
LANSA	Integrator	Guide
LANSA	Integrator	Guide
	

About	this	Guide
Introduction	to	LANSA	Integrator
Java	Service	Manager	Administration
Java	Service	Manager	Clients
Java	Service	Manager	HTTP	Extensions
Java	Service	Manager	Services
Create	Your	Own	Services
Integrator	Studio
Integrator	User	Agent
Remote	Function	Invocation
Troubleshooting
Recommendations
Tutorials
Appendix	A.	Performance	and	Tuning
Appendix	B.	Client	Application	Examples
Appendix	C.	EDI	Services
Appendix	D.	LANSA	AS2	and	AS3

	
	
Edition	Date	March	18,	2015		EPC132800	UI	Update
©	LANSA

its:LANSA093.CHM::/lansa/intb1_0001.htm
its:LANSA093.CHM::/lansa/intb2_0001.htm
its:LANSA093.CHM::/lansa/intb3_0060.htm
its:LANSA093.CHM::/lansa/intb5_0001.htm
its:LANSA093.CHM::/lansa/intb6_0001.htm
its:LANSA093.CHM::/lansa/intb7_0001.htm
its:LANSA093.CHM::/lansa/intb8_0001.htm
its:LANSA093.CHM::/lansa/intb9_0165.htm
its:LANSA093.CHM::/lansa/intba_0010.htm
its:LANSA093.CHM::/lansa/intbd_0001.htm
its:LANSA093.CHM::/lansa/intbh_0001.htm
its:LANSA093.CHM::/lansa/intbh_0030.htm
its:LANSA093.CHM::/lansa/intbj_0001.htm
its:LANSA093.CHM::/lansa/intbk_0001.htm
its:LANSA093.CHM::/lansa/INTBL_0001.htm
its:lansa093.chm::/lansa/intengbr_0010.htm
its:LANSA093.CHM::/lansa/intbm_0000.htm

About	this	Guide
Before	you	begin	to	use	this	guide,	you	may	wish	to	review	the	following:
What	is	LANSA	Integrator?
Who	should	use	this	Guide
How	to	use	this	Guide
Samples	and	Examples
Additional	Information
Installation	and	Licensing
For	the	latest	product	information	and	updates,	please	refer	to	the	LANSA
Product	Support	at	the	LANSA	Web	site.

http://www.lansa.com/support

What	is	LANSA	Integrator?
LANSA	Integrator	enables	the	integration	of	Application-to-Application	(A2A)
and	Business-to-Business	(B2B)	transactions	through	XML,	JSON	and	Java
services.
Using	the	shipped	Services	and	the	Java	Service	Manager,	you	can	integrate
with	any	system	on	any	platform	using	your	choice	of	B2B	technologies	such	as
JSON	and	XML	parsing,	FTP,	FTPS,	SFTP,	HTTP,	HTTPS,	SMTP,	POP3,
SOAP	and	JMS.	LANSA	Integrator	hides	the	complexities	of	interfacing	with
these	technologies,	letting	you	concentrate	on	the	business	requirements.
LANSA	Integrator	is	based	on	a	Java	Service	Framework	that	allows	easy
integration	between	Java	programs	and	LANSA,	RPG	and	COBOL
applications.
For	further	information,	refer	to	How	to	use	this	Guide.

Who	should	use	this	Guide
This	guide	has	been	written	for	developers	who	will	be	using	LANSA
Integrator,	in	particular	the	Java	Service	Manager,	to	interact	with	Java	classes
(programs).
It	is	assumed	that	the	reader	has	some	knowledge	of	the	target	operating	system
(for	example	i5/OS,	Windows	or	Linux).	If	you	are	developing	your	own
services	or	Java	classes,	you	must	have	a	working	knowledge	of	Java.
If	you	are	a	LANSA	developer	and	will	be	using	the	Java	classes	shipped	with
the	Java	Service	Manager,	detailed	knowledge	of	Java	is	not	required.	RDML
programming	knowledge	is	a	prerequisite.
A	fundamental	understanding	of	Java	and	the	Java	virtual	machine	environment
is	an	asset	in	understanding	the	overall	architecture	and	operation	of	the	Java
Service	Manager.
For	information	about	installing	LANSA	Integrator,	refer	to	the	Installing
LANSA	on	IBM	i	Guide,	the	Installing	LANSA	on	Windows	Guide	or	the
Installing	LANSA	on	Linux	Guide.		If	you	are	installing	LANSA	Integrator	with
no	other	installation	site	in	your	vicinity,	please	refer	to	the	Installing	LANSA
Integrator	Guide.

How	to	use	this	Guide
If	you	are	not	familiar	with	LANSA	Integrator	and	the	Java	Service	Manager,
begin	by	reviewing	the	Introduction	to	LANSA	Integrator.
To	learn	how	to	start	and	configure	the	Java	Service	Manager,	review	the	Java
Service	Manager	Administration.
If	you	are	executing	the	Java	Service	Manager	using	the	shipped	services,
review	the	Java	Service	Manager	Clients	and	the	Java	Service	Manager
Services.
To	see	the	Services	shipped	with	LANSA	go	to	Java	Service	Manager	Services.
You	can,	of	course,	write	your	own	services	and	how	to	do	so	is	described	in
Create	Your	Own	Services.
If	you	are	designing	Java	classes	or	tuning	an	existing	application,	review
Performance	and	Tuning.
If	you	encounter	any	problems	during	the	installation,	refer	to	Troubleshooting.

This	guide	contains	a	mixture	of	detailed	technical/user	information
for	Java	developers	who	are	writing	their	own	services,	and	LANSA
developers	who	are	using	the	shipped	services.	If	you	are	a	LANSA
developer,	you	will	not	require	the	more	technical	Java	details	on
interfaces,	classes	and	so	on.

lansa093.CHM::/lansa/INTBk_0001.HTM

Samples	and	Examples
Appendix	B	contains	a	range	of	JSM	client	application	examples	for	many	of
the	supplied	services.
With	the	LANSA	documentation,	LANSA	ships	a	formal	set	of	"Samples
Examples	and	Templates"	(SET)	materials,	which	cover	the	complete	LANSA
product	family,	including	LANSA	Imports	and	provides	excellent	tips	and
techniques.
For	other	tips	on	using	the	features	provided	by	LANSA	Integrator,	refer	to	the
LANSA	Web	site.

http://www.lansa.com/support

Additional	Information
For	more	details	about	LANSA,	refer	to	these	guides:

Installing	LANSA	on	IBM	i
Installing	LANSA	on	Windows
Installing	LANSA	on	Linux	Guide
LANSA	for	iSeries	User	Guide
LANSA	Technical	Reference	Guide

For	information	about	Java	and	the	IBM	i,	the	following	IBM	Redbooks	may	be
of	assistance:
SG24-7353	IBM	Technology	for	Java	Virtual	Machine	in	IBM	i5/OS.
This	product	includes	software	developed	by	the	Apache	Software	Foundation.
Browse	at	The	Apache	Software	Foundation.
For	samples	and	examples	on	how	you	can	use	the	LANSA	Integrator,	review
the	SET	Materials.
For	the	latest	product	information,	refer	to	the	LANSA	product	Web	site	at
www.lansa.com/support.
Your	feedback	will	help	us	improve	the	overall	quality	of	the	LANSA
documentation	and	training.	Please	email	your	comments	to
lansatraining@lansa.com.au

http://www.redbooks.ibm.com
http://www.apache.org
http://www.lansa.com/support
mailto:lansatraining@lansa.com.au

Installation	and	Licensing
For	information	about	installing	LANSA	Integrator,	refer	to	the	Installing
LANSA	on	IBM	i	Guide	or	Installing	LANSA	on	Windows	Guide.
LANSA	Integrator	License
For	Licensing	details	such	as	how	to	apply	for	a	license	and	how	to	record	it	on
your	machine,	refer	to	Product	Licensing	on	the	LANSA	Web	site.
Tutorials
Tutorials	have	been	provided	for	you	to	become	familiar	with	using	LANSA.
You	may	also	attend	class	room	training.	Ask	your	local	LANSA	distributor	for
course	schedules	or	refer	to	the	LANSA	Web	Site's	education	page	for	the
Integrator	class	room	training	dates.
For	the	latest	version	of	the	documentation,	please	check	the	LANSA	Web	Site

its:lansa040.chm::/lansa/lansa040_begin.HTM
its:lansa041.chm::/lansa/lansa041_begin.HTM
http://www.lansa.com.au/support/licensing/
http://www.lansa.com.au/education/index.htm
http://www.lansa.com/support/index.htm

What's	New	in	this	Version?
New	PGPFileService.
New	RDMLX	BIFs	JSMX_BEGIN	and	JSMX_END.
ZipService	performance	improvements.
ExcelService	can	now	read	both	XLS	and	XLSX	files.
SOAP	Server	Types	can	now	be	edited	within	the	SOAP	Server	Wizard.
Ad-hoc	Server	Type	parameters	can	now	be	created	within	the	SOAP
Server	Wizard.
SOAP	Agent	Wizard	can	now	handle	input,	output	and	input/output
parameters.
JSMDirect	and	JSMProxy	can	now	take	name-value	pairs	on	the	URL.
JSMDirect	and	JSMProxy	on	IBMi	Apache	server	can	now	receive
chunked	transfer	encoded	content.

1.	Introduction	to	LANSA	Integrator
This	section	introduces	the	Java	Service	Manager,	a	part	of	the	LANSA
Integrator.	It	describes	the	Java	Service	Manager	technology	and	its	benefits.
Review	the	following	topics:
1.1	What	is	Java	Service	Manager	(JSM)?
1.2	What	is	Integrator	Studio?
1.3	What	is	Integrator	User	Agent?

1.1	What	is	Java	Service	Manager	(JSM)?

The	Java	Service	Manager:
Allows	integration	of	Java	programs	with	existing	LANSA	or	3GL
applications.
Provides	a	standardized	interface	for	calling	Java	classes	using	Java	service
programs.	When	a	service	is	loaded	into	the	JSM,	it	manages	the	interface	to
the	services,	handles	the	threading	and	provides	tracing.
Greatly	simplifies	the	development	of	server	applications	requiring	the
integration	of	Java	Services	with	LANSA	or	3GL	applications.

The	Java	Service	Manager	can	be	used	by:
LANSA	functions	(by	using	LANSA	Built-In	Functions	(BIFs)).
LANSA	functions	being	executed	over	the	Internet	using	HTTP.
ILE	programs	(by	calling	the	Java	Service	Manager	APIs	-	similar	to	BIFs).
Other	Java	classes.

Some	of	the	services	shipped	with	the	Java	Service	Manager	are:
XMLBindFileService	(Local	XML	file	handling).
XMLBindQueueService	(MQSeries	XML	message	handling).

HTTPService	(Generic	HTTP	service	with	dynamic	content	handlers).
FTPService.
POP3MailService.
SMTPMailService.

The	JSM	includes	Java	classes	for	standard	requirements	such	as	exception
handling,	message	handling,	data	conversion,	etc.
To	understand	more	about	the	Java	Service	Manager,	it	is	recommended	that
you	review:
1.1.1	Why	use	Java	Service	Manager?
1.1.2	What	is	a	JSM	Client?
1.1.3	What	is	JSMDirect?
1.1.4	How	does	the	Java	Service	Manager	work?
1.1.5	How	Can	I	Use	Java	Service	Manager
1.1.6	Can	I	Create	My	Own	Services?

1.1.1	Why	use	Java	Service	Manager?
Many	vendors	and	open	source	communities	are	implementing	their	technology
using	Java	classes.
For	example,	when	a	customer	order	is	created,	an	application	may	want	to	send
a	customer	an	email	with	the	order	details	as	an	attachment.	This	type	of
application	can	be	achieved	by	using	Java	Mail	classes	with	your	LANSA	order
entry	functions.	Without	the	Java	Service	Manager,	this	type	of	application	can
present	a	significant	technological	challenge	for	traditional	business	systems
developers.
How	do	you	natively	call	a	Java	program	from	your	LANSA	or	3GL
application?
If	you	have	thirty	different	Java	classes,	how	will	you	handle	the	coding	for
each	class?
How	will	you	manage	error	handling?
How	will	you	manage	the	threads	and	resources	for	the	application?
Manually	creating	and	coding	the	interface	to	Java	classes	can	be	a	challenging
and	time	consuming	task	that	is	focused	on	technology	and	not	your	ultimate
business	solution.	The	JSM	simplifies	the	integration	of	Java	classes	with	your
application	by	standardizing	the	interface	and	by	managing	the	execution	of	the
services.	It	includes	a	number	of	Java	classes	for	exception	handling,	message
handling,	data	conversion,	etc.	It	also	provides	a	comprehensive	set	of	tracing
utilities	for	the	application	developer.	These	features	can	dramatically	reduce
the	time	to	integrate	new	Java	classes	with	an	application	because	the	developer
is	not	creating	these	utilities	on	their	own.

If	you	are	a	LANSA	developer,	you	will	call	three	Built-In	Functions.
If	you	are	an	ILE	RPG	developer	you	will	call	four	APIs.
If	you	are	an	experienced	Java	programmer,	you	can	also	write	your	own
services	to	call	your	own	Java	classes	using	the	JSM.

The	JSM	allows	you	to	focus	on	the	business	objectives	of	the	applications
rather	than	the	underlying	technological	implementation.	By	using	the	Java
Service	Manager,	a	complex	task	or	protocol	can	be	simplified	to	a	series	of
commands.	LANSA	developers	only	need	to	understand	how	to	use	the
commands	offered	by	the	Java	service.

1.1.2	What	is	a	JSM	Client?
JSM	Client	is	a	program	that	requests	the	Java	Service	Manager	to	load	and	run
a	Java	service	class.
The	client	program	can	be	a	LANSA	function	or	an	ILE	program.
The	Java	Service	Manager	supports	a	tiered	architecture	and	can	run	on	the
same	or	a	separate	machine	to	the	JSM	Client.
Refer	to	Java	Service	Manager	Clients	for	information.

1.1.3	What	is	JSMDirect?
JSMDirect	is	a	HTTP	extension	to	the	Java	Service	Manager.
It	enables	a	LANSA	or	3GL	application	using	the	Java	Service	Manager	to
participate	in	Web	services	for	B2B	transactions.
LANSA	or	3GL	applications	are	executed	from	a	single	entry	point	CGI
program.
The	JSMDirect	CGI	program	handles	the	reading	of	the	HTTP	request	and
sending	of	the	HTTP	response.
For	example,	a	browser	might	request	the	following:
http://mycompany/cgi-bin/jsmdirect?orderentry

JSMDirect	makes	the	data	transfer	to	the	JSM	transparent	to	the	application
developer	and	greatly	simplifies	application	development.	For	example,	if	you
are	creating	a	2-way	XML	application,	your	customers	will	send	you	an	XML
document.	Using	JSMDirect,	the	XML	document	can	be	sent	by	the	customer
and	a	LANSA	function	will	be	run	to	receive,	process	the	XML	document	and
send	a	response.
The	Java	Service	Manager	does	not	require	the	use	of	LANSA	for	the	Web.
XML	parsing	and	translation	are	supported	directly	from	the	Java	Service
Manager.
For	details	on	running	LANSA	applications	with	JSMDirect,	refer	to	Java
Service	Manager	HTTP	Extensions.

1.1.4	How	does	the	Java	Service	Manager	work?

On	IBM	i,	the	Java	Service	Manager	is	started	using	the	STRJSM	command	on
the	JSM	Menu	which	is	described	in	Java	Service	Manager	Administration	for
IBM	i.	The	STRJSM	command	starts	a	JSM	instance	in	the	JSM	subsystem.
More	than	one	JSM	instance	can	be	running.	Each	JSM	instance	has	its	own
Java	Virtual	Machine.	The	Java	Service	Manager	runs	in	the	JSM	subsystem
waiting	for	service	requests	from	a	JSM	Client.
On	Windows,	if	the	JSM	Administrator	service's	Start-up	Type	is	set	to
Automatic,	Microsoft	Service	Control	Manager	will	start	the	service
automatically	during	system	startup.	If	it	is	set	to	Manual,	you	need	to	use
Microsoft	Service	Control	Manager	to	start	the	JSM	Administrator.	JSM
Administrator	starts	the	Java	Virtual	Machine	and	launches	the	Java	Service
Manager.		Once	started,	the	JSM	Administrator	will	wait	for	service	requests
from	a	JSM	Client.
On	Linux,	the	JSM	Administrator	is	started	with	the	strjsm	program,	which
starts	the	Java	Virtual	Machine	and	launches	the	Java	Service	Manager.	The
Java	Service	Manager	will	then	wait	for	service	requests	from	a	JSM	Client.
The	JSM	Client	begins	by	sending	a	request	to	open	a	connection	to	the	Java
Service	Manager.	If	the	JSM	Client	is	a	LANSA	function,	then	the	JSM_OPEN

its:lansa093.chm::/lansa/intb3_0001.htm

Built-In	Function	is	used	to	open	the	connection.	The	Java	Service	Manager	will
start	a	new	thread	on	the	server.	Each	JSM	Client	has	its	own	thread	managed
by	the	Java	Service	Manager.
The	JSM	Client	can	be	a	LANSA	function	or	3GL	program.	Using	JSMDirect,
the	LANSA	function	can	be	invoked	from	a	CGI	program	using	an	HTTP
request	from	a	client.	JSMDirect	allows	the	functions	to	execute	over	the
Internet	to	support	applications	such	as	2-way	XML.	The	LANSA	function	to	be
executed	is	defined	in	the	DC@W29	file	on	IBM	i	or	in	file	dc_w29.txt	on
Windows	or	Linux.	JSMDirect	automatically	handles	the	reading	and	writing	of
the	data	stream.	(Refer	to	1.1.3	What	is	JSMDirect?)
Once	a	thread	is	started,	the	JSM	Client	can	issue	a	series	of	COMMANDS	to
load	or	unload	specific	service	classes.	Only	one	service	class	can	be	loaded	at	a
time.	The	JSM_COMMAND	BIF	is	also	used	to	execute	specific	commands	in
the	loaded	service.	For	example,	once	the	FTPService	has	been	loaded,
commands	are	used	to	LOGIN	to	the	FTP	server	and	GET	or	PUT	files.	The
Java	Service	Manager	interacts	with	the	Java	classes	used	by	the	service	in
order	to	perform	the	required	FTP	operations.
Once	the	JSM	Client	has	finished,	it	will	send	a	request	to	close	the	connection.
The	JSM_CLOSE	BIF	is	used	to	close	the	connection.

1.1.5	How	Can	I	Use	Java	Service	Manager
Application	developers	can	use	the	Java	Service	Manager	wherever	there	is	a
need	to	integrate	Java	services	with	LANSA	functions	or	other	3GL
applications.
Following	are	examples	of	how	the	Java	Service	Manager	can	be	used:

You	want	to	write	a	2-way	XML	application	to	implement	A2A	or	B2B
solutions	over	the	Internet.	Using	the	HTTP	Service	and	the	XML	Wizard,
you	can	create	both	client	and	server	applications	to	send	and	receive	the
XML	documents.
Business	partners	want	a	simple	method	to	send	transaction	data	from	PC
files	to	a	server	application	for	posting.	Using	the	User	Agent,	files	can	be
uploaded	and	processed	by	the	JSM.
You	need	to	write	an	application	to	process	XML	documents.	The	XML
Wizard	and	JSM	provide	XML	services	to	easily	write	programs	to	process.
You	have	a	set	of	specialized	APIs	written	in	Java	and	you	would	like	to	use
these	with	your	LANSA	or	3GL	applications.	Java	Services	can	be	written
for	these	classes	so	that	they	can	be	easily	integrated	into	your	applications.

1.1.6	Can	I	Create	My	Own	Services?
The	Java	Service	Manager	is	extremely	flexible.	It	can	be	used	to	implement
your	own	Java	classes	on	the	server	or	if	you	wish	to	use	third	party	Java
classes,	you	can	create	a	Java	service	for	these	classes.	By	creating	a	service
you	receive	all	of	the	benefits	of	the	Java	Service	Manager.
In	order	to	create	your	own	Java	service,	you	must	have	a	working	knowledge
of	Java	and	you	must	learn	the	Java	Service	Manager	interfaces.	Refer	to	Create
Your	Own	Services

1.2	What	is	Integrator	Studio?
Integrator	Studio	is	an	integrated	desktop	application	that	allows	a	single	point
of	management	for	JSM	Server	instances	as	well	as	the	resources	used	by	your
Integrator	applications	or	projects.	Studio's	easy	to	use	graphical	interface
greatly	simplifies	the	configuration	and	setup	of	the	JSM	Server	environment.
For	example,	you	can	display	instance	information,	update	JSM	configuration
files	on	the	server,	download	trace	files,	and	publish	the	generated	XSL	files	to
the	JSM	Server.
Studio	allows	local	management	of	content	using	project	folders.	Project	folders
allow	you	to	group	any	files	that	are	part	of	a	specific	Integrator	application.
Projects	also	allow	you	to	uniquely	tag	configuration	settings	within	a	JSM
instance	in	order	to	simplify	setup	tasks.	Using	Studio,	files	can	be	published	to
or	retrieved	from	the	instance	server	by	simple	drag	and	drop	operations	or
using	pop-up	menus.
Integrator	Studio	also	provides	a	single	point	of	access	for	the	Integrator	tools
including	the	XML	Wizard,	XML	Editor,	XSL	Compiler	and	the	Soap	Wizard.
Studio	also	manages	the	files	created	by	these	tools	in	order	to	simplify	the
management	with	the	JSM	Server.

For	more	information,	refer	to	Integrator	Studio.

1.3	What	is	Integrator	User	Agent?
The	User	Agent	is	an	end	user	(client)	application	for	uploading	files	to	a
LANSA	Integrator	application.	It	allows	data	in	Excel	spreadsheets,	text	files
(using	comma	or	tab	delimited	formats)	or	XML	files	to	be	validated	and	sent
from	Windows	and	Linux	clients	to	remote	hosts	via	HTTP,	HTTPS,	SFTP,	FTP
or	JMS	message.
For	example,	a	buying	trading	partner	could	enter	ordering	information	in	a
spreadsheet	and	send	the	file	to	a	remote	trading	hub.	The	remote	trading	hub
can	use	a	single	LANSA	Integrator	program	to	process	the	files,	regardless	of
format,	and	return	the	processed	messages	back	to	the	user	agent.
The	User	Agent	can	be	run	interactively	or	via	a	batch	process,	making	it	ideal
for	uploads	from	workstations	to	a	host	for	regular	tasks	such	as	end	of	day
processing.

For	more	information,	refer	to	Integrator	User	Agent.

LANSA093.CHM::/lansa/intba_0010.htm

2.	Java	Service	Manager	Administration
The	administration	tasks	for	the	Java	Service	Manager	are	specific	to	the
platform	on	which	the	JSM	Server	is	installed.
Review	the	appropriate	section:
2.1	Java	Service	Manager	Administration	for	IBM	i
2.2	Java	Service	Manager	Administration	for	Windows
2.3	Java	Service	Manager	Administration	for	Linux
2.4	Java	Service	Manager	Console
2.5	Java	Service	Manager	Refresh
2.6	Java	Service	Manager	Pool	Server
2.7	Java	Service	Manager	Additional	Servers
2.8	Java	Hotspot	Technology
2.9	Java	Endorsed	Standards	Override	Mechanism
2.10	JSM	Startup	Class
2.11	Activation	Framework
2.12	IBM	Java	System	Properties
2.13	IBM	Technology	for	Java	Shared	Classes
2.14	LOG4J	Logging	Services
2.15	Axis	Properties
2.16	Axis	Message	Handler
2.17	SOAP	Agent	Message	Handler
2.18	Apache	Axis	1.4	WS-Security	and	WS-Addressing
2.19	REST	Representational	State	Transfer
2.20	JCE	Unlimited	Strength	Policy	Files

2.1	Java	Service	Manager	Administration	for	IBM	i

During	installation	the	xxxJSMLIB	and	QOTHPRDOWN	user
profiles	are	created	with	a	default	password	of	LANSA.	You	need	to
change	these	passwords	to	make	your	system	secure.

	
2.1.1	File	and	Folder	Security
2.1.2	Network	Security
2.1.3	JSM	Job	Management
2.1.4	Java	Service	Administration

2.1.1	File	and	Folder	Security

During	installation	the	xxxJSMLIB	and	QOTHPRDOWN	user
profiles	are	created	with	a	default	password	of	LANSA.	You	need	to
change	these	passwords	to	make	your	system	secure.

	
Files	and	folders	in	the	JSM	instance	are	shipped	with	the	owner	being
QOTHPRDOWN	and	*PUBLIC	authority	of	*EXCLUDE.	The	JSM	user
specified	at	install	time	is	granted	all	data	and	object	authority.
To	allow	other	user	profiles	to	access	JSM	files	and	folders	you	can	use	the
i5/OS	user	profile	primary	group	or	supplemental	group	feature.
CHGUSRPRF	USRPRF(MYUSER)	GRPPRF(XXXXXXXXXX)	OWNER(*USRPRF|*GRPPRF)	SUPGRPPRF(xxxJSMLIB)
	

To	change	the	data	and	object	authorities	of	existing	files	and	folders	you	can
use	the	CHGJSMAUT,	CHGJSMPGP,	CHGAUT	or	CHGPGP	commands.
By	default,	IFS	files	created	by	Java,	inherit	the	*PUBLIC	object	authority	from
the	parent	directory.	The	system	properties	os400.file.create.auth	and
os400.dir.create.auth	can	be	used	to	control	the	*PUBLIC	object	authority	for
created	files	and	directories.
Specifying	the	properties	without	any	values	or	with	unsupported	values	results
in	a	public	authority	of	*NONE.
os400.dir.create.auth=none
os400.file.create.auth=none
	

To	change	the	*PUBLIC	file	and	folder	creation	data	authority	to	a	particular
value	requires	changing	the	following	properties	in	the	SystemDefault
properties	file.
os400.dir.create.auth=RWX
os400.file.create.auth=RW
	

2.1.2	Network	Security

During	installation	the	xxxJSMLIB	and	QOTHPRDOWN	user
profiles	are	created	with	a	default	password	of	LANSA.	You	need	to
change	these	passwords	to	make	your	system	secure.

	
You	can	restrict	access	to	your	JSM	instance	by	using	TCP/IP	client	address
filtering.
The	JSM	instance	can	be	configured	to	only	accept	connections	from	specified
TCP/IP	clients.
For	example,	if	you	are	running	a	JSM	instance	on	your	IBM	i	and	the	LANSA
or	RPG	client	programs	are	running	on	the	same	machine	(partition),	then	you
can	use	the	LOOPBACK	(127.0.0.1)	address.
The	JSM	server	will	listen	on	port	4560	and	address	127.0.0.1,	and	only	accepts
clients	from	127.0.0.1.
Using	the	LOOPBACK	address,	means	no	communication	traffic	extends	to	the
physical	card.
It	is	impossible	for	another	machine	or	network	scanner	to	access	the	TCP/IP
interface.
tcp.port=4560
tcp.backlog=20
tcp.interface=127.0.0.1
tcp.client.address=127.0.0.1
	

Multihomed	LOOPBACK	address
You	can	use	multiple	LOOPBACK	addresses	for	multiple	JSM	instances	and
use	the	same	port	number.
tcp.port=4560
tcp.interface=127.0.0.1
	
tcp.port=4560
tcp.interface=127.0.0.2
	
ADDTCPIFC	INTNETADR('127.0.0.2')	LIND(*LOOPBACK)	SUBNETMASK('255.0.0.0')
	

GO	CFGTCP
	
		1.	Work	with	TCP/IP	interfaces
	
					10.2.0.173							255.255.0.0						ETHLINE						*ELAN
					127.0.0.1								255.0.0.0								*LOOPBACK				*NONE
					127.0.0.2								255.0.0.0								*LOOPBACK				*NONE
	
Remember	you	need	to	start	the	127.0.0.2	interface.
	
			PING	'127.0.0.1'
			PING	'127.0.0.2'
	
ADDTCPIFC	*LOOPBACK	help
	
The	interface	being	changed	is	the	loopback	or	LOCALHOST	interface.
Because	processing	associated	with	loopback	does	not	extend	to	a	physical	line,	there	is	no	line	description	associated	with	a	loopback	address.
This	special	value	must	be	used	for	any	INTNETADR	that	has	a	first	octet	value	of	127.
	

2.1.3	JSM	Job	Management

During	installation	the	xxxJSMLIB	and	QOTHPRDOWN	user
profiles	are	created	with	a	default	password	of	LANSA.	You	need	to
change	these	passwords	to	make	your	system	secure.

	
During	the	installation	process	the	following	i5/OS	job	management	objects	are
created	using	the	3	letter	install	prefix.

xxxJSMLIB User	Profile.
JSM	Runtime	User.

QOTHPRDOWN User	Profile.
JSM	Object	Owner.

xxxJSMLIB Library.

xxxJSMLIB Subsystem.

xxxJSMJOBD Job	Description.
STRJSM	Job	Description.

xxxJSMJOBA Job	Description.
Subsystem	Auto-start	Job	Description.

xxxJSMJOBQ Job	Queue.

xxxJSMOUTQ Output	Queue.

xxxJSMCLS Class.

/LANSA_xxxjsmlib IFS	Folder.

	

	
The	STRJSM	command	will	do	the	following	processing	steps.
	
	Retrieve	the	JOBD	from	DCXLOADA04	data	area.
	

			RTVDTAARA	DTAARA(DCXLOADA04	(421	10))	RTNVAR(&JSMJOBD)
	
	Submit	RUNJSM	using	the	JOBD.
	
				SBMJOB	CMD(RUNJSM	INSTANCE(&INSTANCE)	+
											VERSION(&VERSION)	OPTION(&OPTION)	+
											GCHINL(&GCHINL)	GCHMAX(&GCHMAX)	+
											JOB(&JSMJOB))	JOB(&JSMJOB)	+
											JOBD(*LIBL/&JSMJOBD)	JOBQ(*JOBD)	+
											PRTDEV(*JOBD)	OUTQ(*JOBD)	USER(*JOBD)	+
											SYSLIBL(*SYSVAL)	CURLIB(*CRTDFT)	+
											INLLIBL(*JOBD)	LOG(4	00	*SECLVL)	+
											DSPSBMJOB(*NO)	MSGQ(*NONE)	CPYENVVAR(*NO)
	

	
The	configuration	of	these	objects	can	be	viewed	using	the	WRKJOBD	and
WRKSBSD	commands.
	
	WRKJOBD	JOBD(xxxJSMLIB/xxxJSMJOBD)
	
				User	profile	:			xxxPGMLIB
	
				Job	queue		:			xxxJSMJOBQ
						Library		:					xxxJSMLIB
	
				Output	queue	:			xxxJSMOUTQ
						Library		:					xxxJSMLIB
	
	
	WRKJOBD	JOBD(xxxJSMLIB/xxxJSMJOBA)
	
				User	profile	:			xxxPGMLIB
	
				Job	queue		:			xxxJSMJOBQ	
						Library		:					xxxJSMLIB
	
				Output	queue	:			xxxJSMOUTQ	
						Library		:					xxxJSMLIB

	
				Request	data	:			RUNJSM	INSTANCE(*DEFAULT)	VERSION(*DEFAULT)
	
	
	WRKSBSD	SBSD(xxxJSMLIB/xxxJSMLIB)
	
				Display	Autostart	Job	Entries
	
						JSMJOB											xxxJSMJOBDA							xxxJSMLIB
	
				Display	Job	Queue	Entries
	
						10		xxxJSMJOBQ		xxxJSMLIB							20
	

2.1.4	Java	Service	Administration

During	installation	the	xxxJSMLIB	and	QOTHPRDOWN	user
profiles	are	created	with	a	default	password	of	LANSA.	You	need	to
change	these	passwords	to	make	your	system	secure.

Use	the	xxxJSMLIB	user	profile	to	administer	the	JSM	instance.	The	initial
library	list	is	set	and	the	JSM	Menu	will	appear	at	sign	on.
	
		JSM																	JSM	Menu
	
		Select	one	of	the	following:
	
		1.	Start	Java	Service	Manager
		2.	Clear	Java	Service	Manager
		3.	Optimize	Java	Service	Manager
		4.	Edit	Manager	Properties
		5.	Edit	Service	Properties
		6.	Change	Default	JSM	Instance
		7.	Work	with	Java	Service	Manager
	
	
		Selection	or	command
		===>STRJSM
	
		F3=Exit			F4=Prompt			F9=Retrieve			F12=Cancel
	

	

From	this	menu,	you	can	perform	the	following	options:
2.1.4.1	Start	Java	Service	Manager	(STRJSM)
2.1.4.2	Clear	Java	Service	Manager	(CLRJSM)
2.1.4.3	Optimize	Java	Service	Manager	(OPTJSM)
2.1.4.4	Edit	Manager	Properties	(EDTJSMMGR)
2.1.4.5	Edit	Service	Properties	(EDTJSMSRV)

2.1.4.6	Change	Default	Instance	(CHGJSMDFT)
2.1.4.7	Work	with	Java	Service	Manager	(WRKJSM)	that	opens	the	2.1.4.8
Work	with	Object	Links	window.
The	i5/OS	commands	are	in	brackets.	For	example,	you	may	use	option	1	or
you	may	use	the	i5/OS	command	STRJSM	to	start	the	JSM.

2.1.4.1	Start	Java	Service	Manager	(STRJSM)
The	JSM	subsystem	needs	to	be	started	using	the	STRSBS	SBSD	(JSM)
command.
The	STRJSM	command	submits	a	JSM	instance	to	the	JSM	subsystem.
The	source	code	for	STRJSM	is	in	the	QCLSRC	source	file	in	the	JSM	library.
Each	JSM	instance	has	its	own	Java	Virtual	Machine	(JVM).
The	JSM	instance	JVM's	current	working	directory	is	set	to	the	instance	path.
A	CLASSPATH	is	created	using	the	instance	classes	subdirectory	and	all	the
*.jar	and	*.zip	files	located	in	the	jar	subdirectory.
You	can	start	multiple	Java	Service	Managers	with	a	different	instance	directory,
different	interface	and	port,	etc.
When	the	JSM	instance	starts,	a	check	is	made	for	the	existence	of	the	following
sub-directories	below	the	instance	directory:

classes
jar
properties
system
temp
trace

The	Java	Service	Manager	can	run	on	a	separate	machine	to	the	JSM	Client.
When	you	select	the	option	to	start	the	Java	Service	Manager,	you	will	be
prompted	to	enter	the	following:
INSTANCE
The	instance	defaults	to	a	value	of	*DEFAULT.	This	is	the	recommended	value.
The	default	instance	is	defined	in	the	JSMMGRDTA	data	area.	This	value	can
be	changed	using	2.1.4.6	Change	Default	Instance	(CHGJSMDFT).
VERSION
The	JVM	Version	defaults	to	a	value	of	*DEFAULT.	This	is	the	recommended
value.	Valid	values	are	based	on	the	currently	supported	versions	of	the	JVM.
OPTION
The	option	defaults	to	a	value	of	*NONE.	Valid	values	include	*VERBOSE,
*VERBOSEGC,	*NOCLASSGC.

For	more	information	about	the	OPTION	keyword	refer	to	the	i5/OS	JAVA	(Run
Java	Program)	command.
GCHINL
Garbage	collect	initial	size.
The	possible	value	range	is	256-240000000	kilobytes.
The	default	is	131,072	kilobytes	or	128M.
For	more	information	about	the	GCHINL	keyword	refer	to	the	i5/OS	JAVA
(Run	Java	Program)	command.
For	the	IBM	Technology	for	Java	the	GCHINL	keyword	value	becomes	the	–
Xms	value.
GCHMAX
Garbage	collect	maximum	size.
The	possible	value	range	is	256-240000000	kilobytes.
The	GCHMAX	value	determines	the	maximum	heap	size	of	the	JVM,	the
default	value	is	*DFT.
The	GCHMAX	*DFT	value	for	the	IBM	Classic	JVM	is	*NOMAX.
The	GCHMAX	*DFT	value	for	the	IBM	Technology	for	Java	is	2G.
For	the	IBM	Technology	for	Java	the	GCHMAX	keyword	value	becomes	the	–
Xmx	value.
This	default	value	of	2G	is	too	small	for	a	64-bit	Java	environment	and	needs	to
be	increased.
Do	not	use	the	maximum	value	of	240000000	as	the	IBM	Technology	for	Java
command	treats	this	as	a	*NOMAX	value	and	defaults	back	to	the	2G	value
IBM	Technology	for	Java	allocates	memory	in	256M	segments.	The	–Xmx
value	should	be	a	multiple	of	256M	so	allocated	memory	is	not	wasted.
The	32-bit	JDK	can	only	have	a	process	address	space	of	4096M	(16	segments)
and	some	of	these	segments	are	reserved.

Segment	Count Segment	MB GCHMAX	Value

1 256 262144

2 512 524288

3 768 786432

4 1024 1048576

5 1280 1310720

6 1536 1572864

7 1792 1835008

8 2048 2097152

9 2304 2359296

10 2560 2621440

… 	 	

11 2816 2883584

12 3072 3145728

13 3328 3407872

… 	 	

915 234240 239861760

	

From	experimentation,	these	are	the	maximum	GCHMAX	values	for	IBM	Java
Technology	for	Java	JDK's.
32bit		JVM's	are	limited	to	3407872	kilobytes:
									STRJSM	VERSION(*JVM5032)	GCHMAX(3407872)
64bit		JVM's	are	limited	to	239861760	kilobytes:
									STRJSM	VERSION(*JVM5064)	GCHMAX(239861760)
If	you	are	using	the	shared	classes	option	(-Xshareclasses),	then	the	maximum
GCHMAX	value	will	be	less.
Refer	to	the	following	IBM	Redbook:
IBM	Technology	for	Java	Virtual	Machine	in	IBM	i5/OS.
For	more	information	about	the	GCHMAX	keyword	refer	to	the	i5/OS	JAVA
(Run	Java	Program)	command.
JOB
Name	of	submitted	instance	job.

http://www.redbooks.ibm.com/abstracts/sg247353.html

COUNT
The	number	of	times	the	instance	is	submitted.
Refer	to	2.7	Java	Service	Manager	Additional	Servers.

Exit	Program	(IBM	i)
The	STRJSM	command	submits	the	RUNJSM	program.
The	RUNJSM	program	will	call	the	CL	program	RUNJSMEXT	if	it	is	found	in
the	library	list.
The	RUNJSM	program	calls	the	CL	program	RUNJSMEXT	when	the	following
life	cycle	events	occur:

ENTRY Before	the	Java	environment	starts.

REBOOT When	the	Java	environment	reboots.
Studio	Reboot.

EXIT When	the	Java	environment	ends.
Studio	Shutdown	or	ending	of	the	QJVACMDSRV	job.

	

The	source	code	for	this	exit	program	is	stored	in	QCLSRC	in	the	JSM	library.
	
PGM	PARM(&EVENT	&INSTANCE	&VERSION	&JOB)
	
DCL	VAR(&EVENT)					TYPE(*CHAR)	LEN(10)
DCL	VAR(&INSTANCE)		TYPE(*CHAR)	LEN(30)
DCL	VAR(&VERSION)			TYPE(*CHAR)	LEN(8)
DCL	VAR(&JOB)							TYPE(*CHAR)	LEN(10)
	
IF	COND(&EVENT	*EQ	'ENTRY')	THEN(DO)
			GOTO	END
ENDDO
	
IF	COND(&EVENT	*EQ	'REBOOT')	THEN(DO)
			GOTO	END
ENDDO
	
IF	COND(&EVENT	*EQ	'EXIT')	THEN(DO)
			GOTO	END
ENDDO
	

END:	ENDPGM
	

	

2.1.4.2	Clear	Java	Service	Manager	(CLRJSM)
When	tracing	is	enabled,	tracing	files	are	created	in	the	trace	subdirectory.	This
command	is	normally	used	to	remove	the	old	trace	files	and	temporary	files.	For
more	details,	refer	to	Tracing.
The	command	will	check	that	the	instance	path	is	valid	by	checking	for	the
existence	of	following	subdirectories.

classes
jar
properties
system
temp
trace

When	you	select	the	option	to	Clear	the	Java	Service	Manager,	you	will	be
prompted	to	enter	the	following:
INSTANCE
The	instance	defaults	to	a	value	of	*DEFAULT.	This	is	the	recommended	value.
The	default	instance	is	defined	in	the	JSMMGRDTA	data	area.	This	value	can
be	changed	using	2.1.4.6	Change	Default	Instance	(CHGJSMDFT).
TRACEDIR
The	option	defaults	to	a	value	of	*YES.	Valid	values	are	*YES,	*NO.
A	value	of	*YES	will	remove	files	and	subdirectories	in	the	trace	directory.
Refer	to	the	KEEP	keyword	for	information	about	selecting	files	to	keep.
TEMPDIR
The	option	defaults	to	a	value	of	*YES.	Valid	values	are	*YES,	*NO.
A	value	of	*YES	will	remove	all	files	and	subdirectories	in	the	temp	directory.
Do	not	clear	the	temp	directory	while	JSM	services	are	running,	as	any
temporary	files	used	by	the	services	will	be	deleted.
Use	the	value	of	*NO	when	clearing	trace	files	from	a	running	JSM	instance.
KEEP
The	option	defaults	to	a	value	of	0.	Valid	values	are	in	the	range	0	to	99.
A	value	of	0	means	no	files	are	kept	and	all	files	and	subdirectories	are	deleted.
A	value	of	1	means	that	only	today's	files	are	kept.

A	value	of	2	means	that,	today's	and	yesterday's	files	are	kept.

2.1.4.3	Optimize	Java	Service	Manager	(OPTJSM)

It	is	no	longer	necessary	to	optimize	JAR	files.	The	new	IBM
Technology	for	Java	JDKs	do	not	use	these	optimized	programs	and
the	Classic	JDKs	have	improved	to	such	a	point	that	these	optimized
programs	do	not	offer	much	benefit.

This	command	will	create	optimized	Java	objects	using	.jar	files	located	in	the
jar	subdirectory	and	CLASS	files	located	in	the	classes	subdirectory.
Optimization	converts	Java	byte	code	into	a	hidden	64-bit	RISC	service
program	for	the	IBM	i.	This	process	may	take	several	hours	depending	upon	the
speed	of	your	IBM	i	server	and	the	.jar	file	to	be	processed.
This	command	uses	the	i5/OS	CRTJVAPGM	command.
When	you	select	the	option	to	Optimize	Java	Service	Manager,	you	will	be
prompted	to	enter	the	following:
INSTANCE
The	instance	defaults	to	a	value	of	*DEFAULT.	This	is	the	recommended	value.
The	default	instance	is	defined	in	the	JSMMGRDTA	data	area.	This	value	can
be	changed	using	2.1.4.6	Change	Default	Instance	(CHGJSMDFT).
OPTIMIZE
The	option	defaults	to	a	value	of	40.	Valid	values	are	10,	20,	30,	40.
For	more	information	about	the	OPTIMIZE	keyword	refer	to	the	i5/OS
CRTJVAPGM	command.
JAR
The	option	defaults	to	*YES.	Valid	values	are	*NO,	*YES.	This	indicates
whether	the	files	in	the	instance	jar	and	endorsed	subdirectories	should	be
optimized.
CLASS
The	option	defaults	to	*YES.	Valid	values	are	*NO,	*YES.	This	indicates
whether	the	files	in	the	instance	classes	subdirectory	should	be	optimized.
REPLACE
The	option	defaults	to	*NO.	Valid	values	include	*NO,	*YES.	This	indicates
that	an	existing	optimized	program	should	be	replaced.
For	more	information	about	the	REPLACE	keyword	refer	to	the	i5/OS

CRTJVAPGM	command.

Important:	Making	Copies	of	Jar	Files
If	you	make	a	copy	of	a	.jar	file	for	backup	purposes,	it	is	recommended	that
you	do	not	leave	the	backup	.jar	file	in	the	jar	subdirectory.	For	example,	before
modifying	jsm.jar,	you	copy	the	jsm.jar	to	oldjsm.jar	in	the	same	jar
subdirectory.	When	the	classpath	is	built	using	the	list	of	files	in	the	jar
subdirectory,	the	oldjsm.jar	will	be	included	and	might	appear	before	jsm.jar	in
classpath.	In	this	case,	the	old	version	could	still	be	used,	i.e.
classpth	=	oldjsm.jar;jsm.jar;jsmservice.jar;xerces.jar;xalan.jar....
	

2.1.4.4	Edit	Manager	Properties	(EDTJSMMGR)
The	Edit	Manager	Properties	(EDTJSMMGR)	command	uses	the	EDTF
command	to	edit	the	manager.properties	file	in	the	system	subdirectory.
It	is	recommend	you	use	Studio	to	maintain	this	file.
The	manager.properties	file	configures	the	JSM	instance.	It	controls	the	TCP
ports	used,	tracing,	secure	socket	layers	and	many	other	important	properties	of
the	JSM	execution.
The	manager.properties	file	is	loaded	when	the	JSM	starts.	If	the	manager
properties	change,	you	must	stop	and	restart	the	JSM	in	order	for	the	changes	to
take	effect.
When	you	select	the	option	to	Edit	JSM	Manager	Properties,	you	will	be
prompted	to	enter	the	following:
INSTANCE
The	instance	defaults	to	a	value	of	*DEFAULT.	This	is	the	recommended	value.
The	default	instance	is	defined	in	the	JSMMGRDTA	data	area.	This	value	can
be	changed	using	2.1.4.6	Change	Default	Instance	(CHGJSMDFT).
Following	is	an	example	of	the	manager.properties	file:
	
Edit	File:	/jsm/instance/system/manager.properties
	
************Beginning	of	data**************
#
#	Java	Service	Manager	configuration
#
tcp.port=4560
tcp.backlog=20
tcp.interface=*all
#
trace.manager=*yes
#	trace.transport.address=*all
#	trace.transport.error.address=*all
#	trace.service.address=*all
#	trace.service.error.address=*all
#
************End	of	Data********************

	
Using	a	resource	file	allows	the	instance	to	be	externally	configured.	The	file
can	also	be	configured	for	different	languages	or	regions.	Refer	to	Resource
Properties-Internationalization.

2.1.4.5	Edit	Service	Properties	(EDTJSMSRV)
The	Edit	Service	Properties	(EDTJSMSRV)	command	uses	the	EDTF	command
to	edit	the	service.properties	file	in	the	system	subdirectory.
It	is	recommend	you	use	Studio	to	maintain	this	file.
The	service.properties	file	configures	the	JSM	services.	It	is	a	registry	for	the
services	used	by	the	JSM.	It	is	also	used	for	controlling	tracing	and	resources.
The	service.properties	file	is	loaded	when	the	JSM	starts.	If	the	service
properties	change,	you	must	refresh	in	order	for	the	changes	to	take	effect.
When	you	select	the	option	to	Edit	JSM	Service	Properties,	you	will	be
prompted	to	enter	the	following:
INSTANCE
The	instance	defaults	to	a	value	of	*DEFAULT.	This	is	the	recommended	value.
The	default	instance	is	defined	in	the	JSMMGRDTA	data	area.	This	value	can
be	changed	using	2.1.4.6	Change	Default	Instance	(CHGJSMDFT).
Following	is	an	example	of	the	service.properties	file:
	
Edit	File:	/jsm/instance/system/service.properties
	
************Beginning	of	data**************
#
#	Java	Service	Manager	services
#
service.SMTPMailService=com.lansa.jsm.service.SMTPMailService
service.POP3MailService=com.lansa.jsm.service.POP3MailService	
service.HTTPService=com.lansa.jsm.service.HTTPService	
service.FTPService=com.lansa.jsm.service.FTPService
service.SQLService=com.lansa.jsm.service.SQLService	
service.XMLQueueService=com.lansa.jsm.service.XMLQueueService
#
#	trace.SMTPMailService=*all
#	resource.SMTPMailService=SMTPMailService
#
************End	of	Data********************
	

When	the	LANSA	client	requests	that	the	JSM	to	load	a	service,	only	the	name

of	the	service	is	specified.
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(SMTPMailService)')	TO_GET(#JSMSTS	#JSMMSG)
	

When	the	JSM	instance	receives	the	SERVICE_LOAD	command,	the
SMTPMailService	servicename	is	prefixed	with	"service."	The	JSM	searches
the	service.properties	files.	It	uses	the	keyword
SERVICE.SMTPMAILSERVICE	to	locate	the	class	named
com.lansa.jsm.service.SMTPMailService.
It	is	possible	to	associate	a	resource	with	this	service	by	adding	an	entry	with	a
"resource."	prefix.
If	a	resource	entry	is	present	and	the	named	resource	file	exists	in	the	properties
subdirectory,	then	this	resource	is	passed	to	the	service	program	via	the
JSMContainer	getServiceResource()	method.
If	no	resource	entry	exists	then	the	service	name	is	used	as	the	resource	file
name.
If	no	resource	file	exists	then	an	empty	resource	object	is	returned.

2.1.4.6	Change	Default	Instance	(CHGJSMDFT)
When	you	select	the	option	to	Change	Default	Instance	(CHGJSMDFT),	you
will	be	prompted	to	enter	the	following:
INSTANCE
Default	instance	path.	This	value	is	updated	to	the	JSMMGRDTA	data	area	in
the	JSM	library.	The	LANSA	Integrator	install	will	have	correctly	updated	this
data	area.
	
Following	is	an	example	of	this	data	area:
	
Value
Offset	*...+....1....+....2....+....3....+....4....+....5
0						'/jsm/instance																																				'
	

WARNING:	Be	very	careful	when	changing	the	default	instance.
Changing	the	instance	can	have	a	significant	impact	on	your
applications.

2.1.4.7	Work	with	Java	Service	Manager	(WRKJSM)
Work	with	Java	Service	Manager	(WRKJSM)
The	Work	with	Java	Service	Manager	(WRKJSM)	command	allows	the
WRKLNK	command	to	display	a	tree	view	of	the	instance.
When	you	select	the	option	to	Work	with	Java	Service	Manager,	you	will	be
prompted	to	enter	the	following:
INSTANCE
The	instance	defaults	to	a	value	of	*DEFAULT.	This	is	the	recommended	value.
The	default	instance	is	defined	in	the	JSMMGRDTA	data	area.	This	value	can
be	changed	using	2.1.4.6	Change	Default	Instance	(CHGJSMDFT).
After	you	enter	the	instance,	the	2.1.4.8	Work	with	Object	Links	screen	will	be
displayed.

2.1.4.8	Work	with	Object	Links
This	window	displays	a	tree	view	of	the	instance.	Following	is	an	example	of
instance	subdirectories:
	
																			Work	with	Object	Links
	
		Directory	:			/jsm/instance
	
		Type	options,	press	Enter.
			2=Edit			3=Copy			4=Remove			5=Display			7=Rename
			8=Display	attributes			11=Change	current	directory	...
	
	Opt			Object	link												Type					Attribute				Text
							classes																DIR
							dtd																				DIR
							jar																				DIR
							properties													DIR
							system																	DIR
							temp																			DIR
							trace																		DIR
							xsl																				DIR
	
	
		Parameters	or	command
		===>__
		F3=Exit			F4=Prompt			F5=Refresh			F9=Retrieve			F12=Cancel			
		F17=Position	to			F22=Display	entire	field			F23=More	options
	

	

From	this	display,	you	can	work	with	the	files	and	directories	for	the	Java
Service	Manager	instance.

2.1.4.9	Change	JSM	Owner	(CHGJSMOWN)
The	Change	JSM	Owner	(CHGJSMOWN)	command	will	apply	the	CHGPGP
and	CHGOWN	commands	to	all	files	and	subdirectories	including	the	JSM
instance	directory.
The	command	will	check	that	the	instance	path	is	valid	by	checking	for	the
existence	of	following	subdirectories.

classes
jar
properties
system
temp
trace

	
When	you	enter	the	command:

CHGJSMOWN
and	press	F4	you	will	be	prompted	to	enter	the	following:
NEWOWN
The	name	of	the	new	owner	of	the	files	and	directories	below	and	including	the
JSM	instance	directory.
INSTANCE
The	instance	defaults	to	a	value	of	*DEFAULT.	This	is	the	recommended	value.
The	default	instance	is	defined	in	the	JSMMGRDTA	data	area.	This	value	can
be	changed	using	2.1.4.6	Change	Default	Instance	(CHGJSMDFT).
Example
	
CHGJSMOWN	NEWOWN(QOTHPRDOWN)	INSTANCE(*DEFAULT)
	
This	program	will	call	the	CHGPGP	and	CHGOWN	commands
on	all	files	and	sub-directories	in	the	instance	directory.
	
CHGPGP	OBJ(%s)	NEWPGP(*NONE)
	
CHGOWN	OBJ(%s)	NEWOWN(%s)

	
Example	from	the	DSPJOBLOG	command
	
Object	/jsm/instance	changed.	
Object	/jsm/instance/classes	changed.
Object	/jsm/instance/dtd	changed.
Object	/jsm/instance/dtd/order.dtd	changed.
...
	

2.1.4.10	Change	JSM	Authority	(CHGJSMAUT)
The	Change	JSM	Authority	(CHGJSMAUT)	command	will	apply	the
CHGAUT	command	to	all	files	and	subdirectories	including	the	JSM	instance
directory.
The	command	will	check	that	the	instance	path	is	valid	by	checking	for	the
existence	of	following	subdirectories.

classes
jar
properties
system
temp
trace

	
When	you	enter	the	command

CHGJSMAUT
and	press	F4	you	will	be	prompted	to	enter	the	following:
USER
The	name	of	the	user	whose	authority	is	being	set	for	all	files	and	directories
below	and	including	the	JSM	instance	directory.
DTAAUT
The	level	of	data	authority	for	all	files	and	directories	below	and	including	the
JSM	instance	directory.
OBJAUT
The	level	of	object	authority	for	all	files	and	directories	below	and	including	the
JSM	instance	directory.
INSTANCE
The	instance	defaults	to	a	value	of	*DEFAULT.	This	is	the	recommended	value.
The	default	instance	is	defined	in	the	JSMMGRDTA	data	area.	This	value	can
be	changed	using	2.1.4.6	Change	Default	Instance	(CHGJSMDFT).
Example
	
CHGJSMAUT	USER(*PUBLIC)	DTAAUT(*EXCLUDE)	OBJAUT(*NONE)	INSTANCE(*DEFAULT)

	
This	program	will	call	the	CHGAUT	on	all	files	and	sub-
directories	in	the	instance	directory.
	
CHGAUT	USER(%s)	DTAAUT(%s)	OBJAUT(%s)	OBJ(%s)
	
Example	from	the	DSPJOBLOG	command
	
Object	/jsm/instance	changed.	
Object	/jsm/instance/classes	changed.
Object	/jsm/instance/dtd	changed.
Object	/jsm/instance/dtd/order.dtd	changed.
...
	

2.1.4.11	Change	JSM	Primary	Group	(CHGJSMPGP)
The	Change	JSM	Primary	Group	(CHGJSMPGP)	command	will	apply	the
CHGPGP	command	to	all	files	and	subdirectories	including	the	JSM	instance
directory.
The	command	will	check	that	the	instance	path	is	valid	by	checking	for	the
existence	of	following	subdirectories.

classes
jar
properties
system
temp
trace

	
When	you	enter	the	command

CHGJSMPGP
and	press	F4	you	will	be	prompted	to	enter	the	following:
PGP
The	name	of	the	primary	group	whose	authority	is	being	set	for	all	files	and
directories	below	and	including	the	JSM	instance	directory.
DTAAUT
The	level	of	data	authority	for	all	files	and	directories	below	and	including	the
JSM	instance	directory.
OBJAUT
The	level	of	object	authority	for	all	files	and	directories	below	and	including	the
JSM	instance	directory.
INSTANCE
The	instance	defaults	to	a	value	of	*DEFAULT.	This	is	the	recommended	value.
The	default	instance	is	defined	in	the	JSMMGRDTA	data	area.	This	value	can
be	changed	using	2.1.4.6	Change	Default	Instance	(CHGJSMDFT).
Example
	
CHGJSMPGP	PGP(*NONE)	DTAAUT(*EXCLUDE)	OBJAUT(*NONE)	INSTANCE(*DEFAULT)

	
This	program	will	call	the	CHGPGP	on	all	files	and	sub-
directories	in	the	instance	directory.
	
CHGPGP	NEWPGP(%s)	DTAAUT(%s)	OBJAUT(%s)	OBJ(%s)
	

2.1.4.12	Change	Attribute	(CHGATR)
The	Change	Attribute	command	is	an	i5/OS	command	that	allows	the	IFS	file
attributes	to	be	set.
The	most	important	attribute	is	READONLY.
The	upgrade	process	will	not	be	able	to	replace	files	that	have	the	READONLY
attribute	set	on.
Example
	
CHGATR	OBJ('/jsm/instance')	ATR(*READONLY)	VALUE(*NO)	SUBTREE(*ALL)
	

2.2	Java	Service	Manager	Administration	for	Windows
The	Java	Service	Manager	Administration	on	Windows	is	a	service	application.
How	To	Start
On	Windows,	if	the	JSM	service's	Start-up	Type	is	set	to	Automatic,	Microsoft
Service	Control	Manager	will	start	the	service	automatically	during	system
startup.	If	it	is	set	to	Manual,	you	need	to	use	Microsoft	Service	Control
Manager	to	start	the	JSM	Administrator.
JSM	Administrator	starts	the	Java	Virtual	Machine	and	launches	the	Java
Service	Manager.	If	the	administrator	program	has	performed	an	upgrade,	then
the	JSM	will	have	stopped.
If	the	administrator	program	has	stopped	due	to	an	upgrade,	start	the	JSM
Administrator	again.
To	stop	the	JSM	server	from	ending	when	the	user	logs	off,	the	JVM	option	-
Xrs	needs	to	be	present.
Program	Options
The	JSM	Administrator	configuration	options	are	specified	in	the	jsmmgrdta.txt
file.

Priority The	JVM	process	priority.
Possible	values	are	LOW,	HIGH,	NORMAL,
BELOWNORMAL	or	ABOVENORMAL.
Default	is	NORMAL.

Instance The	path	of	the	instance.
Default	is	..\JSMInstance.

JVM The	path	of	the	Java	program	to	execute.
To	specify	another	JRE	or	JDK	use	the	absolute	path	to	the
java	program.
For	example:	C:\Program	Files\Java\jdk1.5.0_22\bin\java
Default	is	java.

JVMOptions The	Java	program	options.
There	is	no	default	value.
The	shipped	value	is	-Xms128M	-Xmx128M	-Xrs	-
Djava.endorsed.dirs=.\endorsed

JSM	is	only	compatible	with	a	32-bit	JRE	or	JDK.	Even	if	the	JSM

Administrator	is	running	on	64-bit	Windows	it	still	requires	a	32-bit	JRE	or	JDK
to	be	installed.
Clear	Trace
Clear	Trace	removes	files	and	subdirectories	in	the	trace	and/or	temp
directories.
It	can	be	run	in	interactive	mode	or	as	a	batch	job.	The	path	of	the	instance	is
taken	from	the	jsmmgrdta.txt	file	(see	Program	Options	for	the	Java	Service
Manager	Administration	for	Windows).
Clear	Trace	can	be	run	from	the	Start	|	Programs	|	Menu	or	from	the	command
line.	You	can	use	any	of	the	following	three	options,	all	of	which	are	optional.
/batch
Run	Clear	Trace	as	a	batch	job
/temp
Remove	files	and	subdirectories	in	the	temp	directory	only.
/trace
Remove	files	and	subdirectories	in	the	trace	directory	only.
Interactive	mode	Example:
From	the	Clear	Instance	dialog,	select	the	actions	you	wish	Clear	Trace	to	take:

This	will	result	in:
clrjsm	to	remove	trace	and	temp	files	(default	behavior)
clrjsm	/trace	/temp	to	remove	trace	and	temp	files
clrjsm	/temp	to	remove	temp	files	and	not	trace	files
clrjsm	/trace	to	remove	trace	files	and	not	temp	files.
Batch	mode	Examples:
clrjsm/batch	removes	trace	and	temp	files
clrjsm	/batch	/trace	/temp	removes	trace	and	temp	files
clrjsm	/batch	/temp	removes	temp	files	and	not	trace	files
clrjsm	/batch	/trace	removes	trace	files	and	not	temp	files.

2.3	Java	Service	Manager	Administration	for	Linux
Starting	the	JSM
The	Java	Service	Manager	on	Linux	is	started	using	the	strjsm	program	found
in	$LANSAXROOT/integrator/sh.	It	should	be	run	by	the	LANSA	owner,
in	its	own	shell.	It	can	also	be	run	as	a	background	process.
After	running	strjsm,	the	following	should	be	sent	to	standard	output:
	
				Starting	JSM
								Instance	directory	:	/lansa/integrator/instance
								Process	ID									:	18621
	

Ending	the	JSM
You	should	use	Integrator	Studio	to	stop	accepting	clients	to	avoid
disconnecting	any	clients	in	the	middle	of	a	transaction	and	to	also	shutdown	the
JSM.
Instance	Location
By	default,	strjsm	uses	the	LANSAXROOT	environment	variable	to	find	the
JSM	instance	to	execute.	The	instance	location,	in	this	case,	is
$LANSAXROOT/integrator/instance.	There	are	two	ways	to	override	this:

Supply	another	instance	location	on	the	command	line.	For	example,	this
code	will	use	the	instance	found	at	jsm/instance	in	the	current	directory:

	
				strjsm	jsm/instance
	
Set	the	JSM_INSTANCE_DIR	environment	variable	to	the	new	instance
directory.

If	LANSAXROOT	and	JSM_INSTANCE_DIR	are	both	undefined	and	no
instance	directory	is	specified	on	the	command	line,	strjsm	will	fail	with	an
error.
Clear	Trace	Directory
If	you	run	strjsm	with	the	-c	(lowercase	c)	option,	it	will	clear	the	instance's
trace	directory	before	starting	the	JSM	server.	The	trace	directory	will	be	empty

except	for	a	directory	for	the	current	JSM	server's	process.
If	the	JSM_CLEAR_TRACE	environment	variable	is	set	to	a	non-empty
string,	the	trace	directory	will	be	cleared	by	default.	In	this	case,	it	can	be	turned
off	with	the	-C	(uppercase	C)	option.

2.4	Java	Service	Manager	Console
Each	Java	Service	Manager	instance	can	have	a	HTTP	web	Console	interface
that	allows	a	web	browser	or	Studio	application	to	perform	administration	tasks
on	the	currently	active	service	manager.
The	following	manager.properties	entries	control	the	Console	address	and	port.
If	no	Console	interface	is	required	comment	out	these	entries	in	the
manager.properties	file.
	
console.tcp.port=4561
console.tcp.backlog=5
console.tcp.interface=*all
	

To	control	which	clients	can	connect	to	the	Console	server	use	the	following
entries.
	
console.client.address=*all
studio.client.address=*all
	

	
To	access	the	Console	from	a	web	browser,	use	the	http://host:port	URL.

The	Active	service	count	command	returns	the	number	of	service	threads
currently	running.
The	Refresh	resources	command	instructs	the	service	manager	to	reload
manager.properties,	service.properties,	structure.properties	and	list.properties
files.
The	System	information	command	returns	a	table	of	information	about	the
service	manager	environment.
The	Perform	garbage	collection	command	instructs	the	service	manager	to
perform	a	JVM	garbage	collection	cycle.
The	Controlled	shutdown	command	instructs	the	service	manager	to	stop
accepting	new	JSM	client	connections.	Currently	running	service	threads	will
not	be	influenced.	When	no	more	service	threads	are	running	or	when	the
shutdown	wait	time	is	reached	the	service	manager	ends.
The	Close	console	server	command	ends	the	Console	listener	and	no	further
Console	and	Studio	connections	are	possible.
When	the	JSM	instance	starts	and	the	Console	interface	has	been	enabled,	a
start	entry	is	appended	to	the	Console-log.txt	file.
When	a	web	browser	or	Studio	application	sends	a	request	to	the	Console	server
thread,	this	request	is	written	to	the	console-log.txt	file	in	the	system	directory.
The	console-log.txt	entry	is	made	up	of	a	date	time	stamp,	IP	address	of	client

program	and	the	request.	This	provides	an	audit	log	of	all	requests	made	using
the	Java	Service	Manager	Console.
Example
	
[2005-02-03	01:57:56	+0000]
===
[2005-02-03	01:58:50	+0000]	[10.2.1.55]	Request	for	download
[/jsm/instance/order.txt;]
[2005-02-03	01:58:55	+0000]	[10.2.1.55]	Request	for	thread	count
[2005-02-03	01:59:01	+0000]	[10.2.1.55]	Request	for	refresh
	

The	console.timezone	property	can	be	used	to	adjust	GMT	to	local	time,	if	the
Java	'user.timezone'	has	been	set	differently.
	
#	A	custom	time	zone	like	GMT+10:00	does	not	include	daylight	savings	time	
#	console.timezone=GMT+10:00
#	console.timezone=Australia/Sydney
console.timezone=AET
	

The	console.authentication	property	controls	basic	authentication	with	the	client
web	browser.	If	the	console.authentication	property	has	a	value	of	*yes	then
client	authentication	is	done.
	
#	If	console.authentication	is	commented	out,	then	no	authentication.
console.authentication=*yes
console.authentication.alick=6aae268520b50b6b4c28194631de5a24
	

If	console	authentication	is	turned	on	then	client	web	browsers	will	prompt	with
an	authentication	dialog	box.
A	cached	lookup	of	manager.properties	for	property	console.authentication.
{username}	is	done	and	the	property	value	compared	to	the	digest	token	created
from	the	web	browser	authentication	response.
If	the	user	entry	does	not	exist	then	the	following	will	be	logged.
	
[2005-04-01	03:04:37	+0000]	No	console	authentication	user	:	jack
	

If	the	user	entry	exists,	but	the	digests	do	not	match	then	the	following	will	be
logged.
	
[2005-04-01	03:02:31	+0000]	Console	authentication	digest	for	alick	is
6aae268520b50b6b4c28194631de5a24
[2005-04-01	03:02:31	+0000]	Client	user	has	failed	authentication	check
	

The	logged	digest	has	been	created	by	the	client	application,	so	update	the
manager.properties	entry	with	this	digest	so	they	match	on	the	next	login
attempt.
	
console.authentication.alick=6aae268520b50b6b4c28194631de5a24
	

If	the	user	is	authenticated	then	the	log	events	include	the	user	name
	
[2005-04-01	03:02:47	+0000]	[10.2.1.55]	[alick]	GET	/REQUEST-SYSTEM-
REFRESH
	

The	console.client.address	can	be	used	to	control	what	web	browser	client
addresses	can	connect,	if	more	than	one	client	address	is	needed	then	comma
separate	the	multiple	addresses.
	
console.client.address=*all
#	console.client.address=*none
#	console.client.address=10.2.1.7
#	console.client.address=10.2.1.7,10.2.1.8
	

The	studio.authentication	property	controls	authentication	with	the	client	Studio
application.	If	the	studio.authentication	property	has	a	value	of	*yes	then	client
authentication	is	done.
	
#	If	studio.authentication	is	commented	out,	then	no	authentication.
studio.authentication=*yes
studio.authentication.alick=6aae268520b50b6b4c28194631de5a24
	

If	studio	authentication	is	turned	on	then	client	Studio	applications	will	prompt

with	an	authentication	dialog	box.
A	cached	lookup	of	manager.properties	for	property	studio.authentication.
{username}	is	done	and	the	property	value	compared	to	the	digest	token	send	by
the	client	Studio	application.
If	the	user	entry	does	not	exist	then	the	following	will	be	logged.
	
[2005-04-01	03:04:37	+0000]	No	studio	authentication	user	:	jack
	

If	the	user	entry	exists,	but	the	digests	do	not	match	then	the	following	will	be
logged.
	
[2005-04-01	03:02:31	+0000]	Studio	authentication	digest	for	alick	is
6aae268520b50b6b4c28194631de5a24
[2005-04-01	03:02:31	+0000]	Client	user	has	failed	authentication	check
	

Use	Studio	to	create	and	add	authorized	users	to	the	manager.properties	section
file.	Console	and	Studio	users	belong	to	the	JSM	realm.
	
studio.authentication.alick=6aae268520b50b6b4c28194631de5a24
console.authentication.alick=6aae268520b50b6b4c28194631de5a24
	

Publish	the	modified	manager.properties	section	file	and	use	the	instance	refresh
menu	item	to	reload	the	manager.properties	file.

	
If	the	user	is	authenticated	then	the	log	events	include	the	user	name
	
[2005-04-01	03:03:23	+0000]	[10.2.1.55]	[alick]	Request	for	download
[/devjsm/instance/rehau1.xml;]
	

The	studio.client.address	can	be	used	to	control	what	studio	client	address	can
connect,	if	more	than	one	client	address	is	needed	then	comma	separate	the
multiple	addresses.
	
studio.client.address=*all
#	studio.client.address=*none
#	studio.client.address=10.2.1.7

#	studio.client.address=10.2.1.7,10.2.1.8
	

The	studio.include.trace.directory	can	be	used	to	control	the	depth	of	the	trace
directory	being	sent	to	the	Studio	client.	By	default	all	child	directories	in	the
trace	directory	are	sent.
	
#	studio.include.trace.directory=*all	|	*active	|	*none	|	*client
	

2.5	Java	Service	Manager	Refresh
To	refresh	property	files	while	the	JSM	is	running	use	the	Integrator	Studio
refresh	menu	item	or	Console	Refresh	resources	option.

The	following	property	files	will	be	re-loaded:
list.properties
service.properties
structure.properties
manager.properties

	
Only	the	following	manager	properties	will	be	available	after	a	refresh:

pool.hosts
console.timezone
console.authentication
console.authentication.{user}
studio.authentication
studio.authentication.{user}
studio.include.trace.directory
shutdown.controlled.wait
shutdown.controlled.repeat
ftp.ssl.factory

ftp.ssl.provider
ftp.ssl.protocol
ftp.ssl.keyStore
ftp.ssl.keyStoreType
ftp.ssl.keyStorePassword
ftp.ssl.keyAlias
ftp.ssl.keyAlgorithm
ftp.ssl.trustStore
ftp.ssl.trustStoreType
ftp.ssl.trustStorePassword
ftp.ssl.trustAlgorithm
ftp.ssl.trustServer
http.ssl.factory
http.ssl.provider
http.ssl.protocol
http.ssl.keyStore
http.ssl.keyStoreType
http.ssl.keyStorePassword
http.ssl.keyAlias
http.ssl.keyAlgorithm
http.ssl.trustStore
http.ssl.trustStoreType
http.ssl.trustStorePassword
http.ssl.trustAlgorithm
http.ssl.trustServer
trace.threads

	
The	following	manager	properties	are	used	once	at	JSM	startup	and	the
refreshed	value	has	no	effect	on	the	current	environment:

tcp.port
tcp.backlog
tcp.interface

tcp.nodelay
tcp.timeout
tcp.buffer.send
tcp.buffer.receive
console.tcp.port
console.tcp.backlog
console.tcp.interface
console.tcp.nodelay
console.tcp.timeout
console.tcp.buffer.send
console.tcp.buffer.receive
pool.tcp.port
pool.tcp.backlog
pool.tcp.interface
pool.tcp.nodelay
pool.tcp.timeout
pool.tcp.buffer.send
pool.tcp.buffer.receive
manager.priority
service.priority
startup.class

	
The	following	manager	properties	are	parsed	and	cached	at	JSM	startup	and	the
refreshed	value	has	no	effect	on	the	current	environment:

tcp.client.address
console.client.address
studio.client.address
trace.transport.address
trace.transport.error.address
trace.service.address
trace.service.error.address
trace.fields

trace.passwords
	
The	following	manager	properties	are	only	set	once	at	JSM	startup	and	the
refreshed	value	has	no	effect	on	the	current	environment:

javax.net.debug
javax.net.ssl.keyStore
javax.net.ssl.keyStoreType
javax.net.ssl.keyStorePassword
javax.net.ssl.trustStore
javax.net.ssl.trustStoreType
javax.net.ssl.trustStorePassword
ssl.KeyManagerFactory.algorithm
ssl.TrustManagerFactory.algorithm
ssl.SocketFactoty.provider
ssl.ServerSocketFactory.provider
networkaddress.cache.ttl
networkaddress.cache.negative.ttl
os400.certificateLabel
os400.certificateContainer
log4j.configuration

	

2.6	Java	Service	Manager	Pool	Server
Each	Java	Service	Manager	instance	can	have	a	pool	server	interface.	A	pool
server	allows	load	balancing	to	be	done.	When	a	JSM	client	connects	to	a	pool
server	the	client	is	automatically	redirected	to	one	of	the	specified	hosts	in	a
round-robin	process.
If	a	host:port	entry	specified	in	the	pool.hosts	list	is	not	available,	then	the	JSM
client	will	go	back	to	the	pool	server	for	another	entry.	The	unavailable	host
machine	must	be	running,	so	that	the	client	TCP/IP	socket	connect	attempt	fails
quickly	and	the	client	can	return	to	the	pool	server.	If	the	unavailable	host
machine	is	not	running	a	long	timeout	delay	will	be	experienced.	This	timeout
delay	can	be	up	to	3	minutes	on	a	IBM	i	machine.
In	the	following	example	the	JSM	client	program	connects	to	a	pool	server
address	instead	of	the	JSM	server	address.
	
CHANGE					FIELD(#JSMSRV)	TO('''LOCALHOST:4562''')
USE								BUILTIN(JSM_OPEN)	WITH_ARGS(#JSMSRV)	TO_GET(#JSMSTS	#JSMMSG)
	

The	following	manager.properties	entries	control	the	pool	server	address	and
port.	If	no	pool	server	interface	is	required	comment	out	these	entries	in	the
manager.properties	file.
	
#	pool.tcp.port=4562
#	pool.tcp.backlog=100
#	pool.tcp.timeout=2000
#	pool.tcp.interface=*all
#	pool.hosts=HOST1:4560,HOST2:4560,HOST3:4560
	

The	pool	server	uses	the	tcp.client.address	property	to	control	client
connections.

2.7	Java	Service	Manager	Additional	Servers
Each	Java	Service	Manager	instance	can	support	additional	JSM	servers.
This	allows	multiple	JVM	jobs	to	share	the	same	JSM	instance	directory	and
files.
Use	the	same	JDK	version	when	sharing	a	JSM	instance	directory.
The	STRJSM	command	submits	the	RUNJSM	program	which	starts	a	JVM	job
to	run	the	Java	Service	Manager.
The	Java	Service	Manager	uses	the	instance	manager.properties	file	to
determine	its	runtime	configuration.
The	Java	Service	Manager	will	attempt	to	bind	to	the	base	TCP/IP	interface
(tcp.interface	and	tcp.port)	to	start	a	JSM	server.
If	it	cannot	bind	to	the	base	TCP/IP	interface	it	will	attempt	to	bind	to	the	next
available	additional	TCP/IP	interface	(additional.tcp.interface.n	and
additional.tcp.port.n).	Once	it	has	bound	to	an	additional	TCP/IP	interface,	the
optional	console	and	pool	server	for	that	additional	server	are	started.
It	is	possible	to	configure	1	to	10	additional	servers.
The	following	trace	examples	illustrate	how	the	first	STRJSM	command,	starts
a	JSM	server,	a	pool	server	and	console	server.	The	next	STRJSM	command
using	the	same	instance	directory	starts	an	additional	JSM	server.
Example:	manager.properties
	
#
#	Base	instance
#
tcp.port=4560
tcp.backlog=20
#	tcp.timeout=2000
tcp.interface=*all
#
console.tcp.port=4561
console.tcp.backlog=5
#	console.tcp.timeout=2000
console.tcp.interface=*all
#
pool.tcp.port=4565

pool.tcp.backlog=20
#	pool.tcp.timeout=2000
pool.tcp.interface=*all
#	pool.hosts=LANSA01:7766,LANSA01:4560
#	pool.hosts=LANSA01:7766,10.2.1.47:4560,LANSA01:4560
pool.hosts=LANSA06:4760
#
#	Additional	instance	1
#
additional.tcp.port.1=4360
additional.tcp.interface.1=*all
additional.tcp.backlog.1=25
#	additional.console.port.1=4361
#	additional.console.interface.1=*all
#	additional.console.backlog.1=25
#	additional.pool.port.1=4362
#	additional.pool.interface.1=*all
#	additional.pool.backlog.1=25
#
#	additional.httpd.1=system/httpd-1.xml
	
#
#	Additional	instance	2
#
additional.tcp.port.2=4363
additional.tcp.interface.2=*all
additional.tcp.backlog.2=30
	

Example:	First	STRJSM	MANAGER.TXT	trace
	
manager:	tcp.port											:	4560
manager:	tcp.interface						:	*all
manager:	tcp.backlog								:	20
manager:	tcp.nodelay								:	<null>
manager:	tcp.buffer.send				:	<null>
manager:	tcp.buffer.receive	:	<null>
manager:	create	manager	server
manager:	create	socket	address	to	listen	on	port	4560	across	all	interfaces

manager:	bind	to	socket	address
manager:	start	manager	server
manager:	server	receive	buffer	size	:	64000
	
manager:	pool.tcp.port											:	4565
manager:	pool.tcp.interface						:	*all
manager:	pool.tcp.backlog								:	20
manager:	pool.tcp.nodelay								:	<null>
manager:	pool.tcp.buffer.send				:	<null>
manager:	pool.tcp.buffer.receive	:	<null>
manager:	create	pool	server
manager:	create	socket	address	to	listen	on	port	4565	across	all	interfaces
manager:	bind	to	socket	address
manager:	start	pool	server
manager:	server	receive	buffer	size	:	64000
manager:	pool	host	:	LANSA06:4760
	
manager:	console.tcp.port											:	4561
manager:	console.tcp.interface						:	*all
manager:	console.tcp.backlog								:	5
manager:	console.tcp.nodelay								:	<null>
manager:	console.tcp.buffer.send				:	<null>
manager:	console.tcp.buffer.receive	:	<null>
manager:	create	console	server
manager:	create	socket	address	to	listen	on	port	4561	across	all	interfaces
manager:	bind	to	socket	address
manager:	start	console	server
manager:	server	receive	buffer	size	:	64000
	

	
Example:	Second	STRJSM	MANAGER.TXT	trace
	
manager:	tcp.port											:	4560
manager:	tcp.interface						:	*all
manager:	tcp.backlog								:	20
manager:	tcp.nodelay								:	<null>
manager:	tcp.buffer.send				:	<null>
manager:	tcp.buffer.receive	:	<null>

manager:	create	manager	server
manager:	create	socket	address	to	listen	on	port	4560	across	all	interfaces
manager:	bind	to	socket	address
manager:	bind	exception	:	Address	already	in	use.
	
manager:	additional	manager	server	1
manager:	tcp.port											:	4360
manager:	tcp.interface						:	*all
manager:	tcp.backlog								:	25
manager:	tcp.nodelay								:	<null>
manager:	tcp.buffer.send				:	<null>
manager:	tcp.buffer.receive	:	<null>
manager:	create	manager	server
manager:	create	socket	address	to	listen	on	port	4360	across	all	interfaces
manager:	bind	to	socket	address
manager:	start	manager	server
manager:	server	receive	buffer	size	:	64000
No	additional	pool	server
No	additional	console	server
	

	

2.8	Java	Hotspot	Technology
Refer	to	the	following	reference	material:
Java	application	launcher	V1.5.0
Java	application	launcher	V6
Java	application	launcher	V7
Java	command	arguments
Argument Description

-
Xms<size>

Specify	the	initial	heap	size,	in	bytes,	of	the	memory	allocation
pool.
This	value	must	be	a	multiple	of	1024	greater	than	1MB.
Append	the	letter	k	or	K	to	indicate	kilobytes,	m	or	M	to
indicate	megabytes,	g	or	G	to	indicate	gigabytes.

-
Xmx<size>

Specify	the	maximum	heap	size,	in	bytes,	of	the	memory
allocation	pool.
This	value	must	a	multiple	of	1024	greater	than	2MB.
Append	the	letter	k	or	K	to	indicate	kilobytes,	m	or	M	to
indicate	megabytes,	g	or	G	to	indicate	gigabytes.

-Xss<size> Specify	the	thread	stack	size.

-Xrs Reduces	usage	of	operating-system	signals.

	

Example
	
java	-Xms1G	-Xmx1G	-Xrs	...
	
	

http://download.oracle.com/javase/1.5.0/docs/tooldocs/windows/java.html
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/java.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/java.html

2.9	Java	Endorsed	Standards	Override	Mechanism
An	endorsed	standard	is	a	Java	API	defined	through	a	standards	process	other
than	the	Java	Community	Process	(JCP).
Because	endorsed	standards	are	defined	outside	the	JCP,	it	is	anticipated	that
such	standards	may	be	revised	between	releases	of	the	Java	2	Platform.
In	order	to	take	advantage	of	new	revisions	to	endorsed	standards,	developers
and	software	vendors	may	use	the	Endorsed	Standards	Override	Mechanism	to
provide	newer	versions	of	an	endorsed	standard	than	those	included	in	the	Java
2	Platform	as	released	by	Sun	Microsystems.
Classes	implementing	newer	versions	of	endorsed	standards	should	be	placed	in
JAR	files.	The	system	property	'java.endorsed.dirs'	specifies	one	or	more
directories	that	the	Java	runtime	environment	will	search	for	such	JAR	files.
Refer	to:	http://download.oracle.com/javase/1.5.0/docs/guide/standards/
Issues	running	Xalan-Java	on	JDK	1.4
Some	versions	of	JDK	1.4	are	packaged	with	an	old	version	(2.2D11)	of	Xalan-
Java.
JDK	1.4	will	attempt	to	use	this	version	instead	of	any	on	the	classpath.
Unfortunately,	this	causes	problems	when	attempting	to	use	a	newer	version	of
Xalan-Java	with	the	JDK	1.4.
Java	command	arguments
Argument Description

-Djava.endorsed.dirs Directory	containing	the	latest	Xalan	jar	files.

	

http://download.oracle.com/javase/1.5.0/docs/guide/standards/

2.10	JSM	Startup	Class
When	JSM	starts	an	internal	startup	class	runs.	This	class	loads	all	JSM	service
classes	and	performs	an	XML	transformation	to	load	as	many	Apache	Xalan
classes	as	possible.
A	user-defined	startup	class	can	be	specified	by	the	'startup.class'	property	in	the
manager.properties	file.
	
startup.class=com.acme.MyStartup
	

The	user-defined	startup	class	needs	to	implement	the	Runnable	interface.	JSM
casts	this	loaded	class	to	a	Runnable	object	and	then	executes	the	run	method.
This	happens	in	the	main	thread	and	no	additional	threads	are	created	to	do	this
task.
The	internal	startup	class	and	the	user-defined	startup	class	run	before	the	JSM
starts	to	accept	client	and	console	connections.
Example	1
	
package	com.acme	;
	
public	final	class	MyStartup	implements	Runnable
{
			public	void	run	()
			{
								try
								{
	
												/*			YOUR	CODE	GOES	HERE			*/
	
								}
								catch	(Throwable	t)
								{
													t.printStackTrace	()	;
								}
			}
}
	

Example	2
	
package	com.acme	;
	
public	final	class	MyStartup	implements	Runnable
{
				private	int	m_sleepTime	=	0	;
	
				public	MyStartup	()
				{
								/*
												JSMManager	uses	the	zero	argument	constructor
								*/
	
								int	seconds	=	60	*	20	;	//	Every	20	minutes
	
								Thread	thread	=	new	Thread	(new	MyStartup	(seconds))	;
	
								thread.start	()	;
				}
	
				public	MyStartup	(int	seconds)
				{
								/*
												Specify	sleep	time
								*/
	
								if	(seconds	<=	0)
								{
												seconds	=	0	;
								}
	
								m_sleepTime	=	seconds	*	1000	;
				}
	
				public	void	run	()
				{
	
								if	(m_sleepTime	==	0)

								{
												/*
																JSMManager	call
												*/
	
												System.out.println	("JSM	warmup	call")	;
	
												try
												{
																warmup	()	;
												}
												catch	(Throwable	t)
												{
																t.printStackTrace	()	;
												}
	
												return	;
								}
	
								/*
												MyStartup	call	with	sleep	time
								*/
	
								while	(true)
								{
												try
												{
																Thread.sleep	(m_sleepTime)	;
	
																System.out.println	("MyStartup	repeat	warmup	call")	;
	
																warmup	()	;
												}
												catch	(Throwable	t)
												{
																t.printStackTrace	()	;
												}
								}
	

				}
	
				private	final	void	warmup	()	throws	Exception
				{
								System.out.println	("MyStartup	warmup")	;
	
								/*			YOUR	CODE	GOES	HERE			*/
	
				}
}
	

	

2.11	Activation	Framework
When	JSM	starts	the	Activation	Framework	default	command	map	and	default
file	type	map	are	set	using	the	mailcap.txt	and	filetype.txt	files	located	in	the
system	subdirectory.
SMTP/POP3,	AS2/AS3	and	HTTP	services	use	the	command	map	to	encode
and	decode	MIME	content.
The	HTTP	content	handlers,	InboundFileHandler,	OutboundFileHandler	and
OutboundMultiPartHandler	use	the	file	type	map	to	associate	filename
extension	to	MIME	type.

2.12	IBM	Java	System	Properties
The	'user.home'	property	is	set	to	the	JSM	instance	system	directory.	The
SystemDefault.properties	file	located	in	the	JSM	instance	system	directory	can
be	used	to	set	Java	system	properties.
i5/OS	and	the	JVM	determine	the	values	for	Java	system	properties	by	using	the
following	order	of	precedence:

Command	line
QIBM_JAVA_PROPERTIES_FILE	environment	variable
user.home	SystemDefault.properties	file
/QIBM/UserData/Java400/SystemDefault.properties
Default	system	property	values

The	IBM	Technology	for	Java	JVM's	read	the	SystemDefault.properties	file	like
the	Classic	JVM's.
If	the	first	line	of	the	SystemDefault.properties	file	starts	with	#AllowOptions,
then	JVM	options	and	System	properties	can	be	used.
	
#AllowOptions
#
#!<studio-project	id="20000000-000000"	name="lansa">
#
#!</studio-project>
#
#!<studio-project	id="20080101-000000"	name="CustomChanges">
#
#	JVM	options
#
-verbose:sizes
-Xgcpolicy:gencon
#	-Xcompactexplicitgc
#	-Xtgc:excessiveGC,compaction
#	-Xverbosegclog:GC-%Y-%m-%d-%H%M%S.XML
#	-Xcompressedrefs
#
#	System	properties
#

java.awt.headless=true
user.timezone=GMT+10:00
os400.dir.create.auth=none
os400.file.create.auth=none
#
#!</studio-project>
#
	

2.13	IBM	Technology	for	Java	Shared	Classes
Class	sharing	in	the	IBM	Technology	for	Java	SDK's	offers	a	transparent	and
dynamic	means	of	sharing	all	loaded	classes,	both	application	classes	and
system	classes,	and	placing	no	restrictions	on	JVMs	that	are	sharing	the	class
data	(unless	runtime	bytecode	modification	is	being	used).
Sharing	all	immutable	class	data	for	an	application	between	multiple	JVMs	has
obvious	benefits:

The	virtual	memory	footprint	reduction	when	using	more	than	one	JVM
instance	can	be	significant.
Loading	classes	from	a	populated	cache	is	faster	than	loading	classes	from
disk,	because	the	classes	are	already	in	memory	and	are	already	partially
verified.

Therefore,	class	sharing	also	benefits	applications	that	regularly	start	new	JVM
instances	doing	similar	tasks.
The	cost	to	populate	an	empty	cache	with	a	single	JVM	is	minimal	and,	when
more	than	one	JVM	is	populating	the	cache	concurrently,	this	activity	is
typically	faster	than	both	JVMs	loading	the	classes	from	disk.
Key	points	to	note	about	the	IBM	class	sharing	feature	are	as	follows.

Classes	are	stored	in	a	named	"class	cache",	which	is	either	a	memory-
mapped	file	or	an	area	of	shared	memory,	allocated	by	the	first	JVM	that
needs	to	use	it.
Any	JVM	can	read	from	or	update	the	cache,	although	a	JVM	can	connect	to
only	one	cache	at	a	time.
The	cache	persists	beyond	the	lifetime	of	any	JVM	connected	to	it,	until	it	is
explicitly	destroyed	or	until	the	operating	system	is	shut	down.
When	a	JVM	loads	a	class,	it	looks	first	for	the	class	in	the	cache	to	which	it
is	connected	and,	if	it	finds	the	class	it	needs,	it	loads	the	class	from	the
cache.
Otherwise,	it	loads	the	class	from	disk	and	adds	it	to	the	cache	where
possible.
When	a	cache	becomes	full,	classes	in	the	cache	can	still	be	shared,	but	no
new	data	can	be	added.
Because	the	class	cache	persists	beyond	the	lifetime	of	any	JVM	connected
to	it,	if	changes	are	made	to	classes	on	the	file	system,	some	classes	in	the

cache	might	become	out	of	date	(or	"stale").	This	situation	is	managed
transparently;	the	updated	version	of	the	class	is	detected	by	the	next	JVM
that	loads	it	and	the	class	cache	is	updated	where	possible.
Sharing	of	bytecode	that	is	modified	at	runtime	is	supported,	but	must	be
used	with	care.
Access	to	the	class	data	cache	is	protected	by	Java	permissions	if	a	security
manager	is	installed.
Classes	generated	using	reflection	cannot	be	shared.
Only	class	data	that	does	not	change	can	be	shared.	Resources,	objects,	JIT
compiled	code,	and	similar	items	cannot	be	stored	in	the	cache.

Creating	shared	classes
You	switch	on	shared	classes	with	the	SystemDefault.properties	-Xshareclasses
and	-Xscmx	command-line	options.
-Xscmx<size>	Specifies	cache	size.	This	option	applies	only	if	a	cache	is	being
created	and	no	cache	of	the	same	name	exists.	Default	cache	size	is	platform-
dependent.	You	can	find	out	the	size	value	being	used	by	adding	-verbose:sizes
as	a	command-line	argument.	Minimum	cache	size	is	4	KB.	Maximum	cache
size	is	platform-dependent.
The	size	of	cache	you	can	specify	is	limited	by	the	amount	of	physical	memory
and	paging	space	available	to	the	system.	Because	the	virtual	address	space	of	a
process	is	shared	between	the	shared	classes	cache	and	the	Java	heap,	increasing
the	maximum	size	of	the	Java	heap	will	reduce	the	size	of	the	shared	classes
cache	you	can	create.
-Xshareclasses:<suboptions>	Enables	class	sharing.	Can	take	a	number	of
suboptions,	some	of	which	are	cache	utilities.	Cache	utilities	perform	the
required	operation	on	the	specified	cache,	without	starting	the	VM.	You	can
combine	multiple	suboptions,	separated	by	commas,	but	the	cache	utilities	are
mutually	exclusive.
	
#AllowOptions
	
-Xscmx16M
-Xshareclasses:name=myJSM
	

Listing	shared	classes
When	listing	caches,	you	must	use	the	same	JVM	as	the	shared	class	cache	was

created	for,	except	versions	JDK	6	which	can	list	all	version	caches.
With	JDK5,	if	the	JVM	listing	the	shared	classes	does	not	find	a	compatible
shared	class,	it	exits	with	the	JVMSHRC005I	message	regardless	of	what
shared	classes	exist.
With	JDK6,	the	VM	will	usually	recognize	shared	class	caches	from	other	J9
VM's	but	will	list	them	as	an	incompatible	shared	class.
Hint:	Instead	of	setting	the	JAVA_HOME	environment	variable,	use	the
absolute	path	to	the	JDK	java	shell	script	file.
	
QSH
	
/QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit/bin/java	-
Xshareclasses:listAllCaches
	
				Listing	all	caches	in	cacheDir	/tmp/javasharedresources/
				Cache	name														level									persistent		last	detach	time
				Compatible	shared	caches																																																		
				myJSM																			Java6	64-bit		yes									In	use
	
				Incompatible	shared	caches
				myJSM																			Java5	64-bit		no										Wed	Jun	25	14:49:44	2008
				myJSM																			Java5	32-bit		no										Wed	Jun	25	14:46:06	2008
				myJSM																			Java6	32-bit		yes									Wed	Jun	18	12:18:59	2008
	

	
Note:	There	are	four	myJSM	caches,	one	for	each	of	the	STRJSM	JVM	versions
that	had	been	started.
Destroying	shared	classes
When	destroying	caches,	you	must	use	the	same	JVM	as	the	shared	class	cache
was	created	for.
	
QSH
	
/QOpenSys/QIBM/ProdData/JavaVM/jdk50/64bit/bin/java	-
Xshareclasses:destroy,name=myJSM
	
JVMSHRC010I	Shared	Cache	"myJSM"	is	destroyed

Unable	to	create	Java	Virtual	Machine.
	

	

2.14	LOG4J	Logging	Services
Several	open	source	products	used	by	LANSA	Integrator	use	the	Apache
LOG4J	logging	services.
If	you	need	to	log	a	product	that	supports	LOG4J,	then	add	two	lines	to	the
log4j.properties	file,	one	to	turn	on	a	logger	and	the	other	to	stop	log	messages
going	up	the	hierarchy	to	the	root	logger.
	
log4j.logger.xyz=DEBUG,	FILE
log4j.additivity.xyz=false
	

	
manager.properties
	
log4j.configuration=system/log4j.properties
	

log4j.properties
	
#!<studio-project	id="20000000-000000"	name="lansa">
#
#	This	file	controls	the	logging	strategy	for	the	JSM	server
#
#	Levels	-	DEBUG,	INFO,	WARN,	ERROR,	FATAL
#
log4j.debug=true
log4j.rootLogger=INFO,	STDOUT
#
#	log4j.logger.org.apache.axis=DEBUG,	FILE
#	log4j.additivity.org.apache.axis=false
#
#	log4j.logger.org.apache.commons.httpclient=DEBUG,	FILE
#	log4j.additivity.org.apache.commons.httpclient=false
#
#	log4j.logger.org.apache.axis.transport.http.HTTPSender=DEBUG,	FILE
#	log4j.additivity.org.apache.axis.transport.http.HTTPSender=false
#
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender

log4j.appender.STDOUT.threshold=INFO
log4j.appender.STDOUT.layout=org.apache.log4j.PatternLayout
log4j.appender.STDOUT.layout.ConversionPattern=
[%d{ISO8601}]	[%-5p]	[%c]	-	%m%n
#
log4j.appender.FILE=org.apache.log4j.FileAppender
log4j.appender.FILE.file=LOG4J.TXT
log4j.appender.FILE.encoding=UTF-8
log4j.appender.FILE.append=false
log4j.appender.FILE.threshold=DEBUG
log4j.appender.FILE.layout=org.apache.log4j.PatternLayout
log4j.appender.FILE.layout.ConversionPattern=
[%d{ISO8601}]	[%-5p]	[%c]	-	%m%n
#
#!</studio-project>
	

	

2.15	Axis	Properties
When	the	JSM	Manager	starts	the	name	value	entries	in	the
system/AxisDefault.properties	file	are	read	and	added	to	the
org.apache.axis.AxisProperties	class	using	the	static	method	setProperty.
The	following	is	an	example	AxisDefault.properties	file.
	
#!<studio-project	id="20000000-000000"	name="lansa">
#	
#	Axis	default	properties
#	
axis.ClientConfigFile=system/axis-client-config.xml
axis.ServerConfigFile=system/axis-server-config.xml
#	
#	axis.http.client.maximum.total.connections
#	axis.http.client.maximum.connections.per.host
#	axis.http.client.connection.pool.timeout
#	axis.http.client.connection.default.so.timeout
#	axis.http.client.connection.default.connection.timeout
#	axis.socketFactory
#	axis.socketSecureFactory
#	axis.ServerFactory
#	http.proxyHost
#	http.proxyPort
#	http.proxyUser
#	http.proxyPassword
#	http.nonProxyHosts
#	https.proxyHost
#	https.proxyPort
#	https.proxyUser
#	https.proxyPassword
#	https.nonProxyHosts
#	
#!</studio-project>
	

	
Axis	Global	Configuration

Axis	Reference	Guide
Axis	Client	and	Server	Configuration
By	default,	Axis	uses	the	'org/apache/axis/client/client-config.wsdd'	and
'org/apache/axis/server/server-config.wsdd'	files	from	the	jsmaxis.jar	file	for
client	and	server	configuration.
The	AxisDefault.properties	entries	axis.ClientConfigFile	and
axis.ServerConfigFile	direct	Axis	to	use	different	configuration	files.
	
axis.ClientConfigFile=system/axis-client-config.xml
axis.ServerConfigFile=system/axis-server-config.xml
	

Axis	Client	Configuration
	
<?xml	version="1.0"	encoding="utf-8"?>
	
<deployment	name="defaultClientConfiguration"	xmlns="http://xml.apache.org/axis/wsdd/"	xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
	
	<globalConfiguration>
		<parameter	name="disablePrettyXML"	value="true"/>
		<parameter	name="addressing.sendReplyTo"	value="true"/>
		<parameter	name="enableNamespacePrefixOptimization"	value="false"/>
	</globalConfiguration>
	
	<transport	name="http"
pivot="java:org.apache.axis.transport.http.HTTPSender"/>
	
</deployment>
	

Axis	Server	Configuration
	
<?xml	version="1.0"	encoding="utf-8"?>
	
<deployment	name="defaultServerConfiguration"	xmlns="http://xml.apache.org/axis/wsdd/">
	
	<globalConfiguration>
		<parameter	name="sendMultiRefs"	value="false"/>
		<parameter	name="dotNetSoapEncFix"	value="true"/>

http://ws.apache.org/axis/java/reference.html

		<parameter	name="disablePrettyXML"	value="true"/>
		<parameter	name="enableNamespacePrefixOptimization"	value="false"/>
	</globalConfiguration>
	
</deployment>
	

	
Turning	off	MultiRef	encoding	in	SOAP	server	responses
The	axis	server	configuration	can	disable	sending	multiRefs	in	RPC/encoded
responses	by	using	the	global	sendMulitRefs	parameter.
	
<parameter	name="sendMultiRefs"	value="false"/>
	

	
Using	Commons	HTTP	client	with	Axis
By	default	Apache	Axis	1.4	uses	'org.apache.axis.transport.http.HTTPSender'
for	http	sending.
It	is	possible	to	change	this	to	use	'org.apache.commons.httpclient'.
Change	the	transport	pivot	attribute	in	the	configuration	to	point	to	the
CommonsHTTPSender	class.
	
<transport	name="http"	pivot="java:org.apache.axis.transport.http.CommonsHTTPSender"/>
	

	
You	also	need	to	add	the	common.codec.1.3.jar	and	common-httpclient-3.0-
rc4.jar	to	the	jar	directory.
http://jakarta.apache.org/commons/
http://jakarta.apache.org/commons/httpclient/
http://jakarta.apache.org/commons/httpclient/features
http://jakarta.apache.org/commons/httpclient/logging
http://jakarta.apache.org/site/downloads/downloads_commons
Problems	with	using	Commons	HTTP	client	with	JSMDirect	server
By	default	commons	http	client	uses	HTTP	protocol	1.1	and	by	default	it	uses
chunked	transfer	encoding.

When	a	HTTP	client	program	sends	Transfer-Encoding	chunked,	it	cannot	send
Content-Length.
JSMDirect	is	expecting	Content-Length,	so	it	can	read	STDIN	to	send	to	the
JSM.
So	the	JSM	SOAP	server	service	receives	no	SOAP	message	content.
The	SOAP	Agent	Wizard	can	force	the	http	client	program	to	use	the	HTTP	1.0
protocol	by	including	the	following	code	into	the	generated	service	code.
	
stub._setProperty	(org.apache.axis.MessageContext.HTTP_TRANSPORT_VERSION	,	
																				org.apache.axis.transport.http.HTTPConstants.HEADER_PROTOCOL_V10)	;
	

	
Including	SOAP	headers	in	SOAP	request
It	is	possible	to	include	a	SOAP	header	in	the	SOAP	request	by	including	code
in	the	generated	SOAP	agent	service	code.	When	the	SOAP	Agent	Wizard
generates	the	service	code	the	contents	of	file	AGENT_INCLUDE.TXT	are
included	into	the	generated	code.
It	is	also	possible	to	add	a	SOAP	header	to	a	message	by	using	a	message
handler.	Refer	to	2.17	SOAP	Agent	Message	Handler.
	
/*
				Add	SOAP	header
*/
org.apache.axis.message.SOAPHeaderElement	elementHead	=	new	org.apache.axis.message.SOAPHeaderElement	("namespace",	"AuthHeader")
	;
	
javax.xml.soap.SOAPElement	elementUserToken	=	elementHead.addChildElement	("UserToken")	;
	
javax.xml.soap.SOAPElement	elementUserName	=	elementUserToken.addChildElement	("UserName")	;
elementUserName.addTextNode	("username")	;
	
javax.xml.soap.SOAPElement	elementPassword	=	elementUserToken.addChildElement	("Password")	;
elementPassword.addTextNode	("password")	;
	
stub.setHeader	(elementHead)	;
	

	

2.16	Axis	Message	Handler
Refer	to	2.17	SOAP	Agent	Message	Handler.
Apache	Axis	allows	custom	message	handlers	to	be	created	and	deployed.
These	handlers	allow	additional	processing	on	the	SOAP	XML	messages	before
transmission.
To	determine	the	configuration	name	of	your	service,	turn	on	LOG4J	logging
and	run	the	SOAP	Agent	service	once.
	
log4j.logger.org.apache.axis=DEBUG,	FILE
log4j.additivity.org.apache.axis=false
	

	
Search	the	LOG4J.TXT	file	for	the	setTargetService	string.	The	value	within	the
brackets	is	the	configuration	service	name.
	
[DEBUG]	[message.SOAPBody]	addBodyElement	-	Adding	body	element	to	message...
[DEBUG]	[client.Call]	invoke	-	Enter:		Call::invoke()
[DEBUG]	[axis.MessageContext]	setTargetService	-	MessageContext:	setTargetService(MyServicePort)
	

Add	a	deployment	service	entry	to	the	configuration	file.
The	handler	type	value	is	the	custom	Java	handler	class.
It	is	also	possible	to	pass	configuration	parameters	to	the	handler	instance.
	
<service	name="MyServicePort">
		<requestFlow>
				<handler	type="java:com.acme.axis.handler.MyHandler">
						<parameter	name="acme.keyword"	value="value"/>
				</handler>
		</requestFlow>
</service>
	

	
The	custom	handler	class	needs	to	extend	the
'org.apache.axis.handlers.BasicHandler'	class.

	
package	com.acme.axis.handler	;
	
import	org.apache.axis.AxisFault	;
import	org.apache.axis.MessageContext	;
	
import	org.apache.axis.message.PrefixedQName	;
	
import	org.apache.axis.handlers.BasicHandler	;
	
import	org.w3c.dom.Node	;
import	org.w3c.dom.NodeList	;
	
import	javax.xml.soap.Name	;
import	javax.xml.soap.SOAPPart	;
import	javax.xml.soap.SOAPBody	;
import	javax.xml.soap.SOAPElement	;
import	javax.xml.soap.SOAPMessage	;
import	javax.xml.soap.SOAPEnvelope	;
import	javax.xml.soap.SOAPException	;
	
import	javax.xml.rpc.handler.soap.SOAPMessageContext	;
	
public	class	MyHandler	extends	BasicHandler
{
				public	void	invoke	(MessageContext	messageContext)	throws	AxisFault
				{
									System.out.println	("MyHandler:	invoke")	;
	
									String	value	=	(String)getOption	("acme.keyword")	;
	
									modifyMessage	(messageContext)	;
	
				}
}
	

	

2.17	SOAP	Agent	Message	Handler
The	SOAP	Agent	message	handler	framework	was	developed	to	over-come
limitations	in	the	Axis	Message	handler	framework	and	is	the	preferred	way	to
add	request	and	response	handlers.
Message	handlers	developed	for	Apache	Axis	Message	handler	framework	can
be	used	in	SOAP	Agent	message	handler	framework.
To	add	a	message	handler	to	a	particular	SOAP	Agent	service	add	a
'service.handlers.servicename'	entry	to	the	SOAPAgentService.properties	file.
When	the	SOAP	Agent	command	OPEN	SERVICE	(servicename)	is	executed
the	service	class	and	message	handler	file	are	assigned	to	the	executing
program.
	
service.test=com.acme.service.soap.TestService
service.handlers.test=handlers/soapagent-handlers.xml
	

	
More	than	one	agent	service	configuration	can	be	included	in	a	single	file.
It	is	optional	to	add	a	request	or	response	handler.
A	simple	message	handler	chain	can	be	created,	by	including	more	than	one
handler	element.
Request	and	response	message	handlers	can	be	assigned	to	all	service	operations
or	one	particular	operation.
Each	handler	element	can	be	configured	with	zero	or	more	parameter	elements.
These	parameter	elements	are	instantiated	and	passed	to	the	instantiated	handler
class.
If	the	parameter	value	attribute	contains	a	value	within	open	and	close	curly
brackets,	then	the	value	is	assumed	to	be	a	LANSA	field	name	and	the	value	of
the	LANSA	field	is	passed	to	the	handler.	Use	the
SERVICE_EXCHANGE(*FIELD)	keyword	on	the	CALL	command	to	make
LANSA	fields	available	to	the	handler	class.
Message	handler	configuration
	
	
<?xml	version="1.0"	encoding="utf-8"?>

	
<services>
	
	<!--	Assign	SOAPHeaderHandler	to	all	operations	in	the	Test	service	-->
	<service	name="test">
	
		<request>
				<handler	class="com.acme.axis.handler.SOAPHeaderHandler"/>
		</request>
	
		<response>
				<handler	class="com.acme.axis.handler.SOAPHeaderHandler"/>
		</response>
	
	</service>
	
	<!-
-	Assign	SecurityHandler	and	SOAPHeaderHandler	to	the	Test	service	login	operation	-
->
	<service	name="test"	operation="login">
	
		<request>
				<handler	class="com.acme.axis.handler.SecurityHandler">
						<parameter	name="user"	value="{USER}"/>
						<parameter	name="acme.keyword"	value="ABC"/>
				</handler>
				<handler	class="com.acme.axis.handler.SOAPHeaderHandler"/>
		</request>
	
	</service>
	
</services>
	

	
Example	Message	Handler	Class
	
package	com.acme.axis.handler	;
	

import	java.io.*	;
	
import	java.util.Vector	;
	
import	org.apache.axis.Message	;
import	org.apache.axis.SOAPPart	;
import	org.apache.axis.AxisFault	;
import	org.apache.axis.MessageContext	;
	
import	org.apache.axis.utils.XMLUtils	;
	
import	org.apache.axis.message.SOAPBody	;
import	org.apache.axis.message.SOAPHeader	;
import	org.apache.axis.message.SOAPEnvelope	;
import	org.apache.axis.message.SOAPBodyElement	;
import	org.apache.axis.message.SOAPHeaderElement	;
import	org.apache.axis.message.MessageElement	;
	
import	org.apache.axis.message.RPCParam	;
import	org.apache.axis.message.RPCElement	;
import	org.apache.axis.message.PrefixedQName	;
	
import	org.apache.axis.description.ParameterDesc	;
	
import	org.apache.axis.encoding.SerializationContext	;
	
import	org.w3c.dom.Node	;
import	org.w3c.dom.Element	;
import	org.w3c.dom.Document	;
import	org.w3c.dom.NodeList	;
	
import	org.w3c.dom.ls.LSOutput	;
import	org.w3c.dom.ls.LSSerializer	;
import	org.w3c.dom.ls.DOMImplementationLS	;
	
import	org.w3c.dom.bootstrap.DOMImplementationRegistry	;
	
import	com.lansa.jsm.JSMTrace	;
import	com.lansa.jsm.JSMCommand	;

import	com.lansa.jsm.JSMResource	;
	
import	com.lansa.jsm.service.ServiceHelper	;
	
public	class	MyHandler	extends	org.apache.axis.handlers.BasicHandler
{
				private	final	static	String	EMPTY_STRING	=	""	;
	
				private	final	static	String	ENCODING_UTF8	=	"UTF-8"	;
	
				private	final	static	String[]	FORM_NAMES	=	{	"",	"FORM_STRING",	"FORM_INPUTSTREAM",	"FORM_SOAPENVELOPE",	"FORM_BYTES",	"FORM_BODYINSTREAM",	"FORM_FAULT",	"FORM_OPTIMIZED"	}	;
	
				private	JSMTrace	m_trace	=	null	;
	
				private	JSMResource	m_serviceResource	=	null	;
	
				public	void	init	()
				{
								/*
												Optional	-	this	over-rides	init	stub	in	BasicHandler
	
												Firstly,	init	is	called	on	all	handlers
	
												Secondly,	invoke	is	called	on	all	handlers
	
												Finally,	cleanup	is	called	on	all	handlers
	
												You	could	pass	information	between	handlers	by	using:
	
														MessageContext	-	setProperty	(String	name,	Object	value)
	
														MessageContext	-	Object	value	getProperty	(String	name)
								*/
				}
	
				public	void	invoke	(org.apache.axis.MessageContext	messageContext)	throws	AxisFault
				{
								try
								{

												m_trace	=	(JSMTrace)getOption	("jsm.handler.property.trace")	;
	
												m_serviceResource	=	(JSMResource)getOption	("jsm.handler.property.resource")	;
	
												traceOptions	()	;
	
												modifyMessage	(messageContext)	;
								}
								catch	(Exception	e)
								{
												throw	new	AxisFault	("MyHandler:	exception	:	"	+	e.toString	())	;
								}
				}
	
				public	void	cleanup	()
				{
								/*
												Optional	-	this	over-rides	cleanup	stub	in	BasicHandler
								*/
	
								if	(m_trace	!=	null)
								{
												m_trace.println	("MyHandler:	cleanup")	;
								}
				}
	
				private	final	void	traceOptions	()
				{
								/*
												The	following	properties	are	from	the	handler	parameters
								*/
	
								String	value	=	(String)getOption	("acme.keyword")	;
	
								/*
												The	following	properties	are	supplied	by	the	JSM	service
								*/
	
								String	type	=	(String)getOption	("jsm.handler.property.type")	;

	
								String	service	=	(String)getOption	("jsm.handler.property.service")	;
	
								String	operation	=	(String)getOption	("jsm.handler.property.operation")	;
	
								/*
												CALL	command
								*/
	
								JSMCommand	command	=	(JSMCommand)getOption	("jsm.handler.property.command")	;
	
								if	(m_trace	!=	null)
								{
												m_trace.println	("MyHandler:	invoke")	;
	
												m_trace.println	("MyHandler:	acme.keyword	:	"	+	value)	;
	
												m_trace.println	("MyHandler:	jsm.handler.property.type	:	"	+	type)	;
	
												m_trace.println	("MyHandler:	jsm.handler.property.service	:	"	+	service)	;
	
												m_trace.println	("MyHandler:	jsm.handler.property.operation	:	"	+	operation)	;
	
												m_trace.println	("MyHandler:	jsm.handler.property.command	:	"	+	command.toString	())	;
								}
				}
	
				private	final	void	modifyMessage	(org.apache.axis.MessageContext	messageContext)	throws	Exception
				{
								Message	message	=	messageContext.getCurrentMessage	()	;
	
								if	(message	==	null)
								{
												throw	new	IllegalArgumentException	("no	message	available")	;
								}
	
								/*
												Trace	message	-	output	is	dependent	on	internal	form
								*/

	
//								traceMessage	(message)	;
	
								/*
												SOAP	Part
								*/
	
								SOAPPart	soapPart	=	(SOAPPart)message.getSOAPPart	()	;
	
								int	form	=	soapPart.getCurrentForm	()	;
	
								if	(m_trace	!=	null)
								{
												m_trace.println	("MyHandler:	current	message	form	:	",	FORM_NAMES[form])	;
								}
	
								/*
												SOAP	Envelope	-	the	internal	form	is	converted	to	SOAPEnvelope
								*/
	
								SOAPEnvelope	envelope	=	soapPart.getAsSOAPEnvelope	()	;
	
//								traceEnvelope	(envelope)	;
	
								/*
												Handle	request	or	response
								*/
	
								if	(isRequest	())
								{
												modifyHeader	(envelope)	;
	
												traceBody	(envelope)	;
	
//												setRequestMessage1	(soapPart)	;
	
//												setRequestMessage2	(messageContext)	;
	
												setRequestMessage3	(messageContext,	envelope)	;

	
												return	;
								}
	
								if	(isResponse	())
								{
												setResponseMessage1	(messageContext)	;
	
												return	;
								}
				}
	
				private	final	void	modifyHeader	(SOAPEnvelope	envelope)	throws	Exception
				{
								Vector	vector	=	envelope.getHeaders	()	;
	
								int	count	=	vector.size	()	;
	
								if	(m_trace	!=	null)
								{
												m_trace.println	("MyHandler:	header	count	:	"	+	count)	;
								}
	
								for	(int	i=0;	i	<	count;	i++)
								{
												SOAPHeaderElement	element	=	(SOAPHeaderElement)vector.elementAt	(i)	;
	
												if	(m_trace	!=	null)
												{
																m_trace.println	("MyHandler:	soap	header	:	"	+	element.getElementName	())	;
												}
								}
	
								if	(m_trace	!=	null)
								{
												m_trace.println	("MyHandler:	add	header")	;
								}
	
								envelope.addHeader	(createHeader	())	;

				}
	
				private	final	SOAPHeaderElement	createHeader	()	throws	Exception
				{
								SOAPHeaderElement	elementHead	=	new	org.apache.axis.message.SOAPHeaderElement	("namespace",	"AuthHeader")	;
	
								MessageElement	elementSession	=	(MessageElement)elementHead.addChildElement	("SessionId")	;
	
								elementSession.addTextNode	("text")	;
	
								elementHead.setActor	(null)	;
	
								return	elementHead	;
				}
	
				private	final	boolean	isRequest	()
				{
								String	type	=	(String)getOption	("jsm.handler.property.type")	;
	
								if	(type.equals	("request"))
								{
												return	true	;
								}
	
								return	false	;
				}
	
				private	final	boolean	isResponse	()
				{
								String	type	=	(String)getOption	("jsm.handler.property.type")	;
	
								if	(type.equals	("response"))
								{
												return	true	;
								}
	
								return	false	;
				}
	

				private	final	void	setRequestMessage1	(SOAPPart	soapPart)	throws	Exception
				{
								/*
												This	needs	to	be	the	last	message	change
	
												Message.writeTo	->	SOAPPart.writeTo	methods	will	sent	bytes	as	is
	
												This	approach	runs	the	risk	of	a	FORM	conversion	taking	place	on	the	byte[]	content
								*/
	
								if	(m_trace	!=	null)
								{
												m_trace.println	("Set	request	message	1	using	byte[]")	;
								}
	
								byte[]	message	=	"any	content	sent	as	bytes".getBytes	(ENCODING_UTF8)	;
	
								soapPart.setCurrentMessage	(message,	SOAPPart.FORM_BYTES)	;
				}
	
				private	final	void	setRequestMessage2	(MessageContext	messageContext)	throws	Exception
				{
								/*
												With	this	example,	I	am	using	byte	content	from	a	file
	
												But	you	could	have	serialized	a	Document	to	a	byte[]	in-memory
	
												Or	created	a	String	and	used	that	as	the	content	argument
	
												etc..
								*/
	
								if	(m_trace	!=	null)
								{
												m_trace.println	("Set	request	message	2	using	byte[]	message")	;
								}
	
								File	file	=	new	File	("ENVELOPE_REQUEST.XML")	;
	

								if	(m_trace	!=	null)
								{
												m_trace.println	("MyHandler:	set	resquest	message	from	external	file	:	"	+	file.getName	())	;
								}
	
								//	String	content	=	"<?xml"	;
	
								byte[]	content	=	readFile	(file)	;
	
								Message	requestMessage	=	new	Message	(content)	;
	
								messageContext.setRequestMessage	(requestMessage)	;
				}
	
				private	final	void	setRequestMessage3	(MessageContext	messageContext,	SOAPEnvelope	envelope)	throws	Exception
				{
								if	(m_trace	!=	null)
								{
												m_trace.println	("Set	request	message	3	using	document")	;
								}
	
								Document	document	=	envelope.getAsDocument	()	;
	
								/*
												Change	document
								*/
	
								byte[]	content	=	serializeDocument	(document)	;
	
								Message	requestMessage	=	new	Message	(content)	;
	
								messageContext.setRequestMessage	(requestMessage)	;
				}
	
				private	final	void	setResponseMessage1	(MessageContext	messageContext)	throws	Exception
				{
								/*
												With	this	example,	I	am	using	byte	content	from	a	file
	

												But	you	could	have	serialized	a	Document	to	a	byte[]	in-memory
	
												Or	created	a	String	and	used	that	as	the	content	argument
	
												etc..
								*/
	
								File	file	=	new	File	("ENVELOPE_RESPONSE.XML")	;
	
								if	(m_trace	!=	null)
								{
												m_trace.println	("MyHandler:	set	response	message	from	external	file	:	"	+	file.getName	())	;
								}
	
								byte[]	content	=	readFile	(file)	;
	
								Message	responseMessage	=	new	Message	(content)	;
	
								messageContext.setResponseMessage	(responseMessage)	;
				}
	
				private	final	byte[]	serializeDocument	(Document	document)	throws	Exception
				{
								DOMImplementationRegistry	registry	=	DOMImplementationRegistry.newInstance	()	;
	
								DOMImplementationLS	implementation	=	(DOMImplementationLS)registry.getDOMImplementation	("LS")	;
	
								LSOutput	output	=	implementation.createLSOutput	()	;
	
								LSSerializer	serializer	=	implementation.createLSSerializer	()	;
	
								ByteArrayOutputStream	outputStream	=	new	ByteArrayOutputStream	(4096)	;
	
								output.setEncoding	("utf-8")	;
	
								output.setByteStream	(outputStream)	;
	
								serializer.setNewLine	("\n")	;
	

								serializer.write	(document,	output)	;
	
								return	outputStream.toByteArray	()	;
				}
	
				private	final	void	traceMessage	(Message	message)
				{
								if	(m_trace	==	null)
								{
												return	;
								}
	
								try
								{
												String	fileName	=	"MYHANDLER_MESSAGE"	+	ServiceHelper.getSequenceLabel	(m_trace)	+	".XML"	;
	
												FileOutputStream	outputStream	=	new	FileOutputStream	(m_trace.createTraceFile	(fileName))	;
	
												message.writeTo	(outputStream)	;
	
												outputStream.close	()	;
								}
								catch	(Throwable	t)
								{
												m_trace.print	(t)	;
								}
				}
	
				private	final	void	traceEnvelope	(SOAPEnvelope	envelope)
				{
								if	(m_trace	==	null)
								{
												return	;
								}
	
								/*
												This	uses	MessageElement	-	getAsDocument
	
															-	getAsDocument

																		-	getAsString
	
												Converts	element	to	String	and	parser	into	a	Document
								*/
	
								try
								{
												Document	document	=	envelope.getAsDocument	()	;
	
												DOMImplementationRegistry	registry	=	DOMImplementationRegistry.newInstance	()	;
	
												DOMImplementationLS	implementation	=	(DOMImplementationLS)registry.getDOMImplementation	("LS")	;
	
												LSOutput	output	=	implementation.createLSOutput	()	;
	
												LSSerializer	serializer	=	implementation.createLSSerializer	()	;
	
												String	fileName	=	"MYHANDLER_ENVELOPE"	+	ServiceHelper.getSequenceLabel	(m_trace)	+	".XML"	;
	
												FileOutputStream	outputStream	=	new	FileOutputStream	(m_trace.createTraceFile	(fileName))	;
	
												output.setEncoding	("utf-8")	;
	
												output.setByteStream	(outputStream)	;
	
												serializer.setNewLine	("\n")	;
	
												serializer.write	(document,	output)	;
	
												outputStream.close	()	;
								}
								catch	(Throwable	t)
								{
												m_trace.print	(t)	;
								}
				}
	
				private	final	void	traceBody	(SOAPEnvelope	envelope)	throws	Exception
				{

								if	(m_trace	==	null)
								{
												return	;
								}
	
								SOAPBody	body	=	(SOAPBody)envelope.getBody	()	;
	
								if	(body	==	null)
								{
												throw	new	IllegalArgumentException	("no	body	available")	;
								}
	
								RPCElement	operation	=	getOperation	(body)	;
	
								if	(operation	==	null)
								{
												throw	new	IllegalArgumentException	("no	operation	available")	;
								}
	
								m_trace.println	("MyHandler:	operation	name		:	"	+	operation.getElementName	())	;
	
								traceParameters	(operation)	;
				}
	
				private	final	void	traceParameters	(RPCElement	operation)	throws	Exception
				{
								if	(m_trace	==	null)
								{
												return	;
								}
	
								Vector	vector	=	operation.getParams	()	;
	
								int	count	=	vector.size	()	;
	
								m_trace.println	("MyHandler:	parameter	count	:	"	+	count)	;
	
								for	(int	i=0;	i	<	count;	i++)
								{

												RPCParam	parameter	=	(RPCParam)vector.get	(i)	;
	
												ParameterDesc	parameterDesc	=	parameter.getParamDesc	()	;
	
												Class	klazz	=	parameterDesc.getJavaType	()	;
	
												m_trace.println	("MyHandler:	parameter	name	:	"	+	parameter.getElementName	())	;
	
												if	(klazz.isArray	())
												{
																m_trace.println	("MyHandler:	parameter	type	:	array	of	"	+	klazz.getComponentType().getName	())	;
												}
												else
												{
																m_trace.println	("MyHandler:	parameter	type	:	"	+	klazz.getName	())	;
												}
								}
				}
	
				private	final	RPCElement	getOperation	(SOAPBody	body)
				{
								NodeList	nodeList	=	body.getChildNodes	()	;
	
								if	(nodeList	==	null)
								{
												return	null	;
								}
	
								int	count	=	nodeList.getLength	()	;
	
								if	(count	==	0)
								{
												return	null	;
								}
	
								for	(int	i=0;	i	<	count;	i++)
								{
												Node	node	=	nodeList.item	(i)	;
	

												if	(node	instanceof	RPCElement)
												{
																return(RPCElement)node	;
												}
								}
	
								return	null	;
				}
	
				private	final	MessageElement	getChildMessageElement	(MessageElement	element)
				{
								NodeList	nodeList	=	element.getChildNodes	()	;
	
								if	(nodeList	==	null)
								{
												return	null	;
								}
	
								int	count	=	nodeList.getLength	()	;
	
								if	(count	==	0)
								{
												return	null	;
								}
	
								for	(int	i=0;	i	<	count;	i++)
								{
												Node	node	=	nodeList.item	(i)	;
	
												if	(node	instanceof	RPCElement)
												{
																return(MessageElement)node	;
												}
	
												if	(node	instanceof	SOAPBodyElement)
												{
																return(MessageElement)node	;
												}
	

												if	(node	instanceof	RPCParam)
												{
																return(MessageElement)node	;
												}
	
												if	(node	instanceof	MessageElement)
												{
																return(MessageElement)node	;
												}
	
												if	(node	instanceof	javax.xml.soap.SOAPElement)
												{
																/*
																				Interface
																*/
												}
								}
	
								return	null	;
				}
	
				public	final	static	byte[]	readFile	(File	file)	throws	IOException
				{
								int	length	=	(int)file.length	()	;
	
								byte[]	content	=	new	byte[length]	;
	
								FileInputStream	inputStream	=	new	FileInputStream	(file)	;
	
								inputStream.read	(content)	;
	
								inputStream.close	()	;
	
								return	content	;
				}
}
	

	

2.18	Apache	Axis	1.4	WS-Security	and	WS-Addressing
Refer	to	2.17	SOAP	Agent	Message	Handler.
Apache	Axis	1.4	offers	WS-Security	capability	by	using	the	Apache	WSS4J,
XML-Security	and	WS-Addressing	projects.
These	projects	do	not	support	the	latest	changes	in	the	implementation	of	WS-
Security	and	WS-Addressing.	Also	these	projects	do	not	support	new	Web
Services	specifications	such	as	WS-Policy,	WS-Federation,	WS-Trust	and	WS-
SecureConversion.

2.19	REST	Representational	State	Transfer
REST	is	an	architectural	style	based	on	HTTP	and	XML	or	JSON	technology.
It	is	possible	to	develop	REST	style	web	services	using	JSMDirect	and
JSMProxy.
Use	the	Apache	HTTP	Server	URL	rewrite	capability	to	map	JSMDirect	and
JSMProxy	URL's	to	REST	resource	style	URL's.
REST	Web	Services	Characteristics

Client-Server:	a	pull-based	interaction	style.
Stateless:	each	request	from	client	to	server	must	contain	all	the	information
necessary	to	understand	the	request,	and	cannot	take	advantage	of	any	stored
context	on	the	server.
Cache:	to	improve	network	efficiency	responses	must	be	capable	of	being
labeled	as	cacheable	or	non-cacheable.
Uniform	interface:	all	resources	are	accessed	with	a	generic	interface	(e.g.,
HTTP	GET,	POST,	PUT,	DELETE).
Named	resources	-	the	system	is	comprised	of	resources	that	are	named
using	a	URL.
Interconnected	resource	representations	-	the	representations	of	the	resources
are	interconnected	using	URLs,	thereby	enabling	a	client	to	progress	from
one	state	to	another.
Layered	components	-	intermediaries,	such	as	proxy	servers,	cache	servers,
gateways,	etc,	can	be	inserted	between	clients	and	resources	to	support
performance,	security,	etc.

2.20	JCE	Unlimited	Strength	Policy	Files
Due	to	import	control	restrictions	of	some	countries,	the	JCE	jurisdiction	policy
files	shipped	with	the	Java	SDK	allow	"strong"	but	limited	cryptography	to	be
used.
An	"unlimited	strength"	version	of	these	files	indicating	no	restrictions	on
cryptographic	strengths	is	available	for	those	living	in	eligible	countries	(which
is	most	countries).
You	can	download	and	replace	the	strong	cryptography	versions	supplied	with
the	Java	SDK	with	the	unlimited	ones.
You	need	to	update	the	two	JAR	files	'local_policy.jar'	and
'US_export_policy.jar'	files	in	the	JDK's	lib/security	directory.
IBM's	unlimited	strength	jurisdiction	policy	files:
www-128.ibm.com/developerworks/java/jdk/security/50
IBM's	SDKs	ship	with	strong	but	limited	jurisdiction	policy	files.	Unlimited
jurisdiction	policy	files	can	be	obtained	from	the	link	above.	The	ZIP	file	should
be	unpacked	and	the	two	JAR	files	placed	in	the	JRE's	jre/lib/security/	directory.
These	policy	files	are	for	use	with	IBM	developed	SDKs.	The	same	files	are
used	for	the	Version	1.4	and	Version	5	SDKs.
The	ZIP	file	should	be	unpacked	and	the	two	JAR	files	placed	in	the
/QIBM/ProdData/Java400/jdk15/lib/security/	directory.
Oracle's	unlimited	strength	jurisdiction	policy	files:
www.oracle.com/technetwork/java/javase/downloads/index.html
If	these	policy	files	are	not	installed	then	services	that	use	Bouncy	Castle	will
throw	the	following	exception:
java.io.IOException:	exception	unwrapping	private	key	-
java.security.InvalidKeyException:	Illegal	key	size
	

http://www-128.ibm.com/developerworks/java/jdk/security/50
http://www.oracle.com/technetwork/java/javase/downloads/index.html

3.	Java	Service	Manager	Clients
3.1	LANSA	RDML	Client
3.2	LANSA	RDMLX	Client
3.3	ILE	RPG	Client
3.4	ILE	RPGX	Client
3.6	Tracing
3.7	Command
3.8	Data	Areas
3.9	Resource	properties	-	Studio	sections
3.10	Resource	properties	-	Internationalization
	

3.1	LANSA	RDML	Client

Warning.	The	RDML	BIF	has	been	changed	to	support	256	byte
message	and	command	parameters.
Any	ILE	program	binding	to	the	DCXS882X	service	program	must
still	use	255	byte	parameters.

Three	Built-In	Functions	are	required	for	a	LANSA	RDML	client	to	have
complete	interaction	with	the	Java	Service	Manager	services.
These	Built-In	Functions	only	allow	a	single	connection	within	the	same	job.

3.1.1	JSM_OPEN Open	service.

3.1.2	JSM_COMMAND Send	command.

3.1.3	JSM_CLOSE Close	service.

The	LANSA	developer	only	needs	to	understand	how	to	use	the	commands
offered	by	JSM	services.
The	overall	structure	of	the	LANSA	RDML	functions	will	be	the	same.
The	function	will	perform	the	following	operations:

OPEN	connection	to	the	Java	Service	Manager.
Issue	a	COMMAND	to	LOAD	the	service.
Execute	COMMANDs	supported	by	the	service.
Issue	a	COMMAND	to	UNLOAD	the	service
CLOSE	connection	to	the	Java	Service	Manager

Overview	of	field	and	list	exchange
Command 	 No

fields
Command
SERVICE_EXCHANGE(*FIELD|*FIELDS)

	 Fields

Command #WRKLST Fields
Command
SERVICE_EXCHANGE(*FIELD|*FIELDS)

#WRKLST Fields

	

Note	1:	All	function	fields	are	sent	with	a	list.
Note	2:	Command	keyword	SERVICE_LIST(...)	is	required	for	working	list
#WRKLST.

3.1.1	JSM_OPEN
The	JSM_OPEN	Built-In	Function	is	always	executed	first.	It	is	used	to	connect
the	JSM	client	to	the	Java	Service	Manager	and	to	start	a	thread	for	the	service.
Each	client	will	have	its	own	thread.
Syntax:

Arguments

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Optional Server 50 50 	 	

	

Return	Values

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Status 20 20 	 	

2 A Required Message 1 256 	 	

	

The	server	argument	is	optional	for	the	connection.	If	the	server	argument	is	not
supplied,	or	if	the	argument	value	contains	blanks,	then	the	remote	host	and	port
number	is	obtained	from	the	data	area	JSMCLTDTA	on	IBM	i	or	from	file
jsmcltdta.txt	on	Windows	or	Linux.
The	server	argument	can	have	any	of	the	following	values:

host:port Use	specified	host	and	port

host Use	host	and	get	port	from	JSMCLTDTA

:port Use	port	and	get	host	from	JSMCLTDTA

: Get	host	and	port	from	JSMCLTDTA

	 Get	host	and	port	from	JSMCLTDTA

	

The	JSM_OPEN	must	be	executed	before	the	JSM_COMMAND	can	be	used.
The	JSM_OPEN	Built-In	Function	performs	a	DNS	lookup	to	resolve	the	host
name	address.	Using	a	dotted	decimal	IP	address	does	not	get	around	this	DNS
lookup.
If	the	JSM_OPEN	Built-In	Function	is	slow	to	open	a	connection	then	you
could	have	a	DNS	lookup	issue.	Add	an	entry	to	the	local	host	table	to	improve
performance.
TCP/IP	connection	performance	can	be	improved	if	the	registered	DNS	servers
are	available	and	performing	well.
	
Change	TCP/IP	Domain
Host	name	search	priority											*LOCAL
Domain	name	server
Internet	address																				139.130.4.4
																																				203.48.48.13
	

If	the	first	Domain	Name	Server	(DNS)	in	the	list	does	not	respond,	the	second
DNS	server	in	the	list	will	be	contacted.	If	the	second	DNS	server	does	not
respond,	the	third	DNS	server	will	be	contacted.
See	IBM	i	-	Network	Performance	for	further	information.

3.1.2	JSM_COMMAND
The	JSM_COMMAND	Built-In	Function	is	used	to	load	and	unload	services
and	execute	commands	supported	by	the	service.	The	JSM_COMMAND	can
only	be	executed	once	a	JSM_OPEN	has	completed	successfully.
Syntax:

Arguments

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Command 1 256 	 	

	

Return	Values

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Status 20 20 	 	

2 A Required Message 1 256 	 	

3 L Optional Working
List

	 	 	 	

	

A	service	is	loaded	before	commands	to	the	service	are	executed.	A	service	is
unloaded	once	you	are	finished	using	it.	Only	one	service	can	be	loaded	at	a
time.	Refer	to	3.7	Command.
The	JSM_COMMAND	has	a	number	of:
RDML	Reserved	Commands
RDML	Reserved	Keywords
RDML	Reserved	Field	Names

For	command	services	details,	refer	to	Java	Service	Manager	Services.

RDML	Reserved	Commands
Any	command	or	keyword	that	starts	with	SERVICE_	is	reserved.
For	example,	these	commands	are	reserved:
	
SERVICE_LOAD SERVICE(servicename)	TRACE(option)	TRACE_NAME(name)
SERVICE_SET TRACE(*CLEAR)
SERVICE_GET PROPERTY(property)
SERVICE_RECLAIM 	
SERVICE_UNLOAD 	

The	SERVICE_LOAD	command	instructs	the	JSM	service	thread	to	load	and
instantiate	the	specified	service	program.	Only	one	service	class	is	loaded	at	a
time.	The	SERVICE_LOAD	command	is	a	good	place	for	the	Java	service
programmer	to	write	the	code	to	load	default	values	being	used	with	the	current
service.
The	SERVICE_SET	command	allows	the	enabling	of	trace	file	clearing.
The	SERVICE_GET	command	allows	access	to	the	keyword/value	properties
from	the	associated	service	properties	file.	To	reduce	the	conflict	between	user-
defined	keyword	names	and	current	and	future	LANSA	names	prefix	the
keyword	with	a	global	unique	name.	The	service	property	keyword	is	case
insensitive.
The	service	property	keyword	value	is	returned	in	the	#JSMMSG	field.
If	the	keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
The	special	PROPERTY	values	*SERVICE	and	*SERVICECLASS	return	the
loaded	service	class	name.
Example
	
com.acme.property.messagetype=html
#
message.001=Service	successfully	loaded
message.002=Service	successfully	unloaded
message.003=Command	is	not	supported	:
	

The	SERVICE_RECLAIM	command	allows	an	explicit	garbage	collection	to	be
done.

You	could	use	this	command	in	conjugation	with	the	JVM	-Xcompactexplicitgc
otion.
The	SERVICE_UNLOAD	command	instructs	the	JSM	service	thread	to
invalidate	the	currently	loaded	service	program	and	expect	to	load	another
service.	This	command	is	optional	and	does	not	need	to	be	called	if	the	JSM
connection	is	going	to	be	closed.	(The	SERVICE_UNLOAD	command	is	a
good	place	for	the	Java	service	programmer	to	put	code	to	release	currently
allocated	resources.)

RDML	Reserved	Keywords
The	following	keywords	are	reserved:
SERVICE_LIST
SERVICE_EXCHANGE
TRIM
TRUNCATE
When	using	a	working	list	argument	with	the	JSM_COMMAND	BIF,	a
SERVICE_LIST	keyword	must	be	included	with	the	command.
The	SERVICE_LIST	keyword	is	used	to	describe	the	list	argument	being	passed
to	the	JSM	command	as	shown	in	the	following	example:
	
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEF_LIST	NAME(#WRKLIST)	FIELDS(#DEPTMENT,#DEPTDESC)	TYPE(*WORKING)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('RECEIVE	HANDLER(IXML)	XSL(ORDER)	SERVICE_LIST(DEPTMENT,DEPTDESC)')	TO_GET(#JSMSTS	#JSMMSG	#WRKLIST)
	

Note:	The	SERVICE_LIST	keyword	fields	do	not	require	the	#	prefix.
If	the	list	of	fields	is	very	long,	it	may	exceed	the	size	limit	of	a	JSM	command
string.	In	this	case,	externalize	the	list	of	fields	to	an	entry	in	the	list.properties
file	located	in	the	instance	system	sub-directory	as	shown	in	the	following
example:
	
list.js016.receive01=DEPTMENT,DEPTDESC
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('RECEIVE	HANDLER(IXML)	XSL(ORDER)	SERVICE_LIST(JS016.RECEIVE01)')	TO_GET(#JSMSTS	#JSMMSG	#WRKLIST)
	

If	the	SERVICE_LIST	keyword	only	contains	one	entry	then	the	command
parser	will	check	if	this	single	value	is	a	program	field.	If	this	value	is	not	a
program	field,	then	it	is	used	as	a	lookup	value	on	the	list.properties	file	to
locate	a	field	list	entry.	It	is	recommended	that	you	use	a	naming	convention	of
function	name	plus	dot	plus	command	+	sequence	(JS016.RECEIVE01).
This	allows	for	an	easy	identification	of	what	programs	are	using	a	particular
entry	when	the	list.properties	file	is	viewed.

Note:	An	implied	SERVICE_EXCHANGE(*FIELD)	is	done	when	the
SERVICE_LIST	keyword	is	used.
The	SERVICE_EXCHANGE	keyword	is	used	to	trigger	the	exchange	between
the	LANSA	function	field	values	and	the	currently	loaded	JSM	service.	The
only	values	supported	by	this	keyword	is	*FIELD	or	*FIELDS.
The	LANSA	BIF	performs	a	scan	on	the	command	string	and	searches	for	the
following	pattern:

SERVICE_EXCHANGE(*FIELD)
SERVICE_EXCHANGE(*FIELDS)

The	keyword	and	its	value	must	be	identical	to	the	examples	above	and	without
imbedded	spaces.
Note:	If	a	working	list	and	the	associated	SERVICE_LIST	keyword	is	used,
then	all	fields	are	passed	and	a	SERVICE_EXCHANGE(*FIELD)	or
SERVICE_EXCHANGE(*FIELDS)	is	not	required	on	the	same	command.

RDML	Reserved	Field	Names
Any	fields	that	start	with	the	prefix	value	contained	in	the	JSMCLTDTA	data
area	will	be	excluded	from	the	field	list	transfer.	This	prefix	value	occupies
positions	51	to	60	of	the	data	area	JSMCLTDTA.	For	Windows	or	Linux,	this
prefix	value	can	be	set	with	a	keyword	value	pair	in	file	jsmcltdta.txt.	The
keyword	to	specify	the	prefix	is	ExcludePrefix	(Example:	ExcludePrefix=JSM).
The	default	value	for	this	prefix	is	JSM.	This	prefix	allows	the	JSMSTS,
JSMMSG	and	JSMCMD	variables	to	be	excluded	from	the	field	list	transfer.
For	more	information	refer	to	3.8	Data	Areas.

3.1.3	JSM_CLOSE
The	JSM_CLOSE	Built-In	Function	is	used	to	end	the	connection	to	the	Java
Service	Manager.	It	is	good	programming	practice	to	use	a	JSM_CLOSE	before
ending	your	function.
The	SERVICE_UNLOAD	does	not	have	to	be	executed	if	a	JSM_CLOSE	is
being	executed.
If	your	function	is	using	JSMDirect,	do	not	use	the	SERVICE_UNLOAD
command	just	issue	the	JSM_CLOSE	to	send	the	last	command	byte	array
response	back	to	the	HTTP	client.
Syntax:

Arguments

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

	

Return	Values

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Status 20 20 	 	

2 A Required Message 1 256 	 	

	

3.1.4	Sample	LANSA	RDML	Client	Programs
Following	is	a	very	simple	LANSA	function	that	opens	and	then	closes	a
connection	to	the	JSM.	If	an	error	occurs,	the	status	and	message	are	displayed.
This	program	does	not	use	any	services.
For	further	examples	of	RDML	client	applications,	refer	to	Client	Application
Examples.
Example	1	-	Using	default	(JSMCLTDTA	data	area)
	
FUNCTION	OPTIONS(*DIRECT)
*
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
*
USE	BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
IF	COND('#JSMSTS	*NE	OK')	
DISPLAY	FIELDS(#JSMSTS	#JSMMSG)
ENDIF
*
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
IF	COND('#JSMSTS	*NE	OK')	
DISPLAY	FIELDS(#JSMSTS	#JSMMSG)
ENDIF
	

Example	2	-	Using	server	argument
	
FUNCTION	OPTIONS(*DIRECT)
*
DEFINE	FIELD(#JSMSRV)	TYPE(*CHAR)	LENGTH(50)
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
*
CHANGE	FIELD(#JSMSRV)	TO('LOCALHOST:4560')
*
USE	BUILTIN(JSM_OPEN)	WITH_ARGS(#JSMSRV)TO_GET(#JSMSTS	#JSMMSG)

IF	COND('#JSMSTS	*NE	OK')	
DISPLAY	FIELDS(#JSMSTS	#JSMMSG)
ENDIF
*
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
IF	COND('#JSMSTS	*NE	OK')
DISPLAY	FIELDS(#JSMSTS	#JSMMSG)
ENDIF
	

	
The	following	example	shows	how	the	JSM	BIFs	are	used	together	and	in	what
order.	This	is	not	a	complete	RDML	function.	In	this	example	JSM_OPEN
opens	a	connection	to	the	Java	Service	Manager	and	starts	a	thread.
A	series	of	JSM_COMMANDs	are	issued	to:

Load	the	FTPService	service
Connect	to	the	host
Login	using	the	specified	user/password
Change	the	directory	path
Set	mode	to	binary
Put	the	file	to	the	FTP	site
Quit	the	FTP	session
Unload	the	service.

JSM_CLOSE	ends	the	connection.
	
FUNCTION	OPTIONS(*DIRECT)
	
DEFINE	FIELD(#JSMSRV)	TYPE(*CHAR)	LENGTH(50)
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
USE	BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(FTPSERVICE)')	TO_GET(#JSMSTS	#JSMMSG)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('CONNECT	HOST(LOCALHOST)')	TO_GET(#JSMSTS	#JSMMSG)

	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('LOGIN	USER(user)	PASSWORD(code)')	TO_GET(#JSMSTS	#JSMMSG)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('CHGDIR	PATH(/JSM)')	TO_GET(#JSMSTS	#JSMMSG)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('BINARY')	TO_GET(#JSMSTS	#JSMMSG)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('PUT	FROM(file)	TO(/TMP/DIR/file)')	TO_GET(#JSMSTS	#JSMMSG)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('QUIT')	TO_GET(#JSMSTS	#JSMMSG)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_UNLOAD')	TO_GET(#JSMSTS	#JSMMSG)
	
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
	

	

3.2	LANSA	RDMLX	Client
Three	Built-In	Functions	are	required	for	a	LANSA	RDMLX	client	to	have
complete	interaction	with	the	Java	Service	Manager	services.
These	Built-In	Functions	allow	multiple	concurrent	connections	in	the	same
function.

3.2.1	JSMX_BEGIN
Initialize	or	re-initialize	the	service	program	internal
state.

3.2.2	JSMX_OPEN Open	service

3.2.3
JSMX_COMMAND

Send	command.

3.2.4	JSMX_CLOSE Close	service.

3.2.5	JSMX_END
End	and	re-initialize	the	service	program	internal
state.

	

The	LANSA	developer	only	needs	to	understand	how	to	use	the	commands
offered	by	the	JSM	services.
The	overall	structure	of	the	LANSA	RDMLX	functions	will	be	the	same.
The	function	will	perform	the	following	operations:

BEGIN	using	the	Built-In	Functions.
OPEN	connection	to	the	Java	Service	Manager.
Issue	a	COMMAND	to	LOAD	the	service.
Execute	COMMANDs	supported	by	the	service.
Issue	a	COMMAND	to	UNLOAD	the	service
CLOSE	connection	to	the	Java	Service	Manager
END	using	the	Built-In	Functions.

Overview	of	field	and	list	exchange
Command 	 	

Command
SERVICE_EXCHANGE(*FIELD|*FIELDS)

	 	

Command 	 #WRKLST
Command #FLDLST 	

Command #FLDLST #WRKLST

Command
SERVICE_EXCHANGE(*FIELD|*FIELDS)

	 #WRKLST

Command
SERVICE_EXCHANGE(*FIELD|*FIELDS)

#FLDLST #WRKLST

	

Note:	Specified	fields	takes	precedence	over	SERVICE_EXCHANGE(*FIELD)
or	SERVICE_EXCHANGE(*FIELDS)	keyword.

3.2.1	JSMX_BEGIN
The	JSMX_BEGIN	Built-In	Function	must	be	the	first	API	call	in	a	logical	unit
of	processing.
This	initializes	the	internal	state	of	the	service	program	by	closing	any	open
connections	and	freeing	any	allocated	resources.	The	internal	state	of	the	service
program	is	scoped	to	the	job.

3.2.2	JSMX_OPEN
The	JSMX_OPEN	Built-In	Function	is	always	executed	first.	It	is	used	to
connect	the	JSMX	client	to	the	Java	Service	Manager	and	to	start	a	thread	for
the	service.	Each	client	will	have	its	own	thread.
Syntax:

Arguments

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Optional Server 1 50 	 	

	

Return	Values

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Status 1 20 	 	

2 A Required Message 1 Unlimited 	 	

3 A Required Connection
Handle

4 4 	 	

	

The	server	argument	is	optional	for	the	connection.	If	the	server	argument	is	not
supplied,	or	if	the	argument	value	contains	blanks,	then	the	remote	host	and	port
number	is	obtained	from	the	data	area	JSMCLTDTA	on	IBM	i	or	from	file
jsmcltdta.txt	on	Windows	or	Linux.
The	server	argument	can	have	any	of	the	following	values:

host:port Use	specified	host	and	port

host Use	host	and	get	port	from	JSMCLTDTA

:port Use	port	and	get	host	from	JSMCLTDTA

: Get	host	and	port	from	JSMCLTDTA

	 Get	host	and	port	from	JSMCLTDTA

	

The	JSMX_OPEN	must	be	executed	before	the	JSMX_COMMAND	can	be
used.
The	JSMX_OPEN	Built-In	Function	performs	a	DNS	lookup	to	resolve	the	host
name	address.	Using	a	dotted	decimal	IP	address	does	not	get	around	this	DNS
lookup.
If	the	JSMX_OPEN	Built-In	Function	is	slow	to	open	a	connection	then	you
could	have	a	DNS	lookup	issue.	Add	an	entry	to	the	local	host	table	to	improve
performance.
TCP/IP	connection	performance	can	be	improved	if	the	registered	DNS	servers
are	available	and	performing	well.
	
Change	TCP/IP	Domain
Host	name	search	priority											*LOCAL
Domain	name	server
Internet	address																				139.130.4.4
																																				203.48.48.13
	

If	the	first	Domain	Name	Server	(DNS)	in	the	list	does	not	respond,	the	second
DNS	server	in	the	list	will	be	contacted.	If	the	second	DNS	server	does	not
respond,	the	third	DNS	server	will	be	contacted.
See	IBM	i	-	Network	Performance	for	further	information.

3.2.3	JSMX_COMMAND
The	JSMX_COMMAND	Built-In	Function	is	used	to	load	and	unload	services
and	execute	commands	supported	by	the	service.	The	JSMX_COMMAND	can
only	be	executed	once	a	JSMX_OPEN	has	completed	successfully.
If	an	optional	working	list	argument	is	specified	then	the	fields	defined	in	that
list	are	available	to	the	loaded	service.	If	no	working	list	argument	is	specified
then	no	fields	are	available	to	the	loaded	service.	This	field	list	does	not	require
an	entry	only	the	list	definition	is	used	to	determine	which	fields	are	send	to	the
JSM	service.
If	an	optional	working	list	return	value	is	specified	then	that	working	list	is
available	to	the	loaded	service.
Syntax:

Arguments

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Connection
Handle

4 4 	 	

2 A Required Command 1 Unlimited 	 	

3 L Optional Field	List 	 	 	 	

	

Return	Values

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Status 1 20 	 	

2 A Required Message 1 Unlimited 	 	

3 L Optional Working
List

	 	 	 	

	

A	service	is	loaded	before	commands	to	the	service	are	executed.	A	service	is
unloaded	once	you	are	finished	using	it.	Only	one	service	can	be	loaded	at	a
time.	Refer	to	3.7	Command.
The	JSMX_COMMAND	has	a	number	of:
RDMLX	Reserved	Commands
RDMLX	Reserved	Keywords
RDMLX	Reserved	Field	Names
For	command	services	details,	refer	to	Java	Service	Manager	Services.
Technical	Note	1
For	a	service	to	receive	HTTP	posted	content,	the
SERVICE_CONTENT(*HTTP)	keyword	is	required	on	the	SERVICE_LOAD
command.
If	this	is	the	first	connection	to	use	the	SERVICE_CONTENT(*HTTP)
keyword,	then	the	posted	HTTP	content	is	read	and	sent	to	the	service.
This	connection	takes	responsibility	for	sending	the	HTTP	response.
If	this	is	NOT	the	first	connection	to	use	the	SERVICE_CONTENT(*HTTP)
keyword,	then	this	connection	only	takes	responsibility	for	sending	the	HTTP
response.	The	SERVICE_LOAD	command	does	NOT	receive	the	HTTP
content,	but	does	receive	the	HTTP	keywords.
When	the	connection	that	is	responsible	for	the	HTTP	response	uses	the
JSMX_CLOSE	to	close	the	connection,	the	returned	byte	array	response
becomes	the	HTTP	response.
Only	one	connection	can	have	responsibility	for	sending	the	HTTP	response	at	a
time.
HTTP	content	can	only	be	read	once.
HTTP	response	can	only	be	written	once.
HTTP	keywords	are	always	sent	with	the	SERVICE_LOAD	command.
Scenario	A
	
#1	JSMX_OPEN	-	open	connection
#2	JSMX_OPEN	-	open	connection
#3	JSMX_OPEN	-	open	connection

#1	JSMX_COMMAND("SERVICE_LOAD	SERVICE(xxx)
SERVICE_CONTENT(*HTTP)")	-	send	CGI	keywords,	read	STDIN,	claim
ownership
#2	JSMX_COMMAND("SERVICE_LOAD	SERVICE(xxx)")	-	send	CGI
keywords
#3	JSMX_COMMAND("SERVICE_LOAD	SERVICE(xxx)
SERVICE_CONTENT(*HTTP)")	-	send	CGI	keywords,	transfer	ownership
#1	JSMX_CLOSE	-	close	connection
#2	JSMX_CLOSE	-	close	connection
#3	JSMX_CLOSE	-	close	connection	and	write	STDOUT
	

Scenario	B
	
#1	JSMX_OPEN	-	open	connection
#1	JSMX_COMMAND("SERVICE_LOAD	SERVICE(xxx)
SERVICE_CONTENT(*HTTP)")	-	send	CGI	keywords,	read	STDIN,	claim
ownership
#1	JSMX_CLOSE	-	close	connection	and	write	STDOUT
#2	JSMX_OPEN	-	open	connection
#2	JSMX_COMMAND("SERVICE_LOAD	SERVICE(xxx)")	-	send	CGI
keywords
#2	JSMX_CLOSE	-	close	connection
#3	JSMX_OPEN	-	open	connection
#3	JSMX_COMMAND("SERVICE_LOAD	SERVICE(xxx)
SERVICE_CONTENT(*HTTP)")	-	send	CGI	keywords,	transfer	ownership
#3	JSMX_CLOSE	-	close	connection
	

Technical	Note	2
The	following	data	types	are	supported.	If	any	other	data	type	is	used,	that	field
will	be	ignored	and	not	passed	to	the	JSM	service.
	
TYPE(*CHAR)
TYPE(*NCHAR)
TYPE(*STRING)
TYPE(*INT)
TYPE(*DEC)
TYPE(*FLOAT)
TYPE(*PACKED)

TYPE(*SIGNED)
TYPE(*BOOLEAN)
TYPE(*DATE)
TYPE(*TIME)
TYPE(*DATETIME)
TYPE(*BLOB)
TYPE(*CLOB)
	

RDMLX	Reserved	Commands
Any	command	or	keyword	that	starts	with	SERVICE_	is	reserved.
For	example,	these	commands	are	reserved:
	
SERVICE_LOAD SERVICE(servicename)	TRACE(option)	TRACE_NAME(name)
SERVICE_SET TRACE(*CLEAR)
SERVICE_GET PROPERTY(property)
SERVICE_RECLAIM 	
SERVICE_UNLOAD 	

The	SERVICE_LOAD	command	instructs	the	JSM	service	thread	to	load	and
instantiate	the	specified	service	program.	Only	one	service	class	is	loaded	at	a
time.	The	SERVICE_LOAD	command	is	a	good	place	for	the	Java	service
programmer	to	write	the	code	to	load	default	values	being	used	with	the	current
service.
The	SERVICE_SET	command	allows	the	enabling	of	trace	file	clearing.
The	SERVICE_GET	command	allows	access	to	the	keyword/value	properties
from	the	associated	service	properties	file.	To	reduce	the	conflict	between	user-
defined	keyword	names	and	current	and	future	LANSA	names	prefix	the
keyword	with	a	global	unique	name.	The	service	property	keyword	is	case
insensitive.
The	service	property	keyword	value	is	returned	in	the	#JSMMSG	field.
If	the	keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
The	special	PROPERTY	values	*SERVICE	and	*SERVICECLASS	return	the
loaded	service	class	name.
Example
	
com.acme.property.messagetype=html
#
message.001=Service	successfully	loaded
message.002=Service	successfully	unloaded
message.003=Command	is	not	supported	:
	

The	SERVICE_RECLAIM	command	allows	an	explicit	garbage	collection	to	be
done.

You	could	use	this	command	in	conjugation	with	the	JVM	-Xcompactexplicitgc
otion.
The	SERVICE_UNLOAD	command	instructs	the	JSM	service	thread	to
invalidate	the	currently	loaded	service	program	and	expect	to	load	another
service.	This	command	is	optional	and	does	not	need	to	be	called	if	the	JSM
connection	is	going	to	be	closed.	(The	SERVICE_UNLOAD	command	is	a
good	place	for	the	Java	service	programmer	to	put	code	to	release	currently
allocated	resources.)

RDMLX	Reserved	Keywords
The	following	keywords	are	reserved:
SERVICE_CONTENT
SERVICE_EXCHANGE
TRIM
TRUNCATE
The	SERVICE_CONTENT	keyword	is	used	on	the	SERVICE_LOAD
command	to	trigger	the	exchange	of	content	from	the	LANSA	function	to	the
service	being	loaded.	The	only	value	supported	by	this	keyword	is	*HTTP.
The	LANSA	BIF	performs	a	scan	on	the	SERVICE_LOAD	command	string	and
searches	for	the	following	pattern:

SERVICE_CONTENT(*HTTP)
The	keyword	and	its	value	must	be	identical	to	the	example	above,	entirely	in
uppercase	and	without	imbedded	spaces.
The	SERVICE_EXCHANGE	keyword	is	used	to	trigger	the	exchange	between
the	LANSA	function	field	values	and	the	currently	loaded	JSM	service.	The
only	values	supported	by	this	keyword	is	*FIELD	or	*FIELDS.	The	*FIELDS
value	will	include	BLOB	and	CLOB	fields	into	the	list	of	exchanged	fields.
The	LANSA	BIF	performs	a	scan	on	the	command	string	and	searches	for	the
following	pattern:

SERVICE_EXCHANGE(*FIELD)
SERVICE_EXCHANGE(*FIELDS)

The	keyword	and	its	value	must	be	identical	to	the	example	above	and	without
imbedded	spaces.

RDMLX	Reserved	Field	Names
Any	fields	that	start	with	the	prefix	value	contained	in	the	JSMCLTDTA	data
area	will	be	excluded	from	the	field	list	transfer.	This	prefix	value	occupies
positions	51	to	60	of	the	data	area	JSMCLTDTA.	For	Windows	or	Linux,	this
prefix	value	can	be	set	with	a	keyword	value	pair	in	file	jsmcltdta.txt.	The
keyword	to	specify	the	prefix	is	ExcludePrefix	(Example:	ExcludePrefix=JSM).
The	default	value	for	this	prefix	is	JSM.	This	prefix	allows	the	JSMSTS,
JSMMSG	and	JSMCMD	variables	to	be	excluded	from	the	field	list	transfer.
For	more	information	refer	to	3.8	Data	Areas.

3.2.4	JSMX_CLOSE
The	JSMX_CLOSE	Built-In	Function	is	used	to	end	the	connection	to	the	Java
Service	Manager.	It	is	good	programming	practice	to	use	a	JSMX_CLOSE
before	ending	your	function.
The	SERVICE_UNLOAD	does	not	have	to	be	executed	if	a	JSMX_CLOSE	is
being	executed.
If	your	function	is	using	JSMDirect,	do	not	use	the	SERVICE_UNLOAD
command	just	issue	the	JSM_CLOSE	to	send	the	last	command	byte	array
response	back	to	the	HTTP	client.
Syntax:

Arguments

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Connection
Handle

4 4 	 	

	

Return	Values

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Status 1 20 	 	

2 A Required Message 1 Unlimited 	 	

	

3.2.5	JSMX_END
The	JSMX_END	Built-In	Function	is	the	last	API	call	in	a	logical	unit	of
processing.
This	initializes/finalizes	the	internal	state	of	the	service	program	by	closing	any
open	connections	and	freeing	any	allocated	resources.	The	internal	state	of	the
service	program	is	scoped	to	the	job.
You	should	not	call	this	Built-In	Function	while	any	JSM	connections	remain
open	if	you	wish	to	continue	to	use	the	open	connection(s).

3.2.6	Sample	LANSA	RDMLX	Client	Programs
For	examples	of	RDMLX	client	applications,	refer	to	Client	Application
Examples.

3.3	ILE	RPG	Client

WARNING.	The	RDML	BIF	has	been	changed	to	support	256	byte
message	and	command	parameters.
Any	ILE	RPG	program	binding	to	the	DCXS882X	service	program
must	still	use	255	byte	parameters.

Four	API	calls	are	required	for	an	ILE	RPG	client	to	have	complete	interaction
with	the	Java	Service	Manager	services.
These	APIs	only	allow	a	single	connection	within	the	same	job.

3.3.1	JSMOPEN Open	service.

3.3.2	JSMCMD	&	JSMCMDX Send	command.

3.3.3	JSMCLOSE Close	service.

The	RPG	developer	only	needs	to	understand	how	to	use	the	commands	offered
by	the	JSM	services.
The	overall	structure	of	the	RPG	programs	will	be	the	same.
The	program	will	perform	the	following	operations:

OPEN	connection	to	the	Java	Service	Manager.
Issue	a	COMMAND	to	LOAD	the	service.
Execute	COMMANDs	supported	by	the	service.
Issue	a	COMMAND	to	UNLOAD	the	service
CLOSE	connection	to	the	Java	Service	Manager

On	IBM	i	the	ILE	RPG	client	program	needs	to	be	bound	to	service	program
DCXS882X	and	this	service	program	needs	to	be	shipped	with	the	client
program.	The	client	program	is	also	dependent	on	data	area	JSMCLTDTA	and
JSMMSGF	message	file.
Example	source	code	and	how	to	create	a	program	are	located	in	files
QRPGLESRC	and	QCLSRC	in	the	JSM	library	(as	nominated	during	the
LANSA	Integrator	install).
Overview	of	field	and	list	exchange

Command No
fields

No
list

Command	SERVICE_STRUCTURE(...) Fields No

list
Command	SERVICE_STRUCTURE(...)	OCCURS(...)
SIZE(...)	COUNT(...)

No
fields

List

	

Note:	You	cannot	have	both	fields	and	a	list.

3.3.1	JSMOPEN
The	JSMOPEN	is	always	executed	first.	It	is	used	to	connect	the	JSM	client	to
the	Java	Service	Manager	and	to	start	a	thread	for	the	service.	Each	client	will
have	its	own	thread.
The	server	argument	is	optional	for	the	connection.	If	the	server	argument	is	not
supplied,	or	if	the	argument	value	contains	blanks,	then	the	remote	host	and	port
number	is	obtained	from	the	data	area	JSMCLTDTA	on	IBM	i.
The	server	argument	can	have	any	of	the	following	values:

host:port Use	specified	host	and	port

host Use	host	and	get	port	from	JSMCLTDTA

:port Use	port	and	get	host	from	JSMCLTDTA

: Get	host	and	port	from	JSMCLTDTA

	 Get	host	and	port	from	JSMCLTDTA

	

The	JSMOPEN	must	be	executed	before	the	JSMCMD	can	be	used.
The	JSMOPEN	API	performs	a	DNS	lookup	to	resolve	the	host	name	address.
Using	a	dotted	decimal	IP	address	does	not	get	around	this	DNS	lookup.
If	the	JSMOPEN	API	is	slow	to	open	a	connection	then	you	could	have	a	DNS
lookup	issue.	Add	an	entry	to	the	local	host	table	to	improve	performance.
TCP/IP	connection	performance	can	be	improved	if	the	registered	DNS	servers
are	available	and	performing	well.
	
Change	TCP/IP	Domain
Host	name	search	priority											*LOCAL
Domain	name	server
Internet	address																				139.130.4.4
																																				203.48.48.13
	

If	the	first	Domain	Name	Server	(DNS)	in	the	list	does	not	respond,	the	second
DNS	server	in	the	list	will	be	contacted.	If	the	second	DNS	server	does	not
respond,	the	third	DNS	server	will	be	contacted.

See	IBM	i	-	Network	Performance	for	further	information.

3.3.2	JSMCMD	&	JSMCMDX
The	JSMCMD	or	JSMCMDX	are	used	to	load	and	unload	services	and	to
execute	commands	supported	by	the	service.	The	JSMCMD	or	JSMCMDX	can
only	be	executed	once	a	JSMOPEN	has	completed	successfully.
JSMCMDX	is	only	available	to	ILE	clients	and	allows	the	contents	of	a	variable
to	be	sent	with	the	command	string.	The	service	programmer	accesses	a	copy	of
this	variable	byte	array	(sent	by	JSMCMDX)	by	using	the	JSMCMD
getByteArray()	method.
Example
	
			byte[]	clientData	=	command.getByteArray()	;
	

Two	API's	are	used	to	retrieve	a	byte	array	returned	by	the	JSM	service.
Depending	on	the	service,	this	array	may	also	contain	fields	or	working	lists.
JSMBYTELNGTH	places	the	length	of	the	last	returned	byte	array	into	byte
length	parameter.	JSMBYTERECV	copies	the	contents	of	the	byte	array	into	the
variable	parameter.
Note	that	the	byte	array	parameter	must	be	big	enough	to	hold	the	received
bytes.
	
C CALLB 'JSMBYTERECV'
C PARM Details
	 	 	

The	command	string	sent	by	the	JSMCMDX	API	is	converted	from	the	client
encoding	to	Unicode.
The	byte	array	is	not	converted	and	is	passed	to	the	service	unprocessed.
To	send	single	or	multiple	occurrence	data	structures	using	RPG,	refer	to	3.3.6
RPG	Data	Structure.
A	service	is	loaded	before	commands	to	the	service	are	executed.	A	service	is
unloaded	once	you	are	finished	using	it.	Only	one	service	can	be	loaded	at	a
time.	Refer	to	3.7	Command.
The	JSMCMDX	or	JSMCMDX	API	has	a	number	of:
3.3.4	RPG	Reserved	Commands
3.3.5	RPG	Reserved	Keywords

For	command	services	details,	refer	to	Java	Service	Manager	Services.

3.3.3	JSMCLOSE
The	JSMCLOSE	is	used	to	end	the	connection	to	the	Java	Service	Manager.	It	is
good	programming	practice	to	use	a	JSMCLOSE	before	ending	your	function.
The	SERVICE_UNLOAD	does	not	have	to	be	executed	if	a	JSMCLOSE	is
being	executed.
If	your	function	is	using	JSMDirect,	do	not	use	the	SERVICE_UNLOAD
command,	just	issue	the	JSMCLOSE	to	send	the	last	command	byte	array
response	back	to	the	HTTP	client.

3.3.4	RPG	Reserved	Commands
Any	command	or	keyword	that	starts	with	SERVICE_	is	reserved.
For	example,	these	commands	are	reserved:
	
SERVICE_LOAD SERVICE(servicename)	TRACE(option)	TRACE_NAME(name)
SERVICE_SET TRACE(*CLEAR)
SERVICE_GET PROPERTY(property)
SERVICE_RECLAIM 	
SERVICE_UNLOAD 	

The	SERVICE_LOAD	command	instructs	the	JSM	service	thread	to	load	and
instantiate	the	specified	service	program.	Only	one	service	class	is	loaded	at	a
time.	The	SERVICE_LOAD	command	is	a	good	place	for	the	Java	service
programmer	to	write	the	code	to	load	default	values	being	used	with	the	current
service.
The	SERVICE_SET	command	allows	the	enabling	of	trace	file	clearing.
The	SERVICE_GET	command	allows	access	to	the	keyword/value	properties
from	the	associated	service	properties	file.	To	reduce	the	conflict	between	user-
defined	keyword	names	and	current	and	future	LANSA	names	prefix	the
keyword	with	a	global	unique	name.	The	service	property	keyword	is	case
insensitive.
The	service	property	keyword	value	is	returned	in	the	#JSMMSG	field.
If	the	keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
The	special	PROPERTY	values	*SERVICE	and	*SERVICECLASS	return	the
loaded	service	class	name.
Example
	
com.acme.property.messagetype=html
#
message.001=Service	successfully	loaded
message.002=Service	successfully	unloaded
message.003=Command	is	not	supported	:
	

The	SERVICE_RECLAIM	command	allows	an	explicit	garbage	collection	to	be
done.

You	could	use	this	command	in	conjugation	with	the	JVM	-Xcompactexplicitgc
otion.
The	SERVICE_UNLOAD	command	instructs	the	JSM	service	thread	to
invalidate	the	currently	loaded	service	program	and	expect	to	load	another
service.	This	command	is	optional	and	does	not	need	to	be	called	if	the	JSM
connection	is	going	to	be	closed.	(The	SERVICE_UNLOAD	command	is	a
good	place	for	the	Java	service	programmer	to	put	code	to	release	currently
allocated	resources.)

3.3.5	RPG	Reserved	Keywords
The	following	keywords	are	reserved:
SIZE
COUNT
OCCURS
SERVICE_STRUCTURE
TRIM
TRUNCATE

3.3.6	RPG	Data	Structure
RPG	data	structure	support	allows	RPG	programs	to	send	and	receive	the	single
or	multiple	occurrence	data	structures	between	the	RPG	program	and	the	current
JSM	service.
RPG	programs	can	pass	data	structures	to	the	JSM	services	these	data	structures
appear	as	list	or	field	list	objects.
The	RPG	program	can	only	pass	a	field	list	object	or	a	list	object	with	each
command,	a	LANSA	function	can	pass	both	a	field	list	object	and	list	object	at
the	same	time.
The	JSMCMDX	call	is	used	to	pass	the	data	structure	as	a	byte	array.
If	the	command	keyword	SERVICE_STRUCTURE	is	present	the	byte	array	is
converted	into	a	JSMList	or	JSMFieldList	object	depending	on	other	command
keywords.
These	objects	are	available	from	the	JSMCMD	object.
	
			JSMList	list	=	command.getList	()	;
	
			JSMFieldList	fieldList	=	command.getFieldList	()	;
	

If	no	SERVICE_STRUCTURE	keyword	is	present	then	the	data	structure	can
be	accessed	by	the	getByteArray	method.
	
			byte[]	data	=	command.getByteArray	()	;
	

Reserved	keywords
SERVICE_STRUCTURE	(xxx)	-	mandatory	if	a	structure	needs	to	be	used.
OCCURS	(nnn)	-	mandatory	for	list
SIZE	(nnn)	-	mandatory	for	list
COUNT	(nnn)	–	optional	for	list,	specifies	the	number	of	valid	entries	in
the	list.

Data	structure	as	a	list
To	send	a	multiple	occurrence	data	structure	across	to	the	JSM	service	as	a	list
object,	the	programmer	needs	to	include	the	keyword	OCCURS.

OCCURS	keyword	specifies	the	maximum	number	of	entries	in	the	list.
COUNT	keyword	specifies	the	current	number	of	entries	in	the	list.	Default
is	zero.
SIZE	keyword	is	required	when	an	OCCURS	keyword	is	used.	This	is	used
as	a	check	against	the	calculated	entry	size.
The	byte	array	length	must	be	equal	to	SIZE	value	times	the	OCCURS
value.

Data	structure	as	a	field	list
To	send	a	data	structure	across	to	the	JSM	service	as	a	field	list	object	the
programmer	does	not	need	to	use	the	COUNT,	OCCURS	or	SIZE	keywords.

COUNT	keyword	value	defaults	to	one.
OCCURS	keyword	value	defaults	to	one.
The	byte	array	length	must	be	equal	to	the	calculated	structure	size.

Determining	the	layout	of	the	structure
The	value	of	the	SERVICE_STRUCTURE	keyword	is	used	as	a	keyed	lookup
of	the	structure.properties	file	in	the	system	sub-directory.
The	value	component	of	this	property	entry	is	the	location	of	the	XML	file
defining	the	structure	layout.
	
#
#	Java	Service	Manager	structures
#
structure.demoxml.orderhead=structure/demoxml-orderhead.xml
structure.demoxml.orderline=structure/demoxml-orderline.xml
	

Example	structure	XML
	
<?xml	version="1.0"	encoding="UTF-8"?>
	
<rdml:structure	xmlns:rdml="http://www.lansa.com/2000/XML/Function">
	
			<rdml:field	name="ORDER"		type="S"	length="10"	/>
			<rdml:field	name="NAME"			type="A"	length="50"	/>
			<rdml:field	name="STREET"	type="A"	length="50"	/>
			<rdml:field	name="CITY"			type="A"	length="50"	/>

			<rdml:field	name="STATE"		type="A"	length="5"	/>
			<rdml:field	name="ZIP"				type="A"	length="5"	/>
	
</rdml:structure>
	

Example	RPG	program
	
*	Order	head
D	ORDERHEAD												DS
D	ORDER							10S	0				INZ(0)
D	NAME								50							INZ('	')
D	STREET						50							INZ('	')
D	CITY								50							INZ('	')
D	STATE							5								INZ('	')
D	ZIP									5								INZ('	')
D	HEADSIZE				C								%SIZE(ORDERHEAD)
	
*	Order	lines,	up	to	10	lines
D	ORDERLINE			DS							OCCURS(10)
D	LINENUM					3S	0					INZ(0)
D	PARTNUM					3S	0					INZ(0)
D	PARTDSC					50							INZ('	')
D	PARTAMT					10P	2				INZ(0)
D	PARTQTY					3P	0					INZ(0)
D	LINEELEM				C								%ELEM(ORDERLINE)
D	LINESIZE				C								%SIZE(ORDERLINE)
	

This	command	will	receive	the	single	field	values	into	the	ORDERHEAD
structure:

RECEIVE	HANDLER(IXML)	XSL(RECEIVEORDER)
SERVICE_STRUCTURE(DEMOXML.ORDERHEAD)
This	command	will	receive	the	multiple	order	lines	into	the	ORDERLINE
structure:

RECEIVE	HANDLER(IXML)	XSL(RECEIVEORDER)
SERVICE_STRUCTURE(DEMOXML.ORDERLINE)	SIZE(64)
OCCURS(10)
The	data	structure	names	do	not	need	to	match	the	names	in	the	structure	XML

file,	it	is	only	the	data	type	and	position	that	are	used.
The	structure	XML	names	need	to	match	the	field	names	in	the	XSL	file.
The	shipped	RPG	example	QRPGLESRC/DEMOXML	illustrates	how	to	send
and	receive	data	structures.

3.3.7	Sample	ILE	RPG	Client	Programs
For	examples	of	ILE	RPG	client	applications,	refer	to	Client	Application
Examples.

3.4	ILE	RPGX	Client
Seven	API	calls	are	required	for	an	ILE	RPG	client	to	have	complete	interaction
with	the	Java	Service	Manager	services.
These	APIs	allow	multiple	connections	within	the	same	job.

3.4.1	JSMX_BEGIN Initialize	or	re-initialize	the	service	program	internal
state.

3.4.2	JSMX_OPEN Open	service.

3.4.3
JSMX_BINDFLD

Bind	program	fields	to	connection	handle.

3.4.4	JSMX_BINDLST Bind	program	list	to	connection	handle.

3.4.5
JSMX_COMMAND

Send	command.

3.4.6	JSMX_CLOSE Close	service.

3.4.7	JSMX_END End	and	re-initialize	the	service	program	internal
state.

The	RPG	developer	only	needs	to	understand	how	to	use	the	commands	offered
by	the	JSM	services.
The	overall	structure	of	the	RPG	programs	will	be	the	same.
The	program	will	perform	the	following	operations:

BEGIN	using	the	API	interface.
OPEN	connection	to	the	Java	Service	Manager.
Issue	a	COMMAND	to	LOAD	the	service.
Execute	COMMANDs	supported	by	the	service.
Issue	a	COMMAND	to	UNLOAD	the	service
CLOSE	connection	to	the	Java	Service	Manager
END	using	the	API	interface.

On	IBM	i	the	ILE	RPG	client	program	needs	to	be	bound	to	service	program
JSMRPGSRV	and	this	service	program	needs	to	be	shipped	with	the	client
program.	The	client	program	is	also	dependent	on	data	area	JSMCLTDTA	and
JSMMSGF	message	file.

Example	source	code	and	how	to	create	a	program	are	located	in	files
QRPGLESRC	and	QCLSRC	in	the	JSM	library	(as	nominated	during	the
LANSA	Integrator	install).
Most	of	the	service	program	API	character	string	parameters	can	be	of	any	size,
as	the	service	program	will	determine	the	length	of	character	input	using	IBM's
CEEGSI	API.	The	connection	handle	parameter	is	always	character	of	length	4.
Overview	of	field	and	list	exchange

Command No
fields

No
list

Command	+	JSMX_BINDFLD Fields No
list

Command	+	JSMX_BINDLST No
fields

List

Command	+	JSMX_BINDFLD	+
JSMX_BINDLST

Fields List

	

	

3.4.1	JSMX_BEGIN
The	JSMX_BEGIN	API	must	be	the	first	API	call	in	a	logical	unit	of
processing.
This	initializes	the	internal	state	of	the	service	program	by	closing	any	open
connections	and	freeing	any	allocated	resources.	The	internal	state	of	the	service
program	is	scoped	to	the	job.
Parameters
Number Symbolic	Name Description

1 JSMXCFG Input,	structure.
Usage	not	yet	defined.

2 JSMXLEN Input,	integer	10.
Length	of	JSMXCFG.

	

	

3.4.2	JSMX_OPEN
The	JSMX_OPEN	API	is	used	to	open	a	new	connection	from	the	client
application	to	the	Java	Service	Manager.	The	client	may	have	more	than	one	(up
to	100)	connections	open	simultaneously	by	making	multiple	calls	to
JSMX_OPEN.
Parameters

Number Symbolic
Name

Description

1 JSMHDL Output,	character	4.
The	JSMX_OPEN	call	returns	the	connection
handle	it	assigns	to	this	connection.	This	handle	is
used	on	subsequent	JSMX_COMMAND	and	other
API	calls	to	identify	the	connection	to	which	the
call	applies.

2 JSMSRV Input,	character	(variable,	recommended	50).
Identifies	the	server	to	which	the	client	application
wishes	to	open	a	connection.

3 JSMSTS Output,	character	(variable,	recommended	20).
The	JSM	server	returns	the	status	of	the	operation
in	this	field.		The	client	application	can	test	this
field	to	determine	whether	the	operation	succeeded.
In	most	cases	a	status	of	'OK'	indicates	successful
completion.

4 JSMMSG Output,	character	(variable,	recommended	512).
The	JSM	server	may	return	a	message	concerning
the	operation	in	this	field	-	for	example	a
completion	message	or	an	error	message	when	the
operation	fails.

	

The	server	argument	is	optional	for	the	connection.	If	the	server	argument	is	not
supplied,	or	if	the	argument	value	contains	blanks,	then	the	remote	host	and	port

number	is	obtained	from	the	data	area	JSMCLTDTA	on	IBM	i.
The	server	argument	can	have	any	of	the	following	values:

host:port Use	specified	host	and	port

host Use	host	and	get	port	from	JSMCLTDTA

:port Use	port	and	get	host	from	JSMCLTDTA

: Get	host	and	port	from	JSMCLTDTA

	 Get	host	and	port	from	JSMCLTDTA

	

The	JSMX_OPEN	must	be	executed	before	the	JSMX_COMMAND	can	be
used.
The	JSMX_OPEN	Built-In	Function	performs	a	DNS	lookup	to	resolve	the	host
name	address.	Using	a	dotted	decimal	IP	address	does	not	get	around	this	DNS
lookup.
If	the	JSMX_OPEN	Built-In	Function	is	slow	to	open	a	connection	then	you
could	have	a	DNS	lookup	issue.	Add	an	entry	to	the	local	host	table	to	improve
performance.
TCP/IP	connection	performance	can	be	improved	if	the	registered	DNS	servers
are	available	and	performing	well.
	
Change	TCP/IP	Domain
Host	name	search	priority											*LOCAL
Domain	name	server
Internet	address																				139.130.4.4
																																				203.48.48.13
	

If	the	first	Domain	Name	Server	(DNS)	in	the	list	does	not	respond,	the	second
DNS	server	in	the	list	will	be	contacted.	If	the	second	DNS	server	does	not
respond,	the	third	DNS	server	will	be	contacted.
See	IBM	i	-	Network	Performance	for	further	information.

3.4.3	JSMX_BINDFLD
The	JSMX_BINDFLD	API	is	optional	and	is	used	to	"bind"	fields	to	the
specified	connection	handle	so	that	the	field	values	can	be	sent	or	received	by	a
subsequent	JSMX_COMMAND	API	call.
Only	one	set	of	fields	may	be	bound	at	once	–	therefore	you	should	include	all
required	fields	and	their	descriptions	in	a	single	JSMX_BINDFLD	call	before
the	JSMX_COMAND	call(s)	in	which	they	might	be	used.
The	JSMX_BINDFLD	call	is	not	persistent	–	that	is,	it	lasts	only	until	the	next
JSMX_COMMAND	call	completes.
You	must	call	JSMX_BINDFLD	again	before	a	subsequent
JSMX_COMMAND	API	call,	if	the	service	command	requires	bound	fields.	
(The	same	is	true	for	bound	lists	–	see	the	JSMX_BINDLST.)
To	"unbind"	fields	from	the	specified	connection	handle,	you	can	pass	a	null
value	(use	*OMIT	in	ILE	RPG)	for	the	JSMMETA	or	JSMDATA	parameters	or
pass	a	zero	value	for	the	JSMMETASIZE	or	JSMDATASIZE	parameters.
The	JSMX_BINDFLD	API	operates	independently	of	the	JSMX_BINDLST
API	–	that	is	you	may	bind	a	set	of	non-recurring	fields	(using
JSMX_BINDFLD),	a	list	(using	JSMX_BINDLST)	or	both.
Whether	you	need	to	use	one,	both	or	neither	will	depend	on	the	function	and
requirements	of	the	service	and	service	command	you	are	using.
Parameters
Number Symbolic	Name Description

1 JSMHDL Input,	character	4.
The	JSMX_OPEN	call	returns	the	connection
handle	it	assigns	to	this	connection.		This	handle
is	used	on	subsequent	JSMX_COMMAND	and
other	API	calls	to	identify	the	connection	to
which	the	call	applies.

2 JSMMETA Input,	structure.
Specifies	a	block	of	memory	that	contains	zero	or
more	field	meta-data	definitions	corresponding	to
the	structure	of	the	fields	provided	in	JSMDATA.	
You	must	provide	one	field	meta-data	definition
for	each	field	in	the	structure	provided	in

JSMDATA,	and	in	the	same	order	as	the	fields
occur	in	JSMDATA.
Each	meta-data	entry	must	be	formatted	as
follows:
Positions				Description
1	–	50							Symbolic	field	name	(50)
This	name	does	not	have	to	be	the	same	as	the	name	used	in	the
RPG	program.		However,	for	some	LANSA	Integrator	services	the
symbolic	name	must	match	that	expected	by	the	service	–	this	is
particularly	so	for	those	services	such	as	the	XML	and	SOAP
services	that	perform	mapping	between	external	data	and	program
fields.
51											Data	Type	(1)
Supported	types	are	A,	P	or	S.
52	–	58Field	size	(7)
This	is	the	number	of	characters	or	digit	positions,	not	the	byte
size.
59	–	60						Field	decimal	places.	(2).

3 JSMMETASIZE Input,	integer	10.
Specifies	the	size	of	the	memory	block	provided
in	the	JSMMETA	parameter	in	bytes.		This	must
be	a	multiple	of	60	(60	being	the	size	of	a	single
meta-data	entry).

4 JSMDATA Input/Output,	structure.
Specifies	a	block	of	memory	that	contains	the
fields	described	by	the	JSMMETA	parameter.
Depending	upon	the	service	and	the	service
command,	the	field	values	might	be	used	as	input
to	the	service,	output	from	the	service	or	both.	
When	used	as	output	from	the	service,	the	JSM
will	write	the	output	field	values	to	the	memory
identified	by	this	parameter.

5 JSMDATASIZE Input,	integer	10.
Specifies	the	size	of	the	memory	block	provided
in	the	JSMDATA	parameter	in	bytes.		This	should
normally	be	equal	to	the	sum	of	the	byte	sizes	of
the	fields	described	by	the	JSMMETA	parameter.

6 JSMSTS Output,	character	(variable,	recommended	20).
The	JSM	server	returns	the	status	of	the	operation
in	this	field.		The	client	application	can	test	this
field	to	determine	whether	the	operation
succeeded.		In	most	cases	a	status	of	'OK'
indicates	successful	completion.

7 JSMMSG Output,	character	(variable,	recommend	512).
The	JSM	server	may	return	a	message	concerning
the	operation	in	this	field	-	for	example	a
completion	message	or	an	error	message	when
the	operation	fails.

	

3.4.4	JSMX_BINDLST
The	JSMX_BINDLST	API	is	optional	and	is	used	to	"bind"	a	list	to	the
specified	connection	handle	so	that	the	list	entries	can	be	sent	or	received	by	the
subsequent	JSMX_COMMAND	API	call.
Only	one	list	may	be	bound	at	once	–	you	must	issue	the	JSMX_BINDLST	call
before	the	JSMX_COMMAND	call(s)	that	uses	it.
The	JSMX_BINDLST	call	is	not	persistent	–	that	is,	it	lasts	only	until	the	next
JSMX_COMMAND	call	completes.
You	must	call	JSMX_BINDLST	again	before	a	subsequent
JSMX_COMMAND	API	call,	if	the	service	command	requires	a	bound	list.
(The	same	is	true	for	bound	fields	–	see	the	JSMX_BINDFLD.)
To	"unbind"	a	list	from	the	specified	connection	handler,	you	can	pass	a	null
value	(use	*OMIT	in	ILE	RPG)	for	the	JSMMETA	or	JSMLIST	parameters	or
pass	a	zero	value	for	the	JSMMETASIZE	or	JSMLISTSIZE	parameters.
The	JSMX_BINDLST	API	operates	independently	of	the	JSMX_BINDFLD
API	–	that	is	you	may	bind	a	set	of	non-recurring	fields	(using
JSMX_BINDFLD),	a	list	(using	JSMX_BINDLST)	or	both.
Whether	you	need	to	use	one,	both	or	neither	will	depend	on	the	function	and
requirements	of	the	service	and	service	command	you	are	using.
Parameters
No. Symbolic	Name Description

1 JSMHDL Input,	character	4.
The	JSMX_OPEN	call	returns	the	connection
handle	it	assigns	to	this	connection.		This	handle
is	used	on	subsequent	JSMX_COMMAND	and
other	API	calls	to	identify	the	connection	to	which
the	call	applies.

2 JSMMETA Input,	structure.
Specifies	a	block	of	memory	that	contains	zero	or
more	field	meta-data	definitions	corresponding	to
the	structure	of	the	fields	in	each	entry	of	the	list
provided	in	JSMLIST.
Each	meta-data	entry	must	be	formatted	as

follows:
Positions				Description
1	–	50							Symbolic	field	name	(50)
This	name	does	not	have	to	be	the	same	as	the	name	used	in	the
RPG	program.		However,	for	some	LANSA	Integrator	services	the
symbolic	name	must	match	that	expected	by	the	service	–	this	is
particularly	so	for	those	services	such	as	the	XML	and	SOAP
services	that	perform	mapping	between	external	data	and	program
fields.
51											Data	Type	(1)
Supported	types	are	A,	P	or	S.
52	–	58						Field	size	(7)
This	is	the	number	of	characters	or	digit	positions,	not	the	byte
size.
59	–	60						Field	decimal	places	(2).

3 JSMMETASIZE Input,	integer	10.
Specifies	the	size	of	the	memory	block	provided
in	the	JSMMETA	parameter	in	bytes.		This	must
be	a	multiple	of	60	(60	being	the	size	of	a	single
meta-data	entry).

4 JSMLIST Input/Output,	structure.
Specifies	a	block	of	memory	that	contains	the	list
described	by	the	JSMMETA	parameter.
Depending	upon	the	service	and	the	service
command,	the	list	entres	might	be	used	as	input	to
the	service,	output	from	the	service	or	both.	
When	used	as	output	from	the	service,	the	JSM
will	write	the	output	entries	to	the	memory
identified	by	this	parameter.
In	an	ILE	RPG	program,	the	list	is	usually
implemented	as	a	multiple	occurrence	data
structure.

5 JSMENTRYSIZE Input,	integer	10.
Specifies	the	size	of	each	list	entry.		This	should
normally	be	equal	to	the	sum	of	the	byte	sizes	of
the	fields	described	by	the	JSMMETA	parameter.

6 JSMENTRYCOUNT Input/Output,	integer	10.

On	entry,	this	specifies	the	number	of	entries
provided	by	the	client	application	in	the	list
identified	by	the	JSMLIST	parameter.		If	the
client	application	does	not	provide	list	entries	for
the	service	command,	then	the	application	should
specify	zero.
Upon	return,	if	the	service	command	normally
writes	entries	to	the	list	provided,	then	it	will
update	this	field	with	the	number	of	entries
written	(up	to	the	maximum	specified	by	the
JSMENTRYMAX	parameter).

7 JSMENTRYMAX Input,	integer	10.
Specifies	the	maximum	number	of	list	entries	that
can	be	held	in	the	list	specified	by	the	JSMLIST
parameter.

8 JSMSTS Output,	character	(variable,	recommended	20).
The	JSM	server	returns	the	status	of	the	operation
in	this	field.		The	client	application	can	test	this
field	to	determine	whether	the	operation
succeeded.		In	most	cases	a	status	of	'OK'
indicates	successful	completion.

9 JSMMSG Output,	character	(variable,	recommend	512).
The	JSM	server	may	return	a	message	concerning
the	operation	in	this	field	-	for	example	a
completion	message	or	an	error	message	when	the
operation	fails.	Some	service	commands	may
return	data	related	to	the	service	in	this	field.

	

	

3.4.5	JSMX_COMMAND
The	JSMX_COMMAND	API	is	used	to	load	and	unload	services	and	execute
commands	supported	by	the	service.
The	connection	handle	(JSMHDL)	parameter	identifies	which	connection	is	to
execute	the	command	–	the	connection	handle	must	be	first	obtained	by	a	call	to
JSMX_OPEN.
If	the	client	application	wishes	to	exchange	variables	or	lists	with	the	service,
then	it	must	call	the	JSMX_BINDFLD	and/or	JSMX_BINDLST	APIs	before
calling	JSMX_COMMAND.
Fields	and	lists	bound	using	the	JSMX_BINDFLD	and	JSMX_BINDLST	APIs
remain	bound	only	for	the	duration	of	one	JSMX_COMMAND	call.
Parameters
Number Symbolic

Name
Description

1 JSMHDL Input,	character	4.
The	JSMX_OPEN	call	returns	the	connection	handle	it
assigns	to	this	connection.		This	handle	is	used	on
subsequent	JSMX_COMMAND	and	other	API	calls	to
identify	the	connection	to	which	the	call	applies.

2 JSMCMD Input,	character	(variable,	recommend	512).
Specifies	the	service	command	that	is	to	be	executed	by
the	loaded	service	or	a	SERVICE_LOAD	or
SERVICE_UNLOAD	command	to	load	or	unload	a
service.

3 JSMSTS Output,	character	(variable,	recommended	20).
The	JSM	server	returns	the	status	of	the	operation	in
this	field.		The	client	application	can	test	this	field	to
determine	whether	the	operation	succeeded.		In	most
cases	a	status	of	'OK'	indicates	successful	completion.

4 JSMMSG Output,	character	(variable,	recommend	512).
The	JSM	server	may	return	a	message	concerning	the
operation	in	this	field	-	for	example	a	completion
message	or	an	error	message	when	the	operation	fails.

Some	service	commands	may	return	data	related	to	the
service	in	this	field.

	

A	service	is	loaded	before	commands	to	the	service	are	executed.	A	service	is
unloaded	once	you	are	finished	using	it.	Only	one	service	can	be	loaded	at	a
time.	Refer	to	3.7	Command.
The	JSMX_COMMAND	has	a	number	of:
RPGX	Reserved	Commands
RPGX	Reserved	Keywords
For	command	services	details,	refer	to	Java	Service	Manager	Services.
Technical	Note
For	a	service	to	receive	HTTP	posted	content,	the
SERVICE_CONTENT(*HTTP)	keyword	is	required	on	the	SERVICE_LOAD
command.
If	this	is	the	first	connection	to	use	the	SERVICE_CONTENT(*HTTP)
keyword,	then	the	posted	HTTP	content	is	read	and	sent	to	the	service.
This	connection	takes	responsibility	for	sending	the	HTTP	response.
If	this	is	NOT	the	first	connection	to	use	the	SERVICE_CONTENT(*HTTP)
keyword,	then	this	connection	only	takes	responsibility	for	sending	the	HTTP
response.	The	SERVICE_LOAD	command	does	NOT	receive	the	HTTP
content,	but	does	receive	the	HTTP	keywords.
When	the	connection	that	is	responsible	for	the	HTTP	response	uses	the
JSMX_CLOSE	to	close	the	connection,	the	returned	byte	array	response
becomes	the	HTTP	response.
Only	one	connection	can	have	responsibility	for	sending	the	HTTP	response	at	a
time.
HTTP	content	can	only	be	read	once.
HTTP	response	can	only	be	written	once.
HTTP	keywords	are	always	sent	with	the	SERVICE_LOAD	command.
Scenario	A
	
#1	JSMX_OPEN	-	open	connection
#2	JSMX_OPEN	-	open	connection

#3	JSMX_OPEN	-	open	connection
#1	JSMX_COMMAND("SERVICE_LOAD	SERVICE(xxx)
SERVICE_CONTENT(*HTTP)")	-	send	CGI	keywords,	read	STDIN,	claim
ownership
#2	JSMX_COMMAND("SERVICE_LOAD	SERVICE(xxx)")	-	send	CGI
keywords
#3	JSMX_COMMAND("SERVICE_LOAD	SERVICE(xxx)
SERVICE_CONTENT(*HTTP)")	-	send	CGI	keywords,	transfer	ownership
#1	JSMX_CLOSE	-	close	connection
#2	JSMX_CLOSE	-	close	connection
#3	JSMX_CLOSE	-	close	connection	and	write	STDOUT
	

Scenario	B
	
#1	JSMX_OPEN	-	open	connection
#1	JSMX_COMMAND("SERVICE_LOAD	SERVICE(xxx)
SERVICE_CONTENT(*HTTP)")	-	send	CGI	keywords,	read	STDIN,	claim
ownership
#1	JSMX_CLOSE	-	close	connection	and	write	STDOUT
#2	JSMX_OPEN	-	open	connection
#2	JSMX_COMMAND("SERVICE_LOAD	SERVICE(xxx)")	-	send	CGI
keywords
#2	JSMX_CLOSE	-	close	connection
#3	JSMX_OPEN	-	open	connection
#3	JSMX_COMMAND("SERVICE_LOAD	SERVICE(xxx)
SERVICE_CONTENT(*HTTP)")	-	send	CGI	keywords,	transfer	ownership
#3	JSMX_CLOSE	-	close	connection
	

	

RPGX	Reserved	Commands
Any	command	or	keyword	that	starts	with	SERVICE_	is	reserved.
For	example,	these	commands	are	reserved:
	
SERVICE_LOAD SERVICE(servicename)	TRACE(option)	TRACE_NAME(name)
SERVICE_SET TRACE(*CLEAR)
SERVICE_GET PROPERTY(property)
SERVICE_RECLAIM 	
SERVICE_UNLOAD 	

The	SERVICE_LOAD	command	instructs	the	JSM	service	thread	to	load	and
instantiate	the	specified	service	program.	Only	one	service	class	is	loaded	at	a
time.	The	SERVICE_LOAD	command	is	a	good	place	for	the	Java	service
programmer	to	write	the	code	to	load	default	values	being	used	with	the	current
service.
The	SERVICE_SET	command	allows	the	enabling	of	trace	file	clearing.
The	SERVICE_GET	command	allows	access	to	the	keyword/value	properties
from	the	associated	service	properties	file.	To	reduce	the	conflict	between	user-
defined	keyword	names	and	current	and	future	LANSA	names	prefix	the
keyword	with	a	global	unique	name.	The	service	property	keyword	is	case
insensitive.
The	service	property	keyword	value	is	returned	in	the	#JSMMSG	field.
If	the	keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
The	special	PROPERTY	values	*SERVICE	and	*SERVICECLASS	return	the
loaded	service	class	name.
Example
	
com.acme.property.messagetype=html
#
message.001=Service	successfully	loaded
message.002=Service	successfully	unloaded
message.003=Command	is	not	supported	:
	

The	SERVICE_RECLAIM	command	allows	an	explicit	garbage	collection	to	be
done.

You	could	use	this	command	in	conjugation	with	the	JVM	-Xcompactexplicitgc
otion.
The	SERVICE_UNLOAD	command	instructs	the	JSM	service	thread	to
invalidate	the	currently	loaded	service	program	and	expect	to	load	another
service.	This	command	is	optional	and	does	not	need	to	be	called	if	the	JSM
connection	is	going	to	be	closed.	(The	SERVICE_UNLOAD	command	is	a
good	place	for	the	Java	service	programmer	to	put	code	to	release	currently
allocated	resources.)

RPGX	Reserved	Keywords
The	following	keywords	are	reserved:
SERVICE_CONTENT
TRIM
TRUNCATE
The	SERVICE_CONTENT	keyword	is	used	on	the	SERVICE_LOAD
command	to	trigger	the	exchange	of	content	from	the	RPG	program	to	the
service	being	loaded.	The	only	value	supported	by	this	keyword	is	*HTTP.
The	service	program	performs	a	scan	on	the	SERVICE_LOAD	command	string
and	searches	for	the	following	pattern:

SERVICE_CONTENT(*HTTP)
The	keyword	and	its	value	must	be	identical	to	the	example	above,	entirely	in
uppercase	and	without	imbedded	spaces.

3.4.6	JSMX_CLOSE
The	JSMX_CLOSE	API	closes	an	open	connection	from	the	client	application
to	the	Java	Service	Manager.
The	connection	handle	(JSMHDL)	parameter	identifies	which	connection	is	to
be	closed.
Parameters
Number Symbolic

Name
Description

1 JSMHDL Input,	character	4.
The	JSMX_OPEN	call	returns	the	connection	handle	it
assigns	to	this	connection.		This	handle	is	used	on
subsequent	JSMX_COMMAND	and	other	API	calls	to
identify	the	connection	to	which	the	call	applies.

2 JSMSTS Output,	character	(variable,	recommended	20).
The	JSM	server	returns	the	status	of	the	operation	in	this
field.		The	client	application	can	test	this	field	to
determine	whether	the	operation	succeeded.		In	most
cases	a	status	of	'OK'	indicates	successful	completion.

3 JSMMSG Output,	character	(variable,	recommended	512).
The	JSM	server	may	return	a	message	concerning	the
operation	in	this	field	-	for	example	a	completion
message	or	an	error	message	when	the	operation	fails.

	

3.4.7	JSMX_END
The	JSMX_END	API	is	the	last	API	call	in	a	logical	unit	of	processing.
This	initializes/finalizes	the	internal	state	of	the	service	program	by	closing	any
open	connections	and	freeing	any	allocated	resources.	The	internal	state	of	the
service	program	is	scoped	to	the	job.
You	should	not	call	this	API	while	any	JSM	connections	remain	open	if	you
wish	to	continue	to	use	the	open	connection(s).
Parameters
No	parameters.

	

3.4.8	Sample	ILE	RPGX	Client	Programs
The	following	RPG	program	example	shows	how	use	the	HTTPService	and	the
InboundFIle	handler	to	return	a	PDF	document	to	a	HTTP	client	program.
The	program	example	also	includes	a	binding	fields	and	binding	list	example,
which	is	not	needed	for	its	task	of	sending	a	HTTP	response.	Also	the
SERVICE_UNLOAD	command	is	commented	out	so	that	the	HTTP	response
return	by	the	SEND	command	is	returned	to	the	HTTP	client	on	the
JSMX_CLOSE	API	call.
For	further	examples	of	ILE	RPGX	client	applications,	refer	to	Client
Application	Examples.
Example
	
CRTRPGMOD		MODULE(JSMBLD/DEMORPGSRV)	SRCFILE(*LIBL/QCSRC)
	
CRTPGM					PGM(JSMBLD/DEMORPGSRV)	MODULE(*LIBL/DEMORPGSRV)	+
											BNDSRVPGM(*LIBL/JSMRPGSRV)	ACTGRP(*CALLER)
	
					D	FieldDef1							S													60				DIM(6)	CTDATA
					D	FieldDef2							S													60				DIM(3)	CTDATA
					D	ListDef1								S													60				DIM(3)	CTDATA
					D	ListDefSize					S													10I	0	INZ(0)
					D	ListEntSize					S													10I	0	INZ(0)
					D	ListCount							S													10I	0	INZ(0)
					D	ListMaxCount				S													10I	0	INZ(0)
					D	FieldDefSize				S													10I	0	INZ(0)
					D	FieldEntSize				S													10I	0	INZ(0)
						*
					D	JSMHDL										S														4				INZ(*BLANKS)
					D	JSMSRV										S												100				INZ(*BLANKS)
					D	JSMSTS										S													40				INZ(*BLANKS)
					D	JSMMSG										S											4096				INZ(*BLANKS)
					D	JSMCMD										S											2048				INZ(*BLANKS)
					D	ZEROLENGTH						S													10I	0	INZ(0)
						*
					D	FLD1												DS
					D		EMPLOYEE																					50A			INZ('John	Smith')

					D		SURNAME																						30A			INZ('Smith')
					D		SALARY																								7P	2	INZ(30000.50)
					D		AGE																											3S	0	INZ(25)
					D		DATE																											D			DATFMT(*ISO)
					D		DATETIME																							Z
						*
					D	LST1												DS																		OCCURS(10)
					D		EMPNME																							50				INZ('Acme	Corp')
					D		SURNME																							35				INZ('Jones')
					D		GIVENME																						20				INZ('Bill')
						*
						*	Initialize
						*
					C																			CALLB(D)		'JSMX_BEGIN'
					C																			PARM																				*OMIT
					C																			PARM																				ZEROLENGTH
						*
						*	Open	connection
						*
					C																			CLEAR																			JSMSRV
					C																			EVAL						JSMSRV	=	'LOCALHOST:4560'
					C																			CALLB(D)		'JSMX_OPEN'
					C																			PARM																				JSMHDL
					C																			PARM																				JSMSRV
					C																			PARM																				JSMSTS
					C																			PARM																				JSMMSG
						*
						*	Bind	Fields
						*
					C																			EVAL						DATE	=	%DATE()
					C																			EVAL						DATETIME	=	%TIMESTAMP()
						*
					C																			EVAL						FieldDefSize		=	%SIZE(FieldDef1:*ALL)
					C																			EVAL						FieldEntSize		=	%SIZE(FLD1)
					C																			CALLB(D)		'JSMX_BINDFLD'
					C																			PARM																				JSMHDL
					C																			PARM																				FieldDef1
					C																			PARM																				FieldDefSize
					C																			PARM																				FLD1

					C																			PARM																				FieldEntSize
					C																			PARM																				JSMSTS
					C																			PARM																				JSMMSG
						*
						*	Bind	List	-	set	list	count
						*
					C																			EVAL						ListDefSize		=	%SIZE(ListDef1:*ALL)
					C																			EVAL						ListEntSize		=	%SIZE(LST1)
					C																			EVAL						ListCount				=	1
					C																			EVAL						ListMaxCount	=	%ELEM(LST1)
					C																			CALLB(D)		'JSMX_BINDLST'
					C																			PARM																				JSMHDL
					C																			PARM																				ListDef1
					C																			PARM																				ListDefSize
					C																			PARM																				LST1
					C																			PARM																				ListEntSize
					C																			PARM																				ListCount
					C																			PARM																				ListMaxCount
					C																			PARM																				JSMSTS
					C																			PARM																				JSMMSG
						*
						*	Send	command
						*
					C																			CLEAR																			JSMCMD
					C																			EVAL						JSMCMD	=	'SERVICE_LOAD'	+
					C																																						'	SERVICE(HTTPSERVICE)'	+
					C																																						'	SERVICE_CONTENT(*HTTP)'	+
					C																																						'	TRACE(*YES)'
					C																			CALLB(D)		'JSMX_COMMAND'
					C																			PARM																				JSMHDL
					C																			PARM																				JSMCMD
					C																			PARM																				JSMSTS
					C																			PARM																				JSMMSG
						*
						*	Bind	List	-	use	current	value	of	list	count
						*
					C																			EVAL						ListDefSize		=	%SIZE(ListDef1:*ALL)
					C																			EVAL						ListEntSize		=	%SIZE(LST1)
					C																			EVAL						ListMaxCount	=	%ELEM(LST1)

					C																			CALLB(D)		'JSMX_BINDLST'
					C																			PARM																				JSMHDL
					C																			PARM																				ListDef1
					C																			PARM																				ListDefSize
					C																			PARM																				LST1
					C																			PARM																				ListEntSize
					C																			PARM																				ListCount
					C																			PARM																				ListMaxCount
					C																			PARM																				JSMSTS
					C																			PARM																				JSMMSG
						*
						*	Send	command
						*
					C																			CLEAR																			JSMCMD
					C																			EVAL						JSMCMD	=	'SEND'	+
					C																																						'	HANDLER(InboundFile)'	+
					C																													'	FILE(test-input/ValidatingXML.pdf)'	+
					C																																						'	CONTENT(*PDF)'	+
					C																																						'	UACACHE(5)'
					C
					C																			CALLB(D)		'JSMX_COMMAND'
					C																			PARM																				JSMHDL
					C																			PARM																				JSMCMD
					C																			PARM																				JSMSTS
					C																			PARM																				JSMMSG
						*
						*	Send	command
						*
						*																		CLEAR																			JSMCMD
						*																		EVAL						JSMCMD	=	'SERVICE_UNLOAD'
						*																		CALLB(D)		'JSMX_COMMAND'
						*																		PARM																				JSMHDL
						*																		PARM																				JSMCMD
						*																		PARM																				JSMSTS
						*																		PARM																				JSMMSG
						*
						*	Close	service
						*
					C																			CALLB(D)		'JSMX_CLOSE'

					C																			PARM																				JSMHDL
					C																			PARM																				JSMSTS
					C																			PARM																				JSMMSG
						*
						*	Finalize
						*
					C																			CALLB(D)		'JSMX_END'
						*
					C																			SETON																																								LR
	
**CTDATA	FieldDef1
EMPLOYEE																																										A000005000
SURNAME																																											A000003000
SALARY																																												P000000702
AGE																																															S000000300
DATE																																														A000001000
DATETIME																																										A000002600
**CTDATA	FieldDef2
EMPLOYEE																																										A000005000
SURNAME																																											A000003500
GIVENAME																																										A000002000
**CTDATA	ListDef1
EMPLOYEE																																										A000005000
SURNAME																																											A000003500
GIVENAME																																										A000002000
	

3.5	C	Client	Error	Messages
On	Windows	and	Linux,	client-side	error	responses	are	returned	to	3GL
programs	in	the	form	"JSMMSG	nnn",	where	nnn	is	one	of	the	numbers
listed	below.

JSMMSG Description

847 Cannot	get	job	attributes.

848 Cannot	create	socket.

849 Cannot	find	server.

850 Cannot	connect	to	server.

851 Service	closed.

852 Service	not	opened.

853 Cannot	send	command,	connection	closed.

854 Cannot	send	command,	connection	closed.

855 Cannot	send	byte	array,	connection	closed.

856 Cannot	read	protocol	properties.

857 Cannot	send	keyword	list,	connection	closed.

858 Bytearray	size	exceeds	stdout	storage	limit.

859 Cannot	send	working	list,	connection	closed.

860 Cannot	send	client	information,	connection	closed.

861 Cannot	send	field	list,	connection	closed.

862 Cannot	send	field	data,	connection	closed.

863 Cannot	allocate	storage	for	field	array.

864 Cannot	allocate	storage	for	field	data.

865 Received	status	value	is	too	long.

866 Received	message	value	is	too	long.

867 Cannot	read	status	value.

868 Cannot	read	message	value.

869 Cannot	allocate	storage	for	byte	array.

870 Cannot	read	byte	array.

871 Cannot	allocate	storage	for	working	list.

872 Cannot	read	working	list.

873 Cannot	allocate	storage	for	field	list.

874 Cannot	read	field	list.

875 Cannot	allocate	storage	for	running	checks.

876 Inbound	field	list	check	failure.

877 Cannot	update	working	list.

878 Cannot	update	field	data.

879 Cannot	create	conversion	descriptions.

880 Cannot	read	stdin.

	

	

3.6	Tracing
JSM	tracing	is	very	comprehensive.	When	you	first	start	to	develop	your
applications	using	JSM,	it	will	be	very	helpful	if	you	know	how	to	use	the
tracing	facilities.
All	tracing	output	is	stored	in	the	trace	sub-directory	below	the	JSM	instance
directory.
Standard	output	and	Standard	error:

IBM	i If	the	shipped	STRJSM	program	is	used,	then	the	standard	output
and	standard	error	will	be	printed	to	the	JSM	output	queue	located
in	the	JSM	library.
	

Windows
and
Linux

If	the	shipped	STRJSM	program	is	used,	then	the	standard	output
and	standard	error	will	be	saved	to	the	JSM	instance	as
STDOUT.TXT	and	STDERR.TXT.

A	sub-directory	named	after	the	platform's	job/process	number	is	created	to
receive	the	trace	file	for	the	current	JSM	instance	when	tracing	is	requested.
The	CLRJSM	TRACEDIR(*YES)	command	allows	the	trace	files	and
subdirectories	to	be	removed.	This	command	should	be	run	when	the	instance	is
not	running.
3.6.1	Manager	Tracing
3.6.2	Client	Command	Tracing
3.6.3	Service	Program	Tracing
3.6.4	Service	Program	Tracing	from	the	Client
3.6.5	How	Do	I	Start	Tracing?
3.6.6	Where	Do	I	Find	Trace	Files?
3.6.7	How	Do	I	Clear	Trace	Files?

3.6.1	Manager	Tracing
Manager	tracing	allows	the	JSM	to	output	information	about	the	instance	that	is
being	started.	This	information	reports	the	instance	configuration	parameters	in
use,	but	its	main	use	is	to	report	the	properties	of	the	JVM	being	used.
When	manager	tracing	is	enabled,	STDOUT	and	STDERR	are	directed	to	the
trace	files	STDOUT.TXT	and	STDERR.TXT	instead	of	a	spool	file	in	JSM
output	queue.	Java	Virtual	Machine	and	instance	information	is	logged	to	a
MANAGER.TXT	file.
To	turn	on	Manager	tracing,	uncomment	the	trace.manager	keyword	in	the
manager.properties	file.
	
					trace.manager=*yes
	

To	turn	off	Manager	tracing,	you	can	either	comment	the	trace.manager
keyword	or	change	the	value	from	*yes	to	*no.
Reminder:	In	order	for	changes	to	the	manager.properties	file	to	take	effect,
you	must	stop	and	start	the	JSM.	The	manager	properties	are	loaded	when	the
JSM	starts.
Example	trace	directory	listing
	
Directory:	/jsm/instance/trace/123456
	
					MANAGER.TXT												STMF
					STDOUT.TXT													STMF
					STDERR.TXT													STMF
					2005-06-22													DIR
	
Directory:	/jsm/instance/trace/123456/2005-06-22
	
					CLIENT00000001									DIR
					CLIENT00000002									DIR
					CLIENT00000003_NAME				DIR
	

3.6.2	Client	Command	Tracing
To	trace	the	commands	being	sent	from	the	client	program	to	the	JSM	instance,
you	need	to	uncomment	the	trace.transport.address,	trace.transport.error.address,
trace.service.address	or	trace.service.error.address	keyword	in	the
manager.properties	file.
The	property	trace.transport.address	will	turn	on	transport	tracing	for	all
services.
The	property	trace.transport.error.address	will	turn	on	transport	tracing	for	all
services	and	if	no	errors	occur	then	the	trace	files	will	be	deleted.
The	property	trace.service.address	will	turn	on	transport	and	service	tracing	for
all	services.
The	property	trace.service.error.address	will	turn	on	transport	and	service
tracing	for	all	services	and	if	no	errors	occur	then	the	trace	files	will	be	deleted.
The	format	of	this	keyword	is:
	
					trace.transport.address=<value>,<value>
					trace.transport.error.address=<value>,<value>
					trace.service.address=<value>,<value>
					trace.service.error.address=<value>,<value>
	

where	<value>	is	the	client	IP	address	that	needs	to	be	traced,	as	in	this
example:
	
					trace.transport.address=137.76.2.202
					trace.transport.error.address=137.76.2.202
					trace.service.address=137.76.2.202
					trace.service.error.address=137.76.2.202
	

or	*ALL,	to	trace	all	clients,	as	in	this	example:
	
					trace.transport.address=*all
					trace.transport.error.address=*all
					trace.service.address=*all
					trace.service.error.address=*all
	

When	a	client	program	connects	to	the	JSM	instance	and	transport	or	service
tracing	is	enabled,	trace	files	are	created	in	the	JSM	instance
trace/jobnumber/date/CLIENTnnnnnnnn	sub-directory.
The	client	directory	sequence	number	is	a	unique	incremental	number	assigned
to	each	client	thread.
The	client	communication	trace	records	are	written	to	a	TRANSPORT.TXT	file
and	the	service	trace	records	are	written	to	a	SERVICE.TXT	file	in	this	client
trace	directory.
Reminder:	In	order	for	changes	to	the	manager.properties	file	to	take	effect,
you	must	stop	and	start	the	JSM.	The	manager	properties	are	loaded	when	the
JSM	starts.
Example	trace	directory	listing
	
Directory:	/jsm/instance/trace/123456
	
					MANAGER.TXT												STMF
					STDOUT.TXT													STMF
					STDERR.TXT													STMF
					2005-06-22													DIR
	
Directory:	/jsm/instance/trace/123456/2005-06-22
	
					CLIENT00000001									DIR
					CLIENT00000002									DIR
					CLIENT00000003_NAME				DIR
	

Example	file	listing	of	a	client	trace	sub-directory
	
Directory:	/jsm/instance/trace/123456/2005-06-22/CLIENT00000001
	
					SERVICE.TXT												STMF
					TRANSPORT.TXT										STMF
	

3.6.3	Service	Program	Tracing
Client	command	tracing	does	not	need	to	be	enabled	for	service	program	tracing
to	work.
To	allow	tracing	into	the	service	program	being	called	by	a	client	program,	add
an	entry	to	the	service.properties	file.
The	structure	of	this	entry	is:
	
					trace.<service>=<value>
	

where	<service>	is	the	service	name	and	<value>	is	the	client	IP	address	that
needs	to	be	traced,	as	in	this	example:
	
					trace.FTPService=137.76.2.202
	

or	*ALL,	to	trace	all	clients	using	the	service,	as	in	this	example:
	
					trace.FTPService=*all
	

When	service	tracing	is	enabled,	a	JSMTrace	object	is	available	from	the
JSMContainer	object.
Normally	this	JSMTrace	object	is	null.	If	the	trace	object	is	not	null	then	text
messages	can	be	written	to	the	associated	SERVICE.TXT	trace	file.
Reminder:	In	order	for	changes	to	the	service.properties	file	to	take	effect,	you
must	stop	and	start	the	JSM	or	use	the	Java	Service	Manager	Console	or	the
Integrator	Studio	to	refresh	the	loaded	services.
	

3.6.4	Service	Program	Tracing	from	the	Client
To	enable	tracing	from	the	client	program	use	the	TRACE	keyword	on	the
SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:

*NO
*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the	service	does	not	return
an	ERROR,	FATAL	or	SOAPFAULT	status	to	the	client,	the	trace	files	are
deleted	on	the	JSM	CLOSE	call.
The	optional	TRACE_NAME	keyword	allows	the	client	to	append	a	user-
defined	name	to	the	end	of	the	client	trace	sub-directory.
Special	keyword	values	are	also	available	for	the	TRACE_NAME	keyword.

*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

During	the	service	loading,	tracing	can	be	enabled	by	using	this	command:
	
SERVICE_LOAD	SERVICE(servicename)	TRACE(option)	TRACE_NAME(name)
	

3.6.5	How	Do	I	Start	Tracing?
Tracing	is	controlled	by	the	entries	in	the	manager.properties	and
services.properties	files	which	are	used	by	the	Java	Service	Manager.	You	must
edit	these	files	to	turn	tracing	on	and	off.	Remember,	the	JSM	must	be	restarted
before	the	changes	to	these	files	will	take	effect.
Refer	to	the	type	of	tracing	you	wish	to	carry	out:
3.6.1	Manager	Tracing
3.6.2	Client	Command	Tracing
3.6.3	Service	Program	Tracing
3.6.4	Service	Program	Tracing	from	the	Client.

3.6.6	Where	Do	I	Find	Trace	Files?
All	tracing	output	is	stored	in	the	trace	sub-directory	below	the	JSM	instance
directory.
To	view	the	trace	file,	use	the	Work	with	Java	Service	Manager	(WRKJSM)
option	on	the	JSM	Menu	described	in	Java	Service	Manager	Administration	for
IBM	i.
A	new	trace	directory	is	created	each	time	the	JSM	is	started,	provided	the
relevant	service	property	is	enabled.
For	example,	if	the	JSM	job	number	is	123456,	then	the	directory	would	appear
as	follows:
	
/jsm/instance/trace/123456
	

Example	trace	directory	listing
	
Directory:	/jsm/instance/trace/123456
	
					MANAGER.TXT												STMF
					STDOUT.TXT													STMF
					STDERR.TXT													STMF
					2005-06-22													DIR
	
Directory:	/jsm/instance/trace/123456/2005-06-22
	
					CLIENT00000001									DIR
					CLIENT00000002									DIR
					CLIENT00000003_NAME				DIR
	

Example	file	listing	of	a	client	trace	sub-directory
	
Directory:	/jsm/instance/trace/123456/2005-06-22/CLIENT00000001
	
					SERVICE.TXT												STMF
					TRANSPORT.TXT										STMF
	

If	you	have	changed	the	tracing	properties	in	the	manager	properties	files,	then
you	must	stop	and	restart	the	JSM	in	order	for	the	changes	to	take	effect.	When
you	restart	the	JSM,	it	will	start	with	a	new	job	number	and	a	new	directory	will
appear	in	your	trace	sub-directory.
If	manager	tracing	is	turned	on,	MANAGER.TXT,	STDOUT.TXT	and
STDERR.TXT	files	are	created	in	the	trace	job	number	sub-directory	when	the
JSM	instance	starts.
If	client	tracing	is	enabled,	a	CLIENTnnnnnnnn	directory	is	created	where
nnnnnnnn	is	a	sequential	number.	This	directory	contains	the	transport	and
command	information	that	is	sent	by	the	JSM	client	program.	An	optional	trace
name	can	be	appended	to	the	end	of	this	directory	name	using	the
TRACE_NAME	keyword	on	the	SERVICE_LOAD	command.
It	is	recommended	that	you	clear	trace	files	regularly.	Refer	to	Clear	Java
Service	Manager	(CLRJSM).

3.6.7	How	Do	I	Clear	Trace	Files?
Tracing	can	generate	a	large	number	of	files	which	may	need	to	be	cleared	once
you	have	finished	your	review	of	the	tracing	files.

On	IBM	i	you	may	use	the	CLRJSM	TRACEDIR(*YES)	command	to	delete
the	trace	files	and	subdirectories.
Refer	to	Clear	Java	Service	Manager	(CLRJSM).
On	Windows	select	Clear	Trace	from	the	Start	Programs	menu.
Do	not	run	this	command	when	JSM	tracing	is	active	as	current	trace	data
will	be	lost.
Refer	to	Clear	Trace	in	Java	Service	Manager	Administration	for	Windows.
On	Linux	the	trace	files	are	cleared	using	the	"-c"	option	when	starting	the
JSM	instance:	"strjsm	–c".
Refer	to	Clear	Trace	Directory	in	Java	Service	Manager	Administration	for
Linux.
Integrator	Studio	can	also	clear	the	trace	files.

It	is	recommended	that	you	clear	your	trace	files	regularly.

3.7	Command
The	primary	means	of	communicating	with	a	JSM	service	is	by	sending	a
command	string.
The	command	string	consists	of	a	command	name	and	zero	or	more	keywords.
	
COMMAND	KEYWORD1(VALUE)	KEYWORD2(VALUE)
	

The	command	string	is	parsed	by	the	JSM	service.
Command	name	is	converted	to	uppercase
Keywords	are	converted	to	uppercase
Keyword	values	keep	the	same	case
Keyword	values	have	leading	and	trailing	blanks	removed
Keywords	with	a	blank	value	are	ignored

	
Special	handling	of	keyword	values	is	possible	by	using	double	quotes.
If	a	value	requires	leading	and	or	trailing	blanks	to	be	preserved	then	double
quote	the	value.
Any	value	that	starts	and	ends	with	double	quotes	will	have	the	double	quotes
removed.
Double	quote	the	keyword	value	to	protect	open	and	close	brackets	within	the
keyword	value.
If	the	value	also	contains	double	quotes	and	the	entire	string	is	double	quoted
then	escape	the	double	quote	with	a	backslash.
	

Keyword	Value Parsed	Value 	

KEYWORD	() null keyword	is	ignored

KEYWORD	("") 	 empty

KEYWORD	("				") 	 spaces

KEYWORD	(abc) abc 	

KEYWORD	("abc") abc 	

KEYWORD	("		abc") 		abc 	

KEYWORD	(ab"c) ab"c 	

KEYWORD	("ab\"c") ab"c 	

KEYWORD	("a(b)c") a(b)c 	

KEYWORD	("a(\"b\")c") a("b")c 	

	

	
When	a	command	string	is	printed	out	in	the	SERVICE.TXT	or
TRANSPORT.TXT	trace	files,	the	keyword	password	values	are	hidden	by	five
stars	(*****).
Any	command	keyword	named	PASSWORD	or	ending	with	the	string
PASSWORD	will	have	the	keyword	value	hidden.
Any	command	keyword	named	MASTER	will	have	the	keyword	value	hidden.
The	following	command	keywords	will	have	their	password	component	hidden.

SIGNER	(name:password)
KEYSTORE	(name:password)
RECEIVER	(name:password)
RECIPIENT	(name:password)

	
To	view	passwords	in	the	trace	files,	add	the	trace.passwords=*yes	property	to
the	manager.properties	file.
To	view	field	information	sent	with	the	command,	add	the	trace.fields=*yes
property	to	the	manager.properties	file.
	
Each	JSM	client	has	different	command	capabilities.

RDML	command 3.1.2	JSM_COMMAND

RDMLX	command 3.2.3	JSMX_COMMAND

ILE	RPGX	command 3.4.5	JSMX_COMMAND

	

If	a	JSMDirect	function	needs	to	access	multiple	services	within	the	same
program,	then	it	is	recommended	to	use	multiple	JSM	connections.
It	is	possible	for	a	single	JSM	connection	to	use	multiple	services	sequentially
by	unloading	and	loading	another	service.
	

JSM
OPEN

	 	

	 SERVICE_LOAD
SERVICE(servicename1)

Load	specified	service
program

	 User-defined	commands 	

	 SERVICE_UNLOAD Unload	service

	 	 	

	 SERVICE_LOAD
SERVICE(servicename2)

Load	specified	service
program

	 User-defined	commands 	

	 SERVICE_UNLOAD Unload	service	(optional)

JSM
CLOSE

	 	

	
The	JSMStorage	object	is	persistent	between	JSM	OPEN	and	JSM	CLOSE,	so
servicename1	can	put	an	object	into	the	JSMStorage	object	and	servicename2
can	get	this	saved	object.	Alternatively,	you	may	write	information	to	a	file	that
can	be	shared	between	services.
	

3.8	Data	Areas
On	IBM	i	the	Java	Service	Manager	uses	two	data	areas,	JSMCLTDTA	and
JSMMGRDTA.
On	Windows	and	Linux,	these	data	areas	are	implemented	as	flat	files,
jsmcltdta.txt	and	jsmmgrdta.txt.	Their	structure	is	based	on	lines	with	keyword-
value	pairs.	Lines	starting	with	a	#	are	comments	and	will	not	be	processed.
1.					JSMCLTDTA
If	the	JSMCLTDTA	data	area	is	not	in	the	library	list,	then	the	default	server	and
exclude	prefix	are	set	to	LOCALHOST:4560	and	JSM.
The	data	area	layout	is:

1-50 Default	host	name	and	port.
For	example:	LOCALHOST:4560

51-60 LANSA	field	name	exclude	prefix.
For	example:	JSM

	

If	the	jsmcltdta.txt	file	is	not	found,	then	the	default	server	and	exclude	prefix
are	set	to	LOCALHOST:4560	and	JSM.
The	jsmcltdta.txt	file	is	located	and	installed	in	<sysdir>.
The	file	keywords	are:

DefaultServer Default	host	name	and	port.
For	example:	DefaultServer=LOCALHOST:4560

ExcludePrefix LANSA	field	name	exclude	prefix.
For	example:	ExcludePrefix=JSM

	

2.					JSMMGRDTA
The	JSMMGRDTA	data	area	is	updated	with	the	JSM	instance	directory	during
the	install	process.
The	data	area	layout	is:

1-50 Default	instance	path.
For	example:	/LANSA_xxxPGMLIB/jsm/instance

	

The	jsmmgrdta.txt	file	is	shipped	with	reasonable	default	values.
The	file	keywords	are:

Priority Process	priority.
For	example:	Priority=NORMAL

Instance Instance	path.
For	example:	Instance=..\JSMInstance

JVM Path	to	Java	program.
For	example:	JVM=java

JVMOptions Java	program	options.
For	example:	-Xms128M	-Xmx128M	-Xrs	-
Djava.endorsed.dirs=.\endorsed

	

	

3.9	Resource	properties	-	Studio	sections
The	Studio	client	application	allows	sections	of	resource	property	files	to	be
edited.
When	Studio	creates	a	new	project	a	unique	project	id	is	generated	using	the
current	date	time.
When	the	Studio	application	publishes	the	project	entries	to	the	instance	server,
the	resource	properties	file	replaces	the	current	studio-project	section	(Identified
by	the	id	attribute)	and	inserts	the	new	data.	If	a	studio-project	section	is	not
found	a	new	section	is	appended	to	the	end	of	the	file.
A	studio-project	section	with	id="20000000-000000"	is	reserved	by	LANSA.
A	studio-project	section	can	be	created	manually	using	a	text	editor.	The
following	example	illustrates	a	manual	entry	with	an	id="20030101-000000"	to
hold	some	override	property	entries.
All	property	file	entries	must	exist	within	a	studio-project	section,	during	an
upgrade	process	any	entries	found	outside	a	section	will	be	placed	in	the	studio-
project	id="00000000-000000"	name="unassigned"	section.	They	should	be
assigned	to	another	section	or	deleted.
The	following	example	illustrates	how	the	shipped	manager.properties	file	has
had	an	extra	section	added	to	the	bottom.	The	final	tcp.port=4562	will	be	used,
also	manager	and	client	tracing	have	been	enabled.	When	LANSA	Integrator	is
upgraded	the	upgrade	process	will	replace	the	studio-project	id="20000000-
000000"	with	a	new	section	but	other	sections	in	the	properties	file	will	remain.
The	section	replacement	will	occur	at	the	current	location	of	the	old	section,	so
section	order	is	maintained.
It	is	best	practice	not	to	modify	entries	in	the	LANSA	studio	section	but	add
your	own	section	to	the	bottom	of	the	file.	These	entries	will	remain	untouched
during	an	upgrade.
	
#!<studio-project	id="20000000-000000"	name="lansa">
#
#	Java	Service	Manager	configuration
#
tcp.port=4560
tcp.backlog=20
tcp.interface=*all
#

#	console.tcp.port=4561
#	console.tcp.backlog=5	
#	console.tcp.interface=*all
#
#	trace.manager=*yes
#	trace.transport.address=*all
#	trace.transport.error.address=*all
#	trace.service.address=*all
#	trace.service.error.address=*all
#
#!</studio-project>
#
#!<studio-project	id="20030101-000000"	name="user-override">
#
tcp.port=4562
tcp.backlog=20
tcp.interface=*all
#
console.tcp.port=4563
console.tcp.backlog=5
console.tcp.interface=*all
#
trace.manager=*yes
trace.service.address=*all
#
#!</studio-project>
	

	
	

3.10	Resource	properties	-	Internationalization
If	you	are	executing	the	JSM	in	a	distributed	or	tiered	architecture,	the	remote
servers	may	exist	in	different	countries.	These	servers	may	have	specific
regional	or	language	requirements.
The	Java	Service	Manager	resource	files	are	internationalized.
The	resource	files	have	a	load	hierarchy.
	
basefile.properties
basefile_language.properties
basefile_language_country.properties
	

Each	property	entry	read	will	replace	a	previous	property	entry.	This
replacement	can	occur	due	to	a	duplicate	key	entry	further	down	in	the	same	file
or	duplicate	entry	in	the	later	locale	property	files.
The	locale	is	determined	from	the	client	program.	A	program	running	on	a	IBM
i	machine	will	supply	its	encoding	and	locale	information	to	the	JSM	server.
Example

CCSID 037

LANGUAGEID ENG
COUNTRYID AU
In	this	case,	the	JSM	server	will	create	a	thread	to	handle	the	connection.	This
thread	will	use	encoding	Cp037	and	locale	EN_AU.
A	single	JSM	server	can	handle	multiple	clients	with	different	encoding	and
locale	information.

4.	Java	Service	Manager	HTTP	Extensions
If	the	LANSA	function/RPG	program	is	being	executed	from	a	request	over	the
Internet	(i.e.	it	is	invoked	by	a	CGI	program	from	an	HTTP	server),	then	the
JSM	Client	is	a	LANSA	function/RPG	program	started	via	JSMDirect.
4.1	JSMDirect
4.2	JSMProxy
4.3	JSMAdmin
4.4	Location	of	the	LANSA	System	(IBM	i)
4.5	Location	of	the	LANSA	System	(Windows)
4.6	Location	of	the	LANSA	System	(Linux)
4.7	Exit	Programs	(IBM	i)
4.8	Deployment	(IBM	i)
4.9	Log	Files	(Windows)
4.10	Apache	Directives
4.11	Apache	URL	Rewriting
4.12	Apache	Reverse	Proxy
4.13	Apache	SSL	Support
4.14	Apache	Tracing	(IBM	i)
4.15	SSL	Support
4.16	SSL	Handshake
4.17	JSM	HTTP	Server
For	details	about	installing	the	JSM	Manager,	JSMDirect	and	JSMProxy,	refer
to	Install	Other	Features	in	the	Installing	LANSA	on	Windows	Guide.

its:lansa041.chm::/lansa/l4winsb4_0255.htm

4.1	JSMDirect
JSMDirect	is	an	HTTP	service	extension	to	JSM.
JSMDirect	allows	a	LANSA/RPG	program	to	participate	in	Web	services	and
JVM	transactions.
The	JSMDirect	program	accepts	POSTed	content	that	contains	the	Content-
Length	HTTP	protocol	property.	The	IBMi	JSMDirect	program	running	on	the
IBMi	Apache	server	can	also	accept	Chunked-Transfer	encoded	content.
Note:	Chunked-Transfer	encoding	is	not	supported	on	the	Windows	platform.
The	JSMDirect	query	string	can	be	in	the	original	keyword	format	or	the
industry	standard	name-value	pairs.	The	name	service	is	reserved.
To	display	the	JSMDirect	version	number	invoke	the	program	with	no
arguments.	An	HTML	About	page	will	be	returned.

http://mycompany/cgi-bin/jsmdirect
http://mycompany/cgi-bin/jsmdirect.exe

Using	JSMDirect,	a	LANSA	function	can	be	invoked	as	follows:
http://mycompany/cgi-bin/jsmdirect?appname
http://mycompany/cgi-bin/jsmdirect?service=appname
http://mycompany/cgi-bin/jsmdirect.exe?appname
http://mycompany/cgi-bin/jsmdirect.exe?service=appname

For	example,	to	run	the	ORDERENTRY	function:
http://mycompany/cgi-bin/jsmdirect?orderentry
http://mycompany/cgi-bin/jsmdirect?service=orderentry
http://mycompany/cgi-bin/jsmdirect.exe?orderentry
http://mycompany/cgi-bin/jsmdirect.exe?service=orderentry

The	JSMDIRECT	program	locates	the	LANSA	function	to	be	executed	based
on	the	appname.
JSMDirect	requires	an	installed	HTTP	Server.
JSMDirect	does	not	require	or	use	any	of	the	LANSA	for	the	Web	software.
	

4.1.1	WSDL	Option
JSMDirect	has	the	ability	to	return	the	contents	of	the	file	specified	in	the
WSDL	file	location	column	of	DC@W29	or	dc_w29.txt	configuration	file.
By	including	an	additional	'+wsdl'	parameter	on	the	web	service	URL,
JSMDirect	will	return	the	contents	of	the	file	instead	of	executing	the	web
service.
Example
	
http://mycompany.com/cgi-bin/jsmdirect?mywebservice+wsdl
	

	
The	file	content	is	treated	as	binary	and	text	must	be	UTF-8	encoded.
The	IBM	i	Apache	HTTP	Server	must	be	configured	to	run	in	BINARY	mode.
By	returning	HTML	content	you	can	offer	more	selection	choices	to	the	end
user,	instead	of	just	WSDL	content.
JSMDirect	recognizes	the	following	file	extensions	and	uses	an	appropriate
content	type.	If	the	file	extension	is	not	supported	then	the	content	type	of
unknown/unknown	is	used.

htm text/html;	charset=utf-8

html text/html;	charset=utf-8

xhtml application/xhtml+xml;	charset=utf-8

wsdl application/xml;	charset=utf-8

	 unknown/unknown

	

	
WSDL	and	unknown	content	will	also	include	a	Content-Disposition	header
using	the	name	of	the	file,	this	allows	the	HTTP	browser	to	prompt	the	user	with
a	save	file	dialog.
Example
	

Content-Disposition:	attachment;	filename=xxxx
	

	
Example:	HTML
	
<html>
	
<head>
<title>MyWebService</title>
</head>
	
<body>
	
This	is	MyWebService	in	HTML	format
	
Use	the	following	link	to	download	the	PDF	documentation

	
Use	the	following	link	to	download	the	WSDL	file

	
</body>
</html>
	

	
Example:	XHTML
	
<!DOCTYPE	html	PUBLIC	"-
//W3C//DTD	XHTML	1.0	Transitional//EN"	"http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">
	
<html	xmlns="http://www.w3.org/1999/xhtml">
	
<head>
<title>MyWebService</title>
</head>
	
<body>
	
This	is	MyWebService	in	XHTML	format

	
Use	the	following	link	to	download	the	PDF	documentation

	
Use	the	following	link	to	download	the	WSDL	file

	
</body>
</html>
	

	

4.1.2	SERVICE_LOAD
The	JSM	client	is	aware	that	it	has	been	invoked	by	the	JSMDirect	program	and
will	modify	the	SERVICE_LOAD	command	being	sent	to	the	JSM	service
manager.
Normally,	the	SERVICE_LOAD	command	would	be:

SERVICE_LOAD SERVICE(servicename)

When	invoked	by	JSMDirect	the	modified	SERVICE_LOAD	command	is:

SERVICE_LOAD SERVICE(servicename)

	 REQUEST-METHOD(method)

	 CONTENT-TYPE(mime	type)

	 REMOTE-ADDRESS(address)

	 REMOTE-USER(user)

	 SERVER-NAME(name)

	 SERVER-PORT(port)

	 CGI-INPUT-MODE(mode)

	 CGI-OUTPUT-MODE(mode)

	 CGI-ASCII-CCSID(ccsid)

	 CGI-EBCDIC-CCSID(ccsid)

	 SERVER-SOFTWARE(software)

	 SERVER-PROTOCOL(version)

	 GATEWAY-INTERFACE(version)

	 USER-AGENT(useragent)

	 USER-AGENT-PATH(path)

	 USER-AGENT-FILE(file)

	 USER-AGENT-LOCALE(locale)

	 QUERY-STRING(querystring)

	 SOAPACTION(soapaction)

	 COOKIE(cookie	data)

	 ACCEPT(mime	types)

	 REFERER(url)

	 DIRECT-VERSION(version)

	 PROXY-VERSION(version)

	 PROXY-SERVER-NAME(name)

	 PROXY-SERVER-PORT(port)

	 PROXY-REMOTE-ADDRESS(address)

	 PROXY-REMOTE-USER(user)

	 AS2-TO(company)

	 AS2-FROM(company)

	 AS2-VERSION(version)

	 FROM(from)

	 DATE(date)

	 SUBJECT(subject)

	 MESSAGE-ID(message-id)

	 DISPOSITION-NOTIFICATION-TO(address)

	 DISPOSITION-NOTIFICATION-OPTIONS(options)

	 RECEIPT-DELIVERY-OPTION(url)

If	information	is	being	sent	to	the	function	(i.e.	if	the	HTTP	request	is	a	POST),
then	the	information	(content	payload)	is	passed	with	the	command	as	the	byte
array	object.
The	service	program	can	access	the	HTTP	POST	content	by	calling	the
getByteArray	method	on	the	command	object.

When	the	JSM	CLOSE	is	performed,	the	last	byte	array	returned	by	a
JSMResponse	object	is	sent	back	to	the	HTTP	user	agent.
Example	of	some	HTTP	keyword	values:

PROPERTY EXAMPLE	VALUE

USER-AGENT-PATH /upload/data

CONTENT-TYPE text/comma-separated-values;	charset=utf-8

CGI-EBCDIC-CCSID 37

CGI-ASCII-CCSID 819

CGI-INPUT-MODE BINARY

CGI	OUTPUT	MODE BINARY

SERVER-PORT 80

USER-AGENT-FILE order.xls

REQUEST-METHOD POST

REMOTE-USER CUST100

USER-AGENT LANSA	Integrator	UserAgent/11.4.0	(Client)

REMOTE-ADDRESS 10.2.1.7

SERVER-PROTOCOL HTTP/1.0

QUERY-STRING Order

SERVER-NAME lansa01.lansa.com.au

SERVER-SOFTWARE Apache

USER-AGENT-LOCALE en_AU

	

	

4.1.3	JSMDirect	Set	up	on	IBM	i
The	Apache	server	can	be	configured	to	run	CGI	programs	in
%%BINARY/MIXED%%,	%%BINARY/BINARY%%	or	BINARY	mode.
The	preferred	mode	is	BINARY.
By	default,	the	JSMDirect	CGI	program	runs	under	the	user	profile
QTMHHTP1.
Following	is	an	example	IBM	Apache	Server	Configuration:
	
#	Apache	Configuration	-	JSM	Services
Options	None
Listen	10.2.0.170:1099
ServerRoot	/www/jsmapache
DocumentRoot	/www/jsmapache/htdocs
#	DefaultFsCCSID		37
#	DefaultNetCCSID	819
#	ServerUserID	USERPROFILE
#
LogLevel	Warn
LogCycle	Daily
ErrorLog	logs/error_log
CustomLog	logs/access_log	combined
LogFormat	"%{User-agent}i"	agent
LogFormat	"%{Referer}i	->	%U"	referer
LogFormat	"%{Cookie}n	\"%r\"	%t"	cookie
LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b"	common
LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	\"%{Referer}i\"	\"%{User-
Agent}i\""	combined
#
SetEnvIf	"User-Agent"	"Mozilla/2"	nokeepalive
SetEnvIf	"User-Agent"	"JDK/1\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"Java/1\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"RealPlayer	4\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"MSIE	4\.0b2;"	nokeepalive
SetEnvIf	"User-Agent"	"MSIE	4\.0b2;"	force-response-1.0
#
#	StartCGI	1

#	SendBufferSize	32768
#	ReceiveBufferSize	32768
#
#	Use	name-based	virtual	hosting
NameVirtualHost	10.2.0.170
#
<VirtualHost	10.2.0.170>
		#	The	first	virtual	host	directive	will	become	the	default	host
		#	This	traps	the	use	of	the	IP	address,	unsupported	or	no	host	name
		#	It	also	has	no	authority	to	access	the	document	root	directory
		Options	None
		ServerName	10.2.0.170
		DocumentRoot	/www/jsmapache/htdocs
</VirtualHost>
#
<VirtualHost	10.2.0.170>
		Options	None
		ServerName	LANSA01
		ServerAlias	LANSA01.LANSA.COM.AU
		DocumentRoot	/www/jsmapache/htdocs-site1
		CGIConvMode	BINARY
		ScriptAliasMatch	^/cgi-
bin/jsmproxy(.*)	/qsys.lib/devjsm.lib/jsmproxy.pgm$1
		ScriptAliasMatch	^/cgi-
bin/jsmdirect(.*)	/qsys.lib/devjsm.lib/jsmdirect.pgm$1
		TimeOut	3000
		#
		<Directory	/www/jsmapache/htdocs-site1>
				Options	None
				Order	Allow,Deny
				Allow	from	all
				AllowOverride	None
		</Directory>
		#
		<Directory	/qsys.lib/devjsm.lib>
				Options	None
				Order	Allow,Deny
				Allow	from	all
				AllowOverride	None

				#	Require	valid-user
				#	AuthType	Basic
				#	AuthName	"Restricted	Service"
				#	UserID	QTMHHTP1
				#	PasswdFile	%%SYSTEM%%
		</Directory>
</VirtualHost>
#
<VirtualHost	10.2.0.170>
		Options	None
		ServerName	STUDIOADMIN
		DocumentRoot	/www/jsmapache/htdocs-site2
		CGIConvMode	BINARY
		ScriptAliasMatch	^/cgi-
bin/jsmadmin(.*)	/qsys.lib/devjsm.lib/jsmadmin.pgm$1
		#
		<Directory	/www/jsmapache/htdocs-site2>
				Options	None
				Order	Allow,Deny
				Allow	from	all
				AllowOverride	None
		</Directory>
		#
		<Directory	/qsys.lib/devjsm.lib>
				Options	None
				Order	Allow,Deny
				Allow	from	10.2.1.46
				Allow	from	10.2.1.47
				Allow	from	10.2.1.48
				AllowOverride	None
		</Directory>
</VirtualHost>
#
<VirtualHost	10.2.0.170>
		Options	+Includes
		ServerName	LANSA01WEB
		DocumentRoot	/LANSA_xyzpgmlib/webserver/www/htdocs
		ServerUserID	XYZPGMLIB
		CGIConvMode	EBCDIC

		Alias	/images	/LANSA_xyzpgmlib/webserver/images
		ScriptAliasMatch	^/cgi-
bin/lansaweb(.*)	/qsys.lib/xyzcomlib.lib/lansaweb.pgm$1
		TimeOut	3000
		#
		<Directory	/qsys.lib/xyzcomlib.lib>
				Order	Allow,Deny
				Allow	from	all
		</Directory>
		#
		<Directory	/LANSA_xyzpgmlib/webserver/images>
				Order	Allow,Deny
				Allow	from	all
		</Directory>
		#
		<Directory	/LANSA_xyzpgmlib/webserver/www/htdocs>
				Order	Allow,Deny
				Allow	from	all
		</Directory>
</VirtualHost>
#
#	Global	server	directives
#
<Directory	/>
		Options	None
		Order	Allow,Deny
		Deny	from	all
		AllowOverride	None
</Directory>
#
<Directory	/www/jsmapache/htdocs>
		Options	None
		Order	Allow,Deny
		Deny	from	all
		AllowOverride	None
</Directory>
	

	

Registering	Functions	for	JSMDirect
On	IBM	i	the	JSMDirect	program	locates	the	LANSA	function	to	be	executed
by	performing	a	keyed	lookup	on	file	DC@W29V1.
The	Host	Name	is	the	host	component	of	the	request	URL	this	is	determined	by
the	HTTP	protocol	Host	keyword.
If	the	URL	is	http://www.lansa.com/cgi-bin/jsmdirect	then	the	Host	Name	is
WWW.LANSA.COM:80.
If	the	URL	is	http://10.1.2.3/cgi-bin/jsmdirect	then	the	Host	Name	is
10.1.2.3:80.
This	allows	multi-homing	where	the	IP	address	of	www.lansa.com	and	10.1.2.3
are	the	same	but	the	HTTP	client	program	specifies	the	host	name	in	the	HTTP
protocol	allowing	the	HTTP	server	to	treat	www.lansa.com	and	10.1.2.3	as
different	hosts.
A	Host	Name	of	*DEFAULT	means	any	host.
JSMDirect	first	does	a	keyed	lookup	for	on	the	Application	Name	and	Host
Name,	if	an	entry	does	not	exist	then	a	second	keyed	lookup	on	Application
Name	and	*DEFAULT	is	done.
To	update	the	DC@W29	file	use	LANSA	Integrator	Studio	or	you	may	use	Data
File	Utility	or	SQL	commands	on	the	file.
Refer	to	Maintaining	Registration	File	DC@W29.
Structure	of	file	DC@W29:

K W29SRV Application
Name

Name	identifying	the	application	to	be	executed.
This	is	the	name	entered	as	part	of	the	URL.

K W29LHO Host	Name Host	Name	specified	either	as	*DEFAULT	or
HostName:Port.

	 W29MOD Process LANSA	process.

	 W29FMT Function LANSA	function	to	be	executed.

	 W29P#I Partition LANSA	partition.	The	process	and	function	must
be	located	in	the	specified	partition.

	 W29PLN Language Execution	language	for	the	function.

	 W29PGM Program 3GL	program	to	be	executed.	If	a	3GL	program	is

specified,	then	the	process,	function,	partition	and
language	fields	should	be	blank.

	 W29RDX RDMLX Flag	function	as	an	RDML	or	RDMLX	function.

	 W29WSD WSDL
Path

Location	of	WSDL	file.

	

Note:	The	language	code	is	an	optional	value	in	the	registration	of	functions	in
the	IBM	i	DC@W29	but	is	a	required	one	in	dc_w29.txt	on	Windows.	If	you
don't	register	the	language	code	in	DC@W29,	LANSA	will	run	the	server
function	using	the	partition's	default	language.	If	you	don't	register	the	language
code	in	dc_w29.txt,	JSMDirect	will	end	with	an	error.
Example	(without	Program	parameter):
	
ORDERENTRY			MYCOMPUTER:80			JSERVICE			JS015			WIZ			ENG
ORDERENTRY			*DEFAULT								JSERVICE			JS016			WIZ			ENG
	

Maintaining	Registration	File	DC@W29
To	display	and/or	update	the	DC@W29	registration	file	use	LANSA	Integrator
Studio	or		maintenance	program	DC@P8700.	You	may	also	use	Data	File
Utility	or	SQL	commands	to	update	this	file.
The	DC@P8700	maintenance	program	can	be	called	either	in	interactive	or
batch	mode,	as	follows:
To	call	in	interactive	mode:
From	a	command	line

CALL	DC@P8700
To	call	in	batch	mode	or	from	another	program:
Parameters	must	be	supplied	to	identify	the	action	to	be	performed	and	service.
Note:	If	no	parameters	are	supplied,	an	Action	of	DSP	is	assumed.
Following	is	a	list	of	possible	parameters:

Parameter Type	&	length Values Description

Action A(3) DSP	
ADD	
UPD
DLT

Display	a	service.
Add	a	service.
Update	a	service.
Delete	a	service.

Service A(30) 	 Service	name.

Host A(80) 	 Host	name.

Return	Code A(2) OK
ER

Action	performed	successfully.
Error	in	action	requested.

Type	of	Target A(3) FUN
3GL

Target	is	a	Process/Function.
Target	is	a	Program.

Target A(32) 	 This	may	contain	either:
					Process			A(10)
					Function		A(7)	
					Partition		A(3)
					Language		A(4)
or
					Program		A(32)

RDMLX	Flag A(1) Y
N
blank

If	Target	is	a	Process/Function
Y=Function	is	RDMLX
N=Function	is	not	RDMLX
(A	blank	is	an	implied	N).

WSDL	Path A(256) 	 Absolute	path	of	WSDL	file.

	

The	parameters	that	are	required	depend	on	the	Action	code:

For	this	Action These	parameters	are	required

DSP Action

ADD Action
Service
Host
Return	Code
Type	of	Target	
Target
RDMLX	Flag
WSDL	Path

UPD Action
Service
Host
Return	Code
Type	of	Target	
Target
RDMLX	Flag
WSDL	Path

DLT Action
Service
Host
Return	Code

	

JSMDirect	Program	Logic
Remote	client	program	using	HTTP	protocol	connects	to	HTTP	server.
HTTP	server	executes	JSMDIRECT	program.	(Look	for	messages	in	HTTP
server	job	log).
JSMDirect	program	checks	for	arguments,	if	no	arguments	sends	an	about
HTML	page	to	client	program.
JSMDirect	program	calls	exit	program	JSMDRTEXT	(if	present)	with	an
EVENT	parameter	value	of	ENTRY.
JSMDirect	program	uses	the	service	argument	value	and	the
SERVER_HOST	and	SERVER_PORT	environment	variable	values	to	do	a
keyed	lookup	on	DC@W29V1	to	determine	the	LANSA	function	or	3GL
program	associated	with	the	service.	If	no	record	is	found	then	another	keyed
lookup	is	done	using	the	service	argument	value	and	the	host	value	of
*DEFAULT.	If	no	record	is	found	then	an	error	message	is	returned	and
logged	via	the	JSMDRTEXT	program	with	the	EVENT	parameter	set	to	an
ERRnnnn	value.	(Look	for	messages	in	HTTP	server	job	log).
JSMDirect	program	reads	standard	input.
JSMDirect	program	calls	exit	program	JSMLSAEXT	(if	present)	or
internally	calls	LANSA.
JSMDirect	program	waits	for	the	LANSA	function	or	the	3GL	program	to
complete.
JSMDirect	program	writes	function	or	program	response	to	standard	output.
JSMDirect	program	calls	exit	program	JSMDRTEXT	(if	present)	with	an
EVENT	parameter	value	of	EXIT.

	

4.1.4	JSMDirect	Set	up	on	Windows
If	IIS	is	installed	on	the	target	PC,	the	install/upgrade	will	automatically
configure	IIS	so	that	the	physical	folder	JSMCGI	is	mapped	to	the	virtual	folder
cgi-bin.
If	IIS	is	not	installed,	you	will	need	to	manually	configure	the	Web	Server.
You	must	manually	specify	the	Windows	logon	for	executing	the	jsmdirect.exe
CGI	program.
By	default,	IIS	would	use	the	default	Windows	logon	IUSR_<machinename>	to
execute	CGI	programs.
Note	that	the	specific	Windows	logon	must	have	read/write	access	rights	to	the
LANSA	installation	directory,	as	a	minimum,	in	order	to	run	LANSA
applications	properly.	(Normally,	the	default	Windows	logon	does	not	have
enough	privileges	to	access	the	LANSA	installation	directory	and	will	not	be
able	to	run	LANSA	applications	properly.)
The	specific	Windows	logon	is	also	required	for	obtaining	log	files	from
jsmdirect.exe.	For	more	details	refer	to	Log	files	(Windows).
Ensure	that	x_lansa.pro	contains	an	entry	USER=<the	LANSA	user	profile	that
JSM	http	requests	will	be	given>	or	PSTC=Y.	When	a	request	is	received	by
JSM	to	run	a	function,	this	is	the	LANSA	user	profile	that	the	job	will	run
under.	Also	provide	the	DBUS	and	PSWD	parameters,	unless	database	trusted
connections	are	being	used	or	the	user	id	and	password	are	contained	in	the
ODBC	DSN.
To	specify	the	Windows	logon:
(This	description	is	based	on	the	Internet	Services	Manager	for	Windows	2000.
The	equivalent	administration	programs	in	other	Windows	versions	may	be
slightly	different.)
1.		Start	the	Internet	Services	Manager.
2.		Browse	to	the	appropriate	virtual	directory	eg.	cgi-bin	and	right	click	on	the
file	jsmdirect.exe	in	the	virtual	directory	and	select	menu	item	Properties.

3.		The	jsmdirect.exe	Properties	dialog	box	will	open.	Select	the	File	Security
tab	and	then	the	Edit	button	in	the	frame	titled	Anonymous	access	and
authentication	control.

4.		The	Authentication	Methods	dialog	box	will	open.	Check	(select)	the
Anonymous	access	option	and	press	the	Edit	button	next	to	the	Account	used

for	anonymous	access	label.
5.		The	Anonymous	User	Account	dialog	box	will	open.	Uncheck	(i.e.	deselect)
the	Allow	IIS	to	control	password	option	-	this	is	IMPORTANT	if	you	specify
a	Windows	logon	username	which	is	not	located	on	the	workstation	-	then
specify	the	Windows	logon	username	and	password	of	the	user	profile	used	to
run	LANSA	applications.	The	case	of	the	password	must	match	the	case	of
the	password	as	it	was	entered	into	Windows	user	maintenance.	Note	that	if	a
workstation	belongs	to	a	Windows	domain	and	a	Windows	User	exists	on
both	the	Domain	and	the	Local	(on	the	workstation),	the	Domain	User	logon
takes	precedence.

6.		Close	all	the	above	dialogs	by	clicking	on	the	OK	button.
	

Registering	Functions	for	JSMDirect
On	Windows	and	Linux,	the	JSMDirect	program	locates	the	LANSA	function	to
be	executed	by	performing	a	keyed	lookup	on	file	dc_w29.txt.	On	Windows,
dc_w29.txt	is	by	default	stored	in	the	same	folder	as	jsmdirect.exe.	On	Linux,
dc_w29.txt	is	in	the	$LANSAXROOT/integrator/jsmdirect	directory.
The	Host	Name	is	the	host	component	of	the	request	URL	this	is	determined	by
the	HTTP	protocol	Host	keyword.
If	the	URL	is	http://www.lansa.com/cgi-bin/jsmdirect	then	the	Host	Name	is
WWW.LANSA.COM:80.
If	the	URL	is	http://10.1.2.3/cgi-bin/jsmdirect	then	the	Host	Name	is
10.1.2.3:80.
This	allows	multi-homing	where	the	IP	address	of	www.lansa.com	and	10.1.2.3
are	the	same	but	the	HTTP	client	program	specifies	the	host	name	in	the	HTTP
protocol	allowing	the	HTTP	server	to	treat	www.lansa.com	and	10.1.2.3	as
different	hosts.
A	Host	Name	of	*DEFAULT	means	any	host.
JSMDirect	first	does	a	keyed	lookup	for	on	the	Application	Name	and	Host
Name,	if	an	entry	does	not	exist	then	a	second	keyed	lookup	on	Application
Name	and	*DEFAULT	is	done.
To	update	the	dc_w29.txt	file	use	LANSA	Integrator	Studio	or	a	text	editor
(Notepad	for	example).
The	dc_w29.txt	file	is	structured	as	a	list	of	comma	separated	lines.
Lines	starting	with	a	#	character	are	considered	to	be	comments	and	are	not
processed.
The	values	are	given	by	the	token	position	on	the	line	they	correspond	to	the
following	dc_w29	layout:

1 K Application
Name

Name	identifying	the	application	to	be	executed.	This	is
the	name	entered	as	part	of	the	URL.

2 K Host	Name Host	Name	specified	either	as	*DEFAULT	or
HostName:Port.

3 	 Process LANSA	process.

4 	 Function LANSA	function	to	be	executed.

5 	 Partition LANSA	partition.	The	process	and	function	must	be
located	in	the	specified	partition.

6 	 Language Execution	language	for	the	function.

7 	 Program 3GL	program	to	be	executed.	If	a	3Gl	program	is
specified,	then	the	process,	function,	partition	and
language	fields	should	be	blank.

	

Note:	The	language	code	is	an	optional	value	in	the	registration	of	functions	in
the	IBM	i	DC@W29	but	is	a	required	one	in	dc_w29.txt	on	Windows	and
Linux.	If	you	don't	register	the	language	code	in	the	IBM	i	DC@W29,	LANSA
will	run	the	server	function	using	the	partition's	default	language.	If	you	don't
register	the	language	code	in	dc_w29.txt,	JSMDirect	will	end	with	an	error.
Example	(without	Program	parameter):
	
#
#	JSMDirect	directive	file
#
#	Application	Name,	Host	Name,	Process,	Function,	Partition,	Language,	Program
#
ORDERENTRY,MYCOMPUTER:80,JSERVICE,JS015,WIZ,ENG
ORDERENTRY,*DEFAULT,JSERVICE,JS016,WIZ,ENG
#
	

4.1.5	JSMDirect	Set	up	on	Linux
To	use	JSMDirect,	it	needs	to	be	installed	in	a	cgi-bin	enabled	directory	under
your	web	server.	$LANSAXROOT/integrator/cgi-bin	contains	the	jsmdirect
CGI	program	you	need	to	make	available.	It	also	contains	jsmadmin,	which	you
will	need	in	order	to	register	functions	for	JSMDirect	through	Integrator	Studio.
The	recommended	procedure	is	to	direct	your	web	server	to	find	the	programs
in	this	location.	In	Apache,	you	can	add	the	following	lines	to	the	httpd.conf	file
(where	LANSAXROOT	should	be	replaced	by	your	install	directory):
	
ScriptAlias	/cgi-bin/jsmdirect	LANSAXROOT/integrator/cgi-bin/jsmdirect
	

You	will	need	to	restart	the	web	server	after	adding	these	lines	(usually	by
running	"apachectl	restart").
Another	way	to	make	the	programs	available	is	to	copy	them	to	your	existing
cgi-bin	directory.	You	may	want	to	do	this	if	you	already	have	other	CGI
programs	running	and	want	to	keep	them	all	in	one	location.
In	either	case,	you	may	need	to	change	the	files'	permissions	so	that	they	can	be
executed	by	anyone	(or	at	least	by	the	user	associated	with	the	HTTP	server,
such	as	apache).	You	will	also	need	to	make	sure	that	the	jsmdirect	directory	in
$LANSAXROOT/integrator	is	accessible.

Registering	Functions	for	JSMDirect
On	Windows	and	Linux,	the	JSMDirect	program	locates	the	LANSA	function	to
be	executed	by	performing	a	keyed	lookup	on	file	dc_w29.txt.	On	Windows,
dc_w29.txt	is	by	default	stored	in	the	same	folder	as	jsmdirect.exe.	On	Linux,
dc_w29.txt	is	in	the	$LANSAXROOT/integrator/jsmdirect	directory.
The	Host	Name	is	the	host	component	of	the	request	URL	this	is	determined	by
the	HTTP	protocol	Host	keyword.
If	the	URL	is	http://www.lansa.com/cgi-bin/jsmdirect	then	the	Host	Name	is
WWW.LANSA.COM:80.
If	the	URL	is	http://10.1.2.3/cgi-bin/jsmdirect	then	the	Host	Name	is
10.1.2.3:80.
This	allows	multi-homing	where	the	IP	address	of	www.lansa.com	and	10.1.2.3
are	the	same	but	the	HTTP	client	program	specifies	the	host	name	in	the	HTTP
protocol	allowing	the	HTTP	server	to	treat	www.lansa.com	and	10.1.2.3	as
different	hosts.
A	Host	Name	of	*DEFAULT	means	any	host.
JSMDirect	first	does	a	keyed	lookup	for	on	the	Application	Name	and	Host
Name,	if	an	entry	does	not	exist	then	a	second	keyed	lookup	on	Application
Name	and	*DEFAULT	is	done.
To	update	the	dc_w29.txt	file	use	LANSA	Integrator	Studio	or	a	text	editor
(Notepad	for	example).
The	dc_w29.txt	file	is	structured	as	a	list	of	comma	separated	lines.
Lines	starting	with	a	#	character	are	considered	to	be	comments	and	are	not
processed.
The	values	are	given	by	the	token	position	on	the	line	they	correspond	to	the
following	dc_w29	layout:

1 K Application
Name

Name	identifying	the	application	to	be	executed.	This	is
the	name	entered	as	part	of	the	URL.

2 K Host	Name Host	Name	specified	either	as	*DEFAULT	or
HostName:Port.

3 	 Process LANSA	process.

4 	 Function LANSA	function	to	be	executed.

5 	 Partition LANSA	partition.	The	process	and	function	must	be
located	in	the	specified	partition.

6 	 Language Execution	language	for	the	function.

7 	 Program 3GL	program	to	be	executed.	If	a	3Gl	program	is
specified,	then	the	process,	function,	partition	and
language	fields	should	be	blank.

	

Note:	The	language	code	is	an	optional	value	in	the	registration	of	functions	in
the	IBM	i	DC@W29	but	is	a	required	one	in	dc_w29.txt	on	Windows	and
Linux.	If	you	don't	register	the	language	code	in	the	IBM	i	DC@W29,	LANSA
will	run	the	server	function	using	the	partition's	default	language.	If	you	don't
register	the	language	code	in	dc_w29.txt,	JSMDirect	will	end	with	an	error.
Example	(without	Program	parameter):
	
#
#	JSMDirect	directive	file
#
#	Application	Name,	Host	Name,	Process,	Function,	Partition,	Language,	Program
#
ORDERENTRY,MYCOMPUTER:80,JSERVICE,JS015,WIZ,ENG
ORDERENTRY,*DEFAULT,JSERVICE,JS016,WIZ,ENG
#
	

	

4.2	JSMProxy
JSMProxy	is	an	HTTP	reverse	proxy	extension	to	JSMDirect.
The	JSMProxy	cgi-bin	program	resides	on	a	front-end	HTTP	Web	server	and
transfers	data	between	the	HTTP	client	browser	and	the	backend	JSMDirect	cgi-
bin	program.
Using	JSMProxy	is	very	useful	as	it	allows	you	to	define	a	single	entry	point
and	then	redirect	to	a	number	of	different	remote	servers.
	
The	JSMProxy	program	accepts	POSTed	content	that	contains	the	Content-
Length	HTTP	protocol	property.	The	IBMi	JSMProxy	program	running	on	the
IBMi	Apache	server	can	also	accept	Chunked-Transfer	encoded	content.
Note:	Chunked-Transfer	encoding	is	not	supported	on	the	Windows	platform.
	
The	JSMProxy	query	string	can	be	in	the	original	keyword	format	or	the
industry	standard	name-value	pairs.	The	name	service	is	reserved.
To	display	the	JSMProxy	version	number	invoke	the	program	with	no
arguments.	An	HTML	About	page	will	be	returned.

http://mycompany/cgi-bin/jsmproxy
http://mycompany/cgi-bin/jsmproxy.exe

Using	JSMProxy,	a	LANSA	function	can	be	invoked	as	follows:
http://mycompany/cgi-bin/jsmproxy?appname
http://mycompany/cgi-bin/jsmproxy?service=appname
http://mycompany/cgi-bin/jsmproxy.exe?appname
http://mycompany/cgi-bin/jsmproxy.exe?service=appname

For	example,	to	run	the	ORDERENTRY	application:
http://mycompany/cgi-bin/jsmproxy?orderentry
http://mycompany/cgi-bin/jsmproxy?service=orderentry
http://mycompany/cgi-bin/jsmproxy.exe?orderentry
http://mycompany/cgi-bin/jsmproxy.exe?service=orderentry

The	JSMProxy	program	locates	the	LANSA	function	to	be	executed	based	on
the	appname.
JSMProxy	requires	an	installed	HTTP	Server.
JSMProxy	does	not	require	or	use	any	of	the	LANSA	for	the	Web	software.
Checks	are	made	to	make	sure	that	each	HTTP	protocol	header	value	does	not

exceed	4096	bytes.
The	following	list	shows	the	HTTP	protocol	header	entries	forwarded	by	the
proxy	program:

Accept
Referer
Cookie
User-Agent
SoapAction
Content-Type
Content-Length
AS2-To
AS2-From
AS2-Version
From
Date
Subject
Message-Id
Disposition-Notification-To
Disposition-Notification-Options
Receipt-Delivery-Option

4.2.1	JSMProxy	Set	up	on	IBM	i
The	Apache	server	can	be	configured	to	run	CGI	programs	in
%%BINARY/MIXED%%,	%%BINARY/BINARY%%	or	BINARY	mode.
The	preferred	mode	is	BINARY.
By	default,	the	JSMProxy	CGI	program	runs	under	the	user	profile
QTMHHTP1.
Following	is	an	example	IBM	Apache	Server	Configuration:
	
#	Apache	Configuration	-	JSM	Services
Options	None
Listen	10.2.0.170:1099
ServerRoot	/www/jsmapache
DocumentRoot	/www/jsmapache/htdocs
#	DefaultFsCCSID		37
#	DefaultNetCCSID	819
#	ServerUserID	USERPROFILE
#
LogLevel	Warn
LogCycle	Daily
ErrorLog	logs/error_log
CustomLog	logs/access_log	combined
LogFormat	"%{User-agent}i"	agent
LogFormat	"%{Referer}i	->	%U"	referer
LogFormat	"%{Cookie}n	\"%r\"	%t"	cookie
LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b"	common
LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	\"%{Referer}i\"	\"%{User-
Agent}i\""	combined
#
SetEnvIf	"User-Agent"	"Mozilla/2"	nokeepalive
SetEnvIf	"User-Agent"	"JDK/1\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"Java/1\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"RealPlayer	4\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"MSIE	4\.0b2;"	nokeepalive
SetEnvIf	"User-Agent"	"MSIE	4\.0b2;"	force-response-1.0
#
#	StartCGI	1

#	SendBufferSize	32768
#	ReceiveBufferSize	32768
#
#	Use	name-based	virtual	hosting
NameVirtualHost	10.2.0.170
#
<VirtualHost	10.2.0.170>
		#	The	first	virtual	host	directive	will	become	the	default	host
		#	This	traps	the	use	of	the	IP	address,	unsupported	or	no	host	name
		#	It	also	has	no	authority	to	access	the	document	root	directory
		Options	None
		ServerName	10.2.0.170
		DocumentRoot	/www/jsmapache/htdocs
</VirtualHost>
#
<VirtualHost	10.2.0.170>
		Options	None
		ServerName	LANSA01
		ServerAlias	LANSA01.LANSA.COM.AU
		DocumentRoot	/www/jsmapache/htdocs-site1
		CGIConvMode	BINARY
		ScriptAliasMatch	^/cgi-
bin/jsmproxy(.*)	/qsys.lib/devjsm.lib/jsmproxy.pgm$1
		TimeOut	3000
		#
		<Directory	/www/jsmapache/htdocs-site1>
				Options	None
				Order	Allow,Deny
				Allow	from	all
				AllowOverride	None
		</Directory>
		#
		<Directory	/qsys.lib/devjsm.lib>
				Options	None
				Order	Allow,Deny
				Allow	from	all
				AllowOverride	None
				#	Require	valid-user
				#	AuthType	Basic

				#	AuthName	"Restricted	Service"
				#	UserID	QTMHHTP1
				#	PasswdFile	%%SYSTEM%%
		</Directory>
</VirtualHost>
#
#	Global	server	directives
#
<Directory	/>
		Options	None
		Order	Allow,Deny
		Deny	from	all
		AllowOverride	None
</Directory>
#
<Directory	/www/jsmapache/htdocs>
		Options	None
		Order	Allow,Deny
		Deny	from	all
		AllowOverride	None
</Directory>
	

Registering	Functions	for	JSMProxy
On	IBM	i	the	JSMProxy	program	performs	a	keyed	lookup	on	file	DC@W30V1
to	locate	the	remote	host	and	program	that	will	receive	the	forwarded	request.
The	Host	Name	is	the	host	component	of	the	request	URL	this	is	determined	by
the	HTTP	protocol	Host	keyword.
If	the	URL	is	http://www.lansa.com/cgi-bin/jsmproxy	then	the	Host	Name	is
WWW.LANSA.COM:80.
If	the	URL	is	http://10.1.2.3/cgi-bin/jsmproxy	then	the	Host	Name	is
10.1.2.3:80.
This	allows	multi-homing	where	the	IP	address	of	www.lansa.com	and	10.1.2.3
are	the	same	but	the	HTTP	client	program	specifies	the	host	name	in	the	HTTP
protocol	allowing	the	HTTP	server	to	treat	www.lansa.com	and	10.1.2.3	as
different	hosts.
A	Host	Name	of	*DEFAULT	means	any	host.
JSMProxy	first	does	a	keyed	lookup	for	on	the	Application	Name	and	Host
Name,	if	an	entry	does	not	exist	then	a	second	keyed	lookup	on	Application
Name	and	*DEFAULT	is	done.
If	the	service	(application	name)	does	not	exist,	JSMProxy	returns	an	error
message	otherwise	the	connection	is	forwarded	to	the	selected	remote	host	and
remote	program.
To	update	the	DC@W30	file	use	LANSA	Integrator	Studio	or	you	may	use	Data
File	Utility	or	SQL	commands	on	the	file.
Structure	of	file	DC@W30:

	 Field Description Details

K W30SRV Application
Name

Name	identifying	the	application	to	be	executed
on	the	remote	host.

K W30LHO Host	Name Host	Name	specified	either	as	*DEFAULT	or
HostName:Port.

	 W30MTD Method
Accepted

The	proxy	program	checks	the	method	field	to
see	if	the	request	method	is	allowed.	Possible
method	field	values	are:
GET
POST

GET/POST
*ANY

	 W30LMT Content
Limit

The	proxy	program	checks	the	content	limit	field
to	see	if	the	inbound	content	does	not	exceed	the
limit	value.

	 W30RHO Remote
Host

Remote	Host	specified	as	HostName:Port.

	 W30PGM Remote
Program

If	the	remote	program	is	blank,	it	will	default	to
/cgi-bin/jsmdirect.

	

Example
	
ORDERENTRY	LANSA01:89	GET/POST	100000	LANSA01:88	/cgi-
bin/jsmdirect
ORDERENTRY	*DEFAULT			GET/POST	100000	LANSA01:88	/cgi-
bin/jsmdirect
	

JSMProxy	Program	Logic
Remote	client	program	using	HTTP	protocol	connects	to	HTTP	server.
HTTP	server	executes	JSMPROXY	program.	(Look	for	messages	in	HTTP
server	job	log).
JSMProxy	program	checks	for	arguments,	if	no	arguments	sends	an	about
HTML	page	to	client	program.
JSMProxy	program	calls	exit	program	JSMPXYEXT	(if	present)	with	an
EVENT	parameter	value	of	ENTRY.
JSMProxy	program	uses	the	service	argument	value	and	SERVER_HOST
and	SERVER_PORT	environment	variable	values	to	do	a	keyed	lookup	on
DC@W30V1	to	determine	the	host	to	receive	the	request.	Also	it	checks	if
the	HTTP	GET	or	POST	protocol	and	amount	of	content	is	allowed	for	the
requested	service.	If	no	record	is	found	then	another	keyed	lookup	is	done
using	the	service	argument	value	and	the	host	value	of	*DEFAULT.	If	no
record	is	found	then	an	error	message	is	returned	and	logged	via	the
JSMPXYEXT	program	with	the	EVENT	parameter	set	to	an	ERRnnnn
value.	(Look	for	messages	in	HTTP	server	job	log).
JSMProxy	program	connects	to	the	specified	host	and	forwards	selected
HTTP	protocol	properties	and	standard	input.
JSMProxy	program	waits	for	the	remote	JSMDirect	program	to	complete.
JSMProxy	program	writes	the	HTTP	protocol	response	to	standard	output.
JSMProxy	program	calls	exit	program	JSMPXYEXT	(if	present)	with	an
EVENT	parameter	value	of	EXIT.

4.2.2	JSMProxy	Set	up	on	Windows
If	IIS	is	installed	on	the	target	PC,	the	install/upgrade	will	automatically
configure	IIS	so	that	the	physical	folder	JSMCGI	is	mapped	to	the	virtual	folder
cgi-bin.
If	IIS	is	not	installed,	the	user	will	need	to	manually	configure	their	Web	Server.
As	in	4.1.4	JSMDirect	Set	up	on	Windows,	you	need	to	specify	the	Windows
logon	for	executing	the	jsmproxy.exe	CGI	program.
Apply	the	same	procedure	as	in	JSMDirect	Set	up	on	Windows	for	the	CGI
program	JSMProxy.exe	in	the	appropriate	virtual	directory.
The	specific	Windows	logon	is	also	required	for	obtaining	log	files	from
JSMProxy.exe.
See	4.9	Log	Files	(Windows)	for	more	information.

Registering	Functions	for	JSMProxy
On	Windows	and	Linux,	the	JSMProxy	program	performs	a	keyed	lookup	on
file	dc_w30.txt	to	locate	the	remote	host	and	program	that	will	receive	the
forwarded	request.
The	Host	Name	is	the	host	component	of	the	request	URL	this	is	determined	by
the	HTTP	protocol	Host	keyword.
If	the	URL	is	http://www.lansa.com/cgi-bin/jsmproxy	then	the	Host	Name	is
WWW.LANSA.COM:80.
If	the	URL	is	http://10.1.2.3/cgi-bin/jsmproxy	then	the	Host	Name	is
10.1.2.3:80.
This	allows	multi-homing	where	the	IP	address	of	www.lansa.com	and	10.1.2.3
are	the	same	but	the	HTTP	client	program	specifies	the	host	name	in	the	HTTP
protocol	allowing	the	HTTP	server	to	treat	www.lansa.com	and	10.1.2.3	as
different	hosts.
A	Host	Name	of	*DEFAULT	means	any	host.
JSMProxy	first	does	a	keyed	lookup	for	on	the	Application	Name	and	Host
Name,	if	an	entry	does	not	exist	then	a	second	keyed	lookup	on	Application
Name	and	*DEFAULT	is	done.
If	the	service	(application	name)	does	not	exist,	JSMProxy	returns	an	error
message	otherwise	the	connection	is	forwarded	to	the	selected	remote	host	and
remote	program.
To	update	the	dc_w30.txt	file	use	LANSA	Integrator	Studio	or	a	text	editor
(Notepad	for	example).
The	dc_w30.txt	file	is	structured	as	a	list	of	comma	separated	lines.
Lines	starting	with	a	#	are	comments	and	will	not	be	processed.
Each	line	in	the	text	file	is	an	individual	entry.	The	fields	are	separated	with	a
comma.
Structure	of	file	dc_w30.txt:

Field
No

Description Details

1 Application
Name

Name	identifying	the	application	to	be	executed	on	the
remote	host.

2 Host	Name Host	Name	specified	either	as	*DEFAULT	or

HostName:Port.

3 Method
Accepted

The	proxy	program	checks	the	method	field	to	see	if	the
request	method	is	allowed.	Possible	method	field	values
are:
GET
POST
GET/POST
*ANY

4 Content
Limit

The	proxy	program	checks	the	content	limit	field	to	see	if
the	inbound	content	does	not	exceed	the	limit	value.

5 Remote
Host

Remote	Host	specified	as	HostName:Port.

6 Remote
Program

If	the	remote	program	is	blank,	it	will	default	to	/cgi-
bin/jsmdirect.

	

Example
	
#
#	JSMProxy	directive	file
#
#	service,	local	host,	method,	limit,	remote	host,	remote	program
#
ORDERENTRY,LANSA01:89,GET/POST,100000,LANSA01:88,/cgi-
bin/jsmdirect
ORDERENTRY,*DEFAULT,GET/POST,100000,LANSA01:88,/cgi-
bin/jsmdirect
#
	

4.2.3	JSMProxy	Set	up	on	Linux
As	with	JSMDirect,	JSMProxy	needs	to	be	installed	in	a	cgi-bin	enabled
directory	under	your	web	server.	$LANSAXROOT/integrator/cgi-bin	contains
the	jsmproxy	CGI	program	you	need	to	make	available.	It	also	contains
JSMAdmin,	which	you	will	need	in	order	to	register	functions	for	JSMProxy
through	Integrator	Studio.
The	recommended	procedure	is	to	direct	your	web	server	to	find	the	programs
in	this	location.	In	Apache,	you	can	add	the	following	lines	to	the	httpd.conf	file
(where	LANSAXROOT	should	be	replaced	by	your	install	directory):
	
ScriptAlias	/cgi-bin/jsmproxy	LANSAXROOT/integrator/cgi-bin/jsmproxy
	

You	will	need	to	restart	the	web	server	after	adding	these	lines	(usually	by
running	"apachect1	restart").
Another	way	to	make	the	programs	available	is	to	copy	them	to	your	existing
cgi-bin	directory.	You	may	want	to	do	this	if	you	already	have	other	CGI
programs	running	and	want	to	keep	them	all	in	one	location.
In	either	case,	you	may	need	to	change	the	files'	permissions	so	that	they	can	be
executed	by	anyone	(or	at	least	by	the	user	associated	with	the	HTTP	server,
such	as	apache).	You	will	also	need	to	make	sure	that	the	jsmproxy	directory	in
$LANSAXROOT/integrator	is	accessible.

Registering	Functions	for	JSMProxy
On	Windows	and	Linux,	the	JSMProxy	program	performs	a	keyed	lookup	on
file	dc_w30.txt	to	locate	the	remote	host	and	program	that	will	receive	the
forwarded	request.
The	Host	Name	is	the	host	component	of	the	request	URL	this	is	determined	by
the	HTTP	protocol	Host	keyword.
If	the	URL	is	http://www.lansa.com/cgi-bin/jsmproxy	then	the	Host	Name	is
WWW.LANSA.COM:80.
If	the	URL	is	http://10.1.2.3/cgi-bin/jsmproxy	then	the	Host	Name	is
10.1.2.3:80.
This	allows	multi-homing	where	the	IP	address	of	www.lansa.com	and	10.1.2.3
are	the	same	but	the	HTTP	client	program	specifies	the	host	name	in	the	HTTP
protocol	allowing	the	HTTP	server	to	treat	www.lansa.com	and	10.1.2.3	as
different	hosts.
A	Host	Name	of	*DEFAULT	means	any	host.
JSMProxy	first	does	a	keyed	lookup	for	on	the	Application	Name	and	Host
Name,	if	an	entry	does	not	exist	then	a	second	keyed	lookup	on	Application
Name	and	*DEFAULT	is	done.
If	the	service	(application	name)	does	not	exist,	JSMProxy	returns	an	error
message	otherwise	the	connection	is	forwarded	to	the	selected	remote	host	and
remote	program.
To	update	the	dc_w30.txt	file	use	LANSA	Integrator	Studio	or	a	text	editor
(Notepad	for	example).
The	dc_w30.txt	file	is	structured	as	a	list	of	comma	separated	lines.
Lines	starting	with	a	#	are	comments	and	will	not	be	processed.
Each	line	in	the	text	file	is	an	individual	entry.	The	fields	are	separated	with	a
comma.
Structure	of	file	dc_w30.txt:

Field
No

Description Details

1 Application
Name

Name	identifying	the	application	to	be	executed	on	the
remote	host.

2 Host	Name Host	Name	specified	either	as	*DEFAULT	or

HostName:Port.

3 Method
Accepted

The	proxy	program	checks	the	method	field	to	see	if	the
request	method	is	allowed.	Possible	method	field	values
are:
GET
POST
GET/POST
*ANY

4 Content
Limit

The	proxy	program	checks	the	content	limit	field	to	see	if
the	inbound	content	does	not	exceed	the	limit	value.

5 Remote
Host

Remote	Host	specified	as	HostName:Port.

6 Remote
Program

If	the	remote	program	is	blank,	it	will	default	to	/cgi-
bin/jsmdirect.

	

Example
	
#
#	JSMProxy	directive	file
#
#	service,	local	host,	method,	limit,	remote	host,	remote	program
#
ORDERENTRY,LANSA01:89,GET/POST,100000,LANSA01:88,/cgi-
bin/jsmdirect
ORDERENTRY,*DEFAULT,GET/POST,100000,LANSA01:88,/cgi-
bin/jsmdirect
#
	

	

4.3	JSMAdmin
The	JSMADMIN	program	allows	LANSA	Integrator	Studio	to	maintain	the
DC@W29,	dc_w29.txt,	DC@W30	and	dc_w30.txt	files.
To	display	the	JSMAdmin	version	number	invoke	the	program	with	no
arguments.	An	HTML	About	page	will	be	returned.

http://mycompany/cgi-bin/jsmadmin
http://mycompany/cgi-bin/jsmadmin.exe

	

4.3.1	JSMAdmin	Set	up	on	IBM	i
The	Apache	server	can	be	configured	to	run	CGI	programs	in
%%BINARY/MIXED%%,	%%BINARY/BINARY%%	or	BINARY	mode.
The	preferred	mode	is	BINARY.
By	default,	the	JSMAdmin	CGI	program	runs	under	the	user	profile
QTMHHTP1.
Following	is	an	example	IBM	Apache	Server	Configuration:
	
#	Apache	Configuration	-	JSM	Services
Options	None
Listen	10.2.0.170:1099
ServerRoot	/www/jsmapache
DocumentRoot	/www/jsmapache/htdocs
#	DefaultFsCCSID		37
#	DefaultNetCCSID	819
#	ServerUserID	USERPROFILE
#
LogLevel	Warn
LogCycle	Daily
ErrorLog	logs/error_log
CustomLog	logs/access_log	combined
LogFormat	"%{User-agent}i"	agent
LogFormat	"%{Referer}i	->	%U"	referer
LogFormat	"%{Cookie}n	\"%r\"	%t"	cookie
LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b"	common
LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	\"%{Referer}i\"	\"%{User-
Agent}i\""	combined
#
SetEnvIf	"User-Agent"	"Mozilla/2"	nokeepalive
SetEnvIf	"User-Agent"	"JDK/1\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"Java/1\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"RealPlayer	4\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"MSIE	4\.0b2;"	nokeepalive
SetEnvIf	"User-Agent"	"MSIE	4\.0b2;"	force-response-1.0
#
#	StartCGI	1

#	SendBufferSize	32768
#	ReceiveBufferSize	32768
#
#	Use	name-based	virtual	hosting
NameVirtualHost	10.2.0.170
#
<VirtualHost	10.2.0.170>
		#	The	first	virtual	host	directive	will	become	the	default	host
		#	This	traps	the	use	of	the	IP	address,	unsupported	or	no	host	name
		#	It	also	has	no	authority	to	access	the	document	root	directory
		Options	None
		ServerName	10.2.0.170
		DocumentRoot	/www/jsmapache/htdocs
</VirtualHost>
#
<VirtualHost	10.2.0.170>
		Options	None
		ServerName	LANSA01
		ServerAlias	LANSA01.LANSA.COM.AU
		DocumentRoot	/www/jsmapache/htdocs-site1
		CGIConvMode	BINARY
		ScriptAliasMatch	^/cgi-
bin/jsmproxy(.*)	/qsys.lib/devjsm.lib/jsmproxy.pgm$1
		ScriptAliasMatch	^/cgi-
bin/jsmdirect(.*)	/qsys.lib/devjsm.lib/jsmdirect.pgm$1
		TimeOut	3000
		#
		<Directory	/www/jsmapache/htdocs-site1>
				Options	None
				Order	Allow,Deny
				Allow	from	all
				AllowOverride	None
		</Directory>
		#
		<Directory	/qsys.lib/devjsm.lib>
				Options	None
				Order	Allow,Deny
				Allow	from	all
				AllowOverride	None

				#	Require	valid-user
				#	AuthType	Basic
				#	AuthName	"Restricted	Service"
				#	UserID	QTMHHTP1
				#	PasswdFile	%%SYSTEM%%
		</Directory>
</VirtualHost>
#
<VirtualHost	10.2.0.170>
		Options	None
		ServerName	STUDIOADMIN
		DocumentRoot	/www/jsmapache/htdocs-site2
		CGIConvMode	BINARY
		ScriptAliasMatch	^/cgi-
bin/jsmadmin(.*)	/qsys.lib/devjsm.lib/jsmadmin.pgm$1
		#
		<Directory	/www/jsmapache/htdocs-site2>
				Options	None
				Order	Allow,Deny
				Allow	from	all
				AllowOverride	None
		</Directory>
		#
		<Directory	/qsys.lib/devjsm.lib>
				Options	None
				Order	Allow,Deny
				Allow	from	10.2.1.46
				Allow	from	10.2.1.47
				Allow	from	10.2.1.48
				AllowOverride	None
		</Directory>
</VirtualHost>
#
#	Global	server	directives
#
<Directory	/>
		Options	None
		Order	Allow,Deny
		Deny	from	all

		AllowOverride	None
</Directory>
#
<Directory	/www/jsmapache/htdocs>
		Options	None
		Order	Allow,Deny
		Deny	from	all
		AllowOverride	None
</Directory>
	

4.3.2	JSMAdmin	Set	up	on	Windows
If	IIS	is	installed	on	the	target	PC,	the	install/upgrade	will	automatically
configure	IIS	so	that	the	physical	folder	JSMCGI	is	mapped	to	the	virtual	folder
cgi-bin.
If	IIS	is	not	installed,	the	user	will	need	to	manually	configure	their	Web	Server.
The	JSMAdmin.exe	needs	to	be	able	to	modify	the	dc_w29.txt	and	dc_w30.txt
files.
As	in	4.1.4	JSMDirect	Set	up	on	Windows,	you	need	to	specify	the	Windows
logon	for	executing	the	JSMAdmin.exe	CGI	program.
Apply	the	same	procedure	as	in	JSMDirect	Set	up	on	Windows	for	the	CGI
program	JSMAdmin.exe	in	the	appropriate	virtual	directory.
The	specific	Windows	logon	is	also	required	for	obtaining	log	files	from
JSMAdmin.exe.
See	4.9	Log	Files	(Windows)	for	more	information.

