Developing Windows Applications
with Visual Framework
Tutorials

Visual LANSA Frameworks (VL Framework) provide a powerful
application framework for rapidly prototyping and developing both
Windows and Web applications.

The exercises in this tutorial introduce the fundamental skills needed
to develop Windows applications using the Visual LANSA
Framework.

The exercises in this tutorial are:

e VFWO0O05 - Basic Windows Controls

e VFWO010 — A Tab Folder Framework

e VFWO020 — Execute a Visual LANSA Framework Application
e VFWO030 - Create a Prototype

e VFWO040 — Snap in Real Filters

e VFWO042 — Snap in a Real Command Handler

e VFWO044 — Add Instance List Columns

e VFWO050 — Basic Combo Box Processing

e VFWO052 — Build a Working List of Selected Items
e VFWO054 — Edit Text in a Memo / Edit Box

e VFWO056 — Process a List in Sorted Order

e VFWO060 — Using a Tree View

e VFWO062 — A Tree View with Columns

e VFWO070 — Create a Reusable Part Object

e VFWO072 — Create a Department Dropdown Reusable
e VFWO074 — Create a Compound Reusable Part

e VFWO080 — Using an Explorer Component

e VFWO082 — Toolbars, Menus and Pop—up Menus

e VFWO084 — A Business Object Browser and Detail
e VFWO090 - Field Visualizations

its:lansa098.CHM::/LANSA/VFW005_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW010_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW020_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW030_BEGIN.htm
its:lansa098.CHM::/LANSA/VFWEng01_0035.htm
its:lansa098.CHM::/LANSA/VFW042_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW044_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW050_BEGIN.htm
its:lansa098.CHM::/LANSA/VFWEng01_0055.htm
its:lansa098.CHM::/LANSA/VFW054_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW056_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW060_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW062_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW070_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW072_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW074_BEGIN.htm
its:lansa098.CHM::/LANSA/VFWEng01_0095.htm
its:lansa098.CHM::/LANSA/VFWEng01_0100.htm
its:lansa098.CHM::/LANSA/VFW084_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW090_BEGIN.htm

e VFWI100 — Define a Parent/Child Instance List

e VFWI102 — Field Visualizations in a Grid

e VFW104 — Simple Keyed Collections

e VFW106 — Using a List Collection

e VFW110 — Simple Drag and Drop

e VFW112 — Drag and Drop between Components
e VFW120 - Using Hidden Commands

e VFW122 — Launching a VLF Window

e VFW124 — Using Business Object SubTypes

e VFW126 — Using Space Objects (Optional)

e VFW130 — Set up the VL Framework for Client/Server

Edition Date August 11 2014
© LANSA

its:lansa098.CHM::/LANSA/VFW100_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW102_BEGIN.htm
its:lansa098.CHM::/LANSA/VFWEng01_0125.htm
its:lansa098.CHM::/LANSA/VFW106_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW110_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW112_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW120_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW122_BEGIN.htm
its:lansa098.CHM::/LANSA/VFWEng01_0895.htm
its:lansa098.CHM::/LANSA/VFWEng01_0900.htm
its:lansa098.CHM::/LANSA/VFW130_BEGIN.htm

About the Exercises

Who Should Use the Exercises?

These exercises have been written for LANSA developers who have completed
the Visual LANSA Fundamentals training. Basic Repository and RDML
programming skills are required. You should have completed the Visual LANSA
User Interface Tutorial, Editor Tutorial, Repository Tutorial and the RDML
Programming using Forms Tutorial before starting these exercises.

These exercises will expand upon the basic form programming skills learned in
the Fundamentals tutorials.

How Many Developers Can Use the Exercises?

Except if you are using a trial version of Visual LANSA without a development
license, there is no limit to the number of developers who may use the exercises
at the same time in the same partition. However, it is important that each
developer has a unique identifier for their own work as noted below.

If you have a development license:

e To allow for more than one developer to do the exercises in the same
partition, all LANSA object names are prefixed with iii which represents a
unique three character code assigned to each exercise user. For example, if
your name is John David Smith you can use the characters JDS. When asked
to create a form named iiiVFWO01, you will create a form named
JDSVFWOL1.

If you are completing more a LANSA exercise more than once, and you are
asked to create another iiiVFWO01 form, you can simply use a different set of
characters for iii.

e Always remember to replace iii with your unique 3 characters when creating
objects in LANSA. You will not always be reminded to make this
substitution.

If you are using LANSA in trial mode:

¢ Only one developer can do the exercises in the same partition because object
names must be unique. In trial mode, only a prefix of iii=DEM is allowed
and components must be named DEMCOMO01 to DEMCOM10. If objects
DEMCOMO01 to DEMCOMI10 already exist, they must be deleted from the
repository before you start these exercises.

Install the Tutorial Files

You may wish to install a separate Visual LANSA System for training. You can
install an Independent Visual LANSA Workstation on a PC for training and then
uninstall it once training is complete. If you are using Visual LANSA in trial
mode, this is the recommended approach.

These exercises assume that you have not customized the editor interface unless
instructed in the exercise. If you have made customizations, some instructions
and sample screen images may not exactly match your development
environment.

What Partition Should I Use?

Any partition may be used for training purposes. In these exercises it is assumed
that you are using a DEM partition. The partition must be defined as:

e a multilingual partition with
e Long Names enabled and
e be RDMLX-enabled.

The partition must be initialized to load the Visual LANSA Frameworks and
Demonstration Material into the partition you will be using as shown in the
following screen capture:

Wisual LANSS Lagan 2

LUser 7 -
Partition Initialization @

Pass
[E Mandatory Partition Initialization

[H]visual LAMNSA Framewark I
(s | [Enable for the wWeb =
[ClLaNSA Cient field and file definitions

I [H| Demonstration material

s

I |Run Dermonstration

[(04] | Shiow Last Log... | | Messages | | Cancel | | Help |

g

(04 Systemn Init... Partition Init... Messages Cancel Help

Refer to the Partition Initialization options in the Visual LANSA Administration
Guide for more details.

Following is an example of a partition's settings (partition DEM) when opened
in the Visual LANSA Editor for a stand-alone Visual LANSA install.

its:lansa011.chm::/Lansa/l4wADM02_0025.htm

H - [# | DEM - Full ROMLX Demonstration Partition - LANSA Editar
—

File Horne Tools

— — i - Laja)
[S -

B s .- 0. .%%.

Repository Text Search Views Open History Error Logs

Find Objects

_ Partition definition | Language Settings | Frameworks | Groups

| Enable For Full RDMLX

Fl .
| 4 i@ Description
Enabled For Long Mames 4 Partition Mame & Description DEM - Full ROMLX Derr
| Create Field A5 RDMLX F Unique object prefix E
Create File As ROMLY 7 F'artn:mn.‘ien?urrty Officer PCEUSER
Diefault file library DC@DEMOLIB
Create Component As Full RDMLX | Module library DC@DEMOLIE
Create Function As Full RDMLX F Partition is multilingual '
Partition is web enabled 4
Enable Short Char Disable = Create rela‘tll'.-'e record number L4
Apply SAASCUA standards W'

Enable documentor

User Access Enforced

Perform checks before propagating
Ignore propagated deletes

Force "ENDWHERESQL

W Task Tracking

& RDMLX Settings

@ Available Field Types

& Universal Interface Ontions

These exercises operate the best in a brand new installation using the DEM
partition.

Before You Begin These Exercises

LANSA V13 introduces Long Names support in the Repository and it is
assumed that Long Names are enabled in the partition you will be using.

With Long Names enabled, objects have two names, a Long Name and an
Identifier (also referred to as the Short Name or Object Identifier).

With Long Names enabled, when objects such as fields, files, forms and
reusable parts are created, the Long Name must be unique within the
partition and may not be the same as an existing Identifier.

A Long Name may be up to 256 characters long and may be letters and
numbers with no embedded blanks. Long Names are not case sensitive, so
EMPNO, EmpNo and Empno are all the same.

An Identifier may be up to 10 characters long and may contain letters and
numbers and some special characters for some objects, but these are not
recommended. Field Identifiers are limited to 9 characters.

When an object is created using a Long Name, LANSA will assign an

Identifier. As you create objects, you may assign an Identifier (as long as it is
unique within the partition). An Identifier cannot be changed once a new
object has been saved.

e For more detailed information see LANSA Object Names in the Technical
Reference Guide.

Using Reusable Parts with Long Names in Visual LANSA
Frameworks

When you plug-in a reusable part to the Framework:

e An Identifier must be used, since the framework will be loading and
unloading this component.

e The recommended procedure is to use the Find dialog, search and find the
component required. This will ensure the Identifier is always used.

Fiters = Filter Settings Commands Enabled | Command Display | Custom Properties | SubTypes | Instance List [Relatic

Identification | Icons | Fiter Snap-in Settings
Stay Active Default =
Fitter Handler
‘Windows
=/ Component A
Mok Up - RAD-PAD LL
4) Find
Like Mame IIVPW
Like Descriphion
Find
L Hame [leersmbon
I TP Emplopes Filer by Hame
=] LSS FIRE! B LoCglicm
VP Emplopes Details CH
lIvPwozr Weekly Report CH
IIVFW15 Find Imapga
IWFA1E Emplopes Image Command Handler
1P Saky Comemand Handler

its:lansa015.chm::/Lansa/tgub5_0050.htm

Tips for doing the Exercises

It is recommended that you complete the exercises in sequence.

The first steps in a exercise will provide very precise descriptions of the tasks to
be performed. As the steps and course progress, the instructions will become
much more general.

Later exercises are designed to use skills from the earlier exercises. Where
specific exercises must be done before starting an exercise, the exercise
prerequisites are listed in Before you Begin.

The exercises are sequenced so that you develop more advanced and complex
example applications as the course progresses. For example VFW001 — Basic
Windows Controls is an optional first exercise designed to establish a basic
knowledge of Windows controls. You may not find it necessary to do this
exercise.

Note:
e Check off each step in the exercise as you complete it.
e Follow the instructions very carefully.

e Your code may not be an exact match to the examples in these exercises. Do
not be concerned if some values do not match exactly. For example, the
width of a button is based on the size you create it. Sample code might show
a button that has Width(50) but your code might have Width(60).

If you have customized the editor, some of the sample screen images may not
exactly match your development environment. Do not be concerned if the
screens are not an exact match. For example, some tabs may be shown
undocked from the editor. Undocked tabs appear as a separate dialog instead of
being part of an editor pane. Refer to Dock and Undock a Tab Sheet in the
Visual LANSA User Interface Tutorials if you need a refresher on these subjects.

Your Feedback

Your feedback regarding these exercises will help us improve the overall quality
of the LANSA documentation and training. Please e-mail your comments to
lansatraining@lansa.com.au.

its:lansa095.chm::/LANSA/usrtut01_0090.htm
mailto:lansatraining@LANSA.com.au

VFWO005 — Basic Windows Controls
Objectives

e To learn about basic Windows visual control components available with
Visual LANSA. These controls enable the user to control and interact with
the application.

- !

' Basic Windows Controls =R X

Basic Windows Contr... I_EE

Optionz

@ Home

My first form

() Office

Enter the Options

To achieve these objectives, you will complete the following:
Step 1. Create a Form

Step 2. Add Controls to a Form shows you how to add simple examples of the
following controls to a form:

Check Box Push Button
Edit Box Radio Buttons
Group Box Static

Label Status Bar
Panel Track Bar
Progress Bar

Step 3. Create Tab Folder Form to learn how the tab folders are used.

Before You Begin

To complete these exercises, you should have completed the LANSA
Fundamentals workshop.

Step 1. Create a Form

1. To create a new form, from the File menu, select New / Form and then select
Basic Form.

#1 [* l.ul:mnr
[B Common
. : . —
Field File Form Reusable Part
Open
Last Opened [:}
= @ A
_ Function Web Weblet Mum;ual
Application Variahle
E e Al Module
The New Form dialog opens:
O MNew Form ﬂ
MName HiBasic'\WinChrls Create
Description Basic Windows Controls
Cancel
Framework Personnel & Payroll (HUMAM RESOURCES)
Group
Identifier MBAS_1
Enabled For RDMLY [+
2. Add the form's details:
Name iiiBasicWinCtrls where iii are your course assigned initials.

If you are using iii=DEM, your component must be named
DEMCOMOL1 as described in How Many Developers Can Use the
Exercises? in About the Exercises.

Description Basic Windows Controls

Framework Select from the dropdown list, in this example it's Personal &
Payroll. When creating new form or reusable part, you should
select a suitable Framework for it to belong to. Components are
grouped on the Repository tab under Organizers / Frameworks:

its:lansa098.CHM::/LANSA/VFWEng00_0010.htm

4 0 Organizers
* @ Database Diagrams
=2 Frameworks
I 75 ADMIMNISTRATION - Ad...
I =5 ADMINISTRATION.D - A...
b =5 COMMOMN - Common

I =5 COMNTROLS - Contral Co...
I =5 CUSTOMER SERVICES - C...
I 75 EXECUTIVE INFORMATN...

I =5 FINANCIAL CONTROL -...
a .: HUMAN RESOURCES - P...
o iDspEmpDocs
& VE_ARROWE
& VE_ARROWC
4 VB ARROWF

Administration
Administration Comp...
Common

Contrel Components
Custorner Service Co..,
Executive Information...
Budgeting & Accounti...
Personnel & Payroll
Display Employee Doc...
Bitmap - Arrow backe...
Bitmap - &rrow curved
Bitmap - Amrow forwar...

Step 2. Add Controls to a Form

Push Button
A push button allows a user to perform an action.

A push button can have a bitmap or a text Caption or both.

Push buttons have events such as Click, Got Focus, Lost Focus, Start Drag,
Drag Over etc.

1. The Design tab should currently be visible. This is the default when a new
form is created. On the Home ribbon, select Controls from the Views menu.

Home Design Tocls

i — o

! ﬁ - = B i S Build

ory Text Search Views Open Compile =
Objects

Views

(4) Assistant (F4) il (F

S

o Fawvorites |

L Ternplates 2

=]) |

i

ELFMAR
LLMAME i CheckIn Go To (€1
spEmplocs
FWd i Check Out
WS
Foe Compile

e

Irnport

-iI]_i'uilj @

A Controls - (5

2. Drag and drop a Push Button onto the form. Note that the new component is
automatically named PHBN_1.

3. With the push button selected, select the Details tab and change its Caption
property to Test.

4. To add a Click event, ensure that the push button is selected and select Events
on the Details tab. Double click on the Click event to create a click event.

Alternatively, right click on the push button and select Events / Click Event.
In this case the Source tab will be displayed, and the editor is positioned at
the new event routine.

5. In the push button click event, add code to display a message in a Message
Box.

Your code should look like the following:

Evtroutine Handling(#PHBN_1.Click)

Use Builtin(message_box_show) With_Args(*Default *Default *Default *Def
Endroutine

6. Compile the form using the Compile button on the Home ribbon:

v Full Check =

% Build

Compile

| (F]

7. Run the form, by selecting the Runtime button on the Home ribbon and select
the Execute button:

L—" W Cut
> - Copy

G
=
o
i gt

X . Past : 35 Fi
Runtime ik 8 Find }
| ,
b ¥
: s
0 — = — 2
History Error Logs Debug :,’}
(Q. m— |
e e e —

8. A click on the push button should display a message box:

-
¥ ° Basic windows Controls E@ﬂ
Basic windows Contr... EE .|

My first form

9. Close your form.

10. In the Design view, select the push button and use the Details tab /
Properties sheet to add an image to the push button.

11. Select the VB_MAGLAS image using the ellipsis button for the Image
property:

4 o e Y
DragStyle Maong
? Blipses Hane
* Enabled True
* height 25
¥ Hint F
* HintShow True -
2 HintShowOfParent True] VB_LVLIST Bitmap - List view list !
d Image SMLLL ®| VB_LVSICO Bitmap - List view smal icon
? ImagePosition BeforeCaption VB_MAGLAS iwgges:
P Left 21 VB_MODEM
P Manu L VE_NETWDR Bitmap - Netwark drve
- = E| VB_NEW Bitmap - New
MenuPosition Bottom e
5 P:n Ealoe =] VB_NEWDOC Bitmap - New document
. Menn Serator o & VB_OPEN Bitmap - Open ;
> Modalenlt Hone | VB_PASTE Bitmap - Paste
Name PHEN_1] VB_PHONE Bitmag - Phone }

12. Compile and run the form, which should look like the following:

;j Basic windows CD@

5

[T

13. Close the form. Leave the form iiiBasicWinCtrls open in the editor.

Check Box

A check box is used to represent a Yes/No choice.

There are three button states: checked, unchecked and grayed. Unchecked is the
default. You would normally use the grayed state to indicate that the selections
to which this check box applies have conflicting settings.

To gray out the check box, use the enabled property of the check box
#CKBX _1.Enabled := FALSE

You can use check boxes in groups to display multiple choices, from which the
user can select one or more.

The ButtonState property indicates whether a check box has been checked
The check box can be set to checked state programmatically, as shown in the

following code:
#CKBX _1.buttonstate := checked

1. Select the Design tab for form iiiBasicWinCirls.
2. From the Controls tab, drag and drop a Check Box onto the form.
3. Change the Caption property to Member.

Your form should look like the following:

(m =@ = |

L

4. Change the push button click event to test the Check Box ButtonState
property and display a suitable message in a message box.

Your code should look like the following:

Evtroutine Handling(#PHBN_1.Click)

If Cond(#CKBX_1.BUTTONSTATE *EQ CHECKED)

Use Builtin(MESSAGE_BOX_SHOW) With_Args(*Default *Default *Defaul
Else

Use Builtin(MESSAGE_BOX_SHOW) With_Args(*Default *Default *Defaul
Endif

Endroutine

5. Compile and run the form. Ensure that the correct message box is shown,
depending on the Check Box setting.

6. Close the form. Leave form iiiBasicWinCtrls open in the editor.

Edit Box

An edit box is an area where the user can enter text or where text can be
displayed. The text can be set or retrieved using the Value property. An edit box
is the default visualization style for fields.

1. Select the Design tab for the form iiiBasicWinCtrls.

2. Select the Controls tab, and drag and drop an Edit box onto the form. Note
that the Edit box will be named EDIT 1.

3. Add a Push Button to the form below the Edit box. Note that your button will
be named PHBN 2.

4. Create a Click event for PHBN_2. Change its Caption to OK.

5. Add logic to the new push button's Click event to change the value of the
Edit box to "Hello".

Your code should look like the following:

Evtroutine Handling(#PHBN_2.Click)
#EDIT 1.value := 'Hello'
Endroutine

6. Compile the form and execute it to test the new push button and edit box.
Your form should look like the following:

S

I e e T "o
7. Close the form. Leave form iiiBasicWinCtrls open in the editor.

Group Box
A Group box provides a way of grouping components.

A Group box can optionally have a Title. Define a Title, by defining the Caption
property of the Group box.

Typically, Group boxes are used to group together a set of Check boxes or Radio
buttons, or a related group of fields.

:.-Dpﬁuns

#| Home

Group box has an EnableChildren property. When this property is set to True,
all the components contained in this component are Enabled or Disabled,
depending on whether the Enabled property of this component is set to True or
False.

A Group Box will be used in the next part of this exercise.

Radio Button

Radio buttons are used to represent mutually exclusive choices. The convention
is to enclose the radio buttons in a Group box.

:.-Dpﬁuns o
#| Home

n n
Office

n | n

The ButtonChecked property of the radio button indicates whether it is checked.
By default the buttons are not checked.

While radio buttons and check boxes may appear to function similarly, there is
an important difference: When a radio button is selected, the other radio buttons
in the same group are automatically deselected. By contrast, any number of
check boxes can be selected.

Radio Buttons are automatically "grouped" by their container, such as
a Group Box, or a Panel.

If the radio buttons are simply placed on the form, then the form is
their container.

1. Select the Design tab for the form iiiBasicWinCirls.

2. Drag and drop a Group Box onto the form. Change the Caption property of
the group box, to Options.

3. Adjust the size of the group box, so that two radio buttons can be added to it.

4. Drag and drop two radio buttons into the group box.

a. Change their Captions to Home and Office respectively.
b. Change the Home radio button ButtonChecked property to True.
c. Adjust the width and height of each radio button if necessary.

5. Add a push button to the form, below the group box. Change its Caption to
Check.

6. Create a Click event for the new push button.

7. Add logic to the new push button's click event to indicate which radio button
is checked.

Your code should look like the following:

EVTROUTINE HANDLING(#PHBN_3.Click)

IF COND(#RDBN_1.BUTTONCHECKED *EQ TRUE ")

USE BUILTIN(MESSAGE_BOX_SHOW) WITH_ARGS(OK OK INFORMZ2
ELSE

USE BUILTIN(MESSAGE_BOX_SHOW) WITH_ARGS(OK OK INFORMZ2
ENDIF

ENDROUTINE

8. Compile and execute the form.

9. Ensure that the correct message is displayed in a message box, which
indicates which radio button is checked.

B | Basic Windows Controls = | B &
i [Teat Membies
Options | Ok
@ Home
~ 5

Dffice RADIC BUTTON s |

Chack 0 HOME IS SELECTED |

[

| ok l

10. Close the form. Leave iiiBasicWinCtrls open in the editor.

Label

Use a label to add text that the user cannot change.

Labels are usually used for instructions together with an Edit box. You enter the
text for the label in its Caption property.

A Label has a click event, initialize event, double click event and so on.

Panel

A Panel provides a visual grouping of items in a similar way to a group box, but
without a Title. A panel has properties to control the scroll bar such as
Horizontal Scroll, Vertical Scroll. HorizontalscrollPos, VerticalscrollPos and so
on.

A Panel has an EnableChildren property. All the components contained in this
component are Enabled or Disabled when the Enabled property of this
component is set to True or False.

Like the Group Box, the Panel is a container. Radio Buttons could be grouped
on a panel.
Static Component

Use the Static component to draw lines, rectangles, triangles and ellipses on
forms. The type of the image drawn is specified using the DrawType property.

1. Select the Design tab for form iiiBasicWinCtrls.
2. Drag and drop a Static component onto the form.

3. Change the DrawType property to FramelndentedEdge. The Static
component should look like the following:

4. Experiment by changing the DrawType property to different values.

Status Bar

A Status bar creates a separate area at the bottom of the window where
messages are displayed.

The status area can also contain other components, such as progress bars,
(animated) pictures and edit boxes.

If more than one information message is issued, the user can scroll through

them
it L — —_—
BB cCdD eE fFgGhHilkEILmbnk a0 pPglrR s ST ull e i’z ' S gl

A Status bar will be used in a later step in this exercise.

Track Bar
A Track bar allows the user to select a value with a slider.

. 1]]

A Track bar is a panel containing a slider and, optionally, tick marks.

Track bars are useful when you want to select a discrete value or a set of
consecutive values in a range.

The user can move the slider by dragging it, clicking the mouse to either side of
the slider, or using the keyboard.

1. Select the Design tab for the form iiiBasicWinCitrls.
2. Select the Controls tab, and drag and drop a Track Bar onto the form.
3. Change the MaximumValue property of the Track bar to 5.

Note:

The MinimumValue has a default value of 1, so that there are now 5
divisions.

The TickValue has a default property of 1, so that there is one tick of the

Track bar for every increment of the Track bar.

4. Add a push button to the form, next to the Track bar. Change its Caption to
Show.

5. Add a Click event for the new push button.

6. In the Click event for the Show push button, check for the track bar value
and display a message in a EVTROUTINE
HANDLING(#PHBN_4.Click)message box.

Your code should look like the following:

CASE OF_FIELD(#TKBR_1.VALUE)

WHEN VALUE_IS(=1)

USE BUILTIN(MESSAGE_BOX_SHOW) WITH_ARGS(*Default *Default *
selected in track bar is 1')

WHEN VALUE_IS(=2)

USE BUILTIN(MESSAGE_BOX_SHOW) WITH_ARGS(*Default *Default *
selected in track bar is 2")

WHEN VALUE_IS(=3)

USE BUILTIN(MESSAGE_BOX_SHOW) WITH_ARGS(*Default *Default *
selected in track bar is 3')

WHEN VALUE_IS(= 4)

USE BUILTIN(MESSAGE_BOX_SHOW) WITH_ARGS(*Default *Default *
selected in track bar is 4')

WHEN VALUE_IS(=5)

USE BUILTIN(MESSAGE_BOX_SHOW) WITH_ARGS(*Default *Default *
selected in track bar is 5')

ENDCASE

ENDROUTINE

7. Compile and run the form.

8. Move the Track bar to a value and click the Show button. A message box is
shown, indicating the value of the Track bar.

.i Basic Windows Controls = = &

| & Test Member
Opt Il
ions . -
TRACK BAR v
@ Home | '
Office Value selected in track bar is 2 |
[Check .l i
- : oK |
Enter the Optians — | :
|

Show

9. Close the form. Leave form iiiBasicWinCitrls open in the editor.

Progress Bar

A Progress bar is used to indicate the progress of a lengthy operation. The
progress bar is gradually filled with chunks from left to right as the operation
progresses.

Use the MinimumValue and Maximum Value properties to set the range for the
duration of the entire process. The Value property indicates the current value of
the progress bar.

1. Select the Design tab for form iiiBasicWinCirls.

2. On the Controls tab, select All Controls and drag and drop a Status bar onto
the form. Note that it will be automatically located at the bottom of the form.

3. Drag and drop a Progress bar onto the right hand side of the Status bar.

4. Drag the left hand "handle" of the Progress Bar to the left to expand it. Your
design should look like the following:

atbBcCdDeE (FgGhHilkEILmt nM o0 pPolR e SET ull v iswiddyy'zs

5. Change the MaximumValue property of the Progress bar to 20,000.0
Note that the MinimumValue property defaults to 1.

6. Drag and drop a push button onto the form and change its Caption to Loop.
7. Create a Click event for the Loop push button.
8. Add the following logic to the Loop push button's Click event

EVTROUTINE HANDLING(#PHBN_5.Click)
#STD_COUNT :=1

#PGBR_1.VALUE :=1

BEGIN_LOOP USING(#STD_COUNT) TO(20000)
#PGBR_1.VALUE := #STD_COUNT

END_LOOP

MESSAGE MSGTXT("Process completed successfully")
ENDROUTINE

Review the code you just added. The Progress value is reset to 1. A loop
from 1 to 20000, will update the Progress bar Value for each step and display
a message in the Status bar when the loop completes.

9. Compile and run the form. Verify that it works correctly.

B T L e e e PP

8

Process completed succeszsfully | —

10. Close the form.

Note: This example is a simple example which shows how to use Progress bar
properties. In practical applications, to show the progress of a lengthy process,
set the value of the Progress bar at different places in the logic to visually display
the progress of the operation.

Tab Folders and Tab Sheets
Go to Step 3. Create Tab Folder Form to see how to use a tab folder.

Step 3. Create Tab Folder Form

Use a Tab Folder to create a folder with several sheets to provide an organized
way of showing a large amount of information.

Objectives

To create the form shown below, containing a tab folder with three tab sheets.

e When an employee number is entered on the Employee tab sheet, the
employee details such as Surname, Given Name and Salary are to be
displayed on the Details tab sheet.

e When the Skills tab is selected, a list of employee skills is to be shown

Note: This is a very simple example application and is not typical of the way
that tab sheets interaction would be designed.

5 Tab Folders o o= |

{ Emplapee || Detals | Skils

Employes Mumber A00a0
" Tab Folders =
Employee || Detal || Skils
Employes Sumname BLOGGS
Employer Given Hame|z] FRED JOHH AL&H
Emphospes: Salary 200459
—_— - !
Tab Folders [SERERC

Skil Code MARKET 2

Grade Obtared for Skil F

Cormmert on skils scqueed AAAAASI SIS SIS

Drabe Skl Acquired [DOMMYY) | 305598

1. Create a new form:

Name: iiiTabFolder
Description: A Simple Tab Folder

2. Drag and drop a Tab Folder to the form, and resize it to occupy most of the
form.

3. With the Tab Folder selected, drag and drop a Tab Sheet onto the Tab Folder.

4. Click on the area to the right of the tab sheet, to select the Tab Folder, and
drop another Tab Sheet onto the folder.

5. Repeat step 4. So that the Tab Folder contains 3 Tab Sheets.

6. Select the first Tab Sheet by clicking on the tab and then clicking on the main
tab sheet area.

If you hover over the tab sheet, the component name will be shown in a
tooltip:

|

L"'“W"-u'ﬁa—-..lwm-_.u-—-\..mu

ot T

i

: TBSH_L

a. Change the tab sheet Caption property to Employee.
b. Select the second tab sheet and change its Caption property to Details.
c. Select the third tab sheet and change its Caption property to Skill.

7. On the Repository tab, expand the Files group and expand the file definition,
PSLMST.

8. Select the Employee tab sheet and drop the EMPNO field onto it.

9. Select the Details tab sheet and drop SURNAME, GIVENAME and
SALARY onto it.

10. On the Repository tab, expand the file definition PSLSKL.

11. Select the Skill tab sheet and drop fields SKILCODE, GRADE,
COMMENT and DATEACQ onto it.

12. Create an Opening event routine for Details (TBSH_2).

Add code to initialize the fields SURNAME. GIVENAME and SALARY
and then Fetch them from the file PSLMST with the key EMPNO.

Your code should look like the following:

Evtroutine Handling(#TBSH_2.0Opening) Options(*NOCLEARMESSAGES *
#SURNAME #GIVENAME #SALARY := *default

Fetch Fields(#SURNAME #GIVENAME #SALARY) From_File(pslmst) Witk
Endroutine

13. Create an Opening event routine for Skill (TBSH_3).

Add code to initialize the fields SKILCODE, GRADE, COMMENT and
DATEACQ and then fetch them from the file PSLSKL with the key EMPNO.

Your code should look like the following:

Evtroutine Handling(#TBSH_3.0Opening) Options(*NOCLEARMESSAGES *
#SKILCODE #GRADE #COMMENT #DATEACQ := *default
Fetch Fields(#SKILCODE #GRADE #COMMENT #DATEACQ) From_File(j
Endroutine

Note: The editor will give a warning because the key does not match the file
keys. This logic will fetch the first skill record for the employee only. The
actual file key is EMPNO and SKILCODE because the employee may have a
number of skills.

14. Compile and run the form.

a. On the Employee tab sheet enter and employee number such as A1012 or,
A1013.

b. Select the Details and then Skill to display employee data.

Summary

What I Should Know
e How to use the basic Visual LANSA Windows controls.
e How to use a simple Tab Folder

VEWO010 — A Tab Folder Framework

Tab Folders

The Tab folder control has advanced docking, undocking and autohide features
that can be used to transform a single Tab folder into a Tab framework
application with virtual Tab folders attached to various parts of the window.

The virtual Tab folders can be automatically hidden (auto hide) and Tab sheets
can be moved and attached to other parts of the screen (undock and dock).

The Tab folder properties manage the appearance of the framework and the
individual Tab sheets manage the position and layout of a page in the tab
framework.

The following Tab sheet properties are used:
DockPosition

Use the DockPosition property to specify where the Tab sheet is attached.
The Tab sheet can be docked to the Center, Left, Right, Bottom or Top of the
screen. Using the DockPosition properties of Tab sheets you can construct a
tab framework application from a single Tab folder.

DockAllowUndock

Use the DockAllowUndock property to specify if the Tab sheet can be moved
away (undocked) from the Tab folder. This property can be set to True or
False. When this property is True, a docking bar (a double line) is displayed
on the Tab sheet. To undock the Tab sheet, the user drags it by the docking
bar.

DockCloseButton

Use the DockCloseButton property to specify whether a Close button is
displayed in the Tab sheet. When a Tab sheet has a Close button, it can be
closed. This property can be set to True or False.

DockAllowPositions

Use the DockAllowedPositions property to specify which part of the screen
the Tab sheet can be attached to (docked). The values are Right, Top, Bottom
and None. All positions can be selected. None overrides the multi-select
options and specifies that the TabSheet cannot be docked anywhere. Note that
this property applies to user interaction only and has no bearing on
programmatic changes. Therefore a TabSheet with DockPosition(Left) and
DockAllowedPositions(None) will appear as a DockLeft TabSheet.

Objectives

e The previous exercise demonstrated only the basic features of tab folders and
tab sheets.

e This exercise uses some of the more advanced tab folder behaviour.
To achieve these objectives, you will complete the following:

Step 1. Create a Form

Step 2. Define a Tab Folder Framework

Step 3. Compile and Execute the Form

Summary

Before You Begin
Complete the Simple Tab Folder exercise in VFWO005.

Step 1. Create a Form

1. Create a form as shown in Step 1. Create a Form in exercise VFWO005.

Name iiiTabFIldFrm

Description A Tab Folder Framework

. | PageZ | Pagel Page3

[+ x|

2. Enlarge the form to approximately Width 880 and Height 550.

3. Drag a Tab Folder onto the form and resize and position it to occupy all of
the form.

You will learn more sophisticated form layout techniques in later exercises.

Step 2. Define a Tab Folder Framework

1. Right click on the Tab Folder (that is the background space next to the Page
1 tab) and use the Add Page menu option to add 5 pages.

To add each page, you must first select the Tab Folder.

You can also right click on any tab sheet's tab, to select the tab folder and
Add Page.

Primitive: TAB 1 4

Add Ege
Mext'#age

Previcus Page

Delete Component

b
E
3
>
3
}
£,
E
3
i
C C])
t...
opy Componen PR

Your design should now look like the following:

2. Click on the Tab sheet Page 1 tab and then click in the main area to select it,
and change the following properties:

Property Value

DockAllowedPosition | Left+Right
DockAllowUndock True

DockCloseButton True

DockPosition Left

Note: To see these properties, you must set up the editor to Show Advanced
Features. See File / Options / General.

Your tab folder should now look like the following:

= -
Design || Spurce | Multiingual Details | Repository Help | Cross References [
f ¥
~ 2

<4

Pagel Paged | Page3 Paged | Pageh %

" T :

%

Hint: In the dropdown for DockAllowPositions, select the required values by
using the Left Mouse button plus the Ctrl key.

3. Change the properties of the other Tab sheets as follows:
Tab Sheet 2

Property Value

DockAllowedPositions | Left+Right
DockAllowUndock False

DockCloseButton False

DockPosition Left
Tab Sheet 3

Property Value

DockAllowedPositions | Left+Top
DockAllowUndock True

DockCloseButton True

DockPosition Center

Tab Sheet 4
Property Value

DockAllowedPositions | Left+Bottom+Right
DockAllowUndock True

DockCloseButton True

DockPosition Bottom
Tab Sheet 5

Property Value

DockAllowedPositions | Left+Right+Bottom
DockAllowUndock True

DockCloseButton True

DockPosition Bottom

Your Tab folder should now look like the following:

4. Save your form.

Step 3. Compile and Execute the Form
1. Compile and execute the form.

2. The Tab sheets can be shown as a separate window. Use the docking bar to
drag the tab sheets.

=
= A1 o o

bt P i ey

R T L S rﬁ-ww

B | A Tab Folder Framework

PageZ FPage3 : 0
—l— Pagel [l

3l | x| S

5‘.."\-1.,-'\u.J"“Hf\ﬂHfV‘hn..awHu"\,Jv\ﬂhf\qu“W L WL

o T e

3. Use the Pin to hide a Tab sheet.

‘/\.-"-u-l......r"k,..-u...-ud

Fage?| Page1

L“H“Wwwv“\r\.u.rﬂhw

E

i e

4. Click on a closed tab and click the Pin symbol to lock the Tab sheet in the
open position.

5. Click on the Close (x) button to close a Tab Sheet.

Summary

Important Information

e The Visual LANSA Framework uses Tab folder features extensively to
enable the interface to be tailored.

Tips & Techniques

e A Pop-up menu would be used to enable a closed tab sheet to be re-opened.
e Each Tab sheet tab may have an image assigned to it.

What I Should Know
e How to use the Docking, Undocking and Autohide features of the Tab folder.

VFW020 — Execute a Visual LANSA Framework Application

What is the Visual LANSA Framework (VL Framework)?

The VL Framework is an optional extension to Visual LANSA which provides
an application Framework for designers and developers.

For the end user, the VL Framework provides consistent and well designed
interface with many standard features which provide a powerful and flexible
user interface. It is loosely based on Microsoft's Outlook interface design,
which will be familiar to many end users.

For the designer, the VL Framework provides a rapid prototyping tool. The
prototype will be developed into a real application.

For the developer, the VL. Framework provides the tools to rapidly build a
sophisticated modern application for Windows or Web deployment. It is
especially beneficial if the developer is new to Windows or Web development.
However, the power and flexibility of the Framework lends itself to most
business applications and should be considered for all your LANSA projects.

VL Framework applications can be developed as Windows Rich clients, Web
Browser based applications and Microsoft .Net applications.

If you are new to the VL. Framework, you should study the Visual LANSA
Framework Guide, the tutorials that it contains and the extensive shipped
demonstration applications, which include all source code with extensive
comments to enable their re-use.

These exercises provide an introduction to developing VL Framework
applications for Windows, but time constraints mean that there is much more to
learn in order to fully exploit the power and flexibility of VL Framework.
Objectives

e To execute a finished application in the VL Framework.

e To become familiar with the look and feel of VL Framework-based
applications.

e To introduce some key concepts used when building VL. Framework
applications.

To achieve these objectives, you will complete the following:
Step 1. Execute the Visual LANSA Framework
Step 2. Execute an Application

Step 3. Using a Filter to Find an Employee
Step 4. Using Commands and Command Handlers
Summary

Before You Begin

e Check that you have met the Skills required as listed in Other Requirements
in the Visual LANSA Framework Guide.

its:lansa048.CHM::/LANSA/lansa048_4135.HTM

Step 1. Execute the Visual LANSA Framework

1. In Visual LANSA, use the Tools ribbon to select the VL. Framework button to
select the Use Framework as User option.

Tools
— . = T
ra & i
- —
ot Quick Export 'li'[LAMSA Integrato Logical
Framework Chent Studio Modeler

VL Framework

S Designer
#° Designer oriented WYSIWYG view almost
identical to what the end user will see

% =) = Developer

% Developer oriented view allowing you to work
with the framework components

== Administrator
o Execute your framework a5 though you were an

Desc
n (TRM)

administrative end user ’

— |)ser 4
T Execute your framework a5 though you werea |
normal end user 1

an -

2. If you are opening a VL Framework for the first time, the latest
demonstration version will opened by default. If you have only one
framework the Select Framework dialog will not be shown.

3. If the Select Framework File dialog is shown, select the checkbox to Open
Latest Demonstration Version.

-
H Select meewor_ g

wf_au007_systenm. sml
W 20007 _system. xml

W Open Latest Demonztration Yersion:

Browsze. ..

The first time a framework is opened, the Help Assistant dialog is shown:

Visual LANSA Framework
Tutor and Assistant

-

Advanced Software Made Simple

|
| Start the Help Assistant
W' Start the Tutorial

I Don't Ask for These Details Again

_

oK

4. 1f the Help Assistant dialog is shown, unselect the Start..... options and select
the checkbox Don't Ask for These Details Again and the click OK.

The framework uses XML to store the definition of your applications. The
file vf_sy001_system.xml contains the latest demonstration system.

The Framework window will be displayed.

Visual LANSA Framework

For more information about Visual LANSA Framework
goto WWW.lansa.com

This start up page should be replaced with your corporate page.
lv Refer tothe VLF guide for tips on how to tailor a framework to use your corporate look.
1

Gettingt ight I ' Hexdble)
r.ﬂ'eﬁrstﬁme b pmmrmng Depioyment

[=f=]:] Mamagex| Lol | EMG | IWOAMLZ wwtaltau

Step 2. Execute an Application

In this step, you will execute a shipped sample application. You will be
introduced to Business Objects, Filters, Instance Lists, Commands and
Command Handlers.

1. The Navigation panel on the left hand side, displays applications in a tree
view.

As you click the different applications to expand them, you can see the
business objects associated with them.

2. Select the Programming Techniques application. Then select the Basic
application view.

3. Select the Essential Business Object.

The essential business object

[x]

7.7 Favorites
+£, HR Demo Application
=] {E} Programming Technigues
= [] Basic
[1+] iThe essential business object
[0} The CRUD business ohject
¢b Auto filing the instance list
lUsing the whole page
G Showing a web page
% | Selected, Current or All Entries
@ Snap in Instance Lists
%€ Handling Delete
~_‘T" Remembering values
:.:-}_ Passing information
Bl Advanced
@ Prompting
Www%ﬂm_r

Two new panels will appear. The top left panel is the filter, which is used to
search employee data.

The right panel will show an instance list, containing the results of an
employee search. This may contain saved values for the last search made.

Step 3. Using a Filter to Find an Employee

After a user has selected a business object, they typically want to locate a

specific employee or list of employees. Filters allow you to search and sort the

items for a business object.

1. Enter the letter B in the Employee Surname field and click the Search button.
The instance list displays all employees whose surname begins with B.

X

Specify a full or partial employ=s name. Number Piame
AZ200Z ARTHUR BROWHLOW
Employes Surname 0 A3554 FRECC'Y BROMN
A2001 HARRY GEORGE BROWHM
ADS0 FRED J0HM ALAN BLOGGS
AN VERONICA BROWN
A1031 JOHN BLAKE

| Clear the curentlistof Bearch Clear List

Step 4. Using Commands and Command Handlers

In this step you will select an employee and review the Commands or actions
which can be performed for an employee.

1. In the instance list, select the employee Veronica Brown. When an employee

has been selected, the Basic details of the employee will appear in the bottom
panel.

x|
Emploryee Number ADOTO
Emgloyse Surmame BROWN
Emploryse Grven Name(s) VEROMICA
Street Mo and Hame 12 Radway Strest
Suburb or Town Baulkham Hills
Siate and Country HEW Australa
Post [2ip Code 220
Home Phone Humber (07) 9609 46327
B R R e e R T s

By default, the Details command has been executed. The Details command
handler displays the employee details.

2. Select the File menu and choose the Exit option to close the Visual LANSA
Framework application.

Summary

Important Observations

In Windows, the Visual LANSA Framework is executed as a Visual LANSA
form.

The Framework provides a consistent application interface. It is very easy to
use, flexible and can be customized by the end user.

Tips & Techniques

The end-user has the ability to fully customize the appearance of the
application within the Framework. For example, panels can be positioned
within the Framework or can be floated as separate windows. These
capabilities are part of the Framework and are not coded by the developer.

The Framework enables the end user to perform actions in many different
ways.

Commands can be executed using menus, toolbar icons and pop-up menus.

What You Should Know

How to execute the Framework as an end user.
How to execute an application created in the Framework.
What are some of the features supported by the Framework.

What are applications, business objects, filters, instance lists, commands and
command handlers.

VFWO030 — Create a Prototype

Objectives
e To create a prototype using the Instant Prototyping Assistant.

e To learn how to refine the prototype.

File

Edit View Actions Help

Windews (Framework) [Administration)

e - 222222 - W

Reports Transfer

O G Q@8 HME @ O B

Web Site Resources Address Charges Crganization Bocwngs Spool Files

[x

EJ':'_J}' Favorites &B}Nanﬂ ahm EOB@O %t &M
£ \gh R Demo AppRcation This is an emulated RAD-PAD filter. P — . : = : :
5] il HR Application E... | Desaription Depa... Salary Start Date
£ Departments EM... Employee number 1 ARA.., 11L.. 05/12/..
B Employees [PETRR ST e M., Employeerumber 2 AAAL, 0L, 05(12..
|1} Reports - s EM... Employes number 3 ARA. 11, 05/12f..
: ; The purpose of this emulated filter is to help you &
=) il Transport Application {and others) to rapidly pratotype and visualize - EM... Employes number 4 AL, 11L.. 05/12f..
& i JLHR Application haw your application will look and feel. £M... Employeenumber 5 AAA.. 11l 0512/
® Marcus Instance Example [EM... Employee number & AAAL., 11L.. 05/12..
53] Programming Techniques Later on you can replace it with a real filter, || |BM... Employes number 7 ARAL., 11l.. 08512
55 Administration EM... Employes number & ARA. 11l 05121
Ta laarn mara shaor tha thinle van cam de itk - ... Eﬂi"'l"e number 9 AAR.,, L. I]5|I'12||f___
s = EM... Employes number 10 A&A... 11L.. 05{12/.. |
- .
x|
I Employee : Detail: (EMPLOYEEDDD3-Employee number 3]
[Details | i BriefMotes | 00 tmages T Motes | PUSkis2 | 7 Skils
This is @ mock-up RAD-PAD command handler.
Type your text here.
The purpose of this mock up command handler is to help you (and others) to rapidly prototype and
visualize how your application will look and feel.
Later on you will replace it with a real command handler.
To learn more about the things you can do with RAD-PADs please use the Help Assistant.
Show Details Program Coding Assistant Images Palette
(=Nl | Messages| Ready | local | NG | JIVORY1Z | 7j0Ef1z | 12:30 i

To achieve this objective you will complete the following:

Step 1. Understand the Requirements

Step 2. Create a Prototype iii HR Application

Step 3. Define Filters and Command Handlers for Employees
Step 4. Refine the Reports Business Object
Summary

Step 1. Understand the Requirements

You will define a prototype for a simple Human Resources application, which
will consist of:

Two business objects, Employees and Reports.

Employees listed in the instance list based on searches by Name or by
Location.

Employees with actions, Details, New, Brief Notes, Image, Notes, Skills,
Skills 2

Reports with an action of Weekly, Monthly, Salary, Employee Query and
Sort.

You will add further business objects in a later exercise.

Step 2. Create a Prototype iii HR Application

1. From the Tools ribbon, start VL. Frameworks using the VL. Framework — as
Designer option.

Tools
—
P - -
at Cuick Export vl ANSA Integrat Logical
Framework Client Studio Modeler
VL Framework

== Designer
& Designer oriented WYSIWYG view almost
identical to what the end user will see
a S Developer
#¢ Developer oriented view allowing you to work
with the framewenrk components

Desc

2. If the Select Framework File dialog is shown, select the Open Latest
Demonstration Version checkbox and click OK.

Alternatively, your trainer may inform you which framework name to use.

3. Once your Framework has loaded, start the Instant Prototyping Assistant
from the Framework menu.

(Framewaork) | [Administration)

2
3
(New) » K

[Properties...)

[Applications) [
[Commands...]

[Menus...]

[Design Code Tables...)

(Program Coding Assistant...)
(Instant Prototyping Assistant...)

[RA&MP Tools ...]

*W“Wuww*ﬁ

i [Virtual Clipboard) 3
e —

4. Enter your new Business Object names, Employees and Reports, separated
by a comma.

e e B e S T T N iy P

Step 1. Enter the names of the main "business objects™ in the line below: (separated by commas)

Main Business Dbjects: Employess, Reports
Resstong previous values

@ Empicyees
4 Qenorts

5. Click the Next button.

6. Actions will initially contain (the list at the bottom left) the defaults, Details,
New and Notes. Define the additional actions required for Employees and
Reports. These are, Brief Notes, Image, Skills, Skills 2, Weekly, Monthly,
Salary, Employee Query and Sort. Separate each with a comma.

o TEMET T T e FE 1§ DUSINEE ot e el Codd_ bty —FOL Cle U0 B TraniQE Wil @ Custontwdfi™ T e e~
Edit, Print, Delete, Accounts, Recent Transactions, Correspondence, Verify .

Actions: Getalls » Mew , Notes , Brief Notes. Image, Skils, Skils 2, weekly, Monthly, Salary, Emplolyee Query, Sort)

Step 3. Drag and drop the actions from the list below, onto all the appropriate business objects in the list on the right

The zame action can be used with many businesz objects.

Details W Employess
New i Repents
Notes

Brief Motes. Image
Sllis
o Shlls 2

voeekhy

_ Monthly

r Salary
Emplolyes Query
Sort

<« Back Mext = Cancel

7. Hold down the Shift key and select Details, New, Notes, Brief Notes, Image,
Skills and Skills 2 and drag them onto the Employees business object.

e R o L B e I
Edit, Frint, Delete, ATEolnis, Recent Transactions, Correspondence, Verify .

Actions: Detals , New , Notes , Brief Motes, Image, Skils, Skils 2, weekly, Manthly, Salary, Employes Query, Sort

Step 3. Drag and drop the actions from the list below, onto all the appropriate business objects in the list on the right

The same action can be used with many business abjects.

Details 4 Employees

Mew Detais Action: Details Employes
" Motes U New Action: New Employes

Brief Notes Motes Action: Notes Employee

Image 1 Brief Notes Action: Brief Notes Employee

shils Q Image Action; Image Employes

ﬂli ||| i m’ .ﬂ:‘lm suls Emﬁ'ee

wanidy Skils 2 Action: Skile 2 Employes

Moty a Reports

Salary

Erployes Query

Sort

<« Badk Hext > Canced

8. Select the Weekly, Monthly, Salary, Employee Query and Sort actions and
drag them onto the Reports business object.

Your business objects should now look like the following:

Details = 4l Employees
 Mew Detais Action: Details Employes
Notes Mew Action: New Employes
Brief Notes Motes Action: Notes Employes
Image @ Brief Motes Action: Brief Notes Employes
skills Imags Action: Image Employes
cadls 2 Skills Action: Skils Employes
heakly ' Skills 2 Action; Skils 2 Employes
= 4l Reports
Monthly ‘Weekly Action: Weekdy Report
Eoe " Monthly Action: Manthly Report
b Employse Chmry % Salary Action: Salary Report
otk Empleyee Query Acticn: Employee Query Repert
Sart Action: Sort Report
<< Badk MExt = Cancel

9. Click the Next button.

10. Using your initials instead of iii, enter a new application - iii HR
Application.

11. Drag the Employees and Reports business objects onto the iii HR
Application.

Your iii HR Application should now look like the following:

ﬂ. Programming Techniques
ﬂ. Fawvaorites
ﬂ. HR. Demo Application
ﬂ. Administration
= & i HR Application
& Employees
é Reports

Application (exists already) I
Application (exists already)
Application (exists already)
Application (exists already)
Application

Business Object

Business Object ‘

<< Back Mext == Cancel I

12. Click the Next button.

13. On the final dialog, click the Finish button to generate your iii HR
Application prototype.

14. From the Framework menu, Save and Restart your Framework.

[Framework) | [Administration) 5

T
-

et

[Mew | g

{ Properties...)
{ Applications) '
{ Commands...)

L

{ Menus...)
{ Design Code Tables...)

{ Program Coding Assistant...)

{ Instant Prototyping Assistant...)

{ RAMP Tools ...)

{ Virtual Clipboard) »

{ Merge Tool ...}

{ Save)
{ Save As...)
{ Save and Rﬁtart‘;.

ﬂ { Save and Exit)

Note: Your Framework definition is an XML file. It is good practice to regularly
save your work. The Framework design tool will prompt you to save your
Framework at regular intervals. (Ten minutes is the default setting). Each time
you save a Framework, a copy of the Framework with the date and time

appended is added to a \VF_Versions folder.

*MWMMHMWW

Hwhﬂ-d“;;‘.\-l‘\/ﬁui‘ufd‘v\"ng‘ﬂ\.,rupu/

|

Step 3. Define Filters and Command Handlers for Employees

In this step you will define two filters for Employees and make a few basic
enhancements to the prototype application.

1. Open the Business Object Properties dialog for Employees.

To do this, select the Employees business object on the Navigation panel and
use the context menu (that is, the right mouse menu) to select the Properties

dialog.
Employees

[xd ?
[+ 77 Favorites Filter for Employees.’
£, HR Demo Application {
=] ﬁ iii HR Application This is a prototype of a%
Froimzm Ll eesoemem nes < to get th;
@ i €3 | MNew = displaﬁ
{3} Progi e {
o e Admi [Mew Application... nnrmallf
[Mew Business Object...) rere- 3
(Properties... Filter due{
([Delete) earch" tHJ]
Poszition » {:

B entry |

Windows ee how

formatic
I g
J

L oammen oo You can edit this panel

Alternatively, the Properties dialog will open if you double click on the
business object in the Navigation panel.

The Properties dialog consists of a number of tab sheets which enable you to
define and refine your application design. The Framework contains literally
thousands of features which you enable or disable or refine, using one of
these property tab sheets.

2. On the Identification tab, change the User Object Name / Type to
IIT_EMPLOYEES. A business object named EMPLOYEES already exists
because it is part of the shipped demonstration applications.

&4 Business Object Properties - Emp

 Identification | Icons | Visual Styles | Filters | Filter Settings = Commands Enabled | Command Display = Custom Properties?

o
Caption Employees (EnG) g
Caption (Singular) |Employee | (Eng) 2
Hint: (ENG) }

]

|| Sequence: i i}

| _ il

|| Internal Identifier: FAB5CF25A6A 348 1BBAZEFDET43480525 3
Unigue Identifier: 106]K

i

User Ohject Mame [Type G]_E":L{[E \ Verify Name 2

N y 4

| Restricted Access ;
S e NMMMWWW

Note: The Verify Name button will check whether your User Object Name is
unique within the framework. That is, not already used for an existing
business object.

3. Select the Icons tab sheet and select any suitable icon for the Employees
business object.

g& Business Cbject Properties- Empl

Identificatioly | Icons .. sual Styles | Filters | Filter Settings | Commands Enabled ,}
-~ - WF ICoo4——" 4
I 5] .
o g o ¥ “ g
2 8 B 4 x
8 & A @
“» @ I () r i
:EQL Il.IL '}__"3 EE @]P
19 4]] = & ‘é*
) & = e &
% 9 P o R
= r ... W

4. Select the Filters tab sheet. This tab enables you to define one or more filter
which may be used with this business object. The Filters tab sheet itself
contains three more tab sheets.

@ Business Object Properties - Empl

|Identiﬁmtion Icons | Visual Style FIHETS ilter Settings | Commands Enabled | Command Display | Custom Properties | SubTypes | Instance List / Relaf

B New Filter Identification | Icons | Filter Snap-n Settings {
>

Caption New Filter {EnG) !

i

Hint: {ENG))

L

Sequence: 2 7

3

2

Internal Identifier: BA13A3737FAT4967B5B5DCCE62932807 i

3

y 1

User Cbject Name / Type BA18A3737FATA96 TBSB50CCEE2932507 Verify MName E

;

Last Changed 20121012-133119-JIVORY 12 Y

RAD-PAD File Name C:\PROGRA~2\LANSAY_WINS5W_LANSA_tr\execute\ RADPAD_ 8A13 g

3

3

T L e VN e "’W"—)

a. The Instant Prototyping Assistant creates one filter for each business
object. Change the Caption for the default filter (New Filter) to By Name.

b. Select the Icons tab and select any suitable icon for the By Name filter.

% Business Object Properties - Emp
Identification | Icons | Visual Styles | Filters | Filter Settings | Commands Enabl

[By Name Identification | Icons | Filter Snap-n Setﬁn?t

| ~ - VF_IC374 3
n = o {

! = @) 1
= £ @)

| (& 5] =
B B }

= & ™

pd L] [3

Bl L @ ;

W e S A NP -M"Hu-v—"kﬁ}

5. Add a new filter by clicking the New button.
a. Change the new filter's Caption to By Location.

b. Select the Icons tab sheet and give the By Location filter any suitable
icon.

6. You will now refine the Command Handler definitions for the Employees
business object.

Select the Commands Enabled tab sheet. Note that its Enabled column
contains the actions you defined in the Instant Prototyping Assistant.

a. Select the New command in the Enabled column.

= | = &

5 Business Object Properties- Empluym‘ - ” 1 — u
Identificalion | Icons Visual Styles | Filters | Filter Settings | Commands Enabled | Command Display | Custom Properties | SubTypes | Instance List / Relations
Ta enable and disable commands drag them between these ists 16 \
Not Enabled <] | Enabled | | Chowse Command Type -
B About - Brief Notes * | Business Object Command Instance Command
1@ about Framework [Detsits '
= Accounts o SEqUEnCE: 1
1 ddress
Eda Command Options Owen Window Size
.F-:].al Detais = TBte Stay Active Defait = Width Height
~1 Al Enfries Skils Windows
:,j Amount Skl 2 Default Command Mg -
" Approve | Show on Popup Menus
Il Assess < Show on Instance List Tool Bar T "
Assstant ~Optional Argumen
"7 Assistant Examgle 1 Hide All Other Command Tabs Alpha Argument 1:
|| 17 Assistant Example 2 e Alpha Argument 2:
1 Assistant Example 3 Execute as Hidden Command _
éz)’-‘\m'-'"l Byposs Lodks Numeric Argument 1:
ﬁé}'#mmmenu Numeric Argument 2:
| 3 Authorities \ _/
i Bachp E Menus Command Definitons
Aasic details
Close

The information shown on the right hand side now contains the definition of
the New command, as it will be used for the Employees business object.

