
Developing	Windows	Applications
with	Visual	Framework
Tutorials

Visual	LANSA	Frameworks	(VL	Framework)	provide	a	powerful
application	framework	for	rapidly	prototyping	and	developing	both
Windows	and	Web	applications.
The	exercises	in	this	tutorial	introduce	the	fundamental	skills	needed
to	develop	Windows	applications	using	the	Visual	LANSA
Framework.

The	exercises	in	this	tutorial	are:
VFW005	-	Basic	Windows	Controls
VFW010	–	A	Tab	Folder	Framework
VFW020	–	Execute	a	Visual	LANSA	Framework	Application
VFW030	–	Create	a	Prototype
VFW040	–	Snap	in	Real	Filters
VFW042	–	Snap	in	a	Real	Command	Handler
VFW044	–	Add	Instance	List	Columns
VFW050	–	Basic	Combo	Box	Processing
VFW052	–	Build	a	Working	List	of	Selected	Items
VFW054	–	Edit	Text	in	a	Memo	/	Edit	Box
VFW056	–	Process	a	List	in	Sorted	Order
VFW060	–	Using	a	Tree	View
VFW062	–	A	Tree	View	with	Columns
VFW070	–	Create	a	Reusable	Part	Object
VFW072	–	Create	a	Department	Dropdown	Reusable
VFW074	–	Create	a	Compound	Reusable	Part
VFW080	–	Using	an	Explorer	Component
VFW082	–	Toolbars,	Menus	and	Pop–up	Menus
VFW084	–	A		Business	Object	Browser	and	Detail
VFW090	–	Field	Visualizations

its:lansa098.CHM::/LANSA/VFW005_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW010_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW020_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW030_BEGIN.htm
its:lansa098.CHM::/LANSA/VFWEng01_0035.htm
its:lansa098.CHM::/LANSA/VFW042_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW044_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW050_BEGIN.htm
its:lansa098.CHM::/LANSA/VFWEng01_0055.htm
its:lansa098.CHM::/LANSA/VFW054_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW056_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW060_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW062_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW070_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW072_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW074_BEGIN.htm
its:lansa098.CHM::/LANSA/VFWEng01_0095.htm
its:lansa098.CHM::/LANSA/VFWEng01_0100.htm
its:lansa098.CHM::/LANSA/VFW084_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW090_BEGIN.htm

VFW100	–	Define	a	Parent/Child	Instance	List
VFW102	–	Field	Visualizations	in	a	Grid
VFW104	–	Simple	Keyed	Collections
VFW106	–	Using	a	List	Collection
VFW110	–	Simple	Drag	and	Drop
VFW112	–	Drag	and	Drop	between	Components
VFW120	–	Using	Hidden	Commands
VFW122	–	Launching	a	VLF	Window
VFW124	–	Using	Business	Object	SubTypes
VFW126	–	Using	Space	Objects	(Optional)
VFW130	–	Set	up	the	VL	Framework	for	Client/Server

	
Edition	Date	August	11	2014
©	LANSA

its:lansa098.CHM::/LANSA/VFW100_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW102_BEGIN.htm
its:lansa098.CHM::/LANSA/VFWEng01_0125.htm
its:lansa098.CHM::/LANSA/VFW106_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW110_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW112_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW120_BEGIN.htm
its:lansa098.CHM::/LANSA/VFW122_BEGIN.htm
its:lansa098.CHM::/LANSA/VFWEng01_0895.htm
its:lansa098.CHM::/LANSA/VFWEng01_0900.htm
its:lansa098.CHM::/LANSA/VFW130_BEGIN.htm

About	the	Exercises
Who	Should	Use	the	Exercises?
These	exercises	have	been	written	for	LANSA	developers	who	have	completed
the	Visual	LANSA	Fundamentals	training.	Basic	Repository	and	RDML
programming	skills	are	required.	You	should	have	completed	the	Visual	LANSA
User	Interface	Tutorial,	Editor	Tutorial,	Repository	Tutorial	and	the	RDML
Programming	using	Forms	Tutorial	before	starting	these	exercises.
These	exercises	will	expand	upon	the	basic	form	programming	skills	learned	in
the	Fundamentals	tutorials.

How	Many	Developers	Can	Use	the	Exercises?
Except	if	you	are	using	a	trial	version	of	Visual	LANSA	without	a	development
license,	there	is	no	limit	to	the	number	of	developers	who	may	use	the	exercises
at	the	same	time	in	the	same	partition.	However,	it	is	important	that	each
developer	has	a	unique	identifier	for	their	own	work	as	noted	below.
If	you	have	a	development	license:

To	allow	for	more	than	one	developer	to	do	the	exercises	in	the	same
partition,	all	LANSA	object	names	are	prefixed	with	iii	which	represents	a
unique	three	character	code	assigned	to	each	exercise	user.	For	example,	if
your	name	is	John	David	Smith	you	can	use	the	characters	JDS.	When	asked
to	create	a	form	named	iiiVFW01,	you	will	create	a	form	named
JDSVFW01.

If	you	are	completing	more	a	LANSA	exercise	more	than	once,	and	you	are
asked	to	create	another	iiiVFW01	form,	you	can	simply	use	a	different	set	of
characters	for	iii.
Always	remember	to	replace	iii	with	your	unique	3	characters	when	creating
objects	in	LANSA.	You	will	not	always	be	reminded	to	make	this
substitution.

If	you	are	using	LANSA	in	trial	mode:
Only	one	developer	can	do	the	exercises	in	the	same	partition	because	object
names	must	be	unique.	In	trial	mode,	only	a	prefix	of	iii=DEM	is	allowed
and	components	must	be	named	DEMCOM01	to	DEMCOM10.	If	objects
DEMCOM01	to	DEMCOM10	already	exist,	they	must	be	deleted	from	the
repository	before	you	start	these	exercises.

Install	the	Tutorial	Files
You	may	wish	to	install	a	separate	Visual	LANSA	System	for	training.	You	can
install	an	Independent	Visual	LANSA	Workstation	on	a	PC	for	training	and	then
uninstall	it	once	training	is	complete.	If	you	are	using	Visual	LANSA	in	trial
mode,	this	is	the	recommended	approach.
These	exercises	assume	that	you	have	not	customized	the	editor	interface	unless
instructed	in	the	exercise.	If	you	have	made	customizations,	some	instructions
and	sample	screen	images	may	not	exactly	match	your	development
environment.

What	Partition	Should	I	Use?
Any	partition	may	be	used	for	training	purposes.	In	these	exercises	it	is	assumed
that	you	are	using	a	DEM	partition.	The	partition	must	be	defined	as:

a	multilingual	partition	with
Long	Names	enabled	and
be	RDMLX-enabled.

The	partition	must	be	initialized	to	load	the	Visual	LANSA	Frameworks	and
Demonstration	Material	into	the	partition	you	will	be	using	as	shown	in	the
following	screen	capture:

Refer	to	the	Partition	Initialization	options	in	the	Visual	LANSA	Administration
Guide	for	more	details.
Following	is	an	example	of	a	partition's	settings	(partition	DEM)	when	opened
in	the	Visual	LANSA	Editor	for	a	stand-alone	Visual	LANSA	install.

its:lansa011.chm::/Lansa/l4wADM02_0025.htm

These	exercises	operate	the	best	in	a	brand	new	installation	using	the	DEM
partition.

Before	You	Begin	These	Exercises
LANSA	V13	introduces	Long	Names	support	in	the	Repository	and	it	is
assumed	that	Long	Names	are	enabled	in	the	partition	you	will	be	using.

With	Long	Names	enabled,	objects	have	two	names,	a	Long	Name	and	an
Identifier	(also	referred	to	as	the	Short	Name	or	Object	Identifier).
With	Long	Names	enabled,	when	objects	such	as	fields,	files,	forms	and
reusable	parts	are	created,	the	Long	Name	must	be	unique	within	the
partition	and	may	not	be	the	same	as	an	existing	Identifier.
A	Long	Name	may	be	up	to	256	characters	long	and	may	be	letters	and
numbers	with	no	embedded	blanks.	Long	Names	are	not	case	sensitive,	so
EMPNO,	EmpNo	and	Empno	are	all	the	same.
An	Identifier	may	be	up	to	10	characters	long	and	may	contain	letters	and
numbers	and	some	special	characters	for	some	objects,	but	these	are	not
recommended.	Field	Identifiers	are	limited	to	9	characters.
When	an	object	is	created	using	a	Long	Name,	LANSA	will	assign	an

Identifier.	As	you	create	objects,	you	may	assign	an	Identifier	(as	long	as	it	is
unique	within	the	partition).	An	Identifier	cannot	be	changed	once	a	new
object	has	been	saved.
For	more	detailed	information	see	LANSA	Object	Names	in	the	Technical

Reference	Guide.

Using	Reusable	Parts	with	Long	Names	in	Visual	LANSA
Frameworks
When	you	plug-in	a	reusable	part	to	the	Framework:

An	Identifier	must	be	used,	since	the	framework	will	be	loading	and
unloading	this	component.
The	recommended	procedure	is	to	use	the	Find	dialog,	search	and	find	the
component	required.	This	will	ensure	the	Identifier	is	always	used.

its:lansa015.chm::/Lansa/tgub5_0050.htm

Tips	for	doing	the	Exercises
It	is	recommended	that	you	complete	the	exercises	in	sequence.
The	first	steps	in	a	exercise	will	provide	very	precise	descriptions	of	the	tasks	to
be	performed.	As	the	steps	and	course	progress,	the	instructions	will	become
much	more	general.
Later	exercises	are	designed	to	use	skills	from	the	earlier	exercises.	Where
specific	exercises	must	be	done	before	starting	an	exercise,	the	exercise
prerequisites	are	listed	in	Before	you	Begin.
The	exercises	are	sequenced	so	that	you	develop	more	advanced	and	complex
example	applications	as	the	course	progresses.	For	example	VFW001	–	Basic
Windows	Controls	is	an	optional	first	exercise	designed	to	establish	a	basic
knowledge	of	Windows	controls.	You	may	not	find	it	necessary	to	do	this
exercise.
Note:

Check	off	each	step	in	the	exercise	as	you	complete	it.
Follow	the	instructions	very	carefully.
Your	code	may	not	be	an	exact	match	to	the	examples	in	these	exercises.	Do
not	be	concerned	if	some	values	do	not	match	exactly.	For	example,	the
width	of	a	button	is	based	on	the	size	you	create	it.	Sample	code	might	show
a	button	that	has	Width(50)	but	your	code	might	have	Width(60).

If	you	have	customized	the	editor,	some	of	the	sample	screen	images	may	not
exactly	match	your	development	environment.	Do	not	be	concerned	if	the
screens	are	not	an	exact	match.	For	example,	some	tabs	may	be	shown
undocked	from	the	editor.	Undocked	tabs	appear	as	a	separate	dialog	instead	of
being	part	of	an	editor	pane.	Refer	to	Dock	and	Undock	a	Tab	Sheet	in	the
Visual	LANSA	User	Interface	Tutorials	if	you	need	a	refresher	on	these	subjects.

Your	Feedback
Your	feedback	regarding	these	exercises	will	help	us	improve	the	overall	quality
of	the	LANSA	documentation	and	training.	Please	e-mail	your	comments	to
lansatraining@lansa.com.au.

its:lansa095.chm::/LANSA/usrtut01_0090.htm
mailto:lansatraining@LANSA.com.au

VFW005	–	Basic	Windows	Controls
Objectives

To	learn	about	basic	Windows	visual	control	components	available	with
Visual	LANSA.	These	controls	enable	the	user	to	control	and	interact	with
the	application.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Create	a	Form
Step	2.	Add	Controls	to	a	Form	shows	you	how	to	add	simple	examples	of	the
following	controls	to	a	form:

Check	Box Push	Button

Edit	Box Radio	Buttons

Group	Box Static

Label Status	Bar

Panel Track	Bar

Progress	Bar 	

Step	3.	Create	Tab	Folder	Form	to	learn	how	the	tab	folders	are	used.

Before	You	Begin
To	complete	these	exercises,	you	should	have	completed	the	LANSA
Fundamentals	workshop.

Step	1.	Create	a	Form
1.		To	create	a	new	form,	from	the	File	menu,	select	New	/	Form	and	then	select
Basic	Form.

					The	New	Form	dialog	opens:

2.		Add	the	form's	details:

Name iiiBasicWinCtrls	where	iii	are	your	course	assigned	initials.
If	you	are	using	iii=DEM,	your	component	must	be	named
DEMCOM01	as	described	in	How	Many	Developers	Can	Use	the
Exercises?	in	About	the	Exercises.

Description Basic	Windows	Controls

Framework Select	from	the	dropdown	list,	in	this	example	it's	Personal	&
Payroll.	When	creating	new	form	or	reusable	part,	you	should
select	a	suitable	Framework	for	it	to	belong	to.	Components	are
grouped	on	the	Repository	tab	under	Organizers	/	Frameworks:

its:lansa098.CHM::/LANSA/VFWEng00_0010.htm

Step	2.	Add	Controls	to	a	Form
Push	Button
A	push	button	allows	a	user	to	perform	an	action.

A	push	button	can	have	a	bitmap	or	a	text	Caption	or	both.
Push	buttons	have	events	such	as	Click,	Got	Focus,	Lost	Focus,	Start	Drag,
Drag	Over	etc.
1.		The	Design	tab	should	currently	be	visible.	This	is	the	default	when	a	new
form	is	created.	On	the	Home	ribbon,	select	Controls	from	the	Views	menu.

2.		Drag	and	drop	a	Push	Button	onto	the	form.	Note	that	the	new	component	is
automatically	named	PHBN_1.

3.		With	the	push	button	selected,	select	the	Details	tab	and	change	its	Caption
property	to	Test.

4.		To	add	a	Click	event,	ensure	that	the	push	button	is	selected	and	select	Events
on	the	Details	tab.	Double	click	on	the	Click	event	to	create	a	click	event.

					Alternatively,	right	click	on	the	push	button	and	select	Events	/	Click	Event.
In	this	case	the	Source	tab	will	be	displayed,	and	the	editor	is	positioned	at
the	new	event	routine.

5.		In	the	push	button	click	event,	add	code	to	display	a	message	in	a	Message
Box.

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#PHBN_1.Click)
Use	Builtin(message_box_show)	With_Args(*Default	*Default	*Default	*Default	'My	first	form')
Endroutine
	

6.		Compile	the	form	using	the	Compile	button	on	the	Home	ribbon:

7.		Run	the	form,	by	selecting	the	Runtime	button	on	the	Home	ribbon	and	select
the	Execute	button:

8.		A	click	on	the	push	button	should	display	a	message	box:

9.		Close	your	form.
10.	In	the	Design	view,	select	the	push	button	and	use	the	Details	tab	/
Properties	sheet	to	add	an	image	to	the	push	button.

11.	Select	the	VB_MAGLAS	image	using	the	ellipsis	button	for	the	Image
property:

12.	Compile	and	run	the	form,	which	should	look	like	the	following:

13.	Close	the	form.	Leave	the	form	iiiBasicWinCtrls	open	in	the	editor.

Check	Box
A	check	box	is	used	to	represent	a	Yes/No	choice.
There	are	three	button	states:	checked,	unchecked	and	grayed.	Unchecked	is	the
default.	You	would	normally	use	the	grayed	state	to	indicate	that	the	selections
to	which	this	check	box	applies	have	conflicting	settings.
To	gray	out	the	check	box,	use	the	enabled	property	of	the	check	box
									#CKBX_1.Enabled	:=	FALSE
	

You	can	use	check	boxes	in	groups	to	display	multiple	choices,	from	which	the
user	can	select	one	or	more.
The	ButtonState	property	indicates	whether	a	check	box	has	been	checked
The	check	box	can	be	set	to	checked	state	programmatically,	as	shown	in	the

following	code:
									#CKBX_1.buttonstate	:=	checked
	

1.		Select	the	Design	tab	for	form	iiiBasicWinCtrls.
2.		From	the	Controls	tab,	drag	and	drop	a	Check	Box	onto	the	form.
3.		Change	the	Caption	property	to	Member.
					Your	form	should	look	like	the	following:

4.		Change	the	push	button	click	event	to	test	the	Check	Box	ButtonState
property	and	display	a	suitable	message	in	a	message	box.

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#PHBN_1.Click)
If	Cond(#CKBX_1.BUTTONSTATE	*EQ	CHECKED)
Use	Builtin(MESSAGE_BOX_SHOW)	With_Args(*Default	*Default	*Default	Default	'Check	box	is	checked')
Else
Use	Builtin(MESSAGE_BOX_SHOW)	With_Args(*Default	*Default	*Default	*Default	'Check	box	is	unchecked')
Endif
Endroutine
	

5.		Compile	and	run	the	form.	Ensure	that	the	correct	message	box	is	shown,
depending	on	the	Check	Box	setting.

6.		Close	the	form.	Leave	form	iiiBasicWinCtrls	open	in	the	editor.

Edit	Box
An	edit	box	is	an	area	where	the	user	can	enter	text	or	where	text	can	be
displayed.	The	text	can	be	set	or	retrieved	using	the	Value	property.	An	edit	box
is	the	default	visualization	style	for	fields.
1.		Select	the	Design	tab	for	the	form	iiiBasicWinCtrls.
2.		Select	the	Controls	tab,	and	drag	and	drop	an	Edit	box	onto	the	form.	Note
that	the	Edit	box	will	be	named	EDIT_1.

3.		Add	a	Push	Button	to	the	form	below	the	Edit	box.	Note	that	your	button	will
be	named	PHBN_2.

4.		Create	a	Click	event	for	PHBN_2.	Change	its	Caption	to	OK.
5.		Add	logic	to	the	new	push	button's	Click	event	to	change	the	value	of	the
Edit	box	to	"Hello".

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#PHBN_2.Click)
#EDIT_1.value	:=	'Hello'
Endroutine
	

6.		Compile	the	form	and	execute	it	to	test	the	new	push	button	and	edit	box.
Your	form	should	look	like	the	following:

7.		Close	the	form.	Leave	form	iiiBasicWinCtrls	open	in	the	editor.

Group	Box
A	Group	box	provides	a	way	of	grouping	components.
A	Group	box	can	optionally	have	a	Title.	Define	a	Title,	by	defining	the	Caption
property	of	the	Group	box.

Typically,	Group	boxes	are	used	to	group	together	a	set	of	Check	boxes	or	Radio
buttons,	or	a	related	group	of	fields.

Group	box	has	an	EnableChildren	property.	When	this	property	is	set	to	True,
all	the	components	contained	in	this	component	are	Enabled	or	Disabled,
depending	on	whether	the	Enabled	property	of	this	component	is	set	to	True	or
False.
A	Group	Box	will	be	used	in	the	next	part	of	this	exercise.

Radio	Button
Radio	buttons	are	used	to	represent	mutually	exclusive	choices.	The	convention
is	to	enclose	the	radio	buttons	in	a	Group	box.

The	ButtonChecked	property	of	the	radio	button	indicates	whether	it	is	checked.
By	default	the	buttons	are	not	checked.
While	radio	buttons	and	check	boxes	may	appear	to	function	similarly,	there	is
an	important	difference:	When	a	radio	button	is	selected,	the	other	radio	buttons
in	the	same	group	are	automatically	deselected.	By	contrast,	any	number	of
check	boxes	can	be	selected.

Radio	Buttons	are	automatically	"grouped"	by	their	container,	such	as
a	Group	Box,	or	a	Panel.
If	the	radio	buttons	are	simply	placed	on	the	form,	then	the	form	is
their	container.

1.		Select	the	Design	tab	for	the	form	iiiBasicWinCtrls.
2.		Drag	and	drop	a	Group	Box	onto	the	form.	Change	the	Caption	property	of
the	group	box,	to	Options.

3.		Adjust	the	size	of	the	group	box,	so	that	two	radio	buttons	can	be	added	to	it.
4.		Drag	and	drop	two	radio	buttons	into	the	group	box.

a.		Change	their	Captions	to	Home	and	Office	respectively.
b.		Change	the	Home	radio	button	ButtonChecked	property	to	True.
c.		Adjust	the	width	and	height	of	each	radio	button	if	necessary.

5.		Add	a	push	button	to	the	form,	below	the	group	box.	Change	its	Caption	to
Check.

6.		Create	a	Click	event	for	the	new	push	button.
7.		Add	logic	to	the	new	push	button's	click	event	to	indicate	which	radio	button
is	checked.

					Your	code	should	look	like	the	following:
EVTROUTINE	HANDLING(#PHBN_3.Click)
IF	COND('#RDBN_1.BUTTONCHECKED	*EQ	TRUE	')
USE	BUILTIN(MESSAGE_BOX_SHOW)	WITH_ARGS(OK	OK	INFORMATION	'RADIO	BUTTON'	'Home	is	selected')
ELSE
USE	BUILTIN(MESSAGE_BOX_SHOW)	WITH_ARGS(OK	OK	INFORMATION	'RADIO	BUTTON'	'Office	is	selected')
ENDIF
ENDROUTINE
	

8.		Compile	and	execute	the	form.
9.		Ensure	that	the	correct	message	is	displayed	in	a	message	box,	which
indicates	which	radio	button	is	checked.

10.	Close	the	form.	Leave	iiiBasicWinCtrls	open	in	the	editor.

Label

Use	a	label	to	add	text	that	the	user	cannot	change.

Labels	are	usually	used	for	instructions	together	with	an	Edit	box.	You	enter	the
text	for	the	label	in	its	Caption	property.
A	Label	has	a	click	event,	initialize	event,	double	click	event	and	so	on.

Panel
A	Panel	provides	a	visual	grouping	of	items	in	a	similar	way	to	a	group	box,	but
without	a	Title.	A	panel	has	properties	to	control	the	scroll	bar	such	as
Horizontal	Scroll,	Vertical	Scroll.	HorizontalscrollPos,		VerticalscrollPos	and	so
on.

A	Panel	has	an	EnableChildren	property.	All	the	components	contained	in	this
component	are	Enabled	or	Disabled	when	the	Enabled	property	of	this
component	is	set	to	True	or	False.
Like	the	Group	Box,	the	Panel	is	a	container.	Radio	Buttons	could	be	grouped
on	a	panel.

Static	Component
Use	the	Static	component	to	draw	lines,	rectangles,	triangles	and	ellipses	on
forms.	The	type	of	the	image	drawn	is	specified	using	the	DrawType	property.

1.		Select	the	Design	tab	for	form	iiiBasicWinCtrls.
2.		Drag	and	drop	a	Static	component	onto	the	form.
3.		Change	the	DrawType	property	to	FrameIndentedEdge.	The	Static
component	should	look	like	the	following:

4.		Experiment	by	changing	the	DrawType	property	to	different	values.

Status	Bar
A	Status	bar	creates	a	separate	area	at	the	bottom	of	the	window	where
messages	are	displayed.
The	status	area	can	also	contain	other	components,	such	as	progress	bars,
(animated)	pictures	and	edit	boxes.
If	more	than	one	information	message	is	issued,	the	user	can	scroll	through
them

A	Status	bar	will	be	used	in	a	later	step	in	this	exercise.

Track	Bar
A	Track	bar	allows	the	user	to	select	a	value	with	a	slider.

A	Track	bar	is	a	panel	containing	a	slider	and,	optionally,	tick	marks.
Track	bars	are	useful	when	you	want	to	select	a	discrete	value	or	a	set	of
consecutive	values	in	a	range.
The	user	can	move	the	slider	by	dragging	it,	clicking	the	mouse	to	either	side	of
the	slider,	or	using	the	keyboard.
1.		Select	the	Design	tab	for	the	form	iiiBasicWinCtrls.
2.		Select	the	Controls	tab,	and	drag	and	drop	a	Track	Bar	onto	the	form.
3.		Change	the	MaximumValue	property	of	the	Track	bar	to	5.
					Note:
					The	MinimumValue	has	a	default	value	of	1,	so	that	there	are	now	5
divisions.

					The	TickValue	has	a	default	property	of	1,	so	that	there	is	one	tick	of	the

Track	bar	for	every	increment	of	the	Track	bar.
4.		Add	a	push	button	to	the	form,	next	to	the	Track	bar.	Change	its	Caption	to
Show.

5.		Add	a	Click	event	for	the	new	push	button.
6.		In	the	Click	event	for	the	Show	push	button,	check	for	the	track	bar	value
and	display	a	message	in	a	EVTROUTINE
HANDLING(#PHBN_4.Click)message	box.

					Your	code	should	look	like	the	following:
CASE	OF_FIELD(#TKBR_1.VALUE)
WHEN	VALUE_IS(=	1)
USE	BUILTIN(MESSAGE_BOX_SHOW)	WITH_ARGS(*Default	*Default	*Default	'TRACK	BAR'	'Value
selected	in	track	bar	is	1')
WHEN	VALUE_IS(=	2)
USE	BUILTIN(MESSAGE_BOX_SHOW)	WITH_ARGS(*Default	*Default	*Default	'TRACK	BAR'	'Value
selected	in	track	bar	is	2')
WHEN	VALUE_IS(=	3)
USE	BUILTIN(MESSAGE_BOX_SHOW)	WITH_ARGS(*Default	*Default	*Default	'TRACK	BAR'	'Value
selected	in	track	bar	is	3')
WHEN	VALUE_IS(=	4)
USE	BUILTIN(MESSAGE_BOX_SHOW)	WITH_ARGS(*Default	*Default	*Default	'TRACK	BAR'	'Value
selected	in	track	bar	is	4')
WHEN	VALUE_IS(=	5)
USE	BUILTIN(MESSAGE_BOX_SHOW)	WITH_ARGS(*Default	*Default	*Default	'TRACK	BAR'	'Value
selected	in	track	bar	is	5')
ENDCASE
ENDROUTINE
	

7.		Compile	and	run	the	form.
8.		Move	the	Track	bar	to	a	value	and	click	the	Show	button.	A	message	box	is
shown,	indicating	the	value	of	the	Track	bar.

9.		Close	the	form.	Leave	form	iiiBasicWinCtrls	open	in	the	editor.

Progress	Bar
A	Progress	bar	is	used	to	indicate	the	progress	of	a	lengthy	operation.	The
progress	bar	is	gradually	filled	with	chunks	from	left	to	right	as	the	operation
progresses.
Use	the	MinimumValue	and	MaximumValue	properties	to	set	the	range	for	the
duration	of	the	entire	process.	The	Value	property	indicates	the	current	value	of
the	progress	bar.
1.		Select	the	Design	tab	for	form	iiiBasicWinCtrls.
2.		On	the	Controls	tab,	select	All	Controls	and	drag	and	drop	a	Status	bar	onto
the	form.	Note	that	it	will	be	automatically	located	at	the	bottom	of	the	form.

3.		Drag	and	drop	a	Progress	bar	onto	the	right	hand	side	of	the	Status	bar.
4.		Drag	the	left	hand	"handle"	of	the	Progress	Bar	to	the	left	to	expand	it.	Your
design	should	look	like	the	following:

5.		Change	the	MaximumValue	property	of	the	Progress	bar	to	20,000.0
					Note	that	the	MinimumValue	property	defaults	to	1.

6.		Drag	and	drop	a	push	button	onto	the	form	and	change	its	Caption	to	Loop.
7.		Create	a	Click	event	for	the	Loop	push	button.
8.		Add	the	following	logic	to	the	Loop	push	button's	Click	event
EVTROUTINE	HANDLING(#PHBN_5.Click)
#STD_COUNT	:=	1
#PGBR_1.VALUE	:=	1
BEGIN_LOOP	USING(#STD_COUNT)	TO(20000)
#PGBR_1.VALUE	:=	#STD_COUNT
END_LOOP
MESSAGE	MSGTXT('Process	completed	successfully')
ENDROUTINE

					Review	the	code	you	just	added.	The	Progress	value	is	reset	to	1.	A	loop
from	1	to	20000,	will	update	the	Progress	bar	Value	for	each	step	and	display
a	message	in	the	Status	bar	when	the	loop	completes.

9.		Compile	and	run	the	form.	Verify	that	it	works	correctly.

10.	Close	the	form.

Note:	This	example	is	a	simple	example	which	shows	how	to	use	Progress	bar
properties.	In	practical	applications,	to	show	the	progress	of	a	lengthy	process,
set	the	value	of	the	Progress	bar	at	different	places	in	the	logic	to	visually	display
the	progress	of	the	operation.

Tab	Folders	and	Tab	Sheets
Go	to	Step	3.	Create	Tab	Folder	Form	to	see	how	to	use	a	tab	folder.

Step	3.	Create	Tab	Folder	Form
Use	a	Tab	Folder	to	create	a	folder	with	several	sheets	to	provide	an	organized
way	of	showing	a	large	amount	of	information.

Objectives
To	create	the	form	shown	below,	containing	a	tab	folder	with	three	tab	sheets.

When	an	employee	number	is	entered	on	the	Employee	tab	sheet,	the
employee	details	such	as	Surname,	Given	Name	and	Salary	are	to	be
displayed	on	the	Details	tab	sheet.
When	the	Skills	tab	is	selected,	a	list	of	employee	skills	is	to	be	shown

Note:	This	is	a	very	simple	example	application	and	is	not	typical	of	the	way
that	tab	sheets	interaction	would	be	designed.

1.		Create	a	new	form:

					Name:	iiiTabFolder
					Description:	A	Simple	Tab	Folder
2.		Drag	and	drop	a	Tab	Folder	to	the	form,	and	resize	it	to	occupy	most	of	the
form.

3.		With	the	Tab	Folder	selected,	drag	and	drop	a	Tab	Sheet	onto	the	Tab	Folder.
4.		Click	on	the	area	to	the	right	of	the	tab	sheet,	to	select	the	Tab	Folder,	and
drop	another	Tab	Sheet	onto	the	folder.

5.		Repeat	step	4.	So	that	the	Tab	Folder	contains	3	Tab	Sheets.
6.		Select	the	first	Tab	Sheet	by	clicking	on	the	tab	and	then	clicking	on	the	main
tab	sheet	area.

					If	you	hover	over	the	tab	sheet,	the	component	name	will	be	shown	in	a
tooltip:

a.		Change	the	tab	sheet	Caption	property	to	Employee.
b.		Select	the	second	tab	sheet	and	change	its	Caption	property	to	Details.
c.		Select	the	third	tab	sheet	and	change	its	Caption	property	to	Skill.

7.		On	the	Repository	tab,	expand	the	Files	group	and	expand	the	file	definition,
PSLMST.

8.		Select	the	Employee	tab	sheet	and	drop	the	EMPNO	field	onto	it.
9.		Select	the	Details	tab	sheet	and	drop	SURNAME,	GIVENAME	and
SALARY	onto	it.

10.	On	the	Repository	tab,	expand	the	file	definition	PSLSKL.
11.	Select	the	Skill	tab	sheet	and	drop	fields	SKILCODE,	GRADE,
COMMENT	and	DATEACQ	onto	it.

12.	Create	an	Opening	event	routine	for	Details	(TBSH_2).

					Add	code	to	initialize	the	fields	SURNAME.	GIVENAME	and	SALARY
and	then	Fetch	them	from	the	file	PSLMST	with	the	key	EMPNO.

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#TBSH_2.Opening)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#SURNAME	#GIVENAME	#SALARY	:=	*default
Fetch	Fields(#SURNAME	#GIVENAME	#SALARY)	From_File(pslmst)	With_Key(#EMPNO)
Endroutine

13.	Create	an	Opening	event	routine	for	Skill	(TBSH_3).
					Add	code	to	initialize	the	fields	SKILCODE,	GRADE,	COMMENT	and
DATEACQ	and	then	fetch	them	from	the	file	PSLSKL	with	the	key	EMPNO.

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#TBSH_3.Opening)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#SKILCODE	#GRADE	#COMMENT	#DATEACQ	:=	*default
Fetch	Fields(#SKILCODE	#GRADE	#COMMENT	#DATEACQ)	From_File(pslskl)	With_Key(#EMPNO)
Endroutine

					Note:	The	editor	will	give	a	warning	because	the	key	does	not	match	the	file
keys.	This	logic	will	fetch	the	first	skill	record	for	the	employee	only.	The
actual	file	key	is	EMPNO	and	SKILCODE	because	the	employee	may	have	a
number	of	skills.

14.	Compile	and	run	the	form.
a.		On	the	Employee	tab	sheet	enter	and	employee	number	such	as	A1012	or,
A1013.

b.		Select	the	Details	and	then	Skill	to	display	employee	data.

Summary
What	I	Should	Know

How	to	use	the	basic	Visual	LANSA	Windows	controls.
How	to	use	a	simple	Tab	Folder

VFW010	–	A	Tab	Folder	Framework
Tab	Folders
The	Tab	folder	control	has	advanced	docking,	undocking	and	autohide	features
that	can	be	used	to	transform	a	single	Tab	folder	into	a	Tab	framework
application	with	virtual	Tab	folders	attached	to	various	parts	of	the	window.
The	virtual	Tab	folders	can	be	automatically	hidden	(auto	hide)	and	Tab	sheets
can	be	moved	and	attached	to	other	parts	of	the	screen	(undock	and	dock).
The	Tab	folder	properties	manage	the	appearance	of	the	framework	and	the
individual	Tab	sheets	manage	the	position	and	layout	of	a	page	in	the	tab
framework.
The	following	Tab	sheet	properties	are	used:
DockPosition

					Use	the	DockPosition	property	to	specify	where	the	Tab	sheet	is	attached.
The	Tab	sheet	can	be	docked	to	the	Center,	Left,	Right,	Bottom	or	Top	of	the
screen.	Using	the	DockPosition	properties	of	Tab	sheets	you	can	construct	a
tab	framework	application	from	a	single	Tab	folder.
DockAllowUndock

					Use	the	DockAllowUndock	property	to	specify	if	the	Tab	sheet	can	be	moved
away	(undocked)	from	the	Tab	folder.	This	property	can	be	set	to	True	or
False.	When	this	property	is	True,	a	docking	bar	(a	double	line)	is	displayed
on	the	Tab	sheet.	To	undock	the	Tab	sheet,	the	user	drags	it	by	the	docking
bar.

DockCloseButton
					Use	the	DockCloseButton	property	to	specify	whether	a	Close	button	is
displayed	in	the	Tab	sheet.	When	a	Tab	sheet	has	a	Close	button,	it	can	be
closed.	This	property	can	be	set	to	True	or	False.
DockAllowPositions

					Use	the	DockAllowedPositions	property	to	specify	which	part	of	the	screen
the	Tab	sheet	can	be	attached	to	(docked).	The	values	are	Right,	Top,	Bottom
and	None.	All	positions	can	be	selected.	None	overrides	the	multi-select
options	and	specifies	that	the	TabSheet	cannot	be	docked	anywhere.	Note	that
this	property	applies	to	user	interaction	only	and	has	no	bearing	on
programmatic	changes.	Therefore	a	TabSheet	with	DockPosition(Left)	and
DockAllowedPositions(None)	will	appear	as	a	DockLeft	TabSheet.

Objectives
The	previous	exercise	demonstrated	only	the	basic	features	of	tab	folders	and
tab	sheets.
This	exercise	uses	some	of	the	more	advanced	tab	folder	behaviour.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Create	a	Form
Step	2.	Define	a	Tab	Folder	Framework
Step	3.	Compile	and	Execute	the	Form
Summary

Before	You	Begin
Complete	the	Simple	Tab	Folder	exercise	in	VFW005.

Step	1.	Create	a	Form
1.		Create	a	form	as	shown	in	Step	1.	Create	a	Form	in	exercise	VFW005.

Name iiiTabFldFrm

Description A	Tab	Folder	Framework
	

2.		Enlarge	the	form	to	approximately	Width	880	and	Height	550.
3.		Drag	a	Tab	Folder	onto	the	form	and	resize	and	position	it	to	occupy	all	of
the	form.

					You	will	learn	more	sophisticated	form	layout	techniques	in	later	exercises.

Step	2.	Define	a	Tab	Folder	Framework
1.		Right	click	on	the	Tab	Folder	(that	is	the	background	space	next	to	the	Page
1	tab)	and	use	the	Add	Page	menu	option	to	add	5	pages.

					To	add	each	page,	you	must	first	select	the	Tab	Folder.
					You	can	also	right	click	on	any	tab	sheet's	tab,	to	select	the	tab	folder	and
Add	Page.

					Your	design	should	now	look	like	the	following:

2.		Click	on	the	Tab	sheet	Page	1	tab	and	then	click	in	the	main	area	to	select	it,
and	change	the	following	properties:

Property Value

DockAllowedPosition Left+Right

DockAllowUndock True

DockCloseButton True

DockPosition Left

	

					Note:	To	see	these	properties,	you	must	set	up	the	editor	to	Show	Advanced
Features.	See	File	/	Options	/	General.

					Your	tab	folder	should	now	look	like	the	following:

					Hint:	In	the	dropdown	for	DockAllowPositions,	select	the	required	values	by
using	the	Left	Mouse	button	plus	the	Ctrl	key.

3.		Change	the	properties	of	the	other	Tab	sheets	as	follows:
Tab	Sheet	2

Property Value

DockAllowedPositions Left+Right

DockAllowUndock False

DockCloseButton False

DockPosition Left

	

Tab	Sheet	3

Property Value

DockAllowedPositions Left+Top

DockAllowUndock True

DockCloseButton True

DockPosition Center

	

Tab	Sheet	4

Property Value

DockAllowedPositions Left+Bottom+Right

DockAllowUndock True

DockCloseButton True

DockPosition Bottom

	

Tab	Sheet	5

Property Value

DockAllowedPositions Left+Right+Bottom

DockAllowUndock True

DockCloseButton True

DockPosition Bottom

	

					Your	Tab	folder	should	now	look	like	the	following:

4.		Save	your	form.

Step	3.	Compile	and	Execute	the	Form
1.		Compile	and	execute	the	form.
2.		The	Tab	sheets	can	be	shown	as	a	separate	window.	Use	the	docking	bar	to
drag	the	tab	sheets.

3.		Use	the	Pin	to	hide	a	Tab	sheet.

4.	Click	on	a	closed	tab	and	click	the	Pin	symbol	to	lock	the	Tab	sheet	in	the
open	position.

5.	Click	on	the	Close	(x)	button	to	close	a	Tab	Sheet.

Summary
Important	Information

The	Visual	LANSA	Framework	uses	Tab	folder	features	extensively	to
enable	the	interface	to	be	tailored.

Tips	&	Techniques
A	Pop-up	menu	would	be	used	to	enable	a	closed	tab	sheet	to	be	re-opened.
Each	Tab	sheet	tab	may	have	an	image	assigned	to	it.

What	I	Should	Know
How	to	use	the	Docking,	Undocking	and	Autohide	features	of	the	Tab	folder.

VFW020	–	Execute	a	Visual	LANSA	Framework	Application
What	is	the	Visual	LANSA	Framework	(VL	Framework)?
The	VL	Framework	is	an	optional	extension	to	Visual	LANSA	which	provides
an	application	Framework	for	designers	and	developers.
For	the	end	user,	the	VL	Framework	provides	consistent	and	well	designed
interface	with	many	standard	features	which	provide	a	powerful	and	flexible
user	interface.	It	is	loosely	based	on	Microsoft's	Outlook		interface	design,
which	will	be	familiar	to	many	end	users.
For	the	designer,	the	VL	Framework	provides	a	rapid	prototyping	tool.	The
prototype	will	be	developed	into	a	real	application.
For	the	developer,	the	VL	Framework	provides	the	tools	to	rapidly	build	a
sophisticated	modern	application	for	Windows	or	Web	deployment.	It	is
especially	beneficial	if	the	developer	is	new	to	Windows	or	Web	development.
However,	the	power	and	flexibility	of	the	Framework	lends	itself	to	most
business	applications	and	should	be	considered	for	all	your	LANSA	projects.
VL	Framework	applications	can	be	developed	as	Windows	Rich	clients,	Web
Browser	based	applications	and	Microsoft	.Net	applications.
If	you	are	new	to	the	VL	Framework,	you	should	study	the	Visual	LANSA
Framework	Guide,	the	tutorials	that	it	contains	and	the	extensive	shipped
demonstration	applications,	which	include	all	source	code	with	extensive
comments	to	enable	their	re-use.
These	exercises	provide	an	introduction	to	developing	VL	Framework
applications	for	Windows,	but	time	constraints	mean	that	there	is	much	more	to
learn	in	order	to	fully	exploit	the	power	and	flexibility	of	VL	Framework.

Objectives
To	execute	a	finished	application	in	the	VL	Framework.
To	become	familiar	with	the	look	and	feel	of	VL	Framework-based
applications.
To	introduce	some	key	concepts	used	when	building	VL	Framework
applications.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Execute	the	Visual	LANSA	Framework
Step	2.	Execute	an	Application

Step	3.	Using	a	Filter	to	Find	an	Employee
Step	4.	Using	Commands	and	Command	Handlers
Summary

Before	You	Begin
Check	that	you	have	met	the	Skills	required	as	listed	in	Other	Requirements
in	the	Visual	LANSA	Framework	Guide.

its:lansa048.CHM::/LANSA/lansa048_4135.HTM

Step	1.	Execute	the	Visual	LANSA	Framework
1.		In	Visual	LANSA,	use	the	Tools	ribbon	to	select	the	VL	Framework	button	to
select	the	Use	Framework	as	User	option.

2.		If	you	are	opening	a	VL	Framework	for	the	first	time,	the	latest
demonstration	version	will	opened	by	default.	If	you	have	only	one
framework	the	Select	Framework	dialog	will	not	be	shown.

3.		If	the	Select	Framework	File	dialog	is	shown,	select	the	checkbox	to	Open
Latest	Demonstration	Version.

					The	first	time	a	framework	is	opened,	the	Help	Assistant	dialog	is	shown:

4.		If	the	Help	Assistant	dialog	is	shown,	unselect	the	Start…..	options	and	select
the	checkbox	Don't	Ask	for	These	Details	Again	and	the	click	OK.

					The	framework	uses	XML	to	store	the	definition	of	your	applications.	The
file	vf_sy001_system.xml		contains	the	latest	demonstration	system.

					The	Framework	window	will	be	displayed.

Step	2.	Execute	an	Application
In	this	step,	you	will	execute	a	shipped	sample	application.	You	will	be
introduced	to	Business	Objects,	Filters,	Instance	Lists,	Commands	and
Command	Handlers.
1.		The	Navigation	panel	on	the	left	hand	side,	displays	applications	in	a	tree
view.

					As	you	click	the	different	applications	to	expand	them,	you	can	see	the
business	objects	associated	with	them.

2.		Select	the	Programming	Techniques	application.	Then	select	the	Basic
application	view.

3.		Select	the	Essential	Business	Object.

					Two	new	panels	will	appear.	The	top	left	panel	is	the	filter,	which	is	used	to
search	employee	data.

					The	right	panel	will	show	an	instance	list,	containing	the	results	of	an
employee	search.	This	may	contain	saved	values	for	the	last	search	made.

Step	3.	Using	a	Filter	to	Find	an	Employee
After	a	user	has	selected	a	business	object,	they	typically	want	to	locate	a
specific	employee	or	list	of	employees.	Filters	allow	you	to	search	and	sort	the
items	for	a	business	object.
1.		Enter	the	letter	B	in	the	Employee	Surname	field	and	click	the	Search	button.
The	instance	list	displays	all	employees	whose	surname	begins	with	B.

Step	4.	Using	Commands	and	Command	Handlers
In	this	step	you	will	select	an	employee	and	review	the	Commands	or	actions
which	can	be	performed	for	an	employee.
1.		In	the	instance	list,	select	the	employee	Veronica	Brown.	When	an	employee
has	been	selected,	the	Basic	details	of	the	employee	will	appear	in	the	bottom
panel.

					By	default,	the	Details	command	has	been	executed.	The	Details	command
handler	displays	the	employee	details.

2.		Select	the	File	menu	and	choose	the	Exit	option	to	close	the	Visual	LANSA
Framework	application.

Summary
Important	Observations

In	Windows,	the	Visual	LANSA	Framework	is	executed	as	a	Visual	LANSA
form.
The	Framework	provides	a	consistent	application	interface.	It	is	very	easy	to
use,	flexible	and	can	be	customized	by	the	end	user.

Tips	&	Techniques
The	end-user	has	the	ability	to	fully	customize	the	appearance	of	the
application	within	the	Framework.	For	example,	panels	can	be	positioned
within	the	Framework	or	can	be	floated	as	separate	windows.	These
capabilities	are	part	of	the	Framework	and	are	not	coded	by	the	developer.
The	Framework	enables	the	end	user	to	perform	actions	in	many	different
ways.
Commands	can	be	executed	using	menus,	toolbar	icons	and	pop-up	menus.

What	You	Should	Know
How	to	execute	the	Framework	as	an	end	user.
How	to	execute	an	application	created	in	the	Framework.
What	are	some	of	the	features	supported	by	the	Framework.
What	are	applications,	business	objects,	filters,	instance	lists,	commands	and
command	handlers.

VFW030	–	Create	a	Prototype
Objectives

To	create	a	prototype	using	the	Instant	Prototyping	Assistant.
To	learn	how	to	refine	the	prototype.

To	achieve	this	objective	you	will	complete	the	following:
Step	1.	Understand	the	Requirements
Step	2.	Create	a	Prototype	iii	HR	Application
Step	3.	Define	Filters	and	Command	Handlers	for	Employees
Step	4.	Refine	the	Reports	Business	Object
Summary

Step	1.	Understand	the	Requirements
You	will	define	a	prototype	for	a	simple	Human	Resources	application,	which
will	consist	of:

Two	business	objects,	Employees	and	Reports.
Employees	listed	in	the	instance	list	based	on	searches	by	Name	or	by
Location.
Employees	with	actions,	Details,	New,	Brief	Notes,	Image,	Notes,	Skills,
Skills	2
Reports	with	an	action	of	Weekly,	Monthly,	Salary,	Employee	Query	and
Sort.

You	will	add	further	business	objects	in	a	later	exercise.

Step	2.	Create	a	Prototype	iii	HR	Application
1.		From	the	Tools	ribbon,	start	VL	Frameworks	using	the	VL	Framework	–	as
Designer	option.

2.		If	the	Select	Framework	File	dialog	is	shown,	select	the	Open	Latest
Demonstration	Version	checkbox	and	click	OK.

					Alternatively,	your	trainer	may	inform	you	which	framework	name	to	use.
3.		Once	your	Framework	has	loaded,	start	the	Instant	Prototyping	Assistant
from	the	Framework	menu.

4.		Enter	your	new	Business	Object	names,	Employees	and	Reports,	separated
by	a	comma.

5.		Click	the	Next	button.
6.		Actions	will	initially	contain	(the	list	at	the	bottom	left)	the	defaults,	Details,
New	and	Notes.	Define	the	additional	actions	required	for	Employees	and
Reports.	These	are,	Brief	Notes,	Image,	Skills,	Skills	2,	Weekly,	Monthly,
Salary,	Employee	Query	and	Sort.	Separate	each	with	a	comma.

7.		Hold	down	the	Shift	key	and	select	Details,	New,	Notes,	Brief	Notes,	Image,
Skills	and	Skills	2	and	drag	them	onto	the	Employees	business	object.

8.		Select	the	Weekly,	Monthly,	Salary,	Employee	Query	and	Sort	actions	and
drag	them	onto	the	Reports	business	object.

					Your	business	objects	should	now	look	like	the	following:

9.		Click	the	Next	button.
10.		Using	your	initials	instead	of	iii,	enter	a	new	application	-	iii	HR
Application.

11.	Drag	the	Employees	and	Reports	business	objects	onto	the	iii	HR
Application.

					Your	iii	HR	Application	should	now	look	like	the	following:

12.	Click	the	Next	button.
13.	On	the	final	dialog,	click	the	Finish	button	to	generate	your	iii	HR
Application	prototype.

14.	From	the	Framework	menu,	Save	and	Restart	your	Framework.

Note:	Your	Framework	definition	is	an	XML	file.	It	is	good	practice	to	regularly
save	your	work.	The	Framework	design	tool	will	prompt	you	to	save	your
Framework	at	regular	intervals.	(Ten	minutes	is	the	default	setting).	Each	time
you	save	a	Framework,	a	copy	of	the	Framework	with	the	date	and	time
appended	is	added	to	a	\VF_Versions	folder.

	

Step	3.	Define	Filters	and	Command	Handlers	for	Employees
In	this	step	you	will	define	two	filters	for	Employees	and	make	a	few	basic
enhancements	to	the	prototype	application.
1.		Open	the	Business	Object	Properties	dialog	for	Employees.
					To	do	this,	select	the	Employees	business	object	on	the	Navigation	panel	and
use	the	context	menu	(that	is,	the	right	mouse	menu)	to	select	the	Properties
dialog.

					Alternatively,	the	Properties	dialog	will	open	if	you	double	click	on	the
business	object	in	the	Navigation	panel.

					The	Properties	dialog	consists	of	a	number	of	tab	sheets	which	enable	you	to
define	and	refine	your	application	design.	The	Framework	contains	literally
thousands	of	features	which	you	enable	or	disable	or	refine,	using	one	of
these	property	tab	sheets.

2.		On	the	Identification	tab,	change	the	User	Object	Name	/	Type	to
III_EMPLOYEES.	A	business	object	named	EMPLOYEES	already	exists
because	it	is	part	of	the	shipped	demonstration	applications.

					Note:	The	Verify	Name	button	will	check	whether	your	User	Object	Name	is
unique	within	the	framework.	That	is,	not	already	used	for	an	existing
business	object.

3.		Select	the	Icons	tab	sheet	and	select	any	suitable	icon	for	the	Employees
business	object.

4.		Select	the	Filters	tab	sheet.	This	tab	enables	you	to	define	one	or	more	filter
which	may	be	used	with	this	business	object.	The	Filters	tab	sheet	itself
contains	three	more	tab	sheets.

a.		The	Instant	Prototyping	Assistant	creates	one	filter	for	each	business
object.	Change	the	Caption	for	the	default	filter	(New	Filter)	to	By	Name.

b.		Select	the	Icons	tab	and	select	any	suitable	icon	for	the	By	Name	filter.

5.		Add	a	new	filter	by	clicking	the	New	button.
a.		Change	the	new	filter's	Caption	to	By	Location.
b.		Select	the	Icons	tab	sheet	and	give	the	By	Location	filter	any	suitable
icon.

6.		You	will	now	refine	the	Command	Handler	definitions	for	the	Employees
business	object.

					Select	the	Commands	Enabled	tab	sheet.	Note	that	its	Enabled	column
contains	the	actions	you	defined	in	the	Instant	Prototyping	Assistant.
a.		Select	the	New	command	in	the	Enabled	column.

					The	information	shown	on	the	right	hand	side	now	contains	the	definition	of
the	New	command,	as	it	will	be	used	for	the	Employees	business	object.

					Notice	that	in	the	Choose	Command	Type	group	box,	the	Business	Object
Command	is	selected.	This	is	because	the	New	command	does	not	depend	on
selection	from	the	instance	list.
Using	the	New	command	would	usually	add	a	new	entry	to	the	instance	list.

7.		You	will	now	specify	how	business	object	commands	are	displayed.
					Select	the	Command	Display	tab	sheet.
The	property	Object	Command	Presentation	defines	how	business	object
commands	are	displayed.
a.		Select	Separate	Stay	on	Top	Window	from	the	drop	down.

b.		Click	Close	on	the	Please	Note	dialog	which	will	appear.	
You	will	make	further	changes	before	you	Save	and	Restart	the
Framework.

8.		Click	on	the	Commands	Enabled	tab	sheet	and	click	the	Command
Definitions	button.	Review	the	icons	shown	against	each	of	the	Enabled
commands.	You	may	find	that	some	of	your	commands	share	the	same	icon.
To	change	a	command's	icon,	do	the	following:
a.		Click	the	Command	Definitions	button	(bottom	right).

b.		Select	the	required	command	in	the	list	on	the	left	hand	side.
c.		Select	the	Bitmap	and	Icons	tab	sheets	and	select	a	suitable	icon.	The
change	is	saved	automatically.

d.		Use	the	Scrollbar	on	the	Bitmaps	panel	to	select	the	same	bitmap.	This
will	ensure	the	instance	list	toolbar	contains	the	same	image	as	the
command	handler	tab	sheet.

Note:	Do	not	spend	time	changing	Icons	and	Bitmaps	for	all	your	Employee
Commands.	These	could	be	changed	at	any	time	during	development.

					Hint:	Clicking	on	the	slider	and	using	the	cursor	keys	to	scroll	through	the
bitmaps	provides	more	control	than	dragging	the	mouse.

9.		Close	the	Business	Object	properties	dialog.	Save	and	Restart	the
Framework.

10.	When	the	Framework	has	re-started,	select	your	iii	HR	Application,
followed	by	the	Employees	business	object.

11.	Confirm	that	Employees	now	has	two	filters.
a.		Click	the	Emulate	Search	button	and	select	an	Employee.
b.		Notice	that	the	toolbar	above	the	instance	list	contains	your	command
handler	icons.

c.		Notice	that	all	your	instance	list	command	handlers	have	a	tab	sheet	at	the
bottom	of	the	Framework,	with	the	appropriate	icon.

12.	Click	in	one	of	your	Employee	filter	panels.	Notice	that	these	can	be	edited.
The	prototype	panel	is	an	HTML	line	editor.	When	adding	text	or	images,	use
the	Enter	key	to	move	to	a	new	line.
a.		Delete	the	existing	text,	add	suitable	text.
b.		Click	on	the	Images	Palette	button	to	display	a	dialog	which	enables
images	to	be	drag	and	dropped	onto	the	filter	panel.
Your	objective	is	to	make	each	panel	"realistic"	so	that	the	prototype	can
be	reviewed	with	and	end	user.
Restrict	your	changes	to	one	panel.	In	a	real	project	you	would	enhance
the	appearance	of	every	filter	and	command	handler	panel.

13.	Save	and	Restart	the	Framework.
14.	Open	the	Employees	business	object	properties	dialog.	Select	the	Instance
List	/	Relations	tab	sheet.

					A	grid	defines	how	the	instance	list	columns	are	used	and	displayed.	The
third	column	Caption	defines	the	column	heading	for	columns	shown	in	the
instance	list.

15.	Change	the	Captions	to	Number	and	Full	Name.

					Note:	The	columns	to	be	displayed	are	defined	by	giving	them	a	Sequence
number.

					In	your	own	application	you	would	probably	enable	additional	columns.
Your	filters	must	then	be	changed	to	populate	the	additional	columns.

16.	Close	the	Business	Object	properties	dialog.

Step	4.	Refine	the	Reports	Business	Object
1.		Open	the	properties	dialog	for	the	Reports	business	object.
2.		Select	the	Filters	tab	and	delete	the	default	"New	Filter"	which	the	Instance
Prototyping	Assistant	has	created.	The	command	handlers	for	the	Reports
business	object	will	not	require	an	instance	list.

3.		Select	the	Commands	Enabled	tab.	Select	each	Enabled	action	and	change	its
command	type	to	Business	Object	Command.	
After	the	first	change,	the	Please	Note	dialog	will	be	displayed,	deselect	the
Warn	me…	check	box	and	click	the	Close	button.	
When	have	changed	all	the	commands	to	a	Business	Object	Command,	close
the	Reports	business	object	properties	dialog.

4.		Now	Save	and	Restart	the	Framework
5.		Select	the	Reports	business	object	for	your	application.	The	default	Weekly
command	tab	should	be	displayed.	Right	click	on	Weekly	tab	to	show	the
context	menu	for	the	other	Reports	actions.

6.		Save	and	Exit	your	Framework.
7.		Restart	the	Framework	as	an	end	user	and	ensure	it	meets	all	the
requirements.

Summary
Important	Observations

Due	to	time	limitations,	the	prototyping	section	of	these	exercises	is	brief.
When	creating	your	own	application	prototype,	this	is	a	crucial	step
which	may	well	determine	whether	your	project	gains	acceptance	or	not.
A	well	thought	out	prototype	will	clearly	communicate	what	the	finished
application	will	look	like	and	what	it	will	do.
A	prototype	should	always	be	reviewed	with	the	end	user(s)	in	detail	and
signed	off.	With	Visual	LANSA	Frameworks	the	prototype	is	completely	re-
used	in	the	final	application.
To	create	a	new	application	prototype	with	the	Visual	LANSA	Framework,
you	simply	set	the	application	properties.	You	do	not	have	to	write	any	code.
You	can	create	application	objects	manually	and	you	can	create	or	extend	an
application	using	the	Instant	Prototyping	Assistant.
Applications	can	contain	many	business	objects.	A	business	object	is	the
thing	an	end	user	works	with,	within	an	application.
Filters	enable	end	users	to	search	for	business	objects.
Command	Handlers	enable	the	end	user	to	carry	out	business	processes	on
business	objects.
A	business	object	may	have	many	command	handlers.

Tips	&	Techniques
Enhance	the	appearance	of	your	prototype	filters	and	command	handlers
using	the	images	palette.
The	business	object	properties	dialog	enables	the	developer	to	refine	the
definition	of	the	application,	business	object	and	its	filters	and	command
handlers.

What	You	Should	Know
How	to	create	a	prototype	using	the	Instant	Prototyping	Assistant.
How	to	refine	the	application	design	using	the	business	object	properties
dialog.
How	to	tune	the	behavior	of	command	handlers.
How	to	refine	the	appearance	of	prototype	filters	and	command	handlers,
using	text	and	images.

VFW040	–	Snap	in	Real	Filters
Objective

To	replace	the	prototype	filters	with	real	filters	which	will	perform	selection
of	employees	for	the	instance	list.

To	achieve	this	objective,	you	will	complete	the	following:
Step	1.	Create	Your	Real	By	Name	Filter
Step	2.	Snap	in	the	Employees	By	Name	filter
Step	3.	Review	Filter	Code
Step	4.	Create	a	Real	Employees	By	Location	filter
Summary

Before	You	Begin
Complete	exercises	VFW020	and	VFW030.
You	may	wish	to	review	in	the	Visual	LANSA	Frameworks	Guide:
					Filter	in	Key	Concepts
					Framework	Programming

its:lansa048.CHM::/LANSA/filterhandler.HTM
its:lansa048.CHM::/LANSA/vlf3050.HTM

Step	1.	Create	Your	Real	By	Name	Filter
In	this	step	you	will	create	a	real	filter	(a	Reusable	Part)	which	search	the	file
PSLMST	by	surname,	and	populate	the	Instance	List.	You	will	learn	how	to	use
the	Program	Coding	Assistant.
1.		In	the	Framework,	select	the	Employees	business	object	and	click	the
Program	Coding	Assistant	button	on	the	By	Name	filter.

					You	could	also	access	the	Program	Coding	Assistant	from	the	Framework
menu.

					The	Program	Coding	Assistant	allows	you	to	create	different	types	of
component	which	can	be	plugged	into	your	filters,	instance	lists	and
command	handlers.

