
Extended	Stored	Procedure	Programming

Programming	Extended	Stored	Procedures
Microsoft	Open	Data	Services	provides	a	server-based	application	programming
interface	(API)	for	extending	Microsoft®	SQL	Server™	functionality.	The	API
consists	of	C	and	C++	functions	and	macros	used	to	build	applications	in	the
following	categories:

Extended	stored	procedures.

Gateway	applications.

Extended	Stored	Procedures

Packaged	as	dynamic-link	libraries	(DLLs),	extended	stored	procedures	provide
a	way	to	extend	SQL	Server	functionality	through	functions	developed	by	using
C/C++,	the	Open	Data	Services	API,	and	the	Microsoft	Win32®	API.	These
functions	can	send	result	sets	and	output	parameters	back	to	the	client	from	a
variety	of	external	data	sources.

Gateway	Applications
In	the	past,	Open	Data	Services	was	used	to	write	server	applications,	such	as
gateways	to	non-SQL	Server	database	environments.	With	the	emergence	of
newer	and	more	powerful	technologies,	such	as	Windows	NT	Component
Services	and	SQL	Server	distributed	queries,	the	need	for	Open	Data	Services
gateway	applications	has	largely	been	replaced.

If	you	have	existing	gateway	applications,	you	cannot	use	opends60.dll
and	ums.dll	that	are	shipped	with	SQL	Server	2000	to	run	the
applications.	Gateway	applications	are	no	longer	supported.

You	can	continue	to	run	gateway	applications	using	the	opends60.dll
and	ums.dll	that	shipped	with	SQL	Server	7.0.

Extended	Stored	Procedure	Programming

How	Extended	Stored	Procedures	Work
The	process	by	which	an	extended	stored	procedure	works	is:

1.	 When	a	client	executes	an	extended	stored	procedure,	the	request	is
transmitted	in	tabular	data	stream	(TDS)	format	from	the	client
application	through	the	Net-Libraries	and	Open	Data	Services	to
Microsoft®	SQL	Server™.

2.	 SQL	Server	searches	for	the	DLL	associated	with	the	extended	stored
procedure,	and	loads	the	DLL	if	it	is	not	already	loaded.

3.	 SQL	Server	calls	the	requested	extended	stored	procedure
(implemented	as	a	function	inside	the	DLL).

4.	 The	extended	stored	procedure	passes	result	sets	and	return	parameters
back	to	the	server	by	using	the	Open	Data	Services	API.

Extended	Stored	Procedure	Programming

Execution	Characteristics	of	Extended	Stored
Procedures
The	execution	of	an	extended	stored	procedure	has	these	characteristics:

The	extended	stored	procedure	function	is	executed	under	the	security
context	of	Microsoft®	SQL	Server™.

The	extended	stored	procedure	function	runs	in	the	process	space	of
SQL	Server.

The	Microsoft	Win32®	thread	associated	with	the	execution	of	the
extended	stored	procedure	is	the	same	one	used	for	the	client
connection.

After	the	extended	stored	procedure	DLL	is	loaded,	the	DLL	remains	loaded	in
the	address	space	of	the	server	until	the	SQL	Server	is	stopped	or	the
administrator	explicitly	unloads	the	DLL	by	using		DBCC	DLL_name	(FREE).
This	is	the	default	behavior.

The	extended	stored	procedure	can	be	executed	from	Transact-SQL	as	a	stored
procedure	by	using	the	EXECUTE	statement:

EXECUTE	@retval	=	xp_extendedProcName	@param1,	@param2	OUTPUT

where

@retval

Is	a	return	value.

@param1

Is	an	input	parameter.

@param2

Is	an	input/output	parameter.

CAUTION		Extended	stored	procedures	offer	performance	enhancements	and

extend	SQL	Server	functionality.	However,	because	the	extended	stored
procedure	DLL	and	SQL	Server	share	the	same	address	space,	a	problem
procedure	can	adversely	affect	SQL	Server	functioning.	Although	exceptions
thrown	by	the	extended	stored	procedure	DLL	are	handled	by	SQL	Server,	it	is
possible	to	damage	SQL	Server	data	areas.	As	a	security	precaution,	only	SQL
Server	system	administrators	can	add	extended	stored	procedures	to	SQL	Server.
These	procedures	should	be	thoroughly	tested	before	they	are	installed.

Extended	Stored	Procedure	Programming

Creating	Extended	Stored	Procedures
An	extended	stored	procedure	is	a	function	with	a	prototype:

SRVRETCODE	xp_extendedProcName	(SRVPROC	*);

Using	the	prefix	"xp_"	is	optional.	Extended	stored	procedure	names	are	case
sensitive	when	referenced	in	Transact-SQL	statements,	regardless	of	code
page/sort	order	installed	on	the	server.	An	extended	stored	procedure	is
implemented	in	a	32-bit	dynamic-linked	library	(DLL).	When	you	build	a	DLL:

If	an	entry	point	is	necessary,	write	a	DllMain	function.

This	function	is	optional;	if	you	do	not	provide	it	in	source	code,	the
compiler	links	its	own	version,	which	does	nothing	but	return	TRUE.	If
you	provide	a	DllMain	function,	the	operating	system	calls	this
function	when	a	thread	or	process	attaches	to	or	detaches	from	the	DLL.

All	functions	called	from	outside	the	DLL	(all	extended	stored
procedure	functions)	must	be	exported.

You	can	export	a	function	by	listing	its	name	in	the	EXPORTS	section
of	a	.def	file,	or	you	can	prefix	the	function	name	in	the	source	code
with	__declspec(dllexport),	a	Microsoft	compiler	extension	(Note	that
__declspec()	begins	with	two	underscores).

These	Open	Data	Services	files	are	required	for	creating	an	extended	stored
procedure	DLL.

File Description
Srv.h Open	Data	Services	header	file
Opends60.lib Import	library	for	Opends60.dll

It	is	highly	recommended	that	all	Microsoft®	SQL	Server™	2000	extended
stored	procedure	DLLs	implement	and	export	the	following	function:

__declspec(dllexport)	ULONG	__GetXpVersion()
{
			return	ODS_VERSION;

}

When	SQL	Server	loads	an	extended	stored	procedure	DLL,	SQL	Server	checks
for	the	above	function.

Note		__declspec(dllexport)	is	a	Microsoft-specific	compiler	extension.	If	your
compiler	does	not	support	this	directive,	you	should	export	this	function	in	your
DEF	file	under	the	EXPORTS	section.

When	SQL	Server	is	started	with	the	trace	flag	-T260	or	if	a	user	with	system
administrator	privileges	runs	DBCC	TRACEON	(260),	then	if	the	extended
stored	procedure	DLL	does	not	support	__GetXpVersion(),	a	warning	message
(Error	8131:	Extended	stored	procedure	DLL	'%'	does	not	export
__GetXpVersion().)	is	printed	to	the	error	log	(Note	that	__GetXpVersion()
begins	with	two	underscores).	If	you	get	this	message,	and	you	are	running	an
extended	stored	procedure	DLL	compiled	with	headers	and	libraries	from	SQL
Server	version	6.x,	refer	to	Level	1:	Handling	Discontinued	Functionality.	If	you
get	this	message	and	are	running	an	extended	stored	procedure	DLL	compiled
with	headers	and	libraries	from	SQL	Server	7.0,	your	extended	stored	procedure
DLL	is	not	exporting	the	function	__GetXpVersion().

If	the	extended	stored	procedure	DLL	exports	__GetXpVersion(),	but	the	version
returned	by	the	function	is	less	than	that	required	by	the	server,	a	warning
message	(Error	8132:	Extended	stored	procedure	DLL	'%'	reports	its	version	is
%d.%d.	Server	expects	version	%d.%d.)	stating	the	version	returned	by	the
function	and	the	version	expected	by	the	server	is	printed	to	the	error	log.	If	you
get	this	message,	you	are	returning	an	incorrect	value	from	__GetXpVersion(),
or	you	are	compiling	with	an	older	version	of	srv.h.

Note		SetErrorMode,	a	Microsoft	Win32®	function,	should	not	be	called	in
extended	stored	procedures.

For	more	information	about	creating	a	DLL,	see	the	development	environment
documentation	and	the	Microsoft	Win32	SDK	documentation.

To	create	an	extended	stored	procedure	DLL	by	using	Microsoft	Visual	C++

1.	 Create	a	new	project	of	type	Win32	Dynamic	Link	Library.

2.	 Set	the	directory	for	include	files	and	library	files	to	C:\Program

JavaScript:hhobj_1.Click()

Files\Microsoft	SQL	Server\80\Tools\DevTools\Include	and
C:\Program	Files\Microsoft	SQL	Server\80\Tools\DevTools\Lib,
respectively.

a.	 On	the	Tools	menu,	click	Options.

b.	 In	the	Options	dialog	box,	click	the	Directories	tab	and	set
the	directory	for	include	files	and	library	files.

3.	 On	the	Project	menu,	click	Settings.

4.	 In	the	Project	Settings	dialog	box,	click	the	Link	tab.	Click	the
General	category,	and	then	add	opends60.lib	to	object/library
modules.

5.	 Add	source	files	(.c,	.cpp,	and	.rc	files,	and	so	on)	to	your	project.

6.	 Compile	and	link	your	project.

Extended	Stored	Procedure	Programming

Extended	Stored	Procedure	Sample:	xp_hello
These	code	portions	from	xp_hello	illustrate	the	basics	of	writing	an	extended
stored	procedure.	The	complete	code	for	this	example	is	available	in	the
Samples\ODS	directory.	This	is	in	a	sample	only	available	if	you	select	Dev
Tools	in	setup.

Transact-SQL	Script

--	TSQL	script	exercising	xp_hello	sample
use	master
go

sp_addextendedproc	'xp_hello',	'xp_hello.dll'
go

--	Call	xp_hello	with	literal	parameters
declare	@txt	varchar(33)
exec	xp_hello	@txt	OUTPUT
select	@txt	AS	OUTPUT_Parameter
go

sp_dropextendedproc	'xp_hello'
go

dbcc	xp_hello(free)
go

--	EXPECTED	RESULTS
--	Column	1:
--	---------
--	Hello	World!

--	(1	row(s)	affected)

--	OUTPUT_PARAMETER
--	----------------
--	Hello	World!

--	(1	row(s)	affected)

C	Source	Code

#include	<stdlib.h>
#include	<stdio.h>
#include	<string.h>
#include	<ctype.h>
#include	<windows.h>
#include	<srv.h>
#include	<time.h>

//	Macros	--	return	codes
#define	XP_NOERROR						0
#define	XP_ERROR								1

#define	MAX_SERVER_ERROR	20000
#define	XP_HELLO_ERROR	MAX_SERVER_ERROR+1

void	printUsage	(SRV_PROC*	pSrvProc);
void	printError	(SRV_PROC	*pSrvProc,	CHAR*	szErrorMsg);

//	It	is	highly	recommended	that	all	Microsoft®	SQL	Server	(7.0	
//	and	greater)	extended	stored	procedure	DLLs	implement	and	export	
//	__GetXpVersion.	For	more	information	see	SQL	Server	
//	Books	Online
ULONG	__GetXpVersion()

{
				return	ODS_VERSION;
}

SRVRETCODE	xp_hello(SRV_PROC*	pSrvProc)
{
				char								szText[15]	=	"Hello	World!";
				BYTE								bType;
				long								cbMaxLen;
				long								cbActualLen;
				BOOL								fNull;

#ifdef	_DEBUG
				//	In	a	debug	build,	look	up	the	data	type	name	for	assistance.
				DBCHAR*					pdbcDataType;
				int									cbDataType;
#endif

				//	Count	up	the	number	of	input	parameters.		There	should	only	be	one.
				if	(srv_rpcparams(pSrvProc)	!=	1)
								{
								//	Send	error	message	and	return
								//
								printUsage	(pSrvProc);
								return	(XP_ERROR);
								}

				//	Use	srv_paraminfo	to	get	data	type	and	length	information.
				if	(srv_paraminfo(pSrvProc,	1,	&bType,	&cbMaxLen,	&cbActualLen,
								NULL,	&fNull)	==	FAIL)
								{
								printError	(pSrvProc,	"srv_paraminfo	failed...");

									return	(XP_ERROR);				
								}

				//	Make	sure	first	parameter	is	a	return	(OUTPUT)	parameter
				if	((srv_paramstatus(pSrvProc,	1)	&	SRV_PARAMRETURN)	==	FAIL)
								{
								printUsage	(pSrvProc);
								return	(XP_ERROR);				
								}

				//	Make	sure	first	parameter	is	of	char	or	varchar	datatype
				if	(bType	!=	SRVBIGVARCHAR	&&	bType	!=	SRVBIGCHAR)
								{
								printUsage	(pSrvProc);
								return	(XP_ERROR);				
								}

				//	Make	sure	first	paramter	is	large	enough	to	hold	data
				if	(cbMaxLen	<	(long)strlen(szText))
								{
								printError	(pSrvProc,	"output	param	max.	length	should	be	bigger");
								return	(XP_ERROR);				
								}

				//	Describe	the	results	set	
//#define	METHOD1
#ifdef	METHOD1
				srv_describe(pSrvProc,	1,	"Column	1",	SRV_NULLTERM,	bType,
												cbMaxLen,	bType,	strlen(szText),	szText);
#else
				srv_describe(pSrvProc,	1,	"Column	1",	SRV_NULLTERM,	bType,
												cbMaxLen,	bType,	0,	NULL);