Notice that in the Choose Command Type group box, the Business Object
Command is selected. This is because the New command does not depend on

selection from the instance list.

Using the New command would usually add a new entry to the instance list.

7. You will now specify how business object commands are displayed.

Select the Command Display tab sheet.

The property Object Command Presentation defines how business object

commands are displayed.
a. Select Separate Stay on Top Window from the drop down.

7 Business Object Properties- Empl

Identification | Icons | Visual Styles | Filters | Filter Settings | Commands Enabledl, Command Display
I Command Tab Style: Tabs -
Command Tab Show All: Automatic x
Command Tab Location: Top -
| Object Command Presentation Separate stay on top window v)
Instance Command Presentation Lge part of the window >

¥ Multiine Tab Sheet Captions

Allow Float

e T

E
@
g
El

Ty

e ey

b. Click Close on the Please Note dialog which will appear.
You will make further changes before you Save and Restart the
Framework.

8. Click on the Commands Enabled tab sheet and click the Command
Definitions button. Review the icons shown against each of the Enabled
commands. You may find that some of your commands share the same icon.
To change a command's icon, do the following:

a. Click the Command Definitions button (bottom right).

7} Business Object Properties- Employees ey (BN
=
Identification | Icons Wisual Styles Fiters | Filker Setti Display = Custom Propertes | SubTypes | Instance List | Relatons
Ta enable and disable commands drag them between these lsts
& New (MEW)
Not Enabled | Enaled | Choose Command Type
| About Brief Notes # | Business Object Command Instance Command
-ﬂ-:\bmt Framewark = DDEGIS
Accounts Image Seguence:
[address ol Newi
All Detais & Notes Command Options Owin Window Sz
| = e Stay Active Default = Width Height
"D]A! Enfries Skils | Vindows
| Amount Skills 2 Default Command Ho I
|+ approve + Show on Popup Menus
@ Assess ¥ Shew on Instance List Tool Bar P—
Assistamt Optional Argumen
Assistant Example 1 e e = m Argument 1:
[Assistant Example 2 Restricted Access Alpha Argument 2:
Assistant Example 3 Execute as Hdden Command
attach Numeric Argument 1:
4 Bypass Lodks
M & Attachments NUMEric Argument 2
B Authorities
Badwp
Basic detals Command Handler
Bookings Windaws
N [Calculator Component i
™ calendar
| & cancal = Mack Up - RAD-PAD RADPAD __83IAFBFE 1C96C4F SDATSEFCE593524E8F HTM |
= Card
| % | Category r Menus Command Definitions
| Cloge

b. Select the required command in the list on the left hand side.

c. Select the Bitmap and Icons tab sheets and select a suitable icon. The
change is saved automatically.

d. Use the Scrollbar on the Bitmaps panel to select the same bitmap. This
will ensure the instance list toolbar contains the same image as the
command handler tab sheet.

B " Commands l = g

| p—

Commands Sequence ||« Identification Toobar and an‘ Butmaps and Toons }.-u-ﬂ- Options ~ Lisage
;:?:: : B feons - WF_IC389
(1 Brief Notes 1 0l 'CI o =
i aalater 1 [W@ = o
| Calendar 1 1 @ &
& Cancel 1 = 'S
= Card 1 = .
.| Categary 1 = B
¥} Charges 1 i =
d Checks
| Cheques 1
& Claims 1 p ¥
& Closa 1
O Command P... 1 Bitmaps (use Scrolbar to see more bitmaps) - VF_BM339
i Connect

£l Contacts 1 _
+, Contents | H ,IG' 'l y o | - & "
Bl Copy 1 .

o Costs
{8k crUD 1

(e EIE e

Close

Note: Do not spend time changing Icons and Bitmaps for all your Employee
Commands. These could be changed at any time during development.

Hint: Clicking on the slider and using the cursor keys to scroll through the
bitmaps provides more control than dragging the mouse.

9. Close the Business Object properties dialog. Save and Restart the
Framework.

10. When the Framework has re-started, select your iii HR Application,
followed by the Employees business object.

11. Confirm that Employees now has two filters.
a. Click the Emulate Search button and select an Employee.

b. Notice that the toolbar above the instance list contains your command
handler icons.

c. Notice that all your instance list command handlers have a tab sheet at the
bottom of the Framework, with the appropriate icon.

|u] X

(1 By Name | 1] By Location 4 jm & = i'ﬂ

Filter for Employees. = Employes | Desarption =
EMPLOYEEDDO 1 Employee number 1

This is a prototype of a filter program used to get the £

Employees to be displayed. EMPLOYER0002 Emoloyee number 2
EMPLOYEE0003 Employee number 3

The user would normally enter search values here. eiAlEe Employee number 4 E
EMPLOYEEQQOS Employee number 5

Ta see what a filter does, click on the "Emulate Search” EMPLOYEEOO06 Employee number 6

buttan. = BMPLOYEEDDQ7 Employee number 7
EMPLOYEE0008 Employee number &

Program Coding Assistant ~ Images Palette Emulate Seardh BMPLOYEEDDOS Employee number 9 .

CRANL MO I T W'Y

2 Employes : Details (EMPLOYEED002-Employee number 2)
[Details | | g Briefotes Image | . MNotes Shills 2 Skills

This panel will handle the action (or command) named Details for the business object named Employees.
At the mament this panel is 8 prototype. When you have validated your prototype you would replace this panel with & real pregram.
This panel is input capable. You may erase this text and add your own notes (and even pictures or images from the images paletta).

Any notes you add here are saved and may be used to help you flesh out your prototypes design and/er describe its funchioning to others,

i e e T e N T T LV e

12. Click in one of your Employee filter panels. Notice that these can be edited.
The prototype panel is an HTML line editor. When adding text or images, use
the Enter key to move to a new line.

a. Delete the existing text, add suitable text.

b. Click on the Images Palette button to display a dialog which enables
images to be drag and dropped onto the filter panel.

¢ Your objective is to make each panel "realistic" so that the prototype can
be reviewed with and end user.

e Restrict your changes to one panel. In a real project you would enhance
the appearance of every filter and command handler panel.

13. Save and Restart the Framework.

14. Open the Employees business object properties dialog. Select the Instance
List / Relations tab sheet.

A grid defines how the instance list columns are used and displayed. The
third column Caption defines the column heading for columns shown in the
instance list.

15. Change the Captions to Number and Full Name.

Enable Clear List Button

Double dhck for default command

Save and Restore Instance Lists
+ Alow multiple selections

[..v Allow Instance List to be sent to MSExcel File Prefix to be used for MS5-Excel Spreadsheet_ (ENG)]

Instance List Tool Bar Location Top -

Instance List Tool Bar Text Location <Mores -

Instance List Tool Bar Height or Width 24

Snap in Instance List Browser

Sequence Tyoe Caption th % (Total 25%) | Dedmals | Edit Code Date/Time Cutput Format | UTC Conversion, =

10 VISUALIDL || Mumbser 25 Diefault SYSFMTE Local - Local :

20 VISUALID2 W Full] Default SYSFMTE Local »> Local | =
ACOLLMNL Defandt SYSFMTE Local -» Local
ACOLLMNZ Default SYSFMTE Local -> Local
ACOLLMNZ Diefault SYSEMTE Local - Local
ACOLLMNE Default EYSEMTE Local - Local E
ACOLLMNS Defaudt SYSEMTE Local -> Local
ACOLUMNE Default SYSFMTE Local ->Local | -

Tt contains Instan e of Smcloyaes . and i may 2lsn CONEBIREEOReS OF 11— s e N e

Note: The columns to be displayed are defined by giving them a Sequence
number.

In your own application you would probably enable additional columns.
Your filters must then be changed to populate the additional columns.

16. Close the Business Object properties dialog.

Step 4. Refine the Reports Business Object
1. Open the properties dialog for the Reports business object.

2. Select the Filters tab and delete the default "New Filter" which the Instance
Prototyping Assistant has created. The command handlers for the Reports
business object will not require an instance list.

3. Select the Commands Enabled tab. Select each Enabled action and change its
command type to Business Object Command.
After the first change, the Please Note dialog will be displayed, deselect the
Warn me... check box and click the Close button.
When have changed all the commands to a Business Object Command, close
the Reports business object properties dialog.

4. Now Save and Restart the Framework

5. Select the Reports business object for your application. The default Weekly
command tab should be displayed. Right click on Weekly tab to show the
context menu for the other Reports actions.

6. Save and Exit your Framework.

7. Restart the Framework as an end user and ensure it meets all the
requirements.

Summary

Important Observations

Due to time limitations, the prototyping section of these exercises is brief.
When creating your own application prototype, this is a crucial step
which may well determine whether your project gains acceptance or not.

A well thought out prototype will clearly communicate what the finished
application will look like and what it will do.

A prototype should always be reviewed with the end user(s) in detail and
signed off. With Visual LANSA Frameworks the prototype is completely re-
used in the final application.

To create a new application prototype with the Visual LANSA Framework,
you simply set the application properties. You do not have to write any code.

You can create application objects manually and you can create or extend an
application using the Instant Prototyping Assistant.

Applications can contain many business objects. A business object is the
thing an end user works with, within an application.

Filters enable end users to search for business objects.

Command Handlers enable the end user to carry out business processes on
business objects.

A business object may have many command handlers.

Tips & Techniques

Enhance the appearance of your prototype filters and command handlers
using the images palette.

The business object properties dialog enables the developer to refine the
definition of the application, business object and its filters and command
handlers.

What You Should Know

How to create a prototype using the Instant Prototyping Assistant.

How to refine the application design using the business object properties
dialog.

How to tune the behavior of command handlers.

How to refine the appearance of prototype filters and command handlers,
using text and images.

VFW040 — Snap in Real Filters
Objective

e To replace the prototype filters with real filters which will perform selection
of employees for the instance list.

actiwu Help Windows (Framework) (Administration)

O CLBOB8MPES Q@

Mew Reports Transfer Veb Site Resources Address Charges Onganizadion Bookings ™ Sl TREE

Eile Edit H;tw

Employees By Name

Employees
]

77 Favorites s By Name | 53] By Location — n :

% &, HR Demo Application = By €O neot «

= fiJ i HR Application 7 Clear List Search Employes | Description | Departm... | salary | 5
[odl Departments A1D02 SMYTHE JOHN ADM 25000 0O
5 Employess | Emloyes Sumame | A1003 SMITHE Rabert FLT 31,000 2
Ll Reports 5M A1004 SMITHSON PALIL AUD 21,000 ©

= B il Transport Application ALD05 SMITHS FETER ADM 46,700 0

= £ 11 HR Application AL006 SMITHERS JACK TR 25000 0

+ By Marces Instance Example

+ {2t Programming Technigues
5 %, Administration

To achieve this objective, you will complete the following:
Step 1. Create Your Real By Name Filter

Step 2. Snap in the Employees By Name filter

Step 3. Review Filter Code

Step 4. Create a Real Employees By Location filter
Summary

Before You Begin

e Complete exercises VFW020 and VFW030.
e You may wish to review in the Visual LANSA Frameworks Guide:
Filter in Key Concepts

Framework Programming

its:lansa048.CHM::/LANSA/filterhandler.HTM
its:lansa048.CHM::/LANSA/vlf3050.HTM

Step 1. Create Your Real By Name Filter

In this step you will create a real filter (a Reusable Part) which search the file
PSLMST by surname, and populate the Instance List. You will learn how to use
the Program Coding Assistant.

1.

In the Framework, select the Employees business object and click the

Program Coding Assistant button on the By Name filter.

{2 employees | e s D

File Edit View Help Windows (Framework] (Administration)

I

© U @ M8 & 0= A &

Mewy Reports Web Site About Address Resources Organization Bookings Charges Spool Files New Windos,

tll Employees
i = m — m _I?
7.7 Favorites [By Name (7] By Location o B
‘5‘2 HR Demo Application | S HI . 1 —3
= fiJ iii HR Application fiter tor tmployees. Z 0 Numt
a F‘. """""" g E This is a prototype of a filter program used to get the E 'J‘}
Sl 2 g Employees to be displayed. i
{5} Programming Techniques E ¢
“4 Administration The user would normally enter search values here. }
2
To see what a filter does, click on the "Emulate Search” i
buttan. it i
Grogram Coding AssismnD Images Palette Emulate Search ;
e TR Hﬁ,_-n--"_-—-'vr

You could also access the Program Coding Assistant from the Framework
menu.

The Program Coding Assistant allows you to create different types of
component which can be plugged into your filters, instance lists and
command handlers.

Initially you will probably select filters which generate a complete
component (for example, Filter which searches by all logical views of a file).
As you become more expert, you might use a skeleton filter, or copy from
one which is similar to what you need and complete the code manually.

. If you are using a non-English system, click on Framework-><Your

Framework Description> which is the first entry in the Coding Assistant's
tree view. In the Select the type of code you want to generate panel, select Set

LANSA Code generation preferences. Click the Next button to set your coding
preferences.

3. In the tree view select iii HR Application / Employees / Filter->By Name.

B ' Program Coding Assistant

Belect the object you want to generate code for

[+

D Command Handler-=Details
&3 Command Handler->MNew
2| Command Handler->Motes

¢» Command Handler->=Brief Motes
Command Handler-=Image
Command Handler- =5kills

r-=5kills 2
-1 Filter-=By Mame

Y Filter-»By Location
= Q Business Object-=FReports
[rammand Handlar -~ Aot Eramamarl

Refresh

4. If your Framework is enabled for Web development, Select Windows as the
target platform.

5. In the list headed Select the type of code you want to generate, select Filter
that searches using a file or view.

¥ Program Coding Assistant

I fhe clject you want io generate code for Fiter that searches using a file or view
| - a wi::,:mm =l what? This assistant produces the code for a filber that searches for information
= - QFF — : e using a specified physical file or logical veaw.
] Command Hander-»Detais
&3 Command Handler-=hew = Filters are used to dynamically create business object instance lsts (e.g. |2
%] Command Hander-=Hotes lists of Customers, lists of Products, lists of Orders, lists of Employees,
4 Command Hander->Erief Nates etc).
¥+ Command Hander- »Image
 Command Hander-»Shills Typically Visual LANSA Framework filkers are presented bke thas exampla
% Command Hander-»5kils 2 {n the area circled in red):
Filter->By bame
[Fiter-»By Location i
@ il Business Oboect->Reports | B L e o Db el (R | | T
T e sl Hserllar.. oAbt Eramasnd i M Y o Wt ok e
Refresh e

Salect the type of code you want to generate
Filter that searches by al logcal wews of a file

e -
that searches & fie or view

Search button event handing roubne (code fragment)
Invoke Savlstanager Addiolist {code fragment] ey ey —— i

e i —

o ke [y
o T L .
et o T
P g e I

Hext = Carcel

6. Click the Next button. The coding assistant is a wizard which will present a
series of panels which you will complete to generate the filter code required.
There may be optional sections on these panels which you will complete as
necessary to generate the logic required.

7. On the first panel enter PSLMST as the physical file name that most closely
resembles the business object is.

Based on the file key and first two fields on the file, the coding assistant
suggests the fields required to define the Visual and Programmatic Identifiers.

Filter that searches using a fike or view
Spedfy the dentification protocel you have dedded to use for this business object. IF a physical file

resembles this business object specify its name and the assistant will attempt to sutomatically deduce a |
basic identification protocol for you,
The physical file that most dosely - =
resembles this business object s il .
TSLAL IDENTIFIERS (for buildng VisuallD1 and VisuallD2 values)
Fiekd Mams Type Desoription DOrop Selected
1 | BMPNO ALPHA Employee Number
Drap Al |
2 | SURNAME ALPHA Employee Surname
3 | GIVENAME ALFHA Employee Gx:n.-l'!_hla_'mfts_:l
4
5 1
Add fieids from this Physical Fie 1

Fiekd Mams Type Desoription - Dirop Selected
EMPHO ALPHA Employee Number

PROGRAMMATIC IDENTIFIERS (for buiding Akey1,2,3,4,5 and MKey 1.2.3.4j/du5}

Drop Al

1
2
3

Add fields from this Physical Fie Add Keys Add &

e e e, N e e e o ey

¢ A Visual Identifier is the field or fields that a user would use to identify a
unique instance of an object

¢ A Programmatic Identifier is the field(s) that the program would use to
identify a unique instance of the business object. Typically these would be
the primary keys of the file or files that make up the data in the instance
list.

e The additional columns should be completed, if necessary, to correspond
to any additional columns which you have added to your instance list,
during the prototyping phase.

In this case, the generated code will use EMPNO and FULLNAME (based
on SURNAME plus GIVENAME) to define the visual identifiers.

EMPNO defines the programmatic identifier
8. Click the Next button.

9. On the next panel, select PSLMST?2 as view to be used for filtering
/searching operations.

10. Select SURNAME as the key(s) of the selected view, to be used for search
operations. SURNAME will be the input field on the filter panel.

Select the following options:

o Allow generic searching

e Remember key values between filter executions

e Allow the user to clear the instance list

Specify the underlying physical file that

wil be searched by the fiter FEEEY i

Select the view to be used for fittering [searching Select the key(s) of the selected view to be used for |
operations: search operations:

Wiew Mame | Description
PSLMST Personnel | SURMAME BLPHA Employes Surmame |

C?t i e e T E) GIVENAME ALPHA oyes Given M.,
PSLMST2 Personne by Surname, Given Mame L

User must spedfy al chosen keys

/7 Alow generic searching

¥ Remember key values between filter executions
< Allw user to dear instance st

11. Click the Next button. Select the check box Routine to listen for signals to
update the instance list.

Filter that searches using a file or view

Choose any other options you may want.

Indude uTerminate routine

¥ Routine to listen for signals to update the instance list)

Check still connected before doing database IO

DA T T ST TNTY TNl Pl o R A L,

MW%

12. Click the Generate Code button.
The generated code will be displayed.

You now simply need to create the component by specifying its Name and
Description and clicking the Create button. VLF code assistant, currently
limits reusable part names to 9 characters.

13. Specify iiiVFWO04 as the filter name, where iii are your initials, and
Employee By Name Filter as the description. If you are using an unlicenced
or trial version of Visual LANSA your component names must be of the form
DEMCOMO5. Click the Create button.

When you click the Create button, a reusable part will be created in the
Repository and the code will be copied into the editor.

After a brief delay, a message Created in the development environment will
be displayed.

14. Switch to Visual LANSA and compile the reusable part.

Step 2. Snap in the Employees By Name filter

Now that you have created and compiled your filter, you need to snap it into the
Framework. This means that you will replace a dummy filter (which is a
shipped component) with your reusable part.

1. In the Framework, close the Program Coding Assistant.

2. Double click the Employees business object to display its Business Object
properties dialog.

3. Select the Filters tab sheet and select the By Name filter. Then select the
Filter Snap-in Settings tab sheet.

4. Specify iiiVFW04 as the Windows Filter handler component, where iii are
your initials.

ﬂ;’a Business Object Properties - Emp!

el— s

Identification | Icons | Visual Styles | Filters | Filter Settings ommand Display | Custom Properties
I l.;ﬂBy Mame Identification | Icons 4 Filter Snap-in Settings

£ By Location Stay Active Default =

1 ~Fil r
indows S,
) Component |]III'I.|"F‘|.I'I.|'U4 | QX
MockUp -RAD-PAD _ RADPAD_ 8A18A3737FA74967B5B5DCCE6293280 2

Rt UL ST LN TR

o8

T e e T e S

5. Save and Restart your framework.

6. Select the Employee business object. On the By Name filter, enter a single
letter such as "S" or "B" and click the Search button. The Instance List should
be populated with matching employee details.

[x]
£ By Name {onl By Location & O @ © 6 & &
¥ Clear List Eearch Employes | Description
F 5 ADO70 Brown Veronica
LEsil i AD090 Bloggs Fred
B 41031 Blake John

A1404 Black Gillian
A3564 Brown Freddy

Step 3. Review Filter Code

Although you can create simple filters using the Program Coding Assistant, you
should understand how they are coded.

1. Switch to the Visual LANSA editor, where the reusable part, iiiVFW04 is
still open.

2. Use the GoTo tab to select the uSelectData method routine. Double click on a
routine on the Go To tab and the editor positions to that line.

The filter notifies the Framework that an update is about to occur:

* Indicate that Employees instance list updating is about to start
Invoke Method(#avListManager.BeginListUpdate)

The data is selected using a SELECT/ENDSELECT loop

* Select appropriate instances of Employees

Select Fields(#XG_Ident) From_File(PSLMST?2) With_Key(#XG_Keys) Nbr_
* Set up the visual Identifier(s)

Change Field(#UF_VisID1) To(#EMPNO)

Change Field(#UF_VisID2) To(#SURNAME)

Use Builtin(BConcat) With_Args(#UF_VisID2 #GIVENAME) To_Get(#UF_\

The Visual ID fields are set up with EMPNO and SURNAME +
GIVENAME.

Then the data is added to the instance list.

* Add instance details to the instance list
Invoke Method(#avListManager.AddtoList) Visualid1(#UF_VisID1) Visualid2

Visualid1 will be shown in column one of the instance list and Visualid2 will
be shown in column two. Akeyl1 is the key that uniquely identifies an
employee. If it was a numeric value, NKey1 would be used.

Finally, the Framework is notified that the instance list update is complete:

Endselect

* Indicate that Employees instance list updating is now complete
Invoke Method(#avListManager.EndListUpdate)

Note: avListManager is a component which is part of the filter ancestor
VF_ACO007.

. For this step you need to ensure that your editor settings are showing
advanced features. Use the Options menu to display the Settings dialog.

. Select the General settings and ensure that under Details, Show Advanced
Features is selected.

. Select the Details tab in the editor, to display your component properties.
Note that the Ancestor property is #VF_ACO007. All filters must inherit this
base class, which provides a pre-defined set of events, properties and
methods.

. Select the Outline tab in the editor, to see the components you inherit from
VF_ACO007.

. Use the context menu on the component avListManager and select the
Features option.

. Expand the methods and examine them. Double click on the AddtoList
method and note that the Help tab contains help for this method.

. Close the component iiiVFWO04. You may want to read the Windows Filter
and Command Handler Anatomy in the Visual LANSA Framework Guide to
learn more about how these components are structured.

Step 4. Create a Real Employees By Location filter

The By Location filter could quickly be created using the Program Coding
Assistant. However, in this step you will create a new filter component by
creating much of the code yourself. This will enable you to gain a greater
understanding of writing code for the Framework.

1. From the File menu click the New button select Reusable Part :

=] [, JER = 'IINFWO4 - Employee By Name Filter - LANSA Editor .
——— ¢
File 1
1
™ save Common L
pre—— [
*Close - o

o Field File Form Reusable Part £ usies:

pen

Last Opened

= @ ! A
n_ﬁ;ﬂ_ﬂf"&n.h._ _Meb Weblet . Multilingual

Then select Panel:

(P g

]
L

Reusable Part

Object Field Vis

R e

ety S o

MM
PN ¢

3. Create a new Reusable Part / Panel:
Name: iiiVFW05
Description: Employees by Location Filter
Enable for RDMLX = Yes

A reusable part is created with an ancestor of PRIM_PANL which means it is
a visual component.

4. Select the Details tab and change the Ancestor to VF_ACO007. This is the
filter base class which gives your filter component the properties, events and
methods it needs to interact with Framework components.

Your editor must be configured to Show Advanced Features. Use File /
Options to change this setting under General, if necessary.

5. Paste the source code from VFWO040 — Appendix replacing the existing code.

A number of errors will be flagged. Ignore all of these, since you will now
complete the code required.

6. Switch to the Design tab, and resize the panel so that it looks like this:

MYFW_3 - Employee Filter By Location @

7. The next step requires the Layout Helper tab to be visible.

a. Select Views on the Home ribbon:

i Home Design Tools

= ——
B & = ==
witory Text Search Views Open
nl Objects
]
b. Select Layout Helper:
Views
@ Assistant (F4) : Details (F7) 7 Layout Helper
= i
. o reakpoints Favorites (Shift+Fg) Outline (F6)

The Layout Helper will now be displayed on the left hand side.
8. In the Layout dropdown, select MAIN_LAYOUT.

Layout Helper
Layout Managed Component
VW05
Layout
MAIN_LAYQUT
Children W X il X ChildDetails | &s Child Details

¥ BODY_PAMEL
¥ BUTTOM_PANEL Category | Processing Order

« Wertical

Note that the BODY PANEL and BUTTON_ PANEL are Children of
MAIN_LAYOUT.
The supplied code includes attachment managers and flow managers which

define your filter as:
Reusable part iiiVFWO05 (a panel) attachment manager (MAIN_LAYOUT)
flow down manager (BODY_FLOW)

flow down manager (BUTTON_FLOW)

BODY_PANEL

BUTTON_PANEL

9. On the Repository tab, expand Files and select file SECTAB. Drag and drop
fields DEPTMENT and SECTION onto the main panel, below the Clear List
checkbox. This is the BODY_ PANEL.

10. Select each field and on the Details tab.

a. Change the MarginLeft property to 100.

b. Reduce the width of each field, which are actually 4 and 3 characters
long.
Your filter should look like the following:

MYFWOS - Employees By Location Filter @

Clear List Search

Department Code ABCD
Section Code AR

—

Hint: For this type of change, you can select both fields (hold down the Shift
Key) and then change MarginLeft to the required value.

11. Switch back to your source code.

a. Complete the Fields() parameter of the Group_by XG_KEYS. Replace <
FILE KEYS > with fields DEPTMENT and SECTION.

b. Change the Cond() parameter in the Def_Cond statement. Replace
<INPUT FIELD> with field DEPTMENT

Your changed code should look like the following:
Group_By Name(#XG_Keys) Fields(#DEPTMENT #SECTION)

Def_Cond Name(*SearchOK) Cond(#deptment *ne *Blanks)

Note: The Group_by XG_IDENT is already correctly defined, to retrieve
fields EMPNO, SURNAME and GIVENAME.

12. Complete the uSelectData method routine. The supplied source contains a
number of comment lines which indicate where you need to add code.

a. Invoke the BeginListUpdate method in the List Manager
#avListmanager.beginListUpdate

b. If the Clear_List ButtonState is checked, invoke the ClearList
method in the List Manager:

If (‘#Clear_List.ButtonState = Checked)
#avlistmanager.ClearList
Endif

c. Select the Group_by XG_IDENT from logical file PSLMST, with keys in
Group_by XG_KEYS, using Generic = *yes and Number of keys =
*compute.

Select Fields(#XG_Ident) From_File(pslmst1) With_Key(#XG_Keys) Nbr_Ke

d. Place the ENDSELECT before the * Indicate that employees
instance list updating is complete.

e. Set up work field uf_visid2 as "Surname, Givename"

#uf_visid2 := #surname + ', ' + #givename

f. For each employee selected, invoke the AddtoList method in the List
Manager with appropriate parameter values for Visualid1 and Visualid2
and Akeyl.

#avlistmanager.addtoList Visualid1(#empno) Visualid2(#uf_visid2) Akey1(

g. Invoke the EndListUpdate method in the List Manager (after the
EndSelect)

#avlistmanager.endListUpdate

Your completed code should now look like the following:

Mthroutine Name(uSelectData)

* Save the current key values from overwrites done by the select loop
Inz_List Named(#Save_Keys)

* Indicate that Employees instance list updating is about to start
#avlistmanager.beginListUpdate

* Clear the current Employees business object instance list

If (‘#Clear_List.ButtonState = Checked)

#avlistmanager.clearList

Endif

* Select appropriate instances of Employees

Select Fields(#XG_Ident) From_File(pslmst1) With_Key(#XG_Keys) Nbr_Ke
* Set up the visual Identifier(s)

#uf_visid2 := #surname + ' ' + #givename

* Add instance details to the instance list

#avlistmanager.AddtoList Visualid1(#empno) Visualid2(#uf_visid2) Akey1(#e
Endselect

* Indicate that Employees instance list updating is now complete
#avlistmanager.EndListUpdate

* Restore the saved key values

Get_Entry Number(1) From_List(#Save_Keys)

Endroutine

13. To complete the event handling routine for DEPTMENT.Changed,
replace <INPUT FIELD > with #Deptment in this line:

Evtroutine Handling(< INPUT FIELD >.Changed) Options(*NOCLEARMES!

14. Compile your component.

15. In your Framework, open the Employees business object properties dialog
and select the Filters tab.

16. On the Filters tab, select the Filter Snap-in Settings tab and snap in the
Windows component as iiiVFWO05.

Identification | Icons | Visual Styled | Filters | JFilter Settings | Commands Enabled | Command Display | Custom Properties E
l.'._.a By Mame dentification ImHSGilter Snap-n Settings :) 3

I Déﬂy Location Stay Active Default = ‘J:
| indows N 5
'+ Component IIIVFWO5 Y) :

- B

|| Mock Up - RAD-PAD __RADPAD__ 3B4CF7TC1D654FEDB2CAAZFIF3 1F+30}

’WVM%HFJ WWJMW “wv“i._ﬂ..f}

17. Save and Restart the Framework and test the By Location filter.

18. Test the filter by specifying a partial department code only (for example,
"A™") and also with both a department and section specified (for example,
ADM and 01).

This filter has a very basic user interface. In a later exercise you will learn
how to enhance it.

You will learn more about using Layout Managers in a later exercise.

Summary

Important Observations
e With snap-in real filters you create real functionality in your application.

Tips & Techniques

e The source code for filters used in the shipped demonstration applications
can be found in components named DF_*.

What You Should Know

e How to create filters.

e How to snap filters into the Framework.

e How to use the Program Coding Assistant.

How to develop a filter by writing your own code.

VFW040 — Appendix

Source Code for Filter iiiVFW05
Function Options(*DIRECT)
Begin_Com Role(*EXTENDS #VF_AC007) Height(170)

Group_By Name(#XG_Keys) Fields(< FILE KEYS >)

Group_By Name(#XG_Ident) Fields(#EMPNO #SURNAME #GIVENAME)
Def_List Name(#Save_Keys) Fields(#XG_Keys) Type(*Working) Entrys(1)
Def_Cond Name(*SearchOK) Cond(< INPUT FIELD > *ne *Blanks)

* Body and Button arrangement panels

Define_Com Class(#PRIM_PANL) Name(#BODY_PANEL) Displayposition(
Define_Com Class(#PRIM_PANL) Name(#BUTTON_PANEL) Displaypositic
* Attachment and flow layout managers

Define_Com Class(#PRIM_ATLM) Name(#MAIN_LAYOUT)

Define_Com Class(#PRIM_ATLI) Name(#BODY_ATTACH) Attachment(Cer
Define_Com Class(#PRIM_ATLI) Name(#¥BUTTON_ATTACH) Attachment(]
Define_Com Class(#PRIM_FWLM) Name(#BUTTON_FLOW) Direction(Tog
Define_Com Class(#PRIM_FWLM) Name(#BODY_FLOW) Direction(TopTo
Define_Com Class(#PRIM_PHBN) Name(#Search_Button) Buttondefault(Tru
Define_Com Class(#PRIM_FWLI) Name(#FWLI_Search_Button) Manage(#S
* Define the fields and components that are on the filter form

Define_Com Class(#PRIM_CKBX) Name(#CLEAR_LIST) Caption('Clear Li:
Define_Com Class(#PRIM_FWLI) Name(#f WLI_CLEAR_LIST) Manage(#C
Define_Com Class(#PRIM_FWLI) Name(#FWLI_1) Parent(#BODY_FLOW)
Define_Com Class(#PRIM_FWLI) Name(#FWLI_2) Parent(#BODY_FLOW)

Mthroutine Name(ulnitialize) Options(*Redefine)
* Restore Clear List button state
Invoke Method(#avFrameworkManager.avRestoreValue) Withid1(*Componen

* Enable/disable the search button as appropriate

Set Com(#Search_Button) Enabled(*SearchOK)

Endroutine

Mthroutine Name(uSelectData)

* Save the current key values from overwrites done by the select loop
Inz_List Named(#Save_Keys)

* Indicate that Employees instance list updating is about to start

* Clear the current Employees business object instance list

If (‘#Clear_List.ButtonState = Checked)

Endif

* Select appropriate instances of Employees

* Set up the visual Identifier(s)

* Add instance details to the instance list

* Indicate that Employees instance list updating is now complete
* Restore the saved key values

Get_Entry Number(1) From_List(#Save_Keys)

sk

Endroutine

Evtroutine Handling(< INPUT FIELD >.Changed) Options(*NOCLEARMES!
Set Com(#Search_Button) Enabled(*SearchOK)

Endroutine

Invoke Method(#Com_Owner.uSelectData)
Endroutine
End_Com

VFW042 - Snap in a Real Command Handler

Objective

e To replace a prototype command handler with a real component that will
perform the processing required.

e To replace the Details command handler with a real command handler.

£ Emplopee : Detailz [A1002-5MYTHE JOHM]

[Detaits
Empiloyee Number
Employee Surname
Employee Grven Name(s)
Street Mo and Mame
Suburb or Town
State and Country
Post [Zip Code

Home Phone Mumber
Business Phone Mumber
Department Code

Section Code

Employee Salary

Start Date (DOMMYY)
Termination Date [DOMMYY)

4. Brief Notes

i Images | .| Notes ™ Skills 2 Skills
A1002

SMYTHE

JOHN

20 Cobbitty Avenue,

WERRIMNGTOM,

NS,

2100

047 625 0442

T9E 4381

ADM

01

25,000, 04

10177

4/a0/00

Local

Messages Ready ENG JIVORY 12

-

7/08/12 | 13:53 i

—_—]

To achieve this objective, you will complete the following:

Step 1. Create a Real Command Handler
Step 2. Review Command Handler code
Step 3. Snap in Real Command Handler
Summary

Before You Begin

Complete exercises VFW020, VFW030 and VFW040.

You may wish to review:

e Commands in Key Concepts in the Visual LANSA Frameworks Guide.

its:lansa048.CHM::/LANSA/command.HTM

Step 1. Create a Real Command Handler

In this step you will create a real command handler for the Details command.
1. From the Framework menu, start the Program Coding Assistant.

2. Select the iii HR Application / Employees / Details command handler.

3. If necessary select Native MS Windows as the platform.

4. Select Basic Command Handler as the type of code. This command handler,
displays the fields you specify for the object selected in the instance list. It
includes a Save button. You must complete the required update logic for this
button.

The CRUD Command Handler, is used with a CRUD filter. The commands
defined for the business object must be New, Details, Copy and Delete.

The Command Handler that maintains a list, generates a command handler
for the business object data as well as providing a list of records from a
related file.

5. Click the Next button.

6. Specify file name PSLMST as The physical file which most closely
resembles this business object.

As before the code assistant will select the key(s) of the file and the first two
fields from the file, which are suitable in this case.

7. Click the Next button.
8. Specify file name PSLMST in the Add fields from this physical file section.
9. Click the Add All button.

Basic Command Handler

Specify fislds that you want onto the top (header) area and for bottom (st or grid) area of your
command handier panel, Your choice to put fields onto the header andfor st areas wil affect the way
that code assistant structures your command execution

Fields that you want to appear on the top of your command handier

Field Mame Type Description [- Drop Selected
1 -E\'IF'N:I ALPHA .EITHJb'.IEE Numﬁoér
2 | SURNAME ALPHA Employee Surname
3 | GIVEMAME ALPHA Employee Grven Name(s)
4 | ADDRESS1 ALPHA Street Mo and Mame
5
&

Do All

ADDRESSZ |ALPHA Suburb or Town
anrersez LaLoua Etata and Counto

Cnddﬁeldsﬁmﬂuphyﬂﬂe PSLMST) Add Keys

~Fields that you want to appear in a list at the bottom of your handler

AL N T i LT e s S e, L_ T e L

10. Scroll down the list of fields. Select the following fields
Selected button to remove them:

e STARTDTER
e TERMDATER
e MNTHSAL
11. Click the Next button.
12. Select only the Include Default Save Button and Logic.

and use the Drop

Basic Command Handler

Speafy the things that you would lke to indude in the generated code.

I Indude ulnitialize routine
Include uTerminate routing

Use a grid for displaying any kst (ptherwise a st wiew wil be used)

G Indude Default Save Button and Logic _)
Check still connected before doing database 10

i S SR ~

13. Click the Generate Code button.
The generated code is displayed.

14. Specify iiiVFWO06 as the name of the component and Employee Details

Command Handler as the description.
15. Click the Create button.

16. After a few moments the Created in development environment message will
be displayed.

17. Switch to the Visual LANSA editor.
18. Use the GoTo tab to find the SAVE_BUTTON click event routine.

Add an UPDATE statement to update group_by fields XG_HEAD in the file
PSLMST. Your code should look like the following:

Update Fields(#XG_HEAD) In_File(pslmst) Val_Error(*next)

19. Compile your component.

Step 2. Review Command Handler code

1. Locate the uExecute method. This method is called by the Framework
when an employee business object is selected in the instance list.

Note that this method routine redefines the uExecute method defined in the
command handler ancestor, which is VF_ACO010.

2. The uExecute method is invoked in the ancestor. This ensures that any
standard logic in the ancestor's uExecute method in performed.

3. The List Manager's GetCurrentInstance method is invoked. In this case

only AKey1 is requested, but this method could request any of the columns
defined in the business object's instance list.

The uExecute method is then able to fetch the fields required from the
employee record, using the key of EMPNO.

Step 3. Snap in Real Command Handler

1. In the Framework, open the Employees business object properties dialog.
2. Select the Commands Enabled tab.

3. In the list of Enabled commands, select Details.

4. Specify iiiVFWO06 as the command handler Windows component.

Identfication Tcors | Visual Styles Siters | Fiter Settings{ Commends Ensbied Chmmand Display | Custom Properties SubTypes | Instance Ust | Relatiors
Ta enable and disable commands drag them between these lists
|
fiot Enabled « | | Ensbled Chesrse Command Type
[0 About b e b=t Bursiness Oiject Command = Irstarce Command
|| (@ Abeut Framewerk (CJpetis)
ACCounts Image Sequence: 1
= " ; aer s
- Alu:e:s:i .a_h_kNew Command Dplons. -Craty Wiindiow Size -
), Al Desals =l | %l otes Stay Active Defadt = Width Height
1 Al Entries Skils Wirdaws
¥ Amount Slalls 2 Defadk e -
4 Approve 4 Show on Popup Menus
»
o hssess 4 Show on Instance List Tesl Bar & &
AstEtant tional Argumer
Hide &l Other Command Tabs "
Assitant Example 1 Algha Argument 1:
Assistant Example 2 Ristrictied Access Algha Argument 2:
T Agststant Example 3 Execube as Hidden Cammand > 1
-.IATtﬂ:_‘h B imeric Argument
(& Astachments Mumeric Argument 2:
W authorities
Baclup
Buasic details
Baokings Windaws
[l Caldatae + Companert IIIVLWOG A
[2] Calendar =
uc“d Madk Lip - RAD-PAD
&= Card
| Category
L O el S N e i T T T B

5. Close the properties dialog.
6. Use a filter to populate the Employees instance list.

7. Select an employee in the instance list. Your command handler is snapped
into the Framework and usable.

8. Make a change to the employee and save the changes.

Note that currently the instance list does not reflect changes to an employee
(for example, a change of Surname). In a later exercise you will learn how to
handle this situation.

Summary

Important Observations

e The Details command handler is a simple update program. In your own
applications you would embed other business logic and processing into the
command handler as necessary.

Tips & Techniques

e For more information read the Windows Filter and Command Handler
Programming in the Visual LANSA Frameworks Guide.

e The source code for the shipped demonstration applications can be found in
components named DF_*,

What You Should Know

e How to use the Program Coding Assistant to create your own command
handlers.

e How to snap a command handler into the Framework.

e The VLF allows you to prototype and rapidly build and deploy an
application with no OO knowledge.

e Creating this style of application enables you to build on your Visual
LANSA knowledge, to rapidly build the style of application your end users
will expect.

its:lansa048.CHM::/LANSA/lansa048_0575.HTM

VFW044 — Add Instance List Columns

Objective
e To add columns to the instance list.

e To modify a filter to populate the additional instance list columns
e To add an alpha, a numeric and a date column to the instance list.

-

File Edit View Actions Help Windo :
1 Additional Instance List

@ | Y 6 @ Columns
e Transfer About

Mew Repor 5

Employees

[77 Favorites B By Name | 550 w P .

/il &, HR Demo Application = il e O a2 0O &

= i i HR Application + Chear List Search Employee | Desaiption /T Department | Salary | Start Date T
{3 Departments A1002 SMITHE JOHN ADM 25,000 01/01/1977
5 Employees Employee Surname 21003 SMITHE Robert AT 31,000 21/12/1985
() Reports SM A1004 SMITHSON PALL ALD 21,000 01/05/1880

i iii Transport Application A1005 SMITHS PETER ADM 46,700 01/02/1971

[:: 1 HR Application A1006 SMITHERS JACK TRVL 25,000 01/06/1381
Marcus Instance Example \

i 155} Programming Technigues

1), Administration

Note: In this exercise you will modify only the By Name filter. Normally you
would make the same modifications to By Location filter and to any other filters
which populate the Employees instance list.

To achieve these objectives you will complete the following:
Step 1. Add columns to the Instance List

Step 2. Change the Filter

Summary

Before You Begin

¢ You should complete exercises VFEW020, VFW030, VFW040 and VFW042.

e You may wish to review Adding Additional Columns to Instance Lists in the
Visual LANSA Frameworks Guide.

its:lansa048.CHM::/LANSA/addcols.HTM

Step 1. Add columns to the Instance List

In this step you will configure your Employees business object to make more
columns visible in the instance list.

1. Start the Framework as a Designer.
2. Open the properties dialog for the Employees business object.
3. Select the Instance List / Relations tab.

Two visual identifiers are already defined.

: Irtance List / Relatiors

ldentification [cors | Wisual Styles Fibers | Filter Settings Commands Enabled | Command Display | Custom Propertes | SubTypel

Enable Clear List Button
Double dick for default command
Save ard Restore Irstance Lists
I < Alow multiple selections

5

4 Alow Instance List to be sent to M5-Excel Fle Prefix to be used for MS-Excel Spreadshest_ (EnG)
Instance List Tool Bar Location Top -
Instance Lt Tool Bar Text Locaton None =
Ingtanoe List Tool Bar Height or Width 4
Snap in Irstance List Browser
Saquence Tipe Capbon ‘Wideh % (Tokal 25%) | Deomals Edit Code Dade/Tme Ouiput Format |UTC C
j11] VISUALID Y | Musmber 5 Dt SYSFMTE Loeal
Fai) VISUALED | Full Mame Defavlt SYSFMTA Local
ACOLUMN L Drefault STSRMTA Local
ACTLLMHG Defadt SYSMTE Local
. ACOLUMNI Default ST Local
e e —— T —— e T ————— DT T T v e p— e

4. Add three additional columns:

Sequence Type Caption Decimals Date/Time Output Format
30 AColumn1 Department

40 NColumn1 Salary 2

50 DColumn1 Start Date DDMMMCCYY

Note that you may set the initial width of each column as a percentage. Set
these to suitable values.

Seguence Type Caption Width % (Total 25%) | Decimals Edit Code Date/Time Qutput Format
10 VISUALID1 |Mumber 25 Default SYSFMTS

20 VISUALIDZ | Full Name Default SYSFMTS

30 ACOLUMN1 |Department Default SYSFMTE

40 NCOLUMN1 |Salary 2 Default SYSFMT3

50 DCOLUMNL | Start Date Default DOMMMCCYY

5. Close the business object properties dialog.

6. Save and Exit the Framework

Step 2. Change the Filter

You need to make some simple changes to your filter to populate the new
instance list columns.

1. Open the reusable part iiiVFW04 in the Visual LANSA editor. Note that you
will find it on your Favorites / Last Opened tab.

2. Change the Group_by XG_IDENT to include fields DEPTMENT, SALARY
and STARTDTE. Your code should now look like the following — changes are
shown in red.:

Group_By Name(#XG_Ident) Fields(#EMPNO #SURNAME #GIVENAME #

3. In the uSelectData method routine, within the SELECT/ENDSELECT

loop, set up field VF_ELDTS to contain STARTDTE, converted to an ISO
date and then converted to a display string.

The field VF_ELDTS is an alphanumeric field of length 19, which exists in
the repository and is used by Framework components.

Your code should use intrinsic functions. For example:

#vf_eldts := #startdte.asdate(DDMMY'Y).asDisplayString(ISO)

Use this code if your date format requires it:
#vf_eldts := #startdte.asdate(MMDDY'Y).asDisplayString(ISO)

4. Change the invoke AddtoList method in the List Manager to populate the
additional columns. For example:

Invoke Method(#avListManager.AddtoList) Visualid1(#UF_VisID1) Visualid2

5. Compile your filter.

6. Start the Framework and test the result.

Summary

Important Observations

e The Instance list supports up to 10 alpha and 10 numeric columns and up to
5 data columns.

Tips & Techniques

e Instance list columns are shown, once you give them a sequence number.

What You Should Know

e How to add columns to the instance list.

VFW050 — Basic Combo Box Processing

Introduction

The combo box is a simple list component. There are a number of other list
components available such as List View, Grid and Tree View.

This exercise introduces a combo box (or dropdown) by adding it directly onto a
panel and then adding logic to populate it with values and position it to an entry,
when necessary. As you will see in a later exercise, you will often decide to
create a reusable part which supports one or more linked combo boxes. This
will simplify your application coding and enable the combo box logic to be
written once and re-used.

A combo box typically displays a list of descriptions (such as Department
Description). However your program logic will require the associated
department code. Typically the combo box has one visible column containing
descriptions and a hidden column containing the associated code.

When an entry in a list component is selected, your program variables are
automatically populated from the selected row.
Objective

e To enhance the Employee Details command handler (iiiVFWO06) using a
combo box.

X
[IDetaits | i Briefiotes | |7 Images | . Motes | 79 Shilg 2 Skils
Employes Mumber AL003 Termination Date (COMMYY) 0/00/00 Save
Employes Surname SMITHE Back
Employes Given Name(s) Biobert
Street Mo and Name 23 Arthur Road,
Suburb or Town DEE WHY,
State and Country S,
Post [Zip Code 000 |
Home Phone Number 97T 5268
e Departments

FLEET ADMINISTRATION -]) Combo Box
Department Code FLT
Section Code 02
Employes Salary 31,000.04
Start Date (DOMMYY) 21/12/85

Meszanes Ready Local ENG JIVORY 12 7/08/12 | 1405 .J I

To achieve this objective you will complete the following:

Step 1. Add a Combo Box to the Panel
Step 2. Set up the Combo Box

Step 3. Test the Combo Box

Summary

Before You Begin
Complete exercises VFW030, VFW040 and VFW042.

Step 1. Add a Combo Box to the Panel
1. Open the reusable part iiiVFWO06 in the editor.

2. In the Design view, select the Controls tab and drag and drop a Combo Box
control onto the left hand panel (BODY_HEAD). Since BODY_HEAD has a
flow down manager, your combo box will be positioned at the end of the
existing fields.

3. Select the Department Code and select the Details tab. Note that this field
has a DisplayPosition property of 10.

4. Select your combo box and:

a. change its DisplayPosition to 10 to position it immediately before the
Department Code.

b. Change its TabPosition to 10.
5. Your panel should now look like the following:
NIVFW06 - Employee Details Comme
Bghogee st - 01D UdaBTE [l RS

Employee Surname -+ - - - - - aAbRcCdDEEFgGhEL])
Emploryee Giver Mame(s) - - - - aAbBCCADESfEgGhHL)

StreetNgandMame - aAbBcCADeEfFoGhHl LM
Subixbot ToWri 01 - [aAbBCCDeEFQGRHIMKLM |11l
Stafe'and Caundry’ - ' |aAbBCCADEEQGHHIMKLY |1t 13
fost(ZpCode 11Tl l12348

e pecoeroune

Business Phane Number- - © - | ABCDEFGHLKLMNO

GepertmentCode - - - - - - - - ABCD

In a real application you would want the combo box positioned in line with
the field edit boxes. This can be ignored for now. In later exercises you will
see how this combo box would be implemented in a real application.

Step 2. Set up the Combo Box

1. On the Repository tab, find the file DEPTAB and drag and drop the fields
DEPTDESC and then DEPTMENT onto the combo box.

Adjust the Width of the Combo box so that the full description field is visible

2. Columns within a list component are components which have their own
properties, events and methods. Review the code you have generated for the
combo box:

Define_Com Class(#PRIM_CMBX) Name(#CMBX_1) Componentversion(1)
Define_Com Class(#PRIM_CBCL) Name(#CBCL_1) Displayposition(1) Pare
Define_Com Class(#PRIM_CBCL) Name(#CBCL_2) Displayposition(2) Pare

Component CBCL_1 is the first column of combo box CMBX_1. Note that
CBCL_1 has a Parent of CMBX_1.

The combo box can have only one visible column: the first column added. If
you added DEPTMENT first, correct the set up by making the column
containing DEPTMENT Visible false.

In the Design view, to work with the combo box column 1, select the
component CBCL_1 from the dropdown at the top of the Details tab.

7
Details 3 Desion | Source | Multlingusl Details | Repository Help | Cross Ri;
P 7
{cBCL_t - DEFTMENT, Department Cade, Alphanumeric(4)) IIVFWOGA - Employee Details CH i
Employes Number ABCDE L
Properties || Events | Methods T
5 Employes Surn; ABCDEFGHIJKLMNOPORST
ComponentClasshame PRIM_CBCL i o 2 i
" ComponentPatternilams PRIM CBCL Employee Ghen Name(s) ABCDEFGHIIKLMNOPQRST 3
4 - ey
ComponentTag Street Mo and Name aAbBcCdDeEFQGhHTIm 3
= = - A
Bl bt i et Suburt or Town aAbBCCdDeEFgGhHT ILm &
DisplayPosition 1] j
 Hame CHOL 1 State and Country afb8oCdDeEfFgGhHT) Jedlm £
* Ownar FIVFWOGEA Post [Zip Code 123456 i
4 - ; i
Farent #CMEX_1 Home Phone Mumber ABCDEFGHLILMNG 5
., g S g Business Phone Number ABCDEFGHIIKLMND j
SortPosition 0 3
= — ABCDEFGHLIKLMNOPGRST = 1,
* Source SDEPTMENT Department Code ABCD 4
* isibie Fales - Sachion Code AB 12
" Width i))
% Employes Sa 123,456, 789,12
WidthType Scaleable || e }
T el T L I S

3. Create an ulnitialize method routine and add code to populate the combo
box. The ulnitialize method is already defined in the ancestor (VF_ACO010).

Your logic should clear the list CMBX_1 and select all valid department

codes and descriptions from the table DEPTAB and add them to your combo
box.

Note that the CMBX_1 can be used as the Fields() parameter in I/O
commands. Your code should look like the following:

Mthroutine name(ulnitialize) Options(*REDEFINE)
Invoke Method(#Com_Ancestor.ulnitialize)
Clr_List Named(#CMBX_1)

Select Fields(#CMBX_1) From_File(deptab)
Add_Entry To_List(#CMBX_1)

Endselect

Endroutine

4. Since the Employee Details command handler is reading and updating an
employee you need to ensure the combo box displays the required department
description.

Entries in a list components can be processed using the

SELECTLIST/ENDSELECT loop.

5. Add the following logic in the uExecute method routine, after the FETCH
employee record.

Define Field(#deptw) Reffld(#deptment)
#deptw := #DEPTMENT

Selectlist Named(#CMBX_1)

Leave If #DEPTMENT = #deptw)
Endselect

#CMBX_1.currentltem.focus := true

6. How do you discover that the combo box has a currentitem which has a
focus property?

In the Design view, select the combo box and use the context menu on the
combo box component and select Combo Box: CMBX_1 / Features.

.............. Combo Box CMBX_1 EJ Features

Delete Component

S ; Copy Compopea=? e 8 . . . oo

The Features help panel will be displayed.

Features |l
@«-»~-lpa|Qp|e?
|

= Primitive
CMBX_1
= Definition
= Class
= a PRIM_CMEX List with an edit box
= [§ Extends
43k PRIM_CTRL Base Visual Contral
f Events
by Methods
."‘:‘ Properties

= Usage in IIIVAW06A
-WWWM'

7. Expand the Properties to find Currentltem. Note that the + symbol indicates
that Currentltem can be expanded.

8. Double click on PRIM_CBIT to show the properties, events and methods for
the list column component.

h Features 5
@-m- P& Qp|c?
= Primitive
| [PRIM_CBIT List item is an entry in a list, tree view o
= Definition
= Class
= = PRIM_CBIT List item is an entry in a list, tree view g
= [§ Extends
@ PRIM_OBJIT Base object, use it as the ancestor of ¢
f Events
by Methods
__.n:‘ Properties

e e Y e e T

9. Expand Properties to see the Focus property. Double click on the focus
property to see the help for the Currentltem.Focus Property.

iy .

"~ Currentltem Focus Property

;> Use the Focus property to find out if a list, grid, combobox or tree vi
an an item or a column. Only one item or column at a time can have

Pl

through the list making one item at a time the Currentltem and test:

SELECTLIST NAMED({#LIVW_1}
: IF "#ltvw_1.CurrentItem.Focus *eq True'
:’ F..'T_I do something

ENDIF

% You can use the SELECTLIST command to examine the properties o.
L

10. Compile your component.

Step 3. Test the Combo Box

1. Execute your Framework as Designer, search for employees by name, and

select one in the instance list to display the Employee Details command
handler.

The combo box should display the correct description for the employee's
Department Code.

2. Select another employee to check the combo box value is changing.
3. Change the department code using the combo box.
Note that the Department Code value is changed.

You will be able to save the employee record, provided that the Section Code
is valid for the new department.

Summary

Important Observations

All list components such as combo box, grid, list view and tree view are
handled in a similar way.

The order of the data is controlled by the sort position and not the order the
data is added to the list.

If you change the SortPosition property for CBCL_1 equal to 1, the
departments will be displayed in ascending order.

Tips & Techniques

This exercise shows typical simple combo box processing. You must ensure
that the combo box is filled and correctly positioned.

If the department's combo box was being used for the New Employee
command handler, you would need to initially populate the combo box and
then position it to the first entry. For example by adding this logic:

Get_Entry Number(1) From_List(#CMBX_1)
#CMBX_1.Currentltem.Focus := true

What You Should Know

How to implement a simple combo box.

VFWO052 — Build a Working List of Selected Items
Objectives

To implement a List View component showing a list of all employees
To learn how to handle selected items in a list

To show how to use the TRANSFORM_LIST Built-in function to write data
from a working list to a temporary file.

To develop a reusable part as the Reports business object's Weekly command
handler. The application will have no real purpose except to include this
exercise into the Framework. Initially the command handler will update a list
column when an entry is selected or unselected. Total salary will be
calculated for selected employees

To enhance the application to maintain a working list of selected entries.

To learn how you can maintain a working list of selected items, dynamically,
meaning the working list is updated each time a selection in the list changes.

To implement a static working list, which is populated with selected entries
from the list only when a button is clicked.

