
mTouch	Cap	Library	Help Contents	|	Index Next

Introduction
Introduction	

The	Capacitive	mTouchTM	Software	Library	provides	the	API's	to	develop
capacitive	touch	applications	using	the	Charge	Time	Measurement	Unit
(CTMU)	and	Capacitive	Voltage	Divider	(CVD)	technique	on	PIC18F,
PIC24F,	PIC24H	and	dsPIC33	Microcontrollers	(MCUs).	

The	software	stack	is	developed	using	‘C’	language	and	can	be	compiled
by	Microchip's	C18	,	XC8,	PICC18,	XC16	and	C30	compilers	for	PIC18,
PIC24F,	PIC24H	and	dsPIC33	Microcontrollers.	

Users	of	the	mTouchTM	Software	Library	can	select	the	PIC
microcontroller	used	for	the	application	and	configure	the	CTMU	or	CVD
Demos	as	required	for	the	application.	The	API's	helps	the	user	to
integrate	the	mTouch	Capacitive	Library	with	the	end	application.	This
library	is	also	designed	to	operate	with	other	libraries	developed	by
Microchip.	

The	CTMU	has	a	constant	current	source	that	can	be	used	for	relative
capacitance	measurement,	absolute	capacitance	measurement	and
accurate	time	measurement.	This	library	will	use	the	relative	capacitance
measurement	for	capacitive	touch	sensing	application.	Refer	to	the
CTMU	Family	Reference	Manual	(DS39724)	for	more	details	of	CTMU.	

The	CVD	technique	resides	in	successive	charging	and	discharging
cycles	of	ADC	sample	and	holds	capacitor	and	the	external	capacity	of
the	sensor,	while	measuring	the	voltage	left	on	the	sample	and	hold
capacitor	after	each	cycle.	This	library	contains	the	implementation	of	the
CVD	technique.	Refer	to	the	Capacitive	Touch	Using	Only	ADC	(CVD)	–
AN1298	for	more	details.	

The	Capacitive	mTouchTM	Software	library	is	also	implemented	for
PIC16F	and	PIC18F	CVD	Framework.	

The	Help	file	for	PIC16F	and	PIC18F	CVD	Framework	is	available	in	the
following	location:	

....\Microchip\Help\mTouch	CVD	Framework	Documentation.	

	

Hardware	Setup	:	

The	PIC18F,	PIC24F	and	PIC24H	Enhanced	Capacitive	Touch
Evaluation	kit	(DM183026-2)	is	used	for	demonstrating	the	Capacitive
mTouchTM	Software	Library	functionality.

Introduction

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Next

Software	License	Agreement
MICROCHIP	IS	WILLING	TO	LICENSE	THE	ACCOMPANYING
SOFTWARE	AND	DOCUMENTATION	TO	YOU	ONLY	ON	THE
CONDITION	THAT	YOU	ACCEPT	ALL	OF	THE	FOLLOWING	TERMS.
TO	ACCEPT	THE	TERMS	OF	THIS	LICENSE,	CLICK	"I	ACCEPT"	AND
PROCEED	WITH	THE	DOWNLOAD	OR	INSTALL.	IF	YOU	DO	NOT
ACCEPT	THESE	LICENSE	TERMS,	CLICK	"I	DO	NOT	ACCEPT,"	AND
DO	NOT	DOWNLOAD	OR	INSTALL	THIS	SOFTWARE.	

	

NON-EXCLUSIVE	SOFTWARE	LICENSE	AGREEMENT	

	

This	Nonexclusive	Software	License	Agreement	("Agreement")	is	a
contract	between	you,	your	heirs,	successors	and	assigns	("Licensee")
and	Microchip	Technology	Incorporated,	a	Delaware	corporation,	with	a
principal	place	of	business	at	2355	W.	Chandler	Blvd.,	Chandler,	AZ
85224-6199,	and	its	subsidiary,	Microchip	Technology	(Barbados)	II
Incorporated	(collectively,	"Microchip")	for	the	accompanying	Microchip
software	including,	but	not	limited	to,	Graphics	Library	Software,	IrDA
Stack	Software,	MCHPFSUSB	Stack	Software,	Memory	Disk	Drive	File
System	Software,	mTouch(TM)	Capacitive	Library	Software,	Smart	Card
Library	Software,	TCP/IP	Stack	Software,	MiWi(TM)	DE	Software,
Security	Package	Software,	and/or	any	PC	programs	and	any	updates
thereto	(collectively,	the	"Software"),	and	accompanying	documentation,
including	images	and	any	other	graphic	resources	provided	by	Microchip
("Documentation").	

	

1.	Definitions.	As	used	in	this	Agreement,	the	following	capitalized	terms
will	have	the	meanings	defined	below:	

a.	"Microchip	Products"	means	Microchip	microcontrollers	and	Microchip
digital	signal	controllers.	

b.	"Licensee	Products"	means	Licensee	products	that	use	or	incorporate
Microchip	Products.	

c.	"Object	Code"	means	the	Software	computer	programming	code	that	is
in	binary	form	(including	related	documentation,	if	any),	and	error
corrections,	improvements,	modifications,	and	updates.	

d.	"Source	Code"	means	the	Software	computer	programming	code	that
may	be	printed	out	or	displayed	in	human	readable	form	(including
related	programmer	comments	and	documentation,	if	any),	and	error
corrections,	improvements,	modifications,	and	updates.	

e.	"Third	Party"	means	Licensee’s	agents,	representatives,	consultants,
clients,	customers,	or	contract	manufacturers.	

f.	"Third	Party	Products"	means	Third	Party	products	that	use	or
incorporate	Microchip	Products.	

2.	Software	License	Grant.	Microchip	grants	strictly	to	Licensee	a	non-
exclusive,	non-transferable,	worldwide	license	to:	

a.	use	the	Software	in	connection	with	Licensee	Products	and/or	Third
Party	Products;	

b.	if	Source	Code	is	provided,	modify	the	Software;	provided	that
Licensee	clearly	notifies	Third	Parties	regarding	the	source	of	such
modifications;	

c.	distribute	the	Software	to	Third	Parties	for	use	in	Third	Party	Products,
so	long	as	such	Third	Party	agrees	to	be	bound	by	this	Agreement	(in
writing	or	by	"click	to	accept")	and	this	Agreement	accompanies	such
distribution;	

d.	sublicense	to	a	Third	Party	to	use	the	Software,	so	long	as	such	Third
Party	agrees	to	be	bound	by	this	Agreement	(in	writing	or	by	"click	to
accept");	

e.	with	respect	to	the	TCP/IP	Stack	Software,	Licensee	may	port	the
ENC28J60.c,	ENC28J60.h,	ENCX24J600.c,	and	ENCX24J600.h	driver
source	files	to	a	non-Microchip	Product	used	in	conjunction	with	a

Microchip	ethernet	controller;	

f.	with	respect	to	the	MiWi	(TM)	DE	Software,	Licensee	may	only
exercise	its	rights	when	the	Software	is	embedded	on	a	Microchip
Product	and	used	with	a	Microchip	radio	frequency	transceiver	or	UBEC
UZ2400	radio	frequency	transceiver	which	are	integrated	into	Licensee
Products	or	Third	Party	Products.	

For	purposes	of	clarity,	Licensee	may	NOT	embed	the	Software	on	a
non-Microchip	Product,	except	as	described	in	this	Section.	

3.	Documentation	License	Grant.	Microchip	grants	strictly	to	Licensee	a
non-exclusive,	non-transferable,	worldwide	license	to	use	the
Documentation	in	support	of	Licensee's	authorized	use	of	the	Software	

4.	Third	Party	Requirements.	Licensee	acknowledges	that	it	is	Licensee’s
responsibility	to	comply	with	any	third	party	license	terms	or	requirements
applicable	to	the	use	of	such	third	party	software,	specifications,	systems,
or	tools.	This	includes,	by	way	of	example	but	not	as	a	limitation,	any
standards	setting	organizations	requirements	and,	particularly	with
respect	to	the	Security	Package	Software,	local	encryption	laws	and
requirements.	Microchip	is	not	responsible	and	will	not	be	held
responsible	in	any	manner	for	Licensee’s	failure	to	comply	with	such
applicable	terms	or	requirements.	

5.	Open	Source	Components.	Notwithstanding	the	license	grant	in
Section	1	above,	Licensee	further	acknowledges	that	certain	components
of	the	Software	may	be	covered	by	so-called	"open	source"	software
licenses	("Open	Source	Components").	Open	Source	Components
means	any	software	licenses	approved	as	open	source	licenses	by	the
Open	Source	Initiative	or	any	substantially	similar	licenses,	including
without	limitation	any	license	that,	as	a	condition	of	distribution	of	the
software	licensed	under	such	license,	requires	that	the	distributor	make
the	software	available	in	source	code	format.	To	the	extent	required	by
the	licenses	covering	Open	Source	Components,	the	terms	of	such
license	will	apply	in	lieu	of	the	terms	of	this	Agreement.	To	the	extent	the
terms	of	the	licenses	applicable	to	Open	Source	Components	prohibit
any	of	the	restrictions	in	this	Agreement	with	respect	to	such	Open
Source	Components,	such	restrictions	will	not	apply	to	such	Open

Source	Component.	

6.	Licensee	Obligations.	Licensee	will	not:	(a)	engage	in	unauthorized
use,	modification,	disclosure	or	distribution	of	Software	or
Documentation,	or	its	derivatives;	(b)	use	all	or	any	portion	of	the
Software,	Documentation,	or	its	derivatives	except	in	conjunction	with
Microchip	Products,	Licensee	Products	or	Third	Party	Products;	or	(c)
reverse	engineer	(by	disassembly,	decompilation	or	otherwise)	Software
or	any	portion	thereof.	Licensee	may	not	remove	or	alter	any	Microchip
copyright	or	other	proprietary	rights	notice	posted	in	any	portion	of	the
Software	or	Documentation.	Licensee	will	defend,	indemnify	and	hold
Microchip	and	its	subsidiaries	harmless	from	and	against	any	and	all
claims,	costs,	damages,	expenses	(including	reasonable	attorney's	fees),
liabilities,	and	losses,	including	without	limitation:	(x)	any	claims	directly
or	indirectly	arising	from	or	related	to	the	use,	modification,	disclosure	or
distribution	of	the	Software,	Documentation,	or	any	intellectual	property
rights	related	thereto;	(y)	the	use,	sale	and	distribution	of	Licensee
Products	or	Third	Party	Products;	and	(z)	breach	of	this	Agreement.	

