
Preface	and	Information
Information
Version:	1.3.0
Author:	Reko	Tiira	[ramirez]
E-Mail:	reko@tiira.net
Date:	18th	August	2009
IRC:	ramirez	@	irc.undernet.org	[#mircscripting],	ramirez	@	irc.swiftirc.net	[
#msl]

Welcome	to	using	mIRC	SQLite
mIRC	SQLite	is	an	implementation	of	the	SQLite	library	for	mIRC.	It	requires
mIRC	version	6.2	or	higher.
It	offers	a	flexible	and	easy-to-use	API	(Application	Programming	Interface)
which	is	strongly	inspired	by	the	PHP's	SQLite	API.
This	documentation	has	two	purposes,	first	and	foremost	it	works	as	a	reference
and	secondly	it	has	a	lot	of	useful	information	on	how	to	use	the	library.	This
includes	explanation	of	features	such	as	handling	binary	data	with	mIRC	SQLite,
registering	and	using	user	defined	functions	and	aggregates,	and	how	to	handle
errors.
This	documentation	is	solely	for	documenting	mIRC	SQLite	and	assumes	you
are	familiar	with	SQL	already.	It	doesn't	teach	you	SQL.	You	can	find	SQLite's
documentation	for	the	SQL	language	here:	http://www.sqlite.org/lang.html.
If	you're	familiar	with	other	SQL	databases	such	as	MySQL,	but	have	no	prior
experience	with	SQLite,	feel	reassured.	SQLite	isn't	that	much	different	at	all.
However	I	strongly	recommend	you	to	read	this	short	document	so	you'll	get	an
understanding	of	what	SQL	features	SQLite	doesn't	support:
http://www.sqlite.org/omitted.html.
This	library	has	no	external	dependencies	aside	from	the	script	file	and	the	DLL
(msqlite.mrc	and	msqlite.dll	respectively).
If	you	find	any	bugs,	or	have	feedback	and/or	suggestions,	please	get	in	touch
with	me	on	IRC,	or	e-mail	me	at	the	above	address.
IMPORTANT.	When	you	send	me	an	e-mail	make	sure	to	include	the	word
"mIRC"	or	"SQLite"	(without	quotes)	in	the	subject,	otherwise	my	mail	filter
won't	catch	it.

http://www.sqlite.org
http://www.sqlite.org/lang.html
http://www.sqlite.org/omitted.html

Features
SQLite	Key	Features
You	might	be	wondering	why	I've	decided	to	write	a	library	for	SQLite,	and	not
for	MySQL	for	example.	The	following	list	of	features	hopefully	speaks	for
itself.	I	have	made	it	brief	purposefully,	in	case	you	want	to	read	more	about
SQLite's	features,	read	this:	http://www.sqlite.org/different.html.

Serverless!
SQLite	doesn't	require	a	server	to	run	as	a	seperate	process/service.
No	configuration	needed!

You	just	connect	to	a	specified	database.	That's	it.
Fast!

SQLite	is	fast!	To	see	user	contributed	speed	comparisons,	see:
http://www.sqlite.org/cvstrac/wiki?p=SpeedComparison.
Portable!

Because	SQLite	stores	a	database	in	a	single	file,	it's	very	easy	move
databases	around.
Compact!

SQLite	is	extremely	small	in	size,	which	makes	it	painless	to	download.
Dynamic	types!

SQLite	implements	so	called	manifest	typing.	You	can	insert	any	type	of
data	to	a	table,	regardless	of	the	declared	type.
This	is	especially	good	for	simplicity's	sake,	as	you	don't	even	need	to
declare	a	data	type	for	columns.
Variable-length	records!

Unlike	many	other	SQL	database	engines,	SQLite	only	stores	as	many
bytes	it	needs.
This	results	into	smaller	and	more	efficient	database	files.

mSQLite	Key	Features
So	what	about	mIRC	SQLite	then?	What	does	it	offer?

Easy	to	use!

http://www.sqlite.org/different.html
http://www.sqlite.org/cvstrac/wiki?p=SpeedComparison

mSQLite	provides	a	complete,	easy	to	use	and	throughly	documented	API
to	interface	with	SQLite.
Hash	tables!

When	fetching	rows	mSQLite	will	store	the	results	efficiently	in	a	hash
table.
Flexible	error	handling!

Every	single	mSQLite	command	updates	the	error	variables,	so	you	don't
need	to	spend	hours	of	time	to	debug	an	error.
Regular	expressions!

SQLite	doesn't	support	regular	expression	matching	by	default,	but
mSQLite	adds	support	for	them.	You	can	use	the	REGEXP	keyword	to	do	a
regular	expression	matches.
Binary	data!

mSQLite	extends	the	SQLite	query	syntax	by	implementing	support	for
mIRC	binary	variables.
User	defined	functions!

mSQLite	allows	users	to	register	their	own	functions	and	aggregates	to	SQL
with	an	ease.
Garbage	collecting!

In	case	you	forget	to	free	some	resources,	mSQLite	will	free	them	for	you
upon	unloading!

Installing	and	Configuring	mSQLite
Installing
Installing	mSQLite	is	easy	and	quick.
After	extracting	the	contents	of	the	archive	to	a	wanted	destination,	you	should
see	these	files:
msqlite.chm			Documentation	file.

msqlite.dll			DLL	file.

msqlite.ini			Configuration	file.

msqlite.mrc			Script	file.

If	you	do,	the	next	step	is	to	load	the	script	in	mIRC.	Assuming	you	extracted	the
archive	to	mIRC	folder,	you	can	load	mSQLite	with:
/load	-rs	msqlite.mrc

If	you	extracted	the	archive	to	somewhere	else	than	mIRC's	root	folder,	you	need
to	specify	the	path	to	the	folder	as	well,	for	example:
/load	-rs	C:\scripts\msqlite\msqlite.mrc

If	everything	went	correctly,	mIRC	should	popup	a	message	box	asking	whether
you	want	to	run	the	initialization	script.	You	should	choose	Yes,	although
choosing	No	will	not	break	the	library	either;	It	will	just	use	the	default
configuration	settings.	That's	it,	you're	done!

Configuring
mSQLite	has	a	couple	of	configuration	options	in	its	configuration	file
(msqlite.ini).	They	are	the	following:
[MSQLITE]

id													An	unique	identifier	for	the	library.																								(Default:	

busy_timeout			Default	busy	timeout	for	new	connections,	in	milliseconds.			(Default:	300)

The	id	option	can	be	used	to	tell	mSQLite	to	use	a	specific	id	for	the	library.	By
default	id	option	is	empty,	which	means	that	mSQLite	finds	a	free	unique	id
automatically,	but	in	case	you	want	force	it	to	use	a	specific	id,	this	option	can	be
used.

The	busy_timeout	option	instructs	mSQLite	to	wait	for	at	least	specified	amount
of	milliseconds	when	a	query	tries	to	operate	on	a	locked	database.	If	mSQLite
obtains	access	to	the	database	before	busy	timeout	occurs,	the	operation	is
executed	normally,	otherwise	an	error	is	returned	and	%sqlite_errno	is	set	to
$SQLITE_BUSY.	Read	more	about	error	handling	in	Handling	Errors..	You	can
change	busy	timeout	per-connection	basis	with	sqlite_busy_timeout	command.
[PRAGMAS]

pragma									Pragma	query	to	be	executed	by	default	when	new	database	connection	is	opened.

The	pragma	directive	is	useful	if	you	want	to	change	default	functionality	of	the
library	for	all	connections,	because	pragmas	specified	in	the	configuration	file
will	be	run	everytime	mSQLite	opens	a	new	connection	to	a	database.	You	can
have	multiple	pragma	directives,	and	they	must	be	under	[PRAGMAS]	section.
[EXTENSIONS]

extension						An	extension	to	be	loaded	automatically	when	new	database	connection	is	opened.

The	extension	directive	can	be	used	to	automatically	load	extensions	for	all	new
database	connections.	This	is	useful	if	you	have	general	purpose	extensions	that
you	want	to	be	able	to	use	without	explictly	loading	the	extension	with
sqlite_load_extension	for	every	connection.	The	extensions	are	opened	from	the
script	directory	of	mSQLite	unless	an	absolute	path	is	specified.	You	can	have
multiple	extension	directives,	and	they	must	be	under	[EXTENSIONS]	section.

Managing
Even	though	SQLite	is	very	easy	to	learn	and	it's	simple	to	do	all	sorts	of
queries,	such	as	creating	tables,	it's	always	nice	to	have	a	visual	managment	tool
that	you	can	use	to	view	your	database	structure,	browse	data	and	so	on.	There
are	a	great	deal	of	such	tools	out	there,	some	of	which	are	free,	and	some	that	are
not.	Here's	a	list	of	database	managment	tools	for	SQLite,	with	their	price	(if
any):	http://www.sqlite.org/cvstrac/wiki?p=ManagementTools.
You	most	likely	don't	want	to	try	every	single	one	of	them	to	find	out	which	are
good,	so	in	case	you	just	want	to	get	started	quick	you	can	take	a	look	at	the	free,
nice	managment	tool	I	use,	SQLite	Spy.	SQLite	Spy	doesn't	have	a	visual	editor
for	creating	tables,	but	it's	by	far	the	best	visual	browser	for	SQLite	I've	used.
Another	free	tool	that	looks	very	promising,	with	features	such	as	SQL	code
completion	is	SQLite	Administrator.

The	SQLite	Wiki	also	has	a	great	deal	of	other	useful	tools,	like	for	converting
databases	between	different	database	formats,	and	information	on	SQLite	and
how	to	use	it	more	effectively.	So	if	you're	interested	in	reading	more,	check	it
out.

http://www.sqlite.org/cvstrac/wiki?p=ManagementTools
http://www.yunqa.de/delphi/sqlitespy/
http://sqliteadmin.orbmu2k.de/
http://www.sqlite.org/cvstrac/wiki

A	Complete	Example
The	following	example	demonstrates	few	common	features	and	functions	of
mSQLite.	The	example	is	commented	throughly,	so	it	should	be	easy	to	follow.
Please	read	the	Handling	Errors	and	Writing	Queries	How	To's	for	a	more
complete	understanding	and	details.
Example

/*

**	mIRC	SQLite	Demonstration	Script

**														A	greeting	script

**	--------------------------------

**	Save	as	sqlite_example.mrc	and	do

**	/load	-rs	sqlite_example.mrc

**

**	This	script	demonstrates	some

**	features	of	the	SQLite.

**

**	Usage:

**		/greet	add		nick			greet

**		/greet	del		[nick]

**		/greet	list	[nick]

**		/greet	find	greet

**

**	For	del	and	list	nick	can	be	a	wildcard.

**	For	find	greet	can	be	a	wildcard.

*/

/*

**	On	start	open	connection	and	make	sure	the	table	exists

**	You	do	not	need	to	close	the	db	connection	explicitly

**	mSQLite	will	close	it	when	the	mIRC	exits

*/

on	*:START:{

		set	%greet_db	$sqlite_open(greet.db)

		if	(!%greet_db)	{

				echo	4	-a	Error:	%sqlite_errstr

				return

		}

		sqlite_exec	%greet_db	CREATE	TABLE	IF	NOT	EXISTS	greets	(nick	UNIQUE,	greet

}

/*

**	When	someone	joins	a	channel,	check	if	he	has

**	a	greet	set	and	display	the	greet	if	one	exists

*/

on	*:JOIN:#:{

		;	Make	sure	we	are	connected	to	db

		if	(!%greet_db)	{	return	}

		;	Check	if	the	nick	has	a	greet

		var	%safe_nick	=	$sqlite_escape_string($nick)

		var	%sql	=	SELECT	greet	FROM	greets	WHERE	nick	=	'	$+	%safe_nick	$+	'

		var	%request	=	$sqlite_query(%greet_db,	%sql)

		if	(!%request)	{

				echo	4	-a	Error:	%sqlite_errstr

				return

		}

		;	If	the	nick	has	a	greet,	display	it

		if	($sqlite_num_rows(%request))	{

				var	%greet	=	$sqlite_fetch_single(%request)

				msg	$chan	$nick	$+	:	%greet

		}

		;	Free	the	result

		sqlite_free	%request

}

/*

**	Greet	alias

*/

alias	greet	{

		;	Make	sure	we	are	connected	to	db

		if	(!%greet_db)	{

				echo	4	-a	Error:	Not	connected	to	greet.db

				return

		}

		;	OK!	We're	connected!

		var	%cmd	=	$1

		if	(%cmd	!=	add	&&	%cmd	!=	del	&&	%cmd	!=	list	&&	%cmd	!=	find)	{

				echo	4	-a	Error:	Unknown	action.

				return

		}

		;	Do	action

		if	(%cmd	==	add)	{

				;	Add	greet

				var	%nick	=	$2,	%greet	=	$3-

				if	(!%nick	||	!%greet)	{

						echo	4	-a	Error:	Invalid	arguments.

						return

				}

				;	Escape	nick	and	greet	and	then	execute	query

				var	%safe_nick	=	$sqlite_escape_string(%nick),	%safe_greet	=	$sqlite_escape_string

				sqlite_exec	%greet_db	REPLACE	INTO	greets	(nick,	greet)	VALUES	('	$+

				echo	3	-a	Greet	of	%nick	set	to	%greet

		}

		elseif	(%cmd	==	del)	{

				;	Delete	greet

				var	%nick	=	$2

				if	(!%nick)	{

						;	Make	sure	you	really	want	to	delete	everything

						var	%del_all	=	$?!="You're	about	delete	all	greets	in	the	database.	

						if	(!%del_all)	{	return	}

						%nick	=	*

				}

				;	Replace	wildcard	*	with	%	and	escape	nick	and	finally	execute	query

				var	%safe_nick	=	$replace($sqlite_escape_string(%nick),*,%,?,_)

				sqlite_exec	%greet_db	DELETE	FROM	greets	WHERE	nick	LIKE	'	$+	%safe_nick

				echo	3	-a	$sqlite_changes(%db)	greets	deleted.

		}

		elseif	(%cmd	==	list)	{

				;	List	greets

				var	%nick	=	$2

				if	(!%nick)	{	%nick	=	*	}

				;	Replace	wildcard	*	with	%	and	escape	nick

				var	%safe_nick	=	$replace($sqlite_escape_string(%nick),*,%,?,_)

				;	Construct	query	and	execute	it

				var	%sql	=	SELECT	*	FROM	greets	WHERE	nick	LIKE	'	$+	%safe_nick	$+	'

				var	%request	=	$sqlite_query(%greet_db,	%sql)

				if	(!%request)	{

						echo	4	-a	Error:	%sqlite_errstr

						return

				}

				;	List	the	greets

				echo	-a	-

				echo	-a	Total	Greets	Found:	$sqlite_num_rows(%request)

				echo	-a	-

				;	For	each	row	display	the	nick	and	greet

				while	($sqlite_fetch_row(%request,	row))	{

						echo	-a	$hget(row,	nick)	-	$hget(row,	greet)

				}

				echo	-a	-

				;	Free	the	result

				sqlite_free	%request

		}

		else	{

				;	Find	greets

				var	%greet	=	$2-

				if	(!%greet)	{

						echo	4	-a	Error:	Invalid	arguments.

						return

				}

				;	We	want	to	search	for	text	even	if	it's	in	middle	of	the	quote

				%greet	=	$+(*,%greet,*)

				;	Replace	wildcard	*	with	%	and	escape	greet

				var	%safe_greet	=	$replace($sqlite_escape_string(%greet),*,%,?,_)

				;	Find	text	from	greets

				var	%sql	=	SELECT	*	FROM	greets	WHERE	greet	LIKE	'	$+	%safe_greet	$+

				var	%request	=	$sqlite_query(%greet_db,	%sql)

				if	(!%request)	{

						echo	4	-a	Error:	%sqlite_errstr

						return

				}

				;	List	the	greets

				echo	-a	-

				echo	-a	Total	Greets	Found:	$sqlite_num_rows(%request)

				echo	-a	-

				;	For	each	row	display	the	nick	and	greet

				while	($sqlite_fetch_row(%request,	row))	{

						echo	-a	$hget(row,	nick)	-	$hget(row,	greet)

				}

				echo	-a	-

				;	Free	the	result

				sqlite_free	%request

		}

}

Version	History
1.3.0	-	18th	August	2009

Starting	from	this	version	mIRC	SQLite	will	open	databases	and	files	from
the	directory	specified	by	$mircdir	by	default	(earlier	it	used	the	directory
where	$mircexe	was	in).	Due	to	this	change	in	mIRC	installations	where
$mircexe	is	not	in	$mircdir,	databases	needs	to	be	moved	to	$mircdir	if	the
scripts	open	databases	by	using	relative	paths.	The	reason	for	this	change
was	that	the	DLL	wasn't	consistent	with	mIRC's	built-in	aliases	and
identifiers,	because	they	used	different	directory	than	mIRC	SQLite.
Updated	SQLite	to	version	3.6.17.	Upgrading	is	recommended.
Updated	PCRE	to	version	7.9.
Added	/sqlite_bind_null.
Added	$sqlite_fetch_num.
Added	$sqlite_fetch_assoc.
Added	$sqlite_fetch_all.
Added	$sqlite_safe_encode.
Added	$sqlite_safe_decode.
Fixed	$sqlite_fetch_bound	fetching	one	byte	too	little	when	fetching	non-
binary	data	from	an	unbuffered	query	result	into	a	binary	variable.
Fixed	$sqlite_fetch_bound	not	returning	$null	when	there's	an	error.
Fixed	$sqlite_fetch_bound	not	returning	0	when	there's	no	more	rows	to
fetch.
Fixed	$sqlite_bind_field	not	returning	1	on	success.
Fixed	problems	with	passing	binary	data	if	there	was	a	space	in	the
temporary	path	used	by	Windows.
Fixed	"*	/bread:	invalid	parameters"	if	trying	to	fetch	binary	data	that	is
empty.
Changed	$sqlite_fetch_single	and	$sqlite_fetch_field	return	maximum
string	length	from	900	bytes	to	4096	bytes	for	mIRC	versions	6.32+.

1.2.1	-	1st	March	2009
Updated	SQLite	to	version	3.6.11.	Upgrading	is	recommended.
Fixed	$sqlite_prepare	failing	to	prepare	any	statements.	This	critical	bug
was	introduced	in	1.2.0	(thanks	to	Sprak	for	reporting	it).
Changed	SQLite	to	be	compiled	with
SQLITE_ENABLE_UPDATE_DELETE_LIMIT	flag,	which	allows	user	to
use	ORDER	BY	and	LIMIT	clause	on	UPDATE	and	DELETE	statements.
This	was	already	changed	in	1.2.0,	but	there	was	no	note	for	it	in	the	change

log.

1.2.0	-	22nd	December	2008
Due	to	the	few	major	additions,	changes	and	bug	fixes	in	this	version,	this
version	will	be	called	1.2.0.	Upgrading	is	strongly	recommended.
Added	$sqlite_exec_file	for	executing	a	file	as	SQL.
Added	a	.file	property	to	$sqlite_exec	for	executing	a	file	as	SQL.
Added	a	.file	property	to	$sqlite_query	for	executing	a	file	as	SQL.
Added	a	.file	property	to	$sqlite_unbuffered_query	for	executing	a	file	as
SQL.
Added	a	.file	property	to	$sqlite_prepare	for	executing	a	file	as	SQL.
Added	a	feature	to	bind	parameters	for	non-prepared	statements	using
$sqlite_exec,	$sqlite_query	and	$sqlite_unbuffered_query.	This	will	make
writing	cleaner	queries	much	easier.	See	Prepared	Statements	page	for
example.
Updated	SQLite	to	version	3.6.7.	This	version	adds	new	functionality	and
fixes	a	lot	of	important	bugs	from	the	previous	SQLite	version	the	library
used,	upgrading	is	strongly	recommended!
Updated	PCRE	to	version	7.8.
Fixed	$sqlite_open	when	opening	a	database	from	an	existing	file.	It	now
creates	triggers,	views,	indices	and	sequence	values	correctly.
Fixed	a	bug	with	parameter	binding	for	/sqlite_exec	and
$sqlite_unbuffered_query.
Fixed	a	critical	bug	with	the	REGEXP	operator	implementation	(thanks	to
Sir-Loopy	for	reporting	it).
Fixed	a	bug	with	the	autocommit	feature.
Changed	$sqlite_write_to_file.	It	now	uses	a	custom	written	function	which
is	more	portable	than	the	previous	solution.

1.1.2	-	22nd	April	2008
Updated	SQLite	to	version	3.5.8.
Fixed	a	serious	bug	that	caused	/sqlite_free	to	stop	working	correctly.	This
bug	was	introduced	in	1.1.0,	upgrading	is	strongly	recommended.

1.1.1	-	5th	March	2008
Added	/sqlite_help.
Added	/sqlite_autocommit.
Updated	$sqlite_query,	/sqlite_exec	and	$sqlite_unbuffered_query	to
support	binding	values	to	prepared	statements.
Updated	SQLite	to	version	3.5.6.

Updated	PCRE	to	version	7.6.
Fixed	a	serious	bug	that	caused	/sqlite_rollback	to	commit	instead	of
rollback.