_

o Wieakly
_Employee Humber | Employee Surname | Employee Given Name(s) | Employes Salary | Selected lul 4
ADO70 BROWN VERGNICA 50,125.00
A0 BLOGGES FRED J0HM ALAMN 20,045.91
AD193 SIMPSON FRED 35,000,042
AD907 CNES ANNE 34.213.04 =
A1001 JONES BEN 2,345.82 YES
A1002 SMYTHE J0HN 25,000.04 YES =
AL003 SMITHE Robert J1,000.0:4
AlOD4 SMITHSOMN PALL 21,000,042
Al0DS SMITHS PETER 45, 700,04
A1006 SMITHERS JACK 25,000.04 YES
A1007 SNELL GEORGE 26,780.04
A1008 SNEDDON ALLAN 450,000.04 =
A1009 SNASHALL DAMIAN 31,000.04 ¥ES
A1010 PERRY WILLTAM 60,000.04
A011 PERRIN CHRISTOPHER 25,000.04 YES
AR s P PRTRIER e SAIBM: sgs e
AI013 PATTISOM GEORGE mefTes 0 Yes]
Al014 MOORE JOHN 63,0000
A1015 WOODs BRADLEY 313,000.04
A1016 TURNER JACK 22,000.04
A1017 NEAVE GARY 25,600.04
AlQ1B ZACHARLA FrALIL 25,900, 04
Al0l9 DICKEMNS CHARLES 45,000,024
Tatal Salary 221,336.08 Dynamic Save Static Save

Messages Ready Local ENG | JvoRY1Z | 70812 | 1408 ._JJJ

To achieve these objectives you will complete the following:

Step 1. Create the Weekly Command Handler

Step 2. Handle Selected Items

Step 3. Build a Dynamic Working List of Selected Items
Step 4. Build a Static Working List of Selected Items
Summary

Step 1. Create the Weekly Command Handler
1. Create a new Reusable Part / Panel:

Name: iiiVFW07

Description: Select Items from List
2. Change the Ancestor to VF_ACO010.

3. Select the Design ribbon. Click on the New Layout button to add an
attachment manager to the reusable part.

i
- i
MNew Mew
Style Layout
New Layout
¢ Details = Re Table

& Table Layout Manager

vewor (LT 11

[
[- -
| O | S —) —
Attachment
Attachment

In

L_lLL
1]

1IN

g
L

.. S Flow Down

- -

© w Flow Down Layout Manager
L

4. Drag and drop a Panel component at the bottom of the form.
5. Drag and drop a List View component into the center of the top area.

6. From the Home ribbon, open the Layout Helper tab from the Views dialog.
Select your component iiiVFWO07, for example click on the reusable part's
title bar. On the Layout Helper, select the Child Details tab and ensure that
PANL_1 is defined as Bottom and LTVW __1 is defined as Center.

Layout Helper gl Repository COutline | == Details Favorites L

Layout Managed Component

iinvFNDT7

Layout Ci X
ATLM

Children M > Wl X LayoutManager Details = Child Details As Child Details

o PANL1 Category | Attachment

Bottom Right MNone

B T e e S e e I L T

7. Save your component.

8. On the Repository tab, find the file PSLMST and drag and drop fields
EMPNO, SURNAME, GIVENAME and SALARY into the List View.

9. On the Repository tab, expand Fields and drag and drop field STD_TEXTS
into the List View.

10. Click on the column heading for STD_TEXTS and use the Details tab to
change the Caption to Selected, and the CaptionType to Caption.

11. Select the list view and use the Details tab to ensure the SelectionStyle is
Multiple.

12. Save your changes. Your design should look like the following.

INIVFWOT - Select ltems from List

[Employes Mumber Employee Sumame Emplay'ae Gwen Name(s) | Employee Salary | Selected 1
0 ABCDE aAbBcCdDeEfFgGhH.. aAbBoCADeEfFgGhHITY 123,456,789.12 aAbBoCdl

13. In the Repository create a field TOTSALARY (it may already exist). The
field should be Packed, 15.2 with an edit code which shows a negative sign
(for example, edit code L).

a. Add the field TOTSALARY onto PANL_1 at the bottom of the main
panel.

b. Change TOTSALARY MarginLeft property to 100. Adjust the Width
property as required.

14. Create an Initialize event handling routine for the List View. Add code to:
e Clear the list view

Change STD_TEXTS to blanks

Select the required fields from file PSLMST

Add and entry to the list view

End Select.

Your code should look like the following:

Evtroutine Handling(#LTVW_1.Initialize) Options(*NOCLEARMESSAGES
Clr_List Named(#LTVW_1)

#std_texts := *blanks

Select Fields(#LTVW_1) From_File(pslmst)
Add_Entry To_List(#LTVW_1)

Endselect

Endroutine

15. Save your changes.

Step 2. Handle Selected Items

1. Create an ItemGotSelection event handling routine for the list view. Add
code which:

e Changes STD_TEXTS to YES
e Updates entry in the list view
e Add Salary to TOTSALARY

2. Create an ItemLostSelection event handling routine. Add code which
e Changes STD_TEXTS to blank

e Updates entry in the list view
e Subtracts Salary from TOTSALARY.
Your code should look like the following:

Evtroutine Handling(#LTVW_1.ItemGotSelection) Options(*NOCLEARMES
#std_texts :='YES'

Upd_Entry In_List(#LTVW_1)

#TOTSALARY :=#TOTSALARY + #salary

Endroutine

Evtroutine Handling(#LTVW_1.ItemLostSelection) Options(*NOCLEARME¢
#std_texts := *blanks

Upd_Entry In_List(#LTVW_1)

#TOTSALARY :=#TOTSALARY - #salary

Endroutine

3. Compile your component.
4. Execute the Framework as Designer.
a. Open the Reports business object properties dialog.
b. Select the Commands Enabled tab.
c. Select the Weekly action and define the Windows Component as
iiiVFWO07.
d. Close the Properties dialog
5. Save and Restart the Framework.

6. Test the Weekly command handler for the Reports business object.

a. Click on entries using the shift or control key to select multiple entries.

The Selected column should be updated to YES and the Total Salary
field should reflect the selected employees.

b. Click on white space below the employee entries to unselect all entries.
Total Salary should now be blank (zero value).

Step 3. Build a Dynamic Working List of Selected Items

In this step you will extend your Weekly command handler by defining a
working list. The ItemGotSelection and ItemLostSelection event routine will be
extended to add or delete entries to/from the dynamic working list.

A Dynamic Save push button will be added to PANL_1. When clicked this
button will write a comma separated file from the dynamic working list.

1. Define a work field called KEYEMPNO which refers to field EMPNO for its
definition. This will be used to store EMPNO in the working list

2. Define a work field RETCODE which refers to field IO$STS for its
definition.

3. Define a working list DYNAMIC containing fields KEYEMPNO,
SURNAME, GIVENAME and SALARY. Specify the number of entries as
*MAX. Define the list Counter as LISTCOUNT.

Note: *MAX denotes the maximum list sized is only limited by the
execution platform. For *MAX, the working list uses memory dynamically.

Your code should look like the following:

Define Field(#keyempno) Reffld(#empno)
Define Field(#retcode) Reffld(#io$sts)
Def_List Name(#dynamic) Fields(#keyempno #surname #givename #salary) C

4. Modify the ItemGotSelection event routine:

a. Look in the DYNAMIC working list (LOC_ENTRY) for the selected
employee number. Use Where() to compare KEYEMPNO with EMPNO.

b. If not found, add an entry to list DYNAMIC. Be sure to first change field
KEYEMPNO to the value of EMPNO (ADD_ENTRY).

5. Modify the ItemLostSelection event routine:

a. To look in the DYNAMIC working list for the selected employee number
using LOC_ENTRY with a suitable Where() parameter.

b. If found, change KEYEMPNO to EMPNO and delete the entry from list
DYNAMIC (DLT_ENTRY).

6. Add a push button to the bottom panel (PANL_1) and change the Name to
PHBN_DYN. Change the Caption to Dynamic Save.

7. With the PANL_1 selected, select the Design ribbon..

a. Click on New Layout and click on Flow Across to add a flow across
manager to this panel.

Mew Top Bottorm Left
Layout
New Layout
Ip = Table
G0 Table Layout Manager
10 || pilemieml]

“ sutachr.ent
. & Flow Down
@ Flow Down Layout Manager

i | lfh‘ Flow Across
Flow Across Layout Manager

Split Horizontal
' Split Horizontal Layout Manager

Split Vertical
L Split Vertical Layout Manager

b. On the Layout Helper tab, click on the right hand blue paper clip button,
to Attach all children to the layout manager.

% Layout Helper gl Repository Cutline | == Details

Layout Managed Component
PANL 1

Layaut Co X
FWLM_1 -
Children m * @ 7% Layout Manager Details | Child *

¥ PHEN_DYN
¥ TOTSALARY S

e e

c. On the Layout Manager Details tab, select the Category / Margins and
use the All setting to define all margins as 6 pixels.

d. Your design should look like the following:

L e T i T I S S L}

k Total Salary 1,234,567,890,123.12 Dynamic Save

8. Create a Click event routine for the push button PHBN_DYN. Add logic to:
a. Check if LISTCOUNT is greater than zero

b. Use the TRANSFORM_LIST BIF to create a comma separated file. Place
the in C:\temp. For example:

if (#listcount > 0)
Use Builtin(TRANSFORM_LIST) With_Args(#Dynamic 'C:\temp\iiiDynamic
Endif

Hint: Use the F4 Command Assistant to complete the USE command.

c. Check if RETCODE is OK. Issue a "Dynamic file saved to . . . " message,
or an error message if the save was not successful.

Your code should now look like the following. New / changed code is
highlighted in red, italic.

Evtroutine Handling(#LTVW_1.ItemGotSelection) Options(*NOCLEARMES
#std_texts :='YES'

Upd_Entry In_List(#LTVW_1)

#TOTSALARY :=#TOTSALARY + #salary

#keyempno := #empno

Loc_Entry In_List(#Dynamic) Where(#empno = #keyempno) Ret_Status(;
If (#retcode *NE OK)

Add_Entry To_List(#Dynamic)

Endif

Endroutine

Evtroutine Handling(#LTVW_1.ItemLostSelection) Options(*NOCLEARME¢
#std_texts := *blanks

Upd_Entry In_List(#LTVW_1)

#TOTSALARY :=#TOTSALARY - #salary

Loc_Entry In_List(#Dynamic) Where(#empno = #keyempno) Ret_Status(;
If (#retcode *EQ OK)

DIt_Entry From_List(#Dynamic)

Endif

Endroutine

Evtroutine Handling(#PHBN_DY N.Click)

If (#listcount > 0)

Use Builtin(TRANSFORM_LIST) With_Args(#Dynamic 'C:\temp\iiiDyna
If (#retcode *EQ OK)

Message Msgtxt('Dynamic file save to C:\temp\iiiDynamic.csv")
Else

Message Msgtxt('transform list failed')

Endif

Endif

Endroutine

9. Compile your component

10. Execute the Framework and test your new Weekly command handler for the
Reports business object. Check that the CSV file is saved with the correct
contents. The file will open in Excel if available, otherwise open it using
Notepad.

Notes:
If a path is not specified, the TRANSFORM_LIST BIF will save the output file
in <sysdir>.

Optional: You could have set the dynamic save push button to Enabled(False)
initially and enable the button if LISTCOUNT is greater than zero. Add this
logic to the ItemGotSelection and ItemLostSelection event routines.

Step 4. Build a Static Working List of Selected Items
In this step you will extend the Weekly command handler, by defining a second
working list, STATIC.

This list is called STATIC because when a button is clicked, the whole list view
is read and currently selected items are selected, to build the STATIC list. Its
entries are not maintained dynamically each time a list item gets or loses
selection.

A Static Save push button click event will then process the List view adding
only the selected items to the STATIC working list.

TRANSFORM_LIST will be used to save the STATIC working list as comma
separated file.

1. Define a work field STATCOUNT with reference to field LISTCOUNT

2. Define a working list, named STATIC containing EMPNO, SURNAME,
GIVENAME and SALARY. Set entries to *MAX and a Counter of
STATCOUNT.

Your code should look like the following:

Define Field(#statcount) Reffld(#listcount)
Def_List Name(#static) Fields(#empno #surname #givename #salary) Counter!

3. Add a push button to the bottom panel (PANL_1). Change its name to
PHBN_STAT and change Caption to Static Save.

4. Create a Click event routine for push button PHBIN_STAT which:
a. Clears the static working list
b. Reads all entries in the List View using SELECTLIST/ENDSELECT.

c. Continues reading the next list view entry if the currentitem is not
selected.

Hint: Use Feature Help (F2) on the list view and examine properties to
find currentitem and then the properties of currentitem.

d. For each selected item, add an entry to the static working list.

e. If STATCOUNT is greater than zero, use the TRANSFORM_LIST BIF to
save to a CSV file.

f. Test RETCODE and issue a success or error message as appropriate.

Your code should look like the following:

Evtroutine Handling(#PHBN_STAT.Click)

Clr_List Named(#Static)

Selectlist Named(#LTVW_1)

Continue If(*Not #LTVW_1.currentitem.selected)
Add_Entry To_List(#Static)

Endselect

Use Builtin(transform_list) With_Args(#Static 'c:\temp\iiistatic.csv' O) To_Get
If (#retcode = OK)

Message Msgtxt('Static file saved to C:temp\iiistatic.csv')
Else

Message Msgtxt('Static file save failed")

Endif

Endroutine

Summary

e List components have many other features than those in this exercise. Many
of these will be explored in later exercises.

e A later exercise will look at how a working list can be passed to a function
and received by a function.

Important Observations

e LANSA list component processing is very fast. Even with thousands of
entries, there will only be a short delay while creating the static saved file.

e Both static and dynamic methods work efficiently and are equally straight-
forward to program.

¢ You should always review the properties, events and methods which are
available for a control, to understand how you can use it to meet your
application requirements.

Tips & Techniques

o If the user occasionally needs to produce the save file, the static method
would probably be the most suitable.

e If the user needs to see the total selected salary and frequently create a saved
working list, the dynamic method would work well.

What You Should Know

e How to handle list events.

e How to update entries in a list component.

e How to process all entries in a list component
e How to define and use a working list.

e How to use the TRANSFORM_LIST BIF.

VFEW054 — Edit Text in a Memo / Edit Box

Objective
e To demonstrate how a multi-line edit box can be used

e To build the Employee Brief Notes command handler, which will use the
Multi-line edit box component to create, save and display text for an
employee. When an employee is selected in the instance list, the Brief Notes
command handler will retrieve the text and populates the multi-line edit box

e To learn how to use Save and Delete buttons, enabling notes to be saved or
deleted.

e To create a simple file to store the notes data.

|=]]

7

s By Name | 2] By Location g Ol 9 6 & & |

/| Clear List Search Employee | Description Department Salary | Start Date !
AlDD2 SMYTHE J0HM B 25,000 D]ﬁ)lflg??

Employes Sumame AL003 SMITHE Robert FLT 31,000 21/13/1985

5M AIDD4 SMITHSOM PALL ALD 21,000 0105/1980
AID05 SMITHS PETER ADM 46,700 01/02/1971
AIDDS SMITHERS JACK TRIL /198

Mulii-line Edit Box
component

' Employes - Brief Notes [A1002-SMYTHE JOHN)

o Briefiotes [l i Motes | e cige 2 skils L
orem ipsum dolor sit amet, eum melore maluissst te, librs intellagat te sed, Unum accommoadare ulameorper ne guo, legere prompta _\\

platonem vel id. Doming commune omittantur te per, omnis dicat aliquip usu ne. Dignissim deterruisset necessitatibus te quo. Quando Save
nteresset complectitur ex mel, Per in quas detas invenine.

A /

To achieve these objectives you will complete the following:

Step 1. Create a Table to Store Employee Notes

Step 2. Create Brief Notes Command Handler

Step 3. Create the Command Handler Logic

Step 4. Implement Memo Box Copy/Paste Methods (Optional)
Summary

Step 1. Create a Table to Store Employee Notes

1.

Define the following fields in the Repository:

Field Name | Description Type Length | Decimals | Input
Attrib.
iiiNTETYPE | Note Type Alphanumeric| 1
iiiNTESQN | Note Sequence | Packed 7 0
Number
iiiLNECNT | Line Count Packed 7 0
iiiNTELNE | Note Line Alphanumeric | 80 LC

Create a table iiiEmpNotes - Employee Notes, that is defined as follows:

Field Primary Key Number
EMPNO 1

iiiNTETYPE | 2

iiiNTESQN |3

iiiLNECNT |4

iiiNTELNE

The file does not need to be RDMLX enabled.

3. Compile your new table. Be sure to select compile options which will build
table, indexes and OAM.

Step 2. Create Brief Notes Command Handler
1. Create a new Reusable Part / Panel:
Name: iiiVFW08
Description: Employee Brief Notes
2. Give the reusable part an ancestor of VF_ACO010
3. Select the Design ribbon. Give the component an Attachment manager.

4. Drop a Panel onto the right hand side. Give this panel the Name,
BUTTON_PANL. Adjust the width so that it can contain push buttons.

5. Drop a Multi-line edit box onto the center of the left hand area.

6. Open the Layout Helper tab. If necessary, select it from the Views button on
Home ribbon.

Select iiiVFWO08 in the Layout Managed Component dropdown and select
the Child Details tab. Check the Child Details are correctly defined.

a. BUTTON_PANL should be Right

b. MEMO _1 should be Centre.

c. Select the BUTTON_PANL and give it a Flow Down manager.
d

. On the Layout Manager tab. On the As Child Details tab, select the
Category / Margins and use the All to set margins of 6 pixels.

7. Drop two push buttons onto the BUTTON_PANL.
a. Name the first PHBN_SAVE with a Caption of Save.
b. Name the second PHBN_DLT with a Caption of Delete.
8. Save your changes.
9. Locate your Employee Notes file on the Repository tab.
Drop the field iiiNTELNE onto the Memo box.

The Multi-line edit box has columns just like other list components. You
have just created column MECL_1.

10. Drop the field iiiNTESQN onto the Memo box.

At this point the new column MECL_2 should be selected. Use the Details
tab to check its ColumnRole property. Since this is a numeric field it should
have been automatically set to LineNumber.

The Memo box will set this line number column as each line is created. This
enables application code to be simplified, when writing the note data to a file.
The sequence number will ensure the text is restored to the memo box in the
same sequence.

11. Drop field iiiLneCnt onto the Memo box. Once again check this column's
ColumnRole which should be LineContinuation.

12. Select the Memo box and set its properties as follows

Property Value
WordWrap True
AddEntryMode MultiplePerLine

MaximumLineLength 20,000

The Memo box component will increment line count (iiiLneCnt) as text is
added.

Step 3. Create the Command Handler Logic

The Brief Notes command handler is an instance list command. These means it
should begin by retrieving the instance list current entry, so that it can restore
notes for this employee.

1. Create an uExecute method routine with an Options(*redefine)
parameter. This routine needs to do the following:

a. Invoke the ancestor uExecute method

b. Invoke the List Manager GetCurrentItem method to retrieve AKey1
(contains EMPNO)

c. Clear the Memo box

d. Select all iiiEmpNotes records for this EMPNO and iiiNteType = G
e. Add entries to Memo box

Your code should look like the following:

Mthroutine Name(uExecute) Options(*redefine)

#com_ancestor.uExecute

#avlistmanager.getCurrentInstance Akey1(#empno)

Clr_List Named(#MEMO_1)

#iUINTETYP .= G

Select Fields(#MEMO_1) From_File(iiiEmpNotes) With_Key(#empno #iiiNte
Add_Entry To_List#MEMO_1)

Endselect

Endroutine

2. In this step you will add logic to handle the Save button click event.

The Memo box has a Modified property, which your save logic can test to

determine whether the notes data needs to be saved. Modify your uExecute
routine so that the memo box Modified property is set to false, before clearing
the Memo box. For example:

#MEMO_1.modified := false

Remember you can find out more about any component's properties, event
and methods by using the F2 Feature Help.

Create a Click event handling routine for the Save push button. Add logic to
perform the following:

If the Memo box Modified property is true — perform
Change iiiNTETYPE to G

Delete all records from iiiEmpNotes for this employee and Note
Type.

Read all items in the Memo box using SELECTLIST
Insert new records to iiiEmpNotes

Your code should look like the following:

Evtroutine Handling(#PHBN_SAVE.Click)

If #MEMO_1.modified)

#iiiNteType := G

Delete From_File(iiiEmpNotes) With_Key(#empno #iiiNteType)

Selectlist Named(#MEMO_1)

Insert Fields(#iiiNTELNE #iiiNteType #iiiNTESQN #iiiLneCnt #empno) To_lI
Endselect

Endif

Endroutine

3. Create a Click event handling routine for the Delete button. Add logic to
delete all entries for this employee with iiiNTETYPE = G.

Clear the memo box.
Your code should look like the following:

Evtroutine Handling(#PHBN_DLT.Click)

#iiiNteType := G

Delete From_File(iiiEmpNotes) With_Key(#empno #iiiNteType)
Clr_List Named(#MEMO_1)

Endroutine

4. Compile your component.

5. Execute the Framework as Designer and open the properties dialog for the

Employees business object.

6. Select the Commands Enabled tab, select the Brief Notes action and define
its Windows command handler as iiiVFW08.

7. Save and Restart the Framework as an end user.
8. Test the Brief Notes command handler.

9. Using standard Windows shortcuts (Copy = Ctrl+C, Paste = Ctrl+V), copy
text from a portion of the LANSA Online Guides and paste it into employee
brief notes.

Step 4. Implement Memo Box Copy/Paste Methods (Optional)

If you examine the Memo box Methods you will find it supports Copy, Paste,
Cut, Print and Find.

Copy will copy selected text to the Windows clipboard. The method can be

actioned programatically or by the user using the standard shortcut keys, such as
Ctrl+C

Note that there are other Methods available such as Replace, which you should
investigate later. Once again Feature Help (F2) will provide more information.

In this step you will implement some of these methods using a Pop-Up menu.

1. In the Design view, select the Memo box, select All Controls on the Controls
tab and drag and drop a Pop-up Menu component onto it. The Pop-up menu
will be displayed at the top of the Design tab.

Design || Spurce | Multiingual Details F‘.Eposib:g
Iteml =2 Brief Motes }

a.-5.I:|Eh:CdDEEFFgGhHinJkl*i]LmMnNDOquQrRsSt‘}
fFaGhHITi JkKILmMnM

by
You create can Menu items by typing their Caption, then pressing Enter to
create the next menu item.

The first Pop-up menu component is named PMNU_1, and Menu items are
named MITM_1, MITM_ 2 etc.

A component, such as the Memo box, will have its Popupmenu property set
to the name of the Pop-up menu which was dropped onto it.

Typing a dash into a menu Caption makes this menu item a divider. Its
purpose is to visually separate different parts of the menu.

2. In this step you will define the Pop-up menu items. If the first menu item
(Item1) is not displayed at the top of the Design tab, use the context menu on
the Memo box to Edit pop-up menu.

a. Replace the Item1 text with Copy and press Enter.

b. Enter Paste and press Enter.

c. Type a dash (-) character into the next menu item, and press enter
d. On the new menu item, type Select All and press Enter.

e

. Type dash into the next menu item and press Enter.

f. Type Find into the new menu item
g. Save your changes.

Your Pop-up menu should now look like the following:

T
Design || Spurce | Multiingual Details | Reposite

i
Copy irief Motes '}
Paste _mMnNDOquQrRsSf}
Select All 3
b
>
ELCE———C ;
)
¥

3. Create a Click event handling routine for each menu item. To do this, simply
position in each menu item and use the Details / Events tab.

Note that you could have renamed each menu item (for example,
MITM_COPY) for example. This is recommended in your own applications.
It will make future maintenance much easier.

4. Complete each menu item Click event so that it invokes the relevant Memo
box component method. For example:

Evtroutine Handling(#MITM_1.Click)
#MEMO_1.copy

Endroutine

5. Compile your component.

6. Execute the Framework as End User and test your Brief Notes command
handler and the Pop-Up Menu functions.

For example you could copy and paste within the same Employee's notes or
switch to another employee's Brief Notes to copy into that one.

Test the Copy, Paste, Select All and Find functionality.

Summary

Important Observations

e The Copy / Paste / Cut etc functionality of the memo box can also be
invoked using the standard Windows short cut keys: Ctrl+C, Ctrl+V and
Ctrl+X.

e This simple example uses a line length of 80 characters, which would be
restrictive if you need to copy a large piece of text from an existing
document.

Tips & Techniques
e The multi-line edit box will handle large blocks of text and word wrap.

What I Should Know
e How to implement text input in a multi-line edit box.

e How to implement memo box functions using a pop-up menu.

VFWO056 — Process a List in Sorted Order

Objective
e To demonstrate how to process a list in either loaded or sorted order.

e A Reports / Sort command handler will have two List views. The left hand
list view displays all employees, with sorting by column enabled. A second
List view displays selected items in loaded or sorted order.

B Repon : Son

Tl sort | 3 wieeky

Employee ... | Employ... | Employee ... | Departmen. .. | Section Code | » | Employes ... | Employee ... | Employes ... | Departme... | sectioncC... |
AlD31 BLAKE JOHN WIS El A1031 BLAKE JOHM MIS El
A0S0 BLOGGS FRED JOH... ADM 0s D030 BLOGGS FREDID.. ADM 09
ADO70 BROWN VERONICA AUD 02 ADOTD BAOWN VERONICA ALD 02
A2001 BROWN HARRY GE... ADM 05 A2001 BROWN HARRYG... ADM 05
3564 BROWN FREDIDY A0 04 AZ564 BROWN FREDDY ADM o4
A002 BROWMLOW ARTHUR ADP 04 A2002 BROWML.,, ARTHUR ADM o4
ALD19 DICKENS ~ CHARLES LEG o1 A1D19 DICKBNS CHARLES LEG o1
A1020 DOUGLAS ADAMPETER. ADM o1 | | a2 DOUGLAS ADAMPE... ADM 01
AL234 JACKSON STEPHEN 5D ES A1234 JACKSON STERHEN D ES
A0S07 JOMES ANMNE AUD a3 Aleay JOMES ANNE ALID 03
AlDD1 JOMES BEMN GAC o1 A1001 JOMNES BEN GALC D1
AZ000 JOMES JAMES DM nz

A2003 JOMES JAMES ADM 04

AL026 LEWIS TONY GAC 03

A1032 LNCOLN PALL INF 03

AlDZ8 MAXWELL ANDREW GAC FC

Al021 MCOULLY DAVID 5D Es

AL014 MOORE JCOHN ADM 02

A1027 MORRISON ALAN 5D ES

A1404 MRSBRICK GIL DM o1

AlD17 MEANE GARY INF o2

AlD13 PATTISOM GEQRGE shD o1

ALD12 PALL PATRICX GAC o1

AL011 PERRIN CHRISTOR... ALD ot

A1010 PERRY WILLLAM AUD 03

Al509 REDFORD ROBERT A0 o1 -

Loaded Order Sorted Grder

In order to achieve these objectives you will complete the following:
Step 1. Create Sorted Command Handler

Step 2. Complete the Command Handler logic

Summary

Before You Begin
Complete exercises VFW030, VFW040 and VFW042

Step 1. Create Sorted Command Handler

1. Create a new reusable part:

Name: iiiVFW09

Description: Loaded or Sorted List Items

Change the component's Ancestor to VF_AC010.

Select the Design ribbon and give the reusable part an Attachment manager.
Drop a panel onto the bottom and changes its name to BUTTON_PANL

AR

Drop a Panel onto the centre and change its name to MAIN_PANL.

If necessary, select IIIVFWO09 in the Layout Helper tab and ensure the Child
Details are correctly defined.

6. Select the MAIN_PANL. On the Design ribbon, select Split Vertical on the
New Layout menu to give the panel a Vertical Split layout manager.

7. Use the Layout Helper /Layout Manager Details / Category / Divider Style
to change the Divider Style to Raised.

The Vertical Splitter creates two new panels. Rename these as MAIN_LEFT
and MAIN_RIGHT as follows:

NIVFWOD9 - Loaded or Sorted List Items

8. Select panel MAIN_LEFT, and on the Layout Helper tab give it an
attachment manager of ATLM_1. Do this by selecting the attachment
manager ATLM_1 in the Layout dropdown.

Layout Helper

Layout Managed Component (=]
MAIN_LEFT -
Layout i x

ATLM_1
Children Il X @l ¥ LayoutManager Details Child O

Category | Processing Order

9. Give the MAIN_RIGHT panel the ATLM_1 attachment manager.

10. Drop a list view into the center of MAIN_LEFT and rename the list view
LIST 1.

11. Drop a list view into the center of the MAIN_RIGHT panel and rename the
list view LIST 2.

12. Save your changes.

13. Select the file PSLMST on the Repository tab and drag fields EMPNO,
SURNAME, GIVENAME, DEPTMENT and SECTION into each list view.
In a real application you would spend some time making the column headings
suitable.

14. Select list view LIST_1 and select each column. Do this by clicking on each
column heading and changing the column's SortOnClick property to True.

15. Create an Initialize event routine for LIST_1 and add code to populate it
with all records from the file PSLMST. Your code should look like the
following:

Evtroutine Handling(#LIST_1.Initialize) Options(*NOCLEARMESSAGES *T
Clr_List Named(#LIST_1)

Select Fields(#LIST_1) From_File(pslmst)

Add_Entry To_List(#LIST_1)

Endselect

Endroutine

16. In the Layout Helper, select the BUTTON_PANL and give it a Flow Across
manager. On the Layout Manager Details tab, select Margins and use the All
setting to set all Margins to 6 pixels.

17. Add a push button to the BUTTON_PANL and change its name to
PHBN LOADED.

a. Change its Caption to Loaded Order.
b. Create a Click event routine.
18. Add a second push button to the BUTTON_PANL.
a. Change its Name to PHBN_SORTED.
b. Change its Caption to Sorted Order
c. Create a Click event routine.

19. Save your changes.

Step 2. Complete the Command Handler logic
1. Add code to the PHBN_LOADED click event routine, which:
a. Clears the list view LIST 2
b. Selects all items in LIST_1 using SELECTLIST
c. If LIST_1 current item, selected is true, add an entry to LIST_2
For example:

Evtroutine Handling(#PHBN_LOADED.Click)
Clr_List Named(#LIST_2)

Selectlist Named(#LIST_1)

If (#LIST_1.currentltem.selected)

Add_Entry To_List(#LIST_2)

Endif

Endselect

Endroutine

2. Add code to the PHBN SORTED Click event routine which:
a. Clears the list LIST 2
b. Processes all items in LIST_1 using a FOR/ENDFOR loop. For example:

Evtroutine Handling(#PHBN_SORTED.Click)
Clr_List Named(#LIST_2)
For Each(#row) In(#LIST_1.items)

Endfor
Endroutine

LIST 1.Items returns a reference to the Items collection in the list view
component.

Within the FOR/ENDFOR loop, each item will be referred to as #ROW
c. Retrieve each list item using GET_ENTRY. For example

Evtroutine Handling(#PHBN_SORTED.Click)

Clr_List Named(#LIST_2)

For Each(#row) In(#LIST_1.items)

Get_Entry Number(#row.entry) From_List(#LIST_1)

Endfor
Endroutine

Row.Entry is the entry number for each list item

d. If the item is selected, add an entry to LIST_2. For example

Evtroutine Handling(#PHBN_SORTED.Click)
Clr_List Named(#LIST_2)

For Each(#row) In(#LIST_1.items)

Get_Entry Number(#row.entry) From_List(#LIST_1)
If (#row.Selected)

Add_Entry To_List(#LIST_2)

Endif

Endfor

Endroutine

3. Compile your command handler.

4. Execute the Framework as a Designer and open the properties dialog for the
Reports business object and select the Commands Enabled tab.

Select the Sort action and define its Windows command handler component
as 1iiVFW09.

5. Save and Restart the Framework.
6. Test the Sort command handler for the Reports business object.

a. Right click on the Weekly command tab and select the Sort action from
the context menu.

Note that initially the left hand employee list is displayed in its loaded
order.

b. Without sorting on a column in the left hand list, select some entries and
use the Loaded Order button. The right hand list should now contain the
selected entries as they are displayed on the left, which is their loaded
order.

c. Test the results using the Loaded Order and Sorted Order buttons. The
right hand list should contain the same selected entries in each case.

d. Sort the left hand list on Surname. Select entries and test the Loaded
Order button. Note that the right hand list contains entries from their

loaded position, which is no longer the same as the displayed list.

e. Now try the Sorted Order button and note that the right hand list now
contains the same entries as displayed and selected in the left hand list.
The list has been processed in its sorted order.

Summary
What You Should Know

How to enable a list's columns to allow sorting.

How to process a list's items in loaded order.

How to process a list's items in sorted order.
How to use the FOR/ENDFOR loop.

VFWO060 — Using a Tree View

Introduction to Tree Views

Tree view components are widely used in Windows applications. They usually
present related information, with the tree visually representing the relationships
as levels. For example folder, sub folders and files; or departments, sections and
employees.

The VL Framework usually presents the navigation panel as a tree (it can in fact
also be visualized as two lists or as a dropdown.

The Tree View Technically

The tree view component is specialized list component, which presents the list
items as a tree.

The Visual LANSA Tree View component, by default has a ViewStyle property
of Levelled.

In this case, each level can display one column only.
Each column added must have its correct Level number defined.

Each level must have a column which defines the KeyPosition for this level. For
example, if level one is department description, then level one probably has
DEPTDESC defined as KeyPosition = 1. It defines the sequence of entries for
level one. For example:

+- ADMIMISTRATIO N -~
= INTERMAL AUDITIMNG
= WEHICLE MAINTEMANCE
HEMINGwAY, COLIM
PERRAY. WwLLIAM
+- ADMINISTRATION
+-PURCHASING
+- ACCOUMTING
+- SECTION FOUR
+- MaINTEMNARCE
+-PERSOMMEL SECTION
FLEET ADMIMISTRATION
GROUFP ACCOUNTS
INFORMATION SERYICES
LEGAL DEFARTMENT
MAMAGEMNT INFORMATIO b

e

The above tree would be defined as follows:

SourceField Level KeyPosition

DEPTDESC 1 1
SECDESC 2 1
FULLNAME 3 1

Note that the order added is not related to how an entry is visualized in the
tree view.

Each value of DEPTDESC is displayed once, at level 1 and in sequence.

If the tree is to show all departments from the table DEPTAB and all sections
for each department from the table SECTAB and all employees for each
section, then it is essential to load:

a. the tree view entries from DEPTAB
b. all section's entries for each department from SECTAB

c. all employees for department and section from view PSLMST1.

Objective

To build a simple three level tree view for all departments, sections and
employees

To build tree view with columns

These exercises will be implemented as a standalone form, not within your
Framework application.

In order to meet the objectives you will complete the following:

Step 1. Create Tree View Form

Step 2. Displaying Tree View Data.

Step 3. Add Fields to Tab Sheets and Item Got Selection logic.
Step 4. Fill the Tree View on Demand

Step 5. Add Icons to the Tree View

Summary

Before You Begin
Complete earlier list exercises, VFW050 and VFW052.

Step 1. Create Tree View Form
1. Create a new Basic Form:

Name: iiiVFW10

Description: Tree View and Details

2. On the Controls tab, select All Controls and add a Status bar to the form.
This component is always attached to the bottom of a form. LANSA
messages from the OAM or program Message commands are routed to the
status bar.

3. Add a Tree view to the left hand side of the form and resize it as shown:
[= O
‘4 J d' a;EBéCdﬁeEEFgGHHh_iJ o

4 5 aAbBcCdDeEfFgGhHIl) e R R T e
9 ABCOEFGHUKIMNOPORSTU - - - - » -2 v overeemn e e

aAbEECADEERF gGhHIIKKILIMANGORPQRsStTulMwWbYZ ~+ - [= | =
4. On the Repository tab, select the DEPTAB file and add field DEPTDESC to
the tree view.
Define its KeyPosition property as 1.

5. Select the SECTAB file and add field SECDESC to the tree view. Change its
KeyPosition to 1.

6. Find field FULLNAME in the Fields section of Repository and add it to the
tree view. Change its Keyposition to 1.

7. Save your changes.

8. Extend the form's Initialize event routine to populate the tree based on the
following pseudo code:

Clear the Tree view

Select all entries from file DEPTAB
Select entries for each department from file SECTAB

e Select entries from logical file PSLMST1 for each department/section
e Set up Fullname from fields Surname and Given Name
Your code should look like the following:

Evtroutine Handling(#com_owner.Initialize)

Set Com(#com_owner) Caption(*component_desc)

Clr_List Named(#TRVW_1)

Select Fields(#deptment #deptdesc) From_File(deptab)

Add_Entry To_List(#TRVW_1)

Select Fields(#section #secdesc) From_File(sectab) With_Key(#deptment)
Add_Entry To_List(#TRVW_1)

Select Fields(#surname #givename) From_File(pslmst1) With_Key(#deptment
#fullname := #surname + ', ' + #givename

Add_Entry To_List(#TRVW_1)

Endselect

Endselect

Endselect

Endroutine

9. Compile and test your form. Your tree view should be populated with all
departments, sections and employees.

10. In a later step you will consider how to fill the tree view 'on demand'.

Step 2. Displaying Tree View Data.

In this step you will make design changes to the form, so that it will be able to
display data for each level when a tree item is selected.

To achieve this, a number of issues must be addressed:

e FEach level in the tree must contain key fields which will enable the
additional data to be read from a file. You will add hidden columns to the
tree view for each level.

e The form must be able to display either department, section or employee
details. A Tab Folder and Tab sheet components will be added to the form
to display the data for each level.

e Your 'display details' logic must know which level in the tree was selected
¢ Additional fields must be populated when the tree is built.

1. Open your form in the Design view and add the field DEPTMENT to the
tree. Initially the tree will show this as a fourth level. Change its Level
property to 1. Change its Visible property to false.

2. Add field SECTION to the tree view. Changes its Level property to 2 and
Visible to false.

3. Add EMPNO to the tree view. Change its Level to 3 and Visible to false.
4. Save your changes.

5. Expand the width of the form and add a Tab Folder component to the right
hand side and resize it.

Hint: If you want to move the tab folder, click on the area to the right of the
tabs, to select the tab folder component and then drag it.

6. Right click on the Tab Folder and use the context menu to Add Page. This
will add a third tab sheet component inside the Tab Folder. Change its Name
to Sheet_3.

You now need to be aware that there are components at two levels. The Tab
Folder is a container. The Tab Folder is the parent of the Tab Sheets.

a. Right click on the background area (just to the right of the "Page 1" tab
and use the context menu to Add Page.

b. Add a third page (or tab sheet).
Your design should look like the following:

]
14 i aAbBcCADeEfFgGhHIlY iy S T BT e et sl ol e
4 & afbBcCdDeEfFgGhHil) o e e S s e
»O8 ABCDEFGHING MNOPORSTUR: s secia s snaana s bl sennda silpe a o enis

<A CADGEE QORI MANGOgPACHRSSITUMMRGYEZ 1 1 =]
7. Select the Page 1 tab and then click in the center to select the tab sheet itself
(Sheet_1). Change its Caption to Department Details.
8. Repeat step 7, to change Sheet_2's Caption to Section Details and Sheet_3's
Caption to Employee Details.

9. Save your changes.

Step 3. Add Fields to Tab Sheets and Item Got Selection logic.

1. Find the DEPTAB file on the Repository tab and add fields DEPTMENT and
DEPTDESC to the Department Details tab. Review the Notes below before
you continue:

Notes:

If the Layout Manager is not being used (as in this exercise), the fields will be
manually positioned. A good approach is to select both fields (hold down the
Shift key to do so) and drag and drop them together onto the tab sheet. They will
then be positioned, in line and one under the other.

The Edit / Align dialog enables you to position fields more accurately, when you
are not using a Layout Manager. If a number of fields (or other components) are
selected, the Align dialog will position them relative to the first field selected.

2. Find the SECTAB file and drag and drop fields DEPTMENT, SECTION,
SECDESC, SECADDR1, SECADDR?2, SECADDR3, SECPCODE and
SECPHBUS onto the Section Details tab sheet.

Note: The DEPTMENT field will be renamed to DEPTMENT 1 as
DEPTMENT already exists on this form.

Hint: If your tab sheet looks like this:

- | : ‘Departrment Code - - - - - - |ABCD Seaii e e
o e e e e T T R o e
P EIEaRe o o I e
© 1 Weition Full Deséription” | | |aAbBcCdDeEfFgGhHilj) ot
........................ L |

Select a field and change its Width property on the Details tab. For example
Width = 350.

3. Find the file PSLMST and drag and drop fields EMPNO, SURNAME,
GIVENAME, ADDRESS1, ADDRESS2, ADDRESS3, POSTCODE,
SALARY, STARTDTE and TERMDATE onto the Employee Details tab
sheet.

Hint: To drag the fields as one group: Select the first group of fields using the
Shift key and then use the Control key to select the remainder (SALARY and so
on).

4. Adjust field widths as necessary.
5. Save your changes.

6. Change the form Initialize event routine. Add field EMPNO to the fields
retrieved from file PSLMST1.

Your code should now look like the following. The changed line is
highlighted in red.

Evtroutine Handling(#com_owner.Initialize)

Set Com(#com_owner) Caption(*component_desc)

Clr_List Named(#TRVW_1)

Select Fields(#DEPTMENT #DEPTDESC) From_File(deptab)

Add_Entry To_List(#TRVW_1)

Select Fields(#SECTION #SECDESC) From_File(sectab) With_Key(#DEPTM
Add_Entry To_List(#TRVW_1)

Select Fields(#¥EMPNO #SURNAME #GIVENAME) From_File(pslmst1)
#fullname := #SURNAME + ', ' + #GIVENAME

Add_Entry To_List(#TRVW_1)

Endselect

Endselect

Endselect

Endroutine

7. Create an ItemGotSelection event handling routine for the tree view.

The logic performed will need to be based on which level in the tree was
selected.

The tree view Currentltem component has a Selected property which enable
the correct logic to be executed for each level.

Important: Remember that Feature Help (F2) will enable you to discover in
detail the Properties, Events and Methods for any component.

The details for each level selected will be displayed by making the required
tab sheet the "open" tab sheet. The Tab Sheet component has an Opened
property. When true this tab sheet will be the "top" tab sheet and therefore

the required details will be visible.
Your code should look like the following:

Evtroutine Handling(#TRVW_1.ItemGotSelection) Options(*NOCLEARMES
#std_num := #TRVW __1.Currentltem.level

Case (#std_num)

When (= 1)

#Sheet_1.opened := true

When (= 2)

Fetch Fields(*all) From_File(sectab) With_Key(#DEPTMENT #SECTION)
#DEPTMENT 1 := #DEPTMENT

#Sheet_2.opened := true

When (= 3)

Fetch Fields(*all) From_File(pslmst) With_Key(#£MPNO)
#Sheet_3.opened := true

Endcase

Endroutine

Note: The field DEPTMENT 1 is set to DEPTMENT for the Section details
panel.

8. Compile and test your form.
You should be able to select any entry, and the relevant tab sheet will be
displayed.

Note: You will probably notice that this form could be refined. For example if
you click on the Employee Details tab while displaying Section Details, the
Employee Details tab will contain values for the last employee. The Opening
event for Sheet_2 could be used to clear fields on Sheet_1 and Sheet_3.

Step 4. Fill the Tree View on Demand

The tree view is currently loaded with all department, section and employee
data initially. Clearly this is an approach which will work well for a small
amount of data. For your own applications, it is much more likely that you will
need to populate the tree view "on demand". Your logic would add all records to
level one, and then add to level two and three when a level is expanded (by click
on the + next to that item).

In this step you will change your logic so that the tree view is populated on
demand.

1. In the Design view, select the tree view and change its ManageChildren
property to true.

The help for this property (see F2 Features help) will inform you:
ManageChildren controls what happens when a tree item is collapsed.

The ManageChildren property controls whether child items are automatically
deleted when a tree item is collapsed. It will typically be used when the
children are loaded during an ItemExpanding event. It can be set to True or
False.

2. Create an ItemExpanding event handling routine for the tree view.

3. Cut and paste the Select sections and select employees logic from the from
the Initialize event into the Tree view ItemExpanding event handling routine.

The form Initialize logic should now only add department data to the tree
initially.

Your form Initialize should look like the following:

Evtroutine Handling(#com_owner.Initialize)

Set Com(#com_owner) Caption(*component_desc)

Clr_List Named(#TRVW_1)

Select Fields(#DEPTMENT #DEPTDESC) From_File(deptab)
Add_Entry To_List(#TRVW_1)

Endselect

Endroutine

4. Like the ItemGotSelection event routine, the ItemExpanding event will need
to perform the action required based on the level selected. Add the required
logic re-using the code pasted from the form Initialize routine.

e Assign TRVW_1.currentltem.Level to STD_NUM
e Within a Case loop for STD_NUM:
e For Level 1, select from the sections file for this department

e For Level 2, select from the employees file for this department /
section.

e For Level 3, no action required.
Your code should now look like the following:

Evtroutine Handling(#TRVW_1.ItemExpanding) Options(*NOCLEARMESS/
#std_num := #TRVW __1.currentltem.level

Case (#std_num)

When (= 1)

Select Fields(#SECTION #SECDESC) From_File(sectab) With_Key(#DEPTM
Add_Entry To_List(#TRVW_1)

Endselect

When (= 2)

Select Fields(#EMPNO #SURNAME #GIVENAME) From_File(pslmst1) Wit
#fullname := #SURNAME + ', ' + #GIVENAME

Add_Entry To_List(#TRVW_1)

Endselect

When (= 3)

* no action required

Endcase

Endroutine

5. Compile your form and test it. From an end user perspective it should work
exactly the same as before.

Step 5. Add Icons to the Tree View

Tree views are usually shown with an icon displayed at each level. The image
does not necessarily represent the level's data, but it gives a clear visual clue for
the level being selected for example.

In fact the Tree View column has an Image and ImageExpanded property, so
that two images can be associated with that level. Of course the image
properties must be defined for the column which is displayed for that level.

Check your Repository under Resources / Icons. The following Icon
components should already be defined:

Name Use

VI_DEPTCL Department (normal)
VI_DEPTOP Department (open/expanded)
VI_SETCL Section (normal)
VI_SECTOP Section (open/expanded)
VI_EMPLOY Employee

1. The Image properties need to be assigned at run time.
Add the following code to the beginning of the form Initialize event routine:

Set Com(#TVCL_1) Image(#vi_deptcl) Imageexpanded(#vi_deptop)
Set Com(#TVCL_2) Image(#vi_sectcl) Imageexpanded(#vi_sectop)
Set Com(#TVCL_3) Image(#vi_employ)

These assignments must be before departments are added to the tree view.

2. Compile and test your form, which should now look like the following:

=B Administration
=B Inteinal Admin

Paul, Patnck
Paltron, Geoige
8 woods, Bradley
Drouglas, Adanm
McCuly, Liza
Robmzon, May
Momzon, Alan
B Very Waren
Black. Gilian
g Fediod, Robet
B3 Intemal Admin
[+ 3 Purchasng
[3 Puichasng
E-£3 Accounting
H-89 Accounting
33 Sakes & Markesting
[3 Sales & Marketing

3. Confirm that the icons change as a level is closed or expanded.

Tree View and Details

Ernployes Mumber

Employes Surname
Employes Given Mame(z]
Straet Mo and Mame

Subuib or Town

State and Couniry

Post / Zip Code

Employes Salay

Stant Diate: [DOMYY)
Temninabon Date [DDMMYY)

| Department Detals | Section Detads Employee Details

[a10m

Jones

Shitley

144 Frog Lare
Pyribile

[Hsw

2001

234582

ozag
0anon

Summary

Important Observations

All Visual LANSA list components control how the data is presented. The
tree view displays a list as levels.

The tree view definition controls how the data is visualized. The order in
which the data is added is not important.

A simple tree view (ViewStyle = unlevelled) displays one column for each
level.

One or more columns must be defined as the Key Position for each level.

In this example the icons defined for each column (level) are fixed. If
required, your application could set image properties after an entry is added.
For example, use F2 Feature Help on a tree view component and drill down
to examine #TRVW_1.Currentltem.Image.

Tips & Techniques

A tree view which could contain a large number of entries should be filled
on demand.

The ManageChildren = True property, deletes entries for the next level,
when a level is closed.

All Visual LANSA list components are capable of holding many thousands
of entries. However, from an efficiency and usability perspective, your
application should control how much data is added to the list component.

Icon components are compiled into the application.

If the image file associated with an icon component is changed, you must
recompile the application.

What You Should Know

How to implement a simple tree view (ViewStyle = levelled).
How to manage displaying detailed data for a selected level.
How to fill the tree view on demand.

VEW062 — A Tree View with Columns

A Tree View with a property of ViewStyle(Unlevelled) may have multiple
columns.

Unlevelled means that that the tree no longer creates a level per field, and
instead, creates a column per field.

The developer is now responsible for the level at which a tree item exists.
This is governed by setting the Parentltem property of a tree item to another
tree item.

The tree view will have one set of columns and your logic must initialize and
populate these as appropriate for each level in the tree.

A new tree item's parent must be set to the relevant parent. A null parent
means that the item will appear as a root node.

The parent is no longer governed by the data. It is a choice the developer can
now make.

Effectively, there is NO LIMIT to the number of levels.

Note: The parent of a tree item is completely dynamic. It can be set at any time

Objective

To understand how a tree view can be defined and managed so that it
displays columns as well as a tree view

Your finished form will look like the following:

Code

=3 ADM
=@ 01

B aom
Al

41013

A5

Al020

B aon
A0S

A1027

A1

A1404

B asm

W@ 02
7-@a 03
=@n 04
=-@g 05
o0
£a 09
AUD

+| (=]

o
Lo

100000
FEE:

AR

Load Tres

Diesehiplion
Admiriztration
Irkeanal Admin
Jones, Shriey
Pand, Pabtick
Pallingon, Geonge
wioods, Bradley
Diowaglas, Adam
MeCuly, Liza
Robinzon, Mary
Morizon, Alan
Wedey, Wanen
Black, Gillizn
Redford, Aobert

Purchasing
Accounting

Sahes b Matketing
Mairtenance
Peazoninel

Wehicke Manbenanca

Irkemnal Audiing
Flest Admmisiration
Giroup Accounts
Irfamiation Sedvices
Legal

amt. Information

Bddress

125 Mam 5t., Blackbown...
144 Frog Lane, Pymble, .
B Camilo fvenue, Seve,
12 Bugusla Averwe.. Pu.,
B8 Darley Aoad,, Besdey,
E Feading Awvenue,, Kin..
15 Baker Place,, Pensh...
14 Wity Road., St Ive...
47 Lincoln Shreet, Stan.,
1 Main FRd. Hil Tap, M5
22 Motan Strest, Marick.
122 Arthur Strest, Morth ..

123 Paciic Highway, M.
252 Canterbury Road,, C..
121 Pilt Towur Road, Filt,
121 Ralway Parade, W,
121 Sriti Sk, Mevbown, ..

121 St Street, Mewta..

ZpCode Bus Phone

2167 679 2536
20 796 0543
2147 222 222
20E 212 3569
2030 789 4582
2147 6335188
2153 159 6B45
2005 456 1652
2007 409 2485
2345 957 3185
2030 324 dad

20E0 9572188

2000 952 6475

2044 560 3633
2345 I64-8905

2034 [02) 4557835

20E7 JET-4B34

2ms [02) 5622783

To meet these objectives you will complete the following steps:

Step 1. Create Form iiiVFW11 - Tree View with Columns
Step 2. Complete Form iiiVFW11 - Tree View with Columns
Step 3. Add Pop-Up Menu to Show/Hide Columns - Optional

Summary

— |

Start Dake

01/021988
01/051 986
01124985
121241984
014021988
014021980
01/051986
01021987
254051989
014051394
194021395

¥

Step 1. Create Form iiiVFW11 - Tree View with Columns

1. Define a new field in the repository iiiSTRDTE — Start Date based on
STD_OBJ. This is a character field to be used as the date column in the tree
view.

2. Create an initial version of your form.
Name: iiiVFW11
Description: Tree View with Columns.
Replace the form's code with the source from VFW062 - Appendix A .
Change references to iiiSTRDTE to use your initials.
Ignore other errors at this stage, you will add the missing code.
3. Review the form in the Design view and note the following:
e The Tree View has a ViewStyle property of Unlevelled.

e Most of the tree view columns are based on standard fields such as
STD_OBJ rather than fields from the files which will be used to populate
the columns. This is because the column data must be set up as required
for each level.

e All the columns are at Level 1.

e Drag Columns is enabled. This means that the user will be able to drag
and reposition the columns.

4. Review the source code that has been provided. If you are not familiar with a
program, you should always use the GoTo tab to quickly understand what
routines it includes.

e When the Add_Entry method is invoked it is passed the variables to
populate the tree level being filled.

e After adding an entry to the tree view (Name = Personnel), the parent
item is set for the new row in the line:

Set Com(#Personnel.currentitem) Parentitem(#i_Parent_item)

e An appropriate icon is added, depending on the level being populated.

e The PB_LOAD push button Click event in the supplied code simply
clears the tree.

Step 2. Complete Form iiiVFW11 - Tree View with Columns
1. Create the Add_Departments method routine using the following code

Mthroutine Name(Add_Departments) Access(*private)

Define_Com Class(#prim_tvit) Name(#Department_item) Reference(*dynamit
Select Fields(#Deptment #deptdesc) From_File(Deptab)

#std_code := DEP

#depnull := *null

#com_owner.Add_Entry I_Code(#deptment) I_Description(#deptdesc) O_Tree

* Add the sections for the department

#com_owner.Add_Sections I_Parent_Item(#Department_item) I_Department(?
Endselect

Endroutine

Ignore the Add_Sections is not . . . error. You will add this routine in a later
step.

2. Review the Add_Departments method routine:

e A dynamic reference to a tree view item component (#Department_item) is
defined (#prim_tvit)

e The routine selects all records from table DEPTAB
e A Group_By #DEPNULL is used to initialize fields in the tree

¢ Invokes the Add_Entry method routine for each department
e The Add_Entry is passed values for all tree columns
e Add_Entry is also passed the type of level being added (I_Type)

e The Add_Section method is invoked, to add all sections for each
department.

3. Create an Add_Sections method routine using the following code:

Mthroutine Name(Add_Sections) Access(*private)

Define_Map For(*input) Class(#prim_tvit) Name(#i_parent_item) Pass(*by_re
Define_Map For(*input) Class(#deptment) Name(#i_department)
Define_Com Class(#prim_tvit) Name(#Section_item) Reference(*dynamic)
Select Fields(#section #secdesc #secaddrl #secaddr? #secaddr3 #secpCODE #
#std_code := SEC

#iiiSTRDTE := *null

#std_textl := #secaddrl.trim + ', ' + #secaddr2.trim + ', ' + #secaddr3.trim
#com_owner.Add_Entry I_Code(#section) I_Description(#secdesc) O_Tree_ It
* Add the Employees for the section

#com_owner.Add_Employees I_Parent_Item(#Section_item) I_Department(#d
Endselect

* Set a margin on the last item to help separate the groups of tree items
#Personnel.Currentitem.marginbottom := 5

Endroutine

Ignore the Add_Employees is not . . . error, which you will correct later.
4. Review the Add_Sections method routine logic:
¢ A dynamic reference to a tree view component (#Section_item) is defined.

e Records are selected from the table SECTAB, for the received department
code i_department.

e The Add_Entry method routine is invoked for each section record
retrieved.

e The section level populates all columns, except Date, which is initialized
as *Null.

e The i_parent_item is passed by reference. This is the department tree view
item.

e For each section the Add_Employee method is invoked to add employees
for each department / section.

¢ A reference to the section tree view item is passed (#Section_item) to the
Add_Employees method routine.

e A MarginBottom property is set for current item, after employees for the
section have been added.

5. Create an Add_Employee method routine based on the following code:
Mthroutine Name(Add_Employees) Access(*private)
Define_Map For(*input) Class(#prim_tvit) Name(#i_parent_item) Pass(*by_re
Define_Map For(*input) Class(#deptment) Name(#i_Department)
Define_Map For(*input) Class(#section) Name(#i_Section)

Define_Com Class(#prim_tvit) Name(#Employee_item) Reference(*dynamic)
#std_code := EMP

Select Fields(#empno #givename #surname #address1 #address2 #address3 #p
#std_textl := #address1.trim + ', ' + #address2 + ', ' + #address3
#iiiSTRDTE := #startdte.asdate(DDMMY'Y).asdisplayString(DDsMMsCCY

#com_owner.Add_Entry I_Code(#empno) I_Description(#Surname.trim + ', ' 4
Endselect

* Set a margin on the last item to help separate the groups of tree items
#Personnel.Currentitem.marginbottom := 5
Endroutine

Use this code to create date field iiiSTRDTE if your date format is
MMDDYY:

#iiiSTRDTE := #startdte.asdate(MMDDY'Y).asdisplayString(DDsMMsCCY

Note: Retrieving the real date field (STRDTER) and converting this using
the following code, avoids the need for two versions of the code:

#iiiSTRDTE := #startdter.asdate(Y YMMDD).asdisplayString(DDsMMsCCY
6. Review the Add_Employee method routine logic:

e A dynamic reference to a tree view item Employee_item is defined.

e Records are selected from the logical file PSLMST1 using the passed
department and section codes (i_department and i_section).

e Add_Employee populates all tree view columns.

e Start Date is shown in an alpha column, so that it can be set to blank for
the department and section levels.