7.	Confidentiality.	Licensee	agrees	that	the	Software	(including	but	not
limited	to	the	Source	Code,	Object	Code	and	library	files)	and	its
derivatives,	Documentation	and	underlying	inventions,	algorithms,	know-
how	and	ideas	relating	to	the	Software	and	the	Documentation	are
proprietary	information	belonging	to	Microchip	and	its	licensors
("Proprietary	Information").	Except	as	expressly	and	unambiguously
allowed	herein,	Licensee	will	hold	in	confidence	and	not	use	or	disclose
any	Proprietary	Information	and	will	similarly	bind	its	employees	and
Third	Party(ies)	in	writing.	Proprietary	Information	will	not	include
information	that:	(i)	is	in	or	enters	the	public	domain	without	breach	of	this
Agreement	and	through	no	fault	of	the	receiving	party;	(ii)	the	receiving
party	was	legally	in	possession	of	prior	to	receiving	it;	(iii)	the	receiving
party	can	demonstrate	was	developed	by	the	receiving	party
independently	and	without	use	of	or	reference	to	the	disclosing	party's
Proprietary	Information;	or	(iv)	the	receiving	party	receives	from	a	third
party	without	restriction	on	disclosure.	If	Licensee	is	required	to	disclose
Proprietary	Information	by	law,	court	order,	or	government	agency,
License	will	give	Microchip	prompt	notice	of	such	requirement	in	order	to
allow	Microchip	to	object	or	limit	such	disclosure.	Licensee	agrees	that

the	provisions	of	this	Agreement	regarding	unauthorized	use	and
nondisclosure	of	the	Software,	Documentation	and	related	Proprietary
Rights	are	necessary	to	protect	the	legitimate	business	interests	of
Microchip	and	its	licensors	and	that	monetary	damage	alone	cannot
adequately	compensate	Microchip	or	its	licensors	if	such	provisions	are
violated.	Licensee,	therefore,	agrees	that	if	Microchip	alleges	that
Licensee	or	Third	Party	has	breached	or	violated	such	provision	then
Microchip	will	have	the	right	to	injunctive	relief,	without	the	requirement
for	the	posting	of	a	bond,	in	addition	to	all	other	remedies	at	law	or	in
equity.	

8.	Ownership	of	Proprietary	Rights.	Microchip	and	its	licensors	retain	all
right,	title	and	interest	in	and	to	the	Software	and	Documentation
including,	but	not	limited	to	all	patent,	copyright,	trade	secret	and	other
intellectual	property	rights	in	the	Software,	Documentation,	and
underlying	technology	and	all	copies	and	derivative	works	thereof	(by
whomever	produced).	Licensee	and	Third	Party	use	of	such
modifications	and	derivatives	is	limited	to	the	license	rights	described	in
this	Agreement.	

9.	Termination	of	Agreement.	Without	prejudice	to	any	other	rights,	this
Agreement	terminates	immediately,	without	notice	by	Microchip,	upon	a
failure	by	Licensee	or	Third	Party	to	comply	with	any	provision	of	this
Agreement.	Upon	termination,	Licensee	and	Third	Party	will	immediately
stop	using	the	Software,	Documentation,	and	derivatives	thereof,	and
immediately	destroy	all	such	copies.	

10.	Warranty	Disclaimers.	THE	SOFTWARE	AND	DOCUMENTATION
ARE	PROVIDED	"AS	IS"	WITHOUT	WARRANTY	OF	ANY	KIND,
EITHER	EXPRESS	OR	IMPLIED,	INCLUDING	WITHOUT	LIMITATION,
ANY	WARRANTY	OF	MERCHANTABILITY,	TITLE,	NON-
INFRINGEMENT	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.
MICROCHIP	AND	ITS	LICENSORS	ASSUME	NO	RESPONSIBILITY
FOR	THE	ACCURACY,	RELIABILITY	OR	APPLICATION	OF	THE
SOFTWARE	OR	DOCUMENTATION.	MICROCHIP	AND	ITS
LICENSORS	DO	NOT	WARRANT	THAT	THE	SOFTWARE	WILL	MEET
REQUIREMENTS	OF	LICENSEE	OR	THIRD	PARTY,	BE
UNINTERRUPTED	OR	ERROR-FREE.	MICROCHIP	AND	ITS

LICENSORS	HAVE	NO	OBLIGATION	TO	CORRECT	ANY	DEFECTS	IN
THE	SOFTWARE.	

11.	Limited	Liability.	IN	NO	EVENT	WILL	MICROCHIP	OR	ITS
LICENSORS	BE	LIABLE	OR	OBLIGATED	UNDER	ANY	LEGAL	OR
EQUITABLE	THEORY	FOR	ANY	DIRECT	OR	INDIRECT	DAMAGES	OR
EXPENSES	INCLUDING	BUT	NOT	LIMITED	TO	INCIDENTAL,
SPECIAL,	INDIRECT,	PUNITIVE	OR	CONSEQUENTIAL	DAMAGES,
LOST	PROFITS	OR	LOST	DATA,	COST	OF	PROCUREMENT	OF
SUBSTITUTE	GOODS,	TECHNOLOGY,	SERVICES,	OR	ANY	CLAIMS
BY	THIRD	PARTIES	(INCLUDING	BUT	NOT	LIMITED	TO	ANY
DEFENSE	THEREOF),	OR	OTHER	SIMILAR	COSTS.	The	aggregate
and	cumulative	liability	of	Microchip	and	its	licensors	for	damages
hereunder	will	in	no	event	exceed	$1000	or	the	amount	Licensee	paid
Microchip	for	the	Software	and	Documentation,	whichever	is	greater.
Licensee	acknowledges	that	the	foregoing	limitations	are	reasonable	and
an	essential	part	of	this	Agreement.	

12.	General.	THIS	AGREEMENT	WILL	BE	GOVERNED	BY	AND
CONSTRUED	UNDER	THE	LAWS	OF	THE	STATE	OF	ARIZONA	AND
THE	UNITED	STATES	WITHOUT	REGARD	TO	CONFLICTS	OF	LAWS
PROVISIONS.	Licensee	agrees	that	any	disputes	arising	out	of	or	related
to	this	Agreement,	Software	or	Documentation	will	be	brought	exclusively
in	either	the	U.S.	District	Court	for	the	District	of	Arizona,	Phoenix
Division,	or	the	Superior	Court	of	Arizona	located	in	Maricopa	County,
Arizona.	This	Agreement	will	constitute	the	entire	agreement	between	the
parties	with	respect	to	the	subject	matter	hereof.	It	will	not	be	modified
except	by	a	written	agreement	signed	by	an	authorized	representative	of
Microchip.	If	any	provision	of	this	Agreement	will	be	held	by	a	court	of
competent	jurisdiction	to	be	illegal,	invalid	or	unenforceable,	that
provision	will	be	limited	or	eliminated	to	the	minimum	extent	necessary	so
that	this	Agreement	will	otherwise	remain	in	full	force	and	effect	and
enforceable.	No	waiver	of	any	breach	of	any	provision	of	this	Agreement
will	constitute	a	waiver	of	any	prior,	concurrent	or	subsequent	breach	of
the	same	or	any	other	provisions	hereof,	and	no	waiver	will	be	effective
unless	made	in	writing	and	signed	by	an	authorized	representative	of	the
waiving	party.	Licensee	agrees	to	comply	with	all	import	and	export	laws
and	restrictions	and	regulations	of	the	Department	of	Commerce	or	other

United	States	or	foreign	agency	or	authority.	The	indemnities,	obligations
of	confidentiality,	and	limitations	on	liability	described	herein,	and	any
right	of	action	for	breach	of	this	Agreement	prior	to	termination,	will
survive	any	termination	of	this	Agreement.	Any	prohibited	assignment	will
be	null	and	void.	Use,	duplication	or	disclosure	by	the	United	States
Government	is	subject	to	restrictions	set	forth	in	subparagraphs	(a)
through	(d)	of	the	Commercial	Computer-Restricted	Rights	clause	of	FAR
52.227-19	when	applicable,	or	in	subparagraph	(c)(1)(ii)	of	the	Rights	in
Technical	Data	and	Computer	Software	clause	at	DFARS	252.227-7013,
and	in	similar	clauses	in	the	NASA	FAR	Supplement.
Contractor/manufacturer	is	Microchip	Technology	Inc.,	2355	W.	Chandler
Blvd.,	Chandler,	AZ	85224-6199.	

	

If	Licensee	has	any	questions	about	this	Agreement,	please	write	to
Microchip	Technology	Inc.,	2355	W.	Chandler	Blvd.,	Chandler,	AZ	85224-
6199	USA.	ATTN:	Marketing.	

	

Copyright	(c)	2012	Microchip	Technology	Inc.	All	rights	reserved.	

	

License	Rev.	No.	05-012412

Software	License	Agreement

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Next

Overview
	

This	document	describes	capacitive	touch	library	for	PIC18F,	PIC24F,
PIC24H	and	dsPIC33	family	of	Microcontrollers.	

The	library	has	three	levels:	acquisition,	sensors	and	controls.	The
acquisition	level	gets	raw	samples	from	the	sensors.	The	sensors	level
allows	initialization	and	press/release	events	detection	for	all	sensors	in
the	system.	The	controls	level	gets	information	from	sensors	level	and
contains	implementation	of	different	capacitive	controls	such	as	buttons,
matrix	buttons	and	sliders.	Also	there	is	a	debug	module	helping
adjustment	of	the	sensors’	settings.	