					Initially	you	will	probably	select	filters	which	generate	a	complete
component	(for	example,	Filter	which	searches	by	all	logical	views	of	a	file).
As	you	become	more	expert,	you	might	use	a	skeleton	filter,	or	copy	from
one	which	is	similar	to	what	you	need	and	complete	the	code	manually.

2.		If	you	are	using	a	non-English	system,	click	on	Framework-><Your
Framework	Description>	which	is	the	first	entry	in	the	Coding	Assistant's
tree	view.	In	the	Select	the	type	of	code	you	want	to	generate	panel,	select	Set

LANSA	Code	generation	preferences.	Click	the	Next	button	to	set	your	coding
preferences.

3.		In	the	tree	view	select	iii	HR	Application	/	Employees	/	Filter->By	Name.

4.		If	your	Framework	is	enabled	for	Web	development,	Select	Windows	as	the
target	platform.

5.		In	the	list	headed	Select	the	type	of	code	you	want	to	generate,	select	Filter
that	searches	using	a	file	or	view.

6.		Click	the	Next	button.	The	coding	assistant	is	a	wizard	which	will	present	a
series	of	panels	which	you	will	complete	to	generate	the	filter	code	required.
There	may	be	optional	sections	on	these	panels	which	you	will	complete	as
necessary	to	generate	the	logic	required.

7.		On	the	first	panel	enter	PSLMST	as	the	physical	file	name	that	most	closely
resembles	the	business	object	is.

					Based	on	the	file	key	and	first	two	fields	on	the	file,	the	coding	assistant
suggests	the	fields	required	to	define	the	Visual	and	Programmatic	Identifiers.

A	Visual	Identifier	is	the	field	or	fields	that	a	user	would	use	to	identify	a
unique	instance	of	an	object
A	Programmatic	Identifier	is	the	field(s)	that	the	program	would	use	to
identify	a	unique	instance	of	the	business	object.	Typically	these	would	be
the	primary	keys	of	the	file	or	files	that	make	up	the	data	in	the	instance
list.
The	additional	columns	should	be	completed,	if	necessary,	to	correspond
to	any	additional	columns	which	you	have	added	to	your	instance	list,
during	the	prototyping	phase.

					In	this	case,	the	generated	code	will	use	EMPNO	and	FULLNAME	(based
on	SURNAME	plus	GIVENAME)	to	define	the	visual	identifiers.

					EMPNO	defines	the	programmatic	identifier
8.		Click	the	Next	button.
9.		On	the	next	panel,	select	PSLMST2	as	view	to	be	used	for	filtering
/searching	operations.

10.	Select	SURNAME	as	the	key(s)	of	the	selected	view,	to	be	used	for	search
operations.	SURNAME	will	be	the	input	field	on	the	filter	panel.

					Select	the	following	options:
Allow	generic	searching

Remember	key	values	between	filter	executions
Allow	the	user	to	clear	the	instance	list

11.	Click	the	Next	button.	Select	the	check	box	Routine	to	listen	for	signals	to
update	the	instance	list.

12.	Click	the	Generate	Code	button.
					The	generated	code	will	be	displayed.
					You	now	simply	need	to	create	the	component	by	specifying	its	Name	and
Description	and	clicking	the	Create	button.	VLF	code	assistant,	currently
limits	reusable	part	names	to	9	characters.

13.	Specify	iiiVFW04	as	the	filter	name,	where	iii	are	your	initials,	and
Employee	By	Name	Filter	as	the	description.	If	you	are	using	an	unlicenced
or	trial	version	of	Visual	LANSA	your	component	names	must	be	of	the	form
DEMCOM05.	Click	the	Create	button.

					When	you	click	the	Create	button,	a	reusable	part	will	be	created	in	the
Repository	and	the	code	will	be	copied	into	the	editor.

					After	a	brief	delay,	a	message	Created	in	the	development	environment	will
be	displayed.

14.	Switch	to	Visual	LANSA	and	compile	the	reusable	part.

Step	2.	Snap	in	the	Employees	By	Name	filter
Now	that	you	have	created	and	compiled	your	filter,	you	need	to	snap	it	into	the
Framework.	This	means	that	you	will	replace	a	dummy	filter	(which	is	a
shipped	component)	with	your	reusable	part.
1.		In	the	Framework,	close	the	Program	Coding	Assistant.
2.		Double	click	the	Employees	business	object	to	display	its	Business	Object
properties	dialog.

3.		Select	the	Filters	tab	sheet	and	select	the	By	Name	filter.	Then	select	the
Filter	Snap-in	Settings	tab	sheet.

4.		Specify	iiiVFW04	as	the	Windows	Filter	handler	component,	where	iii	are
your	initials.

5.		Save	and	Restart	your	framework.
6.		Select	the	Employee	business	object.	On	the	By	Name	filter,	enter	a	single
letter	such	as	"S"	or	"B"	and	click	the	Search	button.	The	Instance	List	should
be	populated	with	matching	employee	details.

Step	3.	Review	Filter	Code
Although	you	can	create	simple	filters	using	the	Program	Coding	Assistant,	you
should	understand	how	they	are	coded.
1.		Switch	to	the	Visual	LANSA	editor,	where	the	reusable	part,	iiiVFW04	is
still	open.

2.		Use	the	GoTo	tab	to	select	the	uSelectData	method	routine.	Double	click	on	a
routine	on	the	Go	To	tab	and	the	editor	positions	to	that	line.

					The	filter	notifies	the	Framework	that	an	update	is	about	to	occur:
*		Indicate	that	Employees		instance	list	updating	is	about	to	start
Invoke	Method(#avListManager.BeginListUpdate)
	

					The	data	is	selected	using	a	SELECT/ENDSELECT	loop
*			Select	appropriate	instances	of	Employees
Select	Fields(#XG_Ident)	From_File(PSLMST2)	With_Key(#XG_Keys)	Nbr_Keys(*Compute)	Generic(*yes)
*	Set	up	the	visual	Identifier(s)
Change	Field(#UF_VisID1)	To(#EMPNO)
Change	Field(#UF_VisID2)	To(#SURNAME)
Use	Builtin(BConcat)	With_Args(#UF_VisID2	#GIVENAME)	To_Get(#UF_VisID2)
	

					The	Visual	ID	fields	are	set	up	with	EMPNO	and	SURNAME	+
GIVENAME.

					Then	the	data	is	added	to	the	instance	list.
*	Add	instance	details	to	the	instance	list
Invoke	Method(#avListManager.AddtoList)	Visualid1(#UF_VisID1)	Visualid2(#UF_VisID2)	Akey1(#EMPNO)
	

					Visualid1	will	be	shown	in	column	one	of	the	instance	list	and	Visualid2	will
be	shown	in	column	two.	Akey1	is	the	key	that	uniquely	identifies	an
employee.	If	it	was	a	numeric	value,	NKey1	would	be	used.

					Finally,	the	Framework	is	notified	that	the	instance	list	update	is	complete:
.	.	.
Endselect
*		Indicate	that	Employees		instance	list	updating	is	now	complete
Invoke	Method(#avListManager.EndListUpdate)
	

					Note:	avListManager	is	a	component	which	is	part	of	the	filter	ancestor
VF_AC007.

3.		For	this	step	you	need	to	ensure	that	your	editor	settings	are	showing
advanced	features.	Use	the	Options	menu	to	display	the	Settings	dialog.

4.		Select	the	General	settings	and	ensure	that	under	Details,	Show	Advanced
Features	is	selected.

5.		Select	the	Details	tab	in	the	editor,	to	display	your	component	properties.
Note	that	the	Ancestor	property	is	#VF_AC007.	All	filters	must	inherit	this
base	class,	which	provides	a	pre-defined	set	of	events,	properties	and
methods.

6.		Select	the	Outline	tab	in	the	editor,	to	see	the	components	you	inherit	from
VF_AC007.

7.		Use	the	context	menu	on	the	component	avListManager	and	select	the
Features	option.

8.		Expand	the	methods	and	examine	them.	Double	click	on	the	AddtoList
method	and	note	that	the	Help	tab	contains	help	for	this	method.

9.		Close	the	component	iiiVFW04.	You	may	want	to	read	the	Windows	Filter
and	Command	Handler	Anatomy	in	the	Visual	LANSA	Framework	Guide	to
learn	more	about	how	these	components	are	structured.

Step	4.	Create	a	Real	Employees	By	Location	filter
The	By	Location	filter	could	quickly	be	created	using	the	Program	Coding
Assistant.	However,	in	this	step	you	will	create	a	new	filter	component	by
creating	much	of	the	code	yourself.	This	will	enable	you	to	gain	a	greater
understanding	of	writing	code	for	the	Framework.
1.		From	the	File	menu	click	the		New	button	select	Reusable	Part	:

					Then	select	Panel:

3.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW05
					Description:	Employees	by	Location	Filter
					Enable	for	RDMLX	=	Yes
					A	reusable	part	is	created	with	an	ancestor	of	PRIM_PANL	which	means	it	is
a	visual	component.

4.		Select	the	Details	tab	and	change	the	Ancestor	to	VF_AC007.	This	is	the
filter	base	class	which	gives	your	filter	component	the	properties,	events	and
methods	it	needs	to	interact	with	Framework	components.

					Your	editor	must	be	configured	to	Show	Advanced	Features.	Use	File	/
Options	to	change	this	setting	under	General,	if	necessary.

5.		Paste	the	source	code	from	VFW040	–	Appendix	replacing	the	existing	code.
					A	number	of	errors	will	be	flagged.	Ignore	all	of	these,	since	you	will	now
complete	the	code	required.

6.		Switch	to	the	Design	tab,	and	resize	the	panel	so	that	it	looks	like	this:

7.		The	next	step	requires	the	Layout	Helper	tab	to	be	visible.
a.		Select	Views	on	the	Home	ribbon:

b.		Select	Layout	Helper:

					The	Layout	Helper	will	now	be	displayed	on	the	left	hand	side.
8.		In	the	Layout	dropdown,	select	MAIN_LAYOUT.

					Note	that	the	BODY_PANEL	and	BUTTON_PANEL	are	Children	of
MAIN_LAYOUT.

					The	supplied	code	includes	attachment	managers	and	flow	managers	which
define	your	filter	as:

Reusable	part	iiiVFW05	(a	panel) attachment	manager	(MAIN_LAYOUT)

BODY_PANEL flow	down	manager	(BODY_FLOW)

BUTTON_PANEL flow	down	manager	(BUTTON_FLOW)

9.		On	the	Repository	tab,	expand	Files	and	select	file	SECTAB.	Drag	and	drop
fields	DEPTMENT	and	SECTION	onto	the	main	panel,	below	the	Clear	List
checkbox.	This	is	the	BODY_PANEL.

10.	Select	each	field	and	on	the	Details	tab.
a.		Change	the	MarginLeft	property	to	100.
b.		Reduce	the	width	of	each	field,	which	are	actually	4	and	3	characters
long.

					Your	filter	should	look	like	the	following:

					Hint:	For	this	type	of	change,	you	can	select	both	fields	(hold	down	the	Shift
Key)	and	then	change	MarginLeft	to	the	required	value.

11.	Switch	back	to	your	source	code.

a.		Complete	the	Fields()	parameter	of	the	Group_by	XG_KEYS.	Replace	<
FILE	KEYS	>	with	fields	DEPTMENT	and	SECTION.

b.		Change	the	Cond()	parameter	in	the	Def_Cond	statement.	Replace
<INPUT	FIELD>	with	field	DEPTMENT

Your	changed	code	should	look	like	the	following:
Group_By	Name(#XG_Keys)	Fields(#DEPTMENT	#SECTION)
.	.	.	
Def_Cond	Name(*SearchOK)	Cond(#deptment	*ne	*Blanks)
	

					Note:	The	Group_by	XG_IDENT	is	already	correctly	defined,	to	retrieve
fields	EMPNO,	SURNAME	and	GIVENAME.

12.	Complete	the	uSelectData	method	routine.	The	supplied	source	contains	a
number	of	comment	lines	which	indicate	where	you	need	to	add	code.

a.		Invoke	the	BeginListUpdate	method	in	the	List	Manager
					#avListmanager.beginListUpdate
	
b.		If	the	Clear_List	ButtonState	is	checked,	invoke	the	ClearList
method	in	the	List	Manager:

If	('#Clear_List.ButtonState	=	Checked')
			#avlistmanager.ClearList
Endif
	
c.		Select	the	Group_by	XG_IDENT	from	logical	file	PSLMST,	with	keys	in
Group_by	XG_KEYS,	using	Generic	=	*yes	and	Number	of	keys	=
*compute.

Select	Fields(#XG_Ident)	From_File(pslmst1)	With_Key(#XG_Keys)	Nbr_Keys(*compute)	Generic(*yes)
	
d.		Place	the	ENDSELECT	before	the	*	Indicate	that	employees
instance	list	updating	is	complete.

e.		Set	up	work	field	uf_visid2	as	"Surname,		Givename"
					#uf_visid2	:=	#surname	+	',	'	+	#givename			
	

f.		For	each	employee	selected,	invoke	the	AddtoList	method	in	the	List
Manager	with	appropriate	parameter	values	for	Visualid1	and	Visualid2
and	Akey1.

					#avlistmanager.addtoList	Visualid1(#empno)	Visualid2(#uf_visid2)	Akey1(#empno)
	
g.		Invoke	the	EndListUpdate	method	in	the	List	Manager	(after	the
EndSelect)

					#avlistmanager.endListUpdate
	

					Your	completed	code	should	now	look	like	the	following:
Mthroutine	Name(uSelectData)
*		Save	the	current	key	values	from	overwrites	done	by	the	select	loop
Inz_List	Named(#Save_Keys)
*		Indicate	that	Employees		instance	list	updating	is	about	to	start
#avlistmanager.beginListUpdate
*		Clear	the	current	Employees		business	object	instance	list
If	('#Clear_List.ButtonState	=	Checked')
#avlistmanager.clearList
Endif
*			Select	appropriate	instances	of	Employees
Select	Fields(#XG_Ident)	From_File(pslmst1)	With_Key(#XG_Keys)	Nbr_Keys(*compute)	Generic(*yes)
*	Set	up	the	visual	Identifier(s)
#uf_visid2	:=	#surname	+	'	'	+	#givename
*	Add	instance	details	to	the	instance	list
#avlistmanager.AddtoList	Visualid1(#empno)	Visualid2(#uf_visid2)	Akey1(#empno)
Endselect
*		Indicate	that	Employees		instance	list	updating	is	now	complete
#avlistmanager.EndListUpdate
*		Restore	the	saved	key	values
Get_Entry	Number(1)	From_List(#Save_Keys)
Endroutine
	

13.	To	complete	the	event	handling	routine	for	DEPTMENT.Changed,
replace	<INPUT	FIELD	>	with	#Deptment	in	this	line:
Evtroutine	Handling(<	INPUT	FIELD	>.Changed)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
	

14.	Compile	your	component.
15.	In	your	Framework,	open	the	Employees	business	object	properties	dialog
and	select	the	Filters	tab.

16.	On	the	Filters	tab,	select	the	Filter	Snap-in	Settings	tab	and	snap	in	the
Windows	component	as	iiiVFW05.

17.	Save	and	Restart	the	Framework	and	test	the	By	Location	filter.
18.	Test	the	filter	by	specifying	a	partial	department	code	only	(for	example,
"A")	and	also	with	both	a	department	and	section	specified	(for	example,
ADM	and	01).

					This	filter	has	a	very	basic	user	interface.	In	a	later	exercise	you	will	learn
how	to	enhance	it.

					You	will	learn	more	about	using	Layout	Managers	in	a	later	exercise.

Summary
Important	Observations

With	snap-in	real	filters	you	create	real	functionality	in	your	application.

Tips	&	Techniques
The	source	code	for	filters	used	in	the	shipped	demonstration	applications
can	be	found	in	components	named	DF_*.

What	You	Should	Know
How	to	create	filters.
How	to	snap	filters	into	the	Framework.
How	to	use	the	Program	Coding	Assistant.
How	to	develop	a	filter	by	writing	your	own	code.

VFW040	–	Appendix
Source	Code	for	Filter	iiiVFW05
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#VF_AC007)	Height(170)
Layoutmanager(#MAIN_LAYOUT)	Width(345)
*	==
*	Simple	Field,	Group	and	Condition	Definitions
*	==
Group_By	Name(#XG_Keys)	Fields(<	FILE	KEYS	>)
Group_By	Name(#XG_Ident)	Fields(#EMPNO	#SURNAME	#GIVENAME)
Def_List	Name(#Save_Keys)	Fields(#XG_Keys)	Type(*Working)	Entrys(1)
Def_Cond	Name(*SearchOK)	Cond(<	INPUT	FIELD	>	*ne	*Blanks)
*	==
*	Component	definitions
*	==
*		Body	and	Button	arrangement	panels
Define_Com	Class(#PRIM_PANL)	Name(#BODY_PANEL)	Displayposition(1)	Height(169)	Horizontalscroll(True)	Layoutmanager(#BODY_FLOW)	Left(0)	Parent(#COM_OWNER)	Tabposition(1)	Tabstop(False)	Top(0)	Verticalscroll(True)	Width(242)
Define_Com	Class(#PRIM_PANL)	Name(#BUTTON_PANEL)	Displayposition(2)	Height(169)	Layoutmanager(#BUTTON_FLOW)	Left(242)	Parent(#COM_OWNER)	Tabposition(2)	Tabstop(False)	Top(0)	Width(88)
*		Attachment	and	flow	layout	managers
Define_Com	Class(#PRIM_ATLM)	Name(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_ATLI)	Name(#BODY_ATTACH)	Attachment(Center)	Manage(#BODY_PANEL)	Parent(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_ATLI)	Name(#BUTTON_ATTACH)	Attachment(Right)	Manage(#BUTTON_PANEL)	Parent(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_FWLM)	Name(#BUTTON_FLOW)	Direction(TopToBottom)	Flowoperation(Center)	Marginbottom(4)	Marginleft(4)	Marginright(4)	Margintop(4)	Spacing(4)	Spacingitems(4)
Define_Com	Class(#PRIM_FWLM)	Name(#BODY_FLOW)	Direction(TopToBottom)	Marginbottom(4)	Marginleft(4)	Marginright(4)	Margintop(4)	Spacing(4)	Spacingitems(4)
Define_Com	Class(#PRIM_PHBN)	Name(#Search_Button)	Buttondefault(True)	Caption('Search')	Displayposition(1)	Left(4)	Parent(#BUTTON_PANEL)	Tabposition(1)	Top(4)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_Search_Button)	Manage(#Search_Button)	Parent(#BUTTON_FLOW)
*		Define	the	fields	and	components	that	are	on	the	filter	form
Define_Com	Class(#PRIM_CKBX)	Name(#CLEAR_LIST)	Caption('Clear	List')	Displayposition(1)	Left(4)	Parent(#BODY_PANEL)	Tabposition(1)	Top(4)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_CLEAR_LIST)	Manage(#CLEAR_LIST)	Parent(#BODY_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_1)	Parent(#BODY_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_2)	Parent(#BODY_FLOW)
*	==
*	Method	Definitions
*	==
Mthroutine	Name(uInitialize)	Options(*Redefine)
*	Restore	Clear	List	button	state
Invoke	Method(#avFrameworkManager.avRestoreValue)	Withid1(*Component)	Withid2(#CLEAR_LIST.Name)	Toavalue(#CLEAR_LIST.ButtonState)	Useavaluedefault(Checked)

*		Enable/disable	the	search	button	as	appropriate
Set	Com(#Search_Button)	Enabled(*SearchOK)
Endroutine
Mthroutine	Name(uSelectData)
*		Save	the	current	key	values	from	overwrites	done	by	the	select	loop
Inz_List	Named(#Save_Keys)
*		Indicate	that	Employees		instance	list	updating	is	about	to	start
	
*		Clear	the	current	Employees		business	object	instance	list
If	('#Clear_List.ButtonState	=	Checked')
Endif
*			Select	appropriate	instances	of	Employees
*	Set	up	the	visual	Identifier(s)
*	Add	instance	details	to	the	instance	list
*		Indicate	that	Employees		instance	list	updating	is	now	complete
*		Restore	the	saved	key	values
Get_Entry	Number(1)	From_List(#Save_Keys)
*
Endroutine
Evtroutine	Handling(<	INPUT	FIELD	>.Changed)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Set	Com(#Search_Button)	Enabled(*SearchOK)
Endroutine
*	--
*	Handle	the	search	button
*	--
Evtroutine	Handling(#Search_Button.Click)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Invoke	Method(#Com_Owner.uSelectData)
Endroutine
End_Com

VFW042	–	Snap	in	a	Real	Command	Handler
Objective

To	replace	a	prototype	command	handler	with	a	real	component	that	will
perform	the	processing	required.
To	replace	the	Details	command	handler	with	a	real	command	handler.

To	achieve	this	objective,	you	will	complete	the	following:
Step	1.	Create	a	Real	Command	Handler
Step	2.	Review	Command	Handler	code
Step	3.	Snap	in	Real	Command	Handler
Summary

Before	You	Begin
Complete	exercises	VFW020,	VFW030	and	VFW040.
You	may	wish	to	review:

Commands	in	Key	Concepts	in	the	Visual	LANSA	Frameworks	Guide.

its:lansa048.CHM::/LANSA/command.HTM

Step	1.	Create	a	Real	Command	Handler
In	this	step	you	will	create	a	real	command	handler	for	the	Details	command.
1.		From	the	Framework	menu,	start	the	Program	Coding	Assistant.
2.		Select	the	iii	HR	Application	/	Employees	/	Details	command	handler.
3.		If	necessary	select	Native	MS	Windows	as	the	platform.
4.		Select	Basic	Command	Handler	as	the	type	of	code.	This	command	handler,
displays	the	fields	you	specify	for	the	object	selected	in	the	instance	list.	It
includes	a	Save	button.	You	must	complete	the	required	update	logic	for	this
button.

					The	CRUD	Command	Handler,	is	used	with	a	CRUD	filter.	The	commands
defined	for	the	business	object	must	be	New,	Details,	Copy	and	Delete.

					The	Command	Handler	that	maintains	a	list,	generates	a	command	handler
for	the	business	object	data	as	well	as	providing	a	list	of	records	from	a
related	file.

5.		Click	the	Next	button.
6.		Specify	file	name	PSLMST	as	The	physical	file	which	most	closely
resembles	this	business	object.

					As	before	the	code	assistant	will	select	the	key(s)	of	the	file	and	the	first	two
fields	from	the	file,	which	are	suitable	in	this	case.

7.		Click	the	Next	button.
8.		Specify	file	name	PSLMST		in	the	Add	fields	from	this	physical	file	section.
9.		Click	the	Add	All	button.

10.	Scroll	down	the	list	of	fields.	Select	the	following	fields	and	use	the	Drop
Selected	button	to	remove	them:

STARTDTER
TERMDATER
MNTHSAL

11.	Click	the	Next	button.
12.	Select	only	the	Include	Default	Save	Button	and	Logic.

13.	Click	the	Generate	Code	button.
					The	generated	code	is	displayed.
14.	Specify	iiiVFW06	as	the	name	of	the	component	and	Employee	Details
Command	Handler	as	the	description.

15.	Click	the	Create	button.

16.	After	a	few	moments	the	Created	in	development	environment	message	will
be	displayed.

17.	Switch	to	the	Visual	LANSA	editor.
18.	Use	the	GoTo	tab	to	find	the	SAVE_BUTTON	click	event	routine.
					Add	an	UPDATE	statement	to	update	group_by	fields	XG_HEAD	in	the	file
PSLMST.	Your	code	should	look	like	the	following:
					Update	Fields(#XG_HEAD)	In_File(pslmst)	Val_Error(*next)
	

19.	Compile	your	component.

Step	2.	Review	Command	Handler	code
1.		Locate	the	uExecute	method.	This	method	is	called	by	the	Framework
when	an	employee	business	object	is	selected	in	the	instance	list.

					Note	that	this	method	routine	redefines	the	uExecute	method	defined	in	the
command	handler	ancestor,	which	is	VF_AC010.

2.		The	uExecute	method	is	invoked	in	the	ancestor.	This	ensures	that	any
standard	logic	in	the	ancestor's	uExecute	method	in	performed.

3.		The	List	Manager's	GetCurrentInstance	method	is	invoked.	In	this	case
only	AKey1	is	requested,	but	this	method	could	request	any	of	the	columns
defined	in	the	business	object's	instance	list.

					The	uExecute	method	is	then	able	to	fetch	the	fields	required	from	the
employee	record,	using	the	key	of	EMPNO.

Step	3.	Snap	in	Real	Command	Handler
1.		In	the	Framework,	open	the	Employees	business	object	properties	dialog.
2.		Select	the	Commands	Enabled	tab.
3.		In	the	list	of	Enabled	commands,	select	Details.
4.		Specify	iiiVFW06	as	the	command	handler	Windows	component.

5.		Close	the	properties	dialog.
6.		Use	a	filter	to	populate	the	Employees	instance	list.
7.		Select	an	employee	in	the	instance	list.	Your	command	handler	is	snapped
into	the	Framework	and	usable.

8.		Make	a	change	to	the	employee	and	save	the	changes.
					Note	that	currently	the	instance	list	does	not	reflect	changes	to	an	employee
(for	example,	a	change	of	Surname).	In	a	later	exercise	you	will	learn	how	to
handle	this	situation.

Summary
Important	Observations

The	Details	command	handler	is	a	simple	update	program.	In	your	own
applications	you	would	embed	other	business	logic	and	processing	into	the
command	handler	as	necessary.

Tips	&	Techniques
For	more	information	read	the	Windows	Filter	and	Command	Handler
Programming	in	the	Visual	LANSA	Frameworks	Guide.
The	source	code	for	the	shipped	demonstration	applications	can	be	found	in
components	named	DF_*.

What	You	Should	Know
How	to	use	the	Program	Coding	Assistant	to	create	your	own	command
handlers.
How	to	snap	a	command	handler	into	the	Framework.
The	VLF	allows	you	to	prototype	and	rapidly	build	and	deploy	an
application	with	no	OO	knowledge.
Creating	this	style	of	application	enables	you	to	build	on	your	Visual
LANSA	knowledge,	to	rapidly	build	the	style	of	application	your	end	users
will	expect.

its:lansa048.CHM::/LANSA/lansa048_0575.HTM

VFW044	–	Add	Instance	List	Columns
Objective

To	add	columns	to	the	instance	list.
To	modify	a	filter	to	populate	the	additional	instance	list	columns
To	add	an	alpha,	a	numeric	and	a	date	column	to	the	instance	list.

Note:	In	this	exercise	you	will	modify	only	the	By	Name	filter.	Normally	you
would	make	the	same	modifications	to	By	Location	filter	and	to	any	other	filters
which	populate	the	Employees	instance	list.
To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Add	columns	to	the	Instance	List
Step	2.	Change	the	Filter
Summary

Before	You	Begin
You	should	complete	exercises	VFW020,	VFW030,	VFW040	and	VFW042.
You	may	wish	to	review	Adding	Additional	Columns	to	Instance	Lists	in	the
Visual	LANSA	Frameworks	Guide.

its:lansa048.CHM::/LANSA/addcols.HTM

Step	1.	Add	columns	to	the	Instance	List
In	this	step	you	will	configure	your	Employees	business	object	to	make	more
columns	visible	in	the	instance	list.
1.		Start	the	Framework	as	a	Designer.
2.		Open	the	properties	dialog	for	the	Employees	business	object.
3.		Select	the	Instance	List	/	Relations	tab.
					Two	visual	identifiers	are	already	defined.

4.		Add	three	additional	columns:

Sequence Type Caption Decimals Date/Time	Output	Format

30 AColumn1 Department 	 	

40 NColumn1 Salary 2 	

50 DColumn1 Start	Date 	 DDMMMCCYY

	

					Note	that	you	may	set	the	initial	width	of	each	column	as	a	percentage.	Set
these	to	suitable	values.

5.		Close	the	business	object	properties	dialog.
6.		Save	and	Exit	the	Framework

Step	2.	Change	the	Filter
You	need	to	make	some	simple	changes	to	your	filter	to	populate	the	new
instance	list	columns.
1.		Open	the	reusable	part	iiiVFW04	in	the	Visual	LANSA	editor.	Note	that	you
will	find	it	on	your	Favorites	/	Last	Opened	tab.

2.		Change	the	Group_by	XG_IDENT	to	include	fields	DEPTMENT,	SALARY
and	STARTDTE.	Your	code	should	now	look	like	the	following	–	changes	are
shown	in	red.:
Group_By	Name(#XG_Ident)	Fields(#EMPNO	#SURNAME	#GIVENAME	#deptment	#salary	#startdte
	

3.		In	the	uSelectData	method	routine,	within	the	SELECT/ENDSELECT
loop,	set	up	field	VF_ELDTS	to	contain	STARTDTE,	converted	to	an	ISO
date	and	then	converted	to	a	display	string.

					The	field	VF_ELDTS	is	an	alphanumeric	field	of	length	19,	which	exists	in
the	repository	and	is	used	by	Framework	components.

					Your	code	should	use	intrinsic	functions.	For	example:
#vf_eldts	:=	#startdte.asdate(DDMMYY).asDisplayString(ISO)
	

					Use	this	code	if	your	date	format	requires		it:
#vf_eldts	:=	#startdte.asdate(MMDDYY).asDisplayString(ISO)
	

4.		Change	the	invoke	AddtoList	method	in	the	List	Manager	to	populate	the
additional	columns.	For	example:
Invoke	Method(#avListManager.AddtoList)	Visualid1(#UF_VisID1)	Visualid2(#UF_VisID2)	Akey1(#EMPNO)	Acolumn1(#deptment)	Ncolumn1(#salary)	Dcolumn1(#vf_eldts)
	

5.		Compile	your	filter.
6.		Start	the	Framework	and	test	the	result.

Summary
Important	Observations

The	Instance	list	supports	up	to	10	alpha	and	10	numeric	columns	and	up	to
5	data	columns.

Tips	&	Techniques
Instance	list	columns	are	shown,	once	you	give	them	a	sequence	number.

What	You	Should	Know
How	to	add	columns	to	the	instance	list.

VFW050	–	Basic	Combo	Box	Processing
Introduction
The	combo	box	is	a	simple	list	component.	There	are	a	number	of	other	list
components	available	such	as	List	View,	Grid	and	Tree	View.
This	exercise	introduces	a	combo	box	(or	dropdown)	by	adding	it	directly	onto	a
panel	and	then	adding	logic	to	populate	it	with	values	and	position	it	to	an	entry,
when	necessary.	As	you	will	see	in	a	later	exercise,	you	will	often	decide	to
create	a	reusable	part	which	supports	one	or	more	linked	combo	boxes.	This
will	simplify	your	application	coding	and	enable	the	combo	box	logic	to	be
written	once	and	re-used.
A	combo	box	typically	displays	a	list	of	descriptions	(such	as	Department
Description).	However	your	program	logic	will	require	the	associated
department	code.	Typically	the	combo	box	has	one	visible	column	containing
descriptions	and	a	hidden	column	containing	the	associated	code.
When	an	entry	in	a	list	component	is	selected,	your	program	variables	are
automatically	populated	from	the	selected	row.

Objective
To	enhance	the	Employee	Details	command	handler	(iiiVFW06)	using	a
combo	box.

To	achieve	this	objective	you	will	complete	the	following:

Step	1.	Add	a	Combo	Box	to	the	Panel
Step	2.	Set	up	the	Combo	Box
Step	3.	Test	the	Combo	Box
Summary

Before	You	Begin
Complete	exercises	VFW030,	VFW040	and	VFW042.

Step	1.	Add	a	Combo	Box	to	the	Panel
1.		Open	the	reusable	part	iiiVFW06	in	the	editor.
2.		In	the	Design	view,	select	the	Controls	tab	and	drag	and	drop	a	Combo	Box
control	onto	the	left	hand	panel	(BODY_HEAD).	Since	BODY_HEAD	has	a
flow	down	manager,	your	combo	box	will	be	positioned	at	the	end	of	the
existing	fields.

3.		Select	the	Department	Code	and	select	the	Details	tab.	Note	that	this	field
has	a	DisplayPosition	property	of	10.

4.		Select	your	combo	box	and:
a.		change	its	DisplayPosition	to	10	to	position	it	immediately	before	the
Department	Code.

b.		Change	its	TabPosition	to	10.
5.		Your	panel	should	now	look	like	the	following:

					In	a	real	application	you	would	want	the	combo	box	positioned	in	line	with
the	field	edit	boxes.	This	can	be	ignored	for	now.	In	later	exercises	you	will
see	how	this	combo	box	would	be	implemented	in	a	real	application.

Step	2.	Set	up	the	Combo	Box
1.		On	the	Repository	tab,	find	the	file	DEPTAB	and	drag	and	drop	the	fields
DEPTDESC	and	then	DEPTMENT	onto	the	combo	box.

					Adjust	the	Width	of	the	Combo	box	so	that	the	full	description	field	is	visible
2.		Columns	within	a	list	component	are	components	which	have	their	own
properties,	events	and	methods.	Review	the	code	you	have	generated	for	the
combo	box:
Define_Com	Class(#PRIM_CMBX)	Name(#CMBX_1)	Componentversion(1)	Displayposition(10)	Height(18)	Left(4)	Parent(#BODY_HEAD)	Showselection(False)	Showselectionhilight(False)	Tabposition(10)	Top(211)	Width(173)
Define_Com	Class(#PRIM_CBCL)	Name(#CBCL_1)	Displayposition(1)	Parent(#CMBX_1)	Source(#DEPTDESC)
Define_Com	Class(#PRIM_CBCL)	Name(#CBCL_2)	Displayposition(2)	Parent(#CMBX_1)	Source(#DEPTMENT)
	

					Component	CBCL_1	is	the	first	column	of	combo	box	CMBX_1.	Note	that
CBCL_1	has	a	Parent	of	CMBX_1.

					The	combo	box	can	have	only	one	visible	column:	the	first	column	added.	If
you	added	DEPTMENT	first,	correct	the	set	up	by	making	the	column
containing	DEPTMENT	Visible	false.

					In	the	Design	view,	to	work	with	the	combo	box	column	1,	select	the
component	CBCL_1	from	the	dropdown	at	the	top	of	the	Details	tab.

3.		Create	an		uInitialize	method	routine	and	add	code	to	populate	the	combo
box.	The	uInitialize	method	is	already	defined	in	the	ancestor	(VF_AC010).

					Your	logic	should	clear	the	list	CMBX_1	and	select	all	valid	department

codes	and	descriptions	from	the	table	DEPTAB	and	add	them	to	your	combo
box.

					Note	that	the	CMBX_1	can	be	used	as	the	Fields()	parameter	in	I/O
commands.	Your	code	should	look	like	the	following:
Mthroutine	name(uInitialize)	Options(*REDEFINE)
Invoke	Method(#Com_Ancestor.uInitialize)
Clr_List	Named(#CMBX_1)
Select	Fields(#CMBX_1)	From_File(deptab)
Add_Entry	To_List(#CMBX_1)
Endselect
Endroutine
	

4.		Since	the	Employee	Details	command	handler	is	reading	and	updating	an
employee	you	need	to	ensure	the	combo	box	displays	the	required	department
description.

					Entries	in	a	list	components	can	be	processed	using	the
SELECTLIST/ENDSELECT	loop.

5.		Add	the	following	logic	in	the	uExecute	method	routine,	after	the	FETCH
employee	record.
Define	Field(#deptw)	Reffld(#deptment)
#deptw	:=	#DEPTMENT
Selectlist	Named(#CMBX_1)
Leave	If(#DEPTMENT	=	#deptw)
Endselect
#CMBX_1.currentItem.focus	:=	true
	

6.		How	do	you	discover	that	the	combo	box	has	a	currentitem	which	has	a
focus	property?

					In	the	Design	view,	select	the	combo	box	and	use	the	context	menu	on	the
combo	box	component	and	select	Combo	Box:	CMBX_1	/	Features.

					The	Features	help	panel	will	be	displayed.

7.		Expand	the	Properties	to	find	CurrentItem.	Note	that	the	+	symbol	indicates
that	CurrentItem	can	be	expanded.

8.		Double	click	on	PRIM_CBIT	to	show	the	properties,	events	and	methods	for
the	list	column	component.

9.		Expand	Properties	to	see	the	Focus	property.	Double	click	on	the	focus
property	to	see	the	help	for	the	CurrentItem.Focus	Property.

10.	Compile	your	component.

Step	3.	Test	the	Combo	Box
1.		Execute	your	Framework	as	Designer,	search	for	employees	by	name,	and
select	one	in	the	instance	list	to	display	the	Employee	Details	command
handler.

					The	combo	box	should	display	the	correct	description	for	the	employee's	
Department	Code.

2.		Select	another	employee	to	check	the	combo	box	value	is	changing.
3.		Change	the	department	code	using	the	combo	box.
					Note	that	the	Department	Code	value	is	changed.
					You	will	be	able	to	save	the	employee	record,	provided	that	the	Section	Code
is	valid	for	the	new	department.

Summary
Important	Observations

All	list	components	such	as	combo	box,	grid,	list	view	and	tree	view	are
handled	in	a	similar	way.
The	order	of	the	data	is	controlled	by	the	sort	position	and	not	the	order	the
data	is	added	to	the	list.
If	you	change	the	SortPosition	property	for	CBCL_1	equal	to	1,	the
departments	will	be	displayed	in	ascending	order.

Tips	&	Techniques
This	exercise	shows	typical	simple	combo	box	processing.	You	must	ensure
that	the	combo	box	is	filled	and	correctly	positioned.
If	the	department's	combo	box	was	being	used	for	the	New	Employee
command	handler,	you	would	need	to	initially	populate	the	combo	box	and
then	position	it	to	the	first	entry.	For	example	by	adding	this	logic:

					Get_Entry	Number(1)	From_List(#CMBX_1)
					#CMBX_1.CurrentItem.Focus	:=	true
	

What	You	Should	Know
How	to	implement	a	simple	combo	box.

VFW052	–	Build	a	Working	List	of	Selected	Items
Objectives

To	implement	a	List	View	component	showing	a	list	of	all	employees
To	learn	how	to	handle	selected	items	in	a	list
To	show	how	to	use	the	TRANSFORM_LIST	Built-in	function	to	write	data
from	a	working	list	to	a	temporary	file.
To	develop	a	reusable	part	as	the	Reports	business	object's	Weekly	command
handler.	The	application	will	have	no	real	purpose	except	to	include	this
exercise	into	the	Framework.	Initially	the	command	handler	will	update	a	list
column	when	an	entry	is	selected	or	unselected.	Total	salary	will	be
calculated	for	selected	employees
To	enhance	the	application	to	maintain	a	working	list	of	selected	entries.
To	learn	how	you	can	maintain	a	working	list	of	selected	items,	dynamically,
meaning	the	working	list	is	updated	each	time	a	selection	in	the	list	changes.
To	implement	a	static	working	list,	which	is	populated	with	selected	entries
from	the	list	only	when	a	button	is	clicked.

To	achieve	these	objectives	you	will	complete	the	following:

Step	1.	Create	the	Weekly	Command	Handler
Step	2.	Handle	Selected	Items
Step	3.	Build	a	Dynamic	Working	List	of	Selected	Items
Step	4.	Build	a	Static	Working	List	of	Selected	Items
Summary

Step	1.	Create	the	Weekly	Command	Handler
1.		Create	a	new	Reusable	Part	/	Panel:
					Name:		iiiVFW07
					Description:	Select	Items	from	List
2.		Change	the	Ancestor	to	VF_AC010.
3.		Select	the	Design	ribbon.	Click	on	the	New	Layout	button	to	add	an
attachment	manager	to	the	reusable	part.

4.		Drag	and	drop	a	Panel	component	at	the	bottom	of	the	form.
5.		Drag	and	drop	a	List	View	component	into	the	center	of	the	top	area.
6.		From	the	Home	ribbon,	open	the	Layout	Helper	tab	from	the	Views	dialog.
Select	your	component	iiiVFW07,	for	example	click	on	the	reusable	part's
title	bar.	On	the	Layout	Helper,	select	the	Child	Details	tab	and	ensure	that
PANL_1	is	defined	as	Bottom	and	LTVW_1	is	defined	as	Center.

7.		Save	your	component.
8.		On	the	Repository	tab,	find	the	file	PSLMST	and	drag	and	drop	fields
EMPNO,	SURNAME,	GIVENAME	and	SALARY	into	the	List	View.

9.		On	the	Repository	tab,	expand	Fields	and	drag	and	drop	field	STD_TEXTS
into	the	List	View.

10.	Click	on	the	column	heading	for	STD_TEXTS	and	use	the	Details	tab	to
change	the	Caption	to	Selected,	and	the	CaptionType	to	Caption.

11.	Select	the	list	view	and	use	the	Details	tab	to	ensure	the	SelectionStyle	is
Multiple.

12.	Save	your	changes.	Your	design	should	look	like	the	following.

13.	In	the	Repository	create	a	field	TOTSALARY	(it	may	already	exist).	The
field	should	be	Packed,	15.2	with	an	edit	code	which	shows	a	negative	sign
(for	example,	edit	code	L).

a.		Add	the	field	TOTSALARY	onto	PANL_1	at	the	bottom	of	the	main
panel.

b.		Change	TOTSALARY	MarginLeft	property	to	100.	Adjust	the	Width
property	as	required.

14.	Create	an	Initialize	event	handling	routine	for	the	List	View.	Add	code	to:
Clear	the	list	view
Change	STD_TEXTS	to	blanks
Select	the	required	fields	from	file	PSLMST
Add	and	entry	to	the	list	view
End	Select.

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#LTVW_1.Initialize)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Clr_List	Named(#LTVW_1)
#std_texts	:=	*blanks
Select	Fields(#LTVW_1)	From_File(pslmst)
Add_Entry	To_List(#LTVW_1)
Endselect
Endroutine
	

15.	Save	your	changes.

Step	2.	Handle	Selected	Items
1.		Create	an	ItemGotSelection	event	handling	routine	for	the	list	view.	Add
code	which:

Changes	STD_TEXTS	to	YES
Updates	entry	in	the	list	view
Add	Salary	to	TOTSALARY

2.		Create	an	ItemLostSelection	event	handling	routine.	Add	code	which
Changes	STD_TEXTS	to	blank
Updates	entry	in	the	list	view
Subtracts	Salary	from	TOTSALARY.

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#LTVW_1.ItemGotSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#std_texts	:=	'YES'
Upd_Entry	In_List(#LTVW_1)
#TOTSALARY	:=	#TOTSALARY	+	#salary
Endroutine
Evtroutine	Handling(#LTVW_1.ItemLostSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#std_texts	:=	*blanks
Upd_Entry	In_List(#LTVW_1)
#TOTSALARY	:=	#TOTSALARY	-	#salary
Endroutine
	

3.		Compile	your	component.
4.		Execute	the	Framework	as	Designer.

a.		Open	the	Reports	business	object	properties	dialog.
b.		Select	the	Commands	Enabled	tab.
c.		Select	the	Weekly	action	and	define	the	Windows	Component	as
iiiVFW07.

d.		Close	the	Properties	dialog
5.		Save	and	Restart	the	Framework.
6.		Test	the	Weekly	command	handler	for	the	Reports	business	object.

a.		Click	on	entries	using	the	shift	or	control	key	to	select	multiple	entries.
					The	Selected	column	should	be	updated	to	YES	and	the	Total	Salary
field	should	reflect	the	selected	employees.

b.		Click	on	white	space	below	the	employee	entries	to	unselect	all	entries.
Total	Salary	should	now	be	blank	(zero	value).

Step	3.	Build	a	Dynamic	Working	List	of	Selected	Items
In	this	step	you	will	extend	your	Weekly	command	handler	by	defining	a
working	list.	The	ItemGotSelection	and	ItemLostSelection	event	routine	will	be
extended	to	add	or	delete	entries	to/from	the	dynamic	working	list.
A	Dynamic	Save	push	button	will	be	added	to	PANL_1.	When	clicked	this
button	will	write	a	comma	separated	file	from	the	dynamic	working	list.
1.		Define	a	work	field	called	KEYEMPNO	which	refers	to	field	EMPNO	for	its
definition.	This	will	be	used	to	store	EMPNO	in	the	working	list

2.		Define	a	work	field	RETCODE	which	refers	to	field	IO$STS	for	its
definition.

3.		Define	a	working	list	DYNAMIC	containing	fields	KEYEMPNO,
SURNAME,	GIVENAME	and	SALARY.	Specify	the	number	of	entries	as
*MAX.	Define	the	list	Counter	as	LISTCOUNT.

					Note:	*MAX	denotes	the	maximum	list	sized	is	only	limited	by	the
execution	platform.	For	*MAX,	the	working	list	uses	memory	dynamically.

					Your	code	should	look	like	the	following:
Define	Field(#keyempno)	Reffld(#empno)
Define	Field(#retcode)	Reffld(#io$sts)
Def_List	Name(#dynamic)	Fields(#keyempno	#surname	#givename	#salary)	Counter(#listcount)	Type(*working)	Entrys(*max)
	

4.		Modify	the	ItemGotSelection	event	routine:
a.		Look	in	the	DYNAMIC	working	list	(LOC_ENTRY)	for	the	selected
employee	number.	Use	Where()	to	compare	KEYEMPNO	with	EMPNO.

b.		If	not	found,	add	an	entry	to	list	DYNAMIC.	Be	sure	to	first	change	field
KEYEMPNO	to	the	value	of	EMPNO	(ADD_ENTRY).

5.		Modify	the	ItemLostSelection	event	routine:
a.		To	look	in	the	DYNAMIC	working	list	for	the	selected	employee	number
using	LOC_ENTRY	with	a	suitable	Where()	parameter.

b.		If	found,	change	KEYEMPNO	to	EMPNO	and	delete	the	entry	from	list
DYNAMIC	(DLT_ENTRY).

6.		Add	a	push	button	to	the	bottom	panel	(PANL_1)	and	change	the	Name	to
PHBN_DYN.	Change	the	Caption	to	Dynamic	Save.

7.		With	the	PANL_1	selected,	select	the	Design	ribbon..
a.		Click	on	New	Layout	and	click	on	Flow	Across	to	add	a	flow	across
manager	to	this	panel.

b.		On	the	Layout	Helper	tab,	click	on	the	right	hand	blue	paper	clip	button,
to	Attach	all	children	to	the	layout	manager.

c.		On	the	Layout	Manager	Details	tab,	select	the	Category	/	Margins	and
use	the	All	setting	to	define	all	margins	as	6	pixels.

d.		Your	design	should	look	like	the	following:

8.		Create	a	Click	event	routine	for	the	push	button	PHBN_DYN.	Add	logic	to:
a.		Check	if	LISTCOUNT	is	greater	than	zero
b.		Use	the	TRANSFORM_LIST	BIF	to	create	a	comma	separated	file.	Place
the	in	C:\temp.	For	example:

if	(#listcount	>	0)
Use	Builtin(TRANSFORM_LIST)	With_Args(#Dynamic	'C:\temp\iiiDynamic.csv'	O)	To_Get(#retcode)
Endif
	
Hint:	Use	the	F4	Command	Assistant	to	complete	the	USE	command.
c.		Check	if	RETCODE	is	OK.	Issue	a	"Dynamic	file	saved	to	.	.	.	"	message,
or	an	error	message	if	the	save	was	not	successful.

					Your	code	should	now	look	like	the	following.	New	/	changed	code	is
highlighted	in	red,	italic.
Evtroutine	Handling(#LTVW_1.ItemGotSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#std_texts	:=	'YES'
Upd_Entry	In_List(#LTVW_1)
#TOTSALARY	:=	#TOTSALARY	+	#salary
#keyempno	:=	#empno
Loc_Entry	In_List(#Dynamic)	Where(#empno	=	#keyempno)	Ret_Status(#retcode)
If	(#retcode	*NE	OK)
Add_Entry	To_List(#Dynamic)
Endif
Endroutine
Evtroutine	Handling(#LTVW_1.ItemLostSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#std_texts	:=	*blanks
Upd_Entry	In_List(#LTVW_1)
#TOTSALARY	:=	#TOTSALARY	-	#salary
Loc_Entry	In_List(#Dynamic)	Where(#empno	=	#keyempno)	Ret_Status(#retcode)
If	(#retcode	*EQ	OK)
Dlt_Entry	From_List(#Dynamic)
Endif

Endroutine
Evtroutine	Handling(#PHBN_DYN.Click)
If	(#listcount	>	0)
Use	Builtin(TRANSFORM_LIST)	With_Args(#Dynamic	'C:\temp\iiiDynamic.csv
If	(#retcode	*EQ	OK)
Message	Msgtxt('Dynamic	file	save	to	C:\temp\iiiDynamic.csv')
Else
Message	Msgtxt('transform	list	failed')
Endif
Endif
Endroutine
	

9.		Compile	your	component
10.	Execute	the	Framework	and	test	your	new	Weekly	command	handler	for	the
Reports	business	object.	Check	that	the	CSV	file	is	saved	with	the	correct
contents.	The	file	will	open	in	Excel	if	available,	otherwise	open	it	using
Notepad.

Notes:
If	a	path	is	not	specified,	the	TRANSFORM_LIST	BIF	will	save	the	output	file
in	<sysdir>.
Optional:	You	could	have	set	the	dynamic	save	push	button	to	Enabled(False)
initially	and	enable	the	button	if	LISTCOUNT	is	greater	than	zero.	Add	this
logic	to	the	ItemGotSelection	and	ItemLostSelection	event	routines.

Step	4.	Build	a	Static	Working	List	of	Selected	Items
In	this	step	you	will	extend	the	Weekly	command	handler,	by	defining	a	second
working	list,	STATIC.
This	list	is	called	STATIC	because	when	a	button	is	clicked,	the	whole	list	view
is	read	and	currently	selected	items	are	selected,	to	build	the	STATIC	list.	Its
entries	are	not	maintained	dynamically	each	time	a	list	item	gets	or	loses
selection.
A	Static	Save	push	button	click	event	will	then	process	the	List	view	adding
only	the	selected	items	to	the	STATIC	working	list.
TRANSFORM_LIST	will	be	used	to	save	the	STATIC	working	list	as	comma
separated	file.
1.		Define	a	work	field	STATCOUNT	with	reference	to	field	LISTCOUNT
2.		Define	a	working	list,	named	STATIC	containing	EMPNO,	SURNAME,
GIVENAME	and	SALARY.	Set	entries	to	*MAX	and	a	Counter	of
STATCOUNT.

					Your	code	should	look	like	the	following:
Define	Field(#statcount)	Reffld(#listcount)
Def_List	Name(#static)	Fields(#empno	#surname	#givename	#salary)	Counter(#statcount)	Type(*working)	Entrys(*max)
	

3.		Add	a	push	button	to	the	bottom	panel	(PANL_1).	Change	its	name	to
PHBN_STAT	and	change	Caption	to	Static	Save.

4.		Create	a	Click	event	routine	for	push	button	PHBN_STAT	which:
a.		Clears	the	static	working	list
b.		Reads	all	entries	in	the	List	View	using	SELECTLIST/ENDSELECT.
c.		Continues	reading	the	next	list	view	entry	if	the	currentitem	is	not
selected.

					Hint:	Use	Feature	Help	(F2)	on	the	list	view	and	examine	properties	to
find	currentitem	and	then	the	properties	of	currentitem.

d.		For	each	selected	item,	add	an	entry	to	the	static	working	list.
e.		If	STATCOUNT	is	greater	than	zero,	use	the	TRANSFORM_LIST	BIF	to
save	to	a	CSV	file.

f.		Test	RETCODE	and	issue	a	success	or	error	message	as	appropriate.

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#PHBN_STAT.Click)
Clr_List	Named(#Static)
Selectlist	Named(#LTVW_1)
Continue	If(*Not	#LTVW_1.currentitem.selected)
Add_Entry	To_List(#Static)
Endselect
Use	Builtin(transform_list)	With_Args(#Static	'c:\temp\iiistatic.csv'	O)	To_Get(#retcode)
If	(#retcode	=	OK)
Message	Msgtxt('Static	file	saved	to	C:temp\iiistatic.csv')
Else
Message	Msgtxt('Static	file	save	failed')
Endif
Endroutine
	

Summary
List	components	have	many	other	features	than	those	in	this	exercise.	Many
of	these	will	be	explored	in	later	exercises.
A	later	exercise	will	look	at	how	a	working	list	can	be	passed	to	a	function
and	received	by	a	function.

Important	Observations
LANSA	list	component	processing	is	very	fast.	Even	with	thousands	of
entries,	there	will	only	be	a	short	delay	while	creating	the	static	saved	file.
Both	static	and	dynamic	methods	work	efficiently	and	are	equally	straight-
forward	to	program.
You	should	always	review	the	properties,	events	and	methods	which	are
available	for	a	control,	to	understand	how	you	can	use	it	to	meet	your
application	requirements.

Tips	&	Techniques
If	the	user	occasionally	needs	to	produce	the	save	file,	the	static	method
would	probably	be	the	most	suitable.
If	the	user	needs	to	see	the	total	selected	salary	and	frequently	create	a	saved
working	list,	the	dynamic	method	would	work	well.

What	You	Should	Know
How	to	handle	list	events.
How	to	update	entries	in	a	list	component.
How	to	process	all	entries	in	a	list	component
How	to	define	and	use	a	working	list.
How	to	use	the	TRANSFORM_LIST	BIF.

VFW054	–	Edit	Text	in	a	Memo	/	Edit	Box
Objective

To	demonstrate	how	a	multi-line	edit	box	can	be	used
To	build	the	Employee	Brief	Notes	command	handler,	which	will	use	the
Multi-line	edit	box	component	to	create,	save	and	display	text	for	an
employee.	When	an	employee	is	selected	in	the	instance	list,	the	Brief	Notes
command	handler	will	retrieve	the	text	and	populates	the	multi-line	edit	box
To	learn	how	to	use	Save	and	Delete	buttons,	enabling	notes	to	be	saved	or
deleted.
To	create	a	simple	file	to	store	the	notes	data.

To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Create	a	Table	to	Store	Employee	Notes
Step	2.	Create	Brief	Notes	Command	Handler
Step	3.	Create	the	Command	Handler	Logic
Step	4.	Implement	Memo	Box	Copy/Paste	Methods	(Optional)
Summary

Step	1.	Create	a	Table	to	Store	Employee	Notes
1.		Define	the	following	fields	in	the	Repository:

Field	Name Description Type Length Decimals Input
Attrib.

iiiNTETYPE Note	Type Alphanumeric 1 	 	

iiiNTESQN Note	Sequence
Number

Packed 7 0 	

iiiLNECNT Line	Count Packed 7 0 	

iiiNTELNE Note	Line Alphanumeric 80 	 LC

	

2.		Create	a	table	iiiEmpNotes	-	Employee	Notes,	that	is	defined	as	follows:

Field Primary	Key	Number

EMPNO 1

iiiNTETYPE 2

iiiNTESQN 3

iiiLNECNT 4

iiiNTELNE 	

	

					The	file	does	not	need	to	be	RDMLX	enabled.
3.		Compile	your	new	table.	Be	sure	to	select	compile	options	which	will	build
table,	indexes	and	OAM.

Step	2.	Create	Brief	Notes	Command	Handler
1.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW08
					Description:	Employee	Brief	Notes
2.		Give	the	reusable	part	an	ancestor	of	VF_AC010
3.		Select	the	Design	ribbon.	Give	the	component	an	Attachment	manager.
4.		Drop	a	Panel	onto	the	right	hand	side.	Give	this	panel	the	Name,
BUTTON_PANL.	Adjust	the	width	so	that	it	can	contain	push	buttons.

5.		Drop	a	Multi-line	edit	box	onto	the	center	of	the	left	hand	area.
6.		Open	the	Layout	Helper	tab.	If	necessary,	select	it	from	the	Views	button	on
Home	ribbon.

					Select	iiiVFW08	in	the	Layout	Managed	Component	dropdown	and	select
the	Child	Details	tab.	Check	the	Child	Details	are	correctly	defined.
a.		BUTTON_PANL	should	be	Right
b.		MEMO_1	should	be	Centre.
c.		Select	the	BUTTON_PANL	and	give	it	a	Flow	Down	manager.
d.		On	the	Layout	Manager	tab.	On	the	As	Child	Details	tab,	select	the
Category		/	Margins	and	use	the	All	to	set	margins	of	6	pixels.

7.		Drop	two	push	buttons	onto	the	BUTTON_PANL.
a.		Name	the	first	PHBN_SAVE	with	a	Caption	of	Save.
b.		Name	the	second	PHBN_DLT	with	a	Caption	of	Delete.

8.		Save	your	changes.
9.		Locate	your	Employee	Notes	file	on	the	Repository	tab.
					Drop	the	field	iiiNTELNE	onto	the	Memo	box.
					The	Multi-line	edit	box	has	columns	just	like	other	list	components.	You
have	just	created	column	MECL_1.

10.	Drop	the	field	iiiNTESQN	onto	the	Memo	box.
					At	this	point	the	new	column	MECL_2	should	be	selected.	Use	the	Details
tab	to	check	its	ColumnRole	property.	Since	this	is	a	numeric	field	it	should
have	been	automatically	set	to	LineNumber.

					The	Memo	box	will	set	this	line	number	column	as	each	line	is	created.	This
enables	application	code	to	be	simplified,	when	writing	the	note	data	to	a	file.
The	sequence	number	will	ensure	the	text	is	restored	to	the	memo	box	in	the
same	sequence.

11.	Drop	field	iiiLneCnt	onto	the	Memo	box.	Once	again	check	this	column's
ColumnRole	which	should	be	LineContinuation.

12.	Select	the	Memo	box	and	set	its	properties	as	follows

Property Value

WordWrap True

AddEntryMode MultiplePerLine

MaximumLineLength 20,000

	

The	Memo	box	component	will	increment	line	count	(iiiLneCnt)	as	text	is
added.

Step	3.	Create	the	Command	Handler	Logic
The	Brief	Notes	command	handler	is	an	instance	list	command.	These	means	it
should	begin	by	retrieving	the	instance	list	current	entry,	so	that	it	can	restore
notes	for	this	employee.
1.		Create	an	uExecute	method	routine	with	an	Options(*redefine)
parameter.	This	routine	needs	to	do	the	following:

a.		Invoke	the	ancestor	uExecute	method
b.		Invoke	the	List	Manager	GetCurrentItem	method	to	retrieve	AKey1
(contains	EMPNO)

c.		Clear	the	Memo	box
d.		Select	all	iiiEmpNotes	records	for	this	EMPNO	and	iiiNteType	=	G
e.		Add	entries	to	Memo	box

					Your	code	should	look	like	the	following:
Mthroutine	Name(uExecute)	Options(*redefine)
#com_ancestor.uExecute
#avlistmanager.getCurrentInstance	Akey1(#empno)
Clr_List	Named(#MEMO_1)
#iiiNTETYP	:=	G
Select	Fields(#MEMO_1)	From_File(iiiEmpNotes)	With_Key(#empno	#iiiNteType)
Add_Entry	To_List(#MEMO_1)
Endselect
Endroutine
	

2.		In	this	step	you	will	add	logic	to	handle	the	Save	button	click	event.
					The	Memo	box	has	a	Modified	property,	which	your	save	logic	can	test	to
determine	whether	the	notes	data	needs	to	be	saved.	Modify	your	uExecute
routine	so	that	the	memo	box	Modified	property	is	set	to	false,	before	clearing
the	Memo	box.	For	example:
#MEMO_1.modified	:=	false
	

					Remember	you	can	find	out	more	about	any	component's	properties,	event
and	methods	by	using	the	F2	Feature	Help.

