	specific	class	type
R

CloseQuoteChar The	right	(closing)	quote	character
used	by	the	source	database

R

Connection A	reference	to	a	Microsoft®
ActiveX®	Data	Objects	(ADO)
Connection	object,	used	to	connect	to
a	relational	database

R

ConnectionString A	string	containing	the	initialization
parameters	for	the	source	database

R/W

Description A	description	of	the	data	source R/W
IsReadOnly Indicates	whether	the	data	source	is

read-only
R

IsValid Indicates	whether	the	structure	of	the
data	source	object	is	valid

R

Name The	name	of	the	data	source	object R/W	(read-only
after	the	object
has	been	named)

OpenQuoteChar The	left	(opening)	quote	character
used	by	the	source	database

R

Parent Returns	a	reference	to	the	parent
MDStore	object

R/W

SubClassType Returns	an	enumeration	constant	that
identifies	the	subclass	type	of	the
object

R

SupportedTxnDDLReturns	the	value	of	the	connection
object's	Transaction	DDL	property,

R

which	indicates	the	source	database's
ability	to	support	data	definition
language	(DDL)	statements	in
transactions

See	Also

clsDataSource

Analysis	Services	Programming

ClassType	(clsDataSource)
The	ClassType	property	of	an	object	of	ClassType	clsDataSource	object
returns	an	enumeration	constant	that	identifies	the	specific	class	type.

Data	Type
Integer	representing	a	value	from	the	ClassTypes	enumeration.	For	more
information,	see	ClassTypes.

Access
Read-only

Remarks
Most	objects	in	Decision	Support	Objects	(DSO)	have	a	ClassType	and	a
SubClassType	property.	The	SubClassType	property	uses	an	enumerated	value
to	provide	additional	information	about	the	object.	This	property	supports	the
clsDataSource	value	from	the	ClassTypes	enumeration.

See	Also

clsDataSource

SubClassType

Analysis	Services	Programming

CloseQuoteChar	(clsDataSource)
The	CloseQuoteChar	property	of	an	object	of	ClassType	clsDataSource
returns	the	right	(closing)	quote	character	used	by	the	source	database.

Data	Type
Variant

Access
Read-only

Remarks
To	properly	qualify	a	table	or	column	name	that	contains	white	space,	a	data
source	may	require	the	name	be	delimited	or	enclosed	using	a	quote	character.
The	quote	character	is	generally	specific	to	the	data	source	or	data	source	driver.

Example
The	following	code	specifies	a	FromClause	in	a	dimension	and	uses	the	proper
delimiter	characters	for	the	data	source:

'Assume	an	object	(dsoDimension)	of
'ClassType	clsDatabaseDimension	exists	and
'get	the	quoting	characters	from	the	data	source
Dim	sLQuote	As	String,	sRQuote	As	String
sLQuote	=	dsoDimension.Datasource.OpenQuoteChar
sRQuote	=	dsoDimension.Datasource.CloseQuoteChar

'Set	the	comma	separated	list	of	the	dimension	tables
dsoDimension.FromClause	=	sLQuote	&	"store"	&	sRQuote

See	Also

clsDataSource

FromClause

Analysis	Services	Programming

Connection	(clsDataSource)
The	Connection	property	of	an	object	of	ClassType	clsDataSource	returns	a
reference	to	a	Microsoft®	ActiveX®	Data	Objects	(ADO)	Connection	object,
used	to	connect	to	a	relational	database.

Data	Type
ADODB.Connection

Access
Read-only

Remarks
You	can	use	this	ADO	Connection	object	to	access	the	source	database	directly.
For	more	information,	see	the	ADO	documentation.

See	Also

clsDataSource

Analysis	Services	Programming

ConnectionString	(clsDataSource)
The	ConnectionString	property	of	an	object	of	ClassType	clsDataSource
returns	a	string	containing	the	OLE	DB	initialization	parameters	for	the	source
database.

Data	Type
String

Access
Read/write

Remarks
For	more	information	about	valid	connection	string	parameters	and	format,	see
the	OLE	DB	documentation	or	the	source	database	documentation.

Example
Use	the	following	code	to	set	the	ConnectionString	property	for	a
clsDataSource	object.

'Assume	an	object	(dsoDatasource)	of	ClassType	clsDataSource	exists
'Set	the	OleDB	connection	string.
'The	connection	string	is	used	to	establish	the	connection
'to	the	relational	database	that	contains	the	dimension	and
'fact	tables.	We	will	use	OleDB	provider	for	ODBC	drivers
dsoDatasource.ConnectionString	=	_
				"Provider=MSDASQL.1;Data	Source=FoodMart;Connect	Timeout=15"

'Save	the	datasource	definition	in	the	meta	data	repository
	dsoDatasource.Update

See	Also

clsDataSource

Analysis	Services	Programming

Description	(clsDataSource)
The	Description	property	of	an	object	of	ClassType	clsDataSource	sets	or
returns	the	description	of	the	data	source.

Data	Type
String

Access
Read/write

Remarks
You	can	use	this	property	to	provide	a	description	of	the	data	source,	for
example:

dsoDS.Description	=	"1997	Sales	Data	verified	2/1/1998"

See	Also

clsDataSource

Analysis	Services	Programming

IsReadOnly	(clsDataSource)
The	IsReadOnly	property	of	an	object	of	ClassType	clsDataSource	identifies
whether	the	source	database	is	read-only.

Data	Type
Boolean

Access
Read-only

Remarks
This	property	returns	True	if	the	source	database	is	read-only	or	False	if	the
source	database	is	read/write.

See	Also

clsDataSource

Analysis	Services	Programming

IsValid	(clsDataSource)
The	IsValid	property	of	an	object	of	ClassType	clsDataSource	identifies
whether	the	structure	of	an	object	is	valid.

Data	Type
Boolean

Access
Read-only

Remarks
Validity	checking	consists	of	verifying	that	the	object's	Name	and	Parent
properties	are	not	empty	and	that	the	IsConnected	property	is	True.	If	all
properties	are	valid,	the	IsValid	property	returns	True.	If	any	of	the	properties
are	invalid,	the	IsValid	property	returns	False.

See	Also

clsDataSource

ConnectionString

Name

Parent

Analysis	Services	Programming

Name	(clsDataSource)
The	Name	property	of	an	object	of	ClassType	clsDataSource	sets	or	returns	the
name	of	the	object.

Data	Type
String

Access
Read/write	(read-only	after	the	object	has	been	named)

Remarks
The	Name	property	contains	the	valid	name	of	the	Decision	Support	Objects
(DSO)	object	when	it	was	created.	Typically,	an	object	cannot	be	renamed	once	a
value	has	been	supplied	for	the	Name	property.

See	Also

clsDataSource

Analysis	Services	Programming

OpenQuoteChar	(clsDataSource)
The	OpenQuoteChar	property	of	an	object	of	ClassType	clsDataSource
contains	the	left	(opening)	quote	character	used	by	the	source	database.

Data	Type
Variant

Access
Read-only

Remarks
To	properly	qualify	a	table	or	column	name	that	contains	white	space,	a	data
source	may	require	the	name	be	delimited	or	enclosed	using	a	quote	character.
The	quote	character	is	generally	specific	to	the	data	source	or	data	source	driver.

Example
The	following	code	specifies	a	FromClause	for	a	dimension	and	uses	the	proper
delimiter	characters	for	the	data	source:

'Assume	an	object	(dsoDimension)	of
'ClassType	clsDatabaseDimension	exists	and
'get	the	quoting	characters	from	the	data	source
Dim	sLQuote	As	String,	sRQuote	As	String
sLQuote	=	dsoDimension.Datasource.OpenQuoteChar
sRQuote	=	dsoDimension.Datasource.CloseQuoteChar

'Set	the	comma-separated	list	of	the	dimension	tables
dsoDimension.FromClause	=	sLQuote	&	"store"	&	sRQuote
	

See	Also

clsDataSource

FromClause

Analysis	Services	Programming

Parent	(clsDataSource)
The	Parent	property	of	an	object	of	ClassType	clsDataSource	contains	a
reference	to	the	parent	MDStore	object	that	contains	the	DataSource	object.	For
more	information	about	MDStore	objects,	see	MDStore	Interface.

Data	Type
MDStore

Access
Read-write

Remarks
You	can	only	set	this	property	to	an	object	of	ClassType	clsDatabase.
Attempting	to	set	this	property	to	an	object	of	any	other	class	type	returns	an
error.

See	Also

clsDataSource

Analysis	Services	Programming

SubClassType	(clsDataSource)
The	SubClassType	property	of	an	object	of	ClassType	clsDataSource	contains
an	enumeration	constant	identifying	the	subclass	type	of	the	object.

Data	Type
SubClassTypes

Access
Read-only

Remarks
For	objects	of	ClassType	clsDataSource,	the	value	of	SubClassType	is	always
sbclsRegular.	For	more	information	about	the	SubClassTypes	enumeration,	see
Enumerations.

See	Also

clsDataSource

SubClassTypes

Analysis	Services	Programming

SupportedTxnDDL	(clsDataSource)
The	SupportedTxnDDL	property	of	an	object	of	ClassType	clsDataSource
returns	the	value	of	the	connection	object's	Transaction	DDL	property,	which
indicates	the	source	database's	ability	to	support	data	definition	language	(DDL)
statements	in	transactions.

Data	Type
Long

Access
Read-only

Remarks
The	meaning	of	the	value	returned	is	specific	to	the	database	provider.	For	more
information,	see	the	Microsoft®	ActiveX®	Data	Objects	(ADO)	documentation
and	the	OLE	DB	documentation.

See	Also

clsDataSource

Analysis	Services	Programming

clsMemberProperty
The	member	property	object	defines	a	property	for	a	level	member.	Like	level
members,	these	properties	are	read	from	the	dimension	table.	A	level	can	have
any	number	of	member	properties.	An	object	of	ClassType
clsMemberProperty	provides	collections	and	properties	through	its	own
internal	interface.	There	are	no	methods	associated	with	this	object	class.
clsMemberProperty	objects	are	contained	in	a	parent	level	object's
MemberProperties	collection.

Remarks
Access	to	the	properties	of	an	object	of	ClassType	clsMemberProperty
depends	on	the	context	in	which	it	is	used.	clsMemberProperty	objects	are
created	and	managed	in	the	context	of	a	database	level	and	have	read/write
access.	Cube	and	partition	levels	inherit	member	properties	from	the	database
level.	Member	properties	accessed	through	cube	and	partition	level	objects	are
read-only.

Member	properties	are	versatile	objects	that	can	be	used	to	facilitate	a	number	of
different	tasks.	One	task,	for	example,	is	that	of	sorting	the	members	of	a	level
by	a	particular	attribute.	For	example,	consider	the	States	level	of	the	Geography
dimension.	A	member	property	can	be	defined	that	refers	to	the	population	of	the
state.	Client	applications	can	then	sort	on	this	population	property.

See	Also

clsAggregationLevel

clsDatabaseLevel

clsCubeLevel

clsPartitionLevel

Collections,	clsMemberProperty

Properties,	clsMemberProperty

Analysis	Services	Programming

Collections,	clsMemberProperty
An	object	of	ClassType	clsMemberProperty	implements	the	following
collection.

Collection Description
CustomProperties The	collection	of	user-defined	Property	objects

Access
Read/write

See	Also

clsMemberProperty

Property	Object

Analysis	Services	Programming

Properties,	clsMemberProperty
An	object	of	ClassType	clsMemberProperty	implements	the	following
properties.	The	table	also	shows	whether	the	property	is	read/write	(R/W)	or
read-only	(R).

Property Description Access
Caption The	name	of	the	column	that	contains	the

member	property	in	the	members	and
axis	schema	rowsets

R/W

ClassType Returns	an	enumeration	constant	that
identifies	the	specific	object	type

R

ColumnSize The	size	(in	bytes)	of	the	data	stored	in
the	column	referenced	by	the
SourceColumn	property

R/W

ColumnType The	data	type	of	the	source	column	on
which	the	member	property	is	based

R/W

Description A	description	of	the	property R/W
IsVisible Indicates	whether	the	member	property

is	visible	to	client	applications
R/W

Language Identifies	the	language	used R/W
Name The	name	of	the	member	property R/W	(R	after	the

object	has	been
named)

OrdinalPosition Returns	the	ordinal	position	of	the
clsMemberProperty	object	in	the
MemberProperties	collection

R

Parent Returns	a	reference	to	the	parent	Level
object

R

PropertyType Categorizes	the	content	of	information
provided	by	the	member	property

R/W

SourceColumn The	dimension	table	name	and	column
that	contains	values	for	the	member

R/W

property
SubClassType Returns	an	enumeration	constant	that

identifies	the	subclass	type	of	the	object
R

See	Also

clsMemberProperty

MemberProperties

Analysis	Services	Programming

Caption	(clsMemberProperty)
The	Caption	property	of	an	object	of	ClassType	clsMemberProperty	contains
the	name	of	the	column	that	contains	the	member	property	in	the	members	and
axis	schema	rowsets.	This	is	useful	for	creating	language-specific	versions	of
member	properties.

Data	Type
String

Access
Read/write

Remarks
Individual	member	properties	can	have	identical	Caption	values	only	if	they
have	different	values	for	Language.	When	a	client	application	requests	the
contents	of	a	member	property,	the	Analysis	server	compares	the	locale	ID	of	the
client	application	to	the	Language	property.	The	member	property	with	the	most
appropriate	Language	value	will	be	sent	to	the	client	application.

Two	values	for	the	Caption	property	are	noteworthy:	MEMBER_CAPTION	and
DESCRIPTION.	The	MEMBER_CAPTION	schema	column	should	be	used	to
define	member	captions.	Under	normal	circumstances,	a	client	application
should	use	this	schema	column	for	text	when	displaying	members.	Similarly,	the
DESCRIPTION	column	should	be	used	to	define	textual	member	descriptions.
By	combining	these	Caption	values	with	specific	Language	values,	the
administrator	can	define	localized	member	captions	and	descriptions	that	will	be
used	automatically	by	any	client	application.

The	following	schema	column	names	are	defined	by	OLE	DB	for	OLAP	and
should	not	be	used	as	values	for	the	Name	or	Caption	properties	of	member
properties.

CATALOG_NAME

SCHEMA_NAME

CUBE_NAME

DIMENSION_UNIQUE_NAME

HIERARCHY_UNIQUE_NAME

LEVEL_UNIQUE_NAME

LEVEL_NUMBER

MEMBER_ORDINAL

MEMBER_NAME

MEMBER_UNIQUE_NAME

MEMBER_TYPE

MEMBER_GUID

CHILDREN_CARDINALITY

PARENT_LEVEL

PARENT_UNIQUE_NAME

PARENT_COUNT

See	Also

clsMemberProperty

Analysis	Services	Programming

ClassType	(clsMemberProperty)
The	ClassType	property	of	an	object	of	ClassType	clsMemberProperty
contains	an	enumeration	constant	identifying	the	specific	class	type	of	the
clsMemberProperty	object.

Data	Type
ClassTypes

Access
Read-only

See	Also

clsMemberProperty

Analysis	Services	Programming

ColumnSize	(clsMemberProperty)
The	ColumnSize	property	of	a	clsMemberProperty	object	identifies	the	size
(in	bytes)	of	the	data	stored	in	the	column	referenced	by	the	SourceColumn
property.

Data	Type
Integer

Access
Read/write

See	Also

clsMemberProperty

SourceColumn	(clsMemberProperty)

Analysis	Services	Programming

ColumnType	(clsMemberProperty)
The	ColumnType	property	of	a	clsMemberProperty	object	identifies	the	data
type	of	the	source	column,	specified	in	the	SourceColumn	property,	on	which
the	member	property	is	based.

Data	Type
Integer	representing	a	constant	from	the	ADODB.DataTypeEnum	enumeration.

Access
Read-write

Remarks
For	more	information	about	using	the	ADODB.DataTypeEnum	enumeration,
see	the	Microsoft®	ActiveX®	Data	Objects	(ADO)	documentation.

See	Also

clsMemberProperty

SourceColumn	(clsMemberProperty)

Analysis	Services	Programming

Description	(clsMemberProperty)
The	Description	property	of	an	object	of	ClassType	clsMemberProperty
contains	a	description	of	the	object.

Data	Type
String

Access
Read/write

See	Also

clsMemberProperty

Analysis	Services	Programming

IsVisible	(clsMemberProperty)
The	IsVisible	property	of	an	object	of	ClassType	clsMemberProperty	indicates
whether	the	member	property	is	visible	to	client	applications.

Data	Type
Boolean

Access
Read-write

Remarks
Member	properties	that	are	not	visible	are	not	listed	in	schema	rowsets,	but	they
are	still	accessible	by	name	through	Multidimensional	Expressions	(MDX)
expressions.

See	Also

clsMemberProperty

Analysis	Services	Programming

Language	(clsMemberProperty)
The	Language	property	of	an	object	of	ClassType	clsMemberProperty	object
identifies	the	client	language	for	the	object.

Data	Type
LanguageValues

Access
Read/write

Remarks
When	multiple	member	properties	have	the	same	Caption,	the	OLAP	server
returns	the	one	whose	Language	property	best	matches	the	locale	ID	of	the
client	application.	If	no	match	is	available,	the	server	returns	the	member
property	with	a	Language	value	of	languageAny.	For	more	information	about
the	LanguageValues	enumeration,	see	the	Microsoft®	Visual	Basic®
documentation.

See	Also

clsMemberProperty

Analysis	Services	Programming

Name	(clsMemberProperty)
The	Name	property	of	an	object	of	ClassType	clsMemberProperty	contains	the
name	of	the	object.

Data	Type
String

Access
Read/write	(read-only	after	the	object	has	been	named)

Remarks
Decision	Support	Objects	(DSO)	uses	some	member	property	objects	internally
to	manage	each	cube	it	creates.	Setting	the	Name	property	to	one	of	the
following	reserved	member	property	names	raises	an	error:

CUSTOM_ROLLUP

KEY

NAME

PARENT

SKIPPED_LEVELS

ID

UNARY_OPERATOR

In	addition,	setting	the	Name	property	to	the	name	of	a	schema	rowset	column
also	raises	an	error.	For	more	information	about	schema	rowset	column	names,
see	Schema	Rowsets.

See	Also

clsMemberProperty

Analysis	Services	Programming

OrdinalPosition	(clsMemberProperty)
The	OrdinalPosition	property	of	an	object	of	ClassType	clsMemberProperty
contains	the	ordinal	position	of	a	MemberProperty	object	within	its	parent
object's	collection.

Data	Type
Integer

Access
Read-only

See	Also

clsMemberProperty

Analysis	Services	Programming

Parent	(clsMemberProperty)
The	Parent	property	of	an	object	of	ClassType	clsMemberProperty	contains	a
reference	to	the	Level	object	to	which	the	clsMemberProperty	object	belongs.

Data	Type
Level

Access
Read-only

See	Also

clsMemberProperty

Analysis	Services	Programming

PropertyType	(clsMemberProperty)
The	PropertyType	property	of	an	object	of	ClassType	clsMemberProperty
categorizes	the	content	of	information	provided	by	the	member	property.

Data	Type
PropertyTypeValue

Access
Read/write

Remarks
This	property	is	passed	to	the	client	application,	which	then	determines	how	to
interpret	the	data	provided	by	the	member	property.	This	allows	client
applications	to	create	custom	functions	to	process	the	data	stored	in	member
properties.	For	example,	if	you	define	a	custom	member	property	called	E-Mail
Address	for	members	of	the	Customer	dimension,	you	can	set	this	property	to
propWebMailAlias.	This	would	enable	a	client	application	to	automatically
display	the	member	with	a	mailto	URL	link	whenever	the	other	properties	of	the
member	were	displayed.

See	Also

clsMemberProperty

Analysis	Services	Programming

SourceColumn	(clsMemberProperty)
The	SourceColumn	property	of	an	object	of	ClassType	clsMemberProperty
contains	a	reference	to	the	column	in	the	dimension	table	that	contains	values	for
the	member	property.

Data	Type
String

Access
Read/write

Examples

Specifying	the	SourceColumn	Property	for	a	Member	Property	Object
Use	the	following	code	to	specify	the	SourceColumn	for	a	new	object	of
ClassType	clsMemberProperty:

'Assume	an	object	(dsoLevel)	of	ClassType	clsDimensionLevel	exists.
'	Create	a	member	property	containing	the	name	of	the	store	manager.
Dim	dsoMemProp	As	DSO.MemberProperty
Set	dsoMemProp	=	dsoLevel.MemberProperties.AddNew("Store	Manager")
'Set	the	column	which	contains	the	names	of	the	managers.
dsoMemProp.SourceColumn	=	"""store"".""store_manager"""	

See	Also

clsMemberProperty

Analysis	Services	Programming

SubClassType	(clsMemberProperty)
The	SubClassType	property	of	an	object	of	ClassType	clsMemberProperty
contains	an	enumeration	constant	identifying	the	subclass	type	of	the	object.

Data	Type
SubClassTypes

Access
Read-only

Remarks
A	member	property	object's	SubClassType	property	can	have	a	value	of
sbclsRegular	only.

See	Also

clsMemberProperty

Analysis	Services	Programming

clsMiningModel
Objects	of	ClassType	clsMiningModel	contain	the	definitions	for	data	mining
models	that	are	contained	in	the	MiningModels	collection	of	a	clsServer	object.
Each	model	contains	a	collection,	called	the	Columns	collection,	of	data	mining
columns	(that	is,	objects	of	ClassType	clsColumn)	that	correspond	to	the	case
table	definition	for	the	model.	Each	of	these	data	mining	columns	can,	in	turn,
contain	its	own	collection	of	data	mining	columns	in	the	Columns	collection.
Such	columns	are	referred	to	as	nested	columns.	In	addition	to	the	Columns
collection,	the	mining	model	object	also	contains	references	to	Roles,
DataSources	and	CustomProperties	collections,	which	are	used	in	the	same
manner	as	their	counterparts	under	the	cube	object.

Remarks
After	you	create	a	mining	model	object	by	invoking	the	AddNew	method	of	the
server	object's	MiningModels	collection,	define	the	structure	of	the	mining
model.	The	most	important	step	in	this	process	is	to	determine	the	model's
subclass	type	by	setting	this	property	to	either	sbclsOLAP	or	sbclsRelational.
Data	mining	models	whose	SubClassType	is	sbclsOLAP	(that	is,	OLAP	data
mining	models)	are	based	on	an	OLAP	cube.	Data	mining	models	whose
SubClassType	is	sbclsRelational	(that	is,	relational	data	mining	models)	are
based	on	a	table	from	a	relational	database.	The	choice	of	the	model's
SubClassType	determines	how	the	rest	of	the	model's	structure	is	defined.	After
that,	you	can	determine	other	elements	of	the	model	design,	such	as	the	data
mining	algorithm	that	the	model	will	use	and	the	roles	that	will	be	associated
with	the	model.

OLAP	Data	Mining	Models
To	establish	the	case	set	for	an	OLAP	data	mining	model,	set	the
CaseDimension	property	of	the	clsMiningModel	object	to	a	dimension	within	a
cube;	this	automatically	defines	the	case	level	that	provides	case	key	columns	for
the	mining	model	as	the	last	enabled	and	visible	level	in	the	selected	dimension.
Then	set	the	individual	columns	in	the	Columns	collection	of	the

clsMiningModel	object	to	refer	to	dimensions,	members,	member	properties,
and	measures	in	the	cube	to	be	used	for	input	and	predictive	information.

Relational	Data	Mining	Models
To	establish	the	case	set	for	a	relational	data	mining	model,	select	the	key
columns	from	a	table	or	view	in	a	relational	database	and	then	add	column
objects	to	the	Columns	collection	that	refer	to	these	key	columns.	Next,	add
columns	that	refer	to	other	columns	in	the	table	to	the	Columns	collection,	to
supply	input	and	predictable	information	to	the	data	mining	model.

Examples

A.	Creating	an	OLAP	Mining	Model	Manually
The	following	example	builds	a	mining	model	based	on	the	Sales	cube	in	the
FoodMart	2000	sample	database:

Public	Sub	CreateOlapMiningModel_1()
'--
'	Declarations	-	Identify	all	of	the	variables	that	will	be	needed	to
'	create	the	data	mining	model.
'--
				Dim	dsoSvr	As	New	DSO.Server	'	Server	object
				Dim	dsoDmm	As	DSO.MiningModel	'	Note	that	because	events	are	needed,
				'	this	object	is	being	invoked	directly	instead	of	through	an	MDStore	interface..
				Dim	dsoColumn	As	DSO.Column
				Dim	dsoRole	As	DSO.Role
				Dim	dsoNestedCol	As	DSO.Column
				Dim	dsoCb	As	DSO.MDStore	
				Dim	dsoDim	As	DSO.Dimension
				Dim	dsoLvl	As	DSO.Level
				
'--
'	Connect	to	the	server	and	walk	through	the	schema	for	the	cube	that	the
'	data	mining	model	will	be	based	on.	Save	the	references	to	the	

'	subordinate	objects	that	will	be	needed	later	in	this	example.
'--
				'Connect	to	the	server	on	this	computer.
				dsoSvr.Connect	"LocalHost"
				'Select	the	FoodMart	database.
				Set	dsoDb	=	dsoSvr.MDStores("Foodmart	2000")
				'Select	the	Sales	cube.
				Set	dsoCb	=	dsoDb.MDStores("Sales")
				'Select	the	Customers	dimensions.
				Set	dsoDim	=	dsoCb.Dimensions("Customers")
				'Select	the	Name	level	of	the	Customers	dimension.
				Set	dsoLvl	=	dsoDim.Levels("Name")
				
'--
'	Before	the	model	is	created,	check	for	a	previous	incarnation	of	it.
'	If	it	exists,	delete	it.	Then	create	a	new	one.
'	Give	the	new	model	a	new	data	source,	and	give	it	a	role.
'	Then	describe	the	model	for	browsing	the	schema,	and	declare	the
'	algorithm	that	will	be	used	to	predict	with.
'	Finally,	set	up	the	OLAP	properties	that	will	be	needed	by	the	model.
'--
				'Check	for	the	existence	of	the	model	on	this	computer.
				If	Not	dsoDb.MiningModels("CustSalesModel")	Is	Nothing	Then
								'If	this	model	exists,	delete	it.
								dsoDb.MiningModels.Remove	"CustSalesModel"
				End	If
				
				'Create	a	new	mining	model	called	CustSalesModel.
				Set	dsoDmm	=	dsoDb.MiningModels.AddNew("CustSalesModel",	sbclsOlap)
				
				'Designate	FoodMart	2000	as	the	data	source	for	this	mining	model.
				dsoDmm.DataSources.AddNew	"Foodmart	2000"
				

				'Create	a	new	mining	model	role	called	All	Users.
				Set	dsoRole	=	dsoDmm.Roles.AddNew("All	Users")
				
				'Describe	this	new	mining	model.
				dsoDmm.Description	=	"Analyzes	the	purchasing	behavior	of	customers"
				'use	the	Decision	Trees	algorithm	in	this	model.
				dsoDmm.MiningAlgorithm	=	"Microsoft_Decision_Trees"
				'Declare	that	the	Sales	cube	will	be	used	as	the	source	for	this	model.
				dsoDmm.SourceCube	=	"Sales"
				'Declare	that	the	case	dimension	will	be	based	on	the	Customers
				'dimension	from	the	Sales	cube.
				dsoDmm.CaseDimension	=	"Customers"
				'Use	the	Name	level	of	the	Customers	dimension	for	cases.
				dsoDmm.CaseLevel	=	"Name"
				'Let	DSO	figure	out	the	training	query	by	leaving	this	property	blank.
				dsoDmm.TrainingQuery	=	""
				
'--
'	Add	a	new	column,	Customer	Id,	to	the	mining	model	
'	and	relate	this	column	to	the	Name	level	of	the	Customers	dimension.
'	Describe	the	level's	type	and	make	it	a	key	for	the	model.
'--
				'Add	Customer	Id	as	a	new	column	in	the	model.
				Set	dsoColumn	=	dsoDmm.Columns.AddNew("Customer	Id")
				'Identify	the	level	in	Sales	that	this	column	is	based	on.
				Set	dsoColumn.SourceOlapObject	=	dsoLvl
				'Identify	the	type	of	column	this	is.
				dsoColumn.DataType	=	adInteger	'	This	enumeration	is	from	ADO.
				'Identify	this	column	as	a	key.
				dsoColumn.IsKey	=	True
				
'--
'	Add	a	new	column	to	the	mining	model	called	Gender	and	relate	this

'	column	to	the	Gender	member	property	of	the	Name	level	of	the
'	Customers	dimension.	Declare	that	the	data	in	this	column	is
'	statistically	discrete.
'--
				'Add	another	column	to	the	model.
				Set	dsoColumn	=	dsoDmm.Columns.AddNew("Gender")
				'Identify	the	member	property	of	the	Customers	dimension
				'that	this	column	is	based	on.
				'Set	the	column's	description	for	browsers	of	the	schema.
				dsoColumn.Description	=	"Based	on	the	Gender	member	property	"	&	_
						"of	the	Name	level	of	the	Customers	dimension."
				Set	dsoColumn.SourceOlapObject	=	dsoLvl.MemberProperties("Gender")
				'Identify	its	type.
				dsoColumn.DataType	=	adWChar
				'Make	this	column	related	to	the	Customer	Id	column.
				dsoColumn.RelatedColumn	=	"Customer	Id"
				'Identify	this	column	as	one	containing	discrete	data.
				dsoColumn.ContentType	=	"DISCRETE"
				
'--
'	Add	a	new	column	to	the	mining	model	called	Unit	Sales	and	relate
'	this	column	to	the	Sales	cube	measure	of	the	same	name.	Set	the
'	columns	data	type	to	Integer,	and	identify	the	data	content	in	it	as
'	being	continuous	and	logarithmically	normalized.	Finally,	identify	this
'	column	as	being	predictable.
'--
				'Add	another	column	to	the	model.
				Set	dsoColumn	=	dsoDmm.Columns.AddNew("Unit	Sales")
				'Identify	this	column	as	being	based	on	the	Unit	Sales	measure.
				Set	dsoColumn.SourceOlapObject	=	dsoCb.Measures("Unit	Sales")
				'Identify	the	column	type.
				dsoColumn.DataType	=	adInteger
				'Identify	this	column's	content	as	being	continuous.

				dsoColumn.ContentType	=	"CONTINUOUS"
				'Identify	the	statistical	distribution	of	this	data.
				dsoColumn.Distribution	=	"LOG_NORMAL"
				'Identofy	the	column	as	being	predictable.
				dsoColumn.IsPredictable	=	True
				
'--
'	Save	the	mining	model	and	update	its	LastUpdated	property.
'--
				'Set	the	date	of	last	update	to	today's	date.
				dsoDmm.LastUpdated	=	Now
				'Save	the	model	definition.
				dsoDmm.Update
				
'--
'	Lock	the	cube,	process	it,	and	then	unlock	it.
'	Note:	During	processing	a	number	of	events	will	be	fired.	These	events
'	are	trapped	by	the	database	object's	ReportAfter,	Report	Before,
'	ReportProgress,	and	ReportError	events.
'--
				'Because	the	model	is	about	to	be	processed,	it	must	be	locked.
				dsoDmm.LockObject	olapLockProcess,	"Processing	the	data	mining	model	in	sample	code"
				'Fully	process	the	model.
				dsoDmm.Process	processFull
				'Unlock	the	model	after	processing	is	complete.
				dsoDmm.UnlockObject
End	Sub

B.	Creating	an	OLAP	Mining	Model	Automatically
The	following	example	automatically	creates	and	OLAP	mining	model	based	on
the	Sales	cube	in	the	FoodMart2000	database:

Public	Sub	CreateOlapMiningModel_2()

'--
'	Declarations	-	Identify	all	of	the	variables	that	will	be	needed	to
'	create	the	data	mining	model.
'--
				Dim	dsoSvr	As	New	DSO.Server
				Dim	dsoDmm	As	DSO.MiningModel
				Dim	dsoColumn	As	DSO.Column
				Dim	dsoRole	As	DSO.Role
				Dim	dsoNestedCol	As	DSO.Column

'--
'	Before	the	model	is	created,	check	for	a	previous	incarnation	of	it.
'	If	it	exists,	delete	it.	Then	create	a	new	one.
'	Give	the	new	model	a	new	data	source,	and	give	it	a	role.
'	Then	describe	the	model	for	browsing	of	the	schema,	and	declare	the
'	algorithm	that	will	be	used	to	predict	with.
'	Finally,	set	up	the	OLAP	properties	that	the	model	will	need.
'--
				dsoSvr.Connect	"LocalHost"
				Set	dsoDb	=	dsoSvr.MDStores("Foodmart	2000")
				
				If	Not	dsoDb.MiningModels("CustSales_Olap2")	Is	Nothing	Then
								dsoDb.MiningModels.Remove	"CustSales_Olap2"
				End	If
				
				Set	dsoDmm	=	dsoDb.MiningModels.AddNew("CustSales_Olap2",	sbclsOlap)				

				'Create	a	new	mining	model	role	called	All	Users.
				Set	dsoRole	=	dsoDmm.Roles.AddNew("All	Users")

				
				dsoDmm.Description	=	"Analyzes	the	purchasing	behavior	of	customers"
				dsoDmm.MiningAlgorithm	=	"Microsoft_Decision_Trees"

				dsoDmm.SourceCube	=	"Sales"
				dsoDmm.CaseDimension	=	"Customers"
				dsoDmm.TrainingQuery	=	""	'Let	DSO	figure	out	the	training	query.
				
'--
'	In	this	next	step,	the	update	method	checks	to	see	whether	there	are	any
'	columns	in	the	columns	collection.	In	this	case,	because	there	are	not
'	any,	the	update	method	will	automatically	add	columns	based	on	the
'	structure	of	the	Sales	cube.
'--
				dsoDmm.Update	'Let	DSO	automatically	populate	the	Columns	collection.
				
				'Enable	the	Products	dimension.
				'Set	dsoColumn	=	dsoDmm.Columns("Products")
				'dsoColumn.IsDisabled	=	False

				'Make	the	Unit	Sales	measure	predictable.
				Set	dsoColumn	=	dsoDmm.Columns("Unit	Sales")
				'Enable	the	column.
				dsoColumn.IsDisabled	=	False
				'Make	the	column	predictable.
				dsoColumn.IsPredictable	=	True

				'	Set	the	last	updated	date	to	today's	date.
				dsoDmm.LastUpdated	=	Now
				'	Save	the	model's	meta	data.
				dsoDmm.Update
'--
'	Lock	the	cube,	process	it,	and	then	unlock	it.
'	Note:	During	processing	a	number	of	events	will	be	fired.	These	events
'	are	trapped	by	the	database	object's	ReportAfter,	ReportBefore,
'	ReportProgress,	and	ReportError	events.
'--

				'Because	the	model	is	about	to	be	processed,	lock	it.
				dsoDmm.LockObject	olapLockProcess,	"Processing	the	data	mining	model	in	sample	code"
				'Process	the	model.
				dsoDmm.Process	processFull
				'Unlock	the	model.
				dsoDmm.UnlockObject
End	Sub

See	Also

AddNew

clsColumn

Analysis	Services	Programming

Collections,	clsMiningModel
An	object	of	ClassType	clsMiningModel	supports	the	following	collections.

Collection Description
Columns The	collection	of	Column	objects	that	represent	the

structure	of	the	mining	model.	Each	column	may
contain	a	nested	collection	of	columns.	For	more
information,	see	Data	Mining	Model	Structure.

CustomProperties The	collection	of	user-defined	properties	for	the
mining	model.

DataSources The	collection	of	data	source	objects	used	by	the
mining	model.

Roles The	collection	of	role	objects	defined	for	the	mining
model.

See	Also

clsMiningModel

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Methods,	clsMiningModel
An	object	of	ClassType	clsMiningModel	supports	the	following	methods.

Method Description
Clone Copies	an	existing	object	to	a	target	object	of	the

same	class	type.	It	also	creates	a	copy	of	the
property	values	and	provides	the	option	of	creating
collections	of	major	and	minor	objects.

LockObject Locks	the	mining	model.
Process Creates	and	trains	the	mining	model	on	the	server.
UnlockObject Releases	a	lock	previously	established	by	the

LockObject	method.
Update Saves	and	updates	the	mining	model's	meta	data.
ValidateStructure Validates	the	properties	and	structure	of	a	mining

model	object	including	the	Columns	collection.	If	it
finds	an	invalid	structure	it	raises	an	error	with	an
appropriate	message.

See	Also

clsMiningModel

Analysis	Services	Programming

Clone	(clsMiningModel)
The	Clone	method	of	an	object	of	ClassType	clsMiningModel	copies	the
properties	and	levels	of	an	existing	object	to	a	target	object	of	the	same	class
type.

Syntax
object.Clone(ByVal	TargetObject	As	MiningModel,	[ByVal	Options	As
CloneOptions	=	cloneMajorChildren])

object

The	mining	model	object	whose	properties	are	to	be	copied.

TargetObject

A	previously	created	object	of	the	same	class	type.

Options

One	of	the	values	of	the	CloneOptions	enumeration.	If	no	value	is	specified,
the	cloneMajorChildren	option	is	used.	For	more	information,	see
CloneOptions.

Remarks
The	Clone	method,	depending	on	the	clone	option	specified	in	Options,	copies
properties	and	objects	to	a	new	object	with	the	same	ClassType	property	value.

Example
The	following	example	copies	the	properties	of	dsoDMMSource	to
dsoDMMTarget:

'Assume	an	object	(dsoDB)	of	ClassType	clsDatabase	exists.
Dim	dsoDMMSource	As	DSO.MiningModel
Set	dsoDMMSource	=	dsoDB.MiningModels("Source")

...
'Create	target	mining	model	and	clone	just	the	properties.
Dim	dsoDMMTarget	As	DSO.MiningModel
Set	dsoDMMTarget	=	dsoDB.MiningModels.AddNew("Target")
dsoDMMSource.Clone	dsoDMMTarget,	cloneObjectProperties

See	Also

clsMiningModel

Analysis	Services	Programming

LockObject	(clsMiningModel)
The	LockObject	method	of	an	object	of	ClassType	clsMiningModel	locks	a
mining	model	to	prevent	multiple	users	from	concurrently	changing	the	object.

Syntax
object.LockObject(ByVal	LockType	As	OlapLockTypes,	ByVal
LockDescription	As	String)

object

The	object	to	lock.

LockType

One	of	the	constants	of	the	OlapLockTypes	enumeration.	For	more
information,	see	OlapLockTypes.

LockDescription

A	string	containing	the	description	of	the	lock,	available	to	other	applications
attempting	to	obtain	a	lock.

Remarks
It	is	sometimes	possible	for	an	application	to	request	an	additional	lock	on	an
already	locked	object.	For	example,	other	applications	can	request	and	receive
an	olapLockRead	lock	on	an	object	already	locked	using	the	olapLockProcess
lock.

Example
The	following	example	updates	an	existing	mining	model	and	saves	it.	It	then
locks	the	model	with	an	informational	message	and	processes	the	model.	After
processing	is	complete,	the	model	is	unlocked.

dsoDmm.LastUpdated	=	Now
dsoDmm.Update

dsoDmm.LockObject	olapLockProcess,	"Processing	the	mining	model	in	check-in	test."
dsoDmm.Process	processFull
dsoDmm.UnlockObject

See	Also

clsMiningModel

LockObject

Analysis	Services	Programming

Process	(clsMiningModel)
The	Process	method	of	an	object	of	ClassType	clsMiningModel	creates	and
trains	a	mining	model	on	the	Analysis	server.

Syntax
object.Process([ByVal	Options	As	ProcessTypes])

object

The	mining	model	object	to	process.

Options

One	of	the	constants	in	the	ProcessTypes	enumeration.	For	more
information,	see	ProcessTypes.

The	following	ProcessTypes	values	are	valid	for	processing	a	mining	model.

Option Description
processFull Creates,	updates,	and	trains	the	mining	model	on

the	Analysis	server
processRefreshData Retrains	a	mining	model	on	the	Analysis	server

Remarks
If	you	set	a	value	for	the	TrainingQuery	property,	the	value	is	used	to	train	the
mining	model.	If	you	do	not	set	a	value	for	TrainingQuery,	the	SHAPE	query
used	to	train	the	mining	model	is	generated	from	the	Columns	collection	of	the
model.

Example
The	following	example	updates	an	existing	mining	model	and	saves	it.	It	then
locks	the	model	with	an	informational	message	and	processes	the	model.	After
processing	the	model	is	complete	it	unlocks	the	model.

dsoDmm.LastUpdated	=	Now
dsoDmm.Update
dsoDmm.LockObject	olapLockProcess,	"Processing	the	mining	model	in	checkin	test."
dsoDmm.Process	processFull
dsoDmm.UnlockObject

See	Also

clsColumn

clsMiningModel

ProcessTypes

TrainingQuery

Analysis	Services	Programming

UnlockObject	(clsMiningModel)
The	UnlockObject	method	of	an	object	of	ClassType	clsMiningModel	releases
a	lock	on	a	mining	model	object	previously	established	by	the	LockObject
method.

Syntax
object.UnlockObject

object

The	mining	model	object	to	unlock.

Remarks
If	the	UnlockObject	method	is	called	without	first	calling	the	LockObject
method,	an	error	is	raised.

See	Also

clsMiningModel

Analysis	Services	Programming

Update	(clsMiningModel)
The	Update	method	of	an	object	of	ClassType	clsMiningModel	saves	the
mining	model	along	with	its	Columns	collection	to	the	repository.

Syntax
object.Update

object

The	mining	model	object	to	update.

Remarks
For	mining	models	of	SubClassType	sbclsOlap,	the	Update	method	checks	to
see	whether	the	Columns	collection	is	empty.	If	it	is,	the	method	automatically
populates	the	Columns	collection	based	on	the	structure	of	the	source	cube
before	saving	to	the	repository.

By	default,	only	the	Column	object	that	corresponds	to	the	CaseLevel	property
of	the	mining	model	is	enabled;	the	CaseLevel	is	the	same	as	the	level	object
from	the	SourceCube	of	the	mining	model,	and	it	provides	the	cases	for	the
model.	Users	can	then	select	and	enable	other	columns	by	setting	the	IsDisabled
property	of	the	Column	objects	to	False.

Examples

Creating	an	OLAP	Mining	Model
The	following	example	creates	an	OLAP	mining	model	without	explicitly
assigning	any	columns	to	the	model.	The	Update	method	then	automatically
builds	the	structure	of	the	Columns	collection	based	upon	the	source	cube's
architecture	and	sets	their	IsDisabled	properties	to	True.	The	example	then
enables	some	of	the	columns	and	makes	the	UnitSales	column	predictable.

Public	Sub	CreateOlapMiningModel_2()

'--
'	Declarations	-	Identify	all	of	the	variables	that	will	be	needed	to
'	create	the	data	mining	model.
'--
				Dim	dsoSvr	As	New	DSO.Server
				Dim	dsoDmm	As	DSO.MiningModel
				Dim	dsoColumn	As	DSO.Column
				Dim	dsoRole	As	DSO.Role
				Dim	dsoNestedCol	As	DSO.Column

'--
'	Before	the	model	is	created,	check	for	a	previous	incarnation	of	it.
'	If	it	exists,	delete	it.	Then	create	a	new	one.
'	Give	the	new	model	a	new	data	source,	and	give	it	a	role.
'	Then	describe	the	model	for	browsing	of	the	schema,	and	declare	the
'	algorithm	that	will	be	used	to	predict	with.
'	Lastly,	set	up	the	OLAP	properties	that	will	be	needed	by	the	model.
'--
				dsoSvr.Connect	"LocalHost"
				Set	dsoDb	=	dsoSvr.MDStores("Foodmart	2000")
				
				If	Not	dsoDb.MiningModels("CustSales_Olap2")	Is	Nothing	Then
								dsoDb.MiningModels.Remove	"CustSales_Olap2"
				End	If
				
				Set	dsoDmm	=	dsoDb.MiningModels.AddNew("CustSales_Olap2",	sbclsOlap)
				

				'Create	a	new	mining	model	role	called	All	Users.
				Set	dsoRole	=	dsoDmm.Roles.AddNew("All	Users")

				

				dsoDmm.Description	=	"Analyzes	the	purchasing	behavior	of	customers"
				dsoDmm.MiningAlgorithm	=	"Microsoft_Decision_Trees"
				dsoDmm.SourceCube	=	"Sales"
				dsoDmm.CaseDimension	=	"Customers"
				dsoDmm.CaseLevel	=	"Name"
				dsoDmm.TrainingQuery	=	""	'Let	DSO	figure	out	the	training	query.
				
'--
'	In	the	next	step,	the	Update	method	checks	to	see	whether	there	are	any
'	columns	in	the	columns	collection.	In	this	case,	because	there	aren't
'	any,	the	update	method	will	automatically	add	columns	based	on	the
'	structure	of	the	Sales	cube.
'--
				dsoDmm.Update	'Let	DSO	automatically	populate	the	Columns	collection.
				
				'Enable	the	Products	dimension.
				'Set	dsoColumn	=	dsoDmm.Columns("Products")
				'dsoColumn.IsDisabled	=	False

				'Make	the	Unit	Sales	measure	predictable.
				Set	dsoColumn	=	dsoDmm.Columns("Unit	Sales")
				'Enable	the	column.
				dsoColumn.IsDisabled	=	False
				'Make	the	column	predictable.
				dsoColumn.IsPredictable	=	True

				'	Set	the	last	updated	date	to	today's	date.
				dsoDmm.LastUpdated	=	Now
				'	Save	the	model's	meta	data.
				dsoDmm.Update
'--
'	Lock	the	cube,	process	it,	and	then	unlock	it.
'	Note:	During	processing	a	number	of	events	will	be	fired.	These	events

'	are	trapped	by	the	database	object's	ReportAfter,	Report	Before,
'	ReportProgress,	and	ReportError	events.
'--
				'Because	the	model	is	about	to	be	processed,	it	must	be	locked.
				dsoDmm.LockObject	olapLockProcess,	"Processing	the	data	mining	model	in	sample	code"
				'Process	the	model.
				dsoDmm.Process	processFull
				'Unlock	the	model.
				dsoDmm.UnlockObject
End	Sub

See	Also

CaseLevel

clsColumn

clsMiningModel

IsDisabled

Level	Interface

SourceCube

Analysis	Services	Programming

ValidateStructure	(clsMiningModel)
The	ValidateStructure	method	of	an	object	of	ClassType	clsMiningModel
validates	the	structure	of	the	object,	raising	an	error	if	an	invalid	structure
element	is	encountered.

Syntax
object.ValidateStructure

object

The	mining	model	object	whose	structure	is	to	be	validated.

Remarks
The	ValidateStructure	method	ensures	that	the	following	requirements	are	met
for	all	data	mining	models:

The	MiningAlgorithm	property	contains	the	name	of	a	valid	data
mining	algorithm.

At	least	one	column	exists	in	the	Columns	collection.	A	column	is	an
object	with	a	ClassType	of	clsColumn.	

At	least	one	column	in	the	Columns	collection	must	be	enabled.

All	columns	in	the	Columns	collection	must	be	valid.

For	clsMiningModel	objects	with	a	SubClassType	of	sbclsRelational,	the
following	additional	requirement	must	be	met:

The	FromClause	property	must	not	be	empty.

For	clsMiningModel	objects	with	a	SubClassType	of	sbclsOlap,	the	following
additional	requirements	must	be	met:

The	SourceCube	property	must	contain	the	name	of	a	valid	cube	in	the
same	database	as	the	OLAP	mining	model.

The	cube	named	in	the	SourceCube	property	must	be	visible	and
cannot	contain	data	mining	dimensions.

The	CaseDimension	property	must	contain	the	name	of	a	valid
dimension	in	the	same	database	as	the	OLAP	mining	model.

The	dimension	named	in	the	CaseDimension	property	must	be	visible
and	cannot	be	a	virtual	dimension	created	by	an	earlier	version	of
Microsoft®	SQL	Server™	2000	Analysis	Services.

Example

The	following	example	validates	the	OLAP	data	mining	model	Customer	Pattern
Discovery:

'	Assume	an	object	(dsoDB)	of	ClassType	clsDatabase	exists.
			Dim	dsoDMM	As	DSO.MiningModel
			Set	dsoDMM	=	dsoDB.MiningModels("Customer	Pattern	Discovery")

'	Validate	the	data	mining	model.
			On	Error	Resume	Next
			dsoDMM.ValidateStructure
			If	Err.Number	<>	0	Then	MsgBox	"An	error	occurred	while"	&	_
						"	validating	the	mining	model:"	&	vbCrLf	&	_
						Err.Description

See	Also

clsMiningModel

Analysis	Services	Programming

Properties,	clsMiningModel
An	object	of	ClassType	clsMiningModel	supports	the	following	properties.

Property Description Access
AreKeysUnique Indicates	whether	key	columns	defined	in	the

Columns	collection	uniquely	identify
members	in	the	case	table.

R/W**

CaseDimension Identifies	the	dimension	that	contains	cases
for	the	mining	model.

R/W*

CaseLevel Identifies	the	level	of	the	CaseDimension	that
contains	the	cases	for	the	mining	model.

R*

ClassType Returns	an	enumeration	constant	that
identifies	the	specific	object	type.

R

Description The	description	of	the	mining	model. R/W
Filter Filters	the	case	rows	used	to	train	the	mining

model.
R/W**

FromClause Specifies	the	FROM	clause	of	the	SQL	query
that	returns	the	cases	for	the	mining	model.

R/W**

IsVisible Indicates	whether	the	mining	model	is	visible
to	client	applications.

R/W

JoinClause Specifies	the	JOIN	clause	of	the	SQL	query
that	returns	the	cases	for	the	mining	model.

R/W**

LastProcessed The	date	and	time	when	the	mining	model	was
last	processed.

R

LastUpdated A	user-specified	date.	It	is	not	used	by
Microsoft®	SQL	Server™	2000	Analysis
Services.

R/W

MiningAlgorithm Identifies	the	mining	algorithm	used	by	the
mining	model.

R/W

Name The	name	of	the	mining	model. R/W
Parameters The	string	that	contains	parameter	value

settings	for	the	MiningAlgorithm	property.
R/W

Parent Returns	a	reference	to	the	parent	MDStore
object.

R

SourceCube Returns	a	reference	to	the	cube	used	to	define
a	mining	model.

R/W*

State Indicates	the	status	of	the	mining	model. R
SubClassType Returns	an	enumeration	constant	that

identifies	the	subclass	type.
R

TrainingQuery Identifies	the	query	used	for	training	the
mining	model.

R/W

XML Returns	the	Extensible	Markup	Language
(XML)	representation	of	a	trained	mining
model.

R

*	This	property	applies	only	to	mining	models	of	SubClassType	sbclsOlap.
**	This	property	applies	only	to	mining	models	of	SubClassType	sbclsRelational.

Analysis	Services	Programming

AreKeysUnique	(clsMiningModel)
The	AreKeysUnique	property	of	a	clsMiningModel	object	indicates	whether
key	columns	(that	is,	a	clsColumn	object	with	an	IsKey	property	set	to	True)
defined	in	the	Columns	collection	uniquely	identify	members	in	the	case	table.

Note		This	property	applies	only	to	mining	model	objects	of	SubClassType
sbclsRelational.

Data	Type
Boolean

Access
Read/write

Remarks
The	AreKeysUnique	property	determines	whether	the	relational	mining	model
adds	the	DISTINCT	keyword	to	the	SQL	SELECT	query	used	to	retrieve	the
training	data	set	from	the	case	tables.	If	the	values	for	the	key	columns	identified
in	the	data	mining	model	are	unique	in	the	case	tables,	setting	this	property	to
True	can	improve	performance	when	the	relational	data	mining	model	is	trained.

See	Also

clsColumn

Analysis	Services	Programming

CaseDimension	(clsMiningModel)
The	CaseDimension	property	of	an	object	of	ClassType	clsMiningModel
identifies	the	dimension	that	contains	the	cases	for	the	mining	model.	This
property	applies	only	to	mining	models	of	SubClassType	sbclsOlap.

Data	Type
String

Access
Read/write

Remarks
The	CaseDimension	property	must	be	set	to	a	visible	shared	or	private
dimension	used	by	the	source	cube	(that	is,	an	object	of	ClassType
clsDatabaseDimension	or	clsCubeDimension	whose	IsVisible	property	is	set
to	True).	If	the	IsVisible	property	of	the	shared	or	private	dimension	is	set	to
False,	or	if	the	dimension	is	not	used	by	the	source	cube	specified	in	the
SourceCube	property,	an	error	is	raised.

Examples

Building	an	OLAP	Mining	Model
The	following	example	builds	an	OLAP	data	mining	model	and	sets	its	case
dimension	to	Customers:

dsoDmm.Description	=	"Analyzes	the	purchasing	behavior	of	customers"
dsoDmm.MiningAlgorithm	=	"Microsoft_Decision_Trees"
dsoDmm.SourceCube	=	"Sales"
dsoDmm.CaseDimension	=	"Customers"
dsoDmm.TrainingQuery	=	""	'Let	DSO	figure	out	the	training	query.

See	Also

clsMiningModel

SourceCube

Analysis	Services	Programming

CaseLevel	(clsMiningModel)
The	CaseLevel	property	of	an	object	of	ClassType	clsMiningModel	identifies
the	level	of	the	CaseDimension	that	contains	the	cases	for	the	mining	model.
This	property	applies	only	to	mining	models	of	SubClassType	sbclsOlap.

Data	Type
String

Access
Read-only

Remarks
The	value	of	the	CaseLevel	property	represents	the	name	of	the	lowest	enabled
and	visible	level	of	the	dimension	specified	in	the	CaseDimension	property.

Example
The	following	example	builds	an	OLAP	data	mining	model	and	sets	its	case
dimension	to	Customers.	The	lowest	enabled	and	visible	level	in	the	Customers
dimension	is	Name,	so	the	CaseLevel	property	is	set	to	the	Name	level.

dsoDmm.Description	=	"Analyzes	the	purchasing	behavior	of	customers"
dsoDmm.MiningAlgorithm	=	"Microsoft_Decision_Trees"
dsoDmm.SourceCube	=	"Sales"
dsoDmm.CaseDimension	=	"Customers"
'	Save	the	changes	to	the	data	mining	model.	This	also	populates
'	the	Columns	collection	and	sets	the	CaseLevel	property.
dsoDmm.Update
'	The	dsoDmm.CaseLevel	property	should	have	a	value	of	"Name",
'	the	lowest	enabled	level	of	the	Customers	dimension.
Debug.Print	dsoDmm.CaseLevel

See	Also

clsMiningModel

Analysis	Services	Programming

ClassType	(clsMiningModel)
The	ClassType	property	of	an	object	of	ClassType	clsMiningModel	returns	an
enumeration	constant	that	identifies	the	specific	class	type.

Data	Type
ClassTypes

Access
Read-only

Remarks
The	ClassType	property	always	returns	clsMiningModel	for	this	object.	To
distinguish	between	relational	and	OLAP	data	mining	models,	use	the
SubClassType	property.

See	Also

clsMiningModel

SubClassType	(clsMiningModel)

Analysis	Services	Programming

Description	(clsMiningModel)
The	Description	property	of	an	object	of	ClassType	clsMiningModel	sets	or
returns	the	description	of	the	mining	model.	This	property	is	used	only	by
Decision	Support	Objects	(DSO)	and	is	not	accessible	by	client	applications.

Data	Type
String

Access
Read/write

Example
Use	the	following	code	to	set	the	Description	property	for	a	mining	model
object:

'	Assume	an	object	(dsoDMM)	of	ClassType	clsMiningModel	exists.
dsoDMM.Description	=	"1999	Sales	Patterns"

See	Also

clsMiningModel

Analysis	Services	Programming

Filter	(clsMiningModel)
The	filter	property	is	an	SQL	filter	expression	that	is	used	to	restrict	the	cases
that	are	used	by	mining	model	objects.

Data	Type
String

Access
Read/Write

Remarks
This	pass-through	filter	condition	is	applied	to	the	SQL	query	that	returns	the
cases	for	the	mining	model	object.

This	property	applies	only	to	objects	with	a	ClassType	of	clsMiningModel	and
a	SubClassType	of	sbclsRelational.

Example
The	following	filter	restricts	the	cases	to	customers	involved	in	the	first	million
transactions:

"sales_fact_1997.transaction_id	<=	1000000"

See	Also

clsMiningModel

Analysis	Services	Programming

FromClause	(clsMiningModel)
The	FromClause	property	of	an	object	of	ClassType	clsMiningModel	specifies
the	FROM	clause	of	the	SQL	pass-through	query	that	is	used	when	training	the
mining	model.	This	property	applies	only	to	mining	models	of	SubClassType
sbclsRelational.

Data	Type
String

Access
Read/Write

Remarks
The	FromClause	property	contains	the	string	used	by	the	data	source	provider
to	construct	a	FROM	clause	for	the	SQL	pass-through	query	that	is	used	to
return	the	training	data	set	for	the	mining	model.

Note		You	must	separate	the	table	and	column	names	with	the	delimiters
appropriate	to	the	source	database.	You	can	use	the	CloseQuoteChar	and
OpenQuoteChar	properties	of	the	DataSource	object	to	determine	the	correct
delimiters.

Example
The	following	code	example	shows	the	FromClause	property	being	set	use	to
two	tables,	sales_fact_1997	and	customer,	to	provide	training	data:

'	Assume	the	existence	of	a	clsMiningModel	object	named	dsoDMM.
dsoDMM.FromClause	=	"""sales_fact_1997"",	""customer"""

The	previous	code	example	sets	the	FromClause	property	to	the	following
string:

"sales_fact_1997",	"customer"

See	Also

clsMiningModel

Analysis	Services	Programming

IsVisible	(clsMiningModel)
The	IsVisible	property	of	an	object	of	ClassType	clsMiningModel	determines
whether	the	mining	model	is	visible	to	client	applications.

Data	Type
Boolean

Access
Read/write

See	Also

clsMiningModel

Analysis	Services	Programming

JoinClause	(clsMiningModel)
The	JoinClause	property	of	an	object	of	ClassType	clsMiningModel	specifies
the	JOIN	clause	of	the	SQL	query	that	returns	the	cases	for	the	mining	model.
This	property	applies	only	to	mining	models	of	SubClassType	sbclsRelational.

Data	Type
String

Access
Read/write

Remarks
This	property	specifies	the	INNER	JOIN	clause	of	the	SQL	pass-through	query
that	is	used	to	generate	the	training	cases	for	the	mining	model.	Use	this	property
when	the	case	information	is	distributed	in	more	than	one	table.

Note		You	must	separate	the	table	and	column	names	with	the	delimiters
appropriate	to	the	source	database.	You	can	use	the	CloseQuoteChar	and
OpenQuoteChar	properties	of	the	DataSource	object	to	determine	the	correct
delimiters.

Example
In	the	following	code	example,	the	JoinClause	is	used	to	join	the
sales_fact_1997	and	customer	tables:

'	Assume	the	existence	of	a	clsMiningModel	object	named	dsoDMM.
dsoDMM.JoinClause	=	"""sales_fact_1997"".""customer_id""	–	"	&	_
				"""customer"".""customer_id"""

The	previous	code	example	sets	the	JoinClause	property	to	the	following	string:

"sales_fact_1997"."customer_id"	=	"customer"."customer_id".

See	Also

clsMiningModel

Analysis	Services	Programming

LastProcessed	(clsMiningModel)
The	LastProcessed	property	of	an	object	of	ClassType	clsMiningModel
contains	the	date	and	time	the	mining	model	was	last	processed.

Data	Type
Date

Access
Read-only

See	Also

clsMiningModel

Analysis	Services	Programming

LastUpdated	(clsMiningModel)
The	LastUpdated	property	of	an	object	of	ClassType	clsMiningModel	is	not
used	by	Microsoft®	SQL	Server™	2000	Analysis	Services.	You	can	set	this	to
any	date/time	value	you	want.	For	example,	you	can	use	it	to	indicate	when	the
source	data	was	last	changed.

The	LastUpdated	property	of	an	object	of	ClassType	clsMiningModel	is	user
controlled	and	not	set	by	Analysis	Services.	That	is,	the	user	controls	the	value
and	context	of	this	property;	the	server	does	not	set	this	value	or	change	it	at	any
time.	This	means	that	you	can	use	it	to	indicate	the	date	when	the	data	in	a
source	was	last	changed,	or	the	last	time	the	mining	model	was	accessed.

Data	Type
String

Access
Read/write

Remarks
The	LastUpdated	property	is	not	automatically	set	by	any	method	in	the
Decision	Support	Objects	(DSO)	object	model.	It	is	provided	as	a	means	for
client	applications	to	specify	a	date	or	time	that	represents	the	validity	of
information.	For	example,	a	date	of	12/31/1997	may	mean	that	the	information
stored	in	a	data	mining	model	is	not	valid	after	December	1997.

See	Also

clsMiningModel

Analysis	Services	Programming

MiningAlgorithm	(clsMiningModel)
The	MiningAlgorithm	property	of	an	object	of	ClassType	clsMiningModel
identifies	the	mining	algorithm	used	by	the	mining	model.	Only	algorithms	listed
in	the	MINING_SERVICES	schema	rowset	can	be	used.

Data	Type
String

Access
Read/write

Remarks
By	default,	Microsoft®	SQL	Server™	2000	Analysis	Services	supports	two
algorithms,	Microsoft_Clustering	and	Microsoft_Decision_Trees.	Because	the
list	of	mining	algorithms	may	vary	dynamically,	the	MiningAlgorithm	property
is	a	string	and	not	an	enumeration.

See	Also

clsMiningModel

Data	Mining	Schema	Rowsets

Analysis	Services	Programming

Name	(clsMiningModel)
The	Name	property	of	an	object	of	ClassType	clsMiningModel	contains	the
name	of	the	mining	model.

Data	Type
String

Access
Read/write	(read-only	after	object	is	named)

Example
Use	the	following	code	to	return	the	name	of	a	mining	model:

'	Assume	an	object	(dsoDMM)	of	ClassType	clsMiningModel	exists.
Dim	strName	As	String
strName	=	dsoDMM.Name

See	Also

clsMiningModel

Analysis	Services	Programming

Parameters	(clsMiningModel)
The	Parameters	property	of	an	object	of	ClassType	clsMiningModel	stores
parameter	value	settings	for	the	algorithm	specified	in	the	MiningAlgorithm
property	of	the	mining	model.	Parameters	can	be	combined	within	a	string	by
separating	each	one	with	a	semicolon.

Data	Type
String

Access
Read/write

Remarks
Settings	for	the	Parameters	property	must	conform	to	the	parameters	specified
in	the	SERVICE_PARAMETERS	schema	rowset.	Decision	Support	Objects
(DSO)	does	not	validate	the	settings	used	in	the	property	string.	Therefore,	the
string	is	appended	without	validation	to	the	CREATE	MINING	MODEL	(for
relational	data	mining	models)	or	CREATE	OLAP	MINING	MODEL	(for	OLAP
data	mining	models)	statement	used	to	create	the	data	mining	model.	The
Analysis	server,	on	the	other	hand,	checks	for	valid	parameter	settings	and
returns	errors	as	appropriate.

Example
The	following	example	sets	the	parameters	for	a	data	mining	algorithm.

'	Assume	an	object	(dsoDMM)	of	ClassType	clsMiningModel	and	
'	SubClassType	sbclsRelational	exists.
'	Set	the	MiningAlgorithm	property	to	use	Microsoft	Decision	Trees.
dsoDMM.MiningAlgorithm	=	"Microsoft	Decision	Trees"

'	This	algorithm	supports	the	MINIMUM_LEAF_CASES	mining	parameter.
dsoDMM.Parameters	=	"MINIMUM_LEAF_CASES=15"

See	Also

clsMiningModel

Data	Mining	Schema	Rowsets

Analysis	Services	Programming

Parent	(clsMiningModel)
The	Parent	property	of	an	object	of	ClassType	clsMiningModel	contains	a
reference	to	the	parent	database	object	of	the	mining	model.

Data	Type
MDStore

Access
Read-only

Example
The	following	example	will	print	the	string	"mining	model	is	owned	by
database",	where	mining	model	is	the	name	of	the	mining	model	and	database	is
the	name	of	the	database	that	owns	the	mining	model:

'	Assume	the	existence	of	a	mining	model	object	called	dsoDMM.
Debug.Print	dsoDMM.Name	&	"	is	owned	by	"	&	dsoDMM.Parent.Name

See	Also

clsMiningModel

Analysis	Services	Programming

SourceCube	(clsMiningModel)
The	SourceCube	property	of	an	object	of	ClassType	clsMiningModel	specifies
the	cube	that	provides	the	source	data	for	the	mining	model.	This	property
applies	only	to	mining	models	of	SubClassType	sbclsOlap.

Data	Type
String

Access
Read/write

Remarks
The	source	cube	of	a	mining	model	must	reside	in	the	same	database	as	the
mining	model	itself.The	specified	source	cube	must	be	visible	(that	is,	the
IsVisible	property	of	the	clsCube	object	must	be	set	to	True).	If	the	IsVisible
property	of	the	source	cube	is	set	to	False,	an	error	is	raised.

Note		A	mining	model	cannot	use	a	virtual	cube	which	already	contains	a	mining
dimension	as	a	source	cube.

Example
The	following	example	specifies	the	City	level	of	the	Customer	dimension	be
used	to	generate	training	cases	for	the	mining	model	from	the	Sales	cube.

'	Assume	the	existence	of	a	mining	model	object	named	dsoDMM.
dsoDMM.SourceCube	=	"Sales"
dsoDMM.CaseDimension	=	"Customer"

See	Also

clsMiningModel

Analysis	Services	Programming

State	(clsMiningModel)
The	State	property	of	an	object	of	ClassType	clsMiningModel	returns	an
enumeration	constant	that	indicates	the	processing	state	of	the	object	on	the
server.

Data	Type
OlapStateTypes

Access
Read-only

Remarks
The	supported	OlapStateTypes	enumeration	constants	for	the	State	property
are:

olapStateNeverProcessed

olapStateCurrent

olapStateStructureChanged

When	a	mining	model	is	first	created,	the	value	for	the	State	property	is
olapStateNeverProcessed.	After	processing,	the	value	becomes
olapStateCurrent.	If	structural	changes	are	made	to	the	Columns	collection	of
the	model	after	processing,	the	value	becomes	olapStateStructureChanged.	If
source	mapping	changes	are	made	to	the	Columns	collection	after	processing
(that	is,	if	changes	are	made	to	the	clsColumn	SourceTable	or	SourceColumn
properties),	the	value	becomes	olapStateSourceMappingChanged.

See	Also

clsMiningModel

Analysis	Services	Programming

SubClassType	(clsMiningModel)
The	SubClassType	property	of	an	object	of	ClassType	clsMiningModel	returns
an	enumeration	constant	identifying	the	specific	subclass	type.

Data	Type
SubClassTypes

Access
Read-only

Remarks
Objects	of	ClassType	clsMiningModel	can	have	a	SubClassType	property
value	of	sbclsRegular,	sbclsOlap,	or	sbclsRelational.	A	mining	model	has	a
SubClassType	value	of	sbclsRelational	if	it	is	defined	on	one	or	more	relational
tables.	If	the	mining	model	is	defined	on	a	cube	residing	in	the	same
clsDatabase	object,	the	SubClassType	value	is	sbclsOlap.	The	sbclsRelational
constant	is	equivalent	to	the	sbclsRegular	value	and	is	provided	for	convenience
and	readability	in	source	code.

Example
The	following	example	prints	the	types	of	each	data	mining	model	in	the
FoodMart	2000	database:

'	Assume	the	existance	of	a	server	object,	s,	that	has	been	connected	to	a	server.
Dim	db	as	DSO.DB	'	declare	an	interface	for	the	database.
Dim	dmm	as	DSO.MiningModel
Dim	sDmmType	as	String	'	Description	of	each	enumeration	value.
set	db	=	s.MDStores("FoodMart")
For	each	dmm	in	db.MiningModels
				Select	Case	dmm.subclasstype

								Case	sbclsOlap
												sDmmType	=	"sbclsOlap"
								Case	sbclsRelational
												sDmmType	=	"sbclsRelational"
								Case	else
												sDmmType	=	"Unknown	subclass	type!"
				End	Select
				debug.print	dmm.name	&	"	is	type	"	&	sDmmType
Next

See	Also

clsMiningModel

Analysis	Services	Programming

TrainingQuery	(clsMiningModel)
The	TrainingQuery	property	of	an	object	of	ClassType	clsMiningModel
identifies	the	SQL	INSERT	statement	used	to	train	the	mining	model.

Data	Type
String

Access
Read/write

Remarks
If	the	TrainingQuery	property	is	not	set,	the	SQL	INSERT	statement	for	this
property	is	automatically	created	by	Decision	Support	Objects	(DSO)	based	on
the	Columns	collection	of	the	mining	model.	TrainingQuery	property	values
are	not	validated	beforehand;	they	are	sent	directly	to	the	Analysis	server	for
training	the	mining	model.

See	Also

clsMiningModel

Analysis	Services	Programming

XML	(clsMiningModel)
The	XML	property	of	an	object	of	ClassType	clsMiningModel	returns	the
Extensible	Markup	Language	(XML)	representation	of	the	data	mining	model.

Data	Type
String

Access
Read-only

Remarks
The	XML	property	only	returns	the	XML	representation	of	a	data	mining	model
if	the	data	mining	model	has	been	trained.	If	the	model	has	not	been	trained
using	the	Process	method,	this	property	returns	an	empty	string.

See	Also

clsMiningModel

Analysis	Services	Programming

clsMiningModelRole
An	object	of	the	ClassType	clsMiningModelRole	provides	a	specific
implementation	of	the	Decision	Support	Objects	(DSO)	Role	interface	for	data
mining	models.	This	object	provides	collections,	methods,	and	properties
through	the	Role	interface.

You	use	objects	of	ClassType	clsMiningModelRole	to	manage	the	set	of	users
who	can	access	a	mining	model	and	the	manner	in	which	they	can	access	it.	A
mining	model	role	has	a	name,	a	description,	a	parent	object,	a	class	type,	a	list
of	users,	and	a	set	of	permissions.	Each	permission	has	a	key	and	a
corresponding	permission	expression.

You	create	roles	at	the	database	level	(database	roles)	and	then	assign	them	to
mining	models	(mining	model	roles)	by	adding	them	to	the	collection	of	roles
associated	with	the	mining	model.

You	can	remove	a	database	role	by	removing	it	from	the	database's	collection	of
role	objects.	When	you	do	so,	the	system	automatically	removes	the
corresponding	mining	model	roles	from	the	mining	model's	collection	of	role
objects.

You	can	remove	a	mining	model	role	by	removing	it	from	the	mining	model's
collection	of	role	objects.	When	you	do	so,	the	corresponding	database	role	is
not	affected.	However,	the	definition	of	the	mining	model	role	remains	in	effect
until	you	update	or	process	the	cube.

Examples

Using	clsMiningModelRole

If	dsoDb.DataSources("DMTest")	Is	Nothing	Then
				Set	dsoDs	=	dsoDb.DataSources.AddNew("DMTest")
				dsoDs.ConnectionString	=	"provider=Microsoft.Jet.OLEDB.4.0;data	source=d:dmtest2.mdb"
				dsoDs.Update
End	If

'Create	a	new	mining	model	role.
If	dsoDb.Roles("DMDev")	Is	Nothing	Then
				Set	dsoRole	=	dsoDb.Roles.AddNew("DMDev")
				dsoRole.UsersList	=	"DOMAIN\SomeUser"
				dsoRole.Update
End	If

'Check	to	see	whether	the	mining	model	exists.
If	Not	dsoDb.MiningModels("CustSalesRel")	Is	Nothing	Then
				'Delete	it	if	it	does.
				dsoDb.MiningModels.Remove	"CustSalesRel"
End	If
'Now	create	the	model	afresh.
Set	dsoDmm	=	dsoDb.MiningModels.AddNew("CustSalesRel")
'Add	a	new	datasource	for	the	model
dsoDmm.DataSources.AddNew	"DMTest"
'Add	a	data	mining	role	to	the	new	mining	model.
Set	dsoRole	=	dsoDmm.Roles.AddNew("DMDev")

See	Also

Collections,	clsMiningModelRole

Methods,	clsMiningModelRole

Properties,	clsMiningModelRole

Role	Interface

Security

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Collections,	clsMiningModelRole
An	object	of	ClassType	clsMiningModelRole	implements	the	following
collections	of	the	Role	interface.

Collection Description
Commands The	collection	of	commands	for	the	role
CustomProperties The	collection	of	user-defined	properties

See	Also

clsMiningModelRole

Role	Interface

Analysis	Services	Programming

Methods,	clsMiningModelRole
An	object	of	ClassType	clsMiningModelRole	implements	the	following
method	of	the	Role	interface.

Method Description
SetPermissions Sets	the	permissions	for	the	cube	role	for	a	given

key

See	Also

clsMiningModelRole

Role	Interface

Analysis	Services	Programming

Properties,	clsMiningModelRole
An	object	of	ClassType	clsMiningModelRole	implements	the	following
properties	of	the	Role	interface.

Property Description
ClassType Returns	an	enumeration	constant	that	identifies

the	specific	object	type
Description The	description	of	the	mining	model	role
IsValid Indicates	whether	the	role	structure	is	valid
Name The	name	of	the	mining	model	role
Parent Returns	a	reference	to	the	parent	object,	using	the

MDStore	interface	of	the	parent	object
ParentObject Returns	a	reference	to	the	parent	object,	using	the

default	interface	of	the	parent	object
Permissions The	permissions	for	the	mining	model	role	for	a

given	key
SubClassType Returns	an	enumeration	constant	that	identifies

the	subclass	type	of	the	object
UsersList A	semicolon-delimited	list	of	users	of	the	mining

model	role

See	Also

clsMiningModelRole

Role	Interface

Analysis	Services	Programming

clsPartition
An	object	of	ClassType	clsPartition	serves	as	a	data	store	for	multidimensional
cubes.	It	provides	an	implementation	of	the	Decision	Support	Objects	(DSO)
MDStore	interface	specific	to	partitions.	This	object	provides	collections,
methods,	and	properties	through	the	MDStore	interface.

For	more	information	about	partitions,	see	Partitions.

Example
Use	the	following	code	to	create	an	object	of	ClassType	clsPartition:

'Assume	an	object	(dsoCube)	of	ClassType	clsCube	exists
Dim	dsoPartition	As	DSO.MDStore
Set	dsoPartition	=	dsoCube.MDStores.AddNew("MyPartition")

See	Also

MDStore	Interface

Collections,	clsPartition

Methods,	clsPartition

Properties,	clsPartition

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Collections,	clsPartition
An	object	of	ClassType	clsPartition	implements	the	following	collections	of	the
MDStore	interface.

Collection Description
CustomProperties The	collection	of	user-defined	properties	for	the

partition
DataSources The	collection	of	data	source	objects	used	by	the

partition
Dimensions The	collection	of	dimension	objects	defined	in	the

partition
MDStores The	collection	of	aggregation	objects	defined	in

the	partition
Measures The	collection	of	measure	objects	defined	in	the

partition

See	Also

clsPartition

MDStore	Interface

Analysis	Services	Programming

Methods,	clsPartition
An	object	of	ClassType	clsPartition	implements	the	following	methods	of	the
MDStore	interface.

Method Description
Clone Copies	the	property	values	(and	optionally)	the

collections	of	major	and	minor	objects	from	one
partition	object	to	another

LockObject Locks	an	object	to	prevent	multiple	users	from
concurrently	changing	the	object

Merge Merges	two	partitions
Process Processes	the	partition
UnlockObject Releases	a	lock	previously	established	by	the

LockObject	method
Update Updates	the	partition	definition	in	the	meta	data

repository

See	Also

clsPartition

MDStore	Interface

Analysis	Services	Programming

Properties,	clsPartition
An	object	of	ClassType	clsPartition	implements	the	following	properties	of	the
MDStore	interface.

Property Description
AllowDrillThrough Indicates	whether	drillthrough	is	allowed

on	the	partition.
AggregationPrefix The	aggregation	prefix	for	the	partition

store.
Analyzer The	partition	analyzer	object	for	this

partition.
ClassType Returns	an	enumeration	constant	that

identifies	the	specific	object	type.
DefaultMeasure The	name	of	the	default	measure	for	the

partition.
Description The	description	of	the	partition.
DrillThroughColumns The	list	of	columns	that	are	included	in	a

drillthrough	query.
DrillThroughFilter A	statement	restricting	rows	that	are

returned	by	a	drillthrough	query.
DrillThroughFrom An	SQL	FROM	clause	with	the	names

of	the	tables	used	in	drillthrough	queries.
DrillThroughJoins An	SQL	JOIN	clause	with	the	names	of

the	tables	used	in	drillthrough	queries.
EnableRealTimeUpdates For	relational	OLAP	(ROLAP)

partitions,	indicates	whether	real-time
update	capability	is	enabled	for	the
partition.

EstimatedRows The	estimated	number	of	rows	in	the
partition.

EstimatedSize The	estimated	size	of	all	the	rows	in
bytes.

FromClause Contains	the	SQL	FROM	clause	from
the	list	of	tables	used	to	define	the
partition's	dimensions	and	measures.

IsDefault Indicates	whether	the	partition	is	the
default	partition.

IsTemporary Indicates	whether	the	partition	should	be
stored	in	the	repository.

IsReadWrite Indicates	whether	the	partition	object	is
writable.

IsValid Indicates	whether	the	structure	of	the
partition	is	valid.

JoinClause The	JOIN	clause	(list	of	join	conditions,
separated	by	AND)	for	the	partition.

LastProcessed The	date	and	time	the	partition	was	last
processed.

LastUpdated A	user-specified	date.	It	is	not	used	by
Microsoft®	SQL	Server™	2000
Analysis	Services.

LazyOptimizationProgress Indicates	the	progress	of	lazy
optimization	processing	on	a
multidimensional	OLAP	(MOLAP)
partition.

Name The	name	of	the	partition.
OlapMode Returns	an	enumeration	constant	that

identifies	the	type	of	OLAP	storage
mode.

Parent Returns	a	reference	to	the	parent
MDStore	object.

ProcessingKeyErrorLimit Sets	the	number	of	allowable	errors	that
cause	processing	to	cease.

ProcessingKeyErrorLogFileName The	UNC	path	to	a	file	for	logging
dimension	key	errors	encountered	during
processing.

RemoteServer The	name	of	the	remote	server	where	the
data	for	the	partition	is	stored.

Server Returns	a	reference	to	the	DSO.Server
object.

SourceTable The	name	of	the	fact	table	for	the
partition.

SourceTableAlias The	alias	of	the	source	table	for	the
partition.

SourceTableFilter Contains	the	WHERE	clause	of	the	SQL
statement	used	to	determine	which
source	table	rows	are	to	be	included	in
the	partition.

State Returns	an	enumeration	constant	that
indicates	the	difference	between	the
partition	object	referenced	by	the	client
application	and	corresponding	partition
on	the	Analysis	server.

SubClassType Returns	an	enumeration	constant	that
identifies	the	subclass	type	of	the	object.

See	Also

clsPartition

MDStore	Interface

Analysis	Services	Programming

clsPartitionAnalyzer
In	multidimensional	database	technology,	you	must	balance	precalculated
aggregation	storage	requirements	against	online	query	process	performance.	A
high	percentage	of	aggregations	increases	query	speed	but	requires	more	storage
space.

The	number	of	aggregations	that	must	be	precalculated	and	stored	increases
proportionally	to	the	level	of	query	performance.

A	Decision	Support	Objects	(DSO)	object	of	ClassType	clsPartitionAnalyzer
encapsulates	an	algorithm	that	automatically	designs	a	set	of	aggregations	in	a
partition.	It	analyzes	the	schema	of	a	partition	and	generates	a	collection	of
aggregations	that	improves	query	performance.	You	can	run	the	analysis	without
constraints,	or	you	can	constrain	the	analysis	in	either	of	the	following	ways:

Specify	one	or	more	goal	queries	that	you	want	to	optimize.

Include	existing	aggregations	or	aggregations	that	should	be	preserved
before	the	analysis	is	run.

To	analyze	a	partition	using	DSO,	follow	these	steps:

1.	 Initialize	the	analysis	session	using	the	InitializeDesign	method.

2.	 Add	one	or	more	goal	queries	using	the	AddGoalQuery	and
PrepareGoalQueries	methods.	The	resulting	members	of	the
DesignedAggregations	collection	will	be	optimized	for	this	set	of	goal
queries.	If	no	goal	queries	are	specified,	the	analysis	will	yield	a
generalized	optimization.

3.	 Add	one	or	more	existing	aggregations	using	the
AddExistingAggregation	method.

4.	 Perform	an	initial	analysis	using	the	NextAnalysisStep	method.

The	analysis	generates	new	aggregations	that	are	added	to	the
DesignedAggregations	collection.	It	also	returns	the	calculated
percentage	performance	gain,	aggregation	storage	requirements,	and
total	number	of	aggregations	created.

5.	 Review	the	results	of	the	analysis	step	and	determine	whether	you
want	to	perform	another	analysis	iteration.	Running	subsequent
analysis	steps	adds	new	aggregations	to	the	DesignedAggregations
collection	and	recalculates	the	percentage	performance	gain,
aggregation	storage	requirements,	and	total	number	of	aggregations
created.	

6.	 Manually	or	programmatically	determine	the	point	at	which	you	want
to	conclude	the	analysis.

7.	 Optionally,	when	the	partition	analyzer	is	finished	running,	replace	the
aggregations	of	the	partition	with	the	members	of	the
DesignedAggregations	collection.

8.	 Close	the	analysis	with	the	CloseAggregationsAnalysis	method.

An	object	of	ClassType	clsPartitionAnalyzer	provides	collections,	methods,
and	properties	through	its	own	internal	interface.

Example
This	example	analyzes	the	default	partition	of	a	cube	and	designs	aggregations
that	can	fulfill	20%	of	all	possible	queries	without	having	to	access	the	fact
table:

'			CreateAggregations	-	design	aggregations	for	the	cube.
'
Public	Sub	CreateAggregations()
				'	aggregations	are	designed	per	partition
				'	get	the	default	partition	from	the	cube
				'	m_dsoCube	is	a	publicly	declared	variable
				'	of	DSO	ClassType	clsCube
				Dim	dsoPartition	As	DSO.MDStore
				Set	dsoPartition	=	m_dsoCube.MDStores(1)
				
				'	First	set	the	storage	mode	of	the	partition.
				'	This	example	sets	it	to	MOLAP
				'	(facts	and	aggregations	are	loaded	into	
				'	multidimensional	structures	on	the	OLAP	server).
				'	olapmodeMolapIndex	is	an	enumerated	constant	indicating
				'	that	the	storage	mode	for	a	partition	is	MOLAP.
				dsoPartition.OlapMode	=	olapmodeMolapIndex
				
				'	Get	the	partition	analyzer.
				Dim	dsoPartitionAnalyzer	As	DSO.PartitionAnalyzer
				Set	dsoPartitionAnalyzer	=	dsoPartition.Analyzer
				
				'	Initialize	the	analyzer.
				dsoPartitionAnalyzer.InitializeDesign
				
				'	Design	aggregations	for	20%	of	queries.

				'	NextAnalysisStep	incrementally	builds	the
				'	optimal	set	of	aggregations.
				'	Tell	the	partition	analyzer	to	stop	designing	
				'	aggregations	when	PercentageBenefit	reaches	20.
				Dim	PercentageBenefit	As	Double
				Dim	AccumulatedSize	As	Double
				Dim	AggregationsCount	As	Long
				Do	While	dsoPartitionAnalyzer.NextAnalysisStep(PercentageBenefit,	_
																																																			AccumulatedSize,	_
																																																			AggregationsCount)
								If	PercentageBenefit	>	20#	Then
												Exit	Do
								End	If
				Loop
				
				'	Apply	the	designed	aggregations	to	the	partition.
				Dim	dsoAggregation	As	DSO.MDStore
				For	Each	dsoAggregation	In	dsoPartitionAnalyzer.DesignedAggregations
								dsoPartition.MDStores.Add	dsoAggregation
				Next
				
				'	Close	the	analyzer.
				dsoPartitionAnalyzer.CloseAggregationsAnalysis
				
				'	Save	the	cube	definition	in	the	meta	data	repository.
				On	Error	GoTo	Err_Update
				dsoPartition.Update

Exit	Sub

Err_Update:
				'	Failed	to	persist	the	cube	definition	in	the	meta	data	repository
				'	Possible	reasons:

				'			-	the	meta	data	repository	is	unreachable
				'							you	can	see	where	the	meta	data	repository	resides	by	looking
				'							up	the	following	registry	entry:
				'							HKEY_LOCAL_MACHINE\Software\Microsoft\OLAP	Server\Server
				'							Connection	Info
				'											Repository	Connection	String
				'			-	the	DSO	cube	object	is	being	locked	by	another	DSO	application
				'							It	is	not	possible	for	two	DSO	applications	to	persist	the	
				'							same	object	at	the	same	time.
				'							It	is	not	possible	to	persist	a	DSO	object	because	another	DSO
				'							application	has	explicitly	locked	it.

				MsgBox	"Aggregation	design	for	partition	failed"	&	_
				vbCrLf	&	Err.Description
End	Sub

See	Also

Aggregations

Collections,	clsPartitionAnalyzer

Methods,	clsPartitionAnalyzer

Properties,	clsParitionAnalyzer

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Collections,	clsPartitionAnalyzer
An	object	of	ClassType	clsPartitionAnalyzer	implements	the	following
collection.

Collection Description
DesignedAggregations The	designed	aggregations	generated	by	the

object	of	ClassType	clsPartitionAnalyzer

Access
Read-only

See	Also

clsPartitionAnalyzer

Analysis	Services	Programming

DesignedAggregations	(clsPartitionAnalyzer)
The	DesignedAggregations	collection	of	an	object	of	ClassType
clsPartitionAnalyzer	acts	as	a	temporary	container	for	aggregation	objects
during	the	partition	analyzer	session.	

Data	Type
VBA.Collection

Access
Read-only

Remarks
This	collection	contains	aggregations	(that	is,	objects	of	ClassType
clsAggregation)	that	were	added	manually	using	the	AddExistingAggregation
method	or	were	automatically	generated	using	the	NextAnalysisStep	method.	At
the	conclusion	of	the	partition	analyzer	session	you	can	either	save	the
aggregations	to	the	partition	(and	make	them	available	for	client	applications)	or
discard	them.

Example
Use	the	following	code	to	repeatedly	invoke	the	NextAnalysisStep	method	and
then	save	the	DesignedAggregations	in	a	Microsoft®	Visual	Basic®	collection.
The	analysis	continues	until	one	of	the	following	goals	is	reached:

Twenty	or	more	aggregations	are	designed.

The	storage	requirements	for	the	designed	aggregations	exceed	100,000
bytes.

For	more	information,	see	InitializeDesign.

'Assume	the	existence	of	objects	(dsoPartAnalyzer)	of	ClassType
'clsPartitionAnalyzer	and	(dsoPartition)	of	ClassType	clsPartition.

Private	blnStopAdding					As	Boolean
Private	colDesignedAggs			As	Collection

dsoPartAnalyzer.InitializeDesign

'Iterate	through	analysis	until	either	goal	is	reached.
Do	Until	blnStopAdding		
				If	Not	dsoPartAnalyzer.NextAnalysisStep(dblPercentageBenefit,	_
				dblAccumulatedSize,	lngAggregationsCount)	Then
								blnStopAdding	=	True		'No	New	Aggregations	Designed
				Else
								blnStopAdding	=	(lngAggregationsCount	>=	20)	Or	_
								(dblAccumulatedSize	>=	100000)
				End	If
Loop

'Save	the	designed	aggregations	to	the	partition.
Dim	dsoAggregation	As	DSO.MDStore
For	Each	dsoAggregation	In	dsoPartAnalyzer.DesignedAggregations
				dsoPartition.MDStores.Add	dsoAggregation
Next

See	Also

AddExistingAggregation

clsAggregation

clsPartition

clsPartitionAnalyzer

NextAnalysisStep

Analysis	Services	Programming

Methods,	clsPartitionAnalyzer
An	object	of	ClassType	clsPartitionAnalyzer	implements	the	following
methods.