	

Overview

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Acquisition	Level
	

The	acquisition	level	of	the	stack	abstracts	the	hardware	and	acquires
samples	for	the	capacitive	touch	sensing.To	perform	the	acquisition	the
MTouchAcquisition(…)	function	should	be	called	periodically	in	the
application.	Depending	on	the	hardware	modules	used	on	a	PIC
Microcontroller,	the	library	supports	two	acquisition	methods:	capacitive
voltage	divider	(CVD)	and	charging	of	the	sensors	using	constant	current
source	(CTMU).

CVD:	PIC	Microcontroller's	ADC	holding	capacitor	(Chold)	is	used	for	the	measurements.
Initially	the	capacitive	sensor	(Csensor)	is	disconnected	from	Chold.	Chold	should	be
charged	to	Vdd	and	Csensor	should	be	discharged.	Then	both	capacitors	are	connected
together	to	divide	a	charge	between	them.	Capacitance	of	Chold	is	constant	so	the	result
voltage	will	depend	on	capacitance	of	Csensor.	When	sensor	is	touched	the	capacitance	is
increased	and	voltage	is	decreased.	When	the	sensor	is	released	the	capacitance	is
decreased	and	voltage	is	increased.	The	minimum	number	of	sensors	required	for	this
acquisition	method	is	2.
CTMU:	If	the	capacitive	sensor	will	be	charged	by	a	constant	current	source	during	a
constant	time	then	the	voltage	on	the	sensor	after	the	charge	will	depend	on	the
capacitance.	When	sensor	is	touched	the	capacitance	is	increased	and	voltage	is
decreased.	When	the	sensor	is	released	the	capacitance	is	decreased	and	voltage	is
increased.

Overview	>	Acquisition	Level

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Sensors	Level
	

To	improve	noise	immunity	the	samples	from	sensors	go	through	two
filters:	decimate	and	oversampling.	If	the	sample	is	bigger	than	decimate
filter	value	then	the	filter	value	is	incremented	otherwise	it	is
decremented.	Data	from	decimate	filter	go	to	oversampling	filter.	The
oversampling	filter	performs	averaging.	Output	from	filters	is	used	to	form
a	long	time	average.	Difference	between	value	from	filters	and	this
average	is	used	for	comparison	with	threshold	to	detect	state	of	the
sensor.	

	

MTouchGetSensorState(…)	function	returns	a	current	state	of	the	sensor.
The	sensor	acts	as	a	basic	button	which	can	have	two	states:	pressed	or
released.

Overview	>	Sensors	Level

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Controls	Level
	

The	control	level	contains	implementations	of	the	more	complex
capacitive	controls.	To	decode	states	of	the	controls	the
MTouchDecode(…)	function	should	be	called	periodically	in	the
application.	Some	examples	of	these	are	matrix	keys,	sliders	etc.

Overview	>	Controls	Level

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Next

Getting	Started
The	folder	structure	of	mTouchCap	Software	Library	is	shown	below:	

	

The	folder	structure	of	mTouchCapDemos	are	as	follows:	

	

	

You	can	add	code	and	modules	to	the	demo	sub	directories	that	will	use
and	interact	with	the	library.	For	example,	you	could	add	a	folder	named
"Your	Applications	Directory"	to	the	mTouchCapDemos	folder	that
contains	your	application	source	code.	The	library	specific	folders	are	the
following:	

•	The	..\Microchip	folder	will	contain	the	library	components.	

•	The	Help	sub-folder	under	..\Microchip	folder	will	contain	this	document
(mTouch	Cap	Library	Help.chm	file).	

•	The	..\mTouchCap	sub-folder	under	the	..\Microchip	folder	is	where	the
C	files,	documentation	related	to	mTouch	stack	are	located.	

•	The	..\mTouchCap	sub-folder	under	the	Include	folder	is	where	the
Header	files	related	to	the	mTouch	stack	are	located.

Getting	Started

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

mTouch	Library	Files
	

The	following	files	should	be	included	in	the	project:

Common	 	

Compiler.h	 Contains	compiler	specific	definitions.	

GenericTypeDefs.h	 Standard	MLA	types	definitions.	

mTouch.h	 This	file	joins	all	definitions,	macros	and	functions
prototypes	related	to	mTouch	library.	To	use	the	library	API
only	this	header	can	be	included	in	the	application	code.	

mTouchConfig.h	 mTouch	library	configurations.	

Acquisition	
	

mTouchAcquisitionMCU8.h	,
mTouchAcquisitionMCU16.h	

Acquisition	macros	defining	timing,	CTMU	and	ADC
operation.	

mTouchAcquistion.c	 Acquisition	CVD	and	CTMU	routines.	

Sensors	
	

mTouchSensor.h	,
mTouchSensor.c	

Sensors’	filtration	and	decoding.	It	provides	basic	button
functionality.	

Controls	
	

mTouchControl.h	,
mTouchControl.c	

Common	definitions	and	functions	for	all	controls.	

mTouchButton.h	,
mTouchButton.c	

Definitions	and	functions	for	the	button	controls	with
different	decoding	methods.	

mTouchMatrixButton.h,
mTouchMatrixButton.c	

Definitions	and	functions	for	the	matrix	button	controls.	

mTouch2ChSlider.h	,
mTouch2ChSlider.c	

Definitions	and	functions	for	the	2	channel	slider	controls.	

mTouch4ChSlider.h	,
mTouch4ChSlider.c	

Definitions	and	functions	for	the	4	channel	slider	controls.	

Debug	
	

mTouchDebug.h	,
mTouchDebug.c	

This	module	contains	means	to	log	information	from
sensors	and	to	calculate	the	optimal	CTMU	current,
charge	delay	for	the	CTMU	acquisition	and	press
detection	threshold.	

	

	

Getting	Started	>	mTouch	Library	Files

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

mTouch	Library	Configuration
	

The	following	mTouch	Library	settings	should	be	defined	in
mTouchConfig.h	file:

MTOUCH_USE_10_BITS_ADC,
MTOUCH_USE_12_BITS_ADC	 ADC	type	(see	PIC	Microcontroller

datasheet).	Select	(uncomment)	only	one:
10bits	or	12bits.	

MTOUCH_CTMU_HAS_CTMUCON2_REG,
MTOUCH_CTMU_HAS_NO_CTMUCON2_REG	

CTMU	type	(see	PIC	Microcontroller
datasheet).	Select	(uncomment)	only	one:
with	CTMUCON2	register	or	without
CTMUCON2	register.	

MTOUCH_USE_CTMU,
MTOUCH_USE_CVD	

Acquisition	method.	Select	(uncomment)
only	one:	CTMU	or	CVD.	

MTOUCH_DEBUG	 Debugging.	Uncomment	to	enable	debug
functions.	

MTOUCH_SENSORS_NUMBER	 Number	of	sensors	(analog	inputs
connected	to	sensors).	The	minimum
number	of	sensors	required	for	CVD
acquisition	method	is	2.	

MTOUCH_BUTTONS_NUMBER	 Number	of	button	controls.	

MTOUCH_MATRIXBUTTONS_NUMBER	 Number	of	matrix	button	controls.	

MTOUCH_2CHSLIDERS_NUMBER	 Number	of	2	channels	slider	controls.	

MTOUCH_4CHSLIDERS_NUMBER	 Number	of	4	channels	slider	controls.	

AVG_SLIDER_VALUE	 The	slider	value	is	filtered.	When	the	slider
value	is	updated,	this	factor	determines
what	weight	is	given	in	the	calculation.	Can

be	set	to	0(100%	new	value/no	averaging),
1(50%	of	new	value),	2(25%	of	new	value),
3(12.5%	of	new	value)	and	so	on.	

MTOUCH_DEFAULT_CHARGE_DELAY	 Default	CTMU	charge	delay	settings.	This
value	is	used	in	MTouchSetSensor(...)
when	"chargeDelay"	is	set	to	-1.	Use	
MTouchDebugDelay(…)	function	to
calculate	CTMU	charge	delay	value	(to
charge	the	sensor	to	about	75%	of	AVdd).
If	adjustment	of	this	parameter	gives	a
value	less	than	4	decrease	CTMU	current
with	MTOUCH_CTMU_CURRENT.	

MTOUCH_DEFAULT_THRESHOLD	 Default	threshold	for	press	event
detection.		This	value	is	used	when
"threshold"	is	set	to	-1	in
MTouchSetSensor(...)	call.	The	optimal
threshold	value	is	about	20%	of	sensor
signal	(delta)	amplitude.	The	sensor	signal
amplitude	can	be	determined	using	debug
module.	

MTOUCH_DEFAULT_OVERSAMPLING	 Default	number	of	acquisitions	for	one
sample	of	the	sensor.	This	value	is	used
when	"oversampling"	is	set	to	-1	in
MTouchSetSensor(...)	call.	The
oversampling	factor	should	be	selected	to
maximize	the	amplitude	of	the	signal	from
sensor	and	to	provide	fast	enough
response	time	(see	“Acquisition	time	for
one	sensor”	chapter	for	the	response	time
estimation).	

POWER_UP_SAMPLES	 	This	is	the	number	of	total	scans	that
should	be	taken	for	the	sensor	before	it	will
be	considered	initialized.	Allowable	range
is	from	1	to	65535.	

DEBOUNCE_COUNT	 	Number	of	consecutive	scans	a	sensor
must	be	seen	as	pressed	or	released
before	an	updated	state	is	declared.
Allowable	range	is	from	1	to	255.	

MCONTROL_REPEAT_INITIAL_DELAY	 Initial	delay	for	the	control

DECODE_PRESS_REPEAT	decoding
method.	Defines	how	many	times	the
control	decoding	must	be	done	before	the
control	starts	repeating
CONTROL_PRESS/CONTROL_RELEASE
events.Allowable	range	is	from	1	to	65535.	

MCONTROL_REPEAT_DELAY	 Delay	between
CONTROL_PRESS/CONTROL_RELEASE
events	for	the	control
DECODE_PRESS_REPEAT	decoding
method.		Allowable	range	is	from	1	to
65535.	