				//	Set	the	column's	length
				if	(srv_setcollen(pSrvProc,	1,	strlen(szText))	==	FAIL)
								{
								printError	(pSrvProc,	"srv_setcollen	failed...");
								return	(XP_ERROR);				
								}

				//	Set	the	column's	data
				if	(srv_setcoldata(pSrvProc,	1,	szText)	==	FAIL)
								{
								printError	(pSrvProc,	"srv_setcoldata	failed...");
								return	(XP_ERROR);				
								}

#endif	//METHOD1

#ifdef	_DEBUG
				//	A	debugging	aid.	Get	the	name	of	the	data	type	of	the	parameter.
				pdbcDataType	=	srv_symbol(SRV_DATATYPE,	(int)	bType,	&cbDataType);
#endif
				
				//	Send	a	row	to	client
				if	(srv_sendrow(pSrvProc)	==	FAIL)
								{
								printError	(pSrvProc,	"srv_sendrow	failed...");
								return	(XP_ERROR);				
								}

				//	Set	the	output	parameter
				if	(FAIL	==	srv_paramsetoutput(pSrvProc,	1,	szText,	strlen(szText),	FALSE))
								{
								printError	(pSrvProc,	"srv_paramsetoutput	failed...");
								return	(XP_ERROR);				

								}
								
				srv_senddone(pSrvProc,	(SRV_DONE_COUNT	|	SRV_DONE_MORE),	0,	1);

				return	(XP_NOERROR);
}

//	send	XP	usage	info	to	client
void	printUsage	(SRV_PROC	*pSrvProc)
{
				//	usage:	exec	xp_hello	<@param1	output>
				//	Example:
				//	declare	@txt	varchar(33)
				//	exec	xp_hello	@txt	OUTPUT
				//	select	@txt

				srv_sendmsg(pSrvProc,	SRV_MSG_ERROR,	XP_HELLO_ERROR,	SRV_INFO,	1,
												NULL,	0,	(DBUSMALLINT)	__LINE__,	
												"Usage:	exec	xp_hello	<@param1	output>",
												SRV_NULLTERM);
				srv_senddone(pSrvProc,	(SRV_DONE_ERROR	|	SRV_DONE_MORE),	0,	0);
}

//	send	szErrorMsg	to	client
void	printError	(SRV_PROC	*pSrvProc,	CHAR*	szErrorMsg)
{
				srv_sendmsg(pSrvProc,	SRV_MSG_ERROR,	XP_HELLO_ERROR,	SRV_INFO,	1,
												NULL,	0,	(DBUSMALLINT)	__LINE__,	
												szErrorMsg,
												SRV_NULLTERM);

				srv_senddone(pSrvProc,	(SRV_DONE_ERROR	|	SRV_DONE_MORE),	0,	0);
}

Xp_hello.def
The	.def	file	used	in	the	xp_hello	sample	exports	the	xp_hello	function.	This	is
in	a	sample	only	available	if	you	select	Dev	Tools	during	setup.

LIBRARY	XP_HELLO

DESCRIPTION			'Sample	SQL	Server	Extended	Stored	Procedure	DLL'

EXPORTS
			xp_hello
			__GetXpVersion

Extended	Stored	Procedure	Programming

Debugging	an	Extended	Stored	Procedure
Debugging	an	extended	stored	procedure	is	similar	to	debugging	a	DLL.	For
general	information	about	debugging	DLLs,	see	the	development	environment
and	debugger	vendor	documentation.

To	debug	an	extended	stored	procedure	DLL	by	using	Microsoft	Visual	C++

1.	 In	Microsoft®	Windows	NT®	4.0,	stop	the	SQL	Server	Service	by
using	SQL	Server	Service	Manager	or	Control	Panel.

2.	 Open	the	project	that	builds	the	extended	stored	procedure	DLL,	and
build	it.

3.	 Copy	the	extended	stored	procedure	DLL	to	the	SQL	Server	\Binn
directory	(C:\Program	Files\Microsoft	SQL	Server\Mssql\Binn	by
default).

4.	 On	the	Project	menu,	click	Settings.

5.	 In	the	Project	Settings	dialog	box,	click	the	Debug	tab.

6.	 In	the	Category	list,	click	General.

7.	 In	the	Executable	for	debug	session	box,	enter	the	path	and	file	name
of	the	Microsoft	SQL	Server™	executable	file	(for	example,
C:\Program	Files\Microsoft	SQL	Server\Mssql\Binn\Sqlservr.exe).	For
information	about	sqlservr	arguments,	see	sqlservr	Application.

8.	 In	the	Category	list,	click	Additional	DLLs.

9.	 In	the	Local	module	name	box,	enter	the	names	of	any	additional

DLLs	you	want	to	debug.

10.	 Click	OK	to	store	the	information	in	the	project.

11.	 Set	breakpoints	as	required	in	the	DLL	source	files	or	on	function
symbols	in	the	DLL.

12.	 On	the	Build	menu,	click	Go	to	start	the	debugger.

See	Also

sqlservr	Application

JavaScript:hhobj_1.Click()

Extended	Stored	Procedure	Programming

Adding	an	Extended	Stored	Procedure	to	SQL	Server
A	DLL	that	contains	extended	stored	procedure	functions	acts	as	an	extension	to
Microsoft®	SQL	Server™.	To	install	the	DLL,	copy	the	file	to	the	directory
containing	the	standard	SQL	Server	DLL	files	(C:\Program	Files\Microsoft	SQL
Server\Mssql\Binn	by	default).

To	add	each	extended	stored	procedure	function	in	an	extended	stored	procedure
DLL,	a	SQL	Server	system	administrator	must	run	the	sp_addextendedproc
system	stored	procedure,	specifying	the	name	of	the	function	and	the	name	of
the	DLL	in	which	that	function	resides.	For	example,	this	command	registers	the
function	xp_hello,	located	in	xp_hello.dll,	as	a	SQL	Server	extended	stored
procedure:

sp_addextendedproc	'xp_hello',	'xp_hello.dll'

It	is	not	necessary	to	stop	and	restart	SQL	Server.	This	is	in	a	sample	only
available	if	you	select	Dev	Tools	during	setup.

See	Also

sp_addextendedproc

JavaScript:hhobj_1.Click()

Extended	Stored	Procedure	Programming

Removing	an	Extended	Stored	Procedure	from	SQL
Server
To	drop	each	extended	stored	procedure	function	in	an	extended	stored
procedure	DLL,	a	Microsoft®	SQL	Server™	system	administrator	must	run	the
sp_dropextendedproc	system	stored	procedure,	specifying	the	name	of	the
function	and	the	name	of	the	DLL	in	which	that	function	resides.	For	example,
this	command	removes	the	function	xp_hello,	located	in	Xp_hello.dll,	from	SQL
Server:

sp_dropextendedproc	'xp_hello'

This	is	in	a	sample	only	available	if	you	select	Dev	Tools	during	setup.

See	Also

sp_dropextendedproc

JavaScript:hhobj_1.Click()

Extended	Stored	Procedure	Programming

Querying	Extended	Stored	Procedures	Installed	in
SQL	Server
A	Microsoft®	SQL	Server™	system	administrator	can	display	the	currently
defined	extended	stored	procedures	and	the	name	of	the	DLL	to	which	each
belongs	by	running	the	sp_helpextendedproc	system	procedure.	For	example,
this	command	returns	the	DLL	to	which	xp_hello	belongs:

sp_helpextendedproc	'xp_hello'

This	is	in	a	sample	only	available	if	you	select	Dev	Tools	during	setup.

If	sp_helpextendedproc	is	executed	without	specifying	an	extended	stored
procedure,	then	all	the	extended	stored	procedures	and	their	DLLs	are	displayed.

See	Also

sp_helpextendedproc

JavaScript:hhobj_1.Click()

Extended	Stored	Procedure	Programming

Unloading	an	Extended	Stored	Procedure	DLL
Microsoft®	SQL	Server™	loads	an	extended	stored	procedure	DLL	as	soon	as	a
call	is	made	to	one	of	the	functions	of	the	DLL.	The	DLL	remains	loaded	until
the	server	is	shut	down	or	until	the	system	administrator	uses	the	DBCC
statement	to	unload	it.	For	example,	this	command	unloads	Xp_hello.dll,
allowing	the	system	administrator	to	copy	a	newer	version	of	this	file	to	the
directory	without	shutting	down	the	server:

DBCC	xp_hello(FREE)

This	is	in	a	sample	only	available	if	you	select	Dev	Tools	during	setup.

See	Also

DBCC	dllname	(FREE)

JavaScript:hhobj_1.Click()

Extended	Stored	Procedure	Programming

Unicode	Data	and	Server	Code	Pages
Open	Data	Services	APIs	are	enabled	for	Unicode	data;	however,	they	are	not
enabled	for	Unicode	meta	data.	The	#define	Unicode	directive	does	not	have	any
effect	on	the	Open	Data	Services	API.

All	meta	data	returned	by,	or	provided	to	Open	Data	Services	by	your	Open	Data
Services	application	is	assumed	to	be	in	the	multibyte	code	page	of	the	server.
The	default	code	page	of	an	Open	Data	Services	server	application	is	the	ANSI
code	page	of	the	computer	on	which	the	application	is	running,	which	can	be
obtained	by	calling	srv_pfield	with	the	field	parameter	set	to
SRV_SPROC_CODEPAGE.

If	your	Open	Data	Services	application	is	Unicode-enabled,	you	must	convert
your	Unicode	meta	data	column	names,	error	messages,	and	so	on	to	multibyte
data	before	passing	this	data	to	the	Open	Data	Services	API.

Example
The	following	extended	stored	procedure	provides	an	example	of	the	Unicode
conversions	discussed.	Note	that:

Column	data	is	passed	as	Unicode	data	to	srv_describe	because	the
column	is	described	to	be	SRVNVARCHAR.	

Column	name	meta	data	is	passed	to	srv_describe	as	multibyte	data.

The	extended	stored	procedure	calls	srv_pfield	with	the	field	parameter
set	to	SRV_SPROC_CODEPAGE	to	obtain	the	multibyte	code	page	of
Microsoft®	SQL	Server™.

Error	messages	are	passed	to	srv_sendmsg	as	multibyte	data.

__declspec(dllexport)	RETCODE	proc1	(SRV_PROC	*srvproc)
{
				#define	MAX_COL_NAME_LEN	25
				#define	MAX_COL_DATA_LEN	50

				#define	MAX_ERR_MSG_LEN	250
				#define	MAX_SERVER_ERROR	20000
				#define	XP_ERROR_NUMBER	MAX_SERVER_ERROR+1

				int	retval;
				UINT	serverCodePage;
				CHAR	*szServerCodePage;

				WCHAR	unicodeColumnName[MAX_COL_NAME_LEN];
				CHAR	multibyteColumnName[MAX_COL_NAME_LEN];

				WCHAR	unicodeColumnData[MAX_COL_DATA_LEN];

				WCHAR	unicodeErrorMessage[MAX_ERR_MSG_LEN];
				CHAR		multibyteErrorMessage[MAX_ERR_MSG_LEN];

				lstrcpyW	(unicodeColumnName,	L"column1");
				lstrcpyW	(unicodeColumnData,	L"column1	data");
				lstrcpyW	(unicodeErrorMessage,	L"No	Error!");

				//	Obtain	server	code	page.
				//
				szServerCodePage	=	srv_pfield	(srvproc,	SRV_SPROC_CODEPAGE,	NULL);				
				if	(NULL	!=	szServerCodePage)
								serverCodePage	=	atol(szServerCodePage);
				else	
				{			//	Problem	situation	exists.
								srv_senddone(srvproc,	(SRV_DONE_ERROR	|	SRV_DONE_MORE),	0,	0);
								return	1;
				}

				//	Convert	column	name	for	Unicode	to	multibyte	using	the	
				//	server	code	page.

				//
				retval	=	WideCharToMultiByte(
								serverCodePage,																	//	code	page
								0,																														//	default
								unicodeColumnName,														//	wide-character	string
								-1,																													//	string	is	null	terminated
								multibyteColumnName,												//	address	of	buffer	for	new
																																								//			string
								sizeof	(multibyteColumnName),			//	size	of	buffer
								NULL,	NULL);

				if	(0	==	retval)
				{
								lstrcpyW	(unicodeErrorMessage,	L"Conversion	to	multibyte
								failed.");
								goto	Error;
				}

				retval	=	srv_describe	(srvproc,	1,	multibyteColumnName,
				SRV_NULLTERM,	
						SRVNVARCHAR,	MAX_COL_DATA_LEN*sizeof(WCHAR),	//	destination
								SRVNVARCHAR,	lstrlenW(unicodeColumnData)*sizeof(WCHAR),
								unicodeColumnData);	//source
				if	(FAIL	==	retval)
				{
								lstrcpyW	(unicodeErrorMessage,	L"srv_describe	failed.");
								goto	Error;
				}

			retval	=	srv_sendrow(srvproc);
				if	(FAIL	==	retval)
				{
								lstrcpyW	(unicodeErrorMessage,	L"srv_sendrow	failed.");

								goto	Error;
				}
				
				retval	=	srv_senddone	(srvproc,	SRV_DONE_MORE|SRV_DONE_COUNT,	0,	1);
				if	(FAIL	==	retval)
				{
								lstrcpyW	(unicodeErrorMessage,	L"srv_senddone	failed.");
								goto	Error;
				}

				return	0;
Error:
				//	convert	error	message	from	Unicode	to	multibyte.
				retval	=	WideCharToMultiByte(
								serverCodePage,																	//	code	page
								0,																														//	default
								unicodeErrorMessage,												//	wide-character	string
								-1,																													//	string	is	null	terminated
								multibyteErrorMessage,										//	address	of	buffer	for	new
																																								//			string
								sizeof	(multibyteErrorMessage),	//	size	of	buffer
								NULL,	NULL);

srv_sendmsg(srvproc,	SRV_MSG_ERROR,	XP_ERROR_NUMBER,	SRV_INFO,	1,
												NULL,	0,	__LINE__,	
												multibyteErrorMessage,
												SRV_NULLTERM);

				srv_senddone(srvproc,	(SRV_DONE_ERROR	|	SRV_DONE_MORE),	0,	0);

				return	1;
}

Extended	Stored	Procedure	Programming

Extended	Stored	Procedures	Programmer's	Reference
Microsoft®	Open	Data	Services	provides	a	server-based	application
programming	interface	(API)	for	extending	Microsoft	SQL	Server™	2000
functionality.	The	API	consists	of	C	and	C++	functions	and	macros	used	to	build
applications.