Changing	Permissions
	
Step	1.	Determine	the	user	using	the	cgi-bin	virtual	folder
1.		Open	"Internet	Information	Services".
2.		Find	the	cgi-bin	virtual	folder	(or	the	virtual	folder	you	are	using).
3.		Right	mouse	click	on	the	cgi-bin	virtual	folder,	and	choose	Properties.
4.		Choose	the	"Directory	Security"	tab.
5.		Click	on	"Edit".
6.		In	the	"Anonymous	access"	group,	the	"User	name:"	field	is	the	NT	account
that	is	used	to	run	the	jobs	under	cgi-bin	folder.

					This	is	the	user	that	needs	to	have	write	permissions	to	the	JSMCGI	folder.
					Remember	the	name	(you	will	need	it	in	the	next	step).
7.		Close	all	dialogs	and	property	pages	you	opened	in	this	step.
	
Step	2.	Change	permissions	for	this	user
1.		Open	Explorer.
2.		Navigate	to	the	parent	folder	of	the	cgi-bin	folder.	The	cgi-bin	folder	is

typically	C:\Program	Files\LANSA\Integrator\JSMCGI,	so	navigate	to
C:\Program	Files\LANSA\Integrator.

3.		Right	mouse	click	on	the	JSMCGI	folder,	and	choose	Properties.
4.		Choose	the	"Security"	tab.
5.		Click	on	"Add".
6.		Choose	the	user	found	in	Step	1	(6	above),	typically	IUSR_<pcname>.
7.		Ensure	that	the	"Write"	permission	is	turned	on	for	the	user	you	just	added.
8.		Click	OK	to	save	the	new	settings.

4.4	Location	of	the	LANSA	System	(IBM	i)
On	IBM	i	servers,	the	location	of	the	LANSA	system	is	determined	by	the
HTTP	Servers	job's	library	list.	The	JSMDRTEXT	exit	program	can	be	used	to
modify	the	library	list	at	execution	time.	The	exit	program	JSMLASEXT	can	be
used	to	modify	how	LANSA	is	executed.

4.5	Location	of	the	LANSA	System	(Windows)
On	Windows	servers,	the	location	of	the	LANSA	system	is	determined	by	the
LANSAXROOT	entry	in	the	jsmdirect.cfg	file.	The	jsmdirect.cfg	file	is	located
in	the	same	folder	as	JSMDirect.exe	program.
	
LANSAXROOT=C:\Program	Files\LANSA\X_WIN95
	

This	entry	was	created	when	JSMDirect	was	installed.
An	existing	value	is	not	overwritten	by	an	upgrade	or	EPC.
If	this	entry	is	missing	an	error	message	will	be	logged	in	jsmdirect.log	file.

4.6	Location	of	the	LANSA	System	(Linux)
On	Linux	servers,	the	location	of	the	LANSA	system	is	determined	by	the
LANSAXROOT	entry	in	the	jsmdirect.cfg	file.	The	entries	in	the	jsmdirect.cfg
file	are	be	used	to	define	environment	variables	before	the	x_run	program	is
executed.
	
LANSAXROOT=/lansa
	

This	entry	was	created	when	JSMDirect	was	installed.
If	the	HTTP	Server	uses	authentication	then	the	x_run	parameter	USER	will	be
defined	following	the	rules:
	
if	the	env	variable	USER_NAME	is	defined	then
			the	value	of	USER_NAME	will	be	passed	on	to	x_run
else	if	the	env	variable	REMOTE_USER	is	defined	then
			the	value	of	REMOTE_USER	will	be	passed	on	to	x_run
else
			x_run	will	be	called	without	defining	the	parameter	USER
			i.e.	The	user	defined	in	x_lansa.pro	will	be	used
	

4.7	Exit	Programs	(IBM	i)
On	Windows	servers,	only	information	is	logged.	See	4.9	Log	Files	(Windows).
On	IBM	i	servers,	exit	programs	are	called	if	they	are	found	in	the	library	list	of
the	HTTP	Web	server	instance	job.
QGPL	or	the	library	that	contains	the	JSMDIRECT.PGM	and
JSMPROXY.PGM	(JSMLIB	as	specified	during	the	LANSA	Integrator	install)
are	good	locations	to	store	these	exit	programs.
The	ENTRY	event	is	a	good	place	to	add	instructions	to	modify	the	job
attributes	of	the	server	instance,	such	as	adding	library	entries	to	the	library	list.
This	is	necessary	if	you	are	invoking	LANSA	functions,	as	the	LANSA	libraries
must	be	added	to	the	library	list.	The	shipped	JSMDRTEXT	adds	the	default
LANSA	libraries	DC@PGMLIB	and	DC@DTALIB	to	the	library	list.	You	will
need	to	modify	the	user	exit	if	your	LANSA	libraries	are	not	these	values.
For	examples	of	exit	programs,	refer	to	4.7.1	JSMDRTEXT	and	4.7.3
JSMPXYEXT.

4.7.1	JSMDRTEXT
The	JSMDIRECT	program	calls	CL	program	JSMDRTEXT	when	the	following
life	cycle	events	occur:
	

ENTRY Program	starts.

EXIT Program	finishes	successfully.

ERRnnnn where	nnnn	is	a	4	digit	number	starting	from	3000.
Error	has	occurred,	program	ending,	EXIT	event	will	not	be
called

	

The	JSMDRTEXT	program	reads	the	JSMDRTDTA	data	area	to	get	any
libraries	that	need	to	be	added	to	the	current	CGI	job	before	the
JSMLSAEXT/LANSA	program	is	called.	Blank	library	entries	are	ignored.
By	default	the	JSMDRTDTA	data	area	is	blank.	During	the	initial	LANSA
install,	the	LANSA	program	and	communication	libraries	are	added	to	first	two
positions.
The	data	area	is	2000	bytes	in	size	and	the	layout	is:

1-10 Library	(LANSA	Program	Library)

11-10 Library	(LANSA	Communication	Library)

21-10 Library

xx-10 Libraries...

1991-10 Library

	

	
The	source	code	for	this	exit	program	is	stored	in	QCLSRC	in	the	JSM	library.
	
/*	JSMDIRECT	EXIT	PROGRAM	*/

	
PGM	PARM(&EVENT	&SERVICE	&SERVERHOST	&HOST	&PORT	&REMOTEUSER	&REMOTEADDR	&CONTINUE	&MESSAGE)
	
DCL	VAR(&EVENT)						TYPE(*CHAR)	LEN(10)
DCL	VAR(&SERVICE)				TYPE(*CHAR)	LEN(30)
DCL	VAR(&SERVERHOST)	TYPE(*CHAR)	LEN(80)
DCL	VAR(&HOST)							TYPE(*CHAR)	LEN(80)
DCL	VAR(&PORT)							TYPE(*CHAR)	LEN(5)
DCL	VAR(&REMOTEUSER)	TYPE(*CHAR)	LEN(30)
DCL	VAR(&REMOTEADDR)	TYPE(*CHAR)	LEN(45)
DCL	VAR(&CONTINUE)			TYPE(*CHAR)	LEN(1)
DCL	VAR(&MESSAGE)				TYPE(*CHAR)	LEN(256)
	
DCL	VAR(&JOBNAME)			TYPE(*CHAR)	LEN(10)
DCL	VAR(&JOBUSER)			TYPE(*CHAR)	LEN(10)
DCL	VAR(&JOBNUMBER)	TYPE(*CHAR)	LEN(6)
DCL	VAR(&JOBCMD)				TYPE(*CHAR)	LEN(50)
DCL	VAR(&JOBMSG)				TYPE(*CHAR)	LEN(100)
DCL	VAR(&JOBCHGSTS)	TYPE(*CHAR)	LEN(7)	VALUE(OK)
	
DCL	VAR(&TMPLIB)					TYPE(*CHAR)	LEN(10)
DCL	VAR(&TMPLIBPOS)		TYPE(*DEC)		LEN(5)
DCL	VAR(&TMPLIBLIST)	TYPE(*CHAR)	LEN(2000)
	
MONMSG	MSGID(CPF0000)
	
/*	RETRIEVE	LIBRARIES	*/
	
RTVDTAARA		DTAARA(JSMDRTDTA	(1	2000))		RTNVAR(&TMPLIBLIST)
	
/*	CLEANUP	ANY	PREVIOUS	LEFTOVER	FAILED	SCENARIOS	*/
	
CHGVAR	VAR(&TMPLIBPOS)	VALUE(1)
RMVLIB:
		CHGVAR	VAR(&TMPLIB)	VALUE(%SST(&TMPLIBLIST	&TMPLIBPOS	10))
		IF	(&TMPLIB	*EQ	'	')	THEN(GOTO	ENDRMVLIB)
	
		RMVLIBLE	LIB(&TMPLIB)
		RCVMSG	MSGQ(*PGMQ)

	
		CHGVAR	VAR(&TMPLIBPOS)	VALUE(&TMPLIBPOS	+	10)
		IF	(&TMPLIBPOS	*GE	2000)		THEN(GOTO	ENDRMVLIB)
	
		GOTO	RMVLIB
ENDRMVLIB:
	
IF	COND(%SUBSTRING(&EVENT	1	3)	*EQ	'ERR')	THEN(DO)
	
		/*	LOG	ERROR	EVENT	*/
	
		SNDPGMMSG	MSG('-------	JSMDIRECT	ERROR	-------')
		SNDPGMMSG	MSGID(CPF9897)	MSGF(QCPFMSG)	MSGDTA(&EVENT)
		SNDPGMMSG	MSGID(&EVENT)		MSGF(JSMMSGF)
	
		SNDPGMMSG	MSGID(CPF9897)	MSGF(QCPFMSG)	MSGDTA(&SERVICE)
		SNDPGMMSG	MSGID(CPF9897)	MSGF(QCPFMSG)	MSGDTA(&SERVERHOST)
		SNDPGMMSG	MSGID(CPF9897)	MSGF(QCPFMSG)	MSGDTA(&REMOTEUSER)
		SNDPGMMSG	MSGID(CPF9897)	MSGF(QCPFMSG)	MSGDTA(&REMOTEADDR)
		SNDPGMMSG	MSG('-------------------------------')
	
		/*	CREATE	STRING	-	WRKJOB	JOB(464971/QTMHHTTP/JSMINST)	*/
	
		RTVJOBA	JOB(&JOBNAME)	USER(&JOBUSER)	NBR(&JOBNUMBER)
	
		CHGVAR		VAR(&JOBCMD)	VALUE('WRKJOB	JOB('	*TCAT	+
																							&JOBNUMBER	*TCAT	'/'	*TCAT	+
																							&JOBUSER	*TCAT	'/'	*TCAT	+
																							&JOBNAME	*TCAT	')')
	
		CHGVAR	VAR(&JOBMSG)	VALUE('JSMDirect	error,	use	command'	*BCAT	+
																						&JOBCMD)
	
		/*	SNDMSG	MSG(&JOBMSG)	TOUSR(*SYSOPR)	*/
	
		GOTO	END
	
ENDDO
	

IF	COND(&EVENT	*EQ	'ENTRY')	THEN(DO)
	
		/*	DEFAULT	VALUE	FOR	CONTINUE	IS	'Y'	*/
		/*	CHGVAR	VAR(&CONTINUE)	VALUE('N')	*/
		/*	CHGVAR	VAR(&MESSAGE)		VALUE('I	do	not	know	you')	*/
		/*	GOTO	END	*/
	
		/*	PREPARE	JOB	FOR	CURRENT	SERVICE	*/
	
		/*	CALL	PGM(JSMCHGJOB)	PARM(&JOBCHGSTS)	*/
	
		IF	COND(&JOBCHGSTS	*NE	'OK')	THEN(DO)
				CHGVAR	VAR(&JOBMSG)	VALUE('Change	job	exception'	*BCAT	+
																								&JOBCHGSTS)
				SNDPGMMSG	MSGID(CPF9897)	MSGF(QCPFMSG)	MSGDTA(&JOBMSG)
		ENDDO
	
		/*	ADD	LIBRARIES	FOR	JSMLSAEXT	AND	LANSA	CALL	*/
	
		CHGVAR	VAR(&TMPLIBPOS)	VALUE(1)
		ADDLIB:
				CHGVAR	VAR(&TMPLIB)	VALUE(%SST(&TMPLIBLIST	&TMPLIBPOS	10))
				IF	(&TMPLIB	*EQ	'	')	THEN(GOTO	ENDADDLIB)
	
				ADDLIBLE	LIB(&TMPLIB)
				RCVMSG	MSGQ(*PGMQ)
	
				CHGVAR	VAR(&TMPLIBPOS)	VALUE(&TMPLIBPOS	+	10)
				IF	(&TMPLIBPOS	*GE	2000)		THEN(GOTO	ENDADDLIB)
	
				GOTO	ADDLIB
		ENDADDLIB:
	
		GOTO	END
	
ENDDO
	
IF	COND(&EVENT	*EQ	'EXIT')	THEN(DO)
	

		/*	RESTORE	JOB	FOR	NEXT	SERVICE	*/
	
		GOTO	END
	
ENDDO
	
END:	ENDPGM
	

	

4.7.2	JSMLSAEXT
The	JSMDIRECT	program	can	only	internally	execute	a	LANSA	function.	If	a
3GL	program	needs	to	be	executed	or	more	flexibility	is	needed	when	calling
the	LANSA	program,	then	the	JSMLSAEXT	program	needs	to	be	created.
The	source	code	for	this	exit	program	is	stored	in	QCLSRC	in	the	JSM	library.
	
/*	JSM	LANSA/3GL	EXIT	PROGRAM	*/
	
PGM	PARM(&SERVICE	&SERVERHOST	&HOST	&PORT	&REMOTEUSER	&REMOTEADDR	+
									&PROCESS	&FUNCTION	&PARTITION	&LANGUAGE	&PROGRAM	&RDMLX	&CONTINUE	&MESSAGE)
	
DCL	VAR(&SERVICE)				TYPE(*CHAR)	LEN(30)
DCL	VAR(&SERVERHOST)	TYPE(*CHAR)	LEN(80)
DCL	VAR(&HOST)							TYPE(*CHAR)	LEN(80)
DCL	VAR(&PORT)							TYPE(*CHAR)	LEN(5)
DCL	VAR(&REMOTEUSER)	TYPE(*CHAR)	LEN(30)
DCL	VAR(&REMOTEADDR)	TYPE(*CHAR)	LEN(45)
	
DCL	VAR(&REQUEST)				TYPE(*CHAR)	LEN(10)	VALUE(RUN)
DCL	VAR(&PROCESS)				TYPE(*CHAR)	LEN(10)
DCL	VAR(&FUNCTION)			TYPE(*CHAR)	LEN(10)
DCL	VAR(&PARTITION)		TYPE(*CHAR)	LEN(3)
DCL	VAR(&LANGUAGE)			TYPE(*CHAR)	LEN(4)
DCL	VAR(&PROGRAM)				TYPE(*CHAR)	LEN(32)
DCL	VAR(&RDMLX)						TYPE(*CHAR)	LEN(1)
DCL	VAR(&CONTINUE)			TYPE(*CHAR)	LEN(1)
DCL	VAR(&MESSAGE)				TYPE(*CHAR)	LEN(256)
	
DCL	VAR(&PARM01)					TYPE(*CHAR)	LEN(256)
DCL	VAR(&PARM02)					TYPE(*CHAR)	LEN(256)
DCL	VAR(&PARM03)					TYPE(*CHAR)	LEN(256)
DCL	VAR(&PARM04)					TYPE(*CHAR)	LEN(256)
DCL	VAR(&PARM05)					TYPE(*CHAR)	LEN(256)
DCL	VAR(&PARM06)					TYPE(*CHAR)	LEN(256)
DCL	VAR(&PARM07)					TYPE(*CHAR)	LEN(256)
DCL	VAR(&PARM08)					TYPE(*CHAR)	LEN(256)
DCL	VAR(&PARM09)					TYPE(*CHAR)	LEN(256)

DCL	VAR(&PARM10)					TYPE(*CHAR)	LEN(256)
	
DCL	VAR(&TASKID)					TYPE(*CHAR)	LEN(8)
DCL	VAR(&PCTYPE)					TYPE(*CHAR)	LEN(1)	VALUE(N)
DCL	VAR(&DEVELOPER)		TYPE(*CHAR)	LEN(1)	VALUE(N)
DCL	VAR(&ALLOWMSGS)		TYPE(*CHAR)	LEN(1)	VALUE(N)
DCL	VAR(&PCNAME)					TYPE(*CHAR)	LEN(10)
DCL	VAR(&DATESRC)				TYPE(*CHAR)	LEN(1)	VALUE(S)
DCL	VAR(&BDEBUG)					TYPE(*CHAR)	LEN(1)	VALUE(N)
DCL	VAR(&BDEBUGDEV)		TYPE(*CHAR)	LEN(10)
DCL	VAR(&BDEBUGMSG)		TYPE(*CHAR)	LEN(10)
DCL	VAR(&XRUNADPRM)		TYPE(*CHAR)	LEN(512)
	
MONMSG	MSGID(CPF0000)
	
/*	DEFAULT	VALUE	FOR	CONTINUE	IS	'Y'	*/
/*	CHGVAR	VAR(&CONTINUE)	VALUE('N')	*/
/*	CHGVAR	VAR(&MESSAGE)		VALUE('I	do	not	know	you')	*/
/*	GOTO	END	*/
	
IF	COND(&PROGRAM	*NE	'	')	THEN(DO)
			/*	CALL	RPG	*/
			CALL	&PROGRAM
	
			GOTO	END
	
ENDDO
	
IF	COND(&RDMLX	*EQ	'Y')	THEN(DO)
			/*	CHANGE	REQUEST	TO	RUN	RDMLX	*/
			CHGVAR	VAR(&REQUEST)	VALUE(X_RUN)
ENDDO
	
IF	COND(&PROCESS	*NE	'	'	*AND	&FUNCTION	*NE	'	')	THEN(DO)
	
			IF	COND(&REQUEST	*EQ	'RUN')	THEN(DO)
						/*	CALL	LANSA	V10	OR	V11	*/
						CALL	PGM(LANSA)	PARM(&REQUEST	&PROCESS	&FUNCTION	+
																											&PARM01	&PARM02	&PARM03	&PARM04	&PARM05	+

																											&PARM06	&PARM07	&PARM08	&PARM09	&PARM10	+
																											&PARTITION	&LANGUAGE	&TASKID	&PCTYPE	+
																											&DEVELOPER	&ALLOWMSGS
&PCNAME	&DATESRC	+
																											&BDEBUG	&BDEBUGDEV	&BDEBUGMSG)
						GOTO	END
	
			ENDDO
	
			IF	COND(&REQUEST	*EQ	'X_RUN')	THEN(DO)
						/*	CALL	LANSA	V11	-	RDMLX	*/
						CALL	PGM(LANSA)	PARM(&REQUEST	&PROCESS	&FUNCTION	+
																											&PARM01	&PARM02	&PARM03	&PARM04	&PARM05	+
																											&PARM06	&PARM07	&PARM08	&PARM09	&PARM10	+
																											&PARTITION	&LANGUAGE	&TASKID	&PCTYPE	+
																											&DEVELOPER	&ALLOWMSGS	&PCNAME	&DATESRC	+
																											&BDEBUG	&BDEBUGDEV	&BDEBUGMSG	&XRUNADPRM)
						GOTO	END
	
			ENDDO
	
			GOTO	END
	
ENDDO
	
SNDPGMMSG	MSG('No	program	or	function	specified	for	execution')
	
END:	ENDPGM
	

	

4.7.3	JSMPXYEXT
The	JSMPROXY	program	calls	CL	program	JSMPXYEXT	when	the	following
life	cycle	events	occur:

ENTRY Program	starts.

EXIT Program	finishes	successfully.

ERRnnnn where	nnnn	is	a	4	digit	number	starting	from	2000.
Error	has	occurred,	program	ending,	EXIT	event	will	not	be	called

	

The	source	code	for	this	exit	program	is	stored	in	QCLSRC	in	the	JSM	library.
	
/*	JSMPROXY	EXIT	PROGRAM	*/
	
PGM	PARM(&EVENT	&SERVICE	&SERVERHOST	&REMOTEUSER	&REMOTEADDR	+
									&DIRECTHOST	&HOST	&PORT	&CONTINUE	&MESSAGE)
	
DCL	VAR(&EVENT)						TYPE(*CHAR)	LEN(10)
DCL	VAR(&SERVICE)				TYPE(*CHAR)	LEN(30)
DCL	VAR(&SERVERHOST)	TYPE(*CHAR)	LEN(80)
DCL	VAR(&REMOTEUSER)	TYPE(*CHAR)	LEN(30)
DCL	VAR(&REMOTEADDR)	TYPE(*CHAR)	LEN(45)
DCL	VAR(&DIRECTHOST)	TYPE(*CHAR)	LEN(80)
DCL	VAR(&HOST)							TYPE(*CHAR)	LEN(80)
DCL	VAR(&PORT)							TYPE(*CHAR)	LEN(5)
DCL	VAR(&CONTINUE)			TYPE(*CHAR)	LEN(1)
DCL	VAR(&MESSAGE)				TYPE(*CHAR)	LEN(256)
	
MONMSG	MSGID(CPF0000)
	
IF	COND(%SUBSTRING(&EVENT	1	3)	*EQ	'ERR')	THEN(DO)
	
		/*	LOG	ERROR	EVENT	*/
	
		SNDPGMMSG	MSG('-------	JSMPROXY	ERROR	-------')

		SNDPGMMSG	MSGID(CPF9897)	MSGF(QCPFMSG)	MSGDTA(&EVENT)
		SNDPGMMSG	MSGID(&EVENT)		MSGF(JSMMSGF)
	
		SNDPGMMSG	MSGID(CPF9897)	MSGF(QCPFMSG)	MSGDTA(&SERVICE)
		SNDPGMMSG	MSGID(CPF9897)	MSGF(QCPFMSG)	MSGDTA(&SERVERHOST)
		SNDPGMMSG	MSGID(CPF9897)	MSGF(QCPFMSG)	MSGDTA(&REMOTEUSER)
		SNDPGMMSG	MSGID(CPF9897)	MSGF(QCPFMSG)	MSGDTA(&REMOTEADDR)
		SNDPGMMSG	MSG('------------------------------')
	
		GOTO	END
	
ENDDO
	
IF	COND(&EVENT	*EQ	'ENTRY')	THEN(DO)
	
		/*	DEFAULT	VALUE	FOR	CONTINUE	IS	'Y'	*/
		/*	CHGVAR	VAR(&CONTINUE)	VALUE('N')	*/
		/*	CHGVAR	VAR(&MESSAGE)		VALUE('I	do	not	know	you')	*/
	
		GOTO	END
	
ENDDO
	
IF	COND(&EVENT	*EQ	'EXIT')	THEN(DO)
	
		GOTO	END
	
ENDDO
	
END:	ENDPGM
	

	

4.7.4	JSMADMEXT
The	JSMADMIN	program	calls	CL	program	JSMADMEXT	when	the	following
life	cycle	events	occur:

ENTRY Program	starts.

EXIT Program	finishes	successfully.

ERRnnnn where	nnnn	is	a	4	digit	number	starting	from	4000.
Error	has	occurred,	program	ending,	EXIT	event	will	not	be	called

	

The	source	code	for	this	exit	program	is	stored	in	QCLSRC	in	the	JSM	library.
	
/*	JSMADMIN	EXIT	PROGRAM	*/
	
PGM	PARM(&EVENT	&SERVICE	&SERVERHOST	&REMOTEUSER	&REMOTEADDR	&CONTINUE	&MESSAGE)
	
DCL	VAR(&EVENT)						TYPE(*CHAR)	LEN(10)
DCL	VAR(&SERVICE)				TYPE(*CHAR)	LEN(30)
DCL	VAR(&SERVERHOST)	TYPE(*CHAR)	LEN(80)
DCL	VAR(&REMOTEUSER)	TYPE(*CHAR)	LEN(30)
DCL	VAR(&REMOTEADDR)	TYPE(*CHAR)	LEN(45)
DCL	VAR(&CONTINUE)			TYPE(*CHAR)	LEN(1)
DCL	VAR(&MESSAGE)				TYPE(*CHAR)	LEN(256)
	
MONMSG	MSGID(CPF0000)
	
IF	COND(%SUBSTRING(&EVENT	1	3)	*EQ	'ERR')	THEN(DO)
	
		/*	LOG	ERROR	EVENT	*/
	
		SNDPGMMSG	MSG('-------	JSMADMIN	ERROR	-------')
		SNDPGMMSG	MSGID(CPF9897)	MSGF(QCPFMSG)	MSGDTA(&EVENT)
		SNDPGMMSG	MSGID(&EVENT)		MSGF(JSMMSGF)
	
		SNDPGMMSG	MSGID(CPF9897)	MSGF(QCPFMSG)	MSGDTA(&SERVICE)

		SNDPGMMSG	MSGID(CPF9897)	MSGF(QCPFMSG)	MSGDTA(&SERVERHOST)
		SNDPGMMSG	MSGID(CPF9897)	MSGF(QCPFMSG)	MSGDTA(&REMOTEUSER)
		SNDPGMMSG	MSGID(CPF9897)	MSGF(QCPFMSG)	MSGDTA(&REMOTEADDR)
		SNDPGMMSG	MSG('------------------------------')
	
		GOTO	END
	
ENDDO
	
IF	COND(&EVENT	*EQ	'ENTRY')	THEN(DO)
	
		/*	DEFAULT	VALUE	FOR	CONTINUE	IS	'Y'	*/
		/*	CHGVAR	VAR(&CONTINUE)	VALUE('N')	*/
		/*	CHGVAR	VAR(&MESSAGE)		VALUE('I	do	not	know	you')	*/
	
		GOTO	END
	
ENDDO
	
IF	COND(&EVENT	*EQ	'EXIT')	THEN(DO)
	
		GOTO	END
	
ENDDO
	
END:	ENDPGM
	

4.7.5	JSMCHGUSER
The	JSMCHGUSER	program	can	be	used	in	the	JSMDRTEXT	program	to
change	the	user	profile	of	the	current	job.
	
DCL	VAR(&STATUS)	TYPE(*CHAR)	LEN(7)
DCL	VAR(&USERID)	TYPE(*CHAR)	LEN(10)
DCL	VAR(&PASSWORD)	TYPE(*CHAR)	LEN(10)
	
CALL	PGM(JSMCHGUSER)	PARM(&USERID	&PASSWORD	&STATUS)
IF	COND(&STATUS	*NE	OK)	THEN(DO)
	

4.7.6	JSMCHGJOB
The	JSMCHGJOB	program	can	be	used	in	the	JSMDRTEXT	program	to
change	the	library	list	of	the	current	job	to	the	library	list	of	the	current	user
profile.	The	user	profile	of	the	HTTP	instance	can	be	configured	using	the
UserId	%%CLIENT%%	entry	or	by	calling	the	JSMCHGUSER	program.
	
DCL	VAR(&STATUS)	TYPE(*CHAR)	LEN(7)
	
CALL	PGM(JSMCHGJOB)	PARM(&STATUS)
IF	COND(&STATUS	*NE	OK)	THEN(DO)
	

4.7.7	JSMGETENV
The	JSMGETENV	program	can	be	used	in	the	JSMADMEXT,	JSMPXYEXT,
JSMDRTEXT	and	JSMLSAEXT	program	to	read	CGI	environment	variables.
The	program	status	code	will	have	one	of	the	following	values	OK,	ERROR	or
NOVAR.
	
DCL	VAR(&ENVNAME)			TYPE(*CHAR)	LEN(128)
DCL	VAR(&ENVVALUE)		TYPE(*CHAR)	LEN(1024)
DCL	VAR(&ENVSTS)				TYPE(*CHAR)	LEN(5)
	
CHGVAR	VAR(&ENVNAME)	VALUE(HTTPS)
	
CALL	PGM(JSMGETENV)	PARM(&ENVNAME	&ENVVALUE	&ENVSTS)
	
IF	COND(&ENVSTS	*NE	'OK')	THEN(DO)
		GOTO	END
ENDDO
	

4.7.8	JSMTRCENV
The	JSMTRCENV	program	can	be	used	in	the	JSMADMEXT,	JSMPXYEXT,
JSMDRTEXT	and	JSMLSAEXT	program	to	print	all	available	CGI
environment	variables	out	to	the	HTTP	instance	job	log.
The	HTTP	Apache	server	stores	the	QUERY_STRING	variable	value	in	ASCII.
The	JSMGETENV	program	will	convert	the	QUERY_STRING	value	from
ASCII	to	EBCDIC.
	
CALL	PGM(JSMTRCENV)
	
This	is	a	CGI	job	for	IBM	HTTP	Server	instance	JSMAPACHE.
--------	Start	--------
QIBM_USE_DESCRIPTOR_STDIO=Y
UNIQUE_ID=Az2swAoCAKoAABjpFFMAAAAC
SCRIPT_URL=/cgi-bin/jsmdirect
SCRIPT_URI=http://LANSA01:1099/cgi-bin/jsmdirect
HTTP_HOST=lansa01:1099
CONTENT_TYPE=application/json
HTTP_ACCEPT_ENCODING=gzip,	deflate
HTTP_ACCEPT=*/*
HTTP_REFERER=file://C:\Documents%20and%20Settings\alick.SYD\Desktop\Browser%20Client\JSONService.html
CONTENT_LENGTH=515
HTTP_USER_AGENT=Mozilla/4.0	(compatible;	MSIE	6.0;	Windows	NT	5.0;	.NET	CLR	1.1.4322;	.NET	CLR	2.0.50727)
HTTP_X_PROXY_VERSION=11.4.0
HTTP_X_PROXY_SERVER_NAME=LANSA01
HTTP_X_PROXY_SERVER_PORT=1099
HTTP_X_PROXY_REMOTE_ADDRESS=10.2.1.47
HTTP_ACCEPT_LANGUAGE=en-au
HTTP_CONNECTION=Keep-Alive
HTTP_CACHE_CONTROL=no-cache
PATH=/bin:/usr/bin:/usr/ucb:/usr/bsd:/usr/local/bin
SERVER_SIGNATURE=
SERVER_SOFTWARE=Apache
SERVER_NAME=LANSA01
SERVER_ADDR=10.2.0.170
SERVER_PORT=1099
REMOTE_ADDR=10.2.0.170

DOCUMENT_ROOT=/www/jsmapache/htdocs
SERVER_ADMIN=[no	address	given]
SCRIPT_FILENAME=/QSYS.LIB/DEVJSM.LIB/JSMDIRECT.PGM
DOCUMENT_NAME=/QSYS.LIB/DEVJSM.LIB/JSMDIRECT.PGM
REMOTE_PORT=5094
GATEWAY_INTERFACE=CGI/1.1
SERVER_PROTOCOL=HTTP/1.0
REQUEST_METHOD=POST
QUERY_STRING=¦Ë?>
REQUEST_URI=/cgi-bin/jsmdirect?json
SCRIPT_NAME=/cgi-bin/jsmdirect
DOCUMENT_URI=/cgi-bin/jsmdirect
RULE_FILE=conf/httpd.conf
CGI_MODE=BINARY
CGI_OUTPUT_MODE=BINARY
IBM_CCSID_VALUE=37
CGI_EBCDIC_CCSID=37
CGI_ASCII_CCSID=819
FSCP=37
NETCP=819
HTTPS=OFF
HTTP_X_DIRECT_VERSION=11.4.0
---------	End	---------
	

4.7.9	RUNJSMEXT
The	STRJSM	command	submits	the	RUNJSM	program.
The	RUNJSM	program	will	call	the	CL	program	RUNJSMEXT	if	it	is	found	in
the	library	list.
The	RUNJSM	program	calls	the	CL	program	RUNJSMEXT	when	the	following
life	cycle	events	occur:

ENTRY Before	the	Java	environment	starts.

REBOOT When	the	Java	environment	reboots.
Studio	Reboot.

EXIT When	the	Java	environment	ends.
Studio	Shutdown	or	ending	of	the	QJVACMDSRV	job.

	

The	source	code	for	this	exit	program	is	stored	in	QCLSRC	in	the	JSM	library.
	
PGM	PARM(&EVENT	&INSTANCE	&VERSION	&JOB)
	
DCL	VAR(&EVENT)					TYPE(*CHAR)	LEN(10)
DCL	VAR(&INSTANCE)		TYPE(*CHAR)	LEN(50)
DCL	VAR(&VERSION)			TYPE(*CHAR)	LEN(8)
DCL	VAR(&JOB)							TYPE(*CHAR)	LEN(10)
	
IF	COND(&EVENT	*EQ	'ENTRY')	THEN(DO)
			/*	CHGJOB	CCSID(37)	FOR	NATIVE	JDBC	DRIVER	*/
			GOTO	END
ENDDO
	
IF	COND(&EVENT	*EQ	'REBOOT')	THEN(DO)
			GOTO	END
ENDDO
	
IF	COND(&EVENT	*EQ	'EXIT')	THEN(DO)
			GOTO	END
ENDDO

	
END:	ENDPGM
	

	

4.8	Deployment	(IBM	i)
Client	applications	can	communicate	with	Java	Service	Manager's	running	on
other	machines.
The	JSMCLTDTA	data	area	needs	to	be	updated	with	the	remote	address	of	the
server	or	the	remote	address	can	be	specified	on	the	JSM_OPEN	call.
The	following	tables	list	the	object	dependencies	for	each	Integrator	feature.

JSMDIRECT
JSMDIRECT CGI	Program

DC@W29 Program	Database

DC@W29V1 	

DC@W29V2 	

JSMMSGF Message	File

JSMDRTEXT Exit	Program

JSMLSAEXT Exit	Program

	

JSMPROXY
JSMPROXY CGI	Program

DC@W30 Program	Database

DC@W30V1 	

JSMMSGF Message	File

JSMPXYEXT Exit	Program

	

LANSA	Program	-Single-connection
JSMCLTDA Client	Data	Area

JSMMSGF Message	File

BI@P262 JSM_CLOSE	BIF

BI@P263 JSM_COMMAND	BIF

BI@P264 JSM_OPEN	BIF

DCXS882X Service	Program

	

RPG	Program	Single-connection
JSMCLTDTA Client	Data	Area

JSMMSGF Message	File

DCXS882X Service	Program

	

RPGX	Program	-	Multi-connection
JSMCLTDTA Client	Data	Area

JSMMSGF Message	File

JSMRPGSRV Service	Program

	

4.9	Log	Files	(Windows)
The	JSMDirect,	JSMProxy	and	JSMAdmin	CGI	programs	write	log	information
to	the	files	jsmdirect.log,	jsmproxy.log	and	jsmadmin.log	respectively.
The	default	folder	for	these	CGI	programs	is	the	JSMCGI	folder.
By	default,	these	log	files	are	created	in	the	folder	from	which	JSMDirect,
JSMProxy	or	JSMAdmin	programs	are	started,	which	is	normally	the	JSMCGI
folder.
In	order	to	have	the	log	files	created	properly,	the	Windows	logon	used	to
execute	the	JSMDirect,	JSMProxy	or	JSMAdmin	programs	must	have
read/write	access	rights	to	the	directories	where	jsmdirect.exe,	jsmproxy.exe	and
jsmadmin.exe	are	installed.
The	location	of	these	log	files	is	configurable,	so	they	can	be	created	else	where.
The	name	of	the	configuration	file	for	JSMDirect,	JSMProxy	and	JSMAdmin	is
jsmcgi.cfg.	This	file	is	not	created	by	the	install	process.
The	configuration	file	must	be	located	in	the	same	directory	from	which
JSMDirect,	JSMProxy	or	JSMAdmin	programs	are	started.
The	log	file	directory	is	specified	by	the	LOGFILELOCATION	entry	in	the
jsmcgi.cfg	file.
If	this	entry	cannot	be	read	or	is	empty,	the	default	folder	is	used.
Example
	
LOGFILELOCATION=c:\temp
	

In	this	case,	the	log	files	are	created	in	the	c:\temp	directory.
	
LOGFILELOCATION=log
	

In	this	case,	the	log	files	are	created	in	a	directory	named	log,	relative	to	the
JSMCGI	folder	where	JSMDirect,	JSMProxy	and	JSMAdmin	are	installed.
For	more	information	about	specifying	the	Windows	logon	for	executing	the
programs,	refer	to	Step	4	of	the	Task:	Configure	the	Java	Service	Manager	on
Windows	in	the	Installing	LANSA	on	Windows	Guide.

its:lansa041.CHM::/lansa/IWINB8_0010.htm

4.10	Apache	Directives
The	Apache	server	contains	numerous	modules	and	directives	that	can	be	used
to	enable	and	disable	server	features.
For	more	information	refer	to:
http://httpd.apache.org/docs/2.0/mod/
http://httpd.apache.org/docs/2.0/mod/directives.html

http://httpd.apache.org/docs/2.0/mod/
http://httpd.apache.org/docs/2.0/mod/directives.html

4.11	Apache	URL	Rewriting
The	Apache	server	provides	a	powerful	way	to	do	URL	manipulations	using
Rewrite	directives.
For	more	information	refer	to:
http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html
http://httpd.apache.org/docs/2.0/misc/rewriteguide.html
The	following	examples	illustrate	how	to	use	these	Rewrite	directives.
Example	1
Rewrite	URL:	"/myservice.jsp?request=xml&service=neworder"	to	"/cgi-
bin/jsmdirect?neworder"
Sample	URL:	http://10.2.0.170:1099/myservice.jsp?
request=xml&service=neworder
If	the	URL	contains	a	service	name	value	pair	then	/cgi-bin/jsmdirect?<value>
is	called	else	/cgi-bin/jsmdirect?default	is	call.
	
RewriteCond	%{QUERY_STRING}	service\=([^\&]+)
RewriteRule	^/myservice.jsp(.*)	/cgi-bin/jsmdirect?%1	[L,PT]
RewriteRule	^/myservice.jsp(.*)	/cgi-bin/jsmdirect?default	[L,PT]
	

The	RewriteCond	checks	the	QUERY_STRING	for	service=	and	parameterizes
any	value	that	is	not	an	&	character.
If	the	condition	is	true	it	executes	the	next	RewriteRule	else	this	rule	is	skipped
and	the	other	rule	is	executed.

Note:

Query	string	is	not	available	to	the	RewriteRule	directive.
It	has	already	been	moved	to	the	query_string	environment	variable	by	the	time
mod_rewrite	is	activated	in	a	per-directory	context.
RewriteCond	is	only	good	for	the	first	RewriteRule	which	follows	it.
It	does	not	apply	to	subsequent	RewriteRules,	so	the	%1	backreference	becomes
undefined	for	the	second,	third	and	other	RewriteRules.
Example	2
Rewrite	URL:	"	/myservice.jsp?type=2&msgid=AXD&status=NEW"	to	"/cgi-

http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html
http://httpd.apache.org/docs/2.0/misc/rewriteguide.html

bin/jsmdirect?myservice+type(2)msgid(AXD)+status(NEW)"
	
RewriteRule	^/myservice.jsp	/myservice.jsp/%{QUERY_STRING}	[C]
RewriteRule	^/myservice.jsp/type=([^\&]+)&msgid=([^\&]+)&status=
([^\&]+)	\
			/cgi-bin/jsmdirect?myservice+type($1)+msgid($2)+status($3)	[L,PT]
	

	
Example	3
Rewrite	URL:	"/parts/00345"	to	"/cgi-bin/jsmdirect?orderbind+id(00345)"
Sample	URL:	http://10.2.0.170:1099/parts/00345
	
RewriteRule	^/parts/(.*)	/cgi-bin/jsmdirect?orderbind+id($1)	[L,PT]
	

Example	4
Rewrite	URL:	"/parts/00345/abc"	to	"/cgi-bin/jsmdirect?
orderbind+id(00345)+item(abc)"
Sample	URL:	http://10.2.0.170:1099/parts/00345/abc
	
RewriteRule	^/parts/(.*)/(.*)	/cgi-bin/jsmdirect?
orderbind+id($1)+item($2)	[L,PT]
	

Sample	Apache	configuration	file
	
#	Apache	Configuration	-	JSM	Services
Options	None
Listen	10.2.0.170:1099
ServerRoot	/www/jsmapache
DocumentRoot	/www/jsmapache/htdocs
#	DefaultFsCCSID		37
#	DefaultNetCCSID	819
#	ServerUserID	USERPROFILE
#
LogLevel	Warn
LogCycle	Daily
ErrorLog	logs/error_log

CustomLog	logs/access_log	combined
LogFormat	"%{User-agent}i"	agent
LogFormat	"%{Referer}i	->	%U"	referer
LogFormat	"%{Cookie}n	\"%r\"	%t"	cookie
LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b"	common
LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	\"%{Referer}i\"	\"%{User-
Agent}i\""	combined
#
SetEnvIf	"User-Agent"	"Mozilla/2"	nokeepalive
SetEnvIf	"User-Agent"	"JDK/1\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"Java/1\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"RealPlayer	4\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"MSIE	4\.0b2;"	nokeepalive
SetEnvIf	"User-Agent"	"MSIE	4\.0b2;"	force-response-1.0
#
#	StartCGI	1
#	SendBufferSize	32768
#	ReceiveBufferSize	32768
#
#	Use	name-based	virtual	hosting
NameVirtualHost	10.2.0.170
#
<VirtualHost	10.2.0.170>
		#	The	first	virtual	host	directive	will	become	the	default	host
		#	This	traps	the	use	of	the	IP	address,	unsupported	or	no	host	name
		#	It	also	has	no	authority	to	access	the	document	root	directory
		Options	None
		ServerName	10.2.0.170
		DocumentRoot	/www/jsmapache/htdocs
</VirtualHost>
#
<VirtualHost	10.2.0.170>
		Options	None
		ServerName	LANSA01
		ServerAlias	LANSA01.LANSA.COM.AU
		DocumentRoot	/www/jsmapache/htdocs-site1
		CGIConvMode	BINARY
		ErrorDocument	403	/noaccess.html
		ErrorDocument	404	/notfound.html

		ScriptAliasMatch	^/cgi-
bin/jsmproxy(.*)	/qsys.lib/devjsm.lib/jsmproxy.pgm$1
		ScriptAliasMatch	^/cgi-
bin/jsmdirect(.*)	/qsys.lib/devjsm.lib/jsmdirect.pgm$1
		ScriptAliasMatch	^/cgi-
sec/jsmdirect(.*)	/qsys.lib/secure.lib/jsmdirect.pgm$1
		TimeOut	3000
		#
		RewriteEngine	On
		#	RewriteLog	rewrite-site1.log
		#	RewriteLogLevel	9
		#
		RewriteCond	%{REQUEST_METHOD}	^TRACE
		RewriteRule	.*	-	[L,F]
		#
		RewriteRule	^/parts/(.*)/(.*)	/cgi-sec/jsmdirect?
orderbind+id($1)+item($2)	[L,PT]
		RewriteRule	^/parts/(.*)	/cgi-bin/jsmdirect?orderbind+id($1)	[L,PT]
		RewriteRule	^/parts	/cgi-bin/jsmdirect?orderbind+id(*NONE)	[L,PT]
		#
		RewriteCond	%{QUERY_STRING}	service\=([^\&]+)
		RewriteRule	^/myservice(.*)	/cgi-bin/jsmdirect?%1	[L,PT]
		RewriteRule	^/myservice(.*)	/cgi-bin/jsmdirect?default	[L,PT]
		#
		RewriteCond	%{TIME_HOUR}%{TIME_MIN}	>0905
		RewriteCond	%{TIME_HOUR}%{TIME_MIN}	<1900
		RewriteRule	^/mypage.html	/day.html	[L]
		RewriteRule	^/mypage.html	/night.html	[L]
		#
		#	RewriteCond	%{TIME_HOUR}%{TIME_MIN}	<1300	[OR]
		#	RewriteCond	%{TIME_HOUR}%{TIME_MIN}	>1500
		#	RewriteRule	^/cgi-bin/jsmdirect(.*)	/noaccess.html	[L]
		#
		#	RewriteMap	companymap	txt:/www/jsmapache/company.map
		#	RewriteRule	^/company/(.*)	${companymap:$1|http://nocompany.com}	[L,R]
		#
		#	RewriteMap	hostmap	rnd:/www/jsmapache/randomhost.map
		#	RewriteRule	^/(.*\.(pdf|gif|jpg))	http://${hostmap:static}/$1	[L,R]
		#

		<Directory	/www/jsmapache/htdocs-site1>
				Options	None
				Order	Allow,Deny
				Allow	from	all
				AllowOverride	None
		</Directory>
		#
		<Directory	/qsys.lib/devjsm.lib>
				Options	None
				Order	Allow,Deny
				Allow	from	all
				AllowOverride	None
				#	Require	valid-user
				#	AuthType	Basic
				#	AuthName	"Restricted	Service"
				#	UserID	QTMHHTP1
				#	PasswdFile	%%SYSTEM%%
		</Directory>
		#
		<Directory	/qsys.lib/secure.lib>
				Options	None
				Order	Allow,Deny
				Allow	from	all
				AllowOverride	None
				Require	valid-user
				AuthType	Basic
				AuthName	"Restricted	Service"
				#	UserID	QTMHHTP1
				PasswdFile	%%SYSTEM%%
		</Directory>
</VirtualHost>
#
<VirtualHost	10.2.0.170>
		Options	None
		ServerName	STUDIOADMIN
		DocumentRoot	/www/jsmapache/htdocs-site2
		CGIConvMode	BINARY
		ScriptAliasMatch	^/cgi-
bin/jsmadmin(.*)	/qsys.lib/devjsm.lib/jsmadmin.pgm$1

		#
		<Directory	/www/jsmapache/htdocs-site2>
				Options	None
				Order	Allow,Deny
				Allow	from	all
				AllowOverride	None
		</Directory>
		#
		<Directory	/qsys.lib/devjsm.lib>
				Options	None
				Order	Allow,Deny
				Allow	from	10.2.1.46
				Allow	from	10.2.1.47
				Allow	from	10.2.1.48
				AllowOverride	None
		</Directory>
</VirtualHost>
#
#	Global	server	directives
#
<Directory	/>
		Options	None
		Order	Allow,Deny
		Deny	from	all
		AllowOverride	None
</Directory>
#
<Directory	/www/jsmapache/htdocs>
		Options	None
		Order	Allow,Deny
		Deny	from	all
		AllowOverride	None
</Directory>
	

4.12	Apache	Reverse	Proxy
An	Apache	server	can	be	configured	to	work	as	a	reverse-proxy	server.
A	reverse	proxy	server	appears	to	the	client	just	like	an	ordinary	web	server.
No	special	configuration	on	the	client	is	necessary.
The	client	makes	ordinary	requests	for	content	in	the	name-space	of	the	reverse
proxy.
The	reverse	proxy	then	decides	where	to	send	those	requests,	and	returns	the
content	as	if	it	was	itself	the	origin.
A	typical	usage	of	a	reverse	proxy	is	to	provide	Internet	users	access	to	a	server
that	is	behind	a	firewall.
Reverse	proxies	can	also	be	used	to	balance	load	among	several	back-end
servers,	or	to	provide	caching	for	a	slower	back-end	server.
In	addition,	reverse	proxies	can	be	used	simply	to	bring	several	servers	into	the
same	URL	space.
If	you	require	a	more	flexible	reverse-proxy	configuration,	see	the	RewriteRule
directive	with	the	[P]	flag.
For	more	information	refer	to:
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html
Following	is	an	example	IBM	Apache	Server	Configuration:
	
#	Apache	Configuration	-	Reverse	Proxy
#
LoadModule	proxy_module	/QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule	proxy_http_module	/QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
#	LoadModule	proxy_ftp_module	/QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
#	LoadModule	proxy_connect_module	/QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
#
Options	None
Listen	10.2.0.170:2334
ServerRoot	/www/jsmproxy
DocumentRoot	/www/jsmproxy/htdocs
#	DefaultFsCCSID		37
#	DefaultNetCCSID	819
#	ServerUserID	USERPROFILE
#

http://httpd.apache.org/docs/2.0/mod/mod_proxy.html

LogLevel	Warn
LogCycle	Daily
ErrorLog	logs/error_log
CustomLog	logs/access_log	combined
LogFormat	"%{User-agent}i"	agent
LogFormat	"%{Referer}i	->	%U"	referer
LogFormat	"%{Cookie}n	\"%r\"	%t"	cookie
LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b"	common
LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	\"%{Referer}i\"	\"%{User-
Agent}i\""	combined
#
SetEnvIf	"User-Agent"	"Mozilla/2"	nokeepalive
SetEnvIf	"User-Agent"	"JDK/1\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"Java/1\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"RealPlayer	4\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"MSIE	4\.0b2;"	nokeepalive
SetEnvIf	"User-Agent"	"MSIE	4\.0b2;"	force-response-1.0
#
#	Use	name-based	virtual	hosting
NameVirtualHost	10.2.0.170
#
<VirtualHost	10.2.0.170>
		#	The	first	virtual	host	directive	will	become	the	default	host
		Options	None
		ServerName	LANSA01
		TimeOut	3000
		ProxyReverse	On
		ProxyRequests	Off
		ProxyTimeOut	3000
		<Proxy	*>
				Order	Allow,Deny
				Allow	from	all
		</Proxy>
		#
		#	Pass	all	requests
		#	ProxyPass	/	http://lansa01:1099/
		#	ProxyPassReverse	/	http://lansa01:1099/
		#
		#	Pass	only	CGI	requests

		ProxyPass	/cgi-bin/	http://lansa01:1099/cgi-bin/
		ProxyPassReverse	/cgi-bin/	http://lansa01:1099/cgi-bin/
</VirtualHost>
#
<Directory	/>
		Options	None
		Order	Allow,Deny
		Deny	from	all
		AllowOverride	None
</Directory>
#
<Directory	/www/jsmproxy/htdocs>
		Options	None
		Order	Allow,Deny
		#	Deny	from	all
		Allow	from	all
		AllowOverride	None
</Directory>
	

4.13	Apache	SSL	Support
An	Apache	server	can	be	configured	to	be	a	HTTP	SSL	server.
Following	is	an	example	IBM	Apache	Server	Configuration:
	
#	Apache	Configuration	-	SSL	JSM	Services
#
LoadModule	ibm_ssl_module	/QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM
#
Options	None
Listen	10.2.0.170:443
ServerRoot	/www/jsmapache
DocumentRoot	/www/jsmapache/htdocs
#	DefaultFsCCSID		37
#	DefaultNetCCSID	819
#	ServerUserID	USERPROFILE
#
LogLevel	Warn
LogCycle	Daily
ErrorLog	logs/error_log
CustomLog	logs/access_log	combined
LogFormat	"%{User-agent}i"	agent
LogFormat	"%{Referer}i	->	%U"	referer
LogFormat	"%{Cookie}n	\"%r\"	%t"	cookie
LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b"	common
LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	\"%{Referer}i\"	\"%{User-
Agent}i\""	combined
#
SetEnvIf	"User-Agent"	"Mozilla/2"	nokeepalive
SetEnvIf	"User-Agent"	"JDK/1\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"Java/1\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"RealPlayer	4\.0"	force-response-1.0
SetEnvIf	"User-Agent"	"MSIE	4\.0b2;"	nokeepalive
SetEnvIf	"User-Agent"	"MSIE	4\.0b2;"	force-response-1.0
SetEnvIf	"User-Agent"	".*MSIE.*"	nokeepalive	ssl-unclean-
shutdown	downgrade-1.0	force-response-1.0
#
ScriptAliasMatch	^/cgi-bin/jsmadmin(.*)	/qsys.lib/jsm.lib/jsmadmin.pgm$1

ScriptAliasMatch	^/cgi-bin/jsmproxy(.*)	/qsys.lib/jsm.lib/jsmproxy.pgm$1
ScriptAliasMatch	^/cgi-bin/jsmdirect(.*)	/qsys.lib/jsm.lib/jsmdirect.pgm$1
#
#	StartCGI	1
#	SendBufferSize	32768
#	ReceiveBufferSize	32768
#
#	Use	name-based	virtual	hosting
NameVirtualHost	10.2.0.170
#
<VirtualHost	10.2.0.170>
		#	The	first	virtual	host	directive	will	become	the	default	host
		Options	None
		ServerName	LANSA01
		SSLEngine	On
		#	SSLClientAuth	required
		SSLAppName	QIBM_HTTP_SERVER_JSMSSL
		CGIConvMode	BINARY
		TimeOut	3000
</VirtualHost>
#
<Directory	/>
		Options	None
		Order	Allow,Deny
		Deny	from	all
		AllowOverride	None
</Directory>
#
<Directory	/www/jsmapache/htdocs>
		Options	None
		Order	Allow,Deny
		Allow	from	all
		AllowOverride	None
</Directory>
#
<Directory	/qsys.lib/jsmlib.lib>
		Options	None
		Order	Allow,Deny
		Allow	from	all

		AllowOverride	None
</Directory>
	

4.14	Apache	Tracing	(IBM	i)
Use	the	WRKSPLF	SELECT	(QTMHHTTP)	command	to	view	current	spool
files	owned	by	this	user.
Delete	spool	files	that	are	not	important	so	your	next	selection	will	be	easier	to
manage.
Start	the	HTTP	server	instance	with	the	-vv	option.

STRTCPSVR	SERVER	(*HTTP)	HTTPSVR	(JSMAPACHE	'-vv')
Look	for	completion	message	CPCA984	in	the	server	job	log	for	confirmation
that	the	trace	option	you	specified	has	been	accepted.
	
User	Trace	option	changed	for	job	
534123/QTMHHTTP/JSMAPACHE.
This	is	the	manager	job	for	HTTP	Server	instance	JSMAPACHE.
	

Run	the	HTTP	client	program	that	is	causing	the	error	to	occur	in	the	HTTP
instance.
End	the	HTTP	server	instance:
	
ENDTCPSVR	SERVER	(*HTTP)	HTTPSVR	(JSMAPACHE)
	

Use	the	WRKSPLF	SELECT	(QTMHHTTP)	again	to	view	the	created	trace
spool	files:
	
QZSRHTTPTR		QTMHHTTP			PRT01			QSRV534123		HLD		16
QZSRHTTPTR		QTMHHTTP			PRT01			QSRV534124		HLD		1
QZSRHTTPTR		QTMHHTTP			PRT01			QSRV534125		HLD		30
QZSRHTTPTR		QTMHHTTP			PRT01			QSRV534126		HLD		21
	

Also	you	can	start	tracing	any	time	(without	stopping	and	starting	the	instance)
by	using	the	following	commands:
	
TRCTCPAPP	APP(*HTTP)	HTTPSVR(JSMAPACHE)	TRCLVL(*VERBOSE)
	
TRCTCPAPP	APP(*HTTP)	SET(*OFF)
	

4.15	SSL	Support
LANSA	Integrator	supplied	HTTP	services	can	communicate	using	SSL	via	the
standard	Java	SSL	extensions.
Use	the	IBM	Information	Center	site	to	configure	your	IBM	i	for	SSL	support.
Following	is	an	example	of	JSM	manager.properties	file:
	
#
#	Java	Service	Manager	configuration
#
#	javax.net.ssl.keyStore=
#	javax.net.ssl.keyStoreType=jks
#	javax.net.ssl.keyStorePassword=
#	javax.net.ssl.trustStore=
#	javax.net.ssl.trustStoreType=jks
#	javax.net.ssl.trustStorePassword=
#	javax.net.debug=all
#	javax.net.debug=ssl,handshake,data,trustmanager
#
#	ssl.KeyManagerFactory.algorithm=IBMX509
#	ssl.TrustManagerFactory.algorithm=IBMX509
#	ssl.SocketFactory.provider=com.ibm.jsse.JSSESocketFactory
#	ssl.ServerSocketFactory.provider=com.ibm.jsse.JSSEServerSocketFactory
	

Java	Trust/Key	Store
By	default,	IBM	Technology	for	Java	JDK's	use	the	cacerts	trust/key	store	file.
The	location	of	the	cacerts	file	depends	upon	the	JDK	version	and	bit	mode.
The	cacerts	file	is	located	in	one	of	the	following	directories.
	
/QOpenSys/QIBM/ProdData/JavaVM/jdk50/32bit/jre/lib/security
/QOpenSys/QIBM/ProdData/JavaVM/jdk50/64bit/jre/lib/security
/QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit/jre/lib/security
/QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit/jre/lib/security
/QOpenSys/QIBM/ProdData/JavaVM/jdk70/32bit/jre/lib/security
/QOpenSys/QIBM/ProdData/JavaVM/jdk70/64bit/jre/lib/security
	

By	default,	IBM	Classic	JDK's	1.5	and	1.6	use	the	cacerts	trust/key	store	file.
The	location	of	the	cacerts	file	depends	upon	the	JDK	version.
	
/QIBM/ProdData/Java400/jdk15/lib/security
/QIBM/ProdData/Java400/jdk6/lib/security
	

By	default,	IBM	Classic	JDK	1.4	uses	Digital	Certificate	Manager.
The	IBM	Classic	JDK	1.4	cacerts	file	is	located	in	the	following	directory.
	
/QIBM/ProdData/Java400/jdk14/lib/security
	

To	configure	the	IBM	Classic	JDK	1.4	to	use	a	cacerts	file	as	the	trust/key	store,
the	following	steps	need	to	be	performed.
Edit	the	manager.properties	file	and	enable	the	following	properties.
	
ssl.KeyManagerFactory.algorithm=IBMX509
ssl.TrustManagerFactory.algorithm=IBMX509
ssl.SocketFactory.provider=com.ibm.jsse.JSSESocketFactory
ssl.ServerSocketFactory.provider=com.ibm.jsse.JSSEServerSocketFactory
	

To	select	a	digital	certificate	to	use	for	client	authentication	connections	when
using	Digital	Certificate	Manager	you	can	use	the	default	certificate	or	specify
your	own.
To	specify	which	digital	certificate	to	use,	use	the	following	properties:
	
os400.certificateLabel=MYLABEL
os400.certificateContainer=/QIBM/USERDATA/ICSS/CERT/SERVER/DEFAULT.KDB
	

Digital	certificate	containers	store	digital	certificates.	If	you	want	to	use	the
IBM	i	system	default	certificate	container,	you	do	not	need	to	specify	a
certificate	container.
To	use	a	specific	digital	certificate	container,	you	need	to	specify	that	digital
certificate	container.
SSL	Client	Authentication	on	the	Client
If	the	server	is	configured	for	client	authentication	then	after	the	client	has

authenticated	the	server,	the	server	requests	the	client's	certificate.
The	client	then	sends	its	signed	certificate,	and	the	server	performs	the	same
authentication	process	as	the	client	did,	comparing	the	client	certificate	to	a
library	of	existing	certificates.
If	the	trust	manager	is	Digital	Certificate	Manager	then	the	certificate	to	be	sent
to	the	server	for	authentication	is	specified	by	the	os400.certificateLabel
property.
Some	servers	require	the	certificate	to	contain	the	extended	key	attribute	'client
authentication'	(1.3.6.1.5.5.7.3.2).
The	CA	certificate	that	signed	the	client	certificate	will	need	to	be	sent	to	the
other	party	to	be	included	in	the	server's	list	of	trusted	certificates.
SSL	Client	Authentication	on	the	Server
If	the	server	is	configured	for	client	authentication	then	after	the	client	has
authenticated	the	server,	the	server	requests	the	client's	certificate.
	
<VirtualHost	10.2.0.170>
		Options	None
		ServerName	LANSA01
		SSLEngine	On
		SSLClientAuth	required
		SSLAppName	QIBM_HTTP_SERVER_JSMSSL
</VirtualHost>
	

The	client	then	sends	its	signed	certificate,	and	the	server	performs	the	same
authentication	process	as	the	client	did,	comparing	the	client	certificate	to	a
library	of	existing	certificates.

4.16	SSL	Handshake
The	Secure	Sockets	Layer	(SSL)	protocol	uses	a	combination	of	public-key	and
symmetric-key	encryption.
Symmetric-key	encryption	is	much	faster	than	public-key	encryption;	however,
public-key	encryption	provides	better	authentication	techniques.
An	SSL	session	always	begins	with	an	exchange	of	messages	called	the	SSL
handshake.
The	handshake	allows	the	server	to	authenticate	itself	to	the	client	by	using
public-key	techniques,	and	then	allows	the	client	and	the	server	to	cooperate	in
the	creation	of	symmetric	keys	used	for	rapid	encryption,	decryption,	and
tamper	detection	during	the	session	that	follows.
Optionally,	the	handshake	also	allows	the	client	to	authenticate	itself	to	the
server.
The	steps	involved	in	the	SSL	handshake	are	as	follows:
1.		The	client	sends	a	client	"hello"	message	that	lists	the	cryptographic
capabilities	of	the	client	(sorted	in	client	preference	order),	such	as	the
version	of	SSL,	the	cipher	suites	supported	by	the	client,	and	the	data
compression	methods	supported	by	the	client.	The	message	also	contains	a
28-byte	random	number.

2.		The	server	responds	with	a	server	"hello"	message	that	contains	the
cryptographic	method	(cipher	suite)	and	the	data	compression	method
selected	by	the	server,	the	session	ID,	and	another	random	number.

						Note:	The	client	and	the	server	must	support	at	least	one	common	cipher
suite,	or	else	the	handshake	fails.	The	server	generally	chooses	the	strongest
common	cipher	suite.

3.		The	server	sends	its	digital	certificate.	If	the	server	uses	SSL	V3,	and	if	the
server	application	requires	a	digital	certificate	for	client	authentication,	the
server	sends	a	"digital	certificate	request"	message.	In	the	"digital	certificate
request"	message,	the	server	sends	a	list	of	the	types	of	digital	certificates
supported	and	the	distinguished	names	of	acceptable	certificate	authorities.

4.		The	server	sends	a	server	"hello	done"	message	and	waits	for	a	client
response.

5.		Upon	receipt	of	the	server	"hello	done"	message,	the	client	verifies	the
validity	of	the	server's	digital	certificate	and	checks	that	the	server's	"hello"

parameters	are	acceptable.
						If	the	server	requested	a	client	digital	certificate	the	client	sends	a	digital
certificate,	or	if	no	suitable	digital	certificate	is	available,	the	client	sends	a
"no	digital	certificate"	alert.	This	alert	is	only	a	warning,	but	the	server
application	can	fail	the	session	if	client	authentication	is	mandatory.

6.		The	client	sends	a	"client	key	exchange"	message.	This	message	contains	the
pre-master	secret,	a	46-byte	random	number	used	in	the	generation	of	the
symmetric	encryption	keys	and	the	message	authentication	code	(MAC)	keys,
encrypted	with	the	public	key	of	the	server.

						If	the	client	sent	a	digital	certificate	to	the	server,	the	client	sends	a	"digital
certificate	verify"	message	signed	with	the	client's	private	key.	By	verifying
the	signature	of	this	message,	the	server	can	explicitly	verify	the	ownership	of
the	client	digital	certificate.

					Note:	An	additional	process	to	verify	the	server	digital	certificate	is	not
necessary.	If	the	server	does	not	have	the	private	key	that	belongs	to	the
digital	certificate,	it	cannot	decrypt	the	pre-master	secret	and	create	the
correct	keys	for	the	symmetric	encryption	algorithm,	and	the	handshake	fails.

7.		The	client	uses	a	series	of	cryptographic	operations	to	convert	the	pre-master
secret	into	a	master	secret,	from	which	all	key	material	required	for
encryption	and	message	authentication	is	derived.	Then	the	client	sends	a
"change	cipher	spec"	message	to	make	the	server	switch	to	the	newly
negotiated	cipher	suite.	The	next	message	sent	by	the	client	(the	"finished"
message)	is	the	first	message	encrypted	with	this	cipher	method	and	keys.

8.		The	server	responds	with	a	"change	cipher	spec"	and	a	"finished"	message	of
its	own.

9.		The	SSL	handshake	ends,	and	encrypted	application	data	can	be	sent.
	

4.17	JSM	HTTP	Server
JSM	includes	a	HTTP	server	that	can	be	used	to	serve	static	file	resources	or
dynamic	content	via	custom	Java	classes.
The	HTTP	server	is	configured	by	an	XML	file	and	manager.properties	entries.
The	XML	configuration	file	is	specified	by	the	httpd	property.

manager.properties

	httpd=system/httpd.xml
	

The	HTTP	server	configuration	file	can	describe	multiple	HTTP	instances	and
multiple	virtual	hosts	with	an	instance.	The	HTTP	instance	specifies	the	TCP/IP
communication	options	and	access	and	error	log	file	locations.	IP	address	access
control	for	allow	and	deny	can	be	specified	at	the	instance	level.	Instance	wide
MIME	file	type	mapping	can	also	be	specified.	The	default	value	for	the	port
attribute	is	80	and	the	default	value	for	the	interface	is	*ALL.	The	backlog
default	value	is	256.
With	a	HTTP	instance,	multiple	virtual	host	sections	can	be	specified.	When	a
HTTP	request	is	read,	the	HTTP	Host	property	is	used	to	locate	the	virtual	host
section	to	be	used	to	process	the	request.	The	virtual	host	name	is	case
insensitive	compared	to	the	Host	property	name.	If	a	port	component	exists	on
the	Host	property	then	this	is	removed	before	it	is	used	to	find	a	matching
virtual	host	name.	If	no	virtual	host	section	is	found	then	the	default	'*'	virtual
host	is	used.	A	virtual	host	element	can	also	contain	a	root	and	index	attribute	to
override	the	instance	root	and	index	values.	If	an	instance	or	virtual	elements
have	an	attribute	active	value	of	false,	then	the	element	is	ignored.
IP	address	access	control	for	allow	and	deny	can	be	specified	at	the	virtual	host
level.	Also	user	agent	and	content	length	access	control	can	be	specified.	MIME
file	type	mapping	can	also	be	specified.
Basic	authentication	realms	can	be	setup	to	restrict	access	to	various	resource
locations.	The	virtual	host	protect	element	is	used	to	specify	a	restricted
resource.
Java	classes	can	be	executed	based	on	various	resource	paths.	The	virtual	host
script	element	is	used	to	associate	a	Java	classes	to	a	particular	resource	path.
The	trace	attribute	enables	JSM	tracing	of	the	HTTP	transaction.	The	clienttrace
attribute	allows	tracing	to	be	enabled	from	the	browser	URL	using	the	query

string	URL	parameter	trace=true.
	
httpd.xml
	
<?xml	version="1.0"	encoding="UTF-8"?>
	
<configuration>
	
		<instance	name="WebServer"	active="true"	root="www/instance/htdocs"	index="index.html">
	
				<errorlog	enabled="true"	file="www/instance/logs/error.log"/>
	
				<accesslog	enabled="true"	file="www/instance/logs/access.log"/>
	
				<listen	port="4563"	sslport="4564"	interface="*ALL"	backlog="256"
												secure="false"	store="pki/wwwssl.jks"	password="password"
												buffersend="-1"	bufferreceive="-1"	nodelay="false"	timeout="5"/>
	
				<access>
	
						<!--
												Once	a	true	condition	occurs	no	more	evaluations	are	done.
	
												<deny	address="*"/>
												<deny	address="10.2.1.45"/>
	
												<allow	address="*"/>
												<allow	address="10.2.1.45"/>
						-->
	
				</access>
	
				<mimetype>
	
						<!--
												These	are	the	default	values.
								-->
	

						<map	extension="png"		type="image/png"/>
						<map	extension="gif"		type="image/gif"/>
						<map	extension="jpg"		type="image/jpeg"/>
						<map	extension="jpeg"	type="image/jpeg"/>
						<map	extension="tiff"	type="image/tiff"/>
						<map	extension="ico"		type="image/x-icon"/>
						<map	extension="svg"		type="image/svg+xml"/>
						<map	extension="pdf"		type="application/pdf"/>
						<map	extension="css"		type="text/css;	charset=utf-8"/>
						<map	extension="xsl"		type="text/xls;	charset=utf-8"/>
						<map	extension="xml"		type="text/xml;	charset=utf-8"/>
						<map	extension="htm"		type="text/html;	charset=utf-8"/>
						<map	extension="html"	type="text/html;	charset=utf-8"/>
						<map	extension="js"			type="application/x-javascript;	charset=utf-8"/>
	
				</mimetype>
	
				<virtual	host="*"	active="true">
	
						<access>
	
								<!--
														Once	a	true	condition	occurs	no	more	evaluations	are	done.
	
														<deny	address="*"/>
														<deny	address="10.2.1"/>
														<deny	address="10.2.1.45"/>
	
														<allow	address="*"/>
														<allow	address="10.2.1"/>
														<allow	address="10.2.1.45"/>
	
														<deny	useragent="*"/>
														<deny	useragent="?"/>
														<deny	useragent="webos"/>
														<deny	useragent="opera"/>
														<deny	useragent="chrome"/>
														<deny	useragent="safari"/>
														<deny	useragent="android"/>

														<deny	useragent="firefox"/>
														<deny	useragent="explorer"/>
														<deny	useragent="imac"/>
														<deny	useragent="ipad"/>
														<deny	useragent="ipod"/>
														<deny	useragent="iphone"/>
														<deny	useragent="iwork"/>
														<deny	useragent="msnbot"/>
														<deny	useragent="lansaua"/>
														<deny	useragent="yahoobot"/>
														<deny	useragent="googlebot"/>
														<deny	useragent="googletoolbar"/>
														<deny	useragent="longreach"/>
														<deny	useragent="webdavnav"/>
	
														<allow	useragent="*"/>
														<allow	useragent="?"/>
														<allow	useragent="webos"/>
														<allow	useragent="opera"/>
														<allow	useragent="chrome"/>
														<allow	useragent="safari"/>
														<allow	useragent="android"/>
														<allow	useragent="firefox"/>
														<allow	useragent="explorer"/>
														<allow	useragent="imac"/>
														<allow	useragent="ipad"/>
														<allow	useragent="ipod"/>
														<allow	useragent="iphone"/>
														<allow	useragent="iwork"/>
														<allow	useragent="msnbot"/>
														<allow	useragent="lansaua"/>
														<allow	useragent="yahoobot"/>
														<allow	useragent="googlebot"/>
														<allow	useragent="googletoolbar"/>
														<allow	useragent="longreach"/>
														<allow	useragent="webdavnav"/>
	
														<deny	contentlength="4096"/>					Deny	access	if	content	length	is	greater	than	value
														<allow	contentlength="4096"/>				Allow	access	if	content	length	less	than	or	equal	to	value

	
														Zero	content	length	from	the	browser	is	a	special	case	and	access	is	allowed	for	no	content	connections
								-->
	
								<!--
														The	default	is	to	allow	access	for	all	addresses,	useragents	and	content	lengths
								-->
	
						</access>
	
						<protect>
	
								<realm	name="Area	51">
										<!--	access	is	a	hash	of	user,	password	and	realm	-->
										<user	name="user"	access="bb644a9819425bfd8586b408896a1031"/>
								</realm>
	
								<match	uri="/restricted"	realm="Area	51"	authentication="basic,digest"/>
	
						</protect>
	
						<script>
	
								<match	uri="/ping.jsp"	class="com.lansa.jsm.JSMHTTPServicePing"	trace="false"	clienttrace="false"/>
	
								<match	uri="/"	class="com.lansa.jsm.JSMHTTPServiceFile"	trace="false"	clienttrace="false">
											<parameter	name="cache.maxage"							value="28800"/>
											<parameter	name="cache.maxage.pdf"			value="28800"/>
											<parameter	name="cache.maxage.image"	value="28800"/>
								</match>
	
						</script>
	
						<mimetype>
	
								<map	extension="pdf"	type="application/pdf"/>
	
								<!--
														Defaults	to	instance	mimetype

										-->
	
						</mimetype>
	
				</virtual>
	
		</instance>
	
</configuration>
	

	
To	write	a	custom	Java	classes	to	process	HTTP	requests	from	the	HTTP	server
requires	the	Java	class	to	implement	the	com.lansa.jsm.JSMHTTPService
interface.
JSMHTTPService	interface
	
public	interface	JSMHTTPService
{
				public	void	doRequest	(JSMTrace	trace,
																												JSMHTTPVirtual	virtual,
																												JSMHTTPContext	context,
																												JSMHTTPTransport	transport,
																												JSMHTTPRequest	request)	;
}
	

JSMHTTPVirtual	public	methods
	
String	getHost	()
boolean	isActive	()	;
File	getDocumentRoot	()
File	getDocumentIndex	()
File	getFile	(String	path)
String	getContentType	(File	file)
void	logException	(JSMHTTPTransport	transport,	Throwable	t)
void	logError	(JSMHTTPTransport	transport,	JSMHTTPRequest	request,	String	message)
	

JSMHTTPContext	public	methods

	
HashMap	getServiceParameters	()
JSMHTTPHost[]	getServiceHosts	()
	

JSMHTTPHost	public	methods
	
String	getName	()
HashMap	getParameters	()
	

JSMHTTPTransport	public	methods
	
int	getId	()
Socket	getSocket	()
boolean	isSecure	()
String	getClientAddress	()
InetAddress	getInetAddress	()
InputStream	getInputStream	()
OutputStream	getOutputStream	()
void	consumeInputStream	(long	length)
byte[]	readInputStream	(int	length)
void	sendNotFound	(String	message)
void	sendForbidden	(String	message)
void	sendNotImplemented	(String	message)
	

JSMHTTPRequest	public	methods
	
String	getHead	()
String	getMethod	()
String	getVersion	()
String	getResourceRaw	()
String	getResourcePath	()
Properties	getProperties	()
String	getProperty	(String	key)
String	Enumeration	getPropertyNames	()
Properties	getQueryParameters	()
String	getHost	()
long	getContentLength	()
boolean	canAcceptGZIP	()

String	getUserAgent	()
String	getUserAgentVersion	()
boolean	isUserAgent	(String	agent)
boolean	isUserAgentIE6	()
	

	
The	following	Java	class	is	the	JSM	HTTP	server	class	that	handles	static	file
requests.
Example
	
package	com.acme.service	;
	
import	java.io.*	;
	
import	java.util.Date	;
import	java.util.HashMap	;
	
import	java.util.zip.GZIPInputStream	;
	
import	com.lansa.jsm.*	;
	
public	final	class	Example	implements	JSMHTTPService
{
				private	final	static	String	CRLF	=	"\r\n"	;
				private	final	static	String	EMPTY_STRING	=	""	;
				private	final	static	String	ENCODING_UTF8	=	"UTF-8"	;
	
				private	JSMTrace	m_trace	=	null	;
				private	JSMHTTPRequest	m_request	=	null	;
				private	JSMHTTPVirtual	m_virtual	=	null	;
				private	JSMHTTPTransport	m_transport	=	null	;
	
				/*
								RFC2616	-	Hypertext	Transfer	Protocol	-	HTTP/1.1
				*/
	
				private	HashMap	m_serviceParameters	=	null	;	//	Not	synchronized
	

				public	Example	()
				{
				}
	
				public	final	void	doRequest	(JSMTrace	trace,
																																		JSMHTTPVirtual	virtual,
																																		JSMHTTPContext	context,
																																		JSMHTTPTransport	transport,
																																		JSMHTTPRequest	request)
				{
								try
								{
												m_trace	=	trace	;
	
												m_virtual	=	virtual	;
	
												m_request	=	request	;
	
												m_transport	=	transport	;
	
												m_serviceParameters	=	context.getServiceParameters	()	;
	
												handleRequest	()	;
								}
								catch	(Throwable	t)
								{
												/*
																Log	exception
												*/
	
												m_virtual.logException	(m_transport,	t)	;
	
												if	(m_trace	==	null)
												{
																System.out.println	("JSMHTTPServiceFile:	handle	request	exception:	"	+	t.getMessage	())	;
	
																t.printStackTrace	()	;
												}
												else

												{
																m_trace.print	(t)	;
												}
								}
				}
	
				private	final	void	handleRequest	()	throws	IOException
				{
								if	(m_trace	!=	null)
								{
												m_trace.println	("Handle	request	for	resource	path:	",	m_request.getResourcePath	())	;
								}
	
								/*
												No	request	content	is	expected	for	GET	and	HEAD	methods
	
												Somebody	might	have	used	a	POST	and	content
	
												Need	to	consume	any	content	on	the	socket	input	stream
	
												This	allows	the	browser	to	switch	over	and	read	the	HTTP	response
								*/
	
								m_transport.consumeInputStream	(m_request.getContentLength	())	;
	
								/*
												Check	method
								*/
	
								if	(!isAllowedMethod	(m_request.getMethod	()))
								{
												m_virtual.logError	(m_transport,	m_request,	"Method	is	not	implemented")	;
	
												m_transport.sendNotImplemented	(m_request.getMethod	())	;
	
												return	;
								}
	
								/*

												Get	file
								*/
	
								String	path	=	m_request.getResourcePath	()	;
	
								File	file	=	m_virtual.getFile	(path)	;
	
								if	(file	==	null)
								{
												if	(m_trace	!=	null)
												{
																m_trace.println	("File	not	found")	;
												}
	
												m_virtual.logError	(m_transport,	m_request,	"File	not	found")	;
	
												m_transport.sendNotFound	(path)	;
	
												return	;
								}
	
								/*
												File	found
								*/
	
								if	(file.isDirectory	())
								{
												if	(m_trace	!=	null)
												{
																m_trace.println	("File	is	a	directory:	",	file.getAbsolutePath	())	;
												}
	
												m_virtual.logError	(m_transport,	m_request,	"File	is	a	directory")	;
	
												m_transport.sendNotFound	(path)	;
	
												return	;
								}
	

								if	(m_request.getMethod().equals	("HEAD"))
								{
												/*
																HEAD	file
												*/
	
												sendHEAD	(file)	;
	
												return	;
								}
	
								/*
												GET	file
								*/
	
								sendFile	(file)	;
	
								/*
												Remove	one-shot	directory	file
								*/
	
								if	(file.getParentFile().getName().equals	("one-shot"))
								{
												if	(!file.delete	())
												{
																if	(m_trace	!=	null)
																{
																				m_trace.println	("Cannot	delete	one-
shot	file:	",	file.getAbsolutePath	())	;
																}
	
																m_virtual.logError	(m_transport,	m_request,	"Cannot	delete	one-
shot	file")	;
												}
								}
	
				}
	
				private	final	void	sendHEAD	(File	sendFile)

				{
								/*
												The	HEAD	response	is	the	same	as	the	GET	response,	except	no	content	is	sent
	
												The	Content-Length	of	the	file	is	included,	but	no	content
								*/
	
								try
								{
												if	(m_trace	!=	null)
												{
																m_trace.println	("Send	HEAD	response:	",	sendFile.getCanonicalPath	())	;
												}
	
												/*
																Create	protocol
	
																RFC2616	-	HTTP/1.1
	
																If	the	server	chooses	to	close	the	connection	immediately	after	sending	the	response,
																it	should	send	a	Connection	header	including	the	close	token
												*/
	
												long	contentLength	=	sendFile.length	()	;
	
												boolean	isCompressed	=	JSMHTTPHelper.isCompressed	(sendFile)	;
	
												if	(isCompressed	&&	!canAcceptCompressed	())
												{
																isCompressed	=	false	;
	
																contentLength	=	JSMHTTPHelper.getUncompressedContentLength	(sendFile)	;
												}
	
												String	contentType	=	m_virtual.getContentType	(sendFile)	;
	
												StringBuffer	response	=	new	StringBuffer	(512)	;
	
												response.append	("HTTP/1.1	200	OK")	;

												response.append	(CRLF)	;
	
												response.append	("Date:	")	;
												response.append	(JSMDateTime.getFormattedHTTPDate	(new	Date	()))	;
												response.append	(CRLF)	;
	
												response.append	("Content-Type:	")	;
												response.append	(contentType)	;
												response.append	(CRLF)	;
	
												response.append	("Content-Length:	")	;
												response.append	(Long.toString	(contentLength))	;
												response.append	(CRLF)	;
	
												if	(isCompressed)
												{
																response.append	("Content-Encoding:	gzip")	;
																response.append	(CRLF)	;
												}
	
												/*
																Response	date	is	mandatory	for	caching	to	work
												*/
	
												int	cacheAge	=	getCacheAge	(contentType,	sendFile)	;
	
												if	(cacheAge	<=	0)
												{
																response.append	("Cache-Control:	max-age=0,	s-maxage=0,	must-
revalidate,	proxy-revalidate,	no-cache")	;
																response.append	(CRLF)	;
												}
	
												if	(JSMHTTPHelper.isTextPlain	(contentType))
												{
																/*
																				Stop	IE8	from	doing	content	sniffing
																*/
	

																response.append	("X-Content-Type-Options:	nosniff")	;
																response.append	(CRLF)	;
												}
	
												response.append	("Connection:	close")	;
												response.append	(CRLF)	;
	
												response.append	(CRLF)	;
	
												byte[]	protocol	=	response.toString().getBytes	(ENCODING_UTF8)	;
	
												if	(m_trace	!=	null)
												{
																File	file	=	m_trace.createTraceFile	("HTTP_PROTOCOL_RESPONSE.TXT")	;
	
																JSMHTTPHelper.outputToFile	(file,	protocol)	;
												}
	
												/*
																Send	response
	
																If	the	client	socket	is	closed,	then	a	broken	pipe	exception	will	occur
												*/
	
												OutputStream	outputStream	=	m_transport.getOutputStream	()	;
	
												outputStream.write	(protocol)	;
	
												outputStream.flush	()	;
								}
								catch	(IOException	e)
								{
												/*
																The	user	can	close	the	browser,	before	all	the	content	is	sent
												*/
	
												if	(m_trace	!=	null)
												{
																m_trace.println	("Error	sending	HEAD	response")	;

												}
	
												m_virtual.logError	(m_transport,	m_request,	"Error	sending	HEAD	response")	;
								}
				}
	
				private	final	void	sendFile	(File	sendFile)
				{
								InputStream	inputStream	=	null	;
	
								try
								{
												if	(m_trace	!=	null)
												{
																m_trace.println	("Send	file	response:	",	sendFile.getCanonicalPath	())	;
												}
	
												/*
																Create	protocol
	
																RFC2616	-	HTTP/1.1
	
																If	the	server	chooses	to	close	the	connection	immediately	after	sending	the	response,
																it	should	send	a	Connection	header	including	the	close	token
												*/
	
												boolean	sendChunked	=	false	;
	
												boolean	uncompressContent	=	false	;
	
												long	contentLength	=	sendFile.length	()	;
	
												boolean	isCompressed	=	JSMHTTPHelper.isCompressed	(sendFile)	;
	
												if	(isCompressed	&&	!canAcceptCompressed	())
												{
																isCompressed	=	false	;
	
																uncompressContent	=	true	;

	
																contentLength	=	JSMHTTPHelper.getUncompressedContentLength	(sendFile)	;
												}
	
												String	contentType	=	m_virtual.getContentType	(sendFile)	;
	
												StringBuffer	response	=	new	StringBuffer	(512)	;
	
												response.append	("HTTP/1.1	200	OK")	;
												response.append	(CRLF)	;
	
												response.append	("Date:	")	;
												response.append	(JSMDateTime.getFormattedHTTPDate	(new	Date	()))	;
												response.append	(CRLF)	;
	
												response.append	("Content-Type:	")	;
												response.append	(contentType)	;
												response.append	(CRLF)	;
	
												if	(sendChunked)
												{
																response.append	("Transfer-Encoding:	chunked")	;
																response.append	(CRLF)	;
												}
												else
												{
																response.append	("Content-Length:	")	;
																response.append	(Long.toString	(contentLength))	;
																response.append	(CRLF)	;
												}
	
												if	(isCompressed)
												{
																response.append	("Content-Encoding:	gzip")	;
																response.append	(CRLF)	;
												}
	
												/*
																Response	Date:	is	mandatory	for	caching	to	work

												*/
	
												int	cacheAge	=	getCacheAge	(contentType,	sendFile)	;
	
												if	(cacheAge	<=	0)
												{
																response.append	("Cache-Control:	max-age=0,	s-maxage=0,	must-
revalidate,	proxy-revalidate,	no-cache")	;
																response.append	(CRLF)	;
												}
												else
												{
																response.append	("Cache-Control:	")	;
																response.append	("max-age=")	;
																response.append	(Integer.toString	(cacheAge))	;
																response.append	(",	s-maxage=")	;
																response.append	(Integer.toString	(cacheAge))	;
																response.append	(CRLF)	;
												}
	
												if	(JSMHTTPHelper.isTextPlain	(contentType))
												{
																/*
																				Stop	IE8	from	doing	content	sniffing
																*/
	
																response.append	("X-Content-Type-Options:	nosniff")	;
																response.append	(CRLF)	;
												}
	
												response.append	("Connection:	close")	;
												response.append	(CRLF)	;
	
												response.append	(CRLF)	;
	
												byte[]	protocol	=	response.toString().getBytes	(ENCODING_UTF8)	;
	
												if	(m_trace	!=	null)
												{

																File	file	=	m_trace.createTraceFile	("HTTP_PROTOCOL_RESPONSE.TXT")	;
	
																JSMHTTPHelper.outputToFile	(file,	protocol)	;
												}
	
												/*
																Send	response
	
																If	the	client	socket	is	closed,	then	a	broken	pipe	exception	will	occur
												*/
	
												OutputStream	outputStream	=	m_transport.getOutputStream	()	;
	
												outputStream.write	(protocol)	;
	
												/*
																Send	file	content
												*/
	
												if	(uncompressContent)
												{
																if	(m_trace	!=	null)
																{
																				m_trace.println	("Uncompress	content")	;
																}
	
																inputStream	=	new	GZIPInputStream	(new	FileInputStream	(sendFile),	16384)	;
												}
												else
												{
																inputStream	=	new	FileInputStream	(sendFile)	;
												}
	
												if	(sendChunked)
												{
																JSMHTTPHelper.sendChunked	(inputStream,	outputStream)	;
												}
												else
												{

																JSMHTTPHelper.sendStream	(inputStream,	outputStream)	;
												}
	
												inputStream.close	()	;
	
												outputStream.flush	()	;
								}
								catch	(IOException	e)
								{
												/*
																The	user	can	close	the	browser,	before	all	the	content	is	sent
												*/
	
												if	(inputStream	!=	null)
												{
																try
																{
																				inputStream.close	()	;
																}
																catch	(Exception	e2)
																{
																}
												}
	
												if	(m_trace	!=	null)
												{
																m_trace.println	("Error	sending	file	response")	;
												}
	
												m_virtual.logError	(m_transport,	m_request,	"Error	sending	file	response")	;
								}
				}
	
				private	final	boolean	isAllowedMethod	(String	method)
				{
								/*
												Standard	HTTP	methods
	
												GET

												PUT
												POST
												HEAD
												TRACE
												DELETE
												OPTIONS
												CONNECT
								*/
	
								if	(method.equals	("GET"))
								{
												return	true	;
								}
	
								if	(method.equals	("HEAD"))
								{
												return	true	;
								}
	
								return	false	;
				}
	
				private	final	boolean	canAcceptCompressed	()
				{
								if	(m_request.canAcceptGZIP	())
								{
												return	true	;
								}
	
								return	false	;
				}
	
				private	final	int	getCacheAge	(String	contentType,	File	sendFile)
				{
								int	cacheAge	=	getCacheAge	()	;
	
								if	(JSMHTTPHelper.isImage	(contentType))
								{
												return	getCacheAgeImage	()	;

								}
	
								if	(JSMHTTPHelper.isPDF	(contentType))
								{
												return	getCacheAgePDF	()	;
								}
	
								return	cacheAge	;
				}
	
				private	final	int	getCacheAge	()
				{
								return	getServiceParameterInteger	("CACHE.MAXAGE")	;
				}
	
				private	final	int	getCacheAgePDF	()
				{
								/*
												IE	does	not	pass	the	pdf	content	off	to	the	Adobe	reader	if	the	cache	is	0
	
												Example	browser	URI	/axes/dbmhelp.pdf
								*/
	
								return	getServiceParameterInteger	("CACHE.MAXAGE.PDF")	;
				}
	
				private	final	int	getCacheAgeImage	()
				{
								/*
												YUI/IE	image	caching
	
												IE	is	making	frequent	requests	for	images
	
												Tell	the	browser	to	cache	the	image,	the	default	is	no	cache
								*/
	
								return	getServiceParameterInteger	("CACHE.MAXAGE.IMAGE")	;
				}
	

				private	final	int	getServiceParameterInteger	(String	property)
				{
								String	value	=	(String)m_serviceParameters.get	(property)	;
	
								if	(value	==	null)
								{
												return	0	;
								}
	
								if	(value.equals	(EMPTY_STRING))
								{
												return	0	;
								}
	
								return	Integer.parseInt	(value)	;
				}
}
	

5.	Java	Service	Manager	Services

Note:	The	Service	descriptions	are	presently	being	revised	and
extended.	Some	service	descriptions	now	have	an	extended
description,	examples	of	use,	service	command	syntax	diagrams	and
parameter	descriptions.	In	future	versions	of	this	guide,	all	services
will	be	in	this	extended	format.

The	non-extended	service	descriptions	contain	a	definition	of	each	service
including	a	table	listing	these	items:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

	

	The	Command,	Keyword	and	Value	are	used	with	the	JSMCMD	argument	in
the	JSM_COMMAND	Built-In	Function.	The	Notes	for	developers	provide
some	details	for	the	specific	keyword	or	value.
Consider	this	example	from	the	SMSService	table:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

SEND TO value Mandatory.	Mobile	number.

MSG value Mandatory.	Text	message.

	

For	the	example	in	the	above	table,	this	command	might	appear	as	follows:
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SEND	TO(041123456)	MSG(Test	message	from	SMSService)')	TO_GET(#JSMSTS	#JSMMSG)
	

Some	familiarity	with	the	underlying	service	or	protocol	may	be	required	in
order	to	properly	use	the	commands.	For	example,	if	you	are	using	the
SMSService,	you	may	need	to	SET	SMS	transport	parameters	before	you	can
SEND	messages.

Services	provided	are:

5.41	AxesTerminalService
5.39	BASE64FileService
5.36	ExcelService
5.37	ExcelReadService
5.26	FileQueueService
5.2	FTPService
5.42	HashService
5.5
HTTPInboundJSONBindService
5.6	HTTPInboundQueryService
5.9	HTTPInboundSVService
5.8
HTTPInboundXMLBindService
5.7	HTTPInboundXMLService
5.10
HTTPOutboundXMLBindService

5.11	HTTPOutboundJSONBindService
5.4	HTTPService
5.28	JMSFileService
5.29	JMSXMLBindService
5.30	JSONBindFileService
5.27	OpenLDAPService
5.34	PDFDocumentService
5.33	PDFSpoolFileService
5.40	PGPFileService
5.14	POP3MailService
5.31	RFIDataSourceService
5.3	SFTPService
5.15	SMSService
5.13
SMTPMailAttachmentSignatureService

5.12	SMTPMailService
5.22
SOAPAgentService
5.23
SOAPServerService
5.38	SQLService
5.35	SVFileService
5.17
XMLBindFileService
5.25
XMLBindQueueService
5.16	XMLFileService
5.18	XMLParserService
5.24
XMLQueueService
5.19
XMLReaderService
5.21	XMLQueryService
5.20	XMLWriterService
5.32	ZipService

	

5.1	Supplementary	Information
5.1.1	Mapping	Service	Name	to	Java	Classes
5.1.2	IANA	Encodings
5.1.3	Time	Zones
5.1.4	Date	and	Time	Formats
5.1.5	Decimal	Formats
5.1.6	Web	Browser	Content
5.1.7	Carriage	Return,	Line	Feed	and	New	Line
5.1.8	XML	Validation
5.1.9	XML	Entity	Resolver
5.1.10	XML	Namespace
5.1.11	XML	Transformation
5.1.12	XSL	Extension
5.1.13	MQSeries	Built-In	Functions
5.1.14	MQSeries	IBM	i	Configuration
5.1.15	MQSeries	Programs
5.1.16	Data	Queue	Programs
5.1.17	IBM	Toolbox	for	Java
5.1.18	Common	Command	Keywords

5.1.1	Mapping	Service	Name	to	Java	Classes
The	service	name	is	the	value	used	by	the	SERVICE	keyword.	This	name	is
used	in	a	keyword	lookup	on	the	service.properties	file	in	the	system
subdirectory.	The	string	"service."	is	prefixed	to	the	service	name	and	the	Java
class	that	will	supply	the	service	is	located	and	loaded.	This	loaded	class	then
receives	the	future	commands,	until	it	is	unloaded	and	a	new	service	is	loaded.
Example
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(FTPService)')	TO_GET(#JSMSTS	#JSMMSG)
	

The	service	FTPService	is	used	by	the	JSM	server	to	locate	the	Java	class
com.lansa.jsm.service.FTPService.
Example
	
service.FTPService=com.lansa.jsm.service.FTPService
service.XMLParserService=com.lansa.jsm.service.XMLParserService
service.POP3MailService=com.lansa.jsm.service.POP3MailService
	

5.1.2	IANA	Encodings
The	HTTP	protocol	content-type	charset	encoding	name	and	the	XML
declaration	encoding	name	use	the	IANA	character	set	names.
Integrator	uses	the	following	tables	to	correctly	encode	content	and	to	modify
the	XML	declaration	encoding	to	match	the	selected	byte	encoding.
For	more	information,	see	IANA	encoding	and	Java	Supported	encoding:
www.iana.org/assignments/character-sets
http://download.oracle.com/javase/1.5.0/docs/guide/intl/encoding.doc.html
The	following	table	contains	the	Java	encoding	to	IANA	encoding	mappings.

Java	Encoding IANA	encoding

UTF8 utf-8

UTF-8 utf-8

UTF-16BE utf-16be

UTF-16LE utf-16le

ASCII ascii

ISO-8859-1 iso-8859-1

ISO-8859-2 iso-8859-2

ISO-8859-3 iso-8859-3

ISO-8859-4 iso-8859-4

ISO-8859-5 iso-8859-5

ISO-8859-6 iso-8859-6

ISO-8859-7 iso-8859-7

ISO-8859-8 iso-8859-8

ISO-8859-9 iso-8859-9

ISO-8859-13 iso-8859-13

ISO-8859-15 iso-8859-15

http://www.iana.org/assignments/character-sets
http://download.oracle.com/javase/1.5.0/docs/guide/intl/encoding.doc.html

ISO8859_1 iso-8859-1

ISO8859_2 iso-8859-2

ISO8859_3 iso-8859-3

ISO8859_4 iso-8859-4

ISO8859_5 iso-8859-5

ISO8859_6 iso-8859-6

ISO8859_7 iso-8859-7

ISO8859_8 iso-8859-8

ISO8859_9 iso-8859-9

ISO8859_13 iso-8859-13

ISO8859_15 iso-8859-15

CP1250 windows-1250

CP1251 windows-1251

CP1252 windows-1252

CP1253 windows-1253

CP1254 windows-1254

CP1255 windows-1255

CP1256 windows-1256

CP1257 windows-1257

MS874 windows-874

MS932 windows-932

MS936 windows-936

MS949 windows-949

MS950 windows-950

CP037 ebcdic-cp-us

CP277 ebcdic-cp-dk

CP278 ebcdic-cp-fi

CP280 ebcdic-cp-it

CP284 ebcdic-cp-es

CP285 ebcdic-cp-gb

CP290 ebcdic-jp-kana

CP297 ebcdic-cp-fr

CP424 ebcdic-cp-he

CP500 ebcdic-cp-ch

CP870 ebcdic-cp-yu

CP871 ebcdic-cp-is

CP918 ebcdic-cp-ar2

CP420 ebcdic-cp-ar1

CP140 ebcdic-us-37+euro

CP141 ebcdic-de-273+euro

CP142 ebcdic-dk-277+euro

CP143 ebcdic-fi-278+euro

CP144 ebcdic-it-280+euro

CP145 ebcdic-es-284+euro

CP146 ebcdic-gb-285+euro

CP147 ebcdic-fr-297+euro

CP148 ebcdic-international-500+euro

CP149 ebcdic-is-871+euro

EUCJIS euc-jis

EUC_JP euc-jp

JIS iso2022-jp

SJIS Shift_JIS

BIG5 big5

GB2312 gb2312

KOI8-R koi8-r

KOI8_R koi8-r

ISO2022KR euc-kr

CP273 ibm-273

CP437 ibm-437

CP775 ibm-775

CP850 ibm-850

CP852 ibm-852

CP855 ibm-855

CP857 ibm-857

CP860 ibm-860

CP861 ibm-861

CP862 ibm-862

CP863 ibm-863

CP864 ibm-864

CP865 ibm-865

CP866 ibm-866

CP868 ibm-868

CP869 ibm-869

CP1026 ibm-1026

CP1047 ibm-1047

	

The	following	table	contains	the	IANA	encoding	to	Java	encoding	mappings.

IANA	Encoding Java	encoding

UTF-8 UTF-8

UTF-16BE UTF-16BE

UTF-16LE UTF-16LE

ASCII ISO8859_1

US-ASCII ISO8859_1

ISO-8859-1 ISO8859_1

ISO-8859-2 ISO8859_2

ISO-8859-3 ISO8859_3

ISO-8859-4 ISO8859_4

ISO-8859-5 ISO8859_5

ISO-8859-6 ISO8859_6

ISO-8859-7 ISO8859_7

ISO-8859-8 ISO8859_8

ISO-8859-9 ISO8859_9

ISO-8859-13 ISO8859_13

ISO-8859-15 ISO8859_15

ISO_8859_1 ISO8859_1

ISO_8859_2 ISO8859_2

ISO_8859_3 ISO8859_3

ISO_8859_4 ISO8859_4

ISO_8859_5 ISO8859_5

ISO_8859_6 ISO8859_6

ISO_8859_7 ISO8859_7

ISO_8859_8 ISO8859_8

ISO_8859_9 ISO8859_9

ISO_8859_13 ISO8859_13

ISO_8859_15 ISO8859_15

WINDOWS-1250 Cp1250

WINDOWS-1251 Cp1251

WINDOWS-1252 Cp1252

WINDOWS-1253 Cp1253

WINDOWS-1254 Cp1254

WINDOWS-1255 Cp1255

WINDOWS-1256 Cp1256

WINDOWS-1257 Cp1257

WINDOWS-874 MS874

WINDOWS-932 MS932

WINDOWS-936 MS936

WINDOWS-949 MS949

WINDOWS-950 MS950

EBCDIC-CP-US Cp037

EBCDIC-CP-CA Cp037

EBCDIC-CP-NL Cp037

EBCDIC-CP-DK Cp277

EBCDIC-CP-NO Cp277

EBCDIC-CP-FI Cp278

EBCDIC-CP-SE Cp278

EBCDIC-CP-IT Cp280

EBCDIC-CP-ES Cp284

EBCDIC-CP-GB Cp285

EBCDIC-JP-KANA Cp290

EBCDIC-CP-FR Cp297

EBCDIC-CP-HE Cp424

EBCDIC-CP-CH Cp500

EBCDIC-CP-YU Cp870

EBCDIC-CP-IS Cp871

EBCDIC-CP-AR2 Cp918

EBCDIC-CP-AR1 Cp420

EBCDIC-US-37+EURO Cp1140

EBCDIC-DE-273+EURO Cp1141

EBCDIC-DK-277+EURO Cp1142

EBCDIC-NO-277+EURO Cp1142

EBCDIC-FI-278+EURO Cp1143

EBCDIC-SE-278+EURO Cp1143

EBCDIC-IT-280+EURO Cp1144

EBCDIC-ES-284+EURO Cp1145

EBCDIC-GB-285+EURO Cp1146

EBCDIC-FR-297+EURO Cp1147

EBCDIC-INTERNATIONAL-500+EURO Cp1148

EBCDIC-IS-871+EURO Cp1149

EUCJP EUC_JP

EUC-JP EUC_JP

ISO2022-JP ISO2022JP

ISO-2022-JP ISO2022JP

SHIFT_JIS SJIS

SHIFT-JIS SJIS

IBM932 MS932

IBM-932 MS932

X-SJIS MS932

WINDOWS-31J MS932

BIG5 Big5

GB2312 GB2312

KOI8-R KOI8_R

EUC-KR EUC_KR

ISO-2022-KR ISO2022KR

CP367 ISO8859_1

IBM367 ISO8859_1

IBM-367 ISO8859_1

CP819 ISO8859_1

IBM819 ISO8859_1

IBM-819 ISO8859_1

CP1047 ISO8859_1

IBM1047 ISO8859_1

IBM-1047 ISO8859_1

IBM-37 Cp037

IBM-273 Cp273

IBM-277 Cp277

IBM-278 Cp278

IBM-280 Cp280

IBM-284 Cp284

IBM-285 Cp285

IBM-290 Cp290

IBM-297 Cp297

IBM-420 Cp420

IBM-424 Cp424

IBM-437 Cp437

IBM-500 Cp500

IBM-775 Cp775

IBM-850 Cp850

IBM-852 Cp852

IBM-855 Cp855

IBM-857 Cp857

IBM-858 Cp858

IBM-860 Cp860

IBM-861 Cp861

IBM-862 Cp862

IBM-863 Cp863

IBM-864 Cp864

IBM-865 Cp865

IBM-866 Cp866

IBM-868 Cp868

IBM-869 Cp869

IBM-870 Cp870

IBM-871 Cp871

IBM-918 Cp918

IBM-924 Cp924

IBM-1026 Cp1026

IBM-1140 Cp1140

IBM-1141 Cp1141

IBM-1142 Cp1142

IBM-1143 Cp1143

IBM-1144 Cp1144

IBM-1145 Cp1145

IBM-1146 Cp1146

IBM-1147 Cp1147

IBM-1148 Cp1148

IBM-1149 Cp1149

	

5.1.3	Time	Zones
JSM	services	that	use	date	and	time	values	also	have	an	associated	time	zone.
The	default	time	zone	is	supplied	by	the	JVM.	The	Java	System	property
user.timezone	can	be	used	to	change	the	JVM's	default	time	zone.
A	time	zone	represents	a	time	offset	and	daylight	savings	schedule.
A	custom	time	zone	has	a	time	offset	and	no	daylight	savings	schedule.
The	syntax	of	a	custom	time	zone	is:
	
GMT	Sign	TwoDigitHours	:	TwoDigitMinutes
	
	Sign:	+	or	-
	Hours:	00	to	23
	Minutes:	00	to	59
	

If	you	specify	an	incorrect	custom	Time	Zone	ID,	then	"GMT"	is	used.
Example
	
GMT-08:00
GMT+10:30	
Australia/Sydney
	

Time	Zone	IDs
Africa/Abidjan America/Regina Brazil/DeNoronha

Africa/Accra America/Rio_Branco Brazil/East

Africa/Addis_Ababa America/Rosario Brazil/West

Africa/Algiers America/Santiago Canada/Atlantic

Africa/Asmera America/Santo_Domingo Canada/Central

Africa/Bamako America/Sao_Paulo Canada/Eastern

Africa/Bangui America/Scoresbysund Canada/East-
Saskatchewan

Africa/Banjul America/Shiprock Canada/Mountain

Africa/Bissau America/St_Johns Canada/Newfoundland

Africa/Blantyre America/St_Kitts Canada/Pacific

Africa/Brazzaville America/St_Lucia Canada/Saskatchewan

Africa/Bujumbura America/St_Thomas Canada/Yukon

Africa/Cairo America/St_Vincent Chile/Continental

Africa/Casablanca America/Swift_Current Chile/EasterIsland

Africa/Ceuta America/Tegucigalpa Cuba

Africa/Conakry America/Thule Egypt

Africa/Dakar America/Thunder_Bay Eire

Africa/Dar_es_Salaam America/Tijuana Europe/Amsterdam

Africa/Djibouti America/Tortola Europe/Andorra

Africa/Douala America/Vancouver Europe/Athens

Africa/El_Aaiun America/Virgin Europe/Belfast

Africa/Freetown America/Whitehorse Europe/Belgrade

Africa/Gaborone America/Winnipeg Europe/Berlin

Africa/Harare America/Yakutat Europe/Bratislava

Africa/Johannesburg America/Yellowknife Europe/Brussels

Africa/Kampala Antarctica/Casey Europe/Bucharest

Africa/Khartoum Antarctica/Davis Europe/Budapest

Africa/Kigali Antarctica/DumontDUrville Europe/Chisinau

Africa/Kinshasa Antarctica/Mawson Europe/Copenhagen

Africa/Lagos Antarctica/McMurdo Europe/Dublin

Africa/Libreville Antarctica/Palmer Europe/Gibraltar

Africa/Lome Antarctica/Rothera Europe/Helsinki

Africa/Luanda Antarctica/South_Pole Europe/Istanbul

Africa/Lubumbashi Antarctica/Syowa Europe/Kaliningrad

Africa/Lusaka Antarctica/Vostok Europe/Kiev

Africa/Malabo Arctic/Longyearbyen Europe/Lisbon

Africa/Maputo Asia/Aden Europe/Ljubljana

Africa/Maseru Asia/Almaty Europe/London

Africa/Mbabane Asia/Amman Europe/Luxembourg

Africa/Mogadishu Asia/Anadyr Europe/Madrid

Africa/Monrovia Asia/Aqtau Europe/Malta

Africa/Nairobi Asia/Aqtobe Europe/Minsk

Africa/Ndjamena Asia/Ashgabat Europe/Monaco

Africa/Niamey Asia/Ashkhabad Europe/Moscow

Africa/Nouakchott Asia/Baghdad Europe/Nicosia

Africa/Ouagadougou Asia/Bahrain Europe/Oslo

Africa/Porto-Novo Asia/Baku Europe/Paris

Africa/Sao_Tome Asia/Bangkok Europe/Prague

Africa/Timbuktu Asia/Beirut Europe/Riga

Africa/Tripoli Asia/Bishkek Europe/Rome

Africa/Tunis Asia/Brunei Europe/Samara

Africa/Windhoek Asia/Calcutta Europe/San_Marino

America/Adak Asia/Choibalsan Europe/Sarajevo

America/Anchorage Asia/Chongqing Europe/Simferopol

America/Anguilla Asia/Chungking Europe/Skopje

America/Antigua Asia/Colombo Europe/Sofia

America/Araguaina Asia/Dacca Europe/Stockholm

America/Aruba Asia/Damascus Europe/Tallinn

America/Asuncion Asia/Dhaka Europe/Tirane

America/Atka Asia/Dili Europe/Tiraspol

America/Barbados Asia/Dubai Europe/Uzhgorod

America/Belem Asia/Dushanbe Europe/Vaduz

America/Belize Asia/Gaza Europe/Vatican

America/Boa_Vista Asia/Harbin Europe/Vienna

America/Bogota Asia/Hong_Kong Europe/Vilnius

America/Boise Asia/Hovd Europe/Warsaw

America/Buenos_Aires Asia/Irkutsk Europe/Zagreb

America/Cambridge_Bay Asia/Istanbul Europe/Zaporozhye

America/Cancun Asia/Jakarta Europe/Zurich

America/Caracas Asia/Jayapura Greenwich

America/Catamarca Asia/Jerusalem Hongkong

America/Cayenne Asia/Kabul Iceland

America/Cayman Asia/Kamchatka Indian/Antananarivo

America/Chicago Asia/Karachi Indian/Chagos

America/Chihuahua Asia/Kashgar Indian/Christmas

America/Cordoba Asia/Katmandu Indian/Cocos

America/Costa_Rica Asia/Krasnoyarsk Indian/Comoro

America/Cuiaba Asia/Kuala_Lumpur Indian/Kerguelen

America/Curacao Asia/Kuching Indian/Mahe

America/Danmarkshavn Asia/Kuwait Indian/Maldives

America/Dawson Asia/Macao Indian/Mauritius

America/Dawson_Creek Asia/Macau Indian/Mayotte

America/Denver Asia/Magadan Indian/Reunion

America/Detroit Asia/Makassar Iran

America/Dominica Asia/Manila Israel

America/Edmonton Asia/Muscat Jamaica

America/Eirunepe Asia/Nicosia Japan

America/El_Salvador Asia/Novosibirsk Kwajalein

America/Ensenada Asia/Omsk Libya

America/Fort_Wayne Asia/Oral Mexico/BajaNorte

America/Fortaleza Asia/Phnom_Penh Mexico/BajaSur

America/Glace_Bay Asia/Pontianak Mexico/General

America/Godthab Asia/Pyongyang Navajo

America/Goose_Bay Asia/Qatar Pacific/Apia

America/Grand_Turk Asia/Qyzylorda Pacific/Auckland

America/Grenada Asia/Rangoon Pacific/Chatham

America/Guadeloupe Asia/Riyadh Pacific/Easter

America/Guatemala Asia/Saigon Pacific/Efate

America/Guayaquil Asia/Sakhalin Pacific/Enderbury

America/Guyana Asia/Samarkand Pacific/Fakaofo

America/Halifax Asia/Seoul Pacific/Fiji

America/Havana Asia/Shanghai Pacific/Funafuti

America/Hermosillo Asia/Singapore Pacific/Galapagos

America/Indiana/Indianapolis Asia/Taipei Pacific/Gambier

America/Indiana/Knox Asia/Tashkent Pacific/Guadalcanal

America/Indiana/Marengo Asia/Tbilisi Pacific/Guam

America/Indiana/Vevay Asia/Tehran Pacific/Honolulu

America/Indianapolis Asia/Tel_Aviv Pacific/Johnston

America/Inuvik Asia/Thimbu Pacific/Kiritimati

America/Iqaluit Asia/Thimphu Pacific/Kosrae

America/Jamaica Asia/Tokyo Pacific/Kwajalein

America/Jujuy Asia/Ujung_Pandang Pacific/Majuro

America/Juneau Asia/Ulaanbaatar Pacific/Marquesas

America/Kentucky/Louisville Asia/Ulan_Bator Pacific/Midway

America/Kentucky/Monticello Asia/Urumqi Pacific/Nauru

America/Knox_IN Asia/Vientiane Pacific/Niue

America/La_Paz Asia/Vladivostok Pacific/Norfolk

America/Lima Asia/Yakutsk Pacific/Noumea

America/Los_Angeles Asia/Yekaterinburg Pacific/Pago_Pago

America/Louisville Asia/Yerevan Pacific/Palau

America/Maceio Atlantic/Azores Pacific/Pitcairn

America/Managua Atlantic/Bermuda Pacific/Ponape

America/Manaus Atlantic/Canary Pacific/Port_Moresby

America/Martinique Atlantic/Cape_Verde Pacific/Rarotonga

America/Mazatlan Atlantic/Faeroe Pacific/Saipan

America/Mendoza Atlantic/Jan_Mayen Pacific/Samoa

America/Menominee Atlantic/Madeira Pacific/Tahiti

America/Merida Atlantic/Reykjavik Pacific/Tarawa

America/Mexico_City Atlantic/South_Georgia Pacific/Tongatapu

America/Miquelon Atlantic/St_Helena Pacific/Truk

America/Monterrey Atlantic/Stanley Pacific/Wake

America/Montevideo Australia/ACT Pacific/Wallis

America/Montreal Australia/Adelaide Pacific/Yap

America/Montserrat Australia/Brisbane Poland

America/Nassau Australia/Broken_Hill Portugal

America/New_York Australia/Canberra Singapore

America/Nipigon Australia/Darwin Turkey

America/Nome Australia/Hobart US/Alaska

America/Noronha Australia/Lindeman US/Aleutian

America/North_Dakota/Center Australia/Lord_Howe US/Arizona

America/Panama Australia/Melbourne US/Central

America/Pangnirtung Australia/North US/Eastern

America/Paramaribo Australia/NSW US/East-Indiana

America/Phoenix Australia/Perth US/Hawaii

America/Port_of_Spain Australia/Queensland US/Indiana-Starke

America/Port-au-Prince Australia/South US/Michigan

America/Porto_Acre Australia/Sydney US/Mountain

America/Porto_Velho Australia/Tasmania US/Pacific

America/Puerto_Rico Australia/Victoria US/Pacific-New

America/Rainy_River Australia/West US/Samoa

America/Rankin_Inlet Australia/Yancowinna Zulu

America/Recife Brazil/Acre 	

	

5.1.4	Date	and	Time	Formats
The	International	Standard	for	the	representation	of	dates	and	times	is	ISO8601.
For	unambiguous	representation	of	dates	and	times	the	following	formats	have
been	chosen.	The	date	separator	-	(dash)	can	be	replaced	with	a	/	(slash).	The
time	element	separator	T	can	be	a	blank.	The	time	zone	value	of	hh:mm	can	be
hhmm	or	hh,	but	the	+	or	-	is	mandatory.	If	no	time	zone	is	present	then	a
hierarchy	of	time	zones	will	be	used,	the	time	zone	determined	by	the	service	or
+00:00.
A	program	can	pass	a	date	value	to	the	service	using	different	formats.	If	the
program	field	is	numeric	then	use	the	all	numbers	format.	If	program	field	is	an
alphanumeric	then	use	the	string	format	or	numeric	format.
Possible	program	field	values:
YYYYMMDD	[TZD]
YYYYMMDDHHMMSS	[TZD]
YYYY-MM-DD	[TZD]
YYYY/MM/DD	[TZD]
YYYY-MM-DD	HH:MM:SS	[TZD]
YYYY-MM-DDTHH:MM:SS	[TZD]
YYYY-MM-DDTHH:MM:SS.SSSSSSSSS	[TZD]

YYYY Four	digit	year	(1000-9999).

MM Two	digit	month	(01-12).

DD Two	digit	day	(01-31).

HH Two	digit	hour	(00-23).
Default.	00.

MM Two	digit	minute	(00-59).
Default	00.

SS Two	digit	second	(00-59).
Default	00.

SSSSSSSSS One	to	nine	digits	representing	a	decimal	fraction	of	a	second.
Default.	000000000.

TZD Time	zone	designator	(Z	or	+hh:mm	or	-hh:mm)
Z	means	GMT	or	+00:00.
Default.	+00:00.

	
Example	program	field	date	values:
	
20040331
20040331+10
20040331150000
20040331150000Z
20040331150000+10
20040331150000+1000
20040331150000+10:00
	
2004-03-31
2004-03-31+10
2004-03-31	15:00:00
2004-03-31	15:00:00Z
2004-03-31	15:00:00+10
2004-03-31	15:00:00+1000
2004-03-31	15:00:00+10:00
2004-03-31	15:00:00.000+10
	
2004-03-31T15:00:00.000+10:00
	

	
To	convert	a	date	time	into	a	string	representation	the	following	case-sensitive
date	format	patterns	can	be	used.

yy 2	digit	year 00-99.

yyyy 4	digit	year 1000-9999.

MM Month	in	year 01-12.

MMM Month	in	year Jan-Dec	(Locale	dependent).

MMMM Month	in	year January-December		(Locale	dependent).

dd Day	in	month 01-31.

HH Hour	in	day 00-23.

mm Minute	in	hour 00-59.

ss Second	in	minute 00-59.

SSS Millisecond 000.

SSSSSSSSS Nanosecond 000000000.

z TimeZone GMT+00:00.

Z TimeZone +0000.

ZZ TimeZone +00:00.

AM/PM AM	PM	Marker AM	or	PM	(Locale	dependant).

hh Hour	in	AM/PM 1-12.

EE Day	in	week 1-7.

EEE Day	in	week Sun-Sat	(Locale	dependant).

EEEE Day	in	week Sunday-Saturday	(Locale	dependant).

	

	
Example	date	format	patterns:
	
dd-MM-yyyy
dd-MM-yyyy	HH:mm:ss
dd-MM-yyyy	HH:mm:ss	Z
	

	

5.1.5	Decimal	Formats
Decimal	format	patterns	allow	numbers	to	be	formatted	to	a	particular	locale.

0 Digit.

# Digit,	zero	shows	as	absent.

. Decimal	separator	or	monetary	decimal	separator.

- Minus	sign.

, Grouping	separator.

E Separates	mantissa	and	exponent	in	scientific	notation.

; Subpattern	boundary.

% Multiply	by	100	and	show	as	percentage.

\u2030 Multiply	by	1000	and	show	as	per	mile.

\u00A4 Currency	sign,	replaced	by	currency	symbol.
If	doubled,	replaced	by	international	currency	symbol.
If	present	in	a	pattern,	the	monetary	decimal	separator	is	used	instead
of	the	decimal	separator.
If	used	in	an	XML	attribute,	use	hex	entity	¤

' Used	to	quote	special	characters.
If	the	%	character	is	needed	in	the	pattern	then	use	'%'.
If	the	#	character	is	needed	in	the	pattern	then	use	'#'
To	create	a	single	quote	itself,	use	two	in	a	row.
The	single	quote	can	be	used	inside	a	double	quoted	XML	attribute.

5.1.6	Web	Browser	Content
Two	content	encoding	methods	are	available	when	sending	data	from	a	HTTP
client	browser	to	a	HTTP	server.
Both	methods	do	not	identify	the	byte	encoding	used	by	the	client	browser	so
the	conversion	of	client	data	to	the	encoding	of	the	server	can	be	problematic	if
the	characters	are	not	in	the	ASCII	range.
It	has	been	observed	that	some	browsers	will	use	the	content-type	charset
attribute	to	override	the	default	client	browser	encoding	that	is	applied	to	the
INPUT	form	data	being	posted	to	the	server.
If	the	HTML	page	has	been	served	from	the	server	using	a	content-type	charset
attribute	then	this	will	have	the	same	effect	as	a	meta	tag	within	the	HTML
document.
To	control	the	byte	encoding	used	by	the	HTTP	client	browser	using	a	meta	tag
in	the	HTML	document.
	
<head>	
<meta	http-equiv="content-type"	content="text/html;	charset=utf-8">
<head>	
	

Using	a	charset	value	of	utf-8	means	that	the	HTML	FORM	post	from	any
client	locale	will	be	received	by	the	server	UTF-8	encoded.

Method	1:	multipart/format-data
HTML	source:
	
<FORM	METHOD="POST"	ACTION="http://lansa01:88/cgi-bin/jsmdirect?
upload"	ENCTYPE="multipart/form-data">
<INPUT	NAME="SONUMBER"		TYPE="TEXT"	VALUE="12345"/>
</TD></TR>
<INPUT	NAME="CUSTNAME"		TYPE="TEXT"	VALUE="ABC	Industries"/>
</TD></TR>
<INPUT	NAME="STREET"				TYPE="TEXT"	VALUE="123	Main	St"/>
</TD></TR>
<INPUT	NAME="CITY"						TYPE="TEXT"	VALUE="Chicago"/></TD>
</TR>
<INPUT	NAME="POSTCODE"		TYPE="TEXT"	VALUE="60609"/></TD>

</TR>
<INPUT	NAME="FILE"						TYPE="FILE"	SIZE	="60"/>
<INPUT	TYPE="SUBMIT"				VALUE="Send"/>
</FORM>
	

Content	type:
	
multipart/form-data;	boundary=---------------------------7d37e321500b2
	

Content:
	
-----------------------------7d37e321500b2
Content-Disposition:	form-data;	name="SONUMBER"
	
12345
-----------------------------7d37e321500b2
Content-Disposition:	form-data;	name="CUSTNAME"
	
ABC	Industries
-----------------------------7d37e321500b2
Content-Disposition:	form-data;	name="STREET"
	
123	Main	St
-----------------------------7d37e321500b2
Content-Disposition:	form-data;	name="CITY"
	
Chicago
-----------------------------7d37e321500b2
Content-Disposition:	form-data;	name="POSTCODE"
	
60609
-----------------------------7d37e321500b2
Content-Disposition:	form-data;	name="FILE";	filename=""
Content-Type:	application/octet-stream
	

-----------------------------7d37e321500b2--
	

Method	2:	application/x-www-form-urlencoded
HTML	source:
	
<FORM	METHOD="POST"	ACTION="http://lansa01:88/cgi-bin/jsmdirect?
upload">
<INPUT	NAME="ORDER"		TYPE="TEXT"	VALUE="12345"/></TD>
</TR>
<INPUT	NAME="CUSTNAME"		TYPE="TEXT"	VALUE="ABC	Industries"/>
</TD></TR>
<INPUT	NAME="STREET"				TYPE="TEXT"	VALUE="123	Main	St"/>
</TD></TR>
<INPUT	NAME="CITY"						TYPE="TEXT"	VALUE="Chicago"/></TD>
</TR>
<INPUT	NAME="POSTCODE"		TYPE="TEXT"	VALUE="60609"/></TD>
</TR>
<INPUT	TYPE="SUBMIT"				VALUE="Send"/>
</FORM>
	

Content	type:
	
application/x-www-form-urlencoded
	

Content:
	
ORDER=12345&CUSTNAME=ABC+Industries&STREET=123+Main+St&CITY=Chicago&POSTCODE=60609
	

5.1.7	Carriage	Return,	Line	Feed	and	New	Line
New	lines	are	represented	on	different	platforms	by	carriage	return	(CR),	line
feed	(LF),	CRLF,	or	new	line	(NEL).
Unfortunately,	not	only	are	new	lines	represented	by	different	characters	on
different	platforms,	they	also	have	ambiguous	behaviour	even	on	the	same
platform.
Especially	with	the	advent	of	the	web,	where	text	on	a	single	machine	can	arise
from	many	sources,	this	causes	a	significant	problem.
Unfortunately,	these	characters	are	often	transcoded	directly	into	the
corresponding	Unicode	codes	when	a	character	set	is	transcoded;	this	means
that	even	programs	handling	pure	Unicode	have	to	deal	with	the	problems.

	 Unicode ASCII EBCDIC	1 EBCDIC	2

CR 000D 0D 0D 0D

LF 000A 0A 25 15

CRLF 000D	000A 0D	0A 0D	25 0D	15

NEL 0085 85 15 25

VT 000B 0B 0B 0B

FF 000C 0C 0C 0C

LS 2028 n/a n/a n/a

PS 2029 n/a n/a n/a

	

There	are	two	mappings	of	LF	and	NEL	used	by	EBCDIC	systems.
The	first	EBCDIC	column	shows	the	MVS	Open	Edition	(including	CP1047)
mapping	of	these	characters,	while	the	second	column	shows	the	CDRA
mapping.
This	difference	arises	from	the	use	of	LF	character	as	'New	Line'	in	ASCII-
based	Linux	environments	and	in	some	data	transfer	protocols	that	use	the
Linux	assumptions.

The	second	column	is	based	on	the	standardized	definitions	—	both	in	ASCII
and	EBCDIC	of	LF.
NEL	is	not	actually	defined	in	ASCII:	it	is	defined	in	ISO	6429	as	a	C1	control.
For	more	information	refer	to:
ww.w3.org/TR/newline
www.unicode.org/unicode/reports/tr13/tr13-5.html

http://www.w3.org/TR/newline
http://www.unicode.org/unicode/reports/tr13/tr13-5.html

5.1.8	XML	Validation
All	XML	services	have	the	ability	to	validate	XML	documents	using	DTD	and
XML	Schema	grammars.
All	XML	services	use	the	SAX2	'org.xml.sax.XMLReader'	interface	and
validation	features	are	enabled	via	this	interface.
All	XML	services	use	the	'org.apache.xerces.parsers.SAXParser'	parser	and
have	the	following	features	enabled.

Feature Description

http://xml.org/sax/features/validation DTD	validation	is
enabled.

http://xml.org/sax/features/namespaces Name	space	processing	is
enabled.

http://apache.org/xml/features/validation/dynamic Dynamic	validation	is
enabled.
Validation	is	only	done	if
the	grammar	is	present	in
the	document.

http://apache.org/xml/features/validation/schema XML	schema	validation	is
disabled	by	default.
This	feature	can	be
enabled	by	the	use	of	the
SCHEMA	keyword	or
'validation.schema'
property.

	

The	DTD	grammar	is	specified	by	the	DOCTYPE	before	the	root	element.
	
<!DOCTYPE	Orders	SYSTEM	"order.dtd">
	

The	XML	schema	grammar	is	specified	by	the	xsi:schemaLocation	or
xsi:noNamespaceSchemaLocation	attribute	on	the	root	element	of	the
document.

The	xsi	prefix	must	be	bound	to	the	Schema	document	instance	namespace,	as
specified	by	the	recommendation.
Each	document	that	uses	XML	Schema	grammars	must	specify	the	location	of
the	grammars	it	uses	by	using	an	xsi:schemaLocation	attribute	if	they	use
namespaces,	and	an	xsi:noNamespaceSchemaLocation	attribute	otherwise.
These	are	usually	placed	on	the	root	/	top-level	element	in	the	document,	though
they	may	occur	on	any	element.
Here	is	an	example	with	no	target	namespace:
	
<document	xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
	xsi:noNamespaceSchemaLocation='document.xsd'>
</document>
	

Here	is	an	example	with	a	target	namespace.	Note	that	it	is	an	error	to	specify	a
different	namespace	than	the	target	namespace	defined	in	the	Schema.
	
<document	xmlns='http://my.com'	xmlns:xsi='http://www.w3.org/2001/XMLSchema-
instance'
	xsi:schemaLocation='http://my.com	document.xsd'>
</document>
	

What	happens	if	both	DTD	validation	and	schema	validation	features	are	on	?
If	both	validators	are	present	in	the	pipeline,	then
If	the	instance	document	has	only	a	DTD	grammar	(DOCTYPE	before	the	root
element),	then	only	DTD	validation	errors	are	reported.
If	the	instance	document	has	only	XML	Schema	grammars,	then	only	XML
Schema	validation	errors	are	reported.
If	the	instance	document	has	both	DTD	and	XML	Schema	grammars,	validation
errors	for	both	DTD	and	XML	Schema	are	reported.
For	more	information	refer	to:
xml.apache.org/xerces2-j/faqs.html
xml.apache.org/xerces2-j/faq-pcfp.html
xml.apache.org/xerces2-j/features.html
xml.apache.org/xerces2-j/xml-schema.html

http://xml.apache.org/xerces2-j/faqs.html
http://xml.apache.org/xerces2-j/faq-pcfp.html
http://xml.apache.org/xerces2-j/features.html
http://xml.apache.org/xerces2-j/xml-schema.html

5.1.9	XML	Entity	Resolver
All	XML	services	have	an	entity	resolver	that	allows	the	parser	to	locate
resources	that	are	external	to	the	document.
The	entity	resolver	can	be	used	to	cache	external	resource	files	on	the	local
machine,	so	the	service	does	not	need	to	use	the	HTTP	protocol	to	get	remote
resource	files.	This	technique	can	also	be	used	to	handle	proxy/firewall	issues
where	the	service	cannot	connect	to	the	remote	server.
Refer	to	xml.apache.org/commons/components/resolver/resolver-article.html
A	resource	lookup	hierarchy	is	used	to	determine	the	location	of	dtd	and	schema
files.
If	a	systemid.{url}property	exists	then	it	will	be	used.
The	following	steps	are	done	for	file	(non-http)	resources.
If	the	'schema.dir'	property	exists,	then	this	directory	value	and	the	url	resource
filename	are	used	to	determine	the	location	of	the	file.
If	the	'schema.dir'	property	does	not	exist	and	the	url	resource	path	does	exist,
then	the	url	resource	path	is	used.
If	the	'schema.dir'	property	does	not	exist	and	the	url	resource	path	does	not
exist,	then	the	instance	dtd	sub-directory	and	the	url	resource	filename	is	used.
Here	is	an	example	of	an	XML	document	that	will	use	the	entity	resolver	to
locate	the	external	resource	'order.dtd'.
	
<?xml	version="1.0"	encoding="UTF-8"?>
<!DOCTYPE	Orders	SYSTEM	"order.dtd">
<Orders>
</Orders>
	
Sample	XML	service	properties	entries
	
schema.dir=schema
	
systemid.file:///jsm/instance/order.dtd=dtd/order.dtd
systemid.file:///jsm/instance/shipment.xsd=dtd/shipment.xsd
systemid.http://nasdaq.com/reference/NasdaqDotCom.dtd=dtd/nasdaq.dtd
systemid.file:///C:/Program%20Files/LANSA/Integrator/JSMInstance/order.dtd=dtd/order.dtd
	

http://xml.apache.org/commons/components/resolver/resolver-article.html

Note:	The	%20	represents	a	blank.

5.1.10	XML	Namespace
XML	namespaces	provide	a	simple	method	for	qualifying	element	and	attribute
names	used	in	Extensible	Markup	Language	documents	by	associating	them
with	namespaces	identified	by	URI	references.
Refer	to	Namespaces	in	XML	1.0
Apache	recommend	avoiding	the	use	of	default	namespaces.
If	you	are	looking	for	nodes	in	a	namespace,	the	XPath	expression	must	include
a	namespace	prefix	that	you	have	mapped	to	the	namespace	with	an	xmlns
declaration.
If	you	have	declared	a	default	namespace,	it	does	not	have	a	prefix.
In	order	to	construct	XPath	expressions	to	retrieve	nodes	from	this	namespace,
you	must	add	a	namespace	declaration	that	provides	a	prefix	you	can	include	in
the	XPath	expressions.
Suppose,	for	example,	you	want	to	locate	nodes	in	a	default	namespace	declared
as	follows:
	
xmlns="http://my-namespace"
	

Add	a	namespace	declaration	with	a	prefix	to	the	style	sheet	xsl:transform
element:
	
xmlns:xyz="http://my-namespace"
	
<xsl:transform	version="1.0"	xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
		xmlns:rdml="http://www.lansa.com/2000/XML/Function"
		xmlns:xalan="http://xml.apache.org/xalan"
		xmlns:xyz="http://my-namespace">
	

Then	you	can	use	xyz:	in	your	XPath	expression:
	
<rdml:field	name="FIELD"	value="{/xyz:order/@name}"/>
	

	
For	more	information	refer	to:

http://www.w3.org/TR/REC-xml-names/

Apache	frequently	asked	questions

http://xml.apache.org/xalan-j/faq.html

5.1.11	XML	Transformation
All	XML	services	have	been	designed	so	a	developer	can	create	transformation
style	sheets	to	bind	data	into	and	out	of	the	XML	document.
The	XML	Transformation	Wizard	creates	the	required	transformation	style
sheets	to	perform	this	task.
It	is	possible	to	use	these	created	XSLT	files	as	a	foundation	and	add	additional
XSLT	instructions.	This	task	needs	to	be	approached	with	caution	as	the	XSLT
syntax	is	difficult	and	performance	can	easily	be	degraded	if	incorrect	design
decisions	are	made.
For	improved	transformation	performance	convert	the	XSLT	files	into	compiled
transformation	style	sheets	using	the	XSL	Compiler.
For	more	information	refer	to:
W3C:	XSL	Transformations	(XSLT)
W3C:	XML	Path	Language	(XPath)

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath

5.1.12	XSL	Extension
For	those	situations	where	you	would	like	to	augment	the	functionality	of	XSLT
with	calls	to	a	procedural	language,	Apache	Xalan	supports	the	creation	and	use
of	extension	elements	and	extension	functions.
Refer	to	xml.apache.org/xalan-j/extensions.html
Xalan-Java	extensions
Compiled	transformation	style	sheets	(XSLTC)	support	the	use	of	extension
functions	implemented	in	external	Java	classes.
The	following	example	illustrates	how	to	create	and	use	an	extension	function.
XML	source:
	
<?xml	version="1.0"	encoding="UTF-8"?>
	
<Orders>
		<SalesOrder	SONumber="">
				<Customer	CustNumber="543">
						<CustName>ABC	Industries</CustName>
						<Street>123	Main	St</Street>
						<City>Chicago</City>
						<State>IL</State>
						<PostCode>60609</PostCode>
				</Customer>
		</SalesOrder>
</Orders>
	

Transformation	style	sheet:
	
<?xml	version="1.0"	encoding="UTF-8"?>
	
<xsl:transform	version="1.0"	xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
				xmlns:rdml="http://www.lansa.com/2000/XML/Function"
				xmlns:xalan="http://xml.apache.org/xalan"
				xmlns:java="http://xml.apache.org/xalan/java"
				exclude-result-prefixes="xalan	java">
	
<xsl:output	method="xml"	indent="yes"	xalan:indent-amount="2"/>

http://xml.apache.org/xalan-j/extensions.html
http://xml.apache.org/xalan-j/extensions.html

	
<xsl:template	match="/">
	
<rdml:function>
	
<rdml:fields>
				<xsl:call-template	name="function-level"/>
</rdml:fields>
	
</rdml:function>
	
</xsl:template>
	
<xsl:template	name="function-level">
	
<rdml:field	name="DELIVERY"	value="
{java:com.acme.xsl.Extension.getValue(/Orders/SalesOrder/@Delivery,'MISSING')}"/>
	
<rdml:field	name="ORDER"	value="
{java:com.acme.xsl.Extension.getValue(/Orders/SalesOrder/@SONumber,'MISSING','BLANK')}"/>
	
<rdml:field	name="STATEDESC"	value="
{java:com.acme.xsl.Extension.getDescription(/Orders/SalesOrder/Customer/State)}"/>
	
<rdml:field	name="CUSTNUM"	value="
{/Orders/SalesOrder/Customer/@CustNumber}"/>
<rdml:field	name="NAME"	value="
{/Orders/SalesOrder/Customer/CustName}"/>
<rdml:field	name="STREET"	value="
{/Orders/SalesOrder/Customer/Street}"/>
<rdml:field	name="CITY"	value="{/Orders/SalesOrder/Customer/City}"/>
<rdml:field	name="STATE"	value="{/Orders/SalesOrder/Customer/State}"/>
<rdml:field	name="ZIP"	value="{/Orders/SalesOrder/Customer/PostCode}"/>
	
</xsl:template>
	
</xsl:transform>
	

XML	transformation:
	
<?xml	version="1.0"	encoding="UTF-8"?>
<rdml:function	xmlns:rdml="http://www.lansa.com/2000/XML/Function">
		<rdml:fields>
				<rdml:field	value="MISSING"	name="DELIVERY"/>
				<rdml:field	value="BLANK"	name="ORDER"/>
				<rdml:field	value="Illinois"	name="STATEDESC"/>
				<rdml:field	value="543"	name="CUSTNUM"/>
				<rdml:field	value="ABC	Industries"	name="NAME"/>
				<rdml:field	value="123	Main	St"	name="STREET"/>
				<rdml:field	value="Chicago"	name="CITY"/>
				<rdml:field	value="IL"	name="STATE"/>
				<rdml:field	value="60609"	name="ZIP"/>
		</rdml:fields>
</rdml:function>
	

Java	extension:
	
package	com.acme.xsl	;
	
import	org.w3c.dom.*	;
	
public	class	Extension
{
	
				public	static	String	getDescription	(String	code)
				{
								if	(code.equalsIgnoreCase	("IL"))
								{
												return	"Illinois"	;
								}
	
								return	"?"	;
				}
	
				public	static	String	getValue	(NodeList	nodeList,	String	missingValue)
				{

								return	getValue	(nodeList,	missingValue,	"")	;
				}
	
				public	static	String	getValue	(NodeList	nodeList,	String	missingValue,	String	blankValue)
				{
								int	length	=	nodeList.getLength	()	;
	
								if	(length	==	0)
								{
												return	missingValue	;
								}
	
								Node	node	=	nodeList.item	(0)	;
	
								String	nodeValue	=	node.getNodeValue	()	;
	
								if	(nodeValue	==	null)
								{
												return	blankValue	;
								}
	
								if	(nodeValue.trim().equals	(""))
								{
												return	blankValue	;
								}
	
								return	nodeValue	;
				}
}
	

5.1.13	MQSeries	Built-In	Functions
The	MQSeries	Built-In	Functions	allow	messages	to	be	read	from	a	message
queue	and	transferred	across	to	the	loaded	service	for	processing.	Also	XML
responses	can	be	transferred	from	the	loaded	service	and	put	into	a	message
queue.
All	Built-in	functions	return	at	least	a	status	and	message.	The	status	is	a	string
value	or	an	MQ	API	reason	code	prefixed	with	the	string	MQR.

OK
ERROR
FATAL
MQR2002	-	Already	connected
MQR2033	-	No	messages
MQR2058	-	Queue	manager	name	not	valid	or	not	known
MQR2086	-	Unknown	Queue	Manager
MQR2079	-	Truncated	message	accepted
MQR2080	-	Truncated	message	failed
etc..

The	connection	and	queue	handle	parameters	are	4	byte	binary	values	and
cannot	be	sent	across	to	the	loaded	service,	so	the	fields	that	hold	these	values
must	be	named	with	the	JSM	prefix	to	exclude	them	from	the	service	field	list
data	transfer.
The	Built-In	Functions	are:
MQ_CONN
MQ_DISC
MQ_BEGIN
MQ_CMIT
MQ_BACK
MQ_OPEN
MQ_CLOSE
MQ_GET
MQ_PUT
MQ_DEPTH

Also	see
MQSeries	Built-in	Function	Code	Example

MQ_CONN
The	MQ_CONN	BIF	opens	a	connection	to	a	queue	manager	and	returns	a
connection	handle.
If	the	returned	status	is	OK	or	MQR2002	then	the	connection	handle	is	usable.
If	the	returned	status	is	OK	then	there	are	no	other	opened	connections	and	the
program	should	close	the	connection.
If	the	returned	status	is	MQR2002	then	there	are	other	opened	connections	and
the	program	should	not	close	the	connection,	as	this	will	close	the	other
connections	as	well.
Arguments

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Queue
Manager.

48 48 	 	

	

Return	Values

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Status. 20 20 	 	

2 A Required Message. 1 256 	 	

3 A Required Connection
Handle.

4 4 	 	

	

	

MQ_DISC
The	MQ_DISC	BIF	closes	the	connection	to	the	queue	manager.
Arguments

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Connection
Handle.

4 4 	 	

	

Return	Values

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Status. 20 20 	 	

2 A Required Message. 1 256 	 	

	

MQ_BEGIN
The	MQ_BEGIN	BIF	begins	a	unit	of	work	that	is	coordinated	by	the	queue
manager.	The	status	return	value	of	MQ2121
(MQRC_NO_EXTERNAL_PARTICIPANTS)	can	be	treated	as	a	notice
message	and	ignored.
Arguments

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Connection
Handle.

4 4 	 	

	

Return	Values

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Status. 20 20 	 	

2 A Required Message. 1 256 	 	

	

	

MQ_CMIT
The	MQ_CMIT	BIF	indicates	to	the	queue	manager	that	the	application	has
reached	a	syncpoint,	and	that	all	the	message	gets	and	puts	that	have	occurred
since	the	last	syncpoint	are	to	be	made	permanent.
Arguments

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Connection
Handle.

4 4 	 	

	

Return	Values

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Status. 20 20 	 	

2 A Required Message. 1 256 	 	

	

MQ_BACK
The	MQ_BACK	BIF	indicates	to	the	queue	manager	that	all	message	gets	and
puts	that	have	occurred	since	the	last	syncpoint	are	to	be	backed	out.
Arguments

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Connection
Handle.

4 4 	 	

	

Return	Values

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Status. 20 20 	 	

2 A Required Message. 1 256 	 	

	

	

MQ_OPEN
The	MQ_OPEN	BIF	opens	a	message	queue	and	returns	a	queue	handle.
Arguments

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Connection
Handle.

4 4 	 	

2 A Required Queue
Name.

48 48 	 	

3 A Required Open	Mode. 10 10 	 	

	

Return	Values

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Status. 20 20 	 	

2 A Required Message. 1 256 	 	

3 A Required Queue
Handle.

4 4 	 	

	

	
The	queue	can	be	opened	in	several	modes.

Mode MQSeries	API	options

*BLANKS MQOO_INPUT_AS_Q_DEF
MQOO_FAIL_IF_QUIESCING

I MQOO_INPUT_AS_Q_DEF

Q MQOO_INQUIRE

IQ MQOO_INPUT_AS_Q_DEF
MQOO_INQUIRE

IF MQOO_INPUT_AS_Q_DEF
MQOO_FAIL_IF_QUIESCING

IQF MQOO_INPUT_AS_Q_DEF
MQOO_INQUIRE
MQOO_FAIL_IF_QUIESCING

O MQOO_OUTPUT

OF MQOO_OUTPUT
MQOO_FAIL_IF_QUIESCING

OU MQOO_OUTPUT
MQOO_SET_IDENTITY_CONTEXT

OFU MQOO_OUTPUT
MQOO_FAIL_IF_QUIESCING
MQOO_SET_IDENTITY_CONTEXT

IO MQOO_INPUT_AS_Q_DEF
MQOO_OUTPUT

IOF MQOO_INPUT_AS_Q_DEF
MQOO_OUTPUT
MQOO_FAIL_IF_QUIESCING

IOFU MQOO_INPUT_AS_Q_DEF
MQOO_OUTPUT
MQOO_FAIL_IF_QUIESCING
MQOO_SET_IDENTITY_CONTEXT

	

	

MQ_CLOSE
The	MQ_CLOSE	BIF	closes	the	queue	specified	by	the	handle.
Arguments

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Connection
Handle.

4 4 	 	

2 A Required Queue
Handle.

4 4 	 	

	

Return	Values

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Status. 20 20 	 	

2 A Required Message. 1 256 	 	

	

	

MQ_GET
The	MQ_GET	BIF	gets	a	message	from	the	queue	and	passes	it	to	the	loaded
service.
Arguments

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Connection
Handle.

4 4 	 	

2 A Required Queue
Handle.

4 4 	 	

3 P Required Wait	Time
(milliseconds)
Use	-1	for
forever.

9 9 0 0

4 P Required Initial
Message
Length
Default	is
20000	bytes.
This	is	a
helper	size,	if
the	size	is	too
small	the
internal
storage	is
reallocated	to
the	size	of	the
message		and
another	get
operation	is
performed.

9 9 0 0

5 A Required Message	Id
Use	*BLANK
for	any

24 24 	 	

message.

6 A Required Correlation	Id
User
*BLANK	for
any	message.

24 24 	 	

7 A Optional SyncPoint
Y	or	N
Default	is	N.

1 1 	 	

	

Return	Values

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Status. 20 20 	 	

2 A Required Message. 1 256 	 	

3 P Required Message
Type.
1	-	Request
2	-	Reply
4	-	Report
8	-
Datagram
65536-
999999999
-	User
defined.

9 9 0 0

4 A Required Message
Format.

8 8 	 	

5 A Required Message	Id. 24 24 	 	

6 A Required Correlation
Id.

24 24 	 	

7 A Required Remote 48 48 	 	

Queue
Manager.

8 A Required Remote
Queue.

48 48 	 	

9 A Required User. 12 12 	 	

10 A Required Application
Id.

32 32 	 	

	

	

MQ_PUT
The	MQ_PUT	BIF	gets	a	message	response	from	the	loaded	service	and	puts	it
into	the	queue.
Arguments

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

1 A Required Connection
Handle.

4 4 	

2 A Required Queue	Handle. 4 4 	

3 P Required Message	Type.
8	-	Datagram
65536-999999999
-	User	defined.
If	a	value	of	0	is
passed	then	a	value
of	8	is	used.

9 9 0

4 A Required Message	Format.
*BLANK	-
MQFMT_NONE
MQSTR	-
MQFMT_STRING
or	user	defined.

8 8 	

5 A Required Message	Id	or
*BLANK	for
queue	manager	to
auto-generate.

24 24 	

6 A Required Correlation	Id	or
*BLANK.

24 24 	

7 A Required Remote	Message
Queue	or
*BLANK.

48 48 	

8 A Required Remote	Queue	or 48 48 	

*BLANK

9 P Optional Expiry.
(millisecond)
-1	for	queue
default.

9 9 0

10 A Optional User.
Default	is
*BLANK.

12 12 	

11 A Optional Application	Id. 32 32 	

	

	
Return	Values

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Status. 20 20 	 	

2 A Required Message. 1 256 	 	

	

	

MQ_DEPTH
The	MQ_DEPTH	BIF	returns	the	number	of	messages	in	the	queue.	The	queue
must	be	opened	with	an	MQOO_INQUIRE	option.
Arguments

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Connection
Handle.

4 4 	 	

2 A Required Queue
Handle.

4 4 	 	

	

Return	Values

No Type Required
Optional

Description Min
Length

Max
Length

Min
Decimal

Max
Decimal

1 A Required Status. 20 20 	 	

2 A Required Message. 1 256 	 	

3 P Required Message
Depth.

9 9 0 0

	

5.1.14	MQSeries	IBM	i	Configuration
The	following	i5/OS	commands	illustrate	how	to	create	the	necessary	MQ
objects	to	support	MQSeries	Java	clients.
	
GO	CMDMQM
STRSBS	QMQM/QMQM
CRTMQM	MQMNAME(USERAGENT.QUEUE.MANAGER)
STRMQM	MQMNAME(USERAGENT.QUEUE.MANAGER)
CRTMQMQ	QNAME(USERAGENT.QUEUE)	QTYPE(*LCL)	MQMNAME(USERAGENT.QUEUE.MANAGER)
CRTMQMCHL	CHLNAME(USERAGENT.CHANNEL)	CHLTYPE(*SVRCN)	MQMNAME(USERAGENT.QUEUE.MANAGER)
STRMQMCHL	CHLNAME(USERAGENT.CHANNEL)	MQMNAME(USERAGENT.QUEUE.MANAGER)
STRMQMLSR	MQMNAME(USERAGENT.QUEUE.MANAGER)
	

	

5.1.15	MQSeries	Programs
All	programs	will	return	at	least	a	status	and	message.	The	status	is	a	string
value	or	an	MQ	API	reason	code	prefixed	with	the	string	MQR.

OK
ERROR
FATAL
MQR2058	-	Queue	manager	name	not	valid	or	not	known
MQR2086	-	Unknown	Queue	Manager
etc..

JSMMQDEPTH	-	Depth	of	queue

Parameter Description I/O Type Len Dec

JSMQMGR Queue	Manager I CHAR 48 	

JSMQNAME Queue I CHAR 48 	

JSMDEPTH Queue	depth O DEC 8 0

JSMSTS Status O CHAR 20 	

JSMMSG Message O CHAR 256 	

	

The	JSMMQDEPTH	program	is	standalone	and	can	be	called	without	a	JSM
service	being	opened.
Example
	
CALL	PGM(JSMMQDEPTH)	PARM(#JSMQMGR	#JSMQNAME	#JSMDEPTH	#JSMSTS	#JSMMSG)	NUM_LEN(*DEFINED)
	

JSMMQGET	-	Get	message	from	queue

Parameter Description I/O Type Len Dec

JSMQMGR Queue	Manager I CHAR 48 	

JSMQNAME Queue I CHAR 48 	

JSMWAIT Wait	time	(millisecs,	-1	for
unlimited.)

I DEC 8 0

JSMMSIZE Message	size	(0	is	20K	|
value).	This	is	a	helper	size,	if
the	size	is	too	small	the
internal	storage	is	reallocated
to	the	size	of	the	message	and
another	get	operation	is
performed.

I DEC 8 0

JSMMID Message	Id.	(*BLANK	or
message	id)

I/O CHAR 24 	

JSMCID Correlation	Id.	(*BLANK	or
correlation	id)

I/O CHAR 24 	

JSMRQMGR Reply	Queue	Manager O CHAR 48 	

JSMREPLYQ Reply	Queue O CHAR 48 	

JSMMTYPE Message	Type O DEC 9 0

JSMSTS Status O CHAR 20 	

JSMMSG Message O CHAR 256 	

	

When	the	LANSA	function	or	RPG	program	receives	the	Message	Id	and
Correlation	Id,	do	not	send	these	values	across	to	the	loaded	JSM	service,
because	they	do	not	contain	valid	EBCDIC	characters.
The	Message	Id	and	Correlation	Id	can	be	used	to	get	a	message	that	matches
one	or	both	of	these	input	values,	if	you	require	the	next	message	set	the
message	id	and	correlation	id	fields	to	*BLANK	before	calling	the
JSMMQGET	program.
Example
	
CHANGE	FIELD(#JSMQMGR)	TO('MY.QMANAGER')
CHANGE	FIELD(#JSMQNAME)	TO('MY.QUEUE')
CHANGE	FIELD(#JSMWAIT)	TO(-1)
CHANGE	FIELD(#JSMSIZE)	TO(0)

CHANGE	FIELD(#JSMMID)	TO(*BLANK)
CHANGE	FIELD(#JSMCID)	TO(*BLANK)
	
CALL	PGM(JSMMQGET)	PARM(#JSMQMGR	#JSMQNAME	#JSMWAIT	#JSMMSIZE	#JSMMID	#JSMCID	#JSMRQMGR	#JSMREPLYQ	#JSMMTYPE	#JSMSTS	#JSMMSG)	NUM_LEN(*DEFINED)
	

JSMMQPUT	-	Put	message	on	queue

Parameter Description I/O Type Len Dec

JSMQMGR Queue	Manager I CHAR 48 	

JSMQNAME Queue I CHAR 48 	

JSMCCSID Message	CCSID	(0	for	queue
default)

I DEC 8 0

JSMPST Persistence	(Y	|	N	|	*BLANK
for	default)

I CHAR 1 	

JSMPTY Priority	(0	to	9	|	-1	for	queue
default)

I DEC 8 0

JSMMID Message	Id	(*BLANK	for
new	message	id)

I CHAR 24 	

JSMCID Correlation	Id	(*BLANK	or
value)

I CHAR 24 	

JSMMTYPE Message	Type
8	-	MQMT_DATAGRAM
65536-999999999	-	User
defined

I DEC 9 0

JSMRQMGR Reply	Queue	Manager I CHAR 48 	

JSMREPLYQ Reply	Queue I CHAR 48 	

JSMSTS Status O CHAR 20 	

JSMMSG Message O CHAR 256 	
Optional 	 	 	 	 	

JSMEXPIRY Expiry,	milliseconds,	-1	for
unlimited	(default)

I DEC 9 0

JSMUSER User I CHAR 12 	

	

When	you	use	the	optional	JSMEXPIRY	parameter,	you	must	also	pass	the
JSMUSER	parameter	as	well.	Failing	to	pass	the	JSMUSER	parameter	will
cause	the	JSMMQPUT	operation	to	fail.
Example
	
CHANGE	FIELD(#JSMCCSID)	TO(0)
CHANGE	FIELD(#JSMMTYPE)	TO(8)
CHANGE	FIELD(#JSMMID)	TO(*BLANK)
CHANGE	FIELD(#JSMCID)	TO(*BLANK)
CHANGE	FIELD(#JSMPST)	TO(Y)
CHANGE	FIELD(#JSMPTY)	TO(4)
CHANGE	FIELD(#JSMRQMGR)	TO(*BLANK)
CHANGE	FIELD(#JSMREPLYQ)	TO(*BLANK)
	
CALL	PGM(JSMMQPUT)	PARM(#JSMQMGR	#JSMQNAME	#JSMCCSID	#JSMPST	#JSMPTY	#JSMMID	#JSMCID	#JSMMTYPE	#JSMRQMGR	#JSMREPLYQ	#JSMSTS	#JSMMSG)	NUM_LEN(*DEFINED)
	

If	the	MQSeries	MQCONN	or	MQPUT	API	call	fails	the	current	message	is	put
to	a	recovery	file	JSMMQPUT	if	it	exists.	If	the	message	length	exceeds	32000
bytes	the	data	is	truncated.
The	DDS	source	for	physical	file	JSMMQPUT	is	in	QDDSRC	file	in	the	JSM
library.
	
DATE							8A						CCYYMMDD
TIME							6A						HHMMSS
JOBNUMBER		6A						000000
QUEUE						48A
MANAGER				48A
CCSID						8P	0
PERSIST				1A
PRIORITY			8P	0
USERID					12A
EXPIRY					9P	0
MESSAGEID		24A

CORRLATEID	24A
MSGTYPE				9P	0
RELYMGR				48A
RELYQUEUE		48A
MSGLENGTH		9P	0
MESSAGE				32000A
	

Also	see
MQSeries	and	DataQueue	programs	Example

5.1.16	Data	Queue	Programs
All	programs	will	return	at	least	a	status	and	message.	The	status	is	a	string
value	or	an	i5/OS	API	reason	code,	such	as:

OK
ERROR
FATAL
NOMSG
CPF9801	-	Object	not	found
and	so	on...

JSMDQGET	-	Get	message

Parameter Description I/O Type Len Dec

JSMQLIB Library I CHAR 10 	

JSMQNME Queue I CHAR 10 	

JSMQKEY Key	-	Use	a	blank	key	value	for
a	non-keyed	data	queue.

I CHAR 256 	

JSMWAIT Wait	time	(millisecs,	rounded	to
nearest	second)

I DEC 8 0

JSMSTS Status O CHAR 20 	

JSMMSG Message O CHAR 256 	

	

Example
	
CHANGE	FIELD(#JSMQLIB)	TO(MYLIB)
CHANGE	FIELD(#JSMQNME)	TO(MYQUEUE)
CHANGE	FIELD(#JSMQKEY)	TO(*BLANK)
	
CALL	PGM(JSMDQGET)	PARM(#JSMQLIB	#JSMQNME	#JSMQKEY	#JSMWAIT	#JSMSTS	#JSMMSG)	NUM_LEN(*DEFINED)
	

JSMDQPUT	-	Put	message

Parameter Description I/O Type Len Dec

JSMQLIB Library I CHAR 10 	

JSMQNME Queue I CHAR 10 	

JSMQKEY Key	-	Use	a	blank	key	value	for
a	non-keyed	data	queue.

I CHAR 256 	

JSMSTS Status O CHAR 20 	

JSMMSG Message O CHAR 256 	

	

Example
	
CALL	PGM(JSMDQPUT)	PARM(#JSMQLIB	#JSMQNME	#JSMQKEY	#JSMSTS	#JSMMSG)
	

Also	see
MQSeries	and	DataQueue	programs	Example

5.1.17	IBM	Toolbox	for	Java
JSM	services	such	as	the	PDFSpoolFileService	require	IBM	Toolbox	for	Java	or
JTOpen.
JSM	ships	with	Open	Source	Software,	JTOpen	8.2,	codebase	5770-SS1
V7R2M0.00	built=20140313.

The	IBM	Toolbox	for	Java	is	a	library	of	Java	classes	that	give	Java
programs	easy	access	to	IBM	i	data	and	resources.
JTOpen	is	the	open	source	version	of	Toolbox	for	Java.
This	toolbox	is	available	as	License	Program	57xxJC1	-	Toolbox	for	Java.
This	toolbox	is	available	as	License	Program	57xxSS1	Extended	Base
Directory	Support	for	V7R1.
The	jt400.jar	file	is	located	in	the	/QIBM/ProdData/HTTP/Public/jt400/lib
directory.

For	further	information	refer	to:
Toolbox	for	Java	and	JTOpen
IBM	provides	two	JDBC	drivers	for	the	IBM	i	database:
Native	JDBC	driver
This	is	shipped	as	part	of	the	IBM	i	Developer	Kit	for	Java	(57xxJV1).
It	is	implemented	by	making	native	method	calls	to	the	SQL	CLI	(Call	Level
Interface).
Consequently,	it	only	runs	on	the	IBM	i	JVM.
The	class	name	to	register	is	com.ibm.db2.jdbc.app.DB2Driver.	The	URL
subprotocol	is	db2.
Toolbox	JDBC	driver
This	is	shipped	as	part	of	the	IBM	Toolbox	for	Java.
It	is	implemented	by	making	direct	socket	connections	to	the	database	host
server.
This	JDBC	driver	runs	on	any	JVM.
The	class	name	to	register	is	com.ibm.as400.access.AS400JDBCDriver.	The
URL	subprotocol	is	as400.
Physical	file	journaling	for	JDBC	updates
	
CRTJRNRCV	JRNRCV(MYLIB/JDBC)	TEXT('JDBC	Journal	Receiver')

http://www-03.ibm.com/systems/i/software/toolbox/

CRTJRN	JRN(MYLIB/JDBC)	JRNRCV(MYLIB/JDBC)	TEXT('JDBC	Journal')
STRJRNPF	FILE(MYLIB/MYFILE)	JRN(MYLIB/JDBC)	IMAGES(*BOTH)
	

It	is	easy	to	forget	to	start	journaling	when	you	create	or	change	a	physical	file.
You	can	avoid	such	problems	by	creating	a	data	area	named	QDFTJRN	in	any
library	where	you	want	to	automatically	start	journaling.
The	new	data	area	contains	the	name	of	a	journal,	and	as	long	as	the	person
creating	the	physical	file	has	adequate	authority,	journaling	will	be	started	to	the
journal	named	in	the	data	area.
You	specify	the	journal	library	in	the	first	10	positions,	and	the	second	10
positions	contain	the	journal,	and	the	last	five	positions	contain	*FILE.	You	can
also	specify	*NONE	in	the	last	five	positions	to	prevent	journaling	from
starting.

5.1.18	Common	Command	Keywords

ARCHIVE
BIND
CONTENT
DOMGET
DOMGETRESULT
DOMSET
DOMSETMODEL
DOMSETRESULT
ENCODING
FILTER

FRAGMENT
LOCALE
METHOD
NUMBERFORMAT
OUTPUT
SCHEMA
SEPARATOR
SVCOLUMN
SVHEAD
SVLABEL

	SVMODE
SVQUOTE
SVROW
SVROWLIMIT
SVTABLE
TRIM
TRUNCATE
VALIDATING
VERSION
XSL

	

ARCHIVE
The	optional	keyword	ARCHIVE	is	used	to	archive	content	to	a	specified	path.
The	content	encoding	of	the	archive	can	be	controlled	by	the	use	of	an
ARCENCODE	keyword.	If	this	keyword	is	not	present	then	the
'archive.encoding'	service	property	entry	is	used,	if	this	service	property	does
not	exist	then	a	default	encoding	of	UTF-8	is	used.	To	use	the	default	file
encoding	of	the	JVM,	use	the	keyword	value	of	*DEFAULT.
	
ARCHIVE(/MYARCHIVE/FILE.DAT)
ARCHIVE(/MYARCHIVE/FILE.DAT)	ARCENCODE(*DEFAULT)
ARCHIVE(/MYARCHIVE/FILE.DAT)	ARCENCODE(ISO8859_1)
	
#
#	archive.encoding=ISO8859_1
archive.encoding=*DEFAULT
#
	

BIND
The	optional	keyword	BIND	can	be	used	by	HTTP	service's	SERVICE_LOAD
command	to	automatically	bind	the	optional	query	string	parameters	to	the
function	fields	or	to	fill	a	working	list.
The	command	must	contain	a	SERVICE_EXCHANGE(*FIELD)	keyword	or	a
working	list	to	allow	data	binding	to	occur.
The	query	string	parameters	need	to	be	supplied	in	a	standard	format:
	
/cgi-bin/jsmdirect?orderxml+fieldname(fieldvalue)+fieldname(fieldvalue)+...
	
/cgi-bin/jsmdirect?orderxml+period(12)+id(acme)
	

If	the	BIND	keyword	contains	the	special	value	of	*FIELD,	this	will	cause	the
function	fields	to	be	set	with	the	field	value.
If	the	BIND	keyword	contains	the	special	value	of	*LIST,	this	will	cause	the
column	1	of	the	working	list	argument	to	receive	the	field	name	and	column	2	to
receive	the	field	value.	The	working	list	columns	can	have	any	name	and	size.
Example
	
SERVICE_LOAD	SERVICE(HTTPInboundXMLService)	BIND(*FIELD)	SERVICE_EXCHANGE(*FIELD)
	
SERVICE_LOAD	SERVICE(HTTPInboundXMLService)	BIND(*LIST)	SERVICE_LIST(...)
	

CONTENT
The	optional	keyword	CONTENT	is	used	by	HTTP	services	to	control	the	type
of	content	being	accepted	or	the	content	type	being	sent.
It	is	highly	recommended	not	to	use	the	CONTENT	keyword	and	accept	the
default	value.
All	HTTP	services	and	content	handlers	are	expecting	a	particular	content	type,
if	content	is	being	received	and	its	content	type	does	not	match	the	content,	then
use	the	CONTENT	keyword	to	tell	the	service	to	accept	the	content	if	the
content	type	matches	the	keyword	value.
Some	Outbound	services	and	content	handlers	use	the	CONTENT	keyword	to
specify	the	type	of	content	to	be	created.	The	SEND	command	available	with
HTTPInboundSVService	service	and	InboundSeparatedValue	handler	use	the
CONTENT	keyword	to	direct	the	service	to	create	CSV	or	TSV	content.
A	CONTENT	keyword	value	of	*ANY	allows	the	service	or	content	handler	to
receive	content	with	any	content	type.
It	is	recommended	to	use	the	short	cut	names	for	the	content	keyword	value.

*XML application/xml

*TEXTXML text/xml

*TEXTPLAIN text/plain

*SOAP application/soap+xml

*HTML text/html

*XHTML application/xhtml+xml

*CSV application/comma-separated-values

*TEXTCSV text/	x-comma-separated-values

*TSV application/comma-separated-values

*TEXTTSV text/	x-tab-separated-values

*X12 application/edi-x12

*EDIFACT application/edifact

*STREAM application/octet-stream

*PDF application/pdf

*ZIP application/zip

*JSON application/json

*EXCEL application/vnd.ms-excel

*CRL application/pkix-crl

*GIF image/gif

*PNG image/png

*JPEG image/jpeg

*SVG image/svg+xml

*MPEG audio/mpeg

*MPEG4 video/mpeg4

	

	Example
	
SERVICE_LOAD	SERVICE(HTTPInboundXMLService)	CONTENT(*HTML)
	
SERVICE_LOAD	SERVICE(HTTPInboundXMLService)	CONTENT(*ANY)
	

ENCODING
The	optional	keyword	ENCODING	is	used	to	specify	what	encoding	must	be
applied	to	a	byte	content	to	convert	it	to	a	Unicode	string.
An	ENCODING	keyword	value	of	*DEFAULT	can	be	used	to	select	the	default
encoding	for	the	JVM.
XML	services	support	the	encoding	value	of	*AUTODETECT.	auto-detection
of	encoding	is	only	possible	on	XML	content	and	cannot	be	used	for	reading
other	content	like	comma-separated	text	files.
For	HTTP	services	the	ENCODING	on	the	SERVICE_LOAD	command
enables	the	service	to	convert	the	standard	input	byte	stream.
If	no	ENCODING	value	is	available,	the	service	uses	the	HTTP	protocol
content	type	charset	value	to	determine	the	encoding	used.
If	no	charset	is	present	the	encoding	defaults	to	the	JVM	default	file	encoding	or
auto-detect	for	XML	content.
The	ENCODING	value	can	be	used	on	the	SEND	command	of	HTTP	services
to	encode	the	HTTP	request/response	content,	an	appropriate	charset	value	is
automatically	append	to	the	end	of	the	content-type	protocol	line.	The	default
encoding	is	UTF-8.
If	the	HTTP	server	is	an	IBM	IBM	i	in	MIXED	output	mode	and	the	content
type	selected	starts	with	'text/',	the	encoding	will	have	no	effect,	the	text	content
will	be	encoded	using	the	CGI-EBCDIC-CCSID	value	and	the	HTTP	server	will
set	the	charset	based	on	the	DefaultNetCCSID	entry	in	the	server	configuration.
Note	that	you	need	to	run	the	International	version	of	Java	run-time.	The	US-
only	version	does	not	contain	all	the	encodings.
For	further	information	refer	to	5.1.2	IANA	Encodings.
Example
	
SERVICE_LOAD	SERVICE(HTTPInboundXMLService)	ENCODING(ISO8859_1)	SERVICE_LIST(...)
	

METHOD
The	optional	keyword	METHOD	is	used	to	specify	the	HTTP	request	method	to
be	used	for	outbound	HTTP	services.	The	default	value	is	POST.	The	HTTP
protocol	standard	defines	several	methods	and	user-defined	methods	can	be
used	for	REST	style	applications.
For	more	information	refer	to:
Method	Definitions

METHOD GET Retrieve	resource.

PUT Replace	resource.

POST Update	resource.

HEAD Get	retrieve	resource	header.

TRACE Trace	access	to	resource.

DELETE Delete	resource.

OPTIONS Get	communication	options.

user-defined 	

	

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

VERSION
The	optional	keyword	VERSION	is	used	to	specify	the	HTTP	request	protocol
version.	The	default	is	1.1.
For	the	SOAPAgentService	the	default	is	1.0.

VERSION 			0 HTTP/1.0

1.0 HTTP/1.0

			1 HTTP/1.1

1.1 HTTP/1.1

	

	

XSL
The	mandatory	keyword	XSL	is	used	to	specify	which	XSLT	file	will	be	used
for	transformation.
Inbound	XML	transactions	use	the	XSLT	to	transform	XML	document	into
FunctionXML	format	which	is	used	by	the	service	to	bind	the	XML	data	to
specified	fields	and	working	list.
Outbound	XML	transactions	use	the	XSLT	to	transform	FunctionXML	to	the
required	flavor	of	XML.
The	XSL	keyword	value	is	used	in	a	service	properties	resource	lookup	to
determine	the	location	of	the	XSLT	file.
The	first	resource	lookup	is	for	a	possible	Translet	class	name	using	the	xslc.
{value},	if	this	entry	is	not	present,	then	a	second	lookup	is	done	using	the	xsl.
{value}	for	file	name.
Example
	
RECEIVE	XSL(ORDER)	SERVICE_LIST(...)
	
#	xsl.order=xsl/receive-order.xsl
xslc.order=com.lansa.jsm.translet.ReceiveOrder
#
	

SCHEMA
The	optional	keyword	SCHEMA	is	used	to	turn	on	XML	schema	validation.
By	default,	XML	schema	validation	is	disabled.	XML	Schema	validation	can
also	be	controlled	by	the	service	property	'validation.schema'.
Example
	
SERVICE_LOAD	SERVICE(HTTPInboundXMLService)	SCHEMA(*YES)
	
#
validation.schema=*yes
#
	

VALIDATING
The	optional	keyword	VALIDATING	is	used	to	configure	the	service	to	use	a
validating	or	non-validating	XML	parser.
The	default	is	to	use	a	validating	XML	parser.	This	option	can	also	be	controlled
by	the	service	property	'validation.parser'.
A	nonvalidating	parser	ensures	that	the	XML	data	is	well	formed,	but	does	not
verify	that	it	is	valid.
A	validating	parser	uses	the	XML	document	defined	DTD	or	XMLSchema
grammars	to	validate	that	the	XML	data	elements	and	attributes	conform	to	the
structural	constraints	of	these	schemas.
Why	run	in	nonvalidating	mode	when	a	parser	is	capable	of	validation?.
Because	validation	can	significantly	impact	performance,	especially	when	long
and	complex	DTDs	or	XMLSchemas	are	involved.
Some	developers	find	that	while	enabling	validation	during	development	and
test	phases	is	crucial,	it's	sometimes	beneficial	to	surpress	validation	in
production	systems	where	document	throughput	is	most	valued	and	the
reliability	of	the	data	is	already	known.
Example
	
SERVICE_LOAD	SERVICE(HTTPInboundXMLService)	VALIDATING(*NO)
	
#
validation.parser=*no
#
	

	

FRAGMENT
A	fragment	is	a	partial	segment	of	a	complex	data	object.	Fragments	are	used	to
build	complex	data	structures,	such	as	XML,	using	individual	LANSA	fields
and	single	working	lists.	They	are	also	used	to	convert	incoming	complex
structures	back	into	fields	and	working	lists.
The	optional	keyword	FRAGMENT	can	be	used	by	content	handlers	and
services	that	process	XML,	to	help	in	the	creation	of	outbound	XML.
The	FRAGMENT	keyword	value	specifies	the	storage	name	for	the	created
XML.
Internally,	FunctionXML	is	created	using	the	field	list	and	list	objects.	This
FunctionXML	is	then	transformed	using	the	supplied	XSL	into	the	desired
flavor	of	XML.
If	the	resultant	XML	contains	an	<rdml:fragment	/>	tag,	then	a	stored	XML
fragment	under	this	name	is	merged	into	the	resultant	XML.	If	a	FRAGMENT
keyword	is	present,	then	the	resultant	XML	is	stored	under	the	fragment	name
for	later	merging.
If	no	FRAGMENT	keyword	is	present,	the	resultant	XML	becomes	the	final
output	XML	message.
The	FRAGMENT	keyword	is	also	used	by	the	Soap	Agent	Service	to	assist	in
the	creation	of	outgoing	SOAP	objects,	and	in	retrieving	the	data	in	a	SOAP
response.	Use	the	SOAP	Wizard	to	specify	which	parts	of	the	SOAP	object
represent	fragments,	and	to	give	each	fragment	a	name.
For	XML	services,	if	the	OUTPUT	option	is	*ADD	then	the	fragment	is
concatenated	to	the	fragment	already	stored	under	that	name.	The	*NEW	option
will	create	a	stored	fragment	if	one	does	not	exist	or	replace	an	existing	one.
Example
	
SEND	XSL(ORDER_DETAIL)	FRAGMENT(DETAIL)	SERVICE_LIST(...)
	

OUTPUT
The	optional	keyword	OUTPUT	is	used	to	append	XML	fragments.
If	no	OUTPUT	keyword	is	present,	then	the	value	*NEW	is	used.
The	OUTPUT	keyword	value	*ADD	directs	the	service	to	append	the	created
XML	fragment	to	the	end	of	the	previously	created	XML	fragment	of	the	same
storage	name.	If	no	previous	storage	exists,	then	a	new	one	is	created.
The	OUTPUT	keyword	value	*NEW	directs	the	service	to	create	a	new
fragment	storage	if	one	does	not	exist	or	replace	an	existing	fragment	stored
under	the	specified	fragment	name.

NUMBERFORMAT
The	optional	keyword	NUMBERFORMAT	is	used	to	handle	numeric	strings,
where	the	decimal	separator	is	not	the	decimal	point	character	".".
XML	content	always	uses	the	"."	as	a	decimal	separator,	but	CSV	or	TSV	data
could	use	another	character.
The	keyword	value	can	take	one	of	the	special	values	or	a	locale	string.
The	presence	of	this	keyword	will	override	other	default	actions.

NUMBERFORMAT *NONE No	formatting.

*DEFAULT Use	the	JDK	default	locale.

*CLIENT Use	the	locale	of	the	LANSA	function
or	RPG	program	job.

*USERAGENT Use	the	locale	of	the	remote	user
agent.

value Locale	string.

	

	If	no	keyword	is	present,	the	'numberformat.locale'	entry	in	the	associated
service's	properties	file	is	used.
If	there	is	no	keyword	or	'numberformat.locale'	no	formatting	is	done.
For	inbound	content	handlers	if	the	number	format	is	*USERAGENT,	the
HTTP	protocol	property	X-USER-AGENT-LOCALE	is	used,	if	this	is	not
available	then	the	*CLIENT	value	is	used.
For	outbound	content	handlers	if	the	number	format	is	*USERAGENT,	the
value	of	the	LOCALE	keyword	is	used.
Example
	
RECEIVE	NUMBERFORMAT(EN_AU)
	
#
numberformat.locale=EN_AU
#	

LOCALE
The	optional	keyword	LOCALE	is	used	by	services	that	receive	and	send
content	to	the	LANSA	Integrator	User	Agent	desktop	application,	or	other
LANSA	Integrator	services.
Outbound	content	handlers	can	use	this	keyword	to	control	the	value	of	the	X-
USER-AGENT-LOCALE	HTTP	protocol	property.
If	the	keyword	value	is	a	language_country	string	value,	this	is	converted	into	a
Locale	object.
If	the	keyword	value	is	*DEFAULT,	the	locale	returned	from
Locale.getDefault()	method	is	used.
If	the	keyword	value	is	*CLIENT,	the	locale	returned	from	the
command.getClient().getLocale()	method	is	used.
If	no	LOCALE	keyword	is	present,	then	the	value	of	*CLIENT	is	used.
Example
	
SEND	LOCALE(EN_AU)
	
SEND	LOCALE(*CLIENT)
	

SVROW
The	optional	keyword	SVROW	is	used	to	specify	the	starting	row	when	reading
records.
The	default	value	is	1.

SVROWLIMIT
The	optional	keyword	SVROWLIMIT	is	used	to	specify	the	number	of	rows	to
be	read.

SVROWLIMIT *NONE Default.	There	is	no	limit,	read	all	records.

*LIST The	number	of	records	read	is	equal	to	the
max	entry	count	of	the	working	list.

*AVAILABLE The	number	of	records	read	is	equal	to	the
max	entry	count	minus	the	number	of	current
entries	in	the	working	list.

value An	integer	value.

	

	SVMODE
The	optional	keyword	SVMODE	is	used	by	content	handlers	and	services	that
process	separated	value	data	to	control	how	to	handle	the	inbound	separated
value	data.

SVMODE *NONE Default.	Inbound	separated	value	data	does	not	contain
a	field	header	record.

*IGNORE Inbound	separated	value	data	contains	a	field	header
record.	This	record	is	to	be	ignored	and	not	included	in
the	received	data	list.

*USE Inbound	separated	value	data	contains	a	field	header
record.	This	record	is	to	be	used	in	data	column	field
mapping.

	

	If	the	SVHEAD	keyword	is	not	present	and	the	SVMODE	keyword	is	*NONE
or	*IGNORE	then	the	inbound	data	is	inserted	directly	in	the	working	list,	so
the	field	count	and	data	types	must	match	the	list	definition.
Example
	
RECEIVE	SVMODE(*IGNORE)	SERVICE_LIST(...)
	

SVQUOTE
The	optional	keyword	SVQUOTE	is	used	to	explicitly	double	quote	text	values
or	all	values.
The	possible	values	are	*ALL,	*TEXT	or	*NONE	which	is	also	the	default
value.
A	value	of	*ALL	means	that	all	values	are	double	quoted.
A	value	of	*TEXT	means	only	text	values	are	double	quoted.

SVHEAD
The	optional	keyword	SVHEAD	is	used	to	describe	the	field	layout	of	the
separated	value	data.
Inbound
The	SVHEAD	keyword	has	different	roles	for	inbound	separated	value	data	and
outbound	separated	value	data.
When	the	SVHEAD	keyword	is	used	on	the	RECEIVE	or	READ	command	for
processing	inbound	data,	the	following	rules	apply.
If	the	SVHEAD	keyword	is	not	present	and	the	SVMODE	keyword	is	*NONE
or	*IGNORE	then	the	inbound	data	is	inserted	directly	in	the	working	list,	so
the	field	count	and	data	types	must	match	the	list	definition.
If	the	SVHEAD	keyword	is	present,	then	a	look	up	on	the	service	properties
resource	is	done	using	the	sv.head.{value}	to	determine	the	header	record	that
describes	the	column	layout	of	the	inbound	data.
This	header	record	is	used	to	map	column	value	to	working	list	field	for	each
record	as	its	being	added	to	the	list.
Example	SVFileService.properties
	
sv.head.order=LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY
	

Example
	
READ	SVHEAD(ORDER)	SERVICE_LIST(...)
	
RECEIVE	SVHEAD(ORDER)	SERVICE_LIST(...)
	

Outbound
To	add	a	header	record	to	outbound	separated	value	data,	the	SVHEAD
keyword	can	be	used	on	the	SEND	or	WRITE	command.
The	keyword	value	is	used	to	locate	the	header	record	using	the	sv.head.{value}
lookup	on	the	service	properties	resource.
A	keyword	value	of	*LIST	will	cause	the	service	to	use	the	working	list	fields.
A	keyword	value	of	*COLUMN	will	cause	the	service	to	use	the	fields	from	the
SVCOLUMN	lookup.

Example
	
WRITE	SVHEAD(*LIST)	SERVICE_LIST(...)
	
SEND	SVHEAD(*LIST)	SERVICE_LIST(...)
	

SVEXCLUDE
The	keyword	SVEXCLUDE	is	used	to	exclude	working	list	fields	from	the
content	being	created	by	the	WRITE	command.

SVCOLUMN
The	keyword	SVCOLUMN	is	used	to	define	the	relational	database	columns,	a
look	up	on	the	service	properties	resource	is	done	using	the	sv.column.{value}.
The	SVTABLE	keyword	is	used	to	define	the	database	table.
Example	SVFileService.properties
	
sv.column.order=LINE_NUMBER,PART_NUMBER,PART_DESC,PART_AMOUNT,PART_QUANTITY
	

	

SVTABLE
The	keyword	SVTABLE	is	used	to	identify	the	relational	database	table	that	is
used	for	the	SQL	select	or	insert	operations.
The	SVCOLUMN	keyword	is	used	to	define	the	table	columns.
Example
	
READ	FILE(order.csv)	SVTABLE(NEW_ORDERS)	SVCOLUMN(ORDER)
	

Example	SVFileService.properties
	
sv.column.order=LINE_NUMBER,PART_NUMBER,PART_DESC,PART_AMOUNT,PART_QUANTITY
	

	

SVLABEL
The	optional	keyword	SVLABEL	is	used	to	include	the	keyword	value	as	the
first	column	value	for	database	table	inserts	or	as	the	where	constraint	for
database	table	selects.
Example
	
1.	In	the	following	example,	the	value	23	is	inserted	into	the	first	column	(ID).
	
				READ	FILE(order.csv)	SVTABLE(ORD)	SVCOLUMN(ORDER)	SVLABEL(23)
	
				"INSERT	INTO	ORD(ID,LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)	(23,?,?,?,?,?)"
	
2.	In	the	following	example,	the	first	column	(ID)	is	used	to	receive	SV	values.
	
				READ	FILE(order.csv)	SVTABLE(ORD)	SVCOLUMN(ORDER)
	
				"INSERT	INTO	ORD(ID,LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)	(?,?,?,?,?,?)"
	
3.	In	the	following	example,	the	ID	column	is	not	in	the	selection	but	is	used	in	the	where	clause.
	
				WRITE	FILE(order.csv)	SVTABLE(ORD)	SVCOLUMN(ORDER)	SVLABEL(23)
	
				"SELECT	LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY	FROM	ORD	WHERE	ID=23"
	
4.	In	the	following	example,	the	ID	column	is	included	in	the	selection,	because	no	SVLABEL	is	present.
	
				WRITE	FILE(order.csv)	SVTABLE(ORD)	SVCOLUMN(ORDER)
	
				"SELECT	ID,LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY	FROM	ORD"
	

SVFileService.properties
	
sv.column.order=ID,LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY
	

	

SEPARATOR
The	keyword	SEPARATOR	is	used	by	separated	value	services	to	identify	the
content	separator.

SEPARATOR value Separator	character.

*COMMA ,		Default.

*SEMICOLON ;

*TAB 	

*TILDE

	

Example
	
READ	SEPARATOR(~)
	
READ	SEPARATOR(*TILDE)
	

TRIM
The	optional	keyword	TRIM	allows	the	service	to	trim	blanks	from	data	values.
Data	values	coming	from	the	function	to	the	service	and	visa	versa	are	trimmed.
The	default	value	for	the	TRIM	keyword	is	*TRAILING.
Note:	TRIM	is	implemented	at	the	command	level	and	not	at	the	service	level.
This	means	that	all	services	have	TRIM	capability.

TRIM *NONE No	trimming.

*BOTH Trim	leading	and	trailing	blanks.

*LEADING Trim	leading	blanks.

*TRAILING Trim	trailing	blanks.

	

Example
	
SEND	TRIM(*BOTH)
	
RECEIVE	TRIM(*NONE)
	

TRUNCATE
The	optional	keyword	TRUNCATE	allows	the	service	to	truncate	data	values.
Only	data	values	coming	from	the	service	to	the	function	are	truncated.
The	default	value	for	the	TRUNCATE	keyword	is	*NONE.
Note:	TRUNCATE	is	implemented	at	the	command	level	and	not	at	the	service
level.	This	means	that	all	services	have	TRUNCATE	capability.

TRUNCATE *NONE No	truncating.

*LIST Truncate	list	values.

*FIELD Truncate	field	values.

*BOTH Truncate	field	and	list	values.

	

Example
	
RECEIVE	TRUNCATE(*LIST)
	

DOMSET
The	optional	keyword	DOMSET	allows	the	service	to	read	the	input	XML
source	directly,	or	to	pre-process	the	XML	data	into	an	ideal	format	for	the
Apache	XML	parser.
The	default	value	for	the	DOMSET	keyword	is	*READER	to	maintain
compatibility.
The	recommended	value	is	*STREAM.
The	DOMSET,	DOMSETMODEL	and	DOMSETRESULT	settings	are	used	by
commands	like	RECEIVE	for	inbound	XML	processing.

DOMSET *STREAM Read	XML	directly.

*READER Process	XML	into	an	ideal	form	and	pass	to	XML
parser	as	a	StringReader.

	

Example
	
SERVICE_LOAD	DOMSETMODEL(*DOCUMENT)	DOMSET(*STREAM)	DOMSETRESULT(*FILE)
	

	

DOMSETMODEL
The	optional	keyword	DOMSETMODEL	specifies	how	the	input	XML	source
will	be	stored.
The	default	value	for	the	DOMSETMODEL	keyword	is	*STRING	to	maintain
compatibility.
If	you	plan	to	use	translets	(Compiled	Stylesheets)	to	read	XML	content	you	can
only	use	the	DOMSETMODEL(*STRING)	option.
The	recommended	value	is	*DOCUMENT.
The	DOMSET,	DOMSETMODEL	and	DOMSETRESULT	settings	are	used	by
commands	like	RECEIVE	for	inbound	XML	processing.

DOMSETMODEL *DOCUMENT Create	XML	DOM.

*STRING Create	XML	String.

	

Example
	
SERVICE_LOAD	DOMSETMODEL(*DOCUMENT)	DOMSET(*STREAM)	DOMSETRESULT(*FILE)
	

	

DOMSETRESULT
The	optional	keyword	DOMSETRESULT	specifies	how	the	style	sheet
transformation	result	will	be	stored.
If	the	transformation	result	from	input	XML	source	to	FunctionXML	is	going	to
be	large,	then	use	*FILE	so	the	transformation	result	is	streamed	out	to	a
temporary	file.	This	will	greatly	reduce	the	amount	of	memory	used	by	the
transformation	process,	as	the	result	is	not	stored	in	memory.
The	default	value	for	the	DOMSETRESULT	keyword	is	*UTF8.
The	DOMSET,	DOMSETMODEL	and	DOMSETRESULT	settings	are	used	by
commands	like	RECEIVE	for	Inbound	XML	processing.

DOMSETRESULT *UTF8 XML	transform	is	kept	as	an	array	UTF-8
encoded	bytes.

*STRING XML	transform	is	kept	as	a	String	object.

*FILE XML	transform	is	steamed	out	to	a	temporary
file.

	

Example
	
SERVICE_LOAD	DOMSETMODEL(*DOCUMENT)	DOMSET(*STREAM)	DOMSETRESULT(*FILE)
	

	

DOMGET
The	optional	keyword	DOMGET	specifies	how	FunctionXML	created	from	the
LANSA	function	fields	and	working	list	will	be	stored.
If	the	FunctionXML	is	going	to	be	large,	then	use	*FILE	so	the	input
FunctionXML	source	resides	in	a	temporary	file.	This	will	greatly	reduce	the
amount	of	memory	used	by	the	transformation	process,	as	the	input
FunctionXML	source	is	not	stored	in	memory.
The	default	value	for	the	DOMGETRESULT	keyword	is	*STRING	to	maintain
compatibility.
If	you	plan	to	use	translets	(Compiled	Stylesheets)	to	create	XML	content	you
can	only	use	the	DOMGET(*STRING)	option.
The	DOMGET	and	DOMGETRESULT	setting	are	used	by	commands	like
SEND	for	Outbound	XML	processing.

DOMGET *UTF8 FunctionXML	is	kept	as	UTF-8	encoded	bytes.

*STRING FunctionXML	is	kept	as	a	String	object.

*FILE FunctionXML	is	steamed	out	to	a	temporary	file.

	

Example
	
SERVICE_LOAD	DOMGET(*FILE)	DOMGETRESULT(*FILE)
	

DOMGETRESULT
The	optional	keyword	DOMGETRESULT	specifies	how	the	style	sheet
transformation	result	will	be	stored.
The	transformation	process	requires	the	input	FunctionXML	source	to	be	read
into	an	in-memory	XML	DOM	object	and	the	style	sheet	to	be	applied	to	this
DOM.
Currently	due	to	outbound	fragment	handling	requirements,	the	XML	result	is
read	and	converted	to	a	String	for	later	fragment	merging.
Streaming	the	result	out	to	a	file	is	still	valid,	as	only	memory	for	the	DOM	is
required	for	this	type	of	transform	and	the	result	file	content	to	String
conversion	is	done	at	a	later	stage.
The	default	value	for	the	DOMGETRESULT	keyword	is	*STRING.
The	DOMGET	and	DOMGETRESULT	setting	are	used	by	commands	like
SEND	for	Outbound	XML	processing.

DOMGETRESULT *UTF8 XML	transform	is	kept	as	UTF-8	encoded
bytes.

*STRING XML	transform	is	kept	as	a	String	object.

*FILE XML	transform	is	steamed	out	to	a	temporary
file.

	

Example
	
SERVICE_LOAD	DOMGET(*FILE)	DOMGETRESULT(*FILE)
	

FILTER
The	FILTER	or	FILTERCLASS	keyword	is	used	to	specify	the	content	filter
class	to	be	applied	to	the	XML	DOM	document.	The	FILTER	keyword	value	is
used	to	lookup	the	filter	classname	specified	by	the	filter.'value'	property	in	the
XMLBindFileService	properties	file.	The	filter	classname	can	also	be	directly
specified	using	the	FILTERCLASS	keyword.
Example
	
package	com.acme.filter	;
	
import	java.io.*	;
	
import	java.util.HashMap	;
	
import	org.w3c.dom.Document	;
	
import	com.lansa.jsm.JSMTrace	;
import	com.lansa.jsm.JSMCommand	;
import	com.lansa.jsm.JSMResource	;
	
public	class	SampleFilter	implements	com.lansa.jsm.service.ContentFilter
{
				public	Object	filter	(HashMap	properties,	Object	content)
				{
								if	(content	==	null)
								{
												return	null	;
								}
	
								if	(!(content	instanceof	Document))
								{
												throw	new	IllegalArgumentException	("SampleFilter:	unexpected	content	class:	"	+	content.getClass().getName())	;
								}
	
								JSMTrace	trace	=	(JSMTrace)properties.get	("jsm.trace")	;
	
								JSMCommand	command	=	(JSMCommand)properties.get	("jsm.command")	;

	
								JSMResource	resource	=	(JSMResource)properties.get	("jsm.resource")	;
	
								if	(trace	!=	null)
								{
												m_trace.println	("Apply	SampleFilter")	;
								}
	
								/*
												Modify	or	create	new	object
								*/
	
								/*
												Return	replacement	or	existing	object
								*/
	
								return	content	;
				}
}
	

	

5.2	FTPService
The	FTPService	allows	an	application	to	send	and	receive	files	to	or	from	an
FTP	(file	transfer	protocol)	server.	FTP	is	a	TCP	based	service,	widely	used	on
the	Internet	and	to	support	e-Commerce.
The	FTPService	supports	standard	and	secure	mode	FTP.	It	provides	a	rich	set
of	service	commands	for:

Establishing	a	connection	with	a	FTP	server.
Creating,	deleting,	renaming	and	navigating	folders	on	the	FTP	server.
Creating	and	deleting	files
Transferring	files	to	or	from	the	FTP	server.

Related	Services
The	FTPService	is	not	dependent	on	other	services.	Using	just	this	one	service	a
user	can	access	and	transfer	files,	from	and	to,	another	host	over	a	network
(assuming	FTP	is	supported	between	your	local	and	remote	servers).
However,	depending	on	the	requirements	of	your	application,	you	may	wish,	for
example,	to	create	a	PDF	file	then	distribute	this	file	using	the	FTP	service.
Technical	Specifications

FTP	utilizes	two	ports;	a	'data'	port	and	a	'control'	port	(also	referred	to	as	the
command	port).

When	your	local	FTP	server	first	connects	to	the	remote	FTP	server,	it
establishes	a	'control	session',	to	allow	the	two	servers	to	give	each	other
commands	(e.g.	change	directories,	get	a	file	etc...).	To	initiate	this	connection
your	local	server	has	to	have	a	port	of	entry	into	the	remote	FTP	server,	like	a
door	for	your	local	server	to	knock	on	and	the	remote	FTP	server	to	open.	The
remote	server	probably	has	several	entry	ports,	but	most	servers	set	aside	Port
21	to	receive	connections	from	FTP	clients.
In	order	for	your	local	server	to	transfer	files,	a	second	session	is	established
between	your	computer	and	the	remote	FTP	server,	the	'data	session'.	In	normal
FTP,	the	remote	FTP	server	initiates	this	second	connection	using	another	port
(typically	Port	20).

5.2.1	What	can	I	use	the	FTPService	for?
FTP	is	commonly	used	to	transfer	or	copy	files	from	one	computer	to	another	on
TCP/IP	networks	such	as	the	internet.	This	includes	the	movement	of	files
between	machines	with	widely	different	operating	systems.	Any	transfer	of
information	between	computers	is	subject	to	appropriate	security	on	both	the
sending	and	recieving	computers.

5.2.2	Using	the	FTPService
Whether	you	are	writing	your	client	application	in	RDML	/	RDMLX	or	in	a
3GL	such	as	RPG,	you	have	to	complete	the	same	basic	steps.
For	example,	an	application	to	put	a	file	to	a	remote	FTP	server	would	typically
issue	the	following	sequence	of	commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
								CONNECT
								LOGIN
								CHGDIR
								BINARY
								PUT
								QUIT
					SERVICE_UNLOAD
JSM(X)_CLOSE
The	steps	to	get	a	file	from	a	remote	FTP	server	would	be	very	similar,	but	uses
the	GET	command	instead	of	a	PUT.
Refer	to	Java	Service	Manager	Clients	for	the	command	details	that	apply	to
your	chosen	development	language.

5.2.3	FTPService	Commands
Your	application	issues	commands	to	the	FTPService	by	passing	the	command
strings	through	the	Java	Service	Manager	using	the	JSM_COMMAND	or
JSMX_COMMAND	Built-In	Function,	or	an	API	for	your	chosen	development
language.
The	commands	that	the	FTPService	processes	are:
SERVICE_LOAD
CONNECT
LOGIN
CHGDIR
GETDIR
ASCII
BINARY
NOOP
PUT
GET
SITE
QUOTE
CREATE
DELETE
RENAME
LIST
QUIT
SERVICE_GET
SERVICE_UNLOAD

SERVICE_LOAD
Loads	and	initializes	the	service.
	
																																																											Required
	
	SERVICE_LOAD	----	SERVICE	---------	service	name	------------
---->
	
																																																											Optional
	
															>--	TRACE	-----------	*NO	------------------------->
																																					*YES
																																					*ERROR
	
															>--	TRACE_NAME	------	name	------------------------|
																																					*SERVICE
																																					*PROCESS
																																					*FUNCTION
																																					*JOBNAME
																																					*JOBUSER
																																					*JOBNUMBER
	
For	more	information	refer	to:
Service	Program	Tracing	from	the	Client
Keywords
SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

FTPService.

TRACE To	enable	tracing	from	the	client	program	use	the	TRACE
keyword	on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:
*NO
*YES
*ERROR

The	optional	TRACE_trace	option	*ERROR	will	turn	on

tracing	and	if	the	service	does	not	return	an	ERROR,
FATAL	or	SOAPFAULT	status	to	the	client,	the	trace	files
are	deleted	on	the	JSM	CLOSE	call.

TRACE_NAME The	optional	TRACE_NAME	keyword	allows	the	client	to
append	a	user-defined	name	to	the	end	of	the	client	trace
subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(FTPSERVICE)')	TO_GET(#JSMSTS	#JSMMSG)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

	
RDMLX
	
#jsmcommand	:=	'service_load	service(FTPService)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	to_get(#jsmxsts	#jsmxmsg)
	

CONNECT
The	CONNECT	command	starts	a	connection	to	the	remote	FTP	server.
	
																																																												Required
		
	CONNECT	-----	HOST	------------	host:port	------------------------
>
	
																																																												Optional
	
											>--	SECURE	----------	*NO	------------------------------>
																																	*YES	
																																	*IMPLICIT
	
											>--	PROTECTION	------	*NO	------------------------------>
																																	*YES
	
											>--	PORT_ADDRESS	----	address	-------------------------->
	
											>--	ENCODING	--------	encoding	------------------------->
	
											>--	TIMEOUT	---------	milliseconds	---------------------|
	
Keywords
HOST Nominate	a	FTP	server	to	connect	to.	The	FTP	server	can

be	specified	as	an	IP	address,	nnn.nnn.nnn.nnn:port,	or	a
domain	name.
If	a	port	number	is	not	supplied	on	an	IP	address	the
default	value	21	is	used	unless	the	keyword	SECURE
(*IMPLICIT)	is	used	in	which	case	the	default	port	value
is	990.

SECURE Indicates	whether	a	secure	control	channel	is	required	to
protect	FTP	command	information	like	user	and
password.
The	default	value	*NO	indicates	a	plain	data	connection	is
to	be	used.

A	value	of		*YES	initially	connects	to	the	remote	FTP
server	using	a	plain	socket	then	changes	to	SSL/TLS
connection	using	the	AUTH	subcommand.
A	value	of	*IMPLICIT	indicates	a	secure	control	channel
directly	to	the	SSL/TLS	FTP	server	is	required.

PROTECTION The	default	option	*NO	indicates	a	clear	data	channel	is
required.
The	alternative	value,	*YES,	indicates	the	data	channel	is
to	be	secure.

PORT_ADDRESS The	local	IP	address	used	by	the	PORT	subcommand.
This	keyword	is	not	typically	used	but	is	available	to
indicate	the	IP	address	has	been	dynamically	allocated,
such	as	a	PPP	dialup	connect	after	the	JSM	has	been
started.

ENCODING The	remote	server	path	encoding.	The	default	option	is
*DEFAULT.

TIMEOUT The	host	connection	timeout	in	milliseconds.	The	default
is	0,	which	is	an	infinite	timeout	or	an	operating	system
timeout.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('CONNECT	HOST(ISERIES01)')	TO_GET(#JSMSTS	#JSMMSG)]
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'connect	host(iseries01)')	to_get(#jsmxsts	#jsmxmsg)
	

LOGIN
The	LOGIN	command	authenticates	the	connection	to	the	remote	FTP	server.
	
																																																									Required
	
	LOGIN	-----------	USER	-------------	user	--------------------->
	
															>--	PASSWORD	---------	password	-----------------|
	
Keywords
USER The	user	profile	to	be	used	to	log	into	the	remote	FTP	server.

PASSWORD The	password	corresponding	to	the	value	specified	in	the
USER	keyword.

Comments	/	Warnings
The	USER	and	PASSWORD	values	may	be	case	sensitive	depending	on	the
FTP	server.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('LOGIN	USER(ftpuser)	PASSWORD(password)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'login	user(ftpuser)	password(password)')	to_get(#jsmxsts	#jsmxmsg)
	

CHGDIR
The	CHGDIR	command	will	change	the	current	directory	on	the	remote	FTP
session.
	
	CHGDIR	---------	PATH	----------	path	name	--------------------|
	
Keywords
PATH Changes	the	current	directory	path	to	the	PATH	value	specified.

This	value	can	be	a	relative	or	absolute	path.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('CHGDIR	PATH(/xxxpgmlib/JSM/INSTANCE)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'chgdir	path(/xxxpgmlib/jsm/instance)')	to_get(#jsmxsts	#jsmxmsg)
	

GETDIR
The	GETDIR	command	will	return	the	current	working	directory	on	the	remote
FTP	session	into	the	JSM	command's	message	field.
	
	GETDIR	-----------	no	keywords	-------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('GETDIR')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'getdir')	to_get(#jsmxsts	#jsmxmsg)
	

ASCII
The	ASCII	command	sets	the	session	mode	to	ASCII.
Depending	on	the	FTP	server,	ASCII	mode	allows	the	FTP	server	to	convert	the
transmitted	data	to	a	format	suitable	for	the	host	file	system.	CRLF	characters
could	be	converted	to	LF	characters	if	the	host	is	a	Linux	server.	ASCII	data
could	be	converted	to	EBCDIC	data	if	the	host	is	an	IBM	i	server.
	
	ASCII	-----------	no	keywords	-------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('ASCII')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'ASCII')	to_get(#jsmxsts	#jsmxmsg)
	

BINARY
The	BINARY	command	sets	the	session	mode	to	BINARY.
Binary	means	that	the	contents	of	the	transmisson	are	presevered	and	this	is	the
preferred	mode.
	
	BINARY	-----------	no	keywords	-------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('BINARY')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'binary')	to_get(#jsmxsts	#jsmxmsg)
	

NOOP
The	NOOP	command	is	a	NO	OPeration	command.	The	remote	FTP	server
should	return	an	OK	status.
	
	NOOP	-----------	no	keywords	-------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('NOOP')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'noop')	to_get(#jsmxsts	#jsmxmsg)
	

PUT
The	PUT	command	will	send	the	contents	of	a	local	file	to	the	remote	FTP
server.
The	file	specified	by	the	FROM	keyword	is	sent	to	the	remote	FTP	server,	using
the	DATALINK	mode.	The	remote	FTP	server	will	store	the	file	using	the	path
specified	by	the	TO	keyword.
	
	PUT	---------	FROM	-------------	file	path	---------------------->
	
											>--	TO	---------------	file	path	---------------------->
	
																																																											Optional
	
											>--	FROM_ENCODING	----	value	--------------------------
>
	
											>--	TO_ENCODING	------	value	-------------------------->
	
											>--	CONVERT	----------	*NO	---------------------------->
																																		*YES
	
											>--	RECORD_SIZE	------	1024	--------------------------->
																																		*NOMAX
																																		integer
	
											>--	RECORD_DELIMITER	-	*NONE	-----------------------
--->
																																		*LF
																																		*CRLF
	
											>--	DATALINK	---------	*PASV	--------------------------|
																																		*PORT
	
	
Keywords
FROM Nominate	the	local	file	path	to	be	copied	to	the

remote	FTP	server.	This	value	can	be	a	relative	or
absolute	path.	If	the	path	is	relative,	the	current
working	directory	is	the	JSM	instance	directory.
See	Comments	/	Warnings	below.

TO Nominate	the	remote	file	path	where	the	file	is	to	be
placed	on	the	remote	FTP	server.	This	value	can	be
a	relative	or	absolute	path.	If	the	path	is	relative,	the
current	working	directory	is	the	remote	FTP	server's
current	directory.
See	also	GETDIR	command.

FROM_ENCODING Encoding	is	used	to	convert	the	FROM	file	content
to	an	intermediate	Unicode	string.
A	default	value	is	obtained	from	the	'from.encoding'
property	resource.	If	no	property	resource	is	located
the	value	defaults	to	Cp037.
Only	use	this	keyword	when	CONVERT	is	set	as
*YES.

TO_ENCODING Encoding	is	used	to	convert	the	intermediate
Unicode	string	to	target	encoding.
A	default	value	is	obtained	from	the	'to.encoding'
property	resource.	If	no	property	resource	is	located
the	value	defaults	to	ISO8859_1.
Only	use	this	keyword	when	CONVERT	is	set	as
*YES.

CONVERT The	default	conversion	value	is	*NO.
A	value	of	*YES	indicates	that	after	each	record
size	read,	the	data	will	be	converted	to	the	specified
target	encoding	and	sent	to	the	FTP	server.

RECORD_SIZE The	default	value	is	1024	bytes.
A	value	of	*NOMAX	sets	the	read	size	to	the	length
of	the	source	file.
Nominating	an	integer	value	specifies	the	read	size,
in	bytes,	to	be	used	on	the	source	file.
Refer	to	Comments	/	Warnings	below.

RECORD_DELIMITER The	default	value	is	*NONE.
A	value	is	only	required	when	keyword	CONVERT
is	set	as	*YES.	In	this	case	the	end	of	record	marker
to	be	added	to	the	end	of	each	converted	record	read
can	be	nominated	as	either	*LF	(Line	Feed)	or
*CRLF	(Carriage	Return,	Line	Feed).
For	more	information	refer	to	5.1.7	Carriage	Return,
Line	Feed	and	New	Line.

DATALINK The	DATALINK	keyword	determines	how	the
"control"	session	is	initiated.	The	default	value	is
*PASV.
In	passive	mode,	*PASV,	the	FTP	the	client	initiates
both	connections	to	the	remote	FTP	server.	Passive
mode	causes	the	FTPService	to	send	a	PASV
subcommand	to	the	remote	FTP	server,	the	FTP
server	returns	the	port	number	of	the	socket	server	it
has	started	and	a	data	transfer	channel	is	established
from	the	local	server	using	this	port	number.	This	is
known	as	"Passive	FTP"	and	is	often	used	to	get
around	firewall	difficulties.	Using	"Passive"	FTP
the	local	server	establishes	the	second	connection,
not	the	remote	FTP	server.	Most	firewalls	will	allow
your	computer	to	transfer	files	in	this	second
connection	to	the	remote	FTP	server	(just	as	it
allowed	your	computer	to	establish	the	first
connection).
Port	mode,	*PORT,	causes	the	FTPService	to	start	a
socket	server	and	informs	the	remote	FTP	server	via
the	PORT	subcommand	of	the	port	number	this
socket	server	is	listening	on,	the	remote	FTP	server
then	connects	to	this	socket	server	and	a	data
transfer	channel	is	established.
Refer	to	Technical	Specification	for	more
information.

Comments	/	Warnings

If	the	FROM	file	is	an	IBM	i	physical	file:
The	RECORD_SIZE	must	match	the	total	record	length	of	the	file.
Use	the	DSPFD	command	to	determine	the	total	record	length.
All	fields	in	the	file	should	be	of	type	CHAR.
A	deleted	record	in	the	file	will	be	read	as	a	blank	record,	so	use	the
RGZPFM	command	to	removed	deleted	records	from	the	file.

Normal	stream	files	can	also	be	converted:
After	each	record	size	read	the	data	is	converted.
The	FROM	file	content	must	be	single	byte	encoded,	unless	the
RECORD_SIZE	(*NOMAX)	option	is	used,	in	which	case	the	file	is
processed	in	one	read	and	the	conversion	is	applied	to	the	entire	file	content.
For	more	information	refer	to	5.1.7	Carriage	Return,	Line	Feed	and	New
Line.

Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('PUT	FROM(order.xml)	TO(/xmldata/order.xml)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

or
	
CHANGE	FIELD(#JSMCMD)	TO(PUT	FROM(order.xml)	TO('/xmldata/order.xml)	CONVERT(*YES)	FROM_ENCODING(ISO8859_1)	TO_ENCODING(UTF-
8)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

or
	
CHANGE	FIELD(#JSMCMD)	TO('PUT	FROM(order.xml)	TO(/xmldata/order.xml)	CONVERT(*YES)	RECORD_SIZE(*NOMAX)	FROM_ENCODING(ISO8859_1)	TO_ENCODING(UTF-
8)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

From	an	IBM	i	file	to	a	text	file:
	
CHANGE	FIELD(#JSMCMD)	TO(PUT	FROM('/QSYS.LIB/JSMLIB.LIB/DC@W29.FILE/DC@W29.MBR)	TO(dcw29.txt)	CONVERT(*YES)	RECORD_SIZE(166)	RECORD_DELIMTER(*CRLF)	FROM_ENCODING(Cp037)	TO_ENCODING(ISO8859_1)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)

	
RDMLX
	
#jsmcmd	:=	'put	from('	+	#jsmfrom	+	')	to('	+	#jsmto	+	')'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

GET
The	GET	command	will	receive	the	contents	of	a	remote	file	and	save	it	to	a
local	file.	The	file	specified	by	the	FROM	keyword	is	retrieved	from	the	remote
FTP	server,	using	the	DATALINK	mode.	The	local	server	will	store	the	file
using	the	path	specified	by	the	TO	keyword.
	
	GET	---------	FROM	-----------------	file	path	------------------>
	
											>--	TO	-------------------	file	path	------------------>
	
																																																											Optional
	
											>--	FROM_ENCODING	--------	value	----------------------
>
	
											>--	TO_ENCODING	----------	value	---------------------->
	
											>--	CONVERT	--------------	*NO	------------------------>
																																						*YES
	
											>--	RECORD_SIZE	----------	1024	----------------------->
																																						integer
	
											>--	RECORD_DELIMITER	-----	*NONE	-------------------
--->
																																						*LF
																																						*CRLF
	
											>--	DATALINK	-------------	*PASV	----------------------|
	
Keywords
FROM Nominate	the	remote	file	path	to	be	copied	from	the

remote	FTP	server.
See	also	CHGDIR	command.

TO Nominate	the	local	file	path	where	the	file	is	to	be
placed	on	the	remote	FTP	server.

See	Comments	/	Warnings	below.

FROM_ENCODING Encoding	is	used	to	convert	the	FROM	file	content
to	an	intermediate	Unicode	string.
A	default	value	is	obtained	from	the	'from.encoding'
property	resource.	If	no	property	resource	is	located
the	value	defaults	to	Cp037.
Only	used	this	keyword	when	CONVERT	is	set	as
*YES.

TO_ENCODING Encoding	is	used	to	convert	the	intermediate
Unicode	string	to	target	encoding.
A	default	value	is	obtained	from	the	'to.encoding'
property	resource.	If	no	property	resource	is	located
the	value	defaults	to	ISO8859_1.
Only	used	this	keyword	when	CONVERT	is	set	as
*YES.

CONVERT The	default	is	*NO	conversion.
A	value	of	*YES	indicates	that	after	each	record
size	read,	the	data	will	be	converted	to	the	specified
target	encoding	and	sent	to	the	FTP	server.

RECORD_SIZE The	default	value	is	1024	bytes.
Nominating	an	integer	value	specifies	the	read	size
used	on	the	source	file.
Refer	to	PUT	Comments	/	Warnings.

RECORD_DELIMITER The	default	value	is	*NONE.
A	value	is	only	required	when	keyword	CONVERT
is	set	as	*YES.	In	this	case	the	end	of	record	marker
to	be	added	to	the	end	of	each	converted	record	read
can	be	nominated	as	either	*LF	(Line	Feed)	or
*CRLF	(Carriage	Return,	Line	Feed).
For	more	information	refer	to	5.1.7	Carriage	Return,
Line	Feed	and	New	Line

DATALINK The	DATALINK	keyword	determines	how	the
"control"	session	is	initiated.	The	default	value	is

*PASV.
In	passive	mode,	*PASV,	the	FTP	the	client	initiates
both	connections	to	the	server.	Passive	mode	causes
the	FTPService	to	send	a	PASV	subcommand	to	the
remote	FTP	server,	the	FTP	server	returns	the	port
number	of	the	socket	server	it	has	started	and	a	data
transfer	channel	is	established	from	the	local	server
using	this	port	number.	This	is	known	as	"Passive
FTP"	and	is	often	used	to	get	around	firewall
difficulties.	Using	"Passive"	FTP,	the	local	server
establishes	the	second	connection,	not	the	remote
FTP	server.	Most	firewalls	will	allow	your	computer
to	transfer	files	in	this	second	connection	to	the
remote	FTP	server	(just	as	it	allowed	your	computer
to	establish	the	first	connection).
Port	mode,	*PORT,	causes	the	FTPService	to	start	a
socket	server	and	informs	the	remote	FTP	server	via
the	PORT	subcommand	of	the	port	number	this
socket	server	is	listening	on,	the	remote	FTP	server
then	connects	to	this	socket	server	and	a	data
transfer	channel	is	established.
Refer	to	Technical	Specifications	for	more
information.

Comments	/	Warnings
If	the	FROM	file	is	an	IBM	i	physical	file:

The	RECORD_SIZE	must	match	the	total	record	length	of	the	file.
Use	the	DSPFD	command	to	determine	the	total	record	length.
All	fields	in	the	file	should	be	of	type	CHAR.
A	deleted	record	in	the	file	will	be	read	as	a	blank	record,	so	use	the
RGZPFM	command	to	removed	deleted	records	from	the	file.

Normal	stream	files	can	also	be	converted:
After	each	record	size	read	the	data	is	converted.
The	FROM	file	content	must	be	single	byte	encoded,	unless	the
RECORD_SIZE	(*NOMAX)	option	is	used,	in	which	case	the	file	is
processed	in	one	read	and	the	conversion	is	applied	to	the	entire	file	content.
For	more	information	refer	to	5.1.7	Carriage	Return,	Line	Feed	and	New

Line.
Examples
The	following	examples	use	the	GET	command	to	receive	the	contents	of	a
remote	file	and	save	it	to	a	local	file.
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('GET	TO(order.xml)	FROM(/xmldata/order.xml)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcmd	:=	'get	from('	+	#jsmfrom	+	')	to('	+	#jsmto	+	')'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

SITE
The	SITE	command	allows	special	FTP	server	command	execution	by
supplying	host-dependent	parameters	to	the	remote	FTP	Server.
	
	SITE	---------	COMMAND	-------	command	-------------------------
-|
	
Keywords
COMMAND The	command	string	to	be	executed.

Examples
For	example,	if	your	remote	FTP	server	is	an	IBM	i	you	might	issue	a
NAMEFMT	command	to	set	the	file	location	inside	your	remote	session.
Setting	NAMEFMT	to	1	indicates	to	identify	files	in	all	IFS	file	locations,	so	all
files	and	paths	must	be	written	in	IFS	notation	(e.g.	/home/dir).
Setting	NAMEFMT	to	0	indicates	files	are	to	be	copied	to	and	from	the
QSYS.LIB	file	system	using	a	naming	format	library/file.member.
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('SITE	COMMAND(NAMEFMT	1)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'site	command(namefmt	1)')	to_get(#jsmsts	#jsmmsg)
	

QUOTE
The	QUOTE	command	allows	special	FTP	server	command	execution	by
supplying	host-dependent	commands	to	the	remote	FTP	Server.
	
	QUOTE	---------	COMMAND	-------	command	---------------------
-----|
	
Keywords
COMMAND The	command	string	to	be	executed.

Examples
For	example,	if	your	remote	FTP	server	is	an	IBM	i	you	might	issue	the	RCMD
command	execute	a	program	or	command.
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('QUOTE	COMMAND("RCMD	DSPSYSVAL	SYSVAL(QDATE)	OUTPUT(*PRINT)")')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'quote	command("RCMD	DSPSYSVAL	SYSVAL(QDATE)	OUTPUT(*PRINT)")')	to_get(#jsmsts	#jsmmsg)
	

CREATE
The	CREATE	command	allows	a	directory	to	be	created	on	the	remote	FTP
server.
	
	CREATE	---------	DIR	----------	directory	path	------------------|
	
Keywords
DIR Directory	path	name.	This	value	can	be	a	relative	or	absolute	path.

Examples
RDML
To	create	a	directory	named	UPLOAD	under	the	root	directory:
	
CHANGE	FIELD(#JSMCMD)	TO('CREATE	DIR(/upload)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

or	to	create	a	directory	named	UPLOAD	under	the	current	working	directory:
	
CHANGE	FIELD(#JSMCMD)	TO('CREATE	DIR(upload)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
To	create	a	directory	named	UPLOAD	under	the	root	directory:
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'create	dir(/upload)	')	to_get(#jsmsts	#jsmmsg)
	

or	to	create	a	directory	named	UPLOAD	under	the	current	working	directory:
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'create	dir(upload)	')	to_get(#jsmsts	#jsmmsg)
	

DELETE
The	DELETE	command	allows	a	directory	or	file	to	be	deleted	from	the	remote
FTP	server.
	
	DELETE	----------	DIR	-------------	directory	path	----------->
	
															>--	FILE	------------	file	path	----------------|
	
Keywords
DIR A	directory	path	name	is	mandatory	if	no	FILE	keyword	is	supplied.

This	value	can	be	a	relative	or	absolute	path.

FILE A	file	path	name	is	mandatory	if	no	DIR	keyword	is	supplied.
This	value	can	be	a	relative	or	absolute	path.

Examples
RDML
To	delete	a	directory	and	any	files	under	the	directory:
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('DELETE	DIR(/upload)')	TO_GET(#JSMSTS	#JSMMSG)
	

or	to	delete	a	single	file:
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('DELETE	FILE(/upload/order.xml)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
To	delete	a	directory	and	any	files	under	the	directory:
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'delete	dir(/upload)	')	to_get(#jsmsts	#jsmmsg)
	

or	to	delete	a	single	file:
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'delete	file(/upload/order.xml)	')	to_get(#jsmsts	#jsmmsg)
	

RENAME
The	RENAME	command	allows	a	file	on	the	remote	FTP	server	to	be	renamed.
	
	RENAME	-----------	FROM	-------------	file	path	---------------->
	
																>--	TO	---------------	file	path	----------------|
	
Keywords
FROM Existing	remote	path	name.

TO New	remote	path	name.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('RENAME	FROM(order.xml)	TO(order2.xml)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'rename	from(order.xml)	to(order2.xml)')	to_get(#jsmsts	#jsmmsg)
	

LIST
The	LIST	command	gets	a	list	of	file	names	from	the	remote	FTP	server.
	
	LIST	----	PATH	----------	directory	path	-------------------->
	
							>--	FORMAT	--------	*AUTO	----------------------------->
																											*NAME
																											*UNIX
																											*UNIX8
																											*UNIX9
																											*ISERIES
																											*WINDOWS
	
							>--	DATEFORMAT	----	*NONE	----------------------------->
																											*DMY
																											*MDY
																											*YMD
																											*YDM
	
							>--	DATALINK	------	*PASV	-----------------------------|
																											*PORT
	
Keywords
PATH If	no	PATH	keyword	is	present,	the	current	directory	is

used.	The	path	can	contain	operating	system	wild
characters.

FORMAT The	default	value	*AUTO	uses	auto-detect	list	format:
*AUTO	-	Auto-detect	LIST	format.
*NAME	-	Uses	NLST	subcommand.	1	column.
*UNIX	-List	is	in	UNIX	format.	9	columns.
*UNIX8	-	List	is	in	UNIX	format.	8	columns.
*UNIX9	-	List	is	in	UNIX	format.	9	columns.
*ISERIES	-	List	is	in	IBM	i	format.
*WINDOWS	-	List	is	in	Windows	format.

When	using	FTP	between	IBM	i	servers	it	is	important	to
note	the	FTP	attributes	LISTFMT	value	(use	CHGFTPA).
For	example,	if	the	FTP	Attributes	has	LISTFMT(*UNIX)
then	using	LIST	PATH(/TMP/*.*)
FORMAT(*ISERIES)	will	not	return	any	data.	Changing
to	FORMAT(*UNIX)	or	using	the	SITE
COMMAND(LISTFMT	0)	will	return	data.

DATEFORMAT The	default	value	*NONE	means	that	no	formatting	is
applied	to	the	date	field.	Dates	are	formatted	to	ISO8601
format.
*NONE	-	No	date	formatting.
*DMY	-	Except	the	date	to	be	in	day,	month,	year	order.
*MDY	-	Except	the	date	to	be	in	month,	day,	year	order.
*YMD	-	Except	the	date	to	be	in	year,	month,	day	order.
*YDM	-	Except	the	date	to	be	in	year,	day,	month	order.

	

DATALINK The	DATALINK	keyword	determines	how	the	"control"	session
is	initiated.	The	default	value	is	*PASV.
In	passive	mode,	*PASV,	the	FTP	the	client	initiates	both
connections	to	the	server.	Passive	mode	causes	the	FTPService
to	send	a	PASV	subcommand	to	the	remote	FTP	server,	the	FTP
server	returns	the	port	number	of	the	socket	server	it	has	started
and	a	data	transfer	channel	is	established	from	the	local	server
using	this	port	number.	This	is	known	as	"Passive	FTP"	and	is
often	used	to	get	around	firewall	difficulties.	Using	"Passive"
FTP,	the	local	server	establishes	the	second	connection,	not	the
remote	FTP	server.	Most	firewalls	will	allow	your	computer	to
transfer	files	in	this	second	connection	to	the	remote	FTP	server
(just	as	it	allowed	your	computer	to	establish	the	first
connection).
Port	mode,	*PORT,	causes	the	FTPService	to	start	a	socket
server	and	informs	the	remote	FTP	server	via	the	PORT
subcommand	of	the	port	number	this	socket	server	is	listening
on,	the	remote	FTP	server	then	connects	to	this	socket	server
and	a	data	transfer	channel	is	established.

Refer	to	Technical	Specifications	for	more	information.

Comments	/	Warnings
RDML	Clients	require	the	list	definition	to	be	passed	using	the	SERVICE_LIST
keyword.	The	list	object	argument	requires	one,	two	or	five	fields.
If	a	one	field	list	is	being	used,	then	the	unprocessed	lines	are	added	to	the	list.
If	a	two	field	list	is	being	used,	the	first	field	receives	the	file	type	and	second
field	receives	the	file	name.
If	a	five	field	list	is	being	used,	the	first	field	receives	the	file	type	,	the	second
field	receives	the	date,	the	third	field	receive	the	time,	the	fourth	field	receives
the	size	and	fifth	field	receives	the	file	name.
The	type	field	can	contain	the	following	values:

F	-	File
D	-	Directory
L	-	Link

Examples
RDML
	
DEFINE	FIELD(#TYPE)	TYPE(*CHAR)	LENGTH(1)
DEFINE	FIELD(#FILE)	TYPE(*CHAR)	LENGTH(80)
DEF_LIST	NAME(#WRKLST)	FIELDS((#TYPE)	(#FILE))	TYPE(*WORKING)	ENTRYS(100)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('LIST	SERVICE_LIST(TYPE,FILE)')	TO_GET(#JSMSTS	#JSMMSG	#WRKLST)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'list	path(/tmp/*.*)	format(*unix)
	

QUIT
The	QUIT	command	logs	out	from	the	remote	FTP	server	and	closes	the	current
connection.
	
	QUIT	--------------	no	keywords	-------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('QUIT')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'quit')	TO_GET(#jsmxsts	#jsmxmsg)
	

SERVICE_GET
The	SERVICE_GET	command	allows	JSM	client	applications	to	access	the
keyword	/	value	properties	from	the	properties	file	associated	with	the	currently
loaded	service.
Client	applications	can	access	the	value	of	properties	associated	with	the
service,	but,	perhaps	more	usefully,	they	can	access	application	specific
property	values	too,	using	the	service	properties	file	as	a	common	medium	for
holding	such	values.
When	used	in	the	latter	way,	there	is	a	possibility	of	conflict	between
application-defined	keyword	names	and	those	used	by	current	and	future
versions	of	LANSA	Integrator.	To	reduce	this	possibility	your	application
should	prefix	the	property	keyword	with	a	global	unique	name.	The	examples
below	use	com.acme.property	as	the	prefix	for	this	purpose.
The	service	property	keyword	value	is	returned	in	the	JSM	message	field.	If	the
keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
	
	SERVICE_GET	--------	PROPERTY	-----	value	--------------------
>
	
																		>--	TRACE	-------	*SERVICE-------------------|
																																				*TRANSPORT
	
Keywords
PROPERTY Provide	a	keyword	/	value	to	be	checked	on	the	service

properties	file.
The	service	property	keyword	value	is	returned	in	the	JSM
message	field.	If	the	keyword	does	not	exist	in	the	service
property	file	a	status	of	NOT_EXIST	is	returned.

TRACE *SERVICE	-	read	service	trace	file.
*TRANSPORT	-	read	transport	trace	file.

Examples
The	examples	retrieve	the	value	of	the	com.acme.property.messagetype	(an
application-defined	property)	in	the	service	properties	file.	This	property	might
be	defined	in	the	service	properties	file	with	a	line	like	this	(the	value	"html"

will	be	returned	to	the	application	in	this	case):
	
com.acme.property.messagetype=html
	

RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_GET	PROPERTY(com.acme.property.messagetype)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcmd	:=	'	service_get	property(com.acme.property.messagetype)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service	and	disconnects	any
open	system.
	
	SERVICE_UNLOAD	---------	no	keywords	--------------------------
|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(SERVICE_UNLOAD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	service_unload)	to_get(#jsmxsts	#jsmxmsg)
	

5.2.4	FTPService	Examples
Examples	are	supplied	for	the	most	common	client	programming	languages:
RDML
RDMLX
RPG
	

5.3	SFTPService
Service	Name:	SFTPService
The	SFTPService	allows	file	transfer	using	SSH2	FTP	protocol.
This	service	uses	the	open	source	JCraft	SSH2	classes.
Refer	to	JCraft
The	SFTPService	supports	the	following	commands:
5.3.1	SERVICE_LOAD
5.3.2	SERVICE_GET
5.3.3	CONNECT
5.3.4	LOGIN
5.3.5	CHGDIR
5.3.6	GETDIR
5.3.7	PUT
5.3.8	GET
5.3.9	CHMOD
5.3.10	DELETE
5.3.11	CREATE
5.3.12	RENAME
5.3.13	LIST
5.3.14	QUIT
5.3.15	SERVICE_UNLOAD
	

http://www.jcraft.com/jsch

5.3.1	SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

	

5.3.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.3.3	CONNECT
The	CONNECT	command	is	used	to	connect	to	the	remote	SSH2	FTP	server.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CONNECT HOST host:port Mandatory.	Remote	host.
Default	port.	22.

ENCODING 	 Optional.	See	ENCODING.
Default.	*DEFAULT
Remote	server	path	encoding.

COMPRESSION *YES Optional.	Enable	communication
compression.

*NO Default.

WAIT value Read	timeout.	The	default	value	is
0.

TIMEOUT value Connection	timeout.	The	default
value	is	0.

	

	

5.3.4	LOGIN
The	LOGIN	command	is	used	to	login	to	the	remote	SFTP	server.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

LOGIN USER value Mandatory.	User	profile.

PASSWORD value Optional.	User	password	or	private	key	file
password.

KEY value Optional.	Public	key	authentication.
The	specified	value	is	the	PEM	encoded
SSH	private	key	file.	The	private	key	file
should	have	a	.pem	file	extension.	The
associated	PEM	encoded	SECSH	or	SSH
public	key	file	should	have	a	.pub	file
extension.
For	example:	remotecompany.pem	and
remotecompany.pub.

	

	

5.3.5	CHGDIR
The	CHGDIR	command	changes	the	host's	working	directory.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CHGDIR PATH value Mandatory.	Remote	directory.

	

	

5.3.6	GETDIR
The	GETDIR	command	returns	the	host's	working	directory.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GETDIR 	 	 	

	

	

5.3.7	PUT
The	PUT	command	is	used	to	copy	a	local	file	to	the	remote	SFTP	server.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

PUT FROM value Mandatory.	Local	file	path.

TO value Mandatory.	Remote	file	path.

	

	

5.3.8	GET
The	GET	command	is	used	to	copy	a	remote	SFTP	server	file	to	a	local	file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET FROM value Mandatory.	Remote	File	path.

TO value Mandatory.	Local	File	path.

	

	

5.3.9	CHMOD
The	CHMOD	command	is	used	to	change	the	permission	of	a	directory	or	file
on	the	SFTP	server.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CHMOD PATH value Mandatory.	File	path.

PERMISSION value Unix	style	permission	of	rwx	for	owner,
group	and	other.	Use	a	dash	for	no	value.
For	example:	rwxrwxrwx	or	rw-rw----.

	

	

5.3.10	DELETE
The	DELETE	command	is	used	to	delete	a	directory	or	a	file	from	the	SFTP
server.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

DELETE DIR value Conditional.	Directory	path.

FILE value Conditional.	File	path.

	

	

5.3.11	CREATE
The	CREATE	command	is	used	to	create	a	directory	on	the	SFTP	server.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CREATE DIR value Mandatory.	Directory	path.

PERMISSIONS value Optional.	Linux	style	permissions.
For	example.	rwxr-x---

	

	

5.3.12	RENAME
The	RENAME	command	is	used	to	rename	a	file	on	the	SFTP	server.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RENAME FROM value Mandatory.	File	path.

TO value Mandatory.	File	path.

	

	

5.3.13	LIST
The	LIST	command	is	used	to	retrieve	a	list	of	files	and	directories	from	the
SFTP	server.
RDML	Clients	require	the	list	definition	to	be	passed	using	the	SERVICE_LIST
keyword.
The	path	can	contain	operating	system	wild	characters.
The	list	object	argument	requires	one,	two	or	five	fields.
If	a	one	field	list	is	being	used,	then	the	unprocessed	lines	are	added	to	the	list.
If	a	two	field	list	is	being	used,	the	first	field	receives	the	file	type	and	second
field	receives	the	file	name.
If	a	five	field	list	is	being	used,	the	first	field	receives	the	file	type,	the	second
field	receives	the	date,	the	third	field	receives	the	time,	the	fourth	field	receives
the	size	and	fifth	field	receives	the	file	name.
The	type	field	can	contain	the	following	values:

F	-	File
D	-	Directory
L	-	Link

	
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

LIST PATH value Optional.	Directory	path.
Default.	Current	directory.
The	path	can	contain	operating	system	wild
characters.

TIMEZONE value Optional.	Timezone	of	FTP	server.
Default.	JVM	default	timezone.

	

	

5.3.14	QUIT
The	QUIT	command	logs	out	from	the	remote	SFTP	server	and	closes	the
current	connection.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

QUIT 	 	 	

	

	

5.3.15	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

5.4	HTTPService
Service	Name:	HTTPService
The	HTTPService	provides	a	number	of	different	content	handlers	to	receive
and	send	content	using	the	HTTP	protocol	as	follows:
InboundSeparatedValue
InboundXML
InboundXMLBind
InboundJSONBind
InboundNameValue
InboundFile
InboundLocation
InboundStatus
InboundMultiPart
InboundTextHandler
OutboundNameValue
OutboundXML
OutboundXMLBind
OutboundJSONBind
OutboundSeparatedValue
OutboundMultiPart
OutboundFile
The	HTTPService	supports	the	following	commands:
5.4.1	SERVICE_LOAD
5.4.2	SERVICE_GET
5.4.3	IS
5.4.4	GET
5.4.5	SET
5.4.6	SEND
5.4.7	RECEIVE
5.4.8	BIND
5.4.9	WRITE

5.4.11	SERVICE_UNLOAD

5.4.1	SERVICE_LOAD
If	the	HTTPService	is	being	used	for	inbound	services,	then	the
SERVICE_LOAD	keywords	will	contain	a	selection	of	the	HTTP	protocol
properties	sent	by	the	remote	HTTP	client	program.
For	a	complete	list	of	HTTP	protocol	property	names	refer	to	the
SERVICE_LOAD	command.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD BIND 	 Optional.	See	BIND.

ARCHIVE 	 Optional.	See	ARCHIVE.

ENCODING 	 Optional.	See	ENCODING

*BINARY Archive	content	with	no
encoding	changes.

SCHEMA 	 Optional.	See	SCHEMA.

VALIDATING 	 Optional.	See
VALIDATING.

DOMSET 	 Optional.	See	DOMSET.

DOMSETMODEL 	 Optional.	See
DOMSETMODEL.

DOMSETRESULT 	 Optional.	See
DOMSETRESULT.

	

If	the	ARCHIVE	keyword	is	used	the	service	will	use	the	ENCODING	keyword
value	if	it	is	present	or	determine	the	encoding	from	the	protocol	content-type
entry	or	use	a	default	value	to	convert	the	received	byte	content	to	a	Unicode
string	ready	for	the	archiving	stage.
The	ENCODING	keyword	is	only	used	when	the	service	is	going	to	archive	the
received	content.	The	keyword	value	of	*BINARY	instructs	the	service	to	write

the	byte	content	unaltered	to	the	archive	file.
The	ARCENCODE	keyword	controls	the	archive	file	content	encoding.
If	the	content	type	is	not	of	type	text	or	XML	then	the	byte	content	is	written	to
the	file	unaltered.	So	posted	images	and	PDF	document	and	other	non-text	type
content	will	be	archive	unaltered.
Using	the	keyword	ENCODING	(*BINARY)	with	the	ARCHIVE	keyword
causes	all	received	content	to	be	archived	unaltered.

5.4.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.4.3	IS
The	IS	command	allows	the	function	to	easily	test	the	type	of	content	received.
The	IS	command	uses	the	CONTENT	keyword	value	and	matches	it	against	an
internal	list	of	content	types	and	the	content	type	of	the	received	data.	If	the
content	matches	the	returned	status	is	OK	else	it	is	NO.
The	IS	command	can	be	used	on	received	inbound	properties	and	also	the
received	response	properties	from	an	outbound	content	handler.
Syntax:
Command Keyword Value Description 	

IS CONTENT *SV Comma	or	tab
separated
values

	

*CSV Comma
separated
values

text/csv

text/comma-
separated-values

text/x-comma-
separated-values

application/comma-
separated	values

*TSV Tab	separated
values

text/tsv

text/tab-separated-
values

text/x-tab-
separated-values

application/tab-
separated	values

*XML XML text/xml

application/xml

+xml	extension

TEXT Text text/

All	xml

application/json

application/edi-x12

application/edifact

All	separated
values

*JSON JSON application/json

*FORM Form	POST application/x-
www-form-
urlencoded

*MULTIPART Form	upload multipart/form-data

IMAGE Image image/

*GIF GIF	image image/gif

*PNG PNG	image image/png

*JPEG JPEG	image image/jpeg

image/jpg

*MPEG MPEG	audio audio/mpeg

*MPEG4 MPEG4	video audio/mpeg4

video/mpeg4

*PDF PDF
document

application/pdf

*EXCEL Excel
document

application/vnd.ms-
excel

*EDI X12	or
EDIFACT

	

*X12 	 application/edi-x12

*EDIFACT 	 application/edifact

	

5.4.4	GET
The	GET	command	allows	the	program	to	access	HTTP	protocol	properties.
The	GET	command	can	be	used	on	received	inbound	properties	and	also	the
received	response	properties	from	an	outbound	content	handler.
All	properties	in	the	HTTP	response	from	the	remote	host	are	available	for	GET
operation	when	the	SEND	of	the	outbound	handlers	is	successful.	Two
additional	properties	STATUS	and	STATUS-MESSAGE	are	included	to	allow
access	to	the	HTTP	response	status	and	message.
For	a	list	of	some	common	HTTP	protocol	property	names	see
SERVICE_LOAD	command.
The	LIST,	FRAGMENT	and	INSTRUCTION	keywords	are	only	available	if	the
InboundXMLBind	handler	is	being	used.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET PROPERTY value HTTP	protocol	property.

*LIST Add	all	properties	to	list	argument.

LIST value Conditional.	Bind	list.

FRAGMENT value Conditional.	Bind	fragment.

INSTRUCTION value Conditional.	Get	XML	processing
instruction.

	

	

5.4.5	SET
The	SET	command	allows	the	program	to	include	HTTP	head	properties	in	the
HTTP	request	or	response	protocol.
The	HTTP	property	name	value	pairs	are	passed	as	entries	in	a	two-column
working	list.
The	SET	command	can	be	called	anytime	before	the	last	SEND	command	that
creates	the	HTTP	request	or	response.
The	LIST	and	FRAGMENT	keywords	are	only	available	if	the
InboundXMLBind,	OutboundXMLBind,	InboundJSONBind	or
OutboundJSONBind	handlers	are	being	used.
The	INSTRUCTION	and	DATA	keywords	are	only	available	if	the
InboundXMLBind	and	OutboundXMLBind	handlers	are	being	used.
	
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET PROPERTY *LIST Set	HTTP	head	properties.

LIST Value Conditional.	XML	or	JSON	Bind	list.

FRAGMENT Value Conditional.	XML	or	JSON	Bind
fragment.

INSTRUCTION Value Conditional.	XML	processing
instruction.

DATA Value Conditional.	XML	processing
instruction	data.

	

Example
	
DEFINE					FIELD(#PNME)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#PVAL)	TYPE(*CHAR)	LENGTH(20)
DEF_LIST			NAME(#PLST)	FIELDS((#PNME)	(#PVAL))	TYPE(*WORKING)
	

CHANGE					FIELD(#PNME)	TO('''X-Invoice''')
CHANGE					FIELD(#PVAL)	TO(T9300)
ADD_ENTRY		TO_LIST(#PLST)
	
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	PROPERTY(*LIST)	SERVICE_LIST(PNME,PVAL)')	TO_GET(#JSMSTS	#JSMMSG	#PLST)
	

	

5.4.6	SEND
The	SEND	command	allows	the	program	to	process	available	content	using	the
specified	content	handler.	Once	the	content	handler	is	loaded,	this	SEND
command	is	passed	onto	the	loaded	content	handler.

SEND HANDLER

	

5.4.7	RECEIVE
The	RECEIVE	command	allows	the	program	to	process	the	available	content
using	the	specified	content	handler.	Once	the	content	handler	is	loaded,	this
RECEIVE	command	is	passed	onto	the	loaded	content	handler.

RECEIVE HANDLER

	

5.4.8	BIND
The	BIND	command	is	only	used	with	the	InboundXMLBind,
OutboundXMLBind,	InboundJSONBind	and	OutboundJSONBind	handlers.
The	BIND	command	binds	the	specified	service	code	to	the	loaded	inbound
document	or	creates	a	new	empty	outbound	document.
The	SERVICE	keyword	value	is	used	in	a	resource	property	lookup	using	the
property	key	service.'value'	and	service.archive.'value'	to	locate	the	binding
class	and	the	binding	jar	file	that	contains	the	binding	class	and	supporting
classes	generated	by	the	XMLBinding	or	JSONBinding	Wizard.	If	the	service
binding	archive	entry	does	not	exist	then	the	binding	jar	file	must	exist	in	the
JSM	jar	subdirectory	instead	of	a	user	specified	directory.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

BIND SERVICE Value Service	name.

TYPE *INBOUND Conditional.	Inbound	binding.

*OUTBOUND Conditional.	Outbound	binding.

CONTENT *JSON Conditional.	Outbound	binding
type.

*XML Default.

BINDTRACE *YES Optional.	Trace	the	inbound	bind
result.

*NO Default.

FILTER 	 Optional.	See	FILTER.

	

	

5.4.9	WRITE
The	WRITE	command	is	only	used	with	the	InboundXMLBind,
OutboundXMLBind,	InboundJSONBind	and	OutboundJSONBind	handlers.
The	WRITE	command	serializes	the	document	object	in	preparation	for	the
SEND	command.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

WRITE INDENT *YES Optional.	Indent	XML	content.

*NO Default.

INDENT-
AMOUNT

value Optional.	Indent	XML	amount.
Default.	0.	If	the	amount	is	not	zero
then	indent	is	enabled.

DOCTYPE value Optional.	Include	XML	<!DOCTYPE>
element.

PUBLIC value Conditional.	The	optional	public
component	of	the	XML	DOCTYPE
declaration.

OMIT-
DECLARATION

*YES Optional.	Omit	the	XML	declaration.

*NO Default.

BINDTRACE *YES Optional.	Trace	the	outbound	bind
result.

*NO Default.

FILTER 	 Optional.	See	FILTER.

	

	

5.4.10	Content	Handlers
Inbound	content	handlers	are	used	to	receive	incoming	data	being	posted	by	a
HTTP	client	program	and	to	send	a	reply.
Outbound	content	handlers	are	used	to	send	out	going	content	to	a	remote	HTTP
server.	The	content	returned	by	this	remote	HTTP	server	is	processed	using	an
inbound	content	handler.
It	is	possible	to	mix	and	match	content	handlers.	For	example,	receive	posted
name	value	pairs	using	the	InboundNameValue	handler	and	reply	with	XML
content	using	the	InboundXML	handler.
The	content	handler	name	to	content	handler	class	mapping	is	contained	in	the
HTTPService	properties	file.
Example
	
handler.InboundFile=com.lansa.jsm.service.InboundFileHandler
handler.OutboundFile=com.lansa.jsm.service.OutboundFileHandler
	

InboundSeparatedValue
The	InboundSeparatedValue	handler	is	used	to	receive	posted	separated	values
and	to	send	separated	values	as	a	reply.
When	the	RECEIVE	command	of	this	content	handler	is	executed	the	following
steps	occur:
If	there	is	no	content	or	list	argument,	then	an	OK	status	is	returned.
The	handler	checks	that	the	content	type	belongs	to	the	separated	values	group
of	content	types,	if	it	does	not	support	the	content	type,	then	an	error	is	returned
to	the	program.	Use	the	CONTENT	keyword	to	override	this	check	and	to	allow
the	handler	to	receive	the	data,	it	is	assumed	the	data	is	CSV.
The	handler	determines	the	encoding	to	apply	to	the	receive	byte	stream	to
convert	it	to	Unicode.
The	handler	determines	if	this	Unicode	data	needs	to	be	archived.
The	handler	reads	the	separated	values	into	the	working	list.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

RECEIVE HANDLER 	 InboundSeparatedValue

ARCHIVE 	 Optional.	See	ARCHIVE.

SVROW 	 Optional.	See	SVROW.

SVROWLIMIT 	 Optional.	See
SVROWLIMIT.

SVMODE 	 Optional.	See		SVMODE.

SVHEAD 	 Optional.	See	SVHEAD.

ENCODING 	 Optional.	See	ENCODING.

NUMBERFORMAT 	 Optional.	See
NUMBERFORMAT.

CONTENT 	 Optional.	See	CONTENT.

SEPARATOR 	 Optional.	See	SEPARATOR.

	

Example
	
RECEIVE	HANDLER(InboundSeparatedValue)	SVHEAD(ORDER)	SERVICE_LIST(…)
	

When	the	SEND	command	of	this	content	handler	is	executed	the	following
steps	occur:
The	handler	uses	the	value	of	the	CONTENT	keyword	to	determine	the	type	of
separated	values	to	create:

If	no	content	value	is	available,	the	handler	defaults	to	application/comma-
separated-values
If	the	content	value	is	*CSV,	then	content	type	will	be	application/comma-
separated-values
If	the	content	value	is	*TEXTCSV,	then	content	type	will	be	text/comma-
separated-values
If	the	content	value	is	*TSV,	then	content	type	will	be	application/tab-
separated-values
If	the	content	value	is	*TEXTTSV,	then	content	type	will	be	text/tab-
separated-values
If	the	content	value	is	not	a	valid	separated	value	content	type	then	CSV	data
is	created,	but	the	specified	content	type	is	sent.

The	optional	SVHEAD	keyword	allows	a	header	record	to	be	inserted	at	the
beginning	of	the	data.
The	handler	creates	Unicode	data	using	all	entries	in	the	list,	if	there	is	no	list
argument	then	zero	length	content	is	created.
The	handler	determines	if	this	Unicode	data	needs	to	be	archived.
The	handler	creates	a	HTTP	response	to	return	to	the	remote	client.
The	optional	UAFILE	and	UAPATH	keywords	are	available	to	inform	the
remote	client	program	of	a	recommended	path	and	filename	for	the	content.
LANSA	Integrator	UserAgent	will	add	these	file	and	path	names	to	the	save
popup	menu	on	the	response	panel.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

SEND HANDLER 	 InboundSeparatedValue

UAPATH value Optional.	User	agent	save
response	path.

UAFILE value Optional.	User	agent	save
response	file	name.

UACACHE value Optional.	Cache-Control
max-age.
Default.0.

UADISPOSITION value Optional.	Content-
Disposition	filename.

NUMBERFORMAT 	 Optional.	See
NUMBERFORMAT.

CONTENT *CSV Default.	Create	CSV
content.

*TSV Create	TSV	content.

ENCODING 	 Optional.	See	ENCODING

SVHEAD 	 Optional.	See	SVHEAD

SVEXCLUDE 	 Optional.	See
SVEXCLUDE.

ARCHIVE 	 Optional.	See	ARCHIVE.

CHARSET *YES Optional.	Include	charset
attribute.

*NO Do	not	include	charset
attribute.

*TEXT Default.	Include	charset
attribute	if	content	is	text.

SEPARATOR value Optional.	See
SEPARATOR.

	

Example
	
SEND	HANDLER(InboundSeparatedValue)	CONTENT(*CSV)	UAFILE(order.csv)	SERVICE_LIST(…)
	

InboundXML
The	InboundXML	handler	allows	XML	requests	to	be	received	and	XML
responses	to	be	sent.
More	than	one	RECEIVE	and	SEND	command	can	be	issued	to	read	and	create
different	sections	of	a	large	XML	document.
When	the	RECEIVE	command	of	this	content	handler	is	executed	the	following
steps	occur:
If	there	is	no	content,	then	an	OK	status	is	returned.
The	handler	checks	that	the	content	type	belongs	to	the	XML	group	of	content
types,	if	it	does	not	support	the	content	type,	then	an	error	is	returned	to	the
program.	Use	the	CONTENT	keyword	to	override	this	check	and	to	allow	the
handler	to	receive	the	data,	it	is	assumed	the	data	is	XML.
The	handler	determines	the	encoding	to	apply	to	the	receive	byte	stream	to
convert	it	to	Unicode.
The	handler	determines	if	this	Unicode	data	needs	to	be	archived.
The	handler	then	transforms	the	XML	and	binds	the	data	into	the	program	fields
and	list.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

RECEIVE HANDLER 	 InboundXML

XSL 	 Mandatory.	See	XSL

ENCODING 	 Optional.	See	ENCODING.

CONTENT 	 Optional.	See	CONTENT.

ARCHIVE 	 Optional.	See	ARCHIVE.

SCHEMA 	 Optional.	See	SCHEMA.

	

Example
	

RECEIVE	HANDLER(InboundXML)	XSL(ORDER)	SERVICE_LIST(…)
	

When	the	SEND	command	of	this	content	handler	is	executed	the	following
steps	occur:
The	handler	using	the	XSL	keyword	transforms	the	program	fields	and	list	into
the	resultant	XML.	If	a	FRAGMENT	keyword	is	present	this	transformation	is
stored,	as	this	is	only	a	fragment	of	the	final	XML	to	be	sent.	When	no
FRAGMENT	keyword	is	present	this	transformation	is	treated	as	the	last	and
the	final	output	XML	is	constructed	and	ready	to	be	sent.
The	handler	determines	if	this	Unicode	data	needs	to	be	archived.
The	handler	uses	the	value	of	the	CONTENT	keyword	to	determine	the	value	of
the	HTTP	protocol	content-type.

If	no	content	value	is	available,	the	handler	defaults	to	application/xml.
If	the	content	value	is	*XML,	then	content	type	will	be	application/xml.
If	the	content	value	is	*TEXTXML,	then	content	type	will	be	text/xml.

The	handler	creates	a	HTTP	response	to	return	to	the	remote	client.
The	optional	UAFILE	and	UAPATH	keywords	are	available	to	inform	the
remote	client	program	of	a	recommended	path	and	filename	for	the	content.
LANSA	Integrator	UserAgent	will	add	these	file	and	path	names	to	the	save
popup	menu	on	the	response	panel.
The	service	property	inbound.xml.default.contenttype	can	be	used	to	set	the
default	content	type.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

SEND HANDLER 	 InboundXML

XSL 	 Mandatory.	See	XSL.

FRAGMENT 	 Optional.	See	FRAGMENT.

OUTPUT 	 Optional.	See	OUTPUT.

UAPATH value Optional.	User	agent	save
response	path.

UAFILE value Optional.	User	agent	save
response	filename.

UACACHE value Optional.	Cache-Control	max-
age.
Default.0.

UADISPOSITION value Optional.	Content-Disposition
filename.

ARCHIVE 	 Optional.	See	ARCHIVE.

ENCODING 	 Optional.	See	ENCODING.

CONTENT 	 Optional.	See	CONTENT.

CHARSET *YES Optional.	Include	charset
attribute.

*NO Do	not	include	charset
attribute.

*TEXT Default.	Include	charset
attribute	if	content	is	text.

	

Example
	
SEND	HANDLER(InboundXML)	XSL(…)	UAFILE(…)	UAPATH(…)	SERVICE_LIST(…)
	

InboundXMLBind
The	InboundXMLBind	handler	allows	XML	requests	to	be	received	and	XML
responses	to	be	sent.
When	the	RECEIVE	command	of	this	content	handler	is	executed	the	following
steps	occur:
If	there	is	no	content,	then	an	OK	status	is	returned.
The	handler	checks	that	the	content	type	belongs	to	the	XML	group	of	content
types,	if	it	does	not	support	the	content	type,	then	an	error	is	returned	to	the
program.	Use	the	CONTENT	keyword	to	override	this	check	and	to	allow	the
handler	to	receive	the	data,	it	is	assumed	the	data	is	XML.
The	handler	parses	the	XML	content	into	a	DOM	object	ready	for	the	BIND
command.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

RECEIVE HANDLER 	 InboundXMLBind

ENCODING 	 Optional.	See	ENCODING.

CONTENT 	 Optional.	See	CONTENT.

ARCHIVE 	 Optional.	See	ARCHIVE.

	

Example
	
RECEIVE	HANDLER(InboundXMLBind)
	

	
When	the	SEND	command	of	this	content	handler	is	executed	the	following
steps	occur:
The	handler	determines	if	this	Unicode	data	needs	to	be	archived.
The	handler	uses	the	value	of	the	CONTENT	keyword	to	determine	the	value	of
the	HTTP	protocol	content-type.

If	no	content	value	is	available,	the	handler	defaults	to	application/xml.
If	the	content	value	is	*XML,	then	content	type	will	be	application/xml.
If	the	content	value	is	*TEXTXML,	then	content	type	will	be	text/xml.

The	handler	creates	a	HTTP	response	to	return	to	the	remote	client.
The	optional	UAFILE	and	UAPATH	keywords	are	available	to	inform	the
remote	client	program	of	a	recommended	path	and	filename	for	the	content.
LANSA	Integrator	UserAgent	will	add	these	file	and	path	names	to	the	save
popup	menu	on	the	response	panel.
The	service	property	inbound.xml.default.contenttype	can	be	used	to	set	the
default	content	type.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

SEND HANDLER 	 InboundXMLBind

UAPATH value Optional.	User	agent	save
response	path.

UAFILE value Optional.	User	agent	save
response	filename.

UACACHE value Optional.	Cache-Control	max-
age.
Default.0.

UADISPOSITION value Optional.	Content-Disposition
filename.

ARCHIVE 	 Optional.	See	ARCHIVE.

ENCODING 	 Optional.	See	ENCODING.

CONTENT 	 Optional.	See	CONTENT.

CHARSET *YES Optional.	Include	charset
attribute.

*NO Do	not	include	charset
attribute.

*TEXT Default.	Include	charset

attribute	if	content	is	text.

	

Example
	
SEND	HANDLER(InboundXMLBind)	UAFILE(…)	UAPATH(…)
	

InboundJSONBind
The	InboundJSONBind	handler	allows	JSON	requests	to	be	received	and	JSON
responses	to	be	sent.
When	the	RECEIVE	command	of	this	content	handler	is	executed	the	following
steps	occur:
If	there	is	no	content,	then	an	OK	status	is	returned.
The	handler	checks	that	the	content	type	belongs	to	the	JSON	group	of	content
types,	if	it	does	not	support	the	content	type,	then	an	error	is	returned	to	the
program.	Use	the	CONTENT	keyword	to	override	this	check	and	to	allow	the
handler	to	receive	the	data,	it	is	assumed	the	data	is	JSON.
The	handler	parses	the	JSON	content	into	a	JSON	object	ready	for	the	BIND
command.
The	encoding	of	the	content	is	assumed	to	be	UTF-8.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

RECEIVE HANDLER 	 InboundJSONBind

CONTENT 	 Optional.	See	CONTENT.

ARCHIVE 	 Optional.	See	ARCHIVE.

	

Example
	
RECEIVE	HANDLER(InboundJSONBind)
	

	
When	the	SEND	command	of	this	content	handler	is	executed	the	following
steps	occur:
The	handler	determines	if	this	Unicode	data	needs	to	be	archived.
The	handler	creates	a	HTTP	response	to	return	to	the	remote	client.
The	content	type	is	application/json	and	the	content	encoding	is	UTF-8.

The	optional	UAFILE	and	UAPATH	keywords	are	available	to	inform	the
remote	client	program	of	a	recommended	path	and	filename	for	the	content.
LANSA	Integrator	UserAgent	will	add	these	file	and	path	names	to	the	save
popup	menu	on	the	response	panel.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

SEND HANDLER 	 InboundJSONBind

UAPATH value Optional.	User	agent	save
response	path.

UAFILE value Optional.	User	agent	save
response	filename.

UACACHE value Optional.	Cache-Control	max-
age.
Default.0.

UADISPOSITION value Optional.	Content-Disposition
filename.

ARCHIVE 	 Optional.	See	ARCHIVE.

	

Example
	
SEND	HANDLER(InboundJSONBind)
	

InboundNameValue
The	InboundNameValue	handler	can	send	and	receive	name	value	pair	content.
Refer	to	5.1.6	Web	Browser	Content.
When	the	RECEIVE	command	of	this	content	handler	is	executed	the	following
steps	occur:
If	there	is	no	content,	then	an	OK	status	is	returned.
The	handler	checks	that	the	content	type	is	application/x-www-form-
urlencoded,	if	it	is	not	this	type	then	an	error	is	returned.	Use	the	CONTENT
keyword	to	override	this	check	and	to	allow	the	handler	to	receive	the	data,	it	is
assumed	the	data	is	in	the	correct	format.
The	handler	then	decodes	the	name	value	pairs	and	binds	the	content	to	the
program	depending	on	the	BIND	keyword	action.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

RECEIVE HANDLER 	 InboundNameValue

BIND *FIELD Optional.	Default.	Set
LANSA	function	fields	with
received	name	values.

*LIST Optional.	Put	received	name
values	in	specified	working
list.

*BOTH Optional.	Set	function
fields,	if	field	does	not	exist,
put	name	value	in	specified
working	list.

PREFIX *YES Optional.	Field	has	a	single
letter	prefix	which	needs	to
be	ignored.	LANSAWeb
posts	name	pairs	with	a
single	data	type	prefix	letter.

*NO Default.	Field	does	not	have

a	single	letter	prefix	which
needs	to	be	ignored.

ENCODING 	 Optional.	See	ENCODING.
Used	to	convert	field
values.

NUMBERFORMAT 	 Optional.	See
NUMBERFORMAT.

CONTENT 	 Optional.	See	CONTENT.

	

Example
	
RECEIVE	HANDLER(InboundNameValue)	BIND(*FIELD)	SERVICE_LIST(…)
	

When	the	SEND	command	of	this	content	handler	is	executed	the	following
steps	occur:
A	name	value	pair	record	that	is	URL	encoded	is	created	from	the	working	list
argument.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

SEND HANDLER 	 InboundNameValue

UAPATH value Optional.	User	agent	save
response	path.

UAFILE value Optional.	User	agent	save
response	filename.

UACACHE value Optional.	Cache-Control
max-age.
Default.	0.

UADISPOSITION value Optional.	Content-
Disposition	filename.

ENCODING 	 Optional.	See	ENCODING
Used	to	encode	field	values.

NUMBERFORMAT 	 Optional.	See
NUMBERFORMAT.

CONTENT 	 Optional.	See	CONTENT

CHARSET *YES Optional.	Include	charset
attribute.

*NO Do	not	include	charset
attribute.

*TEXT Default.	Include	charset
attribute	if	content	is	text.

SPACE *PLUS Default.	Encode	spaces	to
+.

*BLANK Encode	spaces	to	blank.

*PERCENT20 Encode	spaces	to	%20.

	

Example
	
SEND	HANDLER(InboundNameValue)	SERVICE_LIST(…)
	

InboundFile
The	InboundFile	handler	is	used	to	send	and	receive	files.
The	HTTP	posted	content	is	saved	directly	to	the	specified	file.

Command Keyword Value Developer	notes	for
Command/Keyword/Value

RECEIVE HANDLER 	 InboundFile

TO value Mandatory.	File	path	to	receive
content.

APPEND *YES Optional.	Append	content	to	existing
file.

*NO Default.

	

Example
	
RECEIVE	HANDLER(InboundFile)	TO(/image-upload/photo.jpeg)
	

When	the	SEND	command	of	this	content	handler	is	executed	the	following
steps	occur:
Determine	the	content-type	and	read	the	specified	file	and	send	the	contents	as	a
HTTP	response.
If	no	CONTENT	keyword	is	present	then	the	Content-Type	is	determined	from
the	Java	Activation	Framework	FileTypeMap.	This	is	a	file	extension	/	MIME
type	association.
If	the	HTTP	server	is	an	IBM	IBM	i	in	MIXED	output	mode	and	the	content
type	selected	starts	with	'text/',	the	encoding	is	used	to	covert	the	file	byte
content	into	Unicode	and	then	converted	back	to	bytes	using	the	value	of	the
CGI-EBCDIC-CCSID	property.
If	the	HTTP	server	is	in	BINARY	output	mode	or	the	content	type	does	not
starts	with	'text/'	then	the	file	contents	are	sent	unaltered.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

SEND HANDLER 	 InboundFile

FILE value Mandatory.	File	path	of
content.

UAPATH value Optional.	User	agent	save
response	path.

UAFILE value Optional.	User	agent	save
response	filename.

UACACHE value Optional.	Cache-Control	max-
age.
Default.	0.

UADISPOSITION value Optional.	Content-Disposition
filename.

ENCODING 	 Optional.	See	ENCODING
Used	for	MIXED	mode
content	encoding.

CONTENT 	 Optional.	See	CONTENT.
Content	type	is	obtained	from
the	file	type	map.

CHARSET *YES Optional.	Include	charset
attribute.

*NO Do	not	include	charset
attribute.

*TEXT Default.	Include	charset
attribute	if	content	is	text.

	

Example
	
SEND	HANDLER(InboundFile)	FILE(…)

	

InboundLocation
The	InboundLocation	handler	can	only	send	a	reply,	so	it	is	used	in	conjunction
with	other	inbound	content	handlers.
When	the	SEND	command	of	this	content	handler	is	executed	the	following
steps	occur:
If	no	URL	keyword	is	supplied,	an	error	is	returned.
If	the	URL	keyword	value	string	starts	and	ends	with	double	quotes,	then	these
are	removed.
To	create	a	LANSAWEB	procfun	query	string,	include	the	PROCESS	and
FUNCTION	keywords.	If	these	are	present,	optional	PARTITION	and
LANGUAGE	keywords	can	be	used	and	the	partition	will	default	to	the	current
program	partition	using	the	command.getClient().getPartition()	method	and	the
language	will	be	added	to	the	end	if	available.
The	InboundLocation	handler	returns	the	following	type	of	HTTP	response.

Status:	303	Redirect	to	location
Location:	url

Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

SEND HANDLER 	 InboundLocation

URL value Mandatory.	URL	location.

PROCESS value Optional.	LANSAWeb	process.

FUNCTION value Optional.	LANSAWeb	function.

PARTITION value Optional.	LANSAWeb	partition.
Default	is	the	partition	of	the	JSM
LANSA	client	function.

LANGUAGE value Optional.	LANSAWeb	language.

	

Example

	
SEND	HANDLER(InboundLocation)	URL(/index.html)
SEND	HANDLER(InboundLocation)	URL(http://www.lansa.com/index.html)
SEND	HANDLER(InboundLocation)	URL("http://www.lansa.com/cgi-
bin/jsmdirect?order+period(12)")
SEND	HANDLER(InboundLocation)	URL(/cgi-
bin/lansaweb)	PROCESS(PROC01)	FUNCTION(FUNC01)
	
	

InboundStatus
The	InboundStatus	handler	can	only	send	a	reply,	so	it	is	used	in	conjunction
with	other	inbound	content	handlers.
When	the	SEND	command	of	this	content	handler	is	executed	the	following
steps	occur:
The	InboundStatus	handler	returns	the	following	type	of	HTTP	response.

Status:	200	OK
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

SEND HANDLER 	 InboundStatus

STATUS value Optional.	HTTP	status	number.
Default.	200.

MESSAGE value Optional.	HTTP	status	message
Default.	OK.

	

Example
	
SEND	HANDLER(InboundStatus)	MESSAGE(OK	-	File	has	been	received)
SEND	HANDLER(InboundStatus)	MESSAGE(ERROR	-	Invalid	transaction)
	
	

InboundMultiPart
The	InboundMultiPart	handler	is	used	to	send	and	receive	MIME	multipart
content.
Refer	to	5.1.6	Web	Browser	Content.

Command Keyword Value Developer	notes	for
Command/Keyword/Value

RECEIVE HANDLER 	 InboundMultiPart

FILE value Conditional.	Name	of	INPUT
tag.

FIELD value Conditional.	Name	of	INPUT
tag.

FILENAME value Conditional.	Name	of	INPUT
tag.
#JSMMSG	field	is	set	to	the
uploaded	filename.

ENCODING 	 Optional.	See	ENCODING.
Used	to	convert	field	values.

NUMBERFORMAT 	 Optional.	See
NUMBERFORMAT.

TO value Conditional.	File	path	to
receive	content.

APPEND *YES Optional.	Append	content	to
existing	file.

*NO Default.

	

A	web	browser	can	send	content	using	the	multipart/form-data	format.
	
<FORM	METHOD="POST"	ACTION="http://lansa01/cgi-bin/jsmdirect?
upload"	ENCTYPE="multipart/form-data">

<INPUT	NAME="COMPANY"	TYPE="TEXT"	SIZE	="30"/>
<INPUT	NAME="FILE1"	TYPE="FILE"	SIZE	="60"/>
<INPUT	NAME="FILE2"	TYPE="FILE"	SIZE	="60"/>
<INPUT	NAME="FILE3"	TYPE="FILE"	SIZE	="60"/>
<INPUT	TYPE="SUBMIT"	VALUE="Send	order"/>
</FORM>
	

If	the	specified	FILE,	FIELD	or	FILENAME	component	does	not	exist	then	a
command	status	of	NOT_EXIST	is	returned.
If	the	FILE	component	does	exist	but	has	not	been	used	then	NOT_EXIST	is
also	returned.
Example
Receive	content	from	a	Web	browser	post.
	
RECEIVE	HANDLER(InboundMultiPart)	FIELD(COMPANY)
	
RECEIVE	HANDLER(InboundMultiPart)	FIELD(COMPANY)	ENCODING(MS932)
	

In	the	following	example	the	file	selected	as	FILE2	is	uploaded	to	the	location
and	new	name	given	in	TO	parameter.
	
RECEIVE	HANDLER(InboundMultiPart)	FILE(FILE2)	TO(/image-
upload/photo.jpeg)
	

In	this	example	it	is	the	name	of	the	FILE2	(i.e.	C:\images\holiday.jpeg)
selected	in	the	browser	that	is	passed	to	the	LANSA	function	(i.e.	holiday.jpeg).
	
RECEIVE	HANDLER(InboundMultiPart)	FILENAME(FILE2)
	

When	the	SEND	command	of	this	content	handler	is	executed	the	following
steps	occur:
Use	the	working	list	argument	to	create	a	MIME	MultiPart	response.
The	name	value	pair	data	and	the	file	data	are	passed	using	a	list	argument.
The	first	field	of	the	list	contains	the	component's	content	type	of	FIELD	or
FILE.

The	second	field	contains	the	component's	name.
The	third	field	contains	the	component	value	or	the	component	file	path.
An	optional	fourth	field	controls	how	the	file	contents	are	MIME	encoded.
Possible	values	are	8bit	or	base64.	The	default	MIME	encoding	is	8bit.	The
MIME	body	part	Content-Type	is	determined	by	the	file	extension	using	the
Java	Activation	Framework.
The	field	value	encoding	is	determined	by	the	ENCODING	keyword.
Example
	
DEFINE	FIELD(#TYPE)	TYPE(*CHAR)	LENGTH(10)
DEFINE	FIELD(#NAME)	TYPE(*CHAR)	LENGTH(20)
DEFINE	FIELD(#VALUE)	TYPE(*CHAR)	LENGTH(100)
DEF_LIST	NAME(#WRKLST)	FIELDS(#TYPE	#NAME	#VALUE)	TYPE(*WORKING)
	
CHANGE	FIELD(#TYPE)	TO(FIELD)
CHANGE	FIELD(#NAME)	TO(COMPANY)
CHANGE	FIELD(#VALUE)	TO(ACME)
ADD_ENTRY	TO_LIST(#WRKLST)
	
CHANGE	FIELD(#TYPE)	TO(FILE)
CHANGE	FIELD(#NAME)	TO(ORDER_FILE)
CHANGE	FIELD(#VALUE)	TO('''/order/month-order.xml''')
ADD_ENTRY	TO_LIST(#WRKLST)
	
CHANGE	FIELD(#JSMCMD)	TO('SEND	HANDLER(InboundMultiPart)	SERVICE_LIST(TYPE,NAME,VALUE)')
	

Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

SEND HANDLER 	 InboundMultiPart

UAPATH value Optional.	User	agent	save
response	path.

UAFILE value Optional.	User	agent	save
response	filename.

UACACHE value Optional.	Cache-Control

max-age.
Default.	0.

UADISPOSITION value Optional.	Content-
Disposition	filename.

ENCODING 	 Optional.	See	ENCODING.
Used	to	encode	field	values.

NUMBERFORMAT 	 Optional.	See
NUMBERFORMAT.

CHARSET *YES Optional.	Include	charset
attribute.

*NO Do	not	include	charset
attribute.

*TEXT Default.	Include	charset
attribute	if	content	is	text.

	

Example
	
SEND	HANDLER(InboundMultiPart)	SERVICE_LIST(TYPE,NAME,VALUE)
	

InboundTextHandler
The	InboundText	handler	is	used	to	receive	text	content	from	a	HTTP	client
program	and	optional	send	a	text	response.
When	the	RECEIVE	command	of	this	content	handler	is	executed	the	following
steps	occur:
If	there	is	no	content,	then	an	OK	status	is	returned.
The	handler	then	determines	the	encoding	to	use	to	convert	the	binary	text	into
Unicode	text	and	then	updates	the	field	specified	in	the	TO	keyword	with	the
converted	Unicode	value.

Command Keyword Value Developer	notes	for
Command/Keyword/Value

RECEIVE HANDLER 	 InboundText

ENCODING 	 Optional.	See	ENCODING.
Used	to	convert	binary	text	to
Unicode	text.

TO field Mandatory.	Bind	text	to	specified
field.

	

Example
	
RECEIVE	HANDLER(InboundText)	TO(MSG)
	

The	SEND	command	allows	a	simple	plain	text	response	to	be	created.
	

Command Keyword Value Developer	notes	for
Command/Keyword/Value

SEND HANDLER 	 InboundText

STATUS value Optional.	HTTP	status
number.
Default.	200.

MESSAGE value Optional.	HTTP	status
message
Default.	OK.

FROM field Optional.	Send	text	from
specified	field.

UACACHE value Optional.	Cache-Control	max-
age.
Default.0.

UADISPOSITION value Optional.	Content-Disposition
filename.

ENCODING 	 Optional.	See	ENCODING.
Used	to	convert	Unicode	text
to	binary	text.

CONTENT 	 Optional.	See	CONTENT.

CHARSET *YES Optional.	Include	charset
attribute.

*NO Do	not	include	charset
attribute.

*TEXT Default.	Include	charset
attribute	if	content	is	text.

	

Example
	
SEND	HANDLER(InboundText)	FROM(MSG)
	

OutboundNameValue
The	OutboundNameValue	handler	can	post	name	value	pairs	to	a	remote	server
using	the	HTTP	protocol.
Refer	to	5.1.6	Web	Browser	Content.
When	the	SEND	command	of	this	content	handler	is	executed	the	following
steps	occur:
If	an	optional	working	list	is	available	name	value	pair	data	is	created.	This
working	list	must	have	at	least	two	fields,	which	can	be	of	any	name	and	size.
Importantly,	the	first	field	supplies	the	name	and	the	second	field	supplies	the
value.	The	name	and	values	are	URL	encoded.
If	no	working	list	is	available	then	zero	length	content	is	created.
If	the	METHOD	keyword	is	GET,	then	the	HTTP	GET	protocol	is	used	to
access	the	remote	host,	if	name	value	pair	content	exists	then	this	is	appended	to
the	end	of	the	URL	with	a	'?'	separating	the	URL	and	the	data.
If	the	METHOD	keyword	is	POST,	then	the	HTTP	POST	protocol	is	used	to
access	the	remote	host,	if	name	value	pair	content	exists	then	this	is	included	as
content.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND HANDLER 	 OutboundNameValue

URI value Mandatory.	Remote	URI.

HOST value Mandatory.	Remote	server.

USER value Optional.	Basic
authentication	user.

PASSWORD value Optional.	Basic
authentication	password.

PROXY value Optional.	Proxy	server.

PROXYUSER value Optional.	Basic
authentication	user.

PROXYPASSWORD value Optional.	Basic

authentication	password.

METHOD 	 Optional.	See	METHOD.

VERSION 	 Optional.	See	VERSION.

SECURE *YES Optional.	Use	HTTPS
protocol.

*NO Default.	Use	HTTP
protocol.

ENCODING 	 Optional.	See	ENCODING
Used	to	encode	field	values.

WAIT *YES Optional.	Default.
Infinite	wait	for	HTTP
response.

*NO Do	not	wait	for	HTTP
response.

value Wait	read	time	in
milliseconds.

TIMEOUT value Optional.	Default	is	0	which
means	disabled.
Host	connection	timeout	in
milliseconds.

LOCALE 	 Optional.	See	LOCALE.

NUMBERFORMAT 	 Optional.	See
NUMBERFORMAT.

SPACE *PLUS Default.	Encode	spaces	to	+
sign.

*BLANK Encode	spaces	to	blank.

*PERCENT20 Encode	spaces	to	%20.

	

Example

	
SEND	HANDLER(OutboundNameValue)	URI(/cgi-
bin/program)	HOST(…)	SERVICE_LIST(…)
	

OutboundXML
The	OutboundXML	handler	can	post	XML	to	a	remote	server	using	the	HTTP
protocol.
The	handler	using	the	XSL	keyword	transforms	the	program	fields	and	list	into
the	resultant	XML.	If	a	FRAGMENT	keyword	is	present	this	transformation	is
stored,	as	this	is	only	a	fragment	of	the	final	XML	to	be	sent.	When	no
FRAGMENT	keyword	is	present	this	transformation	is	treated	as	the	last	and
the	final	output	XML	is	constructed	and	ready	to	be	sent.
No	XSL	keyword	is	needed	if	the	METHOD(GET)	keyword	is	used.
When	the	SEND	command	of	this	content	handler	is	executed	the	following
steps	occur:
If	content	is	being	posted,	then	the	handler	determines	if	this	Unicode	data
needs	to	be	archived.
The	handler	uses	the	value	of	the	CONTENT	keyword	to	determine	the	value	of
the	HTTP	protocol	content-type.

If	no	content	value	is	available,	the	handler	defaults	to	application/xml
If	the	content	value	is	*XML,	then	content	type	will	be	application/xml
If	the	content	value	is	*TEXTXML,	then	content	type	will	be	text/xml

The	service	property	outbound.xml.default.contenttype	can	be	used	to	set	the
default	content	type.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND HANDLER 	 OutboundXML

XSL 	 Conditional.	See	XSL.

FRAGMENT 	 Optional.	See	FRAGMENT.

OUTPUT 	 Optional.	See	OUTPUT.

URI value Mandatory.	Remote	URI.

HOST value Mandatory.	Remote	server.

USER value Optional.	Basic	authentication
user.

PASSWORD value Optional.	Basic	authentication
password.

PROXY value Optional.	Proxy	server.

PROXYUSER value Optional.	Basic	authentication
user.

PROXYPASSWORD value Optional.	Basic	authentication
password.

METHOD 	 Optional.	See	METHOD.

VERSION 	 Optional.	See	VERSION.

SECURE *YES Optional.	Use	HTTPS	protocol.

*NO Default.	Use	HTTP	protocol.

WAIT *YES Optional.	Default	is	0.
Infinite	wait	for	HTTP	response.

*NO Do	not	wait	for	HTTP	response.

value Wait	read	time	in	milliseconds.

TIMEOUT value Optional.	Default	is	0	which
means	disabled.
Host	connection	timeout	in
milliseconds.

LOCALE 	 Optional.	See	LOCALE.

CONTENT 	 Optional.	See	CONTENT.

ENCODING 	 Optional.	See	ENCODING.

ARCHIVE 	 Optional.	See	ARCHIVE.

ACTION value Optional.	Include	HTTP
SOAPAction	property

	

Example

	
SEND	HANDLER(OutboundXML)	XSL(..)	URI(/cgi-
bin/program)	HOST(…)	SERVICE_LIST(…)
SEND	HANDLER(OutboundXML)	METHOD(GET)	URI(/cgi-
bin/program)	HOST(…)
	

OutboundXMLBind
The	OutboundXMLBind	handler	can	post	XML	to	a	remote	server	using	the
HTTP	protocol.
To	create	the	XML	content,	use	the	BIND,	SET	and	WRITE	commands	before
using	the	SEND	command.
When	the	SEND	command	of	this	content	handler	is	executed	the	following
steps	occur:
If	content	is	being	posted,	then	the	handler	determines	if	this	Unicode	data
needs	to	be	archived.
The	handler	uses	the	value	of	the	CONTENT	keyword	to	determine	the	value	of
the	HTTP	protocol	content-type.

If	no	content	value	is	available,	the	handler	defaults	to	application/xml
If	the	content	value	is	*XML,	then	content	type	will	be	application/xml
If	the	content	value	is	*TEXTXML,	then	content	type	will	be	text/xml

The	service	property	outbound.xml.default.contenttype	can	be	used	to	set	the
default	content	type.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND HANDLER 	 OutboundXMLBind

URI value Mandatory.	Remote	URI.

HOST value Mandatory.	Remote	server.

USER value Optional.	Basic	authentication
user.

PASSWORD value Optional.	Basic	authentication
password.

PROXY value Optional.	Proxy	server.

PROXYUSER value Optional.	Basic	authentication
user.

PROXYPASSWORD value Optional.	Basic	authentication

password.

METHOD 	 Optional.	See	METHOD.

VERSION 	 Optional.	See	VERSION.

SECURE *YES Optional.	Use	HTTPS	protocol.

*NO Default.	Use	HTTP	protocol.

WAIT *YES Optional.	Default	is	0.
Infinite	wait	for	HTTP	response.

*NO Do	not	wait	for	HTTP	response.

value Wait	read	time	in	milliseconds.

TIMEOUT value Optional.	Default	is	0	which
means	disabled.
Host	connection	timeout	in
milliseconds.

LOCALE 	 Optional.	See	LOCALE.

CONTENT 	 Optional.	See	CONTENT.

ENCODING 	 Optional.	See	ENCODING.

ARCHIVE 	 Optional.	See	ARCHIVE.

ACTION value Optional.	Include	HTTP
SOAPAction	property

	

Example
	
SEND	HANDLER(OutboundXMLBind)	URI(/cgi-bin/program)	HOST(…)
SEND	HANDLER(OutboundXMLBind)	METHOD(GET)	URI(/cgi-
bin/program)	HOST(…)
	

OutboundJSONBind
The	OutboundJSONBind	handler	can	post	JSON	to	a	remote	server	using	the
HTTP	protocol.
To	create	the	JSON	content,	use	the	BIND,	SET	and	WRITE	commands	before
using	the	SEND	command.
When	the	SEND	command	of	this	content	handler	is	executed	the	following
steps	occur:
If	content	is	being	posted,	then	the	handler	determines	if	this	Unicode	data
needs	to	be	archived.
The	content	type	is	application/json	and	the	content	encoding	is	UTF-8.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND HANDLER 	 OutboundJSONBind

URI value Mandatory.	Remote	URI.

HOST value Mandatory.	Remote	server.

USER value Optional.	Basic	authentication
user.

PASSWORD value Optional.	Basic	authentication
password.

PROXY value Optional.	Proxy	server.

PROXYUSER value Optional.	Basic	authentication
user.

PROXYPASSWORD value Optional.	Basic	authentication
password.

METHOD 	 Optional.	See	METHOD.

VERSION 	 Optional.	See	VERSION.

SECURE *YES Optional.	Use	HTTPS	protocol.

*NO Default.	Use	HTTP	protocol.

WAIT *YES Optional.	Default	is	0.
Infinite	wait	for	HTTP	response.

*NO Do	not	wait	for	HTTP	response.

value Wait	read	time	in	milliseconds.

TIMEOUT value Optional.	Default	is	0	which
means	disabled.
Host	connection	timeout	in
milliseconds.

LOCALE 	 Optional.	See	LOCALE.

ARCHIVE 	 Optional.	See	ARCHIVE.

	

Example
	
SEND	HANDLER(OutboundJSONBind)	URI(/cgi-bin/program)	HOST(…)
SEND	HANDLER(OutboundJSONBind)	METHOD(GET)	URI(/cgi-
bin/program)	HOST(…)
	

	

OutboundSeparatedValue
The	OutboundSeparatedValue	handler	can	send	separated	values	to	a	remote
server	using	the	HTTP	protocol.
When	the	SEND	command	of	this	content	handler	is	executed	the	following
steps	occur:
If	the	handler	is	being	used	with	keyword	METHOD(GET)	then	no	working	list
argument	is	needed.	It	is	also	possible	to	POST	without	a	working	list	argument.
The	handler	uses	the	value	of	the	CONTENT	keyword	to	determine	the	type	of
separated	values	to	create:

If	no	content	value	is	available,	the	handler	defaults	to	application/comma-
separated-values
If	the	content	value	is	*CSV,	then	content	type	will	be	application/comma-
separated-values
If	the	content	value	is	*TEXTCSV,	then	content	type	will	be	text/tab-
comma-values
If	the	content	value	is	*TSV,	then	content	type	will	be	application/tab-
separated-values
If	the	content	value	is	*TEXTTSV,	then	content	type	will	be	text/tab-
separated-values
If	the	content	value	is	not	a	valid	separated	value	content	type	then	CSV	data
is	created,	but	the	specified	content	type	is	sent.

The	optional	SVHEAD	keyword	allows	a	header	record	to	be	inserted	at	the
beginning	of	the	data.
The	handler	creates	Unicode	data	using	all	entries	in	the	list,	if	there	is	no	list
argument	then	zero	length	content	is	created.
The	handler	determines	if	this	Unicode	data	needs	to	be	archived.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND HANDLER 	 OutboundSeparatedValue

URI value Mandatory.	Remote	URI.

HOST value Mandatory.	Remote	server.

USER value Optional.	Basic	authentication
user.

PASSWORD value Optional.	Basic	authentication
password.

PROXY value Optional.	Proxy	server.

PROXYUSER value Optional.	Basic	authentication
user.

PROXYPASSWORD value Optional.	Basic	authentication
password.

METHOD 	 Optional.	See	METHOD.

VERSION 	 Optional.	See	VERSION.

SECURE *YES Optional.	Use	HTTPS	protocol.

*NO Default.	Use	HTTP	protocol.

WAIT *YES Optional.	Default	is	0.
Infinite	wait	for	HTTP	response.

*NO Do	not	wait	for	HTTP	response.

value Wait	read	time	in	milliseconds.

TIMEOUT value Optional.	Default	is	0	which
means	disabled.
Host	connection	timeout	in
milliseconds.

LOCALE 	 Optional.	See	LOCALE.

NUMBERFORMAT 	 Optional.	See
NUMBERFORMAT.

CONTENT 	 Optional.	See	CONTENT.

ENCODING 	 Optional.	See	ENCODING.

SVQUOTE 	 Optional.	See	SVQUOTE.

SVHEAD 	 Optional.	See	SVHEAD.

ARCHIVE 	 Optional.	See	ARCHIVE.

	

Example
	
SEND	HANDLER(OutboundSeparatedValue)	URI(/cgi-
bin/program)	HOST(…)	SERVICE_LIST(…)
SEND	HANDLER(OutboundSeparatedValue)	URI(/cgi-
bin/program)	HOST(…)CONTENT(*TSV)	SERVICE_LIST(…)
SEND	HANDLER(OutboundSeparatedValue)	URI(/cgi-
bin/program)	HOST(…)CONTENT(text/csv)	SERVICE_LIST(…)
	

OutboundMultiPart
The	OutboundMultiPart	handler	can	post	name	value	pair	data	and	file	data
using	the	multipart/form-data	format.
Refer	to	5.1.6	Web	Browser	Content.

Command Keyword Value Developer	notes	for
Command/Keyword/Value

SEND HANDLER 	 OutboundMultiPart

URI value Mandatory.	Remote	URI.

HOST value Mandatory.	Remote	server.

USER value Optional.	Basic	authentication	user.

PASSWORD value Optional.	Basic	authentication
password.

PROXY value Optional.	Proxy	server.

PROXYUSER value Optional.	Basic	authentication	user.

PROXYPASSWORD value Optional.	Basic	authentication
password.

VERSION value Optional.	See	VERSION.

SECURE *YES Optional.	Use	HTTPS	protocol.

*NO Default.	Use	HTTP	protocol.

WAIT *YES Optional.	Default	is	0.
Infinite	wait	for	HTTP	response.

*NO Do	not	wait	for	HTTP	response.

value Wait	read	time	in	milliseconds.

TIMEOUT value Optional.	Default	is	0	which	means
disabled.
Host	connection	timeout	in
milliseconds.

LOCALE 	 Optional.	See	LOCALE.

NUMBERFORMAT 	 Optional.	See
NUMBERFORMAT.

ENCODING 	 Optional.	See	ENCODING.
Used	to	encode	field	values.

	

The	name	value	pair	data	and	the	file	data	are	passed	using	a	list	argument.
The	first	field	of	the	list	contains	the	component's	content	type	of	FIELD	or
FILE.
The	second	field	contains	the	component's	name.
The	third	field	contains	the	component	value	or	the	component	file	path.
An	optional	fourth	field	controls	how	the	file	contents	are	MIME	encoded.
Possible	values	are	8bit	or	base64.	The	default	MIME	encoding	is	8bit.	The
MIME	body	part	Content-Type	is	determined	by	the	file	extension	using	the
Java	Activation	Framework.
The	field	value	encoding	is	determined	by	the	ENCODING	keyword.
Example
	
DEFINE	FIELD(#TYPE)	TYPE(*CHAR)	LENGTH(10)
DEFINE	FIELD(#NAME)	TYPE(*CHAR)	LENGTH(20)
DEFINE	FIELD(#VALUE)	TYPE(*CHAR)	LENGTH(100)
DEF_LIST	NAME(#WRKLST)	FIELDS(#TYPE	#NAME	#VALUE)	TYPE(*WORKING)
	
CHANGE	FIELD(#TYPE)	TO(FIELD)
CHANGE	FIELD(#NAME)	TO(COMPANY)
CHANGE	FIELD(#VALUE)	TO(ACME)
ADD_ENTRY	TO_LIST(#WRKLST)
	
CHANGE	FIELD(#TYPE)	TO(FILE)
CHANGE	FIELD(#NAME)	TO(ORDER_FILE)
CHANGE	FIELD(#VALUE)	TO('''/order/month-order.xml''')
ADD_ENTRY	TO_LIST(#WRKLST)
	

CHANGE	FIELD(#JSMCMD)	TO('''SEND	HANDLER(OutboundMultiPart)	SECURE(*YES)	HOST(LANSA01)	URI(/order_process.jsp)	SERVICE_LIST(TYPE,NAME,VALUE)''')
	

OutboundFile
The	OutboundFile	handler	can	send	a	file	to	a	remote	server	using	the	HTTP
protocol.
When	the	SEND	command	of	this	content	handler	is	executed	the	following
steps	occur:
The	handler	uses	the	value	of	the	CONTENT	keyword	to	determine	the	content
type,	if	no	CONTENT	keyword	is	present,	then	the	file	extension	is	used	to
determine	the	content	type	using	the	MIME	file	type	map.
If	an	ENCODING	keyword	is	present,	then	a	charset	attribute	is	determined	and
appended	to	the	content	type.
If	the	value	of	the	METHOD	keyword	is	GET,	then	no	FILE	keyword	is
required	as	the	HTTP	GET	protocol	is	used	to	receive	content	from	the	remote
HTTP	server.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND HANDLER 	 OutboundFile

FILE value Conditional.	File	path.

URI value Mandatory.	Remote	URI.

HOST value Mandatory.	Remote	server.

USER value Optional.	Basic	authentication
user.

PASSWORD value Optional.	Basic	authentication
password.

PROXY value Optional.	Proxy	server.

PROXYUSER value Optional.	Basic	authentication
user.

PROXYPASSWORD value Optional.	Basic	authentication
password.

METHOD 	 Optional.	See	METHOD.

VERSION 	 Optional.	See	VERSION.

SECURE *YES Optional.	Use	HTTPS	protocol.

*NO Default.	Use	HTTP	protocol.