AVG_UPDATE	 When	the	average	updates	itself	using	a
new	sample,	this	value	determines	what
weight	is	given	to	the	new	sample	in	the
calculation	of	the	new	average.	The	new
sample	will	have	a	weight	of
1/AVG_UPDATE	in	the	average
calculation.	Can	be	set	to	2,4,8	or	16.	

AVG_RATE_RELEASED	 The	update	rate	of	the	sensors'	average
values	when	sensor	is	released.		Allowable
Range	from	1	to	65535.	

AVG_RATE_PRESSED	 The	update	rate	of	the	sensors'	average
values	when	sensor	is	pressed.		Allowable
Range	from	1	to	65535.	

MTOUCH_CTMU_CURRENT	 CTMU	current	settings.	Bits	1-0	select	the
current	source	range	(IRNG)	and	bits	7-2
select	current	trim	value	(ITRIM,	signed).	
The	current	must	be	selected	such	way	to
get	CTMU	charge	delay	more	than	4	(see
MTOUCH_DEFAULT_CHARGE_DELAY).	

	

	

Getting	Started	>	mTouch	Library	Configuration

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Using	API
	

Let’s	consider	an	application	example	for	the	following	hardware
configuration:	

	

In	the	system	there	are	2	sensors,	1	button	and	1	matrix	button.	Thus	in
mTouchConfig.h		MTOUCH_SENSORS_NUMBER	must	be	set	to	2,
MTOUCH_BUTTONS_NUMBER	and
MTOUCH_MATRIXBUTTONS_NUMBER	must	be	set	to	1.	All	IOs
connected	to	sensors	must	be	set	as	ANALOG	in	the	application	(see
PCFGx,	ANSx	or	ANSELx	registers	description	in	PIC	Microcontroller
datasheet).	

The	program	should	be	started	from	MTouchInit(…)	function	call	to
initialize	the	mTouch	Library.	Then	for	each	sensor	in	the	system	the
sensors	parameters	must	be	set	with	MTouchSetSensor(…)	function
calls.	From	this	point	the	mTouch	library	has	all	information	about
sensors	and	the	application	can	get	samples	from	them	by	calling
MTouchAcquisition(…)	function	periodically.	It	can	be	done	with	a	timer
interrupt.	

All	controls	in	the	application	also	must	be	initialized.	In	this	example	we
have	button	and	matrix	button.	Functions	MTouchSetButton(…)	and
MTouchSetMatrixButton(…)assign	sensors	for	these	controls	and	define
decoding	methods.	To	get	states	of	controls	the	MTouchDecode()	must
be	run	periodically.	For	this	example	the	application	code	can	be:	

		

//	Header	file	for	mTouch	library	API.	

#include	"mTouch.h"	

		

void	main(void)	

{	

...	

		

				//	STEP	1	

				//	mTouch	library	initialization.	

				MTouchInit();	

		

				//	STEP	2	

				//	Sensors	initialization.	All	sensors	must	be	initialized	

				//	see	MTOUCH_SENSORS_NUMBER	in	mTouchConfig.h).	

				//	PLEASE	READ	"SENSOR	OPTIMIZATION	(DEBUG	MODULE)"
CHAPTER	

				//	TO	SELECT	OPTIMAL	PARAMETERS.	

		

				//	Sensor	#0	is	connected	to	RB1/AN2	pin	

				MTouchSetSensor(0,						//	sensor	number	

																				&TRISB,	//	port	B	

																				&LATB,	

																				1,						//	IO	bit	number	

																				2,						//	analog	channel	number	

																				-1,					//	press	detection	threshold	by	default	

																										//	(see	MTOUCH_DEFAULT_THRESHOLD	in
mTouchConfig.h)	

																				-1,					//	oversampling	by	default	

																								//(see	MTOUCH_DEFAULT_OVERSAMPLING	in
mTouchConfig.h)	

																				-1);			//	CTMU	charge	delay	by	default	

																								//(see	MTOUCH_DEFAULT_CHARGE_DELAY	in
mTouchConfig.h,	

																								//	not	used	for	CVD	acquisition)	

		

				//	Sensor	#1	is	connected	to	RF3/AN12	pin	

				MTouchSetSensor(1,						//	sensor	number	

																				&TRISF,	//	port	F	

																				&LATF,	

																				3,						//	IO	bit	number	

																				12,					//	analog	channel	number	

																				-1,					//	press	detection	threshold	by	default	

																										//	(see	MTOUCH_DEFAULT_THRESHOLD	in
mTouchConfig.h)	

																				-1,					//	oversampling	by	default	

																								//(see	MTOUCH_DEFAULT_OVERSAMPLING	in
mTouchConfig.h)	

																				-1);			//	CTMU	charge	delay	by	default	

																								//(see	MTOUCH_DEFAULT_CHARGE_DELAY	in
mTouchConfig.h,	

																								//	not	used	for	CVD	acquisition)	

		

				//	STEP	3	

				//	Buttons	initialization.	All	buttons	must	be	initialized	

				//(see	MTOUCH_BUTTONS_NUMBER	and
MTOUCH_MATRIXBUTTONS_NUMBER	in	

				//	mTouchConfig.h).	

				//	The	button	#0	is	connected	to	sensor	#	0	

				MTouchSetButton(0,														//	button	number	

																				0,														//	sensor	number	

																				DECODE_TOGGLE);	//	decode	method	

		

				//	The	matrix	button	#0	is	connected	to	sensor	#	0	and	sensor	#	1	

				MTouchSetMatrixButton(0,								//	button	number	

																				0,														//	first	sensor	number	

																				1,														//	second	sensor	number	

																				DECODE_PRESS_RELEASE);	//	decode	method	

		

		

								

						//	STEP	4	

				//	Timer	interrupt	initialization	to	call	mTouchAcquisition(...)	

				//	pereodically.	

				TimerInterruptInitialization();	

		

		

				while(1)	

				{	

		

								//	STEP	4	

								//	Decode	all	controls	periodically.	

								MTouchDecode();	

		

								//	STEP	5	

								//	Get	current	states	of	the	buttons.	

								Led_ALLOff();	

								//	button	#0	

								if(MTouchGetButtonState(0)	==	CONTROL_PRESSED)	{	Led0On();
}	

								//	matrix	button	#0	

								if(MTouchGetMatrixButtonState(0)	==	CONTROL_PRESSED)	{
Led1On();	}	

				}	

		

}	

		

//	Timer	interrupt	service	routine.	

void	__attribute__((interrupt,	shadow,	auto_psv))	_T4Interrupt(void)	

{	

		

		//	STEP	6	

			//	Scan	sensors	periodically.	

			MTouchAcquisition();	

		

				//	Clear	timer	interrupt	flag.	

TMR4	=	0;	IFS1bits.T4IF	=	0;	

}.

Getting	Started	>	Using	API

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Next

Sensor	Optimization	(Debug	Module)
	

During	initialization	the	application	must	pass	a	few	parameters	to
MTouchSetSensor(…)	for	each	sensor.	This	chapter	describes	how	to
select	optimal	values	for	a	press	detection	threshold,	oversampling	factor,
CTMU	current	and	charge	delay.		If	these	parameters	are	not	optimized
then	it	can	influence	on	the	sensors’	performance	especially	in	a	noisy
environment.	The	optimization	of	sensors	can	be	divided	in	a	few	steps:

Step	1.		Optimal	CTMU	current	selection	(MTOUCH_CTMU_CURRENT	parameter	in
mTouchConfig.h).
Step	2.	Optimal	CTMU	charge	delay	selection.
Step	3.	Optimal	oversampling	factor	selection.
Step	4.	Optimal	press	detection	threshold	selection.

	

Sensor	Optimization	(Debug	Module)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Step	1.	Optimal	CTMU	current	selection
	

To	achieve	the	maximum	of	sensitivity	the	sensors	must	be	charged	to
the	voltage	level	about	75%	of	AVdd	.	The	rounding	error	depends	on	the
charge	delay	parameter.The	rounding	error	in	percentage	is	(100/CTMU
charge	delay)	of	AVdd.	The	recommended	minimum	value	for	the	CTMU
charge	delay	is	8	(default	charge	delay)	.This	provides	charge	to	the
optimal	level	with	rounding	error	about	+-12.5%	of	AVdd.
MTouchDebugCurrent(…)	function	returns	the	CTMU	current	source
settings	when	the	optimal	charge	delay	value	is	8.	Assign	this	value	to
MTOUCH_CTMU_CURRENT	parameter	in	mTouchConfig.h.

Sensor	Optimization	(Debug	Module)	>	Step	1.	Optimal	CTMU	current	selection

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Step	2.	Optimal	CTMU	charge	delay	selection
	

To	achieve	the	maximum	of	sensitivity	the	CTMU	charge	delay	must	be
set	to	charge	the	sensor	to	the	voltage	level	about	75%	of	AVdd	.	This
optimal	delay	value	can	be	calculated	with	MTouchDebugDelay(…)
function.	The	calculated	optimal	value	should	be	passed	for	initialization
to	MTouchSetSensor(…).

Sensor	Optimization	(Debug	Module)	>	Step	2.	Optimal	CTMU	charge	delay	selection

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Step	3.	Optimal	oversampling	factor	selection
	

The	oversampling	factor	should	be	set	as	big	as	possible	to	get
maximum	of	signal	amplitude	and	to	increase	noise	immunity.	But	this
parameter	is	limited	by	the	sensors	response	time.	See	time
requirements	for	one	acquisition	to	estimate	how	many	samples	can	be
used	for	one	sample.	The	calculated	optimal	value	should	be	passed	for
initialization	to	MTouchSetSensor(…).

Sensor	Optimization	(Debug	Module)	>	Step	3.	Optimal	oversampling	factor	selection

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Step	4.	Optimal	press	detection	threshold
selection
	

The	big	noise	can	decrease	sensitivity	more	than	in	4	times.	So	the
recommended	value	for	the	press	detection	threshold	is	1/8th	of	the
sensor	signal	amplitude	(delta).	To	calculate	the	optimal	threshold	value
MTouchDebugThreshold(…)	function	can	be	used.	It	waits	for	the	user
presses	the	sensor	and	returns	the	optimal	threshold	value	as	1/8th	of
the	detected	amplitude.	The	calculated	optimal	value	should	be	passed
for	initialization	to	MTouchSetSensor(…).