Extended	Stored	Procedure	Programming

srv_alloc
Allocates	memory	dynamically.

IMPORTANT		This	Open	Data	Services	function	or	macro	is	only	supported	in
Microsoft®	SQL	Server™	version	7.0	for	backward	compatibility.

For	more	information	about	Open	Data	Services	functions	or	macros	supported
for	backward	compatibility,	see	Open	Data	Services	(Level	3).

Syntax
void	*	srv_alloc	(DBINT	size);

Arguments
size

Specifies	the	number	of	bytes	to	allocate.

Returns
A	pointer	to	the	newly	allocated	space.	If	size	bytes	cannot	be	allocated,	a	null
pointer	is	returned.

Remarks
Use	the	srv_free	function	to	free	memory	allocated	by	srv_alloc.	The	srv_alloc
function	is	equivalent	to	the	Microsoft	Win32®	GlobalAlloc	function.	Normal
Win32	or	C	run-time	memory	management	functions	can	be	used	in	an	Open
Data	Services	application.

JavaScript:hhobj_1.Click()

Extended	Stored	Procedure	Programming

srv_convert
Changes	data	from	one	data	type	to	another.

Syntax
int	srv_convert	(SRV_PROC	*	srvproc,	
int	srctype,	
void	*	src,	
DBINT	srclen,	
int	desttype,	
void	*	dest,	
DBINT	destlen);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection.	The	structure	contains	all	the	control	information	that
Open	Data	Services	uses	to	manage	communications	and	data	between	the
Open	Data	Services	server	application	and	the	client.	If	the	srvproc	handle	is
supplied,	it	is	passed	to	the	Open	Data	Services	error	handler	function	when
an	error	occurs.

srctype

Specifies	the	data	type	of	the	data	to	be	converted.	This	parameter	can	be	any
of	the	Open	Data	Services	data	types.

src

Is	a	pointer	to	the	data	to	be	converted.	This	parameter	can	be	any	of	the
Open	Data	Services	data	types.

srclen

Specifies	the	length,	in	bytes,	of	the	data	to	be	converted.	If	srclen	is	0,
srv_convert	places	a	null	value	in	the	destination	variable.	Unless	it	is	0,	this
parameter	is	ignored	for	fixed-length	data	types,	in	which	case	the	source

data	is	assumed	to	be	NULL.	For	data	of	the	SRVCHAR	data	type,	a	length
of	-1	indicates	the	string	is	null-terminated.

desttype

Specifies	the	data	type	to	convert	the	source	to.	This	parameter	can	be	any	of
the	Open	Data	Services	data	types.

dest

Is	a	pointer	to	the	destination	variable	that	receives	converted	data.	If	this
pointer	is	NULL,	srv_convert	calls	the	user-supplied	error	handler	(if	any)
and	returns	-1.

If	desttype	is	SRVDECIMAL	or	SRVNUMERIC,	the	dest	parameter	must	be
a	pointer	to	a	DBNUMERIC	or	DBDECIMAL	structure	with	the	precision
and	scale	fields	of	the	structure	already	set	to	the	desired	values.	You	can	use
DEFAULTPRECISION	to	specify	a	default	precision,	and
DEFAULTSCALE	to	specify	a	default	scale.

destlen

Specifies	the	length,	in	bytes,	of	the	destination	variable.	This	parameter	is
ignored	for	fixed-length	data	types.	For	a	destination	variable	of	type
SRVCHAR,	the	value	of	destlen	must	be	the	total	length	of	the	destination
buffer	space.	A	length	of	-1	for	a	destination	variable	of	type	SRVCHAR	or
SRVBINARY	indicates	there	is	sufficient	space	available.	For	a	destination
variable	of	type	srvchar,	a	length	of	-1	causes	the	character	string	to	be	null-
terminated.

Returns
The	length	of	the	converted	data,	in	bytes,	if	the	data	type	conversion	succeeds.
When	srv_convert	encounters	a	request	for	a	conversion	it	does	not	support,	it
calls	the	developer-supplied	error	handler	(if	any),	sets	a	global	error	number,
and	returns	-1.

Remarks
The	srv_willconvert	function	determines	whether	a	particular	conversion	is
allowed.

Converting	to	the	approximate	numeric	data	types	SRVFLT4	or	SRVFLT8	can
result	in	some	loss	of	precision.	Converting	from	the	approximate	numeric	data
types	SRVFLT4	or	SRVFLT8	to	SRVCHAR	or	SRVTEXT	can	also	result	in
some	loss	of	precision.

Converting	to	SRVFLTx,	SRVINTx,	SRVMONEY,	SRVMONEY4,
SRVDECIMAL,	or	SRVNUMERIC	can	result	in	overflow	if	the	number	is
larger	than	the	destination's	maximum	value,	or	in	underflow	if	the	number	is
smaller	than	the	destination's	minimum	value.	If	overflow	occurs	when
converting	to	SRVCHAR	or	SRVTEXT,	the	first	character	of	the	resulting	value
contains	an	asterisk	(*)	to	indicate	the	error.

When	converting	SRVCHAR	to	SRVBINARY,	srv_convert	interprets
SRVCHAR	as	hexadecimal,	whether	or	not	the	string	contains	a	leading	0.	When
converting	SRVBINARY	to	SRVCHAR,	srv_convert	creates	a	hexadecimal
string	without	a	leading	0.	In	all	other	cases,	a	conversion	to	or	from	the
SRVBINARY	data	type	is	a	straight	bit-copy.

In	certain	cases,	it	can	be	useful	to	convert	a	data	type	to	itself.	For	example,
converting	SRVCHAR	to	SRVCHAR	with	a	destlen	of	-1	adds	a	null	terminator
to	a	string.

For	a	description	of	data	types	and	Open	Data	Services	data	type	conversions,
see	Data	Types.

The	srv_convert	function	can	fail	for	several	reasons:

The	requested	conversion	is	not	available.

The	conversion	resulted	in	truncation,	overflow,	or	loss	of	precision	in
the	destination	variable.

A	syntax	error	occurred	while	converting	a	character	string	to	a	numeric
data	type.

See	Also

srv_setutype

srv_willconvert

Extended	Stored	Procedure	Programming

srv_describe
Defines	the	column	name	and	source	and	destination	data	types	for	a	specific
column	in	a	row.

Syntax
int	srv_describe	(SRV_PROC	*	srvproc,	
int	colnumber,	
DBCHAR	*	column_name,	
int	namelen,	
DBINT	desttype,	
DBINT	destlen,	
DBINT	srctype,	
DBINT	srclen,	
void	*	srcdata);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	client	sending	the	row).	The	structure
contains	all	the	information	that	the	ODS	Library	uses	to	manage
communications	and	data	between	the	Open	Data	Services	server	application
and	the	client.

colnumber

Is	currently	not	supported.	Columns	must	be	described	in	order.	All	columns
must	be	described	before	srv_sendrow	is	called.

column_name

Specifies	the	name	of	the	column	to	which	the	data	belongs.	This	parameter
can	be	NULL	because	a	column	is	not	required	to	have	a	name.

namelen

Specifies	the	length,	in	bytes,	of	column_name.	If	namelen	is

SRV_NULLTERM,	then	column_name	must	be	null-terminated.

desttype

Specifies	the	data	type	of	the	destination	row	column	(the	data	type	sent	to
the	client).	The	data	type	must	be	specified	even	if	the	data	is	NULL	(see
Data	Types).

destlen

Specifies	the	length,	in	bytes,	of	the	data	to	be	sent	to	the	client.	For	fixed-
length	data	types	that	do	not	allow	null	values,	destlen	is	ignored.	For
variable-length	data	types	and	fixed-length	data	types	that	allow	null	values,
destlen	specifies	the	maximum	length	the	destination	data	can	be.

srctype

Specifies	the	data	type	of	the	source	data.

srclen

Specifies	the	length,	in	bytes,	of	the	source	data.	This	value	is	ignored	for
fixed-length	data	types.

srcdata

Provides	the	source	data	address	for	a	particular	column.	When	srv_sendrow
is	called,	it	looks	for	the	data	for	colnumber	at	srcdata.	Therefore	should	not
be	freed	before	a	call	to	srv_sendrow.	The	source	data	address	can	be
changed	between	calls	to	srv_sendrow	by	using	srv_setcoldata.	Memory
allocated	for	srcdata	should	not	be	freed	until	srv_senddone	is	called.

If	desttype	is	SRVDECIMAL	or	SRVNUMERIC,	the	srcdata	parameter	must
be	a	pointer	to	a	DBNUMERIC	or	DBDECIMAL	structure	with	the
precision	and	scale	fields	of	the	structure	already	set	to	the	values	you	want.
You	can	use	DEFAULTPRECISION	to	specify	a	default	precision,	and
DEFAULTSCALE	to	specify	a	default	scale.

Returns
The	number	of	the	column	described.	The	first	column	is	column	1.	If	an	error
occurs,	returns	0.

Remarks
The	srv_describe	function	must	be	called	once	for	each	column	in	the	row
before	the	first	call	to	srv_sendrow.	The	columns	of	a	row	can	be	described	in
any	order.

To	change	the	location	and	length	of	the	source	data	in	column	rows	before	the
complete	result	set	has	been	sent,	use	srv_setcoldata	and	srv_setcollen,
respectively.

For	a	description	of	data	types	and	Open	Data	Services	data	type	conversions,
see	Data	Types.

If	the	column	name	in	your	application	is	in	Unicode,	you	need	to	convert	it	to
the	multibyte	code	page	of	the	server	before	calling	srv_describe.	For	more
information,	see	Unicode	Data	and	Server	Code	Pages.

See	Also

srv_sendrow

srv_setutype

srv_setcoldata

Extended	Stored	Procedure	Programming

srv_getbindtoken
Obtains	a	bind	token	so	an	extended	stored	procedure	session	can	share	a
common	transaction	lock	space	with	the	client	session	that	invoked	the	extended
stored	procedure,	instead	of	opening	a	separate	session.

Syntax
int	srv_getbindtoken	(SRV_PROC*	srvproc,
char*	bindtoken);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection.	The	srvproc	parameter	contains	information	that	the	ODS
Library	uses	to	manage	communication	and	data	between	the	application	and
client.

bindtoken

Is	a	pointer	to	a	buffer	where	the	bind	token	will	be	copied.	The	bind	token	is
represented	as	a	null-terminated	string.	The	buffer	you	specify	should	be	255
bytes	in	length.

Returns
SUCCEED	or	FAIL.

Remarks
To	bind	an	extended	stored	procedure	session	to	the	client	session	that
called	it	so	they	share	the	same	transaction	lock	space

1.	 The	extended	stored	procedure	calls	svr_getbindtoken.	This	uses	the
existing	bind	token	of	the	client	session	if	the	session	is	already	bound.
If	not,	srv_getbindtoken	creates	a	new	bind	token	and	binds	the	client
session	to	the	token.	srv_getbindtoken	then	returns	the	bind	token	in

the	bindtoken	parameter.

2.	 The	extended	stored	procedure	uses	the	bind	token	with
sp_bindsession	to	bind	an	extended	stored	procedure	session	to	the
client	session.	Multiple	extended	stored	procedure	sessions	can	be
bound	to	a	client	session.

3.	 A	bound	session	is	unbound	when	the	external	stored	procedure
returns	or	when	sp_bindsession	is	called	with	an	empty	string.

Note		Only	one	bound	session	at	a	time	can	have	access	to	a	shared
connection.	If	one	session	is	currently	executing	a	statement	at	the
server	or	has	results	pending	from	the	server,	no	other	sessions	sharing
the	same	bound	connection	can	gain	access	to	the	server	until	the
current	session	has	finished	executing	the	current	statement.	If	a
session	attempts	to	gain	access	to	the	connection	while	the	server	is
busy,	an	error	is	returned	to	the	conflicting	session	indicating	the
connection	is	in	use	and	the	session	should	retry	later.

See	Also

sp_bindsession

sp_getbindtoken

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Extended	Stored	Procedure	Programming

srv_message_handler
Calls	the	installed	Open	Data	Services	message	handler.	This	function	is	usually
used	to	call	Microsoft®	SQL	Server™	from	an	extended	stored	procedure	to	log
an	error	(defined	by	the	extended	stored	procedure)	in	the	SQL	Server	error	log
file	or	the	Microsoft	Windows®	application	log.