WAIT *YES Optional.	Default	is	0.
Wait	read	time	in	milliseconds.

*NO Do	not	wait	for	HTTP	response.

value Wait	read	time	in	milliseconds.

TIMEOUT value Optional.	Default	is	0	which
means	disabled.
Host	connection	timeout	in
milliseconds.

LOCALE 	 Optional.	See	LOCALE.

CONTENT 	 Optional.	See	CONTENT.

ENCODING 	 Optional.	See	ENCODING.
Used	to	determine	charset
attribute.

	

Example
	
SEND	HANDLER(OutboundFile)	FILE(/upload/order.csv)	URI(/cgi-
bin/program)	HOST(…)
	

5.4.11	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
DO	NOT	use	the	SERVICE_UNLOAD	command	when	sending	a	HTTP
response.	Use	the	SEND	command	to	create	the	response	and	then	use	the
JSM_CLOSE	BIF	to	close	the	connection.	The	byte	array	response	returned	to
JSM	Client	program	by	the	SEND	command	will	be	become	the	HTTP
response.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

5.4.12	HTTPService	Examples
RDML	HTTP	Service	(XML	Inbound)
RDML	HTTP	Service	(XML	Outbound)

5.5	HTTPInboundJSONBindService
Service	Name:	HTTPInboundJSONBindService
The	HTTPInboundJSONBindService	allows	Java	Script	Object	Notation
content	to	be	received	from	and	sent	to	a	HTTP	browser.	The	JSON	Binding
Wizard	is	used	to	create	a	bind	mapping	between	program	field	values	and
JSON	object	variables.
The	HTTPInboundJSONBindService	supports	the	following	commands:
5.5.1	SERVICE_LOAD
5.5.2	SERVICE_GET
5.5.3	BIND
5.11.4	CLOSE
5.5.5	GET
5.5.6	SET
5.5.7	WRITE
5.5.8	SEND

5.5.1	SERVICE_LOAD
On	the	SERVICE_LOAD	event	the	service	stores	the	HTTP	properties	for	later
access	by	the	GET	command.
If	there	is	content,	the	service	checks	that	the	content	type	is	application/json,	if
it	does	not	support	the	content	type,	then	an	error	is	returned	to	the	program.
Use	the	CONTENT	keyword	to	override	this	check	and	to	allow	the	service	to
receive	the	data.
The	service	determines	the	encoding	to	apply	to	the	received	content	to	convert
it	to	Unicode.
The	JSON	Unicode	string	is	converted	into	a	JSON	object.
The	service	determines	if	this	Unicode	data	needs	to	be	archived.
The	service	determines	if	the	query	string	parameters	need	to	be	bound	to	the
program	fields	or	list.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD BIND 	 Optional.	See	BIND.

ARCHIVE 	 Optional.	See	ARCHIVE.

CONTENT 	 Optional.	See	CONTENT.

ENCODING 	 Optional.	See	ENCODING.

	

	

5.5.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.5.3	BIND
The	BIND	command	binds	the	specified	service	code	to	the	loaded	inbound
JSON	object	or	creates	a	new	empty	outbound	JSON	object
The	SERVICE	keyword	value	is	used	in	a	resource	property	lookup	using	the
property	key	service.'value'	and	service.archive.'value'	to	locate	the	binding
class	and	the	binding	jar	file	that	contains	the	binding	class	and	supporting
classes	generated	by	the	JavaScriptBinding	Wizard.	If	the	service	binding
archive	entry	does	not	exist	then	the	binding	jar	file	must	exist	in	the	JSM	jar
subdirectory	instead	of	a	user	specified	directory.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

BIND SERVICE value Service	name.

TYPE *INBOUND Conditional.	Inbound	binding.

*OUTBOUND Conditional.	Outbound	binding.

BINDTRACE *YES Optional.	Trace	the	inbound	bind
result.

*NO Default.

FILTER 	 Optional.	See	FILTER.

	

5.5.4	CLOSE
The	CLOSE	command	closes	the	current	BIND.
This	command	is	optional	and	is	usually	used	after	the	WRITE	command.
The	SEND	command	will	automatically	do	a	WRITE	and	CLOSE	operation.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CLOSE 	 	 	

	

	

5.5.5	GET
The	GET	command	is	used	to	read	the	inbound	JSON	object.
Fragments	use	only	fields,	so	the	GET	FRAGMENT	command	requires	the
SERVICE_EXCHANGE(*FIELD)	keyword.
Lists	use	only	a	working	list,	so	the	GET	LIST	command	requires	a	working	list
argument.
The	GET	command	also	allows	the	program	to	access	the	inbound	HTTP
protocol	properties.
For	a	complete	list	of	HTTP	protocol	property	names	see	SERVICE_LOAD
command.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET LIST value Conditional.	Bind	list.

FRAGMENT value Conditional.	Bind	fragment.

PROPERTY value HTTP	protocol	property.

*LIST Add	all	properties	to	list	argument.

	

	

5.5.6	SET
The	SET	command	is	used	to	populate	the	outbound	JSON	object.
Fragments	use	only	fields,	so	the	SET	FRAGMENT	command	requires	the
SERVICE_EXCHANGE(*FIELD)	keyword.
Lists	use	only	a	working	list,	so	the	SET	LIST	command	requires	a	working	list
argument.
The	SET	command	can	also	be	used	to	include	HTTP	head	properties	in	the
HTTP	response	protocol.
The	HTTP	property	name	value	pairs	are	passed	as	entries	in	a	two-column
working	list.
The	SET	command	can	be	called	anytime	before	the	SEND	command	that
creates	the	HTTP	response.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET LIST value Conditional.	Bind	list.

FRAGMENT value Conditional.	Bind	fragment.

PROPERTY *LIST Conditional.	Set	HTTP	head	properties.

	

Example
	
DEFINE					FIELD(#PNME)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#PVAL)	TYPE(*CHAR)	LENGTH(20)
DEF_LIST			NAME(#PLST)	FIELDS((#PNME)	(#PVAL))	TYPE(*WORKING)
	
CHANGE					FIELD(#PNME)	TO('''X-Invoice''')
CHANGE					FIELD(#PVAL)	TO(T9300)
ADD_ENTRY		TO_LIST(#PLST)
	
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	PROPERTY(*LIST)	SERVICE_LIST(PNME,PVAL)')	TO_GET(#JSMSTS	#JSMMSG	#PLST)
	

	

5.5.7	WRITE
The	WRITE	command	serializes	the	document	object	in	preparation	for	the
SEND	command.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

WRITE BINDTRACE *YES Optional.	Trace	the	outbound	bind	result.

*NO Default.

FILTER 	 Optional.	See	FILTER.

	

	

5.5.8	SEND
The	SEND	command	is	used	to	send	the	serialized	JSON	string	content	back	as
a	response	to	the	remote	HTTP	client	program.
To	send	a	custom	CORS	response,	use	the	SET	PROPERTY	command	to	set	the
HTTP	response	properties	and	use	the	SEND	RESPONSE(*EMPTY)	to	return
no	content.
The	service	determines	if	this	Unicode	data	needs	to	be	archived.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND ARCHIVE 	 Optional.	See	ARCHIVE.

RESPONSE *CORS Optional.	Send	a	Cross-Origin	Resource
Sharing	response.

*EMPTY Send	an	empty	content	response.

	

	

5.5.9	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
DO	NOT	use	the	SERVICE_UNLOAD	command	when	sending	a	HTTP
response.	Use	the	SEND	command	to	create	the	response	and	then	use	the
JSM_CLOSE	BIF	to	close	the	connection.	The	byte	array	response	returned	to
JSM	Client	program	by	the	SEND	command	will	be	become	the	HTTP
response.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

5.6	HTTPInboundQueryService
Service	Name:	HTTPInboundQueryService
The	HTTPInboundQueryService	allows	an	SQL	statement	to	be	executed	and
the	result	set	to	be	retuned	to	the	client	program	in	CSV,	HTML	or	XML	format.
The	service	does	not	need	to	receive	the	query	information	from	the	client
program.	A	program	could	set	the	query	internally	and	only	respond	to	HTTP
GET	requests.
The	HTTPInboundQueryService	supports	the	following	commands:
5.6.1	SERVICE_LOAD
5.6.2	SERVICE_GET
5.6.3	GET
5.6.4	SET
5.6.5	SEND
5.6.6	SERVICE_UNLOAD

5.6.1	SERVICE_LOAD
On	the	SERVICE_LOAD	event	the	service	stores	the	HTTP	properties	for	later
access	by	the	GET	command.
If	there	is	content,	the	service	checks	that	the	content	type	is	application/x-
www-form-urlencoded,	if	it	does	not	support	the	content	type,	then	an	error	is
returned	to	the	program.	The	service	determines	the	encoding	to	apply	to	the
received	content	to	convert	it	to	Unicode	name	value	pairs	and	looks	for	the	two
reserved	names	QUERY	and	CONTENT.
The	QUERY	name	value	contains	the	SQL	query	to	be	executed.
The	CONTENT	name	value	specifies	the	format	of	the	SQL	result	being
returned	to	the	client	program.	The	default	value	for	CONTENT	is	text/html.

text/csv
text/html
text/xml
application/xml

Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD ENCODING 	 Optional.	See	ENCODING.

	

Example	client	HTML:
<HTML>
<BODY>
<FORM	METHOD="POST"	ACTION="http://lansa01:1099/cgi-
bin/jsmdirect?query">
	
<TEXTAREA	NAME="QUERY"	ROWS="10"	COLS="50">select	*	from	dc@w29
</BR>
<INPUT	NAME="CONTENT"	TYPE="TEXT"	VALUE="text/html"/>
<INPUT	TYPE="SUBMIT"	VALUE="Send	Query"/>
	
</FORM>
</BODY>

</HTML>
	

	

5.6.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.6.3	GET
The	GET	command	also	allows	the	program	to	access	the	inbound	HTTP
protocol	properties.
For	a	complete	list	of	HTTP	protocol	property	names	see	SERVICE_LOAD
command.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET PROPERTY value HTTP	protocol	property.

*LIST Add	all	properties	to	list	argument.

	

	

5.6.4	SET
The	SET	command	is	used	set	the	title	and	caption	for	a	HTML	table	result.
Also	the	SET	command	can	be	used	to	set	the	SQL	query	and	the	result	set
content	type.
The	SET	command	can	also	be	used	to	include	HTTP	head	properties	in	the
HTTP	response	protocol.
The	HTTP	property	name	value	pairs	are	passed	as	entries	in	a	two-column
working	list.
The	SET	command	can	be	called	anytime	before	the	SEND	command	that
creates	the	HTTP	response.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET TITLE value Optional.	HTML	page	title.

*NONE Default.

CAPTION value Optional.	HTML	table	caption.

*NONE Default.

HEAD *NONE Optional.	Show	column	header.

*LONG Use	long	names.

*SHORT Default.	Use	short	names.

QUERY *LIST Optional.	SQL	query.
The	list	argument	contains	a	large
SQL	statement.	An	SQL	statement	is
created	by	concatenating	the	list
entries	and	replaces	the	current
query.

*NONE 	

CONTENT *HTML Default.	text/html.

*CSV 	

*XML 	

*TEXTXML 	

PROPERTY *LIST Conditional.	Set	HTTP	head
properties.

	

Example
	
DEFINE					FIELD(#PNME)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#PVAL)	TYPE(*CHAR)	LENGTH(20)
DEF_LIST			NAME(#PLST)	FIELDS((#PNME)	(#PVAL))	TYPE(*WORKING)
	
CHANGE					FIELD(#PNME)	TO('''X-Invoice''')
CHANGE					FIELD(#PVAL)	TO(T9300)
ADD_ENTRY		TO_LIST(#PLST)
	
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	PROPERTY(*LIST)	SERVICE_LIST(PNME,PVAL)')	TO_GET(#JSMSTS	#JSMMSG	#PLST)
	

	

5.6.5	SEND
The	SEND	command	is	used	to	connect	to	the	database,	to	execute	the	query
and	to	format	the	result	set.
If	a	working	list	is	available	then	the	contents	of	the	working	list	is	returned	else
a	database	select	is	done.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND DRIVER value Conditional.	Database
driver	name.

DATABASE value Conditional.	Database
name.

USER value Conditional.	Database
server	user	login.

PASSWORD value Conditional.	Database
server	user	password.

RESULTSET *UPDATABLE Optional.	ResultSet
concurrency	mode.

*READONLY Default.

NUMBERFORMAT 	 Optional.	See
NUMBERFORMAT.

ARCHIVE 	 Optional.	See	ARCHIVE.

ENCODING 	 Optional.	See	ENCODING

UAPATH value Optional.	User	agent	save
response	path.

UAFILE value Optional.	User	agent	save
response	file.

UACACHE value Optional.	Cache-Control
max-age.
Default.	0.

UADISPOSITION value Optional.	Content-
Disposition	filename.

CHARSET *YES Optional.	Include	charset
attribute.

*NO Do	not	include	charset
attribute.

*TEXT Default.	Include	charset
attribute	if	content	is	text.

	

The	driver	keyword	value	is	a	symbolic	name	used	to	locate	the	service's
property	entry:
	
driver.sqlserver=com.ddtek.jdbc.sqlserver.SQLServerDriver
	

The	database	keyword	value	is	a	symbolic	name	used	to	locate	the	service's
property	entry:
	
database.northwind=jdbc:datadirect:sqlserver://10.2.1.28:1433
	

Example
	
SEND	DRIVER(SQLSERVER)	DATABASE(NORTHWIND)	USER(user)	PASSWORD(password)
	

	

5.6.6	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
DO	NOT	use	the	SERVICE_UNLOAD	command	when	sending	a	HTTP
response.	Use	the	SEND	command	to	create	the	response	and	then	use	the
JSM_CLOSE	BIF	to	close	the	connection.	The	byte	array	response	returned	to
JSM	Client	program	by	the	SEND	command	will	be	become	the	HTTP
response.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

5.7	HTTPInboundXMLService
Service	Name:	HTTPInboundXMLService
The	HTTPInboundXMLService	offers	the	same	capability	as	a	combined
HTTPService	and	InboundXMLHandler	content	handler.
The	HTTPInboundXMLService	supports	the	following	commands:
5.7.1	SERVICE_LOAD
5.7.2	SERVICE_GET
5.7.3	GET
5.7.4	SET
5.7.5	RECEIVE
5.7.6	SEND
5.7.7	SERVICE_UNLOAD

5.7.1	SERVICE_LOAD
On	the	SERVICE_LOAD	event	the	service	stores	the	HTTP	properties	for	later
access	by	the	GET	command.
If	there	is	content,	the	service	checks	that	the	content	type	belongs	to	the	XML
group	of	content	types,	if	it	does	not	support	the	content	type,	then	an	error	is
returned	to	the	program.	Use	the	CONTENT	keyword	to	override	this	check	and
to	allow	the	handler	to	receive	the	data,	it	is	assumed	the	data	is	XML.
The	service	determines	the	encoding	to	apply	to	the	received	content	to	convert
it	to	Unicode.
The	service	determines	if	this	Unicode	data	needs	to	be	archived.
The	service	determines	if	schema	validation	is	turned	on.
The	service	determines	if	the	query	string	parameters	need	to	be	bound	to	the
program	fields	or	list.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD BIND 	 Optional.	See	BIND.

ARCHIVE 	 Optional.	See	ARCHIVE.

CONTENT 	 Optional.	See	CONTENT.

ENCODING 	 Optional.	See	ENCODING.

SCHEMA 	 Optional.	See	SCHEMA.

VALIDATING 	 Optional.	See	VALIDATING.

DOMSET 	 Optional.	See	DOMSET.

DOMSETMODEL 	 Optional.	See
DOMSETMODEL.

DOMSETRESULT 	 Optional.	See
DOMSETRESULT.

DOMGET 	 Optional.	See	DOMGET.

DOMGETRESULT 	 Optional.	See

DOMGETRESULT.

	

5.7.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.7.3	GET
The	GET	command	allows	the	program	to	access	HTTP	protocol	properties.
For	a	complete	list	of	HTTP	protocol	property	names	see	SERVICE_LOAD
command.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET PROPERTY value HTTP	protocol	property.

*LIST Add	all	properties	to	list	argument.

	

5.7.4	SET
The	SET	command	allows	the	program	to	include	HTTP	head	properties	in	the
HTTP	response	protocol.
The	HTTP	property	name	value	pairs	are	passed	as	entries	in	a	two-column
working	list.
The	SET	command	can	be	called	anytime	before	the	last	SEND	command	that
creates	the	HTTP	response.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET PROPERTY *LIST Set	HTTP	head	properties.

	

Example
	
DEFINE					FIELD(#PNME)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#PVAL)	TYPE(*CHAR)	LENGTH(20)
DEF_LIST			NAME(#PLST)	FIELDS((#PNME)	(#PVAL))	TYPE(*WORKING)
	
CHANGE					FIELD(#PNME)	TO('''X-Invoice''')
CHANGE					FIELD(#PVAL)	TO(T9300)
ADD_ENTRY		TO_LIST(#PLST)
	
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	PROPERTY(*LIST)	SERVICE_LIST(PNME,PVAL)')	TO_GET(#JSMSTS	#JSMMSG	#PLST)
	

	

5.7.5	RECEIVE
The	RECEIVE	command	is	used	to	process	the	content	with	the	specified	style
sheet	and	receive	the	data	into	the	program.	Multiple	receives	command	can	be
used	each	applying	different	style	sheets	to	extract	the	required	data.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RECEIVE XSL 	 Mandatory.	See	XSL.

	

5.7.6	SEND
The	SEND	command	is	used	to	create	XML	content	to	send	back	as	a	response
to	the	remote	HTTP	client	program.
When	the	SEND	command	of	this	content	handler	is	executed	the	following
steps	occur:
The	service	using	the	XSL	keyword	transforms	the	program	fields	and	list	into
the	resultant	XML.	If	a	FRAGMENT	keyword	is	present	this	transformation	is
stored,	as	this	is	only	a	fragment	of	the	final	XML	to	be	sent.	When	no
FRAGMENT	keyword	is	present	this	transformation	is	treated	as	the	last	and
the	final	output	XML	is	constructed	and	ready	to	be	sent.
The	service	determines	if	this	Unicode	data	needs	to	be	archived.
The	service	uses	the	value	of	the	CONTENT	keyword	to	determine	the	value	of
the	HTTP	protocol	content-type.

If	no	content	value	is	available,	the	handler	defaults	to	application/xml
If	the	content	value	is	*XML,	then	content	type	will	be	application/xml
If	the	content	value	is	*TEXTXML,	then	content	type	will	be	text/xml

The	service	creates	a	HTTP	response	to	return	to	the	remote	client.
The	optional	UAFILE	and	UAPATH	keywords	are	available	to	inform	the
remote	client	program	of	a	recommended	path	and	filename	for	the	content.
LANSA	Integrator	UserAgent	will	add	these	file	and	path	names	to	the	save
popup	menu	on	the	response	panel.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND XSL 	 Mandatory.	See	XSL.

FRAGMENT 	 Optional.	See	FRAGMENT.

OUTPUT 	 Optional.	See	OUTPUT.

ARCHIVE 	 Optional.	See	ARCHIVE.

CONTENT 	 Optional.	See	CONTENT.

ENCODING 	 Optional.	See	ENCODING.

UAPATH value Optional.	User	agent	save	response

path.

UAFILE value Optional.	User	agent	save	response
file.

UACACHE value Optional.	Cache-Control	max-age.
Default.	0.

UADISPOSITION value Optional.	Content-Disposition
filename.

CHARSET *YES Optional.	Include	charset	attribute.

*NO Do	not	include	charset	attribute.

*TEXT Default.	Include	charset	attribute	if
content	is	text.

	

5.7.7	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
DO	NOT	use	the	SERVICE_UNLOAD	command	when	sending	a	HTTP
response.	Use	the	SEND	command	to	create	the	response	and	then	use	the
JSM_CLOSE	BIF	to	close	the	connection.	The	byte	array	response	returned	to
JSM	Client	program	by	the	SEND	command	will	be	become	the	HTTP
response.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

5.8	HTTPInboundXMLBindService
Service	Name:	HTTPInboundXMLBindService
The	HTTPInboundXMLBindService	allows	inbound	and	outbound	bindings
created	by	the	XML	Binding	Wizard	to	be	used	instead	of	style-sheets.
The	HTTPInboundXMLBindService	supports	the	following	commands:
5.8.1	SERVICE_LOAD
5.8.2	SERVICE_GET
5.8.3	BIND
5.8.4	CLOSE
5.8.5	GET
5.8.6	SET
5.8.7	WRITE
5.8.8	SEND
5.8.9	SERVICE_UNLOAD

5.8.1	SERVICE_LOAD
On	the	SERVICE_LOAD	event	the	service	stores	the	HTTP	properties	for	later
access	by	the	GET	command.
If	there	is	content,	the	service	checks	that	the	content	type	belongs	to	the	XML
group	of	content	types,	if	it	does	not	support	the	content	type,	then	an	error	is
returned	to	the	program.	Use	the	CONTENT	keyword	to	override	this	check	and
to	allow	the	service	to	receive	the	data,	it	is	assumed	the	data	is	XML.
The	service	determines	the	encoding	to	apply	to	the	received	content	to	convert
it	to	Unicode.
The	service	determines	if	this	Unicode	data	needs	to	be	archived.
The	service	determines	if	schema	validation	is	turned	on.
The	service	determines	if	the	query	string	parameters	need	to	be	bound	to	the
program	fields	or	list.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD BIND 	 Optional.	See	BIND.

ARCHIVE 	 Optional.	See	ARCHIVE.

CONTENT 	 Optional.	See	CONTENT.

ENCODING 	 Optional.	See	ENCODING.

SCHEMA 	 Optional.	See	SCHEMA.

VALIDATING 	 Optional.	See	VALIDATING.

DOMSET 	 Optional.	See	DOMSET.

	

	

5.8.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.8.3	BIND
The	BIND	command	binds	the	specified	service	code	to	the	loaded	inbound
document	or	creates	a	new	empty	outbound	document.
The	SERVICE	keyword	value	is	used	in	a	resource	property	lookup	using	the
property	key	service.'value'	and	service.archive.'value'	to	locate	the	binding
class	and	the	binding	jar	file	that	contains	the	binding	class	and	supporting
classes	generated	by	the	XMLBinding	Wizard.	If	the	service	binding	archive
entry	does	not	exist	then	the	binding	jar	file	must	exist	in	the	JSM	jar
subdirectory	instead	of	a	user	specified	directory.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

BIND SERVICE value Service	name.

TYPE *INBOUND Conditional.	Inbound	binding.

*OUTBOUND Conditional.	Outbound	binding.

BINDTRACE *YES Optional.	Trace	the	inbound	bind
result.

*NO Default.

FILTER 	 Optional.	See	FILTER.

	

	

5.8.4	CLOSE
The	CLOSE	command	closes	the	current	BIND.
This	command	is	usually	used	after	the	WRITE	command.
This	command	is	optional	as	the	SEND	command	will	close	the	binding.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CLOSE 	 	 	

	

	

5.8.5	GET
The	GET	command	is	used	to	read	the	inbound	document	object.
Fragments	use	only	fields,	so	the	GET	FRAGMENT	command	requires	the
SERVICE_EXCHANGE(*FIELD)	keyword.
Lists	use	only	a	working	list,	so	the	GET	LIST	command	requires	a	working	list
argument.
The	GET	command	also	allows	the	program	to	access	the	inbound	HTTP
protocol	properties.
For	a	complete	list	of	HTTP	protocol	property	names	see	SERVICE_LOAD
command.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET LIST value Conditional.	Bind	list.

FRAGMENT value Conditional.	Bind	fragment.

PROPERTY value HTTP	protocol	property.

*LIST Add	all	properties	to	list	argument.

INSTRUCTION value Optional.	Get	XML	processing
instruction.

	

	

5.8.6	SET
The	SET	command	is	used	to	populate	the	outbound	document	object.
Fragments	use	only	fields,	so	the	SET	FRAGMENT	command	requires	the
SERVICE_EXCHANGE(*FIELD)	keyword.
Lists	use	only	a	working	list,	so	the	SET	LIST	command	requires	a	working	list
argument.
The	SET	command	can	also	be	used	to	include	HTTP	head	properties	in	the
HTTP	response	protocol.
The	HTTP	property	name	value	pairs	are	passed	as	entries	in	a	two-column
working	list.
The	SET	command	can	be	called	anytime	before	the	SEND	command	that
creates	the	HTTP	response.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET LIST value Conditional.	Bind	list.

FRAGMENT value Conditional.	Bind	fragment.

PROPERTY *LIST Conditional.	Set	HTTP	head	properties.

INSTRUCTION value Optional.	Set	XML	processing
instruction.

DATA value Conditional.	PI	data.

	

Example
	
DEFINE					FIELD(#PNME)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#PVAL)	TYPE(*CHAR)	LENGTH(20)
DEF_LIST			NAME(#PLST)	FIELDS((#PNME)	(#PVAL))	TYPE(*WORKING)
	
CHANGE					FIELD(#PNME)	TO('''X-Invoice''')
CHANGE					FIELD(#PVAL)	TO(T9300)
ADD_ENTRY		TO_LIST(#PLST)

	
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	PROPERTY(*LIST)	SERVICE_LIST(PNME,PVAL)')	TO_GET(#JSMSTS	#JSMMSG	#PLST)
	

	

5.8.7	WRITE
The	WRITE	command	serializes	the	document	object	in	preparation	for	the
SEND	command.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

WRITE INDENT *YES Optional.	Indent	XML	content.

*NO Default.

INDENT-
AMOUNT

value Optional.	Indent	XML	amount.
Default.	0.	If	the	amount	is	not	zero
then	indent	is	enabled.

DOCTYPE value Optional.	Include	XML	<!DOCTYPE>
element.

PUBLIC value Conditional.	The	optional	public
component	of	the	XML	DOCTYPE
declaration.

OMIT-
DECLARATION

*YES Optional.	Omit	the	XML	declaration.

*NO Default.

BINDTRACE *YES Optional.	Trace	the	outbound	bind
result.

*NO Default.

FILTER 	 Optional.	See	FILTER.

	

	

5.8.8	SEND
The	SEND	command	is	used	to	create	XML	content	to	send	back	as	a	response
to	the	remote	HTTP	client	program.
When	the	SEND	command	of	this	service	is	executed	the	following	steps	occur:
The	service	determines	if	this	Unicode	data	needs	to	be	archived.
The	service	uses	the	value	of	the	CONTENT	keyword	to	determine	the	value	of
the	HTTP	protocol	content-type.

If	no	content	value	is	available,	the	handler	defaults	to	application/xml
If	the	content	value	is	*XML,	then	content	type	will	be	application/xml
If	the	content	value	is	*TEXTXML,	then	content	type	will	be	text/xml

The	service	creates	a	HTTP	response	to	return	to	the	remote	client.
The	optional	UAFILE	and	UAPATH	keywords	are	available	to	inform	the
remote	client	program	of	a	recommended	path	and	filename	for	the	content.
LANSA	Integrator	UserAgent	will	add	these	file	and	path	names	to	the	save
popup	menu	on	the	response	panel.
To	send	a	custom	CORS	response,	use	the	SET	PROPERTY	command	to	set	the
HTTP	response	properties	and	use	the	SEND	RESPONSE(*EMPTY)	to	return
no	content.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND ARCHIVE 	 Optional.	See	ARCHIVE.

CONTENT 	 Optional.	See	CONTENT.

ENCODING 	 Optional.	See	ENCODING.

UAPATH value Optional.	User	agent	save
response	path.

UAFILE value Optional.	User	agent	save
response	file.

UACACHE value Optional.	Cache-Control	max-
age.
Default.	0.

UADISPOSITION value Optional.	Content-Disposition
filename.

CHARSET *YES Optional.	Include	charset
attribute.

*NO Do	not	include	charset	attribute.

*TEXT Default.	Include	charset	attribute
if	content	is	text.

RESPONSE *CORS Optional.	Send	a	Cross-Origin
Resource	Sharing	response

*EMPTY Send	an	empty	content	response.

	

	

5.8.9	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
DO	NOT	use	the	SERVICE_UNLOAD	command	when	sending	a	HTTP
response.	Use	the	SEND	command	to	create	the	response	and	then	use	the
JSM_CLOSE	BIF	to	close	the	connection.	The	byte	array	response	returned	to
JSM	Client	program	by	the	SEND	command	will	be	become	the	HTTP
response.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

5.9	HTTPInboundSVService
Service	Name:	HTTPInboundSVService
The	HTTPInboundSVService	offers	the	same	capability	as	a	combined
HTTPService	and	InboundSVHandler	content	handler,	also	it	allows	an	invalid
data	record	to	be	handled	and	returned	to	the	sender.
The	HTTPInboundSVService	supports	the	following	commands:
5.9.1	SERVICE_LOAD
5.9.2	SERVICE_GET
5.9.3	GET
5.9.4	SET
5.9.5	RECEIVE
5.9.6	SEND
5.9.7	SERVICE_UNLOAD
	

5.9.1	SERVICE_LOAD
On	the	SERVICE_LOAD	event	the	service	stores	the	HTTP	properties	for	later
access	by	the	GET	command.
If	there	is	content,	the	service	checks	that	the	content	type	belongs	to	the
separated	value	group	of	content	types,	if	it	does	not	support	the	content	type,
then	an	error	is	returned	to	the	program.	Use	the	CONTENT	keyword	to
override	this	check	and	to	allow	the	service	to	receive	the	data.
The	service	determines	the	encoding	to	apply	to	the	received	content	to	convert
it	to	Unicode.
The	service	determines	if	this	Unicode	data	needs	to	be	archived.
The	service	determines	if	the	query	string	parameters	need	to	be	bound	to	the
program	fields	or	list.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD BIND 	 Optional.	See	BIND.

ARCHIVE 	 Optional.	See	ARCHIVE.

CONTENT 	 Optional.	See	CONTENT.

ENCODING 	 Optional.	See	ENCODING.

	

5.9.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.9.3	GET
The	GET	command	allows	the	program	to	access	HTTP	protocol	properties	and
the	error	row	of	the	bad	data	record.
To	receive	the	error	record,	pass	a	single	field	working	list	and	each	record	field
is	added	as	an	entry.
For	a	complete	list	of	HTTP	protocol	property	names	see	SERVICE_LOAD
command.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET PROPERTY value HTTP	protocol	property.

*LIST Add	all	properties	to	list	argument.

ERROR *ROW Get	error	row.

*RECORD Get	error	record.

	

5.9.4	SET
The	SET	command	allows	the	program	to	include	HTTP	head	properties	in	the
HTTP	response	protocol.
The	HTTP	property	name	value	pairs	are	passed	as	entries	in	a	two-column
working	list.
The	SET	command	can	be	called	anytime	before	the	last	SEND	command	that
creates	the	HTTP	response.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET PROPERTY *LIST Set	HTTP	head	properties.

	

Example
	
DEFINE					FIELD(#PNME)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#PVAL)	TYPE(*CHAR)	LENGTH(20)
DEF_LIST			NAME(#PLST)	FIELDS((#PNME)	(#PVAL))	TYPE(*WORKING)
	
CHANGE					FIELD(#PNME)	TO('''X-Invoice''')
CHANGE					FIELD(#PVAL)	TO(T9300)
ADD_ENTRY		TO_LIST(#PLST)
	
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	PROPERTY(*LIST)	SERVICE_LIST(PNME,PVAL)')	TO_GET(#JSMSTS	#JSMMSG	#PLST)
	

	

5.9.5	RECEIVE
When	the	RECEIVE	command	of	this	service	is	executed	the	following	steps
occur:
If	there	is	no	content	or	list	argument,	then	an	OK	status	is	returned.
The	service	determines	if	this	Unicode	data	needs	to	be	archived.
The	service	reads	the	received	Unicode	content	into	the	list	argument.
The	optional	SVMODE	and	SVHEAD	keywords	direct	how	this	Unicode	data
is	added	to	the	list.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RECEIVE SVROW 	 Optional.	See	SVROW.

SVROWLIMIT 	 Optional.	See	SVROWLIMIT.

SVMODE 	 Optional.	See		SVMODE.

SVHEAD 	 Optional.	See	SVHEAD.

NUMBERFORMAT 	 Optional.	See	NUMBERFORMAT.

CONTENT 	 Optional.	Default.	Use	HTTP
protocol	content-type	or	assume
content	is	CSV.

*CSV Read	content	as	CSV	data.

*TSV Read	content	as	TSV	data.

ARCHIVE 	 Optional.	See	ARCHIVE.

	

5.9.6	SEND
When	the	SEND	command	of	this	service	is	executed	the	following	steps	occur:
The	service	uses	the	value	of	the	CONTENT	keyword	to	determine	the	type	of
separated	values	to	create:

If	no	content	value	is	available,	the	service	defaults	to	content	type	of	the
received	content.	If	no	protocol	content	type	is	found	the	service	defaults	to
*CSV.
If	the	content	value	is	*CSV,	then	content	type	will	be	application/comma-
separated-values
If	the	content	value	is	*TEXTCSV,	then	content	type	will	be	text/comma-
separated-values
If	the	content	value	is	*TSV,	then	content	type	will	be	application/tab-
separated-values
If	the	content	value	is	*TEXTTSV,	then	content	type	will	be	text/tab-
separated-values
If	the	content	value	is	not	a	valid	separated	value	content	type	then	CSV	data
is	created,	but	the	specified	content	type	is	sent.

The	optional	SVHEAD	keyword	allows	a	header	record	to	be	inserted	at	the
beginning	of	the	data.
The	service	creates	Unicode	data	using	all	entries	in	the	list,	if	there	is	no	list
argument	then	zero	length	content	is	created.
The	service	determines	if	this	Unicode	data	needs	to	be	archived.
The	service	creates	a	HTTP	response	to	return	to	the	remote	client.
The	optional	UAFILE	and	UAPATH	keywords	are	available	to	inform	the
remote	client	program	of	a	recommended	path	and	filename	for	the	content.
LANSA	Integrator	UserAgent	will	add	these	file	and	path	names	to	the	save
popup	menu	on	the	response	panel.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND CONTENT 	 Optional.	Default.	Use	HTTP
protocol	content-type.

*CSV Create	CSV	content.

*TSV Create	TSV	content.

ENCODING 	 Optional.	See	ENCODING.

SVQUOTE 	 Optional.	See	SVQUOTE.

SVHEAD 	 Optional.	See	SVHEAD.

SVEXCLUDE 	 Optional.	See	SVEXCLUDE.

NUMBERFORMAT 	 Optional.	See
NUMBERFORMAT.

ARCHIVE 	 Optional.	See	ARCHIVE.

UAPATH value Optional.	User	agent	save
response	path.

UAFILE value Optional.	User	agent	save
response	file.

UACACHE value Optional.	Cache-Control	max-
age.
Default.	0.

UADISPOSITION value Optional.	Content-Disposition
filename.

CHARSET *YES Optional.	Include	charset
attribute.

*NO Do	not	include	charset	attribute.

*TEXT Default.	Include	charset	attribute
if	content	is	text.

	

5.9.7	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
DO	NOT	use	the	SERVICE_UNLOAD	command	when	sending	a	HTTP
response.	Use	the	SEND	command	to	create	the	response	and	then	use	the
JSM_CLOSE	BIF	to	close	the	connection.	The	byte	array	response	returned	to
JSM	Client	program	by	the	SEND	command	will	be	become	the	HTTP
response.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

5.10	HTTPOutboundXMLBindService
Service	Name:	HTTPOutboundXMLBindService
The	HTTPOutboundXMLBindService	allows	inbound	and	outbound	bindings
created	by	the	XML	Binding	Wizard	to	be	used	instead	of	style-sheets.
The	HTTPOutboundXMLBindService	supports	the	following	commands:
5.10.1	SERVICE_LOAD
5.10.2	SERVICE_GET
5.10.3	BIND
5.10.4	CLOSE
5.10.5	GET
5.10.6	SET
5.10.7	WRITE
5.10.8	SEND
5.10.9	SERVICE_UNLOAD

5.10.1	SERVICE_LOAD
	
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD SCHEMA 	 Optional.	See	SCHEMA.

VALIDATING 	 Optional.	See	VALIDATING.

DOMSET 	 Optional.	See	DOMSET.

	

	

5.10.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.10.3	BIND
The	BIND	command	binds	the	specified	service	code	to	the	loaded	inbound
document	or	creates	a	new	empty	outbound	document.
The	SERVICE	keyword	value	is	used	in	a	resource	property	lookup	using	the
property	key	service.'value'	and	service.archive.'value'	to	locate	the	binding
class	and	the	binding	jar	file	that	contains	the	binding	class	and	supporting
classes	generated	by	the	XMLBinding	Wizard.	If	the	service	binding	archive
entry	does	not	exist	then	the	binding	jar	file	must	exist	in	the	JSM	jar
subdirectory	instead	of	a	user	specified	directory.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

BIND SERVICE value Service	name.

TYPE *INBOUND Conditional.	Inbound	binding.

*OUTBOUND Conditional.	Outbound	binding.

BINDTRACE *YES Optional.	Trace	the	inbound	bind
result.

*NO Default.

FILTER 	 Optional.	See	FILTER.

	

	

5.10.4	CLOSE
The	CLOSE	command	closes	the	current	BIND.
This	command	is	usually	used	after	the	WRITE	command.
This	command	is	optional	as	the	SEND	command	will	close	the	binding.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CLOSE 	 	 	

	

	

5.10.5	GET
The	GET	command	is	used	to	read	the	inbound	document	object.
Fragments	use	only	fields,	so	the	GET	FRAGMENT	command	requires	the
SERVICE_EXCHANGE(*FIELD)	keyword.
Lists	use	only	a	working	list,	so	the	GET	LIST	command	requires	a	working	list
argument.
The	GET	command	also	allows	the	program	to	access	the	HTTP	response
protocol	properties.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET LIST value Conditional.	Bind	list.

FRAGMENT value Conditional.	Bind	fragment.

PROPERTY value HTTP	protocol	property.

*LIST Add	all	properties	to	list	argument.

INSTRUCTION value Optional.	Get	XML	processing
instruction.

	

	

5.10.6	SET
The	SET	command	is	used	to	populate	the	outbound	document	object.
Fragments	use	only	fields,	so	the	SET	FRAGMENT	command	requires	the
SERVICE_EXCHANGE(*FIELD)	keyword.
Lists	use	only	a	working	list,	so	the	SET	LIST	command	requires	a	working	list
argument.
The	SET	command	can	also	be	used	to	include	HTTP	head	properties	in	the
HTTP	request	protocol.
The	HTTP	property	name	value	pairs	are	passed	as	entries	in	a	two-column
working	list.
The	SET	command	can	be	called	anytime	before	the	SEND	command	that
creates	the	HTTP	request.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET LIST value Conditional.	Bind	list.

FRAGMENT value Conditional.	Bind	fragment.

PROPERTY *LIST Conditional.	Set	HTTP	head	properties.

INSTRUCTION value Optional.	Set	XML	processing
instruction.

DATA value Conditional.	PI	data.

	

Example
	
DEFINE					FIELD(#PNME)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#PVAL)	TYPE(*CHAR)	LENGTH(20)
DEF_LIST			NAME(#PLST)	FIELDS((#PNME)	(#PVAL))	TYPE(*WORKING)
	
CHANGE					FIELD(#PNME)	TO('''X-Invoice''')
CHANGE					FIELD(#PVAL)	TO(T9300)
ADD_ENTRY		TO_LIST(#PLST)

	
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	PROPERTY(*LIST)	SERVICE_LIST(PNME,PVAL)')	TO_GET(#JSMSTS	#JSMMSG	#PLST)
	

	

5.10.7	WRITE
The	WRITE	command	serializes	the	document	object	in	preparation	for	the
SEND	command.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

WRITE INDENT *YES Optional.	Indent	XML	content.

*NO Default.

INDENT-
AMOUNT

value Optional.	Indent	XML	amount.
Default.	0.	If	the	amount	is	not	zero
then	indent	is	enabled.

DOCTYPE value Optional.	Include	XML	<!DOCTYPE>
element.

PUBLIC value Conditional.	The	optional	public
component	of	the	XML	DOCTYPE
declaration.

OMIT-
DECLARATION

*YES Optional.	Omit	the	XML	declaration.

*NO Default.

BINDTRACE *YES Optional.	Trace	the	outbound	bind
result.

*NO Default.

FILTER 	 Optional.	See	FILTER.

	

	

5.10.8	SEND
The	SEND	command	is	used	to	send	the	XML	content	to	the	remote	HTTP
server.
When	the	SEND	command	of	this	service	is	executed	the	following	steps	occur:
The	service	determines	if	this	Unicode	data	needs	to	be	archived.
The	service	uses	the	value	of	the	CONTENT	keyword	to	determine	the	value	of
the	HTTP	protocol	content-type.

If	no	content	value	is	available,	the	handler	defaults	to	application/xml
If	the	content	value	is	*XML,	then	content	type	will	be	application/xml
If	the	content	value	is	*TEXTXML,	then	content	type	will	be	text/xml

The	service	sends	a	HTTP	request	to	remote	server	and	receives	the	HTTP
response.
	
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND URI value Mandatory.	Remote	URI.

HOST value Mandatory.	Remote	server.

USER value Optional.	Basic	authentication
user.

PASSWORD value Optional.	Basic	authentication
password.

PROXY value Optional.	Proxy	server.

PROXYUSER value Optional.	Basic	authentication
user.

PROXYPASSWORD value Optional.	Basic	authentication
password.

METHOD 	 Optional.	See	METHOD.

VERSION 	 Optional.	See	VERSION.

SECURE *YES Optional.	Use	HTTPS	protocol.

*NO Default.	Use	HTTP	protocol.

WAIT *YES Optional.	Default	is	0.
Infinite	wait	for	HTTP	response.

*NO Do	not	wait	for	HTTP	response.

value Wait	read	time	in	milliseconds.

TIMEOUT value Optional.	Default	is	0	which
means	disabled.
Host	connection	timeout	in
milliseconds.

LOCALE 	 Optional.	See	LOCALE.

CONTENT 	 Optional.	See	CONTENT.

ENCODING 	 Optional.	See	ENCODING.

ARCHIVE 	 Optional.	See	ARCHIVE.

	

	

5.10.9	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

5.11	HTTPOutboundJSONBindService
Service	Name:	HTTPOutboundJSONBindService
The	HTTPOutboundJSONBindService	allows	inbound	and	outbound	bindings
created	by	the	JSON	Binding	Wizard	to	be	used	to	send	and	receive	JSON
content.
The	HTTPOutboundXMLBindService	supports	the	following	commands:
5.11.1	SERVICE_LOAD
5.11.2	SERVICE_GET
5.11.3	BIND
5.11.4	CLOSE
5.11.5	GET
5.11.6	SET
5.11.7	WRITE
5.11.8	SEND
5.11.9	SERVICE_UNLOAD

5.11.1	SERVICE_LOAD
	
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

	

5.11.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY Value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.11.3	BIND
The	BIND	command	binds	the	specified	service	code	to	the	loaded	inbound
JSON	object	or	creates	a	new	empty	JSON	object.
The	SERVICE	keyword	value	is	used	in	a	resource	property	lookup	using	the
property	key	service.'value'	and	service.archive.'value'	to	locate	the	binding
class	and	the	binding	jar	file	that	contains	the	binding	class	and	supporting
classes	generated	by	the	JSONBinding	Wizard.	If	the	service	binding	archive
entry	does	not	exist	then	the	binding	jar	file	must	exist	in	the	JSM	jar
subdirectory	instead	of	a	user	specified	directory.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

BIND SERVICE value Service	name.

TYPE *INBOUND Conditional.	Inbound	binding.

*OUTBOUND Conditional.	Outbound	binding.

BINDTRACE *YES Optional.	Trace	the	inbound	bind
result.

*NO Default.

FILTER 	 Optional.	See	FILTER.

	

	

5.11.4	CLOSE
The	CLOSE	command	closes	the	current	BIND.
This	command	is	optional	and	is	usually	used	after	the	WRITE	command.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CLOSE 	 	 	

	

	

5.11.5	GET
The	GET	command	is	used	to	read	the	inbound	JSON	object.
Fragments	use	only	fields,	so	the	GET	FRAGMENT	command	requires	the
SERVICE_EXCHANGE(*FIELD)	keyword.
Lists	use	only	a	working	list,	so	the	GET	LIST	command	requires	a	working	list
argument.
The	GET	command	also	allows	the	program	to	access	the	HTTP	response
protocol	properties.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET LIST value Conditional.	Bind	list.

FRAGMENT value Conditional.	Bind	fragment.

PROPERTY value HTTP	protocol	property.

*LIST Add	all	properties	to	list	argument.

	

	

5.11.6	SET
The	SET	command	is	used	to	populate	the	outbound	JSON	object.
Fragments	use	only	fields,	so	the	SET	FRAGMENT	command	requires	the
SERVICE_EXCHANGE(*FIELD)	keyword.
Lists	use	only	a	working	list,	so	the	SET	LIST	command	requires	a	working	list
argument.
The	SET	command	can	also	be	used	to	include	HTTP	head	properties	in	the
HTTP	request	protocol.
The	HTTP	property	name	value	pairs	are	passed	as	entries	in	a	two-column
working	list.
The	SET	command	can	be	called	anytime	before	the	SEND	command	that
creates	the	HTTP	request.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET LIST value Conditional.	Bind	list.

FRAGMENT value Conditional.	Bind	fragment.

PROPERTY *LIST Conditional.	Set	HTTP	head	properties.

	

Example
	
DEFINE					FIELD(#PNME)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#PVAL)	TYPE(*CHAR)	LENGTH(20)
DEF_LIST			NAME(#PLST)	FIELDS((#PNME)	(#PVAL))	TYPE(*WORKING)
	
CHANGE					FIELD(#PNME)	TO('''X-Invoice''')
CHANGE					FIELD(#PVAL)	TO(T9300)
ADD_ENTRY		TO_LIST(#PLST)
	
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	PROPERTY(*LIST)	SERVICE_LIST(PNME,PVAL)')	TO_GET(#JSMSTS	#JSMMSG	#PLST)
	

	

5.11.7	WRITE
The	WRITE	command	serializes	the	document	object	in	preparation	for	the
SEND	command.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

WRITE BINDTRACE *YES Optional.	Trace	the	outbound	bind	result.

*NO Default.

FILTER 	 Optional.	See	FILTER.

	

	

5.11.8	SEND
The	SEND	command	is	used	to	send	the	JSON	content	to	the	remote	HTTP
server.
When	the	SEND	command	of	this	service	is	executed	the	following	steps	occur:
The	service	determines	if	this	Unicode	data	needs	to	be	archived.
The	service	sends	a	HTTP	request	to	remote	server	and	receives	the	HTTP
response.
	
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND URI value Mandatory.	Remote	URI.

HOST value Mandatory.	Remote	server.

USER value Optional.	Basic	authentication
user.

PASSWORD value Optional.	Basic	authentication
password.

PROXY value Optional.	Proxy	server.

PROXYUSER value Optional.	Basic	authentication
user.

PROXYPASSWORD value Optional.	Basic	authentication
password.

METHOD 	 Optional.	See	METHOD.

VERSION 	 Optional.	See	VERSION.

SECURE *YES Optional.	Use	HTTPS	protocol.

*NO Default.	Use	HTTP	protocol.

WAIT *YES Optional.	Default	is	0.
Infinite	wait	for	HTTP	response.

*NO Do	not	wait	for	HTTP	response.

value Wait	read	time	in	milliseconds.

TIMEOUT value Optional.	Default	is	0	which
means	disabled.
Host	connection	timeout	in
milliseconds.

LOCALE 	 Optional.	See	LOCALE.

ARCHIVE 	 Optional.	See	ARCHIVE.

	

	

5.11.9	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

5.12	SMTPMailService
The	SMTPMailService	supports	sending	email	using	the	Simple	Mail	Transfer
Protocol	(SMTP)	through	an	existing	mail	server.	Most	email	systems	that	send
mail	over	the	internet	use	the	SMTP	protocol	to	send	messages	from	one	server
to	another.	SMTP	specifies	how	the	two	mail	systems	need	to	interact	and	the
format	of	the	control	messages	they	exchange	to	transfer	mail.
When	generating	email	messages	using	the	SMTPMailService,	applications	can
specify	a	wide	range	of	properties	such	as	recipient	and	sender	addresses,
subject	and	body	text,	content	type	and	character	encoding.	Applications	can
add	multiple	attachments	and,	optionally,	specify	that	they	are	to	be	collected
into	a	single	zip	archive	file	to	attach	to	the	outgoing	message.	The	service	also
supports	a	variety	of	encryption	techniques.
The	SMTPMailService	uses	the	Oracle	JavaMail	API.
Refer	to	http://www.oracle.com/technetwork/java/javamail/index.html.
Related	Services
The	SMTPMailService	is	not	dependent	on	other	services	but	is	typically	used
in	conjunction	with	the	POP3MailService	if	messages	are	also	to	be	received	by
the	application.
The	SMTPMailService	can	be	used	to	create	and	send	an	email	message	to
another	server,	but	since	the	SMTP	protocol	is	limited	in	its	ability	to	queue
messages	at	the	receiving	end	it	is	usually	used	in	conjunction	with	one	of	two
email	client	protocols,	POP3	or	IMAP.	If	the	email	client	is	using	JSM	services
to	retrieve	the	email	message	then	the	POP3MailService	can	be	used	to	retrieve
any	email	messages.	The	POP3MailService	facilitates	the	saving	of	messages	in
a	server	mailbox	and	periodic	downloading	of	messages	from	the	server.
Technical	Specifications

Typically	the	domain	information	(server,	ports	and	maildomain)	and	from
address	are	defined	in	the	SMTPMailService	properties	file	unless	the
default	values	are	being	used.	This	ensures	a	consistent	use	of	the	properties
and	avoids	the	need	to	declare	this	information	each	time	the	service	is	used.
SMTP	is	usually	configured	to	operate	over	TCP	port	25.

					To	support	encrypted	emails	set	up	the	SMTPMailService	property	with	the
appropriate	recipient	and	security	file	details:
recipient.certificate.<person>=<public	certificate	file>

http://www.oracle.com/technetwork/java/javamail/index.html

To	support	signed	emails	the	SMTPMailService	properties	file	must	identify
the	private	key	store	file	and	public	certificate	needed	by	the
SMTPMailServer.	The	following	signer	properties	must	be	specified	for	the
email	recipient:

signer.keystore.<signer>=<private	key	store	file>
signer.certificate.<signer>=<public	certificate	file>

	

5.12.1	What	can	I	use	the	SMTPMailService	for?
Email	has	become	an	integral	part	of	modern	society	has	many	broad	ranging
applications.
The	following	examples	provide	just	a	few	ideas	on	how	and	where	the
SMTPMailService	many	be	applied.
Create	and	Send	a	Regular	Update	to	your	Sales	Team
On	completion	of	the	month	end	reconciliation,	which	includes	updating	and
summarizing	all	the	sales	figures	for	the	month,	an	email	is	automatically
formulated	and	sent	to	regional	sales	managers.	This	email	can	include	the
summary	of	the	monthly	sales	and	quarterly	targets	as	straight	text	in	the	body
of	the	email	or	as	an	attachment,	such	as	an	excel	spreadsheet.
If	security	is	a	concern	the	contents	of	the	email	can	be	encrypted	before
distribution.

5.12.2	Using	the	SMTPMailService
Whether	you	are	writing	your	client	application	in	RDML	/	RDMLX	or	in	a
3GL	such	as	RPG,	you	have	to	complete	the	same	basic	steps.
For	example,	an	application	that	sends	an	email	using	SMTPMailService	would
typically	issue	the	following	sequence	of	commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
										SET
										ADD
										SEND
					SERVICE_UNLOAD
JSM(X)_CLOSE
Refer	to	Java	Service	Manager	Clients	for	the	command	details	that	apply	to
your	chosen	development	language.

5.12.3	SMTPMailService	Commands
Your	application	issues	commands	to	the	SMTPMailService	by	passing	the
command	strings	through	the	Java	Service	Manager	using	the
JSM_COMMAND	or	JSMX_COMMAND	Built-In	Function,	or	an	equivalent
Built-In	Function	or	API	for	your	chosen	development	language.
The	commands	that	the	SMTPMailService	processes	are:
SERVICE_LOAD
SET
ADD
SEND
RESET
SERVICE_GET
SERVICE_UNLOAD

SERVICE_LOAD
Loads	and	initializes	the	service.
The	following	service	resource	properties	are	read	and	used	to	set	initial	values.

server
port
secure
mail.domain
ntlm.domain
charset
user
password
from.address
from.name
session.debug
simplify

	
																																																											Required
	
	SERVICE_LOAD	----	SERVICE	---------	service	name	------------
---->
	
																																																											Optional
	
															>--	TRACE	-----------	*NO	------------------------->
																																					*YES
																																					*ERROR
	
															>--	TRACE_NAME	------	name	------------------------|
																																					*SERVICE
																																					*PROCESS
																																					*FUNCTION
																																					*JOBNAME
																																					*JOBUSER
																																					*JOBNUMBER
	

For	more	information	refer	to:
Service	Program	Tracing	from	the	Client
Keywords
SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

SMTPMailService.

TRACE To	enable	tracing	from	the	client	program	use	the	TRACE
keyword	on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:
*NO
*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the
service	does	not	return	an	ERROR,	FATAL	or
SOAPFAULT	status	to	the	client,	the	trace	files	are	deleted
on	the	JSM	CLOSE	call.

TRACE_NAME This	optional	keyword	allows	the	client	to	append	a	user-
defined	name	to	the	end	of	the	client	trace	subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(SMTPMAILSERVICE)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	

#jsmcommand	:=	'service_load	service(SMTPMailService)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	to_get(#jsmxsts	#jsmxmsg)
	

SET
The	SET	command	is	used	to	prepare	the	email.	In	many	ways	the	SET
command	is	an	extension	to	the	SEND	command.	The	SET	command	can	be
called	many	times,	with	one	or	more	keywords	to	build	up	the	email	definition
before	it	is	sent.	(This	is	especially	useful	in	RDML	where	the	command	length
is	limited	to	256	characters).
In	addition	the	SET	command	allows	a	list	of	email	recipients	to	be	nominated
as	TO,	CC	or	BCC	parties.	In	contrast	the	SEND	command	can	only	nominate	a
single	email	address	for	these	keywords.
At	least	one	keyword	must	be	provided	to	use	the	SET	command.	The	SET
keyword	must	be	used	before	the	SEND	keyword.
	
																																																									Optional
	
	SET	---------	SERVER	--------	host	---------------------------->
	
											>--	SECURE	--------	*NO	----------------------------->
																															*YES
																															*IMPLICIT
																															*EXPLICIT
	
											>--	TO	------------	*LIST	--------------------------->
																															value
	
											>--	CC	------------	*LIST	--------------------------->
																															value
	
											>--	BCC	-----------	*LIST	--------------------------->
																															value
	
											>--	FROM	----------	value	--------------------------->
	
											>--	FROM_NAME	-----	value	--------------------------->
	
											>--	SUBJECT	-------	value	--------------------------->
	
											>--	USER	----------	value	--------------------------->

	
											>--	PASSWORD	------	value	--------------------------->
	
											>--	PORT	----------	25	------------------------------>
																															value
	
											>--	MAILDOMAIN	----	domain	name	--------------------->
	
											>--	NTLMDOMAIN	----	domain	name	--------------------->
	
											>--	CHARSET	-------	UTF-8	--------------------------->
																															Value
	
											>--	SIMPLIFY	------	*NO	----------------------------->
																															*YES
	
											>--	HEADER	-------	*NONE	---------------------------->
																														*LIST
	
											>--	CONTENT	------	*NONE	---------------------------->
																														*PLAIN
																														*HTML
																														mimetype
	
											>--	BODY	---------	value	---------------------------->
	
											>--	ENCODING	-----	*DEFAULT	-------------------------|
																														value
	
Keywords
SERVER Any	server	nominated	will	be	used	and	overrides	the	server

and	port	information	derived	from	the	service	properties
file.

SECURE Connect	to	the	server	using	SSL.
Implicit	connects	to	port	465	using	SSL.
Explicit	connects	to	port	587	and	upgrades	to	a	TLS
session.

TO Include	a	single	email	address	or	the	*LIST	value	to
nominate	any	"to"	addresses.
The	*LIST	value	is	used	if	the	email	is	required	to	be	sent
to	more	than	one	email	address.	The	list	of	email	addresses
is	passed	using	the	service	list.	The	first	field	is	the	address
and	the	optional	second	field	is	the	display	name.
Alternatively,	a	single	email	address	can	be	specified	using
the	TO	keyword	in	the	SEND	command.
At	least	one	TO	email	address	must	be	supplied	to	SEND
an	email.

CC Include	a	single	email	address	or	the	*LIST	value	to
nominate	any	"copy	to"	addresses.
The	*LIST	value	is	used	if	more	than	one	CC	email
address	is	required.	The	list	of	email	addresses	is	passed
using	the	service	list.	The	first	field	is	the	address	and	the
optional	second	field	is	the	display	name.
Alternatively,	a	single	email	address	can	be	specified	using
the	CC	keyword	in	the	SEND	command.

BCC Include	a	single	email	address	or	the	*LIST	value	to
nominate	any	"blind	copy	to"	addresses.
The	*LIST	value	is	used	if	more	than	one	BCC	email
address	is	required.	The	list	of	email	addresses	is	passed
using	the	service	list.	The	first	field	is	the	address	and	the
optional	second	field	is	the	display	name.
Alternatively,	a	single	email	address	can	be	specified	using
the	BCC	keyword	in	the	SEND	command.

FROM The	email	address	this	message	originated	from.
The	FROM	property	is	typically	configured	in	the
SMTPMailService	properties	file	as	it	usually	does	not
change	and	this	ensures	a	consistent	FROM	email	address
which	can	be	easily	changed	in	just	one	location	if
required.
Alternatively	this	value	may	be	specified	in	the	SEND
command.
A	FROM	email	address	must	be	supplied	to	SEND	an

email.

FROM_NAME Indicates	a	text	name	to	be	displayed	as	the	"from"	email
display	name.	If	a	name	is	not	supplied	the	FROM	email
address	will	be	displayed.
The	FROM_NAME	property	is	typically	configured	in	the
SMTPMailService	properties	file	as	it	usually	does	not
change	and	this	ensures	a	consistent	FROM_NAME	to
match	the	configured	FROM	email	address.

SUBJECT Indicates	the	subject	of	the	email.
The	*LIST	value	is	used	to	get	the	subject	text	a	two
column	working	list.	The	working	list	must	have	two
columns	and	a	list	entry	with	the	first	field	with	a	key	value
of	SUBJECT	and	the	second	value	field	containing	the
single	line	of	subject	text.	This	mechanism	was	introduced
to	allow	Unicode	subject	text,	but	is	now	obsolete	as	the
JSM	command	BIF	can	now	accept	Unicode	command
field.
Alternatively	this	value	may	be	specified	in	the	SEND
command.

USER This	is	the	user	profile	used	to	login	to	the	SMTP	server.
This	user	name	may	be	case	sensitive	depending	on	the
server.

PASSWORD This	is	the	password	used	to	login	to	the	SMTP	server.	The
password	may	be	case	sensitive	depending	on	the	SMTP
server	and	must	match	the	USER	keyword	provided.

PORT Nominate	the	TCP	port	to	be	used	for	SMTP.	The	default
for	SMTP,	port	25,	is	used	if	an	alternative	port	number	is
not	supplied.
If	a	port	other	than	25	is	used	the	PORT	property	is
typically	configured	in	the	SMTPMailService	properties
file	rather	than	setting	the	PORT	keyword	each	time	an
email	is	sent.

MAILDOMAIN This	is	the	mail	domain	issued	by	the	SMTP	HELO
subcommand	to	identify	the	server	initiating	the	mail

transaction.
The	default	value	used	is	the	localhost	domain.
The	MAILDOMAIN	property	is	typically	configured	in	the
SMTPMailService	properties	file.

NTLMDOMAIN This	is	the	NTLM	domain	for	NTLM	authentication.
The	NTLMDOMAIN	property	is	typically	configured	in
the	SMTPMailService	properties	file.

CHARSET The	character	set	encoding	to	be	applied	to	body	text	and
the	subject.
The	default	value	applied	is	iso-8859-1.
The	CHARSET	property	is	typically	configured	in	the
SMTPMailService	properties	file.

SIMPLIFY Simplify	a	multipart	plain	text	message	into	a	simple	plain
text	message.

HEADER This	allows	MIME	header	fields	to	be	sent	with	the
message.
The	*NONE	value	clears	the	all	headers.
The	*LIST	value	is	used	supply	a	list	of	name	values.	The
first	field	is	the	field	and	the	second	field	is	the	value.

CONTENT This	allows	up	to	three	multipart/alternative	text	messages
to	be	sent.
The	*NONE	value	clears	all	three	text	messages.
The	*PLAIN	value	creates	the	text/plain	content.
The	*HTML	value	creates	the	text/html	content.
The	MIME	type	value	creates	the	custom	content.	ie.
text/enriched.
See	SEND	command	on	how	to	create	the	body	text	from
the	working	list	argument.

BODY A	file	can	be	nominated	to	contain	the	body	text.	If	the
specified	file	does	not	exist	the	body	text	is	created	from
the	service	list	argument	if	it	is	provided.
If	the	BODY	keyword	is	used	any	reference	to	a	working

list	is	ignored	as	the	body	text	is	taken	from	the	file	and
converted	to	Unicode	using	the	ENCODING	keyword
value.

ENCODING Used	to	specify	what	encoding	must	be	applied	to	the	byte
content	to	convert	it	to	a	Unicode	string.	The	default	value
for	the	ENCODING	keyword	is	*DEFAULT.
Refer	to	See	ENCODING	for	more	information.

Comments	/	Warnings
Any	keyword	values	set	up	using	the	SET	command	will	be	overridden	by	use
of	the	equivalent	keyword	on	the	SEND	command.
Examples
RDML
Sets	who	the	email	is	from	and	addresses	the	email	to	a	single	email	address.
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	FROM(me@company.com)	TO(you@company.com)')	TO_GET(#JSMSTS	#JSMMSG	#TOLIST)
	

or
	

Sets	the	email	to	be	sent	to	the	group	of	email	addresses	included	in	the	list
#TOLIST.	Issues	a	second	SET	command	to	indicate	who	the	email	is	from.
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	TO(*LIST)	SERVICE_LIST(ADDRESS)')	TO_GET(#JSMSTS	#JSMMSG	#TOLIST)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(SET	FROM	(me@company.com)')	TO_GET(#JSMSTS	#JSMMSG	#TOLIST)
	

RDMLX
Process	a	group	of	email	addresses	separated	by	a	semicolon,	into	a	working	list
and	set	this	list	of	emails	as	to	addressees	on	the	email.
	
*	Set	the	to	address(es)
	
#start	:=	1
	
dountil	(#pos	=	0)

	
if	(#ccaddress.cursize	>	#start)
#pos	:=	#toaddress.positionof(';',	#start)
else
#pos	:=	0
endif
	
if	(#pos	=	0)
#jsmemail	:=	#toaddress.substring(#start)
else
#jsmemail	:=	#toaddress.substring(#start,	(#pos	-	#start))
#start	:=	#pos	+	1
endif
	
if	(#jsmemail	*ne	*blank)
add_entry	to_list(#tolist)
endif
	
enduntil
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'set	to(*list)	')	to_get(#jsmsts	#jsmmsg	#tolist)
execute	subroutine(check)	with_parms(#jsmsts	#jsmmsg)
	

ADD
The	ADD	command	is	used	to	include	one	or	more	file	attachments	on	the
email	being	formatted.
Files	can	be	added	directly	to	the	email,	or	the	ZIP	keyword	can	be	used	to
create	an	archive	file	of	a	nominated	list	of	files.	The	archive	file	is	then
included	as	a	single	attachment	on	the	email.
The	ADD	keyword	must	be	used	before	the	SEND	keyword.
	
																																																									Optional
	
	ADD	---------	ATTACHMENT	-----	*LIST	--------------------------
>
																																value
	
											>--	ZIP	------------	value	--------------------------|
	
Keywords
ATTACHMENT A	single	file	can	be	attached	to	the	email	by	nominating	the

file	path	and	name	in	the	ATTACHMENT	keyword.
To	include	more	than	one	file	attachment,	create	a	working
list	of	files	where	the	first	field	in	the	list	is	the	file	path	and
name.	The	optional	second	field	in	the	working	list	is	the
attachment	display	name	or	the	zip	entry	name.	Use	the
*LIST	value	for	the	ATTACHMENT	keyword	and	include
the	working	list	information	as	a	service	list.
If	no	file	attachments	are	included	the	ADD	command	will
be	ignored.

ZIP The	name	to	be	given	to	the	zip	archive	created	and
attached	to	the	email.	The	file	name	should	include	the
suffix	.zip	for	easy	processing	when	the	email	is	received.
The	ZIP	keyword	will	be	ignored	unless	a	list	of	files	is
provided	using	*LIST	in	the	ATTACHMENT	keyword.

Examples
RDML

Include	a	single	text	file	as	an	attachment	to	the	email.
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('ADD	ATTACHMENT(orderabc.txt)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
Zip	a	group	of	files	and	attach	the	single	zipped	archive	to	the	email.
	
define	field(#file	name)	type(*char)	length(255)
def_list	name(#filelist)	fields(#file	name)	type(*Working)
	
clr_list	named(#filelist)
	
#file	name	:=	order.xml
add_entry	to_list(#filelist)
#file	name	:=	history/lastorders.pdf
add_entry	to_list(#filelist)
	
#jsmcmd	:=	'add	attachment(*list)	zip(orderstatus.zip)'
	
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg	#filelist)
	

SEND
The	SEND	command	sends	the	email.
You	can	use	the	TO,	CC,	BCC,	FROM	and	SUBJECT	keywords	in	the	SEND
command	to	override	the	values	set	by	the	SMTPMailService	properties	file	or
the	SET	command.
If	the	SEND	command	has	a	working	list	argument	the	list	entries	will	be	used
to	create	the	message	body.	The	first	list	field	must	contain	the	text	and	an
optional	second	field	is	used	to	control	the	concatenation	process.	If	no	second
field	is	present,	or	the	field	has	a	value	of	blank,	then	the	default	option	value	of
NA	is	used.
The	possible	option	values	are:
					SB	-	Add	a	space	before	appending	the	text	entry,	except	for	the	first	entry.
					NB	-	Add	a	new	line	before	appending	the	text	entry,	except	for	the	first
entry.

					SA	-	Add	a	space	after	appending	the	text	entry,	except	for	the	last	entry.
					NA	-	Add	a	new	line	after	appending	the	text	entry.
If	the	second	field	value	is	not	one	of	the	above	then	no	additional	action	is
taken	and	the	next	entry	is	appended	to	the	previous	entries.
	
																																																											Optional
	
	SEND	----------	TO	-----------	value	---------------------------->
	
													>--	CC	-----------	value	---------------------------->
	
													>--	BCC	----------	value	---------------------------->
	
													>--	FROM	---------	value	---------------------------->
	
													>--	SUBJECT	------	value	---------------------------->
	
													>--	SIGNER	-------	value	---------------------------->
	
													>--	MULTIPARTSIGNED	---	*NO	-------------------------
>

																																					*YES
	
													>--	ENCRYPT	------	none	----------------------------->
																																*DES
																																*DES-EDE3
																																*RC2-40
																																*RC2-64
																																*RC2-128
	
													>--	CONTENT	------	*PLAIN	--------------------------->
																																*HTML
																																value
	
													>--	BODY	---------	value	---------------------------->
	
													>--	ENCODING	-----	*DEFAULT	-------------------------|
																																value
	
Keywords
TO Allows	the	a	single	email	address	to	be	nominated	for	the	email	to	be	sent	to.

Alternatively	use	the	SET	command	to	specify	a	single	TO	email	or	multiple	TO	emails.

CC Allows	a	single	email	address	to	be	nominated	for	the	email	to	be	"cc-ed"	(carbon	copied)	to.
Alternatively	use	the	SET	command	to	specify	a	single	CC	email	or	multiple	CC	emails.

BCC Allows	a	single	email	address	to	be	nominated	for	the	email	to	be	"bcc-ed"	(blind	carbon	copied)	to.
Alternatively	use	the	SET	command	to	specify	a	single	BCC	email	or	multiple	BCC	emails.

FROM The	email	address	this	message	originated	from.
The	FROM	property	is	typically	configured	in	the	SMTPMailService	properties	file	as	it	usually	does	not	change	and	this
ensures	a	consistent	FROM	email	address	which	can	be	easily	changed.
Alternatively	this	value	may	be	specified	in	the	SET	command.
A	FROM	email	address	must	be	supplied	to	SEND	an	email.

SUBJECT Indicates	the	subject	of	the	email.
Alternatively	this	value	may	be	specified	in	the	SET	command.

SIGNER The	signer	value	is	comprised	of	two	parts,	the	name	and	password	in	the	format	name:password.	These	values	are	used

to	access	the	appropriate	private	key	store	and	security	certificate	information	in	the	SMTP	service	properties.
To	send	signed	emails,	a	private	key	and	public	certificate	are	needed	by	the	SMTPMailServer.	These	two	files	must	be
identified	in	the	SMTPMailService	properties	file	for	the	email	signer.
The	X509	public	certificate	file	to	be	used	is	obtained	from	the	property	signer.certificate.{name}.
The	PKCS8	keystore	file	to	be	used	is	obtained	from	the	property	signer.keystore.{name}.	The	keystore	password	is	the
password	component.
For	example,	if	your	signer	name	is	SMTPSIGN	your	SMTPMailService	properties	file	would	include	entries	like:
	
signer.keystore.SMTPSIGN=test-input/smtp-signer-key.p8
signer.certificate.SMTPSIGN=test-input/smtp-signer-certificate.cer
	

Then	to	send	a	signed	email	you	would	issue	a	JSM	command	something	like:
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'send	signer(SMTPSIGN:password)')	TO_GET(#jsmxsts	#jsmxmsg)
	

There	is	no	need	to	send	a	public	certificate	to	the	party	who	receives	the	signed	email.	The	public	certificate	is
automatically	included	in	the	email.
Important:	There	is	no	need	to	send	private	key	store	files	to	the	other	party.	Only	public	certificates	are	exchanged.

MULTIPARTSIGNED Allows	the	service	to	send	a	signed	message	in	multipart/signed.
*YES	-	Send	message	in	multipart/signed	format.
*NO	-	Do	not	send	message	in	multipart/signed	format.	(Default)

ENCRYPT Encryption	is	the	process	of	transforming	a	clear-text	message	(plaintext)	into	a	data	stream	which	looks	like	a
meaningless	sequence	of	bits	(ciphertext).	A	cipher	is	the	mathematical	function	used	to	convert	plaintext	input	into
ciphertext	output	and	vice	versa.
If	the	email	is	to	be	encrypted,	an	encryption	algorithm	(cipher)	must	be	specified.	By	default	no	encryption	is	applied	to
an	email	but	the	SMTPMailService	supports	the	following	block	encryption	ciphers:
*DES	-	Data	Encryption	Standard	is	a	block	cipher,	(i.e.	it	operates	on	blocks	of	bits	at	a	time),	which	uses	a	fixed-key-
length	algorithm.	It	uses	56-bit	keys	where	any	56-bit	number	can	be	a	key.
*DES-EDE3	Triple	DES	improves	the	security	of	DES	by	applying	DES	encryption	three	times	using	three	different
keys.	This	way	the	effective	key	length	becomes	168	bits	(56	x	3)	making	brute-force	attacks	virtually	impossible.
*RC2-40,	*RC2-64	and	*RC2-128	-	are	versions	of	the	RC2	encryption	supporting	40,	64	and	128	bit	encryption
respectively.	By	definition	RC2	encryption	is	a	variable-key-length	cipher	which	supports	key	lengths	in	the	range	of	40
to	128	bits	in	8-bit	increments.
Once	the	encryption	algorithm	has	been	determined	the	appropriate	keys	must	be	provided	to	encrypt	and	decrypt	the

email.	All	modern	ciphers	use	keys	together	with	plaintext	as	the	input	to	produce	ciphertext.	The	same	or	a	different	key
is	supplied	to	the	decryption	function	to	recover	plaintext	from	ciphertext.	The	security	of	a	cipher	lies	in	not	the	details
of	the	cipher	(which	are	usually	made	public)	but	in	the	key.
To	send	encrypted	emails	requires	the	public	certificates	of	all	the	email	recipients.
The	person	receiving	your	email	must	send	you	their	public	X.509	certificate.	Add	an	entry	to	SMTPMailService
properties	file	for	each	email	recipient	indicating	the	location	of	their	public	X.509	certificate.
For	example:
	
recipient.certificate.john.doe@lansa.com.au=test-input/smtp-person-certificate.cer
	

CONTENT The	most	commonly	used	email	content-types	are	text/plain	and	text/html	(corresponding	to	the	values	*PLAIN	and
*HTML).
The	default	content	value	of	*PLAIN	indicates	a	MIME	type	of	text/plain	and	is	used	for	simple	text	messages.
A	value	of	*HTML	indicates	a	MIME	type	of	text/html	should	be	applied	to	the	body	of	the	email	allowing	the	body	of
the	email	to	be	formatted	using	HTML	tags.
Alternative	content-types	can	also	be	assigned	using	the	appropriate	type	and	subtype	description.
For	example,	text/enriched.

BODY A	file	can	be	nominated	to	contain	the	body	text.	If	the	specified	file	does	not	exist	the	body	text	is	created	from	the
service	list	argument	if	it	is	provided.
If	the	BODY	keyword	is	used	any	reference	to	a	working	list	is	ignored	as	the	body	text	is	taken	from	the	file	and
converted	to	Unicode	using	the	ENCODING	keyword	value.

ENCODING Used	to	specify	what	encoding	must	be	applied	to	the	byte	content	to	convert	it	to	a	Unicode	string.	The	default	value	for
the	ENCODING	keyword	is	*DEFAULT.
Refer	to	See	ENCODING	for	more	information.

Examples
RDML
Set	up	the	subject	of	the	email	and	include	the	body	text	of	the	email	in	a
working	list.	Additional	detail	may	have	been	defined	using	the	SET	and	ADD
commands	prior	to	the	SEND	command,	or	default	values	from	the
SMTPMailService	property	file	will	be	applied.
	
USE	BUILTIN(TCONCAT)	WITH_ARGS('SEND	SUBJECT('	#SUBJECT	')	SERVICE_LIST(TXT)')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#MESSAGE)

	
RDMLX
Set	up	the	subject	of	the	email	and	include	the	body	text	in	a	file.	Additional
detail	may	have	been	defined	using	the	SET	and	ADD	commands	prior	to	the
SEND	command,	or	default	values	from	the	SMTPMailService	property	file
will	be	applied.
	
#jsmcmd	:=	'send	subject('	+	#subject	+	')	body(emailtext.txt)	encrypt(*DES)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

	

RESET
The	RESET	command	clears	the	message	text,	subject,	recipient	and	attachment
lists.
	
	RESET	---------	no	keywords	---------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(RESET)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	reset)	TO_GET(#jsmxsts	#jsmxmsg)
	

SERVICE_GET
The	SERVICE_GET	command	allows	JSM	client	applications	to	access	the
keyword	/	value	properties	from	the	properties	file	associated	with	the	currently
loaded	service.
Client	applications	can	access	the	value	of	properties	associated	with	the
service,	but,	perhaps	more	usefully,	they	can	access	application	specific
property	values	too,	using	the	service	properties	file	as	a	common	medium	for
holding	such	values.
When	used	in	the	latter	way,	there	is	a	possibility	of	conflict	between
application-defined	keyword	names	and	those	used	by	current	and	future
versions	of	LANSA	Integrator.	To	reduce	this	possibility	your	application
should	prefix	the	property	keyword	with	a	global	unique	name.	The	examples
below	use	com.acme.property	as	the	prefix	for	this	purpose.
The	service	property	keyword	value	is	returned	in	the	JSM	message	field.	If	the
keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
	
	SERVICE_GET	--------	PROPERTY	-----	value	--------------------
>
	
																		>--	TRACE	-------	*SERVICE-------------------|
																																				*TRANSPORT
	
Keywords
PROPERTY Provide	a	keyword	/	value	to	be	checked	on	the	service

properties	file.
The	service	property	keyword	value	is	returned	in	the	JSM
message	field.	If	the	keyword	does	not	exist	in	the	service
property	file	a	status	of	NOT_EXIST	is	returned.

TRACE *SERVICE	-	read	service	trace	file.
*TRANSPORT	-	read	transport	trace	file.

Examples
The	examples	retrieve	the	value	of	the	com.acme.property.messagetype	(an
application-defined	property)	in	the	service	properties	file.	This	property	might
be	defined	in	the	service	properties	file	with	a	line	like	this	(the	value	"html"

will	be	returned	to	the	application	in	this	case):
	
com.acme.property.messagetype=html
	

RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_GET	PROPERTY(com.acme.property.messagetype)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcmd	:=	'	service_get	property(com.acme.property.messagetype)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service	and	removes	the
temporary	directory.
	
	SERVICE_UNLOAD	---------	no	keywords	--------------------------
|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(SERVICE_UNLOAD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	service_unload)	to_get(#jsmxsts	#jsmxmsg)
	

5.12.4	SMTPMailService	Examples
Examples	are	supplied	for	the	most	common	client	programming	languages:
RDML
RPG

5.12.5	Troubleshooting
If	you	receive	the	message	"Require	SMTP	Server":
1.		Check	the	JSM	instance	you	are	connecting	to	is	correct	and	has	been
successfully	started.

2.		Verify	that	the	correct	SERVER	information	has	been	provided	in	SET	/
SEND	commands,	or	alternatively	in	the	SMTPMailService	properties	file.

5.13	SMTPMailAttachmentSignatureService
Service	Name:	SMTPMailAttachmentSignatureService
The	SMTPMailAttachmentSignatureService:

permits	applications	to	send	a	single	email	attachment	and	a	digital
signature.
uses	the	Oracle	JavaMail	API.

Refer	to	JavaMail

http://www.oracle.com/technetwork/java/javamail/index.html

5.13.1	SERVICE_LOAD
Loads	and	initializes	the	service.
The	following	service	resource	properties	are	read	and	used	to	set	initial	values.

server
secure
port
mail.domain
ntlm.domain
charset
user
password
from.address
from.name
session.debug

Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

	

5.13.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.13.3	SET
The	SET	command	allows	the	current	node	to	be	set	to	the	specified	path.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET SERVER value Optional.

SECURE value Optional.

PORT value Optional.

MAILDOMAIN value Optional.

NTLMDOMAIN value Optional.

CHARSET value Optional.

USER value Optional.

PASSWORD value Optional.

FROM value Optional.

TO *LIST Optional.

value Optional.

CC *LIST Optional.

value Optional.

BCC *LIST Optional.

value Optional.

SUBJECT value Optional.

ATTACHMENT value Optional.

ATTACHMENTNAME value Optional.

KEYSTORE value Optional.	keystore:password.

	

	

5.13.4	RESET
The	RESET	command	clears	the	subject,	recipients	and	attachment.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RESET 	 	 	

	

	

5.13.5	SEND
The	SEND	command	sends	the	email.
You	can	use	the	FROM,	TO,	CC,	BCC,	SUBJECT,	ATTACHMENT	and
ATTACHMENTNAME	keywords	in	the	SEND	command	to	override	the	values
set	by	the	SMTPMailAttachmentSignatureService	properties	file	or	the	SET
command.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND FROM value Optional.

TO value Optional.

CC value Optional.

BCC value Optional.

SUBJECT value Optional.

ATTACHMENT value Optional.

ATTACHMENTNAME value Optional.

SIGNER value Optional.	keystore
entry:password

	

	

5.13.6	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

5.14	POP3MailService
The	POP3MailService	permits	applications	to	receive	email	messages	using	the
Post	Office	Protocol	(POP3)	from	an	existing	mail	server	and	to	process	their
contents.	Most	mail	servers	support	the	POP3	protocol	for	mail	clients	to
receive	messages.
The	POP3MailService	uses	the	Oracle	JavaMail	API.
Refer	to	http://www.oracle.com/technetwork/java/javamail/index.html.
Related	Services
The	POP3MailService	is	not	dependent	on	other	services	but	is	often	used	in
conjunction	with	the	SMTPMailService	if	email	messages	are	also	initiated	by
the	application.
The	SMTPMailService	can	be	used	to	create	and	send	an	email	message	to
another	server,	but	since	the	SMTP	protocol	is	limited	in	its	ability	to	queue
message	at	the	receiving	end	it	is	usually	used	in	conjunction	with	one	of	two
email	client	protocols,	POP3	or	IMAP.	If	the	email	client	is	using	JSM	services
to	retrieve	the	email	message	then	the	POP3MailService	can	be	used	to	retrieve
any	email	messages.	The	POP3MailService	facilitates	the	saving	of	messages	in
a	server	mailbox	and	periodic	downloading	of	messages	from	the	server.
Technical	Specifications

The	POP3	protocol	works	over	a	TCP/IP	connection	using	TCP,	usually	on
network	port	110.
Typically	the	server	(and	often	the	user	and	password)	is	defined	in	the
POP3MailService	properties	file.	These	values	will	be	used	as	the	default
connection	information	when	the	service	is	used	(unless	alternative	values
are	provided	in	the	application	code).	For	example:

#	POP3MailService	resources	(Default)
#
server=10.2.0.12
user=user1
password=xxxxx
#	port=110
#	recipient.keystore.name=pki/person-key.p8
#	recipient.certificate.name=pki/person-cert.cer

http://www.oracle.com/technetwork/java/javamail/index.html

5.14.1	What	can	I	use	the	POP3MailService	for?
Using	this	service,	applications	can	retrieve	one	or	more	messages	from	the
email	store	for	a	nominated	user,	access	the	details	and	contents	of	the
individual	messages,	including	the	sender	details,	subject,	body	text	and	file
attachments,	and	request	that	processed	messages	be	deleted	from	the	mail
server.
The	POP3MailService	supports	decrypting	secure	messages	that	have	been
encrypted	with	the	recipient's	public	key.

5.14.2	Using	the	POP3MailService
Whether	you	are	writing	your	client	application	in	RDML	/	RDMLX	or	in	a
3GL	such	as	RPG,	you	have	to	complete	the	same	basic	steps.
For	example,	an	application	that	reads	an	email	using	POP3MailService	would
typically	issue	the	following	sequence	of	commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
										OPEN
										[loop]
															GET	(repeated)
															READ	or	SAVE
															DELETE
										[end	loop]
										CLOSE
					SERVICE_UNLOAD
JSM(X)_CLOSE
The	GET	command	is	typically	used	repeatedly	to	retrieve	the	next	message	and
then	get	the	details	of	the	current	message.	The	SAVE	or	READ	command	is
used	to	process	any	file	attachments.
Refer	to	Java	Service	Manager	Clients	for	the	command	details	that	apply	to
your	chosen	development	language.

5.14.3	POP3MailService	Commands
Your	application	issues	commands	to	the	POP3MailService	by	passing	the
command	strings	through	the	Java	Service	Manager	using	the
JSM_COMMAND	or	JSMX_COMMAND	Built-In	Function,	or	an	equivalent
Built-In	Function	or	API	for	your	chosen	development	language.
The	commands	that	the	POP3MailService	processes	are:
SERVICE_LOAD
OPEN
GET
SAVE
READ
DELETE
CLOSE
SERVICE_GET
SERVICE_UNLOAD

SERVICE_LOAD
Loads	and	initializes	the	service.
The	following	service	resource	properties	are	read	and	used	to	set	initial	values.

server
secure
port
user
password
timezone
session.debug

	
	
																																																											Required
	
	SERVICE_LOAD	----	SERVICE	---------	service	name	------------
---->
	
																																																											Optional
	
															>--	TIMEZONE	--------	value	----------------------->
	
															>--	TRACE	-----------	*NO	------------------------->
																																					*YES
																																					*ERROR
	
															>--	TRACE_NAME	------	name	------------------------|
																																					*SERVICE
																																					*PROCESS
																																					*FUNCTION
																																					*JOBNAME
																																					*JOBUSER
																																					*JOBNUMBER
	
For	more	information	refer	to:
Service	Program	Tracing	from	the	Client

Keywords
SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

POP3MailService.

TIMEZONE The	TIMEZONE	value	provided	in	the	POP3MailService
properties	file	can	be	overridden	using	the	TIMEZONE
keyword	on	the	SERVICE_LOAD	command.
Refer	to	5.1.3	Time	Zones	for	more	information.

TRACE To	enable	tracing	from	the	client	program	use	the	TRACE
keyword	on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:
*NO
*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the
service	does	not	return	an	ERROR,	FATAL	or
SOAPFAULT	status	to	the	client,	the	trace	files	are	deleted
on	the	JSM	CLOSE	call.

TRACE_NAME This	optional	keyword	allows	the	client	to	append	a	user-
defined	name	to	the	end	of	the	client	trace	subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(POP3MAILSERVICE)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcommand	:=	'service_load	service(pop3mailservice)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	to_get(#jsmxsts	#jsmxmsg)
	

OPEN
The	OPEN	command	will	login	into	the	POP3	server	and	read	any	email
messages	stored	for	that	user.
If	the	server,	user	and	password	are	not	defined	in	the	service's	properties	file
they	must	be	provided	in	the	OPEN	command.
Internally	a	folder	object	is	created	to	hold	these	messages.	The	GET	and
DELETE	commands	work	against	this	internal	folder	object.
	
																																																											Optional
	
	OPEN	--------	SERVER	----------	host	--------------------------->
	
											>--	SECURE	----------	*NO	---------------------------->
																																	*YES
																																	*IMPLICIT
																																	*EXPLICIT
	
											>--	USER	------------	value	-------------------------->
	
											>--	PASSWORD	--------	value	-------------------------->
	
											>--	PORT	------------	110	---------------------------->
																																	number
	
											>--	RECIPIENT	-------	name:password	------------------|
	
Keywords
SERVER The	server	address	for	the	POP3	server.

The	server	address	must	be	provided	if	it	has	not	been	configured	in	the	service	properties	file.
The	SERVER	property	is	typically	configured	in	the	POP3MailService	properties	file.	

SECURE Connect	to	the	server	using	SSL.
Implicit	connects	to	port	995	using	SSL.
Explicit	connects	to	port	110	and	upgrades	to	a	TLS	session.

USER The	POP3	mail	user's	login	identification.

The	mail	user	must	be	provided	if	it	has	not	been	configured	in	the	service	properties	file.
The	USER	property	is	typically	configured	in	the	POP3MailService	properties	file.

PASSWORD The	password	corresponding	to	the	POP3	User	provided	as	the	USER	keyword.
The	mail	user's	password	must	be	provided	if	it	has	not	been	configured	in	the	service	properties	file.
The	PASSWORD	property	is	typically	configured	in	the	POP3MailService	properties	file.

PORT Nominate	the	TCP	port	to	be	used	for	POP3.
The	default	for	POP3,	port	110,	is	used	if	an	alternative	port	number	is	not	supplied.
If	a	port	other	than	110	is	used	the	PORT	property	is	typically	configured	in	the	POP3MailService	properties	file.

RECIPIENT This	keyword	is	required	to	decrypt	secure	messages	that	have	been	encrypted	with	the	recipient's	public	key.
The	recipient	value	is	comprised	of	two	parts,	the	name	and	password	in	the	format	name:password.	These	values	are	used
to	access	the	appropriate	private	key	store	and	security	certificate	information	in	the	POP3	service	properties.
The	X509	public	certificate	file	to	be	used	is	obtained	from	the	property	recipient.certificate.{name}.
The	PKCS8	keystore	file	to	be	used	is	obtained	from	the	property	recipient.keystore.{name}.	The	keystore	password	is	the
password	component.
So	for	example	if	your	recipient	name	is	POP3SIGN	your	POP3MailService	properties	file	would	need	to	include	entries
like:
	
recipient.keystore.POP3SIGN=test-input/pop3-recipient-key.p8
recipient.certificate.POP3SIGN=test-input/pop3-recipient-certificate.cer
	

Then	to	receive	an	encrypted	email	you	would	issue	a	JSM	command	like:
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'open	recipient(POP3SIGN:password)')	TO_GET(#jsmxsts	#jsmxmsg)
	

Examples
RDML
In	this	example	the	SERVER,	USER	and	PASSWORD	keyword	values	are
explicitly	defined	as	part	of	the	command.
	
USE	BUILTIN(TCONCAT)	WITH_ARGS('OPEN	SERVER('	#JSMSERVER	')	USER('	#JSMUSER	')	PASSWORD(')	TO_GET(#JSMCMD)
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	#JSMPSSWRD	')')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)USE	BUILTIN(JSM_COMMAND)	
	

	
RDMLX
In	this	example	the	SERVER,	USER	and	PASSWORD	keyword	values	are
explicitly	defined	as	part	of	the	command.
	
#jsmcmd	:=	'open	server('	+	#jsmserver	+	')	user('	+	#jsmuser	+	')	password('	+	#jsmpassword	+	')'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

	

GET
The	GET	command	retrieves	email	details	from	the	mail	server.	The	GET
command	is	usually	used	repetitively	to	get	all	the	messages	and	appropriate
information	pertaining	to	the	messages.
	
																																																						Conditional
	
	GET	--------	OBJECT	-------------	none	------------------------|
																																			*MESSAGECOUNT
																																			*FIRSTMESSAGE
																																			*NEXTMESSAGE
																																			*TOADDRESS
																																			*CCADDRESS
																																			*FROMADDRESS
																																			*SUBJECT
																																			*SENTDATE
																																			*ATTACHMENTS
																																			*UID
																																			*HEADER
	
Keywords
OBJECT This	keyword	must	be	specified	on	the	GET	command	with	one	of

the	predetermined	values.
A	value	of	*MESSAGECOUNT	will	return	the	number	of
messages	in	the	folder	in	the	JSM	command	message	parameter.
A	value	of	*FIRSTMESSAGE	sets	the	current	message	to	the	first
message	in	the	folder.	If	no	message	is	available	the	command
status	field	is	set	to	NOMAIL.
Specifying	a	value	of	*NEXTMESSAGE	will	get	the	next	mail
message	in	the	folder	and	set	this	as	the	current	message.	If	there
are	no	more	messages	the	command	status	field	is	set	to	NOMAIL.
If	a	message	is	found	the	command	status	is	returned	as	OK.	The
*NEXTMESSAGE	processing	is	usually	followed	by	another	GET
command	to	retrieve	the	details	of	the	message	e.g.	the	subject,
from	address	or	attachments,	or	the	SAVE	command	to	get	the
actual	body	of	the	message.

A	value	of	*TOADDRESS	will	return	the	email	address	of	the
email	recipient(s)	into	the	JSM	command	message	parameter	or,	if
a	list	is	provided,	into	the	working	list.
A	value	of	*CCADDRESS	will	return	the	email	address	of	the
email	recipient(s)	into	the	JSM	command	message	parameter	or,	if
a	list	is	provided,	into	the	working	list.
A	value	of	*FROMADDRESS	will	return	the	email	address	of	the
email	sender	into	the	JSM	command	message	parameter	or,	if	a	list
is	provided,	into	the	working	list.
A	value	of	*FROMADDRESS	will	return	the	email	address	of	the
email	sender	into	the	JSM	command	message	parameter	or,	if	a	list
is	provided,	into	the	working	list.
A	value	of	*SUBJECT	will	return	the	subject	of	the	current
message	in	the	JSM	command	message	parameter.
A	value	of	*SENTDATE	will	return	the	date	the	email	was	sent	in
the	JSM	command	message	parameter.
Specifying	*ATTACHMENTS	will	return	a	working	list	with	an
entry	detailing	the	file	name	of	each	attachment	on	the	current
email.
A	value	of	*UID	will	return	the	unique	identifier	of	the	current
message.
Specifying	*HEADER	and	using	the	keyword	FIELD	to	specify
which	MIME	header	field	to	be	returned.

Examples
The	following	examples	use	the	GET	command	to	retrieve	email	details	from
the	mail	server.
RDML
	
*	loop	through	all	the	messages
BEGIN_LOOP
	
*	Get	message
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('GET	OBJECT(*NEXTMESSAGE)')	TO_GET(#JSMSTS	#JSMMSG)
IF	COND('#JSMSTS	*EQ	NOMAIL')
LEAVE
ENDIF

	
*	Get	subject
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('GET	OBJECT(*SUBJECT)')	TO_GET(#JSMSTS	#JSMMSG)
CHANGE	FIELD(#SUBJECT)	TO(#JSMMSG)
	
*	Get	from	addresses
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('GET	OBJECT(*FROMADDRESS)	SERVICE_LIST(ADDRESS)')	TO_GET(#JSMSTS	#JSMMSG)
CHANGE	FIELD(#FROM)	TO(#JSMMSG)
	
*	<<do	something	with	email	details>>
	
END_LOOP
	

RDMLX
	
*	loop	through	all	the	messages
begin_loop
	
*	Get	the	next	message
use	builtin(jsmx_command)	with_args(#jsmhandle	'get	object(*nextmessage)')	to_get(#jsmsts	#jsmmsg)
if	(#jsmsts	=	NOMAIL)
leave
endif
	
*	Get	subject
use	builtin(jsmx_command)	with_args(#jsmhandle	'get	object(*subject)')	to_get(#jsmsts	#jsmmsg)
#jsmsubject	:=	#jsmmsg
	
*	Get	from	address
use	builtin(jsmx_command)	with_args(#jsmhandle	'get	object(*fromaddress)')	to_get(#jsmsts	#jsmmsg)
#jsmfrom	:=	#jsmmsg
	
*	<<do	something	with	email	details>>
	
end_loop
	

SAVE
The	SAVE	command	is	used	to	save	various	components	of	the	current	message
to	a	local	file	(or	files).
	
																																																											Required
	
	SAVE	----------	OBJECT	---------	*TEXT	-------------------------->
																																		*ATTACHMENT
																																		*ATTACHMENTS
	
																																																								Conditional
	
													>--	FILE	-----------	value	-------------------------->
	
													>--	DIR	------------	value	-------------------------->
	
																																																											Optional
	
													>--	ENTRY	----------	1	------------------------------>
																																		value
	
													>--	SELECT	---------	value	--------------------------|
	
Keywords
OBJECT This	keyword	specifies	what	part	of	the	current	message	is	to	be

saved.
A	value	of	*TEXT	indicates	the	body	text	of	the	message	is	to	be
saved.	If	the	message	content-type	does	not	start	with	text/	or
multipart/	the	command	returns	a	value	of	NOTEXT	in	the	status
field.
Use	a	value	of	*ATTACHMENT	to	nominated	a	specific
attachment	to	be	saved.	Use	this	value	in	combination	with	the
ENTRY	or	SELECT	keywords	to	identify	the	attachment	to	be
saved.	If	neither	ENTRY	nor	SELECT	is	specified	the	first
attachment	is	saved.	If	there	are	no	attachments	associated	with	the
current	message	the	command	status	is	returned	as

NOATTACHMENT.
Use	a	value	of	*ATTACHMENTS	to	save	all	attachments	to	the
directory	specified	by	the	keyword	DIR	using	the	attachment	file
name.	If	there	are	no	attachments	associated	with	the	current
message	the	command	status	is	returned	as	NOATTACHMENT.
The	OBJECT	keyword	is	typically	used	in	combination	with	the
FILE	and/or	DIR	keywords.

FILE The	FILE	keyword	specifies	the	local	file	name	where	the
information	is	to	be	saved.
Any	path	details	included	in	the	FILE	value	must	already	exist.	The
file	itself	will	be	created	or	replaced	as	required.
A	file	name	must	be	provided	when	using	the	keyword	value
OBJECT(*TEXT).
When	used	with	the	keyword	value	OBJECT(*ATTACHMENT)
the	current	attachment	file	will	be	renamed	to	the	file	name
indicated.
The	FILE	keyword	is	ignored	if	the	keyword	value
OBJECT(*ATTACHMENTS)	is	used.

DIR This	keyword	specifies	the	local	directory	where	the	file	is	to	be
saved.	By	default	the	JSM	instance	directory	is	used.
If	the	DIR	path	does	not	already	exist	it	will	be	created.

ENTRY Specify	the	file	number	of	the	attachment	to	be	saved.	The	default
value	is	1.
The	number	assigned	to	each	attachment	is	determined	by	the	order
the	attachments	were	added	to	the	email	by	the	sender.

SELECT Select	an	attachment	file	to	be	saved	based	on	the	attached	file
name.

Examples
RDML
To	save	the	body	text	of	the	current	email	to	a	unique	file	in	the	current
directory
	
USE	BUILTIN(TCONCAT)	WITH_ARGS('SAVE	OBJECT(*TEXT)	FILE(message'	#EMAILNO	'.txt)')	TO_GET(#JSMCMD)

USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

or
	

Save	all	the	attachments	on	the	current	email	to	a	directory	/emailattach
	
USE	BUILTIN(TCONCAT)	WITH_ARGS('SAVE	OBJECT(*ATTACHMENTS)	DIR(/emailattach)')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

	
RDMLX
Save	the	first	file	attached	to	the	current	email	to	/emailattach/abc.xml
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'save	object(*attachment)	file	(abc.xml)	dir(/emailattach)')	to_get(#jsmsts	#jsmmsg)
	

	

READ
The	READ	command	places	the	specified	message	content	into	a	working	list.
The	working	list	definition	must	be	appropriate	for	the	expected	content.	For
example,	if	you	nominate	to	read	text	content	a	single	field	is	required	in	your
working	list.	If	you	are	reading	anything	other	than	text	(i.e.	content	which
includes	a	separator	value)	the	working	list	must	be	defined	so	it	can	handle	the
maximum	number	of	columns	in	the	content.
The	ENCODING	keyword	and	CONTENT	keyword	control	the	content
handling	requirements.
	
																																																											Required
	
	READ	----------	OBJECT	---------	none	--------------------------->
																																		*TEXT
																																		*ATTACHMENT
	
																																																											Optional
	
													>--	CONTENT	--------	*TEXT	-------------------------->
																																		*CSV
																																		*TSV
																																		*SV
	
													>--	SEPARATOR	------	value	-------------------------->
																																		*COMMA
																																		*SEMICOLON
																																		*TAB
																																		*TILDE
	
													>--	ENTRY	----------	1	------------------------------>
																																		value
	
													>--	SELECT	---------	value	-------------------------->
	
													>--	ENCODING	------	*DEFAULT	------------------------>
																																	value
	

													>--	SVROW	----------	value	-------------------------->
	
													>--	SVROWLIMIT	-----	value	-------------------------->
																																		*NONE
																																		*LIST
																																		*AVAILABLE
	
													>--	SVMODE	---------	*NONE	-------------------------->
																																		*IGNORE
																																		*USE	
	
													>--	SVHEAD	---------	value	-------------------------->
	
													>--	NUMBERFORMAT	---	*NONE	-------------------------
-|
																																		*DEFAULT
																																		*CLIENT	
																																		*USERAGENT
																																		value
	
Keywords
OBJECT This	keyword	specifies	what	part	of	the	current

message	is	to	be	read.
A	value	of	*TEXT	indicates	the	body	text	of	the
message	is	to	be	read	into	a	working	list.	If	the	message
content-type	does	not	start	with	text/	or	multipart/	the
command	will	return	NOTEXT	in	the	status	field.
Use	a	value	of	*ATTACHMENT	to	nominated	a
specific	attachment	to	be	read	into	a	working	list.	Use
this	value	in	combination	with	the	ENTRY	or	SELECT
keywords	to	identify	the	attachment	to	be	saved.	If
neither	ENTRY	nor	SELECT	is	specified	the	first
attachment	is	saved.	If	there	are	no	attachments
associated	with	the	current	message	the	command
status	is	returned	as	NOATTACHMENT.
Refer	to	RDML	/	RDMLX	Reserved	Keywords	for
details	on	how	to	define	the	working	list	on	the

command.	

CONTENT By	default	the	email	content	is	processed	as	text.
If	the	attachment	is	plain	text,	use	CONTENT(*TEXT)
to	read	the	text	into	the	working	list.
Alternately	the	content	can	be	processed	as	a	Comma
separated	variables	(*CSV),	Tab	separated	variables
(*TSV)	or	separated	by	a	variable	(*SV)	as	specified	in
the	separator	keyword.	If	processing	content	that
includes	a	separator	variable	refer	to	the	SEPARATOR,
SVHEAD,		SVMODE,	NUMBERFORMAT,	TRIM
and	TRUNCATE	keywords	for	additional	processing
options.
The	working	list	used	to	store	the	body	text	or
attachment	content	must	be	defined	with	an	appropriate
number	of	columns	to	store	the	data.	Refer	to	RDML	/
RDMLX	Reserved	Keywords	for	details	on	how	to
define	the	working	list	on	the	command.

SEPARATOR This	keyword	is	used	by	separated	value	services	to
identify	the	content	separator.
If	the	SEPARATOR	keyword	is	present	and	no
CONTENT	keyword	is	provided	then	CONTENT(*SV)
is	assumed.
Refer	to	SEPARATOR	for	more	information.

ENTRY Specify	the	file	number	of	the	attachment	to	be	saved.
The	default	value	is	1.	The	number	assigned	to	each
attachment	is	determined	by	the	order	the	attachments
were	added	to	the	email	by	the	sender.

SELECT Select	an	attachment	file	to	be	saved	based	on	the
attached	file	name.

ENCODING Specify	what	encoding	must	be	applied	to	a	bytes
content	to	convert	it	to	a	Unicode	string.	The	default
value	for	the	ENCODING	keyword	is	*DEFAULT.
Refer	to	ENCODING	for	more	information.

SVROW The	optional	keyword	SVROW	is	used	to	specify	the
starting	row	when	reading	records.
Refer	to	SVROW	for	more	information.

SVROWLIMIT The	optional	keyword	SVROWLIMIT	is	used	to
specify	the	number	of	rows	to	be	read.
Refer	to	SVROWLIMIT	for	more	information.

SVMODE This	keyword	is	used	by	content	handlers	and	services
that	process	separated	value	data	to	define	how	to
handle	the	inbound	separated	value	data.
Refer	to		SVMODE	for	more	information.

SVHEAD The	optional	keyword	is	used	to	describe	the	field
layout	of	the	separated	value	data.
Refer	to	SVHEAD	for	more	information.

NUMBERFORMAT This	optional	keyword	handles	numeric	strings	where
the	decimal	separator	is	not	the	decimal	point	character
".".
Refer	to	NUMBERFORMAT	for	more	information.

Examples
RDML
Using	the	TRUNCATE	keyword	ensure	body	content	is	added	to	the	working
list	even	if	the	line	length	exceeds	the	length	of	the	field	in	the	working	list.
	
DEF_LIST	NAME(#BODYLST)	FIELDS(#STD_TEXT)	TYPE(*WORKING)
	
CHANGE	FIELD(#JSMCMD)	TO('READ	OBJECT(*TEXT)	SERVICE_LIST(STD_TEXT)	TRUNCATE(*BOTH)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#BODYLST)
	

	
RDMLX
Attachment	files	can	be	processed	according	to	their	content	and	the	users
knowledge	of	the	content.	For	example	when	an	email	has	an	attachment	file
message01.txt	with	content	like:

	
					first,	second,	third,	fourth
					1,	2,	3,	4
					uno,	dos,	tres	,	quatro
					un	,	deux	,	trios	,
	

Read	the	content	of	this	attachment	as	text	(with	each	line	of	content	place	into
a	single	field	in	a	working	list)
	
def_list	name(#attachlst)	fields(#fielda)	type(*working)
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'read	object(*attachment)	content(*text)	select(message01.txt)')	to_get(#jsmsts	#jsmmsg	#attachlst)
	

or
	

Read	the	attachment	as	a	comma	separated	variables	file	(where	the	working	list
would	be	required	to	have	four	columns).
	
def_list	name(#attachlst)	fields(#fielda	#fieldb	#fieldc	#fieldd)	type(*working)
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'read	object(*attachment)	content(*csv)	select(message01.txt)')	to_get(#jsmsts	#jsmmsg	#attachlst)
	

DELETE
The	DELETE	flags	the	current	message	to	be	deleted	from	the	mail	server	when
the	folder	is	closed.	Most	email	clients	retrieve	their	messages	from	the	mail
server,	store	the	messages	locally	then	delete	them	from	the	server.
The	DELETE	command	works	in	combination	with	the	CLOSE	command.
	
	DELETE	---------	no	keywords	---------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(DELETE)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	delete)	to_get(#jsmxsts	#jsmxmsg)
	

CLOSE
The	CLOSE	command	closes	the	current	folder	and	deletes	flagged	messages
from	the	POP3	mail	server.
	
	CLOSE	---------	no	keywords	---------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	close)	to_get(#jsmxsts	#jsmxmsg)
	

SERVICE_GET
The	SERVICE_GET	command	allows	JSM	client	applications	to	access	the
keyword	/	value	properties	from	the	properties	file	associated	with	the	currently
loaded	service.
Client	applications	can	access	the	value	of	properties	associated	with	the
service,	but,	perhaps	more	usefully,	they	can	access	application	specific
property	values	too,	using	the	service	properties	file	as	a	common	medium	for
holding	such	values.
When	used	in	the	latter	way,	there	is	a	possibility	of	conflict	between
application-defined	keyword	names	and	those	used	by	current	and	future
versions	of	LANSA	Integrator.	To	reduce	this	possibility	your	application
should	prefix	the	property	keyword	with	a	global	unique	name.	The	examples
below	use	com.acme.property	as	the	prefix	for	this	purpose.
The	service	property	keyword	value	is	returned	in	the	JSM	message	field.	If	the
keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
	
	SERVICE_GET	--------	PROPERTY	-----	value	--------------------
>
	
																		>--	TRACE	-------	*SERVICE-------------------|
																																				*TRANSPORT
	
Keywords
PROPERTY Provide	a	keyword	/	value	to	be	checked	on	the	service

properties	file.
The	service	property	keyword	value	is	returned	in	the	JSM
message	field.	If	the	keyword	does	not	exist	in	the	service
property	file	a	status	of	NOT_EXIST	is	returned.

TRACE *SERVICE	-	read	service	trace	file.
*TRANSPORT	-	read	transport	trace	file.

Examples
The	examples	retrieve	the	value	of	the	com.acme.property.messagetype	(an
application-defined	property)	in	the	service	properties	file.	This	property	might
be	defined	in	the	service	properties	file	with	a	line	like	this	(the	value	"html"

will	be	returned	to	the	application	in	this	case):
	
com.acme.property.messagetype=html
	

RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_GET	PROPERTY(com.acme.property.messagetype)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcmd	:=	'	service_get	property(com.acme.property.messagetype)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service	and	removes	the
temporary	directory.
	
	SERVICE_UNLOAD	---------	no	keywords	--------------------------
|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(SERVICE_UNLOAD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	service_unload)	to_get(#jsmxsts	#jsmxmsg)
	

5.14.4	POP3MailService	Examples
Examples	are	supplied	for	the	most	common	client	programming	languages:
RDML
RDMLX
RPG

5.14.5	Troubleshooting
Attempting	to	READ	an	email,	if	you	get	an	error	message	"token	count	does
not	equal	list	field	count	at	record	line	:	nn"	this	indicates	your	working	list
definition	does	not	match	the	information	being	read	from	the	email.

If	you	are	reading	text	content	(i.e.	READ	OBJECT(*TEXT))	a	single	field
must	be	provided	in	the	working	list	used	as	the	SERVICE_LIST.
If	you	are	reading	anything	other	than	text	content	(i.e.	content	which
includes	a	separator)	the	working	list	must	be	defined	to	accommodate	the
maximum	number	of	columns	in	the	content.

	

5.15	SMSService
The	SMSService	allows	an	application	to	send	Short	Message	Service	text
messages	(more	commonly	known	as	SMS	or	texting)	to	mobile	phones
anywhere	in	the	world.	Over	the	last	few	years	SMS	has	grown	into	an
extensively	used	communication	tool.	It	is	normally	used	for	mobile	phone	to
mobile	phone	messaging	but	the	requirement	to	send	messages	generated	from
computers	to	mobile	phones	is	very	established	and	growing.
For	the	SMSService	to	work,	the	details	of	the	message	needs	to	be	sent	to	an
SMS	gateway.	This	is	typically	a	company	that	provides	the	services	of	sending
SMS	messages	to	telecommunication	providers.	The	SMSService	provides	two
approaches	for	sending	the	message	to	the	SMS	gateway.

SMTP	Protocol	-	in	this	approach	the	SMSService	prepares	and	sends	an
email	with	the	details	of	the	message	to	an	SMS	gateway.
HTTP	Protocol	-	in	this	approach	the	SMSService	forwards	the	message
details	to	the	SMS	gateway	as	an	HTTP	POST.	The	HTTP	transport	provides
you	with	greater	security	including	an	HTTPS	option,	so	you	might	use	this
approach	should	this	be	required	by	your	application.

The	simpler	of	the	two	transports	is	the	SMTP	approach.	The	SMTP	transport	is
fairly	standard	across	the	industry.	For	example,	most	SMS	gateway	service
providers	will	require	an	email	message	to	be	sent	to	them	in	the	following
format:

Email	Address:	<phone-number-to-be-messaged>@<mail-domain-of-the
SMS-gateway-provider>.	
For	example	nnnnnnnnnn@streetdata.com.au	where	nnnnnnnnnn	is
the	mobile	phone	number	that	you	want	to	send	the	message	to).
Email	Subject:	Containing	your	account	ID	and	password	(for	your
subscription	to	this	SMS	provider).
Email	Message:	Containing	the	message	to	be	sent	to	the	mobile	phone.

Some	SMS	gateway	providers	may	require	the	information	to	be	sent	to	them	in
other	formats,	but	with	the	SMTP	transport	approach	it	is	relatively	simple	to
construct	your	email	to	meet	the	stipulated	requirements.
The	HTTP	transport	is	less	flexible,	and	there	is	no	industry	standard	amongst
the	providers.	Some	may	require	you	to	send	them	the	HTTP	POST	as	named-
value-pairs,	while	other	may	require	a	SOAP	request,	and	others	some	other
form	of	XML	request.

The	shipped	SMSService	comes	with	"ready-to-run"	HTTP	solutions	that	work
with	the	service	provided	by	StreetData,	Kapow,	Bulker,	IntelliSoftware,
TextMarker	and	ViaNett.
Should	you	wish	to	use	a	HTTP	transport	provided	by	another	SMS	gateway
service	provider,	please	contact	your	LANSA	vendor	for	advice.
The	SMSService	is	not	currently	set	up	to	handle	Multimedia	Messaging	Server
(MMS)	messages,	though	this	restriction	may	potentially	be	overcome	by	using
the	SMTPMailService.
Related	Services
The	SMSService	is	not	dependant	on	other	services.
Some	service	providers	may	provide	a	delivery	notification	response	(success	or
failure	for	example)	or	audit	on	the	messages	that	you	have	sent.	Such	messages
would	normally	be	sent	back	to	your	'From'	address.	You	may	wish	to	monitor
these	using	the	POP3MailService.
In	many	cases	the	SMTPMailService	will	enable	you	to	achieve	the	same
results.	The	SMSService	does	provide	you	with	a	more	flexible	solution	though,
including	the	ability	to	send	the	information	via	HTTP.
Technical	Specifications
Most	of	the	information	required	for	the	SMSService	is	defined	in	the
SMSService	property	file.	This	ensures	a	consistent	use	of	the	properties	and
avoids	the	need	to	declare	this	information	each	time	the	service	is	used.

5.15.1	What	can	I	use	the	SMSService	for?
SMS	messaging	is	now	a	very	widely	used	tool	for	communicating	short	pieces
of	text	information	via	mobile	phones.
The	following	provides	just	a	few	ideas	on	how	and	where	the	SMSService	may
be	applied.
Send	customers	updates	on	the	progress	of	their	orders	through	the	supply
chain
Customers	like	to	be	kept	up	to	date	on	how	their	orders	are	processing.	An	ERP
system	for	a	logistics	company	could	send	SMS	messages	to	its	customers	to
keep	them	up	to	date	on	the	whereabouts	of	their	shipment.	As	a	shipment
passes	through	its	various	ports	a	trigger	could	be	set	to	send	an	SMS	message
to	the	customer.
Alert	messages	to	engineers
Engineers	in	the	field	could	be	notified	via	an	SMS	message	of	customers	who's
equipment	has	failed	and	needs	attending	to.	In	addition	to	providing	a	cheaper
alternative	to	getting	the	information	to	the	engineer	(as	opposed	to	a	telephone
call	to	a	mobile	phone),	an	SMS	approach	also	does	not	need	to	be	attended	to
immediately.	Hence,	if	the	engineer	is	already	focusing	on	another	problem	they
may	wait	for	a	more	suitable	time	to	respond	to	the	support	request.

5.15.2	Using	the	SMSService
Whether	you	are	writing	your	client	application	in	RDML	/	RDMLX	or	in	a
3GL	such	as	RPG,	you	have	to	complete	the	same	basic	steps.
For	example,	an	application	to	send	an	SMS	to	a	mobile	phone	would	typically
issue	the	following	sequence	of	commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
										SET
										SEND
					SERVICE_UNLOAD
JSM(X)_CLOSE

5.15.3	SMSService	Properties
The	following	lists	the	contents	of	the	SMSService.properties	as	they	are
shipped	in	a	standard	LANSA	Integrator	installation.	These	values	are	loaded	as
the	defaults	when	the	SERVICE_LOAD	command	is	run.
The	SMSService.properties	file	consists	of	2	sets	of	key	words	-	one	set	relevant
to	the	HTTP	transport,	and	another	set	relevant	to	the	SMTP	transport.
By	default	the	HTTP	transport	will	be	used	by	the	SMSService.	To	use	the
SMTP	transport,	comment	out	the	transport=*http	property	to	allow	the
transport=*smtp	property	to	be	active	or	add	a	transport=*smtp	property	after
the	transport=*http	property.	Alternatively,	use	the	TRANSPORT	command
keyword	to	override	the	transport	property	value.
If	you	are	using	the	HTTP	or	SMTP	transport,	then	you	should	set	up	your
default	values	in	the	SMSService.properties	file	according	to	the	directives	from
your	SMS	gateway	service	provider.	Alternatively,	use	the	SET	command	in
your	application	to	set	these	values	at	runtime.
	
#!<studio-project	id="20000000-000000"	name="lansa">
#
#	SMSService	resources	(Default)
#
transport=*smtp
port=25
server=nnn.nnn.nnn.nnn
subject=user+password
from.address=person@mycompany.com
mail.domain=mycompany.com
mobile.domain=smscompany.com
#	charset=iso-8859-1
#	encoding=ISO8859_1
#
transport=*http
provider=*streetdata
uri=/admin/msg.php
host=www.streetdata.com.au
secure=*yes
account.user=12345

account.password=abcde
#	sender=identifier
#
#!</studio-project>
	

The	following	explains	the	keywords	defined	in	the	SMSServices.properties
file.
Keywords
transport This	is	used	to	nominate	the	transport	mechanism	you	will

use	to	send	the	SMS	details	to	the	SMS	gateway	service
provider.
There	are	two	options:
A	value	of	*SMTP	indicates	that	the	SMS	details	is	to	be
sent	by	email	to	the	SMS	gateway	service	provider.
A	value	of	*HTTP	indicates	that	the	SMS	details	are	to	be
sent	using	HTTP.
The	transport	you	select	will	most	likely	be	based	on	the
service	you	subscribe	to	with	the	SMS	gateway	service
provider.
This	value	can	be	overridden	in	the	application	using	the
TRANSPORT	keyword	on	the	SET	command.

provider This	keyword	is	only	used	with	the	*HTTP	transport.	This
value	specifies	which	of	the	SMS	providers	to	use.
This	value	can	be	overridden	in	the	application	using	the
PROVIDER	keyword	on	the	SET	command.

uri This	keyword	is	only	used	with	the	*HTTP	transport.
This	is	the	HTTP	resource	supplied	to	you	by	the	SMS
gateway	service	provider.
This	value	can	be	overridden	in	the	application	using	the
URI	keyword	on	the	SET	command.

host This	keyword	is	only	used	with	the	*HTTP	transport.
This	is	the	host	value	supplied	to	you	by	the	SMS	gateway
service	provider.
This	value	can	be	overridden	in	the	application	using	this

HOST	keyword	on	the	SET	command.

sender This	keyword	is	only	used	with	the	*HTTP	transport.
This	identifies	the	sender	of	the	SMS	message.	This
feature	is	optional	as	some	providers	do	not	support	it.
This	value	can	be	overridden	in	the	application	using	this
SENDER	keyword	on	the	SET	command.

secure This	keyword	is	only	used	with	the	*HTTP	transport.
You	will	need	to	set	this	value	to	*YES	to	indicate	that	you
would	like	to	send	the	details	using	SSL	(encrypted
HTTPS).
The	default	value	at	installation	is	*NO.
This	value	can	be	overridden	in	the	application	using	the
SECURE	keyword	on	the	SET	command.

account.user This	keyword	is	only	used	with	the	*HTTP	transport.
This	is	your	account	name	supplied	to	you	by	your	SMS
gateway	service	provider.
This	value	can	be	overridden	in	the	application	using	the
ACCOUNT_USER	keyword	on	the	SET	command.

account.password This	keyword	is	only	used	with	the	*HTTP	transport.
This	is	the	password	for	your	account.
This	value	can	be	overridden	in	the	application	using	the
ACCOUNT_PASSWORD	keyword	on	the	SET	command.

port This	keyword	is	only	used	with	the	*SMTP	transport
This	is	the	TCP/IP	port	that	the	SMTP	mail	server	is
running	on.
The	default	value	is	25.
This	keyword	is	optional.
This	value	can	be	overridden	in	the	application	using	the
PORT	keyword	on	the	SET	command.

server This	keyword	is	only	used	with	the	*SMTP	transport
This	is	the	address	of	the	SMTP	server	you	are	using	to
send	the	email	that	contains	the	SMS	details.

This	value	can	be	overridden	in	the	application	using	the
SERVER	keyword	on	the	SET	command.

subject This	keyword	is	only	used	with	the	*SMTP	transport.
It	will	contain	the	subject	of	the	email.
Typically	this	would	contain	your	user	account	and
account	password	(in	the	format	'user+password')	for	the
SMS	gateway	that	you	are	using.	Confirm	the	format	with
your	provider	as	it	may	have	its	own	format.
This	value	can	be	overridden	in	the	application	using	the
SUBJECT	keyword	on	the	SET	command.

from.address This	keyword	is	only	used	with	the	*SMTP	transport.
This	is	the	address	to	which	you	want	email	responses
from	the	SMS	gateway	service	provider	routed	back	to.
Such	responses	might	include	SMS	status	information
(such	as	a	failed	SMS).
This	would	normally	be	one	of	your	company	email
addresses	-	perhaps	one	that	is	dedicated	to	receiving	such
responses.	It	should	be	a	valid	email	address.	Many
providers	will	only	accept	addresses	that	are	already
registered	with	them.
This	value	can	be	overridden	in	the	application	using	the
FROM	keyword	on	the	SET	command.

mail.domain This	keyword	is	only	used	with	the	*SMTP	transport.
This	is	the	mail	domain	as	issued	by	the	SMTP	HELO
command.	This	value	tells	the	SMTP	server	that	this	is
your	mail	domain.
This	keyword	is	optional.
This	value	can	be	overridden	in	the	application	using	the
MAILDOMAIN	keyword	on	the	SET	command.

mobile.domain This	keyword	is	only	used	with	the	*SMTP	transport.
This	is	the	mail	domain	to	which	you	will	send	the	email
with	the	SMS	details.
Normally	the	mobile	phone	number	you	are	sending	the

SMS	to	will	prefix	this	value.	So	for	example,	if	you	are
sending	the	SMS	to	a	number	12345678	and	the	mobile
domain	is	streetdata.com.au,	then	the	full	email	address
that	the	message	will	be	sent	to	is
12345678@streetdata.com.au.
This	value	can	be	overridden	in	the	application	using	the
MOBILEDOMAIN	keyword	on	the	SET	command.

charset This	keyword	is	only	used	with	the	*SMTP	transport.
This	is	the	character	set	encoding	of	the	body	text	and
subject.
This	keyword	is	optional.
This	value	can	be	overridden	in	the	application	using	the
CHARSET	keyword	on	the	SET	command.

encoding This	keyword	is	only	used	with	the	*SMTP	transport.
This	is	the	body	text	encoding
This	keyword	is	optional.
This	value	can	be	overridden	in	the	application	using	the
ENCODING	keyword	on	the	SET	command.

5.15.4	SMSService	Commands
Your	application	issues	commands	to	the	SMSService	by	passing	the	command
strings	through	the	Java	Services	Manager	using	the	JSM_COMMAND	or
JSMX_COMMAND	Built-In	Function	or	an	API	for	your	chosen	development
language.
The	commands	that	the	SMSService	processes	are:
SERVICE_LOAD
SET
SEND
SERVICE_UNLOAD

SERVICE_LOAD
Loads	and	initializes	the	service.
	
																																																											Required
	
	SERVICE_LOAD	----	SERVICE	---------	service	name	------------
---->
	
																																																											Optional
	
															>--	TRACE	-----------	*NO	------------------------->
																																					*YES
																																					*ERROR
	
															>--	TRACE_NAME	------	name	------------------------|
																																					*SERVICE
																																					*PROCESS
																																					*FUNCTION
																																					*JOBNAME
																																					*JOBUSER
																																					*JOBNUMBER
	
For	more	information	refer	to:
Service	Program	Tracing	from	the	Client
Keywords
SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

SMSService.

TRACE To	enable	tracing	from	the	client	program	use	the	TRACE
keyword	on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:
*NO
*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the

service	does	not	return	an	ERROR,	FATAL	or
SOAPFAULT	status	to	the	client,	the	trace	files	are	deleted
on	the	JSM	CLOSE	call.

TRACE_NAME This	optional	keyword	allows	the	client	to	append	a	user-
defined	name	to	the	end	of	the	client	trace	subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(SMSSERVICE)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcommand	:=	'service_load	service(SMSService)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	to_get(#jsmxsts	#jsmxmsg)
	

SET
The	SET	command	is	an	optional	command	and	is	used	primarily	to	override
the	values	defined	in	the	SMSService.properties	file.
To	set	multiple	keywords	inside	your	application	you	may	either	use	the	SET
command	multiple	times,	or	use	one	SET	command	with	multiple	keywords
defined	in	it.
	
																																																											Optional
	
	SET	-------------	TRANSPORT	-------	*HTTP	-----------------------
>
																																					*SMTP
	
															>--	PROVIDER		-------	*KAPOW	---------------------->
																																					*VIANETT
																																					*BULKER
																																					*STREETDATA
																																					*TEXTMARKETER
																																					*INTELLISOFTWARE
	
															>--	HOST	------------	value	----------------------->
	
															>--	SENDER	----------	value	----------------------->
	
															>--	SECURE	----------	*NO	------------------------->
																																					*YES
	
															>--	URI	-------------	value	----------------------->
	
															>--	ACCOUNT_USER	----	value	----------------------->
	
															>--	ACCOUNT_PASSWORD-	value	-----------------------
>
	
															>--	SERVER	----------	value	----------------------->
	
															>--	PORT	------------	value	----------------------->

	
															>--	MAILDOMAIN	------	value	----------------------->
	
															>--	MOBILEDOMAIN	----	value	----------------------->
	
															>--	FROM	------------	value	----------------------->
	
															>--	CHARSET	---------	value	----------------------->
	
															>--	ENCODING	--------	value	----------------------->
	
															>--	SUBJECT	---------	value	-----------------------|
	
Keywords
TRANSPORT This	is	used	to	nominate	the	transport	mechanism

you	will	use	to	send	the	SMS	details	to	the	SMS
gateway	service	provider.
There	are	two	options:
*SMTP	indicates	that	the	SMS	details	are	to	be
sent	by	email	to	the	SMS	gateway	service
provider.
*HTTP	indicates	that	the	SMS	details	are	to	be
sent	by	HTTP	to	the	SMS	gateway	service
provider.	The	transport	you	select	will	likely	be
based	on	the	service	you	subscribe	to	with	the
SMS	gateway	service	provider.
This	keyword	can	be	used	to	override	the
transport	value	in	the	SMSService.properties
file.

PROVIDER This	keyword	is	only	used	with	the	*HTTP
transport.
You	will	only	use	it	if	you	have	selected	*HTTP
as	your	transport.
This	keyword	can	be	used	to	override	the
provider	value	in	the	SMSService.properties	file.

HOST This	keyword	is	only	used	with	the	*HTTP
transport.
This	is	the	host	value	supplied	to	you	by	the	SMS
gateway	service	provider.
This	keyword	can	be	used	to	override	the	host
value	in	the	SMSService.properties	file.

SENDER This	keyword	is	only	used	with	the	*HTTP
transport.
This	identifies	the	sender	of	the	SMS	message.
This	feature	is	optional	as	some	providers	do	not
support	it.
This	keyword	can	be	used	to	override	the	sender
value	in	the	SMSService.properties	file.

SECURE This	keyword	is	only	used	with	the	*HTTP
transport.
You	will	set	this	value	to	*YES	to	indicate	that
you	would	like	to	send	the	details	using	SSL
(encrypted	HTTPS).
The	default	value	at	installation	is	*NO.
This	keyword	can	be	used	to	override	the	secure
value	in	the	SMSService.properties	file.

URI This	keyword	is	only	used	with	the	*HTTP
transport.
This	is	the	HTTP	resource	supplied	to	you	by	the
SMS	gateway	service	provider.
This	keyword	can	be	used	to	override	the	uri
value	in	the	SMSService.properties	file.

ACCOUNT_USER This	keyword	is	only	used	with	the	*HTTP
transport.
This	is	your	account	name	supplied	to	you	by
your	SMS	gateway	service	provider.
This	keyword	can	be	used	to	override	the
account.user	value	in	the	SMSService.properties
file.

ACCOUNT_PASSWORD This	keyword	is	only	used	with	the	*HTTP
transport.
This	is	the	password	for	your	account.
This	keyword	can	be	used	to	override	the
account.password	value	in	the
SMSService.properties	file.

SERVER This	keyword	is	only	used	with	the	*SMTP
transport
This	is	the	address	of	the	SMTP	server	you	are
using	to	send	the	email	that	contains	the	SMS
details.
This	keyword	can	be	used	to	override	the	server
value	in	the	SMSService.properties	file.

PORT This	keyword	is	only	used	with	the	*SMTP
transport.
This	is	the	TCP/IP	port	that	the	SMTP	mail	server
is	running	on.
The	default	value	is	25.
This	keyword	is	optional.
This	keyword	can	be	used	to	override	the	port
value	in	the	SMSService.properties	file.

MAILDOMAIN This	keyword	is	only	used	with	the	*SMTP
transport.
This	is	the	mail	domain	as	issued	by	the	SMTP
HELO	command.	This	value	tells	the	SMTP
server	that	this	is	your	mail	domain.
This	keyword	is	optional.
This	keyword	can	be	used	to	override	the
mail.domain	value	in	the	SMSService.properties
file.

MOBILEDOMAIN This	keyword	is	only	used	with	the	*SMTP
transport.

This	is	the	mail	domain	to	which	you	will	send
the	email	with	the	SMS	details.
Normally	the	mobile	phone	number	you	are
sending	the	SMS	to	will	prefix	this	value.	So	for
example,	if	you	are	sending	the	SMS	to	a	number
12345678	and	the	mobile	domain	is
streetdata.com.au,	then	the	full	email	address	that
the	message	will	be	sent	to	is
12345678@streetdata.com.au.
This	keyword	can	be	used	to	override	the
mobile.domain	value	in	the
SMSService.properties	file.

FROM This	keyword	is	only	used	with	the	*SMTP
transport.
This	is	the	FROM	address	of	the	email	that	you
want	emails	responses	from	the	SMS	gateway
service	provider	routed	back	to.	Such	responses
might	include	SMS	status	information	(such	a
failed	SMS).
This	would	normally	be	one	of	your	company
email	addresses	-	perhaps	one	that	is	dedicated	to
receiving	such	responses.	It	should	be	a	valid
email	address.	Many	providers	will	only	accept
values	that	are	already	registered	with	them.
The	value	supplied	will	be	appended	to	the	mail
domain	so	you	only	need	to	enter	the	first	part	of
the	address.	For	example,	if	the	mail	domain	is
mycompany.com	and	you	supply	a	FROM
value	of	john.smith	then	full	return	email
address	will	be
john.smith@mycompany.com.
This	keyword	can	be	used	to	override	the
from.address	value	in	the	SMSService.properties
file.

CHARSET This	keyword	is	only	used	with	the	*SMTP

transport.
This	is	the	character	set	encoding	of	the	body	text
and	subject.
This	keyword	is	optional.
This	keyword	can	be	used	to	override	the	charset
value	in	the	SMSService.properties	file.

ENCODING This	keyword	is	only	used	with	the	*SMTP
transport.
This	is	the	body	text	encoding
This	keyword	is	optional.
This	keyword	can	be	used	to	override	the
encoding	value	in	the	SMSService.properties	file.

SUBJECT This	keyword	is	only	used	with	the	*SMTP
transport.
This	will	contain	the	subject	of	the	email.
Typically	this	would	contain	your	user	account
and	account	password	(in	the	format
user+password)	for	the	SMS	gateway	that	you
are	using.	Do	confirm	with	your	provider	as	they
may	have	their	own	format.
This	keyword	can	be	used	to	override	the	subject
value	in	the	SMSService.properties	file.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	ACCOUNT_NAME(USERID)	ACCOUNT_PASSWORD(USERPWD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'set	account_name(userid)	account_password(userpwd)')	to_get(#jsmxsts	#jsmxmsg)
	

SEND
	
	
	SEND	-----------------	TO	-----------	value	-------------------->
	
																				>--	MSG	----------	value	--------------------|
	
Keywords
TO This	should	contain	only	the	telephone	number	of	the	mobile	phone

you	wish	to	send	the	SMS	message	to.
For	example,	+6091234567

MSG This	should	contain	the	message	that	you	wish	to	send.

Comments	/	Warnings
The	SMS	gateway	service	provider	that	you	are	working	with	may	have
restrictions	on	the	length	of	the	message	that	can	be	sent	to	a	mobile	phone.	The
SMSService	will	pass	whatever	information	you	place	in	the	MSG	keyword	to
the	provider,	but	it	is	your	responsibility	to	ensure	that	the	amount	of	data	can
be	handled	by	the	provider.	Your	provider	will	be	able	to	advise	you	on	any
restrictions	that	they	might	have.
For	sending	messages	to	international	mobile	phones,	the	format	of	the	number
in	the	TO	keyword	will	generally	be	a	plus	sign	(+),	followed	by	the	country
code,	followed	by	the	phone	number	itself.	For	messages	to	local	numbers,
generally	the	country	code	is	not	required	although	it	will	still	work	if	you
include	it.	You	should	confirm	with	your	provider	exactly	what	the	required
format	is.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SEND	TO(+6012345678)	MSG(Your	parcel	is	ready	for	pickup)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'send	to(+6012345678)	msg(Your	parcel	is	ready	for	pickup)')	to_get(jsmxsts	#jsmxmsg)

	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service	and	removes	the
temporary	directory.
	
	SERVICE_UNLOAD	---------	no	keywords	--------------------------
|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(SERVICE_UNLOAD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	service_unload)	to_get(#jsmxsts	#jsmxmsg)
	

5.15.5	SMSService	Examples
Tip:	To	test	the	*SMTP	transport	of	this	service,	use	a	local	email	address	for
your	mobile	domain	keyword.	This	way	you	can	test	the	general	flow	of	your
application	by	sending	emails	to	yourself	prior	to	testing	against	the	SMS
gateway	provider's	system.	Testing	against	the	SMS	gateway	provider's	system
will	cost	you	money	–	unless	they	offer	you	some	free	testing	SMSs.
RDML
RDMLX
RPG

5.16	XMLFileService
Service	Name:	XMLFileService
The	XMLFileService	allows	XML	files	to	be	read	and	created.
The	XMLFileService	supports	the	following	commands:
5.16.1	SERVICE_LOAD
5.16.2	SERVICE_GET
5.16.3	READ
5.16.4	WRITE
5.16.5	SEND
5.16.6	RECEIVE
5.16.7	DELETE
5.16.8	RENAME
5.16.9	SET
5.16.10	LIST
5.16.11	SERVICE_UNLOAD
	

5.16.1	SERVICE_LOAD
On	the	SERVICE_LOAD	event	the	service	determines	if	schema	validation	is
enabled.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD SCHEMA 	 Optional.	See	SCHEMA.

VALIDATING 	 Optional.	See	VALIDATING.

DOMSET 	 Optional.	See	DOMSET.

DOMSETMODEL 	 Optional.	See
DOMSETMODEL.

DOMSETRESULT 	 Optional.	See
DOMSETRESULT.

DOMGET 	 Optional.	See	DOMGET.

DOMGETRESULT 	 Optional.	See
DOMGETRESULT.

	

5.16.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.16.3	READ
When	the	READ	command	of	this	service	is	executed	the	following	steps	occur:
If	the	HOST	keyword	is	not	present	then	the	contents	of	the	local	file	is	read,
else	the	FTP	get	protocol	is	used	to	read	the	remote	file.
The	service	determines	the	encoding	to	apply	to	the	received	byte	content	to
convert	it	to	Unicode	content.	The	default	action	is	to	auto-detect	the	encoding
of	the	XML	source.
The	service	converts	the	Unicode	content	to	a	UTF-8	byte	content.
The	service	determines	if	the	Unicode	data	needs	to	be	archived.
To	read	a	file	from	the	local	file	system,	only	requires	the	FILE	keyword.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

READ FILE value Mandatory.	File	Path.

ENCODING 	 Optional.	See	ENCODING.
Default	is	to	auto-detect	encoding.

ARCHIVE 	 Optional.	See	ARCHIVE.

	

To	read	a	file	from	a	remote	file	system	using	the	FTP	protocol	requires	the
HOST	keyword.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

READ HOST value Conditional.	FTP	server.

FILE value Mandatory.	File	Path.

ENCODING 	 Optional.	See	ENCODING.
Default	is	to	auto-detect
encoding.

ARCHIVE 	 Optional.	See	ARCHIVE.

USER value Mandatory.	User.

PASSWORD value Mandatory.	Password.

NAMEFMT 0 Optional.	Path	name	format.
library/file.member.

1 Path	name	format.
/directory/directory/file.

DATALINK *PASV Optional.	Default.	Data	channel
connection	mode.

*PORT Data	channel	connection	mode.

MODE *BINARY Optional.	Default.	Data	transfer
mode.

*ASCII Data	transfer	mode.

	

5.16.4	WRITE
When	the	WRITE	command	of	this	service	is	executed	the	following	steps
occur:
The	service	determines	if	the	output	Unicode	content	needs	to	be	archived.
The	service	determines	the	encoding	to	apply	to	the	output	Unicode	content	to
convert	it	to	byte	content.
If	the	HOST	keyword	is	not	present	the	byte	content	is	written	to	a	local	file,
else	the	FTP	put	protocol	is	used	to	write	the	remote	file.
To	write	a	file	to	the	local	file	system,	only	requires	the	FILE	keyword.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

WRITE FILE value Mandatory.	File	Path.

ENCODING 	 Optional.	See	ENCODING.
Default	encoding	is	UTF-8.

ARCHIVE 	 Optional.	See	ARCHIVE.

	

To	write	a	file	to	a	remote	file	system	using	the	FTP	protocol	requires	the	HOST
keyword.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

WRITE HOST value Conditional.	FTP	server.

FILE value Mandatory.	File	Path.

ENCODING 	 Optional.	See	ENCODING.
Default	encoding	is	UTF-8.

ARCHIVE 	 Optional.	See	ARCHIVE.

USER value Mandatory.	User.

PASSWORD value Mandatory.	Password.

NAMEFMT 0 Optional.	Path	name	format.
library/file.member.

1 Path	name	format.
/directory/directory/file.

DATALINK *PASV Optional.	Default.	Data	channel
connection	mode.

*PORT Data	channel	connection	mode.

MODE *BINARY Optional.	Default.	Data	transfer
mode.

*ASCII Data	transfer	mode.

	

5.16.5	SEND
When	the	SEND	command	of	this	service	is	executed	the	following	steps	occur:
The	service	using	the	XSL	keyword	transforms	the	program	fields	and	list	into
the	resultant	XML.	If	a	FRAGMENT	keyword	is	present	this	transformation	is
stored,	as	this	is	only	a	fragment	of	the	final	XML	to	be	sent.	When	no
FRAGMENT	keyword	is	present	this	transformation	is	treated	as	the	last	and
the	final	output	XML	is	constructed	and	ready	to	be	written	to	a	file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND XSL 	 Mandatory.	See	XSL.

FRAGMENT 	 Optional.	See	FRAGMENT.

OUTPUT 	 Optional.	See	OUTPUT.

	

5.16.6	RECEIVE
When	the	RECEIVE	command	of	this	service	is	executed	the	following	steps
occur:
If	there	is	no	content,	then	an	OK	status	is	returned.
The	service	then	transforms	the	XML	and	binds	the	data	into	the	program	fields
and	list.
The	receive	command	can	be	called	more	than	once	to	receive	data	from	a
complex	XML	document.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RECEIVE XSL 	 Mandatory.	See	XSL.

	

5.16.7	DELETE
The	DELETE	command	deletes	the	specified	file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

DELETE FILE value Mandatory.	File	Path.

	

5.16.8	RENAME
The	RENAME	command	renames	the	specified	local	file	to	a	new	name.	The
TO	file	must	be	in	the	same	directory	as	the	original,	FROM	file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RENAME FROM value Mandatory.	Old	file	name.

TO value Mandatory.	New	file	name.

REPLACE *YES Optional.	Replace	file.

*NO Do	not	replace	file.
The	default	value	of	the	REPLACE	keyword
is	*NO.
If	the	TO	filename	exists,	then	the	rename
process	is	stopped,	unless	the	REPLACE
keyword	is	*YES.

	

5.16.9	SET
The	SET	command	sets	the	current	working	directory.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET DIR value Mandatory.	Directory.

	

5.16.10	LIST
The	LIST	command	will	fill	the	command's	list	object	with	absolute	file	names.
A	single	field	working	list	is	required	to	receive	the	canonical	file	paths.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

LIST DIR value Optional.	Fill	working	list	with
directory	listing.	All	files	in	that
directory	will	be	selected.

EXT value Optional.	Filtering	on	file	extension.
The	filtering	match	is	case
insensitive.

SORT *NONE Optional.	Allows	sorting	of	file
names.
Default.	No	sorting.

*NAME Sort	on	file	name.

*MODIFIED Sort	on	modified	date.

REVERSE *YES Optional.	Reverse	the	order	of	the
sort.

*NO Default.

	

If	a	directory	path	specified	by	the	DIR	keyword	is	used	then	filenames	in	that
directory	will	be	selected.
Example
LIST	DIR(/xmldata)	EXT(XML)	SERVICE_LIST(PATH)
	

This	will	return	a	list	of	filenames	in	the	/xmldata	directory	that	have	an	XML
extension.

5.16.11	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

5.17	XMLBindFileService
The	XMLBindFileService	is	designed	to	make	the	job	of	reading	data	from
XML	documents	into	applications	and	the	creation	of	XML	documents	by
applications	simple.	This	is	one	of	several	services	that	are	designed	to	consume
the	classes	generated	from	the	XML	Binding	Wizard	(a	feature	of	the	LANSA
Integrator	Studio),	so	the	use	of	LANSA	Integrator	Studio	is	a	key	part	of	the
XMLBindFileService.
It	is	important	to	note	that	this	service	uses	these	bindings	created	with	LANSA
Integrator	Studio	and	not	XSL	stylesheets.	Because	of	this,	this	service	is	far
simpler	to	use	than	using	one	of	the	services	that	requires	an	XSL	stylesheet,	so
in	general	you	would	use	this	over	the	other	options.
So,	for	example,	if	you	receive	an	order	in	XML	format	into	a	directory	on	your
server,	the	XMLBindFileService	could	be	used	to	read	the	order	data	in	the
XML	document,	convert	the	data	to	fields	inside	your	program,	from	which	the
program	can	then	process	the	data	as	required.	Alternatively,	your	application
might	be	the	one	that	needs	to	create	an	order	to	be	sent	to	a	supplier.	In	which
case	your	application	would	prepare	the	data	required	for	the	order	then	use	the
XMLBindFileService	to	create	the	XML	document.
It	is	important	to	be	aware	that	the	XMLBindFileService	is	not	responsible	for
the	transportation	of	the	XML	file	between	the	client	and	the	server.	In	the	event
of	using	it	to	READ	an	XML	file	into	a	program,	it	assumes	that	the	file	is
already	there.	If	you	are	receiving	an	XML	document	then	it	is	generally	the
sender's	responsibility	to	send	the	file	to	you,	though	you	will	of	course	need	to
tell	them	how	and	where	to	do	that.	Having	said	this,	there	may	be	times	when
you	may	need	to	'pull'	the	XML	document	from	another	location	to	your	server
for	a	READ	into	your	application.	When	this	service	is	used	to	WRITE,	or
create,	an	XML	document	it	is	not	concerned	with	how,	when	or	where	it	is
delivered	to	the	recipient.	If	you	are	the	one	creating	the	XML	document,	then
more	often	than	not	it	would	be	your	responsibility	to	send	the	document.
If	you	are	responsible	for	the	transportation	of	the	XML	document	then	you
might	want	to	consider	using	one	of	a	range	of	transport	services	that	are	also
available	with	LANSA	Integrator.	Refer	to	the	Related	Services	for	further
information	on	these	transport	based	services.
Related	Services
The	XMLBindFileService	is	one	of	several	services	that	can	consume	the
classes	generated	from	the	XML	Binding	Wizard	(a	feature	of	the	LANSA

Integrator	Studio).	Other	services	in	this	family	combine	the	XML	binding	with
specific	transport	support.	These	include:

XMLBindQueueService
HTTPInboundXMLBindService
HTTPOutboundXMLBindService

The	XMLBindFileService	does	not	provide	transport	of	the	XML	document.	If
you	need	to	transport	the	document,	you	may	need	to	use	one	the	services
above,	or	combine	the	XMLBindFileService	with	one	of	the	transport	focused
services	such	as:

FTPService	-	this	service	allows	an	application	to	send	and	receive	files	to
and	from	a	remote	FTP	server.
HTTPService	-this	service	provides	a	number	of	content	handlers	to	send
and	receive	content	using	the	HTTP	protocol.
SMTPMailService	-	this	service	could	be	used	to	attached	an	XML
document	to	an	email	and	send	it	to	a	recipient.
SMTPAttachmentSignatureService	-	this	service	could	be	used	to	send	the
XML	document	by	email	attachment	with	a	digital	signature.
POP3MailService	-	this	service	could	be	used	to	receive	an	email	that
contains	an	XML	document	as	an	attachment.
JMSFileService	-	this	service	could	be	used	to	send	and	receive	the	XML
documents	using	enterprise	messaging	systems	such	as	ActiveMQ,
SonicMQ,	TibcoMQ	and	WebSphereMQ.

The	XMLParserService	and	XMLFileService	provide	alternate	means	of
reading	and	writing	XML	files,	but	for	most	new	applications,	using	one	of	the
services	associated	with	the	XML	Binding	Wizard	(such	as	the
XMLBindFileService)	is	the	recommended	approach.	The	XMLParserService
and	XMLFileService	require	the	use	of	XSL	stylesheets,	which	is	a	far	more
complex	approach	than	using	the	XML	Binding	Wizard	approach.
Technical	Specifications
The	XMLBindFileService	needs	to	be	used	in	conjunction	with	the	bindings
created	using	the	XML	Binding	Wizard	of	the	LANSA	Integrator	Studio.	You
must	start	with	a	sample	XML	document	to	use	to	describe	the	mappings
between	the	XML	elements	and	the	fields	in	your	program.	The	XML	document
may	be	created	by	yourself	or	supplied	by	a	third	party.	Once	created	you	will

need	to	move	the	relevant	.jar	and	property	files	to	the	server	before	you	can	run
the	application.
Please	refer	to	the	XML	Binding	Wizard	if	you	are	not	familiar	with	this.

5.17.1	What	can	I	use	the	XMLBindFileService	for?
To	receive	an	order	in	XML	format	and	send	a	reply
You	may	be	receiving	orders	from	a	distributor	in	XML	document	format,	so
you	need	a	way	to	transform	the	data	held	within	the	document	to	information
that	is	useful	to	your	application	-	specifically,	fields	and	lists	(in	the	case	of
LANSA	applications),	and	subfiles	(in	the	case	of	RPG,	for	example).	As	a	first
step	in	the	exercise	you	would	use	the	XML	Binding	Wizard,	in	LANSA
Integrator	Studio,	to	bind	the	XML	elements	to	field	names	that	are	used	in	your
application.	Once	you	have	done	this	you	would	use	the	XMLBindFileService
in	your	application	to	read	the	data	into	application	fields	and	lists	(using	the
READ	and	GET	commands).	After	that	has	been	completed,	your	application
can	then	do	what	it	needs	to	in	order	to	process	the	order	into	your	system.
In	many	cases,	you	will	need	to	send	some	form	of	acknowledgement	back	to
the	sender.	This	time,	the	XMLBindFileService	can	be	used	to	create	an	XML
document	as	a	response,	specifically	using	the	WRITE	and	SET	commands	that
come	with	this	service.
How	would	you	handle	a	situation	where	you	have	received	many	XML
documents	into	a	directory?	You	could	use	the	LIST	command	that	comes	with
the	XMLBindFileService.	This	will	supply	you	with	a	list	of	all	the	files	that	are
in	the	directory,	and	you	can	then	use	that	list	to	process	the	files	that	you	want
to	process.
Passing	Data	Between	Internal	Systems
Many	companies	face	the	problem	of	how	to	integrate	data	from	disparate
systems.	They	might	be	running	Oracle	financials	on	a	Windows	server,	and
have	a	home	grown	RPG	or	LANSA	system	running	on	an	IBM	i	server,	and
need	to	move	data	between	the	two	systems.	XML	is	becoming	the	preferred
approach	for	the	movement	of	such	data.	Since	this	is	within	your	organisation,
the	job	is	easier	for	you,	as	you	control	both	sides	of	the	equation.	Oracle	might
have	its	own	way	of	generating	the	XML	data	that	you	are	after,	and	if	it	does
not,	you	could	use	the	XMLBindFileService	to	transform	the	data	you	need
moved	into	an	XML	document	using	the	SET	and	WRITE	commands	and	place
it	on	the	network	drive.	Once	created,	an	application	on	the	IBM	i	could	be
kicked	into	action	to	READ	the	generated	XML	documents	so	that	the	data	can
be	made	available	to	the	IBM	i.

5.17.2	Using	the	XMLBindFileService
Whether	you	are	writing	your	client	application	in	RDML	/	RDMLX	or	in	a
3GL	such	as	RPG,	you	must	complete	the	same	basic	steps.
For	example,	an	application	that	needs	to	READ	an	XML	document	would
typically	issue	the	following	sequence	of	commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
										READ
										BIND
										GET
										CLOSE
					SERVICE_UNLOAD
JSM(X)_CLOSE
Whereas,	an	application	that	needs	to	WRITE	to	an	XML	document	would
typically	issue	the	following	sequence	of	commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
										BIND
										SET
										WRITE
										CLOSE
					SERVICE_UNLOAD
JSM(X)_CLOSE
Refer	to	the	Java	Service	Manager	Clients	for	the	command	details	that	apply	to
your	chosen	development	language.

5.17.3	XMLBindFileService	Properties
Properties	that	affect	the	operation	of	the	XMLBindFileService	are	specified	in
the	XMLBindFileService.properties	file.	The	properties	of	interest	fall	into	two
categories:

Properties	in	the	form	service.xxxxx=	that	associate	the	service	name	that
you	specify	in	the	BIND	service	command	with	the	classes	generated
from	the	XML	Binding	Wizard.	These	properties	are	generated	by	the
XML	Binding	Wizard	when	you	build	your	project,	so	you	should	not
normally	have	to	manually	enter	them.	You	may	have	to	deploy	them	to
your	production	environment	however	–	refer	to	XML	Binding	Wizard	for
more	information.
General	properties	that	provide	default	values	affecting	the	operation	of
the	service.	These	are	described	below:

The	default	properties	file	is	relatively	uninteresting	and	the	bulk	of	it	is	taken
up	with	messages.	The	following	explains	the	keywords	that	do	come	with	the
default	XMLBindFileService.properties	file.
Keywords
validation.schema This	keyword	is	used	to	turn	on	or	off	XML	schema

validation

validation.parser This	keyword	is	used	to	turn	on	or	off	XML	validation.

systemid.file This	keyword	is	used	to	specify	any	DTD	Entity	Resolves
you	may	wish	to	include.	You	may	specify	multiple	DTD
Entity	Resolves	here.

5.17.4	XMLBindFileService	Commands
Your	application	issues	commands	to	the	XMLBindFileService	by	passing	the
command	strings	through	the	Java	Services	Manager	using	the
JSM_COMMAND	or	JSMX_COMMAND	built-in	function	or	an	API	for	your
chosen	development	language.
The	commands	that	the	XMLBindFileService	processes	are:
SERVICE_LOAD
READ
WRITE
BIND
GET
SET
DELETE
RENAME
LIST
CLOSE
SERVICE_GET
SERVICE_UNLOAD

SERVICE_LOAD
Loads	and	initializes	the	service.
	
																																																											Required
	
	SERVICE_LOAD	----	SERVICE	---------	service	name	------------
---->
	
																																																											Optional
	
															>--	TRACE	-----------	*NO	------------------------->
																																					*YES
																																					*ERROR
	
															>--	TRACE_NAME	------	name	------------------------>
																																					*SERVICE
																																					*PROCESS
																																					*FUNCTION
																																					*JOBNAME
																																					*JOBUSER
																																					*JOBNUMBER
	
															>--	SCHEMA	----------	*NO	------------------------->
																																					*YES
	
															>--	VALIDATING	------	*NO	------------------------->
																																					*YES
	
															>--	DOMSET	----------	*READER	---------------------|
																																					*STREAM
	
For	more	information	refer	to:
Service	Program	Tracing	from	the	Client
Keywords
SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

XMLBindFileService.

TRACE To	enable	tracing	from	the	client	program	use	the	TRACE
keyword	on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:
*NO
*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the
service	does	not	return	an	ERROR,	FATAL	or
SOAPFAULT	status	to	the	client,	the	trace	files	are	deleted
on	the	JSM	CLOSE	call.

TRACE_NAME This	optional	keyword	allows	the	client	to	append	a	user-
defined	name	to	the	end	of	the	client	trace	subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

SCHEMA Optional.	See	SCHEMA.

VALIDATING Optional.	See	VALIDATING.

DOMSET Optional.	See	DOMSET.

Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(XMLBINDFILESERVICE)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcommand	:=	'service_load	service(XMLBindFileService)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	to_get(#jsmxsts	#jsmxmsg)

	

READ
The	READ	command	is	used	to	parse	and	load	XML	document.
When	the	READ	command	is	executed,	the	following	steps	occur:
1.		The	service	determines	the	encoding	to	apply	to	the	received	byte	content	(of
the	XML	document)	to	convert	it	to	Unicode	content.	The	default	action	is	to
auto-detect	the	encoding	of	the	XML	source.	Autodetect	will	determine	the
encoding	from	the	XML	declaration	encoding,	for	example	<?xml
version="1.0"	encoding="UTF-8"?>.

2.		The	service	converts	the	Unicode	content	to	a	UTF-8	byte	content	and	parses
the	content	into	a	document	object.

3.		The	service	determines	if	the	Unicode	data	needs	to	be	archived.
	
																																																										Required
	
	READ	------------	FILE	------------	file	path	------------------>
	
																																																										Optional
	
															>--	ENCODING	--------	value	---------------------->
	
															>--	ARCHIVE	---------	value	----------------------|
	
Keywords
FILE This	keyword	is	used	to	specify	the	file	name	and	path	of	the

XML	document.
It	is	recommended	to	use	the	forward	slash	as	the	path
separator	and	to	avoid	the	use	of	the	DOS	drive	designator.
The	format	of	the	path	should	be	as	follows:
For	Windows	you	can	specify:
Absolute	path
For	example:
/orders/order.xml
C:/orders/order.xml
C:\orders\order.xml

or
Relative	path.
For	example,	orders/order.xml	(note,	no	'/'	at	the	start),	in
which	case	the	order.xml	document	must	reside	in	the
orders	directory	under	the	JSM	Instance	directory	on	your
server.

For	the	IBM	i	you	can	specify:
Absolute	path.
For	example:
/orders/order.xml

or
Relative	path.
For	example,	orders/order.xml	(note,	no	'/'	at	the	start),	in
which	case	the	order.xml	document	must	reside	in	the
orders	directory	under	the	JSM	Instance	directory	on	your
server.

Note:	Whatever	directory	structure	you	specify	must	already
exist.
This	keyword	is	mandatory.

ENCODING Refer	to	ENCODING	for	more	complete	information	on	this
keyword.
The	default	value	for	the	XMLBindFileService	is
*AUTODETECT.
This	keyword	is	optional.

ARCHIVE Refer	to	ARCHIVE	for	more	complete	information	on	this
keyword.
This	keyword	is	optional.

Comments	/	Warnings
The	ARCHIVE	keyword	is	a	very	useful	way	to	store	away	XML	documents
after	they	have	been	processed.
Examples

RDML
	
*	Define	the	fields	used	by	the	JSM	Commands
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
CHANGE	FIELD(#JSMCMD)	TO('READ	FILE(orders/order.xml)	ARCHIVE(archive/arc_order.xml)')	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
Define	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
Define	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
Define	FIELD(#JSMHND)	TYPE(*CHAR)	LENGTH(4)
	
#JSMCMD	:=	'READ	FILE(orders/order.xml)	ARCHIVE(archive/arc_order.xml)'
Use	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMHND	#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

WRITE
The	WRITE	command	serializes	the	document	object	out	to	a	specified	file.	It	is
used	as	the	final	step	in	creating	an	XML	document	from	fields	set	inside	your
program.	You	will	use	the	SET	command	one	or	more	times	prior	to	using	the
WRITE	command	to	set	up	the	data	in	the	document.
	
																																																										Required
	
	WRITE	----------	FILE	---------------	file	path	---------------->
	
																																																										Optional
	
														>--	INDENT	-------------	*NO	---------------------->
																																							*YES
	
														>--	IDENT-AMOUNT	-------	value	-------------------->
	
														>--	DOCTYPE	------------	value	-------------------->
	
														>--	PUBLIC	-------------	value	-------------------->
	
														>--	OMIT-DECLARATION	---	*NO	---------------------->
																																							*YES
	
														>--	ENCODING	-----------	value	-------------------->
	
														>--	BINDTRACE	----------	*NO	---------------------->
																																							*YES
	
														>--	FILTER	-------------	value	--------------------|
	
Keywords
FILE This	keyword	is	used	to	specify	the	file	name	and	path	of

the	XML	document	to	be	created.
It	is	recommended	to	use	the	forward	slash	as	the	path
separator	and	to	avoid	the	use	of	the	DOS	drive	designator.

The	format	of	the	path	should	be	as	follows:
For	Windows	you	can	specify:
Absolute	path.
For	example:
/orders/order.xml
C:/orders/order.xml
C:\orders\order.xml

or
Relative	path.	
For	example,	orders/order.xml	(note,	no	'/'	at	the	start),
in	which	case	the	document	order.xml	will	be	placed	in
the	orders	directory	under	the	JSM	Instance	directory	on
your	server.
For	the	IBM	i	you	can	specify:
Absolute	path.	
For	example:
/orders/order.xml

or
Relative	path.	
For	example,	orders/order.xml	(note,	no	'/'	at	the	start),
in	which	case	the	document	order.xml	will	be	placed	in
the	orders	directory	under	the	JSM	Instance	directory	on
your	server.
Note:	The	directory	structure	must	exist.
This	keyword	is	mandatory.

INDENT This	keyword	is	used	to	specify	whether	or	not	you	would
like	the	XML	content	to	be	indented.
There	are	two	options:
*YES	-	to	indicate	that	you	want	the	XML	content	to	be
indented.
*NO	-	to	indicate	that	you	do	not	want	the	XML	content
indented.

The	default	value	is	*NO.
This	keyword	is	used	in	conjunction	with	the	INDENT-
AMOUNT	keyword.
This	keyword	is	optional.

INDENT-
AMOUNT

This	keyword	is	used	to	specify	the	number	of	spaces	to
use	for	the	indentation.
The	default	value	is	0	(which	is	akin	to	having	indenting
turned	off).
If	the	INDENT	keyword	is	set	to	*NO	then	this	keyword
will	have	no	effect.
This	keyword	is	optional.

DOCTYPE This	keyword	is	used	to	specify	the	system	component	of
the	document	type	declaration.
Whatever	value	you	specify	here	will	be	placed	into	the
document	as	the	document	type	declaration.	It	will	be
placed	just	after	the	XML	declaration	(if	this	is	included).
This	keyword	is	optional.

PUBLIC Conditional.	The	optional	public	component	of	the
DOCTYPE	declaration.

OMIT-
DECLARATION

This	keyword	is	used	to	specify	whether	you	want	to
include	the	XML	declaration	or	not.
There	are	two	options:
*YES	-	to	indicate	that	you	want	the	XML	declaration
omitted.
*NO	-	to	indicate	the	you	want	the	XML	declaration	to
remain	included.
The	default	value	is	*NO.
This	keyword	is	optional.

ENCODING Optional.	See	ENCODING.
Default	encoding	is	UTF-8.

BINDTRACE This	keyword	is	used	to	turn	on	tracing	for	the	outbound
bind	result.

There	are	two	options:
*YES	-	to	switch	tracing	on.
*NO	-	to	switch	tracing	off.
This	keyword	is	optional.

FILTER Refer	to	FILTER	for	more	complete	information	on	this
keyword.
This	keyword	is	optional.

	
Examples
RDML
	
*	Define	the	fields	used	by	the	JSM	Commands
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
CHANGE	FIELD(#JSMCMD)	TO('WRITE	FILE(response/rsp_order.xml)	INDENT(*YES)	INDENT-
AMOUNT(1)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
Define	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
Define	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
Define	FIELD(#JSMHND)	TYPE(*CHAR)	LENGTH(4)
	
#JSMCMD	:=	'WRITE	FILE(response/rsp_order.xml)	INDENT(*YES)	INDENT-
AMOUNT(1)'
Use	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMHND	#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

BIND
The	BIND	command	binds	the	specified	service	code	to	the	loaded	inbound
document	or	creates	a	new	empty	outbound	document.
The	service	specified	as	a	part	of	the	command	will	have	been	created	using	the
XML	Binding	Wizard	in	LANSA	Integrator	Studio.
You	will	need	to	specify	the	type	of	bind	as	outbound	or	inbound	-	a	READ	is
normally	associated	with	an	inbound	type	while	a	WRITE	is	normally
associated	with	an	outbound	type.
	
																																																										Required
	
	BIND	---------	SERVICE	--------	value	-------------------------->
	
												>--	TYPE	-----------	*INBOUND	----------------------->
																																	*OUTBOUND
	
																																																										Optional
	
												>--	BINDTRACE	------	*NO	---------------------------->
																																	*YES
	
												>--	FILTER	---------	value	--------------------------|
	
Keywords
SERVICE This	keyword	is	used	to	in	an	XMLBindFileService	property

lookup	using	service.'value'	and	service.archive.'value'	to
locate	the	binding	class	and	binding	jar	file	to	be	used.	The
value	here	will	be	the	corresponding	service	class	name	that
was	defined	in	the	XML	Binding	Wizard.
This	keyword	is	mandatory.

TYPE This	keyword	is	used	to	specify	the	type	of	bind	to	be
performed,	and	it	will	depend	on	whether	you	are	intending	to
perform	a	READ	of	an	existing	file	or	a	WRITE	of	a	new	file.
There	are	two	possible	values:

*INBOUND	-	using	this	value	will	bind	the	specified	service
code	to	the	inbound	document	loaded	as	a	part	of	the
preceding	READ	command.
*OUTBOUND	-	using	this	value	will	create	a	new	empty
outbound	document.
This	keyword	is	mandatory.

BINDTRACE This	keyword	is	used	to	turn	on	tracing	for	the	inbound	bind
result.
There	are	two	options:
*YES	-	to	switch	tracing	on.
*NO	-	to	switch	tracing	off.
This	keyword	is	optional.

FILTER Refer	to	FILTER	for	more	complete	information	on	this
keyword.
This	keyword	is	optional.

Comments	/	Warnings
The	position	of	the	BIND	command	in	the	code	depends	on	whether	you	are
intending	to	read	data	from	an	existing	XML	document	or	you	are	intending	to
create	a	new	XML	document.	If	you	are	reading	data	from	an	existing	XML
document,	the	code	flow	will	look	something	like	this:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
										READ
										BIND
										GET	(one	or	more	times)
										CLOSE
					SERVICE_UNLOAD
JSM(X)_CLOSE
Whereas,	an	application	that	needs	to	WRITE	to	an	XML	document	would
typically	issue	the	following	sequence	of	commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD

										BIND
										SET	(one	or	more	times)
										WRITE
										CLOSE
					SERVICE_UNLOAD
JSM(X)_CLOSE
Examples
RDML
	
*	Define	JSM	fields
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
*	Bind
CHANGE	FIELD(#JSMCMD)	TO('BIND	SERVICE(INBOUNDORDER)	TYPE(*INBOUND)	BINDTRACE(*YES)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
Define	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
Define	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
Define	FIELD(#JSMHND)	TYPE(*CHAR)	LENGTH(4)
	
#JSMCMD	:=	'BIND	SERVICE(INBOUNDORDER)	TYPE(*INBOUND)	BINDTRACE(*YES)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
	

GET
The	GET	command	is	used	to	read	the	data	from	the	inbound	document	object.
The	GET	command	is	integral	part	of	loading	data	from	an	XML	document	into
your	program.	It	must	be	preceded	by	the	READ	and	the	BIND	commands.
	
																																																								Conditional
	
	GET	----------	LIST	----------	value	---------------------------->
	
												>--	FRAGMENT	------	value	---------------------------->
	
												>--	INSTRUCTION	---	value	----------------------------|
	
Keywords
LIST This	keyword	is	used	to	get	a	list	from	the	loaded	XML

document.
Refer	to	the	Lists	and	Variables	section	below	for	further
details	on	how	to	use	this	keyword.
This	keyword	is	conditional.

FRAGMENT This	keyword	is	used	to	get	a	field	fragment	from	the
loaded	XML	document.
Refer	to	the	Lists	and	Variables	section	below	for	further
details	on	how	to	use	this	keyword.
This	keyword	is	conditional.

INSTRUCTION This	keyword	is	used	to	get	the	XML	processing
instructions.
This	keyword	is	optional.

Comments	/	Warnings
You	can	only	use	one	keyword	at	a	time.
There	are	two	ways	in	which	you	can	read	a	list	from	an	XML	document.
1.		You	can	either	define	the	relevant	section	of	the	XML	code	as	a	list	(using
the	XML	Binding	Wizard),	and	use	the	LIST	keyword	in	your	GET

command.	This	will	retrieve	the	entire	list	in	one	go	into	a	working	list.
2.		Alternatively,	you	can	define	the	relevant	section	as	a	collection	of	fragments
(using	the	XML	Binding	Wizard)	and	then	use	the	FRAGMENT	keyword	in
your	GET	command	and	place	this	in	a	loop.

See	the	Examples	for	details	of	how	to	do	this.
Note:	Fragments	and	Lists
The	following	points	are	important	when	using	GET	FRAGMENT	and	GET
LIST	together.

When	you	issue	a	GET	FRAGMENT,	that	fragment	becomes	the	current
fragment.	That	is,	the	fragment	pointer	moves	to	the	current	one.
You	need	to	read	the	fragments	in	an	order	that	allows	all	fragments	to	be
accessed.	You	can	only	access	lists	and	child	fragments	once	you	have
positioned	the	fragment	pointer	to	its	parent	fragment.	So,	in	a	way,
fragments	are	a	bit	like	branches	on	a	tree	-	to	access	lists	and	fragments
further	down	the	tree	you	will	need	to	position	the	fragment	pointer	to	the
parent	branch.
For	example,	when	you	issue	a	GET	FRAGMENT,	a	GET	LIST	can	only
access	lists	within	this	current	fragment.	Therefore,	you	should	read	all	the
lists	(using	GET	LIST)	in	the	current	fragment	before	you	move	on	to
another.	Once	you	move	onto	another	fragment,	then	the	lists	in	the	previous
fragments	will	not	be	accessible.	You	may	access	the	lists	within	a	specific
fragment	in	any	order.
When	a	fragment	becomes	the	current	fragment	it	is	marked	as	used,	so	once
you	leave	it,	it	will	not	become	the	current	fragment	again.

Lists	and	Variables
If	you	are	using	the	LIST	keyword	to	return	a	list	from	the	loaded	document
into	your	program,	you	will	need	to	ensure	the	following	steps	are	taken	in	your
program.
1.		Define	a	working	list	that	contains	the	fields	that	you	are	expecting	from	the
XML	document.

2.		Use	the	SERVICE_LIST	keyword	with	the	LIST	keyword	in	the	GET
command.	The	service	list	value	should	include	the	names	of	the	fields	in
your	working	list	without	the	'#'.	The	order	of	the	fields	should	be	defined
here	as	they	appear	in	the	working	list.

3.		In	the	TO_GET	portion	of	the	JSM_COMMAND	Built-In	Function,	include

the	name	of	the	working	list	that	will	hold	the	values	returned.

If	you	are	using	the	FRAGMENT	keyword	to	return	a	field	or	group	of	fields,
then	you	will	need	to	add	the	SERVICE_EXCHANGE	keyword	with	a	value	of
'*FIELD'.
See	the	Examples	for	details	on	how	to	do	this.
Examples
RDML
	
*	Define	JSM	fields
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
*	Define	a	list	to	hold	the	order	line	details
DEF_LIST	NAME(#WRKLINES)	FIELDS(#LINNUM	#PARTNUM	#PARTDSC	#PARTAMT	#PARTQTY)	TYPE(*WORKING)
	
*	Get	SalesOrder	Details
CHANGE	FIELD(#JSMCMD)	TO('GET	FRAGMENT(SALESORDER)	SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	
*	Get	Lines
CHANGE	FIELD(#JSMCMD)	TO('GET	LIST(LINE)	SERVICE_LIST(LINNUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKLINES)
	

INSTRUCTION	keyword	example
If	the	XML	processing	instructions	were	as	per	the	following	example:
<?xml	version="1.0"	encoding="utf-8"?>	
<?Label	SLBK|PROFILE|208|SUCCESS?>	
<Orders	xmlns="here"	here="yes">	
	

Then	you	could	use	the	following	code	to	retrieve	the	instructions.
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('''GET	INSTRUCTION(Label)''')	TO_GET(#JSMSTS	#JSMMSG)
	

In	this	example,	the	instruction	would	be	placed	into	the	#JSMMSG	field.
RDMLX
	

*	Define	the	fields	used	by	the	JSM	Commands
Define	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
Define	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
Define	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
Define	FIELD(#JSMHND)	TYPE(*CHAR)	LENGTH(4)
	
#JSMCMD	:=	'GET	FRAGMENT(CUSTOMER)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
	

SET
The	SET	command	is	used	for	two	distinct	operations.	Use	the	DIR	keyword	to
set	the	current	working	directory	or	alternatively	use	the	LIST,	FRAGMENT,	or
INSTRUCTION	keywords	to	populate	the	outbound	document	object.
Once	you	have	completed	your	SET	commands	your	next	command	would
invariably	be	the	WRITE	command.
	
																																																								Conditional
	
	SET	----------	LIST	----------	value	---------------------------->
	
												>--	FRAGMENT	------	value	---------------------------->
	
												>--	INSTRUCTION	---	value	---------------------------->
	
												>--	DATA	----------	value	---------------------------->
	
												>--	DIR	-----------	value	----------------------------|
	
Keywords
LIST This	keyword	is	used	to	place	a	list	of	values	into	an	XML

document.
Refer	to	the	Lists	and	Variables	section	below	for	further
details	on	how	to	use	this	keyword.
The	LIST	keyword	does	not	have	any	relationship	with	the
DIR	keyword.
This	keyword	is	conditional.

FRAGMENT This	keyword	is	used	to	place	a	field	or	group	of	fields	into
an	XML	document.
Refer	to	the	Lists	and	Variables	section	below	for	further
details	on	how	to	use	this	keyword.
The	FRAGMENT	keyword	does	not	have	any	relationship
with	the	DIR	keyword.
This	keyword	is	conditional.

INSTRUCTION This	keyword	is	used	to	set	the	XML	processing	instruction.
This	keyword	is	used	in	conjunction	with	the	DATA
keyword.
The	INSTRUCTION	keyword	does	not	have	any
relationship	with	the	DIR	keyword.
This	keyword	is	conditional.

DATA This	keyword	is	used	to	set	the	XML	processing
instructions	data.
This	keyword	is	conditional.	It	is	used	in	conjunction	with
the	INSTRUCTION	keyword.

DIR This	keyword	is	used	to	nominate	a	relative	or	absolute	path
to	be	set	as	the	current	directory.
The	DIR	keyword	does	not	have	any	relationship	with	the
other	keywords	for	the	SET	command.
This	keyword	is	conditional.

Comments	/	Warnings
There	are	two	possible	ways	to	add	a	list	of	data	when	creating	an	XML
document.
1.		The	most	obvious	way	is	to	use	the	SET	command	described	here	with	the
LIST	keyword,	then	specifying	the	array	in	a	working	list.	With	this	approach
the	section	of	XML	would	need	to	be	defined	as	a	list	in	the	XML	Binding
Wizard.

2.		Alternatively,	the	same	could	be	achieved	by	using	the	FRAGMENT
keyword	inside	some	looping	code.	Each	loop	would	add	a	new	row	to	the
list.	XML	documents	and	readers	will	automatically	pick	up	this	repeating
sequence	as	a	list.	With	this	approach	the	section	of	XML	would	need	to	be
defined	as	a	fragment	in	the	XML	Binding	Wizard.

Whichever	way	you	choose,	you	will	need	to	carefully	decide	whether	the
relevant	section	of	XML	is	defined	as	a	List	or	a	Fragment.
See	the	Examples	following	how	to	do	this.
Lists	and	Variables
If	you	are	using	the	LIST	keyword	to	create	a	list	in	an	XML	document,	you
will	need	to	ensure	the	following	steps	are	taken	in	your	program.

1.		Define	a	working	list	that	contains	the	fields	that	will	be	passed	to	the	XML
document.

2.		Use	the	SERVICE_LIST	keyword	with	the	LIST	keyword	in	the	SET
command.	The	service	list	value	should	include	the	names	of	the	fields	in	the
working	list	without	the	'#'.	The	order	of	the	fields	should	be	defined	here	as
they	appear	in	the	working	list.

3.		In	the	TO_GET	portion	of	the	JSM_COMMAND	Built-In	Function,	include
the	name	of	the	working	list	that	will	hold	the	values	to	be	placed	in	the	XML
document.

If	you	are	using	the	FRAGMENT	keyword	to	add	a	field	or	group	of	fields,	then
you	will	need	to	add	the	SERVICE_EXCHANGE	keyword	with	a	value	of
'*FIELD'.	How	to	do	this	is	shown	in	the	Examples	following.
Examples
RDML
	
*	Define	JSM	fields
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
*	Define	Order	Line	fields
DEFINE	FIELD(#LINNUM)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)	COLHDG('Line')
DEFINE	FIELD(#PARTNUM)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)	COLHDG('Part	#')
DEFINE	FIELD(#PARTDSC)	TYPE(*CHAR)	LENGTH(030)	COLHDG('Descrption')
DEFINE	FIELD(#PARTAMT)	TYPE(*DEC)	LENGTH(010)	DECIMALS(2)	COLHDG('Amount')
DEFINE	FIELD(#PARTQTY)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)	COLHDG('Quantity')
	
*	Define	the	list	to	hold	the	order	lines
DEF_LIST	NAME(#WRKLINES)	FIELDS(#LINNUM	#PARTNUM	#PARTDSC	#PARTAMT	#PARTQTY)	TYPE(*WORKING)
	
*	Set	customer	details
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	FRAGMENT(CUSTOMER)	SERVICE_EXCHANGE(*FIELD)')	TO_GET(#JSMSTS	#JSMMSG)
	
*	Set	SalesOrder	header	details
CHANGE	FIELD(#JSMCMD)	TO('SET	FRAGMENT(SALESORDER)	SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

CHANGE	FIELD(#JSMCMD)	TO('SET	LIST(LINE)	SERVICE_LIST(LINNUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKLINES)
	

INSTRUCTION	keyword	example
If	you	wanted	to	add	an	XML	processing	instruction	as	follows:
	
<?xml	version="1.0"	encoding="utf-8"?>
<?xml-stylesheet	type="text/css"	href="mystyles.css"?>
	

then	you	could	use	the	following	logic:
	
CHANGE	FIELD(#JSMCMD)	TO('''SET	INSTRUCTION(xml-
stylesheet)	DATA(type="text/css"	href="mystyles.css")''')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDML
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMCMD)	Type(*CHAR)	Length(256)
Define	Field(#JSMHND)	Type(*CHAR)	Length(4)
	
Define	FIELD(#LINENUM)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)	LABEL('Line	#')
Define	FIELD(#PARTNUM)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)	LABEL('Part	#')
Define	FIELD(#PARTDSC)	TYPE(*CHAR)	LENGTH(020)	LABEL('Part	Desc.')
Define	FIELD(#PARTAMT)	TYPE(*DEC)	LENGTH(010)	DECIMALS(2)	LABEL('Amount')
Define	FIELD(#PARTQTY)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)	LABEL('Quantity')
Define	Field(#LINSTAT)	Type(*CHAR)	Length(20)	Label('Line	Status')
Def_List	Name(#RSPLINES)	Fields(#LINENUM	#PARTNUM	#PARTDSC	#PARTAMT	#PARTQTY	#LINSTAT)	Type(*WORKING)
	
*	Set	the	customer	details
#JSMCMD	:=	'SET	FRAGMENT(CUSTOMER)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
	
*	Set	the	order	details	by	using	SET	FRAGMENT	a	number	of	times
Selectlist	Named(#RSPLINES)

#JSMCMD	:=	'SET	FRAGMENT(LINE)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)
	
#JSMCMD	:=	'SET	FRAGMENT(PART)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)
Endselect
	

DELETE
This	keyword	can	be	used	to	delete	a	file	from	a	specified	directory.
	
	DELETE	--------	FILE	--------	file	path	-------------------------|
	
Keywords
FILE This	keyword	is	used	to	define	the	file	name	to	be	deleted.	The	file

path	must	be	included.
It	is	recommended	to	use	the	forward	slash	as	the	path	separator	and	to
avoid	the	use	of	the	DOS	drive	designator.
The	format	of	the	path	should	be	as	follows:
For	Windows	you	can	specify:
Absolute	path.
For	example:
/orders/order.xml
C:/orders/order.xml
C:\orders\order.xml	

or
Relative	path.
For	example,	orders/order.xml	(note,	no	'/'	at	the	start),	in	which
case	the	document	order.xml	will	be	deleted	from	the	orders
directory	under	the	JSM	Instance	directory	on	your	server.

For	the	IBM	i	you	can	specify:
Absolute	path.
For	example:
/orders/order.xml

or
Relative	path.
For	example,	orders/order.xml	(note,	no	'/'	at	the	start),	in	which
case	the	document	order.xml	will	be	deleted	from	the	orders
directory	under	the	JSM	Instance	directory	on	your	server.

This	keyword	is	mandatory.

	
Examples
RDML
	
*	Define	JSM	fields
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
*	Delete
CHANGE	FIELD(#JSMCMD)	TO('''DELETE	FILE(orders/order.xml)''')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMCMD)	Type(*CHAR)	Length(256)
Define	Field(#JSMHND)	Type(*CHAR)	Length(4)
	
*	Delete
Change	Field(#JSMCMD)	To('''DELETE	FILE(orders/order.xml)''')
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#JSMHND)
	

RENAME
The	RENAME	command	can	be	used	to	rename	a	specified	local	file	to	a	new
name.
The	file	specified	in	for	the	TO	value	must	be	in	the	same	directory	as	the	file
specified	in	the	FROM	value.
	
																																																											Required
	
	RENAME	-------	FROM	---------	file	path	------------------------->
	
												>--	TO	-----------	file	path	------------------------->
	
																																																											Optional
	
												>--	REPLACE	------	*NO	-------------------------------|
																															*YES
	
Keywords
FROM This	keyword	specifies	the	name	and	path	of	the	file	whose	name

is	to	be	changed.
It	is	recommended	to	use	the	forward	slash	as	the	path	separator
and	to	avoid	the	use	of	the	DOS	drive	designator.
The	format	of	the	path	should	be	as	follows:
For	Windows	you	can	specify:
Absolute	path.
For	example:
/orders/order.xml
C:/orders/order.xml
C:\orders\order.xml

or
Relative	path.
For	example,	orders/order.xml	(note,	no	'/'	at	the	start),	in
which	case	the	document	order.xml	must	be	a	file	located	in

the	orders	directory	under	the	JSM	Instance	directory	on	your
server.

For	the	IBM	i	you	can	specify:
Absolute	path.
For	example:
/orders/order.xml

or
Relative	path.
For	example,	orders/order.xml	(note,	no	'/'	at	the	start),	in
which	case	the	document	order.xml	must	be	a	file	located	in
the	orders	directory	under	the	JSM	Instance	directory	on	your
server.

This	keyword	is	mandatory.

TO This	keyword	specifies	the	name	and	the	path	to	which	the	file	is
to	be	changed	to.	The	path	must	be	the	same	as	that	specified	in
the	FROM	keyword.
It	is	recommended	to	use	the	forward	slash	as	the	path	separator
and	to	avoid	the	use	of	the	DOS	drive	designator.
The	format	of	the	path	should	be	as	follows:
For	Windows	you	can	specify:
Absolute	path.	
For	example:
/orders/order2.xml
C:/orders/order2.xml
C:\orders\order2.xml

or
Relative	path.	
For	example,	orders/order2.xml	(note,	no	'/'	at	the	start),	in
which	case	the	document	order2.xml	will	be	placed	in	the	orders
directory	under	the	JSM	Instance	directory	on	your	server.
For	the	IBM	i	you	can	specify:
Absolute	path.	

For	example:
/orders/order2.xml

or
Relative	path.	
For	example,	orders/order2.xml	(note,	no	'/'	at	the	start),	in
which	case	the	document	order2.xml	will	be	placed	in	the	orders
directory	under	the	JSM	Instance	directory	on	your	server.
This	keyword	is	mandatory.

REPLACE This	keyword	is	used	to	specify	whether	you	want	to	overwrite
any	existing	file	of	the	same	name	as	specified	in	the	TO
keyword.
There	are	two	possible	values:
*YES	-	specifying	this	value	will	overwrite	any	existing	file	of
the	same	name	in	the	specified	directory..
*NO	-	if	this	value	is	set	then	an	exception	will	occur	if	a	file	of
the	same	name	already	exists	in	the	directory.	If	you	capture	this
exception	you	can	report	it	back	to	the	user.
The	default	value	is	*NO.
This	keyword	is	optional.

Comments	/	Warnings
If	you	wish	to	place	the	file	into	another	directory,	you	might	want	to	consider
using	the	ARCHIVE	keyword	on	the	READ	command.	This	keyword	will
move	the	file	that	you	are	currently	READing	and	place	it	into	a	new	specified
directory	with	whatever	name	you	give	it.
Examples
RDML
	
*	Define	JSM	fields
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
*	Rename

CHANGE	FIELD(#JSMCMD)	TO('''RENAME	FROM(/orders/test.xml)	TO(/orders/rename.xml)	REPLACE(*YES)''')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMCMD)	Type(*CHAR)	Length(256)
Define	Field(#JSMHND)	Type(*CHAR)	Length(4)
	
*	Rename
Change	Field(#JSMCMD)	To('''RENAME	FROM(/orders/test.xml)	TO(/orders/rename.xml)	REPLACE(*YES)''')
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#JSMHND)
	

LIST
The	LIST	command	will	return	a	list	of	file	names	found	within	a	specified
directory.
This	command	may	be	useful	if	a	number	of	XML	documents	need	to	be
processed.	The	command	could	be	used	to	populate	a	working	list	with	all	the
documents	that	have	been	placed	in	a	specific	directory,	then	place	the	READ,
BIND,	and	GET	commands	with	a	SELECT_LIST	working	on	this	list.
	
	LIST	-------------	DIR	---------	directory	path	---------------->
	
																>--	EXT	---------	file	extension	---------------->
	
																>--	SORT	--------	*NONE	------------------------->
																																		*NAME
																																		*MODIFIED
	
																>--	REVERSE	-----	*YES	--------------------------|
																																		*NO
	
Keywords
DIR This	keyword	is	used	to	specify	the	directory	that	is	to	be

searched.
It	is	recommended	to	use	the	forward	slash	as	the	path	separator
and	to	avoid	the	use	of	the	DOS	drive	designator.
The	format	of	the	path	should	be	as	follows:
For	Windows	you	can	specify:
Absolute	path.
For	example:
/orders
C:/orders
C:\orders

or
Relative	path.

For	example,	orders	(note,	no	'/'	at	the	start),	in	which	case	the
search	will	be	conducted	in	the	orders	directory	under	the
JSM	Instance	directory	on	your	server.

For	the	IBM	i	you	can	specify:
Absolute	path.
For	example:
/orders

or
Relative	path.
For	example,	orders	(note,	no	'/'	at	the	start),	in	which	case	the
search	will	be	conducted	in	the	orders	directory	under	the
JSM	Instance	directory	on	your	server.

This	keyword	is	optional.

EXT This	keyword	is	used	to	filter	the	list	returned	based	on	the	file
extension.
The	filtering	match	is	case	insensitive.
This	keyword	is	optional.

SORT The	optional	sort	keyword	allows	sorting	on	file	name	or
modified	date.
The	default	value	is	*NONE.

REVERSE The	optional	reverse	keyword	allows	the	sorted	order	to	be
reversed.
The	default	value	is	*NO.

Comments	/	Warnings
If	you	do	not	specify	the	DIR	value,	then	it	will	automatically	return	a	list	of
files	from	the	JSM	instance	directory.
Lists	and	Variables
This	keyword	requires	a	single	field	working	list	to	receive	the	canonical	file
paths.	To	enable	this,	you	should	do	the	following:
1.		Define	a	single	field	working	list	that	will	hold	the	returned	list	of	files.	The
field	needs	to	be	long	enough	to	hold	the	full	canonical	path	and	file	name.

2.		Use	the	SERVICE_LIST	keyword	with	the	LIST	command.	The	service	list
value	should	include	the	name	of	the	single	field	defined	in	the	working	list
without	the	'#'.

3.		In	the	TO_GET	portion	of	the	JSM_COMMAND	Built-In	Function,	include
the	name	of	the	working	list	defined	above.

Examples
RDML
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMCMD)	Type(*CHAR)	Length(256)
	
*	Define	field	to	hold	file	names
DEFINE	FIELD(#FILENAME)	TYPE(*CHAR)	LENGTH(250)
DEF_LIST	NAME(#FILELSTW)	FIELDS(#FILENAME)	COUNTER(#LISTCOUNT)	TYPE(*WORKING)
	
#JSMCMD	:=	'LIST	DIR(NEWORDERS)	SERVICE_LIST(FILENAME)	EXT(XML)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#FILELSTW)
	

RDMLX
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMCMD)	Type(*CHAR)	Length(256)
Define	Field(#JSMHND)	Type(*CHAR)	Length(4)
	
*	Define	field	to	hold	file	names
Define	Field(#FILENAME)	Type(*CHAR)	Length(250)
Def_List	Name(#FILELSTW)	Fields(#FILENAME)	Counter(#LISTCOUNT)	Type(*WORKING)
	
#JSMCMD	:=	'LIST	DIR(NEWORDERS)	SERVICE_LIST(FILENAME)	EXT(XML)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#FILELSTW)
	

CLOSE
This	command	is	used	to	close	the	current	bind.	
	
	CLOSE	-------	no	keywords	--------------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Comments	/	Warnings
If	you	are	planning	to	work	with	more	than	one	XML	document	in	a	single
function,	then	it	is	recommended	that	you	CLOSE	the	bind	of	each	document
before	you	BIND	the	next	XML	document.	This	is	not	mandatory	but	it	will	free
up	resources.
Examples
RDML
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
	
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMHND)	Type(*CHAR)	Length(4)
	
Use	Builtin(JSMX_CLOSE)	With_Args(#JSMHND)	To_Get(#JSMSTS	#JSMMSG)
	

SERVICE_GET
The	SERVICE_GET	command	allows	JSM	client	applications	to	access	the
keyword	/	value	properties	from	the	properties	file	associated	with	the	currently
loaded	service.
Client	applications	can	access	the	value	of	properties	associated	with	the
service,	but,	perhaps	more	usefully,	they	can	access	application	specific
property	values	too,	using	the	service	properties	file	as	a	common	medium	for
holding	such	values.
When	used	in	the	latter	way,	there	is	a	possibility	of	conflict	between
application-defined	keyword	names	and	those	used	by	current	and	future
versions	of	LANSA	Integrator.	To	reduce	this	possibility	your	application
should	prefix	the	property	keyword	with	a	global	unique	name.	The	examples
below	use	com.acme.property	as	the	prefix	for	this	purpose.
The	service	property	keyword	value	is	returned	in	the	JSM	message	field.	If	the
keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
	
	SERVICE_GET	--------	PROPERTY	-----	value	--------------------
>
	
																		>--	TRACE	-------	*SERVICE-------------------|
																																				*TRANSPORT
	
Keywords
PROPERTY Provide	a	keyword	/	value	to	be	checked	on	the	service

properties	file.
The	service	property	keyword	value	is	returned	in	the	JSM
message	field.	If	the	keyword	does	not	exist	in	the	service
property	file	a	status	of	NOT_EXIST	is	returned.

TRACE *SERVICE	-	read	service	trace	file.
*TRANSPORT	-	read	transport	trace	file.

Examples
The	examples	retrieve	the	value	of	the	com.acme.property.messagetype	(an
application-defined	property)	in	the	service	properties	file.	This	property	might

be	defined	in	the	service	properties	file	with	a	line	like	this	(the	value	"html"
will	be	returned	to	the	application	in	this	case):
	
com.acme.property.messagetype=html
	

RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_GET	PROPERTY(com.acme.property.messagetype)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcmd	:=	'	service_get	property(com.acme.property.messagetype)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service	and	removes	the
temporary	directory.
	
	SERVICE_UNLOAD	---------	no	keywords	--------------------------
|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(SERVICE_UNLOAD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	service_unload)	to_get(#jsmxsts	#jsmxmsg)
	

5.17.5	XMLBindFileService	Examples
Examples	are	supplied	for	the	most	common	client	programming	languages:
RDML
RDMLX

5.18	XMLParserService
Service	Name:	XMLParserService
The	XMLParserService	allows	XML	documents	to	be	read	using	different
transport	protocols.
The	XMLParserService	supports	the	following	commands:
5.18.1	SERVICE_LOAD
5.18.2	SERVICE_GET
5.18.3	SET
5.18.4	RESET
5.18.5	LOAD
5.18.6	PARSE
5.18.7	STORE
5.18.8	TRANSFORM
5.18.9	GET
5.18.10	CHECK
5.18.11	FOREACH
5.18.12	NEXT
5.18.13	SERVICE_UNLOAD

5.18.1	SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD SCHEMA 	 Optional.	See	SCHEMA.

VALIDATING 	 Optional.	See	VALIDATING.

	

5.18.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.18.3	SET
The	SET	command	allows	the	current	node	to	be	set	to	the	specified	path.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

SET NODE *ROOT Mandatory.	Root	path.

value Path	name.

	

The	SET	command	also	allows	an	existing	node	value	or	node	attribute	value	to
be	changed.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

SET NODE *ROOT Mandatory.	Root	path.

*CURRENT Current	node.

value Path	name.

ATTRIBUTE value Optional.	Name	of	attribute.

VALUE value Mandatory.	Node	or	attribute
value.

	

	

5.18.4	RESET
The	RESET	command	has	no	keywords	and	is	used	to	reset	the	service	to	its
initial	state.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RESET 	 	 Reset	the	service	to	its	initial	state.

	

	

5.18.5	LOAD
LOAD	command	only	has	one	mandatory	keyword	METHOD.	The	value	of
this	keyword	determines	which	content	loader	will	be	used	to	load	the	remote
XML	document.	Other	keywords	on	the	LOAD	command	are	passed	to	the
content	loader.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

LOAD METHOD *FILE Mandatory.	Load	XML
from	local	file	system.

*POP3 Load	XML	from	POP3	mail
server.

*HTTP Load	XML	from	remote
HTTP	server.

*HTTPS Load	XML	from	remote
HTTP	server	using	a
secured	connection.

*FTP Load	XML	from	remote
FTP	server.

*STORAGE Load	XML	from	internal
storage.

*BYTEARRAY Load	XML	from	command
byte	array.

ENCODING *DEFAULT Optional.	JVM	default
encoding.

*CLIENT Client	encoding.

value Default.	Auto	detect
encoding.

FILE value Conditional.	FTP	file	name
or	local	file	name.

HOST host:port Conditional.	FTP,	POP3	or
HTTP	host.
The	host	name	is	specified
as	an	IP	address
nnn.nnn.nnn.nnn:port	or	as
a	domain	name.

USER value Conditional.	HTTP,	FTP	or
POP3	user	profile.

PASSWORD value Conditional.	HTTP,	FTP	or
POP3	password	for	user
profile	specified	in	the
USER	keyword.

DATALINK *PORT Conditional.	Used	with
METHOD(*FTP).
FTP	port	mode.

*PASV Conditional.	Default.	Used
with	METHOD(*FTP).
FTP	passive	mode.

MODE *ASCII Conditional.	Used	with
METHOD(*FTP).
Sets	the	FTP	mode	to
ASCII.

*BINARY Used	with
METHOD(*FTP).
Sets	the	FTP	mode	to
BINARY.

NAMEFMT 0	or	1 Conditional.	Used	with
METHOD(*FTP).
Sets	the	FTP	NAMEFMT
mode.

PROXY value Conditional.	HTTP	proxy
server.

PROXYUSER value Conditional.	HTTP	proxy
user.

PROXYPASSWORD value Conditional.	HTTP	proxy
password.

SUBJECT value Conditional.	Used	with
METHOD(*POP3).
Use	mail	message	matching
this	subject.

FROM value Conditional.	Used	with
METHOD(*POP3).
Use	mail	message	matching
from	address.

ATTACHMENT value Conditional.	Used	with
METHOD(*POP3).
Mail	attachment	name.

NAME *DEFAULT Conditional.	Default.	Used
with	the
METHOD(*STORAGE).

value 	

IGNORE-PREFIX *YES Ignore	namespace	prefix.

*NO Default.

	

METHODS
*BYTEARRAY	source	uses	the	byte	array	object	from	the	command	object.
ENCODING	(*DEFAULT	|	*CLIENT	|	value)	–	optional	default	to	auto	detect
encoding.
*FILE	source	reads	the	specified	file.
ENCODING	(*DEFAULT	|	*CLIENT	|	value)	–	optional	default	to	auto	detect
encoding.
FILE	(filename)
*FTP	source	reads	the	specified	file	from	the	remote	host.
ENCODING	(*DEFAULT	|	*CLIENT	|	value)	–	optional	default	to	auto	detect

encoding.
FILE	(filename)
HOST	(host:port)	–	port	defaults	to	21
USER	(name)
PASSWORD	(password)
DATALINK	(*PASV	|	*PORT)	–	optional	defaults	to	*PASV
MODE	(*ASCII	|	*BINARY)	–	optional	defaults	to	*BINARY
*POP3	source	reads	the	first	attachment	from	the	first	mail	entry	from	the
specified	post	office.
ENCODING	(*DEFAULT	|	*CLIENT	|	value)	–	optional	default	to	auto	detect
encoding.
HOST	(smtpserver)	-	mandatory
USER	(user)	-	mandatory
PASSWORD	(password)	-	mandatory
FROM	(from)	-	optional
SUBJECT	(subject)	-	optional
ATTACHMENT	(attachment)	-	optional
If	no	mail	is	found	in	the	post	office,	then	the	returned	response	status	is
NOMAIL.	If	no	useable	mail	entries	are	found,	then	the	returned	response	status
is	NOATTACHMENT.
If	no	FROM,	SUBJECT	or	ATTACHMENT	keywords	are	present,	then	the	first
mail	entry	with	an	attachment	is	used.	This	mail	entry	is	then	deleted	from	the
post	office	and	contents	of	the	attachment	become	the	loaded	source.
To	add	extra	selection	criteria	to	which	mail	entry	is	selected,	use	the	FROM,
SUBJECT	or	ATTACHMENT	keywords	singularly	or	together	to	form	a	logic
AND	condition.
*HTTP	and	*HTTPS	source	reads	the	specified	file	from	the	remote	host.
ENCODING	(*DEFAULT	|	*CLIENT	|	value)	–	optional	default	to	auto	detect
encoding	.
FILE	(filename)	-	mandatory
HOST	(host:port)	-	optional	defaults	to	LOCALHOST
USER	(name)	-	optional
PASSWORD	(password)	-	optional

PROXY	(host:port)	-	optional
PROXYUSER	(name)	-	optional
PROXYPASSWORD	(password)	-	optional
*STORAGE	source	reads	the	source	from	the	specified	storage	name.
NAME	(*DEFAULT	|	name)	-	optional

5.18.6	PARSE
Two	XML	sources	exist	in	the	XMLParserService,	the	loaded	source	and	the
transformed	source.	Only	one	DOM	object	is	active	for	traversal	using	GET,
CHECK,	FOREACH	and	NEXT	commands.
The	PARSE	command	parses	the	XML	source	and	creates	a	DOM	object.
If	no	SOURCE	keyword	is	present,	the	default	value	will	be	*LOAD.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

PARSE SOURCE *LOAD Optional.	Default.	Loaded	source	is
used.

	 *TRANSFORM Transformed	source	is	used.

	

	

5.18.7	STORE
The	STORE	command	allows	the	loaded	or	transformed	source	to	be	stored	to
an	internal	storage	area	for	later	retrieval	using	the	LOAD	METHOD
(*STORAGE)	NAME	(name)	command,	or	to	be	written	to	an	external	file.
When	saving	to	an	external	file	the	UTF-8	encoding	is	used.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

STORE FILE value Optional.	Local	file	name.

NAME *DEFAULT Optional.	Default.	Storage	name.

value 	

OBJECT *LOAD Optional.	Default.	Store	XML
source.

*TRANSFORM Store	XML	transformed	source.

*DOCUMENT Store	active	DOM	object	to
specified	file.

ENCODING 	 Optional.	See	ENCODING.
Default	encoding	is	UTF-8.

	

If	no	object	keyword	is	present	the	load	source	is	stored	or	saved	to	file.
	

5.18.8	TRANSFORM
TRANSFORM	command	is	used	to	transform	the	loaded	XML	source	into
another	flavor	of	XML,	this	resultant	XML	is	stored	as	the	transform	source.
The	program	still	has	access	to	the	original	load	source	as	well	as	the	new
transform	source.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

TRANSFORM XSL value Mandatory.	See	XSL.

	

If	an	optional	list	object	argument	was	used	with	the	TRANSFORM	command,
the	XSL	should	produce	Function	XML	and	the	data	from	the	result	XML	will
bind	to	the	client	program	and	no	resultant	transform	source	XML	will	be
created.
Example
	
TRANSFORM	XSL	(name)
	

	

5.18.9	GET
The	GET	command	returns	data	from	the	active	DOM	tree.
Except	for	the	GET	OBJECT	(*MESSAGES)	command	all	other	values	are
return	via	the	response	message	field.	To	receive	XML	parser	messages	a	list
object	argument	needs	to	be	used	with	the	command.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET OBJECT *MESSAGES Optional.	Get	XML	parser
validation	messages.

*ROOTTAGNAME Get	XML	root	tag	name.

NODE *ROOT Get	optional	value	of	root
node.

*CURRENT Get	value	of	current	node.

value Get	value	of	specified	node.

ATTRIBUTE value Optional	but	requires	NODE
keyword.

	

	

5.18.10	CHECK
The	CHECK	command	checks	for	the	existence	of	a	node	or	attribute.	Also	can
test	if	a	node	or	attribute	has	a	particular	value.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CHECK NODE *ROOT Mandatory.

*CURRENT 	

value 	

ATTRIBUTE value Optional.

VALUE value Optional.

	

If	the	node	does	not	exist	in	the	DOM	tree,	then	a	response	status	of
NOT_EXIST	will	be	returned
If	no	VALUE	or	ATTRIBUTE	keyword	are	present	a	response	status	of	EXIST
will	be	returned.
If	no	ATTRIBUTE	keyword	is	present	and	a	VALUE	keyword	is	present,	a	case
insensitive	comparison	is	done	between	the	node	value	and	the	VALUE
keyword	value.	If	they	are	equal	then	a	response	status	of	EQUAL	is	returned,
else	a	NOT_EQUAL	is	returned.
If	no	VALUE	keyword	is	present	and	ATTRIBUTE	keyword	is	present,	then	the
existence	of	the	attribute	is	done	and	an	EXIST	or	NOT_EXIST	response	status
is	returned.
If	both	a	VALUE	and	ATTRIBUTE	keyword	are	present	a	value	comparison	of
the	attribute	value	is	done	and	an	EQUAL	or	NOT_EQUAL	response	status	is
returned.
	

5.18.11	FOREACH
The	FOREACH	command	creates	a	list	of	nodes	specified	by	the	NODE	path
value.	If	no	NODELIST	keyword	is	present	a	default	name	of	*DEFAULT	is
used.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

FOREACH NODE value Mandatory.

NODELIST *DEFAULT Optional.	Default.	Name	of	node	list
to	receive	selected	nodes.

value 	

	

	

5.18.12	NEXT
The	NEXT	command	sets	the	current	node	to	the	next	node	in	the	specified
node	list.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

NEXT OBJECT *NODE Mandatory.

NODELIST *DEFAULT Optional.	Default.

value 	

	

If	no	more	nodes	exist	in	the	specified	list,	then	the	response	status	returned	is
NONE.

5.18.13	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

5.18.14	XMLParserService	Examples
For	RDML	code	examples,	go	to	XMLParserService	1	and	XMLParserService
2	(Node	traversal).

5.19	XMLReaderService
The	XMLReaderService	allows	XML	files	to	be	read	using	a	StAX	stream
reader.
The	Streaming	API	for	XML	(StAX)	is	an	API	for	pull-parsing	XML.
The	streaming	API	gives	parsing	control	to	the	programmer	by	exposing	a
simple	iterator	based	API.
This	allows	the	programmer	to	ask	for	the	next	event	(pull	the	event)	and	allows
state	to	be	stored	in	a	procedural	fashion.
The	XMLReaderService	uses	the	Woodstox	API	(Refer	to
http://woodstox.codehaus.org/).

http://woodstox.codehaus.org/

5.19.1	What	can	I	use	the	XMLReaderService	for?
If	you	need	to	determine	the	root	element	of	a	large	XML	file,	then	the
XMLReaderService	allows	the	first	element	to	be	read	and	the	parsing	activity
to	be	ended.

5.19.2	Using	the	XMLReaderService
Whether	you	are	writing	your	client	application	in	RDML	/	RDMLX	or	in	a
3GL	such	as	RPG,	you	have	to	complete	the	same	basic	steps.
For	example,	an	application	that	reads	an	XML	file	would	typically	issue	the
following	sequence	of	commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
										SET
										OPEN
										NEXT
										CLOSE
					SERVICE_UNLOAD
JSM(X)_CLOSE
Refer	to	Java	Service	Manager	Clients	for	the	command	details	that	apply	to
your	chosen	development	language.

5.19.3	XMLReaderService	Commands
Your	application	issues	commands	to	the	XMLReaderService	by	passing	the
command	strings	through	the	Java	Service	Manager	using	the
JSM_COMMAND	or	JSMX_COMMAND	Built-In	Function	or	an	API	for	your
chosen	development	language.
The	commands	that	the	XMLReaderService	processes	are:
SERVICE_LOAD
SET
OPEN
NEXT
CLOSE
SERVICE_GET
SERVICE_UNLOAD

SERVICE_LOAD
Loads	and	initializes	the	service.
	
																																																										Required
	
	SERVICE_LOAD	----	SERVICE	---------	service	name	------------
--->
	
	
																																																										Optional
	
															>--	TRACE	-----------	*NO	------------------------>
																																					*YES
																																					*ERROR
	
															>--	TRACE_NAME	------	name	----------------------->
																																					*SERVICE
																																					*PROCESS
																																					*FUNCTION
																																					*JOBNAME
																																					*JOBUSER
																																					*JOBNUMBER
	
															>--	VALIDATING	------	*NO	------------------------|
																																					*YES
	
For	more	information	refer	to:
Service	Program	Tracing	from	the	Client
Keywords
SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

XMLReaderService.

TRACE To	enable	tracing	from	the	client	program	use	the	TRACE
keyword	on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:
*NO

*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the
service	does	not	return	an	ERROR,	FATAL	or
SOAPFAULT	status	to	the	client,	the	trace	files	are	deleted
on	the	JSM	CLOSE	call.

TRACE_NAME The	optional	TRACE_NAME	keyword	allows	the	client	to
append	a	user-defined	name	to	the	end	of	the	client	trace
subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

VALIDATING Optional.	See	VALIDATING.

Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(XMLReaderService)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcommand	:=	'service_load	service(XMLReaderService)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	to_get(#jsmxsts	#jsmxmsg)
	

SET
The	SET	command	sets	the	current	directory.
	
																																																									Required
	
	SET	----	DIR	----------	directory	path	------------------------|
	
Keywords
DIR This	keyword	is	used	to	specify	the	default	directory.

	
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	DIR(/orders)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'set	dir(/orders)')	to_get(#jsmxsts	#jsmxmsg)
	

OPEN
The	OPEN	command	opens	an	existing	XML	file.
	
																																																									Required
	
	OPEN	----	FILE	------------	file	path	-------------------------|
	
Keywords
FILE This	keyword	is	used	to	specify	the	file	name	and	path	of	the	xml	file.

It	is	recommended	to	use	the	forward	slash	as	the	path	separator	and	to
avoid	the	use	of	the	DOS	drive	designator.
The	format	of	the	path	should	be	as	follows:
For	Windows	you	can	specify:
Absolute	path
For	example:
/orders/order.xml
C:/orders/order.xml
C:\orders\order.xml

or
Relative	path.
For	example,	orders/order.xml	(note,	no	'/'	at	the	start),	in	which
case	the	order.xml	file	must	reside	in	the	orders	directory	under	the
JSM	Instance	directory	on	your	server.

For	the	IBM	i	you	can	specify:
Absolute	path.
For	example:
/orders/order.xml

or
Relative	path.
For	example,	orders/order.xml	(note,	no	'/'	at	the	start),	in	which
case	the	order.xml	file	must	reside	in	the	orders	directory	under	the

JSM	Instance	directory	on	your	server.
Note:	Whatever	directory	structure	you	specify	must	already	exist.
This	keyword	is	mandatory.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('OPEN	FILE(ORDER.XML)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'open	file(order.xml)')	to_get(#jsmxsts	#jsmxmsg)
	

NEXT
The	NEXT	command	reads	the	next	streaming	event.
Each	event	will	return	a	status	code	to	identify	the	type	of	event	received.
When	all	events	have	been	received	a	status	code	of	NONEXT	is	returned	to
idenitify	the	end	of	the	stream.
All	events	do	not	need	to	be	read	before	closing	the	stream	reader.
Element	attribute	names	and	values	can	be	accessed	by	using	a	two	field
working	list	argument.	The	working	list	is	cleared	and	attributes	are	added	when
a	ELEMENTSTART	event	is	received.
Possible	status	and	message	values

Status Message

NONEXT 	

ELEMENTSTART Qualified	element	name.
For	example:	{http://www.cars.com/xml}part

ELEMENTEND Qualified	element	name.
For	example:	{http://www.cars.com/xml}part

COMMENT Comment	text.

INSTRUCTION Processing	Instruction.

	

	
	
																																																								Required
	
	NEXT
	
																																																								Optional
	
								>--	COMMENT	----------	*NO	---------------------------->
																															*YES
	

								>--	INSTRUCTIOM	------	*NO	----------------------------|
																															*YES
	
Keywords
COMMENT This	optional	keyword	is	used	to	include	comment	events.

The	possible	values	for	the	COMMENT	keyword	are:
*NO
*YES

The	default	value	is	*NO.

INSTRUCTION This	optional	keyword	is	used	to	include	processing
instruction	events.
The	possible	values	for	the	INSTRUCTION	keyword	are:
*NO
*YES

The	default	value	is	*NO.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('NEXT	SERVICE_LIST(ATRNAME,ATRVALUE)')	TO_GET(#JSMSTS	#JSMMSG	#WRKLST)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'next')	to_get(#jsmxsts	#jsmxmsg	#wrklst)
	

CLOSE
The	CLOSE	command	closes	the	current	reader.
	
	CLOSE	--------------	no	keywords	---------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	close)	to_get(#jsmxsts	#jsmxmsg)
	

SERVICE_GET
The	SERVICE_GET	command	allows	JSM	client	applications	to	access	the
keyword	/	value	properties	from	the	properties	file	associated	with	the	currently
loaded	service.
Client	applications	can	access	the	value	of	properties	associated	with	the
service,	but,	perhaps	more	usefully,	they	can	access	application	specific
property	values	too,	using	the	service	properties	file	as	a	common	medium	for
holding	such	values.
When	used	in	the	latter	way,	there	is	a	possibility	of	conflict	between
application-defined	keyword	names	and	those	used	by	current	and	future
versions	of	LANSA	Integrator.	To	reduce	this	possibility	your	application
should	prefix	the	property	keyword	with	a	global	unique	name.	The	examples
below	use	com.acme.property	as	the	prefix	for	this	purpose.
The	service	property	keyword	value	is	returned	in	the	JSM	message	field.	If	the
keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
	
	SERVICE_GET	--------	PROPERTY	-----	value	--------------------
>
	
																		>--	TRACE	-------	*SERVICE-------------------|
																																				*TRANSPORT
	
Keywords
PROPERTY Provide	a	keyword	/	value	to	be	checked	on	the	service

properties	file.
The	service	property	keyword	value	is	returned	in	the	JSM
message	field.	If	the	keyword	does	not	exist	in	the	service
property	file	a	status	of	NOT_EXIST	is	returned.

TRACE *SERVICE	-	read	service	trace	file.
*TRANSPORT	-	read	transport	trace	file.

Examples
The	examples	retrieve	the	value	of	the	com.acme.property.messagetype	(an
application-defined	property)	in	the	service	properties	file.	This	property	might
be	defined	in	the	service	properties	file	with	a	line	like	this	(the	value	"html"

will	be	returned	to	the	application	in	this	case):
	
com.acme.property.messagetype=html
	

RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_GET	PROPERTY(com.acme.property.messagetype)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcmd	:=	'	service_get	property(com.acme.property.messagetype)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service,	closing	any	input	or
output	streams	and	removing	temporary	directories	or	files.
	
	SERVICE_UNLOAD	---------	no	keywords	--------------------------
|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_UNLOAD')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	service_unload)	to_get(#jsmxsts	#jsmxmsg)
	

5.20	XMLWriterService
The	XMLWriterService	allows	XML	files	to	be	created	using	a	StAX	stream
writer.
The	Streaming	API	for	XML	(StAX)	is	an	API	for	stream	writing	XML.
The	XMLWriterService	uses	the	Woodstox	API	(Refer	to
http://woodstox.codehaus.org/).

http://woodstox.codehaus.org/

5.20.1	What	can	I	use	the	XMLWriterService	for?
If	you	need	to	create	a	large	XML	file,	the	XMLWriterService	allows	XML
elements	to	be	streamed	out	to	the	file	as	they	are	being	created.
Other	approaches	to	creating	XML	files,	require	the	whole	XML	content	to	be
created	in-memory	before	outputting	to	a	file.

5.20.2	Using	the	XMLWriterService
Whether	you	are	writing	your	client	application	in	RDML	/	RDMLX	or	in	a
3GL	such	as	RPG,	you	have	to	complete	the	same	basic	steps.
For	example,	an	application	that	creates	an	XML	file	would	typically	issue	the
following	sequence	of	commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
										SET
										OPEN
										WRITE
										CLOSE
					SERVICE_UNLOAD
JSM(X)_CLOSE
Refer	to	Java	Service	Manager	Clients	for	the	command	details	that	apply	to
your	chosen	development	language.

5.20.3	XMLWriterService	Commands
Your	application	issues	commands	to	the	XMLWriterService	by	passing	the
command	strings	through	the	Java	Service	Manager	using	the
JSM_COMMAND	or	JSMX_COMMAND	Built-In	Function	or	an	API	for	your
chosen	development	language.
The	commands	that	the	XMLWriterService	processes	are:
SERVICE_LOAD
SET
OPEN
WRITE
CLOSE
SERVICE_GET
SERVICE_UNLOAD

SERVICE_LOAD
Loads	and	initializes	the	service.
	
																																																										Required
	
	SERVICE_LOAD	----	SERVICE	---------	service	name	------------
--->
	
	
																																																										Optional
	
															>--	TRACE	-----------	*NO	------------------------>
																																					*YES
																																					*ERROR
	
															>--	TRACE_NAME	------	name	-----------------------|
																																					*SERVICE
																																					*PROCESS
																																					*FUNCTION
																																					*JOBNAME
																																					*JOBUSER
																																					*JOBNUMBER
	
For	more	information	refer	to:
Service	Program	Tracing	from	the	Client
Keywords
SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

XMLWriterService.

TRACE To	enable	tracing	from	the	client	program	use	the	TRACE
keyword	on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:
*NO
*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the
service	does	not	return	an	ERROR,	FATAL	or
SOAPFAULT	status	to	the	client,	the	trace	files	are	deleted
on	the	JSM	CLOSE	call.

TRACE_NAME The	optional	TRACE_NAME	keyword	allows	the	client	to
append	a	user-defined	name	to	the	end	of	the	client	trace
subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(XMLWriterService)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcommand	:=	'service_load	service(XMLWriterService)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	to_get(#jsmxsts	#jsmxmsg)
	

SET
The	SET	command	can	be	used	to	set	the	current	directory.	This	command	also
allows	XML	prefix	to	namespace	mappings	used	during	the	XML	creation
process	to	be	declared	at	the	root	scope	or	with	element	start	and	element	end
scope.
	
	
																																																										Optional
	
	SET	----	DIR	----------	directory	path	------------------------->
	
						>--	OBJECT	-------	*PREFIX	-------------------------------->
																									*DEFAULTNS
	
						>--	PREFIX	-------	prefix	--------------------------------->
	
						>--	NAMESPACE	----	namespace	------------------------------|
	
Keywords
DIR This	keyword	is	used	to	specify	the	default	directory.

OBJECT This	keyword	is	used	to	define	an	XML	namespace.
Depending	on	its	usage,	it	can	either	be	used	to	define	a
namespace	in	the	root	scope	or	within	an	element	start	and
element	end	scope.
The	possible	values	for	the	OBJECT	keyword	are:
*PREFIX
*DEFAULTNS

PREFIX This	keyword	specifies	an	XML	prefix	and	is	only	used	with
the	OBJECT	type	of	*PREFIX.

NAMESPACE This	keyword	specifies	an	XML	namespace	and	is	used	with
the	OBJECT	type	*PREFIX	or	*DEFAULTNS.

Example
	

SET	OBJECT	(*DEFAULTNS)	NAMESPACE	(http://parts.com)
	
SET	OBJECT	(*PREFIX)	PREFIX	(abc)	NAMESPACE	(http://salesorder.com)
	

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	DIR(/orders)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'set	dir(/orders)')	to_get(#jsmxsts	#jsmxmsg)
	

OPEN
The	OPEN	command	creates	a	new	XML	file	or	replaces	an	existing	file.
	
																																																									Required
	
	OPEN	----	FILE	------------	file	path	-------------------------|
	
Keywords
FILE This	keyword	is	used	to	specify	the	file	name	and	path	of	the	xml	file.

It	is	recommended	to	use	the	forward	slash	as	the	path	separator	and	to
avoid	the	use	of	the	DOS	drive	designator.
The	format	of	the	path	should	be	as	follows:
For	Windows	you	can	specify:
Absolute	path
For	example:
/orders/order.xml
C:/orders/order.xml
C:\orders\order.xml

or
Relative	path.
For	example,	orders/order.xml	(note,	no	'/'	at	the	start),	in	which
case	the	order.xml	file	must	reside	in	the	orders	directory	under	the
JSM	Instance	directory	on	your	server.

For	the	IBM	i	you	can	specify:
Absolute	path.
For	example:
/orders/order.xml

or
Relative	path.
For	example,	orders/order.xml	(note,	no	'/'	at	the	start),	in	which
case	the	order.xml	file	must	reside	in	the	orders	directory	under	the

JSM	Instance	directory	on	your	server.
Note:	Whatever	directory	structure	you	specify	must	already	exist.
This	keyword	is	mandatory.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('OPEN	FILE(ORDER.XML)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'open	file(order.xml)')	to_get(#jsmxsts	#jsmxmsg)
	

WRITE
The	WRITE	command	is	used	to	create	and	write	out	XML	components.
The	OBJECT	keyword	specifies	the	type	of	XML	component	to	create.
	
	
																																																									Required
	
	WRITE	----	OBJECT	----------	*DOCUMENTSTART	--------------
----->
																														*DOCTYPE
																														*COMMENT
																														*INSTRUCTION
																														*NAMESPACE
																														*ELEMENTSTART
																														*TEXT
																														*CDATA
																														*ELEMENTEMD
																														*DOCUMENTEND
	
																																																									Optional
	
								>--	NAME	------------	qualified	name	------------------->
	
								>--	PREFIX	----------	prefix	--------------------------->
	
								>--	NAMESPACE	-------	namespace	------------------------>
	
								>--	TEXT	------------	text	----------------------------->
	
								>--	TARGET	----------	target	--------------------------->
	
								>--	DATA	------------	data	-----------------------------|
	
Keywords
OBJECT This	mandatory	keywords	specifies	the	type	of	XML	element

to	be	created.

The	possible	values	for	the	OBJECT	keyword	are:
*DOCUMENTSTART
*DOCTYPE
*COMMENT
*INSTRUCTION
*NAMESPACE
*ELEMENTSTART
*TEXT
*CDATA
*ELEMENTEND
*ELEMENTEMPTY
*DOCUMENTEND

NAME This	keyword	specifies	the	qualified	XML	element	name.
This	keyword	is	used	with	the	following	OBJECT	types.
*ELEMENTSTART
*ELEMENTEMPTY

The	notation	for	expressing	a	qualified	element	name	as	a
string	is	to	enclosed	the	namespace	URI	inside	curly	brackets
and	prefix	the	element	name	with	this	namespace.
For	example:	{http://www.cars.com/xml}part
Element	attributes	can	be	created	by	using	a	two	field
working	list	that	contains	qualified	attribute	name	and	values
as	an	argument	to	the	WRITE	OBJECT(*ELEMENTSTART)
command.

PREFIX This	keyword	specifies	an	XML	prefix	and	is	only	used	with
the	OBJECT	type	of	*NAMESPACE.

NAMESPACE This	keyword	specifies	an	XML	namespace	and	is	only	used
with	the	OBJECT	type	of	*NAMESPACE.

TEXT This	keyword	specifies	the	text	value.
This	keyword	is	used	with	the	following	OBJECT	types.
*DOCTYPE
*COMMENT

*TEXT
*CDATA

TARGET This	keyword	specifies	the	processing	instruction	target	and
is	only	used	with	the	OBJECT	type	of	*INSTRUCTION.

DATA This	keyword	specifies	the	processing	instruction	data	and	is
only	used	with	the	OBJECT	type	of	*INSTRUCTION.

	
Example
	
OPEN	FILE	(order.xml)
	
WRITE	OBJECT	(*DOCUMENTSTART)
	
WRITE	OBJECT	(*DOCTYPE)	TEXT	(<!DOCTYPE	Orders	SYSTEM	"order.dtd">)
	
WRITE	OBJECT	(*COMMENT)	TEXT	(Some	comment	text)
	
WRITE	OBJECT	(*INSTRUCTION)	TARGET	(action)	DATA	(reply)
	
SET	OBJECT	(*PREFIX)	PREFIX	(abc)	NAMESPACE	(http://salesorder.com)
	
SET	OBJECT	(*DEFAULTNS)	NAMESPACE	(http://parts.com)
	
WRITE	OBJECT	(*ELEMENTSTART)	NAME	({http://acme.com}Orders)									#WRKLST	-	attribute	list
	
WRITE	OBJECT	(*TEXT)	TEXT	(Some	text)
	
WRITE	OBJECT	(*ELEMENTEND)
	
WRITE	OBJECT	(*ELEMENTEMPTY)	NAME	({http://acmme.com}SalesOrder)
	
WRITE	OBJECT	(*ELEMENTSTART)	NAME	({http://acme.com}Address)
	
WRITE	OBJECT	(*CDATA)	TEXT	(Some	text)
	
WRITE	OBJECT	(*NAMESPACE)	PREFIX	(def)	NAMESPACE	(http://acme2.com)

	
WRITE	OBJECT	(*ELEMENTEND)
	
WRITE	OBJECT	(*DOCUMENTEND)
	
CLOSE
	

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('WRITE	OBJECT(*DOCUMENTSTART)')	TO_GET(#JSMSTS	#JSMMSG	#WRKLST)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'write	object(*documentstart)')	to_get(#jsmxsts	#jsmxmsg	#wrklst)
	

CLOSE
The	CLOSE	command	closes	the	current	reader.
	
	CLOSE	--------------	no	keywords	---------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	close)	to_get(#jsmxsts	#jsmxmsg)
	

SERVICE_GET
The	SERVICE_GET	command	allows	JSM	client	applications	to	access	the
keyword	/	value	properties	from	the	properties	file	associated	with	the	currently
loaded	service.
Client	applications	can	access	the	value	of	properties	associated	with	the
service,	but,	perhaps	more	usefully,	they	can	access	application	specific
property	values	too,	using	the	service	properties	file	as	a	common	medium	for
holding	such	values.
When	used	in	the	latter	way,	there	is	a	possibility	of	conflict	between
application-defined	keyword	names	and	those	used	by	current	and	future
versions	of	LANSA	Integrator.	To	reduce	this	possibility	your	application
should	prefix	the	property	keyword	with	a	global	unique	name.	The	examples
below	use	com.acme.property	as	the	prefix	for	this	purpose.
The	service	property	keyword	value	is	returned	in	the	JSM	message	field.	If	the
keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
	
	SERVICE_GET	--------	PROPERTY	-----	value	--------------------
>
	
																		>--	TRACE	-------	*SERVICE-------------------|
																																				*TRANSPORT
	
Keywords
PROPERTY Provide	a	keyword	/	value	to	be	checked	on	the	service

properties	file.
The	service	property	keyword	value	is	returned	in	the	JSM
message	field.	If	the	keyword	does	not	exist	in	the	service
property	file	a	status	of	NOT_EXIST	is	returned.

TRACE *SERVICE	-	read	service	trace	file.
*TRANSPORT	-	read	transport	trace	file.

Examples
The	examples	retrieve	the	value	of	the	com.acme.property.messagetype	(an
application-defined	property)	in	the	service	properties	file.	This	property	might
be	defined	in	the	service	properties	file	with	a	line	like	this	(the	value	"html"

will	be	returned	to	the	application	in	this	case):
	
com.acme.property.messagetype=html
	

RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_GET	PROPERTY(com.acme.property.messagetype)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcmd	:=	'	service_get	property(com.acme.property.messagetype)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service,	closing	any	input	or
output	streams	and	removing	temporary	directories	or	files.
	
	SERVICE_UNLOAD	---------	no	keywords	--------------------------
|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_UNLOAD')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	service_unload)	to_get(#jsmxsts	#jsmxmsg)
	

5.21	XMLQueryService
The	XMLQueryService	permits	an	application	to	selectively	interrogate	values
contained	in	an	XML	document	using	XML	Path	Language	(XPath)
expressions.
It	is	not	suitable	or	intended	for	and	usually	would	not	be	used	to	process	the
entire	contents	of	an	XML	document.		There	are	other	LANSA	Integrator
services	(mentioned	below)	that	are	much	more	appropriate	for	that.
Rather	it	is	intended	for	limited	and	selective	interrogation	of	particular	values
from	the	XML	document.		In	some	applications,	for	example,	it	may	be
necessary	for	the	application	to	determine	certain	key	values	from	the	XML
document	in	order	to	decide	how	to	proceed	with	further	processing	or	for	use
in	the	course	of	further	processing.

NOTE:		for	LANSA	Composer	users,	the	supplied	XML_QUERY
activity	provides	this	functionality.

NOTE:		The	XMLQueryService	loads	the	entire	XML	document	into
memory	when	processing	your	queries.		Application	performance	can
degrade	when	used	with	exceptionally	large	XML	files.

Related	Services
The	XMLQueryService	is	not	dependent	on	other	services.
As	noted	above,	the	service	is	not	suitable	or	intended	for	processing	the	entire
contents	of	an	XML	document.		LANSA	Integrator	provides	a	number	of	other
XML	services	that	may	be	more	suitable	for	such	purposes	including:

XMLBindFileService
XMLReaderService
XMLWriterService

Technical	Specifications
The	service	is	implemented	using	features	of	the	javax.xml.xpath	package.		The
following	XML	standards	apply:

	XML	Path	Language	(XPath)
LANSA	Integrator	must	be	using	a	Java	5	or	above	JRE	in	order	to	use	this

service.

http://www.w3.org/TR/xpath/

5.21.1	What	can	I	use	the	XMLQueryService	for?
Use	the	XMLQueryService	when	you	need	to	selectively	interrogate	a	limited
number	of	particular	values	in	an	XML	document.
For	example,	suppose	you	have	an	application	that	receives	and	processes	sales
orders	in	an	agreed	XML	format.
One	part	of	your	application	might	process	the	sales	order	XML	document	in	its
entirety,	perhaps	using	other	LANSA	Integrator	services	or	a	LANSA	Composer
Transformation	Map	to	read	the	contents	and	update	your	application	database.
However,	an	independent	code	unit	in	your	application	is	required	to	email	an
acknowledgement	of	the	order.		In	order	to	do	so,	the	most	convenient	means	to
access	the	customer's	return	email	address	is	directly	from	the	corresponding
element	value	in	the	original	sales	order	XML	document.
In	such	circumstances,	your	application	could	use	the	XMLQueryService	to
selectively	and	efficiently	address	and	retrieve	just	the	value	of	the	element	(or
attribute)	in	the	sales	order	XML	document	that	contains	the	customer's	return
email	address.

5.21.2	Using	the	XMLQueryService
Refer	to	the	following	for	general	information	on	XMLQueryService	usage:

Typical	XMLQueryService	Command	Usage
Quick	Guide	to	XPath	expressions	for	use	with	XMLQueryService

Typical	XMLQueryService	Command	Usage
Whether	you	are	writing	your	client	application	in	RDML	/	RDMLX	or	in	a
3GL	such	as	RPG	or	C,	you	have	to	complete	the	same	basic	steps.
For	example,	an	application	that	interrogates	values	from	an	XML	document
using	the	XMLQueryService	would	typically	issue	the	following	sequence	of
commands:

JSM(X)_OPEN

JSM(X)_COMMANDs
							SERVICE_LOAD
														LOAD
														QUERY
							SERVICE_UNLOAD

JSM(X)_CLOSE

Refer	to	Java	Service	Manager	Clients	for	the	command	details	that	apply	to
your	chosen	development	language.

Quick	Guide	to	XPath	expressions	for	use	with
XMLQueryService
There	are	many	XPath	resources	available	on	the	web.		To	get	you	started,	you
could	try	the	following:

For	one	quick	and	easy	introduction	to	XPath:	Xpath	Tutorial
XPath	Examples
XML	in	a	Nutshell	–	A	Desktop	Quick	Reference
XML	Path	Language	(XPath)	Version	1.0

This	document	does	not	intend	or	purport	to	provide	a	definitive	description	of
or	reference	to	XPath	expression	syntax.		However,	for	those	readers	who	have
not	used	XPath	expressions	before,	this	section	will	give	a	brief	overview	and
examples	that	might	help	you	get	started	with	the	XMLQueryService.		Refer	to
the	following	topics	in	this	section:

ExampleXML
Introduction	to	XML	Path	Language	(XPath)
XPath	Examples	for	use	with	XMLQueryService
XML	Namespaces	and	How	They	Affect	XPath	Expressions	for
XMLQueryService

Example	XML
The	examples	provided	later	in	this	section	will	refer	to	the	following	simple
example	XML	document:
<?xml	version="1.0"	encoding="UTF-8"?>	
	
<!DOCTYPE	Orders	SYSTEM	"http://www.lansa.com/schemas/tutorder.dtd"		>	
	
<Orders>	
	
						<SalesOrder	SONumber="12345">

									<Customer	CustNumber="543">
												<CustName>ABC	Industries</CustName>	
												<Street>123	North	St.</Street>	
												<City>Bankstown</City>	
												<State>NSW</State>	

http://www.w3schools.com/xpath/default.asp
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://oreilly.com/catalog/xmlnut/chapter/ch09.html
http://www.w3.org/TR/xpath/

												<PostCode>2087</PostCode>	
									</Customer>	
	
									<OrderDate>2012-11-19</OrderDate>	
	
									<Line	LineNumber="1">	
												<Part	PartNumber="123">	
															<Description>Gasket	Paper</Description>	
															<Price>9.95</Price>	
												</Part>	
												<Quantity>10</Quantity>	
									</Line>	
	
									<Line	LineNumber="2">	
												<Part	PartNumber="456">	
															<Description>Glue</Description>	
															<Price>13.27</Price>	
												</Part>	
												<Quantity>5</Quantity>	
									</Line>	
	
						</SalesOrder>	
	
</Orders>
	

Introduction	to	XML	Path	Language	(XPath)
XPath	is	a	syntax	for	constructing	path	expressions	to	select	nodes	in	an	XML
document.		To	some	extent,	these	path	expressions	look	very	similar	to	path
expressions	you	use	when	working	with	the	file	system	on	your	computer.
In	general,	XPath	recognises	seven	types	of	nodes,	viz.	element,	attribute,	text,
namespace,	processing-instruction,	comment,	and	document	nodes.		In	the
context	of	the	XMLQueryService	we	are	chiefly	concerned	with	the	element
and	attribute	nodes	and	of	course,	the	document	node.	
In	the	example	XML	document	shown	above,	some	of	the	elements	are
<Orders>,	<SalesOrder>,	<Customer>,	<OrderDate>,	<Line>	and	<Part>,	while
the	attributes	include	SONumber=,	CustNumber=,	LineNumber=	and
PartNumber=.

The	following	is	an	example	XPath	expression	that	will	select	the	PartNumber=
attribute	of	the	first	<Part>	element	in	the	second	<Line>	element	in	the	first
<SalesOrder>	element	of	the	example	XML	document:
/Orders/SalesOrder[1]/Line[2]/Part[1]/@PartNumber

Note	that	the	selection	of	the	<SalesOrder>,	<Line>	and	<Part>	elements	in	the
above	example	are	by	ordinal	index.		In	particular,	the	selection	of	the	<Line>
element	does	NOT	refer	to	the	value	of	the	LineNumber=	attribute	(although
that	is	possible	too,	as	you	will	see	later).
XPath	provides	a	large	number	of	built-in	functions	that	can	manipulate	and
compare	values	in	a	variety	of	ways	for	more	advanced	usage.		For	example,	the
following	expression	uses	the	contains	built-in	function	to	select	all	<Part>
elements	(wherever	they	occur)	whose	<Description>	element	contains	the
string	"Paper":
//Part[contains(Description,	"Paper")]

In	XPath,	you	select	a	node	or	set	of	nodes,	by	following	a	path	or	steps.		Your
XPath	expression	will	often	include	one	or	of	the	following:
nodename Selects	all	nodes	with	the	specified	name.
/ Selects	from	the	root	node
// Selects	nodes	in	the	document	from	the	current	node	that

match	the	selection	no	matter	where	they	are
. Selects	the	current	node
.. Selects	the	parent	of	the	current	node

@nodename Selects	attributes	with	the	specified	name

In	XPath,	a	predicate	is	a	sub-expression	contained	in	square	brackets	that	is
used	to	select	a	specific	node	or	a	node	that	contains	a	specific	value.		The
following	are	some	examples	of	XPath	expressions	that	use	predicates:

/Orders/SalesOrder[1] Selects	the	first	<SalesOrder>	element	that	is	a
child	of	the	<Orders>	element.

/Orders/SalesOrder[last()] Selects	the	last	<SalesOrder>	element	that	is	a
child	of	the	<Orders>	element.		(In	the	particular
instance	of	the	example	XML	document	shown,
there	is	only	one	<SalesOrder>	element	and	so	the

result	will	be	the	same.)

//Part[Price<=10.00] Selects	<Part>	elements,	wherever	they	occur,
whose	<Price>	element	has	a	value	less	than	or
equal	to	10.00.

There	is	much	more	to	know	about	XPath	expressions.		If	you	would	like	more
information,	you	could	start	by	referring	to	some	of	the	links	provided	above.

Important	note:		XML	node	names	are	case	sensitive.		Your	XPath
expressions	must	specify	the	correct	case	when	specifying	element
and	attribute	names.		For	example,	the	expression	'//salesorder'	is	NOT
the	same	as	'//SalesOrder'.		When	used	with	the	example	XML
document	shown	above,	the	former	expression	will	FAIL	to	select
ANY	nodes,	while	the	latter	will	select	all	<SalesOrder>	elements,
wherever	they	occur	in	the	document.

	

XPath	Examples	for	use	with	XMLQueryService
The	following	examples	use	XPath	expressions	in	the	parameters	of	the	QUERY
command	of	the	XMLQueryService	to	select	values	from	the	example	XML
document	shown	above.
1.This	example	will	select	nothing	because	XML	and	XPath	are	case-sensitive
and	the	wrong	case	is	used	to	select	the	<SalesOrder>	elements:
QUERY	NODES(//SALESORDER)	NODESVALUE1(@SONumber)

2.These	two	examples	use	alternate	implementations	to	select	all	<SalesOrder>
elements,	and	return	the	sales	order	number	for	each.		Functionally,	they	are
equivalent	(when	used	with	the	example	XML	document):
QUERY	NODES(//SalesOrder/@SONumber)
	
QUERY	NODES(//SalesOrder)	NODESVALUE1(@SONumber)

3.Selects	all	<SalesOrder>	elements,	and	returns	the	customer	number	for	each:
QUERY	NODES(//SalesOrder)	NODESVALUE1(Customer/@CustNumber)

4.Selects	<Customer>	elements	that	have	a	value	of	'543'	for	their	customer
number	and	returns	the	sales	order	number	of	the	parent	<SalesOrder>
element:
QUERY	NODES(//Customer[@CustNumber="543"])	NODESVALUE1(../@SONumber)

5.Selects	all	<Part>	elements	for	the	<SalesOrder>	element(s)	with	the	order
number	specified	and	returns	the	part	number	and	quantity	for	each:
QUERY	NODES(//SalesOrder[@SONumber="12345"]/Line/Part)
					NODESVALUE1(@PartNumber)
					NODESVALUE2(../Quantity)

6.Selects	all	<Part>	elements	with	a	price	greater	than	2.99	and,	for	each,
returns	the	order	number,	the	part	number,	the	price,	the	quantity	and
calculates	and	returns	the	extended	value	(price	*	quantity):
QUERY	NODES(//Part[Price>2.99])
					NODESVALUE1(../../@SONumber)
					NODESVALUE2(@PartNumber)
					NODESVALUE3(Price)
					NODESVALUE4(../Quantity)
					NODESVALUE5(Price*../Quantity)

XML	Namespaces	and	How	They	Affect	XPath	Expressions	for
XMLQueryService
The	examples	used	so	far	operate	on	an	XML	document	that	contains	no	explicit
namespace	declarations	and	does	not	make	use	of	namespace	prefixes.		This	is
the	simplest	case,	but	frequently	does	not	reflect	the	real	world.
Consider	this	minor	alteration	to	the	example	XML	document	that	specifies	a
default	namespace	for	the	XML	document:
<?xml	version="1.0"	encoding="UTF-8"?>
	
<!DOCTYPE	Orders	SYSTEM	"http://www.lansa.com/schemas/tutorder.dtd"		>
	
<Orders	xmlns="urn:schemas-lansa-com:tutorder.dtd">
	
					…	etc	…
	
</Orders>

Where	a	document	makes	use	a	single	default	namespace	like	this,	the	easiest
approach	to	formulating	XPath	expressions	for	use	with	it	is	usually	to	disregard
the	namespace.		Since	only	one	namespace	is	used	and	there	are	no	namespace
prefixes	present	on	the	node	names,	you	can	usually	use	the	same	expressions	as
you	would	use	with	the	earlier	example.		Each	of	the	following	queries	work
successfully	with	the	example	document	that	declares	the	default	namespace,

providing	the	document	is	not	loaded	in	namespace-aware	mode:
QUERY	NODES(//SalesOrder/@SONumber)
	
QUERY	NODES(//SalesOrder)	NODESVALUE1(Customer/@CustNumber)
	
QUERY	NODES(//Customer[@CustNumber="543"])
					NODESVALUE1(../@SONumber)
	
QUERY	NODES(//SalesOrder[@SONumber="12345"]/Line/Part)
					NODESVALUE1(@PartNumber)
					NODESVALUE2(../Quantity)
	
QUERY	NODES(//Part[Price>2.99])
					NODESVALUE1(../../@SONumber)
					NODESVALUE2(@PartNumber)
					NODESVALUE3(Price)
					NODESVALUE4(../Quantity)
					NODESVALUE5(Price*../Quantity)

However,	in	XML	documents	that	use	more	than	one	namespace	and/or
implement	namespace	prefixes,	things	can	get	a	little	more	complicated.	
Consider	the	following	alternate	example	XML	document	and	contrast	it	to	the
earlier	example:
<?xml	version="1.0"	encoding="UTF-8"?>
	
<!DOCTYPE	Orders	SYSTEM	"http://www.lansa.com/schemas/tutorder.dtd"		>
	
<tut:Orders	xmlns:tut="urn:schemas-lansa-com:tutorder.dtd">
	
						<tut:SalesOrder	SONumber="12345">
	
									<tut:Customer	CustNumber="543">
												<tut:CustName>ABC	Industries</tut:CustName>
												<tut:Street>123	North	St.</tut:Street>
												<tut:City>Bankstown</tut:City>
												<tut:State>NSW</tut:State>
												<tut:PostCode>2087</tut:PostCode>
									</tut:Customer>
	

									<tut:OrderDate>2012-11-19</tut:OrderDate>
	
									<tut:Line	LineNumber="1">
												<tut:Part	PartNumber="123">
															<tut:Description>Gasket	Paper</tut:Description>
															<tut:Price>9.95</tut:Price>
												</tut:Part>
												<tut:Quantity>10</tut:Quantity>
									</tut:Line>
	
									<tut:Line	LineNumber="2">
												<tut:Part	PartNumber="456">
															<tut:Description>Glue</tut:Description>
															<tut:Price>13.27</tut:Price>
												</tut:Part>
												<tut:Quantity>5</tut:Quantity>
									</tut:Line>
	
						</tut:SalesOrder>
	
</tut:Orders>

This	document	contains	a	namespace	declaration	and	uses	the	associated
namespace	prefix	on	the	element	names.		The	use	of	namespace	features	and
especially	of	namespace	prefixes	can	complicate	the	syntax	of	the	XPath
expressions	necessary	for	a	given	query.
Again	you	should	refer	to	the	many	resources	available	on	the	web	concerning
XML	namespaces	and	how	they	affect	XPath.		One	such	reference	is:

XML	Namespaces	and	how	they	affect	Xpath	and	XSLT
The	easiest	approach	to	formulating	XPath	expressions	for	use	with	such	an
instance	document	is	to	disregard	the	namespace(s).		If	the	document	is	loaded
WITHOUT	the	namespace-aware	option	(the	default	mode),	then	you	can	use
nearly	the	same	expressions	as	you	would	use	with	the	earlier	example.		Each	of
the	following	queries	work	successfully	with	the	namespace	prefixed	version	of
the	document	as	shown	above	(note	that	the	namespace	prefix	is	omitted
entirely	from	the	XPath	expressions):
QUERY	NODES(/Orders/SalesOrder/@SONumber)
	
QUERY	NODES(/Orders/SalesOrder)	NODESVALUE1(Customer/@CustNumber)

http://developers.slashdot.org/story/02/05/30/002252/xml-namespaces-and-how-they-affect-xpath-and-xslt

	
QUERY	NODES(/Orders/SalesOrder/Customer[@CustNumber="543"])
					NODESVALUE1(../@SONumber)
	
QUERY	NODES(/Orders/SalesOrder[@SONumber="12345"]/Line/Part)
					NODESVALUE1(@PartNumber)
					NODESVALUE2(../Quantity)
	
QUERY	NODES(/Orders/SalesOrder/Line/Part[Price>2.99])
					NODESVALUE1(../../@SONumber)
					NODESVALUE2(@PartNumber)
					NODESVALUE3(Price)
					NODESVALUE4(../Quantity)
					NODESVALUE5(Price*../Quantity)
	

If,	however,	your	document	declares	more	than	one	namespace,	and,	especially
where	there	would	be	a	namespace	collision	without	the	use	of	the	namespaces,
it	may	be	necessary	to	load	the	document	in	namespace-aware	mode.		This	is
done	by	specifying	*YES	for	the	NAMESPACEAWARE	keyword	on	the
LOAD	command	of	the	XMLQueryService.		For	example:
LOAD	FILE(salesorder.xml)	NAMESPACEAWARE(*YES)

However,	once	the	document	is	loaded	in	namespace-aware	mode,	the	example
queries	shown	up	to	this	point	will	no	longer	function	because	now	the
namespace	forms	a	part	of	the	identification	of	nodes	in	the	XML	document.
There	are	a	variety	of	ways	to	formulate	your	XPath	expressions	such	that	they
will	function	in	the	way	you	require	in	namespace-aware	mode	and	it	is	well
beyond	the	scope	of	this	document	to	attempt	to	cover	all	the	options.		However,
here	are	a	few	examples	that	might	help	to	get	you	started:
1.		This	example	uses	the	local-name	XPath	built-in	function	to	select	nodes
based	on	their	local	name	(the	node	name	WITHOUT	the	namespace	prefix):
QUERY	NODES(//*[local-
name()	=	'SalesOrder'])	NODESVALUE1(@SONumber)

2.		If	multiple	namespaces	are	used	and	'SalesOrder'	is	ambiguous	in	this
context,	then	you	can	extend	the	previous	example	to	use	the	namespace-uri
XPath	built-in	function:
QUERY	NODES(//*[local-name()	=	'SalesOrder'	and	namespace-
uri()	=	'urn:schemas-lansa-com:tutorder.dtd'])

					NODESVALUE1(@SONumber)
3.		Alternatively,	if	you	know	that	all	instances	of	the	XML	document	will	use
the	same	namespace	prefixes	(which,	you	should	understand,	is	NOT	strictly
necessary	for	them	to	be	valid,	even	though	it	may	commonly	be	the	case	in
practice),	then	you	can	include	the	namespace	prefixes	in	your	XPath
expressions	(provided	the	document	is	loaded	in	namespace-aware	mode):
QUERY	NODES(//tut:SalesOrder)	NODESVALUE1(@SONumber)

In	summary,	each	of	the	following	queries	work	successfully	with	the
namespace	prefixed	version	of	the	document	as	shown	above,	providing	the
document	is	loaded	in	namespace-aware	mode	AND	providing	the	actual
namespace	prefix	used	in	the	XML	document	matches	that	assumed	in	the
queries:
QUERY	NODES(//tut:SalesOrder/@SONumber)
	
QUERY	NODES(//tut:SalesOrder)	NODESVALUE1(tut:Customer/@CustNumber)
	
QUERY	NODES(//tut:Customer[@CustNumber="543"])
					NODESVALUE1(../@SONumber)
	
QUERY	NODES(//tut:SalesOrder[@SONumber="12345"]/tut:Line/tut:Part)
					NODESVALUE1(@PartNumber)
					NODESVALUE2(../tut:Quantity)
	
QUERY	NODES(//tut:Part[tut:Price>2.99])
					NODESVALUE1(../../@SONumber)
					NODESVALUE2(@PartNumber)
					NODESVALUE3(tut:Price)
					NODESVALUE4(../tut:Quantity)
					NODESVALUE5(tut:Price*../tut:Quantity)

5.21.3	XMLQueryService	Commands
Your	application	issues	commands	to	the	XMLQueryService	by	passing	the
command	strings	through	the	Java	Service	Manager	using	the
JSM_COMMAND	or	JSMX_COMMAND	built-in	function,	or	an	equivalent
built-in	function	or	API	for	your	chosen	development	language.
The	commands	that	the	XMLQueryService	processes	are:

SERVICE_LOAD
LOAD
SET
RESET
QUERY
SERVICE_GET
SERVICE_UNLOAD

SERVICE_LOAD
Loads	and	initializes	the	service.
	
																																																									Required	
	
	SERVICE_LOAD	----	SERVICENAME	-----	servicename	--------
--------->	

																																																									Optional	
	
															>--	TRACE	-----------	*NO	------------------------->	
																																					*YES	
																																					*ERROR	
		
															>--	TRACE_NAME	------	name	------------------------|		
																																					*SERVICE	
																																					*PROCESS	
																																					*FUNCTION	
																																					*JOBNAME	
																																					*JOBUSER	
																																					*JOBNUMBER	
				
	
For	more	information	refer	to:
Mapping	Service	Name	to	Java	Classes
Service	Program	Tracing	from	the	Client

Keywords
SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

XMLQueryService.
	

TRACE To	enable	tracing	from	the	client	program	use	the	TRACE
keyword	on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:

its:lansa093.chm::/Lansa/intengb7_1475.htm
its:lansa093.chm::/Lansa/INTB5_0075.htm

*NO
*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the
service	does	not	return	an	ERROR,	FATAL	or
SOAPFAULT	status	to	the	client,	the	trace	files	are	deleted
on	the	JSM	CLOSE	call.
The	TRACE	keyword	will	override	the	settings	in	the
manager.properties	file.
	

TRACE_NAME This	optional	keyword	allows	the	client	to	append	a	user-
defined	name	to	the	end	of	the	client	trace	subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

Examples
RDML	Example:
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(XMLQUERYSERVICE)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX	Example:
#jsmcommand	:=	'service_load	service(XMLQUERYSERVICE)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcommand)	to_get(#jsmstatus	#jsmmessage)
	

ILE	RPG	Example:
c																			eval						jsmcmd	=	'service_load'																						
c																													+	'	service(XMLQUERYSERVICE)'
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)															
	

LOAD
The	LOAD	command	is	used	to	parse	and	load	the	XML	document	whose
contents	are	to	be	queried.
The	LOAD	command	must	be	executed	successfully	before	using	the	SET	or
QUERY	commands.
																																																								Required	
		
		LOAD	-------	FILE	-------------	file	path	-------------------->	

																																																									Optional	
	
											>--	VALIDATE	----------	*NO	------------------------->	
																																		*YES
	
											>--	NAMESPACEAWARE	----	*NO	-------------------------|	
																																		*YES
	

Keywords
FILE The	path	and	file	name	for	the	XML	document

whose	contents	are	to	be	queried.
VALIDATE By	default	(and	if	you	specify	*NO	for	this

keyword)	the	XML	document	is	parsed	WITHOUT
validating	it	against	any	DTD	or	schema	it	may
reference.		In	this	mode,	the	XML	document	is
required	to	be	well-formed,	but	conformance	to	the
DTD	or	schema	is	NOT	checked.		For	many
typical	applications	of	the	XMLQueryService,
validation	is	an	unnecessary	overhead.		However,
if	you	require	validation	to	be	performed,	you	may
specify	*YES	for	this	keyword.

NAMESPACEAWAREE
	

By	default	(and	if	you	specify	*NO	for	this
keyword)	the	XML	document	is	parsed	in	a	non-
namespace-aware	mode.		For	most	cases,	this
simplifies	the	form	of	the	XPath	expressions

necessary	to	perform	a	given	query.
In	some	more	complex	documents	(and	especially
for	documents	in	which	more	than	one	namespace
is	referenced)	it	may	be	necessary	to	specify	*YES
for	this	keyword	in	order	to	load	the	document	in
namespace-aware	mode.
Note	that	the	value	specified	(or	assumed)	for	this
keyword	will	affect	the	form	of	XPath	expressions
necessary	to	successfully	perform	a	given	query.

Examples
RDML	Example:
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('LOAD	FILE(salesorder.xml)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX	Example:
use	builtin(jsmx_command)	with_args(#jsmhdle	'load	file(salesorder.xml)')	to_get(#jsmsts	#jsmmsg)
	

ILE	RPG	Example:
c																			eval						jsmcmd	=	'load'																						
c																													+	'	file(salesorder.xml)'
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)															
	

	

SET
The	SET	command	is	used	to	set	the	"current"	node	in	the	presently	loaded
XML	document.		The	"current"	node	is	the	node	to	which	further	queries	(using
the	QUERY	command)	are	applied.
When	the	document	is	loaded	using	the	LOAD	command,	the	current	node	is
the	document	node.		It	is	not	mandatory	to	issue	the	SET	command	to	change
the	current	node.		Providing	the	XPath	expressions	used	in	queries	are
formulated	appropriately,	they	can	be	executed	against	the	document	node,	and
in	many	cases	this	will	be	all	that	is	needed.
However,	in	more	complex	applications	of	the	XMLQueryService,	the	SET
command	may	be	used,	perhaps	iteratively,	to	process	specific	sections	of	an
XML	document.		In	particular,	the	generated	XPath	expressions	returned	by	the
QUERY	command	when	the	special	*XPATH	or	*XPATH_CONCISE	values
are	specified	may	be	used	with	the	SET	command	to	iteratively	process	subsets
of	the	document	contents.
	
																																																									Required	
	
	SET	--------	CURRENTNODE	--------	xpath	expression	-----------
---|
																																		*DOCUMENT
	
	

Keywords
CURRENTNODE The	value	of	this	keyword	is	used	to	set	the	current	node

in	the	loaded	XML	document	as	the	node	to	which	further
queries	(using	the	QUERY	command)	are	applied.
The	special	value	*DOCUMENT	specifies	that	the
document	node	is	the	current	node	–	this	is	the	default
state	immediately	after	loading	an	XML	document	with
the	LOAD	command.
Alternatively	you	may	specify	an	appropriately
formulated	XPath	expression	that	identifies	a	single	node
in	the	document	that	is	to	be	the	"current"	node.
For	more	information	about	XPath	expressions	used	with

the	XMLQueryService,	refer	to	Quick	Guide	to	XPath
expressions	for	use	with	XMLQueryService.

Examples
The	following	examples	use	the	SET	command	to	set	the	current	node	to	the
FIRST	instance	of	an	element	anywhere	in	the	document	with	the	element	name
'SalesOrder'.
RDML	Example:
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	CURRENTNODE(//SalesOrder[1])')	TO_GET(#JSMSTS	#JSMMSG)
	

	
RDMLX	Example:
use	builtin(jsmx_command)	with_args(#jsmhdle	'set	currentnode(//SalesOrder[1])')	to_get(#jsmsts	#jsmmsg)
	

	
ILE	RPG	Example:
c																			eval						jsmcmd	=	'set'																						
c																													+	'	currentnode(//SalesOrder[1])'
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)															
	

	

RESET
The	RESET	command	is	used	to	unload	the	current	XML	document	and	reset
the	state	of	the	service	ready	for	processing	a	new	document.		Any	memory
occupied	by	the	currently	loaded	document	will	become	eligible	to	be	freed	by
the	garbage	collector	in	due	course.
	
	
																																																									Required	
	
	RESET		-------------	no	keywords	---------------------------------|
	

Keywords
There	are	no	keywords	used	with	the	RESET	command

Examples
The	following	examples	use	the	RESET	command	to	unload	the	currently
loaded	XML	document.
RDML	Example:
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('RESET')	TO_GET(#JSMSTS	#JSMMSG)
	

	
RDMLX	Example:
use	builtin(jsmx_command)	with_args(#jsmhdle	'reset')	to_get(#jsmsts	#jsmmsg)
	

	
ILE	RPG	Example:
c																			eval						jsmcmd	=	'reset'																						
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)															
	

	

QUERY
The	QUERY	command	is	used	to	selectively	interrogate	values	contained	in	the
presently	loaded	XML	document	using	XPath	expressions.
You	must	provide	a	working	list	with	the	QUERY	command	in	which	the	result
value(s)	will	be	returned	to	your	program.		The	working	list	will	be	filled	with
zero,	one	or	more	entries	–	one	entry	for	each	selected	node	(resulting	from	the
query	in	the	NODES	keyword).
The	working	list	must	contain	at	least	one	field	in	which	the	value	for	the	node
specified	by	the	NODESVALUE1	keyword	will	be	placed.
It	must	contain	one	additional	field	for	each	of	the	NODESVALUE2	through
NODESVALUE5	keywords	for	which	values	are	specified.		For	example,	if	you
specify	all	five	keywords	NODESVALUE1	through	NODESVALUE5,	then
your	working	list	must	provide	five	fields	in	which	to	receive	the	resulting
values	for	each	selected	node.
																																																									Required	
		
	QUERY	----------	NODES	------------	xpath	expression	------------
->

																																																									Optional	
	
													>---	NODESVALUE1	-------	.	--------------------------->	
																																					*LOCALNAME
																																					*NAMESPACEPREFIX
																																					*NAMESPACEURI
																																					*NODENAME
																																					*NODEVALUE
																																					*XPATH
																																					*XPATH_CONCISE
																																						xpath	expression
	
													>---	NODESVALUE2	------	*LOCALNAME	---------------
---->	
																		NODESVALUE3								*NAMESPACEPREFIX
																		NODESVALUE4								*NAMESPACEURI

																		NODESVALUE5								*NODENAME
																																					*NODEVALUE
																																					*XPATH
																																					*XPATH_CONCISE
																																						xpath	expression
	

Keywords
NODES The	NODES	keyword	must	specify	an	appropriately

formulated	XPath	expression	that	identifies	one	or	more
nodes	in	the	document	for	which	values	are	to	be	returned.
The	XPath	expression	is	evaluated	in	the	context	of	the
"current"	node.		By	default	the	"current"	node	is	the
document	node	but	it	may	be	altered.		Refer	to	the	SET
command	for	information	on	setting	the	"current"	node.
For	more	information	about	XPath	expressions	used	with
the	XMLQueryService,	refer	to	Quick	Guide	to	XPath
expressions	for	use	with	XMLQueryService.
If	no	nodes	are	selected	when	the	XPath	expression	is
evaluated,	it	is	not	treated	as	an	error.		In	this	case,	the
command	succeeds	(with	a	returned	status	of	'OK')	but	the
working	list	will	be	empty.

NODESVALUE1 The	NODESVALUE1	keyword	identifies	the	value	that	is
to	be	returned	in	the	FIRST	column	of	the	provided
working	list	for	each	"selected"	node	(that	is,	each	node
"selected"	by	evaluating	the	XPath	expression	specified	in
the	NODES	keyword).
The	keyword	is	optional.		If	the	XPath	expression	specified
in	the	NODES	keyword	fully	identifies	a	set	of	elements	or
attributes	whose	value(s)	are	to	be	returned,	there	is	no
need	to	specify	the	NODESVALUE1	keyword.		The
default	value	of	'.'	is,	in	fact,	an	XPath	expression	that
specifies	that	the	value	of	the	context	node	(in	this	case,
each	"selected"	node)	is	to	be	used.
If	you	specify	this	keyword,	you	should	specify	a	further
XPath	expression	that	will	be	evaluated	in	the	context	of
each	"selected"	node	and	that	will	identify	a	single	element

or	attribute	value	relative	to	that	node	whose	value	is	to	be
returned.
For	more	information	about	XPath	expressions	used	with
the	XMLQueryService,	refer	to	Quick	Guide	to	XPath
expressions	for	use	with	XMLQueryService.
Alternatively,	you	may	specify	one	of	the	following	special
values:
*LOCALNAME:	returns	the	node	name	(usually	an
element	or	attribute	name)	of	the	"selected"	node,	without
any	namespace	prefix,	if	present;
*NAMESPACEPREFIX:	returns	the	namespace	prefix	of
the	"selected"	node;
*NAMESPACEURI:	returns	the	namespace	URI	of	the
"selected"	node;
*NODENAME:	returns	the	node	name	(usually	an	element
or	attribute	name)	of	the	"selected"	node;
*NODEVALUE:	returns	the	value	of	the	"selected"	node,
equivalent	to	using	an	XPath	expression	of	'.';
*XPATH:	
*XPATH_CONCISE:	These	values	both	return	a	generated
XPath	expression	that	uniquely	identifies	the	"selected"
node	within	the	XML	document.		The	generated	XPath
expressions	mostly	use	ordinal	notation,	and	so	are	valid
only	for	the	specific	node	instance	in	the	specific	document
instance.		Such	generated	expressions	can	be	used,
however,	to	iteratively	process	a	document	using	further
QUERY	commands.		The	second	form	generates	an
expression	that	is	more	concise	(though	less	human-
readable),	particularly	when	the	document	is	being
processed	in	namespace-aware	mode.		The	concise	form
may	be	necessary	for	use	with	very	complex	XML
documents	that	may	otherwise	generate	XPath	expressions
that	are	longer	than	can	be	processed	by	the	client
application.

NODESVALUE2
NODESVALUE3

The	keywords	NODESVALUE2	through	NODESVALUE5
are	optional,	but,	if	specified,	they	function	similarly	to	the

NODESVALUE4
NODESVALUE5

NODESVALUE1	keyword.
They	allow	you	to	specify	further	XPath	expressions	that
(with	the	NODESVALUE1	keyword)	identify	up	to	five
separate	values	relative	to	each	"selected"	node	to	be
returned	in	the	corresponding	working	list	columns.
Unlike	the	NODESVALUE1	keyword,	these	keywords
have	no	default.		If	you	do	not	specify	them,	they	will	not
be	used	and	the	corresponding	working	list	columns	are
not	referenced	or	required.
If	you	do	specify	these	keywords,	you	must	do	so
contiguously.		The	service	will	stop	looking	after	the	first
keyword	that	is	not	used.		For	example,	if	you	specify
NODESVALUE1	and	NODESVALUE3,	then	the	latter
will	be	ignored	because	NODESVALUE2	was	not	used.

Examples
The	following	examples	execute	a	QUERY	command	that	will	query	each
<SalesOrder>	element	in	the	presently	loaded	document	and,	for	each,	return

the	value	of	the	@SONumber	attribute	(sales	order	number)	and
the	value	of	the	@CustNumber	attribute	of	the	contained	<Customer>
element.	

The	two	values	are	returned	for	each	"selected"	node	in	the	entries	of	the
ORDERS	working	list.
RDML	Example:
DEFINE	FIELD(#ORDERNUM)	TYPE(*CHAR)	LENGTH(10)	COLHDG('Order'	'Number')	INPUT_ATR(LC)
DEFINE	FIELD(#CUSTNUM)	TYPE(*CHAR)	LENGTH(10)	COLHDG('Customer'	'Number')	INPUT_ATR(LC)
DEF_LIST	NAME(#ORDERS)	FIELDS(#ORDERNUM	#CUSTNUM)	TYPE(*WORKING)	ENTRYS(100)
	
					…
	
CLR_LIST	NAMED(#ORDERS)
CHANGE	FIELD(#JSMCMD)	TO('''query	nodes(//SalesOrder)	nodesvalue1(@SONumber)	nodesvalue2(Customer/@CustNumber)	service_list(ORDERNUM,CUSTNUM)''')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#ORDERS)
	

RDMLX	Example:
define	field(#ORDERNUM)	type(*CHAR)	length(10)	colhdg('Order'	'Number')	input_atr(LC)
define	field(#CUSTNUM)	type(*CHAR)	length(10)	colhdg('Customer'	'Number')	input_atr(LC)

def_list	name(#ORDERS)	fields(#ORDERNUM	#CUSTNUM)	type(*WORKING)	entrys(100)
					…
	
clr_list	named(#ORDERS)
#jsmcmdx	:=	'query	nodes(//SalesOrder)	nodesvalue1(@SONumber)	nodesvalue2(Customer/@CustNumber)	'
use	builtin(JSMX_COMMAND)	with_args(#jsmcmdx)	to_get(#jsmsts	#jsmmsg	#orders)
	

SERVICE_GET
The	SERVICE_GET	command	allows	JSM	client	applications	to	access	the
keyword	/	value	properties	from	the	properties	file	associated	with	the	currently
loaded	service.
Client	applications	can	access	the	value	of	properties	associated	with	the
service,	but,	perhaps	more	usefully,	they	can	access	application	specific
property	values	too,	using	the	service	properties	file	as	a	common	medium	for
holding	such	values.
When	used	in	the	latter	way,	there	is	a	possibility	of	conflict	between
application-defined	keyword	names	and	those	used	by	current	and	future
versions	of	LANSA	Integrator.		To	reduce	this	possibility	your	application
should	prefix	the	property	keyword	with	a	global	unique	name.		The	examples
below	use	com.acme.property	as	the	prefix	for	this	purpose.
The	service	property	keyword	value	is	returned	in	the	JSM	Message	field.	If	the
keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
																																																								Required	
		
		SERVICE_GET	--------		PROPERTY	-----	value	-------------------
-|	
				

Keywords
PROPERTY Provide	a	keyword	/	value	to	be	checked	on	the	service

properties	file.
The	service	property	keyword	value	is	returned	in	the	JSM
Message	field.		If	the	keyword	does	not	exist	in	the	service
property	file	a	status	of	NOT_EXIST	is	returned.

Examples
The	examples	retrieve	the	value	of	the	com.acme.property.messagetype	(an
application-defined	property)	in	the	service	properties	file.		This	property	might
be	defined	in	the	service	properties	file	with	a	line	like	this	(the	value	"html"
will	be	returned	to	the	application	in	this	case):
com.acme.property.messagetype=html

RDML	Example:
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_GET	PROPERTY(com.acme.property.messagetype)')	TO_GET(#JSMSTS	#JSMMSG)

	
RDMLX	Example:
#jsmcmd	:=	'	service_get	property(com.acme.property.messagetype)'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

ILE	RPG	Example:
c																			eval						jsmcmd	=	'service_get'																						
c																													+	'	property(com.acme.property.messagetype)'
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)															
	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
	
SERVICE_UNLOAD	---------	no	keywords	---------------------------
------|
	

Keywords
There	are	no	SERVICE_UNLOAD	keywords.

Examples
RDML	Example:
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(SERVICE_UNLOAD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX	Example:
use	builtin(jsmx_command)	with_args(#jsmhandle	service_unload)	to_get(#jsmstatus	#jsmmessage)
	

ILE	RPG	Example:
c																			eval						jsmcmd	=	'service_unload'																						
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)															
	

5.21.4	XMLQueryService	Example
RDML	Example

its:lansa093.CHM::/LANSA/INTENGBL_0080.HTM

5.22	SOAPAgentService
Service	Name:	SOAPAgentService
The	SOAPAgentService	acts	as	a	client	to	a	remote	Web	Service.	To	use	this
service,	you	need	to	create	a	service	class	using	the	SOAP	wizard.
The	SOAPAgentService	supports	the	following	commands:
5.22.1	SERVICE_LOAD
5.22.2	SERVICE_GET
5.22.3	OPEN
5.22.4	SET
5.22.5	CALL
5.22.6	GET
5.22.7	IS
5.22.8	CLOSE
5.22.9	SERVICE_UNLOAD

5.22.1	SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD TIMEZONE value Optional.
See	5.1.3	Time	Zones.
This	overrides	the	timezone	service
property.
If	no	service	property	then	the
default	TimeZone	is	used.

	

5.22.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.22.3	OPEN
The	OPEN	command	loads	the	service	class	used	to	handle	the	SOAP
transaction.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

OPEN SERVICE value Mandatory.	Service	name.

	

The	SERVICE	keyword	value	is	used	in	a	resource	property	lookup	using	the
property	key	service.'value'	and	service.archive.'value'	to	locate	the	binding
class	and	the	binding	jar	file	that	contains	the	binding	class	and	supporting
classes	generated	by	the	SOAPAgent	Wizard.	If	the	service	binding	archive
entry	does	not	exist	then	the	binding	jar	file	must	exist	in	the	JSM	jar
subdirectory	instead	of	a	user	specified	directory.
This	example	uses	a	service	class	named	com.acme.SearchService	for	a
SERVICE	value	of	SEARCH:
	
service.search=com.acme.SearchService
service.archive.search=bindings/search.jar
	

Example
	
OPEN	SERVICE(SEARCH)
	

	

5.22.4	SET
The	SET	command	sets	the	context	and	data	of	the	operation	parameters	and
fragments.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET OPERATION value Optional.	Operation	name.

PARAMETER value Optional.	Parameter	name.

FRAGMENT value Optional.	Fragment	name.

LIST value Optional.	List	name.

VALIDATE *ALL Optional.	Validate	SOAP	request
and	response	messages	using	an
XML	Schema.
Used	with	the	OPERATION
keyword.

*OPTIONAL Only	validate	if	service	properties
are	available.
Default.

*NONE No	validation.

*REQUEST Validate	SOAP	request	message.

*RESPONSE Validate	SOAP	response	message.

	

	
Once	the	service	has	been	opened,	the	program	needs	to	specify	which
operation	will	be	used,	by	calling	the	SET	OPERATION	command.	The
optional	VALIDATE	keyword	controls	whether	XML	Schema	validation	is	done
on	the	SOAP	XML	request	and	response	messages.	The	external	XML	Schema
files	used	to	validate	the	SOAP	messages	is	specified	in	the	service	properties
file.	The	service	and	operation	names	are	used	in	the	service	property	to	qualify

each	entry.
Example
	
#	service.validate.request.service.operation=soap-agent-schemas/soap-
envelope.xsd
#	service.validate.response.service.operation=soap-agent-schemas/soap-
envelope.xsd
	

Once	the	operation	has	been	set,	then	the	program	needs	to	set	the	parameters
and	their	values.	If	a	parameter	is	simple	and	requires	no	fragments	or	lists,	then
a	SET	PARAMETER	command	will	set	the	parameter	value	with	the	program
field	value.
If	the	parameter	is	a	complex	object,	then	the	SET	PARAMETER	command
needs	to	be	called	to	set	the	context	of	future	calls	to	act	on	this	parameter.
Several	SET	FRAGMENT	and	SET	LIST	commands	might	need	to	be	called	to
fully	populate	the	parameter	object.
Call	the	SET	PARAMETER	command	again	to	move	onto	creating	the	next
parameter.
Once	all	parameters	have	been	prepared,	then	execute	the	CALL	command.
Example
	
SET	OPERATION(KEYWORDSEARCHREQUEST)
SET	OPERATION(KEYWORDSEARCHREQUEST)	VALIDATE(*RESPONSE)
SET	PARAMETER(KEYWORDSEARCHREQUEST)
SET	LIST(AUTHORS)	SERVICE_LIST(...)
SET	FRAGMENT(REQUEST)	SERVICE_EXCHANGE(*FIELD)
	

Example	SOAP/1.1	Envelope	XMLSchema
	
<?xml	version="1.0"	encoding="utf-8"?>
	
<!--
	
		Schema	for	the	SOAP/1.1	envelope
	
		Portions	©	2001	DevelopMentor,	©	2001	W3C	(Massachusetts	Institute	of	Technology,
		Institut	National	de	Recherche	en	Informatique	et	en	Automatique,	Keio	University).

		All	Rights	Reserved.
	
		This	document	is	governed	by	the	W3C	Software	License	[1]	as	described	in	the	FAQ	[2].
		[1]	http://www.w3.org/Consortium/Legal/copyright-software-19980720
		[2]	http://www.w3.org/Consortium/Legal/IPR-FAQ-20000620.html#DTD	
	
		By	obtaining,	using	and/or	copying	this	work,	you	(the	licensee)	agree	that	you	have	read,
		understood,	and	will	comply	with	the	following	terms	and	conditions:
	
		Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its	documentation,
		with	or	without	modification,		for	any	purpose	and	without	fee	or	royalty	is	hereby	granted,
		provided	that	you	include	the	following	on	ALL	copies	of	the	software	and	documentation	or
		portions	thereof,	including	modifications,	that	you	make:
	
		1.	The	full	text	of	this	NOTICE	in	a	location	viewable	to	users	of	the	redistributed	or
					derivative	work.
	
		2.	Any	pre-
existing	intellectual	property	disclaimers,	notices,	or	terms	and	conditions.
					If	none	exist,	a	short	notice	of	the	following	form	(hypertext	is	preferred,	text	is
					permitted)	should	be	used	within	the	body	of	any	redistributed	or	derivative	code:
				"Copyright	©	2001	World	Wide	Web	Consortium,	(Massachusetts	Institute	of	Technology,
					Institut	National	de	Recherche	en	Informatique	et	en	Automatique,	Keio	University).
					All	Rights	Reserved.	http://www.w3.org/Consortium/Legal/"
	
		3.	Notice	of	any	changes	or	modifications	to	the	W3C	files,	including	the	date	changes	were	made.
					(We	recommend	you	provide	URIs	to	the	location	from	which	the	code	is	derived.)
	
		Original	W3C	files;	http://www.w3.org/2001/06/soap-envelope
		Changes	made:	
					-	reverted	namespace	to	http://schemas.xmlsoap.org/soap/envelope/
					-	reverted	mustUnderstand	to	only	allow	0	and	1	as	lexical	values
					-	made	encodingStyle	a	global	attribute	20020825
					-	removed	default	value	from	mustUnderstand	attribute	declaration
	
		THIS	SOFTWARE	AND	DOCUMENTATION	IS	PROVIDED	"AS	IS,"	AND	COPYRIGHT	HOLDERS	MAKE	NO
		REPRESENTATIONS	OR	WARRANTIES,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO,	WARRANTIES
		OF	MERCHANTABILITY	OR	FITNESS	FOR	ANY	PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF	THE	SOFTWARE	OR
		DOCUMENTATION	WILL	NOT	INFRINGE	ANY	THIRD	PARTY	PATENTS,	COPYRIGHTS,	TRADEMARKS	OR	OTHER	RIGHTS.

	
		COPYRIGHT	HOLDERS	WILL	NOT	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	SPECIAL	OR	CONSEQUENTIAL	DAMAGES
		ARISING	OUT	OF	ANY	USE	OF	THE	SOFTWARE	OR	DOCUMENTATION.
	
		The	name	and	trademarks	of	copyright	holders	may	NOT	be	used	in	advertising	or	publicity
		pertaining	to	the	software	without	specific,	written	prior	permission.
		Title	to	copyright	in	this	software	and	any	associated	documentation	will	at	all	times
		remain	with	copyright	holders.
	
-->
	
<xs:schema	xmlns:xs="http://www.w3.org/2001/XMLSchema"
											xmlns:tns="http://schemas.xmlsoap.org/soap/envelope/"
											targetNamespace="http://schemas.xmlsoap.org/soap/envelope/"
											xmlns:import1="http://soap.service.acme.com">
	
		<!--	Import	SOAP	Service	XMLSchema	EveryNumber	-->
		<xs:import	namespace="http://soap.service.acme.com"	schemaLocation="everyNumber.xsd"/>
	
		<!--	Envelope	-->
		<xs:element	name="Envelope"	type="tns:Envelope"/>
		<xs:complexType	name="Envelope">
				<xs:sequence>
						<xs:element	ref="tns:Header"	minOccurs="0"/>
						<xs:element	ref="tns:Body"	minOccurs="1"/>
						<xs:any	namespace="##other"	minOccurs="0"	maxOccurs="unbounded"	processContents="lax"/>
				</xs:sequence>
				<xs:anyAttribute	namespace="##other"	processContents="lax"/>
		</xs:complexType>
	
		<!--	Header	-->
		<xs:element	name="Header"	type="tns:Header"/>
		<xs:complexType	name="Header">
				<xs:sequence>
						<xs:any	namespace="##other"	minOccurs="0"	maxOccurs="unbounded"	processContents="lax"/>
				</xs:sequence>
				<xs:anyAttribute	namespace="##other"	processContents="lax"/>
		</xs:complexType>
		

		<!--	Body	-->
		<xs:element	name="Body"	type="tns:Body"/>
		<xs:complexType	name="Body">
				<xs:sequence>
	
<!--
					Accept	any	request,	response	or	fault	element
					<xs:any	namespace="##any"	minOccurs="0"	maxOccurs="unbounded"	processContents="lax"/>
-->
				<xs:element	ref="import1:getNumber"	minOccurs="0"/>
				<xs:element	ref="import1:getNumberResponse"	minOccurs="0"/>
				<xs:element	ref="tns:Fault"	minOccurs="0"/>
	
				</xs:sequence>
				<xs:anyAttribute	namespace="##any"	processContents="lax"/>
		</xs:complexType>
	
		<!--	Global	Attributes	-->
		<xs:attribute	name="mustUnderstand">
					<xs:simpleType>
					<xs:restriction	base="xs:boolean">
							<xs:pattern	value="0|1"/>
							</xs:restriction>
			</xs:simpleType>
		</xs:attribute>
		<xs:attribute	name="actor"	type="xs:anyURI"/>
	
		<xs:simpleType	name="encodingStyle">
				<xs:list	itemType="xs:anyURI"/>
		</xs:simpleType>
	
		<xs:attribute	name="encodingStyle"	type="tns:encodingStyle"/>
		<xs:attributeGroup	name="encodingStyle">
				<xs:attribute	ref="tns:encodingStyle"/>
		</xs:attributeGroup>
	
		<!--	Fault	-->
		<xs:element	name="Fault"	type="tns:Fault"/>
		<xs:complexType	name="Fault"	final="extension">

				<xs:sequence>
						<xs:element	name="faultcode"	type="xs:QName"/>
						<xs:element	name="faultstring"	type="xs:string"/>
						<xs:element	name="faultactor"	type="xs:anyURI"	minOccurs="0"/>
						<xs:element	name="detail"	type="tns:detail"	minOccurs="0"/>						
				</xs:sequence>
		</xs:complexType>
	
		<!--	Fault	detail	-->
		<xs:complexType	name="detail">
				<xs:sequence>
						<xs:any	namespace="##any"	minOccurs="0"	maxOccurs="unbounded"	processContents="lax"/>
				</xs:sequence>
				<xs:anyAttribute	namespace="##any"	processContents="lax"/>	
		</xs:complexType>
	
</xs:schema>
	

	
Example	SOAP	Service	XMLSchema
	
<?xml	version="1.0"	encoding="utf-8"?>
	
<xs:schema	xmlns:xs="http://www.w3.org/2001/XMLSchema"	xmlns:tns="http://soap.service.acme.com"	targetNamespace="http://soap.service.acme.com">
	
			<xs:element	name="getNumber">
				<xs:complexType>
					<xs:sequence>
						<xs:element	name="param1"	type="tns:EveryNumber"/>
					</xs:sequence>
				</xs:complexType>
			</xs:element>
	
			<xs:element	name="getNumberResponse">
				<xs:complexType>
					<xs:sequence>
						<xs:element	name="getNumberReturn"	type="tns:EveryNumber"/>
					</xs:sequence>

				</xs:complexType>
			</xs:element>
	
			<xs:complexType	name="EveryNumber">
				<xs:sequence>
					<xs:element	name="n_double"	type="xs:double"/>
					<xs:element	name="n_float"	type="xs:float"/>
					<xs:element	name="n_int"	type="xs:int"/>
					<xs:element	name="n_long"	type="xs:long"/>
				</xs:sequence>
			</xs:complexType>
	
</xs:schema>
	

Example	XMLSchema	SimpleTypes
	
<xs:simpleType	name="type-pattern">
		<xs:restriction	base="xs:string">
				<xs:pattern	value="[2-5][0-9]"/>
		</xs:restriction>
</xs:simpleType>
	
<xs:simpleType	name="type-enumeration">
		<xs:restriction	base="xs:string">
				<xs:enumeration	value="A"/>
				<xs:enumeration	value="B"/>
				<xs:enumeration	value="C"/>
		</xs:restriction>
</xs:simpleType>
	
<xs:simpleType	name="type-enumeration2">
		<xs:restriction	base="xs:int">
				<xs:enumeration	value="12"/>
				<xs:enumeration	value="22"/>
				<xs:enumeration	value="32"/>
		</xs:restriction>
</xs:simpleType>
	

<xs:simpleType	name="one-hundred-or-more">
		<xs:restriction	base="xs:int">
				<xs:minInclusive	value="100"/>
		</xs:restriction>
</xs:simpleType>
	
<xs:simpleType	name="one-hundred-or-less">
		<xs:restriction	base="xs:int">
				<xs:maxInclusive	value="100"/>
		</xs:restriction>
</xs:simpleType>
	
<xs:simpleType	name="amount">
		<xs:restriction	base="xs:decimal">
				<xs:totalDigits	value="4"/>
				<xs:fractionDigits	value="1"/>
				<xs:minInclusive	value="22.0"/>
				<xs:maxInclusive	value="80.5"/>
		</xs:restriction>
</xs:simpleType>
	
<xs:simpleType	name="TimePeriod">
		<xs:restriction	base="xs:string">
				<xs:pattern	value="Days|Weeks|Months|Years"/>
				</xs:restriction>
</xs:simpleType>
	

	

5.22.5	CALL
The	CALL	command	executes	the	operation.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CALL USER value Optional.	HTTP	Basic	Authentication.

PASSWORD value Optional.	HTTP	Basic	Authentication.

URL value Optional.	HTTP	End	point.

FAULT value Optional.	File	path.
If	a	SOAP	Fault	occurs	then	the	SOAP
message	to	written	to	the	specified	file.
This	file	can	then	be	processed	by	an	XML
service.

VERSION 	 Optional.	See	VERSION.

	

	
If	the	response	from	the	web	service	is	a	simple	data	type,	then	updating	of	the
program	with	this	value	will	happen	automatically.	If	the	response	object	is
complex	then	several	GET	FRAGMENT	and	GET	LIST	commands	will	be
required	to	receive	all	the	returned	data	into	the	program.
Example
	
CALL
	

	

5.22.6	GET
The	GET	command	retrieves	the	data	from	the	response	object	returned	by	the
CALL	operation.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET FRAGMENT value Optional.	Fragment	name.

LIST value Optional.	List	name.

	

	
Example
	
GET	LIST(STATUS)	SERVICE_LIST(...)
GET	FRAGMENT(RESPONSE)	SERVICE_EXCHANGE(*FIELD)
	

	

5.22.7	IS
The	IS	command	is	used	to	check	if	the	return	parameter	is	a	NULL	reference.
If	the	condition	check	is	true	then	an	OK	status	is	returned	or	a	status	of	NO	is
returned.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

IS NULL *RETURN Conditional.

NOT_NULL *RETURN Conditional.

	

	
Example
	
IS	NULL(*RETURN)
IS	NOT_NULL(*RETURN)
	

	

5.22.8	CLOSE
The	CLOSE	command	releases	resources	and	resets	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CLOSE 	 	 	

	

Example
	
CLOSE
	

	

5.22.9	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

5.23	SOAPServerService
Service	Name:	SOAPServerService
The	SOAPServerService	receives	a	SOAP	request	and	returns	a	SOAP	response
to	the	third-party	client.	To	use	this	service,	you	need	to	create	service	and
provider	classes	using	the	SOAP	wizard.
The	SOAPServerService	supports	the	following	commands:
5.23.1	SERVICE_LOAD
5.23.2	SERVICE_GET
5.23.3	OPEN
5.23.4	IS
5.23.5	GET
5.23.6	SET
5.23.7	CLOSE
5.23.8	SERVICE_UNLOAD

5.23.1	SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD TIMEZONE value Optional.See	5.1.3	Time	Zones.
This	overrides	the	timezone
service	property.
If	no	service	property	then	the
default	TimeZone	is	used.

ARCHIVE 	 Optional.	See	ARCHIVE.

ENCODING 	 Optional.	See	ENCODING.

*BINARY Archive	content	with	no
encoding	changes.

	

If	the	ARCHIVE	keyword	is	used	the	service	will	use	the	ENCODING	keyword
value	if	it	is	present	or	determine	the	encoding	from	the	protocol	content-type
entry	or	use	a	default	value	to	convert	the	received	byte	content	to	a	Unicode
string	ready	for	the	archiving	stage.
The	ENCODING	keyword	is	only	used	when	the	service	is	going	to	archive	the
received	content.	The	keyword	value	of	*BINARY	instructs	the	service	to	write
the	byte	content	unaltered	to	the	archive	file.
The	ARCENCODE	keyword	controls	the	archive	file	content	encoding.
If	the	content	type	is	not	of	type	text	or	XML	then	the	byte	content	is	written	to
the	file	unaltered.
Using	the	keyword	ENCODING	(*BINARY)	with	the	ARCHIVE	keyword
causes	all	received	content	to	be	archived	unaltered.

5.23.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.23.3	OPEN
The	OPEN	command	loads	the	service	and	provider	classes	to	handle	the	SOAP
transaction.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

OPEN SERVICE value Mandatory.	Service	name.

VALIDATE *ALL Optional.	Validate	SOAP	request	and
response	messages	using	an	XML
Schema.

*OPTIONAL Only	validate	if	service	properties
are	available.
Default.

*NONE No	validation.

*REQUEST Validate	SOAP	request	message.

*RESPONSE Validate	SOAP	response	message.

	

The	SERVICE	keyword	is	a	symbolic	name	for	the	service	and	provider	classes
created	by	the	SOAP	Wizard.	This	example	uses	a	service	class	named
com.acme.SearchService	a	and	a	provider	class	com.acme.SearchProvider	for	a
SERVICE	value	of	SEARCH:
	
service.search=com.acme.SearchService
provider.search=com.acme.SearchProvider
	

The	optional	VALIDATE	keyword	controls	whether	XML	Schema	validation	is
done	on	the	SOAP	XML	request	and	response	messages.	The	external	XML
Schema	files	used	to	validate	the	SOAP	messages	is	specified	in	the	service
properties	file.	The	service	and	operation	names	are	used	in	the	service	property
to	qualify	each	entry.

Example
	
#	service.validate.request.service.operation=soap-server-schemas/soap-
envelope.xsd
#	service.validate.response.service.operation=soap-server-schemas/soap-
envelope.xsd
	

	
Example
	
OPEN	SERVICE(SEARCH)
	

	

5.23.4	IS
The	IS	command	is	used	to	check	if	a	parameter	has	a	NULL	reference.	If	the
condition	check	is	true	then	an	OK	status	is	returned	or	a	status	of	NO	is
returned.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

IS NULL value Conditional.	Parameter	Name.

NOT_NULL value Conditional.	Parameter	Name.

	

	
Example
	
IS	NULL(ID)
IS	NOT_NULL(SURNAME)
	

	

5.23.5	GET
The	GET	command	retrieves	the	contents	of	the	operation	parameters.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET PARAMETER value Optional.	Parameter	name.

FRAGMENT value Optional.	Fragment	name.

LIST value Optional.	List	name.

OBJECT *OPERATION Optional.	Retrieve	operation
name.

PROPERTY value Optional.	HTTP	protocol
property.

	

	
Example
	
GET	PARAMETER(ID)
GET	PROPERTY(SOAPACTION)
	

5.23.6	SET
The	SET	command	is	used	to	create	the	return	parameter	object.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET
	

PARAMETER *RETURN Optional.

FRAGMENT value Optional.	Fragment	name.

LIST value Optional.	List	name.

	

If	the	return	parameter	is	simple	and	requires	no	fragments	or	lists,	then	a	SET
PARAMETER(*RETURN)	command	will	set	the	parameter	value	with	the
program	field	value.
If	the	parameter	is	a	complex	object,	then	the	SET	PARAMETER(*RETURN)
command	needs	to	be	called	to	set	the	context	of	future	calls	to	act	on	this
parameter.	Several	SET	FRAGMENT	and	SET	LIST	commands	might	need	to
be	called	to	fully	populate	the	return	parameter	object.
Example
	
SET	PARAMETER(*RETURN)
	

	

5.23.7	CLOSE
The	CLOSE	command	closes	the	open	service	and	creates	the	SOAP	response.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CLOSE FAULT value Optional.	Fault	string.

CONTENT 	 Optional.	See	CONTENT.

ARCHIVE 	 Optional.	See	ARCHIVE.