Sensor	Optimization	(Debug	Module)	>	Step	4.	Optimal	press	detection	threshold	selection

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Optimization	example
	

For	the	optimal	parameters	calculation	the	compiler	optimization	must	be
set	to	the	required	level.	If	the	version	of	the	compiler	or	optimization
level	is	changed	then	the	optimization	process	must	be	repeated	again.
The	Debugger	Watch	Window	can	be	used	to	see	the	result	of	the
optimization.	When	the	compiler	optimization	is	on	some	variables	can	be
optimized	out	and	can	be	not	available	for	the	debugger.	All	variables
displayed	in	the	Watch	Window	must	be	global	and	declared	as	volatile.
The	code	below	calculates	optimal	parameters:	

//	Header	file	for	mTouch	library	API	

#include	"mTouch.h"	

		

//	

//																		GLOBAL	VARIABLES	

//	

//	This	structure	will	contain	the	optimal	CTMU	current.	

volatile	DEBUGCURRENT*	pOptimalCurrent;	

//	This	structure	will	contain	the	optimal	CTMU	charge	delay.	

volatile	DEBUGDELAY*	pOptimalDelay;	

//	This	variable	will	contain	the	optimal	threshold.	

volatile	UINT16						optimalThreshold;	

		

void	main(void)	

{	

				//	STEP	1	

				//	mTouch	library	initialization.	

				MTouchInit();	

		

				//	STEP	2	

				//	Sensors	initialization.	All	sensors	must	be	initialized	

				//	see	MTOUCH_SENSORS_NUMBER	in	mTouchConfig.h).	

				//	Set	default	parameters.	

		

				//	Sensor	#0	is	connected	to	RB0/AN0	pin	

				MTouchSetSensor(0,						//	sensor	number	

																				&TRISB,	//	port	B	

																				&LATB,	

																				0,						//	IO	bit	number	

																				0,						//	analog	channel	number	

																				-1,					//	press	detection	threshold	by	default	

																												//	(see	MTOUCH_DEFAULT_THRESHOLD	in	

																												//	mTouchConfig.h)	

																				-1,					//	oversampling	by	default	

																												//(see	MTOUCH_DEFAULT_OVERSAMPLING	in	

																												//	mTouchConfig.h)	

																				-1);			//	CTMU	charge	delay	by	default	

																												//(see	MTOUCH_DEFAULT_CHARGE_DELAY	in	

																												//	mTouchConfig.h,	

																												//	not	used	for	CVD	acquisition)	

		

				

				//	STEP	3	

				//	MTouchDebugCurrent(sensorNumber)	function	calculates	the
optimal	CTMU	

				//	current	value	(optimal	CTMU	charge	delay	will	be	about	8).	

				//	This	will	be	a	final	value	for	MTOUCH_CTMU_CURRENT	parameter
in	

				//	mTouchConfig.h.	

				//	Before	measurement	set	MTOUCH_CTMU_CURRENT	to	0x01.	

				//	Sensor	#0	is	tested.	

				pOptimalCurrent	=	MTouchDebugCurrent(0);	

				//	Set	adjusted	CTMU	current	value.	

				MTouchSetCTMUCurrent(pOptimalCurrent->current);	

		

				//	STEP	4	

				//	MTouchDebugDelay(sensorNumber)	function	calculates	the	optimal	

				//	CTMU	charge	delay	value	to	provide	charging	of	sensor	to	

				//	about	75%	of	AVdd.	

				//	Optimal	delay	for	sensor	#0.	

				pOptimalDelay	=	MTouchDebugDelay(0);	

				//	Set	adjusted	CTMU	charge	delay	value	for	the	sensor	#	0	

				MTouchSetChargeDelay(0,	pOptimalDelay->delay);	

		

				//	STEP	5	

				//	MTouchDebugThreshold(sensorNumber)	function	calculates	the
optimal	

				//	press	detection	threshold	value.	It	waits	for	the	sensor	press	event	

				//	from	user	to	measure	maximum	signal	amplitude	(delta).	

				//	Optimal	threshold	for	sensor	#0.	

				optimalThreshold	=	MTouchDebugThreshold(0);	

				//	Set	adjusted	threshold	value	for	the	sensor	#	0	

				MTouchSetThreshold(0,	optimalThreshold);	

		

				//	STEP	6	

				//	Put	break	point	here.	Use	Watch	Window	to	see	

				//	pOptimalCurrent->current,	pOptimalDelay->delay	and
optimalThreshold	

				//	values.	

				while(1);	

}	

After	the	code	execution	the	result	in	the	Debugger	Watch	Window	can
be:	

	

pOptimalCurrent->error	field	shows	an	offset	of	the	CTMU	charge	delay
from	nominal	value	(8).	pOptimalDelay->error	fiels	shows	an	offset	of	the
sample	for	the	adjusted	charge	delay	from	the	nominal	value	(should	be
less	than	128	for	10-bit	ADC	and	less	than	512	for	12-bit	ADC).

Sensor	Optimization	(Debug	Module)	>	Optimization	example

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

mTouch	GUI
	

The	library	has	capability	to	stream	data	from	sensors	to	a	text	log	file	or
to	a	special	graphics	tool	–	mTouch	GUI.	To	use	this	functionality	the
LogChar(…)	function	must	be	implemented	in	the	application.	Usually
this	function	should	transmit	a	byte	via	PIC	UART.	The	mTouch	GUI	utility
is	located	in		“….\Microchip
Solutions\mTouchCapDemos\Utilities\mTouch	One-Way	GUI”	folder.
“mTouch	Library	GUI	Help.chm”	file	in	this	folder	contains	all	required
information	about	setup,	configuration	and	usage.

Sensor	Optimization	(Debug	Module)	>	mTouch	GUI

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Next

Sharing	ADC	between	mTouch	Library	and	Other
Tasks
Often	the	ADC	must	be	used	for	many	different	tasks.	To	share	the	ADC
between	mTouch	Library	and	these	tasks	the	state	machine	can	be	used.
The	code	example	below	shows	possible	implementation	for	the	system
where	ADC	is	shared	between	Touch	Screen,	mTouch	Buttons	and
Battery	Level	Measurement.	Battery_ADCInit()	and
TouchScreen_ADCInit()	functions	configure	ADC	and	Vref	as	needed	for
these	modules.	

	

//	This	variable	holds	the	state	machine	current	state.	

volatile	int	current_state	=	STATE_TOUCH_SCREEN;	

	

//	The	state	machine	is	run	by	the	timer	interrupt.	

void	__attribute__((interrupt,	shadow,	auto_psv))	_T4Interrupt(void)	

{	

switch(current_state)	//	The	state	machine	main	switch	start.	

{	

	

case	STATE_TOUCH_SCREEN:	

//	If	touch	screen	scan	is	finished	then	switch	to	mTouch	Buttons	task.	

//	The	TouchScreenDetectPosition()	function	runs	the	touch	screen	state
machine.	

//	A	few	calls	of	TouchScreenDetectPosition()	are	required	to	detect	a
touch	on	the	touch	screen.	

//	When	the	position	is	detected	this	function	returns	non-zero.	

if(TouchScreenDetectPosition()!=	0)	

{	

//	Initialize	ACD	for	mTouch	Buttons.	

MTouchInit();	

current_state	=	STATE_MTOUCH_BUTTONS;	

}	

break;	

	

case	STATE_MTOUCH_BUTTONS:	

//	Get	data	from	capacitive	buttons.	

MTouchAcquisition();	

//	Initialize	ACD	for	Battery	Level	Measurement.	

Battery_ADCInit();	

current_state	=	STATE_BATTERY_LEVEL;	

break;	

	

case	STATE_BATTERY_LEVEL:	

//	BatteryLevelDetect()	measures	the	battery	level.	

BatteryLevelDetect();	

//	Initialize	ACD	for	touch	screen.	

TouchScreen_ADCInit();	

current_state	=	STATE_TOUCH_SCREEN;	

break;	

	

}	//	The	state	machine	main	switch	end.	

	

//	Clear	timer	interrupt	flag.	

TMR4	=0;	IFS1bits.T4IF	=	0;	

	

}	//	End	of	timer	interrupt.

Sharing	ADC	between	mTouch	Library	and	Other	Tasks

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Next

Code	and	RAM	Memories	Size
In	this	section	the	required	memory	resources	are	listed.

Code	and	RAM	Memories	Size

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RAM
Here	is	a	list	of	RAM	requirements	per	each	sensor	and	control.	

	

Object	
Size	less	than	

Sensor	(basic	button)	 34	Bytes	

Button	(button	with	different	decoding	methods)	 8	Bytes	

Matrix	Button	 10	Bytes	

2	Channel	Slider	 8	Bytes	

4	Channel	Slider	 12	Bytes	

Code	and	RAM	Memories	Size	>	RAM

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Code
Here	is	a	list	of	program	memory	requirements	per	each	library	module.	