1.1.0	-	13th	January	2008
Due	to	the	major	additions,	changes	and	bug	fixes	in	this	version,	this
version	will	be	called	1.1.0.	Upgrading	is	strongly	recommended.
Added	support	for	prepared	queries	and	binding	parameters.	For
information	about	various	binding	styles	that	are	supported	by	mSQLite,
see	Prepared	Statements.
Added	$sqlite_unbuffered_query.
Added	$sqlite_prepare.
Added	$sqlite_bind_field	and	its	alias	$sqlite_bind_column.
Added	$sqlite_bind_param.
Added	$sqlite_bind_value.
Added	$sqlite_clear_bindings.
Added	$sqlite_fetch_bound.
Added	$sqlite_current_bound.
Added	$sqlite_is_valid_statement.
Added	$sqlite_begin.
Added	$sqlite_commit.
Added	$sqlite_rollback.
Added	$sqlite_finalize.
Updated	$sqlite_exec	and	$sqlite_query	to	be	able	to	execute	prepared
statements.
Updated	$sqlite_fetch_row	to	set	$SQLITE_NOMOREROWS	as	an	error
code	when	there	are	no	more	rows.
Updated	$sqlite_open	and	$sqlite_open_memory	to	also	copy	triggers	and
views	when	copying	database	from	another	file.
Updated	SQLite	to	version	3.5.4.	There	are	a	lot	of	important	bug	fixes
inbetween	this	version	and	3.4.1.	Upgrading	is	strongly	recommended.
Updated	PCRE	to	verion	7.4.
Updated	mSQLite	to	enable	the	FTS3	module	in	core	by	default.
Fixed	a	long	standing	bug	in	$sqlite_query	not	returning	0	when	the	query
is	a	type	of	query	that	never	returns	rows	(INSERT/UPDATE/DELETE).
Fixed	a	bug	where	user	defined	functions	that	run	nested	queries	removed
temporary	file	created	by	TMPARG()	prematurely.
Removed	FTS1	and	FTS2	modules	from	the	core	to	reduce	size	since
they're	obsolete.	It's	recommended	to	update	your	existing	code	to	use

FTS3	instead.	You	can	still	use	the	older	versions	by	compiling	and	loading
the	modules	by	yourself.

1.0.15	-	30th	July	2007
Fixed	a	critical	bug	that	caused	mIRC	to	crash	upon	loading	a	database
when	FTS2	module	was	enabled.	Upgrading	is	strongly	recommended.

1.0.14	-	30th	July	2007
Updated	SQLite	to	version	3.4.1.	This	release	fixes	a	bug	in	VACUUM	that
can	lead	to	database	corruption.	The	bug	was	introduced	in	version	3.3.14.
Upgrading	is	recommended	for	all	users.
Updated	PCRE	to	version	7.2.
Updated	$sqlite_create_aggregate	to	have	distinct	properties	for	step	and
finalize	alias.	This	allows	users	to	create	custom	aggregates	with	only	one
mIRC	alias	by	checking	the	$prop	identifier's	value.	See	User	Defined
Aggregates	for	details	and	example.
Fixed	a	lot	of	old	information	on	documentation	and	added	some	new
information	on	how-to	pages	for	new	users.

1.0.13	-	18th	June	2007
Updated	SQLite	to	version	3.4.0.	Fixes	two	seperate	bugs	that	can	cause	a
database	corruption	and	adds	explicit	limits	on	the	sizes	and	quantities	of
things	SQLite	will	handle.
Updated	configuration	file	to	automatically	set	temporary	storage	to
memory	instead	of	file.	Before	this	was	done	by	modifying	the	SQLite
library	source	code,	which	meant	that	the	corresponding	edit	had	to	be	done
for	every	version	which	is	easy	to	forget.	This	ensures	that	temporary
storage	will	be	memory	for	every	version	unless	you	change	it	yourself.
Updated	the	mIRC	script	to	use	an	alias	for	the	DLL	path	so	people	who
wish	to	change	where	the	DLL	resides	can	do	so	easily	by	editing	the
corresponding	alias.

1.0.12	-	27th	April	2007
Updated	SQLite	to	version	3.3.17.	Performance	improvements	added	in
3.3.14	but	mistakenly	turned	off	in	3.3.15	have	been	reinstated.	A	bug	has
been	fixed	that	prevented	VACUUM	from	running	if	a	NULL	value	was	in
a	UNIQUE	column.	This	version	fixes	a	bug	in	the	forwards-compatibility
logic	of	SQLite	that	was	causing	a	database	to	become	unreadable	when	it
should	have	been	read-only.
Updated	PCRE	to	version	7.1.

http://www.sqlite.org/limits.html

1.0.11	-	15th	April	2007
Updated	SQLite	to	version	3.3.15.	An	annoying	bug	introduced	in	3.3.14
has	been	fixed.	There	are	also	many	enhancements	to	the	test	suite.

1.0.10	-	8th	April	2007
Fixed	a	bug	in	custom	functions	argument	encoder.
Updated	SQLite	to	version	3.3.14.	This	version	focuses	on	performance
improvements,	you	can	see	performance	improvements	up	to	35%	or	more
compared	to	the	previois	version.	This	version	also	adds	support	for
exclusive	access	mode.
Updated	mSQLite	to	enable	the	FTS2	(new	version	of	the	Full-text	Search)
module	in	the	core	by	default.

1.0.9	-	15th	February	2007
Updated	SQLite	to	version	3.3.13.	This	version	fixes	a	subtle	bug	in	the
ORDER	BY	optimizer	that	can	occur	when	using	joins.	There	are	also	a
few	minor	enhancements.	Upgrading	is	recommended.

1.0.8	-	30th	January	2007
Fixed	$SQLITE_NOTMEMORYDB	returning	wrong	value.
Fixed	$sqlite_fetch_field	outputting	not	intended	debug	information	on
certain	errors.
Updated	the	library	to	automatically	find	unique	identifier	for	mSQLite	if
user	doesn't	specify	one.	You're	no	longer	prompted	to	input	an	unique	id
on	script	load,	but	you	can	still	force	a	certain	id	to	be	used	by	specifying	it
in	msqlite.ini.
Updated	SQLite	to	version	3.3.12.	This	update	fixes	several	bugs	that	were
introduced	in	3.3.10,	upgrading	is	recommended.

1.0.7	-	14th	January	2007
Fixed	some	minor	memory	leaks	in	$sqlite_query	and	$sqlite_exec	when
queries	failed.
Updated	SQLite	to	version	3.3.10.	This	update	fixes	several	bugs	that	were
introduced	in	3.3.9,	upgrading	is	recommended.

1.0.6	-	6th	January	2007
Updated	SQLite	to	version	3.3.9.	This	update	contains	important	changes
and	bug	fixes,	upgrading	is	recommended.
Updated	PCRE	to	version	7.0.

http://www.sqlite.org/pragma.html#pragma_locking_mode
http://www.sqlite.org/cvstrac/wiki?p=FtsTwo
http://www.sqlite.org/cvstrac/wiki?p=FullTextIndex

1.0.5	-	4th	December	2006
Added	$sqlite_set_authorizer.
Fixed	script	failed	to	automatically	unload	when	tried	to	load	on	older
mIRC	and	script	filename	had	spaces.
Fixed	various	typos	and	misinformation	in	documentation.

1.0.4	-	3rd	November	2006
Fixed	$sqlite_open	not	supporting	files	or	directories	with	spaces	on	them.
Fixed	mSQLite	temporary	tables	storage	using	files	instead	of	memory.
This	was	misconfigured	in	version	1.0.3.
Updated	$sqlite_fetch_field	and	$sqlite_result	to	use	case-insensitive
matching	when	using	field	names.

1.0.3	-	11th	October	2006
Added	$sqlite_result.
Updated	SQLite	to	version	3.3.8,	which	adds	support	for	full-text	search.
See	this	article	for	details.

1.0.2	-	5th	September	2006
Added	$sqlite_open_memory.
Added	$sqlite_write_to_file.
Added	$sqlite_fetch_field.
Added	$sqlite_is_valid_db.
Added	$sqlite_is_valid_result.
Added	$sqlite_is_memory_db.
Added	/sqlite_reload.
Added	possibility	of	opening	transient	databases	by	using	empty	file	name
for	$sqlite_open.
Added	possibility	of	opening	memory	databases	by	using	:memory:	as	file
name	for	$sqlite_open.
Added	new	configuration	options	for	loading	extensions	and	running
pragmas	by	default.	See	Installing	and	Configuring	mSQLite	for	details.
Fixed	a	bug	opening	msqlite.ini	from	mIRC	dir,	instead	of	the	script	dir.
Fixed	a	bug	in	the	ini	parser,	where	it	did	not	correctly	remove	enclosing
quotes	around	value.
Fixed	$sqlite_rewind	not	working.
Fixed	various	typos	and	mistakes	in	documentation.
Updated	to	store	temporary	tables	on	memory	instead	of	temp	files	by
default.	This	is	much	more	efficient.

http://www.sqlite.org/cvstrac/wiki?p=FtsOne

Updated	$sqlite_fetch_single	to	return	size	of	binary	variable,	instead	of	1,
when	binvar	is	specified.
Updated	$sqlite_load_extension	to	use	native	SQLite	API	instead	of	query
for	improved	efficiency.	You	can	still	use	load_extension	in	queries.

1.0.1	-	23rd	August	2006
Added	$sqlite_field_metadata.
Added	$sqlite_load_extension.
Fixed	$sqlite_open	not	setting	the	busy	timeout	to	the	default	value
specified	in	msqlite.ini.
Updated	SQLite	to	version	3.3.7.
Updated	PCRE	to	version	6.7.
Updated	to	allow	queries	to	load	dynamic	extensions;	Starting	from	version
3.6.7	SQLite	allows	users	to	dynamically	load	extensions.	Note.	This
feature	is	still	beta.

1.0.0	-	6th	August	2006
Initial	release.

http://www.sqlite.org/cvstrac/wiki?p=LoadableExtensions

Frequently	Asked	Questions
This	FAQ	also	contains	a	number	of	technical	questions	and	answers	that	might
not	interest	people	who	don't	develop	mIRC	libraries	themselves.	This	is	why	I'll
try	to	arrange	the	FAQ	so	that	technical	questions	come	after	more	general
questions.	If	your	question	is	not	answered	here	or	in	the	Official	SQLite	FAQ,
feel	free	to	contact	me	with	your	question,	I	also	gladly	answer	technical
questions.
IMPORTANT.	When	you	send	me	e-mail	make	sure	to	include	the	word
"mIRC"	or	"SQLite"	(without	quotes)	in	the	subject,	otherwise	my	mail	filter
won't	catch	it.
Q:	I	don't	know	SQL.	Where	can	I	learn	it?
A:	There	a	bunch	of	tutorials	and	documentation	for	SQL	and	SQLite	on	the
Internet.	Just	use	your	favorite	search	engine	and	you'll	know	SQL	in	no	time!
The	SQLite	docs	for	SQL	can	be	found	here:	http://www.sqlite.org/lang.html
Q:	Should	I	use	single	or	double	quotes	for	string	literals?
A:	Single	quotes.	Double	quotes	are	a	dangerous	thing	in	SQLite,	because	if	the
quoted	string	is	an	identifier,	it	will	be	treated	as	an	identifier,	otherwise	as	a
string	literal.	This	means	that	SQLite	might	interpret	a	string	literal	as	an
identifier	when	you	mean	to	use	it	as	a	string	literal.	Not	only	that,	but	if	you
want	to	use	double	quotes	to	denote	an	identifier,	and	the	identifier	doesn't	exist
it	will	be	automatically	treated	as	a	string	literal.	This	means	that	SQLite	might
not	report	an	error	if	you,	for	example,	make	a	typo	in	your	query.	It's	best	to
avoid	double	quotes	completely.
Q:	How	do	I	tell	SQLite	that	something	is	an	identifier,	such	as	a	table	or	a
column	name?
A:	You	can	usually	leave	it	unquoted.	If	however	the	identifier	is	one	of	the
reserved	keywords	that	must	be	quoted	to	be	used,	use	either	square	brackets	or
backticks.	The	list	of	keywords	that	must	be	quoted	in	order	to	be	used	as	an
identifier	can	be	seen	here:	http://www.sqlite.org/lang_keywords.html.
Q:	How	can	I	make	LIKE	case	sensitive?	I	tried	'a'	LIKE	BINARY	'A'	but	it
doesn't	work.
A:	You	can	make	LIKE	case	sensitive	with	the	case_sensitive_like	pragma.	You
can	set	it	on	with	the	following	query:	PRAGMA	case_sensitive_like=ON
Another	option	would	be	to	use	the	GLOB	function	instead,	which	is	always	case
sensitive.	Please	note	that	GLOB	uses	the	Unix	file	globbing	syntax	for	its
wildcards,	that	is,	it	uses	*	instead	of	%	and	?	instead	of	_

http://www.sqlite.org/faq.html
http://www.sqlite.org/lang.html
http://www.sqlite.org/lang_keywords.html

Q:	How	can	I	make	REGEXP	case	insensitive?
A:	Use	the	feature	to	change	matching	options	on	fly.	To	make	it	use	case
insensitive	matching,	use	(?i),	example:	'a'	REGEXP	'(?i)A'
You	can	reset	the	matching	to	act	in	a	case	sensitive	manner	by	doing	(?-i)
Q:	Why	do	the	row	indexes	start	from	1	and	not	0?
A:	The	reason	is	consistency.	I	wanted	this	library	to	be	as	consistent	with	mIRC
as	possible.	And	because	in	mIRC	pretty	much	everything	starts	from	1	instead
of	0	when	it	comes	to	indexing,	I	decided	to	do	the	same	for	mSQLite.
Q:	Is	unicode	supported?
A:	Yes.	mSQLite	uses	UTF-8	encoding	for	a	lot	of	things,	such	as	for	user
defined	function	names	or	regular	expressions.	You	can	still	insert	text	that	isn't
encoded	in	UTF-8	to	SQLite	databases.	When	using	REGEXP	to	do	a	regular
expression	match,	mIRC	SQLite	will	first	check	the	UTF-8	validity	of	the
pattern	and	the	subject.	If	they	are	valid,	they	are	treated	as	unicode,	otherwise
they	are	not.
Q:	I	want	to	take	advantage	of	unicode	in	regular	expressions,	how	do	I
ensure	that	my	text	is	valid	UTF-8?
A:	mIRC	has	a	few	useful	identifiers	for	dealing	with	UTF-8.	Namely	you	can
use	$utfencode	and	$utfdecode	to	encode	and	decode	text	respectively.	$isutf	can
be	used	to	check	for	UTF-8	validity	of	text,	it	returns	0	if	text	isn't	valid	UTF-8,
1	if	it	is	valid	UTF-8	and	only	consists	regular	ASCII	characters	or	2	if	it	is	valid
UTF-8	and	consists	multibyte	characters.
Q:	If	I	open	a	file	using	relative	path	instead	of	absolute	path,	is	the	current
directory	mIRC	directory	or	the	script	directory?
A:	The	mIRC	directory.	If	you	want	to	ensure	the	database	is	opened	where	the
script	is	installed,	and	not	in	mIRC's	root	directory,	use	the	$scriptdir	alias,	that
returns	absolute	path	to	the	script	directory.
Q:	Since	every	database	is	stored	in	its	own	file,	can't	I	use	the	same
connection	to	query	data	from	more	than	one	database?
A:	You	can!	Use	the	ATTACH	DATABASE	statement	for	this.
Q:	How	can	I	get	a	list	of	tables	in	a	database?
A:	Every	SQLite	database	has	a	special	table	named	sqlite_master	that	defines
the	database	schema.	You	can	use	the	following	query	to	get	a	list	of	all	tables	in
a	database:	SELECT	name	FROM	sqlite_master	WHERE	type='table'
Q:	Are	nested	queries	allowed?
A:	If	you	mean	SQL	subqueries,	the	answer	is	yes.	If	you	mean	a	query	in	an
user	defined	function,	the	answer	is	still	yes.	However	you	need	to	be	careful	in

http://www.sqlite.org/lang_attach.html

this	case,	if	your	user	defined	function	executes	a	query	that	calls	the	same	user
defined	function,	you	might	end	up	having	an	infinite	loop.	This	can	cause	a
crash.
Q:	How	does	mSQLite	find	out	whether	the	data	passed	to	TMPRES	is	text
or	binary?
A:	If	the	passed	data	contains	NUL	(0x0)	character(s)	or	starts	with	SOH	(0x1)	it
is	considered	as	binary	data,	otherwise	text.
Q:	Your	code	is	syntax	highlighted,	did	you	do	all	of	that	manually?
A:	Hell	no.	All	of	the	syntax	highlighted	code	is	generated	automatically	with	a
mIRC	syntax	highlighter	script	by	Tye	Shavik.	The	script	is	available	here:
http://www.mirc.net/tye/mirc_script.phps.	Thanks	a	ton	Tye!
Q:	I	can	see	that	your	mIRC	code	uses	XML	docs.	Where	can	I	get	the	tool
to	generate	HTML	docs	from	the	XML	and	who	made	it?
A:	The	XML	docs	generator	is	a	tool	I	created	to	make	writing	docs	for	this
library	less	tedious.	It's	not	available	publicly	as	it's	very	unpolished,	but	I	might
release	it	some	day.
Q:	I	appreciate	your	hard	work,	but	there	already	is	a	SQLite	wrapper	DLL
for	mIRC.	Didn't	you	know	that?
A:	As	a	matter	of	fact,	I	did.	There	are	many	reasons	why	I	decided	to	make	my
own	SQLite	library	for	mIRC,	even	though	knowing	one	existed	already.	First
and	foremost,	the	SQLiteDll	wrapper	is	terribly	outdated,	mSQLite	brings	you
the	features	of	the	latest	SQLite.	Second	of	all	I	wanted	to	make	the	library	more
versatile	and	feature	rich.	Here	are	some	features	that	mSQLite	adds	to	those	of
SQLiteDll:	A	more	user	friendly	API	which	exposes	more	functionality	to	the
user,	SQL	regular	expressions	with	the	REGEXP	keyword,	handling	binary	data,
user	defined	functions,	fetching	rows	to	hash	tables	instead	of	using	an	unsafe
and	limited	seperator	mechanism	and	more.
Q:	Where	is	sqlite_unbuffered	query?
A:	As	of	version	1.1.0	unbuffered	queries	are	supported.
Q:	Why	isn't	there	a	way	to	open	a	persistent	connection	in	mSQLite,	as	you
can	do	with	sqlite_popen	in	PHP?
A:	In	mSQLite	it's	not	necessary.	In	PHP	the	advantage	of	using	a	persistent
connection	means	that	when	a	connection	is	established	to	an	already	open
database,	the	schema	data	needs	not	to	be	re-read.	mSQLite	uses	a	shared	cache
for	databases	and	schema	data	for	connections	to	the	same	database.	This	means
that	mSQLite	implements	persistent	connections	implicitly,	and	even	improves
the	PHP's	persistent	connection	mechanism	by	implementing	reference	counting;

http://www.mirc.net/tye/mirc_script.phps

In	other	words,	a	call	to	sqlite_close	on	an	open	persistent	connection	doesn't
close	the	connection	to	the	database	if	there	are	other	active	connections.
Q:	Why	are	you	required	to	have	an	unique	id	for	every	instance	of	mIRC
and	mSQLite?
A:	The	reason	for	this	is	because	mSQLite	uses	mIRC's	SendMessage	API	to
intercommunicate	with	mIRC.	mIRC	implements	intercommunication	with
SendMessage	by	using	named	mapped	files.	If	every	instance	of	mIRC	used	the
same	mapped	file,	there	could	be	problems	with	two	instances	of	mIRC	trying	to
access	the	same	mapped	file	at	same	time.	This	would	result	into	undefined
behavior.	To	prevent	such	cases,	one	would	need	to	implement	synchronization
to	the	mapped	file,	but	this	would	have	its	own	share	of	problems,	one	being
inefficiency.	While	there	are	other	ways	to	intercommunicate	with	mIRC,	such
as	using	DDE,	it	is	much	more	inefficient	and	has	its	own	share	of	limitations	of
use.	By	using	an	uniquely	named	mapped	file,	mSQLite	can	have	an	exclulsive
access	to	the	mapped	file,	which	is	the	safest	and	most	efficient	way	to
intercommunicate	with	mIRC.	This	is	also	the	reason	why	mSQLite	wasn't
released	until	now.	I	was	trying	to	find	a	decent	way	to	make	mSQLite	safe	even
when	multiple	instances	of	mIRC	are	running	or	other	scripts	require	access	to
the	mapped	file.	Then	mIRC	6.2	was	released	and	with	some	modifications	I
accomplised	the	goal	in	the	most	efficient	way	I	could've	hoped.
Q:	I	understand	why	you're	required	to	have	an	unique	id	now.	But	why
don't	you	just	generate	one	instead	of	forcing	the	user	to	give	one?
A:	As	of	version	1.0.8	this	is	exactly	what	mSQLite	does!	You	can	still	give	the
id	manually	if	you	wish	though,	by	editing	the	configuration	file.
Q:	What	implementation	of	regular	expressions	does	mSQLite	use?
A:	mSQLite	uses	PCRE	(Perl	Compatible	Regular	Expressions)	for	regular
expressions	implementation.
Q:	Can	I	have	the	source	code?
A:	I	have	no	intention	of	releasing	the	source	code	for	as	long	as	I	personally
work	on	the	project.

http://www.pcre.org/

Handling	Errors
mIRC	SQLite	has	a	simple	and	effective	way	to	do	error	handling.	Unlike	in
many	APIs,	there	is	no	function	to	query	the	database	for	the	last	error.	Instead
every	mSQLite	function	sets	two	special	variables	that	can	be	examined	to
determine	the	cause	of	an	error:
%sqlite_errno				Holds	the	error	code	of	the	latest	operation.

%sqlite_errstr			Holds	the	error	string	of	the	latest	operation.