Method Description
AddExistingAggregation Adds	an	existing	aggregation	to	the

DesignedAggregations	collection
AddGoalquery Adds	a	specific	query	for	the	analyzer	to

optimize
CloseAggregationsAnalysis Closes	the	partition	analyzer	session	and	clears

the	objects	used	during	the	analysis
InitializeDesign Checks	the	partition	structure	to	ensure	that	the

partition	analyzer	can	be	run	and	initializes	the
objects	necessary	to	perform	the	analysis

NextAnalysisStep Adds	new	aggregations	to	the
DesignedAggregations	collection	and
calculates	the	incremental	performance	gain
and	the	additional	aggregation	storage
requirements

PrepareGoalQueries Prepares	the	goal	queries	that	were	entered
using	the	AddGoalQuery	method	for	use	in
this	analysis	session

See	Also

clsPartitionAnalyzer

Analysis	Services	Programming

AddExistingAggregation	(clsPartitionAnalyzer)
The	AddExistingAggregation	method	of	an	object	of	ClassType
clsPartitionAnalyzer	adds	an	aggregation	to	the	DesignedAggregations
collection.	It	examines	the	aggregation	and	returns	the	calculated	percentage
performance	gain,	the	total	size	of	the	aggregation,	and	the	total	number	of
aggregations	in	the	partition	that	result	from	the	inclusion	of	the	aggregation.

Syntax
object.	AddExistingAggregation(ByVal	agg	As	MDStore,	PercentageBenefit
As	Double,	AccumulatedSize	As	Double,	AggregationsCount	As	Long)

object

The	object	of	ClassType	clsPartitionAnalyzer	used	to	perform	the	analysis.

agg

An	MDStore	object,	representing	the	aggregation	to	add.

PercentageBenefit

The	estimated	percentage	performance	improvement	that	would	be	realized
using	the	current	collection	of	DesignedAggregations,	as	opposed	to
querying	against	the	underlying	fact	table.	This	argument	is	used	as	an	output
parameter.

AccumulatedSize

The	estimated	hard	disk	storage	requirements	(in	bytes)	for	the	current
collection	of	DesignedAggregations.	This	argument	is	used	as	an	output
parameter.

AggregationsCount

The	number	of	aggregations	contained	in	the	current	collection	of
DesignedAggregations.	This	argument	is	used	as	an	output	parameter.

Remarks

This	method	allows	you	to	evaluate	the	impact	of	a	particular	aggregation	on
query	performance.	Subsequent	analysis	steps	performed	either	by	adding
another	existing	aggregation	or	by	using	the	NextAnalysisStep	method	include
the	added	aggregation.

Example
Use	the	following	code	to	add	an	aggregation,	named	Agg123,	from	the
MDStores	collection,	which	contains	objects	of	ClassType	clsAggregation	of
an	existing	partition	to	the	DesignedAggregations	collection,	and	then	run
several	analysis	steps.	The	analysis	continues	until	one	of	the	following	two
goals	is	reached:

Twenty	or	more	aggregations	are	designed.

The	storage	requirements	for	the	designed	aggregations	exceed	100,000
bytes.

For	more	information,	see	InitializeDesign.

'Assume	an	object	(dsoCube)	of	ClassType	clsCube	exists
'with	two	partitions	referenced	by	partition	objects
'dsoPart1	and	dsoPart2.
Dim	bStopAdding	As	Boolean
Dim	dblPercentageBenefit			As	Double
Dim	dblAccumulatedSize					As	Double
Dim	lngAggregationsCount			As	Long

'Get	existing	aggregation	"Agg123"	from	first	partition.
Dim	dsoExistAgg	As	DSO.MDStore
Set	dsoExistAgg	=	dsoPart1.MDStores("Agg123")

'Add	aggregation	to	second	partition.
Dim	dsoPartAnalyzer	As	DSO.PartitionAnalyzer
Set	dsoPartAnalyzer	=	dsoPart2.Analyzer
dsoPartAnalyzer.AddExistingAggregation	dsoExistAgg,	_

		dblPercentageBenefit,	dblAccumulatedSize,	lngAggregationsCount

dsoPartAnalyzer.InitializeDesign

'Iterate	through	analysis	until	either	goal	is	reached.
Do	Until	bStopAdding		
				If	Not	dsoPartAnalyzer.NextAnalysisStep(dblPercentageBenefit,	_
				dblAccumulatedSize,	lngAggregationsCount)	Then
								bStopAdding	=	True	'No	New	Aggregations	Designed
				Else
								bStopAdding	=	(lngAggregationsCount	>=	20)	Or	_
								(dblAccumulatedSize	>=	100000)
				End	If
Loop

See	Also

clsAggregation

clsPartition

clsPartitionAnalyzer

DesignedAggregations

NextAnalysisStep

Analysis	Services	Programming

AddGoalQuery	(clsPartitionAnalyzer)
The	AddGoalQuery	method	of	an	object	of	ClassType	clsPartitionAnalyzer
describes	a	specific	aggregation	that	is	to	be	generated	during	a	partition
analyzer	session.

Syntax
object.	AddGoalQuery(ByVal	DatasetName	As	String,	ByVal	Frequency	As
Double)

object

The	object	of	ClassType	clsPartitionAnalyzer	used	to	perform	the	analysis.

DatasetName

A	numeric	string	that	specifies	which	level	from	each	dimension	is	to	be
included	in	the	query.	This	string	must	have	the	same	number	of	characters
as	the	number	of	dimensions	in	the	partition.	For	example,	the	string	"223"
would	refer	to	a	query	involving	three	dimensions,	using	the	second	level
from	the	first	dimension,	the	second	level	from	the	second	dimension,	and
the	third	level	from	the	third	dimension.

Frequency

A	weighting	factor	that	corresponds	to	the	number	of	times	that	an	existing
DatasetName	query	has	previously	been	executed.	If	this	DatasetName	is	a
new	query,	the	value	of	Frequency	that	is	entered	is	used	to	weight	the
partition	analysis.	As	the	frequency	becomes	greater,	the	weight	that	is
placed	on	the	query	during	the	analysis	increases.

Remarks
The	analysis	performed	by	the	partition	analyzer	can	be	constrained	to	optimize
a	particular	subset	of	queries.	Each	of	the	queries	in	this	subset	is	called	a	goal
query	and	is	specified	by	picking	a	level	from	each	of	the	dimensions	of	the
partition.	This	method	adds	the	goal	query	to	an	internal	collection	that	is	used	to

generate	the	aggregations.

Goal	queries	can	be	obtained	from	the	query	log	database	maintained	by	the
Analysis	server.	The	clsCubeAnalyzer	object	can	retrieve	query	log	recordsets
containing	the	dataset	names	of	logged	queries	for	a	specific	cube.	For	more
information	about	query	log	recordsets,	see	OpenQueryLogRecordset
(clsCubeAnalyzer).

You	do	not	have	to	select	goal	queries	before	running	the	NextAnalysisStep
method	to	generate	aggregations.	The	clsPartitionAnalyzer	object	will	create	a
generic	set	of	aggregations	without	guidance.	However,	if	you	do	specify	one	or
more	goal	queries,	the	partition	analyzer	will	create	aggregations	according	to
your	requests	only.

Different	goal	query	subsets	can	be	optimized	with	significantly	different
members	of	the	DesignedAggregations	collection.	The	performance	and	storage
requirements	may	warrant	constructing	separate	partitions	for	each	goal	query
subset.

The	levels	referenced	in	the	DatasetName	string	are	identified	by	matching	each
numeric	value	with	a	dimension.	The	order	of	reference	is	determined	by	the
order	of	levels	in	the	Dimensions	collection	of	the	partition.

Example
Assume	that	a	partition	contains	the	following	dimensions	and	levels.

	
Customers
dimension

Products
dimension

Store	Locations
dimension

Level	#1 All All All
Level	#2 Groups Brand Country
Level	#3 Customer# SKU State
Level	#4 	 	 City

A	particular	group	of	users	needs	to	perform	the	following	queries:

All	customers	(Level	#1)	by	product	SKU	(Level	#3)	by	city	(Level	#4)

This	goal	query	aggregation	is	specified	with	DatasetName	=	"134"

Individual	customers	(Level	#3)	by	all	products	(Level	#1)	by	state

(Level	#3)

DatasetName	=	"313"

Customer	groups	(Level	#2)	by	brand	(Level	#2)	by	country	(Level	#2)

DatasetName	=	"222"

Use	the	following	code	to	add	these	goal	queries.	For	more	information,	see
InitializeDesign.

'	Assume	the	existence	of	an	object	(dsoPartAnalyzer)	of	ClassType
'	clsPartitionAnalyzer.
'	First,	call	InitializeDesign.
dsoPartAnalyzer.InitializeDesign

'	Add	goal	queries.
dsoPartAnalyzer.AddGoalQuery	"134",	1
dsoPartAnalyzer.AddGoalQuery	"313",	1
'	Because	the	following	goal	query	is	executed	more	often	than
'	the	other	two,	a	higher	frequency	value	is	assigned	to	give
'	it	more	weight	when	being	considered	for	aggregation	purposes.
dsoPartAnalyzer.AddGoalQuery	"222",	5

'	Required	after	all	goal	queries	have	been	added.
dsoPartAnalyzer.PrepareGoalQueries

You	can	now	run	a	series	of	NextAnalysisStep	methods	until	you	achieve	the
level	optimization	you	want.

See	Also

clsAggregation

clsPartition

clsPartitionAnalyzer

NextAnalysisStep

clsCubeAnalyzer

Analysis	Services	Programming

CloseAggregationsAnalysis	(clsPartitionAnalyzer)
The	CloseAggregationsAnalysis	method	of	an	object	of	ClassType
clsPartitionAnalyzer	closes	the	partition	analyzer	session	and	clears	the
temporary	objects	used	during	the	analysis.

Syntax
object.	CloseAggregationsAnalysis

object

The	object	of	ClassType	clsPartitionAnalyzer	used	to	perform	the	analysis.

Remarks
This	method	does	not	permanently	save	the	DesignedAggregations	collection	in
the	partition.	It	clears	the	temporary	objects	used	during	the	analysis.	If	you	want
to	save	the	results	from	a	partition	analyzer	session	you	must	do	so
programmatically.	The	sections	in	the	following	example	show	how	to	save	the
results	of	an	analysis	in	the	partition.

Example
Use	the	following	code	to	run	several	analysis	steps,	save	the	results,	and	close
the	analysis.	The	analysis	continues	until	one	of	the	following	goals	is	reached:

Twenty	or	more	aggregations	are	designed.

The	storage	requirements	for	the	designed	aggregations	exceed	100,000
bytes.

For	more	information,	see	InitializeDesign.

'	Assume	the	existence	of	an	object	(dsoPart)	of	ClassType
'	clsPartition	and	an	object	(dsoPartAnalyzer)	of	ClassType
'	clsPartitionAnalyzer.

Private	blnStopAdding						As	Boolean
Dim	dblPercentageBenefit			As	Double
Dim	dblAccumulatedSize					As	Double
Dim	lngAggregationsCount			As	Long

dsoPartAnalyzer.InitializeDesign

'	Iterate	through	analysis	until	either	goal	is	reached.
Do	Until	blnStopAdding		
				If	Not	dsoPartAnalyzer.NextAnalysisStep(dblPercentageBenefit,	_
				dblAccumulatedSize,	lngAggregationsCount)	Then
								blnStopAdding	=	True	'	No	new	aggregations	designed.
				Else
								blnStopAdding	=	(lngAggregationsCount	>=	20)	Or	_
								(dblAccumulatedSize	>=	100000)
				End	If
Loop

'	Delete	existing	aggregations.
Do	While	dsoPart.MDStores.Count
				dsoPart.MDStores.Remove	1
Loop

'	Add	designed	aggregations	to	partition.
For	Each	Agg	In	dsoPartAnalyzer.DesignedAggregations
				dsoPart.MDStores.Add	Agg
Next	Agg

dsoPartAnalyzer.CloseAggregationsAnalysis		'Close	the	analysis.

See	Also

clsAggregation

clsPartition

clsPartitionAnalyzer

Analysis	Services	Programming

InitializeDesign	(clsPartitionAnalyzer)
The	InitializeDesign	method	of	an	object	of	ClassType	clsPartitionAnalyzer
checks	the	partition	structure	to	ensure	that	clsPartitionAnalyzer	can	be	run	on
it	and	initializes	the	objects	necessary	for	performing	the	analysis.

Syntax
object.	InitializeDesign([ByVal	OlapMode])

object

The	object	of	ClassType	clsPartitionAnalyzer	used	to	perform	the	analysis.

OlapMode

An	optional	Variant	value	representing	an	OlapStorageModes	constant.	If
no	value	is	supplied,	the	value	supplied	by	the	AggregationsOLAPMode
property	of	the	parent	object	is	used.

Remarks
The	InitializeDesign	method	does	not	work	on	partitions	associated	with	linked
cubes,	because	no	aggregations	are	allowed	for	linked	cubes.

Example
Use	the	following	code	to	create	an	object	of	ClassType	clsPartitionAnalyzer
and	initialize	its	design.

Note		This	example	will	fail	if	the	first	cube	in	the	server's	collection	is	a	linked
cube,	because	you	cannot	design	aggregations	for	linked	cubes.

Dim	dsoServer									As	DSO.Server
Dim	dsoDB													As	DSO.MDStore
Dim	dsoCube											As	DSO.MDStore
Dim	dsoPart											As	DSO.MDStore
Dim	dsoAgg												As	DSO.MDStore

Dim	dsoPartAnalyzer			As	DSO.PartitionAnalyzer
Dim	strErr												As	String

'	Initialize	server
'	LocalHost	defaults	to	your	Windows	2000	or	Windows	NT	4.0	computer
'	name.
Set	dsoServer	=	New	DSO.Server
dsoServer.Connect("LocalHost")

Set	dsoDB	=	Server.MDStores(1)		'	Get	first	database	on	server.
Debug.Print	"	Database	Opened:	"	&	dsoDB.Name
Set	dsoCube	=	dsoDB.MDStores(1)		'	Get	first	cube	in	database.
Debug.Print	"		Cube	Opened:	"	&	dsoCube.Name
Set	dsoPart	=	dsoCube.MDStores(1)		'	Get	first	partition	in	cube.
Debug.Print	"			Partition	Opened:	"	&	dsoPart.Name
Set	dsoPartAnalyzer	=	dsoPart.Analyzer		'	Instantiate	an	analyzer	object.

dsoPartAnalyzer.InitializeDesign	

See	Also

clsAggregation

clsPartition

clsPartitionAnalyzer

Analysis	Services	Programming

NextAnalysisStep	(clsPartitionAnalyzer)
The	NextAnalysisStep	method	of	an	object	of	ClassType	clsPartitionAnalyzer
adds	a	set	of	aggregations	to	the	DesignedAggregations	collection.	It	calculates
the	improved	query	performance	and	the	storage	requirements	for	the	new
aggregations.

Syntax
bRet	=	object.	NextAnalysisStep(PercentageBenefit	As	Double,
AccumulatedSize	As	Double,	AggregationsCount	As	Long)

bRet

This	value	is	True	if	the	method	completed	successfully,	False	otherwise.

object

The	object	of	ClassType	clsPartitionAnalyzer	used	to	perform	the	analysis.

PercentageBenefit

The	estimated	percentage	performance	improvement	that	would	be	realized
using	the	current	collection	of	DesignedAggregations,	as	opposed	to
querying	against	the	underlying	fact	table.	This	is	an	output	parameter.

AccumulatedSize

The	estimated	hard	disk	storage	requirements	(in	bytes)	for	the	current
collection	of	DesignedAggregations.	This	is	an	output	parameter.

AggregationsCount

The	number	of	aggregations	contained	in	the	current	collection	of
DesignedAggregations.	This	is	an	output	parameter.

Remarks
NextAnalysisStep	analyzes	the	schema	of	a	partition	and	generates	a	collection
of	aggregations	that	improves	query	performance.	You	can	run	the	analysis

without	constraints.	If	no	constraints	are	specified,	the	analysis	yields	a
generalized	optimization.	For	more	information,	see	AddGoalQuery	and
PrepareGoalQueries.

Example
Use	the	following	code	to	run	a	series	of	analyses	until	either	of	the	following
two	goals	is	reached:

Twenty	or	more	aggregations	are	designed.

The	storage	requirements	for	the	designed	aggregations	exceed	100,000
bytes.

For	more	information,	see	CloseAggregationsAnalysis	and	InitializeDesign.

Place	the	following	code	in	your	form's	Declarations	section:

'	Assume	the	existence	of	an	object	(dsoPartAnalyzer)	of	ClassType
'	clsPartitionAnalyzer.
Private	blnStopAdding										As	Boolean
Private	dblPercentageBenefit			As	Double
Private	dblAccumulatedSize					As	Double
Private	lngAggregationsCount			As	Long

'	Iterate	through	analysis	until	either	goal	is	reached.
Do	Until	blnStopAdding		
				If	Not	dsoPartAnalyzer.NextAnalysisStep(dblPercentageBenefit,	_
				dblAccumulatedSize,	lngAggregationsCount)	Then
								blnStopAdding	=	True	'No	new	aggregations	designed.
				Else
								blnStopAdding	=	(lngAggregationsCount	>=	20)	Or	_
								(dblAccumulatedSize	>=	100000)
				End	If
Loop

See	Also

clsPartitionAnalyzer

DesignedAggregations

Analysis	Services	Programming

PrepareGoalQueries	(clsPartitionAnalyzer)
The	PrepareGoalQueries	method	of	an	object	of	ClassType
clsPartitionAnalyzer	analyzes	the	goal	queries	that	were	added	using	the
AddGoalQuery	method.

Syntax
object.	PrepareGoalQueries

object

The	object	of	ClassType	clsPartitionAnalyzer	used	to	perform	the	analysis.

Remarks
If	you	added	any	goal	queries	during	the	partition	analyzer	session,	use	this
method	before	calling	the	NextAnalysisStep	method.

Example
For	more	information	on	examples	using	this	method,	see	AddGoalQuery.

See	Also

clsAggregation

clsPartition

clsPartitionAnalyzer

Analysis	Services	Programming

Properties,	clsPartitionAnalyzer
An	object	of	ClassType	clsPartitionAnalyzer	implements	the	following
properties.

Property Description
AggregationAnalysisInitialized Indicates	whether	the	partition	analyzer	has

been	initialized
Parent Contains	a	reference	to	the	parent	MDStore

(ClassType	clsPartition)	object

Access
Read-only

See	Also

clsPartitionAnalyzer

Analysis	Services	Programming

AggregationAnalysisInitialized	(clsPartitionAnalyzer)
The	AggregationAnalysisInitialized	property	of	an	object	of	ClassType
clsPartitionAnalyzer	indicates	the	status	of	the	last	invocation	of	the
InitializeDesign	method.

Data	Type
Boolean

Access
Read-only

Remarks
The	AggregationAnalysisInitialized	property	returns	True	if	the
InitializeDesign	method	was	called	successfully,	False	otherwise.

Example
Use	the	following	code	to	check	the	initialization	status	of	an	object	of
ClassType	clsPartitionAnalyzer.	For	more	information,	see	InitializeDesign.

'	Assume	the	existence	of	an	object	(dsoPartAnalyzer)	of	ClassType
'	clsPartitionAnalyzer.
If	dsoPartAnalyzer.AggregationAnalysisInitialized	Then
				Debug.Print	"Initialization	OK"
Else
				Debug.Print	"Not	Initialized"
End	If

See	Also

clsAggregation

clsPartition

clsPartitionAnalyzer

InitializeDesign

Analysis	Services	Programming

Parent	(clsPartitionAnalyzer)
The	Parent	property	of	an	object	of	ClassType	clsPartitionAnalyzer	contains	a
reference	to	the	parent	MDStore	(ClassType	clsPartition)	object.

Data	Type
MDStore

Access
Read-only

Example
Use	the	following	code	to	refer	to	the	parent	object	of	the	partition	analyzer.	For
more	information,	see	InitializeDesign.

'	Assume	the	existence	of	an	object	(dsoPartAnalyzer)	of	ClassType
'	clsPartitonAnalyzer.
'	Print	the	name	of	the	clsPartitionAnalyzer's	parent	partition.	
Dim	objParent	As	MDStore
Set	objParent	=	dsoPartAnalyzer.Parent
Debug.Print	objParent.Name

See	Also

clsAggregation

clsPartition

clsPartitionAnalyzer

Analysis	Services	Programming

clsPartitionDimension
An	object	of	ClassType	clsPartitionDimension	is	used	to	maintain	the
dimension	objects	that	a	partition	object	contains.	It	provides	a	specific
implementation	of	the	Decision	Support	Objects	(DSO)	Dimension	interface	for
dimensions	associated	with	a	specific	partition.	An	object	of	ClassType
clsPartitionDimension	object	provides	collections	and	properties	through	the
Dimension	interface.	There	are	no	methods	associated	with	an	object	of
ClassType	clsPartitionDimension.

Remarks
A	partition	cannot	have	fewer	dimensions	than	its	parent	cube.

Example
Use	the	following	code	to	reference	an	object	of	ClassType
clsPartitionDimension:

				'	Assume	an	object	(dsoCube)	of	ClassType	clsCube	exists.
				Dim	dsoPart	As	MDStore
				Dim	dsoPartDim	As	DSO.Dimension

				'	Retrieve	the	default	partition.
Set	dsoPart	=	dsoCube.MDStore(1)						

See	Also

Collections,	clsPartitionDimension

Dimension	Interface

Properties,	clsPartitionDimension

Analysis	Services	Programming

Collections,	clsPartitionDimension
An	object	of	ClassType	clsPartitionDimension	implements	the	following
collections	of	the	Dimension	interface.

Collection Description
CustomProperties The	collection	of	user-defined	properties
Levels The	collection	of	level	objects

See	Also

clsPartitionDimension

Dimension	Interface

Analysis	Services	Programming

Properties,	clsPartitionDimension
An	object	of	ClassType	clsPartitionDimension	implements	the	following
properties	of	the	Dimension	interface.

Property Description
AggregationUsage Specifies	how	aggregations	are	designed	for

a	dimension.
AllowSiblingsWithSameName Indicates	whether	a	dimension	can	contain

members	that	have	the	same	name.
AreMemberKeysUnique Indicates	whether	member	keys	are	unique

for	the	dimension.
AreMemberNamesUnique Indicates	whether	member	names	are	unique

for	the	dimension.
ClassType Returns	an	enumeration	constant	that

identifies	the	specific	object	type.
DataMemberCaptionTemplate Contains	a	template	string	that	is	used	to

create	captions	for	system-generated	data
members.

DataSource Contains	a	reference	to	the	data	source
object.

DefaultMember Defines	the	default	member	of	the
dimension.

DependsOnDimension Names	a	dimension	on	which	the	current
dimension	is	dependent.

Description Contains	the	description	of	the	dimension.
DimensionType Returns	an	enumeration	constant	that

identifies	the	specific	type	of	dimension.
EnableRealTimeUpdates Indicates	whether	real-time	updates	are

enabled	for	the	dimension.
FromClause Contains	the	SQL	FROM	clause	for	a

dimension.
IsChanging Indicates	whether	members	and/or	levels	are

expected	to	change	on	a	regular	basis.
IsReadWrite Indicates	whether	dimension	writebacks	are

available	to	clients	with	appropriate
permissions.

IsShared Indicates	whether	the	dimension	is	shared
among	cubes.

IsTemporary Indicates	whether	the	dimension	is
temporary.

IsValid Indicates	whether	the	dimension	structure	is
valid.

IsVirtual Indicates	whether	the	dimension	is	virtual.
IsVisible Indicates	whether	the	dimension	is	visible	to

the	client.
JoinClause Contains	the	SQL	JOIN	clause	for	a

dimension.
LastProcessed Contains	the	date	and	time	when	the

dimension	was	last	processed.
LastUpdated A	user-specified	date.	It	is	not	used	by	DSO.

This	property	can	be	used	by	client
applications	for	their	own	uses.

MembersWithData Determines	which	members	in	a	dimension
can	have	associated	data	in	the	fact	table.

Name The	name	of	the	dimension.
OrdinalPosition Returns	the	ordinal	position	of	the

dimension	object	within	its	parent	object's
Dimensions	collection.

Parent Returns	a	reference	to	the	parent	MDStore
object.

SourceTable Contains	the	name	of	the	source	table	of	the
dimension.

SourceTableAlias Returns	the	alias	of	the	source	table	for	the
dimension.

SourceTableFilter Restricts	the	members	included	in	a
dimension.

StorageMode Determines	the	method	of	storing

dimension	contents.

SubClassType Returns	an	enumeration	constant	that
identifies	the	subclass	type	of	the	object.

See	Also

clsPartitionDimension

Dimension	Interface

Analysis	Services	Programming

clsPartitionLevel
An	object	of	ClassType	clsPartitionLevel	provides	a	specific	implementation	of
the	Decision	Support	Objects	(DSO)	Level	interface	for	levels	associated	with	a
partition.	It	is	used	to	maintain	the	levels	objects	a	partition	object	contains.

An	object	of	ClassType	clsPartitionLevel	provides	collections	and	properties
through	the	Level	interface.	There	are	no	methods	associated	with	this	object.

Remarks
Levels	describe	the	dimension	hierarchy	from	the	highest	(most	aggregated)
level	to	the	lowest	(most	detailed)	level	of	data.	The	(All)	level	of	a	dimension	is
the	top	level	of	a	dimension,	and	includes	all	the	members	of	all	the	levels.

Example
Use	the	following	code	to	reference	a	clsPartitionLevel	object:

'	Assume	an	object	(dsoPart)	of	ClassType	clsPartition	exists.
Dim	dsoLev	As	DSO.Level
'	Retrieve	the	first	level	associated	with	the	partition.
Set	dsoLev	=	dsoPart.Levels(1)

See	Also

Collections,	clsPartitionLevel

Level	Interface

Levels	and	Members

Properties,	clsPartitionLevel

SliceValue

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Collections,	clsPartitionLevel
An	object	of	ClassType	clsPartitionLevel	implements	the	following	collection
of	the	Level	interface.

Collection Description
CustomProperties The	collection	of	user-defined	properties
MemberProperties The	collection	of	objects	of	ClassType

clsMemberProperty

See	Also

clsPartitionLevel

Level	Interface

Analysis	Services	Programming

Properties,	clsPartitionLevel
An	object	of	ClassType	clsPartitionLevel	implements	the	following	properties
of	the	Level	interface.

Property Description
AreMemberKeysUnique Indicates	whether	the	members	of	a	level

are	uniquely	identified	by	their	member
key	column

AreMemberNamesUnique Indicates	whether	the	members	of	a	level
are	uniquely	identified	by	their	member
name	column

ClassType Returns	an	enumeration	constant	that
identifies	the	specific	object	type

ColumnSize The	size	(in	bytes)	of	the	data	in	the
member	key	column	of	the	level

ColumnType The	data	type	of	the	member	key	column
of	the	level

CustomRollUpColumn Contains	the	name	of	the	column	that
contains	member-specific	rollup
instructions

CustomRollUpExpression Contains	a	Multidimensional	Expressions
(MDX)	expression	used	to	override	the
default	rollup	mode

CustomRollUpPropertiesColumnContains	the	name	of	the	column	that
supplies	cell	properties	for	member-
specific	rollup	instructions

Description Contains	the	level	description
EnableAggregations Specifies	whether	aggregations	are	to	be

enabled	for	the	level	object
EstimatedSize Contains	the	estimated	number	of

members	in	a	level
FromClause Contains	the	SQL	FROM	clause	for	the

level
Grouping Indicates	the	type	of	grouping	used	by	the

Analysis	server
HideMemberIf Indicates	whether	a	member	should	be

hidden	from	client	applications
IsDisabled Indicates	whether	the	level	is	disabled
IsVisible Indicates	whether	the	level	is	visible	to

client	applications
IsValid Indicates	whether	the	level	structure	is

valid
JoinClause Contains	the	SQL	JOIN	clause	for	the

level
LevelNamingTemplate Defines	how	levels	in	a	parent-child

hierarchy	are	named
LevelType Returns	an	enumeration	constant	that

identifies	the	specific	type	of	level
MemberKeyColumn Returns	the	name	of	the	column	that

contains	member	keys	of	the	partition
level

MemberNameColumn Sets	or	returns	the	name	of	the	column
that	contains	member	names

Name Contains	the	name	of	the	level
Ordering Specifies	the	method	to	use	when

ordering	the	members	of	a	level
OrderingMemberProperty Specifies	a	member	property	used	to

determine	the	ordering	of	members
OrdinalPosition Returns	the	ordinal	position	of	the	level

in	the	Levels	collection	of	the	parent
object

Parent Returns	a	reference	to	the	parent
dimension	object

ParentKeyColumn Identifies	the	parent	of	a	member	in	a
parent-child	hierarchy

RootMemberIf Determines	how	the	root	member	or
members	of	a	parent-child	hierarchy	are

identified
SkippedLevelsColumn Identifies	the	column	that	holds	the

number	of	empty	levels	between	a
member	and	its	parent

SliceValue Contains	the	level	member	name	used	to
define	the	partition	slice

SubClassType Returns	an	enumeration	constant	that
identifies	the	subclass	type	of	the	object

UnaryOperatorColumn Contains	the	name	of	a	column	that	stores
mathematical	operators	serving	as
member-specific	rollup	instructions	for
the	level

See	Also

clsPartitionLevel

Level	Interface

MemberKeyColumn

Analysis	Services	Programming

clsPartitionMeasure
An	object	of	ClassType	clsPartitionMeasure	provides	a	specific
implementation	of	the	Decision	Support	Objects	(DSO)	Measure	interface.	This
object	is	used	to	maintain	the	measure	objects	a	partition	object	contains.

An	object	of	ClassType	clsPartitionMeasure	provides	collections	and
properties	through	the	Measure	interface.	There	are	no	methods	associated	with
an	object	of	ClassType	clsPartitionMeasure.

Remarks
Measures	are	the	quantitative,	numerical	columns	from	the	fact	table	of	a	cube.
When	a	cube	is	processed,	all	of	the	measures,	except	for	those	based	on	the
DistinctCount	aggregate	function,	are	aggregated	across	the	dimensions	in	the
cube.

Example
Use	the	following	code	to	reference	an	object	of	ClassType
clsPartitionMeasure:

'	Assume	an	object	(dsoPartition)	of	ClassType	clsPartition	exists.
Dim	dsoPartMeasure	As	DSO.Measure
'	Retrieve	the	first	measure	associated	with	the	partition.
Set	dsoPartMeasure	=	dsoPartition.Measures(1)

See	Also

Measure	Interface

Measures

Object	Architecture

Partitions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Analysis	Services	Programming

Collections,	clsPartitionMeasure
An	object	of	ClassType	clsPartitionMeasure	implements	the	following
collection	of	the	Measure	interface.

Collection Description
CustomProperties The	collection	of	user-defined	properties

See	Also

clsPartitionMeasure

Measure	Interface

Analysis	Services	Programming

Properties,	clsPartitionMeasure
An	object	of	ClassType	clsPartitionMeasure	implements	the	following
properties	of	the	Measure	interface.

Property Description
AggregateFunction Contains	a	value	that	corresponds	to	the	type	of

aggregate	function	used	for	a	measure
ClassType Returns	an	enumeration	constant	that	identifies

the	specific	object	type
Description Contains	the	measure	description
FormatString Contains	the	format	used	to	display	the	measure

values
IsValid Indicates	whether	the	measure	structure	is	valid
IsVisible Indicates	whether	the	measure	is	visible	to	the

client	application
Name Contains	the	measure	name
OrdinalPosition Returns	the	ordinal	position	of	the	measure	in	the

Measures	collection	of	the	parent	object
Parent Returns	a	reference	to	the	parent	clsPartition

object
SourceColumn Contains	the	name	of	the	measure	column	in	the

aggregated	fact	table
SourceColumnType Returns	a	Microsoft®	ActiveX®	Data	Objects

(ADO)	DB	enumeration	constant	that	identifies
the	data	type	of	the	column	specified	by	the
SourceColumn	property

SubClassType Returns	an	enumeration	constant	that	identifies
the	subclass	type	of	the	object

See	Also

clsPartitionMeasure

Measure	Interface

Analysis	Services	Programming

clsRoleCommand
An	object	of	ClassType	clsRoleCommand	provides	a	specific	implementation
of	the	Command	interface.	These	objects	provide	collections	and	properties
through	the	Command	interface.	There	are	no	methods	associated	with	an
object	of	ClassType	clsRoleCommand.

Remarks
An	object	of	ClassType	clsRoleCommand	encapsulates	a	user-defined
command	that	is	automatically	executed	on	the	Microsoft®	SQL	Server™	2000
Analysis	Services	client	computer	when	a	cube	is	accessed	by	members	of	the
specified	role.	You	add	a	command	to	a	role	by	adding	it	to	the	role's
Commands	collection.	Such	commands	include	calculated	members,	named
sets,	library	references,	and	others.

For	example,	you	may	want	to	grant	access	to	a	calculated	member	called
SalesBonus	to	members	of	the	Manager	role	but	not	to	members	of	the
SalesPerson	role.	The	command	that	builds	the	SalesBonus	calculated	member	is
automatically	executed	for	members	of	the	Manager	role	when	they	access	a
cube	that	contains	that	role	command.

Example
Use	the	following	code	to	create	an	object	of	ClassType	clsRoleCommand:

'Assume	an	object	(dsoDB)	of	ClassType	clsDatabase	exists
Dim	dsoRole	As	DSO.Role			'Role
Dim	dsoCmd	As	DSO.Command			'Command

Set	dsoRole	=	dsoDB.Roles(1)
Set	dsoCmd	=	dsoRole.Commands.AddNew("RoleCmd1")

See	Also

Collections,	clsRoleCommand

Command	Interface

Commands

Properties,	clsRoleCommand

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Collections,	clsRoleCommand
An	object	of	ClassType	clsRoleCommand	implements	the	following	collection
of	the	Command	interface.

Collection Description
CustomProperties The	collection	of	user-defined	properties

See	Also

clsRoleCommand

Command	Interface

Analysis	Services	Programming

Properties,	clsRoleCommand
An	object	of	ClassType	clsRoleCommand	implements	the	following	properties
of	the	Command	interface.

Property Description
ClassType Returns	an	enumeration	constant	that	identifies

the	specific	object	type
CommandType Returns	an	enumeration	constant	that	identifies

the	specific	command	option
Description Contains	the	description	of	the	role	command
IsValid Indicates	whether	the	Name	and	Statement

properties	are	empty	and	whether	the	command
object	belongs	to	a	collection

Name Contains	the	name	of	the	role	command
OrdinalPosition Returns	the	ordinal	position	of	the	command

object	in	Commands	collection	of	the	parent	role
object

Parent Returns	a	reference	to	the	parent	object,	using	the
MDStore	interface	of	the	parent	object

ParentObject Returns	a	reference	to	the	parent	object,	using	the
default	interface	of	the	parent	object

Statement Contains	the	text	of	the	role	command	statement,
in	Multidimensional	Expressions	(MDX)

SubClassType Returns	an	enumeration	constant	that	identifies
the	subclass	type	of	the	object

See	Also

clsRoleCommand

Command	Interface

Analysis	Services	Programming

clsServer
An	object	of	ClassType	clsServer	provides	methods	and	properties	that	enable
you	to	control	an	Analysis	server.	This	object	is	the	root	of	the	Decision	Support
Objects	(DSO)	object	model	tree	that	specifies	the	databases,	cubes,	and	user
roles	managed	by	the	server.	With	an	object	of	ClassType	clsServer	you	can:

Connect	to	a	computer	where	the	Analysis	server	service
(MSSQLServerOLAPService)	is	running.

Start	and	stop	the	server.

Create	and	manage	objects	that	define	multidimensional	data	structures.

An	object	of	ClassType	clsServer	provides	collections,	methods,	and	properties
through	its	own	internal	interface.

Examples

A.	Creating	and	Initializing	a	Server
Use	the	following	code	to	create	and	initialize	a	server.	You	can	use	LocalHost
to	specify	the	Analysis	server	running	on	the	same	computer	as	your	DSO
application.

'Create	instance	of	server	and	connect
Public	dsoServer	As	DSO.Server
Set	dsoServer	=	New	DSO.Server
'ServerName	is	the	Windows	NT	4.0	Server	or	Windows	2000	Server	computer	
'where	the	Analysis	service	is	loaded	and	running.
'An	error	is	raised	if	the	connection	attempt	fails
dsoServer.Connect	"ServerName"

This	example	accomplishes	the	same	result:

DsoServer	=	New	DSO.Server
dsoServer.Name	=	"ServerName"
dsoServer.Connect

B.	Creating	and	Connecting	to	a	Server
The	following	example	shows	how	to	create	an	instance	of	a	DSO	object	of
ClassType	clsServer	and	connect	to	an	Analysis	server:

Public	Sub	ConnectToServer()
				Dim	dsoServer	As	DSO.Server
				
				On	Error	GoTo	ErrHandler
				
				'	Initialize	server.
				Set	dsoServer	=	New	DSO.Server
				
				'	Connect	to	the	local	Analysis	server.
				'	If	a	connection	cannot	be	made,	an	error	is	raised.
				dsoServer.Connect	"LocalHost"
				
				'	Print	server	properties	to	the	Debug	window.
				With	dsoServer
								Debug.Print	"Server	Properties	--------------------------"
								Debug.Print	"Name:												"	&	.Name
								Debug.Print	"Description:					"	&	.Description
								Debug.Print	"ConnectTimeout:		"	&	.ConnectTimeout
								Debug.Print	"LockTimeout:					"	&	.LockTimeout
								Debug.Print	"Version:									"	&	.Version
				End	With
				
				'	Close	connection	to	server.
				dsoServer.CloseServer

ExitRoutine:
				Set	dsoServer	=	Nothing
				Exit	Sub
				
ErrHandler:
				Debug.Print	"Error	connecting	to	server:"
				Debug.Print	Err.Number,	Err.Description,	Err.Source
End	Sub

See	Also

Collections,	clsServer

Methods,	clsServer

Properties,	clsServer

Analysis	Services	Programming

Collections,	clsServer
An	object	of	ClassType	clsServer	implements	the	following	collections.

Collection Description
CustomProperties The	collection	of	user-defined	properties
MDStores The	collection	of	databases	that	define	the

multidimensional	data	managed	by	the	server

Access
Read/write

See	Also

clsServer

Analysis	Services	Programming

Methods,	clsServer
An	object	of	ClassType	clsServer	implements	the	following	methods.

Method Description
CloseServer Releases	all	server	resources	and	sets	the	State

property	of	the	object	to	stateUnknown
Connect Connects	to	the	Analysis	server	service

(MSSQLServerOLAPService)
CreateObject Creates	an	object
LockObject Locks	a	clsServer	object
Refresh Reads	all	current	meta	data	from	the	repository

and	modifies	all	objects	in	the	object	model	of	a
session	to	match	the	current	repository	state

UnlockAllObjects Removes	all	locks	issued	by	the	current	session
from	objects	in	the	object	hierarchy	of	the
clsServer	object

UnlockObject Removes	a	lock	from	the	clsServer	object
Update Updates	an	object	definition	in	the	meta	data

repository

See	Also

clsServer

Analysis	Services	Programming

CloseServer	(clsServer)
The	CloseServer	method	of	an	object	of	ClassType	clsServer	releases	all	server
resources	and	sets	the	State	property	of	the	object	to	stateUnknown.

Syntax
dsoServer.CloseServer

dsoServer

The	Decision	Support	Objects	(DSO)	server	object	to	be	closed.

Example
The	following	example	assumes	that	the	server	object	exists	and	is	connected	to
an	Analysis	server.	The	example	closes	a	previously	created	connection:

dsoServer.CloseServer

See	Also

clsServer

Analysis	Services	Programming

Connect	(clsServer)
The	Connect	method	of	an	object	of	ClassType	clsServer	connects	to	the
Analysis	server	service	(MSSQLServerOLAPService).

Syntax
dsoServer.Connect([ByVal	ServerName	As	String])

dsoServer

A	Decision	Support	Objects	(DSO)	server	object.

ServerName

The	name	of	the	computer	on	which	the	Analysis	server	is	installed	and
running.	You	can	use	LocalHost	to	specify	the	Analysis	server	running	on
the	same	computer	as	your	DSO	application.

Remarks
The	Connect	method	sets	the	name	of	the	server	object.	If	you	need	to	reconnect
to	the	same	server,	do	not	specify	the	name	on	subsequent	executions	of	the
method	on	the	same	object.

IMPORTANT		You	cannot	use	an	Internet	Protocol	(IP)	address	as	the	ServerName
parameter	to	connect	to	a	server.	You	must	use	the	network	name	of	the
computer	that	hosts	the	Analysis	server.

Example
Use	the	following	code	example	to	connect	to	the	Analysis	server:

Public	dsoServer	As	DSO.Server
Set	dsoServer	=	New	DSO.Server
'Assume	"Server1"	to	be	the	name	of	the	computer
'where	the	Analysis	server	service	is	installed	and	running.
dsoServer.Connect	"Server1"		'Error	is	raised	if	unable	to	connect

See	Also

clsServer

Analysis	Services	Programming

CreateObject	(clsServer)
The	CreateObject	method	of	an	object	of	ClassType	clsServer	creates	and
returns	an	object	of	the	specified	ClassType	and	SubClassType.

Syntax
objRet	=	object.CreateObject(ObjectType	As	ClassTypes,	[SubClassType	As
SubClassTypes	=	sbclsRegular])

objRet

A	Decision	Support	Objects	(DSO)	object	of	the	type	to	be	created.

objectr

An	object	of	ClassType	clsServer.

ObjectType

The	class	type	of	the	object	to	be	created.	A	member	of	the	ClassTypes
enumeration.

SubClassType

Optional.	The	subclass	type	of	the	object	to	be	created.	A	member	of	the
SubClassTypes	enumeration.	Default	is	sbclsRegular.

Remarks
When	you	are	using	DSO	to	construct	major	objects	such	as	cubes,	partitions,
dimensions,	and	so	on,	use	the	AddNew	method	instead.	The	AddNew	method
creates	an	object	of	the	appropriate	ClassType	in	a	collection	and	initializes	its
Name	and	Parent	properties.

Example
Use	the	following	code	to	create	an	object	of	type	clsCube:

'	Assume	objServer	is	a	server	object	and	objDB	is	a	database	object

Dim	objCube	as	New	DSO.MDStore
Set	objCube	=	objServer.CreateObject(clsCube)
objCube.Name	=	"NewCube"
objDB.MDStores.Add	objCube

See	Also

AddNew

ClassTypes

clsServer

MDStore	Interface

SubClassTypes

Analysis	Services	Programming

LockObject	(clsServer)
The	LockObject	method	of	an	object	of	ClassType	clsServer	locks	the
clsServer	object	to	prevent	multiple	users	from	concurrently	changing	the
object.

Syntax
object.LockObject(ByVal	LockType	As	OlapLockTypes,	ByVal
LockDescription	As	String)

object

An	object	of	ClassType	clsServer.

LockType

One	of	the	constants	defined	in	the	OlapLockTypes	enumeration.	For	more
information,	see	OlapLockTypes.

sLockDescription

A	string	containing	the	description	of	the	lock,	available	to	other	applications
attempting	to	obtain	a	lock.

Remarks
For	more	information	about	object	locking,	see	LockObject.

See	Also

clsServer

Analysis	Services	Programming

Refresh	(clsServer)
The	Refresh	method	of	an	object	of	ClassType	clsServer	reads	all	current	meta
data	from	the	repository	and	modifies	all	objects	in	the	session's	object	model	to
match	the	current	repository	state.

Syntax
object.Refresh

object

An	object	of	ClassType	clsServer.

Remarks
All	objects	in	the	session's	object	model	are	refreshed.	This	includes	objects
whose	properties	have	not	yet	been	saved	to	the	repository,	as	well	as	objects
whose	properties	in	the	repository	have	been	changed	by	other	users.

Note		Objects	that	are	locked	are	not	refreshed.

Example
The	following	example	invokes	the	Refresh	method:

'	Assume	dsoServer	has	already	been	connected	to	Analysis	Services.
dsoServer.Refresh

See	Also

clsServer

Analysis	Services	Programming

UnlockAllObjects	(clsServer)
The	UnlockAllObjects	method	of	an	object	of	ClassType	clsServer	removes	all
locks	issued	by	the	current	session	from	objects	in	the	server's	object	model.

Syntax
bRet	=	object.UnlockAllObjects

bRet

A	Boolean	variable.	This	value	is	set	to	True	if	the	method	is	successful	and
False	otherwise.

object

An	object	of	ClassType	clsServer.

Example
The	following	example	removes	all	current	locks:

'	Assume	dsoServer	is	connected	to	Analysis	Services.
dsoServer.UnlockAllObjects

See	Also

clsServer

Analysis	Services	Programming

UnlockObject	(clsServer)
The	UnlockObject	method	of	an	object	of	ClassType	clsServer	removes	a	lock
from	the	clsServer	object.

Syntax
object.UnlockObject

objServer

An	object	of	ClassType	clsServer.

See	Also

clsServer

Analysis	Services	Programming

Update	(clsServer)
The	Update	method	of	an	object	of	ClassType	clsServer	updates	an	object
definition	in	the	meta	data	repository.	This	method	must	be	called	after	any
attribute	for	the	server	object	has	been	changed,	or	the	affected	meta	data	for	the
changes	will	not	be	persistent	past	the	server	object	scope.

Syntax
object.Update

object

An	object	of	ClassType	clsServer.

Remarks
Whenever	a	write-enabled	server	property	is	changed,	its	meta	data	in	the
repository	must	be	updated	with	this	method.	Subordinate	objects	are
automatically	updated	when	you	update	an	object	that	contains	other	objects,
such	as	a	cube	that	contains	partitions,	dimensions,	and	measures.

Example
The	following	example	invokes	the	Update	method	after	setting	the	server
timeout	property:

'	Assume	dsoServer	is	connected	to	Analysis	Services.
dsoServer.Timeout	=	30	'	=	30	seconds.
dsoServer.Update

See	Also

clsServer

Analysis	Services	Programming

Properties,	clsServer
An	object	of	ClassType	clsServer	implements	the	following	properties.	The
table	also	shows	whether	the	property	is	read/write	(R/W)	or	read-only	(R).

Property Description Access
ClassType Returns	an	enumeration	constant	that

identifies	the	specific	class	type
R

ConnectTimeout The	amount	of	time	until	a	connection	to
an	Analysis	server	fails	due	to	timeout

R/W

Description The	description	of	the	server	object R/W
Edition The	installed	edition	of	Microsoft®	SQL

Server™	2000	Analysis	Services
R

IsValid Indicates	whether	the	server	settings	are
valid

R

LockTimeout The	amount	of	time	until	a	lock	request
fails	due	to	timeout

R/W

Name The	name	of	the	server R/W
Parent A	reference	to	the	App	object R
ProcessingLogFileNameA	UNC	path	to	a	file	for	logging	status

messages	occurring	during	processing
R/W

ServiceState Contains	the	state	of	the	Analysis	server
service	(MSSQLServerOLAPService)

R/W

State Returns	an	enumeration	constant
indicating	the	status	of	the	connection	to
the	Analysis	server

R

Timeout The	amount	of	time	until	a	timeout	error
occurs	during	processing

R/W

Version The	version	of	the	Analysis	server R/W

See	Also

clsServer

Analysis	Services	Programming

ClassType	(clsServer)
The	ClassType	property	of	a	server	object	returns	an	enumeration	constant	that
identifies	the	specific	class	type.

Data	Type
Integer	representing	a	value	from	the	ClassTypes	enumeration.	For	more
information,	see	ClassTypes.

Access
Read-only

Remarks
The	ClassType	property	returns	the	value	clsServer	for	all	server	objects.

See	Also

clsServer

Analysis	Services	Programming

ConnectTimeout	(clsServer)
The	ConnectTimeout	property	of	an	object	of	ClassType	clsServer	sets	or
returns	the	maximum	amount	of	time	an	idle	connection	to	an	Analysis	server	is
maintained	before	the	server	is	considered	to	have	timed	out.

Data	Type
Long

Access
Read/write

Remarks
The	default	value	is	zero	(0)	seconds;	that	is,	the	server	connection	never	times
out.	The	maximum	allowed	value	is	one	million	(1,000,000)	seconds,
approximately	11	days	and	14	hours.	To	have	the	server	connected	indefinitely,
set	the	ConnectTimeout	property	to	zero	(0).

Example
Use	the	following	code	to	set	the	ConnectTimeout	property	for	a	server.	You
must	call	the	Update	method	for	your	changes	to	take	effect.

Dim	dsoS	As	New	DSO.Server
dsoS.Connect	"LocalHost"							'	server	name
dsoS.ConnectTimeout	=	18000				'	timeout	value,	in	seconds
dsoS.Update

See	Also

clsServer

Analysis	Services	Programming

Description	(clsServer)
The	Description	property	of	an	object	of	ClassType	clsServer	contains	the
server	description.

Data	Type
String

Access
Read/write

Example
The	following	code	example	prints	the	Description	property	of	an	object	of
ClassType	clsServer	to	the	Debug	window.

Dim	dsoServer	As	New	DSO.Server

'	Connect	to	the	local	Analysis	server.
dsoServer.Connect	"LocalHost"

'	Print	the	Description	property	to	the	Debug	window.
Debug.Print	dsoServer.Description

See	Also

clsServer

Analysis	Services	Programming

Edition	(clsServer)
The	Edition	property	of	an	object	of	ClassType	clsServer	identifies	which
edition	of	Microsoft®	SQL	Server™	2000	Analysis	Services	is	installed.

Data	Type
OlapEditions

Access
Read-only

Remarks
The	functionality	of	Analysis	Services	varies	depending	on	the	edition	installed.

Example
The	following	code	example	checks	the	Edition	property	of	a	clsServer	object
to	determine	feature	support.

Dim	dsoServer	As	New	DSO.Server

'	Connect	to	the	local	Analysis	server.
dsoServer.Connect	"LocalHost"

'	Check	the	Edition	property.
Select	Case	dsoServer.Edition
				Case	olapEditionUnlimited
								'	Insert	code	for	Enterprise	Edition	features.
				Case	olapEditionPivotOnly
								'	Reserved	for	future	use.
				Case	olapEditionNoPartitions

								'	Insert	code	for	Standard	Edition	features.
				Case	olapEditionError
								'	An	error	occurred	while	retrieving	this	information.
End	Select

See	Also

clsServer

Analysis	Services	Programming

IsValid	(clsServer)
The	IsValid	property	of	an	object	of	ClassType	clsServer	indicates	whether	the
server	name	is	valid.

Data	Type
Boolean

Access
Read-only

Remarks
The	validity	check	on	the	server	object	verifies	that	the	server	has	a	valid	name.

See	Also

clsServer

Analysis	Services	Programming

LockTimeout	(clsServer)
The	LockTimeout	property	of	an	object	of	ClassType	clsServer	sets	or	returns
the	amount	of	time	until	a	lock	request	fails	due	to	timeout.

Data	Type
Long

Access
Read/write

Remarks
The	value	of	this	property	must	not	be	less	than	zero.	The	default	is	20	seconds.
For	more	information	about	locking	a	server,	see	LockObject,	UnlockObject,
and	UnlockAllObjects.

See	Also

clsServer

Analysis	Services	Programming

Name	(clsServer)
The	Name	property	of	an	object	of	ClassType	clsServer	contains	the	name	of
the	server	object.

Data	Type
String

Access
Read/write	(read-only	after	the	object	has	been	named)

Remarks
You	cannot	use	an	Internet	Protocol	(IP)	address	for	the	Name	property	to
connect	to	a	server.	You	must	use	the	network	name	of	the	computer	that	hosts
the	Analysis	server.

See	Also

clsServer

Analysis	Services	Programming

Parent	(clsServer)
The	Parent	property	of	an	object	of	ClassType	clsServer	contains	a	reference	to
the	App	object	of	the	application.

Data	Type
Object

Access
Read-only

Remarks
In	an	application	using	Decision	Support	Objects	(DSO),	an	object	of	ClassType
clsServer	is	the	root	of	the	object	model	tree.	The	Microsoft®	Visual	Basic®
App	object	is	returned	as	its	parent	for	convenience.

See	Also

clsServer

Analysis	Services	Programming

ProcessingLogFileName	(clsServer)
The	ProcessingLogFileName	property	of	an	object	of	ClassType	clsServer
stores	a	UNC	path	to	a	file	for	logging	status	messages	from	processing	events.

Data	Type
String

Access
Read/write

Remarks
The	log	file	is	a	text	file	that	contains	status	and	error	messages	that	are	raised
during	mining	model,	cube,	partition,	or	dimension	processing	events.	The	file
also	logs	dimension	key	errors	(that	is,	errors	that	are	raised	when	rows	in	the
fact	table	do	not	correspond	to	rows	in	the	dimension	source	table).	However,
the	details	of	these	errors	are	logged	in	the	file	specified	by	the
ProcessingKeyErrorLogFileName	property	of	the	parent	MDStore	interface.

See	Also

clsServer

ProcessingKeyErrorLogFileName

Analysis	Services	Programming

ServiceState	(clsServer)
The	ServiceState	property	of	an	object	of	ClassType	clsServer	contains	the
execution	state	of	the	Analysis	server	service	(MSSQLServerOLAPService).

Data	Type
Long

Values
The	values	of	this	property	are	different	depending	on	whether	the	property	is
being	read	or	set.

The	following	values	are	returned	when	reading	this	property.

Value Description
SERVICE_CONTINUE_PENDINGA	previous	request	to	continue	a

paused	service	is	pending.
SERVICE_PAUSE_PENDING A	previous	request	to	pause	a	running

service	is	pending.
SERVICE_PAUSED The	service	is	paused.
SERVICE_RUNNING The	service	is	running.
SERVICE_START_PENDING The	service	is	starting.
SERVICE_STOP_PENDING The	service	is	stopping.
SERVICE_STOPPED The	service	is	not	running.

The	following	table	describes	the	values	used	to	control	the	Analysis	server.

Value Requested	action
SERVICE_PAUSED Pause	the	service.
SERVICE_RUNNING Start	the	service	if	stopped	or	paused.
SERVICE_STOP Stop	the	service.	

Access
Read/write

Remarks
Read	the	property	to	query	the	status	of	the	service.	To	change	the	execution
state	of	the	service,	set	the	property	to	a	value.	Decision	Support	Objects	(DSO)
partially	implements	the	service	control	functions	of	the	Microsoft®	Win32®
API.

If	a	requested	action	cannot	be	completed,	such	as	attempting	to	pause	a	service
that	is	not	running,	or	the	request	times	out	(within	60	seconds),	an	error	occurs.

Example
Use	the	following	code	to	set	the	execution	state	of
MSSQLServerOLAPService:

'	Analysis	server	service	control	constants	
Const	OLAP_SERVICE_RUNNING	=	&H4	
Const	OLAP_SERVICE_PAUSED	=	&H7	
Const	OLAP_SERVICE_STOP	=	&H1	
	
'	Analysis	server	status	and	error	return	constants	
Const	SERVICE_CONTINUE_PENDING	=	&H5	
Const	SERVICE_PAUSE_PENDING	=	&H6	
Const	SERVICE_PAUSED	=	&H7	
Const	SERVICE_RUNNING	=	&H4	
Const	SERVICE_START_PENDING	=	&H2	
Const	SERVICE_STOP_PENDING	=	&H3	
Const	SERVICE_STOPPED	=	&H1	
	
'	Additional	error	return	constants	
Const	SERVICE_ACCEPT_PAUSE_CONTINUE	=	&H2	
Const	SERVICE_ACCEPT_SHUTDOWN	=	&H4	
Const	SERVICE_ACCEPT_STOP	=	&H1	

Const	SERVICE_ACTIVE	=	&H1	
Const	SERVICE_CHANGE_CONFIG	=	&H2	
Const	SERVICE_CONTROL_CONTINUE	=	&H3	
Const	SERVICE_CONTROL_INTERROGATE	=	&H4	
Const	SERVICE_CONTROL_PAUSE	=	&H2	
Const	SERVICE_CONTROL_SHUTDOWN	=	&H5	
Const	SERVICE_CONTROL_STOP	=	&H1	
Const	SERVICE_ENUMERATE_DEPENDENTS	=	&H8	
Const	SERVICE_INACTIVE	=	&H2	
Const	SERVICE_INTERROGATE	=	&H80	
Const	SERVICE_NO_CHANGE	=	&HFFFF	
Const	SERVICE_PAUSE_CONTINUE	=	&H40	
Const	SERVICE_QUERY_CONFIG	=	&H1	
Const	SERVICE_QUERY_STATUS	=	&H4	
Const	SERVICE_STATE_ALL	=	(SERVICE_ACTIVE	Or	SERVICE_INACTIVE)	
Const	SERVICE_USER_DEFINED_CONTROL	=	&H100	
	
Const	SERVICE_WAIT_MAX_SECONDS	As	Integer	=	30	
'	==	
'	OlapServiceControl	function	
'	Returns	True	or	False	
'	Calling	parameters:	
'				-	objServer	is	an	object	of	ClassType	clsServer	
'					that	has	been	created	and	initialized	
'				-	iCmdReq	is	one	of	the	Analysis	server	service
'					control	constants
'				-	lngStatus	receives	the	status	(one	of	the	Analysis
'					server	status	constants)	
'				-	lngErr	receives	status	if	function	fails	(one	of	the	Analysis
'					server	status	constants	or	one	of	the	additional	error	constants)	
	
Friend	Function	OlapServiceControl(objServer	As	Object,	_	
																																		ByVal	iCmdReq	As	Integer,	_	

																																		ByRef	lngStatus	As	Long,	_	
																																		ByRef	lngErr	As	Long)	As	Boolean	
Dim	bRet													As	Boolean	
Dim	lngSrvStat							As	Long	
Dim	lngControlCmd				As	Long	

lngSrvStat	=	objServer.ServiceState	
bRet	=	False	
lngControlCmd	=	iCmdReq	
lngErr	=	0	

On	Error	GoTo	Err_State

Select	Case	iCmdReq	
			'	Caller	wants	to	start	the	server				
			Case	SERVICE_RUNNING				
						'	Check	the	current	server	status	
						Select	Case	lngSrvStat	
									'	If	it	is	already	running,	return	True
									Case	SERVICE_RUNNING	
												bRet	=	True	
									Case	SERVICE_PAUSED,	SERVICE_STOPPED	
												objServer.ServiceState	=	lngControlCmd	
												bRet	=	True	
						End	Select	

			Case	SERVICE_PAUSED				'	Caller	wants	to	pause	the	server	
						Select	Case	lngSrvStat
									Case	SERVICE_PAUSED	
												bRet	=	True	
									Case	SERVICE_RUNNING	
												objServer.ServiceState	=	lngControlCmd	
												bRet	=	True	

									'	Trying	to	pause	a	stopped	service	
									'	raises	an	error	from	the	Server	object.
									Case	SERVICE_STOPPED	
												bRet	=	False	
						End	Select	

			Case	SERVICE_STOPPED					'	Caller	wants	to	stop	the	server	
						Select	Case	lngSrvStat
									Case	SERVICE_STOPPED	
												bRet	=	True	
									Case	SERVICE_RUNNING
												objServer.ServiceState	=	lngControlCmd	
												bRet	=	True	
									'	Trying	to	stop	a	paused	service	
									'	raises	an	error	from	the	Server	object.
									Case	SERVICE_PAUSED
												bRet	=	False
						End	Select	
End	Select	

'	Put	the	current	state	of	the	service	into	lngStatus
lngStatus	=	objServer.ServiceState

OlapServiceControl	=	bRet	

Exit	Function

Err_State:
'	Catch	the	error	returned	by	the	server	object
'	Some	reasons	that	can	cause	an	error:
'		Server	object	unable	to	contact	service	control
'		manager	or	Analysis	service	application
'		Service	does	not	respond	to	state	change	

'		request	within	60	seconds
'		An	invalid	request	is	sent	to	the	service	(for	example,
'		trying	to	pause	a	stopped	service)

lngStatus	=	objServer.ServiceState
lngErr	=	Err.Number
OlapServiceControl	=	False

End	Function	

See	Also

clsServer

Analysis	Services	Programming

State	(clsServer)
The	State	property	of	an	object	of	ClassType	clsServer	returns	an	enumeration
constant	that	indicates	the	status	of	the	connection	to	the	Analysis	server.

Data	Type
ServerStates

Access
Read-only

See	Also

clsServer

Analysis	Services	Programming

Timeout	(clsServer)
The	Timeout	property	of	an	object	of	ClassType	clsServer	sets	or	returns	the
maximum	amount	of	time	between	reports	from	the	Analysis	server	before	the
server	is	considered	to	have	timed	out.

Data	Type
Long

Access
Read/write

Remarks
The	default	value	is	3600	seconds	(1	hour).	Under	some	conditions,	the	server
may	encounter	long	wait	times,	for	example,	during	the	processing	of	large
cubes	or	during	queries	to	a	source	database.	If	you	experience	timeout	errors
under	such	conditions,	you	can	increase	the	default	value.	The	maximum
allowed	value	is	one	million	(1,000,000)	seconds.	This	is	approximately	11	days
and	14	hours.	To	have	the	server	wait	indefinitely,	set	the	Timeout	property	to
zero	(0).

Example
Use	the	following	code	to	set	the	Timeout	property	for	a	server.	You	must	call
the	Update	method	for	your	changes	to	take	effect.

Dim	dsoS	As	New	DSO.Server

'	Connect	to	the	local	Analysis	server.
dsoServer.Connect	"LocalHost"

'	Set	the	timeout	to	4	hours.

dsoServer.Timeout	=	14400
'	Update	the	Analysis	server.
dsoServer.Update

'	Close	the	connection	to	the	Analysis	server.
dsoServer.CloseServer
	

See	Also

clsServer

Update

Analysis	Services	Programming

Version	(clsServer)
The	Version	property	of	an	object	of	ClassType	clsServer	returns	a	string
representing	the	version	information	of	the	Analysis	server	to	which	the	object	is
connected.

Data	Type
String

Access
Read-only

Remarks
The	expected	return	values	are	listed	in	the	following	table.

Version Value
Microsoft®	SQL	Server™	7.0	OLAP
Services

7.0

SQL	Server	2000	Analysis	Services 8.0

See	Also

clsServer

Analysis	Services	Programming

Property	Object
Use	the	Property	object	to	save	user-defined	items	to	a
CustomPropertiescollection.	You	can	define	Property	objects	and	add	them	to
the	CustomProperties	collection	of	any	Decision	Support	Objects	(DSO)	object
to	store	information	you	want	to	associate	with	the	DSO	object.	You	provide	a
name,	value,	and	data	type	for	each	Property	object.

Remarks
The	Property	object	has	properties,	but	no	collections	or	methods.	The
Property	object	is	unlike	other	DSO	objects	in	that	it	does	not	implement	any	of
the	interfaces,	methods,	properties,	or	collections	of	other	DSO	objects.

Examples

Creating	a	New	Custom	Property
Use	the	following	code	to	create	a	new	custom	property:

'Assume	an	object	of	ClassType	clsDimension	exists.
'Add	a	custom	property.
Dim	dsoProp	As	DSO.Property
Set	dsoProp	=	dsoDim.CustomProperties.Add(55,	"Age",	vbInteger)

'Retrieve	custom	property	values.
Dim	dsoProp2	As	DSO.Property
Set	dsoProp2	=	dsoDim.CustomProperties(1)
Debug.Print	dsoProp2.Name,	dsoProp2.Value

See	Also

CustomProperties

Properties,	Property	Obejct

Analysis	Services	Programming

Properties,	Property	Object
A	Property	object	implements	the	following	properties.

Property Description
DataType The	Microsoft®	Visual	Basic®	data	type
Name The	name	of	the	Property	object
Value The	value	of	the	Property	object

Access
Read/write

See	Also

Property	Object

Analysis	Services	Programming

DataType	(Property	Object)
The	DataType	property	of	a	Property	object	contains	the	Microsoft®	Visual
Basic®	data	type	of	the	custom	property	defined	by	the	Property	object.

Data	Type
VBA.VbVarType

Access
Read/write

Remarks
For	more	information	about	the	VBA.VbVarType	enumeration,	see	the	Visual
Basic	documentation.

See	Also

CustomProperties

Property	Object

Analysis	Services	Programming

Name	(Property	Object)
The	Name	property	of	a	Property	object	contains	the	unique	user-assigned
name	of	the	custom	property	defined	by	the	Property	object.

Data	Type
String

Access
Read/write

See	Also

CustomProperties

Property	Object

Analysis	Services	Programming

Value	(Property	Object)
The	Value	property	of	a	Property	object	can	contain	any	value	that	is	valid	for
the	DataType	defined	for	the	Property	object.

Data	Type
Variant

Access
Read/write

See	Also

CustomProperties

Property	Object

Analysis	Services	Programming

Enumerations
The	Decision	Support	Objects	(DSO)	object	model	provides	a	number	of
enumerations.	The	following	table	lists	the	public	enumerated	types	available
through	DSO.	Click	the	name	of	an	enumeration	for	a	more	detailed	description.

Enumeration Description
AggregatesTypes Enumerates	values	for	the	AggregateFunction

property
ClassTypes Enumerates	values	for	the	ClassType	property
CloneOptions Enumerates	options	for	the	Clone	method
CommandTypes Enumerates	values	for	the	CommandType

property
DimensionAggUsageTypes Enumerates	values	for	the	AggregationUsage

property
DimensionTypes Enumerates	values	for	the	DimensionType

property
ErrorCodes Enumerates	error	codes
GroupingValues Enumerates	options	for	level	groups
HideIfValues Enumerates	options	for	hidden	level	members
LanguageValues Enumerates	the	Language	property	of	member

properties
LevelTypes Enumerates	values	for	the	LevelType	property
MembersWithDataValues Enumerates	values	for	the	MembersWithData

property
OlapEditions Enumerates	values	for	the	Edition	property
OlapLockTypes Enumerates	values	for	the	LockObject	method
OlapStateTypes Enumerates	values	for	the	State	property
OlapStorageModes Enumerates	values	for	the	OlapMode	property
OrderTypes Enumerates	values	for	the	Ordering	property
ProcessOptimizationModesEnumerates	values	for	the

ProcessOptimizationMode	property
ProcessTypes Enumerates	values	for	the	Process	method

PropertyTypeValue Enumerates	the	values	used	in	the
PropertyType	property

RootIfValues Enumerates	values	for	the	RootMemberIf
property

ServerStates Enumerates	values	for	the	State	property
StorageModeValues Enumerates	values	for	the	StorageMode

property
SubClassTypes Enumerates	values	for	the	SubClassType

property

Examples

Using	the	ClassTypes	Enumeration
The	following	code	uses	the	ClassTypes	enumeration	to	retrieve	the	class	type
of	an	object	and	determine	whether	the	object	is	a	cube,	a	virtual	cube,	or	some
other	object:

'	Assume	that	the	object	dsoServer	of	ClassType	clsServer	exists.
Dim	dsoDB	as	MDStore
Dim	dsoCube	as	MDStore
Dim	CubeCounter	as	Integer

Set	dsoDB	=	dsoServer.MDStores(1)
For	CubeCounter	=	1	To	dsoDB.MDStores.Count
		Set	dsoCube	=	dsoDB.MDStores(CubeCounter)
		Debug.Print	"		Cube:	"	&	dsoCube.Name
		If	dsoCube.SubClassType	=	sbclsRegular	Then
				Debug.Print	"							SubClassType:	Regular"
				Debug.Print	"								SourceTable:	"	&	dsoCube.SourceTable
		Else
				Debug.Print	"							SubClassType:	Virtual"
		End	If
Next	CubeCounter

Analysis	Services	Programming

AggregatesTypes
Enumerates	values	for	the	AggregateFunction	property.

Constant Description
aggCount Uses	the	Count	function	for	aggregation
aggDistinctCount Uses	the	Distinct	Count	function	for	aggregation
aggMax Uses	the	Max	function	for	aggregation
aggMin Uses	the	Min	function	for	aggregation
aggSum Uses	the	Sum	function	for	aggregation

Analysis	Services	Programming

ClassTypes
Enumerates	values	for	the	ClassType	property	used	by	objects	in	Decision
Support	Objects	(DSO).

Constant Description
clsAggregation Provides	a	specific	implementation	of	the

MDStore	interface.	Each	instance	is	used	to
maintain	a	unique	aggregation	data	store.

clsAggregationDimension Provides	a	specific	implementation	of	the
Dimension	interface.	Each	instance	reviews	the
dimension	collection	of	objects	contained	within
an	aggregation	object.

clsAggregationLevel Provides	a	specific	implementation	of	the	Level
interface.	Each	instance	is	used	to	maintain	the
level	objects	within	an	aggregation	dimension
object.

clsAggregationMeasure Provides	a	specific	implementation	of	the
Measure	interface.	Each	instance	is	used	to
maintain	the	measure	objects	contained	within
an	aggregation	object.

clsCollection Similar	to	a	standard	Microsoft®	Visual	Basic®
collection;	however,	objects	of	ClassType
clsCollection	can	contain	only	objects	of	the
same	type.

clsColumn Objects	of	ClassType	clsColumn	are	used	to
represent	the	structure	of	clsMiningModel
objects.

clsCube Provides	a	specific	implementation	of	the
MDStore	interface.	Objects	of	ClassType
clsCube	provide	the	primary	logical	unit	for
representing	collections	of	multidimensional
data.

clsCubeAnalyzer An	object	that	contains	a	single	method	used	to

extract	information	from	the	query	log.	The
query	log	stores	the	descriptions	of	queries
executed	on	the	Analysis	server.

clsCubeCommand Provides	a	specific	implementation	of	the
Command	interface.	Each	instance	encapsulates
a	user-defined	command	that	is	automatically
executed	at	the	client	when	the	cube	containing
the	command	is	accessed.

clsCubeDimension Provides	a	specific	implementation	of	the
Dimension	interface.	Cube	dimensions	are
associated	with	the	dimensions	(shared	and
private)	of	a	database.

clsCubeLevel Provides	a	specific	implementation	of	the	Level
interface.	Levels	define	the	granularity	of	their
parent	dimension.

clsCubeMeasure Provides	a	specific	implementation	of	the
Measure	interface.	A	cube	measure	corresponds
to	a	numerically	valued	column	in	a	cube's
fact	table.

clsCubeRole Provides	a	specific	implementation	of	the	Role
interface.	Objects	of	ClassType	clsCubeRole
are	used	to	manage	the	permissions	a	set	of	users
has	when	accessing	a	cube.

clsDatabase Provides	a	specific	implementation	of	the
MDStore	interface.	Databases	contain	cubes,
which	in	turn	contain	partitions,	which	may	in
turn	contain	dimensions,	levels,	measures,	and
aggregations.	A	database	may	also	contain
virtual	cubes.

clsDatabaseCommand Provides	a	specific	implementation	of	the
Command	interface.	Each	instance	encapsulates
a	user-defined	command	that	is	automatically
executed	at	the	client	when	the	cube	containing
the	command	is	accessed.

clsDatabaseDimension Provides	a	specific	implementation	of	the
Dimension	interface.	Database	dimensions	can

be	shared	or	private.	A	shared	database
dimension	can	be	associated	with	any	number	of
cubes;	however,	a	private	dimension	can	be
associated	with	only	one	cube.

clsDatabaseLevel Provides	a	specific	implementation	of	the	Level
interface.	Levels	define	the	granularity	of	their
parent	dimension.	When	you	add	a	dimension	to
a	cube,	it	inherits	whatever	levels	are	defined	for
the	database	dimension.

clsDatabaseRole Provides	a	specific	implementation	of	the	Role
interface.	Objects	of	ClassType
clsDatabaseRole	are	used	to	manage	the	set	of
users	who	can	access	the	database.

clsDataSource Objects	of	ClassType	clsDataSource	are	used
to	specify	an	external	database	that	will	be	used
as	a	source	of	data	for	Microsoft	SQL	Server™
2000	Analysis	Services	databases,	cubes,	and
partitions.

clsMemberProperty Provides	the	ability	to	assign	properties	to	level
members.

clsMiningModel Provides	methods	and	properties	that	enable	you
to	create	and	control	data	mining	objects	on	the
Analysis	server.

clsMiningModelRole Provides	a	specific	implementation	of	the	Role
interface.	Objects	of	ClassType
clsMiningModelRole	are	used	to	manage	the
set	of	users	who	can	access	the	data	mining
model.

clsPartition Provides	a	specific	implementation	of	the
MDStore	interface.	Partitions	are	common	to
large	data	warehouses	where	massive	amounts
of	data	must	be	managed	efficiently.	Partitions
enable	you	to	segment	your	data	in	various
storage	modes	and	on	various	servers.

clsPartitionAnalyzer Encapsulates	an	algorithm	for	automatically
designing	a	set	of	aggregations	in	a	partition.

Aggregations	are	precalculated	data	for	a	cube.
Aggregations	support	rapid	and	efficient
querying	of	an	Analysis	database.

clsPartitionDimension Provides	a	specific	implementation	of	the
Dimension	interface.	Each	instance	is	used	to
maintain	the	dimension	objects	contained	within
a	partition.

clsPartitionLevel Provides	a	specific	implementation	of	the	Level
interface.	Each	instance	is	used	to	maintain	the
level	objects	that	are	contained	within	a	partition
dimension	object.

clsPartitionMeasure Provides	a	specific	implementation	of	the
Measure	interface.	Each	instance	is	used	to
maintain	the	measure	objects	that	are	contained
within	a	partition	object.

clsRoleCommand Provides	a	specific	implementation	of	the
Command	interface.	Each	instance	encapsulates
a	user-defined	command	that	is	automatically
executed	at	the	client	when	the	cube	containing
the	command	is	accessed.

clsServer Provides	methods	and	properties	that	enable	you
to	control	the	Analysis	server.	The	object	is	the
root	of	the	DSO	object	model	tree.

Analysis	Services	Programming

CloneOptions
Enumerates	options	for	the	Clone	method.

Constant Description
cloneMajorChildren Clones	the	values	of	properties	and	all	major	and

minor	objects	contained	in	the	source	object's
collections

cloneMinorChildren Clones	the	values	of	the	properties	and	the	minor
objects	contained	in	the	source	object's	collections

cloneObjectProperties Clones	the	values	of	the	properties	of	the	source
object

Note		The	CustomProperties	collection	is	always	cloned,	regardless	of	the
CloneOption	specified.

Analysis	Services	Programming

CommandTypes
Enumerates	values	for	the	CommandType	property.

Constant Description
cmdCreateAction Defines	one	or	more	actions.
cmdCreateCellCalculationDefines	one	or	more	calculated	cells.
cmdCreateMember Defines	one	or	more	calculated	members.
cmdCreateSet Defines	one	or	more	named	sets	of	existing

members.
cmdUnknown Defines	statements	not	included	in	any	of	the

other	command	types	in	this	table,	such	as
DROP	MEMBER	statements	or	new
statements	that	may	be	added	to	future
versions.

cmdUseLibrary Specifies	DLLs	that	contain	functions	to	be
registered	for	use	in	Multidimensional
Expressions	(MDX)	expressions.	A	user	can
write	a	DLL	containing	some	special	statistical
functions,	register	this	DLL	with	a	USE
LIBRARY	command,	and	then	run	queries
using	these	statistical	functions.

Analysis	Services	Programming

DimensionAggUsageTypes
Enumerates	values	for	the	AggregationUsage	property.

Constant Description
DimAggUsageCustom Creates	aggregations	for	dimension

levels	as	specified	by	level
dimAggUsageDetailsOnly Creates	aggregations	on	only	the

lowest	level	in	the	dimension
dimAggUsageStandard Creates	aggregations	as	determined	by

the	aggregation	design	algorithm
dimAggUsageTopAndDetailsOnlyCreates	aggregations	only	for	the	top

(All)	and	lowest	levels	in	the
dimension

dimAggUsageTopOnly Creates	aggregations	only	for	the	top
(All)	level

Analysis	Services	Programming

DimensionTypes
Enumerates	values	for	the	DimensionType	property.

Constant Description
DimAccounts Describes	a	dimension	that	contains	an	accounts

structure	with	parent-child	relationships.
DimBillOfMaterialsDescribes	a	dimension	that	represents	a

material/component	breakdown.	The	parent-child
relationship	implies	a	parent	composed	of	its
children.

DimChannel Describes	a	dimension	that	contains	information
about	a	distribution	channel.

DimCurrency Describes	a	dimension	that	contains	currency
information.

DimCustomers Describes	a	dimension	that	contains	customer
information.	The	lowest	level	represents	individual
customers.

DimGeography Describes	a	dimension	that	contains	a	geographic
hierarchy.

DimOrganization Describes	a	dimension	that	represents	the	reporting
structure	of	an	organization.

DimProducts Describes	a	dimension	that	contains	product
information.	The	lowest	level	represents	individual
products.

DimPromotion Describes	a	dimension	that	contains	information
about	marketing	and	advertising	promotions.

DimQuantitative Describes	a	dimension	that	contains	quantitative
elements	(for	example,	income	level,	number	of
children,	and	so	on).

DimRates Describes	a	dimension	that	contains	different	types	of
rates	(for	example,	buy,	sell,	discounted.	and	so	on).

DimRegular The	default	dimension	type,	used	for	dimensions	that

are	not	time-related.
DimScenario Describes	a	dimension	that	contains	different

business	scenarios.
DimTime Indicates	that	a	dimension	refers	to	time	(year,	month,

week,	day,	and	so	on).	The	only	valid	levels	in	a	time
dimension	are	those	that	begin	with	"levTime"	as
defined	in	the	LevelTypes	enumeration.

DimUtility Describes	a	dimension	that	contains	only	calculated
members.	This	type	of	dimension	is	usually	used	for
data	visualization	techniques.

See	Also

LevelTypes

Analysis	Services	Programming

ErrorCodes
Enumerates	error	codes.	Use	this	enumerator	to	determine	the	meaning	of	a
returned	error	code	in	Decision	Support	Objects	(DSO).