7. Complete the load push button click event. Your code should now look like
the following. New code is highlighted in red, italic.

Evtroutine Handling(#pb_load.Click)
Clr_List Named(#Personnel)
#com_owner.Add_departments
Endroutine

8. Review the Add_Entry method routine again.
Note:

e The routine has an output parameter #o_tree_item which is a reference to the
current tree view item

e After each row is added (add_entry to_list(#Personnel) a reference to the
current tree view item is obtained via:

Set Com(#Personnel.currentitem) Parentitem(#i_Parent_item)
e This reference is returned to the calling method routine via:
* Return the tree item for use as a parent

Set_Ref Com(#o_Tree_item) To(#Personnel.currentitem)

8. Compile your form and test it.

Step 3. Add Pop-Up Menu to Show/Hide Columns - Optional

1. In the Design view, drag and drop a Pop-up Menu onto the Tree View
component

= F
Design || Spurce | Multiingual Details | Repository Help Crof
Iteml

j'ln
i
Code Dezcription 5
i ABCDEFGHL a.-’-'-.l::Bu:EdDeEngGhI-}
Y
2

MWH}U‘

The Popup menu will be displayed at the top of the Design panel.

Hint: Enter the menu item name and press Enter to define the next menu
item.

2. Define the Popup menu items as:

Address
Zip Code
Bus. Phone

Start Date

3. Select each menu item and set its Checked property to True.
4. Add the following code to show and hide the tree view columns:

Evtroutine Handling(#MITM_1.Click)
If (#MITM_1.checked = true)

Set Com(#TVCL_3) Visible(false)

Set Com(#MITM_1) Checked(false)
Else

Set Com(#TVCL_3) Visible(true)

Set Com(#TVCL_3) Displayposition(3)
Set Com(#MITM_1) Checked(true)
Endif

Endroutine

Evtroutine Handling(#MITM_2.Click)
If (#MITM_2.checked = true)

Set Com(#TVCL_4) Visible(false)

Set Com(#MITM_2) Checked(false)
Else

Set Com(#TVCL_4) Visible(true)

Set Com(#TVCL_4) Displayposition(4)
Set Com(#MITM_2) Checked(true)
Endif

Endroutine

Evtroutine Handling(#MITM_3.Click)
If (#MITM_3.checked = true)

Set Com(#TVCL_5) Visible(false)

Set Com(#MITM_3) Checked(false)
Else

Set Com(#TVCL_5) Visible(true)

Set Com(#TVCL_5) Displayposition(5)
Set Com(#MITM_3) Checked(true)
Endif

Endroutine

Evtroutine Handling(#MITM_4.Click)
If (#MITM_4.checked = true)

Set Com(#TVCL_6) Visible(false)

Set Com(#MITM_4) Checked(false)
Else

Set Com(#TVCL_6) Visible(true)

Set Com(#TVCL_6) Displayposition(6)
Set Com(#MITM_4) Checked(true)
Endif

Endroutine

Note: In the above code, when a column is made visible the DisplayPosition
of that column is set back to its original value.

5. Compile and test your form. Using the right mouse menu on the tree view
you should now be able to show or hide columns.

6. You have completed this exercise.

Summary

Important Observations

e You can see a very effective implementation of a tree view with columns in
the Repository tab of the Visual LANSA Editor.

e The Tree View with columns provides powerful techniques for presenting
information in a drill down format, but with the ability to display much more
information.

What You Should Know

e How to define and implement a tree view with columns.

VFW062 - Appendix A
Source for the initial version of form iiiVFW11 - Tree View with Columns

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #PRIM_FORM) Clientheight(499) Clientwidth
Define_Com Class(#PRIM_ATLM) Name(#ATLM_1)

Define_Com Class(#PRIM_PANL) Name(#PANL_1) Displayposition(1) Heig
Define_Com Class(#PRIM_ATLI) Name(#ATLI_1) Attachment(Bottom) Man

* A new property called Viewstyle has been added to the PRIM_TRVW

* Unlevelled means that that the tree no longer creates a level per field, and ins
* The developer is now reponsible for the level at which a tree item exists.

* This is governed by setting the PARENTITEM property of a tree item to ano

* NOTE - The tree can still be processed using SELECTLIST.

* Entries will be returned in the sequence they were added to the list. This may
* To process in order sequence, use the FOR command

Define_Com Class(#PRIM_TRVW) Name(#Personnel) Columnbuttonheight(2
Define_Com Class(#PRIM_ATLI) Name(#ATLI_2) Attachment(Center) Mana
Define_Com Class(#PRIM_TVCL) Name(#TVCL_1) Caption('Code") Captior
Define_Com Class(#PRIM_TVCL) Name(#TVCL_2) Caption('Description’) C

Define_Com Class(#PRIM_PHBN) Name(#pb_load) Caption('Load Tree') Dis
Define_Com Class(#PRIM_TVCL) Name(#TVCL_3) Caption('Address') Capt
Define_Com Class(#PRIM_TVCL) Name(#TVCL_4) Caption('Zip Code") Cag
Define_Com Class(#PRIM_TVCL) Name(#TVCL_5) Caption('Bus. Phone") C
Define_Com Class(#PRIM_TVCL) Name(#TVCL_6) Caption('Start Date') Ca
sk

Group_By Name(#allfields) Fields(#std_obj #std_desc #std_textl #postcode #s
Group_By Name(#depnull) Fields(#std_textl #postcode #std_descs #iiiSTRDT
Override Field(#postcode) Edit_Code(D)

Evtroutine Handling(#pb_load.Click)

Clr_List Named(#Personnel)

Endroutine

Mthroutine Name(Add_entry) Access(*private)

Define_Map For(*input) Class(#std_obj) Name(#i_code)

Define_Map For(*input) Class(#std_Desc) Name(#i_Description)
Define_Map For(*input) Class(#prim_tvit) Name(#i_Parent_item) Mandatory(

Define_Map For(*output) Class(#prim_tvit) Name(#o_Tree_item) Mandatory(
Define_Map For(*input) Class(#std_code) Name(#i_type)

Define_Map For(*input) Class(#std_textl) Name(#i_addr)

Define_Map For(*input) Class(#postcode) Name(#i_zip)

Define_Map For(*input) Class(#std_descs) Name(#i_phone)

Define_Map For(*input) Class(#iiiSTRDTE) Name(#i_date)

#allfields := *null

* The same fields are used regardless of the "level" of the tree item

#std_obj := #i_code

#std_desc := #i_Description

#std_textl := #i_addr

#postcode := #i_zip

#std_descs := #i_phone

#iiiSTRDTE := #i_date

Add_Entry To_List(#Personnel)

* Set the new tree item's parent to the supplied parent. A null parent means tha
* The parent is no longer governed by the data. It is a choice the developer can
* Effectively, there is NO LIMIT to the number of levels.

* Note: The parent of a tree item is completely dynamic. It can be set at any tir
Set Com(#Personnel.currentitem) Parentitem(#i_Parent_item)

* Set required image for each level

Case (#i_type)

When ('= DEP")

Set Com(#Personnel.currentltem) Image(#vi_deptcl)

When ('= SEC")

Set Com(#Personnel.currentltem) Image(#vi_sectcl)

When ('= EMP")

Set Com(#Personnel.currentltem) Image(#vi_employ)

Endcase

* Return the tree item for use as a parent

Set_Ref Com(#o_Tree_item) To(#Personnel.currentitem)

Endroutine

End_Com

VFW070 - Create a Reusable Part Object

The reusable parts you have built in previous exercises have been visual
components. A reusable part of type Panel has an ancestor of PRIM_PANL.

A reusable part of type Object is non-visual, and has an ancestor of
PRIM_OBJT. Think of this example as a component which you call (invoke) to
perform some processing and return a result.

Objective

This exercise will build a simple reusable object which will calculate the years,
months and days since an employee joined the company.

The component is invoked when passed the start date and it returns the three
result values.

e To build and implement a "Time Employed' reusable part

e To learn how to write a method routine, which has input and output
parameters

e To use the new component in the Employee Details command handler
To achieve these objectives you will complete the following:
Step 1. Create Time Employed Reusable Part

Step 2. Implement Time Employed calculation in Employee Details Command
Handler

Summary

Before You Begin
You should complete exercises VFW030, VFW040 and VFW042.

Step 1. Create Time Employed Reusable Part

1. Create a new Reusable Part / type Object:
Name: iiiVFW12
Description: Time Employed Calculator

2. Note that your reusable part has an ancestor of PRIM_OBJT.

3. iiiVFW12 should have one method routine, uEmployTime, which has one
input parameter and three output parameters, defined as follows.

For Name Class

*input i_strdter STARTDTER
*output o_year PRIM_NMBR
*output o_month PRIM_NMBR
*output o_days PRIM_NMBR

Note: STARTDTER will be passed to this component, which is a 6 long date
in the form YYMMDD. This will provide a solution which works for regions
using both DDMMYY and MMDDY'Y date formats.

Your uEmployTime method routine should initially look like the following:

Mthroutine Name(uEmployTime)

Define_Map For(*input) Class(#startdter) Name(#i_strdter)
Define_Map For(*output) Class(#PRIM_NMBR) Name(#0_year)
Define_Map For(*output) Class(#prim_nmbr) Name(#o_month)
Define_Map For(*output) Class(#prim_nmbr) Name(#0_days)
Endroutine

4. Define_Map Statements:

This step reviews the Define_Map statement, there is no code for you to write
here.

The Define_Map statement defines input and output parameters to a routine.

For example:
Define_Map For(*input) Class(#startdter) Name(#i_strdte)

e The method routine will reference this variable as #i_strdte.

e This method will be invoked by another components, passing the required
parameters and values:

Invoke #iiiVFW10.uEmployTime i_strdte(#startdter) . . .

e The invoking component refers to this parameter as i_strdte().

e Input parameters are mandatory unless they are defined with a default value,
for example, this is an optional input parameter:

Define_Map For(*input) Class(#prim_nmbr) Name(#i_num) Mandatory(1)

Note: Start Date is a signed 6.0 field. Designing this component to accept
only this form of input is obviously a limitation. In a real example, you would
probably add another input parameter which defines the format of the passed
date, and also change the input date definitions so that a number of date
formats of such as Signed 6,0 and Signed 8,0 and Date or Datetime can be
handled.

5. Define the following work fields (following the Begin_Com) which are
required during the calculation routine:

Define Field(#i_date) Reffld(#std_datex) Desc('Input Date")

Define Field(#c_date) Reffld(#std_datex) Desc('Current Date")

Define Field(#i_year) Reffld(#yyyy) Desc('Input Year number")

Define Field(#c_year) Reffld(#yyyy) Desc('Current Year number")
Define Field(#i_month) Reffld(#month) Desc('Input Month number")
Define Field(#c_month) Reffld(#month) Desc('Current Month number")
Define Field(#i_day) Reffld(#day) Desc('Input Day Number")

Define Field(#c_day) Reffld(#day) Desc('Output day number")

6. In the uEmployTime method, start to build the logic to calculate years,
months and days since the employee start date:

7. Setup current and input year, month and day values:

* Setup current and input year, month and day values.
#c_date := *date

#c_year := #c_date.year

#i_date := #i_strdter.asdate(yymmdd)
#i_year := #i_date.year

#i_month := #i_date.month

#i_day := #i_date.day

These calculations make use of intrinsic functions. Use F2 Features help on
a field to discover the intrinsic functions which it supports.

8. Calculate number of years
Current year must be greater than or equal to the input year

* Calculate number of years, months and days
If (#c_year >= #i_year)

#o_year := #(C_year - #1_year

Else

#o_year #o_month #o0_days := 0

Endif

9. Extend the logic to calculate number of months. New code is highlighted in
red

If (#c_year >= #i_year)

#o_year := #C_year - #I_year — 1

* Calculate number of months

* When input month is less than current month
If (#i_month < #c_month)

#o0_month := #c_month - #i_month - 1

Else

#o_month := (12 - #i_month) + #c_month - 1
#o_year -=1

Endif

If (#i_month = #c_month)

#o0_month := *zeroes

Endif

Else

#o_year #o_month #o0_days := 0

Endif

10. Extend logic to calculate number of days. New code is highlighted in red.

If (#c_year >= #i_year)

#o_year := #C_year - #1_year — 1

* Calculate number of months

* When input month is less than current month
If (#i_month < #c_month)

#o_month := #c_month - #i_month - 1

Else

#o_month := (12 - #i_month) + #c_month — 1
#o_year -= 1

Endif

If (#i_month = #c_month)

#o_month := *zeroes

Endif

* Calculate number of days

* when input day number is less than current day
If (#i_day < #c_day)

#o_days := #c_day - #i_day

#o0_month +=1

Else

If (#i_month = 2)

#o_days := (28 - #i_day) + #c_day

Endif

If ((#i_month = 4) *Or (#i_month = 6) *Or (#i_month = 9) *Or (#i_month
#o_days := (30 - #i_day) + #c_day

Else

#o_days := (31 - #i_day) + #c_day

Endif

Endif

Else

#o_year #o_month #o0_days := 0

Endif

11. Compile your Time Employed reusable part.

Step 2. Implement Time Employed calculation in Employee
Details Command Handler

1. Open the Employee Details command handler in the editor (iiiVFWO06).

2. Add a Group Box component to the main panel (BODY_HEAD) and change
its Caption to Time Employed.

3. Add field STD_NUM to the group box. Set up the followings properties:

Property Value

Caption Years
LabelType Caption

Name EMP_YEARS
MarginLeft 50

Reduce the field's width as necessary.

4. Add another STD_NUM field to the group box and repeat step 3 the above
steps except:

a. Change Name to EMP_MONTHS
b. Change Caption to Months
5. Add another STD_NUM field to the group box and repeat step 3, except:
a. Change Name to EMP_DAYS
b. Change Caption to Days
6. Adjust the width of each field as required.
7. On the Design ribbon, use Edit / Align button to arrange the fields.

Design —

L =1

e M

-

1_ DI v
Je

8. Save your changes.

Your design should look like the following:

9. In the Design view, drag and drop your Time Employed reusable part onto
Employee Details component. This will create a Define_Com for iiiVFW12.
Change its Name to EMPLOY_CALC

10.Change the Group_By XG_HEAD to include STARTDTER.

11. In the uExecute method routine add the following code, following the
FETCH command:

If_Status Is(*okay)
Invoke Method(#EMPLOY_CALC.uEmployTime) I_Strdte(#STARTDTER) C
Endif

12. In the SAVE_BUTTON Click event routine, add the following logic, after
the UPDATE command:

If_Status Is(*OKAY)
Invoke Method(#EMPLOY_CALC.uEmployTime) I_Strdte(#STARTDTER) C
Endif

13. Compile the Employee Details command handler.

14. Execute the Framework as an End User and test the Time Employed
calculator.

15. Change Start Date for an employee to a recent date, for example, 2012 or
2013, to easily check the results are as expected. Note, this is a 6 digit date.

Summary

Important Observations

e Reusable parts based on PRIM_OBJT are non-visual components. They can
be used to create callable (invoke) modules which can be shared by your
Windows and web applications (WAMs).

e This type of component can also be created to store application settings and
values which are shared across many components in the application system.

Tips & Techniques

e When creating this type of component, ensure that its logic will be common
and re-used. Otherwise there won't be any benefit from making it a separate
component.

What You Should Know

e How to implement a reusable part to perform calculations.

VFW072 - Create a Department Dropdown Reusable Part

In an earlier exercise, you added a Combo box for departments to the Employee
Details component, by adding it directly into the logic of the command handler.
Clearly this approach would not be the best one from a maintenance point of
view, and does not contribute to simplifying or re-using code.

A reusable part provides a component which can be used to create common
application components, such as a department's dropdown list, which can be
developed once, and then widely re-used throughout the application.

Objective

e To create a reusable part (RP)which manages a combo box (or dropdown)
containing a list of all valid departments.

e To populate the RP combo box from the table DEPTAB.

e The 'Department Dropdown' RP will publish a property which enable its
current department code to be set, or for another component to get its
current value.

e When the current department property is set, the Department Dropdown
RP will position the combo box to the new value.

e The 'Department Dropdown' reusable part will publish an event, which it
will signal when the selected department has changes.

& Employee : Details [A1005-SMITHS PETER]

[JDetais | g pBriefNotes Image . Motes < Skls2 | Skils
Employee Number A1005 =
Employee Surname SMITHS
Emplayes Gven Name(s) PETER
Street No and Name 72 Mullane Avenue,
Suburb or Town BALILKHAM HILLS,
State and Counltry NS, Department Dropdown
Post | Zip Code 2147 imvFW13
Home Phone Mumber 6744316
Business Phone Mumber T77 7265
Department INTERMAL AUDITING -
Section Code 0z
Employee Salary 46, 700,04
Start Date (DOMMYY) 10271
Termination Date (DOMMYY) 0,/00/00
Time Employed
e Y A i T

To meet these objectives, you will complete the following:

Step 1. Create Department Dropdown Reusable Part

Step 2. Make the Reusable Part Useful

Step 3. Add Department Dropdown to Employee Details command handler

Step 4. Complete Command Handler to use Department Dropdown
Summary

Before You Begin
Complete exercises VFW04, VFWO05, VFW06.

Step 1. Create Department Dropdown Reusable Part
1. Create a new Reusable Part / Panel:

Name: iiiVFW13

Description: Department Dropdown

2. Resize the Panel so that it looks like the following:

IIVFW13 - Department Dropd... |5}

a. Add a Combo box to the panel.

b. Select the Details tab and change the ComboBoxStyle property to
DropDownList.

c. Drop fields DEPTDESC and DEPTMENT into the Combo box. If you
add them in this order, you have created CBCL_1 sourced from
DEPTDESC and CBCL_2 sourced from DEPTMENT.

d. On the Details tab, ensure the column sourced from DEPTMENT is
selected. You can select any component within this reusable part from this
dropdown.

Details

[fsfl_; - |

Properties | Events = Methods

o R '?
* ComponentClassMam PRIM_CBCL
.'Ccmpcncr'fpa'.itrn‘\lﬂ PRIM_CBCL
" ComponentTag
4 CompenentTypeMam PRIM_CBCL

B o

e. Change its Visible property to False. Only the column sourced from
DEPTDESC should be visible in the combo box.

f. Resize the Combo box so that it can display the full description.

g. Move the Combo box to the right and add a Label component onto the left
side of the Panel. Give the Label a Caption of Department.

h. Resize the Label, to fit the caption text and move it to the top left of the
Panel.

Hint: An effective way to position a component in some cases, is to set its
Left and Top properties. In this case, setting these to 0, will achieve the
required result.

i. Set Combo box Left property to 150, and the Top property to 0. This will
make the department dropdown component suitable for using alongside
fields on a panel which is managed by a flow down manager.

j. Resize the panel so that it uses the minimum space.

Your design should now look like the following:

IIVFW13 - Department Dropdown n
Depaatonent 00 aAbBcCdDeEfFgGhHilj) -

The reusable part will occupy the space defined by its Panel, when you
drop it onto your application form. It is important to minimize the space
used by the reusable part, using the techniques shown above.

Note: You could also make this component more flexible by coding it to
optionally hide the label and, if required, resize to display only the combo box.

3. Create an Initialize event handling routine for the combo box. The logic in
this routine should fill the combo box from the table DEPTAB and ensure
that the focus is set to the first entry (if there was one). You code should look
like the following:

Evtroutine Handling(#CMBX_1.Initialize) Options(*NOCLEARMESSAGES
Clr_List Named(#CMBX_1)

Select Fields(#CMBX_1) From_File(deptab)

Add_Entry To_List(#CMBX_1)

Endselect

Get_Entry Number(1) From_List(#CMBX_1)

If_Status Is(*okay)

#CMBX_1.currentltem.focus := true

Endif

Endroutine

If you compiled your reusable part now, and added it to your command
handler, it would contain data for all departments. However, it is not yet
capable of interacting with your command handler.

Step 2. Make the Reusable Part Useful

In this step you will extend your reusable part, so that it can interact with
another reusable part or form which uses it.

e To do this you will add/publish a new event which will be signaled when the
department selected in the Combo box changes.

e You will also add/publish a property based on DEPTMENT. (That is, with
Class(#Department). When this property is set, it will execute a property
routine to re-position the Combo box. When another component "gets" the
property, the Department Dropdown reusable part will return the current
value of DEPTMENT .

1. Define an event, named uDepartmentChanged.

Define_Evt Name(uDepartmentChanged)

User defined events, properties and methods in these exercises have a
naming policy starting with u. You may want to implement some

similar policy, which makes it easy for other developers to quickly
identify the features that they may be interested in using.

2. Create an ItemGotFocus event handling routine for the Combo box. Add
logic to signal the uDepartmentChanged event.

Also add code to signal this event at the end of the Combo box Initialize
event. When this component is used in a "New Employee" command handler
for example, the application will be able to initialize its department code, by
handling this event.

Evtroutine Handling(#CMBX_1.ItemGotFocus) Options(*NOCLEARMESSA
Signal Event(uDepartmentChanged)
Endroutine

3. Define a property uCurrDepartment. It should handle Get, by returning the
current value of DEPTMENT. It should handle Set, by executing a SetDept
property routine.

Define_Pty Name(uCurrDepartment) Get(*auto #deptment) Set(SetDept)

Note: the editor will highlight this code as having an error, until you have

created the property routine.
4. Create a property routine, named SetDept.

a. Define a map, for input, with a class of DEPTMENT, named #SetDept. A
property routine must have one input or output parameter. In this case the
routine receives DEPTMENT as SetDept and will reposition the combo
box.

Your code should look like the following:

Ptyroutine Name(SetDept)
Define_Map For(*input) Class(#deptment) Name(#SetDept)
Endroutine

b. Add logic to read through the combo box entries, using
SELECTLIST/ENDSELECT.

Leave when DEPTMENT equals SETDEPT.
Then set focus for the combo box current item.
Your code should now look like:

Ptyroutine Name(SetDept)

Define_Map For(*input) Class(#deptment) Name(#setdept)
Selectlist Named(#CMBX_1)

Leave If(#deptment = #setdept)

Endselect

#CMBX_1.currentltem.focus := true

Endroutine

5. Compile your department dropdown reusable part.

Step 3. Add Department Dropdown to Employee Details
command handler

In this step you will change your Employee Details command handler to use
your new reusable part.

1. Open the Employee Details command handler iiiVFWO0G6 in the editor.
2. Delete the department combo box which you added in VFW050.
a. Switch to the source and locate the errors which this action has created.

b. Delete the column definitions for the combo box (for example, CBCL_1)
and the flow manager item (for example, FWLI_4).

c. Delete all the code associated with the combo box from the uExecute
and ulnitialize method routines
d. Compile your component to check that you have no errors.

3. Drop the Department Dropdown RP (iiiVFW13) onto the command handler
left hand panel (BODY_HEAD). Because this panel has a flow down
manager, your component will be positioned below the existing fields.

4. Position the department dropdown:

a. Select the existing department field and check its DisplayPosition which
should be 10.

b. Give your department dropdown component a DisplayPosition property
of 10.

5. Delete the existing department code field from the panel.

Step 4. Complete Command Handler to use Department
Dropdown

In this step you will add code to the Employee Details command handler, to
interact with the Department Dropdown component.

Your command handler is a maintenance function. This means:

1. When the employee data is read, it needs to tell the department dropdown to
position to the current employee's department. Change the uExecute method
routine to set the uCurrDepartment in the department dropdown component
to DEPTMENT.

Your code should look like the following. Changes are shown in red.

Fetch Fields(#XG_HEAD) From_File(PSLMST) With_Key(#EMPNO)
* 2?7 Addition logic may be required here ??7?
#IIIVFW13.ucurrDepartment := #deptment

2. When the department dropdown component signals that department has
changed, the command handler should get the current department code value
from the department dropdown.

3. Add an event handling routine for iiiVFW13.uCurrDepartment. Your code
should look like the following:

Evtroutine Handling(#IIIVFW13.UDepartmentChanged)
#deptment := #I[IVFW13.uCurrDepartment
Endroutine

Hint: To create the event handling routine, on the Design tab, select the
department dropdown and use the context menu to select Events: IIIVFW13 /
uDepartmentChanged Event.

4. Compile the Employee Details command handler, iiiVFWO06.

5. Execute the Framework as an End User. Use the By Location filter to
populate the instance list and check that the department dropdown displays
the correct value.

6. Change the department for an employee and Save the change. You may find
that the change is invalid because the section code is no longer valid. You will
address this issue in the next exercise.

Step 5. Document your Event and Property

These exercises have emphasized how to discover the help text build into all
shipped components by using F2 Features help. In this step you will learn how
to document your own components.

When designing and building your application, reusable parts enabled you to
create components designed for re-use, such as the department dropdown which
you have just built. These components will be much more useful if you
document them so that other developers will easily understand them and want to
use them.

1. Events, property and method statements have optional Desc() and Help()
keywords. Help should be used to document your own reusable parts. F2
Features help will then be able to display this information for other
developers.

Method routines will usually have one or more Define_Map statements.
These should also be documented using Help().

2. Open your department dropdown RP in the editor. Add appropriate help text
to the event and property statements. For example:

Define_Evt Name(UDepartmentChanged) Help("This Event is signalled when 1
Define_Pty Name(uCurrDepartment) Get(*auto #deptment) Set(SetDept) Help

3. Recompile your component.

4. Switch to the Employee Details command handler in the editor (iiiVFWO06).
Select the department dropdown component in the Design view.

a. Either press F2, or use the context menu to select: Reusable Part:
IIIVFW11 / Features.

b. Expand Properties and double click to display help for uCurrDepartment.

c. Expand the Events and double click on uDepartmentChanged to display
its help.

Summary

Important Information

e This exercise created a very simple dropdown reusable part. The next
exercise provides an example of a more functional reusable part, supporting
two dropdowns.

e Build common reusable parts whenever it is clear that this functionality will
be required in a number of places.

e Your reusable parts will be much more useful if you include help text for
other developers.
Tips & Techniques

e Adding a HideLabel property to the reusable part, together with property
routines to set Margin Left to 0, or to the default 150, would make this
dropdown more useful.

What You Should Know

e How to create and design a visual reusable part.
e How to implement your own reusable part in an update command handler.

VFW074 - Create a Compound Reusable Part

Objective

As observed in testing, the department dropdown component, from an end user
point of view has limited benefits, because if department is changed, the
available valid section codes changes.

e This exercise builds a Departments and Sections dropdown reusable part.

e The new component will re-use the department dropdown component and
manage a sections dropdown, based on the current department.

£ Employes - Details [AD193-SMITHSON FRED)
(] Details | | 4 Brief Notes Image | %) Motes Shils 2 Skills
Employes Number AD193 :
s m— Compound Reusable Part
Employee Given Mame(s) FRED
Street Mo and Name 121 Cutler Ave Departmentf Section
el — Dropdown
State and Country WEW | | |VFW1 4
Past [Zip Code 034
Home Phone Mumber 02) 546-4657
Business Phane Hurber [02) 354-5647
Department ADMINISTRATOR DEFT -
Sections TNTERMAL ADIMIN SRY -
Employee Salary 35,000,04
L Sarnate OOMMAD- 30— e e

To achieve these objectives you will complete the following:
Step 1. Create Department / Section Dropdown Reusable
Step 2. Make the Department / Section Dropdown Useful
Step 3. Modify Department Dropdown

Step 4. Implement the Compound Reusable Part

Summary

Before You Begin
Complete exercises VFW030, VFW040, VFW042 and VFWO072.

Step 1. Create Department / Section Dropdown Reusable
1. Create a new reusable part:

Name: iiiVFW14

Description: Department / Section Dropdown

2. Resize the panel and drop the department dropdown reusable (iiiVFW13)
onto the panel.

a. Change its Name to DEPT_DD
b. Give DEPT_DD a Top and Left property of 0.
Your design should look like the following:

IIVFW14 - Department / Section Dropdown

3. Drag and drop a combo box onto the panel.
a. Change its Name to SECT_DD.
b. Find the Table SECTAB on the Repository tab.
c. Drop fields SECDESC and SECTION into the combo box.
d

. Change the column sourced from SECTION Visible property to false. The
combo box should be displaying the section description only. Change the
ComboBoxStyle to DropDownList.

A DropDownlList style does not allow the user to enter a value. Only one
of the displayed values may be selected.

e. Resize the Combo box so that all of the section description text is visible.

f. Position the sections Combo box closely underneath the department
Combo box.

g. Drop a Label component to the left of the sections Combo box and
changes its Caption property to Sections. Adjust the Width and Height of
the Label.

h. Move the Label so that it is close underneath the "Departments" label and
change the new Label's Left property to 0.

Hint: To move components around accurately in the Design view, use the
Ctrl+Cursor keys.

i. Change the SECT_DD Combo box's Left property to 150.
Your design should look like the following:

Design | Source | Repository Details | Repository Help | Cross Refei

IIVFW14 - Department / Section Dropdown n
Depaaimenl; aAbBcCdDeEfFgGhHilj) -

Seehinns. - aAbBcCdDeEfFgGhHil) = |

4. Save your changes.

Step 2. Make the Department / Section Dropdown Useful

From the previous exercise, you know that the Departments dropdown
component:

e Signals uDepartmentChanged when the selected department is changed.

e Has a uCurrDepartment property which re-positions the dropdown or
returns the currently selected department code.

1. Consider what functionality the new department / section component will
need, to interact with your Employee Details command handler:

e The first thing to recognize is that the new component is now responsible
for interacting with the department dropdown component. The department
dropdown component is encapsulated within the new reusable part. This
means the new reusable part must handle both department and section
changes.

e For example, if its current department property is changed it must:
a. Reposition the department dropdown

b. Rebuild the sections dropdown from the table SECTAB using the new
department code as a key.

2. In the Design view, select the department dropdown RP and create an event
handling routine for uCurrDepartmentChanged. Add logic to do the
following:

a. Set DEPTMENT to the value of the uCurrDepartment property of
DEPT_DD.

b. Signal that department has changed
c. Clear the list SECT_DD

d. Select SECTION and SECDESC from file SECTAB using DEPTMENT
as key, add all entries to SECT_DD

e. Getentry 1 from SECT_DD
f. For SECT _DD, set Focus to current item
Your code should look like the following:

Evtroutine Handling(#DEPT_DD.UDepartmentChanged)
#deptment := #DEPT_DD.uCurrDepartment
Signal Event(uDeptChanged)

Clr_List Named(#SECT_DD)

Select Fields(#SECT_DD) From_File(sectab) With_Key(#deptment)
Add_Entry To_List(#SECT_DD)

Endselect

Get_Entry Number(1) From_List(#SECT_DD)
#SECT_DD.currentItem.focus := true

Endroutine

3. Define the following properties:

Define_Pty Name(uCurrDept) Get(GetCurrDept) Set(SetCurrDept)
Define_Pty Name(uCurrSection) Get(*auto #section) Set(SetCurrSection)

Setting or getting uCurrDept will require logic in property routines.
Getting uCurrSection will return current value of SECTION.
Setting uCurrSection will require logic in a property routine.
Ignore errors at this stage.

4. Define the following events:

Define_Evt Name(uSectChanged)
Define_Evt Name(uDeptChanged)

5. Create the GetCurrDept property routine. This needs to an output parameter
based on DEPTMENT.

Your code should look like the following:

Ptyroutine Name(GetCurrDept)
Define_Map For(*output) Class(#deptment) Name(#CurrDept)
Endroutine

6. The GetCurrDept routine needs to retrieve the current department from
DEPT_DD. Add code to do this. The new code is shown in red.

Ptyroutine Name(GetCurrDept)

Define_Map For(*output) Class(#deptment) Name(#CurrDept)
#CurrDept := #DEPT_DD.uCurrDepartment

Endroutine

7. Create a SetCurrDept property routine. It needs an input parameter based on

DEPTMENT.
Your code should look like the following:

Ptyroutine Name(SetCurrDept)
Define_Map For(*input) Class(#deptment) Name(#CurrDept)
Endroutine

8. The SetCurrDept needs to set the current department property in DEPT_DD.
Add code to do this. The new code is in red.

Ptyroutine Name(SetCurrDept)

Define_Map For(*input) Class(#deptment) Name(#CurrDept)
#DEPT_DD.uCurrDepartment := #CurrDept

Endroutine

9. Create a SetCurrSection property routine. This needs to have an input
parameter based on SECTION.

Your code should look like the following:

Ptyroutine Name(SetCurrSection)
Define_Map For(*input) Class(#section) Name(#CurrSect)
Endroutine

10. The SetCurrSection routine needs to re-position the section combo box to
the input value.

It does this by reading the combo box using SELECTLIST and leaving when
SECTION = the input section code.

It should then set focus for current item and signal the uSectChanged event.
Add code to achieve this. New code is shown in red.

Ptyroutine Name(SetCurrSection)

Define_Map For(*input) Class(#section) Name(#CurrSect)
Selectlist Named(#SECT_DD)

Leave If(#section *EQ #CurrSect)

Endselect

#SECT_DD.currentlItem.focus := true

Signal Event(uSectChanged)

Endroutine

11. Create an ItemGotFocus for the sections combo box. Add logic to signal the
uSectChanged event.

Your code should look like the following:

Evtroutine Handling(#SECT_DD.ItemGotFocus) Options(*NOCLEARMESS.
Signal Event(uSectChanged)
Endroutine

12. Compile your department / section combo box component.

Step 3. Modify Department Dropdown

1. A change is required to iiiVFW13 to signal uDepartmentChanged when the
departments dropdown is Initialized. The existing routine is as follows:

Evtroutine Handling(#CMBX_1.Initialize) Options(*NOCLEARMESSAGES
Clr_List Named(#CMBX_1)

Select Fields(#CMBX_1) From_File(deptab)

Add_Entry To_List(#CMBX_1)

Endselect

Get_Entry Number(1) From_List(#CMBX_1)

If_Status Is(*okay)

#CMBX_1.currentltem.focus := true

Endif

Endroutine

Although the program is setting Focus for the first entry, this will not signal
an ItemGotFocus event.

2. Add code to signal the uDepartmentChanged event, as follows. New code is
shown in red, italics.

Evtroutine Handling(#CMBX_1.Initialize) Options(*NOCLEARMESSAGES
Clr_List Named(#CMBX_1)

Select Fields(#CMBX_1) From_File(deptab)
Add_Entry To_List(#CMBX_1)

Endselect

Get_Entry Number(1) From_List(#CMBX_1)
If_Status Is(*okay)
#CMBX_1.currentltem.focus := true

Signal Event(uDepartmentChanged)

Endif

Endroutine

3. Compile iiiVFW13.

Step 4. Implement the Compound Reusable Part

In this step you will change your Employee Details command handler to use the
new department / section combo box component.

1. Open the Employee Handler (iiiVFWO06) in the editor

2. From the Design view, delete the department dropdown component
(iiiVFW13) and the Department and Section fields

3. Switch to Source and remove all code which refers to iiiVFW13. You will
find that the flow manager items for iiiVFW13, DEPTMENT and SECTION
have also been removed, so no further corrections are needed for now.

4. Drag and drop your department / sections dropdown component onto the
main left hand panel (BODY_HEAD).

a. Change its Name to DEPSEC_DD.
b. Change its DisplayPosition and TabPosition to 10.

5. Select the DEPSEC_DD component and use the Details / Events tab to create
a uDeptChanged and uSectChanged event handling routine.

6. Switch to the Source view. In the uExecute method routine add code to set
the current department and section properties in DEPSEC_DD, after the
employee data has been read. Your code should look like the following: New
code is shown in red.

Fetch Fields(#XG_HEAD) From_File(PSLMST) With_Key(#EMPNO)
#DEPSEC_DD.uCurrDept := #deptment
#DEPSEC_DD.uCurrSection := #Section

The department / section component will position the department dropdown,
rebuild the sections dropdown for this department code and position the
sections dropdown.

8. Complete the logic for the department and section changed events from
DEPSEC_DD.

In each case they simply need to set the command handler field to the related
property from DEPSEC_DD. Your code should look like the following:

Evtroutine Handling(#DEPSEC_DD.uDeptChanged)
#deptment := #DEPSEC_DD.uCurrDept

Endroutine

Evtroutine Handling(#DEPSEC_DD.uSectChanged)
#section := #DEPSEC_DD.ucurrsection

Endroutine

9. Compile your command handler.

10. Execute your Framework as an end user. Test the Employee Details
command handler.

a. Ensure that the correct department and sections are displayed when an
employee is displayed.

b. Select new department and section values in the dropdowns. Save the
change and ensure the file is updated successfully.

c. Check that the sections dropdown is re-populated every time a new
department is selected in its dropdown.

Summary

Important Observations
e This exercise provides a good example of designing a useful reusable part.
e Components like this one will probably be required in most applications.

Tips Techniques

e Note how the Department / Section dropdown component encapsulates the
department dropdown list and must provide an interface for both
departments and sections.

e Remember, it is important to document your reusable parts to promote their
re-use by other developers.

What You Should Know

e How to build a simple compound reusable part.

VFW080 — Using an Explorer Component

The Explorer component is used to view files and directories either on local
hard disks or across the network.

You can use two Explorer components, one for showing directories and paths
and one for showing the files in a folder (similar to Windows Explorer).
Implement communication between the two components by using the
NotifyComponent property of the first Explorer component.

Objectives
e To create a command handler that displays an employee image.

e To create a Find Employee Image form that uses the Explorer components to
enable the user to find and select an employee image.

= Emplopes : Images [A1003-5MITHE Robert]
[lDetsis | fa BrieFrotes | KU Images | 4. Motes | Piskilsz | * Skils

Explorer
Components

i

g

B’ Find Employee Image

4 | HetworkClien| =Y

. Dpen

L Tool:

| 'WebSesves

L. ‘webltillies

L WINGS

= ®_LAMS#
i swec{2]
@ Jy objec—
B piirti
H g
=1 [

= = H =

il
H &

H

B
H
1l

To achieve the objectives you will complete the following:
Step 1. Create Employee Images File

Step 2. Create the Find Employee Image Form

Step 3. Make the Find Image Form Useful

Step 4. Create the Employee Image Command Handler
Step 5. Complete the Image Command Handler

Step 6. Plug In and Test the Image Command Handler
Summary

Before You Begin
Complete exercises VFW030, VFW040 and VFW042.

Step 1. Create Employee Images File
1. Create a new field:

Name: HWEMPIMG

Description: Employee Image

Field type: BLOB
You do not need to open the field in the editor.
2. Create new iiiEmpImages.

Make the file RDMLX enabled:

Name: iiiEmpImages

Description: Employee Images

Field Key
EMPNO 1
iiiEMPIMG

3. Compile the file. Ensure that your compile options build Rebuild Tables and
Rebuild OAMs.

Step 2. Create the Find Employee Image Form
1. Create a new / Basic Form:

Name: iiiVFW15

Description: Find Image

2. With the Design view selected, use the Design ribbon to add New Layout /
Attachment manager to the form.

3. Drop a Panel onto the right hand side, and change its Name to
IMAGE_PANL. Change its Width to approximately 125.

4. Drop another Panel onto the centre of the form and change its Name to
SEARCH_PANL.

If necessary, with the form selected, open the Layout Helper tab and use the
Child Details tab to ensure the IMAGE_PANL is attached to the Right.
SEARCH_PANL should be attached to the Center.

Layout Helper

Layout Managed Component =)
IIIVFW15

Layout [iR

ATLM_1

Children 1] }(As Child Details

+ WA =1

+ | SEARCH_PARNL Category Attachment

Top Left Center

5. Asyou are designing, save the component regularly.

6. Select the IMAGE_PANL, and use the Design ribbon to add a Flow down
manager.

a. Add two Push buttons to the IMAGE_PANL.

b. Add a Group Box and resize it as shown. Give the Group Box a Caption
of Selected Image.

c. Drop an Image component into the Group Box and resize the Image to fill
the Group Box as shown:

Selected lmage - —

d. Select the IMAGE_PANL. On the Layout Helper tab select Layout
Manager Details tab tab. Select Margins / Category. Set the Left margin
to 15 and the Top margin to 12.

Layout Helper

Layout Managed Component [x=
[macE_PanL -
Layout C X
{Fwim 1 al
Children w0)(I Layout Manager Details I Child Details | s Child |

7 GPEX_1
| PHBEN_1 Categary Margins

¥|PHBN_2

All] - Clear

Left 15 : || Right 0

Top 12 = Bottom 0

. Set up the Push Buttons:

a. Set up the first push button properties as follows:

Property | Value

Caption | OK

Name \ PHBN_OK‘

b. Create a Click event for PHBN_OK.

c. Set up the second Push button as follows:

Property | Value

Caption | Cancel

Name PHBN_CANCL

d. Create a Click event for PHBN_CANCL

8. Select the SEARCH_PANL and use the Design ribbon, to add a Split Vertical
manager.

On the Layout Helper tab, select the Layout Manager Details tab, select the
Category / Divider Style and select the Raised option.

9. Change the left hand Panel's Name to FOLDERS.
10. Change the right hand Panel's Name to FILES.

11. Select the FOLDERS panel. On the Layout Helper tab, add an Attachment
manager by selecting ATLM_1 in the Layout drop down.

12. On the Controls tab, select All Controls and add an Explorer component into
the center of the FOLDERS panel.

If necessary, use the Layout Helper tab / Child Details tab to ensure that it is
attached in the Center.

Your design should look like the following:

- O
[tU:ﬁlﬂnp- o
CK
Cancel

1 - Selected Image |

13. Select the FILES panel and on the Layout tab, give it the ATLM_1
Attachment manager, by selecting it in the Layouts drop down.

Drop an Explorer component into the center of the FILES panel. With the
FILES panel selected, on the Layout Helper tab, use the Child Details tab to
check the explorer (DCBX_2) is attached in the Center.

14. Save your form design.

15. Select the left hand Explorer component (DCBX_1) and use the Details tab
to set up its properties:

Property Value

Display Style DirectoryTreeView
PathType Desktop
NotifyComponent| DCBX_2

16. Select the right hand Explorer component (DCBX_2) and set its properties:

Property Value

DisplayStyle GeneralListView

FileIncludeMask | ""
* bmp,*.jpg,*.jpeg,*.gif, *.tf, *.tiff

mw

The Explorer DBCX_2 will display the defined file types only.

17. Save your changes.

Step 3. Make the Find Image Form Useful

1. Switch to the Source tab. Define an uImageSelected event with a map for
input of class STD_STRNG:

Define_Evt Name(ulmageSelected)
Define_Map For(*input) Class(#std_strng) Name(#uFilename)

The event, when signalled, will pass the full filename for the selected image.

2. Create an ItemGotSelection event for Explorer DCBX_2, using the Design
view and the context menu on DCBX_2:

Evtroutine Handling(#DCBX_2.ItemGotSelection) Options(*NOCLEARMES
Endroutine

3. This routine should set the FileName property for the Image component
(IMGE_1) from the Explorer DCBX_2, Path and Filename Your code should
look like the following:

#IMGE_1.fileName := #DCBX_2.path + #DCBX_2.filename

4. In the PHBN_OK.Click event routine
a. Signal the uImageSelected event.

b. Populate the uFilename parameter using the DCBX_2 Explorer
properties.

c. Then close the form.
Your OK push button Click event should look like the following:

Evtroutine Handling(#PHBN_OK.Click)

Signal Event(ulmageSelected) Ufilename(#DCBX_2.path + #DCBX_2.filenan
#com_owner.closeForm

Endroutine

5. Complete the PHBN_CANCL Push button Click event, to close the form:

Evtroutine Handling(#PHBN_CANCL.Click)
#com_owner.closeForm
Endroutine

6. Compile your form.

Step 4. Create the Employee Image Command Handler
1. Create a new Reusable Part / Panel:

Name: iiiVFW16

Description: Employee Image CH

Make the Panel size approximately Height 350 and Width 500.
2. Give iiiVFW16 an ancestor of VF_ACO010.

3. In the Design view, from the Designer ribbon, give the form an Attachment
manager:

4. Drop a Panel onto the right hand side. And change its Name to
BUTTON_PANEL. Adjust its Width to allow buttons to be added.

5. Drop a Panel onto the center of the form and change its Name to
IMAGE_PANEL.

6. Select the BUTTON_PANEL and add a Flow Down manager.
7. Drop two push buttons onto the BUTTON_PANEL.

8. With the BUTTON_PANEL selected, use the Layout Helper tab to set
Category / Margins. Use the All settings to position the buttons
approximately in the middle of the panel horizontally. The setting required
will depend on the Width of your BUTTON_PANEL. 12 pixels should be
about correct.

9. Set up two Push Button properties:

Property Value for the first push button Value for the second push button
Name PHBN_SAVE Find
Caption Save PHBN_FIND

a. Create a Click event for the Save button.

b. Create a Click event for the Find button.

10. Save your reusable part.

11. Drop a Group Box into the center of the IMAGE_PANEL. Resize it and
change its Caption to Employee Image.

12. Drop an Image component into the center of the Group Box and resize it to
fill the Group Box.

Your design should now look like the following:

IIVFW16 - Employee Image Command Handler B

..:.E."“P‘.':':*"?E.].“"F'?‘?.. e

13. Save your reusable part.

Step 5. Complete the Image Command Handler

1. In the Design view, drag and drop your Find Employee Image form
(iiiVFW15) onto the Employee Image CH reusable part (iiiVFW16).

This will create a Define_Com for iiiVFRW15. Select the Source tab and
change the Name of iiiVFW15 to Find_Image:

Define_Com Class(#IIIVFW15) Name(#Find_Image) Componentversion(2)

2. An Instance List command handler is invoked by the Framework, when an
entry is selected in the business object Instance list and its uExecute method
is invoked.

Create the uExecute method routine. This must redefine the method which is
already defined in the ancestor VF_ACO010. It should invoke the uExecute
method in the ancestor.

Your code should look like the following:

Mthroutine Name(uExecute) Options(*redefine)
#com_ancestor.uExecute
Endroutine

3. Your uExecute logic, needs to do the following:
a. Get the employee number for the current instance list entry
b. Fetch the employee image field (iiiEmpImg) from file iiiEmpImages

c. Set the image component filename property from the retrieved employee
image

d. Handle a not found error, when the employee has no image.
Your new code should look like the following:

#avlistmanager.getCurrentInstance Akey1(#empno)

Fetch Fields(#iiiempimg) From_File(iiiEmpImages) With_Key(#empno) Val_l
If_Status Is(*okay)

#IMGE_1.fileName := #iiiempimg.fileName

Else

#IMGE_1.fileName := *null

#IMGE_1.updateDisplay

Endif

4. The Find button Click event, simply needs to invoke the Find Employee
image form, as a modal form.

Your completed Find button Click event should look like the following:

Evtroutine Handling(#PHBN_FIND.Click)
#Find_Image.ShowModalForm
Endroutine

5. When an image is selected in the Find Employee Image form, the user will
click the OK button. This will signal the uImageSelected event, passing the
image path and filename.

In the Employee Image command handler, add an event handling routine,
which sets the image filename (IMGE_1.filename).

Your code should look like the following:

Evtroutine Handling(#Find_Image.ulmageSelected) Ufilename(#FileName)
#IMGE_1.fileName := #FileName

Endroutine

6. The Save button Click routine, needs to do the following:
a. Set the field value for iiiEmpImg to the image filename property
b. check for an existing entry in file iiiEmpImages
c. Update or Insert to the file iiiEmpImages as appropriate.
Your code should look like the following:
Evtroutine Handling(#PHBN_SAVE.Click)
#iiilempimg := #IMGE_1.fileName
Check_For In_File(iiiEmpImages) With_Key(#empno) Val_Error(*next)
If_Status Is(*equalkey)
Update Fields(#iiiempimg) In_File(iiiEmpImages) With_Key(#empno)
Else
Insert Fields(#empno #iiiempimg) To_File(iiiEmpImages)
Endif
Endroutine

7. Compile your command handler iiiVFW16.

Step 6. Plug In and Test the Image Command Handler

1. Open your Framework.
a. Open the Employees business object properties
b. Select the Commands Enabled tab
c. Select the Images command handler and plug in the reusable part,
iiiVFW16.
d. Save and restart your Framework.
You could use the Find Employee Images form to find your own images of
any supported type. A suitable set of images is available for these exercises
on the LANSA / Support / Documentation web site (see

http://www.lansa.com/support/docs/index.htm). Look under the Visual
LANSA group for VFW_WAW Workshop — Extra Files.
The zip file contains a folder \PHOTOS which contains 16 small facial
images (80 x 90 pixels).

2. Select the Images tab for an employee. Use the Find Employee Image form

to locate C:\LANSA\PHOTOS folder. Select an image and click OK, which
should close the Find Image form.

3. Click the Save button on the Images command handler.

4. Save images for a number of employees and check that images can then be
retrieved and displayed when an employee is selected in the Instance list.

http://www.lansa.com/support/docs/index.htm

Summary

Important Observations

e Two Explorer components can be linked so that output from one can be
shown in the other.

Tips & Techniques

e Your component can retrieve the windows path and file name from the
Explorer component.

What You Should Know

e How to implement the Explorer component.

e What are the different views it can provide.

e How to store images in the database as a BLOB field.

VFW082 - Toolbars, Menus and Pop—up Menus

The VL Framework can provide most of the toolbar, menu and pop-up menu
facilities your application will require. Setting properties in VLF for business
objects and command handlers enables you to configure the menus, toolbars and
associated icons.

Objectives

The objective of this exercise is for you to build a standalone form which is not
part of a Framework application. This demonstrates how to implement menus,
toolbars and pop-up menus in your own code.

' Menus and Toolbars - o IEN
File | Edit View Help
« | Fill List |
Clear List i
1
Exit e e
vep—éion 00
BUD Intemal Audiling
FLT Flariet Adrmirestration
GEAC Group Accounts
INF Infomaticn Sepdces
LEG Legal
M5 Mgl |ricimation
MET Markeling
sD Sales & Dishibution
TAWL Trawel

O07/0B/20N3 w| TEDE3E

To achieve this objective you will complete the following:
Step 1. Create Menu and Toolbars Form.

Step 2. Make the Menus Useful

Step 3. Add a Pop-up Menu to the Status Bar

Summary

Before You Begin
This exercise is standalone and doesn't depend on earlier exercises.

Step 1. Create Menu and Toolbars Form.
1. Create a new Form / Basic Form:

Name: iiiVFW17

Description: Menus and Toolbars

2. On the Controls tab, select All Controls and drag and drop a Menu Bar
component to the top of the form. The Menu Bar component will always
attach to the top of the form.

Note that the first Menu Item is displayed at the top left and can be edited in
the Design view.

tem1

3. Review the source code. Note that two components have been defined:
A Menu Bar (MBAR_1)
A Menu Item (MITM_1) which has a parent of MBAR_1

Define_Com Class(#PRIM_MBAR) Name(#MBAR_1) Parent(#COM_OWNI
Define_Com Class(#PRIM_MITM) Name(#MITM_1) Caption('Item1") Displa

4. Return to the Design view and define the menu. In the following steps you
will define the menu as shown in the following table:

Menu Option

File Fill List
Clear List
Exit

Edit Copy

Delete

View Icon
List
Report
Small Icon

Help Contents

5. Follow these steps:

a. Replace Item1, with &File. The "F" will be the menu shortcut key. At run
time, Alt + F will open the File menu.

b. Press Enter to create the next menu item. Type F&ill List. Typing "i" with
the File menu open will select the Fill List option.

c. Press Enter and the editor will move the input menu items to top of the
Design tab. Continue to define the menu here.

d. Type C&lear List and press Enter.

e. Type a dash character (-) into the new item. This makes the menu item a
divider. Press Enter.

f. In the new menu item, type E&xit and save your form.
You have created MITM_1 and its sub-menu items.
6. Once again review your source code:

Define_Com Class(#PRIM_MBAR) Name(#MBAR_1) Parent(#COM_OWNI
Define_Com Class(#PRIM_MITM) Name(#MITM_1) Caption('&File") Displa
Define_Com Class(#PRIM_SMNU) Name(#SMNU_1) Parent(#MITM_1)
Define_Com Class(#PRIM_MITM) Name(#MITM_2) Caption('F&ill List") Di
Define_Com Class(#PRIM_MITM) Name(#MITM_3) Caption('C&lear List') |
Define_Com Class(#PRIM_MITM) Name(#MITM_4) Caption('E&xit') Disple
Define_Com Class(#PRIM_MITM) Name(#MITM_5) Caption('-

") Displayposition(3) Parent(#SMNU_1)

You now have a sub menu item (SMNU_1) with four menu items belonging
to the sub menu which have a parent of SMNU_1.

7. Compile the form and execute it. Check that your menu looks as expected.

File
| Fill List
Clear List

Exit

8. Test the shortcut keys.
9. Close the form.

10. Switch to the Design view. Position the cursor in the File menu option and
press the Tab key. A new menu element will be displayed below:

11. Type &Edit in the new element and press Tab. Type & View and press Tab,
and type &Help.

Your menu should look like the following:

12. Save your form.

13. Click in the Edit menu item. Ensure the cursor is positioned at the right hand
side and press Enter. A new submenu will be displayed below.

14. Type &Copy and press Enter and type &Delete in the new menu item.

15. Position your cursor cursor in the View menu item. Move the cursor to the
right and press Enter to create a new sub menu. You will now define four
sub-menu items for the View menu:

a. In a new menu item, type &Icon and press Enter.
b. In a new menu item type &List and press Enter.

c. In a new menu item type &Report and press Enter.
d. In a new menu item type &Small Icons.

16. Position your cursor in the Help menu item and move the cursor to the right.
Press Enter. In the new menu item type & Contents.

17. Compile your form and execute it.

' Menus and Toolbars = | = 28
File Edit Wiew Help
e TR TN T i i

18. Test all menu options and shortcuts.

19. Close your form.

Step 2. Make the Menus Useful
1. Add a Status bar to the form.

2. Add a List view component, resize it as shown. Leave space below the menu
bar, where you will be adding a toolbar.

atbBcCdDeE (FgGhHilkEILmb nM o0 pPglR e SET ull v aiswiddyy'ze

3. On the Repository tab, find the file DEPTAB and add columns to the list
view for DEPTMENT and DEPTDESC. Resize the columns to use all the
space available. Note that the DEPTDESC column can be given a WidthType
property of Remainder.

4. In the Design view, position the cursor in the File menu item and press Enter
to display the sub menu.

5. On the Details tab, select the Events tab and create a Click event routine.
6. Create Click events for the Clear List and Exit menu items.

7. Switch to the Source tab and complete the Click event for the Fill List menu
item based on the following:

e Clear the List view.
e Populate the List View with all records from the file DEPTAB.
¢ Add an image component to each list item.

e Set menu item 2 checked to true, if not checked.

e Set menu item 3 to checked false
Note:

e List items (Currentltem) have an Image property. This may have an Image
component associated with them. The image could be set dynamically
dependent on the data in each row.

e An Icon component VI_CHECK which already exists in the Repository
should be used for this exercise.

e Feature Help (F2) is available for any component for you to investigate its
Properties, Events and Methods in detail.