There	is	also	one	special	function	that	can	be	used	to	get	a	string	representation
of	an	error	code,	$sqlite_error_string.
The	returned	string	isn't	necessarily	the	same	as	the	%sqlite_errstr.	Sometimes
%sqlite_errstr	contains	a	specific	error	message	when	an	error	is	returned.	For
example,	whenever	%sqlite_errno	is	set	to	$SQLITE_INVALIDARG,
%sqlite_errstr	will	contain	a	specific	error	message	of	which	argument	is	invalid
and	why.	Similiarly	when	opening	a	database	or	executing	a	query	fails,
%sqlite_errstr	will	contain	the	specific	error	message,	while	%sqlite_errno
contains	the	type	of	the	error.

There	are	two	ways	to	determine	if	there	was	an	error	in	a	mSQLite	command	or
identifier.	The	first	way	is	to	check	the	return	value	of	the	identifier,	which	is
always	$null	in	case	of	an	error.	In	case	$null	is	returned,	you	can	then	use	the
%sqlite_errno	and	%sqlite_errstr	to	determine	the	exact	cause	of	the	error.	The
other	way	to	check	for	an	error	is	to	examine	the	variables	after	the	call	to	the
function.
NOTE.	In	case	you	call	mSQLite	functions	as	commands	(eg.	/sqlite_*	instead
of	$sqlite_*),	you	can	also	use	the	$result	identifier	of	mIRC	to	see	what	was
returned.

Error	codes
Here	is	the	list	of	error	codes	that	%sqlite_errno	can	consists:
Identfier													Description																														Code

$SQLITE_OK												not	an	error																																0

$SQLITE_ERROR									SQL	logic	error	or	missing	database									1

$SQLITE_INTERNAL						an	internal	logic	error	in	SQLite											2

$SQLITE_PERM										access	permission	denied																				3

$SQLITE_ABORT									callback	requested	query	abort														4

$SQLITE_BUSY										database	is	locked																										5

$SQLITE_LOCKED								database	table	is	locked																				6

$SQLITE_NOMEM									out	of	memory																															7

$SQLITE_READONLY						attempt	to	write	a	readonly	database								8

$SQLITE_INTERRUPT					interrupted																																	9

$SQLITE_IOERR									disk	I/O	error																													10

$SQLITE_CORRUPT							database	disk	image	is	malformed											11

$SQLITE_FULL										database	or	disk	is	full																			13

$SQLITE_CANTOPEN						unable	to	open	database	file															14

$SQLITE_PROTOCOL						database	locking	protocol	failure										15

$SQLITE_SCHEMA								database	schema	has	changed																17

$SQLITE_TOOBIG								too	much	data	for	a	row																				18

$SQLITE_CONSTRAINT				constraint	failed																										19

$SQLITE_MISMATCH						datatype	mismatch																										20

$SQLITE_MISUSE								library	routine	called	out	of	sequence					21

$SQLITE_NOLFS									kernel	lacks	large	file	support												22

$SQLITE_AUTH										authorization	denied																							23

$SQLITE_FORMAT								auxiliary	database	format	error												24

$SQLITE_RANGE									bind	or	column	index	out	of	range										25

$SQLITE_NOTADB								file	is	encrypted	or	is	not	a	database					26

$SQLITE_INVALIDARG				invalid	argument																										200

$SQLITE_NOMOREROWS				no	more	rows	available																				201

$SQLITE_NOTMEMORYDB			not	a	memory	database																					202

You	should	always	use	the	identifiers	instead	of	code	values	when	comparing
error	codes.	This	is	because	the	error	codes	are	a	possible	subject	to	change	in
future.	By	using	the	identifier	you'll	ensure	compatibility	with	future	versions.

Writing	Queries
Because	of	the	lack	of	quote	delimited	strings	in	mIRC	you	need	to	write	your
queries	with	care	to	ensure	there	aren't	any	problems.	Here	I	will	include	few
guidelines	for	writing	queries	in	a	clean,	safely	manner.

Pre-assign	queries.
When	you're	executing	a	query	with	an	identifier	such	as	$sqlite_query	you
should	avoid	writing	the	queries	inside	the	identifier.	The	reason	for	this	is
because	characters	like	(,)	and	,	won't	work	properly,	for	example	mIRC
always	interprets	comma	as	argument	seperator.	To	use	comma	properly
inside	the	identifier,	you'd	need	to	escape	it	with	$chr(44).	This	produces
messy	and	sometimes	even	unreadable	queries.
There's	a	simple	solution	for	this,	just	pre-assign	the	query	to	a	variable,
and	then	pass	the	variable	as	the	parameter	to	the	identifier.	You	can	either
preassign	with	/set	or	/var,	sometimes	there	might	be	problems	with	/var	as
it	allows	assignment	of	multiple	local	variables	at	same	time,	thus	if	mIRC
sees	a	comma	followed	by	a	variable,	it	thinks	you're	declaring	another
variable.
The	following	code	should	clarify	this:
Example	1

;	BAD!	mIRC	misinterprets	the	comma	between	col1	and	col2

;	It	is	part	of	the	query,	but	mIRC	thinks	it	seperates	args	for	$sqlite_query

var	%request	=	$sqlite_query(%db,	SELECT	col1,	col2	FROM	table)

;	GOOD!	No	misinterpration	this	time

var	%sql	=	SELECT	col1,	col2	FROM	table

var	%request	=	$sqlite_query(%db,	%sql)

Example	2

;	BAD!	mIRC	misinterprets	the	comma	followed	by	%col2

;	It	thinks	you're	declaring	a	list	of	local	variables

var	%sql	=	INSERT	INTO	table	(col1,	col2)	VALUES	(%var1	,	%var2)

;	GOOD!	Unlike	/var,	/set	only	allows	one	variable	at	time,	so	the	problem	is	fixed

set	%sql	INSERT	INTO	table	(col1,	col2)	VALUES	(%var1	,	%var2)

Keep	in	mind	that	/set	sets	a	global	variable	instead	of	local	variable.	This
should	be	fine	if	you	use	the	same	variable	name	(eg.	%sql)	everywhere,	so
your	global	variable	list	won't	be	polluted.	You	can	also	use	/set	-l	to	set	a
single	local	variable,	without	the	danger	of	mIRC	misinterpreting	commas
(thanks	for	the	tip	Chad!)

NOTE.	When	queries	are	executed	as	a	command	with	/sqlite_exec,	it	isn't
required	to	pre-assign	the	query,	as	none	of	the	above	problems	are	present.

Use	spaces	and	pre-quoting.
Unlike	most	languages	mIRC	has	no	limitations	for	what	characters,	except
for	a	space,	a	variable	name	can	support.	This	means	that	whenever	you
write	queries	you	need	to	make	sure	that	variable	names	are	detached	from
characters	that	are	part	of	the	SQL	query,	not	the	variable	name.
For	numeric	types	this	usually	is	very	easy,	see	example:
Example	1

;	BAD!	mIRC	doesn't	treat	%var1	as	a	variable	because	the	word	doesn't	start	with	the	%

;	and	mIRC	interprets	%var2	so	that	the	closing	paranthesis	is	part	of	it,	which	is	wrong

set	%sql	INSERT	INTO	table	(col1,	col2)	VALUES	(%var1,	%var2)

;	GOOD!	Variable	names	are	now	seperated	by	spaces

set	%sql	INSERT	INTO	table	(col1,	col2)	VALUES	(%var1	,	%var2)

However,	for	string	data	this	isn't	quite	as	simple.	The	reason	is	because	if
you	do	'%var'	mIRC	doesn't	recognize	the	variable	because	the	word
doesn't	start	with	%,	but	in	the	other	hand	if	you	do	'	%var	'	the	spaces	will
be	includes	in	the	string.	You	either	need	to	connect	the	quotes	to	the
variable	with	$+	or	prequote	the	data	with	$sqlite_qt,	as	following:
Example	2

;	BAD!	mIRC	doesn't	treat	%str1	as	a	variable	because	the	word	doesn't	start	with	the	%

;	For	col2	the	spaces	will	be	included	in	the	string,	which	isn't	wanted	either

set	%sql	INSERT	INTO	table	(col1,	col2)	VALUES	('%str1',	'	%str2	')

;	GOOD!	Now	col1	and	col2	both	are	quoted	correctly

set	%sql	INSERT	INTO	table	(col1,	col2)	VALUES	('	$+	%str1	$+	',	$+

;	GOOD!	Prequoting	the	strings	will	fix	the	problem	too

var	%str1	=	$sqlite_qt(%str1),	%str2	=	$sqlite_qt(%str2)

set	%sql	INSERT	INTO	table	(col1,	col2)	VALUES	(%str1	,	%str2)

Escape	unsafe	data.
Whenever	dealing	with	string	data	that	might	be	unsafe	it	should	be	escaped
properly	before	using	it	in	a	query.	Unsafe	string	is	a	string	that	might
contain	a	string	delimiter	(eg.	a	single	quote)	in	it.	The	reason	why	it's
unsafe	is	because	when	a	single	quote	is	seen	in	a	wrong	place,	SQLite	will
misinterpret	where	the	data	ends,	and	thus	start	executing	the	query	from

wrong	offset.	This	is	especially	dangerous	with	user	input,	as	it	allows	SQL
Injection.	To	prevent	this	scenario,	always	use	$sqlite_escape_string	on	a
potentially	unsafe	string.
Example	of	escaping	user	input	proeprly:
Code

;	BAD!	Allows	the	user	to	input	unescaped	single	quote,	will	break	the	query	and	allow	injection

;	Example	of	SQL	injection:	!login	'	OR	user	=	'admin

;	Will	generate:	SELECT	*	FROM	users	WHERE	user	=	'nick'	AND	pass	=	''	OR	user	=	'admin'

on	*:TEXT:!login	*:?:{

		var	%user	=	$sqlite_qt($nick),	%pass	=	$sqlite_qt($2-)

		set	%sql	SELECT	*	FROM	users	WHERE	user	=	%user	AND	pass	=	%pass

		;	...

}

;	GOOD!	By	escaping	the	password,	SQL	injection	is	no	longer	possible.

;	Will	generate:	SELECT	*	FROM	users	WHERE	user	=	'nick'	AND	pass	=	'''	OR	user	=	''admin'

;	In	SQLite	single	quote	is	escaped	by	doubling	it	with	another	single	quote

on	*:TEXT:!login	*:?:{

		var	%user	=	$sqlite_qt($nick),	%pass	=	$sqlite_qt($sqlite_escape_string

		set	%sql	SELECT	*	FROM	users	WHERE	user	=	%user	AND	pass	=	%pass

		;	...

}

Write	long	queries	on	multiple	lines.
mIRC	allows	you	to	span	a	single	command	on	multiple	lines	with	the	$&
identifier.	This	can	become	very	handy	when	writing	long	queries	with	tons
of	fields:
Code

;	BAD!	Too	much	text	stuffed	on	single	line

sqlite_exec	%db	INSERT	INTO	table	(one,	two,	three,	four,	five)	VALUES	

;	GOOD!	Looks	nicer	on	multiple	lines

sqlite_exec	%db	$&

		INSERT	INTO	table	($&

		one,	two,	three,	four,	five	$&

)	VALUES	($&

		%one	,	%two	,	%three	,	%four	,	%five	$&

)

Escape	special	characters	when	necessary.
Even	though	the	guidelines	explained	in	previous	sections	make	writing

queries	cleaner	and	easier,	there	are	times	when	some	characters	needs	to	be
escaped	in	order	for	mIRC	not	to	parse	them.	Here's	a	common	example	of
such	case:
Code

;	BAD!	mIRC	interprets	the	closing	%'	as	a	variable,	instead	of	a	%	followed	by	a	quote

var	%sql	=	SELECT	*	FROM	games	WHERE	title	LIKE	'%	$+	%title	$+	%'

;	GOOD!	This	will	make	mIRC	interpret	%	as	a	percentage	character,	not	as	a	variable

var	%sql	=	SELECT	*	FROM	games	WHERE	title	LIKE	'%	$+	%title	$+	%	$+

Another	way	around	this	situation	is	to	pre-format	the	LIKE	clause:
Code

;	GOOD!	mIRC	won't	misinterpret	percentage	characters

;	Note	that	we	also	pre-quote	the	data	as	explained	before

var	%like	=	$sqlite_qt(%	$+	%title	$+	%)

var	%sql	=	SELECT	*	FROM	games	WHERE	title	LIKE	%like

Escape	Codes
The	following	table	shows	the	special	cases	that	needs	to	be	escaped	and	the
required	code	to	escape	them.	Some	characters	have	more	than	one	way	to
escape	them,	they	are	all	listed	below	each	other:
Chr				Escape												

,						$chr(44)

%var			%	$+	var

							$chr(37)	$+	var

$id				$!id

							$	$+	id

							$chr(36)	$+	id

[$chr(91)

]						$chr(93)

{						$chr(123)

}						$chr(125)

The	characters	[]	{	and	}	only	needs	to	be	escaped	when	seperated	by	spaces.

Handling	Binary	Data
One	of	the	nicest	features	of	mIRC	SQLite	is	its	ability	to	deal	with	binary	data
painlessly	by	interacting	with	mIRC	binary	variables.

Writing	binary	data	to	a	database
mIRC	SQLite	extends	the	SQLite	query	language	syntax	by	adding	support	for
mIRC-like	binary	variables.	This	means	that	you	can	actually	use	&bvar;	syntax
inside	queries!	mIRC	SQLite	will	then	correctly	translate	the	binary	var	to	actual
binary	data	and	use	it	in	queries.	For	example:
Code

sqlite_exec	%db	INSERT	INTO	binary_data	(key,	bytes)	VALUES	('backup',	&bvar;

sqlite_exec	%db	UPDATE	binary_data	SET	bytes	=	&bvar;	WHERE	key	=	'backup'

That's	it!	Simple	and	effective.

Reading	binary	data	from	a	database
To	read	binary	data	from	a	database	you	first	need	to	query	it:
Code

var	%request	=	$sqlite_query(%db,	SELECT	bytes	FROM	binary_data	WHERE	key	

You	have	then	two	ways	to	fetch	it:
1.	 sqlite_fetch_row

When	you	fetch	a	result	with	binary	data	$sqlite_fetch_row	will	create	a
binary	variable	on	the	specified	hash	table	for	the	binary	field.
Code

;	When	dealing	with	big	chunks	of	binary	data	you	should	always	specify	either	$SQLITE_NUM	or	$SQLITE_ASSOC

;	If	you	don't	mSQLite	needs	to	take	a	copy	of	the	same	binary	data	twice,	which	will	consume	twice	as	much	memory.

if	($sqlite_fetch_row(%request,	row,	$SQLITE_ASSOC))	{

		;	Read	the	binary	data	to	a	binary	variable,	returns	the	number	of	bytes	in	binary	variable

		var	%size	=	$hget(row,	bytes,	&bvar;)

}

2.	 sqlite_fetch_single
Fetching	binary	data	with	$sqlite_fetch_single	is	a	bit	more	simple,	since	it
only	fetches	the	first	field.	To	fetch	data	to	a	binary	variable,	just	specify
the	name	of	the	binary	variable	as	second	argument.	This	changes	the
functionality	of	sqlite_fetch_single	to	return	the	size	of	the	binary	variable
on	success,	instead	of	the	column	data.
Code

;	Returns	size	of	bvar	on	success

var	%size	=	$sqlite_fetch_single(%request,	&bvar;)

if	(%size	!=	$null)	{

		;	We	now	have	the	binary	data	in	&bvar;

}

That's	all	for	reading	binary	data	into	binary	variables.	Don't	forget	to	free	the
result	with	sqlite_free	as	big	chunks	of	binary	data	can	take	quite	a	bit	of
memory.

Binary	Data	Example
The	following	example	demonstrates	how	to	work	with	binary	data	in	mSQLite
by	copying	a	file.	Please	note	that	this	example	is	purely	for	demonstrating
purposes	and	shouldn't	be	used	to	copy	files	in	real	scripts,	as	there	are	much
more	simple	and	efficient	ways	of	doing	so.	The	code	is	throughly	commented
so	it	should	be	easy	to	follow.
Example

/*

**	mIRC	SQLite	Demonstration	Script

**											Binary	data	handling

**	--------------------------------

**	Save	as	sqlite_binary.mrc	and	do

**	/load	-rs	sqlite_binary.mrc

**

**	This	script	demonstrates	how	to

**	use	binary	variables	with	mSQLite.

**

**	Usage:

**		/copyfile	source	destination

**

**	Try	with:

**		/copyfile	mirc.exe	mirc.exe.backup

**

**	This	simply	copies	the	mIRC.exe	file.

**	Unpractical	as	there	are	better

**	ways	to	copy	a	file,	but	it	does

**	so	by	writing	the	binary	data	to

**	a	SQLite	database	first	and	then

**	querying	the	data	from	the	database.

**

**	This	example	is	only	for	demonstration

**	purposes,	so	support	for	filenames	that

**	have	spaces	in	their	path	is	not	added.

*/

alias	copyfile	{

		var	%src	=	$1,	%dst	=	$2

		if	(!%src	||	!%dst)	{

				echo	4	-a	Error:	Too	few	arguments.

				return

		}

		;	Make	sure	source	file	exists

		if	(!$isfile(%src))	{

				echo	4	-a	Error:	File	$qt(%src)	doesn't	exist.

				return

		}

		;	Get	the	size	of	the	source	file	and	dest	dir

		var	%size	=	$file(%src).size,	%dir	=	$nofile(%dst)

		if	(!%dir)	{	%dir	=	$mircdir	}

		;	Make	sure	it	exists

		if	(!$isdir(%dir))	{

				echo	4	-a	Error:	Directory	$qt(%dir)	doesn't	exist.

				return

		}

		;	Make	sure	source	and	dest	files	aren't	the	same	file

		if	(%src	==	%dst)	{

				echo	4	-a	Error:	You	can't	copy	the	file	to	the	same	file.

				return

		}

		;	All	fine,	open	files	database	and	create	table	for	files,	if	one	doesn't	exist

		var	%db	=	$sqlite_open(files.db)

		sqlite_exec	%db	CREATE	TABLE	IF	NOT	EXISTS	files	(file,	size)

		;	Start	copy

		echo	3	-a	Copying...

		;	Read	the	contents	of	the	source	file	to	a	binary	variable	and	write	it	to	database

		bread	%src	0	%size	&src;_bytes

		sqlite_exec	%db	INSERT	INTO	files	(file,	size)	VALUES	(&src;_bytes	,	

		;	Make	sure	there	wasn't	an	error

		if	(%sqlite_errno	==	$SQLITE_OK)	{

				;	No	errors

				echo	3	-a	File	written	to	database.

				;	Get	the	ID	of	the	file

				var	%file_id	=	$sqlite_last_insert_rowid(%db)

				;	Now	let's	query	the	db	for	the	file

				var	%sql	=	SELECT	file,	size	FROM	files	WHERE	ROWID	=	%file_id

				var	%request	=	$sqlite_query(%db,	%sql)

				if	(%request)	{

						;	No	errors

						echo	3	-a	File	read	from	database.

						;	Fetch	the	results

						if	($sqlite_fetch_row(%request,	row))	{

								;	Get	the	bytes	to	a	new	binary	variable,	and	make	sure	the	size	is	same	as	before

								%size	=	$hget(row,	file,	&dst;_bytes)

								if	(%size	==	$hget(row,	size))	{

										;	All	good!	Write	the	new	file.	:)

										bwrite	%dst	0	%size	&dst;_bytes

										echo	3	-a	Done!

								}

								else	{

										echo	4	-a	Error:	Size	mismatch

								}

						}

						else	{

								echo	4	-a	Error:	%sqlite_errstr

						}

						;	Free	the	query	result

						sqlite_free	%request

				}

				else	{

						echo	4	-a	Error:	%sqlite_errstr

				}

		}

		else	{

				echo	4	-a	Error:	%sqlite_errstr

		}

		;	Close	db

		sqlite_close	%db

}

Prepared	Statements
As	of	version	1.1.0	mSQLite	supports	prepared	statements.	Prepared	statements,
in	simple	terms,	are	a	way	to	prepare	a	query	before	actually	executing	it,	you
can	think	of	it	as	a	compiled	SQL	template	of	a	sort.	There	are	two	major
benefits	of	using	prepared	statements:

In	case	you	want	to	execute	the	same	query,	only	with	different	parameters,
more	than	one	time	the	query	only	needs	to	be	prepared	(or	compiled)	once.
This	can	offer	a	performance	boost	for	complex	queries.
They're	safe	from	SQL	injections	if	parameter	binding	is	used.	In	other
words,	when	parameters	are	bound	with	the	binding	API	that	mSQLite
supports,	no	data	needs	to	be	quoted,	SQLite	will	handle	it	for	you.

It's	important	to	remember	that	prepared	statements	aren't	always	necessarily
faster	than	unprepared	statements,	even	when	you	execute	a	large	set	of	same
query.	The	complexity	of	the	query	is	the	major	factor.