Syntax
int	srv_message_handler	(SRV_PROC	*	srvproc,
int	errornum,
BYTE	severity,
BYTE	state,
int	oserrnum,
char	*	errtext,
int	errtextlen,
char	*	oserrtext,
int	oserrtextlen);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection.	The	srvproc	parameter	contains	information	that	the	ODS
Library	uses	to	manage	communication	and	data	between	the	application	and
the	client.

errornum

Is	an	error	number	defined	by	the	extended	stored	procedure.	This	number
must	be	from	50,001	through	2,147,483,647.

severity

Is	a	standard	SQL	Server	severity	value	for	the	error.	This	number	must	be
from	0	through	24.

state

Is	a	SQL	Server	state	value	for	the	error.

oserrnum

Is	the	operating-system	error	number.	This	argument	is	ignored.

errtext

Is	the	description	of	the	extended	stored	procedure	error	errornum.

errtextlen

Is	the	length	of	the	extended	stored	procedure	error	string	errtext.

oserrtext

Is	the	description	of	the	operating-system	error	oserrnum.	This	argument	is
ignored.

oserrtextlen

Is	the	length	of	the	operating-system	error	string	oserrtext.

Returns
SUCCEED	or	FAIL.

Remarks
The	srv_message_handler	function	enables	an	extended	stored	procedure	to
integrate	with	the	centralized	error	logging	and	reporting	features	of	SQL	Server.
SQL	Server	alerts	can	be	established	for	events	from	extended	stored	procedures,
and	SQL	Server	Agent	will	monitor	for	these	alert	conditions.

If	the	error	message	is	longer,	it	is	truncated	to	412	bytes.

Extended	Stored	Procedure	Programming

srv_paramdata
Returns	the	value	of	a	remote	stored	procedure	call	parameter.

IMPORTANT		This	Open	Data	Services	function	or	macro	is	only	supported	in
Microsoft®	SQL	Server™	2000	for	backward	compatibility.

For	more	information	about	Open	Data	Services	functions	or	macros	supported
for	backward	compatibility,	see	Open	Data	Services	(Level	3).

Syntax
void	*	srv_paramdata	(SRV_PROC	*	srvproc,	
int	n);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	handle	that	received	the	remote	stored
procedure	call).	The	structure	contains	information	the	ODS	Library	uses	to
manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

n

Is	the	number	of	the	parameter.	The	first	parameter	is	number	1.

Returns
A	pointer	to	the	parameter	value.	If	the	nth	parameter	is	NULL,	there	is	no	nth
parameter,	or	there	is	no	remote	stored	procedure,	returns	NULL.	If	the
parameter	value	is	a	string,	it	might	not	be	null-terminated.	Use	srv_paramlen
to	determine	the	length	of	the	string.

This	function	returns	the	following	values,	if	the	parameter	is	one	of	the	SQL
Server	data	types.	Pointer	data	includes	whether	the	pointer	for	the	data	type	is
valid	(VP),	NULL,	or	not	applicable	(N/A),	and	the	contents	of	the	data	pointed

JavaScript:hhobj_1.Click()

to.

New	data	types Input	data	length
	 NULL ZERO >=255 <255
BITN VP

NULL
VP
NULL

N/A N/A

BIGVARCHAR NULL
N/A

VP
NULL

VP
255	chars*

VP
actual	data

BIGCHAR NULL
N/A

VP
255	spaces

VP
255	chars*

VP
actual	data
+	padding
(up	to	255)

BIGBINARY NULL
N/A

VP
255	0x00

VP
255	bytes

VP
actual	data
+	padding
(up	to	255)

BIGVARBINARYNULL
N/A

VP
0x00

VP
255	bytes

VP
actual	data

NCHAR NULL
N/A

VP
255	spaces

VP
255	chars*

VP
actual	data
+	padding
(up	to	255)

NVARCHAR NULL
N/A

VP
NULL

VP
255	chars*

VP
actual	data

NTEXT N/A N/A N/A N/A
*				data	is	not	null-terminated;	no	warning	is	issued	on	truncation	for	data	>255	characters.

Remarks
If	you	know	the	parameter	name,	you	can	use	srv_paramnumber	to	get	the
parameter	number.	To	determine	whether	a	parameter	is	NULL,	use
srv_paramlen.

When	a	remote	stored	procedure	call	is	made	with	parameters,	the	parameters
can	be	passed	by	name	or	by	position	(unnamed).	If	the	remote	stored	procedure
call	is	made	with	some	parameters	passed	by	name	and	some	passed	by	position,
an	error	occurs.	If	an	error	occurs,	the	SRV_RPC	handler	is	still	called,	but	it

appears	as	if	there	were	no	parameters	and	srv_rpcparams	returns	0.

See	Also

srv_rpcparams

Extended	Stored	Procedure	Programming

srv_paraminfo
Returns	information	about	a	parameter.

IMPORTANT		This	function	supersedes	the	following	Open	Data	Services
functions:	srv_paramtype,	srv_paramlen,	srv_parammaxlen,	and	srv_paramdata.
srv_paraminfo	supports	the	new	Data	Types	and	zero-length	data.

Syntax
int	srv_paraminfo	(SRV_PROC	*	srvproc,	
int	n,
BYTE	*	pbType,
ULONG	*	pcbMaxLen,
ULONG	*	pcbActualLen,
BYTE	*	pbData,
BOOL	*	pfNull);

Arguments
srvproc

A	handle	for	a	client	connection.

n

The	ordinal	number	of	the	parameter	to	be	set.	The	first	parameter	is	1.

pbType

The	data	type	of	the	parameter.

pcbMaxLen

Pointer	to	the	maximum	length	of	the	parameter.

pcbActualLen

Pointer	to	the	actual	length	of	the	parameter.	A	value	of	0	(*pcbActualLen	==
0)	signifies	zero-length	data	if	*pfNull	is	set	to	FALSE.

pbData

Pointer	to	the	buffer	for	parameter	data.	If	pbData	is	not	NULL,	Open	Data
Services	writes	*pcbActualLen	bytes	of	data	to	*pbData.	If	pbData	is
NULL,	no	data	is	written	to	*pbData	but	the	function	returns	*pbType,
*pcbMaxLen,	*pcbActualLen,	and	*pfNull.	The	memory	for	this	buffer	must
be	managed	by	the	Open	Data	Services	application.

pfNull

Pointer	to	a	null	flag.	*pfNull	is	set	to	TRUE	if	the	value	of	the	parameter	is
NULL.

Returns
If	the	parameter	information	was	successfully	obtained,	SUCCEED	is	returned;
otherwise,	FAIL.	FAIL	is	returned	when	there	is	no	current	remote	stored
procedure	and	when	there	is	no	nth	remote	stored	procedure	parameter.

Extended	Stored	Procedure	Programming

srv_paramlen
Returns	the	data	length	of	a	remote	stored	procedure	call	parameter.

IMPORTANT		This	Open	Data	Services	function	or	macro	is	only	supported	in
Microsoft®	SQL	Server™	2000	for	backward	compatibility.	It	has	been
superseded	by	the	srv_paraminfo	function.

For	more	information	about	Open	Data	Services	functions	or	macros	supported
for	backward	compatibility,	see	Open	Data	Services	(Level	3).

Syntax
int	srv_paramlen	(SRV_PROC	*	srvproc,	
int	n);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	handle	that	received	the	remote	stored
procedure	call).	The	structure	contains	information	that	the	ODS	Library
uses	to	manage	communication	and	data	between	the	Open	Data	Services
server	application	and	the	client.

n

Indicates	the	number	of	the	parameter.	The	first	parameter	is	1.

Returns
The	actual	length,	in	bytes,	of	the	parameter	data.	If	there	is	no	nth	parameter	or
there	is	no	remote	stored	procedure,	returns	-1.	If	the	nth	parameter	is	NULL,
returns	0.

This	function	returns	the	following	values,	if	the	parameter	is	one	of	the
following	SQL	Server	data	types.

JavaScript:hhobj_1.Click()

New	data	types Input	data	length
	 NULL ZERO >=255 <255
BITN 1 1 N/A N/A
BIGVARCHAR 0 1 255 actual	len*
BIGCHAR 0 255 255 255
BIGBINARY 0 255 255 255
BIGVARBINARY 0 1 255 actual	len*
NCHAR 0 255 255 255
NVARCHAR 0 1 255 actual	len*
NTEXT -1 -1 -1 -1
*				actual	len	=	Length	of	multibyte	character	string	(cch)

Remarks
Each	remote	stored	procedure	parameter	has	an	actual	and	a	maximum	data
length.	For	standard	fixed-length	data	types	that	do	not	allow	null	values,	the
actual	and	maximum	lengths	are	the	same.	For	variable-length	data	types,	the
lengths	can	vary.	For	example,	a	parameter	declared	as	varchar(30)	can	have
data	that	is	only	10	bytes	long.	The	parameter's	actual	length	is	10	and	its
maximum	length	is	30.	The	srv_paramlen	function	gets	the	actual	data	length,
in	bytes,	of	a	remote	stored	procedure.	To	obtain	the	maximum	data	length	of	a
parameter,	use	srv_parammaxlen.

When	a	remote	stored	procedure	call	is	made	with	parameters,	the	parameters
can	be	passed	either	by	name	or	by	position	(unnamed).	If	the	remote	stored
procedure	call	is	made	with	some	parameters	passed	by	name	and	some	passed
by	position,	an	error	occurs.	The	SRV_RPC	handler	is	still	called,	but	it	appears
as	if	there	were	no	parameters	and	srv_rpcparams	returns	0.

See	Also

srv_paraminfo

srv_rpcparams

Extended	Stored	Procedure	Programming

srv_parammaxlen
Returns	the	maximum	data	length	of	a	remote	stored	procedure	call	parameter.

IMPORTANT		This	Open	Data	Services	function	or	macro	is	only	supported	in
Microsoft®	SQL	Server™	2000	for	backward	compatibility.	It	has	been
superseded	by	the	srv_paraminfo	function.

For	more	information	about	Open	Data	Services	functions	or	macros	supported
for	backward	compatibility,	see	Open	Data	Services	(Level	3).

Syntax
int	srv_parammaxlen	(SRV_PROC	*	srvproc,	
int	n);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	handle	that	received	the	remote	stored
procedure	call).	The	structure	contains	information	the	ODS	Library	uses	to
manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

n

Indicates	the	number	of	the	parameter.	The	first	parameter	is	1.

Returns
The	maximum	length,	in	bytes,	of	the	parameter	data.	If	there	is	no	nth
parameter	or	if	there	is	no	remote	stored	procedure,	returns	-1.

This	function	returns	the	following	values,	if	the	parameter	is	one	of	the
following	SQL	Server	data	types.

New	data	types Input	data	length

JavaScript:hhobj_1.Click()

	 NULL ZERO >=255 <255
BITN 1 1 N/A N/A
BIGVARCHAR 255 255 255 255
BIGCHAR 255 255 255 255
BIGBINARY 255 255 255 255
BIGVARBINARY 255 255 255 255
NCHAR 255 255 255 255
NVARCHAR 255 255 255 255
NTEXT -1 -1 -1 -1

Remarks
Each	remote	stored	procedure	parameter	has	an	actual	and	a	maximum	data
length.	For	standard	fixed-length	data	types	that	do	not	allow	null	values,	the
actual	and	maximum	lengths	are	the	same.	For	variable-length	data	types,	the
lengths	can	vary.	For	example,	a	parameter	declared	as	varchar(30)	can	have
data	that	is	only	10	bytes	long.	The	parameter's	actual	length	is	10	and	its
maximum	length	is	30.	The	srv_parammaxlen	function	gets	the	maximum	data
length	of	a	remote	stored	procedure.	To	obtain	the	actual	length	of	a	parameter,
use	srv_paramlen.

When	a	remote	stored	procedure	call	is	made	with	parameters,	the	parameters
can	be	passed	either	by	name	or	by	position	(unnamed).	If	the	remote	stored
procedure	call	is	made	with	some	parameters	passed	by	name	and	some	passed
by	position,	an	error	occurs.	The	SRV_RPC	handler	is	still	called,	but	it	appears
as	if	there	were	no	parameters,	and	srv_rpcparams	returns	0.

See	Also

srv_paraminfo

srv_rpcparams

Extended	Stored	Procedure	Programming

srv_paramname
Returns	the	name	of	a	remote	stored	procedure	call	parameter.

Syntax
DBCHAR	*	srv_paramname	(SRV_PROC	srvproc,	
int	n	,	
int	len);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	handle	that	received	the	remote	stored
procedure).	The	structure	contains	information	the	ODS	Library	uses	to
manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

n

Indicates	the	number	of	the	parameter.	The	first	parameter	is	1.

len

Provides	a	pointer	to	an	int	variable	that	contains	the	length,	in	bytes,	of	the
parameter	name.	If	len	is	NULL,	the	length	of	the	remote	stored	procedure
parameter	name	is	not	returned.

Returns
A	pointer	to	a	null-terminated	character	string	that	contains	the	parameter	name.
The	length	of	the	parameter	name	is	stored	in	len.	If	there	is	no	nth	parameter	or
no	remote	stored	procedure,	returns	NULL,	len	is	set	to	-1,	and	an	informational
error	message	is	sent.	If	the	parameter	name	is	NULL,	len	is	set	to	0	and	a	null-
terminated	empty	string	is	returned.