					Create	a	Click	event	handling	routine	for	the	Save	push	button.	Add	logic	to
perform	the	following:

If	the	Memo	box	Modified	property	is	true	–	perform

Change	iiiNTETYPE	to	G

Delete	all	records	from	iiiEmpNotes	for	this	employee	and	Note
Type.

Read	all	items	in	the	Memo	box	using	SELECTLIST

Insert	new	records	to	iiiEmpNotes

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#PHBN_SAVE.Click)
If	(#MEMO_1.modified)
#iiiNteType	:=	G
Delete	From_File(iiiEmpNotes)	With_Key(#empno	#iiiNteType)
Selectlist	Named(#MEMO_1)
Insert	Fields(#iiiNTELNE	#iiiNteType	#iiiNTESQN	#iiiLneCnt	#empno)	To_File(iiiEMPNOTE)
Endselect
Endif
Endroutine
	

3.		Create	a	Click	event	handling	routine	for	the	Delete	button.	Add	logic	to
delete	all	entries	for	this	employee	with	iiiNTETYPE	=	G.

					Clear	the	memo	box.
					Your	code	should	look	like	the	following:
Evtroutine	Handling(#PHBN_DLT.Click)
#iiiNteType	:=	G
Delete	From_File(iiiEmpNotes)	With_Key(#empno	#iiiNteType)
Clr_List	Named(#MEMO_1)
Endroutine
	

4.		Compile	your	component.
5.		Execute	the	Framework	as	Designer	and	open	the	properties	dialog	for	the

Employees	business	object.
6.		Select	the	Commands	Enabled	tab,	select	the	Brief	Notes	action	and	define
its	Windows	command	handler	as	iiiVFW08.

7.		Save	and	Restart	the	Framework	as	an	end	user.
8.		Test	the	Brief	Notes	command	handler.
9.		Using	standard	Windows	shortcuts	(Copy	=	Ctrl+C,	Paste	=	Ctrl+V),	copy
text	from	a	portion	of	the	LANSA	Online	Guides	and	paste	it	into	employee
brief	notes.

Step	4.	Implement	Memo	Box	Copy/Paste	Methods	(Optional)
If	you	examine	the	Memo	box	Methods	you	will	find	it	supports	Copy,	Paste,
Cut,	Print	and	Find.
Copy	will	copy	selected	text	to	the	Windows	clipboard.	The	method	can	be
actioned	programatically	or	by	the	user	using	the	standard	shortcut	keys,	such	as
Ctrl+C
Note	that	there	are	other	Methods	available	such	as	Replace,	which	you	should
investigate	later.	Once	again	Feature	Help	(F2)	will	provide	more	information.
In	this	step	you	will	implement	some	of	these	methods	using	a	Pop-Up	menu.
1.		In	the	Design	view,	select	the	Memo	box,	select	All	Controls	on	the	Controls
tab	and	drag	and	drop	a	Pop-up	Menu	component	onto	it.	The	Pop-up	menu
will	be	displayed	at	the	top	of	the	Design	tab.

					You	create	can	Menu	items	by	typing	their	Caption,	then	pressing	Enter	to
create	the	next	menu	item.

					The	first	Pop-up	menu	component	is	named	PMNU_1,	and	Menu	items	are
named	MITM_1,	MITM_2	etc.

					A	component,	such	as	the	Memo	box,	will	have	its	Popupmenu	property	set
to	the	name	of	the	Pop-up	menu	which	was	dropped	onto	it.

					Typing	a	dash	into	a	menu	Caption	makes	this	menu	item	a	divider.	Its
purpose	is	to	visually	separate	different	parts	of	the	menu.

2.		In	this	step	you	will	define	the	Pop-up	menu	items.	If	the	first	menu	item
(Item1)	is	not	displayed	at	the	top	of	the	Design	tab,	use	the	context	menu	on
the	Memo	box	to	Edit	pop-up	menu.
a.		Replace	the	Item1	text	with	Copy	and	press	Enter.
b.		Enter	Paste	and	press	Enter.
c.		Type	a	dash	(-)	character	into	the	next	menu	item,	and	press	enter
d.		On	the	new	menu	item,	type	Select	All	and	press	Enter.
e.		Type	dash	into	the	next	menu	item	and	press	Enter.

f.		Type	Find	into	the	new	menu	item
g.		Save	your	changes.
Your	Pop-up	menu	should	now	look	like	the	following:

3.		Create	a	Click	event	handling	routine	for	each	menu	item.	To	do	this,	simply
position	in	each	menu	item	and	use	the	Details	/	Events	tab.

					Note	that	you	could	have	renamed	each	menu	item	(for	example,
MITM_COPY)	for	example.	This	is	recommended	in	your	own	applications.
It	will	make	future	maintenance	much	easier.

4.		Complete	each	menu	item	Click	event	so	that	it	invokes	the	relevant	Memo
box	component	method.	For	example:
Evtroutine	Handling(#MITM_1.Click)
#MEMO_1.copy
Endroutine
	

5.		Compile	your	component.
6.		Execute	the	Framework	as	End	User	and	test	your	Brief	Notes	command
handler	and	the	Pop-Up	Menu	functions.

					For	example	you	could	copy	and	paste	within	the	same	Employee's	notes	or
switch	to	another	employee's	Brief	Notes	to	copy	into	that	one.

					Test	the	Copy,	Paste,	Select	All	and	Find	functionality.

Summary
Important	Observations

The	Copy	/	Paste	/	Cut	etc	functionality	of	the	memo	box	can	also	be
invoked	using	the	standard	Windows	short	cut	keys:	Ctrl+C,	Ctrl+V	and
Ctrl+X.
This	simple	example	uses	a	line	length	of	80	characters,	which	would	be
restrictive	if	you	need	to	copy	a	large	piece	of	text	from	an	existing
document.

Tips	&	Techniques
The	multi-line	edit	box	will	handle	large	blocks	of	text	and	word	wrap.

What	I	Should	Know
How	to	implement	text	input	in	a	multi-line	edit	box.
How	to	implement	memo	box	functions	using	a	pop-up	menu.

VFW056	–	Process	a	List	in	Sorted	Order
Objective

To	demonstrate	how	to	process	a	list	in	either	loaded	or	sorted	order.
A	Reports	/	Sort	command	handler	will	have	two	List	views.	The	left	hand
list	view	displays	all	employees,	with	sorting	by	column	enabled.	A	second
List	view	displays	selected	items	in	loaded	or	sorted	order.

In	order	to	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Create	Sorted	Command	Handler
Step	2.	Complete	the	Command	Handler	logic
Summary

Before	You	Begin
Complete	exercises	VFW030,	VFW040	and	VFW042

Step	1.	Create	Sorted	Command	Handler
1.		Create	a	new	reusable	part:
					Name:	iiiVFW09
					Description:	Loaded	or	Sorted	List	Items
2.		Change	the	component's	Ancestor	to	VF_AC010.
3.		Select	the	Design	ribbon	and	give	the	reusable	part	an	Attachment	manager.
4.		Drop	a	panel	onto	the	bottom	and	changes	its	name	to	BUTTON_PANL
5.		Drop	a	Panel	onto	the	centre	and	change	its	name	to	MAIN_PANL.
					If	necessary,	select	IIIVFW09	in	the	Layout	Helper	tab	and	ensure	the	Child
Details	are	correctly	defined.

6.			Select	the	MAIN_PANL.	On	the	Design	ribbon,	select	Split	Vertical	on	the
New	Layout	menu	to	give	the	panel	a	Vertical	Split	layout	manager.

7.		Use	the	Layout	Helper	/Layout	Manager	Details	/	Category	/	Divider	Style	
to	change	the	Divider	Style	to	Raised.

					The	Vertical	Splitter	creates	two	new	panels.	Rename	these	as	MAIN_LEFT
and	MAIN_RIGHT	as	follows:

8.		Select	panel	MAIN_LEFT,	and	on	the	Layout	Helper	tab	give	it	an
attachment	manager	of	ATLM_1.	Do	this	by	selecting	the	attachment
manager	ATLM_1	in	the	Layout	dropdown.

9.		Give	the	MAIN_RIGHT	panel	the	ATLM_1	attachment	manager.
10.	Drop	a	list	view	into	the	center	of	MAIN_LEFT	and	rename	the	list	view
LIST_1.

11.	Drop	a	list	view	into	the	center	of	the	MAIN_RIGHT	panel	and	rename	the
list	view	LIST_2.

12.	Save	your	changes.
13.	Select	the	file	PSLMST	on	the	Repository	tab	and	drag	fields	EMPNO,
SURNAME,	GIVENAME,	DEPTMENT	and	SECTION	into	each	list	view.
In	a	real	application	you	would	spend	some	time	making	the	column	headings
suitable.

14.	Select	list	view	LIST_1	and	select	each	column.	Do	this	by	clicking	on	each
column	heading	and	changing	the	column's	SortOnClick	property	to	True.

15.	Create	an	Initialize	event	routine	for	LIST_1	and	add	code	to	populate	it
with	all	records	from	the	file	PSLMST.	Your	code	should	look	like	the
following:
Evtroutine	Handling(#LIST_1.Initialize)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Clr_List	Named(#LIST_1)
Select	Fields(#LIST_1)	From_File(pslmst)
Add_Entry	To_List(#LIST_1)
Endselect
Endroutine
	

16.	In	the	Layout	Helper,	select	the	BUTTON_PANL	and	give	it	a	Flow	Across
manager.	On	the	Layout	Manager	Details	tab,	select	Margins	and	use	the	All
setting	to	set	all	Margins	to	6	pixels.

17.	Add	a	push	button	to	the	BUTTON_PANL	and	change	its	name	to
PHBN_LOADED.

a.		Change	its	Caption	to	Loaded	Order.
b.		Create	a	Click	event	routine.

18.	Add	a	second	push	button	to	the	BUTTON_PANL.		
a.		Change	its	Name	to	PHBN_SORTED.
b.		Change	its	Caption	to	Sorted	Order
c.		Create	a	Click	event	routine.

19.	Save	your	changes.

Step	2.	Complete	the	Command	Handler	logic
1.		Add	code	to	the	PHBN_LOADED	click	event	routine,	which:

a.		Clears	the	list	view	LIST_2
b.		Selects	all	items	in	LIST_1	using	SELECTLIST
c.		If	LIST_1	current	item,	selected	is	true,	add	an	entry	to	LIST_2

					For	example:
Evtroutine	Handling(#PHBN_LOADED.Click)
Clr_List	Named(#LIST_2)
Selectlist	Named(#LIST_1)
If	(#LIST_1.currentItem.selected)
Add_Entry	To_List(#LIST_2)
Endif
Endselect
Endroutine
	

2.		Add	code	to	the	PHBN_SORTED	Click	event	routine	which:
a.		Clears	the	list	LIST_2
b.		Processes	all	items	in	LIST_1	using	a	FOR/ENDFOR	loop.	For	example:
Evtroutine	Handling(#PHBN_SORTED.Click)
Clr_List	Named(#LIST_2)
For	Each(#row)	In(#LIST_1.items)
.	.	.	.
Endfor
Endroutine
	
LIST_1.Items	returns	a	reference	to	the	Items	collection	in	the	list	view
component.

Within	the	FOR/ENDFOR	loop,	each	item	will	be	referred	to	as	#ROW
c.		Retrieve	each	list	item	using	GET_ENTRY.		For	example
Evtroutine	Handling(#PHBN_SORTED.Click)
Clr_List	Named(#LIST_2)
For	Each(#row)	In(#LIST_1.items)
Get_Entry	Number(#row.entry)	From_List(#LIST_1)

Endfor
Endroutine
	

					Row.Entry	is	the	entry	number	for	each	list	item
d.		If	the	item	is	selected,	add	an	entry	to	LIST_2.	For	example
Evtroutine	Handling(#PHBN_SORTED.Click)
Clr_List	Named(#LIST_2)
For	Each(#row)	In(#LIST_1.items)
Get_Entry	Number(#row.entry)	From_List(#LIST_1)
If	(#row.Selected)
Add_Entry	To_List(#LIST_2)
Endif
Endfor
Endroutine
	

3.		Compile	your	command	handler.
4.		Execute	the	Framework	as	a	Designer	and	open	the	properties	dialog	for	the
Reports	business	object	and	select	the	Commands	Enabled	tab.

					Select	the	Sort	action	and	define	its	Windows	command	handler	component
as	iiiVFW09.

5.		Save	and	Restart	the	Framework.
6.		Test	the	Sort	command	handler	for	the	Reports	business	object.

a.		Right	click	on	the	Weekly	command	tab	and	select	the	Sort	action	from
the	context	menu.

					Note	that	initially	the	left	hand	employee	list	is	displayed	in	its	loaded
order.

b.		Without	sorting	on	a	column	in	the	left	hand	list,	select	some	entries	and
use	the	Loaded	Order	button.	The	right	hand	list	should	now	contain	the
selected	entries	as	they	are	displayed	on	the	left,	which	is	their	loaded
order.

c.		Test	the	results	using	the	Loaded	Order	and	Sorted	Order	buttons.	The
right	hand	list	should	contain	the	same	selected	entries	in	each	case.

d.		Sort	the	left	hand	list	on	Surname.	Select	entries	and	test	the	Loaded
Order	button.	Note	that	the	right	hand	list	contains	entries	from	their

loaded	position,	which	is	no	longer	the	same	as	the	displayed	list.
e.		Now	try	the	Sorted	Order	button	and	note	that	the	right	hand	list	now
contains	the	same	entries	as	displayed	and	selected	in	the	left	hand	list.
The	list	has	been	processed	in	its	sorted	order.

Summary
What	You	Should	Know

How	to	enable	a	list's	columns	to	allow	sorting.
How	to	process	a	list's	items	in	loaded	order.
How	to	process	a	list's	items	in	sorted	order.
How	to	use	the	FOR/ENDFOR	loop.

VFW060	–	Using	a	Tree	View
Introduction	to	Tree	Views
Tree	view	components	are	widely	used	in	Windows	applications.	They	usually
present	related	information,	with	the	tree	visually	representing	the	relationships
as	levels.	For	example	folder,	sub	folders	and	files;	or	departments,	sections	and
employees.
The	VL	Framework	usually	presents	the	navigation	panel	as	a	tree	(it	can	in	fact
also	be	visualized	as	two	lists	or	as	a	dropdown.

The	Tree	View	Technically
The	tree	view	component	is	specialized	list	component,	which	presents	the	list
items	as	a	tree.
The	Visual	LANSA	Tree	View	component,	by	default	has	a	ViewStyle	property
of	Levelled.
In	this	case,	each	level	can	display	one	column	only.
Each	column	added	must	have	its	correct	Level	number	defined.
Each	level	must	have	a	column	which	defines	the	KeyPosition	for	this	level.	For
example,	if	level	one	is	department	description,	then	level	one	probably	has
DEPTDESC	defined	as	KeyPosition	=	1.	It	defines	the	sequence	of	entries	for
level	one.	For	example:

					The	above	tree	would	be	defined	as	follows:

SourceField Level KeyPosition

DEPTDESC 1 1

SECDESC 2 1

FULLNAME 3 1

	

Note	that	the	order	added	is	not	related	to	how	an	entry	is	visualized	in	the
tree	view.
Each	value	of	DEPTDESC	is	displayed	once,	at	level	1	and	in	sequence.
If	the	tree	is	to	show	all	departments	from	the	table	DEPTAB	and	all	sections
for	each	department	from	the	table	SECTAB	and	all	employees	for	each
section,	then	it	is	essential	to	load:
a.		the	tree	view	entries	from	DEPTAB
b.		all	section's	entries	for	each	department	from	SECTAB
c.		all	employees	for	department	and	section	from	view	PSLMST1.

Objective
To	build	a	simple	three	level	tree	view	for	all	departments,	sections	and
employees
To	build	tree	view	with	columns
These	exercises	will	be	implemented	as	a	standalone	form,	not	within	your
Framework	application.

In	order	to	meet	the	objectives	you	will	complete	the	following:
Step	1.	Create	Tree	View	Form
Step	2.	Displaying	Tree	View	Data.
Step	3.	Add	Fields	to	Tab	Sheets	and	Item	Got	Selection	logic.
Step	4.	Fill	the	Tree	View	on	Demand
Step	5.	Add	Icons	to	the	Tree	View
Summary

Before	You	Begin
Complete	earlier	list	exercises,	VFW050	and	VFW052.

Step	1.	Create	Tree	View	Form
1.		Create	a	new	Basic	Form:
					Name:	iiiVFW10
					Description:	Tree	View	and	Details
2.		On	the	Controls	tab,	select	All	Controls	and	add	a	Status	bar	to	the	form.
This	component	is	always	attached	to	the	bottom	of	a	form.	LANSA
messages	from	the	OAM	or	program	Message	commands	are	routed	to	the
status	bar.

3.		Add	a	Tree	view	to	the	left	hand	side	of	the	form	and	resize	it	as	shown:

4.		On	the	Repository	tab,	select	the	DEPTAB	file	and	add	field	DEPTDESC	to
the	tree	view.

					Define	its	KeyPosition	property	as	1.
5.		Select	the	SECTAB	file	and	add	field	SECDESC	to	the	tree	view.	Change	its
KeyPosition	to	1.

6.		Find	field	FULLNAME	in	the	Fields	section	of	Repository	and	add	it	to	the
tree	view.	Change	its	Keyposition	to	1.

7.		Save	your	changes.

8.		Extend	the	form's	Initialize	event	routine	to	populate	the	tree	based	on	the
following	pseudo	code:

					Clear	the	Tree	view

					Select	all	entries	from	file	DEPTAB
									Select	entries	for	each	department	from	file	SECTAB

Select	entries	from	logical	file	PSLMST1	for	each	department/section
Set	up	Fullname	from	fields	Surname	and	Given	Name

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#com_owner.Initialize)
Set	Com(#com_owner)	Caption(*component_desc)
Clr_List	Named(#TRVW_1)
Select	Fields(#deptment	#deptdesc)	From_File(deptab)
Add_Entry	To_List(#TRVW_1)
Select	Fields(#section	#secdesc)	From_File(sectab)	With_Key(#deptment)
Add_Entry	To_List(#TRVW_1)
Select	Fields(#surname	#givename)	From_File(pslmst1)	With_Key(#deptment	#section)
#fullname	:=	#surname	+	',	'	+	#givename
Add_Entry	To_List(#TRVW_1)
Endselect
Endselect
Endselect
Endroutine
	

9.		Compile	and	test	your	form.	Your	tree	view	should	be	populated	with	all
departments,	sections	and	employees.

10.	In	a	later	step	you	will	consider	how	to	fill	the	tree	view	'on	demand'.

Step	2.	Displaying	Tree	View	Data.
In	this	step	you	will	make	design	changes	to	the	form,	so	that	it	will	be	able	to
display	data	for	each	level	when	a	tree	item	is	selected.
To	achieve	this,	a	number	of	issues	must	be	addressed:

Each	level	in	the	tree	must	contain	key	fields	which	will	enable	the
additional	data	to	be	read	from	a	file.	You	will	add	hidden	columns	to	the
tree	view	for	each	level.
The	form	must	be	able	to	display	either	department,	section	or	employee
details.	A	Tab	Folder	and	Tab	sheet	components	will	be	added	to	the	form
to	display	the	data	for	each	level.
Your	'display	details'	logic	must	know	which	level	in	the	tree	was	selected
Additional	fields	must	be	populated	when	the	tree	is	built.

1.		Open	your	form	in	the	Design	view	and	add	the	field	DEPTMENT	to	the
tree.	Initially	the	tree	will	show	this	as	a	fourth	level.	Change	its	Level
property	to	1.	Change	its	Visible	property	to	false.

2.		Add	field	SECTION	to	the	tree	view.	Changes	its	Level	property	to	2	and
Visible	to	false.

3.		Add	EMPNO	to	the	tree	view.	Change	its	Level	to	3	and	Visible	to	false.
4.		Save	your	changes.
5.		Expand	the	width	of	the	form	and	add	a	Tab	Folder	component	to	the	right
hand	side	and	resize	it.

					Hint:	If	you	want	to	move	the	tab	folder,	click	on	the	area	to	the	right	of	the
tabs,	to	select	the	tab	folder	component	and	then	drag	it.

6.		Right	click	on	the	Tab	Folder	and	use	the	context	menu	to	Add	Page.	This
will	add	a	third	tab	sheet	component	inside	the	Tab	Folder.		Change	its	Name
to	Sheet_3.

					You	now	need	to	be	aware	that	there	are	components	at	two	levels.	The	Tab
Folder	is	a	container.	The	Tab	Folder	is	the	parent	of	the	Tab	Sheets.
a.		Right	click	on	the	background	area	(just	to	the	right	of	the	"Page	1"	tab
and	use	the	context	menu	to	Add	Page.

b.		Add	a	third	page	(or	tab	sheet).
					Your	design	should	look	like	the	following:

7.		Select	the	Page	1	tab	and	then	click	in	the	center	to	select	the	tab	sheet	itself
(Sheet_1).	Change	its	Caption	to	Department	Details.

8.		Repeat	step	7,	to	change	Sheet_2's	Caption	to	Section	Details	and	Sheet_3's
Caption	to	Employee	Details.

9.		Save	your	changes.

Step	3.	Add	Fields	to	Tab	Sheets	and	Item	Got	Selection	logic.
1.		Find	the	DEPTAB	file	on	the	Repository	tab	and	add	fields	DEPTMENT	and
DEPTDESC	to	the	Department	Details	tab.	Review	the	Notes	below	before
you	continue:

Notes:	
If	the	Layout	Manager	is	not	being	used	(as	in	this	exercise),	the	fields	will	be
manually	positioned.	A	good	approach	is	to	select	both	fields	(hold	down	the
Shift	key	to	do	so)	and	drag	and	drop	them	together	onto	the	tab	sheet.	They	will
then	be	positioned,	in	line	and	one	under	the	other.

The	Edit	/	Align	dialog	enables	you	to	position	fields	more	accurately,	when	you
are	not	using	a	Layout	Manager.	If	a	number	of	fields	(or	other	components)	are
selected,	the	Align	dialog	will	position	them	relative	to	the	first	field	selected.

2.		Find	the	SECTAB	file	and	drag	and	drop	fields	DEPTMENT,	SECTION,
SECDESC,	SECADDR1,	SECADDR2,	SECADDR3,	SECPCODE	and
SECPHBUS	onto	the	Section	Details	tab	sheet.

					Note:	The	DEPTMENT	field	will	be	renamed	to	DEPTMENT_1	as
DEPTMENT	already	exists	on	this	form.

					Hint:	If	your	tab	sheet	looks	like	this:

					Select	a	field	and	change	its	Width	property	on	the	Details	tab.	For	example
Width	=	350.

3.		Find	the	file	PSLMST	and	drag	and	drop	fields	EMPNO,	SURNAME,
GIVENAME,	ADDRESS1,	ADDRESS2,	ADDRESS3,	POSTCODE,
SALARY,	STARTDTE	and	TERMDATE	onto	the	Employee	Details	tab
sheet.

Hint:	To	drag	the	fields	as	one	group:	Select	the	first	group	of	fields	using	the
Shift	key	and	then	use	the	Control	key	to	select	the	remainder	(SALARY	and	so
on).

4.		Adjust	field	widths	as	necessary.
5.		Save	your	changes.
6.		Change	the	form	Initialize	event	routine.	Add	field	EMPNO	to	the	fields
retrieved	from	file	PSLMST1.
Your	code	should	now	look	like	the	following.	The	changed	line	is
highlighted	in	red.

Evtroutine	Handling(#com_owner.Initialize)
Set	Com(#com_owner)	Caption(*component_desc)
Clr_List	Named(#TRVW_1)
Select	Fields(#DEPTMENT	#DEPTDESC)	From_File(deptab)
Add_Entry	To_List(#TRVW_1)
Select	Fields(#SECTION	#SECDESC)	From_File(sectab)	With_Key(#DEPTMENT)
Add_Entry	To_List(#TRVW_1)
Select	Fields(#EMPNO	#SURNAME	#GIVENAME)	From_File(pslmst1)	With_Key(#DEPTMENT	#SECTION)
#fullname	:=	#SURNAME	+	',	'	+	#GIVENAME
Add_Entry	To_List(#TRVW_1)
Endselect
Endselect
Endselect
Endroutine
	

7.		Create	an	ItemGotSelection	event	handling	routine	for	the	tree	view.
					The	logic	performed	will	need	to	be	based	on	which	level	in	the	tree	was
selected.

					The	tree	view	CurrentItem	component	has	a	Selected	property	which	enable
the	correct	logic	to	be	executed	for	each	level.

Important:	Remember	that	Feature	Help	(F2)	will	enable	you	to	discover	in
detail	the	Properties,	Events	and	Methods	for	any	component.

					The	details	for	each	level	selected	will	be	displayed	by	making	the	required
tab	sheet	the	"open"	tab	sheet.	The	Tab	Sheet	component	has	an	Opened
property.	When	true	this	tab	sheet	will	be	the	"top"	tab	sheet	and	therefore

the	required	details	will	be	visible.
					Your	code	should	look	like	the	following:
Evtroutine	Handling(#TRVW_1.ItemGotSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#std_num	:=	#TRVW_1.CurrentItem.level
Case	(#std_num)
When	(=	1)
#Sheet_1.opened	:=	true
When	(=	2)
Fetch	Fields(*all)	From_File(sectab)	With_Key(#DEPTMENT	#SECTION)
#DEPTMENT_1	:=	#DEPTMENT
#Sheet_2.opened	:=	true
When	(=	3)
Fetch	Fields(*all)	From_File(pslmst)	With_Key(#EMPNO)
#Sheet_3.opened	:=	true
Endcase
Endroutine
	

					Note:	The	field	DEPTMENT_1	is	set	to	DEPTMENT	for	the	Section	details
panel.

8.		Compile	and	test	your	form.
					You	should	be	able	to	select	any	entry,	and	the	relevant	tab	sheet	will	be
displayed.

Note:	You	will	probably	notice	that	this	form	could	be	refined.	For	example	if
you	click	on	the	Employee	Details	tab	while	displaying	Section	Details,	the
Employee	Details	tab	will	contain	values	for	the	last	employee.	The	Opening
event	for	Sheet_2	could	be	used	to	clear	fields	on	Sheet_1	and	Sheet_3.

Step	4.	Fill	the	Tree	View	on	Demand
The	tree	view	is	currently	loaded	with	all	department,	section	and	employee
data	initially.	Clearly	this	is	an	approach	which	will	work	well	for	a	small
amount	of	data.	For	your	own	applications,	it	is	much	more	likely	that	you	will
need	to	populate	the	tree	view	"on	demand".	Your	logic	would	add	all	records	to
level	one,	and	then	add	to	level	two	and	three	when	a	level	is	expanded	(by	click
on	the	+	next	to	that	item).
In	this	step	you	will	change	your	logic	so	that	the	tree	view	is	populated	on
demand.
1.		In	the	Design	view,	select	the	tree	view	and	change	its	ManageChildren
property	to	true.

					The	help	for	this	property	(see	F2	Features	help)	will	inform	you:
					ManageChildren	controls	what	happens	when	a	tree	item	is	collapsed.
					The	ManageChildren	property	controls	whether	child	items	are	automatically
deleted	when	a	tree	item	is	collapsed.	It	will	typically	be	used	when	the
children	are	loaded	during	an	ItemExpanding	event.	It	can	be	set	to	True	or
False.

2.		Create	an	ItemExpanding	event	handling	routine	for	the	tree	view.
3.		Cut	and	paste	the	Select	sections	and	select	employees	logic	from	the	from
the	Initialize	event	into	the	Tree	view	ItemExpanding	event	handling	routine.

					The	form	Initialize	logic	should	now	only	add	department	data	to	the	tree
initially.

					Your	form	Initialize	should	look	like	the	following:
Evtroutine	Handling(#com_owner.Initialize)
Set	Com(#com_owner)	Caption(*component_desc)
Clr_List	Named(#TRVW_1)
Select	Fields(#DEPTMENT	#DEPTDESC)	From_File(deptab)
Add_Entry	To_List(#TRVW_1)
Endselect
Endroutine
	

4.		Like	the	ItemGotSelection	event	routine,	the	ItemExpanding	event	will	need
to	perform	the	action	required	based	on	the	level	selected.	Add	the	required
logic	re-using	the	code	pasted	from	the	form	Initialize	routine.

Assign	TRVW_1.currentItem.Level	to	STD_NUM
Within	a	Case	loop	for	STD_NUM:

For	Level	1,	select	from	the	sections	file	for	this	department
For	Level	2,	select	from	the	employees	file	for	this	department	/
section.
For	Level	3,	no	action	required.

					Your	code	should	now	look	like	the	following:
Evtroutine	Handling(#TRVW_1.ItemExpanding)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#std_num	:=	#TRVW_1.currentItem.level
Case	(#std_num)
When	(=	1)
Select	Fields(#SECTION	#SECDESC)	From_File(sectab)	With_Key(#DEPTMENT)
Add_Entry	To_List(#TRVW_1)
Endselect
When	(=	2)
Select	Fields(#EMPNO	#SURNAME	#GIVENAME)	From_File(pslmst1)	With_Key(#DEPTMENT	#SECTION)
#fullname	:=	#SURNAME	+	',	'	+	#GIVENAME
Add_Entry	To_List(#TRVW_1)
Endselect
When	(=	3)
*	no	action	required
Endcase
Endroutine
	

5.		Compile	your	form	and	test	it.	From	an	end	user	perspective	it	should	work
exactly	the	same	as	before.

Step	5.	Add	Icons	to	the	Tree	View
Tree	views	are	usually	shown	with	an	icon	displayed	at	each	level.	The	image
does	not	necessarily	represent	the	level's	data,	but	it	gives	a	clear	visual	clue	for
the	level	being	selected	for	example.
In	fact	the	Tree	View	column	has	an	Image	and	ImageExpanded	property,	so
that	two	images	can	be	associated	with	that	level.	Of	course	the	image
properties	must	be	defined	for	the	column	which	is	displayed	for	that	level.
Check	your	Repository	under	Resources	/	Icons.	The	following	Icon
components	should	already	be	defined:

Name Use

VI_DEPTCL Department	(normal)

VI_DEPTOP Department	(open/expanded)

VI_SETCL Section	(normal)

VI_SECTOP Section	(open/expanded)

VI_EMPLOY Employee

	

1.		The	Image	properties	need	to	be	assigned	at	run	time.
					Add	the	following	code	to	the	beginning	of	the	form	Initialize	event	routine:
Set	Com(#TVCL_1)	Image(#vi_deptcl)	Imageexpanded(#vi_deptop)
Set	Com(#TVCL_2)	Image(#vi_sectcl)	Imageexpanded(#vi_sectop)
Set	Com(#TVCL_3)	Image(#vi_employ)
	

					These	assignments	must	be	before	departments	are	added	to	the	tree	view.
2.		Compile	and	test	your	form,	which	should	now	look	like	the	following:

3.		Confirm	that	the	icons	change	as	a	level	is	closed	or	expanded.

Summary
Important	Observations

All	Visual	LANSA	list	components	control	how	the	data	is	presented.	The
tree	view	displays	a	list	as	levels.
The	tree	view	definition	controls	how	the	data	is	visualized.	The	order	in
which	the	data	is	added	is	not	important.
A	simple	tree	view	(ViewStyle	=	unlevelled)	displays	one	column	for	each
level.
One	or	more	columns	must	be	defined	as	the	Key	Position	for	each	level.
In	this	example	the	icons	defined	for	each	column	(level)	are	fixed.	If
required,	your	application	could	set	image	properties	after	an	entry	is	added.
For	example,	use	F2	Feature	Help	on	a	tree	view	component	and	drill	down
to	examine	#TRVW_1.CurrentItem.Image.

Tips	&	Techniques
A	tree	view	which	could	contain	a	large	number	of	entries	should	be	filled
on	demand.
The	ManageChildren	=	True	property,	deletes	entries	for	the	next	level,
when	a	level	is	closed.
All	Visual	LANSA	list	components	are	capable	of	holding	many	thousands
of	entries.	However,	from	an	efficiency	and	usability	perspective,	your
application	should	control	how	much	data	is	added	to	the	list	component.
Icon	components	are	compiled	into	the	application.
If	the	image	file	associated	with	an	icon	component	is	changed,	you	must
recompile	the	application.

What	You	Should	Know
How	to	implement	a	simple	tree	view	(ViewStyle		=		levelled).
How	to	manage	displaying	detailed	data	for	a	selected	level.
How	to	fill	the	tree	view	on	demand.

VFW062	–	A	Tree	View	with	Columns
A	Tree	View	with	a	property	of	ViewStyle(Unlevelled)	may	have	multiple
columns.
Unlevelled	means	that	that	the	tree	no	longer	creates	a	level	per	field,	and
instead,	creates	a	column	per	field.
The	developer	is	now	responsible	for	the	level	at	which	a	tree	item	exists.
This	is	governed	by	setting	the	ParentItem	property	of	a	tree	item	to	another
tree	item.
The	tree	view	will	have	one	set	of	columns	and	your	logic	must	initialize	and
populate	these	as	appropriate	for	each	level	in	the	tree.
A	new	tree	item's	parent	must	be	set	to	the	relevant	parent.	A	null	parent
means	that	the	item	will	appear	as	a	root	node.
The	parent	is	no	longer	governed	by	the	data.	It	is	a	choice	the	developer	can
now	make.
Effectively,	there	is	NO	LIMIT	to	the	number	of	levels.

Note:	The	parent	of	a	tree	item	is	completely	dynamic.	It	can	be	set	at	any	time

Objective
To	understand	how	a	tree	view	can	be	defined	and	managed	so	that	it
displays	columns	as	well	as	a	tree	view
Your	finished	form	will	look	like	the	following:

To	meet	these	objectives	you	will	complete	the	following	steps:
Step	1.	Create	Form	iiiVFW11	-	Tree	View	with	Columns
Step	2.	Complete	Form	iiiVFW11	-	Tree	View	with	Columns
Step	3.	Add	Pop-Up	Menu	to	Show/Hide	Columns	-	Optional
Summary

Step	1.	Create	Form	iiiVFW11	-	Tree	View	with	Columns
1.		Define	a	new	field	in	the	repository	iiiSTRDTE	–	Start	Date	based	on
STD_OBJ.	This	is	a	character	field	to	be	used	as	the	date	column	in	the	tree
view.

2.		Create	an	initial	version	of	your	form.
					Name:	iiiVFW11
					Description:	Tree	View	with	Columns.
					Replace	the	form's	code	with	the	source	from	VFW062	-	Appendix	A	.
					Change	references	to	iiiSTRDTE	to	use	your	initials.
					Ignore	other	errors	at	this	stage,	you	will	add	the	missing	code.
3.		Review	the	form	in	the	Design	view	and	note	the	following:

The	Tree	View	has	a	ViewStyle	property	of	Unlevelled.
Most	of	the	tree	view	columns	are	based	on	standard	fields	such	as
STD_OBJ	rather	than	fields	from	the	files	which	will	be	used	to	populate
the	columns.	This	is	because	the	column	data	must	be	set	up	as	required
for	each	level.
All	the	columns	are	at	Level	1.
Drag	Columns	is	enabled.	This	means	that	the	user	will	be	able	to	drag
and	reposition	the	columns.

4.		Review	the	source	code	that	has	been	provided.	If	you	are	not	familiar	with	a
program,	you	should	always	use	the	GoTo	tab	to	quickly	understand	what
routines	it	includes.

When	the	Add_Entry	method	is	invoked	it	is	passed	the	variables	to
populate	the	tree	level	being	filled.
After	adding	an	entry	to	the	tree	view	(Name	=	Personnel),	the	parent
item	is	set	for	the	new	row	in	the	line:

	Set	Com(#Personnel.currentitem)	Parentitem(#i_Parent_item)
	

An	appropriate	icon	is	added,	depending	on	the	level	being	populated.
The	PB_LOAD	push	button	Click	event	in	the	supplied	code	simply
clears	the	tree.

Step	2.	Complete	Form	iiiVFW11	-	Tree	View	with	Columns
1.		Create	the	Add_Departments	method	routine	using	the	following	code
Mthroutine	Name(Add_Departments)	Access(*private)
Define_Com	Class(#prim_tvit)	Name(#Department_item)	Reference(*dynamic)
Select	Fields(#Deptment	#deptdesc)	From_File(Deptab)
#std_code	:=	DEP
#depnull	:=	*null
#com_owner.Add_Entry	I_Code(#deptment)	I_Description(#deptdesc)	O_Tree_Item(#Department_item)	I_Type(#std_code)	I_Addr(#std_textl)	I_Zip(#postcode)	I_Phone(#std_descs)	I_Date(#iiiSTRDTE)
	
*	Add	the	sections	for	the	department
#com_owner.Add_Sections	I_Parent_Item(#Department_item)	I_Department(#deptment)
Endselect
Endroutine
	

					Ignore	the	Add_Sections	is	not	.	.	.	error.	You	will	add	this	routine	in	a	later
step.

2.		Review	the	Add_Departments	method	routine:
A	dynamic	reference	to	a	tree	view	item	component	(#Department_item)	is
defined	(#prim_tvit)
The	routine	selects	all	records	from	table	DEPTAB
A	Group_By	#DEPNULL	is	used	to	initialize	fields	in	the	tree
Invokes	the	Add_Entry	method	routine	for	each	department
The	Add_Entry	is	passed	values	for	all	tree	columns
Add_Entry	is	also	passed	the	type	of	level	being	added	(I_Type)
The	Add_Section	method	is	invoked,	to	add	all	sections	for	each
department.

3.		Create	an	Add_Sections	method	routine	using	the	following	code:
Mthroutine	Name(Add_Sections)	Access(*private)
Define_Map	For(*input)	Class(#prim_tvit)	Name(#i_parent_item)	Pass(*by_reference)
Define_Map	For(*input)	Class(#deptment)	Name(#i_department)
Define_Com	Class(#prim_tvit)	Name(#Section_item)	Reference(*dynamic)
Select	Fields(#section	#secdesc	#secaddr1	#secaddr2	#secaddr3	#secpCODE	#secphBUS)	From_File(sectab)	With_Key(#i_department)
#std_code	:=	SEC

#iiiSTRDTE	:=	*null
#std_textl	:=	#secaddr1.trim	+	',	'	+	#secaddr2.trim	+	',	'	+	#secaddr3.trim
#com_owner.Add_Entry	I_Code(#section)	I_Description(#secdesc)	O_Tree_Item(#Section_item)	I_Parent_Item(#i_parent_item)	I_Type(#std_code)	I_Addr(#std_textl)	I_Zip(#secpcode)	I_Phone(#secphbus)	I_Date(#iiiSTRDTE)
*	Add	the	Employees	for	the	section
#com_owner.Add_Employees	I_Parent_Item(#Section_item)	I_Department(#deptment)	I_Section(#Section)
Endselect
*	Set	a	margin	on	the	last	item	to	help	separate	the	groups	of	tree	items
#Personnel.Currentitem.marginbottom	:=	5
Endroutine
	

					Ignore	the	Add_Employees	is	not	.	.	.	error,	which	you	will	correct	later.
4.		Review	the	Add_Sections	method	routine	logic:

A	dynamic	reference	to	a	tree	view	component	(#Section_item)	is	defined.
Records	are	selected	from	the	table	SECTAB,	for	the	received	department
code	i_department.
The	Add_Entry	method	routine	is	invoked	for	each	section	record
retrieved.
The	section	level	populates	all	columns,	except	Date,	which	is	initialized
as	*Null.
The	i_parent_item	is	passed	by	reference.	This	is	the	department	tree	view
item.
For	each	section	the	Add_Employee	method	is	invoked	to	add	employees
for	each	department	/	section.
A	reference	to	the	section	tree	view	item	is	passed	(#Section_item)	to	the
Add_Employees	method	routine.
A	MarginBottom	property	is	set	for	current	item,	after	employees	for	the
section	have	been	added.

5.		Create	an	Add_Employee	method	routine	based	on	the	following	code:
Mthroutine	Name(Add_Employees)	Access(*private)
Define_Map	For(*input)	Class(#prim_tvit)	Name(#i_parent_item)	Pass(*by_reference)
Define_Map	For(*input)	Class(#deptment)	Name(#i_Department)
Define_Map	For(*input)	Class(#section)	Name(#i_Section)
	
Define_Com	Class(#prim_tvit)	Name(#Employee_item)	Reference(*dynamic)
#std_code	:=	EMP

	
Select	Fields(#empno	#givename	#surname	#address1	#address2	#address3	#postcode	#phonebus	#startdte)	From_File(pslmst1)	With_Key(#i_Department	#i_Section)
#std_textl	:=	#address1.trim	+	',	'	+	#address2	+	',	'	+	#address3
#iiiSTRDTE	:=	#startdte.asdate(DDMMYY).asdisplayString(DDsMMsCCYY)
#com_owner.Add_Entry	I_Code(#empno)	I_Description(#Surname.trim	+	',	'	+	#Givename)	I_Parent_Item(#i_parent_item)	O_Tree_Item(#Employee_item)	I_Type(#std_code)	I_Addr(#std_textl)	I_Zip(#postcode)	I_Phone(#phonebus)	I_Date(#iiiSTRDTE)
Endselect
	
*	Set	a	margin	on	the	last	item	to	help	separate	the	groups	of	tree	items
#Personnel.Currentitem.marginbottom	:=	5
Endroutine
	

					Use	this	code	to	create	date	field	iiiSTRDTE	if	your	date	format	is
MMDDYY:
#iiiSTRDTE	:=	#startdte.asdate(MMDDYY).asdisplayString(DDsMMsCCYY)

					Note:	Retrieving	the	real	date	field	(STRDTER)	and	converting	this	using
the	following	code,	avoids	the	need	for	two	versions	of	the	code:
#iiiSTRDTE	:=	#startdter.asdate(YYMMDD).asdisplayString(DDsMMsCCYY)

6.		Review	the	Add_Employee	method	routine	logic:
A	dynamic	reference	to	a	tree	view	item	Employee_item	is	defined.
Records	are	selected	from	the	logical	file	PSLMST1	using	the	passed
department	and	section	codes	(i_department	and	i_section).
Add_Employee	populates	all	tree	view	columns.
Start	Date	is	shown	in	an	alpha	column,	so	that	it	can	be	set	to	blank	for
the	department	and	section	levels.

7.		Complete	the	load	push	button	click	event.	Your	code	should	now	look	like
the	following.	New	code	is	highlighted	in	red,	italic.
Evtroutine	Handling(#pb_load.Click)
Clr_List	Named(#Personnel)
#com_owner.Add_departments
Endroutine
	

8.		Review	the	Add_Entry	method	routine	again.
Note:

The	routine	has	an	output	parameter	#o_tree_item	which	is	a	reference	to	the
current	tree	view	item

	After	each	row	is	added	(add_entry	to_list(#Personnel)	a	reference	to	the
current	tree	view	item	is	obtained	via:

	Set	Com(#Personnel.currentitem)	Parentitem(#i_Parent_item)
	
This	reference	is	returned	to	the	calling	method	routine	via:

	*	Return	the	tree	item	for	use	as	a	parent	
	Set_Ref	Com(#o_Tree_item)	To(#Personnel.currentitem)
	

8.		Compile	your	form	and	test	it.

Step	3.	Add	Pop-Up	Menu	to	Show/Hide	Columns	-	Optional
1.		In	the	Design	view,	drag	and	drop	a	Pop-up	Menu	onto	the	Tree	View
component

					The	Popup	menu	will	be	displayed	at	the	top	of	the	Design	panel.
					Hint:	Enter	the	menu	item	name	and	press	Enter	to	define	the	next	menu
item.

2.		Define	the	Popup	menu	items	as:

Address

Zip	Code

Bus.	Phone

Start	Date

	

3.		Select	each	menu	item	and	set	its	Checked	property	to	True.
4.		Add	the	following	code	to	show	and	hide	the	tree	view	columns:
Evtroutine	Handling(#MITM_1.Click)
If	(#MITM_1.checked	=	true)
Set	Com(#TVCL_3)	Visible(false)
Set	Com(#MITM_1)	Checked(false)
Else
Set	Com(#TVCL_3)	Visible(true)
Set	Com(#TVCL_3)	Displayposition(3)
Set	Com(#MITM_1)	Checked(true)
Endif
Endroutine

Evtroutine	Handling(#MITM_2.Click)
If	(#MITM_2.checked	=	true)
Set	Com(#TVCL_4)	Visible(false)
Set	Com(#MITM_2)	Checked(false)
Else
Set	Com(#TVCL_4)	Visible(true)
Set	Com(#TVCL_4)	Displayposition(4)
Set	Com(#MITM_2)	Checked(true)
Endif
Endroutine
Evtroutine	Handling(#MITM_3.Click)
If	(#MITM_3.checked	=	true)
Set	Com(#TVCL_5)	Visible(false)
Set	Com(#MITM_3)	Checked(false)
Else
Set	Com(#TVCL_5)	Visible(true)
Set	Com(#TVCL_5)	Displayposition(5)
Set	Com(#MITM_3)	Checked(true)
Endif
Endroutine
Evtroutine	Handling(#MITM_4.Click)
If	(#MITM_4.checked	=	true)
Set	Com(#TVCL_6)	Visible(false)
Set	Com(#MITM_4)	Checked(false)
Else
Set	Com(#TVCL_6)	Visible(true)
Set	Com(#TVCL_6)	Displayposition(6)
Set	Com(#MITM_4)	Checked(true)
Endif
Endroutine
	

					Note:	In	the	above	code,	when	a	column	is	made	visible	the	DisplayPosition
of	that	column	is	set	back	to	its	original	value.

5.		Compile	and	test	your	form.	Using	the	right	mouse	menu	on	the	tree	view
you	should	now	be	able	to	show	or	hide	columns.

6.			You	have	completed	this	exercise.

Summary
Important	Observations

You	can	see	a	very	effective	implementation	of	a	tree	view	with	columns	in
the	Repository	tab	of	the	Visual	LANSA	Editor.
The	Tree	View	with	columns	provides	powerful	techniques	for	presenting
information	in	a	drill	down	format,	but	with	the	ability	to	display	much	more
information.

What	You	Should	Know
How	to	define	and	implement	a	tree	view	with	columns.

VFW062	-	Appendix	A
Source	for	the	initial	version	of	form	iiiVFW11	-	Tree	View	with	Columns
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_FORM)	Clientheight(499)	Clientwidth(644)	Height(533)	Layoutmanager(#ATLM_1)	Left(448)	Top(208)	Width(652)
Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_1)
Define_Com	Class(#PRIM_PANL)	Name(#PANL_1)	Displayposition(1)	Height(42)	Left(0)	Parent(#COM_OWNER)	Tabposition(1)	Tabstop(False)	Top(457)	Width(644)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_1)	Attachment(Bottom)	Manage(#PANL_1)	Parent(#ATLM_1)
	
*	A	new	property	called	Viewstyle	has	been	added	to	the	PRIM_TRVW
*	Unlevelled	means	that	that	the	tree	no	longer	creates	a	level	per	field,	and	instead,	creates	a	column	per	field.
*	The	developer	is	now	reponsible	for	the	level	at	which	a	tree	item	exists.
*	This	is	governed	by	setting	the	PARENTITEM	property	of	a	tree	item	to	another	tree	item
	
*	NOTE	-	The	tree	can	still	be	processed	using	SELECTLIST.
*	Entries	will	be	returned	in	the	sequence	they	were	added	to	the	list.	This	may	not	reflect	the	order	as	seen	in	the	tree
*	To	process	in	order	sequence,	use	the	FOR	command
Define_Com	Class(#PRIM_TRVW)	Name(#Personnel)	Columnbuttonheight(26)	Componentversion(1)	Displayposition(2)	Dragcolumns(True)	Height(457)	Left(0)	Parent(#COM_OWNER)	Tabposition(2)	Top(0)	Viewstyle(UnLevelled)	Width(644)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_2)	Attachment(Center)	Manage(#Personnel)	Parent(#ATLM_1)
Define_Com	Class(#PRIM_TVCL)	Name(#TVCL_1)	Caption('Code')	Captiontype(Caption)	Displayposition(1)	Level(1)	Parent(#Personnel)	Source(#STD_OBJ)
Define_Com	Class(#PRIM_TVCL)	Name(#TVCL_2)	Caption('Description')	Captiontype(Caption)	Displayposition(2)	Level(1)	Parent(#Personnel)	Source(#STD_DESC)	Width(22)
	
Define_Com	Class(#PRIM_PHBN)	Name(#pb_load)	Caption('Load	Tree')	Displayposition(1)	Left(8)	Parent(#PANL_1)	Tabposition(1)	Top(8)
Define_Com	Class(#PRIM_TVCL)	Name(#TVCL_3)	Caption('Address')	Captiontype(Caption)	Displayposition(3)	Level(1)	Parent(#Personnel)	Source(#STD_TEXTL)
Define_Com	Class(#PRIM_TVCL)	Name(#TVCL_4)	Caption('Zip	Code')	Captiontype(Caption)	Displayposition(4)	Level(1)	Parent(#Personnel)	Source(#POSTCODE)	Width(11)	Widthtype(Characters)
Define_Com	Class(#PRIM_TVCL)	Name(#TVCL_5)	Caption('Bus.	Phone')	Captiontype(Caption)	Displayposition(5)	Level(1)	Parent(#Personnel)	Source(#STD_DESCS)	Width(21)	Widthtype(Characters)
Define_Com	Class(#PRIM_TVCL)	Name(#TVCL_6)	Caption('Start	Date')	Captiontype(Caption)	Displayposition(6)	Level(1)	Parent(#Personnel)	Source(#IIISTRDTE)
*
Group_By	Name(#allfields)	Fields(#std_obj	#std_desc	#std_textl	#postcode	#std_descs	#iiiSTRDTE)
Group_By	Name(#depnull)	Fields(#std_textl	#postcode	#std_descs	#iiiSTRDTE)
Override	Field(#postcode)	Edit_Code(D)
Evtroutine	Handling(#pb_load.Click)
Clr_List	Named(#Personnel)
Endroutine
Mthroutine	Name(Add_entry)	Access(*private)
Define_Map	For(*input)	Class(#std_obj)	Name(#i_code)
Define_Map	For(*input)	Class(#std_Desc)	Name(#i_Description)
Define_Map	For(*input)	Class(#prim_tvit)	Name(#i_Parent_item)	Mandatory(*null)	Pass(*by_reference)

Define_Map	For(*output)	Class(#prim_tvit)	Name(#o_Tree_item)	Mandatory(*null)	Pass(*by_reference)
Define_Map	For(*input)	Class(#std_code)	Name(#i_type)
Define_Map	For(*input)	Class(#std_textl)	Name(#i_addr)
Define_Map	For(*input)	Class(#postcode)	Name(#i_zip)
Define_Map	For(*input)	Class(#std_descs)	Name(#i_phone)
Define_Map	For(*input)	Class(#iiiSTRDTE)	Name(#i_date)
#allfields	:=	*null
*	The	same	fields	are	used	regardless	of	the	"level"	of	the	tree	item
#std_obj	:=	#i_code
#std_desc	:=	#i_Description
#std_textl	:=	#i_addr
#postcode	:=	#i_zip
#std_descs	:=	#i_phone
#iiiSTRDTE	:=	#i_date
Add_Entry	To_List(#Personnel)
*	Set	the	new	tree	item's	parent	to	the	supplied	parent.	A	null	parent	means	that	the	item	will	appear	as	a	root	node
*	The	parent	is	no	longer	governed	by	the	data.	It	is	a	choice	the	developer	can	now	make.
*	Effectively,	there	is	NO	LIMIT	to	the	number	of	levels.
*	Note:	The	parent	of	a	tree	item	is	completely	dynamic.	It	can	be	set	at	any	time
Set	Com(#Personnel.currentitem)	Parentitem(#i_Parent_item)
*	Set	required	image	for	each	level
Case	(#i_type)
When	('=	DEP')
Set	Com(#Personnel.currentItem)	Image(#vi_deptcl)
When	('=	SEC')
Set	Com(#Personnel.currentItem)	Image(#vi_sectcl)
When	('=	EMP')
Set	Com(#Personnel.currentItem)	Image(#vi_employ)
Endcase
*	Return	the	tree	item	for	use	as	a	parent
Set_Ref	Com(#o_Tree_item)	To(#Personnel.currentitem)
Endroutine
End_Com
	

VFW070	–	Create	a	Reusable	Part	Object
The	reusable	parts	you	have	built	in	previous	exercises	have	been	visual
components.	A	reusable	part	of	type	Panel	has	an	ancestor	of	PRIM_PANL.
A	reusable	part	of	type	Object	is	non-visual,	and	has	an	ancestor	of
PRIM_OBJT.	Think	of	this	example	as	a	component	which	you	call	(invoke)	to
perform	some	processing	and	return	a	result.

Objective
This	exercise	will	build	a	simple	reusable	object	which	will	calculate	the	years,
months	and	days	since	an	employee	joined	the	company.
The	component	is	invoked	when	passed	the	start	date	and	it	returns	the	three
result	values.

To	build	and	implement	a	'Time	Employed'	reusable	part
To	learn	how	to	write	a	method	routine,	which	has	input	and	output
parameters
To	use	the	new	component	in	the	Employee	Details	command	handler

To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Create	Time	Employed	Reusable	Part
Step	2.	Implement	Time	Employed	calculation	in	Employee	Details	Command
Handler
Summary

Before	You	Begin
You	should	complete	exercises	VFW030,	VFW040	and	VFW042.

Step	1.	Create	Time	Employed	Reusable	Part
	
1.		Create	a	new	Reusable	Part		/	type	Object:
					Name:	iiiVFW12
					Description:	Time	Employed	Calculator
2.		Note	that	your	reusable	part	has	an	ancestor	of	PRIM_OBJT.
3.		iiiVFW12	should	have	one	method	routine,	uEmployTime,	which	has	one
input	parameter	and	three	output	parameters,	defined	as	follows.

For Name Class

*input i_strdter STARTDTER

*output o_year PRIM_NMBR

*output o_month PRIM_NMBR

*output o_days PRIM_NMBR

	

					Note:	STARTDTER	will	be	passed	to	this	component,	which	is	a	6	long	date
in	the	form	YYMMDD.	This	will	provide	a	solution	which	works	for	regions
using	both	DDMMYY	and	MMDDYY	date	formats.				

					Your	uEmployTime	method	routine	should	initially	look	like	the	following:
Mthroutine	Name(uEmployTime)
Define_Map	For(*input)	Class(#startdter)	Name(#i_strdter)
Define_Map	For(*output)	Class(#PRIM_NMBR)	Name(#o_year)
Define_Map	For(*output)	Class(#prim_nmbr)	Name(#o_month)
Define_Map	For(*output)	Class(#prim_nmbr)	Name(#o_days)
Endroutine
	

4.		Define_Map	Statements:
This	step	reviews	the	Define_Map	statement,	there	is	no	code	for	you	to	write
here.
					The	Define_Map	statement	defines	input	and	output	parameters	to	a	routine.

For	example:
Define_Map	For(*input)	Class(#startdter)	Name(#i_strdte)
	
The	method	routine	will	reference	this	variable	as	#i_strdte.
This	method	will	be	invoked	by	another	components,	passing	the	required
parameters	and	values:

Invoke	#iiiVFW10.uEmployTime	i_strdte(#startdter)	.	.	.
	
The	invoking	component	refers	to	this	parameter	as	i_strdte().
Input	parameters	are	mandatory	unless	they	are	defined	with	a	default	value,
for	example,	this	is	an	optional	input	parameter:

Define_Map	For(*input)	Class(#prim_nmbr)	Name(#i_num)	Mandatory(1)
	

					Note:	Start	Date	is	a	signed	6.0	field.	Designing	this	component	to	accept
only	this	form	of	input	is	obviously	a	limitation.	In	a	real	example,	you	would
probably	add	another	input	parameter	which	defines	the	format	of	the	passed
date,	and	also	change	the	input	date	definitions	so	that	a	number	of	date
formats	of	such	as	Signed	6,0	and	Signed	8,0	and	Date	or	Datetime	can	be
handled.

5.		Define	the	following	work	fields	(following	the	Begin_Com)	which	are
required	during	the	calculation	routine:
Define	Field(#i_date)	Reffld(#std_datex)	Desc('Input	Date')
Define	Field(#c_date)	Reffld(#std_datex)	Desc('Current	Date')
Define	Field(#i_year)	Reffld(#yyyy)	Desc('Input	Year	number')
Define	Field(#c_year)	Reffld(#yyyy)	Desc('Current	Year	number')
Define	Field(#i_month)	Reffld(#month)	Desc('Input	Month	number')
Define	Field(#c_month)	Reffld(#month)	Desc('Current	Month	number')
Define	Field(#i_day)	Reffld(#day)	Desc('Input	Day	Number')
Define	Field(#c_day)	Reffld(#day)	Desc('Output	day	number')
	

6.		In	the	uEmployTime	method,	start	to	build	the	logic	to	calculate	years,
months	and	days	since	the	employee	start	date:

7.		Setup	current	and	input	year,	month	and	day	values:
*	Setup	current	and	input	year,	month	and	day	values.
#c_date	:=	*date

#c_year	:=	#c_date.year
#i_date	:=	#i_strdter.asdate(yymmdd)
#i_year	:=	#i_date.year
#i_month	:=	#i_date.month
#i_day	:=	#i_date.day
	

					These	calculations	make	use	of	intrinsic	functions.	Use	F2	Features	help	on
a	field	to	discover	the	intrinsic	functions	which	it	supports.