Getting	started
To	prepare	a	query	you	need	to	use	$sqlite_prepare.	It	works	very	much	like
$sqlite_query,	except	that	instead	of	returning	a	result	set	produced	by	the	query,
it	returns	a	prepared	statement.
Example	of	preparing	a	statement	and	then	executing	it:
Code

;	Assumes	that	%db	is	already	open,	and	table	contacts	exists	in	the	database

var	%sql	=	INSERT	INTO	contacts	(name,	email)	VALUES	('Joe',	'joe@gmail.com'

var	%stmt	=	$sqlite_prepare(%db,	%sql)

sqlite_exec	%stmt

sqlite_free	%stmt

Of	course	using	prepared	statements	like	this	isn't	useful.	Their	usefulness	comes
from	being	able	to	bind	parameters	to	the	SQL	query.	Binding	parameters	is	a
way	to	substitute	certain	parts	of	the	query,	with	values	specified	with	the
binding	API.	Here's	a	the	previous	example	but	with	more	meaningful	query:
Code

;	Assumes	that	%db	is	already	open,	and	table	contacts	exists	in	the	database

var	%sql	=	INSERT	INTO	contacts	(name,	email)	VALUES	(?,	?)

var	%stmt	=	$sqlite_prepare(%db,	%sql)

sqlite_bind_value	%stmt	1	Joe

sqlite_bind_value	%stmt	2	joe@gmail.com

sqlite_exec	%stmt

sqlite_free	%stmt

The	values	specified	with	question	marks	in	the	query	are	later	substituted	with
Joe	and	joe@gmail.com	respectively.

Binding	parameters
This	section	is	to	show	what	different	types	of	binding	parameters	mSQLite
support.	Each	type	of	binding	falls	into	one	of	the	two	categories:

Automatic	input	binding
Even	before	version	1.1.0	mSQLite	supported	this	type	in	form	of	binary
variables.	In	1.1.0	you	can	also	bind	regular	variables	with	similiar	syntax,
using	@	to	prefix	the	variable	name.	Here's	an	example	that	shows	how	to
bind	a	regular	variable	and	a	binary	variable:
Code

set	%image_name	mIRC	Logo

bread	mIRC.png	0	$file(mIRC.png).size	ℑ_bytes
var	%sql	=	INSERT	INTO	images	(name,	bytes)	VALUES	(@image_name,	ℑ_bytes
sqlite_exec	%db	%sql

Note	that	variables	bound	with	automatic	binding	must	be	global	variables
and	can	only	contain	letters,	numbers	and	underscores.
Manual	input	binding
Manual	input	binding	always	requires	a	prepared	statement.	There	are	three
ways	to	bind	parameters:	sqlite_bind_param,	sqlite_bind_value	and	binding
them	as	extra	arguments	for	sqlite_query,	sqlite_exec	and
sqlite_unbuffered_query.	The	first	way	is	similiar	to	automatic	binding	of
variables,	with	the	exception	being	that	you	can	use	more	complex	naming
for	the	variables	and	you	can	specify	the	type	of	the	variable	if	needed.
Example:
Code

;	Contact	info

set	%contact.name	Joe

set	%contact.tel	123456789

;	Insert	contact

var	%sql	=	INSERT	INTO	contacts	(name,	tel)	VALUES	(:name,	:tel)

var	%stmt	=	$sqlite_prepare(%db,	%sql)

sqlite_bind_param	%stmt	:name	contact.name

sqlite_bind_param	%stmt	:tel	contact.tel	$SQLITE_TEXT

sqlite_exec	%stmt

sqlite_free	%stmt

With	manual	binding	of	variables,	you	can	use	variable	names	such	as

%contact.name,	that	contain	special	characters	like	period.	With	automatic
binding	you	can't	do	this.	Another	demonstrated	feature	that	isn't	possible
with	automatic	binding	is	specifying	the	type	for	the	bound	variable.	In	this
particular	case	we're	telling	mSQLite	that	the	telephone	number	should
always	be	considered	a	text.	If	we	didn't	do	this,	mSQLite	would	consider	it
as	a	number	since	it	contains	only	numbers.

Both	types	of	binding,	sqlite_bind_param	and	sqlite_bind_value,	support
both	named	parameters	and	numeric	parameters.	Numeric	parameters	are
specified	with	a	question	mark	in	the	query,	named	parameters	are	prefixed
with	a	colon.	Here's	a	couple	of	examples	to	demonstrate	them:
Code

;	Numeric	parameters

var	%sql	=	INSERT	INTO	contacts	(name,	tel)	VALUES	(?,	?)

;	Named	parameters

var	%sql	=	INSERT	INTO	contacts	(name,	tel)	VALUES	(:name,	:tel)

;	Numeric	and	named	parameters

var	%sql	=	INSERT	INTO	contacts	(name,	tel)	VALUES	(:name,	?2)

The	third	way	of	binding	parameters	to	prepared	statements	is	most	likely
the	most	intuitive	one	if	you	only	need	numeric	parameters	and	don't	want
to	re-use	global	variables	as	bound	parameters	nor	call	sqlite_bind_value	a
bunch	of	times	each	time	you	re-execute	the	statement.	An	example:
Code

;	Insert	contact

var	%sql	=	INSERT	INTO	contacts	(name,	tel)	VALUES	(?,	?)

var	%stmt	=	$sqlite_prepare(%db,	%sql)

noop	$sqlite_exec(%stmt,	Joe	Gibson,	123456789)

sqlite_free	%stmt

Note	that	we	use	/noop	here	because	the	name	contains	a	space.	By	using
noop	and	calling	the	sqlite_exec	as	an	identifier	instead	of	as	a	command,
we	can	make	mIRC	tokenize	the	parameters	correctly.

As	of	version	1.2.0	you	can	bind	parameters	to	non-prepared
statements	using	the	same	intuitive	syntax	as	above.	The	only	limitation	is
that	you	must	call	the	query	functions	using	the	identifier	format	(i.e.
$sqlite_query	instead	of	/sqlite_query):

Code

;	Insert	contact

var	%sql	=	INSERT	INTO	contacts	(name,	tel)	VALUES	(?,	?)

noop	$sqlite_exec(%db,	%sql,	Joe	Gibson,	123456789)

;	Select	all	contacts	with	name	Joe	Gibson

var	%sql	=	SELECT	*	FROM	contacts	WHERE	name	=	?

var	%result	=	$sqlite_query(%db,	%sql,	Joe	Gibson)

This	is	recommended	way	of	inserting	user	data	in	queries,	as	it's	the	most
clean	and	the	most	secure	way	to	do	it,	and	prevents	the	chance	of	SQL
injections	completely.	Again,	you	can	use	/noop	if	you	just	want	to	execute
a	query,	but	don't	care	for	the	return	value.

All	unbound	parameters	will	be	substituted	with	NULL	when	a	query	is
executed.
Output	binding
The	last	type	of	binding	is	output	binding.	With	output	binding,	you	can
fetch	data	from	a	result	set	directly	into	variables	using	sqlite_fetch_bound
or	sqlite_current_bound.	To	bind	an	output	variable	you	use
sqlite_bind_field	or	its	alias	sqlite_bind_column.	You	can	bind	column
names	using	its	numeric	index,	or	its	name.	This	is	very	straightforward,	so
here's	an	example	to	demonstrate	the	usage:
Code

var	%sql	=	SELECT	name,	email,	tel	FROM	contacts

var	%result	=	$sqlite_query(%db,	%sql)

;	Bind	using	column	index

sqlite_bind_field	%result	1	contact.name

sqlite_bind_field	%result	3	contact.tel

;	Bind	using	column	name

sqlite_bind_field	%result	email	contact.email

;	Fetch	the	contacts

while	($sqlite_fetch_bound(%result))	{

		echo	-a	Name:	%contact.name	-	Email:	%contact.email	-	Tel:	%contact.tel

}

You	can	also	bind	columns	to	binary	variables,	by	prefixing	the	variable
name	with	an	ampersand	as	usual	with	binary	variables.	If	you	bind	column
with	a	binary	data	to	a	regular	variable,	the	binary	data	will	be	converted
into	text	and	assigned	to	the	variable.	Similiarly	if	you	bind	a	non-binary
data	to	a	binary	variable,	the	binary	variable	will	contain	ASCII
representation	of	the	data.

Important	guidelines
There	are	a	few	things	you	need	to	be	aware	when	binding	parameters.	Here's	a
list	of	some	things	you	should	know.

Do	not	escape	strings	yourself
SQLite	will	do	it	for	you.	In	non-prepared	statements,	you	generally	have	to
use	$sqlite_escape_string	to	escape	special	characters	in	strings	to	prevent
SQL	injection.	With	prepared	statements	there's	no	need	for	this.
You	can	not	bind	values	inside	text
Parameter	binding	has	no	effect	inside	strings.	For	example	you	can't	do
this:
Code

var	%sql	=	SELECT	*	FROM	contacts	WHERE	name	LIKE	'?@%'

var	%stmt	=	$sqlite_prepare(%db,	%sql)

sqlite_bind_value	%stmt	1	joe

Instead,	you	should	be	doing	this:
Code

var	%sql	=	SELECT	*	FROM	contacts	WHERE	name	LIKE	?

var	%stmt	=	$sqlite_prepare(%db,	%sql)

sqlite_bind_value	%stmt	1	joe@%

Be	extra	cautious	with	variable	names	when	using
sqlite_bind_field
Because	mSQLite	has	no	access	to	local	variables	of	aliases	that	mSQLite
is	being	used	from,	it	must	bind	variables	bound	with	sqlite_bind_field	as
global	variables.	Because	of	this,	you	must	be	very	careful	with	the	variable
names	you	use	in	order	not	to	overwrite	variables	from	other	scripts.	It's	a
good	idea	to	prefix	your	variables	in	order	to	avoid	name	conflicts.
Example:
Code

var	%sql	=	SELECT	name,	email	FROM	contacts

var	%result	=	$sqlite_query(%db,	%sql)

sqlite_bind_field	%result	name	contacts.name	;	%contacts.name

sqlite_bind_field	%result	email	contacts.email	;	%contacts.email

Use	$sqlite_bind_value	instead	of	/sqlite_bind_value	when	the
value	might	contain	spaces
You	must	use	the	identifier	form	of	sqlite_bind_value	when	the	data	that	is

being	bound	might	contain	spaces.	The	reason	is	that	the	function	contains
another	parameter	after	the	value	to	be	bound,	and	mIRC	doesn't	know	how
to	deal	with	arguments	containing	more	than	one	word	when	used	as
command.	An	example:
Code

;	Don't	do	this!

sqlite_bind_value	%stmt	1	Joe	Johnson

;	Do	this!

noop	$sqlite_bind_value(%stmt,	1,	Joe	Johnson)

User	Defined	Functions
mIRC	SQLite	allows	the	users	to	register	two	kinds	of	functions,	regular
functions	and	aggregates.	This	section	explains	the	details	of	both,	and	shows
how	to	implement	them.
NOTE.	User	defined	functions	are	not	limited	to	custom	functions.	You	can
override	the	core	functions	and	aggregates	by	registering	new	functions	with
their	names.
You	can	use	sqlite_create_function	to	register	a	mIRC	alias	as	a	SQL	function.
Please	look	at	the	reference	to	see	an	explanation	of	the	parameters.
Example	of	an	user	defined	function:
Code

;	Returns	a	specified	amount	of	characters	from	left	side	of	a	md5	generated	string

alias	md5_left	{

		var	%str	=	$1,	%len	=	$2

		return	$left($md5(%str),	%len)

}

You	would	then	register	it	with	mSQLite:
Code

sqlite_create_function	%db	md5_left	md5_left	2

After	you	have	registered	it	with	mSQLite	you	can	use	it	in	queries:
Code

;	Outputs	5ac749fb

var	%sql	=	SELECT	md5_left('some	string',	8)

var	%request	=	$sqlite_query(%db,	%sql)

if	(%request)	{

		echo	-a	$sqlite_fetch_single(%request)

}

But	what	if	you	wanted	to	make	the	length	parameter	optional?	There	are	two
ways	for	this.
Code

;	Implementing	optional	arguments	by	registering	the

;	function	twice	with	different	amount	of	arguments

alias	md5_left	{

		;	Default	length	is	8

		var	%str	=	$1,	%len	=	$iif($0	==	1,	8,	$2)

		return	$left($md5(%str),	%len)

}

;	Then	register	it	twice	with	different	amount	of	args

sqlite_create_function	%db	md5_left	md5_left	1

sqlite_create_function	%db	md5_left	md5_left	2

Or	you	can	check	the	number	of	arguments	yourself	and	signal	an	error	with
sqlite_signal_error:
Code

;	Implementing	optional	arguments	by	registering

;	the	function	with	any	amount	of	arguments

alias	md5_left	{

		;	Make	sure	there	are	only	1	or	2	arguments,	otherwise	signal	an	error

		if	($0	!isnum	1-2)	{

				return	$sqlite_signal_error(wrong	number	of	arguments	to	function	md5_left

		}

		var	%str	=	$1,	%len	=	$iif($0	==	1,	8,	$2)

		return	$left($md5(%str),	%len)

}

;	Then	register	it	with	any	number	of	arguments

sqlite_create_function	%db	md5_left	md5_left	-1

You	can	also	take	advantage	of	mIRC's	built-in	identifiers	when	registering	user
defined	functions.	For	example	you	could	implement	base_convert	as	following:
Code

;	convert_base(n,	from,	to)	calls	$base(n,	from,	to)

sqlite_create_function	%db	base_convert	base	3

Finally,	here's	an	example	of	using	custom	property	in	an	user	defined	function:
Code

;	sin_r	calls	$sin(alpha)	using	radians

sqlite_create	sin_r	sin	1

;	sin_d	calls	$sin(alpha).deg	using	degrees

sqlite_create	sin_d	sin	1	deg

Function	Example
This	a	complete	example	of	the	above	md5_left	user	defined	function.	The
example	also	adds	more	error	checking	in	the	user	defined	function	itself.
Example

/*

**	mIRC	SQLite	Demonstration	Script

**														MD5_LEFT	Function

**	--------------------------------

**	Save	as	sqlite_function.mrc	and	do

**	/load	-rs	sqlite_function.mrc

**

**	This	script	demonstrates	the	user

**	defined	functions	of	the	SQLite.

**

**	Usage:

**		/pass_gen	hash	[len]

**	Try	with:

**		/pass_gen

**		/pass_gen	s9j331almva

**		/pass_gen	+sfa9ufa?sa	8

**		/pass_gen	fafsafa35os	-1

**

**	The	/pass_gen	will	generate	a	simple

**	password	with	md5.	The	len	argument

**	is	optional,	and	if	omitted	8	is	assumed.

*/

alias	pass_gen	{

		var	%db	=	$sqlite_open(empty.db)

		if	(!%db)	{

				echo	4	-a	Error:	%sqlite_errstr

				return

		}

		var	%hash	=	$sqlite_escape_string(%hash),	%len	=	$2

		;	Register	the	function	with	1	or	2	args

		sqlite_create_function	%db	md5_left	md5_left	1

		sqlite_create_function	%db	md5_left	md5_left	2

		;	Do	query

		if	(%len	!isnum)	{

				set	%sql	SELECT	md5_left('	$+	%hash	$+	')

		}

		else	{

				set	%sql	SELECT	md5_left('	$+	%hash	$+	',	%len)

		}

		var	%request	=	$sqlite_query(%db,	%sql)

		if	(%request)	{

				var	%pass	=	$sqlite_fetch_single(%request)

				echo	-a	Generated	password:	%pass

				sqlite_free	%request

		}

		else	{

				echo	4	-a	Error:	%sqlite_errstr

		}

		sqlite_close	%db

}

;	User	defined	function

alias	md5_left	{

		;	Make	sure	that	has	isn't	NULL

		var	%str	=	$1

		if	(%str	==	$null)	{

				var	%error	=	empty	hash	in	md5_left()

				return	$sqlite_signal_error(%error)

		}

		;	See	if	len	was	specified	and	that	it's	valid

		var	%len	=	8

		if	($0	==	2)	{

				%len	=	$2

				if	(%len	!isnum	1-32)	{

						var	%error	=	invalid	pass	length	in	md5_left()

						return	$sqlite_signal_error(%error)

				}

		}

		;	Return	the	generated	pass

		return	$left($md5(%str),	%len)

}

User	Defined	Aggregates
You	can	use	sqlite_create_aggregate	to	register	a	mIRC	alias	as	a	SQL
aggregate.	Please	look	at	the	reference	to	see	an	explanation	of	the	parameters.
User	defined	aggregates	are	very	similiar	to	regular	functions,	so	only	the
differences	will	be	explained	here,	see	User	Defined	Functions	for	more
information.	The	key	difference	is	that	you	need	to	actually	register	two	mIRC
aliases	to	create	an	aggregate.	SQL	aggregates	are	used	to,	as	the	name	implies,
aggregate	data	from	rows,	thus	the	need	of	two	different	aliases:	One	that	keeps
track	of	the	aggregating,	called	the	step	function,	and	one	that	returns	the	final
result	of	aggregation	at	the	end,	called	finalizer	function.
mSQLite	passes	an	aggregation	context	to	the	step	alias.	The	step	alias	can	use
this	context	to	accumulate	the	result,	and	at	the	end	of	the	alias	it	should	return
the	new	aggregation	context.
Here's	an	example	step	alias	for	keeping	track	of	max	length	of	a	string:
Code

alias	max_len_step	{

		var	%context	=	$1,	%len	=	$len($2)

		if	(%context	!isnum	||	%len	>	%context)	{

				%context	=	%len

		}

		return	%context

}

The	%context	!isnum	check	is	important.	The	reason	for	doing	this	is	because	the
first	time	the	step	alias	is	called,	%context	is	set	to	$null.	%len	>	%context
would	always	fail	if	we	didn't	do	the	check.
After	the	aggregating	is	done,	eg.	when	all	rows	in	a	group	are	processed,
mSQLite	will	call	the	finalizer	alias.	The	finalizer	will	receive	the	aggregation
context	that	the	step	alias	used	to	aggregate	data	as	an	argument.	The	finalizer
should	then	return	whatever	it	wants	to	return	as	a	final	value	from	the	aggregate
function.	In	our	example	we	simply	return	the	max	length:
Code

alias	max_len_finalize	{

		var	%context	=	$1

		if	(%context	!isnum)	{

				%context	=	0

		}

		return	%context

}

Once	again	we	check	if	the	aggregation	context	is	number	or	not.	We	do	this
because	if	there	are	no	rows	selected	in	the	query,	the	step	alias	is	never	called,
thus	%context	can	be	$null	when	finalizer	alias	is	called.
NOTE.	As	of	version	1.0.14	you	can	specify	distinct	properties	for	step	and
finalize	aliases,	whereas	before	you	could	only	create	an	aggregate	with	same
property	for	both	aliases.	This	means	that	you	can	now	write	custom	aggregates
by	writing	only	one	alias	in	mIRC	by	checking	the	$prop	identifier's	value:
Code

;	An	example	alias	that	is	used	as	both	step	and	finalize	alias

;	You	can	use	this	to	register	the	aggregate	correspondingly:

;	/sqlite_create_aggregate	%db	max_len	max_len	max_len	1	step	finalize

alias	max_len	{

		;	Both	step	and	finalize	alias	needs	to	check	if	context	isn't	set	yet

		var	%context	=	$1

		if	(%context	!isnum)	{

				%context	=	0

		}

		;	If	$prop	is	step	we're	in	step	alias,	otherwise	in	finalize	alias

		if	($prop	==	step)	{

				var	%len	=	$2

				if	(%len	>	%context)	{

						%context	=	%len

				}

		}

		;	Again,	both	step	and	finalize	alias	should	return	the	context	at	the	end

		return	%context

}

Aggregate	Example
Here's	a	complete	example	of	implementing	the	aggregate	and	example	of	using
it:
Example

/*

**	mIRC	SQLite	Demonstration	Script

**														MAX_LEN	Aggregate

**	--------------------------------

**	Save	as	sqlite_aggregate.mrc	and	do

**	/load	-rs	sqlite_aggregate.mrc

**

**	This	script	demonstrates	the	user

**	defined	aggregates	of	the	SQLite.

**

**	Usage:

**		/find_max_len	word1	word2	word3	...	wordN

**

**	The	/find_max_len	will	find	the	maximum

**	length	of	a	word	from	the	list	of	words

**	passed	to	it.

*/

;	Our	test	alias

alias	find_max_len	{

		var	%db	=	$sqlite_open(words.db)

		if	(!%db)	{

				echo	4	-a	Error:	%sqlite_errstr

				return

		}

		;	Do	initialize	stuff

		sqlite_create_aggregate	%db	max_len	max_len_step	max_len_finalize	1

		sqlite_exec	%db	DROP	TABLE	IF	EXISTS	words

		sqlite_exec	%db	CREATE	TABLE	words	(word)

		var	%i	=	1

		while	(%i	<=	$0)	{

				var	%word	=	$sqlite_escape_string($gettok($1-,	%i,	32))

				sqlite_exec	%db	INSERT	INTO	words	(word)	VALUES	('	$+	%word	$+	')

				inc	%i

		}

		;	Find	the	longest	length

		var	%sql	=	SELECT	max_len(word)	FROM	words

		var	%request	=	$sqlite_query(%db,	%sql)

		;	Aggregate	functions	always	returns	something,

		;	so	we	don't	need	to	check	if	there	are	rows

		var	%len	=	$sqlite_fetch_single(%request)

		echo	-a	The	maximum	lenght	of	a	word	is	%len	characters.

		sqlite_free	%request

		sqlite_close	%db

}

;	Step	alias

alias	max_len_step	{

		var	%context	=	$1,	%len	=	$len($2)

		if	(%context	!isnum	||	%len	>	%context)	{

				%context	=	%len

		}

		return	%context

}

;	Finalizer	alias

alias	max_len_finalize	{

		var	%context	=	$1

		if	(%context	!isnum)	{

				%context	=	0

		}

		return	%context

}

Limitations
There	are	certain	limitations	for	functions	and	aggregates.	These	limitations
exists	in	mSQLite	because	they	exist	in	the	underlying	software	(eg.	mIRC
and/or	SQLite).
1.	 The	length	of	the	function	name	in	SQLite	can	be	up	to	255	bytes.
2.	 Max	number	of	arguments	that	is	supported	is	127.
3.	 Upon	executing	a	query,	the	user	defined	function	name	with	all	of	its

arguments	can	be	up	to	940	characters.	The	reason	for	this	is	because	mIRC
can't	handle	strings	longer	than	this.	For	most	functions	this	isn't	really	a
problem	as	940	characters	is	a	long	string.	Also	note	that	mSQLite	needs	to
encode	special	characters	of	mIRC	to	ensure	that	mIRC	will	properly
interpret	the	function,	which	can	make	the	query	take	more	characters	than
expected.