Your code should look like the following:

* Fill List

Evtroutine Handling(#MITM_2.Click)

Clr_List Named(#LTVW_1)

Select Fields(#LTVW_1) From_File(deptab)
Add_Entry To_List(#LTVW_1)

* Set a reference from VI_CHECK image component to list item image proper
#LTVW_1.CURRENTITEM.IMAGE <= #VI_CHECK
Endselect

#MITM_2.checked := *Not #MITM_ 2.checked
#MITM_3.checked := false

Endroutine

8. Add the basic code for the Click event for the Clear List and Exit menu
items.

Your code should look like the following:

* Clear List

Evtroutine Handling(#MITM_3.Click)
Clr_List Named(#LTVW_1)
Endroutine

* Exit

Evtroutine Handling(#MITM_5.Click)
#com_owner.closeForm

Endroutine

9. The Clear List and Fill List Checked property should be handled similarly to
step 7.

Add logic to check Clear List (MITM_3) and uncheck Fill List (MITM_2)
to the MITM_3.Click event. Changes are highlighted in red.

Evtroutine Handling(#MITM_3.Click)

Clr_List Named(#LTVW_1)

#MITM_3.checked := *Not #MITM_3.checked
#MITM_2.checked := false

Endroutine

10. Compile and test your form. Your list should look like the following:

0 Menus and Toolbars = =
File | Edit View Help

Fill List
Clear List |
: artment Description

Exit hiztration
AUD Internal Auditing
FLT Fleet Administration
GaAC Group Accounts
IMF Information Services
LEG Legal
kIS kdamt. Information
kT b ark eting
sh Sales & Diztribution
TRWL Travel

11. In the next few steps you will add logic to handle the View menu items. The
List View component has a ViewStyle property. Select the List View and on the
Details tab review the list of values available for the ViewStyle property:

* TabStop True
* Top

P ii '!'j I 'i Menu
Visible

™ visualStyle
*visualStyleOfParent
* Width

B
The View menu items will control the List View ViewStyle property.

12. This time, use the Outline tab to access and select the menu items. This tab
is usually open, but if necessary select it from the Home ribbon, Views menu.

Dutline

4 T ivEWT
> T8 LTVW_1
4 [MBAR_1
: mm ITM_
4 == M|TM_G
4 [p sMNU_2
== MITM_10
== (TM_S
4 == \|TM_T
4 [p SMNU_3
== ITM_T1
== ITM_12
== ITM_13
== TM_14
: == MITM_S
T STBR_1

On the Outline tab, expand sub-menu items and note that the appropriate
menu is opened in the Design view.

13. Select the View menu items and create a Click event for each item. You can
use the context menu on the Outline tab to create the Click events.

- f
File Edit View |Help 1
s 7
e List ::i
L A i
| Departme ;EF'E;” ;;;
T B Apr mall lcons —
EV,E ABLCI = JHST‘;

14. Add logic to each new click event routine to set the List View.ViewStyle
property as required. Your finished code should look like the following:

* Icon

Evtroutine Handling(#MITM_11.Click)
#LTVW_1.viewstyle := icon
Endroutine

* List

Evtroutine Handling(#MITM_12.Click)
#LTVW_1.viewstyle := list

Endroutine

* Report

Evtroutine Handling(#MITM_13.Click)
#LTVW_1.viewstyle := report
Endroutine

* Small Icons

Evtroutine Handling(#MITM_14.Click)
#LTVW_1.viewstyle := smalllcon
Endroutine

15. Compile and test your form. Use the View menu options to change the
appearance of the list.

16. In the next few steps you will add a Toolbar to the top of your form and
implement a number of toolbar buttons.

a. Drag and drop a Group Box component to the top of the form below the
Menu Bar and resize it:

b. Give the Group Box a ThemeDrawStyle property of Toolbar.
c. Set the Group Box Height property to 48 pixels.

File Edit Wiew Help

B L L]
Department Code | Department Description
=" ABCD aAbBcCdDeEfFgGhHilj)

Note: Remember you can move components accurately using the Ctrl+Cursor
keys.

17. Use the Design ribbon to add a FlowAcross manager to the Group Box.

18. Use the Layout Helper / Layout Manager Details tab to set the Margins
Category. Use All to set the value to 3 pixels.

19. Add four Toolbar buttons to the Group Box. Use the Shift + Left Mouse to
select all the toolbar buttons and set their ButtonStyle property to FlatButton.

File Edit Wiew Help

Department Code | Department Description
Lm® ABCD aAbBcCdDeEfFgGhHilj

When you focus elsewhere the toolbar buttons will not be visible. You can
still click on their position to select one. Select the third button and change its
ButtonStyle to Separator.

20. Select each Toolbar button and set the Image and Hint properties as follows:

Button Image Hint

SPBN_1 xImageNew16 Fill the list view
SPBN_2 xImageCutl6 Clear the list view
SPBN_4 xImageExit16 Close the form

21. Since the toolbar duplicates some of the menu options, you should add the
new toolbar button click events to the existing logic. Your completed code
should look like the following. Changes are highlighted in red.

Evtroutine Handling(#MITM_2.Click #SPBN_1.click)
Clr_List Named(#LTVW_1)

Select Fields(#LTVW_1) From_File(deptab)
Add_Entry To_List(#LTVW_1)
#LTVW_1.CURRENTITEM.IMAGE <= #VI_CHECK
Endselect

#MITM_2.checked := *Not #MITM_ 2.checked
#MITM_3.checked := false

Endroutine

Evtroutine Handling(#MITM_3.Click #SPBN_2.click)
Clr_List Named(#LTVW_1)

#MITM_3.checked := *Not #MITM_ 3.checked
#MITM_2.checked := false

Endroutine

Evtroutine Handling(#MITM_5.Click #SPBN_4.click)
#com_owner.closeForm
Endroutine

22. Compile your form.

" Menus and Toolbars - o IEN
File Edit WView Help
%
Depariment Code Depatiment Descriplion
AW L e
< BUD Intemal Audiling
" FLT Flariet Adrmirestration
GEAC Group Accounts
< INF Infomaticn Sepdces
« LEG Legal
M5 Mgl |ricimation
o MET Markeling
sD Sales & Dishibution
« TRWL Trawel

23. Test your form, especially the menu options and toolbar buttons.

Step 3. Add a Pop-up Menu to the Status Bar

A Pop-up Menu component can be associated with most of the visual

components on a form. A right click on this visual component will then display
the "context menu".

You will add date and time fields to the right side of the Status bar and the Pop-
up Menu will then control whether the date and time fields are visible.

1. From the Repository tab, drag and drop the STD_DATEX field into the right
hand side of the Status Bar.

2. Hide its label by changing its MarginLeft property to 0 and then reduce its
Width as required..

3. Add field STD_TIMX to the right hand side of the Status Bar. Hide its label
and adjust its width. Your form should now look like the following:

PqQrissiTuli] ~ [» [o1/01/1900 ~ #o00000

Hint: If you have difficulty adding the Time field, drop it onto the Status Bar

up / down buttons and it will be positioned on the right hand side of the status
bar.

4. Set both the date and time fields ReadOnly property to true.
5. In this step you will ensure both the date and time fields have a value.

a. Add logic to the form's Initialize event routine to set STD_DATEX to
current date:

#STD_DATEX := *date

b. Drag and drop a Timer component onto your form. This is a non-visual
component. The component definition is:

Define_Com Class(#PRIM_TIMR) Name(#TIMR_1)

c. In the source editor, select the timer component name and use the context
menu to create a click event routine.

Readonly (True) Showdate (False) Tabposition(2) Width(63)
Define Com Class(§PRIM TIMR) Name (§ETue=sh
— = Timer TIMR_1 *

Evtroutine Handling(fcom owner. Initis

Set Com({fcom cwner) Caption(*compor Form: iiVFW1T g
$3TD DATEX := *date
Endroutine Delete Component
* Fill TList Copy Companent...
Evtroutine Handling (#MITM 2.Click #3E Cut Compenent
Clr List Named(#LTVW 1)
2 Select Fields ($LIVW 1) From File(de o% ©u Ctrl+X
Rdd_Entry Ta_lis:?#LT‘."ﬂ_‘lT Copy Ctrl+C
$LTVW_1.CURRENTITEM.IMAGE <= #VI | [Paste Cirle

Endselect

fMITM 2.checked := *Not $MITM 2.che Command Assistant Fa
#MITM 3.checked := false
Endroutine i
* mlaay T.4at 2
I 4 Expand All |
[= Collapse &l i
Job Status Description . - .
Comileted HVEWIT - Menus and Toolbars Events : Timer : L Tick Event

d. Add logic to the timer click event to set STD_TIMX to current time:

Evtroutine Handling(#TIMR_1.Tick) Options(*NOCLEARMESSAGES *NO(
#STD_TIMX := *time
Endroutine

Note: In this case, there is no need for other code. The standard timer
behavior is to fire a click event every second. This is defined by its Interval
property of 1,000. Setting the Interval to 0 will stop the timer.

The Timer also has a Start and Stop method.

6. Compile and execute your form to check that you are displaying a date and
time.

7. Close your form.

8. Continue on the Design tab, by dragging and dropping a Pop-up Menu
component onto the Status Bar.

The Pop-up Menu will be shown at the top of the Design tab:

Design Source | Repository Details | Repesitory Help | Cross References

Pop-up menu for Status =
Bar

e B
_® ABCD aAbBeCdDeEfFgGhHil)

Mcg@mgmﬂymgmynhl_oqppqi:ms_ﬁﬁm_&[;[;| 01/01/1900 ~ | 00:00:00
9. Define two menu items, Show &Date and Show &Time. Create a Click
event for the new menu items.

10. In the Design view, select the Status Bar and review its properties. Note that
it now has a PopUpMenu property of PMNU_1.

Details | Design | Source Repository Details = Re
STBR_1 - higd '
Properties | Events | Methods Fle Edt Vi Help
B~ % A
\J el
& Height 24 - B 2
': Hint Department Code | Departrent Dess
B R apay “NULL 5 ABCD aAbBeCdDeEfFg/
=" HintShow True
& HintShowOfParent True
" HintTitle
“ LayoutStyle Attach
< Left 0
2" MessagePosition 1
“ MouseOverStyle *MULL
< Mame STBR_1
£ Opacity 100
< Qwner £lIVFWA1T
< Parent INFW17
£ Popup *HULL |
| =" PopupMenu FPMNUT | b dDeEfF gGhHilYkkILmMnMNeOp
e et B LU S LU P I L

Date and time are initially visible.

11. On the Design tab, select the Status bar and use the context menu to Edit

Pop-Up Menu.
a. Set both Pop-up Menu items Checked property to True.

b. Complete the Click event code for the Status Bar Pop-up Menu
component, to switch the date and time from Visible = true / false and
Menu Item Checked = true / false.

Your code should look like the following:

Evtroutine Handling(#MITM_16.Click)
#STD_DATEX.visible := *Not #STD_DATEX.visible
#MITM_ 16.checked := *Not #MITM_ 16.checked
Endroutine

Evtroutine Handling(#MITM_17.Click)

#STD_ TIMX.visible := *Not #STD_TIMX.visible
#MITM_17.checked := *Not #MITM_17.checked
Endroutine

12. Compile and test your form.

Summary

Important Observations

e If you are developing applications based on VL Frameworks, then most of
your menus and toolbars can be provided by the Framework.

e Check the Repository under Resources / Bitmaps for a range of suitable
images. These are mainly PNG format images in various sizes (for example,
16x16, 32x32, 64x64 etc.).

Tips & Techniques

e In this exercise all the menu and spin button items were left with default
names. E.g. MITM_1. In a real application it is good design and will
simplify maintenance if you give menu items meaningful names.

e The templates VL._BBMNUBR and VL_FBBMNUB can be used to
generate a menu bar in a form that you can easily adapt to suit your own
requirements. You should generate from the template into an RDML-enabled
form and then change the form to be RDML X-enabled.

What You Should Know

e How to implement menus, toolbars and pop-up menus.

VFW084 — A Business Object Browser and Detailer

Objectives
In this exercise you will create two reusable parts which work together.

e The Business Object Browser displays a list skills for an employee selected
in the instance list.

e The Business Object Detailer displays details for an employee's skill record,
selected in the Business Object Browser.

If developing the application using VL Frameworks, there are other ways this
functionality could be achieved. For example the employees instance list could
contain another level for employee skills. See the shipped HR Demo Application
/ Organisations for an example which illustrates this concept.

The objective for this exercise is to show how to design and build a simple
application with two components which interact with each other.

& Employee - Skills 2 [A1007-SNELL GEDRGE)

[] Details | (| BriefNotes | [0] Images | %) Notes | [Skills 2 Skills
Skill Code | Grade| Comment | Date Acquiredl g
* Skill Cod ADMIN1
ADMIN D Met requirement SeingEs s
el ;’;gg’;gg Grade Obtained for Skil D
INTRO P Met i t L 3
KEY p Mzt :EEE:;Zm:Et Sffgi’gs Comment on skills acquired Met requirement
MANA... D Met requirement 15/03/98
MANA... F i mfg,’g{g Date Skill Acquired 25/03/93
MARKET1 D Met requirement 25/03/98
MARKET3 P 3/05/98
REL D 4j05/98
Save Delete

To achieve these objectives you will complete the following steps:
Step 1. Create Employee Skills Command Handler

Step 2. Create Business Object Detailer.

Step 3. Complete the Skills Browser

Summary

Before You Begin

You should complete VFW030, VFW040 and VFW042 before starting this
exercise.

Step 1. Create Employee Skills Command Handler
This is the Business Object Browser, which will be referred to as the BOB.
1. Create a new Reusable Part / Panel:

Name: iiiVFW18

Description: Employee Skills Browser.

Give the reusable part an ancestor of VF_ACO010.

2. From the Design tab, give the reusable part a Split Vertically manager. On the
Layout Helper tab give this a Divider Style of Raised. The Vertical Splitter
defines two panels PANEL_1 and PANEL_2.

3. Select the left side Panel and change its Name to LEFT_PANEL.
Change the right side Panel's Name to RIGHT_PANEL.
4. Select LEFT_PANEL and give it an Attachment layout manager.

5. Drop a List View into the center of LEFT_PANEL. Change the List View's
Name to SKILL_LIST.

6. On the Repository tab, select the file PSLSKL and drag and drop
SKILCODE, GRADE, COMMENT and DATEACAQ into the list view
SKILL_LIST

7. Select each column heading and change the Caption and Caption Type as
shown:

Field Property Value
SKILCODE Caption Code
CaptionType Caption
GRADE Caption Grade
CaptionType Caption
COMMENT Caption Comment
CaptionType Caption
DATEACQ Caption Date Acquired

CaptionType Caption

8. Create a uExecute method routine, which redefines the ancestor method. Add
logic to execute the ancestor uExecute method:

Mthroutine Name(uExecute) Options(*redefine)
#com_ancestor.uExecute
Endroutine

9. Add logic to get the current instance list entry and return AKey1.

Mthroutine Name(uExecute) Options(*redefine)
#com_ancestor.uExecute
#avlistmanager.getCurrentInstance Akey1(#empno)
Endroutine

10. The SKILL_LIST list view will need to be built, initially when the
command handler is invoked and also whenever the Business Object Detailer
has added or changed an employee skill. Create a subroutine to populate the
list view. Your code should look like the following:

Subroutine Name(buildlist)Clr_List Named(#SKIIL_LIST)Select Fields(#SK
Endroutine

11. Execute the subroutine from the uExecute method:

Mthroutine Name(uExecute) Options(*redefine)
#com_ancestor.uExecute
#avlistmanager.getCurrentInstance Akey1(#empno)
Execute Subroutine(buildlist)

Endroutine

12. Compile your new command handler.

13. Open your Framework and plug in iiiVFW18 as the command handler for
Employee business object, command Skills 2.

14. Save and Restart your Framework. Select an employee and then select the
Skills 2 command handler tab. Check that the list view is populated as
expected. Not all employees have skill records.

§
i

(=}
TOOOOVVOROTOL

15. Close the Framework.

. Emplopee : Skillz2 [A1015-Woodsz, Bradley]

et requirement
Met requirement
Mt requirement
Met requirement

| Date Acquired

25/0398
/0598
5/05/98
1/05/98
5/02/98
5/02/98
15/03/98
25/03/98
4/05/98
3/05/98

Step 2. Create Business Object Detailer.
In this step you will create a reusable part which will be displayed on the
RIGHT_PANEL in iiiVFW18.

This is the Business Object Detailer for an employee skill, which will be
referred to as the BOD.

The BOB will invoke the BOD to display details or create a new employee skill.

The BOD will signal uSkillChanged when an employee skill has been updated,
created or deleted.

When an item in the SKILL_LIST is selected, the BOB will invoke the BOD's
uShow method, passing employee number and skill code.

When displaying an employee skill the BOD will enable a Delete button.

The BOB will have a Pop-Up Menu on the employee skills list, which will
invoke the BOD's uNew method passing the employee number..

1. Create a new Reusable Part / Panel:
Name: iiiVFW19
Description: Employee Skill Detailer

Note: This component does not interact directly with Framework
components. It therefore does not need to have VF_ACO010 as its ancestor.

2. In the Design view resize the panel to approximately Height = 350 and Width
= 370.

Use the Design ribbon to give iiiVFW19 an Attachment layout manager.

3. Drop a Panel at the bottom of the main panel. Change its Name to
BUTTON_PANEL.

4. Select BUTTON_PANEL and give it a Flow Across layout manager.

5. With the BUTTON_PANEL selected, use the Layout Helper / Layout
Manager Details tab and select Category = Margins and set Left and Top =
10 pixels.

6. Drag and drop two Push Buttons onto BUTTON_PANEL. Set up their
properties as:

Caption Name

Save PHBN_SAVE

Delete PHBN_DELETE

7. Create a Click event routine for each button.

8. Drop a Panel into the center of the main Panel and change its Name to
DETAIL_PANEL.

9. Give DETAIL_PANEL a Flow Down layout manager. On the Layout Helper
/ Layout Manager Details tab, select Category = Margins and use the All
setting to set margins of 7 pixels.

10. On the Repository tab, find the file PSLSKL and drop fields SKILCODE,
GRADE, COMMENT and DATEACQ onto DETAIL_PANEL.

11. Save your component.

12. Create a uShow method routine, with input parameters based on EMPNO
and SKILCODE.

Mthroutine Name(uShow)

Define_Map For(*input) Class(#empno) Name(#i_empno)
Define_Map For(*input) Class(#skilcode) Name(#i_skill)
Endroutine

13. Define a character work field, REQUEST, Length 3.
Define Field(#request) Type(*char) Length(3)
14. Complete the uShow routine, which should:
a. Set Request to DET
b. Set EMPNO and SKILCODE from the values input to this method
c. Fetch all employee skills from file PSLSKL.
Your code should look like the following. Changes are highlighted in red.

Mthroutine Name(uShow)

Define_Map For(*input) Class(#empno) Name(#i_empno)

Define_Map For(*input) Class(#skilcode) Name(#i_skill)

#request := DET

#empno := #i_empno

#SKILCODE := #i_skill

Fetch Fields(*all) From_File(pslskl) With_Key(#empno #SKILCODE) Val

If_Status Is_Not(*OKAY)

Message Msgtxt('Employee skill not found")
Endif

Endroutine

15. Create a uNew method routine with an input parameter i_empno, based on
EMPNO.

Mthroutine Name(uNew)
Define_Map For(*input) Class(#empno) Name(#i_empno)
Endroutine

16. Define a Group_by, named SKILDATA for fields SKILCODE, GRADE,
COMMENT and DATEACQ, at component level.

17. Complete the uNew method routine which should:
a. Set request to NEW
b. Set EMPNO to the value input to this method
c. Set SKILDATA to *null

Mthroutine Name(uNew)

Define_Map For(*input) Class(#empno) Name(#i_empno)
#empno := #i_empno

#request := NEW

#skildata := *default

Endroutine

18. Define an event uSkillChanged.

define_evt NAME(uSkillChanged)
19. Complete the Save push button Click event routine, which should:

a. Handle a request of DET or NEW using a CASE/ENDCASE.
b. When request is DET, UPDATE all fields in PSLSKL

c. Check status code and signal uSkillChanged

d. When request is NEW, INSERT all fields to PSLSKL

e. Check status code and signal uSkillChanged.

Your code should look like the following:

Evtroutine Handling(#PHBN_SAVE.Click)

Case (#request)

When (= DET)

Update Fields(*all) In_File(pslskl) Val_Error(*next)
If_Status Is(*okay)

Signal Event(uSkillChanged)

Else

Message Msgtxt('Employee skill update failed')
Endif

When (= NEW)

Insert Fields(*all) To_File(pslskl) Val_Error(*next)
If_Status Is(*okay)

Signal Event(uSkillChanged)

Else

Message Msgtxt('Add Employee skill failed")
Endif

Endcase

Endroutine

20. Complete the Delete push button Click event routine, which should:
a. Delete from the file PSKSKL
b. Check status and signal uSkillChanged and issue an error message:

Evtroutine Handling(#PHBN_DELETE.Click)
Delete From_File(pslskl) Val_Error(*next)
If_Status Is(*okay)

Signal Event(uSkillChanged)

Else

Message Msgtxt('Employee skill deletion failed")
Endif

Endroutine

21. Compile reusable part iiiVFW19.

Step 3. Complete the Skills Browser

1. Switch to the reusable part iiiVFW18 (Employee Skills Browser) in the
editor. In the Design view, select the panel RIGHT_PANEL. Use the Layout
Helper tab and give this panel an Attachment layout manager by selecting the
existing manager ATLM_1 in the drop down:

Layout Helper

Layout Managed Component =]
| RIGHT_PANEL - |
Layout Chi &
faTimL1 -

Children M > Wl X Layout Manager Details Child Details A

Category Processing Oreer

2. Drop the reusable part iiiVFW19 into the center of the Panel
RIGHT_PANEL. Use the Details tab to change its Name to SKILL_DETLS.

3. Select the component SKILL,_DETLS on the RIGHT_PANEL and use

Details / Events to create a uSkillChanged event routine. Add logic to execute
the BuildList subroutine.

4. Select the SKILL_LIST list view on the LEFT PANEL and create an
ItemGotSelection event routine.

Add logic to invoke the uShow method in SKILL_DETLS, passing employee
number and skill code. Your code should look like the following:

Evtroutine Handling(#SKILL_LIST.ItemGotSelection) Options(*NOCLEARNM
Invoke Method(#SKILL_DETLS.ushow) I_Empno(#empno) I_Skill(#skilcode
Endroutine

5. On the Design tab, select the SKILL_LIST and use the context menu to add a
Pop-Up Menu component.

Enter New in the menu item displayed at the top of the Design tab and create
a Click event for it.

6. Complete the menu item Click event by adding code to invoke the uNew
method in SKILL_DETLS passing employee number.

Evtroutine Handling(#MITM_1.Click)
Invoke Method(#SKILL_DETLS.uNew) I_Empno(#empno)

Endroutine

7. Compile the reusable iiiVFW18.

8. Execute your Framework, and ensure you can use the Skills 2 command
handler for an employee to update, delete and create a new skill.

At the moment this command handler has a very basic interface. In the next
exercise you will make a number of improvements to it.

Summary

Important Observations

e Your components will contain your own application, properties, events and
methods.

e Properties, events and methods are "published" unless they are defined as
Access(*private).

e In this simple component model, the "browser" displays all skill entries (for
an employee) and the "detailer" enables the user to change or delete a skill.
Tips & Techniques

e The business object detailer signals an event telling the business object
browser an employee skill has changed.

e The business object browser passes employee number and skill code into the
uShow method in the business object detailer.

What You Should Know
e How to design and implement a simple multi-component application.

VFWO090 - Field Visualizations

e The Repository defines fields as components. An important part of this
component definition is the field visualization.

e Most fields are visualized by default as a simple edit box.

e Other field visualizations may be added, such as a radio button set, a
dropdown together with a static picklist, check box, multi-line edit box and
date prompt.

The following example shows field visualizations for a numeric field.

e These examples include: Combo Box, Listbox, SpinEdit, Radio Button Set
and TrackBar.

e SpinEdit has an Increment property.
e Trackbar has a MinimumValue and MaximumValue properties.

B ° Field Visualization Examples | = & é
Currant ' alue 3)000.00
Salary e
Very Low
Low
Awetags
High
Weny High |
|
Salany 3,000.00 |
Weny Low
Lows
Salany Avyerage
High
Wem High
Salany
Wy Low
Low
Foparage
Salary High
“ery High

The next example includes field visualizations for:

A Radio Button Set and a Combo Box for field Gender.
Checkbox and Combo Box for On Leave?

Image and Text picklist for Job Status

Multi-Line Editbox for Memo Notes (a string field)

e A Date Prompt for a Date Time field:

B ° Field Visualization Examples =l
Male
Gends Mal B
Female iz =
On Leave? 4 On Leave? ‘Dnleave |~
B Momal
¥ Ungent
Job Statug £ Late
Dezperate

Danes id kendieil e, Suzpendises lacus nunc,

laculbs et pottior egel, cursus nec ante. Dus ut

corsaquat anm. Dhui ko nis, suscipit in volutpat
Memo Naotes ac, suscpil sed sapien Duis magna dul ubium k

lobiartes nngilla non, pellentezque non rebh. Mam

pellentesque feugiat eral inovehicula Vivams

lobartes fnngilla maths, -

Date 2B/06/2M2 =

Advanced field visualization options include:

e A Dynamic Picklist which is populated by a Reusable part.

e An Autocomplete input box, also populated by reusable part.

e A Prompt Form can also be attached to the field, which is linked to a prompt
button and which can support simple or complex searches as required.

Objectives

This exercise provides examples to enhance some of the applications built in
previous exercises. More field visualization examples are provided Field
Visualization Development in the LANSA Development Guide.

To achieve the objectives you will complete these steps:
Step 1. Define a Picklist for iiiGRADE.

Step 2. Define a Dynamic Picklist for SKILCODE

Step 3. Link Dynamic Picklists

Step 4. Implement Dynamic Picklists in By Location filter
Step 5. Create an AutoComplete Visualization for Surname
Summary

Before You Begin
Complete exercises VFW020, VFW030, VFW042 and VFW084.

its:lansa013.chm::/lansa/l4wdev03_0170.htm

Step 1. Define a Picklist for iiiGRADE.

1. Copy field GRADE to create a new field iiiGrade, select the options to copy
rules, visualization and help text. Open the new field in the editor.

2. Select the Visualization tab, which should contain a VisualEdit definition:

| Definition Rules and Triggers = Visualization Repository Help | Cross References

X =EE -=m=F3A =2 & 4

FlEld Parts Tl e

4 . ® Yisualizations - - Grade Obtained for Skill - - <A |- - ..

GD VisualEdit 000 ||| s e e

3. Add a Static Picklist using the toolbar button:

Definition | Rules and Triggers | Visualization | Repository Help | €

X o Fl==838]— & -

Field Parts =l Mew Static F'.ir_kl?st . s
4§ Visualizd & Rt Dy”am"rp"k"“ ed for Skill

GED VisualEdit 000 I -

4. Select the Picklist component and define the following picklist values:

Caption Value Default

Pass P Yes
Fail F
Merit M

Distinction D

5. Select the Definition tab and change the field Default value to 'P', to
correspond with the Static Picklist default value. See later in the exercise for
more detail on this step.

6. On the Visualization tab, select the VisualPicklist component. Note that it has
defaulted to a suitable design, a Dropdown.

Widen the visualization slightly so that the word "Distinction" would be
shown.

If necessary, reduce the height to the minimum possible.

Note: Always make visualizations use the minimum space on the interface.

Select the Details tab and change the new visualization to Default Visual =
True.

7. Save your field definition.

8. Open iiiVFW19 — Employee Skill Detailer in the editor and select the Source
tab. Position the cursor at the top of the code.

a. Display the Replace dialog (Ctrl+H) and set it up to replace #GRADE
with #iiiGrade. Do not Replace All.

Replace &J
Find what: #GRADE T | Find Mext
Replace with: ZiiiGrade * Replace
_| Match whole word only

EE Replace All
| Match case
| Wrap Cancel

b. Use Find Next, which will be this line:
Define_Com Class(#GRADE.Visual) Name(# GRADE) Displayposition(2) He!

b. Use Replace to change both entries on this line. Your code should look
like the following:

Define_Com Class(#iiiGRADE.Visual) Name(#iiiGRADE) Displayposition(Z

c. You should now be positioned on this line:
Define_Com Class(#PRIM_FWLI) Name(#FWLI_7) Manage(#GRADE) Pare

d. Replace #GRADE and Cancel the Replace dialog.
9. You will now add code to set up iiiGrade from the real field GRADE.

a. At the top of the PHBN_SAVE.Click event routine add this code:
#GRADE := #iiiGrade

b. In the uShow method routine, add this code immediately after the FETCH
#iiiGrade := #GRADE

c. On the Design tab check the appearance of iiiGrade visualization and
increase its width if necessary.

HNIVFW19 - Employee Skill Detailer

Mgl e ABCDEFGHN = [

10. Recompile iiiVFW19 — Employee Skill Detailer.

11. Execute your Framework and display the Skills 2 command handler for an
employee. Note that the Grade obtained for the skill field is now visualized as
a dropdown.

& Employee : Skills 2 [(ADT93-SMITHSON FRED]
[IDetails | 43 Brief Notes Image | | Notes Skills 2 Shills
Code Grade | Comments Date Acqu...
Skl Caode MARKET1
BADMIN1 D et requirsment 25/03/98
comM lu] 4/05/98
c5 P 5f5/a8 @ade Obtained for Skil Distinction -)
HIS F 2/05/98
INTRO B Mt requirement 5/02/98 Comment on skils acquired Metr i
KEY p Mel requirement 5/02/98 an s iy
MANAGE1] 15/03/98 i
.. ol - ed 25/03/58
MARKETL D Metrequrement S i '
MARKET2 P 1/05/98
bl = B, JEOCRAR, o, 3M05/98 oo o e - O

Note:

e The Static Picklist will be automatically positioned to show the field's
current value. If the field contains any value not in the picklist, such as
blanks, the picklist will show its default caption.

e The field's value is only populated or changed by the visualization when an
option is selected in the picklist (visualized as a dropdown in this case). This
means if no selection is made, the fields value could be invalid.

Defining the field's Default value to be the same as the picklist's default
avoids this problem.

Step 2. Define a Dynamic Picklist for SKILCODE

Fields may have Dynamic Visualizations defined. Visualizations may include:

e A reusable part which includes logic to Autocomplete the value of a field as
an entry is typed.

e A Dynamic Picklist may be defined with entries retrieved from a file at run
time.

For full details refer to the Visual LANSA Developer Guide.
In this example you will create a Dynamic Picklist for a new field iiiSkillCode
which populates a dropdown from the file SKLTAB.
1. Copy field SKILCODE to create a new field iiiSkillCode, copy rules,
visualizations and help text. Open the new field in the editor.
2. A Dynamic Picklist is implemented via a simple reusable part.
Create a new Reusable Part / Dynamic Picklist:
Name: iiiVFW20
Description: Skill Code Dynamic Picklist

3. A Dynamic Picklist RP is a non visual component (ancestor PRIM_OBIJT)
which implements #prim_dc.iDynamicPicklist.

Implementing iDynamicPicklist allows a visualization reusable to Load the
picklist at runtime.

Load - The load method is executed during initialization and any time
a monitored value or context changes. This picklist instance is
received via the Picklist map. The instance of the picklist is
maintained at runtime, meaning that the user must clear the list if new
data is required.

See the Visual LANSA Developer Guide for more detailed information
about Dynamic Visualizations.

4. The Load method routine which will populate the picklist from the file
SKLTAB when the field component is loaded onto a form or panel, needs to
be completed.

The method routine redefines the Load method in the
prim_dc.iDynamicPicklist component.

its:lansa013.chm::/Lansa/L4wDev03_0415.htm

Add the following code, after the comment line *Populate the picklist,
replacing the supplied code provided

* Populate the picklist

Select Fields(#skilcode #skildesc) From_File(skltab)
#Picklist. Add(#skilcode #skildesc)

Endselect

Note:

The Load method displays a Define_Map. This is part of the redefined Load
method of prim_dc.iDynamicPicklist. The parameter passes a reference to a
component PRIM_PKLT, named Picklist in the Load method.

e The Picklist. Add method enables your reusable part to add entries to the
picklist.

e The Picklist. RemoveAll clears the picklist.
e The Load method includes code to clear the picklist.

e Always use F2 Feature Help to investigate the definition of shipped
components such as PRIM_PKLT.

5. Compile your new reusable part.

6. The new field iiiSkillCode which you just created, should be open in the
editor.

7. Select the Visualizations tab and use the toolbar button to insert a New
Dynamic Picklist:

Definition | Rules and Triggers | Visualization | Repository He

| = FEa=53RA ™ &
Field Parts E[I Mew Static F'.lcklfst . I
4 '® m;._,a“nl@ Mew Dynarnic Picklist | o

&0 VYisualEdit b b b B b b s

A Repository Find dialog is displayed. Select your reusable part iiiVFW20.
8. Select the VisualPicklist component and increase its width.

9. Select the VisualPicklist and use the Details tab to change its DefaultVisual
property to True.

10. Examine the field source code. Note the DynamicPicklist component

definition:

Begin_Com Role(*Dynamic_Picklist #IIIVFW20) Name(#DynamicPicklist) I\
End_Com

As with all picklists, dynamic or static, the NoMatchAction property needs to
be set to determine what to do in the event of the underlying field value not
being found in the picklist. For most situations, ShowValue is probably the
best choice.

11. Select the DynamicPicklist item. On the Details tab, change the
NoMatchAction property to ShowValue.

12. Save the field definition.

13. Open the Employee Skill Detailer (iiiVFW19) in the editor. You will be
making similar change as for field iiiGRADE

a. Change the SKILCODE component definition to use the dynamic
picklist, iiiSkilcode.VisualPicklist.

Define_Com Class(#iiiSkillCode.VisualPicklist) Name(#iiiSkillCode) Displa

b. Change the Flow Manager item for SKILCODE, to manage iiiSkillCode
Define_Com Class(#PRIM_FWLI) Name(#FWLI_10) Manage(#iiiSkillCode)

c. Close the Replace dialog.

d. At the top of the PHBN_SAVE.Click event routine add the following
code:

#SKILCODE := #iiiSkillCode

e. In the uShow method routine, add the following code immediately after
the FETCH:

#iiiSkillCode := #SKILCODE

f. Switch to the Design tab, and increase the width of Skill Code if
necessary.

g. Compile your Employee Skill Detailer reusable part (iiiVFW19).

14. Execute your Framework and ensure that the correct Skill Code description
is shown when an employee skill is selected:

2 Emplopee : Skillz 2 [AD193-SMITHSON FRED]

[Detais | | 4 Brief Notes Image % | Notes Skl 2 Shils

Code Grade | Comments Date Acquired @ ;)

- i Code Company Introduction =

ADMIN1 D Met requirement 25/03,/58 ool
oM D 405598

= p 50508 Grade Obtained for Skil Pass -
HIS 20598

INTRD Metregueement U sfidls] Comment on skils acquired | Mit requirement

KEY Met requirement 5f02fes o

MANAGE] Mt requirement 15/03/58 -

MARKET 1 et requrrement 25/03/58 Dute £ Ay e S

MARKET2 1/05/58

OTH GECQGRAPHY 3/05/98

15. Create a new employee skill, using the context menu on the employee skills
list view. Notice that the skill code dropdown and grade, initially shows their
last value. This is because the fields IIISKILCODE and IIIGRADE are not
currently being initialized in the uNew method routine.

16. Add code to uNew to set the new fields to their default value and re-test.
Notice that iiiGrade defaults to "Pass" as expected and iiiSkilCode shows
blanks, which is its default value, copied from field definition SKILCODE.

Step 3. Link Dynamic Picklists

The next example demonstrates how dynamic picklists can be linked. A
dynamic picklist for Sections can be loaded from the Section table (SECTAB),

but the Sections dynamic picklist, must be rebuilt whenever the department
changes.

1. Create a new Reusable Part / Dynamic Picklist:
Name: iiiVFW21
Description: Departments Dynamic Picklist

2. Add the following immediately after the comment line * populate
dynamic picklist, replacing the supplied code:

* Populate dynamic picklist

Select Fields(#deptment #deptdesc) From_File(deptab)
#Picklist. Add(#deptment #deptdesc)

Endselect

Having completed Step 2- Define a Dynamic Picklist for SkillCode, you
should now be familiar with what this code is doing.

3. Compile your new reusable part.

4. Create a new field iiiDepartment by copying field DEPTMENT, copy rules,
visualizations and help text. Open the new field in the editor.

5. Select the Visualizations tab. Use the = ™ Tool bar button to add a New
Dynamic Picklist. In the Find dialog, select the RP, iiiVFW21.

a. Select the new VisualPicklist component and adjust the width of the
dropdown to display the department description.

b. Select the VisualPicklist component and use the Details tab to change its
DefaultVisual property to True.

c. Select the DynamicPicklist component and use the Details tab o change
its NoMatchAction property to ShowValue.

Details Definition Rules and Triggers

DynamicPickist - | M| @ [i > = G

Properties | Ewvents | Methods Fisld Parts

= ? a4 LB \igyalizations
E= VisualEdit
I WisualPicklist
4 =3 Picklists
rEEI DynamicPicklist

4 ComponentClassham DynamicPicklist

* ComponentPattemMa IIDEPART

" ComponentTag

g omponentTypeMam HIDEPART. DynamicPicklist

" DefaultPicklist False
* Mame DynamicPicklist

| * WoMatchAction Show\alue |
" Owner #|IDEPART

6. Save and close the field definition.

7. Create a new Reusable Part / Dynamic Picklist:
Name: iiiVFW22
Description: Section Dynamic Picklist

8. Add the following code, immediately after the *Populate the picklist
comment line, replacing the default code provided:

Select Fields(#section #secdesc) From_File(sectab) With_Key(#deptment)
#Picklist. Add(#section #secdesc)
Endselect

9. There is a new requirement for the Sections Dynamic Picklist. It needs to
monitor changes in the field DEPTMENT.

To do this it needs to also implement Prim_dc.iMonitorSubject and include a
method routine for ApplyMonitorValue.

10. Extend your code based on the changes highlighted in red below:

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #PRIM_OBJT *implements #Prim_dc.iDynam
Mthroutine Name(Load) Options(*redefine)

#Picklist. RemoveAll

* Populate the picklist

Select Fields(#section #secdesc) From_File(Sectab) With_Key(#Deptment)
#Picklist. Add(#Section #Secdesc)

Endselect

Endroutine

Mthroutine Name(ApplyMonitoredValue) Options(*Redefine)
#Deptment := #MonitorSubject.GetValue

Endroutine

End_Com

Note: The ApplyMonitoredValue routine displays the Define_map defined in
its ancestor.

11. Compile the new reusable part.

12. Create a new field iiiSection by copying field SECTION, copy rules,
visualizations and help text. Open the new field in the editor.

13. Select the Visualizations tab and add a New Dynamic Picklist and select
iiiVFW22,
a. Adjust the width of the VisualPicklist dropdown.
b. Make the ViusalPicklist the field's Default visualization.

c. Select the DynamicPicklist component and use the Details tab to change
the NoMatchAction to ShowValue.

14. Save and close the field definition.

Step 4. Implement Dynamic Picklists in By Location filter

1. Open the Employees by Location filter reusable part (iiiVFWO05) in the
editor.

a. In the Design view, delete the fields DEPTMENT and SECTION.
b. Add fields iiiDepartment and iiiSection
c. Adjust the main panel width to show the dropdowns.

d. Switch to the Source tab. Position at the top of the code. Use the Replace
dialog to replace DEPTMENT with iiiDepartment in the following lines:

Group_by Name(#XG_KEYYS).. .
Def Cond..
Evtroutine Handling(#DEPTMENT.Changed) . .

e. Replace SECTION with iiiSection, in the following line:
Group_by Name(#XG_KEYYS) ..
Note:

¢ In the Section's Dynamic Picklist, a monitor is defined with a source of
Deptment and a target of Section.

e When iiiDepartment changes, the ApplyMonitorValue method in the
iiiSection visualization is run. A reference to the source object is received
allowing the GetValue method to be called to obtain the value.

e Immediately after the ApplyMonitorValue has finished, the Load method
will be run.

2. In the filter, iiiVFWO05, after the BEGIN_COM, define the monitor
component, with a source of iiiDepartment and a target of iiiSection.

Define_Com Class(#prim_lm) Name(#DepartmentSection) Source(#iiiDepartn

Changes to department code will be processed by the ApplyMonitoredValue
method in the Sections Dynamic Picklist component (iiiVFW22).

3. Extend the iiiDepartment.Changed event routine for the field iiiSection.
Add the following code (highlighted in red).

Evtroutine Handling(#iiiDepartment.Changed) Options(*NOCLEARMESSAC
Set Com(#Search_Button) Enabled(*SearchOK)

* Ensure the Section is valid after a department change

#iiiSection := *null

Select Fields(#SECTION) From_File(sectab) With_Key(#iiiDepartment)
#iiiSection := #SECTION

Leave

Endselect

Endroutine

Note: The new code ensures the filter changes the value of iiiSection to the
first appropriate value, by reading the first record from SECTAB for the

selected Department code.
5. Compile the By Location filter iiiVFWO05.
6. Execute the Framework and select the By Location filter for Employees.
a. The sections dropdown should be rebuilt whenever the department
dropdown selection is changed.

b. When department selection is changed, the first section for that
department should be displayed.

5 By Name i, By Location @ o
Y Clear List Search| Employes Desscription Departm, .. Salary | Star
Department Code Fleet Administration | |Awis Turner Jack AT 22,000

Section Code Internal Admin

Step 5. Create an AutoComplete Visualization for Surname

An AutoComplete visualization completes the input box as you type. The
reusable part can return a value based on whatever logic is required. In this case
the Employee file will be read using a logical file in surname order, using
Generic(*YES). The first match returns the surname.

Having defined the Surname Autocomplete visualization, recompiling the By
Name filter, iiiVFWO04, will demonstrate its implementation.

1. Create the field iiiSurname by copying field SURNAME and copy rules,
visualizations and help text. Open the new field in the editor. You will
complete this field definition in a later step.

2. Create a new Reusable Part / Panel:
Name: iiiVFW23
Description: Surname AutoComplete
3. Replace the code with the source provided in VFW090 — Appendix A.
4. Replace all occurrences of <FIELD> with #iiiSurname, where iii = your
initials.
5. Compile the new reusable part. Switch to the Design view.

Note that the panel, has an Attachment Manager and contains field
iiiSURNAME, with a MarginLeft property of 0.

If necessary re-size your panel as shown:

. IMYFWZ23 - Surname A... @
aAbBcCdDeEfFgGhHIL)

6. Review the code provided:

e The Begin_Com extends PRIM_PANL and implements
prim_dc.iMonitorSubject.

Begin_Com Role(*EXTENDS #PRIM_PANL *implements #Prim_dc.iMonito

iMonitorSubject is the simplest and most common form of Visual Host. All
visual field instances implement this interface. It has two methods that will be
called depending on how the field is used.

ApplyMonitoredValue is typically called when the field is used as the target

of a monitor. A reference to the Monitor Source component is received in the
iMonitorSubject input map.

GetValue can be called to obtain the value of the field. As GetValue applies
to any field type, the result map is a variant.

The ValueChanged event can be signaled to indicate that the value of the
variable has changed. This equates to the Changed event.

e The Visual Host has a property 'Value' which passes and receives the value
of SURNAME

e The KeyPress event routine checks if a character key was pressed and if the
field is full

e The PrepareAutoComplete method ensures that the selected characters run
left to right.

e The CanAutoComplete method tests if the selection starts at the end of the
current value

e The Autocomplete method invokes the GetCandidate method which reads
the next record from the employee file (LF — PSLMST?2) generically.

e The KeyPress event signals ValueChanged. This event is defined in
Prim_dc.iMonitorSubject.

7. Switch to the field iiiSurname which should be open in the editor. Use the

Reusable Type = ~ Toolbar button to insert a New Visual Host.

Y

¢ Visualization Repository Help | Cross References 4
g P ; o
;5‘-'--@' e s 4 I
a Pl Mew Part Visualization :::::j

8. In the Repository Find dialog, select the RP, iiiVFW23 and click OK.

9. Select the VisualHost and use the Details tab to change the DefaultVisual to
True.

10. Make the VisualHost wide enough to show the full iiiSurname field.

11. Save the field definition.

12. Open the By Name Filter (iiiVFWO04) in the editor.

13. On the Design tab, delete the field SURNAME and add field iiiSurname.

a. Check that the field definition uses VisualHost and change it to this
component if necessary.

Define_Com Class(#iiiSurname.VisualHost) Name(#iiiSurname) Displayposit

b. Change the LabelPosition property to Top
c. Change the LabelHorAlignment to Left

14. Select the filter's left hand panel (BODY_PANEL) and select the Layout
Helper. If necessary, open the Layout Helper from the Home ribbon, Views

mendu.

Layout Helper Design Seurce Repository DetaiI;

7
Layout M d C ent T 3
ayout Managed Compony = HIVFWO4 - Employee Filter by N
BODY_PAMEL - w = =1
Layout O ClGeariist - - - - - - el
BODY_FLOW k Emiplayie Sundamie’ | | C |
hidn @ X 8] e it 1 | [mcersony

T

: : : St

+ CLEAR AR T e
m Category Flow Rules RS ST B g
>

15. In the Children list, select iiiSURNAME so it is managed by the
BODY_FLOW manager.

IIVFW04 - Employee Filter by Mame @

Deearust: - oo | search |

16.Switch to the Source tab. Change the following lines of code to use your
field iiiSURNAME as shown:

Group_By Name(#XG_Keys) Fields(#iiiSurname)

Def_Cond Name(*SearchOK) Cond((#iiiSurname *NE *Blanks))
#avFrameworkManager.avRestore Value Withid1(*Component)
Withid2(#iiiSURNAME.Name) Toavalue(#iiiSurname)
#avFrameworkManager.avSaveValue Withid1(*Component)

Withid2(#iiiSURNAME.Name) Fromavalue(#iiiSurname)
Evtroutine Handling(#iiiSurname.Changed)
Options(*NOCLEARMESSAGES *NOCLEARERRORS)

17.Add the highlighted code shown to the Search_Button.Click event routine:

Evtroutine Handling(#Search_Button.Click)
Options(*NOCLEARMESSAGES *NOCLEARERRORS)
#Com_Owner.uSelectData

#surname := #iiiSurname

Endroutine

18. Compile the filter.
19. Execute the Framework and test the By Name filter for employees.
Type S into Surname.

Note: the AutoComplete visualization returns the first matching full surname,
but selects text at the right hand side, except for your typed value (S).

[x]

8| By Name | & By Location

S was typed

' Clear List

This ensures the selected text will be replaced, if you continue typing.

Clear the text except "S" and click Search to see all employees with names
starting "S", in name order.

Typing SM, SMY or SN, SNA or SNE will enable you to see that the
Autocomplete logic refines the returned values by repeating the SELECT each
time the search value changes.

Summary

Important Observations
e Field Visualizations are ideally suited to static lists of data for example, Yes,
No; Male, Female and so on.
Tips & Techniques
e The field visualization is controlled by the visualization class.
BEGIN_COM ROLE(*Visual <class name>)...
e For fields used stand alone on forms, the following classes can be used:
e Edit Box (PRIM_EVEF)
e Spin Edit (PRIM_EVSE)
e Button Sets (PRIM_EVPL)
e Combo Boxes (PRIM_EVPL)
e Image Sets (PRIM_EVPL)
e Check Boxes (PRIM_EVPL)
e Track Bars (PRIM_EVTB)
e Progress Bars (PRIM_EVPB)

e The default picklist visualization is a set of radio buttons for the
PRIM_EVPL visualization class, that is, the default is
Appearance(ButtonSet).

e For the picklist, the BEGIN_COM Role(*Visual #PRIM_EVPL)
Name(#VisualPicklist) Appearance(xxxxxxxxxx) may have values where
XXXXxXxxxX is ButtonSet, CheckBox, ListBox, DropDown, Image, and
ImageAndText.

e When using a check box, the order of the picklist values is important.
Clicking the check box will set the corresponding value for the field from the
picklist items. Values are chosen from the following rule.

e Checkbox Unchecked = First picklist item value
e CheckBox Checked = Last picklist item value

e CheckBox grayed = Any picklist item between first and last or an invalid
value. (for example, Changing the value of the field to a value that is not
the first or last item in the picklist will result in the checkbox being

grayed.)
¢ A single field may have many field visualizations. Field visualizations can
improve developer productivity and improve the consistency of your
applications.

e When you change an existing field visualization, forms and reusable parts
which use it will not change until they are recompiled.

What I Should Know

e How to insert a new field visualization.

e How to change a field visualization by changing the visualization class.

e The purpose of the Appearance() property when defining a visualization.

e How to change a field visualization by changing the component properties.
e How to create a picklist visualization.

e How to select a field visualization for a form.

VFW090 — Appendix A

Use the following code to create iiiVFW21 — Surname Autocomplete

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #PRIM_PANL *implements #Prim_dc.iMonito
Define_Com Class(#PRIM_ATLM) Name(#ATLM_1)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_1) Attachment(Center) Paren
Define_Com Class(<FIELD>.VisualEdit) Name(<FIELD>) Displayposition(1
Define_Com Class(#PRIM_ATLI) Name(#ATLI_2) Attachment(Center) Paren
Define_Com Class(#PRIM_ATLI) Name(#ATLI_3) Attachment(Center) Mana
Define_Pty Name(Value) Get(GetProperty Value) Set(SetProperty Value)
Ptyroutine Name(GetProperty Value)

Define_Map For(*Output) Class(#prim_alph) Name(#Property)

#Property := <FIELD>

Endroutine

Ptyroutine Name(SetPropertyValue)

Define_Map For(*Input) Class(#prim_alph) Name(#Property)

<FIELD> := #Property

Endroutine

Mthroutine Name(ApplymonitoredValue) Options(*redefine)

* No redefinition required

Endroutine

Mthroutine Name(GetValue) Options(*redefine)

* No redefinition required

Endroutine

Evtroutine Handling(<FIELD>.KeyPress) Handled(#Handled) Keycode(#Key!(
* If the field isn't full

If (KFIELD>.CurSize <> <FIELD> FieldLength)

* If a character entered

If (#KeyCode = isChar)

#Com_Owner.PrepareAutoComplete

If (#Com_owner.CanAutoComplete)

#Handled := True

#Com_owner.AutoComplete(#Char)

Signal Event(ValueChanged)

Endif

Endif

Endif

Endroutine

Evtroutine Handling(<FIELD>.Changed)

* Handle all other key presses that might affect the value

Signal Event(ValueChanged)

Endroutine

Mthroutine Name(CanAutoComplete) Help('Can we autocomplete?') Access(*
Define_Map For(*Result) Class(#prim_boln) Name(#Result)

* If selection doesn't start at the end of the value, autocomplete is not appropric
#Result := (KFIELD>.SelectionEnd = (<FIELD>.Trim.cursize + 1))
Endroutine

Mthroutine Name(AutoComplete) Access(*private)

Define_Map For(*Input) Class(#prim_alph) Name(#Char) Help('Character jusi
Define_Com Class(#prim_nmbr) Name(#Start)

Define_Com Class(#prim_alph) Name(#Candidate)

#Start := <FIELD>.SelectionStart

#Candidate := #Com_owner.PrepareCandidate(#Char)

<FIELD> := #Com_owner.GetCandidate(#Candidate)

* Set selection to be startposition + 1 to the end

<FIELD>.SelectionStart := #Start + 1

<FIELD>.SelectionEnd := <FIELD>.Trim.cursize + 1

Endroutine

Mthroutine Name(PrepareAutoComplete) Help('Prepare Selection in the value
Define_Com Class(#prim_nmbr) Name(#Transition)

* If Start is greater than end, reverse the selection points

If (KFIELD>.SelectionStart > <FIELD>.SelectionEnd)

#Transition := <FIELD>.SelectionStart

<FIELD>.SelectionStart := <FIELD>.SelectionEnd

<FIELD>.SelectionEnd := #Transition

Endif

Endroutine

Mthroutine Name(PrepareCandidate) Help('Prepare the input value ready for Ic
Define_Map For(*Input) Class(#prim_alph) Name(#Char) Help('Character jusi
Define_Map For(*Result) Class(#Prim_alph) Name(#Result)

* If selection is the whole word, only use the char supplied by the event

If (<FIELD>.SelectionStart = 1)

#Result := #Char.uppercase

Else

* Get anything to the left of the cursor start position and append the last key pr
#Result := (KFIELD>.substring(1 (<FIELD>.SelectionStart - 1)).trim + #Cha

Endif

Endroutine

Mthroutine Name(GetCandidate) Access(*private)

Define_Map For(*Input) Class(#prim_alph) Name(#Candidate)
Define_Map For(*Result) Class(#prim_alph) Name(#Result)

* If no record found, the last value entered is still the right answer
#Result := #Candidate

* Find the first record starting with the candidate value

Select Fields(#SURNAME) From_File(pslmst2) With_Key(#Candidate) Gene!
#Result := #SURNAME

Leave

Endselect

Endroutine

End_Com

VFW100 — Define a Parent/Child Instance List

The shipped VL Framework HR Demo Application has a business object
Organisations which demonstrates how the instance list can be configured as a
tree with a number of levels:

£ }
[+ 77 Favorites MName | Code /1Id | Address 1 _J|
2 £, HR Demo Application = ADMINISTRATOR DEPT ADM 3
(L Organizations = ggll Sections S
3 Resources (=] INTERMAL ADMIN SRV 01 125 Main 5t, {
3] % iii HR Application = £ Resources 3
==} J1 HR Application DOUGLAS, ADAM PETER 41020 & Reading Avenue, i
] 9 Marcus Instance Example MRS BRICK,GILL Al1404 22 Moton Street f
& iz} Programming Techniques REDFORD,ROBERT A1509 122 Arthur Street -
& &5 Administration [# PURCHASING SECTION 02 123 Padific Highway, i
[ACCOUNTING SECTION 03 252 Canterbury Road, 1
[SALES & MARKETING 04 121 Pitt Town Road %
[# MAINTENAMCE 05 121 Railway Parade T
| [PERSOMMEL SECTIONXX 06 121 Smith 5t 35

o I
?
e e T N FWWWW

The standard instance list manager is configured to show 3 business objects.

Implementing this example within the HR Demo Application required the
following steps:

e Define business objects: Organisations, Sections and Resources.
e Create a hidden filter to populate the instance list with Organisations.
e Define Instance List relationship for Organisations to Sections.

e Create a relationship handler function to expand Organisations with
Sections.

e Define the Instance List relationship for Sections to Resources.

e Create relationship handler function expanding Sections with Resources.
You will find a full description of the topic Instance Lists with different types of
object in the Visual LANSA Framework Guide / Framework Programming / List
Manager and Instance Lists.

Objectives

For this exercise you will define new Departments and Sections business objects
for your iii HR Application. The Departments instance list will then be defined
with a child of Sections.

e A Hidden filter will populate the instance list with all departments.
e A Relationship Handler function will add sections to the instance list when a

its:lansa048.chm::/Lansa/L4wVLF06_0065.htm

department is expanded.

B eEeOo0ODDE @
Description | Code i Address Line 1 i Address Line 2
4 Administration ADM
4 il Sections
Internal Admin 01 125 Main St, Blacktown
Purchasing 02 123 Padific Highway, Morth Sydney
Accounting 03 252 Canterbury Road, Canterbury
Sales & Marketing 04 121 Pitt Town Road Pitt Town
Maintenance 05 121 Railway Parade Woodsvile
Personnel 06 121 Smith 5t Mewtown
Vehide Maintenance 09 121 Smith Street MNewtown
Internal Auditing ALD
Fleet Administration AT
=ronn Arrmnnte RAar

1

e To meet this objective you will complete the following:
Step 1. Define New Business Objects

Step 2. Create a Hidden Filter for _Departments.

Step 3. Create a Relationship Handler to Load _Sections
Step 4. Access the Properties of Hidden Child Objects
Summary

Before You Begin
You should complete exercises VFW020, VFW030 and VFW040.

Step 1. Define New Business Objects

In this step you will create two new business objects and define a number of
actions for each, using the Instant Prototyping Assistant.