	

Module	
Size	for	MPLAB	C18
compiler	less	than	

Size	for	MPLAB	C30
compiler	less	than	

CTMU	Acquisition	with	Sensors	(basic
buttons)	

2050	Bytes	 1750	Bytes	

CVD	Acquisition	with	Sensors	(basic
buttons)	

2700	Bytes	 1850	Bytes	

Button	(buttons	with	different	decoding
methods)	

680	Bytes	 280	Bytes	

Matrix	Button	 790	Bytes	 330	Bytes	

2	Channel	Slider	 1000	Bytes	 280	Bytes	

4	Channel	Slider	 1320	Bytes	 430	Bytes	

Code	and	RAM	Memories	Size	>	Code

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Next

Acquisition	Time	for	One	Sensor
Acquisition
method	 Average	time	for	MPLAB	C18

compiler		
Average	time	for	MPLAB	C30
compiler	

CTMU	 530	Instructions	 160	Instructions	

CVD	 840	Instructions	 290	Instructions	

Acquisition	Time	for	One	Sensor

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Next

Demo	Projects
	

The	mTouch	library	demo	projects	are	located	in	“…\Microchip
Solutions\mTouchCapDemos\PIC18F	PIC24F	PIC24H	dsPIC	Demos”.
All	hardware	dependent	settings,	definitions,	macros	and	functions	for
each	demo	project	can	be	found	in	“…\Microchip
Solutions\mTouchCapDemos\PIC18F	PIC24F	PIC24H	dsPIC
Demos\Configurations”	folder.	The	system.h	and	system.c	files	in	this
folder	contain	the	code	specific	for	PIC	Microcontroller	device	and
development	board	used	(such	as	configuration	bits,	ISRs,	peripherals’
initialization).	There	is	one	special	demo	project	“User	Configurable
Demo”.	This	project	can	be	used	as	a	start	point	for	the	custom
application.	This	demo	supports	almost	all	PIC	Microcontroller	devices
and	all	required	mTouch	library	files	are	added	to	the	project	by	default.
The	PIC	Microcontroller	device	specific	information	for	this	demo	project
is	placed	in	“…\Microchip	Solutions\mTouchCapDemos\PIC18F
PIC24F	PIC24H	dsPIC	Demos\Configurations\User_Board”	folder	and
mTouchConfig.h	file.	

Please	read	ReadMe.txt	files	in	demo	project	folders	to	get	more
details	about	each	demo.	

Demo	Projects

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Next

API	Reference
API	Reference

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Common
In	this	section	the	common	library	functions	are	described	.

API	Reference	>	Common

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

void	MTouchInit(void)
	

Description:	this	function	initializes	mTouch	library.

API	Reference	>	Common	>	void	MTouchInit(void)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTouchSetCTMUCurrent(current)
	

Description:	this	macro	sets	CTMU	current	range	and	trim	bits.	

	Parameters:	

current	-	current	value.	Bits	1-0	define	the	current	source	range	(IRNG)	and	bits	7-2	define
current	trim	value	(ITRIM,	signed).

API	Reference	>	Common	>	MTouchSetCTMUCurrent(current)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Acquisition
In	this	section	the	acquisition	level	library	functions	are	described	.

API	Reference	>	Acquisition

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTouchAcquisition(void)
	

Description:	this	function	performs	an	acquisition	for	all	sensors	(using
CVD	or	CTMU).Contains	decimate	and	oversampling	filters.	When
oversampling	is	finished	it	decodes	the	sensor	state.	This	function	can	be
called	periodically	(for	example	by	timer	interrupt).	The	initialization
should	be	done	with	MTouchInit()	and	MTouchSetSensor(...)functions.	

API	Reference	>	Acquisition	>	MTouchAcquisition(void)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Sensors
In	this	section	the	sensors	level	library	functions	are	described.

API	Reference	>	Sensors

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

void	MTouchSetSensor(UINT8	sensorNumber,
SFR	tris,	SFR	lat,	UINT8	ioBitNumber,	UINT8
channelNumber,	INT16	threshold,	INT16
oversampling,	INT8	chargeDelay)
	

Description:	this	function	initializes	a	sensor.	All	sensors	must	be	set
before	acquisition.	

Parameters:	

sensorNumber	-	sensor	number.
tris	-	address	of	TRIS	register	for	the	sensor.
lat	-	address	of	LAT	register	for	the	sensor.
ioBitNumber	-	sensor	IO	bit	number	for	LAT	and	TRIS	registers.
channelNumber	-	analog	input	number	for	the	sensor.
threshold	-	press	detection	threshold.	Set	this	parameter	to	-1	to	use	default	value
MTOUCH_DEFAULT_THRESHOLD	(mTouchConfig.h).		
oversampling	-	defines	how	many	samples	used	for	oversampling.	Set	this	parameter	to	-1
to	use	default	value	MTOUCH_DEFAULT_OVERSAMPLING	(mTouchConfig.h).		
chargeDelay	-	CTMU	charge	delay.	Set	this	parameter	to	-1	to	use	default	value
MTOUCH_DEFAULT_CHARGE_DELAY	(mTouchConfig.h).		

API	Reference	>	Sensors	>	void	MTouchSetSensor(UINT8	sensorNumber,	SFR	tris,	SFR	lat,
UINT8	ioBitNumber,	UINT8	channelNumber,	INT16	threshold,	INT16	oversampling,	INT8
chargeDelay)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTouchSuspendSensor(sensorNumber)
	

Description:	this	macro	excludes	the	sensor	from	scan.	Use
MTouchResumeSensor(...)	to	start	the	sensor	scanning	again.	

Parameters:	

sensorNumber	-	sensor	number.

API	Reference	>	Sensors	>	MTouchSuspendSensor(sensorNumber)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTouchResumeSensor(sensorNumber)
	

Description:	this	macro	resumes	the	sensor	scanning	stopped	by
MTouchSuspendSensor(...).	

Parameters:	

sensorNumber	-	sensor	number.

API	Reference	>	Sensors	>	MTouchResumeSensor(sensorNumber)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTouchSetChargeDelay(sensorNumber,	delay)
	

Description:	this	macro	sets	charge	delay	value	for	sensor.	

Parameters:	

sensorNumber	-	sensor	number.
delay	-	charge	delay.

API	Reference	>	Sensors	>	MTouchSetChargeDelay(sensorNumber,	delay)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTouchSetThreshold(sensorNumber,
_threshold)
	

Description:	this	macro	sets	press	detection	threshold	for	sensor.	

Parameters:	

sensorNumber	-	sensor	number.
threshold			-	press	detection	threshold.

API	Reference	>	Sensors	>	MTouchSetThreshold(sensorNumber,	_threshold)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTouchSetOversampling(sensorNumber,
oversampling)
	

Description:	this	macro	sets	oversampling	factor	for	sensor.	

Parameters:	

sensorNumber	-	sensor	number.
oversampling	-	oversampling	factor.

API	Reference	>	Sensors	>	MTouchSetOversampling(sensorNumber,	oversampling)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTouchGetSensorState(sensorNumber)
	

Description:	this	macro	returns	current	state	of	sensor.	

Parameters:	

sensorNumber	-	sensor	number.

Returns:	state	of	sensor	(see	MTOUCHSENSORSTATE	enumeration	in
mTouchSensor.h).

API	Reference	>	Sensors	>	MTouchGetSensorState(sensorNumber)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTouchInitializeSensor(sensorNumber)
Description:	this	macro	starts	the	sensor's	initialization.	

Parameters:	

sensorNumber	-	sensor	number.

API	Reference	>	Sensors	>	MTouchInitializeSensor(sensorNumber)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Controls
In	this	section	the	controls	level	library	functions	are	described.

API	Reference	>	Controls

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

void	mTouchDecode(void)
	

Description:	this	function	decodes	states	for	all	controls.	It	should	be
called	periodically	before	reading	of	the	controls	states.

API	Reference	>	Controls	>	void	mTouchDecode(void)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

void	MTouchSetButton(UINT8	buttonNumber,
UINT8	sensorNumber,	UINT8	decode)
	

Description:		this	function	initializes	button.	

	Parameters:	

buttonNumber	-	button	number.
sensorNumber	-	sensor	number.
decode	-	ORed	combination	of	decode	methods	(see	MTOUCHCONTROLDECODE	union
in	mTouchControl.h).

API	Reference	>	Controls	>	void	MTouchSetButton(UINT8	buttonNumber,	UINT8	sensorNumber,
UINT8	decode)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTouchGetButtonState(buttonNumber)
	

Description:	this	macro	returns	the	button	state.	

	Parameters:	

buttonNumber	-	button	number.

Returns:		button	state	flags	(see	MTOUCHCONTROLSTATE	union	in
mTouchControl.h).

API	Reference	>	Controls	>	MTouchGetButtonState(buttonNumber)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

void	MTouchSetMatrixButton(UINT8
buttonNumber,	UINT8	ch1SensorNumber,	UINT8
ch2SensorNumber,	UINT8	decode)
	

Description:	this	function	initializes	matrix	button.	

Parameters:	

buttonNumber	-	button	number.
ch1SensorNumber	-	first	sensor	number	(row	or	column).
ch2SensorNumber	-	second	sensor	number	(row	or	column).
decode	-	ORed	combination	of	decode	methods	(see	MTOUCHCONTROLDECODE	union
in	mTouchControl.h).

API	Reference	>	Controls	>	void	MTouchSetMatrixButton(UINT8	buttonNumber,	UINT8
ch1SensorNumber,	UINT8	ch2SensorNumber,	UINT8	decode)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTouchGetMatrixButtonState(buttonNumber)
	

Description:	this	macro	returns	the	matrix	button	state.	

	Parameters:	

buttonNumber	-	matrix	button	number.

Returns:	matrix	button	state	flags(see	MTOUCHCONTROLSTATE	union
in	mTouchControl.h).

API	Reference	>	Controls	>	MTouchGetMatrixButtonState(buttonNumber)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

void	MTouchSet2ChSlider(UINT8	sliderNumber,
UINT8	ch1SensorNumber,	UINT8
ch2SensorNumber)
	

Description:	this	function	initializes	2	channels	slider.	

	Parameters:	

sliderNumber	-	slider	number.
ch1SensorNumber	-	first	sensor	number.
ch2SensorNumber	-	second	sensor	number.

API	Reference	>	Controls	>	void	MTouchSet2ChSlider(UINT8	sliderNumber,	UINT8
ch1SensorNumber,	UINT8	ch2SensorNumber)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTouchGet2ChSliderState(sliderNumber)
	

Description:	this	macro	returns	the	slider	state.	

Parameters:	

sliderNumber	-	slider	number.

Returns:		slider	state	(see	MTOUCHCONTROLSTATE	union	in
mTouchControl.h).

API	Reference	>	Controls	>	MTouchGet2ChSliderState(sliderNumber)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTouchGet2ChSliderValue(sliderNumber)
	

Description:	this	macro	returns	the	slider	current	position.	