4.	 Lastly,	you	can't	pass	binary	data	to	the	functions	safely,	as	mIRC	isn't
binary	safe.

Fortunately	mSQLite	provides	you	a	way	around	3	and	4.	It	defines	two	SQL
helper	functions	that	you	can	use	to	pass	large	amounts	of	data	in	a	binary-safe
manner	to	user	defined	functions	and	back	to	SQLite:

TMPARG	([data])
Used	to	pass	large	amount	of	data	to	an	user	defined	function.	mSQLite	will
write	the	data	to	a	temporary	file	and	then	returns	the	filename	to	the	user
defined	function.	The	user	defined	function	can	then	read	and	process	the
contents	of	the	file.	The	user	defined	function	should	not	try	to	delete	the
file;	mSQLite	will	do	so	after	the	query	is	done	executing.	If	you	call	this
with	no	arguments	an	empty	temporary	file	is	created.
Example

;	process_data	is	an	user	defined	function	that	processes	bulk	of	binary	data

var	%sql	=	SELECT	process_data(TMPARG(bytes))	FROM	binary_data

var	%request	=	$sqlite_query(%db,	%sql)

TMPRES	(file)
Used	to	return	large	amount	of	data	from	an	user	defined	function.	The	user
defined	function	should	write	the	return	value	to	a	file	and	then	return	the
filename.	mSQLite	will	then	attempt	to	open	the	returned	file,	read	its
contents	and	return	them.	TMPRES	will	automatically	try	to	find	out
whether	the	data	in	the	file	is	text	or	binary.	If	you	want	to	enforce	it	as	a
certain	type	use	the	CAST	expression.	If	the	user	defined	function	creates

the	file	that	it	returns,	it	is	responsible	for	deleting	it.	You	can	use	TMPARG
in	conjuction	with	TMPRES	by	generating	an	empty	temporary	file	and
using	it	in	the	user	defined	function.
Code

;	Example	1,	using	TMPARG	to	pass	data	to	a	function	and	TMPRES	to	return	it

;	The	user	defined	function	can	simply	write	the	return	value	to	the	file	generated

;	by	TMPARG	which	was	passed	to	it	as	first	argument	and	then	return	the	same	filename

sqlite_exec	%db	UPDATE	binary_data	SET	bytes	=	TMPRES(process_data(

;	Example	2,	using	TMPARG	to	generate	an	empty	temporary	file	and	passing	to	the

;	user	defined	function,	which	write	data	to	it	and	then	return	the	same	filename

sqlite_exec	%db	UPDATE	binary_data	SET	bytes	=	TMPRES(generate_data

;	Example	3,	not	using	TMPARG	at	all,	thus	leaving	the	responsibility	to

;	delete	the	file	used	to	return	data	to	the	user	defined	function

sqlite_exec	%db	UPDATE	binary_data	SET	bytes	=	TMPRES(generate_data

sqlite_open
Opens	a	SQLite	database.

Syntax

$sqlite_open	([db	[,	from]])

Parameters
db
The	filename	of	the	database	to	open.	Optional,	see	remarks	for	details.
from
The	filename	of	the	database	to	create	memory	database	from.	Optional,	see
remarks	for	details.

Return	Value
A	positive,	numeric	connection	identifier	if	successful,	or	$null	if	there	was	an
error.

Remarks
The	db	argument	is	optional,	if	it	isn't	specified,	a	transient	database	is	opened	in
a	temporary	file.	If	specified,	and	the	file	db	doesn't	exist,	an	empty	database
will	be	created	on	that	file.

If	db	is	equal	to	the	special	keyword	:memory:	a	memory	database	is	opened
instead	of	a	file	database.	If	from	is	specified	the	memory	database	will	contain	a
copy	of	the	specified	database,	otherwise	an	empty	memory	database	is	created.
If	file	from	doesn't	exist,	an	empty	database	will	be	created	on	that	file.
from	is	only	valid	when	:memory:	is	used,	otherwise	an	error	is	raised.

If	$null	is	returned	you	can	determine	the	exact	reason	for	the	error	by	checking
the	value	of	%sqlite_errstr.
For	more	information	about	error	handling,	see	Handling	Errors

Example

;	Opens	a	database	and	displays	the	status	after.	Closes	the	db	if	it	was	opened	successfully.

var	%db	=	$sqlite_open(test.db)

if	(%db)	{

		echo	-a	Database	opened	successfully.

		sqlite_close	%db

}

else	{

		echo	-a	Error	opening	database:	%sqlite_errstr

}

See	Also
sqlite_close
sqlite_open_memory
sqlite_write_to_file

sqlite_open_memory
Opens	a	SQLite	memory	database.

Syntax

$sqlite_open_memory	([from])

Parameters
from
The	filename	of	the	database	to	create	memory	database	from.	Optional,	see
remarks	for	details.

Return	Value
A	positive,	numeric	connection	identifier	if	successful,	or	$null	if	there	was	an
error.

Remarks
This	function	is	identical	to	using	$sqlite_open	with	the	first	argument	db	set	to
special	keyword	:memory:.	See	its	reference	for	details.

Example

;	Opens	a	database	and	displays	the	status	after.	Closes	the	db	if	it	was	opened	successfully.

var	%db	=	$sqlite_open_memory()

if	(%db)	{

		echo	-a	Memory	database	created	and	opened	successfully.

		sqlite_close	%db

}

else	{

		echo	-a	Error	opening	a	memory	database:	%sqlite_errstr

}

See	Also
sqlite_open
sqlite_close
sqlite_write_to_file

sqlite_write_to_file
Writes	a	memory	database	to	a	file.
Syntax

$sqlite_write_to_file	(conn,	file)

/sqlite_write_to_file	conn	file

Parameters
conn
The	connection	identifier	of	a	memory	database.
file
The	filename	to	save	the	memory	database	to.

Return	Value
1	on	success,	or	$null	if	there	was	an	error.

Remarks
This	function	allows	you	to	write	a	memory	database	to	a	file.	It's	useful	if	you
want	to	work	with	a	database	on	memory	for	vastly	improved	speed,	but	also
keep	a	permanent	copy	on	disk.	Another	common	use	is	to	debug	errors	by
dumping	a	memory	database	to	file	so	you	can	examine	the	contents	with	your
favorite	visual	editor.

sqlite_close
Closes	an	open	SQLite	database	connection.

Syntax

$sqlite_close	(conn)

/sqlite_close	conn

Parameters
conn
The	connection	identifier.

Return	Value
1	if	connection	was	closed	successfully,	or	$null	if	there	was	an	error.

Remarks
It	is	usually	ok	to	ignore	the	return	value	of	$sqlite_close	because	the	only	case
an	error	is	returned	is	when	an	invalid	conn	is	specified.

Example

;	Opens	a	database	and	displays	the	status	after.	Closes	the	db	if	it	was	opened	successfully.

var	%db	=	$sqlite_open(test.db)

if	(%db)	{

		echo	-a	Database	opened	successfully.

		sqlite_close	%db

}

else	{

		echo	-a	Error	opening	database:	%sqlite_errstr

}

See	Also
sqlite_open

sqlite_query
Executes	a	SQL	query	and	returns	data	returned	by	it.

Syntax

$sqlite_query	(conn,	query	[,	bind_value	[,	...]])	[.file]

/sqlite_query	conn	query

$sqlite_query	(statement	[,	bind_value	[,	...]])

/sqlite_query	statement	[bind_value	[...]]

Parameters
conn
The	connection	identifier.
query
The	query	to	execute.
statement
A	prepared	statement	to	execute.
bind_value
Optional.	One	or	more	values	to	bind	to	the	query.

Properties
file
Optional.	If	specified	the	query	parameter	is	treated	as	a	filename	instead,	and
that	file	will	be	executed	as	SQL.

Return	Value
A	positive,	numeric	result	identifier	or	0	on	success,	or	$null	if	there	was	an
error.

Remarks
To	execute	a	prepared	statement	first	prepare	it	with	$sqlite_prepare.
To	learn	about	prepared	statements	and	binding	values,	see	Prepared	Statements.

In	case	of	0	is	returned,	it	means	that	$sqlite_query	was	used	to	execute	a	query
that	doesn't	return	any	data,	such	as	INSERT	or	UPDATE.
A	SELECT	query	always	returns	a	result	identifier	on	success,	even	if	the	query
selected	no	rows.	You	can	use	$sqlite_num_rows	to	determine	how	many	rows
were	returned.

If	$null	is	returned	you	can	determine	the	exact	reason	for	the	error	by	checking

the	value	of	%sqlite_errstr.
For	more	information	about	error	handling,	see	Handling	Errors

Note	that	if	you	want	to	bind	a	text	value	with	more	than	one	word,	you	must	use
the	identifier	form	of	syntax.	If	you	don't	care	about	the	return	value,	you	can
use	the	built-in	mIRC	command	/noop

Starting	from	mSQLite	version	1.2.0	you	can	bind	values	even	for	non-prepared
statements,	but	this	only	works	when	calling	$sqlite_query	as	an	identifier.

$sqlite_query	can	execute	multiple	queries	seperated	by	semicolons.	The
returned	result	is	the	data	returned	by	the	last	SQL	query.
To	see	guidelines	for	writing	SQL	queries	with	mIRC	SQLite,	see	Writing
Queries.

Example

;	Selects	data	from	a	table	and	fetches	it,	assumes	that	a	db	connection	is	already	established

var	%sql	=	SELECT	col,	another	FROM	table

var	%request	=	$sqlite_query(%db,	%sql)

if	(%request)	{

		echo	-a	Query	executed	successfully.

		sqlite_free	%request

}

else	{

		echo	-a	Error	executing	query:	%sqlite_errstr

}

See	Also
Writing	Queries
Handling	Binary	Data
Prepared	Statements
sqlite_unbuffered_query
sqlite_exec
sqlite_fetch_row
sqlite_fetch_bound
sqlite_fetch_single
sqlite_num_rows
sqlite_free

sqlite_unbuffered_query
Executes	a	SQL	query	and	returns	data	returned	by	it.
Syntax

$sqlite_unbuffered_query	(conn,	query	[,	bind_value	[,	...]])	[.file	

/sqlite_unbuffered_query	conn	query

$sqlite_unbuffered_query	(statement	[,	bind_value	[,	...]])

/sqlite_unbuffered_query	statement	[bind_value	[...]]

Parameters
conn
The	connection	identifier.
query
The	query	to	execute.
statement
A	prepared	statement	to	execute.
bind_value
Optional.	One	or	more	values	to	bind	to	the	query.

Properties
file
Optional.	If	specified	the	query	parameter	is	treated	as	a	filename	instead,	and
that	file	will	be	executed	as	SQL.

Return	Value
A	positive,	numeric	result	identifier	or	0	on	success,	or	$null	if	there	was	an
error.

Remarks
To	execute	a	prepared	statement,	first	prepare	it	with	$sqlite_prepare.
To	learn	about	prepared	statements	and	binding	values,	see	Prepared	Statements.

Unbuffered	queries	work	like	regular	queries,	except	that	they	produce	a	result
set	that	isn't	buffered	in	memory.	Since	the	rows	aren't	buffered	in	memory,
unbuffered	queries	are	the	optimal	way	to	handle	large	set	of	sequental	data
because	they're	more	efficient	and	the	memory	footprint	is	much	smaller.
The	trade	off	is	that	you	can't	random-access	the	unbuffered	result	set,	like	you
can	with	buffered	result	sets.	The	following	functions	aren't	supported	on
unbuffered	results:	sqlite_num_rows,	sqlite_current,	sqlite_current_bound,
sqlite_result,	sqlite_next,	sqlite_prev,	sqlite_has_more,	sqlite_has_prev,

sqlite_seek,	sqlite_rewind	and	sqlite_key.

Remember	to	free	the	result	with	sqlite_free	when	done	with	the	result	set.	If
there's	unfetched	rows	in	the	result	set,	and	it	isn't	freed	it	might	block	other
queries	from	executing.

In	case	of	0	is	returned,	it	means	that	$sqlite_unbuffered_query	was	used	to
execute	a	query	that	doesn't	return	any	data,	such	as	INSERT	or	UPDATE.
A	SELECT	query	always	returns	a	result	identifier	on	success,	even	if	the	query
selected	no	rows.	You	can	use	$sqlite_num_rows	to	determine	how	many	rows
were	returned.

If	$null	is	returned	you	can	determine	the	exact	reason	for	the	error	by	checking
the	value	of	%sqlite_errstr.
For	more	information	about	error	handling,	see	Handling	Errors

Note	that	if	you	want	to	bind	a	text	value	with	more	than	one	word,	you	must	use
the	identifier	form	of	syntax.	If	you	don't	care	about	the	return	value,	you	can
use	the	built-in	mIRC	command	/noop

Starting	from	mSQLite	version	1.2.0	you	can	bind	values	even	for	non-prepared
statements,	but	this	only	works	when	calling	$sqlite_unbuffered_query	as	an
identifier.

$sqlite_unbuffered_query	can	execute	multiple	queries	seperated	by	semicolons.
The	returned	result	is	the	data	returned	by	the	last	SQL	query.
To	see	guidelines	for	writing	SQL	queries	with	mIRC	SQLite,	see	Writing
Queries.

For	an	example,	see	$sqlite_query.

See	Also
Writing	Queries
Handling	Binary	Data
Prepared	Statements
sqlite_exec
sqlite_fetch_row
sqlite_fetch_bound
sqlite_fetch_single

sqlite_num_rows
sqlite_free

sqlite_prepare
Prepares	a	SQL	query	to	be	executed	later.

Syntax

$sqlite_prepare	(conn,	query)	[.file]

Parameters
conn
The	connection	identifier.
query
The	query	to	execute.

Properties
file
Optional.	If	specified	the	query	parameter	is	treated	as	a	filename	instead,	and
that	file	will	be	executed	as	SQL.

Return	Value
A	positive,	numeric	statement	identifier	on	success,	or	$null	if	there	was	an
error.

Remarks
Prepared	queries	are	efficient	when	you	need	to	execute	the	same	query	many
times	with	different	parameters.	This	is	because	prepared	query	is	only	compiled
once,	and	can	then	be	executed	without	having	to	re-compile	the	query.
You	can	bind	parameters	in	prepared	queries,	for	more	information	about
prepared	statements	and	parameter	binding,	see	Prepared	Statements.
Just	like	ordinary	queries,	prepared	queries	are	executed	with	$sqlite_exec	or
$sqlite_query,	see	example	below.

If	$null	is	returned	you	can	determine	the	exact	reason	for	the	error	by	checking
the	value	of	%sqlite_errstr.
For	more	information	about	error	handling,	see	Handling	Errors.

$sqlite_prepare	can	only	prepare	a	single	query.	Extra	queries	seperated	by	a
semi-colon	are	ignored,	only	the	first	one	is	prepared.
To	see	guidelines	for	writing	SQL	queries	with	mIRC	SQLite,	see	Writing
Queries.

Example

;	Inserts	data	into	a	table	two	times	with	different	parameters

var	%sql	=	INSERT	INTO	table	VALUES	(?,	:test)

var	%stmt	=	$sqlite_prepare(%db,	%sql)

if	(%stmt)	{

		echo	-a	Query	prepared	successfully.

		;	Binds	Hello	as	first	parameter,	and	World	as	second	parameter	and	inserts	the	row

		sqlite_bind_value	%stmt	1	Hello

		sqlite_bind_value	%stmt	:test	World

		sqlite_exec	%stmt

		;	Binds	NULL	as	first	parameter,	and	100	as	second	parameter	and	inserts	the	row

		sqlite_bind_null	%stmt	1

		sqlite_bind_value	%stmt	:test	100

		sqlite_exec	%stmt

		;	Binds	'This	is	a	test'	as	first	parameter,	and	uses	the	previously	bound	parameter	for	second	parameter

		noop	$sqlite_exec(%stmt,	This	is	a	test)

		sqlite_free	%stmt

}

else	{

		echo	-a	Error	preparing	query:	%sqlite_errstr

}

See	Also
Prepared	Statements
sqlite_bind_column
sqlite_bind_param
sqlite_bind_value
sqlite_exec
sqlite_query
sqlite_free

sqlite_exec
Executes	a	result-less	SQL	query.

Syntax

$sqlite_exec	(conn,	query	[,	bind_value	[,	...]])	[.file]

/sqlite_exec	conn	query

$sqlite_exec	(statement	[,	bind_value	[,	...]])

/sqlite_exec	statement	[bind_value	[...]]

Parameters
conn
The	connection	identifier.
query
The	query	to	execute.
statement
A	prepared	statement	to	execute.
bind_value
Optional.	One	or	more	values	to	bind	to	the	query.

Properties
file
Optional.	If	specified	the	query	parameter	is	treated	as	a	filename	instead,	and
that	file	will	be	executed	as	SQL.

Return	Value
1	on	success,	or	$null	if	there	was	an	error.

Remarks
To	execute	a	prepared	statement,	first	prepare	it	with	$sqlite_prepare.
To	learn	about	prepared	statements	and	binding	values,	see	Prepared	Statements.

If	$null	is	returned	you	can	determine	the	exact	reason	for	the	error	by	checking
the	value	of	%sqlite_errstr.
For	more	information	about	error	handling,	see	Handling	Errors

Note	that	if	you	want	to	bind	a	text	value	with	more	than	one	word,	you	must	use
the	identifier	form	of	syntax.	If	you	don't	care	about	the	return	value,	you	can
use	the	built-in	mIRC	command	/noop

Starting	from	mSQLite	version	1.2.0	you	can	bind	values	even	for	non-prepared
statements,	but	this	only	works	when	calling	$sqlite_exec	as	an	identifier.

$sqlite_exec	can	execute	multiple	queries	seperated	by	semicolons.
To	see	guidelines	for	writing	SQL	queries	with	mIRC	SQLite,	see	Writing
Queries.

Example

;	Inserts	data	to	a	table,	assumes	that	a	db	connection	is	already	established

var	%sql	=	INSERT	INTO	table	(key,	value)	VALUES	('version',	'1.0.0')

if	($sqlite_exec(%db,	%sql))	{

		echo	-a	Query	executed	succesfully.

}

else	{

		echo	-a	Error	executing	query:	%sqlite_errstr

}

See	Also
Writing	Queries
Handling	Binary	Data
Prepared	Statements
sqlite_query
sqlite_unbuffered_query

sqlite_exec_file
Executes	a	result-less	SQL	query	from	a	file.

Syntax

$sqlite_exec_file	(conn,	file	[,	bind_value	[,	...]])

/sqlite_exec_file	conn	file

Parameters
conn
The	connection	identifier.
file
The	file	to	execute.
bind_value
Optional.	One	or	more	values	to	bind	to	the	query.

Return	Value
1	on	success,	or	$null	if	there	was	an	error.

Remarks
This	is	an	alias	for	$sqlite_exec(...).file

This	command	is	useful	for	executing	a	long	query	or	multiple	queries.
One	common	use	is	executing	an	initialization	query	file	after	loading	a	script.

Example

;	A	possible	LOAD	event	for	a	script

on	*:LOAD:{

		var	%db	=	$sqlite_open(script.db)

		sqlite_exec_file	%db	init.sql

		sqlite_close	%db

}

See	Also
Writing	Queries
Handling	Binary	Data
Prepared	Statements
sqlite_exec

sqlite_begin
Begins	a	transaction.
Syntax

$sqlite_begin	(conn)

/sqlite_begin	conn

Parameters
conn
The	connection	identifier.

Return	Value
1	on	success,	or	$null	if	there	was	an	error.

Remarks
$sqlite_begin	is	a	shorthand	function	provided	for	convience	for	executing
BEGIN	TRANSACTION	on	conn.

Transactions	should	be	used	whenever	a	batch	of	queries	that	modify	a	database
are	executed.	Transactions	are	much	more	efficient	in	such	cases,	because
otherwise	every	individual	query	would	create	a	transaction	of	their	own,	which
is	an	expensive	operation.

It	is	usually	ok	to	ignore	the	return	value	of	$sqlite_begin	because	the	only	case
an	error	is	returned	is	when	an	invalid	conn	is	specified	or	it's	used	out	of
sequence.

See	Also
sqlite_commit
sqlite_rollback
sqlite_autocommit

sqlite_commit
Commits	a	transaction.
Syntax

$sqlite_commit	(conn)

/sqlite_commit	conn

Parameters
conn
The	connection	identifier.

Return	Value
1	on	success,	or	$null	if	there	was	an	error.

Remarks
$sqlite_commit	is	a	shorthand	function	provided	for	convience	for	executing
COMMIT	TRANSACTION	on	conn.

Committing	a	transaction	will	save	all	the	changes	that	were	done	during	the
transaction	to	the	database.

It	is	usually	ok	to	ignore	the	return	value	of	$sqlite_commit	because	the	only
case	an	error	is	returned	is	when	an	invalid	conn	is	specified	or	it's	used	out	of
sequence.

See	Also
sqlite_begin
sqlite_rollback
sqlite_autocommit

sqlite_rollback
Rolls	back	a	transaction.
Syntax

$sqlite_rollback	(conn)

/sqlite_rollback	conn

Parameters
conn
The	connection	identifier.