1. Open the Framework as Designer, and start the Instant Prototyping Assistant
from the Framework menu.

a. Define two new business objects: _Departments and _Sections. Note the
underscore which avoids a clash with existing demo application objects.

b. Define actions Transfers, Copy, Resources, Images and Picture.

c. Attach Details, Transfers, Copy and New to the _Departments business
object

d. Attach Details, Resources, Images, Picture, Transfers and New to the
_Sections business object

e. Attach _Departments and _Sections to the iii HR Application.
f. Click Next then the Finish button to update your iii HR Application

Your extended Framework should look like the following:

_Departments
' [x]

X
d i Favorites Filter for _Departments. = B M $
il ke HR Demo Application 3
=) i HR Application This is a prototype of a filter program used to get E _DWW?
ﬁ _Departments the _Departments to be displayed. _DERARTM
_Sections _DEPARTM
& Employees The user would normally enter search values here. _DEPARTM
Reports _DEPARTM
11 HR Application To see what a filter does, click on the "Emulate _DEPARTM
T Marcus Instance Example = S23rch” button. id _DEPARTM
il {3+ Programming Techniques Program Coding Assistant Images Palette Emulate Search | _DEPARTM
15, Administration AR

7 _Department : Details [DEPARTMENTOD01-_Department number

[cetails | 5] copy Transfers

This panel will handle the action (or command) named Details for t‘]

WWW‘J

2. Save your Framework.

3. In this step you will refine the new prototype objects which will be used in a
number of the following exercises:

a. Open the _Departments Business Object Properties dialog. Select the
Commands Enabled tab. Select the Copy action and make it a Business

Object Command.

When the Please Note..... dialog appears, unselect the "Warn me...."
Checkbox and Close the dialog. You will save and restart the Framework
in a later step.

b. Select the Command Display tab, and change the Object Command
Display setting to Separate Stay on top window.

c. Select the Icons tab and give the _Departments any suitable icon.
d. Close the Business Object Properties dialog.

e. Open the Properties dialog for the _Sections business object. Select the
Icons tab and give the _Sections business object any suitable icon.

f. Save and Restart the Framework.

4. In this step you will define the instance list relationship and additional
columns.

a. Open the Properties dialog for the _Departments business object.
b. Select the Instance List / Relationships tab.

c. In the list of business objects, select _Sections. Define it as a Child or
Descendant.

d. Unselect Allow Selection from Navigation Pane.

e. Unselect Side by Side Display. Close the Please Note.... dialog.

Thiz kst containg instances of _Departments , and it may also contain instances of ...

Business Clbject User Object Name [Type | Relationship Type | «| ~Relatonship Type Ea
[Modify VLF atRu..., MODRUN_PARENT More 5
& chid & MODRUN_CHILDA Loosely Coupled Peer 3

child B MODRLN_CHILDE s Child or Descendant ;

&7 Text editor exam... TEXT_EDITOR_EXAMPLES 3

s Organizations DEM_DRG Relatianship Handier g
ol sections DEM_ORG_SEC

L e _Sections - Allow Selecton from Navigation Pane
%8 Resources DEM_ORG_SEC_EMP _ y tj
88 Users and Author... VF_USER_OBXECT ¥ Show Addtional Columns in Tree/List ;
5 Employees EMELOVEES Alow Side by Side Display]}
ﬁ“mb REPORTS / Use a shared instance list for relationship {

Section Employess SECTION_EMPLOYEES

= P when Child Selec

KN _Sections _SECTIONS CHILD 7 Enable Parent Child ted ,::
JOHNIVORY _DEPT JOHMIVORY _DEPT + Enable Child when Parent Selacted 1}
O JOHNIVORY SECT JOHNIVORY_SECT 7 Enable Peers when Selected f
‘#JO‘”Z'-'CR'I’_UF JOHNIVORY _EMP = 4
IE 1I_EMPLOYEE >
Mﬁiﬂw‘\hw’hﬂ%ww%f

f. Define the following additional Instance List columns in the sequence
shown:

Type Column Caption
AColumnl Address Line 1
AColumn2 Address Line 2
AColumn3 Address Line 3
NColumnl Post Code
AColumns4 Phone Number

g. Change the VISUALID1 column Caption to Code.
h. Close the Properties dialog and Save and Exit the Framework.

i. Execute the Framework as an End User. Click the Emulate Search button
and expand the Instance List tree view.

Your design should now look like the following:

This is an emulated RAD-PAD filter.

L2

B 0O-Bi- E Sdy-

Type your text hare, - Description Code Address Lime 1 | Address Line 2
4 _DEPARTMENTIOO1 Departmen.. AAAAASAAAA BSEBBESEE -
The purpose of this emulated filter 15 4 |1l _Sections
to help you (and others) to rapidly _SECTIONDO0L _Sectonnu., AAAAAAAAAN BSEBBEEED
prototype and visualize how your SECTIONO002 Sectonnu.. AAAMAAAAAA BEBEBESER
application will look and feel. » _DEPARTMENTO002 _Departmen... AAAAAAAAAA BSBERBEEE
DU S b _DEPARTMENTIN03 _Departmen.. AAAAAAAAAA BEEBBBEEE -
4 ¥
B
il _Section - Detailz [SECTIONOO01-_Section number 1]

[Details | [images | |5 Picture | [Resources Transfers

This panel will handle the action (or command) named Details for the business cbject named _Sections.

Ar the moment this panel is a prototype. When you have validated your prototype you would replace this pamel with
a real program.

g S N P Y WY o ¥ e R B

5. Validate your prototype _Departments and _Sections business objects.

6. Confirm the Instance list columns and the commands available for the new
business objects.

7. Close the Framework.

Step 2. Create a Hidden Filter for _Departments.

The instance list will be initially loaded with all departments from the
Department table (DEPTAB).

1. Create a new Reusable Part / Object:
Name: iiiVFW24
Description: Departments Hidden Filter
2. Give the reusable part an ancestor of VF_ACO007.
3. Create an ulnitialize method routine after the BEGIN_COM statement:

Mthroutine Name(ulnitialize) Options(*Redefine)
Endroutine

4. In the ulnitialize routine make the filter hidden, so that all that will show at
run-time is the instance list:

Set #Com_Owner avHiddenFilter(TRUE)

5. Then indicate that the instance list updating is about to start and clear the
instance list:

#avListManager.BeginListUpdate
#avListManager.ClearList

6. Read all the departments and add them to the instance list:

Select Fields(#Deptment #DeptDesc) From_File(DEPTAB)
#avListManager.AddtoList Visualid1(#DeptDesc) Visualid2(#Deptment) Akey
EndSelect

Note:

e [t is necessary to initialize the additional columns with the AddToList is
invoked, as you will later populate the list with entries for _Sections, which
will fill these columns.

e The BusinessObjectType() parameter must use your business object User
Object Name/Type and is uppercase.

7. Lastly indicate that instance list updating is now complete:
#avListManager.EndListUpdate

Design

\d

Your code should look like this:

Source | Repository Details | Repository Help | Cross References
Function Options (*DIRECT)

Begin_Com Role (*EXTENDS #VEF_ACOO7)

Mthroutine Hame(ulnitialize) Options(*Redefine)
Set Com(#Com_Cwner) Avhiddenfilter(TRUE]
#avlistManager.Beginlistlpdate
#avlistManager.Clearlist
+helect Fields (#Deptment #DeptlDesc) From File (DEFTAE)
#avlistManager.Addtolist Visualidl (#Deptlesc)
WVisualid? (#Deptment) Akevl (#Deptment)
Businessobjecttype (' _DEPARTMENTS ') HNeolumnl(0)

AcalumnS('') Acolumnb('') Acolumn?({'')

Endselect
#avlistManager.EndListlpdate
—Endroutine
—End_Com
LB RN el on T g [S JEM PP, JSE P - (. Y, [

8. Compile the filter.

9. Display the Framework and open the Properties dialog for the _Departments

business object.

10. Display the Filter / Snap-in Settings tab.
11. Specify iiiVFW24 as the real filter.

12. Close the _Departments' properties dialog. Save and Restart your
Framework.

13. Select _Departments so that the hidden filter loads the departments into the

instance list.

Acalumnl({'') AcolumnZ{'') Acolumn3('') Acolumndi'')

B O b o= 6

Description | Code l Address Line 1
Administration ADM
Internal Auditing ALD
Fleet Administration FLT
Group Accounts GAC
Information Services INF
Leqal LES
Mamt. Information MIS
Marketing MET
Sales & Distribution S0
Traual TOM

4

14. Expand a Department. Notice that no _Sections are loaded. You will create
the relationship handler that loads the sections in the next step.

Step 3. Create a Relationship Handler to Load _Sections
In this step you will create a relationship handler that loads Sections into the
instance list when a Department is expanded.

You could have loaded the all the Sections in the hidden filter code together
with the Departments, but by using a relationship handler you can improve
application performance by first only adding root or parent objects to the
instance list and then dynamically adding the child objects.

1. In the Visual LANSA editor, create a new Process iiiVFPR01 — Framework
Functions.

Do not open the Process in the editor.

Create a new Function belonging to process iiiVFPRO1.
Name: iiiVF01

Description: _Sections Relationship Handler

a. No Template is required.

b. Enable for RDMLX.

c. Open the Function in the Editor.

2. Replace the existing code in the function with this code that indicates that
this function is a relationship handler:

FUNCTION OPTIONS(*DIRECT *LIGHTUSAGE) RCV_LIST#VIS_LIST
INCLUDE PROCESS(*DIRECT) FUNCTION(VFREL1)
INCLUDE PROCESS(*DIRECT) FUNCTION(VFREL?2)

The VFREL1 and VFREL2 functions which you have include the standard
definitions for relationship builder functions.

3. Start your code after the included functions. Add code to clear all the keys
and additional columns in the instance list:

EXECUTE SUBROUTINE(CLEARKEYYS)
EXECUTE SUBROUTINE(CLEARCOLS)

The subroutines you call in the relationship handler are contained in the
VFREL?2 function.

4. Get the key value of the selected department:

#DEPTMENT := #SRC_AK1
5. Select the sections in the current department and set the values of the

instance list entry:

SELECT FIELDS(*ALL) FROM_FILE(SECTAB) WITH_KEY(#DEPTMEN
EXECUTE SUBROUTINE(SETAKEY) WITH_PARMS(1 #DEPTMENT)
EXECUTE SUBROUTINE(SETAKEY) WITH_PARMS(2 #SECTION)
EXECUTE SUBROUTINE(SETNCOL) WITH_PARMS(1 #SECPCODE)
EXECUTE SUBROUTINE(SETACOL) WITH_PARMS(1 #SECADDR1)
EXECUTE SUBROUTINE(SETACOL) WITH_PARMS(2 #SECADDR?2)
EXECUTE SUBROUTINE(SETACOL) WITH_PARMS(3 #SECADDR3)
EXECUTE SUBROUTINE(SETACOL) WITH_PARMS(4 #SECPHBUS)
EXECUTE SUBROUTINE(ADDTOLIST) WITH_PARMS('_SECTIONS' #S]
ENDSELECT

IMPORTANT: Ensure the ADDTOLIST WITH_PARMS() contains the correct
name for your _Sections business object.

e The SETAKEY subroutine sets the alpha key values of the child instance list.
The first parameter of the subroutine is the key position and the second
parameter is the value of the key. There is also a SETNKEY subroutine to
set a numeric key.

e The SETNCOL and SETACOL subroutines add additional columns for the
child instance list entry.

e The ADDTOLIST subroutine adds the entry to the instance list. The first
parameter of the subroutine is the child business object name, the second
parameter is the Visual ID 1 column and the third parameter is the Visual ID
2 column.

Your code will now look like this:

Source Design Repository Help | Cross References
Function Options(=DIRECT =LIGHTUSAGE)
Rew_List (#VIS_LIST #PID_LIST #COL1_LIST #COL2_LIST #COL3_LIST #COL4_LIST #COLS_LI
#COL7_LIST #¥COLS_LIST #COLY _LIST #COLA LIST)
Include Process(*DIRECT) Function(VFRELL)

H Include Process(#DIRECT) Function(VFRELZ)
Execute Subroutine({CLEAREEYS)
Execute Subroutine(CLEARCILS)
£DEFTHENT := #SRC_AK1
= Select Fields(#ALL) From_File({SECTAB) With_Key(#DEFTMENT)
Execute Subroutine(SETAKEY) Vith_Parns(1l #DEPTHENT)
Execute Subroutine(SETAKEY) With_Parns(2 #SECTION)
Execute Subroutine(SETHCOL) With Parns(1l #S5ECPCODE)
Execute Subroutine(SETACOL) Vith_Parns(1l #SECADDE1)
Execute Subroutine(SETACOL) With_Parns(2 #S5ECADDRZ)
Execute Subroutine(SETACOL) With_FParns(3 #SECADDRI)
Expcute Subroutine(SETACOL) With_Parms(4 #5ECFHBUS)
Execute Subroutine(ADDTOLIST) With Parms('DEPARTHENT SECTIOHS® #SECDESC ¥SECTION)
Endselect

R W N S L TR St L e e

et It e e ey et St A

i

6. Compile the function.

7. Open the Framework as Designer.

8. Display the Properties dialog of the _Departments business object.

9. In the Instance List/Relations tab select the _Sections business object.

10. In the Relationship Handler field, enter the function name iiiVFO01 for the
relationship handler.

This list contains instances of _Departments , and it may also contain instances of ...

1
Business Object User Object Name [Type | Relationship Type || +| - Relationship Type 11‘,
e Madify VUF at Ru... MODRLUN_PARENT b 3
& Child & MODRLN_CHILDA, Lonsely Coupled Peer 4
Chilkd B MODRLUN_CHILDR ! Child or Descendant }

F 4 Text editor exam... TEXT_EDITOR_EXAMPLES 3
*% Organizations DEM_ORG 4
ol Sections DEM_ORG_SEC 3
f8 Resources DEM_ORG_SEC_EMP E
£ Users and Author.., VF_USER_DBJECT S %
£F Employess EMPLOYEES Bllow Side by Side Display i
J Use a shared instance list for relationship i?
< Enable Parent when Child Selected :{
: #| Enable Child when Parent Selected B
&l JOHNIVORY_SECT JOHNIVORY_SECT 4 Enable Peers when Selected ’E

JOHMIVORY _EMP JOHMNIVORY _EMP E
T T e i T e P o L P S

12. Close the _Departments properties dialog.
13. Save and Restart the Framework.
14. Select the _Departments business object in the iii HR application.

15. Expand a department in the instance list.

RO 200D

Description Code Address Line 1 Address Line 2

4 Administration ADM '

4 4l _sections
Internal Admin 01 125 Main 5t, Bladktown _
Purchasing (el 123 Padfic Highway, Morth Sydney
Accounting a3 252 Canterbury Road, Canterbury !
Sales & Marketing 04 121 Pitt Town Road Pitt Town
Maintenance a5 121 Railway Parade Woodsville
Personnel 0& 121 Smith 5t Mewtown
Vehide Maintenance 09 121 Smith Street Mewtown
Trtarm=l &oditina Al N
4

When you expand each department, the sections are loaded dynamically.

Note: The instance list displays the additional columns for _Sections which you
defined in Step 1.

Step 4. Access the Properties of Hidden Child Objects

In this step you will learn how to access the properties of the hidden child
business object _Sections which is not visible in the navigation pane.

1. Execute your Framework as Designer, and open the Framework menu and
select the Applications... menu option.

. Select the iii HR application.

2
3. Select the _Sections business object to display its properties.

— - . — — —
¢ | [Framework] | { Administration)

i
(New) = = . Quick Find
{Lk { Properties...) @] | £ Ej

‘-""l;r"\-q—vﬁ' L

{ Applications) | & Administration - Business Objects]
{ Commands...) % Administration - Properties..,
{ Menus...) Favorites - Business Objects x|
{ Design Code Tables...) Favaribes - Properties... 4
£ HR Demo Application - Business Objects ¥
£ { Program Coding Assistant...) \E i L E : | Address Lne 3 =
& HRDemo Application - Properties... kY
{ Instant Prototyping Assistant...) gy il HR Application - Business Objects L] Departments (_DEPARTMENT)
¢ RAME Tool : ¢" i HR Ap p|||;.:ﬁur| - Pro p:rtin... Emp|q}':n (EMPLOYEES) E
L ool .. J e = = 5 £
dy JHR Application - Business Objects » Reports (REPORTS) 3
{ Wirtual Clipboard) v| dw JTHR Application - Properties... Section Employess IZSEETJON_EMF'}
L M Tool ..) dy Marcus Instance Example - Business Objects 4 Sections (H_SECTION) "
1 gt
ki ¢'p Marcus Instance Exa mp|¢ - Prup:diﬁ... NEW
Sayp e e e Tl T chpigure Rusinags Qe T ey

4. Close the Properties dialog of the _Sections business object.

Note: There is an alternative way of displaying the properties of child business
objects which are not accessible from the navigation pane. That is:

a. Display the sections in a department in the instance list.

b. Double-click on a section to display the properties of the _Sections
business object.

Summary

Important Observations

You can create instance lists that contain more than one type of object. You
do this by defining relationships between business objects. The relationships
can either be peer-to-peer or parent-child.

In situations where you want to completely fill the business object instance
list programmatically, the filter has no meaningful interaction with the end-
user and can be hidden from view.

A relationship handler is an RDML function that is called to dynamically
expand the relationship between a parent and child object. By doing this you
can improve filter performance by only adding root or parent objects to the
instance list initially.

The Framework instance list can display up to 10 alphanumeric and/or 10
numeric additional columns in an instance list.

Tips & Techniques

The shipped framework demo applications contain many examples. The
Advanced section of the Programming Techniques sample application has
examples of advanced instance lists.

LANSA supplies a sample relationship handler to copy from when you
create your relationships. The source is stored in function DF_RELO1 in the
process DF_PROC.

What I Should Know

How to create a parent-child relationship between business object.
How to create a hidden filter.

How to write a relationship handler.

How to add additional columns to the instance list.

VFW102 - Field Visualizations in a Grid

e Grid, List View and Tree Views can have columns with field visualizations.
e In a list component, the properties of the column controls the visualization.

e When used in a list column your field definition doesn't necessarily need a
visualization defined.

e The field's picklist definition may be used in a list column.

® Section - Employees INTERNAL ADMIN SAV-01]
[Detais | [Employees [Images [/ Picture (5 Transfer

Coge Full Mame start Date Salary Tax Paid O Lave? Status Mema Motes
Lorem ipsum dolor Sit amel, consechehur
A1002 EMYTHE, JOHM bijoL1977 IE,000.04 High td i Hormal adipescng et Alquam gravida susopit

nula, o Sncidunt sl Lltrices res

Lorem ipsum dolor 5t amek, corsectetur
Al00% SMITHS, PETER o 'I.l'DZ'.n"I?:"J 45, 700,04 Average £ l Hormal ﬂmg ebit. Aliquam qrn'ndu susopit
nula, non Bnodunt et ulirces nec.
Lorem ipsum dolor St amet, consechetur
adigisang eit. Aliquam gravida susopit
nula, non Bnodunt est Litrices nec.
Lonem ipsum color ST amet, Consecheir
Ai404 MRS BRICK, GILL Dims/ 1994 12,345.04 Average td ﬁ Harmal adipiscing eit. Aliquam gravida susopit
D, mon Snddunt sxt ultries mec
Lirem ipsUm dolor Sit amel, corsechs e
adipedng eit. Aiquam gravida susapit
nuls, mon Bncdunt 5t uirices fec,

AlD20 DOUGLAS, ADAM PETER 0oz 1988 121, 500.04 Average o I Narmal

41509 |REDFOAD, ROBERT 15021935 [10.00 dverage v mﬂm-nd

Objectives

In this exercise you will create a Resources for Section command handler,
displaying a Grid with a number of columns using visualizations.

To achieve these objectives you will complete the following:
Step 1. Define New Fields

Step 2. Create the Resources for Section Command Handler
Step 3. Create a Prompt Form for Employee Number
Summary

Before You Begin
Complete exercises VFW030, VFW040, VFW042 and VFW102.

Step 1. Define New Fields
In this step you will define three new fields for employees: On Leave, Status
and Memo Notes.

You will also create a picklist for salary.
1. Create the following fields:

Name Description Type | Length | Default Value
iiiOnLeave | Employee On Leave Flag| Alpha| 1 N

iiiStatus Employee Memo Status | Alpha| 3 NML
iiiMemo | Employee Notes String | 512

2. Create field iiiEMPNO by copying field EMPNO. Copy rules, visualizations
and help text. No changes to iiiEMPNO are required at this stage.

3. Create field iiiSALARY by copying field SALARY. Copy rules,
visualizations and help text.

4. Create field iiiTAXPAID by copying field SALARY. Do not copy rules,
visualizations or help text.

5. Open field iiiTAXPAID in the editor and create add a Static Picklist and
define the following values:

Caption | Value

Small 1
Medium 1000
Large 5000

Very Large| 10000

6. Save your changes.

7. Define a Static Picklist for field Employee Memo Status, which includes
image components:

Image Caption | Value | Default

xImageFavorites16 | Normal | NML | Yes

xImagePausel6 Urgent URG
xImageNew16 Late LTE

xImageOpen Very Late| VLT

Note that the VisualPicklist component will default to a DropDownList. Only
the Picklist component will be used by the Grid component. To use this
visualization on a form or panel, you would set the VisualChecklist to Image
or Image and Text.

Step 2. Create the Resources for Section Command Handler
1. Create a new Reusable Part / Panel:
Name: iiiVFW25
Description: Resources for Section
2. Give the reusable part an ancestor of VF_ACO010.
3. Use the Design ribbon, to give the reusable part an Attachment manager.

4. Drop a Grid component into the center of the panel, so that it is attached to
all four sides.

5. Define columns in the Grid using the following fields and set the Caption
property of each column as shown in the table:

Field Caption
iiiEMPNO Code
FULLNAME | Full Name
STD_DATEX | Start Date
iiiSALARY | Salary
iiiTAXPAID | Tax Paid
iiiIONLEAVE | On Leave?
1iSTATUS Memo Status
1HMEMO Notes

6. Change Caption Type of each column to Caption.
7. Change the CaptionAlign for each column to Left.

8. Change the ReadOnly property for all columns, except FULLNAME, to
False.

9. Change other column properties as shown in the following table:

Field Property Value

iiiSALARY | EditAppearance SpinEdit

DisplayAppearance | Edit
iiiTAXPAID | EditAppearance Edit

Display Appearance | Default
UsePicklist True

iiiONLEAVE | DisplayAppearance | CheckBox

EditAppearance CheckBox
iiiSTATUS | EditAppearance Image and Text

DisplayAppearance | Image and Text
UsePicklist True
iiiMEMO DisplayAppearance | MultiLineEdit

EditAppearance MultiLineEdit

10. Open the field iiiONLEAVE in the editor and add a Static Picklist and
define the following values:

Caption Value
In the Office| N
On Leave Y

11. Save your changes.

13. In the reusable part IIITVFW25, open the Design view, select the grid
columns for iiiTAXPAID and then iiiONLEAVE and change the UsePicklist
property to True.

14. Save your changes.

15. Select the Grid and change the RowSizing property to ContentHeight.

16. Select the Source tab and create an uExecute method routine, which
redefines the ancestor method:

Mthroutine Name(uExecute) Options(*redefine)
Endroutine

17. Add the following code to complete the uExecute routine:

#com_ancestor.uExecute

#avlistmanager.getCurrentInstance Akey1(#deptment) Akey2(#section)
Clr_List Named(#GRID_1)

#iilONLEAVE := N

#iiiISTATUS := NML

#1iiITAXPAID := 1000

#iiiMEMO := 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquar
Select Fields(#empno #surname #givename #salary #startdter) From_File(pslm
#1iiIEMPNO := #EMPNO

#iiiSALARY := #SALARY

#std_datex := #startdter.asdate(YYMMDD)

#fullname := #surname + ', ' + #givename

Add_Entry To_List(#GRID_1)

Endselect

18.Review this code which:
e Invokes the ancestor uExecute method
¢ Invokes the list manager and retrieves the keys for the current entry
e Clears the Grid
e Sets up fixed values in a number of fields

e Sets STD_DATEX to a date based on the field STARTDTER (a signed
numeric, length 6) in form YYMMDD.

e Sets FULLNAME value based on SURNAME and GIVENAME
e Changes IIIEMPNO to EMPNO
e Changes IIISALARY to SALARY
e Adds an entry to Grid
19. Compile reusable part iiiVFW25.

20. Execute the Framework as a Designer.

21. Open the _Sections properties dialog by expanding a department in the
instance list and double clicking on a section.

22. Select the Commands Enabled tab, select the Resources action and plug in
the command handler iiiVFW25.

23. Save and Restart the Framework.

24. Select the Employees command handler for a section. Your design should
look like the following:

X

0 _Section : Resources [Intermal Admin-01]
Code Full Name Start Date Salary TaxPaid | Onleave? | Memo Status Mates
| Lorem ipsum dolor sit amet,

consectetur adpisang elt. Aliguam
gravida suscipit nulla, non tncidunt
est ulirices nec,
Lorem ipsum dolor sit amet,
consectetur adipisdng eit, Aliguam |
grawvida suscpit nulla, non tnddunt | =
est ultrices nec.
Lorem ipsum dalor sit amet,

5. | P iy consectetur adipisang elt. Aliguam
A1013 attinson, George | 01/12/1985 | 10,000.00 (0 l. Mormal gravida suscoit nulla, non tincidunt

1 est ulfrices nec,

1 Lorem ipsum dalor sit amet, ™
B e e e “%1’\wg—ﬂwwu\h’h

AlD01 |Jones, Shidey |01/02/1988 |10,000.00 |0 [L. Mormal

A1012 Paul, Patrick EDI_.'JE..'!‘!SE 10,000.00 |0 o MNormal

The height of each row is based on the right hand column, due to the
RowSizing property of ContentHeight for the grid. Content Height is taken
from the right hand column.

25. When you click on the columns to edit a value, check that the behavior is as
per the following list:

e Start Date displays a date prompt when you click on the prompt button in
the cell.

e The Salary value displays the actual value and may be changed using its
SpinEdit buttons.

e Tax Paid displays the picklist values in a dropdown when you edit its
value. The value in display mode is based on the picklist value.

e On Leave is always displayed or edited as a checkbox.

e Status display the image and text from the picklist. When you click in this
column the value rotates through the picklist values.

e The Memo Notes column value can be extended by typing in additional
text. When you position into another cell, the column height is adjusted.

Step 3. Create a Prompt Form for Employee Number

In this step you will create an employee prompt form, change the iiiEMPNO
field definition and configure the employee number column to use the prompter
form.

1. Create a new Form / Basic Form:
Name: iiiVFW26
Description: Employee Prompt

The prompter form will display a list of all employees and return Employee
number for the selected employee.

The list entry is highlighted if a valid employee number was entered in the
input field.

2. Copy and paste the following code to replace the new form's initial code.
Ignore errors initially. The form uses a reusable part which you will create in
the next step.

Function Options(*DIRECT)

BEGIN_COM ROLE(*EXTENDS #PRIM_FORM) DEFAULTPTY (P_EMPL
DEFINE_COM CLASS(#PRIM_GPBX) NAME(#GPBX_1) CAPTION('All E
DEFINE_COM CLASS(#PRIM_LTVW) NAME#LISTVIEW) COLUMNBU
DEFINE_COM CLASS(#PRIM_LVCL) NAME(#LVCL_3) DISPLAYPOSIT]
DEFINE_COM CLASS(#PRIM_ATLM) NAME#LAYOUT1)
DEFINE_COM CLASS(#PRIM_ATLI) NAME(#IL301) ATTACHMENT(Cer
DEFINE_COM CLASS(#PRIM_PANL) NAME(#PANL_1) DISPLAYPOSIT]
DEFINE_COM CLASS(#PRIM_ATLI) NAME#ATLI_1) ATTACHMENT(B:
DEFINE_COM CLASS(#PRIM_PHBN) NAME(#PB_OK) BUTTONDEFAU

DEFINE_COM CLASS(#PRIM_LVCL) NAME(#LVCL_1) DISPLAYPOSIT]

Define_Pty Name(P_EMPLOYEE_NUMBER) Get(get_empno) Set(SET_EM
DEFINE_COM CLASS(#iiiVFW26) NAME(#Collections) scope(* Applicatio!

* search and Set Focus on first employee entry

Ptyroutine Name(SET_EMPNO)

Define_Map For(*INPUT) Class(#EMPNQO) Name(#£MPLOYEE)
Define_Com Class(#empno) Name(#wempno)

#std_num := #EMPLOYEE.value.CurSize

#wempno := #EMPLOYEE.value

for each(#entry) in(#Collections.Employees)
#wempno := #entry.value.Substring(1 #std_num)

#empno := #entry.value

#fullname := #Collections.Fullnames<#empno>
Add_Entry To_List(#LISTVIEW)
#LISTVIEW.Currentitem.Image <= #VI_EMPLOY

* select current employee

If (‘#employee = #wempno')

set #listview.Currentltem selected(true)
Endif

endfor

Endroutine

Ptyroutine Name(get_empno)

Define_Map For(*output) Class(#EMPNO) Name(#EMPLOYEE)
#EMPLOYEE := #empno

Endroutine

* Close Form and return result

Evtroutine Handling(#PB_OK.Click #LISTVIEW.DoubleClick)
#COM_OWNER.hideform

#COM_OWNER.Modalresult := OK

Endroutine

End_Com

3. Save the form.
4. Create a new Reusable Part / Object.

This stores a keyed collection of employee numbers and a keyed collection
of full names, keyed on EMPNO.

This design enables the prompt form to load the collections once, the first
time it is used. Subsequent executions of the prompt form do not need to read
the employee file.

Name: iiiVFW27
Description: Employees Collection

5. Complete the reusable part's initial code by copy and pasting the following
code:

* Keyed collections
DEFINE_COM CLASS(#PRIM_KCOL<#EMPNO #Empno>) NAME(#Empl
DEFINE_COM CLASS(#PRIM_KCOL<#FULLNAME #EMPNO>) NAME(

* Properties
DEFINE_PTY Employees GET(*COLLECTION #Employees)
DEFINE_PTY Fullnames GET(*COLLECTION #Fullnames)

* Load keyed collection with Personnel details

EVTROUTINE HANDLING(#COM_OWNER.Createlnstance) OPTIONS(*N
Select Fields(#empno #givename #surname) From_File(PSLMST)
#Employees<#Empno> := #Empno

#Fullnames<#Empno> := #Givename + ' ' + #Surname

Endselect

ENDROUTINE

6. Compile the reusable part.

7. In the editor, switch to the form, iiiVFW26 and change this line, to match
your reusable part name:

DEFINE_COM CLASS(#iiiVFW26) NAME(#Collections) scope(* Applicatio!

8. Compile the form iiiVFW26.

Note: The form contains the following event routine:

* Close Form and return result

Evtroutine Handling(#PB_OK.Click #LISTVIEW.DoubleClick)
#COM_OWNER.hideform

#COM_OWNER.Modalresult := OK

Endroutine

The routine executes when the OK button is clicked or a list entry is double
clicked.

The Com_Owner.ModalResult := OK informs the calling field that the
prompter is being closed successfully and it should retrieve the value of the
default property containing the selected employee number.

9. Open the field iiiEMPNO in the editor. Select the Visualization tab and click

the — Insert Prompter Form toolbar button. In the Repository Find dialog,
select your prompter form iiiVFW26 and click OK.

10. Select the VisualEdit component and use the Details tab to change its
ShowPrompter property to True. Note that the VisualEdit visualization now

shows a .“%2." prompter button.

11. Save and close the field definition.

12. Open the Resources for a Section reusable part (iiiVFW25) in the editor and
select the Design view.

13. Select the Code column (iiiEMPNO). The column should already have a
ReadOnly property of False.

Make the following changes:
Property Value
EditorPart iliVFW25
DisplayAppearance Edit
EditAppearance Edit

14. Re-compile the reusable part.

15. Execute the Framework and select the Resources command handler for a

section.

When you click in the employee number column (Code) a prompt button will
now be shown.

16. Click the prompt button to run the prompt form. Note that the employee
number for this row is selected in the list.

17. Select a new employee number and click OK or double click the entry. The
form closes and the column entry is updated.

This reusable part prompter visualization can also be used on a form or panel.

Summary

Important Observations

e Field Visualization provides a simple consistent interface for activities such
as prompting. However, for very complex prompting requirements, you will
most likely need to create another component.

e Using reusable parts and prompter forms ensures that the same field provides
a consistent interface wherever used.

e Having multiple visualizations for the same field allows you to turn
off/change the style of field for particular situations.
Tips & Techniques

e When creating a prompter form you must ensure that you follow the
prompter form guidelines. When a a property is added to the form, ensure it
is made the default property for the form, such as

DefaultPty(p_Employee_Number) in this example:
DEFINE_PTY NAME(P_EMPLOYEE_NUMBER) GET(*AUTO #EMPNO)

e The SET of this property will be called when the user activates the prompter
(via either F4 or the ellipses button).

What I Should Know

e How to define list column properties to provide check box, combo box,
image and text and multiline edit visualization.

e Input capable Date and DateTime columns will show a date prompt by
default.

e How to define a prompter field visualization.
e How to implement a prompter form visualization in a list column.

VFW104 — Simple Keyed Collections

Introduction to Collections

Collections are conceptually similar to conventional arrays. In Visual LANSA,
they constitute a very powerful way of grouping components of the same type.
You can collect any Class of component in a Collection. Commonly used types
of collections in Visual LANSA include:

Keyed Collection
List Collection
Array Collection

Sorted Array Collection.
In this exercise, you will use a keyed collection.

Elements in conventional arrays are accessed using the element's index position,
usually a number. In Visual LANSA, an element in a Keyed Collection can be
accessed through its numeric index position or using an alphanumeric string.

A keyed collection is defined using the following command:

DEFINE_COM CLASS(#PRIM_KCOL<<Collecting><Key Value>>)
NAME(...) STYLE(...)

The important properties in a Keyed Collection are:

e (lass: The value #PRIM_KCOL defines the component as keyed collection.
e C(ollecting: The class of component or class of each element in the group.

e Key Value: The numeric or alphanumeric value that allows you to access one
element in the collection.

e Style: Factory (default) means a new instance of the type of component
should be created whenever the collection is accessed. A Style: Collection
means a *Null reference is to be returned whenever the collection is
accessed with a key that does not exist.

The Style of collection you choose to use depends on whether the information
stored in the collection is going to be shared by other forms or components and
also on what type of thing you are going to collect. Sometimes a working list or
an array would provide the same functionality as a collection, but it is
impossible to pass a working list or an array to another form or reusable
component. Storing the data in a collection would solve this issue. If you want

to collect bitmaps or radio buttons then a Keyed Collection is the only option. If
you are collecting objects of any kind you should use a Style Collection. For
example, when you define a component in an event routine and then place a
reference to it in a collection Style Collection, when the routine terminates the
object ceases to exist. Or, you can explicitly destroy the object by setting its
reference to *NULL. You cannot do that to an object created in a Style Factory
collection. The object would exist in memory until the application is closed.

List collections are defined by using the following command:
DEFINE_COM CLASS(#PRIM_LCOL<< Collecting >>) NAME(...)

The important properties in a list collection are:

e (lass: The value #PRIM_LCOL defines the component as a list collection.

e C(ollecting: The class of component or class of each element in the group.

Objective
e To learn about using keyed collections.

e To develop an Images command handler for Sections, which displays images
for the employees in the section.

e To use the VL Framework avSwitch method to link an employee image
component to the Employee business object Details command handler.

]
L)

-

N-8SBO-=6-
Department Description Address Line 1 Address Line 2 -
= ADM ADMIMISTRATOR ... 125 Main 5t, Bladktown
[l Sections
INTERMAL ADMIN SRY o 125 Main 5t, Blacktown
PURCHASING SECTION oz 123 Pacific Highway, North Sydney, 2000
ACCOUNTING SECTION o3 252 Canterbury R..,, CANTERBLURY,
PERSONMEL SECTIONX (1] 121 Smith 5t HNewtown 1]
VEHICLE MAINTENANCE 0] 121 Smith Street Hewbown
= AUD INTERMAL ALDITIMNG 125 Main 5t, Blacktown
® AT FLEET ADMINISTR.... 125 Main 58, Blacktown
= GAC GROUP ACCOUNTS 125 Main 5K, Blacktown -

Fl I |

® Section : Images (INTERMAL ADMIN SRY-01]
[oetsis | £, Employess | 0] Images | [picture | (3 Transfer

Smythe—— Smiths Diowsglas iz brick: Rediord
-~ e -y
l'. 4 g “ E . T
B el Employee Details

To achieve these objectives you will complete the following steps:
Step 1. Create the Employee Images for Section Command Handler

Step 2. Create an Employee Image Component

Step 3. Make Sections Business Object Visible

Step 4. Implement the Employee Image component.

Step 5. Record the Switch History using the Virtual Clipboard
Step 6. Use the Switch History to Return to the Original BO
Summary

Before You Begin

This exercise depends on VFW080 — Using an Explorer Component, which
maintains employee image records in file iiiEmpImages.

Step 1. Create the Employee Images for Section Command
Handler

This component will dynamically create a keyed collection of image
components (PRIM_IMGE) keyed by EMPNO for the employees in a
department / section. Employee images are retrieved from the file
liiEmpImages.

The images are displayed on the command handler panel, managed by a Flow
Across layout manager.

The component will also create a keyed collection of flow item managers
(PRIM_FWLI) keyed by EMPNO which position each image across the panel.

1. Create a new Reusable Part / Panel:
Name: iiiVFW28
Description: Employee Images for a Section
2. Give the RP an ancestor of VF_ACO010.
3. Use the Design ribbon to add a Flow Across manager to iiiVFW28.

4. Switch to the Source tab and define a keyed collection, to collect
PRIM_IMGE keyed by EMPNO.

Define_Com Class(#PRIM_KCOL<#PRIM_IMGE #empno>) Name(#ImageC

The Reference(*dynamic) means that the collection will exist only once you
use SET REF to create it.

5. Similarly define a keyed collection, to collect PRIM_FWLI keyed by
EMPNO.

Define_Com Class(#PRIM_KCOL<#PRIM_FWLI #EMPNO>) Name(#Image

6. Create a uExecute method routine which redefines the ancestor's method, and
invoke the ancestor uExecute method.

Retrieve the current instance list entry using the List Manager component
and retrieve Akey1 and Akey2.

The uExecute method is called when an entry in the instant list is selected.

Mthroutine Name(uExecute) Options(*redefine)
#com_ancestor.uExecute

#avlistmanager.getCurrentInstance Akey1(#deptment) Akey2(#section)
Endroutine

7. Add the following code to the uExecute routine:

* clear existing collections

Set_Ref Com(#ImageCollection) To(*null)

Set_Ref Com(#ImageFlowCollection) To(*null)

* Create collections dynamically

Set_Ref Com(#ImageCollection) To(*Create_as #PRIM_KCOL <#prim_IMGE
Set_Ref Com(#ImageFlowCollection) To(*Create_as #PRIM_KCOL<#prim_}I

This clears existing collections (from a previous execution).

The ImageCollection and the ImageFlowCollection are then created
dynamically using SET_REF.

8. Add the following code to populate the keyed collections:

* Load images into panel

Select Fields(#empno) From_File(pslmst1) With_Key(#deptment #section)
Fetch Fields(#iiiempimg) From_File(iiiEmpImages) With_Key(#empno) Val_l
If_Status Is(*okay)

If (*Not #iiiempimg.filename.isnull)

If_Ref Com(#ImageCollection<#EMPNO>) Is(*NULL)

Set_Ref Com(#ImageCollection<#EMPNO>) To(*CREATE_AS #PRIM_IMG
Set_Ref Com(#ImageFlowCollection<#EMPNO>) To(*CREATE_AS #PRIM._
Set Com(#ImageCollection<#EMPNO>) Parent(#COM_OWNER) Filename(#
Set Com(#ImageFlowCollection<#EMPNO>) Parent(#FWLM_1) Manage(#In
Endif

Endif

Endif

Endselect

#com_owner.realize

9. Review this new logic:

Employee numbers are retrieved from the logical file PSLMST1 using the
keys retrieved from the instance list.

An employee image is read from the file iiiEmpImages.
Field iiiEMPIMG is a BLOB field. Retrieving it from a file, restores the

image file to a local folder. The path and file name are held in
iiiIEMPIMG.filename.

If this employee has an entry in iiiEmpImages, the IF_REF checks an entry
for this employee doesn't exist in the ImageCollection.

The SET_REF then creates an entry of PRIM_IMGE in ImageCollection,
keyed on EMPNO.

Another SET_REF creates an entry for PRIM_FWLI in
ImageFlowCollection.

The SET Com(ImageCollection) . . . sets the Parent and Filename property
for this collection entry.

The Parent must be #COM_OWNER for the image to be shown on the RP's
panel.

Similarly the next SET, sets the ImageFlowCollection entry Parent to
FWLM_1, the flow across manager and the Manage property to this
ImageCollection entry.

The #COM_OWNER.Realize makes the panel components visible once they
have all been created.

10. Compile your new command handler, iiiVFW28 — Employee Images for a
Section.

11. Start the VL Framework as Designer.

12. Open the Properties dialog for _Sections by double clicking on a section
entry in the instance list.

13. Select the Commands Enabled tab, select the Images action and plug in
iiiVFW28.

14. Save and Restart the VL Framework.

15. Use the By Location filter for employees and then use the Images command

handler to ensure that images have been saved for a number of employees in
this department / section (for example, department ADM and section 01).

Remember to select the Clear List checkbox before rebuilding the list of
employees.

16. Now select the Departments business object and expand ADM to display the
first section (Internal Admin SRV) and select this section. Select the Images
command handler. Your Images command handler should look like the

following:

Address Line 1 Address Line 2 Address Line 3
B ADM ADMINISTRATOR DEPT
= I} sections
INTERMAL ADMIN SRV a1 125 Main 5t, Bladktown HSW
PURCHASING SECTION o2 123 Padfic Highway, Morth Sydney. 2000 HSW
ACCOUNTING SECTION 03 252 Canterbury Road,

1 m

CANTERBURY, NSW,

Step 2. Create an Employee Image Component

In the following steps you will enhance the functionality of the Employee
Images for Section command handler. You will do this as follows:

e Create an Employee Image reusable part which displays the employee image
in a Group Box, with a Caption showing the employee surname

e The Employee Images for Section command handler will be changed to
create a collection of the new Employee Image components.

e In a later step, the Employee Images for Section command handler will be
enhanced to use the Framework's switch service when an image is double
clicked or when a pop-up menu is used, to display the Employee Details
command handler for the selected employee.

1. Create a new Reusable Part / Panel:
Name: iiiVFW29
Description: Employee Image
2. On the Design tab, resize the panel as shown.
a. Drag and drop a Group Box onto the panel.
b. Drag and drop an Image component onto the Group Box.

Your design should now look like the following:

Design || Spurce | Mu

MVFW3..[|

3. Drop a Pop-Up Menu component onto the image and define one menu item
as Show Employee Details

4. Save the new reusable part.
5. Switch to the Source tab, and define the following properties:

Define_Pty Name(uCaption) Set(SetCaption)
Define_Pty Name(uEmpNum) Get(*auto #empno) Set(*auto #empno)
Define_Pty Name(uFileName) Set(SetFileName)

Ignore the errors for the property routines which you will shortly create.

The Employee Images for Section command handler needs to set these
properties to set up the image to be displayed.

6. Add the following event definition, which passes employee number:

Define_Evt Name(uShowEmpDetails)
Define_Map For(*input) Class(#empno) Name(#uEmpNum)

The event will be signaled when an image is double clicked, or the pop-up
menu item is clicked.

7. Complete the Employee Image component definition with the following
code:

* Set Group Box Caption to Surname

Ptyroutine Name(SetCaption)

Define_Map For(*input) Class(#surname) Name(#i_Caption)
#GPBX_1.caption := #i_Caption

Endroutine

* Set image path/filename

Ptyroutine Name(SetFileName)

Define_Map For(*input) Class(#std_strng) Name(#i_filename)
#IMGE_1.fileName := #i_filename

Endroutine

* Signal uShowEmpDetails

Evtroutine Handling(#IMGE_1.DoubleClick #MITM_1.Click) Options(*NOC
Signal Event(uShowEmpDetails) Uempnum(#empno)
Endroutine

8. Review the code which you just added.

a. The SetCaption property routine sets the Group Box caption. The
property is passed employee surname.

b. The SetFileName property routine sets the Image filename property. The
property uFileName is passed the image file name.

c. An event routine for Image DoubleClick and Menu Item 1 Click signals
the uShowEmpDetails event and passes employee number. The uEmpNum
property automatically sets and gets the value of employee number
(EMPNO).

9. Compile the Employee Image component.

Step 3. Make Sections Business Object Visible

In the following steps you will change the Employee Images for Section
command handler to be able to switch to the Employee Details command
handler. The Employee Details command handler will be enhanced to enable the
user to return to the Employee Images for Section command handler.

Note: Switching can only be performed on objects that are visible in the
Navigation panel.

1. In the VL Framework, display the properties of the _Departments business
object.

2. Display the Instance List / Relationships tab.

3. Select Sections (_SECTION) in the business objects list at the bottom left of
the panel.

4. Select the option _Sections — Allow Selection from Navigation Pane.

| This list contains instances of _Departments , and it may also contain instances of ...

| - - * Relationship Type
K sl _sections _SECTIONS CHILD Hane
Lo Edveneed Instan.,, CePRoooeT | Loosely Coupled Peer
P advanced Instan... EXCUSTOMER " | =) Chid or Descendant
S DAY A1TICEA0D 5 IC42039F L.,
(b duto filing the ins... BFDOC3IAOC1C548579F5.., Redationship Handler IIIVFD 1
@ chid A et TN G__ _Sections - Alow Selection from Navigation P@
chidB MODRUN_CHILDS =
,Debugusing Trace 45765CEB7F37419ABAS. . e R L
1 Departments [11_DEPARTMENT Allow Side by Side Display
4 Employees EMPLOFESS Us= a shared instance lst for relationship
@End User Help (F1) 24C54BIFAIRABSFESE, . ;
Event Handing a... 17ATZAEETIAE4040ATE...

=._'_'n£u-' A i O o PP AR AT AT e e e Enaple ChildbepRarar alpcig

5. Close the properties of the _Departments business object. The _Sections
business object is now visible in the navigation pane.

6. Display the properties of the _Sections business object.
7. Select the Icons tab, and select any suitable icon for _Sections.

Next you need to replace the mock-up filter in the _Sections business object
with a functional filter to populate the instance list:

8. Start the Program Coding Assistant.
9. Select the _Sections business object in the iii HR application.

10. Select New Filter / Windows as the platform and a Filter that searches a file

or a view.
11. Click Next.

12. Specify SECTAB as the physical file, and DEPTMENT and SECDESC as
the Visual Identifiers.

Filter that seardhes using a file or view

Spedfy the identification pratocel you have dedded to use for this business object. IF a physical file
resembles this busness object specify its name and the assistant will attempt to automatically deduce a

basic identification protocol for you,
The physical file that most dosely T g
resembles this business object is: et e
VISUAL IDENTIFIERS (for buildng VisuallD 1 and VisualiD2 values)
Field Mame Type Description 2 Drop Selected
1 |DEPTMENT ALPHA Depariment Code ———
2 |SECDESC ALPHA Secton Ful Descripbon = e

3
4
5

Add fields from this Physical File

PROGRAMMATIC IDENTIFIERS (for buiding AKey1,2,3,4,5 and MKey1,2,3,4,5 values)

Fiekd Rame Type Description - Crop Selected
1 | DEFTMENT ALPHA Department Code = =
2 |SECTION ALPHA Section Code Foan

3

A fislds from Hhis Physics Fils

13. Accept the other defaults set by the Program Coding Assistant and click
Next.

14. Specify DEPTMENT field as the key to be used for search operations.

15. Select Allow Generic searching, Remember key values between filter
executions and Allow user to clear instance list.

16. Click Next.
17. Select Routine to listen for signals to update the instance list.
18. Click Generate Code.

19. On the Generated Code page specify iiiVFW30 as the name of your filter
and Sections Filter as the description. (iii are your initials. If you are using
an unlicensed or trial version of Visual LANSA, your component names must
have the form DEMCOMO1 to 09).

20. Click Create. The component is displayed in the Visual LANSA Editor.
21. Compile the filter.
22. In the Framework, snap the filter in the Sections business object. Use the

Find dialog and select your reusable part to snap in. This will snap in using
the Identifier.

23. Save and Restart the VL Framework and test the filter. You will now be able
to access the Sections business object and command handlers directly from
the Navigation pane.

Step 4. Implement the Employee Image component.

In this step you will change the Employee Images for Section command handler
(iiiVFW27) to use the new Employee Image component.

1. Open iiiVFW28 in the editor.
2. Change the ImageCollection definition to use #iiiVFW29 (Employee Image).
Changes are highlighted in red, ignore errors at this stage.
Define_Com Class(#PRIM_KCOL<#iiivfw28 #empno>) Name(#ImageCollec

3. Change the uExecute method routine:

Change the Set_Ref which adds an image entry to ImageCollection, to add
the image component, iiiVFWZ28.

Set_Ref Com(#ImageCollection<#empno>) To(*create_as #iiivfw28)

4. Change the Set, which sets the properties for the current ImageCollection
entry, to set the employee number, filename and caption properties for the
new image component:

Set Com(#ImageCollection<#EMPNO>) Parent(#COM_OWNER) uFilename

5. Add the following method to convert to proper case:

Mthroutine Name(uProperCase)

Define_Map For(*result) Class(#std_name) Name(#o_text)
Define_Map For(*input) Class(#surname) Name(#i_text)
#std_name := #i_text.lowerCase

#std_flag := #std_name.substring(1, 1).upperCase
#o_text := #std_flag + #std_name.substring(2, 19).trim
Endroutine

6. Retrieve Surname from the employee file and convert to proper case:

Select Fields(#empno #surname) From_File(pslmst1) With_Key(#deptment #:
#std_name := #com_owner.uProperCase(#surname)

7. Add logic to switch to the Employee business object, Details command
handler when an image component signals uShowEmpDetails event:

Evtroutine Handling(#ImageCollection<>.uShowEmpDetails) Uempnum(#I_E
#empno := #I_EmpNum

* Switch to Employee / Details command handler
#avirameworkmanager.avSwitch To(BUSINESSOBJECT) Named(EMPLOYE
Endroutine

Note: The To(), Named() and Execute() parameters are case sensitive. Ensure
that they match your Framework object names.

8. Add a VL Framework event handling routine for avAddSwitchInstances
which will tell the Employees business object which instance should be
displayed based on the employee number (uEmpNum) passed by the
ulmageClicked event.

Note: This routine sets up the required instance list columns for Employee to
invoke the avAddSwitchInstance.

Evtroutine Handling(#avFrameworkManager.avAddSwitchInstances) Options(
Define Field(#udate) Type(*char) Length(19)

* Make sure the caller is this component

If_Ref Com(#Caller) Is_Not(*Equal_to #Com_Owner)

Return

Endif

Fetch Fields(#surname #givename #deptment #salary #startdte) From_File(psh
#fullname := #surname + ', ' + #givename

#udate := #startdte.asdate(DDMMY'Y).AsDisplayString(DDsMMsCCYY)
Invoke Method(#avFrameworkManager.avAddSwitchInstance) Businessobject
Endroutine

The avAddSwitchInstances event routine is always executed immediately
after you execute a switch using the avSwitch method. This event allows you
to control what data will be placed in the instance list of the target business
object. The component signalling this event is passed in the Caller parameter.

It is important to only execute the code in this event if the component that
signalled this event is the component itself. Therefore you should return from
this event routine if the caller is not equal to #com_owner. Notice how the
is_not(*Equal_to) is used to compare the #Caller and #Com_Owner. You
must use this syntax due to the fact that you are comparing the component
itself and not a simple string.

The avAddSwitchInstance method specifies what data to add in the target

instance list.

If required, you could call the avAddSwitchInstance method repeatedly, to
place multiple entries into the target business object's instance list.

9. Compile the enhanced Employee Images for Section command handler
(iiiVFW28).

10. Execute the Framework. Select the Images command handler for the
Department and Section for which you created employee image records.
Your Images command handler should now look like the following:

Fll:hnsnn Moenzon HE é
| o 4'1' .

Section : Images [INTERNAL ADMIN SRV-01]

|:||:lerals £ Employees E‘Tlms &= Picture tlirramfe-

F'ml
Rlinl

11. Double click on an employee image or right click and use the pop-up menu
to Show Employee Details.

The Framework should switch to the Details command handler for the
selected employee (check the surname shown).

The instance list should contain an entry for this employee and the details of
the employee should be displayed:

Step 5. Record the Switch History using the Virtual Clipboard

In this step you will record the switch history using the VL Framework's virtual
clipboard so that the end-user will be able return to the object that initiated the
switch.

To use the virtual clipboard most effectively, you need to devise a standardized
naming protocol for items that are posted onto it. In this exercise you will use
this standard to store the switch history:

ID1 SWITCH_HISTORY

ID2 Target Business Object Name

ID3 Target Command Name

ID4 OBJECT_NAME or COMMAND_NAME

FromAValue <object or command name>

In effect you will be storing a switch history table on the Framework's
clipboard. The first key or ID is the code 'SWITCH_HISTORY" to indicate that
all records with this ID are related to switching history.

The ID2 and ID3 contain the business object and command respectively that
you are switching to.

ID4 contains where you came from. Therefore you need to add two records to
the virtual clipboard:

e one where ID4 equals OBJECT_NAME (the business object)

¢ and another where ID4 equals COMMAND_NAME (the command).

1. Display the Source tab for the Employee Images for Section command
handler (iiiVFW28).

2. In the event routine for #ImageCollection<>.uShowEmpDetails add code to
add the appropriate records to the switch history. Changes are highlighted in
red.

Evtroutine Handling(#ImageCollection<>.uuShowEmpDetails) Uempnum(#I_
#empno := #I_ EMPNUM
* Save to clipboard return list

* Returns to Section / Images for parent department
#avframeworkmanager.avsavevalue Withid1(SWITCH_HISTORY) Withi
#avframeworkmanager.avsavevalue Withid1(SWITCH_HISTORY) Withi
* Switch to Employee / Details command handler
#avirameworkmanager.avSwitch To(BUSINESSOBJECT) Named(EMPLOYE

Endroutine

Note: Ensure that Withid2() Withid3() and FromValue(), all use your business
object names and command name.

3. Compile the command handler iiiVFW28.

Step 6. Use the Switch History to Return to the Original BO

In this step you will change the Employee Details command handler to use the
switch history to allow the end-user to return to the Departments business object
from where they initiated the switch.

1.

o Uk W N

Open the Employees' Details command handler iiiVFWO06.
Drag a push button below the Save button.

Make the Caption of the button Back to Sections.

Make the Name of the button, BACK_BTN.

Create a Click event for the button.

. In the BACK_BTN.Click event add this code so that when the users click on
the button, they will be switched back to the business object from which they
came:

EVTROUTINE HANDLING(#BACK_BTN.Click)

define field(#ff_objnme) TYPE(*CHAR) LENGTH(32) DESC('Object Name')
define field(#ff_cmdnme) TYPE(*CHAR) LENGTH(32) DESC('Command N
* Determine the business object name to switch to
#avFrameworkManager.avrestorevalue WithID1(SWITCH_HISTORY) WithII
* Determine which command within the business object to switch to
#avFrameworkManager.avrestorevalue WithID1(SWITCH_HISTORY) WithII
* Perform the switch

* Retruns to Departments / Details

#avirameworkmanager.avSwitch To(BUSINESSOBJECT) NAMED(#{f_objnr
ENDROUTINE

To send the user back to the component from which the switch occurred:

¢ You need to look at the switch history on the virtual clipboard. Remember
that you need to retrieve both the business object and the command to
which you need to return. That requires retrieving two values from the
virtual clipboard.

e The code first retrieves the OBJECT_NAME or business object value and
then the COMMAND_NAME or command value.

¢ Remember that you don't want to hard code the component name, which
is why avObjectType (business object name) and avCommandType
(command name) were used as the values to the Withid2()and Withid3()

parameters.

e When you have these two values you can perform another switch to return
to the previous component.