Remarks

This	function	gets	the	name	of	a	remote	stored	procedure	call	parameter.	When	a
remote	stored	procedure	call	is	made	with	parameters,	the	parameters	can	be
passed	either	by	name	or	by	position	(unnamed).	If	the	remote	stored	procedure
call	is	made	with	some	parameters	passed	by	name	and	some	passed	by	position,
an	error	occurs.	The	SRV_RPC	handler	is	still	called,	but	it	appears	as	if	there
were	no	parameters,	and	srv_rpcparams	returns	0.

See	Also

srv_rpcparams

Extended	Stored	Procedure	Programming

srv_paramnumber
Returns	the	number	of	a	remote	stored	procedure	call	parameter.

Syntax
int	srv_paramnumber	(SRV_PROC	*	srvproc,	
DBCHAR	*	name,	
int	namelen);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	handle	that	received	the	remote	stored
procedure	call).	The	structure	contains	information	the	ODS	Library	uses	to
manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

name

Is	a	pointer	to	the	parameter	name.

namelen

Is	the	length	of	name.	If	name	is	null-terminated,	set	namelen	to
SRV_NULLTERM.

Returns
The	parameter	number	of	the	named	parameter.	The	first	parameter	is	1.	If	there
is	no	parameter	named	name	or	no	remote	stored	procedure,	0	is	returned	and	a
message	is	generated.

Remarks
When	a	remote	stored	procedure	call	is	made	with	parameters,	the	parameters
can	be	passed	either	by	name	or	by	position	(unnamed).	If	the	remote	stored

procedure	call	is	made	with	some	parameters	passed	by	name	and	some	passed
by	position,	an	error	occurs.	The	SRV_RPC	handler	is	still	called,	but	it	appears
as	if	there	were	no	parameters,	and	srv_rpcparams	returns	0.

See	Also

srv_rpcparams

Extended	Stored	Procedure	Programming

srv_paramset
Sets	the	value	of	a	remote	stored	procedure	call	return	parameter.

IMPORTANT		This	Open	Data	Services	function	or	macro	is	only	supported	in
Microsoft®	SQL	Server™	2000	for	backward	compatibility.	It	has	been
superseded	by	the	srv_paramsetoutput	function.

For	more	information	about	Open	Data	Services	functions	or	macros	supported
for	backward	compatibility,	see	Open	Data	Services	(Level	3).

Syntax
int	srv_paramset	(SRV_PROC	*	srvproc,	
int	n	,	
void	*	data,	
int	len);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	handle	that	received	the	remote	stored
procedure	call).	The	structure	contains	information	the	ODS	Library	uses	to
manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

n

Indicates	the	number	of	the	parameter	to	set.	The	first	parameter	is	1.

data

Is	a	pointer	to	the	data	value	to	be	sent	back	to	the	client	as	the	remote	stored
procedure	return	parameter.

len

Specifies	the	actual	length	of	the	data	to	be	returned.	If	the	data	type	of	the
parameter	is	of	a	constant	length	and	does	not	allow	null	values	(for

JavaScript:hhobj_1.Click()

example,	srvbit	or	srvint1),	len	is	ignored.

Returns
SUCCEED	if	the	parameter	value	was	successfully	set;	otherwise,	FAIL.	FAIL	is
returned	when	there	is	no	current	remote	stored	procedure,	when	there	is	no	nth
remote	stored	procedure	parameter,	when	the	parameter	is	not	a	return
parameter,	and	when	the	len	argument	is	not	legal.

If	len	is	0,	returns	NULL.	Setting	len	to	0	is	the	only	way	to	return	NULL	to	the
client.

This	function	returns	the	following	values,	if	the	parameter	is	one	of	SQL	Server
data	types.

New	data	types Return	data	length
	 NULL ZERO >=255 <255
BITN len	=	0

data	=	IG
RET	=	0

N/A N/A N/A

BIGVARCHAR len	=	0
data	=	IG
RET	=	1

len	=	IG
data	=	IG
RET	=	0

len	=	max8k
data	=	valid
RET	=	0

len	=	<8k
data	=	valid
RET	=	1

BIGCHAR len	=	0
data	=	IG
RET	=	1

len	=	IG
data	=	IG
RET	=	0

len	=	max8k
data	=	valid
RET	=	0

len	=	<8k
data	=	valid
RET	=	1

BIGBINARY len	=	0
data	=	IG
RET	=	1

len	=	IG
data	=	IG
RET	=	0

len	=	max8k
data	=	valid
RET	=	0

len	=	<8k
data	=	valid
RET	=	1

BIGVARBINARY len	=	0
data	=	IG
RET	=	1

len	=	IG
data	=	IG
RET	=	0

len	=	max8k
data	=	valid
RET	=	0

len	=	<8k
data	=	valid
RET	=	1

NCHAR len	=	0
data	=	IG
RET	=	1

len	=	IG
data	=	IG
RET	=	0

len	=	max8k
data	=	valid
RET	=	0

len	=	<8k
data	=	valid
RET	=	1

NVARCHAR len	=	0
data	=	IG

len	=	IG
data	=	IG

len	=	max8k
data	=	valid

len	=	<8k
data	=	valid

RET	=	1 RET	=	0 RET	=	0 RET	=	1
NTEXT len	=	IG

data	=	IG
RET	=	0

len	=	IG
data	=	IG
RET	=	0

len	=	IG
data	=	IG
RET	=	0

len	=	IG
data	=	IG
RET	=	0

RET	=	Return	value	of	srv_paramset
IG	=	Value	will	be	ignored
valid	=	Any	valid	pointer	to	data

Remarks
Parameters	contain	data	passed	between	clients	and	the	Open	Data	Services
server	application	with	remote	stored	procedures.	The	client	can	specify	certain
parameters	as	return	parameters.	These	return	parameters	can	contain	values	that
the	Open	Data	Services	server	application	passes	back	to	the	client.	Using	return
parameters	is	analogous	to	passing	parameters	by	reference.

You	cannot	set	the	return	value	for	a	parameter	that	wasn't	invoked	as	a	return
parameter.	You	can	use	srv_paramstatus	to	determine	how	the	parameter	was
invoked.

This	function	sets	the	return	value	for	a	parameter	but	it	does	not	actually	send
the	return	value	to	the	client.	All	return	parameters,	whether	their	return	values
have	been	set	with	srv_paramset	or	not,	are	automatically	sent	to	the	client
when	srv_senddone	is	called	with	the	status	flag	SRV_DONE_FINAL	set.

When	a	remote	stored	procedure	call	is	made	with	parameters,	the	parameters
can	be	passed	either	by	name	or	by	position	(unnamed).	If	the	remote	stored
procedure	call	is	made	with	some	parameters	passed	by	name	and	some	passed
by	position,	an	error	occurs.	The	SRV_RPC	handler	is	still	called,	but	it	appears
as	if	there	were	no	parameters,	and	srv_rpcparams	returns	0.

See	Also

srv_paramsetoutput

Extended	Stored	Procedure	Programming

srv_paramsetoutput
Sets	the	value	of	a	return	parameter.

IMPORTANT		This	function	supersedes	the	srv_paramset	function.
srv_paramsetoutput	supports	the	new	Open	Data	Services	data	types	and	zero-
length	data.

Syntax
int	srv_paramsetoutput	(SRV_PROC	*	srvproc,	
int	n,
BYTE	*	pbData,
ULONG	cbLen,
BOOL	fNull);

Arguments
srvproc

Is	a	handle	for	a	client	connection.

n

Is	the	ordinal	number	of	the	parameter	to	be	set.	The	first	parameter	is	1.

pbData

Is	a	pointer	to	the	data	value	to	be	sent	back	to	the	client	as	a	procedure
return	parameter.

cbLen

Is	the	actual	length	of	the	data	to	be	returned.	If	the	data	type	of	the
parameter	specifies	values	of	a	constant	length	and	does	not	allow	null
values	(for	example,	srvbit	or	srvint1),	cbLen	is	ignored.	A	value	of	0
signifies	zero-length	data	if	fNull	is	FALSE.

fNull

Is	a	flag	indicating	whether	the	value	of	the	return	parameter	is	NULL.	Set

this	flag	to	TRUE	if	the	parameter	should	be	set	to	NULL.	The	default	value
is	FALSE.	If	fNull	is	set	to	TRUE,	cbLen	should	be	set	to	0	or	the	function
will	fail.

Returns
If	the	parameter	information	was	successfully	set,	SUCCEED	is	returned;
otherwise,	FAIL.	FAIL	is	returned	when	there	is	no	current	remote	stored
procedure,	when	the	parameter	is	not	a	return	parameter,	or	when	the	cbLen
argument	is	invalid.

Extended	Stored	Procedure	Programming

srv_paramstatus
Returns	the	status	of	a	particular	remote	stored	procedure	call	parameter.

Syntax
int	srv_paramstatus	(SRV_PROC	*	srvproc,	
int	n);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	handle	that	received	the	remote	stored
procedure	call).	The	structure	contains	information	the	ODS	Library	uses	to
manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

n

Indicates	the	number	of	the	parameter.	The	first	parameter	is	number	1.

Returns
An	int	that	contains	status	flags	for	the	parameter.	Currently,	there	is	only	one
flag:	If	bit	0	is	set	to	1,	the	parameter	is	a	return	parameter.	If	there	is	no	nth
parameter	or	if	there	is	no	remote	stored	procedure,	returns	-1.

Remarks
This	routine	returns	the	status	flags	for	a	remote	stored	procedure	call	parameter.

Parameters	contain	data	passed	between	clients	and	the	Open	Data	Services
server	application	with	remote	stored	procedures.	The	client	can	specify	certain
parameters	as	return	parameters.	These	return	parameters	can	contain	values	that
the	Open	Data	Services	server	application	passes	back	to	the	client.

Currently,	the	only	status	flag	is	one	that	indicates	whether	the	parameter	is	a

return	parameter.

Open	Data	Services	can	use	srv_paramset	to	set	the	value	of	a	return	parameter.

When	a	remote	stored	procedure	call	is	made	with	parameters,	the	parameters
can	be	passed	either	by	name	or	by	position	(unnamed).	If	the	remote	stored
procedure	call	is	made	with	some	parameters	passed	by	name	and	some	passed
by	position,	an	error	occurs.	If	an	error	occurs,	the	SRV_RPC	handler	is	still
called,	but	it	appears	as	if	there	were	no	parameters,	and	srv_rpcparams	returns
0.

See	Also

srv_rpcparams

Extended	Stored	Procedure	Programming

srv_paramtype
Returns	the	data	type	of	a	remote	stored	procedure	call	parameter.

IMPORTANT		This	Open	Data	Services	function	or	macro	is	only	supported	in
Microsoft®	SQL	Server™	2000	for	backward	compatibility.	It	has	been
superseded	by	the	srv_paraminfo	function.

For	more	information	about	Open	Data	Services	functions	or	macros	supported
for	backward	compatibility,	see	Open	Data	Services	(Level	3).

Syntax
int	srv_paramtype	(SRV_PROC	*	srvproc,	
int	n);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	handle	that	received	the	remote	stored
procedure	call).	The	structure	contains	information	the	ODS	Library	uses	to
manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

n

Indicates	the	number	of	the	parameter.	The	first	parameter	is	1.

Returns
A	token	value	for	the	data	type	of	the	parameter.	You	can	get	a	readable
description	for	the	value	by	using	srv_symbol.	For	information	about	a	list	of
data	types,	see	Data	Types.	If	there	is	no	nth	parameter	or	if	there	is	no	remote
stored	procedure,	returns	-	1.

This	function	returns	the	following	values,	if	the	parameter	is	one	of	the	SQL
Server	data	types.

JavaScript:hhobj_1.Click()

New	data	types Return	value
BITN SRVBIT
BIGVARCHAR VARCHAR
BIGCHAR CHAR
BIGBINARY BINARY
BIGVARBINARY VARBINARY
NCHAR CHAR
NVARCHAR VARCHAR
NTEXT -1

Remarks
When	a	remote	stored	procedure	call	is	made	with	parameters,	the	parameters
can	be	passed	either	by	name	or	by	position	(unnamed).	If	the	remote	stored
procedure	call	is	made	with	some	parameters	passed	by	name	and	some	passed
by	position,	an	error	occurs.	The	SRV_RPC	handler	is	still	called,	but	it	appears
as	if	there	were	no	parameters	and	srv_rpcparams	returns	0.

See	Also

srv_paraminfo

srv_rpcparams

Extended	Stored	Procedure	Programming

srv_pfield
Returns	information	about	a	database	connection.

Syntax
DBCHAR	*	srv_pfield	(SRV_PROC	*	srvproc,	
int	field,	
int	*	len);

Arguments
srvproc

Pointer	identifying	a	database	connection.

field

Specifies	data	on	the	connection	to	return.

Value Returns
SRV_APPLNAME The	application	name	provided	by	the

client	when	it	established	the
connection.

SRV_BCPFLAG A	flag	that	is	TRUE	if	the	client	is
preparing	for	a	bulk	copy	operation;
otherwise,	FALSE.

SRV_CLIB The	name	of	the	library	that	enables
the	client	to	talk	to	a	server.

SRV_CPID The	client	process	ID	on	the	client
source	computer.

SRV_HOST The	name	of	the	client's	machine
provided	by	the	client	when	it
established	the	connection.

SRV_LIBVERS The	version	of	the	client	library.
SRV_LSECURE A	flag.	TRUE	if	connection	used

integrated	security	to	login.