	

	
Example
	
CLOSE
CLOSE	FAULT(Duplicate	name)
	

	

5.23.8	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
DO	NOT	use	the	SERVICE_UNLOAD	command	when	sending	a	HTTP/SOAP
response.	Use	the	CLOSE	command	to	create	the	response	and	then	use	the
JSM_CLOSE	BIF	to	close	the	connection.	The	byte	array	response	returned	to
JSM	Client	program	by	the	CLOSE	command	will	be	become	the	HTTP/SOAP
response.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

5.24	XMLQueueService
Service	Name:	XMLQueueService
The	XMLQueueService	service	allows	XML	messages	to	be	received	from	and
sent	to	MQSeries	message	queues	and	IBM	i	Data	queues.
The	following	service	property	entries	can	be	used	to	control	the	data	encoding
used	when	data	is	received	from	the	queue	and	send	to	the	queue.	When	data	is
put	to	an	IBM	i	data	queue	the	data	is	padded	with	EBCDIC	spaces.	It	is
recommended	that	dq.put.encoding	and	dq.get.encoding	values	belong	to	the
EBCDIC	family.	For	example	Cp037,	Cp273	and	Cp500	are	valid	values.	By
default	the	CCSID	of	the	client	program	or	the	message	is	used	to	determine	the
encoding	value.
dq.get.encoding
dq.put.encoding
mq.get.encoding
mq.put.encoding
The	following	service	property	entries	can	be	used	to	stop	the	XML	declaration
being	modified	to	suit	the	data	encoding.	The	default	value	for	these	properties
is	*yes.
dq.put.modify.declaration=*no
mq.put.modify.declaration=*no
The	following	service	property	entries	can	be	used	to	explicitly	specifiy	the
XML	declaration	IANA	encoding	used	by	the	XML	declaration	modification
process.
If	these	service	properties	are	missing	then	the	IANA	encoding	is	determined
from	the	encoding.
dq.put.encoding.declaration=	Any	valid	IANA	encoding.	ie	iso-8859-1
mq.put.encoding.declaration=	Any	valid	IANA	encoding.	ie	iso-8859-1
IBM	Java	Unicode	to	EBCDIC	byte	encoders	use	the	EBCDIC	NL	(New	Line
0x15)	character	instead	of	the	EBCDIC	LF	(Line	Feed	0x25)	character.	When
the	Unicode	XML	result	is	converted	to	the	selected	encoding	and	this	encoding
is	EBCDIC,	the	New	Line	character	will	be	replaced	with	a	Line	Feed	character.
The	default	value	for	these	properties	is	*no.
dq.put.ebcdic.nl2lf=*yes
mq.put.ebcdic.nl2lf=*yes

The	XMLQueueService	can	be	configured	to	handle	text	messages.	If	the
keyword	MESSAGE(*TEXT)	is	present	on	the	SERVICE_LOAD	command
then	the	service	is	expecting	text	messages	and	the	message	value	is	wrapped
with	<text>	and	</text>	tags.
	
<?xml	version="1.0"	encoding="utf-8"?>
<text>The	quick	brown	fox	jumped	over	the	lazy	dogs</text>
	

	
The	XMLQueueService	supports	the	following	commands:
5.24.1	SERVICE_LOAD
5.24.2	SERVICE_GET
5.24.3	RECEIVE
5.24.4	SEND
5.24.5	ARCHIVE
5.24.6	SERVICE_UNLOAD
Refer	to	5.1.13	MQSeries	Built-In	Functions	for	details	of	the	MQSeries	Built-
In	Functions.

5.24.1	SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD SCHEMA 	 Optional.	See	SCHEMA.

VALIDATING 	 Optional.	See
VALIDATING.

DOMSET 	 Optional.	See	DOMSET.

DOMSETMODEL 	 Optional.	See
DOMSETMODEL.

DOMSETRESULT 	 Optional.	See
DOMSETRESULT.

DOMGET 	 Optional.	See	DOMGET.

DOMGETRESULT 	 Optional.	See
DOMGETRESULT.

MESSAGE *TEXT Optional.	Service	is
expecting	text	messages.

	

	

5.24.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.24.3	RECEIVE
When	the	RECEIVE	command	of	this	service	is	executed	the	following	steps
occur:
If	there	is	no	content,	then	an	OK	status	is	returned.
The	service	then	transforms	the	XML	and	binds	the	data	into	the	program	fields
and	list.
The	receive	command	can	be	called	more	than	once	to	receive	data	from	a
complex	XML	document.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RECEIVE XSL 	 Mandatory.	See	XSL.

	

	

5.24.4	SEND
When	the	SEND	command	of	this	service	is	executed	the	following	steps	occur:
The	service	using	the	XSL	keyword	transforms	the	program	fields	and	list	into
the	resultant	XML.	If	a	FRAGMENT	keyword	is	present	this	transformation	is
stored,	as	this	is	only	a	fragment	of	the	final	XML	to	be	sent.	When	no
FRAGMENT	keyword	is	present	this	transformation	is	treated	as	the	last	and
the	final	output	XML	is	constructed	and	ready	to	put	on	a	queue.
The	XMLQueueService	can	send	text	messages,	if	the	result	XML	uses	the	text
tags	to	wrap	the	text	message	and	the	MESSAGE(*TEXT)	keyword	is	present
on	the	final	SEND	command,	these	tags	are	removed	and	the	text	value	is	sent.
	
<?xml	version="1.0"	encoding="utf-8"?>
<text>The	quick	brown	fox	jumped	over	the	lazy	dogs</text>
	

	
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND XSL 	 Mandatory.	See	XSL

*COPY Copies	the	input	source	to	the	output
source.

FRAGMENT 	 Optional.	See	FRAGMENT.

OUTPUT 	 Optional.	See	OUTPUT.

MESSAGE *TEXT Optional.	Send	text	message.

	

	

5.24.5	ARCHIVE
The	ARCHIVE	command	saves	the	selected	source	to	the	archive	file	using	the
specified	encoding.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

ARCHIVE FILE value Mandatory.	File	path.

ENCODING 	 Optional.	See	ENCODING.

SOURCE *RECEIVE Optional.	Archive	receive	source.
Default.	*RECEIVE.

*SEND Archive	send	source.

	

5.24.6	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

5.25	XMLBindQueueService
Service	Name:	XMLBindQueueService
The	XMLBindQueueService	service	allows	XML	messages	to	be	received	from
and	sent	to	MQSeries	message	queues	and	IBM	i	Data	queues.
The	following	service	property	entries	can	be	used	to	control	the	data	encoding
used	when	data	is	received	from	the	queue	and	send	to	the	queue.	When	data	is
put	to	an	IBM	i	data	queue	the	data	is	padded	with	EBCDIC	spaces.	It	is
recommended	that	dq.put.encoding	and	dq.get.encoding	values	belong	to	the
EBCDIC	family.	For	example	Cp037,	Cp273	and	Cp500	are	valid	values.	By
default	the	CCSID	of	the	client	program	or	message	is	used	to	determine	the
encoding	value.
dq.get.encoding
dq.put.encoding
mq.get.encoding
mq.put.encoding
The	following	service	property	entries	can	be	used	to	explicitly	specifiy	the
XML	declaration	IANA	encoding	used	by	the	XML	declaration	modification
process.
If	these	service	properties	are	missing	then	the	IANA	encoding	is	determined
from	the	encoding.
dq.put.encoding.declaration=	Any	valid	IANA	encoding.	ie	iso-8859-1
mq.put.encoding.declaration=	Any	valid	IANA	encoding.	ie	iso-8859-1
The	following	service	property	entries	can	be	used	to	stop	the	XML	declaration
being	modified	to	suit	the	data	encoding.	The	default	value	for	these	properties
is	*yes.
dq.put.modify.declaration=*no
mq.put.modify.declaration=*no
IBM	Java	Unicode	to	EBCDIC	byte	encoders	use	the	EBCDIC	NL	(New	Line
0x15)	character	instead	of	the	EBCDIC	LF	(Line	Feed	0x25)	character.	When
the	Unicode	XML	result	is	converted	to	the	selected	encoding	and	this	encoding
is	EBCDIC,	the	New	Line	character	will	be	replaced	with	a	Line	Feed	character.
The	default	value	for	these	properties	is	*no.
dq.put.ebcdic.nl2lf=*yes
mq.put.ebcdic.nl2lf=*yes

The	XMLBindQueueService	supports	the	following	commands:
5.25.1	SERVICE_LOAD
5.25.2	SERVICE_GET
5.25.3	BIND
5.25.4	CLOSE
5.25.5	GET
5.25.6	SET
5.25.7	WRITE
5.25.8	ARCHIVE
5.25.9	SERVICE_UNLOAD
Refer	to	5.1.13	MQSeries	Built-In	Functions	for	details	of	the	MQSeries	Built-
In	Functions.

5.25.1	SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD SCHEMA 	 Optional.	See	SCHEMA.

VALIDATING 	 Optional.	See	VALIDATING.

DOMSET 	 Optional.	See	DOMSET.

	

	

5.25.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.25.3	BIND
The	BIND	command	binds	the	specified	service	code	to	the	loaded	inbound
document	or	creates	a	new	empty	outbound	document.
The	SERVICE	keyword	value	is	used	in	a	resource	property	lookup	using	the
property	key	service.'value'	and	service.archive.'value'	to	locate	the	binding
class	and	the	binding	jar	file	that	contains	the	binding	class	and	supporting
classes	generated	by	the	XMLBinding	Wizard.	If	the	service	binding	archive
entry	does	not	exist	then	the	binding	jar	file	must	exist	in	the	JSM	jar
subdirectory	instead	of	a	user	specified	directory.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

BIND SERVICE value Service	name.

TYPE *INBOUND Conditional.	Inbound	binding.

*OUTBOUND Conditional.	Outbound	binding.

BINDTRACE *YES Optional.	Trace	the	inbound	bind
result.

*NO Default.

FILTER 	 Optional.	See	FILTER.

	

	

5.25.4	CLOSE
The	CLOSE	command	closes	the	current	BIND.	The	binding	can	be	closed
before	or	after	the	MQ	put	or	DQ	put	commands.	If	the	binding	is	closed	after
the	put,	then	the	output	content	is	released	for	garbage	collection.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CLOSE 	 	 	

	

	

5.25.5	GET
The	GET	command	is	used	to	read	the	inbound	document	object.
Fragments	use	only	fields,	so	the	GET	FRAGMENT	command	requires	the
SERVICE_EXCHANGE(*FIELD)	keyword.
Lists	use	only	a	working	list,	so	the	GET	LIST	command	requires	a	working	list
argument.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET LIST value Conditional.	Bind	list.

FRAGMENT value Conditional.	Bind	fragment.

INSTRUCTION value Optional.	Get	XML	processing
instruction.

	

	

5.25.6	SET
The	SET	command	is	used	to	populate	the	outbound	document	object.
Fragments	use	only	fields,	so	the	SET	FRAGMENT	command	requires	the
SERVICE_EXCHANGE(*FIELD)	keyword.
Lists	use	only	a	working	list,	so	the	SET	LIST	command	requires	a	working	list
argument.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET LIST value Conditional.	Bind	list.

FRAGMENT value Conditional.	Bind	fragment.

INSTRUCTION value Optional.	Set	XML	processing
instruction.

DATA value Conditional.	PI	data.

	

	

5.25.7	WRITE
The	WRITE	command	serializes	the	document	object	in	preparation	for	the	MQ
put	or	DQ	put	commands.
The	MQ	put	and	or	DQ	put	can	be	called	multiple	times	sending	the	same
content	to	different	queues.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

WRITE INDENT *YES Optional.	Indent	XML	content.

*NO Default.

INDENT-
AMOUNT

value Optional.	Indent	XML	amount.
Default.	0.	If	the	amount	is	not	zero
then	indent	is	enabled.

DOCTYPE value Optional.	Include	XML	<!DOCTYPE>
element.

PUBLIC value Conditional.	The	optional	public
component	of	the	XML	DOCTYPE
declaration.

OMIT-
DECLARATION

*YES Optional.	Omit	the	XML	declaration.

*NO Default.

BINDTRACE *YES Optional.	Trace	the	outbound	bind
result.

*NO Default.

FILTER 	 Optional.	See	FILTER.

	

	

5.25.8	ARCHIVE
The	ARCHIVE	command	saves	the	selected	source	to	the	archive	file	using	the
specified	encoding.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

ARCHIVE FILE value Mandatory.	File	path.

ENCODING 	 Optional.	See	ENCODING.

SOURCE *RECEIVE Optional.	Archive	receive	source.
Default.	*RECEIVE.

*SEND Archive	send	source.

	

	

5.25.9	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

5.26	FileQueueService
Service	Name:	FileQueueService
The	FileQueueService	service	allows	files	be	received	from	and	sent	to
MQSeries	message	queues	and	IBM	i	Data	queues.
The	following	service	property	entries	can	be	used	to	control	the	data	encoding
used	when	data	is	received	from	the	queue	and	send	to	the	queue.	When	data	is
put	to	an	IBM	i	data	queue	the	data	is	padded	with	EBCDIC	spaces.	It	is
recommended	that	dq.put.encoding	and	dq.get.encoding	values	belong	to	the
EBCDIC	family.	For	example	Cp037,	Cp273	and	Cp500	are	valid	values.	By
default	the	CCSID	of	the	client	program	or	the	message	is	used	to	determine	the
encoding	value.
dq.get.encoding
dq.put.encoding
mq.get.encoding
mq.put.encoding
The	following	service	property	entries	can	be	used	to	stop	the	XML	declaration
being	modified	to	suit	the	data	encoding.	The	default	value	for	these	properties
is	*yes.
dq.get.modify.declaration=*no
dq.put.modify.declaration=*no
mq.get.modify.declaration=*no
mq.put.modify.declaration=*no
The	following	service	property	entries	can	be	used	to	explicitly	specifiy	the
XML	declaration	IANA	encoding	used	by	the	XML	declaration	modification
process.
If	these	service	properties	are	missing	then	the	IANA	encoding	is	determined
from	the	encoding.
dq.get.encoding.declaration=	Any	valid	IANA	encoding.	ie	iso-8859-1
dq.put.encoding.declaration=	Any	valid	IANA	encoding.	ie	iso-8859-1
mq.get.encoding.declaration=	Any	valid	IANA	encoding.	ie	iso-8859-1
mq.put.encoding.declaration=	Any	valid	IANA	encoding.	ie	iso-8859-1
IBM	Java	Unicode	to	EBCDIC	byte	encoders	use	the	EBCDIC	NL	(New	Line
0x15)	character	instead	of	the	EBCDIC	LF	(Line	Feed	0x25)	character.	When

the	Unicode	XML	result	is	converted	to	the	selected	encoding	and	this	encoding
is	EBCDIC,	the	New	Line	character	will	be	replaced	with	a	Line	Feed	character.
The	default	value	for	these	properties	is	*no.
dq.put.ebcdic.nl2lf=*yes
mq.put.ebcdic.nl2lf=*yes
The	FileQueueService	supports	the	following	commands:
5.24.1	SERVICE_LOAD
5.24.2	SERVICE_GET
5.26.3	READ
5.26.4	WRITE
5.24.6	SERVICE_UNLOAD
Refer	to	5.1.13	MQSeries	Built-In	Functions	for	details	of	the	MQSeries	Built-
In	Functions.

5.26.1	SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

	

5.26.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.26.3	READ
The	READ	command	reads	the	specified	file	and	internally	stores	the	content	in
Unicode	form.
The	internal	Unicode	content	is	sent	to	a	Data	Queue	or	Message	Queue	using
the	JSMDQPUT	and	JSMQPUT	programs.
Refer	to	5.1.13	MQSeries	Built-In	Functions	for	details	of	the	MQSeries	Built-
In	Functions.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

READ FILE value Mandatory.	File	path.

ENCODING value Optional.	Default	is	UTF8.

	

	

5.26.4	WRITE
The	WRITE	command	saves	the	interally	stored	Unicode	content	to	the
specified	file.
The	internal	Unicode	content	is	received	from	a	Data	Queue	or	Message	Queue
using	the	JSMDQGET	and	JSMMQGET	programs.
Refer	to	5.1.13	MQSeries	Built-In	Functions	for	details	of	the	MQSeries	Built-
In	Functions.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

WRITE FILE value Mandatory.	File	path.

ENCODING value Optional.	Default	is	UTF8.

	

5.26.5	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

5.27	OpenLDAPService
The	OpenLDAPService	allows	you	to	develop	applications	that	can	access
LDAP	compliant	directories.
LDAP	(Lightweight	Directory	Access	Protocol)	is	a	protocol	that	is	becoming
more	and	more	prevalent	in	databases	and	systems	throughout	the	world.	It	is	a
protocol	that	is	widely	accepted	as	the	industry	standard	for	deploying	directory
based	applications	and	solutions.
LDAP	is	typically	used	for	look	up	directories	(or	databases)	and	is	ideal	for	use
in	the	following	hyperthetical	examples:

You	need	to	regularly	access	relatively	static	data	such	as	telephone	and
email	directories.	For	example,	email	addresses	and	phone	numbers	do	not
change	very	often,	but	might	be	accessed	thousands	of	times	a	day	by	your
users.
You	need	to	access	data	that	is	primarily	read	only.	LDAP	compliant
directories	are	optimized	more	for	the	fast	read	of	information	than	for	the
updating,	adding	or	deleting	of	data.	Once	again,	your	users	might	regularly
access	email	addresses	from	your	central	system,	but	this	information	will
rarely	be	updated.	Alternatively,	you	might	have	a	directory	containing
information	on	all	the	printers	connected	to	your	network.
You	need	to	deploy	distributed	databases,	where	the	reference	information
might	be	kept	on	multiple	servers.	Such	architecture	can	be	useful	if,	for
example,	one	server	is	down,	then	the	necessary	information	could	be	picked
up	off	another	server.
You	want	to	set	up	a	system	to	bypass	the	multiple	Logons	that	users	have	to
make	to	access	information	from	different	systems.	By	applying	a	single
Logon	across	the	board,	you	could	significantly	reduce	the	workload	placed
on	your	help	desk	by	users	forgetting	their	passwords.

A	classic	example	of	where	an	LDAP	directory	might	be	used	is	in	large
organizations	with	a	large	employee	directory.	This	directory	might	contain	staff
contact	information	that	is	accessible	by	staff	and	perhaps	by	partners	and
customers.	This	directory	of	contact	information	is	not	changed	very	often,	so	is
used	primarily	for	heavy	read	access	by	numerous	systems	(for	example,	your
email	system).
Unique	objects	within	an	LDAP	directory	tree	are	referenced	by	what	is	known
as	their	distinguished	name	(DN).	An	object	within	a	tree	has	a	relative
distinguished	name	(RDN),	which	identifies	the	object	relative	to	its	parents.	A

DN	may	therefore	be	defined	as	a	collection	of	RDNs	that,	when	combined,
uniquely	identify	the	DN	within	the	entire	directory.	RDN's	are	generally	of	the
form	attribute=value,	where	attributes	might	be	c	(country),	cn	(common
name),	o	(organization)	and	so	forth.	The	DN	is	constructed	by	combining	the
RDNs	of	the	object	with	those	of	its	parents.	For	example,	the	DN	of	the	root	of
the	sample	tree	might	be	ou=Sales	Team,	o=LANSA,	c=au	(this	uniquely
defines	the	Sales	Team	and	the	company,	LANSA,	in	Australia).	The	RDN	of	a
member	of	the	sales	team	is	cn=Terry	Briggs	(the	common	name	of	the
salesperson	concerned	is	Terry	Briggs).	Therefore	the	DN,	or	the	distinguished
name,	of	the	directory	object	that	uniquely	defines	that	Terry	Briggs	as	a
member	of	the	sales	team	in	LANSA	Australia	is	cn=Terry	Briggs,	ou=Sales
Team,	o=LANSA,	c=au.
LANSA's	OpenLDAPService	is	designed	to	enable	you	to	interface	easily	with
LDAP	directories	from	within	your	application.	While	the	main	purpose	of
LDAP	directories	is	for	read	operations,	there	will	be	times	when	you	will	want
to	update,	create	or	delete	entries.	The	OpenLDAPService	provides	you	with	the
facilities	to	do	these,	should	you	need	to.
By	using	the	OpenLDAPService,	LANSA	will	handle	all	the	interface
requirements	to	the	LDAP	Server,	saving	you	having	to	learn	how	to	do	so
yourself.	The	service	provides	the	following	commands	to	enable	you	to
perform	the	standard	transactions	that	can	be	performed	on	an	LDAP	directory:

Get Perform	a	single	record	fetch	on	a	DN	in	the	directory
Add Add	a	single	record	DN	to	the	directory
Modify Attribute	values	of	a	specific	DN
Delete Delete	a	DN	record	from	the	directory
Search Search	through	multiple	DN	records	in	the	directory.

The	OpenLDAPServer	also	provides	the	necessary	commands	to	enable	your
application	to	BIND	to	and	UNBIND	from	the	server.	The	term	BIND	is	an
industry	standard	term	that	refers	to	the	way	applications	connect	to	an	LDAP
server.
Prior	to	using	this	service	you	will	need	to	understand	how	to	set	up	and	use	an
LDAP	server	on	the	IBM	i.	More	information	can	be	found	on	this	topic	in	the
IBM	i	manuals.
Related	Services

The	OpenLDAPService	is	not	dependant	on	any	other	services.	Using	this
service	alone,	you	can	read,	add,	modify	and	delete	entries	in	your	LDAP
directory.
Technical	Specifications
By	default,	the	OpenLDAPService	uses	port	389.	For	secure	connections	it	uses
port	636.

5.27.1	What	can	I	use	the	OpenLDAPService	for?
LDAP	servers	are	used	to	make	commonly	used	directory	information	more
easily	available	across	multiple	applications	that	could	be	running	on	multiple
servers.	The	OpenLDAPService	is	designed	to	help	you	interface	with	LDAP
servers	more	easily.
Following	are	two	examples	of	where	you	might	use	the	OpenLDAPService.
To	access	an	LDAP	directory	containing	company	contact	details
A	large	organization	may	have	multiple	applications	that	each	contains	their
own	repository	of	employee	contact	information,	often	in	duplication.	To
overcome	this,	they	may	decide	to	create	an	LDAP	directory	of	contact
information	to	centralize	this	data.	Every	application	that	needs	to	access
employee	contact	information	could	access	this	LDAP	directory.	By	using	the
OpenLDAPService	you	could	very	easily	write	the	code	required	to	access	this
repository	of	contact	information	for	any	number	of	your	applications.	These
client	applications	could	be	running	on	different	servers.
To	access	an	LDAP	directory	containing	User	ID,	Password,	and	Access
Rights
We	are	all	familiar	with	holding	different	User	Ids	and	passwords	for	the
different	applications	that	we	use.	And	we	are	also	familiar	with	the	tedious
process	of	resetting	those	passwords	because	we	have	forgotten	what	they	are.
To	reduce	this	problem,	an	organization	may	decide	to	create	a	central
repository	of	users	and	their	passwords	and	access	rights	in	an	LDAP	directory
so	this	information	is	easier	to	maintain	and	to	control.	You	could	then	use	the
OpenLDAPService	to	authenticate	your	user	Logons	against	this	LDAP
directory	instead	of	doing	so	against	an	isolated	local	repository.

5.27.2	Using	the	OpenLDAPService
Whether	you	are	writing	your	client	application	in	RDML	/	RDMLX	or	in	a
3GL	such	as	RPG,	Cobol,	or	C,	you	have	to	complete	the	same	basic	steps.
For	example,	an	application	that	is	going	to	fetch	the	employee	phone	number
from	an	LDAP	server	would	typically	issue	the	following	sequence	of
commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
										BIND
										GET
										UNBIND
					SERVICE_UNLOAD
JSM(X)_CLOSE
The	steps	to	add,	change	and	delete	entries	in	the	directory	would	be	very
similar,	but	using	the	ADD,	MODIFY	or	DELETE	commands	in	place	of	the
GET	command.
Refer	to	the	Java	Service	Manager	Clients	for	the	command	details	that	apply	to
your	chosen	development	language.

5.27.3	OpenLDAPService	Commands
Your	application	issues	commands	to	the	OpenLDAPService	by	passing	the
command	strings	through	the	Java	Service	Manager	using	the
JSM_COMMAND	or	the	JSMX_COMMAND	Built-In	Function,	or	an	API	for
your	chosen	development	language.
The	commands	that	the	OpenLDAPService	processes	are:
SERVICE_LOAD
BIND
GET
ADD
MODIFY
DELETE
SEARCH
UNBIND
SERVICE_UNLOAD

SERVICE_LOAD
Loads	and	initializes	the	service.
	
																																																											Required
	
	SERVICE_LOAD	----	SERVICE	---------	service	name	------------
---->
	
																																																											Optional
	
															>--	TRACE	-----------	*NO	------------------------->
																																					*YES
																																					*ERROR
	
															>--	TRACE_NAME	------	name	------------------------|
																																					*SERVICE
																																					*PROCESS
																																					*FUNCTION
																																					*JOBNAME
																																					*JOBUSER
																																					*JOBNUMBER
	
For	more	information	refer	to:
Service	Program	Tracing	from	the	Client
Keywords
SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

OpenLDAPService.

TRACE To	enable	tracing	from	the	client	program	use	the	TRACE
keyword	on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:
*NO
*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the

service	does	not	return	an	ERROR,	FATAL	or
SOAPFAULT	status	to	the	client,	the	trace	files	are	deleted
on	the	JSM	CLOSE	call.

TRACE_NAME This	optional	keyword	allows	the	client	to	append	a	user-
defined	name	to	the	end	of	the	client	trace	subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(OpenLDAPService)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX;
	
#jsmcommand	:=	'service_load	service(OpenLDAPService)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	to_get(#jsmxsts	#jsmxmsg)
	

BIND
The	BIND	command	is	responsible	for	establishing	a	connection	to	the	LDAP
server.
A	simple	bind	sends	the	user's	DN	and	password.	An	anonymous	bind	may	be
established	by	not	sending	a	password.
It	is	possible	to	establish	a	secure	connection,	using	SSL,	and	this	BIND
command	provides	for	this	option.
	
																																																											Required
	
	BIND	------------	HOST	------------	host	------------------------>
	
																																																											Optional
	
															>--	PORT	------------	port	------------------------>
	
															>--	SECURE	----------	*NO	------------------------->
																																					*YES
	
															>--	DN	--------------	authentication	name	--------->
	
																																																								Conditional
	
															>--	PASSWORD	--------	value	-----------------------|
	
Keywords
HOST The	host	address	of	the	LDAP	server	you	connecting	to.

This	keyword	is	mandatory.

PORT The	port	to	connect	to	on	the	host.
By	default,	this	value	will	be	389	for	a	simple	connection,	or
636	for	a	secured	connection.
This	keyword	is	optional.

SECURE Used	to	specify	whether	you	want	to	establish	a	secure
connection	to	the	server.

The	default	value	is	*NO	(for	an	unsecured	connection).
This	keyword	is	optional.

DN The	authentication	name.
The	DN	may	be	used	without	a	password,	establishing	an
anonymous	connection.	It	is	also	possible	not	to	pass	this	value
at	all,	also	establishing	an	anonymous	connection.
This	keyword	is	optional.

PASSWORD This	keyword	must	be	passed,	along	with	the	DN	keyword,	if
authentication	is	required.
A	DN	value	may	be	sent	without	a	PASSWORD	value,	but	a
PASSWORD	value	may	not	be	sent	without	a	DN	value.

Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('''BIND	HOST(<LDAP-server-
name>)	DN(cn=Administrator)	PASSWORD(password)''')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#JSMCMD	:=	'Bind	Host(<LDAP-server-
name>)	DN(cn=Administrator)	Password(password)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
	

GET
This	command	is	used	to	GET	an	LDAP	entry.
	
	GET	-------------	DN	--------------	entry	name	------------------>
	
																																																											Optional
	
															>--	ATTRIBUTES	------	*ALL	------------------------|
																																					attribute	names
	
Keywords
DN Specifies	the	distinguished	name	(DN)	of	the	entry	you	are

looking	for.
This	keyword	is	mandatory.

ATTRIBUTES This	keyword	specifies	the	attributes	that	you	want	returned.
You	may	specify	either	*ALL	(which	will	return	all	the
attributes),	or	a	comma	delimited	list	of	the	attribute	names.
The	default	value	is	*ALL.
This	keyword	is	optional.

Lists	and	Variables
The	application	must	supply	a	working	list	into	which	the	GET	command	will
return	the	retrieved	attributes.	The	working	list	must	contain	either	one	or	two
fields	as	follows:

The	first	field	is	mandatory	and	will	contain	the	attribute	name	for	each
retrieved	attribute.
Suggested	field	length:	you	will	need	to	ensure	that	the	field	is	long	enough
to	hold	the	longest	possible	attribute	name	for	your	LDAP	Server.	The	field
length	will	be	character.
The	second	field	is	optional.	If	supplied,	it	will	contain	the	attribute	value	for
each	retrieved	attribute.
Suggested	field	length:	you	will	need	to	ensure	that	the	field	is	long	enough
to	hold	the	longest	possible	attribute	value	for	your	LDAP	Server.	The	field
length	will	be	character.

Refer	to	the	following	examples	to	see	how	this	works.	For	information	on	how

to	supply	a	working	list	to	service	commands	from	RDML,	RDMLX	or	3GL
applications,	refer	to	Java	Service	Manager	Clients.
Examples
RDML
	
DEFINE	FIELD(#ATNAME)	TYPE(*CHAR)	LENGTH(050)
DEFINE	FIELD(#ATVALUE)	TYPE(*CHAR)	LENGTH(050)
DEF_LIST	NAME(#WRKLST)	FIELDS(#ATNAME	#ATVALUE)	TYPE(*WORKING)
CHANGE	FIELD(#JSMCMD)	TO('''GET	DN(cn=John,	cn=users,	o=ibmteldir)	ATTRIBUTES(*ALL)	SERVICE_LIST(ATNAME,ATVALUE)''')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKLST)
	

RDMLX
	
Define	Field(#ATNAME)	Type(*CHAR)	Length(050)
Define	Field(#ATVALUE)	Type(*CHAR)	Length(050)
Def_List	Name(#WRKLST)	Fields(#ATNAME	#ATVALUE)	Type(*Working)
#JSMCMD	:=	'Get	DN(cn=John,	cn=users,	o=ibmteldir)	Service_List(ATNAME,ATVALUE)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#WRKLST)
	

ADD
This	command	allows	you	to	add	an	LDAP	entry.
	
	ADD	-------------	DN	--------------	entry	name	------------------|
	
Keywords
DN The	entry	name	you	want	to	add.

This	keyword	is	mandatory.

Lists	and	Variables
The	application	must	supply	a	working	list	from	which	the	ADD	command	will
pass	the	new	attributes.	The	working	list	must	contain	either	one	or	two	fields	as
follows:

The	first	field	is	mandatory	and	will	contain	the	attribute	name	for	each
added	attribute.
Suggested	field	length:	you	will	need	to	ensure	that	the	field	is	long	enough
to	hold	the	longest	possible	attribute	name	for	your	LDAP	Server.	The	field
length	will	be	character.
The	second	field	is	optional.	If	supplied,	it	will	contain	the	attribute	value	for
each	added	attribute.
Suggested	field	length:	you	will	need	to	ensure	that	the	field	is	long	enough
to	hold	the	longest	possible	attribute	value	for	your	LDAP	Server.	The	field
length	will	be	character.

Refer	to	the	following	examples	to	see	how	this	works.	For	information	on	how
to	supply	a	working	list	to	service	commands	from	RDML,	RDMLX	or	3GL
applications,	refer	to	Java	Service	Manager	Clients.
Examples
RDML
	
DEFINE	FIELD(#ATNAME)	TYPE(*CHAR)	LENGTH(050)
DEFINE	FIELD(#ATVALUE)	TYPE(*CHAR)	LENGTH(050)
DEF_LIST	NAME(#WRKLST)	FIELDS(#ATNAME	#ATVALUE)	TYPE(*WORKING)
CHANGE	FIELD(#JSMCMD)	TO('''ADD	DN(cn=John,	cn=users,	o=ibmteldir)	SERVICE_LIST(ATNAME,ATVALUE)''')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKLST)
	

RDMLX
	
Define	Field(#ATNAME)	Type(*CHAR)	Length(050)
Define	Field(#ATVALUE)	Type(*CHAR)	Length(050)
Def_List	Name(#WRKLST)	Fields(#ATNAME	#ATVALUE)	Type(*Working)
#JSMCMD	:=	'Add	DN(cn=John,	cn=users,	o=ibmteldir)	Service_List(ATNAME,ATVALUE)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#WRKLST)
	

MODIFY
You	will	use	this	command	to	modify	an	LDAP	entry.	This	command	has	three
operations	that	may	be	performed	-	add,	delete,	and	replace.	It	is	important	to
note	that	these	operations	occur	at	the	attribute	level	and	not	the	DN	record
level.	If	you	need	to	add	or	delete	an	entire	DN	then	you	should	use	the	ADD	or
DELETE	commands.
	
	MODIFY	----------	DN	--------------	entry	name	------------------|
	
Keywords
DN The	entry	name	that	is	to	be	modified.

This	keyword	is	mandatory.

Lists	and	Variables
The	application	must	supply	a	working	list	from	which	the	MODIFY	command
will	pass	the	modified	attributes.	The	working	list	must	contain	three	fields	as
follows:

The	first	field	is	mandatory	and	will	contain	the	operation	to	be	performed.
Suggested	field	length:	Character	field	of	length	1.
The	three	possible	values	for	this	field	are:

A	for	Add
D	for	delete
R	for	Replace.

The	second	field	is	mandatory	and	will	contain	the	attribute	name	for	each
modified	attribute.
Suggested	field	length:	you	will	need	to	ensure	that	the	field	is	long	enough
to	hold	the	longest	possible	attribute	name	for	your	LDAP	Server.	The	field
length	will	be	character.
The	third	field	is	mandatory.	It	will	contain	the	attribute	value	for	each
modified	attribute.
Suggested	field	length:	you	will	need	to	ensure	that	the	field	is	long	enough
to	hold	the	longest	possible	attribute	value	for	your	LDAP	Server.	The	field
length	will	be	character.

Refer	to	the	following	examples	to	see	how	this	works.	For	information	on	how

to	supply	a	working	list	to	service	commands	from	RDML,	RDMLX	or	3GL
applications,	refer	to	Java	Service	Manager	Clients.
Examples
RDML
	
DEFINE	FIELD(#ATMOD)	TYPE(*CHAR)	LENGTH(001)
DEFINE	FIELD(#ATNAME)	TYPE(*CHAR)	LENGTH(050)
DEFINE	FIELD(#ATVALUE)	TYPE(*CHAR)	LENGTH(050)
DEF_LIST	NAME(#WRKLST)	FIELDS(#ATMOD	#ATNAME	#ATVALUE)	TYPE(*WORKING)
CHANGE	FIELD(#JSMCMD)	TO('''MODIFY	DN(cn=John,	cn=users,	o=ibmteldir)	SERVICE_LIST(ATMOD,ATNAME,ATVALUE)''')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKLST)
	

RDMLX
	
Define	Field(#ATMOD)	Type(*CHAR)	Length(001)
Define	Field(#ATNAME)	Type(*CHAR)	Length(050)
Define	Field(#ATVALUE)	Type(*CHAR)	Length(050)
Def_List	Name(#WRKLST)	Fields(#ATMOD	#ATNAME	#ATVALUE)	Type(*Working)
#JSMCMD	:=	'Modify	DN(cn=John,	cn=users,	o=ibmteldir)	Service_List(ATMOD,ATNAME,ATVALUE)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#WRKLST)
	

DELETE
You	will	use	this	command	to	delete	a	DN	record.
	
	DELETE	----------	DN	--------------	entry	name	------------------|
	
Keywords
DN The	entry	name	of	the	DN	you	wish	to	delete.

This	keyword	is	mandatory.

Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('''DELETE	DN(cn=John,	cn=users,	o=ibmteldir)''')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#JSMCMD	:=	Delete	DN(cn=John,	cn=users,	o=ibmteldir)	'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
	

SEARCH
You	will	use	this	command	to	search	for	entries	on	the	LDAP	server.
	
																																																											Required
	
	SEARCH	----------	DN	--------------	entry	name	------------------>
	
															>--	SCOPE	-----------	*SUB	------------------------>
																																					*ONE
																																					*BASE
	
																																																											Optional
	
															>--	FILTER	----------	*NONE	-----------------------|
																																					value
	
Keywords
DN This	keyword	will	be	used	to	define	the	base	DN	to	search	for.

This	keyword	is	mandatory.

SCOPE This	keyword	defines	the	scope,	or	range,	of	the	entries	to	search.
There	are	three	possible	values:
*SUB	-	run	the	search	over	the	base	DN	and	all	its	entries	within	its
sub-trees.
*ONE	-	run	the	search	over	the	entries	under	the	base	DN.
*BASE	-	run	the	search	over	the	base	DN	alone.
*SUB	is	the	default	value.
This	keyword	is	optional.

FILTER This	keyword	can	be	used	to	specify	a	filter	for	this	search	criteria.
The	default	value	is	*NONE.
This	keyword	is	optional.

Lists	and	Variables
The	application	must	supply	a	working	list	to	which	the	SEARCH	command

will	pass	the	retrieved	DN	values.	The	working	list	must	contain	one	field	as
follows:

The	field	is	mandatory	and	will	contain	the	DN	value	for	each	retrieved	DN.
Suggested	field	length:	you	will	need	to	ensure	that	the	field	is	long	enough
to	hold	the	DN	value	of	your	LDAP	Server.	The	field	will	be	character.

Refer	to	the	following	examples	to	see	how	this	works.	For	information	on	how
to	supply	a	working	list	to	service	commands	from	RDML,	RDMLX	or	3GL
applications,	refer	to	Java	Service	Manager	Clients.
Examples
RDML
	
DEFINE	FIELD(#DN)	TYPE(*CHAR)	LENGTH(050)
DEF_LIST	NAME(#WRKLST)	FIELDS(#DN)	TYPE(*WORKING)
CHANGE	FIELD(#JSMCMD)	TO('''SEARCH	DN(o=ibmteldir)	FILTER(objectclass=person)	SCOPE(*SUB)	SERVICE_LIST(DN)''')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKLST)
	

RDMLX
	
Define	Field(#DN)	Type(*CHAR)	Length(050)
Def_List	Name(#WRKLST)	Fields(#DN)	Type(*Working)
#JSMCMD	:=	Search	DN(o=ibmteldir)	Filter(objectclass=person)	Scope(*SUB)	Service_List(DN)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#WRKLST)
	

UNBIND
This	command	is	used	to	disconnect	the	client	from	the	LDAP	server
	
	UNBIND	-------------	no	keywords	--------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO(UNBIND)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#JSMCMD	:=	UnBind
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service	and	removes	the
temporary	directory.
	
	SERVICE_UNLOAD	---------	no	keywords	--------------------------
|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(SERVICE_UNLOAD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	service_unload)	to_get(#jsmxsts	#jsmxmsg)
	

5.27.4	OpenLDAPService	Examples
Examples	are	supplied	for	the	most	common	client	programming	languages:
RDML
RDMLX

5.28	JMSFileService
Service	Name:	JMSFileService
The	JMSFileService	allows	files	to	be	sent	and	received	using	enterprise
messaging	systems	such	as	ActiveMQ,	SonicMQ,	TibcoMQ	and
WebSphereMQ.
This	service	uses	the	Java	Message	Service	JMS	1.1	specification.
Refer	to	http://www.oracle.com/technetwork/java/jms/index.html.
If	you're	using:

ActiveMQ,	then	you	require	the	ActiveMQ	JMS	jar	files.
SonicMQ,	then	you	require	the	SonicMQ	JMS	jar	files.
TibcoMQ	then	you	require	the	ActiveMQ	JMS	jar	files.
WebSphereMQ,	then	you	require	the	IBM	WebSphereMQ	JMS	jar	files.

You	will	need	to	know	how	to	use	the	enterprise	messaging	system	selected	for
use	with	this	JMSFileService.	The	setting	up	and	configuring	of	either
messaging	system	is	beyond	the	scope	of	this	guide.
The	JMSFileService	supports	the	following	commands:
5.28.1	SERVICE_LOAD
5.28.2	SERVICE_GET
5.28.3	CONNECT
5.28.4	SEND
5.28.5	RECEIVE
5.28.6	COMMIT
5.28.7	ROLLBACK
5.28.8	CLOSE
5.28.9	SERVICE_UNLOAD

http://www.oracle.com/technetwork/java/jms/index.html

5.28.1	SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

5.28.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.28.3	CONNECT
The	CONNECT	command	is	used	to	open	a	connection	to	the	enterprise
messaging	system.
The	currently	available	vendor	implementations	are	ActiveMQ,	SonicMQ,
TibcoMQ	and	WebSphereMQ.
It	is	possible	to	create	more	vendor	implementations	by	writing	a	Java	class	that
implements	the	JMSVendor	interface.
The	JMSFileService	does	a	service	properties	lookup	using	the	VENDOR
keyword	value	to	determine	which	Java	class	will	be	used	to	create	the
connection	object.
	
vendor.activemq=com.lansa.service.JMSVendorActiveMQ
vendor.sonicmq=com.lansa.service.JMSVendorSonicMQ
vendor.tibcomq=com.lansa.service.JMSVendorTibcoMQ
vendor.webspheremq=com.lansa.service.JMSVendorMQSeries
	

Keyword	values	can	also	be	passed	to	the	CONNECT	command	by	using	a
working	list	argument.	The	first	column	supplies	the	keyword	name	and	the
second	column	the	keyword	value.
The	command	keyword	takes	precedence	over	the	working	list	keyword	value
entry.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CONNECT VENDOR Value Mandatory.	Message
System	Vendor.

HOST value Mandatory.	hostname	or
hostname:port.

PORT value Optional.
Default.	61616	for
ActiveMQ.
Default.	2506	for	SonicMQ.
Default.	7222	for	TibcoMQ.
Default.	1414	for

WebSphereMQ.

USER value Optional.

PASSWORD value Optional.

CLIENTID value Optional.

QUEUE value Mandatory.

REPLYTO *TEMPORARY Optional.	Create	and	use	a
temporary	reply	queue.

CHANNEL value Conditional.	Required	for
WebSphereMQ	connection.

QUEUE-
MANAGER

value Optional.	Used	by
WebSphereMQ	connection.

CIPHER-SUITE value Optional.	Used	by
WebSphereMQ	connection.

MESSAGE-
PRIORITY

value 0	(lowest)	to	9	(highest).
Default.	4.

MESSAGE-
DELIVERY

*PERSISTENT Default.	*PERSISTENT.

*NONPERSISTENT 	

MESSAGE-TIME-
TO-LIVE

value Default.	0	milliseconds.
A	value	of	0	means	keep
forever.

SESSION-
TRANSACTED

*YES Default.	*NO.

*NO 	

SESSION-
ACKNOWLEDGE

*AUTO Default.	*AUTO.

*CLIENT 	

*DUPOK 	

	

	

Example
	
CONNECT	VENDOR(WEBSPHEREMQ)	HOST(LOCALHOST)	CHANNEL(USERAGENT.CHANNEL)	QUEUE-
MANAGER(USERAGENT.QUEUE.MANAGER)	QUEUE(USERAGENT.QUEUE)	SERVICE_LIST(KEYWRD,KEYVAL)
	
CONNECT	VENDOR(ACTIVEMQ)	HOST(LOCALHOST)	QUEUE(QUEUE_1)	SERVICE_LIST(KEYWRD,KEYVAL)
	

	

5.28.4	SEND
The	SEND	command	is	used	to	optionally	send	a	file	as	a	message.	If	no	file	is
specified	then	an	empty	message	is	sent.
To	include	JMS	message	properties	with	the	message	use	the	optional	working
list	argument.
The	first	column	is	the	property	type,	the	second	column	is	the	property	name
and	the	third	column	is	the	property	value.	Property	types	are	I	for	integer,	B	for
Boolean,	S	for	string,	H	for	short,	L	for	long,	D	for	decimal,	F	for	float	and	J	for
special	JMS	properties.
The	following	type	J	properties	use	individual	method	calls	on	the	JMS	message
object	instead	of	the	generic	message.setStringProperty,	message.setIntProperty
and	message.setBooleanPropery	method	calls.

JMSTYPE	(message.setJMSType)
JMSMESSAGEID	(message.setJMSMessageID)
JMSCORRELATIONID	(message.JMSCorrelationID)
JMSPRIORITY	(message.setJMSPriority)
JMSREDELIVERED	(message.setJMSRedelivered)
JMSEXPIRATION	(message.setJSMExpiration)
JMSTIMESTAMP	(message.setJMSTimestamp)
JMSDELIVERYMODE	(message.setJMSDeliveryMode)
JMSREPLYTO	(message.setJMSReplyTo)
JMSDESTINATION	(message.setJMSDestination)

	
If	the	message	type	is	*TEXT	then	the	encoding	value	is	used	to	convert	the	file
content	into	a	Unicode	string	and	the	message	will	be	sent	as	a	JMS
TextMessage	object.
The	message	identifier	(MessageID)	is	returned	in	the	JSMMSG	field.
	
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND FILE value Optional.	File	path.

MESSAGE *BINARY Message	type.	JMS	BytesMessage.

*TEXT Default.	JMS	TextMessage.

ENCODING value. Conditional.	Used	if	message	type	is
*TEXT
Default.	UTF-8.

ARCHIVE value Optional.	Archive	file.

	

Example
	
SEND	MESSAGE(*TEXT)	ENCODING(UTF-
8)	FILE(order.xml)	SERVICE_LIST(PRPTYP,PRPNME,PRPVAL)
	
SEND	MESSAGE(*BINARY)	FILE(order.xls)	SERVICE_LIST(PRPTYP,PRPNME,PRPVAL)
	

	

5.28.5	RECEIVE
The	RECEIVE	command	is	used	to	receive	a	message	and	optionally	save	the
contents	to	a	file.
To	receive	JMS	message	properties	from	the	message	use	the	optional	working
list	argument.
The	first	column	receives	the	property	type,	the	second	column	receives	the
property	name	and	the	third	column	receives	the	property	value.	The	property
type	is	always	S	(String)	for	user-defined	properties	and	J	for	special	JMS
properties.
If	the	received	message	is	a	TextMessage	then	the	encoding	value	is	used	to
covert	the	Unicode	content	into	a	byte	content	to	be	saved	to	the	specified	file.
The	message	identifier	(MessageID)	is	returned	in	the	JSMMSG	field.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RECEIVE FILE value Optional.	File	path.

ENCODING value Conditional.	Used	if	received	message	is	a
Unicode	TextMessage.
Default.	UTF-8.

WAITTIME value. Optional.	Wait	time	in	milliseconds.
Default.	0	forever.

SELECTOR value Optional.	Message	Selector.

ARCHIVE value Optional.	Archive	file.

	

Example
	
RECEIVE	ENCODING(UTF-
8)	FILE(order.xml)	SERVICE_LIST(PRPTYP,PRPNME,PRPVAL)
	

5.28.6	COMMIT
The	COMMIT	command	is	used	to	commit	the	current	transacted	session.
Use	the	CONNECT	command	SESSION-TRANSACTED	keyword	to	start	a
transacted	session.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

COMMIT 	 	 	

	

	

5.28.7	ROLLBACK
The	ROLLBACK	command	is	used	to	rollback	the	current	transacted	session.
Use	the	CONNECT	command	SESSION-TRANSACTED	keyword	to	start	a
transacted	session.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

ROLLBACK 	 	 	

	

	

5.28.8	CLOSE
The	CLOSE	command	is	used	to	close	the	current	connection.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CLOSE 	 	 	

	

	

5.28.9	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

5.29	JMSXMLBindService
Service	Name:	JMSXMLBindService
The	JMSXMLBindService	allows	XML	data	to	be	sent	and	received	using
enterprise	messaging	systems	such	as	ActiveMQ,	SonicMQ,	TibcoMQ	and
WebSphereMQ.
This	service	uses	the	Java	Message	Service	JMS	1.1	specification.
Refer	to	http://www.oracle.com/technetwork/java/jms/index.html.
If	you're	using:

ActiveMQ,	then	you	require	the	ActiveMQ	JMS	jar	files.
SonicMQ,	then	you	require	the	Sonic	JMS	jar	files.
TibcoMQ,	then	you	require	the	Tibco	JMS	jar	files.
WebSphereMQ,	then	you	require	the	IBM	WebSphereMQ	JMS	jar	files.

You	will	need	to	know	how	to	use	the	enterprise	messaging	system	selected	for
use	with	this	JMSXMLBindService.	The	setting	up	and	configuring	of	either
messaging	system	is	beyond	the	scope	of	this	guide.
The	JMSXMLBindService	supports	the	following	commands:
5.29.1	SERVICE_LOAD
5.29.2	SERVICE_GET
5.29.3	CONNECT
5.29.4	SEND
5.29.5	RECEIVE
5.29.6	BIND
5.29.7	GET
5.29.8	SET
5.29.9	WRITE
5.29.10	ARCHIVE
5.29.11	COMMIT
5.29.12	ROLLBACK
5.29.13	CLOSE
5.29.14	SERVICE_UNLOAD

http://www.oracle.com/technetwork/java/jms/index.html

5.29.1	SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD SCHEMA 	 Optional.	See	SCHEMA.

VALIDATING 	 Optional.	See	VALIDATING.

DOMSET 	 Optional.	See	DOMSET.

	

5.29.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.29.3	CONNECT
The	CONNECT	command	is	used	to	open	a	connection	to	the	enterprise
messaging	system.
The	currently	available	vendor	implementations	are	ActiveMQ,	SonicMQ,
TibcoMQ	and	WebSphereMQ.
It	is	possible	to	create	more	vendor	implementations	by	writing	a	Java	class	that
implements	the	JMSVendor	interface.
The	JMSXMLBindService	does	a	service	properties	lookup	using	the	VENDOR
keyword	value	to	determine	which	Java	class	will	be	used	to	create	the
connection	object.
	
vendor.activemq=com.lansa.service.JMSVendorActiveMQ
vendor.sonicmq=com.lansa.service.JMSVendorSonicMQ
vendor.tibcomq=com.lansa.service.JMSVendorTibcoMQ
vendor.webspheremq=com.lansa.service.JMSVendorMQSeries
	

	
Keyword	values	can	also	be	passed	to	the	CONNECT	command	by	using	a
working	list	argument.	The	first	column	supplies	the	keyword	name	and	the
second	column	the	keyword	value.
The	command	keyword	takes	precedence	over	the	working	list	keyword	value
entry.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CONNECT VENDOR value Mandatory.	Message
System	Vendor.

HOST value Mandatory.	hostname	or
hostname:port.

PORT value Optional.
Default.	61616	for
ActiveMQ.
Default.	2506	for	SonicMQ.

Default.	7222	for	TibcoMQ.
Default.	1414	for
WebSphereMQ.

USER value Optional.

PASSWORD value Optional.

CLIENTID value Optional.

QUEUE value Mandatory.

REPLYTO *TEMPORARY Optional.	Create	and	use	a
temporary	reply	queue.

CHANNEL value Conditional.	Required	for
WebSphereMQ	connection.

QUEUE-
MANAGER

value Optional.	Used	by
WebSphere	connection.

CIPHER-SUITE value Optional.	Used	by
WebSphereMQ	connection.

MESSAGE-
PRIORITY

value 0	(lowest)	to	9	(highest).
Default.	4.

MESSAGE-
DELIVERY

*PERSISTENT Default.	*PERSISTENT.

*NONPERSISTENT 	

MESSAGE-TIME-
TO-LIVE

value Default.	0	milliseconds.
A	value	of	0	means	keep
forever.

SESSION-
TRANSACTED

*YES Default.	*NO.

*NO 	

SESSION-
ACKNOWLEDGE

*AUTO Default.	*AUTO.

*CLIENT 	

*DUPOK 	

	

	
Example
	
CONNECT	VENDOR(WEBSPHEREMQ)	HOST(LOCALHOST)	CHANNEL(USERAGENT.CHANNEL)	QUEUE-
MANAGER(USERAGENT.QUEUE.MANAGER)	QUEUE(USERAGENT.QUEUE)	SERVICE_LIST(KEYWRD,KEYVAL)
	
CONNECT	VENDOR(ACTIVEMQ)	HOST(LOCALHOST)	QUEUE(QUEUE_1)	SERVICE_LIST(KEYWRD,KEYVAL)
	

	

5.29.4	SEND
The	SEND	command	is	used	to	an	XML	message.	If	no	XML	data	has	been
created	then	an	empty	message	is	sent.
To	include	JMS	message	properties	with	the	message	use	the	optional	working
list	argument.
The	first	column	is	the	property	type,	the	second	column	is	the	property	name
and	the	third	column	is	the	property	value.	Property	types	are	I	for	integer,	B	for
Boolean,	S	for	string,	H	for	short,	L	for	long,	D	for	decimal,	F	for	float	and	J	for
special	JMS	properties.
The	following	type	J	properties	use	individual	method	calls	on	the	JMS	message
object	instead	of	the	generic	message.setStringProperty,	message.setIntProperty
and	message.setBooleanPropery	method	calls.

JMSTYPE	(message.setJMSType)
JMSMESSAGEID	(message.setJMSMessageID)
JMSCORRELATIONID	(message.JMSCorrelationID)
JMSPRIORITY	(message.setJMSPriority)
JMSREDELIVERED	(message.setJMSRedelivered)
JMSEXPIRATION	(message.setJSMExpiration)
JMSTIMESTAMP	(message.setJMSTimestamp)
JMSDELIVERYMODE	(message.setJMSDeliveryMode)
JMSREPLYTO	(message.setJMSReplyTo)
JMSDESTINATION	(message.setJMSDestination)

	
The	message	identifier	(MessageID)	is	returned	in	the	JSMMSG	field.
	
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND MESSAGE *BINARY Message	type.	JMS	BytesMessage.

*TEXT Default.	JMS	TextMessage.

ENCODING value. Conditional.	Used	if	message	type	is
*BINARY

Default.	UTF-8.

ARCHIVE value Optional.	Archive	file.

	

Example
	
SEND	MESSAGE(*TEXT)	SERVICE_LIST(PRPTYP,PRPNME,PRPVAL)
	
SEND	MESSAGE(*BINARY)	SERVICE_LIST(PRPTYP,PRPNME,PRPVAL)
	

	

5.29.5	RECEIVE
The	RECEIVE	command	is	used	to	receive	a	message.
To	receive	JMS	message	properties	from	the	message	use	the	optional	working
list	argument.
The	first	column	receives	the	property	type,	the	second	column	receives	the
property	name	and	the	third	column	receives	the	property	value.	The	property
type	is	always	S	(String)	for	user-defined	properties	and	J	for	special	JMS
properties.
The	message	identifier	(MessageID)	is	returned	in	the	JSMMSG	field.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RECEIVE ENCODING value Optional.	See	ENCODING.
Default	is	to	auto-detect	encoding.

WAITTIME value. Optional.	Wait	time	in	milliseconds.
Default.	0	forever.

SELECTOR value Optional.	Message	selector.

ARCHIVE value Optional.	Archive	file.

	

Example
	
RECEIVE	SERVICE_LIST(PRPTYP,PRPNME,PRPVAL)
	

	

5.29.6	BIND
The	BIND	command	binds	the	specified	service	code	to	the	loaded	inbound
document	or	creates	a	new	empty	outbound	document.
The	SERVICE	keyword	value	is	used	in	a	resource	property	lookup	using	the
property	key	service.'value'	and	service.archive.'value'	to	locate	the	binding
class	and	the	binding	jar	file	that	contains	the	binding	class	and	supporting
classes	generated	by	the	XMLBinding	Wizard.	If	the	service	binding	archive
entry	does	not	exist	then	the	binding	jar	file	must	exist	in	the	JSM	jar
subdirectory	instead	of	a	user	specified	directory.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

BIND SERVICE value Service	name.

TYPE *INBOUND Conditional.	Inbound	binding.

*OUTBOUND Conditional.	Outbound	binding.

BINDTRACE *YES Optional.	Trace	the	inbound	bind
result.

*NO Default.

FILTER 	 Optional.	See	FILTER.

	

	

5.29.7	GET
The	GET	command	is	used	to	read	the	inbound	document	object.
Fragments	use	only	fields,	so	the	GET	FRAGMENT	command	requires	the
SERVICE_EXCHANGE(*FIELD)	keyword.
Lists	use	only	a	working	list,	so	the	GET	LIST	command	requires	a	working	list
argument.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET LIST value Conditional.	Bind	list.

FRAGMENT value Conditional.	Bind	fragment.

INSTRUCTION value Optional.	Get	XML	processing
instruction.

	

	

5.29.8	SET
The	SET	command	is	used	to	populate	the	outbound	document	object.
Fragments	use	only	fields,	so	the	SET	FRAGMENT	command	requires	the
SERVICE_EXCHANGE(*FIELD)	keyword.
Lists	use	only	a	working	list,	so	the	SET	LIST	command	requires	a	working	list
argument.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET LIST value Conditional.	Bind	list.

FRAGMENT value Conditional.	Bind	fragment.

INSTRUCTION value Optional.	Set	XML	processing
instruction.

DATA value Conditional.	PI	data.

	

	

5.29.9	WRITE
The	WRITE	command	serializes	the	document	object	in	preparation	for	the
SEND	command.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

WRITE INDENT *YES Optional.	Indent	XML	content.

*NO Default.

INDENT-
AMOUNT

value Optional.	Indent	XML	amount.
Default.	0.	If	the	amount	is	not	zero
then	indent	is	enabled.

DOCTYPE value Optional.	Include	XML	<!DOCTYPE>
element.

PUBLIC value Conditional.	The	optional	public
component	of	the	XML	DOCTYPE
declaration.

OMIT-
DECLARATION

*YES Optional.	Omit	the	XML	declaration.

*NO Default.

BINDTRACE *YES Optional.	Trace	the	outbound	bind
result.

*NO Default.

FILTER 	 Optional.	See	FILTER.

	

	

5.29.10	ARCHIVE
The	ARCHIVE	command	saves	the	selected	source	to	the	archive	file	using	the
specified	encoding.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

ARCHIVE FILE value Mandatory.	File	path.

ENCODING 	 Optional.	See	ENCODING.

SOURCE *RECEIVE Optional.	Archive	receive	source.
Default.	*RECEIVE.

*SEND Archive	send	source.

	

	

5.29.11	COMMIT
The	COMMIT	command	is	used	to	commit	the	current	transacted	session.
Use	the	CONNECT	command	SESSION-TRANSACTED	keyword	to	start	a
transacted	session.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

COMMIT 	 	 	

	

	

5.29.12	ROLLBACK
The	ROLLBACK	command	is	used	to	rollback	the	current	transacted	session.
Use	the	CONNECT	command	SESSION-TRANSACTED	keyword	to	start	a
transacted	session.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

ROLLBACK 	 	 	

	

	

5.29.13	CLOSE
The	CLOSE	command	is	used	to	close	the	current	connection	and	binding.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CLOSE 	 	 	

	

	

5.29.14	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

5.30	JSONBindFileService
The	JSONBindFileService	is	designed	to	make	the	job	of	reading	JSON	data
into	applications	and	the	creation	of	JSON	data	by	applications	simple.	This	is
one	of	several	services	that	are	designed	to	consume	the	classes	generated	from
the	JSON	Binding	Wizard	(a	feature	of	the	LANSA	Integrator	Studio),	so	the
use	of	LANSA	Integrator	Studio	is	a	key	part	of	the	JSONBindFileService.
So,	for	example,	if	you	receive	an	order	in	JSON	format	into	a	directory	on	your
server,	the	JSONBindFileService	could	be	used	to	read	the	order	data,	convert
the	data	to	fields	inside	your	program,	from	which	the	program	can	then	process
the	data	as	required.	Alternatively,	your	application	might	be	the	one	that	needs
to	create	an	order	to	be	sent	to	a	supplier.	In	which	case	your	application	would
prepare	the	data	required	for	the	order	then	to	use	the	JSONBindFileService	to
create	the	JSON	file.
Related	Services
The	JSONBindFileService	is	one	of	several	services	that	can	consume	the
classes	generated	from	the	JSON	Binding	Wizard.	Another	service	in	this
family	combine	the	JSON	binding	with	specific	transport	support:

HTTPInboundJSONBindService
HTTPOutboundJSONBindService

The	JSONBindFileService	does	not	provide	transport	of	the	file.	If	you	need	to
transport	the	document,	you	may	need	to	use	one	the	service	listed	above	or
combine	it	with	one	of	the	transport	focused	services	such	as:

FTPService	-	this	service	allows	an	application	to	send	and	receive	files	to
and	from	a	remote	FTP	server.
JMSFileService	-	this	service	could	be	used	to	send	and	receive	files	using
enterprise	messaging	systems	such	as	ActiveMQ,	SonicMQ,	TibcoMQ
and	WebSphereMQ.

Technical	Specifications
The	JSONBindFileService	needs	to	be	used	in	conjunction	with	the	bindings
created	using	the	JSON	Binding	Wizard	of	the	LANSA	Integrator	Studio.	Once
created	you	will	need	to	move	the	relevant	.jar	and	property	files	to	the	server
before	you	can	run	the	application.
Please	refer	to	the	JSON	Binding	Wizard	if	you	are	not	familiar	with	it.

5.30.1	What	can	I	use	the	JSONBindFileService	for?
Pass	Data	Between	Internal	Systems
Many	companies	face	the	problem	of	how	to	integrate	data	from	disparate
systems.	They	might	be	running	Oracle	financials	on	a	Windows	server,	and
have	a	home	grown	RPG	or	LANSA	system	running	on	an	IBM	i	server,	and
need	to	move	data	between	the	two	systems.	JSON	is	becoming	the	preferred
approach	for	the	movement	of	such	data.
To	receive	an	order	in	JSON	format	and	send	a	reply
You	may	be	receiving	orders	from	a	distributor	in	JSON	format,	so	you	need	a
way	to	transform	the	data	held	within	the	document	to	information	that	is	useful
to	your	application	-	specifically,	fields	and	lists	(in	the	case	of	LANSA
applications),	and	subfiles	(in	the	case	of	RPG,	for	example).	As	a	first	step	in
the	exercise	you	would	use	the	JSON	Binding	Wizard,	in	LANSA	Integrator
Studio,	to	bind	the	JSON	elements	to	field	names	that	are	used	in	your
application.	Once	you	have	done	this	you	would	use	the	JSONBindFileService
in	your	application	to	read	the	data	into	application	fields	and	lists	(using	the
READ	and	GET	commands).	After	that	has	been	completed,	your	application
can	then	do	what	it	needs	to	in	order	to	process	the	order	into	your	system.
In	many	cases,	you	will	need	to	send	some	form	of	acknowledgement	back	to
the	sender.	This	time,	the	JSONBindFileService	can	be	used	to	create	a	file	as	a
response,	specifically	using	the	WRITE	and	SET	commands	that	come	with	this
service.
How	would	you	handle	a	situation	where	you	have	received	many	JSON
documents	into	a	directory?	You	could	use	the	LIST	command	that	comes	with
the	JSONBindFileService.	This	will	supply	you	with	a	list	of	all	the	files	that
are	in	the	directory,	and	you	can	then	use	that	list	to	process	the	files	that	you
want	to	process.

5.30.2	Using	the	JSONBindFileService
Whether	you	are	writing	your	client	application	in	RDML	/	RDMLX	or	in	a
3GL	such	as	RPG,	you	must	complete	the	same	basic	steps.
For	example,	an	application	that	needs	to	READ	a	JSON	file	would	typically
issue	the	following	sequence	of	commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
										READ
										BIND
										GET
										CLOSE
					SERVICE_UNLOAD
JSM(X)_CLOSE
Whereas,	an	application	that	needs	to	WRITE	to	a	JSON	file	would	typically
issue	the	following	sequence	of	commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
										BIND
										SET
										WRITE
										CLOSE
					SERVICE_UNLOAD
JSM(X)_CLOSE
Refer	to	the	Java	Service	Manager	Clients	for	the	command	details	that	apply	to
your	chosen	development	language.

5.30.3	JSONBindFileService	Properties
Properties	that	affect	the	operation	of	the	JSONBindFileService	are	specified	in
the	JSONBindFileService.properties	file.	The	properties	of	interest	fall	into	two
categories:

Properties	in	the	form	service.xxxxx=	that	associate	the	service	name	that
you	specify	in	the	BIND	service	command	with	the	classes	generated
from	the	JSON	Binding	Wizard.	These	properties	are	generated	by	the
JSON	Binding	Wizard	when	you	build	your	project,	so	you	should	not
normally	have	to	manually	enter	them.	You	may	have	to	deploy	them	to
your	production	environment	however	–	refer	to	JSON	Binding	Wizard
for	more	information.
General	properties	that	provide	default	values	affecting	the	operation	of
the	service.	These	are	described	in	5.30.4	JSONBindFileService
Commands.

The	default	properties	file	is	relatively	uninteresting	and	the	bulk	of	it	is	taken
up	with	messages.

5.30.4	JSONBindFileService	Commands
Your	application	issues	commands	to	the	JSONBindFileService	by	passing	the
command	strings	through	the	Java	Services	Manager	using	the
JSM_COMMAND	or	JSMX_COMMAND	built-in	function	or	an	API	for	your
chosen	development	language.
The	commands	that	the	JSONBindFileService	processes	are:
SERVICE_LOAD
READ
WRITE
BIND
GET
SET
DELETE
RENAME
LIST
CLOSE
SERVICE_GET
SERVICE_UNLOAD

SERVICE_LOAD
Loads	and	initializes	the	service.
	
																																																											Required
	
	SERVICE_LOAD	----	SERVICE	---------	service	name	------------
---->
	
																																																											Optional
	
															>--	TRACE	-----------	*NO	------------------------->
																																					*YES
																																					*ERROR
	
															>--	TRACE_NAME	------	name	------------------------|
																																					*SERVICE
																																					*PROCESS
																																					*FUNCTION
																																					*JOBNAME
																																					*JOBUSER
																																					*JOBNUMBER
	
For	more	information	refer	to:
Service	Program	Tracing	from	the	Client
Keywords
SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

JSONBindFileService.

TRACE To	enable	tracing	from	the	client	program	use	the	TRACE
keyword	on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:
*NO
*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the

service	does	not	return	an	ERROR,	FATAL	or
SOAPFAULT	status	to	the	client,	the	trace	files	are	deleted
on	the	JSM	CLOSE	call.

TRACE_NAME This	optional	keyword	allows	the	client	to	append	a	user-
defined	name	to	the	end	of	the	client	trace	subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(JSONBINDFILESERVICE)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcommand	:=	'service_load	service(JSONBindFileService)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	to_get(#jsmxsts	#jsmxmsg)
	

READ
The	READ	command	is	used	to	read	and	parse	the	JSON	data.
When	the	READ	command	is	executed,	the	following	steps	occur:
1.The	file	content	is	read	as	UTF-8	data	and	parsed	.
	
																																																										Required
	
	READ	------------	FILE	------------	file	path	------------------>
	
																																																										Optional
	
															>--	ARCHIVE	---------	value	----------------------|
	
Keywords
FILE This	keyword	is	used	to	specify	the	file	name	and	path	of	the

JSON	document.
It	is	recommended	to	use	the	forward	slash	as	the	path	separator
and	to	avoid	the	use	of	the	DOS	drive	designator.
The	format	of	the	path	should	be	as	follows:
For	Windows	you	can	specify:
Absolute	path
For	example:
/orders/order.json
C:/orders/order.json
C:\orders\order.json

or
Relative	path.
For	example,	orders/order.json	(note,	no	'/'	at	the	start),	in
which	case	the	order.json	document	must	reside	in	the	orders
directory	under	the	JSM	Instance	directory	on	your	server.

For	the	IBM	i	you	can	specify:
Absolute	path.

For	example:
/orders/order.json

or
Relative	path.
For	example,	orders/order.json	(note,	no	'/'	at	the	start),	in
which	case	the	order.json	document	must	reside	in	the	orders
directory	under	the	JSM	Instance	directory	on	your	server.

Note:	Whatever	directory	structure	you	specify	must	already
exist.
This	keyword	is	mandatory.

ARCHIVE Refer	to	ARCHIVE	for	more	complete	information	on	this
keyword.
This	keyword	is	optional.

Comments	/	Warnings
The	ARCHIVE	keyword	is	a	very	useful	way	to	store	away	JSON	documents
after	they	have	been	processed.
Examples
RDML
	
*	Define	the	fields	used	by	the	JSM	Commands
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
CHANGE	FIELD(#JSMCMD)	TO('READ	FILE(orders/order.json)	ARCHIVE(archive/arc_order.json)')	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
Define	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
Define	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
Define	FIELD(#JSMHND)	TYPE(*CHAR)	LENGTH(4)

	
#JSMCMD	:=	'READ	FILE(orders/order.json)	ARCHIVE(archive/arc_order.json)'
Use	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMHND	#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

WRITE
The	WRITE	command	serializes	the	JSON	object	out	to	a	specified	file.	You
will	use	the	SET	command	one	or	more	times	prior	to	using	the	WRITE
command	to	set	up	the	data	in	the	document.
	
																																																										Required
	
	WRITE	----------	FILE	---------------	file	path	---------------->
	
																																																										Optional
	
														>--	BINDTRACE	----------	*NO	---------------------->
																																							*YES
	
														>--	FILTER	-------------	value	--------------------|
	
Keywords
FILE This	keyword	is	used	to	specify	the	file	name	and	path	of	the

JSON	document	to	be	created.
It	is	recommended	to	use	the	forward	slash	as	the	path
separator	and	to	avoid	the	use	of	the	DOS	drive	designator.
The	format	of	the	path	should	be	as	follows:
For	Windows	you	can	specify:
Absolute	path.
For	example:
/orders/order.json
C:/orders/order.json
C:\orders\order.json

or
Relative	path.	
For	example,	orders/order.json	(note,	no	'/'	at	the	start),	in
which	case	the	document	order.json	will	be	placed	in	the
orders	directory	under	the	JSM	Instance	directory	on	your

server.
For	the	IBM	i	you	can	specify:
Absolute	path.	
For	example:
/orders/order.json

or
Relative	path.	
For	example,	orders/order.json	(note,	no	'/'	at	the	start),	in
which	case	the	document	order.json	will	be	placed	in	the
orders	directory	under	the	JSM	Instance	directory	on	your
server.
Note:	The	directory	structure	must	exist.
This	keyword	is	mandatory.

BINDTRACE This	keyword	is	used	to	turn	on	tracing	for	the	outbound	bind
result.
There	are	two	options:
*YES	-	to	switch	tracing	on.
*NO	-	to	switch	tracing	off.
This	keyword	is	optional.

FILTER Refer	to	FILTER	for	more	complete	information	on	this
keyword.
This	keyword	is	optional.

	
Examples
RDML
	
*	Define	the	fields	used	by	the	JSM	Commands
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
CHANGE	FIELD(#JSMCMD)	TO('WRITE	FILE(response/rsp_order.json)')

USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
Define	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
Define	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
Define	FIELD(#JSMHND)	TYPE(*CHAR)	LENGTH(4)
	
#JSMCMD	:=	'WRITE	FILE(response/rsp_order.json)'
Use	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMHND	#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

BIND
The	BIND	command	binds	the	specified	service	code	to	the	loaded	inbound
document	or	creates	a	new	empty	outbound	document.
The	service	specified	as	a	part	of	the	command	will	have	been	created	using	the
JSON	Binding	Wizard	in	LANSA	Integrator	Studio.
You	will	need	to	specify	the	type	of	bind	as	outbound	or	inbound	-	a	READ	is
normally	associated	with	an	inbound	type	while	a	WRITE	is	normally
associated	with	an	outbound	type.
	
																																																										Required
	
	BIND	---------	SERVICE	--------	value	-------------------------->
	
												>--	TYPE	-----------	*INBOUND	----------------------->
																																	*OUTBOUND
	
																																																										Optional
	
												>--	BINDTRACE	------	*NO	---------------------------->
																																	*YES
	
												>--	FILTER	---------	value	--------------------------|
	
Keywords
SERVICE This	keyword	is	used	to	in	an	JSONBindFileService	property

lookup	using	service.'value'	and	service.archive.'value'	to
locate	the	binding	class	and	binding	jar	file	to	be	used.	The
value	here	will	be	the	corresponding	service	class	name	that
was	defined	in	the	JSON	Binding	Wizard.
This	keyword	is	mandatory.

TYPE This	keyword	is	used	to	specify	the	type	of	bind	to	be
performed,	and	it	will	depend	on	whether	you	are	intending	to
perform	a	READ	of	an	existing	file	or	a	WRITE	of	a	new	file.
There	are	two	possible	values:

*INBOUND	-	using	this	value	will	bind	the	specified	service
code	to	the	inbound	document	loaded	as	a	part	of	the
preceding	READ	command.
*OUTBOUND	-	using	this	value	will	create	a	new	empty
outbound	document.
This	keyword	is	mandatory.

BINDTRACE This	keyword	is	used	to	turn	on	tracing	for	the	inbound	bind
result.
There	are	two	options:
*YES	-	to	switch	tracing	on.
*NO	-	to	switch	tracing	off.
This	keyword	is	optional.

FILTER Refer	to	FILTER	for	more	complete	information	on	this
keyword.
This	keyword	is	optional.

Comments	/	Warnings
The	position	of	the	BIND	command	in	the	code	depends	on	whether	you	are
intending	to	read	data	from	an	existing	JSON	document	or	you	are	intending	to
create	a	new	JSON	document.	If	you	are	reading	data	from	an	existing	JSON
document,	the	code	flow	will	look	something	like	this:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
										READ
										BIND
										GET	(one	or	more	times)
										CLOSE
					SERVICE_UNLOAD
JSM(X)_CLOSE
Whereas,	an	application	that	needs	to	WRITE	to	a	JSON	document	would
typically	issue	the	following	sequence	of	commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD

										BIND
										SET	(one	or	more	times)
										WRITE
										CLOSE
					SERVICE_UNLOAD
JSM(X)_CLOSE
Examples
RDML
	
*	Define	JSM	fields
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
*	Bind
CHANGE	FIELD(#JSMCMD)	TO('BIND	SERVICE(INBOUNDORDER)	TYPE(*INBOUND)	BINDTRACE(*YES)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
Define	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
Define	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
Define	FIELD(#JSMHND)	TYPE(*CHAR)	LENGTH(4)
	
#JSMCMD	:=	'BIND	SERVICE(INBOUNDORDER)	TYPE(*INBOUND)	BINDTRACE(*YES)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
	

GET
The	GET	command	is	used	to	read	the	data	from	the	inbound	document	object.
The	GET	command	is	integral	part	of	loading	data	from	a	JSON	document	into
your	program.	It	must	be	preceded	by	the	READ	and	the	BIND	commands.
	
																																																								Conditional
	
	GET	----------	LIST	----------	value	---------------------------->
	
												>--	FRAGMENT	------	value	----------------------------|
	
	
Keywords
LIST This	keyword	is	used	to	get	a	list	from	the	loaded	JSON

document.
Refer	to	the	Lists	and	Variables	section	below	for	further
details	on	how	to	use	this	keyword.
This	keyword	is	conditional.

FRAGMENT This	keyword	is	used	to	get	a	field	fragment	from	the	loaded
JSON	document.
Refer	to	the	Lists	and	Variables	section	below	for	further
details	on	how	to	use	this	keyword.
This	keyword	is	conditional.

Comments	/	Warnings
You	can	only	use	one	keyword	at	a	time.
There	are	two	ways	in	which	you	can	read	a	list	from	an	JSON	document.
1.		You	can	either	define	the	relevant	section	of	the	JSON	elements	as	a	list
(using	the	JSON	Binding	Wizard),	and	use	the	LIST	keyword	in	your	GET
command.	This	will	retrieve	the	entire	list	in	one	go	into	a	working	list.

2.		Alternatively,	you	can	define	the	relevant	section	as	a	collection	of	fragments
(using	theJSON	Binding	Wizard)	and	then	use	the	FRAGMENT	keyword	in
your	GET	command	and	place	this	in	a	loop.

See	the	Examples	for	details	of	how	to	do	this.

Note:	Fragments	and	Lists
The	following	points	are	important	when	using	GET	FRAGMENT	and	GET
LIST	together.

When	you	issue	a	GET	FRAGMENT,	that	fragment	becomes	the	current
fragment.	That	is,	the	fragment	pointer	moves	to	the	current	one.
You	need	to	read	the	fragments	in	an	order	that	allows	all	fragments	to	be
accessed.	You	can	only	access	lists	and	child	fragments	once	you	have
positioned	the	fragment	pointer	to	its	parent	fragment.	So,	in	a	way,
fragments	are	a	bit	like	branches	on	a	tree	-	to	access	lists	and	fragments
further	down	the	tree	you	will	need	to	position	the	fragment	pointer	to	the
parent	branch.
For	example,	when	you	issue	a	GET	FRAGMENT,	a	GET	LIST	can	only
access	lists	within	this	current	fragment.	Therefore,	you	should	read	all	the
lists	(using	GET	LIST)	in	the	current	fragment	before	you	move	on	to
another.	Once	you	move	onto	another	fragment,	then	the	lists	in	the	previous
fragments	will	not	be	accessible.	You	may	access	the	lists	within	a	specific
fragment	in	any	order.
When	a	fragment	becomes	the	current	fragment	it	is	marked	as	used,	so	once
you	leave	it,	it	will	not	become	the	current	fragment	again.

Lists	and	Variables
If	you	are	using	the	LIST	keyword	to	return	a	list	from	the	loaded	document
into	your	program,	you	will	need	to	ensure	the	following	steps	are	taken	in	your
program.
1.		Define	a	working	list	that	contains	the	fields	that	you	are	expecting	from	the
JSON	document.

2.		Use	the	SERVICE_LIST	keyword	with	the	LIST	keyword	in	the	GET
command.	The	service	list	value	should	include	the	names	of	the	fields	in
your	working	list	without	the	'#'.	The	order	of	the	fields	should	be	defined
here	as	they	appear	in	the	working	list.

3.		In	the	TO_GET	portion	of	the	JSM_COMMAND	Built-In	Function,	include
the	name	of	the	working	list	that	will	hold	the	values	returned.

If	you	are	using	the	FRAGMENT	keyword	to	return	a	field	or	group	of	fields,
then	you	will	need	to	add	the	SERVICE_EXCHANGE	keyword	with	a	value	of
'*FIELD'.
See	the	Examples	for	details	on	how	to	do	this.

Examples
RDML
	
*	Define	JSM	fields
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
*	Define	a	list	to	hold	the	order	line	details
DEF_LIST	NAME(#WRKLINES)	FIELDS(#LINNUM	#PARTNUM	#PARTDSC	#PARTAMT	#PARTQTY)	TYPE(*WORKING)
	
*	Get	SalesOrder	Details
CHANGE	FIELD(#JSMCMD)	TO('GET	FRAGMENT(SALESORDER)	SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	
*	Get	Lines
CHANGE	FIELD(#JSMCMD)	TO('GET	LIST(LINE)	SERVICE_LIST(LINNUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKLINES)
	

RDMLX
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
Define	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
Define	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
Define	FIELD(#JSMHND)	TYPE(*CHAR)	LENGTH(4)
	
#JSMCMD	:=	'GET	FRAGMENT(CUSTOMER)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
	

SET
The	SET	command	is	used	for	two	distinct	operations.	Use	the	DIR	keyword	to
set	the	current	working	directory	or	alternatively	use	the	LIST	or	FRAGMENT
keywords	to	populate	the	outbound	document	object.
Once	you	have	completed	your	SET	commands	your	next	command	would
invariably	be	the	WRITE	command.
	
																																																								Conditional
	
	SET	----------	LIST	----------	value	---------------------------->
	
												>--	FRAGMENT	------	value	---------------------------->
	
												>--	DIR	-----------	value	----------------------------|
	
Keywords
LIST This	keyword	is	used	to	place	a	list	of	values	into	a	JSON

document.
Refer	to	the	Lists	and	Variables	section	below	for	further
details	on	how	to	use	this	keyword.
The	LIST	keyword	does	not	have	any	relationship	with	the
DIR	keyword.
This	keyword	is	conditional.

FRAGMENT This	keyword	is	used	to	place	a	field	or	group	of	fields	into	a
JSON	document.
Refer	to	the	Lists	and	Variables	section	below	for	further
details	on	how	to	use	this	keyword.
The	FRAGMENT	keyword	does	not	have	any	relationship
with	the	DIR	keyword.
This	keyword	is	conditional.

DIR This	keyword	is	used	to	nominate	a	relative	or	absolute	path	to
be	set	as	the	current	directory.
The	DIR	keyword	does	not	have	any	relationship	with	the

other	keywords	for	the	SET	command.
This	keyword	is	conditional.

Comments	/	Warnings
There	are	two	possible	ways	to	add	a	list	of	data	when	creating	a	JSON
document.
1.		The	most	obvious	way	is	to	use	the	SET	command	described	here	with	the
LIST	keyword,	then	specifying	the	array	in	a	working	list.	With	this	approach
the	section	o	JSON	would	need	to	be	defined	as	a	list	in	the	JSON	Binding
Wizard.

2.		Alternatively,	the	same	could	be	achieved	by	using	the	FRAGMENT
keyword	inside	some	looping	code.	Each	loop	would	add	a	new	row	to	the
list.	With	this	approach	the	section	of		JSON	would	need	to	be	defined	as	a
fragment	in	the	JSON	Binding	Wizard.

Whichever	way	you	choose,	you	will	need	to	carefully	decide	whether	the
relevant	section	of		JSON	is	defined	as	a	List	or	a	Fragment.
See	the	Examples	following	how	to	do	this.
Lists	and	Variables
If	you	are	using	the	LIST	keyword	to	create	a	list	in	an	JSON	document,	you
will	need	to	ensure	the	following	steps	are	taken	in	your	program.
1.		Define	a	working	list	that	contains	the	fields	that	will	be	passed	to	the	JSON
document.

2.		Use	the	SERVICE_LIST	keyword	with	the	LIST	keyword	in	the	SET
command.	The	service	list	value	should	include	the	names	of	the	fields	in	the
working	list	without	the	'#'.	The	order	of	the	fields	should	be	defined	here	as
they	appear	in	the	working	list.

3.		In	the	TO_GET	portion	of	the	JSM_COMMAND	Built-In	Function,	include
the	name	of	the	working	list	that	will	hold	the	values	to	be	placed	in	the
JSON	document.

If	you	are	using	the	FRAGMENT	keyword	to	add	a	field	or	group	of	fields,	then
you	will	need	to	add	the	SERVICE_EXCHANGE	keyword	with	a	value	of
'*FIELD'.	How	to	do	this	is	shown	in	the	Examples	following.
Examples
RDML
	

*	Define	JSM	fields
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
*	Define	Order	Line	fields
DEFINE	FIELD(#LINNUM)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)	COLHDG('Line')
DEFINE	FIELD(#PARTNUM)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)	COLHDG('Part	#')
DEFINE	FIELD(#PARTDSC)	TYPE(*CHAR)	LENGTH(030)	COLHDG('Descrption')
DEFINE	FIELD(#PARTAMT)	TYPE(*DEC)	LENGTH(010)	DECIMALS(2)	COLHDG('Amount')
DEFINE	FIELD(#PARTQTY)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)	COLHDG('Quantity')
	
*	Define	the	list	to	hold	the	order	lines
DEF_LIST	NAME(#WRKLINES)	FIELDS(#LINNUM	#PARTNUM	#PARTDSC	#PARTAMT	#PARTQTY)	TYPE(*WORKING)
	
*	Set	customer	details
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	FRAGMENT(CUSTOMER)	SERVICE_EXCHANGE(*FIELD)')	TO_GET(#JSMSTS	#JSMMSG)
	
*	Set	SalesOrder	header	details
CHANGE	FIELD(#JSMCMD)	TO('SET	FRAGMENT(SALESORDER)	SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	
CHANGE	FIELD(#JSMCMD)	TO('SET	LIST(LINE)	SERVICE_LIST(LINNUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKLINES)
	

RDML
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMCMD)	Type(*CHAR)	Length(256)
Define	Field(#JSMHND)	Type(*CHAR)	Length(4)
	
Define	FIELD(#LINENUM)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)	LABEL('Line	#')
Define	FIELD(#PARTNUM)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)	LABEL('Part	#')
Define	FIELD(#PARTDSC)	TYPE(*CHAR)	LENGTH(020)	LABEL('Part	Desc.')
Define	FIELD(#PARTAMT)	TYPE(*DEC)	LENGTH(010)	DECIMALS(2)	LABEL('Amount')
Define	FIELD(#PARTQTY)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)	LABEL('Quantity')

Define	Field(#LINSTAT)	Type(*CHAR)	Length(20)	Label('Line	Status')
Def_List	Name(#RSPLINES)	Fields(#LINENUM	#PARTNUM	#PARTDSC	#PARTAMT	#PARTQTY	#LINSTAT)	Type(*WORKING)
	
*	Set	the	customer	details
#JSMCMD	:=	'SET	FRAGMENT(CUSTOMER)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
	
*	Set	the	order	details	by	using	SET	FRAGMENT	a	number	of	times
Selectlist	Named(#RSPLINES)
#JSMCMD	:=	'SET	FRAGMENT(LINE)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)
	
#JSMCMD	:=	'SET	FRAGMENT(PART)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)
Endselect
	

DELETE
This	keyword	can	be	used	to	delete	a	file	from	a	specified	directory.
	
	DELETE	--------	FILE	--------	file	path	-------------------------|
	
Keywords
FILE This	keyword	is	used	to	define	the	file	name	to	be	deleted.	The	file

path	must	be	included.
It	is	recommended	to	use	the	forward	slash	as	the	path	separator	and	to
avoid	the	use	of	the	DOS	drive	designator.
The	format	of	the	path	should	be	as	follows:
For	Windows	you	can	specify:
Absolute	path.
For	example:
/orders/order.json
C:/orders/order.json
C:\orders\order.json	

or
Relative	path.
For	example,	orders/order.json	(note,	no	'/'	at	the	start),	in	which
case	the	document	order.json	will	be	deleted	from	the	orders
directory	under	the	JSM	Instance	directory	on	your	server.

For	the	IBM	i	you	can	specify:
Absolute	path.
For	example:
/orders/order.json

or
Relative	path.
For	example,	orders/order.json	(note,	no	'/'	at	the	start),	in	which
case	the	document	order.json	will	be	deleted	from	the	orders
directory	under	the	JSM	Instance	directory	on	your	server.

This	keyword	is	mandatory.

	
Examples
RDML
	
*	Define	JSM	fields
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
*	Delete
CHANGE	FIELD(#JSMCMD)	TO('''DELETE	FILE(orders/order.json)''')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMCMD)	Type(*CHAR)	Length(256)
Define	Field(#JSMHND)	Type(*CHAR)	Length(4)
	
*	Delete
Change	Field(#JSMCMD)	To('''DELETE	FILE(orders/order.json)''')
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#JSMHND)
	

RENAME
The	RENAME	command	can	be	used	to	rename	a	specified	local	file	to	a	new
name.
The	file	specified	in	for	the	TO	value	must	be	in	the	same	directory	as	the	file
specified	in	the	FROM	value.
	
																																																											Required
	
	RENAME	-------	FROM	---------	file	path	------------------------->
	
												>--	TO	-----------	file	path	------------------------->
	
																																																											Optional
	
												>--	REPLACE	------	*NO	-------------------------------|
																															*YES
	
Keywords
FROM This	keyword	specifies	the	name	and	path	of	the	file	whose	name

is	to	be	changed.
It	is	recommended	to	use	the	forward	slash	as	the	path	separator
and	to	avoid	the	use	of	the	DOS	drive	designator.
The	format	of	the	path	should	be	as	follows:
For	Windows	you	can	specify:
Absolute	path.
For	example:
/orders/order.json
C:/orders/order.json
C:\orders\order.json

or
Relative	path.
For	example,	orders/order.json	(note,	no	'/'	at	the	start),	in
which	case	the	document	order.json	must	be	a	file	located	in

the	orders	directory	under	the	JSM	Instance	directory	on	your
server.

For	the	IBM	i	you	can	specify:
Absolute	path.
For	example:
/orders/order.json

or
Relative	path.
For	example,	orders/order.json	(note,	no	'/'	at	the	start),	in
which	case	the	document	order.json	must	be	a	file	located	in
the	orders	directory	under	the	JSM	Instance	directory	on	your
server.

This	keyword	is	mandatory.

TO This	keyword	specifies	the	name	and	the	path	to	which	the	file	is
to	be	changed	to.	The	path	must	be	the	same	as	that	specified	in
the	FROM	keyword.
It	is	recommended	to	use	the	forward	slash	as	the	path	separator
and	to	avoid	the	use	of	the	DOS	drive	designator.
The	format	of	the	path	should	be	as	follows:
For	Windows	you	can	specify:
Absolute	path.	
For	example:
/orders/order2.json
C:/orders/order2.json
C:\orders\order2.json

or
Relative	path.	
For	example,	orders/order2.json	(note,	no	'/'	at	the	start),	in
which	case	the	document	order2.json	will	be	placed	in	the	orders
directory	under	the	JSM	Instance	directory	on	your	server.
For	the	IBM	i	you	can	specify:
Absolute	path.	

For	example:
/orders/order2.json

or
Relative	path.	
For	example,	orders/order2.json	(note,	no	'/'	at	the	start),	in
which	case	the	document	order2.json	will	be	placed	in	the	orders
directory	under	the	JSM	Instance	directory	on	your	server.
This	keyword	is	mandatory.

REPLACE This	keyword	is	used	to	specify	whether	you	want	to	overwrite
any	existing	file	of	the	same	name	as	specified	in	the	TO
keyword.
There	are	two	possible	values:
*YES	-	specifying	this	value	will	overwrite	any	existing	file	of
the	same	name	in	the	specified	directory..
*NO	-	if	this	value	is	set	then	an	exception	will	occur	if	a	file	of
the	same	name	already	exists	in	the	directory.	If	you	capture	this
exception	you	can	report	it	back	to	the	user.
The	default	value	is	*NO.
This	keyword	is	optional.

Comments	/	Warnings
If	you	wish	to	place	the	file	into	another	directory,	you	might	want	to	consider
using	the	ARCHIVE	keyword	on	the	READ	command.	This	keyword	will
move	the	file	that	you	are	currently	READing	and	place	it	into	a	new	specified
directory	with	whatever	name	you	give	it.
Examples
RDML
	
*	Define	JSM	fields
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
*	Rename

CHANGE	FIELD(#JSMCMD)	TO('''RENAME	FROM(/orders/test.json)	TO(/orders/rename.json)	REPLACE(*YES)''')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMCMD)	Type(*CHAR)	Length(256)
Define	Field(#JSMHND)	Type(*CHAR)	Length(4)
	
*	Rename
Change	Field(#JSMCMD)	To('''RENAME	FROM(/orders/test.json)	TO(/orders/rename.json)	REPLACE(*YES)''')
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#JSMHND)
	

LIST
The	LIST	command	will	return	a	list	of	file	names	found	within	a	specified
directory.
This	command	may	be	useful	if	a	number	of	JSON	documents	need	to	be
processed.	The	command	could	be	used	to	populate	a	working	list	with	all	the
documents	that	have	been	placed	in	a	specific	directory,	then	place	the	READ,
BIND,	and	GET	commands	with	a	SELECT_LIST	working	on	this	list.
	
	LIST	-------------	DIR	---------	directory	path	---------------->
	
																>--	EXT	---------	file	extension	---------------->
	
																>--	SORT	--------	*NONE	------------------------->
																																		*NAME
																																		*MODIFIED
	
																>--	REVERSE	-----	*YES	--------------------------|
																																		*NO
	
Keywords
DIR This	keyword	is	used	to	specify	the	directory	that	is	to	be

searched.
It	is	recommended	to	use	the	forward	slash	as	the	path	separator
and	to	avoid	the	use	of	the	DOS	drive	designator.
The	format	of	the	path	should	be	as	follows:
For	Windows	you	can	specify:
Absolute	path.
For	example:
/orders
C:/orders
C:\orders

or
Relative	path.

For	example,	orders	(note,	no	'/'	at	the	start),	in	which	case	the
search	will	be	conducted	in	the	orders	directory	under	the
JSM	Instance	directory	on	your	server.

For	the	IBM	i	you	can	specify:
Absolute	path.
For	example:
/orders

or
Relative	path.
For	example,	orders	(note,	no	'/'	at	the	start),	in	which	case	the
search	will	be	conducted	in	the	orders	directory	under	the
JSM	Instance	directory	on	your	server.

This	keyword	is	optional.

EXT This	keyword	is	used	to	filter	the	list	returned	based	on	the	file
extension.
The	filtering	match	is	case	insensitive.
This	keyword	is	optional.

SORT The	optional	sort	keyword	allows	sorting	on	file	name	or
modified	date.
The	default	value	is	*NONE.

REVERSE The	optional	reverse	keyword	allows	the	sorted	order	to	be
reversed.
The	default	value	is	*NO.

Comments	/	Warnings
If	you	do	not	specify	the	DIR	value,	then	it	will	automatically	return	a	list	of
files	from	the	JSM	instance	directory.
Lists	and	Variables
This	keyword	requires	a	single	field	working	list	to	receive	the	canonical	file
paths.	To	enable	this,	you	should	do	the	following:
1.		Define	a	single	field	working	list	that	will	hold	the	returned	list	of	files.	The
field	needs	to	be	long	enough	to	hold	the	full	canonical	path	and	file	name.

2.		Use	the	SERVICE_LIST	keyword	with	the	LIST	command.	The	service	list
value	should	include	the	name	of	the	single	field	defined	in	the	working	list
without	the	'#'.

3.		In	the	TO_GET	portion	of	the	JSM_COMMAND	Built-In	Function,	include
the	name	of	the	working	list	defined	above.

Examples
RDML
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMCMD)	Type(*CHAR)	Length(256)
	
*	Define	field	to	hold	file	names
DEFINE	FIELD(#FILENAME)	TYPE(*CHAR)	LENGTH(250)
DEF_LIST	NAME(#FILELSTW)	FIELDS(#FILENAME)	COUNTER(#LISTCOUNT)	TYPE(*WORKING)
	
#JSMCMD	:=	'LIST	DIR(NEWORDERS)	SERVICE_LIST(FILENAME)	EXT(JSON)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#FILELSTW)
	

RDMLX
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMCMD)	Type(*CHAR)	Length(256)
Define	Field(#JSMHND)	Type(*CHAR)	Length(4)
	
*	Define	field	to	hold	file	names
Define	Field(#FILENAME)	Type(*CHAR)	Length(250)
Def_List	Name(#FILELSTW)	Fields(#FILENAME)	Counter(#LISTCOUNT)	Type(*WORKING)
	
#JSMCMD	:=	'LIST	DIR(NEWORDERS)	SERVICE_LIST(FILENAME)	EXT(JSON)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#FILELSTW)
	

CLOSE
This	command	is	used	to	close	the	current	bind.	
	
	CLOSE	-------	no	keywords	--------------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Comments	/	Warnings
If	you	are	planning	to	work	with	more	than	one	JSON	documents	in	a	single
function,	then	it	is	recommended	that	you	CLOSE	the	bind	of	each	document
before	you	BIND	the	next	JSON	document.	This	is	not	mandatory	but	it	will
free	up	resources.
Examples
RDML
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
	
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
*	Define	the	fields	used	by	the	JSM	Commands
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMHND)	Type(*CHAR)	Length(4)
	
Use	Builtin(JSMX_CLOSE)	With_Args(#JSMHND)	To_Get(#JSMSTS	#JSMMSG)
	

SERVICE_GET
The	SERVICE_GET	command	allows	JSM	client	applications	to	access	the
keyword	/	value	properties	from	the	properties	file	associated	with	the	currently
loaded	service.
Client	applications	can	access	the	value	of	properties	associated	with	the
service,	but,	perhaps	more	usefully,	they	can	access	application	specific
property	values	too,	using	the	service	properties	file	as	a	common	medium	for
holding	such	values.
When	used	in	the	latter	way,	there	is	a	possibility	of	conflict	between
application-defined	keyword	names	and	those	used	by	current	and	future
versions	of	LANSA	Integrator.	To	reduce	this	possibility	your	application
should	prefix	the	property	keyword	with	a	global	unique	name.	The	examples
below	use	com.acme.property	as	the	prefix	for	this	purpose.
The	service	property	keyword	value	is	returned	in	the	JSM	message	field.	If	the
keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
	
	SERVICE_GET	--------	PROPERTY	-----	value	--------------------
>
	
																		>--	TRACE	-------	*SERVICE-------------------|
																																				*TRANSPORT
	
Keywords
PROPERTY Provide	a	keyword	/	value	to	be	checked	on	the	service

properties	file.
The	service	property	keyword	value	is	returned	in	the	JSM
message	field.	If	the	keyword	does	not	exist	in	the	service
property	file	a	status	of	NOT_EXIST	is	returned.

TRACE *SERVICE	-	read	service	trace	file.
*TRANSPORT	-	read	transport	trace	file.

Examples
The	examples	retrieve	the	value	of	the	com.acme.property.messagetype	(an
application-defined	property)	in	the	service	properties	file.	This	property	might

be	defined	in	the	service	properties	file	with	a	line	like	this	(the	value	"html"
will	be	returned	to	the	application	in	this	case):
	
com.acme.property.messagetype=html
	

RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_GET	PROPERTY(com.acme.property.messagetype)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcmd	:=	'	service_get	property(com.acme.property.messagetype)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service	and	removes	the
temporary	directory.
	
	SERVICE_UNLOAD	---------	no	keywords	--------------------------
|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(SERVICE_UNLOAD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	service_unload)	to_get(#jsmxsts	#jsmxmsg)
	

5.31	RFIDataSourceService
Service	Name:	RFIDataSourceService
The	RFIDataSourceService	allows	the	creation	of	data	source	objects,	which
can	be	sent	and	received	as	serialized	objects	between	a	remote	JVM	and	the
LANSA	Integrator	JVM.
The	RFIDataSourceService	uses	the	RFIDataSource	and	RFIDataTable	classes
in	the	jsmrfi.jar	file.	This	file	must	exist	in	both	the	remote	client	JVM	and	also
the	host	JSM	JVM.
The	RFIDataSourceService	supports	the	following	commands:
5.31.1	SERVICE_LOAD
5.31.2	SERVICE_GET
5.31.3	CREATE
5.31.4	CHECK
5.31.5	DROP
5.31.6	GET
5.31.7	PUT
5.31.8	CLEAR
5.31.9	SEND
5.31.10	SERVICE_UNLOAD
	

5.31.1	SERVICE_LOAD
When	the	RFIDataSourceService	is	loaded	using	the	SERVICE_LOAD
command	a	check	is	made	for	posted	content.	If	content	has	been	posted	to	the
service	then	the	CONTENT-TYPE	keyword	value	is	checked	for	a	value	of
"application/x-java-serialized-object"	and	the	received	serialized	stream	is
converted	into	an	object.	If	the	object	is	an	instance	of	RFIDataSource	it	is
made	available	to	the	service	else	no	data	source	object	is	available.
An	optional	keyword	can	be	used	on	the	SERVICE_LOAD	command	to	allow
quick	and	easy	binding	of	data	from	the	received	data	source	to	the	client
program.
	
BIND	(*FIELD)
	

If	this	keyword	is	used,	then	field	values	in	the	data	source	object	are	used	to
update	the	program	fields.
A	map	object	is	used	to	map	source	column	names	to	program	field	names.
A	mandatory	list	argument	needs	to	be	used	with	the	SERVICE_LOAD
command.	This	list	supplies	the	field	name	to	column	name	map	information.
The	list	argument	can	have	one	or	two	fields,	the	first	field	contains	the	field
name	and	the	optional	second	field	contains	the	column	name.	If	the	list
argument	contains	only	one	field,	the	column	names	are	the	same	as	the	field
names.	If	the	list	argument	contains	two	fields	and	the	column	field	name	is
blank	the	column	name	will	be	the	same	as	the	field	name.
This	map	besides	controlling	the	field	to	column	name	mapping	also	controls
the	possible	list	of	fields	that	can	be	included	in	the	data	source.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD BIND *FIELD Optional.	Bind	data	source	fields	to
program	fields.

	

5.31.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.31.3	CREATE
The	CREATE	command	is	used	to	create	a	new	data	source	object.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CREATE DATASOURCE value Mandatory.	The	name	of	the	datasource
to	be	created.

	

Example
	
CREATE	DATASOURCE	(EMPLOYEE)
	

5.31.4	CHECK
The	CHECK	command	is	used	to	check	for	the	existence	of	a	data	object.
If	an	object	is	available	a	response	status	of	OK	is	returned	otherwise	a	response
status	of	NOT_EXIST	is	returned.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CHECK OBJECT *DATASOURCE Mandatory.	Checks	if	a	data	source
object	exists.

*FIELD Checks	if	a	data	source	field	exists.

*TABLE Checks	if	a	data	source	table
exists.

NAME value Optional	for	*DATASOURCE.
Mandatory	for	*FIELD	and
*TABLE.
The	NAME	keyword	is	the	name
of	the	table,	field	or	data	source.
The	field	name	is	the	data	source
field	name	not	the	program	field
name.

	

Example
	
CHECK	OBJECT	(*DATASOURCE)
CHECK	OBJECT	(*DATASOURCE)	NAME	(PEOPLE)
CHECK	OBJECT	(*TABLE)	NAME	(SKILLS)
CHECK	OBJECT	(*FIELD)	NAME	(EMPLOYEE_ID)
	

5.31.5	DROP
The	DROP	command	is	used	to	remove	a	data	object	from	the	DataSource
object.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

DROP OBJECT *FIELD Mandatory.	Data	source	field.

*TABLE Data	source	table.

NAME value Mandatory.	The	name	of	the	object	to	be
dropped.

	

Example
	
DROP	OBJECT	(*TABLE)	NAME	(SKILLS)
DROP	OBJECT	(*FIELD)	NAME	(EMPLOYEE_ID)	–
	single	data	source	field	name
	

5.31.6	GET
The	GET	command	is	used	to	get	data	from	the	DataSource	object.
If	a	PROPERTY	value	does	not	exist	an	empty	string	is	returned.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET OBJECT *DATASOURCE Mandatory.	The	OBJECT
(*DATASOURCE)	returns	the
data	source	name	in	the
response	message	field.

*FIELD The	OBJECT	(*FIELD)	is	used
to	update	field	values	from	the
data	source.	If	no	NAME
keyword	is	present,	then	a	list	of
field	names	from	the	list
argument	are	used.	If	the
NAME	(*ALL)	keyword	is	used
then	all	the	fields	in	the	data
source	are	used.	A	single	field
name	can	also	be	used	to	select
one	field.
The	field	name	is	the	program
field	name	not	the	data	source
field	name.

*TABLE The	OBJECT	(*TABLE)
requires	the	NAME	keyword	to
specify	which	data	source	table
will	be	used	to	fill	the	list	object
argument.	The	map	object	is
used	to	map	column	names	to
field	names	and	if	the	resolved
field	exists	in	the	list	object	its
value	is	updated.

NAME value Mandatory	for	*FIELD	and

*TABLE
The	NAME	keyword	is	the
name	of	the	table	or	field	in	the
data	source.
The	field	name	is	the	program
field	name	not	the	data	source
field	name.

*ALL All	the	fields	from	the	data
source.

PROPERTY value Optional.	HTTP	protocol
property.

	

Example
	
GET	OBJECT	(*DATASOURCE)
GET	OBJECT	(*TABLE)	NAME	(SKILLS)
GET	OBJECT	(*FIELD)	–	use	program	field	names	from	list	argument
GET	OBJECT	(*FIELD)	NAME	(EMPNO)	–	single	program	field	name
GET	OBJECT	(*FIELD)	NAME	(*ALL)	–	use	all	data	source	fields
	

5.31.7	PUT
The	PUT	command	is	used	to	add	or	update	field	and	table	data	in	the	data
source.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

PUT OBJECT *FIELD Mandatory.	Data	source	field.

*TABLE Data	source	table.

NAME value Optional.	The	OBJECT	(*TABLE)	requires
the	NAME	keyword	to	create	a	new
RFIDataTable	object	using	the	contents	of
the	supplied	list	object.	List	field	names	are
mapped	to	column	names.
The	OBJECT	(*FIELD)	does	not	require
the	name	keyword,	if	no	name	keyword	is
present,	then	all	field	names	in	the	list
argument	are	used.
The	field	name	is	the	program	field	name
not	the	data	source	field	name.

	

Example
	
PUT	OBJECT	(*TABLE)	NAME	(SKILLS)
PUT	OBJECT	(*FIELD)	–	all	program	field	names	from	list	argument
PUT	OBJECT	(*FIELD)	NAME	(EMPNO)	–	single	program	field	nam
	

5.31.8	CLEAR
The	CLEAR	command	removes	the	specified	object	from	the	data	source.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CLEAR OBJECT *TABLE Mandatory.	Removes	all	tables	from	the
data	source.

*FIELD Removes	all	fields	from	the	data	source.

	

Example
	
CLEAR	OBJECT	(*TABLE)	–	clear	all	tables	from	data	source
CLEAR	OBJECT	(*FIELD)	–	clear	all	fields	from	data	source
	

5.31.9	SEND
The	SEND	command	is	used	to	serialize	the	current	data	source	object	and
create	a	response	for	the	remote	JVM	client	program.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND OBJECT *DATASOURCE Mandatory.	The	object	to	be	sent.

	

Example
	
SEND	OBJECT	(*DATASOURCE)
	

5.31.10	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
DO	NOT	use	the	SERVICE_UNLOAD	command	when	sending	a	HTTP
response.	Use	the	SEND	command	to	create	the	response	and	then	use	the
JSM_CLOSE	BIF	to	close	the	connection.	The	byte	array	response	returned	to
JSM	Client	program	by	the	SEND	command	will	be	become	the	HTTP
response.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

5.31.11	RFIDDataSourceService	Examples
Go	to	RFIDataSourceService	Example	for	an	RDML	code	example.

5.32	ZipService
The	ZipService	provides	support	for:

Creating	zip	file	archives
Adding	files	and	directories	to	zip	file	archives
Extracting	files	and	directories	from	zip	file	archives

Archives	are	files	that	contain	other	files,	typically	in	a	compressed	format.	Zip
files	are	the	most	common	archive	format	and	provide	compression	and	file
grouping.
The	Zip	format	is	widely	used	and	supported.	Most	computer	users	will	be	able
to	create	or	process	zip	file	archives.	The	ZipService	provides	an	easy	method
for	your	applications	to	create	and	process	these	files.
Related	Services
The	ZipService	is	not	dependent	on	other	services.	It	can	be	used	on	its	own	to
create,	add	to	or	extract	from	zip	file	archives.	However,	depending	on	the
requirements	of	your	application,	you	may	wish,	for	example,	to	use	one	or
more	of	the	transport	services	to	send	or	receive	zip	file	archives	via	FTP,	HTTP
or	email.
Note	that	the	SMTPMailService	has	a	feature	that	can	collect	a	group	of
attachments	into	a	single	zip	archive	to	attach	to	an	out-going	email	message.
For	out-going	mail	applications,	this	feature	could	make	it	unnecessary	to
explicitly	invoke	the	ZipService.
Technical	Specifications

The	ZipService	makes	use	of	standard	Java	classes	to	implement	its	zip
functionality.
The	degree	of	compression	achieved	for	individual	files	will	vary
significantly	depending	on	the	nature	of	the	file	content.	Binary	files	such	as
program	executable	files	will	yield	relatively	little	compression,	while	text
files	will	often	achieve	high	compression.	Some	files,	particularly	those	file
formats	that	are	already	compressed	(such	as	JPEG	image	files)	may	not
compress	at	all	or	may	even	yield	a	larger	file	than	the	original	following
compression.

5.32.1	What	can	I	use	the	ZipService	for?
Many	files	available	on	the	Internet	and	exchanged	by	email	are	distributed	as
zip	file	archives.	Archives	make	it	easy	to	group	files	and	make	transporting	and
copying	those	files	faster.	Because	the	zip	file	archive	format	is	widely	used,
you	can	be	assured	that	almost	all	recipients	will	be	able	to	read	and	extract	the
contents.
On	the	down	side,	the	files	contained	in	an	archive	are	not	as	readily	available
to	the	applications	that	may	wish	to	use	them,	although	modern	operating
systems	such	as	Microsoft	Windows	and	tools	often	provide	built-in	file	system
support	for	zip	file	archives.
Following	are	two	examples	of	typical	uses	of	zip	file	archives.
Exchanging	files	with	associates	and	partners
There	are	more	technologies	today	than	ever	for	electronically	exchanging
business	information	with	trading	partners.	Many,	like	EDI	and	web	services,
are	well	supported	by	accepted	standards.	However,	for	some	requirements	the
complexity	of	these	solutions	is	simply	not	justified.
A	subsidiary	company,	for	example,	may	have	to	report	financial	results	to	its
parent	on	a	regular	basis.	The	information	is	contained	in	Excel	files	that	are
produced	as	part	of	the	month-end	processing	for	their	finance	application.
Once	all	the	required	files	have	been	produced,	the	application	might	invoke	the
ZipService	to	collect	and	compress	the	files	into	a	single	zip	archive.	The
application	could	then	invoke	the	SMTPMailService	to	send	the	zip	archive	to
the	recipient	in	the	parent	company	as	an	email	attachment.
Archiving	infrequently	used	files
Often	files	are	important	even	though	they	may	be	infrequently	used.	You	might
archive	such	files	to	a	zip	file	either	to	save	disk	space	or	to	facilitate	transfer	to
other	media	for	secure	retention.	When	needed,	you	can	extract	the	files	from
the	archive	again.
For	some	applications	(especially	for	personal	use)	such	archiving	might	be	a
manual	process,	probably	using	your	favored	graphical	zip	program.
In	other	applications	you	might	wish	to	archive	certain	data	according	to
defined	retention	requirements.	A	customer	service	application,	for	example,
might	have	a	facility	to	store	documents	related	to	a	specific	transaction.	Very
likely	the	documents	are	stored	in	a	pre-defined	directory	structure	that	might
include	folders	for	years	and	months.	A	part	of	your	month-end	processing

might	be	to	calculate	the	names	of	the	folders	containing	the	documents	for	two
years	ago	and	to	use	the	ZipService	to	archive	those	folders	and	files	before
removing	them	from	the	system.

5.32.2	Using	the	ZipService
Whether	you	are	writing	your	client	application	in	RDML	/	RDMLX	or	in	a
3GL	such	as	RPG,	you	have	to	complete	the	same	basic	steps.
For	example,	an	application	that	creates	a	zip	archive	file	from	one	or	more	files
in	a	single	folder	or	directory	would	typically	issue	the	following	sequence	of
commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
										CREATE
										ADD
										CLOSE
					SERVICE_UNLOAD
JSM(X)_CLOSE
Refer	to	Java	Service	Manager	Clients	for	the	command	details	that	apply	to
your	chosen	development	language.

5.32.3	ZipService	Commands
Your	application	issues	commands	to	the	ZipService	by	passing	the	command
strings	through	the	Java	Service	Manager	using	the	JSM_COMMAND	or
JSMX_COMMAND	Built-In	Function	or	an	API	for	your	chosen	development
language.
The	commands	that	the	ZipService	processes	are:
SERVICE_LOAD
CREATE
OPEN
ADD
GET
CLOSE
DELETE
SERVICE_GET
SERVICE_UNLOAD

SERVICE_LOAD
Loads	and	initializes	the	service.
	
																																																										Required
	
	SERVICE_LOAD	----	SERVICE	---------	service	name	------------
--->
	
	
																																																										Optional
	
															>--	TRACE	-----------	*NO	------------------------>
																																					*YES
																																					*ERROR
	
															>--	TRACE_NAME	------	name	-----------------------|
																																					*SERVICE
																																					*PROCESS
																																					*FUNCTION
																																					*JOBNAME
																																					*JOBUSER
																																					*JOBNUMBER
	
For	more	information	refer	to:
Service	Program	Tracing	from	the	Client
Keywords
SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

ZipService.

TRACE To	enable	tracing	from	the	client	program	use	the	TRACE
keyword	on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:
*NO
*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the
service	does	not	return	an	ERROR,	FATAL	or
SOAPFAULT	status	to	the	client,	the	trace	files	are	deleted
on	the	JSM	CLOSE	call.

TRACE_NAME The	optional	TRACE_NAME	keyword	allows	the	client	to
append	a	user-defined	name	to	the	end	of	the	client	trace
subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(ZIPSERVICE)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcommand	:=	'service_load	service(zipservice)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	to_get(#jsmxsts	#jsmxmsg)
	

CREATE
The	CREATE	command	creates	an	archive	file	and	makes	it	the	current	archive
for	this	instance	of	the	ZipService.	The	current	archive	is	the	archive	upon
which	subsequent	ADD	and	GET	commands	operate.
If	the	specified	file	path	for	the	new	archive	already	exists,	then	it	will	be
replaced	by	the	CREATE	command.
	
	CREATE	-----	FILE	--------	file	path	-------------------------|
	
Keywords
FILE Specifies	the	file	path	of	the	archive	to	be	created.

The	file	path	consists	of:
Path	to	the	file	(optional).	If	you	do	not	specify	the	path,	or	if	you
specify	a	relative	path,	the	file	will	be	created	relative	to	the	JSM
instance	directory.	The	path	name	must	conform	to	the	naming	rules	of
the	target	file	system.
File	name	(required).	The	file	name	must	conform	to	the	naming	rules
of	the	target	file	system.
File	extension	(optional).	The	file	extension	should	be	.zip	to	ensure	the
file	can	be	correctly	recognized	and	processed	by	other	applications.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('CREATE	FILE(MYARCHIVE.ZIP)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'create	file(myarchive.zip)')	to_get(#jsmxsts	#jsmxmsg)
	

OPEN
The	OPEN	command	opens	an	existing	zip	file	and	makes	it	the	current	archive.
The	current	archive	is	the	archive	upon	which	subsequent	ADD	and	GET
commands	operate.
	
																																																									Required
	
	OPEN	----	FILE	------------	file	path	------------------------->
	
																																																									Optional
	
							>--	MODE	------------	*READ	----------------------------->
																													*WRITE
	
							>--	REPLACE	---------	*NO	-------------------------------|
																													*YES
	
Keywords
FILE This	keyword	is	used	to	specify	the	file	name	and	path	of	the	Zip

file.
It	is	recommended	to	use	the	forward	slash	as	the	path	separator
and	to	avoid	the	use	of	the	DOS	drive	designator.
The	format	of	the	path	should	be	as	follows:
For	Windows	you	can	specify:
Absolute	path
For	example:
/orders/order.zip
C:/orders/order.zip
C:\orders\order.zip

or
Relative	path.
For	example,	orders/order.zip	(note,	no	'/'	at	the	start),	in
which	case	the	order.zip	file	must	reside	in	the	orders

directory	under	the	JSM	Instance	directory	on	your	server.
For	the	IBM	i	you	can	specify:
Absolute	path.
For	example:
/orders/order.zip

or
Relative	path.
For	example,	orders/order.zip	(note,	no	'/'	at	the	start),	in
which	case	the	order.zip	file	must	reside	in	the	orders
directory	under	the	JSM	Instance	directory	on	your	server.

Note:	Whatever	directory	structure	you	specify	must	already
exist.
This	keyword	is	mandatory.

MODE The	MODE	indicates	whether	the	file	is	to	be	opened	for	reading
or	writing.	Open	the	file	for	reading	when	you	open	an	existing
archive	to	interrogate	its	contents	or	to	expand	files	contained	in
it.	Open	a	file	for	writing	when	opening	a	file	to	add	to	or	replace
its	contents.
The	default	value	of	*READ	indicates	the	file	is	opened	for
reading	only.
A	value	of	*WRITE	opens	the	file	for	writing.	This	allows	new
files	to	be	added	to	the	archive.	If	the	file	is	opened	for	writing
and	it	does	not	exist	a	new	archive	is	created.

REPLACE The	REPLACE	keyword	is	used	in	combination	with
MODE(*WRITE)	to	indicate	whether	the	contents	of	the	existing
file	can	be	replaced.
The	default	value	*NO	indicates	that	the	contents	of	the	archive
are	not	cleared	when	the	file	is	opened.	New	files	can	be	added	to
the	archive.
A	value	of	*YES	indicates	that	the	existing	contents	of	the
archive	are	cleared	when	the	file	is	opened.	New	files	can	be
added	to	the	empty	archive.

Examples

RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('OPEN	FILE(MYARCHIVE.ZIP)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'open	file(myarchive.zip)')	to_get(#jsmxsts	#jsmxmsg)
	

ADD
The	ADD	command	adds	files,	directories	and	child	directories	to	the	current
archive	(the	archive	last	successfully	opened	using	the	CREATE	or	OPEN
command)	in	the	current	instance	of	the	ZipService.
Either	the	PATH	or	FILE	keyword	must	be	specified.	If	both	keywords	are
specified	only	the	PATH	keyword	will	be	processed.
Specify	the	folders	or	files	to	be	added	using	either	the	PATH	or	FILE
keywords.	For	each	of	these	keywords	you	can	specify	a	single	folder	or	file,	or
you	can	provide	a	list	of	entries	to	be	added.
	
																																																					Conditional
	
	ADD	--------	FILE	----------	file	path	----------------------->
																														*LIST
	
										>--	PATH	----------	file	path	----------------------->
																														*LIST
	
																																																								Optional
	
										>--	BASE	----------	*NONE	--------------------------->
																														*CURRENT	
																														*PARENT	
																														path
	
										>--	TREE	----------	*YES	----------------------------|
																														*NO	
	
Keywords
FILE Specifies	the	path	for	one	or	more	files	to	be	added	to	the	current

archive.	The	file	paths	specified	must	refer	to	an	existing	file.	Adding
directories	using	this	keyword	is	not	supported.	You	can	specify	this
keyword	as	either:
File	path	specifies	the	name,	and	optionally	the	path,	a	single	directory
or	file	to	be	added	to	the	current	archive.	The	file	path	consists	of	the
following	parts:

*LIST	specifies	a	working	list	is	provided	with	the	command.	This	list
includes	the	files,	optionally	with	path	information,	to	be	added	to	the
current	archive.	The	working	list	must	include	one	field	to	contain	the
path	of	the	files	to	be	added.
Specify	either	the	PATH	or	FILE	keywords.	If	you	specify	both	only
the	PATH	keyword	will	be	processed.

PATH Specifies	the	paths	for	one	or	more	directories	or	files	to	be	added	to
the	current	archive.	You	can	specify	this	keyword	in	one	of	two	ways:
File	path	specifies	the	path	of	a	single	directory	or	file	to	be	added	to
the	current	archive.
*LIST	specifies	a	working	list	is	provided	with	the	command.	This	list
includes	the	paths	of	one	or	more	directories	or	files	to	be	added	to	the
current	archive.
The	working	list	can	have	one	or	two	fields.	The	first	field	is	expected
to	contain	the	paths	of	the	directories	or	files.	An	optional	second	field
can	be	used	to	specify	the	BASE	value	(refer	to	<BASE>)	that	applies
to	the	directory	or	file	identified	by	the	list	entry.	If	the	second	field	is
not	provided,	or	if	it	is	provided	but	is	blank,	*NONE	is	assumed	for
the	BASE	value.
If	you	specify	relative	paths	the	ZipService	will	look	for	the
directories	or	files	relative	to	the	JSM	instance	directory.
Specify	either	the	PATH	or	FILE	keywords.	If	you	specify	both	only
the	PATH	keyword	will	be	processed.

BASE The	BASE	keyword	is	used	in	conjunction	with	the	PATH	keyword.
The	BASE	keyword	controls	how	the	path	information	is	stored	for
each	entry	in	the	zip	archive.
By	specifying	an	appropriate	value	for	this	keyword	you	can	avoid	the
full	path	being	stored	for	each	zip	entry	–	instead	you	can	specify	that
the	stored	path	should	be	relative	to	a	common	root	path.	This	is
useful	when	the	contents	of	the	zip	archive	are	to	be	extracted	on	a
system	that	has	a	different	directory	structure	to	the	source	machine
If	you	populate	the	zip	archive	with	more	than	one	ADD	command,
you	should	take	care	to	specify	consistent	and	compatible	values	on
each	instance	of	the	ADD	command	so	as	to	ensure	a	consistent	path
structure	in	the	resulting	zip	archive.

The	possible	values	for	the	BASE	keyword	are:
The	default	value	*NONE	indicates	the	paths	stored	in	the	zip	archive
are	not	modified
*CURRENT	indicates	the	path	stored	in	the	zip	file	is	relative	to	the
directory	containing	the	entries	being	added	to	the	zip	file.
*PARENT	indicates	the	path	stored	in	the	zip	file	is	relative	to	the
parent	of	the	directory	containing	the	entries	being	added	to	the	zip
file.
Nominate	a	path	to	be	used	as	the	relative	path	for	all	files	in	the	zip
archive.

TREE The	TREE	keyword	is	used	in	conjunction	with	the	PATH	keyword.
The	TREE	keyword	specifies	whether	the	add	operations	should
recursively	traverse	sub-directories	of	the	directory(s)	specified.
The	possible	values	for	the	TREE	keyword	are:
*YES	(default)	the	child	directories	of	the	specified	directory(s)	and
their	contents	will	be	added	to	the	current	archive.	If	the	child
directories	themselves	contain	further	directories,	those	directories	and
their	contents	are	also	added,	and	so	on	until	all	the	descendants	of	the
specified	directory(s)	are	added.
*NO	child	directories	and	their	contents	are	not	added.

Examples
RDML
This	example	adds	a	single	file	to	the	current	archive.	No	path	is	specified	so
the	ZipService	will	look	for	the	file	in	the	JSM	instance	directory.
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('ADD	FILE(MYBIGTEXT.TXT)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
This	example	adds	all	files	in	the	specified	path	to	the	current	archive	with	path
information	stored	relative	to	the	directory	specified	in	the	PATH	keyword.
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'add	path(/send/orderdirectory)	base(*parent)')	to_get(#jsmxsts	#jsmxmsg)
	

GET
The	GET	command	provides	access	to	the	contents	of	the	current	archive	(the
archive	last	successfully	opened	with	the	CREATE	or	OPEN	commands).
Based	on	the	ENTRY	keyword	value	the	GET	command	can	be	used	to:

Populate	a	working	list	of	entries	in	the	current	archive
Extract	and	uncompress	entries	to	a	specified	location

Either	the	PATH	or	FILE	keyword	must	be	specified.	If	both	keywords	are
specified	only	the	PATH	keyword	will	be	processed.
	
																																																									Required
	
	GET	-------	ENTRY	---------	*READ	----------------------------->
																													*LIST
	
																																																									Optional
	
									>--	PATH	----------	*ALL	------------------------------>
																													file	path
	
									>--	FILE	----------	file	path	------------------------->
	
									>--	BASE	----------	*NONE	----------------------------->
																													*CURRENT
																													path
	
									>--	OCCURRENCE------	*ALL	----------------------------->
																													*FIRST
	
									>--	TO	------------	path	------------------------------|
	
Keywords
ENTRY Specifies	the	type	of	operation	performed	by	the	GET

command.	The	possible	values	are:
The	default	value	*READ	extracts	zip	file	entries	matching
the	PATH	or	FILE	keyword	values,	or	extracts	all	entries	if

neither	PATH	or	FILE	is	specified.	The	files	are	extracted	to
the	folder	specified	by	the	TO	keyword.	The	BASE
keyword	controls	whether	path	information	in	the	zip	file
entries	is	used	when	extracting	the	files.
A	value	of	*LIST	populates	the	supplied	working	list	with	a
list	of	all	the	zip	file	entries.	The	list	must	have	a	single
field	that	will	contain	the	full	path	of	the	zip	file	entry	(as
stored	in	the	zip	file).

PATH The	PATH	keyword	only	applies	when	ENTRY(*READ)	is
specified	–	that	is,	when	the	GET	command	is	being	used	to
extract	files	from	the	current	zip	archive.
The	PATH	value	is	compared	against	the	full	path	of	the	zip
file	entries	to	select	those	that	are	to	be	extracted.
Specify	either	the	PATH	or	FILE	keywords.	If	you	specify
both	only	the	PATH	keyword	will	be	processed.

FILE The	FILE	keyword	only	applies	when	ENTRY(*READ)	is
specified	–	that	is,	when	the	GET	command	is	being	used	to
extract	files	from	the	current	zip	archive.
The	FILE	keyword	specifies	the	full	path	of	a	single	entry
in	the	zip	archive	that	is	to	be	extracted.
Specify	either	the	PATH	or	FILE	keywords.	If	you	specify
both	only	the	PATH	keyword	will	be	processed.

BASE The	BASE	keyword	only	applies	with	ENTRY(*READ)	is
specified	–	that	is,	when	the	GET	command	is	being	used	to
extract	files	from	the	current	zip	archive.
The	BASE	keyword	specifies	whether	path	information	in
the	zip	file	entries	is	used	when	extracting	the	files	to	the
directory	specified	by	the	TO	keyword.
The	possible	values	for	the	BASE	keyword	are:
The	default	value	*NONE	indicates	the	full	paths	stored	in
the	zip	file	entries	are	used	when	extracting	files	to	the
directory	specified	by	the	TO	keyword.	The	directories
present	in	the	full	path	stored	in	the	zip	file	entry	become
descendant	directories	of	the	directory	specified	by	the	TO
keyword.

A	value	of	BASE(*NONE)	will	fail	if	the	path	information
in	the	archive	cannot	be	combined	with	the	path	in	the	TO
keyword	to	form	a	valid	composite	path.
*CURRENT	indicates	the	path	stored	in	the	zip	file	entry	is
disregarded	and	all	files	are	extracted	to	the	directory
specified	by	the	TO	keyword.
A	specific	path	value	indicates	the	paths	stored	in	the	zip
file	entries	are	partially	used	when	extracting	files	to	the
directory	specified	by	the	TO	keyword.	The	directories	that
are	used	are	those	in	that	part	of	the	zip	file	entry	paths	that
are	relative	to	the	path	specified	by	this	keyword	value.	The
path	specified	here	should	therefore	be	a	path	that	is
common	to	one	or	more	of	the	zip	file	entries.

OCCURRENCE The	OCCURRENCE	keyword	only	applies	when
ENTRY(*READ)	and	FILE	keyword	are	specified.	By
default	all	occurrences	of	a	file	are	written	out.	If	you	only
require	the	first	or	only	occurrence	of	the	file	to	be	written
out,	then	use	the	keyword	value	*FIRST.	Using	an
occurrence	value	of	*FIRST	improves	the	access	time	to
read	a	single	file	from	the	archive.

TO The	TO	keyword	only	applies	when	ENTRY(*READ)	is
specified	–	that	is,	when	the	GET	command	is	being	used	to
extract	files	from	the	current	zip	archive.
The	TO	keyword	specifies	the	path	to	the	directory	that	will
receive	the	extracted	files.	The	BASE	keyword	controls
whether	path	information	in	the	zip	file	entries	is	used	when
extracting	the	files	to	the	directory	specified	by	the	TO
keyword.

Examples
RDML
This	example	extracts	the	entire	contents	of	the	current	archive	to	the	folder
/EXTRACT:
	
CHANGE	FIELD(#JSMCMD)	TO('GET	ENTRY(*READ)	TO(/EXTRACT)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)

	
RDMLX
This	example	extracts	the	entire	contents	of	the	current	archive	to	the	folder
specified	by	#edtExtractFolder.Value:
	
#jsmcmd	:=	'get	entry(*read)	to('	+	#edtExtractFolder.Value	+	')	base('	+	#cboExtBas.Value	+	')'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

CLOSE
The	CLOSE	command	closes	the	current	archive.	Once	the	archive	is	closed
you	may	either	unload	the	service	or	continue	processing	by	creating	or	opening
another	archive	using	the	CREATE	or	OPEN	service	commands.
	
	CLOSE	--------------	no	keywords	---------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	close)	to_get(#jsmxsts	#jsmxmsg)
	

DELETE
Deletes	the	specified	file.	If	you	do	not	specify	the	path,	or	if	you	specify	a
relative	path,	the	ZipService	attempts	to	delete	the	file	relative	to	the	JSM
instance	directory.
	
	DELETE	----	FILE	---------	file	path	---------------------------|
	
Keywords
FILE The	path	and	name	of	the	file	to	be	deleted.

For	example:
<document	name>.zip	deletes	a	file	under	the	JSM	instance	root
directory
documents/<document	name>.zip	deletes	a	file	under	the	JSM	instance
documents	subdirectory
/<document	name>.zip	deletes	a	file	under	the	file	system	root
directory.

Examples
RDML
	
USE	BUILTIN(TCONCAT)	WITH_ARGS('DELETE	FILE('	#FILEPATH	')')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'delete	file(deleteme.zip)')	to_get(#jsmxsts	#jsmxmsg)
	

SERVICE_GET
The	SERVICE_GET	command	allows	JSM	client	applications	to	access	the
keyword	/	value	properties	from	the	properties	file	associated	with	the	currently
loaded	service.
Client	applications	can	access	the	value	of	properties	associated	with	the
service,	but,	perhaps	more	usefully,	they	can	access	application	specific
property	values	too,	using	the	service	properties	file	as	a	common	medium	for
holding	such	values.
When	used	in	the	latter	way,	there	is	a	possibility	of	conflict	between
application-defined	keyword	names	and	those	used	by	current	and	future
versions	of	LANSA	Integrator.	To	reduce	this	possibility	your	application
should	prefix	the	property	keyword	with	a	global	unique	name.	The	examples
below	use	com.acme.property	as	the	prefix	for	this	purpose.
The	service	property	keyword	value	is	returned	in	the	JSM	message	field.	If	the
keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
	
	SERVICE_GET	--------	PROPERTY	-----	value	--------------------
>
	
																		>--	TRACE	-------	*SERVICE-------------------|
																																				*TRANSPORT
	
Keywords
PROPERTY Provide	a	keyword	/	value	to	be	checked	on	the	service

properties	file.
The	service	property	keyword	value	is	returned	in	the	JSM
message	field.	If	the	keyword	does	not	exist	in	the	service
property	file	a	status	of	NOT_EXIST	is	returned.

TRACE *SERVICE	-	read	service	trace	file.
*TRANSPORT	-	read	transport	trace	file.

Examples
The	examples	retrieve	the	value	of	the	com.acme.property.messagetype	(an
application-defined	property)	in	the	service	properties	file.	This	property	might
be	defined	in	the	service	properties	file	with	a	line	like	this	(the	value	"html"

will	be	returned	to	the	application	in	this	case):
	
com.acme.property.messagetype=html
	

RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_GET	PROPERTY(com.acme.property.messagetype)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcmd	:=	'	service_get	property(com.acme.property.messagetype)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service,	closing	any	input	or
output	streams	and	removing	temporary	directories	or	files.
	
	SERVICE_UNLOAD	---------	no	keywords	--------------------------
|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_UNLOAD')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	service_unload)	to_get(#jsmxsts	#jsmxmsg)
	

5.32.4	ZipService	Examples
Examples	are	supplied	for	the	most	common	client	programming	languages:
RDML
RDMLX
RPG

5.33	PDFSpoolFileService
The	PDFSpoolFileService	allows	IBM	i	spool	files	to	be	converted	to	PDF
documents.	Use	this	service	to	create	a	PDF	file	from	a	single	IBM	i	spool	file.
If	the	PDF	file	already	has	information	this	will	be	replaced	with	the	spool	file
information.
The	Adobe	Portable	Document	Format	(PDF)	is	widely	used	as	a	portable	and
well-recognised	document	format.	Most	users	will	be	able	to	process	PDF	files
and	the	format	preserves	both	content	and	formatting.
Using	this	service	you	can	write	applications	that	automatically	convert	spool
files	(for	example	from	scheduled	jobs)	to	PDF	files,	for	example	for	archiving
or	to	send	to	nominated	recipients	via	email	(perhaps	using	the
SMTPMailService).
The	service	provides	commands	for	connecting	to	an	IBM	i	host	server,
retrieving	the	contents	of	a	nominated	output	queue	and	creating	a	PDF
document	for	a	nominated	IBM	i	spool	file.	Each	page	in	the	spool	file	becomes
one	page	in	the	resulting	PDF	document	and	a	range	of	keywords	can	be
specified	to	format	the	PDF	document.
Related	Services
The	PDFSpoolFileService	is	not	dependent	on	other	services.	It	can	be	used	on
its	own	to	create	PDF	files	from	an	IBM	i	spool	file	or	delete	PDF	files.
However,	depending	on	the	requirements	of	your	application,	you	may	wish,	for
example,	to	use	one	or	more	of	the	transport	services	to	send	PDF	files	via	FTP,
HTTP	or	email.
Note	that	the	SMTPMailService	has	a	feature	that	can	collect	a	group	of
attachments	into	a	single	zip	archive	to	attach	to	an	outgoing	email	message.
Technical	Specifications

The	PDFSPoolFileService	is	only	relevant	when	connecting	to	an	IBM	i
JSM	Server.
This	service	is	only	suitable	for	SCS	or	AFPDS	spool	files.
This	service	requires	the	IBM	Toolbox	for	Java	to	be	installed.
This	service	requires	i5/OS	5761SS1	Option	43	Additional	Fonts	licensed
program	to	be	installed.
This	service	uses	the	open	source	iText	API	classes.	Refer	to
www.lowagie.com/iText.

http://www.lowagie.com/iText

5.33.1	What	can	I	use	the	PDFSpoolFileService	for?
Many	files	available	on	the	Internet	and	exchanged	by	email	are	distributed	as
PDF	files.	Because	the	PDF	file	format	is	widely	used,	you	can	be	assured	that
nearly	all	recipients	will	be	able	to	read	and	extract	the	contents,	or	have	access
to	download	the	free	PDF	reader	software.
The	following	example	when	you	may	use	conversion	of	an	IBM	i	spool	file	to
a	PDF	file.
Simplified	distribution	of	application	reports
Replace	the	need	for	distribution	of	hardcopy	reports	by	converting	your	IBM	i
reports	to	a	PDF	format	and	distributing	by	email	to	the	appropriate	parties.
For	example,	you	may	have	an	IBM	i	RPG	or	LANSA	application	generating	a
monthly	sales	report	which	is	to	be	distributed	to	the	regional	sales	managers.
Instead	of	printing	a	copy	for	each	manager	and	distributing	by	conventional
mail	services	(i.e.	mail	or	courier)	you	could	convert	the	report	to	a	PDF	format
and	then	attach	this	PDF	document	to	an	email	for	distribution	to	the	group	of
sales	managers.	Implementing	this	process	will	save	time	and	substantially
reduce	your	printing	and	delivery	costs.

5.33.2	Using	the	PDFSpoolFileService
Whether	you	are	writing	your	client	application	in	RDML	/	RDMLX	or	in	a
3GL	such	as	RPG,	you	have	to	complete	the	same	basic	steps.
For	example,	an	application	that	creates	a	PDF	file	from	an	IBM	i	spool	file
would	typically	issue	the	following	sequence	of	commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
								CONNECT
								LIST
								CREATE
								DISCONNECT
								SERVICE_UNLOAD
					SERVICE_UNLOAD
JSM(X)_CLOSE
Refer	to	Java	Service	Manager	Clients	for	the	command	details	that	apply	to
your	chosen	development	language.

5.33.3	PDFSpoolFileService	Commands
Your	application	issues	commands	to	the	PDFSpoolFileService	by	passing	the
command	strings	through	the	Java	Service	Manager	using	the
JSM_COMMAND	or	JSMX_COMMAND	Built-In	Function,	or	an	equivalent
Built-In	Function	or	API	for	your	chosen	development	language.
The	commands	that	the	PDFSpoolFileService	processes	are:
SERVICE_LOAD
CONNECT
LIST
SET
CREATE
DISCONNECT
DELETE
SERVICE_GET
SERVICE_UNLOAD

SERVICE_LOAD
Loads	and	initializes	the	service.
	
																																																										Required
	
	SERVICE_LOAD	----	SERVICE	---------	service	name	------------
--->
	
																																																										Optional
	
															>--	TRACE	-----------	*NO	------------------------>
																																					*YES
																																					*ERROR
	
															>--	TRACE_NAME	------	name	-----------------------|
																																					*SERVICE
																																					*PROCESS
																																					*FUNCTION
																																					*JOBNAME
																																					*JOBUSER
																																					*JOBNUMBER
	
For	more	information	refer	to:
Service	Program	Tracing	from	the	Client
Keywords
SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

PDFSpoolFileService.

TRACE To	enable	tracing	from	the	client	program	use	this	keyword
on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:
*NO
*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the

service	does	not	return	an	ERROR,	FATAL	or
SOAPFAULT	status	to	the	client,	the	trace	files	are	deleted
on	the	JSM	CLOSE	call.

TRACE_NAME This	optional	keyword	allows	the	client	to	append	a	user-
defined	name	to	the	end	of	the	client	trace	subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(PDFSPOOLFILESERVICE)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcommand	:=	'SERVICE_LOAD	SERVICE(PDFSPOOLFILESERVICE)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	to_get(#jsmxsts	#jsmxmsg)
	

CONNECT
The	CONNECT	command	connects	to	the	IBM	i	host	machine.	If	no	HOST
keyword	is	present	then	the	connection	is	established	using	the	native	access
method.
	
	CONNECT	-----	HOST	--------	host:port	------------------------>
	
											>--	USER	--------	user	profile	--------------------->
	
											>--	PASSWORD	----	password	-------------------------|
	
Keywords
HOST Nominate	a	host	to	connect	to.	If	no	HOST	keyword	is	present

then	the	connection	is	established	to	the	same	machine	where
the	JSM	Server	is	active.

USER User	profile	to	be	used	for	connection	to	host.

PASSWORD Password	for	supplied	user.

Comments	/	Warnings
To	use	the	CONNECT	command	without	specifying	a	specific	HOST,	USER
and	PASSWORD,	the	JSM	Server	must	be	running	on	the	IBM	i	where	you	are
attempting	to	retrieve	spool	files.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('CONNECT')	TO_GET(#JSMSTS	#JSMMSG)
	

or
	
CHANGE	FIELD(#JSMCMD)	TO('''	CONNECT	HOST(ISERIES1)	USER(USERXX)	PASSWORD(XXXXXX)''')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
In	this	example	you	explicitly	OPEN	the	JSM	Server	on	the	IBM	i	where	you

intend	to	retrieve	spool	files.	By	nominating	the	<host>:<port>	on	the
JSMX_OPEN	command	you	can	then	CONNECT	to	the	same	server	without
specifying	a	HOST,	USER	or	PASSWORD.
	
*	connect	the	JSMX	client	to	an	IBM
i	based	Java	Service	Manager	and	start	a	thread	for	the	service
use	builtin(jsmx_open)	with_args('ISERIES1:4570')	TO_GET(#jsmxsts	#jsmxmsg	#jsmxhdle1)
	
*	Load	the	service
#jsmcommand	:=	'SERVICE_LOAD	SERVICE(PDFSPOOLFILESERVICE)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	TO_GET(#jsmxsts	#jsmxmsg)
	
*	connect	to	the	IBM	i	host
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'Connect')	TO_GET(#jsmxsts	#jsmxmsg)
	

or
	

If	by	default	the	JSMX_OPEN	connects	to	a	JSM	Server	running	on	a	different
machine	than	where	you	want	to	retrieve	the	spool	files	information,	you	will
need	to	supply	the	HOST,	USER	and	PASSWORD	for	the	machine	you	want	to
CONNECT	to.
	
*	connect	the	JSMX	client	to	an	IBM
i	based	Java	Service	Manager	and	start	a	thread	for	the	service
use	builtin(jsmx_open)	to_get(#jsmxsts	#jsmxmsg	#jsmxhdle1)
	
*	Load	the	service
#jsmcommand	:=	'SERVICE_LOAD	SERVICE(PDFSPOOLFILESERVICE)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	TO_GET(#JSMSTS	#JSMMSG)
	
*	connect	to	the	IBM	i	host
#jsmcommand	:=	'Connect	Host('	+	#JSMServer	+	')	User('	+	#JSMUserid	+	')	password('	+	#JSMpassword	+	')'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	TO_GET(#jsmxsts	#jsmxmsg)
	

LIST
The	LIST	command	is	used	to	obtain	a	list	of	spool	files	from	the	specified
output	queue.
	
																																																											Required
	
	LIST	----	LIBRARY	------	library	name	--------------------------->
	
							>--	QUEUE	--------	output	queue	--------------------------->
	
																																																											Optional
	
							>--	USER	---------	*ALL	----------------------------------->
																										user	ID
	
							>--	USERDATA	-----	*ALL	----------------------------------->
																										userdata
	
							>--	FORMTYPE	-----	*ALL	-----------------------------------|
																										formtype
	
Keywords
LIBRARY A	valid	IBM	i	library	name	must	be	supplied. 	

QUEUE A	valid	IBM	i	output	queue	must	be	supplied. 	

SERVICE_LIST Only	required	for	RDML	clients.
The	LIST	command	requires	a	working	list	with	six	or	ten
fields	to	receive	the	spool	file	information.
The	fields	can	be	of	any	name	and	size,	it	is	the	sequence
of	the	fields	that	is	important.	The	SERVICE_LIST	field
sequence,	size	and	type	must	match	the	fields	defined	in
the	DEF_LIST	included	in	the	return	keywords.
NAME						The	name	of	the	spool	file.
NUMBER				The	spooled	file	number	of	the	specified
file.

	

JOBNAME			The	name	of	the	job	that	created	the
spooled	file.
JOBUSER			The	name	of	the	user	who	produced	the
spooled	file.
JOBNUMBER	The	number	of	the	job	in	the	system.
STATUS				Status	of	spool	file.
PAGES					Page	count.
DATE						Creation	date	(YYYY-MM-DD).
TIME						Creation	time	(HH:MM:SS).
USERDATA		User	data.
	
Refer	to	Reserved	Keywords	for	your	appropriate	JSM
Client	for	more	information.

USER Indicates	that	only	spool	files	with	a	JOBUSER	matching
this	USER	should	be	returned.
This	should	be	a	valid	IBM	i	User	ID	or	*ALL.

USERDATA Indicates	that	only	spool	files	matching	the	USERDATA
specified	should	be	returned.
The	default	value	is	*ALL

FORMTYPE Indicates	that	only	spool	files	matching	the	FORMTYPE
specified	should	be	returned.
This	should	be	a	valid	IBM	i	spool	file	FORMTYPE	(e.g.
*STD)	or	*ALL.

Comments	/	Warnings
Use	the	USER,	USERDATA	and	FORMTYPE	filters	to	limit	the	amount	of
spool	files	returned.
Examples
RDML
Using	RDML	the	SERVICE_LIST	keyword	is	required	to	provide	appropriate
fields	for	each	column	in	the	working	list	to	be	returned.
	

DEF_LIST	NAME(#SPOOLLST)	FIELDS(#FLENAM	#FLENUM	#JOBNAME	#JOBUSER	#JOBNUMBER	#SPLFILSTS)	COUNTER(#LISTCOUNT)	TYPE(*WORKING)	ENTRYS(0009999)
USE	BUILTIN(TCONCAT)	WITH_ARGS('LIST	LIBRARY('	#JSMLIB	')	QUEUE('	#JSMOUTQ	')	USER(')	TO_GET(#JSMCMD)
	
USE	BUILTIN(TCONCAT)	WITH_ARGS('LIST	LIBRARY('	#JSMLIB	')	QUEUE('	#JSMOUTQ	')	USER(')	TO_GET(#JSMCMD)
	
IF	COND('#JSMUSER	*NE	*BLANK')
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	#JSMUSER)	TO_GET(#JSMCMD)
ELSE
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	'*ALL')	TO_GET(#JSMCMD)
ENDIF
	
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	')	USERDATA(*ALL)	FORMTYPE(*STD)	SERVICE_LIST('	'FLENAM,	FLENUM,	JOBNAME,	JOBUSER,	JOBNUMBER,	'	'SPLFILSTS)')	TO_GET(#JSMCMD)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#SPOOLLST)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	

RDMLX
Using	RDMLX	the	working	list	does	not	need	to	be	explicitly	described	to	the
JSM	service	(like	RDML)	as	the	LANSA	compiler	automatically	determines	the
structure	of	the	working	list	nominated	on	the	returned	arguments.
	
Def_list	name(#spoollst)	fields(#file	name	#filenumber	#jobname	#jobuser	jobnumber	#status)	type(*working)	entrys(500)
	
#jsmcommand	:=	'LIST	LIBRARY(QUSRSYS)	QUEUE('	+	#JSMOUTQ	+	')	USER('	+	#JSMUSERID	+	')	USERDATA(*ALL)	FORMTYPE(*STD)'
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	TO_GET(#jsmxsts	#jsmxmsg	#spoollst)
	

SET
The	SET	command	is	used	to	specify	page	images	to	be	used	by	the	CREATE
command.
	
																																																											Required
	
	SET	-----	OBJECT	-------	*IMAGES	--------------------------------|
	
Keywords
OBJECT *IMAGES

SERVICE_LIST Only	required	for	RDML	clients.
The	LIST	command	requires	a	working	list	with	six	fields
to	pass	the	image	information	to	the	service.
The	fields	can	be	of	any	name	and	size,	it	is	the	sequence	of
the	fields	that	is	important.
PAGE					Page	number.
X								X	location	of	image.
Y								Y	location	of	image.
WIDTH				Width	of	image.

HEIGHT			Height	of	image.
PATH					Path	of	image	file.
	
Refer	to	Reserved	Keywords	for	your	appropriate	JSM
Client	for	more	information.

Comments	/	Warnings
To	include	the	same	image	on	all	pages,	use	a	page	number	of	0.
The	unit	of	measurement	for	positioning	the	image	is	the	point.
There	are	72	points	in	1	inch.
The	X	co-ordinate	runs	from	the	left	side	of	the	page	to	the	right	size	of	the
page.
The	Y	co-ordinate	runs	from	the	top	of	the	page	to	the	bottom	of	the	page.

The	top	left	hand	corner	of	the	page	is	0,0.

CREATE
The	CREATE	command	reads	the	specified	spool	file	and	creates	the	PDF
document.
Each	spool	file	page	will	cause	a	new	PDF	page	to	be	created.	Use	appropriate
font	size,	leading	and	printer	file	options	to	fit	the	spool	file	page	on	a	single
PDF	document	page.
A	spool	file	of	132	columns	and	57	lines	per	page	can	fit	on	an	A4	landscape
page	using	a	font	size	of	8	and	leading	of	8.5.
To	accommodate	the	large	number	of	keywords,	a	working	list	can	be	used	to
pass	a	list	of	keywords.	Create	a	working	list	with	two	fields,	the	first	field
contains	the	keyword	and	the	second	field	contains	its	value.	Add	an	entry	for
each	keyword	required.	Any	keyword	specified	directly	on	the	command	will
take	precedence	over	a	corresponding	keyword	entry	in	the	working	list.	Refer
to	the	examples	to	see	how	this	works.
	
																																																									Required
	
	CREATE	-------	DOCUMENT	-----	file	path	-----------------------
>
	
												>--	APPEND	-------	*NO	----------------------------->
																															*YES
	
												>--	NAME	---------	spool	file	name	----------------->
	
												>--	JOBNAME	------	spool	file	job	name	------------->
	
												>--	JOBUSER	------	spool	file	job	user	------------->
	
												>--	JOBNUMBER	----	spool	file	job	number	----------->
	
																																																									Optional
	
												>--	NUMBER	-------	1	------------------------------->
																															numeric	value
	

												>--	PASSWORD	-----	password	------------------------>
	
												>--	MASTER	-------	master		------------------------->
	
												>--	AUTHOR	-------	author	-------------------------->
	
												>--	TITLE	--------	title	--------------------------->
	
												>--	SUBJECT	------	subject	------------------------->
	
												>--	KEYWORDS	-----	keywords	------------------------>
	
												>--	CREATOR	------	creator	------------------------->
	
												>--	ENCODING	-----	*HPT	---------------------------->
																															*CSF
																															Cp37
																															Cp273
																															Cp277
																															Cp278
																															Cp280
																															Cp284
																															Cp285
																															Cp297
																															Cp420
																															Cp423
																															Cp424
																															Cp500
																															Cp838
																															Cp870
																															Cp871
																															Cp875
																															Cp880
																															Cp905
																															Cp930
																															Cp933
																															Cp935
																															Cp937
																															Cp939

																															Cp1025
																															Cp1026
																															Cp1112
																															Cp1122
																															Cp1123
																															Cp1130
																															Cp1140
																															Cp1141
																															Cp1142
																															Cp1143
																															Cp1144
																															Cp1145
																															Cp1146
																															Cp1147
																															Cp1148
																															Cp1149
																															Cp1153
																															Cp1154
																															Cp1155
																															Cp1156
																															Cp1157
																															Cp1158
																															Cp1160
																															Cp1164
																															Cp1371
																															Cp1388
																															Cp1399
																															Cp4971
																															Cp5026
																															Cp5035
	
												>--	FONT	---------	*AUTO	--------------------------->
																															*COURIER
																															*COURIER2
																															*COURIER3
																															*COURIER4
																															*MINCHO
																															*GOTHIC
																															*SIMSUN

																															*DFKAISB
																															*MINGLIU
																															*BATANG
																															*COURIERNEW
																															*MTSANSWT
																															*MTSANSWTIN
																															*MTSANSWTJ
																															*MTSANSWTJEA
																															*MTSANSWTK
																															*MTSANSWTKEA
																															*MTSANSWTME
																															*MTSANSWTTC
																															*MTSANSWTTCEA
																															*MTSANSWTTCTWEA
																															*THRNDWT
																															*THRNDWTJ
																															*THRNDWTK
																															*THRNDWTME
																															*THRNDWTSC
																															*THRNDWTTC
	
												>--	FONTSIZE	-----	10	------------------------------>
																															numeric	value
	
												>--	LEADING	------	(fontsize	*	1.5)	---------------->
																														numeric	value
	
												>--	PAGES	--------	n,n-n	--------------------------->
	
												>--	PAGETYPE	-----	*TEXT	--------------------------->
																															*IMAGE
	
												>--	PAGESIZE	-----	*A4	----------------------------->
																															*A0	->	*A10
																															*B0	->	*B5
																															*LETTER
																															*HALFLETTER
																															*LEDGER
																															*LEGAL

																															*NOTE
																															width,	height
	
												>--	SCALING	------	n	------------------------------->
	
												>--	MARGIN	-------	36	points	----------------------->
																															left,	right,	top,	bottom	(points)
	
												>--	ORIENTATION	--	*PORTRAIT	-----------------------|
																															*LANDSCAPE	
	
Keywords
DOCUMENT The	name	of	the	PDF	file	to	be	created	or	replaced.

For	example:
<document	name>.pdf	creates	a	PDF	file	under	the	JSM
instance	root	directory
documents/<document	name>.pdf	creates	a	PDF	file	under
the	JSM	instance	documents	subdirectory
/<document	name>.pdf	creates	a	PDF	file	under	the	file
system	root	directory.

APPEND Append	the	created	spooled	file	pages	to	the	existing
document.	The	default	is	*NO.

NAME Spool	file	name.	This	must	be	a	valid	spool	file	name	on	the
nominated	IBM	i	output	queue.

NUMBER Spool	file	number.	Default	value	of	1	is	used	if	a	value	is
not	assigned.	This	must	be	a	valid	spool	file	number	on	the
nominated	IBM	i	output	queue.

JOBNAME Spool	file	job	name.	This	must	be	a	valid	job	name	on	the
nominated	IBM	i	output	queue.

JOBUSER Spool	file	job	user.	This	must	be	a	valid	job	user	on	the
nominated	IBM	i	output	queue.

JOBNUMBER Spool	file	job	number.	This	must	be	a	valid	job	number	on
the	nominated	IBM	i	output	queue.

PASSWORD A	Password	can	be	associated	with	the	generated	PDF	file
to	restrict	the	opening	of	the	document.	This	Password	is
case	sensitive.

MASTER If	a	Master	Password	is	associated	with	the	PDF	document,
this	password	must	be	supplied	before	you	can	set	or	change
security	settings.	This	Master	Password	is	case	sensitive.

AUTHOR A	text	value	to	indicate	the	Author	of	the	PDF	document.

TITLE A	text	string	to	be	used	as	the	title	of	the	generated	PDF
document.

SUBJECT A	text	string	to	indicate	what	the	generated	PDF	document
is	about.

KEYWORDS One	or	more	words	can	be	supplied	to	assist	with	searching
for	a	PDF	document.	Keywords	can	be	looked	at	as
categories	you	can	use	to	group	similar	or	related
documents.

CREATOR A	text	value	to	indicate	who	created	the	PDF	document.

ENCODING The	encoding	is	used	to	specify	automatic	host	print
transform	conversion,	automatic	or	specified	copy	to	stream
file	conversion.	The	default	encoding	is	*HPT.	Use	*CSF
for	automatic	copy	to	stream	file	conversion	or	use	a
codepage	value	to	specify	the	copy	to	stream	file	conversion
ccsid.

FONT The	font	used	to	draw	the	spool	file	text	is	fixed	width
Courier,	Heisei	Mincho	or	Heisei	Kaku	Gothic.	The	default
font	is	*AUTO.
The	following	fonts	are	available	by	default.
*AUTO						Font:	Determine	font	using	selected	encoding.
*COURIER			Font:	Courier
*COURIER2		Font:	Courier
*COURIER3		Font:	Courier
*MINCHO				Heisei	Mincho.
*GOTHIC				Heisei	Kaku	Gothic.

The	other	font	support	requires	that	i5/OS	5761SS1	Option
43	Additional	Fonts	licensed	program	to	be	installed.

FONTSIZE The	font	size	in	points.	The	default	setting	is	10	point.

LEADING Allows	you	to	control	the	blank	space	before	each	line	in
the	PDF	document.	The	Default	value	is	the	(FONTSIZE	*
1.5).

PAGES A	comma	separated	list	of	single	page	numbers	and	page
ranges.	The	default	is	to	select	all	pages.

PAGETYPE This	keyword	specified	the	type	of	page	generated.
*IMAGE	generates	pages	in	TIFF	G4	format.	The
SCALING	keyword	controls	the	percentage	scaling	of	the
image.	The	default	value	of	*TEXT	generates	pages	in	text
format.	The	FONT,	FONTSIZE	and	LEADING	keywords
control	the	text	output.

PAGESIZE The	page	size	for	the	generated	PDF	document.	The	default
value	is	*A4.
Valid	values	are:
*A0	to	*A10
*B0	to	*B5
*LETTER
*HALFLETTER
*LEDGER
*LEGAL
*NOTE
width,	height

SCALING The	percentage	scaling	to	be	applied	to	the	generated	page
image.	The	default	value	is	18.

MARGIN Page	margins	are	the	blank	space	around	the	edges	of	the
page.	The	default	value	is	36	points	(all	sides)	but	you	can
set	your	own	margins	by	nominating	left,	right,	top	and
bottom	values.

ORIENTATION The	default	option	is	*PORTRAIT.	Alternately	you	can

nominate	to	generate	as	*LANDSCAPE.

Comments	/	Warnings
Ensure	the	user	used	to	CONNECT	to	the	host	is	authorized	to	work	with	the
relevant	spool	files.
Examples
RDML
Particularly	in	RDML	with	its	256	field	length	restriction,	it	may	be	useful	to
use	the	SERVICE_LIST	keyword	to	accommodate	all	the	required	keywords
and	values	for	the	CREATE	command.
Note:	In	this	example	the	orientation	will	be	*PORTRAIT	as	the	command
value	will	override	any	keywords	provided	in	the	SERVICE_LIST.
	
DEF_LIST	NAME(#PDFLST)	FIELDS((#PDFKEY	*INP)	(#PDFVALUE	*INP))	TYPE(*WORKING)
	
DEFINE	FIELD(#PDFKEY)	TYPE(*CHAR)	LENGTH(20)
DEFINE	FIELD(#PDFVALUE)	TYPE(*CHAR)	LENGTH(50)
	
CHANGE	FIELD(#PDFKEY)	TO(AUTHOR)
CHANGE	FIELD(#PDFVALUE)	TO('LANSA	PTY	LTD')
ADD_ENTRY	TO_LIST(#PDFLST)
	
CHANGE	FIELD(#PDFKEY)	TO(TITLE)
CHANGE	FIELD(#PDFVALUE)	TO('ANNUAL	SALES	REPORT')
ADD_ENTRY	TO_LIST(#PDFLST)
	
CHANGE	FIELD(#PDFKEY)	TO(PAGESIZE)
CHANGE	FIELD(#PDFVALUE)	TO(*A5)
ADD_ENTRY	TO_LIST(#PDFLST)
	
CHANGE	FIELD(#PDFKEY)	TO(ORIENTATION)
CHANGE	FIELD(#PDFVALUE)	TO(*LANDSCAPE)
ADD_ENTRY	TO_LIST(#PDFLST)
	
CHANGE	FIELD(#JSMCMD)	TO('CREATE	ORIENTATION(*PORTRAIT)	FONTSIZE(8)	LEADING(8.5)	SERVICE_LIST(PDFKEY,PDFVALUE)')
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#PDFLST)

	
RDMLX
	
#jsmcommand	:=	'CREATE	DOCUMENT('	+	#JSMPDFdoc	+	')	NAME('	+	#file	name	+	')	NUMBER('	+	#filenumber	+	')	JOBNAME('	+	#jobname	+	')	JOBUSER('	+	#jobuser	+	')	JOBNUMBER('	+	#jobnumber	+	')	AUTHOR('	+	#JSMUserid	+	')	FONTSIZE(8)	LEADING(8.5)		ORIENTATION(*LANDSCAPE)	SERVICE_LIST(PDFKEY,PDFVALUE)'
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	to_get(#jsmxsts	#jsmxmsg	#spoollst)
	

	

DISCONNECT
The	DISCONNECT	command	closes	the	current	connection.
	
	DISCONNECT	---------	no	keywords	------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(DISCONNECT)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	DISCONNECT)	TO_GET(#jsmxsts	#jsmxmsg)
	

DELETE
Deletes	the	specified	PDF	file.
If	only	a	PDF	file	name	is	used,	the	command	attempts	to	be	delete	this	file
from	the	root	directory	of	the	JSMServer	instance.
	
	DELETE	----	FILE	---------	file	path	--------------------------|
	
	
Keywords
FILE The	name	of	the	PDF	file	to	be	deleted.

For	example:
<document	name>.pdf	deletes	a	PDF	file	under	the	JSM	instance	root
directory
documents/<document	name>.pdf	deletes	a	PDF	file	under	the	JSM
instance	documents	subdirectory
/<document	name>.pdf	deletes	a	PDF	file	under	the	file	system	root
directory.

	Comments	/	Warnings
The	DELETE	Command	does	not	require	a	connection	to	a	host	IBM	i	as	the
path	for	the	PDF	file	to	be	deleted	is	relative	to	the	JSM	Server	Instance.
Examples
RDML
	
USE	BUILTIN(TCONCAT)	WITH_ARGS('delete	file('	#JSMPDFDOC	')')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcommand	:=	'delete	File('	+	#jsmpdfdoc	+	')'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	to_get(#jsmxsts	#jsmxmsg	#spoollst)
	

SERVICE_GET
The	SERVICE_GET	command	allows	JSM	client	applications	to	access	the
keyword	/	value	properties	from	the	properties	file	associated	with	the	currently
loaded	service.
Client	applications	can	access	the	value	of	properties	associated	with	the
service,	but,	perhaps	more	usefully,	they	can	access	application	specific
property	values	too,	using	the	service	properties	file	as	a	common	medium	for
holding	such	values.
When	used	in	the	latter	way,	there	is	a	possibility	of	conflict	between
application-defined	keyword	names	and	those	used	by	current	and	future
versions	of	LANSA	Integrator.	To	reduce	this	possibility	your	application
should	prefix	the	property	keyword	with	a	global	unique	name.	The	examples
below	use	com.acme.property	as	the	prefix	for	this	purpose.
The	service	property	keyword	value	is	returned	in	the	JSM	message	field.	If	the
keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
	
	SERVICE_GET	--------	PROPERTY	-----	value	--------------------
>
	
																		>--	TRACE	-------	*SERVICE-------------------|
																																				*TRANSPORT
	
Keywords
PROPERTY Provide	a	keyword	/	value	to	be	checked	on	the	service

properties	file.
The	service	property	keyword	value	is	returned	in	the	JSM
message	field.	If	the	keyword	does	not	exist	in	the	service
property	file	a	status	of	NOT_EXIST	is	returned.

TRACE *SERVICE	-	read	service	trace	file.
*TRANSPORT	-	read	transport	trace	file.

Examples
The	examples	retrieve	the	value	of	the	com.acme.property.messagetype	(an
application-defined	property)	in	the	service	properties	file.	This	property	might
be	defined	in	the	service	properties	file	with	a	line	like	this	(the	value	"html"

will	be	returned	to	the	application	in	this	case):
	
com.acme.property.messagetype=html
	

RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_GET	PROPERTY(com.acme.property.messagetype)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcmd	:=	'	service_get	property(com.acme.property.messagetype)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service	and	disconnects	any
open	system.
	
	SERVICE_UNLOAD	---------	no	keywords	--------------------------
|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(SERVICE_UNLOAD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	SERVICE_UNLOAD)	to_get(#jsmxsts	#jsmxmsg)
	

5.33.4	PDFSpoolFileService	Examples
Examples	are	supplied	for	the	most	common	client	programming	languages:
RDML
RDMLX
RPG

5.33.5	Troubleshooting
Any	generated	PDF	document	will	appear	in	the	destination	path	after	the
CREATE	command	has	been	executed.	If	you	attempt	to	open	this	PDF	file
before	the	service	is	closed	you	will	get	a	message	"...	file	is	unsupported	or
damaged.

5.34	PDFDocumentService
Service	Name:	PDFDocumentService
The	PDFDocumentService	allows	complex	PDF	documents	to	be	created.
This	service	uses	the	open	source	iText	API	classes.
iText	requires	Bouncy	Castle	for	password	protecting	files	and	other	encryption
and	certificate	tasks.
Bouncy	Castle	requires	the	JCE	unlimited	strength	policy	files	'local_policy.jar'
and	'US_export_policy.jar'	to	be	installed	in	the	JDK's	lib/security	directory.
For	more	information	refer	to:
The	Legion	of	the	Bouncy	Castle
iText,	Programmable	PDF	Software
JCE	Unlimited	Strength	Policy	Files
The	PDFDocumentService	supports	the	following	commands:
5.34.1	SERVICE_LOAD
5.34.2	SERVICE_GET
5.34.3	CREATE
5.34.4	ADD
5.34.5	CLOSE
5.34.6	DELETE
5.34.7	SIGN
5.34.8	FILL
5.34.9	READ
5.34.10	SERVICE_UNLOAD

Also	see
5.34.11	XML	Content
5.34.12	Example	XML	Content
5.34.13	Example	RDML	function

http://www.bouncycastle.org/
http://www.lowagie.com/iText
LANSA093.CHM::/lansa/intengb3_0030.htm

5.34.1	SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD TIMEZONE value Optional.See	5.1.3	Time	Zones.
This	overrides	the	timezone	service
property.
If	no	service	property	then	the
default	TimeZone	is	used.

	

5.34.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.34.3	CREATE
The	CREATE	command	creates	an	empty	document.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CREATE DOCUMENT value Mandatory.	PDF	file.

CONTENT value Mandatory.	XML	content	file.

PASSWORD value Optional.	User	password.

MASTER value Optional.	Master	password

VERSION 1.2
1.3
1.4
1.5
1.6
1.7

Optional.	PDF	Version.
Default.	iText	default.

	

Example
	
CREATE	DOCUMENT(report.pdf)	CONTENT(report.xml)
	

5.34.4	ADD
The	ADD	command	reads	the	XML	content	file	for	the	specified	content	section
and	adds	the	content	to	the	current	document	or	template.	LANSA	fields	passed
with	the	command	can	be	merged	into	any	XML	attribute	using	the	{field}
notation.
The	PDF	document	can	be	broken	down	into	small	content	regions	and	each
ADD	command	call	can	generate	the	content	for	that	region.
When	adding	content,	that	contains	a	table	with	a	height	attribute,	if	all	the	rows
in	the	working	list	do	NOT	fit	into	the	specified	table	height	then	a	status	of
INCOMPLETE	is	returned.	The	working	list	is	modified	and	unused	entries	are
left	in	the	list	ready	for	another	ADD	content	call.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

ADD CONTENT value Mandatory.	Name	of	XML	content
section.

OFFSET *NONE Optional.	Default.	The	zero	X	and	Y
co-ordinate	is	the	bottom	left	corner
of	the	page.

*MARGIN Add	the	left	margin	value	to	the	X	co-
ordinate	and	the	bottom	margin	to	the
y	co-ordinate.	This	will	offset	the
location	by	the	current	margin
amount.

TEMPLATE value Optional.	Name	of	template	to
receive	content.

PASSWORD value Optional.	Required	by	import	PDF
pages,	if	PDF	file	is	password
protected.

	

Example

	
ADD	CONTENT(main)	SERVICE_LIST(...)
	
ADD	CONTENT(image)	TEMPLATE(logo)	SERVICE_LIST(...)
	

Also	see
5.34.11	XML	Content

5.34.5	CLOSE
The	CLOSE	command	closes	the	document.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CLOSE 	 	 	

	

Example
	
CLOSE
	

5.34.6	DELETE
The	DELETE	command	deletes	the	specified	file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

DELETE FILE value Mandatory.	File	Path.

	

Example
	
DELETE	FILE	(myreport.pdf)
	

5.34.7	SIGN
The	SIGN	command	signs	the	specified	PDF	document.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SIGN DOCUMENT value Mandatory.	PDF	file.

CONTENT value Mandatory.	XML	content	file.

PASSWORD value Optional.	User	password.

MASTER value Optional.	Master	password

NAME value Mandatory.	Name	of	signature.

OUTPUT value Mandatory.	Signed	PDF	file.

	

Example
	
SIGN	DOCUMENT(report.pdf)	CONTENT(signpdf.xml)	NAME(signature1)	OUTPUT(signed_report.pdf)
	
	
<?xml	version="1.0"	encoding="utf-8"?>
	
<document>
	
		<signature	name="signature1"	keystore="pdfself.jks"	password="password"	page="2"	x1="100"	y1="100"	width="100"	height="100"	reason="My	Reason"	location="My	Location"	text="My	text"	date="19610324"	signed="self"/>
	
</document>
	

5.34.8	FILL
The	FILL	command	allows	specified	Acrobat	form	fields	to	be	set.	This
command	requires	a	field	list	to	be	pass,	so	values	can	be	obtained.	The	form
usage	attribute	can	have	a	value	of	flatten	to	remove	form	field	edit	capability,
remove	to	remove	form	usage	rights,	the	default	is	to	preserve	form	usage
rights.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

FILL DOCUMENT value Mandatory.	PDF	file.

CONTENT value Mandatory.	XML	content	file.

PASSWORD value Optional.	User	password.

MASTER value Optional.	Master	password

NAME value Mandatory.	Name	of	form.

OUTPUT value Mandatory.	Output	PDF	file.

	

Example
	
FILL	DOCUMENT(form.pdf)	CONTENT(form.xml)	NAME(insurance)	OUTPUT(filled.pdf)
SERVICE_EXCHANGE(*FIELD}
	
	
<?xml	version="1.0"	encoding="utf-8"?>
	
<document>
	
<form	name="insurance"	usage="flatten">
		<field	name="FIRM	NAME"	value="{FNAME}"/>
		<field	name="FIRM	ADDRESS"	value="{FADDR}"/>
</form>
	

</document>
	

5.34.9	READ
The	READ	command	reads	the	specified	document	and	returns	document
information	into	the	list	argument.	The	list	needs	to	have	two	fields	and	the
fields	large	enough	to	receive	the	data.	The	first	field	identifies	the	information
and	the	second	field	has	the	value.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

READ DOCUMENT value Mandatory.	PDF	file.

PASSWORD value Optional.	User	password.

INCLUDE *PAGESIZE Optional.	Include	the	page	size	of
each	page	in	the	document.

	

Example
	
READ	DOCUMENT(report.pdf)	SERVICE_LIST(KEY,VALUE)
	

	

5.34.10	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

5.34.11	XML	Content
The	XML	content	file	requires	a	mandatory	root	document	element.	Child
content	elements	are	used	to	group	other	XML	elements.	The	ADD	command's
CONTENT	keyword	value	refers	to	the	name	attribute	value	of	the	XML
content	element.
	

<?xml	version="1.0"	encoding="utf-8"?>
	
<document>
	
		<content	name="main">
	
		</content>
	
		<content	name="logo">
	
		</content>
	
</document>
	

The	unit	of	measurement	used	for	positioning	document	content	is	the	point.
There	are	72	points	in	1	inch.
If	you	want	to	create	a	rectangle	in	PDF	that	has	the	size	of	an	A4-page,	you
have	to	calculate	the	number	of	points:
21	cm	/	2.54	=	8.2677	inch,	8.2677	*	72	=	595	points
29.7	cm	/	2.54	=	11.6929	inch,	11.6929	*	72	=	842	points
The	default	border	of	36	points	corresponds	with	half	an	inch.
The	X	co-ordinate	runs	from	the	left	side	of	the	page	to	the	right	size	of	the
page.
The	Y	co-ordinate	runs	from	the	bottom	of	the	page	to	the	top	of	the	page.
The	bottom	left	hand	corner	of	the	page	is	0,0	and	the	top	right	would	be	595,
842	for	an	A4	page.
All	content	XML	attributes	can	have	dynamic	values.	LANSA	field	values	can
be	bound	to	the	attribute's	value	at	runtime	by	using	a	{}	notation.

The	following	example	shows	how	to	use	LANSA	field	values	as	attribute
values.
	
<barcode	x1="20"	y1="500"	type="CODE128"	value="{FIELD1}"/>
	
<barcode	x1="{FIELD2}"	y1="{FIELD3}	type="{FIELD4}"	value="
{FIELD5}"/>
	

Several	Built-In	Functions	are	also	available.
@date
@page
@rowcount

	
	
<if	compare="{@page}"	value="11"	goto="additional"/>
	
<phrase	value="{@date}"	date-format="dd/MM/yyyy"/>
	

Element	-	document
The	document	element	is	the	root	element	of	all	other	elements	and	describes
the	PDF	document.
Syntax:
Element Attributes Value Notes	for

Element/Attribute/Value

document page-size A0	to	A10 Default.	A4.

B0	to	B5 	

letter 	

value width,	height

margin value left,	right,	top,	bottom
Default.	36	points.

orientation portrait Default.

landscape 	

background color 	

border boolean Default.	false.

grid boolean Default.	false.

author string 	

title string 	

subject string 	

keywords string 	

creator string LANSA	Integrator
Document	Service

hide-toolbar boolean Default.	false.

hide-menubar boolean Default.	false.

hide-windowui boolean Default.	false.

allow-printing boolean Default.	true.

allow-copy boolean Default.	true.

allow-modify-
contents

boolean Default.	true.

allow-modify-
annotations

boolean Default.	true.

allow-fillin boolean Default.	true.

allow-screenreader boolean Default.	true.

allow-assembly boolean Default.	true.

allow-degraded-
printing

boolean Default.	true.

compression boolean Default.	false.

page-layout onecolumn 	

singlepage Default.

twopageleft 	

twopageright 	

twocolumnleft 	

twocolumnright 	

fitwindow boolean Default.	false.

centerwindow boolean Default.	false.

display-doctitle boolean Default.	false.

printscaling-none boolean Default.	false.

page-direction L2R 	

R2L 	

page-mode useoc 	

usenone Default.

usethumbs 	

useoutlines 	

useattachments 	

fullscreen 	

nonfullscreen-page-
mode

useoc 	

usenone Default.

usethumbs 	

useoutlines 	

	

The	page-layout	attribute	sets	the	page	layout	to	be	used	when	the	document	is
opened	(choose	one).

singlepage	-	Display	one	page	at	a	time.(default)
onecolumn	-	Display	the	pages	in	one	column.
twocolumnleft	-	Display	the	pages	in	two	columns,	with	odd	numbered
pages	on	the	left.
twocolumnright	-	Display	the	pages	in	two	columns,	with	odd	numbered
pages	on	the	right.
twopageleft	-	Display	the	pages	two	at	a	time,	with	odd	numbered	pages	on
the	left.
twopageright	-	Display	the	pages	two	at	a	time,	with	odd	numbered	pages	on
the	right.

	
The	page-mode	attribute	sets	the	page	mode	to	be	used	when	the	document	is
opened	(choose	one).

useoc	-	Optional	content	group	panel	visible
usenone	-	Neither	document	outline	nor	thumbnail	images	visible.(default)
usethumbs	-	Thumbnail	images	visible.
useoutlines	-	Document	outline	visible.
useatttachments	-	Attachments	visible.
fullscreen	-	Full-screen	mode,	with	no	menu	bar,	window	controls,	or	any

other	window	visible.
	
hide-toolbar	-	A	flag	specifying	whether	to	hide	the	viewer	application's	tool
bars	when	the	document	is	active.
hide-menubar	-	A	flag	specifying	whether	to	hide	the	viewer	application's	menu
bar	when	the	document	is	active.
hide-windowui	-	A	flag	specifying	whether	to	hide	user	interface	elements	in	the
document's	window	(such	as	scroll	bars	and	navigation	controls),	leaving	only
the	document's	contents	displayed.
fitwindow	-	A	flag	specifying	whether	to	resize	the	document's	window	to	fit	the
size	of	the	first	displayed	page.
centerwindow	-	A	flag	specifying	whether	to	position	the	document's	window	in
the	center	of	the	screen.
display-doctitle	-	A	flag	specifying	whether	to	display	the	document's	title	in	the
top	bar.
printscaling-none	-	Indicates	that	the	print	dialog	should	reflect	no	page	scaling.
	
The	page-direction	attribute	has	no	direct	effect	on	the	document's	contents	or
page	numbering,	but	can	be	used	to	determine	the	relative	positioning	of	pages
when	displayed	side	by	side	or	printed	n-up	(choose	one).

L2R	-	Left	to	right
R2L	-	Right	to	left	(including	vertical	writing	systems	such	as	Chinese,
Japanese,	and	Korean)

	
The	nonfullscreen-page-mode	sets	the	page	mode	when	exiting	full-screen
mode.
It	is	meaningful	only	if	the	page	mode	is	fullscreen	(choose	one).

useoc	-	Optional	content	group	panel	visible
usenone	-	Neither	document	outline	nor	thumbnail	images	visible
usethumbs	-	Thumbnail	images	visible
useoutlines	-	Document	outline	visible

	

Element	-	content
The	content	element	is	a	top-level	element	and	is	a	container	for	other	elements.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

content name string 	

	

Element	-	template
The	template	element	is	a	top-level	element	that	defines	a	template.
The	template	name	is	used	by	the	ADD	command	TEMPLATE	keyword.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

template name string 	

width integer width

height integer height

	

Example
	
<template	name="logo"	width="200"	height="300">
			<image	x1="0"	y1="300"	file="logo.jpg"	scale="80"/>
</template>
	

	

Element	-	color
The	color	element	is	a	top-level	element	that	defines	a	color.
Pre-defined	colors	are	available:

black
blue
cyan
darkgray
darkgray
gray
gray
lightgray
lightgray
green
magenta
orange
pink
red
white
yellow

Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

color name string 	

rgb value red,	green,	blue

	

Example
	
<color	name="charcoal"	rgb="100,80,90"/>
	

	

Element	-	style
The	style	element	is	a	top-level	element	that	defines	a	style.
The	font	attribute	is	used	to	select	one	of	the	built-in	fonts.
The	file	attribute	allows	an	external	True	Type	Font	file	to	be	read	and
embedded	into	the	PDF	document.
The	style	attribute	can	contain	a	single	value	or	one	or	more	values	separated	by
a	space.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

style name string 	

font Courier Type	1	font.

Courier-Bold Base	Font.

Courier-
Oblique

Base	Font.

Courier-
BoldOblique

Base	Font.

Helvetica Default.	Type	1	font.

Helvetica-Bold Base	Font.

Helvetica-
Oblique

Base	Font.

Helvetica-
BoldOblique

Base	Font.

Symbol Type	1	font.

Times-Roman Type	1	font.

Times-Bold Base	Font.

Time-Italic Base	Font.

Times-
BoldItalic

Base	Font.

HeiseiMin-W3 CJK	Font.
Japanese.

HeiseiKakuGo-
W5

CJK	Font.
Japanese.

STSong-Light CJK	Font.
Chinese	Simplified.

MHei-Medium CJK	Font.
Chinese	Traditional.

MSung-Light CJK	Font.
Chinese	Traditional.

HYGoThic-
Medium

CJK	Font.
Korean.

HYSMyeongJo-
Medium

CJK	Font.
Korean.

size integer Default.	10.

style normal Default.	normal.

Bold 	

Italic 	

line-through 	

Underline 	

color Color Default.	black.

encoding Cp1250 Latin	2	Eastern	Europe

Cp1251 Cyrillic

Cp1252 Default.	Latin	1

Cp1253 Greek

Cp1254 Turkish

Cp1257 Windows	Baltic

Identity-H Unicode	Horizontal.

Identity-V Unicode	Vertical.

UniJIS-UCS2-
H

Japanese.
Unicode	(UCS-2)	encoding	for	the
Adobe-Japan	character	collection.
Horizontal.

UniJIS-UCS2-
V

Japanese.
Unicode	(UCS-2)	encoding	for	the
Adobe-Japan	character	collection.
Vertical.

UniJIS-UCS2-
HW-H

Japanese.
Same	as	UniJIS-UCS2-H,	but
replaces	proportional	Latin
characters	with	half-width	forms.
Horizontal.

UniJIS-UCS2-
HW-V

Japanese.
Same	as	UniJIS-UCS2-V,	but
replaces	proportional	Latin
characters	with	half-width	forms.
Vertical.

UniGB-UCS2-
H

Chinese	Simplified.
Horizontal.

UniGB-UCS2-
V

Chinese	Simplified.
Vertical.

UniKS-UCS2-
H

Korean.
Horizontal.

UniKS-UCS2-
V

Korean.
Vertical.

file Value Path	of	.TTF	file.

background Color 	

embedded Boolean Default.	false

	

Example
	
<style	name="normal"	font="Helvetica"	size="10"	style="normal"	/>
	
<style	name="white"	font="Helvetica"	size="10"	style="normal"	color="white"	background="black"/>
	
	
<style	name="Greek"	file="/QIBM/ProdData/OS400/Fonts/TTFonts/mtsansdw.ttf"	size="30"	encoding="Identity-
H"	embedded="true"/>
	

	

Element	-	annotation
The	annotation	element	is	a	top-level	element	that	defines	an	annotation.
Syntax:

Element Attributes Value Notes	for	Element/Attribute/Value

annotation name string 	

author string 	

subject string 	

date string yyyy-mm-dd	HH:MM:SS+HH:MM
The	default	is	the	current	datetime.

icon help Default.

comment 	

note 	

key 	

insert 	

color color 	

type square Default.

circle 	

value string Annotation	text.

	

If	the	annotation	text	is	large	and	extends	over	several	lines	then	child	phrase
elements	can	be	used.
Phrase	text	can	come	from	the	value	attribute	or	text	nodes	between	the	start
and	end	phrase	tag.
The	options	attribute	can	be	used	to	insert	spaces	or	new	lines	before	and	after
the	text	value.
The	options	value	is	a	comma-separated	list	of	tokens.

Syntax:

Element Attributes Value Notes	for	Element/Attribute/Value

phrase options sb Space	before	text	value.

sa Space	after	text	value.

nb New	line	before	text	value.

na New	line	after	text	value.

value string Text	value.

	

Example
	
<annotation	name="doc-
help"	icon="help"	author="author"	color="annotation">
			<phrase	options="na">This	is	help	one	line</phrase>
			<phrase	options="na"	value="This	is	help	two"/>
			<phrase	options="na">This	is	help	three</phrase>
</annotation>
	

	

Element	-	grid
The	grid	element	is	used	to	create	a	portrait	and	landscape	grid	pages	that	can	be
used	for	designing	process.
The	vertical	and	horizontal	lines	are	10	points	apart	and	every	100	points	a
heavier	line	is	drawn.
During	the	development	process	use	the	document	grid	attribute	to	overlay	a
grid	on	each	page	being	created.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

grid 	 	 	

	

Example
	
<grid/>
	

	

Element	-	add
The	add	element	is	used	to	add	a	template	to	the	current	document	page.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

add x1 integer Default.	0.

y1 integer Default.	0.

template string Name	of	template.

border boolean Default.	Document	border.

	

Example
	
<add	template="logo"	x1="300"	y1="400"/>
	

	

Element	-	import
The	import	element	is	used	to	import	pages	from	another	PDF	document	into
the	current	document.
Use	the	<page>	element	to	move	off	the	last	imported	page.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

import file value Path	of	PDF	file.

page String Selected	pages.
A	comma	separated	list	of	pages	or	page
ranges.
10
10,14-16,23
Default.	blank	means	all	pages.

cache boolean Default.	true.

file-exist boolean Default.	false.

page-exist boolean Default.	false.

file-
mandatory

boolean Default.	false.

background color Default.	Current	page	background	color.

transform a,b,c,d,e,f Apply	custom	affine	transform.

directory value Optional.	Import	all	PDF	files	in	specified
directory.	All	pages	in	each	PDF	file	are
imported.

	

Example
	
<import	file="standard-contract.pdf"/>
	
<import	file="standard-collection.pdf"	page="2"/>

	
	

Element	-	import-image
The	import-image	element	is	used	to	import	an	image	into	the	current
document.
The	image	is	scaled	and	center	aligned	to	fit	the	page.
Use	the	<page>	element	to	move	off	the	new	image	page.
Syntax:
Element Attributes Value Notes	for

Element/Attribute/Value

import-
image

file value Path	of	image	file.

file-exist Boolean Default.	false.

file-
mandatory

Boolean Default.	false.

margin value left,	right,	top,	bottom
Default.	Document	margin.

page-size A0	to	A4 Default.	Document	page.

B0	to	B5 	

letter 	

value width,	height

orientation portrait Default.	Document	orientation.

landscape 	

	

Example
	
<import-image	file="map.jpeg"	margin="0,0,0,0"/>
	

	

Element	-	attachment
The	attachment	element	is	used	to	add	a	file	attachment	to	the	current
document.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

attachment file value Path	of	attachment	file.

file-display value Attachment	name	in	document.
Default.	Name	of	attachment	file.

file-description value 	

file-exist boolean Default.	false.

file-mandatory boolean Default.	false.

file-date value File	modification	date.
YYYY-MM-DD	HH:MM:SS	
Default:	Current	datetime.

file-compression boolean Default:	true.

	

Example
	
<attachment	file="CORD443.jpg"	file-display="drill.jpg"	file-
description="Power	Drill"/>
	

	

Element	-	page
The	page	element	is	used	to	create	a	new	page.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

page page-size A0	to	A4 Default.	Document	page.

B0	to	B5 	

letter 	

value width,	height

margin value left,	right,	top,	bottom
Default.	Document	margin.

orientation portrait Default.	Document	orientation.

landscape 	

background color Default.	Document	background.

	

Example
	
<page/>
	
<page	page-size="720,720"	margin="40"	orientation="landscape"/>
	
<page	page-size="A4"	margin="40,40,40,40"	orientation="landscape"/>
	

	

Element	-	annotation
The	annotation	element	is	used	to	add	defined	annotation	text	to	the	current
page.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

annotation x1 integer Default.	0.

y1 integer Default.	0.

name string Name	of	annotation.

	

Example
	
<annotation	name="doc-help"	x1="50"	y1="550"/>
	

	

Element	-	anchor
The	anchor	element	is	used	to	a	clickable	region	to	the	current	page.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

anchor x1 integer Default.	0.

y1 integer Default.	0.

width integer Default.	0.

height integer Default.	0.

url String 	

border boolean Default.	Document	border.

	

Example
	
<anchor	x1="70"	y1="540"	width="50"	height="30"	url="http://www.lansa.com"	border="true"/>
	

	

Element	-	text-align
The	text-align	element	is	used	to	add	aligned	text	to	the	current	page.
Text	align	works	by	using	the	x1,	y1	as	a	point	around	which	the	text	aligns.
By	default,	x1	is	the	page	width	divided	by	2	and	y1	is	the	page	height	divided
by	2.	This	means	that	the	default	alignment	point	is	the	center	of	the	page.
Syntax:

Element Attributes Value Notes	for	Element/Attribute/Value

text-align x1 integer Default.	Page	width	/	2.

y1 integer Default.	Page	height	/	2.

value string Text

align left Default.

center 	

right 	

rotation integer Default.	0.

style style Default.	Helvetica,	10,	normal.

	

Example
	
<text-align	y1="400"	align="center"	value="heading"/>
	
<text-align	style="gray"	value="Blank	Page"	align="center"	rotation="90"/>
	

	

Element	-	text
The	text	element	is	used	to	add	text	to	the	current	page.
Syntax:

Element Attributes Value Notes	for
Element/Attribute/Value

text x1 integer Default.	0.

y1 integer Default.	0.

width integer Default.	0.

height integer Default.	0.

margin integer Default.	0.

border Boolean Default.	Document	border.

align left Default.

center 	

right 	

style style Default.	Helvetica,	10,	normal.

leading float Default.	fontsize	*	1.5

value string Text.

anchor url 	

annotation string Name	of	annotation

date-format string 5.1.4	Date	and	Time	Formats

decimal-
format

string 5.1.5	Decimal	Formats

locale string en_US
fr_FR
Default.	default	locale.

use-list Boolean Default.	false.

use-list-option sb Space	before	text	value.
Default.	sb.

	 sa Space	after	text	value.

nb New	line	before	text	value.

na New	line	after	text	value.

	

Text	created	from	child	phrase	elements
If	the	text	is	large	and	extends	over	several	lines	then	child	phrase	elements	can
be	used.
Text	created	from	child	phrase	elements	take	precedence	over	the	text	element
value	attribute.
Phrase	text	can	come	from	the	phrase	element	value	attribute	or	a	text	node
between	the	start	and	end	phrase	element	tags.
The	phrase	element	options	attribute	can	be	used	to	insert	spaces	or	new	lines
before	and	after	the	text	value.	The	options	value	is	a	comma-separated	list	of
tokens.
Text	created	from	list	argument
The	use-list	attribute	allows	text	to	be	created	from	a	list.
This	option	takes	precedence	over	the	other	methods	of	creating	text.
The	use-list-option	attribute	specifies	the	default	text	option	value	to	be	used.
The	first	list	field	contains	the	text	and	an	optional	second	field	is	used	to
control	the	concatenation	process.
If	no	second	field	is	present	or	the	field	has	a	value	of	blank	then	the	default	text
option	value	is	used.
The	possible	option	values	are:
					SB	-	Add	a	space	before	appending	the	text	entry,	except	for	the	first	entry.
					NB	-	Add	a	new	line	before	appending	the	text	entry,	except	for	the	first
entry.

					SA	-	Add	a	space	after	appending	the	text	entry,	except	for	the	last	entry.
					NA	-	Add	a	new	line	after	appending	the	text	entry.

If	the	option	value	is	not	one	of	the	above	then	no	additional	action	is	done	and
the	next	entry	is	appended	to	the	previous	entries.
Syntax:

Element Attributes Value Notes	for	Element/Attribute/Value

phrase options sb Space	before	text	value.

sa Space	after	text	value.

nb New	line	before	text	value.

na New	line	after	text	value.

value string Text	value.

style style Default.	Text	element	style.

anchor url 	

annotation string Name	of	annotation.

date-format string 5.1.4	Date	and	Time	Formats

decimal-format string 5.1.5	Decimal	Formats

locale string en_US
fr_FR
Default.	default	locale.

	

Example
	
<text	x1="20"	y1="700"	width="100"	height="20""	value="some	text"/>
	
<text	x1="70"	y1="500"	width="200"	height="400"	style="text-modern">
			<phrase	style="modern"	options="na">First	text	phrase</phrase>
			<phrase	style="modern-strike"	options="na">Second	text	phrase</phrase>
			<phrase	style="normal-
white"	options="na"	value="Third	text	phrase	as	a	value	attribute"/>
			<phrase	options="na"	anchor="http://www.lansa.com">Anchor<phrase>
			<phrase>Here	is	an</phrase>
			<phrase	options="sb,sa"	annotation="explain">annotation</phrase>

			<phrase	options="na">example</phrase>
			<phrase	options="sb,sb,sb,na,sa"	value="{@date}"	date-format="dd-MM-
yyyy"/>
			<phrase	options="na"	value="{@date}"	date-
format="dd/MM/yyyy	hh:mm:ss"/>
			<phrase	options="na"	value="23"	decimal-format="0000"/>
			<phrase	options="na"	value="34.56"	decimal-format="#,###.##"/>
			<phrase	options="na"	value="2334.56"	decimal-
format="¤#,###.##"/>
	</text>
	

	

Element	-	input	field
The	input	element	of	type	field	is	used	to	add	an	input	field	to	the	current	page.
Syntax:

Element Attributes Value Notes	for	Element/Attribute/Value

input type field 	

name string 	

value string 	

x1 integer Default.	0.

y1 integer Default.	0.

width integer Default.	0.

height integer Default.	20.

length integer Default.	0.	A	value	of	0	indicates	no	input
limit.

style style Default.	Helvetica,	10,	normal.

multiline boolean Default.	false.

readonly boolean Default.	false.

required boolean Default.	false.

export boolean Default.	true.

	

Example
	
<input	type="field"	name="FIELD1"	required="true"	value="text"	x1="100"	y1="750"	width="200"	length="15"	style="form"/>
	
<input	type="field"	name="FIELD2"	multiline="true"	readonly="true"	export="false"	value="text"	x1="100"	y1="720"	width="200"	height="50"	length="200"	style="form"/>
	

	

Element	-	input	hidden
The	input	element	of	type	hidden	is	used	to	add	a	hidden	field	to	the	current
page.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

input type hidden 	

name string 	

value string 	

length integer Default.	0.	A	value	of	0	indicates	no	input
limit.

export boolean Default.	true.

	

Example
	
<input	type="hidden"	name="FIELD3"	value="SECRET"	length="10"/>
	

	

Element	-	input	password
The	input	element	of	type	password	is	used	to	add	an	input	password	to	the
current	page.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

input type password 	

name string 	

value string 	

x1 integer Default.	0.

y1 integer Default.	0.

width integer Default.	0.

height integer Default.	20.

length integer Default.	0.	A	value	of	0	indicates	no	input
limit.

style style Default.	Helvetica,	10,	normal.

readonly boolean Default.	false.

required boolean Default.	false.

export boolean Default.	true.

	

Example
	
<input	type="password"	name="FIELD4"	x1="100"	y1="660"	width="30"	length="5"	style="form"/>
	

	

Element	-	input	checkbox
The	input	element	of	type	checkbox	is	used	to	add	an	input	checkbox	to	the
current	page.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

input type checkbox 	

name string 	

value string 	

x1 integer Default.	0.

y1 integer Default.	0.

width integer Default.	12.

height integer Default.	12.

length integer Default.	0.	A	value	of	0	indicates	no	input
limit.

selected boolean Default.	false.

readonly boolean Default.	false.

	

Example
	
<input	type="checkbox"	name="CHECK1"	value="CHK"	selected="true"	x1="100"	y1="630"/>
	

	

Element	-	input	radio-group
The	input	element	of	type	radio-group	is	used	to	logically	group	radio	buttons.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

input type radio-
group

	

name string 	

length integer Default.	0.	A	value	of	0	indicates	no	input
limit.

readonly boolean Default.	false.

	

Example
	
<input	type="radio-group"	name="RADIO1"	length="10">
			<input	type="radio"	value="RAD1"	x1="120"	y1="540"/>
			<input	type="radio"	value="RAD2"	x1="140"	y1="540"	selected="true"/>
			<input	type="radio"	value="RAD3"	x1="160"	y1="540"/>
</input>
	

	

Element	-	input	radio
The	input	element	of	type	radio	is	used	add	a	radio	button	to	the	current	page.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

input type radio 	

x1 integer Default.	0.

y1 integer Default.	0.

width integer Default.	12.

height integer Default.	12.

value string 	

	

Example
	
<input	type="radio-group"	name="RADIO1"	length="10">
			<input	type="radio"	value="RAD1"	x1="120"	y1="540"/>
			<input	type="radio"	value="RAD2"	x1="140"	y1="540"	selected="true"/>
			<input	type="radio"	value="RAD3"	x1="160"	y1="540"/>
</input>
	

	

Element	-	input	combobox
The	input	element	of	type	combobox	is	used	add	a	combobox	to	the	current
page.
Syntax:

Element Attributes Value Notes	for	Element/Attribute/Value

input type combobox 	

x1 integer Default.	0.

y1 integer Default.	0.

width integer Default.	0.

height integer Default.	20.

length integer Default.	0.	A	value	of	0	indicates	no
input	limit.

style style Default.	Helvetica,	10,	normal

readonly boolean Default.	false.

	

Child	item	elements	are	used	to	add	entries	to	the	combobox.
The	entry	value	can	come	from	the	item	value	attribute	or	as	a	text	node
between	the	start	and	end	item	tag.
Syntax:

Element Attributes Value Notes	for	Element/Attribute/Value

item value string 	

selected boolean Default.	false.

	

Example
	

<input	type="combobox"	name="COMBO1"	x1="100"	y1="600"	width="200"	length="20"	style="form">
			<item	value="C1"/>
			<item>C2</item>
			<item	value="C3"	selected="true"/>
			<item	value="C4"/>
			<item	value="{FIELD}"/>
			<item	value="C6"/>
</input>
	

	

Element	-	input	submit
The	input	element	of	type	submit	is	used	add	a	submit	button	to	the	current
page.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

input type submit 	

name string Default.	SUBMIT.

x1 integer 	

y1 integer 	

width integer 	

height integer Default.	20.

length integer Default.	0.	A	value	of	0	indicates	no	input
limit.

style style Default.	Helvetica,	10,	normal

readonly boolean Default.	false.

caption string 	

url url 	

	

Example
	
<input	type="submit"	caption="Submit"	url="http://lansa01:1099/cgi-
bin/jsmdirect?namevalue"	x1="100"	y1="510"	width="50"	style="form"/>
	

	

Element	-	table
The	table	element	is	used	to	add	a	table	to	the	current	page.
The	working	list	argument	is	used	to	create	the	rows	of	table	data.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

table x1 integer Default.	0.

y1 integer Default.	0.

width integer Default.	0.

height integer Default.	0.

minimum-
height

integer Default.	0.

fill boolean Default.	false.
Conditional.	Requires	height	attribute.
Use	minimum-height	to	control	height
of	empty	rows.

style style Default.	Helvetica,	10,	normal

alternate boolean Default.	false.

alternate-color color 	

title-show boolean Default.	true.

title-border-
color

color 	

title-minimum-
height

integer Default.	0.

border boolean Default.	true.

border-color color 	

cell-border boolean Default.	true.

	 cell-border- color 	

color

	

Example
	
<table	x1="20"	y1="500"	width="400"	height="300"	style="normal"	alternate="true">
			<column	field="FIELD1"	width-percentage="20"	title="First	Name"/>
			<column	field="FIELD2"	width-
percentage="20"	title="Surname
Family	Name"/>
</table>
	

	

Element	-	column
The	child	column	element	is	used	to	describe	the	table	columns.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

column title string 	

title-style style 	

title-
vertical-
align

top 	

middle Default.

bottom 	

title-
horizontal-
align

left 	

center Default.

right 	

title-border boolean Default.	true.

column-type text Default.

image 	

barcode 	

style style Default.	Table	element	style.

width-
percentage

integer Default.	10.

vertical-
align

top 	

middle Default.

bottom 	

horizontal-
align

left 	

center Default.

right 	

border boolean Default.	true.

alternate boolean Default.	true.

alt-text string 	

alt-text-field field Name	of	list	field.

type barcode Default.	CODE128.

start string Default.	A.

stop string Default.	B.

start-stop boolean Default.	true.

scale integer Default.	110.

rotation integer Default.	0.

field field Name	of	list	field.

date-format string Date	and	Time	Formats.

decimal-
format

string Decimal	Formats.

substitute-
newline

boolean Substitute	\n	with	a	newline	character.
Default.	false.

padding string Cell	padding.
Comma	separted	left,right,top,bottom
values	or	a	single	value	for	all	sides.

value string 	

	

Example
	
<table	x1="20"	y1="500"	width="400"	height="300"	style="normal"	alternate="true">
			<column	field="FIELD1"	width-percentage="20"	title="First	Name"/>
			<column	field="FIELD2"	width-
percentage="20"	title="Surname
Family	Name"/>
</table>

	
	

Element	-	list
The	list	element	is	used	to	add	a	list	to	the	current	page.
The	list	entries	can	come	from	a	working	list	or	if	child	item	elements	exist,
then	the	item	value	attribute	or	child	text	nodes	will	be	used.	Child	item
elements	take	precedence	over	the	working	list.
If	no	list	field	is	specified	or	the	field	does	not	exist	in	the	list	then	the	first	field
of	the	list	is	used.
Also	a	list	can	be	created	with	out	using	a	working	list.	Just	use	item	elements
with	static	values	or	bind	single	field	values.	Any	value	that	is	empty	will	be
excluded	from	the	list.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

list x1 integer Default.	0.

y1 integer Default.	0.

width integer Default.	0.

style style Default.	Helvetica,	10,	normal

border boolean Default.	Document	border.

vertical-align top 	

middle Default.

bottom 	

horizontal-align left Default.

center 	

right 	

symbol string Default.	bullet.

symbol-default boolean Default.	true.

field field Name	of	list	field.

	

Example
	
<list	x1="20"	y1="200"	width="200"	field="FIELD1"	horizontal-
align="right"/>
	
<list	x1="20"	y1="100"	width="200">
			<item	value="Item1"/>
			<item	value="{FIELD2}/>
			<tem	style="modern">Item	2</item>
			<item>Item	3</item>
</list>
	

	

Element	-	item
The	child	item	element	is	used	to	add	list	entries.
The	entry	value	can	come	from	the	item	value	attribute	or	as	a	text	node
between	the	start	and	end	item	tag.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

item value string 	

style style Default.	List	element	style.

	

Example
	
<list	x1="20"	y1="200"	width="200"	field="FIELD1"	horizontal-
align="right"/>
	
<list	x1="20"	y1="100"	width="200">
			<item	value="Item1"/>
			<item	value="{FIELD2}/>
			<tem	style="modern">Item	2</item>
			<item>Item	3</item>
</list>
	

	

Element	-	if
The	if	element	is	used	to	add	conditional	logic.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

if compare string 	

value string 	

operation equal Default.

not_equal 	

goto content Go	to	named	content	section.

	

Example
	
<if	compare="{@page}"	value="11"	operation="equal"	goto="additional"/>
	
<if	compare="{@page}"	value="12"	operation="equal">
			<page/>
			<text	x1="70"	y1="300"	width="100"	height="20"	value="some	text"/>
</if>
	

	

Element	-	return
The	return	element	ends	the	processing	of	the	current	content	section.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

return 	 	 	

	

Example
	
<if	compare="{@page}"	value="12"	operation="equal">
			<return/>
</if>
	

	

Element	-	line
The	line	element	draws	a	line.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

line x1 integer Default.	0.

y1 integer Default.	0.

x2 integer Default.	0.

y2 integer Default.	0.

line-width integer Default.	0.

stroke-color color Default.	black.

	

Example
	
<line	x1="10"	y1="290"	x2="190"	y2="290"	stroke-color="blue"/>
	

	

Element	-	circle
The	circle	element	draws	a	circle.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

circle x1 integer Default.	0.

y1 integer Default.	0.

radius integer Default.	0.

line-width integer Default.	0.

stroke-color color Default.	black.

fill-color color 	

	

Example
	
<circle	x1="100"	y1="100"	radius="50"/>
	

	

Element	-	rectangle
The	rectangle	element	draws	a	rectangle.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

rectangle x1 integer Default.	0.

y1 integer Default.	0.

width integer Default.	0.

height integer Default.	0.

radius integer Default.	0.

line-width integer Default.	0.

stroke-color color Default.	black.

fill-color color 	

	

Example
	
<rectangle	x1="10"	y1="100"	width="180"	height="40"/>
	

	

Element	-	image
The	image	element	adds	an	image	to	the	current	page.
Width	and	height	take	precedence	over	scale.	Width	and	height	must	be	greater
than	0	to	take	effect.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

image x1 integer 	

y1 integer 	

width integer Default.	0.

height integer Default.	0.

file file Path	of	image	file.

scale integer Default.	80.

rotation integer Default.	0.

file-exist boolean Default.	false.

file-mandatory boolean Default.	false.

border boolean Default.	Document	border.

page integer Default	0.	TIFF	image	page.
Use	-1	to	add	all	images.

anchor url 	

	

Example
	
<image	x1="70"	y1="500"	file="house.jpg"	width="200"	height="100"/>
	

	

Element	-	barcode
The	barcode	element	creates	a	barcode.
Width	and	height	take	precedence	over	scale.	Width	and	height	must	be	greater
than	0	to	take	effect.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

barcode x1 integer Default.	0.

y1 integer Default.	0.

width integer Default.	0.

height integer Default.	0.

type CODE39 	

CODE39EXT 	

CODE128 Default.

CODE128UCC 	

EAN8 	

EAN13 	

CODABAR 	

POSTNET 	

PLANET 	

INTER25 	

QRCODE Java	JRE	6.0	or	higher	is	required.
Requires	non	zero	width	and	height
attribute.

value string Barcode	value.

supplement string Supplement	value.
Used	by	EAN13.

scale integer Default.	110.
Not	used	by	QRCODE.

rotation integer Default.	0.

align. left 	

center Default.

right 	

start string Default.	A.
Used	by	CODABAR.

stop string Default.	B.
Used	by	CODABAR.

start-stop boolean Default.	true.
Show	start/stop	text.
Used	by	CODE39,	CODE39EXT	and
CODABAR.

alt-text string Barcode	alternative	text.

	

Example
	
<barcode	x1="20"	y1="700"	type="CODE39"	value="12345ABCD"/>
<barcode	x1="20"	y1="600"	type="CODE39EXT"	value="12345"	alt-
text="some	text
<barcode	x1="20"	y1="500"	type="CODE128"	value="12345aBCD"/>
<barcode	x1="20"	y1="400"	type="CODE128UCC"	value="12345aBCD"/>
<barcode	x1="20"	y1="300"	type="EAN8"	value="1234567"/>
<barcode	x1="20"	y1="200"	type="EAN13"	value="641718311430"/>
<barcode	x1="20"	y1="100"	width="200"	height="50"	type="EAN13"	value="641718311430"	supplement="54995"/>
<barcode	x1="20"	y1="700"	type="CODABAR"	value="4015638721939"/>
<barcode	x1="20"	y1="600"	type="POSTNET"	value="123456789"/>
<barcode	x1="20"	y1="500"	type="PLANET"	value="123456789"/>
<barcode	x1="20"	y1="400"	type="INTER25"	value="41-1200076041-
001"/>
<barcode	x1="20"	y1="300"	type="INTER25"	value="411200076041001"/>

<barcode	x1="20"	y1="600"	type="QRCODE"	width="100"	height="100"	value="SOME	TEXT"/>
	

	

Element	-	sign-box
The	sign-box	element	adds	a	signature	box	to	the	current	page.	With	the	border
enabled	the	height	of	the	box	is	30	points.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

sign-box x1 integer Default.	0.

y1 integer Default.	0.

width integer Default.	0.

message string 	

line-width integer Default.	0.

border boolean Default.	Document	border.

	

Example
	
<sign-box	x1="90"	y1="500"	width="400"	message="Sign	in	blue	ink"/>
	

	

Element	-	date-box
The	date-box	element	adds	a	date	box	to	the	current	page.	With	the	border
enabled	the	height	of	the	box	is	30	points	and	the	width	is	120	points.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

date-box x1 integer Default.	0.

y1 integer Default.	0.

day string 	

month string 	

year string 	

line-width integer Default.	0.

border boolean Default.	Document	border.

	

Example
	
<date-box	x1="90"	y1="300"	day="dd"	month="mm"	year="yyyy"/>
	

	

Element	-	group-box
The	group-box	element	adds	a	group	box	to	the	current	page.
Use	a	group	box	to	enclose	input	radio	buttons.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

group-box x1 integer Default.	0.

y1 integer Default.	0.

width integer Default.	0.

height integer Default.	0.

line-width integer Default.	0.

border boolean Default.	Document	border.

caption string 	

caption-indent integer Default.	0.

caption-width integer Default.	0.

caption-height integer Default.	0.

align left 	

center Default.

right 	

style style Default.	Helvetica,	10,	normal

leading float Default.	fontsize	*	1.5.

	

Example
	
<group-
box	x1="100"	y1="560"	width="200"	height="40"	caption="Types"	caption-
width="50"	caption-height="20"	caption-indent="10"	style="form"/>

	
	

Element	-	signature
The	signature	element	is	used	to	add	a	signature	to	the	PDF	document.
If	the	width,	height	or	page	is	zero,	then	no	visible	signature	rectangle	is
created.
Syntax:
Element Attributes Value Notes	for	Element/Attribute/Value

signature name string 	

keystore string JKS	keystore.

password string JKS	keystore	password.

alias string JKS	keystore	alias.

page integer Default.	1.

x1 integer Default.	0.

y1 integer Default.	0.

width integer Default.	0.

height integer Default.	0.

reason string 	

location string 	

text string 	

date string 5.1.4	Date	and	Time	Formats

signed string Default.	self
self
verisign
wincer

	

Example
	

<signature	name="verify"	keystore="pdf-
sign.jks"	password="password"	alias="pdf"	page="2"	x1="100"	y1="100"	width="100"	height="100"	reason="My	Reason"	location="My	Location"	text="My
text"	date="19610324"	signed="self"/>
	

	

5.34.12	Example	XML	Content
The	following	XML	content	example	illustrates	how	the	elements	are	used.
<?xml	version="1.0"	encoding="utf-8"?>
<!--
					Sample	PDF	XML	document
-->
<!---	Document	permissions	require	password	-->
<document	page-size="A4"
										background="cyan"
										orientation="portrait"
										border="true"
										author="Acme	Corporation"
										title="Document	Title"
										subject="Document	Subject"
										keywords="word1,	word2"
										creator=""
										hide-toolbar=""
										hide-menubar=""
										hide-windowui=""
										allow-printing="true"
										allow-copy="false"
										allow-modify-contents="false"
										allow-modify-annotations="false"
										allow-fillin="false"
										allow-screenreader="false"
										allow-assembly="false"
										allow-degraded-printing="false">
	<content	name="top">
			<!--
												Barcode	examples
			-->
			<barcode	x1="20"	y1="700"	type="CODE39"	value="12345ABCD"/>
			<barcode	x1="20"	y1="600"	type="CODE39EXT"	value="12345"/>
			<barcode	x1="20"	y1="500"	type="CODE128"	value="12345aBCD"/>
			<barcode	x1="20"	y1="400"	type="CODE128UCC"	value="12345aBCD"/>
			<barcode	x1="20"	y1="300"	type="EAN8"	value="1234567"/>
			<barcode	x1="20"	y1="200"	type="EAN13"	value="641718311430"/>

			<barcode	x1="20"	y1="100"	type="EAN13"	value="641718311430"	supplement="54995"/>
			<!--
												Design	grid
			-->
			<grid/>
			<!--
												Barcode	examples
			-->
			<barcode	x1="20"	y1="700"	type="CODABAR"	value="4015638721939"/>
			<barcode	x1="20"	y1="600"	type="POSTNET"	value="123456789"/>
			<barcode	x1="20"	y1="500"	type="PLANET"	value="123456789"/>
			<barcode	x1="20"	y1="400"	type="INTER25"	value="41-1200076041-
001"/>
			<barcode	x1="20"	y1="300"	type="INTER25"	value="411200076041001"/>
			<!--
												Import
												DO	NOT	do	a	new	page	before	an	import.
												The	import	internally	does	a	new	page	before	each	page	read.
												DO	a	new	page	after	the	import	to	move	off	the	last	imported	page.
			-->
			<import	file="other.pdf"/>
			<page/>
			<input	type="field"	name="FIELD1"	required="true"	readonly=""	export=""	value="text	1"	x1="100"	y1="750"	width="200"	length="15"	style="form"/>
			<input	type="field"	name="FIELD2"	multiline="true"	readonly="true"	export="false"	value="text	2"	x1="100"	y1="720"	width="200"	height="50"	length="200"	style="form"/>
			<input	type="hidden"	name="FIELD3"	value="SECRET"	length="10"/>
			<input	type="password"	name="FIELD4"	x1="100"	y1="660"	width="30"	length="5"	style="form"/>
			<input	type="checkbox"	name="CHECK1"	readonly=""	value="CHK"	selected="true"	x1="100"	y1="630"/>
			<input	type="combobox"	name="COMBO1"	readonly=""	x1="100"	y1="600"	width="200"	length="20"	style="form">
						<item	value="C1"/>
						<item>C2</item>
						<item	value="C3"	selected="true"/>
						<item	value="C4"/>
						<item	value="{XYZ}"/>
						<item	value="C6"/>
			</input>
			<input	type="radio-group"	name="RADIO"	readonly=""	length="10">
						<input	type="radio"	value="RAD1"	x1="120"	y1="540"/>
						<input	type="radio"	value="RAD2"	x1="140"	y1="540"	selected="true"/>
						<input	type="radio"	value="RAD3"	x1="160"	y1="540"/>

			</input>
			<group-
box	x1="100"	y1="560"	width="200"	height="40"	caption="Types"	caption-
width="50"	caption-height="20"	caption-indent="10"	style="form"/>
			<input	type="submit"	caption="Submit"	url="http://lansa01:88/cgi-
bin/jsmdirect?namevalue"	x1="100"	y1="510"	width="50"	style="form"/>
			<page/>
	</content>
	<content	name="table">
			<!--
											Table	using	working	list
			-->
			<text	x1="20"	y1="700"	width="100"	height="20"	style="normal"	border=""	align="left"	leading=""	value="
{@rowcount}"/>
			<annotation	name="doc-help"	x1="50"	y1="550"/>
			<table	x1="20"	y1="500"	width="400"	style="normal"	alternate="true"	alternate-
color=""	title-show="">
						<column	field="FNAME"	width-percentage="20"	style="italic"	vertical-
align="top"	horizontal-align="right"	title-horizontal-align="left"	title-
border=""	title-style="title-beach"	title="First	Name"/>
						<column	field="SNAME"	width-percentage="20"	vertical-
align="bottom"	horizontal-align="left"	title-horizontal-align="right"	title-
border=""	title="Surname
Family	Name"/>
						<column	column-type="image"	field="IMAGE"	alt-text="none"	alt-text-
field="FNAME"	width-
percentage="20"	title="Image"	value="adobe.gif"	scale="70"/>
						<column	column-type="barcode"	field="ID"	width-
percentage="20"	type="CODE128"	scale=""	rotation=""	start=""	stop=""	start-
stop=""	alternate="false"	border="false"	horizontal-align="center"	title-
horizontal-align=""	title-border="false"	title=""/>
			</table>
			<!--
											List	using	working	list	data
			-->
			<list	x1="20"	y1="200"	width="200"	style="modern"	field="SNAME"	border=""	horizontal-
align="right"/>
			<!--
											List	using	items
			-->

			<list	x1="20"	y1="100"	width="200"	style="italic"	border=""	horizontal-
align="">
						<item	value="Item1"/>
						<item	value="{XYZ}"/>
						<item	style="modern">Item	2</item>
						<item>Item	3</item>
			</list>
			<!--
											New	page
			-->
			<page/>
	</content>
	<content	name="detail">
			<!--
											Text	area
			-->
			<text	x1="70"	y1="500"	width="200"	height="400"	style="text-
modern"	border=""	align="left"	leading="">
					<phrase	style="modern"	options="na">This	is	the	first	text	phrase</phrase>
					<phrase	style="modern-
strike"	options="na">This	is	the	second	text	phrase</phrase>
					<phrase	style="normal-
white"	options="na"	value="This	is	the	third	text	phrase	as	a	value	attribute"/>
					<phrase	options="na"	anchor="http://www.lansa.com">anchor</phrase>
					<phrase>Here	is	an</phrase>
					<phrase	options="sb,sa"	annotation="explain">annotation</phrase>
					<phrase	options="na">example</phrase>
					<phrase	options="sb,sb,sb,na,sa"	value="{@date}"	date-format="dd-MM-
yyyy"/>
					<phrase	options="na"	value="123.45"	decimal-
format="¤#,###.##"/>
			</text>
			<!--
											New	page
			-->
			<page/>
			<!--
											Add	template
			-->

			<add	template="logo"	x1="20"	y1="800"/>
			<add	template="logo"	x1="20"	y1="400"/>
																						
			<add	template="image"	x1="300"	y1="800"/>
			<add	template="logo"	x1="300"	y1="400"/>
			<!--
											New	page
			-->
			<page/>
			<text	x1="70"	y1="600"	width="40"	height="16"	style="normal-
white"	border=""	leading="12"	align="center"	value="1234"/>
			<text	x1="70"	y1="550"	width="100"	height="16"	style="normal-
white"	border=""	leading="12"	align="center"	value="Go	to	LANSA"	anchor="http://www.lansa.com"/>
			<!--
											Signature	box	and	date	box
			-->
			<sign-box	x1="90"	y1="500"	width="400"	line-
width=""	message="Sign	in	blue	ink"	border=""/>
			<date-box	x1="90"	y1="300"	line-
width=""	day="dd"	month="mm"	year="yyyy"	border=""/>
	
			<page/>
			<!--
											Image
			-->
			<image	x1="70"	y1="500"	file="univac.jpg"	scale="80"/>
	
	</content>
	<content	name="bottom">
			<page	orientation="landscape"/>
			<text-align	x1="100"	y1="500"	style="italic-
blue"	align="left"	value="Some	aligned	text	1"	rotation="0"/>
			<text	x1="70"	y1="300"	width="100"	height="20"	border=""	align="left"	leading=""	value="
{@page}"/>
			<!--
											Condition	logic
			-->
			<if	compare="{@page}"	value="11"	operation="equal"	goto="additional"/>
			<if	compare="{@page}"	value="12"	operation="equal">

						<if	compare="3"	value="12"	operation="not_equal">
						
										<page	background="yellow"/>
										<text-
align	x1="100"	y1="500"	style="beach"	align="left"	value="Some	aligned	text	2"	rotation="90"/>
										<return/>
						</if>
			</if>
			<text	x1="70"	y1="300"	width="100"	height="20"	border=""	align="left"	leading=""	value="
{@page}"/>
	</content>
	<content	name="additional">
			<page/>
			<text	x1="70"	y1="400"	width="400"	height="40"	style="beach"	border=""	align="left"	leading=""	value="additional"/>
			<text	x1="70"	y1="300"	width="400"	height="40"	style="smokin"	border=""	align="left"	leading=""	value="additional"/>
			<text	x1="70"	y1="200"	width="400"	height="40"	style="smokin-
condensed"	border=""	align="left"	leading=""	value="additional"/>
	</content>
	<content	name="graphic">
			<!--
												Graphic	line,	rectangle,	circle
												These	co-ordinates	are	based	on	the	template	rectangle
												<circle	x1="100"	y1="100"	radius="50"	stroke-color=""	fill-
color=""	/>
			-->
			<line	x1="10"	y1="290"	x2="190"	y2="290"	stroke-color="blue"	line-
width=""/>
			<line	x1="10"	y1="10"	x2="190"	y2="10"	stroke-color="red"	line-
width=""/>
	</content>
	<!--
								Templates
								co-ordinates	are	based	on	the	template	rectangle
	-->
	<template	name="banner"	width="200"	height="300"/>
	<template	name="logo"	width="200"	height="300">
			<rectangle	x1="10"	y1="100"	width="180"	height="40"	radius=""	fill-
color=""	stroke-color=""	line-width=""/>
	</template>

	<template	name="image"	width="200"	height="300">
			<grid/>
			<page/>
			<import	/>
			<image	x1="0"	y1="300"	file="univac.jpg"	scale="80"/>
	</template>
	<!--
								Custom	colors
	-->
	<color	name="charcoal"	rgb="100,80,90"/>
	<color	name="annotation"	rgb="251,248,104"/>
	<!--
								Custom	styles
	-->
	<style	name="default"	font="Courier"	size="10"	style="bold"	color="charcoal"	encoding="Cp1252"/>
	<style	name="form"	font="Times-Roman"	size="10"/>
	<style	name="normal"	font="Helvetica"	size="10"	style="normal"	color="black"	encoding="Cp1252"/>
	<style	name="normal-
white"	font="Helvetica"	size="10"	style="normal"	color="white"	background="black"/>
	<style	name="title-
beach"	file="miami.ttf"	size="15"	color="black"	background="yellow"	encoding="Cp1252"	embedded="true"/>
	<style	name="beach"	file="miami.ttf"	size="15"	color="black"	encoding="Cp1252"	embedded="true"/>
	<style	name="smokin"	file="marlbo.ttf"	size="15"	color="blue"	encoding="Cp1252"	embedded="true"/>
	<style	name="smokin-
condensed"	file="marlboc.ttf"	size="15"	color="black"	encoding="Cp1252"	embedded="true"/>
	<style	name="italic"	font="Helvetica"	size="10"	style="italic"	color="black"/>
	<style	name="strike"	font="Helvetica"	size="10"	style="line-
through"	color="black"/>
	<style	name="text-modern"	font="Times-
Roman"	size="12"	style="normal"	color="black"	background="yellow"/>
	<style	name="modern"	font="Times-
Roman"	size="12"	style="bold	italic"	color="red"/>
	<style	name="modern-strike"	font="Times-Roman"	size="12"	style="line-
through"	color="black"/>
	<style	name="italic-blue"	font="Times-
Italic"	color="blue"	size="20"	encoding="Cp1252"/>
	<style	name="beach"	file="miami.ttf"	size="30"	color="black"	encoding="Cp1252"	embedded="true"/>
	<!--
						Annotations

	-->
	<annotation	name="doc-
help"	icon="help"	author="author"	color="annotation">
				<phrase	options="na">This	is	help	one	line</phrase>
				<phrase	options="na"	value="This	is	help	two"/>
				<phrase	options="na">This	is	help	three</phrase>
	</annotation>
	<annotation	name="explain"	type="circle"	color="red">
				<phrase	options="na">This	explains	this	annotation</phrase>
				<phrase	options="na"	value="More	explaining"/>
	</annotation>
</document>
	

5.34.13	Example	RDML	function
The	following	RDML	function	example	illustrates	how	to	use	the	example
XML	content.
**********	Beginning	of	RDML	commands	**********
DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)

DEFINE					FIELD(#ID)	TYPE(*CHAR)	LENGTH(5)
DEFINE					FIELD(#FNAME)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#SNAME)	TYPE(*CHAR)	LENGTH(30)

DEF_LIST			NAME(#TBLLST)	FIELDS((#ID)	(#FNAME)	(#SNAME))	TYPE(*WORKING)

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(PDFDOCUMENTSERVICE)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

CHANGE					FIELD(#JSMCMD)	TO('''CREATE	DOCUMENT(report.pdf)	CONTENT(report.xml)	PASSWORD(password)''')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('ADD	CONTENT(TOP)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

BEGIN_LOOP	TO(2)

CLR_LIST			NAMED(#TBLLST)

CHANGE					FIELD(#ID)	TO(A1001)
CHANGE					FIELD(#FNAME)	TO('''Alick''')
CHANGE					FIELD(#SNAME)	TO('''Buckley''')
ADD_ENTRY		TO_LIST(#TBLLST)

CHANGE					FIELD(#ID)	TO(A1002)

CHANGE					FIELD(#FNAME)	TO('''John''')
CHANGE					FIELD(#SNAME)	TO('''Smith''')
ADD_ENTRY		TO_LIST(#TBLLST)

CHANGE					FIELD(#ID)	TO(A1003)
CHANGE					FIELD(#FNAME)	TO('''Jack''')
CHANGE					FIELD(#SNAME)	TO('''Brown''')
ADD_ENTRY		TO_LIST(#TBLLST)

CHANGE					FIELD(#ID)	TO(A1004)
CHANGE					FIELD(#FNAME)	TO('''Billy''')
CHANGE					FIELD(#SNAME)	TO('''Moylan''')
ADD_ENTRY		TO_LIST(#TBLLST)
CHANGE					FIELD(#JSMCMD)	TO('ADD	CONTENT(TABLE)	SERVICE_LIST(ID,FNAME,SNAME)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#TBLLST)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

END_LOOP

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('ADD	CONTENT(GRAPHIC)	TEMPLATE(LOGO)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('ADD	CONTENT(DETAIL)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('ADD	CONTENT(BOTTOM)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('CLOSE')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	SUB	ROUTINES

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF									COND('#JSMSTS	*NE	OK')

DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

MENU							MSGTXT('Java	service	error	has	occured')

ENDIF

ENDROUTINE
**********	End	of	RDML	commands	**********
	

5.35	SVFileService
The	SVFileService	provides	support	for	an	application	to	create	or	read
separated	value	files.
Separated	variable	files	are	widely	used	to	represent	and	exchange	"flat"
database	information.	Comma-separated	values	(CSV)	and	Tab-separated
variables	(TSV)	are	automatically	supported	or	you	can	specify	a	value	to	be
interpreted	as	the	separator.
Related	Services
The	SVFileService	is	not	dependent	on	other	services.
The	POP3MailService	overlaps	the	SVFileService	to	some	extent.	The	READ
command	on	the	POP3MailService	also	allows	processing	of	separator
delimited	files.	Assuming	the	separated	variable	file	you	want	to	process	is
attached	to	an	incoming	email,	the	POP3MailService	may	be	adequate	for
handling	the	processing	of	the	file.
Similarly	when	SVFileService	reads	from	or	writes	to	a	remote	server	an	FTP
connection	is	established	to	connect	to	the	remote	server.	In	this	instance	the
SVFileService	overlaps	the	FTPService	to	some	extent.
Technical	Specifications
When	reading	or	writing	from	a	remote	file	server,	the	SVFileService	uses	FTP
to	connect	to	the	remote	server.

5.35.1	What	can	I	use	the	SVFileService	for?
Using	the	SVFileService	an	application	can	directly	write	columnar	information
to	a	separated	variable	file,	or	read	information	from	a	separated	variable	file
into	a	list	for	further	processing.
By	default	the	SVFileService	processes	files	from	the	local	file	system	but	can
be	configured	to	use	FTP	to	establish	a	connection	to	a	remote	file	server	for
access	to	remote	files.
When	the	database	support	is	used,	database	level	commitment	control	is	fully
supported.	The	service	also	provides	a	set	of	commands	for	performing
housekeeping	operations	on	the	contents	of	the	file	system	(such	as	renaming
and	deleting	files).

5.35.2	Using	the	SVFileService
Whether	you	are	writing	your	client	application	in	LANSA's	RDML	/	RDMLX
or	in	a	3GL	such	as	RPG,	you	have	to	complete	the	same	basic	steps.
For	example,	an	application	that	reads	a	separated	variable	file	would	typically
issue	the	following	sequence	of	commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
										READ
					SERVICE_UNLOAD
JSM(X)_CLOSE
A	similar	sequence	of	commands	would	be	used	to	write	to	a	separated	variable
file	with	the	READ	command	replaced	by	a	WRITE	command.
Refer	to	Java	Service	Manager	Clients	for	the	command	details	that	apply	to
your	chosen	development	language.

5.35.3	SVFileService	Commands
Your	application	issues	commands	to	the	SVFileService	by	passing	the
command	strings	through	the	Java	Service	Manager	using	the
JSM_COMMAND	or	JSMX_COMMAND	Built-In	Function,	or	an	equivalent
Built-In	Function	or	API	for	your	chosen	development	language.
The	commands	that	the	SVFileService	processes	are:
SERVICE_LOAD
READ
WRITE
DELETE
RENAME
CONNECT
SET
LIST
COMMIT
ROLLBACK
DISCONNECT
SERVICE_GET
SERVICE_UNLOAD

SERVICE_LOAD
Loads	and	initializes	the	service.
	
																																																											Required
	
	SERVICE_LOAD	----	SERVICE	---------	service	name	------------
---->
	
																																																											Optional
	
															>--	TRACE	-----------	*NO	------------------------->
																																					*YES
																																					*ERROR
	
															>--	TRACE_NAME	------	name	------------------------|
																																					*SERVICE
																																					*PROCESS
																																					*FUNCTION
																																					*JOBNAME
																																					*JOBUSER
																																					*JOBNUMBER
	
For	more	information	refer	to:
Service	Program	Tracing	from	the	Client
Keywords
SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

SVFileService.

TRACE To	enable	tracing	from	the	client	program	use	the	TRACE
keyword	on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:
*NO
*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the

service	does	not	return	an	ERROR	or	FATAL	status	to	the
client,	the	trace	files	are	deleted	on	the	JSM	CLOSE	call.

TRACE_NAME The	optional	TRACE_NAME	keyword	allows	the	client	to
append	a	user-defined	name	to	the	end	of	the	client	trace
subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(SVFILESERVICE)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcommand	:=	'service_load	service(SVFileService)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	to_get(#jsmxsts	#jsmxmsg)
	

READ
The	READ	command	processes	the	nominated	FILE	and	returns	the
information	in	a	working	list	(unless	the	SVTABLE	keyword	is	used).
To	read	a	file	from	the	local	file	system	only	requires	the	FILE	keyword.
To	read	a	file	from	a	remote	file	system	using	the	FTP	protocol	requires	the
HOST	keyword	with	appropriate	USER,	PASSWORD	and	access	details	for	the
remote	server.
The	service	also	determines	the	encoding	to	apply	to	the	read	byte	content	to
convert	it	to	Unicode	content	and	determines	if	the	Unicode	data	needs	to	be
archived.
	
																																																											Required
	
	READ	----------	FILE	-----------	file	path	---------------------->
	
																																																								Conditional
	
													>--	HOST	-----------	host:port	---------------------->
	
													>--	USER	-----------	value	-------------------------->
	
													>--	PASSWORD	-------	value	-------------------------->
	
													>--	NAMEFMT	--------	none	--------------------------->
																																		0
																																		1
	
													>--	DATALINK	-------	*PASV	-------------------------->
																																		*PORT
	
													>--	MODE	-----------	*BINARY	------------------------>
																																		*ASCII
	
																																																											Optional
	
													>--	CONTENT	--------	*CSV	--------------------------->

																																		*TSV
																																		*SV
	
													>--	SEPARATOR	------	value	-------------------------->
																																		*COMMA
																																		*SEMICOLON
																																		*TAB
																																		*TILDE
	
													>--	ENCODING	-------	*DEFAULT	----------------------->
																																		value
	
													>--	SVROW	----------	value	-------------------------->
	
													>--	SVROWLIMIT	-----	value	-------------------------->
																																		*NONE
																																		*LIST
																																		*AVAILABLE
	
													>--	SVMODE	---------	*NONE	-------------------------->
																																		*IGNORE
																																		*USE
	
													>--	SVHEAD	---------	value	-------------------------->
	
													>--	SVLABEL	--------	value	-------------------------->
	
													>--	SVTABLE	--------	table	name	--------------------->
	
													>--	SVCOLUMN	-------	value	-------------------------->
	
													>--	NUMBERFORMAT	---	*NONE	-------------------------
->
																																		*DEFAULT
																																		*CLIENT
																																		*USERAGENT
																																		value
	
													>--	ARCHIVE	--------	file	path	----------------------|

	
Keywords
FILE Nominate	the	path	and	file	name.

This	value	can	be	a	relative	or	absolute	path.	If	the	path
is	relative,	the	current	working	directory	is	the	JSM
instance	directory.

HOST This	keyword	is	only	required	when	reading	from	a
remote	file	system.
Nominate	a	FTP	server	to	connect	to.	The	FTP	server
can	be	specified	as	an	IP	address,	nnn.nnn.nnn.nnn:port,
or	a	domain	name.
If	a	port	number	is	not	supplied	on	an	IP	address	the
default	value	21	is	used	unless	the	keyword	SECURE
(*IMPLICIT)	is	used	in	which	case	the	default	port
value	is	990.

USER Only	required	when	reading	from	a	remote	file	system.

PASSWORD Only	required	when	reading	from	a	remote	file	system.
The	password	for	the	database	server	that	corresponds
to	the	USER	keyword.

NAMEFMT Only	valid	when	reading	from	a	remote	file	system.
A	value	of	0	indicates	an	IBM	i	path	name	format
library/file.member	is	to	be	used.
A	value	of	1	indicates	a	Windows	path	name	format
/directory/directory/file	is	to	be	used.

DATALINK Only	valid	when	reading	from	a	remote	file	system.
The	possible	values	are	*PASV	(Passive)	or	*PORT
(Port).	*PASV	is	the	default	value.

MODE Only	valid	when	reading	from	a	remote	file	system.
The	default	value	is	*BINARY.	Use	a	value	of	*ASCII
if	required.

CONTENT By	default	the	nominated	file	is	processed	as	*CSV.
Alternately	the	content	can	be	processed	as	a	Tab

separated	variables	(*TSV)	or	separated	by	a	variable
(*SV)	as	specified	in	the	separator	keyword.	If
processing	content	that	includes	a	separator	variable,
refer	to	the	SEPARATOR,	SVHEAD,		SVMODE,
SVTABLE,	SVCOLUMN,	SVLABEL,
NUMBERFORMAT,	TRIM	and	TRUNCATE
keywords	for	additional	processing	options.
The	working	list	used	to	store	the	content	must	be
defined	with	an	appropriate	number	of	columns	to	store
the	data.

SEPARATOR This	keyword	is	to	indicate	what	character	is	used	as	a
separator.	The	separator	does	not	need	to	be	defined	if
the	content	is	indicated	as	*CSV	or	*TSV.
If	the	SEPARATOR	keyword	is	present	and	no
CONTENT	keyword	is	supplied	CONTENT(*SV)	is
assumed.
Refer	to	SEPARATOR	for	more	information.

ENCODING ENCODING	is	used	to	specify	what	encoding	must	be
applied	to	a	byte	content	to	convert	it	to	a	Unicode
string.	The	default	value	for	the	ENCODING	keyword
is	*DEFAULT.
Refer	to	ENCODING	for	more	information.

SVROW The	SVROW	keyword	is	used	to	specify	the	starting
data	record	row.
Refer	to	SVROW	for	more	information,

SVROWLIMIT The	SVROWLIMIT	keyword	is	used	to	specify	the
number	of	data	records	to	read.	The	possible	values	are
*NONE,	*LIST,	*AVAILABLE	or	an	integer	value.
Refer	to	SVROWLIMIT	for	more	information.

SVMODE The	SVMODE	keyword	is	used	by	content	handlers
and	services	that	process	separated	value	data	to
indicate	how	to	handle	the	inbound	separated	value
data.
Refer	to		SVMODE	for	more	information.

SVHEAD The	optional	keyword	SVHEAD	is	used	to	describe	the
field	layout	of	the	separated	value	data.
Refer	to	SVHEAD	for	more	information.

SVTABLE If	the	SVTABLE	keyword	is	present	then	the	separated
variable	file	data	is	inserted	into	the	specified	table
using	the	current	database	connection.	If	no	value	is
provided	for	SVTABLE	the	file	data	is	returned	in	the
working	list	argument.
Refer	to	SVTABLE	for	more	information.

SVCOLUMN SVCOLUMN	is	only	used	in	conjunction	with	the
SVTABLE	keyword.	The	SVCOLUMN	separates	value
services	to	define	the	relational	database	columns.	A
look	up	on	the	service	properties	resource	is	done	using
the	sv.column.{value}.
Refer	to	SVCOLUMN	for	more	information.

SVLABEL SVLABEL	is	only	used	in	conjunction	with	the
SVTABLE	keyword.	SVLABEL	is	used	to	include	the
keyword	value	as	the	first	column	value	for	database
table	inserts	or	as	the	where	constraint	for	database
table	selects.
Refer	to	SVLABEL	for	more	information.

NUMBERFORMAT The	optional	keyword	NUMBERFORMAT	is	used	to
handle	numeric	strings,	where	the	decimal	separator	is
not	the	decimal	point	character	".".
Refer	to	NUMBERFORMAT	for	more	information.

ARCHIVE Use	the	optional	keyword	ARCHIVE	to	nominate	the
path	and	file	name	used	to	archive	content.
Refer	to	ARCHIVE	for	more	information.

Examples
RDML
	
DEF_LIST	NAME(#WRKLIST)	FIELDS(#LINENUM	#PARTNUM	#PARTDSC	#PARTAMT	#PARTQTY)	TYPE(*WORKING)
	

USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('READ	FILE(order.csv)	SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')	TO_GET(#JSMSTS	#JSMMSG	#WRKLIST)
	

or
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('READ	FILE(order.csv)	SEPARATOR(*TILDE)	SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)
')	TO_GET(#JSMSTS	#JSMMSG	#WRKLIST)
	

or
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('READ	FILE(order.csv)	SVTABLE(ORD)	SVCOLUMN(ORDER)	SVLABEL(23)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcmd	:=	'read	file('	+	#jsmfile	+	')	content(*sv)	separator('	+	#separator	+	')'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg	#valueslst)
	

WRITE
The	WRITE	command	selects	information	from	a	working	list	(or	table	if	the
SVTABLE	keyword	is	used)	and	saves	it	to	the	separated	variable	file
nominated	by	the	FILE	keyword.
To	write	a	file	to	the	local	file	system	only	requires	the	FILE	keyword.
To	write	a	file	to	a	remote	file	system	using	the	FTP	protocol	requires	the	HOST
keyword	with	appropriate	USER,	PASSWORD	and	access	details	for	the	remote
server.
The	service	determines	the	encoding	to	apply	to	the	Unicode	content	to	convert
it	to	byte	content	and	determines	if	the	Unicode	data	needs	to	be	archived.
	
																																																											Required
	
	WRITE	---------	FILE	-----------	file	path	---------------------->
	
																																																								Conditional
													>--	HOST	-----------	host:port	---------------------->
	
													>--	USER	-----------	value	-------------------------->
	
													>--	PASSWORD	-------	value	-------------------------->
	
													>--	NAMEFMT	--------	none	--------------------------->
																																		0
																																		1
	
													>--	DATALINK	-------	*PASV	-------------------------->
																																		*PORT
	
													>--	MODE	-----------	*BINARY	------------------------>
																																		*ASCII
	
																																																											Optional
	
													>--	CONTENT	--------	*CSV	--------------------------->
																																		*TSV

																																		*SV
	
													>--	SEPARATOR	------	value	-------------------------->
																																		*COMMA
																																		*SEMICOLON
																																		*TAB
																																		*TILDE
	
													>--	ENCODING	-------	*DEFAULT	----------------------->
																																		value
	
													>--	SVQUOTE	--------	*NONE	-------------------------->
																																		*TEXT
																																		*ALL
	
													>--	SVHEAD	---------	value	-------------------------->
	
													>--	SVEXCLUDE	------	value	-------------------------->
	
													>--	SVLABEL	--------	value	-------------------------->
	
													>--	SVTABLE	--------	table	name	--------------------->
	
													>--	SVCOLUMN	-------	value	-------------------------->
	
													>--	APPEND	---------	*YES	--------------------------->
																																		*NO
	
													>--	NUMBERFORMAT	---	*NONE	-------------------------
->
																																		*DEFAULT
																																		*CLIENT
																																		*USERAGENT
																																		value
	
													>--	ARCHIVE	--------	file	path	----------------------|
	
	

Keywords
FILE Nominate	the	path	and	file	name.

This	value	can	be	a	relative	or	absolute	path.	If	the	path
is	relative,	the	current	working	directory	is	the	JSM
instance	directory.

HOST The	HOST	keyword	is	only	required	when	reading
from	a	remote	file	system.
Nominate	a	FTP	server	to	connect	to.	The	FTP	server
can	be	specified	as	an	IP	address,	nnn.nnn.nnn.nnn:port,
or	a	domain	name.
If	a	port	number	is	not	supplied	on	an	IP	address	the
default	value	21	is	used	unless	the	keyword	SECURE
(*IMPLICIT)	is	used	in	which	case	the	default	port
value	is	990.

USER The	USER	keyword	is	only	required	when	reading
from	a	remote	file	system.

PASSWORD The	PASSWORD	keyword	is	only	required	when
reading	from	a	remote	file	system.
The	password	for	the	database	server	that	corresponds
to	the	USER	keyword.

NAMEFMT The	NAMEFMT	keyword	is	only	valid	when	reading
from	a	remote	file	system.
A	value	of	0	indicates	an	IBM	i	path	name	format
library/file.member	is	to	be	used.
A	value	of	1	indicates	a	Windows	path	name	format
/directory/directory/file	is	to	be	used.

DATALINK The	DATALINK	keyword	is	only	valid	when	reading
from	a	remote	file	system.
The	possible	values	are	*PASV	(Passive)	or	*PORT
(Port).	*PASV	is	the	default	value.

MODE The	MODE	keyword	is	only	valid	when	reading	from	a
remote	file	system.
The	default	value	is	*BINARY.	Use	a	value	of	*ASCII

if	required.

CONTENT By	default	the	nominated	file	is	processed	as	*CSV.
Alternately	the	content	can	be	processed	as	a	Tab
separated	variables	(*TSV)	or	separated	by	a	variable
(*SV)	as	specified	in	the	separator	keyword.	If
processing	content	that	includes	a	separator	variable
refer	to	the	SEPARATOR,	SVHEAD,		SVMODE,
SVTABLE,	SVCOLUMN,	SVLABEL,
NUMBERFORMAT,	TRIM	and	TRUNCATE
keywords	for	additional	processing	options.
The	working	list	used	to	store	the	content	must	be
defined	with	an	appropriate	number	of	columns	to	store
the	data.

SEPARATOR The	keyword	SEPARATOR	is	to	indicate	what
character	is	used	as	a	separator.	The	separator	does	not
need	to	be	defined	if	the	content	is	indicated	as	*CSV
or	*TSV.
If	the	SEPARATOR	keyword	is	present	and	no
CONTENT	keyword	is	supplied	CONTENT(*SV)	is
assumed.
Refer	to	SEPARATOR	for	more	information.

ENCODING ENCODING	is	used	to	specify	what	encoding	must	be
applied	to	a	byte	content	to	convert	it	to	a	Unicode
string.	The	default	value	for	the	ENCODING	keyword
is	*DEFAULT.
Refer	to	ENCODING	for	more	information.

APPEND APPEND	is	used	to	append	content	to	and	existing
local	file.	The	default	value	for	the	APPEND	keyword
is	*NO.

SVQUOTE The	optional	keyword	SVQUOTE	is	used	to	explictly
double	quote	values.	The	default	value	for	SVQUOTE
is	*NONE.	A	value	of	*ALL	means	that	all	values	are
double	quoted.	A	values	of	*TEXT	means	only	text
values	are	double	quoted.

SVHEAD The	optional	keyword	SVHEAD	is	used	to	describe	the
field	layout	of	the	separated	value	data.
Refer	to	SVHEAD	for	more	information.

SVEXCLUDE The	optional	keyword	SVEXCLUDE	is	used	to	exclude
fields	from	the	working	list	data.	The	value	is	one	or
more	comma-separated	working	list	field	names.
Refer	to	SVEXCLUDE	for	more	information.

SVTABLE If	the	SVTABLE	keyword	is	present	the	data	is	selected
from	the	specified	table	using	the	current	database
connection.	If	no	value	is	provided	for	SVTABLE	the
file	data	is	retrieved	from	the	working	list	argument.
Refer	to	SVTABLE	for	more	information.

SVCOLUMN SVCOLUMN	is	only	used	in	conjunction	with	the
SVTABLE	keyword.	SVCOLUMN	separates	value
services	to	define	the	relational	database	columns.
A	look	up	on	the	service	properties	resource	is	done
using	the	sv.column.{value}.
Refer	to	SVCOLUMN	for	more	information.

SVLABEL SVLABEL	is	only	used	in	conjunction	with	the
SVTABLE	keyword.	SVLABEL	is	used	to	include	the
keyword	value	as	the	first	column	value	for	database
table	inserts	or	as	the	where	constraint	for	database
table	selects.
Refer	to	SVLABEL	for	more	information.

NUMBERFORMAT The	optional	keyword	NUMBERFORMAT	is	used	to
handle	numeric	strings,	where	the	decimal	separator	is
not	the	decimal	point	character	".".
Refer	to	NUMBERFORMAT	for	more	information.	

ARCHIVE Use	the	optional	keyword	ARCHIVE	to	nominate	the
path	and	file	name	used	to	archive	content.
Refer	to	ARCHIVE	for	more	information.

Examples

RDML
	
DEF_LIST	NAME(#WRKLIST)	FIELDS(#LINENUM	#PARTNUM	#PARTDSC	#PARTAMT	#PARTQTY)	TYPE(*WORKING)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('WRITE	FILE(order.csv)	SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')	TO_GET(#JSMSTS	#JSMMSG	#WRKLIST)
	

or
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('WRITE	FILE(order.csv)	SEPARATOR(*TILDE)	SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')	TO_GET(#JSMSTS	#JSMMSG	#WRKLIST)
	

or
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('WRITE	FILE(order.csv)	SVHEAD(*COLUMN)	SVTABLE(ORD)	SVCOLUMN(ORDER)	SVLABEL(23)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
def_list	name(#valueslst)	fields(#std_num	#std_obj	#std_desc	#std_amnt	#std_qty)	counter(#listcount)	type(*working)
	
#jsmcmd	:=	'write	file('	+	#jsmfile	+	')	content(*sv)	separator('	+	#separator	+	')'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg	#valueslst)
	

DELETE
The	DELETE	command	deletes	the	specified	local	file.
	
	DELETE	----------	FILE	------------	file	path	-----------------|
	
Keywords
FILE Nominate	the	file	to	be	deleted.	This	value	can	be	a	relative	or	absolute

path.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('DELETE	FILE(/upload/order.csv)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'delete	file(/upload/order.csv)	')	to_get(#jsmsts	#jsmmsg)
	

	

RENAME
The	RENAME	command	renames	the	specified	local	file	to	a	new	name.
	
	RENAME	-----------	FROM	-------------	file	path	---------------->
	
																>--	TO	---------------	file	path	---------------->
	
																>--	REPLACE	----------	*NO	----------------------|
																																							*YES
	
	
Keywords
FROM Nominate	the	path	and	file	name	to	be	renamed.	The	path	and	file

name	must	exist.

TO Nominate	the	new	path	and	file	name.	The	path	name	must	exist.
The	TO	file	must	be	in	the	same	directory	as	the	original	FROM
file.

REPLACE The	default	value	is	*NO.	To	allow	a	file	to	be	replaced	by	the
renamed	file	this	keyword	must	be	set	to	*YES.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('RENAME	FROM(order.xml)	TO(order2.xml)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'rename	from(order.xml)	to(order2.xml)')	to_get(#jsmsts	#jsmmsg)
	

CONNECT
The	CONNECT	command	connects	to	a	remote	database.	By	default	a
connection	object	is	in	auto-commit	mode,	which	means	that	it	automatically
commits	changes	after	executing	each	statement.
	
	CONNECT	----------	DRIVER	---------	value	---------------------->
	
																>--	DATABASE	-------	value	---------------------->
	
																>--	USER	-----------	value	---------------------->
	
																>--	PASSWORD	-------	value	----------------------|
	
Keywords
DRIVER The	symbolic	name	of	the	database	driver	used	to	locate	the	service's	property	entry.

For	example:
	
CONNECT	DRIVER(SQLSERVER)	DATABASE(NORTHWIND)	USER(USER)	PASSWORD(PASSWORD)	
	

Searches	for	a	corresponding	property	like:
	
driver.sqlserver=com.ddtek.jdbc.sqlserver.SQLServerDriver	
	

DATABASE The	symbolic	name	of	the	database	used	to	locate	the	service's	property	entry.
For	example:
	
CONNECT	DRIVER(SQLSERVER)	DATABASE(NORTHWIND)	USER(USER)	PASSWORD(PASSWORD)	
	

Searches	for	a	corresponding	property	like:
	
database.northwind=jdbc:datadirect:sqlserver://99.99.99.99:1234	
	

USER The	user	profile	to	be	used	to	log	into	the	database	server.

PASSWORD The	password	for	the	database	server	that	corresponds	to	the	USER	keyword.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('CONNECT	DRIVER(SQLSERVER)	DATABASE(NORTHWIND)	USER(user)	PASSWORD(password)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'connect	driver(sqlserver)	database(northwind)	user(user)	password(password)')	to_get(#jsmsts	#jsmmsg)
	

SET
The	SET	command	is	used	for	two	distinct	operations.	Use	the	DIR	keyword	to
set	the	current	working	directory	or	alternately	use	the	READONLY,
AUTOCOMMIT	and	ISOLATION	keywords	to	define	the	level	of	access
allowed	to	the	current	database	connection.
	
																																																							Conditional
	
	SET	-----------	DIR	------------	directory	path	---------------->
	
													>--	READONLY	-------	*NO	--------------------------->
																																		*YES
	
													>--	AUTOCOMMIT	-----	*YES	-------------------------->
																																		*NO
	
													>--	ISOLATION	------	*NONE	-------------------------|
																																		*READCOMMITTED
																																		*READUNCOMMITTED
																																		*REPEATABLEREAD
																																		*SERIALIZABLE
	
Keywords
DIR Use	the	DIR	keyword	to	nominate	a	relative	or	absolute

directory	path	to	be	set	as	the	current	directory.
The	DIR	keyword	does	not	relate	to	the	other	SET
keywords.

READONLY Indicate	if	the	current	database	connection	should	allow
read	or	write	access.	A	database	connection	must	be
established	using	the	CONNECT	command.	This	keyword
then	applies	to	the	current	database	connection.
By	default	when	a	database	connection	is	established,	read
and	write	access	are	permitted	(depending	on	restrictions
imposed	by	the	database).
A	value	of	*YES	indicates	any	changes	to	the	database	are

automatically	committed	after	executing	each	statement.
A	value	of	*NO	indicates	that	changes	to	the	database	are
controlled	by	programmed	transaction	boundaries.
The	READONLY	keyword	does	not	have	any	relationship
with	the	DIR	keyword.

AUTOCOMMIT Indicate	if	information	should	be	automatically	committed
to	the	database.	A	database	connection	must	be	established
using	the	CONNECT	command	to	use	this	keyword.	This
keyword	then	applies	to	the	current	database	connection.
By	default	when	a	connection	is	established	it	is	in	auto-
commit	mode.
A	value	of	*YES	indicates	any	changes	to	the	database	are
automatically	committed	after	executing	each	statement.
A	value	of	*NO	indicates	that	changes	to	the	database	are
controlled	by	programmed	transaction	boundaries.
The	AUTOCOMMIT	keyword	does	not	have	any
relationship	with	the	DIR	keyword.

ISOLATION Indicate	the	level	of	transaction	isolation	to	be	applied	to
the	current	database.	A	database	connection	must	be
established	using	the	CONNECT	command	to	use	this
keyword.	This	keyword	then	applies	to	the	current	database
connection.
The	ISOLATION	keyword	does	not	have	any	relationship
with	the	DIR	keyword.
The	default	value	is	*NONE	otherwise	you	can	choose
from	these	four	levels	of	transaction	defined	by	the
ANSI/ISO	SQL	standard:
*READUNCOMMITTED
All	uncommitted	data	is	readable	from	any	connection.
This	is	the	same	as	not	having	any	isolation	(*NONE).
*READCOMMITTED
This	prevents	dirty	reads	but	does	not	prevent	phantoms	or
non-repeatable	reads.	Using	this	isolation	level,	only	data
committed	before	the	current	transaction	began	will	be
available.	Any	dirty	data	or	changes	made	by	concurrent

transactions	will	not	be	available.
This	level	is	obviously	more	restrictive	than	the
*READUNCOMMITTED.
*REPEATABLEREAD
This	prevents	dirty	and	non-repeatable	reads	but	does	not
prevent	phantom	rows.	This	means	the	probability	of	other
transactions	having	to	wait	for	this	one	are	increased	when
compared	to	*READUNCOMMITTED	and
*READCOMMITTED
This	is	more	restrictive	than	*READCOMMITTED.
*SERIALIZABLE
*SERIALIZABLE	provides	the	highest	transaction
isolation.	When	a	transaction	is	isolated	at	the
*SERIALIZABLE	level,	only	data	committed	before	the
transaction	began	is	available.	Neither	dirty	data	nor
concurrent	transaction	changes	committed	during
transaction	execution	are	available.	This	level	emulates
serial	transaction	execution,	as	transactions	will	effectively
be	executed	one	after	another	rather	than	concurrently.
This	is	more	restrictive	than	*REPEATABLEREAD.
In	relation	to	these	isolation	levels	there	are	three
phenomena	that	you	need	to	understand	before	you	can
determine	the	correct	isolation	level	to	apply	to	your
application,	namely:
Dirty	Reads	-	A	transaction	reads	data	written	by	an
uncommitted	transaction.	If	the	second	transaction	is
rolled	back,	the	data	read	by	the	first	transaction	is	then
invalid	because	the	rollback	undoes	the	changes.	The
first	transaction	won't	be	aware	that	the	data	it	has	read
has	become	invalid.
Non-repeatable	Reads	-	A	transaction	re-reads	data	it	has
previously	read	and	finds	that	data	has	been	modified	by
another	committed	transaction.
Phantom	Read	-	Phantom	reads	occur	when	new	records
added	to	the	database	are	detectable	by	transactions	that
started	prior	to	the	insert.	A	transaction	re-executes	a

query	and	returns	a	set	of	rows	satisfying	a	search
condition	only	to	find	that	additional	rows	satisfying	the
condition	have	been	inserted	by	another	committed
transaction.

The	ANSI/ISO	SQL	standard	isolation	levels	and	the
corresponding	behaviors	are	summarized	in	the	following
table:

Isolation	Level Dirty
Read

Non-repeatable
Read

Phantom
Read

*READUNCOMMITTED Possible Possible Possible

*READCOMMITTED Not
possible

Possible Possible

*REPEATABLEREAD Not
possible

Not	possible Possible

*SERIALIZABLE Not
possible

Not	possible Not	possible

	

	
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	READONLY(*NO)	ISOLATION(*READCOMMITTED)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'set	dir(/newfiles')	to_get(#jsmsts	#jsmmsg)
	

LIST
The	LIST	command	returns	a	working	list	of	absolute	file	names	in	a	directory.
The	working	list	to	return	the	file	names	must	be	defined	with	a	single	field	long
enough	to	contain	the	absolute	file	name.
If	no	DIR	keyword	is	provided	and	the	current	directory	has	not	be	changed
using	other	commands,	the	default	JSM	instance	directory	will	be	searched.
Sub-directories	are	not	searched.
If	no	EXT	keyword	is	provided	all	files	in	the	directory	will	be	searched	by
default.
	
	LIST	-------------	DIR	---------	directory	path	---------------->
	
																>--	EXT	---------	file	extension	---------------->
	
																>--	SORT	--------	*NONE	------------------------->
																																		*NAME
																																		*MODIFIED
	
																>--	REVERSE	-----	*YES	--------------------------|
																																		*NO
	
Keywords
DIR Nominate	a	relative	or	absolute	directory	path	to	be	searched.

Sub-directories	are	not	searched.

EXT Only	select	files	with	a	nominated	file	extension.	The	filtering
match	is	not	case	sensitive	and	does	not	require	a	'.'	prefix.
For	example:
	
LIST	EXT(CSV)
	

SORT The	optional	sort	keyword	allows	sorting	on	file	name	or
modified	date.
The	default	value	is	*NONE.

REVERSE The	optional	reverse	keyword	allows	the	sorted	order	to	be
reversed.
The	default	value	is	*NO.

Examples
RDML
This	will	return	a	list	of	file	names	in	the	/csvdata	directory	that	have	a	CSV
extension.
	
DEF_LIST	NAME(#WRKLIST)	FIELDS(#PATH)	TYPE(*WORKING)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('LIST	DIR(/CSVDATA)	EXT(CSV)	SERVICE_LIST(PATH)')	TO_GET(#JSMSTS	#JSMMSG	#WRKLST)
	

or	equivalently,
	
DEF_LIST	NAME(#WRKLIST)	FIELDS(#PATH)	TYPE(*WORKING)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	DIR(/CSVDATA)')	TO_GET(#JSMSTS	#JSMMSG)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('LIST	EXT(CSV)	SERVICE_LIST(PATH)')	TO_GET(#JSMSTS	#JSMMSG	#WRKLST)
	

RDMLX
Def_list	name(#wrklist)	fields(#path)	type(*working)
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'list	dir(/csvdata)	ext(csv)')	to_get(#jsmsts	#jsmmsg	#wrklist)
	

COMMIT
The	COMMIT	command	commits	the	transaction	to	the	database.
	
	COMMIT	-----------	no	keywords	--------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('COMMIT')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'commit')	to_get(#jsmxsts	#jsmxmsg)
	

ROLLBACK
The	ROLLBACK	command	issues	a	rollback	transaction	to	the	current
connection.
	
	ROLLBACK	----------	no	keywords	-------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('ROLLBACK')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'rollback')	to_get(#jsmxsts	#jsmxmsg)
	

DISCONNECT
The	DISCONNECT	command	disconnects	from	the	current	connected	database.
	
	DISCONNECT	----------	no	keywords	-----------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('DISCONNECT')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'disconnect')	to_get(#jsmxsts	#jsmxmsg)
	

SERVICE_GET
The	SERVICE_GET	command	allows	JSM	client	applications	to	access	the
keyword	/	value	properties	from	the	properties	file	associated	with	the	currently
loaded	service.
Client	applications	can	access	the	value	of	properties	associated	with	the
service,	but,	perhaps	more	usefully,	they	can	access	application	specific
property	values	too,	using	the	service	properties	file	as	a	common	medium	for
holding	such	values.
When	used	in	the	latter	way,	there	is	a	possibility	of	conflict	between
application-defined	keyword	names	and	those	used	by	current	and	future
versions	of	LANSA	Integrator.	To	reduce	this	possibility	your	application
should	prefix	the	property	keyword	with	a	global	unique	name.	The	examples
below	use	com.acme.property	as	the	prefix	for	this	purpose.
The	service	property	keyword	value	is	returned	in	the	JSM	message	field.	If	the
keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
	
	SERVICE_GET	--------	PROPERTY	-----	value	--------------------
>
	
																		>--	TRACE	-------	*SERVICE-------------------|
																																				*TRANSPORT
	
Keywords
PROPERTY Provide	a	keyword	/	value	to	be	checked	on	the	service

properties	file.
The	service	property	keyword	value	is	returned	in	the	JSM
message	field.	If	the	keyword	does	not	exist	in	the	service
property	file	a	status	of	NOT_EXIST	is	returned.

TRACE *SERVICE	-	read	service	trace	file.
*TRANSPORT	-	read	transport	trace	file.

Examples
The	examples	retrieve	the	value	of	the	com.acme.property.messagetype	(an
application-defined	property)	in	the	service	properties	file.	This	property	might
be	defined	in	the	service	properties	file	with	a	line	like	this	(the	value	"html"

will	be	returned	to	the	application	in	this	case):
	
com.acme.property.messagetype=html
	

RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_GET	PROPERTY(com.acme.property.messagetype)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcmd	:=	'	service_get	property(com.acme.property.messagetype)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
	
	SERVICE_UNLOAD	---------	no	keywords	--------------------------
|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_UNLOAD')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'service_unload')	to_get(#jsmxsts	#jsmxmsg)
	

5.35.4	SVFileService	Examples
Examples	are	supplied	for	the	most	common	client	programming	languages:
RDML
RDMLX
RPG

5.35.5	Troubleshooting
Attempting	to	READ	a	separated	variable	file,	if	you	get	this	error	message:
token	count	does	not	equal	list	field	count	at	record	line	:	nn
it	indicates	your	working	list	definition	does	not	match	the	information	being
read	from	the	file.
There	are	several	possible	reasons:

Regardless	of	whether	the	file	is	read	as	*CSV,	*TSV	or	*SV	the	working
list	receiving	the	file	information	must	be	defined	to	accommodate	the
maximum	number	of	columns	in	the	content.
The	separator	value	must	match	the	file	information	i.e.	you	will	get	an	error
if	you	attempt	to	read	a	CSV	file	as	*TSV.
Any	errors	in	the	file	information	(for	example,	inconsistent	number	of
separated	value	on	a	given	line	of	the	file).

	

5.36	ExcelService
The	ExcelService	provides	a	means	for	applications	to	create	and	read
Microsoft	Excel	documents.	Since	Microsoft	Excel	is	so	widely	used,	Excel
documents	can	be	a	convenient	way	to	exchange	data	between	trading	units	or
partners.	An	application	may	also	use	the	service	for	extracting	subsets	of	data
from	a	corporate	database	for	further	analysis	or	presentation	in	an	Excel
workbook.
This	service	uses	the	open	source	Apache	POI	classes.	Refer	to
http://poi.apache.org/spreadsheet/.
Due	to	the	dependence	on	Apache	POI,	the	ExcelService	requires	JDK	1.5	over
higher.
The	Apache	POI	and	ExcelService	jar	files	are	shipped	as	extra	and	can	be
downloaded	from	http://www.lansa.com/support	by	searching	for	ExcelService.
When	adding	images	to	a	sheet,	only	PNG	and	JPEG	formats	are	supported.
Related	Services
The	ExcelService	is	not	dependent	on	other	services.
Technical	Specifications

http://poi.apache.org/spreadsheet/
http://www.lansa.com/support

5.36.1	What	can	I	use	the	ExcelService	for?
The	service	provides	support	for	multiple	worksheets	in	a	workbook.	An
application	can	interrogate	the	service	to	find	the	names	of	the	worksheets	in	a
workbook	and	then	individually	process	the	data	in	all	or	selected	worksheets.
Data	can	be	read	from	or	written	to	a	worksheet	in	specified	row/column	ranges
using	LANSA	RDML	working	lists	or	3GL	data	structures.
The	following	paragraph	provides	an	example	of	how	ExcelService	could	be
used:
Processing	Monthly	Timesheets
Employees	record	their	billable	information	in	a	preformatted	Excel
spreadsheet.	At	the	end	of	the	month	each	employee	emails	a	copy	of	their
timesheet	to	the	Head	Office	to	facilitate	the	billing	of	clients.
An	application	at	Head	Office	is	used	to	pick	up	and	process	the	emails	from	the
agreed	mailbox	–	this	could	potentially	use	the	POP3MailService.	The	Excel
document	associated	with	each	email	is	processed	using	the	ExcelReadService
into	a	database	file.	When	all	timesheets	have	been	received,	an	internal
application	generates	the	appropriate	invoices	for	each	client.

5.36.2	Using	the	ExcelService
Typical	ExcelService	Command	Usage
Whether	you	are	writing	your	client	application	in	RDML	/	RDMLX	or	in	a
3GL	such	as	RPG,	you	have	to	complete	the	same	basic	steps.
For	example,	an	application	that	reads	an	EXCEL	spreadsheet	would	typically
issue	the	following	sequence	of	commands:
JSM(X)_OPEN
JSM(X)_COMMANDs
					SERVICE_LOAD
										OPEN
										READ	/	WRITE
										CLOSE
					SERVICE_UNLOAD
JSM(X)_CLOSE
Refer	to	Java	Service	Manager	Clients	for	the	command	details	that	apply	to
your	chosen	development	language.

5.36.3	ExcelService	Commands
Your	application	issues	commands	to	the	ExcelReadService	by	passing	the
command	strings	through	the	Java	Service	Manager	using	the
JSM_COMMAND	or	JSMX_COMMAND	Built-In	Function,	or	an	equivalent
Built-In	Function	or	API	for	your	chosen	development	language.
The	commands	that	the	ExcelReadService	processes	are:
SERVICE_LOAD
OPEN
CREATE
SAVE
GET
SET
ADD
REMOVE
READ
WRITE
CLOSE
SERVICE_GET
SERVICE_UNLOAD
	

SERVICE_LOAD
Loads	and	initializes	the	service.
	
																																																											Required
	
	SERVICE_LOAD	----	SERVICE	---------	service	name	------------
---->
	
																																																											Optional
	
															>--	TRACE	-----------	*NO	------------------------->
																																					*YES
																																					*ERROR
	
															>--	TRACE_NAME	------	name	------------------------|
																																					*SERVICE
																																					*PROCESS
																																					*FUNCTION
																																					*JOBNAME
																																					*JOBUSER
																																					*JOBNUMBER
	
For	more	information	refer	to:
Service	Program	Tracing	from	the	Client
Keywords
SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

ExcelService.

TRACE To	enable	tracing	from	the	client	program	use	the	TRACE
keyword	on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:
*NO
*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the

service	does	not	return	an	ERROR,	FATAL	or
SOAPFAULT	status	to	the	client,	the	trace	files	are	deleted
on	the	JSM	CLOSE	call

TRACE_NAME This	optional	keyword	allows	the	client	to	append	a	user-
defined	name	to	the	end	of	the	client	trace	subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

	
Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD
SERVICE(EXCELSERVICE)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)
TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcommand	:=	'service_load	service(ExcelService)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)
to_get(#jsmxsts	#jsmxmsg)
	

OPEN
The	OPEN	command	is	used	to	open	a	specific	Excel	document	for	reading	or
writing.
	
																																																									Required
	
	OPEN	--------	FILE	-------------	file	path	--------------------|
	
Keywords
FILE The	path	and	file	name	to	be	opened.	The	file	name	should	include	an

appropriate	Excel	file	extension,	for	example	XLSX	for	an	Excel
Workbook.
For	example:
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'open
file(product.xlsx)')	to_get(#jsmsts	#jsmmsg)
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'close')
to_get(#jsmsts	#jsmmsg)
	

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)
WITH_ARGS('OPEN	FILE(product.xlsx)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'open	file(product.xlsx)')
to_get(#jsmsts	#jsmmsg)
	

CREATE
The	CREATE	command	is	used	to	create	a	new	Excel	document	for	writing.
Use	the	SAVE	command	and	FILE	keyword	to	save	the	created	document.	The
optional	USE	keyword	can	be	used	to	specify	a	template	document	used	to
create	the	new	document.
	
																																																									Required
	
	CREATE	-->
	
																																																									Optional
	
											>--	FORMAT	-----------	*XLS	------------------------->
																																		*XLSX	
	
											>--	USING	------------	file	path	--------------------|
	
Keywords
FORMAT Use	*XLS	to	the	create	Excel	97-2003	format.

The	default	*XLSX	creates	the	XML	based	format.

USING The	file	path	for	an	existing	Excel	document	which	is	to	be	used
to	as	a	template	to	create	a	new	document.	The	ExcelService
determines	the	file	format	from	the	file	path	extension.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)
WITH_ARGS('CREATE')	TO_GET(#JSMSTS	#JSMMSG)
USE	BUILTIN(JSM_COMMAND)
WITH_ARGS('CREATE	FORMAT(*XLS)')	TO_GET(#JSMSTS	#JSMMSG)
	

or
	
USE	BUILTIN(JSM_COMMAND)

WITH_ARGS('CREATE	USING(template.xlsx)')	TO_GET(#JSMSTS
#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'create')	to_get(#jsmsts
#jsmmsg)
	

SAVE
The	SAVE	command	is	used	to	save	a	modified	document.	The	FILE	keyword
is	optional.	If	the	document	has	been	opened	then	no	FILE	keyword	is	required
as	the	original	document	is	used	for	the	save.	Use	the	FILE	keyword	for	saving
created	documents	or	saving	an	opened	document	to	a	different	document	path.
	
																																																									Required
	
	SAVE	-->
	
																																																									Optional
	
											>--	FILE	-------------	file	path	--------------------|
	
Keywords
FILE The	path	and	file	name	to	be	for	the	saved	document.	The	file	name

should	include	an	appropriate	Excel	file	extension,	for	example	XLSX
for	an	Excel	Workbook.
For	example:
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'save
file(product.xlsx)')	to_get(#jsmsts	#jsmmsg)
	

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)
WITH_ARGS('SAVE	FILE(product.xlsx)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'save	file(product.xlsx)')
to_get(#jsmsts	#jsmmsg)
	

GET
The	GET	command	is	used	to	get	information	about	the	current	open	Excel
document.
	
																																																									Required
	
	GET	--------	OBJECT	-----------	*SHEETS	----------------------->
																																	*NAMES
																																	*ROWCOUNT
																																	*COLUMNCOUNT
																																	*CELLCOUNT
																																	*CELL
	
																																																									Optional
	
										>--	SHEET	------------	value	------------------------->
	
										>--	ROW	--------------	value	------------------------->
	
										>--	R1C1	-------------	value	------------------------->
	
										>--	NAME	-------------	value	------------------------->
	
										>--	SCALE	------------	value	------------------------->
	
										>--	NUMBERFORMAT	-----	*NONE	-------------------------
|
																																	*DEFAULT
																																	*CLIENT
																																	*USERAGENT
	
	
Keywords
OBJECT The	type	of	object	to	return	must	be	indicated	as	either

*SHEETS,	*NAMES,	*ROWCOUNT,
*COLUMNCOUNT,	*CELLCOUNT	or	*CELL.

A	value	of	*SHEETS	returns	a	working	list	with	all	the
sheet	names	in	the	current	document.
A	value	of	*NAMES	returns	a	working	list	with	all	the
defined	names	in	the	current	document.	If	the	working
list	has	two	fields	then	the	second	field	receives	the
define	name	reference	formula.
A	value	of	*ROWCOUNT	returns	the	number	of	rows
in	the	worksheet	specified	by	the	SHEET	keyword	into
the	#JSMMSG	field.
A	value	of	*COLUMNOUNT	returns	the	maximum
number	of	columns	in	the	worksheet	specified	by	the
SHEET	keyword	into	the	#JSMMSG	field.
A	value	of	*CELLCOUNT	returns	the	number	of	cells
in	the	worksheet	specified	by	the	SHEET	keyword	and
the	row	specified	by	the	ROW	keyword	into	the
#JSMMSG	field.
A	value	of	*CELL	returns	the	cell	value	into	the
#JSMMSG	response	field.	Refer	to	keywords	R1C1,
NAME,	SCALE	and	NUMBERFORMAT.

SHEET A	specific	sheet	name	can	be	entered	otherwise	the
current	context	sheet	is	used.

R1C1 Cell	row	and	column.	This	keyword	can	be	used	instead
of	NAME.

NAME Defined	name.	The	defined	name	contains	the	cell
location	in	standard	Excel	A1	reference	style.	For
example.	C10	or	SheetName!C10.

SCALE This	optional	keyword	specifies	the	decimal	scale	that
will	be	used	on	numeric	cells	that	have	a	general
number	format.	The	default	value	is	4.

NUMBERFORMAT This	optional	keyword	handles	numeric	strings	where
the	decimal	separator	is	not	the	decimal	point	character
".".
Refer	to	NUMBERFORMAT	for	more	information.

Examples

The	following	examples	use	the	GET	command	to	retrieve	information	about
the	current	Excel	document.
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('GET
OBJECT(*SHEETS)	SERVICE_LIST(SHEET)')	TO_GET(#JSMSTS
#JSMMSG	#WRKLST)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'get	object(*rowcount)
sheet(parts)')	to_get(#jsmsts	#jsmmsg)
	

SET
The	SET	command	is	used	to	change	the	current	context	sheet,	sheet	column
widths	and	sheet	settings	of	the	specified	sheet.
To	change	the	context	sheet,	use	the	OBJECT	keyword	with	a	value	of
*CONTEXT.
	
																																																									Required
	
	SET	--->
	
										>--	OBJECT	-----------	*CONTEXT----------------------->
	
										>--	SHEET	------------	value	-------------------------|
	
Keywords
OBJECT *CONTEXT

SHEET A	specific	sheet	name	that	must	exist	in	the	document.

	
To	change	the	sheet	columnwidths,	use	the	OBJECT	keyword	with	a	value	of
*COLUMNWIDTH.
	
																																																									Required
	
	SET	--->
	
										>--	OBJECT	-----------	*COLUMNWIDTH-------------------
>
	
																																																									Optional
	
										>--	SHEET	------------	value	------------------------->
	
										>--	WIDTH	------------	value	------------------------->
	
										>--	RANGE	------------	n,n	---------------------------|

	
Keywords
OBJECT *COLUMNWIDTH

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	current	context
sheet	is	used.

WIDTH Width	of	column.	The	default	value	is	2560	units.

RANGE Range	of	columns.	A	single	column	number	or	two	comma
separated	column	numbers	to	specify	a	range	of	columns.

	
To	change	the	sheet	settings,	use	the	OBJECT	keyword	with	a	value	of
*SHEET.
	
																																																									Required
	
	SET	--->
	
										>--	OBJECT	-----------	*SHEET	------------------------>
	
																																																									Optional
	
										>--	SHEET	------------	value	------------------------->
	
										>--	SELECTED	---------	*YES	-------------------------->
																																	*NO
	
										>--	DISPLAYGRID	------	*YES	-------------------------->
																																	*NO
	
										>--	PRINTGRID	--------	*YES	-------------------------->
																																	*NO
	
										>--	PRINTAREA	--------	value	------------------------->
	
										>--	PRINTTOFIT	-------	*YES	-------------------------->
																																	*NO

	
										>--	PROTECT	----------	*YES	-------------------------->
																																	*NO
	
										>--	PASSWORD	---------	value	------------------------->
	
										>--	FREEZE	-----------	value	------------------------->
	
										>--	MARGIN	-----------	value	------------------------->
	
										>--	HEADER	-----------	*LEFT	------------------------->
																																	*RIGHT
																																	*CENTER
	
										>--	FOOTER	-----------	*LEFT	------------------------->
																																	*RIGHT
																																	*CENTER
	
										>--	CONTENT	----------	value	-------------------------|
	
Keywords
OBJECT *SHEET

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	current
context	sheet	is	used.

SELECTED Set	this	sheet	to	be	the	selected	sheet.
Possible	values	are	*YES	or	*NO.

DISPLAYGRID Show	grid.
Possible	values	are	*YES	or	*NO.

PRINTGRID Print	grid.
Possible	values	are	*YES	or	*NO.

PRINTAREA Set	print	area.
Example	value:	A1:B2.

PRINTOFIT Enable	or	disable	print	to	fit.
Possible	values	are	*YES	or	*NO.

PROTECT Enable	or	disable	sheet	protection.
Possible	values	are	*YES	or	*NO.

PASSWORD The	worksheet	protection	password	is	optional	and	is	used
in	combination	with	the	PROTECT	keyword.

FREEZE Create	a	split	freeze	pane.
Use	the	value	of	n,n	to	create	a	column	split,row	split	freeze
pane.
Use	the	value	of	n,n,n,n	to	create	column	split,row	split,left
most	column,	top	row	freeze	pane.
Use	the	value	of	0,0	to	remove	the	split	freeze	pane.

MARGIN Set	sheet	margins.
The	value	is	top	margin,	bottom	margin,	left	margin,	right
margin,	header	margin	and	footer	margin	component	values
comma	separated.
An	empty	string	value	is	used	to	allow	a	component	value
to	be	ignored.

HEADER Specify	which	header	content	to	change.	The	possible
values	are	*LEFT,*RIGHT	or	*CENTER.

FOOTER Specify	which	footer	content	to	change.	The	possible	values
are	*LEFT,	*RIGHT	or	*CENTER.

CONTENT The	header	or	footer	content	text.
Special	substitution	values	can	be	used	within	the	header
and	footer	text.
&D	Date
&T	Time
&P	Page	Number
&N	Total	Number	of	Pages
&B	Bold
&U	Underline
&I	Italics
&S	Strike	Through
&E	Double	Underline
&X	Superscript
&Y	Subscript
&F	Workbook	Name

&AWorksheet	Name
&"font	name"	Font	Name
&nn	Font	Size	(Must	be	a	two	digit	number.	01	to	99)
&NL	New	Line

	

ADD
The	ADD	command	is	used	to	add	sheets,	cell	styles,	named	areas,	images,
formulas,	hyperlinks,	comments	and	cell	merges	to	an	Excel	document.
To	add	a	sheet,	use	the	OBJECT	keyword	with	a	value	of	*SHEET.
	
																																																									Required
	
	ADD	--------	OBJECT	-----------	*SHEET	------------------------>
	
										>--	SHEET	------------	value	-------------------------|
	
Keywords
OBJECT *SHEET

SHEET A	new	sheet	name.

	
To	add	a	comment,	use	the	OBJECT	keyword	with	a	value	of	*COMMENT.
	
																																																									Required
	
	ADD	--------	OBJECT	-----------	*COMMENT	---------------------
->
	
										>--	R1C1	-------------	n,n	---------------------------|
	
																																																									Optional
	
										>--	SHEET	------------	value	------------------------->
	
										>--	AREA	-------------	n,n	--------------------------->
	
										>--	COMMENT	----------	value	-------------------------|
	
Keywords
OBJECT *COMMENT

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	current
context	sheet	is	used.

R1C1 Cell	row	and	column.

AREA Display	rectangle.
Default	value	is	2,4.

COMMENT The	comment	text.	If	the	comment	keyword	is	not	used,	then
the	cell	comment	is	removed.

	
To	merge	cells,	use	the	OBJECT	keyword	with	a	value	of	*CELLMERGE.
	
																																																									Required
	
	ADD	--------	OBJECT	-----------	*CELLMERGE	-------------------
->
	
										>--	R1C1	-------------	n,n	---------------------------|
	
										>--	R2C2	-------------	n,n	---------------------------|
	
																																																									Optional
	
										>--	SHEET	------------	value	------------------------->
	
Keywords
OBJECT *CELLMERGE

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	current	context
sheet	is	used.

R1C1 Cell	row	and	column.

R2C2 Cell	row	and	column.

	
To	add	an	image,	use	the	OBJECT	keyword	with	a	value	of	*IMAGE.
	
																																																									Required

	
	ADD	--------	OBJECT	-----------	*IMAGE	------------------------>
	
										>--	FILE	-------------	value	------------------------->
	
										>--	R1C1	-------------	n,n	--------------------------->
	
																																																									Optional
	
										>--	SHEET	------------	value	------------------------->
	
										>--	RESIZE	-----------	n	----------------------------->
	
										>--	ANCHOR	-----------	*MOVE	-------------------------|
																																	*MOVESIZE
																																	*NOMOVESIZE
	
Keywords
OBJECT *IMAGE

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	current
context	sheet	is	used.

FILE The	path	to	the	PNG	or	JPEG	image	file.

R1C1 Cell	row	and	column.

RESIZE This	keyword	is	optional	and	specifies	image	resize	amount.
The	default	value	is	1.0.

ANCHOR This	keywords	specifies	how	the	image	moves	and	sizes	when
column	is	sized.	The	default	value	is	*MOVESIZE.

	
To	add	a	formula,	use	the	OBJECT	keyword	with	a	value	of	*FORUMLA.
	
																																																									Required
	
	ADD	--------	OBJECT	-----------	*FORMULA	----------------------
>

	
										>--	FORMULA	----------	value	------------------------->
	
										>--	R1C1	-------------	n,n	--------------------------->
	
																																																									Optional
	
										>--	SHEET	------------	value	-------------------------|
	
Keywords
OBJECT *FORUMLA

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	current
context	sheet	is	used.

FORMULA Excel	formula.

R1C1 Cell	row	and	column.

	
To	add	a	hyperlink	use	the	OBJECT	keyword	with	a	value	of	*HYPERLINK.
	
																																																									Required
	
	ADD	--------	OBJECT	-----------	*HYPERLINK	--------------------
>
	
										>--	ADDRESS	----------	value	------------------------->
	
										>--	R1C1	-------------	n,n	--------------------------->
	
																																																									Optional
	
										>--	SHEET	------------	value	------------------------->
	
										>--	TYPE	-------------	*URL	-------------------------->
																																	*FILE
																																	*EMAIL
																																	*DOCUMENT

	
										>--	LABEL	------------	value	-------------------------|
	
Keywords
OBJECT *HYPERLINK

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	current
context	sheet	is	used.

ADDRESS Hyperlink	address.

R1C1 Cell	row	and	column.

TYPE Type	of	hyperlink.

LABEL Hyperlink	label.

	
To	add	a	name	to	the	workbook	use	the	OBJECT	keyword	with	a	value	of
*NAME.
	
																																																									Required
	
	ADD	--------	OBJECT	-----------	*NAME	------------------------->
	
										>--	NAME	-------------	value	------------------------->
	
										>--	REFERENCE	--------	value	------------------------->
	
																																																									Optional
	
										>--	SHEET	------------	value	------------------------->
	
										>--	COMMENT	----------	value	-------------------------|
	
Keywords
OBJECT *NAME

NAME Name

REFERENCE Forumla	Reference.
Example:	A1:C5
Example:	Sheet1!A1:C5
Example:	SUM(Sheet1!I$2:I$6)

SHEET Sheet	name	to	prefix	reference,	if	sheet	name	not	included	in
reference.
Example:	Sheet1

COMMENT Comment

	
To	add	a	cell	style,	use	the	OBJECT	keyword	with	a	value	of	*CELLSTYLE.
	
																																																									Required
	
	ADD	-------------	OBJECT	----------	*CELLSTYLE	----------------
>
	
															>--	SHEET	-----------	value	--------------------->
	
															>--	COLUMN	----------	n	------------------------->
																																					n,n	
	
																																																									Optional
	
															>--	RANGE	-----------	n,n	----------------------->
	
															>--	TYPE	------------	*NUMBER	------------------->
																																					*DATE	
																																					*BOOLEAN
																																					*STRING
																																					*BLANK
	
															>--	FORMAT-----------	value	--------------------->
																																					*FORMAT0
																																					*FORMAT1
																																					*FORMAT2
																																					*FORMAT3
																																					*FORMAT4

																																					*FORMAT5
																																					*FORMAT6
																																					*FORMAT7
																																					*FORMAT8
																																					*FORMAT9
																																					*FORMAT10
																																					*FORMAT11
																																					*FORMAT12
																																					*FORMAT13
																																					*FORMAT14
																																					*FORMAT15
																																					*FORMAT16
																																					*FORMAT17
																																					*FORMAT18
																																					*FORMAT19
																																					*FORMAT20
																																					*FORMAT21
																																					*FORMAT22
																																					*FORMAT37
																																					*FORMAT38
																																					*FORMAT39
																																					*FORMAT40
																																					*FORMAT41
																																					*FORMAT42
																																					*FORMAT43
																																					*FORMAT44
																																					*FORMAT45
																																					*FORMAT46
																																					*FORMAT47
																																					*FORMAT48
																																					*FORMAT49
	
															>--	FONT	------------	value	--------------------->
																																					*ARIAL
																																					*CALIBRI
																																					*COURIER
																																					*COURIERNEW
																																					*TAHOMA
																																					*TIMES

	
															>--	FONTSIZE	---------	value	-------------------->
	
															>--	FONTCOLOR	-------	*AQUA	--------------------->
																																					*AUTOMATIC
																																					*BLACK
																																					*BLUE
																																					*BLUEGREY
																																					*BRIGHTGREEN
																																					*BROWN
																																					*CORAL
																																					*CORNFLOWERBLUE
																																					*DARKBLUE
																																					*DARKGREEN
																																					*DARKRED
																																					*DARKTEAL
																																					*DARKYELLOW
																																					*GOLD
																																					*GREEN
																																					*GREY25
																																					*GREY40
																																					*GREY50
																																					*GREY80
																																					*INDIGO
																																					*LAVENDAR
																																					*LEMONCHIFFON
																																					*LIGHTBLUE
																																					*LIGHTCORNFLOWERBLUE
																																					*LIGHTGREEN
																																					*LIGHTORANGE
																																					*LIGHTTURQUOISE
																																					*LIGHTYELLOW
																																					*LIME
																																					*MAROON
																																					*OLIVEGREEN
																																					*ORANGE
																																					*ORCHID
																																					*PALEBLUE
																																					*PINK

																																					*PLUM
																																					*RED
																																					*ROSE
																																					*SEAGREEN
																																					*SKYBLUE
																																					*TAN
																																					*TEAL
																																					*TURQUOISE
																																					*VIOLET
																																					*WHITE
																																					*YELLOW
	
															>--	BOLD	------------	*YES	---------------------->
																																					*NO
	
															>--	ITALIC	----------	*YES	---------------------->
																																					*NO
	
															>--	BORDER	----------	*ALL	---------------------->
																																					*NONE
																																					*TOP
																																					*BOTTOM
																																					*LEFT
																																					*RIGHT
	
															>--	BORDERSTYLE	-----	*NONE	--------------------->
																																					*MEDIUM
																																					*THICK
																																					*THIN
																																					*HAIR
																																					*DOUBLE
	
															>--	BORDERCOLOR	-----	*AQUA	--------------------->
																																					*AUTOMATIC
																																					*BLACK
																																					*BLUE
																																					*BLUEGREY
																																					*BRIGHTGREEN
																																					*BROWN

																																					*CORAL
																																					*CORNFLOWERBLUE
																																					*DARKBLUE
																																					*DARKGREEN
																																					*DARKRED
																																					*DARKTEAL
																																					*DARKYELLOW
																																					*GOLD
																																					*GREEN
																																					*GREY25
																																					*GREY40
																																					*GREY50
																																					*GREY80
																																					*INDIGO
																																					*LAVENDAR
																																					*LEMONCHIFFON
																																					*LIGHTBLUE
																																					*LIGHTCORNFLOWERBLUE
																																					*LIGHTGREEN
																																					*LIGHTORANGE
																																					*LIGHTTURQUOISE
																																					*LIGHTYELLOW
																																					*LIME
																																					*MAROON
																																					*OLIVEGREEN
																																					*ORANGE
																																					*ORCHID
																																					*PALEBLUE
																																					*PINK
																																					*PLUM
																																					*RED
																																					*ROSE
																																					*SEAGREEN
																																					*SKYBLUE
																																					*TAN
																																					*TEAL
																																					*TURQUOISE
																																					*VIOLET
																																					*WHITE

																																					*YELLOW
	
															>--	BACKGROUND	------	*AQUA	--------------------->
																																					*AUTOMATIC
																																					*BLACK
																																					*BLUE
																																					*BLUEGREY
																																					*BRIGHTGREEN
																																					*BROWN
																																					*CORAL
																																					*CORNFLOWERBLUE
																																					*DARKBLUE
																																					*DARKGREEN
																																					*DARKRED
																																					*DARKTEAL
																																					*DARKYELLOW
																																					*GOLD
																																					*GREEN
																																					*GREY25
																																					*GREY40
																																					*GREY50
																																					*GREY80
																																					*INDIGO
																																					*LAVENDAR
																																					*LEMONCHIFFON
																																					*LIGHTBLUE
																																					*LIGHTCORNFLOWERBLUE
																																					*LIGHTGREEN
																																					*LIGHTORANGE
																																					*LIGHTTURQUOISE
																																					*LIGHTYELLOW
																																					*LIME
																																					*MAROON
																																					*OLIVEGREEN
																																					*ORANGE
																																					*ORCHID
																																					*PALEBLUE
																																					*PINK
																																					*PLUM

																																					*RED
																																					*ROSE
																																					*SEAGREEN
																																					*SKYBLUE
																																					*TAN
																																					*TEAL
																																					*TURQUOISE
																																					*VIOLET
																																					*WHITE
																																					*YELLOW
	
															>--	WRAP	------------	*YES	---------------------->
																																					*NO
	
															>--	LOCKED	----------	*YES	---------------------->
																																					*NO
	
															>--	INDENT	----------	value	--------------------->
	
															>--	HALIGN	----------	*CENTRE	------------------->
																																					*CENTER
																																					*FILL
																																					*GENERAL
																																					*JUSTIFY
																																					*LEFT
																																					*RIGHT
	
															>--	VALIGN	----------	*CENTRE	-------------------|
																																					*CENTER
																																					*JUSTIFY
																																					*TOP
																																					*BOTTOM
	
Keywords
OBJECT *CELLSTYLE

SHEET Sheet	name	associated	with	the	cell	style.