Constant Description
mderrAcceptError An	internal	error	has	occurred	on	the	specified

Analysis	server.
mderrAcquireCreditsError An	internal	error	has	occurred	on	the	Analysis

server.
mderrAggregationUsageNotCustom The	EnableAggregations

set	for	levels	in	dimensions	whose
AggregationUsage
dimAggUsageCustom

mderrBadParameterForServiceState Invalid	service	state	parameter	on	the	computer.
mderrBadRequest An	internal	request	related	error	has	occurred	on

the	Analysis	server.
mderrBindError An	internal	bind	related	error	has	occurred	on

the	Analysis	server.
mderrCalculateError An	internal	calculation	related	error	has

occurred	on	the	Analysis	server.
mderrCanceled The	specified	transaction	was	canceled.
mderrCannotAddVirtualDimension Cannot	add	a	virtual	dimension	because	its

source	dimension	is	not	in	the	database.
mderrCannotChangeRemoteServer Cannot	change	the	

it	has	been	set.
mderrCannotCloneObjectIntoItself Cannot	clone	an	object	into	itself.
mderrCannotCommitDatabase Unable	to	create	a	database	on	the	Analysis

server.
mderrCannotCreatePartition No	system	partition	is	available	for	this

operation.	System	partitions	have	been
programmatically	defined	as	user	partitions.
User-defined	partitions	are	available	only	if	you

install	Analysis	Services	for	Microsoft®	SQL
Server™	2000	Enterprise	Edition.

mderrCannotCreateVirtualDimensionFromAnother Cannot	create	a	virtual	dimension	based	on
another	virtual	dimension.

mderrCannotDeleteDataSource At	least	one	object	has	a	reference	to	the	data
source,	so	the	data	source	cannot	be	deleted.

mderrCannotDeleteDimension A	dimension	cannot	be	deleted	because	it	is	used
in	a	cube.

mderrCannotDeleteLastPartition Cannot	delete	the	last	partition	in	a	cube.	(A
cube	must	have	at	least	one	partition.)

mderrCannotDeleteLevel Cannot	delete	a	level	if	it	is	used	in	a	virtual
dimension.

mderrCannotDeleteMemberProperty Cannot	delete	a	member	property	if	it	is	used	in
a	virtual	dimension.

mderrCannotEnableRealTimeUpdatesWithoutIndexedViewsCannot	enable	real	time	updates	on	the	specified
partition	without	indexed	views.

mderrCannotExecFuncError Cannot	execute	a	function	in	a	user-defined
function	library.

mderrCannotModifySharedObject Cannot	change	a	property	of	a	shared	dimension
(or	subordinate	level)	used	in	a	cube.

mderrCannotRemoveMeasureFromDefaultAggregation Cannot	remove	a	measure	from	an	aggregation
created	by	the	partition	analyzer.

mderrCannotRenameObject Only	temporary	objects	can	be	renamed.
mderrCannotSaveInsideTransaction Cannot	save	objects	inside	a	DSO	transaction.
mderrCellCalculationsNotAvailable Calculated	cells	are	available	only	if	you	install

Analysis	Services	for	Microsoft	SQL	Server
2000	Enterprise	Edition.

mderrChildProcessFailed A	child	process	failed	within	a	transaction.
mderrClassError An	internal	class	error	has	occurred	on	the

Analysis	server.
mderrCollectionItemNotFound Raised	if	you	try	to	remove	an	item	from	a

collection	that	does	not	exist	in	the	collection.
mderrCollectionReadOnly Cannot	add	an	object	to,	or	remove	an	object

from,	a	collection	that	is	read-only.
mderrCOMError An	internal	COM	error	has	occurred	on	the

Analysis	server.
mderrCompatibilityError An	internal	compatibility	related	error	has

occurred	on	the	Analysis	server.
mderrConnectError An	error	occurred	while	connecting	to	an

Analysis	server.
mderrCorruptedProperty A	corrupted	property	was	found	while	merging

partitions.
mderrCorruptedRegistrySettings One	or	more	registry	settings	in	use	by	Analysis

Services	has	been	corrupted.
mderrCouldInitiateCubeUpdate Could	not	initiate	a	cube	update.
mderrCouldInitiateDimensionUpdate Could	not	initiate	a	dimension	update.
mderrCouldNotLockObject Raised	if	you	try	to	lock	an	object	that	is	already

locked	(by	a	different	application).
mderrCouldNotLogMissingMemberKeyErrors Could	not	write	errors	regarding	missing

member	key	errors	to	the	log	file.
mderrCouldNotOpenService The	Analysis	server	runs	as	a	Microsoft

Windows	NT®	4.0	or	Windows®	2000	service.
This	error	is	raised	if	the	service	could	not	be
opened.	For	more	information	about	the
mderrCouldNotOpenService
Microsoft	Win32®	API	documentation.

mderrCouldNotOpenServiceControlManager The	Analysis	server	runs	as	a	Windows	NT	4.0
or	Windows	2000	service.	This	error	is	raised	if
the	service	control	manager	could	not	be
opened.	For	more	information	about	the
mderrCouldNotOpenServiceControlManager
error,	see	the	Microsoft	Win32®	API
documentation.

mderrCouldNotQueryTheService The	Analysis	server	runs	as	a	Windows	NT	4.0
or	Windows	2000	service.	This	error	is	raised	if
the	service	could	not	be	queried.	For	more
information	about	the
CouldNotQueryTheService
Microsoft	Win32	API	documentation.

mderrCouldNotUnLockObject The	specified	object	could	not	be	unlocked.

mderrCubeDimHasNoDatabaseDim The	specified	dimension	to	be	associated	with	a
cube	does	not	have	a	corresponding	database
dimension.

mderrCubeNotProcessed The	specified	cube	has	not	yet	been	processed.
mderrCustomRollupsNotAvailable Custom	rollups	are	available	only	if	you	install

Analysis	Services	for	Microsoft	SQL	Server
2000	Enterprise	Edition.

mderrDataError An	internal	data	related	error	has	occurred	on
the	Analysis	server.

mderrDefinitionCannotBeEmpty An	empty	definition	was	found	while	merging
partitions.

mderrDefinitionDoesNotContainNameAndValue A	definition	which	does	not	contain	a	name	and
value	was	found	while	merging	partitions.

mderrDeletingTablesOutsideOfTransaction Tables	cannot	be	deleted	outside	of	a
transaction.

mderrDifferentAggregationDatasources Partitions	cannot	be	merged	because	source	and
target	partitions	have	different	relational	data
sources.

mderrDifferentAggregationNumber Partitions	cannot	be	merged	because	source	and
target	partitions	have	different	numbers	of
aggregations.

mderrDifferentAggregationOLAPMode Partitions	cannot	be	merged	because	source	and
target	partitions	have	different	storage	modes.

mderrDifferentAggregationStructure Partitions	cannot	be	merged	because	source	and
target	partitions	have	different	structures	or
storage	modes.

mderrDifferentRemoteServers Cannot	merge	two	partitions	that	are	on	different
servers.

mderrDimensionChangingCannotAddLevel The	specified	changing	dimension	is	being	used
in	a	cube,	and	either	does	not	support	adding	a
new	lowest	level,	or	it	has	an
AggregationUsage
dimAggUsageDetailsOnly
dimAggUsageStandard
changing	the	top	level.

mderrDimensionLockedByCube Dimension	is	locked	because	it	is	currently
being	used	in	a	cube.	Remove	the	dimension
from	the	cube	to	unlock	the	dimension.

mderrDimensionMemberNotFound A	member	was	found	in	the	fact	table,	but	not	in
the	dimension.

mderrDimensionNotInUnderlyingCubes Cannot	add	to	a	virtual	cube	a	dimension	that	is
not	in	any	of	the	cubes	on	which	the	virtual	cube
is	based.

mderrDimensionWritebackNotAvailable Dimension	writebacks	are	available	only	if	you
install	Analysis	Services	for	Microsoft	SQL
Server2000	Enterprise	Edition.

mderrDuplicateKeyInCollection Cannot	add	to	a	collection	an	item	with	the	same
name	as	an	item	already	in	the	collection.

mderrExecuteSQL An	error	occurred	while	attempting	to	execute	a
SQL	statement	against	a	data	source.

mderrFileError An	internal	file	system	error	has	occurred	on	the
Analysis	server.

mderrFormulaError An	internal	formula	related	error	has	occurred.
mderrFuncNotSupportedError An	unsupported	function	was	called	by	a

Multidimensional	Expressions	(MDX)
statement.

mderrIllegalMeasureType Invalid	measure	data	type	found	in	returned
SQL	rowset.

mderrIllegalObjectName Cannot	assign	an	invalid	name	to	an	object.
mderrImpersonateError An	internal	error	has	occurred	on	the	Analysis

server.
mderrInconsistentAggregations An	inconsistency	has	been	found	in	the

aggregations	of	a	specified	partition	or
partitions.

mderrInitializationFailed Processing	could	not	be	initialized	on	the
specified	DSO	object.

mderrInternal An	internal	error	occurred	within	the	DSO
library.

mderrInternetError An	error	occurred	with	a	linked	cube	that	is
available	through	an	HTTP	connection.

mderrinvalidAggregateFunction An	invalid	aggregate	function	was	specified.
mderrInvalidAggregationLevel An	invalid	aggregation	level	was	specified.
mderrInvalidAggUsage The	AggregationUsage

incompatible	with	current	settings	for	the
dimension.

mderrInvalidCubeBadFactTableAlias The	SourceTableAlias
incorrectly.

mderrInvalidCubeDrillThroughNotProperlyDefined The	drillthrough	options	for	the	cube	are	not
correctly	defined.

mderrInvalidCubeInconsistentAggregations Cannot	create	a	cube	with	a	distinct	count
measure	and	add	aggregations	that	are	not
compatible	with	the	distinct	count	function.

mderrInvalidCubeMultipleDistinctCountMeasures Cannot	create	a	cube	with	more	than	one
measure	with	an	
aggDistinctCount

mderrInvalidCubeNoVisibleDimensions Cannot	create	a	cube	without	at	least	one	visible
dimension	or	visible	calculated	member.

mderrInvalidCubeNoVisibleMeasures Cannot	create	a	cube	without	at	least	one	visible
measure.

mderrInvalidDataType An	invalid	data	type	was	specified.
mderrInvalidDimensionBadAreMemberKeysUnique The	AreMemberKeysUnique

True	on	a	dimension	with	at	least	one	level	with
AreMemberKeysUnique

mderrInvalidDimensionBadAreMemberNamesUnique The	AreMemberNamesUnique
to	True	on	a	dimension	with	at	least	one	level
with	AreMemberNamesUnique

mderrInvalidDimensionBadDependsOnDimension The	DependsOnDimension
nonexistent	dimension.

mderrInvalidDimensionLevelsAfterHiddenMustBeUnique Must	have	nonunique	keys	in	levels	that	are
below	a	hidden	level.

mderrInvalidDimensionNoMemberValues Cannot	create	a	dimension	that	is	unrelated	to
the	fact	table	and	has	levels	without	custom
rollup	expressions	or	custom	rollup	columns.

mderrInvalidDimensionNoVisibleLevels Cannot	create	a	dimension	without	at	least	one
visible	level.

mderrInvalidDimensionParentChildInvalidLevel Cannot	create	a	parent-child	dimension	that
contains	a	non-parent-child	level	that	is	not	an
(All)	level.

mderrInvalidDimensionParentChildLevelMissing Cannot	create	a	parent-child	dimension	without
a	parent-child	level.

mderrInvalidLevelBadCustomRollupColumn The	level	has	an	invalid	value	for	its
CustomRollupColumn

mderrInvalidLevelBadOrderingMemberProperty The	OrderingMemberProperty
does	not	refer	to	a	member	property	of	the	level.

mderrInvalidLevelBadParentKey A	parent-child	level	has	an	invalid	value	for	its
ParentKeyColumn

mderrInvalidLevelBadSkippedLevelsColumn A	parent-child	level	has	an	invalid	value	for	its
SkippedLevelsColumn

mderrInvalidLevelConflictingMemberProperties A	member	property	has	a	
by	another	member	property	with	an	identical
language	setting.

mderrInvalidLevelGrouping The	value	of	the	
for	the	current	dimension.

mderrInvalidLevelNamingTemplate The	LevelNamingTemplate
to	conflicting	level	names	and	may	cause
problems	during	processing.

mderrInvalidLockType The	LockType	argument	value	specified	in	the
LockObject	method	of	a	DSO	object	is	invalid.
For	more	information	about	valid	lock	types,	see
OlapLockTypes

mderrInvalidMeasure An	invalid	measure	was	specified.
mderrInvalidParent An	object	that	is	not	a	member	of	a	collection

has	no	parent.
mderrInvalidPartBadFactTableAlias The	SourceTableAlias

incorrectly.
mderrInvalidPermission An	invalid	member	security	attribute	was

specified	in	the	
DSO	Role	object.

mderrInvalidProcessType An	invalid	process	type	was	specified	in	the
Process	method	of	a	DSO	object.	For	more

information	about	valid	process	types,	see
ProcessTypes.

mderrInvalidPropertySetting Cannot	add	an	object	to,	or	remove	an	object
from,	a	collection	that	is	read-only.

mderrInvalidRelatedColumn An	invalid	column	name	was	specified	in	the
RelatedColumn
object.

mderrInvalidRemotePartition The	RemoteServer
contains	the	name	of	a	nonexistent	partition.

mderrInvalidRemoteServerName The	RemoteServer
contains	the	name	of	a	nonexistent	server.

mderrInvalidSourceOlapObject An	invalid	object	was	specified	in	the
SourceOlapObject
clsColumn	object.

mderrInvalidStructure The	structure	of	the	object	that	raised	the	error	is
invalid.

mderrInvalidTransactionOperation Unable	to	begin,	commit,	or	rollback	a
transaction	on	a	DSO	
case	of	the	BeginTrans
transaction	is	in	process.	In	the	case	of	the
CommitTrans	or	
transaction	is	currently	in	process.

mderrInvalidVirtualDimensionMustHaveAllLevel Cannot	create	a	virtual	dimension	that	does	not
contain	an	(All)	level.

mderrLastLevelMustBeUnique The	settings	for	the	dimension	require	the
AreMemberKeysUnique
level	in	the	dimension	to	be	True.

mderrLinkedCubeCannotChangeProperty Cannot	change	the	values	of	the	properties
ColumnType	and	
measure	in	a	linked	cube.

mderrLinkedCubeInvalidConnectionString The	ConnectionString
cube	object	contains	incorrect	or	incomplete
information.	It	must	refer	to	a	server	in
Microsoft	SQL	Server	2000	Analysis	Services.

mderrLinkedCubeInvalidServer The	publishing	and	subscribing	servers	need	to
be	different	when	creating	a	linked	cube.

mderrLinkedCubeInvalidSourceCube The	name	of	the	published	cube	is	invalid,	or	the
user	does	not	have	adequate	permissions	to
query	the	cube.

mderrLinkedCubeNoAggregationsAllowed Aggregations	are	not	allowed	for	linked	cubes.
mderrLinkedCubeNotEnoughDimensions While	creating	a	linked	cube,	no	dimensions

were	found	in	the	specified	source	cube.
mderrLinkedCubesNotAvailable Linked	cubes	are	available	only	if	you	install

Analysis	Services	for	Microsoft	SQL	Server
2000	Enterprise	Edition.

mderrLinkedCubeSynchronizationFailed Linked	cube	structure	synchronization	between
subscribing	server	and	publishing	server	failed.

mderrListenError An	internal	error	related	to	real-time	updates	has
occurred	on	the	Analysis	server.

mderrLoadDLLError An	error	occurred	while	loading	a	user-defined
function	library.

mderrLockAccessError Unable	to	lock	an	object	already	locked.
mderrLockCannotBeObtained Unable	to	obtain	a	lock	from	the	server.
mderrLockDescriptionTooLong Lock	description	is	longer	than	permitted.
mderrLockFileCorrupted The	server	reported	that	the	lock	file	is

corrupted.
mderrLockFileMissing The	server	reported	that	the	lock	file	is	missing.
mderrLockNetworkDown Network	error.
mderrLockNetworkNameNotFound Cannot	find	name	on	the	network.
mderrLockNetworkPathNotFound Cannot	find	this	network	path.
mderrLockNotEnoughMemory There	is	not	enough	memory	available	to	create

a	lock	on	a	DSO	object	using	the	
method.

mderrLockObjectNotLocked Cannot	unlock	an	object	that	is	not	locked.
mderrLockSystemError A	lock	cannot	be	obtained	because	of	an

unknown	error.
mderrMeasureDoesNotHaveValidSourceColumn Cannot	add	a	measure	to	a	virtual	cube	if	the

name	of	the	measure's	source	column	is	not	in
the	correct	format.

mderrMemberPropertyNotFound The	member	property	was	not	found.

mderrMemoryError An	internal	memory	related	error	has	occurred
on	the	Analysis	server.

mderrMergedPartitionsMustBothUseIndexedViewsOrTables Partitions	to	be	merged	must	both	use	either
indexed	views	or	aggregation	tables.

mderrMiningModelNotProcessed The	mining	model	cannot	be	updated	because	it
has	not	yet	been	processed.

mderrNameCannotBeChanged Cannot	change	a	DSO	object	name	unless	the
object	is	a	temporary	object.

mderrNameCannotBeEmpty An	object	cannot	have	an	empty	name.
mderrNetworkError An	internal	network	related	error	has	occurred

on	the	Analysis	server.
mderrNoConnectionToServer A	connection	cannot	be	opened	on	the	specified

Analysis	server.
mderrNoEntryPointError An	entry	point	could	not	be	found	while	loading

a	user-defined	function	library.
mderrObjectCantBeProcessedWithItsDimensions A	dimension	used	by	the	specified	DSO	object

has	already	been	processed	in	the	same
transaction.

mderrObjectChangedByAnotherApp Cannot	save	object	because	it	was	not	locked
and	was	changed	by	another	object.

mderrObjectIsNotWriteLocked Cannot	update	an	object	that	is	not	write-locked.
mderrObsoleteError The	reference	to	a	DSO	object	has	become

obsolete.
mderrODBC An	internal	error	has	occurred	in	an	ODBC	data

source	provider.
mderrODBCError An	internal	ODBC	related	error	has	occurred	on

the	Analysis	server.
mderrOSError An	internal	operating	system	related	error	has

occurred	on	the	Analysis	server.
mderrPartitionMustBeProcessed The	partition	associated	with	the	specified	DSO

object	must	first	be	processed.
mderrProcessError An	internal	processing	error	has	occurred	within

the	DSO	library.
mderrPropertyCannotBeChanged Property	cannot	be	changed	in	this	context.
mderrPropertyCollectionCannotBeChanged An	internal	error	occurred	while	merging

partitions.
mderrRealTimeUpdatesNotAvailable Real-time	updates	are	available	only	if	you

install	Analysis	Services	for	Microsoft	SQL
Server	2000	Enterprise	Edition.

mderrRegistryConnectFailed An	error	occurred	while	connecting	to	the
registry.

mderrRegistryOpenKeyFailed An	error	occurred	while	opening	a	registry	key.
mderrRegistryQueryValueFailed An	error	occurred	while	retrieving	a	value	from

a	registry	key.
mderrRemotePartitionCannotHaveWriteableDimension A	remote	partition	cannot	contain	a	write-

enabled	dimension.
mderrRepositoryConnectionFailed Object	repository	may	be	read-only.
mderrRepositoryConnectionStringChanged Another	application	has	changed	the	repository

connection	string	for	the	specified	Analysis
Server.	You	need	to	close	and	reopen	this	server
connection	in	order	to	continue.

mderrRepositoryIncompatible Repository	is	incompatible	with	this	version	of
DSO.	Verify	that	your	DSO	version	is
compatible	with	your	repository	version.

mderrRepositoryUpgradeFailed An	error	occurred	while	attempting	to	update
the	repository	for	the	specified	Analysis	server.

mderrRevertError An	internal	error	has	occurred	on	the	Analysis
server.

mderrROLAPDimensionsNotAvailable Relational	OLAP	(ROLAP)	dimensions	are
available	only	if	you	install	Analysis	Services
for	Microsoft®	SQL	Server™	2000	Enterprise
Edition.

mderrROLAPDimensionsRequireROLAPPartition Cannot	add	a	relational	OLAP	(ROLAP)
dimension	to	a	non-ROLAP	partition.

mderrSecurityError An	internal	security	error	has	occurred	on	the
Analysis	server.

mderrSelectError An	internal	SQL	error	has	occurred	on	the
Analysis	server.

mderrServerInternal An	internal	error	has	occurred	on	the	specified
Analysis	server.

mderrServerObjectNotFound The	specified	Analysis	server	could	not	be
found.

mderrServerObjectNotOpened The	specified	Analysis	server	was	not	opened
before	attempting	an	action	with	an	object
associated	with	the	Analysis	server.

mderrSkippedLevelsNotAvailable Skipped	levels	and	ragged	hierarchies	are
available	only	if	you	install	Analysis	Services
for	Microsoft	SQL	Server	2000	Enterprise
Edition.

mderrSourceDoesNotExist Cannot	merge	partitions	because	the	source
partition	does	not	exist.

mderrStructureHasChanged The	structure	of	the	specified	object	has
changed.

mderrTargetDoesNotExist Cannot	merge	partitions	because	the	target
partition	does	not	exist.

mderrTimeOut Connection	to	the	Analysis	server	timed	out.
mderrTimeoutError A	timeout	error	has	occurred	on	the	Analysis

server.
mderrTooManyDimensionMembers More	than	the	allowed	maximum	of	64,000

dimension	member	children	for	a	single	parent
member.

mderrTooManyLevelsInDimension The	maximum	number	of	ungrouped	levels	in	a
dimension	is	64,	that	is,	63	plus	an	(All)	level.

mderrTooManyMissingMemberKeys The	maximum	number	of	dimension	key
processing	errors	has	been	exceeded.

mderrUnexpectedError An	unexpected	internal	error	has	occurred.
mderrUnsuccesfullServiceOperation The	Analysis	server	service

(MSSQLServerOLAPService)	is	not	running	on
the	specified	computer.

mderrUserDefinedPartitionsNotAvailable User-defined	partitions	are	available	only	if	you
install	Analysis	Services	for	Microsoft	SQL
Server	2000	Enterprise	Edition.

mderrValidateLastLevelMustBeUnique The	AreMemberKeysUnique
False	on	the	last	level	of	a	regular	dimension
with	IsChanging

Analysis	Services	Programming

GroupingValues
Enumerates	values	for	the	Grouping	property.

Constant Description
groupingAutomatic Level	members	are	grouped	automatically	by	the

Analysis	server.
groupingNone Level	members	are	not	grouped.

Analysis	Services	Programming

HideIfValues
Enumerates	values	for	the	HideMemberIf	property.

Constant Description
hideIfBlankName A	level	member	is	hidden	when	its

name	is	empty.
hideIfOnlyChildAndBlankName A	level	member	is	hidden	when	it	is

the	only	child	of	its	parent	and	its
name	is	null	or	an	empty	string.

hideIfOnlyChildAndParentsNameA	level	member	is	hidden	when	it	is
the	only	child	of	its	parent	and	its
name	is	the	same	as	its	parent's	name.

hideIfParentsName A	level	member	is	hidden	when	its
name	is	identical	to	that	of	its	parent.

hideNever Level	members	are	never	hidden.

Analysis	Services	Programming

LanguageValues
Enumerates	values	for	the	Language	property	of	a	member	property.	These
values	are	based	on	the	PrimaryLangIDs	defined	in	Microsoft®	Windows	NT®
4.0	and	Windows®	2000.	PrimaryLangIDs	can	be	derived	directly	from	a
LocaleID.

Constant Description
languageAfrikaans Property	associated	with	Afrikaans
languageAlbanian Property	associated	with	Albanian
languageAny Property	associated	with	any	language
languageArabic Property	associated	with	Arabic
languageBasque Property	associated	with	Basque
languageBulgarian Property	associated	with	Bulgarian
languageByelorussian Property	associated	with	Byelorussian
languageCatalan Property	associated	with	Catalan
languageChinese Property	associated	with	Chinese
languageCzech Property	associated	with	Czech
languageDanish Property	associated	with	Danish
languageDutch Property	associated	with	Dutch
languageEnglish Property	associated	with	English
languageEstonian Property	associated	with	Estonian
languageFaeroese Property	associated	with	Faeroese
languageFarsi Property	associated	with	Farsi
languageFinnish Property	associated	with	Finnish
languageFrench Property	associated	with	French
languageGerman Property	associated	with	German
languageGreek Property	associated	with	Greek
languageHebrew Property	associated	with	Hebrew
languageHungarian Property	associated	with	Hungarian
languageIcelandic Property	associated	with	Icelandic
languageIndonesian Property	associated	with	Indonesian

languageItalian Property	associated	with	Italian
languageJapanese Property	associated	with	Japanese
languageKampuchean Property	associated	with	Kampuchean
languageKorean Property	associated	with	Korean
languageLaotian Property	associated	with	Laotian
languageLatvian Property	associated	with	Latvian
languageLithuanian Property	associated	with	Lithuanian
languageMacedonian Property	associated	with	Macedonian
languageMaltese Property	associated	with	Maltese
languageMaori Property	associated	with	Maori
languageNorwegian Property	associated	with	Norwegian
languagePolish Property	associated	with	Polish
languagePortuguese Property	associated	with	Portuguese
languageRhaetoRomanic Property	associated	with	RhaetoRomanic
languageRomanian Property	associated	with	Romanian
languageRussian Property	associated	with	Russian
languageSami Property	associated	with	Sami
languageScotsGaelic Property	associated	with	ScotsGaelic
languageSerboCroatian Property	associated	with	SerboCroatian
languageSlovak Property	associated	with	Slovak
languageSlovenian Property	associated	with	Slovenian
languageSorbian Property	associated	with	Sorbian
languageSpanish Property	associated	with	Spanish
languageSutu Property	associated	with	Sutu
languageSwedish Property	associated	with	Swedish
languageThai Property	associated	with	Thai
languageTsonga Property	associated	with	Tsonga
languageTswana Property	associated	with	Tswana
languageTurkish Property	associated	with	Turkish
languageUkrainian Property	associated	with	Ukrainian
languageUrdu Property	associated	with	Urdu
languageVenda Property	associated	with	Venda
languageVietnamese Property	associated	with	Vietnamese

languageXhosa Property	associated	with	Xhosa
languageZulu Property	associated	with	Zulu

Analysis	Services	Programming

LevelTypes
Enumerates	values	for	the	LevelType	property.

Constant Description
levAccount Indicates	that	a	level	exists	within	an	account

dimension.
levAll Indicates	the	top	(All)	level	of	a	dimension	(the

one	that	precalculates	all	the	members	of	all
lower	levels).

levBOMResource Indicates	that	a	level	is	part	of	a	bill	of	materials
dimension.

levChannel Indicates	that	a	level	exists	within	a	distribution
channel	dimension.

levCompany Indicates	that	a	level	contains	information	about	a
company.

levCurrencyDestination Indicates	that	a	level	contains	information	about
the	resulting	currency	after	a	foreign	exchange
conversion.

levCurrencySource Indicates	that	a	level	contains	information	about
the	starting	currency	before	a	foreign	exchange
conversion.

levCustomer Indicates	that	a	level	contains	information	about
an	individual	customer.

levCustomerGroup Indicates	that	a	level	contains	information	about	a
customer	group.

levCustomerHousehold Indicates	that	a	level	contains	information	about
an	entire	household.

levGeoCity Indicates	that	a	level	refers	to	a	city	name.
levGeoContinent Indicates	that	a	level	refers	to	a	continent	name.
levGeoCountry Indicates	that	a	level	refers	to	a	country	name.
levGeoCounty Indicates	that	a	level	refers	to	a	county	name.
levGeoPoint Indicates	that	a	level	refers	to	a	location	type	that

does	not	fit	into	the	other	geographic	categories.
levGeoPostalCode Indicates	that	a	level	refers	to	a	postal	code.
levGeoRegion Indicates	that	a	level	refers	to	a	custom-defined

region.
levGeoStateOrProvince Indicates	that	a	level	refers	to	a	state	or	province

name.
levOrgUnit Indicates	that	a	level	refers	to	the	name	of	a	unit

within	a	larger	organization.
levPerson Indicates	that	a	level	refers	to	an	individual

within	a	larger	organization.
levProduct Indicates	that	a	level	refers	to	an	individual

product.
levProductGroup Indicates	that	a	level	refers	to	a	product	group.
levPromotion Indicates	that	a	level	refers	to	a	promotion.
levQuantitative Indicates	that	a	level	refers	to	a	quantitative

member	within	a	quantitative	dimension.
levRegular Indicates	that	the	level	is	not	related	to	time.
levRepresentative Indicates	that	a	level	refers	to	a	sales

representative.
levScenario Indicates	that	a	level	refers	to	a	scenario.
levTimeDays Indicates	that	a	level	refers	to	days.	It	must	be

used	in	a	dimension	whose	type	is	dimTime.
levTimeHalfYears Indicates	that	a	level	refers	to	half-years.	It	must

be	used	in	a	dimension	whose	type	is	dimTime.
levTimeHours Indicates	that	a	level	refers	to	hours.	It	must	be

used	in	a	dimension	whose	type	is	dimTime.
levTimeMinutes Indicates	that	a	level	refers	to	minutes.	It	must	be

used	in	a	dimension	whose	type	is	dimTime.
levTimeMonths Indicates	that	a	level	refers	to	months.	Must	be

used	in	a	dimension	whose	type	is	dimTime.
levTimeQuarters Indicates	that	a	level	refers	to	(calendar)	quarters.

It	must	be	used	in	a	dimension	whose	type	is
dimTime.

levTimeSeconds Indicates	that	a	level	refers	to	seconds.	It	must	be
used	in	a	dimension	whose	type	is	dimTime.

levTimeUndefined Indicates	that	a	level	refers	to	an	indeterminate	or
nonstandard	measurement	of	time.	It	must	be
used	in	a	dimension	whose	type	is	dimTime.

levTimeWeeks Indicates	that	a	level	refers	to	weeks.	It	must	be
used	in	a	dimension	whose	type	is	dimTime.

levTimeYears Indicates	that	a	level	refers	to	years.	It	must	be
used	in	a	dimension	whose	type	is	dimTime.

levUtility Indicates	that	a	level	refers	to	a	calculated
member	in	a	utility	dimension.

Analysis	Services	Programming

MembersWithDataValues
Enumerates	values	for	the	MembersWithData	property.

Constant Description
DataforLeafMembersOnly Only	leaf	members	can	have	data	in	the

fact	table.	A	processing	error	occurs	if
data	for	a	nonleaf	member	appears	in
the	fact	table.

dataforNonLeafMembersHiddenAny	member	(except	the	All	member)
can	have	data	in	the	fact	table.	Data	for
nonleaf	members	is	hidden	(totals	may
not	appear	to	add	up	correctly).

dataforNonLeafMembersVisible Any	member	(except	the	All	member)
can	have	data	in	the	fact	table.	Data	for
nonleaf	members	is	visible	in	system-
generated	leaf	members.

Analysis	Services	Programming

OlapEditions
Enumerates	values	for	the	Edition	property	of	objects	of	ClassType	clsServer.

Constant Description
OlapEditionUnlimited The	Analysis	server	supports	full	functionality.

Typically	indicates	Analysis	Services	for
Microsoft®	SQL	Server™	2000	Enterprise
Edition.

OlapEditionPivotOnly Reserved	for	future	use.
OlapEditionNoPartitions The	Analysis	server	does	not	support	user-

defined	partitions.	Typically	indicates	Analysis
Services	for	SQL	Server	2000	Standard	Edition.

OlapEditionError The	edition	of	the	Analysis	server	cannot	be
determined.

Analysis	Services	Programming

OlapLockTypes
Enumerates	values	for	the	LockType	parameter	of	the	LockObject	method,
implemented	by	most	objects	in	the	Decision	Support	Objects	(DSO)	library.

Constant Description
OlapLockExtendedReadThe	object's	properties	can	be	read	by	other

applications,	but	they	cannot	be	changed	or
processed.	This	lock	is	used	to	prevent
processing	of	dependent	objects	of	an	object	that
is	being	processed,	such	as	dimensions	that	are
shared	by	multiple	cubes.	Multiple
olapLockExtendedRead	locks	can	be	applied
to	an	object	by	multiple	applications.	However,
no	application	can	lock	the	object	for	processing
or	updating	until	all	olapLockExtendedRead
locks	have	been	released.

OlapLockProcess The	object's	Process	method	can	be	initiated,
and	other	applications	can	read	the	object's
properties	only	until	the	lock	is	released.	Only
one	olapLockProcess	lock	can	be	applied	to	an
object	at	a	time,	and	other	applications	can	only
apply	olapLockRead	locks	while	the
olapLockProcess	lock	is	in	place.

OlapLockRead The	properties	of	the	object	can	be	read	from	the
repository	and	cannot	be	changed	by	another
application	until	the	lock	is	released.	Other
applications	can	issue	olapLockRead,
olapLockExtendedRead,	and
olapLockProcess	locks,	but	not	olapLockWrite
locks,	while	the	initial	olapLockRead	lock	is	in
place.

OlapLockWrite The	properties	of	the	object	can	be	modified	in
the	repository	using	the	Update	method,	and

they	are	not	available	to	other	applications	for
any	use	until	the	lock	is	released.	No	other	locks
of	any	type	can	be	applied	to	the	object	until	the
olapLockWrite	lock	is	released.

See	Also

LockObject

Analysis	Services	Programming

OlapStateTypes
Enumerates	values	for	the	State	property	for	objects	other	than	server	objects.

Constant Description
OlapStateCurrent The	state	of	the	object	is	current.
OlapStateMemberPropertiesChangedThe	member	properties	of	the

object	have	changed.
OlapStateNeverProcessed The	object	has	never	been

processed.
OlapStateSourceMappingChanged The	source	mapping	for	the	object,

such	as	the	MemberKeyColumn
or	ParentKeyColumn	properties
of	a	clsDatabaseDimension
object,	has	changed.

olapStateStructureChanged The	structure	of	the	object	has
changed.

See	Also

ServerStates

Analysis	Services	Programming

OlapStorageModes
Enumerates	values	for	the	OlapMode	property.

Constant Description Applies	to
olapmodeAggsMolapIndexReserved	for	future	use. n/a
olapmodeAggsRolap Reserved	for	future	use. n/a
olapmodeHybridIndex Fact	table	data	is	stored	in

relational	OLAP
(ROLAP),	and
aggregations	are	stored	in
multidimensional	OLAP
(MOLAP).

Databases,	cubes,
and	partitions
(excluding	virtual
cubes	and	linked
cubes)

olapmodeMolapIndex Fact	table	data	is	stored	in
MOLAP,	and	aggregations
are	stored	in	MOLAP.

Databases,	cubes,
and	partitions
(excluding	virtual
cubes)

olapmodeRolap All	data	is	stored	in
ROLAP.

Databases,	cubes,
and	partitions
(excluding	virtual
cubes	and	linked
cubes)

See	Also

OlapMode

Analysis	Services	Programming

OrderTypes
Enumerates	values	for	the	Ordering	property.

Constant Description
OrderKey Members	are	ordered	in	MemberKeyColumn

sequence.
orderMemberPropertyMembers	are	ordered	according	to	the	instructions

of	a	member	property.
orderName Members	are	ordered	in	MemberNameColumn

sequence.

For	more	information,	see	OrderingMemberProperty.

Analysis	Services	Programming

ProcessOptimizationModes
Enumerates	values	for	the	ProcessOptimizationMode	property.

Constant Description
processOptimizationModeLazyOptimizations The	object	supports	lazy

optimization	processing.
Data	is	read	from	the	data
source	and	stored	within
the	processing	transaction.
Indexing	and	aggregating
are	performed	afterward.

ProcessOptimizationModeRegular The	object	uses	normal
processing.	Data	is	read
from	the	data	source	and
stored,	indexed,	and
aggregated	within	the
processing	transaction.

For	more	information,	see	ProcessOptimizationMode.

Analysis	Services	Programming

ProcessTypes
Enumerates	values	for	the	Option	parameter	of	the	Process	method.

Constant Description
processBuildStructure Applies	only	to	cubes.	Processing	a	cube

ordinarily	causes	the	Analysis	server	to
read	all	source	data	corresponding	to	the
definition	of	the	cube,	create	the	cube,	and
populate	it	with	data.

This	option	causes	the	Analysis	server	to
create	the	cube	(that	is,	build	its	structure)
but	not	populate	it	with	data.	Instead,	the
cube	exists	as	an	empty	shell	on	the	server.
A	user	can	connect	to	the	cube,	but	it
contains	no	data.

This	option	can	have	performance	benefits.
If	you	do	not	use	this	option	(see
processDefault),	the	partitions	in	a	cube
are	processed	sequentially.	If	you	do	use	it,
you	can	process	the	partitions	in	parallel.

processDefault The	default	option.	It	causes	the	system	to
decide	what	processing	method	is	best.
Typically	this	means	that	the	system	will
try	to	refresh	the	object's	data
(processRefreshData)	unless	its	structure
has	changed	or	it	no	longer	exists.	In	the
latter	case,	the	system	will	perform	a	full
processing	(processFull).

processFull Causes	the	object	to	be	fully	processed	or
rebuilt.	The	object's	structure	is	changed	if
needed	and	its	data	is	refreshed	(that	is,
discarded	and	repopulated).	This	is	the

most	complete	type	of	processing
supported.	See	processRefreshData.

processReaggregate Applies	only	to	cubes	and	partitions.	This
option	is	similar	to	processRefreshData,
except	that	it	instructs	the	Analysis	server
to	rebuild	maps,	full	indexes,	and
aggregations	for	multidimensional	OLAP
(MOLAP)	partitions.

processRefreshData Causes	the	object	data	to	be	refreshed	(that
is,	discarded	and	repopulated),	but	does
not	change	the	object's	structure.	This
operation	occurs	inside	a	transaction,
allowing	you	to	continue	using	current
data	while	the	transaction	takes	place.
When	the	transaction	is	committed,	the
new	data	is	available.	See	processFull.

ProcessRefreshDataAndIndexApplies	only	to	cubes	and	partitions.
Similar	to	processRefreshData,	except
this	option	instructs	the	Analysis	server	to
build	full	indexes	for	the	partitions.

processResume Directs	the	Analysis	server	to	resume
responding	to	user	queries	against	a	cube
that	has	had	queries	suspended.	The
Analysis	server	will	automatically	resume
responding	to	queries	after	5	minutes
unless	processResume	is	received	first.

processSuspend Directs	the	Analysis	server	to	suspend
responses	to	user	queries	against	a	cube	so
your	application	can	perform	operations
such	as	merging	fact	tables.	The	Analysis
server	automatically	resumes	responding
to	queries	after	5	minutes	(earlier	if	you
submit	a	processResume	request).

Suspend	Timeout
The	timeout	value	for	the	processResume	and	processSuspend	constants	can	be

changed	by	using	the	following	registry	key:

\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLAP	Server\
Olap	Manager	Info\SuspendTimeout

The	registry	key	stores	the	value	as	a	long	integer	representing	the	timeout	in
milliseconds.	For	example,	to	change	the	timeout	to	2	minutes,	the	value	would
be	set	to	120000.	If	the	registry	key	is	missing,	the	default	value	of	5	minutes
(300000	milliseconds)	is	used	by	Decision	Support	Objects	(DSO).

Processing	and	Dependent	Objects
The	DSO	hierarchy	can	be	complex,	involving	objects	that	depend	on	other
objects.	This	is	particularly	true	of	mining	model	objects,	which	may	have
dependent	virtual	cube	or	mining	dimension	objects.

If	the	object	to	be	processed	depends	on	other	objects,	such	as	a	mining
dimension	which,	in	turn,	depends	on	an	OLAP	mining	model,	processing	the
object	will	cause	the	objects	on	which	it	depends	to	be	processed,	but	only	if	the
State	property	of	the	objects	on	which	it	depends	is	not	set	to
olapStateCurrent.

If	other	objects	depend	on	the	object	to	be	processed,	such	as	an	OLAP	mining
model	with	an	associated	mining	dimension	or	a	virtual	cube,	processing	the
object	causes	the	dependent	objects	to	be	processed,	but	only	if	the	State
property	of	the	dependent	objects	is	not	set	to	olapStateNeverProcessed.

Analysis	Services	Programming

PropertyTypeValue
Enumerates	the	values	used	in	the	PropertyType	property.

Constant Description
propAddress Address
propAddressBuilding Address	-	building	number
propAddressCity Address	–	city
propAddressCountry Address	–	country
propAddressFax Address	–	facsimile	number
propAddressFloor Address	–	floor	number
propAddressHouse Address	–	house	number
propAddressPhone Address	–	telephone	number
propAddressQuarter Address	–	quarter
propAddressRoom Address	–	room	number
propAddressStateorProvice Address	–	state	or	province
propAddressStreet Address	–	street	name
propAddressZip Address	–	postal	code
propCaption Caption
propCaptionAbreviation Caption	–	abbreviation
propCaptionDescription Caption	–	description
propCaptionShort Caption	–	short	name
PropDate Date
propDateCanceled Date	–	canceled	date
propDateDuration Date	–	duration	date
propDateEnded Date	–	end	date
propDateModified Date	–	modified	date
propDateStart Date	–	start	date
propFormattingColor Format	–	color
propFormattingFont Format	–	font	name
propFormattingFontEffects Format	–	font	effects

propFormattingFontSize Format	–	font	size
propFormattingOrder Format	–	sort	order
propFormattingSubTotal Format	–	subtotal
propGeoBoundaryBottom Geographical	boundary	–	bottom
propGeoBoundaryFront Geographical	boundary	–	front
propGeoBoundaryLeft Geographical	boundary	–	left
propGeoBoundaryPolygon Geographical	boundary	–	polygon
propGeoBoundaryRear Geographical	boundary	–	rear
propGeoBoundaryRight Geographical	boundary	–	right
propGeoBoundaryTop Geographical	boundary	–	top
propGeoCentroidX Geographical	boundary	–	X	centroid
propGeoCentroidY Geographical	boundary	–	Y	centroid
propGeoCentroidZ Geographical	boundary	–	Z	centroid
propID Property	–	ID
propOrgTitle Property	–	organizational	title
propPersonContact Person	–	contact	person
propPersonDemographic Person	–	demographic	information
propPersonFirstName Person	–	first	name
propPersonFullName Person	–	full	name
propPersonLastName Person	–	last	name
propPersonMiddleName Person	–	middle	name
propPhysicalColor Physical	property	–	color
propPhysicalDensity Physical	property	–	density
propPhysicalDepth Physical	property	–	depth
propPhysicalHeight Physical	property	–	height
propPhysicalSize Physical	property	–	size
propPhysicalVolume Physical	property	–	volume
propPhysicalWeight Physical	property	–	weight
propPhysicalWidth Physical	property	–	width
propQtyRangeHigh Quantity	–	high	end	of	range
propQtyRangeLow Quantity	–	low	end	of	range
propRegular	 Regular	(default)
propRelationToParent Relationship	to	parent

propSequence Sequence
propVersion Version
propWebHTML HTML	information
propWebMailAlias E-mail	address
propWebURL URL	address
propWebXMLorXSL XML	or	XSL	information

Analysis	Services	Programming

RootIfValues
Enumerates	values	for	the	RootMemberIf	property.

Constant Description
rootifParentIsBlank Only	members	with	a	null,	a	zero,

or	an	empty	string	in	their
ParentKeyColumn	are	treated	as
root	members.

rootifParentIsBlankOrSelfOrMissingMembers	are	treated	as	root
members	if	they	meet	one	or	more
of	the	conditions	specified	by
rootifParentIsBlank,
rootifParentIsSelf,	or
rootifParentIsMissing.

rootifParentIsMissing Only	members	with	parents	that
cannot	be	found	are	treated	as	root
members.

rootifParentIsSelf Only	members	with	themselves	as
parents	are	treated	as	root
members.

Analysis	Services	Programming

ServerStates
Enumerates	values	for	the	State	property	of	server	objects.

Constant Description
stateConnected The	attempt	to	connect	to	the	server	succeeded.
stateFailed The	attempt	to	connect	to	the	server	failed.
stateUnknown The	application	has	disconnected	from	the	server	or	has

not	yet	connected	to	the	server.

See	Also

clsServer

Analysis	Services	Programming

StorageModeValues
Enumerates	values	for	the	StorageMode	property	of	dimension	objects.

Constant Description
storeasROLAP Dimension	members	are	not	read	during	processing

and	are	left	in	the	relational	data	source.
storeasMOLAP Dimension	members	are	read	during	processing	and

are	stored	in	the	Analysis	server.

Analysis	Services	Programming

SubClassTypes
Enumerates	values	for	the	SubClassType	property.

Constant Description Applies	to
sbclsRegular Indicates	that	the	object	is	a

regular	object.

In	the	case	of	a	cube,	it
indicates	that	the	cube	is	neither
linked	nor	virtual.

All	objects

sbclsLinked Indicates	that	the	cube	is	linked
to	another	cube	on	a	remote
Analysis	server.

clsCube
clsCubeDimension
(only	for	a	private
dimension	of	a	linked
cube)

sbclsMining Indicates	that	the	dimension	is
based	on	the	content	of	an
OLAP	data	mining	model	that
has	processed	against	a	cube.

clsCubeDimension

sbclsOLAP Indicates	that	the	data	mining
model	or	data	mining	column	is
based	on	an	OLAP	cube.

clsMiningModel
clsColumn

sbclsParentChild Indicates	that	the	level	is	a
parent-child	level.

clsAggregationLevel
clsDatabaseLevel
clsCubeLevel
clsPartitionLevel

sbclsRelational Indicates	that	the	data	mining
model	or	data	mining	column	is
based	on	a	relational	database.

clsMiningModel
clsColumn

sbclsRemote Indicates	that	the	partition	is
located	on	a	remote	Analysis
server.

clsPartition

sbclsVirtual Indicates	that	the	object	is	a clsCube

virtual	cube.

See	Also

Virtual	Cubes

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Collections
Collections	used	in	Decision	Support	Objects	(DSO)	generally	operate	the	way
standard	Microsoft®	Visual	Basic®	collections	do.	However,	there	are	several
differences	specific	to	DSO.	DSO	collections	contain	methods	and	properties
that	have	implementations	specifically	designed	for	the	DSO	object	model.

Unlike	typical	Visual	Basic	collections,	DSO	collections	can	contain	only
objects	of	the	same	type.	For	example,	a	Dimensions	collection	can	contain	only
objects	of	the	object	classes	that	apply	to	dimensions,	such	as	ClassType
clsDatabaseDimension,	clsCubeDimension,	clsPartitionDimension,	and
clsAggregationDimension.	The	parent	object	of	a	collection	determines	the
specific	ClassType	property	value	for	the	collection.	For	example,	a
Dimensions	collection	whose	parent	is	of	ClassType	clsDatabase	can	contain
only	objects	of	ClassType	clsDatabaseDimension.

A	collection	is	considered	to	be	static	for	an	object	if	the	range	of	acceptable
objects	in	the	collection	is	restricted.	For	example,	the	Roles	collection	for	an
object	of	ClassType	clsCube	is	a	static	collection	because	it	can	only	contain
role	objects	that	are	defined	for	the	cube's	parent	database	object.

The	following	table	lists	the	collections	used	in	the	DSO	object	model.	With	the
exception	of	CustomProperties,	all	collections	implement	the	methods	and
properties	supported	by	the	clsCollection	object.	For	more	information	about	the
implemented	properties	and	methods	for	clsCollection	objects,	see
clsCollection.

Collection Contains	objects	of	ClassType
Commands clsCubeCommand	clsDatabaseCommand
Columns Column	objects	that	make	up	a	mining

model's	structure
(ClassType	does	not	apply)

CustomProperties Property	Object	
(ClassType	does	not	apply)

DataSources clsDataSource
Dimensions clsAggregationDimension

clsCubeDimension

clsDatabaseDimension
clsPartitionDimension

Levels clsAggregationLevel
clsCubeLevel
clsDatabaseLevel
clsPartitionLevel

MDStores clsAggregation
clsCube
clsDatabase
clsPartition

Measures clsAggregationMeasure
clsCubeMeasure
clsPartitionMeasure

MemberProperties clsMemberProperty
MiningModels clsMiningModel
Roles clsCubeRole

clsDatabaseRole

See	Also

Methods,	clsCollection

Properties,	clsCollection

Nested	Collections

Analysis	Services	Programming

Nested	Collections
For	members	of	a	collection	that	is	itself	a	collection	of	an	object	contained	in
another	collection,	you	can	use	an	intermediate	object	to	access	each	collection.
For	example,	if	object	dsoObject	has	a	collection	Collection1	that	contains
objects	of	type	dsoObject1,	and	each	of	these	has	a	collection	Collection2	that
contains	objects	of	type	dsoObject2,	you	can	access	properties	of	dsoObject2
objects	by	setting	a	temporary	object	to	the	intermediate	dsoObject1.

Dim	TempObject,	TempProp
'	Retrieve	the	first	level	object.
Set	TempObject	=	dsoObject.Collection1(i)
'	Retrieve	the	property.			
TempProp	=	TempObject.Collection2(j).property

Access	to	the	property	directly	through	nested	collection	references	is	not
implemented	in	Decision	Support	Objects	(DSO)	collections.	For	example,	the
following	statement	will	produce	an	error:

TempProp	=	dsoObject.Collection1(i).Collection2(j).property	

See	Also

Collections

Analysis	Services	Programming

Commands	Collection
A	Command	object	encapsulates	a	user-defined	command	or	sequence	of
commands	that	are	automatically	executed	on	the	Microsoft®	SQL	Server™
2000	Analysis	Services	client	when	the	user	accesses	the	cube	or	database.	Such
commands	can	include	calculated	members,	named	sets,	library	references,	and
so	on.

Each	of	the	following	objects	contains	a	Commands	collection:

clsCube

clsMiningModelRole

clsCubeRole

clsDatabaseRole

Each	Commands	collection	contains	command	objects	of	the	same	class	type.
The	ContainedClassType	property	of	a	Commands	collection	specifies	the
class	type	of	the	contained	objects.

Class	type Contained	class	type
clsCube clsCubeCommand
clsCubeRole clsCubeCommand
clsDatabaseRole clsDatabaseCommand

Remarks
The	relative	position	of	commands	within	a	Commands	collection	determines
the	order	in	which	the	commands	are	executed.	This	is	important	because	it	is
possible	to	write	commands	that	depend	on	previous	commands	in	the
collection.	For	example,	a	named	set	can	contain	a	previously	defined	calculated

member.

As	with	other	Decision	Support	Objects	(DSO)	collections,	the	Add,	AddNew,
Find,	and	Remove	methods	of	Commands	collections	maintain	all	necessary
parent-child	relationships	among	the	objects	in	the	object	model.

Note		The	Commands	collection	of	objects	of	ClassType	clsDatabase	is
reserved	for	future	use.

See	Also

Collections

Collection	Methods

Collection	Properties

Analysis	Services	Programming

CustomProperties	Collection
The	CustomProperties	collection	applies	to	all	Decision	Support	Objects
(DSO)	objects	and	enables	you	to	define	unique	properties	for	DSO	objects.	The
CustomProperties	collection	contains	Property	objects	that	you	define	to	store
information	you	want	to	associate	with	a	DSO	object.	For	more	information
about	defining	custom	properties,	see	Property	Object.

Access
Read/write

Remarks
The	CustomProperties	collection	implements	its	own	methods	and	properties,
which	operate	differently	than	those	of	other	DSO	collections.

Example
Use	the	following	code	example	to	add	and	retrieve	custom	property	objects:

'	Assume	the	existence	of	an	object	of	ClassType	clsDimension.
'	Add	a	custom	property.
		Dim	dsoProp	As	DSO.Property
		Set	dsoProp	=	dsoDim.CustomProperties.Add(55,	"Age",	vbInteger)

'	Retrieve	custom	property	values.
		Dim	dsoProp2	As	DSO.Property
		Set	dsoProp2	=	dsoDim.CustomProperties(1)
		Debug.Print	dsoProp2.Name,	dsoProp2.Value

See	Also

Collections

Methods,	CustomProperties

Properties,	CustomProperties

Analysis	Services	Programming

Methods,	CustomProperties
The	following	methods	apply	to	the	CustomProperties	collection.	They	do	not
apply	to	other	Decision	Support	Objects	(DSO)	collections.	For	information
about	methods	for	other	DSO	collections,	which	implement	the	OlapCollection
interface,	see	Methods,	clsCollection.

Method Description
Add Adds	a	Property	object	to	a	CustomProperties	collection
Clear Clears	all	Property	objects	from	a	CustomProperties

collection
Item Retrieves	a	Property	object	from	a	CustomProperties

collection
Remove Removes	a	Property	object	from	a	CustomProperties

collection

See	Also

CustomProperties	Collection

Analysis	Services	Programming

Add	(CustomProperties	Collection)
The	Add	method	of	a	CustomProperties	collection	creates	a	new	Property
object,	adds	it	to	the	collection,	and	returns	a	reference	to	the	object.	This
method	applies	only	to	CustomProperties	collections.

Syntax
Set	vRet	=	object.Add(ByVal	Value,	[ByVal	Name	As	String],	[ByVal	DataType
As	VBA.VbVarType)

vRet

A	Variant	variable	that	receives	the	instance	of	the	new	Property	object.
Instead	of	a	variant,	you	can	use	a	variable	that	has	been	declared	as	type
DSO.Property	to	match	the	object	being	retrieved	from	the	collection.

object

An	instance	of	a	CustomProperties	collection.

Value

A	Variant	that	contains	the	value	of	the	Property	object.

Name

(Optional)	A	string	that	specifies	the	name	of	the	Property	object.

DataType

(Optional)	The	data	type	of	the	property.	A	Microsoft®	Visual	Basic®	data
type	defined	in	the	VBA.VbVarType	enumeration.

See	Also

CustomProperties	Collection

Property	Object

Analysis	Services	Programming

Clear	(CustomProperties	Collection)
The	Clear	method	of	a	CustomProperties	collection	clears	the	collection	of	all
entries.	This	method	applies	only	to	CustomProperties	collections.

Syntax
Object.Clear

object

An	instance	of	a	CustomProperties	collection.

See	Also

CustomProperties	Collection

Analysis	Services	Programming

Item	(CustomProperties	Collection)
The	Item	method	of	a	CustomProperties	collection	returns	an	instance	of	an
item	in	the	collection.	This	method	applies	only	to	CustomProperties
collections.

Syntax
Set	vRet	=	object.Item(ByVal	Index)

vRet

A	Variant	variable	that	receives	the	instance	of	the	new	Property	object.
Instead	of	a	variant,	you	can	use	a	variable	that	has	been	declared	as	type
DSO.Property	to	match	the	object	being	retrieved	from	the	collection.

object

An	instance	of	a	CustomProperties	collection.

Index

A	Variant	that	specifies	the	name	or	index	of	the	object	to	retrieve.

See	Also

CustomProperties	Collection

Analysis	Services	Programming

Remove	(CustomProperties	Collection)
The	Remove	method	of	a	CustomProperties	collection	removes	an	item	from
the	collection.

Syntax
object.Remove(ByVal	Index)

object

An	instance	of	a	CustomProperties	collection.

Index

A	Variant	that	specifies	the	name	or	index	of	the	object	to	remove.

See	Also

CustomProperties	Collection

Analysis	Services	Programming

Properties,	CustomProperties
The	following	properties	apply	to	the	CustomProperties	collection.	They	do	not
apply	to	other	Decision	Support	Objects	(DSO)	collections.	For	information
about	properties	for	other	DSO	collections,	which	implement	the
OlapCollection	interface,	see	Properties,	clsCollection.

Property Description
Count The	number	of	Property	objects	in	a	CustomProperties

collection

See	Also

CustomProperties	Collection

Analysis	Services	Programming

Count	(CustomProperties	Collection)
The	Count	property	of	a	CustomProperties	collection	returns	the	number	of
items	in	the	collection.

Data	Type
Integer

Access
Read-only

Example
The	following	code	example	checks	to	see	whether	the	CustomProperties
collection	of	a	database	is	empty:

Dim	dsoServer	As	New	DSO.Server
Dim	dsoDB	As	DSO.Database

'	Connect	to	local	Analysis	server.
dsoServer.Connect	"LocalHost"

'	Get	reference	to	FoodMart	2000	database.
Set	dsoDB	=	dsoServer.MDStores("FoodMart	2000")

'	Check	for	custom	properties.
If	dsoDB.CustomProperties.Count	>	0	Then
				'	There	is	at	least	one	custom	property	in	the
				'	CustomProperties	collection.
End	If

'	Clean	up.

Set	dsoDB	=	Nothing
dsoServer.CloseServer

See	Also

CustomProperties	Collection

Analysis	Services	Programming

Columns	Collection
The	Columns	collection	contains	the	column	objects	that	are	the	foundation	of	a
data	mining	model's	structure.

The	following	object	contains	a	Columns	collection:

clsMiningModel

Remarks

In	order	to	support	nested	tables,	each	column	object	in	the	collection	also
contains	its	own	Columns	collection.	This	collection	is	contained	by	the	mining
model	object	(that	is,	objects	whose	ClassType	property	is	clsMiningModel).	In
addition	to	the	Columns	collection,	the	mining	model	object	also	contains	other
parameters	that	help	to	define	a	model's	function.

For	more	information	about	nested	columns,	see	Data	Mining	Columns.

See	Also

clsMiningModel

clsColumn

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

DataSources	Collection
A	DataSources	collection	in	a	Decision	Support	Objects	(DSO)	object	contains
the	data	sources	that	are	or	can	be	used	by	the	subordinate	objects	in	the	object.

Each	of	the	following	objects	contains	a	DataSources	collection:

clsCube

clsDatabase

clsMiningModel

clsPartition

Each	subordinate	object	(that	is,	a	cube,	a	partition,	or	a	shared	dimension)	can
have	a	unique	data	source.	For	example,	although	a	cube	can	contain	only	one
data	source	in	its	DataSources	collection,	each	partition	or	shared	dimension
within	the	cube	can	have	a	unique	data	source.

Regardless	of	the	object	in	which	it	resides,	each	DataSources	collection
contains	objects	of	ClassType	clsDataSource.

Remarks
The	DataSources	collection	contains	the	name,	connection	string,	and	other
information	used	to	attach	to	a	data	provider.

Note		An	object	of	ClassType	clsDatabase	may	have	more	than	one	data	source
contained	in	the	DataSources	collection,	while	an	object	of	ClassType	clsCube
can	contain	only	one	data	source	in	its	DataSources	collection.	Objects	of
ClassType	clsMiningModel	and	SubClassType	sbclsRegular	will	have	an
OLE	DB	provider	as	a	data	source.	For	objects	of	ClassType	clsMiningModel
and	SubClassType	sbclsOlap,	the	data	source	is	assumed	to	be	the	same	as	for
the	object	where	the	mining	model	is	stored.

See	Also

clsCube

clsDatabase

clsMiningModel

Collections

Collection	Methods

Collection	Properties

Analysis	Services	Programming

Dimensions	Collection
A	Dimensions	collection	holds	the	dimension	definitions	for	a	Decision	Support
Objects	(DSO)	object.	Each	of	the	following	objects	contains	a	Dimensions
collection:

clsDatabase

clsCube

clsPartition

clsAggregation

Each	Dimensions	collection	contains	dimension	objects	of	the	same	class	type.
The	ContainedClassType	property	of	a	Dimensions	collection	specifies	the
class	type	of	the	contained	objects.

Class	type Contained	class	type
clsAggregation clsAggregationDimension
clsCube clsCubeDimension
clsDatabase clsDatabaseDimension
clsPartition clsPartitionDimension

Remarks
As	with	other	collections	in	the	DSO	object	model,	the	AddNew,	Find,	and
Remove	methods	of	Dimensions	collections	maintain	all	necessary	parent-child
relationships	among	the	objects	in	the	object	model.

See	Also

Collections

Collection	Methods

Collection	Properties

Analysis	Services	Programming

Levels	Collection
The	Levels	collection	holds	the	level	definitions	for	a	Decision	Support	Objects
(DSO)	object.	Each	of	the	following	objects	contains	a	Levels	collection:

clsDatabaseDimension

clsCubeDimension

clsPartitionDimension

clsAggregationDimension

Each	Levels	collection	contains	level	objects	of	the	same	class	type.	The
ContainedClassType	property	of	a	Levels	collection	specifies	the	class	type	of
the	contained	objects.

Class	type Contained	class	type
clsAggregationDimension clsAggregationLevel
clsCubeDimension clsCubeLevel
clsDatabaseDimension clsDatabaseLevel
clsPartitionDimension clsPartitionLevel

Remarks
As	with	other	collections	in	the	DSO	object	model,	the	AddNew,	Find,	and
Remove	methods	of	Levels	collections	maintain	all	necessary	parent-child
relationships	among	the	objects	in	the	object	model.

See	Also

Collections

Collection	Methods

Collection	Properties

Dimension	Interface

Analysis	Services	Programming

MDStores	Collection
The	MDStores	collection	holds	objects	that	implement	the	MDStore	interface.
For	example,	a	myDatabase.MDStores	collection	contains	objects	of	ClassType
clsCube,	and	a	myCube.	MDStores	collection	contains	objects	of	ClassType
clsPartition.	For	more	information	about	this	hierarchy,	see	Decision	Support
Objects.

Each	of	the	following	objects	contains	an	MDStores	collection:

clsServer

clsDatabase

clsCube

clsPartition

Each	MDStores	collection	contains	MDStore	objects	of	the	same	class	type,	as
noted	in	the	following	table.	The	ContainedClassType	property	of	an
MDStores	collection	specifies	the	class	type	of	the	contained	objects.

Class	type Contained	class	type
clsCube clsPartition
clsDatabase clsCube
clsPartition clsAggregation
clsServer clsDatabase

Remarks
As	with	other	collections	in	the	Decision	Support	Objects	(DSO)	object	model,
the	AddNew,	Find,	and	Remove	methods	of	MDStores	collections	maintain	all
necessary	parent-child	relationships	among	the	objects	in	the	object	model.

See	Also

Collections

Collection	Methods

Collection	Properties

Analysis	Services	Programming

Measures	Collection
The	Measures	collection	holds	the	measure	definitions	for	a	Decision	Support
Objects	(DSO)	object.	Each	of	the	following	objects	contains	a	Measures
collection:

clsCube

clsPartition

clsAggregation

Each	Measures	collection	contains	measure	objects	of	the	same	class	type.	The
ContainedClassType	property	of	a	Measures	collection	specifies	the	class	type
of	the	contained	objects.

Class	type Contained	class	type
clsAggregation clsAggregationMeasure
clsCube clsCubeMeasure
clsPartition clsPartitionMeasure

Remarks
As	with	other	DSO	collections,	the	AddNew,	Find,	and	Remove	methods	of
Measures	collections	maintain	all	necessary	parent-child	relationships	among
the	objects	in	the	object	model.

See	Also

Collections

Collection	Methods

Collection	Properties

MDStore	Interface

Analysis	Services	Programming

MemberProperties	Collection
The	MemberProperties	collection	contains	objects	of	ClassType
clsMemberProperty.	Each	of	the	following	objects	contains	a
MemberProperties	collection:

clsDatabaseLevel

clsCubeLevel

clsPartitionLevel

See	Also

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsMemberProperty

clsPartitionLevel

Collections

Collection	Methods

Collection	Properties

Level	Interface

Analysis	Services	Programming

MiningModels	Collection
The	MiningModels	collection	contains	the	data	mining	models	within	a
database.

The	following	object	contains	a	MiningModels	collection:

clsDatabase

Each	MiningModels	collection	contains	the	data	mining	model	objects	that
make	up	the	data	mining	models	for	the	entire	database.

Remarks
The	ContainedClassType	property	for	this	collection	always	returns
clsMiningModel.

Example
The	following	example	connects	to	an	Analysis	server	and	creates	a	data	mining
model	in	the	FoodMart	2000	sample	database	called	FoodMartMiningModel:

Dim	s	as	DSO.Server
Dim	db	as	DSO.MDStores	'	Create	an	interface	for	the	FoodMart	2000
'	database.
Dim	dmm	as	DSO.MiningModel
'	Connect	to	the	server.
Set	s	=	new	DSO.Server
s.Connect	("LocalHost")
'	Get	a	reference	to	the	FoodMart	2000	database.
set	db	=	s.MDStores("FoodMart	2000")
'Create	the	data	mining	model	using	the	AddNew	method.
set	dmm	=	db.MiningModels.AddNew("FoodMartMiningModel")
'	...	Continue	by	setting	various	properties	for	the	new	object...

See	Also

clsMiningModel

clsDatabase

clsServer

Analysis	Services	Programming

Roles	Collection
The	Roles	collection	holds	the	user	role	definitions	for	a	Decision	Support
Objects	(DSO)	object.	Each	of	the	following	objects	contains	a	Roles	collection:

clsDatabase

clsCube

clsMiningModel

Each	Roles	collection	contains	role	objects	of	the	same	class	type.	The
ContainedClassType	property	of	a	Roles	collection	specifies	the	class	type	of
the	contained	objects.

Class	type Contained	class	type
clsCube clsCubeRole
clsDatabase clsDatabaseRole
clsMiningModel clsMiningModelRole

Remarks
As	with	other	DSO	collections,	the	AddNew,	Find,	and	Remove	methods	of
Roles	collections	maintain	all	necessary	parent-child	relationships	among	the
objects	in	the	object	model.

Note		The	UsersList	property	is	maintained	by	clsDatabaseRole,	and	the
Permissions	property	is	maintained	by	clsCubeRole.

See	Also

Collection	Methods

Collection	Properties

Collections

Permissions

UsersList

Analysis	Services	Programming

Add-ins
In	Microsoft®	SQL	Server™	2000	Analysis	Services,	Analysis	Manager
supports	the	integration	of	custom	programs,	referred	to	as	add-ins,	that	can
interact	with	and	enhance	the	Analysis	Manager	user	interface.	You	can	create
and	register	add-ins	that	will	be	called	by	the	Microsoft	OLAP	Services	Add-Ins
Manager	library	in	response	to	user	activity	in	the	Analysis	Manager	user
interface.	Your	custom	add-ins	can	optionally	use	Decision	Support	Objects
(DSO)	to	manage	server	objects.	Multiple	add-ins	can	be	registered.

Topic Description
About	Add-ins General	information	about	add-in	programs
Building	Add-ins Step-by-step	introduction	to	building	an	add-in

program
Programmer's	Reference
(Add-ins)

References	for	the	objects,	properties,	methods,
and	collections	used	in	implementing	an	add-in
program

Analysis	Services	Programming

About	Add-ins
Microsoft®	Management	Console	(MMC)	is	used	by	Microsoft	SQL	Server™
2000	Analysis	Services	and	other	server	software	and	services	to	offer	a
consistent	user	interface.	Analysis	Services	provides	a	snap-in	program	that
operates	within	MMC	and	calls	the	Microsoft	OLAP	Services	Add-ins	Manager
library,	which	in	turn	calls	registered	add-ins.	The	Analysis	Manager	user
interface	is	implemented	as	an	add-in	and	is	called	by	the	Analysis	Services
Add-Ins	Manager	in	the	same	way	that	your	custom	add-in	will	be	called.	The
functionality	for	the	Analysis	Services	Add-In	Manager	is	supplied	by	the
Microsoft	OLAP	Services	Add-Ins	Manager	library,	named	Msmdadin.dll.

Your	add-in	can	add	nodes	to	the	structure	in	the	tree	pane	as	the	user	selects	or
expands	a	node	and	can	augment	node	menus	with	items	that	will	cause	your
program	to	be	called	when	those	items	are	selected.	Analysis	Manager	allows
multiple	custom	add-ins	to	be	registered	and	operating	at	the	same	time.

Some	ideas	for	custom	add-ins	are:

Reporting	tools

You	can	use	custom	add-ins	to	create	reports	on	multidimensional	meta
data	or	usage-based	analysis.

Scheduling	tools

You	can	use	custom	add-ins	to	create	scheduling	tools	that	handle
automatic	routine	administrative	activities.

Maintenance	tools

You	can	create	custom	add-ins	to	back	up	data	and	meta	data.

Copying	and	transferring

You	can	create	custom	add-ins	to	transfer	data	from	a	multidimensional
data	source	to	a	spreadsheet	or	other	analysis	tool.

Analysis	Services	Programming

Building	Add-ins
To	create	a	custom	add-in,	add	Microsoft	OLAP	Services	Add-ins	Manager	to
the	available	references	for	your	Microsoft®	Visual	Basic®	project.	This	library
contains	the	classes,	objects,	methods,	properties,	enumerations,	and	collections
you	can	use	in	your	program.	For	more	information,	see	Tutorial	-	Creating	a
Sample	Add-in	and	Programmer's	Reference	(Add-ins).

Decision	Support	Objects	(DSO)	can	also	be	used	in	a	custom	add-in.	To	use
DSO	in	an	add-in,	add	Microsoft	Decision	Support	Objects	to	the	available
references	for	your	project.	For	more	information,	see	Using	Decision	Support
Objects.

Your	add-in	can	add	nodes	to	the	structure	in	the	tree	pane	as	the	user	selects	or
expands	a	node	and	can	augment	node	menus	with	items	that	will	cause	your
program	to	be	called	when	those	items	are	selected.

The	Microsoft	OLAP	Services	Add-Ins	Manager	library	calls	your	custom	add-
in	to	display	the	objects	in	the	Analysis	Manager	user	interface	and	to	respond	to
user	activity.	If	your	program	does	not	implement	the	required	IOlapAddIn
interface	as	specified	here,	Analysis	Manager	may	fail	to	operate	as	designed.

To	create	a	Microsoft	SQL	Server™	2000	Analysis	Services	add-in,	you	must:

Create	a	Microsoft	ActiveX®	DLL	project	in	Visual	Basic,	using	the
name	of	your	custom	add-in	as	the	project	name.

Create	one	publicly	exposed	class	that	implements	the	IOlapAddIn
interface.

Provide	your	own	implementation	of	each	of	the	IOlapAddIn	methods.

Register	your	custom	add-in	in	the	registry.

See	Also

Decision	Support	Objects

IOlapAddIn	Interface

Analysis	Services	Programming

Tutorial	-	Creating	a	Sample	Add-in
Step	through	the	topics	in	this	section	to	create	a	sample	user	interface	add-in.	If
you	work	through	these	exercises	in	order,	you	will	create	a	project	in
Microsoft®	Visual	Basic®	that	performs	the	following	functions:

Registers	the	custom	add-in.

Initializes	a	Visual	Basic	project.

Adds	code	to	implement	a	form	and	place	new	tree	nodes	within	the
Analysis	Manager	tree	pane.

Adds	menu	items	to	the	new	tree	nodes.

Registering	a	Custom	Add-in

Add-ins	are	registered	in	the	following	registry	key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLAP	Server\Olap	Manager	Info\Addins

Each	custom	add-in	contains	a	string	value	entry	in	this	registry	key	and	its	own
key	in	the	registry	as	well.	The	string	value	in	the	Addins	key	and	the	Addins
key	itself	must	have	the	same	name.

CAUTION		The	registry	keys	DSOInfo	and	MoveRepository	are	default	keys
created	when	you	install	Microsoft	SQL	Server™	2000	Analysis	Services.	They
should	not	be	modified	or	deleted.	Doing	so	will	have	adverse	affects	on	the
intended	operation	of	Analysis	Manager	and	may	result	in	the	loss	of	data.

Creating	an	Addins	Key	and	Key	Values
First,	in	Registry	Editor,	navigate	to	the	following	key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLAP	Server\Olap	Manager	Info\Addins

Second,	create	a	new	String	Value	entry	for	the	Addins	key	named
OlapSampleAddIn.	Set	the	value	of	this	new	entry	to	True.	This	instructs	the
Microsoft	OLAP	Services	Add-Ins	Manager	library	to	automatically	load	the
add-in	when	Microsoft	Management	Console	(MMC)	is	started.	Leaving	this
value	blank	or	setting	it	to	False	will	prevent	the	add-in	from	loading.

Third,	create	a	new	registry	key	for	the	OlapSampleAddIn	string	value.	This
new	key	must	have	the	same	name	as	the	registry	key,	that	is,
OlapSampleAddIn.	You	should	now	have	a	string	value	in	the	Addins	key	and
a	new	registry	key	with	the	same	name.

Fourth,	select	the	new	OlapSampleAddIn	key	and	add	four	new	string	values	to
this	key.	They	are	listed	in	the	following	table.

Key	string	value Description
ClassName The	project	and	the	exposed	interface	class
Name The	name	displayed	on	the	Add-ins	tab	of	the

Properties	dialog	box	in	Analysis	Manager
Description The	description	displayed	on	the	Add-ins	tab	of

the	Properties	dialog	box	in	Analysis	Manager
Priority The	loading	priority	that	the	Microsoft	OLAP

Services	Add-Ins	Manager	library	uses	to	load
add-ins

The	values	for	each	key	string	are	listed	in	the	following	table.

Key	string	value Setting
ClassName OlapSampleAddIn.MyAddIn
Name Sample	AddIn
Description Sample	OLAP	Manager	AddIn
Priority 2

Note		If	you	are	providing	custom	add-ins	to	others,	you	will	need	to	provide	an
installation	procedure	that	describes	or	automatically	creates	the	required
registry	entries	before	your	add-in	will	function.

Creating	the	MyAddIn	Project	in	Visual	Basic
First,	create	a	Microsoft	ActiveX®	DLL	project	in	Visual	Basic	and	set	the	name
of	the	project	to	OlapSampleAddIn.	Change	the	name	of	the	publicly	exposed
class	to	MyAddIn.	(This	corresponds	to	the	ClassName	registry	key	value.)

Next,	set	Instancing	to	5	-	MultiUse	in	the	Properties	window	for	the	class.

Then,	add	Microsoft	OLAP	Services	Add-ins	Manager	to	the	project
references.	(You	must	have	previously	installed	Microsoft	SQL	Server™	2000
Analysis	Services	for	this	reference	to	be	available.)

Next,	add	a	form	to	the	project	named	SampleForm.	Add	a	command	button
named	cmdClose	to	this	form.

Lastly,	add	the	following	code	to	the	Form	class:

Public	Index	As	Integer
Private	Sub	cmdClose_Click()
		Me.Hide
End	Sub

Implementing	IOlapAddIn
The	example	code	in	this	topic	implements	the	IOlapAddIn	interface.	Place	the
following	code	in	the	Declarations	section	of	the	MyAddIn	class:

Option	Explicit
Implements	IOlapAddIn

Const	ThisAddInName	=	"My	Sample	AddIn"
Private	m_SampleForms	As	Collection

Private	Enum	MenuActions
		mnuactRename	=	1
		mnuactAddNewForm
		mnuactRefreshList
		mnuactDeleteSampleForm
		mnuactShowSampleForm

		mnuactShowTop
		mnuactShowCenter
		mnuactShowBottom
End	Enum
	
Private	Enum	SampleIcons
		icoForms	=	1
		icoForm
End	Enum
	

In	the	Objects	box,	click	IOlapAddIn.

In	the	Procedures	box,	select	each	method	that	the	IOlapAddIn	interface
provides.	This	creates	an	implementation	for	each	method	within	your	class.

Add	the	following	code	to	the	Class_Initialize	method:

Private	Sub	Class_Initialize()
		On	Error	GoTo	Initialize_Err
	
		Set	m_SampleForms	=	New	Collection
		Dim	frmSample	As	New	SampleForm
		
		frmSample.Caption	=	"Sample	Form	1"
		frmSample.Index	=	1
		m_SampleForms.Add	frmSample,	"Sample	Form	1"
		
		Exit	Sub

Initialize_Err:
		Debug.Print	Err.Number,	Err.Description,	Err.Source
		Debug.Assert	False
		MsgBox	"An	Error	Occurred	in	Class_Initialize"
		Err.Clear

		Exit	Sub
End	Sub

Add	the	following	code	to	the	IOlapAddIn_Name	property	method:

Private	Property	Get	IOlapAddIn_Name()	As	String
		IOlapAddIn_Name	=	ThisAddInName
End	Property

Adding	New	Tree	Nodes
The	example	code	in	this	topic	initializes	your	custom	add-in	to	add	new	nodes
to	the	tree	node	display.	You	must	implement	this	code	before	the	examples	later
in	this	section	will	work.

Add	the	following	code	to	the	IOlapAddIn_ProvideChildNodes	method:

Private	Sub	IOlapAddIn_ProvideChildNodes(_
				ParentNode	As	DSSAddInsManager.OlapTreeNode,	_
				OlapTreeNodes	As	DSSAddInsManager.OlapTreeNodes)
		On	Error	GoTo	IOlapAddIn_ProvideChildNodes_Err
		If	ParentNode.Caption	=	"Analysis	Servers"	Then
				OlapTreeNodes.Add	"Sample	Forms",	icoForms
		ElseIf	ParentNode.Caption	=	"Sample	Forms"	Then
				Dim	frm	As	Form
				For	Each	frm	In	m_SampleForms
						OlapTreeNodes.Add	frm.Caption,	icoForm
				Next
		End	If
		Exit	Sub
IOlapAddIn_ProvideChildNodes_Err:
		Debug.Print	Err.Number,	Err.Description,	Err.Source
		Debug.Assert	False
		MsgBox	"Provide	Child	Nodes	Failed"
		Err.Clear
		Exit	Sub

End	Sub

Run	the	application.

With	the	Visual	Basic	project	executing,	start	Analysis	Manager,	and	then
browse	the	tree	pane.	You	should	see	the	new	tree	nodes	added	to	the	bottom	of
the	tree.

Adding	New	Menu	Items
The	example	code	in	this	step	adds	new	menu	items	to	the	tree	nodes	that	were
added	in	the	previous	exercise.	You	must	implement	this	code	before	the
examples	later	in	this	section	will	work.

Add	the	following	code	to	the	IOlapAddIn_ProvideMenuItems	method:

Private	Sub	IOlapAddIn_ProvideMenuItems(_
				CurrentNode	As	DSSAddInsManager.OlapTreeNode,	_
				MenuItems	As	DSSAddInsManager.OlapMenuItems)
		On	Error	GoTo	IOlapAddIn_ProvideMenuItems_Err
		Dim	iFlags	As	OlapMenuFlags
		
		'	The	Microsoft	OLAP	Services	Add-Ins	Manager	calls	this	method	
		'	each	time	a	tree	node	is	accessed.	
		'	Because	multiple	add-ins	are	supported,
		'	verify	that	this	is	the	correct	tree	node	to	respond	to.
		If	CurrentNode.OwnerAddInName	<>	ThisAddInName	Then	Exit	Sub
		
		Select	Case	CurrentNode.Caption
				Case	"Sample	Forms"
						MenuItems.Add	mnuStandard,	"&Form",	_
										mnuactAddNewForm,	,	mnuflagNew
						MenuItems.Add	mnuStandard,	"&Refresh",	_
										mnuactRefreshList,	,	mnuflagNew
						
				Case	Else

						MenuItems.Add	mnuStandard,	"&Show",	_
										mnuactShowSampleForm,	,	mnuflagPopup
						MenuItems.Add	mnuStandard,	"&Top",	mnuactShowTop,	_
										mnuactShowSampleForm,	mnuflagSubmenu
						MenuItems.Add	mnuStandard,	"&Center",	_
										mnuactShowCenter,	mnuactShowSampleForm,	_
										mnuflagSubmenu
						MenuItems.Add	mnuStandard,	"&Bottom",	_
										mnuactShowBottom,	mnuactShowSampleForm,	_
										mnuflagSubmenu
						MenuItems.Add	mnuSeparator
						MenuItems.Add	mnuStandard,	"&Rename"
						MenuItems.Add	mnuStandard,	"&Delete",	_
										mnuactDeleteSampleForm,	,	mnuflagDeleteKey
		End	Select
		Exit	Sub
IOlapAddIn_ProvideMenuItems_Err:
		Debug.Print	Err.Number,	Err.Description,	Err.Source
		Debug.Assert	False
		MsgBox	"Provide	Menu	Items	Failed"
		Err.Clear
		Exit	Sub
End	Sub
	

Run	the	application.

With	the	Visual	Basic	project	executing,	start	Analysis	Manager,	and	then
browse	the	tree	pane.	Right-click	one	of	the	new	tree	nodes,	and	then	examine
the	added	menu	items.

Responding	to	Menu	Item	Selection
The	example	code	in	this	topic	adds	code	to	respond	to	user	selection	of	the
menu	items	added	in	the	previous	example.

Add	the	following	method	to	the	MyAddIn	class:

Private	Function	IsNameUsed(szName	As	String,	_
				col	As	Collection)	As	Boolean
		On	Error	GoTo	IsNameUsed_Err
		Dim	vTmp	As	Variant
		Set	vTmp	=	col(szName)
		IsNameUsed	=	True
		Exit	Function
IsNameUsed_Err:
		IsNameUsed	=	False
		Err.Clear
		Exit	Function
End	Function

Add	the	following	code	to	the	IOlapAddIn_ExecuteMenuItems	method:

Private	Function	IOlapAddIn_ExecuteMenuItem(_
				CurrentNode	As	DSSAddInsManager.OlapTreeNode,	_
				MenuItem	As	DSSAddInsManager.OlapMenuItem)	_
				As	DSSAddInsManager.RefreshTreeTypes
		On	Error	GoTo	IOlapAddIn_ExecuteMenuItem_Err
		Dim	frmSample	As	SampleForm
		Dim	szFormCaption	As	String
		Dim	szNodeCaption	As	String
		Dim	iFormIndex	As	Integer
		
		szNodeCaption	=	CurrentNode.Caption
		
		Select	Case	MenuItem.Key
				Case	mnuactRename
						Dim	szName	As	String
						Dim	tmpForm	As	SampleForm
						Set	tmpForm	=	m_SampleForms(szNodeCaption)

						
						m_SampleForms.Remove	szNodeCaption
						
						Do
								szName	=	InputBox("Please	enter	the	new	name:",	_
												"Rename	a	Form",	szNodeCaption)
								If	Len(szName)	=	0	Then
										MsgBox	_
														"The	name	must	not	be	a	zero	length	string",	_
														vbExclamation,	"Invalid	Name"
								Else
										Exit	Do
								End	If
						Loop
						
						tmpForm.Caption	=	szName
						
						If	tmpForm.Index	<=	m_SampleForms.Count	Then
								m_SampleForms.Add	tmpForm,	szName,	tmpForm.Index
						Else
								'	This	is	the	only	item	in	the	list
								'	or	it	was	at	the	end	of	the	list.
								'	No	need	to	specify	a	before	value
								m_SampleForms.Add	tmpForm,	szName
						End	If
						
						'	Manually	tell	the	Microsoft	OLAP	Services	Add-Ins	Manager	to	
						'	refresh	the	tree
						IOlapAddIn_ExecuteMenuItem	=	reftreeCurrentAndBelow
						
				Case	mnuactShowTop
						Set	frmSample	=	m_SampleForms(szNodeCaption)
						frmSample.Move	(Screen.Width	-	frmSample.Width)	/	2,	0

						frmSample.Show	vbModal
						
				Case	mnuactShowCenter
						Set	frmSample	=	m_SampleForms(szNodeCaption)
						frmSample.Move	(Screen.Width	-	frmSample.Width)	/	2,	_
										(Screen.Height	-	frmSample.Height)	/	2
						frmSample.Show	vbModal
						
				Case	mnuactShowBottom
						Set	frmSample	=	m_SampleForms(szNodeCaption)
						frmSample.Move	(Screen.Width	-	frmSample.Width)	/	2,	_
										Screen.Height	-	frmSample.Height
						frmSample.Show	vbModal
						
				Case	mnuactAddNewForm
						Set	frmSample	=	New	SampleForm
						iFormIndex	=	m_SampleForms.Count
						
						Do
								iFormIndex	=	iFormIndex	+	1
								szFormCaption	=	"Sample	Form	"	&	iFormIndex
						Loop	While	IsNameUsed(szFormCaption,	m_SampleForms)
						
						frmSample.Caption	=	szFormCaption
						frmSample.Index	=	iFormIndex
						
						m_SampleForms.Add	frmSample,	szFormCaption
						
						Set	frmSample	=	Nothing
						
						'	Tell	Microsoft	OLAP	Services	Add-Ins	Manager	to	refresh	the	tree
						IOlapAddIn_ExecuteMenuItem	=	reftreeCurrentAndBelow
	

				Case	mnuactDeleteSampleForm
						m_SampleForms.Remove	szNodeCaption
						
				Case	mnuactRefreshList
						IOlapAddIn_ExecuteMenuItem	=	reftreeCurrentAndBelow
						
		End	Select
Exit	Function

IOlapAddIn_ExecuteMenuItem_Err:
		Debug.Print	Err.Number,	Err.Description,	Err.Source
		Debug.Assert	False
		MsgBox	"Execute	Menu	Item	Failed"
		Err.Clear
		Exit	Function
End	Function

Run	the	application.

With	the	Visual	Basic	project	executing,	start	Analysis	Manager,	and	then
browse	the	tree	pane.	Right-click	one	of	the	new	tree	nodes,	and	then	click	a
menu	item.

Analysis	Services	Programming

Example	-	Report	Add-in
The	following	example	shows	how	to	create	an	add-in	that	incorporates	Decision
Support	Objects	(DSO)	functionality.	A	pop-up	menu	item	named	List	is	added
to	the	server	tree	node	with	options	to	list	Database,	Cube,	Dimension,	and
Level	objects.	Before	you	can	use	this	example	code,	perform	the	following
steps:

1.	 In	Microsoft®	Visual	Basic®,	create	a	Microsoft	ActiveX®	DLL
project.	Name	the	project	ReportAddIn	and	the	publicly	exposed
class	ReportClass.	Ensure	that	references	have	been	added	for
Microsoft	OLAP	Services	Add-Ins	Manager	and	Microsoft	Decision
Support	Objects.

2.	 Register	the	add-in.	

3.	 Add	a	form	to	the	project	and	name	it	ReportForm.	Include	a	ListBox
control	named	ObjectList.

For	more	information,	see	Tutorial	-	Creating	a	Sample	Add-in.

Place	the	following	code	into	the	ReportClass	class:

Option	Explicit
Implements	IOlapAddIn

Private	dsoServer	As	DSO.Server				'DSO	Server	object
Private	frmReport	As	ReportForm
Const	OLAPManagerName	=	"OLAP	Manager"
Const	ThisAddInName	=	"ReportAddIn"

Private	Enum	MenuItems
		mnuParentMenuItem	=	1
		mnuListDatabase
		mnuListCube

		mnuListDimension
		mnuListLevel
		mnuObjList
End	Enum

Private	Sub	Class_Initialize()
		Set	frmReport	=	New	ReportForm
End	Sub

Private	Function	IOlapAddIn_ExecuteMenuItem(_
				CurrentNode	As	DSSAddInsManager.OlapTreeNode,	_
				MenuItem	As	DSSAddInsManager.OlapMenuItem)	_
				As	DSSAddInsManager.RefreshTreeTypes
		Dim	dsoDB	As	DSO.MDStore					'Database
		Dim	dsoCube	As	MDStore							'Cube
		Dim	dsoDim	As	DSO.Dimension		'Dimension
		Dim	dsoLev	As	DSO.Level						'Level
		Dim	DBCounter	As	Integer
		Dim	CubeCounter	As	Integer
		Dim	DimCounter	As	Integer
		Dim	LevCounter	As	Integer
		
		Select	Case	MenuItem.Key
				Case	mnuListDatabase				'List	database	objects
						frmReport.Caption	=	"Database	Objects"
						For	DBCounter	=	1	To	dsoServer.MDStores.Count
								Set	dsoDB	=	dsoServer.MDStores(DBCounter)
								frmReport.ObjectList.AddItem	dsoDB.Name
						Next	DBCounter
						
				Case	mnuListCube								'List	cube	objects
						frmReport.Caption	=	"Cube	Objects"
						For	DBCounter	=	1	To	dsoServer.MDStores.Count

								Set	dsoDB	=	dsoServer.MDStores(DBCounter)
								frmReport.ObjectList.AddItem	dsoDB.Name
								For	CubeCounter	=	1	To	dsoDB.MDStores.Count
										Set	dsoCube	=	dsoDB.MDStores(CubeCounter)
										frmReport.ObjectList.AddItem	"		"	&	dsoCube.Name
								Next	CubeCounter
						Next	DBCounter
						
				Case	mnuListDimension				'List	dimension	objects
						frmReport.Caption	=	"Dimension	Objects"
						For	DBCounter	=	1	To	dsoServer.MDStores.Count
								Set	dsoDB	=	dsoServer.MDStores(DBCounter)
								frmReport.ObjectList.AddItem	dsoDB.Name
								For	CubeCounter	=	1	To	dsoDB.MDStores.Count
										Set	dsoCube	=	dsoDB.MDStores(CubeCounter)
										frmReport.ObjectList.AddItem	"		"	&	dsoCube.Name
										For	DimCounter	=	1	To	dsoCube.Dimensions.Count
												Set	dsoDim	=	dsoCube.Dimensions(DimCounter)
												frmReport.ObjectList.AddItem	"						"	&	_
																dsoDim.Name
										Next	DimCounter
								Next	CubeCounter
						Next	DBCounter
						
				Case	mnuListLevel								'List	level	objects
						frmReport.Caption	=	"Level	Objects"
						For	DBCounter	=	1	To	dsoServer.MDStores.Count
								Set	dsoDB	=	dsoServer.MDStores(DBCounter)
								frmReport.ObjectList.AddItem	dsoDB.Name
								For	CubeCounter	=	1	To	dsoDB.MDStores.Count
										Set	dsoCube	=	dsoDB.MDStores(CubeCounter)
										frmReport.ObjectList.AddItem	"		"	&	dsoCube.Name
										For	DimCounter	=	1	To	dsoCube.Dimensions.Count

												Set	dsoDim	=	dsoCube.Dimensions(DimCounter)
												frmReport.ObjectList.AddItem	"						"	&	_
																dsoDim.Name
												For	LevCounter	=	1	To	dsoDim.Levels.Count
														Set	dsoLev	=	dsoDim.Levels(LevCounter)
														frmReport.ObjectList.AddItem	_
																		"										"	&		dsoLev.Name
												Next	LevCounter
										Next	DimCounter
								Next	CubeCounter
						Next	DBCounter
						
		End	Select
		
		'Display	the	form
		frmReport.Show

End	Function

Private	Function	IOlapAddIn_GetObject(_
				LinkedNode	As	DSSAddInsManager.OlapTreeNode)	As	Object

End	Function

Private	Property	Get	IOlapAddIn_Name()	As	String
		IOlapAddIn_Name	=	ThisAddInName
End	Property

Private	Sub	IOlapAddIn_ProvideChildNodes(_
				ParentNode	As	DSSAddInsManager.OlapTreeNode,	_
				OlapTreeNodes	As	DSSAddInsManager.OlapTreeNodes)
		'No	child	nodes	needed
End	Sub

Private	Sub	IOlapAddIn_ProvideHTML(_
				CurrentNode	As	DSSAddInsManager.OlapTreeNode,	_
				CurrentURL	As	String)
		'	If	custom	HTML	pages	are	needed	-
		'	CurrentURL	=	"{custom.htm}"
End	Sub

Private	Function	IOlapAddIn_ProvideIcon(Index	As	Integer)	_
				As	stdole.OLE_HANDLE
		'No	icons	needed
End	Function

Private	Sub	IOlapAddIn_ProvideMenuItems(_
				CurrentNode	As	DSSAddInsManager.OlapTreeNode,	_
				MenuItems	As	DSSAddInsManager.OlapMenuItems)
		Dim	iFlags	As	OlapMenuFlags
		
		If	CurrentNode.OwnerAddInName	=	OLAPManagerName	Then
				'Do	we	have	as	server?
				If	CurrentNode.LinkedObject.ClassType	=	clsServer	Then
						Set	dsoServer	=	CurrentNode.LinkedObject
						
						'If	not	connected	to	server,	disable	menu	item
						If	dsoServer.State	=	stateConnected	Then
								iFlags	=	mnuflagRegular	+	mnuflagPopup
						Else
								iFlags	=	mnuflagGrayed	+	mnuflagPopup
						End	If
						
						'Add	popup	menu	item
						MenuItems.Add	mnuSeparator
						MenuItems.Add	mnuStandard,	"&List",	_

										mnuParentMenuItem,	,	iFlags
						
						'Add	popup	menu	child	menu	items
						MenuItems.Add	mnuStandard,	"&Database",	_
										mnuListDatabase,	mnuParentMenuItem,	mnuflagSubmenu
						MenuItems.Add	mnuStandard,	"&Cube",	_
										mnuListCube,	mnuParentMenuItem,	mnuflagSubmenu
						MenuItems.Add	mnuStandard,	"&Dimension",	_
										mnuListDimension,	mnuParentMenuItem,	mnuflagSubmenu
						MenuItems.Add	mnuStandard,	"&Level",	_
										mnuListLevel,	mnuParentMenuItem,	mnuflagSubmenu
				End	If
		End	If
End	Sub
	

Analysis	Services	Programming

Programmer's	Reference	(Add-ins)
The	Microsoft	OLAP	Services	Add-Ins	Manager	library,	Msmdadin.dll,	contains
the	classes,	objects,	methods,	properties,	enumerations,	and	collections	you	can
use	in	your	program.

CAUTION		It	is	important	that	your	program	use	only	those	elements	of	the
Microsoft	OLAP	Services	Add-Ins	Manager	library	that	are	documented	here.
The	use	of	undocumented	library	elements	that	may	be	exposed	in	the	Object
Browser	can	cause	indeterminate	results	and	possible	loss	of	data.

The	Microsoft	OLAP	Services	Add-Ins	Manager	library	calls	your	custom	add-
in	as	it	displays	objects,	such	as	tree	nodes	and	menu	items,	in	the	Analysis
Manager	user	interface,	and	in	response	to	user	activity	with	any	object,
including	objects	your	custom	add-in	did	not	create,	in	Analysis	Manager.
Therefore,	your	custom	add-in	must	implement	the	required	IOlapAddIn
interface,	as	specified	in	this	section,	or	Analysis	Manager	may	fail	to	operate	as
designed.

To	create	a	custom	add-in,	add	Microsoft	OLAP	Services	Add-Ins	Manager	to
the	available	references	for	your	Microsoft®	Visual	Basic®	project.

The	following	topics	further	detail	the	elements	of	the	Microsoft	OLAP	Services
Add-Ins	Manager	library.

Topic Description
Interfaces Discusses	the	IOlapAddIn	interface,

including	its	properties	and	methods
Objects Covers	the	OlapMenuItem	and

OlapTreeNode	objects,	including
their	properties

Enumerations Details	several	enumerations	used	by
the	rest	of	the	library

Collections Provides	information	on	the
properties	and	methods	of	the
OlapMenuItems	and
OlapTreeNodes	collections

Analysis	Services	Programming

Interfaces
Although	the	Microsoft	OLAP	Services	Add-Ins	Manager	library	includes
several	interfaces,	only	one	needs	to	be	implemented	in	order	for	you	to	take
advantage	of	the	functionality	offered	by	the	library.

The	IOlapAddIn	interface	is	implemented	by	all	custom	applications	for
Analysis	Manager.	Many	of	the	methods	for	the	IOlapAddIn	interface
involving	menu	items	and	tree	nodes	use	the	OlapMenuItem	objects	to	supply
access	to	the	properties	associated	with	a	menu	item	and	the	OlapTreeNode
object	to	supply	access	to	the	properties	associated	with	a	tree	node	in	Analysis
Manager.

See	Also

IOlapAddIn	Interface

Analysis	Services	Programming

IOlapAddIn	Interface
The	IOlapAddIn	interface	supports	the	integration	of	custom	add-in
applications	with	Analysis	Manager.	You	can	use	this	interface	in	conjunction
with	Decision	Support	Objects	(DSO)	to	create	customized	applications	for
managing	DSO	objects	and	controlling	the	server.	This	interface	requires
methods	and	properties.	There	are	no	collections	exposed	by	this	interface,
although	several	methods	employ	collections	as	arguments.

CAUTION		This	interface	must	be	implemented	as	specified	or	your	add-in	(and
other	add-ins,	including	Analysis	Manager)	may	not	operate	correctly.	It	is
possible	for	data	to	be	corrupted	or	lost	as	a	result	of	incorrect	implementation	of
the	IOlapAddIn	interface.

The	Class_Initialize	subroutine	of	the	class	module	in	which	you	have
implemented	the	IOlapAddIn	interface	is	called	before	any	methods	of	your
program	are	called.	After	initialization,	the	Microsoft	OLAP	Services	Add-Ins
Manager	library	can	call	the	methods	of	your	implementation	of	the
IOlapAddIn	interface	any	number	of	times	and	in	any	sequence.

See	Also

Methods,	IOlapAddIn	Interface

Properties,	IOlapAddIn	Interface

Analysis	Services	Programming

Methods,	IOlapAddIn	Interface
The	IOlapAddIn	interface	requires	you	to	implement	the	following	methods.

Note		The	syntax	descriptions	for	the	methods	of	the	IOlapAddIn	interface	are
shown	from	the	viewpoint	of	the	interface,	not	from	the	viewpoint	of	a	class
module	implementing	the	interface.	All	code	examples,	however,	are	shown
from	the	viewpoint	of	a	class	module	implementing	the	IOlapAddIn	interface.