SRV_NETWORK_MODULE The	name	of	the	Net-Library	DLL	used
by	the	connection.

SRV_NETWORK_VERSION The	version	of	the	Net-Library	DLL
used	used	by	the	connection.

SRV_NETWORK_CONNECTION The	connection	string	passed	to	the
Net-Library	DLL	used	for	the	current
srvproc	connection.

SRV_PIPEHANDLE A	string	containing	the	pipe	handle	of	a
connected	client,	or	NULL	if	the	client
is	connected	on	a	network	that	does	not
use	named	pipes.	To	use	this	handle	as
a	valid	pipe	handle	with	Microsoft®
Windows	NT®	4.0,	convert	this	string
to	an	integer.

SRV_PWD If	the	connection	used	standard
security	to	login,	the	password	it
provided.

SRV_RMTSERVER The	server	from	which	the	client
process	is	logged	in.	If	the	login	is
from	a	client,	this	value	is	an	empty
string.

SRV_ROWSENT The	number	of	rows	already	sent	by
srvproc	for	the	current	set	of	results.

SRV_SPID The	server	thread	ID	of	the	srvproc.
For	extended	stored	procedures,	this
value	is	the	same	as	the	kpid	column
of	sysprocesses,	and	it	can	change
over	time.

SRV_SPROC_CODEPAGE Codepage	that	the	server	uses	to
interpret	multbyte	data.

SRV_STATUS The	current	status	of	srvproc.
SRV_TDS The	version	of	the	tabular	data	stream

(TDS)	used	by	the	client.	Use
SRV_TDSVERSION	instead	of	this
value.

SRV_TYPE The	connection	type	of	srvproc.	If

"server"	is	returned,	srvproc	is	from	an
instance	of	SQL	Server.	If	"client"	is
returned,	srvproc	is	from	a	DB-Library
or	ODBC	client.

SRV_USER The	user	name	of	the	connection.

len

Is	a	pointer	to	an	int	variable	that	contains	the	length	of	the	returned	field
value.	If	len	is	NULL,	the	length	of	the	string	is	not	returned.

Returns
A	pointer	to	a	null-terminated	string	containing	the	current	value	for	the
specified	field	in	the	SRV_PROC	structure.	If	the	field	is	empty,	a	valid	pointer
to	an	empty	string	is	returned	and	len	contains	0.	If	the	field	is	unknown,	NULL
is	returned	and	len	contains	the	value	-1.

Extended	Stored	Procedure	Programming

srv_pfieldex
Returns	a	pointer	to	data	containing	the	requested	SRV_PROC	field.

Syntax
void	*sql_pfieldex(SRV_PROC	*	srvproc,	int	field,	int	*	len);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection.	The	structure	contains	information	that	the	ODS	Library
uses	to	manage	communication	and	data	between	the	Open	Data	Services
server	application	and	the	client.

field

Specifies	the	srvproc	field	to	return.

Field Description Return-type
SRV_MSGLCID Current	session	message	LCID. ULONG*
SRV_INSTANCENAME Instance	name	(if	named);

otherwise,	returns	NULL.
WCHAR*

len

Is	a	pointer	to	an	int	variable	that	contains	the	length	of	the	returned	field
value	in	bytes.	If	len	is	NULL,	the	length	is	not	returned.	When	NULL	is
returned	*len	is	set	to	0.

Returns
A	pointer	to	data	whose	type	depends	on	field.	NULL	is	returned	when	len	is
NULL	or	srvproc	is	NULL.	If	the	field	is	unknown,	NULL	is	returned.	When
NULL	is	returned	*len	is	set	to	0.

Extended	Stored	Procedure	Programming

srv_rpcdb
Returns	the	database	name	component	for	the	current	remote	stored	procedure.

IMPORTANT		This	Open	Data	Services	function	or	macro	is	only	supported	in
Microsoft®	SQL	Server™	version	7.0	for	backward	compatibility.

For	more	information	about	Open	Data	Services	functions	or	macros	supported
for	backward	compatibility,	see	Open	Data	Services	(Level	3).

Syntax
DBCHAR	*	srv_rpcdb	(SRV_PROC	srvproc,	
int	*	len);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection.	The	structure	contains	information	the	ODS	Library	uses
to	manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

len

Is	a	pointer	to	an	int	variable	that	receives	the	length	of	the	database	name.	If
len	is	NULL,	the	length	of	the	database	name	is	not	returned.

Returns
A	DBCHAR	pointer	to	the	null-terminated	string	for	the	database	name	part	of
the	current	remote	stored	procedure.	If	there	is	no	current	remote	stored
procedure,	NULL	is	returned	and	the	len	parameter	is	set	to		-	1.

Remarks
This	function	returns	only	the	database	component	of	the	remote	stored
procedure	object	name.	It	does	not	include	the	optional	specifiers	for	owner,

JavaScript:hhobj_1.Click()

remote	stored	procedure	name,	and	remote	stored	procedure	number.

Extended	Stored	Procedure	Programming

srv_rpcname
Returns	the	procedure	name	component	for	the	current	remote	stored	procedure.

IMPORTANT		This	Open	Data	Services	function	or	macro	is	only	supported	in
Microsoft®	SQL	Server™	version	7.0	for	backward	compatibility.

For	more	information	about	Open	Data	Services	functions	or	macros	supported
for	backward	compatibility,	see	Open	Data	Services	(Level	3).

Syntax
DBCHAR	*	srv_rpcname	(SRV_PROC	*	srvproc,	
int	*	len);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	handle	that	received	the	remote	stored
procedure).	The	structure	contains	information	that	the	ODS	Library	uses	to
manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

len

Is	a	pointer	to	an	integer	variable	that	receives	the	length	of	the	database
name.	If	len	is	NULL,	the	length	of	the	remote	stored	procedure	name	is	not
returned.

Returns
A	DBCHAR	pointer	to	the	null-terminated	string	for	the	remote	stored	procedure
name	component	of	the	current	remote	stored	procedure.	If	there	is	not	a	current
remote	stored	procedure,	NULL	is	returned	and	len	is	set	to	-1.

Remarks

JavaScript:hhobj_1.Click()

This	function	returns	only	the	name	of	the	remote	stored	procedure.	It	does	not
include	the	optional	specifiers	for	owner,	database	name,	and	remote	stored
procedure	number.

Because	it	is	valid	to	call	srv_rpcname	when	there	is	not	a	remote	stored
procedure	(no	informational	error	occurs),	this	function	provides	a	method	for
determining	whether	a	remote	stored	procedure	exists.

Extended	Stored	Procedure	Programming

srv_rpcnumber
Returns	the	number	component	for	the	current	remote	stored	procedure	call.

IMPORTANT		This	Open	Data	Services	function	or	macro	is	only	supported	in
Microsoft®	SQL	Server™	version	7.0	for	backward	compatibility.

For	more	information	about	Open	Data	Services	functions	or	macros	supported
for	backward	compatibility,	see	Open	Data	Services	(Level	3).

Syntax
int	srv_rpcnumber	(SRV_PROC	*	srvproc)

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	handle	that	received	the	remote	stored
procedure).	The	structure	contains	information	that	the	ODS	Library	uses	to
manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

Returns
The	number	component	for	the	current	remote	stored	procedure.	If	the	client
does	not	use	a	number	component	when	running	the	remote	stored	procedure	or
if	there	is	no	current	remote	stored	procedure,	returns		-	1.

Remarks
This	function	returns	only	the	number	component	of	the	remote	stored
procedure.	It	does	not	include	the	optional	specifiers	for	owner,	remote	stored
procedure	name,	and	database	name.

JavaScript:hhobj_1.Click()

Extended	Stored	Procedure	Programming

srv_rpcoptions
Returns	run-time	options	for	the	current	remote	stored	procedure.

IMPORTANT		This	Open	Data	Services	function	or	macro	is	only	supported	in
Microsoft®	SQL	Server™	version	7.0	for	backward	compatibility.

For	more	information	about	Open	Data	Services	functions	or	macros	supported
for	backward	compatibility,	see	Open	Data	Services	(Level	3).

Syntax
DBUSMALLINT	srv_rpcoptions	(SRV_PROC	*	srvproc);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	handle	that	received	the	remote	stored
procedure).	The	structure	contains	information	the	ODS	Library	uses	to
manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

Returns
A	bitmap	that	contains	the	run-time	flags	joined	in	a	logical	OR	for	the	current
remote	stored	procedure.	If	there	is	not	a	current	remote	stored	procedure,	0	is
returned	and	a	message	is	generated.

Remarks
The	following	table	describes	each	run-time	flag.

Run-time	flag Description
SRV_NOMETADATAThe	client	has	requested	results	without	meta	data

information.	This	flag	is	only	used	when	the	client
is	communicating	with	an	instance	of	SQL	Server.

JavaScript:hhobj_1.Click()

An	Open	Data	Services	application	cannot	omit
meta	data	information.

SRV_RECOMPILE The	client	has	requested	to	recompile	the	remote
stored	procedure	before	executing	it.	This	flag	may
not	apply	to	an	Open	Data	Services	application.

Extended	Stored	Procedure	Programming

srv_rpcowner
Returns	the	owner	component	for	the	current	remote	stored	procedure.

IMPORTANT		This	Open	Data	Services	function	or	macro	is	only	supported	in
Microsoft®	SQL	Server™	version	7.0	for	backward	compatibility.

For	more	information	about	Open	Data	Services	functions	or	macros	supported
for	backward	compatibility,	see	Open	Data	Services	(Level	3).

Syntax
DBCHAR	*	srv_rpcowner	(SRV_PROC	*	srvproc,	
int	*	len);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	handle	that	received	the	remote	stored
procedure).	The	structure	contains	information	that	the	ODS	Library	uses	to
manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

len

Is	a	pointer	to	an	integer	variable	that	receives	the	length	of	the	owner	name.
The	parameter	len	can	be	NULL,	in	which	case	the	length	of	the	owner
component	is	not	returned.

Returns
A	DBCHAR	pointer	to	the	null-terminated	owner	component	for	the	current
remote	stored	procedure.	If	there	is	no	current	remote	stored	procedure,	NULL	is
returned	and	len	is	set	to		-	1.

Remarks

JavaScript:hhobj_1.Click()

This	function	returns	only	the	owner	component	of	the	remote	stored	procedure.
It	does	not	include	the	optional	specifiers	for	name,	remote	stored	procedure
name,	and	remote	stored	procedure	number.

Extended	Stored	Procedure	Programming

srv_rpcparams
Returns	the	number	of	parameters	for	the	current	remote	stored	procedure.

Syntax
int	srv_rpcparams	(SRV_PROC	*	srvproc);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	handle	that	received	the	remote	stored
procedure).	The	structure	contains	information	that	the	ODS	Library	uses	to
manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

Returns
The	number	of	parameters	in	the	remote	stored	procedure.	If	there	are	no
parameters	in	the	remote	stored	procedure	or	if	there	is	not	a	current	remote
stored	procedure,	-1	is	returned	and	an	information	error	occurs.

Remarks
This	function	returns	the	number	of	parameters	in	the	current	remote	stored
procedure.	It	is	usually	called	from	the	remote	stored	procedure.

When	a	remote	stored	procedure	call	is	made	with	parameters,	the	parameters
can	be	passed	either	by	name	or	by	position	(unnamed).	If	the	remote	stored
procedure	call	was	made	with	some	parameters	passed	by	name	and	some	passed
by	position,	an	error	occurs.	When	this	error	occurs,	the	remote	stored	procedure
handler	is	called,	but	it	does	not	receive	the	parameters	and	srv_rpcparams
returns	0.

Extended	Stored	Procedure	Programming

srv_senddone
Sends	a	result	completion	message	to	the	client.

Syntax
int	srv_senddone	(SRV_PROC	*	srvproc,	
DBUSMALLINT	status,	
DBUSMALLINT	info,	
DBINT	count);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	handle	that	received	the	language	request).
The	structure	contains	information	that	the	ODS	Library	uses	to	manage
communication	and	data	between	the	Open	Data	Services	server	application
and	the	client.

status

Is	a	2-byte	field	for	various	status	flags.	Multiple	flags	can	be	set	by	using
the	AND	and	OR	logical	operators	with	status	flag	values.	The	following
table	lists	possible	status	flags.

Status	flag Description
SRV_DONE_FINAL The	current	set	of	results	is	the	final	set	of

results.
SRV_DONE_MORE The	current	set	of	results	is	not	the	final	set

of	results.
SRV_DONE_COUNT The	count	parameter	contains	a	valid

count.
SRV_DONE_ERROR The	current	client	command	received	an

error.
SRV_DONE_RPC_IN_BATCHThe	current	set	of	results	is	the	last	set	of

results	for	the	currently	executing	remote
stored	procedure.	This	value	is	used	when
multiple	remote	stored	procedures	are
executed	in	a	single	batch.

info

Is	a	reserved,	2-byte	field.	Set	this	value	to	0.

count

Is	a	4-byte	field	used	to	indicate	a	count	for	the	current	result	set.	If	the
SRV_DONE_COUNT	flag	is	set	in	the	status	field,	count	holds	a	valid
count.

Returns
SUCCEED	or	FAIL

Remarks
A	client	request	can	cause	the	server	to	execute	a	number	of	commands	and	to
return	a	number	of	result	sets.	For	each	result	set,	srv_senddone	must	return	a
result	completion	message	to	the	client.