Return	Value
1	on	success,	or	$null	if	there	was	an	error.

Remarks
$sqlite_rollback	is	a	shorthand	function	provided	for	convience	for	executing
ROLLBACK	TRANSACTION	on	conn.

Rolling	back	a	transaction	will	discard	all	the	changes	that	were	done	during	the
transaction.

It	is	usually	ok	to	ignore	the	return	value	of	$sqlite_rollback	because	the	only
case	an	error	is	returned	is	when	an	invalid	conn	is	specified	or	it's	used	out	of
sequence.

See	Also
sqlite_begin
sqlite_commit
sqlite_autocommit

sqlite_qt
Add	single	quotes	around	text.

Syntax

$sqlite_qt	(text)

Parameters
text
The	text	to	be	single	quoted.

Return	Value
The	single	quoted	text.

Remarks
This	is	an	auxiliary	identifier	that	can	be	used	to	quote	data	prior	to	using	them
in	queries.
You	should	this	instead	of	the	mIRC's	$qt	identifier,	the	reason	is	explained	in
FAQ,	under	the	question	"Should	I	use	single	or	double	quotes	for	string
literals?"

Example

;	Escape	data,	and	then	add	quotes	around	it

%data	=	$sqlite_qt($sqlite_escape_string(%data))

;	Execute	a	query

sqlite_exec	%db	INSERT	INTO	table	(data)	VALUES	(%data)

See	Also
sqlite_escape_string

sqlite_escape_string
Escapes	a	string	for	use	as	a	query	parameter.

Syntax

$sqlite_escape_string	(string)

Parameters
string
The	string	to	escape.

Return	Value
Escaped	string.

Remarks
$sqlite_escape_string	escapes	the	specific	string	so	that	it	can	be	used	safely	in
queries.
You	should	always	call	$sqlite_escape_string	on	user	input	to	avoid	SQL
injection.

Example

var	%str	=	$?="Input	a	string:"

var	%sql	=	INSERT	INTO	table	(value)	VALUES	('	$+	$sqlite_escape_string

;	%sql	can	now	be	safely	executed

See	Also
sqlite_query
sqlite_exec
sqlite_qt

sqlite_create_function
Register	an	user	defined	function.

Syntax

$sqlite_create_function	(conn,	func_name,	func_alias	[,	num_args	[,	prop	

/sqlite_create_function	conn	func_name	func_alias	[num_args	[prop]]

Parameters
conn
The	connection	identifier.
func_name
The	SQL	function	name	to	register.
func_alias
The	mIRC	alias	to	register	as	function.
num_args
The	number	of	arguments	the	function	accepts.	Optional.
prop
A	custom	property	you	want	to	use	with	alias	name.	Optional.

Return	Value
1	if	the	function	was	registered	successfully,	or	$null	if	there	was	an	error.

Remarks
$sqlite_create_function	allows	users	to	register	their	own	functions	in	SQL.
You	can	also	use	$sqlite_create_function	to	override	default	functionality	of
SQLite's	core	functions.

The	optional	argument	num_args	can	be	used	to	hint	SQLite	if	there's	a
predetermined	amount	of	arguments.
If	an	user	defined	function	is	used	with	different	parameter	count	as	what	was
instructed	with	num_args,	the	query	will	raise	an	SQL	error.
The	default,	-1,	means	that	an	arbitrary	number	of	parameters	can	be	passed	to
the	function.

It	is	usually	ok	to	ignore	the	return	value	of	$sqlite_create_function	if	you	know
that	the	parameters	are	valid.
For	more	information	about	user	defined	functions,	see	User	Defined	Functions.

Example

;	Returns	a	specified	amount	of	characters	from	left	side	of	a	md5	generated	string

alias	md5_left	{

		var	%str	=	$1,	%len	=	$2

		return	$left($md5(%str),	%len)

}

;	Registers	the	user	defined	function	in	an	existing	connection	%db

sqlite_create_function	%db	md5_left	md5_left	2

;	Registers	mIRC's	$base	as	convert_base	(3	first	parameters,	no	zeropadding	or	precision)

sqlite_create_function	%db	convert_base	base	3

;	Example	queries

;	SELECT	md5_left(value,	8)	FROM	strings

;	SELECT	convert_base(15,	10,	16)

See	Also
User	Defined	Functions
Function	Limitations
sqlite_create_aggregate

sqlite_create_aggregate
Register	an	user	defined	aggregate.

Syntax

$sqlite_create_aggregate	(conn,	func_name,	step_alias,	finalize_alias	

/sqlite_create_aggregate	conn	func_name	step_alias	finalize_alias	[num_args	

Parameters
conn
The	connection	identifier.
func_name
The	SQL	function	name	to	register.
step_alias
The	mIRC	alias	to	register	as	step	function.
finalize_alias
The	mIRC	alias	to	register	as	finalize	function.
num_args
The	number	of	arguments	the	function	accepts.	Optional.
step_prop
A	custom	property	you	want	to	use	for	step	alias.	Optional.
finalize_prop
A	custom	property	you	want	to	use	for	finalize	alias.	Optional.

Return	Value
1	if	the	function	was	registered	successfully,	or	$null	if	there	was	an	error.

Remarks
$sqlite_create_aggregate	allows	users	to	register	their	own	aggregates	in	SQL.
You	can	also	use	$sqlite_create_aggregate	to	override	default	functionality	of
SQLite's	core	aggregates.

Creating	aggregate	functions	is	similiar	to	creating	ordinary	functions.
The	key	difference	is	that	$sqlite_create_aggregate	requires	two	mIRC	aliases	to
be	registered:
step_alias	is	called	for	each	row	in	a	group,	it	is	used	to	accumulate	data.
finalize_alias	is	called	after	all	the	rows	are	processed,	it	is	used	to	return	the
result	to	the	query.

step_alias	and	finalize_alias	always	receive	an	aggregate	context	as	first
parameter.
The	step_alias	can	use	the	aggregate	context	to	accumulate	data.	It	should	return
the	aggregate	context	at	end.
When	finalize_alias	is	called	it	can	use	the	aggregate	context	to	determine	the
accumuluted	result.
Parameters	passed	to	the	function	in	the	SQL	query	are	passed	after	the
aggregate	context.

The	optional	argument	num_args	can	be	used	to	hint	SQLite	if	there's	a
predetermined	amount	of	arguments.
If	an	user	defined	function	is	used	with	different	parameter	count	as	what	was
instructed	with	num_args,	the	query	will	raise	an	SQL	error.
The	default,	-1,	means	that	an	arbitrary	number	of	parameters	can	be	passed	to
the	function.

It	is	usually	ok	to	ignore	the	return	value	of	$sqlite_create_function	if	you	know
that	the	parameters	are	valid.
For	more	information	about	user	defined	aggregates,	see	User	Defined	Functions
and	User	Defined	Aggregates.

Example

;	Creates	an	aggregate	to	return	the	max	length	of	a	string

alias	max_len_step	{

		var	%context	=	$1,	%len	=	$len($2)

		if	(%context	!isnum	||	%len	>	%context)	{

				%context	=	%len

		}

		return	%context

}

alias	max_len_finalize	{

		var	%context	=	$1

		if	(%context	!isnum)	{

				%context	=	0

		}

		return	%context

}

;	Registers	the	user	defined	function	in	an	existing	connection	%db

sqlite_create_aggregate	%db	max_len	max_len_step	max_len_finalize

;	Example	queries

;	SELECT	max_len(value)	FROM	strings

;	SELECT	max_len(first_name)	FROM	contacts	GROUP	BY	last_name

See	Also
User	Defined	Functions
User	Defined	Aggregates
Function	Limitations
sqlite_create_function

sqlite_signal_error
Allows	user	defined	functions	to	signal	an	error.

Syntax

$sqlite_signal_error	(error)

/sqlite_signal_error	error

Parameters
error
The	error	to	be	signaled.

Return	Value
1	on	success,	or	$null	if	there	was	an	error.

Remarks
It	is	usually	ok	to	ignore	the	return	value	of	$sqlite_signal_error	because	the
only	case	an	error	is	returned	it's	called	from	an	alias	that	isn't	an	user	defined
function.

Example

;	User	defined	function

alias	udf_error	{

		sqlite_signal_error	this	function	will	always	signal	an	error

}

;	Example,	always	outputs	error

sqlite_create_function	udf_error	udf_error	-1

sqlite_exec	SELECT	udf_error()

if	(%sqlite_errno	!=	$SQLITE_OK)	{

		echo	4	-a	%sqlite_errstr

}

See	Also
User	Defined	Functions
User	Defined	Aggregates
Function	Limitations

sqlite_set_authorizer
Registers	an	authorizer	for	a	connection.

Syntax

$sqlite_set_authorizer	(conn,	authorizer_alias	[,	prop])

/sqlite_set_authorizer	conn	authorizer_alias	[prop]

Parameters
conn
The	connection	identifier.
authorizer_alias
The	mIRC	alias	to	register	as	an	authorizer.
prop
A	custom	property	you	want	to	use	with	alias	name.	Optional.

Return	Value
1	if	the	authorizer	was	registered	successfully,	or	$null	if	there	was	an	error.

Remarks
An	authorizer	lets	you	to	examine	what	kind	of	query	SQLite	is	trying	to	run,
and	change	the	behavior	of	the	result	by	either	denying	the	operation,	or	ignoring
it.	The	foremost	purpose	of	an	authorizer	is	to	allow	scripts	to	safely	execute
user-entered	SQL	queries,	without	compromising	security	of	the	database.

Only	one	authorizer	can	be	registered	at	a	time	for	a	connection.	Setting	a	new
authorizer	for	a	connection	will	override	the	old	authorizer,	if	one	is	registered.
You	can	unregister	the	authorizer	by	passing	$null	for	authorizer_alias.

The	authorizer	should	return	$SQLITE_OK	if	the	current	action	should	be
allowed,	$SQLITE_DENY	if	it	should	be	denied	(generates	an	error)	or
$SQLITE_IGNORE	if	it	should	be	ignored	(treated	as	a	no-op).	You	can	use	an
authorizer	to	make	certain	columns	or	functions	return	NULL	by	returning
$SQLITE_IGNORE	for	the	corresponding	action	(see	below).	Returning	any
other	value	than	the	ones	previously	mentioned	will	auto-assume	$SQLITE_OK.

The	authorizer	alias	will	receive	a	few	arguments.	The	first	argument	is	the	type
of	action	SQLite	is	performing.	The	second	and	third	argument	provide
additional	information	depending	on	what	type	of	an	action	is	in	question.	The
fourth	argument	is	the	name	of	the	database	(eg.	"main"	or	"temp")	where

applicable.	The	fifth	argument	is	the	name	of	the	inner-most	trigger	or	view	that
triggered	the	authorizer,	or	$null	if	the	authorizer	was	triggered	directly	from
code.

You	can	see	all	the	possible	types	of	action	that	authorizer	can	be	triggered	for
below,	and	the	associated	arguments	for	it	(the	2nd	and	3rd	arguments	of	the
authorizer	alias).
Type																										Value					2nd	Arg									3rd	Arg

$SQLITE_CREATE_INDEX														1					Index	Name						Table	Name

$SQLITE_CREATE_TABLE														2					Table	Name						$null

$SQLITE_CREATE_TEMP_INDEX									3					Index	Name						Table	Name

$SQLITE_CREATE_TEMP_TABLE									4					Table	Name						$null

$SQLITE_CREATE_TEMP_TRIGGER							5					Trigger	Name				Table	name

$SQLITE_CREATE_TEMP_VIEW										6					View	Name							$null

$SQLITE_CREATE_TRIGGER												7					Trigger	name				Table	Name

$SQLITE_CREATE_VIEW															8					View	Name							$null

$SQLITE_DELETE																				9					Table	Name						$null

$SQLITE_DROP_INDEX															10					Index	Name						Table	Name

$SQLITE_DROP_TABLE															11					Table	Name						$null

$SQLITE_DROP_TEMP_INDEX										12					Index	Name						Table	Name

$SQLITE_DROP_TEMP_TABLE										13					Table	Name						$null

$SQLITE_DROP_TEMP_TRIGGER								14					Trigger	Name				Table	Name

$SQLITE_DROP_TEMP_VIEW											15					View	Name							$null

$SQLITE_DROP_TRIGGER													16					Trigger	Name				Table	Name

$SQLITE_DROP_VIEW																17					View	Name							$null

$SQLITE_INSERT																			18					Table	Name						$null

$SQLITE_PRAGMA																			19					Pragma	Name					1st	Arg	or	$null

$SQLITE_READ																					20					Table	Name						Column	Name

$SQLITE_SELECT																			21					$null											$null

$SQLITE_TRANSACTION														22					$null											$null

$SQLITE_UPDATE																			23					Table	Name						Column	Name

$SQLITE_ATTACH																			24					Filename								$null

$SQLITE_DETACH																			25					Database	Name			$null

$SQLITE_ALTER_TABLE														26					Database	Name			Table	Name

$SQLITE_REINDEX																		27					Index	Name						$null

$SQLITE_ANALYZE																		28					Table	Name						$null

$SQLITE_CREATE_VTABLE												29					Table	Name						Module	Name

$SQLITE_DROP_VTABLE														30					Table	Name						Module	Name

$SQLITE_FUNCTION																	31					Function	Name			$null

Example

;	The	following	example	demonstrates	how	to	create	an	authorizer	that:

;	1)	Disallows	queries	of	other	type	than	SELECT.

;	2)	Disallows	access	to	certain	columns	by	making	SQLite	return	NULL	for	them.

alias	my_authorizer	{

		;	To	make	the	function	look	cleaner,	let's	assign	the	tokens	to	variables.

		var	%type	=	$1

		;	First	deny	queries	other	than	SELECT

		if	(%type	!=	$SQLITE_SELECT	&&	%type	!=	$SQLITE_READ	&&	%type	!=	$SQLITE_FUNCTION

				;	Not	authorized!

				return	$SQLITE_DENY

		}

		;	Next	make	sure	that	we	aren't	trying	to	access	a	"secret"	column,	eg.	a	password	in	an	users	table.

		if	(%type	==	$SQLITE_READ)	{

				var	%table	=	$2,	%column	=	$3

				if	(%table	==	users	&&	%column	==	password)	{

						;	By	returning	$SQLITE_IGNORE	SQLite	will	return	NULL	for	this	column.	It's	a	good	idea	to	do	this	instead

						;	of	denying	the	whole	query,	because	in	that	case	query	such	as	"SELECT	*	FROM	users"	would	fail	as	well.

						return	$SQLITE_IGNORE

				}

		}

		;	Nothing	special	in	this	action,	allow	it.

		return	$SQLITE_OK

}

;	To	register	the	authorizer	do	(assumes	that	%db	exists):

sqlite_set_authorizer	%db	my_authorizer

sqlite_free
Frees	a	query	result	or	prepared	statement.

Syntax

$sqlite_free	(result)

/sqlite_free	result

$sqlite_free	(statement)

/sqlite_free	statement

Parameters
result
The	result	identifier.
statement
The	statement	identifier.

Return	Value
1	if	the	result	was	freed	successfully,	or	$null	if	there	was	an	error.

Remarks
It	is	usually	ok	to	ignore	the	return	value	of	$sqlite_free	because	the	only	case	an
error	is	returned	is	when	an	invalid	result	is	specified.

Example

;	Selects	data	from	a	table	and	then	frees	it	(unpractical,	only	shows	usage)

var	%sql	=	SELECT	*	FROM	table

var	%request	=	$sqlite_query(%db,	%sql)

if	(%request)	{

		echo	-a	Query	executed	succesfully.	Freeing	data.

		sqlite_free	%request

}

else	{

		echo	-a	Error	executing	query:	%sqlite_errstr

}

See	Also
sqlite_query
sqlite_finalize

sqlite_finalize
Frees	a	query	result	or	prepared	statement.
Syntax

$sqlite_finalize	(result)

/sqlite_finalize	result

$sqlite_finalize	(statement)

/sqlite_finalize	statement

Parameters
result
The	result	identifier.
statement
The	statement	identifier.

Return	Value
1	if	the	result	was	freed	successfully,	or	$null	if	there	was	an	error.

Remarks
This	is	an	alias	for	$sqlite_free	provided	for	convience	for	those,	who	prefer	to
use	finalize	when	freeing	prepared	statements.

See	Also
sqlite_query
sqlite_free

sqlite_fetch_row
Fetches	the	current	row	from	a	result	and	then	advances	to	the	next	row.

Syntax

$sqlite_fetch_row	(result,	hash_table	[,	result_type])

Parameters
result
The	result	identifier.
hash_table
The	name	of	the	hash	table	to	where	to	store	the	row	data.
result_type
The	type	of	the	result.	Optional,	see	remarks	for	more	info.

Return	Value
1	on	success;	Otherwise	0	if	there	are	no	more	rows	available,	or	$null	if	there
was	an	error.

Remarks
$sqlite_fetch_row	fetches	the	next	row	from	the	result	and	stores	the	data	in
hash_table.
If	the	hash	table	doesn't	exist,	it	will	be	created;	Otherwise	it	will	be	cleared
before	new	data	is	stored.

result_type	specifies	how	the	hash	table	is	created,	it	can	be	one	of	the	following:
$SQLITE_NUM,	$SQLITE_ASSOC	or	$SQLITE_BOTH.	$SQLITE_BOTH
is	default.
If	$SQLITE_NUM	is	used,	the	hash	table	items	will	be	field	indexes,	starting
from	index	1.	If	$SQLITE_ASSOC	is	used,	the	items	will	be	field	names.	If
$SQLITE_BOTH	is	used,	both	column	indexes	and	names	are	used.
In	case	of	$SQLITE_BOTH,	if	some	of	the	column	names	are	identical	to
another	columns'	index,	the	index	has	priority	and	will	be	used	as	an	item.

Example

;	This	code	assumes	a	connection	is	already	established	and	stored	in	%db

var	%sql	=	SELECT	first_name,	last_name	FROM	contacts

var	%res	=	$sqlite_query(%db,	%sql)

if	(%res)	{

		echo	-a	Fetching	results...

		echo	-a	-

		while	($sqlite_fetch_row(%res,	row,	$SQLITE_ASSOC))	{

				;	If	you	used	$SQLITE_FETCH_NUM	or	$SQLITE_FETCH_BOTH	you	could	use	1	instead	of	first_name	and	2	instead	of	last_name

				echo	-a	First	name:	$hget(row,	first_name)

				echo	-a	Last	name:	$hget(row,	last_name)

				echo	-a	-

		}

		sqlite_free	%res

}

else	{

		echo	-a	Error	executing	query:	%sqlite_errstr

}

See	Also
sqlite_query
sqlite_fetch_single

sqlite_fetch_bound
Fetches	the	current	row	from	a	result	and	assigns	the	column	values	in	variables
and	then	advances	to	the	next	row.

Syntax

$sqlite_fetch_bound	(result	[,	bind_type])

Parameters
result
The	result	identifier.
bind_type
The	type	of	the	bind.	Optional,	see	remarks	for	more	info.

Return	Value
1	on	success;	Otherwise	0	if	there	are	no	more	rows	available,	or	$null	if	there
was	an	error.

Remarks
$sqlite_fetch_bound	fetches	the	next	row	from	the	result	and	assigns	the	column
data	in	variables	specified	by	$sqlite_fetch_field.

bind_type	specifies	how	the	values	are	bound,	it	can	be	one	of	the	following:
$SQLITE_ALL	or	$SQLITE_BOUND.	$SQLITE_BOUND	is	default.
If	$SQLITE_BOUND	is	specified,	only	columns	that	have	been	bound	with
$sqlite_fetch_field	are	fetched	in	variables.	If	$SQLITE_ALL	is	specified	all
rows	are	fetched,	even	ones	that	haven't	been	bound	explicitly	with
$sqlite_fetch_field.	In	this	case	the	column	names	are	used	as	variable	names.
Depending	on	whether	the	column	type	is	binary	or	not,	a	regular	variable	or	a
binary	variable	will	be	used.

The	bound	variables	are	set	as	global	variables	when	fetched,	because	mSQLite
has	no	access	to	local	variables.	You	should	be	very	careful	that	you	don't
override	any	existing	global	variables,	especially	when	$SQLITE_ALL	is	used!

Example

;	This	code	assumes	a	connection	is	already	established	and	stored	in	%db

var	%sql	=	SELECT	first_name,	last_name,	address	FROM	contacts

var	%res	=	$sqlite_query(%db,	%sql)

if	(%res)	{

		;	The	first	column	will	be	bound	to	%name

		sqlite_bind_field	%result	1	name

		;	The	third	column	will	be	bound	to	%postal_address

		sqlite_bind_field	%result	address	first_name

		;	The	second	column	will	be	bound	automatically	to	%last_name	with	$SQLITE_ALL

		echo	-a	Fetching	results...

		echo	-a	-

		while	($sqlite_fetch_bound(%res,	$SQLITE_ALL))	{

				;	If	you	used	$SQLITE_BOUND,	%last_name	would	not	exist	because	it	wasn't	bound	explicitly	with	sqlite_bind_field

				echo	-a	First	name:	%name

				echo	-a	Last	name:	%last_name

				echo	-a	Address:	%postal_address

				echo	-a	-

		}

		sqlite_free	%res

}

else	{

		echo	-a	Error	executing	query:	%sqlite_errstr

}

See	Also
sqlite_query
sqlite_bind_field
sqlite_fetch_row
sqlite_fetch_single

sqlite_fetch_single
Fetches	and	returns	the	first	column	of	the	current	row	from	a	result	and	then
advances	to	the	next	row.