8.		Calculate	number	of	years
					Current	year	must	be	greater	than	or	equal	to	the	input	year
*	Calculate	number	of	years,	months	and	days
If	(#c_year	>=	#i_year)
#o_year	:=	#C_year	-	#I_year	
Else
#o_year	#o_month	#o_days	:=	0
Endif
	

9.		Extend	the	logic	to	calculate	number	of	months.	New	code	is	highlighted	in
red
If	(#c_year	>=	#i_year)
#o_year	:=	#C_year	-	#I_year	–	1
*	Calculate	number	of	months
*	When	input	month	is	less	than	current	month
If	(#i_month	<	#c_month)
#o_month	:=	#c_month	-	#i_month	-	1
Else
#o_month	:=	(12	-	#i_month)	+	#c_month	–	1
#o_year	-=	1
Endif
If	(#i_month	=	#c_month)
#o_month	:=	*zeroes
Endif
Else
#o_year	#o_month	#o_days	:=	0
Endif
	

10.	Extend	logic	to	calculate	number	of	days.	New	code	is	highlighted	in	red.

If	(#c_year	>=	#i_year)
#o_year	:=	#C_year	-	#I_year	–	1
*	Calculate	number	of	months
*	When	input	month	is	less	than	current	month
If	(#i_month	<	#c_month)
#o_month	:=	#c_month	-	#i_month	-	1
Else
#o_month	:=	(12	-	#i_month)	+	#c_month	–	1
#o_year	-=	1
Endif
If	(#i_month	=	#c_month)
#o_month	:=	*zeroes
Endif
*	Calculate	number	of	days
*	when	input	day	number	is	less	than	current	day
If	(#i_day	<	#c_day)
#o_days	:=	#c_day	-	#i_day
#o_month	+=	1
Else
If	(#i_month	=	2)
#o_days	:=	(28	-	#i_day)	+	#c_day
Endif
If	((#i_month	=	4)	*Or	(#i_month	=	6)	*Or	(#i_month	=	9)	*Or	(#i_month	=	11))
#o_days	:=	(30	-	#i_day)	+	#c_day
Else
#o_days	:=	(31	-	#i_day)	+	#c_day
Endif
Endif
Else
#o_year	#o_month	#o_days	:=	0
Endif
	

11.	Compile	your	Time	Employed	reusable	part.

Step	2.	Implement	Time	Employed	calculation	in	Employee
Details	Command	Handler
1.		Open	the	Employee	Details	command	handler	in	the	editor	(iiiVFW06).
2.		Add	a	Group	Box	component	to	the	main	panel	(BODY_HEAD)	and	change
its	Caption	to	Time	Employed.

3.		Add	field	STD_NUM	to	the	group	box.	Set	up	the	followings	properties:

Property Value

Caption Years

LabelType Caption

Name EMP_YEARS

MarginLeft 50

	

					Reduce	the	field's	width	as	necessary.
4.		Add	another	STD_NUM	field	to	the	group	box	and	repeat	step	3	the	above
steps	except:
a.		Change	Name	to	EMP_MONTHS
b.		Change	Caption	to	Months

5.		Add	another	STD_NUM	field	to	the	group	box	and	repeat	step	3,	except:
a.		Change	Name	to	EMP_DAYS
b.		Change	Caption	to	Days

6.		Adjust	the	width	of	each	field	as	required.
7.		On	the	Design	ribbon,	use	Edit	/	Align	button	to	arrange	the	fields.

8.		Save	your	changes.
					Your	design	should	look	like	the	following:

9.		In	the	Design	view,	drag	and	drop	your	Time	Employed	reusable	part	onto
Employee	Details	component.	This	will	create	a	Define_Com	for	iiiVFW12.
Change	its	Name	to	EMPLOY_CALC

10.Change	the	Group_By	XG_HEAD	to	include	STARTDTER.
11.	In	the	uExecute	method	routine	add	the	following	code,	following	the
FETCH	command:
If_Status	Is(*okay)
Invoke	Method(#EMPLOY_CALC.uEmployTime)	I_Strdte(#STARTDTER)	O_Year(#EMP_YEARS)	O_Month(#EMP_MONTHS)	O_Days(#EMP_DAYS)
Endif
	

12.	In	the	SAVE_BUTTON	Click	event	routine,	add	the	following	logic,	after
the	UPDATE	command:
If_Status	Is(*OKAY)
Invoke	Method(#EMPLOY_CALC.uEmployTime)	I_Strdte(#STARTDTER)	O_Year(#EMP_YEARS)	O_Month(#EMP_MONTHS)	O_Days(#EMP_DAYS)
Endif
	

13.	Compile	the	Employee	Details	command	handler.
14.	Execute	the	Framework	as	an	End	User	and	test	the	Time	Employed
calculator.

15.	Change	Start	Date	for	an	employee	to	a	recent	date,	for	example,	2012	or
2013,	to	easily	check	the	results	are	as	expected.	Note,	this	is	a	6	digit	date.

Summary
Important	Observations

Reusable	parts	based	on	PRIM_OBJT	are	non-visual	components.	They	can
be	used	to	create	callable	(invoke)	modules	which	can	be	shared	by	your
Windows	and	web	applications	(WAMs).
This	type	of	component	can	also	be	created	to	store	application	settings	and
values	which	are	shared	across	many	components	in	the	application	system.

Tips	&	Techniques
When	creating	this	type	of	component,	ensure	that	its	logic	will	be	common
and	re-used.	Otherwise	there	won't	be	any	benefit	from	making	it	a	separate
component.

What	You	Should	Know
How	to	implement	a	reusable	part	to	perform	calculations.

VFW072	–	Create	a	Department	Dropdown	Reusable	Part
In	an	earlier	exercise,	you	added	a	Combo	box	for	departments	to	the	Employee
Details	component,	by	adding	it	directly	into	the	logic	of	the	command	handler.
Clearly	this	approach	would	not	be	the	best	one	from	a	maintenance	point	of
view,	and	does	not	contribute	to	simplifying	or	re-using	code.
A	reusable	part	provides	a	component	which	can	be	used	to	create	common
application	components,	such	as	a	department's	dropdown	list,	which	can	be
developed	once,	and	then	widely	re-used	throughout	the	application.

Objective
To	create	a	reusable	part	(RP)which	manages	a	combo	box	(or	dropdown)
containing	a	list	of	all	valid	departments.
To	populate	the	RP	combo	box	from	the	table	DEPTAB.
The	'Department	Dropdown'	RP	will	publish	a	property	which	enable	its
current	department	code	to	be	set,	or	for	another	component	to	get	its
current	value.
When	the	current	department	property	is	set,	the	Department	Dropdown
RP	will	position	the	combo	box	to	the	new	value.
The	'Department	Dropdown'	reusable	part	will	publish	an	event,	which	it
will	signal	when	the	selected	department	has	changes.

To	meet	these	objectives,	you	will	complete	the	following:
Step	1.	Create	Department	Dropdown	Reusable	Part
Step	2.	Make	the	Reusable	Part	Useful
Step	3.	Add	Department	Dropdown	to	Employee	Details	command	handler
Step	4.	Complete	Command	Handler	to	use	Department	Dropdown
Summary

Before	You	Begin
Complete	exercises	VFW04,	VFW05,	VFW06.

Step	1.	Create	Department	Dropdown	Reusable	Part
1.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW13
					Description:	Department	Dropdown
2.		Resize	the	Panel	so	that	it	looks	like	the	following:

a.		Add	a	Combo	box	to	the	panel.
b.		Select	the	Details	tab	and	change	the	ComboBoxStyle	property	to
DropDownList.

c.		Drop	fields	DEPTDESC	and	DEPTMENT	into	the	Combo	box.	If	you
add	them	in	this	order,	you	have	created	CBCL_1	sourced	from
DEPTDESC	and	CBCL_2	sourced	from	DEPTMENT.

d.		On	the	Details	tab,	ensure	the	column	sourced	from	DEPTMENT	is
selected.	You	can	select	any	component	within	this	reusable	part	from	this
dropdown.

e.		Change	its	Visible	property	to	False.	Only	the	column	sourced	from
DEPTDESC	should	be	visible	in	the	combo	box.

f.		Resize	the	Combo	box	so	that	it	can	display	the	full	description.
g.		Move	the	Combo	box	to	the	right	and	add	a	Label	component	onto	the	left
side	of	the	Panel.	Give	the	Label	a	Caption	of	Department.

h.		Resize	the	Label,	to	fit	the	caption	text	and	move	it	to	the	top	left	of	the
Panel.

					Hint:	An	effective	way	to	position	a	component	in	some	cases,	is	to	set	its
Left	and	Top	properties.	In	this	case,	setting	these	to	0,	will	achieve	the
required	result.

i.		Set	Combo	box	Left	property	to	150,	and	the	Top	property	to	0.	This	will
make	the	department	dropdown	component	suitable	for	using	alongside
fields	on	a	panel	which	is	managed	by	a	flow	down	manager.

j.		Resize	the	panel	so	that	it	uses	the	minimum	space.
					Your	design	should	now	look	like	the	following:

					The	reusable	part	will	occupy	the	space	defined	by	its	Panel,	when	you
drop	it	onto	your	application	form.	It	is	important	to	minimize	the	space
used	by	the	reusable	part,	using	the	techniques	shown	above.

Note:	You	could	also	make	this	component	more	flexible	by	coding	it	to
optionally	hide	the	label	and,	if	required,	resize	to	display	only	the	combo	box.

3.		Create	an	Initialize	event	handling	routine	for	the	combo	box.	The	logic	in
this	routine	should	fill	the	combo	box	from	the	table	DEPTAB	and	ensure
that	the	focus	is	set	to	the	first	entry	(if	there	was	one).	You	code	should	look
like	the	following:
Evtroutine	Handling(#CMBX_1.Initialize)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Clr_List	Named(#CMBX_1)
Select	Fields(#CMBX_1)	From_File(deptab)
Add_Entry	To_List(#CMBX_1)
Endselect
Get_Entry	Number(1)	From_List(#CMBX_1)
If_Status	Is(*okay)
#CMBX_1.currentItem.focus	:=	true
Endif
Endroutine
	

					If	you	compiled	your	reusable	part	now,	and	added	it	to	your	command
handler,	it	would	contain	data	for	all	departments.	However,	it	is	not	yet
capable	of	interacting	with	your	command	handler.

Step	2.	Make	the	Reusable	Part	Useful
In	this	step	you	will	extend	your	reusable	part,	so	that	it	can	interact	with
another	reusable	part	or	form	which	uses	it.

To	do	this	you	will	add/publish	a	new	event	which	will	be	signaled	when	the
department	selected	in	the	Combo	box	changes.
You	will	also	add/publish	a	property	based	on	DEPTMENT.	(That	is,	with
Class(#Department).	When	this	property	is	set,	it	will	execute	a	property
routine	to	re-position	the	Combo	box.	When	another	component	"gets"	the
property,	the	Department	Dropdown	reusable	part	will	return	the	current
value	of	DEPTMENT	.

1.		Define	an	event,	named	uDepartmentChanged.
Define_Evt	Name(uDepartmentChanged)
	

User	defined	events,	properties	and	methods	in	these	exercises	have	a
naming	policy	starting	with	u.	You	may	want	to	implement	some
similar	policy,	which	makes	it	easy	for	other	developers	to	quickly
identify	the	features	that	they	may	be	interested	in	using.

2.		Create	an	ItemGotFocus	event	handling	routine	for	the	Combo	box.	Add
logic	to	signal	the	uDepartmentChanged	event.

					Also	add	code	to	signal	this	event	at	the	end	of	the	Combo	box	Initialize
event.	When	this	component	is	used	in	a	"New	Employee"	command	handler
for	example,	the	application	will	be	able	to	initialize	its	department	code,	by
handling	this	event.
Evtroutine	Handling(#CMBX_1.ItemGotFocus)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Signal	Event(uDepartmentChanged)
Endroutine
	

3.		Define	a	property	uCurrDepartment.	It	should	handle	Get,	by	returning	the
current	value	of	DEPTMENT.	It	should	handle	Set,	by	executing	a	SetDept
property	routine.
Define_Pty	Name(uCurrDepartment)	Get(*auto	#deptment)	Set(SetDept)
	

					Note:	the	editor	will	highlight	this	code	as	having	an	error,	until	you	have

created	the	property	routine.
4.		Create	a	property	routine,	named	SetDept.

a.		Define	a	map,	for	input,	with	a	class	of	DEPTMENT,	named	#SetDept.	A
property	routine	must	have	one	input	or	output	parameter.	In	this	case	the
routine	receives	DEPTMENT	as	SetDept	and	will	reposition	the	combo
box.

					Your	code	should	look	like	the	following:
Ptyroutine	Name(SetDept)
Define_Map	For(*input)	Class(#deptment)	Name(#SetDept)
Endroutine
	
b.		Add	logic	to	read	through	the	combo	box	entries,	using
SELECTLIST/ENDSELECT.

					Leave	when	DEPTMENT	equals	SETDEPT.
					Then	set	focus	for	the	combo	box	current	item.

					Your	code	should	now	look	like:
Ptyroutine	Name(SetDept)
Define_Map	For(*input)	Class(#deptment)	Name(#setdept)
Selectlist	Named(#CMBX_1)
Leave	If(#deptment	=	#setdept)
Endselect
#CMBX_1.currentItem.focus	:=	true
Endroutine
	

5.		Compile	your	department	dropdown	reusable	part.

Step	3.	Add	Department	Dropdown	to	Employee	Details
command	handler
In	this	step	you	will	change	your	Employee	Details	command	handler	to	use
your	new	reusable	part.
1.		Open	the	Employee	Details	command	handler		iiiVFW06	in	the	editor.
2.		Delete	the	department	combo	box	which	you	added	in	VFW050.

a.		Switch	to	the	source	and	locate	the	errors	which	this	action	has	created.
b.		Delete	the	column	definitions	for	the	combo	box	(for	example,	CBCL_1)
and	the	flow	manager	item	(for	example,	FWLI_4).

c.		Delete	all	the	code	associated	with	the	combo	box	from	the	uExecute
and	uInitialize	method	routines

d.		Compile	your	component	to	check	that	you	have	no	errors.
3.		Drop	the	Department	Dropdown	RP	(iiiVFW13)	onto	the	command	handler
left	hand	panel	(BODY_HEAD).		Because	this	panel	has	a	flow	down
manager,	your	component	will	be	positioned	below	the	existing	fields.

4.		Position	the	department	dropdown:
a.		Select	the	existing	department	field	and	check	its	DisplayPosition	which
should	be	10.

b.			Give	your	department	dropdown	component	a	DisplayPosition	property
of	10.

5.		Delete	the	existing	department	code	field	from	the	panel.

Step	4.	Complete	Command	Handler	to	use	Department
Dropdown
In	this	step	you	will	add	code	to	the	Employee	Details	command	handler,	to
interact	with	the	Department	Dropdown	component.
Your	command	handler	is	a	maintenance	function.	This	means:
1.		When	the	employee	data	is	read,	it	needs	to	tell	the	department	dropdown	to
position	to	the	current	employee's	department.	Change	the	uExecute	method
routine	to	set	the	uCurrDepartment	in	the	department	dropdown	component
to	DEPTMENT.
					Your	code	should	look	like	the	following.	Changes	are	shown	in	red.
.	.	.	.	
Fetch	Fields(#XG_HEAD)	From_File(PSLMST)	With_Key(#EMPNO)
*		???	Addition	logic	may	be	required	here	???
#IIIVFW13.ucurrDepartment	:=	#deptment
	

2.		When	the	department	dropdown	component	signals	that	department	has
changed,	the	command	handler	should	get	the	current	department	code	value
from	the	department	dropdown.

3.		Add	an	event	handling	routine	for	iiiVFW13.uCurrDepartment.	Your	code
should	look	like	the	following:
Evtroutine	Handling(#IIIVFW13.UDepartmentChanged)
#deptment	:=	#IIIVFW13.uCurrDepartment
Endroutine
	

					Hint:	To	create	the	event	handling	routine,	on	the	Design	tab,	select	the
department	dropdown	and	use	the	context	menu	to	select	Events:	IIIVFW13	/
uDepartmentChanged	Event.	

4.		Compile	the	Employee	Details	command	handler,	iiiVFW06.
5.		Execute	the	Framework	as	an	End	User.	Use	the	By	Location	filter	to
populate	the	instance	list	and	check	that	the	department	dropdown	displays
the	correct	value.

6.		Change	the	department	for	an	employee	and	Save	the	change.	You	may	find
that	the	change	is	invalid	because	the	section	code	is	no	longer	valid.	You	will
address	this	issue	in	the	next	exercise.

Step	5.	Document	your	Event	and	Property
These	exercises	have	emphasized	how	to	discover	the	help	text	build	into	all
shipped	components	by	using	F2	Features	help.	In	this	step	you	will	learn	how
to	document	your	own	components.
When	designing	and	building	your	application,	reusable	parts	enabled	you	to
create	components	designed	for	re-use,	such	as	the	department	dropdown	which
you	have	just	built.	These	components	will	be	much	more	useful	if	you
document	them	so	that	other	developers	will	easily	understand	them	and	want	to
use	them.
1.		Events,	property	and	method	statements	have	optional	Desc()	and	Help()
keywords.	Help	should	be	used	to	document	your	own	reusable	parts.	F2
Features	help	will	then	be	able	to	display	this	information	for	other
developers.

					Method	routines	will	usually	have	one	or	more	Define_Map	statements.
These	should	also	be	documented	using	Help().

2.		Open	your	department	dropdown	RP	in	the	editor.	Add	appropriate	help	text
to	the	event	and	property	statements.	For	example:
Define_Evt	Name(UDepartmentChanged)	Help('This	Event	is	signalled	when	the	selected	department	changes')
Define_Pty	Name(uCurrDepartment)	Get(*auto	#deptment)	Set(SetDept)	Help('Current	department	code')
	

3.		Recompile	your	component.
4.		Switch	to	the	Employee	Details	command	handler	in	the	editor	(iiiVFW06).
Select	the	department	dropdown	component	in	the	Design	view.
a.		Either	press	F2,	or	use	the	context	menu	to	select:	Reusable	Part:
IIIVFW11	/	Features.

b.		Expand	Properties	and	double	click	to	display	help	for	uCurrDepartment.
c.		Expand	the	Events	and	double	click	on	uDepartmentChanged	to	display
its	help.

Summary
Important	Information

This	exercise	created	a	very	simple	dropdown	reusable	part.	The	next
exercise	provides	an	example	of	a	more	functional	reusable	part,	supporting
two	dropdowns.
Build	common	reusable	parts	whenever	it	is	clear	that	this	functionality	will
be	required	in	a	number	of	places.
Your	reusable	parts	will	be	much	more	useful	if	you	include	help	text	for
other	developers.

Tips	&	Techniques
Adding	a	HideLabel	property	to	the	reusable	part,	together	with	property
routines	to	set	Margin	Left	to	0,	or	to	the	default	150,	would	make	this
dropdown	more	useful.

What	You	Should	Know
How	to	create	and	design	a	visual	reusable	part.
How	to	implement	your	own	reusable	part	in	an	update	command	handler.

VFW074	–	Create	a	Compound	Reusable	Part
Objective
As	observed	in	testing,	the	department	dropdown	component,	from	an	end	user
point	of	view	has	limited	benefits,	because	if	department	is	changed,	the
available	valid	section	codes	changes.

This	exercise	builds	a	Departments	and	Sections	dropdown	reusable	part.
The	new	component	will	re-use	the	department	dropdown	component	and
manage	a	sections	dropdown,	based	on	the	current	department.

To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Create	Department	/	Section	Dropdown	Reusable
Step	2.	Make	the	Department	/	Section	Dropdown	Useful
Step	3.	Modify	Department	Dropdown
Step	4.	Implement	the	Compound	Reusable	Part
Summary

Before	You	Begin
Complete	exercises	VFW030,	VFW040,	VFW042	and	VFW072.

Step	1.	Create	Department	/	Section	Dropdown	Reusable
1.		Create	a	new	reusable	part:
					Name:	iiiVFW14
					Description:	Department	/	Section	Dropdown
2.		Resize	the	panel	and	drop	the	department	dropdown	reusable	(iiiVFW13)
onto	the	panel.
a.		Change	its	Name	to	DEPT_DD
b.		Give	DEPT_DD	a	Top	and	Left	property	of	0.

					Your	design	should	look	like	the	following:

3.		Drag	and	drop	a	combo	box	onto	the	panel.
a.		Change	its	Name	to	SECT_DD.
b.		Find	the	Table	SECTAB	on	the	Repository	tab.
c.		Drop	fields	SECDESC	and	SECTION	into	the	combo	box.
d.		Change	the	column	sourced	from	SECTION	Visible	property	to	false.	The
combo	box	should	be	displaying	the	section	description	only.	Change	the
ComboBoxStyle	to	DropDownList.

					A	DropDownList	style	does	not	allow	the	user	to	enter	a	value.	Only	one
of	the	displayed	values	may	be	selected.

e.		Resize	the	Combo	box	so	that	all	of	the	section	description	text	is	visible.
f.		Position	the	sections	Combo	box	closely	underneath	the	department
Combo	box.

g.		Drop	a	Label	component	to	the	left	of	the	sections	Combo	box	and
changes	its	Caption	property	to	Sections.	Adjust	the	Width	and	Height	of
the	Label.

h.		Move	the	Label	so	that	it	is	close	underneath	the	"Departments"	label	and
change	the	new	Label's	Left	property	to	0.

					Hint:	To	move	components	around	accurately	in	the	Design	view,	use	the
Ctrl+Cursor	keys.

i.		Change	the	SECT_DD	Combo	box's	Left	property	to	150.
					Your	design	should	look	like	the	following:

4.		Save	your	changes.

Step	2.	Make	the	Department	/	Section	Dropdown	Useful
From	the	previous	exercise,	you	know	that	the	Departments	dropdown
component:

Signals	uDepartmentChanged	when	the	selected	department	is	changed.
Has	a	uCurrDepartment	property	which	re-positions	the	dropdown	or
returns	the	currently	selected	department	code.

1.		Consider	what	functionality	the	new	department	/	section	component	will
need,	to	interact	with	your	Employee	Details	command	handler:

The	first	thing	to	recognize	is	that	the	new	component	is	now	responsible
for	interacting	with	the	department	dropdown	component.	The	department
dropdown	component	is	encapsulated	within	the	new	reusable	part.	This
means	the	new	reusable	part	must	handle	both	department	and	section
changes.
For	example,	if	its	current	department	property	is	changed	it	must:

a.		Reposition	the	department	dropdown
b.		Rebuild	the	sections	dropdown	from	the	table	SECTAB	using	the	new
department	code	as	a	key.

2.		In	the	Design	view,	select	the	department	dropdown	RP	and	create	an	event
handling	routine	for	uCurrDepartmentChanged.	Add	logic	to	do	the
following:
a.		Set	DEPTMENT	to	the	value	of	the	uCurrDepartment	property	of
DEPT_DD.

b.		Signal	that	department	has	changed
c.		Clear	the	list	SECT_DD
d.		Select	SECTION	and	SECDESC	from	file	SECTAB	using	DEPTMENT
as	key,	add	all	entries	to	SECT_DD

e.		Get	entry	1	from	SECT_DD
f.		For	SECT_DD,	set	Focus	to	current	item
Your	code	should	look	like	the	following:
Evtroutine	Handling(#DEPT_DD.UDepartmentChanged)
#deptment	:=	#DEPT_DD.uCurrDepartment
Signal	Event(uDeptChanged)

Clr_List	Named(#SECT_DD)
Select	Fields(#SECT_DD)	From_File(sectab)	With_Key(#deptment)
Add_Entry	To_List(#SECT_DD)
Endselect
Get_Entry	Number(1)	From_List(#SECT_DD)
#SECT_DD.currentItem.focus	:=	true
Endroutine
	

3.		Define	the	following	properties:
Define_Pty	Name(uCurrDept)	Get(GetCurrDept)	Set(SetCurrDept)
Define_Pty	Name(uCurrSection)	Get(*auto	#section)	Set(SetCurrSection)
	

					Setting	or	getting	uCurrDept	will	require	logic	in	property	routines.
					Getting	uCurrSection	will	return	current	value	of	SECTION.
					Setting	uCurrSection	will	require	logic	in	a	property	routine.
					Ignore	errors	at	this	stage.
4.		Define	the	following	events:
Define_Evt	Name(uSectChanged)
Define_Evt	Name(uDeptChanged)
	

5.		Create	the	GetCurrDept	property	routine.	This	needs	to	an	output	parameter
based	on	DEPTMENT.

					Your	code	should	look	like	the	following:
Ptyroutine	Name(GetCurrDept)
Define_Map	For(*output)	Class(#deptment)	Name(#CurrDept)
Endroutine
	

6.		The	GetCurrDept	routine	needs	to	retrieve	the	current	department	from
DEPT_DD.	Add	code	to	do	this.	The	new	code	is	shown	in	red.
Ptyroutine	Name(GetCurrDept)
Define_Map	For(*output)	Class(#deptment)	Name(#CurrDept)
#CurrDept	:=	#DEPT_DD.uCurrDepartment	
Endroutine
	

7.		Create	a	SetCurrDept	property	routine.	It	needs	an	input	parameter	based	on

DEPTMENT.
					Your	code	should	look	like	the	following:
Ptyroutine	Name(SetCurrDept)
Define_Map	For(*input)	Class(#deptment)	Name(#CurrDept)
Endroutine
	

8.		The	SetCurrDept	needs	to	set	the	current	department	property	in	DEPT_DD.
Add	code	to	do	this.	The	new	code	is	in	red.
Ptyroutine	Name(SetCurrDept)
Define_Map	For(*input)	Class(#deptment)	Name(#CurrDept)
#DEPT_DD.uCurrDepartment	:=	#CurrDept
Endroutine
	

9.		Create	a	SetCurrSection	property	routine.	This	needs	to	have	an	input
parameter	based	on	SECTION.

					Your	code	should	look	like	the	following:
Ptyroutine	Name(SetCurrSection)
Define_Map	For(*input)	Class(#section)	Name(#CurrSect)
Endroutine
	

10.	The	SetCurrSection	routine	needs	to	re-position	the	section	combo	box	to
the	input	value.

					It	does	this	by	reading	the	combo	box	using	SELECTLIST	and	leaving	when
SECTION	=	the	input	section	code.

					It	should	then	set	focus	for	current	item	and	signal	the	uSectChanged	event.
					Add	code	to	achieve	this.	New	code	is	shown	in	red.
Ptyroutine	Name(SetCurrSection)
Define_Map	For(*input)	Class(#section)	Name(#CurrSect)
Selectlist	Named(#SECT_DD)
Leave	If(#section	*EQ	#CurrSect)
Endselect
#SECT_DD.currentItem.focus	:=	true
Signal	Event(uSectChanged)
Endroutine
	

11.	Create	an	ItemGotFocus	for	the	sections	combo	box.	Add	logic	to	signal	the
uSectChanged	event.

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#SECT_DD.ItemGotFocus)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Signal	Event(uSectChanged)
Endroutine	

12.	Compile	your	department	/	section	combo	box	component.

Step	3.	Modify	Department	Dropdown
1.		A	change	is	required	to	iiiVFW13	to	signal	uDepartmentChanged	when	the
departments	dropdown	is	Initialized.	The	existing	routine	is	as	follows:
Evtroutine	Handling(#CMBX_1.Initialize)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Clr_List	Named(#CMBX_1)
Select	Fields(#CMBX_1)	From_File(deptab)
Add_Entry	To_List(#CMBX_1)
Endselect
Get_Entry	Number(1)	From_List(#CMBX_1)
If_Status	Is(*okay)
#CMBX_1.currentItem.focus	:=	true
Endif
Endroutine
	

					Although	the	program	is	setting	Focus	for	the	first	entry,	this	will	not	signal
an	ItemGotFocus	event.

2.		Add	code	to	signal	the	uDepartmentChanged	event,	as	follows.	New	code	is
shown	in	red,	italics.
Evtroutine	Handling(#CMBX_1.Initialize)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Clr_List	Named(#CMBX_1)
Select	Fields(#CMBX_1)	From_File(deptab)
Add_Entry	To_List(#CMBX_1)
Endselect
Get_Entry	Number(1)	From_List(#CMBX_1)
If_Status	Is(*okay)
#CMBX_1.currentItem.focus	:=	true
Signal	Event(uDepartmentChanged)
Endif
Endroutine
	

3.		Compile	iiiVFW13.

Step	4.	Implement	the	Compound	Reusable	Part
In	this	step	you	will	change	your	Employee	Details	command	handler	to	use	the
new	department	/	section	combo	box	component.
1.		Open	the	Employee	Handler	(iiiVFW06)	in	the	editor
2.		From	the	Design	view,	delete	the	department	dropdown	component
(iiiVFW13)	and	the	Department	and	Section	fields

3.		Switch	to	Source	and	remove	all	code	which	refers	to	iiiVFW13.	You	will
find	that	the	flow	manager	items	for	iiiVFW13,	DEPTMENT	and	SECTION
have	also	been	removed,	so	no	further	corrections	are	needed	for	now.

4.		Drag	and	drop	your	department	/	sections	dropdown	component	onto	the
main	left	hand	panel	(BODY_HEAD).
a.		Change	its	Name	to	DEPSEC_DD.
b.		Change	its	DisplayPosition	and	TabPosition	to	10.

5.		Select	the	DEPSEC_DD	component	and	use	the	Details	/	Events	tab	to	create
a	uDeptChanged	and	uSectChanged	event	handling	routine.

6.		Switch	to	the	Source	view.	In	the	uExecute	method	routine	add	code	to	set
the	current	department	and	section	properties	in	DEPSEC_DD,	after	the
employee	data	has	been	read.	Your	code	should	look	like	the	following:	New
code	is	shown	in	red.
.
Fetch	Fields(#XG_HEAD)	From_File(PSLMST)	With_Key(#EMPNO)
#DEPSEC_DD.uCurrDept	:=	#deptment
#DEPSEC_DD.uCurrSection	:=	#Section
	

					The	department	/	section	component	will	position	the	department	dropdown,
rebuild	the	sections	dropdown	for	this	department	code	and	position	the
sections	dropdown.

8.		Complete	the	logic	for	the	department	and	section	changed	events	from
DEPSEC_DD.

					In	each	case	they	simply	need	to	set	the	command	handler	field	to	the	related
property	from	DEPSEC_DD.	Your	code	should	look	like	the	following:
Evtroutine	Handling(#DEPSEC_DD.uDeptChanged)
#deptment	:=	#DEPSEC_DD.uCurrDept

Endroutine
Evtroutine	Handling(#DEPSEC_DD.uSectChanged)
#section	:=	#DEPSEC_DD.ucurrsection
Endroutine
	

9.		Compile	your	command	handler.
10.	Execute	your	Framework	as	an	end	user.	Test	the	Employee	Details
command	handler.
a.		Ensure	that	the	correct	department	and	sections	are	displayed	when	an
employee	is	displayed.

b.		Select	new	department	and	section	values	in	the	dropdowns.	Save	the
change	and	ensure	the	file	is	updated	successfully.

c.		Check	that	the	sections	dropdown	is	re-populated	every	time	a	new
department	is	selected	in	its	dropdown.

Summary
Important	Observations

This	exercise	provides	a	good	example	of	designing	a	useful	reusable	part.
Components	like	this	one	will	probably	be	required	in	most	applications.

Tips		Techniques
Note	how	the	Department	/	Section	dropdown	component	encapsulates	the
department	dropdown	list	and	must	provide	an	interface	for	both
departments	and	sections.
Remember,	it	is	important	to	document	your	reusable	parts	to	promote	their
re-use	by	other	developers.

What	You	Should	Know
How	to	build	a	simple	compound	reusable	part.

VFW080	–	Using	an	Explorer	Component
The	Explorer	component	is	used	to	view	files	and	directories	either	on	local
hard	disks	or	across	the	network.
You	can	use	two	Explorer	components,	one	for	showing	directories	and	paths
and	one	for	showing	the	files	in	a	folder	(similar	to	Windows	Explorer).
Implement	communication	between	the	two	components	by	using	the
NotifyComponent	property	of	the	first	Explorer	component.

Objectives
To	create	a	command	handler	that	displays	an	employee	image.
To	create	a	Find	Employee	Image	form	that	uses	the	Explorer	components	to
enable	the	user	to	find	and	select	an	employee	image.

To	achieve	the	objectives	you	will	complete	the	following:
Step	1.	Create	Employee	Images	File
Step	2.	Create	the	Find	Employee	Image	Form
Step	3.	Make	the	Find	Image	Form	Useful
Step	4.	Create	the	Employee	Image	Command	Handler
Step	5.	Complete	the	Image	Command	Handler

Step	6.	Plug	In	and	Test	the	Image	Command	Handler
Summary

Before	You	Begin
Complete	exercises	VFW030,	VFW040	and	VFW042.

Step	1.	Create	Employee	Images	File
1.		Create	a	new	field:
					Name:		iiiEMPIMG
					Description:		Employee	Image
					Field	type:	BLOB
You	do	not	need	to	open	the	field	in	the	editor.
2.			Create	new	iiiEmpImages.
					Make	the	file	RDMLX	enabled:
					Name:	iiiEmpImages
					Description:	Employee	Images

Field Key

EMPNO 1

iiiEMPIMG 		

	

3.		Compile	the	file.	Ensure	that	your	compile	options	build	Rebuild	Tables	and
Rebuild	OAMs.

Step	2.	Create	the	Find	Employee	Image	Form
1.		Create	a	new	/	Basic	Form:
					Name:	iiiVFW15
					Description:	Find	Image
2.		With	the	Design	view	selected,	use	the	Design	ribbon	to	add	New	Layout	/
Attachment	manager	to	the	form.

3.		Drop	a	Panel	onto	the	right	hand	side,	and	change	its	Name	to
IMAGE_PANL.	Change	its	Width	to	approximately	125.

4.		Drop	another	Panel	onto	the	centre	of	the	form	and	change	its	Name	to
SEARCH_PANL.

					If	necessary,	with	the	form	selected,	open	the	Layout	Helper	tab	and	use	the
Child	Details	tab	to	ensure	the	IMAGE_PANL	is	attached	to	the	Right.
SEARCH_PANL	should	be	attached	to	the	Center.

5.		As	you	are	designing,	save	the	component	regularly.
6.		Select	the	IMAGE_PANL,	and	use	the	Design	ribbon	to	add	a	Flow	down
manager.
a.		Add	two	Push	buttons	to	the	IMAGE_PANL.
b.		Add	a	Group	Box	and	resize	it	as	shown.	Give	the	Group	Box	a	Caption
of	Selected	Image.

c.		Drop	an	Image	component	into	the	Group	Box	and	resize	the	Image	to	fill
the	Group	Box	as	shown:

d.		Select	the	IMAGE_PANL.	On	the	Layout	Helper	tab	select	Layout
Manager	Details	tab	tab.	Select	Margins	/	Category.	Set	the	Left	margin
to	15	and	the	Top	margin	to	12.

7.		Set	up	the	Push	Buttons:
a.		Set	up	the	first	push	button	properties	as	follows:

Property Value

Caption OK

Name PHBN_OK

	

b.		Create	a	Click	event	for	PHBN_OK.
c.		Set	up	the	second	Push	button	as	follows:

Property	 Value

Caption Cancel

Name PHBN_CANCL

	

d.		Create	a	Click	event	for	PHBN_CANCL
8.		Select	the	SEARCH_PANL	and	use	the	Design	ribbon,	to	add	a	Split	Vertical
manager.

					On	the	Layout	Helper	tab,	select	the	Layout	Manager	Details	tab,	select	the
Category	/	Divider	Style	and	select	the	Raised	option.

9.		Change	the	left	hand	Panel's	Name	to	FOLDERS.
10.	Change	the	right	hand	Panel's	Name	to	FILES.
11.	Select	the	FOLDERS	panel.	On	the	Layout	Helper	tab,	add	an	Attachment
manager	by	selecting	ATLM_1	in	the	Layout	drop	down.

12.	On	the	Controls	tab,	select	All	Controls	and	add	an	Explorer	component	into
the	center	of	the	FOLDERS	panel.

					If	necessary,	use	the	Layout	Helper	tab	/	Child	Details	tab	to	ensure	that	it	is
attached	in	the	Center.

					Your	design	should	look	like	the	following:

13.	Select	the	FILES	panel	and	on	the	Layout	tab,	give	it	the	ATLM_1
Attachment	manager,	by	selecting	it	in	the	Layouts	drop	down.

					Drop	an	Explorer	component	into	the	center	of	the	FILES	panel.	With	the
FILES	panel	selected,	on	the	Layout	Helper	tab,	use	the	Child	Details	tab	to
check	the	explorer	(DCBX_2)	is	attached	in	the	Center.

14.	Save	your	form	design.
15.	Select	the	left	hand	Explorer	component	(DCBX_1)	and	use	the	Details	tab
to	set	up	its	properties:

Property Value

Display	Style DirectoryTreeView

PathType Desktop

NotifyComponent DCBX_2

	

16.	Select	the	right	hand	Explorer	component	(DCBX_2)	and	set	its	properties:

Property Value

DisplayStyle GeneralListView

FileIncludeMask ""
.bmp,.jpg,*.jpeg,*.gif,*.tif,*.tiff

""

	

					The	Explorer	DBCX_2	will	display	the	defined	file	types	only.
17.	Save	your	changes.

Step	3.	Make	the	Find	Image	Form	Useful
1.		Switch	to	the	Source	tab.	Define	an	uImageSelected	event	with	a	map	for
input	of	class	STD_STRNG:
Define_Evt	Name(uImageSelected)
		Define_Map	For(*input)	Class(#std_strng)	Name(#uFilename)
	

					The	event,	when	signalled,	will	pass	the	full	filename	for	the	selected	image.
2.		Create	an	ItemGotSelection	event	for	Explorer	DCBX_2,	using	the	Design
view	and	the	context	menu		on	DCBX_2:
Evtroutine	Handling(#DCBX_2.ItemGotSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Endroutine
	

3.		This	routine	should	set	the	FileName	property	for	the	Image	component
(IMGE_1)	from	the	Explorer	DCBX_2,	Path	and	Filename		Your	code	should
look	like	the	following:
#IMGE_1.fileName	:=	#DCBX_2.path	+	#DCBX_2.filename
	

4.		In	the	PHBN_OK.Click	event	routine
a.		Signal	the	uImageSelected	event.
b.		Populate	the	uFilename	parameter	using	the	DCBX_2	Explorer
properties.

c.		Then	close	the	form.
					Your	OK	push	button	Click	event	should	look	like	the	following:
Evtroutine	Handling(#PHBN_OK.Click)
Signal	Event(uImageSelected)	Ufilename(#DCBX_2.path	+	#DCBX_2.filename)
#com_owner.closeForm
Endroutine
	

5.		Complete	the	PHBN_CANCL	Push	button	Click	event,	to	close	the	form:
Evtroutine	Handling(#PHBN_CANCL.Click)
#com_owner.closeForm
Endroutine
	

6.		Compile	your	form.

Step	4.	Create	the	Employee	Image	Command	Handler
1.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW16
					Description:	Employee	Image	CH
					Make	the	Panel	size	approximately	Height	350	and	Width	500.
2.		Give	iiiVFW16	an	ancestor	of	VF_AC010.
3.		In	the	Design	view,	from	the	Designer	ribbon,		give	the	form	an	Attachment
manager:

4.		Drop	a	Panel	onto	the	right	hand	side.	And	change	its	Name	to
BUTTON_PANEL.	Adjust	its	Width	to	allow	buttons	to	be	added.

5.		Drop	a	Panel	onto	the	center	of	the	form	and	change	its	Name	to
IMAGE_PANEL.

6.		Select	the	BUTTON_PANEL	and	add	a	Flow	Down	manager.
7.		Drop	two	push	buttons	onto	the	BUTTON_PANEL.
8.		With	the	BUTTON_PANEL	selected,	use	the	Layout	Helper	tab	to	set
Category	/	Margins.	Use	the	All	settings	to	position	the	buttons
approximately	in	the	middle	of	the	panel	horizontally.	The	setting	required
will	depend	on	the	Width	of	your	BUTTON_PANEL.	12	pixels	should	be
about	correct.

9.		Set	up	two	Push	Button	properties:

Property Value	for	the	first	push	button Value	for	the	second	push	button

Name PHBN_SAVE Find

Caption Save PHBN_FIND

	

a.		Create	a	Click	event	for	the	Save	button.
b.		Create	a	Click	event	for	the	Find	button.

10.	Save	your	reusable	part.
11.	Drop	a	Group	Box	into	the	center	of	the	IMAGE_PANEL.	Resize	it	and
change	its	Caption	to	Employee	Image.

12.	Drop	an	Image	component	into	the	center	of	the	Group	Box	and	resize	it	to
fill	the	Group	Box.

					Your	design	should	now	look	like	the	following:

13.	Save	your	reusable	part.

Step	5.	Complete	the	Image	Command	Handler
1.		In	the	Design	view,	drag	and	drop	your	Find	Employee	Image	form
(iiiVFW15)	onto	the	Employee	Image	CH	reusable	part	(iiiVFW16).

					This	will	create	a	Define_Com	for	iiiVFRW15.	Select	the	Source	tab	and
change	the	Name	of	iiiVFW15	to	Find_Image:
Define_Com	Class(#IIIVFW15)	Name(#Find_Image)	Componentversion(2)
	

2.		An	Instance	List	command	handler	is	invoked	by	the	Framework,	when	an
entry	is	selected	in	the	business	object	Instance	list	and	its	uExecute	method
is	invoked.

					Create	the	uExecute	method	routine.	This	must	redefine	the	method	which	is
already	defined	in	the	ancestor	VF_AC010.	It	should	invoke	the	uExecute
method	in	the	ancestor.

					Your	code	should	look	like	the	following:
Mthroutine	Name(uExecute)	Options(*redefine)
#com_ancestor.uExecute
Endroutine
	

3.		Your	uExecute	logic,	needs	to	do	the	following:
a.		Get	the	employee	number	for	the	current	instance	list	entry
b.		Fetch	the	employee	image	field	(iiiEmpImg)	from	file	iiiEmpImages
c.		Set	the	image	component	filename	property	from	the	retrieved	employee
image

d.		Handle	a	not	found	error,	when	the	employee	has	no	image.
Your	new	code	should	look	like	the	following:
#avlistmanager.getCurrentInstance	Akey1(#empno)
Fetch	Fields(#iiiempimg)	From_File(iiiEmpImages)	With_Key(#empno)	Val_Error(*next)
If_Status	Is(*okay)
#IMGE_1.fileName	:=	#iiiempimg.fileName
Else
#IMGE_1.fileName	:=	*null
#IMGE_1.updateDisplay
Endif

	
4.		The	Find	button	Click	event,	simply	needs	to	invoke	the	Find	Employee
image	form,	as	a	modal	form.

					Your	completed	Find	button	Click	event	should	look	like	the	following:
Evtroutine	Handling(#PHBN_FIND.Click)
#Find_Image.ShowModalForm
Endroutine
	

5.		When	an	image	is	selected	in	the	Find	Employee	Image	form,	the	user	will
click	the	OK	button.	This	will	signal	the	uImageSelected	event,	passing	the
image	path	and	filename.

					In	the	Employee	Image	command	handler,	add	an	event	handling	routine,
which	sets	the	image	filename	(IMGE_1.filename).

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#Find_Image.uImageSelected)	Ufilename(#FileName)
#IMGE_1.fileName	:=	#FileName
Endroutine
	

6.		The	Save	button	Click	routine,	needs	to	do	the	following:
a.		Set	the	field	value	for	iiiEmpImg	to	the	image	filename	property
b.		check	for	an	existing	entry	in	file	iiiEmpImages
c.		Update	or	Insert	to	the	file	iiiEmpImages	as	appropriate.
Your	code	should	look	like	the	following:
Evtroutine	Handling(#PHBN_SAVE.Click)
#iiiempimg	:=	#IMGE_1.fileName
Check_For	In_File(iiiEmpImages)	With_Key(#empno)	Val_Error(*next)
If_Status	Is(*equalkey)
Update	Fields(#iiiempimg)	In_File(iiiEmpImages)	With_Key(#empno)
Else
Insert	Fields(#empno	#iiiempimg)	To_File(iiiEmpImages)
Endif
Endroutine
	

7.		Compile	your	command	handler	iiiVFW16.

Step	6.	Plug	In	and	Test	the	Image	Command	Handler
1.		Open	your	Framework.

a.		Open	the	Employees	business	object	properties
b.		Select	the	Commands	Enabled	tab
c.		Select	the	Images	command	handler	and	plug	in	the	reusable	part,
iiiVFW16.

d.		Save	and	restart	your	Framework.
You	could	use	the	Find	Employee	Images	form	to	find	your	own	images	of
any	supported	type.	A	suitable	set	of	images	is	available	for	these	exercises
on	the	LANSA	/	Support	/	Documentation	web	site	(see
http://www.lansa.com/support/docs/index.htm).	Look	under	the	Visual
LANSA	group	for	VFW_WAW	Workshop	–	Extra	Files.
The	zip	file	contains	a	folder	\PHOTOS	which	contains	16	small	facial
images	(80	x	90	pixels).

2.		Select	the	Images	tab	for	an	employee.	Use	the	Find	Employee	Image	form
to	locate	C:\LANSA\PHOTOS	folder.	Select	an	image	and	click	OK,	which
should	close	the	Find	Image	form.

3.		Click	the	Save	button	on	the	Images	command	handler.
4.		Save	images	for	a	number	of	employees	and	check	that	images	can	then	be
retrieved	and	displayed	when	an	employee	is	selected	in	the	Instance	list.

http://www.lansa.com/support/docs/index.htm

Summary
Important	Observations

Two	Explorer	components	can	be	linked	so	that	output	from	one	can	be
shown	in	the	other.

Tips	&	Techniques
Your	component	can	retrieve	the	windows	path	and	file	name	from	the
Explorer	component.

What	You	Should	Know
How	to	implement	the	Explorer	component.
What	are	the	different	views	it	can	provide.
How	to	store	images	in	the	database	as	a	BLOB	field.

VFW082	–	Toolbars,	Menus	and	Pop–up	Menus
The	VL	Framework	can	provide	most	of	the	toolbar,	menu	and	pop-up	menu
facilities	your	application	will	require.	Setting	properties	in	VLF	for	business
objects	and	command	handlers	enables	you	to	configure	the	menus,	toolbars	and
associated	icons.

Objectives
The	objective	of	this	exercise	is	for	you	to	build	a	standalone	form	which	is	not
part	of	a	Framework	application.	This	demonstrates	how	to	implement	menus,
toolbars	and	pop-up	menus	in	your	own	code.

To	achieve	this	objective	you	will	complete	the	following:
Step	1.	Create	Menu	and	Toolbars	Form.
Step	2.	Make	the	Menus	Useful
Step	3.	Add	a	Pop-up	Menu	to	the	Status	Bar
Summary

Before	You	Begin
This	exercise	is	standalone	and	doesn't	depend	on	earlier	exercises.

Step	1.	Create	Menu	and	Toolbars	Form.
1.		Create	a	new	Form	/	Basic	Form:
					Name:	iiiVFW17
					Description:	Menus	and	Toolbars
2.		On	the	Controls	tab,	select	All	Controls	and	drag	and	drop	a	Menu	Bar
component	to	the	top	of	the	form.	The	Menu	Bar	component	will	always
attach	to	the	top	of	the	form.

					Note	that	the	first	Menu	Item	is	displayed	at	the	top	left	and	can	be	edited	in
the	Design	view.

3.		Review	the	source	code.	Note	that	two	components	have	been	defined:
A	Menu	Bar	(MBAR_1)
A	Menu	Item	(MITM_1)	which	has	a	parent	of	MBAR_1
Define_Com	Class(#PRIM_MBAR)	Name(#MBAR_1)	Parent(#COM_OWNER)
Define_Com	Class(#PRIM_MITM)	Name(#MITM_1)	Caption('Item1')	Displayposition(1)	Parent(#MBAR_1)
	

4.		Return	to	the	Design	view	and	define	the	menu.	In	the	following	steps	you
will	define	the	menu	as	shown	in	the	following	table:

Menu						 Option						

File Fill	List

	 Clear	List

	 -

	 Exit

Edit Copy

	 Delete

View Icon

	 List

	 Report

	 Small	Icon

Help Contents

	

5.		Follow	these	steps:
a.		Replace	Item1,	with	&File.	The	"F"	will	be	the	menu	shortcut	key.	At	run
time,	Alt	+	F	will	open	the	File	menu.

b.		Press	Enter	to	create	the	next	menu	item.	Type	F&ill	List.	Typing	"i"	with
the	File	menu	open	will	select	the	Fill	List	option.

c.		Press	Enter	and	the	editor	will	move	the	input	menu	items	to	top	of	the
Design	tab.	Continue	to	define	the	menu	here.

d.		Type	C&lear	List	and	press	Enter.
e.		Type	a	dash	character	(-)	into	the	new	item.	This	makes	the	menu	item	a
divider.	Press	Enter.

f.		In	the	new	menu	item,	type	E&xit	and	save	your	form.
					You	have	created	MITM_1	and	its	sub-menu	items.
6.		Once	again	review	your	source	code:
Define_Com	Class(#PRIM_MBAR)	Name(#MBAR_1)	Parent(#COM_OWNER)
Define_Com	Class(#PRIM_MITM)	Name(#MITM_1)	Caption('&File')	Displayposition(1)	Parent(#MBAR_1)
Define_Com	Class(#PRIM_SMNU)	Name(#SMNU_1)	Parent(#MITM_1)
Define_Com	Class(#PRIM_MITM)	Name(#MITM_2)	Caption('F&ill	List')	Displayposition(1)	Parent(#SMNU_1)
Define_Com	Class(#PRIM_MITM)	Name(#MITM_3)	Caption('C&lear	List')	Displayposition(2)	Parent(#SMNU_1)
Define_Com	Class(#PRIM_MITM)	Name(#MITM_4)	Caption('E&xit')	Displayposition(4)	Parent(#SMNU_1)
Define_Com	Class(#PRIM_MITM)	Name(#MITM_5)	Caption('-
')	Displayposition(3)	Parent(#SMNU_1)
	

					You	now	have	a	sub	menu	item	(SMNU_1)	with	four	menu	items	belonging
to	the	sub	menu	which	have	a	parent	of	SMNU_1.

7.		Compile	the	form	and	execute	it.	Check	that	your	menu	looks	as	expected.

					

8.		Test	the	shortcut	keys.
9.		Close	the	form.
10.		Switch	to	the	Design	view.	Position	the	cursor	in	the	File	menu	option	and
press	the	Tab	key.	A	new	menu	element	will	be	displayed	below:

11.	Type	&Edit	in	the	new	element	and	press	Tab.	Type	&View	and	press	Tab,
and	type	&Help.

					Your	menu	should	look	like	the	following:

12.	Save	your	form.
13.	Click	in	the	Edit	menu	item.	Ensure	the	cursor	is	positioned	at	the	right	hand
side	and	press	Enter.	A	new	submenu	will	be	displayed	below.

14.	Type	&Copy	and	press	Enter	and	type	&Delete	in	the	new	menu	item.
15.	Position	your	cursor	cursor	in	the	View	menu	item.	Move	the	cursor	to	the
right	and	press	Enter	to	create	a	new	sub	menu.	You	will	now	define	four
sub-menu	items	for	the	View	menu:
a.		In	a	new	menu	item,	type	&Icon	and	press	Enter.
b.		In	a	new	menu	item	type	&List	and	press	Enter.
c.		In	a	new	menu	item	type	&Report	and	press	Enter.
d.		In	a	new	menu	item	type	&Small	Icons.

16.	Position	your	cursor	in	the	Help	menu	item	and	move	the	cursor	to	the	right.
Press	Enter.	In	the	new	menu	item	type	&Contents.

17.	Compile	your	form	and	execute	it.

18.	Test	all	menu	options	and	shortcuts.
19.	Close	your	form.

Step	2.	Make	the	Menus	Useful
1.		Add	a	Status	bar	to	the	form.
2.		Add	a	List	view	component,	resize	it	as	shown.	Leave	space	below	the	menu
bar,	where	you	will	be	adding	a	toolbar.

3.		On	the	Repository	tab,	find	the	file	DEPTAB	and	add	columns	to	the	list
view	for	DEPTMENT	and	DEPTDESC.	Resize	the	columns	to	use	all	the
space	available.	Note	that	the	DEPTDESC	column	can	be	given	a	WidthType
property	of	Remainder.

4.		In	the	Design	view,	position	the	cursor	in	the	File	menu	item	and	press	Enter
to	display	the	sub	menu.

5.		On	the	Details	tab,	select	the	Events	tab	and	create	a	Click	event	routine.
6.		Create	Click	events	for	the	Clear	List	and	Exit	menu	items.
7.		Switch	to	the	Source	tab	and	complete	the	Click	event	for	the	Fill	List	menu
item	based	on	the	following:

Clear	the	List	view.
Populate	the	List	View	with	all	records	from	the	file	DEPTAB.
Add	an	image	component	to	each	list	item.
Set	menu	item	2	checked	to	true,	if	not	checked.

Set	menu	item	3	to	checked	false
Note:
List	items	(CurrentItem)	have	an	Image	property.	This	may	have	an	Image
component	associated	with	them.	The	image	could	be	set	dynamically
dependent	on	the	data	in	each	row.
An	Icon	component	VI_CHECK	which	already	exists	in	the	Repository
should	be	used	for	this	exercise.
Feature	Help	(F2)	is	available	for	any	component	for	you	to	investigate	its
Properties,	Events	and	Methods	in	detail.

					Your	code	should	look	like	the	following:
*	Fill	List
Evtroutine	Handling(#MITM_2.Click)
Clr_List	Named(#LTVW_1)
Select	Fields(#LTVW_1)	From_File(deptab)
Add_Entry	To_List(#LTVW_1)
*	Set	a	reference	from	VI_CHECK	image	component	to	list	item	image	property
#LTVW_1.CURRENTITEM.IMAGE	<=	#VI_CHECK
Endselect
#MITM_2.checked	:=	*Not	#MITM_2.checked
#MITM_3.checked	:=	false
Endroutine
	

8.		Add	the	basic	code	for	the	Click	event	for	the	Clear	List	and	Exit	menu
items.

					Your	code	should	look	like	the	following:
*	Clear	List
Evtroutine	Handling(#MITM_3.Click)
Clr_List	Named(#LTVW_1)
Endroutine
*	Exit
Evtroutine	Handling(#MITM_5.Click)
#com_owner.closeForm
Endroutine
	

9.		The	Clear	List	and	Fill	List	Checked	property	should	be	handled	similarly	to
step	7.

					Add	logic	to	check	Clear	List	(MITM_3)	and	uncheck	Fill	List	(MITM_2)
to	the	MITM_3.Click	event.	Changes	are	highlighted	in	red.
Evtroutine	Handling(#MITM_3.Click)
Clr_List	Named(#LTVW_1)
#MITM_3.checked	:=	*Not	#MITM_3.checked
#MITM_2.checked	:=	false
Endroutine
	

10.		Compile	and	test	your	form.	Your	list	should	look	like	the	following:

11.	In	the	next	few	steps	you	will	add	logic	to	handle	the	View	menu	items.	The
List	View	component	has	a	ViewStyle	property.	Select	the	List	View	and	on	the
Details	tab	review	the	list	of	values	available	for	the	ViewStyle	property:

					The	View	menu	items	will	control	the	List	View	ViewStyle	property.

12.	This	time,	use	the	Outline	tab	to	access	and	select	the	menu	items.	This	tab
is	usually	open,	but	if	necessary	select	it	from	the	Home	ribbon,	Views	menu.

					On	the	Outline	tab,	expand	sub-menu	items	and	note	that	the	appropriate
menu	is	opened	in	the	Design	view.

13.	Select	the	View	menu	items	and	create	a	Click	event	for	each	item.	You	can
use	the	context	menu	on	the	Outline	tab	to	create	the	Click	events.

14.	Add	logic	to	each	new	click	event	routine	to	set	the	List	View.ViewStyle
property	as	required.	Your	finished	code	should	look	like	the	following:
*	Icon
Evtroutine	Handling(#MITM_11.Click)
#LTVW_1.viewstyle	:=	icon
Endroutine
*	List

Evtroutine	Handling(#MITM_12.Click)
#LTVW_1.viewstyle	:=	list
Endroutine
*	Report
Evtroutine	Handling(#MITM_13.Click)
#LTVW_1.viewstyle	:=	report
Endroutine
*	Small	Icons
Evtroutine	Handling(#MITM_14.Click)
#LTVW_1.viewstyle	:=	smallIcon
Endroutine
	

15.	Compile	and	test	your	form.	Use	the	View	menu	options	to	change	the
appearance	of	the	list.

16.	In	the	next	few	steps	you	will	add	a	Toolbar	to	the	top	of	your	form	and
implement	a	number	of	toolbar	buttons.
a.		Drag	and	drop	a	Group	Box	component	to	the	top	of	the	form	below	the
Menu	Bar	and	resize	it:

b.		Give	the	Group	Box	a	ThemeDrawStyle	property	of	Toolbar.
c.		Set	the	Group	Box	Height	property	to	48	pixels.

Note:	Remember	you	can	move	components	accurately	using	the	Ctrl+Cursor
keys.

17.	Use	the	Design	ribbon	to	add	a	FlowAcross	manager	to	the	Group	Box.
18.	Use	the	Layout	Helper	/	Layout	Manager	Details	tab	to	set	the	Margins
Category.	Use	All	to	set	the	value	to	3	pixels.

19.	Add	four	Toolbar	buttons	to	the	Group	Box.	Use	the	Shift	+	Left	Mouse	to
select	all	the	toolbar	buttons	and	set	their	ButtonStyle	property	to	FlatButton.

					

					When	you	focus	elsewhere	the	toolbar	buttons	will	not	be	visible.	You	can
still	click	on	their	position	to	select	one.	Select	the	third	button	and	change	its
ButtonStyle	to	Separator.

20.	Select	each	Toolbar	button	and	set	the	Image	and	Hint	properties	as	follows:

Button Image Hint

SPBN_1 xImageNew16 Fill	the	list	view

SPBN_2 xImageCut16 Clear	the	list	view

SPBN_4 xImageExit16 Close	the	form

	

21.	Since	the	toolbar	duplicates	some	of	the	menu	options,	you	should	add	the
new	toolbar	button	click	events	to	the	existing	logic.	Your	completed	code
should	look	like	the	following.	Changes	are	highlighted	in	red.
Evtroutine	Handling(#MITM_2.Click	#SPBN_1.click)
Clr_List	Named(#LTVW_1)
Select	Fields(#LTVW_1)	From_File(deptab)
Add_Entry	To_List(#LTVW_1)
#LTVW_1.CURRENTITEM.IMAGE	<=	#VI_CHECK
Endselect
#MITM_2.checked	:=	*Not	#MITM_2.checked
#MITM_3.checked	:=	false
Endroutine
Evtroutine	Handling(#MITM_3.Click	#SPBN_2.click)
Clr_List	Named(#LTVW_1)
#MITM_3.checked	:=	*Not	#MITM_3.checked
#MITM_2.checked	:=	false
Endroutine

Evtroutine	Handling(#MITM_5.Click	#SPBN_4.click)
#com_owner.closeForm
Endroutine
	

22.	Compile	your	form.

23.	Test	your	form,	especially	the	menu	options	and	toolbar	buttons.

Step	3.	Add	a	Pop-up	Menu	to	the	Status	Bar
A	Pop-up	Menu	component	can	be	associated	with	most	of	the	visual
components	on	a	form.	A	right	click	on	this	visual	component	will	then	display
the	"context	menu".
You	will	add	date	and	time	fields	to	the	right	side	of	the	Status	bar	and	the	Pop-
up	Menu	will	then	control	whether	the	date	and	time	fields	are	visible.
1.		From	the	Repository	tab,	drag	and	drop	the	STD_DATEX	field	into	the	right
hand	side	of	the	Status	Bar.