COLUMN This	keyword	is	used	to	specify	the	column	number	or

range	of	column	numbers	you	wish	your	cell	style	to	act
on.	You	can	specify	a	single	column	number	or	a	comma-
separated	range.
The	format	of	this	keyword	is	as	follows:
COLUMN(column),	for	example,	COLUMN(3).
COLUMN(start	column,	end	column),	for	example,
COLUMN(3,5).
This	keyword	is	mandatory.

RANGE This	keyword	is	used	to	define	the	range	of	rows	within
the	specified	column	on	which	this	cell	style	will	act.
If	left	blank,	then	the	entire	column	will	be	acted	upon.
The	format	of	this	keyword	is	as	follows:
RANGE(start	row,	end	row),	for	example,	RANGE(3,5).
This	keyword	is	optional.

TYPE This	keyword	is	used	to	define	the	column	type.
The	possible	values	are:
*NUMBER
*DATE
*BOOLEAN
*STRING
*BLANK
The	default	value	is	*NUMBER
This	keyword	is	optional.

FORMAT Excel	format	to	be	applied	to	the	cell	value.
The	default	format	depends	on	the	cell	type.	If	the	cell
type	is	*DATE	the	default	format	is	the	builtin	format
*FORMAT14	which	is	an	internationalised	date	format.
The	default	format	for	all	other	cell	types	is	the	builtin
format	*FORMAT0	which	is	the	General	format.
*FORMAT0		General
*FORMAT1		0
*FORMAT2		0.00
*FORMAT3		#,##0

*FORMAT4		#,##0.00
*FORMAT5		"$"#,##0_);("$"#,##0)
*FORMAT6		"$"#,##0_);[Red]("$"#,##0)
*FORMAT7		"$"#,##0.00_);("$"#,##0.00)
*FORMAT8		"$"#,##0.00_);[Red]("$"#,##0.00)
*FORMAT9		0%
*FORMAT10	0.00%
*FORMAT11	0.00E+00
*FORMAT12	#	?/?
*FORMAT13	#	??/??
*FORMAT14	m/d/yy
*FORMAT15	d-mmm-yy
*FORMAT16	d-mmm
*FORMAT17	mmm-yy
*FORMAT18	h:mm	AM/PM
*FORMAT19	h:mm:ss	AM/PM
*FORMAT20	h:mm
*FORMAT21	h:mm:ss
*FORMAT22	m/d/yy	h:mm
*FORMAT37	#,##0_);(#,##0)
*FORMAT38	#,##0_);[Red](#,##0)
*FORMAT39	#,##0.00_);(#,##0.00)
*FORMAT40	#,##0.00_);[Red](#,##0.00)
FORMAT41	_("$"	#,##0_);_("$"*	(#,##0);_("$"*	"-
"_);_(@_)
FORMAT42	_(#,##0_);_(*	(#,##0);_(*	"-"_);_(@_)
FORMAT43	_("$"	#,##0.00_);_("$"*	(#,##0.00);_("$"*
"-"??_);_(@_)
FORMAT44	_(#,##0.00_);_(*	(#,##0.00);_(*	"-"??
);(@_)
*FORMAT45	mm:ss
*FORMAT46	[h]:mm:ss
*FORMAT47	mm:ss.0
*FORMAT48	##0.0E+0
*FORMAT49	@

FONT Font	is	any	valid	Windows	font	name.
The	special	values	of	*ARIAL,	*CALIBRI,	*COURIER,
*COURIERNEW,	*TAHOMA,	*TIMES	are	substituted

to	their	standard	Windows	font	names.

FONTSIZE The	keyword	is	used	to	define	the	font	size.
The	default	point	size	is	11.
This	keyword	is	optional.

FONTCOLOR The	keyword	is	used	to	define	the	font	color.

BOLD This	keyword	is	used	to	set	the	font	to	bold	or	not.
The	possible	values	for	this	keyword	are:
*NO
*YES
The	default	value	is	*NO
This	keyword	is	optional.

ITALIC This	keyword	is	used	to	set	the	font	to	italics	or	not.
The	possible	values	for	this	keyword	are:
*NO
*YES
The	default	value	is	*NO
This	keyword	is	optional.

BORDER This	keyword	is	used	to	define	the	lines	of	the	border.
The	possible	values	are	as	follows:
*ALL
*NONE
*TOP
*BOTTOM
*LEFT
*RIGHT
There	is	no	default	value.

BORDERSTYLE This	keyword	is	used	to	define	the	borderstyle.
The	BORDER	keyword	needs	to	be	specified	in
conjunction	with	this	keyword.

Possible	values	for	this	keyword	are	as	follows:
*NONE
*MEDIUM
*THICK
*THIN
*HAIR
*DOUBLE
The	default	value	is	*THIN
This	keyword	is	optional.

BORDERCOLOR This	keyword	is	used	to	define	the	border	color.
The	BORDER	keyword	needs	to	be	specified	in
conjunction	with	this	keyword.

BACKGROUND This	keyword	is	used	to	define	the	background	color.
There	is	no	default	value.

WRAP This	keyword	is	used	to	enable	text	wrap.
The	possible	values	for	this	keyword	are:
*NO
*YES
The	default	value	is	*NO
This	keyword	is	optional.

LOCKED This	keyword	is	used	to	enable	locked.
The	possible	values	for	this	keyword	are:
*NO
*YES
The	default	value	is	*NO
This	keyword	is	optional.

INDENT This	keyword	is	used	to	specify	the	cell	value	indent.
The	default	value	is	0.
This	keyword	is	optional.

HALIGN This	keyword	is	used	to	define	the	horizontal	alignment.

The	possible	values	for	this	keyword	are	as	follows:
*CENTRE
*CENTER
*FILL
*GENERAL
*JUSTIFY
*LEFT
*RIGHT
There	is	no	default	value.
This	keyword	is	optional.

VALIGN This	keyword	is	used	to	define	the	vertical	alignment.
The	possible	values	for	this	keyword	are	as	follows:
*CENTRE
*CENTER
*JUSTIFY
*TOP
*BOTTOM
There	is	no	default	value.
This	keyword	is	optional.

	

REMOVE
The	REMOVE	command	is	used	to	remove	a	name,	sheet,	sheet	cell	styles,
print	area,	rows	and	columns.
To	remove	a	name,	use	the	OBJECT	keyword	with	a	value	of	*NAME.
	
																																																									Required
	
	REMOVE	-----	OBJECT	-----------	*NAME	-------------------------
>
	
										>--	NAME	-------------	value	-------------------------|
	
Keywords
OBJECT *NAME

NAME Name.

To	remove	a	sheet,	use	the	OBJECT	keyword	with	a	value	of	*SHEET.
	
																																																									Required
	
	REMOVE	-----	OBJECT	-----------	*SHEET	------------------------
>
	
																																																									Optional
	
										>--	SHEET	------------	value	-------------------------|
	
Keywords
OBJECT *SHEET

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	current	context
sheet	is	used.

	
To	remove	added	sheet	cell	styles,	use	the	OBJECT	keyword	with	a	value	of
*CELLSTYLE.

	
																																																									Required
	
	REMOVE	-----	OBJECT	-----------	*CELLSTYLE	------------------
-->
	
																																																									Optional
	
										>--	SHEET	------------	value	-------------------------|
																																	*ALL
	
Keywords
OBJECT *CELLSTYLE

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	current	context
sheet	is	used.
The	special	value	of	*ALL	will	clear	all	added	cell	styles	for	all
sheets.

	
To	remove	a	sheet	print	area,	use	the	OBJECT	keyword	with	a	value	of
*PRINTAREA.
	
																																																									Required
	
	REMOVE	-----	OBJECT	-----------	*PRINTAREA	------------------
-->
	
																																																									Optional
	
										>--	SHEET	------------	value	-------------------------|
	
Keywords
OBJECT *PRINTAREA

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	current	context
sheet	is	used.

	

To	remove	rows,	use	the	OBJECT	keyword	with	a	value	of	*ROW.
	
																																																									Required
	
	REMOVE	-----	OBJECT	-----------	*ROW	--------------------------
>
	
										>--	RANGE	------------	n,n	--------------------------->
	
																																																									Optional
	
										>--	SHEET	------------	value	-------------------------|
	
Keywords
OBJECT *ROW

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	current	context
sheet	is	used.

RANGE Range	of	rows.	A	single	row	number	or	two	comma	separated	row
numbers	to	specify	a	range	of	rows.

	
To	remove	columns,	use	the	OBJECT	keyword	with	a	value	of	*COLUMN.
	
																																																									Required
	
	REMOVE	-----	OBJECT	-----------	*COLUMN	---------------------
-->
	
										>--	RANGE	------------	n,n	--------------------------->
	
																																																									Optional
	
										>--	SHEET	------------	value	-------------------------|
	
Keywords
OBJECT *COLUMN

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	current	context
sheet	is	used.

RANGE Range	of	columns.	A	single	column	number	or	two	comma
separated	column	numbers	to	specify	a	range	of	columns.

	

READ
The	READ	command	is	used	to	read	a	range	of	cells	from	the	nominated
worksheet	into	a	working	list.	Each	cell	value	has	trailing	blanks	trimmed.
	
																																																									Required
	READ
	
																																																									Optional
	
														>--	SHEET	-----------	value	---------------------->
	
														>--	R1C1	------------	n,n	------------------------>
	
														>--	ROWCOUNT	--------	value	---------------------->
	
														>--	IGNORE	---------	*NONE	----------------------->
																																			*EMPTY
	
														>--	SCALE	----------	value	----------------------->
	
														>--	NUMBERFORMAT	---	*NONE	-----------------------|
																																			*DEFAULT
																																			*CLIENT
																																			*USERAGENT
																																			value
	
Keywords
SHEET A	specific	sheet	name	can	be	entered	otherwise	the

current	context	sheet	is	used.

R1C1 The	starting	row	and	column	defaults	to	1,	1.	This
indicates	the	starting	position	for	rows	and	columns
reading.

ROWCOUNT Specify	the	number	of	rows	to	read.	If	no
ROWCOUNT	keyword	is	used	all	rows	to	the	end	of
the	sheet	are	read.

IGNORE The	default	value	of	*NONE	indicates	that	all	entries
should	be	processed.	The	alternative	option	*EMPTY
indicates	that	empty	entries	should	be	ignored.
An	empty	entry	is	where	all	cell	values	that	make	a	list
entry	have	an	empty	string	value.

SCALE This	optional	keyword	specifies	the	decimal	scale	that
will	be	used	on	numeric	cells	that	have	a	general
number	format.	The	default	value	is	4.

NUMBERFORMAT This	optional	keyword	handles	numeric	strings	where
the	decimal	separator	is	not	the	decimal	point	character
".".
Refer	to	NUMBERFORMAT	for	more	information.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('READ	SHEET(PARTS)
SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')
TO_GET(#JSMSTS	#JSMMSG	#ORDLIST)
	

or
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('READ	SHEET(PARTS)
R1C1(10,3)
SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')
TO_GET(#JSMSTS	#JSMMSG	#ORDLIST)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'read	sheet(parts)')
to_get(#jsmsts	#jsmmsg	#ordlist)
	

or
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'read	sheet(parts)
r1c1(10,3)')	to_get(#jsmsts	#jsmmsg	#ordlist)

	

WRITE
The	WRITE	command	is	used	to	write	a	range	of	cells	from	a	working	list	to	a
nominated	worksheet.
All	rows	and	columns	from	the	working	list	are	written	out	to	the	specified
sheet	using	the	R1C1	start	position.	Any	fields	specified	in	the	EXCLUDE
keyword	are	not	included	in	the	write	operation.
	
																																																									Required
	WRITE
	
																																																									Optional
	
														>--	SHEET	-----------	value	---------------------->
	
														>--	R1C1	------------	n,n	------------------------>
	
														>--	EXCLUDE	---------	field,field	----------------|
	
Keywords
SHEET A	specific	sheet	name	can	be	entered	otherwise	the	current

context	sheet	is	used.

R1C1 The	starting	row	and	column	defaults	to	1,	1.	This	indicates	the
starting	position	for	rows	and	columns	from	the	working	list	to
be	written	out	to	the	specified	sheet.

EXCLUDE An	optional	comma-separated	list	of	working	list	fields.	These
fields	will	be	excluded	from	the	write	operation.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('WRITE	SHEET(PARTS)
R1C1(10,3)
SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')
TO_GET(#JSMSTS	#JSMMSG	#ORDLIST)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'write	sheet(parts)
r1r1(10,3)')	to_get(#jsmsts	#jsmmsg	#ordlist)
	

CLOSE
The	CLOSE	command	closes	the	opened	or	created	workbook.
	
	CLOSE	-----------	no	keywords	---------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(CLOSE)
TO_GET(#JSMSTS	#JSMMSG)
	

	
RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	close)	to_get(#jsmxsts
#jsmxmsg)
	

SERVICE_GET
The	SERVICE_GET	command	allows	JSM	client	applications	to	access	the
keyword	/	value	properties	from	the	properties	file	associated	with	the	currently
loaded	service.
Client	applications	can	access	the	value	of	properties	associated	with	the
service,	but,	perhaps	more	usefully,	they	can	access	application	specific
property	values	too,	using	the	service	properties	file	as	a	common	medium	for
holding	such	values.	When	used	in	this	way,	there	is	a	possibility	of	conflict
between	application-defined	keyword	names	and	those	used	by	LANSA
Integrator.	To	reduce	the	possibility	of	conflict,	your	application	should	prefix
the	property	keyword	with	a	global	unique	name.	The	examples	below	use
com.acme.property	as	the	prefix	for	this	purpose.
The	service	property	keyword	value	is	returned	in	the	JSM	message	field.	If	the
keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
	
	SERVICE_GET	--------	PROPERTY	-----	value	--------------------
>
	
																		>--	TRACE	-------	*SERVICE-------------------|
																																				*TRANSPORT
	
Keywords
PROPERTY Provide	a	keyword	/	value	to	be	checked	on	the	service

properties	file.
The	service	property	keyword	value	is	returned	in	the	JSM
message	field.	If	the	keyword	does	not	exist	in	the	service
property	file	a	status	of	NOT_EXIST	is	returned.

TRACE *SERVICE	-	read	service	trace	file.
*TRANSPORT	-	read	transport	trace	file.

Examples
The	examples	retrieve	the	value	of	the	com.acme.property.messagetype	(an
application-defined	property)	in	the	service	properties	file.	This	property	might
be	defined	in	the	service	properties	file	with	a	line	like	this	(the	value	"html"
will	be	returned	to	the	application	in	this	case):

	
com.acme.property.messagetype=html
	

RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_GET	PROPERTY(com.acme.property.messagetype)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcmd	:=	'	service_get	property(com.acme.property.messagetype)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
	
	SERVICE_UNLOAD	---------	no	keywords	--------------------------
|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(SERVICE_UNLOAD)
TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	service_unload)
to_get(#jsmxsts	#jsmxmsg)
	

	

5.37	ExcelReadService
The	ExcelReadService	provides	a	means	for	applications	to	create	and	read
Microsoft	Excel	documents.	Since	Microsoft	Excel	is	so	widely	used,	Excel
documents	can	be	a	convenient	way	to	exchange	data	between	trading	units	or
partners.	An	application	may	also	use	the	service	for	extracting	subsets	of	data
from	a	corporate	database	for	further	analysis	or	presentation	in	an	Excel
workbook.
This	service	uses	the	open	source	Java	Excel	API	classes.	Refer	to
http://jexcelapi.sourceforge.net.
When	adding	images	to	a	sheet,	only	the	Portable	Network	Graphics	(PNG)
format	is	supported.
Related	Services
The	ExcelReadService	is	not	dependent	on	other	services.
Technical	Specifications
The	following	service	properties	control	the	locale,	region	and	language	values
used	when	reading	and	writing	workbooks:

excel.locale
excel.region
excel.language

http://jexcelapi.sourceforge.net/

5.37.1	What	can	I	use	the	ExcelReadService	for?
The	service	provides	support	for	multiple	worksheets	in	a	workbook.	An
application	can	interrogate	the	service	to	find	the	names	of	the	worksheets	in	a
workbook	and	then	individually	process	the	data	in	all	or	selected	worksheets.
Data	can	be	read	from	or	written	to	a	worksheet	in	specified	row/column	ranges
using	LANSA	RDML	working	lists	or	3GL	data	structures.
The	following	paragraph	provides	an	example	of	how	ExcelReadService	could
be	used:
Processing	Monthly	Timesheets
Employees	record	their	billable	information	in	a	preformatted	Excel
spreadsheet.	At	the	end	of	the	month	each	employee	emails	a	copy	of	their
timesheet	to	the	Head	Office	to	facilitate	the	billing	of	clients.
An	application	at	Head	Office	is	used	to	pick	up	and	process	the	emails	from	the
agreed	mailbox	–	this	could	potentially	use	the	POP3MailService.	The	Excel
document	associated	with	each	email	is	processed	using	the	ExcelReadService
into	a	database	file.	When	all	timesheets	have	been	received,	an	internal
application	generates	the	appropriate	invoices	for	each	client.

5.37.2	Using	the	ExcelReadService
Typical	ExcelReadService	Command	Usage
Whether	you	are	writing	your	client	application	in	RDML	/	RDMLX	or	in	a
3GL	such	as	RPG,	you	have	to	complete	the	same	basic	steps.
For	example,	an	application	that	reads	an	EXCEL	spreadsheet	would	typically
issue	the	following	sequence	of	commands:
JSM(X)_OPEN
JSM(X)_COMMANDs
					SERVICE_LOAD
										OPEN
										READ	/	WRITE
										CLOSE
					SERVICE_UNLOAD
JSM(X)_CLOSE
Refer	to	Java	Service	Manager	Clients	for	the	command	details	that	apply	to
your	chosen	development	language.

5.37.3	ExcelReadService	Commands
Your	application	issues	commands	to	the	ExcelReadService	by	passing	the
command	strings	through	the	Java	Service	Manager	using	the
JSM_COMMAND	or	JSMX_COMMAND	Built-In	Function,	or	an	equivalent
Built-In	Function	or	API	for	your	chosen	development	language.
The	commands	that	the	ExcelReadService	processes	are:
SERVICE_LOAD
OPEN
GET
SET
ADD
REMOVE
READ
WRITE
DEFINE
CLOSE
SERVICE_GET
SERVICE_UNLOAD

SERVICE_LOAD
Loads	and	initializes	the	service.
	
																																																											Required
	
	SERVICE_LOAD	----	SERVICE	---------	service	name	------------
---->
	
																																																											Optional
	
															>--	TRACE	-----------	*NO	------------------------->
																																					*YES
																																					*ERROR
	
															>--	TRACE_NAME	------	name	------------------------|
																																					*SERVICE
																																					*PROCESS
																																					*FUNCTION
																																					*JOBNAME
																																					*JOBUSER
																																					*JOBNUMBER
	
For	more	information	refer	to:
Service	Program	Tracing	from	the	Client
Keywords
SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

ExcelReadService.

TRACE To	enable	tracing	from	the	client	program	use	the	TRACE
keyword	on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:
*NO
*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the

service	does	not	return	an	ERROR,	FATAL	or
SOAPFAULT	status	to	the	client,	the	trace	files	are	deleted
on	the	JSM	CLOSE	call

TRACE_NAME This	optional	keyword	allows	the	client	to	append	a	user-
defined	name	to	the	end	of	the	client	trace	subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

	
Examples
RDML
	
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD
SERVICE(EXCELREADSERVICE)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)
TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcommand	:=	'service_load	service(EXCELREADSERVICE)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)
to_get(#jsmxsts	#jsmxmsg)
	

OPEN
The	OPEN	command	is	used	to	open	a	specific	Excel	document	for	reading	or
writing.
To	change	the	mode	after	the	Excel	document	has	been	opened:
1.		Use	the	CLOSE	command,	then
2.		Re-open	the	document	with	the	appropriate	mode.
An	OPEN	command	should	be	issued	before	using	the	GET,	READ	or	WRITE
commands.
	
																																																									Required
	
	OPEN	--------	FILE	-------------	file	path	-------------------->
	
																																																									Optional
	
											>--	MODE	-------------	*READ	------------------------>
																																		*WRITE
	
											>--	REPLACE	----------	*NO	-------------------------->
																																		*YES
	
											>--	TEMPLATE	---------	file	path	--------------------|
	
Keywords
FILE The	path	and	file	name	to	be	opened	or	created.	The	file	name

should	include	an	appropriate	Excel	file	extension,	for	example
XLS	for	an	Excel	Workbook	or	XLT	for	an	Excel	Template.
A	new	Excel	document	can	be	created	by	simply	using	the
OPEN	command	followed	by	the	CLOSE	command.
For	example:
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'open
file(product.xls)	mode(*write)	template(product.xlt)')
to_get(#jsmsts	#jsmmsg)
	

use	builtin(jsmx_command)	with_args(#jsmhandle	'close')
to_get(#jsmsts	#jsmmsg)
	

MODE File	open	mode	can	be	set	as	*READ	or	*WRITE.	The
document	must	be	opened	with	the	appropriate	mode	to	before
using	the	READ	or	WRITE	command.	The	default	value	is
*READ.

REPLACE Indicate	whether	the	current	version	of	the	file	is	to	be	replaced.
The	default	value	is	*NO.	This	is	used	in	conjunction	with
MODE(*WRITE).

TEMPLATE The	file	path	for	an	Excel	document	which	is	to	be	used	to
create	a	document	with	the	name	nominated	in	the	FILE
keyword.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)
WITH_ARGS('OPEN	FILE(product.xls)')	TO_GET(#JSMSTS	#JSMMSG)
	

or
	
USE	BUILTIN(JSM_COMMAND)
WITH_ARGS('OPEN	FILE(product.xls)	MODE(*WRITE)	REPLACE(*YES)')
TO_GET(#JSMSTS	#JSMMSG)
	

or
	
USE	BUILTIN(JSM_COMMAND)
WITH_ARGS('OPEN	FILE(product.xls)	MODE(*WRITE)	REPLACE(*YES)	TEMPLATE(product-
template.xlt)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'open	file(product.xls)')
to_get(#jsmsts	#jsmmsg)

	

GET
The	GET	command	is	used	to	get	information	about	the	current	open	Excel
document.
The	GET	command	must	be	preceded	by	an	OPEN	command	with	read	mode.
	
																																																									Required
	
	GET	--------	OBJECT	-----------	*SHEETS	----------------------->
																																	*ROWCOUNT
	
																																																									Optional
	
										>--	SHEET	------------	sheet1	------------------------|
																																	value
	
	
Keywords
OBJECT The	type	of	object	to	return	must	be	indicated	as	either	*SHEETS

or	*ROWCOUNT.
A	value	of	*SHEETS	returns	a	working	list	with	all	the	sheet
names	in	the	current	document.
A	value	of	*ROWCOUNT	returns	the	number	of	rows	in	the
worksheet	specified	by	the	SHEET	keyword	in	the	JSM	message
field.

SHEET This	keyword	is	used	in	combination	with	the	value
OBJECT(*ROWCOUNT)	to	indicate	which	sheet	the	row	count
should	be	returned	for.
A	specific	sheet	name	can	be	entered	otherwise	the	default	value	of
sheet1	will	be	used.

Examples
The	following	examples	use	the	GET	command	to	retrieve	information	about
the	current	Excel	document.
RDML

	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('GET
OBJECT(*SHEETS)	SERVICE_LIST(SHEET)')	TO_GET(#JSMSTS
#JSMMSG	#WRKLST)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'get	object(*rowcount)
sheet(parts)')	to_get(#jsmsts	#jsmmsg)
	

SET
The	SET	command	is	used	to	change	the	sheet	settings	of	the	specified	sheet.
The	SET	command	must	be	preceded	by	an	OPEN	command	with	write	mode.
	
																																																									Required
	
	SET	--->
	
																																																									Optional
	
										>--	SHEET	------------	sheet1	------------------------>
																																	value
	
										>--	FREEZE	-----------	value	------------------------->
	
										>--	SELECTED	---------	*YES	-------------------------->
																																	*NO
	
										>--	GRIDS	------------	*YES	-------------------------->
																																	*NO
	
										>--	ORIENTATION	------	*PORTRAIT	--------------------->
																																	*LANDSCAPE
	
										>--	PROTECT	----------	*YES	-------------------------->
																																	*NO
	
										>--	PASSWORD	---------	value	------------------------->
																																	*NONE
	
										>--	MARGIN	-----------	value	------------------------->
	
										>--	HEADER	-----------	*LEFT	------------------------->
																																	*RIGHT
																																	*CENTER
	
										>--	FOOTER	-----------	*LEFT	------------------------->

																																	*RIGHT
																																	*CENTER
	
										>--	CONTENT	----------	value	------------------------->
	
										>--	PRINTAREA	--------	value	------------------------->
	
										>--	PRINTTOFIT	-------	*YES	-------------------------->
																																	*NO
	
										>--	PRINTSCALE	-------	value	-------------------------|
	
Keywords
SHEET A	specific	sheet	name	can	be	entered	otherwise	the	default

value	of	sheet1	will	be	used.

FREEZE Set	horizontal	row	freeze	or	column	vertical	freeze.
The	value	is	the	horizontal	row	and	the	vertical	column
component	values	comma	separated.
An	empty	string	value	is	used	to	allow	a	component	value
to	be	ignored.

SELECTED Set	this	sheet	to	be	the	selected	sheet.
Possible	values	are	*YES	or	*NO.

GRIDS Show	or	hide	the	sheet	grids.
Possible	values	are	*YES	or	*NO.

ORIENTATION Specify	the	sheet	orientation.
Possible	values	are	*LANDSCAPE	or	*PORTRAIT.

PROTECT Enable	or	disable	sheet	protection.

PASSWORD The	worksheet	protection	password	is	optional	and	is	used
in	combination	with	the	PROTECT	keyword.	The	special
value	of	*NONE	causes	the	password	to	be	removed.

MARGIN Set	sheet	margins.
The	value	is	top	margin,	bottom	margin,	left	margin,	right
margin,	header	margin	and	footer	margin	component	values
comma	separated.

An	empty	string	value	is	used	to	allow	a	component	value
to	be	ignored.
The	unit	of	measurement	is	in	inches	as	a	float	value.

HEADER Specify	which	header	content	to	change.	The	possible
values	are	*LEFT,*RIGHT	or	*CENTER.

FOOTER Specify	which	footer	content	to	change.	The	possible	values
are	*LEFT,	*RIGHT	or	*CENTER.

CONTENT The	header	or	footer	content	text.
Special	substitution	values	can	be	used	within	the	header
and	footer	text.
&D	Date
&T	Time
&P	Page	Number
&N	Total	Number	of	Pages
&B	Bold
&U	Underline
&I	Italics
&S	Strike	Through
&E	Double	Underline
&X	Superscript
&Y	Subscript
&F	Workbook	Name
&AWorksheet	Name
&"font	name"	Font	Name
&nn	Font	Size	(Must	be	a	two	digit	number.	01	to	99)
&NL	New	Line

PRINTAREA Set	print	area.
The	value	is	a	cell	range	specified	by	comma	separated
values	row1,	column1,	row2,	column2.

PRINTTOFIT Enable	or	disable	fits	to	page	mode.
The	possible	values	are	*YES	or	*NO.

PRINTSCALE Set	print	scale	factor.

	

ADD
The	ADD	command	is	used	to	add	images,	formulas	and	hyperlinks	to	an	Excel
document.
The	ADD	command	must	be	preceded	by	an	OPEN	command	with	write	mode.
	
																																																									Required
	
	ADD	--------	OBJECT	-----------	*IMAGE	------------------------>
																																	*FORMULA
																																	*HYPERLINK
	
																																																									Optional
	
										>--	SHEET	------------	sheet1	------------------------|
																																	value
	
Keywords
OBJECT The	type	of	object	to	add	to	the	document	*IMAGE,	*FORMULA,

or	*HYPERLINK.
A	value	of	*IMAGE	is	used	to	add	a	image	to	a	specified	sheet.
A	value	of	*FORMULA	is	used	to	add	a	formula	to	a	specified
sheet.
A	value	of	*HYPERLINK	is	used	to	add	a	.hyperlink	to	a	specified
sheet.

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	default	value	of
sheet1	will	be	used.

	
	
																																																									Required
	
	ADD	--------	OBJECT	-----------	*IMAGE	------------------------>
	
										>--	FILE	-------------	value	------------------------->
	

										>--	R1C1	-------------	n,n	--------------------------->
	
																																																									Optional
	
										>--	R2C2	-------------	n,n	--------------------------->
	
										>--	ANCHOR	-----------	*MOVE	-------------------------|
																																	*MOVESIZE
																																	*NOMOVESIZE
	
Keywords
OBJECT *IMAGE	to	add	an	image	to	the	specified	sheet.

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	default	value
of	sheet1	will	be	used.

FILE The	path	to	the	PNG	image	file.

R1C1 The	top-left	cell	where	the	image	is	added.

R2C2 This	keyword	is	optional	and	specifies	the	bottom-right	cell	of	the
rectangle	formed	with	the	value	of	R1C1.
If	not	value	is	specified	then	the	images	spans	one	cell.

ANCHOR This	keywords	specifies	how	the	image	moves	and	sizes	when
column	is	sized.	The	defaulr	value	is	*MOVESIZE.

	
	
																																																									Required
	
	ADD	--------	OBJECT	-----------	*FORMULA	----------------------
>
	
										>--	FORMULA	----------	value	------------------------->
	
										>--	R1C1	-------------	n,n	---------------------------|
	
Keywords
OBJECT *FORUMLA	to	add	a	formula	to	the	specified	sheet.

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	default	value
of	sheet1	will	be	used.

FORMULA Excel	formula.

R1C1 The	cell	where	the	formula	is	to	be	added.
If	a	cell	format	is	defined,	then	this	format	is	used	when	creating
the	cell	formula.

	
	
																																																									Required
	
	ADD	--------	OBJECT	-----------	*HYPERLINK	--------------------
>
	
										>--	URL	--------------	value	------------------------->
	
										>--	R1C1	-------------	n,n	--------------------------->
	
																																																									Optional
	
										>--	R2C2	-------------	n,n	--------------------------->
	
										>--	LABEL	------------	value	-------------------------|
	
Keywords
OBJECT *HYPERLINK	to	add	a	hyperlink	to	the	specified	sheet.

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	default	value	of
sheet1	will	be	used.

URL The	hyperlink	destination.

R1C1 The	top-left	cell	where	the	hyperlink	is	added.

R2C2 This	keyword	is	optional	and	specifies	the	bottom-right	cell	of	the
rectangle	formed	with	the	value	of	R1C1.
If	not	value	is	specified	then	the	hyperlink	spans	one	cell.

LABEL Hyperlink	description.

	
	
																																																									Required
	
	ADD	--------	OBJECT	-----------	*HYPERLINK	--------------------
>
	
										>--	R1C1	-------------	n,n	--------------------------->
	
										>--	SHEET2	-----------	value	------------------------->
	
										>--	R2C2	-------------	n,n	--------------------------->
	
																																																									Optional
	
										>--	LABEL	------------	value	-------------------------|
	
Keywords
OBJECT *HYPERLINK	to	add	a	hyperlink	to	the	specified	sheet.

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	default	value	of
sheet1	will	be	used.

R1C1 The	cell	where	the	hyperlink	is	added.

SHEET2 The	hyperlink	sheet	destination.

R2C2 The	hyperlink	cell	destination.

LABEL Hyperlink	description.

	

REMOVE
The	REMOVE	command	is	used	to	remove	rows	or	columns	from	the	Excel
document.
The	REMOVE	command	must	be	preceded	by	an	OPEN	command	with	write
mode.
	
																																																									Required
	
	REMOVE	-----	OBJECT	-----------	*ROW	--------------------------
>
																																	*COLUMN
	
										>--	RANGE	-------------	n,n	-------------------------->
	
																																																									Optional
	
										>--	SHEET	------------	sheet1	------------------------|
																																	value
	
Keywords
OBJECT The	type	of	object	to	be	removed	from	the	document	*ROW,	or

*COLUMN.
A	value	of	*ROW	is	used	to	remove	a	single	row	or	a	range	of	rows
from	the	specified	sheet.
A	value	of	*COLUMN	is	used	to	remove	a	single	column	or	a
range	of	columns	from	the	specified	sheet.

RANGE The	range	is	either	a	single	integer	value	or	a	comma	separated	pair
of	integer	values.

SHEET A	specific	sheet	name	can	be	entered	otherwise	the	default	value	of
sheet1	will	be	used.

	

READ
The	READ	command	is	used	to	read	a	range	of	cells	from	the	nominated
worksheet	on	the	currently	open	document	into	a	working	list.	Each	cell	value
has	trailing	blanks	trimmed.
The	READ	command	must	be	preceded	by	an	OPEN	command	with	read	mode.
	
	READ	-----------	SHEET	-----------	sheet1	---------------------->
																																				value
	
														>--	R1C1	------------	1,1	------------------------->
																																				n,n
	
														>--	R2C2	------------	0,0	------------------------->
																																				n,n
	
														>--	IGNORE	---------	*NONE	------------------------>
																																			*EMPTY
	
														>--	SCALE	----------	value	------------------------>
	
														>--	NUMBERFORMAT	---	*NONE	------------------------
|
																																			*DEFAULT
																																			*CLIENT
																																			*USERAGENT
																																			value
	
Keywords
SHEET A	specific	sheet	name	can	be	entered	or	the	default

value	of	sheet1	will	be	used.

R1C1 Enter	a	specific	row	and	column	to	be	read.	If	a	value	is
not	specified	the	default	1,1	is	used.

R2C2 The	R2C2	keyword	value	can	have	a	row	and	column
value	of	0.
Enter	a	specific	end	row	and	column	for	read

processing.	If	a	value	is	not	specified	the	default	0,0	is
used	which	indicates	to	read	to	the	end	of	the	sheet.
Note:	Currently	the	column	value	of	the	R2C2	keyword
is	ignored	and	should	have	a	value	of	0	or	not	specified.

IGNORE The	default	value	of	*NONE	indicates	that	all	entries
should	be	processed.	The	alternative	option	*EMPTY
indicates	that	empty	entries	should	be	ignored.
An	empty	entry	is	where	all	cell	values	that	make	a	list
entry	have	an	empty	string	value.

SCALE This	optional	keyword	specifies	the	decimal	scale	that
will	be	used	on	numeric	cells	that	have	a	general
number	format.	The	default	value	is	4.

NUMBERFORMAT This	optional	keyword	handles	numeric	strings	where
the	decimal	separator	is	not	the	decimal	point	character
".".
Refer	to	NUMBERFORMAT	for	more	information.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('READ	SHEET(PARTS)
SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')
TO_GET(#JSMSTS	#JSMMSG	#ORDLIST)
	

or
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('READ	SHEET(PARTS)
R1C1(10,3)	R2C2(20,0)
SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')
TO_GET(#JSMSTS	#JSMMSG	#ORDLIST)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'read	sheet(parts)')
to_get(#jsmsts	#jsmmsg	#ordlist)

	
or
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'read	sheet(parts)
r1c1(10,3)	R2C2(20,0)')	to_get(#jsmsts	#jsmmsg	#ordlist)
	

WRITE
The	WRITE	command	is	used	to	write	a	range	of	cells	from	a	working	list	into
the	nominated	worksheet	on	the	currently	open	document.
All	rows	and	columns	from	the	working	list	are	written	out	to	the	specified
sheet	using	the	R1C1	start	position.	Any	fields	specified	in	the	EXCLUDE
keyword	are	not	included	in	the	write	operation.
The	WRITE	command	must	be	preceded	by	an	OPEN	command	with	write
mode.
	
	WRITE	----------	SHEET	------------	sheet1		-------------------->
																																					value
	
														>--	R1C1	-------------	1,1	------------------------>
																																					n,n
	
														>--	EXCLUDE	----------	field,field	---------------->
	
														>--	NUMBERFORMAT	----	*NONE	-----------------------
|
																																				*DEFAULT
																																				*CLIENT
																																				*USERAGENT
																																				value
	
Keywords
SHEET The	name	of	the	sheet	working	list	value	will	be	written

to.	If	a	sheet	value	is	not	specified	the	default	sheet1	is
applied.

R1C1 The	starting	row	and	column	defaults	to	1,	1.	This
indicates	the	starting	position	for	rows	and	columns
from	the	working	list	to	be	written	out	to	the	specified
sheet.

EXCLUDE An	optional	comma-separated	list	of	working	list	fields.
These	fields	will	be	excluded	from	the	write	operation.

NUMBERFORMAT This	optional	keyword	handles	numeric	strings	where
the	decimal	separator	is	not	the	decimal	point	character
".".
Refer	to	NUMBERFORMAT	for	more	information.

Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('WRITE	SHEET(PARTS)
R1C1(10,3)
SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')
TO_GET(#JSMSTS	#JSMMSG	#ORDLIST)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmhandle	'write	sheet(parts)
r1r1(10,3)')	to_get(#jsmsts	#jsmmsg	#ordlist)
	

DEFINE
The	DEFINE	command	is	used	to	define	cell	formats	and	column	widths	to	be
used	by	the	WRITE	command.
	
																																																											Required
	
	DEFINE	----------	OBJECT	----------	*COLUMNVIEW	-----------
------>
																																					*CELLFORMAT
	
																			COLUMN	----------	n	--------------------------->
																																					n,n	
	
	
																																																								Conditional
	
																			If	the	OBJECT	keyword	is	set	to	*COLUMNVIEW
																			CLEAR	-----------	*NO	------------------------->
																																					*YES	
	
																			WIDTH	-----------	value	----------------------->
	
	
																			If	the	OBJECT	keyword	is	set	to	*CELLFORMAT
																			CLEAR	-----------	*NO	------------------------->
																																					*YES	
	
																			RANGE	-----------	value	----------------------->
	
																			TYPE	------------	*NUMBER	--------------------->
																																					*DATE	
																																					*BOOLEAN
																																					*STRING
																																					*BLANK
	
																			FORMAT--->
	

																			Cell	formats	for	TYPE	*NUMBER
	
																																					*ACCOUNTINGFLOAT
																																					*ACCOUNTINGREDFLOAT
																																					*ACCOUNTINGINTEGER
																																					*ACCOUNTINGREDINTEGER
																																					*DEFAULT
																																					*EXPONENTIAL
																																					*FLOAT
																																					*FORMAT1
																																					*FORMAT2
																																					*FORMAT3
																																					*FORMAT4
																																					*FORMAT5
																																					*FORMAT6
																																					*FORMAT7
																																					*FORMAT8
																																					*FORMAT9
																																					*FORMAT10
																																					*FRACTIONONEDIGIT
																																					*FRACTIONTWODIGITS
																																					*INTEGER
																																					*PERCENTFLOAT
																																					*PERCENTINTEGER
																																					*TEXT
																																					*THOUSANDSFLOAT
																																					*THOUSANDSINTEGER
																																					Any	valid	NumberFormat	-	i.e.	#.##
	
																			Cell	formats	for	TYPE	*DATE
																																					*DEFAULT
																																					*FORMAT1
																																					*FORMAT2
																																					*FORMAT3
																																					*FORMAT4
																																					*FORMAT5
																																					*FORMAT6
																																					*FORMAT7
																																					*FORMAT8

																																					*FORMAT9
																																					*FORMAT10
																																					*FORMAT11
																																					*FORMAT12
																																					Any	valid	DateFormat	i.e.	dd	MM	yyyy
	
																			COMPLEXFORMAT----	value	----------------------->
	
																			FONT	------------	*ARIAL	---------------------->
																																					*COURIER
																																					*TAHOMA
																																					*TIMES
	
																			FONTCOLOR	-------	*AQUA	----------------------->
																																					*AUTOMATIC
																																					*BLACK
																																					*BLUE
																																					*BLUEGRAY
																																					*BLUE2
																																					*BRIGHTGREEN
																																					*BROWN
																																					*CORAL
																																					*DARKBLUE
																																					*DARKBLUE2
																																					*DARKGREEN
																																					*DARKPURPLE
																																					*DARKRED
																																					*DARKRED2
																																					*DARKTEAL
																																					*DARKYELLOW
																																					*DEFAULTBACKGROUND
																																					*DEFAULTBACKGROUND1
																																					*GOLD
																																					*GRAY25
																																					*GRAY50
																																					*GRAY80
																																					*GREEN
																																					*GRAY25
																																					*GRAY50

																																					*GRAY80
																																					*ICEBLUE
																																					*INDIGO
																																					*IVORY
																																					*LAVENDER
																																					*LIGHTBLUE
																																					*LIGHTGREEN
																																					*LIGHTORANGE
																																					*LIGHTTURQUOISE
																																					*LIGHTTURQUOISE2
																																					*LIME
																																					*OCEANBLUE
																																					*OLIVEGREEN
																																					*ORANGE
																																					*PALEBLUE
																																					*PALETTEBLACK
																																					*PERIWINKLE
																																					*PINK
																																					*PINK2
																																					*PLUM
																																					*PLUM2
																																					*RED
																																					*ROSE
																																					*SEAGREEN
																																					*SKYBLUE
																																					*TAN
																																					*TEAL
																																					*TEAL2
																																					*TURQUOISE
																																					*TURQUOISE2
																																					*VERYLIGHTYELLOW
																																					*VIOLET
																																					*VIOLET2
																																					*WHITE
																																					*YELLOW
																																					*YELLOW2
	
																			FONTSIZE	---------	value	---------------------->
	

																			BORDER	----------	*ALL	------------------------>
																																					*NONE
																																					*TOP
																																					*BOTTOM
																																					*LEFT
																																					*RIGHT
	
																			BORDERSTYLE	-----	*NONE	----------------------->
																																					*MEDIUM
																																					*THICK
																																					*THIN
																																					*HAIR
																																					*DOUBLE
	
																			BORDERCOLOR	-----	*AQUA	----------------------->
																																					*AUTOMATIC
																																					*BLACK
																																					*BLUE
																																					*BLUEGRAY
																																					*BLUE2
																																					*BRIGHTGREEN
																																					*BROWN
																																					*CORAL
																																					*DARKBLUE
																																					*DARKBLUE2
																																					*DARKGREEN
																																					*DARKPURPLE
																																					*DARKRED
																																					*DARKRED2
																																					*DARKTEAL
																																					*DARKYELLOW
																																					*DEFAULTBACKGROUND
																																					*DEFAULTBACKGROUND1
																																					*GOLD
																																					*GRAY25
																																					*GRAY50
																																					*GRAY80
																																					*GREEN
																																					*GRAY25

																																					*GRAY50
																																					*GRAY80
																																					*ICEBLUE
																																					*INDIGO
																																					*IVORY
																																					*LAVENDER
																																					*LIGHTBLUE
																																					*LIGHTGREEN
																																					*LIGHTORANGE
																																					*LIGHTTURQUOISE
																																					*LIGHTTURQUOISE2
																																					*LIME
																																					*OCEANBLUE
																																					*OLIVEGREEN
																																					*ORANGE
																																					*PALEBLUE
																																					*PALETTEBLACK
																																					*PERIWINKLE
																																					*PINK
																																					*PINK2
																																					*PLUM
																																					*PLUM2
																																					*RED
																																					*ROSE
																																					*SEAGREEN
																																					*SKYBLUE
																																					*TAN
																																					*TEAL
																																					*TEAL2
																																					*TURQUOISE
																																					*TURQUOISE2
																																					*VERYLIGHTYELLOW
																																					*VIOLET
																																					*VIOLET2
																																					*WHITE
																																					*YELLOW
																																					*YELLOW2
	
																			BACKGROUND	------	*AQUA	----------------------->

																																					*AUTOMATIC
																																					*BLACK
																																					*BLUE
																																					*BLUEGRAY
																																					*BLUE2
																																					*BRIGHTGREEN
																																					*BROWN
																																					*CORAL
																																					*DARKBLUE
																																					*DARKBLUE2
																																					*DARKGREEN
																																					*DARKPURPLE
																																					*DARKRED
																																					*DARKRED2
																																					*DARKTEAL
																																					*DARKYELLOW
																																					*DEFAULTBACKGROUND
																																					*DEFAULTBACKGROUND1
																																					*GOLD
																																					*GRAY25
																																					*GRAY50
																																					*GRAY80
																																					*GREEN
																																					*GRAY25
																																					*GRAY50
																																					*GRAY80
																																					*ICEBLUE
																																					*INDIGO
																																					*IVORY
																																					*LAVENDER
																																					*LIGHTBLUE
																																					*LIGHTGREEN
																																					*LIGHTORANGE
																																					*LIGHTTURQUOISE
																																					*LIGHTTURQUOISE2
																																					*LIME
																																					*OCEANBLUE
																																					*OLIVEGREEN
																																					*ORANGE

																																					*PALEBLUE
																																					*PALETTEBLACK
																																					*PERIWINKLE
																																					*PINK
																																					*PINK2
																																					*PLUM
																																					*PLUM2
																																					*RED
																																					*ROSE
																																					*SEAGREEN
																																					*SKYBLUE
																																					*TAN
																																					*TEAL
																																					*TEAL2
																																					*TURQUOISE
																																					*TURQUOISE2
																																					*VERYLIGHTYELLOW
																																					*VIOLET
																																					*VIOLET2
																																					*WHITE
																																					*YELLOW
																																					*YELLOW2
	
																			HALIGN	----------	*CENTRE	--------------------->
																																					*CENTER
																																					*FILL
																																					*GENERAL
																																					*JUSTIFY
																																					*LEFT
																																					*RIGHT
	
																			VALIGN	----------	*CENTRE	--------------------->
																																					*CENTER
																																					*JUSTIFY
																																					*TOP
																																					*BOTTOM
	
																			ITALIC	----------	*YES	------------------------>
																																					*NO

	
																			BOLD	------------	*YES	------------------------|
																																					*NO
	
Keywords
OBJECT This	keyword	is	used	to	specify	whether	you	want	to	define	the

width	of	a	column	view	or	a	column	cell	format.
The	possible	values	are:
*COLUMNVIEW	-	if	you	want	to	define	the	width	of	a	specified
column	view.
*CELLFORMAT	-	if	you	want	to	define	the	format	of	the	cells.
Both	of	these	options	has	a	different	set	of	keywords	available	for
it.
This	keyword	is	mandatory.

COLUMN This	keyword	is	used	to	specify	the	column	number	or	range	of
column	numbers	you	wish	your	DEFINE	command	to	act	on.
You	can	specify	a	single	column	number	or	a	comma-separated
range.
The	format	of	this	keyword	is	as	follows:
COLUMN(column),	for	example,	COLUMN(3).
COLUMN(start	column,	end	column),	for	example,
COLUMN(3,5).
For	the	*COLUMNVIEW	option,	the	action	acts	on	the	whole
column,	while	for	the	*CELLFORMAT	option	you	can	also
specify	a	specific	row	or	rows	to	act	on.	See	the	RANGE
keyword	below	for	more	details.
This	keyword	is	mandatory.

If	the	OBJECT	keyword	is	being	set	to	*COLUMNVIEW	then	the	following
keywords	are	available.

CLEAR This	keyword	is	used	to	clear	all	defined	column	views.
This	keyword	is	always	used	by	itself.	It	cannot	be	used	in
conjunction	with	any	other	keywords.
The	possible	values	are:

*YES	-	to	clear	all	defined	column	views.
*NO	-	to	not	clear	all	defined	column	views.
The	default	value	is	*NO.

WIDTH This	keyword	is	used	to	define	the	column	width.
You	must	specify	a	numeric	value	here.
This	keyword	is	mandatory.

If	the	OBJECT	keyword	is	being	set	to	*CELLFORMAT	then	the	following
keywords	are	available.

CLEAR This	keyword	is	used	to	clear	all	defined	cell	formats.
This	keyword	is	always	used	by	itself.	It	cannot	be
used	in	conjunction	with	any	other	keywords.
The	possible	values	are:
*YES	-	to	clear	all	defined	column	views.
*NO	-	to	not	clear	all	defined	column	views.
The	default	value	is	*NO.

RANGE This	keyword	is	used	to	define	the	range	of	rows
within	the	specified	column	on	which	this	DEFINE
will	act.
If	left	blank,	then	the	entire	column	will	be	acted
upon.
The	format	of	this	keyword	is	as	follows:
RANGE(start	row,	end	row),	for	example,
RANGE(3,5).
This	keyword	is	optional.

TYPE This	keyword	is	used	to	define	the	column	type.
The	possible	values	are:
*NUMBER
*DATE
*BOOLEAN
*STRING
*BLANK

The	default	value	is	*NUMBER
This	keyword	is	optional.

FORMAT This	keyword	is	used	to	define	the	cell	format.
If	the	cell	is	of	type	*NUMBER,	then	the	possible
values	you	may	use	are	as	follows.	Any	valid
NumberFormat	may	be	used	for	these	(i.e.	#.##):
*ACCOUNTINGFLOAT	("$#,##0;($#,##0)")
*ACCOUNTINGINTEGER	("$#,##0;($#,##0)")
*ACCOUNTINGREDFLOAT	("$#,##0;[Red]
($#,##0)")
*ACCOUNTINGREDINTEGER	("$#,##0;[Red]
($#,##0)")
*DEFAULT	("#")
*EXPONENTIAL	("0.00E00")
*FLOAT	("0.00")
*FORMAT1	("#,##0;(#,##0)")
*FORMAT2	("#,##0;[Red](#,##0)")
*FORMAT3	("#,##0.00;(#,##0.00)")
*FORMAT4	("#,##0.00;[Red](#,##0.00)")
*FORMAT5	("#,##0;(#,##0)")
*FORMAT6	("#,##0;[Red](#,##0)")
*FORMAT7	("#,##0.00;(#,##0.00)")
*FORMAT8	("#,##0.00;[Red](#,##0.00)")
*FORMAT9	("#,##0.00;(#,##0.00)")
*FORMAT10	("##0.0E0")
*FRACTIONONEDIGIT	("?/?")
*FRACTIONTWODIGITS	("??/??")
*INTEGER	("0")
*PERCENTFLOAT	("0.00%")
*PERCENTINTEGER	("0%")
*TEXT	("@")
*THOUSANDSFLOAT	("#,##0.00")

*THOUSANDSINTEGER	("#,##0")
The	default	value	is	*DEFAULT
If	the	cell	is	of	type	*DATE,	then	the	possible	values
you	may	use	are	as	follows.	Any	valid	DateFormat
may	be	used	for	these	(i.e.	dd	mm	yyyy):
*DEFAULT	("m/d/yy")
*FORMAT1	("m/d/yy")
*FORMAT2	("d-mmm-yy")
*FORMAT3	("d-mmm")
*FORMAT4	("mmm-yy	")
*FORMAT5	("h:mm	AM")
*FORMAT6	("h:mm:ss	AM")
*FORMAT7	("H:mm")
*FORMAT8	("H:mm:ss")
*FORMAT9	("m/d/yy	H:mm")
*FORMAT10	("mm:ss")
*FORMAT11	("H:mm:ss")
*FORMAT12	("H:mm:ss.0")
The	default	value	is	*DEFAULT
This	keyword	is	optional.

COMPLEXFORMAT This	keyword	is	used	to	define	the	cell	format	of	a
type	*NUMBER	cell.
No	validation	checks	are	done	on	the	format	value,	so
the	format	must	be	a	valid	Excel	number	format.	If	it
is	not	a	valid	format	corruption	to	the	Excel	document
can	occur.
	

FONT This	keyword	is	used	to	define	the	font	of	the	cell
value.
The	possible	values	are	as	follows:
*ARIAL
*COURIER

*TAHOMA
*TIMES
The	JXL	default	font	is	Arial.
This	keyword	is	optional.

FONTCOLOR This	keyword	is	used	to	define	the	font	color.
The	possible	values	are	as	follows:
*AQUA,	*AUTOMATIC,	*BLACK,	*BLUE,
*BLUEGRAY,	*BLUE2,	*BRIGHTGREEN,
*BROWN,	*CORAL,	*DARKBLUE,
*DARKBLUE2,	*DARKGREEN,	*DARKPURPLE,
*DARKRED,	*DARKRED2,	*DARKTEAL,
*DARKYELLOW,	*DEFAULTBACKGROUND,
*DEFAULTBACKGROUND1,	*GOLD,	*GRAY25,
*GRAY50,	*GRAY80,	*GREEN,	*GRAY25,
*GRAY50,	*GRAY80,	*ICEBLUE,	*INDIGO,
*IVORY,	*LAVENDER,	*LIGHTBLUE,
*LIGHTGREEN,	*LIGHTORANGE,
*LIGHTTURQUOISE,	*LIGHTTURQUOISE2,
*LIME,	*OCEANBLUE,	*OLIVEGREEN,
*ORANGE,	*PALEBLUE,	*PALETTEBLACK,
*PERIWINKLE,	*PINK,	*PINK2,	*PLUM,
*PLUM2,	*RED,	*ROSE,	*SEAGREEN,
*SKYBLUE,	*TAN,	*TEAL,	*TEAL2,
*TURQUOISE,	*TURQUOISE2,
*VERYLIGHTYELLOW,	*VIOLET,	*VIOLET2,
*WHITE,	*YELLOW,	*YELLOW2
The	default	value	is	*BLACK
This	keyword	is	optional.

FONTSIZE The	keyword	is	used	to	define	the	font	size.
The	JXL	default	point	size	is	10.
This	keyword	is	optional.

BORDER This	keyword	is	used	to	define	the	lines	of	the	border.
The	possible	values	are	as	follows:
*ALL

*NONE
*TOP
*BOTTOM
*LEFT
*RIGHT
There	is	no	default	value.

BORDERSTYLE This	keyword	is	used	to	define	the	borderstyle.
The	BORDER	keyword	needs	to	be	specified	in
conjunction	with	this	keyword.
Possible	values	for	this	keyword	are	as	follows:
*NONE
*MEDIUM
*THICK
*THIN
*HAIR
*DOUBLE
The	default	value	is	*THIN
This	keyword	is	optional.

BORDERCOLOR This	keyword	is	used	to	define	the	border	color.
The	BORDER	keyword	needs	to	be	specified	in
conjunction	with	this	keyword.
The	possible	values	are	as	follows:
*AQUA,	*AUTOMATIC,	*BLACK,	*BLUE,
*BLUEGRAY,	*BLUE2,	*BRIGHTGREEN,
*BROWN,	*CORAL,	*DARKBLUE,
*DARKBLUE2,	*DARKGREEN,	*DARKPURPLE,
*DARKRED,	*DARKRED2,	*DARKTEAL,
*DARKYELLOW,	*DEFAULTBACKGROUND,
*DEFAULTBACKGROUND1,	*GOLD,	*GRAY25,
*GRAY50,	*GRAY80,	*GREEN,	*GRAY25,
*GRAY50,	*GRAY80,	*ICEBLUE,	*INDIGO,
*IVORY,	*LAVENDER,	*LIGHTBLUE,
*LIGHTGREEN,	*LIGHTORANGE,

*LIGHTTURQUOISE,	*LIGHTTURQUOISE2,
*LIME,	*OCEANBLUE,	*OLIVEGREEN,
*ORANGE,	*PALEBLUE,	*PALETTEBLACK,
*PERIWINKLE,	*PINK,	*PINK2,	*PLUM,
*PLUM2,	*RED,	*ROSE,	*SEAGREEN,
*SKYBLUE,	*TAN,	*TEAL,	*TEAL2,
*TURQUOISE,	*TURQUOISE2,
*VERYLIGHTYELLOW,	*VIOLET,	*VIOLET2,
*WHITE,	*YELLOW,	*YELLOW2
The	default	value	is*BLACK
This	keyword	is	optional.

BACKGROUND The	possible	values	are	as	follows:
*AQUA,	*AUTOMATIC,	*BLACK,	*BLUE,
*BLUEGRAY,	*BLUE2,	*BRIGHTGREEN,
*BROWN,	*CORAL,	*DARKBLUE,
*DARKBLUE2,	*DARKGREEN,	*DARKPURPLE,
*DARKRED,	*DARKRED2,	*DARKTEAL,
*DARKYELLOW,	*DEFAULTBACKGROUND,
*DEFAULTBACKGROUND1,	*GOLD,	*GRAY25,
*GRAY50,	*GRAY80,	*GREEN,	*GRAY25,
*GRAY50,	*GRAY80,	*ICEBLUE,	*INDIGO,
*IVORY,	*LAVENDER,	*LIGHTBLUE,
*LIGHTGREEN,	*LIGHTORANGE,
*LIGHTTURQUOISE,	*LIGHTTURQUOISE2,
*LIME,	*OCEANBLUE,	*OLIVEGREEN,
*ORANGE,	*PALEBLUE,	*PALETTEBLACK,
*PERIWINKLE,	*PINK,	*PINK2,	*PLUM,
*PLUM2,	*RED,	*ROSE,	*SEAGREEN,
*SKYBLUE,	*TAN,	*TEAL,	*TEAL2,
*TURQUOISE,	*TURQUOISE2,
*VERYLIGHTYELLOW,	*VIOLET,	*VIOLET2,
*WHITE,	*YELLOW,	*YELLOW2
There	is	no	default	value.
This	keyword	is	optional.

HALIGN This	keyword	is	used	to	define	the	horizontal
alignment.

The	possible	values	for	this	keyword	are	as	follows:
*CENTRE
*CENTER
*FILL
*GENERAL
*JUSTIFY
*LEFT
*RIGHT
There	is	no	default	value.
This	keyword	is	optional.

VALIGN This	keyword	is	used	to	define	the	vertical	alignment.
The	possible	values	for	this	keyword	are	as	follows:
*CENTRE
*CENTER
*JUSTIFY
*TOP
*BOTTOM
There	is	no	default	value.
This	keyword	is	optional.

ITALIC This	keyword	is	used	to	set	the	font	to	italics	or	not.
The	possible	values	for	this	keyword	are:
*NO
*YES
The	default	value	is	*NO
This	keyword	is	optional.

BOLD This	keyword	is	used	to	set	the	font	to	bold	or	not.
The	possible	values	for	this	keyword	are:
*NO
*YES
The	default	value	is	*NO

This	keyword	is	optional.

CLOSE
The	CLOSE	command	closes	any	workbooks	currently	open	for	reading	or
writing.	When	the	workbooks	are	closed	all	the	associated	internal	objects	are
released	and	are	available	for	garbage	collection.
	
	CLOSE	-----------	no	keywords	---------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(CLOSE)
TO_GET(#JSMSTS	#JSMMSG)
	

	
RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	close)	to_get(#jsmxsts
#jsmxmsg)
	

SERVICE_GET
The	SERVICE_GET	command	allows	JSM	client	applications	to	access	the
keyword	/	value	properties	from	the	properties	file	associated	with	the	currently
loaded	service.
Client	applications	can	access	the	value	of	properties	associated	with	the
service,	but,	perhaps	more	usefully,	they	can	access	application	specific
property	values	too,	using	the	service	properties	file	as	a	common	medium	for
holding	such	values.	When	used	in	this	way,	there	is	a	possibility	of	conflict
between	application-defined	keyword	names	and	those	used	by	LANSA
Integrator.	To	reduce	the	possibility	of	conflict,	your	application	should	prefix
the	property	keyword	with	a	global	unique	name.	The	examples	below	use
com.acme.property	as	the	prefix	for	this	purpose.
The	service	property	keyword	value	is	returned	in	the	JSM	message	field.	If	the
keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
	
	SERVICE_GET	--------	PROPERTY	-----	value	--------------------
>
	
																		>--	TRACE	-------	*SERVICE-------------------|
																																				*TRANSPORT
	
Keywords
PROPERTY Provide	a	keyword	/	value	to	be	checked	on	the	service

properties	file.
The	service	property	keyword	value	is	returned	in	the	JSM
message	field.	If	the	keyword	does	not	exist	in	the	service
property	file	a	status	of	NOT_EXIST	is	returned.

TRACE *SERVICE	-	read	service	trace	file.
*TRANSPORT	-	read	transport	trace	file.

Examples
The	examples	retrieve	the	value	of	the	com.acme.property.messagetype	(an
application-defined	property)	in	the	service	properties	file.	This	property	might
be	defined	in	the	service	properties	file	with	a	line	like	this	(the	value	"html"
will	be	returned	to	the	application	in	this	case):

	
com.acme.property.messagetype=html
	

RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_GET	PROPERTY(com.acme.property.messagetype)')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcmd	:=	'	service_get	property(com.acme.property.messagetype)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
	
	SERVICE_UNLOAD	---------	no	keywords	--------------------------
|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(SERVICE_UNLOAD)
TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	service_unload)
to_get(#jsmxsts	#jsmxmsg)
	

5.37.4	ExcelReadService	Examples
Examples	are	supplied	for:
RDML
RDMLX

5.37.5	Troubleshooting
The	FILE	keyword	is	still	supported	on	the	READ	and	WRITE	commands	for
compatibility	with	earlier	version	of	LANSA	Integrator,	however	it	is
recommended	that	you	use	the	following	structure	for	any	new	development:

To	READ	from	a	spreadsheet	(the	OPEN	keyword	MODE	is	*READ	by
default):
					OPEN	FILE(ABC.XLS)
					READ
					CLOSE
To	WRITE	to	a	spreadsheet:
					OPEN	FILE(ABC.XLS)	MODE(*WRITE)
					WRITE
					CLOSE

5.38	SQLService
The	SQLService	is	designed	to	enable	users	to	develop	applications	than	can
communicate	with	any	database	that	can	be	accessed	with	a	JDBC	driver.	While
the	SQLService	could	be	run	in	a	number	of	different	scenarios,	the	most
common	usage	of	it	would	be	to	enable	IBM	i	applications	(written	in	LANSA,
RPG,	Cobol	or	any	other	IBM	i	language)	to	access	data	on	other	platforms	via
a	JDBC	driver.
Some	examples	of	its	use	might	be:

A	IBM	i	(LANSA,	RPG,	Cobol)	application	accessing	data	in	an	SQL	Server
database	on	Windows	server.
A	IBM	i	(LANSA,	RPG,	Cobol)	application	accessing	data	in	an	Oracle
database	on	a	Linux	server.
A	IBM	i	(LANSA,	RPG,	Cobol)	application	accessing	data	in	a	DB2
database	residing	on	another	IBM	i	machine.

The	above	describes	IBM	i	applications	accessing	data	on	other	types	of
databases	on	other	machines,	but	this	is	not	a	restriction.	You	may	have	a
requirement	that	a	Windows	based	application	needs	to	talk	to	a	JDBC	driver	to
access	IBM	i	data	for	example.
Using	this	service	with	a	JDBC	driver	will	provide	you	with	a	simpler	way	of
reading	and	updating	records	in	other	databases.	It	also	enables	real-time
updates	and	access	of	data	on	remote	servers.	Other	techniques	to	achieve	the
same	objective	might	include	the	use	of	dataqueues	or	staging	files	which	store
data	until	a	polling	program	on	another	platform	comes	along	to	pick	up	the
data	and	process	it	into	the	other	database.	Such	processes	are	fraught	with	risk
as	they	consume	CPU	and	network	resources,	even	when	information	is	not
being	processed.	Refer	to	5.38.1	What	can	I	use	the	SQLService	for?	for	further
information	of	how	you	might	use	the	service.
Related	Services
There	are	no	related	services.
Technical	Specifications
When	using	the	SQLService,	a	key	requirement	is	to	obtain	a	JDBC	driver	for
the	database	that	you	want	to	connect	to.	You	will	have	to	obtain	this	yourself
from	the	database	vendor.	Most	vendors	will	provide	the	requisite	drivers	on
their	installation	CDs,	as	well	as	allow	you	to	download	them	from	their	web
site.	In	many	case	these	drivers	will	be	available	at	no	charge.	Most	databases

will	need	you	to	use	a	driver	that	is	of	exactly	the	same	version	as	the	database.
Therefore,	ensure	that	you	have	access	to	the	correct	driver	for	the	version	and
type	of	database	that	you	wish	to	connect	to.	Vendor	web	sites	are	the	best
source	for	this	information.	Some	useful	sites	are	as	follows:
	
Oracle	JDBC	Drivers:
www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
Microsoft	SQL	Server	Drivers:
www.microsoft.com/technet/downloads/sqlsrvr.mspx
Adaptive	Server	Drivers:
www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect
NOTE:	For	many	databases,	drivers	can	also	be	obtained	from	third	party
sources.
The	IBM	Toolbox	for	Java	comes	with	two	JDBC	drivers	for	the	IBM	i,	which
can	be	used	for	accessing	DB2	data:

IBM	Toolbox	for	Java	JDBC	Driver	-	this	is	a	Type	4	driver,	that	makes
direct	socket	connect	to	the	database	host	server
IBM	Developer	Kit	for	Java	JDBC	Driver	-	this	is	a	Type	2	driver,	and
makes	native	method	calls	to	the	SQL	CLI	(Client	Level	Interface).

You	would	use	one	of	these	if	you	have	a	requirement	to	access	DB2	data	on	an
IBM	i	via	a	JDBC	driver.	In	general,	you	would	use	the	native	driver	if	your
program	is	intended	to	only	run	on	an	IBM	i	JVM	and	the	data	is	on	the	same
machine.	You	would	tend	to	use	the	Toolbox	driver	if	your	program	is	intended
to	run	on	other	JVMs	or	the	Java	program	is	on	one	IBM	i	OS	system	and	the
data	in	on	a	separate	IBM	i	OS	system.	For	more	information	on	the	IBM
Toolbox	for	Java	please	refer	to	IBM	Toolbox	for	Java.
This	service	assumes	a	basic	knowledge	of	SQL.	The	SET	command	provides
the	ability	to	control	numerous	commitment	control	features	for	your	SQL
statements.	While	these	are	addressed	in	some	detail	in	this	document,	a
complete	explanation	of	the	effect	of	each	type	is	beyond	the	scope	of	this
document.
Finally,	ensure	that	your	remote	server	is	available	on	your	network	and	that	you
have	all	the	connections	set	up	so	that	you	can	access	the	database.

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
http://www.microsoft.com/technet/downloads/sqlsrvr.mspx
http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect

5.38.1	What	can	I	use	the	SQLService	for?
The	most	common	use	of	this	service	will	be	for	an	IBM	i	application	to	access
data	on	another	server	-	whether	it	is	a	DB2	database	on	another	IBM	i,	an
Oracle	database	on	a	Linux	box,	an	SQL	Server	on	a	Windows	machine,	or	any
other	permutation	where	data	can	be	accessed	via	a	JDBC	driver.	The	data
access	required	may	be	create,	read,	update,	and	or	delete.
There	are	a	number	of	ways	to	achieve	the	same	objective	in	terms	of	accessing
remote	databases,	but	JDBC	can	often	be	the	simplest,	hence	the	SQLService	is
an	option	you	should	consider	when	assessing	how	to	tackle	such	issues.
The	following	are	some	examples	that	demonstrate	where	this	service	might	be
used.
Example	1
There	are	many	examples	of	web	applications	needing	to	access	information
from	multiple	servers.	You	may	have	a	LANSA	for	the	Web	application	running
on	an	IBM	i	server.	The	application	accesses	most	of	its	information	from	the
IBM	i,	but	you	may	have	some	screens	that	need	to	present	data	that	is	gathered
from	the	IBM	i	plus	some	data	that	is	residing	on	an	Oracle	database	on	a
Windows	server.	For	the	data	residing	on	the	IBM	i,	you	would	FETCH,
SELECT,	INSERT,	UPDATE	or	DELETE	this	information	in	the	usual	manner
you	would	as	for	any	LANSA	IBM	i	application.	For	the	data	residing	in	the
Oracle	database	though,	you	should	seriously	consider	using	the	SQLService	to
access	this	database	via	a	JDBC	driver.
Now	there	are	other	ways	that	this	goal	can	be	achieved	using	LANSA.	You
may	decide	to	place	your	data	into	dataqueue	or	a	staging	file	on	the	IBM	i,	and
have	a	Visual	LANSA	application	polling	this	dataqueue	or	staging	file	then
transferring	the	data	to	and	from	the	DB2	and	Oracle	databases	as	required.	For
simple	solutions,	this	can	be	quite	effective.	But	it	does	have	some	drawbacks:

The	approach	uses	the	concept	of	pulling	the	data	from	the	IBM	i.	In	this
case,	the	web	application	itself	is	reliant	on	another	system	to	do	the
updating.
If	the	polling	of	the	Visual	LANSA	application	is	not	regular,	then	the	Web
application	will	possibly	suffer	from	asynchronous	and	less	than	real-time
data.	This	problem	may	be	overcome	by	increasing	the	polling	rate,	but	of
course	this	would	consume	more	CPU	and	network	resources.	Even	if	no
data	needs	to	be	update,	the	polling	will	still	occur	to	interrogate	the	data
queue	or	staging	file	-	because	this	is	the	only	way	it	can	find	out	if	data

needs	to	be	moved	in	one	direction	or	the	other.
By	using	the	SQLService	with	a	JDBC	driver,	you	can	ensure	that	data	is
accessed	and	updated	to	and	from	the	web	user	as	and	when	required.	This	is
because	the	database	access	is	handled	by	your	LANSA	for	the	Web	WebEvent
function	or	WAM	itself,	and	not	relying	on	a	polling	application	to	transfer	data.
So,	with	this	approach,	you	use	CPU	and	network	resources	only	when	needed.
Example	2
You	may	ask,	"Why	would	an	IBM	i	application	need	to	use	a	JDBC	driver	to
access	IBM	i	DB2	data?"	(as	provided	for	by	the	two	drivers	that	come	with	the
IBM	Toolbox	for	Java).
Such	an	approach	might	be	very	useful	when	you	want	to	access	a	DB2
database	that	is	residing	on	another	remote	IBM	i.	An	organisation	might,	for
example,	have	a	number	of	IBM	i	machines	in	different	locations	around	the
world.	From	time	to	time	a	LANSA,	RPG,	or	Cobol	application	running	in	one
country	may	need	to	access	data	from	the	DB2	database	residing	on	the	IBM	i
sitting	in	another	country.	This	is	a	very	good	example	of	where	the	SQLService
could	be	used.	The	SQLService	could	be	used	to	access	the	remote	DB2
database	real-time	via	the	IBM	Toolbox	for	Java	JDBC	Driver.	This	driver
comes	with	all	IBM	i	installations,	so	it	makes	for	a	simple	cost	effective
mechanism	for	IBM	i	applications	to	access	remote	DB2	databases.

5.38.2	Using	the	SQLService
Whether	you	are	writing	your	client	application	in	RDML	/	RDMLX	or	in	a
3GL	such	as	RPG,	you	have	to	complete	the	same	basic	steps.
For	example,	an	application	that	needs	to	access	a	remote	database	would
typically	issue	the	following	sequence	of	commands:
JSM(X)_OPENJSM(X)_COMMANDs
					SERVICE_LOAD
										CONNECT
										SET
										EXECUTE
										READ
										COMMIT
										ROLLBACK
										METADATA
										DISCONNECT
					SERVICE_UNLOAD
JSM(X)_CLOSE
Refer	to	the	Java	Service	Manager	Clients	for	the	command	details	that	apply	to
your	chosen	development	language.

5.38.3	SQLService	Properties
The	following	lists	the	contents	of	the	SQLService.properties	as	they	are
shipped	in	a	standard	LANSA.
The	first	two	sections	are	the	most	important.
The	first	section	is	the	JDBC	driver	details	(for	example,
driver.db2=com.ibm.as400.AS400JDBCDriver).	The	driver	ID	that	you	specify
in	the	CONNECT	command	will	search	for	a	related	driver	in	the
SQLService.properties	file	(on	the	left-hand	side	of	the	'='	sign).	The	name	of
the	actual	driver	to	use	appears	on	the	right	hand	side	of	the	'='	sign.	This	JDBC
driver	must	reside	in	the	jar	directory	of	your	LANSA	Integrator	instance.	It	is
your	responsibility	to	ensure	that	it	is	there.
The	second	section	specifies	the	database	details	(for	example,
database.info=jdbc:as400://DBHOST/LIBRARY;naming=sql;errors=full;date
format=iso;translate	binary=true).	The	database	that	you	specify	in	the
CONNECT	command	will	search	for	a	related	database	in	the
SQLService.properties	file	(on	the	left	hand	side	of	the	'='	sign).	The	name	and
location	of	the	actual	database	to	use	is	indicated	on	the	right	hand	side	of	the	'='
sign.	You	will	note	that	the	database	detail	may	also	include	some	start	up
details.
	
#!<studio-project	id="20000000-000000"	name="lansa">
#
#	SQLService	resource	(Default)
#
driver.db2=com.ibm.as400.access.AS400JDBCDriver
driver.oracle=com.ddtek.jdbc.oracle.OracleDriver
driver.sqlserver=com.ddtek.jdbc.sqlserver.SQLServerDriver
#	driver.sqlserver=com.microsoft.jdbc.sqlserver.SQLServerDriver
driver.sqlanywhere=com.sybase.jdbc2.jdbc.SybDriver
#
#	database.info=jdbc:microsoft:sqlserver://DBHOST
#	database.northwind=jdbc:microsoft:sqlserver://10.10.10.10:1433;databasename=Northwind
#	database.info=jdbc:datadirect:sqlserver://DBHOST:1433
#	database.info=jdbc:datadirect:oracle://DBHOST:1521;sid=oemrep
#	database.info=jdbc:sybase:Tds:DBHOST:2638?ServiceName=dbname
database.info=jdbc:as400://DBHOST/LIBRARY;naming=sql;errors=full;date	format=iso;translate	binary=true

#
message.001=Service	successfully	loaded
message.002=Service	successfully	unloaded
message.003=Command	is	not	supported	:
message.004=Missing	DATABASE	keyword
message.005=Missing	DATABASE	resource	from	service	properties
message.006=Missing	DRIVER	keyword
message.007=Missing	DRIVER	resource	from	service	properties
message.008=No	current	database	connection
message.009=EXECUTE	command	requires	QUERY,	UPDATE,	PREPARED	or	CALL	keyword
message.010=Require	list	to	receive	result
message.011=No	SQL	command
message.012=No	result	set	available	for	reading
message.013=Column	count	does	not	match	list	field	count
message.014=Field	mapped	column	does	not	exist	in	result	set	:
message.015=Result	set	is	empty
message.016=Require	parameter	map	list
message.017=Field	column	map	requires	a	two	field	list
message.018=Map	field	does	not	exist	in	function	:
message.019=Missing	TABLE	keyword
message.020=Require	working	list
message.021=Working	list	requires	four	fields
message.022=No	suitable	driver	found
message.023=No	CALL	command
message.024=Unsupported	call	type	:
message.025=Cannot	connect	to	database
#
#!</studio-project>
	

5.38.4	SQLService	Commands
Your	application	issues	commands	to	the	SQLService	by	passing	the	command
strings	through	the	Java	Service	Manager	using	the	JSM_COMMAND	or	the
JSMX_COMMAND	Built	In	Function,	or	an	API	for	your	chosen	development
language.
The	commands	that	the	SQLService	processes	are:
SERVICE_LOAD
CONNECT
SET
GET
EXECUTE
READ
COMMIT
ROLLBACK
METADATA
DISCONNECT
SERVICE_UNLOAD

SERVICE_LOAD
Loads	and	initializes	the	service.
	
																																																										Required
	
	SERVICE_LOAD	----	SERVICE	---------	service	name	------------
--->
	
																																																										Optional
	
															>--	TRACE	-----------	*NO	------------------------>
																																					*YES
																																					*ERROR
	
															>--	TRACE_NAME	------	name	-----------------------|
																																					*SERVICE
																																					*PROCESS
																																					*FUNCTION
																																					*JOBNAME
																																					*JOBUSER
																																					*JOBNUMBER
	
For	more	information	refer	to:
Service	Program	Tracing	from	the	Client
Keywords
SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

SQLService.

TRACE To	enable	tracing	from	the	client	program	use	the	TRACE
keyword	on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:
*NO
*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the

service	does	not	return	an	ERROR,	FATAL	or
SOAPFAULT	status	to	the	client,	the	trace	files	are	deleted
on	the	JSM	CLOSE	call.

TRACE_NAME This	optional	keyword	allows	the	client	to	append	a	user-
defined	name	to	the	end	of	the	client	trace	subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

Examples
RDML
	
*	Define	the	field	to	hold	the	JSM	command
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(SQLService)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
#jsmcommand	:=	'service_load	service(SQLService)'
use	builtin(jsmx_command)	with_args(#jsmxhdle1	#jsmcommand)	to_get(#jsmxsts	#jsmxmsg)
	

CONNECT
The	CONNECT	command	is	used	to	connect	to	the	remote	database.	You	must
do	this	before	you	can	perform	any	activity	on	the	database.
	
	CONNECT	---------	DRIVER	-----------	value	-----------------------
>
	
															>--	DATABASE	---------	value	----------------------->
	
															>--	USER	-------------	value	----------------------->
	
															>--	PASSWORD	---------	value	-----------------------|
	
Keywords
DRIVER This	keyword	is	used	to	specify	the	name	of	the	JDBC	driver

you	intend	to	use	to	access	the	remote	database.
The	value	specified	here	must	correspond	to	a	key	entry	in	the
SQLService	properties	file.	This	reference	will	provide	the
details	of	the	full	name	and	path	of	the	JDBC	driver.
This	keyword	is	mandatory

DATABASE This	keyword	is	used	to	specify	the	database	that	you	wish	to
connect	to	with	the	JDBC	driver.
The	value	specified	here	must	correspond	to	a	key	entry	in	the
SQLService	properties	file.	This	reference	will	provide	the
details	of	the	full	name	and	path	of	the	database.
This	keyword	is	mandatory.

USER This	keyword	is	used	to	hold	the	User	ID	that	you	intend	to	use
to	connect	to	the	database.
The	keyword	is	mandatory.

PASSWORD This	keyword	is	used	to	hold	the	password	for	the	User	ID	that
you	intend	to	use	to	connect	to	the	database.
The	keyword	is	mandatory.

Comments	/	Warnings

By	default	the	connection	is	made	in	auto-connect	mode,	which	means	it
automatically	commits	changes	after	each	statement.
Any	additional	database	connection	properties	will	need	to	be	placed	into	the
SQLService	properties	file.
Examples
RDML
	
*	Define	the	JSM	message	fields
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
CHANGE	FIELD(#JSMCMD)	TO('CONNECT	DRIVER(DB2)	DATABASE(JSMJDBC)	USER(SMITH)	PASSWORD(PASSWORD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
*	Define	the	JSM	Command	related	fields
Define	Field(#JSMSTS)	Type(*Char)	Length(020)
Define	Field(#JSMMSG)	Type(*Char)	Length(256)
Define	Field(#JSMCMD)	Type(*Char)	Length(256)
Define	Field(#JSMHND)	Type(*Char)	Length(4)
	
#JSMCMD	:=	'Connect	Driver(DB2)	Database(JSMJDBC)	User(SMITH)	Password(PASSWORD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
	

SET
The	SET	command	is	used	to	set	database	connection	properties	before	you
actually	perform	any	activity	on	the	database.	It	is	very	important	that	you
understand	the	full	capabilities	of	this	command.
	
	SET	-------------	READONLY	--------	*YES	-------------------------
>
																																					*NO
	
															>--	MAXROWS	---------	n	---------------------------->
																																					*NOMAX
	
															>--	AUTOCOMMIT	------	*YES	------------------------->
																																					*NO
	
															>--	ISOLATION	-------	*NONE	------------------------>
																																					*READCOMMIT
																																					*READUNCOMMITTED
																																					*REPEATABLEREAD
																																					*SERIALIZABLE
	
															>--	PARAMETER	-------	*LIST	------------------------>
																																					*SQL
																																					*CALL
																																					*MAP
																																					*NONE
	
															>--	ONERROR	---------	*DISCONNECT	-----------------
->
																																					*CONTINUE
																																					*ROLLBACK
	
															>--	ONWARNING	-------	*STOP	------------------------>
																																					*CONTINUE
	
															>--	SQLSTATE	--------	*NONE	------------------------|
																																					*ERROR

																																					*WARNING
																																					*ALL
	
Keywords
READONLY This	keyword	indicates	if	the	current	database	connection

should	allow	read	or	write	access.	A	database	connection
must	first	be	established	using	the	CONNECT	command.
This	keyword	then	applies	to	the	current	database
connection.
By	default	when	a	database	connection	is	established,	read
and	write	access	is	permitted	(depending	on	restrictions
imposed	by	the	database).
A	value	of	*YES	indicates	any	changes	to	the	database	are
automatically	committed	after	executing	each	statement.
A	value	of	*NO	indicates	that	changes	to	the	database	are
controlled	by	programmed	transaction	boundaries.
Please	refer	to	Comments	/	Warnings	for	this	command	for
further	information.

MAXROWS This	keyword	specifies	the	maximum	number	of	rows	to	be
returned	by	a	query.

AUTOCOMMIT This	keyword	indicates	if	information	should	be
automatically	committed	to	the	database.	A	database
connection	must	first	be	established	using	the	CONNECT
command	to	use	this	keyword.	This	keyword	then	applies
to	the	current	database	connection.
By	default	when	a	connection	is	established	it	is	in	auto-
commit	mode.
A	value	of	*YES	indicates	any	changes	to	the	database	are
automatically	committed	after	executing	each	statement.
A	value	of	*NO	indicates	that	changes	to	the	database	are
controlled	by	programmed	transaction	boundaries.
Please	refer	to	Comments	/	Warnings	for	this	command	for
further	information.

ISOLATION This	keyword	indicates	the	level	of	transaction	isolation	to

be	applied	to	the	current	database.	A	database	connection
must	be	established	using	the	CONNECT	command	to	use
this	keyword.	This	keyword	then	applies	to	the	current
database	connection.
The	default	value	is	*NONE	otherwise	you	can	choose
from	these	four	levels	of	transaction	defined	by	the
ANSI/ISO	SQL	standard:
*READUNCOMMITTED
All	uncommitted	data	is	readable	from	any	connection.
This	is	the	same	as	not	having	any	isolation	(*NONE).
*READCOMMITTED
This	prevents	dirty	reads	but	does	not	prevent	phantoms	or
non-repeatable	reads.	Using	this	isolation	level,	only	data
committed	before	the	current	transaction	began	will	be
available.	Any	dirty	data	or	changes	made	by	concurrent
transactions	will	not	be	available.
This	level	is	obviously	more	restrictive	than	the
*READUNCOMMITTED.
*REPEATABLEREAD
This	prevents	dirty	and	non-repeatable	reads	but	does	not
prevent	phantom	rows.	This	means	the	probability	of	other
transactions	having	to	wait	for	this	one	are	increased	when
compared	to	*READUNCOMMITTED	and
*READCOMMITTED
This	is	more	restrictive	than	*READCOMMITTED.
*SERIALIZABLE
*SERIALIZABLE	provides	the	highest	transaction
isolation.	When	a	transaction	is	isolated	at	the
*SERIALIZABLE	level,	only	data	committed	before	the
transaction	began	is	available.	Neither	dirty	data	nor
concurrent	transaction	changes	committed	during
transaction	execution	are	available.	This	level	emulates
serial	transaction	execution,	as	transactions	will	effectively
be	executed	one	after	another	rather	than	concurrently.
This	is	more	restrictive	than	*REPEATABLEREAD.
In	relation	to	these	isolation	levels	there	are	three

phenomena	that	you	need	to	understand	before	you	can
determine	the	correct	isolation	level	to	apply	to	your
application,	namely:
Dirty	Reads	-	A	transaction	reads	data	written	by	an
uncommitted	transaction.	If	the	second	transaction	is
rolled	back,	the	data	read	by	the	first	transaction	is	then
invalid	because	the	rollback	undoes	the	changes.	The
first	transaction	won't	be	aware	that	the	data	it	has	read
has	become	invalid.
Non-repeatable	Reads	-	A	transaction	re-reads	data	it	has
previously	read	and	finds	that	data	has	been	modified	by
another	committed	transaction.
Phantom	Read	-	Phantom	reads	occur	when	new	records
added	to	the	database	are	detectable	by	transactions	that
started	prior	to	the	insert.	A	transaction	re-executes	a
query	and	returns	a	set	of	rows	satisfying	a	search
condition	only	to	find	that	additional	rows	satisfying	the
condition	have	been	inserted	by	another	committed
transaction.

The	ANSI/ISO	SQL	standard	isolation	levels	and	the
corresponding	behaviors	are	summarized	in	a	table	in
Comments	/	Warnings	following.

PARAMETER This	keyword	can	be	used	to	prepare	the	SQL	statement
prior	to	running	the	EXECUTE	or	READ	commands.	The
value	you	specify	here	depends	very	much	on	the	type	of
activity	you	wish	to	perform	on	the	database.
There	are	four	possible	values	for	this	keyword:
*LIST	-	you	may	set	this	value	if	you	intend	to	use	the
UPDATE	keyword	of	the	EXECUTE	command.	When
taking	this	approach	the	values	that	you	intend	to	add	to,
update,	or	delete	from	the	database	will	be	specified	in	a
list	that	is	included	in	the	SERVICE_LIST	of	this
command.	It	is	recommended	that	you	use	this	option	if
you	are	going	to	be	updating	(or	inserting	or	deleting)
more	than	a	single	record.	(otherwise	you	would	have	to
run	the	EXECUTE	as	many	times	as	there	are	records,
and	this	would	place	unnecessary	load	on	your	system

and	network).	Please	refer	to	the	following	Lists	and
Variables	and	the	Examples	for	this	command.
*SQL	-	you	may	set	this	value	if	to	intend	to	prepare	the
SQL	statement	in	advance	of	the	EXECUTE	command.
By	doing	so,	you	place	your	SQL	statement	into	a
working	list	that	is	passed	in	the	SERVICE_LIST	of	this
command.	This	feature	is	particularly	useful	if	you	are
going	to	be	using	long	SQL	statements.	This	is
particularly	useful	for	RDML	applications	where	the
longest	field	length	can	only	be	256	characters.	Please
refer	to	the	following	Lists	and	Variables	and	Examples
for	this	command	for	further	information.
*CALL	-	you	may	set	this	value	if	you	indend	to	use	call
procedures	that		have	IN,	OUT	and	INOUT	parameters.
*MAP	-	if	you	are	expecting	a	large	result	set	to	be
returned	from	a	query,	then	you	should	choose	to	use	the
READ	command	to	receive	the	list	of	values.	To	use	the
READ	command	you	need	to	set	this	keyword	to	*MAP
to	indicate	that	the	SERVICE_LIST	of	this	command
will	contain	the	column	and	field	mapping	information.
Please	refer	to	the	following	Lists	and	Variables	and	the
Examples	for	this	command	for	further	information.
*NONE	-	you	may	use	this	to	clear	the	current	map,	list
and	SQL	statements.

ONERROR The	keyword	is	used	to	indicate	the	action	you	want	to	take
if	an	exception	is	encountered	during	the	execution	of	the
SQL	statement.
There	are	three	possible	options:
*ROLLBACK	-	if	an	exception	is	encountered	during
the	execution	of	the	SQL	statement,	a	rollback	will	be
initiated.
*CONTINUE	-	if	an	exception	is	encountered	during	the
execution	of	the	SQL	statement,	the	processing	will
continue.
*DISCONNECT	-	if	an	exception	is	encountered	during
the	execution	of	the	SQL	statement,	the	database
connection	will	be	closed.

The	default	value	is	*DISCONNECT.

ONWARNING This	keyword	is	used	to	indicate	the	action	you	wish	to	take
if	a	warning	message	is	issued	during	the	execution	of	the
SQL	statement.
There	are	two	possible	values:
*CONTINUE	-	if	a	warning	is	encountered	during	the
execution	of	the	SQL	statement,	the	processing	will
continue.
*STOP	-		-	if	a	warning	is	encountered	during	the
execution	of	the	SQL	statement,	the	command	will	be
stopped.

The	default	value	is	*STOP.

SQLSTATE By	default,	if	an	SQLException	occurs	then	the	JSMSTS
field	is	set	to	ERROR,	and	if	an	SQLWarning	occurs	then
the	JSMSTS	field	is	set	to	WARNING.
This	keyword	may	be	used	to	allow	the	actual	SQLxxxxx
code	to	be	returned	in	place	of	these	default	values.
There	are	four	possible	values:
*ALL	-	this	will	ensure	that	an	SQLException	or	an
SQLWarning	returns	the	SQLxxxxx	status.
*ERROR	-	this	will	ensure	that	an	SQLException	returns
the	SQLxxxxx	status	while	an	SQLWarning	returns	a
WARNING	status.
*WARNING	ERROR	-	this	will	ensure	that	an
SQLWarning	returns	the	SQLxxxxx	status	while	an
SQLException	returns	an	ERROR	status.
*NONE	-	this	will	ensure	that	an	SQLException	returns
ERROR	status	and	an	SQLWarning	returns	WARNING
status.

The	default	value	is	*NONE.

Comments	/	Warnings
JDBC	drivers	have	vendor	defined	default	settings	for	such	areas	as
commitment	control	and	exception	handling.	As	an	example,	autocommit	is
normally	switched	on.

The	ANSI/ISO	SQL	standard	isolation	levels	and	the	corresponding	behaviors
are	summarized	in	the	following	table.

Isolation	Level Dirty
Read

Non-repeatable
Read

Phantom
Read

*READUNCOMMITTED Possible Possible Possible

*READCOMMITTED Not
possible

Possible Possible

*REPEATABLEREAD Not
possible

Not	possible Possible

*SERIALIZABLE Not
possible

Not	possible Not	possible

	

The	SQLService	SET	command	provides	you	with	the	capability	to	override
these	settings	to	meet	your	own	requirements.
A	detailed	explanation	of	commitment	control	and	error	handling	is	beyond	the
scope	of	this	documentation.	If	you	are	unfamiliar	with	isolation	levels,
commitment	control	and	error	handling	then	it	is	strongly	recommended	that
you	research	these	topics	through	other	channels.	These	topics	are	quite	generic
so	academic	books	or	web	sites	might	be	a	good	place	to	start.	You	are	also
recommended	to	review	any	material	that	the	database	vendor	provides	on	these
topics.
It	is	strongly	recommended	that	you	test	your	commit	and	rollback	logic
extensively.
Lists	and	Variables
The	PARAMETER	keyword	provides	some	very	useful	techniques	for
preparing	your	SQL	statements.	These	can	make	you	code	simpler	and	in	many
cases	help	you	produce	more	efficient	applications.
If	you	choose	to	use	the	PARAMETER	keyword	with	a	value	of	*LIST,	*SQL,
*MAP	or	*CALL,	then	you	will	need	to	supply	a	working	list	with	the	SET
command.	The	information	that	the	working	list	contains	will	depend	upon
which	of	the	three	values	you	specify.
The	following	provides	some	information	on	what	each	value	is	used	for	as	well

as	the	list	information	that	needs	to	be	passed	with	the	command:
*LIST	-	this	value	will	allow	you	to	pass	a	list	of	records	to	be	inserted,
updated,	or	deleted	from	the	remote	database.	This	list	will	be	sent	to	the
remote	database	with	a	prepared	SQL	statement	and	the	prepared	SQL
statement	will	be	run	once	for	each	record	in	the	list.	One	of	the	benefits	of
this	feature	is	a	reduction	in	network	and	system	resources.	The	alternative
would	be	to	run	the	SQL	statement	inside	a	loop	and	send	it	to	the	server	for
every	separate	record	that	needs	to	be	updated.	The	working	list	provided
with	this	value	must	provide	one	column	for	each	field	required	by	the	SQL
statement.	The	order	of	the	columns	is	important	as	is	explained	in	the
EXECUTE	command.
*SQL	-	this	value	will	allow	you	to	prepare	an	SQL	statement	prior	to	the
EXECUTE	command.	This	is	particularly	useful	when	your	SQL	statement
is	very	large	(for	example,	the	longest	field	type	for	RDML	applications	is
256	characters,	so	when	you	use	this	in	your	JSM_COMMAND	the	available
space	to	include	your	SQL	statement	is	even	less	than	this).	When	you	set
this	value	your	large	SQL	statement	may	be	placed	into	a	working	list.	If
need	be,	the	statement	may	be	placed	over	many	rows	of	the	working	list.
(Note:	only	one	statement	per	SET	command).	The	working	list	passed	with
this	option	must	contain	a	single	character	field,	which	will	contain	the	SQL
statement.
*CALL	this	value	will	allow	you	to	pass	a	list	of	IN,	OUT	and	INOUT
stored	procedure	call	parameters.	The	working	list	argument	needs	to	have
three	columns.	These	columns	are	Type,	Direction	and	Value.	Possible	values
for	the	Type	column	are	*CHAR,	*VARCHAR,	*SMALLINT,	*INTEGER,
*FLOAT,	*DOUBLE,	*DECIMAL	and	*NUMERIC.	Possible	values	for	the
Direction	column	are	*IN,	*OUT	and	*INOUT.	The	Value	column	is	a	string
value.
*MAP	-	if	you	are	expecting	to	receive	a	large	result	set	from	your	query	of
the	database,	then	you	should	opt	to	use	the	READ	command	to	obtain	the
values	in	the	result	set.	When	you	take	this	approach,	a	working	list	will	need
to	be	passed	with	this	SET	command	that	contains	the	column	field
mappings.	The	*MAP	value	indicates	that	your	list	is	intended	for	this
purpose.	The	working	list	that	you	pass	will	contain	two	columns	that	will
describe	the	column/field	mappings.	That	is,	the	first	column	will	contain	the
name	of	the	field	used	in	this	function	to	hold	the	value	returned	from	the
remote	table,	and	the	second	column	will	hold	the	name	of	the	related	field
as	it	is	named	in	the	remote	table.	There	will	be	as	many	rows	in	this	list	as

there	are	fields	to	be	returned	from	the	query.	Refer	to	the	READ	command
for	further	information	on	this	feature	and	where	to	use	it.

Please	note	that	it	is	quite	possible	that	you	could	use	a	number	of	these	options
in	conjunction	with	each	other.	Refer	to	the	following	examples	and	the
SQLService	Examples	to	see	how	this	works.	For	information	on	how	to	supply
a	working	list	to	service	commands	from	RDML	or	RDMLX	applications,	refer
to	5.38.5	SQLService	Examples.
Examples
The	SET,	EXECUTE,	and	READ	commands	of	the	SQLService	service	are
very	tightly	related	to	each	other.	As	such,	you	are	recommended	to	review	the
more	extensive	examples	in	SQLService	Examples.
RDML
	
*	Define	the	field	to	hold	the	JSM	command
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
Define	the	field	and	list	that	will	hold	the	SQL	command
DEFINE	FIELD(#COLCMD)	TYPE(*CHAR)	LENGTH(100)
DEF_LIST	NAME(#WRKCMD)	FIELDS(#COLCMD)	TYPE(*WORKING)
	
*	SET	the	commitment	control	settings
CHANGE	FIELD(#JSMCMD)	TO('SET	ISOLATION(*READCOMMITTED)	AUTOCOMMIT(*NO)	ONERROR(*ROLLBACK)	ONWARNING(*CONTINUE)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	
*	Set	up	the	SQL	statement	in	the	list	then	run	the	SET	command
CHANGE	FIELD(#COLCMD)	TO('SELECT	ID,NAME,AGE,SALARY')
ADD_ENTRY	TO_LIST(#WRKCMD)
CHANGE	FIELD(#COLCMD)	TO('FROM	TBLNAME')
ADD_ENTRY	TO_LIST(#WRKCMD)
CHANGE	FIELD(#JSMCMD)	TO('SET	PARAMETER(*SQL)	SERVICE_LIST(COLCMD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKCMD)
	

RDMLX
	
*	Define	the	JSM	Command	related	fields
Define	Field(#JSMSTS)	Type(*Char)	Length(020)
Define	Field(#JSMMSG)	Type(*Char)	Length(256)

Define	Field(#JSMCMD)	Type(*Char)	Length(256)
Define	Field(#JSMHND)	Type(*Char)	Length(4)
	
*	Define	the	field	and	the	list	to	hold	an	SQL	statement
Define	Field(#COLCMD)	Type(*Char)	Length(020)
Def_List	Name(#WRKCMD)	Fields(#COLCMD)	Type(*WORKING)
	
*	Set	up	the	commitment	control	settings
#JSMCMD	:=	'Set	Isolation(*READCOMMITTED)	AutoCommit(*NO)	OnError(*ROLLBACK)	OnWarning(*CONTINUE)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
	
*	Build	an	SQL	statement	then	run	the	Set	command
#COLCMD	:=	'Select	ID,NAME,AGE,SALARY'
Add_Entry	To_List(#WRKCMD)
#COLCMD	:=	'From	TBLNAME'
Add_Entry	To_List(#WRKCMD)
#JSMCMD	:=	'Set	Parameter(*SQL)	Service_List(COLCMD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#MAPLST)
	

	

GET
The	GET	command	is	used	to	get	return	values	from	a	call	to	a	stored	procedure
or	to	get	the	row	number	that	is	in	error	from	a	parameter	list	in	a	prepared
statement.
	
	GET	-------------	OBJECT	----------	*PARAMETERLISTROW	----
-----|
																																					*PARAMETERCALL
																																					*NEXTRESULT
	
Keywords
OBJECT The	*PARAMETERLISTROW	is	used	to	return	the	list	entry	that

has	caused	the	error.
It	will	return	the	first	erroneous	row	number	found	into	the	JSM
message	field	of	the	JSM	command	Built-In	Function.

The	*PARAMETERCALL	is	used	to	return	the	stored	procedure
call	parameters
The	*NEXTRESULT	is	used	to	moved	to	the	next	result	set.	If	not
result	set	is	available	then	status	code	NORESULT	is	returned.

Comments	/	Warnings
This	command	is	very	useful	when	a	prepared	statement	with	a	parameter	list
has	returned	an	exception,	such	as	a	duplicate	key	error.	Using	this	command
will	allow	you	to	ascertain	which	row	in	the	list	is	causing	the	error,	so	that	you
may	then	take	some	corrective	measures.
The	typical	flow	of	using	this	command	might	be	as	follows:
Step	1:	Execute	a	prepared	statement.
Step	2:	If	the	returned	status	is	OK,	then	continue	with	your	processing.
Step	3:	If	the	returned	status	is	not	OK,	then	use	the	GET	command	to	establish
which	row	is	in	error.
Examples
RDML
	
*	Define	the	JSM	command	and	message	fields

DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
*
*	Define	the	field	to	hold	the	INSERT	statement
DEFINE	FIELD(#COLCMD)	TYPE(*CHAR)	LENGTH(100)
DEF_LIST	NAME(#WRKCMD)	FIELDS(#COLCMD)	TYPE(*WORKING)
*
*	Define	the	fields	used	in	the	working	list
DEFINE	FIELD(#COL1)	TYPE(*CHAR)	LENGTH(10)
DEFINE	FIELD(#COL2)	TYPE(*CHAR)	LENGTH(20)
DEFINE	FIELD(#COL3)	TYPE(*DEC)	LENGTH(8)	DECIMALS(0)
DEFINE	FIELD(#COL4)	TYPE(*DEC)	LENGTH(12)	DECIMALS(2)
*	Define	the	working	list	to	hold	the	values
*	to	be	used	by	the	INSERT	statement
DEF_LIST	NAME(#WRKLST)	FIELDS(#COL1	#COL2	#COL3	#COL4)	TYPE(*WORKING)
*
*	Create	bind	values
CHANGE	FIELD(#COL1)	TO(B2001)
CHANGE	FIELD(#COL2)	TO('Tom')
CHANGE	FIELD(#COL3)	TO(45)
CHANGE	FIELD(#COL4)	TO(35000.60)
ADD_ENTRY	TO_LIST(#WRKLST)
*	(**********)
CHANGE	FIELD(#COL1)	TO(A2012)
CHANGE	FIELD(#COL2)	TO('Antony')
CHANGE	FIELD(#COL3)	TO(45)
CHANGE	FIELD(#COL4)	TO(35000.60)
ADD_ENTRY	TO_LIST(#WRKLST)
*
*	Prepare	the	INSERT
CHANGE	FIELD(#COLCMD)	TO('INSERT	INTO	TBLNAME(ID,NAME,AGE,SALARY)	VALUES(?,?,?,?)')
ADD_ENTRY	TO_LIST(#WRKCMD)
CHANGE	FIELD(#JSMCMD)	TO('SET	PARAMETER(*SQL)	SERVICE_LIST(COLCMD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKCMD)
*
*	Prepare	the	list	to	contain	the	data	to	be	inserted
CHANGE	FIELD(#JSMCMD)	TO('SET	PARAMETER(*LIST)	SERVICE_LIST(COL1,COL2,COL3,COL4)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKLST)

*
*	Execute	the	prepared	statement
CHANGE	FIELD(#JSMCMD)	TO('EXECUTE	PREPARED(*SQLPARAMETER)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
*
*	If	an	error	occur,	find	out	the	problem	row
IF	COND('#JSMSTS	*NE	OK')
CHANGE	FIELD(#JSMCMD)	TO('GET	OBJECT(*PARAMETERLISTROW)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
*
DISPLAY	FIELDS(#JSMMSG)
ENDIF
	

RDMLX
	
*	Define	the	JSM	command	and	message	fields
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMCMD)	Type(*CHAR)	Length(256)
Define	Field(#JSMHND)	Type(*Char)	Length(4)
*
*	Define	the	field	to	hold	the	INSERT	statement
Define	Field(#COLCMD)	Type(*CHAR)	Length(100)
Def_List	Name(#WRKCMD)	Fields(#COLCMD)	Type(*WORKING)
*
*	Define	the	fields	and	list	that	will	contains	the	result	set	returned	from	the	query
Define	Field(#COL1)	Type(*CHAR)	Length(010)
Define	Field(#COL2)	Type(*CHAR)	Length(020)
Define	Field(#COL3)	Type(*DEC)	Length(008)	Decimals(0)
Define	Field(#COL4)	Type(*DEC)	Length(012)	Decimals(0)
Def_List	Name(#WRKLST)	Fields(#COL1	#COL2	#COL3)	Type(*WORKING)
*
*	Create	bind	values
#COL1	:=	'B2001'
#COL2	:=	'Tom'
#COL3	:=	45
#COL4	:=	35000.60
Add_Entry	To_list(#Wrklst)

*
#COL1	:=	'B2002'
#COL2	:=	'Jones'
#COL3	:=	23
#COL4	:=	22000.60
Add_Entry	To_list(#Wrklst)
*
*	Prepare	the	INSERT
#COLCMD	:=	'Insert	Into	TBLNAME(ID,NAME,AGE,SALARY)	VALUES(?,?,?,?)'
Add_Entry	To_list(#Wrkcmd)
#JSMCMD	:=	'Set	Parameter(*SQL)	Service_List(COLCMD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#WRKCMD)
*
*	Prepare	the	list	to	contain	the	data	to	be	inserted
#JSMCMD	:=	'Set	Parameter(*LIST)	Service_List(COL1,COL2,COL3,COL4)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#WRKLST)
*
*	Execute	the	prepared	statement
#JSMCMD	:=	'Execute	Prepared(*SQLPARAMETER)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
*
If	'#JSMSTS	*ne	Ok'
*	If	an	error	occur,	find	the	problem	row	-	Get	command	will	return	the	row	number	into	the	#JSMMSG	field
#JSMCMD	:=	'Get	Object(*PARAMETERLISTROW)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
ENDIF
	

	

EXECUTE
The	EXECUTE	command	is	used	to	run	SQL	statement	against	the	remote
database.
	
																																																								Conditional
	
	EXECUTE	---------	QUERY	-----------	value	-----------------------
>
																																					*SQLPARAMETER
	
															>--	UPDATE	----------	value	----------------------->
																																					*SQLPARAMETER
	
															>--	PREPARED	--------	value	----------------------->
																																					*SQLPARAMETER
	
															>--	CALL	------------	value	----------------------->
	
															>--	CALLTYPE	--------	*QUERY	---------------------->
																																					*UPDATE
																																					*EXECUTE
	
															>--	CALLSYNTAX	------	*JDBC	----------------------->
																																					*ORACLE
	
															>--	RETURN	----------	*NONE	-----------------------|
																																					*CHAR
																																					*STRING
																																					*SMALLINT
																																					*INTEGER
																																					*FLOAT
																																					*DOUBLE
																																					*DECIMAL
																																					*NUMERIC
																																					*ORACLECURSOR
	
Keywords

QUERY You	will	use	this	keyword	to	execute	a	query	on	the
database	where	you	expect	to	have	a	result	set	returned	from
your	SQL	statement.
The	keyword	may	be	specified	in	one	of	two	ways:
You	may	specify	the	SQL	statement	directly	into	this
keyword.	For	example,	SELECT	'value','value'	FROM
table
You	will	use	the	*SQLPARAMETER	value	if	you	have
prepared	an	SQL	statement	using	the
PARAMETER(*SQL)	keyword	on	the	SET	command.

See	the	Comments	/	Warnings	for	further	information	on
this.

UPDATE You	will	use	this	command	if	you	wish	to	issue	an	SQL
update	and	are	not	expecting	a	result	set	to	be	returned.
The	keyword	may	be	specified	in	one	of	two	ways:
You	may	specify	the	SQL	statement	directly	into	this
keyword.	For	example,	UPDATE	table	SET	col1='value',
or	DELETE	FROM	table	WHERE	col1='value'.
You	will	use	the	*SQLPARAMETER	value	if	you	have
prepared	an	SQL	statement	using	the
PARAMETER(*SQL)	keyword	on	the	SET	command.

See	the	Comments	/	Warnings	for	further	information	on
this.

PREPARED This	keyword	allows	you	to	prepare	an	SQL	statement.	In
most	case	you	will	need	to	make	data	available	to	the
prepared	SQL	statement,	and	in	such	cases	you	will	need	to
prepare	these	values	in	a	working	list	using	the	SET
PARAMETER(*LIST)	command.
The	keyword	may	be	specified	in	one	of	two	ways:
You	may	specify	the	SQL	statement	directly	into	this
keyword.	For	example,	UPDATE	table	SET	col1=?,	or
DELETE	FROM	table	WHERE	col1=?.	Note	the
presence	of	the	question	marks	-	this	is	explained	in
Comments	/	Warnings	below.

You	will	use	the	*SQLPARAMETER	value	if	you	have

prepared	an	SQL	statement	using	the	PARAMETER(*SQL)
keyword	on	the	SET	command.
See	Comments	/	Warnings	for	further	information	on	this.

CALL You	will	use	this	keyword	to	call	a	stored	procedure	to	run
your	SQL	statement.	This	stored	procedure	will	be	residing
on	the	remote	server.
See	the	Comments	/	Warnings	for	further	information	on
this.

CALLTYPE This	keyword	is	used	to	specify	the	type	of	SQL	statement
that	the	stored	procedure	specified	in	the	CALL	command
is.
There	are	three	possible	values	for	this	keyword:
*QUERY	-	if	the	SQL	statement	in	the	stored	procedure
is	a	query,	then	the	CALL	will	return	the	result	set	into	a
working	list.
*UPDATE	-	if	the	SQL	statement	in	the	stored	procedure
is	an	update,	insert,	or	delete	then	the	CALL	will	return	a
row	count	(of	the	number	of	records	updated)	into	a
working	list.
*EXECUTE	-	if	this	keyword	is	specified	then	the	stored
procedure	will	return	nothing.

The	default	value	is	*QUERY.
Refer	to	the	following	Lists	and	Variables	for	further
comments	on	the	lists	returned	when	using	this	keyword.
This	keyword	must	be	used	in	conjunction	with	the	CALL
keyword	only.

CALLSYNTAX This	keyword	is	used	to	specify	whether	you	are	using
JDBC	syntax	or	Oracle	JDBC	syntax.
There	are	two	possible	values	for	this	keyword:
*JDBC	-	use	this	to	indicate	that	you	are	using	standard
JDBC	syntax.
*ORACLE	-	use	this	to	indicate	that	you	are	using	Oracle
JDBC	syntax.

Please	refer	to	the	following	Comments	/	Warnings	for

further	details	on	the	use	of	this	keyword.
This	keyword	must	be	used	in	conjunction	with	the	CALL
keyword	only.

RETURN This	keyword	is	used	to	specify	the	datatype	of	the	return
value	from	a	stored	procedure	/	function.
The	following	values	are	possible
*NONE	-	indicates	that	no	value	is	being	returned
*CHAR	-	indicates	that	a	value	of	datatype	CHAR	is
being	returned
*STRING	-	indicates	that	a	value	of	datatype	STRING	is
being	returned
*SMALLINT	-	indicates	that	a	value	of	datatype
SMALLINT	is	being	returned
*INTEGER	-	indicates	that	a	value	of	datatype	INTEGER
is	being	returned
*FLOAT	-	indicates	that	a	value	of	datatype	FLOAT	is
being	returned
*DOUBLE	-	indicates	that	a	value	of	datatype	DOUBLE
is	being	returned
*DECIMAL	-	indicates	that	a	value	of	datatype
DECIMAL	is	being	returned
*NUMERIC	-	indicates	that	a	value	of	datatype
NUMERIC	is	being	returned
*ORACLECURSOR	-	indicates	that	the	value	being
returned	is	a	cursor	that	in	turn	will	be	used	to	access	the
result	set	from	an	Oracle	query.	This	can	only	be	used	on
an	Oracle	database	with	the	Oracle	driver

The	default	value	is	*NONE.
Please	refer	to	the	following	Comments	/	Warnings	for
further	details	on	the	use	of	this	keyword.
This	keyword	must	be	used	in	conjunction	with	the	CALL
keyword	only.

Comments	/	Warnings
The	EXECUTE	command	is	very	powerful.	It	is	important	that	you	understand

its	capability	in	order	to	take	full	advantage	of	it.
The	following	details	when	you	should	use	each	command	and	how	best	to	use
it.	It	is	recommended	that	you	read	this	thoroughly	before	you	proceed.
QUERY
If	you	want	to	run	a	query	on	a	remote	database	and	you	are	expecting	a	result
set	to	be	returned	(for	example,	values	to	be	returned	from	a	select),	then	you
would	typically	use	the	EXECUTE	QUERY(SQL	statement)	command.	Refer
to	the	following	List	and	Variables	for	information	on	how	to	retrieve	the	result
set.
If	you	want	to	use	a	very	large	SQL	statement	then	you	have	the	option	of
preparing	the	statement	using	the	SET	PARAMETER(*SQL)	command,	then
using	the	EXECUTE	QUERY(*SQLPARAMETER)	command.
Also	refer	to	the	CALL	and	PREPARED	keywords.
UPDATE
The	EXECUTE	UPDATE(SQL	statement)	command	will	typically	be	used
when	you	want	to	update	the	database	using	an	insert,	update,	or	delete.	A	result
set	will	not	be	returned.	With	this	in	mind,	you	will	therefore	not	use	this	to
query	data.
If	you	want	to	use	a	very	large	SQL	statement	then	you	have	the	option	of
preparing	the	statement	using	the	SET	PARAMETER(*SQL)	command,	then
using	the	EXECUTE	QUERY(*SQLPARAMETER)	command.
Also	refer	to	the	CALL	and	PREPARED	keywords.
PREPARED
If	you	were	intending	to	run	the	same	SQL	statement	more	than	once	then	you
would	be	recommended	to	use	the	PREPARED	command,	as	it	will	normally
reduce	the	execution	time.
This	is	achieved	by	sending	the	prepared	statement	to	the	database	and
compiling	it	once.	This	means	that	each	time	it	is	executed	it	can	run
immediately	without	having	to	be	compiled	first.	Without	taking	this	approach,
we	would	have	to	put	our	UPDATE	command	into	a	loop	and	the	statement
would	have	to	re-establish	a	connection	to	the	database	every	single	time.
The	prepared	SQL	statement	can	be	run	with	no	parameters,	but	in	most	cases
the	advantage	is	gained	for	those	that	take	parameters.	Parameters	are	passed	to
the	SQL	statement	by	a	working	list	created	in	conjunction	with	the	SET
PARAMETER(*LIST)	command.	So,	for	example,	you	might	want	to	update

the	address	details	for	a	number	of	employees	in	one	go.	Using	a	prepared	SQL
and	passing	a	list	of	the	data	to	be	updated	will	be	the	most	efficient	way	of
doing	it.
If	you	want	to	use	a	very	large	SQL	statement	then	you	have	the	option	of
preparing	the	statement	using	the	SET	PARAMETER(*SQL)	command,	then
using	the	EXECUTE	QUERY(*SQLPARAMETER)	command.
If	a	prepared	SQL	statement	starts	with	INSERT	and	ends	with
VALUES(*CALC)	or	VALUES(*ALL)	then	special	parsing	of	the	SQL
statement	is	done.	The	*CALC	option	means	that	a	binding	parameter	for
column	is	calculated	and	the	statement	is	modified.	The	*ALL	option	means
that	a	binding	parameter	for	each	column	is	calculated	and	all	other	columns	in
the	table	are	included	using	a	default	value.
CALL
This	keyword	allows	you	to	call	a	stored	procedure	on	the	remote	server.	This
stored	procedure	will	contain	your	SQL	statement.	The	CALL	command	must
be	used	in	conjunction	with	the	CALLTYPE	command	to	specify	whether	it	is
of	type	*QUERY,	*UPDATE,	or	*EXECUTE.
Stored	procedures	can	provide	a	very	efficient	way	of	running	your	SQL
statements.	For	example,	they	can	reduce	network	traffic	if	a	lot	of	data	is	being
returned.	You	are	encouraged	to	research	this	topic	in	more	detail.	The	IBM
Infocentre	and	Redbooks,	both	available	from	the	IBM	web	site,	have	a	wealth
of	information	on	this	topic.
Parameters	can	be	passed	to	the	remote	procedure	using	a	working	list	and	the
SET	PARAMETER(*LIST)	command.	Refer	to	the	following	Lists	and
Variables	for	information	on	how	to	do	this.
Some	stored	procedure	calls	return	a	warning	to	say	that	they	been	executed,	so
the	warning	check	needs	to	be	turned	off	using	the	SET
ONWARNING(*CONTINUE)	command.	The	warning	error	code	466	(result
sets	are	available	from	proceudre)	is	ignored	and	is	not	treated	as	a	warning.
Some	examples	of	this	command	and	how	to	create	stored	procedures	are
provided	in	the	SQLService	Examples.	Some	examples	of	stored	procedures	can
be	found	at	the	end	of	this	section.
CALLSYNTAX
The	Oracle	JDBC	Driver	does	not	fully	support	the	JDBC	syntax	when	it	is
used	to	return	a	value	from	a	database	function.	It	uses	its	own	Oracle	syntax.
With	this	in	mind,	you	need	to	use	this	keyword	to	indicate	whether	or	not	you

are	using	standard	JDBC	(in	which	case	specify	*JDBC)	or	the	Oracle	JDBC	(in
which	case	specify	*ORACLE).	This	will	tell	the	SQLService	what	style	of
JDBC	driver	it	should	be	prepared	for.
RETURN
Stored	procedures	are	able	to	specify	a	return	value.	This	is	something	different
to	returning	a	result	set.	A	result	set	is	a	list	of	one	or	more	records	or	values
returned	from	a	query.	Whereas	a	return	value	is	a	single	value	that	a	stored
procedure	returns	upon	completion.	Typical	stored	procedure	syntax	will	have	a
"RETURN"	or	similar	command	(according	to	the	target	database	syntax)	and
associated	field	name	as	one	of	the	last	commands	executed	by	the	stored
procedure.	This	value	could	be	anything,	but	some	common	examples	might	be
a	field	containing	the	number	of	records	selected	or	updated,	or	the	maximum
value,	or	some	flag.
This	RETURN	keyword	allows	you	to	indicate	the	datatype	for	the	returned
value.	The	datatypes	possible	will	depend	upon	what	your	target	database	and
JDBC	driver	can	support.	The	IBM	i,	as	an	example,	only	currently	support	a
datatype	of	integer	for	values	returned	from	a	stored	procedure.	It	is	ultimately
your	responsibility	to	be	aware	of	the	datatypes	that	your	target	database	and
JDBC	driver	can	handle.
Please	refer	to	the	Notes	on	Oracle	if	you	are	using	this	SQLService	with	an
Oracle	database.
Notes	on	Oracle
The	Oracle	database	does	not	fully	support	the	JDBC	syntax	when	used	to
return	a	value	from	a	database	function.	It	will	only	work	with	Oracle	syntax.
This	is	why	you	need	to	specify	the	CALLSYNTAX	as	*ORACLE,	so	that	the
SQLService	knows	what	to	expect	and	how	to	handle	it.
Oracle	has	two	types	of	callable	programs.	One	is	a	stored	procedure	and	the
other	is	a	function.	A	stored	procedure	cannot	return	a	value,	so	you	must	use	a
function	if	you	want	to	return	one.
The	Oracle	JDBC	driver	and	the	Oracle	database	do	not	support	the	Java	JDBC
"ResultSet	resultSet	=	call.executeQuery	()"	method.	For	Oracle	to	return	a
result	set	to	a	JDBC	client,	an	Oracle	function	needs	to	be	created	that	returns
an	Oracle	cursor	and	the	JDBC	call.execute	()	method	needs	to	be	used.	If	your
target	database	is	indeed	Oracle	and	you	are	expecting	a	result	set	to	be	returned
from	the	stored	procedure,	then	you	must	specify	*ORACLECURSOR	as	the
RETURN	value	for	this	EXECUTE	command.	This	will	then	be	used	by	the
SQLService	to	determine	which	records	to	return.	This	explicit	requirement	to

state	that	a	cursor	is	being	returned	is	only	relevant	to	Oracle.	Other	databases
do	not	need	to	use	this	keyword	in	association	with	retrieving	the	result	set.
When	using	this	value	in	your	keyword	your	Oracle	function	will	need	to	have	a
"RETURN	cursorname"	command	so	that	the	cursor	is	returned	to	the
SQLService.
Further	to	this,	the	JDBC	client	needs	to	prepare	the	call	using	Oracle	syntax
and	not	the	industry	standard	JDBC	syntax.
An	example	of	an	Oracle	function	is	provided	in	Examples	following.
Handling	Parameters	Using	the	SET	PARAMETER(*LIST)	Command
If	you	are	running	an	EXECUTE	command	in	conjunction	with	a	SET
PARAMETER(*LIST)	command	then	a	list	of	the	data	is	being	passed	to	the
remote	database	along	with	the	SQL	statement.	When	taking	this	approach	your
SQL	statement	will	need	to	include	a	'?'	for	each	value	that	needs	to	be	inserted
into	the	command.	These	are	referred	to	as	parameter	binding	positions.
Essentially,	the	first	column	in	the	list	will	be	placed	where	the	first	'?'	is,	the
second	column	will	be	placed	where	the	second	'?'	is	and	so	forth.	The	code
examples	provide	some	good	examples	of	how	this	works.
Notes	on	SQL	Syntax
Please	also	note	that	the	syntax	that	you	use	will	be	relevant	to	the	your	target
database,	so	you	will	need	to	know	the	syntax	for	the	JDBC	driver	that	you	are
using.
You	will	need	to	place	quotes	around	string	values	inside	your	SQL	statements.
For	example:

	EXECUTE	UPDATE(UPDATE	TABLE	SET	COL1='value')
	EXECUTE	UPDATE(DELETE	FROM	TABLE	WHERE	COL1='value')

If	your	SQL	statement	contains	open	or	closed	brackets,	you	will	need	to
include	double	quotes	around	the	entire	statement.	For	example:

	EXECUTE	PREPARED("INSERT	INTO	TABLE	(COL1,COL2,COL3)	VALUES(?,?,?)")
Lists	and	Variables
If	you	are	using	one	of	the	following	-	the	QUERY	keyword,	the	PREPARED
keyword	where	the	SQL	statement	is	a	SELECT,	or	a	CALL	keyword	with	a
CALLTYPE	of	*QUERY,	then	you	may	supply	a	working	list	with	this
command	for	the	result	set	to	be	returned	back	to.
This	working	list	will	contain	the	fields	that	you	are	expecting	to	be	returned
from	the	query.	The	list	will	be	filled	in	field	sequence	order.	The	select

statement	may	actually	return	more	fields	than	are	indicated	in	this	list,	but	there
cannot	be	more	list	fields	than	columns	returned.	The	column	value	is	received
from	the	result	set	using	the	resultSet.getString	(column	index)	method.	The	list
entry	field	is	set	with	this	string	value	and	Java	data	type	to	native	data	type
conversion	is	done.
If	you	are	expecting	very	large	lists	to	be	returned	then	you	may	omit	this
working	list	and	access	the	result	set	using	the	READ	command.
The	UPDATE	keyword	will	not	return	a	result	set	so	a	working	list	need	not	be
supplied	in	this	situation.
A	CALL	of	CALLTYPE	*UPDATE	will	return	a	row	count	(number	of	records
updated)	so	a	one	column	list	may	be	supplied	to	capture	this	value.
If	you	need	to	pass	parameters	to	a	called	procedure	(using	the	CALL
command),	you	will	need	to	supply	a	working	list	with	the	parameters	in	it.	This
working	list	will	have	as	many	columns	as	parameters	you	need	to	pass.	Only
the	first	row	of	the	working	list	will	be	used.	The	list	will	need	to	be	prepared
using	the	SET	PARAMETER(*LIST)	command.
Refer	to	the	following	examples	and	the	SQLService	Examples	to	see	how	this
works.	For	information	on	how	to	supply	a	working	list	to	service	commands
from	RDML,	RDMLX	or	3GL	applications,	refer	to	Java	Service	Manager
Clients.
Examples
The	SET,	EXECUTE,	and	READ	commands	of	the	SQLService	service	are
very	tightly	related	to	each	other.	As	such,	you	are	recommended	to	review	the
more	extensive	examples	in	SQLService	Examples.
RDML
	
*	Define	the	JSM	command	and	message	fields
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
*	Define	the	fields	and	list	that	will	contains	the	result	set	returned	from	the	query
DEFINE	FIELD(#COL1)	TYPE(*CHAR)	LENGTH(010)
DEFINE	FIELD(#COL2)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#COL3)	TYPE(*DEC)	LENGTH(008)	DECIMALS(0)
DEF_LIST	NAME(#WRKLST)	FIELDS(#COL1	#COL2	#COL3)	TYPE(*WORKING)
	

*	Define	the	field	and	list	that	will	be	passed	to	the	remote	procedure	to	indicate	what	values	to	query
DEFINE	FIELD(#PARAM1)	TYPE(*CHAR)	LENGTH(010)
DEF_LIST	NAME(#PARAMLST)	FIELDS(#PARAM1)	TYPE(*WORKING)
CHANGE	FIELD(#PARAM1)	TO(A1001)
ADD_ENTRY	TO_LIST(#PARAMLST)
	
*	Set	up	the	list	so	that	it	is	passed	to	the	remote	procedure	when	the	EXECUTE	is	run
CHANGE	FIELD(#JSMCMD)	TO('SET	PARAMETER(*LIST)	SERVICE_LIST(PARAM1)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#PARAMLST)
	
*	Call	procedure
CHANGE	FIELD(#JSMCMD)	TO('EXECUTE	CALL("CALLSELECT(?)")	CALLTYPE(*QUERY)	SERVICE_LIST(COL1,COL2,COL3)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKLST)
	

RDMLX
	
*	Define	the	JSM	command	and	message	fields
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMCMD)	Type(*CHAR)	Length(256)
Define	Field(#JSMHND)	Type(*Char)	Length(4)
	
*	Define	the	fields	and	list	that	will	contains	the	result	set	returned	from	the	query
Define	Field(#COL1)	Type(*CHAR)	Length(010)
Define	Field(#COL2)	Type(*CHAR)	Length(020)
Define	Field(#COL3)	Type(*DEC)	Length(008)	Decimals(0)
Def_List	Name(#WRKLST)	Fields(#COL1	#COL2	#COL3)	Type(*WORKING)
	
*	Define	the	field	and	list	that	will	be	passed	to	the	remote	procedure	to	indicate	what	values	to	query
Define	Field(#PARAM1)	Type(*CHAR)	Length(010)
Def_List	Name(#PARAMLST)	Fields(#PARAM1)	Type(*WORKING)
#PARAM1	:=	A1001
Add_Entry	To_List(#PARAMLST)
	
*	Set	up	the	list	so	that	it	is	passed	to	the	remote	procedure	when	the	EXECUTE	is	run
#JSMCMD	:=	'Set	Parameter(*LIST)	Service_List(PARAM1)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#PARAMLST)
	

*	Call	procedure
#JSMCMD	:=	'Execute("CallSelect(?)")	CallType(*QUERY)	Service_List(COL1,COL2,COL3)'
Use	Builtin	(JSM_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#WRKLST)
	

IBM	i	Examples	of	Stored	Procedures:
To	create	a	stored	procedure	for	an	IBM	i	database	you	need	to	edit	a	source
member	and	use	a	member	type	of	TXT.
The	following	are	some	examples	of	three	IBM	i	stored	procedures.	You	will
notice	that	the	first	line	specifies	the	name	of	the	stored	procedure.	So,	for
example,	the	first	one	is	called	CALLSELECT	and	its	location	is	the	JSMJDBC
library.	The	second	and	third	examples	demonstrate	how	a	value	is	returned.
Detailed	instructions	on	creating	stored	procedures	is	beyond	the	scope	of	this
documentation.	You	are	therefore	encouraged	to	research	this	topic	in	more
detail.	A	good	place	to	start	is	the	IBM	Infocentre	and	Redbooks,	both	on	the
IBM	web	site	as	they	have	a	wealth	of	information	on	this	topic.
	
***************	Beginning	of	data	*************************************
CREATE	PROCEDURE	JSMJDBC/CALLSELECT(IN	CODE	CHAR	(10))
LANGUAGE	SQL
READS	SQL	DATA
RESULT	SETS	1
	
BEGIN
DECLARE	SQLCODE	INTEGER	DEFAULT	0;
DECLARE	SQLSTATE	CHAR(5)	DEFAULT	'00000';
	
DECLARE	C1	CURSOR	WITH	RETURN	TO	CLIENT	FOR
	
SELECT	ID,NAME,AGE	FROM	JSMJDBC/TBLNAME	WHERE	ID	=	CODE;
	
OPEN	C1;
	
END
******************	End	of	data	**
	
***************	Beginning	of	data	*************************************
CREATE	PROCEDURE	JSMJDBC/CALLUPDATE(IN	CODE	CHAR	(10))

LANGUAGE	SQL
MODIFIES	SQL	DATA
	
BEGIN
DECLARE	SQLCODE	INTEGER	DEFAULT	0;
DECLARE	SQLSTATE	CHAR(5)	DEFAULT	'00000';
DECLARE	num_records	INTEGER;
	
UPDATE	JSMJDBC/TBLNAME	SET	SALARY=12000.43	WHERE	ID	=	CODE;
	
GET	DIAGNOSTICS	num_records	=	ROW_COUNT;
	
RETURN	num_records;
	
END
******************	End	of	data	**
	
***************	Beginning	of	data	*************************************
CREATE	PROCEDURE	JSMJDBC/CALLEXECUT(IN	CODE	CHAR	(10))
LANGUAGE	SQL
MODIFIES	SQL	DATA
	
BEGIN
DECLARE	SQLCODE	INTEGER	DEFAULT	0;
DECLARE	SQLSTATE	CHAR(5)	DEFAULT	'00000';
DECLARE	num_flag	INTEGER	DEFAULT	0;
	
UPDATE	JSMJDBC/TBLNAME	SET	SALARY=16000.26	WHERE	ID	=	CODE;
	
RETURN	num_flag;
	
END
******************	End	of	data	**
	

To	create	the	stored	procedures	you	then	need	to	use	the	RUNSQLSTM
command.	For	example:
	
RUNSQLSTM	SRCFILE(JSMJDBC/QCLSRC)	SRCMBR(CALLSELECT)	COMMIT(*NONE)

	
When	it	comes	to	running	these	stored	procedures	with	the	SQLService	you	can
use	something	like	the	following	EXECUTE	command
	
EXECUTE	CALL("CALLSELECT(?)")	CALLTYPE(*QUERY)
	
EXECUTE	CALL("CALLUPDATE(?)")	CALLTYPE(*UPDATE)	RETURN(*INTEGER)
	
EXECUTE	CALL("CALLEXECUT(?)")	CALLTYPE(*EXECUTE)	RETURN(*INTEGER)
	

Oracle	Example	of	a	Database	Function:
The	following	is	an	example	of	an	Oracle	database	function	that	is	creating	a
result	set.	As	such,	note	that	it	is	returning	a	cursor.
Detailed	instructions	on	creating	stored	procedures	is	beyond	the	scope	of	this
documentation.	You	are	therefore	encouraged	to	research	this	topic	in	more
detail	via	other	channels.
	
CREATE	OR	REPLACE	FUNCTION	"SYSTEM"."TEST"	(PARAM1	IN	CHAR,	PARAM2	IN	CHAR)	RETURN	SYS_REFCURSOR	AS	CURSOR_1	SYS_REFCURSOR	;
BEGIN
OPEN	CURSOR_1	FOR	SELECT	*	FROM	MYTABLE	WHERE	FLD_1='AB';
RETURN	CURSOR_1	;
END;
	

When	it	comes	to	running	this	function	with	the	SQLService	you	can	use
something	like	the	following	EXECUTE	command
	
EXECUTE	CALL("TEST(?,?)")	CALLTYPE(*EXECUTE)	CALLSYNTAX(*ORACLE)	RETURN(*ORACLECURSOR)	SERVICE_LIST(COL1,COL2)
	

	

READ
The	READ	command	is	used	to	read	a	result	set	returned	by	the	SQL	statement
specified	in	the	EXECUTE	command.	It	uses	the	optional	COLUMN_LIST
keyword	values	or	the	field	and	column	mapping	supplied	by	the	SET
PARAMETER(*MAP)	command.
If	the	EXECUTE	command	does	not	have	a	working	list	to	receive	the	result	list
into,	then	it	will	remain	on	the	server	until	accessed	by	a	READ	command.
You	should	use	the	READ	command	when	the	number	of	expected	records	will
exceed	the	size	or	width	of	a	working	list.	The	READ	command	enables	you	to
reduce	the	number	of	records	brought	down	from	the	server	at	any	one	time.	If
the	SQL	result	is	going	to	return	20,000	records,	for	example,	it	would	be	better
to	read	them	into	sets	of	1,000,	reducing	the	amount	of	resources	being
allocated.
As	another	example,	the	maximum	width	of	an	RDML	working	list	is	256
characters.	If	you	are	expecting	a	result	set	of	300	characters	in	width	then	you
could	not	return	this	into	a	working	list	as	a	part	of	the	EXECUTE	command.	In
this	case	you	would	use	the	READ	command	to	retrieve	the	records	in
manageable	chunks.	If	need	be,	you	could	issue	multiple	READs	and	place
them	results	into	lists	of	less	than	256	characters	in	width.
	
	READ	------------	SCROLL	----------	*YES	---------------------->
																																					*NO
	
															>--	COLUMN_LIST	-----	value	---------------------|
	
Keywords
SCROLL This	keyword	is	used	to	specify	whether	new	rows	or	the

old	rows	are	selected	for	the	next	read.
There	are	two	options:
*YES	-	this	will	fill	the	list	argument	with	data	then
scroll	forward
*NO	-	this	will	fill	the	list	argument	with	data	then	not
scroll	forward

Refer	to	Comments	/	Warnings	for	further	information	on
this.

The	default	value	is	*YES.

COLUMN_LIST A	comma	separated	list	of	columns	that	exist	in	the	result
set.
The	sequence	of	the	columns	must	match	the	fields	in	the
working	list.

Comments	/	Warnings
The	READ	command	reads	the	current	result	set	using	the	field	and	column
mapping	supplied	by	the	SET	PARAMETER	(*MAP)	command.	Working	list
fields	are	mapped	to	columns	and	data	for	these	columns	are	mapped	to	the
working	list	fields.
As	mentioned	above	the	power	of	this	READ	command	is	its	ability	to	enable
you	to	access	information	in	more	manageable	chunks.	The	SCROLL	keyword
enables	you	to	decide	whether	your	subsequent	READ	will	be	retrieving	new
columns	for	the	same	records	as	this	current	read,	or	columns	from	the	next	set
of	records.	That	is,	if	you	select:

*YES	-	it	will	select	the	columns	specified	in	the	READ,	then	scroll
forward	so	that	you	next	read	will	be	retrieving	columns	from	a
completely	new	set	of	records
*NO	-	it	will	select	the	columns	in	the	READ,	and	not	scroll	forward	so
that	your	next	READ	may	select	new	columns	from	the	same	rows.

The	number	of	records	it	scrolls	forward	will	be	that	number	defined	as	the
number	of	entries	in	your	working	list.
Lists	and	Variables
This	command	will	need	to	supply	a	working	list	to	which	the	retrieved	values
are	returned.	The	columns	defined	in	the	working	list	will	be	those	that	you	are
wish	to	retrieve	for	this	particular	READ.	The	relationship	between	these	fields
and	the	actual	fields	in	the	remote	table	will	have	been	set	up	in	the	SET
PARAMETER(*MAP)	command.
Refer	to	the	following	examples	and	the	SQLService	Examples	to	see	how	this
works.	For	information	on	how	to	supply	a	working	list	to	service	commands
from	RDML,	RDMLX	or	3GL	applications,	refer	to	Java	Service	Manager
Clients.
Examples
The	SET,	EXECUTE,	and	READ	commands	of	the	SQLService	service	are
very	tightly	related	to	each	other.	As	such,	you	are	recommended	to	review	the

more	extensive	examples	in	the	SQLService	Examples.
RDML
	
*	Define	the	JSM	command	and	message	fields
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
*	Define	the	fields	and	the	list	that	will	be	used	to	indicate	the	field/column	mappings
DEFINE	FIELD(#FIELD)	TYPE(*CHAR)	LENGTH(010)
DEFINE	FIELD(#COLUMN)	TYPE(*CHAR)	LENGTH(030)
DEF_LIST	NAME(#MAPLST)	FIELDS(#FIELD	#COLUMN)	TYPE(*WORKING)
	
*	Define	the	fields	and	the	lists	that	the	queried	data	will	be	returned	back	into
DEFINE	FIELD(#COL1)	TYPE(*CHAR)	LENGTH(010)
DEFINE	FIELD(#COL2)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#COL3)	TYPE(*DEC)	LENGTH(008)	DECIMALS(0)
DEFINE	FIELD(#COL4)	TYPE(*DEC)	LENGTH(012)	DECIMALS(2)
DEF_LIST	NAME(#WRKLST1)	FIELDS(#COL1	#COL3)	TYPE(*WORKING)
DEF_LIST	NAME(#WRKLST2)	FIELDS(#COL1	#COL2	#COL4)	TYPE(*WORKING)
	
*	Define	the	mapping
CHANGE	FIELD(#FIELD)	TO(COL1)
CHANGE	FIELD(#COLUMN)	TO(ID)
ADD_ENTRY	TO_LIST(#MAPLST)
CHANGE	FIELD(#FIELD)	TO(COL2)
CHANGE	FIELD(#COLUMN)	TO(NAME)
ADD_ENTRY	TO_LIST(#MAPLST)
CHANGE	FIELD(#FIELD)	TO(COL3)
CHANGE	FIELD(#COLUMN)	TO(AGE)
ADD_ENTRY	TO_LIST(#MAPLST)
CHANGE	FIELD(#FIELD)	TO(COL4)
CHANGE	FIELD(#COLUMN)	TO(SALARY)
ADD_ENTRY	TO_LIST(#MAPLST)
	
CHANGE	FIELD(#JSMCMD)	TO('SET	PARAMETER(*MAP)	SERVICE_LIST(FIELD,COLUMN)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#MAPLST)
	

CHANGE	FIELD(#JSMCMD)	TO('EXECUTE	QUERY(SELECT	ID,NAME,AGE,SALARY	FROM	TBLNAME)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('READ	SERVICE_LIST(COL1,COL3)	SCROLL(*NO)')	TO_GET(#JSMSTS	#JSMMSG	#WRKLST1)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('READ	SERVICE_LIST(COL1,COL2,COL4)')	TO_GET(#JSMSTS	#JSMMSG	#WRKLST2)
	

RDMLX
	
*	Define	the	JSM	command	and	message	fields
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMCMD)	Type(*CHAR)	Length(256)
Define	Field(#JSMHND)	Type(*Char)	Length(4)
	
*	Define	the	fields	and	the	list	that	will	be	used	to	indicate	the	field/column	mappings
Define	Field(#FIELD)	Type(*Char)	Length(010)
Define	Field(#COLUMN)	Type(*Char)	Length(030)
Def_List	Name(#MAPLST)	Fields(#FIELD	#COLUMN)	Type(*Working)
	
*	Define	the	fields	and	the	lists	that	the	queried	data	will	be	returned	back	into
Define	Field(#COL1)	Type(*Char)	Length(010)
Define	Field(#COL2)	Type(*Char)	Length(020)
Define	Field(#COL3)	Type(*Dec)	Length(008)	Decimals(0)
Define	Field(#COL4)	Type(*Dec)	Length(012)	Decimals(2)
Def_List	Name(#WRKLST1)	Fields(#COL1	#COL3)	Type(*Working)
Def_List	Name(#WRKLST2)	Fields(#COL1	#COL2	#COL4)	Type(*Working)
	
*	Define	the	mapping
#FIELD	:=	COL1
#COLUMN	:=	ID
Add_Entry	To_List(#MAPLST)
#FIELD	:=	COL2
#COLUMN	:=	NAME
Add_Entry	To_List(#MAPLST)
#FIELD	:=	COL3
#COLUMN	:=	AGE
Add_Entry	To_List(#MAPLST)

#FIELD	:=	COL4
#COLUMN	:=	SALARY
Add_Entry	To_List(#MAPLST)
	
#JSMCMD	:=	'Set	Parameter(*Map)	Service_List(FIELD,COLUMN)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#MAPLST)
	
*	Run	the	Query
#JSMCMD	:=	'Execute	Query(Select	ID,NAME,AGE,SALARY	From	TBLNAME)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
	
*	Read	the	columns	1	&	3	(which	hold	ID	and	AGE)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	'Read	Service_List(COL1,COL3)	Scroll(*NO)')	To_Get(#JSMSTS	#JSMMSG	#WRKLST1)
	
*	Read	the	columns	1,	2,	&	4	(which	hold	ID,	NAME,	and	SALARY)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	'Read	Service_List(COL1,COL2,COL4)	Scroll(*NO)')	To_get(#JSMSTS	#JSMMSG	#WRKLST2)
	

COMMIT
The	COMMIT	command	is	used	to	commit	an	SQL	transaction.
	
	COMMIT	-------------	no	keywords	------------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Comments	/	Warnings
It	is	your	responsibility	to	ensure	that	commitment	control	has	been	started	and
configured	if	you	are	using	an	IBM	i.	If	it	is	not,	then	an	error	will	occur.
Examples
RDML
	
*	Define	the	JSM	message	fields
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(COMMIT)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMHND)	Type(*Char)	Length(4)
	
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	Commit)	To_Get(#JSMSTS	#JSMMSG)
	

ROLLBACK
The	ROLLBACK	command	is	used	to	rollback	an	SQL	transaction.
	
	ROLLBACK	-------------	no	keywords	----------------------------|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Comments	/	Warnings
It	is	your	responsibility	to	ensure	that	commitment	control	has	been	started	and
configured	if	you	are	using	an	IBM	i.	If	it	is	not,	then	an	error	will	occur.
Examples
RDML
	
*	Define	the	JSM	message	fields
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(ROLLBACK)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMHND)	Type(*Char)	Length(4)
	
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	RollBack)	To_Get(#JSMSTS	#JSMMSG)
	

METADATA
The	METADATA	command	is	used	to	access	the	database	table	column	name,
column	type,	column	precision	and	column	scale	information.
	
	METADATA	--------	TABLE	-----------	value	---------------------|
	
Keywords
TABLE This	keyword	is	used	to	indicate	the	table	you	want	to	retrieve	the

metadata	for.
This	keyword	is	mandatory.

Lists	and	Variables
This	command	requires	a	working	list	to	return	the	table	metadata	back	to.	This
working	list	should	be	made	available	in	the	TO_GET	portion	of	this
JSM_COMMAND.	The	working	list	will	require	4	fields:

The	first	field	will	hold	the	column	name.
The	second	field	will	hold	the	column	type.
The	third	field	will	hold	the	column	precision.
The	fourth	field	will	hold	the	column	scale.

You	may	size	the	fields	to	fit	the	information	you	are	expecting	back	from	the
remote	database.	Different	databases	may	have	different	lengths	and	types	for
this	information.
Examples
RDML
	
*	Define	the	JSM	command	and	message	fields
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(256)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(256)
	
Define	the	fields	and	list	that	meta	data	will	be	returned	back	into
DEFINE	FIELD(#COLNAME)	TYPE(*CHAR)	LENGTH(030)
DEFINE	FIELD(#COLTYPE)	TYPE(*CHAR)	LENGTH(030)
DEFINE	FIELD(#COLPRCSN)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)

DEFINE	FIELD(#COLSCALE)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)
	
DEF_LIST	NAME(#WRKLST)	FIELDS(#COLNAME	#COLTYPE	#COLPRCSN	#COLSCALE)	TYPE(*WORKING)
	
Prepare	and	execute	the	command
CHANGE	FIELD(#JSMCMD)	TO('METADATA	TABLE(TBLNAME)	SERVICE_LIST(COLNAME,COLTYPE,COLPRCSN,COLSCALE)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKLST)
	

RDMLX
	
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(256)
Define	Field(#JSMCMD)	Type(*CHAR)	Length(256)
Define	Field(#JSMHND)	Type(*Char)	Length(4)
	
Define	the	fields	and	list	that	meta	data	will	be	returned	back	into
Define	Field(#COLNAME)	Type(*CHAR)	Length(030)
Define	Field(#COLTYPE)	Type(*CHAR)	Length(030)
Define	Field(#COLPRCSN)	Type(*DEC)	Length(003)	DECIMALS(0)
Define	Field(#COLSCALE)	Type(*DEC)	Length(003)	DECIMALS(0)
	
Def_List	Name(#WRKLST)	Fields(#COLNAME	#COLTYPE	#COLPRCSN	#COLSCALE)	Type(*WORKING)
	
Prepare	and	execute	the	command
#JSMCMD	:=	'Metadata	Table(TBLNAME)	Service_List(COLNAME,COLTYPE,COLPRCSN,COLSCALE)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
	

DISCONNECT
The	DISCONNECT	keyword	is	used	to	disconnect	from	the	current	connected
database.
	
	DISCONNECT	-------------	no	keywords	--------------------------|
	
Keywords
This	command	has	no	keywords.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('DISCONNECT')	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	'disconnect')	to_get(#jsmxsts	#jsmxmsg)
	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service	and	removes	the
temporary	directory.
	
	SERVICE_UNLOAD	---------	no	keywords	--------------------------
|
	
Keywords
There	are	no	keywords	associated	with	this	command.
Examples
RDML
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(SERVICE_UNLOAD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX
	
use	builtin(jsmx_command)	with_args(#jsmxhdle1	service_unload)	to_get(#jsmxsts	#jsmxmsg)
	

5.38.5	SQLService	Examples
To	help	clarify	the	use	of	the	SQLService	in	RDML,	particularly	the	different
options	in	the	SET	PARAMETER	(value),	the	EXECUTE	and	the	READ
commands,	three	RDML	examples	have	been	provided.
RDML
RDMLX

5.39	BASE64FileService
Service	Name:	BASE64FileService
The	BASE64FileService	allows	files	to	be	encoded	to	BASE64	format	and
decoded	from	BASE64	format.
The	BASE64FileService	supports	the	following	commands:
5.39.1	SERVICE_LOAD
5.39.2	SERVICE_GET
5.39.3	ENCODE
5.39.4	DECODE
5.39.5	DELETE
5.39.6	RENAME
5.39.7	SET
5.39.8	LIST
5.39.9	SERVICE_UNLOAD
	

5.39.1	SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

5.39.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.39.3	ENCODE
The	ENCODE	command	will	BASE64	encode	the	contents	of	specified	FROM
file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

ENCODE FROM value Mandatory.	File	Path.

TO value Mandatory.	File	Path.

FOLD *YES Optional.	Add	CRLF	every	76	characters.

*NO Default.

REPLACE *YES Optional.	Replace	existing	file.

*NO Default.

	

	

5.39.4	DECODE
The	DECODE	command	will	BASE64	decode	the	contents	of	the	specified
FROM	file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

DECODE FROM value Mandatory.	File	Path.

TO value Mandatory.	File	Path.

REPLACE *YES Optional.	Replace	existing	file.

*NO Default.

	

	

5.39.5	DELETE
The	DELETE	command	deletes	the	specified	file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

DELETE FILE value Mandatory.	File	Path.

	

	

5.39.6	RENAME
The	RENAME	command	renames	the	specified	local	file	to	a	new	name.	The
TO	file	must	be	in	the	same	directory	as	the	original,	FROM	file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RENAME FROM value Mandatory.	Old	file	name.

TO value Mandatory.	New	file	name.

REPLACE *YES Optional.	Replace	file.

*NO Do	not	replace	file.
The	default	value	of	the	REPLACE	keyword
is	*NO.
If	the	TO	filename	exists,	then	the	rename
process	is	stopped,	unless	the	REPLACE
keyword	is	*YES.

	

	

5.39.7	SET
The	SET	command	sets	the	current	working	directory.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET DIR value Mandatory.	Directory.

	

	

5.39.8	LIST
The	LIST	command	will	fill	the	command's	list	object	with	absolute	file	names.
A	single	field	working	list	is	required	to	receive	the	canonical	file	paths.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

LIST DIR value Optional.	Fill	working	list	with
directory	listing.	All	files	in	that
directory	will	be	selected.

EXT value Optional.	Filtering	on	file	extension.
The	filtering	match	is	case
insensitive.

SORT *NONE Optional.	Allows	sorting	of	file
names.
Default.	No	sorting

*NAME Sort	on	file	name.

*MODIFIED Sort	on	modified	date.

REVERSE *YES Optional.	Reverse	the	order	of	the
sort.

*NO Default.

	

If	a	directory	path	specified	by	the	DIR	keyword	is	used	then	filenames	in	that
directory	will	be	selected.
Example
LIST	DIR(/document)	EXT(PDF)	SERVICE_LIST(PATH)
	

This	will	return	a	list	of	filenames	in	the	/document	directory	that	have	a	PDF
extension.

5.39.9	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

5.40	PGPFileService
Service	Name:	PGPFileService
The	PGPFileService	allows	files	to	be	encoded	to	PGP	format	and	decoded
from	PGP	format.
Use	any	OpenPGP	tool	to	create	and	manage	for	keys.
https://www.gnupg.org
The	GNU	gpg2	command-line	tool	allows	you	to	create	and	manage	keys	on
your	PC.
http://www.gpg4win.org
The	gpg2	tool	maintains	the	public	and	secret	key	collection	files	in	the
following	folder.
C:\Users\XXX\AppData\Roaming\gnupg\pubring.gpg
C:\Users\XXX\AppData\Roaming\gnupg\secring.gpg
These	collection	files,	pubring.gpg	and	secring.gpg	need	to	be	copied	to	the	LI
instance	pki/	folder.
The	PGPFileService	will	use	these	files	for	locating	recipient	public	keys	for
encryption	and	the	secret	key	for	decryption.
	
The	PGPFileService	supports	the	following	commands:
5.40.1	SERVICE_LOAD
5.40.2	SERVICE_GET
5.40.3	ENCODE
5.40.4	DECODE
5.40.5	DELETE
5.40.6	RENAME
5.40.7	SET
5.40.8	LIST
5.40.9	SERVICE_UNLOAD
	

https://www.gnupg.org
http://www.gpg4win.org

5.40.1	SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

5.40.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.40.3	ENCODE
The	ENCODE	command	will	PGP	encode	the	contents	of	specified	FROM	file.
When	encrypting	a	single	column	working	list	is	required	to	supply	the	list	of
recipients.
The	recipient	name	can	be	either	a	partial	userID	or	the	keyID	of	the	recipient's
public	key.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

ENCODE FROM value Mandatory.	File	Path.

TO value Mandatory.	File	Path.

REPLACE *YES Optional.	Replace	existing	file.

*NO Default.

NAME value Optional.	Literal	data	name.

*TOFILE Use	TO	file	name.

*FROMFILE Use	FROM	file	name.

*CONSOLE Default.

CIPHER *NONE Optional.	Encryption	cipher.

*DES 	

*3DES 	

*IDEA 	

*CAST5 Default.

*SAFER 	

*AES-128 	

*AES-192 	

*AES-256 	

*TWOFISH 	

*BLOWFISH 	

SIGNER value The	signer	value	is	comprised	of	two
parts,	the	name	and	password	in	the
format	name:password.	The	name
can	be	the	keyID	or	the	partial	userID
of	the	secret	key.

	

	

5.40.4	DECODE
The	DECODE	command	will	PGP	decode	the	contents	of	the	specified	FROM
file.
The	JSM	response	message	could	contain	additional	information	about	whether
the	a	signature	verification	or	integrity	verification	have	failed.
The	JSM	response	message	could	contain	none	or	one	of	the	following	values.
SIGNATURE_FAILED
INTEGRITY_FAILED
SIGNATURE_VERIFIED
INTEGRITY_VERIFIED
SIGNATURE_FAILED,INTEGRITY_FAILED
SIGNATURE_FAILED,INTEGRITY_VERIFIED
SIGNATURE_VERIFIED,INTEGRITY_FAILED
SIGNATURE_VERIFIED,INTEGRITY_VERIFIED
	
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

DECODE FROM value Mandatory.	File	Path.

TO value Mandatory.	File	Path.

REPLACE *YES Optional.	Replace	existing	file.

*NO Default.

PASSWORD value The	password	to	extract	the	private	key
from	the	secret	key.	The	secret	key	is
automatically	selected	using	the	recipient
public	keys	within	the	encrypted	message.

	

	

5.40.5	DELETE
The	DELETE	command	deletes	the	specified	file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

DELETE FILE value Mandatory.	File	Path.

	

	

5.40.6	RENAME
The	RENAME	command	renames	the	specified	local	file	to	a	new	name.	The
TO	file	must	be	in	the	same	directory	as	the	original,	FROM	file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RENAME FROM value Mandatory.	Old	file	name.

TO value Mandatory.	New	file	name.

REPLACE *YES Optional.	Replace	file.

*NO Do	not	replace	file.
The	default	value	of	the	REPLACE	keyword
is	*NO.
If	the	TO	filename	exists,	then	the	rename
process	is	stopped,	unless	the	REPLACE
keyword	is	*YES.

	

	

5.40.7	SET
The	SET	command	sets	the	current	working	directory.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET DIR value Mandatory.	Directory.

	

	

5.40.8	LIST
The	LIST	command	will	fill	the	command's	list	object	with	absolute	file	names.
A	single	field	working	list	is	required	to	receive	the	canonical	file	paths.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

LIST DIR value Optional.	Fill	working	list	with
directory	listing.	All	files	in	that
directory	will	be	selected.

EXT value Optional.	Filtering	on	file	extension.
The	filtering	match	is	case
insensitive.

SORT *NONE Optional.	Allows	sorting	of	file
names.
Default.	No	sorting

*NAME Sort	on	file	name.

*MODIFIED Sort	on	modified	date.

REVERSE *YES Optional.	Reverse	the	order	of	the
sort.

*NO Default.

	

If	a	directory	path	specified	by	the	DIR	keyword	is	used	then	filenames	in	that
directory	will	be	selected.
Example
LIST	DIR(/document)	EXT(PDF)	SERVICE_LIST(PATH)
	

This	will	return	a	list	of	filenames	in	the	/document	directory	that	have	a	PDF
extension.

5.40.9	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

5.41	AxesTerminalService
The	AxesTerminalService	is	designed	to	permit	a	JSM	client	application	to
connect	to	and	interact	with	an	aXes	Terminal	Server	to	navigate,	populate	and
interrogate	IBM	i	5250	screens.	Using	the	AxesTerminalService,	an	application
can	interact	directly	with	existing	IBM	i	5250	applications	running	on	the	same
or	a	different	server	system.	The	application	can	issue	commands	to	perform
such	operations	as:

connect	(and	logon)	and	disconnect	the	5250	session
interrogate	the	values	of	current	screen	identifiers	and	field	values
set	the	values	of	5250	screen	entry	fields
send	function	keys	such	as	ENTER	and	F3
perform	multiple	operations	with	a	single	command	by	using	aXes	terminal
operation	scripts

aXes	is	a	separately	licensed	LANSA	product	that	Web	enables	5250
applications	by	dynamically	transforming	the	5250	data	stream	into	a
graphical	interface	for	display	in	a	Web	browser.
The	AxesTerminalService	interacts	with	aXes	to	allow	your
application	to	drive	the	5250	application	via	the	HTTP	protocol.

In	general,	if	the	existing	5250	application	with	which	you	seek	to	integrate	has
documented,	published	application	program	interfaces	that	provide	the
interaction	you	require,	then	using	those	APIs	is	probably	the	better	option	for
integrating	with	it.
However,	where	that	is	not	the	case,	being	able	to	drive	the	5250	screens	may
provide	an	expedient	means	to	implement	a	level	of	integration	with	the
application	that	may	not	otherwise	be	possible.
Before	implementing	such	a	solution	you	should	understand	its	limitations	and
the	extent	to	which	you	are	prepared	to	accept	them	in	the	pursuit	of
expediency.	Any	application	that	seeks	to	interact	with	another	application	via
its	5250	screens	(by	any	means)	assumes	risks	-	for	example,	the	5250
application's	screens	may	change	or	certain	inputs	provided	may	yield	results
that	were	not	anticipated.	These	risks	may	manifest	themselves	as	unanticipated
and	unhandled	application	failures	and/or	cost	and	difficulty	of	maintaining	the
solution.	Such	manifestations	are	not	the	fault	of	the	tools	(in	this	case	aXes	or
the	AxesTerminalService),	but,	rather,	are	inherent	in	the	nature	of	the	solution.

Notes:	

1.	The	aXes	Terminal	Server	is	a	separately	licensed	product.
Additional	software	license	fees	apply.

2.	A	correctly	installed,	licensed	and	configured	aXes	Terminal	Server
that	is	network-accessible	to	the	JSM	client	application	is	a	necessary
pre-requisite	for	using	the	AxesTerminalService.

3.	The	aXes	Terminal	Server	(and	hence	the	5250	applications)	do	not
have	to	reside	on	the	same	computer	system	that	is	executing	the
AxesTerminalService.	For	example	your	application	may	execute	on	a
Windows	server	and	drive	a	5250	application	on	a	separate	IBM	i
server.

4.	The	AxesTerminalService	is	intended	primarily	for	use	with
LANSA	RDML	or	RDMLX	client	functions	and	components.	If	your
client	is	coded	in	a	3GL	language	on	Windows	or	IBM	i	servers,	aXes
provides	separate	APIs	for	those	languages	that	may	be	a	more
appropriate	solution.

Technical	Specifications
The	AxesTerminalService	works	with	aXes	version	2.1	and	above.

5.41.1	What	can	I	use	the	AxesTerminalService	for?
You	can	use	the	AxesTerminalService	to	allow	your	application	to	interact	with
any	5250	application,	whether	or	not	you	have	source	code	or	specifications	for
the	5250	application.	You	only	need	to	know	how	to	operate	the	application	as	a
5250	terminal	operator	would.
The	following	paragraphs	outline	some	example	scenarios	that	might	make	use
of	the	AxesTerminalService.
To	receive	and	enter	sales	orders	electronically	…
When	your	ERP	application	was	developed	and	implemented,	all	sales	orders
were	received	by	telephone	operators	who	entered	the	details	at	5250	screens.
Now,	many	of	your	customers	wish	to	submit	their	sales	orders	electronically	in
XML	format.	Unfortunately,	details	of	the	internals	of	the	ERP	application	for
the	order	entry	screens	are	not	available.
In	order	to	satisfy	the	customer	requirement	without	replacing	the	ERP
application,	you	can	elect	to	implement	a	program	that	can	read	the	received
sales	order	XML	files	(perhaps	using	LANSA	Integrator's	XMLBindService),
extract	the	details	and	use	the	AxesTerminalService	to	drive	the	5250	screens	of
the	ERP	order	entry	function.

To	provide	a	sales	order	status	enquiry	as	a	web	service	…
In	addition	to	electronic	submission	of	sales	orders,	your	largest	customer	now
demands	that	you	implement	a	web	service	that	enables	them	to	electronically
interrogate	your	system	to	determine	the	current	status	of	their	sales	orders.
Currently,	this	information	is	only	accessible	via	a	5250	screen	enquiry	and	you
have	neither	database	specification	nor	application	program	interfaces	to	enable
you	to	satisfy	this	requirement.
Instead,	you	implement	the	web	service	using	LANSA	Integrator's	SOAP	Server
wizard	and	the	SOAPServerService.	In	your	implementation	code,	you	take
advantage	of	the	AxesTerminalService	to	drive	the	5250	application	such	that
your	program	can	navigate	to	the	order	status	screen	for	the	specified	sales	order
number	and	extract	the	required	details.

5.41.2	Using	the	AxesTerminalService
Whether	you	are	writing	your	client	application	in	RDML	/	RDMLX	or	in	a
3GL	such	as	RPG,	you	have	to	complete	the	same	basic	steps.
For	example,	the	simplest	application	that	connects	to	an	aXes	Terminal	Server
to	fill	one	screen	value	and	send	("enter")	would	typically	issue	the	following
sequence	of	service	commands:
JSM(X)_OPEN
JSM(X)_COMMANDs
					SERVICE_LOAD
										CONNECT
										SETBYNAME
										SEND
										DISCONNECT
					SERVICE_UNLOAD
JSM(X)_CLOSE	

Refer	to	the	Java	Service	Manager	Clients	for	the	command	details	that	apply	to
your	chosen	development	language.
Return	variables
Note	that	the	AxesTerminalService	commands	make	extensive	use	of	client
program	variables	named	in	command	keywords	to	return	variable	information
to	the	client	program.	Such	command	keywords	have	names	beginning	with
'RTN'.
For	example,	to	retrieve	the	value	of	a	field	on	the	current	5250	screen	by
reference	to	its	screen	row	and	column	numbers	and	place	the	result	in	the	client
program	variable	named	MYVALUE,	a	LANSA	RDMLX	client	application
might	contain	code	like	this:
	
define	field(#myvalue)	reffld(#std_text)

#jsmcommand	:=	'getbypos	row(10)	col(44)	rtnvalue(MYVALUE)	SERVICE_EXCHANGE(*FIELD)'

use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcommand)	to_get(#jsmstatus	#jsmmessage)

if	(#myvalue	=	'XYZ')

...

endif
	

In	this	example,	the	presence	of	SERVICE_EXCHANGE(*FIELD)	in	the	JSM
service	command	string	is	essential	in	order	to	exchange	the	program's	variables
with	the	service	and	permits	the	service	to	address	the	variables	to	return	the
requested	values.
If	you	omit	the	SERVICE_EXCHANGE(*FIELD)	from	the	JSM	command,	the
service	will	not	have	access	to	the	named	variable	and	the	program	will	not
receive	the	value.

Notes:

1.	Where	necessary,	SERVICE_EXCHANGE(*FIELD)	must	be
specified	in	uppercase	exactly	as	shown.

2.	This	is	a	simplified	description.	There	are	other	means	to
accomplish	the	exchange	of	program	variables	between	the	client
application	and	the	JSM	service.

5.41.3	AxesTerminalService	Scripts
The	AxesTerminalService	provides	service	commands	that	permit	your	client
application	to	interact	with	your	5250	application	via	aXes	in	virtually	any	way
necessary.
However,	most	of	the	service	commands	perform	a	single	operation	amongst
several	or	many	that	may	be	necessary	to	complete	just	one	screen	interaction.
For	example,	the	SETBYNAME	or	SETBYPOS	service	commands	let	you	set
the	value	in	a	5250	screen	entry	field,	but	only	a	single	field	for	each	execution.
This	level	of	interface	provides	the	most	flexibility	to	your	application.	At	each
and	every	operation,	your	program	remains	in	control,	and	can	branch	to
different	execution	paths	based	on	the	outcome	of	every	screen	interaction.
On	the	other	hand,	however,	if	every	aXes	terminal	operation	was	to	be
executed	this	way,	the	amount	and	complexity	of	the	code	in	your	application
may	become	excessive	in	a	non-trivial	implementation.	In	addition,	the	number
of	JSM	commands	that	your	application	needs	to	execute	may	begin	to
adversely	affect	the	performance	of	your	solution.
To	enable	you	to	choose	the	appropriate	balance	amongst	the	considerations	of
flexibility,	complexity	and	performance,	the	AxesTerminalService	provides
support	for	aXes	terminal	operations	scripts.	This	support	is	provided	through
two	specialized	service	commands:

The	LOADSCRIPT	command	loads	an	aXes	terminal	operation	script	into
the	service	for	use	in	subsequent	EXECUTE	commands.
The	EXECUTE	command	executes	a	specified	routine	in	an	aXes	terminal
operation	script.

Using	this	support,	your	application	can	replace	a	series	of	SETBYNAME	or
SETBYPOS	commands	that	populate	one	entry	screen,	for	example,	with	a
single	EXECUTE	command.	You	can	retain	the	degree	of	control	necessary	for
your	application	and	branch	based	on	the	outcome	of	5250	screen	operations	by
(optionally)	breaking	up	your	script	into	separate	routines	that	are	executed
separately.	For	example,	you	may	define	a	script	routine	to	complete	each	non-
trivial	5250	data	entry	screen.	For	a	data	entry	screen	containing	a	subfile,	you
might	define	a	routine	to	complete	each	subfile	record	or	line.
Typically,	an	implementation	would	define	one	script	(optionally	consisting	of
multiple	routines),	load	the	script	once	using	the	LOADSCRIPT	command	and
execute	the	routines	as	required	using	the	EXECUTE	command.	However,	you
may	load	and	execute	the	scripts	using	the	EXECUTE	command	if	you	prefer.

You	may	also	mix	this	approach	with	direct	use	of	the	other	service	commands
such	as	SETBYNAME,	SETBYPOS,	and	SEND.
The	script	is	provided	as	a	list	(for	a	LANSA	RDML/X	client,	a	working	list)
that	is	passed	to	the	service	with	the	LOADSCRIPT	and/or	EXECUTE
commands.	The	list	must	contain	a	minimum	of	eight	fields/columns	and	may
contain	up	to	twelve.	The	purpose	and	meaning	of	the	list	fields/columns	that
make	up	an	aXes	terminal	operations	script	is	described	below.

1.		Routine
name

Specifies	the	name	of	a	routine	to	which	this	aXes	terminal
operations	script	line	belongs.	Lines	for	a	routine	must	be
specified	contiguously	in	the	list.	The	routine	name	is	optional
in	the	script	and	in	the	ROUTINE	keyword	of	the	EXECUTE
command.

2.		Label
name

This	column	may	specify	a	unique	(within	a	routine)	label
associated	with	the	line.	This	label	may	be	referenced	as	the
next	action	on	success	or	failure	of	other	lines	in	the	same
routine/script.

3.		Operation Specifies	the	aXes	terminal	operation	performed	by	this	script
line.	It	may	be	one	of	the	following:
				GET	(gets	a	field	value)
				SET	(sets	a	field	value)
				SEND	(sends	data	to	the	aXes	terminal	server)
Lines	containing	any	other	value	in	the	Operation	column	are
ignored.

4.		Field
name

(GET/SET)		This	column	may	specify	the	name	of	the	field
whose	value	is	to	be	set	or	retrieved.	The	name	may	be	a	user-
defined	name	(if	an	aXes	project	name	was	specified	on	the
CONNECT	command)	or	an	aXes	field	identifier.	If	the	field
name	is	not	specified	for	a	GET	or	SET	operation,	then	the	field
row	and	column	must	be	specified.

5.		Field
index

(GET/SET)		If	the	field	named	in	the	previous	column	is
contained	in	a	subfile,	this	column	may	specify	the	index	of	the
instance	on	the	current	screen	of	the	field	whose	value	is	to	be
set	or	retrieved.	The	first	instance	on	the	current	screen	has	an
index	of	1,	irrespective	of	the	scroll	position	of	the	subfile.	If
your	program	needs	to	process	fields	in	subfiles,	it	must	do	so

one	screen	at	a	time	and	send	ROLL_UP/ROLL_DOWN	using
the	SEND	command	(just	like	a	5250	terminal	user	would	have
to	do).

6.		Field	row (GET/SET)		This	column	may	specify	the	screen	row	number
of	the	field	whose	value	is	to	be	set	or	retrieved.	The	row	and
column	together,	if	used,	must	refer	to	the	first	position	of	the
required	field.	The	value	of	this	column	is	ignored	if	the	field
name	is	specified.	Conversely,	if	the	field	name	is	not	specified,
then	the	field	row	and	column	must	be	specified.

7.		Field
column

(GET/SET)		This	column	may	specify	the	screen	column
number	of	the	field	whose	value	is	to	be	set	or	retrieved.	The
row	and	column	together,	if	used,	must	refer	to	the	first	position
of	the	required	field.	The	value	of	this	column	is	ignored	if	the
field	name	is	specified.	Conversely,	if	the	field	name	is	not
specified,	then	the	field	row	and	column	must	be	specified.

8.		Field
value
(literal)

(SET)		This	column	may	specify	the	literal	value	to	be	set	in	the
specified	field.

9.		Field
value
(field	name)

(GET/SET)		This	column	may	specify	the	name	of	a	field
exchanged	between	your	client	program	and	the	JSM	that	will
receive	(GET)	or	provide	(SET)	the	value	for	the	specified
screen	field.	You	will	usually	need	to	specify
SERVICE_EXCHANGE(*FIELD)	in	the	command	string	in
order	to	receive	the	return	value	into	your	client	program
variable.
For	a	GET	operation,	the	exchange	field	name	is	required.
For	a	SET	operation,	you	must	specify	one	of	the	exchange
field	names	in	this	column	or	the	literal	field	value	in	the
previous	column.

10.		Function
key

(SET/SEND)		If	a	value	is	specified	in	this	column,	the
operation	will	send	the	current	aXes	screen	data	to	the	aXes
terminal	server	using	the	function	key	specified	(after
successfully	setting	the	field	value	for	a	SET	operation).	You
may	use	any	of	the	function	key	values	shown	for	the
SETBYNAME,	SETBYPOS	and	SEND	commands.	
For	a	SET	operation,	if	no	value	is	specified,	no	send

operation	is	performed.	
For	a	SEND	operation,	if	no	value	is	specified,	ENTER	is
assumed.

11.		Action
on	success

This	column	may	be	used	to	control	the	next	script	routine
operation	performed	when	this	operation	completes
successfully.	It	may	be	one	of	the	following:
				*NEXT	(the	script	proceeds	to	the	next	line	in	the	same
routine)
				*ERROR	(the	script	execution	ends	with	an	error	status).
Any	other	non-blank	value	is	interpreted	as	the	Label	name	of
another	script	line	in	the	same	script	routine,	and	the	script
continues	with	the	first	line	in	the	script	routine	that	matches
the	specified	label.
If	no	value	is	specified,	*NEXT	is	assumed.

12.		Action
on	error

This	column	may	be	used	to	control	the	next	script	routine
operation	performed	when	this	operation	ends	in	error.	It	may
be	one	of	the	following:
				*NEXT	(the	script	proceeds	to	the	next	line	in	the	same
routine)
				*ERROR	(the	script	execution	ends	with	an	error	status).
Any	other	non-blank	value	is	interpreted	as	the	Label	name	of
another	script	line	in	the	same	script	routine,	and	the	script
continues	with	the	first	line	in	the	script	routine	that	matches
the	specified	label.
If	no	value	is	specified,	*ERROR	is	assumed.

5.41.4	AxesTerminalService	Commands
Your	application	issues	commands	to	the	AxesTerminalService	by	passing	the
command	strings	through	the	Java	Services	Manager	using	the
JSM_COMMAND	or	JSMX_COMMAND	built-in	function	or	an	API	for	your
chosen	development	language.
The	commands	that	the	AxesTerminalService	processes	are:

SERVICE_LOAD
CONNECT
DISCONNECT
CAPTURE
EXECUTE
GET
GETBYNAME
GETBYPOS
GETFIELD
LOADSCRIPT
SEND
SETBYNAME
SETBYPOS
SETCURSOR
SERVICE_GET
SERVICE_UNLOAD

SERVICE_LOAD
Loads	and	initializes	the	service.
	
																																																										Required
	
	SERVICE_LOAD	----	SERVICE	---------	service	name	------------
---->	

																																																										Optional
	
															>--	TRACE	-----------	*NO	------------------------->	
																																					*YES	
																																					*ERROR	
		
															>--	TRACE_NAME	------	name	------------------------>
																																					*SERVICE	
																																					*PROCESS	
																																					*FUNCTION	
																																					*JOBNAME	
																																					*JOBUSER	
																																					*JOBNUMBER	
		
															>--	TRACESCREENS	----	*YES	------------------------>
																																					*NO	
		
															>--	AXESLOG	---------	*NO	-------------------------|
																																					*YES
	
For	more	information	refer	to:
SERVICE_LOAD
Service	Program	Tracing	from	the	Client

Keywords
	SERVICE The	name	of	the	service	to	be	loaded	-	in	this	case

AxesTerminalService.

its:Lansa093.chm::/lansa/intb6_0010.htm
its:Lansa093.chm::/lansa/intb5_0075.htm

TRACE To	enable	tracing	from	the	client	program	use	the
TRACE	keyword	on	the	SERVICE_LOAD	command.
The	possible	values	for	the	TRACE	keyword	are:
*NO
*YES
*ERROR

The	trace	option	*ERROR	will	turn	on	tracing	and	if	the
service	does	not	return	an	ERROR,	FATAL	or
SOAPFAULT	status	to	the	client,	the	trace	files	are
deleted	on	the	JSM	CLOSE	call.
The	TRACE	keyword	will	override	the	settings	in	the
manager.properties	file.
	

TRACE_NAME This	optional	keyword	allows	the	client	to	append	a	user-
defined	name	to	the	end	of	the	client	trace	subdirectory.
Special	keyword	values	are	also	available	for	the
TRACE_NAME	keyword.
*SERVICE
*PROCESS
*FUNCTION
*JOBNAME
*JOBUSER
*JOBNUMBER

TRACESCREENS If	tracing	is	in	effect	(according	to	the	value	specified	on
the	TRACE	keyword	or	in	the	manager.properties	file),
this	keyword	may	be	used	to	enable	additional	tracing	of
the	aXes	terminal	screen	images.	Note	that	enabling	the
tracing	of	the	screen	images	may	greatly	expand	the	size
of	the	resulting	service.txt	trace	file.
The	possible	values	for	the	TRACESCREENS	keyword
are:
*YES
*NO

If	not	specified,	a	default	of	*YES	is	assumed.	Note	that

this	is	only	effective	of	tracing	is	enabled.

AXESLOG If	tracing	is	in	effect	(according	to	the	value	specified	on
the	TRACE	keyword	or	in	the	manager.properties	file),
this	keyword	may	be	used	to	enable	the	creation	of	an
aXes	log	file.	The	aXes	log	file	may	be	useful	in
diagnosing	issues	associated	with	the	aXes	terminal
operations.
The	possible	values	for	the	AXESLOG	keyword	are:
*NO
*YES

If	not	specified,	a	default	of	*NO	is	assumed.

Examples
RDML	Example:
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(AXESTERMINALSERVICE)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX	Example:
#jsmcommand	:=	'service_load	service(AxesTerminalService)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcommand)	to_get(#jsmstatus	#jsmmessage)
	

CONNECT
The	CONNECT	command	is	used	to	connect	to	an	aXes	server	and	signon	the
5250	session	using	the	server	identification	and	user	credentials	provided.

Note:	You	usually	need	to	specify	SERVICE_EXCHANGE(*FIELD)
in	the	command	string	in	order	to	receive	the	return	values	into	your
client	program	variables	named	on	keywords	beginning	with	RTNxxx.
Refer	to	5.41.2	Using	the	AxesTerminalService	for	more	information.

	
	
																																																										Required
	
	CONNECT	---------	HOST	------------	value	---------------------->
		
															>--	USER	------------	value	---------------------->
		
															>--	PASSWORD	--------	value	---------------------->
	
																																																										Optional	
	
															>--	PORT	------------	80				---------------------->
																																					value	
	
															>--	USESSL	----------	*NO			---------------------->
																																					*YES	
		
															>--	PROJECT	---------	value	---------------------->
		
															>--	RTNSIG	----------	field-name	----------------->
		
															>--	RTNSCREEN	-------	field-name	-----------------|
	

Keywords
HOST Required.	The	host	name	or	IP	address	of	the	machine	hosting

the	aXes	terminal	server	to	which	you	wish	to	connect.

USER Required.	The	user	name	used	to	connect	to	the	aXes	terminal
server.	This	must	be	the	name	of	an	authorised	i/OS	user
profile.

PASSWORD Required.	The	password	for	the	user	name	specified	in	the
USER	keyword.

PORT The	port	number	to	be	used	to	connect	to	the	aXes	terminal
server.	If	not	specified,	a	default	value	of	80	is	assumed.

PROJECT The	aXes	project	to	use	for	this	session.	A	project	contains
user	defined	definitions	of	screens	and	fields.	For	example,
you	can	assign	a	name	to	a	screen	or	a	field,	and	later	use	that
name	to	refer	to	the	screen	or	the	field	in	your	code.	Although
aXes	projects	can	either	be	stored	in	a	file	on	the	file	system
or	on	the	aXes	server,	you	may	only	specify	here	an	aXes
server-based	project.

RTNSIG The	name	of	a	field	exchanged	between	your	client	program
and	the	JSM	that	will	receive	the	screen	signature	of	the
screen	that	is	present	following	the	successful	connection.

RTNSCREEN The	name	of	a	field	exchanged	between	your	client	program
and	the	JSM	that	will	receive	the	name	of	the	screen	that	is
present	following	the	successful	connection.	The	screen	name
is	the	user-defined	name	if	an	aXes	project	name	was
specified	on	the	CONNECT	command	and	a	name	was
assigned	to	the	screen.	Otherwise	the	screen	signature	is
returned.

Examples
RDML	Example:
DEFINE	FIELD(#MYSCREEN)	REFFLD(#STD_TEXT)
CHANGE	FIELD(#JSMCMD)	TO('CONNECT	HOST(MYSERVER)	USER(QUSER)	PASSWORD(QUSER)	RTNSCREEN(MYSCREEN)	SERVICE_EXCHANGE(*FIELD)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX	Example:
define	field(#myscreen)	reffld(#std_text)
#jsmcommand	:=	'CONNECT	HOST(MYSERVER)	USER(QUSER)	PASSWORD(QUSER)	RTNSCREEN(MYSCREEN)	SERVICE_EXCHANGE(*FIELD)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcommand)	to_get(#jsmstatus	#jsmmessage)

	

DISCONNECT
The	DISCONNECT	command	disconnects	the	service	from	the	aXes	Terminal
Server.
	
																																																										Required
	
	DISCONNECT	---|
	
	

Keywords
There	are	no	keywords	for	the	DISCONNECT	command.

Examples
RDML	Example:
CHANGE	FIELD(#JSMCMD)	TO('DISCONNECT'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX	Example:
#jsmcommand	:=	'DISCONNECT'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcommand)	to_get(#jsmstatus	#jsmmessage)
	

CAPTURE
The	CAPTURE	command	captures	a	representation	of	the	current	aXes
Terminal	Server	screen	and	returns	it	in	the	list	provided.
	
																																																										Optional
	
	CAPTURE	---------	RTNSIG	----------	field-name	-----------------
>
		
															>--	RTNSCREEN	-------	field-name	-----------------|
	

You	must	provide	a	list	definition	containing	at	least	one	alphanumeric
field	in	which	the	captured	screen	lines	are	returned.	The	service
command	will	fill	the	list	with	an	entry	for	each	screen	line	captured.
The	captured	screen	text	will	be	placed	in	the	first	field	in	the	list,
which	is	the	only	field	used.

Keywords
RTNSIG The	name	of	a	field	exchanged	between	your	client	program

and	the	JSM	that	will	receive	the	screen	signature	of	the
screen	that	is	present.

RTNSCREEN The	name	of	a	field	exchanged	between	your	client	program
and	the	JSM	that	will	receive	the	name	of	the	screen	that	is
present.	The	screen	name	is	the	user-defined	name	if	an	aXes
project	name	was	specified	on	the	CONNECT	command	and
a	name	was	assigned	to	the	screen.	Otherwise	the	screen
signature	is	returned.

Examples
RDML	Example:
DEFINE	FIELD(#MYSCREEN)	REFFLD(#STD_TEXT)
DEFINE	FIELD(#SCRNLINE)	TYPE(*CHAR)	LENGTH(80)
DEF_LIST	NAME(#CAPTURE)	FIELDS(#SCRNLINE)	TYPE(*WORKING)
CHANGE	FIELD(#JSMCMD)	TO('CAPTURE	RTNSCREEN(MYSCREEN)	SERVICE_EXCHANGE(*FIELD)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#CAPTURE)

	
RDMLX	Example:
define	field(#myscreen)	reffld(#std_text)
define	field(#scrnline)	type(*char)	length(80)
def_list	name(#capture)	fields(#scrnline)	type(*working)
#jsmcommand	:=	'CAPTURE	RTNSCREEN(MYSCREEN)	SERVICE_EXCHANGE(*FIELD)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcommand)	to_get(#jsmstatus	#jsmmessage	#capture)
	

EXECUTE
The	EXECUTE	command	executes	a	specified	routine	in	an	aXes	terminal
operation	script.	Refer	to	5.41.3	AxesTerminalService	Scripts	for	more
information	about	specifying	and	using	aXes	terminal	operation	scripts.
	
																																																										Optional
	
	EXECUTE	---------	SCRIPT	----------	*LOADED	------------------
--->
																																					*LIST
		
															>--	ROUTINE	---------	routine-name	---------------->
		
															>--	RTNSIG	----------	field-name	------------------>
		
															>--	RTNSCREEN	-------	field-name	------------------|
	

If	the	command	specifies	SCRIPT(*LIST),	you	must	provide	a	list
definition	that	contains	the	aXes	terminal	operation	script.	Refer	to
5.41.3	AxesTerminalService	Scripts	for	more	information	about
specifying	and	using	aXes	terminal	operation	scripts.

Keywords
SCRIPT How	the	aXes	terminal	operation	script	is	provided.	It	may

contain	one	of	the	following	values:
*LOADED	:	the	script	has	previously	been	provided	by
means	of	the	LOADSCRIPT	command.
*LIST	:	the	script	is	provided	in	a	working	list	with	this
command.
If	not	specified,	the	service	assumes	SCRIPT(*LOADED).

ROUTINE The	name	of	a	routine	in	the	aXes	terminal	operation	script.
Refer	to	5.41.3	AxesTerminalService	Scripts	for	more
information	about	specifying	and	using	routines	in	aXes
terminal	operation	scripts.
If	not	specified,	a	blank	routine	name	is	assumed.	If	your

script	does	not	contain	named	routines	you	do	not	need	to
specify	this	keyword.

RTNSIG The	name	of	a	field	exchanged	between	your	client	program
and	the	JSM	that	will	receive	the	screen	signature	of	the
screen	that	is	present	following	execution	of	the	aXes	terminal
operation	script.

RTNSCREEN The	name	of	a	field	exchanged	between	your	client	program
and	the	JSM	that	will	receive	the	name	of	the	screen	that	is
present	following	execution	of	the	aXes	terminal	operation
script.	The	screen	name	is	the	user-defined	name	if	an	aXes
project	name	was	specified	on	the	CONNECT	command	and
a	name	was	assigned	to	the	screen.	Otherwise	the	screen
signature	is	returned.

Examples
RDML	Example:
DEFINE	FIELD(#MYSCREEN)	REFFLD(#STD_TEXT)
CHANGE	FIELD(#JSMCMD)	TO('EXECUTE	ROUTINE(ENTERORDER)	RTNSCREEN(MYSCREEN)	SERVICE_EXCHANGE(*FIELD)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX	Example:
define	field(#myscreen)	reffld(#std_text)
#jsmcommand	:=	'EXECUTE	ROUTINE(ENTERORDER)	RTNSCREEN(MYSCREEN)	SERVICE_EXCHANGE(*FIELD)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcommand)	to_get(#jsmstatus	#jsmmessage)
	

GET
The	client	application	may	issue	the	GET	command	to	receive	attributes
associated	with	the	aXes	terminal	session	into	named	client	program	variables.

Note:	You	usually	need	to	specify	SERVICE_EXCHANGE(*FIELD)
in	the	command	string	in	order	to	receive	the	return	values	into	your
client	program	variables	named	on	keywords	beginning	with	RTNxxx.
Refer	to	5.41.2	Using	the	AxesTerminalService	for	more	information.

	
																																																										Optional
	
	GET	-------------	RTNCURSORROW	----	field-name	---------------
-->
		
															>--	RTNCURSORCOL	----	field-name	----------------->
		
															>--	RTNDEVICENAME	---	field-name	----------------->
		
															>--	RTNJOBUSER	------	field-name	----------------->
		
															>--	RTNJOBNUMBER	----	field-name	----------------->
		
															>--	RTNSCREENWIDTH	--	field-name	----------------->
		
															>--	RTNSCREENHEIGHT	-	field-name	-----------------
>
		
															>--	RTNSYSTEMNAME	---	field-name	----------------->
		
															>--	RTNSIG	----------	field-name	----------------->
		
															>--	RTNSCREEN	-------	field-name	-----------------|
	

Keywords
RTNCURSORROW The	name	of	a	field	exchanged	between	your	client

program	and	the	JSM	that	will	receive	the	row

number	component	of	the	current	screen	cursor
position.

RTNCURSORCOL The	name	of	a	field	exchanged	between	your	client
program	and	the	JSM	that	will	receive	the	column
number	component	of	the	current	screen	cursor
position.

RTNDEVICENAME The	name	of	a	field	exchanged	between	your	client
program	and	the	JSM	that	will	receive	the	5250
device	name	used	by	the	current	aXes	terminal
session.

RTNJOBUSER The	name	of	a	field	exchanged	between	your	client
program	and	the	JSM	that	will	receive	the	user	name
portion	of	the	i/OS	job	name	for	the	current	aXes
terminal	session.

RTNJOBNUMBER The	name	of	a	field	exchanged	between	your	client
program	and	the	JSM	that	will	receive	the	job
number	portion	of	the	i/OS	job	name	for	the	current
aXes	terminal	session.

RTNSCREENWIDTH The	name	of	a	field	exchanged	between	your	client
program	and	the	JSM	that	will	receive	the	current
screen	width	for	the	aXes	terminal	session.	Note	that
this	value	refers	to	the	screen	currently	displayed,
not	maximum	device	capabilities.

RTNSCREENHEIGHT The	name	of	a	field	exchanged	between	your	client
program	and	the	JSM	that	will	receive	the	current
screen	height	for	the	aXes	terminal	session.	Note
that	this	value	refers	to	the	screen	currently
displayed,	not	maximum	device	capabilities.

RTNSYSTEMNAME The	name	of	a	field	exchanged	between	your	client
program	and	the	JSM	that	will	receive	the	i/OS
system	name	for	the	current	aXes	terminal	session.

RTNSIG The	name	of	a	field	exchanged	between	your	client
program	and	the	JSM	that	will	receive	the	screen
signature	of	the	screen	that	is	present.

RTNSCREEN The	name	of	a	field	exchanged	between	your	client
program	and	the	JSM	that	will	receive	the	name	of
the	screen	that	is	present.	The	screen	name	is	the
user-defined	name	if	an	aXes	project	name	was
specified	on	the	CONNECT	command	and	a	name
was	assigned	to	the	screen.	Otherwise	the	screen
signature	is	returned.

Examples
RDML	Example:
DEFINE	FIELD(#MYJOBUSR)	REFFLD(#STD_TEXT)
DEFINE	FIELD(#MYJOBNUM)	REFFLD(#STD_TEXT)
CHANGE	FIELD(#JSMCMD)	TO('GET	RTNJOBUSER(MYJOBUSR)	RTNJOBNUMBER(MYJOBNUM)	SERVICE_EXCHANGE(*FIELD)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX	Example:
define	field(#myjobusr)	reffld(#std_text)
define	field(#myjobnum)	reffld(#std_text)
#jsmcommand	:=	'GET	RTNJOBUSER(MYJOBUSR)	RTNJOBNUMBER(MYJOBNUM)	SERVICE_EXCHANGE(*FIELD)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcommand)	to_get(#jsmstatus	#jsmmessage)
	

GETBYNAME
The	GETBYNAME	command	retrieves	the	value	of	a	field	on	the	current	aXes
terminal	screen	by	reference	to	the	field	name	(and	an	optional	index	for	a
subfile	field).

Note:	You	usually	need	to	specify	SERVICE_EXCHANGE(*FIELD)
in	the	command	string	in	order	to	receive	the	return	value	into	your
client	program	variable	named	on	the	RTNVALUE	keyword.	Refer	to
5.41.2	Using	the	AxesTerminalService	for	more	information.

	
																																																										Required
	
	GETBYNAME	-------	NAME	------------	screen	field	name	--------
-->
		
															>--	RTNVALUE	--------	field-name	----------------->
	
																																																										Optional	
	
															>--	INDEX	------------	0	-------------------------|
																																						value
	

Keywords
NAME Required.	The	name	of	the	field	whose	value	is	to	be	retrieved.

The	name	may	be	a	user-defined	name	(if	an	aXes	project	name
was	specified	on	the	CONNECT	command)	or	an	aXes	field
identifier.

INDEX If	the	field	is	contained	in	a	subfile,	this	keyword	may	specify
the	index	of	the	instance	on	the	current	screen	of	the	field
whose	value	is	to	be	retrieved.	The	first	instance	on	the	current
screen	has	an	index	of	1,	irrespective	of	the	scroll	position	of
the	subfile.	If	your	program	needs	to	process	fields	in	subfiles,
it	must	do	so	a	screen	at	a	time	and	send
ROLL_UP/ROLL_DOWN	using	the	SEND	command	(just	like
a	5250	terminal	user	would	have	to	do).

RTNVALUE The	name	of	a	field	exchanged	between	your	client	program
and	the	JSM	that	will	receive	the	value	for	the	specified	screen
field.

Examples
RDML	Example:
DEFINE	FIELD(#MYCUSNUM)	REFFLD(#STD_TEXT)
CHANGE	FIELD(#JSMCMD)	TO('GETBYNAME	NAME(FLD001)	RTNVALUE(MYCUSNUM)	SERVICE_EXCHANGE(*FIELD)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX	Example:
define	field(#mycusnum)	reffld(#std_text)
#jsmcommand	:=	'GETBYNAME	NAME(FLD001)	RTNVALUE(MYCUSNUM)	SERVICE_EXCHANGE(*FIELD)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcommand)	to_get(#jsmstatus	#jsmmessage)
	

			

GETBYPOS
The	GETBYPOS	command	retrieves	the	value	of	a	field	on	the	current	aXes
terminal	screen	by	reference	to	the	screen	row	and	column	number.

Note:	You	usually	need	to	specify	SERVICE_EXCHANGE(*FIELD)
in	the	command	string	in	order	to	receive	the	return	value	into	your
client	program	variable	named	on	the	RTNVALUE	keyword.	Refer	to
5.41.2	Using	the	AxesTerminalService	for	more	information.

	
																																																										Required
	
	GETBYPOS	--------	ROW	-------------	row	number	-----------------
>
		
															>--	COL	-------------	column	number	-------------->
		
															>--	RTNVALUE	--------	field-name	-----------------|
	

Keywords
ROW Required.	The	screen	row	number	of	the	required	field.	The

row	and	column	together	must	refer	to	the	first	position	of	the
required	field.

COL Required.	The	screen	column	number	of	the	required	field.	The
row	and	column	together	must	refer	to	the	first	position	of	the
required	field.

RTNVALUE The	name	of	a	field	exchanged	between	your	client	program
and	the	JSM	that	will	receive	the	value	for	the	specified	screen
field.

Examples
RDML	Example:
DEFINE	FIELD(#MYCUSNUM)	REFFLD(#STD_TEXT)
CHANGE	FIELD(#JSMCMD)	TO('GETBYPOS	ROW(8)	COL(44)	RTNVALUE(MYCUSNUM)	SERVICE_EXCHANGE(*FIELD)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)

	
RDMLX	Example:
define	field(#mycusnum)	reffld(#std_text)
#jsmcommand	:=	'GETBYPOS	ROW(8)	COL(44)	RTNVALUE(MYCUSNUM)	SERVICE_EXCHANGE(*FIELD)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcommand)	to_get(#jsmstatus	#jsmmessage)
	

GETFIELD
The	GETFIELD	command	retrieves	the	attributes	of	a	field	on	the	current	aXes
terminal	screen	by	reference	to	either	the	field	name	(and	an	optional	index	for	a
subfile	field)	or	to	the	screen	row	and	column	number	of	the	field.

Note:	You	usually	need	to	specify	SERVICE_EXCHANGE(*FIELD)
in	the	command	string	in	order	to	receive	the	return	values	into	your
client	program	variables	named	on	keywords	beginning	with	RTNxxx.
Refer	to	5.41.2	Using	the	AxesTerminalService	for	more	information.

	
																																																										Optional
	
	GETFIELD	--------	NAME	------------	screen	field	name		---------
>
		
															>--	INDEX	-----------	0	-------------------------->
																																					value
			
															>--	ROW	-------------	row	number	----------------->
		
															>--	COL	-------------	column	number	-------------->
		
																			RTNNAME	---------	field-name	----------------->
		
															>--	RTNINDEX	--------	field-name	----------------->
		
															>--	RTNROW	----------	field-name	----------------->
		
															>--	RTNCOL	----------	field-name	----------------->
		
															>--	RTNSUBFILEEXTENT		field-name	-----------------|
		

Keywords
NAME The	name	of	the	field	whose	attributes	are	to	be	retrieved.

The	name	may	be	a	user-defined	name	(if	an	aXes	project
name	was	specified	on	the	CONNECT	command)	or	an

aXes	field	identifier.	If	NAME	is	not	specified,	then	ROW
and	COL	must	be	specified.

INDEX If	the	field	is	contained	in	a	subfile,	this	keyword	may
specify	the	index	of	the	instance	on	the	current	screen	of	the
field	whose	attributes	are	to	be	retrieved.	The	first	instance
on	the	current	screen	has	an	index	of	1,	irrespective	of	the
scroll	position	of	the	subfile.	If	your	program	needs	to
process	fields	in	subfiles,	it	must	do	so	a	screen	at	a	time
and	send	ROLL_UP/ROLL_DOWN	using	the	SEND
command	(just	like	a	5250	terminal	user	would	have	to	do).

ROW The	screen	row	number	of	the	required	field.	The	row	and
column	together,	if	used,	must	refer	to	the	first	position	of
the	required	field.	The	value	of	this	keyword	is	ignored	if
NAME	is	specified.	Conversely,	if	NAME	is	not	specified,
then	ROW	and	COL	must	be	specified.

COL The	screen	column	number	of	the	required	field.	The	row
and	column	together,	if	used,	must	refer	to	the	first	position
of	the	required	field.	The	value	of	this	keyword	is	ignored	if
NAME	is	specified.	Conversely,	if	NAME	is	not	specified,
then	ROW	and	COL	must	be	specified.

RTNNAME The	name	of	a	field	exchanged	between	your	client	program
and	the	JSM	that	will	receive	the	user-defined	name	of	the
field	(if	an	aXes	project	name	was	specified	on	the
CONNECT	command)	or	the	aXes	field	identifier	if	no
project	was	specified	or	no	name	has	been	defined	for	the
field.

RTNINDEX If	the	field	is	contained	in	a	subfile,	this	keyword	may	be
used	to	specify	the	name	of	a	field	exchanged	between	your
client	program	and	the	JSM	that	will	receive	the	index	of
the	instance	on	the	current	screen	of	the	field.	The	first
instance	on	the	current	screen	has	an	index	of	1,	irrespective
of	the	scroll	position	of	the	subfile.

RTNROW The	name	of	a	field	exchanged	between	your	client	program
and	the	JSM	that	will	receive	the	screen	row	number	of	the
field.

RTNCOL The	name	of	a	field	exchanged	between	your	client	program
and	the	JSM	that	will	receive	the	screen	column	number	of
the	field.

RTNSU
BFILEEXTENT

If	the	field	is	contained	in	a	subfile,	this	keyword	may	be
used	to	specify	the	name	of	a	field	exchanged	between	your
client	program	and	the	JSM	that	will	receive	the	number	of
instances	on	the	current	screen	for	the	field	(the	number	of
subfile	records	displayed	on	the	current	screen).	For
reliability,	you	should	use	this	keyword	for	a	field	that	is
never	conditioned	on	the	subfile	display	-	such	as	the	option
entry	field	in	a	"Work	with"	style	display.

Examples
RDML	Example:
DEFINE	FIELD(#MYSFLEXT)	REFFLD(#STD_NUM)
CHANGE	FIELD(#JSMCMD)	TO('GETFIELD	ROW(8)	COL(44)	RTNSUBFILEEXTENT(MYSFLEXT)	SERVICE_EXCHANGE(*FIELD)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX	Example:
define	field(#mysflext)	reffld(#std_num)
#jsmcommand	:=	'GETFIELD	ROW(8)	COL(44)	RTNSUBFILEEXTENT(MYSFLEXT)	SERVICE_EXCHANGE(*FIELD)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcommand)	to_get(#jsmstatus	#jsmmessage)
	

LOADSCRIPT
The	LOADSCRIPT	command	loads	an	aXes	terminal	operation	script	into	the
service	for	use	in	subsequent	EXECUTE	commands.	The	script	replaces	any
previously	loaded.	Refer	to	5.41.3	AxesTerminalService	Scripts	for	more
information	about	specifying	and	using	aXes	terminal	operation	scripts.
	
																																																										Optional
	
	LOADSCRIPT	------	SCRIPT	----------	*LIST	-----------------------
|
	

If	the	command	specifies	SCRIPT(*LIST),	you	must	provide	a	list
definition	that	contains	the	aXes	terminal	operation	script.	Refer	to
5.41.3	AxesTerminalService	Scripts	for	more	information	about
specifying	and	using	aXes	terminal	operation	scripts.

Keywords
SCRIPT This	keyword	specifies	how	the	aXes	terminal	operation	script	is

provided.	Presently	only	the	following	value	is	supported:
*LIST	:	the	script	is	provided	in	a	working	list	with	this	command.
If	not	specified,	the	service	assumes	SCRIPT(*LIST).

Examples
RDML	Example:
CHANGE	FIELD(#JSMCMD)	TO('LOADSCRIPT	SCRIPT(*LIST)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#MYSCRIPT)
	

RDMLX	Example:
#jsmcommand	:=	'LOADSCRIPT	SCRIPT(*LIST)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcommand)	to_get(#jsmstatus	#jsmmessage	#myscript)
	

SEND
The	SEND	command	sends	the	current	aXes	screen	data	to	the	aXes	terminal
server.	It	is	comparable	to	pressing	the	ENTER	key	(by	default)	or	a	function
key	at	a	5250	terminal.

Note:	You	usually	need	to	specify	SERVICE_EXCHANGE(*FIELD)
in	the	command	string	in	order	to	receive	the	return	values	into	your
client	program	variables	named	on	keywords	beginning	with	RTNxxx.
Refer	to	5.41.2	Using	the	AxesTerminalService	for	more	information.

	
																																																										Optional
	
	SEND	------------	SENDKEY	--------	ENTER	-----------------------
>
																																				F1		-	F9
																																				F10	-	F24
																																				HELP	
																																				PRINT	
																																				PAGE_UP	
																																				PAGE_DOWN
																																				ROLL_UP	
																																				ROLL_DOWN	
	
															>--	CURSORROW	-------	cursor	row	number	---------->
	
															>--	CURSORCOL	-------	cursor	column	number	-------
>
	
															>--	RTNSIG	--	-------	field-name		---------------->
		
															>--	RTNSCREEN	-------	field-name		----------------|
	

Keywords
SENDKEY The	function	key	to	send.	You	may	use	any	of	the	values

shown	above.	If	not	specified,	ENTER	is	sent.

CURSORROW The	cursor	row	number	to	send.	If	CURSORROW	and
CURSORCOL	are	not	both	specified,	the	cursor	position	is
unchanged.

CURSORCOL The	cursor	column	number	to	send.	If	CURSORROW	and
CURSORCOL	are	not	both	specified,	the	cursor	position	is
unchanged.

RTNSIG The	name	of	a	field	exchanged	between	your	client	program
and	the	JSM	that	will	receive	the	screen	signature	of	the
screen	that	is	present	following	the	send	operation.

RTNSCREEN The	name	of	a	field	exchanged	between	your	client	program
and	the	JSM	that	will	receive	the	name	of	the	screen	that	is
present	following	the	send	operation.	The	screen	name	is	the
user-defined	name	if	an	aXes	project	name	was	specified	on
the	CONNECT	command	and	a	name	was	assigned	to	the
screen.	Otherwise	the	screen	signature	is	returned.

Examples
RDML	Example:
DEFINE	FIELD(#MYSCREEN)	REFFLD(#STD_TEXT)
CHANGE	FIELD(#JSMCMD)	TO('SEND	SENDKEY(F3)	RTNSCREEN(MYSCREEN)	SERVICE_EXCHANGE(*FIELD)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX	Example:
define	field(#myscreen)	reffld(#std_text)
#jsmcommand	:=	'SEND	SENDKEY(F3)	RTNSCREEN(MYSCREEN)	SERVICE_EXCHANGE(*FIELD)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcommand)	to_get(#jsmstatus	#jsmmessage)
	

SETBYNAME
The	SETBYNAME	command	sets	the	value	of	a	field	on	the	current	aXes
terminal	screen	by	reference	to	the	field	name	(and	an	optional	index	for	a
subfile	field)	and	may	(optionally)	send	the	current	aXes	screen	data	to	the	aXes
terminal	server.	It	is	comparable	to	typing	at	a	5250	terminal.

Note:	You	usually	need	to	specify	SERVICE_EXCHANGE(*FIELD)
in	the	command	string	in	order	to	receive	the	return	values	into	your
client	program	variables	named	on	keywords	beginning	with	RTNxxx.
Refer	to	5.41.2	Using	the	AxesTerminalService	for	more	information.

	
																																																										Required
	
	SETBYNAME	-------	NAME	------------	screen	field	name		--------
->
		
															>--	VALUE	-----------	value	-----	---------------->
	
																																																										Optional
	
															>--	INDEX	-----------	0	---	---------------------->
																																					value
	
															>--	SENDKEY	----------(none)	--------------------->
																																						ENTER
																																						F1		…	F9
																																						F10	…	F24
																																						HELP	
																																						PRINT
																																						PAGE_UP
																																						PAGE_DOWN
																																						ROLL_UP
																																						ROLL_DOWN
	
															>--	RTNSIG	--	-------	field-name		---------------->
	
															>--	RTNSCREEN	-------	field-name		----------------|

	

Keywords
NAME This	keyword	must	specify	the	name	of	the	field	whose	value

is	to	be	set.	The	name	may	be	a	user-defined	name	(if	an	aXes
project	name	was	specified	on	the	CONNECT	command)	or
an	aXes	field	identifier.

INDEX If	the	field	is	contained	in	a	subfile,	this	keyword	may	specify
the	index	of	the	instance	on	the	current	screen	of	the	field
whose	attributes	are	to	be	retrieved.	The	first	instance	on	the
current	screen	has	an	index	of	1,	irrespective	of	the	scroll
position	of	the	subfile.	If	your	program	needs	to	process	fields
in	subfiles,	it	must	do	so	a	screen	at	a	time	and	send
ROLL_UP/ROLL_DOWN	using	the	SEND	command	(just
like	a	5250	terminal	user	would	have	to	do).

VALUE This	keyword	must	specify	the	value	to	be	set	in	the	specified
field.

SENDKEY If	this	keyword	is	specified,	the	command	will	send	the
current	aXes	screen	data	to	the	aXes	terminal	server	using	the
function	key	specified	(after	successfully	setting	the	field
value).	You	may	use	any	of	the	function	key	values	shown
above.	If	not	specified,	no	send	operation	is	performed.

RTNSIG The	name	of	a	field	exchanged	between	your	client	program
and	the	JSM	that	will	receive	the	screen	signature	of	the
screen	that	is	present	following	the	operation.

RTNSCREEN The	name	of	a	field	exchanged	between	your	client	program
and	the	JSM	that	will	receive	the	name	of	the	screen	that	is
present	following	the	operation.	The	screen	name	is	the	user-
defined	name	if	an	aXes	project	name	was	specified	on	the
CONNECT	command	and	a	name	was	assigned	to	the	screen.
Otherwise	the	screen	signature	is	returned.

Examples
RDML	Example:
DEFINE	FIELD(#MYSCREEN)	REFFLD(#STD_TEXT)
CHANGE	FIELD(#JSMCMD)	TO('SETBYNAME	NAME(FLD001)	VALUE(ABC001)	RTNSCREEN(MYSCREEN)	SERVICE_EXCHANGE(*FIELD)'

USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX	Example:
define	field(#myscreen)	reffld(#std_text)
#jsmcommand	:=	'SETBYNAME	NAME(FLD001)	VALUE(ABC001)	RTNSCREEN(MYSCREEN)	SERVICE_EXCHANGE(*FIELD)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcommand)	to_get(#jsmstatus	#jsmmessage)
	

SETBYPOS
The	SETBYPOS	command	sets	the	value	of	a	field	on	the	current	aXes	terminal
screen	by	reference	to	the	screen	row	and	column	number	and	may	(optionally)
send	the	current	aXes	screen	data	to	the	aXes	terminal	server.	It	is	analogous	to
typing	at	a	5250	terminal.

Note:	You	usually	need	to	specify	SERVICE_EXCHANGE(*FIELD)
in	the	command	string	in	order	to	receive	the	return	values	into	your
client	program	variables	named	on	keywords	beginning	with	RTNxxx.
Refer	to	5.41.2	Using	the	AxesTerminalService	for	more	information.

	
																																																										Required
	
	SETBYPOS	--------	ROW	-------------	row	number	-----------------
>
		
															>--	COL	-------------	column	number	-------------->
		
															>--	VALUE	-----------	value	-----	---------------->
	
																																																										Optional	
	
															>--	SENDKEY	---------(none)	---------------------->
																																					ENTER
																																					F1		…	F9
																																					F10	…	F24
																																					HELP	
																																					PRINT	
																																					PAGE_UP	
																																					PAGE_DOWN
																																					ROLL_UP	
																																					ROLL_DOWN	
		
															>--	RTNSIG	--	-------	field-name		---------------->
		
															>--	RTNSCREEN	-------	field-name		----------------|
	

Keywords
ROW Required.	The	screen	row	number	of	the	required	field.	The

row	and	column	together	must	refer	to	the	first	position	of	the
required	field.

COL Required.	The	screen	column	number	of	the	required	field.
The	row	and	column	together	must	refer	to	the	first	position
of	the	required	field.

VALUE Required.	The	value	to	be	set	in	the	specified	field.

SENDKEY If	this	keyword	is	specified,	the	command	will	send	the
current	aXes	screen	data	to	the	aXes	terminal	server	using	the
function	key	specified	(after	successfully	setting	the	field
value).	You	may	use	any	of	the	function	key	values	shown
above.	If	not	specified,	no	send	operation	is	performed.

RTNSIG The	name	of	a	field	exchanged	between	your	client	program
and	the	JSM	that	will	receive	the	screen	signature	of	the
screen	that	is	present	following	the	operation.

RTNSCREEN The	name	of	a	field	exchanged	between	your	client	program
and	the	JSM	that	will	receive	the	name	of	the	screen	that	is
present	following	the	operation.	The	screen	name	is	the	user-
defined	name	if	an	aXes	project	name	was	specified	on	the
CONNECT	command	and	a	name	was	assigned	to	the	screen.
Otherwise	the	screen	signature	is	returned.

Examples
RDML	Example:
DEFINE	FIELD(#MYSCREEN)	REFFLD(#STD_TEXT)
CHANGE	FIELD(#JSMCMD)	TO('SETBYPOS	ROW(8)	COL(44)	VALUE(ABC001)	RTNSCREEN(MYSCREEN)	SERVICE_EXCHANGE(*FIELD)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX	Example:
define	field(#myscreen)	reffld(#std_text)
#jsmcommand	:=	'SETBYPOS	ROW(8)	COL(44)	VALUE(ABC001)	RTNSCREEN(MYSCREEN)	SERVICE_EXCHANGE(*FIELD)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcommand)	to_get(#jsmstatus	#jsmmessage)
	

SETCURSOR
The	SETCURSOR	command	sets	the	position	of	the	cursor	on	the	current	aXes
terminal	screen.	It	is	analogous	to	using	the	arrow	or	tab	keys	to	move	the
cursor	at	a	5250	terminal.	Some	5250	applications	or	screens	are	sensitive	to	the
cursor	position	and	may	exhibit	different	functionality	dependent	upon	it.
	
																																																										Required
	
	SETCURSOR	-------	CURSORROW	-------	cursor	row	number	--
-------->
		
															>--	CURSORCOL	-------	cursor	column	number	-------|
	

Keywords
CURSORROW Required.	The	cursor	row	number	to	set.

CURSORCOL Required.	The	cursor	column	number	to	set.

Examples
RDML	Example:
CHANGE	FIELD(#JSMCMD)	TO('SETCURSOR	CURSORROW(8)	CURSORCOL(44)'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX	Example:
#jsmcommand	:=	'SETCURSOR	CURSORROW(8)	CURSORCOL(44)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcommand)	to_get(#jsmstatus	#jsmmessage)
	

SERVICE_GET
The	SERVICE_GET	command	allows	JSM	client	applications	to	access	the
keyword	/	value	properties	from	the	properties	file	associated	with	the	currently
loaded	service.
Client	applications	can	access	the	value	of	properties	associated	with	the
service,	but,	perhaps	more	usefully,	they	can	access	application	specific
property	values	too,	using	the	service	properties	file	as	a	common	medium	for
holding	such	values.
When	used	in	the	latter	way,	there	is	a	possibility	of	conflict	between
application-defined	keyword	names	and	those	used	by	current	and	future
versions	of	LANSA	Integrator.	To	reduce	this	possibility	your	application
should	prefix	the	property	keyword	with	a	global	unique	name.	The	examples
below	use	com.acme.property	as	the	prefix	for	this	prpose.
The	service	property	keyword	value	is	returned	in	the	JSM	message	field.	If	the
keyword	does	not	exist,	then	a	status	of	NOT_EXIST	is	returned.
																																																								Required	
		
		SERVICE_GET	--------		PROPERTY	-----	value	-------------------
-|	
				

Keywords
PROPERTY Provide	a	keyword	/	value	to	be	checked	on	the	service

properties	file.
The	service	property	keyword	value	is	returned	in	the	JSM
message	field.	If	the	keyword	does	not	exist	in	the	service
property	file	a	status	of	NOT_EXIST	is	returned.

Examples
The	examples	retrieve	the	value	of	the	com.acme.property.messagetype	(an
application-defined	property)	in	the	service	properties	file.	This	property	might
be	defined	in	the	service	properties	file	with	a	line	like	this	(the	value	"html"
will	be	returned	to	the	application	in	this	case):
com.acme.property.messagetype=html

RDML	Example:
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_GET	PROPERTY(com.acme.property.messagetype)')	TO_GET(#JSMSTS	#JSMMSG)

	
RDMLX	Example:
#jsmcmd	:=	'	service_get	property(com.acme.property.messagetype)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service	and	removes	the
temporary	directory.
	
SERVICE_UNLOAD	---------	no	keywords	---------------------------
------|
	

Keywords
There	are	no	SERVICE_UNLOAD	keywords.

Examples
RDML	Example:
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(SERVICE_UNLOAD)	TO_GET(#JSMSTS	#JSMMSG)
	

RDMLX	Example:
use	builtin(jsmx_command)	with_args(#jsmhandle	service_unload)	to_get(#jsmstatus	#jsmmessage)
	

5.41.5	AxesTerminalService	Examples
This	example	is	supplied	for	the	most	common	client	programming	language:
RDMLX

its:Lansa093.chm::/lansa/intengbl_RDMLX_AxesTerminalService.htm

5.42	HashService
Service	Name:	HashService
The	HashService	can	generate	a	hash	from	a	specified	field	value	or	specified
file	contents.
The	HashService	supports	the	following	commands:
5.42.1	SERVICE_LOAD
5.42.2	SERVICE_GET
5.42.3	HASH
5.42.4	SERVICE_UNLOAD

5.42.1	SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

5.42.2	SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

5.42.3	HASH
The	HASH	command	generates	the	hash	of	the	specified	field	or	file.	The	hash
value	is	returned	in	the	command	message	response.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

HASH FILE value Optional.	File	Path.

FIELD value Optional.	Field	Name.

DIGEST value Optional.	Hashing	algorithm	supported	by
the	JVM.
MD2,MD5,SHA,SHA256,SHA384,SHA256.
Default.	SHA.

ENCODING value Optional.	Field	value	to	byte	encoding.
Default.	UTF-8.

HASHENCODING *HEX Optional.	String	encoding	of	binary	hash.
Default.

*BASE64 	

	

	

5.42.4	SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	
	
	

6.	Create	Your	Own	Services
If	you	have	already	created	a	set	of	Java	classes	or	if	you	wish	to	use	some	third
party	Java	classes,	you	will	need	to	write	your	own	service	for	the	Java	Service
Manager.
Once	the	service	has	been	created	and	deployed,	it	can	be	called	by	your
LANSA	function	or	RPG	ILE	program.
Before	you	create	your	own	service,	it	is	recommended	that	you	review:

6.1	Create	your	Custom	Service
6.2	Java	Service	Manager	Interfaces
6.3	Java	Service	Manager	Classes

6.1	Create	your	Custom	Service
Your	custom	service	needs	to	implement	the	JSMService	interface.
Your	development	environment	needs	to	have	access	to	jsm.jar,	jsmservice.jar
and	jsmutil.jar.
Create	and	compile	your	custom	service.
Put	your	custom	service	class	in	the	package	directory	below	the	classes
directory.
	
/jsm/instance/classes/com/lansa/jsm/userdefined/XYZService.class
	

Add	an	entry	to	service.properties	in	the	system	directory.
	
service.XYZService=com.lansa.jsm.userdefined.XYZService
	

Note:	Standard	LANSA	Integrator	licences	that	permit	the	use	of	user-defined
services,	require	that	the	custom	service	class	package	name	uses	the
com.lansa.jsm.userdefined.	prefix.	Unless	you	make	special	licencing
arrangements,	your	custom	services	must	use	this	naming	convention.
Create	a	properties	file	called	XYZService.properties	in	the	properties	directory.
	
#!<studio-project	id="20050606-115520"	name="XYZ_Project">
#	XYZService	resource	(Default)
message.001=XYZService	successfully	loaded
message.002=XYZService	successfully	unloaded
message.003=Command	is	not	supported	:
#!</studio-project>
	

	
Sample	LANSA	function
	
USE	BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(SERVICE_LOAD(XYZSERVICE)	TRACE(*YES))	TO_GET(#JSMSTS	#JSMMSG)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(SERVICE_UNLOAD)	TO_GET(#JSMSTS	#JSMMSG)
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
	

	
Sample	XYZService	code
	
package	com.lansa.jsm.userdefined	;
	
import	java.io.*	;
import	java.net.*	;
import	java.util.*	;
	
import	com.lansa.jsm.*	;
	
public	final	class	XYZService	implements	JSMService
{
				private	JSMTrace	m_trace	=	null	;
				private	JSMResource	m_serviceResource	=	null	;
	
				public	XYZService	()
				{
								if	(!JSMManager.isLicenced	(this))
								{
												throw	new	IllegalArgumentException	("Class	is	not	licenced	:	"	+	this.getClass().getName())	;
								}
				}
	
				public	final	void	service	(JSMContainer	container)
				{
								m_trace	=	container.getServiceTrace	()	;
	
								m_serviceResource	=	container.getServiceResource	()	;
				}
	
				public	final	JSMResponse	command	(JSMCommand	command)	throws	JSMException
				{
								try
								{
												if	(m_trace	!=	null)
												{
																m_trace.print	(command)	;

												}
	
												JSMResponse	response	=	runCommand	(command)	;
	
												if	(m_trace	!=	null)
												{
																m_trace.print	(command,	response)	;
												}
	
												return	response	;
								}
								catch	(Throwable	t)
								{
												if	(m_trace	!=	null)
												{
																m_trace.print	(command,	t)	;
												}
	
												return	new	JSMResponse	(t)	;
								}
				}
	
				private	final	JSMResponse	runCommand	(JSMCommand	command)	throws
Exception
				{
								if	(command.equals	(JSMCommand.SERVICE_LOAD))
								{
												return	commandLOAD	(command)	;
								}
	
								if	(command.equals	(JSMCommand.SERVICE_UNLOAD))
								{
												return	commandUNLOAD	(command)	;
								}
	
								if	(command.equals	("SEND"))
								{
												return	commandSEND	(command)	;
								}

	
								return	new	JSMResponse	(JSMResponse.ERROR,	m_serviceResource.getResource	("message.003")	+	"	"	+	command.getCommand	())	;
				}
	
				private	final	JSMResponse	commandLOAD	(JSMCommand	command)	throws	Exception
				{
								return	new	JSMResponse	(m_serviceResource.getResource	("message.001"))	;
				}
	
				private	final	JSMResponse	commandUNLOAD	(JSMCommand	command)	throws	Exception
				{
								return	new	JSMResponse	(m_serviceResource.getResource	("message.002"))	;
				}
	
				private	final	JSMResponse	commandSEND	(JSMCommand	command)	throws	Exception
				{
								return	new	JSMResponse	("")	;
				}
}
	

6.2	Java	Service	Manager	Interfaces
The	Java	Service	Manager	is	shipped	with	the	following	interfaces:
6.2.1	JSMService	Interface
6.2.2	JSMContainer	Interface
6.2.3	JSMCommand	Interface
6.2.4	JSMClient	Interface
6.2.5	JSMResource	Interface
6.2.6	JSMStorage	Interface
6.2.7	JSMTrace	Interface
6.2.8	JSMList	Interface
6.2.9	JSMFieldList	Interface
6.2.10	JSMField	Interface

6.2.1	JSMService	Interface
For	a	Java	class	to	be	loaded	and	successfully	executed,	it	must	implement	the
JSMService	interface	as	shown	in	this	example:
	
public	interface	JSMService
{
		public	void	service	(JSMContainer	container)	;
	
		public	JSMResponse	command	(JSMCommand	command)	throws	JSMException	;
}
	

The	service	method	of	the	class	is	called	when	the	service	first	loads.	This
method	will	only	be	called	once,	so	the	JSMContainer	object	should	be	saved
for	later	access	in	the	current	service	program.	The	JSMContainer	object	allows
access	to	the	service	trace	object,	service	resource	object	and	service	storage
object.	The	container	resource	is	currently	not	used.
The	command	method	is	called	every	time	the	JSM	client	program	sends	a
command	string.
The	command	object	allows	access	to	the	command	string	in	Unicode,	helper
methods	allow	access	to	keywords.	The	client	program	byte	encoding	and	locale
can	be	accessed	from	the	command	object.	Also	a	byte	array	object	is	available
from	the	command	object.	This	byte	array	is	never	null	and	will	be	a	zero	length
array	or	a	copy	of	the	byte	array	sent	from	the	client.	No	byte	code
transformation	is	done,	so	the	byte	array	is	raw	and	reflects	the	same	encoding
as	the	client.

6.2.2	JSMContainer	Interface
	
public	interface	JSMContainer
{
		public	JSMTrace	getServiceTrace	()	;
		public	JSMStorage	getServiceStorage	()	;
		public	JSMResource	getServiceResource	()	;
		public	JSMResource	getContainerResource	()	;
}
	

The	JSMContainer	object	allows	the	service	program	to	gain	information	about
its	environment.
The	JSMStorage	object	allows	the	service	program	to	store	objects.	This	storage
will	be	valid	across	a	SERVICE_LOAD	and	SERVICE_UNLOAD	command.
The	storage	object	is	valid	between	a	JSM	open	and	close.	When	the	JSM	closes
the	storage	object	is	lost.	The	storage	object	is	never	null.
The	JSMTrace	object	allows	the	service	program	to	output	tracing	information.
If	the	trace	object	is	null,	then	tracing	has	been	disabled.
The	JSMResource	object	returned	from	the	getServiceResource	method	is	the
resource	file	associated	with	the	service	program.	This	resource	object	is	never
null,	if	a	resource	properties	file	has	not	been	assigned	or	does	not	exist	then	an
empty	resource	object	is	supplied.
The	JSMResource	object	returned	from	the	getContainerResource	is	not	used
yet.

6.2.3	JSMCommand	Interface
	
public	interface	JSMCommand
{
		public	final	static	String	SERVICE_LOAD				=	"SERVICE_LOAD"	;
		public	final	static	String	SERVICE_UNLOAD		=	"SERVICE_UNLOAD"	;
		public	final	static	String	SERVICE_READ				=	"SERVICE_READ"	;
		public	final	static	String	SERVICE_GET					=	"SERVICE_GET"	;
		public	final	static	String	SERVICE_SET					=	"SERVICE_SET"	;
		public	final	static	String	SERVICE_RECLAIM	=	"SERVICE_RECLAIM"	;
	
		public	final	static	int	HTTP_CONTEXT_UNKNOWN		=	0	;
		public	final	static	int	HTTP_CONTEXT_NONE					=	1	;	//	Interactive
		public	final	static	int	HTTP_CONTEXT_CONNECT		=	2	;	//	HTTP	connect
		public	final	static	int	HTTP_CONTEXT_REQUEST		=	3	;	//	HTTP	request
		public	final	static	int	HTTP_CONTEXT_KEYWORDS	=	4	;	//	HTTP
keywords
	
		public	String	getCommand	()	;
	
		public	JSMList	getList	()	;
		public	JSMFieldList	getFieldList	()	;
	
		public	JSMClient	getClient	()	;
	
		public	byte[]	getByteArray	()	;
	
		public	Enumeration	getKeywords	()	;
		public	String	getKeywordValue	(String	key)	;
	
		public	boolean	isHTTP	()	;
		public	int	getHTTPContext	()	;
	
		public	Enumeration	getHTTPKeywords	()	;
		public	String	getHTTPKeywordValue	(String	key)	;
	
		public	boolean	equals	(String	command)	;

}
	
The	command	object	is	the	Java	object	equivalent	of	the	command	string
sent	by	the	JSM	client.
The	String	object	returned	from	the	getCommand	method	is	the	command
name.
The	equals	method	can	be	used	to	check	the	name	of	a	command.
The	byte	array	object	returned	by	the	getByteArray	method	is	the	byte	array
sent	by	the	JSM	client.
The	JSMList	object	returned	by	the	getList	method	is	the	working	list	sent
by	the	JSM	client.
The	JSMFieldList	object	returned	by	the	getFieldList	is	the	field	list	sent	by
the	JSM	client.
The	Enumeration	object	returned	by	the	getKeywords	method	is	an
enumeration	of	the	command	keywords.
The	String	value	returned	from	the	getKeywordValue	method	is	the	value
associated	with	the	keyword.
The	Enumeration	object	returned	by	the	getHTTPKeywords	method	is	an
enumeration	of	the	HTTP	keywords.
The	String	value	returned	from	the	getHTTPKeywordValue	method	is	the
value	associated	with	the	HTTP	keyword.

For	more	information,	refer	to	Command.

LANSA093.CHM::/lansa/intb5_0030.htm

6.2.4	JSMClient	Interface
	
public	interface	JSMClient
{
		public	String	getType	()	;
		public	Locale	getLocale	()	;
		public	String	getVersion	()	;
		public	String	getAddress	()	;
		public	String	getEncoding	()	;
	
		public	String	getDataLibrary	()	;
		public	String	getModuleLibrary	()	;
		public	String	getProgramLibrary	()	;
	
		public	String	getProcess	()	;
		public	String	getFunction	()	;
		public	String	getPartition	()	;
		public	String	getLanguage	()	;
	
		public	boolean	isLanguageDBCS	()	;
		public	boolean	isLanguageLeftToRight	()	;
		public	boolean	isLanguageRightToLeft	()	;
	
		public	String	getDateFormat	()	;
		public	String	getDateSeparator	()	;
		public	String	getTimeSeparator	()	;
	
		public	String	getJobType	()	;
		public	String	getJobName	()	;
		public	String	getJobUser	()	;
		public	String	getJobNumber	()	;
}
	

The	JSMClient	object	allows	access	to	information	from	the	client	program.

6.2.5	JSMResource	Interface
	
public	interface	JSMResource
{
		public	Object	getObject	(String	key)	;
	
		public	String	getResource	(String	key)	;
	
		public	Enumeration	getResourceNames	()	;
}
	

The	JSMResource	object	is	a	hash	table	of	resource	properties	and	values.
The	getObject	method	is	used	to	access	any	non	String	value	object.
The	key	is	always	trimmed	and	uppercase.

6.2.6	JSMStorage	Interface
	
public	interface	JSMStorage
{
		public	void	clear	()	;
		public	void	remove	(String	key)	;
	
		public	Object		getObject	(String	key)	;
		public	boolean	putObject	(String	key,	Object	value)	;
	
		public	boolean	containsKey	(String	key)	;
}
	

The	JSMStorage	object	is	a	hash	table	that	allows	object	to	be	stored	and
retrieved.
The	key	is	always	trimmed	and	uppercase.

6.2.7	JSMTrace	Interface
	
public	interface	JSMTrace
{
		public	void	flush	()	;
	
		public	int	getNumber	()	;
	
		public	File	createTraceFile	(String	fileName)	;
	
		public	void	print	(String	text)	;
		public	void	println	(String	text)	;
	
		public	void	println	(Object	object1,	Object	object2)	;
		public	void	println	(Object	object1,	Object	object2,	Object	object3)	;
		public	void	println	(Object	object1,	Object	object2,	Object	object3,	Object	object4)
	;
		public	void	println	(Object	object1,	Object	object2,	Object	object3,	Object	object4,	Object	object5)	;
		public	void	println	(Object	object1,	Object	object2,	Object	object3,	Object	object4,	Object	object5,	Object	object6)	;
		public	void	println	(Object	object1,	Object	object2,	Object	object3,	Object	object4,	Object	object5,	Object	object6,	Object	object7)	;
		public	void	println	(Object	object1,	Object	object2,	Object	object3,	Object	object4,	Object	object5,	Object	object6,	Object	object7,	Object	object8)	;
	
		public	void	print	(Throwable	throwable)	;
		public	void	print	(JSMCommand	command)	;
		public	void	print	(JSMCommand	command,	JSMResponse	response)	;
		public	void	print	(JSMCommand	command,	Throwable	throwable)	;
}
	

The	JSMTrace	object	allows	the	programmer	who	wrote	the	service	class	to
write	out	trace	information.
If	the	JSMTrace	object	is	not	null,	you	can	write	to	a	trace	file	because	it	exists.
String	text	is	written	to	the	trace	file	UTF-8	encoded.
The	println	method	appends	CRLF	(0x0D0x0A)	to	the	end	of	the	UTF-8
encoded	bytes.
It	is	recommended	not	to	embed	"\n"	in	the	String	text,	but	use	the	print	and
println	methods.

Example
	
				public	final	void	service	(JSMContainer	container)
				{
								m_trace	=	container.getServiceTrace	()	;
				}
	
				public	final	JSMResponse	command	(JSMCommand	command)	throws	JSMException
				{
								try
								{
												if	(m_trace	!=	null)
												{
																m_trace.print	(command)	;
												}
	
												JSMResponse	response	=	runCommand	(command)	;
	
												if	(m_trace	!=	null)
												{
																m_trace.print	(command,	response)	;
												}
	
												return	response	;
								}
								catch	(Throwable	t)
								{
												if	(m_trace	!=	null)
												{
																m_trace.print	(command,	t)	;
												}
	
												return	new	JSMResponse	(t)	;
								}
				}
	
				private	final
JSMResponse	runCommand	(JSMCommand	command)	throws	Exception
				{

							if	(command.equals	(command.SERVICE_LOAD))
							{
											return	new	JSMResponse	("Command	has	completed")	;
							}
						
							return	new	JSMResponse	(JSMResponse.ERROR,	"Unknown	command")	;
			}
	

6.2.8	JSMList	Interface
If	the	optional	working	list	argument	on	the	JSM_COMMAND	BIF	is	used,
then	the	contents	of	this	working	list	can	be	accessed	using	this	interface.
	
public	interface	JSMList
{
		public	int	getFieldCount	()	;
		public	int	getEntryCount	()	;
		public	int	getMaxEntryCount	()	;
	
		public	Enumeration	getNames	()	;
		public	Enumeration	getLongNames	()	;
	
		public	String[]	getNameArray	()	;
		public	String[]	getLongNameArray	()	;
	
		public	Enumeration	getFields	()	;
		public	JSMField[]	getFieldArray	()	;
	
		public	int	getIndex	(String	name)	;
		public	boolean	contains	(String	name)	;
	
		public	String[]	newEntryArray	()	;
		public	String[]	getEntryArray	(int	index)	;
	
		public	void	clear	()	;
		public	void	remove	(int	index)	;
		public	void	add	(String[]	data)	;
		public	void	set	(int	index,	String[]	data)	;
		public	void	insert	(int	index,	String[]	data)	;
}
	

6.2.9	JSMFieldList	Interface
If	the	SERVICE_EXCHANGE(*FIELD)	keyword	or	the	optional	working	list
argument	on	the	JSM_COMMAND	BIF	is	used,	then	function	fields	can	be
accessed	using	this	interface.
	
public	interface	JSMFieldList
{
		public	int	getFieldCount	()	;
	
		public	Enumeration	getNames	()	;
		public	Enumeration	getLongNames	()	;
	
		public	String[]	getNameArray	()	;
		public	String[]	getLongNameArray	()	;
	
		public	Enumeration	getFields	()	;
		public	JSMField[]	getFieldArray	()	;
	
		public	boolean	contains	(String	name)	;
	
		public	JSMField	getField	(String	name)	;
	
		public	String	getValue	(String	name)	;
		public	void	setValue	(String	name,	String	value)	;
}
	

6.2.10	JSMField	Interface
	
public	interface	JSMField
{
		public	String	getName	()	;
		public	String	getLongName	()	;
	
		public	DataType	getDataType	()	;
}
	

6.3	Java	Service	Manager	Classes
The	Java	Service	Manager	is	shipped	with	the	following	classes:
6.3.1	JSMResponse	Class
6.3.2	JSMException	Class
6.3.3	Miscellaneous	Helper	Class
6.3.4	Native	IBM	i	Classes
6.3.5	Utility	Classes

6.3.1	JSMResponse	Class
The	JSMReponse	object	is	used	to	return	a	response	to	the	JSM	client	program.
The	JSMResponse	object	contains	a	status,	message,	byte	array,	list	and	field
list	object.
The	Unicode	status	string	value	will	be	encoded	to	the	native	encoding	of	the
client	program.
The	status	value	is	copied	into	the	#JSMSTS	field	of	the	LANSA	Built-In
Function	API's.
The	Unicode	message	string	value	will	be	encoded	to	the	native	encoding	of	the
client	program.
The	message	value	is	copied	into	the	#JSMMSG	field	of	the	LANSA	Built-In
Function	API's.
For	Single-byte	environments,	Unicode	characters	encode	to	one	byte	for	each
character.
For	Double-byte	environments,	Unicode	characters	encode	to	one	byte	for	each
character	if	no	DBCS	characters	are	present.
If	DBCS	characters	are	present,	then	Shift-Out	and	Shift-In	characters	will	mark
the	change	from	one	byte	representing	a	character	to	two	bytes	representing	a
character.
If	the	byte	size	of	status	and	message	exceed	their	limits,	an	exception	will	be
thrown	during	the	send	response	stage.
The	byte	array	variable	content	is	copied	to	memory	allocated	within	the	JSM
client	program.	No	conversion	is	performed	on	the	data.
Each	new	JSM	command	call,	frees	the	memory	allocated	to	store	the	previous
command's	byte	array	response.
The	byte	array	memory	also	contains	the	HTTP	response	that	will	be	passed
onto	the	HTTP	server	when	a	JSM_CLOSE	is	performed.
A	JSM_CLOSE	call	also	frees	the	memory	allocated	by	a	byte	array	response.
It	is	recommended	to	always	call	JSM_CLOSE	before	ending	a	JSM	client
program.
The	internal	default	settings	are:

Status OK

Message zero	length	string	object

ByteArray zero	length	byte	array	object

List null	object

Fieldlist null	object

	

Two	static	final	string	variables	called	OK	and	ERROR	are	available	for	ease	of
use.
Example
	
		new	JSMResponse	("Ok	message")	;
		new	JSMResponse	(JSMResponse.OK,	"Ok	message")	;
		new	JSMResponse	(JSMResponse.ERROR,	"Error	message")	;
		new	JSMResponse	(exception)	;
	

6.3.1.1	Constructors
	
public	JSMResponse	(String	message)
public	JSMResponse	(String	status,	String	message)
public	JSMResponse	(String	status,	String	message,	JSMList	list)
public	JSMResponse	(String	status,	String	message,	JSMFieldList	fieldList)
public	JSMResponse	(String	status,	String	message,	byte[]	byteArray)
	
public	JSMResponse	(JSMList	list)
public	JSMResponse	(JSMFieldList	fieldList)
public	JSMResponse	(JSMFieldList	fieldList,	JSMList	list)
	
public	JSMResponse	(byte[]	byteArray)
	
public	JSMResponse	(Throwable	t)
	

If	the	constructor	parameter	is	a	Throwable	object	then	the	status	value	is
ERROR	and	the	message	value	comes	from	the	Throwable	object.
If	the	Throwable	object	is	an	instance	of	JSMException	then	the	status	and
message	values	come	from	the	JSMException	object.
If	the	Throwable	getMessage	method	returns	a	null,	then	the	message	value	is
the	class	name	of	the	Throwable	object.

6.3.1.2	Getter/Setter	Methods
	
public	final	String	getStatus	()
public	final	void	setStatus	(String	status)
	
The	status	parameter	value	is	trimmed	and	converted	to	uppercase.
If	the	status	parameter	is	null,	then	the	internal	status	value	is	set	to	ERROR.
	
public	final	String	getMessage	()
public	final	void	setMessage	(String	message)
	
If	the	message	parameter	is	null,	then	the	internal	message	value	is	set	to	a
zero	length	string.
	
public	final	JSMList	getList	()
public	final	void	setList	(JSMList	list)
	
public	final	JSMFieldList	getFieldList	()
public	final	void	setFieldList	(JSMFieldList	fieldList)
	
public	final	byte[]	getByteArray	()
public	final	void	setByteArray	(byte[]	byteArray)
	
If	the	byteArray	parameter	is	null,	then	the	internal	byteArray	value	is	a	zero
length	byte	array	object.

6.3.2	JSMException	Class
The	JSMException	object	is	used	to	return	a	response	to	the	JSM	client
program.
The	JSMException	object	contains	a	status	object.	The	message	object	is	stored
in	the	base	Exception	class.
The	Unicode	status	string	value	will	be	encoded	into	the	native	encoding	of	the
client	program.	This	status	string	value	is	copied	into	the	#JSMSTS	field	of	the
LANSA	BIF	API's.
The	status	value	cannot	exceed	20	bytes.
The	Unicode	message	string	value	will	be	encoded	into	the	native	encoding	of
the	client	program.	This	message	string	value	is	copied	into	the	#JSMMSG	field
of	the	LANSA	BIF	API's.
The	message	value	cannot	exceed	255	bytes	for	RDML	and	RPG	clients.
The	internal	default	settings	are:

status ERROR

	

6.3.2.1	Constructors
	
public	JSMException	(Throwable	t)
public	JSMException	(String	message)
public	JSMException	(String	status,	String	message)
	

The	main	purpose	of	JSMException	is	to	allow	a	response	to	be	returned	to	the
client	program	when	service	program	code	is	several	layers	down	and	it	is	not
easy	to	return	a	JSMResponse	object.
If	the	constructor	parameter	is	a	Throwable	object	then	the	status	value	is
ERROR	and	the	message	value	comes	from	the	Throwable	object.
If	the	Throwable	getMessage	method	returns	a	null,	then	the	message	value	is
the	class	name	of	the	Throwable	object.
Throwing	a	JSMException	or	returning	a	JSMResponse	object	are	the	two	ways
of	returning	data	and	control	to	the	client	program.
The	default	status	is	ERROR.

6.3.2.2	Other	Exception	Handling
An	exception	not	handled	by	the	service	program	code	will	be	caught	and	a
response	sent	back	to	the	client	program.
The	status	field	value	of	these	responses	is	always	the	string	FATAL.
The	message	field	value	is	useful	information	explaining	the	exception,	such	as
the	exception	message.
Possible	status	field	values:

OK The	OK	status	is	the	default	for	the	JSMResponse	class.

ERROR The	ERROR	status	is	the	default	for	the	JSMException	class.

FATAL An	exception	has	occurred.

User-
defined

The	JSMResponse	and	JSMException	status	field	can	be	set	by	the
service	program	code.

	

6.3.3	Miscellaneous	Helper	Class
	
The	static	method	JSMManager.getTemporaryDirectory	returns	the	temporary
directory	of	the	current	service	as	a	java.io.File	object.
The	temporary	directory	is	not	created	by	this	method.
The	name	of	this	temporary	directory	is	the	job	number	and	hash	code	of	the
service	thread.
Example
	
File	directory	=	JSMManager.getTemporaryDirectory	()	;
	

	
The	static	method	JSMManager.createTemporaryDirectory	returns	the
temporary	directory	of	the	current	service	as	a	java.io.File	object.
The	temporary	directory	is	created	by	this	method.
The	name	of	this	temporary	directory	is	the	job	number	and	hash	code	of	the
service	thread.
Example
	
File	directory	=	JSMManager.createTemporaryDirectory	()	;
	

	
The	static	method	JSMManager.createTemporaryFile	returns	the	temporary	file
as	a	java.io.File	object.
If	the	temporary	directory	does	not	exist	then	it	is	created,	but	the	temporary	file
is	not	created.
The	filename	only	needs	to	be	unique	within	the	service	program,	so	a	simple
name	like	"upload"	can	be	used.
To	read	and	write	to	the	file	use	the	FileInputStream	and	FileOutputStream
classes.
Example
	
File	file	=	JSMManager.createTemporaryFile	(filename)	;
	

	
The	temporary	directory	only	exists	between	a	JSM	OPEN	and	JSM	CLOSE.
The	temporary	directory	is	cleared	on	the	JSM	OPEN.
The	temporary	directory	is	also	cleared	on	the	JSMCLOSE.
There	is	no	need	for	the	programmer	to	clear	the	temporary	directory.
The	static	method	JSMManager.clearTemporaryDirectory	deletes	all	files	in	the
temporary	directory	and	then	deletes	the	temporary	directory.
Example
	
boolean	ok	=	JSMManager.clearTemporaryDirectory	()	;
	

	
When	a	service	thread	starts	a	call	to	the	JSMManager.clearTemporaryDirectory
method	is	performed	to	make	sure	no	previous	temporary	files	from	a	previous
thread	with	the	same	hash	code	exist.
The	CLRJSM	command	can	optionally	remove	all	files	and	directories	beneath
the	temp	and	trace	directory.

6.3.4	Native	IBM	i	Classes
Several	classes	have	been	developed	to	give	access	directly	to	IBM	i	data
objects.
These	classes	are	separate	from	JSM	and	are	located	in	the	jsmnative.jar	file.
The	Data	Queue,	Message	Queue	and	User	Space	classes	use	IBM	i	service
programs.
6.3.4.1	DataQueue	Class
The	DataQueue	class	allows	a	service	program	to	clear,	send	and	receive
messages	from	a	data	queue.
This	class	uses	the	native	IBM	i	service	program	JSMDTAQ.
6.3.4.2	MessageQueue	Class
The	MessageQueue	class	allows	a	service	program	to	send	information	text
messages	to	message	queues.
This	class	uses	the	native	IBM	i	service	program	JSMMSGQ.
6.3.4.3	UserSpace	Class
The	UserSpace	class	allows	a	service	program	to	create,	read	and	write	to	user
spaces.
This	class	uses	the	native	IBM	i	service	program	JSMUSRSPCE.

6.3.4.1	DataQueue	Class
Constructors
	
DataQueue	(String	library,	String	queue)
	

Methods
	
String	getEncoding	()
	
String	check	()
String	check	(String	authority)
	
int	getKeyLength	()
int	getMessageLength	()
	
boolean	clear	()
boolean	clear	(String	key)
	
boolean	write	(String	data)
boolean	write	(byte[]	data)
	
boolean	write	(String	key,	String	data)
boolean	write	(String	key,	byte[]	data)
	
byte[]	read	(int	waitTime)
byte[]	read	(String	key,	int	waitTime)
	
String	readString	(int	waitTime)
String	readString	(String	key,	int	waitTime)
	

Maximum	sizes

Queue	length 10	bytes

Library	length 10	bytes

Authority	length 10	bytes

Max	Key	length 256	bytes

Max	Message	length 64512	bytes

	

Comments
The	write	method	will	convert	the	Unicode	String	into	bytes	using	the	CCSID
of	the	job.
When	the	JNI	service	writes	the	byte	message	to	the	data	queue,	the	message	is
padded	with	white	space.
The	read	method	will	read	the	next	message	from	the	data	queue.
The	readString	method	will	read	the	next	message	from	the	data	queue	and
convert	it	to	a	Unicode	string.
The	data	queue	wait	time	on	the	read	method	only	takes	effect	if	it	is	the	first
thread	to	attempt	to	read	data.
The	check	method	returns	one	of	the	following	values.

Null Internal	Error

Zero	length	string OK

CPFnnnn i5/OS	message	Id

	

6.3.4.2	MessageQueue	Class
Constructors
	
No	constructors
	

Static	Methods
	
MessageQueue	queueSystemOperator	()
MessageQueue	queueActiveUsers	()
MessageQueue	queueHistoryLog	()
MessageQueue	queueUser	(String	user)
MessageQueue	queueSpecified	(String	queue,	String	library)
	

Methods
	
String	getEncoding	()
boolean	send	(String	message)
	

Maximum	Sizes
Queue	length 10	bytes

Library	length 10	bytes

Message	length 6000	bytes

	

Comments
The	send	method	will	convert	the	Unicode	String	into	bytes	using	the	CCSID	of
the	job.

6.3.4.3	UserSpace	Class
Constructors
	
UserSpace	(String	library,	String	name)
	

Methods
	
String	getEncoding	()
	
String	check	()
String	check	(String	authority)
	
boolean	create	()
boolean	create	(int	initialSize)
boolean	create	(int	initialSize,	String	description)
boolean	create	(int	initialSize,	String	authority,	String	description)
	
boolean	delete	()
	
boolean	write	(String	data)
boolean	write	(byte[]	data)
boolean	write	(int	startPosition,	String	data)
boolean	write	(int	startPosition,	byte[]	data)
	
byte[]	read	(int	readLength)
byte[]	read	(int	startPosition,	int	readLength)
	
String	readString	(int	readLength)
String	readString	(int	startPosition,	int	readLength)
	

Maximum	sizes

Library	length 10	bytes

Name	length 10	bytes

Authority	length 10	bytes

Description	length 50	bytes

Max	user	space	size 16776704	bytes

	

Defaults

Default	user	space	size 8192	bytes

Default	description "Created	by	Java	Service	Manager	(JSM)"

Default	create	authority *CHANGE

Default	check	authority *USE

Default	start	position 1

	

Public	static	constants

AUTHORITY_ALL *ALL

AUTHORITY_USE *USE

AUTHORITY_EXCLUDE *EXCLUDE

AUTHORITY_CHANGE *CHANGE

AUTHORITY_LIBCRTAUT *LIBCRTAUT

	

Comments
The	check	method	has	the	same	functionality	as	the	DataQueue	class.
The	write	method	will	convert	the	Unicode	String	into	bytes	using	the	CCSID
of	the	job.
The	read	method	will	read	the	specified	number	of	bytes	from	the	user	space.
The	readString	method	will	read	the	specified	number	of	bytes	from	the	user
space	and	return	it	as	a	Unicode	string.

6.3.5	Utility	Classes
Several	classes	have	been	developed	to	allow	handling	of	IBM	i	data	types.
DataType
All	DataType	classes	implement	the	DataType	interface.
	
public	int	getType	()
public	int	getByteLength	()
public	byte[]	toByteArray	(Object	data)
public	String	toString	(byte[]	byteArray)
	

6.3.5.1	DataTypeText
This	class	allows	a	Java	data	type	to	be	converted	to	an	alphanumeric	byte	array.
6.3.5.2	DataTypePacked
This	class	allows	a	Java	data	type	to	be	converted	to	a	packed	decimal	byte
array.
6.3.5.3	DataTypeZoned
This	class	allows	a	Java	data	type	to	be	converted	to	a	zoned	decimal	byte	array.

6.3.5.1	DataTypeText
Constructors
	
DataTypeText	(int	length,	String	encoding)
	

Methods
	
int	getType	()
int	getByteLength	()
String	getEncoding	()
byte[]	toByteArray	(Object	data)
String	toString	(byte[]	byteArray)
	

Example
	
DataType	dataType	=	new	DataTypeText	(50,	encoding)
byte[]	byteArray	=	dataType.toByteArray	("A	quick	brown	fox")	;
	

	

6.3.5.2	DataTypePacked
Constructors
	
DataTypePacked	(int	digits)
DataTypePacked	(int	digits,	int	scale)
	

Methods
	
int	getType	()
int	getByteLength	()
int	getDigits	()
int	getScale	()
byte[]	toByteArray	(Object	data)
String	toString	(byte[]	byteArray)
	

Example
	
DataType	dataType	=	new	DataTypePacked	(10,	2)
byte[]	byteArray	=	dataType.toByteArray	("240.00")	;
	

	

6.3.5.3	DataTypeZoned
Constructors
	
DataTypeZoned	(int	digits)
DataTypeZoned	(int	digits,	int	scale)
	

Methods
	
int	getType	()
int	getByteLength	()
int	getDigits	()
int	getScale	()
byte[]	toByteArray	(Object	data)
String	toString	(byte[]	byteArray)
	

Example
	
DataType	dataType	=	new	DataTypeZoned	(10,	2)
byte[]	byteArray	=	dataType.toByteArray	("240.00")	;
	

7.	Integrator	Studio
Integrator	Studio	is	an	integrated	desktop	application	that	allows	a	single	point
of	management	for	JSM	Server	instances	as	well	as	the	resources	used	by	your
Integrator	applications	or	projects.
Studio's	easy	to	use	graphical	interface	greatly	simplifies	the	configuration	and
setup	of	the	JSM	server	environment.	For	example,	developers	can	display
instance	information,	update	JSM	configuration	files	on	the	server,	download
trace	files,	and	publish	the	generated	XSL	files	to	the	JSM	server.
Using	Studio,	files	can	be	published	to	or	retrieved	from	the	instance	server
using	simple	drag	and	drop	operations	or	by	using	context	(pop-up)	menus.
Integrator	Studio	also	provides	a	single	point	of	access	for	the	Integrator	tools.

	

7.1	Get	Started	with	Studio
Starting	Studio
To	access	Integrator	Studio,	click	on	the	Integrator	Studio	program	icon	in	the
LANSA	folder	on	your	desktop.	This	icon	is	installed	with	the	Studio	software.
The	7.1.1	Studio	Main	Window	will	open.

Studio	Program	Short	Cut
The	program	short	cut	uses	the	LANSALauncher.exe	program,	which	uses
javaw.exe	to	execute	the	Studio	application.	The	command	line	for
LANSALauncher.exe	identifies	the	short	cut	to	be	used	for	Studio	and	should
not	be	modified.
	
"C:\Program	Files\LANSAxxx\Tools\LANSALauncher.exe"	/app=javaw.exe	/id=Studio	/lang=ENG
	

The	actual	command	line	arguments	for	javaw.exe	are	in	the
LANSALauncher.cfg	file,	located	in	the	same	folder	as	the
LANSALauncher.exe	program.
	
[id:Studio]
arg=-Djava.ext.dirs="<JRE_LIB_EXT>;.\lib\ext"
				-Djava.endorsed.dirs=".\lib\endorsed"	com.lansa.jsf.studio.JSFStudio
workdir=C:\PROGRA~1\LANSAxxx\INTEGR~1\Studio
	

The	LANSALauncher.cfg	file	can	be	edited	using	a	text	editor.
The	arg	entry	under	[id:Studio]	can	be	modified	to	change	the	Java
environment.
If	the	memory	requirement	of	the	JVM	needs	to	be	increased,	then	the	-Xms	and
-Xms	parameters	need	to	be	added	to	the	arg	entry.
	
[id:Studio]
arg=-Xms256m	-Xmx256m
				-Djava.ext.dirs="<JRE_LIB_EXT>;.\lib\ext"
				-Djava.endorsed.dirs=".\lib\endorsed"	com.lansa.jsf.studio.JSFStudio
workdir=C:\PROGRA~1\LANSAxxx\INTEGR~1\Studio
	

The	JRE	lib\ext	directory	contains	additional	Java	jar	files.
	
JCA/JCE	providers	for	Java	Cryptography	APIs
	
		sunjce_provider.jar
		sunec.jar
		sunpkcs11.jar
		sunmscapi.jar
	
JNDI	DNS	provider
	
		dnsns.jar
	
Non	US	English	locale	resources
	
		localedata.jar	
	

Shared	Studio	Projects
To	allow	users	to	access	shared	projects,	specify	the	shared	directory	as	a	Studio
program	argument.	Modify	an	existing	[id:Studio]	section	in	the
LANSALauncher.cfg	file	and	add	the	shared	directory	to	the	end	of	the	arg
entry	or	copy	an	existing	Studio	short	cut,	change	the	id	to	Studio2,	copy	the
existing	[id:Studio]	entries,	paste	them,	rename	the	new	section	to	[id:Studio2]
and	add	the	shared	directory	to	the	end	of	the	program	arg	entry	under	the
[id:Studio2]	section.
	
			com.lansa.jsf.studio.JSFStudio	"s:\studio"

	
A	workspace	sub	directory	and	Studio.xml	file	will	be	created	in	the	specified
directory.
A	temp	sub	directory	used	for	Drag	and	Drop	operations	will	be	created	in	the
program's	current	or	start	in	directory	on	the	local	drive.
By	default	Studio	uses	the	current	directory	or	start	in	directory	as	its	working
directory.

Prerequisites
Before	you	begin	to	use	Integrator	Studio,	check	that	you	have	the	following:

Do	you	have	a	TCP/IP	connection	to	the	JSM	server	and	HTTP	server?
If	you	are	accessing	a	JSM	Instance,	has	the	JSM	server	been	started?	To
communicate	with	the	JSM	server,	the	JSM	must	be	running.	The	instance's
manager.properties	file	should	also	contain	entries	for
studio.client.address	and	possibly	studio.authentication	(see	Java
Service	Manager	Console).

its:LANSA093.CHM::/lansa/INTB3_0011.htm

7.1.1	Studio	Main	Window
Once	opened,	the	Studio	main	window	will	appear	something	like	this:

The	Studio	Workspace	is	a	tree	containing	three	main	sections:
Projects
Servers
Services

Use	the	context	(pop-up)	menu	available	on	each	of	these	nodes	to	create	a	new
Project,	Server	or	Service.
Use	the	context	menu	available	on	each	child	node	to	open,	rename,	delete	or	to
perform	some	other	task	associated	with	the	selected	node.

7.1.2	Set	Java	Compiler	and	Java	Runtime
Wizards	that	generate	and	compile	Java	code	require	a	Java	compiler,	such	as
Oracle's	Java	SDK,	to	be	installed	on	the	PC.	Use	the	Set	option	to	specify	the
location	of	the	javac	and	java	programs.

	

7.2	Use	Studio	with	Projects
A	Studio	project	is	a	developer's	collection	of	files	related	to	a	particular
application	or	task	using	LANSA	Integrator.	You	will	create	projects	to	help	you
manage	the	Integrator	development	environment.	A	project	is	like	a	working
space	where	you	can	organize	and	store	your	files.
Projects	are	also	very	important	when	configuring	properties	for	the	JSM	server.
A	Project	will	uniquely	tag	a	section	of	a	properties	file	to	store	settings	specific
to	your	project.	You	can	retrieve	and	publish	settings	specific	to	a	project	rather
than	editing	the	whole	properties	file.
The	directory	structure	of	a	project	reflects	the	structure	of	a	JSM	Instance,	so
that	files	can	be	organized	and	easily	transferred	to	or	from	the	instance.
A	project	can	be	associated	with	one	or	more	JSM	servers.

	

7.3	Use	Studio	with	Servers
Studio	allows	you	to	view	the	contents	of	the	instance	directory	of	a	JSM	server.
Using	Studio,	you	can	transfer	the	JSM	instance	files	to	and	from	the	local
machine.
When	using	Studio	to	work	with	JSM	servers,	you	have	two	choices:
1.		Access	the	JSM	server	using	a	project.

2.		Access	the	JSM	server	directly.

7.4	Use	Studio	with	Services
Studio	allows	you	to	maintain	the	contents	of	the	JSMDirect	and	JSMProxy
databases	(DC@W29	and	DC@W30	on	IBM	i;	dc_w29.txt	and	dc_w30.txt
on	Linux	and	Windows).

Click	the	right	mouse	button	on	any	entry	in	the	Direct	Services	or	Proxy
Services	tab	to	display	the	pop-up	menu.
If	the	database	table	is	empty,	then	right	click	on	the	table	column	to	display	the
pop-up	menu	with	a	New	menu	item

7.5	Use	Studio	to	check	sections
Studio	allows	you	to	maintain	the	Studio	sections	in	the	system	and	service
property	files.
These	Studio	property	files	are	located	in	the	system	and	properties	directory.
Studio	can	check	and	remove	unassigned	sections	at	a	directory	or	individual
file	level.
For	more	information	about	sections	refer	to	7.6.3	Publish	and	Retrieve.
To	check	all	property	files	in	the	system	directory,	use	the	popup	menu	available
from	the	directory	node.

To	check	all	property	files	in	the	properties	directory,	use	the	popup	menu
available	from	the	directory	node.

	
To	check	an	individual	file,	use	the	popup	menu	available	from	the	file	node.
	

7.6	Projects
A	Studio	project	is	a	collection	of	files	related	to	a	particular	task	or	application
using	LANSA	Integrator.	The	directory	structure	of	a	project	reflects	the
structure	of	a	JSM	Instance,	so	that	files	can	be	organized	and	published	to	the
instance	easily.	A	single	project	can	be	associated	with	more	than	one	JSM
Instance.	A	JSM	Instance	can	be	used	by	many	different	projects.
Projects	are	fully	integrated	with	all	the	Studio	Tools.	When	a	tool	is	launched
from	Studio,	it	will	place	any	files	it	creates	in	the	appropriate	place	in	the
current	Studio	project.
Projects	also	allow	you	to	uniquely	tag	configuration	settings	within	a	properties
file	used	by	a	JSM	Instance	in	order	to	simplify	setup	tasks.

	

7.6.1	New	Project
To	create	a	new	project,	right	click	the	Projects	node	in	the	Studio	Workspace
panel.

Enter	the	new	project	name	using	the	prompt	dialog.

	
The	Test	project	will	be	created	and	opened	and	this	project	will	become	the
selected	tab.	A	project	Id	is	created	using	the	System	date	and	time.	This	project
Id	is	used	to	mark	Studio	sections	in	the	JSM	properties	files	and	is	displayed
after	the	project	name	on	the	tab	label.

	

7.6.2	Open	Project
From	the	Studio	Workspace	panel	select	the	project	to	open	and	double-click	or
use	the	pop-up	menu	to	open	the	project.

A	new	panel	containing	the	project	is	created	and	made	the	selected	tab.

7.6.3	Publish	and	Retrieve
When	a	project	and	server	are	opened	it	possible	to	publish	and	retrieve	sections
from	the	server's	service	properties	files.	If	the	file	is	not	a	properties	file	or	a
properties	file	not	located	in	the	properties	or	system	sub	directory	then	the
whole	file	is	copied	across	to	the	server	instance	directory.	The	file's	directory
structure	is	maintained	and	child	sub	directories	are	created.
The	following	image	illustrates	how	the	SOAPAgentService.properties	entries
are	published	to	the	server's	SOAPAgentService.properties	file.

It	is	also	possible	to	retrieve	a	project's	properties	section	by	selecting	the
properties	file	from	the	server	panel.

The	following	image	illustrates	how	to	publish	a	file	to	the	server.

The	following	image	illustrates	how	to	retrieve	a	file	from	the	server.

7.6.4	Deployment
It	is	good	practice	to	keep	project	files	that	need	to	be	published	to	a	server	in
the	project's	integrator	folder	for	individual	publishing	during	the	development
stage.	When	deploying	all	these	files	to	a	server	for	testing	or	production	it	is
good	practice	to	create	a	deployment	file.

	
Enter	the	name	of	the	new	deployment	file.	The	'.zip'	extension	will	be	added
automatically.

	
The	deployment	archive	file	contains	all	files	from	the	integrator	folder.

An	additional	'deployment.txt'	file	is	added	as	an	audit.

To	publish	the	deployment	file,	open	a	server	instance	and	select	the	deploy	file
menu	options.

Part	of	a	deployment	could	require	files	and	directories	to	be	deleted	from	the

server	instance.
An	upgrade-instruction.txt	file	can	be	created	to	add	instructions	to	delete	files
and	directories.
The	upgrade	instructions	need	to	be	created	before	creating	the	deployment	file
so	this	file	is	included	in	the	deployment.
After	the	deployment	file	as	been	deployed,	the	JSM	instance	needs	to	be
rebooted	so	the	upgrade	instructions	are	applied	to	the	instance.

	

	

7.7	Servers
Studio	allows	you	to	view	the	contents	of	the	instance	directory	of	the	JSM
server	and	to	transfer	files	to	and	from	the	local	machine.	Usually	an	instance	is
associated	with	a	Studio	project,	although	you	can	also	open	an	instance	directly
without	opening	a	project.

	

7.7.1	New	Server
To	create	a	new	server,	right	click	the	Servers	node	in	the	Studio	Workspace
panel.

Enter	the	IP	address	or	domain	name	of	the	JSM	server.	The	default	port	is
4561.

Enter	the	server	name	that	will	appear	in	the	Studio	Workspace	Servers	section.

The	JSM	server	does	not	need	to	be	running	to	create	a	new	server	entry.

7.7.2	Open	Server
From	the	Studio	Workspace	panel	select	the	server	to	open	and	double-click	or
use	the	pop-up	menu	to	open	the	server.
The	JSM	server	needs	to	be	running	for	the	server	to	be	opened.
The	instance's	manager.properties	file	should	also	contain	entries	for
studio.client.address	and	possibly	studio.authentication	(see	Java	Service
Manager	Console).	Also,	check	that	the	installed	versions	of	Studio	and	the
JSM	are	the	same	(in	particular,	check	that	the	jsmide.jar	file	is	the	same).

A	new	panel	containing	the	opened	server	is	created	and	made	the	selected	tab.

its:LANSA093.CHM::/lansa/INTB3_0011.htm

To	copy	one	of	these	files	to	the	local	file	system,	either	drag	the	file	from
Studio	and	drop	it	on	the	Windows	desktop	or	an	Explorer	window.

7.8	Services
The	HTTP	programs	JSMDirect	and	JSMProxy	use	database	files	to	associate
service	application	to	LANSA	function.	Studio	allows	you	to	maintain	these
database	files.
On	IBM	i,	the	DC@W29	and	DC@W30	files	are	used.
On	Linux	and	Windows,	files	dc_w29.txt	and	dc_w30.txt	are	used.
Studio	accesses	these	files	using	the	HTTP	server	program	JSMAdmin.

	

7.8.1	New	Service
To	create	a	new	service,	right	click	the	Services	node	in	the	Studio	Workspace
panel.

Enter	the	IP	address	or	domain	name	of	the	HTTP	server.	The	default	port	is	80.

Enter	the	jsmadmin	program	to	be	used	to	access	the	database	files	The	default
program	is	/cgi-bin/jsmadmin.	Use	/cgi-bin/jsmadmin.exe	for	Windows	IIS.

Enter	the	service	name	that	will	appear	in	the	Studio	Workspace	Serices	section.

The	HTTP	server	does	not	need	to	be	running	to	create	a	new	service.

7.8.2	Open	Service
From	the	Studio	Workspace	panel	select	the	service	to	open	and	double-click	or
use	the	pop-up	menu	to	open	the	service.
The	HTTP	server	needs	to	be	configured	and	running	for	the	server	to	be
opened.

New	panels	containing	the	JSMDirect	services	and	JSMProxy	services	are
created	and	added	to	the	tabbed	pane.

New
The	New	option	will	allow	you	to	create	a	new	database	entry.

	
Edit
The	Edit	option	will	allow	you	to	modify	the	currently	selected	entry.	The
Service	and	Host	may	not	be	changed.	The	values	entered	are	not	validated.

Copy
The	Copy	option	will	copy	the	currently	selected	entries	to	the	clipboard,	in

comma-separated	format.	This	can	be	pasted	in	any	text	editor,	or	in	an	email.
Send	To
The	Send	To	option	will	copy	the	selected	entry	to	another	database.
Delete
The	Delete	option	will	remove	the	currently	selected	entry.	You	will	be	asked	to
confirm	the	deleted	record.

7.9	Solutions
Within	a	Studio	project	one	or	more	solution	group	folders	can	be	created.
These	group	folders	contain	the	files	used	by	the	Studio	tools.

	

7.9.1	New	Solution
To	create	a	new	solution,	right	click	the	Solution	node	in	the	Project	panel.

From	the	Tool	combo,	selected	the	required	tool,	in	this	example	the	Text	File
Editor	has	been	selected.

Because	the	Solution	folder	contains	no	group	folders,	the	Group	Combo	is

empty,	enter	the	name	of	the	group	folder	that	will	be	created.
Enter	the	name	of	the	file	to	be	used	by	the	Text	File	Editor	there	is	no	need	to
add	an	extension.

Because	the	Group	folder	does	not	exist	you	will	be	prompted	to	confirm	its
creation.

The	Sample	folder	is	created	and	the	message.txt	is	also	created	and	opened	by
the	Text	File	Editor.

When	the	group	folder	is	created,	several	sub	folders	are	also	created.	These
folders	are	used	to	manage	content	created	by	SOAP	Wizard,	XML	Binding
Wizard,	JSON	Binding	Wizard	and	XSL	Compiler	tools.

Once	a	file	is	created	or	copied	into	the	group	folder,	Studio	can	be	used	to
maintain	that	resource.

A	solution	can	also	be	created	from	the	group	folder	node.	In	this	case	the
Group	combo	will	be	set	to	the	selected	Group	folder.

	

7.10	XML	Editor
The	XML	Editor	is	started	from	Studio.	It	is	recommended	that	you	use	Studio
to	manage	your	projects	and	associated	files.
The	XML	Editor	allows	files	to	be	converted	from	one	encoding	to	another
encoding.
When	reading	a	file,	the	XML	editor	can	auto-detect	the	encoding	of	the	XML
source	and	convert	the	byte	stream	to	Unicode	characters.
If	an	encoding	has	been	selected,	this	value	will	be	used	to	convert	the	byte
stream	to	Unicode	characters	and	the	XML	declaration	will	be	modified	to	suit
the	selected	encoding.
When	saving	to	a	file	and	the	encoding	is	auto-detect,	the	XML	declaration
encoding	will	be	used	to	select	a	Java	encoding	to	convert	the	Unicode
characters	to	a	byte	stream.
If	an	encoding	has	been	selected,	this	value	will	be	used	to	convert	the	Unicode
characters	to	a	byte	stream	and	the	XML	declaration	encoding	will	be	modified
to	suit	the	selected	Java	encoding.
Refer	to	IANA	Encodings	for	more	details.

	

its:lansa093.CHM::/lansa/intb7_0510.HTM

7.11	XML	Viewer
The	XML	Viewer	is	started	from	Studio.	It	is	recommended	that	you	use	Studio
to	manage	your	projects	and	associated	files.
The	XML	Viewer	is	used	to	view	XML	files	in	a	hierarchical	tree	format.
The	XML	Viewer	is	associated	to	the	file	extension	'.xml'	and	is	available	as	an
associated	application	from	Studio.
A	popup	menu	is	available	to	expand	and	collapse	elements	and	to	enable	the
displaying	of	the	associated	namespace	URI	with	the	element	and	attribute
names.
	

	

	

7.12	XMLSchema	Viewer
The	XMLSchema	Viewer	is	started	from	Studio.	It	is	recommended	that	you	use
Studio	to	manage	your	projects	and	associated	files.
The	XMLSchema	Viewer	is	used	to	view	XML	schema	files	in	a	hierarchical
tree	format.
The	XMLSchema	Viewer	is	associated	to	the	file	extension	'.xsd'	and	is
available	as	an	associated	application	from	Studio.
Top-level	elements	are	colored	orange.
A	popup	menu	is	available	to	expand	and	collapse	elements,	enable	the
displaying	of	the	associated	namespace	URI	with	the	element	and	attribute
names	and	creating	a	sample	of	XML.
	

	

7.13	Trace	Viewer
The	Trace	Viewer	is	started	from	Studio.	It	is	recommended	that	you	use	Studio
to	manage	your	projects	and	associated	files.
The	Trace	Viewer	is	used	to	view	SERVICE.TXT	and	TRANSPORT.TXT	trace
files	in	a	hierarchical	tree	format.
A	popup	menu	is	available	to	expand	and	collapse	elements.

	

	

7.14	Text	Editor
The	Text	Editor	is	started	from	Studio.	It	is	recommended	that	you	use	Studio	to
manage	your	projects	and	associated	files.
The	Text	Editor	is	used	to	maintain	text	files.	The	default	selected	encoding	is
UTF-8.
If	an	encoding	has	been	selected,	this	value	will	be	used	to	convert	the	byte
stream	to	Unicode	characters.
When	saving	to	a	file	the	selected	encoding	is	used	to	convert	the	Unicode
characters	to	a	byte	stream.

	

7.15	SEF	Editor
The	SEF	Editor	is	started	from	Studio.	It	is	recommended	that	you	use	Studio	to
manage	your	projects	and	associated	files.
The	SEF	Editor	is	used	to	view	EDI	Standard	Exchange	Format	(SEF)	files.
The	SEF	Editor	is	associated	to	the	file	extension	'.sef'	and	is	available	as	an
associated	application	from	Studio.

	

7.16	Property	Editor
The	Property	Editor	is	started	from	Studio.	It	is	recommended	that	you	use
Studio	to	manage	your	projects	and	associated	files.
The	Property	Editor	is	used	to	maintain	service	properties	files.
The	encoding	of	service	properties	files	is	UTF-8	and	this	is	the	default	selected
encoding.
If	an	encoding	has	been	selected,	this	value	will	be	used	to	convert	the	byte
stream	to	Unicode	characters.
When	saving	to	a	file	the	selected	encoding	is	used	to	convert	the	Unicode
characters	to	a	byte	stream.

	

7.17	XSL	Compiler
The	XSL	Compiler	is	started	from	Studio.	It	is	recommended	that	you	use
Studio	to	manage	your	projects	and	associated	files.
The	XSL	Compiler	allows	XSL	files	to	be	compiled	into	Java	byte	code	classes.
The	XML	transformers	integrated	into	the	JSM	services	will	use	the	Java	class
instead	of	the	XSL	file	to	perform	transformation	on	the	XML	source.
Only	table	entries	that	have	been	checked	will	be	compiled	and	archived	in	to
the	JAR	file.

To	add,	delete	or	edit	an	entry,	right	click	on	table	to	access	the	pop-up	menu.

Only	XSL	files	from	the	xsl-source	sub	directory	are	displayed	in	the	XSL	File
combo.

	

7.18	PKI	Editor
The	PKI	Editor	is	started	from	Studio.	It	is	recommended	that	you	use	Studio	to
manage	your	projects	and	associated	files.
The	PKI	Editor	is	used	to	create	X.509	certificates,	which	are	used	by	the	SMTP
mail	service	for	S/MIME	support	and	AS2	services	for	content	encoding	and
decoding.	For	more	details,	refer	to	7.18.1	Introduction	to	Certificates.
The	PKI	Editor	can	be	used	to	perform	the	following	tasks.

7.18.2	Create	a	PKI	Project
7.18.3	Create	a	Certificate	Authority
7.18.4	Create	a	Certificate	Request
7.18.5	Create	a	Certificate	Client
7.18.6	PKI	Editor	Configuration
7.18.7	View	Certificate
7.18.8	View	Certificate	Request
7.18.9	View	Remote	Host
7.18.10	View	Certificates	and	Keystores	using	Studio
7.18.11	Keystore	Management
7.18.12	PEM	Format
7.18.13	IBM	i	Digital	Certificate	Manager	Interoperability

7.18.1	Introduction	to	Certificates
What	is	a	Certificate?
A	certificate	is	a	public	key	labeled	with	information	to	identify	its	owner
(Subject	Name)	and	to	control	its	use.
What	is	self-signed	certificate?
A	self-signed	certificate	is	one	for	which	the	Issuer	Name	(signer)	is	the	same	as
the	Subject	Name	(owner).
What	makes	a	certificate	a	CA	certificate?
When	it	is	used	to	issue	other	certificates.
It	also	contains	information	(extensions)	that	support	its	roles	of	issuing
certificates	(CRLDistPoint,	BasicConstraints	etc...)
It	should	also	contain	the	BasicConstraints	extension	with	the	CA	flag	set	to
true.
Root	or	top-level	CA	certificates	are	self-signed.
What	is	the	certificate	thumbprint
The	certificate	thumbprint	is	a	hash	calculated	on	the	whole	certificate.
This	thumbprint	is	calculated	every	time	a	certificate	is	displayed	-	it	is	not
contained	in	the	certificate.
What	goes	into	a	Certificate?
The	X.509	standard	defines	what	information	can	go	into	a	certificate,	and
describes	how	to	write	it	down	(the	data	format).
All	X.509	certificates	have	the	following	data,	in	addition	to	the	signature:

Version Identifies	which	version	of	the	X.509	standard	applies	to	this
certificate.	
This	affects	what	information	can	be	specified	in	it.

Serial
Number

The	entity	that	created	the	certificate	is	responsible	for
assigning	it	a	serial	number	to	distinguish	it	from	other
certificates	it	issues.	This	information	is	used	in	numerous
ways,	for	example	when	a	certificate	is	revoked	its	serial
number	is	placed	in	a	Certificate	Revocation	List	(CRL).

Signature
Algorithm

The	algorithm	used	by	the	CA	to	sign	the	certificate.

Identifier
Issuer
Name

The	name	of	the	entity	that	signed	the	certificate.
This	is	normally	a	CA.
Using	this	certificate	implies	trusting	the	entity	that	signed	this
certificate.
Note	that	in	some	cases,	such	as	root	or	top-level	CA
certificates,	the	issuer	signs	its	own	certificate.

Validity
Period

Each	certificate	is	valid	only	for	a	limited	amount	of	time.
This	period	is	described	by	a	start	date	and	time	and	an	end
date	and	time,	and	can	be	as	short	as	a	few	seconds	or	almost
as	long	as	a	century.
The	validity	period	chosen	depends	on	a	number	of	factors,
such	as	the	strength	of	the	private	key	used	to	sign	the
certificate	or	the	amount	one	is	willing	to	pay	for	a	certificate.
This	is	the	expected	period	that	entities	can	rely	on	the	public
value,	if	the	associated	private	key	has	not	been	compromised.

Subject
Name

The	name	of	the	entity	whose	public	key	the	certificate
identifies.
This	name	uses	the	X.500	standard,	so	it	is	intended	to	be
unique	across	the	Internet.
This	is	the	Distinguished	Name	(DN)	of	the	entity,	for
example,
CN=Road	Runner,	OU=Rocket	Powered	Systems,	O=Acme
Corportation,	C=AU
(These	refer	to	the	subject's	Common	Name,	Organizational
Unit,	Organization,	and	Country.)

Subject
Public
Key

The	public	key	of	the	entity	being	named,	together	with	an
algorithm	identifier	that	specifies	which	public	key	crypto
system	this	key	belongs	to	and	any	associated	key	parameters.

	

Versions
Version	1	has	been	available	since	1988,	is	widely	deployed,	and	is	the	most
generic.
Version	2	introduced	the	concept	of	subject	and	issuer	unique	identifiers	to

handle	the	possibility	of	reuse	of	subject	and/or	issuer	names	over	time.	Most
certificate	profile	documents	strongly	recommend	that	names	not	be	reused,	and
that	certificates	should	not	make	use	of	unique	identifiers.	Version	2	certificates
are	not	widely	used.
Version	3	is	the	most	recent	(1996)	and	supports	the	notion	of	extensions,
whereby	anyone	can	define	an	extension	and	include	it	in	the	certificate.
Some	common	extensions	in	use	today	are:

KeyUsage	(limits	the	use	of	the	keys	to	particular	purposes	such	as	"signing-
only")
AlternativeNames	(allows	other	identities	to	also	be	associated	with	this
public	key,	e.g.	DNS	names,	email	addresses,	IP	addresses)

Extensions	can	be	marked	critical	to	indicate	that	the	extension	should	be
checked	and	enforced/used.
For	example,	if	a	certificate	has	the	KeyUsage	extension	marked	critical	and	set
to	"keyCertSign"	then	if	this	certificate	is	presented	during	SSL	communication,
it	should	be	rejected,	as	the	certificate	extension	indicates	that	the	associated
private	key	should	only	be	used	for	signing	certificates	and	not	for	SSL	use.
Encoding	Format
All	the	data	in	a	certificate	is	encoded	using	two	related	standards	called
ASN.1/DER.	Abstract	Syntax	Notation	1	describes	data.	The	Definite	Encoding
Rules	describe	a	single	way	to	store	and	transfer	that	data.
In	the	X.500,	X.509	and	X.520	standards	the	structures	are	specified	with
Abstract	Syntax	Notation	1	(ASN.1)	and	are	encoded	for	transport	using	the
Basic	Encoding	Rules	(BER)	that	encode	ASN.1	as	8-bit	binary	data.
In	addition,	when	they	represent	data	to	be	signed,	as	they	do	within	certificate
management,	the	signature	is	calculated	on	the	data	encoded	using
Distinguished	Encoding	Rules	(DER:	a	subset	of	BER	which	has	the	property
that	the	same	data	always	encodes	to	the	same	binary	representation).
Information	stored	in	a	certificate	is	a	sequence	of	ASN.1	Objects	each	labeled
with	an	object	Identifier	(OID).
An	object	identifier	is	a	string	of	numbers	identifying	a	unique	object,	for
example,	a	certificate	extension	or	a	company's	certificate	practice	statement.
OIDs	are	controlled	by	the	International	Standards	Organization	(ISO)
registration	authority.
In	some	cases,	this	authority	is	delegated	by	ISO	to	regional	registration

authorities.
The	OID	is	a	unique	sequence	of	hierarchical	numbers	in	a	dot	notation.
Top	level	OID	assignments:
					 0 ITU-T	assigned

	 1 ISO	assigned

	 2 Joint	ISO/ITU-T	assignment

Secondary	level	assignments:
					 2.5 X.500	Directory	Services

Other	level	assignments:
					 2.5.4 Object	Identifiers	for	X.500	attributes	type

	 2.5.4.3 Common	Name

	 2.5.4.5 Serial	Number

	 2.5.4.6 Country	Name

	 2.5.4.7 Locality

	 2.5.4.8 State

	 2.5.4.10 Organization

	 2.5.4.11 Organizational	Unit

					 2.5.29 Object	Identifiers	for	Version	3	extensions

	 2.5.29.14 Subject	Key	Identifier

	 2.5.29.15 Key	Usage

	 2.5.29.17 Subject	Altervative	Name

	 2.5.29.19 Basic	Constraints

	 2.5.29.35 Authority	Key	Identifier

Certificate	viewed	using	a	generic	BER	viewer:

Critical	and	Non-critical	extensions
If	an	extension	is	critical	it	can	only	be	used	for	the	purposes	indicated.
If	an	extension	is	non-critical	it	is	an	advisory	field	and	not	restrictive.
	
Standard	CA	Key	Usage	Dialog:

	
Standard	Certificate	Key	Usage	Dialog:

Key	Usage
The	critical	key	usage	extension	controls	how	the	public	key	can	be	used.
RFC	2459	Internet	X.509	Public	Key	Infrastructure	Certificate	and	CRL	Profile
describe	the	role	of	the	different	key	usage	extensions	bits.
CRL	Sign	is	enabled	when	the	public	key	is	used	for	verifying	a	signature	on	a
CRL.	Enable	for	CA	certificates.
Data	Encipherment	is	enabled	when	the	public	key	is	used	for	enciphering
user	data,	other	than	cryptographic	keys.
Decipher	Only	and	Key	Agreement	are	enabled,	when	the	public	key	is	being
used	only	for	deciphering	data	while	performing	key	agreement.
Digital	Signature	is	enabled	when	the	public	key	is	used	with	a	digital
signature	mechanism	to	support	security	services	other	than	non-repudiation,
key	certificate	signing,	or	CRL	signing.	Enable	for	SSL	client	certificates	and
S/MIME	signing	certificates.
Encipher	Only	and	Key	Agreement	are	enabled,	when	the	public	key	is	being
used	only	for	enciphering	data	while	performing	key	agreement.
Key	Agreement	is	enabled	when	the	public	key	is	used	for	key	agreement.
Key	Certificate	Sign	is	enabled	when	the	public	key	is	used	for	verifying	a
signature	on	certificates.	Enable	for	CA	certificates.

Key	Encipherment	is	enabled	when	the	public	key	is	used	for	key	transport.
Enable	for	SSL	server	certificates	and	S/MIME	encryption	certificates.
Non	Repudiation	is	enabled	when	the	public	key	is	used	to	verify	digital
signatures.	Enable	for	S/MIME	signing	certificates	and	object-signing
certificates.

7.18.2	Create	a	PKI	Project
1.		From	the	Project	Solutions	node	select	the	New	Solution	menu	item.
2.		Select	the	PKI	Cryptography	Wizard	tool	and	enter	or	select	the	Group	folder
to	receive	the	project	file.

3.		Enter	the	project	File	name.	The	extension	'.pki.prj'	is	added	automatically.
	

7.18.3	Create	a	Certificate	Authority
1.		Select	Certificate	Authority	from	the	Create	menu:

2.		Enter	the	subject	name	information.	The	subject	name	information	is	also
used	for	the	issuer	name.

3.		Select	the	key	usage:

4.		Enter	the	certificate	file,	private	key	file,	password,	serial	number	and	expiry
date:

Create	Certificate	Authority	processing	steps
1.		Create	private	and	public	key	(save	private	key	in	PKCS#8	format)
2.		Create	X500	Name	(X509	certificate	subject)
3.		Set	valid	date	range
4.		Set	serial	number
5.		Set	basic	constraint	to	CA,	unlimited	path	length	and	flag	critical

6.		Set	key	usage	extension	and	flag	critical
7.		Set	subject	alternate	name	extension	(email)
8.		Set	subject	key	id	extension
9.		Set	authority	key	id	extension
10.		Sign	and	save	X509	certificate	(This	is	self-signed,	subject	and	issuer	are
the	same).

7.18.4	Create	a	Certificate	Request
1.		Select	Certificate	Request	from	the	Create	menu:

2.		Enter	the	subject	name	for	the	certificate:

3.		Select	the	key	usage	for	this	certificate:

4.		Enter	the	certificate	request	file,	private	key	file	and	password:

Create	Certificate	Request	processing	steps
1.		Create	private	and	public	key	(save	private	key	PKCS#8	format)
2.		Create	X500	Name	(X509	certificate	subject)
3.		Create	certificate	request
4.		Set	basic	constraint	and	flag	critical
5.		Set	key	usage	extension	and	flag	critical
6.		Set	subject	alternate	name	extension	(email)
7.		Set	subject	key	id	extension

8.		Sign	and	save	request	(PKCS#10	format).
The	request	contains	the	subject's	name	and	public	key,	and	is	signed	with	the
subject's	private	key.
Note	that	the	subject's	private	key	is	used	only	to	produce	a	signature	when	the
request	is	output,	and	is	not	actually	stored	with	the	request.
The	file	containing	the	certificate	request	(DER	encoded)	can	be	converted	to
PEM	format	and	sent	to	a	CA	authority.	The	CA	authority	will	use	the	certificate
request	to	create	a	certificate	signed	with	its	public	certificate.
Or	you	can	create	your	own	certificate.	You	do	not	need	to	convert	the	file	for
this	stage.

7.18.5	Create	a	Certificate	Client
1.		Select	Certificate	Client	from	the	Create	menu:

2.		In	the	Certificate	Client	dialog,	enter	CA	certificate	file,	CA	private	key	file,
password,	certificate	request	file,	serial	number,	number	of	days	for	which	the
certificate	is	valid	and	the	file	name	of	the	client	certificate	to	be	created.

	

Create	Certificate	Client	processing	steps
1.		Read	CA	private	key	and	certificate
2.		Read	certificate	request	(X509	certificate	subject)
3.		Create	certificate
4.		Set	valid	days
5.		Set	serial	number
6.		Sign	and	save	X509	certificate	(signed	by	CA).

7.18.6	PKI	Editor	Configuration
Select	the	encryption	algorithm	and	key	size
Your	selection	really	depends	on	your	application:

How	long	does	the	data	need	to	be	secure?
How	much	does	it	cost	and	how	much	is	it	worth?