Syntax

$sqlite_fetch_single	(result	[,	&binvar;])

Parameters
result
The	result	identifier.
binvar
The	name	of	the	binary	variable	to	assign	binary	data	to.	Optional.

Return	Value
The	value	of	the	first	column	of	the	fetched	row	if	&binvar;	isn't	specified,
otherwise	the	size	of	the	binary	variable	on	success,	$null	if	there	are	no	more
rows,	or	if	there	was	an	error.

Remarks
If	&binvar;	is	specified	the	behaviour	of	$sqlite_fetch_single	changes	slightly.
Instead	of	returning	the	first	column's	value,	it	will	assign	it	to	a	binvar	and
return	the	binvar's	size	on	success.
In	case	the	first	column	is	not	blob	type,	its	text	representation	will	be	stored	in
the	&binvar;	as	sequential	ascii	values.	If	&binvar;	isn't	set,	but	the	first	column
is	a	blob,	it	will	be	converted	to	text.
For	more	information	about	handling	binary	data	in	mSQLite,	see	Handling
Binary	Data

In	case	of	$null	is	returned	it	can	mean	three	different	things:
1.	The	returned	value	from	SQLite	database	is	NULL.
2.	There	are	no	more	rows	available.
3.	There	was	an	error.

To	determine	the	cause	of	$null,	examine	the	%sqlite_errno	variable	after
calling	$sqlite_fetch_single.	The	returned	value	can	be	one	of	the	following:
1.	$SQLITE_OK	if	there	was	no	error.
2.	$SQLITE_NOMOREROWS	if	there	are	no	more	rows	available.
3.	Some	other	of	the	Error	Codes	if	there	was	an	error.

Example

;	This	code	assumes	a	connection	is	already	established	and	stored	in	%db

var	%sql	=	SELECT	COUNT(*)	FROM	contacts

var	%res	=	$sqlite_query(%db,	%sql)

if	(%res)	{

		echo	-a	Number	of	rows	in	contacts:	$sqlite_fetch_single(%res)

		sqlite_free	%res

}

else	{

		echo	-a	Error	executing	query:	%sqlite_errstr

}

See	Also
sqlite_query
sqlite_fetch_row
sqlite_fetch_field

sqlite_fetch_field
Fetches	and	returns	the	specified	column	of	the	current	row	from	a	result	and
then	advances	to	the	next	row.

Syntax

$sqlite_fetch_field	(result,	field	[,	&binvar;])	[.name]

Parameters
result
The	result	identifier.
field
The	field	index	or	name.	See	remarks	for	details.
binvar
The	name	of	the	binary	variable	to	assign	binary	data	to.	Optional.

Properties
name
Forces	field	to	be	treated	as	name.

Return	Value
The	value	of	the	specified	column	of	the	fetched	row	if	&binvar;	isn't	specified,
otherwise	the	size	of	the	binary	variable	on	success,	$null	if	there	are	no	more
rows,	or	if	there	was	an	error.

Remarks
$sqlite_fetch_field	is	identical	to	$sqlite_fetch_single	with	the	only	difference
being	that	$sqlite_fetch_field	returns	a	value	of	specified	column,	instead	of	the
first	column.

If	field	is	numeric	it	is	treated	as	an	ordinal	index	for	the	column,	first	column
being	1,	otherwise	it	is	treated	as	the	column's	name.	You	can	use	the	.name
property	to	force	the	field	to	be	treated	as	column	name	even	if	it's	a	number.

See	$sqlite_fetch_single	for	more	details.

Example

;	This	code	assumes	a	connection	is	already	established	and	stored	in	%db

var	%sql	=	SELECT	1,	'test'	AS	'1'

var	%res	=	$sqlite_query(%db,	%sql)

if	(%res)	{

		;	This	treats	1	as	field	ordinal,	thus	first	column	is	returned

		echo	-a	Fetch	1st	field:	$sqlite_fetch_field(%res,	1)

		;	Go	back	to	previous	row	because	$sqlite_fetch_field	increments	row	counter

		sqlite_rewind	%res

		;	This	treats	1	as	field	nane	because	of	the	.name	property,	second	column	is	returned

		echo	-a	Fetch	2nd	field:	$sqlite_fetch_field(%res,	1).name

		;	Free	result

		sqlite_free	%res

}

else	{

		echo	-a	Error	executing	query:	%sqlite_errstr

}

;	Output:

;	Fetch	1st	field:	1

;	Fetch	2nd	field:	a

See	Also
sqlite_query
sqlite_fetch_row
sqlite_fetch_single
sqlite_result

sqlite_fetch_all
Fetches	everything	into	a	file.
Syntax

$sqlite_fetch_all	(result,	file	[,	delim	=	9])

Parameters
result
The	result	identifier.
file
The	output	filename.
delim
Optional.	Delimiter	in	ASCII	used	to	separate	fields.

Return	Value
1	on	success	or	$null	on	error.

Remarks
$sqlite_fetch_all	is	useful	for	fetching	everything	into	a	single	file	if	you	wish
to	process	it	using	a	command	such	as	/filter	or	/play	through	custom	alias.

Each	line	in	the	resulting	fill	will	consist	of	a	single	row.	All	fields	in	the	line	are
separated	by	delim,	which	is	TAB	by	default.	You	can	specify	your	own
delimiter.

Because	it's	possible	that	the	data	for	a	field	in	a	row	can	consist	of	unsafe
characters	that	would	mess	up	the	rows/fields,	mIRC	SQLite	encodes	the	special
characters	in	the	resulting	file.
The	characters	that	are	encoded	are:	\	(backslash),	\n	(newline),	\r	(carriage
return),	\0	(null-byte,	in	binary	data)	and	whatever	delimiter	is	used.	The
characters	are	encoded	as	an	escape	sequence	\xNN	where	NN	is	a	two-digit
hexadecimal	number.
You	can	decode	the	data	with	$sqlite_safe_decode	if	you	need	to.

See	Also
sqlite_query
sqlite_fetch_row
sqlite_fetch_single
sqlite_fetch_field
sqlite_safe_encode

sqlite_safe_decode

sqlite_current
Fetches	the	current	row	from	a	result.
Syntax

$sqlite_current	(result,	hash_table	[,	result_type])

Parameters
result
The	result	identifier.
hash_table
The	name	of	the	hash	table	to	where	to	store	the	row	data.
result_type
The	type	of	the	result.	Optional,	see	remarks	for	more	info.

Return	Value
1	on	success;	Otherwise	0	if	the	current	row	position	is	beyond	final	row,	or
$null	if	there	was	an	error.

Remarks
$sqlite_current	is	identical	to	$sqlite_fetch_row	except	it	doesn't	advance	to	the
next	row.

See	Also
sqlite_fetch_row

sqlite_current_bound
Fetches	the	current	row	from	a	result	and	assigns	the	column	values	in	variables.
Syntax

$sqlite_current_bound	(result	[,	bind_type])

Parameters
result
The	result	identifier.
bind_type
The	type	of	the	bind.	Optional,	see	remarks	for	more	info.

Return	Value
1	on	success;	Otherwise	0	if	the	current	row	position	is	beyond	final	row,	or
$null	if	there	was	an	error.

Remarks
$sqlite_current_bound	is	identical	to	$sqlite_fetch_bound	except	it	doesn't
advance	to	the	next	row.

See	Also
sqlite_fetch_bound

sqlite_result
Fetches	and	returns	the	specified	column	of	the	current	row	from	a	result.
Syntax

$sqlite_result	(result,	field	[,	&binvar;])	[.name]

Parameters
result
The	result	identifier.
field
The	field	index	or	name.	See	remarks	for	details.
binvar
The	name	of	the	binary	variable	to	assign	binary	data	to.	Optional.

Properties
name
Forces	field	to	be	treated	as	name.

Return	Value
The	value	of	the	specified	column	of	the	fetched	row	if	&binvar;	isn't	specified,
otherwise	the	size	of	the	binary	variable	on	success,	$null	if	there	are	no	more
rows,	or	if	there	was	an	error.

Remarks
$sqlite_result	is	identical	to	$sqlite_fetch_field	except	it	doesn't	advance	to	the
next	row.

See	Also
sqlite_fetch_field

sqlite_num_rows
Returns	a	number	of	rows	in	a	result.

Syntax

$sqlite_num_rows	(result)

Parameters
result
The	result	identifier.

Return	Value
The	number	of	rows	in	the	result	on	success,	or	$null	if	there	was	an	error.

Example

;	This	code	assumes	a	connection	is	already	established	and	stored	in	%db

var	%sql	=	SELECT	*	FROM	table

var	%res	=	$sqlite_query(%db,	%sql)

if	(%res)	{

		echo	-a	Number	of	rows	returned:	$sqlite_num_rows(%res)

		sqlite_free	%res

}

else	{

		echo	-a	Error	executing	query:	%sqlite_errstr

}

See	Also
sqlite_query
sqlite_num_fields

sqlite_num_fields
Returns	a	number	of	fields	in	a	result.

Syntax

$sqlite_num_fields	(result)

Parameters
result
The	result	identifier.

Return	Value
The	number	of	fields	in	the	result	on	success,	or	$null	if	there	was	an	error.

Example

;	This	code	assumes	a	connection	is	already	established	and	stored	in	%db

var	%sql	=	SELECT	*	FROM	table

var	%res	=	$sqlite_query(%db,	%sql)

if	(%res)	{

		echo	-a	Number	of	fields	returned:	$sqlite_num_fields(%res)

		sqlite_free	%res

}

else	{

		echo	-a	Error	executing	query:	%sqlite_errstr

}

See	Also
sqlite_query
sqlite_num_rows

sqlite_changes
Returns	a	number	of	affected	rows	of	the	last	INSERT,	UPDATE	or	DELETE
query.

Syntax

$sqlite_changes	(conn)

Parameters
conn
The	connection	identifier.

Return	Value
The	number	of	affected	rows	on	success,	or	$null	if	there	was	an	error.

Example

;	This	code	assumes	a	connection	is	already	established	and	stored	in	%db

var	%sql	=	UPDATE	publishers	SET	publisher	=	'Square	Enix'	WHERE	publisher	

if	($sqlite_exec(%db,	%sql))	{

		echo	-a	Number	of	rows	affected:	$sqlite_changes(%db)

		sqlite_free	%res

}

else	{

		echo	-a	Error	executing	query:	%sqlite_errstr

}

See	Also
sqlite_exec
sqlite_query

sqlite_last_insert_rowid
Returns	the	row	id	of	the	most	recently	inserted	row.

Syntax

$sqlite_last_insert_rowid	(conn)

Parameters
conn
The	connection	identifier.

Return	Value
The	row	id	on	success,	or	$null	if	there	was	an	error.

Example

;	This	code	assumes	a	connection	is	already	established	and	stored	in	%db

var	%sql	=	INSERT	INTO	publishers	(publisher)	VALUES	('Square	Enix')

if	($sqlite_exec(%db,	%sql))	{

		echo	-a	Insrted	row	id:	$sqlite_last_insert_rowid(%db)

		sqlite_free	%res

}

else	{

		echo	-a	Error	executing	query:	%sqlite_errstr

}

See	Also
sqlite_exec
sqlite_query

sqlite_field_name
Returns	the	name	of	the	specified	field.

Syntax

$sqlite_field_name	(result,	field_index)

Parameters
result
The	result	identifier.
field_index
The	ordinal	index	of	the	field.	The	first	field	has	an	index	of	1.

Return	Value
The	name	of	the	field	on	success,	or	$null	if	there	was	an	error.

Example

;	This	code	assumes	a	connection	is	already	established	and	stored	in	%db

var	%sql	=	SELECT	*	FROM	table

var	%res	=	$sqlite_query(%db,	%sql)

if	(%res)	{

		echo	-a	Name	of	the	first	field:	$sqlite_field_name(%res,	1)

		sqlite_free	%res

}

else	{

		echo	-a	Error	executing	query:	%sqlite_errstr

}

See	Also
sqlite_query

sqlite_field_type
Returns	the	type	of	the	specified	field.
Syntax

$sqlite_field_type	(result,	field_index	[,	row_index])

Parameters
result
The	result	identifier.
field_index
The	ordinal	index	of	the	field.	The	first	field	has	an	index	of	1.
row_index
The	row	index	to	get	the	type	for.	Optional;	If	result	is	unbuffered	or	if	omitted
current	row	is	assumed.

Return	Value
The	type	of	the	field	on	success,	or	$null	if	there	was	an	error.

Remarks
The	returned	type	can	be	one	of	the	following	values:	$SQLITE_INTEGER,
$SQLITE_FLOAT,	$SQLITE_TEXT,	$SQLITE_BLOB	and
$SQLITE_NULL.

SQLite	uses	so	called	manifest	typing,	which	means	that	field	types	aren't	static.
This	means	that	every	row	can	store	any	type	for	any	field.	$sqlite_field_type
can	be	used	to	determine	the	type	of	the	field	for	a	specified	row.
There	are	exceptions	to	this,	for	details	see	Datatypes	In	SQLite	Version	3.

See	Also
sqlite_query

http://www.sqlite.org/datatype3.html

sqlite_bind_column
Binds	a	column	to	a	variable.
Syntax

$sqlite_bind_column	(result,	column,	var)	[.name]

/sqlite_bind_column	result	column	var

Parameters
result
The	result	identifier.
column
The	column	number	of	name	to	bind	for.	Must	exist	in	the	result	set.
var
The	variable	or	binary	variable	to	bind	the	column	for.

Properties
name
Forces	column	to	be	treated	as	name.

Return	Value
1	on	success,	or	$null	if	there	was	an	error.

Remarks
This	is	an	alias	for	$sqlite_bind_field	provided	for	convience.

See	Also
Prepared	Statements
sqlite_bind_field
sqlite_prepare
sqlite_fetch_bound

sqlite_bind_field
Binds	a	column	to	a	variable.
Syntax

$sqlite_bind_field	(result,	column,	var)	[.name]

/sqlite_bind_field	result	column	var

Parameters
result
The	result	identifier.
column
The	column	number	of	name	to	bind	for.	Must	exist	in	the	result	set.
var
The	variable	or	binary	variable	to	bind	the	column	for.

Properties
name
Forces	column	to	be	treated	as	name.

Return	Value
1	on	success,	or	$null	if	there	was	an	error.

Remarks
The	columns	bound	to	variables	with	$sqlite_bind_field	are	used	when	fetching
rows	with	$sqlite_fetch_bound	or	$sqlite_current_bound.

If	column	is	numeric	it	is	treated	as	an	ordinal	index	for	the	column,	first	column
being	1,	otherwise	it	is	treated	as	the	column's	name.	You	can	use	the	.name
property	to	force	the	field	to	be	treated	as	column	name	even	if	it's	a	number.

The	var	parameter	is	considered	as	a	binary	variable	if	it	starts	with	a	&.
Otherwise	it's	considered	as	a	regular	variable.	You	should	not	prefix	the	var
with	a	%;	otherwise	mIRC	will	evaluate	the	variable	right	away.

The	bound	variables	are	set	as	global	variables	when	fetched,	because	mSQLite
has	no	access	to	local	variables.	You	should	be	very	careful	that	you	don't
override	any	existing	global	variables.

For	more	information	about	parameter	binding,	see	Prepared	Statements.

If	you	want	to	use	the	.name	property	to	force	the	column	to	act	as	a	column
name,	you	must	use	the	first	form	of	the	syntax.	If	you	don't	care	about	the	return
value,	you	can	use	the	mIRC's	built-in	command	/noop

See	Also
Prepared	Statements
sqlite_bind_column
sqlite_prepare
sqlite_fetch_bound
sqlite_current_bound

sqlite_bind_param
Binds	a	variable	as	a	parameter	for	prepared	statement.

Syntax

$sqlite_bind_param	(statement,	param,	var	[,	datatype])

/sqlite_bind_param	statement	param	var	[datatype]

Parameters
statement
The	prepared	statement	identifier.
param
The	parameter	to	bind	to.	Must	exist	in	the	prepared	query.
var
The	variable	or	binary	variable	to	bind	to.
datatype
Optional.	Tells	what	datatype	var	is.	See	remarks.

Return	Value
1	on	success,	or	$null	if	there	was	an	error.

Remarks
$sqlite_bind_param	can	be	used	to	bind	a	variable	to	a	parameter.	The	variable	is
bound	as	a	reference	and	is	evaluated	at	the	time	of	execution.	This	means	that
by	changing	the	variable	in	mIRC,	you're	effectively	changing	the	bound	value
as	well.

The	param	parameter	can	either	be	a	numerical	index,	specified	with	a	?	in	the
query,	or	a	named	parameter	specified	with	a	:name	in	the	query.	If	binding	a
named	parameter,	you	should	also	include	the	colon	in	the	name.

The	var	parameter	is	considered	as	a	binary	variable	if	it	starts	with	a	&.
Otherwise	it's	considered	as	a	regular	variable.	You	should	not	prefix	the	var
with	a	%;	otherwise	mIRC	will	evaluate	the	variable	right	away.	If	not	a	binary
variable,	the	specified	variable	must	be	a	global	variable	because	local	variables
only	exist	in	scope	of	the	alias	they're	declared	in;	mSQLite	has	no	access	to
them.	See	example	below.

If	datatype	is	specified,	it	must	be	one	of	the	$SQLITE_INTEGER,
$SQLITE_FLOAT,	$SQLITE_TEXT,	$SQLITE_BLOB	and

$SQLITE_NULL.	The	datatype	tells	what	datatype	var	is.	If	omitted,	mSQLite
will	attempt	to	deduce	the	datatype	of	the	variable	at	execution	time.	You	should
specify	datatype	when	you	want	a	numerical	variable	to	act	as	a	text	for
example.

For	more	information	about	parameter	binding,	see	Prepared	Statements.

Example

;	Open	a	temporary	db

var	%db	=	$sqlite_open()

;	Binds	one	numerical	and	one	named	parameter	two	times

var	%sql	=	SELECT	?,	:test

var	%stmt	=	$sqlite_prepare(%db,	%sql)

if	(%stmt)	{

		;	Binds	%first	as	first	parameter,	and	&second;	as	second	parameter.

		;	Do	not	prefix	the	variable	with	a	%	or	mIRC	will	evaluate	the	variable	beforehand.

		sqlite_bind_param	%stmt	1	first

		;	If	datatype	isn't	specified	the	binary	variable	would	be	considered	a	blob	by	mSQLite.

		sqlite_bind_param	%stmt	:test	&second;	$SQLITE_TEXT

		;	We	can	declare	the	variables	after	they're	bound	because	they	aren't	evaluated	before	the	query	is	executed.

		set	%first	Hello

		bset	-t	&second;	1	World

		;	Execute	the	query	and	show	the	results

		var	%result	=	$sqlite_query(%stmt)

		if	($sqlite_fetch_row(%result,	row,	$SQLITE_NUM))	{

				echo	-a	First	execution:

				echo	-a	1st:	$hget(row,	1)

				echo	-a	2nd:	$hget(row,	2)

		}

		sqlite_free	%result

		;	Change	the	first	parameter	to	something	else,	you	don't	need	to	call	sqlite_bind_param	again!

		set	%first	Another

		;	Execute	the	query	again	and	show	the	new	results

		var	%result	=	$sqlite_query(%stmt)

		if	($sqlite_fetch_row(%result,	row,	$SQLITE_NUM))	{

				echo	-a	Second	execution:

				echo	-a	1st:	$hget(row,	1)

				echo	-a	2nd:	$hget(row,	2)

		}

		sqlite_free	%result

		sqlite_free	%stmt

}

else	{

		echo	-a	Error	preparing	query:	%sqlite_errstr

}

sqlite_close	%db

;	Output:

;	First	execution:

;	1st:	Hello

;	2nd:	World

;	Second	execution:

;	1st:	Another

;	2nd:	World

See	Also
Prepared	Statements
sqlite_prepare
sqlite_bind_field
sqlite_bind_value

sqlite_bind_value
Binds	a	value	as	a	parameter	for	prepared	statement.

Syntax

$sqlite_bind_value	(statement,	param,	value	[,	datatype])

/sqlite_bind_value	statement	param	value	[datatype]

Parameters
statement
The	prepared	statement	identifier.
param
The	parameter	to	bind	to.	Must	exist	in	the	prepared	query.
value
The	value	to	bind	to.
datatype
Optional.	Tells	what	datatype	value	is.	See	remarks.

Return	Value
1	on	success,	or	$null	if	there	was	an	error.

Remarks
$sqlite_bind_value	can	be	used	to	bind	a	value	to	a	parameter.

The	param	parameter	can	either	be	a	numerical	index,	specified	with	a	?	in	the
query,	or	a	named	parameter	specified	with	a	:name	in	the	query.	If	binding	a
named	parameter,	you	should	also	include	the	colon	in	the	name.

If	datatype	is	specified,	it	must	be	one	of	the	$SQLITE_INTEGER,
$SQLITE_FLOAT,	$SQLITE_TEXT,	$SQLITE_BLOB	and
$SQLITE_NULL.	The	datatype	tells	what	datatype	value	is.	If	omitted,
mSQLite	will	attempt	to	deduce	the	datatype	of	the	value.	You	should	specify
datatype	when	you	want	a	numerical	value	to	act	as	a	text	for	example.

Note	that	if	you	want	to	bind	a	text	value	with	more	than	one	word,	you	must	use
the	first	form	of	syntax.	If	you	don't	care	about	the	return	value,	you	can	use	the
built-in	mIRC	command	/noop

For	more	information	about	parameter	binding,	see	Prepared	Statements.