2.		Hide	its	label	by	changing	its	MarginLeft	property	to	0	and	then	reduce	its
Width	as	required..

3.		Add	field	STD_TIMX	to	the	right	hand	side	of	the	Status	Bar.	Hide	its	label
and	adjust	its	width.	Your	form	should	now	look	like	the	following:

					Hint:	If	you	have	difficulty	adding	the	Time	field,	drop	it	onto	the	Status	Bar
up	/	down	buttons	and	it	will	be	positioned	on	the	right	hand	side	of	the	status
bar.

4.		Set	both	the	date	and	time	fields	ReadOnly	property	to		true.
5.		In	this	step	you	will	ensure	both	the	date	and	time	fields	have	a	value.

a.		Add	logic	to	the	form's	Initialize	event	routine	to	set	STD_DATEX	to
current	date:

#STD_DATEX	:=	*date
	
b.		Drag	and	drop	a	Timer	component	onto	your	form.	This	is	a	non-visual
component.	The	component	definition	is:

Define_Com	Class(#PRIM_TIMR)	Name(#TIMR_1)
	
c.		In	the	source	editor,	select	the	timer	component	name	and	use	the	context
menu	to	create	a	click	event	routine.

d.		Add	logic	to	the	timer	click	event	to	set	STD_TIMX	to	current	time:
Evtroutine	Handling(#TIMR_1.Tick)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#STD_TIMX	:=	*time
Endroutine
	

					Note:	In	this	case,	there	is	no	need	for	other	code.	The	standard	timer
behavior	is	to	fire	a	click	event	every	second.	This	is	defined	by	its	Interval
property	of	1,000.	Setting	the	Interval	to	0	will	stop	the	timer.

					The	Timer	also	has	a	Start	and	Stop	method.
6.		Compile	and	execute	your	form	to	check	that	you	are	displaying	a	date	and
time.

7.		Close	your	form.
8.		Continue	on	the	Design	tab,	by	dragging	and	dropping	a	Pop-up	Menu
component	onto	the	Status	Bar.

					The	Pop-up	Menu	will	be	shown	at	the	top	of	the	Design	tab:

9.		Define	two	menu	items,	Show	&Date	and	Show	&Time.	Create	a	Click
event	for	the	new	menu	items.

10.	In	the	Design	view,	select	the	Status	Bar	and	review	its	properties.	Note	that
it	now	has	a	PopUpMenu	property	of	PMNU_1.

					Date	and	time	are	initially	visible.
11.	On	the	Design	tab,	select	the	Status	bar	and	use	the	context	menu	to	Edit

Pop-Up	Menu.
a.		Set	both	Pop-up	Menu	items	Checked	property	to	True.
b.		Complete	the	Click	event	code	for	the	Status	Bar	Pop-up	Menu
component,	to	switch	the	date	and	time	from	Visible	=	true	/	false	and
Menu	Item	Checked	=	true	/	false.

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#MITM_16.Click)
#STD_DATEX.visible	:=	*Not	#STD_DATEX.visible
#MITM_16.checked	:=	*Not	#MITM_16.checked
Endroutine
Evtroutine	Handling(#MITM_17.Click)
#STD_TIMX.visible	:=	*Not	#STD_TIMX.visible
#MITM_17.checked	:=	*Not	#MITM_17.checked
Endroutine
	

12.	Compile	and	test	your	form.

Summary
Important	Observations

If	you	are	developing	applications	based	on	VL	Frameworks,	then	most	of
your	menus	and	toolbars	can	be	provided	by	the	Framework.
Check	the	Repository	under	Resources	/	Bitmaps	for	a	range	of	suitable
images.	These	are	mainly	PNG	format	images	in	various	sizes	(for	example,
16x16,	32x32,	64x64	etc.).

Tips	&	Techniques
In	this	exercise	all	the	menu	and	spin	button	items	were	left	with	default
names.	E.g.	MITM_1.	In	a	real	application	it	is	good	design	and	will
simplify	maintenance	if	you	give	menu	items	meaningful	names.
The	templates	VL_BBMNUBR	and	VL_FBBMNUB	can	be	used	to
generate	a	menu	bar	in	a	form	that	you	can	easily	adapt	to	suit	your	own
requirements.	You	should	generate	from	the	template	into	an	RDML-enabled
form	and	then	change	the	form	to	be	RDMLX-enabled.

What	You	Should	Know
How	to	implement	menus,	toolbars	and	pop-up	menus.

VFW084	–	A	Business	Object	Browser	and	Detailer
Objectives
In	this	exercise	you	will	create	two	reusable	parts	which	work	together.

The	Business	Object	Browser	displays	a	list	skills	for	an	employee	selected
in	the	instance	list.
The	Business	Object	Detailer	displays	details	for	an	employee's	skill	record,
selected	in	the	Business	Object	Browser.

If	developing	the	application	using	VL	Frameworks,	there	are	other	ways	this
functionality	could	be	achieved.	For	example	the	employees	instance	list	could
contain	another	level	for	employee	skills.	See	the	shipped	HR	Demo	Application
/	Organisations	for	an	example	which	illustrates	this	concept.
The	objective	for	this	exercise	is	to	show	how	to	design	and	build	a	simple
application	with	two	components	which	interact	with	each	other.

To	achieve	these	objectives	you	will	complete	the	following	steps:
Step	1.	Create	Employee	Skills	Command	Handler
Step	2.	Create	Business	Object	Detailer.
Step	3.	Complete	the	Skills	Browser
Summary

Before	You	Begin
You	should	complete	VFW030,	VFW040	and	VFW042	before	starting	this
exercise.

Step	1.	Create	Employee	Skills	Command	Handler
This	is	the	Business	Object	Browser,	which	will	be	referred	to	as	the	BOB.
1.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW18
					Description:	Employee	Skills	Browser.
					Give	the	reusable	part	an	ancestor	of	VF_AC010.
2.		From	the	Design	tab,	give	the	reusable	part	a	Split	Vertically	manager.	On	the
Layout	Helper	tab	give	this	a	Divider	Style	of	Raised.	The	Vertical	Splitter
defines	two	panels	PANEL_1	and	PANEL_2.

3.		Select	the	left	side	Panel	and	change	its	Name	to	LEFT_PANEL.
					Change	the	right	side	Panel's	Name	to	RIGHT_PANEL.
4.		Select	LEFT_PANEL	and	give	it	an	Attachment	layout	manager.
5.		Drop	a	List	View	into	the	center	of	LEFT_PANEL.	Change	the	List	View's
Name	to	SKILL_LIST.

6.		On	the	Repository	tab,	select	the	file	PSLSKL	and	drag	and	drop
SKILCODE,	GRADE,	COMMENT	and	DATEACQ	into	the	list	view
SKILL_LIST

7.		Select	each	column	heading	and	change	the	Caption	and	Caption	Type	as
shown:

Field Property Value

SKILCODE Caption Code

CaptionType Caption

GRADE Caption Grade

CaptionType Caption

COMMENT Caption Comment

CaptionType Caption

DATEACQ Caption Date	Acquired

CaptionType Caption

	

8.		Create	a	uExecute	method	routine,	which	redefines	the	ancestor	method.	Add
logic	to	execute	the	ancestor	uExecute	method:
Mthroutine	Name(uExecute)	Options(*redefine)
#com_ancestor.uExecute
Endroutine
	

9.		Add	logic	to	get	the	current	instance	list	entry	and	return	AKey1.
Mthroutine	Name(uExecute)	Options(*redefine)
#com_ancestor.uExecute
#avlistmanager.getCurrentInstance	Akey1(#empno)
Endroutine
	

10.	The	SKILL_LIST	list	view	will	need	to	be	built,	initially	when	the
command	handler	is	invoked	and	also	whenever	the	Business	Object	Detailer
has	added	or	changed	an	employee	skill.	Create	a	subroutine	to	populate	the
list	view.	Your	code	should	look	like	the	following:

Subroutine	Name(buildlist)Clr_List	Named(#SKIlL_LIST)Select	Fields(#SKILl_LIST)	From_File(pslskl)	With_Key(#empno)
Endroutine
	

11.	Execute	the	subroutine	from	the	uExecute	method:
Mthroutine	Name(uExecute)	Options(*redefine)
#com_ancestor.uExecute
#avlistmanager.getCurrentInstance	Akey1(#empno)
Execute	Subroutine(buildlist)
Endroutine
	

12.	Compile	your	new	command	handler.
13.	Open	your	Framework	and	plug	in	iiiVFW18	as	the	command	handler	for
Employee	business	object,	command	Skills	2.

14.	Save	and	Restart	your	Framework.	Select	an	employee	and	then	select	the
Skills	2	command	handler	tab.	Check	that	the	list	view	is	populated	as
expected.	Not	all	employees	have	skill	records.

15.	Close	the	Framework.

Step	2.	Create	Business	Object	Detailer.
In	this	step	you	will	create	a	reusable	part	which	will	be	displayed	on	the
RIGHT_PANEL	in	iiiVFW18.
This	is	the	Business	Object	Detailer	for	an	employee	skill,	which	will	be
referred	to	as	the	BOD.
The	BOB	will	invoke	the	BOD	to	display	details	or	create	a	new	employee	skill.
The	BOD	will	signal	uSkillChanged	when	an	employee	skill	has	been	updated,
created	or	deleted.
When	an	item	in	the	SKILL_LIST	is	selected,	the	BOB	will	invoke	the	BOD's
uShow	method,	passing	employee	number	and	skill	code.
When	displaying	an	employee	skill	the	BOD	will	enable	a	Delete	button.
The	BOB	will	have	a	Pop-Up	Menu	on	the	employee	skills	list,	which	will
invoke	the	BOD's	uNew	method	passing	the	employee	number..
1.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW19
					Description:	Employee	Skill	Detailer
					Note:	This	component	does	not	interact	directly	with	Framework
components.	It	therefore	does	not	need	to	have	VF_AC010	as	its	ancestor.

2.		In	the	Design	view	resize	the	panel	to	approximately	Height	=	350	and	Width
=	370.

					Use	the	Design	ribbon	to	give	iiiVFW19	an	Attachment	layout	manager.
3.		Drop	a	Panel	at	the	bottom	of	the	main	panel.	Change	its	Name	to
BUTTON_PANEL.

4.		Select	BUTTON_PANEL	and	give	it	a	Flow	Across	layout	manager.
5.		With	the	BUTTON_PANEL	selected,	use	the	Layout	Helper	/	Layout
Manager	Details	tab	and	select	Category	=	Margins	and	set	Left	and	Top	=
10	pixels.

6.		Drag	and	drop	two	Push	Buttons	onto	BUTTON_PANEL.	Set	up	their
properties	as:

Caption Name

Save PHBN_SAVE

Delete PHBN_DELETE

	

7.		Create	a	Click	event	routine	for	each	button.
8.		Drop	a	Panel	into	the	center	of	the	main	Panel	and	change	its	Name	to
DETAIL_PANEL.

9.		Give	DETAIL_PANEL	a	Flow	Down	layout	manager.	On	the	Layout	Helper
/	Layout	Manager	Details	tab,	select	Category	=	Margins	and	use	the	All
setting	to	set	margins	of	7	pixels.

10.	On	the	Repository	tab,	find	the	file	PSLSKL	and	drop	fields	SKILCODE,
GRADE,	COMMENT	and	DATEACQ	onto	DETAIL_PANEL.

11.	Save	your	component.
12.	Create	a	uShow	method	routine,	with	input	parameters	based	on	EMPNO
and	SKILCODE.
Mthroutine	Name(uShow)
Define_Map	For(*input)	Class(#empno)	Name(#i_empno)
Define_Map	For(*input)	Class(#skilcode)	Name(#i_skill)
Endroutine
	

13.	Define	a	character	work	field,	REQUEST,	Length	3.
Define	Field(#request)	Type(*char)	Length(3)

14.	Complete	the	uShow	routine,	which	should:
a.		Set	Request	to	DET
b.		Set	EMPNO	and	SKILCODE	from	the	values	input	to	this	method
c.		Fetch	all	employee	skills	from	file	PSLSKL.

					Your	code	should	look	like	the	following.	Changes	are	highlighted	in	red.
Mthroutine	Name(uShow)
Define_Map	For(*input)	Class(#empno)	Name(#i_empno)
Define_Map	For(*input)	Class(#skilcode)	Name(#i_skill)
#request	:=	DET
#empno	:=	#i_empno
#SKILCODE	:=	#i_skill
Fetch	Fields(*all)	From_File(pslskl)	With_Key(#empno	#SKILCODE)	Val_Error(*next)

If_Status	Is_Not(*OKAY)
Message	Msgtxt('Employee	skill	not	found')
Endif
Endroutine
	

15.	Create	a	uNew	method	routine	with	an	input	parameter	i_empno,	based	on
EMPNO.
Mthroutine	Name(uNew)
Define_Map	For(*input)	Class(#empno)	Name(#i_empno)
Endroutine
	

16.	Define	a	Group_by,	named	SKILDATA	for	fields	SKILCODE,	GRADE,
COMMENT	and	DATEACQ,	at	component	level.

17.	Complete	the	uNew	method	routine	which	should:
a.		Set	request	to	NEW
b.		Set	EMPNO	to	the	value	input	to	this	method
c.		Set	SKILDATA	to	*null
Mthroutine	Name(uNew)
Define_Map	For(*input)	Class(#empno)	Name(#i_empno)
#empno	:=	#i_empno
#request	:=	NEW
#skildata	:=	*default
Endroutine
	

18.	Define	an	event	uSkillChanged.
define_evt	NAME(uSkillChanged)

19.	Complete	the	Save	push	button	Click	event	routine,	which	should:
a.		Handle	a	request	of	DET	or	NEW	using	a	CASE/ENDCASE.
b.		When	request	is	DET,	UPDATE	all	fields	in	PSLSKL
c.		Check	status	code	and	signal	uSkillChanged
d.		When	request	is	NEW,	INSERT	all	fields	to	PSLSKL
e.		Check	status	code	and	signal	uSkillChanged.
Your	code	should	look	like	the	following:

Evtroutine	Handling(#PHBN_SAVE.Click)
Case	(#request)
When	(=	DET)
Update	Fields(*all)	In_File(pslskl)	Val_Error(*next)
If_Status	Is(*okay)
Signal	Event(uSkillChanged)
Else
Message	Msgtxt('Employee	skill	update	failed')
Endif
When	(=	NEW)
Insert	Fields(*all)	To_File(pslskl)	Val_Error(*next)
If_Status	Is(*okay)
Signal	Event(uSkillChanged)
Else
Message	Msgtxt('Add	Employee	skill	failed')
Endif
Endcase
Endroutine
	

20.	Complete	the	Delete	push	button	Click	event	routine,	which	should:
a.		Delete	from	the	file	PSKSKL
b.		Check	status	and	signal	uSkillChanged	and	issue	an	error	message:
Evtroutine	Handling(#PHBN_DELETE.Click)
Delete	From_File(pslskl)	Val_Error(*next)
If_Status	Is(*okay)
Signal	Event(uSkillChanged)
Else
Message	Msgtxt('Employee	skill	deletion	failed')
Endif
Endroutine
	

21.	Compile	reusable	part	iiiVFW19.

Step	3.	Complete	the	Skills	Browser
1.		Switch	to	the	reusable	part	iiiVFW18	(Employee	Skills	Browser)	in	the
editor.	In	the	Design	view,	select	the	panel	RIGHT_PANEL.	Use	the	Layout
Helper	tab	and	give	this	panel	an	Attachment	layout	manager	by	selecting	the
existing	manager	ATLM_1	in	the	drop	down:

2.		Drop	the	reusable	part	iiiVFW19	into	the	center	of	the	Panel
RIGHT_PANEL.	Use	the	Details	tab	to	change	its	Name	to	SKILL_DETLS.

3.		Select	the	component	SKILL_DETLS	on	the	RIGHT_PANEL	and	use
Details	/	Events	to	create	a	uSkillChanged	event	routine.	Add	logic	to	execute
the	BuildList	subroutine.

4.		Select	the	SKILL_LIST	list	view	on	the	LEFT_PANEL	and	create	an
ItemGotSelection	event	routine.

					Add	logic	to	invoke	the	uShow	method	in	SKILL_DETLS,	passing	employee
number	and	skill	code.	Your	code	should	look	like	the	following:
Evtroutine	Handling(#SKILL_LIST.ItemGotSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Invoke	Method(#SKILL_DETLS.ushow)	I_Empno(#empno)	I_Skill(#skilcode)
Endroutine
	

5.		On	the	Design	tab,	select	the	SKILL_LIST	and	use	the	context	menu	to	add	a
Pop-Up	Menu	component.

					Enter	New	in	the	menu	item	displayed	at	the	top	of	the	Design	tab	and	create
a	Click	event	for	it.

6.		Complete	the	menu	item	Click	event	by	adding	code	to	invoke	the	uNew
method	in	SKILL_DETLS	passing	employee	number.
Evtroutine	Handling(#MITM_1.Click)
Invoke	Method(#SKILL_DETLS.uNew)	I_Empno(#empno)

Endroutine
	

7.		Compile	the	reusable	iiiVFW18.
8.		Execute	your	Framework,	and	ensure	you	can	use	the	Skills	2	command
handler	for	an	employee	to	update,	delete	and	create	a	new	skill.

					At	the	moment	this	command	handler	has	a	very	basic	interface.	In	the	next
exercise	you	will	make	a	number	of	improvements	to	it.

Summary
Important	Observations

Your	components	will	contain	your	own	application,	properties,	events	and
methods.
Properties,	events	and	methods	are	"published"	unless	they	are	defined	as
Access(*private).
In	this	simple	component	model,	the	"browser"	displays	all	skill	entries	(for
an	employee)	and	the	"detailer"	enables	the	user	to	change	or	delete	a	skill.

Tips	&	Techniques
The	business	object	detailer	signals	an	event	telling	the	business	object
browser	an	employee	skill	has	changed.
The	business	object	browser	passes	employee	number	and	skill	code	into	the
uShow	method	in	the	business	object	detailer.

What	You	Should	Know
How	to	design	and	implement	a	simple	multi-component	application.

VFW090	–	Field	Visualizations
The	Repository	defines	fields	as	components.	An	important	part	of	this
component	definition	is	the	field	visualization.
Most	fields	are	visualized	by	default	as	a	simple	edit	box.
Other	field	visualizations	may	be	added,	such	as	a	radio	button	set,	a
dropdown	together	with	a	static	picklist,	check	box,	multi-line	edit	box	and
date	prompt.

The	following	example	shows	field	visualizations	for	a	numeric	field.
These	examples	include:	Combo	Box,	Listbox,	SpinEdit,	Radio	Button	Set
and	TrackBar.
SpinEdit	has	an	Increment	property.
Trackbar	has	a	MinimumValue	and	MaximumValue	properties.	

The	next	example	includes	field	visualizations	for:
A	Radio	Button	Set	and	a	Combo	Box	for	field	Gender.
Checkbox	and	Combo	Box	for	On	Leave?
Image	and	Text	picklist	for	Job	Status
Multi-Line	Editbox	for	Memo	Notes	(a	string	field)

A	Date	Prompt	for	a	Date	Time	field:

Advanced	field	visualization	options	include:
A	Dynamic	Picklist	which	is	populated	by	a	Reusable	part.
An	Autocomplete	input	box,	also	populated	by	reusable	part.
A	Prompt	Form	can	also	be	attached	to	the	field,	which	is	linked	to	a	prompt
button	and	which	can	support	simple	or	complex	searches	as	required.

Objectives
This	exercise	provides	examples	to	enhance	some	of	the	applications	built	in
previous	exercises.	More	field	visualization	examples	are	provided	Field
Visualization	Development	in	the	LANSA	Development	Guide.
To	achieve	the	objectives	you	will	complete	these	steps:
Step	1.	Define	a	Picklist	for	iiiGRADE.
Step	2.	Define	a	Dynamic	Picklist	for	SKILCODE
Step	3.	Link	Dynamic	Picklists
Step	4.	Implement	Dynamic	Picklists	in	By	Location	filter
Step	5.	Create	an	AutoComplete	Visualization	for	Surname
Summary

Before	You	Begin
Complete	exercises	VFW020,	VFW030,	VFW042	and	VFW084.

its:lansa013.chm::/lansa/l4wdev03_0170.htm

Step	1.	Define	a	Picklist	for	iiiGRADE.
1.		Copy	field	GRADE	to	create	a	new	field	iiiGrade,		select	the	options	to	copy
rules,	visualization	and	help	text.	Open	the	new	field	in	the	editor.

2.		Select	the	Visualization	tab,	which	should	contain	a	VisualEdit	definition:

3.		Add	a	Static	Picklist	using	the	toolbar	button:

4.		Select	the	Picklist	component	and	define	the	following	picklist	values:

Caption Value Default

Pass P Yes

Fail F 	

Merit M 	

Distinction D 	

	

5.		Select	the	Definition	tab	and	change	the	field	Default	value	to	'P',	to
correspond	with	the	Static	Picklist	default	value.	See	later	in	the	exercise	for
more	detail	on	this	step.

6.		On	the	Visualization	tab,	select	the	VisualPicklist	component.	Note	that	it	has
defaulted	to	a	suitable	design,	a	Dropdown.

					Widen	the	visualization	slightly	so	that	the	word	"Distinction"	would	be
shown.

					If	necessary,	reduce	the	height	to	the	minimum	possible.

Note:	Always	make	visualizations	use	the	minimum	space	on	the	interface.

					Select	the	Details	tab	and	change	the	new	visualization	to	Default	Visual	=
True.

7.		Save	your	field	definition.
8.		Open	iiiVFW19	–	Employee	Skill	Detailer	in	the	editor	and	select	the	Source
tab.	Position	the	cursor	at	the	top	of	the	code.
a.		Display	the	Replace	dialog	(Ctrl+H)	and	set	it	up	to	replace	#GRADE
with	#iiiGrade.	Do	not	Replace	All.

b.		Use	Find	Next,	which	will	be	this	line:
Define_Com	Class(#GRADE.Visual)	Name(#GRADE)	Displayposition(2)	Height(21)	Left(7)	Parent(#DETAIL)	Tabposition(2)	Top(38)	Usepicklist(False)	Width(189)
	
b.		Use	Replace	to	change	both	entries	on	this	line.	Your	code	should	look
like	the	following:

Define_Com	Class(#iiiGRADE.Visual)	Name(#iiiGRADE)	Displayposition(2)	Height(21)	Left(7)	Parent(#DETAIL)	Tabposition(2)	Top(38)	Width(189)
	
c.		You	should	now	be	positioned	on	this	line:
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_7)	Manage(#GRADE)	Parent(#FWLM_2)
	
d.		Replace	#GRADE	and	Cancel	the	Replace	dialog.

9.		You	will	now	add	code	to	set	up	iiiGrade	from	the	real	field	GRADE.

a.		At	the	top	of	the	PHBN_SAVE.Click	event	routine	add	this	code:
#GRADE	:=	#iiiGrade
	
b.		In	the	uShow	method	routine,	add	this	code	immediately	after	the	FETCH
#iiiGrade	:=	#GRADE
	
c.		On	the	Design	tab	check	the	appearance	of	iiiGrade	visualization	and
increase	its	width	if	necessary.

10.		Recompile	iiiVFW19	–	Employee	Skill	Detailer.
11.		Execute	your	Framework	and	display	the	Skills	2	command	handler	for	an
employee.	Note	that	the	Grade	obtained	for	the	skill	field	is	now	visualized	as
a	dropdown.

Note:
The	Static	Picklist	will	be	automatically	positioned	to	show	the	field's
current	value.	If	the	field	contains	any	value	not	in	the	picklist,	such	as
blanks,	the	picklist	will	show	its	default	caption.
The	field's	value	is	only	populated	or	changed	by	the	visualization	when	an
option	is	selected	in	the	picklist	(visualized	as	a	dropdown	in	this	case).	This
means	if	no	selection	is	made,	the	fields	value	could	be	invalid.	
Defining	the	field's	Default	value	to	be	the	same	as	the	picklist's	default
avoids	this	problem.

Step	2.	Define	a	Dynamic	Picklist	for	SKILCODE
Fields	may	have	Dynamic	Visualizations	defined.	Visualizations	may	include:
A	reusable	part	which	includes	logic	to	Autocomplete	the	value	of	a	field	as
an	entry	is	typed.
A	Dynamic	Picklist	may	be	defined	with	entries	retrieved	from	a	file	at	run
time.

					For	full	details	refer	to	the	Visual	LANSA	Developer	Guide.
In	this	example	you	will	create	a	Dynamic	Picklist	for	a	new	field	iiiSkillCode
which	populates	a	dropdown	from	the	file	SKLTAB.
1.		Copy	field	SKILCODE	to	create	a	new	field	iiiSkillCode,	copy	rules,
visualizations	and	help	text.	Open	the	new	field	in	the	editor.

2.		A	Dynamic	Picklist	is	implemented	via	a	simple	reusable	part.
					Create	a	new	Reusable	Part	/	Dynamic	Picklist:
					Name:	iiiVFW20
					Description:	Skill	Code	Dynamic	Picklist
3.		A	Dynamic	Picklist	RP	is	a	non	visual	component	(ancestor	PRIM_OBJT)
which	implements	#prim_dc.iDynamicPicklist.

					Implementing	iDynamicPicklist	allows	a	visualization	reusable	to	Load	the
picklist	at	runtime.

Load	-	The	load	method	is	executed	during	initialization	and	any	time
a	monitored	value	or	context	changes.	This	picklist	instance	is
received	via	the	Picklist	map.	The	instance	of	the	picklist	is
maintained	at	runtime,	meaning	that	the	user	must	clear	the	list	if	new
data	is	required.

See	the	Visual	LANSA	Developer	Guide	for	more	detailed	information
about	Dynamic	Visualizations.

4.		The	Load	method	routine	which	will	populate	the	picklist	from	the	file
SKLTAB	when	the	field	component	is	loaded	onto	a	form	or	panel,	needs	to
be	completed.

					The	method	routine	redefines	the	Load	method	in	the
prim_dc.iDynamicPicklist	component.

its:lansa013.chm::/Lansa/L4wDev03_0415.htm

					Add	the	following	code,	after	the	comment	line	*Populate	the	picklist,
replacing	the	supplied	code	provided
*	Populate	the	picklist
Select	Fields(#skilcode	#skildesc)	From_File(skltab)
#Picklist.Add(#skilcode	#skildesc)
Endselect
	

					Note:
					The	Load	method	displays	a	Define_Map.	This	is	part	of	the	redefined	Load
method	of	prim_dc.iDynamicPicklist.	The	parameter	passes	a	reference	to	a
component	PRIM_PKLT,	named		Picklist	in	the	Load	method.

The	Picklist.Add	method	enables	your	reusable	part	to	add	entries	to	the
picklist.
The	Picklist.RemoveAll	clears	the	picklist.
The	Load	method	includes	code	to	clear	the	picklist.
Always	use	F2	Feature	Help	to	investigate	the	definition	of	shipped
components	such	as	PRIM_PKLT.

5.		Compile	your	new	reusable	part.
6.		The	new	field	iiiSkillCode	which	you	just	created,	should	be	open	in	the
editor.

7.		Select	the	Visualizations	tab	and	use	the	toolbar	button	to	insert	a	New
Dynamic	Picklist:

					A	Repository	Find	dialog	is	displayed.	Select	your	reusable	part	iiiVFW20.
8.		Select	the	VisualPicklist	component	and	increase	its	width.
9.		Select	the	VisualPicklist	and	use	the	Details	tab	to	change	its	DefaultVisual
property	to	True.

10.	Examine	the	field	source	code.	Note	the	DynamicPicklist	component

definition:
Begin_Com	Role(*Dynamic_Picklist	#IIIVFW20)	Name(#DynamicPicklist)	Nomatchaction(Blanks)
End_Com
	

					As	with	all	picklists,	dynamic	or	static,	the	NoMatchAction	property	needs	to
be	set	to	determine	what	to	do	in	the	event	of	the	underlying	field	value	not
being	found	in	the	picklist.	For	most	situations,	ShowValue	is	probably	the
best	choice.

11.	Select	the	DynamicPicklist	item.	On	the	Details	tab,	change	the
NoMatchAction	property	to	ShowValue.

12.	Save	the	field	definition.
13.	Open	the	Employee	Skill	Detailer	(iiiVFW19)	in	the	editor.	You	will	be
making	similar	change	as	for	field	iiiGRADE
a.		Change	the	SKILCODE	component	definition	to	use	the	dynamic
picklist,		iiiSkilcode.VisualPicklist.

Define_Com	Class(#iiiSkillCode.VisualPicklist)	Name(#iiiSkillCode)	Displayposition(1)	Left(7)	Parent(#DETAIL)	Tabposition(1)	Top(7)
	
b.		Change	the	Flow	Manager	item	for	SKILCODE,	to	manage	iiiSkillCode
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_10)	Manage(#iiiSkillCode)	Parent(#FWLM_2)
	
c.				Close	the	Replace	dialog.
d.		At	the	top	of	the	PHBN_SAVE.Click	event	routine	add	the	following
code:

#SKILCODE	:=	#iiiSkillCode
	
e.		In	the	uShow	method	routine,	add	the	following	code	immediately	after
the	FETCH:

#iiiSkillCode	:=	#SKILCODE
	
f.		Switch	to	the	Design	tab,	and	increase	the	width	of	Skill	Code	if
necessary.

g.		Compile	your	Employee	Skill	Detailer	reusable	part	(iiiVFW19).
14.	Execute	your	Framework	and	ensure	that	the	correct	Skill	Code	description
is	shown	when	an	employee	skill	is	selected:

15.	Create	a	new	employee	skill,	using	the	context	menu	on	the	employee	skills
list	view.	Notice	that	the	skill	code	dropdown	and	grade,	initially	shows	their
last	value.	This	is	because	the	fields	IIISKILCODE	and	IIIGRADE	are	not
currently	being	initialized	in	the	uNew	method	routine.

16.	Add	code	to	uNew	to	set	the	new	fields	to	their	default	value	and	re-test.
Notice	that	iiiGrade	defaults	to	"Pass"	as	expected	and	iiiSkilCode	shows
blanks,	which	is	its	default	value,	copied	from	field	definition	SKILCODE.

Step	3.	Link	Dynamic	Picklists
The	next	example	demonstrates	how	dynamic	picklists	can	be	linked.	A
dynamic	picklist	for	Sections	can	be	loaded	from	the	Section	table	(SECTAB),
but	the	Sections	dynamic		picklist,	must	be	rebuilt	whenever	the	department
changes.
1.		Create	a	new	Reusable	Part	/	Dynamic	Picklist:
					Name:	iiiVFW21
					Description:	Departments	Dynamic	Picklist

2.		Add	the	following	immediately	after	the	comment	line	*	populate
dynamic	picklist,	replacing	the	supplied	code:
*	Populate	dynamic	picklist
Select	Fields(#deptment	#deptdesc)	From_File(deptab)
#Picklist.Add(#deptment	#deptdesc)
Endselect
	

					Having	completed		Step	2-	Define	a	Dynamic	Picklist	for	SkillCode,	you
should	now	be	familiar	with	what	this	code	is	doing.

3.		Compile	your	new	reusable	part.
4.		Create	a	new	field	iiiDepartment	by	copying	field	DEPTMENT,	copy	rules,
visualizations	and	help	text.	Open	the	new	field	in	the	editor.

5.		Select	the	Visualizations	tab.	Use	the	 	Tool	bar	button	to	add	a	New
Dynamic	Picklist.	In	the	Find	dialog,	select	the	RP,	iiiVFW21.
a.		Select	the	new	VisualPicklist	component	and	adjust	the	width	of	the
dropdown	to	display	the	department	description.

b.		Select	the	VisualPicklist	component	and	use	the	Details	tab	to	change	its
DefaultVisual	property	to	True.

c.		Select	the	DynamicPicklist	component	and	use	the	Details	tab	o	change
its	NoMatchAction	property	to	ShowValue.

6.		Save	and	close	the	field	definition.
7.		Create	a	new	Reusable	Part	/	Dynamic	Picklist:
					Name:	iiiVFW22
					Description:	Section	Dynamic	Picklist

8.		Add	the	following	code,	immediately	after	the	*Populate	the	picklist
comment	line,	replacing	the	default	code	provided:
Select	Fields(#section	#secdesc)	From_File(sectab)	With_Key(#deptment)
#Picklist.Add(#section	#secdesc)
Endselect
	

9.		There	is	a	new	requirement	for	the	Sections	Dynamic	Picklist.	It	needs	to
monitor	changes	in	the	field	DEPTMENT.

					To	do	this	it	needs	to	also	implement	Prim_dc.iMonitorSubject	and	include	a
method	routine	for	ApplyMonitorValue.

10.	Extend	your	code	based	on	the	changes	highlighted	in	red	below:
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_OBJT	*implements	#Prim_dc.iDynamicPicklist	
Mthroutine	Name(Load)	Options(*redefine)
#Picklist.RemoveAll
*	Populate	the	picklist
Select	Fields(#section	#secdesc)	From_File(Sectab)	With_Key(#Deptment)
#Picklist.Add(#Section	#Secdesc)
Endselect
Endroutine

Mthroutine	Name(ApplyMonitoredValue)	Options(*Redefine)
#Deptment	:=	#MonitorSubject.GetValue
Endroutine
End_Com
	

					Note:	The	ApplyMonitoredValue	routine	displays	the	Define_map	defined	in
its	ancestor.

11.	Compile	the	new	reusable	part.
12.	Create	a	new	field	iiiSection	by	copying	field	SECTION,	copy	rules,
visualizations	and	help	text.	Open	the	new	field	in	the	editor.

13.	Select	the	Visualizations	tab	and	add	a	New	Dynamic	Picklist	and	select
iiiVFW22.
a.		Adjust	the	width	of	the	VisualPicklist	dropdown.
b.		Make	the	ViusalPicklist	the	field's	Default	visualization.
c.		Select	the	DynamicPicklist	component	and	use	the	Details	tab	to	change
the	NoMatchAction	to	ShowValue.

14.	Save	and	close	the	field	definition.

Step	4.	Implement	Dynamic	Picklists	in	By	Location	filter
1.		Open	the	Employees	by	Location	filter	reusable	part	(iiiVFW05)	in	the
editor.
a.		In	the	Design	view,	delete	the	fields	DEPTMENT	and	SECTION.
b.		Add	fields	iiiDepartment	and	iiiSection
c.		Adjust	the	main	panel	width	to	show	the	dropdowns.
d.		Switch	to	the	Source	tab.	Position	at	the	top	of	the	code.	Use	the	Replace
dialog	to	replace	DEPTMENT	with	iiiDepartment	in	the	following	lines:

Group_by	Name(#XG_KEYS)..	.
Def_Cond	.	.	
Evtroutine	Handling(#DEPTMENT.Changed)	.	.
	
e.		Replace	SECTION	with	iiiSection,	in	the	following	line:
Group_by	Name(#XG_KEYS)	.	.	

					Note:
In	the	Section's	Dynamic	Picklist,	a	monitor	is	defined	with	a	source	of
Deptment	and	a	target	of	Section.
When	iiiDepartment	changes,	the	ApplyMonitorValue	method	in	the
iiiSection	visualization	is	run.	A	reference	to	the	source	object	is	received
allowing	the	GetValue	method	to	be	called	to	obtain	the	value.
Immediately	after	the	ApplyMonitorValue	has	finished,	the	Load	method
will	be	run.

2.		In	the	filter,	iiiVFW05,	after	the	BEGIN_COM,	define	the	monitor
component,	with	a	source	of	iiiDepartment	and	a	target	of	iiiSection.
Define_Com	Class(#prim_lm)	Name(#DepartmentSection)	Source(#iiiDepartment)	Target(#iiiSection)
	

					Changes	to	department	code	will	be	processed	by	the	ApplyMonitoredValue
method	in	the	Sections	Dynamic	Picklist	component	(iiiVFW22).

3.		Extend	the		iiiDepartment.Changed	event	routine	for	the	field	iiiSection.
					Add	the	following	code	(highlighted	in	red).
Evtroutine	Handling(#iiiDepartment.Changed)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Set	Com(#Search_Button)	Enabled(*SearchOK)

*	Ensure	the	Section	is	valid	after	a	department	change
#iiiSection	:=	*null
Select	Fields(#SECTION)	From_File(sectab)	With_Key(#iiiDepartment)
#iiiSection	:=	#SECTION
Leave
Endselect
Endroutine
	

					Note:	The	new	code	ensures	the	filter	changes	the	value	of	iiiSection	to	the
first	appropriate	value,	by	reading	the	first	record	from	SECTAB	for	the
selected	Department	code.

5.		Compile	the	By	Location	filter	iiiVFW05.
6.		Execute	the	Framework	and	select	the	By	Location	filter	for	Employees.

a.		The	sections	dropdown	should	be	rebuilt	whenever	the	department
dropdown	selection	is	changed.

b.		When	department	selection	is	changed,	the	first	section	for	that
department	should	be	displayed.

Step	5.	Create	an	AutoComplete	Visualization	for	Surname
An	AutoComplete	visualization	completes	the	input	box	as	you	type.	The
reusable	part	can	return	a	value	based	on	whatever	logic	is	required.	In	this	case
the	Employee	file	will	be	read	using	a	logical	file	in	surname	order,	using
Generic(*YES).	The	first	match	returns	the	surname.
Having	defined	the	Surname	Autocomplete	visualization,	recompiling	the	By
Name	filter,	iiiVFW04,	will	demonstrate	its	implementation.
1.		Create	the	field	iiiSurname	by	copying	field	SURNAME	and	copy	rules,
visualizations	and	help	text.	Open	the	new	field	in	the	editor.	You	will
complete	this	field	definition	in	a	later	step.

2.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW23
					Description:	Surname	AutoComplete
3.		Replace	the	code	with	the	source	provided	in	VFW090	–	Appendix	A.
4.		Replace	all	occurrences	of	<FIELD>	with	#iiiSurname,	where	iii	=	your
initials.

5.		Compile	the	new	reusable	part.	Switch	to	the	Design	view.
					Note	that	the	panel,	has	an	Attachment	Manager	and	contains	field
iiiSURNAME,	with	a	MarginLeft	property	of	0.

					If	necessary	re-size	your	panel	as	shown:

6.		Review	the	code	provided:
The	Begin_Com	extends	PRIM_PANL	and	implements
prim_dc.iMonitorSubject.

Begin_Com	Role(*EXTENDS	#PRIM_PANL	*implements	#Prim_dc.iMonitorSubject)	Defaultpty(Value)	Displayposition(1)	Height(21)	Layoutmanager(#ATLM_1)	Left(0)	Tabposition(1)	Top(0)	Width(157)
	

					iMonitorSubject	is	the	simplest	and	most	common	form	of	Visual	Host.	All
visual	field	instances	implement	this	interface.	It	has	two	methods	that	will	be
called	depending	on	how	the	field	is	used.

					ApplyMonitoredValue	is	typically	called	when	the	field	is	used	as	the	target

of	a	monitor.	A	reference	to	the	Monitor	Source	component	is	received	in	the
iMonitorSubject	input	map.

					GetValue	can	be	called	to	obtain	the	value	of	the	field.	As	GetValue	applies
to	any	field	type,	the	result	map	is	a	variant.

					The	ValueChanged	event	can	be	signaled	to	indicate	that	the	value	of	the
variable	has	changed.	This	equates	to	the	Changed	event.
The	Visual	Host	has	a	property	'Value'	which	passes	and	receives	the	value
of	SURNAME
The	KeyPress	event	routine	checks	if	a	character	key	was	pressed	and	if	the
field	is	full
The	PrepareAutoComplete	method	ensures	that	the	selected	characters	run
left	to	right.
The	CanAutoComplete	method	tests	if	the	selection	starts	at	the	end	of	the
current	value
The	Autocomplete	method	invokes	the	GetCandidate	method	which	reads
the	next	record	from	the	employee	file	(LF	–	PSLMST2)	generically.
The	KeyPress	event	signals	ValueChanged.	This	event	is	defined	in
Prim_dc.iMonitorSubject.

7.		Switch	to	the	field	iiiSurname	which	should	be	open	in	the	editor.	Use	the

Reusable	Type	 	Toolbar	button	to	insert	a	New	Visual	Host.

8.		In	the	Repository	Find	dialog,	select	the	RP,	iiiVFW23	and	click	OK.
9.		Select	the	VisualHost	and	use	the	Details	tab	to	change	the	DefaultVisual	to
True.

10.	Make	the	VisualHost	wide	enough	to	show	the	full	iiiSurname	field.
11.	Save	the	field	definition.
12.	Open	the	By	Name	Filter	(iiiVFW04)	in	the	editor.
13.	On	the	Design	tab,	delete	the	field	SURNAME	and	add	field	iiiSurname.

a.		Check	that	the	field	definition	uses	VisualHost	and	change	it	to	this
component	if	necessary.

Define_Com	Class(#iiiSurname.VisualHost)	Name(#iiiSurname)	Displayposition(2)	Height(41)	Labelhoralignment(Center)	Labelposition(Top)	Left(4)	Marginleft(0)	Margintop(21)	Parent(#BODY_PANEL)	Tabposition(2)	Top(33)	Width(143)
	
b.		Change	the	LabelPosition	property	to	Top
c.		Change	the	LabelHorAlignment	to	Left

14.	Select	the	filter's	left	hand	panel	(BODY_PANEL)	and	select	the	Layout
Helper.	If	necessary,	open	the	Layout	Helper	from	the	Home	ribbon,	Views
menu.

15.	In	the	Children	list,	select	iiiSURNAME	so	it	is	managed	by	the
BODY_FLOW	manager.

16.Switch	to	the	Source	tab.		Change	the	following	lines	of	code	to	use	your
field	iiiSURNAME	as	shown:
Group_By	Name(#XG_Keys)	Fields(#iiiSurname)
Def_Cond	Name(*SearchOK)	Cond((#iiiSurname	*NE	*Blanks))
#avFrameworkManager.avRestoreValue	Withid1(*Component)
Withid2(#iiiSURNAME.Name)	Toavalue(#iiiSurname)
#avFrameworkManager.avSaveValue	Withid1(*Component)

Withid2(#iiiSURNAME.Name)	Fromavalue(#iiiSurname)
Evtroutine	Handling(#iiiSurname.Changed)
Options(*NOCLEARMESSAGES	*NOCLEARERRORS)

17.Add	the	highlighted	code	shown	to	the	Search_Button.Click	event	routine:
Evtroutine	Handling(#Search_Button.Click)
Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#Com_Owner.uSelectData
#surname	:=	#iiiSurname
Endroutine

18.	Compile	the	filter.
19.	Execute	the	Framework	and	test	the	By	Name	filter	for	employees.
					Type	S	into	Surname.
					Note:	the	AutoComplete	visualization	returns	the	first	matching	full	surname,
but	selects	text	at	the	right	hand	side,	except	for	your	typed	value	(S).

					This	ensures	the	selected	text	will	be	replaced,	if	you	continue	typing.
					Clear	the	text	except	"S"	and	click	Search	to	see	all	employees	with	names
starting	"S",	in	name	order.

					Typing	SM,	SMY	or	SN,	SNA	or	SNE	will	enable	you	to	see	that	the
Autocomplete	logic	refines	the	returned	values	by	repeating	the	SELECT	each
time	the	search	value	changes.

Summary
Important	Observations

Field	Visualizations	are	ideally	suited	to	static	lists	of	data	for	example,	Yes,
No;	Male,	Female	and	so	on.

Tips	&	Techniques
The	field	visualization	is	controlled	by	the	visualization	class.

					BEGIN_COM	ROLE(*Visual	<class	name>)...
For	fields	used	stand	alone	on	forms,	the	following	classes	can	be	used:
Edit	Box	(PRIM_EVEF)
Spin	Edit	(PRIM_EVSE)
Button	Sets	(PRIM_EVPL)
Combo	Boxes	(PRIM_EVPL)
Image	Sets	(PRIM_EVPL)
Check	Boxes	(PRIM_EVPL)
Track	Bars	(PRIM_EVTB)
Progress	Bars	(PRIM_EVPB)

The	default	picklist	visualization	is	a	set	of	radio	buttons	for	the
PRIM_EVPL	visualization	class,	that	is,	the	default	is
Appearance(ButtonSet).
For	the	picklist,	the	BEGIN_COM	Role(*Visual	#PRIM_EVPL)
Name(#VisualPicklist)	Appearance(xxxxxxxxxx)	may	have	values	where
xxxxxxxxxx	is	ButtonSet,	CheckBox,	ListBox,	DropDown,	Image,	and
ImageAndText.
When	using	a	check	box,	the	order	of	the	picklist	values	is	important.
Clicking	the	check	box	will	set	the	corresponding	value	for	the	field	from	the
picklist	items.	Values	are	chosen	from	the	following	rule.
Checkbox	Unchecked	=	First	picklist	item	value
CheckBox	Checked	=	Last	picklist	item	value
CheckBox	grayed	=	Any	picklist	item	between	first	and	last	or	an	invalid
value.	(for	example,	Changing	the	value	of	the	field	to	a	value	that	is	not
the	first	or	last	item	in	the	picklist	will	result	in	the	checkbox	being

grayed.)
A	single	field	may	have	many	field	visualizations.	Field	visualizations	can
improve	developer	productivity	and	improve	the	consistency	of	your
applications.
When	you	change	an	existing	field	visualization,	forms	and	reusable	parts
which	use	it	will	not	change	until	they	are	recompiled.

What	I	Should	Know
How	to	insert	a	new	field	visualization.
How	to	change	a	field	visualization	by	changing	the	visualization	class.
The	purpose	of	the	Appearance()	property	when	defining	a	visualization.
How	to	change	a	field	visualization	by	changing	the	component	properties.
How	to	create	a	picklist	visualization.
How	to	select	a	field	visualization	for	a	form.

VFW090	–	Appendix	A
Use	the	following	code	to	create	iiiVFW21	–	Surname	Autocomplete
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_PANL	*implements	#Prim_dc.iMonitorSubject)	Defaultpty(Value)	Displayposition(1)	Height(21)	Layoutmanager(#ATLM_1)	Left(0)	Tabposition(1)	Top(0)	Width(157)
Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_1)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_1)	Attachment(Center)	Parent(#ATLM_1)
Define_Com	Class(<FIELD>.VisualEdit)	Name(<FIELD>)	Displayposition(1)	Height(21)	Marginleft(0)	Parent(#COM_OWNER)	Tabposition(1)	Width(157)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_2)	Attachment(Center)	Parent(#ATLM_1)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_3)	Attachment(Center)	Manage(<FIELD>)	Parent(#ATLM_1)
Define_Pty	Name(Value)	Get(GetPropertyValue)	Set(SetPropertyValue)
Ptyroutine	Name(GetPropertyValue)
Define_Map	For(*Output)	Class(#prim_alph)	Name(#Property)
#Property	:=	<FIELD>
Endroutine
Ptyroutine	Name(SetPropertyValue)
Define_Map	For(*Input)	Class(#prim_alph)	Name(#Property)
<FIELD>	:=	#Property
Endroutine
Mthroutine	Name(ApplymonitoredValue)	Options(*redefine)
*	No	redefinition	required
Endroutine
Mthroutine	Name(GetValue)	Options(*redefine)
*	No	redefinition	required
Endroutine
Evtroutine	Handling(<FIELD>.KeyPress)	Handled(#Handled)	Keycode(#KeyCode)	Char(#Char)
*	If	the	field	isn't	full
If	(<FIELD>.CurSize	<>	<FIELD>.FieldLength)
*	If	a	character	entered
If	(#KeyCode	=	isChar)
#Com_Owner.PrepareAutoComplete
If	(#Com_owner.CanAutoComplete)
#Handled	:=	True
#Com_owner.AutoComplete(#Char)
Signal	Event(ValueChanged)
Endif
Endif
Endif

Endroutine
Evtroutine	Handling(<FIELD>.Changed)
*	Handle	all	other	key	presses	that	might	affect	the	value
Signal	Event(ValueChanged)
Endroutine
Mthroutine	Name(CanAutoComplete)	Help('Can	we	autocomplete?')	Access(*Private)
Define_Map	For(*Result)	Class(#prim_boln)	Name(#Result)
*	If	selection	doesn't	start	at	the	end	of	the	value,	autocomplete	is	not	appropriate.
#Result	:=	(<FIELD>.SelectionEnd	=	(<FIELD>.Trim.cursize	+	1))
Endroutine
Mthroutine	Name(AutoComplete)	Access(*private)
Define_Map	For(*Input)	Class(#prim_alph)	Name(#Char)	Help('Character	just	pressed	on	the	keyboard')
Define_Com	Class(#prim_nmbr)	Name(#Start)
Define_Com	Class(#prim_alph)	Name(#Candidate)
#Start	:=	<FIELD>.SelectionStart
#Candidate	:=	#Com_owner.PrepareCandidate(#Char)
<FIELD>	:=	#Com_owner.GetCandidate(#Candidate)
*	Set	selection	to	be	startposition	+	1	to	the	end
<FIELD>.SelectionStart	:=	#Start	+	1
<FIELD>.SelectionEnd	:=	<FIELD>.Trim.cursize	+	1
Endroutine
Mthroutine	Name(PrepareAutoComplete)	Help('Prepare	Selection	in	the	value	so	that	it	runs	left	to	right')	Access(*private)
Define_Com	Class(#prim_nmbr)	Name(#Transition)
*	If	Start	is	greater	than	end,	reverse	the	selection	points
If	(<FIELD>.SelectionStart	>	<FIELD>.SelectionEnd)
#Transition	:=	<FIELD>.SelectionStart
<FIELD>.SelectionStart	:=	<FIELD>.SelectionEnd
<FIELD>.SelectionEnd	:=	#Transition
Endif
Endroutine
Mthroutine	Name(PrepareCandidate)	Help('Prepare	the	input	value	ready	for	looking	up	the	next	candidate')	Access(*private)
Define_Map	For(*Input)	Class(#prim_alph)	Name(#Char)	Help('Character	just	pressed	on	the	keyboard')
Define_Map	For(*Result)	Class(#Prim_alph)	Name(#Result)
*	If	selection	is	the	whole	word,	only	use	the	char	supplied	by	the	event
If	(<FIELD>.SelectionStart	=	1)
#Result	:=	#Char.uppercase
Else
*	Get	anything	to	the	left	of	the	cursor	start	position	and	append	the	last	key	press
#Result	:=	(<FIELD>.substring(1	(<FIELD>.SelectionStart	-	1)).trim	+	#Char).Uppercase

Endif
Endroutine
Mthroutine	Name(GetCandidate)	Access(*private)
Define_Map	For(*Input)	Class(#prim_alph)	Name(#Candidate)
Define_Map	For(*Result)	Class(#prim_alph)	Name(#Result)
*	If	no	record	found,	the	last	value	entered	is	still	the	right	answer
#Result	:=	#Candidate
*	Find	the	first	record	starting	with	the	candidate	value
Select	Fields(#SURNAME)	From_File(pslmst2)	With_Key(#Candidate)	Generic(*yes)
#Result	:=	#SURNAME
Leave
Endselect
Endroutine
End_Com
	

VFW100	–	Define	a	Parent/Child	Instance	List
The	shipped	VL	Framework	HR	Demo	Application	has	a	business	object
Organisations	which	demonstrates	how	the	instance	list	can	be	configured	as	a
tree	with	a	number	of	levels:

The	standard	instance	list	manager	is	configured	to	show	3	business	objects.
Implementing	this	example	within	the	HR	Demo	Application	required	the
following	steps:

Define	business	objects:	Organisations,	Sections	and	Resources.
Create	a	hidden	filter	to	populate	the	instance	list	with	Organisations.
Define	Instance	List	relationship	for	Organisations	to	Sections.
Create	a	relationship	handler	function	to	expand	Organisations	with
Sections.
Define	the	Instance	List	relationship	for	Sections	to	Resources.
Create	relationship	handler	function	expanding	Sections	with	Resources.

You	will	find	a	full	description	of	the	topic	Instance	Lists	with	different	types	of
object	in	the	Visual	LANSA	Framework	Guide	/	Framework	Programming	/	List
Manager	and	Instance	Lists.

Objectives
For	this	exercise	you	will	define	new	Departments	and	Sections	business	objects
for	your	iii	HR	Application.	The	Departments	instance	list	will	then	be	defined
with	a	child	of	Sections.

A	Hidden	filter	will	populate	the	instance	list	with	all	departments.
A	Relationship	Handler	function	will	add	sections	to	the	instance	list	when	a

its:lansa048.chm::/Lansa/L4wVLF06_0065.htm

department	is	expanded.

To	meet	this	objective	you	will	complete	the	following:
Step	1.	Define	New	Business	Objects
Step	2.	Create	a	Hidden	Filter	for	_Departments.
Step	3.	Create	a	Relationship	Handler	to	Load	_Sections
Step	4.	Access	the	Properties	of	Hidden	Child	Objects
Summary

Before	You	Begin
You	should	complete	exercises	VFW020,	VFW030	and	VFW040.

Step	1.	Define	New	Business	Objects
In	this	step	you	will	create	two	new	business	objects	and	define	a	number	of
actions	for	each,	using	the	Instant	Prototyping	Assistant.
1.	Open	the	Framework	as	Designer,	and	start	the	Instant	Prototyping	Assistant
from	the	Framework	menu.
a.		Define	two	new	business	objects:	_Departments	and	_Sections.	Note	the
underscore	which	avoids	a	clash	with	existing	demo	application	objects.

b.		Define	actions	Transfers,	Copy,	Resources,	Images	and	Picture.
c.		Attach	Details,	Transfers,	Copy	and	New	to	the	_Departments	business
object

d.		Attach	Details,	Resources,	Images,	Picture,	Transfers	and	New	to	the
_Sections	business	object

e.		Attach	_Departments	and	_Sections	to	the	iii	HR	Application.
f.		Click	Next	then	the	Finish	button	to	update	your	iii	HR	Application
Your	extended	Framework	should	look	like	the	following:

2.		Save	your	Framework.
3.		In	this	step	you	will	refine	the	new	prototype	objects	which	will	be	used	in	a
number	of	the	following	exercises:
a.		Open	the	_Departments	Business	Object	Properties	dialog.	Select	the
Commands	Enabled	tab.	Select	the	Copy	action	and	make	it	a	Business

Object	Command.
					When	the	Please	Note…..	dialog	appears,	unselect	the	"Warn	me…."
Checkbox	and	Close	the	dialog.	You	will	save	and	restart	the	Framework
in	a	later	step.

b.		Select	the	Command	Display	tab,	and	change	the	Object	Command
Display	setting	to	Separate	Stay	on	top	window.

c.		Select	the	Icons	tab	and	give	the	_Departments	any	suitable	icon.
d.		Close	the	Business	Object	Properties	dialog.
e.		Open	the	Properties	dialog	for	the	_Sections	business	object.	Select	the
Icons	tab	and	give	the	_Sections	business	object	any	suitable	icon.

f.		Save	and	Restart	the	Framework.
4.		In	this	step	you	will	define	the	instance	list	relationship	and	additional
columns.
a.		Open	the	Properties	dialog	for	the	_Departments	business	object.
b.		Select	the	Instance	List	/	Relationships	tab.
c.		In	the	list	of	business	objects,	select	_Sections.	Define	it	as	a	Child	or
Descendant.

d.		Unselect	Allow	Selection	from	Navigation	Pane.
e.		Unselect	Side	by	Side	Display.	Close	the	Please	Note….	dialog.

f.		Define	the	following	additional	Instance	List	columns	in	the	sequence
shown:

Type	Column Caption

AColumn1 Address	Line	1

AColumn2 Address	Line	2

AColumn3 Address	Line	3

NColumn1 Post	Code

AColumns4 Phone	Number

	

g.		Change	the	VISUALID1	column	Caption	to	Code.
h.		Close	the	Properties	dialog	and	Save	and	Exit	the	Framework.
i.		Execute	the	Framework	as	an	End	User.	Click	the	Emulate	Search	button
and	expand	the	Instance	List	tree	view.

					Your	design	should	now	look	like	the	following:

5.		Validate	your	prototype	_Departments	and	_Sections	business	objects.
6.		Confirm	the	Instance	list	columns	and	the	commands	available	for	the	new
business	objects.

7.		Close	the	Framework.

Step	2.	Create	a	Hidden	Filter	for	_Departments.
The	instance	list	will	be	initially	loaded	with	all	departments	from	the
Department	table	(DEPTAB).

1.		Create	a	new	Reusable	Part	/	Object:
					Name:	iiiVFW24
					Description:	Departments	Hidden	Filter
2.		Give	the	reusable	part	an	ancestor	of	VF_AC007.
3.		Create	an	uInitialize	method	routine	after	the	BEGIN_COM	statement:
Mthroutine	Name(uInitialize)	Options(*Redefine)
Endroutine
	

4.		In	the	uInitialize	routine	make	the	filter	hidden,	so	that	all	that	will	show	at
run-time	is	the	instance	list:
Set	#Com_Owner	avHiddenFilter(TRUE)

5.		Then	indicate	that	the	instance	list	updating	is	about	to	start	and	clear	the
instance	list:
#avListManager.BeginListUpdate
#avListManager.ClearList
	

6.		Read	all	the	departments	and	add	them	to	the	instance	list:
Select	Fields(#Deptment	#DeptDesc)	From_File(DEPTAB)
#avListManager.AddtoList	Visualid1(#DeptDesc)	Visualid2(#Deptment)	Akey1(#Deptment)	Businessobjecttype('_DEPARTMENTS')	Ncolumn1(0)	Acolumn1('')	Acolumn2('')	Acolumn3('')	Acolumn4('')	Acolumn5('')	Acolumn6('')	Acolumn7('')
EndSelect
	

Note:
It	is	necessary	to	initialize	the	additional	columns	with	the	AddToList	is
invoked,	as	you	will	later	populate	the	list	with	entries	for	_Sections,	which
will	fill	these	columns.
The	BusinessObjectType()	parameter	must	use	your	business	object	User
Object	Name/Type	and	is	uppercase.

7.		Lastly	indicate	that	instance	list	updating	is	now	complete:
#avListManager.EndListUpdate

					Your	code	should	look	like	this:

	

8.		Compile	the	filter.
9.		Display	the	Framework	and	open	the	Properties	dialog	for	the	_Departments
business	object.

10.	Display	the	Filter	/	Snap-in	Settings	tab.
11.	Specify	iiiVFW24	as	the	real	filter.
12.	Close	the	_Departments'	properties	dialog.	Save	and	Restart	your
Framework.