In the preceding code, the business object was retrieved into the #ff_objname
field and the command was retrieved into the #{f_cmdnme field. Now you

simply use the same technique learned earlier to switch to a business object
and execute the command.

Your code should look like this:

FEvtroutine Handling (#BACK BTN.Click)
Define Fieldi#ff_obj:rr.e] Type (*CHAR) Length({32) Desc('Cbject Hame')
Define Fie;d(#ff_crr.d:rr.e] Type (*CHAR) Lengt
* Determine the business object name to
rameworkManager.avrestorevalue Witk
Withid3 t#corr._ow:—er.F—r-.fcorrrr.a’-dt;-'pe] Wi
* Determine which command witk
#avFrameworkManager.avrestorewv

h(32) Desc('Command Name')

_NRME) Toavalue t#ff_obfr.rr.ej
ct to switch to

1 (SWITCH HISTORY) Withid2 t#corr._ow:—er Avobjecttype)

11d4 (COMMAND NAME) Toavalue (#ff_c:rr.d:rr.e)

Withid3 (#corr._ow:—er Avecommandtype) Wi
* Perform the switch
* Saved values set up Lo return to parent level - department
#avirameworkmanager.avSwitch To (BUSINESSOBJECT) Named (#ff objnme) Execute (#ff cmdnme) Caller (#com owner)

~Endroutine
7. Recompile the iiiVFW06 command handler.
You are now ready to test using switch history:

8. In the VL Framework, select _Sections and populate the instance list and
select a Section with employee images recorded.

9. Double click an employee image in the Employee Images for Section
command handler, to display details of the selected employee.

10. On the Details command handler of the Employees business object, click on
the Back to Sections button to return to the _Sections business object.

11 Sections o |) [— [ESRE—===]|
Fle Edt Vew Actions Help Windows (Framework) (Administration) B 58 D dsfens Uy Mntovs (Crimeiwod) (Advisbiusion)

. — o e

= QuckFnd ... (7] [= @ 8 B 5 E‘:} @ B b5
P bt » Resarces Crgarezaton Spocl Files Marw Viirdos |
Mew Repor Trarmfer About 5 Employaes
Sections o i - 5
& 3rvame | By 5 OBe o -
ut e . .
Aot .

OEE @ Messages | Ready ol | BNG | AVORYID | 30113 113 i

Post | Tin Code. 0
e Phone Mumber =
Busrest Phone famber 785 2651

Summary

Important Observations

The VL Framework switching service allows your filters and command
handlers to switch control between different business objects and to execute
commands at the Framework, application or business object level.

Switching mimics the actions that a user would perform.

The target business object must be able to be selected from the menu. That
is, at the time the switch occurs, the option Allow selection from the
navigation pane in the target business object properties should be checked
(selected), and the user should be authorized to the business object.

You can use the Virtual Clipboard for remembering and exchanging
information.

To use the virtual clipboard most effectively you need to devise a
standardized naming protocol for items that are posted onto it.

Tips and Techniques

In the shipped examples, the Advanced section of the Programming
Techniques sample application demonstrates switching and remembering
values (virtual clipboard).

What I Should Know

How to switch between business objects.

How to use the virtual clipboard to record switch history so that the end-
users can switch back to object where the switch was initiated.

VFW106 - Using a List Collection

Objective

To build a Monthly command handler for the Reports business object which
displays a list of employees. This doesn't represent a real application. The
Monthly command handler is simply a mechanism to demonstrate passing
multiple references using a list collection. A reference to the list collection will
be passed to a simple form which will show the current entries in the list
collection.

!g Report : Honthly

lﬂ MDI’I'H'I"}' @ WEEH}'

Employee Mumber | Employee Surname

ADO70 BROWM ”

ADOS0 BLOGGS Show Employee List Collection
AD193 SIMPSON

ADS07 JOMES Emplovee full name
A1001 JOMES WOHM SMYTHE

A1002 SMYTHE PETER SMITHS

A1003 SMITHE GEORGE SMELL

A1004 SMITHSOM WLLLAM PERRY

A1005 SMITHS CHRISTOPHER PERRIM
A1006 SMITHERS

A1007 SMELL

A1003 SMEDDOM

A1009 SMASHALL

A1010 PERRY

A1011 PERRIM

A1012 PALIL

A1013 PATTISOM

Al1014 MOORE

To achieve this objective you will complete the following steps:
Step 1. Create the Employee Object.

Step 2. Create the Monthly Command Handler

Step 3. Create the Selected Employees Viewer

Step 4. Complete Monthly Command Handler

Summary

Before you Begin
You must complete exercises VFW030, VFW040, VFW042 and VFW104.

Step 1. Create the Employee Object.

The Employee Object is a simple non visual component that stores values for
each employee.

1. Create a new Reusable Part / Object:
Name: iiiVFW31
Description: Employee Object

2. Define the properties this object needs to store the employee data, allowing
values to be set and retrieved (get).

Define_Pty Name(UEMPLOYEENUMBER) Get(*AUTO #EMPNO) Set(*Al
Define_Pty Name(UEMPLOYEESURNAME) Get(*AUTO #SURNAME) Set
Define_Pty Name(UEMPLOYEEGIVENAME) Get(*AUTO #GIVENAME) ¢
Define_Pty Name(UEMPLOYEESALARY) Get(*AUTO #SALARY) Set(*Al

3. Compile the reusable part.

Step 2. Create the Monthly Command Handler

1.

Create a new Reusable Part / Panel.:
Name: iiiVFW32
Description: Monthly Command Handler for Reports

2. Give the reusable part an ancestor of VF_ACO010

3. Use the Design ribbon to give iiiVFW32 an Attachment manager.
4. Add a List View to the center of the Panel. Change the List View Name

property to EMP_VIEW.

5. Create an Initialize event for EMP_VIEW.
6. Locate the file PSLMST on the Repository tab and drag the fields EMPNO,

SURNAME, GIVENAME and SALARY onto the list.

7. Open the Source tab and define a key collection of employee objects,

iiiVFW31 keyed by EMPNO
Define_Com Class(#PRIM_KCOL<#iiivfw31 #EMPNO>) Name(#EMPLOY1

8. Add logic to the Initialize event for EMP_VIEW to populate the list view

with all records from file PSLMST.

Clr_List Named(#EMP_VIEW)

Select Fields(#EMP_VIEW) From_File(pslmst)
Add_Entry To_List(#EMP_VIEW)

Endselect

9. Add a Set_Ref to create an entry of iiiVFW31 to the keyed collection, for

each employee, keyed by EMPNO, setting the properties of the employee
object for each employee.

The new code is highlighted in red.

Clr_List Named(#EMP_VIEW)

Select Fields(#EMP_VIEW) From_File(pslmst)

Add_Entry To_List(#EMP_VIEW)

Set_Ref Com(#EMPLOYEES<#EMPNO>) To(*CREATE_AS #IIIVFW31
#EMPLOYEES<#EMPNO>.UEMPLOYEENUMBER := #EMPNO
#EMPLOYEES<#EMPNO>.UEMPLOYEEGIVENAME := #GIVENAMI
#EMPLOYEES<#EMPNO>.UEMPLOYEESURNAME := #SURNAME

#EMPLOYEES<#EMPNO>.UEMPLOYEESALARY :=#SALARY
Endselect

10. Create a method routine, SelectionChanged which will be called each time a
list view entry is selected or loses selection.

The routine should:

a. Define a list collection of the employee object iiiVFW31. This will be
used to store a list of the currently selected employees.

b. Read through the list view using Selectlist

c. Go straight to read the next list view entry, if it is not currently selected,
using the Continue statement.

d. Insert an entry to the list collection, from the keyed collection
EMPLOYEES

Your code should look like the following:

Mthroutine Name(SelectionChanged)

Define_Com Class(#PRIM_LCOL<#iiivfw31>) Name(#SELECTION)
Selectlist Named(#EMP_VIEW)

Continue If(*Not #EMP_VIEW.CURRENTITEM.SELECTED)
#SELECTION.INSERT(#EMPLOYEES<#EMPNO>)

Endselect

* Show the selected employees form

Endroutine

Note the comment line. You will create the selected employees form in the
next step.

The list collection is defined within the method routine and is destroyed
when the routine ends.

11. In the Design view, select the list view and create event routines for
ItemGotSelection and ItemLostSelection. Add code to each routine to invoke
the SelectionChanged method.

Your code should look like the following:

Evtroutine Handling(#EMP_VIEW.ItemGotSelection) Options(*NOCLEARM
#com_owner.SelectionChanged
Endroutine

Evtroutine Handling(#EMP_VIEW.ItemLostSelection) Options(*NOCLEARNM
#com_owner.SelectionChanged
Endroutine

12. Leave this reusable part open in the editor.

Step 3. Create the Selected Employees Viewer
1. Create new Form / Basic Form:
Name: iiiVFW33
Description: Selected Employees Viewer
2. Size the form approximately to Height 430 and Width 230.

3. Change the form's FrameStyle to Dialog, and FormStyle to
StayOnTopChild

4. Use the Design ribbon to give the form an Attachment manager.

5. Drop a List View into the center of the form and change the List View's Name
to SEL_LIST.

6. Drag and drop the field Fullname onto the list view, and change its
WidthType to Remainder.

Your form should look like the following:
; - o

Ermnployee full name
=" ABCDEFGHUKLMNOPQRSTUVWXY...

7. Save the form
8. Create a method routine named uShow.

This method will be invoked by the SelectionChanged method in the
Monthly Command Handler for Reports - iiiVFW32.

The uShow method needs to do the following:

a. Define an input map of Class(#PRIM_LCOL<iiiVFW31>), which is
passed by reference.

b. Clear the selected employees list view, SEL_LIST
c. Read through the list collection EMPLOYEES using a For/Endfor loop.

d. For each entry set Fullname from the uEmployeeGivename and
uEmployeeSurname properties

e. Add an entry to SEL_LIST
f. After processing the list collection show this form.
Your code should look like the following:

Mthroutine Name(uShow)

Define_Map For(*INPUT) Class(#PRIM_LCOL<#iiivfw31>) Name(#EMPL(
Clr_List Named(#SEL_LIST)

For Each(#EMPLOYEE) In(#EMPLOYEES)

#FULLNAME := #EMPLOYEE.UEMPLOYEEGIVENAME + '' + #EMPLO
Add_Entry To_List(#SEL_LIST)

Endfor

#COM_OWNER.SHOWFORM

Endroutine

9. Compile the form iiiVFW33.

Step 4. Complete Monthly Command Handler

1.

o g O Ul B~

9.

Switch to the reusable part iiiVFW32 in the editor (Monthly Command
Handler for Reports).

. In the Design view, drag and drop the Selected Employees form, iiiVFW33

onto the panel. This will create a Define_Com for the component. Change its
Name to #Selected_Employees.

. Complete the SelectionChanged method to invoke the Selected_Employees

form's uShow method, passing the list collection (with the name
SELECTION).

Your code should look like the following. New code is highlighted in red.

Mthroutine Name(SelectionChanged)

Define_Com Class(#PRIM_LCOL<#iiivfw33>) Name(#SELECTION)
Selectlist Named(#EMP_VIEW)

Continue If(*Not #EMP_VIEW.CURRENTITEM.SELECTED)
#SELECTION.INSERT(#EMPLOYEES<#EMPNO>)

Endselect

* Show the selected employees form

#Selected_Employees.uShow(#SELECTION)

Endroutine

. Compile the reusable part iiiVFW32.

. Execute the Framework as Designer.

. Open the Properties dialog for the Reports business object.

. Select the Commands Enabled tab.

. Select the Monthly action and plug in the Reports Monthly command handler,

iiiVFW32. Use the Find dialog, which will plug in using the Identifier.

Save and Restart the Framework.

10. Select the Reports business object. The Weekly command handler will be

displayed as this is a default command. Right click on the Weekly tab to
display the context menu and select the Monthly command handler.

A list of all employees should be displayed.

11. Hold down the Control key and click on a number of employees in the

Monthly list view.

The Selected Employees form should be displayed and show the fullname of
all currently selected employees in its list view.

12. Change the selected employees on the Monthly command handler and note
that the Selected Employees viewer is dynamically refreshed.

Summary

Important Observations

Unlike fields which, once defined, are persistent for the lifespan of a
component, components defined within a routine only exist for the duration
of the routine. This is a very useful technique that saves you having to
remember to reset variables each time a routine is run.

Defining methods such as SelectionChanged adds much greater clarity to
your code. Furthermore, the method can be invoked by other components.

Tips & Techniques

List Collections can collect any type (or Class) of Visual LANSA object.

You would typically use Keyed Collections of Style Collection when you are
collecting objects.

You can pass a reference to an entire collection to another form or reusable
component.

What You Should Know

How to pass a reference to an entire collection.

VFW110 — Simple Drag and Drop

Introduction

Drag and Drop is a common and useful feature in Windows applications. You
should already be familiar with the concepts of drag and drop from your
experience using the Visual LANSA development environment. For example,
you drag and drop controls onto a form.

Most users will be familiar with drag and drop as it is an integral part of the
Windows operating system. Drag and Drop is a practical way to copy or move
an item from one context area to another. The copied or moved item can be
virtually anything.

Drag and Drop includes these steps:

1. Select the item to 'drag' by pressing a mouse button down (usually the left
button) on the item.

2. While the mouse button is held down, move the mouse to the target
destination area.

3. Release the mouse button so that the item to be copied/moved is "dropped"
in the target area.

There are four different events that can be involved in a drag and drop
operation:

StartDrag

ragOver

DragDrop

EndDrag.

Note: A Drag and Drop operation may not require all of these events.

Objective

To build a command handler for the Departments business object which enables
Sections to be transferred to another Department, using drag and drop. This is
described as 'simple drag and drop' because the action occurs within a single
form. This simplifies the steps required to implement the drag and drop action.

| Department | Description Address Line 1 Address Line 2
| @ ADM ADMIMISTRATOR, DEPT

| &= auD INTERMAL AUDITING

| @ AT FLEET ADMINISTRATION
| ¥ GAC GROUP ACCOUNTS

| @ INF INFORMATTON SERVICES
| @ LEG LEGAL DEPARTMENT

[Mrs MANAGEMNT INFORM. ..
| @ MT MARKETING DEPARTM..,
| @ sD SALES & DISTRIBUTION

| [E TRW TRAVEL DEPARTMENT

Drag Sections from here Sections in FLT Department.
Degart... | Section ...| Section Ful Desoription | | Section | Secton Description
ADM 01 INTERMAL ADMIN SRV Wim ADMINISTRATION
ADM o2 PURCHASING SECTION 02 PURCHASING
ADM 03 ACCOUNTING SECTION 03 ACCOUNTING
ADM 04 SALES & MARKETING 04 SECTION FOUR
ADM 05 MAINTEMAMNCE =
ADM i PERSOMNNEL SECTIONKX
ADM 03 WEHICLE MAINTEMAMNCE
ALD 01 ADMIMISTRATION
ALD 02 PURCHASING
ALD k] ACCOUNTING I
GAC 01 ADMIMNISTRATION
GALC 02 PURCHASIMNG
GAC 03 ACCOUMNTING
GAC FC FINANCIAL CONTROL
NF 01 ADMINISTRATION
NF 02 PURCHASING
NF a3 ACCOLMTING
INF oY DEVELOPMENT
LEG 01 CONTRACTS, LOCAL i

Refresh Save bo Section Table

To achieve this objective you will complete the following steps:

Step 1. Create Transfer Section to Department Command Handler

Step 2. Add Logic to the Transfer Sections to Department Command Handler.
Step 3. Test the Transfer Section to Department Command Handler

Summary

Before You Begin
You must have completed exercises VFW030, VFW040 and VFWO042.

Step 1. Create Transfer Section to Department Command
Handler

1. Create a new Reusable Part / Panel:
Name: iiiVFW34
Description: Transfer Section to Department
2. Give the reusable part an ancestor of VF_ACO010
3. Using the Design tab, give the panel iiiVFW33 a Vertical Split manager.

4. Open the Layout Helper tab (Home ribbon / Views). Give the Vertical Splitter
a Divider Style of Raised.

5. Change the Name of PANL_1 to LEFT, and change the Name of PANL_2 to
RIGHT.

6. Select the LEFT panel. On the Design ribbon, give the panel and
Attachment manager..

7. Drop a Panel component onto the top of the LEFT panel and change its
Name to TOP_LEFT.

8. Drop a Panel onto the bottom of the LEFT panel and change its Name to
BOTTOM_LEFT.

9. Adjust the height of TOP_LEFT and BOTTOM_LEFT as required.

10. Drop a List View into the center of the panel LEFT. Change its Name to
DRAG_FROM.

11. Save your reusable part.
12. Select the RIGHT panel and give it an Attachment manager.

13. Drop a Panel onto the top of the RIGHT panel and change its Name to
TOP_RIGHT.

14. Drop a Panel onto the bottom of the RIGHT panel and change its Name to
BOTTOM_RIGHT

15. Adjust the height of TOP_RIGHT and BOTTOM_RIGHT as necessary.

16. Drop a List View into the center of the RIGHT panel and change its Name to
DRAG_TO.

17. Save your reusable part.

IIVFW33 - Transfer Section to Department

18. Drop a Label onto the TOP_LEFT panel.
a. Change its Text to Drag Sections from Here
b. Give it a VisualStyle of VS_LAREM
c. Resize the Label as necessary.

Hint: To quickly make the label fit the TOP_LEFT panel, give the label a
Height of 22.

19. Follow the same procedure as 19. (above) to add a label for 'Department
Sections' to the TOP_RIGHT panel.

20. Locate the file SECTAB on the Repository tab. Drag the fields DEPTMENT,
SECTION and SECDESC into the DRAG_FROM list view. Change the
WidthType for the SECDESC column to Remainder.

21. Change the DragStyle of the DRAG_FROM list, to Automatic. This list
will now allow drag and drop.

22. Add a Push Button to the BOTTOM_LEFT panel.
a. Change its Caption to Refresh
b. Change its Name to PHBN_REFRESH
c. Create a Click event for the button.

23. Drag the fields STD_CODE and STD_DESC and STD_CODEL into the
DRAG_TO list view.

a. Make the WidthType for the STD_DESC column, to Remainder.

b. Change the Caption for the STD_CODE column to Section. Change
CaptionType to Caption.

c. Change the Caption for the STD_DESC column to Section Description.
Change CaptionType to Caption.

d. Change the column for STD_CODEL to Visible False.
24. Change the DragStyle for list DRAG_TO, to Automatic.
25. Add a Push Button to the BOTTOM_RIGHT panel.

a. Change its Caption to Save to Section Table

b. Change its Name to PHBN_SAVE.

c. Create a Click event for it.

26. Save your reusable part.

INIVFW33 - Transfer Section to Department

.- Drag Sections from Here - - - Department Sections =

Depart. . | Section... Section Full Description 1 Section | Section Description

A AB adbBoCdDeEfFgGhHT) 1.a® A asbBoCdDeEfFgGhHIl NkILmbni..
Refregh. - - - .- CiClilililllll]l) mGaweinSacionTablew: (000000

Step 2. Add Logic to the Transfer Sections to Department
Command Handler.

1. On the Design tab, select the DRAG_FROM list view and create an Initialize
event.

2. Select the DRAG_TO list view and create DragDrop event.

3. Define a work field CURRDEPT referred to field DEPTMENT. This field
will hold current department

3. Switch to the Source tab. Create an uExecute method routine, which
redefines the ancestor method

a. Add code to retrieve the Akey1 for the current instance list entry into field
CURRDEPT. Akey1 for the Departments instance list contains
DEPTMENT.

b. Execute a subroutine called BldDragTo.
Your code should look like the following:

Mthroutine Name(uExecute) Options(*redefine)

* Return Akey1 into work field CURRDEPT
#avlistmanager.getCurrentInstance Akey1(#currdept)
Execute Subroutine(BldDragTo)

Endroutine

4. Create a BldDragTo subroutine to populate the DRAG_TO list view from the
file SECTAB for the key CURRDEPT.

Your code should look like the following:

Subroutine Name(BldDragTo)

Clr_List Named(#DRAG_TO)

Select Fields(#section #secdesc) From_File(sectab) With_Key(#currdept)
#std_codel := #currdept

#std_code := #section

#std_desc := #secdesc

Add_Entry To_List(#¥DRAG_TO)

Endselect

Endroutine

5. Complete the Initialize event routine for the list view DRAG_FROM. This

needs to contain entries for all records in the file SECTAB, except those for
the current department.

The Refresh button click event will also rebuild the DRAG_FROM list view.
a. Create a subroutine named BldDragFrm.

b. Execute the BldDragFrm subroutine from the DRAG_FROM Initialize
event routine.

Your code should look like the following:

Evtroutine Handling(#DRAG_FROM.Initialize) Options(*NOCLEARMESSA
Execute Subroutine(BldDragFrm)

Endroutine

Subroutine Name(BldDragFrm)

Clr_List Named(#DRAG_FROM)

* add all records, except for current department
Select Fields(#DRAG_FROM) From_File(sectab)
If (#deptment *NE #currdept)

Add_Entry To_List(#¥DRAG_FROM)

Endif

Endselect

Endroutine

6. The drag / drop operation requires that the target of the drag / drop accepts
the proposed drop operation. Usually this will require that the target carries
out some kind of validation in its DragOver event. For example it may check
that the payload object (which is not required for drag and drop within the
same form, as here) is a valid object. In this case no validation is necessary
and the DRAG_TO list view will simply return an AcceptDrop of True.
Complete the DragOver event for DRAG_TO.

Your code should look like the following:

Evtroutine Handling(#DRAG_TO.DragOver) Options(*NOCLEARMESSAGI
#acceptdrop := true
Endroutine

7. The DragDrop event needs to process the copy or move operation. Once
again in this case, the requirements are simplified because this is a drag / drop
operation within the same form.

Evtroutine Handling(#DRAG_TO.DragDrop) Options(*NOCLEARMESSAG]

Selectlist Named(#¥DRAG_FROM)

If (#}DRAG_FROM.currentltem.selected = true)
#std_codel := #deptment

#std_code := #section

#std_desc := #secdesc

Add_Entry To_List(#¥DRAG_TO)

Endif

Endselect

Endroutine

8. Complete the logic for the Save button Click event. This needs to process the
entries in the list DRAG_TO, which contains two types of entry:

i. Entries for the current department. Their STD_CODEL column contains
the current department code.

ii. Entries for the proposed section transfers to the current department. These
have a STD_CODEL column containing their existing department code.

The requirement is to:
a. Read all DRAG_TO entries and ignore those for the current department.

b. Check if the proposed transfer section already exists for current
department.

c. For accepted transfers, retrieve all fields from their current SECTAB
record.

d. Insert a new record in SECTAB for current department and new section
code.

e. Issue a message for successful inserts.

f. Delete the SECTAB record for the transferred section, using their
previous department code.

g. Delete their entry from the DRAG_FROM list view.
h. Issue a message for each proposed transfer section which is rejected.
Your code should look like the following:

Evtroutine Handling(#PHBN_SAVE.Click)
Selectlist Named(#¥DRAG_TO)

#deptment := #std_codel

#section := #std_code

#secdesc := #std_desc

* Bypass entries for current department.

If (#deptment *NE #currdept)

* Check for this section in SECTAB for current department

Check_For In_File(sectab) With_Key(#currdept #section) Val_Error(*next)
If_Status Is_Not(*equalkey)

* get other data for section

Fetch Fields(*all) From_File(sectab) With_Key(#deptment #section)

* Reset department code to current

#deptment := #currdept

Insert Fields(*all) To_File(sectab) Val_Error(*next)

If_Status Is(*okay)

Message Msgtxt('Section ' + #section + ' transferred to department ' + #currdep
* Remove section from donor department and DRAG_FROM list
#deptment := #std_codel

Delete From_File(sectab) With_Key(#deptment #section) Val_Error(*next)
Dlt_Entry From_List(#DRAG_FROM)

Endif

Else

Message Msgtxt('Section ' + #section + ' not transferred')

DIt_Entry From_List(#DRAG_TO)

Endif

Endif

Endselect

Endroutine

9. Complete the Refresh push button Click event.
It should execute the BldDragFrm subroutine:

Evtroutine Handling(#PHBN_REFRESH.Click)
Execute Subroutine(BldDragFrm)
Endroutine

10. Compile your new command handler.

Step 3. Test the Transfer Section to Department Command
Handler

1. Execute the Framework as a Designer.
2. Open the properties dialog for the _Departments business object.

3. Select the Commands Enabled tab. Select the Transfers action and plug in
the command handler, iiiVFW34.

4. Save and restart the Framework.

5. Select the Transfer command handler for a department. The departments
AUD and FLT usually have fewer sections than ADM, so select one of these.

6. Test the drag and drop application with the following steps.

a. Drag a section from the drag from list, which exists in the drag to list.
Click the Save button and confirm that the transfer is rejected with an error
message. The new entry should be removed from the drag to list.

b. Drag a section which does not already exist into the drag to list and click
the Save button. A message should confirm the transfer and the entry
should be removed from the drag from list.

c. Drag two sections to the drag to list, one of which does not already exist
in the current department. Click the Save button. Confirm that only the
new section remains in the drag to list, a transfer message is issued and the
rejected transfer section remains in the drag from list.

Summary

Important Observations

e The DragOver event occurs when a drag and drop operation is in process.
You can use this event to monitor the mouse pointer as it enters, leaves, or
rests directly over a valid target. The mouse pointer position determines the
target object that receives this event.

e The DragDrop event occurs when the mouse button is released. During this
event, you would normally populate the target with the dragged data.
Tips & Techniques

e Refer to the Feature Help (F2) for more details about the Drag and Drop
properties and events.

What I Should Know

How to enable a control for Drag and Drop.

How to use the DragOver and DragDrop events.

The purpose of the AcceptDrop property.

How to Drag and Drop items between two controls in the same form.

VFW112 - Drag and Drop between Components

Objective

To learn how to drag and drop items between components.

e To create a payload component to drag items between components.

e To create a Transfer Employee to Section command handler.

e To create a reusable part to receive the employee data transferred via the

payload object

BO0-8BO-86-

| Address Line 2

Depariment Description | Address Line 1
= [Sections
125 Main 5t, Blacktown NEW
123 Padfic Hghway, Marth Sydney, 2000 NEW
Transfer Employee 252 Canterbury Road, NSW.

command handler

121 Smith

PRy

St

CANTERBURY,

Address Line 3

Reusable part to
receive drag & drop
payload

Drag Employees from here Section Employees
Dept, | sect. | Mumber | Full Name +| | Dept. sect, Mumber | Full Name
A0 01 Al0D2 SMYTHE, JOHN A0k 01 A 1002 SMYTHE, JOHM
ADM 01 A1020 DOUGLAS, ADIAM PETER ADM 0 A1020 DOUGLAS, ADAM PETER
ADM o1 A1404 | |aom 01 A1404 MRS BRICK, GILL
23] 01 A 1505 REDFORD, ROBERT ADM 01 A1509 REDFORD, ROBERT
Al [Ad0U5 '
A0k oz Al014 MOORE, JOHN X "‘
ADM oz AZDD JOMES, JAMES
ADM 04 #0193 SIMPSON, FRED
ADM 04 A2002 BROWMLOW, ARTHUR
DM 04 42003 JONES, JAMES
A0k 04 A3564 BROWM, FREDDY
ADM 03 AZID1 BROWM, HARRY GEORGE
DM 09 #0090 BLOGGS, FRED JOHN ALAN
ALD 01 A1007 SMELL, GEORGE
ALD 01 A1008 SHEDOON, ALLAN
ALD o1 Al011 FERRIN, CHRISTOPHER
AL na ANOTM POIAS WD ORITT A
Refresh Save to Employes Fle

To achieve these objectives you will complete the following steps:

Step 1. Create Employee Payload Object

Step 2. Create Reusable Part Section Employees

Step 3. Create the Transfer Employees to Section Command Handler

Step 4. Complete the Section Employees Component

Step 5. Complete the Transfer Employees to Section Command Handler

Summary

Before You Begin
Complete exercises VFW030, VFW040 and VFWO042 before starting this
exercise.

You also should complete VFW110 — Simple Drag and Drop before starting this
exercise.

Step 1. Create Employee Payload Object

In this step you create two components.

A simple Employee Object to store properties for each employee.

An Employee Payload object which contains a list collection of the
Employee Object, containing the employees being transferred.

Create a new Reusable Part / Object:

Name: iiiVFW35

Description: Employee Object

Define properties uDepartment, uSection, uEmpNum and uFullname.
The properties should automatically set and get the corresponding field
values.

Your code should look like the following:

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #PRIM_OBIJT)

Define_Pty Name(uDepartment) Get(*auto #deptment) Set(*auto #deptment)
Define_Pty Name(uSection) Get(*auto #section) Set(*auto #section)
Define_Pty Name(uEmpNum) Get(*auto #empno) Set(*auto #empno)
Define_Pty Name(uFullname) Get(*auto #fullname) Set(*auto #fullname)
End_Com

Compile iiiVFW35

5. Create a new Reusable Part / Object:

6.

7

Name: iiiVFW36

Description: Employee Payload

Define a list collection which collects the employee object, iiiVFW35:
Define_Com Class(#prim_Ilcol<#iiivfw35>) Name(#Objects)

. Define a property which passes a reference to the list collection (called

#objects) when another component retrieves this property:
Define_Pty Name(pObjects) Get(*collection #Objects)

8. Define a method routine, Add_Item, with input parameters for the employee
object properties:

Mthroutine Name(Add_Item)

Define_Map For(*input) Class(#DEPTMENT) Name(#uDeptment)
Define_Map For(*input) Class(#SECTION) Name(#uSection)
Define_Map For(*INPUT) Class(#EMPNQO) Name(#uEmployee)
Define_Map For(*INPUT) Class(#f ULLNAME) Name(#uFullname)
Endroutine

9. Complete the Add_Item method routine.

a. Add code to define an instance of the employee object iiiVFW35, named
New_Object.

b. Update the properties of New_QODbject using the passed parameters.

c. Insert New_ODbject to the list collection, named Objects.

Mthroutine Name(Add_Item)

Define_Map For(*input) Class(#DEPTMENT) Name(#uDeptment)
Define_Map For(*input) Class(#SECTION) Name(#uSection)
Define_Map For(*INPUT) Class(#EMPNQO) Name(#uEmployee)
Define_Map For(*INPUT) Class(#f ULLNAME) Name(#uFullname)
Define_Com Class(#iiivfw35) Name(#New_Object)
#New_Object.uDepartment := #uDeptment

#New_Object.usection := #uSection

#New_Object. UEmpNum := #uEmployee
#New_Object.UFullname := #uFullname

#Objects.Insert(#New_Object)

Endroutine

10. Compile iiiVFW36.

Step 2. Create Reusable Part Section Employees

This component will be displayed on the right hand side of the Transfer
command handler. It displays the employees belonging to the section selected in
the instance list. The drag and drop operation allows an employee(s) to be
transferred to the Section from another section. A Save button enables the
changes to be saved to the file SECTAB.

1. Create a new Reusable Part / Panel.:
Name: iiiVFW37
Description: Section Employees.

2. On the Design tab, use New Layout to give iiiVFW37 an Attachment
manager.

w

. Drag and drop a List View component to the center of the Panel. Change the
List View Name to DRAG_TO.

4. Add fields DEPTMENT, SECTION, EMPNO, FULLNAME and
STD _CODEL to the List View DRAG_TO.

. Make the STD_CODEL column Visible, False.

. Change the list view column headings to suitable short values. For example:
Dept., Sect., Emp No. and Full Name. Change each column's CaptionType to
Caption.

A Ul

Change the Full Name column's WidthType = Remainder.

~

. Save the reusable part.

8. The Section Employees component is not a command handler, and therefore
cannot communicate directly with the Framework. The Transfer Employee
command handler (which you will create in the next step) will retrieve
department and section codes for the current instance list entry.It will then set
properties in iiiVFW37 to enable this component to populate the DRAG_TO
list view with employees for the current instance list entry.

a. Define the following properties in iiiVFW37:

Define_Pty Name(uDepartment) Set(*auto #deptment)
Define_Pty Name(uSection) Set(BuildList)

b. Create a property routine BuildList, to clear and populate the DRAG_TO
list with employees.

Your code should look like the following:

Ptyroutine Name(BuildList)

Define_Map For(*input) Class(#section) Name(#i_section)

#std_codel := *blanks

Clr_List Named(#DRAG_TO)

Select Fields(#deptment #section #empno #surname #givename) From_File(ps
#fullname := #surname + ', ' + #givename

Add_Entry To_List(#¥DRAG_TO)

Endselect

Endroutine

c. Review the BuildList property routine.
Section code (SECTION) is passed into this routine as i_section.

The STD_CODEL column is set to blanks. Entries with a blank
STD_CODEL will be recognized as existing employees for the section.

The list DRAG_TO is cleared and populated with all employees for the
department, section using logical file PSLMST1.

9. Compile iiiVFW37 in its current form and leave it open in the editor. You
will add additional logic for drag and drop in a later step.

Step 3. Create the Transfer Employees to Section Command
Handler

1. Create a new Reusable Part / Panel.:
Name: iiiVFW38
Description: Transfer Employees to Section CH

2. To define the user interface, replace the code for iiiVFW38 with the code
supplied in VFW112 — Appendix. You created a similar interface design in
the VFW110 — Simple Drag and Drop.

3. Change the supplied code so that the DRAG_TO component uses your
initials for iiiVFW37.

4. Switch to the Design view. Your design should look like the following:

INIVFW3T - Transfer Employees to Section CH

. Drag Employees from here .. . SectionEmployees @

Dept. | Sect. | Number Ful MName " | Dept. Sect. Emp. Mo. | Full Mame

AT A. AB ABCDE ABCDEFGHIN... [| .a®A. AB ABCDE ABCDEFGHIIKLM...
Refresh Sl Save to Employes Fie oot

A vertical splitter component divides the panel. The DRAG_FROM list on
the left will contain employees for all department / sections excluding the
department/section selected in the instance list. That is, all employees that
could be transferred to the current department/section. The DRAG_FROM
list view has a DragStyle property of Automatic.

The right side contains the Section Employees component, iiiVFW37.
Employees may be dragged into this component's list and then saved by
updating the employee file.

5. Create work fields for current department and section values:

Define Field(#currdept) Reffld(#deptment)
Define Field(#currsec) Reffld(#section)

6. Create an uExecute method routine:

Mthroutine Name(uExecute) Options(*redefine)
#avlistmanager.getCurrentInstance Akey1(#deptment) Akey2(#section)
#currdept := #deptment

#currsec := #section

#DRAG_TO.uDepartment := #deptment

#DRAG_TO.usection := #section

Execute Subroutine(BuildEmps)

Endroutine

Review the uExecute logic:

Department and section codes are retrieved from the instance list, as Akey1
and AKeyZ2 columns.

DRAG_TO is the name of the iiiVFW37 component.
The BuildEmps subroutine does not yet exist.
7. Create the BuildEmps subroutine:

Subroutine Name(BuildEmps)

Clr_List Named(#DRAG_FROM)

Select Fields(#deptment #section #empno #surname #givename) From_File(ps
If ((#currdept *NE #deptment) *And (#currsec *NE #section))

#fullname := #surname + ', ' + #givename

Add_Entry To_List(#DRAG_FROM)

Endif

Endselect

Endroutine

All entries from PSLMST1 are added to the list view DRAG_FROM, except
employees for the instance list current department / section.

8. On the Design view, select the DRAG_FROM list view on the left panel and
create StartDrag and EndDrag event routines.

9. Give the StartDrag event routine Payload, Continue and DragList
parameters as shown.

Evtroutine Handling(#DRAG_FROM.StartDrag) Options(*NOCLEARMESS/
Endroutine

Note: The AutoComplete prompter will complete these keywords as you
type.

10. In the StartDrag routine, define a Payload_Employee component with a
class of iiiVFW36 which contains a list collection of Employee Object

(iiiVFW35).

Evtroutine Handling(#DRAG_FROM.StartDrag) Options(*NOCLEARMESS/
Define_Com Class(#iiivfw36) Name(#Payload_Employee)

Endroutine

11. The StartDrag event is triggered when the user selects an entry and drags
the mouse with the left mouse button held down.

This routine needs to add selected entries from the DRAG_FROM list view
to the Payload_Employee component. That is, into the payload object.

The 'add to payload list collection' is performed by invoking the Add_Item
method passing the parameters required.

Add the following code to the StartDrag event routine to achieve this:

Selectlist Named(#¥DRAG_FROM)
Continue If(*Not #DRAG_FROM.currentltem.selected)
#Payload_Employee.add_item Udeptment(#deptment) Usection(#section) Uen

Endselect

12. Having populated the Payload_Employee object, the following is required:
a. Areference to Payload_Object is passed as Payload.

b. The DragList parameter is set to selection, meaning that the drag image
will be the list view's selected items.

c. The Continue parameter is set to true.
Add the following code to achieve this:

Set_Ref Com(#Payload) To(#Payload_Employee)
Set Com(#draglist) Dragliststyle(selection)
#continue := true

13. Add Payload and DragResult parameters to the EndDrag routine.

Evtroutine Handling(#DRAG_FROM.EndDrag) Options(*NOCLEARMESSA
Endroutine

14. Define the Payload_Employee object with a class of iiiVFW36 and
Reference of *dynamic.

Create the Payload_Employee object with a Set_Ref to the parameter value
#Payload.

Implement this with the following code:

Define_Com Class(#iiivfw36) Name(#Payload_Employee) Reference(*dynam
Set_Ref Com(#payload_employee) To(*dynamic #payload)

15. If the DragResult parameter is ACCEPTED, delete currently selected entries
from the DRAG_FROM list view.

Add the following code to implement this:

If (#dragresult = ACCEPTED)

Selectlist Named(#¥DRAG_FROM)

Continue If(*Not #DRAG_FROM.currentItem.selected)
DIlt_Entry From_List(#DRAG_FROM)

Endselect

Endif

16. Compile the Transfer Employees to Section command handler (iiiVFW38).
You will add additional logic for the push buttons in a later step.

Step 4. Complete the Section Employees Component

Switch to the Section Employees component, iiiVFW37.
1. On the Design tab, select the DRAG_TO list view and create DragOver and
EndDrag event routines.

2. Complete the Drag_Over event by defining Payload and AcceptDrop
parameters.

Set AcceptDrop to true if the Payload_Employee object is component class
iiiVFW36.
Your code should look like the following:

Evtroutine Handling(#DRAG_TO.DragOver) Options(*NOCLEARMESSAG]I
Endroutine

3. Define DragResult and Payload parameters for the DragDrop routine.

As for the DragOver routine, define a dynamic Payload_Employee object
with a class of iiiVFW36.

Create Payload_Employee using Set_Ref to Payload.
Your code should look like the following:

Evtroutine Handling(#DRAG_TO.DragDrop) Options(*NOCLEARMESSAG]
Define_Com Class(#iiiVFW36) Name(#Payload_Employee) Reference(*dy
Set_Ref Com(#Payload_Employee) To(*dynamic #Payload)

Endroutine

4. Retrieve each payload entry using a For / Endfor loop and add an entry to the
DRAG_TO list.

Set the STD_CODEL column to the payload department code.
Your code should look like the following:

Define #CurrDept Reffld(#Deptment)

#currdept := #deptment

For Each(#object) In(#Payload_Employee.pObjects)
#deptment := #currdept

#std_codel := #object.udepartment

#empno := #object.uempNum

#fullname := #object.ufullname

Add_Entry To_List(#¥DRAG_TO)
Endfor

5. Create a SaveChanges method routine to be invoked via the Transfer
Employees to Section command handler Save button.

A transfer will be implemented by updating department and section code
fields in the employee record.

Transferred employees have a non blank STD_CODEL column.
Issue a message if an update is not successful.
Your code should look like the following:

Mthroutine Name(SaveChanges)

Selectlist Named(#¥DRAG_TO)

If (#std_codel *NE *blanks)

Update Fields(#deptment #section) In_File(pslmst) With_Key(#empno) Val_E
If_Status Is_Not(*okay)

Message Msgtxt("Transfer employee ' + #empno + 'to ' + #deptment + ' failed")
Endif

Endif

Endselect

Endroutine

6. Compile Section Employees, iiiVFW37.

Step 5. Complete the Transfer Employees to Section Command
Handler

1. Switch to iiiVFW38 in the editor.
2. Create Click events for the PHBN REFRESH and PHBN_SAVE buttons.
3. The Refresh push button click event should rebuild the DRAG_FROM list.

Evtroutine Handling(#PHBN_REFRESH.Click)
Execute Subroutine(BuildEmps)
Endroutine

4. The Save push button click event should invoke the SaveChanges method in
the DRAG_TO component (iiiVFW37).

Evtroutine Handling(#PHBN_SAVE.Click)
#DRAG_TO.SaveChanges
Endroutine

5. Compile the Transfer Employees to Section command handler.
6. Execute the Framework as Designer.
7. Double click on a section in the instance list to open its Properties dialog.

8. Select the Commands Enabled tab, select the Transfer command and plug in
iiiVFW38. Use the Find dialog, which plugs in using the Identifier.

9. Save and Restart the Framework.
10. Test the Transfer Employees command handler for a Section.

a. Select the Departments business object, expand ADM and select a
section.

b. Select the Transfers command handler. The left hand (DRAG_FROM)
List contains all employees for all department / sections except the
currently selected department / section.

c. The right hand list (DRAG_TO) contains employees in the selected
department / section.

d. Select one or more employees in DRAG_FROM and drop them on
DRAG_LIST. The employees are shown in DRAG_TO with their
department and section currently selected in the instance list. These

employees have been removed from the DRAG_FROM list. Note that the
drag image is the selected list items.

e. Click the Save to Employee File button to update the transferred
employees, changing their department and section codes to the selected
department and section.

Summary

Important Observations

The default value of the DragStyle property is none. This means that the
component will NOT support the initiation of a drag operation.

The StartDrag event occurs when the mouse button is pressed over a
component and the mouse is moved. It is typically used to store away the
data being dragged. As such, it might not be required when the information
is dropped in the same form.

The DragOver event occurs when a Drag and Drop operation is in progress.
You would decide whether to accept the drop operation during the DragOver
event.

The DragDrop event occurs when the mouse button is released. During this
event you would normally populate the target with the dragged data.

At the end of the DragDrop event the EndDrag occurs. It is a notification to
the source that the Drag has finished. The routine would typically contain
code which is related to the source component. For example, set DragResult
to ACCPETED and delete selected entries from the DRAG_FROM list.

Tips & Techniques

Use a payload object as a temporary "storage" area when the data being
dragged is not available in the component where it is to be dropped.

What I Should Know

How to Drag and Drop multiple items between two controls in different
forms.

How to use the EndDrag routine.
How to use the DragResult property.
How to copy or move items using drag and drop.

VFW112 — Appendix

To define the user interface, use the following code to replace the code for
iiiVFW38. This code is supplied to save time:

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #VF_AC010) Height(270) Layoutmanager(#SF
Define_Com Class(#PRIM_SPLM) Name(#SPLM_1) Dividerstyle(Raised) Or
Define_Com Class(#PRIM_PANL) Name(#LEFT) Displayposition(1) Height(
Define_Com Class(#PRIM_PANL) Name(#RIGHT) Displayposition(2) Heigh
Define_Com Class(#PRIM_SPLI) Name(#SPLI_1) Manage(#LEFT) Parent(#¢
Define_Com Class(#PRIM_SPLI) Name(#SPLI_2) Manage(#RIGHT) Parent(:
Define_Com Class(#PRIM_ATLM) Name(#ATLM_1)

Define_Com Class(#PRIM_PANL) Name(#LEFT_TOP) Displayposition(1) H
Define_Com Class(#PRIM_ATLI) Name(#ATLI_1) Attachment(Top) Manage!
Define_Com Class(#PRIM_PANL) Name(#LEFT_BOTTOM) Displaypositior
Define_Com Class(#PRIM_ATLI) Name(#ATLI_2) Attachment(Bottom) Man
Define_Com Class(#PRIM_LTVW) Name(#DRAG_FROM) Componentversic
Define_Com Class(#PRIM_ATLI) Name(#ATLI_3) Attachment(Center) Mana
Define_Com Class(#PRIM_PANL) Name(#RIGHT_TOP) Displayposition(2) -
Define_Com Class(#PRIM_ATLI) Name(#ATLI_4) Attachment(Top) Manage!
Define_Com Class(#PRIM_PANL) Name(#RIGHT_BOTTOM) Displaypositit
Define_Com Class(#PRIM_ATLI) Name(#ATLI_5) Attachment(Bottom) Man
Define_Com Class(#PRIM_LABL) Name(#LABL_1) Caption('Drag Employe
Define_Com Class(#PRIM_PHBN) Name(#PHBN_REFRESH) Caption('Refr:
Define_Com Class(#PRIM_PHBN) Name(#PHBN_SAVE) Caption('Save to E
Define_Com Class(#PRIM_LABL) Name(#LABL_2) Caption('Section Emplo
Define_Com Class(#PRIM_LVCL) Name(#LVCL_1) Caption('Dept.") Caption
Define_Com Class(#PRIM_LVCL) Name(#LVCL_2) Caption('Sect.") Captiont
Define_Com Class(#PRIM_LVCL) Name(#LVCL_3) Caption('Number') Capti
Define_Com Class(#PRIM_LVCL) Name(#LVCL_4) Caption('Full Name') Ca
* Change the following line using your initials

Define_Com Class(#IIIVFW38) Name(#DRAG_TO) Height(197) Parent(#RI(
Define_Com Class(#PRIM_ATLI) Name(#ATLI_7) Attachment(Center) Paren
Define_Com Class(#PRIM_ATLI) Name(#ATLI_6) Attachment(Center) Mana
End_Com

VFW120 — Using Hidden Commands
Hidden Command Handler Anatomy

Hidden commands are run in the same way as other commands but do not
appear on tabs or in separate windows and are hidden from the user

Are used to perform non-visual tasks.

For Windows applications hidden commands are reusable parts with an
ancestor of VF_ACO020.

Have most non-visual VL Framework and instance list services available to
them.

Structurally, Hidden Command Handlers for Windows applications are similar
to Windows Command Handlers with these important differences:

They extend the base class #VF_AC020.

They don't use the optional method ulnitialize.
They don't use the optional method uTerminate.
They don't listen to events.

When using Hidden Command Handlers it is important to remember that they:

Should always have the Default Command option set to NEVER for instance
level commands or NO for business object level commands.

Should never be used with the Hide All Other Command Tabs option set.
Should never be attached to RAMP Destination screens.

Should never attempt to display information to the user or interact with the
user. Hidden means hidden

Objectives

To create a demonstration hidden command, 'Reverse', which will act on the
current instance list entry and reverse the employee full name string.

e This is a quick and simple example to demonstrate the principle.

To achieve this objective you will complete the following steps:
Step 1. Add Reverse as a Hidden Command for Employees
Step 2. Create the Reverse Command

Step 3. Plugin and Test Reverse Command

Summary

Before You Begin
Complete exercises VFW030, VFW040 and VFW042.

Step 1. Add Reverse as a Hidden Command for Employees

1. Open the Properties dialog for Employees and select the Commands Enabled
tab.

2. Click the Command Definitions button.

m Command Definitions

Close

3. Click the New button to define a new command.

4. Define the Reverse command as follows:

Caption Reverse
Hint Reverses Employee Full Name

User Object Name/Type REVERSE

Note: The User Object Name/Type is initially given a unique identifier
(GUID) which is generated for all new framework objects. You can change
this, provided the value is unique. The Verify Name button enables you to
check that your name is unique within the framework.

5. Give the Reverse command any suitable icon and bitmap. Select the same
image for each, so that the image will appear on tool bars and menus for the
Reverse command.

6. Click the Close button.

7. Drag the Reverse command into the Commands Enabled column for the
Employees business object.

8. Close the dialog which prompts you to save and restart your Framework and
prevent it being re-displayed.

9. Select the checkbox to make the Reverse command Execute as a hidden
command

10. Give the Reverse command a Default Command value of Never.

11. Save and Restart the Framework.

Step 2. Create the Reverse Command
1. Create a new Reusable Part / Panel:
Name: iiiVFW41
Description: Reverse Hidden Command.
2. Replace its code with the following:
Function Options(*DIRECT)

Define Field #REVSD) Reffld(#VF_ELBOOL)
Def_Cond Name(*REVSD) Cond('#REVSD *EQ TRUE))

Mthroutine Name(uExecute) Options(*REDEFINE)

* Do any execution logic defined in the ancestor

Invoke Method(#Com_Ancestor.uExecute)

* Get the Employee number of the current instance

Invoke Method(#avListManager.GetCurrentInstance) Akey1(#EMPNO) Acolu
* Fetch information from the main file to fill in the header fields on the form
Fetch Fields(#SURNAME #GIVENAME) From_File(PSLMST) With_Key(#F
* Put the names together in the reverse order

If Cond(*REVSD)

* Put the names together Given name first

Change Field(#UF_VisID2) To(#GIVENAME)

Use Builtin(BConcat) With_Args(#UF_VisID2 #SURNAME) To_Get(#UF_Vi
* Set the reversed flag

Change Field #REVSD) To(FALSE)

Else

* Put the names together Surname first

Change Field(#UF_VisID2) To(#SURNAME)

Use Builtin(BConcat) With_Args(#UF_VisID2 #GIVENAME) To_Get(#UF_\
* Set the reversed flag

Change Field #REVSD) To(TRUE)

Endif

* Update the name (Visual ID 2) to the instance list

Invoke Method(#avListManager.UpdateListEntryData) Akey1(#EMPNO) Vist
Endroutine

End_Com

3. Compile your reusable part and review the code:
a. All hidden commands must have an ancestor of VF_AC020.

b. The uExecute method, retrieves AKeyl and AColumn3 for the current
instance list entry. Note that you may need to change this column number
if your instance list already uses it to hold a different value.

c. Fetches surname and givename for this employee number.

d. Tests the value of the condition *REVSD which is checks if the value
returned from AColumn3 is TRUE.

e. Depending on *REVSD, VisuallD2 is updated, with Surname first or
Given Name first.

f. Updates the current list entry, columns VisuallD2 and AColumn3.

Step 3. Plugin and Test Reverse Command

1. Open the Properties dialog for Employees. Select the Commands Enabled
tab.

2. Plug in the reusable iiiVFW41 for the Reverse command. Use the Find
dialog, so that the plug in uses the Identifier name.

3. Save and Restart the Framework.
4. Test the Reverse command for the Employees business object.

Note: Initially, AColumn3 is blank. In this case, the hidden command sets

VisuallD?2 to surname, given name. This is the same as its initial appearance
so no change will be observed. Selecting an entry a second time will change
VisualID2 to the form given name, surname and the change is obvious.

Summary

Important Observations

e A hidden command may perform any processing you require, but may not
use the optional methods, ulnitialize and uTerminate.

e Hidden commands do not listen for events.

Tips & Techniques
e Hidden commands should be set to Default Command, NEVER.

e Refer to the Visual LANSA Framework Guide for further details about using
hidden commands.

What You Should Know

e How to implement a hidden command.

VFW122 — Launching a VLF Window

Programatically Creating and Managing Windows

Your programs can create and manage windows by calling the method
avShowWindow in the Framework manager.

For example:

e Open a whole new instance of the Framework in another window named
MYWINDOW:

#AvFrameworkManager.avShowWindow Caller(#Com_Owner) For(FRAM

e Open the DEMONSTRATION application:
#AvFrameworkManager.avShowWindow Caller(#Com_Owner) For(APF

e Open an application view named HR:
#AvFrameworkManager.avShowWindow Caller(#Com_Owner) For(VIE

e Open business objects Organizations and Resources in two independent
windows:

#AvFrameworkManager.avShowWindow Caller(#Com_Owner) For(BU¥¢
#AvFrameworkManager.avShowWindow Caller(#Com_Owner) For(BU¥¢
of Type(DEM_ORG_SEC_EMP) WindowName(DEMO_SECTION)

Remember that the OfType(DETAILS) names you specify on calls to
avShowWindow are the User Object Name / Type values specified on the
Identification tab of the properties of the respective object:

User Object Mame [Type DETAILS Verify Name

Using the avShowWindow method

When the avShowWindow method is invoked, it tests whether a window with
the name specified exists.

If the named window already exists, it is activated (ie: restored from being
minimized, if required, and brought to the front of all the Framework windows).

If the named window does not exist, it is created.
Then in both cases:

e The window's open information properties and object reference are updated
with anything you supplied (see Window Opening Information in the Visual
LANSA Frameworks guide.).

e A switch operation is performed inside the window to any application or
business you may have nominated.

In simple terms, you are saying to the Framework "Display a window with this
name and pass this information into it, then cause it to switch to this application
or this business object".

When you create a new window or switch an existing window it happens
asynchronously to your program. So if you use avShowWindow and then
immediately enumerate all open windows you will not find the window you just
created (yet).

The uShowWindowCompleted Method

This method should be placed in a command handler which needs to "wake up"
and perform some processing when requested by a command handler in the
main VLF window:
For example a command handler in a window named EMP_WINDOW
contains:
Mthroutine Name(uShowWindowCompleted) Options(*Redefine)
#EMPNO := #Com_Owner.avCurrentWindow.OpenlInfo<1>
Fetch Fields(#XG_HEAD) From_File(PSLMST) With_Key(#EMPNO)
Endroutine

The method uShowWindowCompleted is run when another command handler
performs:

#AvFrameworkManager.avShowWindow WindowName(EMP_WINDOW)

The methods avShowWindow and uShowWindowCompleted should be
considered as a "pair".
Window Names

You may have noticed from the preceding examples that windows have
symbolic names. Here are some things you should know about window names:
e The names ALL, MAIN and CURRENT are reserved.

e When an end-user opens a window it is automatically assigned a unique
name that starts with USER_. Do not rely on USER_ window names being

the same from Framework signon to signon or from Framework version to
version.

e Names are not end-user visible. They are programmatic names, case
insensitive and may be up to 256 characters long. Being case insensitive
means they are often uppercased, so using just 'A' ->'Z"and '0' ->'9'" is
advisable.

e Window names are uniquely scoped and only addressable within a
Framework process (ie: a LANSA X_RUN.EXE process). This means that if
you start multiple X_RUN.EXE processes they can each contain a unique
window named TESTWINDOW. An operation that involves signalling or
switching window TESTWINDOW only refers to it within the current
X_RUN.EXE process. No intra-process windows operations are currently
provided.

Application Settings

The Properties for a Framework, an Application and a Business Object enable
the designer to determine whether each object can be opened in a new window,
Never, Manually, Automatically or Automatically or Manually:

} I P .
ﬂ:p Application Properties - iil HR Application -

Identfication Bitmaps and Icons | Startup Visual Styles Commancds Enabled | Command Display | Help About | Custor

Caplion ii HR. Application (ENG)
Hn (ENG)
Sequence: i
Internal Identifier: 478 70EC IF 20546B53AA SCSC3BE ICFFEA
Unigue Identifier: B3
User Object Name | Type III_HR,_APPLICATION Verify Name
Restricted Access
Containg Favorites
Bliow this Object to be Opened in a New Window {Manually
Last Changed 201202 1n-ca5532-.1wmvmra"
Automatically
l\._ Automatically or Manualy

Note: The Automatic setting will always open the object in a new window when
it is selected in the Navigation panel. It therefore means always open this object
in a new window.

The setting applies to that level only. So a setting of Never at the Framework
level, means the whole framework cannot be opened in a new window, but an

application or business object can be opened in a new window, if this is allowed
for the object.