Recent	standards	currently	recommend	RSA	key	sizes	of	1024	bits	for	corporate
use	and	2048	bits	for	extremely	valuable	keys	like	the	root	key	pair	used	by	a
certifying	authority.
Longer	key	sizes	are	more	secure	but	this	increased	security	comes	at	the	cost	of
performance.
A	doubling	of	the	RSA	module	increases	processing	time	requirements	by	a
factor	of	4	(public	key	operations	-	Signature	Verification,	Encryption)	and	8
(private	key	operations	-	Signature	Generation,	Decryption).
Set	the	encryption	algorithm	and	key	size
Edit	the	project	file	and	modify	the	algorithm	and	strength	properties.
	
strength=1024
algorithm=*RSA	|	*DSA
certificate.signing.algorithm=*MD5RSA	|	*SHA1RSA	|	*SHA1DSA
	

When	the	algorithm	is	*RSA,	choose	certificate	signing	algorithm	*MD5RSA
or	*SHA1RSA.
When	the	algorithm	is	*DSA,	choose	certificate	signing	algorithm	*SHA1DSA.
The	default	key	algorithm	is	*RSA.
The	default	signature	algorithm	is	*SHA1RSA	or	*SHA1DSA	depending	on	the
key	algorithm.
Set	extended	key	usage
Additional	key	usage	extensions	can	be	added	to	the	certificate	request	and
client	certificate	by	including	'extended.purpose'	properties.	A	maximum	of	20
properties	can	be	included,	starting	from	the	sequence	number	of	1	and	ending
with	the	number	20.
To	add	the	following	extended	key	usages:

Server	Authentication	(1.3.6.1.5.5.7.3.1)

Client	Authentication	(1.3.6.1.5.5.7.3.2)
Code	Signing	(1.3.6.1.5.5.7.3.3)
Secure	Email	(1.3.6.1.5.5.7.3.4)
Time	Stamping	(1.3.6.1.5.5.7.3.8)
OCSP	Signing	(1.3.6.1.5.5.7.3.9)

	
extended.purpose.1=1.3.6.1.5.5.7.3.1
extended.purpose.2=1.3.6.1.5.5.7.3.2
extended.purpose.3=1.3.6.1.5.5.7.3.3
extended.purpose.4=1.3.6.1.5.5.7.3.4
extended.purpose.5=1.3.6.1.5.5.7.3.8
extended.purpose.6=1.3.6.1.5.5.7.3.9
	

Set	CRL	distribution
A	CRL	distribution	extension	can	be	included	with	each	certificate.
	
crl.distribution=http://www.mycompany.com/CRLList.crl
crl.distribution=http://www.mycompany.com/crllist.html
	

Set	Subject	Alternative	Names	for	SSL	authentication
A	list	of	SSL	authentication	Subject	Alternative	Names	can	be	included	with
each	certificate.
As	part	of	the	SSL	trust	process	an	SSL	client	program	can	compare	the
connection	domain	host	with	the	domains	listed	in	the	subject	alternative	fields
of	the	received	SSL	certificate.
Use	the	'ssl.addresses'	property	to	specify	a	list	of	IP	addresses.
Use	the	'ssl.domains'	property	to	specify	a	list	of	host	domain	names.
	
ssl.addresses=10.2.0.173,10.2.0.174
ssl.domains=*.mycompany.com,support.mycompany.com,account.mycompany.com
	

Example	PKI	Editor	project	file
	
#JSFPKIEditor	last	values
#Sun	Nov	02	22:34:20	GMT	2003

ca.keystore=ca-key.der
ca.keystore.password=
ca.certificate=ca-cert.der
ca.expiry=1/1/2005
request.keystore=request-key.der
request.keystore.password=
request.certificate=request-cert.der
certificate=certificate.der
blank.password=*yes
algorithm=*RSA
strength=1024
certificate.signing.algorithm=*SHA1RSA
serial=75
days=365
location.organization=ACME	Corporation
location.unit=Rocket	Powered	Systems
location.locality=Nevada	Desert
location.state=NV
location.country=US
location.name=Road	Runner
location.email=beepbeep@acme.com
extended.purpose.1=1.3.6.1.5.5.7.3.2
extended.purpose.2=1.3.6.1.5.5.7.3.1
	

You	need	to	use	a	text	editor	to	set	the	following	properties
	
strength=1024
algorithm=*RSA	|	*DSA
certificate.signing.algorithm=*MD5RSA	|	*SHA1RSA	|	*SHA1DSA
blank.password=*YES	|	*NO
	

7.18.7	View	Certificate
Select	Certificate	from	the	View	menu:

	
Select	the	DER	or	PEM	encoded	certificate	file:

The	certificate	can	be	saved	in	DER	or	PEM	format	using	the	Save	command
on	the	pop-up	menu.

7.18.8	View	Certificate	Request
Select	Certificate	Request	from	the	View	menu:

Select	the	DER	or	PEM	encoded	certificate	request	file:

The	certificate	request	can	be	saved	in	DER	or	PEM	format	using	the	Save
command	on	the	pop-up	menu.

7.18.9	View	Remote	Host
Select	Remote	Host	from	the	View	menu:

	
Enter	the	address	of	the	SSL	server.
The	default	port	is	443.
This	is	protocol	independent,	only	an	SSL	connection	is	made	to	get	the	peer
certificates.	Use	port	990	to	connect	to	a	secure	FTP	server.

The	certificate	chain	of	the	peer	system	is	loaded	into	the	PKI	Editor.	These
certificates	can	be	saved	and	then	imported	into	a	key	store.

	

7.18.10	View	Certificates	and	Keystores	using	Studio
The	following	image	illustrates	that	Studio	can	be	used	to	view	certificates	and
keystores.

	

7.18.11	Keystore	Management
The	PKI	Editor	can	be	used	to	manage	the	contents	of	a	key	store.
Select	JKS	Keystore	from	the	Edit	menu:

Enter	the	key	store	file	and	password	to	open	the	key	store:

A	pop-up	menu	allows	certificates	and	private	keys	to	be	imported	into	the	key
store.
If	the	key	store	is	empty,	right	click	on	the	table	column	header	to	select	from
the	pop-up	menu.

7.18.12	PEM	Format
PEM	format	is	a	BASE64	encoding	of	the	binary	format	(DER)	with	begin	and
end	line	markers.
X509	certificate	in	PEM	format:
	
-----BEGIN	CERTIFICATE-----
MIIDBjCCAe6gAwIBAgIISlmOxw+N3SgwDQYJKoZIhvcNAQEEBQAwQzELMAkGA1UE
BhMCQVUxDDAKBgNVBAgTA05TVzEWMBQGA1UEChMNTEFOU0EgUHR5IEx0ZDEOMAwG
A1UEAxMFTEFOU0EwHhcNMDIwNTI5MjMxOTE4WhcNMDUwNTMwMjMxOTE4WjBDMQsw
CQYDVQQGEwJBVTEMMAoGA1UECBMDTlNXMRYwFAYDVQQKEw1MQU5TQSBQdHkgTHRk
MQ4wDAYDVQQDEwVMQU5TQTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB
ALgMWPw7Lr9c5KOsyYOcJoDV71VLAAX/QaH0ARXcsa/2haAxD4G5aG0lGhtlGudX
aoQ9OzuOgpN2nCrxKiu7L6d1cdoxCxwJ83M4akY6aZn1LhL4gL05e0SUGJOn/dOZ
FvK01pUUHD6lqQ0uX33lZoeGVSzxsG4lc2WKniSt7QYlx0C13UmNHFn1gTjFSti3
FBZElF8snJyLNBXqYRWTAkSdR+xyqJMWesb+L/Uq27vjoanquipVeWlSbSbzZKvS
05QnBHFKM0Cxd44msmn7vDdGv0Pm9ooP6VB6IMKx0mhU9aHmae51s/q4pmZTxdc
hL3vslN9mpz2p221+06ew+ECAwEAATANBgkqhkiG9w0BAQQFAAOCAQEAU0JF9heH
2Ti2+goGeWsUoXc331aDt/I1mBBQvst8KiTbUQSMjmRToSIE5CAG+J17IrggQW6T
TnQOBrcLimXpUhi/K4O7bbuFp9i9jsDPjPuecOKL548++2xvhhbVBzTOZN32LJyp
TBWJCQNxSoxUY0K+joC1gCH/VbRdsZfh/EnIHcpJugoWK0IhSqJHKyfVeyN7QiyI
bwy6xnODF/QcTZ3pD5JWP2CdiuFPSg6e54rkIWihhdeuYEWjF3XveVjhvJqCqFTd
DPOzaYMl17IqNcrekpPt5uzjSySTs1PJst8TBlTx0mKnWGMJVKzOHR3q7zJZ3iiF
tCeSu9DCPBQthQ==
-----END	CERTIFICATE-----
	

Certificate	request	in	PEM	format:
	
-----BEGIN	NEW	CERTIFICATE	REQUEST-----
MIIBejCB5AIBADA7MQswCQYDVQQGEwJBdTEMMAoGA1UECBMDbnN3MQ4wDAYDVQQK
EwVMQU5TQTEOMAwGA1UEAxMFQWxpY2swgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJ
AoGBAJf9Sd2HoXVBus9hoDXv2bh5oAv7Tmz+3iJV0qYj1SGMlu0tsDmayHO9egXN
t0khXs+Sk4rrZbXN7LyhKviHRxHUYd9Et98VoUoF1tSTCWa+sAoRdjWPgLM39CHf
aqWr/+fphy7xDxQMFAHRjx2LDYpyoxWEdVuhW1KjaCL9khpvAgMBAAGgADANBgkq
hkiG9w0BAQQFAAOBgQBT2xVhoFGQg/lOS5IB3/QB5EYubaAwrWrqQEn3zRVScGyi
p81obId6bqrSR3HgiuwLKPeVRRUyTTrgzQCCocJzznzAlcanTEUmPoga56LTVyP/
ht7ARrQPDcRiALAD7SxyXMyKPKBwyPRiDbSp0CQcxNIoypLvrLCCxin4GgA0A==
-----END	NEW	CERTIFICATE	REQUEST-----

	

7.18.13	IBM	i	Digital	Certificate	Manager	Interoperability
The	IBM	i	DCM	produces	certificate	requests	in	PEM	format.
DCM	can	export	EBCDIC	encoded	PEM	files.	Check	the	coded	character
set	ID	of	the	file	before	transferring	to	PC.
Use	FTP	ASCII	mode	to	convert	the	file	content	when	transferring	from	the
IFS	to	PC.
DCM	can	import	ASCII	encoded	PEM	files,	so	transfer	from	the	PC	to	the
IFS	using	binary	mode.

Create	a	CA	certificate	for	the	IBM	i	DCM
1.		Use	the	New	Certificate	Authority	to	create	a	CA	certificate	in	DER	format.
2.		Use	the	Open	Certificate	to	read	the	certificate	and	save	in	PEM	format.
3.		FTP	this	PEM	file	to	the	IFS	and	import	the	CA	certificate	in	*SYSTEM
store.

Create	certificate	for	the	IBM	i	DCM
1.		Use	DCM	to	create	a	client	certificate	request,	copy	the	PEM	encoded
certificate	request	shown	in	the	browser	text	area	to	a	file.

2.		Use	the	Open	Certificate	Request	to	read	the	PEM	encoded	file	and	save	in
DER	format.

3.		Use	the	New	Certificate	Client	to	read	the	local	CA	file	and	certificate
request	file	to	create	a	certificate.

4.		Use	Open	Certificate	to	read	certificate	and	save	in	PEM	format.
5.		FTP	PEM	encoded	certificate	to	the	IBM	i	IFS	and	import.

7.19	CRL	Editor
The	CRL	Editor	is	started	from	Studio.	It	is	recommended	that	you	use	Studio	to
manage	your	projects	and	associated	files.
The	CRL	Editor	is	an	application	that	allows	the	creation	of	certificate
revocation	list	(CRL)	files	as	described	in	these	steps:
Review	the	following	topics:

7.19.1	Create	a	CRL	Project
7.19.2	Distribute	a	CRL	File

7.19.1	Create	a	CRL	Project
1.		From	the	Project	Solutions	node	select	the	New	Solution	menu	item.
2.		Select	the	Certificate	Revocation	List	tool	and	enter	or	select	the	Group
folder	to	receive	the	project	file.

3.		Enter	the	project	File	name.	The	extension	'.crl.prj'	is	added	automatically.

4.		Press	the	OK	button	to	create	the	project.

a.		Enter	the	date	when	the	next	CRL	list	will	be	available.
b.		Enter	the	unique	CRL	sequence	number.

c.		Enter	the	file	that	contains	the	CA	certificate	that	signed	the	certificates
that	are	to	be	revocated.

d.		Enter	the	file	that	contains	the	CA	private	key,	so	the	CRL	file	can	be
signed.

5.		Enter	the	private	key	password

6.		Select	the	Revocation	List	tab	to	maintain	the	list	of	certificates.

7.		Use	the	Add	pop-up	menu	item	to	add	a	certificate	to	the	list.

8.		Use	the	Edit,	Add	and	Delete	pop-up	menu	items	to	maintain	existing
entries.

9.		Use	the	Edit	pop-up	menu	item	to	change	the	Revocation	Date	and	Reason
for	revocation.

					The	Serial	number,	Revocation	Date	and	Reason	are	the	only	values	stored	in
the	CRL	file.

					The	Name	column	(fourth	column	on	the	right)		is	only	used	to	identify	the
entry	and	is	not	included	in	the	CRL	file.

10.Press	the	Build	button	to	create	the	CRL	file.

					A	confirmation	message	is	displayed:

11.	Double	click	or	open	with	associated	application	the	CRL	File.

					The	CRL	file	can	be	viewed	using	Windows	CRL	application.

7.19.2	Distribute	a	CRL	File
The	CRL	file	can	be	distributed	using	various	means.

It	could	be	emailed	as	an	attachment	to	a	known	list	of	users.
It	could	be	downloaded	from	a	HTTP	server	using	the	MIME	type
application/pkix-crl.

A	CRL	distribution	URL	can	be	included	in	each	certificate	created	by	the	PKI
Editor	using	the	following	PKI	Editor	project	property.
	
crl.distribution=http://www.mycompany.com/CRLList.crl
crl.distribution=http://www.mycompany.com/crllist.html
	

	

7.20	SOAP	Wizard
The	SOAP	Wizard	is	started	from	Studio.	It	is	recommended	that	you	use	Studio
to	manage	your	projects	and	associated	files.
The	SOAP	Wizard	is	an	application	that	allows	you	to	create	and	consume
SOAP	based	Web	Services.
The	SOAP	Agent	Wizard	is	used	to	consume	a	WSDL	document	and	to
communicate	with	a	remote	server.
The	SOAP	Server	Wizard	is	used	to	create	a	WSDL	document	and	to	publish	a
Web	Service.

The	SOAP	Wizard	requires	a	Java	compiler,	such	as	Oracle's	Java
SDK,	to	be	installed	on	the	PC.
Refer	to	7.1.2	Set	Java	Compiler	and	Java	Runtime.

Review	the	following	topics:
7.20.1	Create	a	SOAP	Agent	Project
7.20.2	Updating	a	SOAP	Agent	Project
7.20.3	Create	a	SOAP	Server	Type
7.20.4	Create	a	SOAP	Server	Project
7.20.5	SOAP	Server	Wizard	Naming	Conventions

A	step	by	step	guide	to	using	the	SOAP	Wizard	is	provided	in	the
Integrator	Tutorials	commencing	with	INT09A	-	SOAP	Service	-
Define	Server.

its:LANSA093.CHM::/lansa/intengbj_0300.htm

7.20.1	Create	a	SOAP	Agent	Project
1.		From	the	Project	Solutions	node	select	the	New	Solution	menu	item.
2.		Select	the	SOAP	Agent	Wizard	tool	and	enter	or	select	the	Group	folder	to
receive	the	project	file	and	WSDL	document.

3.		Enter	the	project	File	name.	The	extension	'.soap.prj'	is	added	automatically.

4.		Press	the	OK	button	to	select	the	WSDL	file	to	be	used.

5.		Press	the	browse	button	to	enter	the	URL	to	the	WSDL	file.	If	the	WSDL	file
resides	on	the	local	file	system	press	the	next	browse	button	to	access	the	file
system	dialog	box.

					If	the	required	URL	is	on	the	clipboard,	then	use	CNTRL-V	to	paste	it	into
the	text	field.

	

6.		Press	the	OK	button	to	return	to	the	main	dialog	box.	The	Project	Source
field	contains	the	file	name	that	will	be	used	to	store	the	WSDL	when	it	is
retrieved	using	the	URL.	This	file	name	can	be	changed.

					The	Wrapped	Support	check	box	is	used	to	enable/disable	"wrapped"
document/literal	style	support.

					The	Namespace	Map	is	used	to	map	all	namespaces	in	the	WSDL	document
to	the	same	Java	package	name.

7.		Press	the	OK	button	to	create	the	project.

The	project	name	is	used	in	the	creation	of	the	JAR	file	name	and	the	service
class	name.
The	JAR	file	contains	the	Axis	generated	classes	that	handle	the	SOAP
transaction	and	the	generated	service	class.
SOAP	operations	that	are	available	are	displayed	in	the	left	scroll	panel.
When	an	operation	is	selected	the	parameters	and	return	parameter	are
displayed	in	right	scroll	panels.

					The	parameter	nodes	can	be	marked	to	accept	and	handle	data	in	different
ways.

					Different	icons	indicate	the	node	types:

Node	is	ignored.

Node	is	a	field.

Node	is	a	fixed	value.

Node	is	a	list.

Node	is	a	list	field.

Node	is	a	fragment.

Node	is	stream	file.

					In	the	following	diagram	the	parameter	has	been	marked	as	a	fragment	and	a
SET	FRAGMENT	command	will	be	required	to	set	the	field	values.

					Also	it	is	possible	to	leave	the	parameter	unmarked	and	mark	the	fields.
These	fields	will	receive	their	values	when	the	SET	PARAMETER	command
is	executed.	The	ignore	fields	will	not	have	their	values	set	and	will	default	to
null	for	Strings	and	objects	and	zero	for	primitive	numbers.

					Fragment,	list,	list	field	and	field	nodes	require	the	program	field	name	for
binding	to	occur	between	the	program	field	and	SOAP	transaction.	You	can
also	use	the	7.24	Repository	Viewer	to	drag	and	drop	a	LANSA	field	name
onto	a	node.

8.		Use	the	pop-up	Edit	menu	or	<Enter>	key	to	access	the	entity	attribute
dialog.

9.		Enter	the	program	field	name,	fragment	or	list	name	and	press	the	OK
button.

10.Press	the	build	button	to	generate	and	compile	the	service,	this	service	class
will	be	added	to	the	jar	file.

					All	generated	code	and	compiled	classes	exist	in	the	compile-agent	sub
directory.

					Files	containing	service	properties	are	created	in	the	solution	directory	and
samples	are	created	in	the	samples	sub	directory.

	

7.20.2	Updating	a	SOAP	Agent	Project
If	the	WSDL	has	changed	and	a	new	SOAP	agent	binding	needs	to	be	created,	it
is	possible	to	update	the	existing	project.	Replace	the	existing	WSDL	file	with
the	new	WSDL	file	and	use	the	'Creating	a	SOAP	Agent	Project'	steps	again
using	the	same	project	file	name.	The	SOAP	Agent	Wizard	will	prompt	with	a
message	dialog	asking	to	use	the	existing	solution	project	file.	Selecting	'Yes'
will	generate	new	SOAP	agent	files	and	preserve	existing	mappings.

7.20.3	Create	a	SOAP	Server	Type
From	the	Solution	folder	pop-up	menu,	select	the	SOAP	Server	Types	menu
item.

The	SOAP	Type	Editor	allows	types	to	be	created	and	maintained.

7.20.4	Create	a	SOAP	Server	Project
1.		From	the	Project	Solutions	node	select	the	New	Solution	menu	item.
2.		Select	the	SOAP	Server	Wizard	tool	and	enter	or	select	the	Group	folder	to
receive	the	project	file.

3.		Enter	the	project	File	name.	The	extension	'.soap.prj'	is	added	automatically.

4.		Press	the	OK	button.

					The	project	name	is	used	in	the	creation	of	the	JAR	file	name	and	the	service
and	provider	class	names.

					The	JAR	file	contains	the	generated	service	and	provider	classes.
					The	end	point	URL	is	used	in	the	generated	WSDL	file.
5.		To	add	Operations	to	the	server	service,	select	the	Operations	tab	and	right
click	the	operation	panel.

6.		Enter	Operation	name.

7.		To	add	operation	parameters	and	to	set	the	return	parameter,	right	click	the
operation.

					The	parameter	nodes	can	be	marked	to	accept	and	handle	data	in	different
ways.

					Different	icons	indicate	the	node	types:

Node	is	ignored.

Node	is	a	field.

Node	is	a	fixed	value.

Node	is	a	list.

Node	is	a	list	field.

Node	is	a	fragment.

Node	is	stream	file.

					In	the	following	diagram	the	parameter	and	return	parameter	have	been
marked	as	fields.	You	can	also	use	the	7.24	Repository	Viewer	to	drag	and
drop	a	LANSA	field	name	onto	a	node.

8.		Press	the	build	button	to	generate	and	compile	the	service.	The	service	and
provider	classes	will	be	added	to	the	jar	file.

					All	generated	code	and	compiled	classes	exist	in	the	compile	sub	directory.
					Files	containing	service	properties	and	the	WSDL	document	are	created	in
the	solution	directory	and	samples	are	created	in	the	samples	sub	directory.

7.20.5	SOAP	Server	Wizard	Naming	Conventions
Service	Operation	Name	conventions:

Start	operation	name	with	a	lowercase	letter	as	in	the	following	example:
	
				getEmployees
				selectActiveAccount
	

SOAP	Server	Type	conventions.
Start	type	with	an	uppercase	letter.
Start	element/variable	name	with	at	least	two	lowercase	letters.
Do	not	start	element/variable	name	with	a	number.
Do	not	embed	numbers	in	element/variable	name.	If	a	number	is	embedded
then	uppercase	the	first	letter	after	the	number.
Do	not	use	an	element/variable	name	of	typeDesc.	The	Apache	Axis
WSDL2Java	program	generates	bean	classes	with	a	member	variable	with
this	name.

Example	of	element/variable	names:
	
				date
				amount
				sentDate
				active_status
	
An	Apache	Axis	generated	bean	class	can	only	have	a	maximum	of	254
member	variables.	This	is	due	to	the	Java	constructor	limit	of	254
parameters.
Axis	creates	JSR-101	compliant	Java	names	from	SOAP	XML	names	using
the	following	method:

	
org.apache.axis.utils.JavaUtils.xmlNameToJava	(xmlName)
	

Also	see
Example	of	a	SOAP	Server	Wizard	generated	bean	class

Example	of	Apache	Axis	WSDL2Java	generated	bean	class

Example	of	a	SOAP	Server	Wizard	generated	bean	class
	
/**
	*	Order.java
	*
	*	This	file	was	generated	by	LANSA	Integrator	SOAP	Server	Wizard
	*/
package	com.acme.service.soap	;
	
public	class	Order	implements	java.io.Serializable
{
				private	String	date	;
				private	String	dateOfOrder	;
				private	int	order_id	;
				private	OrderLine[]	orders	;
				private	long	total	;
	
				/**
					*	Sets	the	date	value	for	this	Order.
					*
					*	@param	date
					*/
				public	void	setDate	(String	date)
				{
								this.date	=	date	;
				}
	
				/**
					*	Gets	the	date	value	for	this	Order.
						*
						*	@return	date
				*/
				public	String	getDate	()
				{
								return	date	;
				}
	

				/**
					*	Sets	the	dateOfOrder	value	for	this	Order.
					*
					*	@param	dateOfOrder
					*/
				public	void	setDateOfOrder	(String	dateOfOrder)
				{
								this.dateOfOrder	=	dateOfOrder	;
				}
	
				/**
					*	Gets	the	dateOfOrder	value	for	this	Order.
					*
					*	@return	dateOfOrder
					*/
				public	String	getDateOfOrder	()
				{
								return	dateOfOrder	;
				}
	
				/**
					*	Sets	the	order_id	value	for	this	Order.
					*
					*	@param	order_id
					*/
				public	void	setOrder_id	(int	order_id)
				{
								this.order_id	=	order_id	;
				}
	
				/**
					*	Gets	the	order_id	value	for	this	Order.
					*
					*	@return	order_id
					*/
				public	int	getOrder_id	()
				{
								return	order_id	;
				}

	
				/**
					*	Sets	the	orders	value	for	this	Order.
					*
					*	@param	orders
					*/
				public	void	setOrders	(OrderLine[]	orders)
				{
								this.orders	=	orders	;
				}
	
				/**
					*	Gets	the	orders	value	for	this	Order.
					*
					*	@return	orders
					*/
				public	OrderLine[]	getOrders	()
				{
								return	orders	;
				}
	
				/**
					*	Sets	the	total	value	for	this	Order.
					*
					*	@param	total
					*/
				public	void	setTotal	(long	total)
				{
								this.total	=	total	;
				}
	
				/**
					*	Gets	the	total	value	for	this	Order.
					*
					*	@return	total
					*/
				public	long	getTotal	()
				{
								return	total	;

				}
	}
	

Example	of	Apache	Axis	WSDL2Java	generated	bean	class
	
/**
	*	Order.java
	*
	*	This	file	was	auto-generated	from	WSDL
	*	by	the	Apache	Axis	1.3	Oct	05,	2005	(05:23:37	EDT)	WSDL2Java	emitter.
	*/
	
package	com.acme.service.soap;
	
public	class	Order		implements	java.io.Serializable
{
				private	java.lang.String	date;
				private	java.lang.String	dateOfOrder;
				private	int	order_id;
				private	com.acme.service.soap.OrderLine[]	orders;
				private	long	total;
	
				public	Order	()
				{
				}
	
				public	Order	(
								java.lang.String	date,
								java.lang.String	dateOfOrder,
								int	order_id,
								com.acme.service.soap.OrderLine[]	orders,
								long	total)
				{
								this.date	=	date;
								this.dateOfOrder	=	dateOfOrder;
								this.order_id	=	order_id;
								this.orders	=	orders;
								this.total	=	total;
				}
	

				/**
					*	Gets	the	date	value	for	this	Order.
					*	
					*	@return	date
					*/
				public	java.lang.String	getDate()
				{
								return	date;
				}
	
				/**
					*	Sets	the	date	value	for	this	Order.
					*	
					*	@param	date
					*/
				public	void	setDate(java.lang.String	date)
				{
								this.date	=	date;
				}
	
				/**
					*	Gets	the	dateOfOrder	value	for	this	Order.
					*	
					*	@return	dateOfOrder
					*/
				public	java.lang.String	getDateOfOrder()
				{
							return	dateOfOrder;
				}
	
				/**
					*	Sets	the	dateOfOrder	value	for	this	Order.
					*	
					*	@param	dateOfOrder
					*/
				public	void	setDateOfOrder(java.lang.String	dateOfOrder)
				{
								this.dateOfOrder	=	dateOfOrder;
				}

	
				/**
					*	Gets	the	order_id	value	for	this	Order.
					*	
					*	@return	order_id
					*/
				public	int	getOrder_id()
				{
								return	order_id;
				}
	
				/**
					*	Sets	the	order_id	value	for	this	Order.
					*	
					*	@param	order_id
					*/
				public	void	setOrder_id(int	order_id)
				{
								this.order_id	=	order_id;
				}
	
				/**
					*	Gets	the	orders	value	for	this	Order.
					*	
					*	@return	orders
					*/
				public	com.acme.service.soap.OrderLine[]	getOrders()
				{
								return	orders;
				}
	
				/**
					*	Sets	the	orders	value	for	this	Order.
					*	
					*	@param	orders
					*/
					public	void	setOrders(com.acme.service.soap.OrderLine[]	orders)
				{
								this.orders	=	orders;

				}
	
				/**
					*	Gets	the	total	value	for	this	Order.
					*	
					*	@return	total
					*/
				public	long	getTotal()
				{
								return	total;
				}
	
				/**
					*	Sets	the	total	value	for	this	Order.
					*	
					*	@param	total
					*/
				public	void	setTotal(long	total)
				{
								this.total	=	total;
				}
	
				private	java.lang.Object	__equalsCalc	=	null;
	
				public	synchronized	boolean	equals(java.lang.Object	obj)
				{
								if	(!(obj	instanceof	Order))	return	false;
								Order	other	=	(Order)	obj;
								if	(obj	==	null)	return	false;
								if	(this	==	obj)	return	true;
								if	(__equalsCalc	!=	null)	{
												return	(__equalsCalc	==	obj);
								}
								__equalsCalc	=	obj;
								boolean	_equals;
								equals	=	true	&&	
												((this.date==null	&&	other.getDate()==null)	||	
												(this.date!=null	&&
												this.date.equals(other.getDate())))	&&

													((this.dateOfOrder==null	&&	other.getDateOfOrder()==null)	||	
													(this.dateOfOrder!=null	&&
													this.dateOfOrder.equals(other.getDateOfOrder())))	&&
													this.order_id	==	other.getOrder_id()	&&
												((this.orders==null	&&	other.getOrders()==null)	||	
												(this.orders!=null	&&
													java.util.Arrays.equals(this.orders,	other.getOrders())))	&&
													this.total	==	other.getTotal();
								__equalsCalc	=	null;
	
								return	_equals;
				}
	
				private	boolean	__hashCodeCalc	=	false;
	
				public	synchronized	int	hashCode()
				{
								if	(__hashCodeCalc)
								{
												return	0;
								}
	
								__hashCodeCalc	=	true;
								int	_hashCode	=	1;
	
								if	(getDate()	!=	null)
								{
												_hashCode	+=	getDate().hashCode();
								}
	
								if	(getDateOfOrder()	!=	null)
								{
												_hashCode	+=	getDateOfOrder().hashCode();
								}
	
								_hashCode	+=	getOrder_id();
	
								if	(getOrders()	!=	null)
								{

												for	(int	i=0;	i<java.lang.reflect.Array.getLength(getOrders());	i++)
												{
																java.lang.Object	obj	=	java.lang.reflect.Array.get(getOrders(),	i);
																if	(obj	!=	null	&&!obj.getClass().isArray())
																{
																				_hashCode	+=	obj.hashCode();
																}
												}
								}
	
								_hashCode	+=	new	Long(getTotal()).hashCode();
								__hashCodeCalc	=	false;
	
								return	_hashCode;
				}
	
				//	Type	metadata
				private	static	org.apache.axis.description.TypeDesc	typeDesc	=
								new	org.apache.axis.description.TypeDesc(Order.class,	true);
	
				static
				{
								typeDesc.setXmlType(new	javax.xml.namespace.QName("http://soap.service.acme.com",	"Order"));
								org.apache.axis.description.ElementDesc	elemField	=	new	org.apache.axis.description.ElementDesc();
								elemField.setFieldName("date");
								elemField.setXmlName(new	javax.xml.namespace.QName("",	"date"));
								elemField.setXmlType(new	javax.xml.namespace.QName("http://www.w3.org/2001/XMLSchema",	"string"));
								elemField.setNillable(true);
								typeDesc.addFieldDesc(elemField);
								elemField	=	new	org.apache.axis.description.ElementDesc();
								elemField.setFieldName("dateOfOrder");
								elemField.setXmlName(new	javax.xml.namespace.QName("",	"dateOfOrder"));
								elemField.setXmlType(new	javax.xml.namespace.QName("http://www.w3.org/2001/XMLSchema",	"string"));
								elemField.setNillable(true);
								typeDesc.addFieldDesc(elemField);
								elemField	=	new	org.apache.axis.description.ElementDesc();
								elemField.setFieldName("order_id");
								elemField.setXmlName(new	javax.xml.namespace.QName("",	"order_id"));
								elemField.setXmlType(new	javax.xml.namespace.QName("http://www.w3.org/2001/XMLSchema",	"int"));

								elemField.setNillable(false);
								typeDesc.addFieldDesc(elemField);
								elemField	=	new	org.apache.axis.description.ElementDesc();
								elemField.setFieldName("orders");
								elemField.setXmlName(new	javax.xml.namespace.QName("",	"orders"));
								elemField.setXmlType(new	javax.xml.namespace.QName("http://soap.service.acme.com",	"OrderLine"));
								elemField.setNillable(true);
								typeDesc.addFieldDesc(elemField);
								elemField	=	new	org.apache.axis.description.ElementDesc();
								elemField.setFieldName("total");
								elemField.setXmlName(new	javax.xml.namespace.QName("",	"total"));
								elemField.setXmlType(new	javax.xml.namespace.QName("http://www.w3.org/2001/XMLSchema",	"long"));
								elemField.setNillable(false);
								typeDesc.addFieldDesc(elemField);
				}
	
				/**
					*	Return	type	metadata	object
					*/
				public	static	org.apache.axis.description.TypeDesc	getTypeDesc()
				{
								return	typeDesc;
				}
	
				/**
					*	Get	Custom	Serializer
					*/
				public	static	org.apache.axis.encoding.Serializer	getSerializer	(
								java.lang.String	mechType,	
								java.lang.Class	_javaType,		
								javax.xml.namespace.QName	_xmlType)
				{
								return	new		org.apache.axis.encoding.ser.BeanSerializer(
								_javaType,	_xmlType,	typeDesc);
				}
	
				/**
					*	Get	Custom	Deserializer
					*/

				public	static	org.apache.axis.encoding.Deserializer	getDeserializer	(
								java.lang.String	mechType,	
								java.lang.Class	_javaType,		
								javax.xml.namespace.QName	_xmlType)
				{
								return	new		org.apache.axis.encoding.ser.BeanDeserializer(
								_javaType,	_xmlType,	typeDesc);
				}
}
	

	

7.21	XML	Binding	Wizard
The	XML	Binding	Wizard	is	started	from	Studio.	It	is	recommended	that	you
use	Studio	to	manage	your	projects	and	associated	files.
The	XML	Binding	Wizard	is	an	application	that	allows	you	to	map	XML
elements	and	attributes	to	LANSA	fields	and	lists.	The	Wizard	will	generate
code	to	be	used	by	XML	binding	services	to	read	and	write	XML	documents.

The	XML	Binding	Wizard	requires	a	Java	compiler,	such	as	Oracle's
Java	SDK,	to	be	installed	on	the	PC.
Refer	to	7.1.2	Set	Java	Compiler	and	Java	Runtime.

Review	the	following	topics:
7.21.1	Sample	XML	Document
7.21.2	Changing	Sample	XML	Document
7.21.3	Create	an	XML	Binding	Project

7.21.1	Sample	XML	Document
The	XML	Binding	Wizard	requires	a	sample	XML	document.	It	does	not
directly	use	an	XML	Schema	or	DTD	file.
It	is	imperative	that	your	sample	XML	document	contains	all	XML	elements
and	attributes	required	for	mapping.
The	sample	XML	document	must	be	well	formed	and	follow	the	rules	and
syntax	of	XML	documents.
The	sample	XML	file	may	be	provided	by	a	third	party	application	or	you	may
need	to	create	your	own	XML	document.
You	can	create	a	sample	XML	file	using	a	text	editor	or	use	the	7.12
XMLSchema	Viewer	to	generate	a	sample	XML	file	from	an	XML	Schema	file.

7.21.2	Changing	Sample	XML	Document
The	project	file	only	contains	references	to	marked	XML	elements	and
attributes.	The	external	sample	XML	document	is	read	every	time	the	project	is
opened.	If	in	the	future	the	XML	document	requires	new	elements	or	attributes
just	replace	the	existing	sample	XML	document	and	these	new	elements	or
attributes	will	appear	in	the	view.

7.21.3	Create	an	XML	Binding	Project
1.		From	the	Project	Solutions	node	select	the	New	Solution	menu	item.
2.		Select	the	XML	Binding	Wizard	tool	and	enter	or	select	the	Group	folder	to
receive	the	project	file.

3.		Enter	the	project	File	name.	The	extension	'.xml.prj'	is	added	automatically.

4.		Press	the	OK	button	to	continue.

5.		Press	the	browse	button	to	locate	the	sample	XML	file.

6.		Press	the	OK	button	to	create	the	project.

7.		Select	whether	the	project	is	for	inbound	mapping,	outbound	mapping	or
both.

					Normally	the	Locale	field	is	left	blank,	but	if	an	XML	element	or	attribute
contains	numbers	formatted	in	a	particular	locale	then	enter	this	locale	and
check	the	Number	Format	option	against	this	element	or	attribute.

					If	value	formatting	is	going	to	be	done	using	JavaScript	functions,	then	the
JavaScript	file	containing	the	functions	needs	to	be	specified	in	the	Script
field.	Refer	to	JavaScript	Function	Example	for	notes	on	doing	this.

8.		Select	the	Inbound	tab	to	map	element	and	attributes.

					The	element	and	attribute	nodes	can	be	marked	to	accept	and	handle	data	in

different	ways.
					Different	icons	indicate	the	node	types:

Element

Element	selected

Element	selected	and	has	a	field	name

Attribute

Attribute	selected

Attribute	selected	and	has	a	field	name

Element	marked	as	a	List

Element	marked	as	a	Fragment

9.		Right	mouse	click	on	the	selected	node	to	display	the	Pop-up	Menu.	The
menu	items	enabled	depend	on	the	node	selected.	You	can	also	use	the	7.24
Repository	Viewer	to	drag	and	drop	a	LANSA	field	name	onto	a	node.

10.Press	the	Enter	key	or	the	Edit	menu	item	to	assign	a	binding	field.

11.	If	the	XML	value	needs	to	be	formatted	using	a	JavaScript	function,	enter
the	function	and	the	value	keyword.	The	value	keyword	instructs	the
JavaScript	Engine	to	use	the	XML	value.	It	is	possible	to	pass	a	static	value
as	a	parameter.

					In	the	following	example	a	format	pattern	is	being	passed.	Embedded	blanks
can	exist	in	the	function	script,	but	any	static	values	need	to	immediately
follow	the	comma	for	successful	parsing	of	the	parameters.

12.Press	the	build	button	to	generate	and	compile	the	service,	this	service	class
will	be	added	to	the	jar	file.

					All	generated	code	and	compiled	classes	exist	in	the	compile	sub	directory.
					Files	containing	service	properties	are	created	in	the	solution	directory	and
samples	are	created	in	the	samples	sub	directory.

JavaScript	Function	Example
The	following	example	illustrates	how	a	JavaScript	function	is	written.	The
function	declaration,	function	name	and	parameters	enclosed	with	brackets	must
be	on	a	single	line.
Multiple	functions	can	exist	in	the	same	source	file.
	
function	concat	(value1,	value2)
{
				return	value1	+	value2	;
}
	
function	startDate	(type)
{
				if	(type	==	'A')
				{
								return	"30-1-2006"	;
				}
	
				return	"23-4-2005"	;
}
	

JavaScript	is	a	loosely	typed	language.
That	does	not	mean	that	it	has	no	data	types,	just	that	the	value	of	a	variable
does	not	need	to	have	a	particular	type	of	value	assigned	to	it	nor	does	it	need	to
always	hold	the	same	type	of	value.
JavaScript	will	freely	type-convert	values	into	a	type	suitable	for	(or	required
by)	the	context	of	the	variable's	use.
JavaScript	being	loosely	typed	and	willing	to	type-convert	still	does	not	save
you	from	needing	to	think	about	the	actual	types	of	values	that	you	are	dealing
with.
A	problem	arises	from	the	dual	nature	of	the	+	operator	used	for	both	numeric
addition	and	string	concatenation.	The	nature	of	the	operation	performed	is
determined	by	the	context.	If	both	operands	are	numbers	to	start	with,	the	+
operator	performs	addition,	otherwise	it	converts	all	of	its	operands	to	strings
and	does	concatenation.
The	mapping	engine	passes	all	values	to	the	JavaScript	function	as	String	data

types.
It	is	best	to	covert	parameter	values	to	their	required	data	types.
There	are	several	JavaScript	functions	such	as	parseFloat,	parserInt	and	the
Number	object	that	can	be	used	to	convert	String	values	to	number	values.	Also
number	variables	have	several	built-in	functions	such	as	toFixed	and	toPrecision
that	allow	formatted	values	to	be	returned.
	
	value	=	Number	(value)
	value	=	parseInt	(value)
	value	=	parseFloat	(value)
	

The	following	example	illustrates	these	functions.
	
function	changeit	(value)
{
				value	=	Number	(value)	;
	
				if	(value	>	100)
				{
								value	=	value	-	100	;
				}
	
				return	value.toFixed	(2)	;
}
	

	

7.22	JSON	Binding	Wizard
The	JSON	Binding	Wizard	is	started	from	Studio.	It	is	recommended	that	you
use	Studio	to	manage	your	projects	and	associated	files.
The	JSON	Binding	Wizard	is	an	application	that	allows	you	to	map	JSON
object	fields	to	LANSA	fields	and	lists.	The	Wizard	will	generate	code	to	be
used	by	JSON	binding	services	to	read	and	write	JSON	objects.
JSON	(JavaScript	Object	Notation)	is	a	lightweight	data-interchange	format.
Refer	to	http://www.json.org/.
AJAX	(Asynchronous	JavaScript	And	XML)	is	a	web	development	technique
used	for	creating	interactive	web	applications.	The	intent	is	to	make	web	pages
feel	more	responsive	by	exchanging	small	amounts	of	data	with	the	server
behind	the	scenes,	so	that	the	entire	web	page	does	not	have	to	be	reloaded	each
time	the	user	requests	a	change.	This	is	intended	to	increase	the	web	page's
interactivity,	speed,	functionality,	and	usability.

The	JSON	Binding	Wizard	requires	a	Java	compiler,	such	as	Oracle's
Java	SDK,	to	be	installed	on	the	PC.
Refer	to	7.1.2	Set	Java	Compiler	and	Java	Runtime.

Review	the	following	topics:
7.22.1	Create	a	JSON	Type
7.22.2	Create	a	JSON	Binding	Project
7.22.3	Create	a	JSON	HTML	Browser	Client

http://www.json.org/

7.22.1	Create	a	JSON	Type
From	the	Solution	folder	pop-up	menu,	select	the	JSON	Types	menu	item.

The	JSON	Type	Editor	allows	types	to	be	created	and	maintained.

7.22.2	Create	a	JSON	Binding	Project
1.		From	the	Project	Solutions	node	select	the	New	Solution	menu	item.
2.		Select	the	JSON	Binding	Wizard	tool	and	enter	or	select	the	Group	folder	to
receive	the	project	file.

3.		Enter	the	project	File	name.	The	extension	'.json.prj'	is	added	automatically.

4.		Press	the	OK	button	to	continue.
5.		Select	the	JSON	Type	that	will	be	used	for	the	project	mapping.

6.		Press	the	OK	button	to	create	the	project.

					The	project	name	is	used	in	the	creation	of	the	JAR	file	name	and	the	service
class	name.

7.		Select	the	Mapping	tab	to	maintain	the	mapping.

8.		On	the	root	level	node	select	the	Fragment	menu	item	and	all	child	nodes
will	be	automatically	marked.

					The	root	level	node	is	not	marked	as	a	fragment,	as	it	is	an	implied	fragment
and	when	the	BIND	command	executes	the	first	level	child	nodes	of	the	root
node	will	bind	to	the	function.

9.		Assign	program	fields	to	the	JSON	object	fields.	You	can	also	use	the	7.24
Repository	Viewer	to	drag	and	drop	a	LANSA	field	name	onto	a	node.

10.Press	the	build	button	to	generate	and	compile	the	service.	The	service	class
will	be	added	to	the	jar	file.

					All	generated	code	and	compiled	classes	exist	in	the	compile	sub	directory.
					Files	containing	service	properties	are	created	in	the	solution	directory	and
samples	are	created	in	the	samples	sub	directory.

	

7.22.3	Create	a	JSON	HTML	Browser	Client
The	following	HTML	illustrates	how	to	send	and	receive	a	JavaScript	object
using	a	browser	client.
The	JavaScript	object	needs	to	be	created	using	the	same	field	elements	as	the
JSON	Type.
	
<!DOCTYPE	html	PUBLIC	"-
//W3C//DTD	XHTML	1.0	Strict//EN"	"http://www.w3.org/TR/xhtml1/DTD/xhtml1-
strict.dtd">
	
<html	xmlns="http://www.w3.org/1999/xhtml">
	
<head>
	
<meta	http-equiv="content-type"	content="text/html;	charset=utf-8">
	
<title>JSON	AJAX	Sample</title>
	
<script	type="text/javascript"	src="json2.js"></script>
<script	type="text/javascript"	src="jsonajax.js"></script>
	
<script	type="text/javascript">
	
function	sendOrder	()
{
				/*
								Get	some	input	and	reset	form	inputs
				*/
	
				var	myInput	=	document.getElementById	("ID_1").value	;
	
				document.getElementById	("ID_1").value	=	""	;
				document.getElementById	("ID_2").value	=	""	;
				document.getElementById	("ID_3").value	=	""	;
	
				/*
								Create	MyOrder	object

				*/
	
				var	myOrder	=	new	Object	()	;
	
				myOrder.fieldString	=	myInput	;
				myOrder.fieldBoolean	=	true	;
				myOrder.fieldDouble	=	24.56	;
				myOrder.fieldInt	=	987	;
				myOrder.fieldLong	=	123456	;
	
				var	myOrderItem1	=	new	Object	()	;
				myOrderItem1.itemCode	=	231	;
				myOrderItem1.itemQuantity	=	25	;
	
				var	myOrderItemPrice11	=	new	Object	()	;
				myOrderItemPrice11.priceAmount	=	10.67	;
				myOrderItemPrice11.priceType	=	"PT_A"	;
	
				var	myOrderItemPrice12	=	new	Object	()	;
				myOrderItemPrice12.priceAmount	=	10.67	;
				myOrderItemPrice12.priceType	=	"PT_A"	;
	
				myOrderItem1.itemPrices	=	new	Array	(myOrderItemPrice11,	myOrderItemPrice12)	;
	
				myOrder.fieldItem	=	myOrderItem1	;
	
				myOrder.fieldItems	=	new	Array	(myOrderItem1,	myOrderItem1)	;
	
				/*
								Send	MyOrder
				*/
	
				var	session	=	new	JSONSession	("http://lansa01:1099/cgi-bin/jsmproxy?
json")	;
	
//				var	responseObject	=	session.send	()	;
//				var	responseObject	=	session.receive	()	;
	
				var	responseObject	=	session.send	(myOrder)	;

	
				if	(responseObject	==	null)
				{
							alert	(session.getStatus	())	;
	
							alert	(session.getResponseText	())	;
	
							return	;
				}
	
				/*
								Update	form	inputs	with	response	object	values
				*/
	
				document.getElementById	("ID_1").value	=	responseObject.fieldString	;
				document.getElementById	("ID_2").value	=	responseObject.fieldDouble	;
				document.getElementById	("ID_3").value	=	responseObject.fieldInt	;
}
	
</script>
	
</head>
	
<body>
	
<form>
	
		<input	type="text"	size="15"	id="ID_1"><p/>
		<input	type="text"	size="15"	id="ID_2"><p/>
		<input	type="text"	size="15"	id="ID_3"><p/>
		<input	type="button"	value="Send	Order"	onClick="sendOrder()">
	
</form>
	
</body>
	
</html>
	
jsonajax.js

	
/*jslint	browser:	true,	undef:	true,	nomen:	true,	eqeqeq:	true,	strict:	true	*/
	
/*global	window,	ActiveXObject	*/
	
"use	strict";
	
function	JSONSession	(endpoint)
{
				var	m_xhr	=	null	;
				var	m_endpoint	=	endpoint	;
	
				/*
								Private	functions
				*/
	
				function	createXMLHttpRequest	()
				{
								if	(m_xhr	===	null)
								{
												if	(window.XMLHttpRequest)
												{
																/*
																				IE8,	IE7,	Firefox,	Chrome,	Safari,	Opera
																*/
	
																m_xhr	=	new	XMLHttpRequest	()	;
	
																return	true	;
												}
	
												if	(window.ActiveXObject)
												{
																/*
																				IE6
																*/
	
																m_xhr	=	new	ActiveXObject	("Msxml2.XMLHTTP")	;
	

																return	true	;
												}
	
												return	false	;
								}
	
								return	true	;
				}
	
				function	doGET	()
				{
								try
								{
												m_xhr.open	("GET",	m_endpoint,	false)	;
	
												m_xhr.setRequestHeader	("Connection",	"close")	;
	
												m_xhr.send	(null)	;
	
												if	(m_xhr.readyState	!==	4)
												{
																return	false	;
												}	
	
												if	(m_xhr.status	===	200)
												{
																return	true	;
												}
	
												return	false	;
								}
								catch	(e)
								{
												alert	("doGET:	"	+	e)	;
	
												return	false	;
								}
				}
	

				function	doPOST	(content)
				{
								try
								{
												m_xhr.open	("POST",	m_endpoint,	false)	;
	
												m_xhr.setRequestHeader	("Content-Type",	"application/json")	;
												m_xhr.setRequestHeader	("Connection",	"close")	;
	
												m_xhr.send	(content)	;
	
												if	(m_xhr.readyState	!==	4)
												{
																return	false	;
												}
	
												if	(m_xhr.status	===	200)
												{
																return	true	;
												}
	
												return	false	;
								}
								catch	(e)
								{
												alert	("doPOST:	"	+	e)	;
	
												return	false	;
								}
				}
	
				function	isJSON	()
				{
								var	value	=	m_xhr.getResponseHeader	("Content-Type")	;
	
								if	(value	===	null)
								{
												return	false	;
								}

	
								/*
												application/json
								*/
	
								if	(value.length	<	16)
								{
												return	false	;
								}
	
								value	=	value.substring	(0,	16).toLowerCase	()	;
	
								if	(value	===	"application/json")
								{
												return	true	;
								}
	
								return	false	;
				}
	
				function	parseJSON	()
				{
								try
								{												
												return	JSON.parse	(m_xhr.responseText)	;
								}
								catch	(e)
								{
												var	date	=	new	Date	()	;
	
												var	name	=	"error"	+	date.getTime	()	;
	
												var	error	=	window.open	("",
																																						name,	
																																						"width=800,height=600,menubar=0,toolbar=0,status=0,scrollbars=1,resizable=1")	;
	
												error.document.title	=	"JSON	parse	error"	;
	
												var	element	=	error.document.createElement	("pre")	;

	
												element.appendChild	(error.document.createTextNode	(m_xhr.responseText))	;
	
												error.document.body.appendChild	(element)	;
	
												return	null	;
								}
				}
	
				/*
								Public	functions
				*/
	
				this.send	=	function	(objectSend)
				{
								if	(!createXMLHttpRequest	())
								{
												alert	("Cannot	create	XMLHttpRequest	object")	;
	
												return	null	;
								}
	
								var	content	=	null	;
	
								if	(objectSend	===	undefined	||	objectSend	===	null)
								{
												/*
																If	the	send	function	is	called	with	no	parameters,	then	objectSend	is	undefined
												*/
	
												content	=	""	;
								}
								else
								{
												content	=	JSON.stringify	(objectSend)	;
								}
	
								if	(!doPOST	(content))
								{

											return	null	;
								}
	
								if	(isJSON	())
								{
											return	parseJSON	()	;
								}
	
								return	null	;
				}	;
	
				this.receive	=	function	()
				{
								if	(!createXMLHttpRequest	())
								{
												alert	("Cannot	create	XMLHttpRequest	object")	;
	
												return	null	;
								}
	
								if	(!doGET	())
								{
											return	null	;
								}
	
								if	(isJSON	())
								{
											return	parseJSON	()	;
								}
	
								return	null	;
				}	;
	
				this.getStatus	=	function	()
				{
								if	(m_xhr	===	null)
								{
												return	0	;
								}

	
								return	m_xhr.status	;
				}	;
	
				this.getResponseText	=	function	()
				{
								if	(m_xhr	===	null)
								{
												return	null	;
								}
	
								return	m_xhr.responseText	;
				}	;
	
				this.getXMLHttpRequest	=	function	()
				{
								return	m_xhr	;
				}	;
}
	
	

	

7.23	XML	Transformation	Wizard
The	XML	Transformation	Wizard	is	started	from	Studio.	It	is	recommended	that
you	use	Studio	to	manage	your	projects	and	associated	files.
The	XML	Transformation	Wizard	is	an	application	that	allows	you	to	map	the
XML	elements	and	attributes	to	LANSA	fields	and	lists.	The	Wizard	will
automatically	create	style	sheets	that	can	be	used	to	transform	inbound	XML	to
LANSA	fields	and	lists,	or	to	transform	LANSA	fields	and	lists	to	outbound
XML.	The	XML	Transformation	Wizard	removes	the	LANSA	developer	from
the	complexities	of	creating	style	sheets	to	perform	the	required	XML
transformations.
Review	the	following	topics:
7.23.1	Architecture	Overview
7.23.2	Sample	XML	Document
7.23.3	Create	an	XML	Transformation	Project
7.23.4	How	to	use	the	XML	Transformation	Wizard

7.23.1	Architecture	Overview
A	transformation	involves	the	mapping	of	the	content	of	XML	documents	to	and
from	LANSA	fields	or	lists.	It	requires	an	XML	document	and	a	style	sheet.	The
style	sheet	defines	the	rules	of	processing	or	transforming	the	XML.
The	purpose	of	the	XML	Transformation	Wizard	is	to	create	the	style	sheets
based	on	XML	documents	and	the	required	fields	or	lists	in	your	LANSA
functions.
Depending	on	the	application	you	are	developing	you	may	need	to	define	style
sheets	to	process	either	incoming	XML	documents	or	to	generate	outgoing
XML	documents,	or	both.

Note:	The	XML	Transformation	Wizard	is	only	used	to	generate	and
test	the	style	sheets.	These	style	sheets	must	be	manually	copied	to	the
Server	where	the	JSM	Service	is	running.	By	default,	the	style	sheets
are	stored	in	the	/jsm/instance/xsl	directory.

Style	Sheets	to	process	incoming	XML	documents
An	incoming	XML	document	is	an	XML	document	sent	to	your	application.
The	XML	to	be	used	is	normally	defined	by	the	sending	application.	The	XML
Transformation	Wizard	generates	the	style	sheet	to	process	the	incoming	XML
document	and	map	its	content	into	LANSA	structures	such	as	function	fields
and	lists.	The	generated	style	sheet	is	displayed	in	the	XML	Transformation
Wizard's	Inbound	Transformation	tab.

	

Style	Sheets	to	generate	outgoing	XML	documents
An	outgoing	XML	document	is	an	XML	document	you	send	to	another
application.	The	XML	to	be	used	is	normally	defined	by	the	receiving
application,	i.e.	you	must	format	your	outgoing	document	to	match	their	XML

standard.	The	XML	Transformation	Wizard	generates	the	style	sheet	to	generate
the	outgoing	XML	document	from	data	provided	by	LANSA	structures	such	as
function	fields	and	lists.	The	generated	style	sheet	is	displayed	in	the	XML
Transformation	Wizard's	Outbound	Transformation	tab.

	
To	generate	more	complex	outgoing	XML	documents	you	may	want	to	work
with	multiple	lists	and	therefore	apply	multiple	transformations.	In	this	case	the
XML	Transformation	Wizard	talks	about	Fragments.	Each	fragment	is
generated/transformed	individually	out	of	LANSA	structures	and	merged
together	by	the	style	sheet	displayed	in	the	XML	Transformation	Wizard's
Outbound	Transformation	tab.

7.23.2	Sample	XML	Document
The	XML	Transformation	Wizard	requires	a	sample	XML	document.	It	does	not
directly	use	an	XML	Schema	or	DTD	file.
It	is	imperative	that	your	sample	XML	document	contains	all	XML	elements
and	attributes	required	for	mapping.
The	sample	XML	document	must	be	well	formed	and	follow	the	rules	and
syntax	of	XML	documents.
The	sample	XML	file	may	be	provided	by	a	third	party	application	or	you	may
need	to	create	your	own	XML	document.
You	can	create	a	sample	XML	file	using	a	text	editor	or	use	the	7.12
XMLSchema	Viewer	to	generate	a	sample	XML	file	from	an	XML	Schema	file.

7.23.3	Create	an	XML	Transformation	Project
The	first	step	in	transforming	an	XML	document	is	to	create	a	new	project.	You
can	do	this	either	by	selecting	File	New	from	the	XML	Transformation	Wizard
menu	or	create	a	new	Studio	Solution.
It	is	recommended	that	you	create	a	new	project	for	each	transformation	in	order
to	help	organize	the	information	in	your	application.
1.		From	the	Project	Solutions	node	select	the	New	Solution	menu	item.
2.		Select	the	XML	Transformation	Wizard	tool	and	enter	or	select	the	Group
folder	to	receive	the	project	file	and	sample	XML	document.

3.		Enter	the	project	File	name.	The	extension	'.xsl.prj'	is	added	automatically.

4.		Press	the	OK	button	and	then	browse	the	local	file	system	for	the	sample
XML	document	source.

5.		Select	the	sample	XML	document	and	press	the	OK	button,	the	sample	XML
document	will	be	copied	into	the	group	folder	and	an	XML	Transformation
Wizard	project	file	will	also	be	created.

	

7.23.4	How	to	use	the	XML	Transformation	Wizard
How	to	use	the	Wizard	is	described	in	the	following	topics:
File	Menu
Project	Tab
Source	Tab
Fields	Tab
List	Tab
Inbound	Transformation	Tab
Outbound	Transformation	Tab
Map	Fields
Test	Transformation
Save	Transformation

File	Menu
The	file	menu	commands	are:
New
A	project	file	is	used	to	store	the	mapping	information	used	to	build	the	Inbound
/	Outbound	XSL	style	sheets.
When	the	New	option	is	selected,	a	standard	file	dialog	is	displayed	allowing
you	to	select	the	sample	XML	document	for	this	new	project.
Open
To	open	an	existing	project	select	the	Open	menu	command.	The	Open	dialog
will	then	be	displayed	allowing	you	to	select	the	project	file	you	want	to	open.
The	project	file	that	you	select	will	initially	be	displayed	in	the	Project	Tab.
If	you	have	an	existing	project	open,	be	sure	to	save	this	project	before	opening
another	project.
Close
Closes	the	project	without	saving	the	changes.
Save
Saves	the	current	project	under	the	current	name.
Save	As
If	you	select	Save	As	you	can	save	the	current	project	under	a	different	project
name.
Preference
Allows	wizard	preferences	to	be	set	and	saved	to	the	current	project	file.
	

Select	Use	3GL	structures	to	enable	field	structure
information	and	structure	XML	creation.
Select	Indent	Outbound	XML	to	have	<xsl:output
indent="yes"	xalan:indent-amount="0"/>	included
in	the	generated	outbound	XML.
Select	Omit	XML	declaration	if	<?xml
version="1.0"	encoding="UTF-8"?>	is	not	to	be
included	in	the	generated	outbound	XML.

About

Displays	the	XML	Transformation	Wizard	version	information	and	copyright
message.
Exit
Exits	the	XML	Transformation	Wizard.
Note:	To	save	the	changes	made	to	the	project,	select	Save	or	Save	As	before
exiting	from	the	XML	Transformation	Wizard.

Project	Tab
When	you	open	a	project	a	graphical	representation	of	the	components	that
contribute	to	the	construction	of	Inbound	and	Outbound	Transformation	style
sheets	is	displayed.

Different	icons	indicate	the	node	types:

Element

Element	selected

Element	selected	and	has	a	field	name

Attribute

Attribute	selected

Attribute	selected	and	has	a	field	name

Element	marked	as	a	List

Element	marked	as	a	Fragment

Right	mouse	click	on	the	selected	node	to	display	the	Pop-up	Menu.	The	menu
items	enabled	depend	on	the	node	selected.
Edit
Allows	the	RDML	field	name	to	be	assigned	to	this	element	or	attribute.
Pressing	the	enter	key	has	the	same	affect.
Add	to	list
Add	the	selected	node	to	the	field	list	collection.	Candidates	for	this	kind	of
selection	are	elements	or	attributes	that	occur	more	than	once	in	the	XML.	To
edit	the	list,	refer	to	the	List	Tab.
Add	to	fields
Adds	the	selected	node	to	the	field	collection.	Candidates	for	this	kind	of
selection	are	elements	or	attributes	that	occur	only	once	in	the	XML.	To	edit	the
fields,	refer	to	the	Fields	Tab.
The	Insert	key	performs	the	same	function.
Note:	The	program	will	not	add	entries	to	the	Fields	collection	if	the	entries	are
already	assigned	to	the	List	collection.
Add	child	tags	to	fields
Adds	all	child	tags	and	attributes	of	the	selected	node	to	the	current	collection	of
fields.	This	collection	can	be	maintained	from	the	Fields	Tab	or	the	Project	Tab.
From	the	Fields	tab	it	is	possible	to	delete	entries.
It	is	recommended	that	you	mark	the	list	first	before	adding	all	child	tags	to	the
field	collection.
Note:	The	program	will	not	add	entries	to	the	Fields	collection	if	the	entries	are
already	assigned	to	the	List	collection.
List	mark
Will	add	all	child	tags	and	attributes	of	the	selected	node	to	the	field	list
collection.	This	collection	can	be	maintained	from	the	List	Tab	or	the	Project
Tab.	From	the	List	tab	it	is	possible	to	delete	entries.
Note:	that	the	program	will	not	add	entries	to	the	List	collection	if	the	entries
are	already	assigned	to	the	Fields	collection.
List	unmark
This	unmarks	the	selected	list	node	and	clears	the	field	List	collection.

Fragment	mark
This	marking	allows	an	XSL	style	sheet	based	on	the	selected	node	and	its	sub-
nodes	to	be	created	and	saved	to	a	separate	file.	This	style	sheet	will	then	be
used	to	do	the	transformation	of	the	selected	Fragment.	The	output	produced	by
this	transformation	will	then	be	merged	with	the	final	XML	document	according
to	the	definitions	in	the	XSL	from	the	Outbound	Transformation	tab.	This	XSL
will	include	references	to	the	XSL	Fragments.
Fragments	allow	the	Outbound	XML	to	be	broken	up	into	smaller	components,
which	can	be	assembled	to	create	a	more	complex	XML	document.
Fragment	unmark
Removes	the	fragment	mark.
Fragment	transformation
Creates	the	style	sheet	for	this	fragment	in	a	separate	window:

	

Source	Tab
The	Source	tab	displays	the	XML	source	used.	The	XML	Source	is	specified
during	the	definition	of	a	new	project:

	

Fields	Tab
This	tab	contains	a	table	of	elements	and	attributes	which	will	be	mapped	to	the
RDML	function	fields	when	the	Inbound/Outbound	transformation	style	sheet	is
applied	to	the	XML	source.
You	can	use	the	7.24	Repository	Viewer	to	drag	and	drop	a	LANSA	field	name
onto	a	table	row.
The	entries	in	this	table	were	added	using	the	Add	to	fields	or	Add	child	tags	to
fields	options	in	the	Project	Tab:

	
Right	mouse	click	on	the	selected	row(s)	to	display	the	pop-up	menu.	You	can
then	delete	the	selected	row(s)	or	Edit	the	selected	row.
If	you	select	more	than	one	row:

Delete	will	remove	them	all	from	the	collection.
Edit	will	only	alter	the	first	row	selected.

Edit

	
Allows	you	to	change/edit	the	RDML	field	name	to	be	mapped.	The	keyboard
Enter	key	will	perform	the	same	function.

If	the	structure	preference	is	enabled,	extra	fields	for	data	type	and	length	are
made	available.
It	is	recommended	not	to	store	3GL	information	in	the	project.	Use	RPG
Structures	or	the	latest	RPG	service	program	that	uses	internal	data	type
information	and	does	not	require	external	3GL	XML	files.

Trim
Includes	the	normalize-space	function	on	the	inbound	XML	field	tag.
	
<rdml:field	name="NAME"	value="{normalize-
space(/Orders/SalesOrder/Customer/CustName)}"/>
	

Split
Includes	the	attribute	split="yes"	on	the	inbound	XML	field	tag.
	
<rdml:field	name="NAME"	value="
{/Orders/SalesOrder/Customer/CustName}"	split="yes"/>
	

Delete
Allows	you	to	remove	the	selected	element(s)	from	the	table.	The	keyboard
Delete	key	will	perform	the	same	function.
Structure
Create	the	structure	XML	from	the	function	fields.	The	sequence	and	data	types
of	these	fields	must	match	the	3GL	data	structure.

	

List	Tab
This	tab	contains	a	table	of	field	elements	and	attributes	which	will	be	mapped
to	the	RDML	working	list	fields	when	the	Inbound/Outbound	transformation
style	sheet	is	applied	to	the	XML	source.
You	can	use	the	7.24	Repository	Viewer	to	drag	and	drop	a	LANSA	field	name
onto	a	table	row.
The	entries	in	this	table	were	added	using	the	List	mark	option	in	the	Project
Tab:

Right	mouse	click	on	the	selected	node(s)	to	display	the	pop-up	menu.	The	pop-
up	menu	allows	you	to	Delete	the	selected	nodes	or	to	Edit	the	selected	Node's
field.
If	you	select	more	than	one	node:

Delete	will	remove	all	selected	nodes	from	the	collection.
Edit	will	only	alter	the	first	node	selected.

Edit

Allows	you	to	change/edit	the	RDML	working	list	field	name	to	be	mapped.
The	keyboard	Enter	key	will	perform	the	same	function.

If	the	structure	preference	is	enabled,	extra	fields	for	data	Type	and	Length	are
made	available.
It	is	recommended	not	to	store	3GL	information	in	the	project.	Use	RPG
Structures	or	the	latest	RPG	service	program	that	uses	internal	data	type
information	and	does	not	require	external	3GL	XML	files.

	
Trim
Includes	the	normalize-space	function	on	the	inbound	XML	field	tag.
	
<rdml:field	name="NAME"	value="{normalize-
space(/Orders/SalesOrder/Customer/CustName)}"/>
	

Split
Includes	the	attribute	split="yes"	on	the	inbound	XML	field	tag.
	
<rdml:field	name="NAME"	value="
{/Orders/SalesOrder/Customer/CustName}"	split="yes"/>
	

Delete
Allows	you	to	remove	the	selected	element(s)	from	the	table.	The	keyboard
Delete	key	will	perform	the	same	function.
Structure
Create	the	structure	XML	from	the	list	fields.	The	sequence	and	data	types	of
these	fields	must	match	the	3GL	data	structure:

	

Inbound	Transformation	Tab
This	transformation	style	sheet	will	be	applied	to	the	incoming	(inbound)	XML
and	will	perform	mapping	from	the	received	XML	document	to	the	RDML
function	fields	and	one	working	list.
The	contents	of	this	tab	cannot	be	directly	altered.	The	XLS	is	automatically
generated	as	the	fields	and	list	are	marked.

	
This	screen	capture	is	of	an	inbound	transformation	test:

Outbound	Transformation	Tab
This	transformation	style	sheet	will	be	applied	to	the	RDML	function	fields	and
working	list	to	create	the	outgoing	(outbound)	XML	document.	Fragments
allow	complex	XML	documents	to	be	built	up	by	multiple	transformation	calls.
Note:	The	usage	of	fragments	is	only	possible	if	the	JSM	Service	supports	this
capability,	i.e.	the	HTTPService,	XMLFileService	and	XMLQueueService.
The	contents	of	this	tab	cannot	be	directly	altered.	The	XLS	is	automatically
generated	as	the	fields	and	list	are	marked.

This	screen	capture	is	of	an	outbound	transformation	test:

	

Map	Fields
Once	you	have	opened	the	project,	the	XML	Transformation	Wizard	will	allow
you	to	map	the	XML	data	to	your	LANSA	fields	or	lists.
The	sample	XML	document	can	be	viewed	using	the	Source	Tab.	This	tab	is	for
display	purposes	only.
The	Project	Tab	will	show	the	structure	of	the	XML	document.	Using	the	pop-
up	menu,	you	may	mark	the	XML	data	and	map	it	to	LANSA	fields	or	to
LANSA	fields	in	lists.

	
To	specify	the	field	names	for	the	marked	XML	tags,	you	will	use	the	Fields	Tab
or	the	List	Tab.
You	can	use	the	7.24	Repository	Viewer	to	drag	and	drop	a	LANSA	field	name
onto	a	table	row.

	
Once	you	have	identified	the	fields	or	lists,	you	are	ready	to	test	and	save	your
transformations	using	the	Inbound	Transformation	Tab	and	Outbound
Transformation	Tab.

Test	Transformation
Inbound	and	outbound	style	sheets	can	be	tested	by	selecting	the	Transform
menu	item	from	the	pop-up	menu	available	on	each	of	the	tab	panels.
When	testing	the	outbound	transformation,	you	will	be	prompted	to	enter	an
XML	file	containing	a	sample	of	FunctionXML.

	

Save	Transformation
Once	you	have	tested	your	transformations,	you	must	save	the	XSL	style	sheets.
After	you	have	saved	the	XSL	files,	you	must	copy	these	files	to	the	server,	so
they	can	be	accessed	by	a	service.
By	default,	the	style	sheets	are	copied	to	the	/jsm/instance/xsl	directory.
To	make	a	style	sheet	available	to	a	service	an	entry	needs	to	be	added	to	the
service's	property	resource.
The	resource	file	associated	with	a	service	can	be	determined	by	looking	for	the
resource	entry	in	the	service.properties	file	in	the	system	sub	directory.
Using	the	resource	name	locate	the	service	resource	properties	file	in	the
properties	sub	directory.
Add	an	entry	to	the	service	resource	properties	file	with	following	format:
	
xsl.name=xsl/filename.xsl
	

where:
name	is	the	identifier	used	in	the	command	XSL	keyword.
filename	is	the	name	of	the	XSL	file	which	was	saved	by	the	XML
Transformation	Wizard	and	copied	to	the	server.
Example
	
SERVICE_LOAD	SERVICE(HTTPService)
	
RECEIVE	XSL(RECEIVEORDER)
	
SEND	XSL(SENDORDER)
	

From	the	service.properties	file,	the	HTTPService	service	is	using	the
HTTPService.properties	for	resources.
Locate	the	HTTPService.properties	file	in	the	properties	sub	directory.
Add	the	following	entries:
	
xsl.sendorder=xsl/send-order.xsl
xsl.receiveorder=xsl/receive-order.xsl

	

7.24	Repository	Viewer
The	Repository	Viewer	is	started	from	Studio.	It	is	recommended	that	you	use
Studio	to	manage	your	projects	and	associated	files.
The	Repository	Viewer	is	an	application	that	allows	you	to	view	LANSA
repository	information.	The	Repository	Viewer	uses	JSMDirect,	LANSA
functions	and	the	RFIDataSourceService	to	select	repository	information.

Use	the	Repository	Viewer	to	drag	and	drop	LANSA	field	names	onto
Wizard	mappings	that	require	LANSA	fields.

Review	the	following	topics:
7.24.1	Create	a	Repository	Project
7.24.2	LANSA	Repository	Functions

7.24.1	Create	a	Repository	Project
1.		In	Integrator	Studio,	from	the	Project	Solutions	node	right	click	on	the	New
Solution	menu	item.

2.		Select	the	Repository	Viewer	tool	from	the	context	menu	and	enter	or	select
the	Group	folder	to	receive	the	project	file.

3.		Enter	the	project	File	name.	The	extension	'.rep.prj'	is	added	automatically.

4.		Press	the	OK	button	to	create	the	project,	to	open	the	LANSA	Integrator
Repository	Viewer.

5.		By	default	each	of	the	seven	information	programs	have	a	sample	URL.
Change	these	sample	URLs	to	suit	your	own	environment.

6.		Create	Direct	Service	entries	to	support	the	Repository	Viewer	URL	service
requests.	These	entries	specify	the	LANSA	functions	that	will	be	executed
and	the	partition	that	will	be	used.

7.		View	the	LANSA	repository	by	selecting	the	Repository	tab.

8.		To	view	processes,	double-click	the	Processes	node	or	select	the	Refresh

menu	item.

9.		To	view	functions	used	in	a	particular	process,	double-click	the	process	node
or	select	the	Refresh	menu	item.

10.To	view	fields	that	have	been	used	in	a	particular	function,	double-click	the
function	node	or	select	the	Refresh	menu	item.

11.	To	view	information	on	a	particular	field,	double-click	the	field	node	or
select	the	Refresh	menu	item.

When	field	information	is	selected,	it	is	cached	and	used	in	all	areas	of	the
repository	viewer	where	field	information	is	displayed.

To	view	files,	double-click	the	Files	node	or	select	the	Refresh	menu	item.

12.To	view	fields	that	have	been	used	in	a	particular	file,	double-click	the	file
node	or	select	the	Refresh	menu	item.	The	file	information	process	also
selects	repository	field	information	on	each	field	in	the	file.

					When	field	information	is	selected,	it	is	cached	and	used	in	all	areas	of	the
repository	viewer	where	field	information	is	displayed.

13.To	view	repository	field	information,	double-click	the	Fields	node	or	select
the	Refresh	menu	item.

					When	you	select	Refresh	from	the	context	menu,	you	are	offered	a	partial
search,	because	there	can	be	a	large	number	of	fields	in	a	repository.

					If	the	number	of	fields	in	your	repository	is	less	than	10,000	or	if	you	want
the	first	9999	fields	returned,	then	leave	the	value	blank.

					In	the	following	screen	capture	you	can	see	that	all	fields	in	the	repository
have	been	selected.	No	field	information	is	available	except	for	fields	that
have	been	cached	from	previous	field	information	selections	(in	this	example,

see	example,	ADDRESS1,	ADDRESS2	and	ADDRESS3	fields).

					To	view	field	information	for	a	particular	field,	double-click	the	field	node	or
select	the	Refresh	menu	item.

					When	field	information	is	selected,	it	is	cached	and	used	in	all	areas	of	the
repository	viewer	where	field	information	is	displayed.

	

7.24.2	LANSA	Repository	Functions

Create	a	process	to	hold	the	following	functions	used	by	the	repository
viewer.

JSMLR01	LANSA	Process	List
JSMLR02	LANSA	Process	Information
JSMLR03	LANSA	Function	Information
JSMLR04	LANSA	File	List
JSMLR05	LANSA	File	Information
JSMLR06	LANSA	Field	List
JSMLR07	LANSA	Field	Information
JSMLR08	LANSA	SOAP	Type	List
JSMLR09	LANSA	SOAP	Type	Information
JSMLR10	LANSA	JSON	Type	List
JSMLR11	LANSA	JSON	Type	Information
JSMLR0A	LANSA	Type	List
JSMLR0B	LANSA	Type	Information

The	following	program	example	illustrates	the	JSMDirect	service	entries	for
these	functions.
The	partition	and	language	values	need	to	be	changed	to	suit	your	environment.
	
JSMLR01		*DEFAULT		JSMLANSA		JSMLR01		JSM		ENG
JSMLR02		*DEFAULT		JSMLANSA		JSMLR02		JSM		ENG
JSMLR03		*DEFAULT		JSMLANSA		JSMLR03		JSM		ENG
JSMLR04		*DEFAULT		JSMLANSA		JSMLR04		JSM		ENG
JSMLR05		*DEFAULT		JSMLANSA		JSMLR05		JSM		ENG
JSMLR06		*DEFAULT		JSMLANSA		JSMLR06		JSM		ENG
JSMLR07		*DEFAULT		JSMLANSA		JSMLR07		JSM		ENG
JSMLR08		*DEFAULT		JSMLANSA		JSMLR08		JSM		ENG
JSMLR09		*DEFAULT		JSMLANSA		JSMLR09		JSM		ENG
JSMLR10		*DEFAULT		JSMLANSA		JSMLR10		JSM		ENG
JSMLR11		*DEFAULT		JSMLANSA		JSMLR11		JSM		ENG
	

The	following	program	example	shows	the	LANSA	repository	defined	fields	for
the	Studio	Type	database	files	and	functions.
	
BNDCARY				Complex	Array																												A						1
BNDCCDE				Complex	Code																													A						5
BNDCDSC				Complex	Desc																													A					80
BNDCETY				Complex	Entity																											A					40
BNDCTYP				Complex	Type																													A					50
BNDECDE				Complex	Code																													A						5
BNDEDSC				Element	Desc																													A					80
BNDEETY				Element	Entity																											A					40
BNDENME				Element	Name																													A					40
BNDESEQ				Element	Sequence																									P						3		0
BNDGCDE				Group	Code																															A						5
BNDGDSC				Group	Desc																															A					80
BNDSARY				Simple	Array																													A						1
BNDSCDE				Simple	Code																														A						5
BNDSDSC				Simple	Desc																														A					80
BNDSETY				Element	Entity																											A					40
BNDSNME				Element	Name																													A					40
BNDSTYP				Simple	Type																														A					20
	

The	following	program	example	shows	the	Studio	Type	database	files.
	
BNDCTPS	Bind	Complex	Types
	
		10		BNDGCDE				Group	Code																																		1
		20		BNDCCDE				Complex	Code																																2
		30		BNDCDSC				Complex	Desc
		40		BNDCTYP				Complex	Type
		50		BNDCETY				Complex	Entity
	
BNDETPS	Binding	Complex	Type	Elements
	
		10		BNDGCDE				Group	Code																																		1
		20		BNDECDE				Complex	Code																																2
		30		BNDESEQ				Element	Sequence																												3
		40		BNDEDSC				Element	Desc

		50		BNDSCDE				Simple	Code
		60		BNDCCDE				Complex	Code
		70		BNDCARY				Complex	Array
		80		BNDENME				Element	Name
		90		BNDEETY				Element	Entity
	
BNDGTPS	Binding	Group	Types
	
		10		BNDGCDE				Group	Code																																		1
		20		BNDGDSC				Group	Desc
	
BNDSTPS	Binding	Simple	Types
	
		10		BNDGCDE				Group	Code																																		1
		20		BNDSCDE				Simple	Code																																	2
		30		BNDSDSC				Simple	Desc
		40		BNDSTYP				Simple	Type
		50		BNDSARY				Simple	Array
		60		BNDSNME				Element	Name
		70		BNDSETY				Element	Entity
	

	

JSMLR01	LANSA	Process	List
	
FUNCTION			OPTIONS(*DIRECT)

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

DEFINE					FIELD(#BNDMAPS)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDMAPL)	TYPE(*CHAR)	LENGTH(30)
DEFINE					FIELD(#BNDPROSTR)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDPRONME)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDPRODSC)	TYPE(*CHAR)	LENGTH(40)
DEFINE					FIELD(#BNDPROFIL)	TYPE(*CHAR)	LENGTH(10)

DEF_LIST			NAME(#MAPLST)	FIELDS((#BNDMAPS)	(#BNDMAPL))	TYPE(*WORKING)

DEF_LIST			NAME(#PROLST)	FIELDS((#BNDPRONME)	(#BNDPRODSC)	(#BNDPROFIL))	TYPE(*WORKING)	ENTRYS(2000)

DEF_LIST			NAME(#PROTABLE)	FIELDS((#BNDPRONME)	(#BNDPRODSC))	TYPE(*WORKING)	ENTRYS(2000)

**********	Build	field/column	map

EXECUTE				SUBROUTINE(BLDMAP)

**********	Open	service

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Load	service

CHANGE					FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(RFIDataSourceService)	SERVICE_LIST(BNDMAPS,BNDMAPL)	TRACE(*NO)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#MAPLST)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Create	datasource

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('CREATE	DATASOURCE(REPOSITORY)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Add	processes

USE								BUILTIN(GET_PROCESS_LIST)	WITH_ARGS(#BNDPROSTR)	TO_GET(#PROLST)

SELECTLIST	NAMED(#PROLST)

ADD_ENTRY		TO_LIST(#PROTABLE)

ENDSELECT

CHANGE					FIELD(#JSMCMD)	TO('PUT	OBJECT(*TABLE)	NAME(PROCESS_LIST)	SERVICE_LIST(BNDPRONME,BNDPRODSC)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#PROTABLE)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Send	datasource

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SEND	OBJECT(*DATASOURCE)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Close	service	and	send	the	HTTP	response

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	SUB	ROUTINES

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF									COND('#JSMSTS	*NE	OK')

**********	Close	service

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

ENDIF

ENDROUTINE

SUBROUTINE	NAME(BLDMAP)

CHANGE					FIELD(#BNDMAPS)	TO(BNDPRONME)
CHANGE					FIELD(#BNDMAPL)	TO(PROCESS_NAME)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDPRODSC)
CHANGE					FIELD(#BNDMAPL)	TO(PROCESS_DESC)
ADD_ENTRY		TO_LIST(#MAPLST)

ENDROUTINE
	

JSMLR02	LANSA	Process	Information
	
FUNCTION			OPTIONS(*DIRECT)

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

DEFINE					FIELD(#BNDMAPS)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDMAPL)	TYPE(*CHAR)	LENGTH(30)
DEFINE					FIELD(#BNDRTNCDE)	TYPE(*CHAR)	LENGTH(2)
DEFINE					FIELD(#BNDPRONME)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDFUNNME)	TYPE(*CHAR)	LENGTH(7)
DEFINE					FIELD(#BNDFUNDSC)	TYPE(*CHAR)	LENGTH(40)
DEFINE					FIELD(#BNDFUNFIL)	TYPE(*CHAR)	LENGTH(13)

DEF_LIST			NAME(#MAPLST)	FIELDS((#BNDMAPS)	(#BNDMAPL))	TYPE(*WORKING)

DEF_LIST			NAME(#FUNLST)	FIELDS((#BNDFUNNME)	(#BNDFUNDSC)	(#BNDFUNFIL))	TYPE(*WORKING)	ENTRYS(100)

DEF_LIST			NAME(#FUNTABLE)	FIELDS((#BNDPRONME)	(#BNDFUNNME)	(#BNDFUNDSC))	TYPE(*WORKING)	ENTRYS(100)

**********	Build	field/column	map

EXECUTE				SUBROUTINE(BLDMAP)

**********	Open	service

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Load	service	-	Receive	PRONAME

CHANGE					FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(RFIDataSourceService)	SERVICE_LIST(BNDMAPS,BNDMAPL)	BIND(*FIELD)	TRACE(*NO)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#MAPLST)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Create	data	source

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('CREATE	DATASOURCE(REPOSITORY)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Get	functions

USE								BUILTIN(GET_FUNCTION_LIST)	WITH_ARGS(#BNDPRONME)	TO_GET(#FUNLST	#BNDRTNCDE)

IF									COND('#BNDRTNCDE	*EQ	OK')

SELECTLIST	NAMED(#FUNLST)

ADD_ENTRY		TO_LIST(#FUNTABLE)

ENDSELECT

CHANGE					FIELD(#JSMCMD)	TO('PUT	OBJECT(*TABLE)	NAME(FUNCTION_LIST)	SERVICE_LIST(BNDPRONME,BNDFUNNME,BNDFUNDSC)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#FUNTABLE)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

ENDIF

**********	Send	data	source

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SEND	OBJECT(*DATASOURCE)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Close	service	and	send	the	HTTP	response

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	SUB	ROUTINES

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF									COND('#JSMSTS	*NE	OK')

**********	Close	service

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

ENDIF

ENDROUTINE

SUBROUTINE	NAME(BLDMAP)

CHANGE					FIELD(#BNDMAPS)	TO(BNDPRONME)
CHANGE					FIELD(#BNDMAPL)	TO(PROCESS_NAME)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFUNNME)
CHANGE					FIELD(#BNDMAPL)	TO(FUNCTION_NAME)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFUNDSC)
CHANGE					FIELD(#BNDMAPL)	TO(FUNCTION_DESC)
ADD_ENTRY		TO_LIST(#MAPLST)

ENDROUTINE
	

JSMLR03	LANSA	Function	Information
	
FUNCTION			OPTIONS(*DIRECT)

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

DEFINE					FIELD(#BNDMAPS)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDMAPL)	TYPE(*CHAR)	LENGTH(30)
DEFINE					FIELD(#BNDRTNCDE)	TYPE(*CHAR)	LENGTH(2)
DEFINE					FIELD(#BNDPRONME)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDFUNNME)	TYPE(*CHAR)	LENGTH(7)
DEFINE					FIELD(#BNDFLDNME)	TYPE(*CHAR)	LENGTH(10)	DECIMALS(0)
DEFINE					FIELD(#BNDFLDFIL)	TYPE(*CHAR)	LENGTH(122)

DEF_LIST			NAME(#MAPLST)	FIELDS((#BNDMAPS)	(#BNDMAPL))	TYPE(*WORKING)

DEF_LIST			NAME(#FLDLST)	FIELDS((#BNDFLDNME)	(#BNDFLDFIL))	TYPE(*WORKING)	ENTRYS(9999)

DEF_LIST			NAME(#FLDTABLE)	FIELDS((#BNDPRONME)	(#BNDFUNNME)	(#BNDFLDNME))	TYPE(*WORKING)	ENTRYS(9999)

**********	Build	field/column	map

EXECUTE				SUBROUTINE(BLDMAP)

**********	Open	service

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Load	service	-	Receive	PRONAME	and	FUNNAME

CHANGE					FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(RFIDataSourceService)	SERVICE_LIST(BNDMAPS,BNDMAPL)	BIND(*FIELD)	TRACE(*NO)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#MAPLST)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Create	data	source

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('CREATE	DATASOURCE(REPOSITORY)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Get	function	fields

USE								BUILTIN(GET_FUNCTION_INFO)	WITH_ARGS(#BNDPRONME	#BNDFUNNME	'FIELDS')	TO_GET(#BNDRTNCDE	#FLDLST)

IF									COND('#BNDRTNCDE	*EQ	OK')

SELECTLIST	NAMED(#FLDLST)

ADD_ENTRY		TO_LIST(#FLDTABLE)

ENDSELECT

CHANGE					FIELD(#JSMCMD)	TO('PUT	OBJECT(*TABLE)	NAME(FUNCTION_FIELD_LIST)	SERVICE_LIST(BNDPRONME,BNDFUNNME,BNDFLDNME)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#FLDTABLE)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

ENDIF

**********	Send	data	source

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SEND	OBJECT(*DATASOURCE)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Close	service	and	send	the	HTTP	response

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	SUB	ROUTINES

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF									COND('#JSMSTS	*NE	OK')

**********	Close	service

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

ENDIF

ENDROUTINE

SUBROUTINE	NAME(BLDMAP)

CHANGE					FIELD(#BNDMAPS)	TO(BNDPRONME)
CHANGE					FIELD(#BNDMAPL)	TO(PROCESS_NAME)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFUNNME)
CHANGE					FIELD(#BNDMAPL)	TO(FUNCTION_NAME)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDNME)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_NAME)
ADD_ENTRY		TO_LIST(#MAPLST)

ENDROUTINE
	

JSMLR04	LANSA	File	List
	
FUNCTION			OPTIONS(*DIRECT)

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

DEFINE					FIELD(#BNDMAPS)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDMAPL)	TYPE(*CHAR)	LENGTH(30)
DEFINE					FIELD(#BNDFILSTR)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDFILNME)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDFILLIB)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDFILDSC)	TYPE(*CHAR)	LENGTH(40)
DEFINE					FIELD(#BNDFILFIL)	TYPE(*CHAR)	LENGTH(10)

DEF_LIST			NAME(#MAPLST)	FIELDS((#BNDMAPS)	(#BNDMAPL))	TYPE(*WORKING)

DEF_LIST			NAME(#FILLST)	FIELDS((#BNDFILNME)	(#BNDFILLIB)	(#BNDFILDSC)	(#BNDFILFIL))	TYPE(*WORKING)	ENTRYS(2000)

DEF_LIST			NAME(#FILTABLE)	FIELDS((#BNDFILNME)	(#BNDFILLIB)	(#BNDFILDSC))	TYPE(*WORKING)	ENTRYS(2000)

**********	Build	field/column	map

EXECUTE				SUBROUTINE(BLDMAP)

**********	Open	service

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Load	service

CHANGE					FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(RFIDataSourceService)	SERVICE_LIST(BNDMAPS,BNDMAPL)	TRACE(*NO)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#MAPLST)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Create	datasource

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('CREATE	DATASOURCE(REPOSITORY)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Add	files

USE								BUILTIN(GET_PHYSICAL_LIST)	WITH_ARGS(#BNDFILSTR)	TO_GET(#FILLST)

SELECTLIST	NAMED(#FILLST)

ADD_ENTRY		TO_LIST(#FILTABLE)

ENDSELECT

CHANGE					FIELD(#JSMCMD)	TO('PUT	OBJECT(*TABLE)	NAME(FILE_LIST)	SERVICE_LIST(BNDFILNME,BNDFILLIB,BNDFILDSC)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#FILTABLE)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Send	datasource

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SEND	OBJECT(*DATASOURCE)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Close	service	and	send	the	HTTP	response

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	SUB	ROUTINES

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF									COND('#JSMSTS	*NE	OK')

**********	Close	service

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

ENDIF

ENDROUTINE

SUBROUTINE	NAME(BLDMAP)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFILNME)
CHANGE					FIELD(#BNDMAPL)	TO(FILE_NAME)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFILLIB)
CHANGE					FIELD(#BNDMAPL)	TO(FILE_LIBRARY)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFILDSC)
CHANGE					FIELD(#BNDMAPL)	TO(FILE_DESC)
ADD_ENTRY		TO_LIST(#MAPLST)

ENDROUTINE
	

JSMLR05	LANSA	File	Information
	
FUNCTION			OPTIONS(*DIRECT)

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

DEFINE					FIELD(#BNDMAPS)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDMAPL)	TYPE(*CHAR)	LENGTH(30)
DEFINE					FIELD(#BNDRTNCDE)	TYPE(*CHAR)	LENGTH(2)
DEFINE					FIELD(#BNDFILNME)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDFILLIB)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDFLDNME)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDFLDSTS)	TYPE(*CHAR)	LENGTH(2)
DEFINE					FIELD(#BNDFLDTYP)	TYPE(*CHAR)	LENGTH(1)
DEFINE					FIELD(#BNDFLDLEN)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)
DEFINE					FIELD(#BNDFLDDEC)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)
DEFINE					FIELD(#BNDFLDREF)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDFLDDSC)	TYPE(*CHAR)	LENGTH(40)
DEFINE					FIELD(#BNDLGLNME)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDLGLDSC)	TYPE(*CHAR)	LENGTH(40)

DEFINE					FIELD(#BNDHDR1)	TYPE(*CHAR)	LENGTH(5)
DEFINE					FIELD(#BNDHDR2)	TYPE(*CHAR)	LENGTH(5)
DEFINE					FIELD(#BNDHDRFIL)	TYPE(*CHAR)	LENGTH(90)
DEFINE					FIELD(#BNDLGLFIL)	TYPE(*CHAR)	LENGTH(40)
DEFINE					FIELD(#BNDDTL1)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDDTLFIL)	TYPE(*CHAR)	LENGTH(40)

DEF_LIST			NAME(#MAPLST)	FIELDS((#BNDMAPS)	(#BNDMAPL))	TYPE(*WORKING)

DEF_LIST			NAME(#HDRLST)	FIELDS((#BNDHDR1)	(#BNDHDR2)	(#BNDHDRFIL))	TYPE(*WORKING)	ENTRYS(100)

DEF_LIST			NAME(#HDRLGL)	FIELDS((#BNDHDR1)	(#BNDHDR2)	(#BNDLGLNME)
(#BNDLGLDSC)	(#BNDLGLFIL))	TYPE(*WORKING)	ENTRYS(100)

DEF_LIST			NAME(#DTLLST)	FIELDS((#BNDDTL1)	(#BNDDTLFIL))	TYPE(*WORKING)	ENTRYS(1000)

DEF_LIST			NAME(#FLDTABLE)	FIELDS((#BNDFILNME)	(#BNDFILLIB)	(#BNDFLDSTS)	(#BNDFLDNME)	(#BNDFLDTYP)	(#BNDFLDLEN)	(#BNDFLDDEC)	(#BNDFLDREF)	(#BNDFLDDSC))	TYPE(*WORKING)	ENTRYS(1000)

DEF_LIST			NAME(#KEYTABLE)	FIELDS((#BNDFILNME)	(#BNDFILLIB)	(#BNDFLDNME))	TYPE(*WORKING)	ENTRYS(100)

DEF_LIST			NAME(#LGLTABLE)	FIELDS((#BNDFILNME)	(#BNDFILLIB)	(#BNDLGLNME)	(#BNDLGLDSC))	TYPE(*WORKING)	ENTRYS(500)

**********	Build	field/column	map

EXECUTE				SUBROUTINE(BLDMAP)

**********	Open	service

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Load	service	-	Receive	FILNAME	and	FILLIB

CHANGE					FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(RFIDataSourceService)	SERVICE_LIST(BNDMAPS,BNDMAPL)	BIND(*FIELD)	TRACE(*NO)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#MAPLST)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Create	datasource

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('CREATE	DATASOURCE(REPOSITORY)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Select	fields

USE								BUILTIN(GET_FILE_INFO)	WITH_ARGS(#BNDFILNME	#BNDFILLIB	'FIELDS')	TO_GET(#BNDRTNCDE	#HDRLST	#DTLLST)

IF									COND('#BNDRTNCDE	*EQ	OK')

SELECTLIST	NAMED(#DTLLST)

CHANGE					FIELD(#BNDFLDNME)	TO(#BNDDTL1)
CHANGE					FIELD(#BNDFLDLEN)	TO(*ZERO)
CHANGE					FIELD(#BNDFLDDEC)	TO(*ZERO)

CHANGE					FIELD(#BNDFLDREF)	TO(*BLANK)
CHANGE					FIELD(#BNDFLDTYP)	TO(*BLANK)
CHANGE					FIELD(#BNDFLDDSC)	TO(*BLANK)

USE								BUILTIN(GET_FIELD)	WITH_ARGS(#BNDFLDNME)	TO_GET(#BNDRTNCDE	#BNDFLDTYP	#BNDFLDLEN	#BNDFLDDEC	#BNDFLDREF	#BNDFLDDSC)

**********	OK	-	Defined	in	repository
**********	ER	-	Defined	in	function
**********	Sample	job	log	message
**********			Field	named	STATE	not	found	in	the	data	dictionary

CHANGE					FIELD(#BNDFLDSTS)	TO(#BNDRTNCDE)

ADD_ENTRY		TO_LIST(#FLDTABLE)

ENDSELECT

ENDIF

CHANGE					FIELD(#JSMCMD)	TO('PUT	OBJECT(*TABLE)	NAME(FILE_FIELD_LIST)	SERVICE_LIST(BNDFILNME,BNDFILLIB,BNDFLDSTS,BNDFLDNME,BNDFLDTYP,BNDFLDLEN,BNDFLDDEC,BNDFLDREF,BNDFLDDSC)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#FLDTABLE)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Select	keys

CLR_LIST			NAMED(#HDRLST)
CLR_LIST			NAMED(#DTLLST)

USE								BUILTIN(GET_FILE_INFO)	WITH_ARGS(#BNDFILNME	#BNDFILLIB	'PHYKEYS')	TO_GET(#BNDRTNCDE	#HDRLST	#DTLLST)

IF									COND('#BNDRTNCDE	*EQ	OK')

SELECTLIST	NAMED(#DTLLST)

CHANGE					FIELD(#BNDFLDNME)	TO(#BNDDTL1)
ADD_ENTRY		TO_LIST(#KEYTABLE)

ENDSELECT

CHANGE					FIELD(#JSMCMD)	TO('PUT	OBJECT(*TABLE)	NAME(FILE_KEY_LIST)	SERVICE_LIST(BNDFILNME,BNDFILLIB,BNDFLDNME)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#KEYTABLE)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

ENDIF

**********	Select	logical

CLR_LIST			NAMED(#HDRLST)
CLR_LIST			NAMED(#DTLLST)

USE								BUILTIN(GET_FILE_INFO)	WITH_ARGS(#BNDFILNME	#BNDFILLIB	'LGLVIEWS')	TO_GET(#BNDRTNCDE	#HDRLGL	#DTLLST)

IF									COND('#BNDRTNCDE	*EQ	OK')

SELECTLIST	NAMED(#HDRLGL)

ADD_ENTRY		TO_LIST(#LGLTABLE)

ENDSELECT

CHANGE					FIELD(#JSMCMD)	TO('PUT	OBJECT(*TABLE)	NAME(LOGICAL_LIST)	SERVICE_LIST(BNDFILNME,BNDFILLIB,BNDLGLNME,BNDLGLDSC)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#LGLTABLE)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

ENDIF

**********	Send	datasource

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SEND	OBJECT(*DATASOURCE)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Close	service	and	send	the	HTTP	response

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	SUB	ROUTINES

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF									COND('#JSMSTS	*NE	OK')

**********	Close	service

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

ENDIF

ENDROUTINE

SUBROUTINE	NAME(BLDMAP)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFILNME)
CHANGE					FIELD(#BNDMAPL)	TO(FILE_NAME)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFILLIB)
CHANGE					FIELD(#BNDMAPL)	TO(FILE_LIBRARY)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDSTS)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_STATUS)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDNME)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_NAME)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDTYP)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_TYPE)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDLEN)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_LENGTH)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDDEC)

CHANGE					FIELD(#BNDMAPL)	TO(FIELD_DECIMAL)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDREF)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_REF)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDDSC)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_DESC)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDLGLNME)
CHANGE					FIELD(#BNDMAPL)	TO(LOGICAL_NAME)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDLGLLIB)
CHANGE					FIELD(#BNDMAPL)	TO(LOGICAL_LIBRARY)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDLGLDSC)
CHANGE					FIELD(#BNDMAPL)	TO(LOGICAL_DESC)
ADD_ENTRY		TO_LIST(#MAPLST)

ENDROUTINE
	

JSMLR06	LANSA	Field	List
	
FUNCTION			OPTIONS(*DIRECT)

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

DEFINE					FIELD(#BNDMAPS)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDMAPL)	TYPE(*CHAR)	LENGTH(30)
DEFINE					FIELD(#BNDFLDSTR)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDFLDNME)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDFLDDSC)	TYPE(*CHAR)	LENGTH(40)
DEFINE					FIELD(#BNDFLDFIL)	TYPE(*CHAR)	LENGTH(10)

DEF_LIST			NAME(#MAPLST)	FIELDS((#BNDMAPS)	(#BNDMAPL))	TYPE(*WORKING)

DEF_LIST			NAME(#FLDLST)	FIELDS((#BNDFLDNME)	(#BNDFLDDSC)	(#BNDFLDFIL))	TYPE(*WORKING)	ENTRYS(9999)

DEF_LIST			NAME(#FLDTABLE)	FIELDS((#BNDFLDNME)	(#BNDFLDDSC))	TYPE(*WORKING)	ENTRYS(9999)

**********	Build	field/column	map

EXECUTE				SUBROUTINE(BLDMAP)

**********	Open	service

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Load	service

CHANGE					FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(RFIDataSourceService)	SERVICE_LIST(BNDMAPS,BNDMAPL)	BIND(*FIELD)	TRACE(*NO)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#MAPLST)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Create	datasource

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('CREATE	DATASOURCE(REPOSITORY)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Add	fields

USE								BUILTIN(GET_FIELD_LIST)	WITH_ARGS(#BNDFLDSTR)	TO_GET(#FLDLST)

SELECTLIST	NAMED(#FLDLST)

ADD_ENTRY		TO_LIST(#FLDTABLE)

ENDSELECT

CHANGE					FIELD(#JSMCMD)	TO('PUT	OBJECT(*TABLE)	NAME(FIELD_LIST)	SERVICE_LIST(BNDFLDNME,BNDFLDDSC)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#FLDTABLE)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Send	datasource

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SEND	OBJECT(*DATASOURCE)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Close	service	and	send	the	HTTP	response

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	SUB	ROUTINES

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF									COND('#JSMSTS	*NE	OK')

**********	Close	service

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

ENDIF

ENDROUTINE

SUBROUTINE	NAME(BLDMAP)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDSTR)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_START)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDNME)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_NAME)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDDSC)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_DESC)
ADD_ENTRY		TO_LIST(#MAPLST)

ENDROUTINE
	

JSMLR07	LANSA	Field	Information
	
FUNCTION			OPTIONS(*DIRECT)

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

DEFINE					FIELD(#BNDMAPS)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDMAPL)	TYPE(*CHAR)	LENGTH(30)
DEFINE					FIELD(#BNDRTNCDE)	TYPE(*CHAR)	LENGTH(2)
DEFINE					FIELD(#BNDFLDSTS)	TYPE(*CHAR)	LENGTH(2)
DEFINE					FIELD(#BNDFLDNME)	TYPE(*CHAR)	LENGTH(10)	DECIMALS(0)
DEFINE					FIELD(#BNDFLDTYP)	TYPE(*CHAR)	LENGTH(1)
DEFINE					FIELD(#BNDFLDLEN)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)
DEFINE					FIELD(#BNDFLDDEC)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)
DEFINE					FIELD(#BNDFLDREF)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDFLDDSC)	TYPE(*CHAR)	LENGTH(40)
DEFINE					FIELD(#BNDFLDFIL)	TYPE(*CHAR)	LENGTH(122)

DEF_LIST			NAME(#MAPLST)	FIELDS((#BNDMAPS)	(#BNDMAPL))	TYPE(*WORKING)

DEF_LIST			NAME(#FLDTABLE)	FIELDS((#BNDFLDSTS)	(#BNDFLDNME)	(#BNDFLDTYP)	(#BNDFLDLEN)	(#BNDFLDDEC)	(#BNDFLDREF)	(#BNDFLDDSC))	TYPE(*WORKING)	ENTRYS(1)

**********	Build	field/column	map

EXECUTE				SUBROUTINE(BLDMAP)

**********	Open	service

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Load	service	-	Receive	FLDNAME

CHANGE					FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(RFIDataSourceService)	SERVICE_LIST(BNDMAPS,BNDMAPL)	BIND(*FIELD)	TRACE(*NO)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#MAPLST)

EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Create	data	source

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('CREATE	DATASOURCE(REPOSITORY)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

CHANGE					FIELD(#BNDFLDLEN)	TO(*ZERO)
CHANGE					FIELD(#BNDFLDDEC)	TO(*ZERO)
CHANGE					FIELD(#BNDFLDREF)	TO(*BLANK)
CHANGE					FIELD(#BNDFLDTYP)	TO(*BLANK)
CHANGE					FIELD(#BNDFLDDSC)	TO(*BLANK)

USE								BUILTIN(GET_FIELD)	WITH_ARGS(#BNDFLDNME)	TO_GET(#BNDRTNCDE	#BNDFLDTYP	#BNDFLDLEN	#BNDFLDDEC	#BNDFLDREF	#BNDFLDDSC)

**********	OK	-	Defined	in	repository
**********	ER	-	Defined	in	function
**********	Sample	job	log	message
**********			Field	named	STATE	not	found	in	the	data	dictionary

CHANGE					FIELD(#BNDFLDSTS)	TO(#BNDRTNCDE)

**********	Send	data	as	datasource	fields

CHANGE					FIELD(#JSMCMD)	TO('PUT	OBJECT(*FIELD)	SERVICE_LIST(BNDMAPS,BNDMAPL)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#MAPLST)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Send	data	source

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SEND	OBJECT(*DATASOURCE)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Close	service	and	send	the	HTTP	response

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	SUB	ROUTINES

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF									COND('#JSMSTS	*NE	OK')

**********	Close	service

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

ENDIF

ENDROUTINE

SUBROUTINE	NAME(BLDMAP)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDSTS)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_STATUS)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDNME)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_NAME)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDTYP)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_TYPE)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDLEN)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_LENGTH)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDDEC)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_DECIMAL)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDREF)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_REF)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDFLDDSC)
CHANGE					FIELD(#BNDMAPL)	TO(FIELD_DESC)
ADD_ENTRY		TO_LIST(#MAPLST)

ENDROUTINE
	

JSMLR08	LANSA	SOAP	Type	List
	
FUNCTION			OPTIONS(*DIRECT)
CHANGE					FIELD(#BNDGCDE)	TO('''00001''')
EXCHANGE			FIELDS(#BNDGCDE)
CALL							PROCESS(*DIRECT)	FUNCTION(JSMLR0A)
	

JSMLR09	LANSA	SOAP	Type	Information
	
FUNCTION			OPTIONS(*DIRECT)
CHANGE					FIELD(#BNDGCDE)	TO('''00001''')
EXCHANGE			FIELDS(#BNDGCDE)
CALL							PROCESS(*DIRECT)	FUNCTION(JSMLR0B)
	

JSMLR10	LANSA	JSON	Type	List
	
FUNCTION			OPTIONS(*DIRECT)
CHANGE					FIELD(#BNDGCDE)	TO('''00002''')
EXCHANGE			FIELDS(#BNDGCDE)
CALL							PROCESS(*DIRECT)	FUNCTION(JSMLR0A)
	

JSMLR11	LANSA	JSON	Type	Information
	
FUNCTION			OPTIONS(*DIRECT)
CHANGE					FIELD(#BNDGCDE)	TO('''00002''')
EXCHANGE			FIELDS(#BNDGCDE)
CALL							PROCESS(*DIRECT)	FUNCTION(JSMLR0B)
	

JSMLR0A	LANSA	Type	List
	
FUNCTION			OPTIONS(*DIRECT)

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

DEFINE					FIELD(#BNDMAPS)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDMAPL)	TYPE(*CHAR)	LENGTH(30)

DEF_LIST			NAME(#MAPLST)	FIELDS((#BNDMAPS)	(#BNDMAPL))	TYPE(*WORKING)

DEF_LIST			NAME(#TYPTABLE)	FIELDS((#BNDCCDE)	(#BNDCTYP)	(#BNDCETY)	(#BNDCDSC))	TYPE(*WORKING)	ENTRYS(5000)

**********	Build	field/column	map

EXECUTE				SUBROUTINE(BLDMAP)

**********	Open	service

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Load	service

CHANGE					FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(RFIDataSourceService)	SERVICE_LIST(BNDMAPS,BNDMAPL)	TRACE(*NO)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#MAPLST)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Create	datasource

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('CREATE	DATASOURCE(REPOSITORY)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Add	complex	types

SELECT					FIELDS((#BNDCCDE)	(#BNDCTYP)	(#BNDCETY)	(#BNDCDSC))	FROM_FILE(BNDCTPS)	WITH_KEY(#BNDGCDE)

ADD_ENTRY		TO_LIST(#TYPTABLE)

ENDSELECT

CHANGE					FIELD(#JSMCMD)	TO('PUT	OBJECT(*TABLE)	NAME(TYPE_LIST)	SERVICE_LIST(BNDCCDE,BNDCTYP,BNDCETY,BNDCDSC)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#TYPTABLE)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Send	datasource

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SEND	OBJECT(*DATASOURCE)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Close	service	and	send	the	HTTP	response

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	SUB	ROUTINES

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF									COND('#JSMSTS	*NE	OK')

**********	Close	service

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

ENDIF

ENDROUTINE

SUBROUTINE	NAME(BLDMAP)

CHANGE					FIELD(#BNDMAPS)	TO(BNDCCDE)
CHANGE					FIELD(#BNDMAPL)	TO(TYPE_KEY)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDCTYP)
CHANGE					FIELD(#BNDMAPL)	TO(NAME)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDCETY)
CHANGE					FIELD(#BNDMAPL)	TO(ENTITY)	
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDCDSC)
CHANGE					FIELD(#BNDMAPL)	TO(DESC)
ADD_ENTRY		TO_LIST(#MAPLST)

ENDROUTINE
	

JSMLR0B	LANSA	Type	Information
	
FUNCTION			OPTIONS(*DIRECT)

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

DEFINE					FIELD(#BNDMAPS)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#BNDMAPL)	TYPE(*CHAR)	LENGTH(30)

DEF_LIST			NAME(#MAPLST)	FIELDS((#BNDMAPS)	(#BNDMAPL))	TYPE(*WORKING)

DEF_LIST			NAME(#TYPTABLE)	FIELDS((#BNDECDE)	(#BNDESEQ)	(#BNDENME)	(#BNDEETY)	(#BNDEDSC)	(#BNDSCDE)	(#BNDSTYP)	(#BNDSARY)	(#BNDCCDE)	(#BNDCTYP)	(#BNDCARY))	TYPE(*WORKING)	ENTRYS(300)

**********	Build	field/column	map

EXECUTE				SUBROUTINE(BLDMAP)

**********	Open	service

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Load	service

CHANGE					FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(RFIDataSourceService)	SERVICE_LIST(BNDMAPS,BNDMAPL)	BIND(*FIELD)	TRACE(*NO)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#MAPLST)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Create	datasource

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('CREATE	DATASOURCE(REPOSITORY)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

SELECT					FIELDS((#BNDESEQ)	(#BNDEDSC)	(#BNDSCDE)	(#BNDCCDE)	(#BNDCARY)	(#BNDENME)	(#BNDEETY))	FROM_FILE(BNDETPS)	WITH_KEY(#BNDGCDE	#BNDECDE)

IF									COND('#BNDSCDE	*NE	*BLANK')

**********	Simple	Type

CHANGE					FIELD(#BNDCARY)	TO('N')
CHANGE					FIELD(#BNDCCDE)	TO(*BLANK)
CHANGE					FIELD(#BNDCTYP)	TO(*BLANK)

FETCH						FIELDS((#BNDSDSC)	(#BNDSTYP)	(#BNDSARY)	(#BNDSNME)	(#BNDSETY))	FROM_FILE(BNDSTPS)	WITH_KEY(#BNDGCDE	#BNDSCDE)

**********	Inherit	simple	name

IF									COND('#BNDENME	*EQ	*BLANK')
CHANGE					FIELD(#BNDENME)	TO(#BNDSNME)
ENDIF

**********	Inherit	simple	description

IF									COND('#BNDEDSC	*EQ	*BLANK')
CHANGE					FIELD(#BNDEDSC)	TO(#BNDSDSC)
ENDIF

**********	Inherit	simple	field

IF									COND('#BNDEETY	*EQ	*BLANK')
CHANGE					FIELD(#BNDEETY)	TO(#BNDSETY)
ENDIF

ENDIF

IF									COND('#BNDCCDE	*NE	*BLANK')

**********	Complex	Type

CHANGE					FIELD(#BNDSARY)	TO('N')
CHANGE					FIELD(#BNDSCDE)	TO(*BLANK)
CHANGE					FIELD(#BNDSTYP)	TO(*BLANK)

FETCH						FIELDS((#BNDCDSC)	(#BNDCTYP))	FROM_FILE(BNDCTPS)	WITH_KEY(#BNDGCDE	#BNDCCDE)

**********	Inherit	complex	description

IF									COND('#BNDEDSC	*EQ	*BLANK')
CHANGE					FIELD(#BNDEDSC)	TO(#BNDCDSC)
ENDIF

ENDIF

IF									COND('#BNDENME	*EQ	*BLANK')
CHANGE					FIELD(#BNDENME)	TO('NONAME')
ENDIF

ADD_ENTRY		TO_LIST(#TYPTABLE)

CHANGE					FIELD(#BNDESEQ)	TO(*DEFAULT)
CHANGE					FIELD(#BNDEDSC)	TO(*DEFAULT)
CHANGE					FIELD(#BNDENME)	TO(*DEFAULT)
CHANGE					FIELD(#BNDEETY)	TO(*DEFAULT)

CHANGE					FIELD(#BNDSCDE)	TO(*DEFAULT)
CHANGE					FIELD(#BNDSDSC)	TO(*DEFAULT)
CHANGE					FIELD(#BNDSTYP)	TO(*DEFAULT)
CHANGE					FIELD(#BNDSARY)	TO(*DEFAULT)
CHANGE					FIELD(#BNDSNME)	TO(*DEFAULT)
CHANGE					FIELD(#BNDSETY)	TO(*DEFAULT)

CHANGE					FIELD(#BNDCCDE)	TO(*DEFAULT)
CHANGE					FIELD(#BNDCDSC)	TO(*DEFAULT)
CHANGE					FIELD(#BNDCTYP)	TO(*DEFAULT)
CHANGE					FIELD(#BNDCARY)	TO(*DEFAULT)

ENDSELECT

CHANGE					FIELD(#JSMCMD)	TO('PUT	OBJECT(*TABLE)	NAME(TYPE_ELEMENT_LIST)	SERVICE_LIST(BNDECDE,BNDESEQ,BNDENME,BNDEETY,BNDEDSC,BNDSCDE,BNDSTYP,BNDSARY,BNDCCDE,BNDCTYP,BNDCARY)')
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#TYPTABLE)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Send	datasource

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SEND	OBJECT(*DATASOURCE)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Close	service	and	send	the	HTTP	response

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	SUB	ROUTINES

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF									COND('#JSMSTS	*NE	OK')

**********	Close	service

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

ENDIF

ENDROUTINE

SUBROUTINE	NAME(BLDMAP)

CHANGE					FIELD(#BNDMAPS)	TO(BNDECDE)
CHANGE					FIELD(#BNDMAPL)	TO(TYPE_KEY)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDESEQ)
CHANGE					FIELD(#BNDMAPL)	TO(SEQUENCE)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDENME)
CHANGE					FIELD(#BNDMAPL)	TO(NAME)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDEETY)
CHANGE					FIELD(#BNDMAPL)	TO(ENTITY)

ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDEDSC)
CHANGE					FIELD(#BNDMAPL)	TO(DESC)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDSCDE)
CHANGE					FIELD(#BNDMAPL)	TO(SIMPLE_CODE)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDSTYP)
CHANGE					FIELD(#BNDMAPL)	TO(SIMPLE_TYPE)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDSARY)
CHANGE					FIELD(#BNDMAPL)	TO(SIMPLE_ARRAY)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDCCDE)
CHANGE					FIELD(#BNDMAPL)	TO(COMPLEX_CODE)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDCTYP)
CHANGE					FIELD(#BNDMAPL)	TO(COMPLEX_TYPE)
ADD_ENTRY		TO_LIST(#MAPLST)

CHANGE					FIELD(#BNDMAPS)	TO(BNDCARY)
CHANGE					FIELD(#BNDMAPL)	TO(COMPLEX_ARRAY)
ADD_ENTRY		TO_LIST(#MAPLST)

ENDROUTINE
	

7.25	Test	Editor
The	Test	Editor	is	started	from	Studio.	It	is	recommended	that	you	use	Studio	to
manage	your	projects	and	associated	files.
The	Test	Editor	is	used	to	perform	EDI	processing	and	XML	transformation
tests.
Review	the	following	topics:
7.25.1	Create	a	Test	Project
7.25.2	Test	Samples

7.25.1	Create	a	Test	Project
1.		From	the	Project	Solutions	node	select	the	New	Solution	menu	item.
2.		Select	the	Test	Configuration	Wizard	tool	and	enter	or	select	the	Group	folder
to	receive	the	project	file.

	
3.		Enter	the	project	File	name.	The	extension	'.test.prj'	is	added	automatically.
	

	
4.		Select	type	of	test.
	

7.25.2	Test	Samples
	
Studio	Test	Samples	Overview
	

	
EDI	Database	Test

	
EDI	Inbound	Test
	

	
EDI	Outbound	Test
	

	
XML	Transformation	Test
	

	
XML	transformation	testing	can	also	be	done	from	Studio	by	selecting	both	an
XML	file	and	XSL	file.
	

9.	Remote	Function	Invocation
Remote	Function	Invocation	(RFI)	is	a	means	of	sending	and	receiving
serialized	java	objects	between	a	client	JVM	and	the	remote	JSM	server.
The	Java	Service	Manager	RFI	feature	is	middleware	that	makes	remote
integration	as	easy	as	coding	to	local	objects.	The	Java	client	developer	creates
and	works	with	local	objects	and	then	sends	these	objects	to	the	remote	JSM
server,	the	remote	service	uses	a	local	copy	of	these	objects	to	supply	data	to	the
host	program.	The	host	program	can	also	create	new	objects	and	return	a	copy
to	the	Java	client	program	for	local	processing.	Compared	with	JDBC,	this	is
much	faster	because	network	traffic	is	minimized	and	it	is	much	easier	and	more
natural	to	code.	RFI	can	be	called	either	by	LANSA	functions	or	3GL	programs.
Review	the	following	topics:
9.1	Using	the	RFIService	client	class
9.2	Working	with	the	RFIDataSource	on	the	client
9.3	RFI	Example
9.4	RFI	Example	Viewer

9.1	Using	the	RFIService	client	class
RFIService	is	the	client	class	used	for	Remote	Function	Invocation
programming.
To	create	an	instance	of	RFIService	use	the	static	getInstance	method.	This
method	requires	a	properties	parameter.	These	properties	control	the
communication	characteristics	of	the	host	connection.

Property Comments

rfi.server Host	protocol	and	address
http://your.own.url:port.

rfi.proxy Proxy	server.

rfi.user Basic	authentication	user.

rfi.password Basic	authentication	password.

rfi.agent Host	agent	program.
Default	-	/cgi-bin/jsmdirect.

rfi.protocol.encoding HTTP	protocol	head	encoding.
Default	-	ISO8859_1.

rfi.authentication.encoding HTTP	Basic	authentication	encoding.
Default	-	ISO8859_1.

rfi.server.trusted Required	for	an	SSL	connection	if	the	trust
store	does	not	contain	the	peer	certificate.
A	value	of	true	means	that	server	certificate
will	be	trusted.

	

Example
	
Properties	properties	=	new	Properties	()	;
	
properties.put	("rfi.server",	"http://your.own.url:port")	;
	
RFIService	service	=	RFIService.getInstance	(properties)	;

	
The	RFIService	has	two	methods	to	send	and	receive	serialized	objects.
The	getObject	method	is	used	to	receive	a	serialized	response	object	from	the
host	server	using	the	specified	service	name.
	
Object	getObject	(String	service)	
Object	getObject	(RFIObject	service)	;
	

Example
	
Object	object	=	service.getObject	("EMPLOYEE-FETCH")	;
	

The	putObject	method	sends	a	serialized	object	to	the	host	server	and	receives	a
response	object	from	this	named	service.
	
Object	putObject	(String	service,	Object	sendObject)	;
Object	putObject	(RFIObject	sendObject)	;
	

Example
	
Object	object	=	service.putObject	("EMPLOYEE-UPDATE",	employee)	;
	

If	the	response	status	from	the	host	is	not	successful	then	an	RFIException	is
thrown.
If	the	content	type	of	the	response	is	not	"application/x-java-serialized-object"
an	RFIException	is	thrown.
If	no	content	was	returned	a	null	object	reference	is	returned,	else	the	content	is
de-serialized	and	an	object	reference	is	returned.
The	RFIObject	interface	has	one	method	to	return	the	service	name.
This	allows	the	sendObject	to	supply	the	name	of	the	service	and	eliminates	the
need	for	the	String	service	name	parameter.
	
public	interface	RFIObject
{
				public	String	getService	()	;
}

	
The	RFIException	class	has	several	methods	to	allow	access	to	the	response
status	and	message.

Method Comments

int	getStatus	() Get	response	status	code

String	getMessage	() Get	response	status	message

byte[]	getContent	() Get	response	content

Enumeration	propertyNames	() Get	response	properties

getProperty	(String	property) Get	response	property

	

9.2	Working	with	the	RFIDataSource	on	the	client
RFIDataSource	implements	the	RFIObject	interface.

Constructor Comments

RFIDataSource	(String	name) Create	a	new	data	source	and	service	of
the	same	name

RFIDataSource	(String	name,
String	service)

Create	a	new	data	source	using
specified	service	name

	

Method Comments

String	getName	() Name	of	data	source

String	getService	() Name	of	service

void	setService	(String	service) Set	service	name

void	clearFields	() Clear	all	fields	from	data
source

String[]	getFieldNames	() Get	data	source	field	names

void	putField	(String	name,	String	value
)

Add	field	to	data	source

void	removeField	(String	name) Remove	field	from	data	source

boolean	containsField	(String	name) Data	source	contains	field

String	getFieldValue	(String	name) Get	value	of	field

void	clearTables	() Clear	all	tables	from	data
source

void	putTable	(RFIDataTable	table) Add	table	to	data	source

void	removeTable	(String	name) Remove	table	from	data	source

RFIDataTable	getTable	(String	name) Get	table	from	data	source

boolean	containsTable	(String	name) Data	source	contains	table

String[]	getTableNames	() Get	data	source	table	names

boolean	equals	(String	name) Data	source	name	equivalence

	

RFIDataTable

Constructor Comments

RFIDataTable	(String	name,	String[]	columns) Create	new
table

RFIDataTable	(String	name,	String[]	columns,	int
initialSize)

Create	new
table

	

Method Comments

String	getName	() Get	name	of	table

String[]	getColumns	() Get	table	column	names

int	getColumnCount	() Get	table	column	count

String	getColumnName	(int	column) Get	table	column	name	at
specified	index

int	getRowCount	() Get	row	count

String[]	getRow	(int	row) Get	row	of	data	at	specified
index

void	clear	() Remove	all	rows

void	remove	(int	row) Remove	row	at	specified	index

void	add	(String[]	data) Add	a	row	of	data

void	set	(int	row,	String[]	data) Update	a	row	of	data	at	specified
index

void	insert	(int	row,	String[]	data) Insert	a	row	of	data	at	specified

index

String	getValueAt	(int	row,	int	column
)

Get	cell	value	at	specified	row
and	column

void	setValueAt	(int	row,	int	column,
String	value)

Update	cell	value

boolean	equals	(String	name) Table	name	equivalence

	

Example	of	creating	a	client-side	RFIDataSource	object:
	
RFIDataSource	employee	=	new	RFIDataSource	("EMPLOYEE")	;
	
String[]	columns	=	{	"COMMENT",	"SKILL",	"GRADE",	"ACQUIRED"	}	;
	
RFIDataTable	table	=	new	RFIDataTable	("SKILLS",	columns)	;
	
String[]	data	=	{	"Good	cobol	skills",	"CBL",	"A",	"020399"	}	;
	
table.add	(data)	;
	
employee.putTable	(table)	;
	

9.3	RFI	Example
The	RFI	Example	illustrates	how	to	use	the	RFI	Service	to	receive	a
RFIDataSource	object	from	the	remote	JSM	server.	The	contents	of	this	data
source	are	displayed	using	the	RFI	Example	Viewer.
	
Properties	properties	=	new	Properties	();
	
properties.put	("rfi.server",	"http://your.own.url:port")	;
	
RFIService	service	=	RFIService.getInstance	(properties)	;
	
RFIDataSource	dataSource	=	(RFIDataSource)service.getObject	("EMPLOYEE-
FETCH")	;
	
if	(dataSource	==	null)
{
				printStream.println	("No	object	was	returned")	;
	
				return	;
}
	
if	(dataSource.equals	("EMPLOYEE"))
{
				printStream.println	("Data	source	fields	:")	;
				printStream.println	("")	;
	
				/*
								Access	fields
				*/
	
				String[]	fields	=	dataSource.getFieldNames	()	;
	
				for	(int	i=0;	i	<	fields.length;	i++)
				{
								printStream.println	(fields[i]	+	"\t\t"	+	dataSource.getFieldValue	(fields[i]))	;
				}
	

				printStream.println	("")	;
	
				if	(dataSource.containsTable	("SKILLS"))
				{
								printStream.println	("Data	source	table	:	SKILLS")	;
								printStream.println	("")	;
	
								/*
												Access	table
								*/
	
								RFIDataTable	table	=	dataSource.getTable	("SKILLS")	;
	
								/*
												Access	table	columns
								*/
	
								String[]	columns	=	table.getColumns	()	;
	
								for	(int	i=0;	i	<	columns.length;	i++)
								{
												printStream.print	(columns[i]	+	"\t")	;
								}
	
								/*
												Access	table	rows
								*/
	
								int	rowCount	=	table.getRowCount	()	;
	
								for	(int	i=0;	i	<	rowCount;	i++)
								{
												printStream.println	("")	;
	
												for	(int	j=0;	j	<	columns.length;	j++)
												{
																printStream.print	(table.getValueAt	(i,	j)	+	"\t")	;
												}
								}

				}
}
	

9.4	RFI	Example	Viewer
The	RFI	Example	Viewer	is	a	simple	GUI	application	that	illustrates	how	to	use
the	RFIService	client	class	and	the	JSM	service	RFIDataSourceService.
The	Java	programmer	modifies	the	RFIExample	source	code	and	compiles	and
runs	the	RFI	Example	Viewer	application	to	execute	the	RFIExample	class	to
perform	a	Remote	Function	Innovation	(RFI)	to	the	remote	JSM	server.

	
	

10.	Troubleshooting
Please	review	the	following	Troubleshooting	topics	before	contacting	your	local
vendor	for	technical	support:
10.1	How	to	Display	the	version	of	Java
10.2	How	to	Display	the	version	of	the	Java	Service	Manager
10.3	Tracing
10.4	STRJSM	command	not	working
10.5	Locating	error	messages	on	IBM	i
10.6	JSMDirect	or	JSMProxy	not	working
10.7	Java	Virtual	Machine	is	shut	down	when	you	log	off	from	a	Windows
Server

10.1	How	to	Display	the	version	of	Java
Use	the	JAVA	CLASS(*VERSION)	command	to	display	the	required	JDK
version.
For	the	classic	JDK	set	the	'java.version'	property	and	for	the	IBM	Technology
JDK	set	the	JAVA_HOME	environment	variable.
	
Default	JDK
	
		RMVENVVAR	ENVVAR(JAVA_HOME)
		JAVA	CLASS(*VERSION)
	
	
Classic	1.4
	
		RMVENVVAR	ENVVAR(JAVA_HOME)
		JAVA	CLASS(*VERSION)	PROP(('java.version'	'1.4'))
	
	
Classic	1.5
	
		RMVENVVAR	ENVVAR(JAVA_HOME)
		JAVA	CLASS(*VERSION)	PROP(('java.version'	'1.5'))
	
	
Classic	1.6
	
		RMVENVVAR	ENVVAR(JAVA_HOME)
		JAVA	CLASS(*VERSION)	PROP(('java.version'	'1.6'))
	
	
IBM	Technology	5.0	32-bit
	
		ADDENVVAR	ENVVAR(JAVA_HOME)	VALUE('/QOpenSys/QIBM/ProdData/JavaVM/jdk50/32bit')	REPLACE(*YES)
		JAVA	CLASS(*VERSION)
	
	
IBM	Technology	5.0	64-bit

	
		ADDENVVAR	ENVVAR(JAVA_HOME)	VALUE('/QOpenSys/QIBM/ProdData/JavaVM/jdk50/64bit')	REPLACE(*YES)
		JAVA	CLASS(*VERSION)
	
	
IBM	Technology	6.0	32-bit
	
		ADDENVVAR	ENVVAR(JAVA_HOME)	VALUE('/QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit')	REPLACE(*YES)
		JAVA	CLASS(*VERSION)
	
	
IBM	Technology	6.0	64-bit
	
		ADDENVVAR	ENVVAR(JAVA_HOME)	VALUE('/QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit')	REPLACE(*YES)
		JAVA	CLASS(*VERSION)
	
	
IBM	Technology	7.0	32-bit
	
		ADDENVVAR	ENVVAR(JAVA_HOME)	VALUE('/QOpenSys/QIBM/ProdData/JavaVM/jdk70/32bit')	REPLACE(*YES)
		JAVA	CLASS(*VERSION)
	
	
IBM	Technology	7.0	64-bit
	
		ADDENVVAR	ENVVAR(JAVA_HOME)	VALUE('/QOpenSys/QIBM/ProdData/JavaVM/jdk70/64bit')	REPLACE(*YES)
		JAVA	CLASS(*VERSION)
	
	
IBM	Technology	8.0	32-bit
	
		ADDENVVAR	ENVVAR(JAVA_HOME)	VALUE('/QOpenSys/QIBM/ProdData/JavaVM/jdk80/32bit')	REPLACE(*YES)
		JAVA	CLASS(*VERSION)
	
	
IBM	Technology	8.0	64-bit
	
		ADDENVVAR	ENVVAR(JAVA_HOME)	VALUE('/QOpenSys/QIBM/ProdData/JavaVM/jdk80/64bit')	REPLACE(*YES)
		JAVA	CLASS(*VERSION)

	
	

10.2	How	to	Display	the	version	of	the	Java	Service	Manager
The	trace	files	contain	the	version	numbers	of	different	Integrator	components.
The	TRANSPORT.TXT	trace	file	contains	the	version	number	of	the	jsm.jar
file,	this	value	follows	the	manager:	version	entry.	The	version	number	of	the
DCXS882X	service	program	follows	the	transport:	Client-Version	entry.	The
CCSID,	language	and	country	code	of	the	client	application	is	also	shown.
	
===================	TRACE	OPEN	===================	
manager:	version	:	11.4.0
manager:	date				:	2006-05-11	15:04:36	+1000
	
client	thread:	client	address	:	127.0.0.1
	
client	thread:	read	command
transport:	read	protocol	head
transport:	Client-Type	:	iSeries
transport:	Client-Version	:	11.4.0
transport:	Client-CodePage	:	37
transport:	Client-Language	:	ENU
transport:	Client-Country	:	AU
transport:	Content-Type	:	application/command
transport:	Command-Length	:	12
	
===================	TRACE	CLOSE	===================
	

The	HTTP_KEYWORDS.TXT	file	created	by	most	HTTP	services	also
contains	version	information.
The	DIRECT-VERSION	keyword	value	is	the	version	number	of	JSMDirect.
The	PROXY-VERSION	keyword	value	is	the	version	number	of	JSMProxy.
The	USER-AGENT	keyword	value	contains	the	version	number	of	the
Integrator	User	Agent.
	
PROXY-VERSION	=	11.4.0
DIRECT-VERSION	=	11.4.0
USER-AGENT	=	LANSA	Integrator	UserAgent/11.4.0	(Client)
USER-AGENT	=	LANSA	Integrator	RFIAgent/11.4.0	(Client)

	
To	determine	the	version	of	JSMDirect	and	also	JSMProxy,	use	a	web	browser
to	execute	the	CGI	programs	with	no	service	argument.

For	IBM	i: http://myserver/cgi-bin/jsmdirect
http://myserver/cgi-bin/jsmproxy
	

For	Windows http://myserver/cgi-bin/jsmdirect.exe
http://myserver/cgi-bin/jsmproxy.exe

The	CGI	programs	will	return	an	HTML	page	displaying	version	information.

10.3	Tracing
For	details	of	the	Tracing	facilities	provided	with	the	Integrator,	refer	to:
Tracing
Apache	Tracing	(IBM	i)

10.4	STRJSM	command	not	working
Refer	to:
JSM	Job	Management

its:lansa093.chm::/lansa/INTENGB3_0090.htm

10.5	Locating	error	messages	on	IBM	i
Refer	to:
JSM	Job	Management

its:lansa093.chm::/lansa/INTENGB3_0090.htm

10.6	JSMDirect	or	JSMProxy	not	working
Refer	to:
JSMDirect	Program	Logic
JSMProxy	Program	Logic

LANSA093.CHM::/lansa/intengb6_0055.htm
LANSA093.CHM::/lansa/intb6_0165.htm

10.7	Java	Virtual	Machine	is	shut	down	when	you	log	off	from	a
Windows	Server
Scenario:	You	log	on	to	a	Server	and	your	JSM	Administrator	is	running.	You
do	some	work.	The	JSM	Administrator	is	still	running.	Then	you	log	off	from
the	Server.	The	JSM	Administrator	stops	working,	which	doesn't	seem	correct.
What	happens	is	that	the	Java	Virtual	Machine	is	shut	down	when	you	log	off.
This	is	the	correct	behavior	in	most	circumstances.	It	is	not	correct	when	it	runs
from	a	Windows	Service.
How	can	the	Java	Virtual	Machine	tell	the	difference?	It	can't,	but	you	can	tell	it
not	to	shut	down	when	you	log	off	by	using	the	-Xrs	option.
By	including	the	-Xrs	option	in	the	jsmmgrdta.txt	file,	the	above	scenario
should	no	longer	occur.
	

11.	Recommendations
DO	NOT	make	a	backup	copy	of	jar	files	in	the	jar	sub-directory.	When
JSM	starts,	all	files	in	the	jar	directory	are	included	in	the	Java	classpath.	It
is	possible	for	backup	files	to	appear	before	the	intended	jar	files	in	the	Java
classpath.	This	will	cause	classes	in	the	backup	files	to	be	used	instead	of	the
classes	in	intended	jar	files.
DO	NOT	modify	entries	in	the	LANSA	studio	section	of	service	property
files,	but	add	your	own	section	to	the	bottom	of	these	files.	All	property	file
entries	must	exist	within	a	studio-project	section,	during	an	upgrade	process
any	entries	found	outside	a	section	will	be	placed	in	the	studio-project
id="00000000-000000"	name="unassigned"	section.	They	should	be
assigned	to	another	section	or	deleted.
LANSA	function	fields	that	do	not	contribute	to	the	Java	service	should	be
prefixed	with	JSM.	This	reduces	the	amount	of	data	being	transferred
between	the	function	and	the	Java	service.	To	illustrate	this	recommendation,
the	fields	#JSMSTS,	#JSMMSG	and	#JSMCMD	are	used	in	some	LANSA
Integrator	examples.
When	using	the	MQSeries	programs,	fields	that	receive	the	message	and
correlation	id	must	be	prefixed	with	JSM.	These	fields	can	receive	24	bytes
of	data	outside	of	the	alphanumeric	range.	This	means	that	they	cannot	be
sent	to	the	Java	service	because	the	native	to	Unicode	conversion	will	fail.
It	is	a	matter	of	style,	but	if	command	keyword	values	are	static	then	do	not

use	a	subroutine	to	build	the	command	using	a	sequence	of	concatenations.
Include	the	keyword	directly	in	the	command	string.
	

Integrator	Tutorials
The	LANSA	Integrator	Tutorials	are	a	set	of	exercises	designed	to	introduce	the
skills	required	to	build	Integrator	applications	with	LANSA	using	various
transport	protocols.
The	following	tutorials	are	included:
INT001	-	Verify	JSM	Install	&	Test
INT002	-	Getting	Started	with	Basic	JSM	Operations
INT003	-	Using	the	FTP	Service
INT004	-	Using	the	LANSA	User	Agent
INT005	-	Department	Inquiry	Bindings
INT006	-	Department	Inquiry	Functions
INT007	-	Department	List	Inquiry
INT008	-	Department	&	Employee	Server
INT009	–	Department	&	Employee	Client	(Optional)
INT010A	-	SOAP	Service	-	Define	Server
INT010B	-	SOAP	Service	-	Define	Agent
INT010C	-	SOAP	Service	-	Test
INT011	-	Create	Excel	Document
INT012	-	Create	Excel	Document	with	Template	and	Formatting
INT013	-	Create	PDF	Output	using	PDFDocumentService
Integrator	Tutorials
Naming	conventions

About	the	Tutorials
Who	Should	Use	the	Tutorials?
A	novice	can	use	these	tutorials	and	experienced	LANSA	developers	who	wish
to	learn	how	to	build	applications	with	LANSA	Integrator.
In	order	to	use	the	tutorials,	you	must	be	able	to	create	LANSA	processes	and
functions	using	RDML	&	RDMLX.	You	should	know	how	to	edit	RDML/X	and
how	to	create	fields	in	the	LANSA	Repository.

How	Do	I	Use	the	Tutorials?
It	is	recommended	that	you	complete	the	Tutorials	in	sequence.	Some	processes
and	functions	created	in	early	tutorials	are	reused	in	later	tutorials.
To	allow	for	more	than	one	developer	to	use	the	tutorials,	all	LANSA	object
names	will	be	prefixed	with	iii.	You	may	use	any	three	characters,	such	as	the
initials	of	your	name,	for	the	iii	characters.	For	example,	if	your	name	is	John
David	Smith	you	can	use	the	characters	JDS.	When	asked	to	create	a	function
named	iiiFN01,	you	will	create	a	function	named	JDSFN01.	Always	remember
to	replace	iii	with	your	unique	3	characters.
To	check	that	your	LANSA	partition	is	properly	set	up	to	use	the	tutorials,	refer
to	the	Tutorial	Installation	(following).

What	Partition	Should	I	Use?
It	is	recommended	that	you	use	the	DEM	partition	for	the	tutorial.	The	DEM	is
automatically	installed	with	LANSA	for	iSeries	and	Visual	LANSA	systems.
The	DEM	partition	contains	the	Personnel	System	demonstration	and	all
required	files	used	by	the	tutorial.
If	you	do	not	use	the	DEM	partition,	you	can	set	up	another	partition	with	the
Personnel	System	files.
The	partition	you	use	must	be	RDMLX-enabled.

Tutorial	Installation
In	order	to	use	the	LANSA	Integrator	Tutorials,	you	must	install	the	SET
materials.	Refer	to	the	SET	Guide	for	details	about	installing	SET.
You	must	also	install	Studio	and	the	User	Agent.	For	further	information,	refer
to	Task:	Install	Other	Features	or	Upgrade	LANSA	on	Windows	in	the
Installing	LANSA	on	Windows	Guide.
Some	tutorials	are	run	using	JSMDIRECT	which	requires	an	installed	HTTP

its:LANSA041.CHM::/lansa/l4winsb4_0255.htm
its:LANSA041.CHM::/lansa/l4winsb5_0015.htm

Server.	Refer	to	JSMDIRECT	for	information.
INT002	(and	following	tutorials)	use	a	LANSA	templates	JSMXSKEL	and
BBJSMXCMD.	These	are	not	shipped	with	LANSA	and	you	must	create	them.
Instructions	for	doing	so	and	the	necessary	code	are	supplied	in	Create	RDMLX
Templates.

How	Many	Developers	Can	Use	the	Training?
There	is	no	limit	on	the	number	of	developers	who	may	use	the	training	at	the
same	time.	However,	it	is	important	that	each	developer	has	a	unique	identifier
for	their	work.
In	the	tutorial,	each	developer	will	use	an	object	prefix	iii	that	can	be	based	on
your	initials	or	could	be	assigned	by	a	system	coordinator.

Structure	of	the	exercises
The	first	steps	in	an	exercise	will	provide	very	precise	descriptions	of	the
tasks	to	be	performed.	As	the	steps	and	course	progresses,	the	instructions
will	become	much	more	general.
Check	off	each	step	in	the	exercise	as	you	complete	it.
Be	very	careful	when	you	enter	the	names	of	the	different	files	and
processes.
Complete	only	the	requested	tasks.

Your	Feedback
Your	feedback	regarding	these	tutorials	will	help	us	improve	the	overall
quality	of	the	LANSA	documentation	and	training.	Please	email	your
comments	to	lansatraining@LANSA.com.au

mailto:lansatraining@LANSA.com.au

Naming	conventions
The	following	naming	standards	are	used	throughout	this	training	course	for
RDMLX	processes	and	functions,	projects	created	using	the	Wizard,	XML	files
and	jar	files.	The	naming	standard	will	help	you	to	relate	a	project	with	the
XML	it	uses	and	the	binding	jar	files	generated	from	it,	as	well	as	to	which
functions	the	bindings	are	referred.
Process	names:		iiiPROnn
where
			iii	is	your	unique	3	characters
			nn	is	a	sequential	number
Function	names:		iiiFNnn
where
			iii	is	your	unique	3	characters
			nn	is	a	sequential	number
Projects:		processname_action.xml.prj
where
			processname	is	the	name	of	the	process	that	groups	the	client	and	server
RDMLX	functions
			action	is	either		request	or	response		
XML	files:		processname_action.xml
where
			processname	is	the	name	of	the	process	that	groups	the	client	and	server
RDMLX	functions	
			action	is	either	request	or	response

INT001	-	Verify	JSM	Install	&	Test

You	can	only	complete	this	first	tutorial	if	you	have	Visual	LANSA
installed.

Objectives:
To	become	familiar	with	the	SET	materials.
To	learn	different	ways	of	finding	a	specific	SET	Example.
To	execute	the	SET218G	example,	which	transfers	a	list	of	files	from	FTP.
To	locate	the	RDMLX	source	code	of	the	FTP	function.
To	highlight	the	advantages	of	using	the	FTP	Service.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Find	a	specific	SET	example
Step	2.	Execute	SET218	FTP	example
Step	3.	Locating	Source	Code
Summary

Before	You	Begin
This	exercise	uses	a	SET	example	which	should	be	installed	and	compiled	on
the	server	running	the	Java	Services	Manager	(usually	your	IBM	i	server).	The
simplest	way	to	install	the	required	material	is	to	import	the	SET	examples	from
the	files	available	on	the	LANSA	web	site.
See:	http://www.lansa.com/support/set/index.htm
This	is	the	recommended	approach.
Alternatively,	refer	to	the	SET	examples	in	the	online	guide	as	detailed	below
and	create	all	the	repository	objects	required	and	then	compile	the	processes	and
functions.	Note	that	to	execute	the	SET_218	example	the	following	processes
and	functions,	plus	all	associated	files,	fields	and	system	variables	are	required:
Process:	SET_MOD,	S_SYSVAR	and	SET_218.
You	will	find	further	details	in	the	SET	guide,	as	explained	in	Step	1.	Find	a
specific	SET	example	.

http://www.lansa.com/support/set/index.htm

Step	1.	Find	a	specific	SET	example
In	this	step,	you	will	open	the	online	guide,	locate	the	SET	manual	and	find	a
specific	LANSA	Integrator	example.	In	this	case,	you	are	searching	for	a
LANSA	Integrator	example	that	explains	how	to	use	the	file	transfer	protocol
using	the	FTP	Service.
1.				If	you	don't	already	have	them,	download	the	required	SET	files	from	the
Support	pages	of	the	LANSA	web	site.	Now	go	to	point	2	Expand	the	items
in	the	Contents	tab	of	The	SET	Collection.

Alternatively:
1.					If	you	have	the	LANSA	online	documentation,	you	will	find	the	SET	files
there.
a.		Open	the	LANSA	Documentation	from	the	Windows	Start	menu,	by
clicking	on	the	Documentation	item	in	your	LANSA	program	list.

b.		In	the	Documentation	Directory,	select	the	Global	Guide	(All	guides)
and	from	the	front	page	of	the	LANSA	User	Assistance	that	opens,	click	on
the	Visual	LANSA	User	Guide.	

c.		When	the	first	page	of	the	Visual	LANSA	User	Guide	opens,	select	the	

	icon	in	the	toolbar	to	open	the	SET	(Samples,	Examples	&
Templates)	Collection.

2.		Expand	the	items	in	the	Contents	tab	of	The	SET	Collection.
3.		Select	the	Index	tab.
4.		Enter	the	keyword	'FTP'	to	find	the	FTP	example.

http://www.lansa.com/support/set/index.htm

					Press	the	Display	button	or	double	click	the	FTP	entry,	and	then	select	the
topic	you	require,	in	this	case	Transfer	File(s)	using	FTP.

5.		Select	the	Contents	tab.	Notice	that	the	selected	topic	is	highlighted	in	the
Contents	list.	This	selection	will	only	occur	if	the	Contents	list	is	open	(i.e.
expanded).

6.		Select	the	Search	tab.
					Try	to	find	the	SET	example	using	different	search	words.	Use	quotes	if	you
wish	to	search	for	more	than	one	word	(e.g.	a	phrase)	such	as	"using	FTP".
You	must	enter	whole	words	or	else	use	the	*	wild	card	in	place	of	the
missing	letters.	If	you	are	looking	for	a	heading,	select	(ü)	the	Search	titles
only	option.

9.		Double	click	on	the	entry	you	are	looking	for	to	display	it	in	the	window.
10.Select	the	Contents	tab	again.	Notice	that	the	selected	topic	is	highlighted	in
the	Contents	list.

Step	2.	Execute	SET218	FTP	example
In	this	step,	you	will	read	through	the	documentation	for	the	SET218	example
and	execute	it.	The	SET	materials	must	have	already	been	imported	into	your
partition	and	the	Java	Service	Manager	already	started.
1.		Locate	the	main	page	of	SET218	Using	the	JSM	and	FTP	example.
2.		Review	the	screen	image	and	read	the	text	including	the	notes	and
suggestions.

3.		Click	on	the	To	Execute	this	Example	hyperlink	at	the	top	of	the	page.
4.		Get	a	list	of	files	from	an	FTP	folder	by	executing	example	218G.

	The	above	example	connects	to	an	IBM	i	server	"EARTH".	The	FTP,	PUTs	the
file	DEBUG.LOG	from	the	/TMP	folder	in	the	root	of	the	IFS	to	the	folder
/TEMP,	also	in	the	root	of	the	IFS.			

	Note:	Your	network	administrator	should	provide	you	with	the	information
required	for	the	IP	Address,	FTP	Server,	and	a	User	Id	and	Password	if

required.	Refer	to	Tips	&	Techniques	in	the	Summary.

Step	3.	Locating	Source	Code
In	this	step,	you	will	locate	the	RDMLX	source	code	of	the	function	you
executed	in	the	previous	step.
1.		Locate	the	main	page	of	SET218	Using	the	JSM	and	FTP	example.
2.		Click	on	The	Things	that	Make	Up	this	Example	hyperlink	at	the	top	of	the
page.

3.		Click	on	the	hyperlink	for	the	source	code	of	the	function	SET218G.

Summary
Important	Observations

There	are	several	different	ways	to	find	an	example	in	the	SET	online	guide.
The	online	guide	is	useful	to	decide	whether	the	functionality	of	a	specific
example	can	be	applied	to	your	particular	needs.	The	SET	material	is
shipped	in	executable	form	with	all	the	necessary	RDMLX	code.	It	offers
readymade	functionality	complete	with	the	RDMLX.	It	is	recommended	that
you	import	the	SET	material	and	examine	the	code	with	the	appropriate
editor.

Tips	&	Techniques
You	can	test	the	SET218G	example	using	many	public	FTP	sites	such	as
ftp.mcafee.com	or	ftp.norton.com.	Many	of	these	public	sites	have	a
userid/password	of	anonymous/guest.	To	identify	the	IP	Address	of	a	FTP
site,	try	using	the	PING	command.	For	example,	ping	ftp.norton.com.
Remember	to	test	if	the	public	site	is	operational	by	using	your	browser.
It	is	good	practice	to	separate	functionality	from	user	interface.	In	example
218A,	SET218W	function	provides	the	Web	user	interface,	but	it	is	the	218A
function	that	uses	JSM	to	transfer	a	list	of	files	using	FTP.	This	means	that	if
you	provide	SET218A	with	the	necessary	fields	and	lists,	you	could	create
your	own	User	Interface	and	use	SET218A	unchanged	to	transfer	files.	The
same	principle	applies	to	the	other	JSM	examples.

What	I	Should	Know
Which	materials	are	included	with	a	SET	example.
Why	the	SET	materials	are	important	to	you.
How	to	use	the	SET	online	guide.
How	to	use	FTP	over	the	Internet	using	the	LANSA	Integrator's	FTP
services.

INT002	-	Getting	Started	with	Basic	JSM	Operations
Objectives:

To	create	a	test	function,	which	opens	a	JSM	session,	loads	a	service,
unloads	the	service	and	then	closes	the	JSM	session.	(This	test	function	will
not	execute	any	services's	commands.)	A	template	will	be	used	to	create	the
test	function.
To	learn	the	basic	structure	of	the	JSM	Built-in	Functions	and	how	they	are
used	together.
To	learn	how	to	Open	and	Close	JSM.
To	learn	how	to	Load	and	Unload	a	service.
To	learn	how	to	handle	errors	in	the	JSM.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Create	a	Function	using	Template	JSMXSKEL
Step	2.	Add	a	Working	list	to	save	Status	and	Messages	to	the	CHECK_STS
Subroutine
Step	3.	Create	RDML	function	to	display	statuses	and	messages
Step	4.	Test	iiiFN01	function
Summary

Step	1.	Create	a	Function	using	Template	JSMXSKEL
In	this	step,	you	will	create	a	test	function	using	the	template	JSMXSKEL	to
Open	and	Close	the	JSM	and	load	the	FTPService	service.	If	you	do	not	have	a
copy	of	JSMXSKEL,	you	must	first	create	it	using	the	instructions	in	Create
RDMLX	Templates.
1.		Using	the	LANSA	development	environment,	sign	on	to	the	partition
nominated	for	the	tutorials	(usually	DEM).

2.		Check	if	fields	JSMXCMD,	JSMXHDLE1,	JSMSTS	and	JSMMSG	are
defined	in	the	Repository	as	these	fields	are	required	by	the	JSMXSKEL
template.	If	these	fields	do	not	exist,	you	may	create	them	as	follows:

JSMXCMD	STRING(65535,0)	(Must	be	an	RDMLX	field)
JSMXHDLE1	ALPHA(4,0)
JSMXSTS	ALPHA(20,0)
JSMXMSG	ALPHA(200,0)

3.		Create	a	new	LANSA	process	named	iiiPRO01	JSM	Test	Process,	where	iii
is	your	unique	3	characters.	(If	the	process	already	exists,	select	a	different	set
of	characters	for	iii.)

4.		Create	a	new	function	named	iiiFN01	JSM	Open/Close,	belonging	to	process
iiiPRO01.	Make	sure	that	the	'Enabled	for	RDMLX'	checkbox	is	checked.
Specify	that	the	function	is	to	be	generated	from	an	application	template
(from	the	'Template'	dropdown,	select	JSMXSKEL).

5.		Answer	the	template	question	as	shown	in	the	table	below.

Question Answer Comments

Do	you	wish	to	load	a	JSM	Service? FTPSERVICE 	

	

6.		Edit	your	iiiFN01	function	and	examine	the	generated	RDMLX	code.
					The	function	might	appear	something	like	the	following:
*	==
*		Process:		JMIPRO01
*		Function:		JMIFN01

*		Created	on:		08/11/13		at		14:27:55
*		Description:		JSM	Open/Close
*		Template........:		JSMXSKEL
*	==
FUNCTION	OPTIONS(*DIRECT)
*		OPEN	JSM	AND	VERIFY	STATUS
USE	BUILTIN(JSMX_OPEN)	TO_GET(#JSMSTS	#JSMMSG
#JSMXHDLE1)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXHDLE1)
*	BUILD	THE	SERVICE	LOAD	COMMAND
#JSMXCMD	:=	'SERVICE_LOAD'
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
'SERVICE'	'FTPSERVICE')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXHDLE1)
*					YOUR	OWN	LOGIC	HERE
*
*	UNLOAD	SERVICE
#JSMXCMD	:=	'SERVICE_UNLOAD'
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXHDLE1)
*	CLOSE	JSM	AND	VERIFY	STATUS
USE	BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMXHDLE1)
TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXHDLE1)
*
RETURN
*	Subroutine	to	build	JSM	commands.	existing	JSM	command
SUBROUTINE	NAME(KEYWRD)	PARMS((#W_CMDX	*BOTH)
(#W_KEYWRD	*RECEIVED)	(#W_KEYVAL	*RECEIVED))
DEFINE	FIELD(#W_CMDX)	REFFLD(#JSMXCMD)
DEFINE	FIELD(#W_KEYWRD)	REFFLD(#STD_TEXT)
DEFINE	FIELD(#W_KEYVAL)	REFFLD(#STD_TEXTL)
#W_CMDX	+=	'	'	+	#W_KEYWRD	+	'('	+	#W_KEYVAL	+	')'
ENDROUTINE
*		Check	the	status	of	the	JSM	command	issued
*

SUBROUTINE	NAME(CHECK_STS)	PARMS(#W_HDLE)
DEFINE	FIELD(#MSGDTA)	TYPE(*CHAR)	LENGTH(132)
DEFINE	FIELD(#W_HDLE)	TYPE(*CHAR)	LENGTH(4)
IF	COND('#JSMSTS	*NE	OK')
#MSGDTA	:=	'Error	Status	Code:	'	+	#JSMSTS
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
#MSGDTA	:=	'Error	Message:	'	+	#JSMMSG
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
ENDIF
ENDROUTINE
	

					Notice	the	commands	used	to	Open	JSMX,	Load	the	FTPService	Service,
Unload	the	Service	and	Close	JSMX.
Notice	the	use	of	the	KEYWRD	subroutine	for	an	easy	way	to	build	the	JSM
command	keywords	and	their	values.	Details	of	the	KEYWRD	subroutine
are	explained	in	INT003	-	Using	the	FTP	Service	.
Notice	the	use	of	the	CHECK_STS	subroutine	after	each	JSM	command	for
error	handling.	This	routine	simply	formats	the	error	message.	It	does	not
ABORT	the	function	when	an	error	occurs.
The	CHECK_STS	subroutine	requires	a	parameter	that	specifies	Handle	to
check	status	on,	since	multiple	connections	to	the	JSM	server	could	be	open
at	the	same	time.

Step	2.	Add	a	Working	list	to	save	Status	and	Messages	to	the
CHECK_STS	Subroutine
In	this	step,	you	will	define	a	working	list	to	store	the	status	and	message	after
executing	each	JSM	statement	to	the	CHECK_STS	subroutine	to	indicate	the
function	status	as	the	JSM	performs	different	operations.
1.		Since	this	is	an	RDMLX	function,	it	cannot	use	a	DISPLAY	command	or
browse	list.	In	the	next	step	you	will	create	an	RDML	function	to	call	iiiFN01
and	receive	a	working	list	containing	messages.	Define	a	working	list	
WL_MSGS	containing	fields	JSMSTS	and	JSMMSG,	at	the	end	of	the
CHECK_STS	subroutine	and	add	entries	to	it.

					The	RDMLX	code	might	appear	as	follows:
SUBROUTINE	NAME(CHECK_STS)	PARMS(#W_HDLE)

*
DEFINE	FIELD(#MSGDTA)	TYPE(*CHAR)	LENGTH(132)
DEFINE	FIELD(#W_HDLE)	TYPE(*CHAR)	LENGTH(4)
*
IF	COND('#JSMSTS	*NE	OK')
*
#MSGDTA	:=	'Error	Status	Code:	'	+	#JSMSTS
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
#MSGDTA	:=	'Error	Message:	'	+	#JSMMSG
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
ENDIF
*
DEF_LIST	NAME(#WL_MSGS)	FIELDS(#JSMSTS	#JSMMSG)	TYPE(*WORKING)
ADD_ENTRY	TO_LIST(#WL_MSGS)
ENDROUTINE
	

2.		In	order	to	be	able	to	call	function	iiiFN01	and	pass	and	receive	a	working
list,	change	the	'Function'	command	as	follows
FUNCTION	OPTIONS(*DIRECT)	RCV_LIST(#WL_MSGS)

3.		Save	and	compile	function	iiiFN01.

Step	3.	Create	RDML	function	to	display	statuses	and	messages
In	this	step,	you	will	create	the	RDML	function	needed	to	display	the	messages
stored	in	the	working	list	when	executing	JSM	commands.
1.		Create	a	new	function	named	iiiFN02	JSM	Display,	belonging	to	process
iiiPRO01,	where	iii	is	your	unique	3	characters.	Make	sure	that	the	'Enabled
for	RDMLX'	checkbox	is	NOT	checked.	You	do	not	need	to	specify	a
template.

2.		Create	a	function	which	will	call	iiiFN01,	passing	the	working	list
WL_MSGS	and	then	display	the	results	in	a	browse	list.	Your	code	should
look	something	like	the	following:
*	===
*	Copyright:	(C)	LANSA,	1989
*	Process:	IIIPRO01
*	Function:	IIIFN02
*	Created	by:	PCXUSER
*	Created	on:	08/06/20	at	14:38:31
*	Description	...:	JSM	Display
*	===

*	List	definition	to	show	messages
DEF_LIST	NAME(#WL_MSGS)	FIELDS(#JSMSTS	#JSMMSG)	TYPE(*WORKING)
DEF_LIST	NAME(#BL_MSGS)	FIELDS(#JSMSTS	#JSMMSG)

FUNCTION	OPTIONS(*DIRECT)

CALL	PROCESS(*DIRECT)	FUNCTION(iiiFN01)	PASS_LST(#WL_MSGS)

SELECTLIST	NAMED(#WL_MSGS)
ADD_ENTRY	TO_LIST(#BL_MSGS)
ENDSELECT

DISPLAY	BROWSELIST(#BL_MSGS)
	

3.		Save	and	compile	your	iiiFN02	function.	

Step	4.	Test	iiiFN01	function
1.		Verify	your	iiiFN01	and	iiiFN02	functions	have	compiled	successfully.
2.		Execute	your	iiiFN02	function.
3.		Review	the	status	and	messages	of	the	program	after	each	execution	of	a
JSM	command.

4.		Close	the	form	when	finished.

Summary
Important	Observations

You	can	Load	as	many	services	as	you	wish	in	one	function.	You	can	also
load	more	than	one	service	in	memory	at	the	same	time,	as	long	as	you	use	a
different	handle	field.
The	action	to	take	when	a	JSM	error	occurs	depends	heavily	on	the
functionality	of	the	application.	Essentially,	you	should	apply	the	same	error
handling	methodology	as	the	one	you	normally	apply	when	writing	any	type
of	application.	Usually	you	might	decide	to	abort	processing	when	the	JSM
error	is	unrecoverable.	When	user	input	is	likely	to	have	caused	the	error	you
should	probably	route	the	error	back	to	the	User	Interface	program.
RDMLX	functions	cannot	use	the	DISPLAY	command	and	therefore	cannot
be	used	to	display	in	a	windows	form	or	IBM	i	green	screen.	In	these	cases,
a	wrapper	RDMLX	function	needs	to	be	created	in	order	to	handle	the
display	of	information.

Tips	&	Techniques
Use	the	template	JSMXSKEL	to	create	a	function	with	the	basic	RDMLX
code	required	by	a	function	using	the	JSM.	Once	you	become	familiar	with
JSMXSKEL,	you	might	copy	and	modify	the	template	to	suit	your	own
specific	needs.
In	the	JSMXSKEL	template	code,	the	CHECK_STS	subroutine	simply
formats	the	error	message.	It	does	not	ABORT	the	function	when	an	error
occurs.	You	must	write	your	own	code	for	processing	the	error.	You	may
wish	to	end	the	function,	or	you	may	want	to	return	to	an	input	screen	to
allow	the	user	to	correct	an	input	value.
Always	write	the	code	for	closing	JSM.	If	you	use	the	JSMXSKEL	template,
this	code	is	added	for	you.
Except	for	HTTP	server	functions,	always	write	the	code	for	unloading	JSM.
If	you	use	the	JSMXSKEL	template,	this	code	is	added	for	you.

What	I	Should	Know
How	to	use	the	template	JSMXSKEL	to	create	the	basic	RDMLX	code
skeleton	required	by	a	function	using	JSM.
How	to	use	the	JSM	Built-In	Functions	to	control	the	JSM.
How	to	Open	and	Close	JSM.

How	to	Load	and	Unload	a	Service.
How	to	handle	JSM	errors	by	modifying	the	check	status	subroutine.

	
	

INT003	-	Using	the	FTP	Service
Objectives:

To	create	a	function	similar	to	the	SET218G	FTP	Function	in	your	SET
Examples.
To	connect	to	a	FTP	site	and	get	the	list	of	files	from	a	FTP	site	by	using	the
LANSA	Integrator	FTP	service.
To	learn	how	to	use	JSM	commands	to	interact	with	a	loaded	service.
To	use	the	JSMXSKEL	template	to	write	a	function	shell	for	your	JSM
functions.
To	use	the	BBJSMXCMD	template	to	write	the	RDMLX	code	to	use	the
JSM	commands.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Build	the	Basic	JSM	functions
Step	2.	Build	the	JSM	Commands	for	the	FTP	Service
Step	3.	Test	iiiFN03	and	iiiFN04	functions
Summary

Step	1.	Build	the	Basic	JSM	functions
In	this	step,	you	will	create	a	function	which	contains	the	basic	RDMLX	code
required	for	your	JSM	functions.	This	function	will	be	created	using	the
JSMXSKEL	template.	You	will	build	your	function	using	repository	fields
which	were	imported	for	the	SET218	example.
1.		Create	a	new	LANSA	process	named	iiiPRO02	JSM	Process,	where	iii	is
your	unique	3	characters.	(If	the	process	already	exists,	select	a	different	set
of	characters	for	iii.).

2.		Create	a	new	function	named	iiiFN03,	belonging	to	process	iiiFN02.	The
function	will	retrieve	a	list	of	files	using	the	FTP	Service.	Make	sure	the
Enabled	for	RDMLX	option	is	selected.	Choose	JSMXSKEL	as	your
template.

3.		Answer	the	template	questions	as	shown	in	the	table	following:

Question Answer Comments

Do	you	wish	to	load	a	JSM	Service? FTPSERVICE 	

	

4.		At	the	beginning	of	your	function,	define	two	fields	-	W_TYPE	defined	as
an	Alpha	field,	length	1	and	W_FILE	defined	as	an	Alpha	field,	length	80.
These	fields	are	required	by	the	List	JSM	command	of	the	FTP	service.

					Your	RDMLX	code	might	appear	as	follows:
*	Working	Fields
DEFINE	FIELD(#W_TYPE)	TYPE(*CHAR)	LENGTH(1)	DESC('Type	of	file')
DEFINE	FIELD(#W_FILE)	TYPE(*CHAR)	LENGTH(80)	COLHDG('File	Name')
	

5.		Right	after	the	working	field	definitions,	define	a	working	list	which	will	be
used	to	receive	the	list	of	files	returned	by	the	FTP	service.

The	working	list	should	be	named	WL_218.
Make	sure	to	increase	the	default	value	for	the	ENTRYS	parameter	to,
say,	500.

Use	fields	W_TYPE	and	W_FILE	as	the	working	list	entry	fields.

					Your	RDMLX	code	might	appear	as	follows:
*	Working	list	to	receive	list	of	files
DEF_LIST	NAME(#WL_218)	FIELDS(#W_TYPE	#W_FILE)	TYPE(*WORKING)	ENTRYS(500)
	

6.		Specify	WL_218	as	a	receive	list	in	the	Function	statement:
FUNCTION	OPTIONS(*DIRECT)	RCV_LIST(#WL_218)

7.		Save	function	iiiFN03
8.		Create	a	new	function	named	iiiFN04	Display	FTP	Service,	belonging	to
process	iiiPRO02,	where	iii	is	your	unique	3	characters.		Make	sure	the
'Enabled	for	RDMLX'	box	is	NOT	checked.,Do	not	choose	a	template.

9.		Copy	the	definitions	of	fields	W_TYPE	and	W_FILE	and	working	list
WL_218	from	iiiFN03.

10.Define	a	browse	list	which	will	be	used	to	display	the	list	of	files	returned	in
W_218.

The	browse	list	should	be	named	BL_218.
Use	the	field	W_FILE	as	the	only	browse	list	entry	field.

					Your	code	might	appear	as	follows:
DEFINE	FIELD(#W_TYPE)	TYPE(*CHAR)	LENGTH(1)	DESC('Type	of	file')
DEFINE	FIELD(#W_FILE)	TYPE(*CHAR)	LENGTH(80)	COLHDG('File	Name')

DEF_LIST	NAME(#WL_218)	FIELDS(#W_TYPE	#W_FILE)	TYPE(*WORKING)	ENTRYS(500)
DEF_LIST	NAME(#BL_218)	FIELDS(#W_FILE)	ENTRYS(500)

11.Create	a	GROUP_BY	for	the	input	fields	(S_218HOST,	S_218DIR,
S_218USER,	S_218PSWD)	to	appear	on	the	screen	panel.	(These	fields
were	imported	with	the	SET	Examples)

					Your	RDMLX	code	might	appear	as	follows:
*	Group	for	all	input	fields
GROUP_BY	NAME(#GB_PNLDTA)	FIELDS(#S_218HOST	#S_218DIR	#S_218USER	#S_218PSWD)

					If	field	S_218DIR	is	not	defined,	define	it	in	your	function	as	*CHAR,
length	200:
DEFINE	FIELD(#S_218DIR)	TYPE(*CHAR)	LENGTH(200)	DESC('FTP	Directory')

					If	you	needed	to	define	S_218DIR	in	iiiFN04,	copy	this	definition	back	to

iiiFN03	as	well.
12.After	the	function	definitions,	add	the	following	logic	to	the	function:

a.		Insert	BEGIN_LOOP	and	END_LOOP	commands.
b.		Inside	the	loop,	insert	a	REQUEST	command	to	request	the
GB_PNLDTA	group	of	fields	and	include	the	browse	list	BL_218.

c.		Clear	both	the	working	and	browse	list.

d.		Exchange	fields	Group	GB_PNLDTA.
e.		Call	iiiFN03,	passing	the	working	list	WL_218.
f.		Loop	through	the	working	list	and	add	entries	to	the	browselist

					Your	code	might	appear	as	follows:
BEGIN_LOOP
REQUEST	FIELDS(#GB_PNLDTA)	BROWSELIST(#BL_218)
CLR_LIST	NAMED(#WL_218)
CLR_LIST	NAMED(#BL_218)
EXCHANGE	FIELDS(#GB_PNLDTA)
CALL	PROCESS(*DIRECT)	FUNCTION(IIIFN03)	PASS_LST(#WL_218)
SELECTLIST	NAMED(#WL_218)
ADD_ENTRY	TO_LIST(#BL_218)
ENDSELECT
END_LOOP
	

13.Compile	function	iiiFN04.

Step	2.	Build	the	JSM	Commands	for	the	FTP	Service
In	this	step,	working	with	function	iiiFN03,	you	will	use	the	template
BBJSMXCMD	to	build	the	JSM	commands	to	perform	the	following	tasks
using	the	FTP	service:

Connect	to	a	FTP	site
Login	with	a	userid	and	password
Set	the	directory
List	the	files	in	the	path	specified
Quit	the	FTP	site.

Using	the	BBJSMXCMD	template,	you	will	use	the	following	command,
keywords	and	values:

Command Keyword Value Working	List

CONNECT HOST #S_218HOST 	

LOGIN USER #S_218USER 	

PASSWORD #S_218PSWD

CHGDIR PATH #S_218DIR 	

LIST DIR 	 WL_218

QUIT 	 	 	

	

1.		Working	with	your	iiiFN03	function,	execute	a	template	BBJSMXCMD:
a.		Before	you	begin	position	the	cursor	at	the	start	of	the	comment	line	after
the	YOUR	OWN	LOGIC	HERE	comment,	then	on	the	Design
ribbon,	click	on	the	 	Template	Wizard	button.

b.		From	the	list	of	templates	select	BBJSMXCMD.
c.		Answer	the	template	questions	as	shown	in	the	table	following:

Question Answer Comments

Use	this	template	to	build	a Press	Enter	to	continue This	is	an

command	in	a	function
generated	by	JSMXSKEL.

informative
panel.

Type	in	the	JSM	command
you	want	to	build.

CONNECT 	

How	many	keywords	do
you	want	to	specify?

1 	

Type	in	the	keyword	name. HOST 	

Type	in	the	value	for	the
HOST	keyword.

#S_218HOST The	Host	value
entered	on	the
screen.

Type	in	the	name	of	a
working	list	if	this
command	uses	one.

Press	ENTER No	working	list
is	required	by
this	command

Do	you	wish	to	enter
another	JSM	command?

Y 	

Type	in	the	JSM	command
you	want	to	build.

LOGIN 	

How	many	keywords	do
you	want	to	specify?

2 	

Type	in	the	keyword	name. USER 	

Type	in	the	value	for	the
USER	keyword.

#S_218USER The	User	value
entered	on	the
screen.

Type	in	the	keyword	name. PASSWORD 	

Type	in	the	value	for	the
PASSWORD	keyword.

#S_218PSWD The	Password
value	entered
on	the	screen.

Type	in	the	name	of	a
working	list	if	this
command	uses	one.

Press	ENTER No	working	list
is	required	by
this	command

Do	you	wish	to	enter Y 	

another	JSM	command?

Type	in	the	JSM	command
you	want	to	build.

CHGDIR 	

How	many	keywords	do
you	want	to	specify?

1 	

Type	in	the	keyword	name. PATH 	

Type	in	the	value	for	the
PATH	keyword.

#S_218DIR The	path
entered	on	the
screen.

Type	in	the	name	of	a
working	list	if	this
command	uses	one.

Press	ENTER No	working	list
is	required	by
this	command

Do	you	wish	to	enter
another	JSM	command?

Y 	

Type	in	the	JSM	command
you	want	to	build.

LIST 	

How	many	keywords	do
you	want	to	specify?

1 	

Type	in	the	keyword	name. PATH 	

Type	in	the	value	for	the
PATH	keyword.

Blank	out	the	field
holding	the	previous
value	entered	and	Press
ENTER

This	keyword
does	not
require	a	value.

Type	in	the	name	of	a
working	list	if	this
command	uses	one.

WL_218 The	working
list	to	get	the
list	of	files
back.

Do	you	wish	to	enter
another	JSM	command?

Y 	

Type	in	the	JSM	command
you	want	to	build.

QUIT 	

How	many	keywords	do
you	want	to	specify?

0 This	command
has	no
keywords.

Do	you	wish	to	enter
another	JSM	command?

N 	

	

d.		Once	the	BBJSMCMD	template	has	completed,	you	will	have	all	of	the
required	code	for	working	with	the	FTP	service.

					Your	RDMLX	code	might	appear	as:
*	BUILD	THE	JSM	COMMAND
#JSMXCMD	:=	CONNECT
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD	HOST	#S_218HOST)
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1	#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXCMD)
*
#JSMXCMD	:=	LOGIN
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD	USER	#S_218USER)
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD	PASSWORD	#S_218PSWD)
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1	#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXCMD)
*
#JSMXCMD	:=	CHGDIR
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD	PATH	#S_218DIR)
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1	#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXCMD)
*
#JSMXCMD	:=	LIST
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD	PATH	*BLANKS)
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1	#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG	#WL_218)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXCMD)
*
#JSMXCMD	:=	QUIT
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1	#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXCMD)
	

Your	complete	RDML/RDMLX	code	might	appear	as	follows:

iiiFN04:
*	===
*	Copyright:	(C)	LANSA,	1989
*	Process:	IIIPRO02
*	Function:	IIIFN04
*	Created	by:	PCXUSER
*	Created	on:	08/06/23	at	10:58:57
*	Description	...:	Display	FTP	Service
*	===
*	Working	fields,	lists	and	groups
*	===
DEFINE	FIELD(#W_TYPE)	TYPE(*CHAR)	LENGTH(1)	DESC('Type	of	file')
DEFINE	FIELD(#W_FILE)	TYPE(*CHAR)	LENGTH(80)	COLHDG('File	Name')

DEF_LIST	NAME(#WL_218)	FIELDS(#W_TYPE	#W_FILE)	TYPE(*WORKING)	ENTRYS(500)
DEF_LIST	NAME(#BL_218)	FIELDS(#W_FILE)	ENTRYS(500)

*	Group	for	all	input	fields
DEFINE	FIELD(#S_218DIR)	TYPE(*CHAR)	LENGTH(200)	DESC('FTP	Directory')
GROUP_BY	NAME(#GB_PNLDTA)	FIELDS(#S_218HOST	#S_218DIR	#S_218USER	#S_218PSWD)
*
*	===
*	Program	Mainline	:	IIIFN04
*	===
*
FUNCTION	OPTIONS(*DIRECT)

BEGIN_LOOP
REQUEST	FIELDS(#GB_PNLDTA)	BROWSELIST(#BL_218)
CLR_LIST	NAMED(#WL_218)
CLR_LIST	NAMED(#BL_218)
EXCHANGE	FIELDS(#GB_PNLDTA)
CALL	PROCESS(*DIRECT)	FUNCTION(#IIIFN03)	PASS_LST(#WL_218)
SELECTLIST	NAMED(#WL_218)
ADD_ENTRY	TO_LIST(#BL_218)
ENDSELECT
END_LOOP	

iiiFN03:
*	==
*		Process:		JMIPRO02
*		Function:		JMIFN03
*		Created	on:		08/11/13		at		15:11:06
*		Description:		Use	FTP	Service
*		Template........:		JSMXSKEL
*	==
FUNCTION	OPTIONS(*DIRECT)	RCV_LIST(#wl_218)
DEFINE	FIELD(#W_TYPE)	TYPE(*CHAR)	LENGTH(1)	DESC('Type	of
file')
DEFINE	FIELD(#W_FILE)	TYPE(*CHAR)	LENGTH(80)	COLHDG('File
Name')
DEF_LIST	NAME(#WL_218)	FIELDS(#W_TYPE	#W_FILE)
TYPE(*WORKING)	ENTRYS(500)
*
*		OPEN	JSM	AND	VERIFY	STATUS

USE	BUILTIN(JSMX_OPEN)	TO_GET(#JSMSTS	#JSMMSG
#JSMXHDLE1)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXHDLE1)
*
*	BUILD	THE	SERVICE	LOAD	COMMAND
#JSMXCMD	:=	'SERVICE_LOAD'
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
'SERVICE'	'FTPSERVICE')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXHDLE1)
*
*					YOUR	OWN	LOGIC	HERE
*
*	BUILD	THE	JSM	COMMAND
#JSMXCMD	:=	CONNECT
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD	HOST
#S_218HOST)
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)

EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXCMD)
*
#JSMXCMD	:=	LOGIN
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD	USER
#S_218USER)
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
PASSWORD	#S_218PSWD)
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXCMD)
*
#JSMXCMD	:=	CHGDIR
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD	PATH
#S_218DIR)
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXCMD)
*
#JSMXCMD	:=	LIST
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD	PATH
*BLANKS)
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG	#WL_218)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXCMD)
*
#JSMXCMD	:=	QUIT
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXCMD)
*
*	UNLOAD	SERVICE
#JSMXCMD	:=	'SERVICE_UNLOAD'
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXHDLE1)
*	CLOSE	JSM	AND	VERIFY	STATUS
USE	BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMXHDLE1)
TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXHDLE1)

*
RETURN
*
*	Subroutine	to	build	JSM	commands.	existing	JSM	command
*
SUBROUTINE	NAME(KEYWRD)	PARMS((#W_CMDX	*BOTH)
(#W_KEYWRD	*RECEIVED)	(#W_KEYVAL	*RECEIVED))
DEFINE	FIELD(#W_CMDX)	REFFLD(#JSMXCMD)
DEFINE	FIELD(#W_KEYWRD)	REFFLD(#STD_TEXT)
DEFINE	FIELD(#W_KEYVAL)	REFFLD(#STD_TEXTL)
#W_CMDX	+=	'	'	+	#W_KEYWRD	+	'('	+	#W_KEYVAL	+	')'
ENDROUTINE
*
*		Check	the	status	of	the	JSM	command	issued
*
SUBROUTINE	NAME(CHECK_STS)	PARMS(#W_HDLE)
*
DEFINE	FIELD(#MSGDTA)	TYPE(*CHAR)	LENGTH(132)
DEFINE	FIELD(#W_HDLE)	TYPE(*CHAR)	LENGTH(4)
*
IF	COND('#JSMSTS	*NE	OK')
*
#MSGDTA	:=	'Error	Status	Code:	'	+	#JSMSTS
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
#MSGDTA	:=	'Error	Message:	'	+	#JSMMSG
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
ENDIF
*
ENDROUTINE
	

Step	3.	Test	iiiFN03	and	iiiFN04	functions
1.		Compile	your	iiiFN03	and	iiiFN04	functions.
2.		Check	that	both	functions	compiled	successfully.
3.		Execute	your	iiiFN04	function.	Your	function	might	appear	as	follows:

					When	the	function	executes,	the	values	for	the	FTP	Host,	FTP	Folder	Path,
FTP	User	and	FTP	Password	fields	are	very	specific	to	the	FTP	server	you	are
using.

					You	should	be	able	to	obtain	these	details	from	your	installation
administrator	if	you	don't	know	them.

FTP	Host Enter	the	name	or	IP	address	of	the	FTP	Server	to	connect	to.
FTP
Folder
Path

Enter	the	FTP	folder	name	where	to	get	the	file	list.	It	must	be
preceded	by	a	forward	slash	(/).	Leave	blank	to	get	the	list	of	files
from	the	root	directory.

FTP
UserFTP
Password

Most	FTP	servers	require	User	authentication.

			***	As	currently	defined,		the	password	field	is	limited	to	10	characters	and
upper	case	only.	If	this	is	unsuitable	for	your	server,	change	the	definition	of
field	S_218PSWD.	For	example	increase	its	length	and	allow	lower	case
characters.

		Once	the	details	have	been	entered,	press	OK	to	get	the	list	of	files.
4.		The	function	might	appear	as	follows:

Step	4.	Set	up	file	JSMCLTDTA.txt	-	Optional
On	the	iSeries	the	information	held	in	this	file	is	implemented	as	a	data	area.
For	Windows	and	Linux,	a	flat	file	is	used,	JSMCLTDTA.txt.	The	file	can	be
setup	and	edited	using	any	text	editor	such	as	Notepad.
It	is	located	in	the	path:	c:\Program	Files\LANSA\x_win95\x_lansa
The	file	may	contain	two	keywords:

DefaultServer	–	the	default	host	name	and	port.
ExcludePrefix	–	prefix	for	fields	to	be	excluded	from	automatic	exchange
between	JSM	services	and	LANSA	functions.

	

The	DefaultServer	setting	is	useful	if	you	want	to	execute	your	functions	on
the	desktop	in	Windows	but	access	the	JSM	services	on	the	iSeries.

For	example	the	following	entries	specify	the	DefaultServer	as	the	IP
Address	and	Port	No.	10.44.10.252:4670

#	localhost:4560	is	the	installed	value	for	DefaultServer#	If	you	are
connecting	to	a	different	server	and/or	using#	a	different	port,	please
change	the	setting	below	to	reflect	#	the	server	and/or	port,	ie,	#
DefaultServer=MyHost:4560DefaultServer=10.44.10.252:4670ExcludePrefix=JSM
	
Entries	beginning	#	are	comment	lines	and	are	ignored.
See	the	LANSA	Integrator	guide	for	full	details.
With	the	file	JSMCLTDTA.txt	correctly	set	up	you	can	complete	these	tutorials
by	compiling	and	executing	your	functions	in	Windows	only,	without	checking
in	to	the	iSeries	server.	When	running	them,	your	functions	will	access	the	JSM
on	the	iSeries	server.

Summary
Important	Observations

Some	JSM	commands	pass	information	in	a	working	list.	Whenever	a	JSMX
command	passes	a	working	list,	you	must	specify	the	name	of	the	working
list	as	the	third	parameter	of	the	JSMX_COMMAND.	Note,	when	using	the
JSMX_COMMAND	the	fields	to	be	mapped	for	the	list	is	defined	by	the
working	list	itself.		For	RDML	programming,	when	the	JSM_COMMAND
is	used,	then	a	SERVICE_LIST	keyword	is	required	to	define	the	list	fields
being	mapped.
It	is	important	to	understand	how	to	use	the	subroutine	named	KEYWRD.
The	subroutine	receives	three	parameters:	a	command,	a	keyword	and	a
value.	
Consider	this	example:

					#S_218HOST	:=	'10.10.10.10'
					#JSMXCMD	:=	CONNECT
					EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD	HOST	#S_218HOST)

The	value	JSMXCMD	is	mapped	to	W_CMDX
The	value	'HOST'	is	mapped	to	W_KEYWRD
The	value	S_218HOST	is	mapped	to	W_KEYVAL
In	the	KEYWRD	subroutine,	the	JSMXCMD	is	concatenated	with	the
keyword.

						#W_CMDX	+=	'	'	+	#W_KEYWRD	+	'('	+	#W_KEYVAL	+	')'
	

The	value	of	JSMXCMD	will	now	be:	'CONNECT
HOST(10.10.10.10)'.

Tips	&	Techniques
The	KEYWRD	subroutine	provides	an	efficient	way	to	build	the	JSM
commands.	You	will	appreciate	the	advantages	of	using	the	KEYWRD
subroutine	when	building	more	complex	JSM	commands	in	the	coming
exercises.

What	I	Should	Know
How	to	use	the	FTP	service	to	access	a	FTP	folder	to	get	a	list	of	files.

How	JSM	commands	are	used	to	interact	with	a	service.
How	to	use	the	template	BBJSMXCMD	build	commands	for	JSM	services.

	
	

INT004	-	Using	the	LANSA	User	Agent
Objectives:

To	learn	how	to	use	the	LANSA	User	Agent	to	send	and	receive	a	CSV
(comma	separated	values)	file	from	a	PC	to	a	LANSA	function	running	on
an	IBM	i	or	Windows	Server.
To	learn	how	to	upload	data	from	an	Excel	spreadsheet	to	an	IBM	i	or
Windows	Server.
To	create	a	server	side	RDML	function	that	receives	the	CSV	or	Excel	file
sent	by	the	LANSA	User	Agent,	reads	the	data	and	processes	it,	and	sends
back	a	response	to	the	LANSA	User	Agent.
To	show	how	the	LANSA	User	Agent	can	be	executed	in	batch	mode.

To	achieve	these	objectives,	you	will	complete	the	following:
Concepts
Step	1.	Create	a	User	Agent	Solution	and	edit	Host	Properties	file
Step	2.	Create	a	CSV	file	with	Column	Headings	to	Send
Step	3.	Create	a	Server	Function	iiiFN05
Step	4.	JSMDirect	Service	Configuration
Step	5.	Test	iiiFN05	function
Step	6.	Ignore	the	Column	Headings
Step	7.	Using	a	CSV	without	Column	Headings
Step	8.	Sending	an	Excel	spreadsheet.	Optional
Step	9.	Invoke	User	Agent	in	Batch	Mode
Summary

Concepts
The	components	involved	in	a	transfer	of	a	data	file	from	a	PC	to	a	server	via
the	LANSA	User	Agent	are:

The	data	file	on	the	PC,	containing	the	data	to	be	processed.	This	can	be	a
CSV	file,	an	Excel	Spreadsheet	or	several	other	formats.
The	host	configuration	file	(.lih)	on	the	PC.	This	identifies	where	the	server
is,	and	the	identifier	of	the	server	program	that	will	handle	requests.
The	PC	End-User:	The	user	selects	the	data	file	to	be	sent,	selects	the
configuration	file	and	initiates	the	transfer	by	pressing	Send.
The	LANSA	User	Agent:	This	is	the	application	used	by	the	end-user.	It
resides	on	the	PC.	It	interprets	the	configuration	file	selected	by	the	user	and
sends	the	request	to	start	the	server	program.	It	also	formats	and	sends	the
data	file	to	JSM	when	requested.		
JSM:	The	JSM	receives	the	name	of	the	server	program	and	uses	the	server
program	identifier	and	the	host	URL	to	locate	and	execute	the	proper
function.	If	the	Server	function	is	running	on	an	IBM	i	Server	using	LANSA
for	IBM	i,	the	function	name	entry	is	located	in	file	DC@W29.	If	the	Server
function	is	running	on	a	Windows	Server	using		LANSA,	the	function	name
entry	is	located	in	DC_W29.txt
The	Server	function.	This	is	a	LANSA	function	that	can	be	on	the	IBM	i,	or
on	Windows.	It	is	started	by	the	JSM	and	once	started	it	starts	the
HTTPService	service	and	requests	the	data	from	the	LANSA	User	Agent,
via	JSM.

There	are	two	examples	in	the	SET	guide	which	describe	the	User	Agent:
SET	233	LANSA	User	Agent	-	Interactive	File	Conversion	and	Upload
using	JSMDirect
SET	235	LANSA	User	Agent	-	Batch	File	Conversion	and	Upload

Note:		As	described	above,	the	User	Agent	is	small	Java	application	which	can
be	used	by	any	remote	location	to	upload	a	file	to	a	server	and	initiate	a	program
to	process	it.	A	User	Agent	solution	can	also	be	defined	and	run	using	Integrator
Studio.	This	exercise	will	use	Integrator	Studio.

Step	1.	Create	a	User	Agent	Solution	and	edit	Host	Properties	file
In	this	step	you	will	use	Integrator	Studio	to	define	a	new	project	iii	Training.
You	will	define	a	SendCSVFile	user	agent	solution	within	this	project	and
define	the	Host	Properties	required	by	this	User	Agent	solution.
1.		Open	Integrator	Studio.	Right	click	on	Project,	select	New	Project.

2.		Create	a	project	called	iii	Training,	where	iii	is	your	unique	three	letters.

3.		The	project	will	open	in	a	new	tab:

4.		Select	Solutions	and	right	click	to	create	a	New	Solution:

5.		Select	User	Agent	from	the	Tool	dropdown.

6.		Define	a	Solution	Group	and	Solution	File	called	SendCSVFile	and	the
select	Yes	in	the	Confirm	dialog.

7.		The	LANSA	Integrator	Property	Editor	will	open:

					You	are	now	going	to	create	the	Host	Information	file	(.lih)	which	the	User
Agent	will	use.	This	is	a	configuration	file	which	provides	the	parameters
required	by	the	User	Agent.	The	User	Agent	will	perform	the	upload	(in	this
case	a	CSV	file)	based	on	the	configuration	parameters.

8.		Scroll	down	to	#	HTTP	Directives.	All	lines	beginning	with	#	are	comments
lines:

9.		Change	the	"name"		line	to	read	name=iii	CSV	Service.
10.	Enter	the	host	IP	address	and	port	details	that	will	tell	the	User	Agent	where
to	find	JSMDirect.(If	you	are	testing	using	a	local	Windows	web	server	and
JSM	Server,	you	can	use	http://localhost:80.)

11.	If	your	web	server	uses	authentication,	you	would	also	enter	user	and
password	details.

12.If	your	web	server	uses	a	proxy,	you	would	enter	these	details,	including
authentication	details	if	required.

13.Enter	the	file	type	to	tell	the	User	Agent	how	to	display	a	data	file	of	this
type,	prior	to	sending	it.	Using	the	Find	facilities	in	the	editor,	locate	lines
containing	#	CSV.	Remove	the	#	and	spaces	at	the	beginning	of	this	line:
csv=text/comma-separated-values;	charset=utf-8

14.Again,	use	Find	to	locate	the	lines	containing	URI	(Uniform	Resource
Identifier).	This	information	will	tell	the	User	Agent	that	source	files	of	type
.CSV	should	be	handled	by	the	server	program	iiiFN05,	which	you	will	create
in	a	later	step.

					When	using	a	Java	Services	Manager	(JSM)	running	on	an	IBM	i	server,	the
JSM	will	locate	the	entry	in	DC@W29	where	the	local	host	and	server
program	identifier	match.	For	a	LANSA	function	the	information	recorded

includes	process,	function	and	partition.	Modify	the	entry	for	csv.uri=/cgi-
bin/jsmproxy?ordersv.	Your	entry	should	look	like	the	following:

					If	you	are	using	the	JSM	on	a	Windows	server,	the	file	DC_W29.txt	is	used
to	look	up	the	function	or	program	to	call	as	described	above.	In	this	case
your	entry	would	look	like	the	following:
csv.uri=/cgi-bin/jsmdirect.exe?iiiFN05_SERVICE

					You	will	define	the	service	entry	for	function	iiiFN05	in	Step	4.	JSMDirect
Service	Configuration.

15.Save	your	changes	and	select	Yes	in	the	Confirm	dialog.

16.Exit	the	Properties	Editor.

Step	2.	Create	a	CSV	file	with	Column	Headings	to	Send
In	this	step,	you	will	create	the	file	containing	the	data	to	be	sent	using	the
LANSA	User	Agent.	The	file	contains	a	list	of	employee	numbers	and	the	new
salaries	for	those	employees.
1.		Start	the	Notepad	editor	in	Windows.
2.		Enter	the	following	comma	separated	data:
								EMPNO,SALARY,STARTDTER,DEPTMENT,SECTION
								A1004,53400,910521,ADM,01
								A1005,53500,950102,ADM,01
								A1006,53600,891201,MKT,02
	

					Ensure	that	the	employee	identifiers	in	the	EMPNO	column	(A1004,	A1005
and	A1006)	exist	in	file	PSLMST	in	the	partition	where	the	server	side
RDML	function	will	execute.		(If	the	data	does	not	exist	in	PSLMST	file,
substitute	employee	identifiers	that	do	exist.)	Enter	the	rest	of	the	data	as
shown.

3.		Using	the	File	menu,	select	the	Save	As	option	using	these	options:

Save
in

locate	the	project	directory	which	you	created	in	Step	1.	For	example:
C:\Program	Files\LANSA\Integrator\Studio\workspace\iii
Training\solutions\SendCSVFile\

File
Name

iii_employee_new_salary.csv

Save
as
Type

All	Files

	

Step	3.	Create	a	Server	Function	iiiFN05
In	this	step,	you	will	write	the	LANSA	RDMLX	server	function	that	will
receive	the	data	from	the	User	Agent,	process	it,	and	return	data	to	the	User
Agent.	Your	function	will	be	very	similar	to	the	SET233S	function.
1.		Using	the	Visual	LANSA	development	environment,	sign	on	to	the	partition
nominated	for	the	tutorials	(usually	DEM).

2.		Create	a	new	LANSA	process	named	iiiPRO03	User	Agent	Server	Test
Process,	where	iii	is	your	unique	3	characters.	(If	the	process	already	exists,
select	a	different	set	of	characters	for	iii.)

3.		Create	a	new	RDMLX	enabled	function	named	iiiFN05	Receive	and	Process
Salary	Amendments,	belonging	to	process	iiiPRO03,	where	iii	is	your	unique
3	characters.	Note	that	the	RDMLX	checkbox	must	be	checked.

4.		From	the	list	of	templates,	select	the	template	called	JSMXSKEL.
5.		Answer	the	template	questions	as	shown	in	the	table	below.

Question Answer Comments

Do	you	wish	to	load	a	JSM	Service? HTTPSERVICE 	

	

6.		Edit	the	RDMLX	code	of	function	iiiFN05.
					This	function	will	require	two	working	lists:

Working	list	S_233RCV	is	used	to	receive	the	data	from	the	CSV	file
sent	by	the	User	Agent.	In	this	function,	you	are	only	interested	in	using
the	employee	number	and	the	salary	even	though	the	CSV	file	contains
more	information.

Working	list	S_233SND	is	used	to	return	the	response	from	this	server
function	to	the	User	Agent.	This	list	must	be	a	different	list	from	the
receive	list,	because	no	updating	of	the	receive	list	is	allowed.	In	this	case,
the	data	returned	to	the	User	agent	will	be	the	employee	number,	some
employee	details,	the	new	salary	and	a	text	field	with	a	message	indicating
success	or	failure	of	the	update.

You	will	also	need	to	define	a	field	S_233ERRO	for	handling	errors.

					The	RDMLX	code	might	appear	as	follows:
DEF_LIST		NAME(#S_233RCV)	FIELDS(#EMPNO	#SALARY)	TYPE(*WORKING)
DEFINE				FIELD(#S_233ERRO)	TYPE(*CHAR)	LENGTH(132)	INPUT_ATR(LC)
DEF_LIST		NAME(#S_233SND)	FIELDS(#EMPNO	#GIVENAME	#SURNAME	#SALARY	#S_233ERRO)TYPE(*WORKING)	
	

7.		Modify	the	SERVICE_LOAD	command.		Use	the	KEYWRD	subroutine	to
add	the	following	keywords	to	the	SERVICE_LOAD	command

Keyword Value

SERVICE_CONTENT '*HTTP'

TRACE '*YES'

	

					The	SERVICE_COMMAND(*HTTP)	is	required	to	receive	HTTP	posted
content	.

					The	TRACE(*YES)	may	be	useful	for	testing	purposes.	You	should	remove
trace	before	deploying	to	a	production	system.

					Your	completed	code	should	look	like	the	following.	Changes	are	shown	in
red.
*	BUILD	THE	SERVICE	LOAD	COMMAND
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
'SERVICE'	'HTTPSERVICE')
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
'SERVICE_CONTENT'	'*HTTP')
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
'TRACE'	'*YES')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXHDLE1)
	

8.		Locate	the	comment	around	the	middle	of	the	RDMLX	source	that	says
YOUR	OWN	LOGIC	HERE.

					On	the	Design	ribbon,	click	on	the	Templates	button	and	use	the
BBJSMXCMD	template	to	write	the	RDMLX	to	RECEIVE	the	list	of

employee	numbers	and	their	new	salaries	from	the	CSV	file.	When	prompted
to	type	in	the	name	of	the	Service	List,	type	S_233RCV.	Use	this	table	to
answer	the	template	questions.

Command Keyword Value Working	List

RECEIVE HANDLER ISVL S_233RCV
		 SVMODE '*USE'

	

Enclose	*USE	in	single	quotes,	as	shown.
					For	more	detailed	information	on	using	the	BBJSMXCMD	template,	refer	to
INT003	–	Using	the	FTP	Service,	Step	1.	Build	the	basic	JSM	Functions.

ISVL	is	used	for	Inbound	Separated	Variable	List.
SVMODE	of	*USE	tells	the	service	that	you	want	to	use	the	column
headings	as	the	LANSA	field	names.

					The	RDMLX	code	might	appear	as	follows:
*	BUILD	THE	JSM	COMMAND
#JSMXCMD	:=	RECEIVE
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
HANDLER	ISVL)
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
SVMODE	'*USE')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG	#S_233RCV)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXCMD)	
	

9.		Continue	the	YOUR	OWN	LOGIC	SECTION	by	writing	the	RDML	code	to
achieve	the	following	functions:
a.		SELECTLIST	all	the	entries	from	the	received	list	S_233RCV.
b.		FETCH	GIVENAME	and	SURNAME	from	PSLMST	with	key	EMPNO.
c.		Check	the	I/O	status.
			If	not	okay,	CHANGE	the	error	field	S_233ERRO	to	say	that	the	employee
was	not	found.

			Else	UPDATE	SALARY	in	PSLMST.
d.		Check	the	I/O	status	of	the	UPDATE,	and	CHANGE	the	error	field
S_233ERRO	accordingly.

e.		Add	an	entry	to	the	working	list	S_233SND	to	be	returned	the	LANSA
User	Agent.

f.		ENDSELECT
					The	code	might	appear	as	follows:
SELECTLIST	NAMED(#S_233RCV)
CHANGE	FIELD(#GIVENAME	#SURNAME)	TO(*NULL)
FETCH	FIELDS(#SURNAME	#GIVENAME)	FROM_FILE(PSLMST)	WITH_KEY(#EMPNO)
IF_STATUS	IS_NOT(*OKAY)
#S_233ERRO	:=	'Unsuccesful:	Employee	not	found'
ELSE	
UPDATE	FIELDS(#SALARY)	IN_FILE(PSLMST)	IO_ERROR(*NEXT)	VAL_ERROR(*NEXT)
IF_STATUS	IS_NOT(*OKAY)
#S_233ERRO	:=	'Unsuccesful:	Employee	found	but	update	failed'
ELSE
#S_233ERRO	:=	'Succesful:	Salary	of	employee	'	+	#EMPNO	+	'succesfully
updated'
ENDIF
ENDIF
ADD_ENTRY	TO_LIST(#S_233SND)
ENDSELECT
	

10.Position	below	the	above	code,	use	the	BBJSMXCMD	template	to	write	the
RDMLX	to	SEND	the	response	list	back	to	the	User	Agent.	The	list	will
contain	employee	details	and	a	success/failure	message.		When	prompted	to
type	in	the	name	of	the	Service	List,	enter	S_233SND.	Use	this	table	to
answer	the	template	questions.

Command Keyword Value Working	List

SEND HANDLER ISVL S_233SND

	

ISVL	is	used	for	Inbound	Separated	Variable	List.

					The	code	might	appear	as	follows:
#JSMXCMD	:=	SEND
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(HANDLER	ISVL)
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG	#S_233SND)
EXECUTE	SUBROUTINE(CHECK_STS)
	

11.Delete	the	SERVICE_UNLOAD	command.
Make	sure	that	you	leave	the	JSMX_CLOSE	command	in	place.
Your	finished	code	might	appear	as	follows:
FUNCTION	OPTIONS(*DIRECT)
DEF_LIST	NAME(#S_233RCV)	FIELDS(#EMPNO	#SALARY)
TYPE(*WORKING)
DEFINE	FIELD(#S_233ERRO)	TYPE(*CHAR)	LENGTH(132)
INPUT_ATR(LC)
DEF_LIST	NAME(#S_233SND)	FIELDS(#EMPNO	#GIVENAME
#SURNAME	#SALARY	#S_233ERRO)	TYPE(*WORKING)
*
*		OPEN	JSM	AND	VERIFY	STATUS
USE	BUILTIN(JSMX_OPEN)	TO_GET(#JSMSTS	#JSMMSG
#JSMXHDLE1)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXHDLE1)
*
*	BUILD	THE	SERVICE	LOAD	COMMAND
#JSMXCMD	:=	'SERVICE_LOAD'
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
'SERVICE'	'HTTPSERVICE')
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
'SERVICE_CONTENT'	'*HTTP')
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
'TRACE'	'*YES')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXHDLE1)
*
*					YOUR	OWN	LOGIC	HERE
*	BUILD	THE	JSM	COMMAND

#JSMXCMD	:=	RECEIVE
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
HANDLER	ISVL)
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
SVMODE	'*USE')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG	#S_233RCV)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXCMD)
*
SELECTLIST	NAMED(#S_233RCV)
CHANGE	FIELD(#GIVENAME	#SURNAME)	TO(*NULL)
FETCH	FIELDS(#SURNAME	#GIVENAME)	FROM_FILE(PSLMST)	WITH_KEY(#EMPNO)
IF_STATUS	IS_NOT(*OKAY)
#S_233ERRO	:=	'Unsuccesful:	Employee	not	found'
ELSE	
UPDATE	FIELDS(#SALARY)	IN_FILE(PSLMST)	IO_ERROR(*NEXT)	VAL_ERROR(*NEXT)
IF_STATUS	IS_NOT(*OKAY)
#S_233ERRO	:=	'Unsuccesful:	Employee	found	but	update	failed'
ELSE
#S_233ERRO	:=	'Succesful:	Salary	of	employee	'	+	#EMPNO	+	'succesfully
updated'
ENDIF
ENDIF
ADD_ENTRY	TO_LIST(#S_233SND)
ENDSELECT
*
*	BUILD	THE	JSM	COMMAND
#JSMXCMD	:=	SEND
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
HANDLER	ISVL)
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG	#S_233SND)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXCMD)
*
*	CLOSE	JSM	AND	VERIFY	STATUS
USE	BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMXHDLE1)
TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXHDLE1)
RETURN

*
*	Subroutine	to	build	JSM	commands.	existing	JSM	command
*
SUBROUTINE	NAME(KEYWRD)	PARMS((#W_CMDX	*BOTH)
(#W_KEYWRD	*RECEIVED)	(#W_KEYVAL	*RECEIVED))
DEFINE	FIELD(#W_CMDX)	REFFLD(#JSMXCMD)
DEFINE	FIELD(#W_KEYWRD)	REFFLD(#STD_TEXT)
DEFINE	FIELD(#W_KEYVAL)	REFFLD(#STD_TEXTL)
#W_CMDX	+=	'	'	+	#W_KEYWRD	+	'('	+	#W_KEYVAL	+	')'
ENDROUTINE
*
*		Check	the	status	of	the	JSM	command	issued
*
SUBROUTINE	NAME(CHECK_STS)	PARMS(#W_HDLE)
DEFINE	FIELD(#MSGDTA)	TYPE(*CHAR)	LENGTH(132)
DEFINE	FIELD(#W_HDLE)	TYPE(*CHAR)	LENGTH(4)
*
IF	COND('#JSMSTS	*NE	OK')
*
#MSGDTA	:=	'Error	Status	Code:	'	+	#JSMSTS
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
#MSGDTA	:=	'Error	Message:	'	+	#JSMMSG
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
ENDIF
*
ENDROUTINE
	

12.Compile	the	function.
13.If	you	are	using	a	JSM	Server	on	an	IBM	i	server,	check	in	and	compile	your
process	and	function	on	the	IBM	i.

Step	4.	JSMDirect	Service	Configuration
In	this	step,	you	will	use	Integrator	Studio	to	define	a	Service	and	add	an	entry
for	your	service	and	server	function	iiiFN05	name.
1.		Open	Integrator	Studio	and	select	Services	and	use	the	right	mouse	menu	to
define	a	New	Service.

2.		Define	the	service	URL	and	Port.	If	you	are	using	a	local	Windows	web
server	and	JSM	server	this	could	be	http://localhost:80.

3.		Select	OK	on	the	next	dialog	to	accept	the	name	of	the	JSM	administration
program.	If	you	are	running	with	a	Windows	Server,	you	will	add	.exe	to
jsmadmin

4.		Enter	a	name	for	the	service.	This	name	is	internal	to	Integrator	Studio	and
does	not	need	to	be	unique.	You	do	not	need	to	use	your	initials	iii.

5.		You	are	returned	to	the	Studio	workspace.	Expand	Services	to	see	your	new
service	definition

6.		Select	the	service	and	using	the	right	mouse	menu	select	Open	Service.

7.		The	entries	shown	will	depend	on	what	services	(if	any)	have	been	defined
for	the	JSM	Server	you	are	using.

8.		Use	the	right	mouse	menu	on	white	space	and	select	New.

9.		Enter	suitable	values	for	your	process,	function	and	partition	as	shown,	and
click	OK.

10.You	will	return	to	the	Direct	Services	tab	and	your	new	entry	will	be	shown:

11.If	your	service	is	using	a	Windows	web	server	and	JSM	server,	file
DC_W29.txt	has	been	updated.	If	you	are	using	an	IBM	i	JSM	server,	file
DC@W29	in	library	DCXJSMLIB	(or	your	equivalent)	will	have	been
update.	The	User	Agent	will	now	be	able	to	call	this	service	and	it	will
resolve	to	a	call	to	your	function	iiiFN05.

Step	5.	Test	iiiFN05	function
In	this	step,	you	will	run	the	User	Agent	and	send	your	data	file	to	JSMDirect.	A
LANSA	function	will	be	invoked	to	process	your	data	and	send	back	a	response.
1.		Ensure	that	your	Web	server	and	JSM	Server	are	started.
2.		Open	Integrator	Studio	if	necessary	and	double	click	on	Projects/iii	Training
to	open	your	project	in	a	new	tab.

3.			In	the	Project	tab,	open	Solutions/SendCSVFile	and	use	the	right	mouse
menu	to	Open	With	the	User	Agent.

4.		The	User	Agent	has	opened	using	the	Host	Configuration	file	(.lih)	which
you	defined	earlier	(shown	in	the	Title	bar).	Use	the	Open	toolbar	button
(highlighted	above)	to	open	your	CSV	file.

5.		The	file	opened	in	the	User	Agent	might	appear	as	follows:

6.		In	the	File	menu,	select	the	Send	option,	or	use	the	 	toolbar	button.
7.		When	the	confirmation	request	window	comes	up,	select	Yes:

8.		A	completion	message	should	display:

9.		You	can	view	the	response	from	the	server	by	clicking	on	the	Response	tab:

10.If	you	right	mouse	click	on	the	table,	you	can	save	the	response	as	a	.CSV
file.

Step	6.	Ignore	the	Column	Headings
In	this	step,	you	will	modify	function	iiiFN05	to	ignore	the	column	headings
and	map	the	data	using	the	fields	defined	in	the	working	list	S_233RCV
1.		Edit	the	function	iiiFN05.
					Locate	the	definition	of	the	working	list	used	to	receive	the	data	from	the
User	Agent.	The	working	list	is	called	#S_233RCV	and	it	might	appear	as
follows:
DEF_LIST	NAME(#S_233RCV)	FIELDS(#EMPNO	#SALARY)	TYPE(*WORKING)
	

2.		Modify	the	definition	of	S_233RCV	so	that	it	matches	the	format	of	the
CSV	file.	Your	code	might	appear	as	follows:
DEF_LIST	NAME(#S_233RCV)	FIELDS(#EMPNO	#SALARY	#STARTDTER	#DEPTMENT	#SECTION)	TYPE(*WORKING)
	

3.		Locate	the	commands	that	execute	the	KEYWRD	subroutine	to	build	the
RECEIVE	command.	Change	the	value	of	the	SVMODE	keyword	to
*IGNORE.	One	example	of	why	you	might	use	*IGNORE	is	when	the
column	headings	are	not	LANSA	field	names.	For	example,	the	server	might
receive	a	CSV	file	where	the	column	headings	say	'Employee	Number'
instead	of	EMPNO.

					Your	code	might	appear	as	follows:
CHANGE	FIELD(#JSMXCMD)	TO(RECEIVE)
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
HANDLER	ISVL)
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
SVMODE	'*IGNORE')	
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG	#S_233RCV)
EXECUTE	SUBROUTINE(CHECK_STS)
	

4.		Compile	the	function.
5.		Use	the	User	Agent	to	test	the	function	as	before.	The	result	should	be
exactly	the	same.

6.		Optional.	Edit	your	CSV	file	to	contain	column	headings	such	as	"Number,
Annual		Salary,	Start	Date,	Department,	Section	Code"	and	save	your

changes.	If	the	User	Agent	is	still	open,	use	File	/	Close	Source	and	then	open
your	modified	CSV	file	and	send	it.	Once	again,	you	should	get	the	same
results.

Step	7.	Using	a	CSV	without	Column	Headings
In	this	step,	you	will	modify	the	CSV	file	to	remove	the	column	headings.	The
RDMLX	will	need	to	be	modified	to	change	the	SVMODE	keyword	on	the
RECEIVE	command	to	*NONE.	i.e.	the	CSV	file	has	no	column	headings.	In
Step	6,	you	modified	the	received	working	list	definition	to	match	the	columns
in	the	CSV	file,	so	no	other	changes	are	needed	to	receive	the	CSV	file.	In	fact,
since	your	function	only	requires	the	first	two	fields,	the	working	list	could	be
defined	as	containing	EMPNO	and	SALARY	only.
You	will	add	a	SVHEAD	keyword	to	the	SEND	command	with	a	value	of
iiiFN05.	This	will	look	up	a	project	entry	you	will	add	to	the	HTTPService
properties	file	for	the	header	row	to	be	added	to	the	sent	CSV	file.
1.		Start	the	Notepad	editor	in	Windows	to	open	the	file
iii_employee_new_salary.csv	created	at	the	beginning	of	this	exercise.	The
file	might	appear	as	follows:
								EMPNO,SALARY,STARTDTER,DEPTMENT,SECTION
								A1004,53400,910521,ADM,01
								A1005,53500,950102,ADM,01
								A1006,53600,891201,MKT,02
	

2.		Remove	the	first	row	in	the	file	that	contains	the	column	heading	data.	The
file	might	appear	as	follows:
								A1004,53400,910521,ADM,01
								A1005,53500,950102,ADM,01
								A1006,53600,891201,MKT,02
	

3.		Using	the	File	menu,	select	the	Save	to	save	the	file	with	the	modified
contents.	You	can	close	the	file	iii_employee_new_salary.csv.

4.		Edit	the	function	iiiFN05.
					Locate	the	definition	of	the	working	list	used	to	receive	the	data	from	the
User	Agent.	The	working	list	is	called	#S_233RCV	and	it	might	appear	as
follows:
DEF_LIST	NAME(#S_233RCV)	FIELDS(#EMPNO	#SALARY	#STARTDTER	#DEPTMENT	#SECTION)	TYPE(*WORKING)
	

5.		Locate	the	commands	that	execute	the	KEYWRD	subroutine	to	build	the
RECEIVE	command.	

Change	the	value	of	the	SVMODE	keyword	to	*NONE.	SVMODE(*NONE)
is	the	default	value	so	you	could	simply	omit	the	keyword	altogether.

					The	RDMLX	might	appear	as	follows:
CHANGE	FIELD(#JSMXCMD)	TO(RECEIVE)
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
HANDLER	ISVL)
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
SVMODE	'*NONE')	
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#S_233RCV)
EXECUTE	SUBROUTINE(CHECK_STS)

6.		Locate	the	execute	KEYWRD	subroutine	code	for	the	SEND	command.	Add
a	SVHEAD	keyword	with	a	value	of	iiiFN05.	Your	code	should	look	like	the
following:
*	BUILD	THE	JSM	COMMAND
#JSMXCMD	:=	SEND
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
HANDLER	ISVL)
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD
SVHEAD	iiiFN05)
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG	#S_233SND)
EXECUTE	SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXCMD)
	

7.		Compile	the	function.
8.		In	this	step	you	will	add	a	section	to	the	HTTPSERVICE	properties	file	for
your	Project.	This	section	will	define	the	column	headings	to	be	used	for	the
sent	CSV	file.
a.		Open	your	iii	Training	project	in	Integrator	Studio.
		On	the	Project	tab,	select	the	Server	you	are	using	for	training	and	use	the
right	mouse	menu	to	Open	Server.

b.		The	server	instance	will	open	on	the	right	hand	side:

c.		Open	the	properties	level,	and	scroll	down	to	HTTPService.properties.
Select	this	and	use	the	right	mouse	menu	to	Retrieve	Section.

d.		The	following	dialog	box	will	be	shown,	since	you	do	not	have	an
HTTPService.properties	section	defined	for	your	project	at	this	point.
Select	OK	and	an	entry	HTTPService.properties	will	be	created	under
Integrator	/	Properties	on	the	left	hand	side.	i.e.	in	your	project.

e.		Select	Integrator	/	Properties	/	HTTPService.properties	and	use	the	right
mouse	menu	to	Open	With	/Properties	Editor.

f.		The	Properties	Editor	will	open.	Add	an	entry	which	defines	column
headings	for	separated	variables	files,	as	shown	in	the	screen	shot.	Save
your	changes	and	close	the	properties	editor.

g.		Select	HTTPService.properties	in	your	project	and	use	the	right	mouse
menu	to	select	Publish	Section.

h.		Select	Yes	in	the	Confirm	dialog.	This	will	add	a	section	at	the	end	of	the
HTTPService.properties	file	for	your	project.

i.		On	the	right	hand	side	(the	JSM	server	instance)	use	the	right	mouse	menu
to	select	Properties	/	HTTPService.properties	to	Open	the	JSM	server
HTTPService	properties	file.	Scroll	to	the	end	to	view	the	entry	you	have
just	added.

8.		Use	the	instructions	in	the	previous	step	to	test	the	function.	The	response
should	look	like	the	following:

.

Step	8.	Sending	an	Excel	spreadsheet.	Optional

Microsoft	Excel	must	be	installed	on	your	PC	in	order	to	complete	this
step.

In	this	step,	you	will	create	an	Excel	spreadsheet	and	modify	the	host
configuration	file	SendCVSFile.lih	to	allow	the	User	Agent	to	use	an	.xls	file	as
source,	instead	of	a	.csv	file.	The	User	Agent	will	read	the	spreadsheet	and
display	the	contents.	It	will	then	send	the	data	to	the	Server	in	CSV	format	for
processing	by	function	iiiFN05.	Function	iiiFN05	will	return	a	response	to	the
LANSA	User	Agent.	Function	iiiFN05	must	have	a	SVMODE(*IGNORE)
keyword	on	the	RECEIVE	command,	since	the	Excel	spreadsheet	will	be
defined	with	column	headings	which	are	not	field	names.	If	necessary	you
should	change	function	iiiFN05.
First,	you	must	create	the	file	containing	the	data	to	be	sent	using	the	User
Agent.	The	file	contains	a	list	of	employee	numbers	and	the	new	salaries	for
those	employees.
1.		Start	Excel	in	Windows.
2.		Enter	the	following	data	in	the	top	left	15	cells	of	sheet	1,	as	shown:

	

					Important	Notes:
Format	cells	E1	to	E3	as	text	prior	to	entering	the	values,	otherwise	Excel
will	treat	the	entered	values	as	numbers.
Columns	headings	should	be	included	in	the	Excel	spreadsheet.	Your
function	assumes	headings	exist	and	ignores	them.	Note:	this	also	means

that	without	a	column	headings	row,	your	function	would	ignore	the	first
row	of	data.

					Ensure	that	the	employee	identifiers	in	the	EMPNO	column	(A1004,	A1005
and	A1006)	exist	in	file	PSLMST	in	the	partition	where	the	server	side
RDML	function	will	execute.		(If	the	data	does	not	exist	in	PSLMST	file,
substitute	employee	identifiers	that	do	exist.)	Enter	the	remaining	data	as
shown.

3.		In	the	File	menu,	select	the	Save	As	option	using	these	options:

Save
in

locate	the	project	directory	where	you	defined	the	send	CSV	file
solution.	For	example:	c:\program
files\lansa\integrator\Studio\workspace\iii
Training\solutions\SendCSVFile\

File
Name

iii_employee_new_salary.xls

Save
as
Type

Microsoft	Excel	workbook	(*.xls)

	

4.		Close	Excel.
5.		With	your	iii	Training	project	open	in	Integrator	Studio,	open	the
SendCSVFile.lih	with	the	Properties	Editor.

6.		Use	Find	to	locate	xls	entries.	You	should	find	the	highlighted	entry	already
exists.	This	line	defines	the	Windows	application	which	the	User	Agent	will
use	to	display	an	.XLS	file.

7.		Locate	entries	for	uri	and	modify	the	entry	for	xls.uri=/cgi-bin	.	.	.		as
shown	in	the	screen	shot.	This	defines	the	service	which	the	JSM	will	look	up
in	DC@W29	to	find	the	program	or	function	to	call	when	handling	an	xls
file.

					If	you	are	using	the	JSM	server	on	Windows	the	entry	would	change	to:
xls.uri=/cgi-bin/jsmdirect.exe?iiiFN05_SERVICE

8.		Add	a	new	section	to	the	end	of	the	configuration	file,	to	tell	the	LANSA
User	Agent	which	of	the	sheets	in	the	Excel	spreadsheet	to	read	and	what	to
convert	the	spreadsheet	to,	prior	to	display.
#

#	Excel	processing
#	
excel.convert=text/comma-separated-values;charset=utf-8
excel.sheet=Sheet1
	

9.		Save	your	changes	and	close	the	Properties	Editor
10.	As	before,	open	the	User	Agent	for	your	SendCSVFile	solution,	open	the
Excel	file	iii_employee_salary_amendments.xls	and	send	it	to	the	JSM	server.
The	response	should	be	the	same	as	before.

Step	9.	Invoke	User	Agent	in	Batch	Mode
The	previous	steps	in	this	exercise	have	run	the	User	Agent	from	Integrator
Studio.	In	this	step,	you	will	execute	the	User	Agent	in	batch	mode	to	send	the
XLS	file.	Note:	this	step	requires	the	User	Agent	to	be	installed	as	a	standalone
application.
1.		The	files	already	created	for	the	User	Agent	project	are	in	a	directory	such
as:
C:\Program	Files\LANSA\Integrator\Studio\workspace\JMI
Training\solutions\SendCSVFile

					Copy	these	files	from	the	above	directory
SendCSVFile.lih
iii_employee_new_salary.xls

					to	the	\User	Agent\workspace	folder,	such	as:
C:\Program	Files\LANSA\Integrator\UserAgent\workspace

2.		In	the	following	steps	you	will	use	Notepad	to	create	an	iii_UPLOAD.BAT
file	in	the	directory	where	you	installed	the	LANSA	User	Agent	(by	default
C:\Program	Files\LANSA\Integrator\UserAgent).	The	file
iii_UPLOAD.BAT	is	a	DOS	batch	file	which	will	enable	the	user	agent	to	be
executed	without	a	user	interface,	by	passing	the	required	parameters	into	the
User	Agent	when	the	batch	file	is	executed.

3.		Open	Notepad	and	open	the	file:

					C:\Program
Files\LANSA\Integrator\UserAgent\workspace\upload.bat

					Note:	You	will	need	to	use	Files	of	Type:	All	Files	when	opening	the	file.
					This	is	a	shipped	example	batch	file	for	running	User	Agent.	The	code
should	look	like	the	following:
@echo	off000
cls

rem	---	Delete	previous	error	log	file

if	exist	useragent.err	del	useragent.err

rem	---	Send

java	-Djsf.log=\LANSA\Integrator\useragent\useragent.log
com.lansa.jsf.useragent.JSFUserAgent	acme.lih	order.xls	xls-order-
response.rsp
if	exist	useragent.err	goto	error

rem	---	Send	
java	-Djsf.log=\LANSA\Integrator\useragent\useragent.log
com.lansa.jsf.useragent.JSFUserAgent	acme.lih	order.csv	csv-order-response.rsp
if	exist	useragent.err	goto	error

goto	end
rem	--	An	error	has	occured
:error
cls
echo	Check	useragent.err	for	possible	messages
echo	Check	useragent.log	for	possible	messages
goto	end
:end
	

						Delete	the	second	block	of	code	between	"rem	---	Send"	and	"goto	error"
including	this	code.	The	supplied	example	assumes	that	the	batch	file	will
send	two	files.	The	code	to	delete,	is	shown	in	red	in	the	program	code	above.
Your	code	should	now	look	like	the	following:
@echo	off
cls
rem	---	Delete	previous	error	log	file
if	exist	useragent.err	del	useragent.err
rem	---	Send
java	-Djsf.log=\LANSA\Integrator\useragent\useragent.log
com.lansa.jsf.useragent.JSFUserAgent	acme.lih	order.xls	xls-order-
response.rsp
if	exist	useragent.err	goto	error
goto	end
rem	--	An	error	has	occured
:error
cls
echo	Check	useragent.err	for	possible	messages
echo	Check	useragent.log	for	possible	messages

goto	end
:end
	

4.		The	supplied	code	needs	to	be	extended	to	operate	on	your	PC.	The	code	you
enter	will	depend	on	the	version	of	Windows	you	are	using.	The	examples
provided	here	are	for	Windows	XP.	Replace	"java"	at	the	start	of	the
command	line	with	a	full	path.	Your	code	should	look	like	the	following.	The
new	code	is	shown	in	red.	REVIEW	THIS.	NOT	SURE	OF	CORRECT
FORMAT.
rem	---	Send
C:\WINDOWS\system32\JAVAW.EXE	"-Djava.ext.dirs=..\lib\ext"	"-
Djava.endorsed.dirs=..\lib\endorsed"	"-Djsf.log=.\useragent.log"
com.lansa.jsf.useragent.JSFUserAgent	acme.lih	order.xls	xls-order-
response.rsp

5.		The	command	line	you	are	editing	runs	the	User	Agent	in	the	Java	runtime
environment	(JVM)	passing	a	number	of	parameters	such	as	the	configuration
file	(.lih)	to	be	used.	The	first	parameter	begins	"-Djava.ext.dirs=	.	You
need	to	insert	into	this	parameter	the	path	for	the	\lib\ext	folder.	If	you
examine	the	folder	C:\Program	Files\Java	using	Windows	explorer	you
will	probably	find	it	contains	folders	for	a	number	of	versions	of	Java,	which
are	left	in	place	when	Java	is	updated.	See	the	example	following:

					You	should	specify	the	path	for	the	latest	version	of	Java	(or	alternatively	the
actual	Java	version	you	have	specified	in	your	Integrator	settings).	For
example	C:\Program	Files\Java\jre6\lib\ext.	Add	this	path	into	the	first
parameter	as	shown.	Changes	are	shown	in	red:
rem	---	Send
C:\WINDOWS\system32\JAVAW.EXE	"-Djava.ext.dirs=c:\program

files\java\jre6\lib\ext;.\lib\ext"	"-Djava.endorsed.dirs=..\lib\endorsed"	"-
Djsf.log=.\useragent.log"	com.lansa.jsf.useragent.JSFUserAgent	acme.lih
order.xls	xls-order-response.rsp

6.		This	step	will	specify	the	correct	runtime	parameters	for	the	configuration
file(lih),	the	input	file	(xls)	and	the	response	file	(csv).

					Replace	the	end	of	the	command	string,	starting	from	acme.lih,	so	that	the
command	looks	like	the	following.	Ensure	the	file	names	used	have	your
initials.	The	changes	are	shown	in	red:
rem	---	Send
C:\WINDOWS\system32\JAVAW.EXE	"-Djava.ext.dirs=c:\program
files\java\jre6\lib\ext;.\lib\ext"	"-Djava.endorsed.dirs=..\lib\endorsed"	"-
Djsf.log=.\useragent.log"	com.lansa.jsf.useragent.JSFUserAgent
workspace\SendCSVFile.lih	workspace\iii_employee_new_salary.xls	
workspace\iii_employee_response.csv

					Important	Note:	Remember	you	are	editing	a	single	command	line.	It	is
shown	here	spilt	across	a	number	of	lines	due	to	width	limitations.	Using
Notepad	you	can	view	this	line	as	a	single	line	or	over	a	number	of	lines	if
word	wrap	is	enabled.

7.		The	complete	iii_upload.bat	file	should	look	like	the	following:
@echo	off
cls
	
rem	---	Delete	previous	error	log	file
if	exist	useragent.err	del	useragent.err
	
rem	---	Send
C:\WINDOWS\system32\JAVAW.EXE	"-Djava.ext.dirs=C:\Program
files\Java\jre1.6.0_07\lib\ext;.\lib\ext"	"-Djava.endorsed.dirs=..\lib\endorsed"
"-Djsf.log=.\useragent.log"	com.lansa.jsf.useragent.JSFUserAgent
workspace\SendCSVFile.lih	workspace\iii_employee_new_salary.xls	
workspace\iii_employee_response.csv
if	exist	useragent.err	goto	error
	
	
goto	end
	
rem	--	An	error	has	occured

:error
cls
echo	Check	useragent.err	for	possible	messages
echo	Check	useragent.log	for	possible	messages
	
goto	end
	
:end
							

					Note	how	the	send	instruction	is	composed	of	four	parts:
The	instruction	to	start	the	User	Agent.
The	first	parameter	-	SendCSVFile.lih		(how	to	find	the	service)
The	second	parameter	-	iii_Employee_New_Salary.xls	(the	data	to	be
processed)
The	third	parameter	-	iii_employee_response.csv	(the	name	of	the	file	that
will	receive	the	response	from	the	service)	

8.		In	the	File	menu,	select	the	Save	As	option	using	these	options:

Save
in

locate	the	directory	where	you	installed	the	LANSA	User	Agent,	by
default	...\program	files\lansa\integrator\UserAgent\

File
Name

iii_UPLOAD.BAT

Save
as
Type

All	files

	

					Note:	Save	to	…\UserAgent\	not	…\UserAgent\workspace\.
9.		Execute	the	iii_UPLOAD.BAT	file.	If	successful,	a	file	called
iii_response.csv	should	be	created	in	the	directory	…
\UserAgent\workspace\.	Windows	will	open	this	(CSV)	file	with	Excel.

					If	you	encounter	a	problem,	the	first	thing	to	check	is	whether	you	can
manually	start	the	LANSA	User	Agent,	load	host	SendCSVFile.lih,	open

source	iii_Employee_New_Salary.xls,	send,	and	receive	a	response.
Refer	to	Step	5.	Test	iiiFN05	function	for	details.

Summary
Important	Observations

The	Server	program	identifier	in	the	configuration	file	is	a	logical	value	that
JSM	resolves	to	the	server	side	process/function,	partition	and	language	by
looking	up	the	file	DC@W29.	
The	SVMODE	should	be	*NONE	when	the	CSV	file	contains	no	column
heading	information.	When	the	SVMODE	is	*NONE	you	have	the	option	of
using	the	SVHEAD	keyword	to	specify	the	CSV	file	format	in
HTTPService.properties	file.	If	you	do	not	use	an	SVHEAD,	the	format	of
the	working	list	to	receive	the	data	must	match	that	of	the	CSV	file.
The	SVMODE	could	be	*USE	or	*IGNORE	when	the	CSV	file	contains
column	heading	information.	For	the	mode	*USE,	the	column	headings	in
the	CSV	file	must	be	LANSA	field	names	and	the	format	of	the	working	list
is	not	required	to	match	that	of	the	CSV	file.
For	the	mode	*IGNORE,	the	column	headings	in	the	CSV	file	can	be
anything	and	the	format	of	the	working	list	must	match	that	of	the	CSV	file.
It	is	possible	to	automate	the	user	actions	into	a	single	.bat	file	that	when	run
will	start	the	LANSA	User	Agent,	specify	the	configuration	file,	specify	the
data	file	to	be	processed,	send,	and	specify	the	name	of	the	local	file	to
receive	the	response	from	the	server.
It	is	possible	to	configure	the	LANSA	User	agent	to	take	Excel	spreadsheets
and	other	formats	as	data.	These	will	be	converted	to	CSV	before	being	sent.
No	change	is	required	to	the	Server	side	function	to	handle	these	formats.	

Tips	&	Techniques
The	format	of	the	CSV	data	determines	the	SVMODE	used	to	RECEIVE	the
file	on	the	server.
If	you	are	testing	using	a	Windows	Web	server	and	JSM	server	install	on
your	own	PC,	you	can	use	a	host		address	of	host=http://localhost:80	when
specifying	the	host=http://nnn.nnn.nnn.nnn:pp.
The	LANSA	User	Agent	also	supports	the	saving	of	data	to	an	Excel
spreadsheet.

What	I	Should	Know
How	to	use	the	User	Agent	to	send	and	receive	data	to	a	function	running	on
an	IBM	i.

How	to	use	the	JSM	commands	SEND	and	RECEIVE	in	Server	Side
functions	using	the	HTTP	Client	service
When	to	use	the	different	modes	to	receive	the	files	on	the	Server	side.

INT005	-	Department	Inquiry	Bindings
Objectives:

To	learn	how	to	handle	XML	files	with	the	LANSA	Integrator.
To	learn	how	to	use	Integrator	Studio	to	create	projects	and	manage	files	on
the	JSM	Server.
To	use	the	XML	Binding	Wizard	to	create	XML	binding	jar	files.
To	create	bindings	to	receive	a	Department	Code	to	a	function	and	then	send
back	a	Department	Description	(Server).
These	bindings	will	be	used	in	the	INT006	exercise,	which	creates	the	server
functions.

To	achieve	these	objectives,	you	will	complete	the	following:
Concepts
Step	1.	Extend	Studio	Project	iii	Training
Step	2.	Create	Request	XML	-	iiiPRO04_request.xml
Step	3.	Create	Response	XML	-	iiiPRO04_response.xml
Step	4.	Create	iiiFN06	Server	Inbound	(request)	binding
Step	5.	Create	iiiFN06	Server	Outbound	(response)	binding
Step	6.	Binding	Deployment	and	Configuration
Summary

Concepts
To	begin,	you	will	learn	a	few	JSM	specific	concepts	related	to	XML	files	and
bindings.		Writing	or	obtaining	the	XML	would	usually	be	the	first	step	in	your
application.	The	XML	is	required	by	the	XML	Binding	Wizard	to	map	the
bindings.
There	will	usually	be	two	XML	files	involved	when	writing	the	client	and	server
side	of	an	application.	In	this	course,	they	will	be	referred	to,	as	the	request	and
response	XML:

The	request	XML	is	the	one	sent	by	the	client	and	received	by	the	server
side.	You	will	send	a	request	containing	a	Department	Code	from	the
DEPTAB	table.
The	response	XML	is	the	one	sent	back	by	the	server.	It	is	usually	different
to	the	request	XML	received	by	the	client.	In	this	case,	the	response	will	be
the	Department	Description	from	the	DEPTAB	table.

Using	an	XML	file	as	input,	the	XML	Binding	Wizard	can	create	a	binding	to
map	the	XML	to	your	LANSA	fields.	JSM	uses	the	jar	files	to	map	the
information	in	the	XML	file	and	map	it	into	the	RDMLX	function.	The	binding
is	different	depending	on	the	direction	of	the	XML,	for	example,	whether	it	is
being	sent,	or	received.	A	SET	is	usually	associated	with	an	outbound	binding,	a
GET	with	an	inbound	binding.
For	the	server	to	be	able	to	receive	the	request,	it	will	require	an	inbound
binding	of	the	request	XML.	The	server	will	also	require	an	outbound	binding
to	generate	the	response	XML.	Assuming	that	the	request	and	response	XML
are	different	(as	they	are	in	these	exercises),	you	will	create:

an	inbound	binding	jar	file	with	the	XML	Binding	Wizard	using	the	request
XML	as	input
an	outbound	binding	jar	file	with	the	XML	Binding	Wizard	using	the
response	XML.

This	table	summarizes	the	relationship	between	the	input	XML,	the	jar	files	and
JSM	command	which	are	used	for	this	exercise:

Input	XML Binding Jar	file JSM	Command

iiiPRO04_request.xml Inbound iiiPRO04_request.jar GET

iiiPRO04_response.xml Outbound iiiPRO04_response.jar SET

	

Step	1.	Extend	Studio	Project	iii	Training
In	this	step,	you	will	use	the	Integrator	Studio	to	extend	the	project	iii	Training
created	in	INT004.	You	will	create	a	new	solution	and	use	the	XML	Bind	Wizard
to	create	the	required	folders	for	building	your	XML.
1.		Locate	the	Integrator	Studio	icon	by	opening	the	LANSA	folder	on	your
desktop.

2.		Double	click	on	the	Integrator	Studio	icon.	The	Studio	main	window	will
appear.

					You	can	also	open	Studio	from	the	Tools	ribbon	in	the	LANSA	Editor.
3.		Select	the	iii	Training	project	you	created	earlier	and	use	the	right	mouse
menu	to	Open	Project.	Your	project	will	open	in	a	new	tab.

4.		Select	the	solutions	folder	and	use	the	right	mouse	menu	to	create	New
Solution.		Select	XML	File	Editor	from	the	Tool	dropdown.	Enter	a	new
Solution	Group	of	XML	Request	and	a	Solution	File	name	of
iiiPRO04_request.

5.		Select	Yes	in	the	Confirm	dialog.	A	new	folder	called	XML	Request	will	be
created.	By	default	the	full	path	will	be:	
c:\program	files\lansa\integrator\studio\workspace\iii
Training\solutions\XML	Request.

					Your	XML	file	iiiPRO04_request.xml	will	be	placed	in	this	folder.
6.		The	XML	Editor	will	open:

7.		Continue	to	Step	2.

Step	2.	Create	Request	XML	-	iiiPRO04_request.xml
In	this	step,	since	you	will	be	writing	a	server	function,	you	will	write	the	XML
to	receive	the	request	for	the	department	description.	You	can	use	any	text	editor
to	write	XML.	In	this	case,	you	will	use	the	XML	Editor	which	is	part	of
Integrator	Studio.
1.		The	open	XML	editor,	contains	the	basic	structure	of	an	XML	message.	The
first	line	in	an	XML	file	is	always	the	XML	declaration.	For	these	exercises,
you	will	always	use	the	following	XML	declaration:
	<?xml	version="1.0"	encoding="UTF-8"?>
	

					Important	Note:	The	<?xml	version="1.0"	encoding="UTF-8"?>
statement	must	be	the	first	line	in	the	document.	There	should	be	no	blank
lines	or	characters	before	it,	or	an	error	will	occur.

2.		You	must	provide	the	department	code	in	order	to	obtain	the	department
description	from	the	server,	You	will	need	a	root	tag	enclosing	a	tag	for	the
department	code.	Call	the	root	tag	DepartmentRequest	and	the	department
code	tag	DepartmentCode.	Include	a	sample	value	of	the	information	sent	in
the	DepartmentCode	tag,	for	example	ADM.

					In	this	case,	the	XML	is	very	simple	and	it	might	appear	as	follows:

					Note	that	each	XML	tag	has	a	start	and	matching	end	tag	e.g.	<tag>	</tag>
3.		Save	the	XML	and	select	Yes	in	the	Confirm	dialog.	The	file	was	created
when	the	editor	opened.	Close	the	XML	File	Editor.	

					Notice	that	the	XML	file	you	have	just	created	now	appears	in	Integrator
Studio	under	your	XML	Request	solution	group.

Step	3.	Create	Response	XML	-	iiiPRO04_response.xml
As	noted	in	Step	2,	you	may	use	any	text	editor	to	create	XML.	In	this	case	you
will	use	Notepad.	This	step	illustrates	how	you	can	introduce	an	"external"
XML	to	your	Studio	project.	This	XML	for	example	could	have	been	provided
by	one	of	your	company's	business	partners.
In	this	step,	since	you	will	be	writing	the	server	function,	you	will	now	write	the
XML	to	be	sent	as	the	response,	containing	the	department	description.	This	file
will	define	the	server's	response	XML.	The	response	simply	sends	back	the
department	description.	The	structure	of	the	response	XML	is	similar	to	the
request	XML.	The	difference	between	the	two	is	the	exchanged	information.
Note:	You	could	pass	the	Department	Code	back	with	the	Department
Description.	In	this	exercise,	you	will	pass	just	one	field.
1.		Create	an	XML	Response	solution	group.	Select	Solutions	and	using	the	right
mouse	menu	select	New	Solution	Group.	Enter	XML	Response	in	the	dialog
and	click	OK.

2.		Start	the	Notepad	editor	in	Windows.	(Click	on	the	Windows	Start	button,
select	Run,	type	in	Notepad	and	click	OK.)

3.		Type	in	the	XML	declaration	as	follows:
				<?xml	version="1.0"	encoding="UTF-8"?>
	

4.		Call	the	root	tag	DepartmentResponse.	The	department	description	tag	can
be	called	DepartmentDescription.	Remember	to	include	a	sample	value	of	the
information	sent	in	the	DepartmentDescription	tag,	for	example
Administration	Dept.	The	XML	should	look	like	the	following:
		<?xml	version="1.0"	encoding="UTF-8"?>
		<DepartmentResponse>
					<DepartmentDescription>Administration	Dept</DepartmentDescription>
		</DepartmentResponse>
	

5.		Save	the	XML	response	file	in	the	new	solution	group	XML
Response.Using	the	File	menu,	select	the	Save	As	option	and	specify	the
following:

Save
in

locate	the	XML	Tutorials	directory,	by	default	c:\program
files\lansa\integrator\studio\workspace\iii

Training\solutions\XML	Response

File
Name

iiiPRO04_response.xml

Save
as
Type

All	Files

	

6.		Minimize	Notepad.
7.		Return	to	your	project	in	Studio	and	use	the	View	/	Refresh	menu	option	(or
F5).	Your	response	XML	is	now	shown	in	your	XML	Response	folder.

Step	4.	Create	iiiFN06	Server	Inbound	(request)	binding
In	this	step,	you	will	use	the	XML	Binding	Wizard	to	create	the	inbound	request
binding	iiiPRO04_request.jar	on	the	server.		This	jar	file	will	bind	the	inbound
XML	for	the	server	function	to	receive.		You	will	define	the	mappings	from	the
XML	to	your	local	LANSA	fields.
1.		From	the	Project	/	Solutions	node	select	the	New	Solution	menu	item.
2.		A	New	Solution	dialog	will	appear.

a.		Select	the	XML	Binding	Wizard	in	the	Tool	dropdown.
b.		Type	or	select	XML	Request	in	the	Solution	Group	dropdown.
c.		Type	iiiPRO04_request	in	the	Solution	File	input	field.	Click	OK.

3.		A	new	XML	Project	panel	appears.	To	select	the	source	XML	file,	click	on
the	Browse	button.

4.		A	File	Open	dialog	will	be	displayed.
a.		Click	on	the	iiiPRO04_request.xml	file	to	select	it.
b.		Click	on	the	Open	button.
c.		In	the	New	XML	Binding	Project	dialog,	click	on	the	OK	button.

5.		The	XML	Binding	Wizard	main	window	will	now	appear.

a.		Select	the	Configuration	tab.	This	defines	where	the	java	classes
necessary	for	binding	will	be	packaged	up	into	jar	files.	Change	the
package	name	to	com.iiicompany.service.xml

b.		You	will	be	creating	a	Server	to	handle	the	inbound	XML	request,	so
click	on	the	inbound	checkbox.		Notice	a	new	Inbound	tab	appears.

c.		Select	the	Source	tab.	You	will	see	the	XML	source	file	added	to	the
project.

d.		Select	the	Inbound	tab.		This	is	where	you	will	map	your	fields.

6.		Map	the	XML	tag	DepartmentCode	to	the	LANSA	field	DEPTMENT	as
follows:
a.		Select	the	Inbound	tab.

b.		Right	click	on	the	DepartmentRequest	root	tag	and	select	Fragment
option	from	the	pop-up	menu.

c.		Right	click	on	Department	Code	tag	and	select	Edit	from	the	pop-up
menu	(or	double	click	on	it).

d.		In	the	Field	Attributes	dialog,	enter	DEPTMENT	for	the	Name	and	click
OK

e.		Your	inbound	mapping	should	look	like	the	following:

7.		Create	the	inbound	request	binding	as	follows:
Note:	Before	you	use	the	Build	function	for	the	first	time,	you	should	do	the
following,	in	order	to	register	where	Integrator	Studio	should	locate
javac.exe:

On	the	Studio	Workspace	tab,	right	click	on	the	Studio	Workspace
item,	and	select	Set	/	Java	Compiler	and	then	select	the	location
for	javac.exe	which	is	shown:

b.		Now	continue	by	selecting	the	Project	menu	and	choose	the	Build	option
or	use	the	 	button.

This	generates	and	compiles	the	project	in	order	to	create	the	necessary	jar
file	to	do	the	inbound	request	binding.
It	also	generates	sample	text	files	that	show	you	how	to	register	this
service	so	that	it	can	be	referenced	in	your	RDMLX.
Text	files	that	contain	sample	RDML	and	RDMLX	commands	using	your
service,	are	also	generated.

	
8.		Click	OK	on	the	dialog	which	confirms	the	service	has	been	generated	and
compiled.

9.		Using	the	File	menu,	select	the	Save	option.		Click	on	Yes	to	save	the
project.

10.Exit	the	XML	Binding	Wizard.
11.Switch	to	your	project	in	Integrator	Studio.	Observe	that	a	number	of	folders
and	files	have	been	added	to	your	XML	Request	solution:

Step	5.	Create	iiiFN06	Server	Outbound	(response)	binding
In	this	step,	you	will	use	the	XML	Bind	Wizard	to	create	the	outbound	response
binding	iiiPRO04_response.jar..		This	jar	file	will	bind	the	outbound	XML	from
the	Server	to	send	to	the	client.		You	will	define	the	mappings	from	your
LANSA	fields	into	the	XML	response	document.
1.		With	your	iii	Training	project	open,	right	click	on	Solutions	to	create	a	New
Solution.

2.		Select	the	XML	Binding	Wizard	tool	from	the	Tool	dropdown.
3.		Create	the	new	Solution	in	the	XML	Response	group.
4.		Type	iiiPRO04_response	in	the	Solution	File	input	field.	Click	OK.	The	New
XML	Binding	Project	dialog	will	appear.

5.		Select	the	Browse	button	and	select	the	source	XML	file.
a.		A	File	Open	dialog	will	be	displayed.
b.		Click	on	the	iiiPRO04_response.xml	file	to	select	it.
c.		Click	on	the	Open	button.
d.		Click	on	the	OK	button.

6.		The	XML	Binding	Wizard	main	window	will	appear.	Change	the	Package
name	to	com.iiicompany.service.xml

7.		You	will	now	map	the	XML	tag	Description	to	the	LANSA	field
DEPTDESC	as	follows:
a.		Select	the	Outbound	checkbox	(You	will	be	creating	the	outbound
response	binding).		A	new	Outbound	tab	will	appear.

b.		Select	the	Outbound	tab.	Right	click	on	the	DepartmentResponse	root	tag
and	select	Fragment	option	from	the	pop-up	menu.

c.		Right	click	on	Department	Description	and	select	Edit	from	the	pop-up
menu.

d.		In	the	Field	Attributes	dialog,	type	in	DEPTDESC	for	the	Name	and
click	OK.	Your	mapping	should	look	like	the	following:

8.		Create	the	outbound	request	binding	as	follows:
a.		Select	the	Project	menu	and	choose	the	Build	option.		This	generates	and
compiles	the	project	in	order	to	create	the	necessary	jar	file	to	do	the
outbound	request	binding.	You	could	also	have	used	the	Build	 	toolbar
button.

9.		Using	the	File	menu,	select	the	Save	option.	Alternatively,	click	the	Save	
toolbar	button.

10.Close	the	XML	Wizard.
11.Once	again,	in	your	XML	Response	solution	group,	note	that	a	number	of
files	have	been	generated,	some	of	which	you	will	use	to	build	the	rest	of	the
application.

Step	6.	Binding	Deployment	and	Configuration
In	this	step,	you	will	deploy	the	jar	files	and	make	other	configuration	changes
using	Integrator	Studio.
1.		Using	the	Integrator	Studio,	review	the	files	in	your	project.

a.		From	the	root	Project	(iii	Training),	expand	the	Solutions	folder.	You
should	see	XML	Request	and	XML	Response	folders.

b.		Open	the	XML	Request	and	XML	Response	folders.	You	should	see	your
XML	files	and	project	files	as	well	as	the	generated	jar	files	for	your
bindings

2.		In	this	step	you	will	add	a	section	for	your	project	into	the
HTTPInboundXMLBindService	properties	file	on	the	server.

					In	exercise	INT004	you	have	already	defined	your	JSM	Server.	This	may
point	to	http://localhost:4561	if	you	are	using	a	local	web	server	and	JSM
server.	If	you	are	using	an	IBM	i	server	this	will	point	to	a	server	name	or	an
IP	address	such	as	http://10.44.10.236:4564.
a.		Select	the	server	you	are	using	and	use	the	right	mouse	menu	to	Open
Server.

b.		Once	the	JSM	server	has	opened,	you	will	see	a	second	panel	appear	on

the	right	hand	side.	This	shows	all	the	directories	and	files	for	the	JSM
server	instance	that	was	just	opened.

3.		Your	application	will	use	the	HTTPInboundXMLBindService.
					This	means	that	configuration	entries	need	to	be	added	to	the	properties	file
for	this	service.	(The	property	file	is	named
HTTPInboundXMLBindService.properties.	Typically	it	is	located	in	your
JSM	server	in	the	/instance/properties	directory).

					First,	you	will	use	Retrieve	Section	to	create	an
HTTPInboundXMLBindService	section	in	your	project.	You	will	then	edit	this
entry	and	the	use	Publish	Section	to	update	the	properties	file	on	the	server.
a.		Open	the	properties	folder	in	the	right	panel	(i.e.	in	the	JSM	server
instance).

b.		Scroll	down	and	locate	the	HTTPInboundXMLBindService.properties	file.
Right	click	on	the	file	and	select	the	Retrieve	Section	option	in	the	pop-up
menu.	A	message	will	be	displayed,	"No	project	component	properties
found	in	properties	HTTPInboundXMLBindService.properties"	because
there	is	no	project	specific	data	in	the	file	at	this	time.	Click	OK.

					An	HTTPInboundXMLBindService.properties	file	will	be	created
in	your	local	properties	folder.

c.		Open	the	Integrator/properties	folder	in	the	left	panel	(i.e.	your	local
directory).	Right	click	on	the	HTTPInboundXMLBindService.properties
file	and	select	the	Open	With	/	Properties	Editor	option	from	the	pop-up
menu.

d.		An	edit	window	will	appear.	The
HTTPInboundXMLBindService.properties	file	will	be	empty.	You	will
now	add	the	following	entries	to	the	file:

service.iiipro04_request=com.IIIcompany.service.xml.IiiPRO04_requestService
service.archive.iiipro04_request=bindings/IIIPRO04_request.xml.jar
service.iiipro04_response=com.IIIcompany.service.xml.IiiPRO04_responseService
service.archive.iiipro04_response=bindings/IIIPRO04_response.xml.jar
	

					The	build	step	for	the	inbound	and	outbound	HTTP	XML	bind	service	has
created	the	entries	you	need.	Copy	these	entries	as	follows:

Leave	the	first	Property	Editor	(1)	open
Expand	the	XML	Request	folder	and	open
HTTPInboundXMLBindService.properties	in	the	Property	editor.	Copy
the	code	and	paste	it	into	Property	Editor	(1).	Close	the	second	editor
Expand	the	XML	Response	folder	and	open
HTTPOutboundXMLBindService.properties	in	the	editor.	Copy	and	paste
the	code	into	Property	Editor	(1).	Close	the	second	editor.
Save	your	changes	in	Property	Editor	(1)	and	select	Yes	in	the	confirm
dialog.	Close	the	Properties	editor.

					Note:	the	java	path	is	case	sensitive.		Note	also	that	in	the	example
shown,	the	build	has	capitalized	the	name	of	the	service	e.g.
IiiPRO04_responseService.	This	is	a	Java	standard	and	cannot	be
changed.	Throughout	this	workshop,	you	should	be	aware	that	your
service	names	will	begin	with	a	capital	letter.	If	this	point	is	overlooked,
your	function	will	fail	on	the	BIND.

e.		Update	the	HTTPInboundXMLBindService.properties	file	on	the	JSM
Server.	Right	click	on	your	local
HTTPInboundXMLBindService.properties	file	(on	the	left	side,	in
Integrator/Properties)	and	select	the	Publish	Section	option	from	the	pop-
up	menu.	A	message	will	ask	you	to	confirm	publish.	Select	Yes.	You	have
added	a	section	for	your	project	to	the	HTTPInboundXMLBindService
properties	file	on	the	server.

					If	you	open	the	HTTPInboundXMLBindingService.properties	file	from	the
server	and	scroll	to	the	end,	it	should	now	look	like	the	following:

4.		In	this	step	you	will	deploy	the	jar	files	to	the	server.
a.		In	the	left	hand	panel	(your	project)	expand	the	XML	Request	folder	and
select	the	iiiPRO04_request.xml.jar	file.

b.		Using	the	right	mouse	menu,	select	Send	To	/	Integrator	Folder.
c.		Repeat	step	a	and	b	to	send	the	iiiPRO04_response.xml.jar	file	from
XML	Response	folder	to	the	Integrator	folder

d.		In	the	left	panel,	expand	the	Integrator	/	bindings	folder.

e.		You	should	now	see	the	jar	files	that	you	sent	to	the	Integrator/bindings
folder.		One	at	a	time,	right	click	on	each	jar	file	in	the	bindings	folder	and
select	Publish	File.	Select	Yes	in	the	Confirm	dialog.

f.		In	the	right	window	pane,	expand	the	\Instance\bindings	folder.		You
should	now	see	the	jar	files	that	you	have	published.

Summary
Important	Observations

You	should	create	your	request	and	response	in	a	separate	solution	group	in
order	to	separate	the	generated	RDML	and	RDMLX	code	–	see	your	Project
Solution/Samples	folders.
The	XMLBinding	services	are	able	to	load	the	binding	jar	file	from	the
\bindings	folder	at	run	time,	and	it	is	not	necessary	to	restart	the	JSM	after
publishing	the	XMLBindings.

Tips	&	Techniques
Use	a	naming	standard	that	makes	it	easy	to	relate	the	LANSA	and	non
LANSA	components	in	your	application.
Start	your	application	by	creating	the	XML	documents.
Always	remember	to	build	your	jar	files	for	bindings	and	publish	them	to	the
server.
Studio	provides	a	convenient	method	of	organizing	your	files	for	a	specific
project.
Using	a	project	in	Studio	will	help	you	to	locate	changes	made	to	the	JSM
properties	files	for	a	specific	project.	A	comment	tag	is	inserted	that	allows
studio	to	locate	the	data	specific	to	your	project	when	Studio	performs	a
retrieve	or	publish	action.
If	you	wish	to	transfer	a	complete	copy	of	the
HTTPInboundXMLBindService.properties	file	to	your	PC,	you	can	use	the
Download	option	and	then	save	the	file	to	a	specific	directory.

What	I	Should	Know
How	to	use	the	Integrator	Studio.
How	to	use	the	XML	Binding	Wizard.
How	to	build	jar	files	for	bindings.
How	to	update	property	files	on	the	JSM	Server.
How	to	publish	jar	files	to	the	JSM	Server.

INT006	-	Department	Inquiry	Functions
Objectives:

To	create	a	server	XML	application	that	receives	a	Department	Code	and
then	responds	by	returning	the	Department	Description.
To	create	a	server	side	RDMLX	function	that	uses	JSMDirect	to	receive	the
XML	sent	by	the	client	side	function	using	the	jar	files	from	exercise
INT005.
To	use	Integrator	Studio	to	update	the	JSM	Server	database	files.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Code	iiiFN06	Server	GET	functionality
Step	2.	Code	iiiFN06	Server	SET	functionality
Step	3.	iiiFN06	Update	JSMDirect	Configuration	Table
Step	4.	Create	User	Agent	Host	Configuration	file
Step	5.	Test	iiiFN06	function	with	User	Agent
Step	6.	Tracing	(Optional)
Summary

Step	1.	Code	iiiFN06	Server	GET	functionality
In	this	step,	you	will	begin	to	write	the	RDMLX	for	the	Server	side	GET.	The
server	function	will	receive	the	XML	from	the	client.
1.		Create	a	new	LANSA	process	named	iiiPRO04	XML	Tutorial,	where	iii	is
your	unique	3	characters.	(If	the	process	already	exists,	select	a	different	set
of	characters	for	iii.).

2.		Create	a	new	function	named	iiiFN06	Department	Server,	belonging	to
process	iiiPRO04	(where	iii	is	your	unique	3	characters).	Create	the	function
without	using	a	template	and	make	sure	that	Enabled	for	RDMLX	is	checked.

3.		Switch	to	your	project	in	Integrator	Studio.	In	the	XML	Request	solution
expand	the	samples/RDMLX	folder	and	open
SAMPLES_RDMLX_INBOUND_HTTP.TXT	in	the	Studio	text
editor.	Simply	double	clicking	on	it	will	open	the	text	editor.

4.		Copy	and	paste	all	the	code	into	your	function	iiiFN06.Replace	existing
code.

					Note:	The	fields	shown	as	comments	at	the	top	of	this	code	should	already
exist	in	the	Repository,	if	not,	create	them.

5.		Locate	the	GROUP_BY	command	towards	the	top	of	the	code	and	change	its
name	to	DEPTREQ.	This	GROUP_BY	is	simply	reference	so	that	a	value	can
be	mapped	into	field	DEPTMENT.

6.		At	this	stage,	the	server	function	now	has	the	information	from	the	XML
document.	Save	your	changes.

Step	2.	Code	iiiFN06	Server	SET	functionality
In	this	step,	you	will	write	the	RDMLX	to	access	the	database	file	DEPTAB	to
FETCH	the	department	description.	You	will	write	the	RDMLX	for	the	server
side	SEND	to	respond	to	the	client	request.
1.		Working	with	function	iiiFN06,	after	the	GET	from	the
DEPARTMENTREQUEST	fragment,	remove	the	block	highlighted	below:	

then	write	the	RDMLX	code	to	clear	the	DEPTDESC	field,	FETCH	the	field
DEPTDESC	(department	description)	from	file	DEPTAB	with	key
DEPTMENT	(department	code).

					Check	the	I/O	status	of	the	FETCH	operation.	If	it	is	not	*OKAY,	change	the
department	description	to	the	literal	'Department	not	found'.

					The	RDMLX	code	might	appear	as	follows:
#DEPTDESC	:=	*NULL
FETCH	FIELDS(#DEPTDESC)	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT)	IO_ERROR(*NEXT)	VAL_ERROR(*NEXT)
IF_STATUS	IS_NOT(*OKAY)
#DEPTDESC	:=	'Department	Not	Found'
ENDIF
	

2.		You	now	need	to	add	code	to	create	the	outbound	HTTP	content.	You	can
take	this	code	fragment	from	the	RDMLX	generated	by	Studio	for	your	XML
Response	solution.	Expand	the	folder	XML	Response/samples/RDMLX	and
open	SAMPLE_RDMLX_OUTBOUND_HTTP.txt	in	the	text	editor.
Copy	the	highlighted	code	into	function	iiiFN06	immediately	following	the
comment:
*	<<<	Outbound	binding	logic	goes	here	>>>.

3.		In	the	CHECK	subroutine,	add	an	ABORT	command	to	the	IF..ENDIF
condition	so	that	the	program	ends	if	an	error	has	occurred.

4.		Compile	the	function.
5.			If	you	are	using	an	IBM	i	JSM	server,	check	the	function	into	the	IBM	i	and
compile	it.

					Your	finished	RDMLX	code	might	appear	as	follows:
FUNCTION	OPTIONS(*DIRECT)
*	The	following	fields	are	used	by	the	xml	binding	map
*	#DEPTMENT
*	The	following	fragments	are	used	by	the	xml	binding	map
GROUP_BY	NAME(#DEPTREQ)	FIELDS(#DEPTMENT)
*	Open	service
USE	BUILTIN(JSMX_OPEN)	TO_GET(#JSMXSTS	#JSMXMSG
#JSMXHDLE1)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Load	service
CHANGE	FIELD(#JSMXCMD)	TO('SERVICE_LOAD
SERVICE(HTTPInboundXMLBindService)	SERVICE_CONTENT(*HTTP)
TRACE(*YES)')

USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Bind	service	to	read	HTTP	request	content
CHANGE	FIELD(#JSMXCMD)	TO('BIND
SERVICE(IIIPRO04_REQUEST)	TYPE(*INBOUND)
BINDTRACE(*YES)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Get	fragment	-	DEPTREQ
CHANGE	FIELD(#JSMXCMD)	TO('GET
FRAGMENT(DepartmentRequest)	SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	handle	request	for	department	description
#deptdesc	:=	*blanks
FETCH	FIELDS(#deptdesc)	FROM_FILE(deptab)	WITH_KEY(#deptment)
IO_ERROR(*NEXT)	VAL_ERROR(*NEXT)
IF_STATUS	IS_NOT(*OKAY)
#deptdesc	:=	('Department	not	found')
ENDIF
*	<<<	Outbound	binding	logic	goes	here	>>>
*	Bind	service	to	create	HTTP	request	content
CHANGE	FIELD(#JSMXCMD)	TO('BIND
SERVICE(IIIPRO04_RESPONSE)	TYPE(*OUTBOUND)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Set	fragment	-	DEPARTMENTRESPONSE
CHANGE	FIELD(#JSMXCMD)	TO('SET
FRAGMENT(DEPARTMENTRESPONSE)
SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1

#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Write	content
CHANGE	FIELD(#JSMXCMD)	TO('WRITE	INDENT(*YES)
BINDTRACE(*YES)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Send	HTTP	response	content
CHANGE	FIELD(#JSMXCMD)	TO('SEND')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Close	service
USE	BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMXHDLE1)
TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Check	routine
SUBROUTINE	NAME(CHECK)	PARMS((#JSMXSTS	*RECEIVED)
(#JSMXMSG	*RECEIVED))
IF	COND('#JSMXSTS	*NE	OK')
USE	BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMXHDLE1)
TO_GET(#JSMXSTS	#JSMXMSG)
ABORT
ENDIF
ENDROUTINE
	

Step	3.	iiiFN06	Update	JSMDirect	Configuration	Table
In	this	step,	you	will	make	changes	to	the	Configuration	Table.	When	a	service
request	arrives	at	the	host,	JSM	checks	the	file	DC_W29.txt	on	Windows	or
database	file	DC@W29	on	the	IBM	i	to	identify	the	function	to	execute.	The
key	used	by	JSM	is	the	Service	Name	and	the	Host:	Port.	The	Service	Name	is
the	part	of	the	URL	keyword	value	that	comes	after	the	question	mark	entered
as	the	value	for	the	URI	parameter:	iiiFN06_SERVICE.
1.		Switch	to	Integrator	Studio	and	select	the	Studio	Workspace	tab.	Expand	the
Services	folder	and	select	the	service	created	in	INT004.		If	you	are	using	an
IBM	i	JSM	Server,	this	may	look	similar	to	the	following:

2.		Right	click	on	this	service	and	select	Open	Service.	A	list	of	the	existing
services	will	be	displayed.	This	list	will	depend	on	what	services	have	already
been	defined	for	this	server.

2.		Right	click	anywhere	on	a	white	space	and	select	New	to	create	a	new
service	entry.

3.		A	Direct	Service	Editor	window	will	appear.

	

4.		Add	a	new	entry	with	the	values	shown,	substituting	your	value	for	iii.	Note
that	the	partition	may	be	different	for	your	course.

5.		Click	OK	to	save	your	changes	and	close	the	Direct	Services	tab.	The	file
DC@W29	for	the	correct	JSM	Server	instance	has	been	updated	on	the	IBM
i.	If	you	are	using	http:/localhost,	the	file	DC_W29.txt	has	been	updated.

Step	4.	Create	User	Agent	Host	Configuration	file
In	this	step,	you	will	set	up	the	User	Agent	host	configuration	file	to	test	your
server	function.		The	User	Agent	will	act	as	a	client	querying	the	server	you
have	created.
1.		You	need	to	copy	the	SendCSVFile.lih	file	from	the	SendCSVFile	solution
group	to	your	XML	Request	solution	group.

					With	your	project	open	in	Studio,	expand	the	folder	Solutions	/	SendCVSFile.
Select	and	right	click	the	file	SendCVSFile.lih.		Select	Copy	File.

2.		Expand	your	XML	Request	solution,	Select	XML	Request,	right	click	and
select	Paste	File.	Click	OK	to	confirm.		The	SendCVSFile.lih	file	will	be
copied	to	your	XML	Request	folder.		Select	the	file	and	use	the	right	mouse
menu	to	Rename	File.	Change	the	file	name	from	iiiPRO04_client	to
iiiPRO04_client_test.lih.

3.		You	need	to	modify	the	User	Agent	file	to	connect	to	the	server	and	service
you	have	created.		Right-click	on	iiiPRO04_client_test.lih	and	select
Open	With	/		Properties	Editor.		Make	the	following	replacements:

Old	Line New	Line

name=iiiFN05_SERVICE name=iiiFN06_SERVICE

xml.uri=/cgi-bin/jsmdirect? xml.uri=/cgi-bin/jsmdirect?

orderxml iiiFN06_SERVICE

	

					If	you	are	using	a	local	web	server	and	JSM	server	the	uri	line	will	be:
xml.uri=/cgi-bin/jsmdirect.exe?iiiFN06_SERVICE

4.		You	have	completed	the	creation	of	your	User	Agent	host	configuration	file.	
Save	and	close	iiiPRO04_client_test.lih.

Step	5.	Test	iiiFN06	function	with	User	Agent
In	this	step,	you	will	test	your	Department	Server	by	running	the	User	Agent	file
you	created	in	Step	4.
1.		You	will	load	your	iiiPRO04_client_test.lih	into	the	User	Agent	and	send
iiiPRO04_request.xml	to	the	iiiFN06_SERVICE	service	on	the	JSM	server.

a.		Double	click	iiiPRO04_client_test.lih	to	open	the	User	Agent	using
this	host	configuration	file.		Your	host	configuration	file	properties	will	be
used	to	determine	where	to	send	the	XML	source.

b.		Now,	select	the	xml	file	to	send	to	the	server.		You	will	send	the	Request

document	created	earlier	in	INT005.		Use	the	 	Open	Source	button.	
c.		The	Open	dialog	will	default	to	the	XML	Request	folder.	Select
iiiPRO04_request.xml	and	select	the	Open	button.

					The	source	is	now	displayed	by	the	User	Agent.	Review	the	XML	in	the
Source	tab:

d.	You	are	now	ready	to	send	your	request	to	the	server.		Select	the	 	Send
button	to	send	the	xml	file.

e.		Press	Yes	to	confirm	that	you	wish	to	send	the	specified	File	to	the
specified	Host	using	that	Transport	method.		Press	OK	to	confirm	the
completed	transaction.

				

					The	XML	file	has	been	sent	to	the	server	and	will	be	processed	by	function
iiiFN06.

					The	Response	tab	should	look	like	the	following:

					The	iiiFN06	function,	called	via	the	iiiFN06_SERVICE	service,	has
processed	the	iiiPRO04_request.xml	and	returned	an	appropriately	populated
version	of	iiiPRO04_response.xml.

2.		Try	other	valid	Department	codes,	such	as	FLT	(FLEET
ADMINISTRATION)	or	MKT	(MARKETING	DEPARTMENT).		To	do	this,
select	and	right-click	iiiPRO04_request.xml,	select	Open	With,	XML	Editor,
and	change	the	ADM	text	to	the	desired	test	data.		The	Department
Description	in	the	Response	will	change	accordingly.	

					Invalid	Department	codes	should	return	a	Department	Description	of
DEPARTMENT	NOT	FOUND.

Step	6.	Tracing	(Optional)
In	this	step,	you	will	use	the	Integrator	Studio	to	review	the	different	trace	files
that	are	created	while	executing	your	functions.	This	is	an	optional	step.	In	order
to	use	tracing,	tracing	must	have	been	turned	on.	The	tracing	setting	can	be
configured	in	the	manager.properties	file	or	as	a	parameter	of	the
SERVICE_LOAD	Command.
1.		Review	function	iiiFN06	in	the	Visual	LANSA	editor.	The	code	generated	by
Studio,	includes	TRACE(*YES)	on	the	SERVICE_LOAD	command.	Note
that	trace	should	be	turned	off	in	your	production	application,	to	avoid
overheads.

2.		Run	your	application
3.		On	the	Project	tab	in	Studio,	open	the	server.	Expand	the	trace	(Trace	Files)
folder	on	the	JSM	Server	panel.

4.		Look	for	the	active	job	number	and	open	this	folder.
5.		Open	the	client	folders	and	review	the	contents	of	the	different	trace	files.
					Note:	The	Service	and	Transport	trace	files	can	be	opened	with	a	Trace
Viewer.

6.		To	download	the	trace	files,	right	click	one	of	the	client	folders	and	select	the
Download	option	from	the	pop-up	menu.	All	trace	files	will	be	placed	into	a
zip	file	and	a	new	Download	tab	will	be	shown	in	Integrator	Studio.	Select	a
file	on	the	Download	tabto	save	it.The	downloaded	file	could	now	be	emailed
to	another	developer	when	troubleshooting	a	problem.

Summary
Important	Observations

Server	side	functions	start	as	different	jobs	so	they	require	JSM	to	be	opened
and	closed.
Server	side	functions	do	not	unload	the	service.

Tips	&	Techniques
Use	a	naming	standard	that	makes	it	easy	to	relate	the	LANSA	and	non
LANSA	components	in	your	application.
Begin	your	application	development	by	creating	the	XML	forms.

What	I	Should	Know
How	to	code	server-side	JSM	functions.
How	to	use	and	configure	JSMDirect.
How	to	modify	the	HTTPInboundXMLBindService.properties	file.
How	to	use	Integrator	Studio	to	update	the	JSMDirect	Configuration	Table.
How	to	use	the	User	Agent	to	test	your	server-side	functions.

	

INT007	-	Department	List	Inquiry
Objectives:

To	create	a	server	XML	application	that	receives	a	list	of	Department	Codes
and	a	simple	field	which	then	responds	back	with	a	list	of	Department
Descriptions	and	a	simple	field.
To	create	a	server	side	RDMLX	function	that	uses	JSMDirect	to	receive	the
XML	sent	by	the	client	side	function.

To	achieve	this	objective,	you	will	complete	the	following:
Concepts
Step	1.	Create	XML	iiiPRO05_request.xml
Step	2.	Create	XML	iiiPRO05_response.xml
Step	3.	Create	iiiFN07	Server	inbound	(request)	binding
Step	4.	Create	iiiFN07	Server	outbound	(response)	binding
Step	5.	Binding	Deployment	and	Configuration
Step	6.	Code	iiiFN07	Server	GET	functionality
Step	7.	Code	iiiFN07	Server	Database	Logic	and	SET	functionality
Step	8.	Update	Configuration	Table	for	iiiFN07
Step	9.	Create	User	Agent	file	for	iiiFN07
Step	10.	Test	iiiFN07	function	with	User	Agent
Summary

Concepts
In	this	exercise,	the	client	and	server	functions	will	exchange:

a	list	of	Department	codes
a	simple	field	(in	order	to	show	a	combined	XML	structure).

These	requirements	mean	that	the	XML	file	requires	a	slightly	different
structure	compared	with	the	XML	used	in	INT006.
The	following	table	summarizes	the	relationship	between	the	input	XML,
binding	JARs,	and	JSM	commands	which	are	used	for	this	exercise:

Input	XML Binding JAR	file JSM	Command

iiiPRO05_request.xml Inbound iiiPRO05_request.jar GET

iiiPRO05_response.xml Outbound iiiPRO05_response.jar SET

	

Step	1.	Create	XML	iiiPRO05_request.xml
In	this	step,	you	will	write	the	XML	to	get	the	request	for	department
descriptions.	You	can	use	any	text	editor	to	write	XML.	You	will	start	by	editing
the	XML	used	in	INT005.
1.			Begin	in	Integrator	Studio	with	your	iii	Training	project	open.	Right	click
on	solutions	and	create	a	New	Solution	Group	XML	List	Request.

2.		Expand	the	XML	Request	folder	which	you	created	in	INT005,	and	double
click	on	iiiPRO04_request.xml	to	open	it	in	the	XML	Editor.

	Your	XML	should	appear	as	follows:
<?xml	version="1.0"	encoding="UTF-8"?>
<DepartmentRequest>
	<DepartmentCode>ADM</DepartmentCode>
</DepartmentRequest>
	

3.		Modify	the	name	of	root	tag	<DepartmentRequest>	and	its	closing	tag
</DepartmentRequest>	to	refer	to	a	list	of	departments.

					Your	XML	might	appear	as	follows:
<DepartmentListRequest>
			<DepartmentCode>ADM</DepartmentCode>
<DepartmentListRequest>
	

4.		The	simple	field	you	are	going	to	pass	is	just	an	alphanumeric	string	that	the
server	function	is	going	to	reverse	and	then	return	back	to	you.	Within	the
root	tag,	add	a	tag	for	the	simple	field.	Include	a	sample	value	in	the	new	tag.

					Your	XML	might	appear	as	follows:
<DepartmentListRequest>
			<ReverseString>ABCDEFG</ReverseString>
			<DepartmentCode>ADM</DepartmentCode>
</DepartmentListRequest>
	

5.		Next,	you	have	to	change	the	XML	so	that	the	department	code	occurs
multiple	times	because	it	is	a	list.	You	will	make	the	department	code	tag
become	the	parent	tag	of	the	actual	code	tag.
a.		Delete	the	ADM	literal	between	the	opening	<DepartmentCode>	and

closing		</DepartmentCode>	tags	and	move	the	closing
</DepartmentCode>	to	the	next	line	so	that	it	aligns	with	the	opening
<DepartmentCode>.

b.		Rename	the	<DepartmentCode>	tag	and	call	it	just	<Department>.	(This
is	not	necessary	but	it	will	eliminate	redundancy	in	the	terminology	as	you
are	going	to	add	a	child	tag	with	the	actual	department.)

					Your	XML	might	appear	as	follows:
<DepartmentListRequest>
		<ReverseString>ABCDEFG</ReverseString>
			<Department>
		</Department>
</DepartmentListRequest>
	

6.		Insert	a	child	tag	of	<Department>	with	a	sample	value	of	ADM.	Call	the
child	tag	<Code>.	Remember	that	all	tags	require	a	closing	tag.	Make	sure
you	indent	the	child	tag	to	make	for	easier	reading.

					Your	XML	might	appear	as	follows:
<DepartmentListRequest>
				<ReverseString>ABCDEFG</ReverseString>
				<Department>
							<Code>ADM</Code>
					</Department>
</DepartmentListRequest>
	

7.		Finally,	you	have	to	modify	the	XML	to	represent	the	multiple	occurrences
of	the	Department	code.	There	are	a	several	ways	to	accomplish	this	task.
One	method	is	to	repeat	the	child	tags	<Code></Code>:
<Department>
				<Code>ADM</Code>
				<Code>FLT</Code>
</Department>
	

					Alternatively,	for	this	exercise,	you	will	simply	repeat	the	<Department>
</Department>	tag	making	another	block.	This	will	make	the	request	and
response	XML	structurally	the	same.

					Your	XML	might	appear	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>
<DepartmentListRequest>
				<ReverseString>ABCDEFG</ReverseString>
				<Department>
								<Code>ADM</Code>
					</Department>
					<Department>
								<Code>FLT</Code>
						</Department>
</DepartmentListRequest>
	

					Remember	that	the	line	<?xml	version=>	must	be	the	first	line
and	have	no	other	leading	characters	or	lines.

8.		Using	the	File	menu,	select	the	Save	As	option	as	specify	the	file	as
iiiPRO05_request.xml.	Save	it	to	the	folder	XML	List	Request.

Step	2.	Create	XML	iiiPRO05_response.xml
In	this	step,	you	will	write	the	XML	to	SEND	(server)	and	RECEIVE	(client)
the	response	with	the	department	descriptions.	The	client	function	only	requires
a	response	consisting	of	a	list	of	department	descriptions;	however,	the
department	code	and	the	department	description	will	also	be	sent	back	in	order
to	make	the	RDMLX	code	smaller	and	simpler.	The	structure	of	the	response
XML	is	the	same	as	the	request	XML.
1.		In	Studio,	select	Solutions	in	your	project	tab	and	use	New	Solution	Group	to
create	a	folder	XML	List	Response.

2.		Working	with	your	opened	iiiPRO05_request.xml,	modify	the	root	tag	to
define	the	response	XML.	Call	the	root	DepartmentListResponse.	Remember
to	modify	the	closing	tag	as	well.

					Your	XML	might	appear	as	follows:
<?xml	version="1.0"	encoding="UTF-8"?>
<DepartmentListResponse>
					<ReverseString>ABCDEFG</ReverseString>
					<Department>
								<Code>ADM</Code>
						</Department>
						<Department>
								<Code>FLT</Code>
						</Department>
</DepartmentListResponse>
	

3.		Modify	your	XML	so	that	the	department	description	is	also	exchanged.
Insert	a	department	description	tag	within	the	<Department>	tag.	Call	the	tag
<Description>.

					Your	XML	might	appear	as	follows:
<?xml	version="1.0"	encoding="UTF-8"?>
<DepartmentListResponse>
			<ReverseString>ABCDEFG</ReverseString>
			<Department>
							<Code>ADM</Code>
							<Description>Administration	Dept</Description>
				</Department>

				<Department>
						<Code>FLT</Code>
							<Description>Fleet	Administration</Description>
					</Department>
</DepartmentListResponse>
	

4.		Using	the	File	menu,	select	the	Save	As	option	as	specify	the	file	as
iiiPRO05_response.xml.	Save	it	to	the	folder	XML	List	Response.

Step	3.	Create	iiiFN07	Server	inbound	(request)	binding
In	this	step,	you	will	use	the	XML	Binding	Wizard	to	create	the	inbound	request
binding		iiiPRO05_request.jar	which	will	bind	the	inbound	XML	that	the
server	receives.
1.		From	the	Studio	Project	tab,	select	the	XML	List	Request	solution.	Use	the
right	mouse	menu	to	create	a	New	Solution,	a	dialog	will	appear.
a.		Select	the	XML	Binding	Wizard	from	the	Tool	dropdown.
b.		XML	List	Request	should	already	be	selected		in	the	Group	dropdown.
c.		Type	iiiPRO05_request	in	the	Solution	File	input	field.	Click	OK.

2.		A	new	XML	Binding	Project	panel	appears.	To	select	the	source	XML	file,
click	on	the	Browse	button.	A	File	Open	dialog	will	be	displayed.
a.		Select	the	iiiPRO05_request.xml	file	and	click	Open	to	select	it.	Click	OK
and	the	XML	Binding	Wizard	main	window	will	now	appear.	Change	the
Package	name	to	com.iiicompany.service.xml.

b.		Check	the	Inbound	checkbox.	An	Inbound	tab	will	now	appear	at	the
bottom	of	the	window.

3.		You	need	to	map	both	the	list	of	Department	Codes	and	the	ReverseString
field.	First,	map	the	XML	tag	ReverseString	to	the	LANSA	field
STD_TEXTS	as	follows:
a.		Select	the	Inbound	tab.
b.		Right	click	on	the	DepartmentListRequest	root	tag.	Select	Fragment	from
the	pop-up	menu.

c.		Right	click	on	ReverseString	tag	and	select	Edit	from	the	pop-up	menu
(or	double	click	on	it).

d.		In	the	Field	Attributes	dialog,	type	in	STD_TEXTS	for	the	Name	and
click	OK.

e.		Right	click	on	either	of	the	Department	tags	and	select	List.	This	will
define	both	tags,	as	well	as	any	sub-tags	in	the	hierarchy,	as	members	of	a
list.

f.		Expand	the	Department	tags	to	see	their	sub-tags.	Right	click	or	double
click	on	either	of	the	Code	tags	to	edit	them.

g.		In	the	Field	Attributes	dialog,	type	in	DEPTMENT	for	the	Name	and

click	OK.	Notice	how	editing	one	of	the	sub-tags	in	the	list	automatically
edits	all	occurrences	of	that	tag	in	the	list.

4.		Your	XML	mappings	are	complete.	Your	XML	Binding	should	look	like	the
following:

5.		Now,	create	the	inbound	request	jar.	Select	the	Project	menu	and	choose	the

Build	option	or	use	the	 	Build	toolbar	button.

6.		Using	the	File	menu,	select	the	Save	option	or	use	the	 	Save	toolbar
button.	Click	on	Yes	to	save	the	project.

7.		Exit	the	XML	Binding	Wizard.

Step	4.	Create	iiiFN07	Server	outbound	(response)	binding
In	this	step,	you	will	use	the	XML	Binding	Wizard	to	create	the	outbound
response	binding	iiiPRO05_response.jar.	This	jar	file	will	bind	the	outbound
XML	from	the	Server	to	send	to	the	client.	You	will	define	the	mappings	from
your	LANSA	fields	into	the	XML	response	document.
1.		From	the	Project	tab	select	the	XML	List	Response	solution	group	and	use
the	right	mouse	menu	option	New	Solution,	a	dialog	will	appear.
a.		Select	the	XML	Binding	Wizard	in	the	Tool	dropdown.
b.		XML	List	Response	will	already	be	selected	in	the	Group	dropdown.
c.		Type	iiiPRO05_response	in	the	Solution	File	input	field.	Click	OK.

2.		A	new	XML	Binding	Project	dialog	appears.	To	select	the	source	XML	file,
click	on	the	Browse	button.	A	File	Open	dialog	will	be	displayed.

3.		Select	the	iiiPRO05_response.xml	file	and	click	Open	to	select	it.	Click	OK
and	the	XML	Binding	Wizard	main	window	will	now	appear.	Change	Package
name	to	com.iiicompany.service.xml.

4.		Check	the	Outbound	checkbox.	An	Outbound	tab	will	now	appear	at	the
bottom	of	the	window.

5.		The	outbound	mapping	is	nearly	identical	to	the	inbound	mapping.	The	only
difference	is	the	naming	of	the	root	tag,	and	the	addition	of	a	description	node
within	the	list.
a.		Select	the	Outbound	tab.
b.		Right	click	on	the	DepartmentListResponse	root	tag.	Select	Fragment
from	the	pop-up	menu.

c.		Right	click	on	ReverseString	tag	and	select	Edit	from	the	pop-up	menu
(or	double	click	on	it).

d.		In	the	Field	Attributes	dialog,	type	in	STD_TEXTS	for	the	Name	and
click	OK.

e.		Right	click	on	either	of	the	Department	tags	and	select	List.
f.		Expand	the	Department	tags	to	see	their	sub-tags.	Right	click	or	double
click	on	either	of	the	Code	tags	to	edit	them.

g.		In	the	Field	Attributes	dialog,	type	in	DEPTMENT	for	the	Name	and
click	OK.

h.		Right	click	or	double	click	on	either	of	the	Description	tags	to	edit	them.
i.		In	the	Field	Attributes	dialog,	type	in	DEPTDESC	for	the	Name	and	click
OK.

					Your	XML	outbound	binding	should	look	like	the	following:

6.		Your	XML	mappings	are	complete.	Now,	generate	and	compile	the	outbound
response	service.	Select	the	Project	menu	and	choose	the	Build	option.

7.		Using	the	File	menu,	select	the	Save	option.	Click	on	Yes	to	save	the	project.
8.		Exit	the	XML	Binding	Wizard.

Step	5.	Binding	Deployment	and	Configuration
In	this	step,	you	will	deploy	the	jar	files	and	update	the
HTTPInboundXMLBindService	properties	file	using	Integrator	Studio.	In
a	previous	exercise	INT004,	you	have	created	a	local	properties	section	for	this
service.	You	will	now	update	this	and	then	Publish	it	to	the	server,	as	before.
1.		With	your	Project	tab	open	in	Studio,	Expand	the	Integrator	/	properties
folder	and	double	click	on	the
HTTPInboundXMLBindService.properties	file	to	open	it	in	the
properties	editor.

					The	HTTPInboundXMLBindService.properties	file	should	have	the
following	entries	from	INT004:
						service.iiipro04_request=com.iiicompany.service.xml.IiiPRO04_requestService
service.archive.iiipro04_request=bindings/iiiPRO04_request.xml.jar
service.iiipro04_response=com.iiicompany.service.xml.IiiPRO04_responseService
service.archive.iiipro04_response=bindings/iiiPRO04_response.xml.jar
	
a.		You	will	now	add	the	following	lines	to	the	file:
						
service.iiipro05_request=com.iiicompany.service.xml.IiiPRO05_requestService
service.archive.iiipro05_request=bindings/iiiPRO05_request.xml.jar
service.iiipro05_response=com.iiicompany.service.xml.IiiPRO05_responseService
service.archive.iiipro05_response=bindings/iiiPRO05_response.xml.jar
	
					Do	this	as	follows:
b.		Leave	the	first	properties	file	open	in	the	Properties	Editor	(1).
c.		Expand	the	folder	XML	List	Request	and	open	the	file
HTTPInboundXMLBindService.properties	in	the	Properties	editor.	
Copy	and	paste	this	code	into	Properties	Editor	(1).	Close	the	second
properties	editor.

d.		Repeat	these	steps	to	copy	the	code	from	XML	List	Response	/
HTTPInboundXMLBindService.properties	into	Properties	Editor
(1).

e.		Close	the	second	editor.	Save	your	changes	in	Properties	Editor	(1)	and

close	it.
					Note:	The	java	path	is	case	sensitive.

2.		Now	you	need	to	update	the	server's	version	of
HTTPInboundXMLBindService.properties	with	your	modifications.
a.		Your	JSM	Server	instance	is	probably	already	open	on	the	right	hand	side
from	a	previous	step.	If	not,	open	it	by	double	clicking	on	the	server	in
your	Project	tab.

b.		In	the	Integrator	/	Properties	folder,	right	click	on	your	local
HTTPInboundXMLBindService.properties	file		and	select	the
Publish	Section	option	from	the	context	menu.

c.		A	message	will	ask	you	to	confirm	publish.	Press	Yes.

					The	HTTPInboundXMLBindService.properties	file	on	the	server
now	defines	what	resource	to	use	for	this	exercise.

3.		Deploy	the	jar	files.
					You	must	copy	the	jar	files	from	your	PC	into	the	appropriate	JSM	server
directory.	You	will	send	the	jar	files	to	the	directory	\instance\bindings.
a.			In	the	XML	List	Response	solution,	right	click	on
iiiPRO05_response.xml.jar	and	select	Send	To	/,	Integrator	Folder
from	the	context	menu.	Select	Yes	when	asked	if	you	want	to	copy	the	file
over.	Note	that	alternatively,	you	could	simply	drag	and	drop	the
iiiPRO05_response.jar	file	into	the	Integrator/bindings	folder.

b		In	the	XML	List	Request	folder,	repeat	step	a.	for
iiiPRO05_request.xml.jar.

c.		In	the	left	panel,	expand	the	Integrator	/	bindings	folder.	One	at	a	time,
right	click	on	each	jar	file	and	select	Publish	File.	Select	Yes	when
prompted.

d.		You	will	not	need	to	reboot	your	JSM	server	since	the	JSM	will	retrieve
the	XMLBinding	jar	files	from	the	/bindings	folder...		

Step	6.	Code	iiiFN07	Server	GET	functionality
In	this	step,	you	will	begin	to	write	the	RDMLX	for	the	Server	side	GET.	The
client	will	have	sent	a	request	with	a	list	of	Department	Codes	to	the	server.	The
server	function	will	receive	the	XML	form	and	map	the	data	into	program
variables.
1.		Create	a	new	LANSA	process	named	iiiPRO05	JSM	XML	List	Tutorial,
where	iii	is	your	unique	3	characters.	(If	the	process	already	exists,	select	a
different	set	of	characters	for	iii.).

2.		Create	a	new	function	named	iiiFN07	Department	List	Server,	belonging	to
process	iiiPRO05.	The	function	must	be	RDMLX	enabled.	Create	it	without
using	a	template.

3.		With	your	project	iii	Training	open	in	Studio,	expand	the	Solutions	/	XML
List	Request	/	Samples	/	RDMLX	folder	and	double	click	on
SAMPLE_RDMLX_INBOUND_HTTP.TXT	to	open	it	in	the	text
editor.	Copy	the	code	into	your	function	iiiFN07,	replacing	existing	code.

4.		Edit	the	RDMLX	code	of	function	iiiFN07.
a.		Change	the	GROUP_BY	name	DEPARTMENTLISTREQUEST	to
LISTREQ.	This	Group_By	is	simply	a	reference	for	mapping	the	field
STD_TEXTS.

b.		Use	the	Replace	function	to	change	all	occurrences	of	#DEPARTMENT
to	#DEPTMEN_W.	Use	Match	whole	words	only.	This	is	a	working	list
for	the	received	list	of	department	codes.	The	code	generator	is	currently
not	respecting	RDML	name	length	limits.	This	should	change	2
occurrences.

5.		Save	this	function.	It	is	not	yet	complete.	It	will	be	finished	in	the	next	step.
					At	this	stage,	the	server	function	now	has	the	information	from	the	XML
document.