13.	Select	_Departments	so	that	the	hidden	filter	loads	the	departments	into	the
instance	list.

14.	Expand	a	Department.	Notice	that	no	_Sections	are	loaded.	You	will	create
the	relationship	handler	that	loads	the	sections	in	the	next	step.

Step	3.	Create	a	Relationship	Handler	to	Load	_Sections
In	this	step	you	will	create	a	relationship	handler	that	loads	Sections	into	the
instance	list	when	a	Department	is	expanded.
You	could	have	loaded	the	all	the	Sections	in	the	hidden	filter	code	together
with	the	Departments,	but	by	using	a	relationship	handler	you	can	improve
application	performance	by	first	only	adding	root	or	parent	objects	to	the
instance	list	and	then	dynamically	adding	the	child	objects.
1.		In	the	Visual	LANSA	editor,	create	a	new	Process	iiiVFPR01	–	Framework
Functions.

					Do	not	open	the	Process	in	the	editor.
					Create	a	new	Function	belonging	to	process	iiiVFPR01.
					Name:	iiiVF01
					Description:	_Sections	Relationship	Handler

a.		No	Template	is	required.
b.		Enable	for	RDMLX.
c.		Open	the	Function	in	the	Editor.

2.		Replace	the	existing	code	in	the	function	with	this	code	that	indicates	that
this	function	is	a	relationship	handler:
FUNCTION	OPTIONS(*DIRECT	*LIGHTUSAGE)	RCV_LIST(#VIS_LIST	#PID_LIST	#COL1_LIST	#COL2_LIST	#COL3_LIST	#COL4_LIST	#COL5_LIST	#COL6_LIST	#COL7_LIST	#COL8_LIST	#COL9_LIST	#COLA_LIST)
INCLUDE	PROCESS(*DIRECT)	FUNCTION(VFREL1)
INCLUDE	PROCESS(*DIRECT)	FUNCTION(VFREL2)

					The	VFREL1	and	VFREL2	functions	which	you	have	include	the	standard
definitions	for	relationship	builder	functions.

3.		Start	your	code	after	the	included	functions.	Add	code	to	clear	all	the	keys
and	additional	columns	in	the	instance	list:
EXECUTE	SUBROUTINE(CLEARKEYS)
EXECUTE	SUBROUTINE(CLEARCOLS)

The	subroutines	you	call	in	the	relationship	handler	are	contained	in	the
VFREL2	function.
4.		Get	the	key	value	of	the	selected	department:
#DEPTMENT	:=	#SRC_AK1

5.		Select	the	sections	in	the	current	department	and	set	the	values	of	the

instance	list	entry:
SELECT	FIELDS(*ALL)	FROM_FILE(SECTAB)	WITH_KEY(#DEPTMENT)
EXECUTE	SUBROUTINE(SETAKEY)	WITH_PARMS(1	#DEPTMENT)
EXECUTE	SUBROUTINE(SETAKEY)	WITH_PARMS(2	#SECTION)
EXECUTE	SUBROUTINE(SETNCOL)	WITH_PARMS(1	#SECPCODE)
EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(1	#SECADDR1)
EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(2	#SECADDR2)
EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(3	#SECADDR3)
EXECUTE	SUBROUTINE(SETACOL)	WITH_PARMS(4	#SECPHBUS)
EXECUTE	SUBROUTINE(ADDTOLIST)	WITH_PARMS('_SECTIONS'	#SECDESC	#SECTION)
ENDSELECT

IMPORTANT:	Ensure	the	ADDTOLIST	WITH_PARMS()	contains	the	correct
name	for	your	_Sections	business	object.

The	SETAKEY	subroutine	sets	the	alpha	key	values	of	the	child	instance	list.
The	first	parameter	of	the	subroutine	is	the	key	position	and	the	second
parameter	is	the	value	of	the	key.	There	is	also	a	SETNKEY	subroutine	to
set	a	numeric	key.
The	SETNCOL	and	SETACOL	subroutines	add	additional	columns	for	the
child	instance	list	entry.
The	ADDTOLIST	subroutine	adds	the	entry	to	the	instance	list.	The	first
parameter	of	the	subroutine	is	the	child	business	object	name,	the	second
parameter	is	the	Visual	ID	1	column	and	the	third	parameter	is	the	Visual	ID
2	column.

					Your	code	will	now	look	like	this:

6.		Compile	the	function.
7.		Open	the	Framework	as	Designer.
8.		Display	the	Properties	dialog	of	the	_Departments	business	object.
9.		In	the	Instance	List/Relations	tab	select	the	_Sections	business	object.
10.	In	the	Relationship	Handler	field,	enter	the	function	name	iiiVF01	for	the
relationship	handler.

12.	Close	the	_Departments	properties	dialog.
13.	Save	and	Restart	the	Framework.
14.	Select	the	_Departments	business	object	in	the	iii	HR	application.
15.	Expand	a	department	in	the	instance	list.

					When	you	expand	each	department,	the	sections	are	loaded	dynamically.

Note:	The	instance	list	displays	the	additional	columns	for	_Sections	which	you
defined	in	Step	1.

Step	4.	Access	the	Properties	of	Hidden	Child	Objects
In	this	step	you	will	learn	how	to	access	the	properties	of	the	hidden	child
business	object	_Sections	which	is	not	visible	in	the	navigation	pane.
1.		Execute	your	Framework	as	Designer,	and	open	the	Framework	menu	and
select	the	Applications…	menu	option.

2.		Select	the	iii	HR	application.
3.		Select	the	_Sections	business	object	to	display	its	properties.

4.		Close	the	Properties	dialog	of	the	_Sections	business	object.
Note:	There	is	an	alternative	way	of	displaying	the	properties	of	child	business
objects	which	are	not	accessible	from	the	navigation	pane.	That	is:

a.		Display	the	sections	in	a	department	in	the	instance	list.
b.		Double-click	on	a	section	to	display	the	properties	of	the	_Sections
business	object.

Summary
Important	Observations

You	can	create	instance	lists	that	contain	more	than	one	type	of	object.	You
do	this	by	defining	relationships	between	business	objects.	The	relationships
can	either	be	peer-to-peer	or	parent-child.
In	situations	where	you	want	to	completely	fill	the	business	object	instance
list	programmatically,	the	filter	has	no	meaningful	interaction	with	the	end-
user	and	can	be	hidden	from	view.
A	relationship	handler	is	an	RDML	function	that	is	called	to	dynamically
expand	the	relationship	between	a	parent	and	child	object.	By	doing	this	you
can	improve	filter	performance	by	only	adding	root	or	parent	objects	to	the
instance	list	initially.
The	Framework	instance	list	can	display	up	to	10	alphanumeric	and/or	10
numeric	additional	columns	in	an	instance	list.

Tips	&	Techniques
The	shipped	framework	demo	applications	contain	many	examples.	The
Advanced	section	of	the	Programming	Techniques	sample	application	has
examples	of	advanced	instance	lists.
LANSA	supplies	a	sample	relationship	handler	to	copy	from	when	you
create	your	relationships.	The	source	is	stored	in	function	DF_REL01	in	the
process	DF_PROC.

What	I	Should	Know
How	to	create	a	parent-child	relationship	between	business	object.
How	to	create	a	hidden	filter.
How	to	write	a	relationship	handler.
How	to	add	additional	columns	to	the	instance	list.

VFW102	–	Field	Visualizations	in	a	Grid
Grid,	List	View	and	Tree	Views	can	have	columns	with	field	visualizations.
In	a	list	component,	the	properties	of	the	column	controls	the	visualization.
When	used	in	a	list	column	your	field	definition	doesn't	necessarily	need	a
visualization	defined.
The	field's	picklist	definition	may	be	used	in	a	list	column.

Objectives
In	this	exercise	you	will	create	a	Resources	for	Section	command	handler,
displaying	a	Grid	with	a	number	of	columns	using	visualizations.
To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Define	New	Fields
Step	2.	Create	the	Resources	for	Section	Command	Handler
Step	3.	Create	a	Prompt	Form	for	Employee	Number
Summary

Before	You	Begin
Complete	exercises	VFW030,	VFW040,	VFW042	and	VFW102.

Step	1.	Define	New	Fields
In	this	step	you	will	define	three	new	fields	for	employees:	On	Leave,	Status
and	Memo	Notes.
You	will	also	create	a	picklist	for	salary.
1.		Create	the	following	fields:

Name Description Type Length Default	Value

iiiOnLeave Employee	On	Leave	Flag Alpha 1 N

iiiStatus Employee	Memo	Status Alpha 3 NML

iiiMemo Employee	Notes String 512 	

	

2.		Create	field	iiiEMPNO	by	copying	field	EMPNO.	Copy	rules,	visualizations
and	help	text.	No	changes	to	iiiEMPNO	are	required	at	this	stage.

3.		Create	field	iiiSALARY	by	copying	field	SALARY.	Copy	rules,
visualizations	and	help	text.

4.		Create	field	iiiTAXPAID	by	copying	field	SALARY.	Do	not	copy	rules,
visualizations	or	help	text.

5.		Open	field	iiiTAXPAID	in	the	editor	and	create	add	a	Static	Picklist	and
define	the	following	values:

Caption Value

Small 1

Medium 1000

Large 5000

Very	Large 10000

	

6.		Save	your	changes.

	
7.		Define	a	Static	Picklist	for	field	Employee	Memo	Status,	which	includes
image	components:

Image Caption Value Default

xImageFavorites16 Normal NML Yes

xImagePause16 Urgent URG 	

xImageNew16 Late LTE 	

xImageOpen Very	Late VLT 	

	

					Note	that	the	VisualPicklist	component	will	default	to	a	DropDownList.	Only
the	Picklist	component	will	be	used	by	the	Grid	component.	To	use	this
visualization	on	a	form	or	panel,	you	would	set	the	VisualChecklist	to	Image
or	Image	and	Text.

Step	2.	Create	the	Resources	for	Section	Command	Handler
1.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW25
					Description:	Resources	for	Section
2.		Give	the	reusable	part	an	ancestor	of	VF_AC010.
3.		Use	the	Design	ribbon,	to	give	the	reusable	part	an	Attachment	manager.
4.		Drop	a	Grid	component	into	the	center	of	the	panel,	so	that	it	is	attached	to
all	four	sides.

5.		Define	columns	in	the	Grid	using	the	following	fields	and	set	the	Caption
property	of	each	column	as	shown	in	the	table:

Field Caption

iiiEMPNO Code

FULLNAME Full	Name

STD_DATEX Start	Date

iiiSALARY Salary

iiiTAXPAID Tax	Paid

iiiONLEAVE On	Leave?

iiiSTATUS Memo	Status

iiiMEMO Notes

	

6.		Change	Caption	Type	of	each	column	to	Caption.
7.		Change	the	CaptionAlign	for	each	column	to	Left.
8.		Change	the	ReadOnly	property	for	all	columns,	except	FULLNAME,	to
False.

9.		Change	other	column	properties	as	shown	in	the	following	table:

Field Property Value

iiiSALARY EditAppearance SpinEdit

DisplayAppearance Edit

iiiTAXPAID EditAppearance Edit

Display	Appearance
UsePicklist

Default
True

iiiONLEAVE DisplayAppearance CheckBox

EditAppearance CheckBox

iiiSTATUS EditAppearance Image	and	Text

DisplayAppearance Image	and	Text

	 UsePicklist True

iiiMEMO DisplayAppearance MultiLineEdit

EditAppearance MultiLineEdit

	

10.	Open	the	field	iiiONLEAVE	in	the	editor	and	add	a	Static	Picklist	and
define	the	following	values:

Caption Value

In	the	Office N

On	Leave Y

	

11.	Save	your	changes.
13.	In	the	reusable	part	IIIVFW25,	open	the	Design	view,	select	the	grid
columns	for	iiiTAXPAID	and	then	iiiONLEAVE	and	change	the	UsePicklist
property	to	True.

14.	Save	your	changes.
15.	Select	the	Grid	and	change	the	RowSizing	property	to	ContentHeight.

16.	Select	the	Source	tab	and	create	an	uExecute	method	routine,	which
redefines	the	ancestor	method:
Mthroutine	Name(uExecute)	Options(*redefine)
Endroutine
	

17.	Add	the	following	code	to	complete	the	uExecute	routine:
#com_ancestor.uExecute
#avlistmanager.getCurrentInstance	Akey1(#deptment)	Akey2(#section)
Clr_List	Named(#GRID_1)
#iiiONLEAVE	:=	N
#iiiSTATUS	:=	NML
#iiiTAXPAID	:=	1000
#iiiMEMO	:=	'Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit.	Aliquam	gravida	suscipit	nulla,	non	tincidunt	est	ultrices	nec.'
Select	Fields(#empno	#surname	#givename	#salary	#startdter)	From_File(pslmst1)	With_Key(#deptment	#section)
#iiiEMPNO	:=	#EMPNO
#iiiSALARY	:=	#SALARY
#std_datex	:=	#startdter.asdate(YYMMDD)
#fullname	:=	#surname	+	',	'	+	#givename
Add_Entry	To_List(#GRID_1)
Endselect
	

18.Review	this	code	which:
Invokes	the	ancestor	uExecute	method
Invokes	the	list	manager	and	retrieves	the	keys	for	the	current	entry
Clears	the	Grid
Sets	up	fixed	values	in	a	number	of	fields
Sets	STD_DATEX	to	a	date	based	on	the	field	STARTDTER	(a	signed
numeric,	length	6)	in	form	YYMMDD.
Sets	FULLNAME	value	based	on	SURNAME	and	GIVENAME
Changes	IIIEMPNO	to	EMPNO
Changes	IIISALARY	to	SALARY
Adds	an	entry	to	Grid

19.	Compile	reusable	part	iiiVFW25.
20.	Execute	the	Framework	as	a	Designer.

21.	Open	the	_Sections	properties	dialog	by	expanding	a	department	in	the
instance	list	and	double	clicking	on	a	section.

22.	Select	the	Commands	Enabled	tab,	select	the	Resources	action	and	plug	in
the	command	handler	iiiVFW25.

23.	Save	and	Restart	the	Framework.
24.	Select	the	Employees	command	handler	for	a	section.	Your	design	should
look	like	the	following:

					The	height	of	each	row	is	based	on	the	right	hand	column,	due	to	the
RowSizing	property	of	ContentHeight	for	the	grid.	Content	Height	is	taken
from	the	right	hand	column.

25.	When	you	click	on	the	columns	to	edit	a	value,	check	that	the	behavior	is	as
per	the	following	list:

Start	Date	displays	a	date	prompt	when	you	click	on	the	prompt	button	in
the	cell.
The	Salary	value	displays	the	actual	value	and	may	be	changed	using	its
SpinEdit	buttons.
Tax	Paid	displays	the	picklist	values	in	a	dropdown	when	you	edit	its
value.	The	value	in	display	mode	is	based	on	the	picklist	value.
On	Leave	is	always	displayed	or	edited	as	a	checkbox.
Status	display	the	image	and	text	from	the	picklist.	When	you	click	in	this
column	the	value	rotates	through	the	picklist	values.
The	Memo	Notes	column	value	can	be	extended	by	typing	in	additional
text.	When	you	position	into		another	cell,	the	column	height	is	adjusted.

Step	3.	Create	a	Prompt	Form	for	Employee	Number
In	this	step	you	will	create	an	employee	prompt	form,	change	the	iiiEMPNO
field	definition	and	configure	the	employee	number	column	to	use	the	prompter
form.
1.		Create	a	new	Form	/	Basic	Form:
					Name:	iiiVFW26
					Description:	Employee	Prompt
					The	prompter	form	will	display	a	list	of	all	employees	and	return	Employee
number	for	the	selected	employee.

					The	list	entry	is	highlighted	if	a	valid	employee	number	was	entered	in	the
input	field.

2.		Copy	and	paste	the	following	code	to	replace	the	new	form's	initial	code.
Ignore	errors	initially.	The	form	uses	a	reusable	part	which	you	will	create	in
the	next	step.
Function	Options(*DIRECT)	
	
BEGIN_COM	ROLE(*EXTENDS	#PRIM_FORM)	DEFAULTPTY(P_EMPLOYEE_NUMBER)	CLIENTHEIGHT(422)	CLIENTWIDTH(392)	FORMSTYLE(Owned)	HEIGHT(456)	LEFT(759)	TOP(200)	WIDTH(400)
	
DEFINE_COM	CLASS(#PRIM_GPBX)	NAME(#GPBX_1)	CAPTION('All	Employees	')	DISPLAYPOSITION(1)	HEIGHT(417)	LAYOUTMANAGER(#LAYOUT1)	LEFT(0)	PARENT(#COM_OWNER)	TABPOSITION(1)	TABSTOP(False)	TOP(0)	WIDTH(385)
	
DEFINE_COM	CLASS(#PRIM_LTVW)	NAME(#LISTVIEW)	COLUMNBUTTONHEIGHT(31)	DISPLAYPOSITION(1)	FULLROWSELECT(True)	HEIGHT(356)	LEFT(6)	PARENT(#GPBX_1)	SELECTIONSTYLE(Single)	TABPOSITION(1)	TOP(15)	WIDTH(373)
	
DEFINE_COM	CLASS(#PRIM_LVCL)	NAME(#LVCL_3)	DISPLAYPOSITION(1)	PARENT(#LISTVIEW)	SOURCE(#EMPNO)	WIDTH(23)
	
DEFINE_COM	CLASS(#PRIM_ATLM)	NAME(#LAYOUT1)
	
DEFINE_COM	CLASS(#PRIM_ATLI)	NAME(#IL301)	ATTACHMENT(Center)	MANAGE(#LISTVIEW)	MARGINBOTTOM(2)	MARGINLEFT(2)	MARGINRIGHT(2)	MARGINTOP(2)	PARENT(#LAYOUT1)
	
DEFINE_COM	CLASS(#PRIM_PANL)	NAME(#PANL_1)	DISPLAYPOSITION(2)	HEIGHT(40)	LEFT(4)	PARENT(#GPBX_1)	TABPOSITION(2)	TABSTOP(False)	TOP(373)	WIDTH(377)
	
DEFINE_COM	CLASS(#PRIM_ATLI)	NAME(#ATLI_1)	ATTACHMENT(Bottom)	MANAGE(#PANL_1)	PARENT(#LAYOUT1)
	
DEFINE_COM	CLASS(#PRIM_PHBN)	NAME(#PB_OK)	BUTTONDEFAULT(True)	CAPTION('&OK')	DISPLAYPOSITION(1)	LEFT(288)	PARENT(#PANL_1)	TABPOSITION(1)	TOP(8)
	
DEFINE_COM	CLASS(#PRIM_LVCL)	NAME(#LVCL_1)	DISPLAYPOSITION(2)	PARENT(#LISTVIEW)	SOURCE(#FULLNAME)	WIDTH(56)	WIDTHTYPE(Remainder)

	
Define_Pty	Name(P_EMPLOYEE_NUMBER)	Get(get_empno)	Set(SET_EMPNO)
	
DEFINE_COM	CLASS(#iiiVFW26)	NAME(#Collections)	scope(*Application)
	
*	search	and	Set	Focus	on	first	employee	entry
Ptyroutine	Name(SET_EMPNO)
Define_Map	For(*INPUT)	Class(#EMPNO)	Name(#EMPLOYEE)
Define_Com	Class(#empno)	Name(#wempno)
#std_num	:=	#EMPLOYEE.value.CurSize
#wempno	:=	#EMPLOYEE.value
	
for	each(#entry)	in(#Collections.Employees)
#wempno	:=	#entry.value.Substring(1	#std_num)
	
#empno	:=	#entry.value
#fullname	:=	#Collections.Fullnames<#empno>
Add_Entry	To_List(#LISTVIEW)
#LISTVIEW.Currentitem.Image	<=	#VI_EMPLOY
	
*	select	current	employee
If	('#employee	=	#wempno')
set	#listview.CurrentItem	selected(true)
Endif
endfor
	
Endroutine
	
Ptyroutine	Name(get_empno)
Define_Map	For(*output)	Class(#EMPNO)	Name(#EMPLOYEE)
#EMPLOYEE	:=	#empno
Endroutine
	
*	Close	Form	and	return	result
Evtroutine	Handling(#PB_OK.Click	#LISTVIEW.DoubleClick)
#COM_OWNER.hideform
#COM_OWNER.Modalresult	:=	OK
Endroutine
End_Com

	
3.		Save	the	form.
4.		Create	a	new	Reusable	Part	/	Object.
					This	stores	a	keyed	collection	of	employee	numbers	and	a	keyed	collection
of	full	names,	keyed	on	EMPNO.	

					This	design	enables	the	prompt	form	to	load	the	collections	once,	the	first
time	it	is	used.	Subsequent	executions	of	the	prompt	form	do	not	need	to	read
the	employee	file.

					Name:	iiiVFW27
					Description:	Employees	Collection
5.		Complete	the	reusable	part's	initial	code	by	copy	and	pasting	the	following
code:
*	Keyed	collections
DEFINE_COM	CLASS(#PRIM_KCOL<#EMPNO	#Empno>)	NAME(#Employees)
DEFINE_COM	CLASS(#PRIM_KCOL<#FULLNAME	#EMPNO>)	NAME(#Fullnames)
	
*	Properties
DEFINE_PTY	Employees	GET(*COLLECTION	#Employees)
DEFINE_PTY	Fullnames	GET(*COLLECTION	#Fullnames)
	
*	Load	keyed	collection	with	Personnel	details
EVTROUTINE	HANDLING(#COM_OWNER.CreateInstance)	OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)
Select	Fields(#empno	#givename	#surname)	From_File(PSLMST)
#Employees<#Empno>	:=	#Empno
#Fullnames<#Empno>	:=	#Givename	+	'	'	+	#Surname
Endselect
ENDROUTINE
	

6.		Compile	the	reusable	part.
7.		In	the	editor,	switch	to	the	form,	iiiVFW26	and	change	this	line,	to	match
your	reusable	part	name:
DEFINE_COM	CLASS(#iiiVFW26)	NAME(#Collections)	scope(*Application)
	

8.		Compile	the	form	iiiVFW26.
					Note:	The	form	contains	the	following	event	routine:

*	Close	Form	and	return	result
Evtroutine	Handling(#PB_OK.Click	#LISTVIEW.DoubleClick)
#COM_OWNER.hideform
#COM_OWNER.Modalresult	:=	OK
Endroutine
	

					The	routine	executes	when	the	OK	button	is	clicked	or	a	list	entry	is	double
clicked.

					The	Com_Owner.ModalResult	:=	OK	informs	the	calling	field	that	the
prompter	is	being	closed	successfully	and	it	should	retrieve	the	value	of	the
default	property	containing	the	selected	employee	number.

9.		Open	the	field	iiiEMPNO	in	the	editor.	Select	the	Visualization	tab	and	click
the	 	Insert	Prompter	Form	toolbar	button.	In	the	Repository	Find	dialog,
select	your	prompter	form	iiiVFW26	and	click	OK.

10.	Select	the	VisualEdit	component	and	use	the	Details	tab	to	change	its
ShowPrompter	property	to	True.	Note	that	the	VisualEdit	visualization	now

shows	a	 	prompter	button.
11.	Save	and	close	the	field	definition.
12.	Open	the	Resources	for	a	Section	reusable	part	(iiiVFW25)	in	the	editor	and
select	the	Design	view.

13.	Select	the	Code	column	(iiiEMPNO).	The	column	should	already	have	a
ReadOnly	property	of		False.

					Make	the	following	changes:

Property Value

EditorPart iiiVFW25

DisplayAppearance Edit

EditAppearance Edit

	

14.	Re-compile	the	reusable	part.
15.	Execute	the	Framework	and	select	the	Resources	command	handler	for	a

section.
					When	you	click	in	the	employee	number	column	(Code)	a	prompt	button	will
now	be	shown.

16.	Click	the	prompt	button	to	run	the	prompt	form.	Note	that	the	employee
number	for	this	row	is	selected	in	the	list.

17.	Select	a	new	employee	number	and	click	OK	or	double	click	the	entry.	The
form	closes	and	the	column	entry	is	updated.

This	reusable	part	prompter	visualization	can	also	be	used	on	a	form	or	panel.

Summary
Important	Observations

Field	Visualization	provides	a	simple	consistent	interface	for	activities	such
as	prompting.	However,	for	very	complex	prompting	requirements,	you	will
most	likely	need	to	create	another	component.
Using	reusable	parts	and	prompter	forms	ensures	that	the	same	field	provides
a	consistent	interface	wherever	used.
Having	multiple	visualizations	for	the	same	field	allows	you	to	turn
off/change	the	style	of	field	for	particular	situations.

Tips	&	Techniques
When	creating	a	prompter	form	you	must	ensure	that	you	follow	the
prompter	form	guidelines.	When	a	a	property	is	added	to	the	form,	ensure	it
is	made	the	default	property	for	the	form,	such	as
DefaultPty(p_Employee_Number)	in	this	example:

DEFINE_PTY	NAME(P_EMPLOYEE_NUMBER)	GET(*AUTO	#EMPNO)	SET(SET_EMPNO)
	
The	SET	of	this	property	will	be	called	when	the	user	activates	the	prompter
(via	either	F4	or	the	ellipses	button).

What	I	Should	Know
How	to	define	list	column	properties	to	provide	check	box,	combo	box,
image	and	text	and	multiline	edit	visualization.
Input	capable	Date	and	DateTime	columns	will	show	a	date	prompt	by
default.
How	to	define	a	prompter	field	visualization.
How	to	implement	a	prompter	form	visualization	in	a	list	column.

VFW104	–	Simple	Keyed	Collections
Introduction	to	Collections
Collections	are	conceptually	similar	to	conventional	arrays.	In	Visual	LANSA,
they	constitute	a	very	powerful	way	of	grouping	components	of	the	same	type.
You	can	collect	any	Class	of	component	in	a	Collection.	Commonly	used	types
of	collections	in	Visual	LANSA	include:

Keyed	Collection
List	Collection
Array	Collection
Sorted	Array	Collection.

In	this	exercise,	you	will	use	a	keyed	collection.
Elements	in	conventional	arrays	are	accessed	using	the	element's	index	position,
usually	a	number.	In	Visual	LANSA,	an	element	in	a	Keyed	Collection	can	be
accessed	through	its	numeric	index	position	or	using	an	alphanumeric	string.
A	keyed	collection	is	defined	using	the	following	command:

DEFINE_COM	CLASS(#PRIM_KCOL<<Collecting><Key	Value>>)
NAME(...)	STYLE(...)

The	important	properties	in	a	Keyed	Collection	are:

Class:	The	value	#PRIM_KCOL	defines	the	component	as	keyed	collection.
Collecting:	The	class	of	component	or	class	of	each	element	in	the	group.
Key	Value:	The	numeric	or	alphanumeric	value	that	allows	you	to	access	one
element	in	the	collection.
Style:	Factory	(default)	means	a	new	instance	of	the	type	of	component
should	be	created	whenever	the	collection	is	accessed.	A	Style:	Collection
means	a	*Null	reference	is	to	be	returned	whenever	the	collection	is
accessed	with	a	key	that	does	not	exist.

The	Style	of	collection	you	choose	to	use	depends	on	whether	the	information
stored	in	the	collection	is	going	to	be	shared	by	other	forms	or	components	and
also	on	what	type	of	thing	you	are	going	to	collect.	Sometimes	a	working	list	or
an	array	would	provide	the	same	functionality	as	a	collection,	but	it	is
impossible	to	pass	a	working	list	or	an	array	to	another	form	or	reusable
component.	Storing	the	data	in	a	collection	would	solve	this	issue.	If	you	want

to	collect	bitmaps	or	radio	buttons	then	a	Keyed	Collection	is	the	only	option.	If
you	are	collecting	objects	of	any	kind	you	should	use	a	Style	Collection.	For
example,	when	you	define	a	component	in	an	event	routine	and	then	place	a
reference	to	it	in	a	collection	Style	Collection,	when	the	routine	terminates	the
object	ceases	to	exist.	Or,	you	can	explicitly	destroy	the	object	by	setting	its
reference	to	*NULL.	You	cannot	do	that	to	an	object	created	in	a	Style	Factory
collection.	The	object	would	exist	in	memory	until	the	application	is	closed.
List	collections	are	defined	by	using	the	following	command:

DEFINE_COM	CLASS(#PRIM_LCOL<<	Collecting	>>)	NAME(...)
The	important	properties	in	a	list	collection	are:

Class:	The	value	#PRIM_LCOL	defines	the	component	as	a	list	collection.
Collecting:	The	class	of	component	or	class	of	each	element	in	the	group.

Objective
To	learn	about	using	keyed	collections.
To	develop	an	Images	command	handler	for	Sections,	which	displays	images
for	the	employees	in	the	section.
To	use	the	VL	Framework	avSwitch	method	to	link	an	employee	image
component	to	the	Employee	business	object	Details	command	handler.

To	achieve	these	objectives	you	will	complete	the	following	steps:
Step	1.	Create	the	Employee	Images	for	Section	Command	Handler

Step	2.	Create	an	Employee	Image	Component
Step	3.	Make	Sections	Business	Object	Visible
Step	4.	Implement	the	Employee	Image	component.
Step	5.	Record	the	Switch	History	using	the	Virtual	Clipboard
Step	6.	Use	the	Switch	History	to	Return	to	the	Original	BO
Summary

Before	You	Begin
This	exercise	depends	on	VFW080	–	Using	an	Explorer	Component,	which
maintains	employee	image	records	in	file	iiiEmpImages.

Step	1.	Create	the	Employee	Images	for	Section	Command
Handler
This	component	will	dynamically	create	a	keyed	collection	of	image
components	(PRIM_IMGE)	keyed	by	EMPNO	for	the	employees	in	a
department	/	section.	Employee	images	are	retrieved	from	the	file
iiiEmpImages.
The	images	are	displayed	on	the	command	handler	panel,	managed	by	a	Flow
Across	layout	manager.
The	component	will	also	create	a	keyed	collection	of	flow	item	managers
(PRIM_FWLI)	keyed	by	EMPNO	which	position	each	image	across	the	panel.
1.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW28
					Description:	Employee	Images	for	a	Section
2.		Give	the	RP	an	ancestor	of	VF_AC010.
3.		Use	the	Design	ribbon	to	add	a	Flow	Across	manager	to	iiiVFW28.
4.		Switch	to	the	Source	tab	and	define	a	keyed	collection,	to	collect
PRIM_IMGE	keyed	by	EMPNO.
Define_Com	Class(#PRIM_KCOL<#PRIM_IMGE	#empno>)	Name(#ImageCollection)	Reference(*dynamic)	Style(Collection)
	

					The	Reference(*dynamic)	means	that	the	collection	will	exist	only	once	you
use	SET_REF	to	create	it.

5.		Similarly	define	a	keyed	collection,	to	collect	PRIM_FWLI	keyed	by
EMPNO.
Define_Com	Class(#PRIM_KCOL<#PRIM_FWLI	#EMPNO>)	Name(#ImageFlowCollection)	Reference(*dynamic)	Style(Collection)
	

6.		Create	a	uExecute	method	routine	which	redefines	the	ancestor's	method,	and
invoke	the	ancestor	uExecute	method.

					Retrieve	the	current	instance	list	entry	using	the	List	Manager	component
and	retrieve	Akey1	and	Akey2.

					The	uExecute	method	is	called	when	an	entry	in	the	instant	list	is	selected.
Mthroutine	Name(uExecute)	Options(*redefine)
#com_ancestor.uExecute

#avlistmanager.getCurrentInstance	Akey1(#deptment)	Akey2(#section)
Endroutine
	

7.		Add	the	following	code	to	the	uExecute	routine:
*	clear	existing	collections
Set_Ref	Com(#ImageCollection)	To(*null)
Set_Ref	Com(#ImageFlowCollection)	To(*null)
*	Create	collections	dynamically
Set_Ref	Com(#ImageCollection)	To(*Create_as	#PRIM_KCOL<#prim_IMGE	#EMPNO>)
Set_Ref	Com(#ImageFlowCollection)	To(*Create_as	#PRIM_KCOL<#prim_FWLI	#EMPNO>)
	

					This	clears	existing	collections	(from	a	previous	execution).
					The	ImageCollection	and	the	ImageFlowCollection	are	then	created
dynamically	using	SET_REF.

8.		Add	the	following	code	to	populate	the	keyed	collections:
*	Load	images	into	panel
Select	Fields(#empno)	From_File(pslmst1)	With_Key(#deptment	#section)
Fetch	Fields(#iiiempimg)	From_File(iiiEmpImages)	With_Key(#empno)	Val_Error(*next)
If_Status	Is(*okay)
If	(*Not	#iiiempimg.filename.isnull)
If_Ref	Com(#ImageCollection<#EMPNO>)	Is(*NULL)
Set_Ref	Com(#ImageCollection<#EMPNO>)	To(*CREATE_AS	#PRIM_IMGE)
Set_Ref	Com(#ImageFlowCollection<#EMPNO>)	To(*CREATE_AS	#PRIM_FWLI)
Set	Com(#ImageCollection<#EMPNO>)	Parent(#COM_OWNER)	Filename(#iiiempimg.filename)	Displayposition(99)
Set	Com(#ImageFlowCollection<#EMPNO>)	Parent(#FWLM_1)	Manage(#ImageCollection<#EMPNO>)
Endif
Endif
Endif
Endselect
#com_owner.realize
	

9.		Review	this	new	logic:
					Employee	numbers	are	retrieved	from	the	logical	file	PSLMST1	using	the
keys	retrieved	from	the	instance	list.

					An	employee	image	is	read	from	the	file	iiiEmpImages.
					Field	iiiEMPIMG	is	a	BLOB	field.	Retrieving	it	from	a	file,	restores	the

image	file	to	a	local	folder.	The	path	and	file	name	are	held	in
iiiEMPIMG.filename.

					If	this	employee	has	an	entry	in	iiiEmpImages,	the	IF_REF	checks	an	entry
for	this	employee	doesn't	exist	in	the	ImageCollection.

					The	SET_REF	then	creates	an	entry	of	PRIM_IMGE	in	ImageCollection,
keyed	on	EMPNO.		

					Another	SET_REF	creates	an	entry	for	PRIM_FWLI	in
ImageFlowCollection.

					The	SET	Com(ImageCollection)	.	.	.	sets	the	Parent	and	Filename	property
for	this	collection	entry.

					The	Parent	must	be	#COM_OWNER	for	the	image	to	be	shown	on	the	RP's
panel.

					Similarly	the	next	SET,	sets	the	ImageFlowCollection	entry	Parent	to
FWLM_1,	the	flow	across	manager	and	the	Manage	property	to	this
ImageCollection	entry.

					The	#COM_OWNER.Realize	makes	the	panel	components	visible	once	they
have	all	been		created.

10.	Compile	your	new	command	handler,	iiiVFW28	–	Employee	Images	for	a
Section.

11.	Start	the	VL	Framework	as	Designer.
12.	Open	the	Properties	dialog	for	_Sections	by	double	clicking	on	a	section
entry	in	the	instance	list.

13.	Select	the	Commands	Enabled	tab,	select	the	Images	action	and	plug	in
iiiVFW28.

14.	Save	and	Restart	the	VL	Framework.
15.	Use	the	By	Location	filter	for	employees	and	then	use	the	Images	command
handler	to	ensure	that	images	have	been	saved	for	a	number	of	employees	in
this	department	/	section	(for	example,	department	ADM	and	section	01).

					Remember	to	select	the	Clear	List	checkbox	before	rebuilding	the	list	of
employees.

16.	Now	select	the	Departments	business	object	and	expand	ADM	to	display	the
first	section	(Internal	Admin	SRV)	and	select	this	section.	Select	the	Images
command	handler.	Your	Images	command	handler	should	look	like	the

following:

Step	2.	Create	an	Employee	Image	Component
In	the	following	steps	you	will	enhance	the	functionality	of	the	Employee
Images	for	Section	command	handler.	You	will	do	this	as	follows:

Create	an	Employee	Image	reusable	part	which	displays	the	employee	image
in	a	Group	Box,	with	a	Caption	showing	the	employee	surname
The	Employee	Images	for	Section	command	handler	will	be	changed	to
create	a	collection	of	the	new	Employee	Image	components.
In	a	later	step,	the	Employee	Images	for	Section	command	handler	will	be
enhanced	to	use	the	Framework's	switch	service	when	an	image	is	double
clicked	or	when	a	pop-up	menu	is	used,	to	display	the	Employee	Details
command	handler	for	the	selected	employee.

1.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW29
					Description:	Employee	Image
2.		On	the	Design	tab,	resize	the	panel	as	shown.

a.		Drag	and	drop	a	Group	Box	onto	the	panel.
b.		Drag	and	drop	an	Image	component	onto	the	Group	Box.

					Your	design	should	now	look	like	the	following:

3.		Drop	a	Pop-Up	Menu	component	onto	the	image	and	define	one	menu	item
as	Show	Employee	Details

4.		Save	the	new	reusable	part.
5.		Switch	to	the	Source	tab,	and	define	the	following	properties:
Define_Pty	Name(uCaption)	Set(SetCaption)
Define_Pty	Name(uEmpNum)	Get(*auto	#empno)	Set(*auto	#empno)
Define_Pty	Name(uFileName)	Set(SetFileName)
	

					Ignore	the	errors	for	the	property	routines	which	you	will	shortly	create.
					The	Employee	Images	for	Section	command	handler	needs	to	set	these
properties	to	set	up	the	image	to	be	displayed.

6.		Add	the	following	event	definition,	which	passes	employee	number:
Define_Evt	Name(uShowEmpDetails)
Define_Map	For(*input)	Class(#empno)	Name(#uEmpNum)
	

					The	event	will	be	signaled	when	an	image	is	double	clicked,	or	the	pop-up
menu	item	is	clicked.

7.		Complete	the	Employee	Image	component	definition	with	the	following
code:
*	Set	Group	Box	Caption	to	Surname
Ptyroutine	Name(SetCaption)
Define_Map	For(*input)	Class(#surname)	Name(#i_Caption)
#GPBX_1.caption	:=	#i_Caption
Endroutine
*	Set	image	path/filename
Ptyroutine	Name(SetFileName)
Define_Map	For(*input)	Class(#std_strng)	Name(#i_filename)
#IMGE_1.fileName	:=	#i_filename
Endroutine
*	Signal	uShowEmpDetails
Evtroutine	Handling(#IMGE_1.DoubleClick	#MITM_1.Click)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Signal	Event(uShowEmpDetails)	Uempnum(#empno)
Endroutine
	

8.		Review	the	code	which	you	just	added.
a.		The	SetCaption	property	routine	sets	the	Group	Box	caption.	The
property	is	passed	employee	surname.

b.		The	SetFileName	property	routine	sets	the	Image	filename	property.	The
property	uFileName	is	passed	the	image	file	name.

c.		An	event	routine	for	Image	DoubleClick	and	Menu	Item	1	Click	signals
the	uShowEmpDetails	event	and	passes	employee	number.	The	uEmpNum
property	automatically	sets	and	gets	the	value	of	employee	number
(EMPNO).

9.		Compile	the	Employee	Image	component.

Step	3.	Make	Sections	Business	Object	Visible
In	the	following	steps	you	will	change	the	Employee	Images	for	Section
command	handler	to	be	able	to	switch	to	the	Employee	Details	command
handler.	The	Employee	Details	command	handler	will	be	enhanced	to	enable	the
user	to	return	to	the	Employee	Images	for	Section	command	handler.

Note:	Switching	can	only	be	performed	on	objects	that	are	visible	in	the
Navigation	panel.

1.		In	the	VL	Framework,	display	the	properties	of	the	_Departments	business
object.

2.		Display	the	Instance	List	/	Relationships	tab.
3.		Select	Sections	(_SECTION)	in	the	business	objects	list	at	the	bottom	left	of
the	panel.

4.			Select	the	option	_Sections	–	Allow	Selection	from	Navigation	Pane.

5.		Close	the	properties	of	the	_Departments	business	object.	The	_Sections
business	object	is	now	visible	in	the	navigation	pane.

6.		Display	the	properties	of	the	_Sections	business	object.
7.		Select	the	Icons	tab,	and	select	any	suitable	icon	for	_Sections.
					Next	you	need	to	replace	the	mock-up	filter	in	the	_Sections	business	object
with	a	functional	filter	to	populate	the	instance	list:

8.		Start	the	Program	Coding	Assistant.
9.			Select	the	_Sections	business	object	in	the	iii	HR	application.
10.	Select	New	Filter	/	Windows	as	the	platform	and	a	Filter	that	searches	a	file

or	a	view.
11.	Click	Next.
12.	Specify	SECTAB	as	the	physical	file,	and	DEPTMENT	and	SECDESC	as
the	Visual	Identifiers.

13.	Accept	the	other	defaults	set	by	the	Program	Coding	Assistant	and	click
Next.

14.	Specify	DEPTMENT	field	as	the	key	to	be	used	for	search	operations.
15.	Select	Allow	Generic	searching,	Remember	key	values	between	filter
executions	and	Allow	user	to	clear	instance	list.

16.	Click	Next.
17.	Select	Routine	to	listen	for	signals	to	update	the	instance	list.
18.	Click	Generate	Code.
19.	On	the	Generated	Code	page	specify	iiiVFW30	as	the	name	of	your	filter
and	Sections	Filter	as	the	description.	(iii	are	your	initials.	If	you	are	using
an	unlicensed	or	trial	version	of	Visual	LANSA,	your	component	names	must
have	the	form	DEMCOM01	to	09).

20.	Click	Create.	The	component	is	displayed	in	the	Visual	LANSA	Editor.
21.	Compile	the	filter.
22.	In	the	Framework,	snap	the	filter	in	the	Sections	business	object.	Use	the

Find	dialog	and	select	your	reusable	part	to	snap	in.	This	will	snap	in	using
the	Identifier.

23.	Save	and	Restart	the	VL	Framework	and	test	the	filter.	You	will	now	be	able
to	access	the	Sections	business	object	and	command	handlers	directly	from
the	Navigation	pane.

Step	4.	Implement	the	Employee	Image	component.
In	this	step	you	will	change	the	Employee	Images	for	Section	command	handler
(iiiVFW27)	to	use	the	new	Employee	Image	component.
1.		Open	iiiVFW28	in	the	editor.
2.		Change	the	ImageCollection	definition	to	use	#iiiVFW29	(Employee	Image).
					Changes	are	highlighted	in	red,	ignore	errors	at	this	stage.
Define_Com	Class(#PRIM_KCOL<#iiivfw28	#empno>)	Name(#ImageCollection)	Reference(*dynamic)	Style(Collection)
	

3.		Change	the	uExecute	method	routine:
					Change	the	Set_Ref	which	adds	an	image	entry	to	ImageCollection,	to	add
the	image	component,	iiiVFW28.
Set_Ref	Com(#ImageCollection<#empno>)	To(*create_as	#iiivfw28)
	

4.		Change	the	Set,	which	sets	the	properties	for	the	current	ImageCollection
entry,	to	set	the	employee	number,	filename	and	caption	properties	for	the
new	image	component:
Set	Com(#ImageCollection<#EMPNO>)	Parent(#COM_OWNER)	uFilename(#iiiempimg.filename)
	

5.		Add	the	following	method	to	convert	to	proper	case:
Mthroutine	Name(uProperCase)
Define_Map	For(*result)	Class(#std_name)	Name(#o_text)
Define_Map	For(*input)	Class(#surname)	Name(#i_text)
#std_name	:=	#i_text.lowerCase
#std_flag	:=	#std_name.substring(1,	1).upperCase
#o_text	:=	#std_flag	+	#std_name.substring(2,	19).trim
Endroutine
	

6.		Retrieve	Surname	from	the	employee	file	and	convert	to	proper	case:
Select	Fields(#empno	#surname)	From_File(pslmst1)	With_Key(#deptment	#section)

#std_name	:=	#com_owner.uProperCase(#surname)
	

7.		Add	logic	to	switch	to	the	Employee	business	object,	Details	command
handler	when	an	image	component	signals	uShowEmpDetails	event:

Evtroutine	Handling(#ImageCollection<>.uShowEmpDetails)	Uempnum(#I_EMPNUM)
#empno	:=	#I_EmpNum
*	Switch	to	Employee	/	Details	command	handler
#avframeworkmanager.avSwitch	To(BUSINESSOBJECT)	Named(EMPLOYEES)	Execute(DETAILS)	Caller(#com_owner)	Clearinstancelist(TRUE)
Endroutine
	

					Note:	The	To(),	Named()	and	Execute()	parameters	are	case	sensitive.	Ensure
that	they	match	your	Framework	object	names.

8.		Add	a	VL	Framework	event	handling	routine	for	avAddSwitchInstances
which	will	tell	the	Employees	business	object	which	instance	should	be
displayed	based	on	the	employee	number	(uEmpNum)	passed	by	the
uImageClicked	event.

					Note:	This	routine	sets	up	the	required	instance	list	columns	for	Employee	to
invoke	the	avAddSwitchInstance.
Evtroutine	Handling(#avFrameworkManager.avAddSwitchInstances)	Options(*NOCLEARERRORS	*NOCLEARMESSAGES)	Caller(#Caller)
Define	Field(#udate)	Type(*char)	Length(19)
*	Make	sure	the	caller	is	this	component
If_Ref	Com(#Caller)	Is_Not(*Equal_to	#Com_Owner)
Return
Endif
Fetch	Fields(#surname	#givename	#deptment	#salary	#startdte)	From_File(pslmst)	With_Key(#empno)
#fullname	:=	#surname	+	',	'	+	#givename
#udate	:=	#startdte.asdate(DDMMYY).AsDisplayString(DDsMMsCCYY)
Invoke	Method(#avFrameworkManager.avAddSwitchInstance)	Businessobjecttype(EMPLOYEES)	Visualid1(#EMPNO)	Visualid2(#fullname)	Acolumn1(#deptment)	Ncolumn1(#salary)	Dcolumn1(#udate)	Akey1(#EMPNO)
Endroutine
	

					The	avAddSwitchInstances	event	routine	is	always	executed	immediately
after	you	execute	a	switch	using	the	avSwitch	method.	This	event	allows	you
to	control	what	data	will	be	placed	in	the	instance	list	of	the	target	business
object.	The	component	signalling	this	event	is	passed	in	the	Caller	parameter.

					It	is	important	to	only	execute	the	code	in	this	event	if	the	component	that
signalled	this	event	is	the	component	itself.	Therefore	you	should	return	from
this	event	routine	if	the	caller	is	not	equal	to	#com_owner.	Notice	how	the
is_not(*Equal_to)	is	used	to	compare	the	#Caller	and	#Com_Owner.	You
must	use	this	syntax	due	to	the	fact	that	you	are	comparing	the	component
itself	and	not	a	simple	string.

					The	avAddSwitchInstance	method	specifies	what	data	to	add	in	the	target

instance	list.
					If	required,	you	could	call	the	avAddSwitchInstance	method	repeatedly,	to
place	multiple	entries	into	the	target	business	object's	instance	list.

9.		Compile	the	enhanced	Employee	Images	for	Section	command	handler
(iiiVFW28).

10.	Execute	the	Framework.	Select	the	Images	command	handler	for	the
Department	and		Section	for	which	you	created	employee	image	records.
Your	Images	command	handler	should	now	look	like	the	following:

11.	Double	click	on	an	employee	image	or	right	click	and	use	the	pop-up	menu
to	Show	Employee	Details.

					The	Framework	should	switch	to	the	Details	command	handler	for	the
selected	employee	(check	the	surname	shown).

					The	instance	list	should	contain	an	entry	for	this	employee	and	the	details	of
the	employee	should	be	displayed:

Step	5.	Record	the	Switch	History	using	the	Virtual	Clipboard
In	this	step	you	will	record	the	switch	history	using	the	VL	Framework's	virtual
clipboard	so	that	the	end-user	will	be	able	return	to	the	object	that	initiated	the
switch.
To	use	the	virtual	clipboard	most	effectively,	you	need	to	devise	a	standardized
naming	protocol	for	items	that	are	posted	onto	it.	In	this	exercise	you	will	use
this	standard	to	store	the	switch	history:

ID1 SWITCH_HISTORY

ID2 Target	Business	Object	Name

ID3 Target	Command	Name

ID4 OBJECT_NAME	or	COMMAND_NAME

FromAValue <object	or	command	name>

	

In	effect	you	will	be	storing	a	switch	history	table	on	the	Framework's
clipboard.	The	first	key	or	ID	is	the	code	'SWITCH_HISTORY'	to	indicate	that
all	records	with	this	ID	are	related	to	switching	history.
The	ID2	and	ID3	contain	the	business	object	and	command	respectively	that
you	are	switching	to.
ID4	contains	where	you	came	from.	Therefore	you	need	to	add	two	records	to
the	virtual	clipboard:

one	where	ID4	equals	OBJECT_NAME	(the	business	object)
and	another	where	ID4	equals	COMMAND_NAME	(the	command).

1.		Display	the	Source	tab	for	the	Employee	Images	for	Section	command
handler	(iiiVFW28).

2.		In	the	event	routine	for	#ImageCollection<>.uShowEmpDetails	add	code	to
add	the	appropriate	records	to	the	switch	history.	Changes	are	highlighted	in
red.
Evtroutine	Handling(#ImageCollection<>.uuShowEmpDetails)	Uempnum(#I_EMPNUM)
#empno	:=	#I_EMPNUM
*	Save	to	clipboard	return	list

*	Returns	to	Section	/	Images	for	parent	department
#avframeworkmanager.avsavevalue	Withid1(SWITCH_HISTORY)	Withid2(EMPLOYEES)	Withid3(DETAILS)	Withid4(OBJECT_NAME)	Fromavalue(
#avframeworkmanager.avsavevalue	Withid1(SWITCH_HISTORY)	Withid2(EMPLOYEES)	Withid3(DETAILS)	Withid4(COMMAND_NAME)	Fromavalue(
*	Switch	to	Employee	/	Details	command	handler
#avframeworkmanager.avSwitch	To(BUSINESSOBJECT)	Named(EMPLOYEES)	Execute(DETAILS)	Caller(#com_owner)	Clearinstancelist(TRUE)
Endroutine
	

					Note:	Ensure	that	Withid2()	Withid3()	and	FromValue(),	all	use	your	business
object	names	and	command	name.

3.		Compile	the	command	handler	iiiVFW28.

Step	6.	Use	the	Switch	History	to	Return	to	the	Original	BO
In	this	step	you	will	change	the	Employee	Details	command	handler	to	use	the
switch	history	to	allow	the	end-user	to	return	to	the	Departments	business	object
from	where	they	initiated	the	switch.
1.		Open	the	Employees'	Details	command	handler	iiiVFW06.
2.		Drag	a	push	button	below	the	Save	button.
3.		Make	the	Caption	of	the	button	Back	to	Sections.
4.		Make	the	Name	of	the	button,	BACK_BTN.
5.		Create	a	Click	event	for	the	button.
6.		In	the	BACK_BTN.Click	event	add	this	code	so	that	when	the	users	click	on
the	button,	they	will	be	switched	back	to	the	business	object	from	which	they
came:
EVTROUTINE	HANDLING(#BACK_BTN.Click)
define	field(#ff_objnme)	TYPE(*CHAR)	LENGTH(32)	DESC('Object	Name')
define	field(#ff_cmdnme)	TYPE(*CHAR)	LENGTH(32)	DESC('Command	Name')
*	Determine	the	business	object	name	to	switch	to
#avFrameworkManager.avrestorevalue	WithID1(SWITCH_HISTORY)	WithID2(#com_owner.Avobjecttype)	WithID3(#com_owner.Avcommandtype)	WithID4(OBJECT_NAME)	ToAValue(#ff_objnme)
*	Determine	which	command	within	the	business	object	to	switch	to
#avFrameworkManager.avrestorevalue	WithID1(SWITCH_HISTORY)	WithID2(#com_owner.Avobjecttype)	WithID3(#com_owner.Avcommandtype)	WithID4(COMMAND_NAME)	ToAValue(#ff_cmdnme)
*	Perform	the	switch
*	Retruns	to	Departments	/	Details
#avframeworkmanager.avSwitch	To(BUSINESSOBJECT)	NAMED(#ff_objnme)	EXECUTE(#ff_cmdnme)	Caller(#com_owner)
ENDROUTINE
	

To	send	the	user	back	to	the	component	from	which	the	switch	occurred:
You	need	to	look	at	the	switch	history	on	the	virtual	clipboard.	Remember
that	you	need	to	retrieve	both	the	business	object	and	the	command	to
which	you	need	to	return.	That	requires	retrieving	two	values	from	the
virtual	clipboard.
The	code	first	retrieves	the	OBJECT_NAME	or	business	object	value	and
then	the	COMMAND_NAME	or	command	value.
Remember	that	you	don't	want	to	hard	code	the	component	name,	which
is	why	avObjectType	(business	object	name)	and	avCommandType
(command	name)	were	used	as	the	values	to	the	Withid2()and	Withid3()

parameters.
When	you	have	these	two	values	you	can	perform	another	switch	to	return
to	the	previous	component.

					In	the	preceding	code,	the	business	object	was	retrieved	into	the	#ff_objname
field	and	the	command	was	retrieved	into	the	#ff_cmdnme	field.	Now	you
simply	use	the	same	technique	learned	earlier	to	switch	to	a	business	object
and	execute	the	command.

					Your	code	should	look	like	this:

7.		Recompile	the	iiiVFW06	command	handler.
You	are	now	ready	to	test	using	switch	history:
8.		In	the	VL	Framework,	select	_Sections	and	populate	the	instance	list	and
select	a	Section	with	employee	images	recorded.

9.		Double	click	an	employee	image	in	the	Employee	Images	for	Section
command	handler,	to	display		details	of	the	selected	employee.

10.	On	the	Details	command	handler	of	the	Employees	business	object,	click	on
the	Back	to	Sections	button	to	return	to	the	_Sections	business	object.

Summary
Important	Observations

The	VL	Framework	switching	service	allows	your	filters	and	command
handlers	to	switch	control	between	different	business	objects	and	to	execute
commands	at	the	Framework,	application	or	business	object	level.
Switching	mimics	the	actions	that	a	user	would	perform.
The	target	business	object	must	be	able	to	be	selected	from	the	menu.	That
is,	at	the	time	the	switch	occurs,	the	option	Allow	selection	from	the
navigation	pane	in	the	target	business	object	properties	should	be	checked
(selected),	and	the	user	should	be	authorized	to	the	business	object.
You	can	use	the	Virtual	Clipboard	for	remembering	and	exchanging
information.
To	use	the	virtual	clipboard	most	effectively	you	need	to	devise	a
standardized	naming	protocol	for	items	that	are	posted	onto	it.

Tips	and	Techniques
In	the	shipped	examples,	the	Advanced	section	of	the	Programming
Techniques	sample	application	demonstrates	switching	and	remembering
values	(virtual	clipboard).

What	I	Should	Know
How	to	switch	between	business	objects.
How	to	use	the	virtual	clipboard	to	record	switch	history	so	that	the	end-
users	can	switch	back	to	object	where	the	switch	was	initiated.

VFW106	–	Using	a	List	Collection
Objective
To	build	a	Monthly	command	handler	for	the	Reports	business	object	which
displays	a	list	of	employees.	This	doesn't	represent	a	real	application.	The
Monthly	command	handler	is	simply	a	mechanism	to	demonstrate	passing
multiple	references	using	a	list	collection.	A	reference	to	the	list	collection	will
be	passed	to	a	simple	form	which	will	show	the	current	entries	in	the	list
collection.

To	achieve	this	objective	you	will	complete	the	following	steps:
Step	1.	Create	the	Employee	Object.
Step	2.	Create	the	Monthly	Command	Handler
Step	3.	Create	the	Selected	Employees	Viewer
Step	4.	Complete	Monthly	Command	Handler
Summary
	

Before	you	Begin
You	must	complete	exercises	VFW030,	VFW040,	VFW042	and	VFW104.

Step	1.	Create	the	Employee	Object.
The	Employee	Object	is	a	simple	non	visual	component	that	stores	values	for
each	employee.
1.		Create	a	new	Reusable	Part	/	Object:
					Name:	iiiVFW31
					Description:	Employee	Object
2.		Define	the	properties	this	object	needs	to	store	the	employee	data,	allowing
values	to	be	set	and	retrieved	(get).
Define_Pty	Name(UEMPLOYEENUMBER)	Get(*AUTO	#EMPNO)	Set(*AUTO	#EMPNO)
Define_Pty	Name(UEMPLOYEESURNAME)	Get(*AUTO	#SURNAME)	Set(*AUTO	#SURNAME)
Define_Pty	Name(UEMPLOYEEGIVENAME)	Get(*AUTO	#GIVENAME)	Set(*AUTO	#GIVENAME)
Define_Pty	Name(UEMPLOYEESALARY)	Get(*AUTO	#SALARY)	Set(*AUTO	#SALARY)
	

3.		Compile	the	reusable	part.

Step	2.	Create	the	Monthly	Command	Handler
1.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW32
					Description:	Monthly	Command	Handler	for	Reports
2.		Give	the	reusable	part	an	ancestor	of	VF_AC010
3.		Use	the	Design	ribbon	to	give	iiiVFW32	an	Attachment	manager.
4.		Add	a	List	View	to	the	center	of	the	Panel.	Change	the	List	View	Name
property	to	EMP_VIEW.

5.		Create	an	Initialize	event	for	EMP_VIEW.
6.		Locate	the	file	PSLMST	on	the	Repository	tab	and	drag	the	fields	EMPNO,
SURNAME,	GIVENAME	and	SALARY	onto	the	list.

7.		Open	the	Source	tab	and	define	a	key	collection	of	employee	objects,
iiiVFW31	keyed	by	EMPNO
Define_Com	Class(#PRIM_KCOL<#iiivfw31	#EMPNO>)	Name(#EMPLOYEES)	Style(Collection)
	

8.	Add	logic	to	the	Initialize	event	for	EMP_VIEW	to	populate	the	list	view
with	all	records	from	file	PSLMST.
Clr_List	Named(#EMP_VIEW)
Select	Fields(#EMP_VIEW)	From_File(pslmst)
Add_Entry	To_List(#EMP_VIEW)
Endselect
	

9.		Add	a	Set_Ref	to	create	an	entry	of	iiiVFW31	to	the	keyed	collection,	for
each	employee,	keyed	by	EMPNO,	setting	the	properties	of	the	employee
object	for	each	employee.

					The	new	code	is	highlighted	in	red.
Clr_List	Named(#EMP_VIEW)
Select	Fields(#EMP_VIEW)	From_File(pslmst)
Add_Entry	To_List(#EMP_VIEW)
Set_Ref	Com(#EMPLOYEES<#EMPNO>)	To(*CREATE_AS	#IIIVFW31
#EMPLOYEES<#EMPNO>.UEMPLOYEENUMBER	:=	#EMPNO
#EMPLOYEES<#EMPNO>.UEMPLOYEEGIVENAME	:=	#GIVENAME
#EMPLOYEES<#EMPNO>.UEMPLOYEESURNAME	:=	#SURNAME

#EMPLOYEES<#EMPNO>.UEMPLOYEESALARY	:=	#SALARY
Endselect
	

10.	Create	a	method	routine,	SelectionChanged	which	will	be	called	each	time	a
list	view	entry	is	selected	or	loses	selection.