Example

;	Open	a	temporary	db

var	%db	=	$sqlite_open()

;	Binds	one	numerical	and	one	named	parameter

var	%sql	=	SELECT	?,	:test

var	%stmt	=	$sqlite_prepare(%db,	%sql)

if	(%stmt)	{

		;	Binds	'Hello	world'	as	first	parameter	and	100	as	second	parameter	as	float.

		;	We	must	use	the	$sqlite_bind_param	syntax	here,	because	the	value	contains	more	than	one	word.

		noop	$sqlite_bind_value(%stmt,	1,	Hello	world)

		;	If	datatype	isn't	specified	100	would	be	considered	an	integer	by	mSQLite.

		sqlite_bind_value	%stmt	:test	100	$SQLITE_FLOAT

		;	Execute	the	query	and	show	the	results

		var	%result	=	$sqlite_query(%stmt)

		if	($sqlite_fetch_row(%result,	row,	$SQLITE_NUM))	{

				echo	-a	1st:	$hget(row,	1)

				echo	-a	2nd:	$hget(row,	2)

		}

		sqlite_free	%result

		sqlite_free	%stmt

}

else	{

		echo	-a	Error	preparing	query:	%sqlite_errstr

}

sqlite_close	%db

;	Output:

;	1st:	Hello	world

;	2nd:	100.0

See	Also
Prepared	Statements
sqlite_prepare
sqlite_bind_field
sqlite_bind_param

sqlite_clear_bindings
Clears	all	bindings	from	a	result	or	a	statement.
Syntax

$sqlite_clear_bindings	(result)

/sqlite_clear_bindings	result

$sqlite_clear_bindings	(statement)

/sqlite_clear_bindings	statement

Parameters
result
The	result	identifier.
statement
The	prepared	statement	identifier.

Return	Value
1	on	success,	or	$null	if	there	was	an	error.

Remarks
$sqlite_clear_bindings	clear	all	parameter	bindings	from	a	specified	result	or
prepared	statement.	That	is,	unless	they're	re-bound,	they	will	default	to	NULL.

If	used	to	clear	bindings	in	a	result	set,	clears	all	bindings	specified	with
$sqlite_bind_field.	If	used	to	clear	bindings	in	a	prepared	statement,	clears	all
bindings	specified	with	$sqlite_bind_param	or	$sqlite_bind_value.

It	is	usually	ok	to	ignore	the	return	value	of	$sqlite_clear_bindings	because	the
only	case	an	error	is	returned	is	when	an	invalid	statement	is	specified.

See	Also
Prepared	Statements
sqlite_prepare
sqlite_bind_param
sqlite_bind_value

sqlite_next
Seek	to	the	next	row	number.
Syntax

$sqlite_next	(result)

/sqlite_next	result

Parameters
result
The	result	identifier.

Return	Value
1	on	success;	Otherwise	0	if	there	are	no	more	rows	available,	or	$null	if	there
was	an	error.

See	Also
sqlite_query
sqlite_num_rows
sqlite_prev
sqlite_has_more
sqlite_has_prev

sqlite_prev
Seek	to	the	previous	row	number.
Syntax

$sqlite_prev	(result)

/sqlite_prev	result

Parameters
result
The	result	identifier.

Return	Value
1	on	success;	Otherwise	0	if	there	is	no	previous	row	available,	or	$null	if	there
was	an	error.

See	Also
sqlite_query
sqlite_num_rows
sqlite_next
sqlite_has_more
sqlite_has_prev

sqlite_has_more
Returns	whether	or	not	more	rows	are	available.

Syntax

$sqlite_has_more	(result)

Parameters
result
The	result	identifier.

Return	Value
1	if	there	are	more	rows	available;	Otherwise	0	if	there	are	no	more	rows
available,	or	$null	if	there	was	an	error.

Example

;	This	code	assumes	a	connection	is	already	established	and	stored	in	%db

var	%sql	=	SELECT	*	FROM	table

var	%res	=	$sqlite_query(%db,	%sql)

if	(%res)	{

		;	Counts	number	of	rows,	unpractical	as	you	could	just	use	$sqlite_num_rows,	this	is	only	to	show	usage

		var	%rows	=	0

		while	($sqlite_has_more(%res))	{

				sqlite_next	%res

				inc	%rows

		}

		echo	-a	Number	of	rows	returned:	%rows

		sqlite_free	%res

}

else	{

		echo	-a	Error	executing	query:	%sqlite_errstr

}

See	Also
sqlite_query
sqlite_num_rows
sqlite_next
sqlite_prev
sqlite_has_prev

sqlite_has_prev
Returns	whether	or	not	a	previous	row	is	available.
Syntax

$sqlite_has_prev	(result)

Parameters
result
The	result	identifier.

Return	Value
1	if	there	is	a	previous	available;	Otherwise	0	if	there	is	no	previous	row
available,	or	$null	if	there	was	an	error.

See	Also
sqlite_query
sqlite_num_rows
sqlite_prev
sqlite_next
sqlite_has_more

sqlite_seek
Seek	to	a	particular	row.
Syntax

$sqlite_seek	(result,	row_index	[,	seek_type])

/sqlite_seek	result	row_index	[seek_type]

Parameters
result
The	result	identifier.
row_index
The	row	to	seek	to.
seek_type
The	seek	type.	Optional,	see	remarks	for	more	info.

Return	Value
1	on	success;	Otherwise	0	if	the	row	isn't	seekable,	or	$null	if	there	was	an	error.

Remarks
The	optional	seek_type	parameter	specifies	the	direction	and	offset	of	seek	and
can	be	one	of	the	following:	$SQLITE_BEG,	$SQLITE_CUR	or
$SQLITE_END.	$SQLITE_BEG	is	default.
$SQLITE_BEG	seeks	forward	from	the	start	of	the	result.	$SQLITE_CUR	seeks
forward	from	the	current	position	of	the	result.	$SQLITE_END	seeks	backwards
from	the	end	of	the	result.

See	Also
sqlite_query
sqlite_key

sqlite_rewind
Seeks	to	the	first	row.
Syntax

$sqlite_rewind	(result)

/sqlite_rewind	result

Parameters
result
The	result	identifier.

Return	Value
1	on	success;	Otherwise	0	if	the	result	isn't	rewindable,	or	$null	if	there	was	an
error.

Remarks
$sqlite_rewind	is	equivalent	to	calling	$sqlite_seek	with	row	value	of	1	and
seek_type	of	$SQLITE_BEG.

See	Also
sqlite_query
sqlite_key
sqlite_rewind

sqlite_key
Returns	the	current	row	number	of	a	result.
Syntax

$sqlite_key	(result)

Parameters
result
The	result	identifier.

Return	Value
The	current	row	number	on	success,	or	$null	if	there	was	an	error.

Remarks
$sqlite_rewind	is	equivalent	to	calling	$sqlite_seek	with	row	value	of	1	and
seek_type	of	$SQLITE_BEG.

See	Also
sqlite_query
sqlite_key
sqlite_rewind

sqlite_help
Opens	the	help	file.
Syntax

/sqlite_help

sqlite_libversion
Returns	the	version	of	the	SQLite	library.

Syntax

$sqlite_libversion

Return	Value
The	version	of	the	library.

Remarks
The	returned	version	is	delimited	by	periods	and	has	3	different	numbers
indicating	the	version:	a	major,	a	minor	and	a	revision	number.
For	example	1.2.3	means	that	major	version	is	1,	minor	2	and	the	revision
number	is	3.

Example

;	Displays	the	SQLite	version	to	an	active	window

//echo	-a	SQLite	Version:	$sqlite_libversion

;	Example	output:

;	SQLite	Version:	3.3.6

See	Also
sqlite_dllversion

sqlite_dllversion
Returns	the	version	of	the	mIRC	SQLite	DLL.

Syntax

$sqlite_dllversion

Return	Value
The	version	of	the	library.

Remarks
The	returned	version	is	delimited	by	periods	and	has	3	different	numbers
indicating	the	version:	a	major,	a	minor	and	a	revision	number.
For	example	1.2.3	means	that	major	version	is	1,	minor	2	and	the	revision
number	is	3.

Example

;	Displays	the	DLL	version	to	an	active	window

//echo	-a	DLL	Version:	$sqlite_dllversion

;	Example	output:

;	DLL	Version:	1.0.0

See	Also
sqlite_libversion

sqlite_error_string
Returns	a	textual	representation	of	an	error	code.

Syntax

$sqlite_error_string	(errcode)

Parameters
errcode
The	error	code	to	format.

Return	Value
A	formatted,	textual	representation	of	errcode.

Example

;	Displays	textual	representation	of	the	latest	error	code	which	is	stored	in	%sqlite_errno

var	%err	=	%sqlite_errno

echo	-a	Last	Error:	$sqlite_error_string(%err)

;	Example	output:

;	Last	Error:	not	an	error

See	Also
sqlite_last_error

sqlite_busy_timeout
Sets	the	busy	timeout	duration	or	disables	busy	handlers.
Syntax

$sqlite_busy_timeout	(conn,	milliseconds)

/sqlite_busy_timeout	conn	milliseconds

Parameters
conn
The	connection	identifier.
milliseconds
The	number	of	milliseconds.

Return	Value
1	on	success,	or	$null	if	there	was	an	error.

Remarks
Set	the	maximum	time,	in	milliseconds,	that	SQLite	will	wait	for	a	conn	to
become	ready	for	use.
Use	0	for	milliseconds	to	disable	busy	handlers.

You	can	set	the	default	busy	timeout	in	the	mSQLite	configuration	file,	see
Configuring	mIRC	SQLite	for	details.
It	is	usually	ok	to	ignore	the	return	value	of	$sqlite_busy_timeout	because	the
only	case	an	error	is	returned	is	when	an	invalid	conn	is	specified.

sqlite_is_valid_conn
Checks	if	a	database	connection	is	valid.
Syntax

$sqlite_is_valid_conn	(conn)

Parameters
conn
The	connection	identifier.

Return	Value
1	if	conn	is	a	valid	connection,	0	if	it's	invalid,	or	$null	if	there	was	an	error.

Remarks
It	is	usually	ok	to	ignore	if	$sqlite_is_valid_conn	returns	$null	because	the	only
case	an	error	is	returned	is	when	conn	isn't	specified.

See	Also
sqlite_open
sqlite_is_valid_result
sqlite_is_valid_statement
sqlite_is_memory

sqlite_is_valid_result
Checks	if	a	result	is	valid.
Syntax

$sqlite_is_valid_result	(result)

Parameters
result
The	result	identifier.

Return	Value
1	if	result	is	a	valid	result,	0	if	it's	invalid,	or	$null	if	there	was	an	error.

Remarks
It	is	usually	ok	to	ignore	if	$sqlite_is_valid_result	returns	$null	because	the	only
case	an	error	is	returned	is	when	result	isn't	specified.

See	Also
sqlite_query
sqlite_is_valid_conn
sqlite_is_valid_statement
sqlite_is_memory

sqlite_is_valid_statement
Checks	if	a	prepared	statement	is	valid.
Syntax

$sqlite_is_valid_statement	(statement)

Parameters
result
The	statement	identifier.

Return	Value
1	if	statement	is	a	valid	prepared	statement,	0	if	it's	invalid,	or	$null	if	there	was
an	error.

Remarks
It	is	usually	ok	to	ignore	if	$sqlite_is_valid_statement	returns	$null	because	the
only	case	an	error	is	returned	is	when	statement	isn't	specified.

See	Also
sqlite_prepare
sqlite_is_valid_conn
sqlite_is_valid_result
sqlite_is_memory

sqlite_is_memory
Checks	whether	database	is	memory	database	or	not.
Syntax

$sqlite_is_memory	(conn)

Parameters
conn
The	connection	identifier.

Return	Value
1	if	conn	is	a	memory	database,	0	if	it's	file	database,	or	$null	if	there	was	an
error.

See	Also
sqlite_is_valid_conn
sqlite_is_valid_result

sqlite_field_metadata
Retrieves	meta	information	about	a	specific	column.
Syntax

$sqlite_field_metadata	(conn	[,	database],	table,	column,	htable)

Parameters
conn
The	connection	identifier.
database
The	database	name	where	table	exists.	Optional,	see	remarks	for	details.
table
The	table	name	where	column	exists.
column
The	column	to	get	meta	information	about.
htable
The	hash	table	to	assign	results	to.

Return	Value
1	on	success,	or	$null	if	there	was	an	error.

Remarks
This	identifier	fetches	meta	information	about	a	specific	column,	and	assigns	the
results	to	htable.
The	hash	table	will	have	the	following	items	set:
[pre]
dattype	The	declared	data	type,	eg.	INTEGER
collseq	The	collation	sequence	name,	eg.	BINARY
notnull	1	if	NOT	NULL	constraint	exists,	otherwise	0
primkey	1	if	column	is	part	of	PRIMARY	KEY,	otherwise	0
autoinc	1	if	column	is	AUTOINCREMENT,	otherwise	0
[/pre]
The	database	argument	is	optional.	If	omitted	all	attached	databases	in	conn	will
be	searched	for	the	specified	table.

sqlite_load_extension
Loads	a	dynamic	extension.
Syntax

$sqlite_load_extension	(conn,	filename	[,	entrypoint])

/sqlite_load_extension	conn	filename	[entrypoint]

Parameters
conn
The	connection	identifier.
filename
The	filename	of	the	extension.
entrypoint
The	entrypoint	of	the	extension	Optional,	see	remarks	for	details.

Return	Value
1	on	success,	or	$null	if	there	was	an	error.

Remarks
This	function	loads	a	dynamic	extension	filename.	Dynamic	extensions	are
useful	for	creating	efficient	custom	functions	and	virtual	table	modules.
The	optional	parameter	entrypoint	specifies	the	initialization	function	within	the
extension.	If	omitted,	the	entrypoint	will	default	to	sqlite3_extension_init,
which	is	recommended.	See	SQLite	Wiki's	Loadable	Extensions	article	for
details	and	more	information.

NOTE.	The	loadable	extension	API,	as	well	as	the	virtual	table	API,	is	still	beta
in	SQLite,	hence	if	there	are	any	changes	in	the	API	in	the	future,	the	changes
might	also	reflect	in	mSQLite.

http://www.sqlite.org/cvstrac/wiki?p=VirtualTables
http://www.sqlite.org/cvstrac/wiki?p=LoadableExtensions

sqlite_reload
Reloads	the	configuration	file.
Syntax

/sqlite_reload

Remarks
This	command	allows	you	to	reload	the	configuration	file	in	case	you	have	made
changes	but	don't	want	to	reload	the	whole	DLL.

sqlite_safe_encode
Encodes	data	for	safe	use	in	files.
Syntax

$sqlite_safe_encode	(data	[,	delim])

Parameters
data
The	data	to	be	encoded.
delim
Optional.	Delimiter	in	ASCII	used	to	separate	fields.

Return	Value
Encoded	data	on	success	or	$null	on	error.

Remarks
$sqlite_safe_encode	is	used	by	$sqlite_fetch_all	internally	to	encode	data	so	it
can	be	safely	written	into	a	file.

The	characters	that	are	encoded	are:	\	(backslash),	\n	(newline),	\r	(carriage
return),	\0	(null-byte,	in	binary	data)	and	whatever	delimiter	is	used,	if	any.	The
characters	are	encoded	as	an	escape	sequence	\xNN	where	NN	is	a	two-digit
hexadecimal	number.

In	case	$null	is	returned	it	can	mean	an	error,	but	it	can	also	happen	if	you	tried
to	encode	an	empty	string.	It	should	be	ok	to	ignore	this,	but	in	case	you	want	to
determine	whether	$null	meant	an	error	or	not,	you	can	check	the
%sqlite_errno	variable;	if	it's	$SQLITE_OK	there	was	no	error.

See	Also
sqlite_fetch_all
sqlite_safe_decode

sqlite_safe_decode
Decodes	safe-encoded	data.
Syntax

$sqlite_safe_decode	(data)

Parameters
data
The	data	to	be	decoded.

Return	Value
Decoded	data	on	success	or	$null	on	error.

Remarks
$sqlite_safe_decode	is	used	to	decode	data	encoded	by	$sqlite_fetch_all	or
$sqlite_safe_encode.

In	case	$null	is	returned	it	can	mean	an	error,	but	it	can	also	happen	if	you	tried
to	encode	an	empty	string.	It	should	be	ok	to	ignore	this,	but	in	case	you	want	to
determine	whether	$null	meant	an	error	or	not,	you	can	check	the
%sqlite_errno	variable;	if	it's	$SQLITE_ERROR_OK	there	was	no	error.

See	Also
sqlite_fetch_all
sqlite_safe_decode

sqlite_autocommit
Turns	on	or	off	autocommit	mode,	or	returns	its	current	state.

Syntax

$sqlite_autocommit	(conn	[,	mode])

/sqlite_autocommit	conn	mode

Parameters
conn
The	connection	identifier.
mode
11	to	enable	autocommit	mode,	0	to	disable.

Return	Value
If	setting	the	autocommit	mode,	1	on	success,	or	$null	if	there	was	an	error.	If
getting	the	autocommit	mode,	1	if	autocommit	mode	is	enabled,	otherwise	0.

Remarks
When	auto-commit	mode	is	enabled	every	SQL	statement	is	automatically
committed	after	they're	executed,	unless	$sqlite_begin	or	BEGIN
TRANSACTION	is	explicitly	used	to	start	a	transaction.	When	disabled,	changes
to	the	database	are	deferred	and	only	committed	when	$sqlite_commit	or
COMMIT	TRANSACTION	is	used.

Using	transactions	when	doing	a	batch	of	updates	on	database	can	greatly
improve	the	performance.	Disabling	auto-commit	mode	means	that	you	don't
have	to	worry	about	remembering	to	start	the	transaction	all	the	time,	all	you
need	to	worry	about	is	where	you	want	all	the	pending	changes	to	be	committed.

Auto-commit	is	enabled	by	default	for	new	database	connections.	SQLite	doesn't
remember	the	state	of	auto-commit	mode	when	database	is	closed,	thus	you	must
call	this	function	everytime	for	a	newly	opened	connection,	if	you	want	to
disable	auto-commit	mode	by	default	for	that	connection.

Enabling	auto-commit	for	a	connection	will	commit	all	pending	changes.

It	is	usually	ok	to	ignore	the	return	value	of	$sqlite_autocommit	when	used	to	set
autocommit	mode,	because	the	only	case	an	error	is	returned	is	when	an	invalid
conn	is	specified.

Example

;	Open	a	temporary	database	and	disable	auto-commit	on	it

var	%db	=	$sqlite_open()

sqlite_autocommit	%db	0

;	Create	a	table	and	insert	a	row	in	it

sqlite_exec	%db	CREATE	TABLE	test	(text)

sqlite_exec	%db	INSERT	INTO	test	VALUES	('First	row')

sqlite_commit	%db

;	Insert	another	row,	but	this	time	roll	it	back

sqlite_exec	%db	INSERT	INTO	test	VALUES	('Second	row')

sqlite_rollback	%db

;	Print	all	the	rows	in	the	table

var	%res	=	$sqlite_query(%db,	SELECT	*	FROM	test),	%i	=	1

while	($sqlite_fetch_single(%res))	{

		echo	-a	%i	-	$v1

		inc	%i

}

;	Clean	up

sqlite_free	%res

sqlite_close	%db

;	Output:

;	1	-	First	row

;	2	-	Second	row

See	Also
sqlite_begin
sqlite_commit
sqlite_rollback

sqlite_bind_null
Binds	null	as	a	parameter	for	prepared	statement.
Syntax

$sqlite_bind_null	(statement,	param)

/sqlite_bind_null	statement	param

Parameters
statement
The	prepared	statement	identifier.
param
The	parameter	to	bind	to.	Must	exist	in	the	prepared	query.

Return	Value
1	on	success,	or	$null	if	there	was	an	error.

Remarks
The	param	parameter	can	either	be	a	numerical	index,	specified	with	a	?	in	the
query,	or	a	named	parameter	specified	with	a	:name	in	the	query.	If	binding	a
named	parameter,	you	should	also	include	the	colon	in	the	name.

For	more	information	about	parameter	binding,	see	Prepared	Statements.

See	Also
Prepared	Statements
sqlite_prepare
sqlite_bind_field
sqlite_bind_param
sqlite_bind_value

sqlite_fetch_num
Fetches	the	current	row	from	a	result	and	then	advances	to	the	next	row.
Syntax

$sqlite_fetch_num	(result,	hash_table)

Parameters
result
The	result	identifier.
hash_table
The	name	of	the	hash	table	to	where	to	store	the	row	data.

Return	Value
1	on	success;	Otherwise	0	if	there	are	no	more	rows	available,	or	$null	if	there
was	an	error.

Remarks
$sqlite_fetch_num	is	provided	for	convenience.	All	it	does	is	call
$sqlite_fetch_row	with	result_type	set	to	$SQLITE_NUM

See	Also
sqlite_fetch_row
sqlite_fetch_assoc

sqlite_fetch_assoc
Fetches	the	current	row	from	a	result	and	then	advances	to	the	next	row.
Syntax

$sqlite_fetch_assoc	(result,	hash_table)

Parameters
result
The	result	identifier.
hash_table
The	name	of	the	hash	table	to	where	to	store	the	row	data.

Return	Value
1	on	success;	Otherwise	0	if	there	are	no	more	rows	available,	or	$null	if	there
was	an	error.

Remarks
$sqlite_fetch_assoc	is	provided	for	convenience.	All	it	does	is	call
$sqlite_fetch_row	with	result_type	set	to	$SQLITE_ASSOC

See	Also
sqlite_fetch_row
sqlite_fetch_num