Method Description
ExecuteMenuItem Carries	out	a	command	in	response	to	a	user

action
GetObject Returns	a	reference	to	the	object	that	is

represented	by	an	OlapTreeNode
ProvideChildNodes Populates	an	OlapTreeNodes	collection	so	that

these	nodes	can	be	displayed	in	the	Analysis
Manager	tree	pane

ProvideHTML Provides	the	URL	for	the	HTML	pane	when	the
user	clicks	a	new	node	in	the	tree	pane

ProvideIcon Specifies	the	numeric	ID	for	the	icons	to	display
when	the	user	selects	a	node

ProvideMenuItems Populates	a	collection	of	OlapMenuItems	for	a
node	in	the	tree	pane

See	Also

IOlapAddIn	Interface

Analysis	Services	Programming

ExecuteMenuItem	(IOlapAddIn	Interface)
The	ExecuteMenuItem	method	of	the	IOlapAddIn	interface	is	called	when	the
user	clicks	a	menu	item.	Provide	code	in	this	method	to	respond	to	the	user's
actions.

Syntax
Function	ExecuteMenuItem(CurrentNode	As	OlapTreeNode,	MenuItem	As
OlapMenuItem)	As	RefreshTreeTypes

CurrentNode

The	node	that	is	currently	selected	in	the	Analysis	Manager	tree	pane.

MenuItem

The	menu	item	that	the	user	clicked.

Remarks
By	querying	the	properties	of	the	CurrentNode	and	MenuItem	objects,	your
application	can	determine	which	menu	item	the	user	clicked	and	respond
accordingly.	The	function	returns	a	constant	from	the	RefreshTreeTypes
enumeration.

Example
The	following	example	shows	how	to	execute	a	menu	item	based	upon	the
caption	of	the	node	that	is	currently	selected	in	the	tree	view:

Private	Function	IOlapAddIn_ExecuteMenuItem(_
				CurrentNode	As	DSSAddInsManager.OlapTreeNode,	_
				MenuItem	As	DSSAddInsManager.OlapMenuItem)	_
				As	DSSAddInsManager.RefreshTreeTypes
		On	Error	GoTo	ExecuteMenuItem_Err	'Handle	errors
		Select	Case	CurrentNode.Caption

				Case	"Add"
						Select	Case	MenuItem.Key
								Case	mnuactAddItem1
										'Code	to	add	item	1
								Case	mnuactAddItem2
										'Code	to	add	item	2
								Case	mnuactAddItem3
										'Code	to	add	item	3
						End	Select
	
				Case	"Edit"
						Select	Case	MenuItem.Key
								Case	mnuactEditItem1
										'Code	to	edit	item	1
								Case	mnuactEditItem1
										'Code	to	edit	item	2
								Case	mnuactEditItem1
										'Code	to	edit	item	3
						End	Select
		End	Select
	
		Exit	Function
ExecuteMenuItem_Err:
		MsgBox	"ExecuteMenuItem	Failed"
		Err.Clear
End	Function
	

See	Also

IOlapAddIn	Interface

RefreshTreeTypes	Enumeration

Analysis	Services	Programming

GetObject	(IOlapAddIn	Interface)
The	GetObject	method	of	the	IOlapAddIn	interface	responds	to	a	request	that
your	add-in	return	a	reference	to	the	object	that	is	represented	by	an
OlapTreeNode	object.

Syntax
Function	GetObject(LinkedNode	As	OlapTreeNode)	As	Object

LinkedNode

The	OlapTreeNode	object	to	be	linked	with	an	object.

Remarks
An	OlapTreeNode	object	can	have	other	objects	linked	to	it.	The
GetLinkedObject	method	of	the	OlapTreeNode	object	can	be	used	to	retrieve
these	linked	objects.

Example
The	following	example	retrieves	an	item	from	the	OlapTreeNodes	collection:

'm_MyObjects	is	a	collection	of	objects	that	are	represented
'in	the	Analysis	Manager	tree	pane	as	members	of	the	OlapTreeNodes
'collection.	Your	add-in	will	need	to	populate	this	
'collection	with	objects.

Private	m_MyObjects	As	New	Collection	
Private	Function	IOlapAddIn_GetObject(_
				LinkedNode	As	DSSAddInsManager.OlapTreeNode)	As	Object
		On	Error	Resume	Next		'	Handle	error	when	it	happens
		Set	IOlapAddIn_GetObject	=	m_MyObjects(LinkedNode.Caption)
		If	Err	Then	Err.Clear	'Item	was	not	found	in	the	collection

End	Function

See	Also

IOlapAddIn	Interface

Analysis	Services	Programming

ProvideChildNodes	(IOlapAddIn	Interface)
The	ProvideChildNodes	method	of	the	IOlapAddIn	interface	adds	nodes	under
existing	nodes	to	the	Analysis	Manager	tree	pane.

Syntax
Sub	ProvideChildNodes(ParentNode	As	OlapTreeNode,	OlapTreeNodes	As
OlapTreeNodes)

ParentNode

The	OlapTreeNode	object	that	is	currently	selected	or	being	expanded	in	the
tree	pane	display.

OlapTreeNodes

An	empty	collection	of	OlapTreeNode	objects.	The	add-in	populates	this
collection	with	the	child	OlapTreeNode	objects	to	be	created	under
ParentNode.

Remarks
This	method	responds	to	a	request	that	the	add-in	populate	an	OlapTreeNodes
collection.	This	collection	is	made	of	nodes	that	belong	to	the	OlapTreeNode
object	that	is	currently	selected	or	being	expanded.	Your	add-in	uses	this	method
to	add	nodes	to	the	tree	pane.	An	add-in	uses	this	method	only	if	it	needs	to	add
OlapTreeNode	objects	to	the	tree	pane.

Example
The	following	code	illustrates	how	to	use	this	method	to	add	a	node	to	the
OlapTreeNodes	collection	based	upon	the	caption	of	the	parent	node:

'Declarations
Private	Enum	SampleIcons	'Icons	for	tree	nodes
		icoForm1	=	1

		icoForm2
End	Enum
'Other	code

Private	Sub	IOlapAddIn_ProvideChildNodes(_
				ParentNode	As	DSSAddInsManager.IOlapTreeNode,	_
				TreeNodes	As	DSSAddInsManager.OlapTreeNodes)
		On	Error	GoTo	pc_Err	'Handle	errors
		If	ParentNode.Caption	=	"Analysis	Servers"	Then
				TreeNodes.Add	"Sample	Form1",	icoForm1
		Else
				TreeNodes.Add	"Sample	Form2",	icoForm2
		End	If
		Exit	Sub
pc_Err:
		MsgBox	"ProvideChildNodes	Failed"
		Err.Clear
End	Sub
	

See	Also

IOlapAddIn	Interface

Analysis	Services	Programming

ProvideHTML	(IOlapAddIn	Interface)
The	ProvideHTML	method	of	the	IOlapAddin	interface	provides	the	URL	for
the	HTML	pane	in	Analysis	Manager	when	the	user	selects	a	new	node	in	the
tree	pane.

Syntax
Sub	ProvideHTML(CurrentNode	As	OlapTreeNode,	CurrentURL	As	String)

CurrentNode

The	OlapTreeNode	that	is	currently	selected

CurrentURL

The	source	URL

Remarks
The	CurrentURL	variable	initially	contains	the	URL	for	the	HTML	file	that	is
currently	displayed.	If	there	is	no	need	to	display	a	different	HTML	file,	the
method	can	exit.	Otherwise,	set	the	CurrentURL	parameter	to	the	URL	for
Analysis	Manager	to	display.

Example
The	following	example	uses	this	method	to	display	the	contents	of	a	URL	if	the
parent	node's	caption	is	Sample	Forms:

Private	Sub	IOlapAddIn_ProvideHTML(CurrentNode	As	DSSAddInsManager.OlapTreeNode,	CurrentURL	As	String)
		On	Error	GoTo	IOlapAddIn_ProvideHTML_Err
		
		'Check	to	see	whether	the	provided	node	is	owned	by	another	add-in
		If	CurrentNode.OwnerAddInName	<>	ThisAddInName	Then
				'Work	with	node	owned	by	another	add-in
				Exit	Sub

		End	If
'This	add-in	owns	the	node
		
		'Assume	that	the	files	form1.htm	and	form2.htm	exist
		If	CurrentNode.Caption	=	"Sample	Forms"	Then
				CurrentURL	=	App.Path	&	"\form1.htm"
		Else
				CurrentURL	=	App.Path	&	"\form2.htm"
		End	If
		
		Exit	Sub
IOlapAddIn_ProvideHTML_Err:
		Debug.Print	Err.Number,	Err.Description,	Err.Source
		Debug.Assert	False
		MsgBox	"ProvideHTML	method	failed."
		Err.Clear
		Exit	Sub
End	Sub

See	Also

IOlapAddIn	Interface

Analysis	Services	Programming

ProvideIcon	(IOlapAddIn	Interface)
The	ProvideIcon	method	of	the	IOlapAddIn	interface	is	called	by	the
Microsoft	OLAP	Services	Add-Ins	Manager	library	to	load	an	available	icon
from	a	resource	file.

Syntax
Function	ProvideIcon(Index	As	Integer)	As	OLE_HANDLE

Index

The	requested	index	for	the	icon	resource.

Remarks
This	method	responds	to	a	request	for	an	OLE_HANDLE	that	contains	the
handle	of	an	icon	to	be	used	for	a	tree	node	in	Analysis	Manager.	If	an	icon
handle	is	supplied,	the	icon	is	then	loaded	for	use	in	the	tree	pane.	If	no	icon
handle	is	supplied,	the	icon	is	then	loaded	from	a	default	resource	file.

Example
The	following	code	adds	an	icon	to	the	tree	pane:

Private	Const	FirstIconID	=	1
Private	Const	LastIconID	=	4
'Other	code

Private	Function	IOlapAddIn_ProvideIcon(Index	As	Integer)	_
				As	stdole.OLE_HANDLE
		On	Error	GoTo	ProvideIcon_Err	'Handle	errors
		If	Index	>=	FirstIconID	Or	Index	<=	LastIconID	Then
				IOlapAddIn_ProvideIcon	=	LoadResPicture(Index,	vbResIcon)
		End	If

		Exit	Function
ProvideIcon_Err:
		MsgBox	"ProvideIcon	failed"
		Err.Clear
End	Function
	

See	Also

IOlapAddIn	Interface

Analysis	Services	Programming

ProvideMenuItems	(IOlapAddIn	Interface)
The	ProvideMenuItems	method	of	the	IOlapAddIn	interface	enables	default
menu	items	and	adds	new	menu	items	to	the	current	tree	node.

Syntax
Sub	ProvideMenuItems(CurrentNode	As	OlapTreeNode,	MenuItems	As
OlapMenuItems)

CurrentNode

The	OlapTreeNode	object	that	is	selected	for	menu	display	in	the	tree	pane
when	users	right-click.

MenuItems

A	collection	of	OlapMenuItem	objects.

Remarks
This	method	responds	when	the	calling	subroutine	sends	a	request	for	default
menu	items	to	be	enabled	or	for	new	menu	items	to	be	added.	When	your	add-in
enables	default	menu	items,	it	should	also	provide	associated	child	menu	items.

Note		You	should	initialize	the	enumerations	provided	for	menu	items	and	menu
actions	added	to	MenuItems	with	a	positive,	nonzero	value.	Enumerations
initialized	to	zero	may	cause	unpredictable	results	when	this	method	provides
menu	items	for	a	custom	add-in.

Example
The	following	example	enables	a	new	default	menu	item:

Private	Enum	MenuActions
		mnuActTop	=	1
		mnuActMid
		mnuActBtm

		mnuActSpc
End	Enum

Private	Sub	IOlapAddIn_ProvideMenuItems(CurrentNode	As	_
				DSSAddInsManager.OlapTreeNode,	MenuItems	As	_
				DSSAddInsManager.OlapMenuItems)
		On	Error	GoTo	ProvideMenuItems_Err	'Handle	errors
		If	CurrentNode.Caption	=	"Node	1"	Then
				'Enable	default	new	menu	item	and	add	child	menu	items
				MenuItems.Add	mnuStandard,	"&Top",	mnuActTop,	,	mnuflagNew
				MenuItems.Add	mnuStandard,	"&Mid",	mnuActMid,	,	mnuflagNew
				MenuItems.Add	mnuStandard,	"&Btm",	mnuActBtm,	,	mnuflagNew
				'Add	regular	menu	item	to	root	menu
				MenuItems.Add	mnuStandard,	"&Special",	mnuActSpc,	,	mnuflagRegular
		End	If
		Exit	Sub

ProvideMenuItems_Err:
		MsgBox	"ProvideMenuItems	failed"
		Err.Clear
End	Sub

See	Also

IOlapAddIn	Interface

Analysis	Services	Programming

Properties,	IOlapAddIn	Interface
The	IOlapAddIn	interface	requires	you	to	provide	one	property.

Property Description
Name The	name	of	the	add-in

See	Also

IOlapAddIn	Interface

Analysis	Services	Programming

Name	(IOlapAddIn	Interface)
The	Name	property	of	the	IOlapAddIn	interface	returns	the	name	of	your	add-
in	to	the	calling	program.	The	value	of	this	property	is	used	to	identify	the
program	that	provides	objects	to	the	Microsoft	OLAP	Services	Add-Ins	Manager
library.

Data	Type
String

Example
The	following	example	returns	the	name	of	the	custom	add-in:

Private	ThisAddInName	=	"MySampleAddIn"
'More	code

Private	Property	Get	IOlapAddIn_Name()	As	String
		On	Error	Resume	Next	'Defer	errors
		IOlapAddIn_Name	=	ThisAddInName
		Err.Clear	'Clears	errors	if	any	occurred
End	Property

Analysis	Services	Programming

Objects
The	Microsoft	OLAP	Services	Add-Ins	Manager	library	includes	several	objects;
only	two	are	directly	exposed	by	the	IOlapAddIn	interface.

The	OlapMenuItem	object	is	used	by	several	methods	in	the	IOlapAddIn
interface	to	provide	access	to	the	properties	of	menu	items	in	Analysis	Manager.
Similarly,	the	OlapTreeNode	object	is	also	used	by	several	methods	in	the
IOlapAddIn	interface	to	provide	access	to	the	properties	of	tree	nodes	in
Analysis	Manager.

The	following	topics	detail	the	properties	exposed	by	these	two	objects.

Topic Description
OlapMenuItem Details	the	properties	available	to	the

OlapMenuItem	object
OlapTreeNode Details	the	properties	and	events

available	to	the	OlapTreeNode
object

See	Also

IOlapAddIn	Interface

Analysis	Services	Programming

OlapMenuItem
The	OlapMenuItem	object	contains	the	properties	of	a	menu	item	in	Analysis
Manager.	There	are	no	collections	or	methods	associated	with	this	object.

See	Also

Properties,	OlapMenuItem

Analysis	Services	Programming

Properties,	OlapMenuItem
An	OlapMenuItem	object	contains	the	following	properties.

Property Description
Caption The	menu	item	caption.
Disabled Indicates	whether	the	menu	item	is	disabled.
Flags Flags	that	describe	the	actual	state	of	the

OlapMenuItem	object.
HelpContextId The	Help	context	ID	(optional).
HelpFileName The	Help	file	name	(optional).
Key The	user-defined	value	assigned	to	the	menu	item.
OwnerAddInName The	name	of	the	add-in	associated	with	the	menu

item.	It	is	set	automatically	by	the	Microsoft
OLAP	Services	Add-Ins	Manager	library.

OwnerAddInProgId The	program	ID	of	the	add-in	associated	with	the
menu	item.	It	is	set	automatically	by	the	Microsoft
OLAP	Services	Add-Ins	Manager	library.

ParentKey The	parent	key	value	used	to	associate	a	child
menu	item	with	a	parent	or	owner	pop-up	menu
item.

Analysis	Services	Programming

Caption	(OlapMenuItem)
The	Caption	property	of	an	OlapMenuItem	object	contains	the	caption	exposed
in	the	menu	for	the	node	in	the	tree	pane.

Data	Type
String

Access
Read/write

Example
The	following	example	adds	a	Form	menu	item	and	tests	the	caption	property	of
a	selected	item	to	determine	whether	it	is	this	same	Form	menu	item:

'Custom	add-in
Private	Enum	MenuActions
		mnuActAddNewForm
		mnuActRefreshForm
		mnuActDeleteForm
End	Enum

Private	Sub	IOlapAddIn_ProvideMenuItems(_
				CurrentNode	Ad	DSSAddInsManager.OlapTreeNode,	_
				MenuItems	As	DSSAddInsManager.OlapMenuItems)
		On	Error	Resume	Next	'Handle	errors
		'MenuItems	is	a	collection	for	MenuItem	objects
		'Some	more	code...
		'Menu	item	Form	is	added	as	a	child	of	the	standard	New	menu	item
		MenuItems.Add	mnuStandard,	"&Form",	mnuActAddNewForm,,mnuflagNew
End	Sub

'Later
Private	Function	IOlapAddIn_ExecuteMenuItem(_
				CurrentNode	As	DSSAddInsManager.IOlapTreeNode,	_
				MenuItem	As	DSSAddInsManager.IOlapmenuItem)	_
				As	DSSAddInsManager.RefreshTreeTypes
		On	Error	GoTo	ExecuteMenuItem_Err	'Handle	errors
		'Some	code
		If	MenuItem.Caption	=	"Form"	Then
				'Code	to	handle	New/Form	menu	selection
		End	If
		Exit	Function
ExecuteMenuItem_Err:
		MsgBox	"ExecuteMenuItem	Failed"
		Err.Clear
End	Function

See	Also

OlapMenuItem

Analysis	Services	Programming

Disabled	(OlapMenuItem)
The	Disabled	property	of	an	OlapMenuItem	object	determines	whether	the
menu	item	is	enabled	or	disabled.

Data	Type
Boolean

Access
Read/write

Remarks
This	property	determines	the	visible	state	of	the	tree	node	menu	item.	If
disabled,	the	menu	item	appears	dimmed.

Example
The	following	example	displays	a	message	box	if	the	selected	menu	item	is
disabled:

Private	Function	IOlapAddIn_ExecuteMenuItem(_
				CurrentNode	As	DSSAddInsManager.IOlapTreeNode,	_
				MenuItem	As	DSSAddInsManager.IOlapmenuItem)	_
				As	DSSAddInsManager.RefreshTreeTypes
		On	Error	GoTo	ExecuteMenuItem_Err	'Handle	errors
		'Some	more	code
		If	MenuItem.Disabled	=	TRUE	Then
				MsgBox	"Disabled:	Cannot	execute	at	this	time"
		End	If
		Exit	Function
ExecuteMenuItem_Err:
		MsgBox	"ExecuteMenuItem	failed"

		Err.Clear
End	Function

See	Also

OlapMenuItem

Analysis	Services	Programming

Flags	(OlapMenuItem)
The	Flags	property	of	an	OlapMenuItem	object	determines	the	state	of	the
menu	item,	such	as	whether	the	item	is	enabled,	the	place	of	the	item	in	the
menu	hierarchy,	and	so	on.

Data	Type
Integer	representing	a	bitmask	of	constants	in	the	OlapMenuFlags	enumeration.

Access
Read/write

Remarks
Values	can	be	combined	from	the	OlapMenuFlags	enumeration	using	a	bitwise
OR	operator.

Example
The	following	example	adds	a	menu	item,	marks	it	as	new,	and	ensures	that	it	is
unchecked:

'Custom	add-in
Private	Enum	MenuActions
		mnuActAddNewForm
		mnuActRefreshForm
		mnuActDeleteForm
End	Enum

Private	Sub	IOlapAddIn_ProvideMenuItems(_
				CurrentNode	Ad	DSSAddInsManager.OlapTreeNode,	_
				MenuItems	As	DSSAddInsManager.OlapMenuItems)
		On	Error	GoTo	ProvideMenuItems_Err	'Handle	errors

		'MenuItems	is	a	collection	for	MenuItem	objects
		'Some	more	code
		'Menu	item	Form	is	added	as	a	child	of	the	standard	New	menu	item
		MenuItems.Add	mnuStandard,	"&Form",	mnuActAddNewForm,	,	_
						mnuflagNew	+	NOT	mnuflagChecked
		Exit	Sub
ProvideMenuItems_Err:
		MsgBox	"ProvideMenuItems	Failed"
		Err.Clear
End	Sub

'Later
Private	Function	IOlapAddIn_ExecuteMenuItem(_
				CurrentNode	As	DSSAddInsManager.IOlapTreeNode,	_
				MenuItem	As	DSSAddInsManager.IOlapmenuItem)	_
				As	DSSAddInsManager.refreshTreeTypes
		On	Error	GoTo	ExecuteMenuItem_Err	'Handle	errors
		If	MenuItem.Flag	AND	NOT	mnuflagChecked	Then
				'menu	item	unchecked,	execute	code
		End	If
		Exit	Function
ExecuteMenuItem_Err:
		MsgBox	"ExecutemenuItem	Failed"
		Err.Clear
End	Function

See	Also

OlapMenuFlags

OlapMenuItem

Analysis	Services	Programming

HelpContextId	(OlapMenuItem)
The	HelpContextId	property	of	an	OlapMenuItem	object	contains	the	Help
context	ID	number	associated	with	the	item.

Data	Type
Long

Access
Read/write

Remarks
This	property	returns	or	sets	an	associated	context	ID	number	for	an	object.	It	is
used	to	provide	context-sensitive	Help	for	your	application.	You	must	provide
the	Help	file	and	identify	it	using	the	HelpFileName	property.	For	more
information	about	the	HelpContextID	property,	see	the	Microsoft®	Visual
Basic®	documentation.

Example

Private	Enum	MenuActions
		mnuActTop
		mnuActMid
		mnuActBtm
		mnuActSpc
End	Enum

Private	Sub	IOlapAddIn_ProvideMenuItems(CurrentNode	_
				As	DSSAddInsManager.OlapTreeNode,	MenuItems	_
				As	DSSAddInsManager.OlapMenuItems)
		On	Error	GoTo	ProvideMenuItems_Err	'Handle	errors

		If	CurrentNode.Caption	=	"Node	1"	Then
				'Enable	default	New	menu	item	and	add	child	menu	items
				MenuItems.Add	mnuStandard,	"&Top",	mnuActTop,	,	mnuflagNew
				MenuItems.Add	mnuStandard,	"&Mid",	mnuActMid,	,	mnuflagNew
				MenuItems.Add	mnuStandard,	"&Btm",	mnuActBtm,	,	mnuflagNew
				'Add	regular	menu	item	to	root	menu
				MenuItems.Add	mnuStandard,	"&Special",	mnuActSpc,	,	_
								mnuflagRegular
				MenuItems.HelpContextID	=	100
		End	If
		Exit	Sub

ProvideMenuItems_Err:
		MsgBox	"ProvideIcon	failed"
		Err.Clear
End	Function

See	Also

HelpFileName

OlapMenuItem

Analysis	Services	Programming

HelpFileName	(OlapMenuItem)
The	HelpFileName	property	of	an	OlapMenuItem	object	specifies	the	name	of
the	Help	file	that	contains	the	Help	topic	identified	by	the	HelpContextID
property.	You	must	provide	the	Help	file.

Data	Type
String

Access
Read/write

See	Also

HelpContextID

OlapMenuItem

Analysis	Services	Programming

Key	(OlapMenuItem)
The	Key	property	of	an	OlapMenuItem	object	contains	a	value	specified	by
your	add-in	that	uniquely	identifies	the	menu	item.

Data	Type
Long

Access
Read/write

Remarks
This	property	is	a	user-defined	value	assigned	by	the	add-in.

Example

Private	Enum	MenuActions
		mnuActAddNewForm
		mnuActRefreshForm
		mnuActDeleteForm
End	Enum

Private	Sub	IOlapAddIn_ProvideMenuItems(_
				CurrentNode	As	DSSAddInsManager.OlapTreeNode,	_
				MenuItems	As	DSSAddInsManager.OlapMenuItems)
		On	Error	GoTo	ProvideMenuItems_Err	'Handle	errors
		'MenuItems	is	a	collection	for	MenuItem	objects
		'Some	more	code
		'Menu	item	Form	is	added	as	a	child	of	the	standard	New	menu	item
		'mnuActAddNewForm	is	our	Key	value
		MenuItems.Add	mnuStandard,	"&Form",mnuActAddNewForm,,mnuflagNew

		Exit	Sub
ProvideMenuItems_Err:
		MsgBox	"ProvideMenuItems	Failed"
		Err.Clear
End	Sub

'Later
Private	Function	IOlapAddIn_ExecuteMenuItem(_
				CurrentNode	As	DSSAddInsManager.IOlapTreeNode,	_
				MenuItem	As	DSSAddInsManager.IOlapmenuItem)	_
				As	DSSAddInsManager.RefreshTreeTypes
		On	Error	GoTo	ExecuteMenuItem_Err	'Handle	errors
		'some	code
		'Check	the	Key	value
		If	MenuItem.Key	=	mnuActAddNewForm	Then
				'code	to	add	a	new	form
		End	If
		Exit	Function
ExecuteMenuItem_Err:
		MsgBox	"ExecutemenuItem	Failed"
		Err.Clear
End	Function

See	Also

OlapMenuItem

Analysis	Services	Programming

OwnerAddInName	(OlapMenuItem)
The	OwnerAddInName	property	of	an	OlapMenuItem	object	contains	the
name	of	the	add-in	that	owns	the	menu	item.

Data	Type
String

Access
Read/write

Remarks
This	property	is	set	automatically	by	the	Microsoft	OLAP	Services	Add-ins
Manager	library.	You	can	use	this	property	to	identify	the	items	your	program
owns	and	the	programs	that	own	other	items.

Example
The	following	example	prints	OwnerAddInName	property	in	a	message	box:

Private	Function	IOlapAddIn_ExecuteMenuItem(_
				CurrentNode	As	DSSAddInsManager.OlapTreeNode,	_
				MenuItem	As	DSSAddInsManager.OlapMenuItem)	_
				As	DSSAddInsManager.RefreshTreeTypes
		On	Error	Resume	Next	'Handle	errors
		If	MenuItem.Caption	=	"&Special"	Then
				MsgBox	"OwnerAddInName	is:	"	&	MenuItem.OwnerAddInName
		End	If
End	Function

See	Also

OlapMenuItem

Analysis	Services	Programming

OwnerAddInProgID	(OlapMenuItem)
The	OwnerAddInProgID	property	of	an	OlapMenuItem	object	contains	the
program	ID	of	the	add-in	that	owns	the	menu	item.

Data	Type
String

Access
Read/write

Remarks
This	property	is	set	automatically	by	the	Microsoft	OLAP	Services	Add-ins
Manager	library.	The	program	ID	is	set	in	the	registry	when	the	add-in	is
registered,	and	it	consists	of	the	program	name	of	the	add-in	and	the	name	of	the
class	used	to	instantiate	the	add-in.	For	example,	the	Report	Add-In	example
uses	the	following	program	ID:

ReportAddIn.ReportClass

Example
The	following	example	prints	the	OwnerAddInProgID	property	in	a	message
box:

Private	Function	IOlapAddIn_ExecuteMenuItem(_
				CurrentNode	As	DSSAddInsManager.OlapTreeNode,	_
				MenuItem	As	DSSAddInsManager.OlapMenuItem)	_
				As	DSSAddInsManager.RefreshTreeTypes
		On	Error	Resume	Next	'Handle	errors
		If	MenuItem.Caption	=	"&Special"	Then
				MsgBox	"OwnerAddInProgID	is:	"	&	MenuItem.OwnerAddInProgID

		End	If
End	Function

See	Also

OlapMenuItem

Analysis	Services	Programming

ParentKey	(OlapMenuItem)
The	ParentKey	property	of	an	OlapMenuItem	object	contains	the	Key
property	of	the	parent	of	the	menu	item.

Data	Type
Long

Access
Read/write

Remarks
The	ParentKey	property	is	used	to	associate	a	child	menu	item	with	a	parent	(or
owner)	pop-up	menu	item.

Example
The	following	example	builds	a	menu	item	with	child	menu	items	underneath	it:

Private	Enum	PopupItems
		mnuPopSpecial
		mnuPopAverage
		mnuPopPoor
End	Enum

Private	Enum	MenuActions
		mnuAddNew
		mnuRefresh
		mnuDelete
End	Enum

Private	Sub	IOlapAddIn_ProvideMenuItems(_
				CurrentNode	Ad	DSSAddInsManager.OlapTreeNode,	_
				MenuItems	As	DSSAddInsManager.OlapMenuItems)
		On	Error	GoTo	ProvideMenuItems_Err	'Handle	errors
		'MenuItems	is	a	collection	for	MenuItem	objects
		'Some	more	code
		'"Special"	is	displayed	on	the	root	menu	as	a	pop-up
		'"New",	"Refresh",	and	"Delete"	are	items	on	Special's	child	menu
		'flagged	by	the	mnuPopSpecial	enumeration
		MenuItems.Add	mnuStandard,	"&Special",	mnuPopSpecial,	,	_	
						mnuflagRegular	+	mnuflagPopup
		MenuItems.Add	mnuStandard,	_
						"&New",	mnuAddNew,	mnuPopSpecial,	mnuflagSubmenu
		MenuItems.Add	mnuStandard,	_
						"&Refresh",	mnuRefresh,	mnuPopSpecial,	mnuflagSubmenu
		MenuItems.Add	mnuStandard,	_
						"&Delete",	mnuDelete,	mnuPopSpecial,	mnuflagSubmenu
		Exit	Sub
ProvideMenuItems_Err:
		MsgBox	"ProvideMenuItems	Failed"
		Err.Clear
End	Sub

See	Also

OlapMenuItem

Analysis	Services	Programming

OlapTreeNode
The	OlapTreeNode	object	provides	the	properties	associated	with	a	tree	node	in
Analysis	Manager.	This	object	provides	no	collections	or	methods.

Note		Events	for	the	OlapTreeNode	object	exposed	in	the	Microsoft®	Visual
Basic®	Object	Browser	are	not	appropriate	for	use	by	add-ins.

See	Also

Properties,	OlapTreeNode

Analysis	Services	Programming

Properties,	OlapTreeNode
The	OlapTreeNode	object	contains	the	following	properties.

Property Description
Caption The	OlapTreeNode	caption.
HelpContextId The	Help	context	ID	(optional).
IconClosed The	icon	to	display	when	the	tree	node	is

collapsed.
IconOpen The	icon	to	display	when	the	tree	node	is

expanded.
LinkedObject The	object	linked	to	the	OlapTreeNode	object.
OwnerAddInName The	name	of	the	add-in	associated	with	the	tree

node.	It	is	set	automatically	by	the	Microsoft
OLAP	Services	Add-ins	Manager	library.

OwnerAddInProgId The	program	ID	of	the	add-in	associated	with	the
tree	node.	It	is	set	automatically	by	the	Microsoft
OLAP	Services	Add-ins	Manager	library.

Parent The	parent	OlapTreeNode	object	of	the	current
node.

See	Also

OlapTreeNode

Analysis	Services	Programming

Caption	(OlapTreeNode)
The	Caption	property	of	an	OlapTreeNode	object	contains	the	value	displayed
in	the	tree	node.

Data	Type
String

Access
Read/write

See	Also

OlapTreeNode

Analysis	Services	Programming

HelpContextId	(OlapTreeNode)
The	HelpContextId	property	of	an	OlapTreeNode	object	contains	the	Help
context	ID	number	associated	with	the	item.

Data	Type
Long

Access
Read/write

See	Also

OlapTreeNode

Analysis	Services	Programming

IconClosed	(OlapTreeNode)
The	IconClosed	property	of	an	OlapTreeNode	object	specifies	the	index	of	the
icon	to	display	when	the	node	is	collapsed.

Data	Type
Long

Access
Read/write

Remarks
The	ProvideIcon	method	of	the	IOlapAddIn	interface	is	called	when	this	tree
node	displays	the	icon	used	when	the	node	is	collapsed.	The	value	of	the
IconClosed	property	of	the	OlapTreeNode	is	used	in	the	ProvideIcon	method
to	indicate	which	icon	is	to	be	referenced.

See	Also

OlapTreeNode

ProvideIcon	(IOlapAddIn	Interface)

Analysis	Services	Programming

IconOpen	(OlapTreeNode)
The	IconOpen	property	of	an	OlapTreeNode	object	specifies	the	icon	to	display
when	the	node	is	expanded.

Data	Type
Long

Access
Read/write

Remarks
The	ProvideIcon	method	of	the	IOlapAddIn	interface	is	called	when	this	tree
node	displays	the	icon	used	when	the	node	is	expanded.	The	value	of	the
IconOpen	property	of	the	OlapTreeNode	is	used	in	the	ProvideIcon	method	to
indicate	which	icon	is	to	be	referenced.

See	Also

OlapTreeNode

ProvideIcon	(IOlapAddIn	Interface)

Analysis	Services	Programming

LinkedObject	(OlapTreeNode)
The	LinkedObject	property	of	an	OlapTreeNode	object	contains	a	reference	to
the	object	linked	to	the	node.	The	linked	object	is	supplied	by	the	add-in	through
the	GetObject	method	of	the	IOlapAddIn	interface,	and	it	is	used	to	store
object	references	associated	with	a	tree	node	in	Analysis	Manager.

Data	Type
Object

Access
Read-only

Remarks
This	property	is	useful	when	combined	with	another	object-based	library,	such	as
Decision	Support	Objects	(DSO).	Combining	the	two	allows	this	property	to
store	object	references	that	are	relevant	to	the	add-in	for	a	given	tree	node	in
Analysis	Manager.

In	addition,	tree	nodes	owned	by	Analysis	Manager	have	DSO	references	to	the
appropriate	object	represented	by	the	tree	node.	For	example,	a	tree	node	in
Analysis	Manager	for	an	Analysis	server	has	a	DSO	Server	object	associated
with	it.

The	GetObject	method	of	the	IOlapAddIn	interface	is	used	to	provide	object
references	for	other	tree	nodes	in	Analysis	Manager.

Example
The	following	example	checks	the	LinkedObject	property	of	the
OlapTreeNode	supplied	by	LinkedNode	in	the	GetObject	method	of	the
IOlapAddIn	interface:

Private	Function	IOlapAddIn_GetObject(LinkedNode	As	_

				DSSAddInsManager.OlapTreeNode)	As	Object
				
				On	Error	Resume	Next
				
				If	Not	(LinkedNode.LinkedObject	Is	Nothing)	Then
								'	It	already	has	a	linked	object
								Beep
				End	If
				
End	Function

See	Also

OlapTreeNode

GetObject	(IOlapAddIn	Interface)

Analysis	Services	Programming

OwnerAddInName	(OlapTreeNode)
The	OwnerAddInName	property	of	an	OlapTreeNode	object	contains	the
name	of	the	add-in	that	owns	the	object.

Data	Type
String

Access
Read/write

Remarks
The	add-in	name	for	the	current	OlapTreeNode	is	set	automatically	by	the
Microsoft	OLAP	Services	Add-ins	Manager	library.

See	Also

OlapTreeNode

Analysis	Services	Programming

OwnerAddInProgID	(OlapTreeNode)
The	OwnerAddInProgID	property	of	an	OlapTreeNode	object	contains	the
program	ID	of	the	add-in	that	owns	the	tree	node.

Data	Type
String

Access
Read/write

Remarks
This	property	is	set	automatically	by	the	Microsoft	OLAP	Services	Add-ins
Manager	library.	The	program	ID	is	set	in	the	registry	when	the	add-in	is
registered,	and	it	consists	of	the	program	name	of	the	add-in	and	the	name	of	the
class	used	to	instantiate	the	add-in.	For	example,	the	Report	Add-In	example
uses	the	following	program	ID:

ReportAddIn.ReportClass

Example
The	following	example	prints	the	OwnerAddInProgID	property	in	a	message
box:

Private	Function	IOlapAddIn_GetObject(LinkedNode	As	_
				DSSAddInsManager.OlapTreeNode)	As	Object
				
				On	Error	Resume	Next
				
				If	LinkedNode.Caption	=	"Samples	Forms"	Then
								MsgBox	"OwnerAddInProgID	is:	"	&	LinkedNode.OwnerAddInProgId

				End	If
				
End	Function

See	Also

OlapTreeNode

Analysis	Services	Programming

Parent	(OlapTreeNode)
The	Parent	property	of	an	OlapTreeNode	object	contains	a	reference	to	the
parent	tree	node	of	the	selected	tree	node.

Data	Type
OlapTreeNode

Access
Read-only

See	Also

OlapTreeNode

Analysis	Services	Programming

Enumerations
The	Microsoft	OLAP	Services	Add-ins	Manager	library	includes	the	following
enumerations.

Enumeration Description
errDSSAddinErrorNumbers Enumerates	errors	that	can	be	raised	by	the

Microsoft	OLAP	Services	Add-ins	Manager
library

OlapMenuFlags Enumerates	flags	that	set	characteristics	of	a
menu	item

OlapMenuTypes Enumerates	types	of	menu	items
RefreshTreeTypes Enumerates	values	for	the	modes	of	refreshing

the	Analysis	Manager	tree	pane

Analysis	Services	Programming

errDSSAddinErrorNumbers
The	errDSSAddinErrorNumbers	enumeration	provides	the	following
constants.

Constant Description
errCaptionRequired An	error	with	this	error	code	is	raised	if	you

attempt	to	use	the	Add	method	of	the
OlapTreeNodes	or	OlapMenuItems	collections
with	a	zero-length	caption.

errInvalidMenuType An	error	with	this	error	code	is	raised	if	you
attempt	to	use	the	Add	method	of	the
OlapMenuItems	collection	with	a	MenuType
value	other	than	mnuStandard	or
mnuSeparator.

Analysis	Services	Programming

OlapMenuFlags
The	OlapMenuFlags	enumeration	provides	constants	for	the	modes	of	menu
items	in	the	Analysis	Manager	tree	pane.

Constant Description
mnuflagChecked Indicates	that	a	check	mark	is	to	be	displayed	next

to	a	menu	item.
mnuflagDeleteKey Enables	the	Delete	menu	item.	It	also	enables	the

Delete	button	on	the	toolbar	and	the	DELETE	key
on	the	keyboard.

mnuflagDisabled Disables	a	menu	item.	However,	it	will	appear	to
be	enabled.	To	fully	disable	a	menu	item,	use	the
mnuflagGreyed	flag	instead.

mnuflagDoubleClick Reserved.
mnuflagF1 Reserved.
mnuflagGrayed Disables	a	menu	item.
mnuflagInsertKey Reserved.
mnuflagNew Enables	the	New	menu	item	as	a	pop-up	menu.

Menu	items	added	with	this	flag	appear	as	child
menu	items	when	New	is	selected	from	the
OlapTreeNode	parent	menu.

mnuflagPopup Indicates	that	a	newly	defined	menu	item	is	a	pop-
up	menu.	Child	menu	items	are	displayed	when
the	menu	item	is	selected.

mnuflagRegular Places	an	item	on	the	root	menu	of	an
OlapTreeNode.

mnuflagSeparator Indicates	that	the	menu	item	is	a	separator	bar.
mnuflagSubmenu Indicates	that	the	menu	item	belongs	to	a	child

menu	of	the	parent	pop-up	menu	item.
mnuflagTask Enables	the	Task	menu	item	as	a	pop-up	menu.

Menu	items	added	with	this	flag	appear	as	child
menu	items	when	Task	is	selected	from	the

OlapTreeNode	parent	menu.

Remarks
These	flags	are	commonly	combined	by	adding	them	together	using	the	addition
operator	or	the	logical	OR	operator.

Example
The	following	code	identifies	a	menu	item	as	a	child	menu	item	and	then
disables	it,	leaving	its	appearance	unchanged:

mnuflagSubmenu	OR	mnuflagDisabled
	

Analysis	Services	Programming

OlapMenuTypes
The	OlapMenuTypes	enumeration	provides	constants	for	the	types	of	menu
items	in	the	Analysis	Manager	tree	pane.

Constant Description
mnuSeparator Indicates	that	the	menu	item	is	a	separator	bar
mnuStandard Indicates	that	the	menu	item	is	a	standard	menu

item

Analysis	Services	Programming

RefreshTreeTypes
The	RefreshTreeTypes	enumeration	provides	constants	for	refreshing	the
Analysis	Manager	tree	pane	by	means	of	the	pane's	Refresh	method	or	an	event
that	invalidates	the	pane's	contents.

Member Description
reftreeNoRefresh Indicates	that	the	tree	pane	will	not	be	refreshed
reftreeParentAndBelow Indicates	that	the	parent	of	the	current	node	and

all	of	the	children	of	the	parent	node	will	be
refreshed

reftreeCurrentAndBelow Indicates	that	the	current	node	and	all	of	its
child	nodes	will	be	refreshed

reftreeAllTree Indicates	that	the	entire	tree	pane	is	refreshed

Analysis	Services	Programming

Collections
Two	collections,	OlapMenuItems	and	OlapTreeNodes,	are	used	by	several
methods	of	the	IOlapAddIn	interface	to	provide	collections	of	menu	items	and
tree	nodes,	respectively,	to	Analysis	Manager.

The	following	topics	detail	the	properties	and	methods	supplied	by	these
collections.

Topic Description
OlapMenuItems Describes	the	properties	and	methods

associated	with	the	OlapMenuItems
collection

OlapTreeNodes Details	the	properties	and	methods
associated	with	the	OlapTreeNodes
collection

Analysis	Services	Programming

OlapMenuItems
The	OlapMenuItems	collection	contains	OlapMenuItem	objects.

This	collection	contains	methods	and	properties.	There	are	no	collections
associated	with	this	object.

See	Also

Methods,	OlapMenuItems

OlapMenuItem

Properties,	OlapMenuItems

Analysis	Services	Programming

Methods,	OlapMenuItems
The	OlapMenuItems	collection	contains	the	following	methods.

Method Description
Add Adds	an	item	to	the	collection
Remove Removes	an	item	from	the	collection

Analysis	Services	Programming

Add	(OlapMenuItems)
The	Add	method	of	the	OlapMenuItems	collection	adds	a	new	OlapMenuItem
object	to	the	collection.	It	returns	an	object	of	type	OlapMenuItem.

Syntax
Set	vnt	=	object.Add(MenuType	As	OlapMenuTypes,	[Caption	As	String],
[Key	As	Long],	[ParentKey	As	Long],	[Flags	As	OlapMenuFlags])

vnt

An	instance	of	OlapMenuItem	that	receives	the	instance	of	the	new	member.

object

An	instance	of	the	OlapMenuItems	collection.

MenuType

A	constant	from	the	OlapMenuTypes	enumeration.

Caption

The	string	value	to	be	displayed	in	the	menu.

Key

User-defined	key	value	to	be	used	by	the	add-in.

ParentKey

Associates	a	child	menu	item	with	its	parent.	Used	when	the	parent	menu
item	is	defined	using	the	mnuflagPopup	option	in	MenuType.

Flags

A	bitmask	of	values	from	the	OlapMenuFlags	enumeration.

Remarks
The	Add	method	is	used	to	populate	the	OlapMenuItems	collection	with	menu

items	to	be	displayed	when	the	user	right-clicks	a	tree	node.	Call	this	method	for
each	menu	item	you	want	to	add.

Example
The	following	example	builds	a	menu	with	various	menu	items:

Private	Enum	MenuActions
		mnuActTop
		mnuActMid
		mnuActBtm
		mnuActSpc
End	Enum

Private	Sub	IOlapAddIn_ProvideMenuItems(CurrentNode	As	DSSAddInsManager.OlapTreeNode,	MenuItems	As	DSSAddInsManager.OlapMenuItems)
		On	Error	GoTo	ProvideMenuItems_Err	'Handle	errors
		If	CurrentNode.Caption	=	"Node	1"	Then
				'Enable	default	New	menu	item	and	add	child	menu	items
				MenuItems.Add	mnuStandard,	"&Top",	mnuActTop,	,	mnuflagNew
				MenuItems.Add	mnuStandard,	"&Mid",	mnuActMid,	,	mnuflagNew
				MenuItems.Add	mnuStandard,	"&Btm",	mnuActBtm,	,	mnuflagNew
				'Add	regular	menu	item	to	root	menu
				MenuItems.Add	mnuStandard,	"&Special",	mnuActSpc,	,	mnuflagRegular
		End	If
		Exit	Sub

ProvideMenuItems_Err:
		MsgBox	"ProvideIcon	failed"
		Err.Clear
End	Sub

See	Also

OlapMenuItems

Analysis	Services	Programming

Remove	(OlapMenuItems)
The	Remove	method	of	the	OlapMenuItems	collection	removes	an
OlapMenuItem	object	from	the	collection.

Syntax
object.Remove(Index)

object

An	instance	of	the	OlapMenuItems	collection.

Index

Specifies	the	index	of	the	object	to	be	removed	from	the	collection.	If	it	is	an
integer,	Index	specifies	the	ordinal	position	of	the	item	in	the	collection.	If	it
is	a	string,	Index	specifies	the	key	assigned	to	the	item	when	it	was	added	to
the	collection.

See	Also

OlapMenuItem

OlapMenuItems

Analysis	Services	Programming

Properties,	OlapMenuItems
The	OlapMenuItems	collection	contains	the	following	properties.

Property Description
Count The	number	of	OlapMenuItem	objects	in	the

OlapMenuItems	collection
Item The	OlapMenuItem	object	to	be	returned	from

the	OlapMenuItems	collection

See	Also

OlapMenuItem

OlapMenuItems

Analysis	Services	Programming

Count	(OlapMenuItems)
The	Count	property	of	an	OlapMenuItems	collection	returns	the	number	of
items	in	the	collection.

Syntax
object.Count

object

An	instance	of	the	OlapMenuItems	collection.

Data	Type
Long

Remarks
Use	this	property	to	iterate	through	a	collection	of	menu	items.

See	Also

OlapMenuItems

Analysis	Services	Programming

Item	(OlapMenuItems)
The	Item	property	of	an	OlapMenuItems	collection	retrieves	a	specified	item
from	the	collection.

Syntax
object.Item(Index)

object

An	instance	of	the	OlapMenuItems	collection.

Index

Specifies	the	index	of	the	object	to	be	retrieved	from	the	collection.	If	it	is	an
integer,	Index	specifies	the	ordinal	position	of	the	item	in	the	collection.	If	it
is	a	string,	Index	specifies	the	key	assigned	to	the	item	when	it	was	added	to
the	collection.

Data	Type
OlapMenuItem

Remarks
Use	this	method	to	retrieve	a	specific	OlapMenuItem	reference	from	the
collection.

See	Also

OlapMenuItems

Analysis	Services	Programming

OlapTreeNodes
The	OlapTreeNodes	collection	contains	OlapTreeNode	objects.

This	collection	contains	methods	and	properties.

See	Also

Methods,	OlapTreeNodes

OlapTreeNode

Properties,	OlapTreeNodes

Analysis	Services	Programming

Methods,	OlapTreeNodes
The	OlapTreeNodes	collection	contains	the	following	methods.

Method Description
Add Adds	an	item	to	the	collection
Remove Removes	an	item	from	the	collection

See	Also

OlapTreeNodes	Collection

Analysis	Services	Programming

Add	(OlapTreeNodes)
The	Add	method	of	the	OlapTreeNodes	collection	adds	a	new	OlapTreeNode
object	to	the	collection.	This	method	returns	an	object	of	type	OlapTreeNode.

Syntax
Set	vnt	=	object.Add(Caption	As	String,	IconClosed	As	Integer,	[IconOpen	As
Integer])

vnt

An	instance	of	OlapTreeNode	that	receives	the	instance	of	the	new	member.

object

An	instance	of	the	OlapTreeNodes	collection.

Caption

The	string	value	to	be	displayed	for	the	tree	node.

IconClosed

The	index	of	the	icon	resource	displayed	when	the	tree	node	is	collapsed.

IconOpen

(Optional)The	index	of	the	icon	resource	displayed	when	the	tree	node	is
expanded.

Remarks
The	Add	method	is	used	to	populate	the	OlapTreeNodes	collection	with	child
nodes	that	are	displayed	in	the	tree.	Call	this	method	for	each	OlapTreeNode
object	you	want	to	add.

Example

Private	Enum	NodeIcons

		icoNode1	=	1
		icoNode2
		icoNode3
End	Enum

Private	Sub	IOlapAddIn_ProvideChildNodes(_
				ParentNode	As	DSSAddInsManager.	OlapTreeNode,	_
				OlapTreeNodes	As	DSSAddInsManager.OlapTreeNodes)
		On	Error	GoTo	ProvideChildNodes_Err	'Handle	errors
		
		If	ParentNode.Caption	=	"Analysis	Servers"	Then
				OlapTreeNodes.Add	"Node	1",	icoNode1
				OlapTreeNodes.Add	"Node	2",	icoNode2
				OlapTreeNodes.Add	"Node	3",	icoNode3
		End	If
		
		Exit	Sub
ProvideChildNodes_Err:
		Debug.Print	Err.Number,	Err.Description,	Err.Source
		Debug.Assert	False
		MsgBox	"ProvideChildNodes	Failed"
		Err.Clear
End	Sub

See	Also

OlapTreeNodes	Collection

Analysis	Services	Programming

Remove	(OlapTreeNodes)
The	Remove	method	of	the	OlapTreeNodes	collection	removes	an	existing
OlapTreeNode	object	from	the	collection.

Syntax
object.Remove(Index)

object

An	instance	of	the	OlapTreeNodes	collection.

Index

Specifies	the	index	of	the	object	to	be	removed	from	the	collection.	If	it	is	an
integer,	Index	specifies	the	ordinal	position	of	the	item	in	the	collection.	If	it
is	a	string,	Index	specifies	the	key	assigned	to	the	item	when	it	was	added	to
the	collection.

See	Also

OlapTreeNode

OlapTreeNodes	Collection

Analysis	Services	Programming

Properties,	OlapTreeNodes
The	OlapTreeNodes	collection	provides	the	following	properties.

Property Description
Count The	number	of	OlapTreeNode	objects	in	the

OlapTreeNodes	collection
Item A	specified	OlapTreeNode	object	from	the

OlapTreeNodes	collection

See	Also

OlapTreeNode

OlapTreeNodes	Collection

Analysis	Services	Programming

Count	(OlapTreeNodes)
The	Count	property	of	an	OlapTreeNodes	collection	returns	the	number	of
objects	in	the	collection.

Syntax
object.Count

object

An	instance	of	the	OlapTreeNodes	collection.

Data	Type
Long

Remarks
Use	this	property	to	iterate	through	the	OlapTreeNodes	collection.

See	Also

OlapTreeNodes	Collection

Analysis	Services	Programming

Item	(OlapTreeNodes)
The	Item	property	of	an	OlapTreeNodes	collection	retrieves	a	specified	item
from	the	collection.

Syntax
object.Item(Index)

object

An	instance	of	the	OlapTreeNodes	collection.

Index

Specifies	the	index	of	the	object	to	be	retrieved	from	the	collection.	If	it	is	an
integer,	Index	specifies	the	ordinal	position	of	the	item	in	the	collection.	If	it
is	a	string,	Index	specifies	the	key	assigned	to	the	item	when	it	was	added	to
the	collection.

Data	Type
OlapTreeNode

Remarks
Specifies	the	OlapTreeNode	object	when	retrieving	objects	from	this	collection.
If	it	is	an	integer,	Index	specifies	the	ordinal	position	of	the	item	in	the
collection.	If	it	is	a	string,	Index	specifies	the	key	assigned	to	the	item	when	it
was	added	to	the	collection.

See	Also

OlapTreeNodes

Analysis	Services	Programming

PivotTable	Service
PivotTable®	Service	is	the	primary	interface	for	applications	interacting	with
Microsoft®	SQL	Server™	2000	Analysis	Services.	It	is	used	to	build
client	applications	that	interact	with	multidimensional	data.	PivotTable	Service
also	provides	methods	for	online	and	offline	data	mining	analysis	of
multidimensional	data	and	relational	data.	PivotTable	Service	is	included	as	part
of	Analysis	Services,	and	it	can	be	redistributed	by	third-party	client
applications.

PivotTable	Service	is	the	primary	method	for	interacting	with	Analysis	Services
in	order	to	accomplish	such	tasks	as	connecting	to	a	cube	or	data	mining	model,
querying	a	cube	or	data	mining	model,	and	retrieving	schema	information.

As	a	stand-alone	provider,	PivotTable	Service	provides	client	applications	with
the	ability	to	create	local	cube	files	and	mining	models	from	relational	and
multidimensional	sources.	Client	applications	can	connect	to	a	local	cube	and
execute	queries	using	Multidimensional	Expressions	(MDX)	without	interacting
with	the	full-scale	Analysis	server.

PivotTable	Service	can	be	used	in	a	variety	of	development	environments.	Both
Microsoft	Visual	Basic®	and	Visual	C++®	developers	can	use	either	the
Microsoft	ActiveX®	Data	Objects	(Multidimensional)	(ADO	MD)	object	library
or	the	OLE	DB	for	OLAP	Component	Object	Model	(COM)	interfaces	to	create
client	applications.

Intended	Audience
This	document	is	intended	for	developers	who	are	interested	in	developing	client
applications	that	work	with	Analysis	Services.	Readers	should	be	familiar	with
online	analytical	processing	(OLAP)	and	the	structure	of	multidimensional	data
(cubes),	and	MDX.	Knowledge	of	data	mining	theory	and	practice	is	also
helpful.	Additionally,	knowledge	of	either	C++	or	a	COM	Automation	language,
such	as	Microsoft	Visual	Basic,	is	required.

COM	Automation	programmers	should	have	some	knowledge	of	programming
using	ActiveX	components	and	ADO.	Programmers	using	C++	should	be	well
versed	in	OLE	DB	and	COM.	All	programmers	should	be	able	to	work	with

SQL,	including	the	data	definition	language	(DDL)	and	data	manipulation
language	(DML)	extensions	defined	by	Transact-SQL.

Readers	developing	data	mining	applications	should	be	familiar	with	the	OLE
DB	for	Data	Mining	specification,	which	includes	detailed	information	about
standard	mining	models,	OLE	DB	for	Data	Mining	grammar,	query	syntax,
schema	rowsets,	prediction	functions,	special	histogram	nested	table	columns,
and	mining	model	XML	format	(PMML).	The	OLE	DB	for	Data	Mining
specification	is	available	for	download	from	the	Microsoft	OLE	DB	Web	page	at
the	Microsoft	Web	site.

Topic Description
Overview	of	PivotTable
Service

Overview	of	PivotTable	Service	capabilities
and	uses

Key	Concepts	in	PivotTable
Service

Information	about	installing,	setting	up,	and
distributing	PivotTable	Service	with	custom
client	applications

Client	Operations	in
PivotTable	Service

Guide	to	common	operations	involving
PivotTable	Service

PivotTable	Service
Programmer's	Reference

Reference	material	for	PivotTable	Service,
including	properties	and	DDL

For	more	information	about	using	ADO,	see	the	ADO	documentation.

For	more	information	about	using	OLE	DB	in	Microsoft	Visual	C++,	see	the
OLE	DB	documentation.

For	more	information	about	Transact-SQL,	see	Transact-SQL	Overview.

For	more	information	about	MDX,	see	MDX.

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=oledb
JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Analysis	Services	Programming

Overview	of	PivotTable	Service
PivotTable®	Service	is	an	OLE	DB	provider	for	multidimensional	data	and	data
mining	operations.	This	means	that	it	provides	OLE	DB	functionality	for
applications	that	need	access	to	multidimensional	data	and	data	mining	services.
By	providing	support	for	a	subset	of	SQL	and
Multidimensional	Expressions	(MDX),	PivotTable	Service	enables	applications
to	retrieve	tabular	and	multidimensional	data.	The	data	can	be	displayed,
included	in	a	local	cube,	analyzed	using	sophisticated	data	mining	algorithms,	or
updated.

The	execution	speed	of	these	complex	operations	makes	it	possible	to	perform
sophisticated	analyses	on	the	client	computer	itself.	This,	in	turn,	allows	remote
client	applications	to	function	independent	of	a	high-speed	network,	intranet
connection,	or	physical	presence	at	a	geographical	location.	For	example,	a	sales
representative	can	forecast	profit	margins	at	a	potential	customer's	site	based	on
proposals	by	that	customer	even	if	her	computer	is	not	connected	to	her	own
company's	network.	She	can	also	repopulate	her	local	cube	with	new	data
whenever	she	needs	to	do	so,	by	using	the	Internet	to	connect	to	her	corporate
Analysis	server	and	refreshing	her	local	data	with	any	new	or	updated	data.

PivotTable	Service	also	supports	data	definition	language	(DDL)	in	the
connection	string	of	the	client	application	so	that	offline	clients	can	create	and
modify	local	cubes	at	run	time	and	define	temporary	multidimensional	objects
for	use	in	analysis.	This	ability	allows	client	applications	to	be	extensible	in	the
face	of	changing	business	practices	and	across	business	boundaries.	The	data	for
local	cubes	can	be	derived	from	either	a	multidimensional	data	source	or	a
relational	one	such	as	Microsoft®	SQL	Server™,	Microsoft	Access,	or	Oracle.

For	more	information	about	using	PivotTable	Service	in	various	development
environments,	see	Development	Environments.

You	can	develop	client	applications	that	use	PivotTable	Service	using	a	variety
of	techniques	and	environments.	You	can	use	Microsoft	ActiveX®	Data	Objects
(Multidimensional)	(ADO	MD)	to	implement	client	applications	in	any
Component	Object	Model	(COM)	Automation	language,	such	as	Microsoft
Visual	Basic®,	or	as	Active	Server	Pages	(ASP)	on	a	Web	site.	C++
programmers	can	use	PivotTable	Service	with	COM	and	OLE	DB	to	implement

highly	specialized	custom	applications.

Topic Description
What's	New	in	PivotTable
Service

Describes	new	features	for	this	release

Redistributing	Components Contains	information	about	redistributing
PivotTable	components	with	third	party
applications

Developing	Client	Applications Describes	building	client	applications
using	PivotTable	Service

Development	Environments Contains	information	about	using
PivotTable	Service	in	different
development	environments

Analysis	Services	Programming

What's	New	in	PivotTable	Service
PivotTable®	Service	supports	the	advanced	data	mining	and	analysis	techniques
that	are	introduced	in	Microsoft®	SQL	Server™	2000.

This	release	of	PivotTable	Service	also	includes	new	features	that	enhance
communication	with	the	Analysis	server	and	the	management	of	local	cubes.

Client	applications	can	communicate	with	the	Analysis	server	through	Microsoft
Internet	Information	Services	(IIS)	using	HTTP;	clients	do	not	need	physical
proximity	to	the	Analysis	server	to	take	advantage	of	common	Internet	services
such	as	Domain	Name	System	(DNS).	The	Analysis	server	also	supports
security	features	such	as	cube	roles,	member	security,	and	cell	security.

The	ability	to	create	and	manage	local	cubes	from	the	client	application	has	been
improved.	Client	applications	can	now	alter	the	structure	of	a	cube,	define
default	members,	and	sort	by	member	properties	by	using	the	ALTER	CUBE
statement.	The	UPDATE	CUBE	command	supports	writeback	to	members
higher	than	those	at	the	leaf	level	of	a	hierarchy.

Advanced	Data	Mining	and	Analysis
PivotTable	Service	supports	data	mining	and	analysis	with	the	addition	of	the
CREATE	MINING	MODEL	statement	and	extensions	to	the	CREATE
VIRTUAL	CUBE	statement.	Two	algorithms	are	included:	Microsoft	Decision
Trees	and	Microsoft	Clustering.

Data	mining	models	can	be	created	on	the	server,	using	Decision	Support
Objects	(DSO),	or	locally,	using	the	CREATE	MINING	MODEL	statement.	The
models	can	then	be	trained	and	used	to	produce	predictions	based	on	trends
identified	in	the	training	data.

The	syntax	for	virtual	cubes	has	also	been	extended	to	allow	the	inclusion	of
mining	models.

For	more	information,	see	Data	Mining	Models,	Advanced	Data	Mining	and
Analysis,	CREATE	MINING	MODEL	Statement,	and	Decision	Support	Objects.

Security	Enhancements	in	PivotTable	Service

JavaScript:hhobj_1.Click()

SQL	Server	2000	Analysis	Services	provides	three	security	models	with	which
PivotTable	Service	interacts.

Cube	security

Read	and	read/write	permissions	for	databases	and	cubes	in	a	database.

Member	security

Secured	members	are	visible	only	to	users	who	have	been	granted
permission	to	read	them.	For	example,	a	user	may	query	a	States	level	that
contains	the	members	Washington,	Oregon,	and	California.	If	that	user	has	at
least	read	permission	on	the	States	level	and	all	three	of	its	members,	all
three	states	are	returned.	If	the	user	does	not	have	at	least	read	permission	on
California,	California	is	not	returned	in	the	query.	No	error	is	raised,	and	no
placeholder	is	generated.

Cell	security

Queries	that	involve	a	secured	cell	or	set	of	cells	return	an	error	code	or
value,	depending	on	the	value	of	the	Secured	Cell	Value	property	of	the
connection	string.

For	more	information,	see	Security	in	PivotTable	Service,	Data	Source	Property,
Secured	Cell	Value	Property,	and	SSPI	Property.

Connection	Enhancements	in	PivotTable	Service
The	following	enhancements	have	been	made	to	the	way	that	PivotTable	Service
connects	to	a	data	source.

Connecting	to	a	server	over	the	Internet

Client	applications	can	connect	to	the	Analysis	server	through	IIS	by	using	a
URL	for	the	server	name	in	the	Data	Source	property	of	the	connection
string.	For	more	information,	see	Connecting	Using	HTTP.

Using	the	security	services	provider	interface

You	can	use	the	SSPI	property	to	specify	a	third-party	security	provider
when	connecting	to	a	data	source	using	PivotTable	Service.

Connecting	using	a	different	user	role

When	connecting	to	a	database,	the	client	developer	can	specify	a	different
role	than	the	current	one	using	the	Roles	property.	This	allows	developers
and	database	administrators	(DBAs)	to	test	security	permission	settings	for
different	roles	without	having	to	log	in	again	under	those	roles.	The
developer	or	DBA	must	be	a	member	of	the	role	under	which	he	or	she	is
connecting.

Data	Source	Property,	Connecting	Using	HTTP,	SSPI	Property,	and	Roles
Property.

Cube	Enhancements
PivotTable	Service	includes	the	following	enhancements	to	the	client
application's	interaction	with	server	cubes	and	local	cubes.

Ragged	hierarchies

PivotTable	Service	supports	a	variety	of	hierarchy	structures	in	dimensions.
Some	hierarchies	that	are	based	on	levels,	such	as	geographical	dimensions,
may	have	branches	where	there	is	no	member	for	a	particular	level.	A
geographical	hierarchy	that	includes	Country,	State_province,	and	City	levels
might	include	a	country	that	does	not	have	states	or	provinces.	Such
hierarchies	are	known	as	ragged	hierarchies.	For	example,	a	geography
dimension	might	include	Washington,	D.C.	Unlike	other	cities	in	the	United
States,	this	city	is	not	a	child	member	of	any	state.	Its	parent	is	the	[USA]
member	itself.

Unbalanced	hierarchies

Some	hierarchies	are	based	less	on	the	concept	of	levels	and	more	on	the
hierarchical	relationship	between	the	dimension	members.	Organization
charts	and	part	manufacturing	structures	are	examples	of	such	hierarchies.
These	hierarchies,	known	as	unbalanced	hierarchies,	are	created	in	Analysis
Services	from	a	table	that	has	a	column	of	keys	that	refer	to	primary	keys	in
the	same	table.	In	an	organization	chart	table	this	column	is	often	called
ManagedBy	or	Manager.	The	concept	of	levels	is	often	less	significant	than
the	relationship	hierarchy	in	these	dimensions.	For	example,	one	executive
assistant	may	report	directly	to	a	vice	president,	whereas	another	may	report
to	a	manager.

For	more	information,	see	Organization	of	Multidimensional	Data.

Custom	rollups	and	calculated	members

You	can	define	custom	rollup	functions	in	addition	to	the	standard	aggregate
functions	(Distinct	Count,	Sum,	Min,	Max,	and	Count).	For	example,	you
can	use	a	rollup	function	to	define	a	weekly	average.	For	more	information,
see	CREATE	MEMBER	Statement.

PivotTable	Service	supports	calculated	members	for	server	and	local	cubes.
For	more	information,	see	Defining	Calculated	Members.

Allocations

Allocations	are	now	supported	by	the	inclusion	of	the	UPDATE	CUBE
statement	in	data	manipulation	language	(DML).	Aggregate	members	(that
is,	members	that	are	higher	than	the	leaf	level)	can	have	a	new	value
assigned	to	them.	The	component	members	of	the	aggregate	member	are
updated	according	to	the	allocations	described	by	the	parameters	of	the
UPDATE	CUBE	statement.

For	more	information,	see	Writing	a	Value	Back	to	a	Cell	and	UPDATE
CUBE	Statement.

Altering	the	structure	of	a	cube

PivotTable	Service	now	supports	the	ALTER	CUBE	statement	of	the	data
definition	language	(DDL).	You	can	modify	existing	cubes	by:

Adding	a	dimension	member.

Removing	a	dimension	member.

Moving	a	dimension	member.

Modifying	the	properties	of	a	dimension	member.

For	more	information,	see	ALTER	CUBE	Statement.

Defining	default	hierarchies	and	members

You	can	define	members	and	hierarchies	as	the	default	member	or	hierarchy
for	a	dimension	using	the	ALTER	CUBE	statement.	For	example,	you	can
define	the	member	USA	as	the	default	member	of	the	Geography	dimension
(which	only	has	one	hierarchy)	in	a	cube	that	contains	data	for	the	USA	only.
Alternatively,	you	can	define	the	default	hierarchy	of	the	Time	dimension	as
the	Year-Month-Day	hierarchy	or	the	Year-Quarter	hierarchy.	For	more
information,	see	CREATE	CUBE	Statement.

New	schema	rowsets

The	following	schema	rowsets	are	now	supported.

Schema	rowset Description
MDSCHEMA_FUNCTIONS Describes	the	functions	that	are

available	to	client	applications
connected	to	the	database

MDSCHEMA_PROPERTIES Describes	the	properties	of	members
contained	within	a	database

MDSCHEMA_SETS Describes	any	sets	that	are	currently
defined

MDSCHEMA_ACTIONS Describes	the	actions	that	may	be
available	to	client	application

MDSCHEMA_CELL_FORMULAS Describes	the	calculated	cells	that
may	be	contained	within	a	database

MINING_MODELS Exposes	data	mining	models
MINING_COLUMNS Describes	the	individual	columns	of

all	defined	data	mining	models
known	to	the	provider

MINING_MODEL_CONTENT Allows	browsing	of	the	content	of	a
data	mining	model

MINING_SERVICES Provides	a	description	of	each	data
mining	algorithm	that	is	supported
by	that	provider

MINING_SERVICE_PARAMETERS Provides	a	list	of	parameters	that	can
be	supplied	when	generating	a
mining	model	using	the	CREATE
MINING	MODEL	statement

MINING
MODEL_CONTENT_PMML

Stores	the	Predictive	Model	Markup
Language	(PMML)	standard
Extensible	Markup	Language
(XML)	representation	of	the	mining
model

For	more	information,	see	Schema	Rowsets	and	the	OLE	DB	documentation.

Sorting	by	member	properties

When	building	a	local	cube	file,	you	can	sort	members	in	a	dimension	using
member	properties.	For	example,	assume	that	a	Geography	dimension	has	a
member	property	Latitude	of	type	string.	When	you	build	a	cube	that
contains	the	Geography	dimension,	you	can	sort	the	members	of	the
geography	dimension	by	the	member	property	Latitude	instead	of	by	the
Name	or	Key	properties.	For	more	information,	see	CREATE	CUBE
Statement.

Actions

Each	member	of	a	cube	can	have	an	action	associated	with	it.	Actions	are
context-sensitive	operations	that	allow	a	client	application	to	trigger	a
custom,	data-sensitive	operation	on	the	members.	For	example,	you	can
define	an	action	for	members	of	the	Customers	dimension	that	retrieves	a
rowset	describing	the	details	for	that	customer.	The	client	application	may
allow	the	user	to	right-click	the	customer	entry	to	trigger	the	display	of	that
rowset.	For	more	information,	see	Creating	Actions	and	CREATE	ACTION
Statement.

Drilling	through	to	source	data

The	source	data	that	make	up	a	cell's	value	can	be	obtained	by	using	the
DRILLTHROUGH	statement.	For	example,	a	user	who	is	interested	in	the
cell	{"Sales","Pearl	Light	Beer","Orgeon","1998"}	can	obtain	the	rows	from
the	fact	table	that	were	used	to	compute	that	cell's	value.	For	more
information,	see	DRILLTHROUGH	Statement.

JavaScript:hhobj_2.Click()

Analysis	Services	Programming

Redistributing	Components
PivotTable®	Service	includes	a	number	of	dynamic-link	libraries	(DLLs)	that
you	may	need	to	ship	with	a	client	application.	Any	individual	client	application
may	need	a	combination	of	these	components,	depending	on	the	PivotTable
Service	features	it	uses.

File	set Component	files
1 Msolap80.dll,	Msolui80.dll,	Msolap80.rll,	Olapuir.rll,	and

Microsoft®	Data	Access	Components	(MDAC)
2 File	Set	1	plus	Msmdcb80.dll,	Msmdgd80.dll,	and	an

appropriate	OLE	DB	tabular	data	provider
3 File	Set	1	plus	Msdmine.dll,	Msmdun80.dll,	Msdmine.rll,	and

Msdmeng.dll

The	following	table	shows	which	file	set	to	use	based	on	which	tasks	you	want
your	client	application	to	perform.

Task File	set
Communicate	with	the	Analysis	server	using	TCP/IP	or
HTTP	and	read	local	cube	files

1

Create	and	refresh	local	cubes 2
Read	OLAP	and	relational	data	mining	models 3

You	must	install	MDAC	before	you	install	PivotTable	Service.	File	sets	2	and	3
can	be	combined	if	the	entire	suite	of	components	is	desired.	If	you	install
PivotTable	Service	with	Microsoft	Windows®	95,	you	must	install	distributed
COM	(DCOM)	before	you	install	MDAC.	For	more	information	about
distributing	and	installing	MDAC,	see	the	MSDN®	Library	at	the	Microsoft
Web	site.

Installing	and	Registering	Components
You	can	create	your	own	setup	program	to	install	and	register	the	redistribution
component	files	and	prerequisite	Microsoft®	Data	Access	Components	(MDAC)

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

files.	Alternatively,	you	can	use	one	of	the	setup	programs	provided	on	the	SQL
Server™	2000	CD-ROM.	These	setup	programs	are	described	in	Redistribution
Setup	Programs	later	in	this	topic.

The	PivotTable	Service	files,	with	the	exception	of	the	resource	files	(files	with
an	extension	of	.rll),	must	be	installed	to	the	following	location:

C:\Program	Files\Common	Files\System\OLE	DB

After	the	required	components	have	been	installed,	the	following	components
must	also	be	registered	using	Regsvr32.exe	or	their	own	DLLSelfRegister
functions:

Msolap80.dll

Msolui80.dll

Msmdgd80.dll

Msmdcb80.dll

Msmdun80.dll

Msdmine.dll

Msdmeng.dll

The	English	Language	versions	of	the	resource	files,	Msolap80.rll,	Olapuir.rll
and	Msdmine.rll,	must	be	installed	to	the	following	location:

C:\Program	Files\Common	Files\System\OLE	DB\Resources\1033

If	you	are	shipping	a	localized	product,	you	must	install	both	the	English	and	the
localized	versions	of	these	files	and	place	them	in	their	appropriate	resource
directories.	For	example,	if	you	are	shipping	a	German	version	of	your	product,
you	must	install	the	German	versions	of	the	resource	files	in	the	following
directory:

C:\Program	Files\Common	Files\System\OLE	DB\Resources\1046

When	registering	DLLs,	observe	the	following	dependencies:

Msolap80.dll	depends	on	Msolap80.rll,	Wininet.dll,	and	Oleaut32.dll
version	2.3.0	or	later.

Msolap80.rll	is	the	resource	file	for	Msolap.dll.	Oleaut32	is	the	OLE
Automation	run-time	library,	and	is	also	installed	in	either	the
C:\Windows\System	or	C:\Winnt\System32	directories.

Msolui80.dll	depends	on	Msolap80.dll,	Msvbvm60.dll,	and	Oleaut32.dll
version	2.3.0	or	later.

Msvbvm60.dll	is	a	Microsoft	Visual	Basic®	run-time	library,	and	Wininet.dll
contains	the	Internet	automation	run-time	library.	Both	are	installed	in	the
C:\Windows\System	or	C:\Winnt\System32	directory.

Note		You	can	use	the	Depends.exe	utility	to	see	the	full	set	of	external
dependencies	for	these	DLLs.	This	utility	is	available	in	either	the	Windows
NT®	4.0	Resource	Kit	or	the	Windows	2000	Server	Resource	Kit.

Installation	Registry	Settings
For	the	purposes	of	installing	and	uninstalling,	all	PivotTable	Service	files
should	be	considered	shared	files.	Create	a	registry	value	for	each	PivotTable
Service	file	under	the	following	registry	key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\SharedDLLs

If	this	registry	value	(known	as	the	reference	counter)	already	exists,	it	should	be
incremented	by	one	during	installation	of	the	PivotTable	Service	files.	During
removal	of	the	PivotTable	Service	files,	the	reference	counter	should	be
decremented	by	one.	The	PivotTable	Service	files	should	not	be	deleted	if	the
corresponding	reference	counter	is	greater	than	zero.

Redistribution	Setup	Programs

Two	setup	programs,	Ptslite.exe	and	Ptsfull.exe,	are	provided	on	the	SQL	Server
2000	CD-ROM,	in	the	folder	\Msolap\Install\Pts.	Ptslite.exe	installs	the
PivotTable	Service	files	only;	Ptsfull.exe	installs	the	PivotTable	Service	files	and
Microsoft	Data	Access	Components	(MDAC).

In	addition	to	two	required	parameters,	both	Ptslite.exe	and	Ptsfull.exe	use	the
same	optional	command	line	parameters	as	the	Analysis	Services	Setup
program.	The	required	parameters,	which	must	be	the	first	parameters	on	the
command	line,	are	-s	and	-a.	Optional	parameters	follow	these	required
parameters.	For	example,	to	use	Ptslite.exe	to	perform	a	silent	installation	of	the
PivotTable	Service	files,	the	command	is:

Ptslite	-s	-a	–s	–f1Setup.iss	...

For	more	information,	see	Setup	Parameters	and	Silent	Installation.

Ptslite.exe
Ptslite.exe	installs	the	following	PivotTable	Service	files.

atl.dll msdmeng.dll msdmine.dll
msmdcb80.dll mdmdgd80.dll msolap80.dll
msolui80.dll msmdcube.dll msmdgdrv.dll
msolap.dll msolapui.dll msdmine.rll
msolap80.rll olapuir.rll msvbvm60.dll
msmdun80.dll msolapr.dll 	

Ptsfull.exe
Ptsfull.exe	installs	the	same	files	as	Ptslite.exe,	and	also	the	Microsoft	Data
Access	Components	(MDAC).

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Developing	Client	Applications
PivotTable®	Service	is	the	primary	method	of	communication	between	a
client	application	and	a	multidimensional	data	source	or	data	mining	model,	such
as	Microsoft®	SQL	Server™	2000	Analysis	Services.	It	is	used	by	applications
provided	by	Microsoft	(such	as	the	Microsoft	Excel	PivotTable	and	PivotChart®
features)	and	by	applications	provided	by	third-party	vendors.	Programmers	who
want	to	develop	custom	client	applications	for	Analysis	Services	must	use
PivotTable	Service.

PivotTable	Service	client	applications	can	retrieve,	display	and	manipulate	data
from	multidimensional	sources,	such	as	OLAP	cubes,	or	from	data	mining
models.	PivotTable	Service	client	applications	can	also	create	cube	files	and	data
mining	models	on	the	local	computer,	and	populate	them	with	data	derived	from
an	OLE	DB	tabular	provider	such	as	SQL	Server	or	an	OLAP	cube.	After	a	cube
or	mining	model	is	created,	client	applications	can	use	PivotTable	Service	to
browse	and	analyze	the	data	contained	in	it.	In	the	case	of	OLAP	cubes,	client
applications	can	conduct	what-if	analyses	using	writeback	and	cell	allocations.
In	the	case	of	local	multidimensional	OLAP	(MOLAP)	cubes,	such	analyses	can
be	conducted	even	if	the	client	application	is	not	connected	to	the	original	data
source.	In	this	case,	PivotTable	Service	takes	the	place	of	the	Analysis	server	by
providing	many	of	the	functions	of	the	server	on	the	local	computer.

The	data	source	for	creating	a	local	cube	file	or	mining	model	can	be	any	OLE
DB	data	provider,	such	as	SQL	Server	or	Analysis	Services.

Overview	of	Client	Applications
Client	applications	that	need	to	access	OLAP	data	can	be	implemented	either	in
a	Component	Object	Model	(COM)	Automation	language,	such	as	Microsoft
Visual	Basic®,	or	in	Microsoft	Visual	C++®.	Client	applications	that	are
implemented	in	a	COM	Automation	language	or	in	C++	may	access	PivotTable
service	using	Microsoft	ActiveX®	Data	Objects	(Multidimensional)	(ADO	MD),
or	they	can	use	the	COM	interfaces	provided	by	OLE	DB	for	OLAP.	For	more
information,	see	the	OLE	DB	documentation.

Microsoft	Office

Microsoft	Excel	and	other	Microsoft	Office	products	work	with	PivotTable
Service	to	provide	access	to	OLAP	cubes	for	creating	reports	and	charts.	For
more	information,	see	the	Excel	documentation.

Analysis	Services	Programming

Development	Environments
You	can	use	PivotTable®	Service	using	either	Microsoft®	ActiveX®	Data
Objects	(ADO)	and	a	COM	Automation	language,	such	as	Microsoft	Visual
Basic®,	or	the	COM	interfaces	provided	by	OLE	DB	for	OLAP	using	Microsoft
Visual	C++®.

Microsoft	SQL	Server™	2000	Analysis	Services	and	PivotTable	Service	are
fully	compliant	with	OLE	DB	for	OLAP	2.0.	For	more	information,	see	the	OLE
DB	documentation.

Analysis	Services	Programming

Using	Visual	C++
In	a	COM	and	Visual	C++®	environment,	you	can	interact	with	PivotTable®
Service	using	OLE	DB	for	OLAP.	This	extension	to	OLE	DB	contains	interfaces
for	issuing	and	retrieving	Multidimensional	Expressions	(MDX)	queries.	The
primary	interface	for	retrieving	multidimensional	data	is	IMDDataset,	which
returns	cell	values	and	column	information.	The	OLE	DB	IDBSchemaRowset
interface	is	used	to	retrieve	multidimensional	schema	information.	OLE	DB	for
OLAP	defines	the	additional	schema	rowsets	you	need	to	retrieve	this
information.	For	more	information,	see	the	OLE	DB	documentation.

In	a	COM	and	C++	environment,	you	can	also	use	the	Microsoft	ActiveX®	Data
Objects	(Multidimensional)	(ADO	MD)	libraries	with	late	binding.

For	more	information,	see	Visual	C++	and	ADO.

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Using	Visual	Basic
In	a	COM	Automation	environment,	you	can	interact	with	PivotTable®	Service
using	the	Microsoft®	ActiveX®	Data	Objects	(ADO)	library	and	the	Microsoft
ActiveX	Data	Objects	(Multidimensional)	(ADO	MD)	library.

These	libraries	can	be	used	together	or	independently	of	each	other.

See	Also

Using	ADO

Using	ADO	MD

Using	Active	Server	Pages

Analysis	Services	Programming

Using	ADO	MD
The	Microsoft®	ActiveX®	Data	Objects	(Multidimensional)	(ADO	MD)	library
contains	a	number	of	objects	you	can	use	with	PivotTable®	Service.	The	Cellset
object	allows	developers	to	issue	Multidimensional	Expressions	(MDX)	queries
against	cubes	on	the	Analysis	server	or	local	cube	files.	The	CubeDef	object
enables	you	to	retrieve	multidimensional	schema	information.

To	use	the	ADO	MD	library	independently	of	the	ADO	library,	use	the
ActiveConnection	property	of	the	Catalog	or	Cellset	objects.	For	more
information,	see	the	ADO	MD	documentation.

Example
The	following	code	creates	a	Cellset	object	and	sets	the	ActiveConnection
property	to	the	FoodMart	2000	sample	database.	It	then	executes	a	query
against	the	Sales	cube.

Dim	MyCellSet	As	New	ADOMD.Cellset
MyCellSet.ActiveConnection	=	"Provider=msolap;	Data	Source=LocalHost;	Initial	Catalog=FoodMart	2000;"
MyCellSet.Source	=	"select	{[Measures].[Unit	Sales]}	on	columns,"	&	_
				"order(except([Promotion	Media].[Media	Type].members,"	&	_
				"{[Promotion	Media].[Media	Type].[No	Media]}),[Measures].[Unit	Sales],DESC)	on	rows	"	&	_
				"From	Sales"
MyCellSet.Open

See	Also

Working	with	OLAP	Data

Using	ADO

Analysis	Services	Programming

Using	ADO
This	library	contains	objects	that	may	be	used	to	develop	client	applications	that
use	PivotTable®	Service.	This	library	provides	objects	such	as	the	Connection
object,	which	provides	methods	such	as	Open,	OpenSchema,	and	Execute.	For
more	information,	see	the	Microsoft®	ActiveX®	Data	Objects	(ADO)
documentation.

It	is	not	necessary	to	use	the	ActiveX	Data	Objects	(Multidimensional)	(ADO
MD)	library	in	conjunction	with	ADO	to	retrieve	data	from	PivotTable	Service.
Each	library	can	be	used	independently	of	the	other.	For	more	information,	see
Working	with	OLAP	Data.

Example
The	following	code	creates	a	Command	object:

Dim	MyCommand	As	New	ADODB.Command
MyCommand.ActiveConnection	=	"Provider=msolap;	Data	Source=LocalHost;	Initial	Catalog=FoodMart	2000;"
MyCommand.CommandText	=	"select	{[Measures].[Unit	Sales]}	on	columns,"	&	_
				"order(except([Promotion	Media].[Media	Type].members,"	&	_
				"{[Promotion	Media].[Media	Type].[No	Media]}),[Measures].[Unit	Sales],DESC)	on	rows	"	&	_
				"From	Sales"
MyCommand.Execute

See	Also

Using	ADO	MD

Analysis	Services	Programming

Using	Active	Server	Pages
PivotTable®	Service	can	be	used	by	Active	Server	Pages	(ASP)	Microsoft®
Visual	Basic®	Scripting	Edition	(VBScript)	programmers	by	using	the
CreateObject	method	of	the	ASP	Server	object.	This	method	can	be	used	to
create	any	needed	object	from	either	the	Microsoft®	ActiveX®	Data	Objects
(ADO)	or	ActiveX	Data	Objects	(Multidimensional)	(ADO	MD)	object	libraries.

Example
The	following	example	creates	an	ADO	MD	Cellset	object	using	VBScript:

Dim	MyCellset
Set	MyCellset	=	Server.CreateObject("ADOMD.Cellset")

See	Also

Using	ADO

Using	ADO	MD

Analysis	Services	Programming

Key	Concepts	in	PivotTable	Service
The	following	topics	may	be	helpful	in	understanding	the	concepts	that	are	used
when	developing	client	applications	for	Microsoft®	SQL	Server™	2000
Analysis	Services.	Each	topic	is	presented	from	the	point	of	view	of	the	client
application.	For	more	information	presented	from	the	point	of	view	of	the	server,
see	Analysis	Services	Architecture.

Topic Description
Context	of	Connections Describes	how	the	different	connection

contexts	in	PivotTable®	Service	define	the
features	available	to	the	client	application

Organization	of
Multidimensional	Data

Describes	how	multidimensional	data	is
organized	within	Analysis	Services,	and
how	PivotTable	Service	uses	that
organization

Advanced	Data	Mining	and
Analysis

Information	about	using	data	mining	in
client	applications

Working	with	OLAP	Data Describes	how	OLAP	data	can	be
manipulated	and	displayed

Calculated	Members Describes	how	to	create	calculated
members

Managing	the	Client	Cache Information	on	using	the	client	cache
Transactions	in	Analysis
Services

Describes	how	transactions	affect	features
such	as	writeback	and	allocations

Security	in	PivotTable	Service Describes	how	PivotTable	Service	works
with	the	security	features	in	Analysis
Services

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Context	of	Connections
The	features	and	characteristics	of	PivotTable®	Service	are	defined	by	the
context	of	the	connection	that	it	is	managing.	There	are	three	connection
contexts	in	PivotTable	Service:

Connected	to	Microsoft®	SQL	Server™	2000	Analysis	Services

Connected	to	an	OLE	DB	provider

Connected	to	a	local	cube	or	a	local	data	mining	model

When	PivotTable	Service	is	connected	to	an	Analysis	server,	details	such	as	the
communication	protocol	between	the	client	application,	server	management,	and
the	cache	management	are	hidden	from	the	client	application.	This	simplifies
implementation	of	client	applications.	It	is	possible	for	the	client	application	to
interact	with	any	type	of	cube	on	the	Analysis	server,	create	local	cubes	based	on
server	cubes	(MOLAP	cubes),	create	local	cubes	based	on	separate	relational
databases	(that	is,	ROLAP	cubes),	create	a	local	data	mining	model,	and	interact
with	existing	data	mining	models.

When	connected	to	a	ROLAP	cube,	PivotTable	Service	acts	as	a	server	for
elements	that	reside	in	the	local	cube	and	as	an	interface	for	elements	of	the	cube
that	reside	in	the	relational	database.

When	connected	to	a	local	MOLAP	cube	or	data	mining	model,	PivotTable
Service	takes	on	the	role	of	the	Analysis	server.	PivotTable	Service	interprets
commands	from	the	client	application	and	executes	them	against	the	local	data
source,	without	need	for	communication	with	a	separate	Analysis	server.
PivotTable	Service	formats	the	results	and	passes	them	back	to	the	client
application.

Topic Description
Connected	to	Analysis	ServicesDescribes	how	PivotTable	Service	gets

data	from	Microsoft®	SQL	Server™	2000
Analysis	Services,	builds	cube	slices	based

on	cubes	on	the	Analysis	server,	works
with	data	mining	models	on	the	Analysis
server,	and	connects	to	Analysis	Services
over	the	Internet

Connected	to	an	OLE	DB
Provider

Describes	how	PivotTable	Service	retrieves
data	from	a	local	ROLAP	cube	and	builds
local	cube	files

Connected	to	a	Local	Cube	File
or	Data	Mining	Model

Describes	how	PivotTable	Service	retrieves
data	from	a	local	cube	file	or	a	local
mining	model

Analysis	Services	Programming

Connected	to	Analysis	Services
There	are	a	variety	of	connection	contexts	to	be	considered	when	connected	to
Microsoft®	SQL	Server	2000™	Analysis	Services.	The	context	of	the
connection	determines	how	the	connection	is	established	and	which	features	and
properties	are	available	to	the	client	application.	For	example,	when	connecting
over	the	Internet,	using	HTTP,	you	should	consider	whether	the	User	ID	and
Password	properties	will	be	needed	to	establish	the	connection.	When
connecting	to	an	Analysis	server,	you	may	want	to	optimize	cache	properties	for
better	performance.

Retrieving	Data	from	Analysis	Services
When	using	PivotTable®	Service	to	retrieve	data	from	Analysis	Services,
PivotTable	Service	communicates	with	a	remote	Analysis	server	through	a
network	connection	or	through	shared	memory	on	the	local	computer.	The
network	protocol	is	either	TCP/IP	or	HTTP.	If	a	connection	request	is	made	that
references	a	remote	SQL	provider	or	other	tabular	data	provider,	the	request	is
automatically	routed	to	the	provider	in	question.	The	caching	of	result	sets	and
other	optimizations	is	not	visible	to	the	client	application.