					The	routine	should:
a.		Define	a	list	collection	of	the	employee	object	iiiVFW31.	This	will	be
used	to	store	a	list	of	the	currently	selected	employees.

b.		Read	through	the	list	view	using	Selectlist
c.		Go	straight	to	read	the	next	list	view	entry,	if	it	is	not	currently	selected,
using	the	Continue	statement.

d.		Insert	an	entry	to	the	list	collection,	from	the	keyed	collection
EMPLOYEES

					Your	code	should	look	like	the	following:
Mthroutine	Name(SelectionChanged)
Define_Com	Class(#PRIM_LCOL<#iiivfw31>)	Name(#SELECTION)
Selectlist	Named(#EMP_VIEW)
Continue	If(*Not	#EMP_VIEW.CURRENTITEM.SELECTED)
#SELECTION.INSERT(#EMPLOYEES<#EMPNO>)
Endselect
*	Show	the	selected	employees	form
Endroutine
	

					Note	the	comment	line.	You	will	create	the	selected	employees	form	in	the
next	step.

					The	list	collection	is	defined	within	the	method	routine	and	is	destroyed
when	the	routine	ends.

11.	In	the	Design	view,	select	the	list	view	and	create	event	routines	for
ItemGotSelection	and	ItemLostSelection.	Add	code	to	each	routine	to	invoke
the	SelectionChanged	method.

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#EMP_VIEW.ItemGotSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#com_owner.SelectionChanged
Endroutine

Evtroutine	Handling(#EMP_VIEW.ItemLostSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#com_owner.SelectionChanged
Endroutine
	

12.	Leave	this	reusable	part	open	in	the	editor.

Step	3.	Create	the	Selected	Employees	Viewer
1.		Create	new	Form	/	Basic	Form:
					Name:	iiiVFW33
					Description:	Selected	Employees	Viewer
2.		Size	the	form	approximately	to	Height	430	and	Width	230.
3.		Change	the	form's	FrameStyle	to	Dialog,	and	FormStyle	to
StayOnTopChild

4.		Use	the	Design	ribbon	to	give	the	form	an	Attachment	manager.
5.		Drop	a	List	View	into	the	center	of	the	form	and	change	the	List	View's	Name
to	SEL_LIST.

6.		Drag	and	drop	the	field	Fullname	onto	the	list	view,	and	change	its
WidthType	to	Remainder.

					Your	form	should	look	like	the	following:

7.		Save	the	form
8.		Create	a	method	routine	named	uShow.
					This	method	will	be	invoked	by	the	SelectionChanged	method	in	the
Monthly	Command	Handler	for	Reports	-	iiiVFW32.

					The	uShow	method	needs	to	do	the	following:

a.		Define	an	input	map	of	Class(#PRIM_LCOL<iiiVFW31>),	which	is
passed	by	reference.

b.		Clear	the	selected	employees	list	view,	SEL_LIST
c.		Read	through	the	list	collection	EMPLOYEES	using	a	For/Endfor	loop.
d.		For	each	entry	set	Fullname	from	the	uEmployeeGivename	and
uEmployeeSurname	properties

e.		Add	an	entry	to	SEL_LIST
f.		After	processing	the	list	collection	show	this	form.

					Your	code	should	look	like	the	following:
Mthroutine	Name(uShow)
Define_Map	For(*INPUT)	Class(#PRIM_LCOL<#iiivfw31>)	Name(#EMPLOYEES)	Pass(*BY_REFERENCE)
Clr_List	Named(#SEL_LIST)
For	Each(#EMPLOYEE)	In(#EMPLOYEES)
#FULLNAME	:=	#EMPLOYEE.UEMPLOYEEGIVENAME	+	'	'	+	#EMPLOYEE.UEMPLOYEESURNAME
Add_Entry	To_List(#SEL_LIST)
Endfor
#COM_OWNER.SHOWFORM
Endroutine
	

9.		Compile	the	form	iiiVFW33.

Step	4.	Complete	Monthly	Command	Handler
1.	Switch	to	the	reusable	part	iiiVFW32	in	the	editor	(Monthly	Command
Handler	for	Reports).

2.	In	the	Design	view,	drag	and	drop	the	Selected	Employees	form,	iiiVFW33
onto	the	panel.	This	will	create	a	Define_Com	for	the	component.	Change	its
Name	to	#Selected_Employees.

3.	Complete	the	SelectionChanged	method	to	invoke	the	Selected_Employees
form's	uShow	method,	passing	the	list	collection	(with	the	name
SELECTION).

					Your	code	should	look	like	the	following.	New	code	is	highlighted	in	red.
Mthroutine	Name(SelectionChanged)
Define_Com	Class(#PRIM_LCOL<#iiivfw33>)	Name(#SELECTION)
Selectlist	Named(#EMP_VIEW)
Continue	If(*Not	#EMP_VIEW.CURRENTITEM.SELECTED)
#SELECTION.INSERT(#EMPLOYEES<#EMPNO>)
Endselect
*	Show	the	selected	employees	form
#Selected_Employees.uShow(#SELECTION)
Endroutine
	

4.	Compile	the	reusable	part	iiiVFW32.
5.	Execute	the	Framework	as	Designer.
6.	Open	the	Properties	dialog	for	the	Reports	business	object.
7.	Select	the	Commands	Enabled	tab.
8.	Select	the	Monthly	action	and	plug	in	the	Reports	Monthly	command	handler,
iiiVFW32.	Use	the	Find	dialog,	which	will	plug	in	using	the	Identifier.

9.	Save	and	Restart	the	Framework.
10.	Select	the	Reports	business	object.	The	Weekly	command	handler	will	be
displayed	as	this	is	a	default	command.	Right	click	on	the	Weekly	tab	to
display	the	context	menu	and	select	the	Monthly	command	handler.

					A	list	of	all	employees	should	be	displayed.
11.	Hold	down	the	Control	key	and	click	on	a	number	of	employees	in	the
Monthly	list	view.

					The	Selected	Employees	form	should	be	displayed	and	show	the	fullname	of
all	currently	selected	employees	in	its	list	view.

12.	Change	the	selected	employees	on	the	Monthly	command	handler	and	note
that	the	Selected	Employees	viewer	is	dynamically	refreshed.

Summary
Important	Observations

Unlike	fields	which,	once	defined,	are	persistent	for	the	lifespan	of	a
component,	components	defined	within	a	routine	only	exist	for	the	duration
of	the	routine.	This	is	a	very	useful	technique	that	saves	you	having	to
remember	to	reset	variables	each	time	a	routine	is	run.
Defining	methods	such	as	SelectionChanged	adds	much	greater	clarity	to
your	code.	Furthermore,	the	method	can	be	invoked	by	other	components.

Tips	&	Techniques
List	Collections	can	collect	any	type	(or	Class)	of	Visual	LANSA	object.
You	would	typically	use	Keyed	Collections	of	Style	Collection	when	you	are
collecting	objects.
You	can	pass	a	reference	to	an	entire	collection	to	another	form	or	reusable
component.

What	You	Should	Know
How	to	pass	a	reference	to	an	entire	collection.

VFW110	–	Simple	Drag	and	Drop
Introduction
Drag	and	Drop	is	a	common	and	useful	feature	in	Windows	applications.	You
should	already	be	familiar	with	the	concepts	of	drag	and	drop	from	your
experience	using	the	Visual	LANSA	development	environment.	For	example,
you	drag	and	drop	controls	onto	a	form.
Most	users	will	be	familiar	with	drag	and	drop	as	it	is	an	integral	part	of	the
Windows	operating	system.	Drag	and	Drop	is	a	practical	way	to	copy	or	move
an	item	from	one	context	area	to	another.	The	copied	or	moved	item	can	be
virtually	anything.
Drag	and	Drop	includes	these	steps:
1.			Select	the	item	to	'drag'	by	pressing	a	mouse	button	down	(usually	the	left
button)	on	the	item.

2.		While	the	mouse	button	is	held	down,	move	the	mouse	to	the	target
destination	area.

3.		Release	the	mouse	button	so	that	the	item	to	be	copied/moved	is	"dropped"
in	the	target	area.

There	are	four	different	events	that	can	be	involved	in	a	drag	and	drop
operation:
StartDrag
ragOver
DragDrop
EndDrag.

Note:	A	Drag	and	Drop	operation	may	not	require	all	of	these	events.

Objective
To	build	a	command	handler	for	the	Departments	business	object	which	enables
Sections	to	be	transferred	to	another	Department,	using	drag	and	drop.	This	is
described	as	'simple	drag	and	drop'	because	the	action	occurs	within	a	single
form.	This	simplifies	the	steps	required	to	implement	the	drag	and	drop	action.

To	achieve	this	objective	you	will	complete	the	following	steps:
Step	1.	Create	Transfer	Section	to	Department	Command	Handler
Step	2.	Add	Logic	to	the	Transfer	Sections	to	Department	Command	Handler.
Step	3.	Test	the	Transfer	Section	to	Department	Command	Handler
Summary

Before	You	Begin
You	must	have	completed	exercises	VFW030,	VFW040	and	VFW042.

Step	1.	Create	Transfer	Section	to	Department	Command
Handler
1.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW34
					Description:	Transfer	Section	to	Department
2.		Give	the	reusable	part	an	ancestor	of	VF_AC010
3.		Using	the	Design	tab,	give	the	panel	iiiVFW33	a	Vertical	Split	manager.
4.		Open	the	Layout	Helper	tab	(Home	ribbon	/	Views).	Give	the	Vertical	Splitter
a	Divider	Style	of	Raised.

5.		Change	the	Name	of	PANL_1	to	LEFT,	and	change	the	Name	of	PANL_2	to
RIGHT.

6.		Select	the	LEFT	panel.	On	the	Design	ribbon,	give	the	panel	and
Attachment	manager..

7.		Drop	a	Panel	component	onto	the	top	of	the	LEFT	panel	and	change	its
Name	to	TOP_LEFT.

8.		Drop	a	Panel	onto	the	bottom	of	the	LEFT	panel	and	change	its	Name	to
BOTTOM_LEFT.

9.		Adjust	the	height	of	TOP_LEFT	and	BOTTOM_LEFT	as	required.
10.	Drop	a	List	View	into	the	center	of	the	panel	LEFT.	Change	its	Name	to
DRAG_FROM.

11.	Save	your	reusable	part.
12.	Select	the	RIGHT	panel	and	give	it	an	Attachment	manager.
13.	Drop	a	Panel	onto	the	top	of	the	RIGHT	panel	and	change	its	Name	to
TOP_RIGHT.

14.	Drop	a	Panel	onto	the	bottom	of	the	RIGHT	panel	and	change	its	Name	to
BOTTOM_RIGHT

15.	Adjust	the	height	of	TOP_RIGHT	and	BOTTOM_RIGHT	as	necessary.
16.	Drop	a	List	View	into	the	center	of	the	RIGHT	panel	and	change	its	Name	to
DRAG_TO.

17.	Save	your	reusable	part.

18.	Drop	a	Label	onto	the	TOP_LEFT	panel.
a.		Change	its	Text	to	Drag	Sections	from	Here
b.		Give	it	a	VisualStyle	of	VS_LAREM
c.		Resize	the	Label	as	necessary.

Hint:	To	quickly	make	the	label	fit	the	TOP_LEFT	panel,	give	the	label	a
Height	of	22.

19.	Follow	the	same	procedure	as	19.	(above)	to	add	a	label	for	'Department
Sections'	to	the	TOP_RIGHT	panel.

20.	Locate	the	file	SECTAB	on	the	Repository	tab.	Drag	the	fields	DEPTMENT,
SECTION	and	SECDESC	into	the	DRAG_FROM	list	view.	Change	the
WidthType	for	the	SECDESC	column	to	Remainder.

21.	Change	the	DragStyle	of	the	DRAG_FROM	list,	to	Automatic.	This	list
will	now	allow	drag	and	drop.

22.	Add	a	Push	Button	to	the	BOTTOM_LEFT	panel.
a.		Change	its	Caption	to	Refresh
b.		Change	its	Name	to	PHBN_REFRESH
c.		Create	a	Click	event	for	the	button.

23.		Drag	the	fields	STD_CODE	and	STD_DESC	and	STD_CODEL	into	the
DRAG_TO	list	view.
a.		Make	the	WidthType	for	the	STD_DESC	column,	to	Remainder.
b.		Change	the	Caption	for	the	STD_CODE	column	to	Section.	Change
CaptionType	to	Caption.

c.		Change	the	Caption	for	the	STD_DESC	column	to	Section	Description.
Change	CaptionType	to	Caption.

d.		Change	the	column	for	STD_CODEL	to	Visible	False.
24.		Change	the	DragStyle	for	list	DRAG_TO,	to	Automatic.
25.		Add	a	Push	Button	to	the	BOTTOM_RIGHT	panel.

a.		Change	its	Caption	to	Save	to	Section	Table
b.		Change	its	Name	to	PHBN_SAVE.
c.		Create	a	Click	event	for	it.

26.		Save	your	reusable	part.

Step	2.	Add	Logic	to	the	Transfer	Sections	to	Department
Command	Handler.
1.		On	the	Design	tab,	select	the	DRAG_FROM	list	view	and	create	an	Initialize
event.

2.		Select	the	DRAG_TO	list	view	and	create	DragDrop	event.
3.		Define	a	work	field	CURRDEPT	referred	to	field	DEPTMENT.	This	field
will	hold	current	department

3.		Switch	to	the	Source	tab.	Create	an	uExecute	method	routine,	which
redefines	the	ancestor	method
a.		Add	code	to	retrieve	the	Akey1	for	the	current	instance	list	entry	into	field
CURRDEPT.	Akey1	for	the	Departments	instance	list	contains
DEPTMENT.

b.		Execute	a	subroutine	called	BldDragTo.
Your	code	should	look	like	the	following:
Mthroutine	Name(uExecute)	Options(*redefine)
*	Return	Akey1	into	work	field	CURRDEPT
#avlistmanager.getCurrentInstance	Akey1(#currdept)
Execute	Subroutine(BldDragTo)
Endroutine
	

4.		Create	a	BldDragTo	subroutine	to	populate	the	DRAG_TO	list	view	from	the
file	SECTAB	for	the	key	CURRDEPT.

					Your	code	should	look	like	the	following:
Subroutine	Name(BldDragTo)
Clr_List	Named(#DRAG_TO)
Select	Fields(#section	#secdesc)	From_File(sectab)	With_Key(#currdept)
#std_codel	:=	#currdept
#std_code	:=	#section
#std_desc	:=	#secdesc
Add_Entry	To_List(#DRAG_TO)
Endselect
Endroutine
	

5.		Complete	the	Initialize	event	routine	for	the	list	view	DRAG_FROM.	This

needs	to	contain	entries	for	all	records	in	the	file	SECTAB,	except	those	for
the	current	department.

					The	Refresh	button	click	event	will	also	rebuild	the	DRAG_FROM	list	view.
a.		Create	a	subroutine	named	BldDragFrm.
b.		Execute	the	BldDragFrm	subroutine	from	the	DRAG_FROM	Initialize
event	routine.

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#DRAG_FROM.Initialize)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Execute	Subroutine(BldDragFrm)
Endroutine
Subroutine	Name(BldDragFrm)
Clr_List	Named(#DRAG_FROM)
*	add	all	records,	except	for	current	department
Select	Fields(#DRAG_FROM)	From_File(sectab)
If	(#deptment	*NE	#currdept)
Add_Entry	To_List(#DRAG_FROM)
Endif
Endselect
Endroutine
	

6.		The	drag	/	drop	operation	requires	that	the	target	of	the	drag	/	drop	accepts
the	proposed	drop	operation.	Usually	this	will	require	that	the	target	carries
out	some	kind	of	validation	in	its	DragOver	event.	For	example	it	may	check
that	the	payload	object	(which	is	not	required	for	drag	and	drop	within	the
same	form,	as	here)	is	a	valid	object.	In	this	case	no	validation	is	necessary
and	the	DRAG_TO	list	view	will	simply	return	an	AcceptDrop	of	True.
Complete	the	DragOver	event	for	DRAG_TO.

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#DRAG_TO.DragOver)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)	Acceptdrop(#acceptdrop)
#acceptdrop	:=	true
Endroutine
	

7.		The	DragDrop	event	needs	to	process	the	copy	or	move	operation.	Once
again	in	this	case,	the	requirements	are	simplified	because	this	is	a	drag	/	drop
operation	within	the	same	form.
Evtroutine	Handling(#DRAG_TO.DragDrop)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)

Selectlist	Named(#DRAG_FROM)
If	(#DRAG_FROM.currentItem.selected	=	true)
#std_codel	:=	#deptment
#std_code	:=	#section
#std_desc	:=	#secdesc
Add_Entry	To_List(#DRAG_TO)
Endif
Endselect
Endroutine
	

8.		Complete	the	logic	for	the	Save	button	Click	event.	This	needs	to	process	the
entries	in	the	list	DRAG_TO,	which	contains	two	types	of	entry:
i.		Entries	for	the	current	department.	Their	STD_CODEL	column	contains
the	current	department	code.

ii.		Entries	for	the	proposed	section	transfers	to	the	current	department.	These
have	a	STD_CODEL	column	containing	their	existing	department	code.

The	requirement	is	to:
a.		Read	all	DRAG_TO	entries	and	ignore	those	for	the	current	department.
b.		Check	if	the	proposed	transfer	section	already	exists	for	current
department.

c.		For	accepted	transfers,	retrieve	all	fields	from	their	current	SECTAB
record.

d.		Insert	a	new	record	in	SECTAB	for	current	department	and	new	section
code.

e.		Issue	a	message	for	successful	inserts.
f.		Delete	the	SECTAB	record	for	the	transferred	section,	using	their
previous	department	code.

g.		Delete	their	entry	from	the	DRAG_FROM	list	view.
h.		Issue	a	message	for	each	proposed	transfer	section	which	is	rejected.

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#PHBN_SAVE.Click)
Selectlist	Named(#DRAG_TO)
#deptment	:=	#std_codel
#section	:=	#std_code

#secdesc	:=	#std_desc
*	Bypass	entries	for	current	department.
If	(#deptment	*NE	#currdept)
*	Check	for	this	section	in	SECTAB	for	current	department
Check_For	In_File(sectab)	With_Key(#currdept	#section)	Val_Error(*next)
If_Status	Is_Not(*equalkey)
*	get	other	data	for	section
Fetch	Fields(*all)	From_File(sectab)	With_Key(#deptment	#section)
*	Reset	department	code	to	current
#deptment	:=	#currdept
Insert	Fields(*all)	To_File(sectab)	Val_Error(*next)
If_Status	Is(*okay)
Message	Msgtxt('Section	'	+	#section	+	'	transferred	to	department	'	+	#currdept)
*	Remove	section	from	donor	department	and	DRAG_FROM	list
#deptment	:=	#std_codel
Delete	From_File(sectab)	With_Key(#deptment	#section)	Val_Error(*next)
Dlt_Entry	From_List(#DRAG_FROM)
Endif
Else
Message	Msgtxt('Section	'	+	#section	+	'	not	transferred')
Dlt_Entry	From_List(#DRAG_TO)
Endif
Endif
Endselect
Endroutine
	

9.		Complete	the	Refresh	push	button	Click	event.
					It	should	execute	the	BldDragFrm	subroutine:
Evtroutine	Handling(#PHBN_REFRESH.Click)
Execute	Subroutine(BldDragFrm)
Endroutine
	

10.	Compile	your	new	command	handler.

Step	3.	Test	the	Transfer	Section	to	Department	Command
Handler
1.		Execute	the	Framework	as	a	Designer.

2.		Open	the	properties	dialog	for	the	_Departments	business	object.
3.		Select	the	Commands	Enabled	tab.	Select	the	Transfers	action	and	plug	in
the	command	handler,	iiiVFW34.

4.		Save	and	restart	the	Framework.
5.		Select	the	Transfer	command	handler	for	a	department.	The	departments
AUD	and	FLT	usually	have	fewer	sections	than	ADM,	so	select	one	of	these.

6.		Test	the	drag	and	drop	application	with	the	following	steps.
a.		Drag	a	section	from	the	drag	from	list,	which	exists	in	the	drag	to	list.
Click	the	Save	button	and	confirm	that	the	transfer	is	rejected	with	an	error
message.	The	new	entry	should	be	removed	from	the	drag	to	list.

b.		Drag	a	section	which	does	not	already	exist	into	the	drag	to	list	and	click
the	Save	button.	A	message	should	confirm	the	transfer	and	the	entry
should	be	removed	from	the	drag	from	list.

c.		Drag	two	sections	to	the	drag	to	list,	one	of	which	does	not	already	exist
in	the	current	department.	Click	the	Save	button.	Confirm	that	only	the
new	section	remains	in	the	drag	to	list,	a	transfer	message	is	issued	and	the
rejected	transfer	section	remains	in	the	drag	from	list.

Summary
Important	Observations

The	DragOver	event	occurs	when	a	drag	and	drop	operation	is	in	process.
You	can	use	this	event	to	monitor	the	mouse	pointer	as	it	enters,	leaves,	or
rests	directly	over	a	valid	target.	The	mouse	pointer	position	determines	the
target	object	that	receives	this	event.
The	DragDrop	event	occurs	when	the	mouse	button	is	released.	During	this
event,	you	would	normally	populate	the	target	with	the	dragged	data.

Tips	&	Techniques
Refer	to	the	Feature	Help	(F2)	for	more	details	about	the	Drag	and	Drop
properties	and	events.

What	I	Should	Know
How	to	enable	a	control	for	Drag	and	Drop.
How	to	use	the	DragOver	and	DragDrop	events.
The	purpose	of	the	AcceptDrop	property.
How	to	Drag	and	Drop	items	between	two	controls	in	the	same	form.

VFW112	–	Drag	and	Drop	between	Components
Objective
To	learn	how	to	drag	and	drop	items	between	components.

To	create	a	payload	component	to	drag	items	between	components.
To	create	a	Transfer	Employee	to	Section	command	handler.
To	create	a	reusable	part	to	receive	the	employee	data	transferred	via	the
payload	object

To	achieve	these	objectives	you	will	complete	the	following	steps:
Step	1.	Create	Employee	Payload	Object
Step	2.	Create	Reusable	Part	Section	Employees
Step	3.	Create	the	Transfer	Employees	to	Section	Command	Handler
Step	4.	Complete	the	Section	Employees	Component
Step	5.	Complete	the	Transfer	Employees	to	Section	Command	Handler
Summary

Before	You	Begin
Complete	exercises	VFW030,	VFW040	and	VFW042	before	starting	this
exercise.

You	also	should	complete	VFW110	–	Simple	Drag	and	Drop	before	starting	this
exercise.

Step	1.	Create	Employee	Payload	Object
In	this	step	you	create	two	components.

A	simple	Employee	Object	to	store	properties	for	each	employee.
An	Employee	Payload	object	which	contains	a	list	collection	of	the
Employee	Object,	containing	the	employees	being	transferred.

1.		Create	a	new	Reusable	Part	/	Object:
					Name:	iiiVFW35
					Description:	Employee	Object

2.		Define	properties	uDepartment,	uSection,	uEmpNum	and	uFullname.
					The	properties	should	automatically	set	and	get	the	corresponding	field
values.

					Your	code	should	look	like	the	following:
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_OBJT)
Define_Pty	Name(uDepartment)	Get(*auto	#deptment)	Set(*auto	#deptment)
Define_Pty	Name(uSection)	Get(*auto	#section)	Set(*auto	#section)
Define_Pty	Name(uEmpNum)	Get(*auto	#empno)	Set(*auto	#empno)
Define_Pty	Name(uFullname)	Get(*auto	#fullname)	Set(*auto	#fullname)
End_Com
	

4.		Compile	iiiVFW35
5.		Create	a	new	Reusable	Part	/	Object:
					Name:	iiiVFW36
					Description:	Employee	Payload
6.		Define	a	list	collection	which	collects	the	employee	object,	iiiVFW35:
Define_Com	Class(#prim_lcol<#iiivfw35>)	Name(#Objects)
	

7.		Define	a	property	which	passes	a	reference	to	the	list	collection	(called
#objects)	when	another	component	retrieves	this	property:
Define_Pty	Name(pObjects)	Get(*collection	#Objects)
	

8.		Define	a	method	routine,	Add_Item,	with	input	parameters	for	the	employee
object	properties:
Mthroutine	Name(Add_Item)
Define_Map	For(*input)	Class(#DEPTMENT)	Name(#uDeptment)
Define_Map	For(*input)	Class(#SECTION)	Name(#uSection)
Define_Map	For(*INPUT)	Class(#EMPNO)	Name(#uEmployee)
Define_Map	For(*INPUT)	Class(#FULLNAME)	Name(#uFullname)
Endroutine
	

9.	Complete	the	Add_Item	method	routine.
a.		Add	code	to	define	an	instance	of	the	employee	object	iiiVFW35,	named
New_Object.

b.		Update	the	properties	of	New_Object	using	the	passed	parameters.
c.		Insert	New_Object	to	the	list	collection,	named	Objects.
Mthroutine	Name(Add_Item)
Define_Map	For(*input)	Class(#DEPTMENT)	Name(#uDeptment)
Define_Map	For(*input)	Class(#SECTION)	Name(#uSection)
Define_Map	For(*INPUT)	Class(#EMPNO)	Name(#uEmployee)
Define_Map	For(*INPUT)	Class(#FULLNAME)	Name(#uFullname)
Define_Com	Class(#iiivfw35)	Name(#New_Object)
#New_Object.uDepartment	:=	#uDeptment
#New_Object.usection	:=	#uSection
#New_Object.UEmpNum	:=	#uEmployee
#New_Object.UFullname	:=	#uFullname
#Objects.Insert(#New_Object)
Endroutine
	

10.	Compile	iiiVFW36.

Step	2.	Create	Reusable	Part	Section	Employees
This	component	will	be	displayed	on	the	right	hand	side	of	the	Transfer
command	handler.	It	displays	the	employees	belonging	to	the	section	selected	in
the	instance	list.	The	drag	and	drop	operation	allows	an	employee(s)	to	be
transferred	to	the	Section	from	another	section.	A	Save	button	enables	the
changes	to	be	saved	to	the	file	SECTAB.
1.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW37
					Description:	Section	Employees.
2.		On	the	Design	tab,	use	New	Layout	to	give	iiiVFW37	an	Attachment
manager.

3.		Drag	and	drop	a	List	View	component	to	the	center	of	the	Panel.	Change	the
List	View	Name	to	DRAG_TO.

4.		Add	fields	DEPTMENT,	SECTION,	EMPNO,	FULLNAME	and
STD_CODEL	to	the	List	View	DRAG_TO.

5.		Make	the	STD_CODEL	column	Visible,	False.
6.		Change	the	list	view	column	headings	to	suitable	short	values.	For	example:
Dept.,	Sect.,	Emp	No.	and	Full	Name.	Change	each	column's	CaptionType	to
Caption.

					Change	the	Full	Name	column's	WidthType	=	Remainder.
7.		Save	the	reusable	part.
8.		The	Section	Employees	component	is	not	a	command	handler,	and	therefore
cannot	communicate	directly	with	the	Framework.	The	Transfer	Employee
command	handler	(which	you	will	create	in	the	next	step)	will	retrieve
department	and	section	codes	for	the	current	instance	list	entry.It	will	then	set
properties	in	iiiVFW37	to	enable	this	component	to	populate	the	DRAG_TO
list	view	with	employees	for	the	current	instance	list	entry.
a.		Define	the	following	properties	in	iiiVFW37:
Define_Pty	Name(uDepartment)	Set(*auto	#deptment)
Define_Pty	Name(uSection)	Set(BuildList)
	
b.		Create	a	property	routine	BuildList,	to	clear	and	populate	the	DRAG_TO
list	with	employees.

					Your	code	should	look	like	the	following:
Ptyroutine	Name(BuildList)
Define_Map	For(*input)	Class(#section)	Name(#i_section)
#std_codel	:=	*blanks
Clr_List	Named(#DRAG_TO)
Select	Fields(#deptment	#section	#empno	#surname	#givename)	From_File(pslmst1)	With_Key(#deptment	#i_section)
#fullname	:=	#surname	+	',	'	+	#givename
Add_Entry	To_List(#DRAG_TO)
Endselect
Endroutine
	
c.		Review	the	BuildList	property	routine.
					Section	code	(SECTION)	is	passed	into	this	routine	as	i_section.
					The	STD_CODEL	column	is	set	to	blanks.	Entries	with	a	blank
STD_CODEL	will	be	recognized	as	existing	employees	for	the	section.

					The	list	DRAG_TO	is	cleared	and	populated	with	all	employees	for	the
department,	section	using	logical	file	PSLMST1.

9.		Compile	iiiVFW37	in	its	current	form	and	leave	it	open	in	the	editor.	You
will	add	additional	logic	for	drag	and	drop	in	a	later	step.

Step	3.	Create	the	Transfer	Employees	to	Section	Command
Handler
1.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW38
					Description:	Transfer	Employees	to	Section	CH
2.		To	define	the	user	interface,	replace	the	code	for	iiiVFW38	with	the	code
supplied	in	VFW112	–	Appendix.	You	created	a	similar	interface	design	in
the	VFW110	–	Simple	Drag	and	Drop.

3.		Change	the	supplied	code	so	that	the	DRAG_TO	component	uses	your
initials	for	iiiVFW37.

4.		Switch	to	the	Design	view.	Your	design	should	look	like	the	following:

					A	vertical	splitter	component	divides	the	panel.	The	DRAG_FROM	list	on
the	left	will	contain	employees	for	all	department	/	sections	excluding	the
department/section	selected	in	the	instance	list.	That	is,	all	employees	that
could	be	transferred	to	the	current	department/section.	The	DRAG_FROM
list	view	has	a	DragStyle	property	of	Automatic.

					The	right	side	contains	the	Section	Employees	component,	iiiVFW37.
Employees	may	be	dragged	into	this	component's	list	and	then	saved	by
updating	the	employee	file.

5.		Create	work	fields	for	current	department	and	section	values:
Define	Field(#currdept)	Reffld(#deptment)
Define	Field(#currsec)	Reffld(#section)
	

6.		Create	an	uExecute	method	routine:
Mthroutine	Name(uExecute)	Options(*redefine)
#avlistmanager.getCurrentInstance	Akey1(#deptment)	Akey2(#section)
#currdept	:=	#deptment
#currsec	:=	#section
#DRAG_TO.uDepartment	:=	#deptment
#DRAG_TO.usection	:=	#section
Execute	Subroutine(BuildEmps)
Endroutine
	

					Review	the	uExecute	logic:
					Department	and	section	codes	are	retrieved	from	the	instance	list,	as	Akey1
and	AKey2	columns.

					DRAG_TO	is	the	name	of	the	iiiVFW37	component.
					The	BuildEmps	subroutine	does	not	yet	exist.
7.		Create	the	BuildEmps	subroutine:
Subroutine	Name(BuildEmps)
Clr_List	Named(#DRAG_FROM)
Select	Fields(#deptment	#section	#empno	#surname	#givename)	From_File(pslmst1)
If	((#currdept	*NE	#deptment)	*And	(#currsec	*NE	#section))
#fullname	:=	#surname	+	',	'	+	#givename
Add_Entry	To_List(#DRAG_FROM)
Endif
Endselect
Endroutine
	

					All	entries	from	PSLMST1	are	added	to	the	list	view	DRAG_FROM,	except
employees	for	the	instance	list	current	department	/	section.

8.		On	the	Design	view,	select	the	DRAG_FROM	list	view	on	the	left	panel	and
create	StartDrag	and	EndDrag	event	routines.

9.		Give	the	StartDrag	event	routine	Payload,	Continue	and	DragList
parameters	as	shown.
Evtroutine	Handling(#DRAG_FROM.StartDrag)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)	
Endroutine
	

					Note:	The	AutoComplete	prompter	will	complete	these	keywords	as	you
type.

10.	In	the	StartDrag	routine,	define	a	Payload_Employee	component	with	a
class	of	iiiVFW36	which	contains	a	list	collection	of	Employee	Object
(iiiVFW35).
Evtroutine	Handling(#DRAG_FROM.StartDrag)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)	Payload(#Payload)	Continue(#Continue)	Draglist(#Draglist)
Define_Com	Class(#iiivfw36)	Name(#Payload_Employee)
Endroutine
	

11.	The	StartDrag	event	is	triggered	when	the	user	selects	an	entry	and	drags
the	mouse	with	the	left	mouse	button	held	down.

					This	routine	needs	to	add	selected	entries	from	the	DRAG_FROM	list	view
to	the	Payload_Employee	component.	That	is,	into	the	payload	object.

					The	'add	to	payload	list	collection'	is	performed	by	invoking	the	Add_Item
method	passing	the	parameters	required.

					Add	the	following	code	to	the	StartDrag	event	routine	to	achieve	this:
Selectlist	Named(#DRAG_FROM)
Continue	If(*Not	#DRAG_FROM.currentItem.selected)
#Payload_Employee.add_item	Udeptment(#deptment)	Usection(#section)	Uemployee(#empno)	Ufullname(#fullname)
Endselect
	

12.	Having	populated	the	Payload_Employee	object,	the	following	is	required:
a.		A	reference	to	Payload_Object	is	passed	as	Payload.
b.		The	DragList	parameter	is	set	to	selection,	meaning	that	the	drag	image
will	be	the	list	view's	selected	items.

c.		The	Continue	parameter	is	set	to	true.
Add	the	following	code	to	achieve	this:
Set_Ref	Com(#Payload)	To(#Payload_Employee)
Set	Com(#draglist)	Dragliststyle(selection)
#continue	:=	true
	

13.	Add	Payload	and	DragResult	parameters	to	the	EndDrag	routine.
Evtroutine	Handling(#DRAG_FROM.EndDrag)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)	
Endroutine

	
14.	Define	the	Payload_Employee	object	with	a	class	of	iiiVFW36	and
Reference	of	*dynamic.

					Create	the	Payload_Employee	object	with	a	Set_Ref	to	the	parameter	value
#Payload.

					Implement	this	with	the	following	code:
Define_Com	Class(#iiivfw36)	Name(#Payload_Employee)	Reference(*dynamic)
Set_Ref	Com(#payload_employee)	To(*dynamic	#payload)
	

15.	If	the	DragResult	parameter	is	ACCEPTED,	delete	currently	selected	entries
from	the	DRAG_FROM	list	view.

					Add	the	following	code	to	implement	this:
If	(#dragresult	=	ACCEPTED)
Selectlist	Named(#DRAG_FROM)
Continue	If(*Not	#DRAG_FROM.currentItem.selected)
Dlt_Entry	From_List(#DRAG_FROM)
Endselect
Endif
	

16.	Compile	the	Transfer	Employees	to	Section	command	handler	(iiiVFW38).
You	will	add	additional	logic	for	the	push	buttons	in	a	later	step.

Step	4.	Complete	the	Section	Employees	Component
Switch	to	the	Section	Employees	component,	iiiVFW37.
1.		On	the	Design	tab,	select	the	DRAG_TO	list	view	and	create	DragOver	and
EndDrag	event	routines.

2.		Complete	the	Drag_Over	event	by	defining	Payload	and	AcceptDrop
parameters.

					Set	AcceptDrop	to	true	if	the	Payload_Employee	object	is	component	class
iiiVFW36.

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#DRAG_TO.DragOver)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)	
Endroutine
	

3.		Define	DragResult	and	Payload	parameters	for	the	DragDrop	routine.
					As	for	the	DragOver	routine,	define	a	dynamic	Payload_Employee	object
with	a	class	of	iiiVFW36.

					Create	Payload_Employee	using	Set_Ref	to	Payload.
					Your	code	should	look	like	the	following:
Evtroutine	Handling(#DRAG_TO.DragDrop)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)	
Define_Com	Class(#iiiVFW36)	Name(#Payload_Employee)	Reference(*dynamic)
Set_Ref	Com(#Payload_Employee)	To(*dynamic	#Payload)
Endroutine
	

4.		Retrieve	each	payload	entry	using	a	For	/	Endfor	loop	and	add	an	entry	to	the
DRAG_TO	list.

					Set	the	STD_CODEL	column	to	the	payload	department	code.
					Your	code	should	look	like	the	following:
Define	#CurrDept	Reffld(#Deptment)
#currdept	:=	#deptment
For	Each(#object)	In(#Payload_Employee.pObjects)
#deptment	:=	#currdept
#std_codel	:=	#object.udepartment
#empno	:=	#object.uempNum
#fullname	:=	#object.ufullname

Add_Entry	To_List(#DRAG_TO)
Endfor
	

5.		Create	a	SaveChanges	method	routine	to	be	invoked	via	the	Transfer
Employees	to	Section	command	handler	Save	button.

					A	transfer	will	be	implemented	by	updating	department	and	section	code
fields	in	the	employee	record.

					Transferred	employees	have	a	non	blank	STD_CODEL	column.
					Issue	a	message	if	an	update	is	not	successful.
					Your	code	should	look	like	the	following:
Mthroutine	Name(SaveChanges)
Selectlist	Named(#DRAG_TO)
If	(#std_codel	*NE	*blanks)
Update	Fields(#deptment	#section)	In_File(pslmst)	With_Key(#empno)	Val_Error(*next)
If_Status	Is_Not(*okay)
Message	Msgtxt('Transfer	employee	'	+	#empno	+	'to	'	+	#deptment	+	'	failed')
Endif
Endif
Endselect
Endroutine
	

6.		Compile	Section	Employees,	iiiVFW37.

Step	5.	Complete	the	Transfer	Employees	to	Section	Command
Handler
1.		Switch	to	iiiVFW38	in	the	editor.
2.		Create	Click	events	for	the	PHBN_REFRESH	and	PHBN_SAVE	buttons.
3.		The	Refresh	push	button	click	event	should	rebuild	the	DRAG_FROM	list.
Evtroutine	Handling(#PHBN_REFRESH.Click)
Execute	Subroutine(BuildEmps)
Endroutine
	

4.		The	Save	push	button	click	event	should	invoke	the	SaveChanges	method	in
the	DRAG_TO	component	(iiiVFW37).
Evtroutine	Handling(#PHBN_SAVE.Click)
#DRAG_TO.SaveChanges
Endroutine
	

5.		Compile	the	Transfer	Employees	to	Section	command	handler.
6.		Execute	the	Framework	as	Designer.
7.		Double	click	on	a	section	in	the	instance	list	to	open	its	Properties	dialog.
8.		Select	the	Commands	Enabled	tab,	select	the	Transfer	command	and	plug	in
iiiVFW38.	Use	the	Find	dialog,	which	plugs	in	using	the	Identifier.

9.		Save	and	Restart	the	Framework.
10.	Test	the	Transfer	Employees	command	handler	for	a	Section.

a.		Select	the	Departments	business	object,	expand	ADM	and	select	a
section.

b.		Select	the	Transfers	command	handler.	The	left	hand	(DRAG_FROM)
List	contains	all	employees	for	all	department	/	sections	except	the
currently	selected	department	/	section.

c.		The	right	hand	list	(DRAG_TO)	contains	employees	in	the	selected
department	/	section.

d.		Select	one	or	more	employees	in	DRAG_FROM	and	drop	them	on
DRAG_LIST.		The	employees	are	shown	in	DRAG_TO	with	their
department	and	section	currently	selected	in	the	instance	list.	These

employees	have	been	removed	from	the	DRAG_FROM	list.	Note	that	the
drag	image	is	the	selected	list	items.

e.		Click	the	Save	to	Employee	File	button	to	update	the	transferred
employees,	changing	their	department	and	section	codes	to	the	selected
department	and	section.

Summary
Important	Observations

The	default	value	of	the	DragStyle	property	is	none.	This	means	that	the
component	will	NOT	support	the	initiation	of	a	drag	operation.
The	StartDrag	event	occurs	when	the	mouse	button	is	pressed	over	a
component	and	the	mouse	is	moved.	It	is	typically	used	to	store	away	the
data	being	dragged.	As	such,	it	might	not	be	required	when	the	information
is	dropped	in	the	same	form.
The	DragOver	event	occurs	when	a	Drag	and	Drop	operation	is	in	progress.
You	would	decide	whether	to	accept	the	drop	operation	during	the	DragOver
event.
The	DragDrop	event	occurs	when	the	mouse	button	is	released.	During	this
event	you	would	normally	populate	the	target	with	the	dragged	data.
At	the	end	of	the	DragDrop	event	the	EndDrag	occurs.	It	is	a	notification	to
the	source	that	the	Drag	has	finished.	The	routine	would	typically	contain
code	which	is	related	to	the	source	component.	For	example,	set	DragResult
to	ACCPETED	and	delete	selected	entries	from	the	DRAG_FROM	list.

Tips	&	Techniques
Use	a	payload	object	as	a	temporary	"storage"	area	when	the	data	being
dragged	is	not	available	in	the	component	where	it	is	to	be	dropped.

What	I	Should	Know
How	to	Drag	and	Drop	multiple	items	between	two	controls	in	different
forms.
How	to	use	the	EndDrag	routine.
How	to	use	the	DragResult	property.
How	to	copy	or	move	items	using	drag	and	drop.

VFW112	–	Appendix
To	define	the	user	interface,	use	the	following	code	to	replace	the	code	for
iiiVFW38.	This	code	is	supplied	to	save	time:
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#VF_AC010)	Height(270)	Layoutmanager(#SPLM_1)	Width(500)
Define_Com	Class(#PRIM_SPLM)	Name(#SPLM_1)	Dividerstyle(Raised)	Orientation(Vertical)
Define_Com	Class(#PRIM_PANL)	Name(#LEFT)	Displayposition(1)	Height(270)	Layoutmanager(#ATLM_1)	Left(0)	Parent(#COM_OWNER)	Tabposition(1)	Tabstop(False)	Top(0)	Width(230)
Define_Com	Class(#PRIM_PANL)	Name(#RIGHT)	Displayposition(2)	Height(270)	Layoutmanager(#ATLM_1)	Left(238)	Parent(#COM_OWNER)	Tabposition(2)	Tabstop(False)	Top(0)	Width(262)
Define_Com	Class(#PRIM_SPLI)	Name(#SPLI_1)	Manage(#LEFT)	Parent(#SPLM_1)	Weight(1)
Define_Com	Class(#PRIM_SPLI)	Name(#SPLI_2)	Manage(#RIGHT)	Parent(#SPLM_1)
Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_1)
Define_Com	Class(#PRIM_PANL)	Name(#LEFT_TOP)	Displayposition(1)	Height(33)	Left(0)	Parent(#LEFT)	Tabposition(1)	Tabstop(False)	Top(0)	Width(230)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_1)	Attachment(Top)	Manage(#LEFT_TOP)	Parent(#ATLM_1)
Define_Com	Class(#PRIM_PANL)	Name(#LEFT_BOTTOM)	Displayposition(2)	Height(40)	Left(0)	Parent(#LEFT)	Tabposition(2)	Tabstop(False)	Top(230)	Width(230)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_2)	Attachment(Bottom)	Manage(#LEFT_BOTTOM)	Parent(#ATLM_1)
Define_Com	Class(#PRIM_LTVW)	Name(#DRAG_FROM)	Componentversion(2)	Displayposition(3)	Dragstyle(Automatic)	Fullrowselect(True)	Height(197)	Keyboardpositioning(SortColumn)	Left(0)	Parent(#LEFT)	Showsortarrow(True)	Tabposition(3)	Top(33)	Width(230)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_3)	Attachment(Center)	Manage(#DRAG_FROM)	Parent(#ATLM_1)
Define_Com	Class(#PRIM_PANL)	Name(#RIGHT_TOP)	Displayposition(2)	Height(33)	Left(0)	Parent(#RIGHT)	Tabposition(2)	Tabstop(False)	Top(0)	Width(262)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_4)	Attachment(Top)	Manage(#RIGHT_TOP)	Parent(#ATLM_1)
Define_Com	Class(#PRIM_PANL)	Name(#RIGHT_BOTTOM)	Displayposition(3)	Height(40)	Left(0)	Parent(#RIGHT)	Tabposition(3)	Tabstop(False)	Top(230)	Width(262)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_5)	Attachment(Bottom)	Manage(#RIGHT_BOTTOM)	Parent(#ATLM_1)
Define_Com	Class(#PRIM_LABL)	Name(#LABL_1)	Caption('Drag	Employees	from	here')	Displayposition(1)	Height(30)	Left(14)	Parent(#LEFT_TOP)	Tabposition(1)	Tabstop(False)	Visualstyle(#VS_LAREM)	Width(227)
Define_Com	Class(#PRIM_PHBN)	Name(#PHBN_REFRESH)	Caption('Refresh')	Displayposition(1)	Left(32)	Parent(#LEFT_BOTTOM)	Tabposition(1)	Top(4)	Width(193)
Define_Com	Class(#PRIM_PHBN)	Name(#PHBN_SAVE)	Caption('Save	to	Employee	File')	Displayposition(1)	Left(40)	Parent(#RIGHT_BOTTOM)	Tabposition(1)	Top(5)	Width(185)
Define_Com	Class(#PRIM_LABL)	Name(#LABL_2)	Caption('Section	Employees')	Displayposition(1)	Height(30)	Left(30)	Parent(#RIGHT_TOP)	Tabposition(1)	Tabstop(False)	Visualstyle(#VS_LAREM)	Width(211)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_1)	Caption('Dept.')	Captiontype(Caption)	Displayposition(1)	Parent(#DRAG_FROM)	Source(#DEPTMENT)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_2)	Caption('Sect.')	Captiontype(Caption)	Displayposition(2)	Parent(#DRAG_FROM)	Source(#SECTION)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_3)	Caption('Number')	Captiontype(Caption)	Displayposition(3)	Parent(#DRAG_FROM)	Source(#EMPNO)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_4)	Caption('Full	Name')	Captiontype(Caption)	Displayposition(4)	Parent(#DRAG_FROM)	Source(#FULLNAME)	Widthtype(Remainder)
*	Change	the	following	line	using	your	initials
Define_Com	Class(#IIIVFW38)	Name(#DRAG_TO)	Height(197)	Parent(#RIGHT)	Top(33)	Width(262)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_7)	Attachment(Center)	Parent(#ATLM_1)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_6)	Attachment(Center)	Manage(#DRAG_TO)	Parent(#ATLM_1)
End_Com
	

VFW120	–	Using	Hidden	Commands
Hidden	Command	Handler	Anatomy

Hidden	commands	are	run	in	the	same	way	as	other	commands	but	do	not
appear	on	tabs	or	in	separate	windows	and	are	hidden	from	the	user
Are	used	to	perform	non-visual	tasks.
For	Windows	applications	hidden	commands	are	reusable	parts	with	an
ancestor	of	VF_AC020.
Have	most	non-visual	VL	Framework	and	instance	list	services	available	to
them.

Structurally,	Hidden	Command	Handlers	for	Windows	applications	are	similar
to	Windows	Command	Handlers	with	these	important	differences:

They	extend	the	base	class	#VF_AC020.
They	don't	use	the	optional	method	uInitialize.
They	don't	use	the	optional	method	uTerminate.
They	don't	listen	to	events.

When	using	Hidden	Command	Handlers	it	is	important	to	remember	that	they:
Should	always	have	the	Default	Command	option	set	to	NEVER	for	instance
level	commands	or	NO	for	business	object	level	commands.
Should	never	be	used	with	the	Hide	All	Other	Command	Tabs	option	set.
Should	never	be	attached	to	RAMP	Destination	screens.
Should	never	attempt	to	display	information	to	the	user	or	interact	with	the
user.	Hidden	means	hidden

Objectives
To	create	a	demonstration	hidden	command,	'Reverse',	which	will	act	on	the
current	instance	list	entry	and	reverse	the	employee	full	name	string.
This	is	a	quick	and	simple	example	to	demonstrate	the	principle.

To	achieve	this	objective	you	will	complete	the	following	steps:
Step	1.	Add	Reverse	as	a	Hidden	Command	for	Employees
Step	2.	Create	the	Reverse	Command
Step	3.	Plugin	and	Test	Reverse	Command
Summary

Before	You	Begin
Complete	exercises	VFW030,	VFW040	and	VFW042.

Step	1.	Add	Reverse	as	a	Hidden	Command	for	Employees
1.		Open	the	Properties	dialog	for	Employees	and	select	the	Commands	Enabled
tab.

2.		Click	the	Command	Definitions	button.

3.		Click	the	New	button	to	define	a	new	command.
4.		Define	the	Reverse	command	as	follows:

Caption Reverse

Hint Reverses	Employee	Full	Name

User	Object	Name/Type REVERSE

	

					Note:	The	User	Object	Name/Type	is	initially	given	a	unique	identifier
(GUID)	which	is	generated	for	all	new	framework	objects.	You	can	change
this,	provided	the	value	is	unique.	The	Verify	Name	button	enables	you	to
check	that	your	name	is	unique	within	the	framework.

5.		Give	the	Reverse	command	any	suitable	icon	and	bitmap.	Select	the	same
image	for	each,	so	that	the	image	will	appear	on	tool	bars	and	menus	for	the
Reverse	command.

6.		Click	the	Close	button.
7.		Drag	the	Reverse	command	into	the	Commands	Enabled	column	for	the
Employees	business	object.

8.		Close	the	dialog	which	prompts	you	to	save	and	restart	your	Framework	and
prevent	it	being	re-displayed.

9.		Select	the	checkbox	to	make	the	Reverse	command	Execute	as	a	hidden
command

10.	Give	the	Reverse	command	a	Default	Command	value	of	Never.

11.	Save	and	Restart	the	Framework.

Step	2.	Create	the	Reverse	Command
1.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW41
					Description:	Reverse	Hidden	Command.
2.		Replace	its	code	with	the	following:
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#VF_AC020)
*	==
*	Simple	Field	and	Group	Definitions
*	==
Define	Field(#REVSD)	Reffld(#VF_ELBOOL)
Def_Cond	Name(*REVSD)	Cond('#REVSD	*EQ	TRUE')
*	==
*	Handle	Command	Execution
*	==
Mthroutine	Name(uExecute)	Options(*REDEFINE)
*	Do	any	execution	logic	defined	in	the	ancestor
Invoke	Method(#Com_Ancestor.uExecute)
*	Get	the	Employee	number	of	the	current	instance
Invoke	Method(#avListManager.GetCurrentInstance)	Akey1(#EMPNO)	Acolumn3(#REVSD)
*	Fetch	information	from	the	main	file	to	fill	in	the	header	fields	on	the	form
Fetch	Fields(#SURNAME	#GIVENAME)	From_File(PSLMST)	With_Key(#EMPNO)
*	Put	the	names	together	in	the	reverse	order
If	Cond(*REVSD)
*	Put	the	names	together	Given	name	first
Change	Field(#UF_VisID2)	To(#GIVENAME)
Use	Builtin(BConcat)	With_Args(#UF_VisID2	#SURNAME)	To_Get(#UF_VisID2)
*	Set	the	reversed	flag
Change	Field(#REVSD)	To(FALSE)
Else
*	Put	the	names	together	Surname	first
Change	Field(#UF_VisID2)	To(#SURNAME)
Use	Builtin(BConcat)	With_Args(#UF_VisID2	#GIVENAME)	To_Get(#UF_VisID2)
*	Set	the	reversed	flag
Change	Field(#REVSD)	To(TRUE)
Endif

*	Update	the	name	(Visual	ID	2)	to	the	instance	list
Invoke	Method(#avListManager.UpdateListEntryData)	Akey1(#EMPNO)	Visualid2(#UF_VisID2)	Acolumn3(#REVSD)
Endroutine
End_Com
	

3.		Compile	your	reusable	part	and	review	the	code:
a.		All	hidden	commands	must	have	an	ancestor	of	VF_AC020.
b.		The	uExecute	method,	retrieves	AKey1	and	AColumn3	for	the	current
instance	list	entry.	Note	that	you	may	need	to	change	this	column	number
if	your	instance	list	already	uses	it	to	hold	a	different	value.

c.		Fetches	surname	and	givename	for	this	employee	number.
d.		Tests	the	value	of	the	condition	*REVSD	which	is	checks	if	the	value
returned	from	AColumn3	is	TRUE.

e.		Depending	on	*REVSD,	VisualID2	is	updated,	with	Surname	first	or
Given	Name	first.

f.		Updates	the	current	list	entry,	columns	VisualID2	and	AColumn3.

Step	3.	Plugin	and	Test	Reverse	Command
1.		Open	the	Properties	dialog	for	Employees.	Select	the	Commands	Enabled
tab.

2.		Plug	in	the	reusable	iiiVFW41	for	the	Reverse	command.	Use	the	Find
dialog,	so	that	the	plug	in	uses	the	Identifier	name.

3.		Save	and	Restart	the	Framework.
4.		Test	the	Reverse	command	for	the	Employees	business	object.

					Note:	Initially,	AColumn3	is	blank.	In	this	case,	the	hidden	command	sets
VisualID2	to	surname,	given	name.	This	is	the	same	as	its	initial	appearance
so	no	change	will	be	observed.	Selecting	an	entry	a	second	time	will	change
VisualID2	to	the	form	given	name,	surname	and	the	change	is	obvious.

Summary
Important	Observations

A	hidden	command	may	perform	any	processing	you	require,	but	may	not
use	the	optional	methods,	uInitialize	and	uTerminate.
Hidden	commands	do	not	listen	for	events.

Tips	&	Techniques
Hidden	commands	should	be	set	to	Default	Command,	NEVER.
Refer	to	the	Visual	LANSA	Framework	Guide	for	further	details	about	using
hidden	commands.

What	You	Should	Know
How	to	implement	a	hidden	command.

VFW122	–	Launching	a	VLF	Window
Programatically	Creating	and	Managing	Windows
Your	programs	can	create	and	manage	windows	by	calling	the	method
avShowWindow	in	the	Framework	manager.
For	example:

Open	a	whole	new	instance	of	the	Framework	in	another	window	named
MYWINDOW:

					#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)	For(FRAMEWORK)	WindowName(MYWINDOW)
	
Open	the	DEMONSTRATION	application:

									#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)	For(APPLICATION)	ofType(DEMO)	WindowName(DEMO_WINDOW)
	
Open	an	application	view	named	HR:

									#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)	For(VIEW)	ofType(HR)	WindowName(DEMO_VIEW)
	
Open	business	objects	Organizations	and	Resources	in	two	independent
windows:

									#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)	For(BUSINESSOBJECT)	ofType(DEM_ORG)	WindowName(DEMO_EMP)
									#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)	For(BUSINESSOBJECT)
	ofType(DEM_ORG_SEC_EMP)	WindowName(DEMO_SECTION)
	

Remember	that	the	OfType(DETAILS)	names	you	specify	on	calls	to
avShowWindow	are	the	User	Object	Name	/	Type	values	specified	on	the
Identification	tab	of	the	properties	of	the	respective	object:

Using	the	avShowWindow	method
When	the	avShowWindow	method	is	invoked,	it	tests	whether	a	window	with
the	name	specified	exists.
If	the	named	window	already	exists,	it	is	activated	(ie:	restored	from	being
minimized,	if	required,	and	brought	to	the	front	of	all	the	Framework	windows).
If	the	named	window	does	not	exist,	it	is	created.
Then	in	both	cases:

The	window's	open	information	properties	and	object	reference	are	updated
with	anything	you	supplied	(see	Window	Opening	Information	in	the	Visual
LANSA	Frameworks	guide.).
A	switch	operation	is	performed	inside	the	window	to	any	application	or
business	you	may	have	nominated.

In	simple	terms,	you	are	saying	to	the	Framework	"Display	a	window	with	this
name	and	pass	this	information	into	it,	then	cause	it	to	switch	to	this	application
or	this	business	object".
When	you	create	a	new	window	or	switch	an	existing	window	it	happens
asynchronously	to	your	program.	So	if	you	use	avShowWindow	and	then
immediately	enumerate	all	open	windows	you	will	not	find	the	window	you	just
created	(yet).

The	uShowWindowCompleted	Method
This	method	should	be	placed	in	a	command	handler	which	needs	to	"wake	up"
and	perform	some	processing	when	requested	by	a	command	handler	in	the
main	VLF	window:
For	example	a	command	handler	in	a	window	named	EMP_WINDOW
contains:
Mthroutine	Name(uShowWindowCompleted)	Options(*Redefine)
		#EMPNO	:=	#Com_Owner.avCurrentWindow.OpenInfo<1>
		Fetch	Fields(#XG_HEAD)	From_File(PSLMST)	With_Key(#EMPNO)
Endroutine
	

The	method	uShowWindowCompleted		is	run	when	another	command	handler
performs:
#AvFrameworkManager.avShowWindow	WindowName(EMP_WINDOW)
	

The	methods	avShowWindow	and	uShowWindowCompleted	should	be
considered	as	a	"pair".

Window	Names
You	may	have	noticed	from	the	preceding	examples	that	windows	have
symbolic	names.	Here	are	some	things	you	should	know	about	window	names:

The	names	ALL,	MAIN	and	CURRENT	are	reserved.
When	an	end-user	opens	a	window	it	is	automatically	assigned	a	unique
name	that	starts	with	USER_.	Do	not	rely	on	USER_	window	names	being

the	same	from	Framework	signon	to	signon	or	from	Framework	version	to
version.
Names	are	not	end-user	visible.	They	are	programmatic	names,	case
insensitive	and	may	be	up	to	256	characters	long.	Being	case	insensitive
means	they	are	often	uppercased,	so	using	just	'A'	->	'Z'	and	'0'	->	'9'	is
advisable.
Window	names	are	uniquely	scoped	and	only	addressable	within	a
Framework	process	(ie:	a	LANSA	X_RUN.EXE	process).	This	means	that	if
you	start	multiple	X_RUN.EXE	processes	they	can	each	contain	a	unique
window	named	TESTWINDOW.	An	operation	that	involves	signalling	or
switching	window	TESTWINDOW	only	refers	to	it	within	the	current
X_RUN.EXE	process.	No	intra-process	windows	operations	are	currently
provided.

Application	Settings
The	Properties	for	a	Framework,	an	Application	and	a	Business	Object	enable
the	designer	to	determine	whether	each	object	can	be	opened	in	a	new	window,
Never,	Manually,	Automatically	or	Automatically	or	Manually:

Note:	The	Automatic	setting	will	always	open	the	object	in	a	new	window	when
it	is	selected	in	the	Navigation	panel.	It	therefore	means	always	open	this	object
in	a	new	window.

The	setting	applies	to	that	level	only.	So	a	setting	of	Never	at	the	Framework
level,	means	the	whole	framework	cannot	be	opened	in	a	new	window,	but	an

application	or	business	object	can	be	opened	in	a	new	window,	if	this	is	allowed
for	the	object.

Objective
To	extend	the	Employee	Images	for	a	Section	command	handler	to	display
employee	details	by	opening	a	new	Framework	window.