To	indicate	that	there	are	more	results	for	the	current	request,	the	Open	Data
Services	server	application	must	set	the	status	field	to	SRV_DONE_MORE.	To
indicate	that	there	are	no	more	results	for	the	current	request,	the	Open	Data
Services	server	application	must	set	the	status	field	to	SRV_DONE_FINAL.
However,	when	an	application	function	is	installed	as	a	Microsoft®	SQL
Server™	extended	stored	procedure	instead	of	as	a	separate	Open	Data	Services
server	application,	use	SRV_DONE_MORE.	With	extended	stored	procedures,
SQL	Server	itself	sends	SRV_DONE_FINAL.

The	count	field	indicates	the	number	of	rows	affected	by	a	command.	If	the
count	field	contains	a	count,	the	SRV_DONE_COUNT	flag	should	be	set	in	the
status	field.	This	setting	allows	the	client	to	distinguish	between	a	count	value	of
0	and	an	unused	count	field.

Do	not	call	srv_senddone	from	the	SRV_CONNECT	handler.

Extended	Stored	Procedure	Programming

srv_sendmsg
Sends	a	message	to	the	client.

Syntax
int	srv_sendmsg	(SRV_PROC	*	srvproc,	
int	msgtype,	
DBINT	msgnum,	
DBTINYINT	class,	
DBTINYINT	state,	
DBCHAR	*	rpcname,	
int	rpcnamelen,	
DBUSMALLINT	linenum,	
DBCHAR	*	message,	
int	msglen);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	handle	that	received	the	language	request).
The	structure	contains	information	that	the	ODS	Library	uses	to	manage
communication	and	data	between	the	Open	Data	Services	server	application
and	the	client.

msgtype

Is	either	SRV_MSG_INFO	or	SRV_MSG_ERROR,	depending	on	whether
the	server	is	sending	an	informational	or	error	message.

msgnum

Is	a	4-byte	message	number.

class

Specifies	the	error	severity.	A	severity	less	than	or	equal	to	10	is	considered
an	informational	message.

state

Provides	the	error	state	number	for	the	current	message.	The	error	state
number	provides	information	about	the	context	of	the	error.	Valid	state
numbers	are	from	1	through	127.

rpcname

Is	currently	not	supported.

rpcnamelen

Is	currently	not	supported.

linenum

Is	the	line	number	in	the	language	command	batch	where	the	message
applies.	Line	numbers	start	at	1.	If	linenum	does	not	apply	to	the	message,
set	to	0.

message

Is	a	pointer	to	the	character	string	to	be	sent	to	the	client.

msglen

Specifies	the	length,	in	bytes,	of	message.	If	message	is	null-terminated,	set
msglen	to	SRV_NULLTERM.

Returns
SUCCEED	or	FAIL

Remarks
This	function	sends	error	or	informational	messages	to	the	client.	It	is	called
once	for	each	message	to	be	sent.

Messages	sent	with	srv_sendmsg	can	be	sent	to	the	client	in	any	order	before	or
after	all	rows	(if	any)	have	been	sent	with	srv_sendrow.	All	messages,	if	any,
must	be	sent	to	the	client	before	the	completion	status	is	sent	with
srv_senddone.

If	the	error	message	in	your	application	is	in	unicode,	you	need	to	convert	it	to

the	multibyte	code	page	of	the	server	before	calling	srv_sendmsg	since	message
is	defined	as	DBCHAR*.

If	the	error	message	in	your	application	is	in	unicode,	convert	it	to	the	multibyte
code	page	of	the	server	before	calling	srv_sendmsg	since	message	is	defined	as
DBCHAR*.	For	more	information	see	Unicode	Data	and	Server	Code	Pages.

Extended	Stored	Procedure	Programming

srv_sendrow
Transmits	a	row	of	data	to	the	client.

Syntax
int	srv_sendrow	(SRV_PROC	*	srvproc);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection	(in	this	case,	the	handle	that	received	the	language	request).
The	structure	contains	information	that	the	ODS	Library	uses	to	manage
communication	and	data	between	the	Open	Data	Services	server	application
and	the	client.

Returns
SUCCEED	or	FAIL.

Remarks
The	srv_sendrow	function	is	called	once	for	each	row	sent	to	the	client.	All
rows	must	be	sent	to	the	client	before	any	messages,	status	values,	or	completion
statuses	are	sent	with	srv_sendmsg,	srv_status,	or	srv_senddone.

Sending	a	row	that	has	not	had	all	its	columns	defined	with	srv_describe	causes
the	Open	Data	Services	server	application	to	raise	an	informational	error
message	and	return	FAIL	to	the	client.	In	this	case,	the	row	is	not	sent.

Note		Open	Data	Services	does	not	support	sending	compute	rows	to	the	client.
Also,	if	a	row	containing	ntext,	text	or	image	data	is	sent	to	the	client,	the	text
pointer	and	text	timestamp	are	not	included.

See	Also

srv_describe

Extended	Stored	Procedure	Programming

srv_setcoldata
Specifies	the	current	address	for	a	column's	data.

Syntax
int	srv_setcoldata	(SRV_PROC	*	srvproc,	
int	column,	
void	*	data);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection.	The	structure	contains	information	the	ODS	Library	uses
to	manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

column

Indicates	the	number	of	the	column	the	address	is	being	specified	for.
Columns	are	numbered	beginning	with	1.

data

Is	a	pointer	for	a	column's	data.	Memory	allocated	for	data	should	not	be
freed	until	srv_senddone	is	called.

Returns
SUCCEED	or	FAIL.

Remarks
Each	column	of	the	row	must	be	defined	first	with	srv_describe.	Column	data
addresses	are	initially	set	with	srv_describe.	If	the	address	of	the	column	data
changes,	srv_setcoldata	must	be	called	to	specify	the	new	address	of	the	data
and	srv_setcoldata	must	be	called	separately	for	each	changed	column.

Null	data	is	represented	by	setting	the	column's	length	to	0	with	srv_setcollen.
The	data	address	is	then	ignored.

See	Also

srv_describe

Extended	Stored	Procedure	Programming

srv_setcollen
Specifies	the	current	data	length	in	bytes	of	a	variable-length	column	or	a
column	that	allows	NULL	values.

Syntax
int	srv_setcollen	(SRV_PROC	*	srvproc,	
int	column,	
int	len);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection.	The	structure	contains	information	the	ODS	Library	uses
to	manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

column

Indicates	the	number	of	the	column	for	which	the	data	length	is	being
specified.	Columns	are	numbered	beginning	with	1.

len

Indicates	the	length,	in	bytes,	of	the	column	data.	A	length	of	0	means	the
column	data	value	is	null.

Returns
SUCCEED	or	FAIL.

Remarks
Each	column	of	the	row	must	first	be	defined	with	srv_describe.	The	column
data	length	is	set	by	the	last	call	to	srv_describe	or	srv_setcollen.	If	variable-
length	data	(null-terminated	data)	changes	for	a	row,	srv_setcollen	must	be	used

to	set	it	to	the	new	length	before	calling	srv_sendrow.	For	a	column	that	allows
null	values,	srv_describe	must	have	been	called	with	desttype	set	to	a	data	type
that	allows	nulls	(like	SRVINTN)	and	null	data	is	specified	by	calling
srv_setcollen	with	len	set	to	0.	Zero	length	data	cannot	be	specified	using	Open
Data	Services	API.

Note	that	when	the	data	type	of	the	column	is	variable-length,	len	is	not	checked.
This	function	returns	FAIL	if	called	for	a	fixed-length	column.

See	Also

srv_describe

Extended	Stored	Procedure	Programming

srv_setutype
Sets	the	user-defined	data	type	for	a	column	in	a	row.

Syntax
int	srv_setutype	(SRV_PROC	*	srvproc,	
int	column,	
DBINT	user_type);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection.	The	structure	contains	information	the	ODS	Library	uses
to	manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

column

Indicates	which	column	to	set.	Columns	are	numbered	beginning	with	1.

user_type

Specifies	the	user-defined	data	type	code.

Returns
SUCCEED	or	FAIL.	Returns	FAIL	if	the	column	does	not	exist.

Remarks
A	column	has	two	data	types:	its	actual	data	type	and	its	user-defined	data	type.
The	user-defined	data	type	is	used	by	Microsoft®	SQL	Server™	to	store	the
actual	user-defined	data	type	of	the	column	(if	any)	and	column	description
information	(such	as	nullability	and	updatability)	for	the	column.

The	srv_setutype	function	can	be	called	any	time	that	column	has	been	defined
with	srv_describe	and	before	the	last	row	has	been	sent.

See	Also

srv_describe

Extended	Stored	Procedure	Programming

srv_setRPC
This	function	allows	setting	individual	RPC	values	(including	parameters).

Syntax
void	srv_setRPC(SRV_PROC	*	srvproc,
int	iItem,
ULONG	ulValue,
Void	*	pValue);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection.	The	structure	contains	all	information	the	ODS	Library
needs	to	manage	communication	and	data	between	the	Open	Data	Services
server	application	and	the	client.

iItem

Is	the	RPC	value	to	set	(see	Remarks	for	supported	values).

ulValue

Is	the	value	to	which	to	set	the	item	(where	applicable).	If	ulValue	is
SRV_NULLTERM,	then	the	RPC	value	is	assumed	to	be	null-terminated.

pValue

Is	a	pointer	to	the	value	to	which	to	set	the	item	(where	applicable).

Remarks
This	function	is	used	to	set	individual	RPC	item	values	when	RPC	processing	is
in	progress.

iItem
Applicable
parameters Description

SRV_RPC_ACTIVEFLAG ulValue Sets	the	RPC	active	flag	to
ulValue.	This	flag	indicates
that	an	RPC	is	active.

SRV_RPC_SERVER ulValue	pValue Sets	the	RPC	server	name
value.	The	name	is	stored	at
the	location	pointed	to	by
pValue.	The	length	of	the
name	is	stored	in	ulValue.

SRV_RPC_DATABASE ulValue	pValue Sets	the	RPC	database	name
value.	The	name	is	stored	at
the	location	pointed	to	by
pValue.	The	length	of	the
name	is	stored	in	ulValue.

SRV_RPC_OWNER ulValue	pValue Sets	the	RPC	owner	name
value.	The	name	is	stored	at
the	location	pointed	to	by
pValue.	The	length	of	the
name	is	stored	in	ulValue.

SRV_RPC_OWNER ulValue	pValue Sets	the	RPC	owner	name
value.	The	name	is	stored	at
the	location	pointed	to	by
pValue.	The	length	of	the
name	is	stored	in	ulValue.

SRV_RPC_OWNER ulValue	pValue Sets	the	RPC	owner	name
value.	The	name	is	stored	at
the	location	pointed	to	by
pValue.	The	length	of	the
name	is	stored	in	ulValue.

SRV_RPC_PROCNUMBER ulValue Sets	the	RPC	procedure
number	value.

SRV_RPC_PROCNUMBER ulValue Sets	the	RPC	procedure	line
number	value.

SRV_RPC_OPTIONS ulValue Sets	the	RPC	option	flag.	The
option	flag	is	16	bits	in	size.
Bit	0	is	set	if	the	RPC	is
being	sent	with	the	recompile

option.	Bit	1	is	set	if
xp_cursor	operations	are	not
supposed	to	return	meta	data.
Bits	2	through	15	are
reserved	and	should	be	set	to
zero.

SRV_RPC_NUMPARAMS ulValue Specifies	how	many	RPC
parameters	are	contained
within	this	RPC.	This	value
must	be	set	before	setting	any
parameter	values.

SRV_RPC_RPCPARAMS ulValue	pValue Sets	the	RPC	parameter
value.	The	RPC	parameter	to
set	is	specified	in	ulValue	and
the	RPC	parameter	data	is
contained	in	the	structure,
pValue.	The	RPC	parameter
structure	definition	is	defined
in	the	structure,	SRV_RPCp,
which	is	defined	in	the
Srvstruc.h	header	file.

Extended	Stored	Procedure	Programming

srv_willconvert
Determines	whether	a	specific	data	type	conversion	is	available	within	the	ODS
Library.

Syntax
BOOL	srv_willconvert	(int	srctype,	
int	desttype);

Arguments
srctype

Indicates	the	data	type	of	the	data	to	be	converted.	This	parameter	can	be	any
of	the	Open	Data	Services	data	types.

desttype

Indicates	the	data	type	to	which	the	source	data	is	converted.	This	parameter
can	be	any	of	the	Open	Data	Services	data	types.

Returns
TRUE	if	the	data	type	conversion	is	supported;	FALSE	if	the	data	type
conversion	is	not	supported.

Remarks
For	a	description	of	each	data	type	and	Open	Data	Services	data	type
conversions,	see	Data	Types.

See	Also

srv_convert

Extended	Stored	Procedure	Programming

sql_wsendmsg
Sends	a	Unicode	message	to	the	client.

Syntax
Int	sql_wsendmsg(SRV_PROC	*	srvproc,	int	msgnum,	int	severity,	WCHAR
*	message,	int	msglen);

Arguments
srvproc

Is	a	pointer	to	the	SRV_PROC	structure	that	is	the	handle	for	a	particular
client	connection.	The	structure	contains	information	the	ODS	Library	uses
to	manage	communication	and	data	between	the	Open	Data	Services	server
application	and	the	client.

msgnum

Is	a	4-byte	message	number.

severity

Specifies	the	severity	of	the	error.	A	severity	less	than	or	equal	to	10	is
considered	an	informational	message;	otherwise,	it	is	an	error.

message

Is	a	pointer	to	a	Unicode	string	to	be	sent	to	the	client.

msglen

Specifies	the	length,	in	characters,	of	message.	It	not	support
SRV_NULLTERM	for	msglen	like	srv_sendmsg)

Returns
SUCCEED	or	FAIL.