Deriving	Local	Cube	Files	from	Server	Cubes	(Slicing)
It	is	possible	to	build	local	cubes,	which	are	based	upon	cubes	that	reside	on	a
server.	This	process	is	similar	to	creating	a	local	cube	based	on	a	fact	table,
except	that	the	server	cube	itself	is	used	as	the	data	source.	When	a	WHERE
clause	is	specified	as	part	of	the	CREATE	CUBE	statement's	WHERE	clause,	or
when	only	a	subset	of	the	available	dimensions	or	measures	are	specified,	the
operation	is	referred	to	as	a	slice.	For	more	information,	see	Building	Local
Cubes.

Building,	Training,	and	Retrieving	Data	from	a	Data	Mining
Model

When	connected	to	Analysis	Services,	it	is	possible	to	create,	train	(that	is,
process)	and	interact	with	mining	models	on	the	local	computer.

You	can	create	a	mining	model	on	the	server	using	Decision	Support	Objects
(DSO).	To	create	a	mining	model	locally,	use	data	definition	language	(DDL).

For	more	information	about	creating	data	mining	models	on	the	Analysis	server,
see	Data	Mining	Examples.

Connecting	Using	HTTP
This	feature	enables	the	user	to	connect	to	the	Analysis	server	through	Microsoft
Internet	Information	Services	(IIS).	By	setting	the	Data	Source	connection
string	property	to	an	HTTP	or	HTTPS	URL,	PivotTable	Service	is	able	to	tunnel
a	connection	to	the	Analysis	server	through	firewalls	or	proxy	servers.	This	is
accomplished	by	use	of	a	special	Active	Server	Pages	(ASP)	page,	Msolap.asp,
which	is	installed	by	default	to	C:\Program	Files\Microsoft	Analysis
Services\Bin.

The	rest	of	the	connection	string	is	specified	normally.

For	more	information	about	the	ConnectionString	property,	see	the	ADO
documentation.

See	Also

Connecting	Using	HTTP

Analysis	Services	Programming

Connected	to	an	OLE	DB	Provider
It	is	possible	for	PivotTable®	Service	to	connect	to	a	relational	OLE	DB
provider	directly:

When	retrieving	data	from	a	relational	OLAP	(ROLAP)	local	cube	file

When	building	a	local	cube	file

Retrieving	Data	from	a	Local	ROLAP	Cube

When	communicating	with	a	local	relational	OLAP	(ROLAP)	cube	file,	you
must	have	a	connection	to	a	relational	data	provider.	The	local	cube	file	stores
the	structural	definition	of	the	cube	but	not	actual	or	precalculated	data.	To
retrieve	the	data	itself,	the	connection	to	the	tabular	data	provider	is	used.	This
process	is	transparent	to	the	client	application.	This	transparency	results	in
smaller	cubes	than	are	possible	using	a	multidimensional	OLAP	(MOLAP)
storage	mode.	However,	the	performance	of	such	a	cube	is	less	than	that	of	a
local	MOLAP	cube	due	to	the	processing	requirements	of	calculating	the
aggregate	function	at	run	time.

Building	Local	Cube	Files
You	can	also	build	a	local	ROLAP	cube	file	that	is	based	on	a	relational
OLE	DB	provider	by	using	the	DEFER_DATA	option	in	the	INSERT	INTO
statement.	Queries	that	are	used	to	define	the	local	cube	file	are	passed	to	the
data	source	where	they	are	resolved.	The	resulting	OLE	DB	recordsets	are
interpreted	by	PivotTable	Service	and	used	to	build	the	local	cube.

See	Also

Building	Local	Cubes

Using	DRILLTHROUGH	to	Retrieve	Source	Data

JavaScript:hhobj_1.Click()

INSERT	INTO	Statement

Analysis	Services	Programming

Connected	to	a	Local	Cube	File	or	Data	Mining
Model
The	processes	for	connecting	to	a	local	cube	file	and	a	local	mining	model	are
almost	identical.

Retrieving	Data	from	a	Local	MOLAP	Cube
PivotTable®	Service	connects	to	the	local	cube	file	in	the	same	way	that	it
connects	to	any	other	data	source.	PivotTable	Service	processes	queries	against
the	local	cube	file	and	returns	data	to	the	application.	The	client	application	can
access	the	dimensions,	levels,	properties,	and	so	on	of	a	particular	cube.	No
connection	to	a	remote	server	is	required,	except	to	create	the	cube.	This
diagram	illustrates	communication	between	PivotTable	Service	and	a	local
MOLAP	cube	file.

Retrieving	Data	from	a	Local	Data	Mining	Model
PivotTable	Service	connects	to	a	data	mining	model	in	the	same	way	it	connects
to	any	other	data	source.	Prediction	queries	can	be	passed	to	a	local	data	mining
model	in	the	same	fashion	as	they	are	made	and	passed	to	a	server	model.	A
connection	to	a	remote	server	is	not	required,	except	to	create	the	mining	model
file.

See	Also

Connecting	to	a	Data	Source

Analysis	Services	Programming

Organization	of	Multidimensional	Data
PivotTable®	Service	supports	three	different	hierarchy	types.	The	following
table	contains	links	to	the	topics	that	discuss	each	type,	and	how	to	address
compatibility	with	existing	client	applications	developed	for	Microsoft®	SQL
Server™	7.0	OLAP	Services.

Topic Description
Balanced	Hierarchies Describes	how	SQL	Server	2000

Analysis	Services	implements
dimension	hierarchies	in	which	all
leaf	nodes	of	a	level	are	the	same
distance	from	the	root	node

Ragged	Hierarchies Describes	how	Analysis	Services
implements	dimension	hierarchies	in
which	one	or	more	levels	do	not
contain	members	in	one	or	more
branches	of	the	hierarchy

Unbalanced	Hierarchies Describes	how	Analysis	Services
implements	dimension	hierarchies	in
which	leaf	nodes	differ	in	their
distances	from	the	root	node

Using	the	MDX	Compatibility
Property

Describes	the	use	of	this	property	to
address	compatibility	with	existing
client	applications

Analysis	Services	Programming

Balanced	Hierarchies
A	balanced	hierarchy	is	one	in	which	the	presence	of	children	for	any	given
member	does	not	depend	on	its	value.	Instead,	it	depends	on	the	level	of	that
member	in	the	hierarchy.	For	example,	a	dimension	based	on	time	might	have
the	following	structure.

This	structure	applies	in	most	situations.	Some	natural	variations	may	occur;	for
example,	an	application	may	use	a	Julian	calendar	instead	of	a	traditional	one.	In
this	case,	you	could	use	the	Julian	hierarchy	exclusively	or	define	multiple
hierarchies	for	the	dimension	containing	time	information.

See	Also

Balanced	and	Unbalanced	Hierarchies

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Ragged	Hierarchies
A	ragged	hierarchy	is	one	in	which	one	or	more	levels	are	skipped	in	the
members	of	the	hierarchical	structure.	For	example,	a	Geography	dimension
might	have	the	following	structure.

For	countries	that	have	states	or	provinces,	such	as	Canada	or	Mexico,	this
dimension	works	well.	Consider	the	case	of	Washington,	D.C.:	The	parent	of	this
member	of	the	City	level	is	USA,	which	is	not	a	member	of	the	State	level.
However,	other	siblings	of	Washington	D.C.,	such	as	Los	Angeles	and	New
York,	have	parents	that	are	members	of	the	State	level.	This	is	an	example	of	a
ragged	hierarchy.

See	Also

Ragged	Hierarchies

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Unbalanced	Hierarchies
An	unbalanced	hierarchy	is	one	in	which	the	children	of	a	member	may	or	may
not	have	children	themselves,	depending	on	the	value	of	that	child.	PivotTable®
Service	supports	parent-child	structures	to	contain	unbalanced	hierarchies.
Consider	the	case	of	an	organizational	chart	in	a	company.	Executive	assistants
may	report	directly	to	the	CEO,	a	director,	or	a	manager.	Technicians	may	report
to	a	lead	technician,	a	manager,	or	a	technical	sales	person.	In	these	hierarchies,
the	level	of	the	individual	is	less	important	than	the	individual's	relationship	to
the	superior.	Relationships	of	this	type	are	often	referred	to	as	parent-child
relationships	and	are	often	defined	in	relational	databases	using	self-referential
joins.

See	Also

Balanced	and	Unbalanced	Hierarchies

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Using	the	MDX	Compatibility	Property
Empty	positions	in	a	hierarchy	can	affect	some	functions	in	Microsoft®	SQL
Server™	version	7.0	OLAP	Services.	For	example,
DrillDownLevel([Romania])	returns	an	empty	set	because	Romania	has	no
states	or	provinces.	For	this	reason,	a	connection	string	property,	MDX
COMPATIBILITY,	is	provided	for	backward	compatibility	with	client
applications	developed	using	SQL	Server	7.0	OLAP	Services.	The	following
table	describes	this	property.

MDX
COMPATIBILITY
property	value Description
0 (Default)	The	same	as	Value	1
1 Compatible	with	SQL	Server	7.0	OLAP	Services
2 Compatible	with	SQL	Server	2000	Analysis

Services

If	the	MDX	COMPATIBILITY	property	value	is	set	to	1,	a	client	application
using	DrillDownLevel([Romania])	receives	a	single	dummy	member	for	the
States/provinces	level	of	Romania,	which	can	then	be	drilled	down	again,
incrementally,	to	provide	access	to	the	city	members	of	the	Romanian	geography
hierarchy.	When	this	property	is	set	to	2,	PivotTable®	Service	returns	an	empty
set	for	this	function.	The	following	table	shows	which	functions	are	affected	by
empty	positions	in	a	hierarchy.

Function	called	on	
empty	positions

Results	
(MDX
COMPATIBILITY=1)

Results
(MDX
COMPATIBILITY=2)

AllMembers
Members
Descendants

Returns	the	name	of	the
empty	level	in	the
hierarchy

Ignores	empty
positions	on	the
resulting	axis

Range	(:) Returns	the	name	of	the Returns	an	error

empty	level	in	the
hierarchy

Children Returns	the	name	of	the
empty	level	in	the
hierarchy

Returns	all	nonempty
child	positions	and	all
children	of	any	empty
positions	in	the
hierarchy

DrillDownLevel
DrillDownLevelTop
DrillDownLevelBottom
DrillUpLevel

Returns	the	name	of	the
empty	level	in	the
hierarchy

Returns	an	empty	set

DrillDownMember
DrillDownMemberTop
DrillDownMemberBottom
DrillUpMember

Returns	the	name	of	the
empty	level	in	the
hierarchy

Skips	empty	positions
in	the	hierarchy	and
returns	the	first	position
that	is	not	empty

LastPeriods
YTD
QTD
MTD
WTD

Returns	the	normal
value	of	the	requested
cell

Returns	an	error

AddCalculatedMembers
VisualTotals

Returns	the	normal
value	of	the	requested
cell

Skips	empty	positions
in	the	hierarchy	and
returns	the	first	position
that	is	not	empty

Parent	
Ancestor	
FirstChild
LastChild

Returns	the	normal
value	of	the	requested
cell

Skips	empty	positions
in	the	hierarchy

ClosingPeriod
OpeningPeriod
Cousin
ParallelPeriod

Returns	the	name	of	the
empty	level	in	the
hierarchy

Returns	an	error

PrevMember
NextMember
Lead
Lag

Returns	the	normal
value	of	the	requested
cell

Returns	the	resultant
real	members	at	that
level

See	Also

MDX

MDX	Compatibility	Property

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Advanced	Data	Mining	and	Analysis
In	this	release,	Microsoft®	SQL	Server™	2000	Analysis	Services	introduces	a
new	feature,	data	mining,	that	integrates	significant	data	analysis	and	prediction
capabilities	into	Analysis	Services.	PivotTable®	Service	enables	clients	to
interact	with	these	new	data	mining	features.	For	more	information	about	data
mining	in	Analysis	Services,	see	Data	Mining	Models	and	Data	Mining
Columns.

PivotTable	Service	supports	data	mining	by	providing	support	services	that	are
very	similar	to	the	services	it	provides	for	online	analytical	processing	(OLAP).
For	example,	PivotTable	Service	can	create	and	maintain	local	data	mining
models	just	as	it	can	create	and	maintain	local	cubes.	To	create	a	data	mining
model	on	an	Analysis	server,	you	must	use	Decision	Support	Objects	(DSO).	For
more	information	about	building	mining	models	using	DSO,	see	Data	Mining
Examples.

Two	data	mining	algorithms	are	included	with	Analysis	Services:	Microsoft
Decision	Trees	and	Microsoft	Clustering.	The	decision	trees	algorithm	is	based
on	the	notion	of	classification.	The	clustering	algorithm	uses	an	expectation-
maximization	method	to	group	records	into	clusters	(or	segments)	that	exhibit
some	similar,	predictable	characteristic.	For	more	information,	see	Microsoft
Clustering.

The	following	table	describes	topics	that	contain	information	about	data	mining
in	PivotTable	Service.	For	detailed	information	about	creating	and	using	data
mining	models,	including	special	functions	for	mining	models,	mining	model
XML	format,	and	examples,	see	the	OLE	DB	for	Data	Mining	specification,
available	on	the	Microsoft	OLE	DB	Web	page	at	the	Microsoft	Web	site.

Topic Description
Building	a	Local	Data	Mining	Model Describes	the	process	of	building

local	data	mining	models
Training	a	Local	Data	Mining	Model Describes	how	to	process	a	local	data

mining	model	with	training	data
Predictions	and	Results	of	Data
Mining

Describes	how	to	run	prediction
queries	against	a	data	mining	model

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=oledb

and	how	to	browse	its	contents

See	Also

Data	Mining	Models

Data	Mining	Algorithms

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Analysis	Services	Programming

Building	a	Local	Data	Mining	Model
Conceptually,	the	structure	of	a	local	data	mining	model	is	similar	to	that	of	a
table	in	a	relational	database.	Like	tables,	data	mining	models	are	defined	by	the
column	definitions	they	contain.	However,	unlike	a	table	in	Microsoft®	SQL
Server™	2000,	the	columns	in	a	data	mining	model	can	contain	nested	tables.
SQL	Server	2000	Analysis	Services	supports	two	kinds	of	data	mining	models:
models	that	are	based	on	OLAP	cubes,	and	models	that	are	based	on	relational
tables	(or,	more	accurately,	a	rowset	from	an	OLE	DB	provider).

The	syntax	for	defining	a	mining	model	is	also	similar	to	that	for	defining	a
table.	There	are	two	different	forms	of	the	CREATE	MINING	MODEL
statement,	one	for	OLAP	mining	models	and	one	for	relational	mining	models.

Building	a	Model	Based	on	an	OLAP	Cube
To	create	a	mining	model	that	is	based	on	an	OLAP	cube,	use	the	CREATE
OLAP	MINING	MODEL	statement.	The	general	form	of	the	statement	is	as
follows:

CREATE	OLAP	MINING	MODEL	<Model	Name>	FROM	<Case	Cube	Name>
(<Cube	Members>)	USING	<Algorithm	Name>

The	<Model	Name>	token	specifies	the	name	of	the	model	that	will	be	created.
The	physical	location	for	this	model	will	be	the	directory	specified	by	the
Mining	Location	property.	If	the	Mining	Location	property	is	not	specified	in
the	connection	string,	the	mining	model	created	by	this	statement	will	have
connection	scope,	and	it	will	only	exist	for	the	duration	of	the	session.	The
<Case	Cube	Name>	token	is	the	name	of	the	cube	that	contains	the	training
cases	for	the	model	<Cube	Members>.	Finally,	the	<Algorithm	Name>	token
contains	the	name	of	the	mining	model	algorithm	that	will	be	used	to	create	the
model.	This	token	can	have	one	of	two	values:	Microsoft_Decision_Trees	or
Microsoft_Clustering.

The	following	example	creates	an	OLAP	mining	model	that	predicts	the
Member	Card	Type	property	for	members	of	the	Customers	dimension:

CREATE	OLAP	MINING	MODEL	[MyOlapModel]	FROM	[Sales]
		(
				CASE	
						DIMENSION	[Customers]	
						LEVEL	[Name]	
								PROPERTY	[Marital	Status],	
								PROPERTY	[Education],	
								PROPERTY	[Member	Card	Type]	PREDICT
)
USING	Microsoft_Decision_Trees

The	mining	model	that	this	example	defines	is	based	on	the	Sales	cube	in	the
current	database	(that	is,	the	default	database	for	this	session).	The	three	columns
that	will	be	included	in	this	mining	model	are	defined	next.	Each	column	is
based	on	a	member	property	that	applies	to	each	member	contained	in	the	Name
level	of	the	Customers	dimension.	The	presence	of	the	PREDICT	specifier	in	the
definition	for	the	last	column,	Member	Card	Type,	indicates	that	the	column	is
predictable.

Building	a	Model	Based	on	a	Relational	Database	Table
You	define	relational	mining	models	(that	is,	models	that	are	based	on	tables	in	a
relational	database)	by	specifying	the	columns	to	be	included	in	the	model.
Because	the	format	and	structure	of	the	source	data	is	not	known	in	advance,
each	column	is	defined	by	a	name,	the	data	type	of	its	content,	its	statistical
nature,	and	whether	the	column	will	be	predictable	in	a	query.	The	general	form
of	the	statement	that	creates	a	relational	mining	model	is	as	follows:

CREATE	MINING	MODEL	<Model	Name>	(<Column	Members>)	USING
<Algorithm	Name>

For	example,	consider	the	following	relational	mining	model	definition:

CREATE	MINING	MODEL	[MemberCards]	
		(
				[customer	Id]	LONG	KEY	,	
				[Yearly	Income]	TEXT	DISCRETE	,	

				[Member	Card	Type]	TEXT	DISCRETE	PREDICT,
				[Marital	Status]	TEXT	DISCRETE	
)	
USING	Microsoft_Decision_Trees

In	this	example,	a	mining	model	named	MemberCards	is	defined	using	the
CREATE	MINING	MODEL	statement.	The	syntax	of	this	statement	is	similar	to
that	of	the	CREATE	TABLE	statement	in	SQL.	The	columns	that	make	up	this
mining	model	are	named	and	their	types	are	defined	with	additional	information
concerning	the	content	they	contain.	The	Member	Card	Type	column	is
specified	as	being	predictable	by	using	the	PREDICT	specifier	in	its	column
definition.

Columns	That	Contain	Nested	Tables
You	may	want	to	create	a	mining	model	that	contains	a	column	with	a	nested
table.	In	this	case,	use	the	TABLE	type	specifier	in	the	CREATE	MINING
MODEL	statement:

		CREATE	MINING	MODEL	[Age	Prediction]
		(
				[Customer	ID]								LONG				KEY,
				[Gender]													TEXT				DISCRETE,
				[Age]																DOUBLE		DISCRETIZED()	PREDICT,
				[Product	Purchases]		TABLE
						(
								[Product	Name]			TEXT				KEY,		
								[Product	Type]			TEXT				DISCRETE	RELATED	TO	[Product	Name],
								[Quantity]							DOUBLE		NORMAL	CONTINUOUS
)
)
		USING	[Decision	Trees]

In	this	example,	the	Product	Purchases	column	contains	a	nested	table	that
contains	three	columns:	Product	Name,	Quantity,	and	Product	Type.	The	first
column	in	the	nested	table	is	a	key	column.	The	next	column	in	the	nested	table,

Product	Type,	is	related	to	the	Product	Name	column	in	a	hierarchical
relationship.	The	last	column,	Quantity,	contains	a	floating-point	number	that	is
statistically	normal	and	continuous	across	its	domain	(as	opposed	to	having
discrete	values	within	the	domain).

The	last	clause	in	the	CREATE	MINING	MODEL	states	that	the	model	should
be	built	using	the	Microsoft	Decision	Trees	data	mining	algorithm.

For	more	information	about	the	CREATE	MINING	MODEL	statement,	see
CREATE	MINING	MODEL	Statement.

For	more	information,	see	the	OLE	DB	for	Data	Mining	specification.

See	Also

Data	Mining	Models

Data	Mining	Columns

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Analysis	Services	Programming

Training	a	Local	Data	Mining	Model
In	data	mining,	training	is	the	process	that	inserts	the	data	into	the	model	that
will	be	used	as	the	basis	for	making	predictions.	The	INSERT	INTO	statement	is
used	to	accomplish	this	task.	The	syntax	of	the	statement	depends	on	the	kind	of
object	on	which	the	model	is	to	be	based.	Microsoft®	SQL	Server™	2000
Analysis	Services	supports	two	different	kinds	of	base	objects	for	data	mining
models:	OLAP	cubes	and	relational	tables.

The	process	of	training	a	mining	model	can	be	broken	down	into	two	parts.	First,
the	columns	that	define	the	model's	structure	are	populated	with	content	from	the
data	source.	Second,	the	content	is	analyzed	using	the	algorithm	specified	in	the
CREATE	MINING	MODEL	statement.	The	results	of	this	analysis	are	stored	in
the	mining	model	as	a	collection	of	nodes.	These	nodes	can	be	browsed	using
the	MINING_MODEL_CONTENT	schema	rowset	or	by	executing	a	content
query	against	the	mining	model.

Training	an	OLAP	Data	Mining	Model
For	OLAP	mining	models,	the	general	form	for	the	INSERT	INTO	statement	is:

INSERT	INTO	<model	Name>

No	column	names	or	other	source	data	is	needed	to	train	the	model.	This	is
because	the	structure	of	the	mining	model	is	based	on	a	cube	and	is	therefore
known	in	advance.	No	other	steps	are	necessary	to	complete	the	processing	of
the	model.

Training	a	Relational	Mining	Model
Training	a	data	mining	model	based	on	a	table	in	a	relational	database	is	slightly
more	complicated	than	processing	an	OLAP	mining	model.	When	training	a
relational	data	mining	model,	the	columns	to	be	populated	must	be	specified
explicitly	along	with	their	data	source.	This	is	because	the	INSERT	INTO
command	in	the	relational	data	mining	model	does	not	have	the	same
information	available	as	an	OLAP	mining	model.	The	general	form	of	the
command	for	training	relational	mining	models	is	as	follows:

INSERT	INTO	<model	name>	(<Column	Names>)	<Data>

To	understand	the	process	of	training	a	relational	mining	model,	consider	the
example	of	a	model	with	the	columns	Name,	Age,	and	Hair	Color.	The	following
statement	can	be	used	to	populate	this	model:

INSERT	INTO	[MyModel]
		//	Define	the	list	of	columns	to	be	populated
		(
				[Name],	[Age],	[Hair	Color]
)
		//	Use	the	OPENROWSET	command	to	pass	a	SELECT	query	to	an	SQL	OLE	DB	provider
		OPENROWSET	
		(
				'SQLOLEDB',	'Initial	Catalog=FoodMart	2000',	
				'Select	[Name],	[Age],	[Hair	Color]	FROM	[Customers]'
)

The	OPENROWSET	Statement
Analysis	Services	does	not	support	the	use	of	direct	SQL	SELECT	queries	to
retrieve	data	rowsets	for	training	data	mining	models.	Instead,	it	supports	the
OPENROWSET	statement,	which	enables	applications	to	specify	an	external
query	in	place	of	actual	data	or	an	SQL	SELECT	statement.	The	syntax	of	this
command	is	as	follows:

OPENROWSET	('<Provider	Name>',	'<Connection	String>',	'<Query	Syntax>')

The	<Provider	Name>	token	must	correspond	to	an	OLE	DB	compliant	data
source,	such	as	'SQLOLEDB'	or	'MSOLAP'.	The	<Connection	String>	token
must	correspond	to	a	valid	connection	string	for	the	data	source,	minus	the
provider	property.	Finally,	the	<Query	Syntax>	token	should	correspond	to	a
valid	query	in	the	supported	language	of	the	provider	that	will	return	the	desires
rowset.	In	this	example,	the	provider	used	is	the	SQL	Server	2000	OLE	DB
provider.	The	Connection	String	property	specifies	that	the	FoodMart	2000
database	is	to	be	used	as	the	default	database	for	the	query.	Finally,	the	query
itself	is	defined	as	a	standard	Transact-SQL	query	that	returns	three	columns
from	a	table	called	Customers.

Training	Models	That	Include	Nested	Columns
The	SHAPE	command	must	be	used	to	populate	the	columns	in	a	nested	table.
The	general	format	for	this	command	is	as	follows:

SHAPE	{	<Rowset	Query>	}	
APPEND	
(
			{	<Rowset	Query>	}	
			RELATE	<Parent	Key	Column>	TO	<Child	Key	Column>
)
AS	<Nested	Column	Name>

The	following	example	demonstrates	populating	a	nested	table	by	using	the
shape	provider:

INSERT	INTO	[Age	Prediction]
		(/*	Define	the	columns	of	the	case	table	*/
				[Customer	Id],	[Gender],	[Age],
				/*	Define	the	columns	of	the	nested	table	*/
				[Product	Purchases](SKIP,	[Product	Name],	[Quantity],	[Product	Type])
)
SHAPE	
		{
				OPENROWSET	('SQLOLEDB','INITIAL	CATALOG=FoodMart	2000;',
				'SELECT	[Customer	Id],	[Gender],	[Age]	FROM	Customers	ORDER	BY	[Customer	ID]')
			}	
		APPEND	
			(
				{
						OPENROWSET	('SQLOLEDB','INITIAL	CATALOG=FoodMart	2000;',
						SELECT	[CustID],	[Product	Name],	[Quantity],	[Product	Type]	FROM	Sales	ORDER	BY	[CustID])
				}	
					RELATE	[Customer	Id]	To	[CustID]
)	
			AS	[Product	Purchases]

In	this	example,	a	column	in	the	case	table	called	[Product	Purchases]	is
populated	by	a	nested	table.	The	names	of	the	columns	in	this	nested	table	are
defined	inside	the	parentheses	of	the	fourth	line	of	the	INSERT	INTO	statement.
The	SHAPE	command	is	then	used	to	define	the	columns	that	will	be	used	to
populate	the	case	table.	The	SHAPE	clause	defines	columns	that	will	be	used	to
populate	the	nested	table	as	columns	that	are	contained	within	the	APPEND
clause.	The	relationship	between	the	case	table	and	the	nested	table	is	then
defined	by	using	the	RELATE	clause.	The	result	of	the	SHAPE	command	is	then
aliased	to	be	the	same	as	that	of	the	original	column	that	contained	the	nested
tale.

When	using	the	shape	command	it	is	important	to	use	the	ORDER	BY	clause	to
enforce	the	order	of	columns	in	the	query.	Failure	to	use	this	clause	may	cause
some	or	all	data	to	be	ignored	in	your	nested	tables.

See	Also

Data	Mining	Models

Data	Mining	Columns

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Analysis	Services	Programming

Predictions	and	Results	of	Data	Mining
For	retrieving	information	from	a	processed	data	mining	model,	Microsoft®
SQL	Server™	2000	Analysis	Services	supports	two	different	kinds	of	queries.

Query	type Definition
Prediction	query Returns	the	predicted	values	of	a	set	of	columns,	whose

contents	are	unknown,	after	applying	the	results
contained	within	a	processed	data	mining	model	to	them

Content	query Returns	information	about	the	values	and	rules
discovered	by	training	the	mining	model

Prediction	Queries
Prediction	queries	allow	the	user	to	make	predictions	for	unknown	case	sets
using	contents	from	a	previously	trained	data	mining	model.	Prediction	queries
are	run	by	means	of	the	SELECT	statement:

		SELECT	[FLATTENED]	<SELECT-expressions>	FROM	<mining	model	name>	
		PREDICTION	JOIN	<source	data	query>	ON	<join	condition>
		[WHERE	<WHERE-expression>]

The	<Source	Data	Query>	token	identifies	the	set	of	new	cases	that	will	be
predicted.	<Mining	Model	Name>	identifies	the	mining	model	that	will	be	used
to	generate	the	predictions.

After	the	source	data	has	been	identified,	a	relationship	between	it	and	the	data
in	the	mining	model	must	be	defined.	This	is	done	using	the	ON	clause	of	the
PREDICTION	JOIN	statement.

Example
The	following	example	attempts	to	predict	the	age	of	customers	using	the	Age
Prediction	data	mining	model	and	the	Customers	and	Sales	cubes:

SELECT	t.[Customer	ID],	[Age	Prediction].[Age]

FROM	[Age	Prediction]	
PREDICTION	JOIN	
(
		SHAPE	
		{
		SELECT	[Customer	ID],	[Gender],	FROM	Customers	ORDER	BY	[Customer	ID]
}	
APPEND	
		(
		{SELECT	[CustID],	[Product	Name],	[Quantity]	FROM	Sales	ORDER	BY	[CustID]}	
RELATE	[Customer	ID]	To	[CustID]
)	
		AS	[Product	Purchases]
)	as	t
ON	[Age	Prediction]	.Gender	=	t.Gender	and	
		[Age	Prediction]	.[Product	Purchases].[Product	Name]	=	t.[Product	Purchases].[Product	Name]	and	
		[Age	Prediction]	.[Product	Purchases].[Quantity]	=	t.[Product	Purchases].[Quantity]

For	more	information,	see	the	OLE	DB	for	Data	Mining	specification.

Content	Queries
Browsing	the	content	of	a	data	mining	model	can	provide	important	insight	into
the	data.	For	example,	it	may	expose	patterns	or	trends	that	can	be	used	to
predict	new	data	points	or	train	expert	systems.	The	content	of	the	data	mining
model	depends	on	the	algorithm	that	generated	it,	and	it	can	vary	widely	from
algorithm	to	algorithm.

Querying	the	model	directly	will	return	contents	of	the	model.	For	example,
consider	the	following	query:

		SELECT	*	FROM	MyOlapModel.CONTENT	

This	example	provides	a	result	table	whose	structure	is	the	same	as	that	of	the
MINING_MODEL_CONTENT	schema	rowset.

More	sophisticated	queries	against	the	content	in	a	data	mining	model	are	also

possible.	For	example,	consider	the	following	content	query:

SELECT	Age
		FROM	HairColorPredictDMM.Content	
		WHERE	Gender	=	'Male'	and	HairColor	=	'Black'

This	query	returns	all	of	the	nodes	that	are	concerned	with	black-haired	men.

Gender Age HairColor P(HairColor)
Male 2 Black .667
Male 91 Black .300
Male 45 Black .667
Male NULL Black .600

See	Also

Predict

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Working	with	OLAP	Data
When	working	with	OLAP	data,	it	is	possible	to	retrieve	that	data	in	two
different	forms:	datasets	and	flattened	rowsets.	Datasets	store	the	results	of	a
query	in	an	axis	structure	that	is	determined	by	the	shape	of	the	results.	Flattened
rowsets	have	only	two	axes.	In	this	case,	the	data	in	the	additional	axes	are
stored	by	mapping	them	onto	the	two	existing	axes.

Multidimensional	DataSets
A	dataset	is	a	multidimensional	representation	of	the	results	of	a
Multidimensional	Expressions	(MDX)	query.	Each	dimension	that	is	returned	by
the	query	is	represented	in	the	dataset	by	an	axis.	The	members	of	each
dimension	make	up	the	coordinates	on	the	axis.	The	measures	are	returned	in
cells.	Each	cell	is	located	at	the	intersection	of	the	coordinates	along	each	axis.

In	OLE	DB	for	OLAP,	the	Dataset	object	provides	methods	for	interacting	with
the	axes	and	cells	the	dataset	contains.	The	primary	interface	for	working	with
the	Dataset	object	is	IMDDataset.	Using	this	interface	it	is	possible	to	retrieve
the	value	of	a	cell	(IMDDataset::GetCellData),	retrieve	a	pointer	to	the
Command	object	interface	that	created	the
cellset(IMDDataset::GetSpecification),	or	retrieve	information	about	the
axes(IMDDataset::FreeAxisInfo,	IMDDataset::GetAxisInfo,
IMDDataset::GetAxisRowset).	For	more	information,	see	the	OLE	DB
documentation.

In	Microsoft®	ActiveX®	Data	Objects	(Multimensional)	(ADO	MD),	the
Cellset	object	contains	a	collection	of	cells,	axes	and	properties.	To	access	an
individual	cell	in	the	cellset,	use	the	Item()	method.	Cells	can	be	specified	by
providing	one	of	the	following:

The	position	numbers	of	the	cell.

The	member	names	(that	is,	the	tuple)	for	the	cell.

The	ordinal	position	of	the	cell.

For	more	information,	see	the	ADO	MD	documentation.

Flattened	Rowsets
Whenever	the	results	of	an	MDX	query	that	returns	data	on	more	than	two	axes
must	be	represented	in	two	dimensions,	such	as	in	an	OLE	DB	Rowset	object	or
an	ADO	Recordset	object,	the	results	must	be	mapped	onto	the	two	dimensions
using	a	process	called	flattening.	For	more	information	about	flattening	rowsets,
see	the	OLE	DB	for	OLAP	documentation.

In	OLE	DB,	the	Rowset	object	exposes	the	results	of	a	query	(either	MDX	or
SQL)	in	a	tabular	form.	It	is	represented	by	a	set	of	rows.	Each	row	contains	a
set	of	columns	that	contain	the	data	returned	from	the	query.	The	primary
interface	for	interacting	with	Rowset	objects	is	the	OLE	DB	IRowset	interface.
In	addition	to	this	interface,	the	following	helper	interfaces	are	used	to	navigate
through	the	rowsets:	IAccessor,	IColumnsInfo,	IConvertType,	and
IRowsetInfo.	For	more	information,	see	the	OLE	DB	documentation.

In	ADO,	the	Recordset	object	represents	the	results	of	a	query	in	tabular	form.
Each	Recordset	object	consists	of	a	collection	of	Fields	and	Properties.	The
IMDDataset::	collection	represents	the	columns	in	the	query	results.	The
Properties	collection	contains	the	properties	that	describe	the	rowset.	ADO
provides	numerous	methods	and	objects	for	navigating	through	returned
recordsets.

Note		Because	recordsets	that	contain	flattened	rowsets	are	read-forward	only,
Recordset	object	methods	such	as	MoveFirst,	MovePrevious,	and
RecordCount	return	the	error	0x80004001	–	Not	Implemented.

For	more	information,	see	the	ADO	documentation.

Analysis	Services	Programming

Calculated	Members
Calculated	members	are	members	whose	values	depend	on	an	expression	rather
than	the	value	of	a	cell.

You	can	define	a	calculated	member	using	one	of	the	following	scopes:

Query	scope

The	calculated	member	can	be	used	only	within	the	query	in	which	it	is
defined.	Use	the	WITH	clause	in	the	SELECT	statement.

Session	scope

The	calculated	member	can	be	used	only	within	the	session	in	which	it	is
defined,	but	can	be	used	by	multiple	queries.	Use	the	CREATE	MEMBER
statement.

A	calculated	member	can	be	stored	in	a	local	cube	if	a	CREATE	MEMBER
statement	is	specified	in	the	COMMAND	clause	of	the	CREATE	CUBE
statement.

Use	the	following	code	to	create	a	calculated	member:

CREATE	CUBE	MYWAREHOUSE	(
DIMENSION	.	.	.
.	.	.	,
COMMAND	(CREATE	MEMBER	[MYWAREHOUSE].[MEASURES].[WAREHOUSEPROFIT]
AS	'[MEASURES].[WAREHOUSE	SALES]	-	[MEASURES].[WAREHOUSE	COST]')
)
	

Note		You	must	use	single	quotes	(')	to	enclose	the	expression	for	the	calculated
member	even	though	the	OLE	DB	specification	does	not	require	these	quotes.

For	more	information,	see	CREATE	CUBE	Statement.

Custom	Rollups

In	addition	to	the	standard	rollup	(that	is,	aggregate)	functions	Sum,	Min,	Max,
and	Count,	more	sophisticated	custom	rollup	functions	can	be	defined	for	any
given	member	in	the	CREATE	CUBE	statement.	One	common	usage	scenario	is
the	inventory	problem	where	inventory	levels	are	not	summed	along	the	Time
dimension,	as	they	might	be	for	other	dimensions.	For	example,	if	you	have	one
item	in	inventory	on	seven	consecutive	days,	you	do	not	have	a	total	of	seven
items	for	the	week.	By	using	the	LastChild	function	in	Multidimensional
Expressions	(MDX)	to	define	a	custom	rollup	formula,	you	can	automatically
roll	up	closing	balances	along	time.

See	Also

Calculated	Members

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Managing	the	Client	Cache
PivotTable®	Service	maintains	a	local	cache	on	the	client	computer.	When
PivotTable	Service	executes	a	query,	the	cache	is	used	to	store	the	data	locally.	If
the	data	is	used	more	than	once,	PivotTable	Service	does	not	need	to	request	the
data	multiple	times.	The	contents	of	this	cache	and	when	they	are	updated
changes	with	the	value	of	the	Default	Isolation	Mode	property.	The	following
table	describes	this	property's	values.

Property
value Cache	mode Description
TRUE ISOLATION The	cache	is	invalidated	when	a	query	or	a

REFRESH	CUBE	statement	is	executed.	The
cache	is	never	refreshed.

FALSE NON-
ISOLATION

The	cache	is	invalidated	when	a	REFRESH
CUBE	statement	is	executed	or	when
PivotTable	Service	receives	a	refresh
notification	from	Microsoft®	SQL	Server™
2000	Analysis	Services.

The	cache	is	refreshed	when	a	query	is
executed.

Isolating	the	Client	Application	from	External	Updates
In	isolation	mode,	the	cache	is	populated	with	axis	and	cell	data	each	time	a
query	is	executed.	If	the	original	source	data	is	changed,	for	example,	as	a	result
of	a	writeback	by	another	user,	the	client	cache	is	not	updated.	In	OLE	DB,	this
value	is	referred	to	as	Repeatable	Read	mode
(ISOLATIONLEVEL_REPEATABLEREAD).

In	nonisolation	mode,	the	cache	is	populated	with	axis	data	each	time	a	query	is
executed.	However,	the	cell	data	for	the	query	is	not	populated.	The	cell	data	is
populated	only	when	the	client	application	itself	requests	it	(that	is,	refers	to	it).
If	the	cell	data	is	never	referred	to,	the	cache	never	receives	it.	The	cache	may

also	be	refreshed	if	Analysis	Services	sends	a	refresh	notification	to	PivotTable
Service;	in	this	case,	PivotTable	Service	invalidates	the	existing	cache.	If	the
client	application	requests	either	axis	or	cell	data,	PivotTable	Service	refreshes
its	cache	from	Analysis	Services.	In	OLE	DB,	this	value	is	referred	to	as	Read
Committed	mode	(ISOLATIONLEVEL_READCOMMITTED).

In	either	mode,	executing	a	REFRESH	CUBE	statement	refreshes	the	cache.

See	Also

Isolation	Levels

Default	Isolation	Mode	Property

Analysis	Services	Programming

Transactions	in	Analysis	Services
PivotTable®	Service	supports	transaction	management	for	allocations	and
writebacks	to	cubes	on	the	Analysis	server.	An	allocation	or	a	writeback	to	a
cube	changes	a	cached	copy	of	that	cube	in	order	to	analyze	the	effects	of	the
change.	This	transaction	process	enables	users	to:

Perform	what-if	analysis	on	cubes	that	are	not	write-enabled	(that	is,
that	do	not	support	writeback).	

Perform	what-if	analysis	on	local	cubes,	which	cannot	be	write-enabled.

Perform	what-if	analysis	on	cubes	to	which	they	have	only	read
permission.	

Perform	what-if	analysis	without	committing	the	updates.	

Make	multiple	what-if	changes	and	reverse	or	alter	some	before
committing	all	changes	at	once.

PivotTable	Service	supports	these	transactions	by	supporting	the	use	of	the
Microsoft®	ActiveX®	Data	Objects	(ADO)	Connection	objects	transaction
methods.

Changes	made	during	what-if	analysis	are	visible	only	to	the	user	who	makes
them;	they	are	not	committed	to	a	shared	cube	until	a	Commit	transaction	is
performed.	Therefore	a	user	may	make	a	change	to	a	cube's	displayed	data
transparently	without	affecting	other	users.	The	changes	are	recorded	in	a
writeback	partition	(that	is,	a	table),	separate	from	the	cube's	underlying	source
tables.	After	a	successful	writeback,	all	users	who	are	synchronized	with	the
server	see	the	effect	of	the	writeback	change	reflected	in	the	cube.

In	PivotTable	Service,	a	new	transaction	is	implicitly	started	whenever	a	session
begins.	Each	transaction	must	either	be	explicitly	completed	by	executing	the
ADO	Commit	transaction	method,	or	be	rolled	back	using	the	rollback

transaction	method.	If	a	transaction	is	not	completed	properly,	then	the
transaction	and	all	the	changes	it	contains	are	automatically	rolled	back	when	the
session	ends.	A	new	transaction	begins	implicitly	when	the	preceding	transaction
is	completed.

Automatic	commits	do	not	occur.	Changes	are	not	propagated	to	the	cube's
writeback	table	and	will	not	be	visible	to	other	users	unless	the	Commit
transaction	method	is	used.

Topic Description
Updating	Cubes Describes	updating	values	in	a	cube
Transaction	Scope Describes	the	effect	of	scope	on	a

cube	transaction
Synchronization	of	Client	and	Server Contains	information	about

synchronizing	client	and	server	data
Cumulative	Effect	of	Transactions	on
Data

Describes	how	PivotTable	Service
handles	multiple	users	working	with
the	same	data

Isolation	Levels Contains	information	about	isolation
levels,	which	control	when	changes
are	made	visible	to	users

Committing	a	Transaction Describes	the	use	of	the	ADO
Commit	property	in	PivotTable
Service

Commit	Time-out Describes	how	PivotTable	Service
handles	commits	that	fail	due	to
errors

Analysis	Services	Programming

Updating	Cubes
There	are	three	ways	to	update	information	in	a	cube:

Update	the	fact	table	and	reprocess	the	cube.

Write	back	to	leaf	members	of	the	cube.

Use	cell	allocation	on	nonleaf	members.

Reprocessing	a	Cube

This	method	of	updating	a	cube's	contents	depends	on	the	context	of	the	cube
itself.	If	the	cube	resides	on	the	Analysis	server,	then	the	Decision	Support
Objects	(DSO)	Process	method	(of	the	MDStore	interface)	should	be	used	to
process	the	cube	using	the	existing	dimensions,	measures,	aggregations	and	so
on.	For	more	information	about	DSO,	see	Decision	Support	Objects.	For	more
information	about	the	Process	method	of	the	MDStore	interface,	see	Process
(MDStore	Interface).

Local	cubes	can	use	the	UPDATE	CUBE	statement	for	what-if	analyses,	but	the
allocations	cannot	be	saved.	That	is,	commit	will	fail	if	it	is	executed	for	the
UPDATE	CUBE	statement.	Because	local	cubes	cannot	have	a	writeback
partition,	writeback	always	fails	against	a	local	cube.	Therefore,	permanent
changes	to	a	local	cube	must	be	made	by	changing	the	local	cube's	fact	table	and
rebuilding.

For	more	information	on	creating	local	cubes,	see	Connected	to	an	OLE	DB
Provider	or	Building	Local	Cubes.

Writeback
Writebacks	(that	is,	updates)	can	be	accomplished	on	atomic	cell	members	of
write-enabled	cubes.	These	updates	result	in	a	new	aggregate	value	being
propagated	up	through	the	cell's	parent	members.

Because	data	at	higher	levels	is	represented	as	a	precalculation	of	data	at	lower
levels,	writebacks	are	permitted	only	on	cells	at	the	lowest	level	(that	is,	atomic
or	leaf	cells)	of	a	cube's	data.	The	atomic	cells	coming	from	the	fact	table	are
represented	in	the	cube	by	a	single	member	in	the	lowest	level	of	each	dimension
or	measure	in	the	cube.	Updates	at	these	levels	are	saved	to	a	writeback	table
that	stores	the	deltas	for	each	value.	The	updated	value	is	then	propagated	up
through	the	affected	aggregate	members	by	PivotTable®	Service.

If	you	want	to	update	a	higher-level	member,	use	the	UPDATE	CUBE	statement
instead.	This	will	assist	you	in	preventing	inconsistent	results	from	being	entered
into	the	cube.

Note		You	cannot	write	back	to	local	cubes.	You	can	reprocess	them	by
executing	their	original	CREATE	CUBE	and	INSERT	INTO	statements	in	a
connection	string.

Changes	to	a	cube	may	not	be	immediately	visible	to	other	client	applications
that	are	connected	to	the	cube,	depending	on	their	cache	settings.	For	more
information,	see	Managing	the	Client	Cache	and	Isolation	Levels.

Allocations	in	a	Cube
When	the	value	of	a	nonatomic	cell	is	changed,	the	cells	that	contribute	to	that
cell	need	to	be	updated	to	avoid	inconsistent	data	within	the	cube.	The	UPDATE
CUBE	statement	provides	this	facility.	The	new	value	of	a	nonatomic	cell	must
be	allocated	among	all	of	its	constituent	cells.	The	developer	determines	the
method	by	which	this	allocation	is	made	at	design	time.

The	following	table	describes	the	allocation	methods	that	are	available.

Allocation	method Description
Equal	allocation Each	constituent	cell	is	assigned	an	equal	value
Equal	increment Every	constituent	cell	will	be	changed	according

to	an	incremental	value
Weighted	allocation Each	constituent	cell	will	be	assigned	an	equal

value	that	is	weighted	against	a	formula
Weighted	increment Every	constituent	cell	is	changed	incrementally

according	to	a	weighting	formula

IMPORTANT		When	supplying	expressions	for	the	allocation	of	a	value,	the	client
application	must	ensure	that	the	expression	assigns	values	whose	aggregate
value	equals	the	originally	allocated	value.	Additionally,	the	application	must
take	into	account	the	allocation	on	all	dimensions	concurrently.

For	the	purpose	of	transactions	management,	all	of	the	operations	required	to
make	a	cell	update	are	considered	to	be	monatomic.	That	is,	if	one	atomic	cell
update	fails,	then	all	of	them	will	fail,	and	the	update	itself	will	fail.

Note		Allocations	on	local	cubes	cannot	be	saved	by	use	of	the	transaction
COMMIT	method.	Any	allocations	made	on	a	local	cube	are	only	present	while
the	connection	to	the	local	cube	is	still	active	(that	is,	for	the	duration	of	the
session).

See	Also

UPDATE	CUBE	Statement

Writing	Back	to	Cells	and	Cube	Transactions

Write-Enabled	Cubes

Write-Enabled	Dimensions

Using	Writebacks

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Analysis	Services	Programming

Transaction	Scope
The	scope	of	a	transaction	on	the	Analysis	server	is	limited	to	a	single	cube.
Transactions	that	contain	updates	to	a	single	cube	either	commit	or	fail	on	the
cube	as	a	complete	atomic	operation.

IMPORTANT		Transactions	that	contain	updates	to	more	than	one	cube	are	not
guaranteed	to	be	atomic.	In	the	case	when	a	transaction	contains	updates	that
affect	more	than	one	write-enabled	cube,	it	is	possible	for	the	updates	to	commit
for	some	cubes	but	fail	for	others.	This	includes	the	case	when	updates	are	being
applied	to	a	virtual	cube	that	contains	more	than	one	underlying	write-enabled
cube;	it	is	possible	for	a	transaction	applied	to	the	virtual	cube	to	commit	on	one
or	more	of	the	underlying	cubes	but	fail	on	others.

If	a	transaction	that	includes	updates	to	multiple	cubes	fails	due	to	time-out,	it	is
safe	to	attempt	to	commit	the	same	transaction	again.	The	transaction	will	be
applied	only	to	cubes	that	were	not	updated	in	the	previous	attempt.	However,	it
is	recommended	that	client	applications	use	a	separate	transaction	for	each	cube
when	updating	multiple	cubes.

Analysis	Services	Programming

Synchronization	of	Client	and	Server
In	writeback	scenarios,	the	frequency	of	client/server	synchronization
determines	when	a	user	sees	the	most	recent	updates	to	a	cube.	Some	queries	are
resolved	entirely	from	client	cache;	if	the	server	cube	has	been	updated	since	the
last	synchronization,	the	results	of	such	a	query	will	not	reflect	the	updates	until
the	cache	is	refreshed	from	the	server.

The	frequency	of	client/server	synchronization	can	be	controlled	with	the	Auto
Synch	Period	property.	For	more	information,	see	Auto	Synch	Period	Property.

For	mining	model	queries,	you	can	use	the	Mining	Execution	Location
property	to	control	synchronization	of	the	client	mining	model	query	cache.	For
more	information,	see	Mining	Execution	Location	Property.

Analysis	Services	Programming

Cumulative	Effect	of	Transactions	on	Data
When	multiple	users	are	connected	to	a	cube	and	their	changes	are	in	conflict,
the	last	changes	made	are	the	ones	that	take	effect.	Updates	recorded	in	the
writeback	table	of	a	cube	are	cumulative,	so	the	cube	is	displayed	with	the	net
effect	of	all	changes	in	the	writeback	table.	The	last	user	to	commit	an	update	to
a	cell	determines	the	displayed	values	of	the	cell	and	all	precalculated	cells	that
are	derived	from	it.

The	act	of	updating	cells	is	performed	atomically	for	each	cube.	That	is,	each
committed	update	is	recorded	separately	in	the	writeback	table.

Analysis	Services	Programming

Isolation	Levels
PivotTable®	Service	supports	the	read-committed	and	repeatable-read	isolation
levels	(that	is,	isolated	and	nonisolated	cache	modes).	By	default,	the	visibility
of	changes	made	concurrently	by	others	is	read-committed,	meaning	that	only
committed	updates	are	visible	to	a	command	or	query.	That	is,	commits	executed
by	other	users	are	immediately	available	to	PivotTable	Service.	The	repeatable-
read	isolation	level	provides	a	higher	degree	of	isolation.	In	this	mode,	the	client
cache	is	frozen	when	a	command	or	query	is	opened,	and	remains	frozen	until
the	command	or	query	is	closed.

You	can	set	the	isolation	level	to	isolated	using	the	Default	Isolation	Mode
property.

See	Also

Default	Isolation	Mode	Property

Analysis	Services	Programming

Committing	a	Transaction
Use	the	Microsoft®	ActiveX®	Data	Objects	(ADO)	Commit	transaction
method	to	commit	updates	to	the	writeback	table	of	a	write-enabled	cube.	An
error	results	if	the	transaction	attempts	to	commit	updates	to	a	table	other	than
the	writeback	table	or	if	the	cube	is	not	write-enabled.

If	a	transaction	includes	updates	for	multiple	cubes,	the	updates	may	be
successful	for	some	cubes	and	unsuccessful	for	others.	Therefore,	a	transaction
should	only	include	updates	for	a	single	cube.	For	more	information,	see
Transaction	Scope.

Some	possible	causes	of	commit	failure	are	commit	time-out	during	a	writeback
attempt,	attempting	to	commit	to	a	cube	that	is	not	write-enabled,	or	network
errors.	For	more	information	about	errors	in	transaction	processing,	see	the	ADO
documentation.

See	Also

Commit	Time-out

Analysis	Services	Programming

Commit	Time-out
If	a	commit	is	not	successful	because	a	client	application's	attempt	to	update	a
cube's	writeback	table	times	out	(that	is,	the	time	spent	attempting	the	commit
reached	the	value	of	the	DBPROP_MSMD_WRITEBACK_TIMEOUT
property),	the	following	error	message	is	raised	in	the	connection	objects	Errors
collection:

Server	unable	to	accept	transaction	at	this	time.	Transaction	pending	on	client.

In	this	case,	the	transaction's	state	is	the	same	as	it	was	immediately	before	the
commit	attempt.	The	client	application	can	again	attempt	to	commit,	attempt	to
roll	back,	or	allow	more	what-if	changes.

The	preceding	message	is	produced	as	a	result	of	the	following	return	code	from
the	ITransaction::Commit	method:
MSMD_E_TRANSACTION_COMMIT_TIMEOUT.

Increasing	the	value	of	the	DBPROP_MSMD_WRITEBACK_TIMEOUT
property	can	reduce	the	number	of	time-outs.

For	more	information,	see	Writeback	Timeout	Property.

Analysis	Services	Programming

Security	in	PivotTable	Service
PivotTable®	Service	supports	security	in	two	ways:	by	providing	security	at
various	levels	of	the	server	object	model,	and	by	supporting	authentication	of
users.

Server	Object	Model	Security
Different	levels	of	the	server	object	model	handle	security	in	different	ways:

Database,	cube,	and	mining	model	security

Database	administrators	(DBAs)	can	use	roles	to	grant	read	and	write
permissions	for	the	members	of	a	database	or	an	individual	cube.	Roles	that
grant	read	permission	can	also	be	created	for	mining	models.	These	roles	are
available	in	the	database	schema	rowset.	For	more	information,	see	Roles.

Member	security

Individual	members	of	a	cube	or	mining	model	can	be	secured	independently
from	a	level,	dimension,	and	so	on.	Members	that	are	secured	in	this	manner
are	invisible	to	client	applications	that	do	not	have	permission	to	access
them.	No	errors	are	raised	and	placeholders	are	not	retuned.

Cell	Security

Queries	that	involve	these	secured	members	will	return	an	error.	Updates	to	a
secured	member	will	also	return	an	error.	The	value	of	this	error	depends	on
the	value	of	the	Secured	Cell	Value	property.	For	more	information,	see	Cell
Security.

Drillthrough	security

Read	permission	for	the	Multidimensional	Expressions	(MDX)	Drillthrough
command	can	be	granted	for	the	entire	cube	using	the	cube's	role.
Drillthrough	requests	against	secured	data	return	an	error.

User	Authentication
Authentication	is	the	process	by	which	a	user	is	positively	identified	to

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

determine	the	permissions	the	user	has	been	granted.	Microsoft®	SQL	Server™
2000	Analysis	Services	supports	three	authentication	providers:

NTLM	protocol	(Windows	authentication)

Kerberos

Negotiate

Anonymous	user

After	authentication	for	a	user	has	been	obtained,	a	user	can	connect	to	a
database	using	any	role	of	which	he	or	she	is	a	member	by	using	the	Roles
property	in	the	connection	string	for	the	session,	as	long	as	that	role	has	been
granted	access	to	the	database.

See	Also

Secured	Cell	Value	Property

SSPI	Property

Roles	Property

Analysis	Services	Programming

Client	Operations	in	PivotTable	Service
The	following	topics	describe	common	client	operations	that	can	be	performed
using	PivotTable®	Service.

Topic Description
Error	and	Exception
Handling

Describes	recovering	from	multiple	errors
and	determining	the	original	source	of	an
error	using	the	Err	object.

Connecting	to	a	Data	Source Illustrates	the	various	methods	for	connecting
a	client	application	to	a	data	source.

Retrieving	Schema
Information

Describes	how	OLE	DB	schema	rowsets	can
be	retrieved.

Retrieving	Data Shows	how	to	execute	queries	and
commands.	It	also	explains	different	methods
for	retrieving	the	returned	data.

Updating	Information	in	a
Cube

Relates	the	different	ways	a	cube	or
dimension	can	be	modified.

Building	Local	Cubes Illustrates	how	to	build	a	local	cube.

Analysis	Services	Programming

Error	and	Exception	Handling
The	first	error	trapped	by	Microsoft®	Visual	Basic®	can	be	ambiguous	if	you
are	working	with	Microsoft	ActiveX®	Data	Objects	(ADO),	and	if	the	error	is
displayed	alone.	You	should	retrieve	any	additional	error	information.	ADO
provides	an	additional	layer	for	handling	exceptions	that	result	from	data
operations.	You	can	use	the	Errors	collection	of	the	Connection	object	to
retrieve	information	about	more	than	one	kind	of	error.

Examples

A.	Using	the	ADO	Connection	Object
The	following	code	example	introduces	an	error	into	the	connection	string	of	the
Connection	object.	This	error	induces	two	new	errors	in	addition	to	the	standard
error	passed	through	by	the	Visual	Basic	Err	object.	These	errors	are	assembled
into	a	single	string.

				Dim	sErrDesc	As	String
				Dim	erCur	As	Error
				Dim	cn	As	New	ADODB.Connection
				
				'	Define	a	connection	to	an	object	that	does	not	exist.
				cn.ConnectionString	=	"Provider=msolap;	Datasource=NoSuchServer;"
				'	This	provides	two	errors	in	the	ADO	errors	collection.
				
				On	Error	GoTo	found_error
					
				cn.Open

				'	Because	a	computer	named	NoSuchServer	does	not	exist,
				'	you	should	never	reach	this	point.
				Exit	Function
				

found_error:
				
				'	Keep	Visual	Basic	error	description	--	On	Error	Resume	Next	clears	it.
				sErrDesc	=	Err.Description	&	vbCrLf
				
				On	Error	Resume	Next

				'	Get	the	ADO	errors.
				If	cn.Errors.Count	>	0	Then
								For	Each	erCur	In	cn.Errors
												sErrDesc	=	sErrDesc	&	erCur.Source	&	":	"	&	erCur.Description	&	vbCrLf
								Next	erCur
				End	If
				MsgBox	sErrDesc				

Analysis	Services	Programming

Connecting	to	a	Data	Source
The	primary	way	to	interact	with	PivotTable®	Service	is	to	connect	to	a	data
source	using	a	Connection	object	or	the	ActiveConnection	property	of	a
Catalog	object.	Parameters	for	this	connection	can	be	set	using	a	connection
string.	For	example,	the	properties	in	the	connection	string	of	a	Connection
object	determine	whether	a	connection	connects	to	an	Analysis	server,	creates	a
new	cube,	or	connects	to	an	existing	local	cube	file.	For	more	information	about
these	data	source	properties,	see	Connection	String	Properties.

After	a	connection	to	an	OLE	DB	for	OLAP	provider	or	a	local	cube	has	been
established,	queries	can	be	issued	against	the	data	source	and	the	results
displayed.	Information	about	the	schema	of	the	data	source	can	also	be	retrieved.
For	more	information	about	data	sources	in	OLE	DB,	see	the	OLE	DB
documentation.

Analysis	Services	Programming

Using	the	Connection	String
The	primary	way	to	interact	with	PivotTable®	Service	is	to	connect	to	a	data
source	using	a	Connection	object	or	the	ActiveConnection	property	of	a
Catalog	object.	Parameters	for	this	connection	can	be	set	using	a	connection
string.	For	example,	the	properties	in	the	connection	string	of	a	Connection
object	determine	whether	a	connection	connects	to	an	Analysis	server,	creates	a
new	cube,	or	connects	to	an	existing	local	cube	file.	For	more	information	about
these	data	source	properties,	see	Connection	String	Properties.

After	a	connection	to	an	OLE	DB	for	OLAP	provider	or	a	local	cube	has	been
established,	queries	can	be	issued	against	the	data	source	and	the	results
displayed.	Information	about	the	schema	(that	is,	structure)	of	the	data	source
can	also	be	retrieved.	For	more	information	about	data	sources	in	OLE	DB,	see
the	OLE	DB	documentation.

The	ADO	Connection	Object
The	Open	method	of	the	Connection	object	provides	for	the	inclusion	of
connection	parameters	in	its	ConnectionString	property.	A	semicolon	delineates
each	parameter.	When	this	method	is	executed,	a	connection	to	the	data	source
defined	in	the	connection	string	is	created.

The	syntax	of	the	open	method	is:

connection.Open	ConnectionString,	UserID,	Password,	OpenOptions

Connecting	to	Analysis	Services
To	connect	to	Microsoft®	SQL	Server™	2000	Analysis	Services,	the
Datasource	property	must	be	set	to	the	name	or	IP	address	of	the	Analysis
server	to	which	you	want	to	connect.	The	Provider	property	must	also	be	set	to
"MSOLAP".	Optionally,	the	Initial	Catalog	property	may	be	set	to	specify	a
connection	to	a	specific	database	on	the	Analysis	server.

Connecting	to	a	Local	Cube

Connecting	to	a	local	cube	is	identical	to	connecting	to	an	Analysis	server	with
one	exception:	The	Datasource	property	is	set	to	the	file	location	for	the	local
cube	instead	of	being	set	to	the	name	of	an	Analysis	server.

Setting	the	Connect	Timeout	Property
In	OLE	DB,	the	connection	property	that	defines	when	a	connection	times	out	is
DBPROP_INIT_TIMEOUT.	In	the	connection	string,	this	property	is	referred	to
as	Connect	Timeout.	If	a	connection	to	a	data	source	cannot	be	established	in
the	number	of	seconds	specified	by	this	property,	an	error	occurs.

The	following	example	connects	to	an	Analysis	server	on	the	local	computer	and
sets	the	connect	timeout	property	to	5	seconds:

Dim	MyCon	as	ADODB.Connection
Set	MyCon	=	new	ADODB.Connection
MyCon.Open("provider=msolap;	Datasource=LocalHost;	Initial	Catalog=FoodMart	2000;	Connect	Timeout=5")

Analysis	Services	Programming

Using	the	OLE	DB	Connection	Dialog	Box
OLE	DB	specifies	that	each	provider	must	provide	a	dialog	box	for	defining
connections	to	its	data	sources.	Microsoft®	SQL	Server™	2000	Analysis
Services	complies	with	this	requirement	by	providing	a	dialog	box	that	enables
the	client	application	to	connect	to	an	Analysis	server	or	a	local	cube.

To	use	this	prompt,	the	Prompt	property	of	the	connection	string	must	be	set	to
1:

Dim	Conn	As	New	ADODB.Connection
Conn.Open	"Provider=msolap;	Prompt=1;"

Analysis	Services	Programming

Connecting	Using	HTTP
This	feature	enables	a	client	application	to	connect	to	an	Analysis	server	through
Microsoft®	Internet	Information	Services	(IIS)	by	specifying	a	URL	in	the	Data
Source	property	in	the	client	application's	connection	string.	This	connection
method	allows	PivotTable®	Service	to	tunnel	through	firewalls	or	proxy	servers
to	the	Analysis	server.	A	special	Active	Server	Pages	(ASP)	page,	Msolap.asp,
enables	the	connection	through	IIS.	The	directory	in	which	this	file	resides	must
be	included	as	part	of	the	URL	when	connecting	to	the	server	(for	example,
http://www.myserver.com/myolap/).

The	rest	of	the	connection	string	is	specified	normally.

The	port	used	during	connection	is	defined	by	the	default	port	of	the	Web	site.	In
most	cases,	the	default	port	of	the	web	site	is	set	to	80	(or	443	if	Secure	Sockets
Layer	(SSL)	is	used).

For	more	information	about	the	ConnectionString	property,	see	the	Microsoft
ActiveX®	Data	Objects	(ADO)	documentation.

Examples

A.	Using	a	URL	as	the	Data	Source
In	this	example,	the	Datasource	property	is	set	to	the	URL	of	a	computer
running	IIS.	From	this	point	forward,	the	connection	is	seamless	from	the	point
of	view	of	the	client	application.	The	following	code	shows	how	to	connect	to
the	default	Analysis	server:

Dim	cat	as	new	ADOMD.Catalog
cat.ActiveConnection	=	"Provider	=	msolap;"	&	_
						"	Datasource	="	_	&
						"	http://<URL>/;"	&	_
						"	Initial	Catalog	=	FoodMart	2000"

B.	Using	SSL
In	this	example,	the	parameter	for	the	server	name	is	passed	as	a	part	of	the
URL,	and	a	Secure	Sockets	Layer	(SSL)	connection	is	specified.	The	following
code	shows	how	to	connect	to	a	specified	Analysis	server:

Dim	cat	as	new	ADOMD.Catalog
cat.ActiveConnection	=	"Provider	=	msolap;	Datasource	="	&	_	
			"	https://<URL>/;"	&	_
			"	Initial	Catalog	=	FoodMart	2000"

Analysis	Services	Programming

Retrieving	Schema	Information
You	can	use	Microsoft®	ActiveX®	Data	Objects	(Multidimensional)	(ADO
MD),	ADO,	or	OLE	DB	to	retrieve	schema	rowsets	using	PivotTable®	Service.

To	retrieve	schema	information	for	a	cube,	use	the	CubeDef	object	in	ADO	MD
or	the	OpenSchema	method	in	ADO.	The	CubeDef	object	contains	a	hierarchy
of	collections	describing	a	cube's	structure.	A	CubeDef	object	for	a	particular
cube	can	be	obtained	from	the	Catalog	object's	CubeDef	property.	Its
collections	can	then	be	iterated	through	to	retrieve	the	desired	schema
information.	Some	information	about	the	cube	is	not	contained	in	the	CubeDef
object,	such	as	defined	actions	and	cell	formulas.	You	must	use	the
OpenSchema	method	to	retrieve	this	information.

To	retrieve	schema	rowsets,	use	ADO	or	OLE	DB.	In	ADO,	use	the
OpenSchema	method	of	the	Connection	object	to	retrieve	schema	information
into	an	ADO	Rowset	object.	These	results	can	then	be	browsed	using	usual
methods.	In	OLE	DB,	use	the	IDBSchemaRowset	COM	interface	to	retrieve
schema	information.

See	Also

Schema	Rowsets

Using	the	CubeDef	Object

Using	the	OpenSchema	Method

Analysis	Services	Programming

Using	the	CubeDef	Object
To	retrieve	cube	schema	information,	use	the	Microsoft®	ActiveX®	Data
Objects	(Multidimensional)	(ADO	MD)	CubeDef	object,	which	exposes	the
dimensions	of	the	local	cube	using	its	Dimensions	collection.	The	Dimensions
collection	exposes	the	individual	Dimensions,	which	in	turn	expose	the
Hierarchies	collection,	and	so	on.

For	more	information	about	using	the	ADO	MD	CubeDef	object	to	retrieve
schema	rowsets,	see	the	ADO	documentation.

The	CubeDef	Object	Model
The	following	diagram	illustrates	the	object	model	used	by	ADO	MD.

Examples

Using	ADO	MD	to	Print	Member	Properties
The	following	code	uses	ADO	MD	to	print	member	properties.	This	code	uses
the	local	cube	created	by	the	sample	code	in	Building	Local	Cubes.	This	code
prints	the	name	and	properties	of	every	member	of	the	[Product].[Product	Name]
level	in	the	cube	to	the	immediate	window.

Private	Sub	Form_Load()
Dim	cn	As	ADODB.Connection
Dim	ct	As	ADOMD.Catalog
Dim	cb	As	ADOMD.CubeDef
Dim	dm	As	ADOMD.Dimension
Dim	hr	As	ADOMD.Hierarchy
Dim	lv	As	ADOMD.Level
Dim	mb	As	ADOMD.Member
Dim	pr	As	ADODB.Property

Set	cn	=	New	ADODB.Connection
cn.Open	"provider=msolap;data	source=c:\warecube.cub"

Set	ct	=	New	ADOMD.Catalog
Set	ct.ActiveConnection	=	cn

Set	cb	=	ct.CubeDefs(0)
Set	dm	=	cb.Dimensions("Product")
Set	hr	=	dm.Hierarchies(0)
Set	lv	=	hr.Levels("Product	Name")

For	Each	mb	In	lv.Members
				Debug.Print	mb.Name
				Debug.Print	"----------------"
				For	Each	pr	In	mb.Properties
								Debug.Print	pr.Name	&	":		"	&	pr.Value
				Next	pr
				Debug.Print
Next	mb
End	Sub

Analysis	Services	Programming

Using	the	OpenSchema	Method
In	addition	to	the	CubeDef	object,	Microsoft®	ActiveX®	Data	Objects	(ADO)
provides	the	OpenSchema	method	for	the	connection	object.	To	use	this	method
to	get	schema	information	about	multidimensional	and	data	mining	meta	data,
use	the	following	query	types:

AdSchemaCatalogs

AdSchemaCubes

adSchemaDimensions

adSchemaHierarchies

adSchemaLevels

adSchemaMeasures

adSchemaMembers

adProviderSpecific

Using	Restriction	Columns

Restriction	columns	enable	the	returned	recordset	of	an	OpenSchema	function
call	to	be	filtered	by	certain	constraints.	For	any	given	schema	rowset,	a	number
of	restrictions	may	be	supported.	For	example,	the	MINING_MODELS	schema
rowset	supports	the	following	restriction	columns:

MODEL_CATALOG

MODEL_SCHEMA

MODEL_NAME

MODEL_TYPE

SERVICE_NAME

SERVICE_TYPE_ID

To	use	a	particular	column	(or	set	of	columns),	build	an	array	of	strings	that
corresponds	to	the	list	of	restriction	column	in	their	order.	For	instance,	to
retrieve	a	list	of	all	of	the	mining	models	in	the	FoodMart	2000	database	that
use	the	Microsoft	Decision	Trees	algorithm,	construct	the	following	array	in
Microsoft	Visual	Basic®:

Array("FoodMart	2000",	Empty,	Empty,	Empty,	Empty,	"0")

Each	element	in	the	array	corresponds	to	an	element	in	the	restriction	columns
list.	The	first,	"FoodMart	2000,"	specifies	that	all	of	the	records	returned	should
be	members	of	the	FoodMart	2000	database	(that	is,	catalog).	This	is	because
the	MODEL_CATALOG	is	the	first	element	in	the	restriction	columns.	The	next
four	elements	are	built	as	empty	and	specify	that	no	restrictions	should	be	placed
on	the	returned	records	based	upon	their	respective	restriction	columns.	The	last
element	of	the	array,	"0",	is	in	the	position	reserved	for	the	SERVICE_TYPE_ID
restriction	column.	The	value	"0"	is	determined	by	looking	up	the	allowed	list	of
values	for	this	restrictions	column	in	the	OLE	DB	for	Data	Mining	specification.

Use	this	array	in	the	ADO	OpenSchema	method	as	the	Criteria	parameter.

Retrieving	Rowsets	Unsupported	by	ADO
To	use	a	schema	rowset	that	is	not	supported	by	the	ADO	SchemaEnum
enumeration	in	the	ADO	OpenSchema	method,	use	the	enumeration	value
adSchemaProviderSpecific	with	any	restriction	columns	that	are	appropriate	to

the	schema	rowset.	The	SchemaID	parameter	of	the	OpenSchema	method	will
contain	the	schema's	GUID	in	a	string	format.	For	more	information,	see	Schema
Rowsets.

Examples

A.	Retrieving	a	List	of	Cubes
The	following	code	shows	how	to	use	ADO	to	retrieve	a	list	of	cubes	in	the
current	database.	For	more	information	about	the	OpenSchema	method,	see	the
ADO	documentation.

Dim	cn	As	ADODB.Connection
Dim	rs	As	ADODB.Recordset
Dim	szCubeName	As	String
Const	CubeNamePosition	=2

Set	cn	=	New	ADODB.Connection
cn.Open	("provider=msolap;	Data	Source=LocalHost;	Initial	Catalog=FoodMart	2000;")

Set	rs	=	cn.OpenSchema(adSchemaCubes,Array("FoodMart	2000",Empty,Empty))

Do	Until	rs.EOF
			szCubeName	=	rs.Fields(CubeNamePosition).Value
			Debug.Print	szCubeName
rs.MoveNext
Loop

B.	Retrieving	a	List	of	Mining	Models
The	following	example	retrieves	all	of	the	mining	models	that	exist	in	the
FoodMart	2000	database:

Const	DMSCHEMA_MINING_MODELS	=	"{3add8a77-d8b9-11d2-8d2a-003029144fde}"
'Open	the	MINING_SERVICES	schema	rowset.	Assume	the	existence	of	an	ADO	
'connection	(cn)	and	an	ADO	recordset.

Set	rst	=	cn.OpenSchema(adSchemaProviderSpecific,Array("FoodMart	2000",Empty,Empty),	DMSCHEMA_MINING_MODELS)
	

Analysis	Services	Programming

Retrieving	Data
There	are	two	methods	for	retrieving	data	with	Microsoft®	Visual	Basic	using
PivotTable®	Service:	you	can	use	the	Microsoft	ActiveX®	Data	Objects
(Multidimensional)	(ADO	MD)	Cellset	object	or	the	ADO	DB	Command	and
Recordset	objects.	The	ADO	MD	Cellset	and	Axes	objects	are	used	to	retrieve
the	results	of	a	Multidimensional	Expressions	(MDX)	query.	Using	the	ADO	DB
Command	and	Recordset	objects	with	an	SQL	or	MDX	statement	retrieves	the
data	into	a	flattened	rowset.

You	can	also	use	OLE	DB	to	retrieve	data	from	a	cube	or	data	mining	model.
The	primary	interfaces	for	this	are	IMDDataSet	and	IRowset	interfaces.	For
more	information,	see	the	OLE	DB	documentation.

See	Also

Using	the	Cellset	Object

Using	the	Recordset	Object

Analysis	Services	Programming

Using	the	Cellset	Object
You	can	use	Microsoft®	ActiveX®	Data	Objects	(Multidimensional)	(ADO
MD)	to	retrieve	Multidimensional	Expressions	(MDX)	query	results	from	a	local
cube	using	the	Cellset	object.	To	retrieve	a	tabular	result	set,	use	the	ADO
Command	and	Recordset	objects.	For	more	information	about	the	Cellset
object,	see	the	ADO	MD	documentation.

Examples

A.	Using	the	Cellset	Object
The	following	example	uses	a	Connection	object	to	define	a	connection	to	the
Analysis	server.	The	Source	property	of	the	Cellset	object	is	then	set	to	an	MDX
query	that	returns	all	of	the	measures	for	product	families	and	promotion	media.
The	ActiveConnection	property	of	the	Cellset	object	is	then	set	to	the
ActiveConnection	property	of	the	Connection	object,	and	the	Open	method	is
called	to	retrieve	the	actual	results.

The	Cellset	object	contains	a	collection	called	Axes,	which	describes	each	axis
returned	by	the	MDX	query.	There	is	one	Axis	object	in	this	collection	for	each
dimension	you	request.	Each	Axis	object	contains	a	Positions	collection,	which
contains	information	about	the	individual	rows,	columns,	pages,	and	so	on	of	the
returned	result	set.	In	this	example,	a	Microsoft	FlexGrid	control	is	formatted	to
display	the	results	of	the	query:

Dim	conn	As	New	ADODB.Connection
Dim	cst	As	New	ADOMD.Cellset
Dim	axs	As	ADOMD.Axis
Dim	pos	As	ADOMD.Position
Dim	iCol	As	Integer,	cCol	As	Integer
Dim	iRow	As	Integer,	cRow	As	Integer
Dim	nFixedCols	As	Integer,	nFixedRows	As	Integer

				'Set	up	the	connection	to	the	server.
				conn.ConnectionString	=	"Datasource=LocalHost;	Provider=msolap;	Initial	Catalog=FoodMart	2000;"
				conn.Open
				Set	cst.ActiveConnection	=	conn	'	You	must	use	Set.	
				cst.Source	=	"Select	CrossJoin([Product].[Product	Family].Members,	"	&	_
								"[Promotion	Media].Members)		on	rows,"	&	_
								"[Measures].Members	on	Columns	"	&	_
								"From	Sales"
				cst.Open
				
				'Set	up	the	FlexGrid	control.
				MSFlexGrid1.Clear
				nFixedCols	=	2
				nFixedRows	=	1
				cCol	=	cst.Axes(0).Positions.Count
				MSFlexGrid1.Cols	=	cCol	+	nFixedCols
				cRow	=	cst.Axes(1).Positions.Count
				MSFlexGrid1.Rows	=	cRow	+	nFixedRows
				MSFlexGrid1.FixedCols	=	nFixedCols
				MSFlexGrid1.FixedRows	=	nFixedRows
								MSFlexGrid1.MergeCol(0)	=	True
				MSFlexGrid1.MergeCol(1)	=	True
				
				'Add	column	headers.
				iCol	=	2
				For	Each	pos	In	cst.Axes(0).Positions
								'The	caption	for	each	member	is	used	as	the	header.
								MSFlexGrid1.TextMatrix(0,	iCol)	=	pos.Members(0).Caption
								iCol	=	iCol	+	1
				Next
				
				'Add	row	headers.
				iRow	=	1

				For	Each	pos	In	cst.Axes(1).Positions
								'The	CrossJoin	function	in	MDX	indicates	that	this	axis	will	have	two	members	per	position.
								MSFlexGrid1.TextMatrix(iRow,	0)	=	pos.Members(0).Caption
								MSFlexGrid1.TextMatrix(iRow,	1)	=	pos.Members(1).Caption
								iRow	=	iRow	+	1
				Next
				
				'Iterate	through	the	cellset	array	values.
				For	iCol	=	0	To	cCol	-	1	
								For	iRow	=	0	To	cRow	-	1
												'	Retrieve	each	value	with	the	default	method	of	the	cst	object.
												MSFlexGrid1.TextMatrix(iRow	+	nFixedRows,	iCol	+	nFixedCols)	=	cst(iCol,	iRow).Value
								Next
				Next
	

For	more	information,	see	the	ADO	MD	documentation.

Analysis	Services	Programming

Using	the	Recordset	Object
You	can	use	the	Command	and	Recordset	objects	to	retrieve	data	from	a
multidimensional	source	as	well	as	from	a	tabular	source.	However,	the	data	is
returned	in	a	flattened	rowset.	For	more	information	about	flattened	rowsets,	see
Working	with	OLAP	Data.

Examples

A.	Using	the	Recordset	Object
The	following	example	retrieves	a	list	of	products	and	their	sales	from	the	Sales
cube	in	the	FoodMart	2000	database	and	places	them	in	a	Microsoft®	FlexGrid
control.	The	control	is	filled	with	the	values	retrieved	by	an	SQL	query	using	the
Microsoft	ActiveX®	Data	Objects	(ADO)	Connection	and	Recordset	objects.

A	connection	to	the	FoodMart	2000	database	is	declared,	using	MSOLAP	as	a
provider.	The	connection	is	then	opened.	Next,	an	SQL	query	is	created	inside	a
string	variable.	A	Recordset	object	is	then	opened	with	this	SQL	query	as	its
source.

A	loop	is	then	entered,	which	fills	the	FlexGrid	control	with	the	retrieved	values
until	the	end	of	the	recordset	is	reached.

For	more	information	about	using	the	ADO	Command	and	Recordset	objects,
see	the	ADO	documentation.	For	more	information	about	the	FlexGrid	control,
see	the	Microsoft	Visual	Basic®	documentation.

				Dim	cn	As	New	ADODB.Connection
				Dim	rs	As	New	ADODB.Recordset
				Dim	sql	As	String
				Dim	fld	As	ADODB.Field

				cn.ConnectionString	=	"Provider=MSOLAP;	Datasource=LocalHost;	Initial	Catalog=FoodMart	2000"
				cn.Open

				sql	=	"Select	[Product:Product	Name],[Measures:Store	Sales]	from	Sales"
				set	rs.ActiveConnection	=	cn
				rs.Open	sql,	cn,	adOpenForwardOnly,	adLockReadOnly
				MSFlexGrid1.Clear
				MSFlexGrid1.AddItem	"Product"	&	Chr(9)	&	"Value"
				Do	While	(Not	rs.EOF)
								MSFlexGrid1.AddItem	rs.Fields(0).Value	&	Chr(9)	&	rs.Fields(1).Value
								rs.MoveNext
				Loop

Analysis	Services	Programming

Updating	Information	in	a	Cube
PivotTable®	Service	supports	a	number	of	methods	of	updating	the	contents	of
both	server	cubes	and	local	cubes.	Transaction	support	for	writeback	operations
is	provided	by	the	transaction	methods	of	the	Microsoft®	ActiveX	Data
Objects®	(ADO)	Connection	object.

Topic Description
Writing	a	Value	Back	to	a
Cell

Describes	the	different	methods	of	updating
the	value	of	a	cell	in	the	cube	itself,	rather
than	through	the	cube's	fact	table

Transaction	Processing Shows	how	to	use	the	transaction	methods
provided	by	the	ADO	Connection	object

See	Also

Transactions	in	Analysis	Services

Analysis	Services	Programming

Writing	a	Value	Back	to	a	Cell
There	are	different	methods	for	updating	the	value	of	a	cell	directly	in	the	cube,
depending	on	the	level	of	that	value.	The	first	method,	called	writeback,	sets	the
value	of	a	leaf	level	member	directly,	using	the	transaction	methods	of	the
Connection	object.	The	second	method,	cell	allocation,	sets	the	value	of	a
nonleaf	member	and	specifies	how	the	change	should	be	distributed	among	the
children	of	the	member.	For	this	method,	it	is	not	necessary	to	use	the	transaction
methods	of	the	Connection	object.	You	can	indirectly	update	a	value	in	a	cube
by	modifying	its	fact	table	and	reprocessing	it.

Writing	to	a	Local	Cube
Because	local	cubes	do	not	use	individual	partitions	to	store	data,	changes	to
their	data	cannot	be	stored	permanently.	All	changes	made	to	the	data	of	a	local
cube	are	stored	only	for	the	duration	of	the	session	scope.	If	you	need	to	change
the	contents	of	a	local	cube	permanently,	you	must	make	changes	to	the	source
data,	not	the	local	cube,	and	then	rebuild	the	local	cube.

Writing	Back	to	Leaf	Cells
For	cells	that	are	at	the	lowest	level	of	the	hierarchy,	you	can	use	the	writeback
method.	The	choice	of	method	for	updating	the	values	of	aggregate	members
within	a	server	cube	depends	on	the	level	depth	of	the	member.	For	members
that	are	at	the	lowest	level	of	a	hierarchy	(and	are	therefore	nonaggregated	and
atomic),	update	the	cell's	value	property	in	a	matching	set	of	connection
transaction	methods.

Writing	Back	to	Nonleaf	Cells
For	cells	that	are	not	at	the	lowest	level	of	a	hierarchy,	use	the	UPDATE	CUBE
to	execute	a	cell	allocation.	Using	this	method,	an	application	can	make	a	change
to	a	nonleaf	member	and	describe	how	that	change	should	be	allocated	to	the
children	of	that	member.	It	may	be	helpful	to	think	of	the	UPDATE	CUBE
statement	as	a	subroutine	that	automatically	generates	a	series	of	individual

writeback	operations	to	atomic	cells	that	roll	up	into	a	specified	sum.

Examples

A.	Updating	a	Leaf	Cell	Using	Transactions
The	following	transaction	updates	a	cell	in	a	Cellset	object,	using	cell	writeback
and	transactions:

'Assume	the	existence	of	an	open	ADO	Connection	object	(cn)	and	a	Cellset	object	(cs).
'Also	assume	that	ix	and	iy	are	integers	pointing	to	an	updatable	cell.
'txtNewValue	is	assumed	to	be	a	string	containing	a	new	value	for	the	cell.
cn.BeginTrans	'	Start	a	new	transaction.
cs(ix,	iy).Value	=	Val(txtnewValue.Text)	'	Write	the	new	value	to	the	cell
cn.CommitTrans

B.	Allocating	a	Budget	Based	on	Previous	Sales
The	following	example	demonstrates	cell	allocation	by	updating	the	various
departments'	1999	budgets	based	on	their	1998	sales:

UPDATE	CUBE	[Budget	Cube]	
			SET
				([1999],	[Marketing],	[Budget],	[All	Departments])	=	1000			

				USE_WEIGHTED_ALLOCATION	BY	
([1998],	[Sales],	[Actual])/
([1999],	[Sales],	[Actual],	[All	Departments])

C.	Allocating	a	Budget	Based	on	Percentage	Increase
The	following	example	demonstrates	cell	allocation	by	updating	the	various
departments'	1999	budgets	by	specifying	that	each	department	will	receive	a
10%	increase	for	each	month	over	the	budget	of	the	previous	month:

UPDATE	CUBE	[Budget	Cube]	
			SET

				([1999],	[Sales],	[Budget])	=	1000			

				USE_WEIGHTED_ALLOCATION	BY	
						
([Sales],	[Budget])/
1	+	(Rank([1999].Children,	Time.CurrentMember)	*	0.1
	/
Sum(Rank([1999].Children,
			1	+	(Rank([1999].Children,	Time.CurrentMember)	*	0.1)

See	Also

Transaction	Processing

Transactions	in	Analysis	Services

UPDATE	CUBE	Statement

Analysis	Services	Programming

Transaction	Processing
Transaction	support	for	PivotTable®	Service	client	applications	is	provided	by
the	Microsoft®	ActiveX®	Data	Objects	(ADO)	Connection	object.	This	object
provides	three	methods	for	conducting	transactions	against	cubes	and	data
mining	models:	BeginTrans,	CommitTrans,	and	Rollback.	For	more
information,	see	Performing	Transactions	in	ADO.

Setting	the	Writeback	Timeout	Property
The	amount	of	time	that	will	elapse	before	a	writeback	operation	times	out	can
be	specified	in	seconds	using	the	Writeback	Timeout	Property.	This	property
can	be	set	by	using	the	connection	string	of	the	ADO	Connection	property	when
a	session	is	established.	After	setting	this	value	it	cannot	be	changed	for	the
duration	of	the	session.	The	following	code	sets	the	value	of	this	property	to	60
seconds:

dim	cn	as	ADO.Connection
cn.Open	"provider=msolap;	Initial	Catalog=FoodMart	2000;	Datasource=LocalHost;	Writeback	Timeout=60;"

See	Also

Writeback	Timeout	Property

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Building	Local	Cubes
The	process	of	creating	a	local	cube	can	be	summarized	in	a	few	steps.

1.	 Define	dimensions.

2.	 Define	measures.

3.	 Define	calculated	members.

4.	 Define	other	objects	such	as	levels,	member	properties,	and	so	on.

5.	 Populate	the	dimensions.

6.	 Populate	the	measures	and	calculated	members.

7.	 Map	the	dimensions	and	measures	into	the	cube	structure.

8.	 Process	the	cube	by	connecting	to	the	source	provider.

To	accomplish	steps	1	through	6,	use	strings	that	consist	of	data	definition
language	(DDL)	statements	such	as	CREATE	CUBE.	Assign	each	statement	to
its	corresponding	connection	string	and	then	assemble	all	the	connection	string
properties	into	a	single	connection	string.	The	local	cube	is	then	created	during
the	process	of	connecting	to	the	data	source.

Before	creating	a	local	cube,	you	must	decide	which	storage	mode	to	use.	You
can	create	local	cubes	in	multidimensional	OLAP	(MOLAP)	or	relational	OLAP
(ROLAP)	storage	mode.	For	more	information	about	OLAP	storage	modes,	see
Flexible	Data	Model.

To	create	a	MOLAP	cube,	use	the	CREATE	CUBE	statement	in	the	connection
string	to	define	the	cube's	dimensions,	levels,	members,	and	measures.	The

JavaScript:hhobj_1.Click()

INSERT	INTO	statement	is	then	used	to	populate	the	cube	with	data.	The	result
is	a	local	cube	saved	on	the	client	computer,	which	can	then	be	connected	to	and
analyzed	offline.

To	create	a	ROLAP	cube,	use	the	CREATE	CUBE	statement	in	the	connection
string	to	define	the	cube	(as	described	in	the	previous	paragraph).	Then	use	the
INSERT	INTO	statement	with	the	OPTIONS	DEFER_DATA	clause	to	populate
its	dimensions	and	members.	This	saves	the	structural	definition	of	the	local
cube	(that	is,	the	cube	and	dimension	definitions)	on	the	local	computer,	but	does
not	save	the	member	data.	The	client	application	can	then	connect	to	the	local
cube	and	analyze	its	data	(while	connected	to	its	data	source)	without	a
connection	to	an	Analysis	server.

Local	MOLAP	cubes	generally	take	longer	to	create	than	ROLAP	cubes	because
the	cube	data	must	be	added	to	the	meta	data.	These	cubes	are	usually	much
larger	than	ROLAP	cubes.	However,	local	MOLAP	cubes	provide	better
performance	during	query	execution	than	local	ROLAP	cubes	do.

PivotTable®	Service	can	only	be	used	to	define	local	cubes.	You	cannot	create
cubes	on	an	Analysis	server	using	PivotTable	Service.