Step	7.	Code	iiiFN07	Server	Database	Logic	and	SET
functionality
In	this	step,	you	will	write	the	RDMLX	to	access	the	database	file	DEPTAB	to
FETCH	the	department	description,	and	write	the	RDMLX	for	the	server	side
SET.
1.		Following	the	working	list	definition	DEPTMEN_W,	define	a	second
working	list	DEPTDES_W	containing	field	DEPTESC.	This	is	the	list	which
will	be	returned.	Add	code	to	clear	both	lists.	Your	code	should	look	like	the
following:
*	The	following	lists	are	used	by	the	xml	binding	map
DEF_LIST	NAME(#DEPTMEN_W)	FIELDS(#DEPTMENT)
TYPE(*WORKING)
DEF_LIST	NAME(#DEPTDES_W)	FIELDS(#DEPTMENT	#DEPTDESC)
TYPE(*WORKING)
CLR_LIST	#DEPTMEN_W
CLR_LIST	NAME(#DEPTDES_W)
	

					Note:	by	default	a	working	is	defined	with	50	entries,	which	is	adequate	for
this	application.

2.		Continue	working	with	function	iiiFN07.	The	following	needs	to	be	added
after	the	receive	logic.	Add	your	code	before	the	comment	line:

*	Bind	service	to	create	HTTP	response	content
					Write	the	RDMLX	code	to:

a.		SELECTLIST	the	department	codes	from	list	#DEPTMEN_W	(the
working	list	received	from	the	client)

b.		FETCH	the	field	#DEPTDESC	(department	description)	from	file
DEPTAB	with	key	#DEPTMENT	Check	the	I/O	status	of	the	FETCH
operation.	If	it	is	not	*OKAY,	change	the	department	description	to	the
literal	'Department	not	found'.

c.		ADD	the	entry	into	the	department	description	working	list
#DEPTDES_W

d.		ENDSELECT
					Your	RDMLX	code	might	appear	as	follows:

SELECTLIST	NAMED(#DEPTMEN_W)

FETCH	FIELDS(#DEPTDESC)	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT)
IF_STATUS	IS_NOT(*OKAY)
CHANGE	FIELD(#DEPTDESC)	TO('DEPARTMENT	NOT	FOUND')
ENDIF	
ADD_ENTRY	TO_LIST(#DEPTDES_W)
ENDSELECT	

3.		Write	the	RDMLX	to	reverse	the	contents	of	#STD_TEXT	using	the
REVERSE	Built-In	Function.	Use	the	Trim	intrinsic	function	to	remove	any
leading	or	trailing	blank	spaces	in	the	text.

					Your	RDMLX	code	might	appear	as	follows:
**********	REVERSE	THE	STRING
#STD_TEXTS	:=	#STD_TEXTS.Reverse.Trim

4.		In	your	Studio	project,	expand	the	folder	XML	List	Response	/	Samples	/
RDMLX	and	double	click	on	the	file
SAMPLE_RDMLX_OUTBOUND_HTTP.TXT	to	open	it	in	the	test
editor.

5.		Select	the	highlighted	code:

6.		Replace	the	following	code	in	function	iiiFN07	with	the	code	above:
*	Bind	service	to	create	HTTP	response	content
CHANGE	FIELD(#JSMXCMD)	TO('BIND	SERVICE(
<<<outbound.class>>>)	TYPE(*OUTBOUND)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
	

7.		In	the	added	code	Replace	list	name	DEPARTMENT	with
DEPTDES_W.	Replace	whole	words	only.

8.		In	the	CHECK	subroutine,	add	an	ABORT	command	to	the	IF..ENDIF
statement	so	that	the	program	ends	if	an	error	has	occurred.

9.		Compile	the	function.	If	you	are	using	an	IBM	i	JSM	Server,	check	it	in	and
compile	on	the	IBM	i.

					Your	finished	RDMLX	code	might	appear	as	follows:
FUNCTION	OPTIONS(*DIRECT)
*	The	following	fields	are	used	by	the	xml	binding	map
*	#DEPTMENT

*	#STD_TEXTS
*	The	following	fragments	are	used	by	the	xml	binding	map
GROUP_BY	NAME(#LISTREQ)	FIELDS(#STD_TEXTS)
*	The	following	lists	are	used	by	the	xml	binding	map
DEF_LIST	NAME(#DEPTMEN_W)	FIELDS(#DEPTMENT)
TYPE(*WORKING)
DEF_LIST	NAME(#DEPTDES_W)	FIELDS(#DEPTMENT	#DEPTDESC)
TYPE(*WORKING)
CLR_LIST	NAMED(#DEPTMEN_W)
CLR_LIST	NAMED(#DEPTDES_W)

*	Open	service
USE	BUILTIN(JSMX_OPEN)	TO_GET(#JSMXSTS	#JSMXMSG
#JSMXHDLE1)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Load	service
CHANGE	FIELD(#JSMXCMD)	TO('SERVICE_LOAD
SERVICE(HTTPInboundXMLBindService)	SERVICE_CONTENT(*HTTP)
TRACE(*YES)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Bind	service	to	read	HTTP	request	content
CHANGE	FIELD(#JSMXCMD)	TO('BIND
SERVICE(IIIPRO05_REQUEST)	TYPE(*INBOUND)
BINDTRACE(*YES)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Get	fragment	-	DEPARTMENTLISTREQUEST
CHANGE	FIELD(#JSMXCMD)	TO('GET
FRAGMENT(DEPARTMENTLISTREQUEST)
SERVICE_EXCHANGE(*FIELD)')

USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Get	list	-	DEPARTMENT
CHANGE	FIELD(#JSMXCMD)	TO('GET	LIST(DEPARTMENT)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG	#DEPTMEN_W)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
SELECTLIST	NAMED(#DEPTMEN_W)
*
FETCH	FIELDS(#DEPTDESC)	FROM_FILE(DEPTAB)
WITH_KEY(#DEPTMENT)
IF_STATUS	IS_NOT(*OKAY)
CHANGE	FIELD(#DEPTDESC)	TO('DEPARTMENT	NOT	FOUND')
ENDIF
ADD_ENTRY	TO_LIST(#DEPTDES_W)
ENDSELECT
*
*	REVERSE	THE	STRING
#STD_TEXTS	:=	#STD_TEXTS.Reverse.Trim
*
*	<<<	Outbound	binding	logic	goes	here	>>>
*
*	Bind	service	to	create	HTTP	request	content
CHANGE	FIELD(#JSMXCMD)	TO('BIND
SERVICE(IIIPRO05_RESPONSE)	TYPE(*OUTBOUND)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Set	fragment	-	DEPARTMENTLISTRESPONSE
CHANGE	FIELD(#JSMXCMD)	TO('SET
FRAGMENT(DEPARTMENTLISTRESPONSE)
SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1

#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Set	list	-	DEPARTMENT
CHANGE	FIELD(#JSMXCMD)	TO('SET	LIST(DEPARTMENT)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG	#DEPTDES_W)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Write	content
CHANGE	FIELD(#JSMXCMD)	TO('WRITE	INDENT(*YES)
BINDTRACE(*YES)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Send	HTTP	response	content
CHANGE	FIELD(#JSMXCMD)	TO('SEND')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Close	service
USE	BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMXHDLE1)
TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Check	routine
SUBROUTINE	NAME(CHECK)	PARMS((#JSMXSTS	*RECEIVED)
(#JSMXMSG	*RECEIVED))
IF	COND('#JSMXSTS	*NE	OK')
USE	BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMXHDLE1)
TO_GET(#JSMXSTS	#JSMXMSG)
ABORT

ENDIF
ENDROUTINE
	

Step	8.	Update	Configuration	Table	for	iiiFN07
In	this	step,	you	will	use	Integrator	Studio	to	update	the	JSMDirect
Configuration	Table.
1.			On	the	Studio	Workspace	tab,	expand	the	Services	node.	Double	click	on	the
server	you	are	using	to	open	the	JSMDirect	Services	dialog.	This	will	list	the
services	which	have	already	been	defined.	Note	your	entries	for
iiiFN05_SERVICE	and	iiiFN06_SERVICE.

2.			Right	click	anywhere	on	the	white	space	and	select	New	to	open	the	Direct
Service	Editor.

3.			Add	a	new	entry	with	the	following	values	and	click	OK.	File	DC@W29	on
the	server	for	your	JSM	instance	is	updated.

Field	Name Value

Service IIIFN07_SERVICE

Host *DEFAULT

Process IIIPRO05

Function IIIFN07

Partition DEM

Language ENG	(for	non	multilingual	partitions	leave	blank)

Program Leave	blank

WSDL	Path Leave	blank

	

4.		Close	the	Direct	Services	editor.

Step	9.	Create	User	Agent	file	for	iiiFN07
In	this	step,	you	will	create	a	new	User	Agent	configuration	file	to	test	your
server	function.	As	in	the	previous	exercise,	the	User	Agent	will	act	as	a	client
querying	the	server	function	you	have	created.	This	time,	however,	the	User
Agent	will	invoke	the	new	service	implemented	by	function	iiiFN07.
1.		You	need	to	copy	the	iiiPRO04_client_test.lih	file	to	create
iiiPRO05_client_test.lih.	There	are	a	number	of	ways	to	achieve	this.	This
time	follow	these	steps:
a.		In	your	iii	Training	project,	expand	the	folder	XML	Request	and	select
iiiPRO04_client_test.lih.	Open	it	for	editing	by	right-clicking	and
selecting	Open	With,	Properties	Editor.

b.		Select	Save	As	from	the	File	menu,	or	select	the	 	Save	As	button	from
the	toolbar.

c.		Select	the	folder	XML	List	Request	and	enter	iiiPRO05_client_test.lih
and	click	Save.	Click	Yes	when	prompted.	Now	you	have	a	new	User
Agent	configuration	file	to	use	for	this	exercise.

2.		You	need	to	modify	the	User	Agent	file	to	connect	to	the	new	service	you
have	created,	instead	of	your		iiiFN05	service	from	INT004.	The
iiiPRO05_client_test.lih	should	still	be	open.	Make	the	following	change:

Old	Line New	Line

Name=iiiFN06_SERVICE Name=iiiFN07_SERVICE

xml.uri=/cgi-bin/jsmdirect?
iiiFN06_SERVICE

xml.uri=/cgi-bin/jsmdirect?
iiiFN07_SERVICE

	

					If	you	are	using	a	local	Windows	web	server	and	JSM	Server	your	code
should	look	like	the	following:
xml.uri=/cgi-bin/jsmdirect.exe?iiiFN07_SERVICE

3.		The	User	Agent	file	is	now	ready	to	test	iiiFN07_SERVICE	and	iiiFN07.
Save	and	close	the	host	configuration	file	iiiPRO05_client_test.lih.

Step	10.	Test	iiiFN07	function	with	User	Agent
In	this	step,	you	will	test	your	Department	List	Server	by	running	the	User
Agent	file	you	created	in	Step	9.
1.		You	will	run	the	User	Agent	using	iiiPRO05_client_test.lih	and	send
iiiPRO05_request.xml	to	the	iiiFN07_SERVICE	service	on	the	JSM	server.
a.		In	the	XML	List	Request	folder,	double	click	on	iiiPRO05_client_test.lih
to	open	the	User	Agent.	Click	File	and	select	the	Open	Source	option.

b.		Double	click	on	iiiPRO05_request.xml.	Review	the	XML	in	the	Source
tab:

c.		From	the	File	menu	select	Send.	Click	Yes,	then	OK	to	confirm	the
completed	transaction.	The	XML	source	has	been	sent	to	function	iiiFN07
on	the	server.

2.		Verify	that	the	Response	tab	looks	like	the	following:

		

					The	iiiFN07	function,	called	by	the	iiiFN07_SERVICE	service,	has
processed	the	iiiPRO05_request.xml	and	returned	an	appropriately	populated
version	of	iiiPRO05_response.xml.

3.		As	in	exercise	INT006,	you	might	want	to	try	other	valid	Department	codes.
To	do	this,	open	iiiPRO05_request.xml	and	change	the	ADM	or	FLT	text	to
the	desired	test	data.	The	Department	Descriptions	in	the	Response	will
change	accordingly.	Invalid	Department	codes	should	return	a	Department
Description	of	DEPARTMENT	NOT	FOUND.

Summary
Important	Observations

When	you	mark	a	tag	as	a	list,	the	child	tags	are	automatically	added	to	the
List.
There	are	several	ways	to	create	XML	that	achieves	the	same	functionality.

Tips	&	Techniques
Mark	the	list	before	you	add	other	child	tags	to	the	function,	otherwise,	the
list	tags	will	also	be	added	to	the	function.

What	I	Should	Know
How	to	use	the	XML	Bind	Wizard	to	bind	XML	that	contains	a	list.
How	to	GET	and	SET	lists	using	the	JSM.

	

INT008	-	Department	&	Employee	Server
Objectives

To	create	a	server-side	function	that,	given	a	department	code,	responds	with
a	list	of	all	employees	in	that	department,	including	a	list	of	skills	for	each
listed	employee.
To	create	a	User	Agent	file	to	test	the	server	function.
To	use	the	XML	Bind	Wizard	to	create	a	simple	mapping	for	the	inbound
request	fragment.
To	use	the	XML	Bind	Wizard	to	create	a	more	complex	mapping	for	the
outbound	response,	including	multiple	fragments	and	a	list.
To	define	outbound	XML	fragments	dynamically	within	the	RDMLX	logic,
allowing	a	single	fragment	to	be	written	multiple	times.

To	achieve	these	objectives,	you	will	complete	the	following:
Concepts
Step	1.	Create	XML	iiiPRO06_request.xml
Step	2.	Create	XML	iiiPRO06_response.xml
Step	3.	Create	iiiFN08	Server	Inbound	(request)	binding
Step	4.	Create	iiiFN08	Server	Outbound	(response)	binding
Step	5.	Binding	Deployment	&	Configuration
Step	6.	Code	iiiFN08	Server	GET	Functionality
Step	7.	Code	iiiFN08	Server	Database	Logic	and	SET	functionality
Step	8.	Update	JSMDirect	Configuration	Table	for	iiiFN08
Step	9.	Create	User	Agent	Host	Configuration	file	for	iiiFN08
Step	10.	Test	iiiFN08	Server	Function	with	User	Agent	Client
Summary

Concepts
So	far	in	these	tutorials	you	have	learned	how	to	send	lists	of	items.	Using
fragments	of	XML	enables	you	to	send	lists	where	each	list	item	can	contain
repetitive	information.	In	this	exercise,	for	a	requested	department	code,	the
server	function	will	return	a	list	of	Employees	for	that	department	but	also	for
each	Employee	the	server	function	will	return	the	list	of	skills.
In	this	exercise,	the	server	will	GET	the	Department	Code,	select	all	the

employees	for	the	nominated	department,	SET	the	Employee's	information	into
a	fragment	for	each	employee,	and	SET	a	list	of	that	employee's	skills.	The
response	XML	will	therefore	become	a	repeated	set	of	Employee	fragments,
each	with	a	list	of	skills.
This	table	summarizes	the	relationship	between	the	input	XML,	the	style	sheets,
functions	and	JSM	command	used	for	this	exercise:

Input	XML Binding JAR	file JSM	Command

iiiPRO06_request.xml Inbound iiiPRO06_request.jar GET

iiiPRO06_response.xml Outbound iiiPRO06_response.jar SET

	

Step	1.	Create	XML	iiiPRO06_request.xml
In	this	step,	you	will	create	the	XML	to	SEND	the	Department	Code	from	client
to	the	server	function.	You	can	use	any	text	editor	to	write	XML.	The	required
XML	for	the	Department	Code	request	is	the	same	as	the	XML	used	in	INT004
so	you	may	simply	copy	this	XML.
1.		With	your	iii	Training	project	open	in	Studio,	select	Solutions	and	use	the
right	mouse	menu	to	create	a	New	Solution	Group.	Create	group	Server
XML	Employees	Request.

2.		Expand	the	solution	group	XML	Request	and	open	iiiPRO04_request.xml	in
the	XML	Editor.

					The	XML	should	appear	something	like	this:
				<?xml	version="1.0"	encoding="UTF-8"?>
				<DepartmentRequest>
									<DepartmentCode>ADM</DepartmentCode>
				</DepartmentRequest>
	

3.		Select	the	Save	As	option	and	specify	these	save	details:

Save
in

locate	the	iii	Training	directory,	by	default	C:\Program
Files\LANSA\Integrator\Studio\workspace\iii
Training\solutions\Server	XML	Employees	Request

File
Name

iiiPRO06_request.xml

	

4.		Close	the	XML	Editor.

Step	2.	Create	XML	iiiPRO06_response.xml
In	this	step,	you	will	create	the	response	XML	to	be	sent	from	the	server	and
received	by	the	User	Agent.	The	XML	will	represent	of	a	list	of	employees
with	their	Employee	Numbers,	Given	Names,	and	Surnames.	There	will	be	a
list	of	skills	for	each	employee.

1.		In	your	iii	Training	Studio	project,	create	a	new	solution	group	Server	XML
Employees	Response.

2.		Select	group	Server	XML	Employees	Response	and	use	the	right	mouse	menu
to	create	a	New	Solution
a.		Select	XML	File	Editor	from	the	Tool	dropdown
b.		Solution	Group	should	already	contain	Server	XML	Employees	Response
c.		Enter	File	name	iiiPRO06_response
d.		Copy	the	following	to	replace	the	default	code	in	the	editor.
				<?xml	version="1.0"	encoding="UTF-8"?>
				<EmployeeList>
								<Employee>
																<Code>A001</Code>
																<FullName>Fred	Bloggs</FullName>
																<EmployeeSkill>
																							<SkillDesc>COBOL	Programming</SkillDesc>
																</EmployeeSkill>
																<EmployeeSkill>
																							<SkillDesc>RPG	Programming</SkillDesc>
																</EmployeeSkill>
								</Employee>
								<Employee>
																<Code>A002</Code>
																<FullName>Joe	Smith</FullName>
																<EmployeeSkill>
																							<SkillDesc>C++	Introduction</SkillDesc>
																</EmployeeSkill>
																<EmployeeSkill>
																							<SkillDesc>Help	Desk	Management</SkillDesc>
																</EmployeeSkill>
								</Employee>

				</EmployeeList>
	

3.		Notice	the	structure	of	this	XML	document.	It	has	a	list	of	employees.	Each
employee	has	details	(Code	and	Full	Name)	as	well	as	a	list	of	skills.

4.		Save	your	new	XML	and	close	the	text	editor.

Step	3.	Create	iiiFN08	Server	Inbound	(request)	binding
In	this	step,	you	will	use	the	XML	Binding	Wizard	to	create	the	inbound	request
binding	iiiPRO06_request.jar.
1.		With	your	iii	Training	project	open	in	Studio:

a.		Right-click	on	the	Server	XML	Employees	Request	folder	and	select	New
Solution.

b.		Select	the	XML	Binding	Wizard	from	the	Tool	dropdown
c.		Solution	Group	should	already	contain	Server	XML	Employees	Request
c.			Type	iiiPRO06_request	in	the	Solution	File	input	field.	Click	OK.

2.		The	XML	Binding	Project	dialog	appears.	Click	on	the	Browse	button.	Select
the	file	iiiPRO06_request.xml	then	click	on	the	Open	button.	On	the	New
XML	Binding	Project	dialog,	click	OK.	The	XML	Binding	Wizard	main
window	will	now	appear.	Change	Package	to
com.iiicompany.service.xml.

3.		Click	the	Inbound	checkbox.	Select	the	newly-created	Inbound	tab.
4.		Map	the	XML	tag	DepartmentCode	to	the	LANSA	field	DEPTMENT	as
follows:
a.		From	the	Inbound	tab,	mark	the	DepartmentRequest	root	tag	as	a
Fragment.

b.		Select	the	Department	Code	tag	and	select	Edit	from	the	context	menu.
Enter	DEPTMENT	for	the	Name	and	click	OK

Your	XML	Binding	should	look	like	the	following:

5.		Build	your	service	by	clicking	the. 		Build	button	on	the	toolbar.
					Your	JAR	file	has	now	been	generated	and	compiled.

6.		Save	your	work	and	Exit	the	XML	Binding	Wizard.

Step	4.	Create	iiiFN08	Server	Outbound	(response)	binding
In	this	step,	you	will	use	the	XML	Bind	Wizard	to	create	the	outbound	response
binding	iiiPRO06_response.jar	on	the	server.	In	this	binding,	the	list	of
Employee	Skills	will	be	represented	with	a	list,	but	the	list	of	Employees	will	be
defined	as	a	fragment,	in	order	to	avoid	nested	lists.	The	Employee	fragment
will	be	written	multiple	times	in	the	RDMLX	code.
1.		First,	create	a	new	XML	Binding	Wizard	solution	in	your	Server	XML
Response	group:
a.		With	the	iii	Training	project	open	in	Studio,	right-click	on	the	Server
XML	Employee	Response	solution	group	and	select	New	Solution.

b.		The	Server	XML	Employee	Response	group	should	be	pre-selected.	Select
the	XML	Binding	Wizard.	Enter	iiiPRO06_response	in	the	File	input
field.	Click	OK.

2.		The	XML	Binding	Project	panel	appears.	Click	the	Browse	button.	Select	the
iiiPRO06_response.xml	file	and	the	click	the	Open	button,	then	OK	on	the
New	XML	Binding	Project	dialog.

The	XML	Binding	Wizard	main	window	will	now	appear.	Change	Package	to
com.iiicompany.service.xml,

3.		Click	the	Outbound	checkbox.	Select	the	newly-created	Outbound	tab.
4.		The	bindings	for	the	response	XML	are	more	complex	than	the	inbound.

The	EmployeeList	root	tag	and	the	Employee	tag	need	to	be	marked	as
fragments
EmployeeSkill	needs	to	be	marked	as	a	list
Code,	FullName,	and	SkillDesc	need	to	be	mapped	to	specific	LANSA
fields.

		The	Employee	fragment	will	be	written	repeatedly	in	the	RDMLX	code.
					To	do	this,	map	the	Employee	details	as	follows:

a.		Right	click	on	the	EmployeeList	root	tag.	Select	Fragment	from	the	pop-
up	menu.

b.	Right	click	on	the	Employee	tag.	Select	Fragment	from	the	pop-up	menu.
c.		Right	click	on	the	Code	tag	and	select	Edit.	Enter	EMPNO	for	the	Name
and	click	OK.

d.		Right	click	on	the	FullName	tag	and	select	Edit.	Type	FULLNAME	for
the	Name	and	click	OK.

e.		Right	click	on	either	of	the	EmployeeSkill	tags	and	select	List.
f.		Expand	the	EmployeeSkill	tags	to	see	their	sub-tags.	Right	click	or	double
click	on	either	of	the	SkillDesc	tags	to	edit	them.	Enter	SKILDESC	for
the	Name	and	click	OK.

Your	XML	Binding	should	look	like	the	following:

5.		Your	XML	Binding	definitions	are	complete.	Now,	generate	and	compile	the
outbound	response	service.	Select	the	Project	menu	and	choose	the	Build
option.

6.		Save	your	work	and	Exit	the	XML	Binding	Wizard.

Step	5.	Binding	Deployment	&	Configuration
In	this	step,	you	will	deploy	the	jar	files	and	update	the
HTTPInboundXMLBindService	properties	file	using	the	Integrator	Studio.
With	your	iii	Training	project	open	in	Studio	and	with	the	JSM	Server	instance
open	(right	hand	panel):
1.		Retrieve	the	HTTPInboundXMLBindService.properties	file.

a.		Open	the	properties	folder	in	the	right	panel	(i.e.	in	the	JSM	server
instance).

b.		Scroll	down	and	locate	the
HTTPInboundXMLBindService.properties	file.	Right	click	on	the
file	and	select	the	Retrieve	Section	option	in	the	pop-up	menu.	A	message
will	be	displayed,	"Replace	HTTPInboundXMLBindService.properties"
because	there	is	already	an	existing	copy	in	your	local	folder.	Click	Yes	to
overwrite	it.

c.		Open	the	Integrator	/	properties	folder	in	the	left	panel	(i.e.	your	local
directory).	Right	click	on	the
HTTPInboundXMLBindService.properties	file	and	select	the	Open
option	from	the	pop-up	menu	to	open	the	Properties	Editor	(1).	This	file
has	been	updated	from	the	server	and	is	ready	for	you	to	modify.

d.		As	in	the	previous	exercise:

Open	the	HTTPInboundXMLBindService.properties	in	the	Server
XML	Employees	Request	folder,	and	copy	the	code	into	the	Properties
Editor	(1).	Close	the	second	editor

Open	the	HTTPInboundXMLBindService.properties	in	Server
XML	Employees	Response	folder	and	copy	this	code	to	Properties	Editor
(1).	Close	the	second	editor.

Your	properties	file	should	now	look	like	the	following:

f.		Save	your	changes	and	exit	the	Properties	editor.
g.		Right	click	on	your	local
HTTPInboundXMLBindService.properties	file	(in	the	left	panel,	in
Integrator	/	Properties)	and	select	the	Publish	Section	option	from	the
pop-up	menu.	A	message	will	ask	you	to	confirm	publish.	Select	Yes.

2.		Deploy	the	jar	files.
					You	must	copy	the	jar	files	from	your	PC	into	the	appropriate	JSM	server
directory.	You	will	send	the	jar	files	to	the	directory	\instance\bindings.
a.		In	the	Server	XML	Employees	Response	folder,	right	click	on
iiiPRO06_response.xml.jar	and	select	Send	To	/	Integrator	Folder	from	the
pop-up	menu.	Select	Yes	when	asked	if	you	want	to	copy	the	file	over.

b.		Repeat	for	iiiPRO06_request.xml.jar.	Alternatively	you	could	drag-and-
drop	the	jar	files	into	the	Integrator	/	bindings	folder.

c.		In	the	left	panel,	expand	the	Integrator	/	bindings	folder.	One	at	a	time,
right	click	on	each	jar	file	and	select	Publish	File.	Select	Yes	when
prompted.

Step	6.	Code	iiiFN08	Server	GET	Functionality
In	this	step,	you	will	begin	to	write	the	RDMLX	for	the	Server	side	GET.	The
server	function	will	receive	the	XML	from	the	client.
1.		Create	a	new	LANSA	process	named	iiiPRO06	XML	Employees	Server,
where	iii	is	your	unique	3	characters.	(If	the	process	already	exists,	select	a
different	set	of	characters	for	iii.).

2.		Create	a	new	function	named	iiiFN08	Department	&	Employees	Server	,
belonging	to	process	iiiPRO06.	Create	the	function	without	using	a	template
and	make	sure	that	Enabled	for	RDMLX	is	checked.

3.		With	your	iii	Training	project	open	in	Studio,	expand	the	Solutions	/	Server
XML	Employees	Request	/	samples	/	RDMLX	folder	and	open	file
SAMPLE_RDMLX_INBOUND_HTTP.txt	in	the	Text	Editor.	Copy	all	the
code	into	function	iiiFN08,	replacing	existing	code.

4.		Change	the	GROUP_BY	name	to	DEPTREQ.	This	GROUP_BY	is	a
reference	for	mapping	field	DEPTMENT.	The	code	generator	does	not
currently	recognize	RDMLX	name	limits.

5.			At	this	point	your	function	has	all	the	logic	needed	to	receive	the	department
code	request	XML

6.		Save	this	function.	It	is	not	yet	complete	and	will	be	finished	in	a	later	step.

Step	7.	Code	iiiFN08	Server	Database	Logic	and	SET
functionality
In	this	step,	you	will	write	the	RDMLX	to	SELECT	using	the	logical	view
PSLMST1	(Personnel	by	Department)	to	get	a	list	of	employees,	then	SELECT
over	the	file	PSLSKL	(Personnel	Skills)	to	get	a	list	of	that	employee's	skills.
The	RDMLX	for	the	server	side	SET	will	be	performed	inline	during	this
internal	logic.	This	is	different	from	previous	exercises,	where	the	internal	logic
and	SET	commands	were	separated	sequentially.
	In	this	exercise,	you	will	not	be	performing	each	of	these	commands	in
sequence,	after	the	internal	logic	is	finished.	Instead,	the	outbound	BIND	and
root	fragment	SET	will	come	immediately	after	the	inbound	BIND	and	GET
commands	(before	any	database	accesses).	Two	more	SET	commands	will	go
into	the	outer	SELECT	statement.	Finally,	the	WRITE	and	SEND	commands
will	follow	the	last	ENDSELECT.
					The	overall	structure	of	the	iiiFN08	function	is	as	follows:

1.		JSMX_OPEN
2.				SERVICE_LOAD	(HTTPInboundXMLBindService)
3.					BIND	(inbound)
4.					GET	(department	code	fragment)
5.					BIND	(outbound)
6.					SET	(employee	list	fragment)
7.					SELECT	over	PSLMST1

								a.		SELECT	over	PSLSKL
								b.		FETCH	from	SKLTAB
								c.		ENDSELECT
								d.		SET	(employee	fragment)
								e.		SET	(employee	skill	list)

8.					ENDSELECT
9.					WRITE
10.			SEND
11.		JSMX_CLOSE

1.		In	your	function	iiiFN08	locate	the	following	code	and	delete	it:
*	Bind	service	to	create	HTTP	response	content
CHANGE	FIELD(#JSMXCMD)	TO('BIND	SERVICE(
<<<outbound.class>>>)	TYPE(*OUTBOUND)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
	

2.		With	your	iii	Training	project	open	in	Studio,	in	the	folder	Server	XML
Employees	Response	/samples	/	RDMLXopen	the	file
SAMPLE_RDMLX_OUTBOUND_HTTP.txt	in	the	Text	Editor.	Locate	the
highlighted	code:

					Copy	and	paste	the	highlighted	code	into	your	function,	to	replace	the
deleted	code	block.

3.		Add	a	working	list	definition	named	EMPWORK	to	the	top	of	your	function
containing	field	SKILDESC.	This	is	the	list	of	skills	for	each	employee,
which	is	to	be	returned.	Your	code	should	look	like	the	following:
DEF_LIST	NAME(#EMPWORK)	FIELDS(#SKILDESC)
TYPE(*WORKING)	ENTRYS(*MAX)

4.		After	the	outbound	BIND	and	SET	logic	just	added,	write	the	RDMLX	code
to:

a.		SELECT	employee	numbers	and	names	from	the	logical	file	PSLMST1,
using	the	DEPTMENT	key	field.

b.		Inside	the	SELECT,	set	up	the	field	Fullname	from	the	Given	Name	and
Surname	fields.

c.		Still	within	that	SELECT	loop,	CLR_LIST	EMPWORK,	then	SELECT
over	PSLSKL	to	get	a	list	of	skill	codes	for	each	employee,	using	the
employee	number.

d.		Inside	the	inner	(nested)	SELECT,	FETCH	the	skill	description	from
SKLTAB	for	each	skill	code.

e.		ADD	the	entry	into	the	employee	skills	working	list	EMPWORK.
f.		End	both	SELECTS.

					The	RDMLX	code	might	appear	as	follows:
SELECT	FIELDS(#EMPNO	#SURNAME	#GIVENAME)	FROM_FILE(PSLMST1)	WITH_KEY(#DEPTMENT)
#FULLNAME	:=	#GIVENAME	+	'	'	+	#SURNAME
CLR_LIST	NAMED(#EMPWORK)
SELECT	FIELDS(#SKILCODE)	FROM_FILE(PSLSKL)	WITH_KEY(#EMPNO)
FETCH	FIELDS(#SKILDESC)	FROM_FILE(SKLTAB)	WITH_KEY(#SKILCODE)
ADD_ENTRY	TO_LIST(#EMPWORK)
ENDSELECT
*	Set	employee	fragment
*	Set	employeeskills	list
ENDSELECT
	

					Note:	Comments	have	been	added	to	this	code	for	clarity	in	the	next	steps.
5.		As	before,	you	will	complete	the	function	by	using	code	generated	for	you	in
the	SAMPLE_RDMLX_OUTBOUND_HTTP.txt	file.	Locate	the
highlighted	code:

6.		Copy	the	highlighted	code	shown	above	into	your	function	to	replace	the
comments	included	in	step	4f	.
*	Set	employee	fragment
*	Set	employeeskills	list
	

7.		Change	the	working	list	name	in	the	TO_GET()	keyword	to		refer	to	your	list
#EMPWORK.		Your	code	should	look	like	the	following:
*set	list	-	EMPLOYEESKILL
CHANGE	FIELD(#JSMXCMD)	TO('SET	LIST(EMPLOYEESKILL)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG	#EMPWORK)

8.		Review	your	function's	RDMLX	code	following	the	last	ENDSELECT.	You
will	find	that	the	generated	code	which	you	copied	initially,	already	contains
the	required	WRITE,	SEND	and	CLOSE	logic.

9.		In	the	CHECK	subroutine,	add	an	ABORT	command	to	the	IF..ENDIF
statement	so	that	the	program	ends	if	an	error	has	occurred.

10.Save	and	compile	the	function.	If	you	are	using	an	IBM	i	JSM	Server,	check
it	into	the	IBM	i	and	compile	it.

					Your	finished	RDMLX	code	might	appear	as	follows:
FUNCTION	OPTIONS(*DIRECT)
*	The	following	fields	are	used	by	the	xml	binding	map
*	#DEPTMENT
*	The	following	fragments	are	used	by	the	xml	binding	map
GROUP_BY	NAME(#DEPTREQ)	FIELDS(#DEPTMENT)

*
DEF_LIST	NAME(#empwork)	FIELDS(#skildesc)	ENTRYS(200)

*	Open	service
USE	BUILTIN(JSMX_OPEN)	TO_GET(#JSMXSTS	#JSMXMSG
#JSMXHDLE1)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Load	service
CHANGE	FIELD(#JSMXCMD)	TO('SERVICE_LOAD
SERVICE(HTTPInboundXMLBindService)	SERVICE_CONTENT(*HTTP)
TRACE(*YES)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Bind	service	to	read	HTTP	request	content
CHANGE	FIELD(#JSMXCMD)	TO('BIND
SERVICE(IIIPRO06_REQUEST)	TYPE(*INBOUND)
BINDTRACE(*YES)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Get	fragment	-	DEPARTMENTREQUEST
CHANGE	FIELD(#JSMXCMD)	TO('GET
FRAGMENT(DEPARTMENTREQUEST)
SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Bind	service	to	create	HTTP	request	content
CHANGE	FIELD(#JSMXCMD)	TO('BIND
SERVICE(IIIPRO06_RESPONSE)	TYPE(*OUTBOUND)')

USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Set	fragment	-	EMPLOYEELIST
CHANGE	FIELD(#JSMXCMD)	TO('SET	FRAGMENT(EMPLOYEELIST)
SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

SELECT	FIELDS(#EMPNO	#SURNAME	#GIVENAME)
FROM_FILE(PSLMST1)	WITH_KEY(#DEPTMENT)
#FULLNAME	:=	#GIVENAME	+	'	'	+	#SURNAME
CLR_LIST	NAMED(#EMPWORK)
SELECT	FIELDS(#SKILCODE)	FROM_FILE(PSLSKL)
WITH_KEY(#EMPNO)
FETCH	FIELDS(#SKILDESC)	FROM_FILE(SKLTAB)
WITH_KEY(#SKILCODE)
ADD_ENTRY	TO_LIST(#EMPWORK)
ENDSELECT
*	Set	fragment	-	EMPLOYEE
CHANGE	FIELD(#JSMXCMD)	TO('SET	FRAGMENT(EMPLOYEE)
SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Set	list	-	EMPLOYEESKILL
CHANGE	FIELD(#JSMXCMD)	TO('SET	LIST(EMPLOYEESKILL)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG	#EMPWORK)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
ENDSELECT

*	Write	content
CHANGE	FIELD(#JSMXCMD)	TO('WRITE	INDENT(*YES)
BINDTRACE(*YES)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Send	HTTP	response	content
CHANGE	FIELD(#JSMXCMD)	TO('SEND')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Close	service
USE	BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMXHDLE1)
TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Check	routine
SUBROUTINE	NAME(CHECK)	PARMS((#JSMXSTS	*RECEIVED)
(#JSMXMSG	*RECEIVED))
IF	COND('#JSMXSTS	*NE	OK')
USE	BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMXHDLE1)
TO_GET(#JSMXSTS	#JSMXMSG)
ENDIF
ENDROUTINE
	

Step	8.	Update	JSMDirect	Configuration	Table	for	iiiFN08
In	this	step,	you	will	use	the	Integrator	Studio	to	update	the	JSMDirect
Configuration	Table.
1.		Click	on	the	Studio	Workspace.	Expand	the	Service	node.	You	will	see	the
service	you	created	before.

2.		Double	click	on	the	service	to	open	it.	The	Direct	Services	tab	will	appear
showing	the	entries	you	have	created	in	previous	exercises.

3.		Add	a	new	entry	with	the	following	values:

Field	Name Value

Service iiiFN08_SERVICE

Host *DEFAULT

Process iiiPRO06

Function iiiFN08

Partition DEM

Language ENG	(for	non	multilingual	partitions	leave	blank)

Program Leave	blank

WSDL Leave	blank

	

4.		Close	the	Direct	Services	tab.

Step	9.	Create	User	Agent	Host	Configuration	file	for	iiiFN08
In	this	step,	you	will	create	a	new	User	Agent	configuration	file	to	test	your
server	function.	As	in	previous	exercises,	the	User	Agent	will	act	as	a	client
querying	the	server	you	have	created.
1.		Copy	the	iiiPRO05_client_test.lih	file	to	create	iiiPRO06_client_test.lih:

a.		In	your	XML	List	Request	folder,	select	iiiPRO05_client_test.lih.	Open
it	for	editing	by	right-clicking	and	selecting	Open	With	/	Properties	Editor.
Click	Save	As,	or	select	Save	As	from	the	File	menu.	Save	it	to	folder
Server	XML	Employees	Request.

b.		Enter	iiiPRO06_client_test.lih	and	click	Save.	Click	Yes	when
prompted.	Now	you	have	a	new	User	Agent	file	to	use	for	this	exercise.

2.		You	need	to	modify	the	User	Agent	file	to	connect	to	the	new	service	you
have	created,	instead	of	your	old	service.	The	iiiPRO06_client_test.lih
should	still	be	open.	Make	the	following	change:

Old	Line New	Line

name=iiiFN07_SERVICE name=iiiFN08_SERVICE
xml.uri=/cgi-bin/jsmdirect?
iiiFN07_SERVICE

xml.uri=/cgi-bin/jsmdirect?
iiiFN08_SERVICE

	

					If	your	using	a	local	Windows	web	server	and	JSM	Server	the	uri	should
look	like	the	following:
xml.uri=/cgi-bin/jsmdirect.exe?iiiFN08_SERVICE

3.		The	User	Agent	Host	Configuration	file	is	now	ready	to	test
iiiFN08_SERVICE	and	iiiFN08.	Save	and	close	iiiPRO06_client_test.lih.

Step	10.	Test	iiiFN08	Server	Function	with	User	Agent	Client
In	this	step,	you	will	test	your	Department	&	Employee	Server	by	running	the
User	Agent	using	the	host	configuration	file	you	created	in	Step	9.
1.		In	the	folder	Server	XML	Employees	Request	open	the	User	Agent	using	
iiiPRO06_client_test.lih	and	send	iiiPRO06_request.xml	to	the
iiiFN08_SERVICE	service	on	the	JSM	server.

a.		Double	click	iiiPRO06_client_test.lih	to	run	the	User	Agent.	Click
File	and	select	Open	Source.

b.		Double	click	on	iiiPRO06_request.xml.	Review	the	XML	in	the	Source
tab:

c.		Click	File	and	select	Send.	Click	Yes,	then	OK	to	confirm	the	completed
transaction.	The	XML	source	has	been	sent	to	the	server.

2.		Verify	that	the	server	has	sent	the	correct	list	of	Employees	and	Employee
Skills.	The	Response	tab	should	have	a	large	amount	of	text	in	XML	format
—each	department	has	many	employees,	and	each	employee	has	many	skills.
Browse	the	response	XML	and	check	that	it	is	correct.

					The	iiiFN08	function,	called	by	the	iiiFN08_SERVICE	service,	has
processed	the	iiiPRO06_request.xml	and	returned	an	appropriately	populated
version	of	iiiPRO06_response.xml.

3.		You	might	want	to	try	other	valid	Department	codes.		To	do	this,	open
iiiPRO06_request.xml	and	change	the	text	to	FLT	or	other	desired	test	data.
The	Department	Descriptions	in	the	Response	will	change	accordingly.
Invalid	Department	codes	should	return	a	blank	list.

Summary
Important	Observations

Use	repeated	fragments	whenever	the	XML	structure	involves	multiple
occurrences	of	structure.	For	example,	use	repetitive	fragments	for	lists
within	a	list.
JSMX	commands	were	performed	in	parallel	to	database	access	RDMLX.
This	is	a	useful	technique	for	building	complex	XML.

Tips	&	Techniques
Multiple	occurrences	of	the	same	fragment	can	mimic	the	behavior	of	lists.
This	is	an	effective	technique	for	creating	nested	lists.
Looping	over	the	JSMX	"SET"	command	is	useful	when	implementing
nested	lists.

What	I	Should	Know
How	to	use	repeated	fragments	to	create	nested	lists	in	XML
How	to	integrate	JSMX	commands	into	RDMLX	code
How	to	build	server-side	functions	that	create	complex	response	XML

	

INT009	–	Department	&	Employee	Client	(Optional)
Objectives:

To	learn	how	to	create	a	client	request	RDMLX	function	to	test	your
Department	&	Employee	Server.
To	create	a	wrapper	RDML	function	that	calls	your	client	function	from	a
Windows	user	interface.
To	learn	how	to	integrate	client-	and	server-side	functions	with
HTTPInboundXMLBindService	and	HTTPOutboundXMLBindService.
To	see	the	overall	structure	of	the	client/server	transaction.

To	achieve	these	objectives,	you	will	complete	the	following:
Concepts
Step	1.	Create	iiiFN09	Client	Outbound	(request)	bindings
Step	2.	Create	iiiFN09	Client	Inbound	(response)	bindings
Step	3.	Binding	Deployment	and	Configuration
Step	4.	Code	iiiFN10	Client	Wrapper	Function
Step	5.	Code	iiiFN09	Client	SET	functionality
Step	6.	Code	iiiFN09	Client	GET	functionality
Step	7.	Test	iiiFN08	Server	with	Client	functions
Step	8.	A	Client	Visual	Form	(optional)
Summary

Concepts
You	have	already	written	the	Department	&	Employee	Server	function,	and
created	a	service	interface	for	it,	in	INT008.	Now	you	will	create	a	client
function	using	HTTPOutboundXMLBindService.	This	client	function	will
allow	the	user	to	input	a	department	code,	create	a	request	XML	document,	send
the	XML	to	your	iiiFN08_SERVICE	to	be	processed,	and	display	the	response
XML	in	a	user-friendly	list.

Step	1.	Create	iiiFN09	Client	Outbound	(request)	bindings
In	this	step,	you	will	create	a	new	jar	file	from	iiiPRO06_request.xml.	In
INT008,	your	iiiPRO06_request.xml	bindings	were	inbound.	This	time,
however,	you	are	creating	a	client	function,	so	the	bindings	for	your	request
XML	will	be	outbound.
You	are	binding	the	same	XML	as	in	INT008	for	your	request	and	response,
since	you	are	building	another	part	of	the	same	interaction.	The	structure	(XML)
of	the	request	and	response	messages	is	the	same	for	the	server	and	client.	You
are	simply	building	the	opposite	side	of	the	transaction.
1.		With	your	iii	Training	project	open	in	Studio,	create	a	new	Solution	Group	/
Client	XML	Employees	Request.	Select	this	new	group	and	use	the	XML
Binding	Wizard.	Give	the	solution	file	the	name	iiiPRO07_request.	Browse
to	select	iiiPRO06_request.xml	from	folder	Server	XML	Employees
Request	for	the	XML	source.	Change	the	Package	name	to
com.iiiCompany.service.xml.

2.		Click	the	Outbound	checkbox	in	the	XML	Binding	Wizard.	Mark	the	root
DepartmentRequest	node	as	a	fragment.	Edit	the	DepartmentCode	node	and
set	its	Name	to	DEPTMENT.

3.		Build	and	compile	your	solution.	Save	your	work	and	close	the	XML	Binding
Wizard.

Step	2.	Create	iiiFN09	Client	Inbound	(response)	bindings
In	this	step,	you	will	create	bindings	for	iiiPRO06_response.xml.	In	INT008,
this	file	had	outbound	bindings,	since	that	function	was	acting	as	the	server.
This	time,	you	are	creating	a	client	function,	so	the	bindings	for	your	response
XML	will	be	inbound.	Note	that	you	are	binding	the	same	XML	as	in	INT008.
1.		In	your	iii	Training	project,	create	a	New	Solution	Group	/	Client	XML
Employees	Response.	Select	the	new	group	and	create	a	New	Solution.	Use
the	XML	Binding	Wizard	to	create	a	new	Solution.	Give	the	solution	file	the
name	iiiPRO07_response.	Browse	to	select	iiiPRO06_response.xml
from	folder	Server	XML	Employees	Response	for	the	XML	source.	Change
the	Package	name	to	com.iiicompany.service.xml.

2.		Click	the	Inbound	checkbox	in	the	XML	Binding	Wizard.
a.		Mark	the	root	EmployeeList	node	as	a	fragment.
b.		Edit	the	Code	node	and	set	its	Name	to	EMPNO.
c.		Edit	the	FullName	node	and	set	its	Name	to	FULLNAME.
d.		Mark	EmployeeSkill	as	a	list.
e.		Edit	SkillDesc	and	set	its	Name	to	SKILDESC.

3.		Build	and	compile	your	solution.	Save	your	work	and	close	the	XML	Binding
Wizard.

Step	3.	Binding	Deployment	and	Configuration
In	this	step,	you	will	deploy	your	binding	jar	files.
1.		Send	iiiPRO07_response.jar	and	iiiPRO07_request.jar	to	the	Integrator
folder	from	your	workspace.

2.		Publish	iiiPRO07_response.jar	and	iiiPRO07_request.jar	to	the	server,	from
the	/bindings	folder.

3.		For	this	exercise,	you	will	be	using	the
HTTPOutboundXMLBindService.	Therefore,	you	must	define	a	service
in	the	HTTPOutboundXMLBindService.properties	file.	This	will	be
used	in	your	client-side	RDMLX	function.	The	server	will	not	use	this	service
at	all.
a.		Use	Retrieve	Section	on	the
HTTPOutboundXMLBindService.properties	file	from	the	server.	
(This	action	simply	creates	a	local	file	for	you	to	edit.	There	is	no	project
specific	data	to	retrieve	at	this	time.)	This	step	requires	your	server
instance	to	be	opened	from	your	project	tab.

b.		From	your	project	Integrator	/	properties	folder	open	your	local	section
of	the	HTTPOutboundXMLBindService.properties	file.	As	in
INT009,	now	open	the	properties	for	this	outbound	service	in	your	new
solution	groups,	and	copy	each	in	turn	to	the	properties	section	file	you
just	created.	Your	file	should	now	look	like	the	following:

c.		Save	and	close	the	properties	file.
d.		Use	Publish	Section	to	update	the
HTTPOutboundXMLBindService.properties	file	on	the	server.

Step	4.	Code	iiiFN10	Client	Wrapper	Function
In	this	step,	you	will	create	the	RDML	(not	RDMLX)	wrapper	function	for	your
client.	This	will	allow	you	to	interact	with	your	server	from	a	simple	Windows
program.
1.		Create	a	new	LANSA	process	named	iiiPRO07	JSM	XML	Employees
Client,	where	iii	is	your	unique	3	characters.	(If	the	process	already	exists,
select	a	different	set	of	characters	for	iii.).

2.		Create	a	new	function	named	iiiFN10	Display	Department	&	Employee
Client	belonging	to	process	iiiPRO07.	Do	not	create	the	function	from	a
template.	Do	not	make	it	an	RDMLX	enabled	function.

3.		The	basic	structure	of	this	program	accepts	Department	Codes	input	from	the
user,	calls	RDMLX	function	iiiFN09	and	then	displays	the	resulting
employees	list.	You	will	need	a	browselist	and	a	working	list	to	hold	this	data.
a.		Define	WL_EMPSKL	as	a	working	list	of	FULLNAME	and	SKILDESC.
b.		Define	BL_EMPSKL	as	a	browselist	of	FULLNAME	and	SKILDESC.

4.		Code	the	input,	function	call,	and	output	of	the	display	function.
a.		Insert	BEGIN_LOOP	and	END_LOOP	commands.
b.		Inside	the	loop,	insert	a	REQUEST	command	to	request	DEPTMENT	and
display	the	browse	list	BL_EMPSKL.

c.		Clear	both	the	working	and	browse	list.
d.		Exchange	field	DEPTMENT.
e.		Call	function	iiiFN09,	passing	the	working	list	WL_EMPSKL	(to	allow
the	populated	data	to	return).

f.		Loop	through	the	working	list,	adding	entries	to	the	browselist	on	each
iteration.

									Your	finished	code	should	look	something	like	this:
FUNCTION	OPTIONS(*DIRECT)
DEF_LIST	NAME(#WL_EMPSKL)	FIELDS(#FULLNAME	#SKILDESC)	TYPE(*WORKING)	ENTRYS(9999)
DEF_LIST	NAME(#BL_EMPSKL)	FIELDS(#FULLNAME	#SKILDESC)	ENTRYS(9999)

BEGIN_LOOP
REQUEST	FIELDS(#DEPTMENT)	BROWSELIST(#BL_EMPSKL)

CLR_LIST	NAMED(#WL_EMPSKL)
CLR_LIST	NAMED(#BL_EMPSKL)

EXCHANGE	FIELDS(#DEPTMENT)
CALL	PROCESS(*DIRECT)	FUNCTION(IIIFN09)	PASS_LST(#WL_EMPSKL)

SELECTLIST	NAMED(#WL_EMPSKL)
ADD_ENTRY	TO_LIST(#BL_EMPSKL)
ENDSELECT

END_LOOP
	

5.		Save,	compile	and	close	the	function.

Step	5.	Code	iiiFN09	Client	SET	functionality
In	this	step,	you	will	begin	to	write	the	RDMLX	for	the	client.	The	client	will
send	a	request	document	to	the	server,	and	receive	a	list	of	employees	from	the
service	created	in	INT008.	For	now,	you	will	code	only	the	creation	and	sending
of	the	request	XML.
The	overall	structure	of	the	completed	client	function	iiiFN09	will	be:

1.		JSMX_OPEN
2.		SERVICE_LOAD	HTTPOutboundXMLBindService
3.		BIND	outbound
4.		SET	DepartmentRequest	fragment
5.		WRITE	DepartmentRequest	fragment
6.		SEND	HOST()	URI()
7.		BIND	service	IIIPRO07_SERVICE	inbound
8.		GET	EMPLOYEELIST	fragment
9.		BEGIN_LOOP

									a.		GET	EMPLOYEE	fragment
									b.		LEAVE	if	NOFRAGMENT
									c.		GET	EMPLOYEESKILLS	list
									d.		SELECT	LIST
									e.		Add	entry	WL_EMPSKL
									f.		End	SELECT

10.		END_LOOP
11.		SERVICE_UNLOAD
12.		JSMX_CLOSE	

1.		Create	a	new	function	named	iiiFN09	Department	&	Employee	Client
belonging	to	process	iiiPRO07	where	iii	is	your	unique	3	characters.	Create
the	function	without	using	an	application	template.	Make	it	an	RDMLX
enabled	function.

2.		In	your	iii	Training	project,	expand	the	Client	XML	Employees	Request	/
samples	/	RDMLX	folder.	Copy	the	code	from
SAMPLE_RDMLX_OUTBOUND_HTTP.TXT	to	replace	the	existing

code	in	function	iiiFN09.
3.		Change	the	GROUP_BY	DEPARTMENTREQUEST	name	to	DEPTREQ.
The	Studio	code	generator	does	not	currently	recognize	RDMLX	name	limits.
This	is	a	reference	for	binding	field	DEPTMENT.

4.		You	need	to	specify	that	you	are	receiving	a	working	list	from	your	wrapper
RDML	function.
a.			Define	working	list	WL_EMPSKL	as	it	was	defined	in	your	wrapper
function.

b.		Add	a	RCV_LIST	to	the	FUNCTION	OPTIONS(*DIRECT)	to	receive
working	list	WL_EMPSKL.

5.		Complete	the	SEND	command.	The	HOST	keyword	must	point	to	the	web
server	associated	with	your	JSM	Server.	The	example	code	below	points	to	an
IBM	i	host.	If	you	are	using	a	local	web	server	and	JSM	server	it	could	be
defined	as	"localhost".	The	URI	keyword	refers	to	the	service	being	called	-
IIIFN08_SERVICE.	Your	code	should	looksimilar	to	the	following:
*	Send	HTTP	request	content
CHANGE	FIELD(#JSMXCMD)	TO('SEND	HOST(10.44.10.236:80)
URI(/cgi-bin/jsmdirect?IIIFN08_SERVICE)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

					Note:	The	XMLBind	Wizard	generates	the	above	code	with	a	URL	keyword.
This	is	an	error	and	you	should	change	this	keyword	to	URI	as	shown	in	the
above	code.

6.		Delete	the	BIND	to	the	inbound.class	code,	shown	below.	The	response	logic
will	be	taken	from	generated	sample	RDMLX	in	the	next	step
*	Bind	service	to	read	HTTP	response	content
CHANGE	FIELD(#JSMXCMD)	TO('BIND	SERVICE(
<<<inbound.class>>>)	TYPE(*INBOUND)	BINDTRACE(*YES)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
Your	RDMLX	code	should	currently	look	like	the	following:

FUNCTION	OPTIONS(*DIRECT)	RCV_LIST(#wl_empskl)
*	The	following	fields	are	used	by	the	xml	binding	map
*	#DEPTMENT
*	The	following	fragments	are	used	by	the	xml	binding	map
GROUP_BY	NAME(#DEPTREQ)	FIELDS(#DEPTMENT)
DEF_LIST	NAME(#WL_EMPSKL)	FIELDS(#FULLNAME	#SKILDESC)
TYPE(*WORKING)	ENTRYS(9999)
*	Open	service
USE	BUILTIN(JSMX_OPEN)	TO_GET(#JSMXSTS	#JSMXMSG
#JSMXHDLE1)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Load	service
CHANGE	FIELD(#JSMXCMD)	TO('SERVICE_LOAD
SERVICE(HTTPOutboundXMLBindService)	TRACE(*YES)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Bind	service	to	create	HTTP	request	content
CHANGE	FIELD(#JSMXCMD)	TO('BIND
SERVICE(IIIPRO07_REQUEST)	TYPE(*OUTBOUND)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Set	fragment	-	DEPARTMENTREQUEST
CHANGE	FIELD(#JSMXCMD)	TO('SET
FRAGMENT(DEPARTMENTREQUEST)
SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Write	content
CHANGE	FIELD(#JSMXCMD)	TO('WRITE	INDENT(*YES)
BINDTRACE(*YES)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1

#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Close	binding
CHANGE					FIELD(#JSMXCMD)	TO('CLOSE')
USE								BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Send	HTTP	request	content
CHANGE	FIELD(#JSMXCMD)	TO('SEND	HOST(10.44.10.236:80)
URI(/cgi-bin/jsmdirect?IIIFN08_SERVICE)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	<<<	Inbound	binding	logic	goes	here	>>>

*	Unload	service
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
'SERVICE_UNLOAD')	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Close	service
USE	BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMXHDLE1)
TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Check	routine
SUBROUTINE	NAME(CHECK)	PARMS((#JSMXSTS	*RECEIVED)
(#JSMXMSG	*RECEIVED))
IF	COND('#JSMXSTS	*NE	OK')
USE	BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMXHDLE1)
TO_GET(#JSMXSTS	#JSMXMSG)
MENU	MSGTXT('Java	service	error	has	occured')
ENDIF
ENDROUTINE
	

7.		Save	this	function.	It	is	not	yet	complete.	It	will	be	finished	in	the	next
step.	At	this	stage,	the	server	function	has	been	sent	the	XML	request
document	to	process.

Step	6.	Code	iiiFN09	Client	GET	functionality
In	this	step	you	will	use	the	inbound	part	of	the	RDMLX	generated	for	the
Client	XML	Employees	Response	solution	to	complete	function	iiiFN09.
1.			With	your	iii	Training	project	open	in	Studio,	expand	the	folder	Solutions	/
Client	XML	Employees	Response	/	sample	/	RDMLX	and	copy	the	following
code	from	SAMPLE_RDMLX_INBOUND_HTTP.TXT	into	function
iiiFN09	following	the	comment	*	<<<	Inbound	binding	logic	goes	here
>>>
*	Bind	service	to	read	HTTP	request	content
CHANGE					FIELD(#JSMXCMD)	TO('BIND
SERVICE(IIIPRO07_RESPONSE)	TYPE(*INBOUND)
BINDTRACE(*YES)')
USE								BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Get	fragment	-	EMPLOYEELIST
CHANGE					FIELD(#JSMXCMD)	TO('GET
FRAGMENT(EMPLOYEELIST)	SERVICE_EXCHANGE(*FIELD)')
USE								BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	<<<	Enter	the	fragment	loop	logic	for	EMPLOYEE	>>>
BEGIN_LOOP	/*	EMPLOYEE	*/
*	Get	fragment	-	EMPLOYEE
CHANGE					FIELD(#JSMXCMD)	TO('GET	FRAGMENT(EMPLOYEE)
SERVICE_EXCHANGE(*FIELD)')
USE								BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
LEAVE						IF('#JSMXSTS	*EQ	NOFRAGMENT')
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Get	list	-	EMPLOYEESKILL
CHANGE					FIELD(#JSMXCMD)	TO('GET	LIST(EMPLOYEESKILL)')
USE								BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1

#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG	#EMPLOYEESKILL)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
END_LOOP	/*	EMPLOYEE	*/
	

2.		Change	the	working	list	name	in	the	*	Get	list	–	EMPLOYEESKILLS
logic.	The	TO_GET	keyword	needs	to	refer	to	your	working	list
#EMPSKILL.	(Define	at	the	top	of	the	function	the	list	as	DEF_LIST
NAME(#empskill)	FIELDS(#skildesc)	TYPE(*working)	ENTRYS(9999))
Review	the	code	just	inserted	and	note	that	it	includes	all	the	response	logic
which	was	outlined	in	Step	5.	i.e.

BIND	to	response	service
GET	employeelist	fragment
.Loop	to	GET	employee	fragment,	GET	list	employeeskill	and	build	skills
working	list

3.	You	can	improve	this	logic	by	handling	the	condition	where	an	employee	has
no	skills.	Add	a	CONTINUE	if	JSMXSTS	=	NOLIST,	following	the	*	Get
List	–	EMPLOYEESKILL	block	of	code.	This	block	of	code	should	now
look	like	the	following:
*	Get	list	-	EMPLOYEESKILL
CHANGE					FIELD(#JSMXCMD)	TO('GET	LIST(EMPLOYEESKILL)')
USE								BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG	#EMPLOYEESKILL)
CONTINUE	IF('#JSMXSTS	*EQ	NOLIST')

4.		Your	function	currently	loops	and	retrieves	each	employee	fragment
(EMPNO	and	FULLNAME)	and	a	list	of	skills	for	that	employee.	Function
iiiFN09	needs	to	save	the	fullname	and	skills	data	into	a	second	working	list,
which	will	be	returned	to	the	calling	display	function	iiiFN10.	Add	logic
before	the	END_LOOP	to	read	the	#EMPSKILL	list	and	add	entries	to
working	list	#WL_EMPSKL.	Your	new	code	should	look	like	the	following:
SELECTLIST	NAMED(#empskill)
ADD_ENTRY	TO_LIST(#wl_empskl)
ENDSELECT

5.		Add	a	RETURN	command	after	the	JSM	CLOSE
6.		The	CHECK	subroutine	from	the	Studio	generated	code	simply	returns	to	the

menu	if	status	is	not	OK.	Replace	the	routine	with	the	following	logic,	which
will	display	messages	containing	the	JSM	status	and	the	JSM	message.	This
will	be	useful	for	testing	purposes.
*	Check	routine
SUBROUTINE	NAME(CHECK)	PARMS((#JSMXSTS	*RECEIVED)
(#JSMXMSG	*RECEIVED))
DEFINE	FIELD(#MSGDTA)	TYPE(*CHAR)	LENGTH(132)
*
IF	COND('#JSMXSTS	*NE	OK')
#MSGDTA	:=	'Error	Status	Code:	'	+	#JSMXSTS
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
#MSGDTA	:=	'Error	Message:	'	+	#JSMXMSG
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
USE	BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMXHDLE1)
TO_GET(#JSMXSTS	#JSMXMSG)
ABORT
ENDIF
*
ENDROUTINE
	

Your	completed	RDMLX	code	might	appear	as	follows:
FUNCTION	OPTIONS(*DIRECT)	RCV_LIST(#wl_empskl)
*	The	following	fields	are	used	by	the	xml	binding	map
*	#DEPTMENT
*	The	following	fragments	are	used	by	the	xml	binding	map
GROUP_BY	NAME(#DEPTREQ)	FIELDS(#DEPTMENT)
DEF_LIST	NAME(#empskill)	FIELDS(#skildesc)	TYPE(*working)
ENTRYS(9999)
DEF_LIST	NAME(#WL_EMPSKL)	FIELDS(#FULLNAME	#SKILDESC)
TYPE(*WORKING)	ENTRYS(9999)
*	Open	service
USE	BUILTIN(JSMX_OPEN)	TO_GET(#JSMXSTS	#JSMXMSG
#JSMXHDLE1)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Load	service
CHANGE	FIELD(#JSMXCMD)	TO('SERVICE_LOAD
SERVICE(HTTPOutboundXMLBindService)	TRACE(*YES)')

USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Bind	service	to	create	HTTP	request	content
CHANGE	FIELD(#JSMXCMD)	TO('BIND
SERVICE(IIIPRO07_REQUEST)	TYPE(*OUTBOUND)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Set	fragment	-	DEPARTMENTREQUEST
CHANGE	FIELD(#JSMXCMD)	TO('SET
FRAGMENT(DEPARTMENTREQUEST)
SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

*	Write	content
CHANGE	FIELD(#JSMXCMD)	TO('WRITE	INDENT(*YES)
BINDTRACE(*YES)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Send	HTTP	request	content
CHANGE	FIELD(#JSMXCMD)	TO('SEND	HOST(10.44.10.236:80)
URI(/cgi-bin/jsmdirect?IIIFN08_SERVICE)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	<<<	Inbound	binding	logic	goes	here	>>>
*	Bind	service	to	read	HTTP	request	content
CHANGE	FIELD(#JSMXCMD)	TO('BIND
SERVICE(IIIPRO07_RESPONSE)	TYPE(*INBOUND)
BINDTRACE(*YES)')

USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Get	fragment	-	EMPLOYEELIST
CHANGE	FIELD(#JSMXCMD)	TO('GET	FRAGMENT(EMPLOYEELIST)
SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	<<<	Enter	the	fragment	loop	logic	for	EMPLOYEE	>>>
BEGIN_LOOP	/*	EMPLOYEE	*/
*	Get	fragment	-	EMPLOYEE
CHANGE	FIELD(#JSMXCMD)	TO('GET	FRAGMENT(EMPLOYEE)
SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
LEAVE	IF('#JSMXSTS	*EQ	NOFRAGMENT')
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Get	list	-	EMPLOYEESKILL
CHANGE	FIELD(#JSMXCMD)	TO('GET	LIST(EMPLOYEESKILL)')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG	#EMPSKILL)
CONTINUE	IF('#JSMXSTS	*EQ	NOLIST')
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
SELECTLIST	NAMED(#empskill)
ADD_ENTRY	TO_LIST(#wl_empskl)
ENDSELECT
END_LOOP	/*	EMPLOYEE	*/
*	Close	binding
CHANGE	FIELD(#JSMXCMD)	TO('CLOSE')
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1
#JSMXCMD)	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)*	Unload	service
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1

'SERVICE_UNLOAD')	TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
*	Close	service
USE	BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMXHDLE1)
TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)
RETURN
*	Check	routine
SUBROUTINE	NAME(CHECK)	PARMS((#JSMXSTS	*RECEIVED)
(#JSMXMSG	*RECEIVED))
DEFINE	FIELD(#MSGDTA)	TYPE(*CHAR)	LENGTH(132)
*
IF	COND('#JSMXSTS	*NE	OK')
*
#MSGDTA	:=	'Error	Status	Code:	'	+	#JSMXSTS
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
#MSGDTA	:=	'Error	Message:	'	+	#JSMXMSG
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
USE	BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMXHDLE1)
TO_GET(#JSMXSTS	#JSMXMSG)ABORT
*
ENDIF
*
ENDROUTINE
	

6.		Save	and	compile	the	function	and	check	in	to	the	server.

Step	7.	Test	iiiFN08	Server	with	Client	functions
In	this	step,	you	will	use	iiiFN10	(your	user	interface)	to	invoke	iiiFN09	(your
client	function),	which	will	in	turn	send	an	XML	request	to	iiiFN08	(the	server
function)	via	the	service	you	created	in	INT008.	The	client	function	iiiFN10
will	then	process	the	server's	response	and	display	it	to	the	user.
If	you	are	using	a	JSM	Server	on	an	IBM	i,	then	you	have	two	ways	to	test	your
client	functions:

Check	the	functions	into	the	IBM	i	and	run	your	test	on	the	IBM	i
					or

Set	up	the	jsmcltdta.txt	file	to	point	to	the	JSM	Server	on	the	IBM	i.	This
file	is	located	in	your	Visual	LANSA	folder,	by	default:	C:\Program
Files\LANSA\X_WIN95\X_LANSA.	See	example:

					You	can	then	run	your	client	functions	locally	in	Windows	and	iiiFN09	will
be	using	the	JSM	Server	on	the	IBM	i.	This	arrangement	is	very	convenient
for	testing	and	using	debug.

1.		Running	as	a	Windows	application,	you	can	either	execute	the	process
iiiPRO07	or	the	display	function	iiiFN10.	In	either	case	the	process	runs	first
as	a	graphical	menu

2.		Double	click	on	Display	Department	&	Employee	Client	icon	to	run	function
iiiFN10.

3.		Enter	a	department	code	(e.g.	ADM	or	FLT,	etc)	and	hit	Enter.	A	NOLIST
message	may	be	shown	if	an	employee	with	no	skill	records	is	found.

4.		Use	the	Forward	and	Bkwd	buttons	to	browse	through	the	list	of	employees.
You	could	compare	the	results	with	the	User	Agent	test	in	INT008.

Step	8.	A	Client	Visual	Form	(optional)
If	a	Windows	form	is	required	to	serve	as	the	client	application,	this	can	easily
be	written.	It	would	also	call	the	client	RDMLX	function	iiiFN09	to	handle	the
interaction	with	the	server	function	iiiFN08.

1.		Create	a	new	basic	form	-	iiiFRM01	–	Display	Department	Employees.
Copy	the	following	code	to	replace	the	existing	form	code:
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_FORM)	Clientheight(319)
Clientwidth(492)	Height(353)	Left(337)	Top(148)
Define_Com	Class(#DEPTMENT.Visual)	Name(#DEPTMENT)
Displayposition(1)	Height(19)	Left(4)	Parent(#COM_OWNER)
Tabposition(1)	Top(8)	Usepicklist(False)	Width(201)
Define_Com	Class(#PRIM_LTVW)	Name(#LTVW_1)	Componentversion(2)
Displayposition(2)	Fullrowselect(True)	Height(249)
Keyboardpositioning(SortColumn)	Left(0)	Parent(#COM_OWNER)
Showsortarrow(True)	Tabposition(2)	Top(40)	Width(489)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_1)	Displayposition(1)
Parent(#LTVW_1)	Source(#FULLNAME)	Width(33)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_2)	Displayposition(2)
Parent(#LTVW_1)	Source(#SKILDESC)	Width(44)	Widthtype(Remainder)
Define_Com	Class(#PRIM_PHBN)	Name(#PHBN_1)	Caption('Refresh')
Displayposition(3)	Left(213)	Parent(#COM_OWNER)	Tabposition(3)	Top(8)

Define_Com	Class(#PRIM_STBR)	Name(#STBR_1)	Displayposition(4)
Height(24)	Left(0)	Messageposition(1)	Parent(#COM_OWNER)
Tabposition(4)	Tabstop(False)	Top(295)	Width(492)
Def_List	Name(#WL_EMPSKL)	Fields(#FULLNAME	#SKILDESC)
Type(*WORKING)	Entrys(9999)
Evtroutine	Handling(#com_owner.Initialize)
Set	Com(#com_owner)	Caption(*component_desc)
Endroutine

Evtroutine	Handling(#PHBN_1.Click)
Clr_List	Named(#wl_empskl)
Exchange	Fields(#deptment)
Call	Process(*direct)	Function(iiiFN09)	Pass_Lst(#WL_EMPSKL)
Clr_List	Named(#ltvw_1)
Selectlist	Named(#wl_empskl)
Add_Entry	To_List(#ltvw_1)
Endselect
Endroutine
End_Com
	

2.		Change	the	CALL	statement	to	call	your	function	iiiFN09.
3.		Compile	and	run	the	form.	You	should	either	be	using	a	local	web	server	and
JSM	Server	or	have	the	file:			jsmcltdta.txt	configured	to	point	to	the	JSM
Server	on	an	IBM	i.

Summary
Important	Observations

The	HTTPInboundXMLBindService	and	HTTPOutboundXMLBindService
can	be	used	effectively	on	opposite	sides	of	a	transaction.
The	HTTPOutboundXMLService	is	useful	when	*POSTing	content.
The	same	XML	must	be	used	to	create	both	sides	of	the	client/server
transaction.
Wherever	one	side	creates	inbound	bindings,	the	other	side	creates	outbound
bindings	(and	vice	versa).	The	same	complementary	rule	is	true	for	GET	and
SET	commands.

Tips	&	Techniques
Use	RDML	wrapper	functions	to	invoke	more	complex	RDMLX	functions
It	is	useful	to	code	each	side	of	a	client/server	interaction	separately,	but
keeping	in	mind	exactly	what	is	expected	from	each	side.

What	I	Should	Know
How	to	create	a	client-side	RDMLX	function	using
HTTPOutboundXMLBindService
How	to	code	and	understand	both	sides	of	an	XML	interaction.
How	to	test	a	server-side	function	using	a	complementary	client-side
function.

	
	

INT010A	-	SOAP	Service	-	Define	Server
There	are	three	tutorials	in	this	set	which	together,	demonstrate	how	to
implement	a	web	service	using	LANSA	Integrator	Studio.	These	tutorials	need
to	be	created	in	sequence.
These	tutorials	create	a	web	service	called	GetEmployees.

The	SOAP	Agent,	or	client,	consuming	the	GetEmployees	web	service	will
pass	a	department	and	section	to	the	server.
A	list	of	employees	for	that	department	and	section	will	be	returned	by	the
publisher,	the	SOAP	Server,	as	an	array.
If	only	a	department	is	passed,	a	list	of	employees	in	all	sections	for	that
department	will	be	returned.
If	no	department	and	section	is	provided	then	all	employees	for	the
company	will	be	returned.

To	create	the	service	as	shown	in	the	diagram	above,	you	must	complete	three
tutorials:

INT010A	-	SOAP	Service	-	Define	Server
INT010B	-	SOAP	Service	-	Define	Agent
INT010C	-	SOAP	Service	-	Test

The	Business	Logic	(program	code),	provided	for	you	in	INT010C	to	test	this
service	has	been	created	as	a	Visual	LANSA	form.	In	LANSA	it	could	also	be
written	as	a	5250	function,	or	as	a	web	application	(WAM).	You	could	also	use	a

3GL	such	as	ILE	RPG.
The	following	summarizes	the	steps	you	will	take	in	the	three	tutorials	to	build
and	test	your	SOAP	Service:

INT010A	–	SOAP	Service	–	Define	Server
Define	SOAP	Server	Types	–	the	variables	to	be	handled	by	this	service
Create	a	SOAP	Server	solution	using	the	SOAP	Server	Wizard.
Map	parameters	to	program	variables
Build	the	solution,	creates	WSDL	and	jar	file	for	iiiEmployeeServer.
The	WSDL	defines	the	GetEmployees	SOAP	service
Use	the	generated	RDMLX	to	create	function	which	supports	the
iiiEmployeeServer	service	and	add	your	business	logic
Register	the	function	as	a	JSMDIRECT	service

INT010B	–	SOAP	Service	–	Define	Agent
Create	a	new	solution	using	the	SOAP	Agent	Wizard
Define	the	SOAP	Agent	iiiEmployeeAgent	based	on	the	WSDL	created	in
INT010A
Map	parameters	to	program	variables
Build	the	solution	creates	a	jar	file,	properties	file	and	sample	RDMLX
Create	the	form	iiiFRM02	based	on	the	generated	RDMLX	and	add	your
business	logic

INT010C	–	SOAP	Service	–	Test
The	form	accepts	department	and	section	code	and	runs	the
IIIEMPLOYEEAGENT	service	on	the	server
Sets	IIIEMPLOYEEAGENT	operation	to	GETEMPLOYEES
Sets	parameters	to	program	variables
CALLs	the	service
Web	Server	invokes	JSMDIRECT	which	runs	the	function	implementing
IIIEMPLOYEESERVER
Form	receives	employees	list	and	populates	list	view	to	display	results.

Objectives:
To	create	a	SOAP	Server	Project	that	publishes	a	web	service	that	other
applications	can	use.

To	define	the	SOAP	Server	Solution	using	LANSA	Integrator	Studio.
To	create	the	Server	side	of	a	web	service	called	GetEmployees.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Create	a	New	project
Step	2.	Define	custom	SOAP	Server	Types
Step	3.	Create	a	new	SOAP	Server	Solution
Step	4.	Create	a	new	SOAP	Operation
Step	5.	Map	Parameters	to	Program	Variables
Step	6.	Build	the	SOAP	Server	Solution
Step	7.	Deploy	the	SOAP	Server	Solution
Step	8.	Create	the	SOAP	Server	Business	Logic
Summary

Step	1.	Create	a	New	project
In	this	step	you	will	use	the	LANSA	Integrator	Studio	to	create	a	new	Project	to
contain	your	SOAP	Server	Solution.
A	Project	is	simply	a	way	to	organize	your	work.	A	Project	contains	a	collection
of	files	related	to	a	particular	application	or	task	using	LANSA	Integrator.
Within	a	Project	will	be	one	or	more	Solutions.
1.		Start	LANSA	Integrator	Studio	from	the	desktop	icon.
2.		Create	a	New	Project:

a.		Display	the	Studio	Workspace	tab.
b.		Select	and	right	click	on	Projects	to	open	the	context	menu.

c.		Select	New	Project	to	open	the	LANSA	Integrator	Studio	dialog	box.
3.		Enter	the	name	of	your	new	project,	in	this	case	iii	SOAP	Tutorial	where	iii
are	your	unique	three	letters,	in	the	LANSA	Integrator	Studio	dialog	box
and	press	OK.

					A	new	tab	will	appear	at	the	bottom	of	the	studio	workspace	for	the	project.

					Notice	that	Integrator	Studio	has	assigned	a	unique	identifier	to	the	project
based	on	the	date	and	time	you	created	the	project.	This	identifier	is
important	later	when	it	comes	to	retrieving,	modifying	and	deploying	the
properties	for	the	solutions	contained	in	the	project.

Step	2.	Define	custom	SOAP	Server	Types
SOAP	Server	Types	are	user-defined	data	types	used	in	a	SOAP	server	to	define
request	and	response	parameters.	They	can	consist	of	one	or	more	elements,
each	of	which	may	be	of	a	simple	type	such	as	strings	or	numbers.
Defining	them	using	LANSA	Integrator	Studio	makes	them	independent	of	the
web	services	that	uses	them.
In	this	step	you	will	define	the	Solution	Employee	server	type	for
GetEmployees.
GetEmployees	will	return	these	four	elements:

employee	id
first	name
surname
salary.

1.		Select	the	tab	for	your	Project	in	the	LANSA	Integrator	Studio.
2.		Select	Solutions	and	right	mouse	click	to	open	the	context	menu.

3.		Select	the	SOAP	Server	types	option	from	the	menu.
					This	will	open	the	LANSA	Integrator	SOAP	Type	Editor.

4.		Right	click	in	the	empty	space	to	open	the	context	menu	and	then	select	New
Type.

					The	LANSA	Integrator	SOAP	Type	Editor	dialog	is	displayed.

5.		Enter	the	name	for	the	new	type	in	the	LANSA	Integrator	SOAP	Type	Editor
dialog	box	and	click	OK	(or	press	the	Enter	key).

6.		Now	you	must	define	the	elements	that	make	up	the	Employee	Type.

					To	define	an	element:
a.		Right	click	on	Employee	to	open	the	context	menu.
b.		Select	New	Element	from	the	context	menu.
					The	Element	dialog	box	is	opened.

	

7.		Enter	employeeId	as	the	Element	Name	of	the	first	Element.	Note	the	case
of	this	entry.	The	first	character	is	lower	case.	The	first	character	of	other
words	(in	this	case	Id)	is	upper	case.

					Select	the	Value	String	from	the	drop	down	list.
8.		Press	OK.
					The	dialog	remains	open	ready	for	you	to	enter	any	further	elements.
9.		Enter	the	second	element	in	the	same	way	as	for	employeeId:
					That	is,	firstName	with	a	Value	of	String.
10.Create	the	third	element,	the	salary	element.

					The	Value	for	salary	is	the	appropriate	numeric	type	which	is	double.
11.	Create	the	final	element,	surname	with	a	Value	of	String.
12.When	you	have	finished	adding	elements,	close	the	Element	dialog	box	by
clicking	the	Cancel	button.

					You	have	created	the	SOAP	Server	Types	necessary	to	support	your	web
service.

13.Save	the	changes	using	either	the	 	Save	button,	the	Ctrl	+	S	keys	or	Save
from	the	File	menu.

14.Close	the	LANSA	Integrator	SOAP	Type	Editor	using	Exit	from	the	File
menu	or	the	Alt	+	F4	keys.

Step	3.	Create	a	new	SOAP	Server	Solution
1.		With	your	iii	SOAP	Tutorial	project	open	in	Studio.
2.		Select	the	Solutions	folder	and	right	click	on	it	to	open	the	context	menu.

3.		Select	New	Solution	from	the	context	menu	to	open	the	New	Solution	dialog
box.

4.		In	the	New	Solution	dialog	box,	select	the	SOAP	Server	Wizard	Tool	from
the	drop-down	list.

5.		Enter	the	name	of	the	Group	to	contain	this	Solution,	in	this	case
EmployeeServer.

					If	you	had	more	than	one	group	already,	you	could	select	an	existing	Solution
Group	from	the	drop-down	list.

6.		In	File,	enter	a	name	for	the	Solution,	in	this	case	iiiEmployeeServer.	This
name	will	be	used	for	the	project	(prj)	file.	It	will	also	be	used	by	the	SOAP
Wizard	as	a	prefix	for	some	of	the	objects	that	it	generates	for	the	solution.

7.		Press	OK.

8.		Select	Yes,	to	confirm	that	the	new	solution	group	is	to	be	created.
					LANSA	Integrator	opens	the	SOAP	Wizard.
					Select	the	Configuration	tab.

					LANSA	Integrator	provides	default	values	but	you	must	change	some	of
them	to	be	specific	to	this	project	and	the	server	that	will	service	it.

9.		Change	these	values:
a.		Package	name
					This	is	the	name	that	the	SOAP	Wizard	will	use	when	generating	the	Java
implementation	files	for	your	solution	so	make	it	something	unique	to
your	solution.	For	this	tutorial,	enter	com.iiicompany.service.soap

b.		EndPoint	URL
					This	identifies	the	server	to	which	users	of	this	web	service	need	to	send
their	web	service	requests	and	it	will	be	written	into	the	WSDL	file	that
describes	this	service.

					For	this	tutorial,	if	you	are	using	an	IBM	i	JSM	Server,	then	the	server
will	be	on	the	IBM	i	and	the	client	will	be	on	your	PC.	In	this	case	the
URL	will	point	to	the	IBM	i	server's	IP	address.	For	example:
http://10.44.10.236:80/cgi-bin/jsmdirect?iiiemployeeserver

					If	you	are	using	a	local	Windows	web	server	and	JSM	Server,	your	URL
may	look	like	this:
http://localhost/cgi-bin/jsmdirect.exe?iiiemployeeserver

					In	this	case	your	client	and	server	will	both	be	running	locally.
c.		Save	your	changes.	Do	not	close	the	SOAP	Wizard.

Step	4.	Create	a	new	SOAP	Operation
In	this	step	you	will	create	the	SOAP	Operation	for	your	web	service,
GetEmployees,	and	define	its	Inbound	and	Outbound	parameters.
Remember	that	GetEmployees	will	receive	parameters	that	specify	a
department	code	and	section	code	and	will	return	a	list	or	array	of	details	for	all
the	employees	in	that	department	and	section.
1.		Select	the	Operations	tab	of	the	SOAP	Wizard.
2.		Right	click	in	the	Operations	panel	to	open	the	context	menu.

3.		Select	New	Operation	from	the	context	menu.

4.		In	the	resulting	dialog,	enter	the	Operation	Name,	getEmployees	and	click
OK.

5.		Now	you	will	define	the	Inbound	parameters.	To	do	so:
a.		Right	click	on	the	getEmployees	Operation	to	open	the	context	menu.
b.		Select	New	Parameter	from	the	context	menu.

c.		Select	the	type	for	the	parameter,	in	this	case,	a	String.
6.		In	the	resulting	dialog,	enter	the	Parameter	name,	in	this	case
departmentCode	and	click	OK.

7.		Now	repeat	the	same	sequence	for	the	remaining	inbound	parameter
sectionCode,	which	is	also	a	String	and	click	OK.

8.		Define	the	return	or	Outbound	parameter.	This	follows	a	similar	procedure
to	the	Inbound	parameters.
a.		Right	click	on	GetEmployees	to	open	the	context	menu.

b.		Select	Set	Return	Parameter	from	the	context	menu	and	select	Server
Types...	from	the	sub	menu.

					Server	Types	is	selected	because	your	return	parameter	is	going	to	be	the
Server	Type	you	created	in	Step	2.	Define	custom	SOAP	Server	Types.

9.		In	the	Server	Types	dialog	box,	there	are	two	entries	for	your	Employee
Server	Type.	The	first	one	represents	a	single	instance	of	Employee.	The
second	one	with	[...]	represents	an	array	of	Employees.

					Because	you	are	returning	an	array	of	employees,	select	Employee	[...]	and
click	OK.

					You	are	returned	to	Operations	tab	of	the	SOAP	Wizard	where	you	can	see
the	inbound	and	outbound	parameters	that	you	have	defined.	If	you	expand

the	entries	in	the	Employee	return	parameter	you	will	see	the	elements	that
make	up	the	Employee	server	type.

					You	have	now	defined	your	SOAP	Operation	and	its	parameters.
					When	you	define	your	own	web	services,	you	will	probably	define	more	than
one	SOAP	Operation,	but	you	will	only	create	one	for	this	tutorial.

10.Save	your	changes.

Step	5.	Map	Parameters	to	Program	Variables
In	this	step,	you	will	map	the	web	service	Inbound	and	Outbound	Parameters
you	created	in	Step	4.	Create	a	new	SOAP	Operation,	to	the	program	variable
names	that	you	will	use	in	the	program	that	implements	this	web	service.
1.		Map	the	Inbound	parameters:

a.		Select	and	right	click	on	the	departmentCode	to	open	the	context	menu.

b.		Select	Field	from	the	context	menu	to	open	the	Field	Attributes	dialog
box.

c.		In	the	Field	Attributes	dialog	box	enter	the	corresponding	program
variable	name,	in	this	case	DEPTMENT,	and	click	OK.	Leave	Format
blank.

					The	mapped	program	variable	names	you	entered	are	shown	in	brackets	after
the	parameter	name.	Note	that	the	icon	has	changed	to	indicate	that	this
parameter	is	mapped.

2.		Repeat	this	procedure	for	the	second	Inbound	parameter,	sectionCode.	Select
Field	from	the	context	menu	and	map	to	the	program	variable	name
SECTION.

					Note	how	the	variable	name	is	shown	with	the	parameter	name	and	that	the
icon	has	changed.

3.		Map	the	Return	or	Outbound	parameter.	Because	the	return	parameter	is	a
complex	type,	the	procedure	is	slightly	different:
a.		Select	and	right	click	the	Employee	parameter	to	open	the	context	menu.

b.		Select	Fragment	from	the	context	menu.	This	option	allows	you	to
receive	all	the	elements	of	Employee	in	a	single	call.

c.		In	the	resulting	dialog,	Fragment	Attributes,	enter	the	name	you	wish	to
give	to	the	Fragment,	in	this	case,	EMPLOYEE.

d.		Click	OK	to	confirm	this	assignment.

					The	mapped	fragment	name	is	now	shown	beside	the	Employee	return
parameter,	and	the	icon	has	changed.	In	this	case,	the	icon	has	changed	for	all
the	elements	of	employee	because	when	you	marked	Employee	as	a
fragment,	LANSA	Integrator	assumed	that	all	the	elements	would	be	mapped
to	fields.	All	that	remains	to	be	done	is	to	assign	the	program	variable	names
to	the	elements	within	Employee.

4.		Complete	the	mapping	for	the	outbound	elements	in	Employee:
a.		Select	and	right	click	the	employeeId	element	to	open	the	context	menu.
b.		Select	Edit	from	the	context	menu.

c.		Enter	the	program	variable	name,	EMPNO,	in	the	Field	Attributes	dialog
box	and	click	OK.

d.		Now	you	can	repeat	the	procedure	for	the	remaining	elements:

element program	variable

firstName GIVENAME

salary SALARY

surname SURNAME

	

					The	mapping	is	now	complete.	Your	window	should	look	like	the	one	in	the
screen	capture	following.

5.		Save	your	changes.

Step	6.	Build	the	SOAP	Server	Solution
In	this	step	you	will	build	the	SOAP	Server	solution	and	then	review	the	files
that	LANSA	Integrator	has	generated.
1.		Build	the	solution:

a.		Check	(i.e.	P)	the	box	beside	the	Operations	to	be	included	in	the	build.	In
this	case,	you	will	tick	the	box	next	to	the	getEmployees	Operation.

b.		Select	the	 	Build	button	on	the	toolbar	to	start	the	build.
					When	the	build	has	been	completed,	this	message	is	displayed.

c.		Click	OK	to	continue.

2.		Save	 	your	new	Solution	and	OK	at	the	confirm	dialog.
3.		Exit	the	SOAP	Wizard.
					You	are	returned	to	the	iii	SOAP	Tutorial	Project	tab	in	the	LANSA
Integrator	Studio.

4.		Expand	the	Project's	Solutions	folder	so	that	you	can	see	the	files	that
LANSA	Integrator	has	generated.

The	files	that	have	been	generated	are:
A	jar	file,	iiiEmployeeServer.soap.jar
This	file	contains	the	compiled	classes,	ready	for	you	to	deploy	to	the	server.
A	project	(prj)	file,	iiiEmployeeServer.soap.prj.	
If	you	need	to	use	the	SOAP	Wizard	again	to	revise	what	you	have	done,
you	will	open	it	using	this	prj	file.
The	Web	Service	Definition	Language	file	(wsdl),	IiiEmployeeService.wsdl
This	file	describes	this	web	service	in	a	common	XML	format	which	enables
any	application	to	use	this	web	service.	You	will	need	the	file	name	and	path
of	this	file	in	Step	7.	Deploy	the	SOAP	Server	Solution.
A	properties	file,	SOAPServerService.properties
You	will	deploy	this	file	to	the	web	server	in	order	to	fully	enable	this	web
service.
Other	files	consisting	of	some	sample	generated	RDML	and	RDMLX	code
for	an	application	that	implements	this	web	service	and	trace	and	log	files.

Step	7.	Deploy	the	SOAP	Server	Solution

You	need	a	server	in	order	to	complete	this	step.	If	a	server	is	not
available,	you	can	complete	this	step,	except	for	Publishing	the	files.

In	the	preceding	step,	you	built	the	files	for	the	SOAP	Server	Solution	in	your
development	environment.	They	now	need	to	be	moved,	or	deployed,	to	the
JSM	Server.
For	this	tutorial,	in	Part	A.	Publish	Files	you	will:

Publish	the	SOAPServerService.properties	file	to	associate	your
solution	with	the	generated	java	classes	that	implement	it.
Publish	the	Java	classes	that	are	in	the	iiiEmployeeServer.SOAP.jar	file.

In	Part	B.	Define	Service	entry	you	will:
Create	the	JSMDirect	Service	entry	that	will	associate	the	web	service
name	with	the	business	logic	that	implements	it.

Note:	If	a	service	is	to	be	accessed	by	external	parties,	you	would	also	need	to
deploy	the	WSDL	file	that	describes	the	service.

Part	A.	Publish	Files
In	these	next	steps,	you	will	move	the	properties	file	to	Integrator	and	then	to
the	JSM	server.
1.		Display	the	Project	tab	for	your	project	in	the	LANSA	Integrator	Studio.
					So	that	you	can	see	your	project's	files,	expand	the	Solutions	folder,	then
expand	the	EmployeeServer	folder.

2.		Copy	the	properties	file	to	the	Integrator	project	folder.	To	do	this:
a.		Highlight	and	right	click	the	SOAPServerService.properties	file	to	open
the	context	menu.

b.		Select	Send	To	and	then	IntegratorFolder	from	the	context	menu.
3.		Copy	the	jar	file	to	the	Integrator	project	folder.	To	do	this:

a.		Highlight	the	iiiEmployeeServer.SOAP.jar	file	to	open	the	context
menu.

b.		Select	Send	To	and	then	Integrator	Folder	from	the	context	menu.
4.		Contract	the	Solutions	folder	and	expand	the	Integrator	folder.
					Note	the	location	of	your	Solution	files	in	the	Integrator	project	folder

5.		From	your	project	tab	in	Studio,	open	your	server	instance	so	that	you	can
move	the	properties	and	jar	files	to	it.
a.		Your	server	will	already	be	defined	from	earlier	exercises	in	this	course.

Your	course	may	be	using	an	IBM	i	JSM	Server,	in	which	case	the
definition	will	look	similar	to	the	following:

		

b.		If	you	are	using	a	local	web	server	and	JSM	Server,	your	server	definition
will	look	like	the	following:

c.		Select	the	appropriate	server	and	use	the	right	mouse	menu	to	Open
Server.

d.		Your	Project	tab	will	now	show	both	your	local	files	and	the	JSM	server's
files.

6.		Move	the	jar	file	to	the	JSM	server:
a.		Highlight	the	jar	file	in	the	Integrator	/	jar	/	pending	folder	of	the	Project
panel

b.		Right	click	to	open	the	context	menu.
c.		Select	Publish	File	from	the	context	menu,	and	select	Yes	in	the	confirm
dialog

					You	will	now	see	the	jar	files	in	the	jar	/	pending	folder	of	the	JSM
server.

7.		Move	the	properties	file	to	the	JSM	server.
a.		Highlight	the	properties	file	in	the	properties	folder	of	the	Project	pane.
b.		Right	click	to	open	the	context	menu.
c.		Select	Publish	Section	from	the	context	menu,	and	select	Yes	in	the
Confirm	dialog.

					Your	properties	file	is	used	to	add	a	section	to	the	SOAPServerService
properties	file	on	the	server.

8.		You	must	re-start	the	JSM	Server	to	move	the	jar	file	out	of	the	pending
folder.

					To	do	this:

a.		Highlight	the	Instance	folder	in	the	JSM	server	pane
b.		Right	click	in	open	the	context	menu.
c.		Select	Shutdown	and	then	Reboot	from	the	context	menu.

9.		When	the	reboot	has	been	completed,	press	F5	to	refresh	the	screen.	You	will
see	that	the	jar	files	are	no	longer	in	the	jar	/	pending	folder	of	the	JSM	server
pane.

Part	B.	Define	Service	entry
You	need	to	create	a	service	entry	that	tells	JSMDirect	which	LANSA	function
or	other	program	is	used	to	process	web	service	requests	for	the	web	service	you
have	defined.
1.		Switch	to	the	Studio	Workspace	tab	of	the	LANSA	Integrator	Studio.
2.		Expand	the	Services	folder.	You	will	have	defined	your	Service	entry	in	an
earlier	exercise.

3.		Select	and	right	click	on	the	required	Service	to	open	the	context	menu.

4.		Choose	Open	Service	from	the	context	menu.
					This	opens	the	Direct	Services	tab	which	shows	the	current	entries	in	table
DC@W29	for	an	IBM	i	JSM	Server	or	file	DC_W29.txt	for	a	Windows	JSM
Server.

5.		You	need	to	create	a	new	entry	so	right	click	in	the	empty	space	…	and
choose	New	from	the	context	menu	to	open	the	Direct	Service	Editor.

6.		In	the	Direct	Service	Editor,	complete	the	details	for	your	service	entry	that
will	connect	your	web	service.	For	this	tutorial,	enter:

Service IIIEMPLOYEESERVER
Host *DEFAULT
Process IIIPRO08
Function IIIFN11
Partition DEM
Language ENG
Program Leave	blank.	Required	if	a	3GL	program	is	used	for	the	business

function.
WSDL Leave	blank	in	this	case	(no	external	users)

	

Select	the	RDMLX	checkbox.	iiiFN11	will	be	an	RDMLX	function	and	can	be
executed	by	X_RUN.

7.		When	complete,	press	OK	to	save	the	Service	entry	details.
8.		Press	OK	again.

					You	will	be	returned	to	the	Direct	Services	tab	where	you	will	see	your
Services	entry	in	the	JSMDirect	Services	list.

9.		Close	the	Direct	Services	tab	by	right	clicking	and	selecting	Close	from	the
context	menu

You	have	completed	the	building	of	your	LANSA	Integrator	SOAP
server	solution.	What	you	have	built	and	LANSA	Integrator	has
generated,	is	the	code	necessary	to	handle	all	the	protocol	and	format
details	to	receive	and	respond	to	web	service	requests,	to	unwrap	and
extract	the	parameters	and	to	build	the	SOAP	response.	You	will	now
build	the	business	logic	to	support	it.

Step	8.	Create	the	SOAP	Server	Business	Logic
Before	you	can	test	or	use	your	SOAP	Server	solution,	you	need	to	create	the
business	logic	that	supports	it.	That	is,	a	function	to	receive	a	request	with
department	code	and	section	code	parameters	and	to	build	the	Employee	return
parameter	which	contains	the	requested	employee	details.
You	do	not	need	to	concern	yourself	with	the	communication	details	as	LANSA
Integrator	and	the	SOAP	Wizard	has	generated	the	files	which	implement	that.
Following	is	an	outline	of	the	code's	functionality	using	the	LANSA	RDMLX
code	generated	by	Integrator	Studio	as
SAMPLE_RDMLX_GETEMPLOYEES.txt.	Note	that	this	program	could
alternatively	have	been	coded	as	an	RDML	function	or	as	an	ILE	RPG	program.
Integrator	Studio	also	generates	an	RPG	and	an	RDML	example.
1.		The	first	steps	are	to	create	a	connection	to	the	JSM	server	and	to	load	the
SOAP	Server	service.	This	is	accomplished	using	the	JSMX_OPEN	Built-In
Function	and	the	SERVICE_LOAD	service	command.

2.		The	function	opens	the	service	iiiEMPLOYEESERVER	and	gets	the	object
*OPERATION.	It	closes	with	an	error	if	the	operation	was	not
GETEMPLOYEES.	Bear	in	mind	that	you	could	develop	a	function	to	handle
more	than	one	SOAP	operation.	If	the	GetEmployees	service	operation	was
requested,	then	the	processing	proceeds.

3.		The	program	uses	the	GET	PARAMETER	service	command	to	retrieve	the
values	that	were	received	for	the	department	code	and	the	section	code.	You
will	remember	that	in	Step	5.	Map	Parameters	to	Program	Variables	you
mapped	these	parameters	to	program	variable	names,	so	this	call	will
automatically	populate	those	variables.

4.		The	program	tells	the	SOAP	service	that	it	is	beginning	to	build	the	SOAP
response.	This	is	accomplished	using	the	SET	PARAMETER(*RETURN)
service	command.

					The	generated	code	contains	a	loop	since	it	is	aware	that	the	details	of	each
employee	will	be	passed	as	a	fragment.	This	is	the	code	you	need	to	modify
to	add	the	required	logic	to	read	employee	details	from	the	employee	file.

					Remember	that	the	employee	id,	first	name,	surname	and	salary	fields
are	already	mapped	to	the	elements	of	the	Employee	return	parameter.

5.		Finally,	the	program	cleans	up	by	closing	the	EmployeeServer	solution	and
closing	the	connection	to	the	JSM	server.	This	will	cause	the	SOAP	Server
service	to	send	the	SOAP	response	using	the	data	the	program	has	provided.

6.		Using	the	LANSA	Editor,	create	a	new	process	iiiPRO08	–	SOAP	Server
and	an	RDMLX	function	iiiFN11	–	Get	Employees	Server,	belonging	to	it.
With	your	iii	SOAP	Tutorial	project	open	in	Integrator	Studio,	open	the
generated	RDMLX	for	the	EmployeeServer	service	and	copy	it	into	your
function	(replacing	existing	code).

As	previously,	the	changes	you	need	to	make	are	very	straightforward.
Replace	the	BEGIN_LOOP	/	END_LOOP	with	a	SELECT/ENDSELECT
loop,	to	retrieve	the	required	fields	from	the	file	PSLMST	using	the	correct
logical	view.	Your	code	should	look	like	the	following:

Because	of	the	JSMDirect	service	entry	you	created	in	in	Step	7,	Part	B.
Define	Service	entry,	this	function	will	be	automatically	invoked	by
JSMDirect	when	it	receives	a	matching	web	service	request.
The	name	of	the	process	and	function	must	be	the	same	as	that	entered	in	the
Direct	Service	entry.

7.Locate	the	following	code	and	change	the	service	name	using	your	initials:
*	Open	SOAP	service
Change	Field(#JSMXCMD)	To('OPEN	SERVICE(IIIEMPLOYEESERVER)')

8.		Compile	your	function.	If	you	are	using	an	IBM	i	server,	check	in	to	the
server	and	compile.

	

Summary
Important	Observations

Knowledge	of	web	service	standards	or	protocols	were	not	needed	to	create
this	SOAP	Server.
Business	logic	to	process	the	SOAP	Service	can	be	created	using	either
LANSA's	RDML,	RDMLX	functions	or	a	3GL	such	as	ILE	RPG.

What	I	Should	Know
The	essential	steps	necessary	to	use	LANSA	Integrator	Studio	to	create	a
SOAP	Server	solution	that	can	call	or	consume	a	web	service,	either	local	or
non-local.
That	LANSA	Integrator	generates	components	that	handle	the	complexities
of	web	services	standards	and	protocols.
How	to	create	a	LANSA	function	that	is	called	as	a		SOAP	Server	web
service.

INT010B	-	SOAP	Service	-	Define	Agent
There	are	three	tutorials	in	this	set	which	show	you	how	to	implement	a	web
service	using	LANSA	Integrator	Studio.
The	web	service	created	in	these	tutorials	is	called	GetEmployees.

The	SOAP	Agent	consuming	the	GetEmployees	web	service	will	pass	a
department	and	section	to	the	server.	A	list	of	employees	for	that	department
and	section	will	be	returned	by	the	publisher,	the	SOAP	Server,	as	an	array.	If
only	a	department	is	passed,	a	list	of	employees	in	all	sections	for	that
department	will	be	returned.	If	no	department	and	section	is	provided	then	all
employees	for	the	company	will	be	returned.	The	SOAP	Agent	program	created
to	test	this	web	service	uses	Visual	LANSA,	but	it	could	be	created	using	a	3GL
such	as	ILE	RPG	equally	well.
To	create	the	service	as	shown	in	the	diagram	above,	you	must	also	complete
this	tutorial:

INT010A	-	SOAP	Service	-	Define	Server
To	test	the	service,	you	must	complete:

INT010C	-	SOAP	Service	-	Test

Objectives
To	create	the	Agent	side	of	a	web	service	called	GetEmployees.	In	this	case,
the	web	service	will	be	the	SOAP	Server	created	in	Step	8.Create	the	SOAP
Server	Business	Logic.
To	define	the	SOAP	Agent	Solution	using	LANSA	Integrator	Studio.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Create	a	New	Agent	Solution
Step	2.	Map	Parameters	to	Program	Variables
Step	3.	Build	the	SOAP	Agent	Solution
Step	4.	Deploy	the	SOAP	Agent	solution
Step	5.	Review	required	Program	to	use	the	SOAP	Agent	Solution
Step	6.	Create	form	iiiFRM02	-	Get	Employees	using	SOAP

Step	1.	Create	a	New	Agent	Solution
In	this	step	you	will	use	the	LANSA	Integrator	Studio	to	create	a	new	Solution
in	the	Project	that	was	created	for	the	SOAP	Server	in	INT010A	–	SOAP
Service	–	Define	Server.	The	new	solution	will	hold	the	SOAP	Agent	details.
1.		With	your	iii	SOAP	Server	project	open	in	Studio.
2.		Select	Solutions,	and	select	New	Solution	from	the	context	menu	to	open	the
New	Solution	dialog	box.

3.		In	the	New	Solutions	dialog	box:
a.		Select	the	SOAP	Agent	Wizard	as	the	Tool	from	the	dropdown	list.

b.		Enter	the	name	of	the	Group	which	is	to	contain	this	solution,	in	this	case
EmployeeAgent.	You	could	select	from	an	existing	Group	from	the
dropdown	list.

c.		Enter	the	name	for	the	solution	in	File,	in	this	case	iiiEmployeeAgent.
This	name	will	be	used	for	the	Project	File.	It	will	also	be	used	by	the
SOAP	Wizard	as	a	prefix	for	some	of	the	objects	that	it	generates	to
support	the	solution.

6.		Confirm	that	the	new	Solution	Group	is	to	be	created

					LANSA	Integrator	then	displays	the	New	SOAP	Agent	Project	dialog	box.

WSDL	Source	The	fundamental	pre-requisite	for	any	SOAP	Agent	Project	is	to
have	the	WSDL	file	that	describes	the	web	service	you	want	to	use.	
WSDL	stands	for	Web	Services	Description	Language	and	is	a	universal
language	used	to	describe	a	web	service.	
The	file,	or	its	location,	is	provided	by	the	organization	that	publishes	the	web
service.	In	this	case,	the	WSDL	file	was	created	in	INT010A	–	SOAP	Server	–
Define	Server.
7.		Locate	the	WSDL	Source	file.

a.		Click	the	Browse	button	of	the	New	SOAP	Agent	Project	dialog	box.
					The	Select	WSDL	dialog	is	opened.

b.		If	you	know	the	WSDL	file's	path	and	name,	enter	it	here	otherwise	press
the	Browse	button	to	search	for	it.

					The	WSDL	file	will	be	in	the	Solutions	/	EmployeeServer	folder.

c.		Select	the	WSDL	file	and	click	the	Open	button.	You	are	returned	to	the
Select	WSDL	dialog	box.

d.		Click	OK.
					You	are	returned	to	the	New	SOAP	Agent	Project	dialog	where	the	WSDL
Source	file's	path	and	file	name	will	be	displayed.

8.		Click	OK	to	return	to	the	LANSA	Integrator	SOAP	Wizard.

					LANSA	Integrator	has	filled	in	the	fields	of	the	SOAP	Wizard	dialog	with
default	values.

9.		Change	the	Package	name.
					The	Package	name	is	the	name	that	the	SOAP	Wizard	will	use	when
generating	the	Java	implementation	files	for	your	solution,	so	you	need	to
make	it	unique	to	your	company.	For	this	exercise	use
com.iiicompany.service.soap.

10.Save	your	changes	and	leave	the	SOAP	Wizard	open.
Proceed	to	Step	2.	Map	Parameters	to	Program	Variables.

Step	2.	Map	Parameters	to	Program	Variables
In	this	step	you	will	map	the	Outbound	and	Inbound	parameters	to	the	program
variable	names	that	you	will	use	in	the	business	logic	that	calls	this	web	service.
The	Inbound	and	Outbound	parameters	are	obtained	from	the	WSDL	file	you
located	in	the	previous	step.
1.		Switch	to	the	Operations	tab	of	the	SOAP	Wizard.
					In	the	Operations	tab,	the	left-hand	panel	shows	the	names	of	the	web
service	operations	that	are	defined	in	the	WSDL	file	which	you	located	in
Step	1.	Create	a	New	Agent	Solution.

2.		Tick	(P)	the	box	of	the	Operation	that	you	wish	to	use.	In	this	case	it	is
getEmployees.

					Once	ticked	and	selected,	you	will	see	the	Inbound	and	Outbound	parameters
you	defined	in	Step	4.	Create	a	new	SOAP	Operation	in	INT010A.

3.		Map	the	Parameters(Outbound).	These	parameters	are	mapped	in	exactly	the
same	way	as	used	to	map	the	parameters	for	EmployeeServer.	That	is:
a.		Select	and	right	click	the	departmentCode	to	open	the	context	menu.

b.		Select	Field	from	the	context	menu.	The	Field	Attributes	dialog	box	is
opened.

c.		In	the	Field	Attributes	dialog	box,	enter	the	corresponding	program
variable	name,	DEPTMENT	and	press	OK.

4.		Repeat	for	the	sectionCode	Outbound	parameter,	mapping	it	to	program
variable	SECTION.

					The	mapped	program	variable	name	is	now	in	brackets	following	the
parameter	name.

					The	icon	has	changed	to	indicate	that	the	parameter	is	mapped.

Tip:	Instead	of	right	clicking	and	selecting	your	action	from	the
context	menu,	you	can	press	Enter	to	open	whichever	parameter	is
highlighted.	Use	the	Arrow	keys	to	move	up	and	down	the	list.

5.		Map	the	Return	(Inbound)	parameters.	This	parameter	is	a	complex	type	and
because	of	this,	is	handled	slightly	differently	to	the	Outbound	Parameters.
a.		Select	and	right	click	the	Employee[...]	to	display	the	context	menu.

b.		Select	Fragment	from	the	context	menu.	This	option	allows	all	the
elements	of	Employee	to	be	received	in	a	single	call.

c.		In	the	Fragment	Attributes	dialog,	enter	the	name	of	the	Fragment,	in	this
case,	it	is	RESPONSE.

d.		Press	OK	to	confirm	this	assignment.

					Again	you	can	see	the	mapped	fragment	name	shown	beside	the
Employee	Return	parameter,	and	that	the	icon	has	changed.	In	this	case,
the	icon	has	changed	for	all	the	elements	of	employee	because	when	you
marked	Employee	as	a	Fragment,	LANSA	Integrator	assumed	that	all	the
elements	would	be	mapped	to	fields.

6.		You	must	now	map	each	of	the	fields	in	the	response.
a.		Right	click	on	employeeId	to	open	the	context	menu.

b.		Select	Edit	from	the	context	menu	to	open	the	Field	Attributes	dialog	box.

c.		Enter	the	Name,	in	this	case,	EMPNO.
d.		Leave	Format	blank	and	Press	OK.

7.		Map	each	Inbound	field	to	the	relevant	program	variable	using	these
program	variable	names:

Inbound Program	variable	name
firstName GIVENAME
salary SALARY
surname SURNAME

	

					Note	that	the	program	variable	used	by	the	Agent	program	will	not	normally
be	the	same	as	the	name	used	for	the	server's	program.

8.		When	you	have	assigned	all	the	Inbound	fields,	Save	your	work	by	either
pressing	the	Save	 	button,	pressing	the	Ctrl	+	S	keys	or	use	Save	from	the
File	menu.

Step	3.	Build	the	SOAP	Agent	Solution
In	this	step	you	will	build	the	SOAP	Agent	solution	and	then	review	the	files
that	LANSA	Integrator	has	generated.

1.		With	the	Operations	tab	still	displayed,	click	the	 	Build	button	on	the
toolbar.

					When	the	build	has	been	completed,	the	following	message	is	displayed.

2.		Click	OK	to	continue.
3.		Exit	the	SOAP	Wizard.
					You	are	returned	to	the	LANSA	Integrator	Studio.	The	Project	tab	for	your
SOAP	Agent	project	is	displayed.

4.		Expand	the	project	Solutions	folder	so	that	you	can	see	the	contents	of	the

EmployeeAgent	Solution.
5.		Expand	the	EmployeeAgent	folder.
					Some	of	the	files	that	the	LANSA	Integrator	SOAP	Wizard	has	generated	for
your	Project:

A	jar	file	containing	the	compiled	classes,	ready	for	you	to	deploy	to	the
web	server.
A	prj	(project)	file	that	you	will	open	if	you	need	to	use	the	SOAP	Wizard
again	to	revise	what	you	have	done.
A	properties	file	that	you	will	need	to	deploy	to	the	web	server	to	enable
applications	to	call	this	web	service	through	your	SOAP	Agent	service.
Other	files	containing	some	sample	generated	RDML	code	for	an
application	that	uses	this	web	service	and	trace	and	log	files.

Step	4.	Deploy	the	SOAP	Agent	solution

You	need	a	server	in	order	to	complete	this	step.	If	a	server	is	not
available,	you	can	complete	this	step	except	for	Publishing	the	files.

You	have	built	the	SOAP	Agent	solution	in	your	development	environment.
Now	you	need	to	deploy,	or	publish,	these	two	generated	files	to	the	server:

iiiEmployeeAgent.soap.jar	file
SOAPAgentService.properties	file

The	SOAP	Agent	service	is	handled	like	the	other	Integrator	services	which	you
have	already	implemented	in	this	workshop.	When	you	publish	your	SOAP
Agent	files,	they	are	moved	to	the	Bindings	folder	and	you	will	NOT	need	to
reboot	the	JSM	Server	to	run	them.
1.		Display	the	Project	tab	in	the	LANSA	Integrator	studio.
2.		Expand	the	EmployeeAgent	folder.
3.		Right	click	the	iiiEmployeeAgent.SOAP.jar	file	to	open	the	context	menu.
4.		From	the	context	menu,	select	Send	To	and	then	Integrator	Folder.	Your	file
will	be	moved	to	the	bindings	folder	of	the	Project.

5.		Right	click	on	the	SOAPAgentService.properties	file	to	open	the	context
menu.

6.		From	the	context	menu,	select	Send	To	and	then	Integrator	Folder.
					Both	of	your	files	are	now	in	a	folder	in	the	Project	/	Integrator	folder.
7.		Contract	your	Solutions	folder	and	expand	the	Integrator	folder	until	you	can
see	the	jar	file	in	the	bindings	folder	and	the	properties	file	that	you	have
just	moved	to	the	properties	folder.

8.		Now	you	must	Publish	your	files	(that	is,	move	them	to	the	required	JSM
server).	If	necessary,	in	your	Project	tab,	open	the	Server	you	are	using,	so
that	the	server	instance	is	shown	in	the	right	hand	pane.

9.		Move	the	jar	and	properties	files	from	your	local	folder	to	the	JSM	Server's
folder.

a.		Select	and	right	click	the	iiiEmployeeAgent.soap.jar	file	in	the
bindings	folder	to	open	the	context	menu.

b.		Select	Publish	File	from	the	context	menu.
					Your	jar	file	is	now	moved	to	the	JSM	server's	bindings	folder.
c.		Right	click	on	the	SOAPAgentService	.properties	file	in	the	Integrator	/
Properties	folder	to	open	the	context	menu.

d.		Choose	Publish	Section	from	the	context	menu.
		Your	properties	file	is	used	to	add	a	section	to	the	SOAPAgentService
properties	file	on	the	server.

	

Step	5.	Review	required	Program	to	use	the	SOAP	Agent	Solution
In	this	step,	you	will	create	the	application	program	that	calls	the	web	service
using	your	SOAP	Agent	solution.
There	are	two	parts	to	the	Agent	solution:

The	user	based	visual	form	which	implements	the	getEmployees	SOAP
Service	application,	from	the	code	example	supplied	in	Step	6.	Create	form
iiiFRM02	-	Get	Employees	using	SOAP
The	RDMLX	code	generated	by	Integrator	Studio	for	the	EmployeeAgent
Solution
The	code	example	is	generated	as	a	LANSA	function.	You	will	use	the
RDMLX	version	SAMPLE_RDMLX_GETEMPLOYEES.TXT.	You	could
write	your	own	if	appropriate.
Use	the	generated	code,	by	copying	most	of	it	to	the	Push	Button	Click	event
routine	in	the	visual	form.

Following	is	a	brief	description	of	the	essential	steps	necessary	for	this	click
event	handler	to	issue	the	web	service	request	and	receive	the	results.
The	first	thing	to	note	is	that	the	LANSA	form	communicates	with	the	LANSA
Integrator	SOAP	service	using	Built-In	Functions	specially	designed	for	the
purpose.
1.		The	first	steps	are	to	ready	the	program	for	calling	the	Web	Service	by
opening	a	Java	Service	Manager	connection	and	loading	the	SOAPAgent
service.	The	EMPLOYEEAGENT	SOAP	Agent	solution	that	you	have	built
in	this	tutorial,	is	then	loaded.

2.		The	next	step	calls	the	GetEmployees	operation	of	the	web	service.	The	two
SET	PARAMETER	commands	"bind"	the	program	variables	to	the
parameters	for	the	operation.	At	this	point,	the	user	must	have	input	these
values.	In	your	form	example,	the	user	enters	the	field	value(s)	and	clicks	the
Get	Employees	button,	which	executes	this	event	routine.

					The	LANSA	Integrator	Java	Service	Manager	has	access	to	the	variables	in
the	LANSA	program	by	means	of	the	SERVICE_EXCHANGE(*FIELD)
keyword.	It	then	knows	which	program	field	to	map	to	each	parameter	by
means	of	the	mappings	that	you	specified	earlier	in	the	SOAP	Wizard.

3.		In	the	third	step,	the	program	calls	the	web	service	operation,	waits	for	the
response	and	checks	for	a	null	response.

4.		The	fourth	step	in	the	generated	code	is	incomplete.	Here	you	will	add	the
business	logic.	At	the	moment	the	program	loops,	retrieving	the	RESPONSE
fragment	until	the	status	(JSMXSTS)	is	NOFRAGMENT.

5.		Finally,	the	logic	which	will	form	your	click	event,	cleans	up	by	closing	the
EmployeeAgent	solution,	unloading	the	SOAP	Agent	service	and	closing	the
connection	to	the	JSM	server.

Step	6.	Create	form	iiiFRM02	-	Get	Employees	using	SOAP
This	is	a	very	simple	form	into	which	the	user	enters	a	department	and	section
code	and	clicks	a	button	labelled	Get	Employees.
The	program	then	displays	a	list	of	employees	for	that	department	and	section.
The	visual	design	of	the	form	is	as	follows:

1.		In	the	LANSA	Editor,	from	the	File	menu,	create	New	/	Basic	Form,	
iiiFRM02	–	Get	Employees	using	SOAP.	Create	the	form	as	RDMLX
enabled.

					Copy	and	paste	the	following	code	into	the	form:
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_FORM)	Clientheight(460)
Clientwidth(476)	Height(494)	Left(261)	Top(120)	Width(484)
Define	Field(#MSGDTA)	Type(*CHAR)	Length(132)
Override	Field(#empno)
Override	Field(#surname)
Override	Field(#givename)
Override	Field(#salary)
Define_Com	Class(#DEPTMENT.Visual)	Name(#IN_DEPT)
Displayposition(1)	Height(19)	Left(7)	Parent(#COM_OWNER)
Tabposition(1)	Top(21)	Usepicklist(False)	Width(201)
Define_Com	Class(#SECTION.Visual)	Name(#IN_SECT)	Displayposition(2)
Height(19)	Left(7)	Parent(#COM_OWNER)	Tabposition(2)	Top(48)
Usepicklist(False)	Width(185)

Define_Com	Class(#PRIM_PHBN)	Name(#phbnGetEmployees)	Caption('Get
Employees')	Displayposition(3)	Left(240)	Parent(#COM_OWNER)
Tabposition(3)	Top(45)	Width(225)
Define_Com	Class(#PRIM_LTVW)	Name(#empList)	Componentversion(2)
Displayposition(4)	Fullrowselect(True)	Height(345)	Left(7)
Parent(#COM_OWNER)	Showsortarrow(True)	Tabposition(4)	Top(88)
Width(461)
Define_Com	Class(#PRIM_LVCL)	Name(#empList_1)	Caption('Code')
Captiontype(Caption)	Displayposition(1)	Parent(#empList)	Source(#EMPNO)
Define_Com	Class(#PRIM_LVCL)	Name(#empList_2)	Caption('Surname')
Captiontype(Caption)	Displayposition(2)	Parent(#empList)
Source(#SURNAME)	Width(24)
Define_Com	Class(#PRIM_LVCL)	Name(#empList_3)	Caption('Given
Name')	Captiontype(Caption)	Displayposition(3)	Parent(#empList)
Source(#GIVENAME)	Width(27)
Define_Com	Class(#PRIM_LVCL)	Name(#empList_4)	Caption('Salary')
Captiontype(Caption)	Displayposition(4)	Parent(#empList)
Source(#SALARY)
Define_Com	Class(#PRIM_STBR)	Name(#STBR_1)	Displayposition(5)
Height(24)	Left(0)	Messageposition(1)	Parent(#COM_OWNER)
Tabposition(5)	Tabstop(False)	Top(436)	Width(476)

Evtroutine	Handling(#com_owner.Initialize)
Set	Com(#com_owner)	Caption(*component_desc)
Endroutine
*
Evtroutine	Handling(#phbnGetEmployees.Click)

Endroutine
*	--
*	Subroutine	CHECK	-	check	the	JSM	status	after	a	JSM	call	and	handle
*	.																		exceptional	conditions
*	--
Subroutine	Name(CHECK)	Parms((#jsmxsts	*RECEIVED)	(#jsmxmsg
*RECEIVED))

If	(#jsmxsts	*NE	OK)

*	Close	service	and	send	the	HTTP	response

Use	Builtin(JSMX_CLOSE)	With_Args(#jsmxhdle1)	To_Get(#jsmxsts
#jsmxmsg)
#MSGDTA	:=	'Error	Status	Code:	'	+	#JSMXSTS
Message	Msgid(DCM9899)	Msgf(DC@M01)	Msgdta(#MSGDTA)
#MSGDTA	:=	'Error	Message:	'	+	#JSMXMSG
Message	Msgid(DCM9899)	Msgf(DC@M01)	Msgdta(#MSGDTA)
Endif
Endroutine
End_Com
	

2.		In	Integrator	Studio	open	your	iii	SOAP	Tutorial	project.	Locate	the	RDMLX
code	generated	for	your	EmployeeAgent	solution	and	open	it	the	text	editor.
See	file	SAMPLE_RDMLX_GETEMPLOYEES.TXT.

3.		Copy	all	of	the	code	between:
*	The	following	fields	are	used	by	the	soap	binding	map
*	#DEPTMENT
.	.	.	.

and
*	Close	service
USE								BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMXHDLE1)
TO_GET(#JSMXSTS	#JSMXMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMXSTS
#JSMXMSG)

including	the	code	shown,	into	the	event	routine	handling

#phbnGetEmployees.Click	in	your	form.	This	will	provide	most	of	the	logic
needed	to	call	the	SOAP	service	as	described	in	the	previous	step.
4.		Examine	the	definition	of	visual	fields	DEPTMENT	and	SECTION	on	the
form	and	note	that	they	are	named	IN_DEPT	and	IN_SECT.	The	soaptutorial
service	maps	these	fields	as	variables	DEPTMENT	and	SECTION.	You	need
to	set	the	value	of	DEPTMENT	and	SECTION	variables	before	the	set
parameter	occurs.	Locate	the	comment	lines	for	*	set	parameter	–
DEPARTMENTCODE	and	*	set	parameter	–	SECTIONCODE	and
add	an	assign	statement	to	do	this.	Your	code	should	now	look	like	the
following:

5.Locate	the	*	Open	SOAP	Service	comment	line.	Change	the	following	line
to	use	your	SOAP	service	name:
*	Open	SOAP	Service
Change	Field(#JSMXCMD)	To('OPEN
SERVICE(IIIEMPLOYEEAGENT)')	

6.		In	your	form,	locate	the	following	code:

The	command	GET	FRAGMENT(RESPONSE)

SERVICE_EXCHANGE(*FIELD)	will	map	the	returned	fields	into	your
program	variables.	This	means	that	within	this	loop,	you	can	add	entries	to	the
list	view	on	the	form.	Your	completed	code	should	look	like	the	following:

7.		Compile	your	form.

Summary
Important	Observations

Knowledge	of	web	services	standards	and	protocols	is	not	required	to	create
this	SOAP	Agent.
LANSA's	RDML	or	RDMLX	code	or	a	3GL	such	as	ILE	RPG	may	be	used
to	create	the	business	logic	used	by	this	SOAP	Agent.

Tips	&	Techniques
This	example	used	fragments	for	a	simple	list,	because	no	simple	field
values	were	being	returned.	When	field	values	are	returned	as	well	as	a
simple	list,	the	recurring	entries	can	be	defined	as	a	list	and	the	results	are
mapped	into	a	working	list	or	3GL	data	structure.
The	supplied	code	turns	on	tracing	at	the	service	level.	You	should	turn	this
off	for	deployment	to	a	production	system.

What	I	Should	Know
The	essential	steps	necessary	to	use	LANSA	Integrator	Studio	to	implement
a	SOAP	Agent	solution	–	that	is,	a	solution	that	calls	or	consumes	a	web
service.
That	LANSA	Integrator	generates	components	that	handle	the	complexities
of	web	services	standards	and	protocols.
How	to	create	a	Visual	LANSA	application	program	that	uses	a	SOAP	Agent
solution	to	call	the	web	service.

INT010C	-	SOAP	Service	-	Test
When	you	begin	this	tutorial,	the	third	in	the	SOAP	set,	you	have	built	your
LANSA	Integrator	SOAP	Agent	and	SOAP	Server	Solutions	and	your	solution
and	business	logic	is	complete.	All	that	remains	is	to	test	the	solution.
What	you	have	built	in	this	tutorial,	is	a	solution	that	allows	a	business
application	to	call	a	web	service	operation	and	receive	results	from	it	without
having	to	concern	itself	with	any	of	the	web	service	protocols	and	standards.
The	technical	details	have	been	taken	care	of	by	the	LANSA	Integrator	SOAP
Agent	service	and	by	the	code	generated	by	the	SOAP	Wizard.
As	an	application	developer,	you	did	not	need	to	concern	yourself	with	these
details	as	LANSA	Integrator	and	the	files	the	SOAP	Wizard	has	generated,	take
care	of	this.
In	INT010B	SOAP	Service	-	Define	Agent,	you	developed	a	simple	form	which
you	can	use	to	test	your	SOAP	Agent	solution.	In	this	form,	the	user	enters	a
department	code	and	section	code	and	clicks	a	button.	Then	the	program
displays	a	list	of	employees	for	that	department.

Objectives
To	test	the	SOAP	Server	and	Agent	Solutions	created	in	the	two	preceding
tutorials.

In	order	to	complete	this	tutorial,	you	must	have	completed:
INT010A	-	SOAP	Service	-	Define	Server
INT010B	-	SOAP	Service	-	Define	Agent

Note:	To	run	this	test	you	should	either	be:
running	a	local	web	server	and	JSM	Server	and	have	your	server	function
compiled	locally
or	if	using	an	IBM	i	JSM	Server,	have	your	server	function	checked	in	and
compiled	on	the	server	and	the	local	JSM		"data	area"	file	jsmcltdta.txt
configured	to	specify	your	IBM	i	server	as	the	default	JSM	Server.	See	your
equivalent	of	this	path	for	this	file:

C:\Program	Files\LANSA\X_WIN95\X_LANSA

1.		In	Visual	LANSA,	locate,	on	the	Favorites	tab,	the	form	that	you	created	in
Step	6.Create	Form	IIIFRM02	–Get	Employees	using	SOAP		of	INT010B.

2.		Right	click	on	the	form	and	select	Execute	to	run	it.
3.		Enter	the	Department	Code,	ADM	and	section	code,	either	01	or	02	and
press	the	Get	Employees	button

4.		The	response	should	be	something	like	this:

5.		Check	your	results	are	as	expected,	when	you	leave	both	department	and
section	blank,	and	when	only	department	is	specified.		

6.If	errors	occur,	remember	to	use	Integrator	Studio	to	open	the	server	and
review	the	trace	files.	You	could	also	run	the	form	in	debug	mode,	if

necessary.

You	have	now	successfully	completed	the	building	of	your	LANSA
Integrator	SOAP	Server	&	Agent	Solutions.	What	you	have	built	and
LANSA	Integrator	has	generated	is	the	code	necessary	to	handle	all
the	protocol	and	format	details	of	receiving	and	responding	to	web
service	requests,	of	unwrapping	and	extracting	the	parameters	and	of
building	the	SOAP	response.

INT011	-	Create	Excel	Document
Objectives

To	create	an	RDMLX	function	which	is	passed	department	and	section	code
and	creates	an	Excel	document	containing	a	list	of	employees	for	the	section,
using	the	ExcelReadService.
To	create	an	RDML	function	to	handle	the	user	interface	and	call	the
RDMLX	function.

To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Create	RDMLX	function	iiiFN12
Step	2.	Complete	function	iiiFN12
Step	3.	Create	RDML	function	iiiFN13
Summary

Before	You	Begin
You	must	have	Microsoft	Excel	or	the	Excel	Viewer	(a	free	download	from
Microsoft)	installed	to	complete	this	exercise.

Step	1.	Create	RDMLX	function	iiiFN12
This	is	an	advanced	exercise	and	less	detailed	instructions	have	been	provided.
1.		Create	a	new	process	iiiPRO09	–	Excel	Example.	Create	an	RDMLX
function	iiiFN12	–	Create	Employee	Excel,	using	template	JSMXSKEL	for
the	service	ExcelReadService.

2.		As	you	have	seen	in	an	earlier	exercise,	this	template	uses	a	subroutine
KEYWRD	to	construct	the	field	JSMXCMD.	Using	RDMLX	coding
techniques	this	approach	is	not	really	needed,	since	one	statement	(ASSIGN
command)	can	create	the	complicated	string	needed	for	each	JSM	command
(JSMXCMD).

3.		Delete	the	KEYWRD	subroutine.	Change	the	SERVICE_LOAD	logic	to
create	the	command	using	an	ASSIGN	command.	e.g.
*	BUILD	THE	SERVICE	LOAD	COMMAND
#jsmxcmd	:=	'SERVICE_LOAD	SERVICE(ExcelReadService)'
USE	BUILTIN(jsmx_command)	WITH_ARGS(#jsmxhdle1	#jsmxcmd)
TO_GET(#jsmsts	#jsmmsg)
EXECUTE	SUBROUTINE(CHECK_STS)
Remove	unnecessary	code.	Each	of	your	JSMX_command	built-in	function
executions	should	use	this	structure.

4.		Define	a	working	list	named	EMPLOYS,	for	employee	data	containing
EMPNO,	GIVENAME,	SURNAME,	STARTDTER,	PHONEHME,	and
SALARY.	Allow	up	to	100	entries.

5.		Refer	to	the	LANSA	Integrator	guide	/	Java	Services	Manager	Services	/
ExcelReadService.		Having	read	these	notes	you	should	know	that	once	your
function	has	built	a	list	of	employees,	it	needs	to	do	the	following:

Open	the	Excel	file	using	the	OPEN	command	with	FILE	and	MODE
parameters.
Write	to	the	Excel	file	using	the	WRITE	command	with	SHEET	and
R1C1	parameters.	The	working	list	name	is	passed	on	the
JSMX_COMMAND.	Note:	SHEET(Sheet1)	and	R1C1(1,1)	are	defaults.
Close	the	Excel	file	using	the	CLOSE	command.

Step	2.	Complete	function	iiiFN12
1.		In	the	section	of	the	function	containing	the	comment	YOUR	OWN
LOGIC	HERE,	add	code	to	clear	the	employees	list,	select	from	the	logical
file	PSLMST1	with	keys	DEPTMENT	and	SECTION,	number	of	keys
*COMPUTE.	Add	entries	to	the	employees	list.

2.		Function	iiiFN12	will	be	called	by	an	RDML	functions	which	checks	the
requested	department	and	section	are	valid	and	that	employees	exist	for	this
section.	This	error	checking	will	not	be	required	in	iiiFN12.

3.		To	create	the	Excel	file,	you	need	to	use	the	OPEN	command	using	*WRITE
mode.		Create	the	OPEN	command	string	(JSMXCMD)	and	execute	it	using
the	JSMX_COMMAND	BIF:

					The	file	parameter	of	the	command	needs	to	define	the	file	path	(within	the
JSM	instance),	file	name,	and	ensure	that	a	new	file	is	created	each	time
(instead	of	overwriting	one	file	repeatedly).		Create	the	file	in	the	/training
subdirectory,	with	a	name	beginning	iiiemp.		Append	the	current	date	and
time	to	the	file	name.		The	field	DATETIMEC	contains	this	value	as	a
character	value.	The	directory	must	exist.

					For	a	real	application	you	may	need	to	consider	how	to	separate	the	same
output	files	created	by	different	users.

Review	ExcelReadService	in	the	LANSA	Integrator	guide	for	details.	You	can
open	this	guide	directly	from	Help	/	Services	in		Integrator	Studio.

4.		Create	the	WRITE	command	string	to	write	to	Sheet1	in	position	Row	1,
Cell	1.		Execute	it	with	the	JSMX_COMMAND	BIF.		Since	the	sheet	and
row/cell	parameters	are	both	defaults,	they	do	not	need	to	be	specified.	

Note:	In	this	case	the	TO_GET	parameter	must	include	the	name	of	the
employees	working	list.	

5.		Close	the	Excel	file	using	the	CLOSE	command	via	the	JSMX_COMMAND
BIF.		Note:	This	is	the	ExcelReadService	CLOSE	command,	not	the
JSMX_CLOSE	command.

6.		Remember	to	include	code	to	execute	the	CHECK_STS	subroutine	each	time
you	execute	the	JSMX_COMMAND	BIF.

7.		At	the	end	of	your	logic,	if	the	JSM	status	(field	JSMSTS)	is	OK,	issue	a
message	that	the	Excel	file	was	created.	Note	that	with	RDMLX	coding

techniques	you	can	easily	add	the	generated	Excel	file	name	into	this
message.

8.		Your	logic	should	look	like	the	following:
FUNCTION	OPTIONS(*DIRECT)
DEF_LIST	NAME(#employs)	FIELDS(#empno	#givename	#surname
#STARTDTER	#PHONEHME	#salary)	TYPE(*working)	ENTRYS(100)
*		OPEN	JSM	AND	VERIFY	STATUS
USE	BUILTIN(jsmx_open)	TO_GET(#jsmsts	#jsmmsg	#jsmxhdle1)
EXECUTE	SUBROUTINE(CHECK_STS)
*	BUILD	THE	SERVICE	LOAD	COMMAND
#jsmxcmd	:=	'SERVICE_LOAD	SERVICE(ExcelReadService)'
USE	BUILTIN(jsmx_command)	WITH_ARGS(#jsmxhdle1	#jsmxcmd)
TO_GET(#jsmsts	#jsmmsg)
EXECUTE	SUBROUTINE(CHECK_STS)
*					YOUR	OWN	LOGIC	HERE
CLR_LIST	NAMED(#employs)
SELECT	FIELDS(#employs)	FROM_FILE(pslmst1)	WITH_KEY(#deptment
#section)	NBR_KEYS(*compute)
ADD_ENTRY	TO_LIST(#employs)
ENDSELECT
*	Create	Excel	File
#jsmxcmd	:=	'OPEN	FILE(training/iiiemp'	+	#datetimec	+	'.XLS)
MODE(*WRITE)'
USE	BUILTIN(jsmx_command)	WITH_ARGS(#jsmxhdle1	#jsmxcmd)
TO_GET(#jsmsts	#jsmmsg)
EXECUTE	SUBROUTINE(CHECK_STS)
*	Write	to	Excel	file
#jsmxcmd	:=	'WRITE'
USE	BUILTIN(jsmx_command)	WITH_ARGS(#jsmxhdle1	#jsmxcmd)
TO_GET(#jsmsts	#jsmmsg	#employs)
EXECUTE	SUBROUTINE(CHECK_STS)
*	Close	Excel
USE	BUILTIN(jsmx_command)	WITH_ARGS(#jsmxhdle1	CLOSE)
TO_GET(#jsmsts	#jsmmsg)
EXECUTE	SUBROUTINE(CHECK_STS)
IF	(#jsmsts	=	OK)
MESSAGE	MSGTXT('Excel	file	'	+	'iiiemp'	+	#datetimec	+	'.xls	produced')
ENDIF

*	UNLOAD	SERVICE
USE	BUILTIN(jsmx_command)	WITH_ARGS(#jsmxhdle1
SERVICE_UNLOAD)	TO_GET(#jsmsts	#jsmmsg)
EXECUTE	SUBROUTINE(CHECK_STS)
*	CLOSE	JSM	AND	VERIFY	STATUS
USE	BUILTIN(jsmx_close)	WITH_ARGS(#jsmxhdle1)	TO_GET(#jsmsts
#jsmmsg)
EXECUTE	SUBROUTINE(CHECK_STS)
RETURN
*
SUBROUTINE	NAME(CHECK_STS)
DEFINE	FIELD(#MSGDTA)	TYPE(*CHAR)	LENGTH(132)
IF	COND('#JSMSTS	*NE	OK')
USE	BUILTIN(BCONCAT)	WITH_ARGS('Error	Status	Code:	'	#JSMSTS)
TO_GET(#MSGDTA)
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
USE	BUILTIN(BCONCAT)	WITH_ARGS('Error	Message:	'	#JSMMSG)
TO_GET(#MSGDTA)
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
ENDIF
ENDROUTINE
	

9.		Compile	function	iiiFN12.	If	you	are	using	the	JSM	server	on	your	IBM	i,
check	in	and	compile	function	iiiFN12.

	

Step	3.	Create	RDML	function	iiiFN13
This	function	will	accept	the	department	and	section	code,	check	they	are	valid
and	call	function	iiiFN12.
1.		Create	an	RDML	function	iiiFN13	–	Call	Create	Excel,	belonging	to
process	iiiPRO09.	Do	not	use	a	template.	Note	this	is	not	an	RDMLX
enabled	function.

2.		Write	your	function	based	on	the	following	pseudo	code:
Loop	until	exit	or	cancel	key
Request	fields	DEPTMENT	and	SECTION
Use	BEGINCHECK	loop	and	FILECHECK	to	validate	these	fields
against	file	SECTAB
Exchange	fields	DEPTMENT	and	SECTION	and	call	function	iiiFN12

3.		Your	completed	code	should	look	like	the	following
FUNCTION	OPTIONS(*DIRECT)
BEGIN_LOOP
REQUEST	FIELDS(#DEPTMENT	#SECTION)
BEGINCHECK
FILECHECK	FIELD(#SECTION)	USING_FILE(SECTAB)
USING_KEY(#DEPTMENT	#SECTION)	MSGTXT('Department/Section	not
found')
FILECHECK	FIELD(#section)	USING_FILE(PSLMST1)
USING_KEY(#deptment	#section)	MSGTXT('No	employees	for	this
department/section')
ENDCHECK
*	Call	JSM	function	to	create	Excel
EXCHANGE	FIELDS(#DEPTMENT	#SECTION)
CALL	PROCESS(*DIRECT)	FUNCTION(iiifn12)
END_LOOP
	

4.		Compile	your	function.	If	you	are	using	the	configuration	file	jsmcltdta.txt	to
point	to	the	IBM	I	for	the	JSM	server,	you	can	run	function	iiiFN13	in
Windows.	Alternatively,	check	in	and	compile	it,	and	test	using	a	5250
emulator.

Test	your	Create	Excel	application.	Remember	your	document	will	be	written	to

the	training	subdirectory	of	the	JSM	Instance.	If	necessary,	create	the
folder…/jsm/instance/training.

Open	your	document	in	Excel.	It	should	look	like	the	following:

					Note:	If	you	are	using	the	JSM	Server	on	an	IBM	i	server	you	will	need	to
map	a	drive	to	folder	/training.	If	you	are	using	a	local	JSM	Server	the	folder
will	be	\JSMInstance\training.

5.		If	you	have	problems,	remember	you	can	use	debug	to	follow	your	program
logic.	You	could	also	start	the	ExcelReadService	with	trace	and	check	the
trace	files.	To	do	this	add	TRACE(*YES)	to	SERVICE_LOAD	of	the
ExcelReadService.
#jsmxcmd	:=	'SERVICE_LOAD	SERVICE(ExcelReadService)
TRACE(*YES)'
	

Summary
Important	Observations

The	ExcelReadService	provides	a	means	to	create	and	read	Microsoft	Excel
documents
You	could	use	this	to	create	documents	to	exchange	between	offices	or	with
trading	partners
You	could	also	extract	data	from	the	corporate	database	for	analysis	and
presentation	purposes

Tips	&	Techniques
Data	can	be	read	from	or	written	to	a	worksheet	in	a	specified	row	and
column	range	using	a	LANSA	working	list	or	a	3GL	data	structure
See	Appendix	B	in	the	LANSA	Integrator	guide	for	RDML	and	RDMLX
examples	using	ExcelReadService.
To	create	Excel	files	using	the	XSLX	format,	use	the	ExcelService.

What	I	Should	Know
How	to	use	the	ExcelReadService	to	write	to	an	Excel	worksheet

INT012	-	Create	Excel	Document	with	Template	and	Formatting
Objectives

To	extend	the	function	written	in	exercise	INT011
To	write	an	Excel	document	based	on	a	template
To	format	the	output	written	to	the	Excel	document

To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Create	RDMLX	function	iiiFN14
Step	2.	Complete	Function	iiiFN14
Step	3.	Create	Function	iiiFN15	and	test
Step	4.	Add	DEFINE	Command	to	Format	Output

Step	6.	Insert	a	Total	Salary	Formula
Step	7.	Password	Protect	the	Document
Summary

Before	You	Begin
You	must	have	Microsoft	Excel	or	the	Excel	Viewer	installed	to	complete	this
exercise.

Step	1.	Create	RDMLX	function	iiiFN14
1.		Select	function	iiiFN12	on	the	Favorites	tab.	Use	the	context	menu	to	Copy
and	create	function	iiiFN14,	belonging	to	Process	IIIPRO09.

Step	2.	Complete	Function	iiiFN14
In	this	step	you	will	use	an	Excel	template	called	Employs.xlt	which	looks	like
the	image	following.
Create	the	Excel	template	(XLT)	before	continuing.

	Note:				
The	list	of	employees	will	need	to	be	placed	in	Row	5,	Column	2.
					The	list	of	employees	area	has	a	left	and	right	border,	which	will	need	to	be
defined	before	writing	the	Excel	document.

1.		Open	and	review	your	copy	of	the	Employs.xlt	template.
2.		To	write	the	Excel	document	using	the	template	you	need	to	add	the
TEMPLATE	keyword	to	the	ExcelReadService	OPEN	command.	Your	code
should	look	like	the	following:
#jsmxcmd	:=	'OPEN	FILE(training/iiiemp'	+	#datetimec	+	'.XLS)
MODE(*WRITE)	TEMPLATE(training/employs.xlt)'
USE	BUILTIN(jsmx_command)	WITH_ARGS(#jsmxhdle1	#jsmxcmd)
TO_GET(#jsmsts	#jsmmsg)
EXECUTE	SUBROUTINE(CHECK_STS)

3.		You	now	need	to	write	the	working	list	of	employees	to	Row	5,	Column	2.
Modify	your	WRITE	command	as	required.	Your	code	should	look	like	the
following:
*	Write	to	Excel	file
#jsmxcmd	:=	'WRITE	R1C1(5,2)'
USE	BUILTIN(jsmx_command)	WITH_ARGS(#jsmxhdle1	#jsmxcmd)
TO_GET(#jsmsts	#jsmmsg	#employs)

EXECUTE	SUBROUTINE(CHECK_STS)
4.		Compile	function	iiiFN14.

Step	3.	Create	Function	iiiFN15	and	test
1.		Select	function	iiiFN13	on	your	Last	Opened	tab	and	use	the	context	menu
to	Copy	it,	to	create	iiiFN15	belonging	to	process	iiiPRO09.

2.Modify	the	new	function	to	call	iiiFN14	and	compile	it.
3.		Test	the	initial	version	of	your	Create	Excel	with	Template	application.
4.		Open	the	document	in	Excel	and	check	its	contents.	You	should	be	writing
the	output	to	the	correct	rows	and	columns.	Note	that	at	the	moment	you	are
not	formatting	the	numeric	data	correctly.	Your	Excel	document	should	look
like	the	following:

Step	4.	Add	DEFINE	Command	to	Format	Output
1.		Review	the	DEFINE	command	of	the	ExcelReadService	in	the	Integrator
Guide:

					Note	that	the	DEFINE	command	must	be	used	to	set	the	cell	format	before
using	the	WRITE	command.

2.		Based	on	the	information	provided	in	the	Integrator	Guide,	consider	how	to
format	the	Salary	column	as	a	number	with	2	decimal	places.	You	will
usually	need	to	use	a	number	of	DEFINE	commands	to	format	different
aspects	of	your	Excel	document.	In	this	case	you	will	need	to	define
OBJECT,	COLUMN,	RANGE,	TYPE	and	FORMAT	keywords.	Your	added
code	in	iiiFN14	should	look	like	the	following:
#jsmxcmd	:=	'DEFINE	OBJECT(*CELLFORMAT)	COLUMN(7)
RANGE(5,38)	TYPE(*NUMBER)	FORMAT(*FORMAT3)'
USE	BUILTIN(jsmx_command)	WITH_ARGS(#jsmxhdle1	#jsmxcmd)
TO_GET(#jsmsts	#jsmmsg)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)		

Remember	to	add	this	code	before	the	ExcelReadService	WRITE	command	is
processed.

3.		Recompile	function	iiiFN14	and	retest.
4.		Open	the	document	with	Excel	and	check	your	results.	Your	results	should

look	like	the	following:

					Note	that	the	Salary	column	is	now	formatted	correctly,	but	the	right	hand
border	for	the	Salary	column	has	been	lost.

					You	can	check	the	format	of	the	Salary	column	by	selecting	the	cells	and
using	the	right	mouse	menu	/	Format	Cells.

5.		You	can	extend	the	existing	DEFINE	command	to	add	a	thin	border	to	the
right	hand	side	of	the	Salary	column.	To	do	this	add	BORDERTYPE	and
BORDER	keywords	to	the	DEFINE	command.	Your	code	should	look	like
the	following:
#jsmxcmd	:=	'DEFINE	OBJECT(*CELLFORMAT)	COLUMN(7)

RANGE(5,38)	TYPE(*NUMBER)	FORMAT(*FORMAT3)
BORDERSTYLE(*THIN)	BORDER(*RIGHT)'
USE	BUILTIN(jsmx_command)	WITH_ARGS(#jsmxhdle1	#jsmxcmd)
TO_GET(#jsmsts	#jsmmsg)
EXECUTE	SUBROUTINE(CHECK_STS)

Step	5.	Format	Start	Date	Column
One	problem	with	the	current	solution	is	the	lack	of	formatting	of	the	Start	Date
column.		Start	Date	is	based	on	a	signed	numeric	field,	6	digits	long,	In	this	step
you	will	convert	it	to	a	Date	type	field	and	include	this	in	the	working	list.	You
will	also	then	be	able	to	format	the	Start	Date	column	in	Excel	as	Date	cells.
1.		You	will	now	be	reading	STARTDTER	from	the	file,	converting	it	and
including	a	date	work	field	in	the	working	list.	Change	your	function	to
include	a	GROUP_BY	for	the	fields	to	be	read	and	use	this	on	the	SELECT
command.	Your	code	should	look	like	the	following:
GROUP_BY	NAME(#EMP_GRP)	FIELDS(#empno	#surname	#givename
#startdter	#phonehme	#salary)
.
SELECT	FIELDS(#EMP_GRP)	FROM_FILE(pslmst1)
WITH_KEY(#deptment	#section)	NBR_KEYS(*compute)

2.		In	the	working	list,	replace	field	STARTDTER	with	STD_DATEX
3.		Within	the	SELECT	loop	add	logic	to:

Check	that	STARTDTER	is	a	date	(of	YYMMDD	format)
If	so,	convert	STARTDTER	to	field	STD_DATEX
If	not,	set	STD_DATEX	to	*SQLNULL

					Your	code	should	look	like	the	following:
CLR_LIST	NAMED(#employs)
SELECT	FIELDS(#EMP_GRP)	FROM_FILE(pslmst1)
WITH_KEY(#deptment	#section)	NBR_KEYS(*compute)
IF	(#STARTDTER.IsDate(YYMMDD))
#Std_Datex	:=	#STARTDTER.AsDate(YYMMDD)
ELSE
#Std_Datex	:=	*SQLNULL
ENDIF
ADD_ENTRY	TO_LIST(#employs)
ENDSELECT
	

4.		Change	the	DEF_LIST	command	for		EMPLOYS	to	include	a	counter	using
field	LISTCOUNT.	Your	code	should	look	like	the	following:
Def_List	Name(#employs)	Fields(#empno	#givename	#surname

#STD_DATEX	#PHONEHME	#salary)	Counter(#listcount)	Type(*working)
Entrys(100)
	

5.		Add	a	DEFINE	command	which	formats	the	Start	Date	column	as	a	Date.
Your	code	should	look	like	the	following:
*	Format	Start	Date	Column
#std_num	:=	#listcount	+	4
#jsmxcmd	:=	'DEFINE	OBJECT(*CELLFORMAT)	COLUMN(5)
RANGE(5,'	+	#std_num.asstring	+	')	TYPE(*DATE)	FORMAT(*FORMAT2)'
Use	Builtin(jsmx_command)	With_Args(#jsmxhdle1	#jsmxcmd)
To_Get(#jsmsts	#jsmmsg)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)

					Once	again,	ensure	the	DEFINE	command	is	before	the	WRITE	command
for	the	ExcelReadService.

6.		You	may	have	noticed	when	opening	the	document	in	Excel	that	the	width	of
the	Salary	column	needs	adjusting	because	of	the	size	of	one	or	more	salaries
(e.g.	1,234,456.50).	To	set	the	width	you	need	to	use
OBJECT(*COLUMNVIEW)	on	the	DEFINE	command.	Your	code	should
look	like	the	following:
*	Set	Column	width	-	Salary
#jsmxcmd	:=	'DEFINE	OBJECT(*COLUMNVIEW)	COLUMN(7)
WIDTH(12)'
USE	BUILTIN(jsmx_command)	WITH_ARGS(#jsmxhdle1	#jsmxcmd)
TO_GET(#jsmsts	#jsmmsg)
EXECUTE	SUBROUTINE(CHECK_STS)	With_Parms(#JSMXHDLE1)

7.		Recompile	function	iiiFN14	and	retest.	Your	document	should	now	look	like
the	following:

Step	6.	Insert	a	Total	Salary	Formula
In	this	step	you	will	use	the	ADD	command	to	insert	a	formula	to	total	the
salary	column.
1.		Immediately	following	the	SELECT/ENDSELECT	loop	which	loads	the	list
of	employees	add	code	to	insert	a	total	line.	Your	code	should	look	like	the
following:
*	Insert	total	line
#employs	:=	*null
#surname	:=	'Salary	Total:'
Add_Entry	To_List(#employs)

2.		Before	the	WRITE	to	Excel	logic,	add	a		DEFINE	command	to	format	cells
in	the	total	line.	This	needs	to	format	the	cell	in	the	Start	Date	column,	so	that
it	is	blank	on	the	total	line.	Add	the	following	code:
*	Format	total	line
#std_num	:=	#listcount	+	4
#jsmxcmd	:=	'DEFINE	OBJECT(*CELLFORMAT)	COLUMN(5)	RANGE('
+	#std_num.asstring	+	','	+	#std_num.asstring	+	')	TYPE(*BLANK)'
Use	Builtin(jsmx_command)	With_Args(#jsmxhdle1	#jsmxcmd)
To_Get(#jsmsts	#jsmmsg)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)	

					Review	the	above	code.
The	RANGE	parameter	needs	to	contain	the	range	of	rows	to	be
formatted.	It	must	be	of	the	form	RANGE(n,n)
The	total	row	position	needs	to	be	calculated	based	on	the	number	of	lines
added	to	the	employees	working	list

3.		Following	the	WRITE	to	Excel	logic,	insert	the	following	code:
*	Add	Total	Salary	Formula
#std_num	:=	(#listcount	+	3)
#listcount	+=	4
*
#jsmxcmd	:=	'ADD	OBJECT(*FORMULA)	FORMULA("SUM(G5:G'	+
#std_num.asstring	+	')")	R1C1('	+	#listcount.asstring	+	',7)'
Use	Builtin(jsmx_command)	With_Args(#jsmxhdle1	#jsmxcmd)
To_Get(#jsmsts	#jsmmsg)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)	

Note:
STD_NUM	provides	the	last	row	number	for	Excel	SUM	formula.
LISTCOUNT	provides	the	row	number	to	insert	the	formula.	The	value	of
LISTCOUNT	has	been	increased	by	4,	because	the	list	is	inserted	into	row
five	of	the	Excel	document.
The	Excel	formula	must	be	enclosed	in	double	quotes.
The	formula	should	not	include	the	"="	symbol.	This	will	be	inserted
automatically.
The	ADD	command	supports	the	insert	of	formula,	image,	setting	and
hyperlink.	See	the	LANSA	Integrator	Guide	for	further	details.

4.		Recompile	your	function	and	test	it	to	check	that	your	formula	has	been
correctly	inserted.

Step	7.	Password	Protect	the	Document
In	this	step	you	will	add	PROTECT	and	PASSWORD	parameters	to	the	WRITE
command.
1.		Review	the	ExcelReadService	WRITE	command	in	the	Integrator	Guide.
2.		Add	PROTECT	and	PASSWORD	parameters	to	your	WRITE	command.
Your	code	should	look	like	the	following:
*	Write	to	Excel	file
#jsmxcmd	:=	'WRITE	R1C1(5,2)	PASSWORD(LANSA)	PROTECT(*YES)'

3.		Compile	function	iiiFN14	and	retest	it.	If	you	try	to	change	the	Excel
document	you	will	now	see	the	following:

					You	have	completed	this	exercise.	If	you	have	time	available	try	to	make
other	format	changes	to	your	Excel	Document.

Summary
Important	Observations

Use	the	DEFINE	command	before	the	WRITE	command	to	format	cells	and
columns.
You	will	usually	need	to	use	a	number	of	DEFINE	commands.

Tips	&	Techniques
The	WRITE	command	has	PROTECT	and	PASSWORD	parameters	which
enable	the	worksheet	to	be	protected.

What	I	should	now	know
How	to	format	and	protect	a	worksheet.

INT013	-	Create	PDF	Output	using	PDFDocumentService
Objectives

To	create	an	application	which	produces	a	PDF	document	containing
employee	details	and	skills.
To	demonstrate	how	to	use	the	PDFDocumentService.
To	understand	how	to	define	the	PDF	document	layout,	by	defining	an	XML
template	document.

To	achieve	the	objectives	you	will	complete	the	following:
Step	1.	Plan	the	PDF	Page	Content
Step	2.	Create	the	PDF	XML	Template
Step	3.	Create	an	RDMLX	Function	to	Produce	a	Single	Page	PDF
Step	4.	Create	Function	iiiFN17	-	Create	PDF	Output	for	Employees
Step	5.	Create	Function	iiiFN18	–	Test	PDF	Output	for	Employees
Summary

Concepts
The	PDFDocumentService	enables	complex	and	dynamic	PDF	output	to	be
produced.
The	format	of	the	output	PDF	document	is	defined	by	an	XML	template
document.	This	XML	template	includes	<content></content>	tags	which	are
used	to	define	the	content	of	the	various	areas	of	a	page.	This	structure	is
completely	flexible,	but	will	typically	include	content	areas	such	as	header,
details,	lists	and	footer.
Your	RDML/RDMLX	program	creates	a	PDF	document	using	the	XML
template	and	"adds	content"	into	the	content	areas	defined	by	the	XML
template
Content	can	be	added	in	any	sequence
The	page	area	is	defined	as	a	grid.	A4	landscape	for	example,	is	defined	as
having	an	area	of	590	x	840	pts.
The	bottom	left	hand	position	is	0,0
All	output	to	the	page	is	defined	as	having	a	position	on	an	X1,	Y1	axis.
These	values	define	the	top	left	hand	corner	for	this	element.	Y	is	the	vertical
axis.

In	the	LANSA	Integrator	guide,	refer	to	XML	Content	in	the
PDFDocumentService	for	details	of	all	the	elements	which	can	be	defined	in
the	XML	template.
The	PDFDocumentService	includes	a	sample	XML	template	and	the	RDML
function	to	output	a	PDF	document	using	it.

Before	You	Begin
If	you	plan	to	run	this	exercise	on	your	IBM	i	server:

Create	the	following	folder,	if	it	does	not	already	exist:
/LANSA_<pgmlib>/jsm/instance/training

Where	<pgmlib>	is	your	LANSA	program	library,	e.g.	dcxpgmlib.
Copy	these	files	to	the	.	.	/training	folder
lanlogo.gif
ph0070.tif

These	files	are	included	in	a	zip	file	which	can	be	download	from:
http://www.lansa.com/support/docs/index.htm
See	LANSA	Integrator	/	Extra	Tutorial	Files.

its:LANSA093.CHM::/lansa/intengb7_0825.htm
its:LANSA093.CHM::/lansa/intengb7_0830.htm
its:LANSA093.CHM::/lansa/intengb7_0835.htm
http://www.lansa.com/support/docs/index.htm

Step	1.	Plan	the	PDF	Page	Content

Each	page	will	contain:
A	fixed	heading	and	logo	image	(lanlogo.gif).	The	application	will	provide
the	heading	text	in	field	STD_TEXTL
A	hard	code	employee	image	(ph0070.tif).	In	a	real	application	this	would	be
a	variable	supplied	by	the	application	program
Employee	details
Employee	skills
A	footer	contain	report	date	and	page	number	(not	shown	in	the	above
image)

The	Date	Acquired	will	be	output	as	a	text	field	(STD_TEXT)	with	the	date
formatted	as	DD/MM/YYYY
The	report	date	will	be	a	text	field	STD_NAME	with	the	current	date	in
DD/MM/YYYY
Page	number	will	be	output	in	field	REP1PAGE
Initially	a	simple	RDMLX	function	will	be	developed,	to	output	a	single	page
for	a	fixed	employee	number.
A	second	version	of	the	report	function	will	be	called	by	a	form	or	an	RDML
function,	passing	EMPNO,	DEPTMENT,	SURNAME	and	the	type	of	report
required	(STD_FLAG).	This	report	function	will	produce	output	based	on
reading	the	Employee	file	(PSLMST)	based	on	EMPNO,	DEPTMENT	or
SURNAME.

Step	2.	Create	the	PDF	XML	Template
1.		Open	Integrator	Studio.
2.		Open	the	iii	Training	project.	Create	a	new	Solution	Group	/	PDF	Template.
3.		In	the	PDF	Template	group,	create	a	New	Solution,	using	the	XML	File
Editor.	Create	a	solution	file	iii_PDF_Template.xml,	where	iii=your	initials.

4.		Copy	and	paste	the	XML	code	from	INT013	-	Appendix	A,	to	replace	the
code	in	your	new	XML	file.	Save	your	changes.

					The	supplied	XML	template	is	incomplete.	You	will	complete	the	template
by	adding	elements	for	employee	details	and	the	skills	list.

5.		Review	the	contents	of	the	template.
The	PDF	document	template	is	defined	within	<document></document>
tags.
The	page	size	is	defined	as	A4.	Other	attributes	are	defined	at	document
level.	The	orientation	is	defined	as	landscape.
The	template	contains	a	number	of	<content></content>	tags.	The
application	program	ADDs	CONTENT()	to	these	areas	using	the
PDFDocumentService.
Styles	are	defined	at	the	end	of	the	XML	document	within	<style	……….
/>	tags.
Elements	within	the	template	refer	to	these	styles.	For	example:

<text	x1="66"	y1="70"	width="150"	height="15"	style="footer"	border=""
align="left"	leading=""	value="{STD_NAME}"/>

6.		Locate	this	line:	<content	name="HEADER">	in	the	template:

					The	x1	and	y1	values	in	each	element	define	the	top	left	position	for	that
element	on	the	page,	measured	from	the	bottom	left	corner	of	the	page.	Y1	is
the	vertical	component.
a.		Add	four	text	elements	below	FULLNAME	with	the	same	left	hand
location	(x1="240")	and	with	y1=	a	value	10pts	below	the	existing
FULLNAME	line.

a.		Add	entries	for	fields	ADDRESS1,	ADDRESS2,	ADDRESS3	and
POSTCODE.	To	do	this,	copy	the	FULLNAME	line	and	then	modify	it.

					Your	new	code	should	look	like	the	following:
<text	x1="240"	y1="480"	width="150"	height="15"	style="normal"	border=""
align="left"	leading=""	value="{ADDRESS1}"/>
<text	x1="240"	y1="470"	width="150"	height="15"	style="normal"	border=""
align="left"	leading=""	value="{ADDRESS2}"/>
<text	x1="240"	y1="460"	width="150"	height="15"	style="normal"	border=""
align="left"	leading=""	value="{ADDRESS3}"/>
<text	x1="240"	y1="450"	width="150"	height="15"	style="normal"	border=""
align="left"	leading=""	value="{POSTCODE}"/>

7.		Save	your	changes.
8.		Locate	the	following	position	in	the	template:

					This	defines	a	table	that	will	be	populated	from	a	working	list	of	employee
skills.

9.		To	complete	the	skills	table:
a.		Add	entries	for	STS_TEXT	(Date	Acquired)	and	COMMENT.	Copy	and
paste	from	the	entry	for	GRADEDES	to	create	two	new	lines	and	then

modify	their	content.
b.		Change	width-percentage	to	30	and	change	title	as	well	as	the	field	value.

					Your	completed	new	code	should	look	like	the	following:
<column	field="STD_TEXT"	width-percentage	="30"	vertical-align="center"
horizontal-align="left"	title-horizontal-align="left"	title-border="false"	title-
style="table"	title="DATE	ACQUIRED"	/>
<column	field="COMMENT"	width-percentage	="30"	vertical-align="center"
horizontal-align="left"	title-horizontal-align="left"	title-border="false"	title-
style="table"	title="COMMENT"	/>

10.Save	your	changes.
11.Review	the	content	for	FOOTER1.	Note	that	this	will	require	STD_NAME
(current	date)	and	REP1PAGE	field	values.

12.Note	that	the	FOOTER1	content	includes:
<page	orientation="landscape"/>
	

					When	the	FOOTER1	content	is	added,	a	new	page	will	be	added,	with
orientation="landscape".

13.If	you	will	be	running	this	exercise	on	your	IBM	i	server,	locate	the
following	line:
<image	x1="710"	y1="540"			file="..\..\webserver\images\lanlogo.gif"	
scale="100"	/>

Replace	it	with:
<image	x1="710"	y1="540"			file="training/lanlogo.gif"		scale="100"	/>

Locate	the	line:
<image	x1="66"	y1="490"		
file="..\..\x_win95\x_lansa\x_dem\execute\ph0070.tif"		scale="10"	/>

Replace	it	with:
<image	x1="66"	y1="490"			file="training/ph0070.tif"		scale="10"	/>

	
14.Save	your	changes	and	exit	the	XML	Editor
15.With	your	iii	Training	project	open	in	Integrator	Studio,	open	the	server	that
you	are	using.	This	could	be	localhost,	if	you	are	using	Integrator	installed
and	licensed	on	your	PC,	or	it	could	be	the	IBM	i	server	used	for	training.

16.Create	an	XML	folder	(directory)	in	the	server	instance.	Note	that	the	folder
may	already	exist.	Drag	and	drop	(copy)	your	iii_PDF_Template.xml	to	the
server.

17.You	now	have	a	PDF	XML	Template	ready	to	use,	and	you	can	write	the
RDMLX	function	to	produce	the	PDF	document.

Step	3.	Create	an	RDMLX	Function	to	Produce	a	Single	Page
PDF
In	this	step	you	will	create	an	RDMLX	function,	based	on	the	RDMLX	source
in	INT013	-	Appendix	B.	You	will	complete	this	function	to	produce	a	PDF
document	for	a	single	employee.
1.		Create	a	new	process	iiiPRO10	–	PDF	Examples.
2.		Create	a	new	RDMLX	enabled	function	iiiFN16	–	Create	PDF	for	an
Employee,	belonging	to	process	iiiPRO10,	without	using	a	template.

3.		Replace	its	code	with	the	RDMLX	source	from	INT013.	Appendix	B.
4.		Save	your	function	and	review	its	content.	Note	that	at	the	beginning	of	the
program	a	number	of	field	values	are	hard	coded,	such	as	EMPNO	and
STD_TEXTL.	This	function	will	process	a	single	fixed	employee	number.

5.		Find	the	following	comment:
*	Create	PDF	Document
	

					Following	this	comment,	add	code	to	use	the	PDFDocumentService	which
has	already	been	loaded.	Use	the	CREATE	command	to	create	a	PDF
document	based	on	the	template	iii_PDF_Template.xml.

6.		In	your	source	code,	copy	and	paste	the	three	statements	from	the	*	Load
Service	code	and	modify	the	CHANGE	Field(#JSMXCMD)	command	to
define	the	CREATE	command:

Keyword Value

DOCUMENT iii_EMPREP.pdf

CONTENT xml/iii_PDF_Template.xml

	

In	a	real	application	you	would	want	to	write	the	output	to	a	specific	folder,
perhaps	organized	by	user	or	customer.

					Your	completed	code	should	look	like	the	following.

*	Create	PDF	Document
Change	Field(#JSMXCMD)	To('CREATE	DOCUMENT(iii_EMPREP.pdf)
CONTENT(xml/iii_PDF_Template.xml)')
Use	Builtin(JSMX_COMMAND)	With_Args(#jsmxhdle1	#JSMXCMD)
To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)

7.		Save	your	changes.
8.		Locate	this	comment:
*	If	found	add	content
	

					The	code	immediately	preceding	this	comment	has	created	a	single	entry
working	list	(#HEADER)	containing	the	required	employee	detail	fields.

9.		Following	this	comment,	add	logic	to	add	content	HEADER	containing
employee	details.

					Add	this	code	and	then	complete	the	*	Add	content	HEADER	logic:
If_Status	Is(*OKAY)
*	Add	content	HEADER
Else
Message	Msgtxt('Employee	A0090	not	found')
Endif
	

10.Following	the	*	Add	content	HEADER	comment	line,	define	an
ASSIGN	command	to	set	up	the	JSMXCMD	field	to	ADD	based	on:

Keyword Value

CONTENT HEADER

	

11.Define	the	USE	the	JSMX_COMMAND	based	on:

Keyword Value

WITH_ARGS #JSMXHDLE1

	 #JSMXCMD

	 #HEADER

TO_GET #JSMSTS

	 #JSMMSG

	

					Note:	You	are	passing	the	working	list	#HEADER	as	the	third	argument.
12.Finally	add	an	EXECUTE	command	to	perform	subroutine	to	check	JSM
status.

					Your	completed	code	should	look	like	the	following:
If_Status	Is(*OKAY)
#JSMXCMD	:=	'ADD	CONTENT(HEADER)'
Use	Builtin(JSMx_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD
#HEADER)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
Else
Message	Msgtxt('Employee	A0090	not	found')
Endif

13.		Save	your	changes
14.Locate	the	following	comment:
*	If	found	add	employee	skills	list
	

15.Add	the	following	logic	and	complete	your	JSM	logic	within	it:
If_Status	Is_Not(*error)
*	Add	SKILLTBL	content
	
Else
Message	Msgtxt('Employee	skills	not	found')
Endif
	

16.Following	the	*	Add	SKILTBL	content	comment,	add	a	CHANGE
command	to	change	the	JSMXCMD	field	to	ADD	based	on:

Keyword Value

CONTENT SKILLTBL

	

17.Add	a	USE	command	to	perform	the	JSMX_COMMAND	BIF,	based	on:

Keyword Value

WITH_ARG #JSMXHDLE1

	 #JSMXCMD

TO_GET #JSMSTS

	 #JSMMSG

	 #SKILLTBL

	

18.Add	an	EXECUTE	command	to	perform	the	subroutine	to	check	JSM	status.
					Your	completed	code	should	look	like	the	following:
If_Status	Is_Not(*error)
*	add	SKILLTBL	content
Change	Field(#JSMXCMD)	To('ADD	CONTENT(SKILLTBL)')
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)
To_Get(#JSMSTS	#JSMMSG	#SKILLTBL)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
Else
Message	Msgtxt('Employee	skills	not	found')
Endif
	

19.Compile	your	function.	If	you	are	running	Integrator	on	an	IBM	i	server,
check	in	and	compile	your	function	on	the	server.

20.Execute	your	function	iiiFN16	–	Create	a	PDF	for	a	Single	Employee.
					Find	the	output	PDF	document	in	the	root	of	your	JSM	instance.	If	you	are
running	on	the	IBM	i	server,	this	will	be	a	path	such	as:
/LANSA_<pgmlib>/jsm/instance

					where	<pgmlib>	is	the	LANSA	library	name.

The	PDF	document	should	look	like	the	following:

Step	4.	Create	Function	iiiFN17	-	Create	PDF	Output	for
Employees
In	this	step	you	will	copy	function	iiiFN16	and	extend	it	to	output	a	PDF
document	for	a	single	or	multiple	employees,	selected	by	employee	number,
department	or	surname.
The	new	RDMLX	function	iiiFN17,	will	be	called	by	an	RDML	function
iiiFN18	–	Test	Employee	PDF	Output,	which	will	input	STD_FLAG,
EMPNO,	DEPTMENT	and	SURNAME,	then	EXCHANGE	these	values	and
call	function	iiiFN17.
A	practical	consideration	is	that	the	interactive	function	iiiFN18,	will	validate
EMPNO	against	the	file	PSLMST.	Function	iiiFN17,	when	called	passing
EMPNO,	the	employee	number	will	always	be	valid	and	iiiFN17	will	therefore
always	output	a	PDF	document	and	the	document	should	be	closed.
When	function	iiiFN17	is	called	passing	DEPTMENT	or	SURNAME	to
produce	a	one	or	more	page	PDF	document,	there	may	be	no	output.	Closing	the
PDF	document	conditionally	will	avoid	writing	an	empty	pdf	document.
1.		Copy	function	iiiFN16	to	create	an	RDMLX	enabled	function	iiiFN17	in
process	iiiPRO10.

2.		Delete	these	two	lines	from	the	top	of	the	function
#empno	:=	A0090
	
#rep1page	:=	1

3.		Locate	the	*	Add	Footers	comment	line.	Create	a	FOOTER	subroutine
and	move	add	footers	logic	into	it.	Your	code	should	look	like	the	following
Subroutine	Name(FOOTER)
Clr_list	#FOOTER1
Add_entry	#FOOTER1
#jsmxcmd	:=	'ADD	CONTENT(FOOTER1)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD
#FOOTER1)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
Endroutine
	

4.		Add	an	EXECUTE	subroutine	to	replace	the	code	moved	into	the	subroutine.
Your	code	should	look	like	the	following:

*	Add	Footers
EXECUTE	Subroutine(FOOTER)

5.		Locate	the	*	Close	document	comment.	Create	a	CLOSE	subroutine,	and
move	the	code	shown	into	it:
Subroutine	Name(CLOSE)
#jsmxcmd	:=	CLOSE
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)
To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
#rep1page	-=	1
Message	Msgtxt('Employees	PDF	Report	produced	with	'	+
#rep1page.asstring	+	'	pages')
*	Unload	PDF	Service
#jsmxcmd	:=	SERVICE_UNLOAD
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)
To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
*	Close	the	JSM
Use	Builtin(JSMX_CLOSE)	With_Args(#jsmxhdle1)	To_Get(#JSMSTS
#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
Endroutine
	

6.		Add	an	Execute	subroutine	to	replace	the	code	moved	into	the	subroutine.
Your	code	should	look	like	the	following:
*	Close	document
EXECUTE	Subroutine(CLOSE)

7.		Function	iiiFN17	will	receive	fields	EMPNO,	DEPTMENT,	SURNAME	and
STD_FLAG.	STD_FLAG	will	contain	the	search	request	type,	E=Employee
Number,	D=Department	Code,	S=Surname	search.

8.		Add	a	case	loop	for	STD_FLAG	around	your	existing	single	employee	logic.
The	new	code	is	shown	in	red.	For	example:

Case	Of_Field(#STD_FLAG)
*	Search	for	single	employee	number
When	(=	E)	
*	Add	Logo

Change	Field(#JSMXCMD)	To('ADD	CONTENT(LOGO)	')
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)
To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
.

.
*	Add	Footer
Execute	Subroutine(FOOTER1)
*	Close	the	PDF	Document	and	the	PDF	Service

Execute	Subroutine(CLOSE)
Endcase
	

					.
9.		At	the	top	of	the	function,	define	a	work	field	OUTSTS	based	on	field
IO$STS.	This	field	will	be	used	to	control	whether	the	PDF	document	should
be	closed,	because	output	was	produced.

10.	Your	existing	CASE	loop	handles	a	single	employee	only.	The	CASE	loop
should	now	be	extended	by	adding	the	next	WHEN	condition	below
EXECUTE	FOOTER	for	the	single	employee.	Copy	the	code	to	handle
search	by	surname	and	search	by	department	which	is	supplied	in	INT013	-
Appendix	C.

11.	Save	your	changes.
12.	Review	the	logic	just	added,	for	STD_FLAG	=	S	and	STD_FLAG	=	D:

Page	number,	REP1PAGE	is	incremented	after	output	for	each	employee.
OUTSTS	is	used	to	control	the	CLOSE	of	the	PDF	document,	to	avoid
writing	an	empty	PDF	document.	OUTSTS	is	set	to	OK	when	output	has
been	produced	for	one	or	more	employees.	An	alternative	if	no	employees
are	output,	could	be	to	write	a	page	containing	the	text	"No	employee
details	found".

The	PDF	XML	template	contains	<page	orientation="landscape"/>	in
the	FOOTER1	content,	which	starts	a	new	page	for	the	next	employee
output.

13.	Compile	function	iiiFN17	and	correct	errors	if	necessary.

14.	If	running	functions	on	the	IBM	i	server,	check	in	and	compile	on	the	server.

Step	5.	Create	Function	iiiFN18	–	Test	PDF	Output	for	Employees
1.Create	an	RDML	function,	iiiFN18	–	Test	PDF	Output	for	Employees
belonging	to	process	iiiPRO10.

2.Replace	its	code	with	the	following:
FUNCTION	OPTIONS(*DIRECT)
OVERRIDE	FIELD(#STD_FLAG)	LABEL('Report	Type')
GROUP_BY	NAME(#SCREEN)	FIELDS((#STD_FLAG	*L004	*P002)
(#EMPNO	*L008	*P002)	(#SURNAME	*L009	*P002)	(#DEPTMENT
*L010	*P002)	(#OPT01	*L006	*P021	*OUTPUT	*NOID)	(#OPT02	*L004
*P021	*OUTPUT	*NOID)	(#OPT03	*L005	*P021	*OUTPUT	*NOID))
DEFINE	FIELD(#OPT01)	REFFLD(#std_descs)	DEFAULT('''E	=
Employee''')
DEFINE	FIELD(#OPT02)	REFFLD(#std_descs)	DEFAULT('''S	=	Surname''')
DEFINE	FIELD(#OPT03)	REFFLD(#std_descs)	DEFAULT('''D	=
Department''')
BEGIN_LOOP
REQUEST	FIELDS(#SCREEN)	IDENTIFY(*LABEL)
BEGINCHECK
VALUECHECK	FIELD(#STD_FLAG)	WITH_LIST('S'	'D'	'E')
MSGTXT('Report	Type	must	be	D,	E	or	S')
CASE	OF_FIELD(#STD_FLAG)
WHEN	VALUE_IS('=	E')
FILECHECK	FIELD(#EMPNO)	USING_FILE(pslmst)	MSGTXT('Employee
not	found')
WHEN	VALUE_IS('=	D')
FILECHECK	FIELD(#DEPTMENT)	USING_FILE(deptab)
MSGTXT('Department	not	found')
WHEN	VALUE_IS('=	S')
IF	COND('#SURNAME	=	*blanks')
SET_ERROR	FOR_FIELD(#SURNAME)
MESSAGE	MSGTXT('Surname	may	not	be	blank')
ENDIF
ENDCASE
ENDCHECK
EXCHANGE	FIELDS(#EMPNO	#DEPTMENT	#SURNAME	#STD_FLAG)
CALL	PROCESS(*DIRECT)	FUNCTION(IIIFN17)	EXIT_USED(*NEXT)
MENU_USED(*NEXT)

END_LOOP
	

3.Change	the	called	function	name	using	your	initials.
4.If	running	functions	on	the	IBM	i	server,	check	in	and	compile	on	the	server.
5.Test	function	iiiFN17	by	running	function	iiiFN18.
6.Check	the	PDF	document	produced	when	selecting	by	employee	number,	by
surname	and	by	department.

Summary
Important	Observations

The	PDFDocumentService	enables	complex	and	dynamic	PDF	documents	to
be	produced.
The	format	of	the	PDF	document	is	defined	in	an	XML	template
Your	RDML	produces	the	PDF	based	on	the	structure	defined	by	the	XML
Your	RDML	"adds	content"	into	the	PDF	document
The	page	is	defined	as	a	grid	in	using	units	of	points.	An	A4	landscape	page
is	590	x	840	points	for	example
The	bottom	left	corner	is	location	0,0

Tips	&	Techniques
Time	spent	planning	your	document	layout	in	some	detail,	will	speed	up	the
overall	task

What	I	Should	Know
How	to	define	the	content	of	the	PDF	document	using	an	XML	template
How	to	create	PDF	document	using	the	PDFDocumentService.

INT013	-	Appendix	A
Source	for	PDF	XML	Template	(iii_PDF_Template.xml)
<?xml	version="1.0"	encoding="utf-8"?>
<!--
					List	Sample	PDF	XML	document
-->
<document	page-size="A4"	

						orientation	=	"landscape"
		background="white"				
										border="false"
										author="Acme	Corporation"
										title="Document	Title"
										subject="Document	Subject"
										keywords="word1,	word2"
										creator=""
										hide-toolbar=""
										hide-menubar=""
										hide-windowui=""
										allow-printing="true"
										allow-copy="false"
										allow-modify-contents="false"
										allow-modify-annotations="false"
										allow-fillin="false"
										allow-screenreader="false"
										allow-assembly="false"
										allow-degraded-printing="false">

<content	name="LOGO">
<image	x1="710"	y1="540"			file="..\..\webserver\images\lanlogo.gif"	
scale="100"	/>
</content>

<content	name="HEADER">
<!--

-->

<!--	Applicant	Details-->

<text	x1="66"	y1="540"	width="350"	height="25"	style="title"	border=""
align="left"	leading=""	value="{STD_TEXTL}"/>
<image	x1="66"	y1="490"		
file="..\..\x_win95\x_lansa\x_dem\execute\ph0070.tif"		scale="10"	/>
<text	x1="240"	y1="490"	width="150"	height="15"	style="normal"	border=""
align="left"	leading=""	value="{FULLNAME}"/>

<text	x1="530"	y1="490"	width="250"	height="15"	style="label"	border="1"
align="left"	leading=""	value="Business	Tel:"/>
<text	x1="530"	y1="480"	width="149"	height="15"	style="label"	border=""
align="left"	leading=""	value="Home	Tel:"/>
<text	x1="530"	y1="470"	width="149"	height="15"	style="label"	border=""
align="left"	leading=""	value="Department:"/>
<text	x1="530"	y1="460"	width="149"	height="15"	style="label"	border=""
align="left"	leading=""	value="Section:"/>

<text	x1="600"	y1="490"	width="250"	height="15"	style="normal"	border=""
align="left"	leading=""	value="{PHONEBUS}"/>
<text	x1="600"	y1="480"	width="250"	height="15"	style="normal"	border=""
align="left"	leading=""	value="{PHONEHME}"/>
<text	x1="600"	y1="470"	width="250"	height="15"	style="normal"	border=""
align="left"	leading=""	value="{DEPTDESC}"/>
<text	x1="600"	y1="460"	width="250"	height="15"	style="normal"	border=""
align="left"	leading=""	value="{SECDESC}"/>
</content>

<content	name="SKILLTBL">
<!--												Table	using	working	list					-->	
<!--	***********************************					-->

<table	x1="66"	y1="390"	width="700"	height="500"	style="normal"
alternate="false"	title-show=""	border	="false"	cell-border	="false">
		<column	field="SKILDESC"	width-percentage	="20"	vertical-
align="center"	horizontal-align="left"	title-horizontal-align="left"	title-
border="false"	title-style="table"	title="SKILL"	/>	
		<column	field="GRADEDES"	width-percentage	="20"	vertical-
align="center"	horizontal-align="left"	title-horizontal-align="left"	title-

border="false"	title-style="table"	title="GRADE"	/>	

</table>
</content>

<content	name="FOOTER1">
<text	x1="66"	y1="70"	width="150"	height="15"	style="footer"	border=""
align="left"	leading=""	value="{STD_NAME}"/>
<text	x1="670"	y1="70"	width="50"	height="15"	style="footer"	border=""
align="right"	leading=""	value="Page:"/>
<text	x1="710"	y1="70"	width="50"	height="15"	style="footer"	border=""
align="right"	leading=""	value="{REP1PAGE}"/>
<page	orientation="landscape"/>
</content>

<!--
								User	styles
-->
<style	name="normal"	file="Din.ttf"	size="8"	color="black"
encoding="Cp1252"	embedded="true"/>
<style	name="table"	file="Din.ttf"	size="9"	color="black"		style="bold"
encoding="Cp1252"	embedded="true"/>
<style	name="footer"	file="Din.ttf"	size="7"	color="black"		style="normal"
encoding="Cp1252"	embedded="true"/>
<style	name="footerb"	file="Din.ttf"	size="7"	color="black"		style="bold"
encoding="Cp1252"	embedded="true"/>
<style	name="footeru"	file="Din.ttf"	size="7"	color="black"	
style="underline"	encoding="Cp1252"	embedded="true"/>
<style	name="small"	file="Din.ttf"	size="7"	color="black"		style="normal"
encoding="Cp1252"	embedded="true"/>
<style	name="title"	file="Din.ttf"	size="12"	color="black"		style="bold"
encoding="Cp1252"	embedded="true"/>
<style	name="label"	file="Din.ttf"	size="8"	color="black"		style="italic"
encoding="Cp1252"	embedded="true"/>
	
</document>
	

INT013	-	Appendix	B
RDMLX	Source	for	Function	iiiFN16	–	Create	PDF	for	a	single	Employee
Function	Options(*DIRECT)
*	Beginning	of	RDML	commands	**********

#empno	:=	A0090
#std_textl	:=	'ACME	Manufacturing	Company,	Chicago'
#std_name	:=	#datex.asdisplayString(DDsMMsCCYY)
#rep1page	:=	1
Def_List	Name(#footer1)	Fields(#std_name	#rep1page)	Type(*working)
Define	Field(#ID)	Type(*CHAR)	Length(5)
Define	Field(#FNAME)	Type(*CHAR)	Length(20)
Define	Field(#SNAME)	Type(*CHAR)	Length(30)

Def_List	Name(#SKILLTBL)	Fields(#SKILDESC	#GRADEDES
#STD_TEXT	#COMMENT)	Type(*WORKING)	Entrys(*max)
Def_List	Name(#header)	Fields(#std_textl	#fullname	#address1	#address2
#address3	#postcode	#phonebus	#phonehme	#deptdesc	#secdesc)
Type(*working)	Entrys(*max)
*	Open	JSM
Use	Builtin(JSMX_OPEN)	To_Get(#JSMSTS	#JSMMSG	#jsmxhdle1)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)

*	Load	Service
#jsmxcmd	:=	('SERVICE_LOAD	SERVICE(PDFDOCUMENTSERVICE)')
Use	Builtin(JSMX_COMMAND)	With_Args(#jsmxhdle1	#jsmxcmd)
To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)

*	Create	PDF	Document

*	Add	Logo
Change	Field(#JSMXCMD)	To('ADD	CONTENT(LOGO)	')
Use	Builtin(JSMx_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)
To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)

*	Add	Header	Employee	Info
Clr_List	Named(#header)
Fetch	Fields(*all)	From_File(pslmst)	With_Key(#empno)	Val_Error(*next)
#fullname	:=	#surname	+	',	'	+	#givename
Fetch	Fields(#deptdesc)	From_File(deptab)	With_Key(#deptment)
Fetch	Fields(#secdesc)	From_File(sectab)	With_Key(#deptment	#section)
Add_Entry	To_List(#header)
*	If	found	add	content

*	Get	employee	skills
*	======================
Clr_List	Named(#skilltbl)
Group_By	Name(#skills)	Fields(#SKILCODE	#COMMENT	#DATEACQ
#SKILDESC	#grade)
Select	Fields(#skills)	From_File(pslskl)	With_Key(#empno)
Nbr_Keys(*compute)	Val_Error(*next)
Fetch	Fields(#skills)	From_File(skltab)	With_Key(#skilcode)
Val_Error(*next)
#std_text	:=	#dateacq.asdate(DDMMYY).asdisplayString(DDsMMsCCYY)
Execute	Subroutine(grade)
Add_Entry	To_List(#skilltbl)
Endselect

*	If	found	add	employee	skills	list

*	Add	Footers
clr_list	#FOOTER1
Add_entry	#FOOTER1
#jsmxcmd	:=	'ADD	CONTENT(FOOTER1)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD
#FOOTER1)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)

*	Close	document
#jsmxcmd	:=	CLOSE

Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)
To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)

*	Unload	PDF	Service
#jsmxcmd	:=	SERVICE_UNLOAD
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)
To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)

*	Close	the	JSM
Use	Builtin(JSMX_CLOSE)	With_Args(#jsmxhdle1)	To_Get(#JSMSTS
#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
If	(#jsmsts	=	OK)
Message	Msgtxt('Document	iiiEMPREP.pdf	produced')
Endif*
*		Check	the	status	of	the	JSM	command	issued
*
Subroutine	Name(CHECK_STS)	Parms(#W_HDLE)
*
Define	Field(#MSGDTA)	Type(*CHAR)	Length(132)
Define	Field(#W_HDLE)	Type(*CHAR)	Length(4)
*
If	Cond('#JSMSTS	*NE	OK')
*
#MSGDTA	:=	'Error	Status	Code:	'	+	#JSMSTS
Message	Msgid(DCM9899)	Msgf(DC@M01)	Msgdta(#MSGDTA)
#MSGDTA	:=	'Error	Message:	'	+	#JSMMSG
Message	Msgid(DCM9899)	Msgf(DC@M01)	Msgdta(#MSGDTA)
Endif
*
Def_List	Name(#WL_MSGS)	Fields(#JSMSTS	#JSMMSG)
Type(*WORKING)	Entrys(*max)
Add_Entry	To_List(#WL_MSGS)
Endroutine
Subroutine	Name(grade)
Case	(#grade)
When	(=	P)

#gradedes	:=	'Pass'
When	(=	F)
#gradedes	:=	'Fail'
When	(=	M)
#gradedes	:=	'Merit'
When	(=	D)
#gradedes	:=	'Distinction'
Endcase

Endroutine
*	End	of	RDML	commands	**********
	

INT013	-	Appendix	C
RDMLX	Source	code	to	complete	iiiFN17	–	Create	PDF	Output	for
Employees
*	Produce	PDF	document	for	employees	selected	by	surname
When	(=	S)
#outsts	:=	*blanks
#rep1page	:=	1
Select	Fields(*all)	From_File(pslmst2)	With_Key(#surname)
Nbr_Keys(*compute)	Generic(*yes)
*	Add	Logo
Change	Field(#JSMXCMD)	To('ADD	CONTENT(LOGO)	')
Use	Builtin(JSMx_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)
To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
*	Clear	employee	header	list
Clr_List	Named(#header)

#fullname	:=	#surname	+	',	'	+	#givename
Fetch	Fields(#deptdesc)	From_File(deptab)	With_Key(#deptment)
Fetch	Fields(#secdesc)	From_File(sectab)	With_Key(#deptment	#section)
Add_Entry	To_List(#header)
If_Status	Is(*OKAY)
Change	Field(#JSMXCMD)	To('ADD	CONTENT(HEADER)	')
Use	Builtin(JSMx_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD
#HEADER)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
#outsts	:=	OK
Else
Message	Msgtxt('Employees	not	found	for	surname:	'	+	#surname)
Leave
Endif
*	Add	Employee	Skills	List
*	Get	employee	skills
*	======================
Clr_List	Named(#skilltbl)
Select	Fields(#skills)	From_File(pslskl)	With_Key(#empno)
Nbr_Keys(*compute)	Generic(*yes)	Val_Error(*next)

Fetch	Fields(#skills)	From_File(skltab)	With_Key(#skilcode)
Val_Error(*next)
#std_text	:=	#dateacq.asdate(DDMMYY).asdisplayString(DDsMMsCCYY)
Execute	Subroutine(grade)
Add_Entry	To_List(#skilltbl)
Endselect

If_Status	Is_Not(*error)
Change	Field(#JSMXCMD)	To('ADD	CONTENT(SKILLTBL)
SERVICE_LIST(SKILDESC,GRADEDES,DATEACQ,COMMENT)')
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)
To_Get(#JSMSTS	#JSMMSG	#SKILLTBL)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
Else
Message	Msgtxt('Employee	skills	not	found')
Endif
Execute	Subroutine(footer)
#rep1page	+=	1
Endselect
If	(#outsts	=	OK)
Execute	Subroutine(CLOSE)
Else
Message	Msgtxt('No	output	produced')
*	Close	the	JSM
Use	Builtin(JSMX_CLOSE)	With_Args(#jsmxhdle1)	To_Get(#JSMSTS
#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
Endif
*	Produce	PDF	document	for	Employees	by	Department
When	(=	D)
#rep1page	:=	1
#outsts	:=	*blanks
Select	Fields(*all)	From_File(pslmst1)	With_Key(#deptment)
Nbr_Keys(*compute)
*	Add	Logo
Change	Field(#JSMXCMD)	To('ADD	CONTENT(LOGO)	')
Use	Builtin(JSMx_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)
To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)

*	Clear	employee	header	list
Clr_List	Named(#header)

#fullname	:=	#surname	+	',	'	+	#givename
Fetch	Fields(#deptdesc)	From_File(deptab)	With_Key(#deptment)
Fetch	Fields(#secdesc)	From_File(sectab)	With_Key(#deptment	#section)
Add_Entry	To_List(#header)
If_Status	Is(*OKAY)
Change	Field(#JSMXCMD)	To('ADD	CONTENT(HEADER)	')
Use	Builtin(JSMx_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD
#HEADER)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
#outsts	:=	OK
Else
Message	Msgtxt('Employees	not	found	for	Dept	'	+	#deptment)
Leave
Endif
*	Add	Employee	Skills	List
*	Get	employee	skills
*	======================
Clr_List	Named(#skilltbl)
Select	Fields(#skills)	From_File(pslskl)	With_Key(#empno)
Nbr_Keys(*compute)	Val_Error(*next)
Fetch	Fields(#skills)	From_File(skltab)	With_Key(#skilcode)
Val_Error(*next)
#std_text	:=	#dateacq.asdate(DDMMYY).asdisplayString(DDsMMsCCYY)
Execute	Subroutine(grade)
Add_Entry	To_List(#skilltbl)
Endselect

If_Status	Is_Not(*error)
Change	Field(#JSMXCMD)	To('ADD	CONTENT(SKILLTBL)
SERVICE_LIST(SKILDESC,GRADEDES,DATEACQ,COMMENT)')
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)
To_Get(#JSMSTS	#JSMMSG	#SKILLTBL)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
Else
Message	Msgtxt('Employee	skills	not	found')
Endif

Execute	Subroutine(footer)
#rep1page	+=	1
Endselect
If	(#outsts	=	OK)
Execute	Subroutine(CLOSE)
Else
*	Close	the	JSM
Use	Builtin(JSMX_CLOSE)	With_Args(#jsmxhdle1)	To_Get(#JSMSTS
#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
Message	Msgtxt('No	output	produced')
Endif

Personnel	System
A	business	has	a	very	simple	Personnel	System.	The	Personnel	System	allows
the	company	to	identify	the	employees	in	the	company	based	on	the	part	of	the
company	where	the	employee	works.	The	Personnel	System	lists	details	about
the	employees	and	details	about	their	specific	skills.
The	company	has	a	simple	organizational	structure.	It	is	divided	into
departments	such	as	Administration,	Audit,	Information	Services,	Legal,	Travel,
etc.	Each	of	these	departments	may	have	one	or	more	sections	such	as
Accounting,	Purchasing,	Sales,	etc.	The	Department	table	(DEPTAB)	stores	the
list	of	departments.	The	Section	table	(SECTAB)	is	used	to	store	the	sections
within	each	department.
The	Personnel	Master	file	(PSLMST)	stores	details	about	each	employee.	For
example,	the	employee's	name,	address,	and	telephone	number	are	stored	in	this
master	file.	As	each	employee	works	in	a	section	of	a	department,	this
information	is	also	stored	in	the	Personnel	Master	file.
Each	employee	also	has	a	list	of	skills.	For	example,	an	employee	might	have
Cobol,	C	and	C++	programming	skills	or	management	and	administration	skills.
A	Skills	table	(SKLTAB)	is	used	to	store	the	skill	codes.	A	Personnel	Skills	file
(PSLSKL)	stores	the	specific	skills	of	each	employee.
The	Personnel	System	is	a	very	simple	system.	It	has	5	files	as	described	above.
The	physical	database	layout	is	described	in	Physical	Database	Map	of
Personnel	System.
Historical	Note:	This	system	was	created	in	1987	as	one	of	the	very	first
LANSA	demonstration	and	training	systems.	The	LANSA	repository	and
RDMLX	functions	created	for	this	original	system	have	been	used	on	a	System
38,	AS/400,	Windows,	AIX,	HPUX	and	other	platforms.	This	original	system
has	been	left	virtually	unchanged	to	show	how	LANSA	has	been	able	to	protect
your	investment	in	your	application	systems.

Physical	Database	Map	of	Personnel	System
(Including	Virtual	and	Predetermined	Join	Fields)

Sample	Data	in	the	Personnel	Files
Following	is	a	list	of	some	of	the	sample	data	in	the	Personnel	File	which	may
be	contained	in	the	files.	As	developers	edit	these	files,	the	data	may	have	been
altered:

DEPTAB:
DEPTMENT

SECTAB:
DEPTMENT/SECTION

PSLMST:
EMPNO

ADM ADM	01 17	employees

	 ADM	02 A1002

	 	 A1005

	 	 A1014

	 	 A8888

	 ADM	03 	

	 ADM	04 	

	 ADM	05 	

AUD AUD	01 	

	 AUD	02 	

	 AUD	03 	

FLT FLT	01 	

	 FLT	02 	

	 FLT	03 	

INF INF	01 	

	 INF	02 	

	 INF	03 	

	

Create	RDMLX	Templates
The	JSMXSKEL	template	is	used	in	Step	1.	Create	a	Function	using	Template
JSMXSKEL	of	exercise	INT002	-	Getting	Started	with	Basic	JSM	Operations.
Before	you	can	do	this	exercise,	you	will	need	to	create	the	JSMXSKEL
template	using	the	following	steps.
1.		Start	the	Visual	LANSA	Development	Environment,	logon	and	select	the
partition	that	you	will	be	using	for	these	tutorials.	Remember	that	the
partition	needs	to	be	RDMLX	enabled.	

2.		From	the	File	menu,	select	New	and	then	select	Template.
3.		Enter	the	details	as	shown	in	the	following	New	Template	dialog:

4.		Press	Create	when	done	and	the	Source	tab	will	be	opened	for	the	new
template.

5.		Copy	the	code	supplied	in	JSMXSKEL	Source	Code	and	paste	it	into	the
open	Source	tab.

6.		Save	it.
7.		Create	a	second	new	template	in	the	same	way	as	for	JSMXSKEL.
8.		Enter	the	template's	details	in	the	New	Template	dialog	as	shown	in	the
following	diagram:

9.		Press	Create	when	done	and	the	Source	tab	will	be	opened	for	the	new
template.

10.Copy	the	code	supplied	in	BBJSMXCMD	Source	Code	and	paste	it	into	the
open	Source	tab.

11.	Save	it.
					You	will	now	see	your	two	new	templates	in	the	template	list	for	this
partition.

Return	to	the	exercises.

JSMXSKEL	Source	Code
@@COMMENT		'=='
@@COMMENT		'	Process:		@@PROCESS		'
@@COMMENT		'	Function:		@@FUNCTION	'
@@COMMENT		'	Created	on:		@@DATE		at		@@TIME		'
@@COMMENT		'	Description:		@@FUNCDES		'
@@COMMENT		'	Template........:		JSMXSKEL				'
@@COMMENT		'=='
FUNCTION			OPTIONS(*DIRECT)
@@COMMENT		'																															'
@@COMMENT		'	OPEN	JSM	AND	VERIFY	STATUS	'
USE								BUILTIN(JSMX_OPEN)	TO_GET(#JSMSTS	#JSMMSG	#jsmxhdle1)
EXECUTE				SUBROUTINE(CHECK_STS)	WITH_PARMS(#jsmxhdle1)
@@COMMENT		'																															'
@@QUESTION	PROMPT('Do	you	wish	to	load	a	JSM	Service?')	ANSWER(@@CANS001)	EXTEND('If	yes,	type	in	the	name	of	the	Service	to	load,	for	example	HTTPCLIENT.')	LOWER(*NO)
@@IF							COND((*IF	@@CANS001	*EQ	'	'))	GOTO(L01)
@@COMMENT		'BUILD	THE	SERVICE	LOAD	COMMAND		'
#JSMXCMD	:=	'SERVICE_LOAD'
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD	'SERVICE'	'@@CANS001')
USE								BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1	#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXHDLE1)
L01:	@@LABEL
@@COMMENT		'																																	'
@@COMMENT		'				YOUR	OWN	LOGIC	HERE										'
@@COMMENT		'																																	'
@@IF							COND((*IF	@@CANS001	*EQ	'	'))	GOTO(L02)
@@COMMENT		'UNLOAD	SERVICE																			'
#JSMXCMD	:=	'SERVICE_UNLOAD'
USE								BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1	#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXHDLE1)
L02:	@@LABEL
@@COMMENT		'CLOSE	JSM	AND	VERIFY	STATUS	'
USE								BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMXHDLE1)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXHDLE1)
@@COMMENT		'																																	'
RETURN
@@COMMENT		'																																	'

@@COMMENT		'Subroutine	to	build	JSM	commands.	existing	JSM	command'
@@COMMENT		'																																	'
SUBROUTINE	NAME(KEYWRD)	PARMS((#W_CMDX	*BOTH)	(#W_KEYWRD	*RECEIVED)	(#W_KEYVAL	*RECEIVED))
DEFINE					FIELD(#W_CMDX)	REFFLD(#JSMXCMD)
DEFINE					FIELD(#W_KEYWRD)	REFFLD(#STD_TEXT)
DEFINE					FIELD(#W_KEYVAL)	REFFLD(#STD_TEXTL)
#W_CMDX	+=	'	'	+	#W_KEYWRD	+	'('	+	#W_KEYVAL	+	')'
ENDROUTINE
@@COMMENT		'																																		'
@@COMMENT		'	Check	the	status	of	the	JSM	command	issued'
@@COMMENT		'																																		'
SUBROUTINE	NAME(CHECK_STS)	PARMS(#W_HDLE)
@@COMMENT		'																																		'
DEFINE					FIELD(#MSGDTA)	TYPE(*CHAR)	LENGTH(132)
DEFINE					FIELD(#W_HDLE)	TYPE(*CHAR)	LENGTH(4)
@@COMMENT		'																																		'
IF									COND('#JSMSTS	*NE	OK')
@@COMMENT		'																																		'
#MSGDTA	:=	'Error	Status	Code:	'	+	#JSMSTS
MESSAGE				MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
#MSGDTA	:=	'Error	Message:	'	+	#JSMMSG
MESSAGE				MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
ENDIF
@@COMMENT		'																																			'
ENDROUTINE
	

BBJSMXCMD	Source	Code
@@QUESTION	PROMPT('Use	this	template	to	build	a	command	in	a	function	generated	by	JSMXSKEL.')	ANSWER(@@CANS999)	EXTEND('The	code	generated	by	this	template	assumes	the	existence	of	a	KEYWRD	and'	'a	CHECK_STS	subroutines	as	generated	by	the	JSMXSKEL	template.'	'Press	Enter	to	continue.')	LOWER(*NO)
@@COMMENT		'BUILD	THE	JSM	COMMAND	'
L01:	@@LABEL
@@QUESTION	PROMPT('Type	in	the	JSM	command	you	want	to	build')	ANSWER(@@CANS001)	LOWER(*NO)
#JSMXCMD	:=	@@CANS001
@@QUESTION	PROMPT('How	many	keywords	do	you	want	to	specify?')	ANSWER(@@NANS001)	EXTEND('If	you	reply	0,	you	will	not	be	prompted	to	specify	any	keyword-
values.	'	'Otherwise,	type	in	a	number	of	up	to	20	keyword-
value	to	be	prompted')	LOWER(*NO)	RANGE((0	20))
@@IF							COND((*IF	@@NANS001	*EQ	0))	GOTO(L05)
@@SET_IDX		IDX_NAME(II)	TO(1)
LOP:	@@LABEL
@@QUESTION	PROMPT('Type	in	the	keyword	name.')	ANSWER(@@CANS002)	EXTEND('Type	in	the	name	of	a	valid	keyword	for	the	command	you	are	building.	')	LOWER(*NO)
@@QUESTION	PROMPT('Type	in	the	value	for	the	@@CANS002	keyword')	ANSWER(@@CANS003)	EXTEND('Leave	blank	if	the	keyword	has	no	value.'	'The	value	can	be	a	FIELD	name	or	an	ALPHANUMERIC	string.'	'If	the	value	is	a	FIELD	it	must	be	prefixed	with	the	#.'	'If	the	value	is	an	ALPHANUMERIC	string	you	must	enclose	it	within	triple'	'quotes.')	LOWER(*NO)
@@IF							COND((*IF	@@CANS003	*EQ	'	'))	GOTO(L02)
@@IF							COND((*IF	@@CANS002	*EQ	'URI'))	GOTO(L07)
@@GOTO					LABEL(L08)
L07:	@@LABEL
IF									COND('#CPUTYPE	=	AS400')
#STD_TEXTL	:=	'/CGI-BIN/JSMDIRECT?'	+	@@CANS003
ELSE
#STD_TEXTL	:=	'/CGI-BIN/JSMDIRECT.EXE?'	+	@@CANS003
ENDIF
EXECUTE				SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD	@@CANS002	#STD_TEXTL)
@@GOTO					L03
L08:	@@LABEL
EXECUTE				SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD	@@CANS002	@@CANS003)
@@GOTO					L03
L02:	@@LABEL
EXECUTE				SUBROUTINE(KEYWRD)	WITH_PARMS(#JSMXCMD	@@CANS002	*BLANKS)
L03:	@@LABEL
@@INC_IDX		IDX_NAME(II)
@@CMP_IDX		IDX_NAME(II)	IDX_VALUE(@@NANS001)	IF_GT(L04)
@@GOTO					LABEL(LOP)
L04:	@@LABEL
@@QUESTION	PROMPT('Type	in	the	name	of	a	working	list	if	this	command	uses	one.')	ANSWER(@@CANS004)	EXTEND('Leave	blank	if	no	list	is	passed	with	the	command.	'	'Do	NOT	prefix	the	list	name	with	a	#')	LOWER(*NO)
@@IF							COND((*IF	@@CANS004	*EQ	'	'))	GOTO(L05)

USE								BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1	#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG	#@@CANS004)
EXECUTE				SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXCMD)
@@COMMENT		'				'
@@GOTO					LABEL(L06)
L05:	@@LABEL
USE								BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMXHDLE1	#JSMXCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK_STS)	WITH_PARMS(#JSMXCMD)
@@COMMENT		'				'
L06:	@@LABEL
@@QUESTION	PROMPT('Do	you	wish	to	enter	another	JSM	command?')	ANSWER(@@CANS005)	EXTEND('Reply	Y	or	N	only.'	'If	you	reply	Y	you	will	be	prompted	to	enter	another	command	and	keywords.')	LOWER(*NO)	VALUES(Y	N)
@@IF							COND((*IF	@@CANS005	*EQ	Y))	GOTO(L01)
END:	@@LABEL
/*	**********																																																									*/
@@COMMENT		'									'
	

	

Appendix	A.	Performance	and	Tuning
Java	Service	Manager	Thread	Safety
IBM	i	-	Java	Heap	Size
IBM	i	-	Pool	Size
IBM	i	–	Work	with	JVM	Jobs
IBM	i	-	Tuning	GC	for	Java
IBM	i	-	DUMP	JVM
IBM	i	-	ANALYZE	JVM
IBM	i	-	Network	Performance
IBM	i	-	Java	License	Program
Oracle	–	Java	Performance	Tuning
JSM	Console

Java	Service	Manager	Thread	Safety
Java	Service	Manager	is	thread-safe	in	the	context	that	each	JSM	client	program
has	its	own	thread	and	each	object	instance	is	only	visible	to	this	thread.
The	few	internal	resources	that	have	shared	access	have	been	enclosed	within
synchronized	blocks.
The	trace	sequence	number	is	a	JVM	global	shared	incrementing	integer	and	is
accessed	once	or	twice	by	a	thread	during	its	lifetime.	Once	a	thread	has	a
unique	number	it	does	not	need	to	access	this	shared	data	again.	If	tracing	is	off,
then	a	thread	never	needs	to	access	this	synchronized	resource.
All	objects	passed	to	the	JSMService	class	are	new	and	visible	only	to	the
current	thread.

JSMClient
JSMTrace
JSMContainer
JSMStorage
JSMResource
JSMCommand
JSMField
JSMFieldList
JSMList
JSMResponse
JSMException

The	JSMManager	class	has	two	static	methods:	createTemporaryFile	and
clearTemporaryDirectory	which	create	and	delete	files	from	the	IFS.
The	IFS	is	a	shared	resource	to	all	threads	running	within	the	same	JVM	job	and
all	other	jobs	running	on	the	machine.	It	adds	no	value	to	synchronize	these
methods,	because	of	the	bottleneck	it	would	create	for	threads	trying	to	create
and	clear	temporary	files.	Each	thread	has	a	unique	IFS	subdirectory	to	use	for
temporary	storage	and	no	resource	contention	will	occur.
Being	only	visible	to	the	current	thread	means	that	no	other	thread	can	read	and
write	to	these	objects,	unless	the	service	programmer	creates	a	new	thread	and
passes	an	object	reference	to	this	new	thread.
Most	of	the	JSM	classes	have	instant	variables	that	are	private	and	final,	so	their

values	cannot	change	after	construction.	All	JSM	classes	internally	use	objects
that	have	synchronized	methods.
Normally	only	one	thread	is	ever	accessing	the	state	of	a	JSM	service	object	and
these	synchronized	methods	only	add	a	lock	and	unlock	overhead	and	do	not
effect	the	concurrency	of	other	threads.
If	another	thread	has	access	to	an	object	reference,	then	these	synchronized
methods	would	then	protect	the	shared	data.
JSMClient	instance	variables	are	private	and	final	and	cannot	be	changed.	This
object	is	thread-safe	because	it	is	read-only	and	the	internal	state	will	not
change.
JSMContainer	instance	variables	are	private	JSMTrace,	JSMStorage	and
JSMResource	objects.
The	JSMStorage	object	reference	never	changes.
The	JSMTrace	and	JSMResource	object	references	change	when	a
SERVICE_LOAD	command	is	received.
JSMTrace	instance	variables	are	private	and	cannot	be	changed	and	its	print
methods	are	synchronized.	When	the	SERVICE_LOAD	command	is	received	a
new	JSMTrace	object	is	created.	The	current	JSMTrace	object	is	closed	and	is
no	longer	usable.
JSMStorage	instance	variable	is	a	private	and	final	Hashtable	object.	The	object
reference	cannot	be	changed	but	the	Hashtable	contents	can	be	modified	by	the
synchronized	get	and	put	methods.
JSMResource	instance	variable	is	a	private	and	final	Hashtable	object.	The
object	reference	cannot	be	changed	but	the	Hashtable	contents	can	be	modified
by	the	synchronized	get	and	put	methods.
JSMField	instance	variables	are	private	and	final	String	and	DataType	objects
and	cannot	be	changed.
DataTypePacked	and	DataTypeZoned	instance	variables	are	private	and	final
integers	and	cannot	be	changed.
DataTypeText	instance	variables	are	private	and	final	String,	integer	and	byte
array	objects	and	cannot	be	changed.
JSMCommand	instance	variables	are	private	and	final	and	cannot	be	changed.
This	means	that	the	internal	object	references	will	not	change	but	you	need	to
check	the	documentation	on	the	internal	behaviour	of	these	objects.
JSMCommand	is	just	a	holder	object	for	a	collection	of	other	objects.
The	JSMFieldList	and	JSMList	objects	are	not	thread-safe.	There	are	no

synchronized	methods	to	protect	the	internal	state	of	any	instance	variables.	If
more	than	one	thread	needs	to	change	the	contents	of	these	objects	then	they
will	need	to	be	externally	synchronized	by	the	programmer.
JSMResponse	is	not	thread-safe.	There	are	no	synchronized	methods	to	protect
the	internal	state	of	an	instance	variables	and	therefore	cannot	be	made	visible
to	other	threads	of	work.
JSMException	instance	variables	are	private	and	set	at	construction	time	and
cannot	be	changed.
	

IBM	i	-	Java	Heap	Size
JAVA	command	keywords:

GCHINL-	Initial	garbage	collection	heap	size,	in	kilobytes
GCHMAX-	Maximum	heap	size,	in	kilobytes

The	GCHINL	value	determines	how	the	garbage	collector	runs.	Each	time
memory	usage	equal	to	the	GCHINL	value	has	been	consumed,	the	garbage
collector	will	be	invoked.	A	large	value	makes	the	GC	run	less	frequently,	but
for	a	long	time.
The	Java	heap	size	settings	determine	the	amount	of	memory	used	by	the	Java
Virtual	Machine.	Note	that	these	settings	behave	differently	on	IBM	i	than	on
other	platforms.
On	IBM	i,	the	initial	Java	heap	size	specifies	a	threshold	for	the	amount	of
memory	in	the	JVM;	once	that	amount	of	memory	has	been	allocated,	the
garbage	collector	will	begin	to	run.
Unlike	most	other	JVMs,	the	IBM	i	JVM	allows	other	threads	to	continue
running	while	the	garbage	collector	is	reclaiming	unused	memory.
The	initial	heap	size	should	be	tuned	so	that	the	garbage	collector	runs	at	a
suitable	interval	--	infrequently	enough	that	it	does	not	cause	unnecessary
overhead,	yet	often	enough	that	the	heap	does	not	grow	too	large.
The	GCHMAX	value	determines	the	maximum	heap	size	of	the	JVM,	the
default	value	is	*DFT.
The	GCHMAX	*DFT	value	for	the	IBM	Classic	JVM	is	*NOMAX.
The	GCHMAX	*DFT	value	for	the	IBM	Technology	for	Java	JSM	is	2G.
This	default	value	of	2G	is	too	small	for	a	64-bit	Java	environment	and	needs	to
be	increased.
Do	not	use	the	maximum	value	of	240000000	as	the	IBM	Technology	for	Java
command	treats	this	as	a	*NOMAX	value	and	defaults	back	to	the	2G	value.
From	experimentation,	these	are	the	maximum	GCHMAX	values	for	IBM	Java
Technology	for	Java	JDK's.
32bit		JVM's	are	limited	to	3407872	kilobytes
									STRJSM	VERSION(*JVM5032)	GCHMAX(3407872)
64bit		JVM's	are	limited	to	239861760	kilobytes
									STRJSM	VERSION(*JVM5064)	GCHMAX(239861760)

If	you	are	using	the	shared	classes	option	(-Xshareclasses),	then	the	maximum
GCHMAX	value	will	be	less.
Refer	to	the	following	IBM	Redbook:
http://www.redbooks.ibm.com/abstracts/sg247353.html

http://www.redbooks.ibm.com/abstracts/sg247353.html

IBM	i	-	Pool	Size
Java	is	an	object	oriented	language,	so	it	creates	objects	in	storage,	Generally	a
lot	of	objects.
What	is	more,	Java	provides	automatic	garbage	collection	(GC),	which	means
that	some	time	after	an	object	is	no	longer	able	to	be	accessed	by	any	running
Java	code,	the	Garbage	Collector	will	make	sure	it	is	deleted.
The	IBM	i	server	allows	the	amount	of	real	(as	opposed	to	virtual)	memory	to
be	specified	by	a	Memory	Pool.
Page	faults	occur	whenever	the	actual	size	of	your	GC	heap,	and	any	other
programs	using	memory	from	that	pool	if	the	pool	is	shared,	exceed	the	amount
of	real	memory	specified	in	the	pool.
Excessive	page	faults	may	occur	if	the	memory	pool	for	your	JVM	is	too	small.
These	faults	will	be	reported	as	non-database	page	faults	on	the	WRKSYSSTS
command	display.
Typically,	the	storage	pool	for	your	JVM	is	*BASE.
Fault	rates	between	20	and	30	per	second	are	generally	acceptable,	but	higher
rates	should	be	reduced	by	increasing	memory	pool	size.
In	some	cases,	reducing	this	value	below	20	or	30	per	second	may	improve
performance	as	well.
Lowering	the	GCHINL	parameter	might	also	reduce	paging	rates	by	reducing
the	i5/OS	JVM	heap	size,	but	may	also	cause	some	performance	problems	due
to	more	frequent	GC	cycles.
A	memory	pool	also	has	an	activity	level	associated	with	it	which	specifies	the
number	of	threads	that	can	actively	use	processor(s)	at	the	same	time	from	that
memory	pool.
When	more	threads	are	started	than	are	allowed	to	concurrently	execute	due	to
the	activity	level	control,	the	excess	threads	will	be	forced	to	wait	for	an
available	activity	level	slot	before	they	can	run.
The	number	of	threads	running	(active	threads)	refers	to	the	number	of	threads
that	are	eligible	to	compete	for	a	processor	and	that	count	against	the	activity
level	for	a	memory	pool.
Active	threads	do	not	include	threads	that	are	waiting	for	input,	for	a	message,
for	a	device	to	be	allocated,	or	for	a	file	to	be	opened.
Active	threads	do	not	include	threads	that	are	ineligible	(threads	that	are	ready

to	run	but	the	memory	pool	activity	level	is	at	its	maximum).
Once	the	maximum	activity	level	for	a	memory	pool	has	been	reached,
additional	threads	needing	the	memory	pool	are	placed	in	the	ineligible	state.
The	threads	wait	in	ineligible	state	for	the	number	of	active	threads	in	the
memory	pool	to	fall	below	the	maximum	activity	level,	or	for	a	thread	to	reach
the	end	of	its	time	slice.
As	soon	as	a	thread	gives	up	its	use	of	the	memory	pool,	the	other	threads	that
are	not	active	become	eligible,	and	will	be	dispatched	based	on	their	priority.
Having	Java	threads	in	the	ineligible	state	can	cause	severe	performance
degradation	as	well	as	excessive	JVM	GC	heap	growth.
When	the	Java	threads	are	in	the	ineligible	state	they	are	unable	to	communicate
with	the	Garbage	Collector,	which	will	prevent	a	Java	GC	cycle	from
completing.
This	will	cause	the	GC	heap	to	grow	rapidly,	which	will	tend	to	drive	the	pool
into	page	thrashing,	and	further	degrade	performance.
In	order	to	avoid	this	condition,	set	the	activity	level	of	the	memory	pool	to	at
least	as	large	as	the	maximum	number	of	threads	you	expect	to	be	concurrently
active	at	any	time	for	the	JVM	running	in	the	memory	pool.

IBM	i	–	Work	with	JVM	Jobs
You	can	use	the	Work	with	JVM	Jobs	(WRKJVMJOB)	CL	command	to	collect
performance	data.
You	can	access	the	information	available	from	the	WRKJVMJOB	command
from	both	the	Work	with	Job	(WRKJOB)	screen	as	well	as	by	issuing	the
WRKJVMJOB	command.
The	following	information	or	functionality	is	available	when	using
WRKJVMJOB:

The	arguments	and	options	with	which	the	JVM	was	started.
Environment	variables	for	both	ILE	and	PASE	for	i.
Java	lock	requests	outstanding	for	the	JVM	job.
Garbage	collection	information.
Java	system	properties.
The	list	of	threads	associated	with	the	JVM.
The	partially	completed	job	log	for	the	JVM	job.
The	ability	to	work	with	spooled	input	and	output	files	for	the	JVM	job.
The	ability	to	generate	JVM	(system,	heap,	Java)	dumps	from	a	panel	option.
These	capabilities	are	also	available	from	the	Generate	JVM	Dump
(GENJVMDMP)	command.
The	ability	to	enable	and	disable	verbose	garbage	collection	from	a	panel
option.

IBM	i	-	Tuning	GC	for	Java
At	times,	it	may	be	helpful	to	collect	additional	data	about	the	garbage	collector
as	it's	running.
This	can	be	accomplished	with	verbose	GC,	which	dumps	information	each
time	the	collector	runs.
This	includes	the	current	heap	size,	as	well	as	the	number	and	size	of	objects
collected,	number	of	objects	in	the	heap,	amount	of	time	the	collector	ran	and
other	information.
Sample	Verbose	GC	Output:
	
GC	4:	starting	collection,	threshold	allocation	reached.
GC	4:	live	objects	2562187;	collected	objects	4936351;	collected	(KB)	541840.
GC	4:	queued	for	finalization	0;	total	soft	references	92;	cleared	soft	references	5.
GC	4:	current	heap	(KB)	1171424;	current	threshold	(KB)	524288.
GC	4:	collect	(milliseconds)	4138.
GC	4:	current	cycle	allocation	(KB)	236160;	previous	cycle	allocation	(KB)	524314.
GC	4:	total	weak	references	684;	cleared	weak	references	0.
GC	4:	total	final	references	11797;	cleared	final	references	63.
GC	4:	total	phantom	references	0;	cleared	phantom	references	0.
GC	4:	total	old	soft	references	0;	cleared	old	soft	references	0.
	

The	most	important	of	these	fields	for	tuning	GC	are:
Memory	allocated	since	the	last	cycle	began	Previous	cycle	allocation	(KB).
Memory	allocated	since	the	current	cycle	began	Current	cycle	allocation
(KB).
Elapsed	time	for	this	cycle	Collect	(milliseconds).
The	threshold	value	Current	threshold	(KB).
The	current	heap	size	Current	heap	(KB).
Total	size	of	the	objects	collected	during	this	cycle	Collected	(KB).
Number	of	objects	collected	during	this	cycle	Collected	objects.
Number	of	objects	currently	active	in	the	JVM	Live	objects.
This	is	the	fourth	GC	cycle	since	the	JVM	started	GC	4.

The	current	threshold	is	the	value	set	for	the	initial	heap	size	(512	MB	in	the
example	output).

The	previous	cycle	allocation	is	normally	close	to	this	value,	because	the	GC
cycle	is	triggered	when	the	amount	of	memory	allocated	since	the	last	cycle
began	reaches	the	threshold	value.
The	example	output	shows	that	the	GC	cycle	took	more	than	four	seconds	to
complete.	During	that	time,	the	current	cycle	allocation	reached	more	than	200
MB.	This	is	about	40	percent	of	the	threshold	value,	which	suggests	that	the
total	time	between	the	beginning	of	this	cycle	and	the	next	cycle	is	around	10
seconds.	This	cycle	collected	nearly	5	million	objects	(collected	objects),
leaving	only	2.5	million	objects	in	the	heap	at	the	end	of	the	cycle	(live	objects).
In	general,	it's	best	to	have	a	low	cycle	time.	One	to	two	seconds	is	ideal,	but
times	of	five	to	10	seconds	are	common.
It's	also	best	to	have	some	time	between	collection	cycles	(i.e.,	current	cycle
allocation	should	be	less	than	the	current	threshold).
These	two	goals	work	against	each	other	--	increasing	the	threshold	value
allows	the	heap	to	grow,	resulting	in	more	time	between	cycles,	but	this
lengthens	each	cycle.	Decreasing	the	threshold	shortens	each	cycle,	but	also
shortens	the	time	between	cycles.
The	key	to	tuning	GC	is	to	find	a	balance	between	these	two	goals.	This	is	why
examining	the	CPU	consumed	by	GC	is	generally	better	than	looking	at	values
like	the	current	heap	size.
If	you	don't	have	the	Performance	Tools	licensed	program	product	(PT1	LPP)
installed	on	your	system,	you	may	want	to	experiment	with	the	threshold	value,
using	your	application's	throughput	or	response	time	as	well	as	verbose	GC
output	to	determine	how	to	further	tune	the	threshold.
Even	if	you	do	have	PT1,	it	may	be	useful	to	examine	verbose	GC	output	to
understand	how	your	application	uses	the	heap	and	to	watch	for	changes	in	the
GC	behavior	as	application	and	system	loads	change.

IBM	i	-	DUMP	JVM
Another	tool	that	can	be	used	to	learn	about	garbage	collector	performance	is
the	Dump	JVM	(DMPJVM)	command,	which	provides	a	spool	file	with
information	about	your	JVM,	including	some	of	the	key	GC	data	--	initial	heap
size,	maximum	heap	size,	current	heap	size	and	number	of	collections	since	the
JVM	was	started.
It	also	includes	a	dump	of	the	objects	currently	in	the	heap,	which	can	be
helpful	for	analyzing	object	leak	problems.	(Object	leaks	occur	when	your
application	creates	new	objects	and	keeps	a	reference	to	the	objects	even	when
they're	no	longer	needed,	preventing	the	collector	from	collecting	them.
Sample	of	the	GC	section	of	DMPJVM	output:
	
Garbage	collector	parameters
Initial	size:	262144	K
Max	size:	240000000	K
Current	values
Heap	size:	449952	K
Garbage	collections:	278
Additional	values
JIT	heap	size:	85728	K
JVM	heap	size:	186588	K
Last	GC	cycle	time:	1302	ms
	

While	the	DMPJVM	data	is	only	a	snapshot	and	doesn't	provide	the	details
available	with	verbose	GC,	it	can	be	run	without	restarting	your	JVM,	so	it's
useful	for	getting	some	information	about	the	JVM	after	a	problem	has
occurred.
Details	on	DMPJVM	can	be	found	in	the	IBM	i	Information	Center	at:
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/cl/dmpjvm.htm).
Use	WRKACTJOB	command	to	locate	the	JSM	JVM	job.
	
JSM	
JSMJOB									QOTHPRDOWN					BCH				.0					PGM-RUNJSM					TIMW	
QJVACMDSRV					QOTHPRDOWN					BCI				.0																				TIMW
	
Job:	QJVACMDSRV					User:	QOTHPRDOWN	Number:	422841

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/cl/dmpjvm.htm

	
Use	DMPJVM	command	to	create	a	spool	file	with	the	JVM	dump	information.
	
DMPJVM	JOB	(422841/QOTHPRDOWN/QJVACMDSRV)
	

Sample	DMPJVM	on	the	JSM	JVM:
	
Java	Virtual	Machine	Information		422841/QOTHPRDOWN/QJVACMDSRV														
..
Classpath
..	
java.version=1.2
/QIBM/ProdData/Java400/jdk12/lib/jdkptf12.zip:/QIBM/ProdData/Java400/jdk12/lib/rt.jar:/QIBM/ProdData/Java400/jdk12/lib/i18n.jar:/QIBM/ProdData/Java400/ext/IBMmisc.jar:/QIBM/ProdData/Java400/ext/jssl.jar:/QIBM/ProdData/Java400/ext/ibmjssl.jar:/QIBM/ProdData/Java400/:./classes:./jar/activation.jar:./jar/jsm.jar:./jar/jsmnative.jar:./jar/mailapi.jar:./jar/pop3.jar:./jar/smtp.jar:./jar/xalan.jar:./jar/xerces.jar:./jar/xlrd.jar:./jar/jsmservice.jar:./jar/jsmutil.jar:./jar/mail.jar:
..
Garbage	Collection
..
Garbage	collector	parameters	
Initial	size:	2048	K
Max	size:	*NOMAX	
Current	values	
Heap	size:	44032	K
Garbage	collections:	51	
..
Thread	information
..
Information	for	4	thread(s)	of	4	thread(s)	processed
Thread:		00000001	Thread-0	
TDE:		B000100007CCA000
Thread	priority:	5
Thread	status:	Running
Thread	group:	main
Runnable:	java/lang/Thread	
Stack:	
java/net/PlainSocketImpl.accept(Ljava/net/SocketImpl;)V+1	(PlainSocketImpl
java/net/ServerSocket.implAccept(Ljava/net/Socket;)V+36	(ServerSocket.java	
java/net/ServerSocket.accept()Ljava/net/Socket;+8	(ServerSocket.java:224)
com/lansa/jsm/d.if()Lcom/lansa/jsm/a;+0	(:0)
com/lansa/jsm/JSMManager.do(Ljava/lang/String;)V+0	(:275)

com/lansa/jsm/JSMManager.main([Ljava/lang/String;)V+0	(:311)	
	Locks:	
None	
Thread:		00000002	Reference	Handler	
TDE:		B0001000070D4000
Thread	priority:	10
Thread	status:	Waiting
Wait	object:	java/lang/ref/Reference$Lock
Thread	group:	system
Runnable:	java/lang/ref/Reference$ReferenceHandler	
Stack:	
java/lang/ref/Reference$ReferenceHandler.run()V+48	(Reference.java:129)	
Locks:	
None	
Thread:		00000003	Finalizer	
TDE:		B000100007CCE000
Thread	priority:	8
Thread	status:	Waiting
Wait	object:	java/lang/ref/ReferenceQueue$Lock
Thread	group:	system
Runnable:	java/lang/ref/Finalizer$FinalizerThread	
	Stack:	
java/lang/ref/ReferenceQueue.remove(J)Ljava/lang/ref/Reference;+48	(Refere	
java/lang/ref/Finalizer$FinalizerThread.run()V+3	(Finalizer.java:190)
Locks:	
None	
	

Once	you've	picked	a	reasonable	starting	point,	start	your	application	and	let	it
run	for	a	while	under	the	maximum	load	that	you	intend	to	handle,	giving	it
time	to	reach	a	steady	state	(a	few	minutes	is	usually	sufficient).	It's	best	to	use	a
load-generation	tool	to	put	a	constant	load	on	your	system.	This	allows	you	to
tune	your	application	in	a	development	environment	rather	than	a	production
environment.
In	addition	to	providing	a	constant	load	(allowing	you	to	see	the	effects	of
changes	more	accurately),	this	allows	you	to	make	changes	as	necessary	without
affecting	users.
While	your	application	is	running,	use	the	aforementioned	tools	to	measure	the
impact	of	your	changes.	Your	load-generation	tool	should	also	detail	the

throughput	and	response	time	so	you	can	see	the	impact	on	your	application's
performance.
Whenever	you	change	performance	parameters	such	as	the	GC	threshold,	you
should	measure	the	effects	on	throughput	and/or	response	time	to	ensure	that	the
changes	actually	help.	If	the	tools	indicate	that	there's	still	room	for
improvement,	change	the	threshold	and	try	a	new	run.	Once	you've	increased	it
too	far,	the	throughput	begins	to	degrade	again,	indicating	that	you	must	reduce
the	threshold.
These	recommendations	are	based	on	the	assumption	that	your	system	has
enough	main	storage	to	handle	larger	heap	sizes.	In	reality,	this	may	not	always
be	the	case.
In	systems	with	limited	memory,	it	may	be	necessary	to	set	the	GC	threshold	to
a	lower	value,	which	increases	collection	frequency	and	decreases	heap	size.
This	allows	the	entire	heap	to	be	kept	in	memory.
Use	Work	with	System	Status	(WRKSYSSTS)	command	to	monitor	the	non-
database	paging/faulting	rates.
If	these	rates	get	too	high,	the	heap	may	be	too	large.	The	definition	of	"too
large"	depends	on	a	variety	of	factors--system	size,	number	of	disks	and	system
workload--but	sustained	non-database	paging	rates	greater	than	10	faults	per
second	by	Java	programs	is	generally	cause	for	concern.
Higher	paging	rates	are	acceptable	during	"warm-up"	periods.
High	paging	rates	may	result	from	having	the	GC	threshold	set	too	high	or	may
be	a	symptom	of	a	larger	problem.
In	this	case,	the	first	step	should	be	to	isolate	the	JVM	in	its	own	memory	pool.
This	reduces	the	effects	that	other	applications	may	have	on	the	JVM	and	makes
it	easier	to	identify	whether	the	problem	is	with	the	GC	settings,	system
configuration	or	simply	not	enough	hardware	to	handle	the	workload.
In	cases	where	memory	is	especially	limited,	it	may	be	useful	to	set	the
maximum	heap	size.
Normally,	this	should	be	left	at	the	default	value	*NOMAX,	which	means	that
GC	runs	only	when	the	GC	threshold	has	been	reached.
If	a	maximum	heap	size	is	set,	the	collector	runs	whenever	the	heap	reaches	that
maximum	size.
However,	unlike	a	normal	GC,	if	the	maximum	size	is	reached,	all	application
threads	must	wait	until	the	collector	has	finished	before	they	can	continue
running.	This	results	in	undesirable	pause	times.

Therefore,	it's	preferred	to	use	the	maximum	heap	size	as	a	safety	net	to	handle
times	of	unexpected	heap	growth	and	ensure	that	the	heap	doesn't	grow	larger
than	the	available	memory.
The	GC	threshold	should	be	set	so	that	this	maximum	size	is	never	actually
reached	under	normal	circumstances.
Tuning	the	collector	is	one	way	to	reduce	the	amount	of	time	spent	in	GC.
Another	way	is	to	reduce	the	number	of	objects	being	created.	(Note:	Tips	for
reducing	object	creation	are	common	to	all	platforms	and	documented	in	several
places.

IBM	i	-	ANALYZE	JVM
The	Analyze	Java	Virtual	Machine	(ANZJVM)	command	collects	information
about	the	Java	Virtual	Machine	(JVM)	for	a	specified	job.
A	set	of	JVM	information	is	collected	immediately	when	the	command	is	run.
This	collected	JVM	data	is	called	a	snapshot.
A	second	snapshot	is	done	a	specified	amount	of	time	later.
By	taking	a	snapshot	of	the	JVM	and	comparing	the	data	with	a	snapshot	taken
at	a	later	time	the	data	can	be	analyzed	to	help	find	object	leaks.
To	find	object	leaks,	you	would	look	at	the	number	of	instances	of	each	class	in
the	heap.	Classes	that	have	an	unusually	high	number	of	instances	should	be
noted	as	possibly	leaking.
You	should	also	note	the	change	in	number	of	instances	of	each	class	between
the	two	copies	of	the	garbage	collection	heap.	If	the	number	of	instances	of	a
class	continually	increases,	that	class	should	be	noted	as	possibly	leaking.
The	longer	the	time	interval	between	the	two	copies,	the	more	certainty	you
have	that	objects	are	actually	leaking.
By	running	ANZJVM	a	series	of	times	with	a	larger	time	interval,	you	should
be	able	to	diagnose	with	a	high	degree	of	certainty	what	is	leaking.
The	information	is	dumped	using	printer	device	file	QSYSPRT.
The	user	data	for	the	QSYSPRT	file	is	'ANZJVM'.
The	dump	includes	formatted	information	about	the	JVM	heap.
Details	include	names	of	classes,	number	of	active	objects	per	class,	and	the
class	loader	used	to	load	each	class.
When	you	run	the	ANZJVM	command,	there	is	a	parameter	to	specify	if	a
garbage	collection	cycle	should	be	forced,	and	if	so,	an	attempt	is	made	to	force
a	garbage	collection	cycle	before	each	pass.
There	are	also	parameters	on	how	the	information	should	be	stored	and	how
long	the	interval	between	passes	should	be.
The	following	ANZJVM	command	example	collects	two	copies	of	the	JVM	60
seconds	apart	for	a	job	named	QJVACMDSRC	for	user	name	QOTHPRDOWN
and	the	job	number	099112.
	
ANZJVM	JOB	(099112/	QOTHPRDOWN	/QJVACMDSRV)
	

IBM	i	-	Network	Performance
Network	Tuning
Network	performance	is	influenced	by	the	Maximum	Transmission	Unit	size,
send	and	receive	buffer	size,	port	filtering,	duplex	settings	and	Domain	Name
lookup.
The	Maximum	Transmission	Unit	Size	(MTU)	parameter	affects	the	actual	size
of	the	line	flows.
By	increasing	the	value	of	this	parameter	you	can	reduce	the	overall	number	of
transmissions,	and	therefore,	increase	the	potential	capacity	of	the	CPU	and	the
IOP	(input/output	processor).
Similar	parameters	also	exist	on	the	client.
The	negotiated	value	will	be	the	minimum	of	the	server	and	client	(and	perhaps
any	bridges/routers),	so	increase	them	all.

Setting	the	Maximum	Transmission	Unit

The	maximum	transmission	unit	(MTU)	parameter	is	available	on	the	following
commands.
Add	TCP/IP	Interface	(ADDTCPIFC)
Add	TCP/IP	Route	(ADDTCPRTE)
Change	TCP/IP	Interface	(CHGTCPIFC)
Change	TCP/IP	Route	(CHGTCPRTE)
Following	is	a	list	of	the	maximum	MTU	values	that	you	can	specify,	based	on
the	line	type:

Asynchronous	(SLIP) 1006

DDI 4352

Ethernet	802.3 1492

Ethernet	Version	2 1500

Frame	relay 8177

Point-to-Point	(PPP) 4096

Token	ring	(4	meg) 4060

Token	ring	(16	meg) 16388

Wireless	802.3 1492

Wireless	Version	2 1500

X.25 4096

	

TCP/IP	processing	uses	a	small	part	of	each	datagram.	Therefore,	the	whole
datagram	size	is	unavailable	for	user	data.
The	value	of	the	maximum	transmission	unit	used	by	TCP/IP	processing
depends	on	the	value	that	you	specify	for	the	route	on	the	MTU	parameter	of	the
route	or	interface	commands	mentioned	previously.	It	also	depends	on	the	type
of	physical	line	that	you	use,	the	maximum	frame	size	of	the	network	line,	and
the	SSAP	maximum	frame	size.

Determining	the	Maximum	Size	of	Datagrams

For	a	communications	line,	specify	the	maximum	frame	size	on	the	appropriate
Create	Line	Description	command.
The	maximum	frame	size	is	compared	to	the	MTU	value	of	the	route	or
interface.
TCP/IP	uses	the	lesser	of	these	two	values	to	determine	the	maximum	size	of
datagrams	that	it	sends	by	over	this	line.
For	example,	if	you	specify	1024	for	the	MTU	parameter	for	a	route	attached	to
a	communications	line	and	the	line	description	contained	a	value	of	512	for	a
maximum	frame	size,	the	maximum	datagram	size	value	for	the	route	that
TCP/IP	uses	is	512.
If	the	line	is	varied	off	and	you	change	the	maximum	frame	size	on	the	Token-
ring	line	description	to	1994,	and	then	the	line	is	varied	on,	the	maximum
transmission	unit	used	for	the	route	is	reset	to	1024	when	the	next	TCP/IP
operation	occurs	that	causes	a	datagram	to	be	sent.
	
Display	TCP/IP	Route
	
Route	destination																										*DFTROUTE
Subnet	mask																																*NONE

Type	of	service																												*NORMAL
Next	hop																																			10.2.0.1
Preferred	binding	interface																*NONE
Maximum	transmission	unit																		*IFC
Duplicate	route	priority																			5
Route	metric																															1
Route	redistribution																							*NO
	
Display	TCP/IP	Interface
	
Internet	address																											10.2.0.169
Subnet	mask																																255.255.0.0
Line	description																											ETHLINE
Line	type																																		*ELAN
Associated	local	interface																	*NONE
Interface	status																											Active
Type	of	service																												*NORMAL
Maximum	transmission	unit																		1492
Automatic	start																												*YES
	

TCP/IP	Buffer	Size
Server	performance	can	be	improved	by	tuning	the	buffer	size	that	is	used	by
TCP/IP.
If	your	network	is	very	reliable,	try	increasing	the	buffer	size	from	the	default
value.
If	your	network	experiences	a	significant	amount	of	collisions	or	congestion,
you	may	be	able	to	improve	performance	by	decreasing	the	TCP/IP	send	and
receive	buffers.	This	is	because	it	will	take	less	time	to	detect	a	bad	packet,	and
less	data	will	need	to	be	re-transmitted.
Select	a	size	in	the	range	of	32K	to	128K,	and	use	the	same	size	for	both
buffers.
Setting	the	buffer	size	to	a	large	value,	8388608	for	example,	can	cause	storage
allocation	problems	on	your	machine.	This	is	because	every	TCP/IP	connection
allocates	8MB	of	storage	for	its	receive	buffer.
For	best	use	of	resources	the	buffer	size	should	be	a	multiple	of	the	amount	of
data	a	datagram	can	hold,	this	is	called	the	maximum	segment	size	(MSS).
To	determine	the	MSS	is	problematic	as	the	IP	header	and	the	TCP	header	may

vary	in	length.	An	optimistic	position	assumes	that	both	the	IP	header	and	the
TCP	header	are	minimum	size,	that	is,	20	octets	each.
The	value	of	the	MSS	is	the	MTU	minus	(20	+	20),	which	is	1492	-	40	=	1452
bytes.
You	need	to	make	the	buffers'	size	a	multiple	of	the	MSS.
For	a	buffer	size	of	about	32K,	you	calculate	it	as	follows:	32,000	/	1,452	=
22.04.
Discard	the	decimal	places	in	the	result	and	multiply	the	whole	number	by	the
MSS.
22	*	1,452	=	31,944
That's	the	number	to	set	your	send	and	receive	buffer	sizes	too.
	
Change	TCP/IP	Attributes
	
TCP	keep	alive																													120
TCP	urgent	pointer																									*BSD
TCP	receive	buffer	size																				31944
TCP	send	buffer	size																							31944
TCP	R1	retransmission	count																3
TCP	R2	retransmission	count																16
TCP	closed	timewait	timeout																120
UDP	checksum																															*YES
	

Duplex
Ethernet	supports	both	half	and	full	duplex.
The	best	performance	will	be	with	full	duplex.
However,	the	duplex	setting	on	the	line	description	must	match	the	setting	on
the	port	on	the	switch	if	the	line	is	hooked	up	to	a	switch.
Be	especially	careful	if	you	set	your	ethernet	switch	or	your	line	description	to
*AUTO.	It	has	been	found	in	many	cases	that	performance	is	severely	degraded
because	the	duplex	setting	did	not	auto-negotiate	correctly.
It	is	probably	best	to	configure	switches	and	line	descriptions	to	either	*FULL
or	*HALF	explicitly.
If	the	line	is	connected	to	a	'stackable'	hub,	then	the	duplex	setting	on	the	line
should	be	set	to	*HALF	to	match	the	hub	setting.

Domain	Name	Server	Lookup
TCP/IP	connection	performance	can	be	improved	if	the	registered	DNS	servers
are	available	and	performing	well.
The	JSM_OPEN	Built-In	Function	performs	a	DNS	lookup	to	resolve	the	host
name	address.	Using	a	dotted	decimal	IP	address	does	not	get	around	this	DNS
lookup.
If	the	JSM_OPEN	Built-In	Function	is	slow	to	open	a	connection	then	you
could	have	a	DNS	lookup	issue.	Add	an	entry	to	the	local	host	table	to	improve
performance.
	
Change	TCP/IP	Domain
Host	name	search	priority											*LOCAL
Domain	name	server
Internet	address																				139.130.4.4
																																				203.48.48.13
	

If	the	first	Domain	Name	Server	(DNS)	in	the	list	does	not	respond,	the	second
DNS	server	in	the	list	will	be	contacted.	If	the	second	DNS	server	does	not
respond,	the	third	DNS	server	will	be	contacted.
	

IBM	i	-	Java	License	Program
The	IBM	i	platform	supports	multiple	versions	of	the	Java	Development	Kit
(JDK).
If	you	are	using	IBM	Technology	for	Java,	you	select	which	option	to	run	by
setting	the	JAVA_HOME	environment	variable.
This	differs	from	the	Classic	JVM,	which	uses	the	java.version	system	property.
The	following	table	lists	the	supported	options:

Option JAVA_HOME Version

Option
6

/QIBM/ProdData/Java400/jdk14 Classic	1.4

Option
7

/QIBM/ProdData/Java400/jdk15 Classic	1.5	(5.0)

Option
8

/QOpenSys/QIBM/ProdData/JavaVM/jdk50/32bit IBM	Technology
for	Java	5.0	32-
bit

Option
9

/QOpenSys/QIBM/ProdData/JavaVM/jdk50/64bit IBM	Technology
for	Java	5.0	64-
bit

Option
10

/QIBM/ProdData/Java400/jdk6 Classic	1.6	(6.0)

Option
11

/QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit IBM	Technology
for	Java	6	32-bit

Option
12

/QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit IBM	Technology
for	Java	6	64-bit

Option
13

/QOpenSys/QIBM/ProdData/JavaVM/jdk14/64bit IBM	Technology
for	Java	1.4	64-
bit

Option
14

/QOpenSys/QIBM/ProdData/JavaVM/jdk70/32bit IBM	Technology
for	Java	7	32-bit

Option /QOpenSys/QIBM/ProdData/JavaVM/jdk70/64bit IBM	Technology

15 for	Java	7	64-bit

Option
16

/QOpenSys/QIBM/ProdData/JavaVM/jdk80/32bit IBM	Technology
for	Java	8	32-bit

Option
17

/QOpenSys/QIBM/ProdData/JavaVM/jdk80/64bit IBM	Technology
for	Java	8	64-bit

	

Note:	If	you	install	only	one	JDK,	the	default	JDK	is	the	one	you	installed.
If	you	install	more	than	one	JDK,	consult	IBM	documentation	on	the	order	of
precedence.

Oracle	–	Java	Performance	Tuning
Oracle's	JDK	is	used	for	the	Windows	and	Red	Hat	Linux	platform.	For
performance	tuning	refer	to	Oracle	documentation.
Java	Tuning	Java	Tuning	White	Paper
Tuning	Garbage	Collection	with	the	5.0	Java™	Virtual	Machine
Java	SE	6	Performance	White	Paper
Java	SE	6	HotSpot™	Virtual	Machine	Garbage	Collection	Tuning
	

http://www.oracle.com/technetwork/java/tuning-139912.html
http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html
http://www.oracle.com/technetwork/java/6-performance-137236.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

JSM	Console
Basic	system	information	can	be	obtained	from	the	JSM	console	such	as	total
and	free	memory	and	the	current	number	of	threads	running	in	the	JVM.

The	active	service	count	is	the	number	of	service	threads	that	are	running.
For	more	information,	refer	to	Java	Service	Manager	Console.

Use	the	Work	with	threads	or	the	Java	Virtual	Machine	options	from	the
WRKACTJOB	command	to	view	Java	runtime	information.	The	following
image	illustrates	the	Work	with	Threads	options.

The	console	system	information	displays	the	JVM	system	properties,	but	also
the	free	and	total	memory	amounts	are	displayed.
When	the	system	is	running	services	the	free	memory	will	decrease	and	increase
as	objects	are	created	and	reclaimed	by	the	garbage	collection	process.
If	more	memory	is	required	the	total	memory	will	increase.
Total	memory	will	never	decrease	and	memory	will	be	only	returned	to	the
operating	system	when	the	JVM	environment	ends.

	
	

Appendix	B.	Client	Application	Examples
This	appendix	contains	examples	of	client	applications	that	use	the	supplied
Java	Service	Manager	(JSM)	services.
Some	of	the	examples	include	references	to	an	XML	file	called	ORDER.XML.
This	file	can	be	found	in	the	default	instance	directory.	In	some	cases,	necessary
records	have	also	been	added	to	any	relevant	property	files.	You	should	follow
the	instructions	in	this	appendix	and	in	the	example	source	code	to	install	and
use	the	example	applications.
Examples	are	supplied	for	the	most	common	client	programming	languages:
RDML	Examples
RDMLX	Examples
RPG	Examples
C	Examples

RDML	Examples
Open/Close	Example
FTPService	Example
HTTP	Service	Example	(XML	Inbound)
HTTP	Service	Example	(XML	Outbound)
SMTPMailService	Example
POP3MailService	Example
SMSService	Example
XMLBindFileService	Example
XMLParserService	Example	1
XMLParserService	2	(Node	traversal)
MQSeries	Built-in	Function	Example
MQSeries	and	DataQueue	programs	Example
OpenLDAPService	Example
RFIDataSourceService	Example
ZipService	Example
PDFSpoolFileService	Example
SVFileService	Example
ExcelReadService	Example
SQLService	Examples
JSMDirect	Example

Open/Close	Example
Use	this	example	code	to	test	that	your	install	has	been	successful.
Opens	and	closes	the	connection	to	the	Java	Service	Manager.
	
**********	Beginning	of	RDML	commands	**********					
FUNCTION			OPTIONS(*DIRECT)																										

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)					
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)				

**********	Open	service																														

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)	

IF									COND('#JSMSTS	*NE	OK')																				
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))															
ENDIF																																																

**********	Close	service																													

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
IF									COND('#JSMSTS	*NE	OK')																				
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))															
ENDIF																																																
**********	End	of	RDML	commands	**********							
	

FTPService	Example
This	function	connects	to	a	remote	FTP	server	and	allows	a	file	to	be	PUT	onto
the	remote	server.		The	current	directory	on	the	remote	server	can	be	set	as
required.

Modify	the	default	values	to	be	displayed	to	suit	your	site.

	
*	Uses	Integrator	Services:	FTPSERVICE
	
*	Loads	FTPService	service	then	connects
*	to	a	host	using	FTP	and	puts	a	file	in	binary	mode.

*	Beginning	of	RDML	commands	**********

FUNCTION	OPTIONS(*DIRECT)
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

DEFINE	FIELD(#JSMSERVER)	TYPE(*char)	LENGTH(20)
DEFINE	FIELD(#JSMUSER)	TYPE(*CHAR)	LENGTH(010)	LABEL('User')
DEFINE	FIELD(#JSMPSSWRD)	TYPE(*char)	LENGTH(10)
DEFINE	FIELD(#JSMDIR)	TYPE(*CHAR)	LENGTH(78)	COLHDG('Change	target	dir')
DEFINE	FIELD(#JSMFROM)	TYPE(*CHAR)	LENGTH(78)	COLHDG('From	file')
DEFINE	FIELD(#JSMTO)	TYPE(*CHAR)	LENGTH(78)	COLHDG('To	file')

*	set	default	values	for	screen
CHANGE	FIELD(#STD_INSTR)	TO('''Set	your	appropriate	values	then	press	ENTER	to	put	file	on	remote	server.	''')
CHANGE	FIELD(#JSMSERVER)	TO(ISERIES01)
CHANGE	FIELD(#JSMUSER)	TO(USER)
CHANGE	FIELD(#JSMPSSWRD)	TO(PASSWORD)

*	Open	service
USE	BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Load	service
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(FTPSERVICE)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
MESSAGE	MSGTXT('FTPService	loaded')

BEGIN_LOOP

*	Format	and	Process	JSM	commands
REQUEST	FIELDS((#STD_INSTR	*L004	*P002	*OUTPUT	*NOID)	(#JSMSERVER	*L006	*P024)	(#JSMUSER	*L008	*P024)	(#JSMPSSWRD	*L010	*P024)	(#JSMFROM	*L012	*P002	*COLHDG)	(#JSMTO	*L015	*P002	*COLHDG)	(#JSMDIR	*L018	*P002	*COLHDG))	IDENTIFY(*LABEL)	EXIT_KEY(*NO)	MENU_KEY(*YES	*NEXT)	PROMPT_KEY(*NO)	USER_KEYS((05	'Get	Dir'))

IF_KEY	WAS(*USERKEY1)

EXECUTE	SUBROUTINE(CONNECT)

*	get	the	current	directory
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('GETDIR')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
CHANGE	FIELD(#JSMDIR)	TO(#jsmmsg)

*	Quit	FTP	Session
EXECUTE	SUBROUTINE(FTPQUIT)
CONTINUE
ENDIF

IF_KEY	WAS(*MENU)

*	Close	service
EXECUTE	SUBROUTINE(DISCONNECT)
MENU

ENDIF

*	Connect	to	remote	FTP	server
EXECUTE	SUBROUTINE(CONNECT)

*	Transfer	file
EXECUTE	SUBROUTINE(TRANSFER)

END_LOOP

SUBROUTINE	NAME(CONNECT)

*	Connect	to	host
USE	BUILTIN(TCONCAT)	WITH_ARGS('CONNECT	HOST('	#JSMSERVER	')')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Login
USE	BUILTIN(TCONCAT)	WITH_ARGS('LOGIN	USER('	#JSMUSER	')	PASSWORD('	#JSMPSSWRD	')')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
MESSAGE	MSGTXT('Connection	to	remote	server	established')

ENDROUTINE

SUBROUTINE	NAME(TRANSFER)

*	Change	directory
IF	COND('#JSMDIR	*NE	*BLANK')

USE	BUILTIN(TCONCAT)	WITH_ARGS('CHGDIR	PATH('	#JSMDIR	')')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
MESSAGE	MSGTXT('Current	directory	has	been	changed	on	remote	server')

ENDIF

*	Binary	mode
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('BINARY')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Put	file
USE	BUILTIN(TCONCAT)	WITH_ARGS('PUT	FROM('	#JSMFROM	')	TO('	#JSMTO	')')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
MESSAGE	MSGTXT('File	has	been	put	on	remote	server')

*	Quit	after	each	file	send
EXECUTE	SUBROUTINE(FTPQUIT)

ENDROUTINE

SUBROUTINE	NAME(FTPQUIT)

*	Quit	after	each	file	send
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('QUIT')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
MESSAGE	MSGTXT('FTP	connection	closed')

ENDROUTINE

SUBROUTINE	NAME(DISCONNECT)

*	Unload	service
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_UNLOAD')	TO_GET(#JSMSTS	#JSMMSG)
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

*	Close	service
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

ENDROUTINE

*	Check	the	JSM	return	status
SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF	COND('#JSMSTS	*NE	OK')
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMSTS	'	:	'	#JSMMSG)	TO_GET(#STD_TEXTL)
MENU	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#STD_TEXTL)
ENDIF

ENDROUTINE
*	End	of	RDML	commands	**********
	

HTTP	Service	Example	(XML	Inbound)
Loads	the	HTTPService	service.	Receives	xml	order	using	Inbound	xml	content
handler	and	stylesheet	(created	using	the	XML	Transformation	Wizard).
**********	Beginning	of	RDML	commands	**********		
FUNCTION			OPTIONS(*DIRECT)

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)															
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)														
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

DEFINE					FIELD(#ORDER)	TYPE(*CHAR)	LENGTH(10)																
DEFINE					FIELD(#NAME)	TYPE(*CHAR)	LENGTH(50)																	
DEFINE					FIELD(#STREET)	TYPE(*CHAR)	LENGTH(50)															
DEFINE					FIELD(#CITY)	TYPE(*CHAR)	LENGTH(50)																	
DEFINE					FIELD(#STATE)	TYPE(*CHAR)	LENGTH(5)																	
DEFINE					FIELD(#ZIP)	TYPE(*CHAR)	LENGTH(5)																			

DEFINE					FIELD(#LINENUM)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)							
DEFINE					FIELD(#PARTNUM)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)							
DEFINE					FIELD(#PARTDSC)	TYPE(*CHAR)	LENGTH(50)																	
DEFINE					FIELD(#PARTAMT)	TYPE(*DEC)	LENGTH(10)	DECIMALS(2)						
DEFINE					FIELD(#PARTQTY)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)							
DEFINE					FIELD(#FILL1)	TYPE(*CHAR)	LENGTH(3)																				

DEF_LIST			NAME(#WRKLST)	FIELDS((#FILL1)	(#LINENUM)	(#PARTNUM)				
											(#PARTDSC)	(#PARTAMT)	(#PARTQTY))	TYPE(*WORKING)							

**********	'Open	service'																																									

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)														
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	'Load	service'																																									

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(HT
											TPSERVICE)')	TO_GET(#JSMSTS	#JSMMSG)																			
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	Receive	XML	order,	SV	order,	POST	order																

**********	HANDLER(IXML)	XSL(RECEIVEORDER)	or																					
**********	HANDLER(IXML)	XSL(SENDORDER)	or																								
**********	HANDLER(ISVL)	SVHEAD(ORDER)	or																									
**********	HANDLER(INVL)	BIND(*FIELD)																													
**********	HANDLER(IMP)		SVHEAD(ORDER)																												

CHANGE					FIELD(#JSMCMD)	TO('RECEIVE	HANDLER(ISVL)	SVHEAD(ORDER)	
											SERVICE_LIST(FILL1,LINENUM,PARTNUM,PARTDSC,PARTAMT,				
											PARTQTY)')																																													

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	
											#JSMMSG	#WRKLST)																																							
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	Process	and	validate																																			

SELECTLIST	NAMED(#WRKLST)																																									

ENDSELECT																																																									

**********	Send	response																																										

CHANGE					FIELD(#JSMCMD)	TO('SEND	HANDLER(ISVL)	SERVICE_LIST(FILL
											1,LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')											

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS
											#JSMMSG	#WRKLST)																																							
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	'Close	service'																																								

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)													
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	SUB	ROUTINES																																											

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVE
											D))																																																				

IF									COND('#JSMSTS	*NE	OK')																				

**********	Close	service	and	send	the	HTTP	response		

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

ENDIF																																																

ENDROUTINE																																											
**********	End	of	RDML	commands	**********											
	

HTTP	Service	Example	(XML	Outbound)
Load	HTTPService	service.	Creates	xml	order	using	Outbound	xml	content
handler	and	stylesheet	(created	using	the	XML	Transformation	Wizard).
This	example	sends	a	partial	order	via	xml	to	a	host	which	returns	the
completed	details.
The	following	function	should	be	executed	on	the	IBM	i.
FUNCTION			OPTIONS(*DIRECT)																																				

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)														
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)														
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

DEFINE					FIELD(#ORDER)	TYPE(*CHAR)	LENGTH(010)															
DEFINE					FIELD(#NAME)	TYPE(*CHAR)	LENGTH(050)																
DEFINE					FIELD(#STREET)	TYPE(*CHAR)	LENGTH(050)														
DEFINE					FIELD(#CITY)	TYPE(*CHAR)	LENGTH(050)																
DEFINE					FIELD(#STATE)	TYPE(*CHAR)	LENGTH(005)															
DEFINE					FIELD(#ZIP)	TYPE(*CHAR)	LENGTH(005)																	

DEFINE					FIELD(#LINENUM)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)					
DEFINE					FIELD(#PARTNUM)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)					
DEFINE					FIELD(#PARTDSC)	TYPE(*CHAR)	LENGTH(050)																
DEFINE					FIELD(#PARTAMT)	TYPE(*DEC)	LENGTH(010)	DECIMALS(2)	EDIT
											_CODE(3)																																															
DEFINE					FIELD(#PARTQTY)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)	EDIT
											_CODE(Z)																																															

DEF_LIST			NAME(#WRKLST)	FIELDS(#LINENUM	#PARTNUM	#PARTDSC	#PARTAM
											T	#PARTQTY)	TYPE(*WORKING)																													
DEF_LIST			NAME(#DSPLST)	FIELDS(#LINENUM	#PARTNUM	#PARTAMT	#PARTQT
											Y)																																																					
**********	build	partial	order	details																												
EXECUTE				SUBROUTINE(BUILDORD)																																			
BEGIN_LOOP																																																								
**********	Get	completed	order	details																												
CLR_LIST			NAMED(#DSPLST)																																									
SELECTLIST	NAMED(#WRKLST)																																									

ADD_ENTRY		TO_LIST(#DSPLST)																																							
ENDSELECT																																																									

DISPLAY				FIELDS(#ORDER	#NAME	#STREET	#CITY	#STATE	#ZIP)	BROWSELI
											ST(#DSPLST)																																												
**********	'Open	service'																																									
USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)														
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	'Load	service'																																									
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('''SERVICE_LOAD	SERVICE(
											HTTPSERVICE)''')	TO_GET(#JSMSTS	#JSMMSG)															
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										
**********	'Send	REquest																																										

CHANGE					FIELD(#JSMCMD)	TO('SEND	HANDLER(OXML)	XSL(SENDORDER)	HO
											ST(L04TST:85)	URI(/CGI-BIN/JSMDIRECT?
ORDERXML)	SERVICE_	
											LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')									

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS		
											#JSMMSG	#WRKLST)																																								
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)											

**********	'Receive	response'																																						
**********	HANDLER(IXML)	XSL(RECEIVEORDER)	or																						
**********	HANDLER(ISVL)																																											

CHANGE					FIELD(#JSMCMD)	TO('RECEIVE	HANDLER(IXML)	XSL(RECEIVEORD	
											ER)	SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQT
											Y)')																																																			
CLR_LIST			NAMED(#WRKLST)																																									
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	
											#JSMMSG	#WRKLST)																																							
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	'Unload	service'																																							

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('''SERVICE_UNLOAD''')	TO

											_GET(#JSMSTS	#JSMMSG)																																		
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	'Close	service'																																								
USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)													
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										
END_LOOP																																																										
**********	SUB	ROUTINES																																											

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVE
											D))																																									
IF									COND('#JSMSTS	*NE	OK')																						
DISPLAY				FIELDS(#JSMSTS	#JSMMSG)																					

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)		

MENU							MSGTXT('Java	service	error	has	occurred')			

ENDIF																																																		
ENDROUTINE																																													

SUBROUTINE	NAME(BUILDORD)																																				
**********	customer	details																																		
CHANGE					FIELD(#ORDER)	TO('''A123456789''')																
CHANGE					FIELD(#NAME)	TO('''Uluru	Vacations''')												
CHANGE					FIELD(#STREET)	TO('''1	Main	Street''')												
CHANGE					FIELD(#CITY)	TO('''Alice	Springs''')														
CHANGE					FIELD(#STATE)	TO(NT)																														
CHANGE					FIELD(#ZIP)	TO('''5000''')																								
**********	create	2	order	lines																														
CHANGE					FIELD(#PARTDSC	#PARTAMT	#PARTQTY)	TO(*DEFAULT)				
CHANGE					FIELD(#LINENUM)	TO(001)																											
CHANGE					FIELD(#PARTNUM)	TO(123)																											
ADD_ENTRY		TO_LIST(#WRKLST)																																		
CHANGE					FIELD(#LINENUM)	TO(002)												
CHANGE					FIELD(#PARTNUM)	TO(456)												
ADD_ENTRY		TO_LIST(#WRKLST)																			
ENDROUTINE													
	

This	function	processes	the	request	and	returns	an	updated	order	list.		An	entry
in	dc@w29	should	specify	this	function	e.g.

Service	Name Local	Host Process	Name Function	Name

ORDERXML *DEFAULT JSM EX06

	

	
FUNCTION			OPTIONS(*DIRECT)																																					

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)															
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)															
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)	

DEFINE					FIELD(#ORDER)	TYPE(*CHAR)	LENGTH(010)																
DEFINE					FIELD(#NAME)	TYPE(*CHAR)	LENGTH(050)																	
DEFINE					FIELD(#STREET)	TYPE(*CHAR)	LENGTH(050)															
DEFINE					FIELD(#CITY)	TYPE(*CHAR)	LENGTH(050)																	
DEFINE					FIELD(#STATE)	TYPE(*CHAR)	LENGTH(005)																
DEFINE					FIELD(#ZIP)	TYPE(*CHAR)	LENGTH(005)			

DEFINE					FIELD(#LINENUM)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)					
DEFINE					FIELD(#PARTNUM)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)					
DEFINE					FIELD(#PARTDSC)	TYPE(*CHAR)	LENGTH(050)																
DEFINE					FIELD(#PARTAMT)	TYPE(*DEC)	LENGTH(010)	DECIMALS(2)					
DEFINE					FIELD(#PARTQTY)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)					
DEF_LIST			NAME(#WRKLST)	FIELDS(#LINENUM	#PARTNUM	#PARTDSC	#PARTAM
											T	#PARTQTY)	TYPE(*WORKING)																													
**********	'Open	service'																																									

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)														
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	'Load	service'																																									
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('''SERVICE_LOAD	SERVICE(
											HTTPSERVICE)''')	TO_GET(#JSMSTS	#JSMMSG)															
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	Receive	XML	order,	SV	order,	POST	order																
CHANGE					FIELD(#JSMCMD)	TO('RECEIVE	HANDLER(IXML)	XSL(RECEIVEORD
											ER)	SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQT
											Y)')																																																			
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	
											#JSMMSG	#WRKLST)																																							
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	Process	and	validate																																
CHANGE					FIELD(#PARTAMT)	TO(*DEFAULT)																											
SELECTLIST	NAMED(#WRKLST)																																									
CHANGE					FIELD(#PARTQTY)	TO('#PARTQTY	+	10')																				
CHANGE					FIELD(#PARTAMT)	TO('#PARTQTY	*	125.25')																
UPD_ENTRY		IN_LIST(#WRKLST)																																							
ENDSELECT																																																									
**********	Send	response																																										

CHANGE					FIELD(#JSMCMD)	TO('SEND	HANDLER(IXML)	XSL(SENDORDER)	SE
											RVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')		
**********	******																																																	
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	
											#JSMMSG	#WRKLST)																																							
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	'Close	service'																																								

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)													
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	SUB	ROUTINES																																											

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVE
											D))																																									
IF									COND('#JSMSTS	*NE	OK')																						

**********	Close	service	and	send	the	HTTP	response				

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)		

ENDIF																																																		
ENDROUTINE																																													
	

	

SMTPMailService	Example
This	is	a	simple	function	to	compose	and	send	an	email.		This	function	does	not
support	adding	attachments	to	the	email.
	
*	Uses	Integrator	Services:	SMTPMAILSERVICE
	
*	Loads	SMTPMailService	service.
*	Allows	message	detail	to	be	entered
*	and	sends	an	email.

*	Beginning	of	RDML	commands	**********

FUNCTION	OPTIONS(*DIRECT)

DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

DEFINE	FIELD(#TXT)	TYPE(*CHAR)	LENGTH(78)
DEFINE	FIELD(#TXT1)	REFFLD(#TXT)	COLHDG('Message')
DEFINE	FIELD(#TXT2)	REFFLD(#TXT)	LABEL('	')
DEFINE	FIELD(#TXT3)	REFFLD(#TXT)	LABEL('	')
DEFINE	FIELD(#TXT4)	REFFLD(#TXT)	LABEL('	')

DEF_LIST	NAME(#MESSAGE)	FIELDS(#TXT)	TYPE(*WORKING)
DEFINE	FIELD(#TOADDRESS)	TYPE(*CHAR)	LENGTH(50)	LABEL('			To')
DEFINE	FIELD(#CCADDRESS)	REFFLD(#TOADDRESS)
DEFINE	FIELD(#C1ADDRESS)	REFFLD(#TOADDRESS)	LABEL('			CC')
DEFINE	FIELD(#C2ADDRESS)	REFFLD(#TOADDRESS)	LABEL('	')
DEFINE	FIELD(#SUBJECT)	REFFLD(#TOADDRESS)	LABEL('			Subject')

DEF_LIST	NAME(#CCLIST)	FIELDS(#CCADDRESS)	COUNTER(#LISTCOUNT)	TYPE(*WORKING)

*	Open	service
USE	BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Load	service
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(SMTPMAILSERVICE)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
MESSAGE	MSGTXT('SMTPMailService	loaded')

BEGIN_LOOP

*	Request	information
REQUEST	FIELDS((#TOADDRESS	*L003	*P002)	(#C1ADDRESS	*L004	*P002)	(#C2ADDRESS	*L005	*P002)	(#SUBJECT	*L6	*P2)	(#TXT1	*L007	*P002	*COLHDG)	(#TXT2	*L009	*P002	*NOID)	(#TXT3	*L010	*P002	*NOID)	(#TXT4	*L011	*P002	*NOID))	EXIT_KEY(*NO)	MENU_KEY(*YES	*NEXT)	PROMPT_KEY(*NO)

IF_KEY	WAS(*MENU)
*	Close	service
EXECUTE	SUBROUTINE(DISCONNECT)
MENU
ENDIF

EXECUTE	SUBROUTINE(SENDEMAIL)

END_LOOP

SUBROUTINE	NAME(SENDEMAIL)

*	Set	from	and	to	addresses
USE	BUILTIN(TCONCAT)	WITH_ARGS('SET	TO('	#TOADDRESS	')	FROM(me@company.com)')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Set	CC	addresses
IF	COND('#C1ADDRESS	*NE	*BLANK')
CHANGE	FIELD(#CCADDRESS)	TO(#C1ADDRESS)
ADD_ENTRY	TO_LIST(#CCLIST)
ENDIF

IF	COND('#C2ADDRESS	*NE	*BLANK')
CHANGE	FIELD(#CCADDRESS)	TO(#C2ADDRESS)
ADD_ENTRY	TO_LIST(#CCLIST)
ENDIF

IF	COND('#LISTCOUNT	*NE	0')

USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	CC(*LIST)	SERVICE_LIST(CCADDRESS)')	TO_GET(#JSMSTS	#JSMMSG	#CCLIST)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
ENDIF

*	Create	message	body
CHANGE	FIELD(#TXT)	TO(#TXT1)
ADD_ENTRY	TO_LIST(#MESSAGE)

CHANGE	FIELD(#TXT)	TO(#TXT2)
ADD_ENTRY	TO_LIST(#MESSAGE)

CHANGE	FIELD(#TXT)	TO(#TXT3)
ADD_ENTRY	TO_LIST(#MESSAGE)

CHANGE	FIELD(#TXT)	TO(#TXT4)
ADD_ENTRY	TO_LIST(#MESSAGE)

*	Send	mail
USE	BUILTIN(TCONCAT)	WITH_ARGS('SEND	SUBJECT('	#SUBJECT	')	SERVICE_LIST(TXT)')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#MESSAGE)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
MESSAGE	MSGTXT('Email	has	been	sent')

ENDROUTINE

SUBROUTINE	NAME(DISCONNECT)

*	Unload	service
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_UNLOAD')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Close	service
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

ENDROUTINE

*	Check	the	JSM	return	status
SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF	COND('#JSMSTS	*NE	OK')
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMSTS	'	:	'	#JSMMSG)	TO_GET(#STD_TEXTL)
MENU	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#STD_TEXTL)
ENDIF

ENDROUTINE

*	End	of	RDML	commands	**********
	

POP3MailService	Example
This	function	retrieves	any	mail	messages	for	the	nominated	user	from	the	mail
server.		For	each	message:
1.		Any	attachments	are	saved	to	the	JSM	instance	directory
2.		The	body	text	is	saved	to	a	unique	text	file	on	the	JSM	instance	directory.
3.		Details	of	each	email	are	also	display	to	the	user.
4.		After	processing	each	email	is	deleted.
	
*	Uses	Integrator	Services:	POP3MAILSERVICE
*	Loads	POP3MailService	service.
*	Opens	the	post	office	and	reads	all	messages.
*	For	each	message:	get	and	display	the	from	addresses,
*	subject	and	content	type,
*	and	save	body	and	any	attachments	as	files.
*	Finally	deletes	the	message.

*	Beginning	of	RDML	commands	**********

FUNCTION	OPTIONS(*DIRECT)

DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

DEFINE	FIELD(#JSMSERVER)	TYPE(*char)	LENGTH(20)
DEFINE	FIELD(#JSMUSER)	TYPE(*CHAR)	LENGTH(010)	LABEL('User')	INPUT_ATR(LC	FE)
DEFINE	FIELD(#JSMPSSWRD)	TYPE(*char)	LENGTH(10)

DEFINE	FIELD(#EMAILCNT)	TYPE(*DEC)	LENGTH(2)	DECIMALS(0)
DEFINE	FIELD(#EMAILNO)	TYPE(*CHAR)	LENGTH(2)	COLHDG('')
DEFINE	FIELD(#ADDRESS)	TYPE(*CHAR)	LENGTH(35)	COLHDG('Address')
DEFINE	FIELD(#SUBJECT)	TYPE(*CHAR)	LENGTH(35)	COLHDG('Subject')

DEF_LIST	NAME(#FROMLST)	FIELDS(#ADDRESS)	TYPE(*WORKING)
DEF_LIST	NAME(#MESSAGES)	FIELDS(#EMAILNO	#SUBJECT	#ADDRESS)

*	==

*	set	default	values	for	screen
CHANGE	FIELD(#STD_INSTR)	TO('''Set	your	appropriate	values	then	press	ENTER	to	get	email	messages.	''')
CHANGE	FIELD(#JSMSERVER)	TO('''99.99.99.99''')
CHANGE	FIELD(#JSMUSER)	TO('''user''')
CHANGE	FIELD(#JSMPSSWRD)	TO('''password''')

*	Open	service
USE	BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Load	service
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(POP3MAILSERVICE)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

MESSAGE	MSGTXT('POP3MailService	loaded')

BEGIN_LOOP

*	Request	information
REQUEST	FIELDS((#STD_INSTR	*L003	*P002	*OUTPUT	*NOID)	(#JSMSERVER	*L005	*P022)	(#JSMUSER	*L007	*P022)	(#JSMPSSWRD	*L009	*P022))	BROWSELIST(#MESSAGES)	EXIT_KEY(*NO)	MENU_KEY(*YES	*NEXT)	PROMPT_KEY(*NO)

IF_KEY	WAS(*MENU)

*	Close	service
EXECUTE	SUBROUTINE(DISCONNECT)
MENU

ENDIF

EXECUTE	SUBROUTINE(GETMESSAGE)

END_LOOP

SUBROUTINE	NAME(GETMESSAGE)

CLR_LIST	NAMED(#MESSAGES)
CHANGE	FIELD(#EMAILCNT)	TO(0)

*	Open	post	office
USE	BUILTIN(TCONCAT)	WITH_ARGS('OPEN	SERVER('	#JSMSERVER	')	USER('	#JSMUSER	')	PASSWORD(')	TO_GET(#JSMCMD)
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	#JSMPSSWRD	')')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Get	count	of	messages
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('GET	OBJECT(*MESSAGECOUNT)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

USE	BUILTIN(BCONCAT)	WITH_ARGS(#JSMMSG	'messages	in	mail	box')	TO_GET(#SUBJECT)
ADD_ENTRY	TO_LIST(#MESSAGES)

*	loop	through	all	the	messages
BEGIN_LOOP

*	Get	message
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('GET	OBJECT(*NEXTMESSAGE)')	TO_GET(#JSMSTS	#JSMMSG)

IF	COND('#JSMSTS	*EQ	NOMAIL')
LEAVE
ENDIF

CHANGE	FIELD(#EMAILCNT)	TO('#EMAILCNT	+	1')
SUBSTRING	FIELD(#EMAILCNT)	INTO_FIELD(#EMAILNO)

*	Get	subject
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('GET	OBJECT(*SUBJECT)')	TO_GET(#JSMSTS	#JSMMSG)
CHANGE	FIELD(#SUBJECT)	TO(#JSMMSG)

*	Get	from	addresses
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('GET	OBJECT(*FROMADDRESS)	SERVICE_LIST(ADDRESS)')	TO_GET(#JSMSTS	#JSMMSG	#FROMLST)

SELECTLIST	NAMED(#FROMLST)
ADD_ENTRY	TO_LIST(#MESSAGES)
CHANGE	FIELD(#SUBJECT)	TO(*BLANK)
ENDSELECT

*	Save	text
USE	BUILTIN(TCONCAT)	WITH_ARGS('SAVE	OBJECT(*TEXT)	FILE(message'	#EMAILNO	'.txt)')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
USE	BUILTIN(TCONCAT)	WITH_ARGS('Email'	#EMAILNO	'	saved	to	file	message'	#EMAILNO	'.txt')	TO_GET(#STD_TEXTL)
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#STD_TEXTL)

*	Save	attachments
CHANGE	FIELD(#JSMCMD)	TO('SAVE	OBJECT(*ATTACHMENTS)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
CHANGE	FIELD(#STD_TEXTL)	TO('''Attachments	saved''')
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#STD_TEXTL)

*	read	text
CHANGE	FIELD(#JSMCMD)	TO('READ	OBJECT(*TEXT)	SERVICE_LIST(ADDRESS)	TRUNCATE(*BOTH)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#FROMLST)

SELECTLIST	NAMED(#FROMLST)
ADD_ENTRY	TO_LIST(#MESSAGES)
CHANGE	FIELD(#SUBJECT)	TO(*BLANK)

ENDSELECT

*	Delete	message
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('DELETE')	TO_GET(#JSMSTS	#JSMMSG)

*	Get	next	message

END_LOOP

*	Close	post	office
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('CLOSE')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

ENDROUTINE

SUBROUTINE	NAME(DISCONNECT)

*	Unload	service

USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_UNLOAD')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Close	service
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

ENDROUTINE

*	Check	the	JSM	return	status
SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF	COND('#JSMSTS	*NE	OK')

USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMSTS	'	:	'	#JSMMSG)	TO_GET(#STD_TEXTL)
MENU	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#STD_TEXTL)

ENDIF

ENDROUTINE

*	End	of	RDML	commands	**********
	

SMSService	Example
This	example	demonstrates	the	use	of	the	SMSService	in	an	RDML	function.	It
sends	a	predefined	message	to	a	predefined	number.	You	may	replace	the
message	and	mobile	number	here	with	your	own	hard	coded	values	or	replace
them	with	fields	that	are	populated	from	your	database.
This	example	displays	a	screen	after	every	JSM_COMMAND	Built-in	Function
so	that	you	can	track	the	status	of	each	step	of	the	process.	Such	a	technique	can
be	useful	for	testing	purpose.	In	production	applications,	end	users	would	not
want	to	see	such	screens.
*	===
*	
*	Description:
*	This	example	demonstrates	the	use	of	the	SMSService	in
*	an	RDML	function.	It	sends	a	predefined	message	to	a
*	predefined	number.	You	may	replace	the	message	and
*	mobile	number	here	with	your	own	hard	coded	values	or
*	replace	them	with	fields	that	are	populated	from	your
*	database.
*	This	example	displays	a	screen	after	every	JSM_COMMAND
*	Built-in	Function	so	that	you	can	track	the	status	of
*	each	step	of	the	process.	Such	a	technique	can	be
*	useful	for	testing	purpose.	In	production	applications,
*	end	users	would	not	want	to	see	such	screens
*	
*	Disclaimer:	The	following	material	is	supplied	as
*	sample	material	only.	No	warranty	concerning	the
*	material	or	its	use	in	any	way	whatsoever	is
*	expressed	or	implied.
*	
*	===
FUNCTION	OPTIONS(*DIRECT)

*	The	following	locally	defined	fields	are	used	to	hold
*	the	parameters	required	within	the	JSM	Built-in
*	Functions.
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)

DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)
DEFINE	FIELD(#JSMSRV)	TYPE(*CHAR)	LENGTH(050)

*	'Open	service'

CHANGE	FIELD(#JSMSRV)	TO('SERVER:4560')
USE	BUILTIN(JSM_OPEN)	WITH_ARGS(#JSMSRV)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	'Load	service'

USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(SMSSERVICE)	TRACE(*NO)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SET	ENCODING(ISO8859_1)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	'Send	message'

CHANGE	FIELD(#JSMCMD)	TO('''SEND	TO(+61429999999)	MSG(Hello.	Here	is	a	sample	message)''')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	'Unload	service'

USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_UNLOAD')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	'Close	service'

USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	SUB	ROUTINES

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF	COND('#JSMSTS	*NE	OK')
DISPLAY	FIELDS(#JSMSTS	#JSMMSG)

USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

MENU	MSGTXT('Java	service	error	has	occurred')

ENDIF

ENDROUTINE
	

XMLBindFileService	Example
Fragments	Only
This	RDML	example	of	the	XMLBindFileService	makes	use	of	many	of	the
commands	and	keywords	available	within	the	service.
The	XMLBindFileService	is	very	tightly	tied	to	the	XML	Binding	Wizard	that
comes	with	LANSA	Integrator	Studio.	Before	you	start	writing	the	code	for
your	service	application	you	should	set	up	your	bindings	in	the	XML	Binding
Wizard	first.
There	are	two	ways	that	the	XML	Binding	Wizard	can	handle	repeating
information	in	XML	documents.	One	way	is	to	label	them	as	lists,	and	then	use
the	LIST	keyword	on	the	GET	and	SET	commands.	Another	way	is	to	label
them	as	fragments	and	use	the	FRAGMENT	keyword	on	the	GET	and	SET
commands.	When	following	the	fragment	approach,	the	GET	and	SET
commands	need	to	be	placed	into	loops	and	run	as	many	times	as	required	for
the	repeating	information.
This	example	uses	Fragments	only.
Following	are	the	steps	simulating	how	this	service	might	be	used	to	process
some	orders:
1.		It	uses	the	LIST	command	to	determine	what	XML	documents	are	in	the
inbound	orders	folder;

2.		The	LIST	command	places	the	orders	into	a	working	list,	and	using	this
working	list	we	then	use	the	READ	and	BIND	commands	to	load	and	bind
each	XML	document	(one	by	one)	to	a	service	created	using	the	XML
Binding	Wizard.	In	the	READ	command,	a	copy	of	the	file	is	also	archived	to
another	folder;

3.		The	GET	commands	are	next	used	to	load	the	data	from	the	XML	documents
into	locally	defined	fields.	Normally	the	data	from	each	order	would,	of
course,	be	uploaded	into	some	existing	application	database,	but	for
simplicity,	this	demonstration	will	just	display	the	order	in	a	screen;

4.		After	displaying	each	order,	the	CLOSE	command	is	used	to	close	the	bind
on	the	current	file,	and	then	the	DELETE	command	to	removes	it	from	the
inbound	folders	(remember	that	a	copy	of	it	is	kept	in	the	archive	folder	to	be
read	by	the	READ	command.

5.		The	next	step	is	to	create	a	response	document	that	will	be	placed	into

another	folder.	This	is	done	using	the	BIND,	SET,	and	then	WRITE
commands.

6.		The	final	step	is	to	use	the	CLOSE	command	again	to	close	the	bind
associated	with	the	creation	of	the	response

7.		Once	this	step	is	completed,	the	process	is	run	through	for	the	next	order	in
the	inbound	orders	folder.	The	program	finishes	once	the	last	order	is
processed.

For	this	example	to	work,	you	will	need	to	do	the	following	steps:
Step	1:	XML	Binding	Wizard
Step	2:	Create	some	folders	and	some	sample	XML	documents
Step	3:	RDML	Function	Code	or	the	alternative	in	Step	3.	RDMLX	Form	Code.

Step	1:	XML	Binding	Wizard
Using	the	following	XML	document	containing	a	sample	of	the	order	details,
you	should	create	a	new	project	and	create	the	appropriate	bindings	for	an
inbound	service	that	will	be	loaded	onto	the	server	and	used	by	the	code.	In	the
code	example	below,	the	name	of	the	service	used	to	process	the	inbound	orders
is	called	inboundorder	so	the	solution	name	in	the	XML	Binding	Wizard	should
also	be	called	inboundorder.
The	sample	XML	document	to	use	is	based	on	the	order.xml	document	that	is
found	by	default	in	the	JSM	Instance	folder	of	your	installation.	The	contents	of
the	document	are	as	follows:
<?xml	version="1.0"	encoding="UTF-8"?>
	
<Orders>
						<SalesOrder	SONumber="12345">
									<Customer	CustNumber="543">
												<CustName>ABC	Industries</CustName>
												<Street>123	Main	St.</Street>
												<City>Chicago</City>
												<State>IL</State>
												<PostCode>60609</PostCode>
									</Customer>
									<OrderDate>981215</OrderDate>
									<Line	LineNumber="1">
												<Part	PartNumber="123">
															<Description>Gasket	Paper</Description>
															<Price>9.95</Price>
												</Part>
												<Quantity>10</Quantity>
									</Line>
									<Line	LineNumber="2">
												<Part	PartNumber="456">
															<Description><![CDATA[Gasket	<Polymer>	Glue]]></Description>
															<Price>13.27</Price>
												</Part>
												<Quantity>5</Quantity>
									</Line>
						</SalesOrder>

</Orders>
	

You	will	need	to	set	up	your	bindings	as	demonstrated	in	this	screen	shot.

The	bindings	also	need	to	be	set	up	for	the	response	to	the	customer.	The
following	is	the	sample	XML	document	used	for	the	response.
<?xml	version="1.0"	encoding="UTF-8"?>
<OrderResponse>
									<ResponseComments>
												<Comment>This	is	confirm	that	we	have	received	you	order</Comment>
												<Comment>Your	order	number	was	12345</Comment>
												<Comment>Your	order	has	been	successfully	processed</Comment>
												<Comment>Your	order	details	are	as	follow.</Comment>
									</ResponseComments>
						<SalesOrder	SONumber="12345">
									<Customer	CustNumber="543">

												<CustName>ABC	Industries</CustName>
												<Street>123	Main	St.</Street>
												<City>Chicago</City>
												<State>IL</State>
												<PostCode>60609</PostCode>
									</Customer>
									<OrderDate>981215</OrderDate>
									<Line	LineNumber="1">
												<Part	PartNumber="123">
															<Description>Gasket	Paper</Description>
															<Price>9.95</Price>
												</Part>
												<Quantity>10</Quantity>
												<Status>Succesfully	processed</Status>
									</Line>
									<Line	LineNumber="2">
												<Part	PartNumber="456">
															<Description><![CDATA[Gasket	<Polymer>	Glue]]></Description>
															<Price>13.27</Price>
												</Part>
												<Quantity>5</Quantity>
												<Status>Unsuccesfully	processed	-	invalid	part	number</Status>
									</Line>
						</SalesOrder>
</OrderResponse>
	

In	the	code	example,	the	name	of	the	service	used	to	process	the	outbound
responses	is	called	outboundresponse	so	the	solution	name	in	the	XML	Binding
Wizard	should	also	be	called	outboundresponse.
The	XML	bindings	should	be	mapped	as	follows:

Step	2:	Create	some	folders	and	some	sample	XML	documents
1.		Create	the	following	folders	immediately	under	the	JSM	Instance	directory
on	the	server.

neworders
archive
response

2.		To	simulate	a	number	of	different	orders	arriving	in	your	system,	create	a
number	of	XML	documents	based	on	the	order.xml	example	and	save	them	in
the	neworders	folder.	It	pays	to	modify	the	data	inside	to	help	you
differentiate	between	which	files	are	being	processed.	(Note:	it	can	make	your
testing	job	simpler	if	you	save	a	backup	of	these	new	order	files	in	another
folder	so	you	just	need	to	copy	them	to	the	neworders	folder	each	time	you
run	a	new	test).