Parameters:	

sliderNumber	-	number	of	slider.

Returns:		slider	value	(current	position)	from	0	to	1000.

API	Reference	>	Controls	>	MTouchGet2ChSliderValue(sliderNumber)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

void	MTouchSet4ChSlider(UINT8	sliderNumber,
UINT8	ch1SensorNumber,	UINT8
ch2SensorNumber,	UINT8	ch3SensorNumber,
UINT8	ch4SensorNumber)
	

	Description:	this	function	initializes	4	channels	slider.	

Parameters:	

sliderNumber	-	slider	number.
ch1SensorNumber	-	sensor	1	number.
ch2SensorNumber	-	sensor	2	number.
ch3SensorNumber	-	sensor	3	number.
ch4SensorNumber	-	sensor	4	number.

API	Reference	>	Controls	>	void	MTouchSet4ChSlider(UINT8	sliderNumber,	UINT8
ch1SensorNumber,	UINT8	ch2SensorNumber,	UINT8	ch3SensorNumber,	UINT8
ch4SensorNumber)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTouchGet4ChSliderState(sliderNumber)
	

Description:	this	macro	returns	the	slider	state.	

	Parameters:	

sliderNumber	-	number	of	slider.

Returns:		slider	state	(see	MTOUCHCONTROLSTATE	union	in
mTouchControl.h).

API	Reference	>	Controls	>	MTouchGet4ChSliderState(sliderNumber)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTouchGet4ChSliderValue(sliderNumber)
	

Description:	this	macro	returns	the	slider	current	position.	

	Parameters:	

sliderNumber	-	number	of	slider.

Returns:		slider	value	(current	position)	from	0	to	1000.

API	Reference	>	Controls	>	MTouchGet4ChSliderValue(sliderNumber)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Debug	Module
In	this	section	the	debug	module	library	functions	are	described.

API	Reference	>	Debug	Module

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

void	LogChar(char	ch)
	

Description:This	function	outputs	character	to	debug	log.	It	MUST	BE
defined	in	application.	

Parameters:	

ch	-	character	to	be	transmitted.

API	Reference	>	Debug	Module	>	void	LogChar(char	ch)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DEBUGCURRENT*	MTouchDebugCurrent(UINT8
sensorNumber)
	

Description:The	function	adjusts	CTMU	current	to	charge	the	sensor	to
75%	of	AVdd	for	unpressed	state		when	charge	delay	is	8.	Before	the
adjustment	MTOUCH_CTMU_CURRENT	parameter	in	mTouchConfig.h
must	be	set	to	0x01	and	sensor	must	be	initialized	with
MTouchSetSensor(...).	The	CTMU	current	result	can	be	set	to
MTOUCH_CTMU_CURRENT	parameter	directly.	

Parameters:	

sensorNumber	-	sensor	number.

Returns:	the	function	returns	a	pointer	to	the	structure	with	the	CTMU
current	settings	value	and	corresponding	error	in	the	sensor	charge
delay.

API	Reference	>	Debug	Module	>	DEBUGCURRENT*	MTouchDebugCurrent(UINT8
sensorNumber)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

INT16	MTouchDebugThreshold(UINT8
sensorNumber)
	

Description:This	function	waits	for	the	sensor	press	event	and	returns
an	optimal	sensor	threshold.	The	threshold	should	be	about	12.5%
percents	of	the	signal(delta)	amplitude.	Before	measurement	the	sensor
must	be	initialized	with	MTouchSetSensor(...).	Use	the	threshold	result	to
intialize	sensor	(see	parameter	"threshold"	in	MTouchSetSensor(...)
function).	

Parameters:	

sensorNumber	-	sensor	number.

Returns:	the	function	returns	an	optimal	sensor	threshold	value.

API	Reference	>	Debug	Module	>	INT16	MTouchDebugThreshold(UINT8	sensorNumber)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DEBUGDELAY*	MTouchDebugDelay(UINT8
sensorNumber)
	

Description:this	function	adjusts	CTMU	charge	delay	to	charge	the
unpressed		sensor	to	75%	of	AVdd.	Sensor	must	be	initialized	with
MTouchSetSensor(...).	The	charge	delay	result	returned	by	this	function
can	be	used	to	intialize	sensor	(see	parameter	"chargeDelay"	in
MTouchSetSensor(...)	function).	

Parameters:	

sensorNumber	-	sensor	number.

Returns:	a	pointer	to	the	structure	with	the	charge	delay	adjustment.

API	Reference	>	Debug	Module	>	DEBUGDELAY*	MTouchDebugDelay(UINT8	sensorNumber)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

void	MTouchDebugLogDeltas(void)
	

Description:This	function	sends	deltas	for	all	sensors	to	debug	log	as	a
semicolon	delimited	ASCII	string	of	5	digit	decimal	numbers.	The	first
number	in	the	string	is	the	sensors’	states,	other	numbers	are	deltas.	

API	Reference	>	Debug	Module	>	void	MTouchDebugLogDeltas(void)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

void	MTouchDebugLogAverages(void)
	

Description:This	function	sends	averages	values	for	all	sensors	to
debug	log	as	a	semicolon	delimited	ASCII	string	of	5	digit	decimal
numbers.	The	first	number	in	the	string	is	the	sensors’	states,	other
numbers	are	average	values.	

API	Reference	>	Debug	Module	>	void	MTouchDebugLogAverages(void)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Structures	and	Enumerations
In	this	section	the	library	structures	and	enumerations	are	described.

API	Reference	>	Structures	and	Enumerations

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTOUCHSENSORSTATE	Enum
Enumeration:	MTOUCHSENSORSTATE	

	

This	enumeration	defines	all	possible	states	for	sensor.	

Values:		

SENSOR_INITIALIZING	-	sensor	is	still	initializing	(see	POWER_UP_SAMPLES	in
mTouchConfig.h),
SENSOR_RELEASED	-	sensor	is	currently	released,
SENSOR_PRESSED	-	sensor	is	currently	pressed,
SENSOR_DISCONNECTED	=	0x80		-	bit	7	shows	that	the	sensor	must	be	removed	from
scan.

API	Reference	>	Structures	and	Enumerations	>	MTOUCHSENSORSTATE	Enum

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTOUCHCONTROLSTATE	Enum
Enumeration:	MTOUCHCONTROLSTATE	

	

This	enumeration	defines	possible	state	flags	for	controls.	

Values:	

CONTROL_IDLE	=	0x80		-	bit	7	shows	that	control	is	in	idle	state	(the	state	was	not
changed),
CONTROL_PRESSED	–	control	pressed,
CONTROL_RELEASED	–	control	released.

API	Reference	>	Structures	and	Enumerations	>	MTOUCHCONTROLSTATE	Enum

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MTOUCHCONTROLDECODE	Enum
Enumeration:	MTOUCHCONTROLDECODE	

	

This	enumeration	defines	possible	decode	method	flags	for	controls.
These	flags	can	be	ORed.	

Values:	

DECODE_TOGGLE	-	toggled	button,
DECODE_PRESS_RELEASE	-	simple	button	(reports	pressed	or	released	states),
DECODE_MOST_PRESSED	-	looks	through	all	pressed	buttons	having	the	decode	method
DECODE_MOST_PRESSED	and	reports	"pressed"	state	only	for	one	which	has	a	bigger
signal,
DECODE_PRESS_REPEAT	-	if	button	is	held	pressed	it	starts	to	generate
"pressed"/"released"	events	periodically.	See	MCONTROL_REPEAT_INITIAL_DELAY	and
MCONTROL_REPEAT_DELAY	settings	in	mTouchConfig.h,
DECODE_ONE_EVENT	-	if	control's	state	is	not	changed	CONTROL_IDLE	state	flag	will
be	set.

API	Reference	>	Structures	and	Enumerations	>	MTOUCHCONTROLDECODE	Enum

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DEBUGCURRENT	Struct
Structure:	DEBUGCURRENT	

	

This	structure	contains	results	for	the	CTMU	current	adjustment.	This
resut	can	be	used	directly	for	MTOUCH_CTMU_CURRENT	setting	in
mTouchConfig.h	file.	It	is	used	by	MTouchDebugCurrent(...)	function.	

Fields:	

INT16		error	-	charge	delay	error	for	the	adjusted	current	from	the	nominal	charge	delay
(equals	8).
UINT8			current	-	settings	for	CTMU	current.	Bits	1-0	define	the	current	source	range
(IRNG)	and	bits	7-2	define	current	trim	value	(ITRIM,	signed).

API	Reference	>	Structures	and	Enumerations	>	DEBUGCURRENT	Struct

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DEBUGDELAY	Struct
Structure:	DEBUGDELAY	

	

This	structure	contains	results	for	CTMU	charge	delay	adjustment.	It	is
used	by	MTouchDebugDelay(...)	function.	

Fields:	

INT8		delay	-	settings	for	CTMU	charge	delay.
INT16	error	–	sample	error	for	the	adjusted	delay	from	the	nominal	value	(75%	of	AVdd).
The	error	should	be	less	than	128	for	10-bit	ADC	and	less	than	512	for	12-bit	ADC.

API	Reference	>	Structures	and	Enumerations	>	DEBUGDELAY	Struct

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous	|	Next

Known	Limitations
The	known	limitations	of	mTouchTM	software	library	version	1.41	are
listed	below:

For	the	PIC18	demos	when	HiTech	PICC18	or	XC8	compilers	are	used	the	optimization
level	should	be	set	to	STANDARD	(LITE)	option	for	successful	operation.

Known	Limitations

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home Previous

Resources
	

To	get	more	information	about	mTouch	sensing	solutions	visit	
http://www.mirochip.com/mtouch	and	read	the	following	articles:

Capacitive	Sensors	by	Larry	K.	Baxter	ISBN	0-7803-5351-X
AN1101,	AN1102,	AN1103,	AN1104	–	Covers	Basic	Cap	Touch
AN1250	–	Cap	Touch	with	CTMU
AN1254	–	Capacitive	Touch	Algorithm	Simulation
AN1298	–	Capacitive	Touch	Using	Only	an	ADC	(CVD)
AN1325	–	mTouch™	Metal	Over	Cap	Technology
AN	1334	–Techniques	for	Robust	Touch	Sensing	Design

		

	

Resources

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home

Contents
This	is	the	table	of	contents	of	this	documentation.