The	source	data	used	to	create	a	local	cube	must	be	to	a	tabular	data	provider,
such	as	a	relational	database,	or	from	an	Analysis	server,	which	can	act	as	a
tabular	data	provider.	The	name	of	the	local	cube	file	to	be	created	is	defined
using	the	Datasource	property	in	the	connection	string.	The	file	extension	of	the
cube	file	is	.cub.	You	cannot	specify	other	extensions	for	files	of	this	type.

CAUTION		If	the	specified	cube	file	already	exists	on	the	local	computer,
PivotTable	Service	overwrites	this	existing	file	with	the	new	local	cube	unless
you	set	the	UseExistingFile	property	of	the	Microsoft®	ActiveX®	Data	Objects
(ADO)	Connection	object	to	a	value	that	begins	with	Y	(for	YES),	T	(for
TRUE),	or	a	nonzero	numerical	value.

If	the	name	of	a	cube	is	different	from	the	name	of	a	cube	already	in	a	cube	file,
this	new	cube	is	appended	to	the	old	one.

See	Also

Building	and	Processing	Cubes

JavaScript:hhobj_2.Click()

CREATE	CUBE	Statement

Data	Source	Property

UseExistingFile	Property

Flexible	Data	Model

INSERT	INTO	Statement

JavaScript:hhobj_3.Click()

Analysis	Services	Programming

Using	the	CREATE	CUBE	Statement
The	following	topic	describes	the	first	two	steps	in	creating	a	local	cube:
defining	the	local	cube's	dimensions,	and	defining	the	local	cube's	measures.

Defining	Dimensions
The	first	step	in	creating	a	local	cube	is	to	define	its	dimensions	and	levels.

The	example	code	contained	at	the	end	of	this	topic	creates	a	local	cube	called
C:\Warecube.cub	from	the	sample	FoodMart	2000	database	(FoodMart
2000.mdb),	which	is	provided	with	Microsoft®	SQL	Server™	2000	Analysis
Services.	The	cube	has	the	following	structure:

Store	Dimension

Level Data	Type
All	Stores ALL
Store	Country Default
Store	State Default
Store	City Default
Store	Name Default

Store	Type	Dimension

Level Data	Type
All	Store	Types ALL
Store	Type Default

Time	Dimension

Column	Hierarchy

Level Data	Type
Year YEAR

Quarter QUARTER
Month MONTH
Week WEEK
Day DAY

Formula	Hierarchy

Level Data	Type
Year YEAR
Quarter QUARTER
Month MONTH

Warehouse	Dimension

Level Data	Type
All	Warehouse ALL
Country Default
State	Province Default
City Default
Warehouse	Name Default

Defining	Measures
The	next	step	in	building	a	local	cube	is	to	define	the	measures	that	will	be	used
by	that	cube.	The	following	table	describes	the	measures	used	in	the	example	at
the	end	of	this	topic.

Measure Function Format
Store	Invoice Sum #.#
Supply	Time Sum #.#
Warehouse	Cost Sum #.#
Warehouse	Sales Sum #.#

Units	Shipped Sum #.#
Units	Ordered Sum #.#

After	the	dimensions	and	measures	are	defined,	they	must	be	populated.	For
more	information	about	populating	a	cube's	dimensions	and	measures,	see	Using
the	INSERT	INTO	Statement.

Examples

A.	Defining	a	Local	Cube's	Dimensions
Use	the	following	code	to	define	the	dimensions	of	a	local	cube:

Dim	cnCube	As	ADODB.Connection
Dim	s	As	String
Dim	strProvider	As	String
Dim	strDataSource	As	String
Dim	strSourceDSN	As	String
Dim	strSourceDSNSuffix	As	String
Dim	strCreateCube	As	String
Dim	strInsertInto	As	String

On	Error	GoTo	Error_cmdCreateCubeFromDatabase

'*---
'*	Add	the	provider	that	will	process	the	connection	string.
'*---

strProvider	=	"PROVIDER=MSOLAP"

'*---
'*	Add	the	data	source	and	the	name	of	the	cube	file	(.cub)	
'*	that	will	be	created.
'*---

strDataSource	=	"DATA	SOURCE=c:\warecube.cub"

'*---
'*	Add	the	source	DSN,	the	connection	string	for	where	the	data	comes	from.
'*	Quote	the	value	so	it	is	parsed	as	one	value.
'*	This	can	be	either	an	ODBC	connection	string	or	
'*	an	OLE	DB	connection	string
'*	(as	returned	by	the	Data	Source	Locator	component).
'*
'*				strSourceDSN	=	"SOURCE_DSN=""DRIVER=Microsoft	Access	Driver	(*.mdb);DBQ=\\machue1\Samples\Sales.MDB"";"
'*
'*---

strSourceDSN	=	"SOURCE_DSN=FoodMart	2000"

'*---
'*	There	may	be	some	other	parameters	that	you	want	applied
'*	at	run	time	but	not	stored	in	the	cube	file
'*	or	returned	in	the	output	string.
'*	Example:
'*	strSourceDSNSuffix	=	"UID=;PWD="
'*---

'*---
'*	Add	CREATE	CUBE.		This	defines	the	structure	of	the	cube,	
'*	but	not	the	data	in	it.
'*	The	BNF	for	this	statement	is	in	the	
'*	Analysis	Services	documentation.
'*	Note:	The	names	are	quoted	with	square	brackets.
'*---

strCreateCube	=	"CREATECUBE=CREATE	CUBE	Mycube("

strCreateCube	=	strCreateCube	&	"DIMENSION	[Product],"
								strCreateCube	=	strCreateCube	&	"LEVEL	[All	Products]		TYPE	ALL,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Product	Family]	,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Product	Department]	,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Product	Category]	,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Product	Subcategory]	,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Brand	Name]	,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Product	Name]	,"
strCreateCube	=	strCreateCube	&	"DIMENSION	[Store],"
								strCreateCube	=	strCreateCube	&	"LEVEL	[All	Stores]		TYPE	ALL,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Store	Country]	,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Store	State]	,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Store	City]	,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Store	Name]	,"
strCreateCube	=	strCreateCube	&	"DIMENSION	[Store	Type],"
								strCreateCube	=	strCreateCube	&	"LEVEL	[All	Store	Type]		TYPE	ALL,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Store	Type]	,"
strCreateCube	=	strCreateCube	&	"DIMENSION	[Time]	TYPE	TIME,"
				strCreateCube	=	strCreateCube	&	"HIERARCHY	[Column],"
								strCreateCube	=	strCreateCube	&	"LEVEL	[All	Time]		TYPE	ALL,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Year]		TYPE	YEAR,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Quarter]		TYPE	QUARTER,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Month]		TYPE	MONTH,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Week]		TYPE	WEEK,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Day]		TYPE	DAY,"
				strCreateCube	=	strCreateCube	&	"HIERARCHY	[Formula],"
								strCreateCube	=	strCreateCube	&	"LEVEL	[All	Formula	Time]		TYPE	ALL,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Year]		TYPE	YEAR,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Quarter]		TYPE	QUARTER,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Month]		TYPE	MONTH	OPTIONS	(SORTBYKEY)	,"
strCreateCube	=	strCreateCube	&	"DIMENSION	[Warehouse],"
								strCreateCube	=	strCreateCube	&	"LEVEL	[All	Warehouses]		TYPE	ALL,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Country]	,"

								strCreateCube	=	strCreateCube	&	"LEVEL	[State	Province]	,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[City]	,"
								strCreateCube	=	strCreateCube	&	"LEVEL	[Warehouse	Name]	,"

B.	Defining	a	Local	Cube's	Measures
In	this	example,	each	measure	is	named	and	assigned	an	aggregate	function	(an
expression	for	a	calculated	measure)	and	a	format	for	display.

strCreateCube	=	strCreateCube	&	"MEASURE	[Store	Invoice]	"
				strCreateCube	=	strCreateCube	&	"Function	Sum	"
				strCreateCube	=	strCreateCube	&	"Format	'#.#',"
strCreateCube	=	strCreateCube	&	"MEASURE	[Supply	Time]	"
				strCreateCube	=	strCreateCube	&	"Function	Sum	"
				strCreateCube	=	strCreateCube	&	"Format	'#.#',"
strCreateCube	=	strCreateCube	&	"MEASURE	[Warehouse	Cost]	"
				strCreateCube	=	strCreateCube	&	"Function	Sum	"
				strCreateCube	=	strCreateCube	&	"Format	'#.#',"
strCreateCube	=	strCreateCube	&	"MEASURE	[Warehouse	Sales]	"
				strCreateCube	=	strCreateCube	&	"Function	Sum	"
				strCreateCube	=	strCreateCube	&	"Format	'#.#',"
strCreateCube	=	strCreateCube	&	"MEASURE	[Units	Shipped]	"
				strCreateCube	=	strCreateCube	&	"Function	Sum	"
				strCreateCube	=	strCreateCube	&	"Format	'#.#',"
strCreateCube	=	strCreateCube	&	"MEASURE	[Units	Ordered]	"
				strCreateCube	=	strCreateCube	&	"Function	Sum	"
				strCreateCube	=	strCreateCube	&	"Format	'#.#')"

Analysis	Services	Programming

Using	the	INSERT	INTO	Statement
This	topic	describes	the	next	three	steps	necessary	to	build	a	local	cube:	populate
the	local	cube's	dimensions,	populate	the	local	cube's	measures,	and	map	the
source	data	for	the	dimensions	and	measures	onto	the	local	cube's	structure.

Populate	the	Dimensions
Populating	a	local	cube	with	dimension	members	and	measure	data	is
accomplished	using	the	INSERT	INTO	statement	in	the	connection	string,	which
follows	the	CREATE	CUBE	statement.

CAUTION		If	the	name	of	the	cube	file	to	be	created	does	not	exist	(as	defined	by
the	DBPROP_INIT_DATASOURCE	property),	it	is	created	during	the
processing	of	this	statement.	If	a	cube	file	with	that	name	already	exists,	it	is
overwritten	with	the	new	cube	structure	and	data.	If	the	name	is	not	specified,	a
temporary	name	is	assigned.

Use	the	portion	of	the	INSERT	INTO	statement	before	the	SELECT	clause	to
identify	the	elements	of	the	cube	that	will	be	populated	from	the	data	source.	For
more	information,	see	INSERT	INTO	Statement.

Before	using	the	INSERT	INTO	statement,	the	cube	structure	must	be	defined
with	a	CREATE	CUBE	statement.	For	more	information,	see	Building	Local
Cubes.

Populate	the	Measures
The	measures	of	a	cube	are	populated	in	the	same	way	the	dimensions	are
populated.

Map	the	Dimensions	and	Measures	into	the	Cube	Structure
Use	a	SELECT	clause	within	the	INSERT	INTO	statement	to	populate	the
dimension	and	level	structures.	This	clause	identifies	the	source	tables	and
columns	from	the	fact	table.

If	you	are	creating	a	local	ROLAP	cube:

Precede	the	SELECT	clause	with	an	OPTIONS	DEFER_DATA	clause.
(If	the	OPTIONS	DEFER_DATA	clause	is	omitted,	a	local	MOLAP
cube	is	created.)

Remove	the	AS	Coln	clauses.

Note		The	order	of	columns	in	the	SELECT	clause	must	match	the	order
of	cube	elements	in	the	preceding	INSERT	INTO	clause.	So,	the	first
column	in	the	SELECT	clause	populates	the	first	cube	element	in	the
INSERT	INTO	clause,	the	second	populates	the	second,	and	so	on.

Examples

A.	Populating	the	Dimensions

This	example	populates	the	elements	of	the	cube	defined	in	Building	Local
Cubes:

'*---
'*	Note:	In	some	circumstances	the	SELECT	clause	may	be	passed	through	
'*	to	the	relational	database:	For	example,	a	stored	procedure
'*	could	be	passed	in.
'*	Note:	Columns	in	the	SELECT	can	be	in	any	order.	Just
'*	adjust	the	order	of	the	list	of	level/measure	names	to	
'*	match	the	order	of	columns	in	the	SELECT	clause.
'*---
strInsertInto	=	strInsertInto	&	"INSERTINTO=INSERT	INTO	Mycube	(Product.[Product	Family],	Product.[Product	Department],"
strInsertInto	=	strInsertInto	&	"Product.[Product	Category],	Product.[Product	Subcategory],"
strInsertInto	=	strInsertInto	&	"Product.[Brand	Name],	Product.[Product	Name],"
strInsertInto	=	strInsertInto	&	"Store.[Store	Country],	Store.[Store	State],	Store.[Store	City],"
strInsertInto	=	strInsertInto	&	"Store.[Store	Name],	[Store	Type].[Store	Type],	[Time].[Column],"
strInsertInto	=	strInsertInto	&	"[Time].Formula.Year,	[Time].Formula.Quarter,	[Time].Formula.Month.[Key],"
strInsertInto	=	strInsertInto	&	"[Time].Formula.Month.Name,	Warehouse.Country,	Warehouse.[State	Province],"

strInsertInto	=	strInsertInto	&	"Warehouse.City,	Warehouse.[Warehouse	Name],	Measures.[Store	Invoice],"
strInsertInto	=	strInsertInto	&	"Measures.[Supply	Time],	Measures.[Warehouse	Cost],	Measures.[Warehouse	Sales],"
strInsertInto	=	strInsertInto	&	"Measures.[Units	Shipped],	Measures.[Units	Ordered])"

B.	Populating	the	Measures
The	following	code	shows	how	to	populate	of	the	measures	with	data	from	the
fact	table:

strInsertInto	=	strInsertInto	&	"inventory_fact_1997.store_invoice,"
strInsertInto	=	strInsertInto	&	"inventory_fact_1997.supply_time,"
strInsertInto	=	strInsertInto	&	"inventory_fact_1997.warehouse_cost,"
strInsertInto	=	strInsertInto	&	"inventory_fact_1997.warehouse_sales,"
strInsertInto	=	strInsertInto	&	"inventory_fact_1997.units_shipped,"
strInsertInto	=	strInsertInto	&	"inventory_fact_1997.units_ordered	"
strInsertInto	=	strInsertInto	&	"From	[inventory_fact_1997],	[product],	[product_class],	[time_by_day],	[store],	[warehouse]	"
strInsertInto	=	strInsertInto	&	"Where	[inventory_fact_1997].[product_id]	=	[product].[product_id]	And	"
strInsertInto	=	strInsertInto	&	"[product].[product_class_id]	=	[product_class].[product_class_id]	And	"
strInsertInto	=	strInsertInto	&	"[inventory_fact_1997].[time_id]	=	[time_by_day].[time_id]	And	"
strInsertInto	=	strInsertInto	&	"[inventory_fact_1997].[store_id]	=	[store].[store_id]	And	"
strInsertInto	=	strInsertInto	&	"[inventory_fact_1997].[warehouse_id]	=	[warehouse].[warehouse_id]"

C.	Mapping	the	Dimensions	and	Measures	onto	the	Local	Cube
The	following	code	shows	how	to	populate	dimensions	and	levels.	It	includes
the	SELECT	clause.

'*---
'*	Add	some	options	to	the	INSERT	INTO	if	you	need	to.
'*	These	can	control	if	the	SELECT	clause	is	analyzed	
'*	or	just	passed	through,
'*	and	if	the	storage	mode	is	MOLAP	or	ROLAP	(DEFER_DATA).
'*	Examples:
'*	strInsertInto	=	strInsertInto	&	"	OPTIONS	DEFER_DATA"
'*	strInsertInto	=	strInsertInto	&	"	OPTIONS	ATTEMPT_ANALYSIS"
'*---

'*---
'*	Add	the	SELECT	clause	of	the	INSERT	INTO	statement.
'*	Note:	SELECT	is	concatenated	onto	the	end	of	
'*	the	INSERT	INTO	statement.
'*	Analysis	Services	passes	this	
'*	through	to	the	source	database	if	unable	to	parse	it.
'*	Note:	For	Analysis	Services	to	analyze	the	SELECT	clause,	
'*	each	column	must	be	qualified	with	the	table	name.
'*---

strInsertInto	=	strInsertInto	&	"SELECT	product_class.product_family	AS	Col1,"
strInsertInto	=	strInsertInto	&	"product_class.product_department	AS	Col2,"
strInsertInto	=	strInsertInto	&	"product_class.product_category	AS	Col3,"
strInsertInto	=	strInsertInto	&	"product_class.product_subcategory	AS	Col4,"
strInsertInto	=	strInsertInto	&	"product.brand_name	AS	Col5,"
strInsertInto	=	strInsertInto	&	"product.product_name	AS	Col6,"
strInsertInto	=	strInsertInto	&	"store.store_country	AS	Col7,"
strInsertInto	=	strInsertInto	&	"store.store_state	AS	Col8,"
strInsertInto	=	strInsertInto	&	"store.store_city	AS	Col9,"
strInsertInto	=	strInsertInto	&	"store.store_name	AS	Col10,"
strInsertInto	=	strInsertInto	&	"store.store_type	AS	Col11,"
strInsertInto	=	strInsertInto	&	"time_by_day.the_date	AS	Col12,"
strInsertInto	=	strInsertInto	&	"time_by_day.the_year	AS	Col13,"
strInsertInto	=	strInsertInto	&	"time_by_day.quarter	AS	Col14,"
strInsertInto	=	strInsertInto	&	"time_by_day.month_of_year	AS	Col15,"
strInsertInto	=	strInsertInto	&	"time_by_day.the_month	AS	Col16,"
strInsertInto	=	strInsertInto	&	"warehouse.warehouse_country	AS	Col17,"
strInsertInto	=	strInsertInto	&	"warehouse.warehouse_state_province	AS	Col18,"
strInsertInto	=	strInsertInto	&	"warehouse.warehouse_city	AS	Col19,"
strInsertInto	=	strInsertInto	&	"warehouse.warehouse_name	AS	Col20,"

Analysis	Services	Programming

Processing	a	Local	Cube
The	final	step	in	creating	a	local	cube	includes	creating	a	Connection	object
from	Microsoft®	ActiveX®	Data	Objects	(ADO)	and	opening	the	data	source
connection	with	the	ADO	Open	method.	This	causes	PivotTable®	Service	to
create	the	local	cube	and	populate	it	with	data.

The	code	in	this	topic	includes	the	Connection	object	and	Open	method.	This
code	also	completes	the	creation	of	the	local	cube	(.cub)	file	example	provided
in	previous	topics.

Examples

A.	Connecting	to	the	Data	Source
The	following	code	shows	how	to	process	a	local	cube:

'*---
'*	Set	a	new	ADO	DB	Connection	object.
'*	Create	the	cube	by	passing	concatenated	connection	
'*	string	to	Open	method	of	the	connection	object.
'*---

Set	cnCube	=	New	ADODB.Connection
s	=	strProvider	&	";"	&	strDataSource	&	";"	&	strSourceDSN	&	";"	&	strCreateCube	&	";"	&	strInsertInto	&	";"

Screen.MousePointer	=	vbHourglass
cnCube.Open	s
Screen.MousePointer	=	vbDefault
Exit	Sub

Error_cmdCreateCubeFromDatabase:
				Screen.MousePointer	=	vbDefault

				On	Error	Resume	Next

				'	Get	the	ADO	errors.
				Dim	erCur	as	Error
				Dim	sErrDesc	as	String
				If	cnCube.Errors.Count	>	0	Then
								For	Each	erCur	In	cnCube.Errors
												sErrDesc	=	sErrDesc	&	erCur.Source	&	":	"	&	erCur.Description	&	vbCrLf
								Next	erCur
				End	If
				MsgBox	Err.Description	&	sErrDesc

Analysis	Services	Programming

Defining	Calculated	Members
Calculated	members	are	members	whose	value	is	dependent	on	an	expression
rather	than	on	the	value	of	a	cell.

You	can	define	a	calculated	member	using	one	of	the	following	scopes:

Query	scope

The	calculated	member	can	be	used	only	within	the	query	in	which	it	is
defined.	Use	the	WITH	clause	in	the	SELECT	statement.

Session	scope

The	calculated	member	can	be	used	only	within	the	session	in	which	it	is
defined,	but	can	be	used	by	multiple	queries.	Use	the	CREATE	MEMBER
statement.

Custom	Rollups
In	addition	to	the	standard	aggregate	functions	Sum,	Min,	Max,	and	Count	and
Distinct	Count,	more	sophisticated	custom	rollup	functions	can	be	defined	for
any	given	member	in	the	CREATE	CUBE	statement.	One	common	usage
scenario	is	the	inventory	problem	where	inventory	levels	are	not	summed	along
the	Time	dimension,	as	they	would	be	for	every	other	dimension.	That	is,	if	you
have	one	item	for	seven	days	of	time,	you	do	not	have	seven	items	for	the	week.
By	using	the	LastChild	function	in	Multidimensional	Expressions	(MDX)	to
define	a	custom	rollup	formula,	you	can	automatically	roll	up	closing	balances
along	time.

Examples

A.	Creating	a	Calculated	Member
Use	the	following	code	to	create	a	calculated	member.	You	must	use	single
quotes	to	enclose	the	expression	for	the	calculated	member.	The	OLE	DB
specification,	however,	does	not	require	these	quotes.

CREATE	CUBE	MYWAREHOUSE	(
DIMENSION	.	.	.
.	.	.	,
COMMAND	(CREATE	MEMBER	[MYWAREHOUSE].[MEASURES].[WAREHOUSEPROFIT]
AS	'[MEASURES].[WAREHOUSE	SALES]	-	[MEASURES].[WAREHOUSE	COST]')
)

See	Also

Creating	Calculated	Members

CREATE	CUBE	Statement

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Refreshing	Local	Cubes
Use	the	REFRESH	CUBE	statement	to	refresh	the	data	in	a	local	cube.	The
REFRESH	CUBE	statement	rebuilds	the	local	cube	file	with	the	CREATE
CUBE	and	INSERT	INTO	statements	that	were	originally	used	to	create	the
local	cube.	These	statements	and	a	reference	to	the	original	source	database	are
stored	in	the	local	cube	file.	The	original	data	source	must	be	available	for	this
statement	to	succeed.

For	more	information,	see	Managing	the	Client	Cache.

See	Also

CREATE	CUBE	Statement

INSERT	INTO	Statement

Analysis	Services	Programming

PivotTable	Service	Programmer's	Reference
The	Programmer's	Reference	contains	reference	pages	necessary	for	working
with	PivotTable®	Service.	The	following	table	describes	the	information
contained	in	each	set	of	reference	topics.

Topic Description
PivotTable	Service
Properties

Description	of	properties	that	can	be	set	in	the
connection

Data	Definition	Language Statements	for	defining	a	local	cube,	creating	a
local	cube,	and	altering	the	structure	of	a	server
cube

Data	Manipulation
Language

Information	about	data	manipulation	commands,
such	as	the	SELECT	and	INSERT_INTO
statements

Function	Reference Details	about	available	OLAP	and	data	mining
functions

Schema	Rowsets Additions	to	the	schema	rowsets	defined	by	the
OLAP	portion	of	the	OLE	DB	specification	and
new	schema	rowset	restriction	columns

Analysis	Services	Programming

PivotTable	Service	Properties
Properties	in	PivotTable®	Service	can	be	referred	to	by	either	property	name	or
property	ID.	When	setting	or	reading	the	value	of	a	property	using	Microsoft®
ActiveX®	Data	Objects	(ADO),	use	the	property	name.	When	setting	or	reading
the	value	of	a	property	using	OLE	DB,	use	the	property	ID.	The	property	ID	is
listed	in	the	individual	reference	topic	for	each	property.

IMPORTANT		Some	property	names	contain	embedded	spaces;	others	do	not.	Use
the	property	name	exactly	as	it	is	listed	under	the	Property	Name	heading	in	the
property	detail	topic.

The	following	table	lists	the	property	names	and	property	IDs	that	PivotTable
Service	supports.	For	more	information,	see	the	OLAP	portion	of	the	OLE	DB
specification.

Property	name Description
ArtificialData	Property Reserved	for	future	use
Authenticated	User	Property Reserved	for	future	use
Auto	Synch	Period	Property Controls	the	frequency	(in

milliseconds)	of	client/server
synchronization

Cache	Policy	Property Reserved	for	future	use
Cache	Ratio	Property Reserved	for	future	use
Client	Cache	Size	Property Controls	the	amount	of	memory

used	by	the	client	cache
CompareCaseNotSensitiveStringFlags
Property

Adjusts	case-insensitive	string
comparisons	for	a	specified	locale

CompareCaseSensitiveStringFlags
Property

Adjusts	case-sensitive	string
comparisons	for	a	specified	locale

Connect	Timeout	Property Determines	the	maximum	amount	of
time	the	client	application	will
attempt	to	connect	to	the	server
before	timing	out

CreateCube	Property The	CREATE	CUBE	statement	to

create	a	local	cube	file
Data	Source	Property The	name	of	the	server	computer	or

local	cube	file
Datasource	Connection	Type	Property Describes	the	type	of	connection

that	is	currently	active
Default	GUID	Dialect	Property Controls	the	precedence	in	which

language	dialects	are	applied	when
resolving	queries

Default	Isolation	Mode	Property Controls	whether	the	isolation	level
is	isolated	or	determined	by	the
cursor	type	requested	by	the	rowset
properties

Default	MDX	Visual	Mode	Property Determines	the	default	behavior	of
visual	totals

Distinct	Measures	By	Key	Property Reserved	for	future	use
Do	Not	Apply	Commands	Property Reserved	for	future	use
Execution	Location	Property Determines	the	location	of	query

resolution:	the	client	application,
server,	or	a	combination

Initial	Catalog	Property The	name	of	the	initial	database
(catalog)

InsertInto	Property The	INSERT	INTO	statement	used
to	populate	a	local	cube	file	created
with	the	CREATE	CUBE	statement

Large	Level	Threshold	Property Determines	the	definition	of	large
level	for	client/server	handling	of
level	members

Locale	Identifier	Property The	locale	ID	of	preference	for	the
client	application

Log	File	Property Specifies	a	file	name	for	logging
queries

MDX	Calculated	Members	Mode
Property

Reserved	for	future	use

MDX	Compatibility	Property Determines	how	empty	members	are
treated	for	ragged	and	unbalanced

hierarchies
MDX	Object	Qualification	Property Describes	how	object	names	are

qualified	in	Microsoft	SQL	Server™
2000	Analysis	Services

MDX	Unique	Name	Style	Property Determines	the	technique	for
generating	unique	names

Mining	Execution	Location	Property Determines	the	location	of	query
resolution	for	data	mining	queries

Mining	Location	Property Determines	the	directory	in	which	a
local	data	mining	model	will	be
created

Mining	Persistence	Format	Property Determines	how	data	mining	models
are	saved

OLE	DB	for	OLAP	Version	Property Indicates	the	version	of	the	OLE	DB
provider

Password	Property Specifies	the	password	to	use	when
connecting	using	HTTP

Provider	Property A	predefined	string	containing	other
initialization	properties

Read	Only	Session	Property Reserved	for	future	use
Roles	Property Specifies	a	comma-delimited	string

of	the	role	names	by	which	a	client
application	connects	to	the	server

Safety	Options	Property Determines	how	security	for	user-
defined	functions	is	handled

Secured	Cell	Value	Property Determines	the	type	of	return	value
that	results	from	a	reference	to	a
secured	cell

Show	Hidden	Cubes	Property Reserved	for	future	use
Source_DSN	Property The	OLE	DB	connection	string,

ODBC	connection	string,	or	ODBC
data	source	name	(DSN)	for	the
source	relational	database;	used	only
when	creating	a	local	cube	file

Source_DSN_Suffix	Property Used	to	specify	DSN	properties	for

creating	local	cubes	that	should	not
be	stored	as	part	of	the	local	cubes
structure,	such	as	the	user	ID	and
password	for	the	local	cube's	data
source

SQL	Compatibility	Property Reserved	for	future	use
SSPI	Property Determines	the	security	package	to

use	during	the	session
UseExistingFile	Property Determines	whether	a	local	cube	file

is	overwritten	if	the	connection
string	contains	CREATE	CUBE	and
INSERT	INTO	statements

User	ID	Property Specifies	a	valid	user	name,	such	as
a	valid	domain	logon	or	local	logon

Writeback	Timeout	Property Determines	the	maximum	amount	of
time	the	client	application	will
attempt	to	communicate	updates	to	a
writeback	table	on	the	server	before
timing	out

Analysis	Services	Programming

ArtificialData	Property
Reserved	for	future	use.

Property	Name
ArtificialData

Property	ID
DBPROP_MSMD_ARTIFICIALDATA

Analysis	Services	Programming

Authenticated	User	Property
Reserved	for	future	use.

Property	Name
Authenticated	User

Property	ID
DBPROP_MSMD_AUTHENTICATED_USER

Analysis	Services	Programming

Auto	Synch	Period	Property
This	property	controls	the	frequency	(in	milliseconds)	of	client/server
synchronization.

Property	Name
Auto	Synch	Period

Property	ID
DBPROP_MSMD_AUTOSYNCHPERIOD

Remarks
The	default	is	10,000	milliseconds	(10	seconds).

When	this	property	is	set	to	a	NULL	value	or	0	(zero),	automatic
synchronization	is	turned	off.	Synchronization	occurs	only	when	you	send	a
query	to	the	server.

Because	some	client	queries	are	resolved	solely	from	the	client	cache,	too	high	a
value	in	this	property	can	result	in	query	results	that	do	not	reflect	recent	updates
in	the	data	source.	However,	too	low	a	value	can	impede	performance.	The
lowest	valid	nonzero	value	is	250	milliseconds.	If	a	value	between	1	and	249
(inclusive)	is	specified,	a	value	of	250	milliseconds	is	used.

You	will	usually	set	the	value	of	this	property	when	you	establish	a	session;
however,	you	can	change	its	value	during	the	session	if	necessary.

Analysis	Services	Programming

Cache	Policy	Property
Reserved	for	future	use.

Property	Name
Cache	Policy

Property	ID
DBPROP_MSMD_CACHEPOLICY

Analysis	Services	Programming

Cache	Ratio	Property
Reserved	for	future	use.

Property	Name
Cache	Ratio

Property	ID
DBPROP_MSMD_CACHERATIO

Analysis	Services	Programming

Client	Cache	Size	Property
This	property	controls	the	amount	of	memory	used	by	the	client	cache.

Property	Name
Client	Cache	Size

Property	ID
DBPROP_MSMD_DATA_CACHE_SIZE

Remarks
If	this	property	is	set	to	0	(zero),	the	client	cache	can	use	unlimited	memory.	If
this	property	is	set	to	a	value	between	1	and	99	(inclusive),	the	client	cache	can
use	the	specified	percentage	of	total	available	virtual	memory	(physical	and	page
file).	If	this	property	is	set	to	100	or	more,	the	client	cache	can	use	up	to	the
specified	amount	of	memory,	in	kilobytes	(KB).

This	property's	value	is	used	when	a	session	is	established,	and	the	value	can	be
changed	during	the	session.

Analysis	Services	Programming

CompareCaseNotSensitiveStringFlags	Property
This	property	adjusts	case-insensitive	string	comparisons	for	a	specified	locale.

Property	Name
CompareCaseNotSensitiveStringFlags

Property	ID
DBPROP_MSMD_COMPARECASENOTSENSITIVESTRINGFLAGS

Remarks
Flags	specified	for	this	property	are	used	in	case-insensitive	string	comparisons.
These	flags	control	string	comparisons	and	sort	order.	This	property	controls
how	comparisons	are	made	in	character	sets	that	do	not	support	uppercase	and
lowercase	characters,	such	as	Katakana	(for	Japanese)	and	Hindi.	The	default	is
the	value	of	the	CompareCaseNotSensitiveStringFlags	registry	entry	on	the
client	computer.

The	client	application	can	override	the	registry	entry	for	case-insensitive	string
comparisons	by	setting	the	CompareCaseNotSensitiveStringFlags	property	in
the	connection	string.	PivotTable®	Service	can	have	only	one	value	for	this
property	for	each	process.

The	value	of	this	property,	as	set	in	the	first	connection	of	the	process	thread,
affects	all	subsequent	connections	in	that	process	thread.

It	is	an	error	for	a	subsequent	connection	to	set	the	property	to	a	value	different
from	that	established	by	the	first	connection.	This	includes	any	scenario	in	which
a	first	client	application	sets	a	nondefault	value,	and	a	second	client	application
does	not	set	any	value,	expecting	to	use	the	default.	It	is	the	responsibility	of	the
client	application	to	manage	these	settings	when	there	are	multiple	sessions	per
process.

This	property's	value	cannot	be	changed	during	the	session.

Use	the	following	table	to	determine	which	flags	to	use.

Name Value Description
NORM_IGNORECASE 0x00000001Case	is	ignored.
Not	applicable 0x00000002Binary	comparison.	Characters

are	compared	based	on	their
underlying	value	in	the
character	set,	not	on	their	order
in	their	particular	alphabet.

NORM_IGNORENONSPACE 0x00000010Nonspacing	characters	are
ignored.

NORM_IGNORESYMBOLS 0x00000100Symbols	are	ignored.
NORM_IGNOREKANATYPE0x00001000No	differentiation	is	made

between	Hiragana	and
Katakana	characters.
Corresponding	Hiragana	and
Katakana	characters,	when
compared,	are	considered	to	be
equal.

NORM_IGNOREWIDTH 0x00010000No	differentiation	is	made
between	single-byte	and
double-byte	versions	of	the
same	character.

SORT_STRINGSORT 0x00100000Punctuation	is	treated	the	same
as	symbols.

For	more	information	about	comparing	strings	in	OLE	DB,	search	on
"CompareString"	in	the	Platform	SDK	section	of	the	MSDN®	Library	at	the
Microsoft	Web	site.

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Analysis	Services	Programming

CompareCaseSensitiveStringFlags	Property
This	property	adjusts	case-sensitive	string	comparisons	for	a	specified	locale.

Property	Name
CompareCaseSensitiveStringFlags

Property	ID
DBPROP_MSMD_COMPARECASESENSITIVESTRINGFLAGS

Remarks
Flags	specified	for	this	property	are	used	in	case-sensitive	string	comparisons.
These	flags	control	string	comparisons	and	sort	order.	This	property	controls
how	comparisons	are	made	in	character	sets	that	do	not	support	uppercase	and
lowercase	characters,	such	as	Katakana	(for	Japanese)	and	Hindi.	The	default	is
the	value	of	the	CompareCaseSensitiveStringFlags	registry	entry	on	the	client
computer	if	this	registry	entry	exists.

The	client	application	can	override	the	registry	entry	for	case-insensitive	string
comparisons	by	setting	the	CompareCaseSensitiveStringFlags	property	in	the
connection	string.	PivotTable®	Service	can	have	only	one	value	for	this	property
for	each	process.

The	value	of	this	property,	as	set	in	the	first	connection	of	the	process	thread,
affects	all	subsequent	connections	in	that	process	thread.

It	is	an	error	for	a	subsequent	connection	to	set	the	property	to	a	value	different
from	that	established	by	the	first	connection.	This	includes	any	scenario	in	which
a	first	client	application	sets	a	nondefault	value,	and	a	second	client	application
does	not	set	any	value,	expecting	to	use	the	default.	It	is	the	responsibility	of	the
client	application	to	manage	these	settings	when	there	are	multiple	sessions	per
process.

This	property's	value	cannot	be	changed	during	the	session.

Use	the	following	table	to	determine	which	flags	to	use.

Name Value Description
NORM_IGNORECASE 0x00000001Case	is	ignored.
Not	applicable 0x00000002Binary	comparison.	Characters

are	compared	based	on	their
underlying	value	in	the
character	set,	not	on	their	order
in	their	particular	alphabet.

NORM_IGNORENONSPACE 0x00000010Nonspacing	characters	are
ignored.

NORM_IGNORESYMBOLS 0x00000100Symbols	are	ignored.
NORM_IGNOREKANATYPE0x00001000No	differentiation	is	made

between	Hiragana	and
Katakana	characters.
Corresponding	Hiragana	and
Katakana	characters,	when
compared,	are	considered	to	be
equal.

NORM_IGNOREWIDTH 0x00010000No	differentiation	is	made
between	single-byte	and
double-byte	versions	of	the
same	character.

SORT_STRINGSORT 0x00100000Punctuation	is	treated	the	same
as	symbols.

For	more	information	about	comparing	strings	in	OLE	DB,	search	on
"CompareString"	in	the	Platform	SDK	section	of	the	MSDN®	Library	at	the
Microsoft	Web	site.

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Analysis	Services	Programming

Connect	Timeout	Property
This	property	determines	the	amount	of	time	that	will	elapse	before	an
unsuccessful	connection	times	out	and	returns	an	error.

Property	Name
Connect	Timeout

Property	ID
DBPROP_INIT_TIMEOUT

Remarks
Indicates	the	amount	of	time	(in	seconds)	to	wait	for	initialization	to	complete.

For	more	information	about		DBPROP_INIT_TIMEOUT,	see	the	OLE	DB
documentation.

Analysis	Services	Programming

CreateCube	Property
This	property	contains	the	CREATE	CUBE	statement	that	is	used	in	the
connection	string	during	creation	of	a	local	cube.

Property	Name
CreateCube

Property	ID
DBPROP_MSMD_CREATECUBE

Remarks
You	must	use	this	property	with	the	InsertInto	and	Source_DSN	properties.
When	these	three	properties	are	used,	they	are	always	used	together.

This	property's	value	is	used	when	a	session	is	established,	and	it	cannot	be
changed	during	the	session.

Note		The	name	of	this	property	is	formatted	differently	than	the	name	for	the
CREATE	CUBE	statement	with	which	it	is	associated.	When	used	in	the
connection	string,	it	must	be	formatted	as	a	single	word:	CreateCube.

See	Also

CREATE	CUBE	Statement

InsertInto	Property

Source_DSN	Property

Analysis	Services	Programming

Data	Source	Property
This	property	is	used	to	set	the	name	of	the	server	computer	or	local	cube	file.

Property	Name
Data	Source

Property	ID
DBPROP_INIT_DATASOURCE

Remarks
The	property's	value	depends	on	the	intended	operation	mode:

To	work	with	the	Analysis	server,	specify	the	name	of	the	server
computer,	or	LOCALHOST,	or	LOCAL,	an	IP	address,	or	an	HTTP	or
HTTPS	URL.

To	create	or	work	with	a	local	cube	file,	specify	the	name	of	the	cube
file.	Local	cube	files	must	have	an	extension	of	.cub.

To	create	a	temporary	local	cube	file	that	will	be	deleted	when	the
session	ends,	specify	a	null	value.

This	property's	value	is	used	when	a	session	is	established,	but	the	value	cannot
be	changed	during	the	session.

Analysis	Services	Programming

Datasource	Connection	Type	Property
This	property	is	a	read-only	property	that	describes	the	type	of	connection	that	is
currently	active.

Property	Name
Datasource	Connection	Type

Property	ID
DBPROP_DATASOURCE_CONNECTION_TYPE

Remarks
This	property	returns	a	bitmask	that	describes	the	type	of	connection	that	is
currently	active.	The	following	table	lists	the	values	this	bitmask	can	contain.

Value Description
1 The	connection	is	to	an	Analysis	server.
2 The	connection	is	to	a	local	cube	file.
4 The	connection	is	to	the	Internet	or	an	intranet	through	HTTP.

Analysis	Services	Programming

Default	GUID	Dialect	Property
This	property	controls	the	precedence	of	language	dialect	parsers	when	the
provider	attempts	to	resolve	query	syntax.

Property	Name
Default	GUID	Dialect

Property	ID
DBPROP_MSMD_DEFAULT_GUID_DIALECT

Remarks
Because	query	syntax	can	be	similar	for	language	dialects	such	as	data	mining
and	SQL,	the	provider	may	not	be	able	to	infer	the	dialect	from	the	query	syntax.
The	provider	may	attempt	to	execute	the	query	a	second	time	in	a	different
dialect	if	the	query	fails	to	execute	in	the	first	dialect.	For	example,	if	a	data
mining	query	fails,	the	provider	may	resubmit	the	query	as	SQL.	If	this	second
attempt	also	fails,	the	provider	returns	an	SQL	error	message	instead	of	a	data
mining	error	message.

The	Default	GUID	Dialect	property	establishes	the	dialect	the	provider	will	use
first	to	attempt	to	execute	the	query	and	the	dialect	of	execution	errors	returned
for	query	failures,	even	if	the	provider	attempts	to	execute	the	query	a	second
time	in	another	dialect.	For	example,	if	the	Default	GUID	Dialect	property	is
set	to	MDGUID_DM,	the	provider	first	attempts	to	execute	the	query	as	a	data
mining	query.	If	this	attempt	fails,	the	provider	resubmits	the	query	as	an	SQL
query.	However,	because	the	value	of	this	property	is	MDGUID_DM,	if	the	SQL
query	also	fails,	the	data	mining	error	message	is	returned,	not	the	SQL	error
message.

This	property	can	be	used	in	situations	in	which	queries	are	expected	to	be	more
prevalent	in	one	dialect	than	another.

Note		If	the	OLE	DB	parameter	rguidDialect	is	set	in

ICommandText::SetCommandText,	that	setting	takes	precedence	over	the
Default	GUID	Dialect	property	setting	and	unequivocally	specifies	the	dialect
of	the	query.	That	is,	the	precedence	algorithm	established	by	the	Default	GUID
Dialect	property	does	not	apply.

The	following	table	describes	possible	values	for	this	property.

Property	value Description
DBGUID_SQL The	SQL	parser	has	precedence	(default)
MDGUID_DM The	data	mining	dialect	parser	has	precedence
MDGUID_MDX The	MDX	parser	has	precedence

Analysis	Services	Programming

Default	Isolation	Mode	Property
This	property	controls	the	default	transaction	level	isolation	mode,	which	can
override	the	transaction	level	determined	by	the	rowset	cursor	type.

Property	Name
Default	Isolation	Mode

Property	ID
DBPROP_MSMD_DEFAULT_ISOLATION_MODE

Remarks
If	the	first	character	of	this	string	is	Y,	T,	or	a	numeric	digit	other	than	0	(zero),
the	isolation	level	is	Serializable	(also	known	as	Isolated).	Otherwise,	the
cursor	type	requested	by	the	rowset	determines	the	isolation	level.	For	more
information	about	isolation	levels,	see	the	OLE	DB	documentation.

Use	this	property	to	provide	read	repeatability.

This	property's	value	is	used	when	a	session	is	established,	and	the	value	can	be
changed	during	the	session.

Analysis	Services	Programming

Default	MDX	Visual	Mode	Property
This	property	determines	the	default	behavior	for	visual	totals.

Property	Name
Default	MDX	Visual	Mode

Property	ID
DBPROP_MSMD_DEFAULT_MDX_VISUAL_MODE

Remarks
Use	the	following	table	to	determine	the	function	of	this	property.

Property	value Description
DBPROPVAL_VISUAL_MODE_DEFAULT Provider-dependent.	In	Microsoft®	SQL

Server™	2000	Analysis	Services,	this	is
equivalent	to
DBPROPVAL_VISUAL_MODE_ORIGINAL.

DBPROPVAL_VISUAL_MODE_VISUAL Visual	totals	are	enabled.
DBPROPVAL_VISUAL_MODE_ORIGINALVisual	totals	are	not	enabled.

Analysis	Services	Programming

Distinct	Measures	By	Key	Property
Reserved	for	future	use.

Property	Name
Distinct	Measures	By	Key

Property	ID
DBPROP_MSMD_DISTINCTMEASURESBYKEY

Analysis	Services	Programming

Do	Not	Apply	Commands	Property
Reserved	for	future	use.

Property	Name
Do	Not	Apply	Commands

Property	ID
DBPROP_MSMD_DONOTAPPLYCOMMANDS

Analysis	Services	Programming

Execution	Location	Property
This	property	determines	the	location	of	query	resolution:	the	client	application,
server,	or	a	combination	of	both.

Property	Name
Execution	Location

Property	ID
DBPROP_MSMD_EXECLOCATION

Remarks
The	following	values	are	available.

Value Description
0 Default.	For	compatibility	with	earlier	versions,	this	means	the

same	as	Value	1.	The	meaning	of	this	default	value	is	subject	to
change	in	future	versions.

1 PivotTable®	Service	selects	the	query	execution	location	(client
application	or	server)	that	will	provide	the	best	performance.

2 Queries	are	executed	on	the	client	application.
3 Queries	are	executed	on	the	server.	(Queries	that	contain	session-

scoped	calculated	members,	user-defined	sets,	or	user-defined
functions	are	exceptions.)

This	property's	value	is	used	when	a	session	is	established,	and	the	value	can	be
changed	during	the	session.

Analysis	Services	Programming

Initial	Catalog	Property
This	property	is	used	to	set	the	name	of	the	initial	database	(also	known	as	the
catalog)	of	a	data	source	during	connection.

Property	Name
Initial	Catalog

Property	ID
DBPROP_INIT_CATALOG

Remarks
The	value	of	this	property	is	used	when	a	session	is	established,	but	the	value
cannot	be	changed	during	the	session.

Analysis	Services	Programming

InsertInto	Property
This	property	contains	the	INSERT	INTO	statement	that	is	used	in	the
connection	string	during	creation	of	a	local	cube.

Property	Name
InsertInto

Property	ID
DBPROP_MSMD_INSERTINTO

Remarks
You	must	use	this	property	with	the	CreateCube	property	and	the	Source_DSN
property.	When	these	three	properties	are	used,	they	are	always	used	together.

This	property's	value	is	used	when	a	session	is	established,	but	the	value	cannot
be	changed	during	the	session.

Note		The	name	of	this	property	is	formatted	differently	than	the	name	for	the
INSERT	INTO	statement	with	which	it	is	associated.	When	used	in	the
connection	string,	it	must	be	formatted	as	a	single	word:	InsertInto.

See	Also

INSERT	INTO	Statement

CreateCube	Property

Source_DSN	Property

Analysis	Services	Programming

Large	Level	Threshold	Property
This	property	determines	the	point	at	which	a	level	is	too	large	to	be	sent	to	the
client	application	in	a	single	piece.

Property	Name
Large	Level	Threshold

Property	ID
DBPROP_MSMD_LARGE_LEVEL_THRESHOLD

Remarks
Use	this	property	to	help	manage	client	application	memory	usage.	If	the	number
of	members	in	a	level	is	below	the	threshold	you	set	in	this	property,	it	is	sent	to
the	client	application	in	one	piece.	If	the	number	of	members	in	a	level	is	equal
to	or	more	than	this	threshold,	the	level	is	broken	into	smaller	groups,	which	are
sent	as	needed.	Levels	that	contain	a	number	of	members	that	is	less	than	this
property's	value	are	sent	to	the	client	application.	If	a	level	contains	a	number	of
members	that	is	greater	than	or	equal	to	the	value	of	this	property,	the	level	is
incrementally	sent	from	the	server	to	the	client	application.

The	default	value	is	set	on	the	server	in	the	Large	level	defined	as	box	in	the
Properties	dialog	box	for	the	server.	The	minimum	value	for	this	property	is	10.
Setting	this	property	to	a	value	less	than	the	minimum	causes	the	value	to	be	set
to	the	minimum,	without	error.

This	property's	value	is	used	when	a	session	is	established,	and	it	cannot	be
changed	during	the	session.

The	default	value	for	this	property	is	1000.

See	Also

Environment	Tab	(Properties	Dialog	Box)

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Locale	Identifier	Property
This	property	is	used	to	set	the	locale	ID	(LCID)	of	preference	for	the	client
application.

Property	Name
Locale	Identifier

Property	ID
DBPROP_INIT_LCID

Remarks
The	client	application	can	modify	the	LCID	by	setting	the	Locale	Identifier
property.	PivotTable®	Service	can	have	only	one	LCID	for	each	Microsoft®
Windows®	process.	The	LCID	must	be	installed	in	Control	Panel	in	Windows.	If
it	is	not,	the	attempt	to	set	the	LCID	fails.	By	default,	the	Locale	Identifier
property	is	reported	as	null.

When	multiple	connections	are	opened	in	the	same	process,	connections
subsequent	to	the	first	connection	must	specify	the	LCID	to	be	the	same	as	that
established	by	the	first	connection.

It	is	an	error	for	a	subsequent	connection	to	set	the	LCID	to	a	value	that	would
be	different	from	that	established	by	the	first	connection.	This	includes	the
scenario	in	which	a	first	client	application	sets	a	nondefault	value,	and	a	second
client	application	does	not	set	any	value,	expecting	to	use	the	default.	It	is	the
client	application's	responsibility	to	manage	these	settings	in	scenarios	that
involve	multiple	sessions	per	process.

This	property's	value	is	used	when	a	session	is	established,	but	the	value	cannot
be	changed	during	the	session.

Analysis	Services	Programming

Log	File	Property
This	property	sets	or	returns	the	name	of	the	file	used	to	log
Multidimensional	Expressions	(MDX)	queries.

Property	Name
Log	File

Property	ID
DBPROP_MSMD_LOG_FILE

Remarks
Use	this	property	to	specify	a	file	name	for	logging	MDX	queries.	The	specified
file	is	opened	for	exclusive	use	by	the	connection;	subsequent	attempts	by	other
connections	to	open	the	same	file	will	fail.	The	format	of	the	log	file	is	as
follows:

Process	name	:	Process	ID	
Date	
Time	
Command	type,	one	of	the	following:
		MDX	-	MDX	query
		SQL	-	SQL	query
		DM	-	Data	mining	query
Query	text

Each	field	in	the	log	file	is	separated	by	a	space	character	and	terminated	by	a
carriage	return/line	feed	character.

Analysis	Services	Programming

MDX	Calculated	Members	Mode	Property
Reserved	for	future	use.

Property	Name
MDX	Calculated	Members	Mode

Property	ID
DBPROP_MSMD_MDX_CALC_MEMBERS_MODE

Analysis	Services	Programming

MDX	Compatibility	Property
This	property	determines	how	missing	members	in	the	hierarchy	are	treated	in
ragged	and	unbalanced	hierarchies.

Property	Name
MDX	Compatibility

Property	ID
DBPROP_MSMD_MDXCOMPATIBILITY

Remarks
This	property	determines	how	placeholder	members	in	a	ragged	or	unbalanced
hierarchy	are	treated.	The	following	table	describes	possible	values	for	this
property.

Value Description
0 Default.	For	compatibility	with	earlier	versions,	this	is	the	same	as

Value	1.	The	meaning	of	this	default	value	is	subject	to	change	in
future	versions.

1 Default	value.	Placeholder	members	are	exposed.
2 Placeholder	members	are	not	exposed.

This	property	overrides	the	following	registry	setting:

HKEY_CLASSES_ROOT\CLSID\{a07ccd0c-8148-11d0-87bb-00c04fc33942}

See	Also

Ragged	Hierarchies

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

MDX	Object	Qualification	Property
This	property	provides	a	bitmask	that	specifies	how	multidimensional	schema
object	names	are	qualified	in	Multidimensional	Expressions	(MDX)	expressions.

Property	Name
MDX	Object	Qualification

Property	ID
MDPROP_OBJQUALIFICATION

Remarks
This	read-only	property	determines	how	a	provider	qualifies	object	names.

The	following	table	describes	the	function	of	each	bit	in	this	property.

Bit Description
MDPROPVAL_MOQ_DATASOURCE Cubes	are	qualified	by	data	source	name.
MDPROPVAL_MCQ_CATALOG Cubes	are	qualified	by	catalog	name.
MDPROPVAL_MCQ_SCHEMA Cubes	are	qualified	by	schema	name.	If	the

MDPROPVAL_MOQ_DATASOURCEMDPROPVAL_MCQ_CATALOG
bits	are	not	set,	the	provider	does	not	support	cube	qualification.

MDPROPVAL_MOQ_CUBE_DIM Dimensions	are	qualified	by	cube	name.
MDPROPVAL_MOQ_DIM_HIER Hierarchies	are	qualified	by	dimension	name.
MDPROPVAL_MOQ_DIMHIER_LEVEL Levels	are	qualified	by	dimension	name	and/or	hierarchy	name.	This

property	applies	only	if	the	provider	supports	named	levels.	The
MDPROP_NAMED_LEVELS	bit	of	this	property	indicates	whether
named	levels	are	supported.

MDPROP_NAMED_LEVELS This	bit	is	set	if	named	levels	are	not	supported.
MDPROPVAL_MOQ_DIMHIER_MEMBERMembers	are	qualified	by	dimension	name	and/or	hierarchy	name.
MDPROPVAL_MOQ_LEVEL_MEMBER Members	are	qualified	by	level	name.
MDPROPVAL_MOQ_MEMBER_MEMBERMembers	are	qualified	by	ancestor	name(s).

PivotTable®	Service	and	Microsoft®	SQL	Server™	2000	Analysis	Services	set
the	following	bitmask	for	this	property:

MDPROPVAL_MOQ_DIM_HIER
|	MDPROPVAL_MOQ_DIMHIER_LEVEL
|	MDPROPVAL_MOQ_DIMHIER_MEMBER
|	MDPROPVAL_MOQ_LEVEL_MEMBER
|	MDPROPVAL_MOQ_MEMBER_MEMBER

The	client	application	cannot	change	the	value	of	this	property.

Analysis	Services	Programming

MDX	Unique	Name	Style	Property
This	property	determines	which	algorithm	is	used	to	generate	unique	names.

Property	Name
MDX	Unique	Name	Style

Property	ID
DBPROP_MSMD_MDXUNIQUENAMES

Remarks
Because	members	in	Microsoft®	SQL	Server™	2000	Analysis	Services	can
change	position	in	a	dimension,	the	method	for	generating	unique	names	in	SQL
Server	version	7.0	OLAP	Services	may	result	in	an	unstable	unique	name	over
time.	To	accommodate	this	change,	you	can	use	this	property	to	specify	the
algorithm	for	generating	unique	names.	Use	the	following	table	to	specify	which
algorithm	to	use.

Value Description
0 Default.	For	compatibility	with	earlier	versions,	this	is	the	same	as

Value	2.	The	meaning	of	this	default	value	is	subject	to	change	in
future	versions.

1 Key	path	algorithm:	[dim].&[k1].&[k2]
2 Compatible	with	version	7.0,	name	path	algorithm:	[dim].[n1].[n2]
3 Compatible	with	SQL	Server	2000	Analysis	Services.	The

algorithm	uses	guaranteed	unique	names,	which	are	stable	over
time.

This	property	overrides	the	following	registry	setting:

HKEY_CLASSES_ROOT\CLSID\{a07ccd00-8148-11d0-87bb-00c04fc33942}

Analysis	Services	Programming

Mining	Execution	Location	Property
This	property	determines	the	location	of	data	mining	query	resolution:	the	client
application,	server,	or	a	combination	of	both.

Property	Name
Mining	Execution	Location

Property	ID
DBPROP_MSMD_MINING_EXECUTION_LOCATION

Remarks
The	following	table	describes	possible	values.

Value Description
0 Default.	For	compatibility	with	earlier	versions,	this	means	the

same	as	Value	1.	The	meaning	of	this	default	value	is	subject	to
change	in	future	versions.

1 PivotTable®	Service	selects	the	query	execution	location	(client
application	or	server)	that	will	provide	the	best	performance.

2 The	server	updates	the	mining	model	on	the	client,	and	then	the
query	is	executed	and	resolved	on	the	client.

3 Queries	are	executed	and	resolved	on	the	server.

This	property's	value	is	used	when	a	session	is	established;	its	value	cannot	be
changed	during	the	session.

Analysis	Services	Programming

Mining	Location	Property
This	property	specifies	the	directory	location	for	local	data	mining	models	that
will	be	used	or	created	during	the	session.

Property	Name
Mining	Location

Property	ID
DBPROP_MSMD_MINING_LOCATION

Remarks
Queries	can	reference	more	than	one	local	data	mining	model	during	a	session.
This	property	determines	the	directory	location	for	all	local	data	mining	models
that	will	be	used	during	the	session.	This	property	also	determines	where	local
data	mining	model	files	will	be	stored.

CAUTION		If	this	property's	value	is	not	set	during	connection,	local	mining
models	will	be	created	with	connection	scope.	This	means	that	they	will	only	last
for	the	duration	of	the	session,	and	they	will	be	lost	when	the	session	ends.

Analysis	Services	Programming

Mining	Persistence	Format	Property
This	property	determines	how	mining	models	are	stored.

Property	Name
Mining	Persistence	Format

Property	ID
DBPROP_MSMD_MINING_PERSISTENCE_FORMAT

Remarks
Data	mining	models	can	be	stored	in	two	different	formats:	binary	and	XML.
The	value	of	this	property	determines	which	format	is	used.	The	following	table
describes	the	possible	values	for	this	property.

Value Description
0 Default.	This	value	is	the	same	as	Value	2.
1 Models	are	stored	in	XML.
2 Models	are	stored	in	binary	format.

Analysis	Services	Programming

OLE	DB	for	OLAP	Version	Property
This	property	indicates	the	version	of	OLE	DB	supported	by	the	provider.

Property	Name
OLE	DB	for	OLAP	Version

Property	ID
DBPROP_PROVIDEROLEDBOLAPVER

Remarks
The	version	is	of	the	form	##.##,	where	the	first	two	digits	are	the	major	version
and	the	next	two	digits	are	the	minor	version.	For	example,	OLE	DB	for	OLAP
providers	conforming	to	the	2.0	specification	would	return	"02.00".

The	OLE	DB	for	OLAP	specification	was	included	as	part	of	the	version	2.6
OLE	DB	specification.	This	property	has	been	retained	to	ensure	backward
compatibility	with	client	applications	using	earlier	versions	of	PivotTable®
Service,	but	it	is	not	recommended	for	current	use.	This	property	contains	the
same	value	as	DBPROP_PROVIDEROLEDBVER	for	providers	that	comply
with	version	2.6	of	the	OLE	DB	specification.

Analysis	Services	Programming

Password	Property
This	property	specifies	a	valid	domain	logon	password.

Property	Name
Password

Property	ID
DBPROP_AUTH_PASSWORD

Remarks
This	property	is	used	only	when	the	application	is	connecting	to	Microsoft®
SQL	Server™	2000	Analysis	Services	using	HTTP.	Its	value	must	be	set	to	a
valid	domain	logon	password.	You	can	also	use	this	property	with	the
Source_DSN_Suffix	property	when	connecting	to	a	relational	data	source	to
build	a	local	cube.

See	Also

User	ID	Property

Source_DSN_Suffix	Property

Analysis	Services	Programming

Provider	Property
This	property	is	used	to	set	a	predefined	string	containing	initialization
properties	specific	to	the	provider.

Property	Name
Provider

Property	ID
DBPROP_INIT_PROVIDERSTRING

Remarks
This	is	a	standard	OLE	DB	property;	however,	it	does	not	specify	usage.	Usage
is	specific	to	the	providers	that	use	it.	For	connections	to	Microsoft®	SQL
Server™	2000	Analysis	Services,	this	property	should	be	set	to	"MSOLAP;".

In	PivotTable®	Service,	this	property	is	used	by	Microsoft	ActiveX®	Data
Objects	(ADO)	and	ADO	(Multidimensional)	(ADO	MD).	The	property	string	is
semicolon-delimited.	Double	quotation	marks	can	be	used	to	delimit	individual
values.

During	initialization	(IDBInit::Initialize),	every	recognized	property	from	the
Provider	property	is	copied	into	its	respective	property	value,	overwriting
existing	property	values.

The	Provider	property	is	cleared	after	the	initialization	process	is	complete	(that
is,	after	a	connection	to	the	Analysis	server	is	established	or	a	local	cube	is
created).

It	is	the	responsibility	of	the	client	application	to	store	the	connection	string.

See	Also

Connecting	to	a	Data	Source

Analysis	Services	Programming

Read	Only	Session	Property
Reserved	for	future	use.

Property	Name
Read	Only	Session

Property	ID
DBPROP_MSMD_READ_ONLY_SESSION

Analysis	Services	Programming

Roles	Property
This	property	specifies	a	comma-delimited	string	of	the	role	names	under	which
a	client	application	connects	to	the	server.

Property	Name
Roles

Property	ID
DBPROP_MSMD_ROLES

Remarks
This	property	allows	the	user	to	connect	using	a	role	other	than	the	one	he	or	she
is	currently	using.	For	example,	a	member	of	the	OLAP	Administrators	role	may
want	to	connect	to	a	cube	as	a	member	of	the	Users	role	to	test	permissions
granted	to	the	Users	role.	This	user	must	be	a	member	of	the	role	specified	in
order	to	connect	using	this	property.

IMPORTANT		Role	names	are	case-sensitive,	and	spaces	should	not	be	used
between	the	comma-delimited	role	names.	Otherwise	errors	and	unexpected
results	may	be	returned	as	a	result	of	queries	to	secured	cell	sets.

See	Also

User	ID	Property

Password	Property

Analysis	Services	Programming

Safety	Options	Property
This	property	determines	how	security	for	user-defined	functions	and	actions	is
handled.

Property	Name
Safety	Options

Property	ID
DBPROP_MSMD_SAFETY_OPTIONS

Remarks
The	value	of	the	property	determines	whether	unsafe	libraries	can	be	registered
and	loaded	by	PivotTable®	Service	or	the	server.	If	an	attempt	is	made	to	load
an	unsafe	library	or	reference	an	unsafe	user-defined	function	while	safety
checking	is	enabled,	then	PivotTable	Service	will	return	the	following	error:

User	defined	function	<function	name>	cannot	be	used,	because	the
class	that	implements	it	is	not	safe	for	initialization	or	scripting,	which
is	required	by	client	settings.
The	following	table	lists	the	possible	values	for	this	property.

Value Description
DBPROPVAL_MSMD_SAFETY_OPTIONS_DEFAULT For	connections	to	a	local	cube,	or	via	an	IIS	server,	this	value

is	the	same	as
DBPROPVAL_MSMD_SAFETY_OPTIONS_ALLOW_SAFE.

For	all	other	connections,	this	value	is	the	same	as
DBPROPVAL_MSMD_SAFETY_OPTIONS_ALLOW_SAFE.

DBPROPVAL_MSMD_SAFETY_OPTIONS_ALLOW_ALL This	value	enables	all	user-defined	function	libraries	without
verifying	that	they	are	safe	for	initialization	and	scripting.

DBPROPVAL_MSMD_SAFETY_OPTIONS_ALLOW_SAFE This	value	ensures	that	all	classes	for	a	particular	user-defined

function	library	are	checked	to	ensure	that	they	are	safe	for
initialization	and	scripting.

DBPROPVAL_MSMD_SAFETY_OPTIONS_ALLOW_NONEThis	value	prevents	user-defined	functions	from	being	used
during	the	session.

Analysis	Services	Programming

Secured	Cell	Value	Property
This	property	determines	the	value	returned	for	secured	cells.

Property	Name
Secured	Cell	Value

Property	ID
DBPROP_MSMD_SECURED_CELL_VALUE

Remarks
Depending	on	the	value	you	set	for	the	Secured	Cell	Value	property,	queries
that	attempt	to	access	a	secured	cell	can	return	a	specified	error	code	and	content
for	the	Value	and	Formatted	Value	properties	of	the	cell.	The	following	table
lists	possible	values	you	can	set	for	the	Secured	Cell	Value	property	and	the
error	code	and	cell	property	values	returned	as	a	result	of	each	setting.

Value Definition
0 Default.	For	compatibility	with	earlier	versions,	this	means	the

same	as	Value	1.	The	meaning	of	this	default	value	is	subject	to
change	in	future	versions.

1 Returns:	HRESULT	=	NO_ERROR

The	Value	property	of	the	cell	contains	the	result	as	a	variant	data
type.	The	string	"#N/A"	is	returned	in	the	Formatted	Value
property.

2 An	error	is	returned	as	the	value	of	HRESULT.
3 NULL	is	returned	in	both	the	Value	and	Formatted	Value

properties.
4 A	numerical	zero	(0)	is	returned	in	the	Value	property,	and	a

formatted	zero	is	returned	in	the	Formatted	Value	property.	For
example,	0.00	is	returned	in	the	Formatted	Value	property	for	a

cell	whose	format	property	is	"#.##".
5 The	string	"#SEC"	is	returned	in	both	the	Value	and	Formatted

Value	properties.

For	more	information,	see	Security	in	PivotTable	Service.

IMPORTANT		This	property	interacts	with	the	execution	location	of	the	query.	In
some	cases,	the	value	of	the	Execution	Location	property	may	override	the
Secured	Cell	Value	connection	string	property.	For	example,	if	the	Execution
Location	property	is	set	to	Isolated	Mode,	a	query	that	involves	cells	for	which
the	user	does	not	have	read	permissions	will	return	#N/A	even	if	the	Secured
Cell	Value	property	has	been	set	to	2,	3,	4,	or	5.	For	more	information	about
isolation	levels,	see	Isolation	Levels	and	the	OLE	DB	documentation.

See	Also

Execution	Location	Property

Analysis	Services	Programming

Show	Hidden	Cubes	Property
Reserved	for	future	use.

Property	Name
Show	Hidden	Cubes

Property	ID
DBPROP_MSMD_SHOW_HIDDEN_CUBES

Analysis	Services	Programming

Source_DSN	Property
This	property	contains	the	OLE	DB	connection	string,	ODBC	connection	string,
or	ODBC	data	source	name	(DSN)	for	the	relational	database	or	cube	that	will
be	used	as	the	source	for	creating	a	local	cube.

Property	Name
Source_DSN

Property	ID
DBPROP_MSMD_SOURCE_DSN

Remarks
This	property	is	used	only	when	creating	a	local	cube	file.

You	must	use	this	property	with	the	CreateCube	property	and	the	InsertInto
property.	When	these	three	properties	are	used,	they	are	always	used	together.

This	property's	value	is	used	when	a	session	is	established,	but	the	value	cannot
be	changed	during	the	session.

Analysis	Services	Programming

Source_DSN_Suffix	Property
This	property	contains	a	string	that	is	appended	to	the	Source_DSN	property
value	when	creating	or	connecting	to	a	local	cube.	This	property's	value	is	set
when	a	session	is	established,	and	it	can	be	reused	but	not	changed	during	the
session.

Property	Name
Source_DSN_Suffix

Property	ID
DBPROP_MSMD_SOURCE_DSN_SUFFIX

Remarks
This	property	is	useful	for	separating	data	permanently	stored	in	the	local	cube
file	from	data	used	only	for	the	session,	such	as	the	user	account	and	password,
because	this	property's	value	is	not	stored	in	the	local	cube	file.	Its	primary
purpose	is	to	specify	a	user	ID	and	password	that	the	relational	data	source	uses
to	create	or	access	a	local	cube.	If	this	property	is	used	when	you	create	a	local
ROLAP	cube,	it	may	also	be	required	when	you	later	connect	to	the	cube.	For
example,	if	you	specify	a	user	account	and	password	in	this	property	when
creating	a	local	ROLAP	cube,	you	must	specify	them	in	this	property	for	each
subsequent	connection	to	the	local	ROLAP	cube	file.

See	Also

Source_DSN	Property

Analysis	Services	Programming

SQL	Compatibility	Property
Reserved	for	future	use.

Property	Name
SQL	Compatibility

Property	ID
DBPROP_MSMD_SQLCOMPATIBILITY

Analysis	Services	Programming

SSPI	Property
This	property	determines	the	security	package	that	will	be	used	during	the
session.

Property	Name
SSPI

Property	ID
DBPROP_MSMD_SSPI

Remarks
The	value	of	this	property	corresponds	to	the	name	of	a	security	package.	You
can	use	the	Security	Support	Provider	Interface	(SSPI)
EnumerateSecurityPackages	function	to	enumerate	the	providers	that	are
supported	on	a	given	computer.

Microsoft™	SQL	Server®	2000	Analysis	Services	supports	the	following
packages:

Negotiate

Kerberos

NTLM

Anonymous	User

Example

Suppose	that	the	Kerberos	security	provider	is	the	security	package	used	for
authentication	in	the	domain	on	which	a	particular	client	application	must	run.

The	following	code	opens	a	connection	using	this	provider	and	then	displays	a
dialog	box	to	complete	the	connection:

Dim	cn	as	New	ADODB.Connection
cn="Provider=MSOLAP;	SSPI=Negotiate;	Prompt=1"
cn.open

Analysis	Services	Programming

UseExistingFile	Property
This	property	determines	whether	an	existing	local	cube	file	is	overwritten	when
creating	a	local	cube	file	of	the	same	name.

Property	Name
UseExistingFile

Property	ID
DBPROP_MSMD_USEEXISTINGFILE

Remarks
This	function	of	this	property	depends	on	the	condition	of	the	cube	file	being
created.	This	table	shows	the	interaction	between	the	condition	of	the	cube	file
and	the	value	to	which	this	property	is	set.

Condition TRUE FALSE
File	and	cube	do	not
exist

Returns	E_FAIL	when	you
open	a	new	data	source.

A	new	file	is	created
when	the	data	source	is
opened.

File	exists,	cube	does
not

The	cube	is	created	in	the
file.

The	cube	is	created	in	the
file.

File	and	cube	exist The	existing	cube	is	used. The	existing	cube	is
overwritten.

This	property's	value	is	used	when	a	session	is	established,	but	the	value	cannot
be	changed	during	the	session.

Analysis	Services	Programming

User	ID	Property
This	property	specifies	a	valid	user	name	that	will	be	recognized	by	the	user's
computer,	such	as	a	valid	domain	logon	or	local	logon.

Property	Name
User	ID

Property	ID
DBPROP_AUTH_USERID

Remarks
This	property	is	used	only	when	the	client	application	is	connecting	to
Microsoft®	SQL	Server™	2000	Analysis	Services	using	HTTP.	Its	value	must
be	set	to	a	valid	domain	logon.	You	can	also	use	this	property	with	the
Source_DSN_Suffix	property	when	connecting	to	a	relational	data	source	to
build	a	local	cube.

See	Also

Password	Property

Source_DSN_Suffix	Property

Analysis	Services	Programming

Writeback	Timeout	Property
This	property	determines	the	maximum	amount	of	time	(in	seconds)	the	client
application	will	attempt	to	communicate	updates	to	a	writeback	table	on	the
server.

Property	Name
Writeback	Timeout

Property	ID
DBPROP_MSMD_WRITEBACK_TIMEOUT

Remarks
When	a	client	application	attempts	to	commit	writeback	changes	to	the	server,
PivotTable®	Service	begins	a	count	in	seconds.	The	count	continues	until	the
commit	is	successful	or	the	number	of	seconds	specified	in	this	property	is
reached.	If	the	count	reaches	the	value	of	this	property,	the	commit	fails	and	the
update	does	not	occur.	After	a	timeout	failure,	the	client	can	roll	back	the
transaction	or	attempt	to	commit	the	transaction	again.

This	property's	value	is	specified	when	a	session	is	established,	and	it	cannot	be
changed	during	the	session.

Analysis	Services	Programming

Data	Definition	Language
The	following	topics	describe	the	data	definition	language	(DDL)	used	by
PivotTable®	Service.

Topic Description
ALTER	CUBE	Statement Allows	client	applications	to	control	the

structure	of	a	cube	after	it	has	been	created.
CREATE	ACTION
Statement

Allows	the	user	to	create	action	definitions
that	can	be	associated	with	a	member	and
executed	when	that	member	is	referenced.

CREATE	CACHE
Statement

Populates	the	cache	with	a	slice	of	cube	data
defined	by	sets	of	members.

CREATE	CELL
CALCULATION	Statement

Creates	a	calculated	cell	formula	for	specified
tuples	within	a	cube.

CREATE	CUBE	Statement Creates	a	local	cube	or	virtual	cube	on	the
client	computer.	The	virtual	cube	can	include
dimensions	based	on	mining	models.

CREATE	MEMBER
Statement

Creates	a	calculated	member.

CREATE	MINING
MODEL	Statement

Creates	a	local	data	mining	model	on	the
client	computer.

CREATE	SET	Statement Creates	a	user-defined	set.
DROP_ACTION_StatementDeletes	an	action	from	the	database.
DROP	CUBE	Statement Deletes	a	cube	from	the	database.
CREATE	CELL
CALCULATION	Statement

Removes	a	calculated	cell.

DROP	LIBRARY	Statement Removes	a	user-defined	function	library	from
use	during	a	session.

DROP	MEMBER
Statement

Deletes	a	calculated	member.

DROP	MINING	MODEL
Statement

Deletes	a	mining	model.

DROP	SET	Statement Deletes	a	user-defined	set.

REFRESH	CUBE
Statement

Causes	the	memory	cached	on	the	client
application	to	be	synchronized	with	the	server.

USE	LIBRARY	Statement Loads	a	user-defined	function	library	for	use
during	a	session.

Analysis	Services	Programming

ALTER	CUBE	Statement
This	statement	allows	client	applications	to	control	the	structure	of	a	cube	after	it
has	been	created.

BNF

For	updating	the	hierarchy	of	a	calculated	member
ALTER	CUBE	<cube>

				UPDATE	DIMENSION	MEMBER	<member>	AS	'<MDX	rule>'

For	updating	user	defined	default	members
ALTER	CUBE	<cube>

				UPDATE	DIMENSION	<dimension_name>,	DEFAULT_MEMBER	=
'<MDX	rule>'

For	updating	dimensions
<alter_statement>	::=	<create_statement>|<remove_statement>|
<move_statement>|<update_statement>

<create_statement>	::=	CREATE	DIMENSION	MEMBER
<parent_unique_name>.<member_name>	[AS	'<MDX	expr.>'],
KEY='<key_value>'	[,	<property_name>	=	'<value>'	[,	<property_name>	=
'<value>'	...]]

<remove_statement>	::=	DROP	DIMENSION	MEMBER
<member_unique_name>	[WITH	DESCENDANTS]

<move_statement>	::=	MOVE	DIMENSION	MEMBER
<member_unique_name>	[,	SKIPPED_LEVELS	=	'<value>']	[WITH
DESCENDANTS]	UNDER	<member_unique_name>

<update_statement>::=UPDATE	DIMENSION	MEMBER

<member_unique_name>	{AS	'<MDX	expr.>'	|	,<property_name>	=	'<value>'}
[,	<property_name>	=	'<value>'	...]

<member_unique_name>	::=	<dimension_name>.&[[]<key>[]]

Remarks
You	can	change	the	value	of	a	custom	rollup	member	by	using	the	UPDATE
DIMENSION	MEMBER	syntax.

Use	the	DEFAULT_MEMBER	syntax	to	define	a	new	default	member	in	each
dimension.

Alternatively,	cubes	that	have	parent-child	relationships	between	members	(that
is,	unbalanced	and	ragged	hierarchies)	can	have	their	structures	changed	by	the
following	basic	operations:

Creating	a	new	dimension	member

Dropping	a	member	of	an	existing	dimension

Moving	an	existing	dimension	member	within	the	structure	of	the
existing	cube

Updating	the	Multidimensional	Expressions	(MDX)	definition	of	a
dimension	member

Examples

A.	Creating	a	New	Dimension	Member

This	example	shows	how	to	create	a	new	dimension	member.	To	add	a	member,
specify	its	parent	member	in	the	CREATE	DIMENSION	MEMBER	statement,
and	specify	a	key	that	uniquely	identifies	the	member.

The	following	code	adds	Idaho	and	Boise	to	the	Geography	dimension:

ALTER_CUBE	=	ALTER	CUBE	Sales	CREATE	DIMENSION	MEMBER	USA.IDAHO,	KEY	=	STATE_IDAHO,	CREATE	DIMENSION	MEMBER	IDAHO.BOISE,	KEY=CITY_BOISE

B.	Dropping	a	Dimension	Member
This	example	shows	how	to	drop	a	dimension	member	and	all	its	children.	It
drops	the	dimension	member	Idaho	and	all	its	children,	including	the	city	Boise,
from	the	Geography	dimension.	If	you	omit	the	WITH	DESCENDANTS	phrase,
the	statement	promotes	Boise	to	the	same	level	as	Washington	and	Oregon.

ALTER_CUBE=	ALTER	CUBE	Sales	DROP	DIMENSION	MEMBER	STATE_IDAHO	WITH	DESCENDANTS

C.	Moving	a	Dimension	Member
This	example	shows	how	to	move	a	dimension	member	within	the	structure	of	a
cube.	It	specifies	both	the	node	to	move	and	its	new	position.	The	following
code	moves	a	member	of	the	Employees	dimension	from	under	the	[Southern
California]	hierarchy	to	the	[Northwest]	hierarchy.	If	you	use	the	WITH
DESCENDANTS	phrase	before	the	UNDER	statement,	child	nodes	move	along
with	their	parent.

ALTER_CUBE	=	ALTER	CUBE	Sales	MOVE	DIMENSION	MEMBER	Salesperson.[Francisco	Ramirez]	UNDER	Region.Northwest

D.	Defining	a	Default	Member	of	a	Dimension	Hierarchy
This	example	shows	how	to	define	the	default	member	of	a	dimension	or
hierarchy	using	the	ALTER	CUBE	command.	You	can	use	any	valid	MDX
expression	that	evaluates	to	a	member	in	the	definition	of	a	default	member:

ALTER_CUBE	=	ALTER	CUBE	Sales	UPDATE	DIMENSION	Customers,	DEFAULT_MEMBER	=	'[Customers].[All	Customers].[USA]'

Analysis	Services	Programming

CREATE	ACTION	Statement
This	statement	allows	the	user	to	create	action	definitions	that	can	be	associated
with	a	member	and	executed	when	that	member	is	referenced.

BNF
ALTER	CUBE	<cube	name>
				CREATE	ACTION	<action	name>	<action	body>

CREATE	ACTION	<cube	name>.<action	name>	<action	body>

<action	body>	::=
FOR	<target	object>
AS	'<MDX	expression>'	
[,	TYPE	=	'<action	type>']
[,	INVOCATION	=	'<action	invocation>']
[,	APPLICATION	=	'<app	name>']
[,	DESCRIPTION	=	'<action	description>']
[,	CAPTION	=	'<MDX	expression>']

<target	object>::	CUBE
|				<dimension	name>	[MEMBERS]
|				<level_name>	[MEMBERS]
|				CELLS
|				SET

<action	type>::	URL	|	HTML	|	STATEMENT	|	
				DATASET	|	ROWSET	|	COMMANDLINE	|	PROPRIETARY

<action	invocation>::	INTERACTIVE	|	ON_OPEN	|	BATCH

ALTER	CUBE	<cube	name>
				DROP	ACTION	<action	name>

DROP	ACTION	<cube	name>.<action	name>

Remarks

The	following	table	describes	the	different	types	of	actions	available	in
Microsoft®	SQL	Server™	2000	Analysis	Services.

Action	type Description
URL The	returned	action	string	is	a	URL	that	should	be

launched	using	an	Internet	browser.
HTML The	returned	action	string	is	an	HTML	script.	The

string	should	be	saved	to	a	file	and	the	file	should	be
rendered	using	an	Internet	browser.	In	this	case,	a	whole
script	may	be	executed	as	part	of	the	generated	HTML.

STATEMENT The	returned	action	string	is	a	statement	that	needs	to	be
executed	by	setting	the	ICommand::SetText	method	of
a	command	object	to	the	string	and	calling	the
ICommand::Execute	method.	If	the	command	does
not	succeed,	an	error	is	returned.

DATASET The	returned	action	string	is	a	Multidimensional
Expressions	(MDX)	statement	that	needs	to	be	executed
by	setting	the	ICommand::SetText	method	of	a
command	object	to	the	string	and	calling	the
ICommand::Execute	method.	The	requested	interface
ID	(IID)	should	be	IDataset.	The	command	succeeds	if
a	data	set	has	been	created.	The	client	application
should	allow	the	user	to	browse	the	returned	data	set.

ROWSET Similar	to	DATASET,	but	instead	of	requesting	an	IID
of	IDataset,	the	client	application	should	ask	for	an	IID
of	IRowset.	The	command	succeeds	if	a	rowset	has
been	created.	The	client	application	should	allow	the
user	to	browse	the	returned	rowset.

COMMANDLINE The	client	application	should	execute	the	action	string.
The	string	is	a	command	line.

PROPRIETARY A	client	application	should	not	display	nor	execute	the
action	unless	it	has	a	custom,	nongeneric	knowledge	of
the	specific	action.	Proprietary	actions	are	not	returned
to	the	client	application	unless	the	client	application
explicitly	asks	for	these	by	setting	the	appropriate
restriction	on	the	APPLICATION_NAME.

It	is	possible	for	client	applications	to	create	and	run	actions	that	are	unsafe;	it	is
also	possible	for	client	applications	to	use	unsafe	functions.	To	avoid	these
situations,	use	the	UDF	Safety	Options	property.	For	more	information,	see
UDF	Safety	Options	Property.

Scope
Each	action	is	defined	for	a	specific	cube	and	has	a	unique	name	in	that	cube.	An
action	can	have	one	of	the	following	scopes:

Cube	scope

For	actions	independent	on	specific	dimensions,	members,	or	cells,	for
example:	"Launch	terminal	emulation	for	AS/400	production	system".

Dimension	scope

The	action	applies	to	a	specific	dimension.	Those	actions	are	not	dependent
on	specific	selection	of	levels	or	members.

Level	scope

The	action	applies	to	a	specific	dimension	level.	Those	actions	are	not
dependent	on	specific	selection	of	a	member	in	that	dimension.

Member	scope

The	action	applies	to	specific	level	members.

Cell	scope

The	action	applies	to	specific	cells	only.

Set	scope

The	action	applies	to	a	set	only.	The	name	ActionParameterSet	is	reserved
for	use	by	the	application	inside	the	expression	of	the	action.

Examples

A.	Creating	an	Action

The	following	example	creates	an	action	that	enables	the	client	application	to
open	a	Web	page	with	Active	Server	Pages	(ASP)	script.	This	script	displays	the
details	of	a	customer,	given	the	customer	ID	number.

CREATE	ACTION	[Sales	Cube].[Show	Customer	Details]	
FOR	[Customer]	MEMBERS	As	
'iif(Customers.CurrentMember.Properties("Existing	Customer")	=	"True",
"http://MyServer/CustomerDetails.ASP?CustID="	+	Customers.CurrentMember.ID,'')
TYPE	=	URL
APPLICATION	=	'IE'
DESCRIPTION	=	'Launch	the	customer	details	page	for	this	specific	customer''

See	Also

Actions

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

CREATE	CACHE	Statement
This	statement	populates	the	cache	with	a	slice	of	cube	data	defined	by	sets	of
members.

You	can	define	cache	for	use	by	a	single	query	with	the	WITH	clause	in	the
SELECT	statement	or	for	use	by	multiple	queries	in	a	session	with	the	CREATE
CACHE	statement.	For	more	information,	see	Using	WITH	to	Create	Caches.

BNF
<create-cache-statement>	::=	CREATE	<optional-scope>	<create-cache-subset>
[<create-cache-subset>...]
<create-cache-subset>	::=	CACHE	FOR	<cube-name>	AS	'(<set-expression>	[,
<set-expression>...])'
<optional-scope>	::=	<empty>	|	SESSION
<cube	name>	::=	CURRENTCUBE	|	<Cube	Identifier>

Remarks
Each	<set-expression>	token	must	contain	members	from	only	one	dimension.
Each	member	must	be	distinct.	Each	<set-expression>	token	must	be	from	a
different	dimension.

The	<set-expression>	token	can	contain	functions	that	support	Multidimensional
Expressions	(MDX)	syntax.	The	<set-expression>	token	cannot	contain
measures.

A	cache	created	with	CREATE	CACHE	without	an	<optional-scope>	value
token	has	session	scope.

It	is	an	error	to	specify	a	cube	other	than	that	to	which	it	is	currently	connected.
Therefore,	you	should	use	CURRENTCUBE	in	place	of	a	cube	name	to	denote
the	current	cube.

Scope

JavaScript:hhobj_1.Click()

Cache	can	occur	within	one	of	the	following	scopes:

Query	scope

The	lifetime	of	the	cache	is	limited	to	the	query.	The	cache	is	defined	in	an
individual	query.	Query	scope	overrides	session	scope.	For	more
information,	see	Using	WITH	to	Create	Caches.

Session	scope

The	lifetime	of	the	cache	is	limited	to	the	session	in	which	it	is	created.	The
CREATE	CACHE	statement	is	used	to	create	cache	with	session	scope.

Examples

Creating	a	Cache	with	Session	Scope
The	following	example	creates	a	cache	with	session	scope:

CREATE	SESSION	CACHE	FOR	Warehouse	AS	'({USA,Canada})'

JavaScript:hhobj_2.Click()

Analysis	Services	Programming

CREATE	CELL	CALCULATION	Statement
This	statement	creates	a	calculated	cell	formula	for	a	specified	set	of	tuples
within	a	cube.

BNF
<create	cell	formula>	::=	CREATE	CELL	CALCULATION	
				<cube	name>.<formula	name>	<formula	body>	[<conditions>]
		|	ALTER	CUBE	<cube	name>	CREATE	CELL	CALCULATION	
				<formula	name>	<formula	body>

<with	cell	formula>	::=	WITH	CELL	CALCULATION	<formula	name>	
				<formula	body>

<formula	body>	::=	FOR	'(<set	description	clause>)'	AS	'<formula	clause>'
				[,	<cell	property	list>]

<cell	property	list>	::=	<condition	property>	<disabled	property>	<description
property>
				<pass	number	property>	<pass	depth	property>

<condition	property>	::=[CONDITION	=	'<Conditions	Expression>']

<condition	expression>	=	<boolean	member	expression>	[&	<condition
expression>]

<disabled	property>	=	[,	DISABLED	=	{TRUE	|	FALSE}]

<description	property>	=	[,	DESCRIPTION	=	'<user-friendly	description>']

<pass	number	property>	::=	[,	CALCULATION_PASS_NUMBER	=	<long
integer>]

<pass	depth	property>	::=	[,	CALCULATION_PASS_DEPTH		=	<long	integer>

Remarks
By	using	calculated	cells,	the	client	application	can	specify	a	rollup	value	for	a
particular	set	of	cells,	instead	of	for	an	entire	set	of	cells	as	in	the	case	of	a

custom	rollup	formula	or	a	calculated	member.	For	example,	it	is	possible	to
specify	that	any	cell	in	the	slice	defined	by	{[Canada],[Time].[2000]}	can
contain	a	value	that	is	defined	by	a	formula.	Any	other	cells	that	are	not
contained	within	this	slice	would	be	computed	normally.

Examples

A.	Creating	a	Calculated	Cell	with	a	Condition	Clause
The	following	example	creates	a	calculated	cell	that	adjusts	values	for	cities	in
Mexico.	It	contains	a	condition	that	causes	the	formula	to	be	applied	only	to
members	that	reside	in	the	year	2000	time	period.

CREATE	CELL	CALCULATION	[Sales].[Mexico	Adjustments]
FOR	'(Descendants([Mexico],	[City],	SELF))'
AS	'<expression>',
CONDITION	=	'[Time].CURRENTMEMBER.NAME=[2000]'

B.	Creating	a	Calculated	Cell	Without	a	Condition	Clause
The	same	calculated	cell	can	be	defined	by	moving	the	CONDITION	clause	into
the	set	description	clause.	This	is	the	recommended	method	and	is	demonstrated
in	the	following	example:

CREATE	CELL	CALCULATION	[Sales].[Mexico	Adjustments]
FOR	'(Descendants([Mexico],	[City],	SELF),	{[2000]})'
AS	'<expression>'

See	Also

DROP	CELL	CALCULATION	Statement

Calculated	Cells

Using	WITH	to	Create	Calculated	Cells

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Analysis	Services	Programming

CREATE	CUBE	Statement
This	statement	defines	the	structure	of	a	new	local	cube.	This	statement	shares
much	of	the	syntax	and	semantics	of	SQL-92	syntax	and	shares	the	semantics	of
the	CREATE	TABLE	statement.	However,	the	CREATE	CUBE	statement
contains	syntax	specific	to	cubes.

The	cube	is	not	populated	when	the	CREATE	CUBE	statement	is	executed.	The
cube	is	populated	using	the	INSERT	INTO	statement	in	a	manner	similar	to	the
SQL-92	approach	for	creating	and	populating	tables.