Extended	Stored	Procedure	Programming

Errors
The	following	error	values	are	returned	by	Open	Data	Services.

Number Description
17801 Unknown	internal	error	value.
17802 Creation	of	server	event	thread	failed.
17803 Insufficient	memory	available.
17804 Invalid	'nbytes'	value.
17805 Invalid	buffer	received	from	client.
17806 Invalid	event	specification.
17807 Invalid	event	'%l!ld!'.
17808 Invalid	starting	position	specified.
17809 Unable	to	connect.	The	maximum	number	of	'%l!ld!'	users	is

currently	connected.
17810 Unable	to	set	up	named	pipe.
17811 Requested	data	conversion	does	not	exist.
17812 Data	conversion	resulted	in	overflow.
17813 Attempt	to	convert	data	stopped	by	syntax	error	in	source

field.
17814 Invalid	function	parameter.
17815 No	longer	waiting	for	client	connections	using	'%1'.
17816 No	active	RPC,	or	parameter	value	out	of	range.
17817 No	active	RPC,	or	no	parameters.
17818 No	active	RPC,	or	parameter	name	not	found.
17819 No	active	RPC.
17820 Invalid	data	type	parameter.
17821 Unable	to	set	up	subchannel.
17822 Unable	to	load	ListenOn	Net-Library	'%1'.
17823 Unable	to	read	from	ListenOn	connection.
17824 Unable	to	write	to	ListenOn	connection	'%1',	loginname	'%2',

hostname	'%3'.
17825 Unable	to	close	ListenOn	connection.

17826 Unable	to	set	up	ListenOn	connection	'%1'.
17827 The	maximum	number	of	'%1!ld!'	remote	connections	is

currently	in	use.
17828 Unable	to	read	from	local	subchannel	named	pipe.
17829 Unable	to	copy	buffer	to	subchannel	thread,	subchannel

closed.
17830 A	subchannel	protocol	error	has	occurred.
17831 Unable	to	load	ListenOn	Net-Library	'%1'	version	'%2'.	Need

Net-Library	version	'%3'	or	greater.
18732 Unable	to	read	login	packet(s).
18733 ListenOn	connection	'%1'	is	already	in	use.
17834 Using	'%1'	version	'%2'	to	listen	on	'%3'.
17835 Configured	for	local	access	only.
17836 Unable	to	create	IO	completion	port.

Extended	Stored	Procedure	Programming

Data	Types
To	use	the	Open	Data	Services	data	types,	include	the	Srv.h	header	file	in	your
program.	Open	Data	Services	applications	also	use	the	same	data	type
definitions	as	DB-Library	functions.

Data	type
SQL	Server	data
type Description

SRVBIGBINARY binary binary	data	type,	length	0	to
8000	bytes.

SRVBIGCHAR char character	data	type,	length
0	to	8000	bytes.

SRVBIGVARBINARY varbinary Variable-length	binary	data
type,	length	0	to	8000	bytes.

SRVBIGVARCHAR varchar Variable-length	character
data	type,	length	0	to	8000
bytes.

SRVBINARY binary binary	data	type.
SRVBIT Bit bit	data	type.
SRVBITN bit	null bit	data	type,	null	values

allowed.
SRVCHAR char character	data	type.
SRVDATETIME datetime 8-byte	datetime	data	type.
SRVDATETIM4 smalldatetime 4-byte	smalldatetime	data

type.
SRVDATETIMN datetime	null smalldatetime	or	datetime

data	type,	null	values
allowed.

SRVDECIMAL decimal decimal	data	type.
SRVDECIMALN decimal	null decimal	data	type,	null

values	allowed.
SRVFLT4 real 4-byte	real	data	type.
SRVFLT8 float 8-byte	float	data	type.
SRVFLTN real	|	float	null real	or	float	data	type,	null

values	allowed.
SRVIMAGE image image	data	type.
SRVINT1 tinyint 1-byte	tinyint	data	type.
SRVINT2 smallint 2-byte	smallint	data	type.
SRVINT4 Int 4-byte	int	data	type.
SRVINTN tinyint	|	smallint	|	int

null
tinyint,	smallint,	or	int	data
type,	null	values	allowed.

SRVMONEY4 smallmoney 4-byte	smallmoney	data
type.

SRVMONEY money 8-byte	money	data	type.
SRVMONEYN money	|	smallmoney

null
smallmoney	or	money	data
type,	null	values	allowed.

SRVNCHAR nchar Unicode	character	data
type.

SRVNTEXT ntext Unicode	text	data	type.
SRVNUMERIC numeric numeric	data	type.
SRVNUMERICN numeric	null numeric	data	type,	null

values	allowed.
SRVNVARCHAR nvarchar Unicode	variable-length

character	data	type.
SRVTEXT text text	data	type.
SRVVARBINARY varbinary Variable-length	binary	data

type.
SRVVARCHAR varchar Variable-length	character

data	type.

Open	Data	Services	Data	Type	Conversions
The	following	chart	shows	conversions	allowed	for	Open	Data	Services	data
types.

Extended	Stored	Procedure	Programming

Sample	Extended	Stored	Procedures
The	Open	Data	Services	samples	are	installed	by	the	Microsoft®	SQL	Server™
2000	setup	program	in	subdirectories	under	x:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Samples\ODS.	All	of	the	necessary	C	source,
definition,	project,	and	.sql	files	for	the	samples	are	located	in	these
subdirectories.

Extended	stored
procedure DLL

Source	file
subdirectory Description

xp_hello Xp_hello.dll xp_hello Basic	extended
stored	procedure
that	accepts	one
output	parameter
and	prints	one
result	set.

xp_srv_paraminfo_sampleXp_param.dll xp_param Analyzes
parameters	from
an	extended
stored	procedure
call,	and	posts	a
result	set	to	the
client	about	each
parameter	and
parameter	value.

xp_gettable_odbc Xp_odbc.dll xp_odbc Uses	ODBC	to
open	a	bound
connection	to	the
same	instance	of
SQL	Server	that
called	the
extended	stored
procedure.	The
server	returns	a
result	set	to	the

extended	stored
procedure,	which
passes	the	result
set	to	the	client.

xp_gettable_dblib Xp_dblib.dll xp_odbc Uses	the	DB-
Library	interface
to	open	a	bound
connection	to	the
same	instance	of
SQL	Server	that
called	the
extended	stored
procedure.	The
server	returns	a
result	set	to	the
extended	stored
procedure,	which
passes	the	result
set	to	the	client.

To	create	the	extended	stored	procedure	DLLs	for	these	samples,	go	to	the
appropriate	sample	subdirectory.	Using	Microsoft	Visual	C++®	6.0,	open	the
.dsw	file	and	compile	this	program.	Perform	these	steps	before	you	compile:

1.				On	the	Tools	menu,	click	Options,	and	then	click	the	Directories	tab.

2.				In	the	Show	directories	for	box,	select	Include	files	and	Library	files.
Ensure	these	directories	(as	appropriate)	are	included	and	also	appear	on	the	top
list:

Include	files:	..\Tools\Devtools\Include

Library	files:	..\Tools\Devtools\Lib

See	Also

Adding	an	Extended	Stored	Procedure	to	SQL	Server

Creating	Extended	Stored	Procedures

Debugging	an	Extended	Stored	Procedure

Removing	an	Extended	Stored	Procedure	from	SQL	Server

Using	Bound	Connections

JavaScript:hhobj_1.Click()

Extended	Stored	Procedure	Programming

Using	xp_hello
This	Microsoft®	Visual	C++®	sample	shows	a	basic	extended	stored	procedure
that	accepts	one	output	parameter	and	prints	one	result	set.

Default	Location
x:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\ODS\Xp_hello

Running	the	Sample
To	create	the	extended	stored	procedure	DLLs	for	these	samples,	in	the
appropriate	sample	subdirectory,	open	the	supplied	.dsw	file	in	Microsoft	Visual
C++.

To	run	this	program

1.	 Build	and	compile	the	Xp_hello.dll.

2.	 Place	the	compiled	Xp_hello.dll	in	the	Microsoft	SQL
Server\80\Tools\Binn	directory.

3.	 Start	the	server.

4.	 Start	SQL	Query	Analyzer,	and	then	run	the	Xp_hello.sql	script.

See	Also

Extended	Stored	Procedure	Sample:	xp_hello

Samples

JavaScript:hhobj_1.Click()

Extended	Stored	Procedure	Programming

Using	xp_srv_paraminfo_sample
This	Microsoft®	Visual	C++®	sample	shows	how	to	analyze	parameters	from	an
extended	stored	procedure	call,	and	post	a	result	set	to	the	client	about	each
parameter	and	parameter	value.

Default	Location
x:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\ODS\Xp_param

Running	the	Sample
To	create	the	extended	stored	procedure	DLLs	for	these	samples,	in	the
appropriate	sample	subdirectory,	open	the	supplied	.dsw	file	in	Microsoft	Visual
C++.

To	run	this	program

1.	 Build	the	Xp_param.dll.

2.	 Place	the	compiled	Xp_param.dll	in	the	Microsoft	SQL
Server\80\Tools\Binn	directory.

3.	 Start	the	server.

4.	 Start	SQL	Query	Analyzer,	and	then	run	the	Xp_param.sql	script.

Remarks

See	Also

Samples

JavaScript:hhobj_1.Click()

Extended	Stored	Procedure	Programming

Using	xp_gettable_odbc
This	Microsoft®	Visual	C++®	sample	shows	using	ODBC	to	open	a	bound
connection	to	the	same	instance	of	Microsoft	SQL	Server™	that	called	the
extended	stored	procedure.	The	server	returns	a	result	set	to	the	extended	stored
procedure,	which	passes	the	result	set	to	the	client.

You	must	create	an	ODBC	datasource	called	"local"	or	edit	the	code	to	change
the	datasource	name.

Default	Location
x:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\ODS\Xp_odbc

Running	the	Sample
To	create	the	extended	stored	procedure	DLLs	for	these	samples,	go	to	the
appropriate	sample	subdirectory	and	open	the	supplied	.dsw	file	with	Microsoft
Visual	C++.

To	run	this	program

1.	 Build	and	compile	the	Xp_odbc.dll.

2.	 Place	the	compiled	Xp_odbc.dll	in	the	Microsoft	SQL
Server\80\Tools\Binn	directory.

3.	 Start	the	server.

4.	 Start	SQL	Query	Analyzer,	and	then	run	the	Xp_odbc.sql	script.

Remarks

xp_gettable_odbc	works	only	on	an	instance	of	SQL	Server	running	on
Microsoft	Windows®	2000	or	Microsoft	Windows	NT®	4.0.

See	Also

Using	Bound	Connections

Samples

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Extended	Stored	Procedure	Programming

Using	xp_gettable_dblib
This	Microsoft®	Visual	C++®	sample	shows	using	the	DB-Library	interface	to
open	a	bound	connection	to	the	same	instance	of	Microsoft	SQL	Server™	that
called	the	extended	stored	procedure.	The	server	returns	a	result	set	to	the
extended	stored	procedure,	which	passes	the	result	set	to	the	client.

Default	Location
x:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\ODS\Xp_dblib

Running	the	Sample
To	create	the	extended	stored	procedure	DLLs	for	these	samples,	go	to	the
appropriate	sample	subdirectory	and	open	the	supplied	.dsw	file	with	Microsoft
Visual	C++.

To	run	this	program

1.	 Build	the	Xp_dblib.dll.

2.	 Place	the	compiled	Xp_dblib.dll	in	the	Microsoft	SQL
Server\80\Tools\Binn	directory.

3.	 Start	the	server.

4.	 Start	SQL	Query	Analyzer,	and	then	run	the	Xp_dblib.sql	script.

See	Also

Using	Bound	Connections

Samples

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

	Programming Extended Stored Procedures
	How Extended Stored Procedures Work
	Execution Characteristics of Extended Stored Procedures
	Creating Extended Stored Procedures
	Extended Stored Procedure Sample: xp_hello
	Debugging an Extended Stored Procedure
	Adding an Extended Stored Procedure to SQL Server
	Removing an Extended Stored Procedure from SQL Server
	Querying Extended Stored Procedures Installed in SQL Server
	Unloading an Extended Stored Procedure DLL
	Unicode Data and Server Code Pages

	Extended Stored Procedures Programmer's Reference
	srv_alloc
	srv_convert
	srv_describe
	srv_getbindtoken
	srv_message_handler
	srv_paramdata
	srv_paraminfo
	srv_paramlen
	srv_parammaxlen
	srv_paramname
	srv_paramnumber
	srv_paramset
	srv_paramsetoutput
	srv_paramstatus
	srv_paramtype
	srv_pfield
	srv_pfieldex
	srv_rpcdb
	srv_rpcname
	srv_rpcnumber
	srv_rpcoptions
	srv_rpcowner
	srv_rpcparams
	srv_senddone
	srv_sendmsg
	srv_sendrow
	srv_setcoldata
	srv_setcollen
	srv_setutype
	srv_setRPC
	srv_willconvert
	sql_wsendmsg
	Errors
	Data Types

	Sample Extended Stored Procedures
	Using xp_hello
	Using xp_srv_paraminfo_sample
	Using xp_gettable_odbc
	Using xp_gettable_dblib