Introduction
Software	License	Agreement
Overview
Acquisition	Level
Sensors	Level
Controls	Level

Getting	Started
mTouch	Library	Files
mTouch	Library	Configuration
Using	API

Sensor	Optimization	(Debug	Module)
Step	1.	Optimal	CTMU	current	selection
Step	2.	Optimal	CTMU	charge	delay	selection
Step	3.	Optimal	oversampling	factor	selection
Step	4.	Optimal	press	detection	threshold	selection
Optimization	example
mTouch	GUI

Sharing	ADC	between	mTouch	Library	and	Other	Tasks
Code	and	RAM	Memories	Size
RAM
Code

Acquisition	Time	for	One	Sensor
Demo	Projects
API	Reference
Common
void	MTouchInit(void)
MTouchSetCTMUCurrent(current)

Acquisition
MTouchAcquisition(void)

Sensors
void	MTouchSetSensor(UINT8	sensorNumber,	SFR	tris,	SFR	lat,	UINT8	ioBitNumber,	UINT8	channelNumber,	INT16	threshold,	INT16	oversampling,	INT8	
MTouchSuspendSensor(sensorNumber)
MTouchResumeSensor(sensorNumber)
MTouchSetChargeDelay(sensorNumber,	delay)
MTouchSetThreshold(sensorNumber,	_threshold)
MTouchSetOversampling(sensorNumber,	oversampling)
MTouchGetSensorState(sensorNumber)

MTouchInitializeSensor(sensorNumber)
Controls
void	mTouchDecode(void)
void	MTouchSetButton(UINT8	buttonNumber,	UINT8	sensorNumber,	UINT8	decode)
MTouchGetButtonState(buttonNumber)
void	MTouchSetMatrixButton(UINT8	buttonNumber,	UINT8	ch1SensorNumber,	UINT8	ch2SensorNumber,	UINT8	decode)
MTouchGetMatrixButtonState(buttonNumber)
void	MTouchSet2ChSlider(UINT8	sliderNumber,	UINT8	ch1SensorNumber,	UINT8	ch2SensorNumber)
MTouchGet2ChSliderState(sliderNumber)
MTouchGet2ChSliderValue(sliderNumber)
void	MTouchSet4ChSlider(UINT8	sliderNumber,	UINT8	ch1SensorNumber,	UINT8	ch2SensorNumber,	UINT8	ch3SensorNumber,	
MTouchGet4ChSliderState(sliderNumber)
MTouchGet4ChSliderValue(sliderNumber)

Debug	Module
void	LogChar(char	ch)
DEBUGCURRENT*	MTouchDebugCurrent(UINT8	sensorNumber)
INT16	MTouchDebugThreshold(UINT8	sensorNumber)
DEBUGDELAY*	MTouchDebugDelay(UINT8	sensorNumber)
void	MTouchDebugLogDeltas(void)
void	MTouchDebugLogAverages(void)

Structures	and	Enumerations
MTOUCHSENSORSTATE	Enum
MTOUCHCONTROLSTATE	Enum
MTOUCHCONTROLDECODE	Enum
DEBUGCURRENT	Struct
DEBUGDELAY	Struct

Known	Limitations
Resources

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

mTouch	Cap	Library	Help Contents	|	Index	|	Home

Index
These	are	all	topics	and	symbols	available	in	this	documentation.
A	|	C	|	D	|	G	|	I	|	K	|	M	|	O	|	R	|	S	|	U	|	V

A
Acquisition
Acquisition	Level
Acquisition	Time	for	One	Sensor
API	Reference

C
Code
Code	and	RAM	Memories	Size
Common
Controls
Controls	Level

D
Debug	Module
DEBUGCURRENT	Struct
DEBUGCURRENT*
MTouchDebugCurrent(UINT8
sensorNumber)
DEBUGDELAY	Struct
DEBUGDELAY*	MTouchDebugDelay(UINT8
sensorNumber)
Demo	Projects

G
Getting	Started

MTouchResumeSensor(sensorNumber)
MTOUCHSENSORSTATE	Enum
MTouchSetChargeDelay(sensorNumber,
delay)
MTouchSetCTMUCurrent(current)
MTouchSetOversampling(sensorNumber,
oversampling)
MTouchSetThreshold(sensorNumber,
_threshold)
MTouchSuspendSensor(sensorNumber)

O
Optimization	example
Overview

R
RAM
Resources

S
Sensor	Optimization	(Debug	Module)
Sensors
Sensors	Level
Sharing	ADC	between	mTouch	Library
and	Other	Tasks
Software	License	Agreement
Step	1.	Optimal	CTMU	current	selection
Step	2.	Optimal	CTMU	charge	delay
selection

I
INT16	MTouchDebugThreshold(UINT8
sensorNumber)
Introduction

K
Known	Limitations

M
mTouch	GUI
mTouch	Library	Configuration
mTouch	Library	Files
MTouchAcquisition(void)
MTOUCHCONTROLDECODE	Enum
MTOUCHCONTROLSTATE	Enum
MTouchGet2ChSliderState(sliderNumber)
MTouchGet2ChSliderValue(sliderNumber)
MTouchGet4ChSliderState(sliderNumber)
MTouchGet4ChSliderValue(sliderNumber)
MTouchGetButtonState(buttonNumber)
MTouchGetMatrixButtonState(buttonNumber)
MTouchGetSensorState(sensorNumber)
MTouchInitializeSensor(sensorNumber)

Step	3.	Optimal	oversampling	factor
selection
Step	4.	Optimal	press	detection
threshold	selection
Structures	and	Enumerations

U
Using	API

V
void	LogChar(char	ch)
void	MTouchDebugLogAverages(void)
void	MTouchDebugLogDeltas(void)
void	mTouchDecode(void)
void	MTouchInit(void)
void	MTouchSet2ChSlider(UINT8
sliderNumber,	UINT8	ch1SensorNumber,
UINT8	ch2SensorNumber)
void	MTouchSet4ChSlider(UINT8
sliderNumber,	UINT8	ch1SensorNumber,
UINT8	ch2SensorNumber,	UINT8
ch3SensorNumber,	UINT8
ch4SensorNumber)
void	MTouchSetButton(UINT8
buttonNumber,	UINT8	sensorNumber,
UINT8	decode)
void	MTouchSetMatrixButton(UINT8
buttonNumber,	UINT8
ch1SensorNumber,	UINT8
ch2SensorNumber,	UINT8	decode)
void	MTouchSetSensor(UINT8
sensorNumber,	SFR	tris,	SFR	lat,	UINT8
ioBitNumber,	UINT8	channelNumber,
INT16	threshold,	INT16	oversampling,

INT8	chargeDelay)

Microchip	mTouchCap	Software	Library	1.41	-	[July	18,	2012]
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

	Introduction
	Software License Agreement
	Overview
	Acquisition Level
	Sensors Level
	Controls Level

	Getting Started
	mTouch Library Files
	mTouch Library Configuration
	Using API

	Sensor Optimization (Debug Module)
	Step 1. Optimal CTMU current selection
	Step 2. Optimal CTMU charge delay selection
	Step 3. Optimal oversampling factor selection
	Step 4. Optimal press detection threshold selection
	Optimization example
	mTouch GUI

	Sharing ADC between mTouch Library and Other Tasks
	Code and RAM Memories Size
	RAM
	Code

	Acquisition Time for One Sensor
	Demo Projects
	API Reference
	Common
	void MTouchInit(void)
	MTouchSetCTMUCurrent(current)

	Acquisition
	MTouchAcquisition(void)

	Sensors
	void MTouchSetSensor(UINT8 sensorNumber, SFR tris, SFR lat, UINT8 ioBitNumber, UINT8 channelNumber, INT16 threshold, INT16 oversampling, INT8 chargeDelay)
	MTouchSuspendSensor(sensorNumber)
	MTouchResumeSensor(sensorNumber)
	MTouchSetChargeDelay(sensorNumber, delay)
	MTouchSetThreshold(sensorNumber, _threshold)
	MTouchSetOversampling(sensorNumber, oversampling)
	MTouchGetSensorState(sensorNumber)
	MTouchInitializeSensor(sensorNumber)

	Controls
	void mTouchDecode(void)
	void MTouchSetButton(UINT8 buttonNumber, UINT8 sensorNumber, UINT8 decode)
	MTouchGetButtonState(buttonNumber)
	void MTouchSetMatrixButton(UINT8 buttonNumber, UINT8 ch1SensorNumber, UINT8 ch2SensorNumber, UINT8 decode)
	MTouchGetMatrixButtonState(buttonNumber)
	void MTouchSet2ChSlider(UINT8 sliderNumber, UINT8 ch1SensorNumber, UINT8 ch2SensorNumber)
	MTouchGet2ChSliderState(sliderNumber)
	MTouchGet2ChSliderValue(sliderNumber)
	void MTouchSet4ChSlider(UINT8 sliderNumber, UINT8 ch1SensorNumber, UINT8 ch2SensorNumber, UINT8 ch3SensorNumber, UINT8 ch4SensorNumber)
	MTouchGet4ChSliderState(sliderNumber)
	MTouchGet4ChSliderValue(sliderNumber)

	Debug Module
	void LogChar(char ch)
	DEBUGCURRENT* MTouchDebugCurrent(UINT8 sensorNumber)
	INT16 MTouchDebugThreshold(UINT8 sensorNumber)
	DEBUGDELAY* MTouchDebugDelay(UINT8 sensorNumber)
	void MTouchDebugLogDeltas(void)
	void MTouchDebugLogAverages(void)

	Structures and Enumerations
	MTOUCHSENSORSTATE Enum
	MTOUCHCONTROLSTATE Enum
	MTOUCHCONTROLDECODE Enum
	DEBUGCURRENT Struct
	DEBUGDELAY Struct

	Known Limitations
	Resources