CREATE	CUBE	Statement	(Local	Cube)

BNF
<create-cube-statement	>	::=	CREATE	CUBE	<cube	name>	<open	paren>
<dimensions	def>	<measures	def>	[<command	expression>]	<close	paren>
<dimensions	def>	::	=	DIMENSION	<dimension	name>	[<time	def>]
[DIMENSION_STRUCTURE	<sub_type>][<hidden	def>]	<options	def>
<comma>	<hierarchy	def		list>	
<time	def>	::=	TIME	|	...

<dimension	name>	::=	<legal	name>	
<sub_type>::=	PARENT_CHILD
<hidden_def>	::=	HIDDEN
<options	def>	::=	OPTIONS	<open	paren>	<dim	options	list>	<close	paren>

<dim	options	list>	::=	<dim	option>	[<	comma>	<dim	options	list>]

<dim	option>	::=	UNIQUE_NAME	|	UNIQUE_KEY	|
NOTRELATEDTOFACTTABLE	|	ALLOWSIBLINGSWITHSAMENAME

<hierarchy	def	list>	::=	<hierarchy	def>	[<comma>	<hierarchy	def		list>

<hierarchy	def>	::=	[HIERARCHY	<hierarchy	name>	[<hidden_def>]
<comma>]	<level	def>

<hierarchy	name>	::=	<legal	name>

<level	def	>	::=	<parent-child	level	def>	|	<normal	level	def	list	>

<parent-child	level	def>	::=	[<all	level	def>	<comma>]	LEVEL	<Template>
//only	if	dimension	is	parent-child

<normal	level	def	list>	::=	<normal	level	def>	[<comma>	<normal	level	def
list>]

<all	level>	::=	LEVEL	<level	name>	TYPE	ALL
<level	name>	::=	<legal	name>
<normal	level	def>	::=	[<all	level>	<comma>]	LEVEL	<level	name>	[TYPE
<level	type>]	[<level	format	def>]	[<level	options	def>]	[<hidden	def>]	[<hole
def>]	[<root	member	def>]	[<custom_rollup_expr	def>]	[<comma>	<level	prop
def	list>]
<level	type>	::=	YEAR	
|	QUARTER	
|	MONTH	
|	WEEK	
|	DAY	
|	DAYOFWEEK	
|	DATE	
|	HOUR	
|	MINUTE	
|	SECOND
<level	format	def>	::=	FORMAT_NAME	<expression>	[FORMAT_KEY
<expression>]
<level	options	def>	::=	OPTIONS	([<sort	option>	<comma>]	<level	option	list>
|	[<level	option	list>	<comma>]	<sort	option>)
<level	option	list>	::	=	<option>	[<comma>	<level	option	list>]	
<sort	option>	::=	SORTBYNAME	
|	SORTBYKEY	
|	SORTBYPROPERTY	<property	name>
<option>	::=	UNIQUE	
|	UNIQUE_NAME	
|	UNIQUE_KEY	
|	NOTRELATEDTOFACTTABLE
<hole	def>	::=	HIDE_MEMBER_IF	<hide	values>
<hide	values>	::=	ONLY_CHILD_AND_BLANK_NAME	
|	ONLY_CHILD_AND_PARENT_NAME	

|	BLANK_NAME	
|	PARENT_NAME

<root	member	def>	::=	ROOT_MEMBER_IF	<root	values>

<root	values>	::=	ROOT_IF_PARENT_IS_BLANK	
		|	ROOT_IF_PARENT_IS_MISSING	
		|	ROOT_IF_PARENT_IS_SELF	
		|	ROOT_IF_PARENT_IS_BLANK_OR_SELF_OR_MISSING
<custom_rollup_exp>	::=	CUSTOM_ROLLUP_EXPRESSION	<MDX
expression>
<level	prop	def	list	>	::=	<level	prop	def	>	[<comma>	<level	prop	def	list>]

<level	prop	def>	::=	PROPERTY	<legal	name>	[<prop	type	def>]	[<hidden
def>]	[<prop	caption	def>]

<prop	type	def>	::=	TYPE	<prop	type	value>

<property_type	value>::=	REGULAR	
		|	ID	
		|	RELATION_TO_PARENT		
		|	ORG_TITLE	
		|	CAPTION	
		|	CAPTION_SHORT	
		|	CAPTION_DESCRIPTION	
		|	CAPTION_ABREVIATION	
		|	WEB_URL	
		|	WEB_HTML	
		|	WEB_XML_OR_XSL	
		|	WEB_MAIL_ALIAS	
		|	ADDRESS	
		|	ADDRESS_STREET	
		|	ADDRESS_HOUSE	
		|	ADDRESS_CITY	
		|	ADDRESS_STATE_OR_PROVINCE	
		|	ADDRESS_ZIP	
		|	ADDRESS_QUARTER	
		|		ADDRESS_COUNTRY	
		|	ADDRESS_BUILDING	
		|	ADDRESS_ROOM	

		|	ADDRESS_FLOOR	
		|	ADDRESS_FAX	
		|	ADDRESS_PHONE	
		|	GEO_CENTROID_X	
		|	GEO_CENTROID_Y	
		|	GEO_CENTROID_Z	
		|	GEO_BOUNDARY_TOP	
		|	GEO_BOUNDARY_LEFT	
		|	GEO_BOUNDARY_BOTTOM	
		|	GEO_BOUNDARY_RIGHT
		|	GEO_BOUNDARY_FRONT	
		|	GEO_BOUNDARY_REAR	
		|	GEO_BOUNDARY_POLYGON	
		|	PHYSICAL_SIZE	
		|	PHYSICAL_COLOR	
		|	PHYSICAL_WEIGHT	
		|	PHYSICAL_HEIGHT	
		|	PHYSICAL_WIDTH	
		|	PHYSICAL_DEPTH	
		|	PHYSICAL_VOLUME	
		|	PHYSICAL_DENSITY	
		|	PERSON_FULL_NAME	
		|	PERSON_FIRST_NAME	
		|	PERSON_LAST_NAME	
		|	PERSON_MIDDLE_NAME	
		|	PERSON_DEMOGRAPHIC	
		|	PERSON_CONTACT	
		|	QTY_RANGE_LOW	
		|	QTY_RANGE_HIGH	
		|	FORMATTING_COLOR	
		|	FORMATTING_ORDER	
		|	FORMATTING_FONT	
		|	FORMATTING_FONT_EFFECTS	
		|	FORMATTING_FONT_SIZE	
		|	FORMATTING_SUB_TOTAL	
		|	DATE	
		|	DATE_START	

		|	DATE_ENDED	
		|	DATE_CANCELED	
		|	DATE_MODIFIED	
		|	DATE_DURATION	
		|	VERSION

<prop	caption	def>	::=	CAPTION	<any	string>

<measures	def>	::	=	MEASURE	<measure	name>	<measure	function	def>
[<measure	format	def>]	[<measure	type	def>]	[<hidden	def>]	[<comma>
<measures	def>]
<measure	function	def>	::=	FUNCTION	<function	name>
<function	name>	::=	SUM	
|	MIN	
|	MAX
|	COUNT	
<measure	format	def>	::=	FORMAT	<expression>
<measure	type	def>	::=	TYPE	<supported	OLE	DB	numeric	types>
<supported	OLEDB	numeric	types>	::	=	DBTYPE_I1	
|	DBTYPE_I2	
|	DBTYPE_I4	
|	DBTYPE_I8	
|	DBTYPE_UI1	
|	DBTYPE_UI2	
|	DBTYPE_UI4	
|	DBTYPE_UI8	
|	DBTYPE_R4	
|	DBTYPE_R8	
|	DBTYPE_CY	
|	DBTYPE_DECIMAL	
|	DBTYPE_NUMERIC	
|	DBTYPE_DATE
<command	expression>	::=	COMMAND	<expression>	[<comma>	<command
expression>]

Remarks
In	the	DIMENSION	clause	of	the	CREATE	CUBE	statement,	the	name	given	to

a	level	of	TYPE	ALL	applies	the	specified	name	to	the	All	member	rather	than
the	(All)	level;	the	(All)	level	always	has	the	name	(All),	including	the
parentheses.	For	example,	the	clause	LEVEL	[All	Customers]	TYPE	ALL
creates	a	level	named	(All)	containing	a	single	member	named	[All	Customers].
There	is	no	[All	Customers]	level.

If	the	<expression>	value	of	the	COMMAND	clause	has	spaces,	the	entire
expression	should	be	surrounded	by	brackets.	It	is	not	recommended	that
quotation	marks	be	used	for	this	purpose	because	the	body	of	the	command
might	include	quotation	marks.	(Microsoft®	SQL	Server™	2000	Analysis
Services	supports	nested	brackets	but	not	nested	quotation	marks.)

Examples

Creating	a	Local	Cube
The	following	code	shows	how	to	define	a	local	cube's	dimensions	and
measures:

CREATE	CUBE	Sales	
(
DIMENSION	Time	TYPE	TIME,
			HIERARCHY	[Fiscal],
						LEVEL	[Fiscal	Year]	TYPE	YEAR,
						LEVEL	[Fiscal	Qtr]	TYPE	QUARTER,
						LEVEL	[Fiscal	Month]	TYPE	MONTH	OPTIONS	(SORTBYKEY,	UNIQUE_KEY),
			HIERARCHY	[Calendar],
						LEVEL	[Calendar	Year]	TYPE	YEAR,
						LEVEL	[Calendar	Month]	TYPE	MONTH,
DIMENSION	Products,
						LEVEL	[All	Products]	TYPE	ALL,
						LEVEL	Category,
						LEVEL	[Sub	Category],
						LEVEL	[Product	Name],
DIMENSION	Geography,
						LEVEL	[Whole	World]	TYPE	ALL,

						LEVEL	Region,
						LEVEL	Country,
						LEVEL	City,
MEASURE	[Sales]
			FUNCTION	SUM	
			FORMAT	'Currency',
MEASURE	[Units	Sold]
			FUNCTION	SUM
			TYPE	DBTYPE_UI4
)

CREATE	CUBE	Statement	(Virtual	Cube)
This	statement	facilitates	the	construction	of	complex	data	mining	queries	by
client	applications.	Virtual	cubes	can	be	created	that	incorporate	dimensions
based	on	data	mining	models.	Such	dimensions	are	not	related	to	fact	tables.

BNF
<create	vcube>	::=	CREATE	{SESSION}	CUBE	<cube	name>
FROM	<cube	list>

<cube	list>	::=	<cube>	[,<cube	list>]
<param	list>	::=	<param>	,<param	list>	|	<param>
<param>	::=	<measures	list>	|	<dims	list>

<measures	list>				::=	<measure>	[,<measures	list>]
<measure>				::=	MEASURE	<cube	name>.<measure	name>	[<visibility
qualifier>]	[AS	<measure	name>]
<visibility	qualifier>				::=	HIDDEN

<dims	list>	::=	<dim	def>	[,	<dims	list>]
<dim	def>	::=	<derived	dim	def>	|	<regular	dim	def>
<regular	dim	def>	::=	DIMENSION	<cube>.<dimension	name>
<derived	dim	def>	::=	DIMENSION	<dim	name>
<flags>	[<visibility	qual>]

FROM	<from	clause>	

<dim	content	def>
<from	clause>	::=	<DM	from	clause>	|	<reg	from	clause>
<DM	from	clause>	::=	<dm	model	name>
<reg	from	clause>	::=	<dim	name>

COLUMN	<column	name>

Remarks
This	feature	allows	client	applications	to	create	virtual	cubes	on	the	fly	in	order
to	conduct	more	sophisticated	analysis.	The	virtual	cubes	that	are	created	are	of
session	scope,	and	they	cannot	be	saved	on	the	client	computer.

To	delete	a	virtual	cube,	use	the	DROP	CUBE	statement.

Examples

Creating	a	Session	Virtual	Cube
The	following	example	creates	a	virtual	cube	that	contains	portions	of	an
existing	cube	named	Children	and	the	results	of	a	data	mining	model	named	My
DM	Model:

CREATE	SESSION	CUBE	[Student	DMM]
		FROM	[Children]
		(
								MEASURE	[Children].[Count],
								MEASURE	[Children].[Avg	Age]
								DIMENSION	[Children].[Population],
								DIMENSION	[Children].[Area]
								DIMENSION	[Decision	Tree]	NOT_RELATED_TO_FACTS	
													FROM	[My	DM	Model]	COLUMN	[Measures.Sales]
)

Analysis	Services	Programming

CREATE	MEMBER	Statement
This	statement	creates	a	calculated	member.

You	can	define	a	calculated	member	for	use	by	a	single	query	with	the	WITH
clause	in	the	SELECT	statement,	or	for	use	in	multiple	queries	in	a	session	with
the	CREATE	MEMBER	statement.	For	more	information,	see	Using	WITH	to
Create	Calculated	Members.

BNF
<create-member-statement>	::=	CREATE	<optional-scope>	<create-member-
subset>	[<create-member-subset>...]
<create-member-subset>	::=	MEMBER	<cube-name>.<fully-qualified-member-
name>	AS	'<expression>'	[,<property-definition-list>]
<cube	name>	::=	CURRENTCUBE	|	<Cube	Identifier>
<property-definition-list>	::=	<property-definition>
		|	<property-definition>,	<property-definition-list>
<property-definition>	::=	<property-identifier>	=	<property-value>
<property-identifier>	::=	VISIBLE	|	SOLVEORDER	|	FORMAT_STRING|	<ole
db	member	properties>
<property-value>	::=	<string>	|	<number>
<optional-scope>	::=	<empty>	|	SESSION

Remarks
The	<expression>	clause	of	the	calculated	member	syntax	can	contain	any
function	that	supports	Multidimensional	Expressions	(MDX)	syntax.	Valid
<property-identifier>	values	are	listed	later	in	this	topic.	Calculated	members
created	with	CREATE	MEMBER	without	an	<optional-scope>	value	have
session	scope.	Additionally,	strings	inside	calculated	member	definitions	are
delimited	with	double	quotation	marks.	This	is	opposite	of	the	method	defined
by	OLE	DB,	which	specifies	that	strings	should	be	delimited	by	single	quotation
marks.

It	is	an	error	to	specify	a	cube	other	than	that	to	which	it	is	currently	connected.

JavaScript:hhobj_1.Click()

Therefore,	you	should	use	CURRENTCUBE	in	place	of	a	cube	name	to	denote
the	current	cube.

For	more	information	about	member	properties	that	are	defined	by	OLE	DB,	see
the	OLE	DB	documentation.

A	calculated	member	can	be	stored	in	a	local	cube	if	a	CREATE	MEMBER
statement	is	specified	in	the	COMMAND	clause	of	the	CREATE	CUBE
statement:

CREATE	CUBE	MYWAREHOUSE	
(
DIMENSION	.	.	.
.	.	.	,
COMMAND	(CREATE	MEMBER	[MYWAREHOUSE].[MEASURES].[WAREHOUSEPROFIT]
								AS	'[MEASURES].[WAREHOUSE	SALES]	-	[MEASURES].[WAREHOUSE	COST]')
)

Standard	Properties
Each	calculated	member	has	a	set	of	default	properties.	When	a	client
application	is	connected	to	Microsoft®	SQL	Server™	2000	Analysis	Services,
the	default	properties	are	either	supported	or	available	to	be	supported,	as	the
administrator	chooses.

Additional	member	properties	may	be	available,	depending	upon	the	cube
definition.	The	following	properties	represent	information	relevant	to	the
dimension	level	in	the	cube.

Property	identifier Meaning
SolveOrder The	order	in	which	the	calculated	member	will	be

solved	in	cases	where	a	calculated	member	references
one	more	other	calculated	member	(that	is,	where
calculated	members	intersect	each	other).

Format_String A	Microsoft	Office	style	format	string	that	the	client
application	can	use	when	displaying	cell	values.

Visible Determines	whether	the	calculated	member	is	visible
in	a	schema	rowset.	Visible	calculated	members	can

be	added	to	a	set	with	the	AddCalculatedMembers
function.	A	nonzero	value	indicates	that	the	calculated
member	is	visible.	The	default	value	for	this	property
is	Visible.

Calculated	members	that	are	not	visible	(where	this
value	is	set	to	zero)	are	generally	used	as	intermediate
steps	in	more	complex	calculated	members.	These
calculated	members	can	also	be	referred	to	by	other
types	of	members,	such	as	measures.

Scope
A	calculated	member	can	occur	within	one	of	the	following	scopes:

Query	scope

The	visibility	and	lifetime	of	the	calculated	member	is	limited	to	the	query.
The	calculated	member	is	defined	in	an	individual	query.	Query	scope
overrides	session	scope.	For	more	information,	see	Using	WITH	to	Create
Calculated	Members.

Session	scope

The	visibility	and	lifetime	of	the	calculated	member	is	limited	to	the	session
in	which	it	is	created.	(The	lifetime	is	less	than	the	session	duration	if	a
DROP	MEMBER	statement	is	issued	on	the	calculated	member.)	The
CREATE	MEMBER	statement	is	used	to	create	a	calculated	member	with
session	scope.

Examples

Creating	Calculated	Members
The	following	code	creates	two	calculated	members:

CREATE	MEMBER	[WAREHOUSE].[MEASURES].[WAREHOUSEPROFIT]
							AS	'[Measures].[Warehouse	Sales]	-	[Measures].[Warehouse	Cost]'

JavaScript:hhobj_2.Click()

CREATE	MEMBER	[Warehouse].[Measures].[warehouseprofit]
							AS	'[Measures].[Warehouse	Sales]	-	[Measures].[Warehouse	Cost]',
							SOLVEORDER=3

See	Also

Calculated	Members

CREATE	CUBE	Statement

JavaScript:hhobj_3.Click()

Analysis	Services	Programming

CREATE	MINING	MODEL	Statement
This	statement	creates	a	local	data	mining	model	on	the	client	computer.	You	can
create	mining	models	from	relational	databases,	PMML,	or	OLAP	cubes.

BNF	(CREATE	MINING	MODEL)
<dm_create>::=CREATE	MINING	MODEL	<identifier>	(<col_def_list>)
USING	<algorithm>	[(<algo_param_list>)]

<pmml_create>::=	CREATE	MINING	MODEL	<identifier>	FROM	PMML
<string>

<select_into>::=	SELECT	*	INTO	<identifier>	USING	<algorithm>	FROM
<identifier>

<col_def_list>::=	<col_def>	|<col_def_list>	,	<col_def>
<col_def>::=	<col_def_reg>	|	<col_def_tbl>
<col_def_reg>::=	<identifier>	<col_type>	[<col_distribution>]	[<col_binary>]
[<col_content>]	[<col_content_qual>]	[<col_qualif>]	[<col_prediction>]
[<relation_clause>]

<col_def_tbl>	::=	<identifier>	TABLE	<col_prediction>	(<col_def_list>)

<algorithm>	::=	MICROSOFT_DECISION_TREES	|
MICROSOFT_CLUSTERING

<algo_param>::=	<identifier>	=	<value>

<algo_param_list>::=<algo_param>

					|	<algo_param>,	<algo_param_list>

<col_type>::=	LONG
									|	BOOLEAN
									|	TEXT
									|	DOUBLE
									|	DATE

<col_distribution>->	NORMAL

								|	UNIFORM

<col_binary>::=	MODEL_EXISTENCE_ONLY
									|	NOT	NULL

<col_content>::=	DISCRETE
									|	CONTINUOUS
									|	DISCRETIZED([<disc_method>	[,	<numeric_const>]])
									|	SEQUENCE_TIME

<disc_method>::=	AUTOMATIC
									|	EQUAL_AREAS
									|	THRESHOLDS
									|	CLUSTERS

<col_content_qual>->	ORDERED
									|	CYCLICAL

<col_qualif>::=	KEY
									|	PROBABILITY
									|	VARIANCE
									|	STDEV
									|	STDDEV
									|	PROBABILITY_VARIANCE
									|	PROBABILITY_STDEV
									|	PROBABILITY_STDDEV
									|	SUPPORT

<col_prediction>				->	PREDICT
									|	PREDICT_ONLY

<relation_clause>				->	<related_to_clause>
									|	<of_clause>

<related_to_clause>->	RELATED	TO	<identifier>
									|	RELATED	TO	KEY

<of_clause>::=	OF	<identifier>
									|	OF	KEY

BNF	(CREATE	OLAP	MINING	MODEL)

Use	this	syntax	to	create	mining	models	that	are	based	on	OLAP	cubes	instead	of
on	relational	database	tables.	Each	OLAP	mining	model	contains	one	or	more
case	dimensions	and	zero	or	more	case	measures.	Columns	within	each	case	can
be	based	on	any	object	in	the	Dimension	object	model,	such	as	a	hierarchy,	level,
or	property,	or	can	be	based	upon	the	value	of	a	measure.	The	flags	that	are	used
with	each	OLAP	mining	model	column	are	the	same	as	those	used	for	relational
mining	models.	OLAP	mining	models	are	trained	in	the	same	manner	as
relational	mining	models,	using	the	same	syntax.

<olap	create	statement>	::=	CREATE	OLAP	MINING	MODEL	<dmm	name>	
												FROM	<cube	name>	<olap	definition>	
												USING	<dmm	algorithm>	[(dmm	flag	list)]

<olap	definition>	::=	CASE	<olap	dimension>	[,	<olap	dimension	list>]	[,	<olap
measure	list>]

<olap	dimension	list>	::=	<olap	dimension>	[,	<olap	dimension	list>]

<olap	dimension>	::=	DIMENSION	<dimension	name>	<predict	qualifier>	
																								{	<olap	level	list>	|	<olap	hierarchy	list>	}

<olap	hierarchy	list>	::=	<olap	hierarchy>	
																								[,	<olap	hierarchy	list>]

<olap	hierarchy>	::=	HIERARCHY	<hierarchy	name>	<predict	qualifier>	<olap
level	list>

<olap	level	list>	::=	<olap	level>	[,	<olap	level	list>]

<olap	level>	::=	LEVEL	<level	name>	<predict	qualifier>	<olap	property	list>

<olap	property	list>	::=	<olap	property>	[,	<olap	property	list>]

<olap	property>	::=	PROPERTY	<property	name>	<predict	qualifier>

<olap	measure	list>	::=	<olap	measure>	[,	<olap	measure	list>]

<olap	measure>	::=	MEASURE	<measure	name>	<predict	qualifier>

<predict	qualifier>	=	<nothing>	|	PREDICT	|	PREDICT_ONLY

<dmm	flag	list>	::=	<dmm	flag>	[,	<dmm	flag	list>]

<dmm	flag>	::=	<flag	name>	=	<value>

<flag	Name>	::=	<col_type>	[<col_distribution>]	[<col_binary>]
[<col_content>]	[<col_content_qual>]	[<col_qualif>]

Remarks
The	CREATE	MINING	MODEL	statement	creates	a	new	mining	model	based
on	the	column	definition	list.	Each	column	is	described	by	content	flags	in	the
column	definition.	These	flags	provide	additional	information	to	the	mining
algorithm	concerning	the	content	of	the	training	data	or	model.	No	more	than
one	flag	from	a	particular	group	can	be	used	(that	is,	flags	within	a	flag	type
group	are	exclusive	of	each	other)	and	they	must	be	placed	in	their	correct	order.
The	flag	type	groups	and	correct	orders	for	the	content	flags	are	listed	in	the
following	table.

Flag	type Flag	name Description
Distribution NORMAL The	values	of	the

column	appear	in	a
normal	distribution.

	 LOG	NORMAL The	values	of	the
column	appear	in	a
log	normal
distribution.

	 UNIFORM The	values	of	the
column	appear	in	a
uniform	distribution.

Content	Type KEY The	column	is
discrete	and	is	a	key.
Key	columns	will	not
have	any	other	flags
except	in	the	case	of
a	nested	table	with	no
attribute	columns.

	 CONTINUOUS The	column	contains
values	in	a
continuous	range,
such	as	Age	or
Salary.

	 DISCRETE The	column	contains
a	discrete	set	of
values,	such	as
Gender.

	 DISCRETIZED()	 The	column	contains
a	continuous	set	of
values	that	should	be
converted	to	buckets.

	 ORDERED The	column	contains
a	discrete	set	of
values	that	are
ordered,	such	as
Salary	Level.

	 CYCLICAL The	column	contains
an	ordered	discrete
set	of	values	that	are
cyclical,	such	as	Day
of	Week	or	Month.

	 SEQUENCE	TIME The	column	contains
time	measurement
units.

Modeling MODEL_EXISTENCE_ONLYThe	column	should
be	modeled	as	having
two	states,	missing
and	nonmissing,
regardless	of	the
values	in	the	column.
This	is	particularly
useful	for	columns	in
a	nested	table,	where
values	are	sparse
across	cases.

	 NOT	NULL The	column	cannot
accept	NULL	values.

Special	Property PROBABILITY The	value	in	this

column	is	the
probability	(0-1)	of
the	associated	value.

	 VARIANCE The	value	in	this
column	is	value
variance	of	the
associated	value.

	 STD The	value	in	this
column	is	the
standard	deviation	of
the	associated	value.

	 PROBABILITY	VARIANCE The	value	in	this
column	is	the
variance	of	the
probability	associated
with	the	associated
value.

	 PROBABILITY	STD The	value	in	this
column	is	the
standard	deviation	of
the	probability
associated	with	the
associated	value.

	 SUPPORT The	value	in	this
column	is	the	weight
(case	replication
factor)	of	the
associated	value.

Column	relations	are	described	in	one	of	the	following	ways.

<Column	relation>
clause Description
OF This	form	is	restricted	to	use	for	columns	with

Special	Property	content	flags,	for	example,

ProbGender	Double	PROBABILITY	OF	Gender.
RELATED	TO This	form	indicates	a	value	hierarchy.	The	target	of

a	related	to	column	can	be	a	key	column	in	a
nested	table,	a	discretely	valued	column	on	the
case	row,	or	another	column	with	a	RELATED	TO
clause	(indicating	a	deeper	hierarchy).

The	following	flags	are	used	to	describe	how	a	prediction	column	functions.

<Prediction	flag>
clause Description
PREDICT This	column	can	be	predicted	by	the	model	and	it

can	be	supplied	in	input	cases	to	predict	the	value
of	other	predictable	columns.

PREDICT_ONLY This	column	can	be	predicted	by	the	model,	but	its
values	cannot	be	used	in	input	cases	to	predict	the
value	of	other	predictable	columns.

See	Also

Building	a	Data	Mining	Model

Analysis	Services	Programming

CREATE	SET	Statement
This	statement	creates	user-defined	sets.

You	can	define	a	set	for	use	by	a	single	query	with	the	WITH	clause	in	the
SELECT	statement	or	for	use	in	multiple	queries	in	a	session	with	the	CREATE
SET	statement.	For	more	information	about	WITH,	see	Using	WITH	to	Create
Named	Sets.

BNF
<create-set-statement>	::=	CREATE	<optional-scope>	<create-set-subset>
[<create-set-subset>...]
<create-set-subset>	::=	SET	<cube-name>.<set-name>	AS	'<set-expression>'
<cube	name>	::=	CURRENTCUBE	|	<Cube	Identifier>
<optional-scope>	::=	<empty>	|	SESSION

Remarks
A	named	set	is	a	set	of	dimension	members	(or	an	expression	that	defines	a	set)
that	is	created	to	be	used	again.	For	example,	by	using	a	named	set	it	is	possible
to	define	a	set	of	dimension	members	that	consists	of	the	set	of	top	10	stores	by
sales.	This	set	can	be	defined	statically,	or	by	means	of	a	function	like
TOPCOUNT.	This	named	set	can	then	be	used	wherever	the	set	of	top	10	stores
is	needed.

The	<expression>	clause	of	the	calculated	member	syntax	can	contain	any
function	that	supports	Multidimensional	Expressions	(MDX)	syntax.	Sets
created	with	the	CREATE	SET	statement	that	do	not	specify	an	<optional-
scope>	clause	have	session	scope.

It	is	an	error	to	specify	a	cube	other	than	that	to	which	it	is	currently	connected.
Therefore,	you	should	use	CURRENTCUBE	in	place	of	a	cube	name	to	denote
the	current	cube.

Scope

JavaScript:hhobj_1.Click()

A	user-defined	set	can	occur	within	one	of	the	following	scopes:

Query	scope

The	visibility	and	lifetime	of	the	set	is	limited	to	the	query.	The	set	is	defined
in	an	individual	query.	Query	scope	overrides	session	scope.	For	more
information,	see	Using	WITH	to	Create	Named	Sets.

Session	scope

The	visibility	and	lifetime	of	the	set	is	limited	to	the	session	in	which	it	is
created.	(The	lifetime	is	less	than	the	session	duration	if	a	DROP	SET
statement	is	issued	on	the	set.)	The	CREATE	SET	statement	is	used	to	create
a	set	with	session	scope.

Examples

A.	Creating	a	Named	Set	Using	a	Function	Expression
The	following	example	creates	a	named	set	consisting	of	the	top	ten	stores,	as
ranked	by	their	sales,	in	the	Sales	cube:

CREATE	SET	[Sales].[TopStores]	as
				'TopCount([Store].Members,10,[Measures].[Store	Sales])'

B.	Creating	a	Named	Set	Using	a	Set	Expression
In	this	example,	a	named	set	is	statically	defined	to	consist	of	states	in	the
Northwest	region	of	the	United	States:

CREATE	SET	[Sales].[NorthwesternStores]	as	
				'{	[Store].[All	Stores].[USA].[WA],
							[Store].[All	Stores].[USA].[OR],
							[Store].[All	Stores].[USA].[ID]	}'

JavaScript:hhobj_2.Click()

Analysis	Services	Programming

DROP	ACTION	Statement
This	statement	deletes	an	action	from	the	database.

BNF
<drop-action-statement>	::=	DROP	ACTION	<action-name>

Example
The	following	example	drops	the	action	defined	by	the	example	in	CREATE
ACTION	Statement:

DROP	ACTION	[Sales	Cube].[Show	Customer	Details]	

Analysis	Services	Programming

DROP	CUBE	Statement
This	statement	deletes	a	local	cube	or	a	virtual	cube.

BNF
<drop-cube-statement>	::=	DROP	[SESSION]	CUBE	<cube-name>

Remarks
This	statement	deletes	the	cube	or	virtual	cube	specified	in	<cube-name>.

Example
The	following	example	drops	the	cube	created	by	the	example	in	CREATE
CUBE	Statement:

DROP	CUBE	[Sales]

Analysis	Services	Programming

DROP	CELL	CALCULATION	Statement
This	statement	removes	the	specified	calculated	cell.

BNF
<drop	cell	formula>	::=	DROP	CELL	CALCULATION	<cube	name>.<formula
name>
				|	ALTER	CUBE	<cube	name>	DROP	CELL	CALCULATION	<formula
name>

Example
The	following	example	deletes	a	cell	formula	from	the	Sales	cube:

DROP	CELL	CALCULATION	[Sales].[Budget	Adjustment]

Analysis	Services	Programming

DROP	LIBRARY	Statement
This	statement	unloads	the	specified	libraries.

BNF
<drop_library>	::=	DROP	LIBRARY	<lib_list>	|	ALL

				<lib_list>	::=	<lib_def>	[,	<lib_list>]

				<lib_def>	::=	<prog_id>	|	<lib_name>

Remarks
When	used	with	the	ALL	flag,	DROP	LIBRARY	unloads	all	libraries	loaded	for
that	user	session.	Either	a	program	ID	or	a	file	name	is	used	to	specify	individual
libraries.

Example
The	following	example	removes	MyLib.dll	from	use	for	the	rest	of	the	session.

DROP	LIBRARY	MyLib.MyClass

Analysis	Services	Programming

DROP	MEMBER	Statement
This	statement	deletes	a	calculated	member	that	has	been	defined	for	the	session.

BNF
<drop-member-statement>	::=	DROP	MEMBER	<cube-name>.<fully-
qualified-member-name>

Example
The	following	example	drops	a	named	set	created	by	the	first	example	in
CREATE	MEMBER	Statement:

DROP	MEMBER	[Warehouse].[Measures].[warehouseprofit]

Analysis	Services	Programming

DROP	MINING	MODEL	Statement
This	statement	deletes	a	mining	model.

BNF
<drop-mining-model-statement>	::=	DROP	MINING	MODEL	<model-name>

Remarks
If	the	Mining	Location	property	is	set	to	a	directory	path,	this	statement	deletes
the	model	that	resides	in	that	directory.	This	model	is	specified	by	<model-
name>.

Analysis	Services	Programming

DROP	SET	Statement
This	statement	deletes	a	user-defined	set	that	has	been	defined	for	the	session.

BNF
<drop-set-statement>	::=	DROP	SET	<cube-name>.<set-name>

Example
The	following	examples	drop	the	named	set	statements	created	by	the	examples
in	CREATE	SET	Statement:

DROP	SET	[Sales].[TopStores]	
CREATE	SET	[Sales].[NorthwesternStores]	

Analysis	Services	Programming

REFRESH	CUBE	Statement
This	statement	refreshes	the	client	cache	for	a	cube.

BNF
<refresh-cube-statement>	::=	REFRESH	CUBE	<cube-name>

Remarks
For	client	applications	connected	to	the	Analysis	server,	this	statement	causes	the
memory	cached	on	the	client	application	to	be	synchronized	with	the	server.

For	client	applications	connected	to	a	local	cube,	the	REFRESH	CUBE
statement	causes	the	local	cube	file	to	be	rebuilt.

Example
The	following	example	refreshes	the	client	cache	that	pertains	to	a	cube	called
[Sales]:

REFRESH	CUBE	[Sales]

Analysis	Services	Programming

USE	LIBRARY	Statement
This	statement	loads	a	function	library	for	use	during	the	session.

BNF
<Use-Library-statement>	::=	USE	LIBRARY	<Library-Name-Clause>

Remarks
Use	this	statement	to	load	a	user-defined	function.

User-defined	function	libraries	should	be	implemented	as	COM	components.
These	libraries	can	be	implemented	as	in-process	servers	(in	a	.dll)	or	as	local
servers	(in	an	.exe).	Before	loading	a	user-defined	function	library,	ensure	that
the	library	contains	a	type	library.	Additionally,	all	of	the	interfaces	defined	in
the	type	library	must	be	derived	from	IDISPATCH	for	automation.	User-defined
function	libraries	can	be	developed	in	any	environment	capable	of	generating
COM	components.

Examples
The	following	examples	demonstrate	defining	and	using	a	user-defined	function
library.

A.	Creating	a	User-Defined	Function
In	the	following	example,	a	Microsoft®	Visual	Basic®	function	is	defined	that
converts	currency	based	upon	the	exchange	rate	of	a	given	country:

Public	Function	Convert(country	As	String,	Value	As	Double)	As	Double
				Select	Case	country
								Case	"USA"
												Convert	=	Value	*	1
								Case	"Canada"
												Convert	=	Value	*	1.5486

								Case	"Mexico"
												Convert	=	Value	*	9.93
				End	Select
End	Function

B.	Using	a	User-Defined	Function	Library
To	use	this	function	with	Microsoft	SQL	Server™	2000	Analysis	Services,	place
it	into	a	Visual	Basic	ActiveX®	DLL	Project.	To	load	the	library	for	use	in
Analysis	Services,	use	the	USE	LIBRARY	statement.	In	the	following	example,
a	user-defined	function	library	is	loaded	for	use	during	the	session,	and	a	query
is	defined	that	uses	a	query	scoped	calculated	member	containing	the	user-
defined	function:

USE	LIBRARY	"UDF.Currency"
WITH	Member	Measures.SalesNC	AS
					'UDF!_Currency!Convert(
											[Sales].[Customers].[Country],
											[Sales].[Measures].Members
)
SELECT	{SalesNC}	ON	COLUMNS	FROM	Sales'

See	Also

DROP	LIBRARY	Statement

Analysis	Services	Programming

Data	Manipulation	Language
The	following	topics	describe	the	data	manipulation	language	(DML)	used	by
PivotTable®	Service.

Topic Description
DRILLTHROUGH
Statement

Retrieves	the	source	rowset(s)	from	the	fact	table
(that	is,	data	source)	for	a	specified	tuple.

INSERT	INTO
Statement

Describes	the	INSERT	INTO	statement,	which
populates	a	local	cube	with	dimension	members.

SELECT	Statement Describes	the	SELECT	statement,	which	is	used
to	create	queries	that	return	multidimensional
data,	either	in	a	Microsoft®	ActiveX®	Data
Objects	(ADO)	Cellset	object	or	in	an	OLE	DB
Dataset	object.

UPDATE	CUBE
Statement

Describes	the	UPDATE	CUBE	statement,	which
allocates	values	from	a	nonleaf	member	cell
update	to	all	of	the	children	of	that	member.

Analysis	Services	Programming

DRILLTHROUGH	Statement
This	statement	retrieves	the	source	rowset(s)	from	the	fact	table	(that	is,	data
source)	for	a	specified	tuple.

BNF
<drillthrough>								:=	DRILLTHROUGH	[<Max_Rows>]	[<First_Rowset>]
<MDX	select>

				<	Max_Rows>				:=	MAXROWS	<positive	number>

				<First_Rowset>				:=	FIRSTROWSET	<positive	number>

Remarks
This	statement	allows	the	client	application	to	retrieve	the	rowsets	that	were	used
to	create	a	specified	cell	in	a	cube.	A	Multidimensional	Expressions	(MDX)
statement	is	used	to	specify	the	subject	cell.	If	this	cell	is	at	an	atomic	level	(that
is,	at	the	lowest	level	of	its	hierarchy),	only	one	rowset	is	returned.	If	this	cube	is
not	at	an	atomic	level,	all	of	the	rowsets	that	make	up	the	source	data	of	that	cell
are	returned.	The	total	number	of	rowsets	returned	can	also	be	affected	by	use	of
the	MAXROWS	and	FIRSTROWSET	modifiers.

The	value	specified	by	the	MAXROWS	modifier	indicates	the	maximum
number	of	rows	that	should	be	returned	by	the	resulting	rowset.	This	modifier
should	only	be	used	if	the	original	source	data's	OLE	DB	provider	supports	the
DBPROP_MAXROWS	property.

The	value	specified	by	the	FIRSTROWSET	modifier	specifies	the	first	rowset	to
return.	Use	of	this	modifier	is	not	recommended	unless	the	client	application
designer	does	not	wish	to	use	the	OLE	DB	IMultipleResults	interface	or	the
Microsoft®	ActiveX®	Data	Objects	(ADO)	NextRecordset	method	to	navigate
the	returned	rowsets.

For	more	information,	see	Using	DRILLTHROUGH	to	Retrieve	Source	Data.

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

INSERT	INTO	Statement
This	statement	has	two	functions:	It	populates	local	cubes	with	dimension
members,	and	it	trains	data	mining	models.	If	the	local	cube	is	stored	in
multidimensional	OLAP	(MOLAP),	the	INSERT	INTO	statement	also	populates
the	local	cube	with	data.

BNF
<insert-into-statement>	::=	INSERT	INTO	<target-clause>	[<options-clause>]
[<bind-clause>]	<source-clause>
				|INSERT	INTO	<model>	(<mapped	model	columns>)	<source	data	query>
				|INSERT	INTO	<model>	(<mapped	model	columns>)	VALUES	<constant
list>
				|INSERT	INTO	<model>.COLUMN_VALUES(<mapped	model	columns>)
<source	data	query>
<mapped	model	columns>	::=	<column	identifier>	|	<table	identifier>(<column
identifier>	|	SKIP),	...
<target-clause>	::=	<cube-name>	<open-paren>	<target-element-list>	<close-
paren>
<target-element-list>	::=	<target-element>[,	<target-element-list>]
<target-element>	::=	[<dim-name>.[<hierarchy-name>.]]<level-name>	
				|	<time-dim-name>	|	<parent-child-dim-name>
				|	[Measures.]<measure-name>	
				|	SKIPONECOLUMN
<level-name>	::=	<simple-level-name>	
				|	<simple-level-name>.NAME	
				|	<simple-level-name>.KEY
				|	<simple-level-name>.Custom_Rollup	
				|	.parent	
				|	<simple-level-name>.SkipLevelColumn
<time-dim-name>	::=	<dim-name-type-time>	
				|	<dim-name-type-time>.NAME	
				|	<dim-name-type-time>.KEY
<options-clause>	::=	OPTIONS	<options-list>	

<options-list>	::=	<option>[,	<options-list>]
<option>	::=	<defer-options>	
				|	<	analysis-options>
<defer-options>	::=	DEFER_DATA	
				|	ATTEMPT_DEFER
<analysis-options>	::=	PASSTHROUGH	
				|	ATTEMPT_ANALYSIS
<bind-clause>	::=	BIND	(<bind-list>)
<bind-list>	::=	<simple-column-name>[,<simple-column-name>]
<simple-column-name>	::=	<identifier>
<source-clause>	::=	SELECT	<columns-list>	
				FROM	<tables-list>
				[WHERE	<where-clause>]
				|	DIRECTLYFROMCACHEDROWSET	<hex-number>	|
DIRECTLYFROMMARSHALLEDROWSET	<hex	number>
<columns-list>	::=	<column-expression>	[,	<	columns-list>]
<column-expression>	::=	<column-expression-name>
<column-expression-name>	::=	<column-name>	[AS	<alias-name>]
				|	<alias	name>	<column-name>
<column-name>	::=	<table-name>.<column-name>	
				|	<column-function>	
				|	<ODBC	scalar	function>	
				|	<braced-expression>
<column	function>	::=	<identifier>(.	.	.)
<ODBC	scalar	function>	::=	{FN<column-function>}
<braced-expression>	::=	(.	.	.)
<tables	-list>	::=	<table-expression>	[,	<tables-list>]
<table-expression>	::=	<table-name>	[[AS]	<table-alias>]
<table-alias>	::=	<identifier>
<table-name>	::=	<identifier>
<where-clause>	::=	<where-condition>	[AND	<where-clause>]
<where-condition>	::=	<join-constraint>	
				|	<application	constraint>
<join-constraint>	::=	<column-name>	=	<column-name>
				|	<open-paren><column-name>	=	<column-name><close-paren>
<application-constraint>	::=	(.	.	.)
				|	NOT	(.	.	.)

				|	(.	.	.)	OR	(.	.	.)
<identifier>	::=	<letter>{<letter>
				|<digit>
				|<underline>
				|<dollar>
				|<sharp>}.	.	.

Remarks
The	behavior	and	use	of	this	statement	depend	on	whether	you	use	it	for	OLAP
or	data	mining.

Using	INSERT	INTO	with	Local	Cubes
Names	of	elements	in	an	INSERT	INTO	statement	are	level	and	measure	names,
sometimes	qualified	with	dimension	name	or	the	keyword	Measures	to	avoid
ambiguity.	The	Measures	keyword	is	case-sensitive	in	binary	comparisons.	If
you	use	binary	comparison	or	are	unsure	of	your	comparison	method,	use
Measures	as	shown	with	only	M	in	upper	case.

Each	level	and	each	measure	in	a	cube	is	derived	from	a	column	in	the	SELECT
clause	except	the	(All)	level.

The	columns	specified	in	the	associated	SELECT	clause	are	bound	to	the
elements	of	the	INSERT	INTO	statement	in	the	order	specified	and	in	a	one-to-
one	relationship.

Each	level	can	be	derived	from	two	columns,	with	one	used	as	a	name	column
and	the	other	used	as	a	key	column.	Both	columns	must	be	in	the	same	table.	If
there	are	two	columns	associated	with	a	level,	use	the	suffix	.NAME	or	.KEY
properties	in	the	INSERT	INTO	statement	after	the	level	name.

If	a	column	specified	in	the	SELECT	clause	does	not	have	a	related	element	in
the	INSERT	INTO	statement,	the	keyword	SKIPONECOLUMN	can	be	used	in
the	INSERT	INTO	statement	as	a	placeholder	for	the	unused	column.
SKIPONECOLUMN	can	be	used	more	than	once.

In	the	INSERT	INTO	statement,	you	can	specify	a	dimension	of	TYPE	TIME	by
using	the	name	of	the	dimension.	The	dimension	name	is	used	to	correlate	the
entire	dimension	with	a	single	column	in	the	source	table	that	contains	data	with

a	date/time	data	type.	The	levels,	of	TYPE	<level	type>,	identified	for	the	time
dimension	in	the	CREATE_CUBE	statement	cause	the	time	information	to	be
extracted	from	the	source	column	specified	in	the	SELECT	clause.	For	more
information,	see	Example	D	later	in	this	topic.

The	WHERE	clause	can	have	both	application	and	join	constraints.	The	parser
parses	only	join	constraints.	It	uses	the	join	constraint	to	find	a	path	from	all
tables	to	the	fact	table	and	to	the	dimension	tables.	The	application	constraint	is
used	only	to	specify	constraints	on	a	fact	table	and	is	passed	through	without
modifications.

Expressions	between	parentheses	are	considered	to	be	application	constraints.
For	example,	if	the	expression	Sales.Product_ID	=	Products.Product_ID	AND
Sales.Customer_ID	=	Customers.Customer_ID	is	enclosed	in	parentheses,	it	is
treated	as	an	application	constraint	and	is	not	used	as	a	join	constraint.	It	is	the
responsibility	of	the	client	application	to	ensure	that	parentheses	are	used	only
around	application	constraints:	for	example,	(Product.Price	<	100	AND
Product.Category	=	1).

The	BIND	clause	is	used	to	bind	level	and	measure	names	specified	in	the
INSERT	INTO	statement	with	column	names	used	to	create	rowsets.

The	AS	<alias-name>	syntax	is	not	supported	for	local	relational	OLAP
(ROLAP)	cubes.

Using	INSERT	INTO	with	Data	Mining
The	INSERT	INTO	statement	inserts	training	data	into	the	model.	The	columns
from	the	query	are	mapped	to	model	columns	through	the	<mapped	model
columns>	section.	The	keyword	SKIP	is	used	to	instruct	the	model	to	ignore
columns	that	appear	in	the	source	data	query	that	are	not	used	in	the	model.

The	INSERT	INTO	<model>.COLUMN_VALUES	form	inserts	data	directly
into	the	models	columns	without	training	the	model's	algorithm.	This	allows	you
to	provide	column	data	to	the	model	in	a	concise	ordered	manner	that	is	useful
when	dealing	with	datasets	containing	hierarchies	or	ordered	columns.	The
period	(.)	operator	is	used	to	specify	columns	that	are	part	of	a	nested	table.
When	using	this	form,	columns	that	are	part	of	a	relation	(either	through
RELATE	TO	or	by	being	a	KEY	in	a	nested	table)	cannot	be	inserted
individually	and	must	be	inserted	together	with	all	the	columns	in	the	relation.

Using	Passthrough	and	Advanced	Query	Processing
The	PASSTHROUGH	option	causes	the	SELECT	clause	to	be	passed	directly	to
the	source	database	without	modification	by	PivotTable®	Service.	If
PASSTHROUGH	is	not	specified,	PivotTable	Service	parses	the	query	and
formulates	a	set	of	queries	equivalent	to	the	original	that	is	optimized	for	the
source	database	and	index	structures.	This	set	of	queries	is	often	more	efficient
than	the	specified	query.

The	DEFER_DATA	option	causes	the	query	to	be	parsed	locally	and	executed
only	when	necessary	to	retrieve	data	to	satisfy	a	user	request.	DEFER_DATA	is
used	to	specify	that	a	local	cube	be	defined	in	the	ROLAP	storage	mode.

The	ATTEMPT_DEFER	option	causes	PivotTable	Service	to	attempt	to	parse
the	query	and	defer	data	loading	if	successful,	or,	if	the	query	cannot	be	parsed,
to	process	the	specified	query	immediately	as	if	the	PASSTHROUGH	had	been
specified.

The	ATTEMPT_ANALYSIS	option	causes	PivotTable	Service	to	attempt	to
parse	the	query	and	formulate	an	optimized	set	of	queries.	If	the	query	cannot	be
parsed,	PivotTable	Services	processes	the	query	immediately	as	if	the
PASSTHROUGH	had	been	specified.

Passthrough	Compatibility	Matrix
These	options	can	be	used	together	in	combination.	Use	the	following	matrix	to
determine	the	effect	of	a	pair	of	options	while	building	a	local	cube.

	 Parse

Neither
PassThrough	nor
Attempt_Analysis PassThroughAttempt_Analysis

Neither
DEFER_DATA	nor
ATTEMPT_DEFER

SucceededMOLAP MOLAP(*) MOLAP

	 Failed Error n/a MOLAP(*)
DEFER_DATA SucceededROLAP Error ROLAP
	 Failed Error n/a Error
ATTEMPT_DEFER SucceededROLAP MOLAP(*) ROLAP

	 Failed MOLAP(*) n/a MOLAP(*)
*	Indicates	that	this	pair	of	options	will	cause	the	SELECT	clause	to	be	passed	through	to	the	source
database.

Examples

A.	Using	an	Application	Constraint
The	following	example	demonstrates	how	to	use	an	application	constraint:

INSERT	INTO	MyCube	(Year,	Month.Name,	Month.Key,	[Product	Group],	[Product	Name],	Country,	Sales,	Cost)
OPTIONS	DEFER_DATA
SELECT	MyTable.Year,	MyTable.Month,	MONTH(MyTable.Month),	MyTable.ProdGroup,	MyTable.ProdName,	MyTable.Country,	MyTable.Sales,	MyTable.Cost
FROM	MyTable
WHERE	MyTable.SalesRep	=	"Amir"	and	MyTable.CustomerGroup	=	"Industry"

B.	Using	the	Passthrough	Option
The	following	example	demonstrates	how	to	use	the	PASSTHROUGH	option.

Note		The	PASSTHROUGH	option	specifies	that	the	SELECT	clause	that
follows	it	is	to	be	passed	directly	to	the	database	engine	with	no	parsing	by
PivotTable	Service.	This	option	cannot	be	used	with	the	DEFERED_DATA
option.

INSERT	INTO	MyCube	(Year,	Month,	[Product	Group],	[Product	Name],	Country,	Sales,	Cost)
OPTIONS	PASSTHROUGH	SELECT	MyTable.Year,	MyTable.Month,	MyTable.ProdGroup,	MyTable.ProdName,	MyTable.Country,	MyTable.Sales,	MyTable.Cost
FROM	MyTable
WHERE	MyTable.SalesRep	=	"Amir"	and	MyTable.CustomerGroup	=	"Industry"

C.	Using	the	DIRECTLYFROMCACHEDROWSET	Keyword
The	following	example	demonstrates	how	to	use	the
DIRECTLYFROMCACHEDROWSET	keyword.

Note		The	DIRECTLYFROMCACHEDROWSET	keyword	directs	data	to	be
read	from	the	address	in	memory	identified	immediately	after	the	keyword.	It	is
the	responsibility	of	the	client	application	to	specify	the	correct	address	in
memory.	At	run	time,	the	number	is	assumed	to	be	the	in-process	address	of	an

IUnknown	pointer	to	an	OLE	DB	rowset.

INSERT	INTO	MyCube	(Year,	Month,	[Product	Group],	[Product	Name],	Country,	Sales,	Cost)
DIRECTLYFROMCACHEDROWSET	0x00001284

D.	Using	the	DEFER	DATA	Option	to	Create	a	ROLAP	Cube
The	following	example	demonstrates	how	to	create	a	ROLAP	cube	by	using	the
DEFER	DATA	option:

CREATE	CUBE	MyCube	(
		DIMENSION	TimeDim	TYPE	TIME,
				LEVEL	MyYear	TYPE	YEAR,
				LEVEL	MyQtr	TYPE	QUARTER,
				LEVEL	MyMonth	TYPE	MONTH,
		DIMENSION	Products,
				LEVEL	[Product	Group],
				LEVEL	[Product	Name],
		DIMENSION	Geography,
				LEVEL	State,
				LEVEL	City,
		MEASURE	[Sales]
				FUNCTION	SUM	
				FORMAT	'Currency',
		MEASURE	[Units	Sold]
				FUNCTION	SUM
)
INSERT	INTO	MyCube	(TimeDim,	[Product	Group],	[Product	Name],	State,	City,	Sales,	[Units	Sold])
OPTIONS	DEFER_DATA
SELECT	MyTable.TransDate,	MyTable.ProdGroup,	MyTable.ProdName,	MyTable.State,	MyTable.City,	MyTable.Sales,	MyTable.UnitsSold
FROM	MyTable
WHERE	MyTable.SalesRep	=	"Jacobsen"	and	MyTable.CustomerGroup	=	"Industry"

E.	Training	a	Data	Mining	Model
The	following	example	trains	a	data	mining	model	called	[Age	Prediction].	The

training	columns	for	this	model	are	[Gender],	[Product	Name],	[Product	Type],
and	[Month].

INSERT	INTO	[Age	Prediction].COLUMN_VALUES(Gender)
			OPENROWSET('SQLOLEDB',	'...',	'SELECT	DISTINCT	Gender	FROM	Customers')

INSERT	INTO	[Age	Prediction].COLUMN_VALUES([Product	Purchases].[Product	Name],	
			[Product	Purchases].[Product	Type])
			OPENROWSET('SQLOLEDB',	'...',	'SELECT	DISTINCT	[Product	Name],	[Product	Type]	FROM	Sales')

INSERT	INTO	[Age	Prediction].COLUMN_VALUES(SKIP,	[Month])
			OPENROWSET('SQLOLEDB',	'...',	'SELECT	MonthID,	Month	FROM	Months	ORDER	BY	MonthID')

Analysis	Services	Programming

SELECT	Statement
This	statement	is	used	to	create	queries	that	return	multidimensional	data,	either
in	a	Microsoft®	ActiveX®	Data	Objects	(ADO)	Cellset	object	or	in	an	OLE	DB
Dataset	object.

BNF

BNF	for	SELECT	(OLAP)
<select_statement>	::=	[WITH	<single_formula_specification>
[<single_formula_specification>...]]
SELECT	[<axis_specification>	[,	<axis_specification>...]]
FROM	<cube_specification>
[WHERE	<slicer_specification>]
[<cell_props>]

<single_formula_specification>	::=	<member_specification>	
|	<set_specification>	
|	<cache_specification>	

<member_specification>	::=	MEMBER	<parent_of_member>.<member_name>
AS	'<value_expression>'
[,	<solve_order_specification>]
[,	<member_property_definition>...]

<solve_order_specification>	::=	SOLVE_ORDER	=	<unsigned_integer>
<member_property_definition>	::=	<member_property_name>	=
<value_expression>
<set_specification>	::=	SET	<set_name>	AS	'<set>'
<cache_specification>	::=	CACHE	AS	'(<set>	[,<set>])'
<axis_specification>	::=	[NON	EMPTY]	<set>	[<dim_props>]	ON
<axis_name>
<set>	::=	member:member
|	<set_value_expression>
|	{<set>	|	<tuple>	[,<set>	|	<tuple>...]}

|	(<set>)

<tuple>	::=	<member>	|	(<member>[,<member>...])	|	<tuple_value_expression>
<axis_name>	::=	COLUMNS	|	ROWS	|	PAGES	|	SECTIONS	|	CHAPTERS	|
AXIS(<index>)
<dim_props>	::=	[DIMENSION]	PROPERTIES	<property>	[,	<property>...]
<property>	::=	<dimension_property>	|	<level_property>	|	<member_property>
<dimension_property>	::=	<dimension_name>.ID	|	<dimension_name>.KEY	|
<dimension_name>.NAME

<level_property>	::=	[<dimension_name>.]<level_name>.ID
|	[<dimension_name>.]<level_name>.KEY
|	[<dimension_name>.]<level_name>.NAME

<member_property>	::=	<level_name>.<member_property_name>	
<cube_specification>	::=	<cube_name>
<slicer_specification>	::=	<tuple>
<cell_props>	::=	[CELL]	PROPERTIES	<cell_property>	[,	<cell_property>...]

<cell_property>	::=	<mandatory_cell_property>
|	<optional_cell_property>
|	<provider_specific_cell_property>

<mandatory_cell_property>	::=	CELL_ORDINAL	|	VALUE	|
FORMATTED_VALUE
<optional_cell_property>	::=	FORMAT_STRING	|	FORE_COLOR	|
BACK_COLOR	|	FONT_NAME	|	FONT_SIZE	|	FONT_FLAGS
<provider_specific_cell_property>	::=	<identifier>

BNF	for	SELECT	(Data	Mining)
<column_ref_list>::=	<column_ref>
					|	<column_ref_list>	,	<column_ref>

<column_ref>::=	<identifier>
					|	<identifier>.<column_ref>
					|	<column_ref>	(<column_ref_list>)
					|	SKIP
					|	CLUSTER()
					|	$SUPPORT

					|	$VARIANCE
					|	$STDEV
					|	$STDDEV
					|	$PROBABILITY
					|	$PROBABILITY_VARIANCE
					|	$PROBABILITY_STDEV
					|	$PROBABILITY_STDDEV
					|	$ADJUSTEDPROBABILITY
					|	$DISTANCE
					|	PREDICT	(<column_ref>	[,	<pred_option_list>])
					|	<column_ref>	AS	<identifier>

<pred_option_list>->	<pred_option>
					|	<pred_option_list>	,	<pred_option>

<pred_option>::=	EXCLUDE_NULL
					|	INCLUDE_NULL
					|	INPUT_ONLY
					|	EXCLUSIVE
					|	INCLUSIVE
					|	INCLUDE_STATISTICS

<select>::=	<pred_select>
					|	<model_select>

<pred_select>::=	SELECT	[FLATTENED]	<expression_list>	FROM
<identifier>	[NATURAL]	PREDICTION	JOIN

									<query>	AS	<identifier>	[ON	<on_list>]	[<where_clause>]

									|	SELECT	[FLATTENED]	<expression_list>	FROM	<identifier>
[NATURAL]	PREDICTION	JOIN

									<expression>	AS	<identifier>	[ON	<on_list>]	[<where_clause>]

<model_select>::=	SELECT	[DISTINCT]	<expression_list>	FROM
<identifier>	[<where_clause>]

									|	SELECT	[DISTINCT]	<expression_list>	FROM	<identifier>.PMML

									|	SELECT	[DISTINCT]	<expression_list>	FROM
<identifier>.CONTENT	[<where_clause>]

<expression_list>::=	<expression>

									|	<expression_list>	,	<expression>

<expression>::=	<value>
					|	<column_ref>
					|	*
					|	<expression>	+	<expression>
					|	<expression>	-	<expression>
					|	<expression>	*	<expression>
					|	<expression>	/	<expression>
					|	-<expression>
					|	+<expression>
					|	(<expression>)
					|	<expression>	OR	<expression>
					|	<expression>	AND	<expression>
					|	NOT	<expression>
					|	<expression>	=	<expression>
					|	<expression>	<>	<expression>
					|	<expression>	<	<expression>
					|	<expression>	<=	<expression>
					|	<expression>	>	<expression>
					|	<expression>	>=	<expression>
					|	PREDICTSTDEV	(<column_ref>)
					|	PREDICTSTDDEV	(<column_ref>)
					|	PREDICTVARIANCE	(<column_ref>)
					|	PREDICTSUPPORT	(<column_ref>)
					|	PREDICTPROBABILITY	(<column_ref>)
					|	PREDICTADJUSTEDPROBABILITY	(<column_ref>)
					|	CLUSTERDISTANCE	([<expression>])
					|	CLUSTERPROBABILITY	([<expression>])
					|	PREDICTHISTOGRAM	(<column_ref>)
					|	TOPCOUNT	(<expression>,	<column_ref>,	<expression>)
					|	TOPSUM	(<expression>,	<column_ref>,	<expression>)
					|	TOPPERCENT	(<expression>,	<column_ref>,	<expression>)
					|	BOTTOMCOUNT	(<expression>,	<column_ref>,	<expression>)
					|	BOTTOMSUM	(<expression>,	<column_ref>,	<expression>)				
					|	BOTTOMPERCENT	(<expression>,	<column_ref>,	<expression>)

					|	(SELECT	<expression_list>	FROM	<expression>	<where_clause>)
					|	(<singleton_list>)
					|	<expression>	AS	<identifier>

<singleton_list>::=	<singleton>
					|	<singleton_list>	UNION	<singleton>

<singleton>::=	SELECT	<expression_list>

<where_clause>::=	WHERE	<expression>

<delete>::=	<delete_reg>
					|	<delete_content>

Note		Microsoft	SQL	Server™	2000	Analysis	Services	data	mining	algorithms
do	not	support	probability	variance	or	probability	standard	deviation.	The
columns	$PROBABILITY_VARIANCE,	$PROBABILITY_STDEV,	and
$PROBABILITY_STDEV	always	contain	0.

The	$ADJUSTEDPROBABILITY	column	is	an	Analysis	Services	extension	to
the	OLE	DB	for	Data	Mining	specification.

Remarks
In	the	<tuple>	::=	(<member>[,<member>...])	syntax,	each	<member>	value
must	be	from	a	different	dimension.

In	the	<slicer_specification>	syntax,	the	members	in	the	<tuple>	value	must	be
in	dimensions	other	than	those	in	the	<axis_specification>	values.

If	a	dimension	in	the	cube	is	omitted	from	the	<axis_specification>	values	and
<slicer_specification>	value,	the	dimension's	default	member	is	implicitly	added
to	the	<slicer_specification>	value.

The	DISTINCT	keyword	is	ignored	in	data	mining	queries.

Inserting	Comments
Like	SQL,	Multidimensional	Expressions	(MDX)	syntax	can	contain	user-
readable	comments	that	are	ignored	when	the	commands	are	processed.	The
three	different	character	sets	that	indicate	comments	are	outlined	in	the	following
table.

Characters Scope
//	(C++	style	forward
slashes)

All	text	after	the	forward	slashes	(/)	and	before	the
end	of	the	same	line	is	ignored.

--	(SQL	hyphens) All	text	after	the	hyphens	(-)	and	before	the	end	of
the	same	line	is	ignored.

/*...*/	(C	style	slash
and	asterisk	pairs)

All	text	between	the	opening	forward	slash	(/)	and
asterisk	and	the	closing	asterisk	(*)	and	closing
forward	slash	(/)	is	ignored.	This	type	of	comment
can	span	multiple	lines.

Example
The	following	example	shows	the	use	of	comments	in	an	MDX	command:

/*	Using	this	query	to	view	
			information	about	units	shipped	
			and	units	ordered		*/
SELECT
			{	[Measures].[Units	Shipped],	[Measures].[Units	Ordered]	}	ON	COLUMNS,
//	The	next	command	specifies	nonempty	members	only
			NON	EMPTY	[Store].[Store	Name].Members	ON	ROWS
FROM	Warehouse			--	Pulled	from	the	Warehouse	cube

For	more	information,	see	Comments	in	MDX.

See	Also

MDX

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Analysis	Services	Programming

UPDATE	CUBE	Statement
This	statement	portions	out,	according	to	a	specified	formula,	the	delta	of	an
updated	cell	value	to	all	of	the	children	of	that	member.	This	method	of	updating
the	contents	of	a	cube	is	called	allocation,	and	is	only	supported	on	measures
using	the	SUM	aggregation	type.

BNF
<update_statement>	::=	UPDATE	[CUBE]	<cube_specification>

				SET

								<cell_update>[,	<cell_update>...]

<cell	update>	::=			<tuple>.VALUE	=	<value>

				[USE_EQUAL_ALLOCATION	|

									USE_EQUAL_INCREMENT	|

									USE_WEIGHTED_ALLOCATION	[BY	<	weight	value_expression>]

									USE_WEIGHTED_INCREMENT	[BY	<weight	value_expression>]]

<Tuple>	is	a	set	of	coordinates.	If	the	full	set	of	coordinates	is	not	specified,	it	is
assumed	that	the	unspecified	coordinates	are	the	default	member	of	the
dimension.

The	<tuple>	can	be	any	cell	in	the	multidimensional	space	(that	is,	it	does	not
have	to	be	an	atomic	cell).	However,	the	cell	must	be	aggregated	with	the	SUM
aggregate	function	and	must	not	use	a	calculated	member	as	one	of	its
coordinates.

Remarks
It	may	be	helpful	to	think	of	the	UPDATE	CUBE	statement	as	a	subroutine	that
will	automatically	generate	a	series	of	individual	writeback	operations	to	atomic
cells	that	will	roll	up	into	a	specified	sum.

The	following	table	describes	the	methods	of	allocation.

Allocation	method Description
USE_EQUAL_ALLOCATION Every	atomic	cell	that	contributes	to

the	updated	cell	will	be	assigned	an
equal	value	that	is:

<atomic	cell	value>	=

<value>	/	Count(atomic	cells
contained	in	<tuple>)

USE_EQUAL_INCREMENT Every	atomic	cell	that	contributes	to
the	updated	cell	will	be	changed
according	to:

<atomic	cell	value>	=	<atomic	cell
value>	+

(<value>	-	<existing	value>)		/

Count(atomic	cells	contained	in
<tuple>)

USE_WEIGHTED_ALLOCATIONEvery	atomic	cell	that	contributes	to
the	updated	cell	will	be	assigned	an
equal	value	that	is:

<atomic	cell	value>	=	<value>	*
<weight	value	expression>

USE_WEIGHTED_INCREMENT Every	atomic	cell	that	contributes	to
the	updated	cell	will	be	changed
according	to:

<atomic	cell	value>	=	<atomic	cell
value>	+

(<value>	-	<existing	value>)		*
<weight	value	expression>

If	the	value	<weight	value	expression>	is	not	provided,	the	following	expression

is	assigned	to	it	by	default:

<weight	value	expression>	=	<atomic	cell	value>/<existing	value>

The	value	of	<weight	value	expression>	should	be	expressed	as	a	value	between
0	and	1.	This	value	specifies	the	ratio	of	the	allocated	value	you	want	to	assign
to	the	atomic	cells	that	are	affected	by	the	allocation.	It	is	the	client	application
programmer's	responsibility	to	create	expressions	whose	rollup	aggregate	values
will	equal	the	allocated	value	of	the	expression.

CAUTION		The	client	application	must	take	into	account	the	allocation	of	all
dimensions	concurrently	to	avoid	possible	unexpected	results,	including
incorrect	rollup	values	or	inconsistent	data.

Each	UPDATE	CUBE	allocation	should	be	considered	to	be	atomic	for
transactional	purposes.	This	means	that	if	any	one	of	the	allocation	operations
fails	for	any	reason,	such	as	an	error	in	a	formula	or	a	security	violation,	then	the
whole	UPDATE	CUBE	operation	will	fail.	Before	the	calculations	of	the
individual	allocation	operations	are	processed,	a	snapshot	of	the	data	is	taken	to
ensure	that	the	resulting	calculations	are	correct.

CAUTION		When	used	on	a	measure	containing	integers,	the
USE_WEIGHTED_ALLOCATION	method	can	return	imprecise	results	due	to
incremental	rounding	changes.

Examples

Using	UPDATE	CUBE

UPDATE	CUBE	[Budget	Cube]	
			SET
				([1999],	[Marketing],	[Budget],	[All	Departments])	=	1000			

				USE_WEIGHTED_ALLOCATION	BY	
([1998],	[Sales],	[Actual])/
([1999],	[Sales],	[Actual],	[All	Departments])

Analysis	Services	Programming

Function	Reference
PivotTable®	Service	has	access	to	an	extensive	library	of	OLAP	and	data	mining
functions.	The	following	topics	cover	the	functions	available	to	PivotTable
Service.

Topic Description
OLAP	Functions Discusses	OLAP	functions	detailed

in	the	MDX	Function	Reference	and
in	the	OLE	DB	for	OLAP
specification.

Data	Mining	Functions Covers	data	mining	functions
detailed	in	the	OLE	DB	for	Data
Mining	specification.

Analysis	Services	Programming

OLAP	Functions
Microsoft®	SQL	Server™	2000	Analysis	Services	supplies	a	wide	variety	of
functions,	through	the	use	of	Multidimensional	Expressions	(MDX)	function
libraries.

For	more	information	about	OLAP	functions,	see	MDX	Function	Reference.

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

Data	Mining	Functions
Microsoft®	SQL	Server™	2000	Analysis	Services	supplies	a	number	of
functions	which	retrieve	and	manipulate	statistical	information	from	a	data
mining	model.

The	following	topics	discuss	these	functions	in	greater	detail.

Function Description
BottomCount Returns	a	table	containing	a	specified

number	of	bottommost	rows	in
increasing	order	of	rank	based	on	a
rank	expression.

BottomPercent Returns	a	table	containing	the
smallest	number	of	bottommost
rows,	in	increasing	order	of	rank
based	on	a	rank	expression,	that	meet
a	specified	percent	expression.

BottomSum Returns	a	table	containing	the
smallest	number	of	bottommost
rows,	in	increasing	order	of	rank
based	on	a	rank	expression,	that	meet
a	specified	sum	expression.

Cluster For	clustering	data	mining	models,
returns	the	cluster	identifier
containing	the	highest	probability	of
the	input	case.

ClusterDistance Returns	the	distance	between	the
input	case	and	the	center	of	the
cluster	that	has	the	highest
probability.

ClusterProbability Returns	the	probability	that	the	input
case	belongs	to	the	cluster	that	has
the	highest	probability.

Predict Performs	a	prediction	based	on	a
specified	column.

PredictAdjustedProbability Retrieves	the	adjusted	probability	of
the	topmost	histogram	entry	for	a
specified	column.

PredictHistogram Retrieves	a	table	representing	the
histogram	for	a	specified	column.

PredictProbability Retrieves	the	probability	of	the
topmost	histogram	entry	for	a
specified	column.

PredictStdev Retrieves	the	standard	deviation
value	of	the	topmost	histogram	entry
for	a	specified	column.

PredictSupport Retrieves	the	support	value	of	the
topmost	histogram	entry	for	a
specified	column.

PredictVariance Retrieves	the	variance	value	of	the
topmost	histogram	entry	for	a
specified	column.

RangeMax Retrieves	the	upper	value	of	the
predicted	bucket	discovered	for	a
specified	discretized	column.

RangeMid Retrieves	the	midpoint	value	of	the
predicted	bucket	discovered	for	a
specified	discretized	column.

RangeMin Retrieves	the	lower	value	of	the
predicted	bucket	discovered	for	a
specified	discretized	column.

Sub-SELECT Returns	a	table	from	a	specified	table
expression.

TopCount Returns	a	table	containing	a	specified
number	of	topmost	rows	in	a
decreasing	order	of	rank	based	on	a
rank	expression.

TopPercent Returns	a	table	containing	the

smallest	number	of	topmost	rows,	in
a	decreasing	order	of	rank	based	on	a
rank	expression,	that	meet	a	specified
percent	expression.

TopSum Returns	a	table	containing	the
smallest	number	of	topmost	rows,	in
a	decreasing	order	of	rank	based	on	a
rank	expression,	that	meet	a	specified
sum	expression.

Analysis	Services	Programming

BottomCount
The	BottomCount	function	returns	the	specified	number	of	bottommost	rows	in
increasing	order	of	rank	as	specified	by	an	expression.

Syntax
BottomCount(<table	expression>,	<rank	expression>,	<count>)

Applies	to
An	expression	that	returns	a	table,	such	as	a	<table	column	reference>	or	a
function	that	returns	a	table.

Return	Type
<table	expression>

Remarks
The	value	supplied	by	the	<rank	expression>	argument	is	used	to	determine	the
increasing	order	of	rank	for	the	rows	supplied	in	the	<table	expression>
argument,	and	the	number	of	bottommost	rows	specified	in	the	<count>
argument	is	returned.

For	more	information,	see	TopCount.

Analysis	Services	Programming

BottomPercent
The	BottomPercent	function	returns,	in	order	of	increasing	rank,	the
bottommost	rows	of	a	table	whose	cumulative	total	is	at	least	a	specified
percentage.

Syntax
BottomPercent(<table	expression>,	<rank	expression>,	<percent>)

Applies	to
An	expression	that	returns	a	table,	such	as	a	<table	column	reference>	or	a
function	that	returns	a	table.

Return	Type
<table	expression>

Remarks
The	BottomPercent	function	returns	the	bottommost	rows	in	increasing	order	of
rank	based	on	the	evaluated	value	of	the	<rank	expression>	argument	for	each
row,	such	that	the	sum	of	the	<rank	expression>	values	is	at	least	the	given
percentage	specified	by	the	<percent>	argument.	BottomPercent	returns	the
smallest	number	of	elements	possible	while	still	meeting	the	specified	percent
value.

For	more	information,	see	TopPercent.

Analysis	Services	Programming

BottomSum
The	BottomSum	function	returns,	in	order	of	increasing	rank,	the	bottommost
rows	of	a	table	whose	cumulative	total	is	at	least	a	specified	value.

Syntax
BottomSum(<table	expression>,	<rank	expression>,	<sum>)

Applies	to
An	expression	that	returns	a	table,	such	as	a	<table	column	reference>	or	a
function	that	returns	a	table.

Return	Type
<table	expression>

Remarks
The	BottomSum	function	returns	the	bottommost	rows	in	increasing	order	of
rank	based	on	the	evaluated	value	of	the	<rank	expression>	argument	for	each
row,	such	that	the	sum	of	the	<rank	expression>	values	is	at	least	the	given	total
specified	by	the	<sum>	argument.	BottomSum	returns	the	smallest	number	of
elements	possible	while	still	meeting	the	specified	sum	value.

For	more	information,	see	TopSum.

Analysis	Services	Programming

Cluster
The	Cluster	function	identifies	the	cluster	to	which	the	input	case	belongs	with
the	highest	probability.

Syntax
Cluster

Applies	to
This	function	does	not	require	any	parameter,	but	it	can	be	used	only	when	the
underlying	data	mining	model	supports	clustering.

Return	Type
This	function	returns	a	scalar	value	of	a	cluster	identifier,	referred	to	in	other
data	mining	functions	as	a	clusterID.	However,	if	this	function	is	used	as	an
argument	of	other	functions,	it	must	be	regarded	as	a	<cluster	column
reference>.

Remarks

Cluster	can	also	be	used	as	a	<cluster	column	reference>	for	a
PredictHistogram	function.

See	Also

ClusterDistance

ClusterProbability

Analysis	Services	Programming

ClusterDistance
The	ClusterDistance	function	returns	the	distance	between	the	input	case	and
the	center	of	the	cluster	that	has	the	highest	probability.

Syntax
ClusterDistance([<ClusterID	expression>])

Applies	to
This	function	can	be	used	only	when	the	underlying	data	mining	model	supports
clustering.

Return	Type
Scalar	value

Remarks

If	<ClusterID	expression>	is	specified,	the	cluster	is	identified	by	the	evaluation
of	the	expression.

See	Also

Cluster

ClusterProbability

Analysis	Services	Programming

ClusterProbability
The	ClusterProbability	function	returns	the	probability	that	the	input	case
belongs	to	the	cluster	that	has	the	highest	probability.

Syntax
ClusterProbability([<ClusterID	expression>])

Applies	to
This	function	can	be	used	only	when	the	underlying	data	mining	model	supports
clustering.

Return	Type
Scalar	value

Remarks

If	<ClusterID	expression>	is	specified,	the	cluster	is	identified	by	the	evaluation
of	the	expression.

See	Also

Cluster

ClusterDistance

Analysis	Services	Programming

Predict
The	Predict	function	is	a	general	prediction	function	that	modifies	the	behavior
of	a	prediction	such	as	missing	value	control,	association	control,	and	so	on.

Syntax
Predict(<scalar	column	reference>,	option1,	option2,	...)

Predict(<table	column	reference>,	option1,	option2,	...)

Applies	to
Either	a	scalar	column	or	table	column	reference.

Return	Type

<scalar	column	reference>	

or

<table	column	reference>	

The	return	type	depends	on	the	type	of	column	to	which	this	function	is	applied.

Remarks
Possible	options	include	EXCLUDE_NULL	(default),	INCLUDE_NULL,
INCLUSIVE,	EXCLUSIVE	(default),	INPUT_ONLY,	and
INCLUDE_STATISTICS.

Note		INCLUSIVE,	EXCLUSIVE,	INPUT_ONLY,	and
INCLUDE_STATISTICS	are	applicable	only	for	a	table	column	reference,	and
EXCLUDE	and	INCLUDE_NULL	apply	only	for	scalar	values	columns.

The	following	alternative	abbreviated	forms	are	often	used:

[Gender]	is	shorthand	for	Predict([Gender],	EXCLUDE_NULL).

[Products	Purchases]	is	an	alternative	for	Predict([Products
Purchases],	EXCLUDE_NULL,	EXCLUSIVE_ASSOCIATION).

Note		The	return	type	of	this	function	is	itself	regarded	as	a	column
reference.	This	means	that	this	function	can	be	used	as	an	argument	in
other	functions	that	take	a	column	reference	as	an	argument	(except	the
Predict	function	itself).

Passing	INCLUDE_STATISTICS	to	a	prediction	on	a	TABLE-valued	column
will	add	the	metacolumns	$Probability	and	$Support	to	the	resulting	table.
These	columns	describe	the	likelihood	of	existence	for	the	associated	nested
table	record.

Analysis	Services	Programming

PredictAdjustedProbability
The	PredictAdjustedProbability	function	returns	the	adjusted	probability	for
the	histogram	entry	that	has	the	highest	probability.

Syntax
PredictAdjustedProbability(<scalar	column	reference>)

Applies	to
Scalar	column

Return	Type
Scalar	value

Remarks
PredictAdjustedProbability	returns	the	top	row	in	the	histogram	obtained	by
PredictHistogram(<column	reference>).

The	PredictAdjustedProbability	function	is	a	Microsoft®	SQL	Server™	2000
Analysis	Services	extension	to	the	OLE	DB	for	Data	Mining	specification.

Analysis	Services	Programming

PredictHistogram
The	PredictHistogram	function	returns	a	table	representing	a	histogram	for
prediction	of	the	given	column.

Syntax
PredictHistogram(<scalar	column	reference>	|	<cluster	column	reference>)

Applies	to
A	scalar	or	cluster	column	reference.

Return	Type
Table

Remarks
A	histogram	generates	statistics	columns.	The	column	structure	of	the	returned
histogram	depends	on	the	type	of	column	reference	used	with	the
PredictHistogram	function.

Scalar	Columns

For	a	<scalar	column	reference>,	the	histogram	returned	by	the
PredictHistogram	function	consists	of	the	following	seven	columns:

The	column	being	predicted

$Support

$Variance

$Stdev	(standard	deviation)

$Probability

$ProbabilityVariance

Microsoft®	SQL	Server™	2000	Analysis	Services	data	mining
algorithms	do	not	support	$ProbabilityVariance.	This	column	always
contains	0.

$ProbabilityStdev

Analysis	Services	data	mining	algorithms	do	not	support
$ProbabilityStdev.	This	column	always	contains	0.

$AdjustedProbability

The	$AdjustedProbability	column	is	an	Analysis	Services	extension	to
the	OLE	DB	for	Data	Mining	specification.

Cluster	Columns

The	histogram	returned	by	the	PredictHistogram	function	for	a	<cluster
column	reference>	consists	of	the	following	columns:

Cluster	(represents	the	cluster	identifier)

$Distance

$Probability

$Support

See	Also

Cluster

ClusterDistance

ClusterProbability

PredictAdjustedProbability

PredictProbability

PredictStdev

PredictSupport

PredictVariance

Analysis	Services	Programming

PredictProbability
The	PredictProbability	function	returns	the	probability	for	the	histogram	entry
that	has	the	highest	probability,	which	is	the	top	row	in	the	histogram	obtained
by	PredictHistogram(<column	reference>).

Syntax
PredictProbability(<scalar	column	reference>)

Applies	to
Scalar	column

Return	Type
Scalar	value

Analysis	Services	Programming

PredictStdev
The	PredictStdev	function	returns	the	standard	deviation	for	the	histogram	entry
that	has	the	highest	probability,	which	is	the	top	row	in	the	histogram	obtained
by	PredictHistogram(<column	reference>).

Syntax
PredictStdev(<scalar	column	reference>)

Applies	to
Scalar	column

Return	Type
Scalar	value

Analysis	Services	Programming

PredictSupport
The	PredictSupport	function	returns	the	support	value	for	the	histogram	entry
that	has	the	highest	probability,	which	is	the	top	row	in	the	histogram	obtained
by	PredictHistogram(<column	reference>).

Syntax
PredictSupport(<scalar	column	reference>)

Applies	to
Scalar	column

Return	Type
Scalar	value

Analysis	Services	Programming

PredictVariance
The	PredictVariance	function	returns	the	variance	value	for	the	histogram	entry
that	has	the	highest	probability,	which	is	the	top	row	in	the	histogram	obtained
by	PredictHistogram(<column	reference>).

Syntax
PredictVariance(<scalar	column	reference>)

Applies	to
Scalar	column

Return	Type
Scalar	value

Analysis	Services	Programming

RangeMax
The	RangeMax	function	returns	the	upper	end	of	the	predicted	bucket	that	was
discovered	for	a	discretized	column.

Syntax
RangeMax(<scalar	column	reference>)

Applies	to
Discretized	scalar	columns

Return	Type
Scalar	value

Analysis	Services	Programming

RangeMid
The	RangeMid	function	returns	the	midpoint	of	the	predicted	bucket	that	was
discovered	for	a	discretized	column.

Syntax
RangeMid(<scalar	column	reference>)

Applies	to
Discretized	scalar	columns

Return	Type
Scalar	value

Analysis	Services	Programming

RangeMin
The	RangeMin	function	returns	the	lower	end	of	the	predicted	bucket	that	was
discovered	for	a	discretized	column.

Syntax
RangeMin(<scalar	column	reference>)

Applies	to
Discretized	scalar	columns

Return	Type
Scalar	value

Analysis	Services	Programming

Sub-SELECT
A	Sub-SELECT	selects	columns	(or	expressions	containing	columns)	from	the
given	table-returning	expression.

Syntax
(SELECT	<SELECT-expressions>	FROM	<table	expression>	[WHERE
<WHERE-clause>])

Applies	to
A	table-returning	expression	that	includes	<table	column	reference>	and
functions	that	return	a	table.

Return	Type
<table	expression>

Remarks
An	optional	WHERE	clause	can	be	used	to	filter	returned	rows.

Analysis	Services	Programming

TopCount
The	TopCount	function	returns	the	specified	number	of	topmost	rows	in	a
decreasing	order	of	rank	as	specified	by	an	expression.

Syntax
TopCount(<table	expression>,	<rank	expression>,	<count>)

Applies	to
An	expression	that	returns	a	table,	such	as	a	<table	column	reference>	or	a
function	that	returns	a	table.

Return	Type
<table	expression>

Remarks
The	value	supplied	by	the	<rank	expression>	argument	is	used	to	determine	the
decreasing	order	of	rank	for	the	rows	supplied	in	the	<table	expression>
argument,	and	the	number	of	topmost	rows	specified	in	the	<count>	argument	is
returned.

For	example,	assume	that	this	Sub-SELECT	contains	the	following	table:

(SELECT	[Product	Name],	$Probability	AS	[Probability]	FROM
Predict([Products	Purchases],	INCLUDE_STATISTICS))

Product	Name Probability
Apples 0.4
Kiwi 0.1
Oranges 0.5
Lemons 0.2

Using	the	TopCount	function	with	the	Sub-SELECT	as	a	parameter	as	shown

yields	the	following	results:

TopCount((SELECT	[Product	Name],	$Probability	AS	[Probability]	FROM	Predict([Products	Purchases],	INCLUDE_STATISTICS)),	[Probability],	2

Product	Name Probability
Oranges 0.5
Apples 0.4

Analysis	Services	Programming

TopPercent
The	TopPercent	function	returns,	in	order	of	decreasing	rank,	the	topmost	rows
of	a	table	whose	cumulative	total	is	at	least	a	specified	percentage.

Syntax
TopPercent(<table	expression>,	<rank	expression>,	<percent>)

Applies	to
An	expression	that	returns	a	table,	such	as	a	<table	column	reference>	or	a
function	that	returns	a	table.

Return	Type
<table	expression>

Remarks
The	TopPercent	function	returns	the	topmost	rows	in	decreasing	order	of	rank
based	on	the	evaluated	value	of	the	<rank	expression>	argument	for	each	row,
such	that	the	sum	of	the	<rank	expression>	values	is	at	least	the	given
percentage	specified	by	the	<percent>	argument.	TopPercent	returns	the
smallest	number	of	elements	possible	while	still	meeting	the	specified	percent
value.

For	example,	assume	that	a	table	column	named	[Products]	contains	this	table:

Product	Name Unit	Sales
Apples 30
Kiwi 10
Oranges 40
Lemons 20

TopPercent([Products],	[Unit	Sales],	60)	function	returns	the	following

table:

Product	Name Unit	Sales
Oranges 40
Apples 30

Note	that	Apples	was	selected	instead	of	Lemons.

Analysis	Services	Programming

TopSum
The	TopSum	function	returns,	in	order	of	decreasing	rank,	the	topmost	rows	of	a
table	whose	cumulative	total	is	at	least	a	specified	value.

Syntax
TopSum(<table	expression>,	<rank	expression>,	<sum>)

Applies	to
An	expression	that	returns	a	table,	such	as	a	<table	column	reference>	or	a
function	that	returns	a	table.

Return	Type
<table	expression>

Remarks
The	TopSum	function	returns	the	topmost	rows	in	decreasing	order	of	rank
based	on	the	evaluated	value	of	the	<rank	expression>	argument	for	each	row,
such	that	the	sum	of	the	<rank	expression>	values	is	at	least	the	given	total
specified	by	the	<sum>	argument.	TopSum	returns	the	smallest	number	of
elements	possible	while	still	meeting	the	specified	sum	value.

For	example,	assume	that	a	table	column	named	[Products]	contains	this	table:

Product	Name Unit	Sales
Apples 1200
Kiwi 500
Oranges 1500
Lemons 750

TopSum([Products],	[Unit	Sales],	2500)	returns	the	following	table:

Product	Name Unit	Sales
Oranges 1500
Apples 1200

Analysis	Services	Programming

Schema	Rowsets
In	OLE	DB,	the	schema	for	an	object	is	a	description	of	the	object's	structure
(that	is,	the	contents	of	that	object's	meta	data).	A	schema	rowset	is	an	OLE	DB
rowset	that	encapsulates	that	description	for	all	objects	of	particular	type	within
the	database.	Each	row	in	the	rowset	corresponds	to	an	individual	object.	The
individual	properties	of	the	objects	contained	in	the	rowset	are	contained	within
the	columns	of	the	rowset.

In	addition	to	the	columns	returned	by	the	schema	rowset,	OLE	DB	provides	a
mechanism,	called	a	restriction	column,	for	filtering	these	schema	rowsets	based
upon	the	content	of	certain	columns.	For	each	schema	rowset,	a	set	of	restriction
columns	is	specified;	the	client	application	can	use	these	columns	to	filter	the
results	of	the	schema	rowset.	When	more	than	one	restriction	column	is
specified	for	a	schema	rowset,	the	columns	are	combined	using	a	logical	AND
statement.	For	instance,	if	a	user	is	interested	only	in	dimensions	that	are
contained	within	the	Sales	cube	of	the	FoodMart	2000	database,	the	client
application	can	set	the	CATALOG_NAME	restriction	column	to	equal
"FoodMart	2000"	and	the	CUBE_NAME	restriction	column	to	equal	"Sales".

Schema	rowsets	used	for	online	analytical	processing	(OLAP)	are	documented
in	the	OLE	DB	specification.	Microsoft®	SQL	Server™	2000	Analysis	Services
provides	additional	rowsets	and	additional	columns	for	some	specified	rowsets
to	provide	functionality	beyond	that	addressed	in	the	OLE	DB	specification.	For
information	about	the	schema	rowsets	used	by	Analysis	Services	for	OLAP,	see
the	OLE	DB	documentation	and	OLAP	Schema	Rowsets.

Schema	rowsets	used	for	data	mining	are	documented	in	the	OLE	DB	for	Data
Mining	specification.	All	data	mining	schema	rowsets	implemented	by	Analysis
Services	in	this	release	are	described	in	this	documentation,	regardless	of
whether	they	are	also	documented	in	the	new	OLE	DB	for	Data	Mining
specification.	For	information	about	the	schema	rowsets	used	by	Analysis
Services	for	data	mining,	see	Data	Mining	Schema	Rowsets.