Objective

To extend the Employee Images for a Section command handler to display
employee details by opening a new Framework window.

rrrrrrrrrrrrr

rrrrrr

125 Main St, Hackiown
123 Pacfic Highwary, North Sydney
2R "~ FANTR M BY|

Fnsmrhy

Open Emplayees Window
£

==]

ENG nvoRY12 | 22/08/12 9|

Show Emplaoyee Details = i
Emplayes

£ By Name

¥ Oear List

] Detais

Employes Mumber

)
Street No and Name:
Suburts or Town
State and Country
Post | 2p Code:

Home Phone Number

{25] Departments

Eile Edit Yiew Actions Help ;ﬁ;do;— (Framework) 1_.ldmm;mion} |

e - Transfes Aboul \ieh Sile Resources Address Charges Organizalion Eoctings Spoel Fles i Gt Yeu. lelp. Windnis |
Departments New Mbout Resources OrganizstionSpool Fes Mew Window Queues Print Exit |

: Ofher Windows - [Departments (Masin Window)
2§ ot (B0-800-me
¥ E il Accounting Department Description Address Line 1 Address Line]
fii HR: Application 11 sections

5 By Location

Employee Sumame
REDFORD

Search

-
& Employee : Details (A1509-REDFORD. ROBERT)

| BriefNotes | (7] Images

Nates
A1S09

REDFORAD

ROBERT

122 Arthur Street

North Sydney

NSW Australia

]

5559966

@ o
Ful Hame
REDFORD ROBERT

Employes
A1509

T_ BRI =

= shils 2 Sk

Business Phore
Departments
Section Code
Employee Sala
Start Date (00
Termination Da

Save

Back o Departments

Messages Ready zoanz| a0t g |

To meet this objective you will complete the following steps:

Step 1. Extend Pop-Up Menu in Employee Image Object

Step 2. Enhance Employee Images for Section Command Handler
Step 3. Change Employee Details Command Handler

Step 4. Ensure Details displayed for first Employee

Summary

Before You Begin

Complete exercises VFW030, VFW040, VFW042, VFW100 and VFW104
before starting this exercise.

In exercise VFW104, you implemented Sections as a business object which is
visible in the Navigation panel, with a By Department filter to populate the
instance list. In this exercise you will add the ability to open Employee Details
in a new window from the Employee Images for a Section command handler,
working with the Sections business object itself. This will enable a 'switch back'’
to be implemented from Employee Details to Employee Images for Section in
the main VLF window.

Step 1. Extend Pop-Up Menu in Employee Image Object
1. Open iiiVFW29 in the editor

2. In the Design view, right click on the image component and select Edit
Popup Menu.

Design | Source | Repository Details | Repositi

mvrwzsA - ... B
. e

o Delete Component

W Copy Component...

Cut Component

Edit Popup Menu
Detach Popur Menu

The Popup menu is displayed at the top of the Design view.

3. Move the cursor to right hand side of the menu item text and press Enter to
add a new menu item:

Design | Source | Repository Details
|Show Ermnployee Details

IIIVFW28A - E...

4. Define the new menu item as Open Employee Details Window. Note that
the new menu item is MITM_ 2.

5. Create a Click event for MITM_2.
6. Switch to the Source tab.

7. Define an event uOpenEmpWindow, which will pass employee number:

Define_Evt Name(uOpenEmpWindow)
Define_Map For(*input) Class(#empno) Name(#uEmpNum)

8. Make the Click event for MITM_2, signal the uOpenEmpWindow event:

Evtroutine Handling(#MITM_2.Click) Options(*NOCLEARMESSAGES *N(
Signal Event(uOpenEmpWindow) uEmpNum(#Empno)
Endroutine

9. Recompile the new version of iiiVFW29

Step 2. Enhance Employee Images for Section Command Handler

In this step you will change iiiVFW28 to handle the new event
uOpenEmpWindow signalled by iiiVFW29.

At present the Employee Images for Section CH handles the uShowEmpDetails
event by using avSwitch to open the Employee Details CH within the same
Framework window.

The Employee Images for Section CH will handle the uShowWindow event by
invoking the avShowWindow method to open the Employee Details command
handler in a new Framework window.

In the next step you will change the Employee Details CH (iiiVFWO06) to
process the avShowWindow request.

1. Open iiiVFW28 — Employee Images for Section in the editor
2. Add an event routine for ImageCollection<>.uOpenEmpWindow

Evtroutine Handling(#ImageCollection<>.uOpenEmpWindow) uEmpNum(#I_
Endroutine

This will execute when the pop-up menu option Open Employee Details
Window is selected on an employee image.

3. This routine will invoke the avShowWindow method for the window name
III_EMP.

The routine must first declare a temporary reference to the framework's User
Interface to multiple Windows component, VF_SY 154.

The Framework avWindow property returns a reference for a requested
window name. New code is highlighted in red.

Evtroutine Handling(#ImageCollection<>.uOpenEmpWindow) uEmpNum(#i_
* define a temporary class #VF_SY154 reference

Define_Com Class(#vf_sy154) Name(#window) Reference(*dynamic)

* Ask the framework manager to locate a window by name and return a r
#window <= #avFRAMEWORKMANAGER.avWindow<'III_EMP'>
Endroutine

4. If this reference is not *null, invoke avShowWindow for the business object
EMPLOYEES to execute DETAILS, in window name III_EMP.

Evtroutine Handling(#ImageCollection<>.uOpenEmpWindow) uEmpNum(#i_
* define a temporary class #VF_SY 154 reference

Define_Com Class(#vf_sy154) Name(#window) Reference(*dynamic)

* Ask the framework manager to locate a window by name and return a referer
#Window <= #AvFrameworkManager.avWindow<'lll_EMP">

If (#Window *IsNot *Null)

Message Msgtxt('Window III_EMP is already open")

* Display employee details in III_EMP window

#empno := #i_empnum

#AvFrameworkManager.avShowWindow Caller(#Com_Owner) For(BUS]I
Else

* Open a new window

#AvFrameworkManager.avShowWindow Caller(#Com_Owner) For(BUS]I
Endif

Endroutine

5. Review the above code:
e A temporary reference to VF_SY154 is defined.

e Check if window III_EMP exists
and then:
set EMPNO from passed value _EMPNUM.

¢ Invoke avShowWindow for business object EMPLOYEES, window
[IT_EMP, command handler DETAILS, passing EMPNO as open
information 1.
Else
use avShowWindow to open a new window.

6. Compile iiiVFW28.

Step 3. Change Employee Details Command Handler

In this step you will change the Employee Details command handler, iiiVFW06
to handle the avShowWindow method.

If a filter or command handler is either started, or already active inside window
EMP_WINDOW, then if it has the special 'wake up' method in it, the method
will be invoked every time some other window executes:

Mthroutine uShowWindowCompleted Options(*Redefine)

#Empno := #Com_Owner.avCurrentWindow.Openlnfo<1>

Use message_box_show (ok ok info *Component #£Empno)
Endroutine

this method will be invoked every time some other window executes:
#AvFrameworkManager.avShowWindow WindowName(EMP_WINDOW)

In other words, this is a method that is saying 'wake up, another window wants
you to do something'. Typically the command handler or filter that is 'woken up'
would use information passed in the open information strings to determine what
it should do next.

1. Open the Employee Details command handler (iiiVFWO06) in the editor.

2. Add the following logic to create the uShowWindowCompleted method
routine:

Mthroutine Name(uShowWindowCompleted) Options(*Redefine)

#EMPNO := #Com_Owner.avCurrentWindow.OpenlInfo<1>

Fetch Fields(#XG_HEAD) From_File(PSLMST) With_Key(#EMPNO) Val_E
If_Status Is_Not(*okay)

Message Msgtxt('Employee Details not found for : ' + #EMPNO)

Endif

#fullname := #SURNAME + ', ' + #GIVENAME
#com_ancestor.avSignalEvent Withid(Add_List_Entry) Sendainfol(#EMPNO
#DEPSEC_DD.ucurrDept := #deptment

#DEPSEC_DD.uCurrsection := #section

Endroutine

Note:
e DEPSEC_DD is the department / section dropdown component

(iiiVFW14) which was added in exercise VFW074.
3. Review the code in Step 2 and note that:

e Employee number is retrieved using
#Com_owner.uCurrentWindow.OpenlInfo<1> which was set up by the
avShowWindow in the Employee Images for Section command handler.

e Required fields are retrieved from the employee file.

e An avSignalEvent is used, to tell the active filter to add an entry to the
instance list.

4. Compile the changed Employee details command handler — IITVFWO06.

5. Execute your framework and display the Images command handler for a
suitable Department / Section (in which one or more employees have images
recorded).

6. Display the pop-up menu for an employee image and select the Open
Employee Details Window option. A second framework window should be
opened.

Notice that employee details are not displayed for the first employee
requested.

7. Select another employee image and select Open Employee Details Window
again from the conext menu. This time, notice that in the new window an
entry is added to the instance list and the correct employee details are
displayed.

Do you know why this is happening?

Step 4. Ensure Details displayed for first Employee

As explained in Step 3. Change Employee Details Command Handler, the
second window must be open in order to process the uShowWindowCompleted
method. This means your initial avShowWindow in Employee Images for
Section command handler will not be processed, except to open the new
window III_EMP.

Bear in mind that this is simply an exercise that illustrates how to
programmatically show a command in a new window. However, as mentioned
earlier, a user could simple use the framework's Windows menu to open the
Employees business object in a new window, and manually access the required
employee details.

For example:

>
| -,
F P e caao--y o 3
£ Employees (Main Window) '|;
L — i Quick Find ... 3
Open a Mew Window ... k[| Training - 2UL12 ! C:j @ j‘
Close All Windows . | Administration bW Qusyes Print Exit ‘;
Creerall theme Favontes k
& HR Demo Application]
E. i HR. Application k E Open Application i HR Application 7
ws By Name | {55 By Location L
3 | JIHR Application k| 5% | Departments]
- 7
Clear List Sean E- Marcus Instance Example v & Employees 53}
3
¥ i 3

clovee Sumame {E} Programming Techniques Reports

T THTRERAT AT o

A1002 Smythe Johm **
LA e, Smifpefohet T e, o AT

n
o

Sections

|
T

o

The following solution uses a timer component to invoke an avShowWindow to

open a new framework window and then, after a short delay, invoke

avShowWindow again so that the details for the first employee selection are

displayed.

1. With Employee Images for a Section open in the editor, on the Design tab,
drag a timer component onto the panel. The Timer is a non-visual component
and will not be displayed in the Design view.

Define_Com Class(#PRIM_TIMR) Name(#TIMR_1)

2. Select the above line and press F7 to display the Details tab for the Timer.
Change its Interval property to 0. The timer will initially not be started.

Define_Com Class(#PRIM_TIMR) Name(#TIMR_1) Interval(0)

3. Create a NewWin method routine:

a.Move all the code from the uOpenEmpWindow event routine to the
NewWin method routine.

b.In the NewWin method routine delete this line:
#empno := #i_empno
Your NewWin routine should now look like the following:

Mthroutine Name(NewWin)

* define a temporary class #VF_SY 154 reference

Define_Com Class(#vf_sy154) Name(#window) Reference(*dynamic)

* Ask the framework manager to locate a window by name and return a referer
#window <= #avFRAMEWORKMANAGER.avWindow<'IIl_EMP">

* True if second window is open

If (#Window *IsNot *Null)

Message Msgtxt("Window III_EMP is already open')

* Display employee details in III_EMP window
#AvFrameworkManager.avShowWindow Caller(#Com_Owner) For(BUSINE
* Second window needs to be opened and called again after a short delay

Else

* Open a new VLF window and start timer
#AvFrameworkManager.avShowWindow Caller(#Com_Owner) For(BUSINE
Endif

* Free VF_SY 154 reference

#window <= *null

Endroutine

4.Change the NewWin method routine:
a.Add OpenInfol(OPEN) to the second avShowWindow line.

b.In the Else logic, set the Timer Interval to 2000. This will start the timer
with a tick event every 2 seconds.

Your new code should look like the following. New code is highlighted:

Else

* Open a new VLF window and start timer
#AvFrameworkManager.avShowWindow Caller(#Com_Owner) For(BUSINE
Openlnfol(OPEN)

#TIMR_1.Interval := 2000

Endif
5.Save your changes.
6.Complete the uOpenEmpWindow event routine:
a.Change Empno to i_Empno
b.Invoke the NewWin routine
Your code should look like the following:

Evtroutine Handling(#ImageCollection<>.uOpenempwindow)
Uempnum(#i_empno)
#empno := #i_empno
* Open employee details in a new framework window
#com_owner.NewWin
Endroutine

5. Review the NewWin method routine logic.
¢ Create a temporary reference to VF_SY 154, named Windows
e Check if window III_EMP exists and then:
o Message "Window is already open"

o Invoke avShowWindow for business object EMPLOYEES, command
handler DETAILS, in window III_EMPNO and passing EMPNO as
OpenlInfol()

o Else

o Invoke avShowWindow for business object EMPLOYEES, command
handler DETAILS in window III_EMP and pass OPEN as OpenlInfol().

o Message "Window will open shortly"
o Set Timer Interval property to 2000.
e Set Window to null
7. Add the following event handling routine for the Timer Tick:

Evtroutine Handling(#timr_1.tick)
#std_count += 1

If (#std_count = 2)
#com_owner.NewWin
#timr_1.stop

Endif

Endroutine

The Timer is set to an tick interval of 2 seconds (Interval(2000)). This
routine will give a delay of 4 seconds , which on a modern PC will ensure the
second window is running before a second request is made to show the
selected employee. You may need to adjust the TIMR_1.Tick event to allow
for a slower PC.

8. Compile the Employee Images for a Section command handler.

9. Execute your framework. Select a Department / Section with employees

having images and use the pop-up menu Open Employee Details Window.
The new framework window will be displayed and after a short delay, the
correct details for the selected employee should be displayed.

Summary

Important Observations

e avShowWindow opens a new window or interacts with an already open
second window.

e uShowWindowCompleted enables a command handler to perform any
processing required when avShowWindow is used in another window and
command handler.

Tips & Techniques

e An alternative simple solution for this requirement could be a push button on
the Employee Images for Section command handler, which opens a new
window and enables a pop-up menu item. When the Open Employee Details
Window menu option is then used, the second window will already be open.
A timer would not be required.

What I Should Know

e How to handle opening a new window and interacting with it.\

VFW124 - Using Business Object SubTypes
What are SubTypes?

Business objects may optionally have a SubType associated with them.

For example, a business object named BankAccount might be sub-typed as
being a Savings, Check (Cheque) or Investment Account.

The purpose of subtypes is to allow the display of commands (and their
associated tabs) for the business object to be conditioned so that they are only
visible and useable for certain subtypes.

For example, the command/tab named Transactions might only be validly
displayed for Check and Investment accounts.

Likewise, the command/tab named Charges might only make sense when used
with a Savings account.

Subtypes are represented by a code that you can associate with a business object
instance. For example you might choose the codes SAV, CHK and INV for the
three BankAccount subtypes.

You specify how commands and subtypes are related by using the SubTypes tab
associated with the business object. For example:

[Business Object Properties - SubTypes S— I —— o S
| Identification | Icons Visual Styles Fitters | Fiter Settings Commands Enabled Command Display = Custom Properties | SubTypes | Inst 4 F |

Commands | Enabled for SubType(s) Disabled for SubType(s) | Default

[Details ALL NONE Yes

o Approve CHK OTHERS Hewer

n Charges SaY OTHERS MEvEr

] Dates CHE OTHERS Mever

IRy History ALL HONE Mo

I Schedue NV OTHERS Never

W [Transactions

Enter enabled [dsabled business object subtypes as comma separated vakses
Enabled for SubType{s) CHE, INV

Disabled for SubType(s) OTHERS

Close

Subtypes should be no more than 5 characters long, and contain uppercase
letters of the English alphabet (A—Z) or numbers (0-9) only.

The values ALL, NONE, ALLOTHERS and OTHERS should not be used for
SubTypes.

SubTypes are only applicable to instance level commands/tabs.

Any Command that is not enabled for all subtypes needs to have its Default
Command option set to Never

Once you start using subtypes for a business object instance list you should use
them for every instance list entry.

When you insert or update an entry into an instance list you may optionally
specify a SubType to be associated with the entry.
Objective

e To create an Accounting application with an Account business object using
the Instant Prototyping Assistant.

e Account actions to include Details, Approve, Dates, History, Transactions,
Charges and Schedule.

e To define Subtypes Check, Savings and Investment.
e To populate the instance list using a hidden filter.

e To implement Account actions using a common demonstration command
handler.

To achieve these objectives you will complete the following:
Step 1. Create a Prototype Accounting Application

Step 2. Define Accounts Subtypes

Step 3. Create a Hidden Filter for iii_Accounts

Step 4. Create a Dummy Accounts Command Handler
Summary

Before You Begin
Complete exercises VFW030, VFW040 and VFW042.

Step 1. Create a Prototype Accounting Application

1. Start the Framework as a Designer.

2. Start the Instant Prototyping Assistant from the Framework menu.
3. Define an Accounts business object.

4. Define additional actions: Approve, Dates, History, Transactions, Charges
and Schedule

. Associate the actions Details, Approve, Dates, History, Transactions,
Charges and Schedule with Accounts.

Ul

6. Define an iii_Accounting application and associate the Accounts business
object with it.

7. Click Finish to create your prototype.

Save and restart your Framework.

Accounts

_ x i
' Faworites ilter 3 F- .
= oy SR Filter for Accounts Al B BEOBEE B
= i i Accounting This is a prototype of a filter program used to get Account Desaripi,
&l Accounts the Accounts to be displayed. ACCOUNTODO1 Account
+ il HR. Application ACCOUNTODDZ Account
v | 11 HR Application The user would normally enter search values here. ACOOUMTODOS Accounts
C Marcus Instance Example ACCOUNTODDS Account
{2} Programming Technigues | | To see what a filter does, click on the "Emulate ACCOUNTO00S Account
® %, Administration Search” button. ACCOUNTODDS Account
. W | | ACCOUNTODD? Account
Then select one entry in the list of Accounts to see ACCOUNTOO0E Acoount
Program Coding Assistant Images Palette Emulate Search | ACCOUNTONOS Account

ACEOLBITAGLL Ir—

Account - Details (ACCOUNTD004-Account number 4]

[Detaits | o approve | i Charges [V Dates | [T History 1T Schedule | 1T Transactions

This panel will handle the action (or command) named Details for the business object nad
At the moment this panel is a prototype. When you hawve walidated your prototype you wo!

This panel is input capable. You may erase this text and add your own notes (and even pit

Step 2. Define Accounts Subtypes
1. Open the Properties dialog for business object Accounts.
2. Select the Instance List / Relationships tab.

3. Set up the instance list columns as per the table:

Seq | Type Caption Width | Decimals | Edit Code
10 | VisuallID1 | Account Number| 15

20 | VisuallD2 | Account Name |30

30 | AColumnl | Account Type 15

40 | NColumnl | Account Balance | 40 2 2

4. Save and Restart your Framework. Select Accounts business object and fill
the instance list using the Emulate Search button, to confirm your instance list
definition

5. Account Subtypes will be defined based on the following:

Account Type | Subtype
CHECK CHK
SAVINGS SAV
INVESTMENT | INV

6. Open the Properties dialog for Accounts and select the Subtypes tab.

4 Business Oec ropertes Accounts LU i =t |

Identification | Icons Visual Styles | Fiters | Filter Settings | Commands Enabled | Comm 4 # |

Commands Enabled for SubType(s) Disabled for SubType(s) | Default |

5 Dabss ALL HONE Mg

ITy History ALL MOMNE Mo

Iy Transactions ALL HOME Mo 1
| 5 Charges ALL NOME Mo

B Schedue ALL NONE Mo |

D Detaiz ALL HONE Mg .

«" Approve

Enter enabled [deabled busness object subtypes as comma separated values

Enabled for SubType(s) ALl

Dizabled for SubType(s) NONE

7. Select each Command and enable and disable it for Subtypes based on the
following table:

Command | Enable for Subtypes| Disable for Subtypes
Details ALL NONE

Approve CHK OTHERS

Dates CHK OTHERS

History ALL NONE

Transactions | CHK, INV OTHERS

Charges SAV OTHERS

Schedules | INV OTHERS

8. Save and Restart your Framework. In the next step you will create a hidden
filter to populate the instance list, which will enable you to see your Subtypes
working.

Step 3. Create a Hidden Filter for iii_Accounts

You are developing a demonstration application which runs without real data or
files. The hidden filter will populate the instance list with a fixed set of accounts
values.

1. Create a Reusable Part / Object:
Name: iiiVFW39
Description: Accounts Hidden Filter

2. Replace the components code with the following:

* Handle initialization of this filter by redefining the default behaviour
Mthroutine Name(ulnitialize) Options(*Redefine)

* Invoke the ulnitialize behaviour in the ancestor

Invoke Method(#Com_Ancestor.ulnitialize)

* Make this a hidden filter

Set Com(#Com_Owner) Avhiddenfilter(TRUE)

* Make up a set of dummy bank accounts

* Indicate start of list update and set the framework to busy

Invoke Method(#avListManager.BeginListUpdate)

* Clear the list first

Invoke Method(#avListManager.ClearList)

* Make up some dummy accounts

Execute Subroutine(Add) With_Parms('67383940' 'Fred Bloggs' 465.12 SAVIM
Execute Subroutine(Add) With_Parms('73839915' 'Fred Bloggs' 34567.78 INV
Execute Subroutine(Add) With_Parms('74849192' 'Fred Bloggs' 12354.56 CHI
Execute Subroutine(Add) With_Parms('74848949' 'Mary Smith' 1465.12 SAVI
Execute Subroutine(Add) With_Parms('51617283' 'Mary Smith' 354.56 CHEC
Execute Subroutine(Add) With_Parms('71828234' 'Mary Smith' 347.78 INVES
Execute Subroutine(Add) With_Parms('91828373' 'Mary Jones' 5162.45 SAVII
Execute Subroutine(Add) With_Parms('71726364' 'Mary Jones' 167.89 CHECI
Execute Subroutine(Add) With_Parms('84849596' 'Mary Jones' 65363.67 INV.
* Indicate end of list update

Invoke Method(#avListManager.EndListUpdate)

Endroutine

* Add accounts to the list with appropriate subtypes

Subroutine Name(ADD) Parms((#T_ACC *Received) (#T_INAM *Received) (
Define Field(#T_ACC) Type(*char) Length(10) Desc('Account Number")
Define Field(#T_NAM) Type(*char) Length(50) Desc('Account Description')
Define Field(#T_BAL) Type(*Dec) Length(11) Decimals(2) Desc('Account Be
Define Field(#T_TYP) Type(*char) Length(20) Desc('Account Type")

Case Of_Field#T_TYP)

When Value_Is('= SAVINGS")

Invoke Method(#avListManager.AddtoList) Akey1(#T_ACC) Visualid1(#T_A
When Value_Is('= CHECK")

Invoke Method(#avListManager.AddtoList) Akey1(#T_ACC) Visualid1(#T_A
When Value_Is('= INVESTMENT")

Invoke Method(#avListManager.AddtoList) Akey1(#T_ACC) Visualid1(#T_A
Endcase

Endroutine

End_Com

3. Compile the reusable part and review the logic.

a. The subroutine ADD is passed parameters of account number, account
name, account balance and subtype and adds an instance list entry with
appropriate values.

b. Note that AColumn1 contains the visible account type value and Subtype
contains the subtype code.

c. The ulnitialize method execute the ADD subroutine nine times to set up
the instance list.

4. Open the Properties dialog for the Accounts business object. Select the
Filters / Snap In filter settings tab and plug in the hidden filter, iiiVFW39.
Use the Find dialog, which will plug in using Identifier.

5. Save and Restart your framework. Select Accounts and your filter should
now be populated:

@ By O B By

Account Mumber | Account Name | Account Type Account Balance
51617283 Mary Smith CHECK 354.56
67383940 Fred Bloggs SAVINGS 455.12
717263564 Mary Jones CHECK 167.89
71828234 Mary Smith INVESTMENT 347.78
73839915 Fred Bloggs INVESTMENT 34567.78
74343949 Mary Smith SAVINGS 14565.12
74349192 Fred Bloggs CHECK 12354, 56
34349596 Mary Jones INVESTMENT 65363.67
91828373 Mary Jones SAVINGS 5162.45

Step 4. Create a Dummy Accounts Command Handler

Once again, as you are developing a demonstration application, the command
handler will be common for all Accounts actions.

1. Create a new Reusable Part / Panel:

Name: iiiVFW40

Description: Account Command Handler
2. Replace its code with the following:

Function Options(*DIRECT)
Begin_Com Role(*EXTENDS #VF_AC010) Height(242) Width(728)

Define_Com Class(#STD_TEXTL.Visual) Name(#STD_TEXTL) Caption('Ac
Define_Com Class(#STD_OBJ.Visual) Name(#STD_OBJ) Caption('Account T
Define_Com Class(#STD_TEXTS.Visual) Name(#STD_TEXTS) Caption('Bu
Define_Com Class(#PRIM_LABL) Name(#LABL_1) Caption('This example
Define_Com Class(#PRIM_LABL) Name(#LABL_2) Caption('SAV (Saving)
Define_Com Class(#PRIM_LABL) Name(#LABL_3) Caption('CHK (Check)
Define_Com Class(#PRIM_LABL) Name(#LABL_4) Caption('INV (Investme
Mthroutine Name(uExecute) Options(*Redefine)

Invoke Method(#Com_Ancestor.ulnitialize)

Invoke Method(#avListManager.GetCurrentInstance) Akey1(#STD_OBJ) Vist
Endroutine

End_Com

3. Compile the reusable part and review its logic.
a. The user interface contains simply account number, name and subtype.

b. The uExecute method, retrieves these three values for the current instance
list entry.

4. Open the Properties dialog for Accounts. Select the Commands Enabled tab.
5. Select each command and plug in the command handler, iiiVFW40.

Plug in the Approve command handler using the Find dialog, so the plug in
uses the Identifier. Note the Identifier name and plug this in to all other
commands for Accounts.

6. Save and Restart your Framework.

7. Test your Accounting application which demonstrates the use of Subtypes.

Select instance list entries for each subtype and confirm the correct
commands are enabled.

Summary
Important Observations
e Subtypes are optional.

Tips and Techniques

e Subtypes provide an easy way to control the commands which are enabled
for different types of the same object.

What You Should Know

e How to implement Subtypes in your own applications.

VFW126 - Using Space Objects (Optional)

Introduction to Spaces

Space objects are primarily designed to support 'batch’ style functions that
process large volumes of information. You can load the required information
into a space at the start of a function and then repeatedly (re)access the indexed
space more efficiently than you can access the DBMS directly.

Space objects are unique within a process by their name. Space objects cannot
be shared between processes. Space objects are not persistent. A Space object
and its data content cease to exist when the process that owns them ends.

Space objects are defined and accessed using Built In Functions (BIF). A BIF is

a call to program which has a defined set of inputs and outputs. BIFs are defined
in the Repository and this means that the editor supports BIFs with a predefined

set of input and output parameters.

BIFs are accessed using the USE command.

Objectives

A Salary command handler for the Reports business object will display a list of
all employees. The Salary command handler also defines a space object. All
employees are added to the space object, keyed by their department code and
employee number.

A second command handler, Employee Query, will read entries in the space
object by department code and display a list of currently selected employees in
this department.

The space object exists within a single Windows process. For a VL. Frameworks
application, this means all components running within a Framework could
access the space object, once it has been created.

Reports

=gs]]

. [x
C '.H' Favorites B Report : Salary
[# % HR Demo Application ..'..
= fiJ ¥ HR Application (4 Employee Query | = Salary | [weekly _
ii] Departments Employ... Employee Sumame |Elr¢i:'.'aeﬂl.'mﬂ...| Employee 5a... | Selected #
Employees AJOTD BROWN VEROMICA 50, 125,00 T
1), Reparts ADOSD BLOGGS FRED JOHMALAN 20,045.91
B i Transport Apphication A0193 SIMPSOM FRED 35,000.04
E 1 HR Application ADe07 JOMNES AMNE 34,213.04
Al001 JOMNES BEN 2,345.82
= [Marcus Instance Bxample | | 000 gwyhe I0HN 25,000.04
[+ iz Programming Technigues | a3003 SMITHE Robert 31,000.04 |
(@ 1%, Administration AL004 SMITHSON PALL 21,000.04 |
A1005 SMITHS PETER 46, 700.04
A1006 SMITHERS Ak 25,000.04
A007 SNELL GEOREGE 26, 780,04
A 1008 SMEDDON ALLAN 450,000.04
Al005 SMASHALL CAMIAN 31,000.04 k-
Al1010 PERRY WILLIAM 60,000.04
Ald1l PERRIN CHRISTOPHER 25,000.04
Al012 PALL PATRICK 26,456.04
AlD13 PATTISON GEDRGE TE,977.04
AlD14 MOORE JOHN 58,000, 04
Al015 WOODSs BRADLEY 313,000.04
A1016 TURNER JAcK 22,000.04
A1017 NEAVE GARY 25,600.04
AlD1B ZACHARIA PALL 25,900.04
Al1019 DICKEMS CHARLES 45,000.04
A1020 DOUGLAS ADAM PETER 121,500.04 =
4 [[]
Total Salary 187,577.20
Messages| Ready | Llecal | ENG | JVORY1Z | Bf0Bf12 | 16:04 i

To meet these objectives you will complete the following steps:

Step 1. Create the Salary Command Handler

Step 2. Create the Employee Query Command Handler.

Step 3. Add Logic to the Employee Query Command Handler

Summary

Before You Begin

Complete exercises VFW030, VFW040 and VFWO042.

Step 1. Create the Salary Command Handler

1.

Create a new Reusable Part / Panel.:
Name: iiiVFW42

Description: Salary Command Handler for Reports

2. Give the reusable part an ancestor of VF_ACO010

3. Use the Design ribbon to give iiiVFW40 an Attachment manager

4. Drop a Panel component onto the bottom of the main panel. Change the

Name to BOTTOM_PANEL.

. Drop a List View into the center of the main panel, so that it occupies the rest

of the space.

. If necessary use the Layout Helper tab to confirm the position of the child

panel and list view.

7. Save the design.
8. If field TOTSALARY does not already exist, create a new Packed Decimal

field, with a length of 15 and 2 decimal places. Give it an Edit Code of 2.
Drag and drop field TOTSALARY onto the right hand side of
BOTTOM_PANEL. Resize the field as necessary.

. Locate the file PSLMST in the Repository and drag and drop fields EMPNO,

SURNAME, GIVENAME and SALARY into the List View. Finally drop
field STD_TEXTS onto the list view.

10. Change the Caption for the STD_TEXTS column to Selected and change

CaptionType to Caption.

11. Create an Initialize event for the list view.

12. Save the design.
13. Switch to the Source tab.

14. Add the following code to the list view Initialize event handling routine to

define the space object:

#std_text := [IIVFW42

* Create Space with the name entered in std_texts field

Use Builtin(CREATE_SPACE) With_Args(#std_text) To_Get(#STD_CMPAR
* Define Space Cells

Use Builtin(DEFINE_SPACE_CELL) With_Args(#STD_TEXT DEPTMENT

Use Builtin(DEFINE_SPACE_CELL) With_Args(#STD_TEXT EMPNO KEY
Use Builtin(DEFINE_SPACE_CELL) With_Args(#STD_TEXT GIVENAME)
Use Builtin(DEFINE_SPACE_CELL) With_Args(#STD_TEXT SURNAME)
Use Builtin(DEFINE_SPACE_CELL) With_Args(#STD_TEXT SECTION)
Use Builtin(DEFINE_SPACE_CELL) With_Args(#STD_TEXT SALARY)

The code above has created a space object with same name as this
component. The name can be any alphanumeric value, but must be unique
within the Windows process (that is, within the job).

Hint: Type Use Builtin(DEFINE_SPACE_CELL) and then press F4 to
display the Command Assistant.

Expand the WITH_ARGS parameter and note that the editor shows the
details for the parameters required.

That is, Space Object Name and so on.

i ' —— — — T — — - -

) Assistant L. —

ze Builtin L 2 ith_Argsi3 E
s Usze Builtin{DEFINE_SPACE_CELL) With_Args(#5TD_TEXT DEPTMEMNT KEY)

BUILTIM DEFIME_SPACE_CELL ‘Q_‘.;:‘
- WITH_ARGS #5TD_TEXT DEPTMEMT -
Space Object Mame #5TD_TEXT| Commands | Expression | yar
Mame of prototype field (without # sign) DEFTMENT Resuiting expression
Cell attributes (eg KEY DESCEND NOCASE) KEY HSTD_TERT

- TO_GET
Return Code (OK or ER)

15. Define a Group_By for all the employee fields required. Different fields are
required for the list view and the space object.

Group_By Name(#empdata) Fields(#EMPNO #SURNAME #GIVENAME #D

16. Complete the LTVW_1.Initialize event routine by populating the list view
and inserting each employee into the space object:

#std_texts := *blanks

Clr_List Named(#LTVW_1)

#std_count := *zeroes

Select Fields(#empdata) From_File(pslmst)

Add_Entry To_List(#LTVW_1)

* Add to Space object

Use Builtin(INSERT_IN_SPACE) With_Args(#STD_TEXT #DEPTMENT #E

#std_count += 1
Endselect
Message Msgtxt('Space object IITVFW42 created with ' + #std_count.asstring -

17. The command handler should display the Total Salary for currently selected
entries in the list view.

Create ItemGotSelection and ItemLostSelection event routines for the list
view and add appropriate logic in each to maintain TOTSALARY.

The STD_TEXTS column should contain YES when the row is selected.
Your code should look like the following:

Evtroutine Handling(#LTVW_1.ItemGotSelection) Options(*NOCLEARMES
#std_texts :='YES'

Upd_Entry In_List(#LTVW_1)

#TOTSALARY :=#TOTSALARY + #salary

Endroutine

Evtroutine Handling(#LTVW_1.ItemLostSelection) Options(*NOCLEARME¢
#std_texts := *blanks

Upd_Entry In_List(#LTVW_1)

#TOTSALARY :=#TOTSALARY - #salary

Endroutine

18. Compile the new command handler.
19. Execute the Framework as Designer.
a. Open the Properties dialog for the Reports business object.

b. Select the Commands Enabled tab, select the Salary action and plug in the
Salary command handler, iiiVFW42.

c. Use the Find dialog, so that the plug in uses the Identifier.
20. Save and Restart the Framework.

21. Select the Reports business object. Right click on the Weekly command
handler and select Salary from the context menu.

22. Test the Salary command handler by selecting a number of employees, while
holding down the Control key. Note Total Salary shows the total for selected
employees.

23. Change the selected employees and ensure that the Total Salary is

recalculated.

Step 2. Create the Employee Query Command Handler.
1. Create a new Reusable Part / Panel:

Name: iiiVFW43

Description: Reports Employee Query Command Handler
2. Give the reusable part an ancestor of VF_ACO010

3. This command handler will display a list of employees from the space object
selecting entries using the department code key.

Total Salary is shown for selected employees.

MVFW46 - Select from Space =
Department Code | ABCD Select

_Employee N... | Employee Surname | Employee Given N... | Department ... | Section Code | Employee !
i * ABCDE ABCDEFGHIIKLMMNO,,, ABCDEFGHIIKLM, ., ABCD AB 123,456,7

4 Tl | }

Total Salary 1,234,567,890,123.12

Note that the Employee Query displays all fields from the space object,
which is different to the list view in the Salary command handler.

4. Use the Design ribbon to give iiiVFW43 an Attachment manager.

5. Drop a Panel component at the bottom of the RP's panel and change the new
panel's Name to Bottom. Adjust its height as required.

6. Drop a Panel onto the top of the RP's panel and change the new panel's Name
to Top. Adjust its height if required.

7. Drop a list view into the center of the RP's panel. If necessary use the Layout
Helper tab to ensure that the child components are correctly attached.

8. Locate the file PSLMST in the Repository and drop fields EMPNO,

SURNAME, GIVENAME, DEPTMENT, SECTION and SALARY into the
list.

9. Create an ItemGotSelection and ItemLostSelection event routine for the list
view.

10. Drop field TOTSALARY onto the right hand side of the panel Bottom.

11. Select the panel Top and use the Design ribbon to give it a Flow Across
manager. Open the Layout Helper tab and note that the default setting for
Flow Rules is LeftToRight, which is what is required.

12. Select the Top panel on the Design view. On the Layout Helper, select the
Category - Margins on the Layout Manager Details tab. Use the All setting
to give children on this panel a margin of 6 pixels on all four sides.

13. Drop the field DEPTMENT onto the panel Top. Change its Name to
DEPT_IN

14. Drop a Push Button component onto the Top panel. Give it a Caption of
Select and change its Name to PHBN_SELECT.

15. Create a Click event for the push button.

16. Save the reusable part.

Step 3. Add Logic to the Employee Query Command Handler
1. Select the Source tab.
2. Complete the PHBN_SELECT.Click event routine to:

Initialize work fields and use the SPACE_OPERATION BIF and
CHECKEXISTENCE to ensure the space object exists.

Add an If / Else / Endif for STD_CMPAR = OK
Issue an error message if the space object is not found.

Evtroutine Handling(#PHBN_SELECT.Click)

#std_text := [IIVFW41

#TOTSALARY := *zeroes

* Check Space exists

Use Builtin(SPACE_OPERATION) With_Args(#std_text CHECKEXISTENC
If (#std_cmpar = OK)

* Populate list view form space object

Else

Message Msgtxt('Space object IIIVFW42 does not exist')
Endif

Endroutine

3. To populate the list view, add the logic:

e (Clear the list view

e Use SELECT_IN_SPACE to retrieve entries using DEPT_IN as key.
e Return the SELECT IN_SPACE status into field STD_CMPAR.

e While STD_CMPAR is equal to OK

¢ Add an entry to the list view

e Retrieving all space object entries for the department code = DEPT_IN, must
be achieved by then using the SELECT_NEXT_IN_SPACE. Note this also
returns status as STD_CMPAR.

Your code should now look like the following. New code is highlighted in red.
Evtroutine Handling(#PHBN_SELECT.Click)
#std_text := [IIVF31

#TOTSALARY := *zeroes
* Check Space exists

Use Builtin(SPACE_OPERATION) With_Args(#std_text CHECKEXISTENC
If (#std_cmpar = OK)

Clr_List Named(#LTVW_1)

Use Builtin(SELECT_IN_SPACE) With_Args(#STD_TEXT #DEPT_IN)
Dowhile ('#STD_CMPAR *EQ OK')

Add_Entry To_List(#LTVW_1)

Use Builtin(SELECTNEXT_IN_SPACE) With_Args(#STD_TEXT #DEP']
Endwhile

Else

Message Msgtxt('Space object IITVFW31 does not exist")

Endif

Endroutine

4. Complete the Reports Employee Query command handler logic by making
the List View ItemGotSelection and ItemLostSelect event routines maintain
Total Salary.

Your code should look like the following:

Evtroutine Handling(#LTVW_1.ItemGotSelection) Options(*NOCLEARMES
#TOTSALARY :=#TOTSALARY + #salary

Endroutine

Evtroutine Handling(#LTVW_1.ItemLostSelection) Options(*NOCLEARME¢
#TOTSALARY :=#TOTSALARY - #salary

Endroutine

5. Compile the Reports Employee Query command handler.
6. Execute the Framework as Designer.
7. Open the Properties dialog for the Reports business object.

8. Select the Commands Enabled tab, select the Employee Query action and
plug in the command handler iiiVFW43. Use the Find dialog so that the plug
in uses the Identifier name.

9. Save and Restart the Framework.

10. Select the Reports business object. Right click on the Weekly tab and run the
Salary command handler.

11. Again, use the right mouse menu to run the Reports, Employee Query
command handler and display employees from the space object for
department ADM.

12. Restart the Framework and this time run the Reports / Employee Query
command handler immediately. The "Space object does not exist" error
message should be shown in the Frameworks status bar.

13. Based on what you've learnt in an earlier exercise, you should appreciate
that if required you could add framework switch logic to Employee Query, to
run the Salary command handler automatically, when the space object does
not exist.

Summary

Important Observations

e While using INSERT_IN_SPACE or SELECT_IN_SPACE Built-In
Functions, the field values must be specified in the same sequence as the
cells in the space were defined.

Tips & Techniques

¢ In high volume repeated commands avoid using visually defined fields as
mapping values unless absolutely necessary. When a field has been visually
defined, mapping into or out of its value is significantly slower because of
the underlying visual context.

What I Should Know

e How to use SPACE Built-In Functions to store and retrieve static data in PC
memory.

VFW130 — Set up the VL. Framework for Client/Server Operation

Objectives

e To demonstrate how to enable a framework for client/server operation.
To achieve this objective you will complete the following:

Step 1. Enable Framework for Client/Server

Step 2. Check In Files to the Server

Step 3. Test the Framework in Client/Server mode

Before You Begin

This exercise can only be completed if you have access to an IBM i or Windows
server based LANSA system.

This exercise uses an IBM i (iSeries) server.

The LANSA for iSeries partition must have the Personnel System Files (save
file PERSYS) imported using the Administration / Initialize Partition option.
This will import files such as DEPTAB, SECTAB, SKLTAB, PSLMST and
PSLSKL which are referenced by a number of these exercises. The files all
contain sample data.

Complete exercises VFW030, VFW040, VFW042 and VFWO054. In VFW054
you created two files that are used in Step 2: iiiEmpNotes — Employee Notes
and iiiEmpImages — Employee Images.

Step 1. Enable Framework for Client/Server

This step concerns changing settings at framework level.
1. Start the Framework as Designer. Open the Framework Properties dialog:

! F k Administrati 3
.(ramework) | [Administration)

{ New) v S

F

| (Properties...) |
‘el T ok’
| [Applications) [
mmands...)
e W R o

2. Select the User Administration Settings tab.
In the Sign on Settings group box, in the End Users must Signon to this
Framework dropdown list, select in MS-Windows applications only.

3. Select the radio button, Users Sign on to a Remote Server to Use the
Framework.

MWﬁWWA

:

~Sign on Settings >

b

g End Users must Signon to this Framework Gn M5-Windows applications only v) i
L | Users Sign on Locally to Use the Framework Maximum Signon Attempts Allowed {
User Can Change Own Password If Maximum Allowed Sign on Attempts Exceeded—j‘

L~ [#] Advize User with a Message 3
il |#| Users Sign on to a Remote Server to Use the Framewark) F
EL - — (| Framework Fatal Error P
Users May Work Offline if the Remote Server Is Not Available 5 i
gwmmww ‘_\‘__u_____‘.—-hh,_‘._;—'\._ﬁj

4. Save and Restart the VL Framework.
5. On the Log On form, click the Work Offline button:

6. When the framework has started, select Servers from the Administration
menu.

7. Click on the New button to define a server:

B6CEA535FEF | 4243432 ICSDEGZ7 10323

20130114-163441-IVORY 13

8. On the Identification tab, give the server definition any suitable Caption such
as Test Server.

9. Select the Icon tab and give the server definition any suitable icon.

10. Select the Server Details tab.
Click on the LANSA Comms. Admin button to find the Partner LU to use for
the IBM i server.

If necessary, first define the server in the LANSA Communications

Administrator.
To do this you must know the server name or IP address and the port number

used by the LANSA Listener.

g =
I
.
Route Table Host Routes Advanced Help

Commurscations Route Table and Path:
C:\Program Files (x85) \LANSA\Connect | ROUTE.DAT

[Hest Routes

Lﬂ-ﬂ'uhw‘“%w—uy“

[Pty Larme

A routing table entry enables LANSA communications to connect to a
LANSA Listener on a server using the required Qualified Name and Port.

11. Set up the server details shown based on your own server. For example:

Server Type LANSA for System i
Server Name EARTHD12
Partition TRN

Partition is enabled for RDMLX Yes

Upper and Lower Case Password Yes

B restsenve | Corver rype: LANSA for Systesn | - I DBCS Capable =
Server Name: EARTH13 I Commitment Control l
Partition TRN | Divert Lods
__._ S - / Partition is enabled for ROMLY)

Server-Chent Translation Table: 08 Use Windows Credentals |
Selection Black Size: ot € Upper and Lower Case Password)
Selection Limit: 10000 + Show on Connect Didlog

e e e e e S SR Y SN B |

If necessary change the settings shown to suit your partition definition and
password standards.

12. Close the Servers dialog and Save and Restart the Framework.

13. In the Log On dialog enter your User ID and Password for the IBM i. If you
are completing these exercises using a Slave Workstation installation, you
should use your Visual LANSA User ID and Password.

14. When your framework has started, your application will now access all files
on the IBM i server.

The local files in the Microsoft SQL Server database will no longer be
accessed.

15. Close your framework which will currently produce errors if you access
your iii HR Application.

Step 2. Check In Files to the Server

In exercise VDWO054 you created two new files:

iiiEmpNotes — Employee Notes

iiiEmpImages — Employee Images

In order to run your iii HR Applications in client/server mode, you must check
in and compile your new files. The check in and compile will create physical
and logical files and OAM programs.

Since you are using an RDMLX-enabled partition, which is required for these
exercises, the compile will produce an RPG OAM program for RDML-enabled
functions and components, and a C OAM program for RDML X-enabled
functions and components.

Note that these new tables will not contain data.

1. On the Repository tab, select files iiiEmpImages and iiiEmpNotes and use
the context menu to select Check in:

4 1]
) iiiDepartments Department Table 3
; iiiEmpHolidays Ermnployee Holidays 4
3 ! iiiEmplmages Ermploves Imanes i
% liEmployees Emplg [= Open 4
¢ ; iiiEmphotes Emple B Compile ;,:
d g
]
g d K 3 Delete from Repository i
; L
3 : M Find
; M
0 B Quick Export
P <& Checkln
3 Q ¢8| Check Out
hER . Check Outhli‘fadunl}r

2. In the Check in Options dialog, expand the Files entry, select both files and
click the References button:

§ Check in Options
IO

4 [Files (2
: |iii.EmpImag... Employee Images _-\)
Motes Empl

File check in options

" Compile only if necessa

ee Motes

>

|

W Compile file ;g

™y

- g
liiiEm 3

" Rebuild table
" Rebuild ind

3. Select the new fields (field names beginning iii) and click the Add for Check
in button:

Name Description Allow check-in | Qualifier
] iiEmplmages Employee Images W D13TRMLIB
- W BLANKS Blank / blanks vanable W
- W *ZERD Zero (0) variable '
bR @@UPID Field update / access identifier W
r @ EMPNO Employee Number '
b fiiiempimg Employee Image w’ |
Lo miEmpMotes Employee Motes W D13TRMLIB
- W BLANKS Blank / blanks vaniable W
W CZERD Zero (0) variable W
O @@uPID Field update / access identifier '
b @ EMPNO Employee Number w
b GiLneCnt Line Count ' |
b [® liiiNtelne Mote Line v |
b [iiibgteSgn Mote Sequence v |
b fiibteType Mote Type ' |
WWMWHW’_“H" =~ i

4. Close the Local Cross References dialog. Note that the fields have been
added to the check in list of objects:

] HI: che.c.lt.in opli:;ns
|| Files (2) ¥ |[Compile file
_- inEmplmag... Employee Images Compile only if necessary
| iEmpMotes Employee Notes 7| Rebuild table
i 7| Rebuild indexes and views

B jwempimg Employee Image 7| Rebuild OAMs
iliLneCrit Line Count

inMtelne Mote Line

Strip debug information

inMteSgn Mote Sequence
iiiNteType Mote Type

"
"
. Delete 55 file
"

Produce source listing
Ignore Decimal Data Error

5. Select the check in options to Rebuild table, Rebuild Indexes and Rebuild
OAMs and click OK to start the check in.

Note: The Delete $$ file option will not be required as these are new files.

Usually, whenever you check in and compile a file, this option should be
checked to delete the copy file created by the previous check in and compile.

6. Check the Check In tab to confirm your fields and files were checked in
successfully.

= o | Job Status Description Results Currently Processing Started g

_‘ 4 |Completed Chack in T abjects 0 fatal errors - 0 wamings EARTHI3 - RDML Compiles 15/01/2013...1

Obyects 1

® jiiempimg Emgployee Image i

B jilneCnt Line Count j"

® jiikrelne Meite Line %

® jiilteSqn Mote Sequence 3

B iiMreType Nete Type 3

iiiEmp'Inugrs qu;ll-c:,'ﬂ rmagﬁ {

E _ uiEmphotes Employee Nates }
-

: 2 £

. Compile § Checkln o Check Out e Propagation = Fgllrmport | i Help 1-'-',

7. You should now be able to execute your iii HR Application in client/server
mode to the IBM i server.

Step 3. Test the Framework in Client/Server mode

1. Execute the Framework as user. Note that the Log On dialog requires a log in
to the server. As a user you cannot run the Framework offline unless this
option is configured by the designer.

2. Log in with your IBM i user id and password.

3. Select the iii HR Application and work with Departments, Employees,
Reports and Sections. All your filters and command handlers should perform
as before.

Employee Brief Notes, Employee Notes, Employee Images and Employee
Images for a Section will require you to set up new data, as you are now
using the files on the IBM i server.

4. Close your Framework.

	Windows Applications with VLF
	About the Exercises
	Install the Tutorial Files
	Tips for doing the Exercises

	VFW005 � Basic Windows Controls
	Step 1. Create a Form
	Step 2. Add Controls to a Form
	Step 3. Create Tab Folder Form
	Summary

	VFW010 � A Tab Folder Framework
	Step 1. Create a Form
	Step 2. Define a Tab Folder Framework
	Step 3. Compile and Execute the Form
	Summary

	VFW020 � Execute a Visual LANSA Framework Application
	Step 1. Execute the Visual LANSA Framework
	Step 2. Execute an Application
	Step 3. Using a Filter to Find an Employee
	Step 4. Using Commands and Command Handlers
	Summary

	VFW030 � Create a Prototype
	Step 1. Understand the Requirements
	Step 2. Create a Prototype iii HR Application
	Step 3. Define Filters and Command Handlers for Employees
	Step 4. Refine the Reports Business Object
	Summary

	VFW040 � Snap in Real Filters
	Step 1. Create Your Real By Name Filter
	Step 2. Snap in the Employees By Name filter
	Step 3. Review Filter Code
	Step 4. Create a Real Employees By Location filter
	Summary
	VFW040 � Appendix

	VFW042 � Snap in a Real Command Handler
	Step 1. Create a Real Command Handler
	Step 2. Review Command Handler code
	Step 3. Snap in Real Command Handler
	Summary

	VFW044 � Add Instance List Columns
	Step 1. Add columns to the Instance List
	Step 2. Change the Filter
	Summary

	VFW050 � Basic Combo Box Processing
	Step 1. Add a Combo Box to the Panel
	Step 2. Set up the Combo Box
	Step 3. Test the Combo Box
	Summary

	VFW052 � Build a Working List of Selected Items
	Step 1. Create the Weekly Command Handler
	Step 2. Handle Selected Items
	Step 3. Build a Dynamic Working List of Selected Items
	Step 4. Build a Static Working List of Selected Items
	Summary

	VFW054 � Edit Text in a Memo / Edit Box
	Step 1. Create a Table to Store Employee Notes
	Step 2. Create Brief Notes Command Handler
	Step 3. Create the Command Handler Logic
	Step 4. Implement Memo Box Copy/Paste Methods (Optional)
	Summary

	VFW056 � Process a List in Sorted Order
	Step 1. Create Sorted Command Handler
	Step 2. Complete the Command Handler logic
	Summary

	VFW060 � Using a Tree View
	Step 1. Create Tree View Form
	Step 2. Displaying Tree View Data.
	Step 3. Add Fields to Tab Sheets and Item Got Selection logic.
	Step 4. Fill the Tree View on Demand
	Step 5. Add Icons to the Tree View
	Summary

	VFW062 � A Tree View with Columns
	Step 1. Create Form iiiVFW11 - Tree View with Columns
	Step 2. Complete Form iiiVFW11 - Tree View with Columns
	Step 3. Add Pop-Up Menu to Show/Hide Columns - Optional
	Summary
	VFW062 - Appendix A

	VFW070 � Create a Reusable Part Object
	Step 1. Create Time Employed Reusable Part
	Step 2. Implement Time Employed calculation in Employee Details Command Handler
	Summary

	VFW072 � Create a Department Dropdown Reusable Part
	Step 1. Create Department Dropdown Reusable Part
	Step 2. Make the Reusable Part Useful
	Step 3. Add Department Dropdown to Employee Details command handler
	Step 4. Complete Command Handler to use Department Dropdown
	Step 5. Document your Event and Property
	Summary

	VFW074 � Create a Compound Reusable Part
	Step 1. Create Department / Section Dropdown Reusable
	Step 2. Make the Department / Section Dropdown Useful
	Step 3. Modify Department Dropdown
	Step 4. Implement the Compound Reusable Part
	Summary

	VFW080 � Using an Explorer Component
	Step 1. Create Employee Images File
	Step 2. Create the Find Employee Image Form
	Step 3. Make the Find Image Form Useful
	Step 4. Create the Employee Image Command Handler
	Step 5. Complete the Image Command Handler
	Step 6. Plug In and Test the Image Command Handler
	Summary

	VFW082 � Toolbars, Menus and Pop�up Menus
	Step 1. Create Menu and Toolbars Form.
	Step 2. Make the Menus Useful
	Step 3. Add a Pop-up Menu to the Status Bar
	Summary

	VFW084 � A Business Object Browser and Detailer
	Step 1. Create Employee Skills Command Handler
	Step 2. Create Business Object Detailer.
	Step 3. Complete the Skills Browser
	Summary

	VFW090 � Field Visualizations
	Step 1. Define a Picklist for iiiGRADE.
	Step 2. Define a Dynamic Picklist for SKILCODE
	Step 3. Link Dynamic Picklists
	Step 4. Implement Dynamic Picklists in By Location filter
	Step 5. Create an AutoComplete Visualization for Surname
	Summary
	VFW090 � Appendix A

	VFW100 � Define a Parent/Child Instance List
	Step 1. Define New Business Objects
	Step 2. Create a Hidden Filter for _Departments.
	Step 3. Create a Relationship Handler to Load _Sections
	Step 4. Access the Properties of Hidden Child Objects
	Summary

	VFW102 � Field Visualizations in a Grid
	Step 1. Define New Fields
	Step 2. Create the Resources for Section Command Handler
	Step 3. Create a Prompt Form for Employee Number
	Summary

	VFW104 � Simple Keyed Collections
	Step 1. Create the Employee Images for Section Command Handler
	Step 2. Create an Employee Image Component
	Step 3. Make Sections Business Object Visible
	Step 4. Implement the Employee Image component.
	Step 5. Record the Switch History using the Virtual Clipboard
	Step 6. Use the Switch History to Return to the Original BO
	Summary

	VFW106 � Using a List Collection
	Step 1. Create the Employee Object.
	Step 2. Create the Monthly Command Handler
	Step 3. Create the Selected Employees Viewer
	Step 4. Complete Monthly Command Handler
	Summary

	VFW110 � Simple Drag and Drop
	Step 1. Create Transfer Section to Department Command Handler
	Step 2. Add Logic to the Transfer Sections to Department Command Handler.
	Step 3. Test the Transfer Section to Department Command Handler
	Summary

	VFW112 � Drag and Drop between Components
	Step 1. Create Employee Payload Object
	Step 2. Create Reusable Part Section Employees
	Step 3. Create the Transfer Employees to Section Command Handler
	Step 4. Complete the Section Employees Component
	Step 5. Complete the Transfer Employees to Section Command Handler
	Summary
	VFW112 � Appendix

	VFW120 � Using Hidden Commands
	Step 1. Add Reverse as a Hidden Command for Employees
	Step 2. Create the Reverse Command
	Step 3. Plugin and Test Reverse Command
	Summary

	VFW122 � Launching a VLF Window
	Step 1. Extend Pop-Up Menu in Employee Image Object
	Step 2. Enhance Employee Images for Section Command Handler
	Step 3. Change Employee Details Command Handler
	Step 4. Ensure Details displayed for first Employee
	Summary

	VFW124 � Using Business Object SubTypes
	Step 1. Create a Prototype Accounting Application
	Step 2. Define Accounts Subtypes
	Step 3. Create a Hidden Filter for iii_Accounts
	Step 4. Create a Dummy Accounts Command Handler
	Summary

	VFW126 � Using Space Objects (Optional)
	Step 1. Create the Salary Command Handler
	Step 2. Create the Employee Query Command Handler.
	Step 3. Add Logic to the Employee Query Command Handler
	Summary

	VFW130 � Set up the VL Framework for Client/Server Operation
	Step 1. Enable Framework for Client/Server
	Step 2. Check In Files to the Server
	Step 3. Test the Framework in Client/Server mode