To	meet	this	objective	you	will	complete	the	following	steps:
Step	1.	Extend	Pop-Up	Menu	in	Employee	Image	Object
Step	2.	Enhance	Employee	Images	for	Section	Command	Handler
Step	3.	Change	Employee	Details	Command	Handler
Step	4.	Ensure	Details	displayed	for	first	Employee
Summary

Before	You	Begin
Complete	exercises	VFW030,	VFW040,	VFW042,	VFW100	and	VFW104
before	starting	this	exercise.
In	exercise	VFW104,	you	implemented	Sections	as	a	business	object	which	is
visible	in	the	Navigation	panel,	with	a	By	Department	filter	to	populate	the
instance	list.	In	this	exercise	you	will	add	the	ability	to	open	Employee	Details
in	a	new	window	from	the	Employee	Images	for	a	Section	command	handler,
working	with	the	Sections	business	object	itself.	This	will	enable	a	'switch	back'
to	be	implemented	from	Employee	Details	to	Employee	Images	for	Section	in
the	main	VLF	window.

Step	1.	Extend	Pop-Up	Menu	in	Employee	Image	Object
1.		Open	iiiVFW29	in	the	editor
2.		In	the	Design	view,	right	click	on	the	image	component	and	select	Edit
Popup	Menu.

					The	Popup	menu	is	displayed	at	the	top	of	the	Design	view.
3.		Move	the	cursor	to	right	hand	side	of	the	menu	item	text	and	press	Enter	to
add	a	new	menu	item:

4.		Define	the	new	menu	item	as	Open	Employee	Details	Window.	Note	that
the	new	menu	item	is	MITM_2.

5.		Create	a	Click	event	for	MITM_2.
6.		Switch	to	the	Source	tab.

7.		Define	an	event	uOpenEmpWindow,	which	will	pass	employee	number:
Define_Evt	Name(uOpenEmpWindow)
		Define_Map	For(*input)	Class(#empno)	Name(#uEmpNum)
	

8.		Make	the	Click	event	for	MITM_2,	signal	the	uOpenEmpWindow	event:
Evtroutine	Handling(#MITM_2.Click)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Signal	Event(uOpenEmpWindow)	uEmpNum(#Empno)
Endroutine
	

9.		Recompile	the	new	version	of	iiiVFW29

Step	2.	Enhance	Employee	Images	for	Section	Command	Handler
In	this	step	you	will	change	iiiVFW28	to	handle	the	new	event
uOpenEmpWindow	signalled	by	iiiVFW29.

At	present	the	Employee	Images	for	Section	CH	handles	the	uShowEmpDetails
event	by	using	avSwitch	to	open	the	Employee	Details	CH	within	the	same
Framework	window.
The	Employee	Images	for	Section	CH	will	handle	the	uShowWindow	event	by
invoking	the	avShowWindow	method	to	open	the	Employee	Details	command
handler	in	a	new	Framework	window.
In	the	next	step	you	will	change	the	Employee	Details	CH	(iiiVFW06)	to
process	the	avShowWindow	request.
1.		Open	iiiVFW28	–	Employee	Images	for	Section	in	the	editor
2.		Add	an	event	routine	for	ImageCollection<>.uOpenEmpWindow
Evtroutine	Handling(#ImageCollection<>.uOpenEmpWindow)	uEmpNum(#I_EmpNum)
Endroutine
	

					This	will	execute	when	the	pop-up	menu	option	Open	Employee	Details
Window	is	selected	on	an	employee	image.

3.		This	routine	will	invoke	the	avShowWindow	method	for	the	window	name
III_EMP.

					The	routine	must	first	declare	a	temporary	reference	to	the	framework's	User
Interface	to	multiple	Windows	component,	VF_SY154.

					The	Framework	avWindow	property	returns	a	reference	for	a	requested
window	name.	New	code	is	highlighted	in	red.
Evtroutine	Handling(#ImageCollection<>.uOpenEmpWindow)	uEmpNum(#i_empnum)
*	define	a	temporary	class	#VF_SY154	reference
Define_Com	Class(#vf_sy154)	Name(#window)	Reference(*dynamic)	
*	Ask	the	framework	manager	to	locate	a	window	by	name	and	return	a	reference
#window	<=	#avFRAMEWORKMANAGER.avWindow<'III_EMP'>	
Endroutine
	

4.		If	this	reference	is	not	*null,	invoke	avShowWindow	for	the	business	object
EMPLOYEES	to	execute	DETAILS,	in	window	name	III_EMP.

Evtroutine	Handling(#ImageCollection<>.uOpenEmpWindow)	uEmpNum(#i_empnum)
*	define	a	temporary	class	#VF_SY154	reference
Define_Com	Class(#vf_sy154)	Name(#window)	Reference(*dynamic)
*	Ask	the	framework	manager	to	locate	a	window	by	name	and	return	a	reference
#Window	<=	#AvFrameworkManager.avWindow<'III_EMP'>
If	(#Window	*IsNot	*Null)
Message	Msgtxt('Window	III_EMP	is	already	open')
*	Display	employee	details	in	III_EMP	window
#empno	:=	#i_empnum
#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)	For(BUSINESSOBJECT)	Oftype(EMPLOYEES)	Windowname(III_EMP)	Execute(DETAILS)	Openinfo1(#EMPNO)
Else
*	Open	a	new	window
#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)	For(BUSINESSOBJECT)	Oftype(EMPLOYEES)	Windowname(III_EMP)	Execute(DETAILS)
Endif
Endroutine
	

5.		Review	the	above	code:
A	temporary	reference	to	VF_SY154	is	defined.
Check	if	window	III_EMP	exists
and	then:	
set	EMPNO	from	passed	value	I_EMPNUM.
Invoke	avShowWindow	for	business	object	EMPLOYEES,	window
III_EMP,	command	handler	DETAILS,	passing	EMPNO	as	open
information	1.
Else
use	avShowWindow	to	open	a	new	window.

6.		Compile	iiiVFW28.

Step	3.	Change	Employee	Details	Command	Handler
In	this	step	you	will	change	the	Employee	Details	command	handler,	iiiVFW06
to	handle	the	avShowWindow	method.
If	a	filter	or	command	handler	is	either	started,	or	already	active	inside	window
EMP_WINDOW,	then	if	it	has	the	special	'wake	up'	method	in	it,	the	method
will	be	invoked	every	time	some	other	window	executes:
Mthroutine	uShowWindowCompleted	Options(*Redefine)
#Empno	:=	#Com_Owner.avCurrentWindow.OpenInfo<1>
Use	message_box_show	(ok	ok	info	*Component	#Empno)	
Endroutine
	

this	method	will	be	invoked	every	time	some	other	window	executes:
#AvFrameworkManager.avShowWindow	WindowName(EMP_WINDOW)
	

In	other	words,	this	is	a	method	that	is	saying	'wake	up,	another	window	wants
you	to	do	something'.	Typically	the	command	handler	or	filter	that	is	'woken	up'
would	use	information	passed	in	the	open	information	strings	to	determine	what
it	should	do	next.
1.			Open	the	Employee	Details	command	handler	(iiiVFW06)		in	the	editor.
2.		Add	the	following	logic	to	create	the	uShowWindowCompleted	method
routine:
Mthroutine	Name(uShowWindowCompleted)	Options(*Redefine)
#EMPNO	:=	#Com_Owner.avCurrentWindow.OpenInfo<1>
Fetch	Fields(#XG_HEAD)	From_File(PSLMST)	With_Key(#EMPNO)	Val_Error(*next)
If_Status	Is_Not(*okay)
Message	Msgtxt('Employee	Details	not	found	for	:	'	+	#EMPNO)
Endif
#fullname	:=	#SURNAME	+	',	'	+	#GIVENAME
#com_ancestor.avSignalEvent	Withid(Add_List_Entry)	Sendainfo1(#EMPNO)
#DEPSEC_DD.ucurrDept	:=	#deptment
#DEPSEC_DD.uCurrsection	:=	#section
Endroutine
	

					Note:
DEPSEC_DD	is	the	department	/	section	dropdown	component

(iiiVFW14)	which	was	added	in	exercise	VFW074.
3.		Review	the	code	in	Step	2	and	note	that:

Employee	number	is	retrieved	using
#Com_owner.uCurrentWindow.OpenInfo<1>	which	was	set	up	by	the
avShowWindow	in	the	Employee	Images	for	Section	command	handler.
Required	fields	are	retrieved	from	the	employee	file.
An	avSignalEvent	is	used,	to	tell	the	active	filter	to	add	an	entry	to	the
instance	list.

4.		Compile	the	changed	Employee	details	command	handler	–	IIIVFW06.
5.		Execute	your	framework	and	display	the	Images	command	handler	for	a
suitable	Department	/	Section	(in	which	one	or	more	employees	have	images
recorded).

6.		Display	the	pop-up	menu	for	an	employee	image	and	select	the	Open
Employee	Details	Window	option.	A	second	framework	window	should	be
opened.

					Notice	that	employee	details	are	not	displayed	for	the	first	employee
requested.

7.		Select	another	employee	image	and	select	Open	Employee	Details	Window
again	from	the	conext	menu.	This	time,	notice	that	in	the	new	window	an
entry	is	added	to	the	instance	list	and	the	correct	employee	details	are
displayed.

					Do	you	know	why	this	is	happening?

Step	4.	Ensure	Details	displayed	for	first	Employee
As	explained	in	Step	3.	Change	Employee	Details	Command	Handler,	the
second	window	must	be	open	in	order	to	process	the	uShowWindowCompleted
method.	This	means	your	initial	avShowWindow	in	Employee	Images	for
Section	command	handler	will	not	be	processed,	except	to	open	the	new
window	III_EMP.
Bear	in	mind	that	this	is	simply	an	exercise	that	illustrates	how	to
programmatically	show	a	command	in	a	new	window.	However,	as	mentioned
earlier,	a	user	could	simple	use	the	framework's	Windows	menu	to	open	the
Employees	business	object	in	a	new	window,	and	manually	access	the	required
employee	details.
For	example:

The	following	solution	uses	a	timer	component	to	invoke	an	avShowWindow	to
open	a	new	framework	window	and	then,	after	a	short	delay,	invoke
avShowWindow	again	so	that	the	details	for	the	first	employee	selection	are
displayed.
1.		With	Employee	Images	for	a	Section	open	in	the	editor,	on	the	Design	tab,
drag	a	timer	component	onto	the	panel.	The	Timer	is	a	non-visual	component
and	will	not	be	displayed	in	the	Design	view.
Define_Com	Class(#PRIM_TIMR)	Name(#TIMR_1)
	

2.		Select	the	above	line	and	press	F7	to	display	the	Details	tab	for	the	Timer.
Change	its	Interval	property	to	0.	The	timer	will	initially	not	be	started.
Define_Com	Class(#PRIM_TIMR)	Name(#TIMR_1)	Interval(0)
	

3.		Create	a	NewWin	method	routine:
a.Move	all	the	code	from	the	uOpenEmpWindow	event	routine	to	the
NewWin	method	routine.

b.In	the	NewWin	method	routine	delete	this	line:
#empno	:=	#i_empno

Your	NewWin	routine	should	now	look	like	the	following:
Mthroutine	Name(NewWin)
*	define	a	temporary	class	#VF_SY154	reference
Define_Com	Class(#vf_sy154)	Name(#window)	Reference(*dynamic)
*	Ask	the	framework	manager	to	locate	a	window	by	name	and	return	a	reference
#window	<=	#avFRAMEWORKMANAGER.avWindow<'III_EMP'>
*	True	if	second	window	is	open
If	(#Window	*IsNot	*Null)
Message	Msgtxt('Window	III_EMP	is	already	open')
*	Display	employee	details	in	III_EMP	window
#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)	For(BUSINESSOBJECT)	Oftype(EMPLOYEES)	Windowname(III_EMP)	Execute(DETAILS)	Openinfo1(#EMPNO)
*	Second	window	needs	to	be	opened	and	called	again	after	a	short	delay
Else
*	Open	a	new	VLF	window	and	start	timer
#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)	For(BUSINESSOBJECT)	Oftype(EMPLOYEES)	Windowname(III_EMP)	Execute(DETAILS)	
Endif
*	Free	VF_SY154	reference
#window	<=	*null
Endroutine
	

4.Change	the	NewWin	method	routine:
a.Add	OpenInfo1(OPEN)	to	the	second	avShowWindow	line.
b.In	the	Else	logic,	set	the	Timer	Interval	to	2000.	This	will	start	the	timer
with	a	tick	event	every	2	seconds.

Your	new	code	should	look	like	the	following.	New	code	is	highlighted:
.	.	.	.
Else
*	Open	a	new	VLF	window	and	start	timer
#AvFrameworkManager.avShowWindow	Caller(#Com_Owner)	For(BUSINESSOBJECT)	Oftype(EMPLOYEES)	Windowname(III_EMP)	Execute(DETAILS)	
OpenInfo1(OPEN)
#TIMR_1.Interval	:=	2000	

Endif
5.Save	your	changes.
6.Complete	the	uOpenEmpWindow	event	routine:

a.Change	Empno	to	i_Empno
b.Invoke	the	NewWin	routine

Your	code	should	look	like	the	following:
Evtroutine	Handling(#ImageCollection<>.uOpenempwindow)
Uempnum(#i_empno)

#empno	:=	#i_empno
*	Open	employee	details	in	a	new	framework	window

#com_owner.NewWin
Endroutine

5.		Review	the	NewWin	method	routine	logic.	
Create	a	temporary	reference	to	VF_SY154,	named	Windows
Check	if	window	III_EMP	exists	and	then:

Message	"Window	is	already	open"
Invoke	avShowWindow	for	business	object	EMPLOYEES,	command
handler	DETAILS,	in	window	III_EMPNO	and	passing	EMPNO	as
OpenInfo1()

Else
Invoke	avShowWindow	for	business	object	EMPLOYEES,	command
handler	DETAILS	in	window	III_EMP	and	pass	OPEN	as	OpenInfo1().
Message	"Window	will	open	shortly"
Set	Timer	Interval	property	to	2000.

Set	Window	to	null
7.		Add	the	following	event	handling	routine	for	the	Timer	Tick:
Evtroutine	Handling(#timr_1.tick)
#std_count	+=	1
If	(#std_count	=	2)
#com_owner.NewWin
#timr_1.stop
Endif
Endroutine

	
					The	Timer	is	set	to	an	tick	interval	of	2	seconds	(Interval(2000)).	This
routine	will	give	a	delay	of	4	seconds	,	which	on	a	modern	PC	will	ensure	the
second	window	is	running	before	a	second	request	is	made	to	show	the
selected	employee.	You	may	need	to	adjust	the	TIMR_1.Tick	event	to	allow
for	a	slower	PC.

8.		Compile	the	Employee	Images	for	a	Section	command	handler.
9.		Execute	your	framework.	Select	a	Department	/	Section	with	employees
having	images	and	use	the	pop-up	menu	Open	Employee	Details	Window.
The	new	framework	window	will	be	displayed	and	after	a	short	delay,	the
correct	details	for	the	selected	employee	should	be	displayed.

Summary
Important	Observations

avShowWindow	opens	a	new	window	or	interacts	with	an	already	open
second	window.
uShowWindowCompleted	enables	a	command	handler	to	perform	any
processing	required	when	avShowWindow	is	used	in	another	window	and
command	handler.

Tips	&	Techniques
An	alternative	simple	solution	for	this	requirement	could	be	a	push	button	on
the	Employee	Images	for	Section	command	handler,	which	opens	a	new
window	and	enables	a	pop-up	menu	item.	When	the	Open	Employee	Details
Window	menu	option	is	then	used,	the	second	window	will	already	be	open.
A	timer	would	not	be	required.

What	I	Should	Know
How	to	handle	opening	a	new	window	and	interacting	with	it.\

VFW124	–	Using	Business	Object	SubTypes
What	are	SubTypes?
Business	objects	may	optionally	have	a	SubType	associated	with	them.
For	example,	a	business	object	named	BankAccount	might	be	sub-typed	as
being	a	Savings,	Check	(Cheque)	or	Investment	Account.
The	purpose	of	subtypes	is	to	allow	the	display	of	commands	(and	their
associated	tabs)	for	the	business	object	to	be	conditioned	so	that	they	are	only
visible	and	useable	for	certain	subtypes.
For	example,	the	command/tab	named	Transactions	might	only	be	validly
displayed	for	Check	and	Investment	accounts.
Likewise,	the	command/tab	named	Charges	might	only	make	sense	when	used
with	a	Savings	account.
Subtypes	are	represented	by	a	code	that	you	can	associate	with	a	business	object
instance.	For	example	you	might	choose	the	codes	SAV,	CHK	and	INV	for	the
three	BankAccount	subtypes.
You	specify	how	commands	and	subtypes	are	related	by	using	the	SubTypes	tab
associated	with	the	business	object.	For	example:

Subtypes	should	be	no	more	than	5	characters	long,	and	contain	uppercase
letters	of	the	English	alphabet	(A–Z)	or	numbers	(0–9)	only.
The	values	ALL,	NONE,	ALLOTHERS	and	OTHERS	should	not	be	used	for
SubTypes.
SubTypes	are	only	applicable	to	instance	level	commands/tabs.

Any	Command	that	is	not	enabled	for	all	subtypes	needs	to	have	its	Default
Command	option	set	to	Never
Once	you	start	using	subtypes	for	a	business	object	instance	list	you	should	use
them	for	every	instance	list	entry.
When	you	insert	or	update	an	entry	into	an	instance	list	you	may	optionally
specify	a	SubType	to	be	associated	with	the	entry.

Objective
To	create	an	Accounting	application	with	an	Account	business	object	using
the	Instant	Prototyping	Assistant.
Account	actions	to	include	Details,	Approve,	Dates,	History,	Transactions,
Charges	and	Schedule.
To	define	Subtypes	Check,	Savings	and	Investment.
To	populate	the	instance	list	using	a	hidden	filter.
To	implement	Account	actions	using	a	common	demonstration	command
handler.

To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Create	a	Prototype	Accounting	Application
Step	2.	Define	Accounts	Subtypes
Step	3.	Create	a	Hidden	Filter	for	iii_Accounts
Step	4.	Create	a	Dummy	Accounts	Command	Handler
Summary

Before	You	Begin
Complete	exercises	VFW030,	VFW040	and	VFW042.

Step	1.	Create	a	Prototype	Accounting	Application
1.		Start	the	Framework	as	a	Designer.
2.		Start	the	Instant	Prototyping	Assistant	from	the	Framework	menu.
3.		Define	an	Accounts	business	object.
4.		Define	additional	actions:	Approve,	Dates,	History,	Transactions,	Charges
and	Schedule

5.		Associate	the	actions	Details,	Approve,	Dates,	History,	Transactions,
Charges	and	Schedule		with	Accounts.

6.		Define	an	iii_Accounting	application	and	associate	the		Accounts	business
object	with	it.

7.		Click	Finish	to	create	your	prototype.
8.		Save	and	restart	your	Framework.

Step	2.	Define	Accounts	Subtypes
1.		Open	the	Properties	dialog	for	business	object	Accounts.
2.		Select	the	Instance	List	/	Relationships	tab.
3.		Set	up	the	instance	list	columns	as	per	the	table:

Seq Type Caption Width Decimals Edit	Code

10 VisualID1 Account	Number 15 	 	

20 VisualID2 Account	Name 30 	 	

30 AColumn1 Account	Type 15 	 	

40 NColumn1 Account	Balance 40 2 2

	

4.		Save	and	Restart	your	Framework.	Select	Accounts	business	object	and	fill
the	instance	list	using	the	Emulate	Search	button,	to	confirm	your	instance	list
definition

5.		Account	Subtypes	will	be	defined	based	on	the	following:

Account	Type Subtype

CHECK CHK

SAVINGS SAV

INVESTMENT INV

	

6.		Open	the	Properties	dialog	for	Accounts	and	select	the	Subtypes	tab.

7.		Select	each	Command	and	enable	and	disable	it	for	Subtypes	based	on	the
following	table:

Command Enable	for	Subtypes Disable	for	Subtypes

Details ALL NONE

Approve CHK OTHERS

Dates CHK OTHERS

History ALL NONE

Transactions CHK,	INV OTHERS

Charges SAV OTHERS

Schedules INV OTHERS

	

8.		Save	and	Restart	your	Framework.	In	the	next	step	you	will	create	a	hidden
filter	to	populate	the	instance	list,	which	will	enable	you	to	see	your	Subtypes
working.

Step	3.	Create	a	Hidden	Filter	for	iii_Accounts
You	are	developing	a	demonstration	application	which	runs	without	real	data	or
files.	The	hidden	filter	will	populate	the	instance	list	with	a	fixed	set	of	accounts
values.
1.		Create	a	Reusable	Part	/	Object:
					Name:	iiiVFW39
					Description:	Accounts	Hidden	Filter
2.		Replace	the	components	code	with	the	following:
Begin_Com	Role(*EXTENDS	#VF_AC007)	Height(148)	Hint(*MTXTDF_FILT5)	Width(291)
*	===
*	Method	Definitions
*	===
*	Handle	initialization	of	this	filter	by	redefining	the	default	behaviour
Mthroutine	Name(uInitialize)	Options(*Redefine)
*	Invoke	the	uInitialize	behaviour	in	the	ancestor
Invoke	Method(#Com_Ancestor.uInitialize)
*	Make	this	a	hidden	filter
Set	Com(#Com_Owner)	Avhiddenfilter(TRUE)
*	Make	up	a	set	of	dummy	bank	accounts
*	Indicate	start	of	list	update	and	set	the	framework	to	busy
Invoke	Method(#avListManager.BeginListUpdate)
*	Clear	the	list	first
Invoke	Method(#avListManager.ClearList)
*	Make	up	some	dummy	accounts
Execute	Subroutine(Add)	With_Parms('67383940'	'Fred	Bloggs'	465.12	SAVINGS)
Execute	Subroutine(Add)	With_Parms('73839915'	'Fred	Bloggs'	34567.78	INVESTMENT)
Execute	Subroutine(Add)	With_Parms('74849192'	'Fred	Bloggs'	12354.56	CHECK)
Execute	Subroutine(Add)	With_Parms('74848949'	'Mary	Smith'	1465.12	SAVINGS)
Execute	Subroutine(Add)	With_Parms('51617283'	'Mary	Smith'	354.56	CHECK)
Execute	Subroutine(Add)	With_Parms('71828234'	'Mary	Smith'	347.78	INVESTMENT)
Execute	Subroutine(Add)	With_Parms('91828373'	'Mary	Jones'	5162.45	SAVINGS)
Execute	Subroutine(Add)	With_Parms('71726364'	'Mary	Jones'	167.89	CHECK)
Execute	Subroutine(Add)	With_Parms('84849596'	'Mary	Jones'	65363.67	INVESTMENT)
*	Indicate	end	of	list	update
Invoke	Method(#avListManager.EndListUpdate)
Endroutine

*	===
*	Subroutines
*	===
*	Add	accounts	to	the	list	with	appropriate	subtypes
Subroutine	Name(ADD)	Parms((#T_ACC	*Received)	(#T_NAM	*Received)	(#T_BAL	*Received)	(#T_TYP	*Received))
Define	Field(#T_ACC)	Type(*char)	Length(10)	Desc('Account	Number')
Define	Field(#T_NAM)	Type(*char)	Length(50)	Desc('Account	Description')
Define	Field(#T_BAL)	Type(*Dec)	Length(11)	Decimals(2)	Desc('Account	Balance')
Define	Field(#T_TYP)	Type(*char)	Length(20)	Desc('Account	Type')
Case	Of_Field(#T_TYP)
When	Value_Is('=	SAVINGS')
Invoke	Method(#avListManager.AddtoList)	Akey1(#T_ACC)	Visualid1(#T_ACC)	Visualid2(#T_NAM)	Acolumn1(#T_TYP)	Ncolumn1(#T_BAL)	Subtype(SAV)
When	Value_Is('=	CHECK')
Invoke	Method(#avListManager.AddtoList)	Akey1(#T_ACC)	Visualid1(#T_ACC)	Visualid2(#T_NAM)	Acolumn1(#T_TYP)	Ncolumn1(#T_BAL)	Subtype(CHK)
When	Value_Is('=	INVESTMENT')
Invoke	Method(#avListManager.AddtoList)	Akey1(#T_ACC)	Visualid1(#T_ACC)	Visualid2(#T_NAM)	Acolumn1(#T_TYP)	Ncolumn1(#T_BAL)	Subtype(INV)
Endcase
Endroutine
End_Com
	

3.		Compile	the	reusable	part	and	review	the	logic.
a.		The	subroutine	ADD	is	passed	parameters	of	account	number,	account
name,	account	balance	and	subtype	and	adds	an	instance	list	entry	with
appropriate	values.

b.		Note	that	AColumn1	contains	the	visible	account	type	value	and	Subtype
contains	the	subtype	code.

c.		The	uInitialize	method	execute	the	ADD	subroutine	nine	times	to	set	up
the	instance	list.

4.		Open	the	Properties	dialog	for	the	Accounts	business	object.	Select	the
Filters	/	Snap	In	filter	settings	tab	and	plug	in	the	hidden	filter,	iiiVFW39.
Use	the	Find	dialog,	which	will	plug	in	using	Identifier.

5.		Save	and	Restart	your	framework.	Select	Accounts	and	your	filter	should
now	be	populated:

Step	4.	Create	a	Dummy	Accounts	Command	Handler
Once	again,	as	you	are	developing	a	demonstration	application,	the	command
handler	will	be	common	for	all	Accounts	actions.
1.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW40
					Description:	Account	Command	Handler
2.		Replace	its	code	with	the	following:
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#VF_AC010)	Height(242)	Width(728)
Define_Com	Class(#STD_TEXTL.Visual)	Name(#STD_TEXTL)	Caption('Account	Holder')	Displayposition(1)	Height(19)	Labeltype(Caption)	Left(212)	Marginleft(130)	Parent(#COM_OWNER)	Readonly(True)	Tabposition(1)	Top(115)	Usepicklist(False)	Width(257)
Define_Com	Class(#STD_OBJ.Visual)	Name(#STD_OBJ)	Caption('Account	Number')	Displayposition(2)	Height(19)	Labeltype(Caption)	Left(212)	Marginleft(130)	Parent(#COM_OWNER)	Readonly(True)	Tabposition(2)	Top(145)	Usepicklist(False)	Width(257)
Define_Com	Class(#STD_TEXTS.Visual)	Name(#STD_TEXTS)	Caption('Business	Object	SubType')	Displayposition(3)	Height(19)	Labeltype(Caption)	Left(212)	Marginleft(130)	Parent(#COM_OWNER)	Readonly(True)	Tabposition(3)	Top(171)	Usepicklist(False)	Width(257)
Define_Com	Class(#PRIM_LABL)	Name(#LABL_1)	Caption('This	example	uses	an	ACCOUNT	business	object.	An	ACCOUNT	has	3	SubTypes	identified	as	SAV	(Savings),	CHK	(Check)	and	INV	(Investment).')	Displayposition(7)	Height(24)	Left(24)	Parent(#COM_OWNER)	Tabposition(7)	Tabstop(False)	Width(714)
Define_Com	Class(#PRIM_LABL)	Name(#LABL_2)	Caption('SAV	(Saving)	subtype	instances	should	only	show	tabs	Details,	Charges	and	History.')	Displayposition(6)	Height(25)	Left(82)	Parent(#COM_OWNER)	Tabposition(6)	Tabstop(False)	Top(49)	Width(442)
Define_Com	Class(#PRIM_LABL)	Name(#LABL_3)	Caption('CHK	(Check)	subtype	instances	should	only	show	tabs	Details,	Approve,	Dates,	History	and	Transactions.')	Displayposition(5)	Height(25)	Left(81)	Parent(#COM_OWNER)	Tabposition(5)	Tabstop(False)	Top(64)	Width(594)
Define_Com	Class(#PRIM_LABL)	Name(#LABL_4)	Caption('INV	(Investment)	subtype	instances	should	only	show	tabs	Details,	History,	Schedule	and	Transactions.')	Displayposition(4)	Height(25)	Left(83)	Parent(#COM_OWNER)	Tabposition(4)	Tabstop(False)	Top(81)	Width(578)
Mthroutine	Name(uExecute)	Options(*Redefine)
Invoke	Method(#Com_Ancestor.uInitialize)
Invoke	Method(#avListManager.GetCurrentInstance)	Akey1(#STD_OBJ)	Visualid2(#STD_TEXTL)	Subtype(#STD_TEXTS)
Endroutine
End_Com
	

3.		Compile	the	reusable	part	and	review	its	logic.
a.		The	user	interface	contains	simply	account	number,	name	and	subtype.
b.		The	uExecute	method,	retrieves	these	three	values	for	the	current	instance
list	entry.

4.		Open	the	Properties	dialog	for	Accounts.	Select	the	Commands	Enabled	tab.
5.		Select	each	command	and	plug	in	the	command	handler,	iiiVFW40.
					Plug	in	the	Approve	command	handler	using	the	Find	dialog,	so	the	plug	in
uses	the	Identifier.	Note	the	Identifier	name	and	plug	this	in	to	all	other
commands	for	Accounts.

6.		Save	and	Restart	your	Framework.
7.		Test	your	Accounting	application	which	demonstrates	the	use	of	Subtypes.

Select	instance	list	entries	for	each	subtype	and	confirm	the	correct
commands	are	enabled.

Summary
Important	Observations

Subtypes	are	optional.

Tips	and	Techniques
Subtypes	provide	an	easy	way	to	control	the	commands	which	are	enabled
for	different	types	of	the	same	object.

What	You	Should	Know
How	to	implement	Subtypes	in	your	own	applications.

VFW126	–	Using	Space	Objects	(Optional)
Introduction	to	Spaces
Space	objects	are	primarily	designed	to	support	'batch'	style	functions	that
process	large	volumes	of	information.	You	can	load	the	required	information
into	a	space	at	the	start	of	a	function	and	then	repeatedly	(re)access	the	indexed
space	more	efficiently	than	you	can	access	the	DBMS	directly.
Space	objects	are	unique	within	a	process	by	their	name.	Space	objects	cannot
be	shared	between	processes.	Space	objects	are	not	persistent.	A	Space	object
and	its	data	content	cease	to	exist	when	the	process	that	owns	them	ends.
Space	objects	are	defined	and	accessed	using	Built	In	Functions	(BIF).	A	BIF	is
a	call	to	program	which	has	a	defined	set	of	inputs	and	outputs.	BIFs	are	defined
in	the	Repository	and	this	means	that	the	editor	supports	BIFs	with	a	predefined
set	of	input	and	output	parameters.
BIFs	are	accessed	using	the	USE	command.

Objectives
A	Salary	command	handler	for	the	Reports	business	object	will	display	a	list	of
all	employees.	The	Salary	command	handler	also	defines	a	space	object.	All
employees	are	added	to	the	space	object,	keyed	by	their	department	code	and
employee	number.
A	second	command	handler,	Employee	Query,	will	read	entries	in	the	space
object	by	department	code	and	display	a	list	of	currently	selected	employees	in
this	department.
The	space	object	exists	within	a	single	Windows	process.	For	a	VL	Frameworks
application,	this	means	all	components	running	within	a	Framework	could
access	the	space	object,	once	it	has	been	created.

To	meet	these	objectives	you	will	complete	the	following	steps:
Step	1.	Create	the	Salary	Command	Handler
Step	2.	Create	the	Employee	Query	Command	Handler.
Step	3.	Add	Logic	to	the	Employee	Query	Command	Handler
Summary

Before	You	Begin
Complete	exercises	VFW030,	VFW040	and	VFW042.

Step	1.	Create	the	Salary	Command	Handler
1.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW42
					Description:	Salary	Command	Handler	for	Reports
2.		Give	the	reusable	part	an	ancestor	of	VF_AC010
3.		Use	the	Design	ribbon	to	give	iiiVFW40	an	Attachment	manager
4.		Drop	a	Panel	component	onto	the	bottom	of	the	main	panel.	Change	the
Name	to	BOTTOM_PANEL.

5.		Drop	a	List	View	into	the	center	of	the	main	panel,	so	that	it	occupies	the	rest
of	the	space.

6.		If	necessary	use	the	Layout	Helper	tab	to	confirm	the	position	of	the	child
panel	and	list	view.

7.		Save	the	design.
8.		If	field	TOTSALARY	does	not	already	exist,	create	a	new	Packed	Decimal
field,	with	a	length	of	15	and	2	decimal	places.	Give	it	an	Edit	Code	of	2.
Drag	and	drop	field	TOTSALARY	onto	the	right	hand	side	of
BOTTOM_PANEL.	Resize	the	field	as	necessary.

9.		Locate	the	file	PSLMST	in	the	Repository	and	drag	and	drop	fields	EMPNO,
SURNAME,	GIVENAME	and	SALARY	into	the	List	View.	Finally	drop
field	STD_TEXTS	onto	the	list	view.

10.	Change	the	Caption	for	the	STD_TEXTS	column	to	Selected	and	change
CaptionType	to	Caption.

11.	Create	an	Initialize	event	for	the	list	view.
12.	Save	the	design.
13.	Switch	to	the	Source	tab.
14.	Add	the	following	code	to	the	list	view	Initialize	event	handling	routine	to
define	the	space	object:
#std_text	:=	IIIVFW42
*	Create	Space	with	the	name	entered	in	std_texts	field
Use	Builtin(CREATE_SPACE)	With_Args(#std_text)	To_Get(#STD_CMPAR)
*	Define	Space	Cells
Use	Builtin(DEFINE_SPACE_CELL)	With_Args(#STD_TEXT	DEPTMENT	KEY)

Use	Builtin(DEFINE_SPACE_CELL)	With_Args(#STD_TEXT	EMPNO	KEY)
Use	Builtin(DEFINE_SPACE_CELL)	With_Args(#STD_TEXT	GIVENAME)
Use	Builtin(DEFINE_SPACE_CELL)	With_Args(#STD_TEXT	SURNAME)
Use	Builtin(DEFINE_SPACE_CELL)	With_Args(#STD_TEXT	SECTION)
Use	Builtin(DEFINE_SPACE_CELL)	With_Args(#STD_TEXT	SALARY)
	

					The	code	above	has	created	a	space	object	with	same	name	as	this
component.	The	name	can	be	any	alphanumeric	value,	but	must	be	unique
within	the	Windows	process	(that	is,	within	the	job).

					Hint:	Type	Use	Builtin(DEFINE_SPACE_CELL)	and	then	press	F4	to
display	the	Command	Assistant.

					Expand	the	WITH_ARGS	parameter	and	note	that	the	editor	shows	the
details	for	the	parameters	required.

					That	is,	Space	Object	Name	and	so	on.

15.	Define	a	Group_By	for	all	the	employee	fields	required.	Different	fields	are
required	for	the	list	view	and	the	space	object.
Group_By	Name(#empdata)	Fields(#EMPNO	#SURNAME	#GIVENAME	#DEPTMENT	#SECTION	#salary)
	

16.	Complete	the	LTVW_1.Initialize	event	routine	by	populating	the	list	view
and	inserting	each	employee	into	the	space	object:
#std_texts	:=	*blanks
Clr_List	Named(#LTVW_1)
#std_count	:=	*zeroes
Select	Fields(#empdata)	From_File(pslmst)
Add_Entry	To_List(#LTVW_1)
*	Add	to	Space	object
Use	Builtin(INSERT_IN_SPACE)	With_Args(#STD_TEXT	#DEPTMENT	#EMPNO	#GIVENAME	#SURNAME	#SECTION	#salary)	To_Get(#STD_CMPAR)

#std_count	+=	1
Endselect
Message	Msgtxt('Space	object	IIIVFW42	created	with	'	+	#std_count.asstring	+	'	entries')
	

17.	The	command	handler	should	display	the	Total	Salary	for	currently	selected
entries	in	the	list	view.

					Create	ItemGotSelection	and	ItemLostSelection	event	routines	for	the	list
view	and	add	appropriate	logic	in	each	to	maintain	TOTSALARY.

					The	STD_TEXTS	column	should	contain	YES	when	the	row	is	selected.
					Your	code	should	look	like	the	following:
Evtroutine	Handling(#LTVW_1.ItemGotSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#std_texts	:=	'YES'
Upd_Entry	In_List(#LTVW_1)
#TOTSALARY	:=	#TOTSALARY	+	#salary
Endroutine
Evtroutine	Handling(#LTVW_1.ItemLostSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#std_texts	:=	*blanks
Upd_Entry	In_List(#LTVW_1)
#TOTSALARY	:=	#TOTSALARY	-	#salary
Endroutine
	

18.	Compile	the	new	command	handler.
19.	Execute	the	Framework	as	Designer.

a.		Open	the	Properties	dialog	for	the	Reports	business	object.
b.		Select	the	Commands	Enabled	tab,	select	the	Salary	action	and	plug	in	the
Salary	command	handler,	iiiVFW42.

c.		Use	the	Find	dialog,	so	that	the	plug	in	uses	the	Identifier.
20.	Save	and	Restart	the	Framework.
21.	Select	the	Reports	business	object.	Right	click	on	the	Weekly	command
handler	and	select	Salary	from	the	context	menu.

22.	Test	the	Salary	command	handler	by	selecting	a	number	of	employees,	while
holding	down	the	Control	key.	Note	Total	Salary	shows	the	total	for	selected
employees.

23.	Change	the	selected	employees	and	ensure	that	the	Total	Salary	is

recalculated.

Step	2.	Create	the	Employee	Query	Command	Handler.
1.		Create	a	new	Reusable	Part	/	Panel:
					Name:	iiiVFW43
					Description:	Reports	Employee	Query	Command	Handler
2.		Give	the	reusable	part	an	ancestor	of	VF_AC010
3.		This	command	handler	will	display	a	list	of	employees	from	the	space	object
selecting	entries	using	the	department	code	key.

					Total	Salary	is	shown	for	selected	employees.

					Note	that	the	Employee	Query	displays	all	fields	from	the	space	object,
which	is	different	to	the	list	view	in	the	Salary	command	handler.

4.		Use	the	Design	ribbon	to	give	iiiVFW43	an	Attachment	manager.
5.		Drop	a	Panel	component	at	the	bottom	of	the	RP's	panel	and	change	the	new
panel's	Name	to	Bottom.	Adjust	its	height	as	required.

6.		Drop	a	Panel	onto	the	top	of	the	RP's	panel	and	change	the	new	panel's	Name
to	Top.	Adjust	its	height	if	required.

7.		Drop	a	list	view	into	the	center	of	the	RP's	panel.	If	necessary	use	the	Layout
Helper	tab	to	ensure	that	the	child	components	are	correctly	attached.

8.		Locate	the	file	PSLMST	in	the	Repository	and	drop	fields	EMPNO,

SURNAME,	GIVENAME,	DEPTMENT,	SECTION	and	SALARY	into	the
list.

9.		Create	an	ItemGotSelection	and	ItemLostSelection	event	routine	for	the	list
view.

10.	Drop	field	TOTSALARY	onto	the	right	hand	side	of	the	panel	Bottom.
11.	Select	the	panel	Top	and	use	the	Design	ribbon	to	give	it	a	Flow	Across
manager.	Open	the	Layout	Helper	tab	and	note	that	the	default	setting	for
Flow	Rules	is	LeftToRight,	which	is	what	is	required.

12.	Select	the	Top	panel	on	the	Design	view.	On	the	Layout	Helper,	select	the
Category	-		Margins	on	the	Layout	Manager	Details	tab.	Use	the	All	setting
to	give	children	on	this	panel	a	margin	of	6	pixels	on	all	four	sides.

13.	Drop	the	field	DEPTMENT	onto	the	panel	Top.	Change	its	Name	to
DEPT_IN

14.	Drop	a	Push	Button	component	onto	the	Top	panel.	Give	it	a	Caption	of
Select	and	change	its	Name	to	PHBN_SELECT.

15.	Create	a	Click	event	for	the	push	button.
16.	Save	the	reusable	part.

Step	3.	Add	Logic	to	the	Employee	Query	Command	Handler
1.		Select	the	Source	tab.
2.		Complete	the	PHBN_SELECT.Click	event	routine	to:
					Initialize	work	fields	and	use	the	SPACE_OPERATION	BIF	and
CHECKEXISTENCE	to	ensure	the	space	object	exists.

					Add	an	If	/	Else	/	Endif	for	STD_CMPAR	=	OK
					Issue	an	error	message	if	the	space	object	is	not	found.
Evtroutine	Handling(#PHBN_SELECT.Click)
#std_text	:=	IIIVFW41
#TOTSALARY	:=	*zeroes
*	Check	Space	exists
Use	Builtin(SPACE_OPERATION)	With_Args(#std_text	CHECKEXISTENCE)	To_Get(#std_cmpar)
If	(#std_cmpar	=	OK)
*	Populate	list	view	form	space	object
Else
Message	Msgtxt('Space	object	IIIVFW42	does	not	exist')
Endif
Endroutine
	

3.		To	populate	the	list	view,	add	the	logic:
Clear	the	list	view
Use	SELECT_IN_SPACE	to	retrieve	entries	using	DEPT_IN	as	key.
Return	the	SELECT_IN_SPACE	status	into	field	STD_CMPAR.
While	STD_CMPAR	is	equal	to	OK
Add	an	entry	to	the	list	view
Retrieving	all	space	object	entries	for	the	department	code	=	DEPT_IN,	must
be	achieved	by	then	using	the	SELECT_NEXT_IN_SPACE.	Note	this	also
returns	status	as	STD_CMPAR.

Your	code	should	now	look	like	the	following.	New	code	is	highlighted	in	red.
Evtroutine	Handling(#PHBN_SELECT.Click)
#std_text	:=	IIIVF31
#TOTSALARY	:=	*zeroes
*	Check	Space	exists

Use	Builtin(SPACE_OPERATION)	With_Args(#std_text	CHECKEXISTENCE)	To_Get(#std_cmpar)
If	(#std_cmpar	=	OK)
Clr_List	Named(#LTVW_1)
Use	Builtin(SELECT_IN_SPACE)	With_Args(#STD_TEXT	#DEPT_IN)	To_Get(#STD_CMPAR	#DEPTMENT	#EMPNO	#GIVENAME	#SURNAME	#SECTION	#salary)
Dowhile	('#STD_CMPAR	*EQ	OK')
Add_Entry	To_List(#LTVW_1)
Use	Builtin(SELECTNEXT_IN_SPACE)	With_Args(#STD_TEXT	#DEPT_IN)	To_Get(#STD_CMPAR	#DEPTMENT	#EMPNO	#GIVENAME	#SURNAME	#SECTION	#salary)
Endwhile
Else
Message	Msgtxt('Space	object	IIIVFW31	does	not	exist')
Endif
Endroutine
	

4.		Complete	the	Reports	Employee	Query	command	handler	logic	by	making
the	List	View	ItemGotSelection	and	ItemLostSelect	event	routines	maintain
Total	Salary.

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#LTVW_1.ItemGotSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#TOTSALARY	:=	#TOTSALARY	+	#salary
Endroutine
Evtroutine	Handling(#LTVW_1.ItemLostSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#TOTSALARY	:=	#TOTSALARY	-	#salary
Endroutine

5.		Compile	the	Reports	Employee	Query	command	handler.
6.		Execute	the	Framework	as	Designer.
7.		Open	the	Properties	dialog	for	the	Reports	business	object.
8.		Select	the	Commands	Enabled	tab,	select	the	Employee	Query	action	and
plug	in	the	command	handler	iiiVFW43.	Use	the	Find	dialog	so	that	the	plug
in	uses	the	Identifier	name.

9.		Save	and	Restart	the	Framework.
10.	Select	the	Reports	business	object.	Right	click	on	the	Weekly	tab	and	run	the
Salary	command	handler.

11.	Again,	use	the	right	mouse	menu	to	run	the	Reports,	Employee	Query
command	handler	and	display	employees	from	the	space	object	for
department	ADM.

12.	Restart	the	Framework	and	this	time	run	the	Reports	/	Employee	Query
command	handler	immediately.	The	"Space	object	does	not	exist"	error
message	should	be	shown	in	the	Frameworks	status	bar.

13.	Based	on	what	you've	learnt	in	an	earlier	exercise,	you	should	appreciate
that	if	required	you	could	add	framework	switch	logic	to	Employee	Query,	to
run	the	Salary	command	handler	automatically,	when	the	space	object	does
not	exist.

Summary
Important	Observations

While	using	INSERT_IN_SPACE	or	SELECT_IN_SPACE	Built-In
Functions,	the	field	values	must	be	specified	in	the	same	sequence	as	the
cells	in	the	space	were	defined.

Tips	&	Techniques
In	high	volume	repeated	commands	avoid	using	visually	defined	fields	as
mapping	values	unless	absolutely	necessary.	When	a	field	has	been	visually
defined,	mapping	into	or	out	of	its	value	is	significantly	slower	because	of
the	underlying	visual	context.

What	I	Should	Know
How	to	use	SPACE	Built-In	Functions	to	store	and	retrieve	static	data	in	PC
memory.

VFW130	–	Set	up	the	VL	Framework	for	Client/Server	Operation
Objectives

To	demonstrate	how	to	enable	a	framework	for	client/server	operation.
To	achieve	this	objective	you	will	complete	the	following:
Step	1.	Enable	Framework	for	Client/Server
Step	2.	Check	In	Files	to	the	Server
Step	3.	Test	the	Framework	in	Client/Server	mode

Before	You	Begin
This	exercise	can	only	be	completed	if	you	have	access	to	an	IBM	i	or	Windows
server	based	LANSA	system.
This	exercise	uses	an	IBM	i	(iSeries)	server.
The	LANSA	for	iSeries	partition	must	have	the	Personnel	System	Files	(save
file	PERSYS)	imported	using	the	Administration	/	Initialize	Partition	option.
This	will	import	files	such	as	DEPTAB,	SECTAB,	SKLTAB,	PSLMST	and
PSLSKL	which	are	referenced	by	a	number	of	these	exercises.	The	files	all
contain	sample	data.
Complete	exercises	VFW030,	VFW040,	VFW042	and	VFW054.	In	VFW054
you	created	two	files	that	are	used	in	Step	2:	iiiEmpNotes	–	Employee	Notes
and	iiiEmpImages	–	Employee	Images.

Step	1.	Enable	Framework	for	Client/Server
This	step	concerns	changing	settings	at	framework	level.
1.		Start	the	Framework	as	Designer.	Open	the	Framework	Properties	dialog:

2.		Select	the	User	Administration	Settings	tab.
In	the	Sign	on	Settings	group	box,	in	the	End	Users	must	Signon	to	this
Framework	dropdown	list,	select	in	MS-Windows	applications	only.

3.		Select	the	radio	button,	Users	Sign	on	to	a	Remote	Server	to	Use	the
Framework.

4.		Save	and	Restart	the	VL	Framework.
5.		On	the	Log	On	form,	click	the	Work	Offline	button:

6.		When	the	framework	has	started,	select	Servers	from	the	Administration
menu.

7.		Click	on	the	New	button	to	define	a	server:

8.		On	the	Identification	tab,	give	the	server	definition	any	suitable	Caption	such
as	Test	Server.

9.		Select	the	Icon	tab	and	give	the	server	definition	any	suitable	icon.
10.	Select	the	Server	Details	tab.	
Click	on	the	LANSA	Comms.	Admin	button	to	find	the	Partner	LU	to	use	for
the	IBM	i	server.

					If	necessary,	first	define	the	server	in	the	LANSA	Communications
Administrator.	
To	do	this	you	must	know	the	server	name	or	IP	address	and	the	port	number
used	by	the	LANSA	Listener.

					A	routing	table	entry	enables	LANSA	communications	to	connect	to	a
LANSA	Listener	on	a	server	using	the	required	Qualified	Name	and	Port.

11.	Set	up	the	server	details	shown	based	on	your	own	server.	For	example:

Server	Type LANSA	for	System	i

Server	Name EARTHD12

Partition TRN

Partition	is	enabled	for	RDMLX Yes

Upper	and	Lower	Case	Password Yes

	

					If	necessary	change	the	settings	shown	to	suit	your	partition	definition	and
password	standards.

12.	Close	the	Servers	dialog	and	Save	and	Restart	the	Framework.
13.	In	the	Log	On	dialog	enter	your	User	ID	and	Password	for	the	IBM	i.	If	you
are	completing	these	exercises	using	a	Slave	Workstation	installation,	you
should	use	your	Visual	LANSA	User	ID	and	Password.

14.	When	your	framework	has	started,	your	application	will	now	access	all	files
on	the	IBM	i	server.

					The	local	files	in	the	Microsoft	SQL	Server	database	will	no	longer	be
accessed.

15.	Close	your	framework	which	will	currently	produce	errors	if	you	access
your	iii	HR	Application.

Step	2.	Check	In	Files	to	the	Server
In	exercise	VDW054	you	created	two	new	files:

iiiEmpNotes	–	Employee	Notes
iiiEmpImages	–	Employee	Images

In	order	to	run	your	iii	HR	Applications	in	client/server	mode,	you	must	check
in	and	compile	your	new	files.	The	check	in	and	compile	will	create	physical
and	logical	files	and	OAM	programs.
Since	you	are	using	an	RDMLX-enabled	partition,	which	is	required	for	these
exercises,	the	compile	will	produce	an	RPG	OAM	program	for	RDML-enabled
functions	and	components,	and	a	C	OAM	program	for	RDMLX-enabled
functions	and	components.

Note	that	these	new	tables	will	not	contain	data.
1.		On	the	Repository	tab,	select	files	iiiEmpImages	and	iiiEmpNotes	and	use
the	context	menu	to	select	Check	in:

2.		In	the	Check	in	Options	dialog,	expand	the	Files	entry,	select	both	files	and
click	the	References	button:

3.		Select	the	new	fields	(field	names	beginning	iii)	and	click	the	Add	for	Check
in	button:

4.		Close	the	Local	Cross	References	dialog.	Note	that	the	fields	have	been
added	to	the	check	in	list	of	objects:

5.		Select	the	check	in	options	to	Rebuild	table,	Rebuild	Indexes	and	Rebuild
OAMs	and	click	OK	to	start	the	check	in.

					Note:	The	Delete	$$	file	option	will	not	be	required	as	these	are	new	files.
					Usually,	whenever	you	check	in	and	compile	a	file,	this	option	should	be
checked	to	delete	the	copy	file	created	by	the	previous	check	in	and	compile.

6.		Check	the	Check	In	tab	to	confirm	your	fields	and	files	were	checked	in
successfully.

7.		You	should	now	be	able	to	execute	your	iii	HR	Application	in	client/server
mode	to	the	IBM	i	server.

Step	3.	Test	the	Framework	in	Client/Server	mode
1.		Execute	the	Framework	as	user.	Note	that	the	Log	On	dialog	requires	a	log	in
to	the	server.	As	a	user	you	cannot	run	the	Framework	offline	unless	this
option	is	configured	by	the	designer.

2.		Log	in	with	your	IBM	i	user	id	and	password.
3.		Select	the	iii	HR	Application	and	work	with	Departments,	Employees,
Reports	and	Sections.	All	your	filters	and	command	handlers	should	perform
as	before.

					Employee	Brief	Notes,	Employee	Notes,	Employee	Images	and	Employee
Images	for	a	Section	will	require	you	to	set	up	new	data,	as	you	are	now
using	the	files	on	the	IBM	i	server.

4.		Close	your	Framework.

	Windows Applications with VLF
	About the Exercises
	Install the Tutorial Files
	Tips for doing the Exercises

	VFW005 � Basic Windows Controls
	Step 1. Create a Form
	Step 2. Add Controls to a Form
	Step 3. Create Tab Folder Form
	Summary

	VFW010 � A Tab Folder Framework
	Step 1. Create a Form
	Step 2. Define a Tab Folder Framework
	Step 3. Compile and Execute the Form
	Summary

	VFW020 � Execute a Visual LANSA Framework Application
	Step 1. Execute the Visual LANSA Framework
	Step 2. Execute an Application
	Step 3. Using a Filter to Find an Employee
	Step 4. Using Commands and Command Handlers
	Summary

	VFW030 � Create a Prototype
	Step 1. Understand the Requirements
	Step 2. Create a Prototype iii HR Application
	Step 3. Define Filters and Command Handlers for Employees
	Step 4. Refine the Reports Business Object
	Summary

	VFW040 � Snap in Real Filters
	Step 1. Create Your Real By Name Filter
	Step 2. Snap in the Employees By Name filter
	Step 3. Review Filter Code
	Step 4. Create a Real Employees By Location filter
	Summary
	VFW040 � Appendix

	VFW042 � Snap in a Real Command Handler
	Step 1. Create a Real Command Handler
	Step 2. Review Command Handler code
	Step 3. Snap in Real Command Handler
	Summary

	VFW044 � Add Instance List Columns
	Step 1. Add columns to the Instance List
	Step 2. Change the Filter
	Summary

	VFW050 � Basic Combo Box Processing
	Step 1. Add a Combo Box to the Panel
	Step 2. Set up the Combo Box
	Step 3. Test the Combo Box
	Summary

	VFW052 � Build a Working List of Selected Items
	Step 1. Create the Weekly Command Handler
	Step 2. Handle Selected Items
	Step 3. Build a Dynamic Working List of Selected Items
	Step 4. Build a Static Working List of Selected Items
	Summary

	VFW054 � Edit Text in a Memo / Edit Box
	Step 1. Create a Table to Store Employee Notes
	Step 2. Create Brief Notes Command Handler
	Step 3. Create the Command Handler Logic
	Step 4. Implement Memo Box Copy/Paste Methods (Optional)
	Summary

	VFW056 � Process a List in Sorted Order
	Step 1. Create Sorted Command Handler
	Step 2. Complete the Command Handler logic
	Summary

	VFW060 � Using a Tree View
	Step 1. Create Tree View Form
	Step 2. Displaying Tree View Data.
	Step 3. Add Fields to Tab Sheets and Item Got Selection logic.
	Step 4. Fill the Tree View on Demand
	Step 5. Add Icons to the Tree View
	Summary

	VFW062 � A Tree View with Columns
	Step 1. Create Form iiiVFW11 - Tree View with Columns
	Step 2. Complete Form iiiVFW11 - Tree View with Columns
	Step 3. Add Pop-Up Menu to Show/Hide Columns - Optional
	Summary
	VFW062 - Appendix A

	VFW070 � Create a Reusable Part Object
	Step 1. Create Time Employed Reusable Part
	Step 2. Implement Time Employed calculation in Employee Details Command Handler
	Summary

	VFW072 � Create a Department Dropdown Reusable Part
	Step 1. Create Department Dropdown Reusable Part
	Step 2. Make the Reusable Part Useful
	Step 3. Add Department Dropdown to Employee Details command handler
	Step 4. Complete Command Handler to use Department Dropdown
	Step 5. Document your Event and Property
	Summary

	VFW074 � Create a Compound Reusable Part
	Step 1. Create Department / Section Dropdown Reusable
	Step 2. Make the Department / Section Dropdown Useful
	Step 3. Modify Department Dropdown
	Step 4. Implement the Compound Reusable Part
	Summary

	VFW080 � Using an Explorer Component
	Step 1. Create Employee Images File
	Step 2. Create the Find Employee Image Form
	Step 3. Make the Find Image Form Useful
	Step 4. Create the Employee Image Command Handler
	Step 5. Complete the Image Command Handler
	Step 6. Plug In and Test the Image Command Handler
	Summary

	VFW082 � Toolbars, Menus and Pop�up Menus
	Step 1. Create Menu and Toolbars Form.
	Step 2. Make the Menus Useful
	Step 3. Add a Pop-up Menu to the Status Bar
	Summary

	VFW084 � A Business Object Browser and Detailer
	Step 1. Create Employee Skills Command Handler
	Step 2. Create Business Object Detailer.
	Step 3. Complete the Skills Browser
	Summary

	VFW090 � Field Visualizations
	Step 1. Define a Picklist for iiiGRADE.
	Step 2. Define a Dynamic Picklist for SKILCODE
	Step 3. Link Dynamic Picklists
	Step 4. Implement Dynamic Picklists in By Location filter
	Step 5. Create an AutoComplete Visualization for Surname
	Summary
	VFW090 � Appendix A

	VFW100 � Define a Parent/Child Instance List
	Step 1. Define New Business Objects
	Step 2. Create a Hidden Filter for _Departments.
	Step 3. Create a Relationship Handler to Load _Sections
	Step 4. Access the Properties of Hidden Child Objects
	Summary

	VFW102 � Field Visualizations in a Grid
	Step 1. Define New Fields
	Step 2. Create the Resources for Section Command Handler
	Step 3. Create a Prompt Form for Employee Number
	Summary

	VFW104 � Simple Keyed Collections
	Step 1. Create the Employee Images for Section Command Handler
	Step 2. Create an Employee Image Component
	Step 3. Make Sections Business Object Visible
	Step 4. Implement the Employee Image component.
	Step 5. Record the Switch History using the Virtual Clipboard
	Step 6. Use the Switch History to Return to the Original BO
	Summary

	VFW106 � Using a List Collection
	Step 1. Create the Employee Object.
	Step 2. Create the Monthly Command Handler
	Step 3. Create the Selected Employees Viewer
	Step 4. Complete Monthly Command Handler
	Summary

	VFW110 � Simple Drag and Drop
	Step 1. Create Transfer Section to Department Command Handler
	Step 2. Add Logic to the Transfer Sections to Department Command Handler.
	Step 3. Test the Transfer Section to Department Command Handler
	Summary

	VFW112 � Drag and Drop between Components
	Step 1. Create Employee Payload Object
	Step 2. Create Reusable Part Section Employees
	Step 3. Create the Transfer Employees to Section Command Handler
	Step 4. Complete the Section Employees Component
	Step 5. Complete the Transfer Employees to Section Command Handler
	Summary
	VFW112 � Appendix

	VFW120 � Using Hidden Commands
	Step 1. Add Reverse as a Hidden Command for Employees
	Step 2. Create the Reverse Command
	Step 3. Plugin and Test Reverse Command
	Summary

	VFW122 � Launching a VLF Window
	Step 1. Extend Pop-Up Menu in Employee Image Object
	Step 2. Enhance Employee Images for Section Command Handler
	Step 3. Change Employee Details Command Handler
	Step 4. Ensure Details displayed for first Employee
	Summary

	VFW124 � Using Business Object SubTypes
	Step 1. Create a Prototype Accounting Application
	Step 2. Define Accounts Subtypes
	Step 3. Create a Hidden Filter for iii_Accounts
	Step 4. Create a Dummy Accounts Command Handler
	Summary

	VFW126 � Using Space Objects (Optional)
	Step 1. Create the Salary Command Handler
	Step 2. Create the Employee Query Command Handler.
	Step 3. Add Logic to the Employee Query Command Handler
	Summary

	VFW130 � Set up the VL Framework for Client/Server Operation
	Step 1. Enable Framework for Client/Server
	Step 2. Check In Files to the Server
	Step 3. Test the Framework in Client/Server mode