A	C++	header	file,	Msmd.h,	contains	the	GUIDs	for	the	schema	rowsets	that	are
supported	in	Analysis	Services	beyond	those	defined	in	OLE	DB.	Msmd.h	is
installed	with	Analysis	Services	samples.	The	default	installation	folder	is
C:\Program	Files\Analysis	Services\Samples\Include.

For	more	information	about	OLE	DB	schema	rowsets,	search	on	"OLE	DB
schema	rowsets"	in	the	Platform	SDK	portion	of	the	MSDN®	library	at
Microsoft	Web	site.

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Analysis	Services	Programming

OLAP	Schema	Rowsets
The	following	table	describes	the	schema	rowsets	that	are	used	by	Microsoft®
SQL	Server™	2000	Analysis	Services	for	online	analytical	processing	(OLAP).

Topic Description
MDSCHEMA_ACTIONS Contains	information	about	the

actions	schema	rowset,	which
describes	the	actions	that	may	be
available	to	the	client	application

MDSCHEMA_CELL_FORMULAS Contains	information	about	the
calculated	cells	schema	rowset,	which
describes	the	calculated	cells	that	may
be	contained	within	a	database

MDSCHEMA_CUBES Contains	information	about	the	cubes
schema	rowset,	which	describes	the
structure	of	cubes	that	are	contained
within	a	database

MDSCHEMA_DIMENSIONS Contains	information	about	the
dimensions	schema	rowset,	which
describes	the	shared	and	private
dimensions	that	are	contained	within
a	database

MDSCHEMA_FUNCTIONS Contains	information	about	the
functions	schema	rowset,	which
describes	the	functions	that	are
available	to	client	applications
connected	to	the	database

MDSCHEMA_HIERARCHIES Contains	information	about	the
hierarchies	schema	rowset,	which
describes	each	hierarchy	that	is
contained	within	a	particular
dimension

MDSCHEMA_LEVELS Contains	information	about	the	levels

schema	rowset,	which	describes	each
level	that	is	contained	within	a
particular	hierarchy

MDSCHEMA_MEASURES Contains	information	about	the
measures	schema	rowset,	which
describes	each	measure	contained
within	a	cube

MDSCHEMA_MEMBERS Contains	information	about	the
members	schema	rowset,	which
describes	the	members	contained
within	a	database

MDSCHEMA_PROPERTIES Contains	information	about	the
properties	schema	rowset,	which
describes	the	properties	of	members
contained	within	a	database

MDSCHEMA_SETS Contains	information	about	the	sets
schema	rowset,	which	describes	any
sets	that	are	currently	defined

Analysis	Services	Programming

MDSCHEMA_ACTIONS
This	schema	rowset	describes	the	actions	that	may	be	available	to	the	client
application.

Microsoft®	SQL	Server™	2000	Analysis	Services	extends	the	OLE	DB
specification	with	the	addition	of	the	MDSCHEMA_ACTIONS	schema	rowset.
The	following	table	describes	this	schema	rowset.

Column	name Type	indicator Description
CATALOG_NAME DBTYPE_WSTRThe	name	of	the	catalog	to	which	this	action	belongs.
SCHEMA_NAME DBTYPE_WSTRThis	column	is	not	supported	by	Analysis	Services;	it

always	contains	VT_NULL.VT_NULL
CUBE_NAME DBTYPE_WSTRThe	name	of	the	cube	to	which	this	action	belongs.
ACTION_NAME DBTYPE_WSTRThe	name	of	this	action.
ACTION_TYPE DBTYPE_I4 A	bitmap	that	is	used	to	specify	the	action's	triggering

method.	The	following	bit	value	constants	are	defined	in
Msmd.h	for	this	bitmap:

MDACTION_TYPE_URL

MDACTION_TYPE_HTML

MDACTION_TYPE_STATEMENT

MDACTION_TYPE_DATASET

MDACTION_TYPE_ROWSET

MDACTION_TYPE_COMMANDLINE

MDACTION_TYPE_PROPRIETARY

COORDINATE DBTYPE_WSTRA	Multidimensional	Expressions	(MDX)	expression	that

COORDINATE DBTYPE_WSTRA	Multidimensional	Expressions	(MDX)	expression	that
specifies	an	object	or	a	coordinate	in	the	multidimensional
space	in	which	the	action	is	executed.	It	is	the
responsibility	of	the	client	application	to	provide	the	value
of	this	restriction	column.

COORDINATE_TYPEDBTYPE_I4 A	bitmap	that	specifies	how	the	COORDINATE
restriction	column	is	interpreted.	The	following	bit	value
constants	are	defined	in	Msmd.h	for	this	bitmap:

MDACTION_COORDINATE_CUBE

MDACTION_COORDINATE_DIMENSION

MDACTION_COORDINATE_LEVEL

MDACTION_COORDINATE_MEMBER

MDACTION_COORDINATE_SET

MDACTION_COORDINATE_CELL

ACTION_CAPTION DBTYPE_WSTRThe	label	or	a	caption	associated	with	this	action.
DESCRIPTION DBTYPE_WSTRA	user-friendly	description	of	the	action.
CONTENT DBTYPE_WSTRThe	expression	or	content	of	the	action	that	is	to	be

executed.
APPLICATION DBTYPE_WSTRThe	name	of	the	application	that	is	to	be	used	to	execute

the	action.
INVOCATION DBTYPE_I4 Provides	information	about	how	the	action	should	be

invoked:

MDACTION_INVOCATION_INTERACTIVE

Regular	action	used	during	normal	operations.
This	is	the	default	value	for	this	column.

MDACTION_INVOCATION_ON_OPEN

Action	should	be	executed	when	the	cube	is	first

Action	should	be	executed	when	the	cube	is	first
opened.

MDACTION_INVOCATION_BATCH

Action	executes	as	part	of	a	batch	operation	or
DTS	task.

These	enumeration	values	are	defined	in	MSMD.h.

The	sort	order	for	this	schema	rowset	is	the	same	as	the	definition	for	this
schema	rowset.

Note		Actions	of	MDACTION_TYPE_PROPRIETARY	type	must	provide	a
value	for	the	APPLICATION	column.

Restriction	Columns
The	actions	schema	rowset	contains	three	mandatory	restrictions	that	must	be
specified	when	retrieving	a	schema	rowset.	Failing	to	specify	a	mandatory
restriction	column	results	in	an	error.	The	following	table	contains	a	list	of
restriction	columns	and	describes	whether	they	are	mandatory.

Column	name Restriction	state
CATALOG_NAME Optional
SCHEMA_NAME Optional
CUBE_NAME Mandatory
ACTION_NAME Optional
ACTION_TYPE Optional
COORDINATE Mandatory
COORDINATE_TYPE Mandatory
INVOCATION Optional

IMPORTANT		The	INVOCATION	restriction	column	has	a	default	value	of
MDACTION_INVOCATION_INTERACTIVE.	Any	schema	rowset	that	does
not	explicitly	specify	a	value	for	this	column	contains	only	rows	with	this	value.

If	you	want	the	rowset	to	contain	the	entire	set	of	actions,	use	the
MDACTION_INVOCATION_ALL	constant	in	the	INVOCATION	restriction
column.

Client	applications	can	define	more	than	one	ACTION_TYPE	by	using	the	OR
operator.

See	Also

Actions

CREATE	ACTION	Statement

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

MDSCHEMA_CELL_FORMULAS
Microsoft®	SQL	Server™	2000	Analysis	Services	extends	the	OLE	DB
specification	with	the	addition	of	the	MDSCHEMA_CELL_FORMULAS
schema	rowset.	The	following	table	describes	this	schema	rowset.

Column	name Type Description
CATALOG_NAME DBTYPE_WSTR The	name	of	the	catalog	to

which	a	set	belongs.	If	the
provider	does	not	support
catalogs,	this	column	contains
VT_NULL.

SCHEMA_NAME DBTYPE_WSTR The	name	of	the	schema	to
which	a	calculated	cell
formula	belongs.	This	column
is	not	supported	by	Analysis
Services.	It	always	contains
VT_NULL.

CUBE_NAME DBTYPE_WSTR The	name	of	the	cube	to
which	the	calculated	cell
formula	belongs.

FORMULA_NAME DBTYPE_WSTR The	name	of	the	calculated
cell	formula,	as	specified	in
the	CREATE	CELL
FORMULA	statement.

SCOPE DBTYPE_I4 The	scope	of	the	calculated
cell	formula.	Only
MDSET_SCOPE_SESSION
is	supported.	The	calculated
cell	formula	lasts	only	as	long
as	the	current	session	is
active.

DESCRIPTION DBTYPE_WSTR A	user-friendly	description	of
the	calculated	cell	formula.
This	column	is	not	supported

This	column	is	not	supported
by	Analysis	Services.	It
always	contains	VT_NULL.

EXPRESSION DBTYPE_WSTR The	Multidimensional
Expressions	(MDX)
expression	specified	in	the
<formula	body>	clause	of	the
CREATE	CELL	FORMULA
statement.

Restriction	Columns
CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
FORMULA_NAME
SCOPE

See	Also

Calculated	Cells

CREATE	CELL	CALCULATION	Statement

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

MDSCHEMA_CUBES
This	schema	rowset	describes	the	structure	of	cubes	that	are	contained	in	a
database.

Microsoft®	SQL	Server™	2000	Analysis	Services	extends	the	OLE	DB
specification	with	the	addition	of	the	following	columns	to	this	schema	rowset.

Column	name Type Description
IS_DRILLTHROUGH_ENABLEDDBTYPE_BOOLDescribes	whether

DRILLTHROUGH
can	be	performed
on	the	members	of
a	cube

IS_WRITE_ENABLED DBTYPE_BOOLDescribes	whether
a	cube	is	write-
enabled

IS_LINKABLE DBTYPE_BOOLDescribes	whether
a	cube	can	be	used
in	a	linked	cube

IS_SQL_ALLOWED DBTYPE_BOOLDescribes	whether
or	not	SQL	can	be
used	on	the	cube

In	Analysis	Services,	the	CUBE_TYPE	column	can	contain	one	the	following
string	values:	"CUBE",	"VIRTUAL	CUBE",	or	"LINKED	CUBE".	The	value	of
the	column	depends	on	the	type	of	cube	the	row	is	describing.

For	local	cubes,	this	column	contains	"CUBE".

For	more	information	about	the	variety	of	cubes	supported	by	Analysis	Services,
see	Introduction	to	Cubes.

Restriction	Columns
CATALOG_NAME

JavaScript:hhobj_1.Click()

SCHEMA_NAME
CUBE_NAME

See	Also

Regular	Cubes

Virtual	Cubes

Linked	Cubes

Local	Cubes

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Analysis	Services	Programming

MDSCHEMA_DIMENSIONS
This	schema	rowset	describes	the	shared	and	private	dimensions	that	are
contained	within	a	database.

Microsoft®	SQL	Server™	2000	Analysis	Services	extends	the	OLE	DB
specification	with	the	addition	of	the	following	columns	to	this	schema	rowset.

Column	name Type Description
IS_READWRITE DBTYPE_BOOL Contains	TRUE	if	the	dimension	is	write-enabled.
DIMENSION_UNIQUE_SETTINGS DBTYPE_I4 If	the	dimension	contains	only	members	with	unique	names

or	keys,	this	column	contains	a	bitmap	that	specifies	which
columns	contain	unique	values.	The	following	bit	value
constants	are	defined	in	Msmd.h	for	this	bitmap:

MDDIMENSIONS_MEMBER_KEY_UNIQUE

MDDIMENSIONS_MEMBER_NAME_UNIQUE

DIMENSION_MASTER_UNIQUE_NAMEDBTYPE_WSTR If	the	value	in	the	
in	the	schema	rowset	is	set	to	TRUE	(that	is,	if	the	dimension
is	virtual),	this	column	contains	the	dimension	on	which	that
virtual	dimension	is	based.

DIMENSION_IS_VISIBLE DBTYPE_BOOL Contains	TRUE	if	the	dimension	is	visible.

The	meaning	of	the	following	column	has	changed	since	SQL	Server	version	7.0
OLAP	Services.

Column	name Type	indicator Description
DEFAULT_HIERARCHYDBTYPE_WSTRContains	the	unique	name	of

the	hierarchy	regardless	of
the	number	of	hierarchies	in
the	dimension.	In	earlier
releases,	this	column
contained	VT_NULL	if	the

dimension	had	only	one
hierarchy.

Restriction	Columns
CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
DIMENSION_NAME
DIMENSION_UNIQUE_NAME

For	more	information	about	the	MDSCHEMA_DIMENSIONS	schema	rowset,
see	the	OLE	DB	documentation.

Analysis	Services	Programming

MDSCHEMA_FUNCTIONS
This	schema	rowset	describes	the	functions	that	are	available	to	client
applications	connected	to	the	database.

Microsoft®	SQL	Server™	2000	Analysis	Services	extends	the	OLE	DB
specification	with	the	addition	of	the	following	columns	to	this	schema	rowset.

Column	name Type Description
FUNCTION_NAME DBTYPE_WSTRThe	name	of	the	function.
DESCRIPTION DBTYPE_WSTRA	user-friendly	description	of	the	function.
PARAMETER_LIST DBTYPE_WSTRReserved	for	future	use.
RETURN_TYPE DBTYPE_I4 The	VARTYPE	of	the	return	data	type	of	the	function.
ORIGIN DBTYPE_I4 For	Multidimensional	Expressions	(MDX)	functions,

returns
MSMD_SCHEMA_FUNCTIONS_ORIGIN_MSOLAP
For	user-defined	functions,	returns
MSMD_FUNCTIONS_ORIGIN_UDF

INTERFACE_NAMEDBTYPE_WSTRThe	name	of	the	interface	for	user-defined	functions	and
the	group	name	for	the	MDX	functions.

LIBRARY_NAME DBTYPE_WSTR (Optional.)	For	user-defined	functions,	returns	the	name	of
the	type	library.	For	MDX	functions,	returns	

DLL_NAME DBTYPE_WSTR (Optional.)	For	user-defined	functions,	this	column
contains	the	name	of	the	.dll	or	.exe	file	in	which	a
function	is	implemented.	For	MDX	functions,	it	contains
VT_NULL.

HELP_FILE DBTYPE_WSTR (Optional.)	Contains	the	name	of	the	file	that	contains	this
function's	documentation.	For	MDX	functions,	it	returns
VT_NULL	.

HELP_CONTEXT DBTYPE_WSTR (Optional.)	Returns	the	Help	context	ID	for	this	function.
OBJECT DBTYPE_WSTR (Optional).	The	generic	name	of	the	object	class	to	which	a

function	applies.	For	example,	the	rowset	for	the
<Level_Name>.Members	function	returns	"Level".	This
column	contains	VT_NULL	if	the	function	is	a	user-

defined	function	or	if	it	is	not	a	property.

The	default	sort	order	for	this	schema	rowset	is	ORIGIN,	INTERFACE_NAME,
and	FUNCTION_NAME.

Restriction	Columns
LIBRARY_NAME
INTERFACE_NAME
FUNCTION_NAME
ORIGIN

Analysis	Services	Programming

MDSCHEMA_HIERARCHIES
This	schema	rowset	describes	each	hierarchy	that	is	contained	within	a	particular
dimension.

Microsoft®	SQL	Server™	2000	Analysis	Services	extends	the	OLE	DB
specification	with	the	addition	of	the	following	columns	to	this	schema	rowset.

Column	name Type Description
STRUCTURE DBTYPE_I2 The	type	of	hierarchy.	It	can	be	one	of	the	following	values:

MD_STRUCTURE_FULLYBALANCED

MD_STRUCTURE_RAGGEDBALANCED

MD_STRUCTURE_UNBALANCED

MD_STRUCTURE_NETWORK

IS_VIRTUAL DBTYPE_BOOL Returns	TRUE	if	this	hierarchy	represents	a	virtual
dimension.

IS_READWRITE DBTYPE_BOOL Returns	TRUE	if	the	
represents	this	hierarchy	is	enabled.

HIERARCHY_UNIQUE_SETTINGS DBTYPE_I4 A	bitmap	that	specifies	which	columns	contain	unique	values,
if	the	hierarchy	only	has	members	with	unique	names	or
keys.	The	following	bit	value	constants	are	defined	in
Msmd.h	for	this	bitmap:

MDDIMENSIONS_MEMBER_KEY_UNIQUE

MDDIMENSIONS_MEMBER_NAME_UNIQUE

HIERARCHY_MASTER_UNIQUE_NAMEDBTYPE_WSTR If	the	value	in	the	
set	to	TRUE	(that	is,	if	the	dimension	is	virtual),	this	column
contains	the	dimension	on	which	the	virtual	dimension	is

based.
HIERARCHY_IS_VISIBLE DBTYPE_BOOL Returns	TRUE	if	dimension	is	visible.
HIERARCHY_ORDINAL DBTYPE_UI4 Returns	the	ordinal	number	of	the	hierarchy	across	all

hierarchies	of	the	cube.
DIMENSION_IS_SHARED DBTYPE_BOOL Returns	TRUE	if	the	parent	dimension	is	shared.

Restriction	Columns
CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
DIMENSION_UNIQUE_NAME
HIERARCHY_NAME
HIERARCHY_UNIQUE_NAME

For	more	information	about	the	MDSCHEMA_HIERARCHIES	schema	rowset,
see	the	OLE	DB	documentation.

Analysis	Services	Programming

MDSCHEMA_LEVELS
This	schema	rowset	describes	each	level	that	is	contained	within	a	particular
hierarchy.

Microsoft®	SQL	Server™	2000	Analysis	Services	extends	the	OLE	DB
specification	with	the	addition	of	the	following	columns	to	this	schema	rowset.

Column	name Type Description
LEVEL_UNIQUE_SETTINGS DBTYPE_I4 A	bitmap	that	specifies	which	columns	contain	unique	values,

if	the	level	only	has	member	with	unique	names	or	keys.	The
following	bit	value	constants	are	defined	in	Msmd.h	for	this
bitmap:

LEVEL_IS_VISIBLE DBTYPE_BOOL Returns	TRUE	if	the	dimension	is	visible.
LEVEL_ORDERING_PROPERTY DBTYPE_WSTR If	the	level	is	sorted	by	member	property,	this	column	returns

the	name	of	that	property.
LEVEL_DBTYPE DBTYPE_I4 The	DBType	

was	used	to	build	members	for	the	level.
LEVEL_MASTER_UNIQUE_NAME DBTYPE_WSTR For	levels	that	are	members	of	a	virtual	dimension	but	not

(All)	levels,	specifies	the	unique	name	of	the	level.
LEVEL_NAME_SQL_COLUMN_NAME DBTYPE_WSTRThe	name	of	the	column	in	the	SQL	query	that	corresponds	to

the	level's	name.
LEVEL_KEY_SQL_COLUMN_NAME DBTYPE_WSTRThe	name	of	the	column	in	the	SQL	query	that	corresponds	to

the	level's	key.
LEVEL_UNIQUE_NAME_SQL_COLUMN_NAMEDBTYPE_WSTRThe	name	of	the	column	in	the	SQL	query	that	corresponds	to

the	level's	unique	name.

Restriction	Columns

CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
DIMENSION_UNIQUE_NAME
HIERARCHY_UNIQUE_NAME
LEVEL_NAME
LEVEL_UNIQUE_NAME

For	more	information	about	the	MDSCHEMA_LEVELS	schema	rowset,	see	the
OLE	DB	documentation.

Analysis	Services	Programming

MDSCHEMA_MEASURES
This	schema	rowset	describes	each	measure	contained	within	a	cube.

Microsoft®	SQL	Server™	2000	Analysis	Services	extends	the	OLE	DB
specification	with	the	addition	of	the	following	columns	to	this	schema	rowset.

Column	name Type Description
MEASURE_IS_VISIBLE DBTYPE_BOOL Returns

TRUE	if
dimension
is	visible.

LEVELS_LIST DBTYPE_WSTRReturns	a
comma-
delimited
list	of
unique
names	of
the	levels
that	are
used	in	this
measure.
This
column	can
be	used	for
writeback
when	the
end	user
needs	to
find	out
which
levels	can
be	written
to	for	a
virtual

cube.	If	the
measure	is
calculated,
this	column
returns
VT_NULL.

MEASURE_NAME_SQL_COLUMN_NAMEDBTYPE_WSTRReturns	the
name	of	the
column	in
the	SQL
query	that
corresponds
to	the
measure's
name.

Restriction	Columns
CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
MEASURE_NAME
MEASURE_UNIQUE_NAME

For	more	information	about	the	MDSCHEMA_MEASURES	schema	rowset,	see
the	OLE	DB	documentation.

Analysis	Services	Programming

MDSCHEMA_MEMBERS
This	schema	rowset	describes	the	members	contained	in	a	database.

Microsoft®	SQL	Server™	2000	Analysis	Services	extends	the	OLE	DB
specification	with	the	addition	of	the	following	columns	to	this	schema	rowset.

Column	name Type	indicator Description
MEMBER_KEY DBTYPE_WSTRContains	the	key

property	for	the
member.

IS_PLACEHOLDERMEMBERDBTYPE_BOOL Indicates	whether	a
member	is	a
placeholder	member
for	an	empty	position
in	a	dimension
hierarchy.	It	is	valid
only	if	the	MDX
Compatibility
property	has	been	set
to	1.

IS_DATAMEMBER DBTYPE_BOOL Contains	TRUE	if	the
member	is	a	data
member.

Restriction	Columns
CATALOG_NAME
SCHEMA_NAME
CUBE_NAMEDIMENSION_UNIQUE_NAME
HIERARCHY_UNIQUE_NAME
IS_EMPTYMEMBER
IS_DATAMEMBER
LEVEL_UNIQUE_NAME
LEVEL_NUMBER	

MEMBER_NAME
MEMBER_UNIQUE_NAME
MEMBER_CAPTION
MEMBER_TYPE
Tree	operator

For	more	information	about	the	MDSCHEMA_MEMBERS	schema	rowset,	see
the	OLE	DB	documentation.

Analysis	Services	Programming

MDSCHEMA_PROPERTIES
This	schema	rowset	describes	the	properties	of	members	contained	in	a	database.

Microsoft®	SQL	Server™	2000	Analysis	Services	extends	the	OLE	DB
specification	with	the	addition	of	the	following	column	to	this	schema	rowset.

Column	name Type Description
PROPERTY_CONTENT_TYPEDBTYPE_I2 Property	type

Restriction	Columns
CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
DIMENSION_UNIQUE_NAME
HIERARCHY_UNIQUE_NAME
LEVEL_UNIQUE_NAME
MEMBER_UNIQUE_NAME
PROPERTY_NAME
PROPERTY_TYPE

For	more	information	about	the	MDSCHEMA_PROPERTIES	schema	rowset,
see	the	OLE	DB	documentation.

Analysis	Services	Programming

MDSCHEMA_SETS
This	schema	rowset	describes	any	sets	that	are	currently	defined	within	a
database,	including	session-scoped	sets.

Microsoft®	SQL	Server™	2000	Analysis	Services	extends	the	OLE	DB
specification	with	the	addition	of	the	following	columns	to	this	schema	rowset.

Column	name Type	indicator Description
CATALOG_NAMEDBTYPE_WSTRThe	name	of	the	catalog	to	which	this

set	belongs.	This	column	contains
VT_NULL	if	the	provider	does	not
support	catalogs.

SCHEMA_NAME DBTYPE_WSTRThis	column	is	not	supported	by
Analysis	Services.	It	always	contains
VT_NULL.

CUBE_NAME DBTYPE_WSTRThe	name	of	the	cube	to	which	the	set
belongs.	This	column	always	contains
a	value	and	can	never	be	VT_NULL.

SET_NAME DBTYPE_WSTRThe	name	of	the	set,	as	specified	in	the
CREATE	SET	statement.

SCOPE DBTYPE_I4 The	scope	of	the	set.	Only
MDSET_SCOPE_SESSION
is	supported.

DESCRIPTION DBTYPE_WSTRThis	column	is	not	supported	by
Analysis	Services.	It	always	contains
VT_NULL.

EXPRESSION DBTYPE_WSTRThe	expression	for	this	set.
DIMENSIONS DBTYPE_WSTRA	comma-delimited	list	of	dimensions

used	by	the	set.

The	default	sort	order	for	this	schema	rowset	is:	CATALOG_NAME,
SCHEMA_NAME,	CUBE_NAME,	SET_NAME,	and	SCOPE.

Restriction	Columns
CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
SET_NAME
SCOPE

Analysis	Services	Programming

Data	Mining	Schema	Rowsets
The	following	table	describes	the	schema	rowsets	that	are	used	by	Microsoft®
SQL	Server™	2000	Analysis	Services	for	browsing	data	mining	models.	Unlike
the	OLAP	schema	rowsets	defined	in	previous	topics,	these	rowsets	are
described	in	their	entirety.	For	more	information	about	these	schema	rowsets,	see
the	OLE	DB	for	Data	Mining	specification.

Schema	rowset Description
MINING_COLUMNS Describes	the	individual	columns	of

all	defined	data	mining	models
known	to	the	provider

MINING_MODEL_CONTENT Allows	browsing	of	the	content	of	a
data	mining	model

MINING_MODEL_PMML Stores	the	Predictive	Model	Markup
Language	(PMML)	standard	XML
representation	of	the	mining	model

MINING_MODELS Exposes	data	mining	models
MINING_SERVICE_PARAMETERS Provides	a	list	of	parameters	that	can

be	supplied	when	generating	a
mining	model	using	the	CREATE
MINING	MODEL	statement

MINING_SERVICES Provides	a	description	of	each	data
mining	algorithm	that	is	supported
by	that	provider

Analysis	Services	Programming

MINING_COLUMNS
The	individual	columns	in	a	data	mining	model	are	exposed	in	the
MINING_COLUMNS	schema	rowset	for	every	mining	model	in	the	database.
Structurally,	this	rowset	is	similar	to	the	COLUMNS	schema	rowset	and	can	be
used	in	the	same	manner.	For	example,	if	you	provide	a	MODEL_NAME
restriction,	you	can	obtain	all	of	the	columns	for	a	particular	model.

Column	name Type	indicator Description
MODEL_CATALOG DBTYPE_WSTRThe	catalog	name.	Microsoft®	SQL

Server™	2000	Analysis	Services
populates	this	column	with	the	name	of
the	database	that	the	model	is	a	member
of.

MODEL_SCHEMA DBTYPE_WSTRThe	unqualified	schema	name.	This
column	is	not	supported	by	Analysis
Services;	it	always	contains	

MODEL_NAME DBTYPE_WSTRThe	mining	model	name.	This	column
contains	the	name	of	the	mining	model
with	which	a	column	is	associated,	and	it
is	never	empty.

COLUMN_NAME DBTYPE_WSTRThe	name	of	the	column.
COLUMN_GUID DBTYPE_GUID The	column	GUID.	This	column	is	not

supported	by	Analysis	Services;	it	always
contains	VT_NULL

COLUMN_PROPID DBTYPE_UI4 The	column	property	ID.	This	column	is
not	supported	by	Analysis	Services;	it
always	contains	VT_NULL

ORDINAL_POSITION DBTYPE_UI4 The	ordinal	position	of	the	column.
Columns	are	numbered	starting	from	1.
This	column	contains	
is	no	stable	ordinal	value	for	the	column.

COLUMN_HASDEFAULT DBTYPE_BOOL Contains	VARIANT_TRUE	if	the	column
has	a	default	value,	otherwise

VARIANT_FALSE.
COLUMN_DEFAULT DBTYPE_WSTRThe	default	value	of	the	column.

If	the	default	value	is	the	NULL	value,
COLUMN_HASDEFAULT	contains
VARIANT_TRUE,	and	this	column
contains	VT_NULL

COLUMN_FLAGS DBTYPE_UI4 A	bitmask	that	describes	characteristics	of
the	column.	The	DBCOLUMNFLAGS
enumerated	type	specifies	the	bits	in	the
bitmask.	This	column	is	never	empty.

IS_NULLABLE DBTYPE_BOOL Contains	VARIANT_FALSE	if	the
column	is	known	not	to	be	nullable,
otherwise	VARIANT_TRUE.

DATA_TYPE DBTYPE_UI2 The	indicator	of	the	column's	data	type,
for	example:

"TABLE"	=
DBTYPE_HCHAPTER

"TEXT"	=	DBTYPE_WCHAR

"LONG"	=	DBTYPE_I8

"DOUBLE"	=	DBTYPE_R8

"DATE"	=	DBTYPE_DATE

TYPE_GUID DBTYPE_GUID The	GUID	of	the	column's	data	type.	This
column	is	not	supported	by	Analysis
Services;	it	always	contains	

CHARACTER_MAXIMUM_LENGTH DBTYPE_UI4 The	maximum	possible	length	of	a	value
in	the	column.	For	character,	binary,	or	bit
columns,	this	is	one	of	the	following:

The	maximum	length	of	the
column	in	characters,	bytes,	or
bits,	respective	to	the	column
type,	if	a	length	is	defined.	For
example,	a	CHAR(5)	column	in
an	SQL	table	has	a	maximum
length	of	5.

The	maximum	length	of	the	data
type	in	characters,	bytes,	or	bits,
respective	to	the	column	type,	if
the	column	does	not	have	a
defined	length.

0	if	neither	the	column	nor	the
data	type	has	a	defined	maximum
length.	

NULL	for	all	other	types	of
columns.

CHARACTER_OCTET_LENGTH DBTYPE_UI4 The	maximum	length	in	octets	(bytes)	of
the	column,	if	the	type	of	the	column	is
character	or	binary.	A	value	of	0	means
the	column	has	no	maximum	length.	This
column	contains	VT_NULL
types	of	columns.

NUMERIC_PRECISION DBTYPE_UI2 If	the	column's	data	type	is	of	a	numeric
data	type	other	than	VARNUMERIC,	this
column	contains	the	maximum	precision
of	the	column.	The	precision	of	columns
with	a	data	type	of	DBTYPE_DECIMAL
or	DBTYPE_NUMERIC	depends	on	the
column	definition.

If	the	column's	data	type	is	not	numeric	or

is	VARNUMERIC,	this	column	contains
VT_NULL.

NUMERIC_SCALE DBTYPE_I2 If	the	column's	type	indicator	is
DBTYPE_DECIMAL,
DBTYPE_NUMERIC,	or
DBTYPE_VARNUMERIC,	this	column
contains	the	number	of	digits	to	the	right
of	the	decimal	point.	Otherwise,	this
column	contains	VT_NULL

DATETIME_PRECISION DBTYPE_UI4 The	date/time	precision	(number	of	digits
in	the	fractional	seconds	portion)	of	the
column	if	the	column	data	type	is	a
datetime	or	interval	type,	otherwise
NULL.

CHARACTER_SET_CATALOG DBTYPE_WSTRThe	catalog	name	in	which	the	character
set	is	defined.	This	column	is	not
supported	by	Analysis	Services;	it	always
contains	VT_NULL

CHARACTER_SET_SCHEMA DBTYPE_WSTRAn	unqualified	schema	name	in	which	the
character	set	is	defined.	This	column	is
not	supported	by	Analysis	Services;	it
always	contains	VT_NULL

CHARACTER_SET_NAME DBTYPE_WSTRThe	character	set	name.	This	column	is
not	supported	by	Analysis	Services;	it
always	contains	VT_NULL

COLLATION_CATALOG DBTYPE_WSTRThe	catalog	name	in	which	the	collation	is
defined.	This	column	is	not	supported	by
Analysis	Services;	it	always	contains
VT_NULL.

COLLATION_SCHEMA DBTYPE_WSTRAn	unqualified	schema	name	in	which	the
collation	is	defined.	This	column	is	not
supported	by	Analysis	Services;	it	always
contains	VT_NULL

COLLATION_NAME DBTYPE_WSTRThe	collation	name.	This	column	is	not
supported	by	Analysis	Services;	it	always
contains	VT_NULL

DOMAIN_CATALOG DBTYPE_WSTRThe	catalog	name	in	which	the	domain	is
defined.	This	column	is	not	supported	by
Analysis	Services;	it	always	contains
VT_NULL.

DOMAIN_SCHEMA DBTYPE_WSTRThe	unqualified	schema	name	in	which
the	domain	is	defined.	This	column	is	not
supported	by	Analysis	Services;	it	always
contains	VT_NULL

DOMAIN_NAME DBTYPE_WSTRThe	domain	name.	This	column	is	not
supported	by	Analysis	Services;	it	always
contains	VT_NULL

DESCRIPTION DBTYPE_WSTRA	user-friendly	description	of	the	column
This	column	is	not	supported	by	Analysis
Services;	it	always	contains	

DISTRIBUTION_FLAG DBTYPE_WSTRA	description	of	the	statistical	distribution
of	the	column.	This	column	contains	one
of	the	following:

"NORMAL"

"LOG	NORMAL"

"UNIFORM"

CONTENT_TYPE DBTYPE_WSTRA	description	of	the	content	of	the
column.	This	column	contains	one	of	the
following:

"KEY"

"DISCRETE"

"CONTINUOUS"

"DISCRETIZED([arguments])"

"ORDERED"

"SEQUENCE_TIME"

"CYCLICAL"

"PROBABILITY"

"VARIANCE"

"STDEV"	

"SUPPORT"

"PROBABILITY_VARIANCE"

"PROBABILITY_STDEV"

"ORDER"

"SEQUENCE"

Provider-specific	flags	can	also	be
defined.

MODELING_FLAG DBTYPE_WSTRA	comma-delimited	list	of	flags.	The
defined	flags	are:

"MODEL_EXISTENCE_ONLY"

"NOT	NULL"

Provider-specific	flags	can	also	be
defined.

IS_RELATED_TO_KEY DBTYPE_BOOL This	column	contains	VARIANT_TRUE
if	this	column	is	related	to	the	key.	If	the
key	is	a	single	column,	the
RELATED_ATTRIBUTE	field	can
optionally	contain	its	column	name.

RELATED_ATTRIBUTE DBTYPE_WSTRThe	name	of	the	target	column	that	the
current	column	either	relates	to	or	is	a
special	property	of.

IS_INPUT DBTYPE_BOOL This	schema	column	contains
VARIANT_TRUE	if	this	is	an	input
column.

IS_PREDICTABLE DBTYPE_BOOL This	schema	column	contains
VARIANT_TRUE	if	the	column	is
predictable.

CONTAINING_COLUMN DBTYPE_WSTRThe	name	of	the	TABLE	column	that
contains	this	column.	This	column
contains	VT_NULL
contained	in	another	column.

PREDICTION_SCALAR_FUNCTIONSDBTYPE_WSTRA	comma-delimited	list	of	scalar
functions	that	can	be	performed	on	the
column.

PREDICTION_TABLE_FUNCTIONS DBTYPE_WSTRA	comma-delimited	list	of	functions	that
can	be	applied	to	the	column.	The
functions	should	return	a	table.	The	list
has	the	following	format:

<function	name>(<column1>	[,
<column2>],	...)

The	format	allows	the	client	application	to
determine	which	columns	will	be	present
in	the	table	the	function	returns.

IS_POPULATED DBTYPE_BOOL Contains	TRUE	if	the	column	has	been
trained	with	a	set	of	possible	values.

Contains	FALSE	if	the	column	is	not
populated.

PREDICTION_SCORE DBTYPE_UI4 Reserved	for	future	use.

Default	Sort	Order
MODEL_CATALOG
MODEL_SCHEMA
MODEL_NAME
COLUMN_NAME

Restriction	Columns
MODEL_CATALOG
MODEL_SCHEMA
MODEL_NAME
COLUMN_NAME

Analysis	Services	Programming

MINING_MODEL_CONTENT
This	schema	rowset	allows	the	client	application	to	browse	the	content	of	a	data
mining	model.	Client	applications	can	use	the	special	tree	operation	restrictions
described	at	the	end	of	this	topic	to	navigate	the	content	of	the	mining	model.

Column	name Type	indicator Description
MODEL_CATALOG DBTYPE_WSTR The	catalog	name.	Microsoft®	SQL	Server™

2000	Analysis	Services	populates	this	column
with	the	name	of	the	database	of	which	the
model	is	a	member.

MODEL_SCHEMA DBTYPE_WSTR The	unqualified	schema	name.	This	column	is
not	supported	by	Analysis	Services;	it	always
contains	VT_NULL

MODEL_NAME DBTYPE_WSTR The	name	of	the	model	with	which	the	content
described	by	this	row	is	associated.

ATTRIBUTE_NAME DBTYPE_WSTR The	name(s)	of	the	attribute(s)	corresponding	to
this	node.	For	a	model	node,	this	is	a	list	of
predictable	attributes.	For	a	leaf	distribution
node,	this	is	an	attribute	to	which	the	distribution
corresponds.

NODE_NAME DBTYPE_WSTR The	name	of	the	node.	Currently,	this	column
contains	the	same	value	as
NODE_UNIQUE_NAME,	though	this	may
change	in	future	releases.

NODE_UNIQUE_NAME DBTYPE_WSTR The	unique	name	of	the	node.
NODE_TYPE DBTYPE_I4 The	type	of	the	node.	It	can	be	one	of	the

following	values:

DM_NODE_TYPE_MODEL

DM_NODE_TYPE_TREE

DM_NODE_TYPE_INTERIOR

DM_NODE_TYPE_DISTRIBUTION

DM_NODE_TYPE_CLUSTER

DM_NODE_TYPE_UNKNOWN

NODE_GUID DBTYPE_GUID The	node	GUID.	This	column	is	not	supported
by	Analysis	Services;	it	always	contains
VT_NULL.

NODE_CAPTION DBTYPE_WSTR A	label	or	a	caption	associated	with	the	node.
This	property	is	used	primarily	for	display
purposes.	If	a	caption	does	not	exist,	the
contents	of	the	NODE_NAME	column	is
returned.

CHILDREN_CARDINALITY DBTYPE_UI4 An	estimate	of	the	number	of	children	that	the
node	has.

PARENT_UNIQUE_NAME DBTYPE_WSTR The	unique	name	of	the	node's	parent.
VT_NULL	is	returned	for	any	nodes	at	the	root
level.

NODE_DESCRIPTION DBTYPE_WSTR A	user-friendly	description	of	the	node.
NODE_RULE DBTYPE_WSTR An	XML	description	of	the	rule	that	is

embedded	in	the	node.
MARGINAL_RULE DBTYPE_WSTR An	XML	description	of	the	rule	that	is	moving

to	the	node	from	the	parent	node.
NODE_PROBABILITY DBTYPE_R8 The	probability	associated	with	this	node.
MARGINAL_PROBABILITY DBTYPE_R8 The	probability	of	reaching	the	node	from	the

parent	node.
NODE_DISTRIBUTION DBTYPE_HCHAPTERA	table	that	contains	the	probability	histogram	of

the	node.
NODE_SUPPORT DBTYPE_R8 The	number	of	cases	that	support	this	node.
MSOLAP_MODEL_COLUMN DBTYPE_WSTR The	name	of	the	column	from	the	model

definition	that	this	node	pertains	to.
MSOLAP_NODE_SCORE DBTYPE_R8 The	score	that	was	computed	for	this	node.

MSOLAP_NODE_SHORT_CAPTIONDBTYPE_WSTR A	short	caption	for	the	node	that	can	be	used	for
display	purposes	to	improve	readability.

Default	Sort	Order
MODEL_CATALOG
MODEL_SCHEMA
MODEL_NAME
ATTRIBUTE_NAME

Restriction	Columns
The	MINING_MODEL_CONTENT	schema	rowset	can	have	ten	restrictions.
The	first	nine	are	columns	in	the	rowset	described	in	the	table.

MODEL_CATALOG
MODEL_SCHEMA
MODEL_NAME
ATTRIBUTE_NAME
NODE_NAME
NODE_UNIQUE_NAME
NODE_TYPE
NODE_GUID
NODE_CAPTION

The	tenth	restriction,	TREE_OPERATION,	is	not	on	any	particular	column	of
the	MINING_MODEL_CONTENT	rowset;	rather,	it	specifies	a	tree	operator.
The	consumer	can	specify	a	NODE_UNIQUE_NAME	restriction	and	the	tree
operator	(ANCESTORS,	CHILDREN,	SIBLINGS,	PARENT,	DESCENDANTS,
SELF)	to	obtain	the	requested	set	of	members.	The	SELF	operator	includes	the
row	for	the	node	itself	in	the	list	of	returned	rows.	The	following	table	describes
the	constants	that	make	up	the	bitmap	definition	for	the	TREE_OPERATION
restriction.	They	can	be	combined	using	the	logical	OR	operator.

Constant Value
DMTREEOP_ANCESTORS 0x00000020
DMTREEOP_CHILDREN 0x00000001

DMTREEOP_SIBLINGS 0x00000002
DMTREEOP_PARENT 0x00000004
DMTREEOP_SELF 0x00000008
DMTREEOP_DESCENDANTS 0x00000010

See	Also

Data	Mining	Columns

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

MINING_MODEL_CONTENT_PMML
This	schema	rowset	stores	the	Extensible	Markup	Language	(XML)	structure	of
the	mining	model.	The	format	of	the	XML	string	follows	the	Predictive	Model
Markup	Language	(PMML)	standard.

Column	name Type	indicator Description
MODEL_CATALOG DBTYPE_WSTR The	catalog	name.

Microsoft®	SQL
Server™	2000	Analysis
Services	populates	this
column	with	the	name	of
the	database	of	which	the
model	is	a	member.

MODEL_SCHEMA DBTYPE_WSTR The	unqualified	schema
name.	This	column	is	not
supported	by	Analysis
Services;	it	always
contains	VT_NULL.

MODEL_NAME DBTYPE_WSTR Model	name.	This
column	cannot	contain
VT_NULL.

MODEL_TYPE DBTYPE_WSTR The	model	type.	It	is	a
provider-specific	string.
It	can	be	VT_NULL.

MODEL_GUID DBTYPE_GUID The	GUID	that	identifies
the	model.	Providers	that
do	not	use	GUIDs	to
identify	tables	return
VT_NULL.

MODEL_PMML DBTYPE_WSTR An	XML	representation
of	the	model's	content	in
PMML	format.

SIZE DMTYPE_UI4 Number	of	bytes	in	the

XML	string.
LOCATION DMTYPE_WSTR The	location	of	the	XML

file.	It	is	VT_NULL	if
the	file	is	stored	in	the
default	directory.

Default	Sort	Order
MODEL_CATALOG
MODEL_SCHEMA
MODEL_NAME

Restriction	Columns
MODEL_CATALOG
MODEL_SCHEMA
MODEL_NAME
MODEL_TYPE

Analysis	Services	Programming

MINING_MODELS
Data	mining	models	are	exposed	in	the	MINING_MODELS	schema	rowset.
This	schema	rowset	is	very	similar	to	the	TABLES	schema	rowset	and	can	be
used	the	same	way.	Use	this	rowset	to	obtain	information	about	the	mining
models	contained	within	a	database.	This	rowset	can	include	information	such	as
the	names,	types	and	mining	algorithms	associated	with	each	mining	model.

Column	name Type	indicator Description
MODEL_CATALOG DBTYPE_WSTRThe	catalog	name.	Microsoft®	SQL	Server™	2000

Analysis	Services	populates	this	column	with	the
name	of	the	database	of	which	the	model	is	a	member.

MODEL_SCHEMA DBTYPE_WSTRThe	unqualified	schema	name.	This	column	is	not
supported	by	Analysis	Services;	it	always	contains
VT_NULL.

MODEL_NAME DBTYPE_WSTRThe	mining	model	name.	This	column	contains	the
name	of	the	mining	model,	and	it	is	never	empty.

MODEL_TYPE DBTYPE_WSTRThe	model	type.	This	value	is	set	to	"OLAP"	if	the
mining	model	is	an	OLAP	model	and	
the	model	is	relational.

MODEL_GUID DBTYPE_GUID The	GUID	of	the	model.
DESCRIPTION DBTYPE_WSTRA	user-friendly	description	of	the	model.	This	column

is	not	supported	by	Analysis	Services;	it	always
contains	VT_NULL.

MODEL_PROPID DBTYPE_UI4 The	property	ID	of	the	model.	This	column	is	not
supported	by	Analysis	Services;	it	always	contains
VT_NULL.

DATE_CREATED DBTYPE_DATE The	date	on	which	the	model	was	created.
DATE_MODIFIED DBTYPE_DATE The	date	on	which	the	model	definition	was	last

modified.
SERVICE_TYPE_ID DBTYPE_UI4 Contains	an	enumerated	type	that	identifies	the	data

mining	algorithm	used	by	the	model.	This	enumerated
type	may	be	one	of	the	following	values:

DM_SERVICETYPE_CLASSIFICATION

DM_SERVICETYPE_CLASSIFICATION

DM_SERVICETYPE_SEGMENTATION

SERVICE_NAME DBTYPE_WSTRA	string	that	contains	the	provider-specific	name	for
the	data	mining	algorithm	used	by	the	model.

CREATION_STATEMENT DBTYPE_WSTRContains	a	string	that	contains	the	statement	that	was

used	to	create	the	mining	model.
PREDICTION_ENTITY DBTYPE_WSTRA	string	that	contains	a	comma-delimited	list

indicating	which	mining	columns	can	be	predicted.
IS_POPULATED DBTYPE_BOOL Contains	VARIANT_TRUE	if	the	model	is

populated.	Otherwise	it	contains	
MSOLAP_MODEL_SOURCEDBTYPE_WSTR For	OLAP	mining	models,	this	column	contains	the

name	of	the	cube	on	which	the	model	is	based.

Default	Sort	Order
MODEL_CATALOG
MODEL_SCHEMAMODEL_NAME

Restrictions
MODEL_CATALOG
MODEL_SCHEMA
MODEL_NAME
MODEL_TYPE
SERVICE_NAME
SERVICE_TYPE_ID

See	Also

Data	Mining	Models

JavaScript:hhobj_1.Click()

Analysis	Services	Programming

MINING_SERVICE_PARAMETERS
This	schema	rowset	provides	a	list	of	parameters	that	can	be	supplied	when	you
are	generating	a	mining	model	using	the	CREATE	MINING	MODEL	statement.
The	client	application	will	often	restrict	by	SERVICE_NAME	to	obtain	the
parameters	that	are	supported	by	the	provider	and	are	applicable	to	the	type	of
mining	model	being	generated.

Column	name Type	indicator Description
SERVICE_NAME DBTYPE_WSTRThe	name	of	the	algorithm.
PARAMETER_NAME DBTYPE_WSTRThe	name	of	the	parameter.
PARAMETER_TYPE DBTYPE_WSTRThe	OLE	DB	data	type	of	the	parameter.
IS_REQUIRED DBTYPE_BOOL TRUE	if	the	parameter	is	required.
PARAMETER_FLAGSDBTYPE_UI4 A	bitmap	that	describes	parameter

characteristics.	The	following	bit	value
constants	are	defined	in	Msmd.h	for	this
bitmap:

DM_PARAMETER_TRAINING
(0x0000001)
For	training

DM_PARAMETER_PREDICTION
(0x00000002)
For	prediction

DESCRIPTION DBTYPE_WSTRText	that	describes	the	purpose	and	format	of
the	parameter.

Default	Sort	Order
SERVICE_NAME
PARAMETER_NAME

Restriction	Columns
SERVICE_NAME
PARAMETER_NAME

Analysis	Services	Programming

MINING_SERVICES
This	schema	rowset	provides	a	description	of	each	data	mining	algorithm	the
provider	supports.

Column	name Type	indicator
Description

SERVICE_NAME DBTYPE_WSTRThe	name	of	the	algorithm.	This	column	is	provider-specific.
SERVICE_TYPE_ID DBTYPE_UI4 This	column	contains	a	bitmap	that	describes	the	mining

service.	Microsoft®	SQL	Server™	2000	Analysis	Services
populates	this	column	with	one	of	the	following	values:

SERVICE_DISPLAY_NAME DBTYPE_WSTRA	localizable	display	name	for	the	algorithm.
SERVICE_GUID DBTYPE_GUID The	GUID	for	the	algorithm.
DESCRIPTION DBTYPE_WSTRA	user-friendly	description	of	the	algorithm.
PREDICTION_LIMIT DBTYPE_UI4 The	maximum	number	of	predictions	the	model	and	algorithm

can	provide.
SUPPORTED_DISTRIBUTION_FLAGS DBTYPE_WSTRA	comma-delimited	list	of	flags	that	describe	the	statistical

distributions	supported	by	the	algorithm.	This	column
contains	one	or	more	of	the	following	values:

Provider-specific	flags	can	also	be	defined.

SUPPORTED_INPUT_CONTENT_TYPES DBTYPE_WSTRA	comma-delimited	list	of	flags	that	describe	the	input	content
types	that	are	supported	by	the	algorithm.	This	column
contains	one	or	more	of	the	following	values:

Provider-specific	flags	can	also	be	defined.

SUPPORTED_PREDICTION_CONTENT_TYPESDBTYPE_WSTRA	comma-delimited	list	of	flags	that	describe	the	prediction
content	types	that	are	supported	by	the	algorithm.	This
column	contains	one	or	more	of	the	following	values:

Provider-specific	flags	can	also	be	defined.

SUPPORTED_MODELING_FLAGS DBTYPE_WSTRA	comma-delimited	list	of	the	modeling	flags	that	are
supported	by	the	algorithm.	This	column	contains	one	or	more
of	the	following	values:

Provider-specific	flags	can	also	be	defined.

SUPPORTED_SOURCE_QUERY DBTYPE_WSTRThe	<source_data_query>	types	that	the	provider	supports.
This	is	a	comma-delimited	list	of	one	or	more	of	the	following
syntax	descriptions.	These	descriptions	can	be	used	as	the
source	of	data	for	INSERT	INTO,	or	can	be	joined	using	a
PREDICTION	JOIN	to	a	mining	model	for	SELECT.	The
following	values	are	available:

TRAINING_COMPLEXITY DBTYPE_I4 Indicates	the	length	of	time	training	is	expected	to	take:

PREDICTION_COMPLEXITY DBTYPE_I4 Indicates	the	length	of	time	prediction	is	expected	to	take:

EXPECTED_QUALITY DBTYPE_I4 Indicates	the	expected	quality	the	of	model	produced	with	this
algorithm:

SCALING DBTYPE_I4 Indicates	the	scalability	of	the	algorithm:

ALLOW_INCREMENTAL_INSERT DBTYPE_BOOL Contains	VARIANT_TRUE	if	additional	INSERT	INTO
statements	are	allowed	after	the	initial	training.

ALLOW_PMML_INITIALIZATION DBTYPE_BOOL Contains	VARIANT_TRUE	if	the	mining	models	(including
structure	and	content)	can	be	created	based	on	an	XML	string.

CONTROL DBTYPE_I4 Contains	one	of	the	following	values,	which	determine
whether	the	service	supports	training	interruption:

ALLOW_DUPLICATE_KEY DBTYPE_BOOL Contains	VARIANT_TRUE	if	cases	are	allowed	to	contain
duplicate	keys.

Default	Sort	Order
SERVICE_NAME

Restriction	Columns

SERVICE_NAME
SERVICE_TYPE_ID

Analysis	Services	Programming

Analysis	Services	Programming	Samples
The	following	samples	illustrate	Microsoft®	SQL	Server™	2000	Analysis
Services	application	development	in	Microsoft	Visual	Basic®	Scripting	Edition
(VBScript),	Microsoft	Visual	C++®,	and	Visual	Basic.

Each	sample	demonstrates	a	different	technique	for	working	with	cube	data.
Prerequisites	for	viewing	or	running	each	sample	vary	depending	on	the
development	tool	and	methodology	used	to	create	the	code.

Installing	Sample	Files
The	sample	applications	are	installed	with	the	optional	Samples	component	of
Analysis	Services.	They	are	located	in	the	Samples	folder	under	Microsoft
Analysis	Services	(installed	by	default	to	C:\Program	Files\Microsoft	Analysis
Services\Samples).	Each	sample	program	is	contained	in	a	subfolder	at	this
location.

General	Requirements
Many	samples	require	a	SQL	Server	database	that	provides	cube	data.	For
testing	purposes,	you	can	use	the	cubes	in	the	FoodMart	2000	database.	You
can	modify	sample	source	files	to	point	to	this	database	or	to	specific	cubes.

Sample	Scripts	and	Programs
The	following	table	lists	and	describes	the	categories	of	samples	you	can	work
with.	Sample	source	code	has	comments	to	help	you	learn	how	the	application
works.

Sample	category Description
Simple	Cube	Creation A	set	of	samples	that	demonstrate	how	to	create

cubes	from	client	and	server	applications.
Cube	Query	and
Result	Set
Manipulation

A	set	of	samples	that	demonstrate	how	to	query	a
cube	and	manipulate	the	result	set.	Samples	are
provided	for	both	client	and	server	applications.

Cube	Schema A	set	of	samples	that	demonstrate	how	to	obtain

Retrieval	and
Manipulation

cube	schema	data	and	manipulate	the	data.	Samples
are	provided	for	both	client	and	server	applications.

Complex	Cube
Creation	and
Manipulation

A	three-part	integrated	sample	that	demonstrates
how	to	create	a	cube,	write-enable	the	cube,	and
write	back	to	the	cube.

In	addition,	a	different	sample	shows	how	to
retrieve	cube	data	and	schema	information	and	then
manipulate	the	results	using	dynamic	HTML
(DHTML).

Analysis	Services	Programming

Simple	Cube	Creation
Sample	code	for	creating	a	cube	is	provided	in	two	different	samples.	Each
sample	illustrates	a	different	implementation,	depending	on	whether	the	cube	is
created	by	a	client	or	a	server	application.

Sample	Programs
The	following	table	lists	and	describes	the	samples	in	this	section.	For	more
information	about	installation	and	general	requirements,	see	Analysis	Services
Programming	Samples.

Sample Description
VbAdoCreateCube This	Microsoft®	Visual	Basic®	project	creates	a	client-

side	cube	using	Microsoft	ActiveX®	Data	Objects
(ADO)	and	ActiveX	Data	Objects	(Multidimensional)
(ADO	MD).

This	sample	requires	Visual	Basic	5.0	(with	Service
Pack	3)	or	Visual	Basic	6.0,	ADO,	and	ADO	MD.

This	sample	is	located	in	the	VbAdoCreateCube	folder.
It	consists	of	the	FrmVbAdoCreateCube.frm,
VbAdoCreateCube.vbp,	and	VbAdoCreateCube.vbw
files.

VbDSOExample This	Visual	Basic	project	creates	a	server-side	cube	and
demonstrates	much	of	the	available	Decision	Support
Objects	(DSO)	functionality.

This	sample	requires	Visual	Basic	5.0	(with	Service
Pack	3)	or	Visual	Basic	6.0,	and	DSO.

This	sample	is	located	in	the	VbDSOExample	folder.	It
consists	of	the	FrmMain.frm,
AdvancedSampleCode.bas,	Writeback.bas,
DSOSample.vbp,	and	DSOSample.vbw	files.

Analysis	Services	Programming

Cube	Query	and	Result	Set	Manipulation
Sample	code	for	creating	and	manipulating	a	query-based	cube	is	provided	in
five	different	samples.	Each	sample	illustrates	a	different	implementation,
depending	on	the	development	tool	and	whether	the	cube	is	created	by	a	client
application	or	a	server	application.

Sample	Programs
The	following	table	provides	the	names	of	and	details	about	the	samples	in	this
section.	For	more	information	about	installation	and	general	requirements,	see
Analysis	Services	Programming	Samples.

Sample Description
AspAdoSimple This	Microsoft®	Visual	Basic®	Scripting	Edition

(VBScript)	sample	executes	a	Multidimensional
Expressions	(MDX)	query	using	the	Sales	cube	on	the
local	computer	and	displays	the	results	in	a	simple	table
format.	The	sample	demonstrates	the	basic	steps	for
querying	a	database	and	displaying	the	results.

This	sample	requires	Microsoft	Internet	Information
Server	4.0	or	Microsoft	Internet	Information	Services
(IIS)	5.0	or	later,	ADO,	and	ADO	MD.

This	sample	is	located	in	the	AspAdoSimple	folder.	It
consists	of	the	AspAdoSimple.asp	file.

AspAdoComplex This	VBScript	sample	executes	an	MDX	query	using
the	server,	database,	and	cube	the	user	specifies	in	fields
of	the	form	provided	by	an	Active	Server	Pages	(ASP)
page.	The	sample	uses	the	HTML	COLSPAN	attribute
to	present	the	resulting	cellset	as	a	table	on	the	same
HTML	pane	as	the	form.

This	sample	requires	IIS	4.0	or	later,	Microsoft
ActiveX®	Data	Objects	(ADO),	and	ADO
Multidimensional	(ADO	MD).

This	sample	is	located	in	the	AspAdoComplex	folder.	It
consists	of	the	AspAdoComplex.asp	file.

VbAdoSimple This	Visual	Basic	project	executes	a	query	using	ADO
MD.	The	sample	displays	the	result	set	in	the	Immediate
window.

This	sample	requires	Visual	Basic	5.0	(with	Service
Pack	3)	or	Visual	Basic	6.0,	and	ADO	MD.

This	sample	is	located	in	the	VbAdoSimple	folder.	It
consists	of	the	FrmVbAdoSimple.frm,
VbAdoSimple.vbp,	and	VbAdoSimple.vbw	files.

VbAdoComplex This	VBScript	sample	executes	an	MDX	query.	The
sample	displays	the	resulting	cellset	in	a	Microsoft
Excel	spreadsheet.

This	sample	requires	Visual	Basic	5.0	(with	Service
Pack	3)	or	Visual	Basic	6.0,	ADO,	and	Excel.

This	sample	is	located	in	the	VbAdoComplex	folder.	It
consists	of	the	FrmVbAdoComplex.frm,
VbAdoComplex.vbp,	and	VbAdoComplex.vbw	files.

CppOlapDemo This	Microsoft	Visual	C++®	project	creates	a	server-
side	cube	based	on	a	query,	using	OLE	DB	for	OLAP	to
connect	to	Microsoft	SQL	Server™	2000	Analysis
Services.

This	sample	requires	Visual	C++	5.0	or	later,	Msmd.h
(which	is	located	in	the	C:\Program	Files\Microsoft
Analysis	Services\Samples\Include	folder),	and	the
Microsoft	Data	Access	Software	Development	Kit
(SDK)	version	2.1	or	later.

This	sample	is	located	in	the	CppOlapDemo	folder.	It
consists	of	the	OLAPApp.cpp,	OLAPDemo.cpp,
OLAPTab.cpp,	OLAPDemo.dsp,	OLAPApp.hpp,	and
OLAPTab.hpp	files.

Analysis	Services	Programming

Cube	Schema	Retrieval	and	Manipulation
Sample	code	for	retrieving	and	manipulating	a	cube	schema	is	provided	in	three
different	samples.	Each	sample	illustrates	a	different	implementation,	depending
on	the	development	tool	and	whether	the	cube	is	created	by	a	client	application
or	a	server	application.

Sample	Programs
The	following	table	provides	the	names	of	and	details	about	the	samples	in	this
section.	For	more	information	about	installation	and	general	requirements,	see
Analysis	Services	Programming	Samples.

Sample Description
AspAdoCubeDoc This	Microsoft®	Visual	Basic®	Scripting	Edition

(VBScript)	sample	retrieves	a	cube	schema	and
displays	the	data	on	a	Web	page.

This	sample	requires	Microsoft	Internet	Information
Server	4.0	or	Microsoft	Internet	Information	Services
(IIS)	5.0	or	later,	Microsoft	ActiveX®	Data	Objects
(ADO)	and	ADO	(Multidimensional)	(ADO	MD).

This	sample	is	located	in	the	AspAdoCubeDoc	folder.
It	consists	of	the	AspAdoCubeDoc.asp	file.

AspAdoCubeTree This	VBScript	and	JScript	client	application	retrieves	a
cube	schema	and	displays	the	data	on	a	Web	page	using
dynamic	HTML	(DHTML).

This	sample	requires	IIS	4.0	or	later,	ADO,	and	ADO
MD.

This	sample	is	located	in	the	AspAdoCubeTree	folder.
It	consists	of	AspAdoCubeTree.asp,	DimensionDrop.js,
and	fourteen	image	files.

VbAdoCubeDoc This	Visual	Basic	project	retrieves	cube	schema
information	and	stores	it	in	a	Microsoft	Word

document.

This	sample	requires	Visual	Basic	5.0	(with	Service
Pack	3)	or	Visual	Basic	6.0,	ADO	MD,	and	Microsoft
Excel.

This	sample	is	located	in	the	VbAdoCubeDoc	folder.	It
consists	of	the	FrmVbAdoCubeDoc.frm,
VbAdoCubeDoc.vbp,	VbAdoCubeDoc.vbw	files.

Analysis	Services	Programming

Complex	Cube	Creation	and	Manipulation
Sample	code	for	creating	and	manipulating	a	complex	cube	is	provided	in	a
three-part	integrated	sample	and	a	stand-alone	sample	that	demonstrates
manipulation	in	dynamic	HTML	(DHTML).

Sample	Programs
The	following	table	provides	the	names	of	and	details	about	the	samples	in	this
section.	For	more	information	about	installation	and	general	requirements,	see
Analysis	Services	Programming	Samples.

Sample Description
VbDsoCreateSmallCube
(part	1	of	3)

This	Microsoft®	Visual	Basic®	project	uses
Decision	Support	Objects	(DSO)	to	create	a
server-side	cube	that	can	be	used	in	other
applications	(specifically,	VbAdoWriteback).

This	sample	requires	Visual	Basic	5.0	(with
Service	Pack	3)	or	Visual	Basic	6.0,	and	Decision
Support	Objects	(DSO).

This	sample	is	located	in	the
VbDsoCreateSmallCube	folder.	It	consists	of	the
FrmMain.frm	and	DsoMakeCube.vbp	files.

VbDsoWriteEnableCube
(part	2	of	3)

This	Visual	Basic	project	demonstrates	the	steps
involved	in	creating	a	writeback	partition	table
and	write-enabling	a	cube.

This	sample	requires	Visual	Basic	5.0	(with
Service	Pack	3)	or	Visual	Basic	6.0,	and	DSO.	It
also	requires	that	you	run
VbDsoCreateSmallCube	before	running	this
sample.

This	sample	is	located	in	the
VbDsoWriteEnableCube	folder.	It	consists	of	the

FrmMain.frm	and	WriteEnable.vbp	files.

VbAdoWriteBack	(part
3	of	3)

This	Visual	Basic	project	populates	a	client-side
cube	using	the	writeback	cube	defined	by
VbDsoCreateSmallCube.

This	sample	requires	Visual	Basic	5.0	(with
Service	Pack	3)	or	Visual	Basic	6.0,	ADO,	and
ADO	MD.	You	must	run	VbDsoCreateSmallCube
and	VbDsoWriteEnableCube	before	you	run	this
sample.

This	sample	is	located	in	the	VbAdoWriteBack
folder.	It	consists	of	the	FrmMain.frx,
FrmMain.frm,	and	SimpleWriteback.vbp	files.

VbMdHTMLdll This	Visual	Basic	project	creates	MdHtml.dll,
which	displays	cube	data	on	a	Web	page.

This	sample	requires	Visual	Basic	6.0	and
Microsoft	Internet	Information	Server	4.0	or
Microsoft	Internet	Information	Services	(IIS)	5.0
or	later.

This	sample	is	located	in	the	VbMdHTMLdll
folder.	It	consists	of	the	MdHtmlDll.asp,
MdHtmlDll.dll,	MdHtmlDll.exp,	MdHtmlDll.lib,
Table.cls,	MdHtmlDll.vbp,	and	MdHtmlDll.vbw
files.

	Programming Analysis Services Applications
	Analysis Services Architecture
	Analysis Services Component Tools
	SQL in Analysis Services
	Executing an SQL Query
	Exposed Schema
	Supported SQL SELECT Syntax
	Passing Queries from SQL Server to a Linked Analysis Server
	Adding a Linked Server

	Decision Support Objects
	Introducing Decision Support Objects
	Redistributing Decision Support Objects
	Decision Support Objects Architecture
	Server (Decision Support Objects)
	Database (Decision Support Objects)
	DataSource (Decision Support Objects)
	Cube (Decision Support Objects)
	Dimension (Decision Support Objects)
	Data Mining Model (Decision Support Objects)
	Role (Decision Support Objects)
	Aggregation (Decision Support Objects)
	Command (Decision Support Objects)
	Level (Decision Support Objects)
	Measure (Decision Support Objects)
	Member Property (Decision Support Objects)
	Partition (Decision Support Objects)
	Column (Decision Support Objects)
	Cube Analyzer (Decision Support Objects)
	Partition Analyzer (Decision Support Objects)

	Using Decision Support Objects
	Development Environments
	Common Operations and Examples
	OLAP Examples
	Working with Servers
	Working with Databases
	Working with Data Sources
	Working with Dimensions and Levels
	Working with Cubes and Measures

	Data Mining Examples
	Building Data Mining Models

	Advanced Examples
	Working with Virtual Cubes
	Working with Linked Cubes
	Working with Virtual Dimensions
	Working with Roles
	Incremental Updates

	Additional Considerations
	Considerations For Naming Decision Support Objects
	Object Locking with Decision Support Objects
	Tips for Creating Member Properties for Multiple Languages
	Using Earlier Versions of Analysis Services

	Decision Support Objects Programmer's Reference
	Interfaces
	Command Interface
	Collections, Command Interface
	Methods, Command Interface
	Clone (Command Interface)
	LockObject (Command Interface)
	UnlockObject (Command Interface)
	Update (Command Interface)

	Properties, Command Interface
	ClassType (Command Interface)
	CommandType (Command Interface)
	Description (Command Interface)
	IsValid (Command Interface)
	Name (Command Interface)
	OrdinalPosition (Command Interface)
	Parent (Command Interface)
	ParentObject (Command Interface)
	Statement (Command Interface)
	SubClassType (Command Interface)

	Dimension Interface
	Collections, Dimension Interface
	CustomProperties (Dimension Interface)
	Levels (Dimension Interface)

	Methods, Dimension Interface
	Clone (Dimension Interface)
	LockObject (Dimension Interface)
	Process (Dimension Interface)
	UnlockObject (Dimension Interface)
	Update (Dimension Interface)

	Properties, Dimension Interface
	AggregationUsage (Dimension Interface)
	AllowSiblingsWithSameName (Dimension Interface)
	AreMemberKeysUnique
	AreMemberNamesUnique (Dimension Interface)
	ClassType (Dimension Interface)
	DataMemberCaptionTemplate (Dimension Interface)
	DataSource (Dimension Interface)
	DefaultMember (Dimension Interface)
	DependsOnDimension (Dimension Interface)
	Description (Dimension Interface)
	DimensionType (Dimension Interface)
	EnableRealTimeUpdates (Dimension Interface)
	FromClause (Dimension Interface)
	IsChanging (Dimension Interface)
	IsReadWrite (Dimension Interface)
	IsShared (Dimension Interface)
	IsTemporary (Dimension Interface)
	IsValid (Dimension Interface)
	IsVirtual (Dimension Interface)
	IsVisible (Dimension Interface)
	JoinClause (Dimension Interface)
	LastProcessed (Dimension Interface)
	LastUpdated (Dimension Interface)
	MembersWithData (Dimension Interface)
	Name (Dimension Interface)
	OrdinalPosition (Dimension Interface)
	Parent (Dimension Interface)
	SourceTable (Dimension Interface)
	SourceTableAlias (Dimension Interface)
	SourceTableFilter (Dimension Interface)
	State (Dimension Interface)
	StorageMode (Dimension Interface)
	SubClassType (Dimension Interface)

	Level Interface
	Collections, Level Interface
	Properties, Level Interface
	AreMemberKeysUnique (Level Interface)
	AreMemberNamesUnique (Level Interface)
	ClassType (Level Interface)
	ColumnSize (Level Interface)
	ColumnType (Level Interface)
	CustomRollupColumn (Level Interface)
	CustomRollupExpression (Level Interface)
	CustomRollupPropertiesColumn (Level Interface)
	Description (Level Interface)
	EnableAggregations (Level Interface)
	EstimatedSize (Level Interface)
	FromClause (Level Interface)
	Grouping (Level Interface)
	HideMemberIf (Level Interface)
	IsDisabled (Level Interface)
	IsValid (Level Interface)
	IsVisible (Level Interface)
	JoinClause (Level Interface)
	LevelNamingTemplate (Level Interface)
	LevelType (Level Interface)
	MemberKeyColumn (Level Interface)
	MemberNameColumn (Level Interface)
	Name (Level Interface)
	Ordering (Level Interface)
	OrderingMemberProperty (Level Interface)
	OrdinalPosition (Level Interface)
	Parent (Level Interface)
	ParentKeyColumn (Level Interface)
	RootMemberIf (Level Interface)
	SkippedLevelsColumn (Level Interface)
	SliceValue (Level Interface)
	SubClassType (Level Interface)
	UnaryOperatorColumn (Level Interface)

	MDStore Interface
	Collections, MDStore Interface
	Methods, MDStore Interface
	BeginTrans (MDStore Interface)
	Clone (MDStore Interface)
	CommitTrans (MDStore Interface)
	LockObject (MDStore Interface)
	Merge (MDStore Interface)
	Process (MDStore Interface)
	Rollback (MDStore Interface)
	UnlockObject (MDStore Interface)
	Update (MDStore Interface)

	Properties, MDStore Interface
	AggregationPrefix (MDStore Interface)
	AllowDrillThrough (MDStore Interface)
	Analyzer (MDStore Interface)
	ClassType (MDStore Interface)
	DefaultMeasure (MDStore Interface)
	Description (MDStore Interface)
	DrillThroughColumns (MDStore Interface)
	DrillThroughFilter (MDStore Interface)
	DrillThroughFrom (MDStore Interface)
	DrillThroughJoins (MDStore Interface)
	EnableRealTimeUpdates (MDStore Interface)
	EstimatedRows (MDStore Interface)
	EstimatedSize (MDStore Interface)
	FromClause (MDStore Interface)
	IsDefault (MDStore Interface)
	IsReadWrite (MDStore Interface)
	IsTemporary (MDStore Interface)
	IsValid (MDStore Interface)
	IsVisible (MDStore Interface)
	JoinClause (MDStore Interface)
	LastProcessed (MDStore Interface)
	LastUpdated (MDStore Interface)
	LazyOptimizationProgress (MDStore Interface)
	Name (MDStore Interface)
	OlapMode (MDStore Interface)
	Parent (MDStore Interface)
	ProcessingKeyErrorLimit (MDStore Interface)
	ProcessingKeyErrorLogFileName (MDStore Interface)
	ProcessOptimizationMode (MDStore Interface)
	RemoteServer (MDStore Interface)
	Server (MDStore Interface)
	SourceTable (MDStore Interface)
	SourceTableAlias (MDStore Interface)
	SourceTableFilter (MDStore Interface)
	State (MDStore Interface)
	SubClassType (MDStore Interface)

	Measure Interface
	Collections, Measure Interface
	Properties, Measure Interface
	AggregateFunction (Measure Interface)
	ClassType (Measure Interface)
	Description (Measure Interface)
	FormatString (Measure Interface)
	IsValid (Measure Interface)
	IsVisible (Measure Interface)
	Name (Measure Interface)
	OrdinalPosition (Measure Interface)
	Parent (Measure Interface)
	SourceColumn (Measure Interface)
	SourceColumnType (Measure Interface)
	SubClassType (Measure Interface)

	Role Interface
	Collections, Role Interface
	Methods, Role Interface
	Clone (Role Interface)
	LockObject (Role Interface)
	SetPermissions (Role Interface)
	UnlockObject (Role Interface)
	Update (Role Interface)

	Properties, Role Interface
	ClassType (Role Interface)
	Description (Role Interface)
	IsValid (Role Interface)
	Name (Role Interface)
	Parent (Role Interface)
	ParentObject (Role Interface)
	Permissions (Role Interface)
	SubClassType (Role Interface)
	UsersList (Role Interface)

	Events
	ReportAfter (clsDatabase)
	ReportBefore (clsDatabase)
	ReportError (clsDatabase)
	ReportProgress (clsDatabase)

	Objects
	clsAggregation
	Collections, clsAggregation
	Methods, clsAggregation
	Properties, clsAggregation

	clsAggregationDimension
	Collections, clsAggregationDimension
	Properties, clsAggregationDimension

	clsAggregationLevel
	Collections, clsAggregationLevel
	Properties, clsAggregrationLevel

	clsAggregationMeasure
	Collections, clsAggregationMeasure
	Properties, clsAggregationMeasure

	clsCollection
	Methods, clsCollection
	Add (clsCollection)
	AddNew (clsCollection)
	Find (clsCollection)
	Item (clsCollection)
	Remove (clsCollection)

	Properties, clsCollection
	ClassType (clsCollection)
	ContainedClassType (clsCollection)
	Count (clsCollection)

	clsColumn
	Collections, clsColumn
	Properties, clsColumn
	AreKeysUnique (clsColumn)
	ClassType (clsColumn)
	ContentType (clsColumn)
	DataType (clsColumn)
	Description (clsColumn)
	Distribution (clsColumn)
	Filter (clsColumn)
	FromClause (clsColumn)
	IsDisabled (clsColumn)
	IsInput (clsColumn)
	IsKey (clsColumn)
	IsParentKey (clsColumn)
	IsPredictable (clsColumn)
	JoinClause (clsColumn)
	ModelingFlags (clsColumn)
	Name (clsColumn)
	Num (clsColumn)
	Parent (clsColumn)
	RelatedColumn (clsColumn)
	SourceColumn (clsColumn)
	SourceOlapObject (clsColumn)
	SpecialFlag (clsColumn)
	SubClassType (clsColumn)

	clsCube
	Collections, clsCube
	Methods, clsCube
	Properties, clsCube

	clsCubeAnalyzer
	Methods, clsCubeAnalyzer
	OpenQueryLogRecordset (clsCubeAnalyzer)

	clsCubeCommand
	Collections, clsCubeCommand
	Properties, clsCubeCommand

	clsCubeDimension
	Collections, clsCubeDimension
	Properties, clsCubeDimension

	clsCubeLevel
	Collections, clsCubeLevel
	Properties, clsCubeLevel

	clsCubeMeasure
	Collections, clsCubeMeasure
	Properties, clsCubeMeasure

	clsCubeRole
	Collections, clsCubeRole
	Methods, clsCubeRole
	Properties, clsCubeRole

	clsDatabase
	Collections, clsDatabase
	Events, clsDatabase
	Methods, clsDatabase
	Properties, clsDatabase

	clsDatabaseCommand
	Collections, clsDatabaseCommand
	Methods, clsDatabaseCommand
	Properties, clsDatabaseCommand

	clsDatabaseDimension
	Collections, clsDatabaseDimension
	Methods, clsDatabaseDimension
	Properties, clsDatabaseDimension

	clsDatabaseLevel
	Collections, clsDatabaseLevel
	Properties, clsDatabaseLevel

	clsDatabaseRole
	Collections, clsDatabaseRole
	Methods, clsDatabaseRole
	Properties, clsDatabaseRole

	clsDataSource
	Collections, clsDataSource
	Methods, clsDataSource
	Clone (clsDataSource)
	IsConnected (clsDataSource)
	LockObject (clsDataSource)
	UnlockObject (clsDataSource)
	Update (clsDataSource)

	Properties, clsDataSource
	ClassType (clsDataSource)
	CloseQuoteChar (clsDataSource)
	Connection (clsDataSource)
	ConnectionString (clsDataSource)
	Description (clsDataSource)
	IsReadOnly (clsDataSource)
	IsValid (clsDataSource)
	Name (clsDataSource)
	OpenQuoteChar (clsDataSource)
	Parent (clsDataSource)
	SubClassType (clsDataSource)
	SupportedTxnDDL (clsDataSource)

	clsMemberProperty
	Collections, clsMemberProperty
	Properties, clsMemberProperty
	Caption (clsMemberProperty)
	ClassType (clsMemberProperty)
	ColumnSize (clsMemberProperty)
	ColumnType (clsMemberProperty)
	Description (clsMemberProperty)
	IsVisible (clsMemberProperty)
	Language (clsMemberProperty)
	Name (clsMemberProperty)
	OrdinalPosition (clsMemberProperty)
	Parent (clsMemberProperty)
	PropertyType (clsMemberProperty)
	SourceColumn (clsMemberProperty)
	SubClassType (clsMemberProperty)

	clsMiningModel
	Collections, clsMiningModel
	Methods, clsMiningModel
	Clone (clsMiningModel)
	LockObject (clsMiningModel)
	Process (clsMiningModel)
	UnlockObject (clsMiningModel)
	Update (clsMiningModel)
	ValidateStructure (clsMiningModel)

	Properties, clsMiningModel
	AreKeysUnique (clsMiningModel)
	CaseDimension (clsMiningModel)
	CaseLevel (clsMiningModel)
	ClassType (clsMiningModel)
	Description (clsMiningModel)
	Filter (clsMiningModel)
	FromClause (clsMiningModel)
	IsVisible (clsMiningModel)
	JoinClause (clsMiningModel)
	LastProcessed (clsMiningModel)
	LastUpdated (clsMiningModel)
	MiningAlgorithm (clsMiningModel)
	Name (clsMiningModel)
	Parameters (clsMiningModel)
	Parent (clsMiningModel)
	SourceCube (clsMiningModel)
	State (clsMiningModel)
	SubClassType (clsMiningModel)
	TrainingQuery (clsMiningModel)
	XML (clsMiningModel)

	clsMiningModelRole
	Collections, clsMiningModelRole
	Methods, clsMiningModelRole
	Properties, clsMiningModelRole

	clsPartition
	Collections, clsPartition
	Methods, clsPartition
	Properties, clsPartition

	clsPartitionAnalyzer
	Collections, clsPartitionAnalyzer
	DesignedAggregations (clsPartitionAnalyzer)

	Methods, clsPartitionAnalyzer
	AddExistingAggregation (clsPartitionAnalyzer)
	AddGoalQuery (clsPartitionAnalyzer)
	CloseAggregationsAnalysis (clsPartitionAnalyzer)
	InitializeDesign (clsPartitionAnalyzer)
	NextAnalysisStep (clsPartitionAnalyzer)
	PrepareGoalQueries (clsPartitionAnalyzer)

	Properties, clsPartitionAnalyzer
	AggregationAnalysisInitialized (clsPartitionAnalyzer)
	Parent (clsPartitionAnalyzer)

	clsPartitionDimension
	Collections, clsPartitionDimension
	Properties, clsPartitionDimension

	clsPartitionLevel
	Collections, clsPartitionLevel
	Properties, clsPartitionLevel

	clsPartitionMeasure
	Collections, clsPartitionMeasure
	Properties, clsPartitionMeasure

	clsRoleCommand
	Collections, clsRoleCommand
	Properties, clsRoleCommand

	clsServer
	Collections, clsServer
	Methods, clsServer
	CloseServer (clsServer)
	Connect (clsServer)
	CreateObject (clsServer)
	LockObject (clsServer)
	Refresh (clsServer)
	UnlockAllObjects (clsServer)
	UnlockObject (clsServer)
	Update (clsServer)

	Properties, clsServer
	ClassType (clsServer)
	ConnectTimeout (clsServer)
	Description (clsServer)
	Edition (clsServer)
	IsValid (clsServer)
	LockTimeout (clsServer)
	Name (clsServer)
	Parent (clsServer)
	ProcessingLogFileName (clsServer)
	ServiceState (clsServer)
	State (clsServer)
	Timeout (clsServer)
	Version (clsServer)

	Property Object
	Properties, Property Object
	DataType (Property Object)
	Name (Property Object)
	Value (Property Object)

	Enumerations
	AggregatesTypes
	ClassTypes
	CloneOptions
	CommandTypes
	DimensionAggUsageTypes
	DimensionTypes
	ErrorCodes
	GroupingValues
	HideIfValues
	LanguageValues
	LevelTypes
	MembersWithDataValues
	OlapEditions
	OlapLockTypes
	OlapStateTypes
	OlapStorageModes
	OrderTypes
	ProcessOptimizationModes
	ProcessTypes
	PropertyTypeValue
	RootIfValues
	ServerStates
	StorageModeValues
	SubClassTypes

	Collections
	Nested Collections
	Commands Collection
	CustomProperties Collection
	Methods, CustomProperties
	Add (CustomProperties Collection)
	Clear (CustomProperties Collection)
	Item (CustomProperties Collection)
	Remove (CustomProperties Collection)

	Properties, CustomProperties
	Count (CustomProperties Collection)

	Columns Collection
	DataSources Collection
	Dimensions Collection
	Levels Collection
	MDStores Collection
	Measures Collection
	MemberProperties Collection
	MiningModels Collection
	Roles Collection

	Add-ins
	About Add-ins
	Building Add-ins
	Tutorial - Creating a Sample Add-in
	Example - Report Add-In

	Programmer's Reference (Add-ins)
	Interfaces
	IOlapAddIn Interface
	Methods, IOlapAddIn Interface
	ExecuteMenuItem (IOlapAddIn Interface)
	GetObject (IOlapAddIn Interface)
	ProvideChildNodes (IOlapAddIn Interface)
	ProvideHTML (IOlapAddIn Interface)
	ProvideIcon (IOlapAddIn Interface)
	ProvideMenuItems (IOlapAddIn Interface)

	Properties, IOlapAddIn Interface
	Name (IOlapAddIn Interface)

	Objects
	OlapMenuItem
	Properties, OlapMenuItem
	Caption (OlapMenuItem)
	Disabled (OlapMenuItem)
	Flags (OlapMenuItem)
	HelpContextId (OlapMenuItem)
	HelpFileName (OlapMenuItem)
	Key (OlapMenuItem)
	OwnerAddInName (OlapMenuItem)
	OwnerAddInProgID (OlapMenuItem)
	ParentKey (OlapMenuItem)

	OlapTreeNode
	Properties, OlapTreeNode
	Caption (OlapTreeNode)
	HelpContextId (OlapTreeNode)
	IconClosed (OlapTreeNode)
	IconOpen (OlapTreeNode)
	LinkedObject (OlapTreeNode)
	OwnerAddInName (OlapTreeNode)
	OwnerAddInProgID (OlapTreeNode)
	Parent (OlapTreeNode)

	Enumerations
	errDSSAddinErrorNumbers
	OlapMenuFlags
	OlapMenuTypes
	RefreshTreeTypes

	Collections
	OlapMenuItems
	Methods, OlapMenuItems
	Add (OlapMenuItems)
	Remove (OlapMenuItems)

	Properties, OlapMenuItems
	Count (OlapMenuItems)
	Item (OlapMenuItems)

	OlapTreeNodes
	Methods, OlapTreeNodes
	Add (OlapTreeNodes)
	Remove (OlapTreeNodes)

	Properties, OlapTreeNodes
	Count (OlapTreeNodes)
	Item (OlapTreeNodes)

	PivotTable Service
	Overview of PivotTable Service
	What's New in PivotTable Service
	Redistributing Components
	Developing Client Applications
	Development Environments
	Using Visual C++
	Using Visual Basic
	Using ADO MD
	Using ADO

	Using Active Server Pages

	Key Concepts in PivotTable Service
	Context of Connections
	Connected to Analysis Services
	Connected to an OLE DB Provider
	Connected to a Local Cube File or Data Mining Model

	Organization of Multidimensional Data
	Balanced Hierarchies
	Ragged Hierarchies
	Unbalanced Hierarchies
	Using the MDX Compatibility Property

	Advanced Data Mining and Analysis
	Building a Local Data Mining Model
	Training a Local Data Mining Model
	Predictions and Results of Data Mining

	Working with OLAP Data
	Calculated Members
	Managing the Client Cache
	Transactions in Analysis Services
	Updating Cubes
	Transaction Scope
	Synchronization of Client and Server
	Cumulative Effect of Transactions on Data
	Isolation Levels
	Committing a Transaction
	Commit Time-out

	Security in PivotTable Service

	Client Operations in PivotTable Service
	Error and Exception Handling
	Connecting to a Data Source
	Using the Connection String
	Using the OLE DB Connection Dialog Box
	Connecting Using HTTP

	Retrieving Schema Information
	Using the CubeDef Object
	Using the OpenSchema Method

	Retrieving Data
	Using the Cellset Object
	Using the Recordset Object

	Updating Information in a Cube
	Writing a Value Back to a Cell
	Transaction Processing

	Building Local Cubes
	Using the CREATE CUBE Statement
	Using the INSERT INTO Statement
	Processing a Local Cube
	Defining Calculated Members
	Refreshing Local Cubes

	PivotTable Service Programmer's Reference
	PivotTable Service Properties
	ArtificialData Property
	Authenticated User Property
	Auto Synch Period Property
	Cache Policy Property
	Cache Ratio Property
	Client Cache Size Property
	CompareCaseNotSensitiveStringFlags Property
	CompareCaseSensitiveStringFlags Property
	Connect Timeout Property
	CreateCube Property
	Data Source Property
	Datasource Connection Type Property
	Default GUID Dialect Property
	Default Isolation Mode Property
	Default MDX Visual Mode Property
	Distinct Measures By Key Property
	Do Not Apply Commands Property
	Execution Location Property
	Initial Catalog Property
	InsertInto Property
	Large Level Threshold Property
	Locale Identifier Property
	Log File Property
	MDX Calculated Members Mode Property
	MDX Compatibility Property
	MDX Object Qualification Property
	MDX Unique Name Style Property
	Mining Execution Location Property
	Mining Location Property
	Mining Persistence Format Property
	OLE DB for OLAP Version Property
	Password Property
	Provider Property
	Read Only Session Property
	Roles Property
	Safety Options Property
	Secured Cell Value Property
	Show Hidden Cubes Property
	Source_DSN Property
	Source_DSN_Suffix Property
	SQL Compatibility Property
	SSPI Property
	UseExistingFile Property
	User ID Property
	Writeback Timeout Property

	Data Definition Language
	ALTER CUBE Statement
	CREATE ACTION Statement
	CREATE CACHE Statement
	CREATE CELL CALCULATION Statement
	CREATE CUBE Statement
	CREATE MEMBER Statement
	CREATE MINING MODEL Statement
	CREATE SET Statement
	DROP ACTION Statement
	DROP CUBE Statement
	DROP CELL CALCULATION Statement
	DROP LIBRARY Statement
	DROP MEMBER Statement
	DROP MINING MODEL Statement
	DROP SET Statement
	REFRESH CUBE Statement
	USE LIBRARY Statement

	Data Manipulation Language
	DRILLTHROUGH Statement
	INSERT INTO Statement
	SELECT Statement
	UPDATE CUBE Statement

	Function Reference
	OLAP Functions
	Data Mining Functions
	BottomCount
	BottomPercent
	BottomSum
	Cluster
	ClusterDistance
	ClusterProbability
	Predict
	PredictAdjustedProbability
	PredictHistogram
	PredictProbability
	PredictStdev
	PredictSupport
	PredictVariance
	RangeMax
	RangeMid
	RangeMin
	Sub-SELECT
	TopCount
	TopPercent
	TopSum

	Schema Rowsets
	OLAP Schema Rowsets
	MDSCHEMA_ACTIONS
	MDSCHEMA_CELL_FORMULAS
	MDSCHEMA_CUBES
	MDSCHEMA_DIMENSIONS
	MDSCHEMA_FUNCTIONS
	MDSCHEMA_HIERARCHIES
	MDSCHEMA_LEVELS
	MDSCHEMA_MEASURES
	MDSCHEMA_MEMBERS
	MDSCHEMA_PROPERTIES
	MDSCHEMA_SETS

	Data Mining Schema Rowsets
	MINING_COLUMNS
	MINING_MODEL_CONTENT
	MINING_MODEL_CONTENT_PMML
	MINING_MODELS
	MINING_SERVICE_PARAMETERS
	MINING_SERVICES

	Analysis Services Programming Samples
	Simple Cube Creation
	Cube Query and Result Set Manipulation
	Cube Schema Retrieval and Manipulation
	Complex Cube Creation and Manipulation