Step	3:	RDML	Function	Code
Following	is	the	RDML	code	that	can	be	used	to	process	these	orders.	Please
read	the	notes	in	the	code	carefully	as	they	explain	what	is	going	on.	There	is
also	an	RDMLX	example	in	XMLBindFileService.
FUNCTION	OPTIONS(*DIRECT)
	
*	Define	the	fields	to	be	used	in	this	application
	
*	Define	the	fields	used	by	the	JSM	Commands
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)
	
*	Define	the	fields	used	for	the	orders.
*	These	fields	will	hold	values	read	from	and	written	to
*	the	XML	documents
	
*	Define	the	Order	number	and	date
DEFINE	FIELD(#SONUM)	TYPE(*CHAR)	LENGTH(010)	LABEL('Order	#')
DEFINE	FIELD(#ORDDTE)	TYPE(*CHAR)	LENGTH(010)	LABEL('Order	Date')
	
*	Define	the	Customer	details
DEFINE	FIELD(#CUSTNUM)	TYPE(*CHAR)	LENGTH(010)	LABEL('Customer	#')
DEFINE	FIELD(#CUSTNME)	TYPE(*CHAR)	LENGTH(050)	LABEL('Customer	name')
DEFINE	FIELD(#STREET)	TYPE(*CHAR)	LENGTH(050)	LABEL('Street')
DEFINE	FIELD(#CITY)	TYPE(*CHAR)	LENGTH(050)	LABEL('City')
DEFINE	FIELD(#STATE)	TYPE(*CHAR)	LENGTH(005)	LABEL('State')
DEFINE	FIELD(#ZIP)	TYPE(*CHAR)	LENGTH(005)	LABEL('Post	Code')
	
*	Define	the	order	line	details.	We	will	also	define	a
*	list	that	holds	the	order	line	details
DEFINE	FIELD(#LINENUM)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)	LABEL('Line	#')
DEFINE	FIELD(#PARTNUM)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)	LABEL('Part	#')
DEFINE	FIELD(#PARTDSC)	TYPE(*CHAR)	LENGTH(020)	LABEL('Part	Desc.')
DEFINE	FIELD(#PARTAMT)	TYPE(*DEC)	LENGTH(010)	DECIMALS(2)	LABEL('Amount')
DEFINE	FIELD(#PARTQTY)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)	LABEL('Quantity')
DEFINE	FIELD(#ORDTOT)	TYPE(*DEC)	LENGTH(010)	DECIMALS(2)	LABEL('Grand	Total')

its:LANSA093.CHM::/lansa/intengbl_rdmlx_xmlbindfile.htm

DEF_LIST	NAME(#ORDLINES)	FIELDS(#LINENUM	#PARTNUM	#PARTDSC	#PARTAMT	#PARTQTY)
	
*	The	following	field	will	hold	the	file	name	and	path
*	for	the	archived	files
DEFINE	FIELD(#ARCHIVE)	TYPE(*CHAR)	LENGTH(30)	DESC('Archived	Orders	Directory')	INPUT_ATR(LC)	DEFAULT('''archive''')
DEFINE	FIELD(#X_POSN)	TYPE(*DEC)	LENGTH(2)	DECIMALS(0)	DESC('Working	field	to	find	the	file	name')
	
*	Define	the	order	response	details
DEFINE	FIELD(#COMMENTS)	TYPE(*CHAR)	LENGTH(256)	LABEL('Comments')
DEFINE	FIELD(#LINSTAT)	TYPE(*CHAR)	LENGTH(20)	LABEL('Line	Status')
DEFINE	FIELD(#RESPONSE)	TYPE(*CHAR)	LENGTH(30)	LABEL('Resp	filename')
DEFINE	FIELD(#TOGGLE)	TYPE(*DEC)	LENGTH(1)	DECIMALS(0)
DEF_LIST	NAME(#LSTCMNT)	FIELDS(#COMMENTS)	TYPE(*WORKING)
DEF_LIST	NAME(#RSPLINES)	FIELDS(#LINENUM	#PARTNUM	#PARTDSC	#PARTAMT	#PARTQTY	#LINSTAT)	TYPE(*WORKING)
	
*	A	single	field	working	list	needs	to	be	defined	to
*	hold	the	list	of	order	returned	from	our	LIST	command.
*	The	field	needs	to	be	long	enough	to	hold	the	expected
*	length	of	the	canonical	file	path	returned	from	the
*	LIST	command.
DEFINE	FIELD(#FILENAME)	TYPE(*CHAR)	LENGTH(100)
DEF_LIST	NAME(#ORDERLSTW)	FIELDS(#FILENAME)	COUNTER(#LISTCOUNT)	TYPE(*WORKING)
DEF_LIST	NAME(#ORDERLSTB)	FIELDS(#FILENAME)	COUNTER(#LISTCOUNT)
	
*	We	will	now	start	the	funcionality	by	opening	the	JSM
USE	BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	Next	we	will	load	the	JSM	service	-	in	this	example	we
*	have	selected	to	have	tracing	on.
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(XMLBINDFILESERVICE)	TRACE(*YES)	DOMSET(*READER)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	The	first	thing	we	want	to	do	is	to	get	a	list	of	all
*	the	orders	that	are	in	the	neworders	directory.	To	do
*	this	we	will	use	the	LIST	command.	In	this	scenario,
*	the	neworders	directory	is	immediately	under	the	JSM
*	Instance	directory	on	our	server,	so	we	can	refer	to

*	the	directory	simply	as	'neworders'.
*	In	this	example	the	file	extension	has	been	hard	coded
*	as	XML.	This	means	that	only	files	with	an	extension	of
*	XML	will	be	returned.
CLR_LIST	NAMED(#ORDERLSTW)
CHANGE	FIELD(#JSMCMD)	TO('''LIST	DIR(NEWORDERS)	SERVICE_LIST(FILENAME)	EXT(XML)''')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#ORDERLSTW)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	Display	the	list	returned	from	the	LIST	command.
CLR_LIST	NAMED(#ORDERLSTB)
SELECTLIST	NAMED(#ORDERLSTW)
ADD_ENTRY	TO_LIST(#ORDERLSTB)
ENDSELECT
DISPLAY	FIELDS(#JSMCMD)	BROWSELIST(#ORDERLSTB)	EXIT_KEY(*YES	*NEXT)	MENU_KEY(*YES	*NEXT)
IF_KEY	WAS(*MENU	*EXIT)
*	Nicely	close	down	JSM	if	the	user	has	select	the	Exit
*	or	Menu	key	(F3	or	F12)
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
ENDIF
	
*	The	next	step	of	our	application	is	to	run	through
*	the	orders	in	our	list	and	process	the	data	order	by
*	order.	To	do	this	we	will	need	to	use	the	READ,	BIND,
*	and	GET	commands.
	
SELECTLIST	NAMED(#ORDERLSTW)
*	Next	we	will	use	the	READ	command.	For	the	READ
*	command	we	need	to	specify	the	file	that	we	want
*	to	access,	including	the	file	path.	In	this	example,
*	if	an	order	is	named	order1.xml	for	example,	then	the
*	FILE	keyword	would	normally	be	specified	as
*	FILE(neworder/order1.xml),	and	it	would	assume	that	the
*	neworder	directory	is	under	the	JSM	Instance	directory
*	for	the	server.	We	could	take	this	approach,	but	we
*	already	have	the	full	directory	path	and	file	name
*	specified	in	the	list	(in	the	field	#FILENAME)	so	it
*	will	be	much	simpler	to	use	this.	The	actual	ARCHIVE
*	file	name	and	path	will	be	verified	in	the	ARCHIVE

*	sub-routine.
*	If	we	were	going	to	be	using	a	hard	coded	READ,	then
*	this	is	what	it	might	look	like:
*	.			USE	BUILTIN(BUILTIN)	WITH_ARGS(JSM_COMMAND)
*	.			WITH_ARGS('READ	FILE(neworder/order1.xml)
*	.														ARCHIVE(archive/arc_order1.xml)')
*	.			TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(ARCHIVE)
CHANGE	FIELD(#JSMCMD)	TO('READ	FILE(')
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	#FILENAME	')	ARCHIVE('	#ARCHIVE	')')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	The	next	command	to	run	is	the	BIND.	We	named	the
*	service	to	handle	the	inbound	XML	documents	as
*	'inboundorder'.
CHANGE	FIELD(#JSMCMD)	TO('''BIND	SERVICE(INBOUNDORDER)	TYPE(*INBOUND)	BINDTRACE(*YES)''')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	The	next	step	is	to	retrieve	the	data	using	the	GET
*	command.
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('GET	FRAGMENT(ORDERS)	SERVICE_EXCHANGE(*FIELD)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
CHANGE	FIELD(#JSMCMD)	TO('GET	FRAGMENT(SALESORDER)	SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
CHANGE	FIELD(#JSMCMD)	TO('GET	FRAGMENT(CUSTOMER)	SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
CHANGE	FIELD(#JSMCMD)	TO('GET	FRAGMENT(ORDERDATE)	SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	The	line	details	of	our	order	technically	make	up	a
*	list.	In	this	example	though,	we	have	defined	the	lines

*	as	fragments.	As	such,	we	need	to	handle	them	a	little
*	differently.	We	need	to	place	the	GET	FRAGMENT(LINE)	in
*	a	loop	and	continue	in	the	loop	until	all	the	line
*	details	are	retrieved.	The	following	demonstrates	how
*	we	do	this.
CLR_LIST	NAMED(#ORDLINES)
BEGIN_LOOP
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('GET	FRAGMENT(LINE)	SERVICE_EXCHANGE(*FIELD)')	TO_GET(#JSMSTS	#JSMMSG)
IF	COND('#JSMSTS	*EQ	NOFRAGMENT')
LEAVE
ENDIF
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	We	also	need	to	get	the	part	details	for	this	line.
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('GET	FRAGMENT(PART)	SERVICE_EXCHANGE(*FIELD)')	TO_GET(#JSMSTS	#JSMMSG)
	
ADD_ENTRY	TO_LIST(#ORDLINES)
	

END_LOOP
	
*	Now	that	we	have	everything	for	the	order	let	us
*	display	it.	In	a	real	application	of	course	you	would
*	carry	on	an	load	it	into	your	ERP	system	or	what	have
*	you,	but	we	will	just	display	it.
DISPLAY	FIELDS(#SONUM	#ORDDTE	#CUSTNUM	#CUSTNME	#STREET	#CITY	#STATE	#ZIP)	BROWSELIST(#ORDLINES)	EXIT_KEY(*YES	*NEXT)	MENU_KEY(*YES	*NEXT)
IF_KEY	WAS(*MENU	*EXIT)
*	Nicely	close	down	JSM	if	the	user	has	select	the	Exit
*	or	Menu	key	(F3	or	F12)
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
ENDIF
	
*	Now	that	we	have	the	data	we	need	and	have	saved	a	copy
*	of	the	file	in	the	archive,	we	can	close	the	bind	on
*	this	file	and	delete	the	file	from	our	inbound
*	directory.
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
CHANGE	FIELD(#JSMCMD)	TO('DELETE	FILE(')
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	#FILENAME	')')	TO_GET(#JSMCMD)

USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
	
*	Now	we	will	work	on	a	response	XML	in	reply	to	this
*	order.	To	keep	things	clean,	we	will	do	this	in	a
*	separate	subroutine.
EXECUTE	SUBROUTINE(RESPONSE)
	
ENDSELECT
	
*	
*	SUB	ROUTINES
*	The	CHECK	subroutine	is	used	to	capture	errors	returned
*	from	the	JSM	commands.	For	any	errors	encountered,	a
*	screen	will	be	displayed	with	the	error	message	and	the
*	program	will	exit	after	this.
SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))
	
IF	COND('#JSMSTS	*NE	OK')
DISPLAY	FIELDS(#JSMSTS	#JSMMSG)
	
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
	
MENU	MSGTXT('Java	service	error	has	occured')
	
ENDIF
	
ENDROUTINE
	
*	The	ARCHIVE	subroutine	will	build	the	file	name	and
*	path	for	the	ARCHIVE	keyword	of	the	READ	command.
SUBROUTINE	NAME(ARCHIVE)
USE	BUILTIN(SCANSTRING)	WITH_ARGS(#FILENAME	'neworders'	*DEFAULT	'0')	TO_GET(#X_POSN)
CHANGE	FIELD(#X_POSN)	TO('#X_POSN	+	10')
SUBSTRING	FIELD(#FILENAME	#X_POSN)	INTO_FIELD(#ARCHIVE)
USE	BUILTIN(TCONCAT)	WITH_ARGS('archive/arc_'	#ARCHIVE)	TO_GET(#ARCHIVE)
ENDROUTINE
	
*	This	RESPONSE	subroutine	will	do	all	the	processing
*	required	to	build	and	create	the	response	XML	document.

SUBROUTINE	NAME(RESPONSE)
	
*	The	first	thing	we	need	to	do	is	create	a	new	empty
*	outbound	XML	document	and	BIND	it	to	the	outbound
*	service	that	we	created	with	the	XML	Binding	Wizard.
*	Note	that	we	specify	the	type	as	*OUTBOUND.
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('BIND	SERVICE(OUTBOUNDRESPONSE)	TYPE(*OUTBOUND)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	Much	of	the	information	for	the	response	we	already
*	have,	but	a	couple	of	fields	need	to	be	populated	so
*	we	will	make	up	some	fictitious	data	here.	We	will
*	create	some	comments,	and	add	them	to	a	list	first.
*	The	other	new	data	we	need	to	add	is	the	LINSTAT	field
*	to	give	an	indication	of	the	status	of	the	order	line.
CLR_LIST	NAMED(#LSTCMNT)
CHANGE	FIELD(#COMMENTS)	TO('''Thank	you	for	your	order''')
ADD_ENTRY	TO_LIST(#LSTCMNT)
USE	BUILTIN(BCONCAT)	WITH_ARGS('We	have	processed	your	order'	#SONUM	'on	date:'	*DDMMYYYYC)	TO_GET(#COMMENTS)
ADD_ENTRY	TO_LIST(#LSTCMNT)
CHANGE	FIELD(#COMMENTS)	TO('''Please	refer	below	for	the	full	details	of	your	order.''')
ADD_ENTRY	TO_LIST(#LSTCMNT)
CHANGE	FIELD(#COMMENTS)	TO('''One	of	our	sales	people	will	be	in	touch	with	you	shortly.''')
ADD_ENTRY	TO_LIST(#LSTCMNT)
CHANGE	FIELD(#COMMENTS)	TO('''For	immediate	assistance	on	your	order	please	call	1234567''')
ADD_ENTRY	TO_LIST(#LSTCMNT)
CHANGE	FIELD(#COMMENTS)	TO('''one	more	line''')
ADD_ENTRY	TO_LIST(#LSTCMNT)
CHANGE	FIELD(#COMMENTS)	TO('''two	more	lines''')
ADD_ENTRY	TO_LIST(#LSTCMNT)
CHANGE	FIELD(#COMMENTS)	TO('''three	more	lines''')
ADD_ENTRY	TO_LIST(#LSTCMNT)
	

	
CLR_LIST	NAMED(#RSPLINES)
*	NOTE:	The	#TOGGLE	field	is	used	to	alternate	status
*	messages	-	to	add	a	bit	of	variety.
SELECTLIST	NAMED(#ORDLINES)

IF	COND('#TOGGLE	=	0')
CHANGE	FIELD(#TOGGLE)	TO(1)
CHANGE	FIELD(#LINSTAT)	TO(OK)
ELSE
CHANGE	FIELD(#TOGGLE)	TO(0)
CHANGE	FIELD(#LINSTAT)	TO('OUT	OF	STOCK')
ENDIF
ADD_ENTRY	TO_LIST(#RSPLINES)
ENDSELECT
	
*	Now	that	we	have	some	data,	we	can	start	using	the	SET
*	command	to	populate	the	outbound	document	object.	As
*	per	the	reading	of	data	from	the	order	documents,	since
*	this	example	is	using	fragments	only,	we	will	need	to
*	set	up	loops	to	add	any	repeating	data	(specifically
*	the	comments	and	the	order	lines).
CHANGE	FIELD(#JSMCMD)	TO('SET	FRAGMENT(ORDERRESPONSE)	SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
SELECTLIST	NAMED(#LSTCMNT)
CHANGE	FIELD(#JSMCMD)	TO('SET	FRAGMENT(RESPONSECOMMENTS)	SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
ENDSELECT
	
CHANGE	FIELD(#JSMCMD)	TO('SET	FRAGMENT(SALESORDER)	SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
CHANGE	FIELD(#JSMCMD)	TO('SET	FRAGMENT(CUSTOMER)	SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
SELECTLIST	NAMED(#RSPLINES)
CHANGE	FIELD(#JSMCMD)	TO('SET	FRAGMENT(LINE)	SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	

CHANGE	FIELD(#JSMCMD)	TO('SET	FRAGMENT(PART)	SERVICE_EXCHANGE(*FIELD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
ENDSELECT
	
*	Now	we	have	all	the	data	prepared,	we	will	serialize
*	the	document	object	out	to	a	specified	file	using	the
*	WRITE	command.	We	will	construct	a	file	name	based	on
*	the	customer	and	order	number.
USE	BUILTIN(TCONCAT)	WITH_ARGS('response/RSP_'	#CUSTNUM	'_'	#SONUM	'.xml')	TO_GET(#RESPONSE)
USE	BUILTIN(TCONCAT)	WITH_ARGS('WRITE	FILE('	#RESPONSE	')	INDENT(*YES)	INDENT-
AMOUNT(1)')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	Finally	we	will	CLOSE	the	bind	then	go	onto	the	next
*	XML	document.
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
	
ENDROUTINE
	
	

XMLParserService	Example	1
Loads	XMLParserService	service.	Loads	xml	directly	from	a	file	or	from	an
HTTP	connected	host	or	from	an	FTP	connected	host	or	from	a	POP3	post
office	message.	Transforms	the	received	xml	to	FunctionXML	using	a	stylesheet
(created	using	the	XML	Transformation	Wizard)	and	binds	to	the	LANSA
function	fields	and	list.
Windows	Users	Note:	You	will	need	to	add	the	following	line	(replacing	the
LANSA	INSTALLATION	DIRECTORY	with	the	appropriate	directory)
following	the	existing	systemid.file	line	in	the	DTD	Entity	Resolver	list	in	the
XMLFileService.Properties,	XMLParserService.Properties	and
XMLQueueService.Properties:
systemid.file:///C:/<LANSA	INSTALLATION	DIRECTORY>/Integrator/JSMInstance/order.dtd=file:dtd/order.dtd
	

For	further	information,	refer	to	XML	Entity	Resolver.
	
**********	Beginning	of	RDML	commands	**********																
FUNCTION			OPTIONS(*DIRECT)																																					

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)																
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)															
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

DEFINE					FIELD(#ORDER)	TYPE(*CHAR)	LENGTH(10)																	
DEFINE					FIELD(#NAME)	TYPE(*CHAR)	LENGTH(50)																		
DEFINE					FIELD(#STREET)	TYPE(*CHAR)	LENGTH(50)																
DEFINE					FIELD(#CITY)	TYPE(*CHAR)	LENGTH(50)																		
DEFINE					FIELD(#STATE)	TYPE(*CHAR)	LENGTH(5)																		
DEFINE					FIELD(#ZIP)	TYPE(*CHAR)	LENGTH(5)																				

DEFINE					FIELD(#LINENUM)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)								
DEFINE					FIELD(#PARTNUM)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)								
DEFINE					FIELD(#PARTDSC)	TYPE(*CHAR)	LENGTH(50)																		
DEFINE					FIELD(#PARTAMT)	TYPE(*DEC)	LENGTH(10)	DECIMALS(2)							
DEFINE					FIELD(#PARTQTY)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)								

DEF_LIST			NAME(#WRKLST)	FIELDS((#LINENUM)	(#PARTNUM)	(#PARTDSC)	(

												#PARTAMT)	(#PARTQTY))	TYPE(*WORKING)																				

**********	'Open	service'																																										

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)															
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	'Load	service'																																									

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(XM
											LPARSERSERVICE)')	TO_GET(#JSMSTS	#JSMMSG)														
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	Load	XML	from	required	source.																	
**********	Select	required	CHANGE	command	according	to	XML	source.

**********	Load	directly	from	a	file																						
CHANGE					FIELD(#JSMCMD)	TO('LOAD	METHOD(*FILE)	FILE(order.xml)')

**********	OR	Load	from	an	HTTP	source																				
CHANGE					FIELD(#JSMCMD)	TO('LOAD	METHOD(*HTTP)	HOST(LOCALHOST:84
)	FILE(/order.xml)')				
**********	OR	Load	from	an	FTP	source
CHANGE					FIELD(#JSMCMD)	TO('LOAD	METHOD(*FTP)	HOST(LOCALHOST)	FI	
											LE(/jsm/instance/order.xml)	USER(user)	PASSWORD(passwor	
												d)')
**********	OR	Load	from	a	POP3	mail	source																
CHANGE					FIELD(#JSMCMD)	TO('''LOAD	METHOD(*POP3)	SERVER(10.2.0.1
												2)	USER(testuser)	PASSWORD(testuser)''')							

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	
										#JSMMSG)																																															
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	'Transform	to	FunctionXML	and	bind	to	function									

CHANGE					FIELD(#JSMCMD)	TO('TRANSFORM	XSL(ORDER)	SERVICE_LIST(LI
											NENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')															

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	
											#JSMMSG	#WRKLST)																																							
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	Display	XML	order	data																																		

DISPLAY				FIELDS((#ORDER)	(#NAME)	(#STREET)	(#CITY)	(#STATE)	(#ZI	
											P))																																																					

SELECTLIST	NAMED(#WRKLST)																																										

DISPLAY				FIELDS((#LINENUM)	(#PARTNUM)	(#PARTDSC)	(#PARTAMT)	(#PA	
											RTQTY))																																																	
ENDSELECT																																																										
**********	'Unload	service'																																								

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_UNLOAD')	TO_GET
											(#JSMSTS	#JSMMSG)																																						
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	'Close	service'																																								

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)													
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	SUB	ROUTINES																																											

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVE
											D))																																									
IF									COND('#JSMSTS	*NE	OK')																						
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))																	

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)		

MENU							MSGTXT('Java	service	error	has	occurred')			

ENDIF																																																		

ENDROUTINE																																													

**********	End	of	RDML	commands	**********													
	

XMLParserService	2	(Node	traversal)
This	is	a	more	complex	XMLParserService	example	that	demonstrates	the	node
traversal	of	received	xml.	The	direct	binding	of	received	xml	to	LANSA	fields
and	lists	obviates	the	need	to	perform	node	traversal	in	most	situations	(refer	to
HTTPService	service).	This	example	parses	xml	and	allows	traversal	of	the
nodes	in	the	DOM	tree	to	load	node	attribute	values.
	
**********	Beginning	of	RDML	commands	**********	
FUNCTION			OPTIONS(*DIRECT)																																				

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)															
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)														
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

DEFINE					FIELD(#MESSAGE)	TYPE(*CHAR)	LENGTH(255)													
DEF_LIST			NAME(#MSGLST)	FIELDS((#MESSAGE))	TYPE(*WORKING)					

**********	'Open	service'																																						

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)											
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)	

**********	'Load	service'																																										

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(XM	
											LPARSERSERVICE)')	TO_GET(#JSMSTS	#JSMMSG)															
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)											

**********	'Load	XML	source'																																							

**********	Load	from	a	file	
CHANGE					FIELD(#JSMCMD)	TO('LOAD	METHOD(*FILE)	FILE(order.xml)')	
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS		
											#JSMMSG)																																																
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)											

**********	'Parse	XML'																																													

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('PARSE')	TO_GET(#JSMSTS		
											#JSMMSG)																																																
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)											

**********	'Get	ROOT	tag'																																										
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('GET	OBJECT(*ROOTTAGNAME	
)')	TO_GET(#JSMSTS	#JSMMSG)																													
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))																													

**********	Get	warning	and	error	messages																									

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('GET	OBJECT(*MESSAGES)	S
											ERVICE_LIST(MESSAGE)')	TO_GET(#JSMSTS	#JSMMSG	#MSGLST)	

SELECTLIST	NAMED(#MSGLST)																																									
DISPLAY				FIELDS((#MESSAGE))																																					
ENDSELECT																																																									
**********	'Get	node	value'																																							

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('GET	NODE(/SALESORDER/CU
											STOMER/CUSTNAME)')	TO_GET(#JSMSTS	#JSMMSG)											
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))																												

**********	'Collect	SALESORDER/LINE	elements'																					

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('FOREACH	NODE(/SALESORDE
											R/LINE)')	TO_GET(#JSMSTS	#JSMMSG)																						
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))																												

Part	2

**********	'Loop	through	Line	elements'																											

BEGIN_LOOP																																																								

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('NEXT	OBJECT(*NODE)')	TO
											_GET(#JSMSTS	#JSMMSG)																																		

IF									COND('#JSMSTS	*NE	OK')																																	
GOTO							LABEL(BRK)																																													
ENDIF																																																													

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('GET	NODE(*CURRENT)	ATTR
											IBUTE(LineNumber)')	TO_GET(#JSMSTS	#JSMMSG)												

DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))																												

CHANGE					FIELD(#JSMCMD)	TO('GET	NODE(PART)	ATTRIBUTE(PARTNUMBER)
																')																																																
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS		
											#JSMMSG)																																																
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))																													

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('GET	NODE(PART/DESCRIPTI	
											ON)')	TO_GET(#JSMSTS	#JSMMSG)																											
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))																													

END_LOOP																																																											
BRK	**********	'Loop	breakout																																				

**********	'Unload	service'																																							

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_UNLOAD')	TO_GET
											(#JSMSTS	#JSMMSG)																																						
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	'Close	service'																																								

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)													
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										

**********	SUB	ROUTINES																																											

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVE
											D))																																																				

IF									COND('#JSMSTS	*NE	OK')																																	
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))																												

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)													

MENU							MSGTXT('Java	service	error	has	occurred')															

ENDIF																																																													

ENDROUTINE		
	

XMLQueryService	Example
function	options(*DIRECT)

define	field(#ORDERXML)	type(*CHAR)	length(256)	desc('Path	to	salesorder.xml')	input_atr(LC)
def_list	name(#BROWSE)	fields((#ORDERNUM	*OUT)	(#CUSTNUM	*OUT))

change	field(#ORDERXML)	to('/LANSA_dc@pgmlib/jsm/instance/order.xml')
begin_loop

request	fields(#ORDERXML)	identify(*DESC)	browselist(#browse)
clr_list	named(#BROWSE)
execute	subroutine(LOADORDERS)
selectlist	named(#ORDERS)
add_entry	to_list(#BROWSE)
endselect

end_loop

subroutine	name(LOADORDERS)

define	field(#ORDERNUM)	type(*CHAR)	length(10)	colhdg('Order'	'Number')	input_atr(LC)
define	field(#CUSTNUM)	type(*CHAR)	length(10)	colhdg('Customer'	'Number')	input_atr(LC)
def_list	name(#ORDERS)	fields(#ORDERNUM	#CUSTNUM)	type(*WORKING)	entrys(100)

*	open	JSM	connection
*	load	the	XMLQueryService
use	builtin(JSM_OPEN)	to_get(#JSMSTS	#JSMMSG)
execute	subroutine(CHECK)	with_parms(#JSMSTS	#JSMMSG)

change	field(#JSMCMD)	to('''service_load	service(XMLQueryService)	trace(*yes)''')
use	builtin(JSM_COMMAND)	with_args(#JSMCMD)	to_get(#JSMSTS	#JSMMSG)
execute	subroutine(CHECK)	with_parms(#JSMSTS	#JSMMSG)

*	load	the	salesorder.xml	file
use	builtin(TCONCAT)	with_args('load	file('	#ORDERXML	')')	to_get(#JSMCMD)
use	builtin(JSM_COMMAND)	with_args(#JSMCMD)	to_get(#JSMSTS	#JSMMSG)
execute	subroutine(CHECK)	with_parms(#JSMSTS	#JSMMSG)

*	query	each	<SalesOrder>	element,	for	each,	return
*	-	value	of	@SONumber	attribute	(sales	order	number)
*	-	value	of	@CustNumber	attribute	of	the	contained	<Customer>	element
clr_list	named(#ORDERS)
change	field(#JSMCMD)	to('''query	nodes(//SalesOrder)	nodesvalue1(@SONumber)	nodesvalue2(Customer/@CustNumber)	service_list(ORDERNUM,CUSTNUM)''')
use	builtin(JSM_COMMAND)	with_args(#JSMCMD)	to_get(#JSMSTS	#JSMMSG	#ORDERS)
execute	subroutine(CHECK)	with_parms(#JSMSTS	#JSMMSG)

*	unload	the	XMLQueryService
*	close	the	JSM	connection
change	field(#JSMCMD)	to('service_unload')
use	builtin(JSM_COMMAND)	with_args(#JSMCMD)	to_get(#JSMSTS	#JSMMSG)
use	builtin(JSM_CLOSE)	to_get(#JSMSTS	#JSMMSG)

endroutine

*	---
*	Subroutine	CHECK:	checks	the	JSM	return	status
*	---
subroutine	name(CHECK)	parms((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

if	cond('#jsmsts	*ne	ok')

use	builtin(TCONCAT)	with_args(#JSMSTS	'	:	'	#JSMMSG)	to_get(#STD_TEXTL)
menu	msgid(DCM9899)	msgf(dc@m01)	msgdta(#STD_TEXTL)

endif

endroutine
	

MQSeries	Built-in	Function	Example
	
**********	Beginning	of	RDML	commands	**********
FUNCTION	OPTIONS(*DIRECT)
DEFINE					FIELD(#JSMCNT)	TYPE(*CHAR)	LENGTH(4)
DEFINE					FIELD(#JSMGET)	TYPE(*CHAR)	LENGTH(4)
DEFINE					FIELD(#JSMPUT)	TYPE(*CHAR)	LENGTH(4)
DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE					FIELD(#QMANAGER)	TYPE(*CHAR)	LENGTH(48)
DEFINE					FIELD(#QNAME)	TYPE(*CHAR)	LENGTH(48)
DEFINE					FIELD(#QMODE)	TYPE(*CHAR)	LENGTH(10)

DEFINE					FIELD(#WAIT)	TYPE(*DEC)	LENGTH(9)	DECIMALS(0)
DEFINE					FIELD(#LENGTH)	TYPE(*DEC)	LENGTH(9)	DECIMALS(0)
DEFINE					FIELD(#GETMSGID)	TYPE(*CHAR)	LENGTH(24)
DEFINE					FIELD(#GETCORID)	TYPE(*CHAR)	LENGTH(24)
DEFINE					FIELD(#RQMANAGER)	TYPE(*CHAR)	LENGTH(48)
DEFINE					FIELD(#RQNAME)	TYPE(*CHAR)	LENGTH(48)
DEFINE					FIELD(#JSMMSGID)	TYPE(*CHAR)	LENGTH(24)	DECIMALS(0)
DEFINE					FIELD(#JSMCORID)	TYPE(*CHAR)	LENGTH(24)	DECIMALS(0)
DEFINE					FIELD(#MSGTYPE)	TYPE(*DEC)	LENGTH(9)	DECIMALS(0)
DEFINE					FIELD(#MSGFMT)	TYPE(*CHAR)	LENGTH(8)
DEFINE					FIELD(#DEPTH)	TYPE(*DEC)	LENGTH(9)	DECIMALS(0)

DEFINE					FIELD(#CCSID)	TYPE(*DEC)	LENGTH(9)	DECIMALS(0)
DEFINE					FIELD(#PRIORITY)	TYPE(*DEC)	LENGTH(9)	DECIMALS(0)
DEFINE					FIELD(#EXPIRY)	TYPE(*DEC)	LENGTH(9)	DECIMALS(0)
DEFINE					FIELD(#PERSIST)	TYPE(*CHAR)	LENGTH(1)
DEFINE					FIELD(#QUSER)	TYPE(*CHAR)	LENGTH(12)
DEFINE					FIELD(#APPLID)	TYPE(*CHAR)	LENGTH(32)

**********	Connect	to	queue	manager

CHANGE					FIELD(#QMANAGER)	TO('USERAGENT.QUEUE.MANAGER')
USE								BUILTIN(MQ_CONN)	WITH_ARGS(#QMANAGER)	TO_GET(#JSMSTS	#JSMMSG	#JSMCNT)
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))

**********	Open	GET	queue

CHANGE					FIELD(#QNAME)	TO('USERAGENT.QUEUE')
USE								BUILTIN(MQ_OPEN)	WITH_ARGS(#JSMCNT	#QNAME	'IQ')	TO_GET(#JSMSTS	#JSMMSG	#JSMGET)
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))

**********	Open	PUT	queue

USE								BUILTIN(MQ_OPEN)	WITH_ARGS(#JSMCNT	#QNAME	'OFU')	TO_GET(#JSMSTS	#JSMMSG	#JSMPUT)
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))

**********	Get	GET	queue	depth

USE								BUILTIN(MQ_DEPTH)	WITH_ARGS(#JSMCNT	#JSMGET)	TO_GET(#JSMSTS	#JSMMSG	#DEPTH)
DISPLAY				FIELDS((#JSMSTS)	(#DEPTH))

**********	Open	JSM	connection

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(MQCLIENT)')	TO_GET(#JSMSTS	#JSMMSG)
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))

**********	Create	XML	message

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SEND	XSL(SENDORDER)')	TO_GET(#JSMSTS	#JSMMSG)
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))

**********	Put	XML	message

CHANGE					FIELD(#CCSID)	TO(37)
CHANGE					FIELD(#MSGFMT)	TO(MQSTR)
CHANGE					FIELD(#MSGTYPE)	TO(999999999)
CHANGE					FIELD(#PERSIST)	TO('Y')
CHANGE					FIELD(#PRIORITY)	TO(-1)
CHANGE					FIELD(#EXPIRY)	TO(-1)
CHANGE					FIELD(#EXPIRY)	TO(-1)

CHANGE					FIELD(#JSMMSGID)	TO('MYMSG')
CHANGE					FIELD(#JSMCORID)	TO('MYCOR')
CHANGE					FIELD(#RQMANAGER)	TO('MYQMANAGER')
CHANGE					FIELD(#RQNAME)	TO('MYQUEUE')
CHANGE					FIELD(#QUSER)	TO('MYSELF')
CHANGE					FIELD(#APPLID)	TO('MYAPPLID')

USE								BUILTIN(MQ_PUT)	WITH_ARGS(#JSMCNT	#JSMPUT	#MSGTYPE	#MSGFMT	#JSMMSGID	#JSMCORID	#RQMANAGER	#RQNAME	#CCSID	#PERSIST	#PRIORITY	#EXPIRY	#QUSER	#APPLID)	TO_GET(#JSMSTS	#JSMMSG)
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))

**********	Get	XML	message

CHANGE					FIELD(#WAIT)	TO(35)
CHANGE					FIELD(#MSGTYPE)	TO(0)
CHANGE					FIELD(#LENGTH)	TO(100000)
CHANGE					FIELD(#JSMMSGID)	TO(*BLANK)
CHANGE					FIELD(#JSMCORID)	TO(*BLANK)
CHANGE					FIELD(#MSGFMT)	TO(*BLANK)
CHANGE					FIELD(#MSGTYPE)	TO(0)
CHANGE					FIELD(#RQMANAGER)	TO(*BLANK)
CHANGE					FIELD(#RQNAME)	TO(*BLANK)
CHANGE					FIELD(#QUSER)	TO(*BLANK)
CHANGE					FIELD(#APPLID)	TO(*BLANK)

USE								BUILTIN(MQ_GET)	WITH_ARGS(#JSMCNT	#JSMGET	#WAIT	#LENGTH)	TO_GET(#JSMSTS	#JSMMSG	#MSGTYPE	#MSGFMT	#JSMMSGID	#JSMCORID	#RQMANAGER	#RQNAME	#QUSER	#APPLID)
DISPLAY				FIELDS((#JSMSTS)	(#MSGTYPE)	(#MSGFMT)	(#RQMANAGER)	(#RQNAME)	(#JSMMSGID)	(#JSMCORID)	(#QUSER)	(#APPLID)	(#JSMMSG))

**********	Close	JSM	connection

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))

**********	Close	GET	queue

USE								BUILTIN(MQ_CLOSE)	WITH_ARGS(#JSMCNT	#JSMGET)	TO_GET(#JSMSTS	#JSMMSG)
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))

**********	Close	PUT	queue

USE								BUILTIN(MQ_CLOSE)	WITH_ARGS(#JSMCNT	#JSMPUT)	TO_GET(#JSMSTS	#JSMMSG)
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))

**********	Disconnect	from	queue	manager

USE								BUILTIN(MQ_DISC)	WITH_ARGS(#JSMCNT)	TO_GET(#JSMSTS	#JSMMSG)
DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))
**********	End	of	RDML	commands	**********
	

	

MQSeries	and	DataQueue	programs	Example
This	example	illustrates	both	MQSeries	and	DataQueue	access	in	the	one
program.
**********	Beginning	of	RDML	commands	**********
FUNCTION			OPTIONS(*DIRECT)

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)

**********	Stop	MQ	fields	going	across	by	prefixing	with	JSM

DEFINE					FIELD(#JSMQMGR)	TYPE(*CHAR)	LENGTH(48)
DEFINE					FIELD(#JSMQNAME)	TYPE(*CHAR)	LENGTH(48)

DEFINE					FIELD(#JSMRQMGR)	TYPE(*CHAR)	LENGTH(48)
DEFINE					FIELD(#JSMREPLYQ)	TYPE(*CHAR)	LENGTH(48)

DEFINE					FIELD(#JSMWAIT)	TYPE(*DEC)	LENGTH(8)	DECIMALS(0)
DEFINE					FIELD(#JSMMSIZE)	TYPE(*DEC)	LENGTH(8)	DECIMALS(0)
DEFINE					FIELD(#JSMDEPTH)	TYPE(*DEC)	LENGTH(8)	DECIMALS(0)
DEFINE					FIELD(#JSMCCSID)	TYPE(*DEC)	LENGTH(8)	DECIMALS(0)
DEFINE					FIELD(#JSMPST)	TYPE(*CHAR)	LENGTH(1)
DEFINE					FIELD(#JSMPTY)	TYPE(*DEC)	LENGTH(8)	DECIMALS(0)
DEFINE					FIELD(#JSMMID)	TYPE(*CHAR)	LENGTH(24)
DEFINE					FIELD(#JSMCID)	TYPE(*CHAR)	LENGTH(24)
DEFINE					FIELD(#JSMMTYPE)	TYPE(*DEC)	LENGTH(9)	DECIMALS(0)

**********	Data	Queue

DEFINE					FIELD(#JSMQLIB)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#JSMQNME)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#JSMQKEY)	TYPE(*CHAR)	LENGTH(256)

DEFINE					FIELD(#ORDER)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#NAME)	TYPE(*CHAR)	LENGTH(50)
DEFINE					FIELD(#STREET)	TYPE(*CHAR)	LENGTH(50)

DEFINE					FIELD(#CITY)	TYPE(*CHAR)	LENGTH(50)
DEFINE					FIELD(#STATE)	TYPE(*CHAR)	LENGTH(5)
DEFINE					FIELD(#ZIP)	TYPE(*CHAR)	LENGTH(5)

DEFINE					FIELD(#LINENUM)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)
DEFINE					FIELD(#PARTNUM)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)
DEFINE					FIELD(#PARTDSC)	TYPE(*CHAR)	LENGTH(50)
DEFINE					FIELD(#PARTAMT)	TYPE(*DEC)	LENGTH(10)	DECIMALS(2)
DEFINE					FIELD(#PARTQTY)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)

DEF_LIST			NAME(#WRKLST)	FIELDS((#LINENUM)	(#PARTNUM)	(#PARTDSC)
										(#PARTAMT)	(#PARTQTY))	TYPE(*WORKING)

CHANGE					FIELD(#JSMQMGR)	TO('TEST.QMANAGER')
CHANGE					FIELD(#JSMQNAME)	TO('TEST.QUEUE')

**********	Get	Queue	Depth

CALL							PGM(JSMMQDEPTH)	PARM(#JSMQMGR	#JSMQNAME	#JSMDEPTH	#JSMSTS	#JSMMSG)
										NUM_LEN	(*DEFINED)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

DISPLAY				FIELDS((#JSMDEPTH))

**********	Open	service

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Load	service

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(XMLQueueService)')	
										TO_GET(#JSMSTS	#JSMMSG)	
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Get	message

CHANGE					FIELD(#JSMQLIB)	TO(JSMSRC)

CHANGE					FIELD(#JSMQNME)	TO(JSMQUEUE)
CHANGE					FIELD(#JSMQKEY)	TO(*BLANK)
CHANGE					FIELD(#JSMWAIT)	TO(5000)

CALL							PGM(JSMDQGET)	PARM(#JSMQLIB	#JSMQNME	#JSMQKEY	#JSMWAIT
										#JSMSTS	#JSMMSG)	NUM_LEN(*DEFINED
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

CALL							PGM(JSMMQGET)	PARM(#JSMQMGR	#JSMQNAME	#JSMWAIT	#JSMMSIZE
										#JSMMID	#JSMCID	#JSMRQMGR	#JSMREPLYQ	#JSMMTYPE	#JSMSTS	#JSMMSG)
										NUM_LEN(*DEFINED)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Receive	XML

CHANGE					FIELD(#JSMCMD)	TO('RECEIVE	XSL(RECEIVEORDER)	SERVICE_LIST
										(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET
										(#JSMSTS	#JSMMSG	#WRKLST)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

DISPLAY				FIELDS((#ORDER))

**********	Send	XML

CHANGE					FIELD(#JSMCMD)	TO('SEND	XSL(SENDORDER)
										SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	
										TO_GET(#JSMSTS	#JSMMSG	#WRKLST)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Put	new	message

CHANGE					FIELD(#JSMCCSID)	TO(0)
CHANGE					FIELD(#JSMMTYPE)	TO(8)
CHANGE					FIELD(#JSMMID)	TO(*BLANK)

CHANGE					FIELD(#JSMCID)	TO(*BLANK)
CHANGE					FIELD(#JSMPST)	TO(Y)
CHANGE					FIELD(#JSMPTY)	TO(4)
CHANGE					FIELD(#JSMRQMGR)	TO(*BLANK)
CHANGE					FIELD(#JSMREPLYQ)	TO(*BLANK)

CALL							PGM(JSMMQPUT)	PARM(#JSMQMGR	#JSMQNAME	#JSMCCSID	#JSMPST
										#JSMPTY	#JSMMID	#JSMCID	#JSMMTYPE	#JSMRQMGR	#JSMREPLYQ
										#JSMSTS	#JSMMSG)	NUM_LEN(*DEFINED)
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

CALL							PGM(JSMDQPUT)	PARM(#JSMQLIB	#JSMQNME	#JSMQKEY
										#JSMSTS	#JSMMSG)	
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	Close	service

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)	
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

**********	SUB	ROUTINES	

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF									COND('#JSMSTS	*NE	OK')

DISPLAY				FIELDS((#JSMSTS)	(#JSMMSG))

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

MENU							MSGTXT('Java	service	error	has	occurred')

ENDIF																																								

ENDROUTINE	
**********	End	of	RDML	commands	**********
	

OpenLDAPService	Example
This	example	demonstrates	the	use	of	the	OpenLDAPService	in	an	RDML
function.	It	requests	the	user	to	provide	a	user	name	(a	'cn'	value)	and	then	GETs
a	record	from	the	IBM	Directory	Server	(IBMTelDir)	on	the	IBM	i.	Two	screens
are	returned.	The	first	one	shows	what	is	returned	when	you	use	the	attribute
*ALL,	while	the	second	shows	you	how	to	return	only	selected	attributes.
To	run	this	example	you	will	need	to	do	the	following:
1.		Configure	and	start	the	IBM	Directory	Server	on	the	IBM	i.	For	more
information	on	the	IBM	Directory	Server	please	refer	to	the	relevant	IBM
Manuals

2.		Define	two	fields	in	the	LANSA	Repository:
#JSMSTS,	Char,	Length	20
#JSMMSG,	Char,	Length	255

3.		Set	the	#JSMSRV	field	to	the	correct	JSM	server	value
4.		Set	the	#LDPSRV	field	to	the	correct	LDAP	server	value
*	===
	
*	Description:
*	This	example	demonstrates	the	use	of	the	
*	OpenLDAPService	in	an	RDML	function.	It	requests	the
*	user	to	provide	a	user	name	(a	'cn'	value)	and	then
*	GETs	a	record	from	the	IBM	Directory	Server	(IBMTelDir)
*	on	the	IBM	i	.	Two	screens	are	returned.	The	first	one
*	shows	what	is	returned	when	you	use	the	attribute	*ALL,
*	while	the	second	shows	you	how	to	return	only	selected
*	attributes.

*	To	run	this	example	you	will	need	to	do	the	following:
*	Step	1.
*	Configure	and	start	the	IBM	Directory	Server	on	the
*	IBM	i.	For	more	information	on	the	IBM	Directory
*	Server	please	refer	to	the	relevant	IBM	Manuals
*	Step	2
*	Define	two	fields	in	the	LANSA	Repository:
*	-	#JSMSTS,	Char,	Length	20

*	-	#JSMMSG,	Char,	Length	255
*	Step	3
*	Set	the	#JSMSRV	field	to	the	correct	JSM	server	value
*	Step	4
*	Set	the	#LDPSRV	field	to	the	correct	LDAP	server	value

*	Disclaimer:	The	following	material	is	supplied	as
*	sample	material	only.	No	warranty	concerning	the
*	material	or	its	use	in	any	way	whatsoever	is
*	expressed	or	implied.

*	===
FUNCTION	OPTIONS(*DIRECT)

*	The	following	locally	defined	fields	are	used	to	hold
*	the	parameters	required	within	the	JSM	Built-in
*	functions.
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)
DEFINE	FIELD(#JSMSRV)	TYPE(*CHAR)	LENGTH(050)
DEFINE	FIELD(#LDPSRV)	TYPE(*CHAR)	LENGTH(050)

*	The	following	fields	are	used	in	the	working	list
*	required	for	the	GET	commands.
DEFINE	FIELD(#ATNAME)	TYPE(*CHAR)	LENGTH(035)
DEFINE	FIELD(#ATVALUE)	TYPE(*CHAR)	LENGTH(035)
DEF_LIST	NAME(#WRKLST)	FIELDS(#ATNAME	#ATVALUE)	TYPE(*WORKING)
DEF_LIST	NAME(#GET_LIST)	FIELDS(#ATNAME	#ATVALUE)
DEF_LIST	NAME(#GET_LIST2)	FIELDS(#ATNAME	#ATVALUE)

*	Define	the	field	used	to	capture	the	'cn'	value	(that
*	is,	the	user	name).
DEFINE	FIELD(#CN_FNAME)	TYPE(*CHAR)	LENGTH(050)	DESC('Name	to	Retrieve')	INPUT_ATR(LC)

*	'Open	service'
*	The	JSM_OPEN	Builtin	Function	is	used	to	connect	this
*	JSM	client	to	the	Java	Services	Manager,	and	to	start
*	a	thread	for	the	service.
CHANGE	FIELD(#JSMSRV)	TO('<system-name>:<port>')

USE	BUILTIN(JSM_OPEN)	WITH_ARGS(#JSMSRV)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	'Load	service'
*	The	Service_Load(OpenLDAPService)	command	loads	and
*	initializes	the	service.
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(OPENLDAPSERVICE)	TRACE(*NO)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	'Bind	to	LDAP	Server'
*	The	BIND	command	is	used	to	establish	a	connection	to
*	the	LDAP	server.	In	this	scenario	we	are	passing	an
*	authentication	name	(DN)	and	password,	but	these	are
*	not	mandatory	for	this	command
CHANGE	FIELD(#LDPSRV)	TO('<LDAP-server-name>')
CHANGE	FIELD(#JSMCMD)	TO('''BIND	HOST(''')
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	#LDPSRV	')	DN(cn=Administrator)	PASSWORD(password)')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Execute	a	subroutine	to	REQUEST	the	User	details	to	be
*	retrieved,	then	run	the	GET	command.	Keep	looping	until
*	user	Cancels	or	Exits.	Notice	that	the	Exit	and	Menu
*	keys	are	controlled	to	ensure	that	the	UNLOAD	and	CLOSE
*	commands	are	always	executed.
DOUNTIL	COND('(#IO$KEY	*EQ	''12'')	*OR	(#IO$KEY	*EQ	''03'')')
EXECUTE	SUBROUTINE(REQ_USER)
ENDUNTIL

CHANGE	FIELD(#JSMCMD)	TO(UNBIND)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	'Unload	service'
*	This	command	is	required	to	unload	the	service	and	to
*	remove	the	temporary	directory.	If	you	needed	to	send
*	out	multiple	messages	then	you	would	not	issue	this
*	command	until	after	you	had	finished	sending	all	the

*	messages.
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_UNLOAD')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	'Close	service'
*	The	final	step	in	the	process	is	to	close	the	service.
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	SUBROUTINES

*	This	subroutine	asks	the	user	to	provide	the	CN	name
*	they	wish	to	retrieve
SUBROUTINE	NAME(REQ_USER)

REQUEST	FIELDS(#CN_FNAME)	EXIT_KEY(*YES	*RETURN)	MENU_KEY(*YES	*RETURN)

*	'GET	Command'
*	This	command	is	used	to	get	the	record	of	with	the	user
*	that	has	been	selected.
*	Two	screens	are	returned.	The	first	one	shows	what	is
*	returned	when	you	use	the	attribute	*ALL,	while	the
*	second	shows	you	how	to	return	only	selected	attributes

*	Populate	the	first	screen	using	ATTRIBUTES(*ALL)
CLR_LIST	NAMED(#WRKLST)
CHANGE	FIELD(#JSMCMD)	TO('GET	DN(cn=')
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	#CN_FNAME	',	cn=users'	',	o=ibmteldir)')	TO_GET(#JSMCMD)
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	'	ATTRIBUTES(*ALL)'	'	SERVICE_LIST(ATNAME,ATVALUE)')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKLST)

CLR_LIST	NAMED(#GET_LIST)
SELECTLIST	NAMED(#WRKLST)
ADD_ENTRY	TO_LIST(#GET_LIST)
ENDSELECT

DISPLAY	BROWSELIST(#GET_LIST)	EXIT_KEY(*YES	*RETURN)	MENU_KEY(*YES	*RETURN)

*	Populate	the	second	screen	using	ATTRIBUTES(cn,sn,mail)

CLR_LIST	NAMED(#WRKLST)
CHANGE	FIELD(#JSMCMD)	TO('GET	DN(cn=')
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	#CN_FNAME	',	cn=users'	',	o=ibmteldir)')	TO_GET(#JSMCMD)
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	'	ATTRIBUTES(cn,sn,mail)'	'	SERVICE_LIST(ATNAME,ATVALUE)')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKLST)

CLR_LIST	NAMED(#GET_LIST2)
SELECTLIST	NAMED(#WRKLST)
ADD_ENTRY	TO_LIST(#GET_LIST2)
ENDSELECT

DISPLAY	BROWSELIST(#GET_LIST2)	EXIT_KEY(*YES	*RETURN)	MENU_KEY(*YES	*RETURN)

ENDROUTINE

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF	COND('#JSMSTS	*NE	OK')
DISPLAY	FIELDS(#JSMSTS	#JSMMSG)

USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

MENU	MSGTXT('Java	service	error	has	occurred')

ENDIF

ENDROUTINE

RFIDataSourceService	Example
This	LANSA	function	is	the	host	program	for	the	client	RFIExample	example
program.
**********	Beginning	of	RDML	commands	**********															
FUNCTION			OPTIONS(*DIRECT)																																				
DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)															
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)														
DEFINE					FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)
DEFINE					FIELD(#EMPNO)	TYPE(*CHAR)	LENGTH(5)																	
DEFINE					FIELD(#SURNAME)	TYPE(*CHAR)	LENGTH(20)														
DEFINE					FIELD(#GIVENAME)	TYPE(*CHAR)	LENGTH(20)													
DEFINE					FIELD(#ADDRESS1)	TYPE(*CHAR)	LENGTH(25)													
DEFINE					FIELD(#ADDRESS2)	TYPE(*CHAR)	LENGTH(25)													
DEFINE					FIELD(#ADDRESS3)	TYPE(*CHAR)	LENGTH(25)													
DEFINE					FIELD(#SKILCODE)	TYPE(*CHAR)	LENGTH(10)																
DEFINE					FIELD(#DATEACQR)	TYPE(*DEC)	LENGTH(6)	DECIMALS(0)						
DEFINE					FIELD(#GRADE)	TYPE(*CHAR)	LENGTH(1)																				
DEFINE					FIELD(#COMMENT)	TYPE(*CHAR)	LENGTH(20)																	
DEF_LIST			NAME(#SKILL)	FIELDS((#SKILCODE)	(#DATEACQR)	(#GRADE)	(#
											COMMENT))	TYPE(*WORKING)																															
DEFINE					FIELD(#SNAME)	TYPE(*CHAR)	LENGTH(10)																			
DEFINE					FIELD(#LNAME)	TYPE(*CHAR)	LENGTH(30)																			
DEF_LIST			NAME(#MAPLST)	FIELDS((#SNAME)	(#LNAME))	TYPE(*WORKING)	
DEF_LIST			NAME(#FLDLST)	FIELDS((#SNAME))	TYPE(*WORKING)										
DEFINE					FIELD(#SOURCE)	TYPE(*CHAR)	LENGTH(50)								
**********	Build	Map																																				
EXECUTE				SUBROUTINE(BLDMAP)																											
**********	'Open	service'																															
USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)				
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
**********	'Load	service'																															
CHANGE					FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(RFIDATASOURCESERVICE)
												SERVICE_LIST(SNAME,LNAME)	BIND(*FIELD)')												
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS		
											#JSMMSG	#MAPLST)																																								
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)											
**********	Check	for	inbound	data	source																											

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('CHECK	OBJECT(*DATASOURCE)')	
											TO_GET(#JSMSTS	#JSMMSG)																																
IF									COND('#JSMSTS	*EQ	OK')																																		
**********	Get	employee	id	from	data	source																								
CHANGE					FIELD(#JSMCMD)	TO('GET	OBJECT(*FIELD)	NAME(EMPNO)	SERVI	
											CE_LIST(SNAME)')																																								
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS		
											#JSMMSG	#FLDLST)																																								
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)											
CHANGE					FIELD(#JSMCMD)	TO('GET	OBJECT(*TABLE)	NAME(SKILLS)	SERV	
											ICE_LIST(SKILCODE,DATEACQR,GRADE,COMMENT)')													
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS		
											#JSMMSG	#SKILL)																																									
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)											
ENDIF																																																														
**********	Create	data	source																																						
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('CREATE	DATASOURCE(EMPLOYEE)	
											')	TO_GET(#JSMSTS	#JSMMSG)																														
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)											
**********	Add	skills	to	data	source																															
EXECUTE				SUBROUTINE(SKILL)																																							
CHANGE					FIELD(#JSMCMD)	TO('PUT	OBJECT(*TABLE)	NAME(SKILLS)	SERV	
											ICE_LIST(SKILCODE,DATEACQR,GRADE,COMMENT)')													
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS		
											#JSMMSG	#SKILL)																																									
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)											
**********	Add	fields	to	data	source																															
CHANGE					FIELD(#EMPNO)	TO(A1001)																																	
CHANGE					FIELD(#GIVENAME)	TO(JOANNE)																														
CHANGE					FIELD(#SURNAME)	TO(JONES)																													
EXECUTE				SUBROUTINE(FIELDS)																																						
CHANGE					FIELD(#JSMCMD)	TO('PUT	OBJECT(*FIELD)	SERVICE_LIST(SNAM	
											E)')																																																				
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS		
											#JSMMSG	#FLDLST)																																								
**********	Send	data	source	to	client																														
USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SEND	OBJECT(*DATASOURCE	
)')	TO_GET(#JSMSTS	#JSMMSG)																													
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)											

**********	'Close	service'																																									
USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)													
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)										
**********	SUB	ROUTINES																																											
SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVE
											D))																																																				
IF									COND('#JSMSTS	*NE	OK')																																	
**********	Close	service	and	send	the	HTTP	response															
USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)	
ENDIF																																																	
ENDROUTINE																																												
SUBROUTINE	NAME(FIELDS)																															
CHANGE					FIELD(#SNAME)	TO(EMPNO)																				
ADD_ENTRY		TO_LIST(#FLDLST)																											
CHANGE					FIELD(#SNAME)	TO(GIVENAME)																	
ADD_ENTRY		TO_LIST(#FLDLST)																											
CHANGE					FIELD(#SNAME)	TO(SURNAME)					
ADD_ENTRY		TO_LIST(#FLDLST)														
ENDROUTINE																															
SUBROUTINE	NAME(BLDMAP)																		
CHANGE					FIELD(#SNAME)	TO(EMPNO)							
CHANGE					FIELD(#LNAME)	TO(EMPLOYEE_ID)	
ADD_ENTRY		TO_LIST(#MAPLST)														
CHANGE					FIELD(#SNAME)	TO(SURNAME)					
CHANGE					FIELD(#LNAME)	TO(*BLANK)					
ADD_ENTRY		TO_LIST(#MAPLST)													
CHANGE					FIELD(#SNAME)	TO(GIVENAME)			
CHANGE					FIELD(#LNAME)	TO(FIRST_NAME)	
ADD_ENTRY		TO_LIST(#MAPLST)													
CHANGE					FIELD(#SNAME)	TO(SKILCODE)			
CHANGE					FIELD(#LNAME)	TO(SKILL)						
ADD_ENTRY		TO_LIST(#MAPLST)													
CHANGE					FIELD(#SNAME)	TO(DATEACQR)			
CHANGE					FIELD(#LNAME)	TO(ACQUIRED)			
ADD_ENTRY		TO_LIST(#MAPLST)									
CHANGE					FIELD(#SNAME)	TO(GRADE)		
CHANGE					FIELD(#LNAME)	TO(*BLANK)	
ADD_ENTRY		TO_LIST(#MAPLST)									
CHANGE					FIELD(#SNAME)	TO(COMMENT)

CHANGE					FIELD(#LNAME)	TO(*BLANK)	
ADD_ENTRY		TO_LIST(#MAPLST)									
ENDROUTINE																										
SUBROUTINE	NAME(SKILL)														
CHANGE					FIELD(#SKILCODE)	TO(RPG)																			
CHANGE					FIELD(#DATEACQR)	TO(991202)																
CHANGE					FIELD(#GRADE)	TO(A)																								
CHANGE					FIELD(#COMMENT)	TO('Good	knowledge')							
ADD_ENTRY		TO_LIST(#SKILL)																												
CHANGE					FIELD(#SKILCODE)	TO(CL)																				
CHANGE					FIELD(#DATEACQR)	TO(981102)																
CHANGE					FIELD(#GRADE)	TO(B)																								
CHANGE					FIELD(#COMMENT)	TO('Improvement	required')	
ADD_ENTRY		TO_LIST(#SKILL)																												
ENDROUTINE
**********	End	of	RDML	commands	**********
	

ZipService	Example
This	is	a	simple	function	to	create	a	zip	archive	file	and	copy	the	contents	of	a
nominated	directory	into	the	newly	created	zip	file.
	
*	Uses	Integrator	Services:	ZIPSERVICE
	
*	Loads	ZIPService	service	then	zips	a	nominated
*	directory	into	an	archive	file.

*	Beginning	of	RDML	commands	**********
FUNCTION	OPTIONS(*DIRECT)

DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)

DEFINE	FIELD(#ZIPDIR)	TYPE(*CHAR)	LENGTH(256)	LABEL('Zip	directory:')	COLHDG('Path	to	be	zipped')	INPUT_ATR(FE	LC)
DEFINE	FIELD(#ZIPFIL)	TYPE(*CHAR)	LENGTH(256)	LABEL('Zip	file	path:')	COLHDG('Output	zip	path/file')	INPUT_ATR(FE	LC)	DEFAULT('''*.zip''')

*	Open	service
USE	BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Load	service
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(ZIPSERVICE)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
MESSAGE	MSGTXT('ZIPService	loaded')

BEGIN_LOOP

*	request	name	of	folder	to	be	zipped	and	target	zip	file
CHANGE	FIELD(#STD_INSTR)	TO('''Type	zip	directory	and	zip	file	name,	press	Enter.''')
REQUEST	FIELDS((#STD_INSTR	*L003	*P002	*OUTPUT	*NOID)	(#ZIPDIR	*L005	*P002)	(#ZIPFIL	*L010	*P002))	DESIGN(*DOWN)	IDENTIFY(*COLHDG)	DOWN_SEP(001)	ACROSS_SEP(001)	EXIT_KEY(*NO)	MENU_KEY(*YES	*NEXT)	PROMPT_KEY(*NO)

IF_KEY	WAS(*MENU)

*	Close	service
EXECUTE	SUBROUTINE(DISCONNECT)
MENU

ENDIF

*	create	the	zip	file
EXECUTE	SUBROUTINE(MAKEZIP)

END_LOOP

*	Zips	the	nominated	directory
SUBROUTINE	NAME(MAKEZIP)

*	Create	the	specified	zip	file
CHANGE	FIELD(#JSMCMD)	TO(CREATE)
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(FILE	#ZIPFIL)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Add	the	contents	of	the	specified	folder
CHANGE	FIELD(#JSMCMD)	TO(ADD)
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(PATH	#ZIPDIR)
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(BASE	'*CURRENT')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Close	the	zip	file
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Confirm	zip	is	complete
MESSAGE	MSGTXT('Directory	has	been	successfully	zipped')

ENDROUTINE

SUBROUTINE	NAME(DISCONNECT)

*	Unload	service

USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_UNLOAD')	TO_GET(#JSMSTS	#JSMMSG)
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

*	Close	service
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

ENDROUTINE

*	Build	JSM	commands
SUBROUTINE	NAME(KEYWRD)	PARMS((#KEYWORD	*RECEIVED)	(#KEYW_VAL1	*RECEIVED))
DEFINE	FIELD(#KEYWORD)	REFFLD(#STD_TEXT)
DEFINE	FIELD(#KEYW_VAL1)	REFFLD(#STD_TEXTL)

USE	BUILTIN(BCONCAT)	WITH_ARGS(#JSMCMD	#KEYWORD)	TO_GET(#JSMCMD)
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	'('	#KEYW_VAL1	')')	TO_GET(#JSMCMD)

ENDROUTINE

*	Check	the	JSM	return	status
SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF	COND('#JSMSTS	*NE	OK')

USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMSTS	'	:	'	#JSMMSG)	TO_GET(#STD_TEXTL)
MENU	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#STD_TEXTL)

ENDIF

ENDROUTINE
	

PDFSpoolFileService	Example
This	function	allows	connection	to	an	IBM	i	and	converts	the	first	3	spool	files
from	the	nominated	output	queue	to	PDF	documents	on	the	root	directory	of	the
active	JSM	Instance.

The	Server,	User	and	Password	are	optional	if	the	active	JSM	Server	is
located	on	the	same	IBM	i	you	want	to	retrieve	spool	file	information	from.
If	the	User	is	NOT	specified,	the	option	of	*ALL	will	be	used	to	retrieve
spool	files.		THIS	MAY	BE	A	PERFORMANCE	OVERHEAD	IF	YOU
NOMINATE	AN	OUTPUT	QUEUE	WITH	A	LARGE	NUMBER	OF
SPOOL	FILES.

Modify	the	default	values	to	be	displayed	to	suit	your	site.

	
*	Uses	Integrator	Services:	PDFSPOOLFILESERVICE
	
*	This	function	connects	to	an	IBM	i	&	converts
*	the	1st	3	spool	files	from	the	nominated	outq	to	PDF
*	documents	on	the	root	dir	of	the	active	JSM	Instance.

*	Server,	User	&	Password	are	optional	if	the	active	JSM
*	Server	is	located	on	the	same	IBM	i	as	spool	files

*	If	the	User	is	NOT	specified	the	option	of	*ALL	is	used
*	THIS	MAY	BE	A	PERFORMANCE	OVERHEAD

*	Modify	the	default	values	to	suit	your	site.

*	Beginning	of	RDML	commands	**********
FUNCTION	OPTIONS(*DIRECT)

DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)

DEFINE	FIELD(#JSMSERVER)	TYPE(*char)	LENGTH(20)
DEFINE	FIELD(#JSMUSER)	TYPE(*CHAR)	LENGTH(010)	LABEL('User')

DEFINE	FIELD(#JSMPSSWRD)	TYPE(*char)	LENGTH(10)
DEFINE	FIELD(#JSMLIB)	TYPE(*CHAR)	LENGTH(010)	LABEL('Library')
DEFINE	FIELD(#JSMOUTQ)	TYPE(*char)	LENGTH(10)

DEFINE	FIELD(#FLENAM)	TYPE(*CHAR)	LENGTH(010)
DEFINE	FIELD(#FLENUM)	TYPE(*CHAR)	LENGTH(006)
DEFINE	FIELD(#JOBNAME)	TYPE(*CHAR)	LENGTH(10)
DEFINE	FIELD(#JOBUSER)	REFFLD(#JOBNAME)
DEFINE	FIELD(#JOBNUMBER)	TYPE(*CHAR)	LENGTH(006)
DEFINE	FIELD(#SPLFILSTS)	TYPE(*CHAR)	LENGTH(010)

DEFINE	FIELD(#PDFKEY)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#PDFVALUE)	TYPE(*CHAR)	LENGTH(050)

DEFINE	FIELD(#DOCNME)	TYPE(*CHAR)	LENGTH(150)
DEFINE	FIELD(#DOCCNT)	TYPE(*DEC)	LENGTH(003)	DECIMALS(0)

DEF_LIST	NAME(#PDFLST)	FIELDS((#PDFKEY	*INP)	(#PDFVALUE	*INP))	TYPE(*WORKING)

DEF_LIST	NAME(#SPOOLLST)	FIELDS(#FLENAM	#FLENUM	#JOBNAME	#JOBUSER	#JOBNUMBER	#SPLFILSTS)	COUNTER(#LISTCOUNT)	TYPE(*WORKING)	ENTRYS(0009999)

*	set	default	values	for	screen
CHANGE	FIELD(#STD_INSTR)	TO('''Set	your	appropriate	information	then	press	ENTER	to	generate	PDF	files''')
CHANGE	FIELD(#JSMSERVER)	TO(ISERIES01)
CHANGE	FIELD(#JSMUSER)	TO(USER)
CHANGE	FIELD(#JSMPSSWRD)	TO(PASSWORD)
CHANGE	FIELD(#JSMLIB)	TO(QUSRSYS)
CHANGE	FIELD(#JSMOUTQ)	TO(QEZJOBLOG)

*	Connect	to	JSM	Server
USE	BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Load	the	PDF	service
CHANGE	FIELD(#JSMCMD)	TO('SERVICE_LOAD	SERVICE(PDFSPOOLFILESERVICE)	TRACE(*YES)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
MESSAGE	MSGTXT('PDFSpoolFileService	loaded')

BEGIN_LOOP

*	Format	and	Process	JSM	commands
REQUEST	FIELDS((#STD_INSTR	*L004	*P002	*OUTPUT	*NOID)	(#JSMSERVER	*L007	*P026)	(#JSMUSER	*L009	*P026)	(#JSMPSSWRD	*L011	*P026)	(#JSMLIB	*L13	*P26)	(#JSMOUTQ	*L15	*P26))	IDENTIFY(*LABEL)	EXIT_KEY(*NO)	MENU_KEY(*YES	*NEXT)	PROMPT_KEY(*NO)

IF_KEY	WAS(*MENU)

*	Close	service
EXECUTE	SUBROUTINE(DISCONNECT)
MENU

ENDIF

*	Connect	to	IBM	i	server
EXECUTE	SUBROUTINE(CONNECT)

*	Get	list	of	spool	files	to	process
EXECUTE	SUBROUTINE(LIST)

*	Create	PDF	files
EXECUTE	SUBROUTINE(PDF)

END_LOOP

*	Connect	to	host	database
SUBROUTINE	NAME(CONNECT)

*	Connect	to	the	required	IBM	i	host
USE	BUILTIN(TCONCAT)	WITH_ARGS('CONNECT	HOST('	#JSMSERVER	')	USER('	#JSMUSER	')	PASSWORD(')	TO_GET(#JSMCMD)
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	#JSMPSSWRD	')')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
MESSAGE	MSGTXT('JSM	Server	connected')

ENDROUTINE

*	Generate	a	list	of	spool	files	from	selected	location
SUBROUTINE	NAME(LIST)

MESSAGE	MSGTXT('Searching	output	queue	...')	TYPE(*STATUS)
USE	BUILTIN(TCONCAT)	WITH_ARGS('LIST	LIBRARY('	#JSMLIB	')	QUEUE('	#JSMOUTQ	')	USER(')	TO_GET(#JSMCMD)

IF	COND('#JSMUSER	*NE	*BLANK')
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	#JSMUSER)	TO_GET(#JSMCMD)
ELSE
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	'*ALL')	TO_GET(#JSMCMD)
ENDIF

USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	')	USERDATA(*ALL)	FORMTYPE(*STD)	SERVICE_LIST('	'FLENAM,	FLENUM,	JOBNAME,	JOBUSER,	JOBNUMBER,	'	'SPLFILSTS)')	TO_GET(#JSMCMD)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#SPOOLLST)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
MESSAGE	MSGTXT('List	of	spool	files	generated')

ENDROUTINE

*	Create	a	PDF	file	from	selected	spool	file
SUBROUTINE	NAME(PDF)

MESSAGE	MSGTXT('PDFs	files	being	generated	...')	TYPE(*STATUS)

*	Create	an	entry	for	each	consistent	keyword
CLR_LIST	NAMED(#PDFLST)
EXECUTE	SUBROUTINE(ADDKEYWRD)	WITH_PARMS(JOBNUMBER	#JOBNUMBER)
EXECUTE	SUBROUTINE(ADDKEYWRD)	WITH_PARMS(AUTHOR	'LANSAUSER')
EXECUTE	SUBROUTINE(ADDKEYWRD)	WITH_PARMS(TITLE	'PDF	example	created	using	PDFSpoolFileService')
EXECUTE	SUBROUTINE(ADDKEYWRD)	WITH_PARMS(SUBJECT	'Generated	by	LANSA	SUPPLIED	Test	Function')
EXECUTE	SUBROUTINE(ADDKEYWRD)	WITH_PARMS(CREATOR	*FUNCTION)
EXECUTE	SUBROUTINE(ADDKEYWRD)	WITH_PARMS(PAGESIZE	'*A4')
EXECUTE	SUBROUTINE(ADDKEYWRD)	WITH_PARMS(MARGIN	'15')
CHANGE	FIELD(#DOCCNT)	TO(0)

SELECTLIST	NAMED(#SPOOLLST)

*	build	a	unique	PDF	file	name
CHANGE	FIELD(#DOCCNT)	TO('#DOCCNT	+	1')
SUBSTRING	FIELD(#DOCCNT)	INTO_FIELD(#DOCNME)
USE	BUILTIN(TCONCAT)	WITH_ARGS('PDFTST'	#DOCNME	'.pdf')	TO_GET(#DOCNME)

*	Build	the	CREATE	command	using	list	details
USE	BUILTIN(TCONCAT)	WITH_ARGS('CREATE	SERVICE_LIST(PDFKEY,PDFVALUE)	DOCUMENT('	#DOCNME	')	NAME('	#FLENAM	')	NUMBER(')	TO_GET(#JSMCMD)
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	#FLENUM	')	JOBNAME('	#JOBNAME	')	JOBUSER(')	TO_GET(#JSMCMD)
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	#JOBUSER	')')	TO_GET(#JSMCMD)

*	Create	PDF
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#PDFLST)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
USE	BUILTIN(BCONCAT)	WITH_ARGS('PDF	document'	#DOCNME	'created')	TO_GET(#STD_TEXTL)
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#STD_TEXTL)

*	Only	create	PDF	files	for	first	3	spool	files
LEAVE	IF('#DOCCNT	=	3')

ENDSELECT

ENDROUTINE

SUBROUTINE	NAME(DISCONNECT)

*	Unload	service
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_UNLOAD')	TO_GET(#JSMSTS	#JSMMSG)
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

*	Close	service
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

ENDROUTINE

*	Keywords	to	list
SUBROUTINE	NAME(ADDKEYWRD)	PARMS((#PDFKEY	*RECEIVED)	(#PDFVALUE	*RECEIVED))

ADD_ENTRY	TO_LIST(#PDFLST)

ENDROUTINE

*	Check	the	JSM	return	status

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF	COND('#JSMSTS	*NE	OK')

USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMSTS	'	:	'	#JSMMSG)	TO_GET(#STD_TEXTL)
MENU	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#STD_TEXTL)

ENDIF

ENDROUTINE

*	End	of	RDML	commands	**********
	

SVFileService	Example
This	simple	function	allows	data	to	be	read	from	or	written	to	a	separated
variable	file.
	
*	Uses	Integrator	Services:	SVFILESERVICE
*	This	function	reads	CSV	file	inforamtion	into	a	list
*	or	write	information	to	a	CSV	file	from	a	list

*	Beginning	of	RDML	commands	**********
FUNCTION	OPTIONS(*DIRECT)

DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)

DEFINE	FIELD(#SVFIL)	TYPE(*CHAR)	LENGTH(80)	LABEL('File	path:')	COLHDG('SV	File	to	be	read')

DEFINE	FIELD(#LINENUM)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	COLHDG('Line')	EDIT_CODE(3)
DEFINE	FIELD(#PARTNUM)	TYPE(*CHAR)	LENGTH(7)	COLHDG('Part')
DEFINE	FIELD(#PARTDSC)	REFFLD(#STD_DESC)
DEFINE	FIELD(#PARTAMT)	TYPE(*DEC)	LENGTH(9)	DECIMALS(2)	COLHDG('Unit	Price')	EDIT_CODE(3)
DEFINE	FIELD(#PARTQTY)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	COLHDG('Quantity')	EDIT_CODE(3)

DEF_LIST	NAME(#ORDLIST)	FIELDS(#LINENUM	#PARTNUM	#PARTDSC	#PARTAMT	#PARTQTY)	COUNTER(#LISTCOUNT)
DEF_LIST	NAME(#ORDLISTW)	FIELDS(#LINENUM	#PARTNUM	#PARTDSC	#PARTAMT	#PARTQTY)	TYPE(*WORKING)

*	Open	service
USE	BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Load	service
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(SVFILESERVICE)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
MESSAGE	MSGTXT('SVFileService	loaded')
EXECUTE	SUBROUTINE(CLEARLST)

BEGIN_LOOP

*	request	name	of	folder	to	be	zipped	and	target	zip	file
CHANGE	FIELD(#STD_INSTR)	TO('''Type	the	SV	file	name	to	be	read	or	written.		Use	buttons	to	process.''')

REQUEST	FIELDS((#STD_INSTR	*L003	*P002	*OUTPUT	*NOID)	(#SVFIL	*L004	*P002))	DESIGN(*DOWN)	IDENTIFY(*COLHDG)	DOWN_SEP(001)	ACROSS_SEP(001)	BROWSELIST(#ORDLIST)	EXIT_KEY(*NO)	MENU_KEY(*YES	*NEXT)	PROMPT_KEY(*NO)	USER_KEYS((05	'Read'	*NEXT	*NONE)
(06	'Write'	*NEXT	*NONE)(07	'Clear'))

IF_KEY	WAS(*MENU)
*	Close	service
EXECUTE	SUBROUTINE(DISCONNECT)
MENU
ENDIF

*	read	the	SV	file
IF_KEY	WAS(*USERKEY1)
EXECUTE	SUBROUTINE(READSV)
ENDIF

*	write	to	the	SV	file
IF_KEY	WAS(*USERKEY2)
EXECUTE	SUBROUTINE(WRITESV)
ENDIF

*	clear	the	list	information
IF_KEY	WAS(*USERKEY3)
EXECUTE	SUBROUTINE(CLEARLST)
ENDIF

END_LOOP

*	Read	the	nominated	SV	file
*	(columns	must	match	the	working	list	definition)

SUBROUTINE	NAME(READSV)

CLR_LIST	NAMED(#ORDLISTW)
CLR_LIST	NAMED(#ORDLIST)

*	Read	the	SV	order	file

CHANGE	FIELD(#JSMCMD)	TO('READ	SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(FILE	#SVFIL)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#ORDLISTW)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

SELECTLIST	NAMED(#ORDLISTW)

ADD_ENTRY	TO_LIST(#ORDLIST)	WITH_MODE(*ADD)

ENDSELECT

*	add	a	blank	line	for	new	details
CHANGE	FIELD(#ORDLIST)	TO(*DEFAULT)
CHANGE	FIELD(#LINENUM)	TO(#LISTCOUNT)

BEGIN_LOOP	TO(5)
CHANGE	FIELD(#LINENUM)	TO('#LINENUM	+	1')
ADD_ENTRY	TO_LIST(#ORDLIST)	WITH_MODE(*ADD)
END_LOOP

*	Confirm	file	read	is	complete
MESSAGE	MSGTXT('File	has	been	successfully	read')

ENDROUTINE

*	Write	to	the	nominated	SV	file
*	(columns	must	match	the	working	list	definition)

SUBROUTINE	NAME(WRITESV)

CLR_LIST	NAMED(#ORDLISTW)

SELECTLIST	NAMED(#ORDLIST)

IF	COND('#PARTNUM	*NE	*BLANK')
ADD_ENTRY	TO_LIST(#ORDLISTW)
ENDIF

ENDSELECT

*	Create	the	specified	zip	file
CHANGE	FIELD(#JSMCMD)	TO('WRITE	SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(FILE	#SVFIL)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#ORDLISTW)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Confirm	write	of	file	is	complete
MESSAGE	MSGTXT('Order	has	been	successfully	written	to	file')

ENDROUTINE

*	Clear	list

SUBROUTINE	NAME(CLEARLST)

CLR_LIST	NAMED(#ORDLIST)

BEGIN_LOOP	USING(#LINENUM)	TO(10)
ADD_ENTRY	TO_LIST(#ORDLIST)	WITH_MODE(*ADD)
END_LOOP

ENDROUTINE

SUBROUTINE	NAME(DISCONNECT)

*	Unload	service
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_UNLOAD')	TO_GET(#JSMSTS	#JSMMSG)

*	Close	service
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)

EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

ENDROUTINE

*	Build	JSM	commands
SUBROUTINE	NAME(KEYWRD)	PARMS((#KEYWORD	*RECEIVED)	(#KEYW_VAL1	*RECEIVED))

DEFINE	FIELD(#KEYWORD)	REFFLD(#STD_TEXT)
DEFINE	FIELD(#KEYW_VAL1)	REFFLD(#STD_TEXTL)

USE	BUILTIN(BCONCAT)	WITH_ARGS(#JSMCMD	#KEYWORD)	TO_GET(#JSMCMD)
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	'('	#KEYW_VAL1	')')	TO_GET(#JSMCMD)

ENDROUTINE

*	Check	the	JSM	return	status
SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF	COND('#JSMSTS	*NE	OK')
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMSTS	'	:	'	#JSMMSG)	TO_GET(#STD_TEXTL)
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#STD_TEXTL)
ENDIF

ENDROUTINE
	

ExcelReadService	Example
*	Uses	Integrator	Services:	EXCELREADSERVICE
	
*	This	function	reads	an	EXCEL	file	into	a	list
*	or	writes	information	to	an	EXCEL	file	from	a	list

*	Beginning	of	RDML	commands	**********
FUNCTION	OPTIONS(*DIRECT)

DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)

DEFINE	FIELD(#EXCELFIL)	TYPE(*CHAR)	LENGTH(79)	LABEL('File	path:')	COLHDG('EXCEL	File	to	open')
DEFINE	FIELD(#EXCELSHT)	TYPE(*CHAR)	LENGTH(25)	LABEL('Worksheet:')	COLHDG('EXCEL	Worksheet')	DEFAULT('sheet1')
DEFINE	FIELD(#LINENUM)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	COLHDG('Line')	EDIT_CODE(3)
DEFINE	FIELD(#PARTNUM)	TYPE(*CHAR)	LENGTH(7)	COLHDG('Part')
DEFINE	FIELD(#PARTDSC)	REFFLD(#STD_DESC)
DEFINE	FIELD(#PARTAMT)	TYPE(*DEC)	LENGTH(9)	DECIMALS(2)	COLHDG('Unit	Price')	EDIT_CODE(3)
DEFINE	FIELD(#PARTQTY)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	COLHDG('Quantity')	EDIT_CODE(3)

DEF_LIST	NAME(#ORDLIST)	FIELDS(#LINENUM	#PARTNUM	#PARTDSC	#PARTAMT	#PARTQTY)	COUNTER(#LISTCOUNT)
DEF_LIST	NAME(#ORDLISTW)	FIELDS(#LINENUM	#PARTNUM	#PARTDSC	#PARTAMT	#PARTQTY)	TYPE(*WORKING)

*	Open	service
USE	BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Load	service
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(EXCELREADSERVICE)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

MESSAGE	MSGTXT('ExcelReadService	loaded')

EXECUTE	SUBROUTINE(CLEARLST)

BEGIN_LOOP

*	request	name	of	folder	to	be	zipped	and	target	zip	file
CHANGE	FIELD(#STD_INSTR)	TO('''Type	the	EXCEL	file	name	to	be	read	or	written.		Use	buttons	to	process.''')

REQUEST	FIELDS((#STD_INSTR	*L003	*P002	*OUTPUT	*NOID)	(#EXCELFIL	*L004	*P002)	(#EXCELSHT	*L006	*P002	*COLHDG))	DESIGN(*DOWN)	IDENTIFY(*COLHDG)	DOWN_SEP(001)	ACROSS_SEP(001)	BROWSELIST(#ORDLIST)	EXIT_KEY(*NO)	MENU_KEY(*YES	*NEXT)	PROMPT_KEY(*NO)	USER_KEYS((05	'Read'	*NEXT	*NONE)
(06	'Write'	*NEXT	*NONE)(07	'Clear'))

IF_KEY	WAS(*MENU)
*	Close	service
EXECUTE	SUBROUTINE(DISCONNECT)
MENU
ENDIF

*	read	the	EXCEL	file
IF_KEY	WAS(*USERKEY1)
EXECUTE	SUBROUTINE(READEXCEL)
ENDIF

*	write	to	the	EXCEL	file
IF_KEY	WAS(*USERKEY2)
EXECUTE	SUBROUTINE(WRITEEXCEL)
ENDIF

*	clear	the	list	information
IF_KEY	WAS(*USERKEY3)
EXECUTE	SUBROUTINE(CLEARLST)
ENDIF

END_LOOP

*	Read	the	nominated	EXCEL	file
*	(columns	must	match	the	working	list	definition)
SUBROUTINE	NAME(READEXCEL)

CLR_LIST	NAMED(#ORDLISTW)
CLR_LIST	NAMED(#ORDLIST)

*	Open	the	EXCEL	order	file
CHANGE	FIELD(#JSMCMD)	TO(OPEN)

EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(FILE	#EXCELFIL)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Read	the	EXCEL	order	file
CHANGE	FIELD(#JSMCMD)	TO('READ	SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(R1C1	'2,1')
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(R2C2	'3,0')
IF	COND('#EXCELSHT	*NE	*BLANK')
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(SHEET	#EXCELSHT)
ENDIF
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#ORDLISTW)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

SELECTLIST	NAMED(#ORDLISTW)
ADD_ENTRY	TO_LIST(#ORDLIST)	WITH_MODE(*ADD)
ENDSELECT

*	add	a	blank	line	for	new	details
CHANGE	FIELD(#ORDLIST)	TO(*DEFAULT)
CHANGE	FIELD(#LINENUM)	TO(#LISTCOUNT)

BEGIN_LOOP	TO(5)
CHANGE	FIELD(#LINENUM)	TO('#LINENUM	+	1')
ADD_ENTRY	TO_LIST(#ORDLIST)	WITH_MODE(*ADD)
END_LOOP

EXECUTE	SUBROUTINE(CLOSE)

*	Confirm	file	read	is	complete
MESSAGE	MSGTXT('File	has	been	successfully	read')

ENDROUTINE

*	Write	to	the	nominated	EXCEL	file
*	(columns	must	match	the	working	list	definition)
SUBROUTINE	NAME(WRITEEXCEL)

CLR_LIST	NAMED(#ORDLISTW)

SELECTLIST	NAMED(#ORDLIST)

IF	COND('#PARTNUM	*NE	*BLANK')
ADD_ENTRY	TO_LIST(#ORDLISTW)
ENDIF

ENDSELECT

*	Open	the	EXCEL	order	file
CHANGE	FIELD(#JSMCMD)	TO('OPEN	MODE(*WRITE)')
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(FILE	#EXCELFIL)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	Create	the	specified	EXCEL	file
CHANGE	FIELD(#JSMCMD)	TO('WRITE	SERVICE_LIST(LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY)')
IF	COND('#EXCELSHT	*NE	*BLANK')
EXECUTE	SUBROUTINE(KEYWRD)	WITH_PARMS(SHEET	#EXCELSHT)
ENDIF
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#ORDLISTW)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

EXECUTE	SUBROUTINE(CLOSE)

*	Confirm	write	of	file	is	complete
MESSAGE	MSGTXT('Order	has	been	successfully	written	to	file')

ENDROUTINE

*	Close	all	open	worksheets
SUBROUTINE	NAME(CLOSE)
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
ENDROUTINE

*	Clear	list
SUBROUTINE	NAME(CLEARLST)
CLR_LIST	NAMED(#ORDLIST)

BEGIN_LOOP	USING(#LINENUM)	TO(10)
ADD_ENTRY	TO_LIST(#ORDLIST)	WITH_MODE(*ADD)
END_LOOP

ENDROUTINE

SUBROUTINE	NAME(DISCONNECT)

*	Unload	service
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_UNLOAD')	TO_GET(#JSMSTS	#JSMMSG)

*	Close	service
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

ENDROUTINE

*	Build	JSM	commands
SUBROUTINE	NAME(KEYWRD)	PARMS((#KEYWORD	*RECEIVED)	(#KEYW_VAL1	*RECEIVED))
DEFINE	FIELD(#KEYWORD)	REFFLD(#STD_TEXT)
DEFINE	FIELD(#KEYW_VAL1)	REFFLD(#STD_TEXTL)

USE	BUILTIN(BCONCAT)	WITH_ARGS(#JSMCMD	#KEYWORD)	TO_GET(#JSMCMD)
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMCMD	'('	#KEYW_VAL1	')')	TO_GET(#JSMCMD)

ENDROUTINE

*	Check	the	JSM	return	status
SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

IF	COND('#JSMSTS	*NE	OK')
USE	BUILTIN(TCONCAT)	WITH_ARGS(#JSMSTS	'	:	'	#JSMMSG)	TO_GET(#STD_TEXTL)
MESSAGE	MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#STD_TEXTL)
ENDIF

ENDROUTINE
	

SQLService	Examples
To	help	clarify	the	use	of	the	SQLService,	particularly	the	different	options	in
the	SET	PARAMETER	(value),	the	EXECUTE	and	the	READ	commands,
three	examples	than	normal	have	been	supplied.
These	are:

Example	1	-	Use	of	the	SET	PARAMETER(*SQL)	command
Example	2	-	Use	of	the	SET	PARAMETER(*LIST)
Example	3	-	READ	command	receiving	the	result	set	from	query

Example	1	-	Use	of	the	SET	PARAMETER(*SQL)	command
This	example	demonstrates	how	to	use	the	SQLService	to	query	a	database.	It
will	use	the	SET	PARAMETER(*SQL)	command	to	create	an	SQL	statement	in
advance	instead	of	writing	it	into	the	EXECUTE	command.	A	note	is	included
to	show	how	you	could	achieve	the	same	query	without	using	the	SET
PARAMETER(*SQL)	and	simply	writing	the	SQL	statement	into	the
EXECUTE	command.
Note	that	this	example	connects	to	an	IBM	i	database	called	JSMJDBC	(since
this	is	an	IBM	i	example,	the	database	name	is	a	library	name).	The	driver	name
used	in	the	CONNECT	command	corresponds	to	the	driver	name	and	path
defined	in	the	SQLService	properties	file.	The	file	being	accessed	is	called
TBLNAME	and	it	consists	of	the	fields	ID,	NAME,	AGE,	SALARY,	DEPT,	and
GRADE.
The	steps	that	you	will	follow	are:
1.		Define	the	fields	to	handle	the	messages	to	be	returned	from	the
JSMCOMMANDs.

2.		Define	some	fields	that	will	hold	the	values	to	be	returned	from	the	query.
3.		Define	a	working	list	whose	columns	are	the	fields	created	in	step	2.	This
working	list	will	eventually	hold	the	result	set	from	the	query.

4.		Define	a	field	that	will	hold	the	SQL	statement.
5.		Define	a	working	list	that	will	hold	the	SQL	statement.	This	will	be	a	single
column	list	and	the	field	used	will	be	that	defined	in	Step	4.

6.		Start	JSM,	LOAD	the	SQLService,	then	CONNECT	to	the	database	driver.
7.		Prepare	the	SQL	statement,then	place	it	into	a	working	list.
8.		Use	the	SET	command	to	store	the	SQL	parameter.	You	will	note	that	the
keyword	PARAMETER(*SQL)	was	used	to	indicate	that	this	command	is	to
provide	a	working	list	that	will	hold	the	SQL	statement	for	the	EXECUTE
command	to	be	executed	later.	Also	note	that	there	is	a	SERVICE_LOAD
keyword	associated	with	this	command	to	specify	the	field	in	the	working	list
that	holds	the	SQL	statement.	The	field	name	specified	here	must	be	the	same
as	that	defined	in	the	working	list	in	the	TO_GET	portion	of	this	JSM
command.

9.		The	next	step	is	to	actually	EXECUTE	the	command.	You	will	note	in	this
example,	since	an	already	prepared	SQL	statement	is	being	used,	a	value	of

*SQLPARAMETER	is	specified	for	the	QUERY	keyword.	You	will	also
notice	that	a	service	list	is	used	as	a	part	of	this	command	-	this	is	used	to
receive	the	values	back	into.	The	columns	defined	in	the	service	list	here
must	match	the	columns	defined	in	the	working	list	for	the
JSM_COMMAND	Built	In	Function.

10.	After	displaying	the	results,	you	will	disconnect	the	service	and		then	close
JSM.
*	This	example	demonstrates	how	to	use	the	SQLService	to
*	query	a	database.	The	SET	PARAMETER(*SQL)
*	command	is	used	to	create	an	SQL	statement	
*	in	advance	instead	of	writing	it	into	the	EXECUTE	command.
*	A	note	is	included	to	show	how	you	could	achieve	the
*	same	query	simply	by	writing	the	SQL	statement
*	into	the	EXECUTE	command	without	using	the	SET	PARAMETER(*SQL).
*	
*	Note	1:	This	example	connects	to	a
*	IBM	i	database	called	JSMJDBC.	(Since	this	is	a
*	IBM	i	example,	the	database	name	is	a	library	name.)
*	The	driver	name	used	in	the	CONNECT	command	corresponds
*	to	the	driver	name	and	path	defined	in	the	SQLService
*	properties	file.	The	file	being	accessed	is	called
*	TBLNAME	and	it	consists	of	the	fields	ID,	NAME,	AGE,
*	SALARY,	DEPT,	and	GRADE.
	
FUNCTION	OPTIONS(*DIRECT)
	
*	1.	Define	the	fields	to	handle	the	messages	to	be
*	returned	from	the	JSMCOMMANDs
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)
	
*	2.	Define	some	fields	that	will	hold	the	values	to	be
*	returned	from	the	query
DEFINE	FIELD(#COL1)	TYPE(*CHAR)	LENGTH(010)
DEFINE	FIELD(#COL2)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#COL3)	TYPE(*DEC)	LENGTH(008)	DECIMALS(0)
DEFINE	FIELD(#COL4)	TYPE(*DEC)	LENGTH(012)	DECIMALS(2)

	
*	3.	Define	a	working	list	whose	columns	are	the	fields
*	created	in	step	2.	This	working	list	will	eventually
*	hold	the	result	set	from	the	query
DEF_LIST	NAME(#WRKLST)	FIELDS(#COL1	#COL2	#COL3	#COL4)	TYPE(*WORKING)
DEF_LIST	NAME(#BRWLST)	FIELDS(#COL1	#COL2	#COL3	#COL4)
	
*	4.	Define	a	field	that	will	hold	the	SQL	statement
DEFINE	FIELD(#COLCMD)	TYPE(*CHAR)	LENGTH(100)
	
*	5.	Define	a	working	list	that	will	hold	the	SQL
*	statement.	This	will	be	a	single	column	list	and	the
*	field	used	will	be	that	defined	in	Step	4
DEF_LIST	NAME(#WRKCMD)	FIELDS(#COLCMD)	TYPE(*WORKING)
	
*	6.	Start		OPEN	JSM,	LOAD	the	SQLService,	then
*	CONNECT	to	the	database	driver
USE	BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(SQLSERVICE)	TRACE(*NO)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
CHANGE	FIELD(#JSMCMD)	TO('CONNECT	DRIVER(DB2)	DATABASE(JSMJDBC)	USER(ALICK)	PASSWORD(MEL123)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	7.	Prepare	the	SQL	statement	then	place	it	in
*	a	working	list
CHANGE	FIELD(#COLCMD)	TO('SELECT	ID,NAME,AGE,SALARY	FROM	TBLNAME')
ADD_ENTRY	TO_LIST(#WRKCMD)
	
*	8.	Use	the	SET	command	to	store	the	SQL	parameter.
*	You	will	note	that	the	PARAMETER(*SQL)	keyword
*	is	used	to	indicate	that	this	command	provides
*	a	working	list	that	will	hold	the	SQL	statement
*	for	the	EXECUTE	command	to	be	executed	later
CHANGE	FIELD(#JSMCMD)	TO('SET	PARAMETER(*SQL)	SERVICE_LIST(COLCMD)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKCMD)

EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	9.	The	next	step	is	to	actually	EXECUTE	the	comand.
*	You	will	note	in	this	example,	since	an	already
*	prepared	SQL	statement	is	being	used,	a	value	of
*	*SQLPARAMETER	is	specified	for	the	QUERY	keyword.
*	You	will	also	notice	that	a	service	list	is	used	as	a
*	part	of	this	command	-	this	is	used	to	receive	the
*	values	back	into.	The	columns	defined	in	the	service
*	list	here	must	match	the	columns	defined	in	the	working
*	list	for	the	JSM_COMMAND	Built	In	Function.
CHANGE	FIELD(#JSMCMD)	TO('EXECUTE	QUERY(*SQLPARAMETER)	SERVICE_LIST(COL1,COL2,COL3,COL4)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKLST)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	NOTE:
*	Another	way	to	express	this	SQL	statement	could	have
*	been	to	place	it	directly	into	the	EXECUTE	command.
*	With	this	approach,	you	would	remove	the	SET	command
*	earlier	in	the	program	and	rewrite	the	EXECUTE	command
*	as	follows:
*	CHANGE	FIELD(#JSMCMD)	TO('EXECUTE	QUERY(SELECT	ID,NAME,
*	AGE,SALARY	FROM	TBLNAME)	SERVICE_LIST(COL1,COL2,COL3
*	,COL4)')
	
SELECTLIST	NAMED(#WRKLST)
ADD_ENTRY	TO_LIST(#BRWLST)
ENDSELECT
DISPLAY	BROWSELIST(#BRWLST)
	
*	10.	After	displaying	the	results,	you	will	disconnect	
*		the	service	and		then	close	JSM.
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(DISCONNECT)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	SUB	ROUTINES

	
SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))
	
IF	COND('#JSMSTS	*NE	OK')
	
DISPLAY	FIELDS(#JSMMSG)
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
	
MENU	MSGTXT('Java	service	error	has	occurred')
	
ENDIF
	
ENDROUTINE
	

Example	2	-	Use	of	the	SET	PARAMETER(*LIST)
The	purpose	of	this	example	is	to	demonstrate	how	to	use	the	SET
PARAMETER(*LIST)	command	to	prepare	values	to	be	inserted	into	a	table.
The	example	is	extended	to	show	the	syntax	required	for	an	INSERT	and	an
UPDATE.	The	program	is	rather	futile	in	that	it	inserts	a	record	then
immediately	updates	the	same	record,	but	the	real	purpose	of	this	is	to
demonstrate	how	the	commands	should	look.	This	example	also	demonstrates
how	the	SET	command	can	be	used	a	number	of	times	to	achieve	different
objectives.	In	this	case	there	are	four	SET	commands:	one	to	set	the
commitment	control	settings,	one	to	prepare	an	SQL	command	in	advance	using
the	SET	PARAMETER(*SQL)	command,	and	of	course	the	ones	used	to
prepare	the	list	of	values	to	be	inserted	and	updated.
Note	that	in	this	example	connection	is	to	an	IBM	i	database	called	JSMJDBC
(since	this	is	an	IBM	i	example,	the	database	name	is	a	library	name).	The
driver	name	used	in	the	CONNECT	command	corresponds	to	the	driver	name
and	path	defined	in	the	SQLService	properties	file.	The	file	being	accessed	is
called	TBLNAME	and	it	consists	of	the	fields	ID,	NAME,	AGE,	SALARY,
DEPT,	and	GRADE.
The	steps	are:
1.		Define	the	fields	to	handle	the	messages	to	be	returned	from	the
JSMCOMMANDs.

2.		Define	a	field	that	will	hold	the	SQL	statement.
3.		Define	a	working	list	that	will	hold	the	SQL	statement.	This	will	be	a	single
column	list	and	the	field	used	will	be	that	defined	in	Step	4.

4.		The	values	that	are	to	be	inserted	into	the	remote	table	will	first	be	placed
into	a	working	list.	The	working	list	will	have	one	column	for	each	field	that
needs	to	be	inserted	into	the	file.	So	first,	the	fields	for	these	columns	need	to
defined	-	they	must	match	the	type	and	length	of	the	fields	in	the	table.	Once
defined,	the	working	list	can	be	defined.	In	this	example	we	will	be	inserting
the	ID,	NAME,	AGE,	and	SALARY.

5.		Another	working	list	is	defined	to	hold	the	fields	for	the	update.	In	this	case,
the	SALARYs	are	to	be	updated,	so	this	working	list	will	contain	the
SALARY	in	one	column	and	the	ID	(the	key)	in	another.	The	order	in	which
these	columns	are	placed	is	important	and	is	explained	later.

6.		Start	JSM,	LOAD	the	SQLService,	then	CONNECT	to	the	database	driver.

7.		Issue	a	SET	command	to	configure	the	commitment	control	requirements.
8.		We	will	next	prepare	the	SQL	statement	then	place	it	into	a	working	list.
9.		The	SET	command	will	be	used	to	store	the	SQL	parameter.	You	will	note
that:

the	keyword	PARAMETER(*SQL)	will	be	used	to	indicate	that	this
command	is	being	used	to	provide	a	working	list	that	will	hold	the	SQL
statement	for	the	EXECUTE	command	to	be	executed	later.
there	is	a	SERVICE_LOAD	keyword	associated	with	this	command.	This
specifies	the	field	in	the	working	list	that	holds	the	SQL	statement.	The
field	name	specified	here	must	be	the	same	as	that	defined	in	the	working
list	in	the	TO_GET	portion	of	this	JSM	command.
the	values	keyword	of	the	INSERT	has	four	questions	marks	('?')	in	it.
These	'?'	represent	the	columns	in	the	WRKLSTINS	working	list,	and	they
are	matched	up	to	the	'?'	in	the	order	they	appear	in	the	working	list.	So	in
this	example,	ID	values	go	to	the	first	'?',	NAME	values	go	to	the	second
'?'	and	so	forth;

10.	Now	you	will	specify	some	new	records	to	be	entered	into	the	database.
Notice	that	each	new	record	appears	on	a	new	line	of	the	list.

11.	Once	the	values	are	prepared	in	the	list,	you	need	to	use	the	SET
PARAMETER(*LIST)	command	so	that	the	EXECUTE	command	is	able	to
make	use	of	this	information	later.	Notice	that	a	SERVICE_LIST	is	specified
as	part	of	this	command.	It	contains	the	names	of	the	columns	that	appear	in
the	WRKLSTINS	working	list.	Also	note	that	this	working	list	is	specified	in
the	TO_GET	portion	of	this	JSM	command.

12.	The	final	step	in	this	part	of	the	program	is	to	run	the	EXECUTE	command
that	will	insert	the	records	into	the	table.	Since	the	values	have	been	prepared
already,	in	this	command	you	use	the	keyword
PREPARED(*SQLPARAMETER).

					Note:	If	the	SQL	statement	had	not	been	prepared	earlier,	then	you	would
have	typed	it	in	place	of	the	*SQLPARAMETER	-	for	example,
PREPARED('INSERT	INTO	…….')

13.	As	was	done	for	preparing	the	INSERT	data,	the	updated	data	is	loaded	into
the	WRKLSTUPD	working	list	and	then	prepared	using	the	SET
PARAMETER(*LIST)	command.

14.	The	EXECUTE	command	here	demonstrates	the	importance	of	the	column

order	when	using	the	PREPARED	approach.	You	will	notice	in	the	UPDATE
that	the	first	'?'	is	for	the	name,	and	the	second	'?'	is	for	the	ID.	Therefore	the
columns	must	appear	in	the	WRKLSTUPD	working	list	in	the	same	order	as
they	are	to	be	placed	in	the	SQL	statement.

15.	COMMIT	the	results
16.	Finally	disconnect	the	service	then	close	JSM.
*	The	purpose	of	this	example	is	to	demonstrate	how	to
*	use	the	SET	PARAMETER(*LIST)	command	to	prepare	values
*	to	be	inserted	into	a	table.	The	example	is	extended	to
*	show	the	syntax	required	for	an	INSERT	and	an	UPDATE.
*	This	program	is	rather	futile	in	that	it	inserts	a
*	record	then	immediately	updates	the	same	record,	but
*	the	real	purpose	of	this	is	to	demonstrate	how	the
*	commands	should	look.	This	example	also	demonstrates
*	how	the	SET	command	can	be	used	a	number	of	times	to
*	achieve	different	objectives.	In	this	case	there	are	4
*	SET	commands	-	one	to	set	the	commitment	control
*	settings,	one	to	prepare	an	SQL	command	in	advance
*	using	the	SET	PARAMETER(*SQL)	command,	and	of	course
*	the	ones	used	to	prepare	the	list	of	values	to	be
*	inserted	and	updated.
	
*	Note	that	in	this	example	connection	is	to	a
*	IBM	i	database	called	JSMJDBC	(since	this	is	a
*	IBM	i	example,	the	database	name	is	a	library	name).
*	The	driver	name	used	in	the	CONNECT	command	corresponds
*	to	the	driver	name	and	path	defined	in	the	SQLService
*	properties	file.	The	file	being	accessed	is	called
*	TBLNAME	and	it	consists	of	the	fields	ID,	NAME,	AGE,
*	SALARY,	DEPT,	and	GRADE.
	
*	The	steps	to	be	followed	are	embedded	in	the	code.
	
FUNCTION	OPTIONS(*DIRECT)
	
*	1.	Define	the	fields	to	handle	the	messages	to	be
*	returned	from	the	JSMCOMMANDs
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)

DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)
	
*	2.	Define	a	field	that	will	hold	the	SQL	statement
DEFINE	FIELD(#COLCMD)	TYPE(*CHAR)	LENGTH(100)
	
*	3.	Define	a	working	list	that	will	hold	the	SQL
*	statement.	This	will	be	a	single	column	list	and	the
*	field	used	will	be	that	defined	in	Step	2
DEF_LIST	NAME(#WRKCMD)	FIELDS(#COLCMD)	TYPE(*WORKING)
	
*	4.	The	values	that	are	to	be	inserted	into	the	remote
*	table	will	first	be	placed	into	a	working	list.	The
*	working	list	will	have	one	column	for	each	field	we
*	need	to	insert	into	the	file.	So	first,	the	fields	need
*	to	be	defined	for	these	columns-	they	must	match	the
*	type	and	length	of	the	fields	in	the	table.	Once
*	defined,	the	working	list	can	be	defined.	In	this
*	example	the	ID,	NAME,	AGE,	and	SALARY	will	be	inserted.
DEFINE	FIELD(#COL1)	TYPE(*CHAR)	LENGTH(010)
DEFINE	FIELD(#COL2)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#COL3)	TYPE(*DEC)	LENGTH(008)	DECIMALS(0)
DEFINE	FIELD(#COL4)	TYPE(*DEC)	LENGTH(012)	DECIMALS(2)
DEF_LIST	NAME(#WRKLSTINS)	FIELDS(#COL1	#COL2	#COL3	#COL4)	TYPE(*WORKING)
	
*	5.	Another	working	list	is	defined	to	hold	the	fields
*	for	the	update.	In	this	case	we	want	to	update	the
*	SALARYs,	so	this	working	list	will	contain	the	SALARY
*	in	one	column	and	the	ID	(the	key)	in	another.	The
*	order	in	which	these	columns	are	placed	is	important
*	and	is	explained	later
DEF_LIST	NAME(#WRKLSTUPD)	FIELDS(#COL3	#COL1)	TYPE(*WORKING)
	
*	6.	Start	JSM,	LOAD	the	SQLService,	then	CONNECT	to	the
*	database	driver
	
*	'Open	service'
USE	BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

	
*	'Load	service'
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(SQLSERVICE)	TRACE(*NO)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
CHANGE	FIELD(#JSMCMD)	TO('CONNECT	DRIVER(DB2)	DATABASE(JSMJDBC)	USER(ALICK)	PASSWORD(MEL123)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	7.	Issue	a	SET	command	to	configure	the	commitment
*	control	requirements
CHANGE	FIELD(#JSMCMD)	TO('SET	ISOLATION(*READCOMMITTED)	AUTOCOMMIT(*NO)	ONERROR(*ROLLBACK)	ONWARNING(*CONTINUE)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	8.You	will	next	prepare	the	SQL	statement	then	place	it
*	into	a	working	list
CHANGE	FIELD(#COLCMD)	TO('INSERT	INTO	TBLNAME(ID,NAME,AGE,SALARY)	VALUES(?,?,?,?)')
ADD_ENTRY	TO_LIST(#WRKCMD)
	
*	9.	The	SET	command	will	be	used	to	store	the	SQL
*	parameter.	You	will	note	that:
*	the	keyword	PARAMETER(*SQL)	will	be	used	to	indicate
*	that	this	command	is	to	provide	a	working	list	that
*	will	hold	the	SQL	statement	for	the	EXECUTE	command
*	to	execute	later.
*	-	there	is	a	SERVICE_LOAD	keyword	associated	with	
*	this	command.	This	specifies	the	field	in	the	working
*	list	that	holds	the	SQL	statement.	The	*	field	name
*	specified	here	must	be	the	same	as	that	defined	in
*	the	working	list	in	the	TO_GET	portion	of	this
*	JSM	command.
*	-	the	values	keyword	of	the	INSERT	has	four	questions
*	marks	('?')	in	it.	These	'?'	represent	the	columns	in	the
*	WRKLSTINS	working	list,	and	they	are	matched	up	to	the
*	'?'	in	the	order	they	appear	in	the	working	list.	So	in
*	this	example,	ID	values	go	to	the	first	'?',	NAME
*	values	go	to	the	second	'?'	and	so	forth
CHANGE	FIELD(#JSMCMD)	TO('SET	PARAMETER(*SQL)	SERVICE_LIST(COLCMD)')

USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKCMD)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	10.	Now	specify	some	new	records	to	be	entered	into
*	the	database.	Notice	that	each	new	record	appears
*	on	a	new	line	of	the	list.
CHANGE	FIELD(#COL1)	TO(S2221)
CHANGE	FIELD(#COL2)	TO(TOM)
CHANGE	FIELD(#COL3)	TO(45)
CHANGE	FIELD(#COL4)	TO(35000.60)
ADD_ENTRY	TO_LIST(#WRKLSTINS)
	
CHANGE	FIELD(#COL1)	TO(S2222)
CHANGE	FIELD(#COL2)	TO(SQUIRE)
CHANGE	FIELD(#COL3)	TO(22)
CHANGE	FIELD(#COL4)	TO(27000.60)
ADD_ENTRY	TO_LIST(#WRKLSTINS)
	
*	11.	Once	the	values	are	prepared	in	the	list,	you	need
*	to	use	the	SET	PARAMETER(*LIST)	command	so	that	the
*	EXECUTE	command	is	able	to	make	use	of	this	information
*	later.	Notice	that	a	SERVICE_LIST	is	specified	as	a
*	part	of	this	command.	It	contains	the	names	of	the
*	columns	that	appear	in	the	WRKLSTINS	working	list.	Also
*	note	that	this	working	list	is	specified	in	the	TO_GET
*	portion	of	this	JSM	command
CHANGE	FIELD(#JSMCMD)	TO('SET	PARAMETER(*LIST)	SERVICE_LIST(COL1,COL2,COL3,COL4)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKLSTINS)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	12.	The	final	step	in	this	part	of	the	program	is	to
*	run	the	EXECUTE	command	which	will	insert	the	records
*	into	the	table.	Since	the	values	have	been	prepared
*	already,	in	this	command,	the	keyword
*	PREPARED(*SQLPARAMETER)	is	used.
*	Note:	If	the	SQL	statement	had	not	been	prepared	earlier
*	then	you	would	have	typed	it	in	place	of	the
*	*SQLPARAMETER	-	for	example,
*	PREPARED('INSERT	INTO')

	
CHANGE	FIELD(#JSMCMD)	TO('EXECUTE	PREPARED(*SQLPARAMETER)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	After	the	EXECUTE	the	insert	is	COMMITed
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(COMMIT)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	
13.	The	next	section	of	code	demonstrates	how	an	update
*	might	work.	As	was	done	for	preparing	the	INSERT	data,
*	the	updated	data	is	loaded	into	the	WRKLSTUPD	working
*	list	and	the	prepared	using	the	SET	PARAMETER(*LIST)
*	command.
CHANGE	FIELD(#COL3)	TO(123456.99)
CHANGE	FIELD(#COL1)	TO(S2221)
ADD_ENTRY	TO_LIST(#WRKLSTUPD)
	
CHANGE	FIELD(#COL3)	TO(654321.11)
CHANGE	FIELD(#COL1)	TO(S2222)
ADD_ENTRY	TO_LIST(#WRKLSTUPD)
	
CHANGE	FIELD(#JSMCMD)	TO('SET	PARAMETER(*LIST)	SERVICE_LIST(COL3,COL1)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#WRKLSTUPD)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	14.	The	EXECUTE	command	here	demonstrates	the
*	importance	of	the	column	order	when	using	the	PREPARED
*	approach.	You	will	notice	in	the	UPDATE	that		the
*	first	'?'	is	for	the	name,	and	the	second	'?'	is	for
*	the	ID.	Therefore	the	columns	must	appear	in	the
*	WRKLSTUPD	working	list	in	the	same	order	as	they	are	to
*	be	placed	in	the	SQL	statement.
CHANGE	FIELD(#JSMCMD)	TO('EXECUTE	PREPARED(UPDATE	TBLNAME	SET	SALARY=?	WHERE	ID=?)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	15.	COMMIT	the	results

USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(COMMIT)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	16.	Finally	disconnect	the	service	then	close	JSM.
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(DISCONNECT)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	'Close	service'
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	SUB	ROUTINES
	
SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))
	
IF	COND('#JSMSTS	*NE	OK')
	
DISPLAY	FIELDS(#JSMMSG)
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
	
MENU	MSGTXT('Java	service	error	has	occurred')
	
ENDIF
	
ENDROUTINE
	

Example	3	-	READ	command	receiving	the	result	set	from	query
In	this	SQLService	example,	you	will	see	how	to	use	the	READ	command	to
receive	the	result	set	from	the	query.	In	using	the	READ	command	you	must	use
the	SET	PARAMETER(*MAP)	command	to	set	up	the	field	column	mappings.
Note	that	in	this	example	connection	is	to	an	IBM	i	database	called	JSMJDBC
(since	this	is	an	IBM	i	example,	the	database	name	is	a	library	name).
The	driver	name	used	in	the	CONNECT	command	corresponds	to	the	driver
name	and	path	defined	in	the	SQLService	properties	file.	The	file	being
accessed	is	called	TBLNAME	and	it	consists	of	the	fields	ID,	NAME,	AGE,
SALARY,	DEPT,	and	GRADE.
The	steps	that	this	example	follows	are:
1.		Define	the	fields	to	handle	the	messages	to	be	returned	from	the
JSMCOMMANDs;

2.		Define	the	fields	that	will	be	used	to	map	the	table	fields	to	the	columns	in
the	results	list.	The	fields	defined	here	should	match	the	length	and	type	of
the	fields	defined	in	the	table	being	queried.

3.		Define	the	two	fields	required	for	the	list	that	is	used	to	hold	the	field	column
mappings.

4.		Define	the	list	that	will	hold	the	column	mappings.	This	should	be	a	two-
column	list	-	the	first	column	in	this	list	will	hold	the	column	number	and	the
second	field	will	hold	the	column	name.

5.		Define	two	working	lists	using	the	fields	defined	in	step	2.	These	lists	will	be
populated	by	the	READ	command	from	the	result	list	that	the	query
generates.	In	this	example,	two	columns	are	used	to	demonstrate	how	you	can
keep	going	back	to	the	result	list	to	access	different	columns	as	and	when
required.	Two	browselists	are	defined	with	the	same	shape	as	these	working
lists,	and	these	will	be	used	to	display	the	results	on	a	screen.	See	point	9	for
details	on	the	significance	of	the	ENTRYS	value	for	the	working	lists.

6.		Next	start	JSM,	LOAD	the	SQLService,	then	CONNECT	to	the	database
driver.

7.		Define	the	column	field	mappings.	This	is	done	by	setting	#FIELD	to	the
appropriate	column	and	the	#COLUMN	to	the	appropriate	field	name	(from
the	table).	Each	mapping	will	be	added	as	a	new	entry	to	the	#MAPLST
working	list,	and	then	a	SET	PARAMETER(*MAP)	command	will	be	issued.

Notice	that	a	SERVICE_LIST	is	passed	as	a	part	of	this	command	-	the	fields
defined	here	are	those	used	in	the	mapping	list.	The	mapping	list	must	also	be
specified	in	the	TO_GET	portion	of	the	JSM	command.

8.		EXECUTE	the	command.	In	this	example,	a	prepared	statement	is	not	used,
but	is	typed	directly	into	the	EXECUTE	command.	Notice	how	a	working	list
is	not	supplied	with	this	JSM	command.	For	an	EXECUTE	QUERY	the
working	list	would	normally	be	provided	to	hold	the	result	list,	but	in	this
case	the	READ	command	has	been	chosen	instead	to	access	the	result	list.

9.		The	next	step	is	to	issue	the	READ	command	to	access	the	data	in	the	result
set.	You	will	notice	that	this	is	done	twice	in	this	example,	each	time
accessing	different	columns.	The	capability	demonstrated	with	this	example
will	be	particularly	useful	in	situations	where	your	result	list	is	larger	than
what	a	working	list	can	hold,	so	by	reducing	the	number	of	columns	in	the
READ	you	can	access	the	data	in	more	manageable	chunks.	You	will	note
that	the	first	READ	has	a	keyword	SCROLL(*NO).	This	allows	the	second
READ	to	select	the	columns	from	the	same	records	selected	by	the	first
READ.	The	second	READ	has	a	keyword	SCROLL(*YES),	which	means
that	when	the	next	DOWHILE	look	begins,	the	first	READ	will	begin	with
the	next	set	of	records.	The	number	of	records	read	with	each	READ	depends
on	the	size	of	the	working	lists,	which	in	this	example	has	been	set	to	100	-
NB	ENTRYS(100).	Notice	that	the	READ	commands	include	a
SERVICE_LIST	-	the	fields	specified	with	this	keyword	must	be	the	same	as
the	fields	defined	in	the	working	list	specified	in	the	TO_GET	section	of	the
JSM	command.

10.	After	displaying	the	results,	disconnect	the	service	then	close	JSM.
*	In	this	SQLService	example,	you	will	see	how	to
*	use	the	READ	command	to	receive	the	result	set	from	the
*	query.	In	using	the	READ	command	you	must	use	the	SET
*	PARAMETER(*MAP)	command	to	set	up	the	field	column
*	mappings.
	
*	Note	that	in	this	example,	connection	is	to	a
*	IBM	i	database	called	JSMJDBC	(since	this	is	a
*	IBM	i	example,	the	database	name	is	a	library	name).
*	The	driver	name	used	in	the	CONNECT	command	corresponds
*	to	the	driver	name	and	path	defined	in	the	SQLService
*	properties	file.	The	file	being	accessed	is	called

*	TBLNAME	and	it	consists	of	the	fields	ID,	NAME,	AGE,
*	SALARY,	DEPT,	and	GRADE.
	
*	The	steps	to	follow	are	embedded	in	the	code:
	
FUNCTION	OPTIONS(*DIRECT)
	
*	1.	Define	the	fields	to	handle	the	messages	to	be
*	returned	from	the	JSMCOMMANDs
DEFINE	FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)
DEFINE	FIELD(#JSMCMD)	TYPE(*CHAR)	LENGTH(255)
	
*	2.	Define	the	fields	that	will	be	used	to	map	the	table
*	fields	to	the	columns	in	the	results	list.	The	fields
*	defined	here	should	match	the	length	and	type	of	the
*	fields	defined	in	the	table	being	queried
DEFINE	FIELD(#COL1)	TYPE(*CHAR)	LENGTH(010)
DEFINE	FIELD(#COL2)	TYPE(*CHAR)	LENGTH(020)
DEFINE	FIELD(#COL3)	TYPE(*DEC)	LENGTH(008)	DECIMALS(0)
DEFINE	FIELD(#COL4)	TYPE(*DEC)	LENGTH(012)	DECIMALS(2)
	
*	3.	Define	the	2	fields	required	for	the	list	that	is
*	used	to	hold	the	field	column	mappings.
DEFINE	FIELD(#FIELD)	TYPE(*CHAR)	LENGTH(010)
DEFINE	FIELD(#COLUMN)	TYPE(*CHAR)	LENGTH(030)
	
*	4.	Define	the	list	that	will	hold	the	column	mappings.
*	This	should	be	a	two	column	list	-	the	first	column	in
*	this	list	will	hold	the	column	name	and	the	second
*	field	will	hold	the	column	name
DEF_LIST	NAME(#MAPLST)	FIELDS(#FIELD	#COLUMN)	TYPE(*WORKING)
	
*	5.	Define	2	working	lists	using	the	fields	defined	in
*	the	step	2.	These	lists	will	be	populated	by	the	READ
*	command	from	the	result	list	that	the	query	generates.
*	In	this	example,	2	columns	are	used	to	demonstrate	how
*	you	can	keep	going	back	to	the	result	list	to	access	
*	different	columns	as	and	when	required.	2	browselists

*	with	the	same	shape	as	these	working	lists	are	defined,
*	and	these	will	be	used	to	display	the	results	on	a
*	screen.	See	point	9	for	details	on	the	significance	of
*	the	ENTRYS	value	for	the	working	lists.
	
DEF_LIST	NAME(#WRKLST1)	FIELDS(#COL1	#COL3)	TYPE(*WORKING)	ENTRYS(100)
DEF_LIST	NAME(#WRKLST2)	FIELDS(#COL1	#COL2	#COL4)	TYPE(*WORKING)	ENTRYS(100)
DEF_LIST	NAME(#BRWLST1)	FIELDS(#COL1	#COL3)	ENTRYS(100)
DEF_LIST	NAME(#BRWLST2)	FIELDS(#COL1	#COL2	#COL4)	ENTRYS(100)
	
*	6.	Next	start	JSM,	LOAD	the	SQLService,	then	CONNECT	to
*	the	database	driver
USE	BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(SQLSERVICE)	TRACE(*NO)')	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

CHANGE	FIELD(#JSMCMD)	TO('CONNECT	DRIVER(DB2)	DATABASE(JSMJDBC)	USER(ALICK)	PASSWORD(MEL123)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)

*	7.	Define	the	column	field	mappings.	This	is	done	by
*	setting	#FIELD	to	the	appropriate	column	and	the
*	#COLUMN	to	the	appropriate	field	name	(from	the	table).
*	Each	mapping	will	be	added	as	a	new	entry	to	the
*	#MAPLST	working	list,	and	then	a	SET	PARAMETER(*MAP)
*	command	will	be	issued.	Notice	that	a	SERVICE_LIST	is
*	passed	as	a	part	of	this	command	-	the	fields	defined
*	here	are	those	used	in	the	mapping	list.	The	mapping
*	list	must	also	be	specified	in	the	TO_GET	portion	of
*	the	JSM	command.
	
CHANGE	FIELD(#FIELD)	TO(COL1)
CHANGE	FIELD(#COLUMN)	TO(ID)
ADD_ENTRY	TO_LIST(#MAPLST)
CHANGE	FIELD(#FIELD)	TO(COL2)
CHANGE	FIELD(#COLUMN)	TO(NAME)
ADD_ENTRY	TO_LIST(#MAPLST)

CHANGE	FIELD(#FIELD)	TO(COL3)
CHANGE	FIELD(#COLUMN)	TO(AGE)
ADD_ENTRY	TO_LIST(#MAPLST)
CHANGE	FIELD(#FIELD)	TO(COL4)
CHANGE	FIELD(#COLUMN)	TO(SALARY)
ADD_ENTRY	TO_LIST(#MAPLST)
	
CHANGE	FIELD(#JSMCMD)	TO('SET	PARAMETER(*MAP)	SERVICE_LIST(FIELD,COLUMN)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG	#MAPLST)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	8.	EXECUTE	the	command.	In	this	example,	a	prepared
*	statement	is	not	used,	but	is	typed	directly	into	the
*	EXECUTE	command.	Notice	how	a	working	list	is	not	supplied
*	with	this	JSM	command.	For	an	EXECUTE	QUERY	the	working
*	list	would	normally	be	provided	to	hold	the	result	list,
*	but	in	this	case,	the	READ	command	has	been	chosen
*	to	access	the	result	list	instead.
	
CHANGE	FIELD(#JSMCMD)	TO('EXECUTE	QUERY(SELECT	ID,NAME,AGE,SALARY	FROM	TBLNAME)')
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	9.	The	next	step	is	to	issue	the	READ	command	to	access
*	the	data	in	the	result	set.	You	will	notice	that	this	is
*	done	twice	in	this	example,	each	time	accessing
*	different	columns.	The	capability	demonstrated	with
*	this	example	will	be	particularly	useful	in	situations
*	where	your	result	list	is	larger	than	what	a	working
*	list	can	hold,	so	by	reducing	the	number	of	columns	in
*	the	READ	you	can	access	the	data	in	more	manageable
*	chunks.
*	You	will	note	that	the	first	READ	has	a	keyword
*	SCROLL(*NO).	This	allows	the	second	READ	to	select	the
*	columns	from	the	same	records	selected	by	the	first
*	READ.	The	second	READ	has	a	keyword	SCROLL(*YES),	which
*	means	that	when	we	begin	the	next	DOWHILE	look,	the
*	first	READ	will	begin	with	the	next	set	of	records.	The
*	number	of	records	read	with	each	READ	depends	on	the

*	size	of	the	working	lists,	which	in	this	example	have
*	been	set	to	100	-	NB	ENTRYS(100).
*	Notice	that	the	READ	commands	include	a
*	SERVICE_LIST	-	the	fields	specified	with	this	keyword
*	must	be	the	same	as	the	fields	defined	in	the	working
*	list	specified	in	the	TO_GET	section	of	the	JSM
*	command.
	
DOWHILE	COND('#JSMSTS	*EQ	OK')
	
CLR_LIST	NAMED(#WRKLST1)
CLR_LIST	NAMED(#WRKLST2)
CLR_LIST	NAMED(#BRWLST1)
CLR_LIST	NAMED(#BRWLST2)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('READ	SERVICE_LIST(COL1,COL3)	SCROLL(*NO)')	TO_GET(#JSMSTS	#JSMMSG	#WRKLST1)
	
IF	COND('#JSMSTS	*EQ	NOROW')
LEAVE
ENDIF
	
SELECTLIST	NAMED(#WRKLST1)
ADD_ENTRY	TO_LIST(#BRWLST1)
ENDSELECT
DISPLAY	BROWSELIST(#BRWLST1)
	
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS('READ	SERVICE_LIST(COL1,COL2,COL4)')	TO_GET(#JSMSTS	#JSMMSG	#WRKLST2)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
SELECTLIST	NAMED(#WRKLST2)
ADD_ENTRY	TO_LIST(#BRWLST2)
ENDSELECT
DISPLAY	BROWSELIST(#BRWLST2)
	
ENDWHILE
	
*	10.	After	displaying	the	results	disconnect	the
*	service	then	close	JSM.
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(DISCONNECT)	TO_GET(#JSMSTS	#JSMMSG)

EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
EXECUTE	SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)
	
*	SUB	ROUTINES
SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))
	
IF	COND('#JSMSTS	*NE	OK')
	
DISPLAY	FIELDS(#JSMMSG)
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
	
MENU	MSGTXT('Java	service	error	has	occurred')
	
ENDIF
	
ENDROUTINE
	

JSMDirect	Example
Loads	Open/Close	Example	Service.	The	SERVICE_LOAD	command	will	be
modified,	as	this	function	is	invoked	via	JSMDirect	and	will	pass	all	POST	data.
The	JSM_CLOSE	will	cause	the	last	JSMRESPONSE	byteArray	to	be	sent
back	to	JSMDirect	to	write	to	STDOUT.
**********	Beginning	of	RDML	commands	**********		
FUNCTION			OPTIONS(*DIRECT)

DEFINE					FIELD(#JSMSTS)	TYPE(*CHAR)	LENGTH(20)											
DEFINE					FIELD(#JSMMSG)	TYPE(*CHAR)	LENGTH(255)										

**********	'Open	service'																																		

USE								BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)							
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)			

**********	'JSMDirect	will	modify	the	SERVICE_LOAD	command	
**********	and	pass	the	POST	data	on	with	the	command						

USE								BUILTIN(JSM_COMMAND)	WITH_ARGS('SERVICE_LOAD	SERVICE(EX	
											AMPLE1)')	TO_GET(#JSMSTS	#JSMMSG)																							
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)											

**********	'Closing	the	JSM,	will	cause	last	JSMRESPONSE	byteArray	
**********	to	be	sent	back	to	JSMDirect	cgi-bin	program'											

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)														
EXECUTE				SUBROUTINE(CHECK)	WITH_PARMS(#JSMSTS	#JSMMSG)											

**********	SUB	ROUTINES																																												

SUBROUTINE	NAME(CHECK)	PARMS((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVE		
											D))																																																						

IF									COND('#JSMSTS	*NE	OK')																																			

**********	'Closing	the	JSM,	will	cause	any	JSMRESPONSE	byteArray			
**********	to	be	sent	back	to	JSMDirect	cgi-bin	program'												

USE								BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)															

RETURN																																																														

ENDIF

ENDROUTINE																																																																
	

RDMLX	Examples
FTPService	Example
SMTPMailService
POP3MailService	Example
SMSService	Example
XMLBindFileService	Example
OpenLDAPService	Example
ZipService	Example
PDFSpoolFileService	Example
SVFileService	Example
ExcelReadService	Example
SQLService	Example
aXesTerminalService	Example

FTPService	Example
This	form	connects	to	a	nominated	remote	FTP	server.		Once	the	FTP
connection	is	established,	files	can	be	retrieved	from	the	remote	server	using	the
GET	command	or	files	can	be	copied	from	the	local	server	onto	the	remote
server	using	the	PUT	command.		The	current	directory	on	the	remote	server	can
be	changed	as	required.

Modify	the	default	values	to	be	displayed	to	suit	your	site.

	
*	Uses	Integrator	Services:	FTPService
	
*	1.	Allows	connection	to	a	remote	FTP	server
*	2.	Change	the	current	directory	on	the	remote	server
*	3.	GET	a	file	from	or	PUT	a	file	onto	the	remote	server
	
*	The	following	fields	must	be	defined	in	your	data	dictionary	to	support	this
function:
*	filname									alpha					10
*	filnbr										alpha						6
*	jobname									alpha					10
*	jobuser									alpha					10
*	jobnbr										alpha						6
*	status										alpha					10
*	jsmserver							alpha					20
*	jsmpsswrd							alpha					10
*	jsmuserid							alpha					10
*	jsmsts										alpha					20
*	jsmmsg										alpha				255
*	jsmpath									alpha				150
*	jsmfrom									alpha				150
*	jsmto											alpha				150
*	jsmhdle									char					500
*	jsmcmd										alpha						4
	
*	Beginning	of	RDML	commands	**********
	
function	options(*DIRECT)

begin_com	role(*EXTENDS	#PRIM_FORM)	clientheight(260)
clientwidth(615)	framestyle(Dialog)	height(294)	left(459)	top(150)
width(623)
	
define_com	class(#PRIM_GPBX)	name(#GPBX_1)	caption('Connect	to	FTP
server')	displayposition(1)	height(45)	left(5)	parent(#COM_OWNER)
tabposition(1)	tabstop(False)	top(5)	width(600)
define_com	class(#PRIM_GPBX)	name(#GPBX_2)	caption('FTP	details	')
displayposition(2)	height(117)	left(5)	parent(#COM_OWNER)	tabposition(2)
tabstop(False)	top(60)	width(600)
	
define_com	class(#jsmserver.Visual)	name(#jsmserver)	displayposition(1)
left(8)	marginleft(50)	parent(#GPBX_1)	tabposition(1)	top(16)	width(209)
define_com	class(#jsmuserid.Visual)	name(#jsmuserid)	displayposition(2)
left(224)	marginleft(50)	parent(#GPBX_1)	tabposition(2)	top(16)	width(150)
define_com	class(#jsmpsswrd.Visual)	name(#jsmpsswrd)	displayposition(3)
left(400)	marginleft(50)	parent(#GPBX_1)	tabposition(3)	top(16)	width(150)
define_com	class(#jsmpath.Visual)	name(#jsmpath)	caption('Current
Directory')	displayposition(1)	height(19)	labeltype(Caption)	left(9)
marginleft(100)	parent(#GPBX_2)	tabposition(1)	top(18)	usepicklist(False)
width(555)
define_com	class(#jsmfrom.Visual)	name(#jsmfrom)	displayposition(2)
left(9)	marginleft(100)	parent(#GPBX_2)	tabposition(2)	top(47)
define_com	class(#jsmto.Visual)	name(#jsmto)	displayposition(3)	left(9)
marginleft(100)	parent(#GPBX_2)	tabposition(3)	top(76)
	
define_com	class(#PRIM_PHBN)	name(#Connect)	caption('Connect')
displayposition(1)	left(5)	parent(#PANL_1)	tabposition(1)	top(5)	width(100)
define_com	class(#PRIM_PHBN)	name(#Get)	caption('Get	File')
displayposition(4)	enabled(False)	left(335)	parent(#PANL_1)	tabposition(4)
top(5)	width(100)
define_com	class(#PRIM_PHBN)	name(#Put)	caption('Put	File')
displayposition(3)	enabled(False)	left(225)	parent(#PANL_1)	tabposition(3)
top(5)	width(100)
define_com	class(#PRIM_PHBN)	name(#Disconnect)	caption('Disconnect')
displayposition(5)	enabled(False)	left(445)	parent(#PANL_1)	tabposition(5)
top(5)	width(100)
define_com	class(#PRIM_PHBN)	name(#SetDirectory)	caption('Change
Directory')	displayposition(2)	enabled(False)	left(115)	parent(#PANL_1)

tabposition(2)	top(5)	width(100)
define_com	class(#PRIM_STBR)	name(#STBR_1)	displayposition(4)
height(24)	left(0)	messageposition(1)	parent(#COM_OWNER)	tabposition(4)
tabstop(False)	top(236)	width(615)
define_com	class(#PRIM_PANL)	name(#PANL_1)	displayposition(3)
height(32)	left(5)	parent(#COM_OWNER)	tabposition(3)	tabstop(False)
top(187)	width(600)
	
evtroutine	handling(#com_owner.Initialize)
set	com(#com_owner)	caption(*component_desc)
	
#jsmhdle	:=	*default
	
*	default	values
*	#jsmserver	:=	'<server>'
*	#jsmuserid	:=	'<user	id>'
*	#jsmpsswrd	:=	'<password>'
	
#jsmserver	:=	LANSA01
#jsmuserid	:=	KATE
#jsmpsswrd	:=	LANSA
	
endroutine
	
mthroutine	name(Connect)
	
if	(#jsmhdle.IsNull)
	
*	connect	the	JSMX	client	to	the	Java	Service	Manager	and	start	a	thread	for
the	service
	
*	Start	local	JSM	server
use	builtin(jsmx_open)	to_get(#jsmsts	#jsmmsg	#jsmhdle)
#com_owner.check(#jsmsts	#jsmmsg)
	
*	Load	the	service
#jsmcmd	:=	'Service_Load	Service(FTPService)'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts
#jsmmsg)

#com_owner.check(#jsmsts	#jsmmsg)
	
*	Connect	to	remote	FTP	server
#jsmcmd	:=	'Connect	Host('	+	#jsmserver	+	')'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts
#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)
	
*	Login
#jsmcmd	:=	'Login	User('	+	#jsmuserid	+	')	password('	+	#jsmpsswrd	+	')'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts
#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)
	
*	get	the	current	directory
use	builtin(jsmx_command)	with_args(#jsmhdle	GetDir)	to_get(#jsmsts
#jsmmsg)
#jsmpath	:=	#jsmmsg
	
endif
	
endroutine
	
mthroutine	name(DisConnect)
	
*	Quit
use	builtin(jsmx_command)	with_args(#jsmhdle	'Quit')	to_get(#jsmsts
#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)
	
*	Unload	service
use	builtin(jsmx_command)	with_args(#jsmhdle	'Service_Unload')
to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)
	
*	Close	the	thread
use	builtin(jsmx_close)	with_args(#jsmhdle)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)
	

#jsmhdle	:=	*null
	
endroutine
	
mthroutine	name(GetFile)
	
*	Binary	mode
use	builtin(jsmx_command)	with_args(#jsmhdle	'Binary')	to_get(#jsmsts
#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)
	
*	Get	file	from	remote	server
#jsmcmd	:=	'get	from('	+	#jsmfrom	+	')	to('	+	#jsmto	+	')'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts
#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)
	
endroutine
	
mthroutine	name(PutFile)
	
*	Binary	mode
use	builtin(jsmx_command)	with_args(#jsmhdle	'Binary')	to_get(#jsmsts
#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)
	
	
*	Put	file	onto	remote	server
#jsmcmd	:=	'put	from('	+	#jsmfrom	+	')	to('	+	#jsmto	+	')'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts
#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)
	
endroutine
	
evtroutine	handling(#Connect.Click)
	
#com_owner.Connect
	

if	(#jsmsts	=	OK)
	
#Connect.enabled	:=	false
#SetDirectory.enabled	:=	true
#Put.enabled	:=	true
#Get.enabled	:=	true
#Disconnect.enabled	:=	true
	
endif
	
endroutine
	
evtroutine	handling(#SetDirectory.Click)
	
*	Change	the	current	directory
#jsmcmd	:=	'chgdir	path('	+	#jsmpath	+	')'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts
#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)
	
endroutine
	
evtroutine	handling(#Get.Click)
	
#com_owner.GetFile
	
endroutine
	
evtroutine	handling(#Put.Click)
	
#com_owner.PutFile
	
endroutine
	
evtroutine	handling(#Disconnect.Click)
	
#com_owner.DisConnect
	
if	(#jsmsts	=	OK)

	
#Connect.enabled	:=	true
#SetDirectory.enabled	:=	false
#Put.enabled	:=	false
#Get.enabled	:=	false
#Disconnect.enabled	:=	false
	
endif
	
endroutine
	
*	check	the	JSM	return	status
	
mthroutine	name(check)
define_map	for(*input)	class(#jsmsts)	name(#i_status)
define_map	for(*input)	class(#prim_alph)	name(#i_message)
	
message	msgtxt(#i_status	+	'	:	'	+	#i_message)
	
endroutine
	
end_com
	

SMTPMailService
This	is	a	simple	function	to	compose	and	send	an	email.		This	function	does	not	support	adding	attachments	to	the	email.
	
Uses	Integrator	Services:	SMTPMAILSERVICE
	
*	This	forms	allows	you	to	format	and	send	a	simple	email	using	the	SMTP
protocol.
*	The	following	fields	must	be	defined	in	your	data	dictionary	to	support	this
function:
*	jsmemail						char						250
*	jsmsts										alpha					20
*	jsmmsg								alpha				255
*	jsmhdle							char					500
*	jsmcmd							alpha			4
	
*	Beginning	of	RDML	commands	**********

function	options(*DIRECT)
begin_com	role(*EXTENDS	#PRIM_FORM)	clientheight(414)	clientwidth(585)	height(448)	left(471)	top(168)	width(593)

define_com	class(#PRIM_STBR)	name(#STBR_1)	displayposition(9)	height(24)	left(0)	messageposition(1)	parent(#COM_OWNER)	tabposition(9)	tabstop(False)	top(390)	width(585)

define_com	class(#JSMEMAIL.Visual)	name(#toaddress)	caption('To')	displayposition(1)	labeltype(Caption)	left(8)	marginleft(80)	parent(#COM_OWNER)	tabposition(1)	top(8)
define_com	class(#JSMEMAIL.Visual)	name(#ccaddress)	caption('CC')	displayposition(2)	labeltype(Caption)	left(8)	marginleft(80)	parent(#COM_OWNER)	tabposition(2)	top(32)
define_com	class(#JSMEMAIL.Visual)	name(#Subject)	caption('Subject')	displayposition(3)	labeltype(Caption)	left(8)	marginleft(80)	parent(#COM_OWNER)	tabposition(3)	top(56)
define_com	class(#JSMEMAIL.Visual)	name(#fromaddress)	caption('From	Address')	displayposition(8)	labeltype(Caption)	left(8)	marginleft(80)	parent(#COM_OWNER)	tabposition(8)	tabstop(False)	top(80)	visible(False)	width(3)
define_com	class(#JSMEMAIL.Visual)	name(#fromname)	caption('From	Name')	displayposition(4)	labeltype(Caption)	left(8)	marginleft(80)	parent(#COM_OWNER)	tabposition(4)	tabstop(False)	top(104)	visible(False)	width(3)

define_com	class(#PRIM_PHBN)	name(#Send)	caption('Send')	displayposition(6)	left(24)	parent(#COM_OWNER)	tabposition(6)	top(360)	width(100)
define_com	class(#PRIM_PHBN)	name(#Reset)	caption('Reset')	displayposition(7)	left(136)	parent(#COM_OWNER)	tabposition(7)	top(360)	width(100)
define_com	class(#PRIM_MEMO)	name(#message)	componentversion(1)	currentline(1)	displayposition(5)	height(273)	left(8)	maximumlinelength(250)	parent(#COM_OWNER)	showselectionhilight(False)	tabposition(5)	top(80)	width(553)	wordwrap(True)
define_com	class(#PRIM_MECL)	name(#messageline)	columnrole(Data)	displayposition(1)	parent(#message)	source(#JSMEMAIL)

define	field(#pos)	type(*dec)	length(3)	decimals(0)
define	field(#start)	type(*dec)	length(3)	decimals(0)
define	field(#filename)	type(*char)	length(255)

def_list	name(#filelist)	fields(#filename)	type(*Working)
def_list	name(#tolist)	fields(#jsmemail)	type(*Working)
def_list	name(#cclist)	fields(#jsmemail)	type(*Working)

evtroutine	handling(#com_owner.Initialize)
set	com(#com_owner)	caption(*component_desc)

#jsmhdle	:=	*default
#fromaddress	:=	me@company.com
#fromname	:=	'LANSA	Product	Centre'

*	Start	JSM	Server	on	IBM	i
use	builtin(jsmx_open)	with_args('ISERIES01:4570')	to_get(#jsmsts	#jsmmsg	#jsmhdle)

*	Start	local	JSM	server
*	use	builtin(jsmx_open)	with_args('localhost:4560')	to_get(#jsmsts	#jsmmsg	#jsmhdle)
*	execute	subroutine(check)	with_parms(#jsmsts	#jsmmsg)

*	Load	the	service
#jsmcmd	:=	'Service_Load	Service(SMTPMailService)	trace(*yes)'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

endroutine

mthroutine	name(SendEmail)

if	(*Not	#jsmhdle.isnull)

*	from	details	(ideally	these	should	be	set	up	in	your	SMTPMailService.properties	file)

#jsmcmd	:=	'set	from('	+	#fromaddress	+	')	from_name('	+	#fromname	+	')'

use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	Set	the	to	address(es)

clr_list	named(#tolist)

#start	:=	1

dountil	(#pos	=	0)

if	(#toaddress.cursize	>	#start)
#pos	:=	#toaddress.positionof(';',	#start)
else
#pos	:=	0
endif

if	(#pos	=	0)
#jsmemail	:=	#toaddress.substring(#start)
else
#jsmemail	:=	#toaddress.substring(#start,	(#pos	-	#start))
#start	:=	#pos	+	1
endif

if	(#jsmemail	*NE	*blank)
add_entry	to_list(#tolist)
endif

enduntil

use	builtin(jsmx_command)	with_args(#jsmhdle	'set	to(*list)	')	to_get(#jsmsts	#jsmmsg	#tolist)
#com_owner.check(#jsmsts	#jsmmsg)

*	Set	the	cc	address(es)

clr_list	named(#cclist)

#start	:=	1

dountil	(#pos	=	0)

if	(#ccaddress.cursize	>	#start)
#pos	:=	#ccaddress.positionof(';',	#start)
else
#pos	:=	0

endif

if	(#pos	=	0)
#jsmemail	:=	#ccaddress.substring(#start)
else
#jsmemail	:=	#ccaddress.substring(#start,	(#pos	-	#start))
#start	:=	#pos	+	1
endif

if	(#jsmemail	*NE	*blank)
add_entry	to_list(#cclist)
endif

enduntil

use	builtin(jsmx_command)	with_args(#jsmhdle	'set	cc(*list)')	to_get(#jsmsts	#jsmmsg	#cclist)
#com_owner.check(#jsmsts	#jsmmsg)

*	add	attachments
clr_list	named(#filelist)

#filename	:=	order.xml
add_entry	to_list(#filelist)
#filename	:=	message01.txt
add_entry	to_list(#filelist)
#filename	:=	test-input/thankyou.pdf
add_entry	to_list(#filelist)

*	#jsmcmd	:=	'add	attachment(*list)	zip(orderstatus.zip)'
#jsmcmd	:=	'add	attachment(*list)'

use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg	#filelist)
#com_owner.check(#jsmsts	#jsmmsg)

*	Send	mail

#jsmcmd	:=	'send	subject('	+	#subject	+	')'

use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg	#message)

#com_owner.check(#jsmsts	#jsmmsg)

endif

endroutine

*	send	the	email

evtroutine	handling(#Send.Click)

#com_owner.SendEmail

endroutine

*	reset	the	email	variables

evtroutine	handling(#Reset.Click)

clr_list	named(#message)

#toaddress	#ccaddress	#subject	:=	*blank

endroutine

*	check	the	JSM	return	status

mthroutine	name(check)
define_map	for(*input)	class(#jsmsts)	name(#i_status)
define_map	for(*input)	class(#jsmmsg)	name(#i_message)

message	msgtxt(#i_status	+	'	:	'	+	#i_message)

endroutine

evtroutine	handling(#com_owner.closing)	options(*noclearmessages	*noclearerrors)

*	Unload	service
use	builtin(jsmx_command)	with_args(#jsmhdle	'Service_Unload')	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	Close	the	thread
use	builtin(jsmx_close)	with_args(#jsmhdle)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

endroutine
end_com
	

POP3MailService	Example
This	function	retrieves	all	the	email	messages	from	the	mail	server.		Details	of
each	message	are	displayed	to	the	user	and,	in	addition,	the	body	text	and	any
attachments	are	saved	to	appropriate	directories	under	the	JSM	server	instance
directory.
*	Uses	Integrator	Services:	POP3MailService
	
*	This	forms	retrieves	messages	from	a	mail	server	and	then	deletes	them
from	the	mail	server.
*	
*	The	following	fields	must	be	defined	in	your	data	dictionary	to	support	this	function:
*	jsmserver					alpha						20
*	jsmpsswrd					alpha						10
*	jsmuserid					alpha						10
*	jsmfrom							alpha						150
*	jsmemail						char							250
*	jsmstring					string					1000
*	jsmsts								alpha						20
*	jsmmsg								alpha						255
*	jsmhdle							char							500
*	jsmcmd								alpha						4
	
*	Beginning	of	RDML	commands	**********

function	options(*DIRECT)
begin_com	role(*EXTENDS	#PRIM_FORM)	clientheight(414)	clientwidth(585)	height(448)	left(471)	top(168)	width(593)

define_com	class(#PRIM_STBR)	name(#STBR_1)	displayposition(6)	height(24)	left(0)	messageposition(1)	parent(#COM_OWNER)	tabposition(6)	tabstop(False)	top(390)	width(585)

define_com	class(#JSMSERVER.Visual)	name(#jsmserver)	caption('Server')	displayposition(1)	height(19)	labeltype(Caption)	left(184)	marginleft(80)	parent(#COM_OWNER)	tabposition(1)	top(8)	usepicklist(False)	width(170)
define_com	class(#JSMUSERID.Visual)	name(#jsmuser)	caption('User')	displayposition(2)	labeltype(Caption)	left(184)	marginleft(80)	parent(#COM_OWNER)	tabposition(2)	top(32)	width(170)
define_com	class(#JSMpsswrd.Visual)	name(#jsmpassword)	caption('Password')	displayposition(3)	labeltype(Caption)	left(184)	marginleft(80)	parent(#COM_OWNER)	tabposition(3)	top(56)	width(170)

define_com	class(#PRIM_PHBN)	name(#Get)	caption('Get	Messages')	displayposition(4)	left(24)	parent(#COM_OWNER)	tabposition(4)	top(360)	width(100)
define_com	class(#PRIM_PHBN)	name(#Reset)	caption('Reset')	displayposition(5)	left(136)	parent(#COM_OWNER)	tabposition(5)	top(360)	width(100)

define_com	class(#PRIM_LTVW)	name(#message)	componentversion(2)	displayposition(7)	fullrowselect(True)	height(265)	left(8)	parent(#COM_OWNER)	showsortarrow(True)	tabposition(7)	top(88)	width(569)

define_com	class(#PRIM_LVCL)	name(#From)	caption('From')	captiontype(Caption)	displayposition(1)	parent(#message)	source(#JSMFROM)	width(30)
define_com	class(#PRIM_LVCL)	name(#subject)	caption('Subject')	captiontype(Caption)	displayposition(2)	parent(#message)	source(#JSMEMAIL)	width(30)
define_com	class(#PRIM_LVCL)	name(#received)	caption('Message')	captiontype(Caption)	displayposition(3)	parent(#message)	source(#JSMSTRING)	width(40)	widthtype(Remainder)

def_list	name(#fromlst)	fields(#jsmfrom)	type(*working)
def_list	name(#textlst)	fields(#jsmstring)	type(*working)

evtroutine	handling(#com_owner.Initialize)
set	com(#com_owner)	caption(*component_desc)

#jsmhdle	:=	*default
#jsmserver	:=	'99.99.99.99'
#jsmuser	:=	'user'
#jsmpassword	:=	'password'

*	Start	JSM	Server	on	IBM	i
*	use	builtin(jsmx_open)	with_args('ISERIES01:9990')	to_get(#jsmsts	#jsmmsg	#jsmhdle)

*	Start	local	JSM	server
use	builtin(jsmx_open)	with_args('localhost:9980')	to_get(#jsmsts	#jsmmsg	#jsmhdle)
#com_owner.check(#jsmsts	#jsmmsg)

*	Load	the	service
#jsmcmd	:=	'Service_Load	Service(POP3MailService)	trace(*yes)'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

endroutine

mthroutine	name(GetEmail)

if	(*Not	#jsmhdle.isnull)

clr_list	named(#message)

*	open	the	post	office

#jsmcmd	:=	'open	server('	+	#jsmserver	+	')	user('	+	#jsmuser	+	')	password('	+	#jsmpassword	+	')'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)

#com_owner.check(#jsmsts	#jsmmsg)

*	Get	count	of	messages

use	builtin(jsmx_command)	with_args(#jsmhdle	'get	object(*messagecount)')	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

message	msgtxt(#jsmsts	+	'	:	'	+	#jsmmsg	+	'	messages	in	mail	box')

*	loop	through	all	the	messages
begin_loop

*	Get	message

use	builtin(jsmx_command)	with_args(#jsmhdle	'get	object(*nextmessage)')	to_get(#jsmsts	#jsmmsg)

if	(#jsmsts	=	NOMAIL)
leave
endif

*	Get	subject

use	builtin(jsmx_command)	with_args(#jsmhdle	'get	object(*subject)')	to_get(#jsmsts	#jsmmsg)
#jsmemail	:=	#jsmmsg

*	Get	from	addresses

clr_list	named(#fromlst)

use	builtin(jsmx_command)	with_args(#jsmhdle	'get	object(*fromaddress)')	to_get(#jsmsts	#jsmmsg	#fromlst)
#com_owner.check(#jsmsts	#jsmmsg)

get_entry	number(1)	from_list(#fromlst)

*	Read	text

clr_list	named(#textlst)

use	builtin(jsmx_command)	with_args(#jsmhdle	'read	object(*text)')	to_get(#jsmsts	#jsmmsg	#textlst)

#com_owner.check(#jsmsts	#jsmmsg)

selectlist	named(#textlst)
add_entry	to_list(#message)
#jsmemail	#jsmfrom	:=	*blank
endselect

*	save	attachments
use	builtin(jsmx_command)	with_args(#jsmhdle	'save	object(*attachments)	dir(emailattch)')	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	text
use	builtin(jsmx_command)	with_args(#jsmhdle	'save	object(*text)	file(body1.txt)		dir(emailbody)	')	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	Delete	message

use	builtin(jsmx_command)	with_args(#jsmhdle	'delete')	to_get(#jsmsts	#jsmmsg)

*	Get	next	message

end_loop

*	Close	post	office

use	builtin(jsmx_command)	with_args(#jsmhdle	'close')	to_get(#jsmsts	#jsmmsg	#fromlst)
#com_owner.check(#jsmsts	#jsmmsg)

endif

endroutine

*	send	the	email

evtroutine	handling(#Get.Click)

#com_owner.GetEmail

endroutine

*	reset	the	email	variables

evtroutine	handling(#Reset.Click)

clr_list	named(#message)

endroutine

*	check	the	JSM	return	status

mthroutine	name(check)
define_map	for(*input)	class(#jsmsts)	name(#i_status)
define_map	for(*input)	class(#jsmmsg)	name(#i_message)

message	msgtxt(#i_status	+	'	:	'	+	#i_message)

endroutine

evtroutine	handling(#com_owner.closing)	options(*noclearmessages	*noclearerrors)

*	Unload	service
use	builtin(jsmx_command)	with_args(#jsmhdle	'Service_Unload')	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	Close	the	thread
use	builtin(jsmx_close)	with_args(#jsmhdle)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

endroutine
end_com
	

SMSService	Example
This	example	demonstrates	how	to	use	the	SMSService	in	an	RDMLX	form.
The	form	allows	a	user	to	create	a	message	that	will	be	sent	to	a	mobile	phone.
It	consists	of	a	simple	interface	with	2	input	capable	fields	that	need	to	be
defined	in	the	LANSA	Repository	as:

#PHONE,	Alphanumeric,	Length	30
#SMSTEXT,	Char,	Length	200,	Visualisation	VisualMultiLineEdit

There	is	also	one	display	only	field	that	needs	to	be	defined	in	the	LANSA
Repository	as:

#REMCHAR,	Integer,	Length	3,	Decimals	0.
While	this	example	provides	a	visual	interface,	it	is	quite	possible	that	you	will
build	applications	that	do	not	need	an	interface.	For	example,	you	might	need	to
automatically	send	out	an	SMS	when	certain	conditions	are	met,	like	sending	an
SMS	to	a	sales	person	when	a	customer	has	placed	a	large	order	on	your	web
site.	Such	applications	will	need	to	fetch	the	phone	number	and	message
information	from	a	database	or	some	alternative	source.
With	this	example	you	can	enter	an	email	address	into	the	phone	number	field
for	initial	testing.	Once	satisfied	that	it	works,	you	can	then	start	using	real
phone	numbers.

The	following	is	the	RDMLX	code	behind	this	Visual	LANSA	form.

*
*	Description:

*	This	RDMLX	form	provides	an	example	of	how	to	use	the	SMSService.	The	form	allows	a	user	to	create	a	message	that	will	be	sent	to	a	mobile	phone.
*	It	consists	of	a	simple	interface	with	2	input	capable	fields	that	are	defined	in	the	repository	as:
*											-	#PHONE,	Alphanumeric,	Length	30
*											-	#SMSTEXT,	Char,	Length	200,	Visualisation	VisualMultiLineEdit
*	There	is	also	one	display	only	field:
*											-	#REMCHAR,	Integer,	Length	3,	Decimals	0.
*
*
*	Disclaimer	:	The	following	material	is	supplied	as	sample	material	only.	No	warranty	concerning	this	material	or	its	use	in	any	way	whatsoever	is	expressed	or	implied.
*

FUNCTION	OPTIONS(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_FORM)	Clientheight(236)	Clientwidth(542)	Height(270)	Left(391)	Top(135)	Width(550)
Define_Com	Class(#PRIM_LABL)	Name(#LABL_1)	Alignment(Center)	Caption('Please	Enter	the	Phone	Number	and	Message	Below')	Displayposition(1)	Height(17)	Left(64)	Parent(#COM_OWNER)	Tabposition(4)	Tabstop(False)	Top(16)	Width(289)
Define_Com	Class(#PHONE.Visual)	Name(#PHONE)	Displayposition(2)	Left(10)	Parent(#COM_OWNER)	Tabposition(1)	Top(62)	Width(305)
Define_Com	Class(#REMCHAR.Visual)	Name(#REMCHAR)	Displayposition(3)	Height(19)	Left(10)	Parent(#COM_OWNER)	Readonly(True)	Tabposition(6)	Tabstop(False)	Top(152)	Usepicklist(False)	Width(200)
Define_Com	Class(#PRIM_PHBN)	Name(#Btn_Send)	Caption('Send	SMS')	Displayposition(4)	Left(160)	Parent(#COM_OWNER)	Tabposition(3)	Top(175)
Define_Com	Class(#PRIM_STBR)	Name(#STBR_1)	Displayposition(5)	Height(24)	Left(0)	Messageposition(1)	Parent(#COM_OWNER)	Tabposition(5)	Tabstop(False)	Top(212)	Width(542)
Define_Com	Class(#SMSTEXT.VisualMultiLineEdit)	Name(#SMSTEXT)	Displayposition(6)	Height(57)	Left(10)	Parent(#COM_OWNER)	Tabposition(2)	Top(88)

*	The	following	locally	defined	fields	are	used	to	hold	the	parameters	required	within	the	JSM	Built-
in	Functions.
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(255)
Define	Field(#JSMCMD)	Type(*CHAR)	Length(255)
Define	Field(#JSMSRV)	Type(*CHAR)	Length(050)
Define	Field(#JSMHND)	Type(*CHAR)	Length(4)

EVTROUTINE	handling(#com_owner.Initialize)
SET	#com_owner	caption(*component_desc)

*	This	example	simulates	a	case	whereby	the	SMS	provider	can	only	accept	emails	that	hold	a	maximum	of	200	characters.	The	#REMCHAR	field	is	used	to	inform	the	users	the	number	of	remaining	characters	they	may	enter	before	they	reach	this	limit.	Most	SMS	providers	and	mobile	phones	can	now	send	messages	that	are	far	greater	this,	and	if	they	cannot,	then	the	message	is	often	split	into	multiple	messages	and	sent	to	the	mobile	phone	by	the	SMS	provider.	The	#REMCHAR	field	is	set	here	to	200	and	is	updated	via	the	SMSTEXT.Changed	event.
#Remchar	:=	200

ENDROUTINE

EVTROUTINE	HANDLING(#Btn_Send.Click)

*	'Open	service'

*	The	JSMX_OPEN	Builtin	Function	is	used	to	connect	this	JSMX	client	to	the	Java	Services	Manager,	and	to	start	a	thread	for	the	service.	The	server	name	must	be	a	valid	and	available	server	name	and	the	port	number	will	be	that	which	your	SMTP	mail	server	is	running	on.	The	server	name	defined	here	is	not	related	to	any	servers	that	you	have	defined	in	the	LANSA	Communications	Administrator.
#JSMSRV	:=	'LANSA01:4560'
Use	Builtin(JSMX_OPEN)	With_Args(#JSMSRV)	To_Get(#JSMSTS	#JSMMSG	#JSMHND)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

*	'Load	service'
*	The	Service_Load(SMSService)	command	loads	and	initializes	the	service	using	the	values	defined	in	the	SMSService.properties	file.
#JSMCMD	:=	'Service_Load	Service	(SMSService)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

*	'Examples	of	Set	command'
*
*	Here	are	two	examples	of	how	to	use	the	SET	command.	This	command	might	be	used	to	override	any	defaults	that	are	defined	in	the	SMSService.properties	file.
*
*	1st	Example	of	'Set'	command.	In	this	example	of	the	'Set'	command,	we	are	setting	the	Encoding	value	to	be	that	of	the	ISO08859_1	standard.
#JSMCMD	:=	'Set	Encoding(ISO8859_1)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)
*	2nd	Example	of	'Set'	command.	In	this	example	of	the	'Set'	command,	we	are	overriding	the	FROM	value.	This	might	be	useful	for	some	initial	testing	if	you	want	the	return	address	value	to	be	your	personal	email	address.	The	value	used	here	will	be	appended	to	the	mail	domain	(e.g.	@mycompany.com),	so	you	need	only	enter	the	first	part	of	the	address.
#JSMCMD	:=	'Set	From(return_address)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

*	'Send	message'
*	This	command	is	required	to	'kick	off'	the	sending	of	the	message,	and	contains	the	'guts'	of	the	message.	The	'To'	parameter	contains	the	phone	number,	while	the	'Msg'	parameter	contains	the	message	to	be	sent.
#JSMCMD	:=	'Send	To('	+	#Phone	+	')	Msg('	+	#SMSText	+')'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

*	'Unload	service'
*	This	command	is	required	to	unload	the	service	and	to	remove	the	temporary	directory.	If	you	needed	to	send	out	multiple	messages	then	you	would	not	issue	this	command	until	after	you	had	finished	sending	all	the	messages.
#JSMCMD	:=	'Service_Unload'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

*	'Close	service'
*	The	final	step	in	the	process	is	to	close	the	service.
Use	Builtin(JSMX_CLOSE)	With_Args(#JSMHND)	To_Get(#JSMSTS	#JSMMSG)

Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

Endroutine

*	The	following	event	routine	provides	information	to	the	user	on	how	many	characters	they	have	left	before	they	reach	their	limit.	This	is	a	purely	optional	feature,	and	would	not	be	necessary	in	applications	that	do	not	allow	users	to	type	in	their	messages.
EVTROUTINE	HANDLING(#SMSText.Changed)	OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)

#Remchar	:=	200	-	#SMSText.CurSize

ENDROUTINE

*	SUBROUTINES
*	The	following	subroutine	is	used	by	all	the	JSMX	commands	to	handle	any	errors	that	are	encountered.
Subroutine	Name(CHECK)	Parms((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

If	Cond('#JSMSTS	*NE	OK')

Message	Msgtxt('Java	service	error	has	occurred')
Message	Msgtxt(#JSMMSG)

Use	Builtin(JSMX_CLOSE)	With_Args(#JSMHND)	To_Get(#JSMSTS	#JSMMSG)

Endif

Endroutine
END_COM
	
	

XMLBindFileService
Fragments	Only
Before	you	can	use	this	sample	code,	please	read	the	introduction	and	perform
these	steps	from	the	XMLBindFileService	RDML	Code	example:
XMLBindFileService	Example
Step	1:	XML	Binding	Wizard
Step	2:	Create	some	folders	and	some	sample	XML	documents
and	then	continue	to	Step	3.	RDMLX	Form	Code	following.

Step	3.	RDMLX	Form	Code
The	following	is	the	RDMLX	code	that	can	be	used	to	process	these	order.
Please	read	the	notes	in	the	code	carefully.
*	**
*	
*	COMPONENT:		STD_FORM
*	
*	**
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_FORM)	Clientheight(666)	Clientwidth(622)	Height(693)	Left(300)	Top(47)	Width(630)
Define_Com	Class(#PRIM_GRID)	Name(#ORDXML)	Captionnoblanklines(True)	Columnbuttonheight(19)	Columnscroll(False)	Componentversion(1)	Displayposition(1)	Height(129)	Left(8)	Parent(#COM_OWNER)	Showbuttonselection(True)	Showselection(True)	Showselectionhilight(False)	Showsortarrow(True)	Tabposition(1)	Top(8)	Width(513)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_1)	Displayposition(1)	Parent(#ORDXML)	Source(#RDXFILENM)	Width(100)
Define_Com	Class(#PRIM_PHBN)	Name(#GETORDERS)	Caption('Get	Orders')	Displayposition(2)	Height(26)	Left(528)	Parent(#COM_OWNER)	Tabposition(2)	Top(32)
Define_Com	Class(#PRIM_PHBN)	Name(#PROCESS_ORDER)	Caption('Process	Orders')	Displayposition(3)	Enabled(False)	Height(26)	Left(528)	Parent(#COM_OWNER)	Tabposition(3)	Top(73)
Define_Com	Class(#PRIM_GPBX)	Name(#GPBX_1)	Caption('Order	Details')	Displayposition(4)	Height(329)	Left(8)	Parent(#COM_OWNER)	Tabposition(4)	Tabstop(False)	Top(264)	Width(601)
Define_Com	Class(#CUSTNUM.Visual)	Name(#CUSTNUM)	Displayposition(1)	Left(8)	Parent(#GPBX_1)	Tabposition(1)	Top(64)
Define_Com	Class(#CUSTNME.Visual)	Name(#CUSTNME)	Displayposition(2)	Left(8)	Parent(#GPBX_1)	Tabposition(2)	Top(88)
Define_Com	Class(#ORDDTE.Visual)	Name(#ORDDTE)	Displayposition(3)	Height(19)	Left(8)	Parent(#GPBX_1)	Tabposition(3)	Top(40)	Usepicklist(False)	Width(247)
Define_Com	Class(#SONUM.Visual)	Name(#SONUM)	Displayposition(4)	Height(19)	Left(8)	Parent(#GPBX_1)	Tabposition(4)	Top(16)	Usepicklist(False)	Width(247)
Define_Com	Class(#STREET.Visual)	Name(#STREET)	Displayposition(5)	Left(10)	Parent(#GPBX_1)	Tabposition(5)	Top(110)
Define_Com	Class(#CITY.Visual)	Name(#CITY)	Displayposition(6)	Left(8)	Parent(#GPBX_1)	Tabposition(6)	Top(128)
Define_Com	Class(#STATE.Visual)	Name(#STATE)	Displayposition(7)	Left(8)	Parent(#GPBX_1)	Tabposition(7)	Top(151)
Define_Com	Class(#ZIP.Visual)	Name(#ZIP)	Displayposition(8)	Left(12)	Parent(#GPBX_1)	Tabposition(8)	Top(173)
Define_Com	Class(#PRIM_GRID)	Name(#LINES)	Captionnoblanklines(True)	Columnbuttonheight(18)	Columnscroll(False)	Componentversion(1)	Displayposition(9)	Height(105)	Left(40)	Parent(#GPBX_1)	Showbuttonselection(True)	Showselection(True)	Showselectionhilight(False)	Showsortarrow(True)	Tabposition(9)	Top(200)	Width(493)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_2)	Displayposition(1)	Parent(#LINES)	Source(#LINENUM)	Width(10)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_3)	Displayposition(2)	Parent(#LINES)	Source(#PARTNUM)	Width(10)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_4)	Displayposition(3)	Parent(#LINES)	Source(#PARTDSC)	Width(50)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_5)	Displayposition(4)	Parent(#LINES)	Source(#PARTAMT)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_6)	Displayposition(5)	Parent(#LINES)	Source(#PARTQTY)	Width(10)
Define_Com	Class(#PRIM_GRID)	Name(#ORDERS)	Captionnoblanklines(True)	Columnscroll(False)	Componentversion(1)	Displayposition(5)	Height(102)	Left(8)	Parent(#COM_OWNER)	Showbuttonselection(True)	Showselection(True)	Showselectionhilight(False)	Showsortarrow(True)	Tabposition(5)	Top(144)	Width(513)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_7)	Displayposition(1)	Parent(#ORDERS)	Source(#SONUM)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_8)	Parent(#ORDERS)	Source(#ORDDTE)	Visible(False)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_9)	Displayposition(2)	Parent(#ORDERS)	Source(#CUSTNME)	Widthtype(Remainder)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_10)	Parent(#ORDERS)	Source(#CUSTNUM)	Visible(False)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_11)	Parent(#ORDERS)	Source(#STREET)	Visible(False)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_12)	Parent(#ORDERS)	Source(#CITY)	Visible(False)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_13)	Parent(#ORDERS)	Source(#STATE)	Visible(False)

Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_14)	Parent(#ORDERS)	Source(#ZIP)	Visible(False)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_16)	Parent(#LINES)	Source(#STD_NUM)	Visible(False)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_15)	Parent(#ORDERS)	Source(#STD_NUM)	Visible(False)
Define_Com	Class(#PRIM_STBR)	Name(#STBR_1)	Displayposition(6)	Height(24)	Left(0)	Messageposition(1)	Parent(#COM_OWNER)	Tabposition(6)	Tabstop(False)	Top(642)	Width(622)

*	Define	the	fields	to	be	used	in	this	application

*	Define	the	fields	used	by	the	JSM	Commands
Define	Field(#JSMSTS)	Type(*CHAR)	Length(020)
Define	Field(#JSMMSG)	Type(*CHAR)	Length(255)
Define	Field(#JSMCMD)	Type(*CHAR)	Length(255)
Define	Field(#JSMHND)	Type(*CHAR)	Length(4)

*	NOTE:	You	will	need	to	define	the	following	commented	fields	in	your	repository	as	they	appear	on	the	form
*	These	fields	will	hold	values	read	from	and	written	to	the	XML	documents

*	Define	the	Order	number	and	date
*	Define	Field(#SONUM)	Type(*CHAR)	Length(010)	Label('Order	#')
*	Define	Field(#ORDDTE)	Type(*CHAR)	Length(010)	Label('Order	Date')
*	
*	*	Define	the	Customer	details
*	Define	Field(#CUSTNUM)	Type(*CHAR)	Length(010)	Label('Customer	#')
*	Define	Field(#CUSTNME)	Type(*CHAR)	Length(050)	Label('Customer	name')
*	Define	Field(#STREET)	Type(*CHAR)	Length(050)	Label('Street')
*	Define	Field(#CITY)	Type(*CHAR)	Length(050)	Label('City')
*	Define	Field(#STATE)	Type(*CHAR)	Length(005)	Label('State')
*	Define	Field(#ZIP)	Type(*CHAR)	Length(005)	Label('Post	Code')

*	Define	the	order	line	details.	We	will	also	define	a	list	that	holds	the	order	line	details
*	Define	Field(#LINENUM)	Type(*DEC)	Length(003)	Decimals(0)	Label('Line	#')
*	Define	Field(#PARTNUM)	Type(*DEC)	Length(003)	Decimals(0)	Label('Part	#')
*	Define	Field(#PARTDSC)	Type(*CHAR)	Length(020)	Label('Part	Desc.')
*	Define	Field(#PARTAMT)	Type(*DEC)	Length(010)	Decimals(2)	Label('Amount')
*	Define	Field(#PARTQTY)	Type(*DEC)	Length(003)	Decimals(0)	Label('Quantity')
Define	Field(#ORDTOT)	Type(*DEC)	Length(010)	Decimals(2)	Label('Grand	Total')
Def_List	Name(#ORDLINES)	Fields(#LINENUM	#PARTNUM	#PARTDSC	#PARTAMT	#PARTQTY	#STD_NUM)	Type(*Working)
Group_By	Name(#ORDHDR)	Fields(#SONUM	#ORDDTE	#CUSTNUM	#CUSTNME	#STREET	#CITY	#STATE	#ZIP)

*	The	following	field	will	hold	the	file	name	and	path	for	the	archived	files

Define	Field(#ARCHIVE)	Type(*CHAR)	Length(30)	Desc('Archived	Orders	Directory')	Input_Atr(LC)	Default('''archive''')
Define	Field(#X_POSN)	Type(*DEC)	Length(2)	Decimals(0)	Desc('Working	field	to	find	the	file	name')

*	Define	the	order	response	details
Define	Field(#COMMENTS)	Type(*CHAR)	Length(256)	Label('Comments')
Define	Field(#LINSTAT)	Type(*CHAR)	Length(20)	Label('Line	Status')
Define	Field(#RESPONSE)	Type(*CHAR)	Length(30)	Label('Resp	filename')
Define	Field(#TOGGLE)	Type(*DEC)	Length(1)	Decimals(0)
Def_List	Name(#LSTCMNT)	Fields(#COMMENTS)	Type(*WORKING)
Def_List	Name(#RSPLINES)	Fields(#LINENUM	#PARTNUM	#PARTDSC	#PARTAMT	#PARTQTY	#LINSTAT)	Type(*WORKING)

*	A	single	field	working	list	needs	to	be	defined	to	hold	the	list	of	order	returned	from	our	LIST	command.	The	field	needs	to	be	long	enough	to	hold	the	expected	length	of	the	canonical	file	path	returned	from	the	LIST	command.
*	Define	Field(#RDXFILENM)	Type(*char)	Length(100)
Def_List	Name(#ORDERLSTW)	Fields(#RDXFILENM)	Counter(#LISTCOUNT)	Type(*WORKING)

Evtroutine	Handling(#com_owner.Initialize)
Set	Com(#com_owner)	Caption(*component_desc)
*	We	will	now	start	the	funcionality	by	opening	the	JSM
Use	Builtin(JSMX_OPEN)	To_Get(#JSMSTS	#JSMMSG	#JSMHND)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

*	Next	we	will	load	the	JSM	service	-	in	this	example	we	have	selected	to	have	tracing	on.
#JSMCMD	:=	'SERVICE_LOAD	SERVICE(XMLBINDFILESERVICE)	TRACE(*YES)	DOMSET(*READER)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

Endroutine

*	SUB	ROUTINES
*	The	CHECK	subroutine	is	used	to	capture	errors	returned	from	the	JSM	commands.	For	any	errors	encountered,	a	screen	will	be	displayed	with	the	error	message	and	the	program	will	exit	after	this.
Subroutine	Name(CHECK)	Parms((#JSMSTS	*RECEIVED)	(#JSMMSG	*RECEIVED))

If	('#JSMSTS	*NE	OK')

*	Display	FIELDS(#JSMSTS	#JSMMSG)
Use	Builtin(JSMX_CLOSE)	With_Args(#JSMHND)	To_Get(#JSMSTS	#JSMMSG)
Message	Msgtxt('Java	service	error	has	occured')

Endif

Endroutine

Evtroutine	Handling(#GETORDERS.Click)

*	Clear	out	all	lists	and	fields	first
Clr_List	Named(#ORDERS)
Clr_List	Named(#LINES)
Clr_List	Named(#ORDERLSTW)
#ORDHDR	:=	*default

*	The	first	thing	we	want	to	do	is	to	get	a	list	of	all
*	the	orders	that	are	in	the	neworders	directory.	To	do
*	this	we	will	use	the	LIST	command.	In	this	scenario,
*	the	neworders	directory	is	immediately	under	the	JSM
*	Instance	directory	on	our	server,	so	we	can	refer	to
*	the	directory	simply	as	'neworders'.
*	In	this	example	the	file	extension	has	been	hard	coded
*	as	XML.	This	means	that	only	files	with	an	extension	of
*	XML	will	be	returned.
#JSMCMD	:=	'LIST	DIR(NEWORDERS)	SERVICE_LIST(FILENAME)	EXT(XML)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#ORDERLSTW)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

*	Display	the	list	returned	from	the	LIST	command.
Clr_List	Named(#ORDXML)
Selectlist	Named(#ORDERLSTW)
Add_Entry	To_List(#ORDXML)
Endselect

If	('#LISTCOUNT	>	0')
#PROCESS_ORDER.Enabled	:=	True
Endif

Endroutine
Evtroutine	Handling(#PROCESS_ORDER.Click)

Clr_List	Named(#ORDLINES)

#std_num	:=	0

*	The	next	step	of	our	application	is	to	run	through
*	the	orders	in	our	list	and	process	the	data	order	by
*	order.	To	do	this	we	will	need	to	use	the	READ,	BIND,
*	and	GET	commands.

Selectlist	Named(#ORDERLSTW)

#std_num	:=	#std_num	+	1

*	Next	we	will	use	the	READ	command.	For	the	READ
*	command	we	need	to	specify	the	file	that	we	want
*	to	access,	including	the	file	path.	In	this	example,
*	if	an	order	is	named	order1.xml	for	example,	then	the
*	FILE	keyword	would	normally	be	specified	as
*	FILE(neworder/order1.xml),	and	it	would	assume	that	the
*	neworder	directory	is	under	the	JSM	Instance	directory
*	for	the	server.	We	could	take	this	approach,	but	we
*	already	have	the	full	directory	path	and	file	name
*	specified	in	the	list	(in	the	field	#FILENAME)	so	it
*	will	be	much	simpler	to	use	this.	The	actual	ARCHIVE
*	file	name	and	path	will	be	verified	in	the	ARCHIVE
*	sub-routine.
*	If	we	were	going	to	be	using	a	hard	coded	READ,	then
*	this	is	what	it	might	look	like:
*	.			USE	BUILTIN(BUILTIN)	WITH_ARGS(JSM_COMMAND)
*	.			WITH_ARGS('READ	FILE(neworder/order1.xml)
*	.														ARCHIVE(archive/arc_order1.xml)')
*	.			TO_GET(#JSMSTS	#JSMMSG)
Execute	Subroutine(ARCHIVE)
#JSMCMD	:=	'READ	FILE('	+	#RDXFILENM	+	')	ARCHIVE('	+	#ARCHIVE	+	')'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

*	The	next	command	to	run	is	the	BIND.	We	named	the
*	service	to	handle	the	inbound	XML	documents	as
*	'inboundorder'.
#JSMCMD	:=	'BIND	SERVICE(INBOUNDORDER)	TYPE(*INBOUND)	BINDTRACE(*YES)'

Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

*	The	next	step	is	to	retrieve	the	data	using	the	GET
*	command.
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	'GET	FRAGMENT(ORDERS)	SERVICE_EXCHANGE(*FIELD)')	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

#JSMCMD	:=	'GET	FRAGMENT(SALESORDER)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

#JSMCMD	:=	'GET	FRAGMENT(CUSTOMER)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

#JSMCMD	:=	'GET	FRAGMENT(ORDERDATE)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

*	The	line	details	of	our	order	technically	make	up	a
*	list.	In	this	example	though,	we	have	defined	the	lines
*	as	fragments.	As	such,	we	need	to	handle	them	a	little
*	differently.	We	need	to	place	the	GET	FRAGMENT(LINE)	in
*	a	loop	and	continue	in	the	loop	until	all	the	line
*	details	are	retrieved.	The	following	demonstrates	how
*	we	do	this.
*	Clr_List	NAMED(#ORDLINES)
Begin_Loop
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	'GET	FRAGMENT(LINE)	SERVICE_EXCHANGE(*FIELD)')	To_Get(#JSMSTS	#JSMMSG)
If	('#JSMSTS	*EQ	NOFRAGMENT')
Leave
Endif
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

*	We	also	need	to	get	the	part	details	for	this	line.
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	'GET	FRAGMENT(PART)	SERVICE_EXCHANGE(*FIELD)')	To_Get(#JSMSTS	#JSMMSG)

Add_Entry	To_List(#ORDLINES)

End_Loop

*	Now	that	we	have	the	data	we	need	and	have	saved	a	copy
*	of	the	file	in	the	archive,	we	can	close	the	bind	on
*	this	file	and	delete	the	file	from	our	inbound
*	directory.
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	CLOSE)	To_Get(#JSMSTS	#JSMMSG)
#JSMCMD	:=	'DELETE	FILE('	+	#RDXFILENM	+	')'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)

*	Add	the	order	header	details	to	the	ORDERS	grid
Add_Entry	To_List(#ORDERS)

*	Now	we	will	work	on	a	response	XML	in	reply	to	this
*	order.	To	keep	things	clean,	we	will	do	this	in	a
*	separate	subroutine.
Execute	Subroutine(RESPONSE)

Endselect

*	Clear	the	header	details	fields	so	they	do	not	appear	with	values	until	an	order	is	selected.
#ORDHDR	:=	*default

*	Disable	the	Process	Orders	button
#PROCESS_ORDER.Enabled	:=	False

Endroutine

*	The	ARCHIVE	subroutine	will	build	the	file	name	and
*	path	for	the	ARCHIVE	keyword	of	the	READ	command.
Subroutine	Name(ARCHIVE)
Use	Builtin(SCANSTRING)	With_Args(#RDXFILENM	'neworders'	*DEFAULT	'0')	To_Get(#X_POSN)
#X_POSN	:=	#X_POSN	+	10
Substring	Field(#RDXFILENM	#X_POSN)	Into_Field(#ARCHIVE)
#ARCHIVE	:=	'archive/arc_'	+	#ARCHIVE
Endroutine

*	This	RESPONSE	subroutine	will	do	all	the	processing
*	required	to	build	and	create	the	response	XML	document.

Subroutine	Name(RESPONSE)

*	The	first	thing	we	need	to	do	is	create	a	new	empty
*	outbound	XML	document	and	BIND	it	to	the	outbound
*	service	that	we	created	with	the	XML	Binding	Wizard.
*	Note	that	we	specify	the	type	as	*OUTBOUND.
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	'BIND	SERVICE(OUTBOUNDRESPONSE)	TYPE(*OUTBOUND)')	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

*	Much	of	the	information	for	the	response	we	already
*	have,	but	a	couple	of	fields	need	to	be	populated	so
*	we	will	make	up	some	fictitious	data	here.	We	will
*	create	some	comments,	and	add	them	to	a	list	first.
*	The	other	new	data	we	need	to	add	is	the	LINSTAT	field
*	to	give	an	indication	of	the	status	of	the	order	line.
Clr_List	Named(#LSTCMNT)
#COMMENTS	:=	'Thank	you	for	your	order'
Add_Entry	To_List(#LSTCMNT)
#COMMENTS	:=	'We	have	processed	your	order	'	+	#SONUM	+	'	on	date:	'	+	*DDMMYYYYC
Add_Entry	To_List(#LSTCMNT)
#COMMENTS	:=	'Please	refer	below	for	the	full	details	of	your	order.'
Add_Entry	To_List(#LSTCMNT)
#COMMENTS	:=	'One	of	our	sales	people	will	be	in	touch	with	you	shortly.'
Add_Entry	To_List(#LSTCMNT)
#COMMENTS	:=	'For	immediate	assistance	on	your	order	please	call	1234567'
Add_Entry	To_List(#LSTCMNT)
#COMMENTS	:=	'one	more	line'
Add_Entry	To_List(#LSTCMNT)
#COMMENTS	:=	'two	more	lines'
Add_Entry	To_List(#LSTCMNT)
#COMMENTS	:=	'three	more	lines'
Add_Entry	To_List(#LSTCMNT)

Clr_List	Named(#RSPLINES)
*	NOTE:	The	#TOGGLE	field	is	used	to	alternate	status
*	messages	-	to	add	a	bit	of	variety.
Selectlist	Named(#ORDLINES)
If	('#TOGGLE	=	0')
#TOGGLE	:=	1

#LINSTAT	:=	OK
Else
#TOGGLE	:=	0
#LINSTAT	:=	'OUT	OF	STOCK'
Endif
Add_Entry	To_List(#RSPLINES)
Endselect

*	Now	that	we	have	some	data,	we	can	start	using	the	SET
*	command	to	populate	the	outbound	document	object.	As
*	per	the	reading	of	data	from	the	order	documents,	since
*	this	example	is	using	fragments	only,	we	will	need	to
*	set	up	loops	to	add	any	repeating	data	(specifically
*	the	comments	and	the	order	lines).
#JSMCMD	:=	'SET	FRAGMENT(ORDERRESPONSE)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

Selectlist	Named(#LSTCMNT)
#JSMCMD	:=	'SET	FRAGMENT(RESPONSECOMMENTS)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)
Endselect

#JSMCMD	:=	'SET	FRAGMENT(SALESORDER)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

#JSMCMD	:=	'SET	FRAGMENT(CUSTOMER)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

Selectlist	Named(#RSPLINES)
#JSMCMD	:=	'SET	FRAGMENT(LINE)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

#JSMCMD	:=	'SET	FRAGMENT(PART)	SERVICE_EXCHANGE(*FIELD)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)

Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)
Endselect

*	Now	we	have	all	the	data	prepared,	we	will	serialize
*	the	document	object	out	to	a	specified	file	using	the
*	WRITE	command.	We	will	construct	a	file	name	based	on
*	the	customer	and	order	number.
#JSMCMD	:=	'WRITE	FILE(response/RSP_'	+	#CUSTNUM	+	'_'	+	#SONUM	+	'.xml)	INDENT(*YES)	INDENT-
AMOUNT(1)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK)	With_Parms(#JSMSTS	#JSMMSG)

*	Finally	we	will	CLOSE	the	bind	then	go	onto	the	next
*	XML	document.
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	CLOSE)	To_Get(#JSMSTS	#JSMMSG)

Endroutine
Evtroutine	Handling(#COM_OWNER.Closing)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	SERVICE_UNLOAD)	To_Get(#JSMSTS	#JSMMSG)
Use	Builtin(JSMX_CLOSE)	With_Args(#JSMHND)	To_Get(#JSMSTS	#JSMMSG)
Endroutine
Evtroutine	Handling(#ORDERS.ItemGotSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Define	Field(#whichone)	Reffld(#std_num)

#whichone	:=	#std_num
Clr_List	Named(#LINES)

Selectlist	Named(#ORDLINES)

If	('#std_num	=	#whichone')
Add_Entry	To_List(#LINES)
Endif

Endselect
Endroutine
End_Com
	

OpenLDAPService	Example
This	RDMLX	form	provides	an	example	of	how	to	use	the	OpenLDAPService.
The	form	allows	a	user	to	add	the	details	of	a	new	entry	to	the	IBM	Directory
Server	(IBMTelDir)	using	the	ADD	command.	It	also	allows	the	user	to	view	a
list	of	all	current	entries	using	the	using	the	SEARCH	command.	So,	if	a	new
entry	is	successfully	added,	this	will	be	reflected	in	the	list.
To	run	this	example	you	will	need	to	do	the	following:
1.	Configure	and	start	the	IBM	Directory	Server	on	the	IBM	i.	For	more
information	on	the	IBM	Directory	Server	please	refer	to	the	relevant	IBM
Manuals.

2.	Define	two	fields	in	the	LANSA	Repository:
#JSMSTS,	Char,	Length	20
#JSMMSG,	Char,	Length	255

3.	Set	the	#JSMSRV	field	to	the	correct	JSM	server	value
4.	Set	the	#LDPSRV	field	to	the	correct	LDAP	server	value

*
*	Description:
*	This	RDMLX	form	provides	an	example	of	how	to	use	the	OpenLDAPService.	The	form	allows	a	user	to	add	the	details	of	a	new	entry	to	the	IBM	Directory	Server	(IBMTelDir)	using	the	ADD	command.	It	also	allows	the	user	to	view	a	list	of	all	current	entries	using	the	using	the	SEARCH	command.	So,	if	a	new	entry	is	succesfully	added,	this	will	be	reflected	in	the	list.
*	
*	To	run	this	example	you	will	need	to	do	the	following:
*			1.	Configure	and	start	the	IBM	Directory	Server	on	the	IBM
i.	For	more	information	on	the	IBM	Directory	Server	please	refer	to	the	relevant	IBM	Manuals;
*			2.	Define	two	fields	in	the	LANSA	Repository:
*							-	#JSMSTS,	Char,	Length	20
*							-	#JSMMSG,	Char,	Length	255
*			3.	Set	the	#JSMSRV	field	to	the	correct	JSM	server	value
*			4.	Set	the	#LDPSRV	field	to	the	correct	LDAP	server	value
*
*	Disclaimer	:	The	following	material	is	supplied	as	sample	material	only.	No	warranty	concerning	this	material	or	its	use	in	any	way	whatsoever	is	expressed	or	implied.
*

FUNCTION	OPTIONS(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_FORM)	Clientheight(313)	Clientwidth(514)	Left(360)	Top(135)	Width(522)
Define_Com	Class(#GIVENAME.Visual)	Name(#CN_FNAME)	Caption('First	Name')	Displayposition(1)	Height(19)	Labeltype(Caption)	Left(8)	Parent(#COM_OWNER)	Tabposition(1)	Top(8)	Usepicklist(False)	Width(324)

Define_Com	Class(#SURNAME.Visual)	Name(#SN_LNAME)	Caption('Last	Name')	Displayposition(2)	Height(19)	Labeltype(Caption)	Left(8)	Parent(#COM_OWNER)	Tabposition(2)	Top(32)	Usepicklist(False)	Width(324)
Define_Com	Class(#STD_DESCL.Visual)	Name(#EMAIL)	Caption('Email')	Displayposition(3)	Height(19)	Labeltype(Caption)	Left(8)	Parent(#COM_OWNER)	Tabposition(3)	Top(56)	Usepicklist(False)	Width(495)
Define_Com	Class(#STD_TEXTS.Visual)	Name(#PASSWORD)	Caption('Password')	Displayposition(4)	Height(19)	Labeltype(Caption)	Left(8)	Parent(#COM_OWNER)	Tabposition(4)	Top(80)	Usepicklist(False)	Width(401)
Define_Com	Class(#PRIM_STBR)	Name(#STBR_1)	Displayposition(5)	Height(24)	Left(0)	Messageposition(1)	Parent(#COM_OWNER)	Tabposition(5)	Tabstop(False)	Top(289)	Width(514)
Define_Com	Class(#PRIM_PHBN)	Name(#ADD_RECORD)	Caption('Add	User')	Displayposition(6)	Left(160)	Parent(#COM_OWNER)	Tabposition(6)	Top(104)
Define_Com	Class(#PRIM_LTVW)	Name(#LTVW_1)	Componentversion(2)	Displayposition(7)	Fullrowselect(True)	Height(131)	Left(12)	Parent(#COM_OWNER)	Showsortarrow(True)	Tabposition(7)	Top(142)	Width(493)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_1)	Caption('Current	Directory	Entries')	Captiontype(Caption)	Displayposition(1)	Parent(#LTVW_1)	Sortonclick(True)	Source(#STD_DESCL)	Widthtype(Remainder)

*	The	following	locally	defined	fields	are	used	to	hold	the	parameters	required	by	the	JSM	Built-
in	Functions.
Define	Field(#JSMCMD)	Type(*Char)	Length(255)
Define	Field(#JSMSRV)	Type(*Char)	Length(050)
Define	Field(#JSMPRT)	Type(*Char)	Length(005)
Define	Field(#JSMHND)	Type(*Char)	Length(4)
Define	Field(#LDPSRV)	Type(*Char)	Length(050)

*	The	following	fields	and	working	list	are	required	for	the	Add	command.
Define	Field(#ATNAME)	Type(*Char)	Length(050)
Define	Field(#ATVALUE)	Type(*Char)	Length(050)
Def_List	Name(#WRKLST)	Fields(#ATNAME	#ATVALUE)	Type(*working)

*	The	following	fields	and	list	are	used	to	display	the	values	currently	in	the	directory.	They	are	required	for	the	Search	command.
Define	Field(#DN)	Type(*Char)	Length(050)
Def_List	Name(#WRKLST2)	Fields(#DN)	Type(*Working)

EVTROUTINE	handling(#com_owner.Initialize)
SET	#COM_OWNER	caption(*component_desc)

*	Set	up	the	JSM	and	LDAP	server	settings
#JSMSRV	:=	'<system-name.:<port>'
#LDPSRV	:=	'<ldap-server-name>'

*	Execute	the	method	to	connect	to	the	LDAPServer.
#COM_OWNER.Connect

*	Execute	the	method	to	populate	the	list	view.
#COM_OWNER.Refresh

ENDROUTINE

*	Add	the	record	to	the	directory
EVTROUTINE	HANDLING(#ADD_RECORD.Click)

*	Execute	the	Add	Method
#COM_OWNER.Add

*	Refresh	the	list	view
#COM_OWNER.Refresh

ENDROUTINE

*	Add	the	new	entry	to	the	LDAP	server
Mthroutine	Name(Add)

*	The	working	list	that	contains	the	information	pertaining	to	the	new	record	is	prepared	for	the	Add	command
#ATNAME	:=	cn
#ATVALUE	:=	#CN_FNAME
Add_Entry	To_list(#WRKLST)

#ATNAME	:=	sn
#ATVALUE	:=	#SN_LNAME
Add_Entry	To_list(#WRKLST)

#ATNAME	:=	mail
#ATVALUE	:=	#EMAIL
Add_Entry	To_list(#WRKLST)

#ATNAME	:=	userPassword
#ATVALUE	:=	#PASSWORD
Add_Entry	To_list(#WRKLST)

#ATNAME	:=	objectClass
#ATVALUE	:=	top
Add_Entry	To_list(#WRKLST)
#ATVALUE	:=	person
Add_Entry	To_list(#WRKLST)
#ATVALUE	:=	inetOrgPerson

Add_Entry	To_list(#WRKLST)
#ATVALUE	:=	organizationalPerson
Add_Entry	To_list(#WRKLST)

*	The	Add	command	is	prepared	and	executed
#JSMCMD	:=	'Add	DN(cn='	+	#CN_FNAME	+	',	cn=users,	o=ibmteldir)	Service_List(ATNAME,ATVALUE)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#WRKLST)
#COM_OWNER.check(#JSMSTS	#JSMMSG)

ENDROUTINE

*	Refresh	the	list	view
Mthroutine	Name(Refresh)

*	'Search	LDAP	Server'
*	The	SEARCH	command	is	responsible	for	the	actual	search	of	the	LDAP	directory.	The	results	will	be	placed	into	a	working	list
#JSMCMD	:=	'Search	Dn(o=ibmteldir)	Filter(objectclass=person)	Scope(*SUB)	Service_List(DN)'
Use	Builtin(Jsmx_command)	With_args(#jsmhnd	#jsmcmd)	To_Get(#JSMSTS	#JSMMSG	#WRKLST2)

*	The	resultant	list	is	then	placed	into	the	list	view
Clr_List	#Ltvw_1
Selectlist	Named(#WRKLST2)

#STD_DESCL	:=	#DN

Add_Entry	To_List(#Ltvw_1)

ENDSELECT

ENDROUTINE

*	The	following	method	routine	is	used	by	all	the	JSMX	commands	to	handle	any	errors	that	are	encountered.
Mthroutine	name(check)
define_map	for(*input)	class(#JSMSTS)	name(#I_STATUS)
define_map	for(*input)	class(#JSMMSG)	name(#I_MESSAGE)

message	msgtxt(#JSMSTS.trim	+	':	'	+	#JSMMSG)

endroutine

*	Connect	to	the	JSM	system	then	the	LDAP	server
Mthroutine	Name(Connect)

*	'Open	service'
*	The	JSMX_OPEN	Builtin	Function	is	used	to	connect	this	JSMX	client	to	the	Java	Services	Manager,	and	to	start	a	thread	for	the	service.
Use	Builtin(JSMX_OPEN)	With_Args(#JSMSRV)	To_Get(#JSMSTS	#JSMMSG	#JSMHND)
#COM_OWNER.check(#JSMSTS	#JSMMSG)

*	'Load	service'
*	The	Service_Load(OpenLDAPService)	command	loads	and	initializes	the	service	using	the	values	defined	in	the	OpenLDAPService.properties	file.
#JSMCMD	:=	'Service_Load	Service	(OpenLDAPService)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
#COM_OWNER.check(#JSMSTS	#JSMMSG)

*	'Bind	to	LDAP	Server'
*	The	BIND	command	is	used	to	establish	a	connection	to	the	LDAP	server.	In	this	scenario	we	are	passing	an	authentication	name	(DN)	and	password,	but	these	are	not	mandatory	for	this	command
#JSMCMD	:=	'Bind	Host('	+	#Ldpsrv	+	')	DN(cn=Administrator)	Password(password)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
#COM_OWNER.check(#JSMSTS	#JSMMSG)

Endroutine

*Disconnect	from	the	LDAP	server	then	the	JSM	system
Mthroutine	Name(Disconnect)

*	'Unbind	from	LDAP	Server'
*	This	command	is	used	to	disconnect	from	the	LDAP	Server	when	we	have	completed.
#JSMCMD	:=	UnBind
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
#COM_OWNER.check(#JSMSTS	#JSMMSG)

*	'Unload	service'
*	This	command	is	required	to	unload	the	service	and	to	remove	the	temporary	directory.	If	you	needed	to	send	out	multiple	messages	then	you	would	not	issue	this	command	until	after	you	had	finished	sending	all	the	messages.
#JSMCMD	:=	'Service_Unload'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
#COM_OWNER.check(#JSMSTS	#JSMMSG)

*	'Close	service'

*	The	final	step	in	the	process	is	to	close	the	service.
Use	Builtin(JSMX_CLOSE)	With_Args(#JSMHND)	To_Get(#JSMSTS	#JSMMSG)
#COM_OWNER.check(#JSMSTS	#JSMMSG)

Endroutine

*	When	the	form	is	closed	we	want	to	disconnect	from	the	LDAP	Server
EVTROUTINE	HANDLING(#COM_OWNER.Closing)	OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)

#COM_OWNER.Disconnect

ENDROUTINE

END_COM
	

ZipService	Example
This	form	allows	the	creation	of	zip	archive	files	and	for	existing	zip	archive
files	to	be	opened,	reviewed	and	modified.		Zip	file	contents	can	also	be
extracted	to	a	specified	directory.

Modify	the	default	values	to	be	displayed	to	suit	your	site.

	
*	Uses	Integrator	Services:	ZIPSERVICE
*	
*	This	form	is	a	very	simple	Windows	Zip	file	processor.
*	It	allows	you	to:
*	-	create	zip	files
*	-	open	existing	zip	files	and	list	their	contents
*	-	add	files	or	folders	to	the	open	zip	file
*	-	extract	the	contents	of	a	zip	file	to	a	specified	folder
*	
*	NOTE:		This	program	is	provided	only	to	demonstrate	usage	of
*	the	ZipService.		To	keep	it	simple,	it	has	rudimentary	error
*	handling	and	does	not	necessarily	demonstrate	recommended	or
*	efficient	programming	technique	or	user	interface	design.
*	
*	The	following	field	must	be	defined	in	your	repository:
*	filepath			string	512
*	jsmsts					alpha		20
*	jsmmsg					alpha		255
*	jsmhdle				char			500
*	jsmcmd					alpha		4
*	
function	options(*DIRECT)
begin_com	role(*EXTENDS	#PRIM_FORM)	bordericons(SystemMenu)	caption('LANSA	Integrator	ZipService	RDMLX	Sample')	clientheight(435)	clientwidth(738)	formposition(ScreenCenter)	framestyle(Dialog)	height(469)	left(439)	top(115)	width(746)

define_com	class(#PRIM_APPL.ICommonDialogFileOpen)	name(#openFileDlg)	reference(*DYNAMIC)
define_com	class(#PRIM_APPL.ICommonDialogFileSave)	name(#saveFileDlg)	reference(*DYNAMIC)

define_com	class(#PRIM_LTVW)	name(#LVContent)	componentversion(2)	displayposition(1)	fullrowselect(True)	height(366)	left(9)	parent(#COM_OWNER)	showsortarrow(True)	tabposition(1)	top(35)	width(416)
define_com	class(#PRIM_LVCL)	name(#LVCL_1)	displayposition(1)	parent(#LVContent)	source(#FILEPATH)	widthtype(Remainder)

define_com	class(#PRIM_LABL)	name(#LABL_1)	caption('Zip	contents:')	displayposition(2)	height(14)	left(8)	parent(#COM_OWNER)	tabposition(2)	tabstop(False)	top(8)	width(125)
define_com	class(#PRIM_GPBX)	name(#GPBX_1)	caption('File:')	displayposition(3)	height(66)	left(434)	parent(#COM_OWNER)	tabposition(3)	tabstop(False)	top(23)	width(289)
define_com	class(#PRIM_PHBN)	name(#btnNew)	caption('&New...')	displayposition(1)	left(20)	parent(#GPBX_1)	tabposition(1)	top(21)	width(100)
define_com	class(#PRIM_PHBN)	name(#btnOpen)	caption('&Open...')	displayposition(2)	left(164)	parent(#GPBX_1)	tabposition(2)	top(21)	width(100)

define_com	class(#PRIM_GPBX)	name(#grpAdd)	caption('Add:')	displayposition(4)	enablechildren(True)	height(169)	left(434)	parent(#COM_OWNER)	tabposition(4)	tabstop(False)	top(96)	width(289)
define_com	class(#PRIM_PHBN)	name(#btnAddFile)	caption('Add	File...')	displayposition(1)	enabled(False)	left(20)	parent(#grpAdd)	tabposition(1)	top(22)	width(100)
define_com	class(#PRIM_PHBN)	name(#btnAddFolder)	caption('Add	Folder:')	displayposition(2)	enabled(False)	left(20)	parent(#grpAdd)	tabposition(2)	top(71)	width(100)
define_com	class(#PRIM_LABL)	name(#LABL_4)	caption('Folder:')	displayposition(7)	height(18)	left(140)	parent(#grpAdd)	tabposition(7)	tabstop(False)	top(76)	width(125)
define_com	class(#PRIM_EDIT)	name(#edtAddFolder)	displayposition(3)	height(18)	hint('Specifies	the	folder	to	add')	left(139)	parent(#grpAdd)	showselection(False)	showselectionhilight(False)	tabposition(3)	top(95)	width(128)
define_com	class(#PRIM_LABL)	name(#lblAddBas)	caption('Base:')	displayposition(6)	height(17)	left(138)	parent(#grpAdd)	tabposition(6)	tabstop(False)	top(120)	width(127)
define_com	class(#PRIM_CMBX)	name(#cboAddBas)	comboboxstyle(DropDownList)	componentversion(1)	displayposition(5)	height(18)	left(138)	parent(#grpAdd)	showselection(False)	showselectionhilight(False)	tabposition(5)	top(138)	width(127)
define_com	class(#PRIM_CBCL)	name(#CBCL_1)	displayposition(1)	parent(#cboAddBas)	source(#STD_INSTR)

define_com	class(#PRIM_GPBX)	name(#grpExtract)	caption('Extract:')	displayposition(5)	enablechildren(True)	height(129)	left(434)	parent(#COM_OWNER)	tabposition(5)	tabstop(False)	top(272)	width(289)
define_com	class(#PRIM_PHBN)	name(#btnExtractFile)	caption('Extract	to:')	displayposition(1)	left(20)	parent(#grpExtract)	tabposition(1)	top(34)	width(100)
define_com	class(#PRIM_LABL)	name(#LABL_3)	caption('Folder:')	displayposition(5)	height(17)	left(136)	parent(#grpExtract)	tabposition(5)	tabstop(False)	top(40)	width(129)
define_com	class(#PRIM_EDIT)	name(#edtExtractFolder)	displayposition(2)	height(18)	left(136)	parent(#grpExtract)	showselection(False)	showselectionhilight(False)	tabposition(2)	top(56)	width(128)
define_com	class(#PRIM_STTC)	name(#STTC_1)	displayposition(4)	height(3)	left(20)	parent(#grpAdd)	tabposition(4)	top(60)	width(245)
define_com	class(#PRIM_LABL)	name(#lblExtBas)	caption('Base:')	displayposition(3)	height(17)	left(135)	parent(#grpExtract)	tabposition(3)	tabstop(False)	top(80)	width(127)
define_com	class(#PRIM_CMBX)	name(#cboExtBas)	comboboxstyle(DropDownList)	componentversion(1)	displayposition(4)	height(18)	left(136)	parent(#grpExtract)	showselection(False)	showselectionhilight(False)	tabposition(4)	top(97)	width(128)
define_com	class(#PRIM_CBCL)	name(#CBCL_2)	displayposition(1)	parent(#cboExtBas)	source(#STD_INST2)

define_com	class(#PRIM_STBR)	name(#STBR_1)	displayposition(6)	height(24)	left(0)	messageposition(1)	parent(#COM_OWNER)	tabposition(6)	tabstop(False)	top(411)	width(738)

define	field(#bResult)	type(*boolean)
define	field(#bIgnore)	type(*boolean)
define	field(#zippath)	type(*string)
define	field(#ziptitle)	type(*string)
define	field(#caption)	type(*string)

def_list	name(#ziplist)	fields(#filepath)	type(*Working)	entrys(*MAX)
def_list	name(#cmdlist)	fields(#std_num	#std_name	#std_textl	#std_text)	counter(#std_count)	type(*Working)	entrys(*MAX)

evtroutine	handling(#com_owner.Initialize)

set	com(#com_owner)	caption(*component_desc)

*	start	local	JSM	server	and	load	the	ZipService
use	builtin(jsmx_open)	to_get(#jsmsts	#jsmmsg	#jsmhandle)
#com_owner.check(#jsmsts	#jsmmsg)

#jsmcmd	:=	'service_load	service(zipservice)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

endroutine

evtroutine	handling(#com_owner.Closing)

use	builtin(jsmx_command)	with_args(#jsmhandle	'service_unload')	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

use	builtin(jsmx_close)	with_args(#jsmhandle)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

endroutine

evtroutine	handling(#com_owner.CreateInstance)	options(*NOCLEARMESSAGES	*NOCLEARERRORS)

*	initial	state
#com_owner.OnOpenArchive(false)

*	load	combo	boxes
#std_instr	#std_inst2	:=	'*NONE'
add_entry	to_list(#cboAddBas)
add_entry	to_list(#cboExtBas)

#std_instr	#std_inst2	:=	'*CURRENT'
add_entry	to_list(#cboAddBas)
add_entry	to_list(#cboExtBas)

#cboAddBas.CurrentItem.Selected	:=	True
#cboExtBas.CurrentItem.Selected	:=	True
#std_instr	#std_inst2	:=	'*PARENT'
add_entry	to_list(#cboAddBas)

*	put	a	hint	in	the	folder	edit	boxes
#edtAddFolder.Value	:=	'<type	folder	path>'
#edtExtractFolder.Value	:=	'<type	folder	path>'

endroutine

*	Create	an	archive	file
evtroutine	handling(#btnNew.Click)

#sys_appln.CreateFileSaveDialog	result(#saveFileDLG)
#saveFileDlg.AddFilter('Zip	files	(*.zip)'	'*.zip')
#saveFileDlg.AddFilter('All	files	(*.*)'	'*.*')
#saveFileDlg.Title	:=	'New'

#saveFileDlg.Show	okpressed(#bResult)	formowner(#com_self)

if	(#bResult)

*	close	existing	file
#com_owner.Closefile

*	create	a	zip	file
#jsmcmd	:=	'create	file('	+	#saveFileDlg.file	+	')'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	save	details
#zippath	:=	#saveFileDlg.file
#ziptitle	:=	#saveFileDlg.file

#com_owner.OnOpenArchive(true)

#com_owner.caption	:=	#saveFileDlg.file

endif

endroutine

*	Select	an	archive	file	to	open

evtroutine	handling(#btnOpen.Click)

#sys_appln.CreateFileOpenDialog	result(#OpenFileDLG)

#openFileDlg.AddFilter('Zip	files	(*.zip)'	'*.zip')
#openFileDlg.AddFilter('All	files	(*.*)'	'*.*')

#openFileDlg.Show	okpressed(#bResult)	formowner(#com_self)

if	(#bResult)

*	open	the	file
#com_owner.OpenFile(#openFileDlg.file	#openFileDlg.filetitle)

#com_owner.caption	:=	#openFileDlg.file

endif

endroutine

*	select	a	file	to	add	to	the	current	archive
evtroutine	handling(#btnAddFile.Click)

#sys_appln.CreateFileOpenDialog	result(#OpenFileDLG)
#openFileDlg.AddFilter('All	files	(*.*)'	'*.*')

#openFileDlg.Show	okpressed(#bResult)	formowner(#com_self)

if	(#bResult)

*	open	the	current	archive	file
#jsmcmd	:=	'open	file('	+	#zippath	+	')	mode(*write)	reaplce(*no)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	add	the	specified	file	to	the	current	archive
#jsmcmd	:=	'add	file('	+	#openFileDlg.file	+	')'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	close	the	current	archive	file
#jsmcmd	:=	'close'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	reload	archive	contents
#com_owner.OpenFile(#zippath	#ziptitle)

endif

endroutine

evtroutine	handling(#btnAddFolder.Click)

*	open	the	current	archive	file	through	the	ZipService
#jsmcmd	:=	'open	file('	+	#zippath	+	')	mode(*write)	replace(*no)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	add	the	specified	folder	to	the	current	archive
#jsmcmd	:=	'add	path('	+	#edtAddFolder.Value	+	')	base('	+	#cboAddBas.Value	+	')'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	close	the	current	archive	through	the	ZipService
use	builtin(jsmx_command)	with_args(#jsmhandle	'close')	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	reload	archive	contents
#com_owner.OpenFile(#zippath	#ziptitle)

endroutine

evtroutine	handling(#btnExtractFile.Click)

*	open	the	current	archive	file	through	the	ZipService
#jsmcmd	:=	'open	file('	+	#zippath	+	')	mode(*read)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)

#com_owner.check(#jsmsts	#jsmmsg)

*	extract	archive	contents	to	the	specified	folder
#jsmcmd	:=	'get	entry(*read)	to('	+	#edtExtractFolder.Value	+	')	base('	+	#cboExtBas.Value	+	')'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	close	the	file
#jsmcmd	:=	'close'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

endroutine

*	open	or	create	a	zip	archive,	or	refresh	the	displayed	contents	of	the	current	archive
mthroutine	name(OpenFile)
define_map	for(*input)	class(#prim_alph)	name(#iZipPath)
define_map	for(*input)	class(#prim_alph)	name(#iZipTitle)

*	close	existing	file
#com_owner.Closefile

*	open	the	file	through	the	ZipService
#jsmcmd	:=	'open	file('	+	#iZipPath	+	')	mode(*read)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	read	the	contents	into	the	list	box
clr_list	named(#ziplist)

#jsmcmd	:=	'get	entry(*list)'
use	builtin(jsmx_command)	with_args(#jsmhandle	#jsmcmd)	to_get(#jsmsts	#jsmmsg	#ziplist)
#com_owner.check(#jsmsts	#jsmmsg)

selectlist	named(#ziplist)

add_entry	to_list(#LVContent)

endselect

*	save	details
#zippath	:=	#iZipPath.Value
#ziptitle	:=	#iZipTitle.Value

#com_owner.OnOpenArchive(true)

endroutine

*	Close	the	current	archive
mthroutine	name(CloseFile)

clr_list	named(#LVContent)

#zippath	:=	*null
#com_owner.OnOpenArchive(false)

endroutine

*	Set	controls	on	open	or	close	of	archive
mthroutine	name(OnOpenArchive)
define_map	for(*input)	class(#prim_boln)	name(#iOpen)

#grpAdd.Enabled	:=	#iOpen
#grpExtract.Enabled	:=	#iOpen

endroutine

*	check	the	JSM	return	status
mthroutine	name(check)
define_map	for(*input)	class(#jsmsts)	name(#i_status)
define_map	for(*input)	class(#jsmmsg)	name(#i_message)

message	msgtxt(#i_status	+	'	:	'	+	#i_message)

endroutine
	end_com
	

	
	
	

PDFSpoolFileService	Example
This	form	opens	the	default	JSM	Instance	and	then	explicitly	connects	to	an
IBM	i	to	retrieve	the	relevant	spool	file	information.		Refer	to	commented	code
for	an	alternative	approach,	namely	to	explicitly	OPEN	the	JSM	Server	on	IBM
i	and	then	use	an	unqualified	CONNECT	statement	to	connect	to	the	same
machine.

Modify	the	default	values	to	be	displayed	to	suit	your	site.

*	Uses	Integrator	Services:	PDFSpoolFileService
	
*	This	form	connects	to	an	IBM
i	server	to	retrieve	detail	of	the	spool	files	in	a	nominated	outq.
*	A	spool	file	can	then	be	selected	to	convert	to	a	PDF	file.		This	form	also	deletes	PDF	files.
*	
*	The	following	fields	must	be	defined	in	your	data	dictionary	to	support	this	function:
*	filname									*CHAR							10
*	filnbr										*CHAR								6
*	jobname									*CHAR							10
*	jobuser									*CHAR							10
*	jobnbr										*CHAR								6
*	status										*CHAR							10
*	jsmserver							*CHAR							10
*	jsmpsswrd							*CHAR							10
*	jsmuserid							*CHAR							10
*	jsmoutq									*CHAR							10
*	jsmsts										alpha					20
*	jsmmsg										alpha				255
*	jsmhdle									char					500
*	jsmcmd										alpha			4
	
function	options(*DIRECT)
begin_com	role(*EXTENDS	#PRIM_FORM)	clientheight(573)	clientwidth(692)	framestyle(Dialog)	height(607)	left(441)	top(129)	width(700)

define_com	class(#jsmserver.Visual)	name(#jsmserver)	displayposition(1)	height(19)	left(9)	marginleft(50)	parent(#GPBX_1)	tabposition(1)	top(13)	usepicklist(False)	width(150)
define_com	class(#jsmuserid.Visual)	name(#jsmuserid)	displayposition(2)	left(169)	marginleft(50)	parent(#GPBX_1)	tabposition(2)	top(13)	width(150)
define_com	class(#jsmpsswrd.Visual)	name(#jsmpsswrd)	displayposition(3)	left(329)	marginleft(50)	parent(#GPBX_1)	tabposition(3)	top(13)	width(150)
define_com	class(#jsmoutq.Visual)	name(#jsmoutq)	displayposition(4)	height(19)	left(489)	marginleft(70)	parent(#GPBX_1)	tabposition(4)	top(13)	usepicklist(False)	width(150)

define_com	class(#jsmpdfdoc.Visual)	name(#jsmpdfdoc)	displayposition(1)	left(9)	parent(#GPBX_2)	tabposition(1)	top(18)

define_com	class(#PRIM_PHBN)	name(#GetSpoolFiles)	caption('Connect	+	Get	Spool	File	details')	displayposition(1)	left(5)	parent(#PANL_2)	tabposition(1)	top(5)	width(180)
define_com	class(#PRIM_PHBN)	name(#ConvertPDF)	caption('Convert	to	PDF')	displayposition(2)	enabled(False)	left(190)	parent(#PANL_2)	tabposition(2)	top(5)	width(120)
define_com	class(#PRIM_PHBN)	name(#Disconnect)	caption('Disconnect')	displayposition(4)	enabled(False)	left(440)	parent(#PANL_2)	tabposition(4)	top(5)	width(120)
define_com	class(#PRIM_PHBN)	name(#DeletePDF)	caption('Delete	PDF')	displayposition(3)	enabled(False)	left(315)	parent(#PANL_2)	tabposition(3)	top(5)	width(120)

define_com	class(#PRIM_STBR)	name(#stbr_1)	displayposition(1)	height(24)	left(0)	messageposition(1)	parent(#PANL_1)	tabposition(1)	tabstop(False)	top(77)	width(692)

define_com	class(#PRIM_GPBX)	name(#GPBX_1)	caption('Connect	to	')	displayposition(1)	height(45)	left(0)	parent(#COM_OWNER)	tabposition(1)	tabstop(False)	top(0)	width(692)
define_com	class(#PRIM_GPBX)	name(#GPBX_2)	caption('PDF	file	details	')	displayposition(2)	height(45)	left(0)	parent(#COM_OWNER)	tabposition(2)	tabstop(False)	top(47)	width(692)

define_com	class(#PRIM_PANL)	name(#PANL_1)	displayposition(4)	height(101)	left(0)	parent(#COM_OWNER)	tabposition(4)	tabstop(False)	top(472)	width(692)
define_com	class(#PRIM_PANL)	name(#PANL_2)	displayposition(2)	height(34)	left(5)	parent(#PANL_1)	tabposition(2)	tabstop(False)	top(34)	width(692)

define_com	class(#PRIM_LTVW)	name(#LTVW_1)	componentversion(1)	displayposition(3)	fullrowselect(True)	height(378)	left(0)	parent(#COM_OWNER)	tabposition(3)	top(94)	width(692)
define_com	class(#PRIM_LVCL)	name(#LvCL_1)	componenttag('File	Name')	displayposition(1)	parent(#LTVW_1)	source(#FILNAME)	width(18)
define_com	class(#PRIM_LVCL)	name(#LvCL_2)	componenttag('File	Number')	displayposition(2)	parent(#LTVW_1)	source(#FILNBR)	width(14)
define_com	class(#PRIM_LVCL)	name(#LvCL_3)	componenttag('Job	Name')	displayposition(3)	parent(#LTVW_1)	source(#JOBNAME)	width(18)
define_com	class(#PRIM_LVCL)	name(#LvCL_4)	componenttag('Job	User')	displayposition(4)	parent(#LTVW_1)	source(#JOBUSER)	width(18)
define_com	class(#PRIM_LVCL)	name(#LvCL_5)	componenttag('Job	Number')	displayposition(5)	parent(#LTVW_1)	source(#JOBNBR)	width(14)
define_com	class(#PRIM_LVCL)	name(#LvCL_6)	componenttag('Status')	displayposition(6)	parent(#LTVW_1)	source(#STATUS)	width(18)	widthtype(MinRemainder)

def_list	name(#spoollst)	fields(#filname	#filnbr	#jobname	#jobuser	#jobnbr	#status)	type(*WORKING)	entrys(0000500)

evtroutine	handling(#com_owner.Initialize)

set	com(#com_owner)	caption(*component_desc)

#jsmhdle	:=	*default

*	default	values
#jsmserver	:=	'<server>'
#jsmuserid	:=	'<user	id>'
#jsmpsswrd	:=	'<password>'
#jsmoutq	:=	'<outq>'

#jsmpdfdoc	:=	mypdfdoc01.pdf

#jsmserver.SetFocus

endroutine

mthroutine	name(Connect)

if	(#jsmhdle.IsNull)

*	connect	the	JSMX	client	to	the	Java	Service	Manager	and	start	a	thread	for	the	service

*	Start	JSM	Server	on	IBM	i
*	use	builtin(jsmx_open)	with_args('LANSA04:4570')	to_get(#jsmsts	#jsmmsg	#jsmhdle)

*	Start	local	JSM	server
use	builtin(jsmx_open)	to_get(#jsmsts	#jsmmsg	#jsmhdle)
#com_owner.check(#jsmsts	#jsmmsg)

*	Load	the	service
#jsmcmd	:=	'service_load	service(pdfspoolfileservice)'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	If	connected	to	IBM	i	JSM	Server	can	use	CONNECT	w/o	parms
*	#jsmcmd	:=	'Connect	'

*	connect	to	the	IBM	i	host	if	running	local	JSM	Server
#jsmcmd	:=	'Connect	Host('	+	#jsmserver	+	')	User('	+	#jsmuserid	+	')	password('	+	#jsmpsswrd	+	')'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)

#com_owner.check(#jsmsts	#jsmmsg)

endif

endroutine

mthroutine	name(ListSpoolFiles)

*	Retrieve	all	spool	files	created	by	the	nominated	user	with	a	*STD	formtype
*	#jsmcmd	:=	'List	Library(qusrsys)	queue('	+	#jsmoutq	+	')	user('	+	#jsmuserid	+	')	userdata(*ALL)	formtype(*STD)	service_list(flenam,	flenum,	jobname,	jobuser,	jobnumber,	status)'

#jsmcmd	:=	'List	Library(qusrsys)	queue('	+	#jsmoutq	+	')	user('	+	#jsmuserid	+	')	userdata(*ALL)	formtype(*STD)'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg	#spoollst)
#com_owner.check(#jsmsts	#jsmmsg)

clr_list	named(#ltvw_1)
selectlist	named(#spoollst)

add_entry	to_list(#ltvw_1)

endselect

endroutine

mthroutine	name(Convert)

*	add	variables	for	any	additional	keywords	you	need	to	modify
#jsmcmd	:=	'Create	document('	+	#jsmpdfdoc	+	')	name('	+	#filname	+	')	number('	+	#filnbr	+	')	jobname('	+	#jobname	+	')	jobuser('	+	#jobuser	+	')	jobnumber('	+	#jobnbr	+	')	author('	+	jsmuserid	+	')	fontsize(8)	leading(8.5)	orientation(*landscape)	margin(0,	50,50,50)	service_list(pdfkey,pdfvalue)'

use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg	#spoollst)
#com_owner.check(#jsmsts	#jsmmsg)

endroutine

mthroutine	name(DeletePDFFile)

*	delete	tje	nominated	PDF	file
#jsmcmd	:=	'Delete	File('	+	#jsmpdfdoc	+	')'

use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg	#spoollst)
#com_owner.check(#jsmsts	#jsmmsg)

endroutine

mthroutine	name(DisConnect)

if	(#jsmhdle	<>	*blank)

*	disconnect	from	IBM	i	host
use	builtin(jsmx_command)	with_args(#jsmhdle	disconnect)	to_get(#jsmsts	#jsmmsg)

#com_owner.check(#jsmsts	#jsmmsg)

*	unload	the	service
use	builtin(jsmx_command)	with_args(#jsmhdle	service_unload)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	Close	the	thread
use	builtin(jsmx_close)	with_args(#jsmhdle)	to_get(#jsmsts	#jsmmsg)

#jsmhdle	:=	*null

endif

endroutine

*	check	the	JSM	return	status

mthroutine	name(check)
define_map	for(*input)	class(#jsmsts)	name(#i_status)
define_map	for(*input)	class(#jsmmsg)	name(#i_message)

message	msgtxt(#i_status	+	'	:	'	+	#i_message)

endroutine

evtroutine	handling(#GetSpoolFiles.Click)

#com_owner.Connect

if	(#jsmsts	=	OK)

#com_owner.ListSpoolFiles

#getspoolFiles.enabled	:=	false
#ConvertPDF.enabled	:=	true
#disconnect.enabled	:=	true
#DeletePDF.enabled	:=	true

endif

endroutine

evtroutine	handling(#ConvertPDF.Click)

#com_owner.Convert

#getspoolFiles.enabled	:=	false
#ConvertPDF.enabled	:=	true
#disconnect.enabled	:=	true
#DeletePDF.enabled	:=	true

endroutine

evtroutine	handling(#Disconnect.Click)

#com_owner.DisConnect

#getspoolFiles.enabled	:=	true
#ConvertPDF.enabled	:=	false
#disconnect.enabled	:=	false
#DeletePDF.enabled	:=	false

endroutine

evtroutine	handling(#DeletePDF.Click)

#com_owner.DeletePDFFile

#getspoolFiles.enabled	:=	false
#ConvertPDF.enabled	:=	true
#disconnect.enabled	:=	true
#DeletePDF.enabled	:=	true

endroutine
end_com
	

SVFileService	Example
This	simple	form	allows	data	to	be	read	from	or	written	to	a	separated	variable
file.
	
*	Uses	Integrator	Services:	SVFileService
*	This	forms	connects	to	the	local	JSM	Server	and	allows	SV	files	to	be	read,	with	the	resulting	information	displayed	in	a	list,
*	or	written,	based	on	the	information	currently	in	the	list.
*	
*	The	browse	and	working	list	definitions	are	defined	with	5	columns	to	support	the	definition	of	an	order.

*	The	following	field	must	be	defined	in	your	repository:
*	jsmstring											string	1000
*	jsmsts										alpha					20
*	jsmmsg										alpha				255
*	jsmhdle									char					4
*	jsmcmd										alpha			4
	
function	options(*DIRECT)
begin_com	role(*EXTENDS	#PRIM_FORM)	clientheight(573)	clientwidth(692)	framestyle(Dialog)	height(607)	left(441)	top(129)	width(700)

define_com	class(#PRIM_PHBN)	name(#Connect)	caption('Connect')	displayposition(1)	left(5)	parent(#PANL_2)	tabposition(1)	top(5)	width(120)
define_com	class(#PRIM_PHBN)	name(#Read)	caption('Read')	displayposition(2)	enabled(False)	left(135)	parent(#PANL_2)	tabposition(2)	top(5)	width(120)
define_com	class(#PRIM_PHBN)	name(#Disconnect)	caption('Disconnect')	displayposition(5)	enabled(False)	left(525)	parent(#PANL_2)	tabposition(5)	top(5)	width(120)
define_com	class(#PRIM_PHBN)	name(#Write)	caption('Write')	displayposition(3)	enabled(False)	left(265)	parent(#PANL_2)	tabposition(3)	top(5)	width(120)
define_com	class(#PRIM_PHBN)	name(#Clear)	caption('Clear')	displayposition(4)	enabled(False)	left(395)	parent(#PANL_2)	tabposition(4)	top(5)	width(120)

define_com	class(#PRIM_STBR)	name(#stbr_1)	displayposition(1)	height(24)	left(0)	messageposition(1)	parent(#PANL_1)	tabposition(1)	tabstop(False)	top(77)	width(692)

define_com	class(#PRIM_PANL)	name(#PANL_1)	displayposition(2)	height(101)	left(0)	parent(#COM_OWNER)	tabposition(2)	tabstop(False)	top(472)	width(692)
define_com	class(#PRIM_PANL)	name(#PANL_2)	displayposition(2)	height(34)	left(5)	parent(#PANL_1)	tabposition(2)	tabstop(False)	top(34)	width(692)

define_com	class(#PRIM_grid)	name(#detaillst)	columnbuttonheight(15)	componentversion(1)	displayposition(1)	height(366)	left(0)	parent(#COM_OWNER)	selectionstyle(Multiple)	tabposition(1)	top(94)	width(692)
define_com	class(#PRIM_gdcl)	name(#linenum)	caption('Line')	captiontype(Caption)	displayposition(1)	parent(#detaillst)	readonly(False)	source(#STD_NUM)	width(15)
define_com	class(#PRIM_gdCL)	name(#partnum)	caption('Part')	captiontype(Caption)	displayposition(2)	parent(#detaillst)	readonly(False)	source(#STD_OBJ)	width(14)
define_com	class(#PRIM_gdCL)	name(#partdsc)	caption('Description')	captiontype(Caption)	displayposition(3)	parent(#detaillst)	readonly(False)	source(#STD_DESC)	width(30)
define_com	class(#PRIM_gdCL)	name(#partamt)	caption('Unit	Amount')	captiontype(Caption)	displayposition(4)	parent(#detaillst)	readonly(False)	source(#STD_AMNT)
define_com	class(#PRIM_gdCL)	name(#partqty)	caption('Quantity')	captiontype(Caption)	displayposition(5)	parent(#detaillst)	readonly(False)	source(#STD_QTY)	widthtype(Remainder)

define_com	class(#JSMSTRING.Visual)	name(#jsmfile)	caption('Path	and	File	Name')	displayposition(3)	height(19)	labeltype(Caption)	left(10)	marginleft(100)	parent(#COM_OWNER)	tabposition(3)	top(16)	usepicklist(False)	width(594)

define_com	class(#PRIM_GPBX)	name(#GPBX_1)	caption('SV	type')	displayposition(4)	height(45)	left(8)	parent(#COM_OWNER)	tabposition(4)	tabstop(False)	top(40)	width(281)
define_com	class(#PRIM_RDBN)	name(#CSV)	buttonchecked(True)	caption('CSV')	displayposition(1)	height(21)	left(16)	parent(#GPBX_1)	tabposition(1)	top(16)	width(50)
define_com	class(#PRIM_RDBN)	name(#TSV)	caption('TSV')	displayposition(3)	left(88)	parent(#GPBX_1)	tabposition(3)	top(16)	width(50)
define_com	class(#PRIM_RDBN)	name(#SV)	caption('Other')	displayposition(2)	left(152)	parent(#GPBX_1)	tabposition(2)	top(16)	width(50)
define_com	class(#STD_descs.Visual)	name(#separator)	displayposition(4)	height(19)	labeltype(Caption)	left(200)	marginleft(2)	parent(#GPBX_1)	tabposition(4)	top(16)	usepicklist(False)	width(70)

def_list	name(#valueslst)	fields(#std_num	#std_obj	#std_desc	#std_amnt	#std_qty)	counter(#listcount)	type(*working)

evtroutine	handling(#com_owner.Initialize)
#jsmhdle	:=	*default
#com_owner.clearlists
#com_owner.setlist
endroutine

evtroutine	handling(#Connect.Click)
#com_owner.Connect
endroutine

evtroutine	handling(#Read.Click)
#com_owner.ReadSVFile
endroutine

evtroutine	handling(#Disconnect.Click)
#com_owner.DisConnect
endroutine

evtroutine	handling(#Write.Click)
#com_owner.WriteSVFile
endroutine

evtroutine	handling(#Clear.Click)
#com_owner.ClearLists
#com_owner.SetList
endroutine

mthroutine	name(Connect)

if	(#jsmhdle.IsNull)

*	connect	the	JSMX	client	to	the	Java	Service	Manager	and	start	a	thread	for	the	service

*	Start	JSM	Server	on	IBM	i
*	use	builtin(jsmx_open)	with_args('ISERIES01:9990')	to_get(#jsmsts	#jsmmsg	#jsmhdle)

*	Start	default	JSM	server
use	builtin(jsmx_open)	to_get(#jsmsts	#jsmmsg	#jsmhdle)
#com_owner.check(#jsmsts	#jsmmsg)

*	Load	the	service
#jsmcmd	:=	'service_load	service(svfileservice)'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

#connect.enabled	:=	false
#read.enabled	:=	true
#write.enabled	:=	true
#clear.enabled	:=	true
#disconnect.enabled	:=	true

endif

endroutine

mthroutine	name(ReadSVFile)

*	add	variables	for	any	additional	keywords	you	need	to	modify
#jsmcmd	:=	'read	file('	+	#jsmfile	+	')'

if	(#csv.buttonchecked)
#jsmcmd	:=	#jsmcmd	+	'	content(*csv)'
endif

if	(#tsv.buttonchecked)
#jsmcmd	:=	#jsmcmd	+	'	content(*tsv)'
endif

if	(#sv.buttonchecked)

if	(#com_owner.checksv	=	false)
return
endif

#jsmcmd	:=	#jsmcmd	+	'	content(*sv)	separator('	+	#separator	+	')'

endif

#com_owner.ClearLists

use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg	#valueslst)
#com_owner.check(#jsmsts	#jsmmsg)

selectlist	named(#valueslst)
add_entry	to_list(#detaillst)
endselect

*	add	some	blank	entries	to	allow	for	additions	to	the	file
#std_obj	#std_desc	#std_amnt	#std_qty	:=	*null
#std_num	:=	#listcount

begin_loop	using(#std_count)	to(20)
#std_num	:=	#std_num	+	1
add_entry	to_list(#detaillst)
end_loop

endroutine

mthroutine	name(WriteSVFile)

clr_list	named(#valueslst)

selectlist	named(#detaillst)

if	(#std_obj	<>	*blank)
add_entry	to_list(#valueslst)
endif

endselect

*	add	variables	for	any	additional	keywords	you	need	to	modify
#jsmcmd	:=	'write	file('	+	#jsmfile	+	')'

if	(#csv.buttonchecked)
#jsmcmd	:=	#jsmcmd	+	'	content(*csv)'
endif

if	(#tsv.buttonchecked)
#jsmcmd	:=	#jsmcmd	+	'	content(*tsv)'
endif

if	(#sv.buttonchecked)

if	(#com_owner.checksv	=	false)
return
endif

#jsmcmd	:=	#jsmcmd	+	'	content(*sv)	separator('	+	#separator	+	')'

endif

use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg	#valueslst)
#com_owner.check(#jsmsts	#jsmmsg)

endroutine

mthroutine	name(ClearLists)

clr_list	named(#valueslst)
clr_list	named(#detaillst)

endroutine

mthroutine	name(SetList)

#std_obj	#std_desc	#std_amnt	#std_qty	:=	*null

begin_loop	using(#std_num)	to(20)
add_entry	to_list(#detaillst)
end_loop

endroutine

mthroutine	name(DisConnect)

if	(#jsmhdle	<>	*blank)

*	disconnect	from	IBM	i	host
use	builtin(jsmx_command)	with_args(#jsmhdle	disconnect)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	unload	the	service
use	builtin(jsmx_command)	with_args(#jsmhdle	service_unload)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	Close	the	thread
use	builtin(jsmx_close)	with_args(#jsmhdle)	to_get(#jsmsts	#jsmmsg)

#jsmhdle	:=	*null

#connect.enabled	:=	true
#read.enabled	:=	false
#write.enabled	:=	false
#clear.enabled	:=	false
#disconnect.enabled	:=	false

endif

endroutine

*	check	the	JSM	return	status

mthroutine	name(check)
define_map	for(*input)	class(#jsmsts)	name(#i_status)
define_map	for(*input)	class(#jsmmsg)	name(#i_message)

message	msgtxt(#i_status	+	'	:	'	+	#i_message)

endroutine

mthroutine	name(checkSV)
define_map	for(*result)	class(#std_bool)	name(#i_state)	mandatory('true')

if	(#separator	*EQ	*blank)
use	builtin(message_box_show)	with_args(ok	ok	ERROR	ERROR	'Character	used	as	separator	must	be	entered')
#i_state	:=	false
endif

endroutine
end_com
	

ExcelReadService	Example
*	Uses	Integrator	Services:	ExcelReadService
	
*	This	forms	connects	to	the	local	JSM	Server	and	allows	Excel	files	to	be	read,	with	the	resulting	information	displayed	in	a	list,
*	or	written,	based	on	the	information	currently	in	the	list.
*	
*	The	browse	and	working	list	definitions	are	defined	with	5	columns	to	support	the	definition	of	an	order.

*	The	following	field	must	be	defined	in	your	repository:
*	jsmstring											string	1000
*	jsmstatus											string	20
*	jsmsts														alpha		20
*	jsmmsg														alpha		255
*	jsmhdle													char			4
*	jsmcmd														alpha		255

function	options(*DIRECT)
begin_com	role(*EXTENDS	#PRIM_FORM)	clientheight(573)	clientwidth(692)	framestyle(Dialog)	height(607)	left(441)	top(129)	width(700)

define_com	class(#PRIM_PHBN)	name(#Get)	caption('Get')	displayposition(1)	left(8)	parent(#PANL_2)	tabposition(1)	top(5)	width(120)
define_com	class(#PRIM_PHBN)	name(#Read)	caption('Read')	displayposition(2)	left(135)	parent(#PANL_2)	tabposition(2)	top(5)	width(120)
define_com	class(#PRIM_PHBN)	name(#Write)	caption('Write')	displayposition(3)	left(265)	parent(#PANL_2)	tabposition(3)	top(5)	width(120)
define_com	class(#PRIM_PHBN)	name(#Clear)	caption('Clear')	displayposition(4)	left(395)	parent(#PANL_2)	tabposition(4)	top(5)	width(120)

define_com	class(#PRIM_STBR)	name(#stbr_1)	displayposition(1)	height(24)	left(0)	messageposition(1)	parent(#PANL_1)	tabposition(1)	tabstop(False)	top(77)	width(692)

define_com	class(#PRIM_PANL)	name(#PANL_1)	displayposition(2)	height(101)	left(0)	parent(#COM_OWNER)	tabposition(2)	tabstop(False)	top(472)	width(692)
define_com	class(#PRIM_PANL)	name(#PANL_2)	displayposition(2)	height(34)	left(5)	parent(#PANL_1)	tabposition(2)	tabstop(False)	top(34)	width(692)

define_com	class(#PRIM_grid)	name(#detaillst)	columnbuttonheight(15)	componentversion(1)	displayposition(1)	height(324)	left(0)	parent(#COM_OWNER)	selectionstyle(Multiple)	tabposition(1)	top(136)	width(692)
define_com	class(#PRIM_gdcl)	name(#linenum)	caption('Line')	captiontype(Caption)	displayposition(1)	parent(#detaillst)	readonly(False)	source(#STD_NUM)	width(10)
define_com	class(#PRIM_gdCL)	name(#partnum)	caption('Part')	captiontype(Caption)	displayposition(2)	parent(#detaillst)	readonly(False)	source(#STD_OBJ)	width(12)
define_com	class(#PRIM_gdCL)	name(#partdsc)	caption('Description')	captiontype(Caption)	displayposition(3)	parent(#detaillst)	readonly(False)	source(#STD_DESCL)	widthtype(Remainder)
define_com	class(#PRIM_gdCL)	name(#partamt)	caption('Unit	Amount')	captiontype(Caption)	displayposition(4)	parent(#detaillst)	readonly(False)	source(#STD_AMNT)	width(15)
define_com	class(#PRIM_gdCL)	name(#partqty)	caption('Quantity')	captiontype(Caption)	displayposition(5)	parent(#detaillst)	readonly(False)	source(#STD_QTY)	width(15)
define_com	class(#JSMSTRING.Visual)	name(#jsmfile)	caption('Path	and	File	Name')	displayposition(4)	height(19)	labeltype(Caption)	left(10)	marginleft(100)	parent(#COM_OWNER)	tabposition(4)	top(16)	usepicklist(False)	width(594)

define_com	class(#JSMSTATUS.Visual)	name(#jsmsheet)	caption('Worksheet')	displayposition(3)	height(19)	labeltype(Caption)	left(10)	marginleft(100)	parent(#COM_OWNER)	tabposition(3)	top(40)	usepicklist(False)	width(263)

def_list	name(#valueslst)	fields(#std_num	#std_obj	#std_descl	#std_amnt	#std_qty)	counter(#listcount)	type(*working)
def_list	name(#sheetlst)	fields(#std_descl)	type(*working)

evtroutine	handling(#com_owner.Initialize)
#jsmhdle	:=	*default

#com_owner.clearlists
#com_owner.setlist
#com_owner.Load
endroutine

evtroutine	handling(#Get.Click)
#com_owner.GetExcelInfo
endroutine

evtroutine	handling(#Read.Click)
#com_owner.ReadExcelFile
endroutine

evtroutine	handling(#Write.Click)
#com_owner.WriteExcelFile
endroutine

evtroutine	handling(#Clear.Click)
#com_owner.ClearLists
#com_owner.SetList
endroutine

evtroutine	handling(#com_owner.closing)
#com_owner.Unload
endroutine

mthroutine	name(Load)
if	(#jsmhdle.IsNull)

*	connect	the	JSMX	client	to	the	Java	Service	Manager	and	start	a	thread	for	the	service

*	Start	default	JSM	server
use	builtin(jsmx_open)	to_get(#jsmsts	#jsmmsg	#jsmhdle)
#com_owner.check(#jsmsts	#jsmmsg)

*	Load	the	service
#jsmcmd	:=	'service_load	service(ExcelReadService)'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

endif
endroutine

*	Get	EXCEL	document	information
mthroutine	name(GetExcelInfo)

#com_owner.ClearLists
#std_num	:=	0

*	open	the	document
#com_owner.OpenDocument(read)

*	get	details	about	the	EXCEL	file
#jsmcmd	:=	'get	object(*sheets)'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg	#sheetlst)
#com_owner.check(#jsmsts	#jsmmsg)

if	(#jsmsts	=	OK)

#std_num	:=	#std_num	+	1
#std_descl	:=	'Current	document	has	worksheets:	'
add_entry	to_list(#detaillst)

selectlist	named(#sheetlst)
#std_num	:=	#std_num	+	1
add_entry	to_list(#detaillst)
endselect

endif

*	get	rowcount	for	nominated	wroksheet
#jsmcmd	:=	'get	object(*rowcount)	sheet('	+	#jsmsheet	+	')'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

if	(#jsmsts	=	OK)

#std_num	:=	#std_num	+	1

if	(#jsmfile	=	*blank)
#std_descl	:=	'Number	of	rows	in	worksheet	sheet1	is	'	+	#jsmmsg
else
#std_descl	:=	'Number	of	rows	in	worksheet	'	+	#jsmsheet	+	'	is	'	+	#jsmmsg
endif

add_entry	to_list(#detaillst)

endif

*	close	all	documents
#com_owner.CloseDocuments

endroutine

*	Read	information	from	an	EXCEL	document
mthroutine	name(ReadExcelFile)

*	open	the	document
#com_owner.OpenDocument(read)

#com_owner.ClearLists

*	read	EXCEL	file
#jsmcmd	:=	'read	sheet('	+	#jsmsheet	+	')'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg	#valueslst)
#com_owner.check(#jsmsts	#jsmmsg)

if	(#jsmsts	=	OK)

selectlist	named(#valueslst)
add_entry	to_list(#detaillst)
endselect

endif

*	add	some	blank	entries	to	allow	for	additions	to	the	file
#std_obj	#std_descl	#std_amnt	#std_qty	:=	*null
#std_num	:=	#listcount

begin_loop	using(#std_count)	to(20)
#std_num	:=	#std_num	+	1
add_entry	to_list(#detaillst)
end_loop

*	close	all	documents
#com_owner.CloseDocuments

endroutine

*	Write	list	details	to	the	EXCEL	document
mthroutine	name(WriteExcelFile)

clr_list	named(#valueslst)

selectlist	named(#detaillst)

if	(#std_obj	<>	*blank)

add_entry	to_list(#valueslst)

endif

endselect

*	open	the	document
#com_owner.OpenDocument(write)

*	add	variables	for	any	additional	keywords	you	need	to	modify

#jsmcmd	:=	'write	sheet('	+	#jsmsheet	+	')'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg	#valueslst)
#com_owner.check(#jsmsts	#jsmmsg)

*	close	all	documents
#com_owner.CloseDocuments

endroutine

*	Open	an	EXCEL	document
mthroutine	name(OpenDocument)
define_map	for(*input)	class(#prim_alph)	name(#i_mode)

*	open	the	nominated	EXCEL	file
#jsmcmd	:=	'open	file('	+	#jsmfile	+	')	mode(*'	+	#i_mode	+	')'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

endroutine

*	Close	all	open	EXCEL	documents
mthroutine	name(CloseDocuments)

#jsmcmd	:=	'close'
use	builtin(jsmx_command)	with_args(#jsmhdle	#jsmcmd)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

endroutine

*	Clear	all	lists	used	for	processing
mthroutine	name(ClearLists)

#valueslst	:=	*null
clr_list	named(#sheetlst)
clr_list	named(#valueslst)
clr_list	named(#detaillst)

endroutine

*	set	default	entries	in	list
mthroutine	name(SetList)

#std_obj	#std_descl	#std_amnt	#std_qty	:=	*null

begin_loop	using(#std_num)	to(20)
add_entry	to_list(#detaillst)
end_loop

endroutine

*	Unload	the	service
mthroutine	name(Unload)

if	(#jsmhdle	<>	*blank)

*	unload	the	service
use	builtin(jsmx_command)	with_args(#jsmhdle	service_unload)	to_get(#jsmsts	#jsmmsg)
#com_owner.check(#jsmsts	#jsmmsg)

*	Close	the	thread
use	builtin(jsmx_close)	with_args(#jsmhdle)	to_get(#jsmsts	#jsmmsg)

endif

endroutine

*	check	the	JSM	return	status
mthroutine	name(check)
define_map	for(*input)	class(#jsmsts)	name(#i_status)
define_map	for(*input)	class(#jsmmsg)	name(#i_message)

message	msgtxt(#i_status	+	'	:	'	+	#i_message)

endroutine

end_com
]
	

SQLService	Example
This	RDMLX	form	provides	an	example	of	using	the	SQLService.	The	form
allows	you	to	Connect	to	a	database	with	a	JDBC	driver,	then	to	Execute	a
Query	against	this	database.	To	view	the	data	the	user	will	run	a	READ
command	to	download	the	data	from	the	server	and	display	it	in	a	list	view.
Note	that	in	this	example	connection	is	to	an	IBM	i	database	called	JSMJDBC
(since	this	is	an	IBM	i	example,	the	database	name	is	a	library	name).	The
driver	name	used	in	the	CONNECT	command	corresponds	to	the	driver	name
and	path	defined	in	the	SQLService	properties	file.	The	file	being	accessed	is
called	TBLNAME	and	it	consists	of	the	fields	ID,	NAME,	AGE,	SALARY,
DEPT,	and	GRADE.
To	run	this	example	you	will	need	to	do	the	following:
a.		Ensure	that	you	have	the	JDBC	driver	for	the	database	installed	into	the	jar
directory	of	your	LANSA	Integrator	instance.	Also	ensure	that	the
SQLServices.properties	file	contains	the	details	of	this	JDBC	driver	and	the
database	that	you	are	connecting	to.

b.		Define	two	fields	in	the	LANSA	Repository:
#JSMSTS,	Char,	Length	20
#JSMMSG,	Char,	Length	255

c.		Set	the	#JSMSRV	field	to	the	correct	JSM	server	(and	port)	value.
This	code	example	uses	the	following	steps:
1.		Define	the	JSMCOMMAND	related	fields.
2.		Define	the	fields	that	will	be	used	to	map	the	table	fields	to	the	columns	in
the	results	list.	The	fields	defined	here	should	match	the	length	and	type	of
the	fields	defined	in	the	table	being	queried.

3.		Define	the	2	fields	required	for	the	list	that	is	used	to	hold	the	field	column
mappings.

4.		Define	the	list	that	will	hold	the	column	mappings.	This	should	be	a	two
column	list.	-		the	first	column	in	this	list	will	hold	the	column	name	and	the
second	field	will	hold	the	field	name.

5.		Define	two	working	lists	using	the	fields	defined	in	the	step	2.	These	lists
will	be	populated	by	the	READ	command	from	the	result	list	that	the	query
generates.	In	this	example,	2	lists	are	created	to	demonstrate	how	you	can

keep	going	back	to	the	result	list	to	access	different	columns	as	and	when
required.	Two	browselists	are	defined	that	are	the	same	shape	as	these
working	lists,	and	these	will	be	used	to	display	the	results	on	a	screen.

6.		Set	up	the	JSM	server	settings.
7.		Connect	to	the	JSM	system	then	the	SQLService.
8.		The	JSMX_OPEN	Built	In	Function	is	used	to	connect	this	JSMX	client	to
the	Java	Services	Manager,	and	to	start	a	thread	for	the	service.

9.		The	Service_Load(SQLService)	command	loads	and	initializes	the	service.
10.	Connect	to	the	JDBC	driver.
11.	Define	the	column	field	mappings.	This	is	done	by	setting	#FIELD	to	the
appropriate	column	and	the	#1.	COLUMN	to	the	appropriate	field	name
(from	the	table).	Each	mapping	will	be	added	as	a	new	entry	to	the
#MAPLST	working	list,	and	then	a	SET	PARAMETER(*MAP)	command
will	be	issued.	Notice	that	a	SERVICE_LIST	is	passed	as	part	of	this
command	-	the	fields	defined	here	are	those	used	in	the	mapping	list.	The
mapping	list	must	also	be	specified	in	the	TO_GET	portion	of	the	JSM
command.

12.	Disconnect	from	the	JDBC	driver	then	the	JSM	system.
13.	When	the	form	is	closed,	disconnect	from	the	service,	unload	the	temporary
directory	and	close	the	service.

*
*	This	RDMLX	form	provides	an	example	of	using	the
*	SQLService.	The	form	allows	you	to	Connect	to	a	
*	database	with	a	JDBC	driver,	then	to	Execute	a
*	Query	against	this	database.	To	view	the	data	the
*	user	will	run	a	Read	command	to	download	the	data
*	from	the	server	and	display	it	in	a	list	view.
*	
*	Note	that	in	this	example	connection	is	to	a
*	IBM	i	database	called	JSMJDBC	(since	this	is	a
*	IBM	i	example,	the	database	name	is	a	library	name).
*	The	driver	name	used	in	the	CONNECT	command
*	corresponds	to	the	driver	name	and	path	defined
*	in	the	SQLService	properties	file.	The	file	being
*	accessed	is	called	TBLNAME	and	it	consists	of	the

*	fields	ID,	NAME,	AGE,	SALARY,	DEPT,	and	GRADE.
*	
*	Disclaimer	:	The	following	material	is	supplied	as
*	sample	material	only.	No	warranty	concerning	this
*	material	or	its	use	in	any	way	whatsoever	is
*	expressed	or	implied.
*

FUNCTION	OPTIONS(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_FORM)	Clientheight(380)	Clientwidth(679)	Height(407)	Left(313)	Top(101)	Width(687)
Define_Com	Class(#PRIM_STBR)	Name(#STBR_1)	Displayposition(1)	Height(24)	Left(0)	Messageposition(1)	Parent(#COM_OWNER)	Tabposition(1)	Tabstop(False)	Top(356)	Width(679)
Define_Com	Class(#PRIM_LTVW)	Name(#READA)	Componentversion(2)	Displayposition(2)	Fullrowselect(True)	Height(150)	Left(168)	Parent(#COM_OWNER)	Showsortarrow(True)	Tabposition(2)	Top(24)	Width(500)
Define_Com	Class(#PRIM_PHBN)	Name(#READ1)	Caption('Read	1')	Displayposition(3)	Left(40)	Parent(#COM_OWNER)	Tabposition(3)	Top(61)
Define_Com	Class(#PRIM_PHBN)	Name(#READ2)	Caption('Read	2')	Displayposition(4)	Left(43)	Parent(#COM_OWNER)	Tabposition(4)	Top(112)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_1)	Displayposition(1)	Parent(#READA)	Source(#SQLREAD)	Width(100)
	
*	Define	the	JSMCOMMAND	related	fields
Define	Field(#JSMCMD)	Type(*Char)	Length(255)
Define	Field(#JSMHND)	Type(*Char)	Length(4)
Define	Field(#JSMSRV)	Type(*Char)	Length(50)
	
*	Define	the	fields	that	will	be	used	to	map	the	table	fields	to	the	columns	in	the	results	list.	The	fields	defined	here	should	match	the	length	and	type	of	the	fields	defined	in	the	table	being	queried
Define	Field(#COL1)	Type(*Char)	Length(010)
Define	Field(#COL2)	Type(*Char)	Length(020)
Define	Field(#COL3)	Type(*Dec)	Length(008)	Decimals(0)
Define	Field(#COL4)	Type(*Dec)	Length(012)	Decimals(2)
	
*	Define	the	2	fields	required	for	the	list	that	is	used	to	hold	the	field	column	mappings.
Define	Field(#FIELD)	Type(*Char)	Length(010)
Define	Field(#COLUMN)	Type(*Char)	Length(030)
	
*	Define	the	list	that	will	hold	the	column	mappings.	This	should	be	a	two	column	list	-	the	first	column	in	this	list	will	hold	the	column	name	and	the	second	field	will	hold	the	field	name
Def_List	Name(#MAPLST)	Fields(#FIELD	#COLUMN)	Type(*Working)
	
*	Define	2	working	lists	using	the	fields	defined	in	the	step	2.	These	lists	will	be	populated	by	the	Read	command	from	the	result	list	that	the	query	generates.	We	are	creating	2	here	to	demonstrate	how	we	can	keep	going	back	to	the	result	list	to	access	different	columns	as	and	when	required.	We	also	define	2	browselists	of	the	same	shape	as	these	working	lists,	and	these	will	be	used	to	display	the	results	on	a	screen
Def_List	Name(#WRKLST1)	Fields(#COL1	#COL3)	Type(*Working)
Def_List	Name(#WRKLST2)	Fields(#COL1	#COL2	#COL4)	Type(*Working)
	
EVTROUTINE	handling(#com_owner.Initialize)

	
SET	#com_owner	caption(*component_desc)
	
*	Set	up	the	JSM	server	settings
#JSMSRV	:=	'LANSA01:4560'
	
*	Execute	the	method	to	connect	to	the	SQLService.
#COM_OWNER.Connect
	
*	Set	up	the	mapping
#COM_OWNER.Mapping
	
*	Execute	the	query
#COM_OWNER.RunQuery
	
ENDROUTINE
	
*	Connect	to	the	JSM	system	then	the	SQLService
Mthroutine	Name(Connect)
	
*	'Open	service'
*	The	JSMX_OPEN	Builtin	Function	is	used	to	connect	this	JSMX	client	to	the	Java	Services	Manager,	and	to	start	a	thread	for	the	service.
Use	Builtin(JSMX_OPEN)	With_Args(#JSMSRV)	To_Get(#JSMSTS	#JSMMSG	#JSMHND)
#COM_OWNER.Check(#JSMSTS	#JSMMSG)
	
*	'Load	service'
*	The	Service_Load(SQLService)	command	loads	and	initializes	the	service.
#JSMCMD	:=	'Service_Load	Service	(SQLService)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
#COM_OWNER.Check(#JSMSTS	#JSMMSG)
	
*	Connect	to	the	JDBC	driver
#JSMCMD	:=	'Connect	Driver(DB2)	Database(JSMJDBC)	User(ALICK)	Password(MEL123)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
#COM_OWNER.Check(#JSMSTS	#JSMMSG)
	
Endroutine
	
Mthroutine	Name(Mapping)

	
*	Define	the	column	field	mappings.	This	is	done	by	setting	#FIELD	to	the	appropriate	column	and	the	#COLUMN	to	the	appropriate	field	name	(from	the	table).	Each	mapping	will	be	added	as	a	new	entry	to	the	#MAPLST	working	list,	and	then	a	SET	PARAMETER(*MAP)	command	will	be	issued.	Notice	that	a	SERVICE_LIST	is	passed	as	a	part	of	this	command	-	the	fields	defined	here	are	those	used	in	the	mapping	list.	The	mapping	list	must	also	be	specified	in	the	TO_GET	portion	of	the	JSM	command.
#FIELD	:=	COL1
#COLUMN	:=	ID
Add_Entry	To_List(#MAPLST)
#FIELD	:=	COL2
#COLUMN	:=	NAME
Add_Entry	To_List(#MAPLST)
#FIELD	:=	COL3
#COLUMN	:=	AGE
Add_Entry	To_List(#MAPLST)
#FIELD	:=	COL4
#COLUMN	:=	SALARY
Add_Entry	To_List(#MAPLST)
	
#JSMCMD	:=	'Set	Parameter(*Map)	Service_List(FIELD,COLUMN)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG	#MAPLST)
#COM_OWNER.Check(#JSMSTS	#JSMMSG)
	
ENDROUTINE
	
Mthroutine	Name(RunQuery)
	
#JSMCMD	:=	'Execute	Query(Select	ID,NAME,AGE,SALARY	From	TBLNAME)'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
#COM_OWNER.Check(#JSMSTS	#JSMMSG)
	
ENDROUTINE
	
*Disconnect	from	the	JDBC	driver	then	the	JSM	system
Mthroutine	Name(Disconnect)
	
*	Disconnect	from	the	service
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	DISCONNECT)	To_Get(#JSMSTS	#JSMMSG)
#COM_OWNER.Check(#JSMSTS	#JSMMSG)
	
*	'Unload	service'
*	This	command	is	required	to	unload	the	service	and	to	remove	the	temporary	directory.
#JSMCMD	:=	'Service_Unload'

Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	#JSMCMD)	To_Get(#JSMSTS	#JSMMSG)
#COM_OWNER.Check(#JSMSTS	#JSMMSG)
	
*	'Close	service'
*	The	final	step	in	the	process	is	to	close	the	service.
Use	Builtin(JSMX_CLOSE)	With_Args(#JSMHND)	To_Get(#JSMSTS	#JSMMSG)
#COM_OWNER.Check(#JSMSTS	#JSMMSG)
	
Endroutine
	
*	When	the	form	is	closed	we	want	to	disconnect	from	the	service
EVTROUTINE	HANDLING(#COM_OWNER.Closing)	OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)
	
#COM_OWNER.Disconnect
	
ENDROUTINE
	
EVTROUTINE	HANDLING(#READ1.Click)
	
Clr_List	#WRKLST1
Clr_List	#READA
	
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	'Read	Service_List(COL1,COL3)	Scroll(*NO)')	To_Get(#JSMSTS	#JSMMSG	#WRKLST1)
#COM_OWNER.Check(#JSMSTS	#JSMMSG)
	
Selectlist	#wrklst1
	
#SQLREAD	:=	#COL1.Trim	+	'	'	+	#COL3.AsString.Trim
Add_Entry	#reada
	
EndSelect
	
ENDROUTINE
	
EVTROUTINE	HANDLING(#READ2.Click)
	
Clr_List	#WRKLST2
Clr_List	#READA
	

Use	Builtin(JSMX_COMMAND)	With_Args(#JSMHND	'Read	Service_List(COL1,COL2,COL4)	Scroll(*NO)')	To_get(#JSMSTS	#JSMMSG	#WRKLST2)
#COM_OWNER.Check(#JSMSTS	#JSMMSG)
	
SelectList	#WRKLST2
	
#SQLREAD	:=	#COL1.Trim	+	'	'	+	#COL2.Trim	+	'	'	+	#COL4.AsString.Trim
Add_Entry	#READA
	
ENDSELECT
	
ENDROUTINE
	
*	The	following	method	routine	is	used	by	all	the	JSMX	commands	to	handle	any	errors	that	are	encountered.
Mthroutine	Name(Check)
	
Define_Map	For(*Input)	Class(#JSMSTS)	Name(#I_STATUS)
Define_Map	For(*Input)	Class(#JSMMSG)	Name(#I_MESSAGE)
	
Message	Msgtxt(#JSMSTS.Trim	+	':	'	+	#JSMMSG)
	
Endroutine
	
END_COM
	
	
	

aXesTerminalService	Example
This	example	will	automate	a	5250	session,	utilising	the	maintenance	programs
shipped	with	the	Personnel	Demo	System,	to	insert	Employee	details	into	the
PSLMST	file.
In	order	to	demonstrate	how	to	use	the	Commands	and	Keywords	for	the
aXesTerminalService,	the	following	sample	code	written	in	LANSA	is	provided
using	the	JSMX	(RDMLX)	BIFs.
Note:	This	example	inserts	a	new	employee	using	the	Employee	ID	A9090.	
The	employee	id	must	be	unique	in	the	personnel	system	files.		You	must	ensure
that	it	does	not	already	exist.		Each	time	you	execute	the	example,	you	must
delete	the	employee	record	before	executing	the	example	again,	or	change	the
employee	id	used	in	the	code	and	recompile	the	function.
Note:		This	example	deliberately	uses	very	limited	exception	handling	code	in
order	that	the	main	program	steps	might	remain	clear.
To	use	this	example,	you	must:
1.		Identify	the	name	of	a	user	profile	that	has	access	and	authority	to	the
LANSA	demonstration	personnel	system.		In	addition,	the	example	code	as
supplied	makes	the	following	assumptions:

the	user's	initial	menu	includes	a	command	entry	line	at	row	18,	column	7
(where	the	example	program	will	type	the	LANSA	command	to	start	the
personnel	system	employee	entry	function)
the	user	is	authorised	to	use	the	commands	(LANSA	and	SIGNOFF)
the	user's	initial	library	list	includes	the	necessary	LANSA	libraries.

					If	any	of	these	assumptions	are	not	correct	for	the	user	you	have	chosen,	you
may	to	change	the	supplied	example	code	accordingly.

2.		Identify	the	following	details	necessary	to	connect	to	the	aXes	Terminal
Server	on	your	system:

HOST The	host	name	of	the	aXes	TerminalServer	in	your
environment.	You	can	usually	use	the	network	name	of	the
IBM	i	system	on	which	aXes	is	installed	and	running.

PORT The	port	number	on	which	the	aXes	Terminal	Server	is
listening.	By	default	aXes	listens	on	port	80.

USER The	name	of	the	IBM	i	user	profile	defined	on	the	HOST

system	that	you	identified	above
PASSWORD The	password	for	the	user	profile	specified	by	the	USER

keyword.

	

3.		Change	the	code	in	the	example	that	builds	and	executes	the	CONNECT
service	command	to	use	the	details	you	identified	above.
	
*	---
*		Process:		Tutorial
*		Function:		AXES001
*		Created	on:		July	13,	2011
*		Description:		Utilising	the	AxesTerminalService
*	---
	
Function	Options(*DIRECT)
	
*	If	these	required	fields	are	already	defined	in	the	repository	then	comment	or	remove	these	definitions
	
Define	Field(#jsmsts)	Type(*char)	Length(20)
Define	Field(#jsmmsg)	Type(*char)	Length(255)
Define	Field(#jsmxhdle1)	Type(*char)	Length(4)
Define	Field(#jsmxcmd)	Type(*char)	Length(355)
	
*	Field	to	receive	the	aXes	screen	name	from	the	aXesTerminalService
*	(not	used	in	this	example	program,	but	included	for	illustration)
	
Define	Field(#AXSCREEN)	Type(*Char)	Length(256)
	
*	Dummy	working	list	used	to	exchange	fields	with	the	JSM
	
Def_list	Name(#EXCHANGE1)	Fields(#AXSCREEN)	Type(*Working)	Entrys(1)
	
*	---
*	Program	Mainline
*	---
	

*	Open	a	connection	to	the	JSM
	
Use	Builtin(JSMX_OPEN)	To_Get(#JSMSTS	#JSMMSG	#jsmxhdle1)
Execute	Subroutine(CHECK_STS)	With_Parms(#jsmxhdle1)
	
*	Load	the	aXesTerminalService
	
#JSMXCMD	:=	'SERVICE_LOAD'
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	'SERVICE'	'AXESTERMINALSERVICE')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	'TRACE'	'*YES')
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
	
*	Connect	to	the	aXes	server
*	NB:	PLEASE	CHANGE	CONNECTION	DETAILS	TO	SUIT	YOUR	ENVIRONMENT
	
*	NOTE	THE	USE	OF	THE	#EXCHANGE1	DUMMY	WORKING	LIST	TO	EXCHANGE
*	FUNCTION	FIELD	VALUES	WITH	THE	SERVICE.		(THE	FIELDS	ARE	NOT
*	USED	IN	THIS	EXAMPLE.)		YOU	COULD	ADD	'SERVICE_EXCHANGE(*FIELD)'
*	TO	THE	JSM	COMMAND	STRING	FOR	SIMILAR	EFFECT.
*	IN	THIS	CASE,	THIS	ALLOWS	US	TO	RECEIVE	THE	AXES	SCREEN	NAME
*	OF	THE	RESULTING	5250	SCREEN	INTO	THE	FUNCTION	FIELD	#AXSCREEN.
	
#JSMXCMD	:=	CONNECT
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	HOST	'MYSERVER')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	PORT	'80')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	USER	'MYUSER')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	PASSWORD	'MYPASSWORD')
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD	#EXCHANGE1)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	
*		Send	(Press	Enter)	Command	to	continue
*	(This	is	in	case	the	"Display	Program	Messages"	display	is	shown)
*	(NOTE	AGAIN	THE	USE	OF	THE	#EXCHANGE1	DUMMY	WORKING	LIST)
	
#JSMXCMD	:=	SEND
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD	#EXCHANGE1)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	

*		Start	LANSA	to	execute	the	Enrol	function	in	PSLSYS	Process
*	(NOTE	AGAIN	THE	USE	OF	THE	#EXCHANGE1	DUMMY	WORKING	LIST)
	
#JSMXCMD	:=	SETBYPOS
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	ROW	'18')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	COL	'7')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	SENDKEY	ENTER)
	
Use	Builtin(TCONCAT)	With_Args(#jsmxcmd	'	VALUE("LANSA	REQUEST(RUN)	PROCESS(PSLSYS)	FUNCTION(ENROL)	PARTITION(DEM)	LANGUAGE(ENG)")')	To_Get(#JSMXCMD)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD	#EXCHANGE1)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	
*		Type	the	Employee	ID
*		NB:	Employee	ID	used	must	NOT	be	already	used
	
#JSMXCMD	:=	SETBYPOS
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	ROW	'3')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	COL	'43')
Use	Builtin(TCONCAT)	With_Args(#jsmxcmd	'	VALUE(A9090)')	To_Get(#JSMXCMD)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	
*		Type	the	Surname
	
#JSMXCMD	:=	SETBYPOS
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	ROW	'4')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	COL	'43')
Use	Builtin(TCONCAT)	With_Args(#jsmxcmd	'	VALUE(Smith)')	To_Get(#JSMXCMD)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	
*		Type	the	Given	Name
	
#JSMXCMD	:=	SETBYPOS
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	ROW	'5')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	COL	'43')
Use	Builtin(TCONCAT)	With_Args(#jsmxcmd	'	VALUE(John)')	To_Get(#JSMXCMD)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)

	
*		Type	the	Street	Address
	
#JSMXCMD	:=	SETBYPOS
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	ROW	'6')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	COL	'43')
Use	Builtin(TCONCAT)	With_Args(#jsmxcmd	'	VALUE(1	Some	Street)')	To_Get(#JSMXCMD)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	
*		Type	the	Suburb
	
#JSMXCMD	:=	SETBYPOS
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	ROW	'7')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	COL	'43')
Use	Builtin(TCONCAT)	With_Args(#jsmxcmd	'	VALUE(Sometown)')	To_Get(#JSMXCMD)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	
*		Type	the	State	and	Country
	
#JSMXCMD	:=	SETBYPOS
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	ROW	'8')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	COL	'43')
Use	Builtin(TCONCAT)	With_Args(#jsmxcmd	'	VALUE(CCC)')	To_Get(#JSMXCMD)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	
*		Type	the	Zip	code
	
#JSMXCMD	:=	SETBYPOS
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	ROW	'9')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	COL	'43')
Use	Builtin(TCONCAT)	With_Args(#jsmxcmd	'	VALUE(7111)')	To_Get(#JSMXCMD)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	
*		Type	the	Home	Phone	Number
	

#JSMXCMD	:=	SETBYPOS
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	ROW	'10')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	COL	'43')
Use	Builtin(TCONCAT)	With_Args(#jsmxcmd	'	VALUE(1222222)')	To_Get(#JSMXCMD)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	
*		Type	the	Business	phone	Number
	
#JSMXCMD	:=	SETBYPOS
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	ROW	'11')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	COL	'43')
Use	Builtin(TCONCAT)	With_Args(#jsmxcmd	'	VALUE(133333)')	To_Get(#JSMXCMD)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	
*		Type	the	Department	Code
	
#JSMXCMD	:=	SETBYPOS
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	ROW	'12')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	COL	'43')
Use	Builtin(TCONCAT)	With_Args(#jsmxcmd	'	VALUE(ADM)')	To_Get(#JSMXCMD)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	
*		Type	the	Section	Code
	
#JSMXCMD	:=	SETBYPOS
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	ROW	'13')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	COL	'43')
Use	Builtin(TCONCAT)	With_Args(#jsmxcmd	'	VALUE(04)')	To_Get(#JSMXCMD)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	
*		Type	the	Employee	Salary
	
#JSMXCMD	:=	SETBYPOS
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	ROW	'14')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	COL	'43')

Use	Builtin(TCONCAT)	With_Args(#jsmxcmd	'	VALUE(31222)')	To_Get(#JSMXCMD)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	
*		Type	the	Start	Date
*		AND	press	ENTER	to	submit	the	details
*	(NOTE	AGAIN	THE	USE	OF	THE	#EXCHANGE1	DUMMY	WORKING	LIST)
	
#JSMXCMD	:=	SETBYPOS
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	SENDKEY	ENTER)
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	ROW	'15')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	COL	'43')
Use	Builtin(TCONCAT)	With_Args(#jsmxcmd	'	VALUE(100311)')	To_Get(#JSMXCMD)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD	#EXCHANGE1)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	
*		Press	F3	to	return	to	the	main	menu
*	(NOTE	AGAIN	THE	USE	OF	THE	#EXCHANGE1	DUMMY	WORKING	LIST)
	
#JSMXCMD	:=	SEND
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	SENDKEY	F3)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD	#EXCHANGE1)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	
*		Type	the	SIGNOFF	command	and	press	ENTER
	
#JSMXCMD	:=	SETBYPOS
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	ROW	'18')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	COL	'7')
Execute	Subroutine(KEYWRD)	With_Parms(#JSMXCMD	SENDKEY	ENTER)
Use	Builtin(TCONCAT)	With_Args(#jsmxcmd	'	VALUE("SIGNOFF")')	To_Get(#JSMXCMD)
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)
	
*		Disconnect	from	the	aXes	terminal	server
	
#JSMXCMD	:=	DISCONNECT
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXCMD)

	
*		Unload	the	aXesTerminalService
	
#JSMXCMD	:=	'SERVICE_UNLOAD'
Use	Builtin(JSMX_COMMAND)	With_Args(#JSMXHDLE1	#JSMXCMD)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
	
*		Close	the	connection	to	the	JSM
	
Use	Builtin(JSMX_CLOSE)	With_Args(#JSMXHDLE1)	To_Get(#JSMSTS	#JSMMSG)
Execute	Subroutine(CHECK_STS)	With_Parms(#JSMXHDLE1)
	
Return
	
	
*	---
*	Subroutine	to	build	JSM	commands
*	---
	
Subroutine	Name(KEYWRD)	Parms((#W_CMDX	*BOTH)	(#W_KEYWRD	*RECEIVED)	(#W_KEYVAL	*RECEIVED))
	
Define	Field(#W_CMDX)	Reffld(#JSMXCMD)
Define	Field(#W_KEYWRD)	Reffld(#STD_TEXT)
Define	Field(#W_KEYVAL)	Length(255)	Reffld(#STD_TEXTL)
	
#W_CMDX	+=	'	'	+	#W_KEYWRD	+	'('	+	#W_KEYVAL	+	')'
	
Endroutine
	
*	---
*	Subroutine	to	check	the	JSM	status
*	---
	
Subroutine	Name(CHECK_STS)	Parms(#W_HDLE)
	
Define	Field(#MSGDTA)	Type(*CHAR)	Length(132)
Define	Field(#W_HDLE)	Type(*CHAR)	Length(4)
	
If	Cond('#JSMSTS	*NE	OK')

	
#MSGDTA	:=	'Error	Status	Code:	'	+	#JSMSTS
Message	Msgid(DCM9899)	Msgf(DC@M01)	Msgdta(#MSGDTA)
#MSGDTA	:=	'Error	Message:	'	+	#JSMMSG
Message	Msgid(DCM9899)	Msgf(DC@M01)	Msgdta(#MSGDTA)
	
Endif
	
Endroutine
	

RPG	Examples
FTPService	Example
SMTPMailService	Example
POP3MailService	Example
SMSService	Example
ZipService	Example
PDFSpoolFileService	Example
SVFileService	Example
ExcelReadService	Example
ILE	RPG	Client	JSM	API	Example

FTPService	Example
This	example	program	will	perform	the	following	steps:
1.		Performs	a	series	of	calls	necessary	to	load	the	FTPService
2.		Connects	and	logs	on	to	the	remote	FTP	server	you	specify	using	credentials
that	you	specify	(you	need	to	modify	the	source	code)

3.		Retrieves	the	name	of	the	current	directory	from	the	remote	FTP	server	and
writes	it	to	the	joblog

4.		Changes	the	current	directory	on	the	remote	server	to	the	directory	LIFTPIN
5.		Sends	the	shipped	order.xml	file	to	the	remote	server,	placing	it	in	the
LIFTPIN	directory

6.		Quits	the	ftp	session,	unloads	the	service	and	closes	the	connection	to	the
JSM	server.

Note:
To	test	this	example,	you	need	to	create	the	folder	/LIFTPIN	in	the	IFS	on
the	remote	server.
You	must	specify	your	own	values	for	the	remote	server	name,	user	id	and
password	before	compiling	and	running	the	example.		These	are	all
contained	in	constants	near	the	beginning	of	the	source	code.
You	may	change	the	directory	and	file	names	used	in	the	example	if	you
wish.

Refer	to	the	comments	and	code	in	the	example	for	more	information.
1.			Create	and	run	the	ILE	RPG	example	program
Copy	and	paste	the	source	provided	below	into	a	source	file	member.		Then
modify	the	constant	values	for	server,	user	id	and	password	as	directed	above
and	in	the	source	code.
To	create	the	program,	you	need	to	use	the	CRTRPGMOD	and	CRTPGM
commands.		Make	sure	that	you	use	the	parameter	values	specified	in	the	source
member.

*	FTP:					example	in	RPG	ILE	of	using	the	LANSA	Integrator									
*										FTPService																																															
*																																																																			
*	Note:				This	is	an	example	program	containing	only															

*										rudimentary	exception	handling																											
*																																																																			
*	To	create	this	program	you	must	execute	the	following	commands,			
*	supplying	the	indicated	parameter	values	and	any	others	that	are		
*	necessary	in	your	installation:																																			
*																																																																			
*			CRTRPGMOD	MODULE(<modlib>/FTP)																																		
*													SRCFILE(<srclib>/<srcfil>)																												
*																																																																			
*			CRTPGM				PGM(<pgmlib>/FTP)																																					
*													MODULE(<modlib>/FTP)																																		
*													BNDSRVPGM(<jsmpgmlib>/DCXS882X)																							
*													ACTGRP(*CALLER)																																							

*	You	MUST	replace	the	value	of	these	constants								
*	before	compiling	and	running	this	example												
																																																							
d	ftpserver							c																			'<your	server>'			
d	ftpuser									c																			'<user	id>'							
d	ftppassword					c																			'<password>'						
																																																				
*	IFS	file	and	folder	names	used	by	this	program				
*	-	to	try	this	program	you	need	to	create	the						
*			folder	/LIFTPIN	in	your	IFS																					
*	-	this	example	assumes	the	shipped	ORDER.XML	file	
*			is	present	in	the	JSM	instance	folder											
																																																				
d	flrtarget							c																			'/LIFTPIN'					
d	ftpsource							c																			'ORDER.XML'				
d	ftptarget							c																			'ORDER.XML'				
																																																																						
*	Declare	variables	for	the	JSM	calls																																
																																																																						
d	jsmsrv										s													50a			inz(*blanks)																				
d	jsmsts										s													20a			inz(*blanks)																				
d	jsmmsg										s												255a			inz(*blanks)																				
d	jsmcmd										s												255a			inz(*blanks)																				
d	bytelength						s													10i	0	inz(*zero)																						

																																																																						
*	Completion	messages																																																
																																																																						
d	CompMsg01							c																			'JSMOPEN	call	completed.'							
d	CompMsg02							c																			'		SERVICE_LOAD	call	completed.'
d	CompMsg10							c																			'		CONNECT	call	completed.'					
d	CompMsg20							c																			'		LOGIN	call	completed.'							
d	CompMsg30							c																			'		GETDIR	call	completed.'						
d	CompMsg31							c																			'		-	current	directory	on	+					
d																																										remote	server	is:	'								
d	CompMsg40							c																			'		CHGDIR	call	completed.'						
d	CompMsg50							c																			'		BINARY	call	completed.'						
d	CompMsg60							c																			'		PUT	call	completed.'												
d	CompMsg70							c																			'		QUIT	call	completed.'											
d	CompMsg98							c																			'		SERVICE_UNLOAD	call	completed.'	
d	CompMsg99							c																			'JSMCLOSE	call	completed.'									
																																																																									
*	Procedure	prototypes																																																		
																																																																									
d	CheckResult					pr																																																					
d		crjsts																													const	like(jsmsts)																	
d		crjmsg																													const	like(jsmmsg)																	
																																																																									
d	SendMessage					pr																																																					
d		smText																						512a			VALUE																														
d		smType																							10a			VALUE																														
																																																																									
*	Prototypes	for	the	JSM	calls																																										
																																																																									
/COPY	QRPGLESRC,JSM_PROC.H																																														
																																																																									
*	Open	a	connection	to	the	default	JSM	server																											
*	-	because	the	server	parameter	is	blank,	details	of	the	default		
*			JSM	server	are	obtained	from	the	data	area	JSMCLTDTA	on	IBM	i
*			or	from	the	file	jsmcltdta.txt	on	other	supported	platforms)			
																																																																				
c																			callp					p_jsmopen(jsmsrv:jsmsts:jsmmsg)							
c																			callp					CheckResult(jsmsts:jsmmsg)												
c																			callp					SendMessage(CompMsg01:'*COMP')								

																																																																				
*	Load	the	FTPService																																														
*	-	this	example	explicitly	turns	tracing	on,	overriding	the							
*			settings	in	the	manager.properties	file																								
																																																																				
c																			eval						jsmcmd	=	'SERVICE_LOAD'															
c																													+	'	SERVICE(FTPSERVICE)	TRACE(*YES)'		
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)								
c																			callp					CheckResult(jsmsts:jsmmsg)												
c																			callp					SendMessage(CompMsg02:'*COMP')								
																																																																				
*	Connect	to	FTP	server																																												
																																																																				
c																			eval						jsmcmd	=	'CONNECT'																							
c																													+	'	HOST('	+	%trim(ftpserver)	+	')'						
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)											
c																			callp					CheckResult(jsmsts:jsmmsg)															
c																			callp					SendMessage(CompMsg10:'*COMP')											
																																																																							
*	Login	to	FTP	server																																																	
																																																																							
c																			eval						jsmcmd	=	'LOGIN'																									
c																													+	'	USER('	+	%trim(ftpuser)	+	')'								
c																													+	'	PASSWORD('	+	%trim(ftppassword)	+	')'
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)											
c																			callp					CheckResult(jsmsts:jsmmsg)															
c																			callp					SendMessage(CompMsg20:'*COMP')											
																																																																							
*	Get	the	current	directory	on	the	remote	server																						
*	-	the	current	directory	is	returned	in	the	jsmmsg	field													
																																																																							
c																			eval						jsmcmd	=	'GETDIR'																								
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)											
c																			callp					CheckResult(jsmsts:jsmmsg)												
c																			callp					SendMessage(CompMsg30:'*COMP')								
																																																																				
*	...	output	the	current	directory	name	into	the	joblog	...								
																																																																				
c																			callp					SendMessage(CompMsg31	+	%trim(jsmmsg)	

c																																									:'*COMP')																	
																																																																				
*	Change	the	current	directory	on	the	remote	server																
																																																																				
c																			eval						jsmcmd	=	'CHGDIR'																					
c																													+	'	PATH('	+	%trim(flrtarget)	+	')'			
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)								
c																			callp					CheckResult(jsmsts:jsmmsg)												
c																			callp					SendMessage(CompMsg40:'*COMP')								
																																																																				
*	Set	binary	mode																																																		
																																																																				
c																			eval						jsmcmd	=	'BINARY'																					
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)								
c																			callp					CheckResult(jsmsts:jsmmsg)									
c																			callp					SendMessage(CompMsg50:'*COMP')					
																																																																	
*	Put	file	onto	remote	server																																			
																																																																	
c																			eval						jsmcmd	=	'PUT'																					
c																													+	'	FROM('	+	%trim(ftpsource)	+	')'
c																													+	'			TO('	+	%trim(ftptarget)	+	')'
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)					
c																			callp					CheckResult(jsmsts:jsmmsg)									
c																			callp					SendMessage(CompMsg60:'*COMP')					
																																																																	
*	Quit	the	FTP	session																																										
																																																																	
c																			eval						jsmcmd	=	'QUIT'																				
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)					
c																			callp					CheckResult(jsmsts:jsmmsg)									
c																			callp					SendMessage(CompMsg70:'*COMP')					
																																																																	
*	Unload	the	FTPService																																									
																																																															
c																			eval						jsmcmd	=	'SERVICE_UNLOAD'								
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)			
c																			callp					CheckResult(jsmsts:jsmmsg)							
c																			callp					SendMessage(CompMsg98:'*COMP')			

																																																															
*	Close	the	connection	to	the	JSM	server	and	finish											
																																																															
c																			callp					p_jsmclose(jsmsts:jsmmsg)								
c																			callp					CheckResult(jsmsts:jsmmsg)							
c																			callp					SendMessage(CompMsg99:'*COMP')			
c																			eval						*inlr	=	*on																						
c																			return																																					

*	Procedure	to	check	the	result	of	a	Java	Service	Manager	call

p	CheckResult					b																																												
d	CheckResult					pi																																											
d		crjsts																													const	like(jsmsts)							
d		crjmsg																													const	like(jsmmsg)												
d		crText									s												512a																																	
d		crMsg1									c																			const('JSM	Status	:	')								
d		crMsg2									c																			const('JSM	Message:	')								
d		crMsg3									c																			const('JSM	Service	error	has	+
d																																												occurred')													
c																			if								crjsts	<>	'OK'																								
c																			eval						crText	=	crMsg1	+	crjsts														
c																			callp					SendMessage(crText:'*DIAG')											
c																			eval						crText	=	crMsg2	+	crjmsg														
c																			callp					SendMessage(crText:'*DIAG')											
c																			callp					SendMessage(crMsg3:'*ESCAPE')									
c																			endif																																											
p	CheckResult					e																																																	

*	Procedure	to	send	a	program	message																														

p	SendMessage					b																																																	
																																																																				
d	SendMessage					pi																																													
d	smText																							512a			VALUE																						
d	smMsgT																								10a			VALUE																						
																																																																	

d	smMsgI										s														7a			inz('CPF9897')													
d	smMsgF										s													20a			inz('QCPFMSG			*LIBL					')
d	smDtaL										s													10i	0	inz(%size(smText))									
d	smStkE										s													10a			inz('*')																			
d	smStkC										s													10i	0	inz(1)																					
d	smMsgK										s														4a																														
d	smErrC										s													10i	0	inz(0)																					
																																																																	
c																			if								smMsgT	=	'*ESCAPE'																	
c																			eval						smMsgI	=	'CPF9898'																	
c																			endif																																								
																																																																	
c																			call						'QMHSNDPM'																									
c																			parm																				smMsgI															
c																			parm																				smMsgF															
c																			parm																				smText															
c																			parm																				smDtaL
c																			parm																				smMsgT
c																			parm																				smStkE
c																			parm																				smStkC
c																			parm																				smMsgK
c																			parm																				smErrC
																																																		
p																	e																															

SMTPMailService	Example
This	example	program	will	perform	the	following	steps:
1.		It	performs	a	series	of	calls	necessary	to	load	the	SMTPMailService
2.		It	specifies	the	SMTP	server	and	the	user	and	password	necessary	to	logon	to
that	server	using	the	SET	service	command		(you	need	to	modify	the	source
code	to	provide	details	appropriate	for	your	environment)

3.		It	specifies	the	TO	and	FROM	address	and	SUBJECT	line	for	the	example	e-
mail	it	will	send	using	the	SET	service	command	(you	need	to	modify	the
source	code	to	provide	details	appropriate	for	your	environment)

4.		It	sends	the	example	e-mail	using	the	SEND	service	command	–	in	this
simple	example,	the	body	text	lines	comes	from	compile-time	array	data
coded	in	the	RPG	program,	but	it	could	equally	well	have	come	from	a
database	or	have	been	received	in	various	formats	through	another	LANSA
Integrator	service	call						

5.		It	unloads	the	service	and	closes	the	connection	to	the	JSM	server.
Refer	to	the	comments	and	code	in	the	example	for	more	information.
There	are	three	steps	required	to	make	this	application	work:
1.			Create	the	structure	XML
The	call	to	the	SEND	command	of	the	SMTPMailService	passes	a	multiple
occurrence	data	structure	containing	the	body	text	lines	that	will	be	sent	in	the
e-mail.		For	this	to	work,	the	LANSA	Integrator	service	needs	to	know	the
characteristics	of	this	structure.		This	is	accomplished	by	supplying	an	XML	file
that	describes	the	structure.
For	this	example,	the	required	XML	is	supplied	below.		To	install	this	XML	you
need	to	perform	the	following	steps:
a.		Locate	the	structure	folder	in	the	JSM	instance	folder	for	your	JSM	server
b.		Create	a	file	called	SMTPMailBody.xml
c.		Edit	the	file	with	a	text	editor	and	paste	into	it	the	xml	supplied	below
Note	that	the	field	names	used	in	the	structure	XML	do	not	need	to	match	the
variable	names	used	in	the	RPG	program.		It	is	their	order,	types	and	length	that
are	important	–	not	their	names.
<?xml	version="1.0"	encoding="UTF-8"?>																															
																																																																					

<rdml:structure	xmlns:rdml="http://www.lansa.com/2000/XML/Function">	
																																																																					
			<rdml:field	name="BODYTXT"	type="A"	length="80"		/>															
																																																																					
</rdml:structure>																																																							

2.			Register	the	structure	XML	with	the	JSM	Server
The	example	program	refers	to	the	structure	XML	supplied	above	with	the
symbolic	name	SMTP.MailBodyList	by	specifying	that	name	in	the
SERVICE_STRUCTURE	keyword	of	the	SEND	command.
The	JSM	Server	needs	to	be	given	a	link	between	the	symbolic	name	and	the
actual	name	and	location	of	the	structure	XML	file	created	in	step	1.		To	do	this
you	need	to	perform	the	following	steps:
a.		Locate	the	system	folder	in	the	JSM	instance	folder	for	your	JSM	server
b.		Edit	the	file	structure.properties	with	a	text	editor	and	paste	into	it	the	entry
supplied	below	(make	sure	the	new	entry	is	on	a	line	by	itself)

c.		Save	your	changes
d.		Restart	or	refresh	the	JSM	Server	instance	(refer	to	Java	Service	Manager
Refresh).
					structure.SMTP.MailBodyList=structure/SMTPMailBody.xml

3.			Create	and	run	the	ILE	RPG	example	program
Copy	and	paste	the	source	provided	below	into	a	source	file	member.		Then
modify	the	constant	values	for	server,	user	id	and	password	and	to	and	from
addresses	as	directed	above	and	in	the	source	code.
To	create	the	program,	you	need	to	use	the	CRTRPGMOD	and	CRTPGM
commands.		Make	sure	that	you	use	the	parameter	values	specified	in	the	source
member.

						*	SMTP:				example	in	RPG	ILE	of	using	the	LANSA	Integrator							
						*										SMTPMailService																																								
						*																																																																	
						*	Note:				This	is	an	example	program	containing	only													
						*										rudimentary	exception	handling																									
						*																																																																	
						*	To	create	this	program	you	must	execute	the	following	commands,	
						*	supplying	the	indicated	parameter	values	and	any	others	that	are

						*	necessary	in	your	installation:																																	
						*																																																																	
						*			CRTRPGMOD	MODULE(<modlib>/SMTP)																															
						*													SRCFILE(<srclib>/<srcfil>)																										
						*																																																																	
						*			CRTPGM				PGM(<pgmlib>/SMTP)																																		
						*													MODULE(<modlib>/SMTP)																															
						*													BNDSRVPGM(<jsmpgmlib>/DCXS882X)																					
						*													ACTGRP(*CALLER)																																					

						*	You	MUST	replace	the	value	of	these	constants																
						*	before	compiling	and	running	this	example																				
																																																																					
						*	-	for	smtp_server,	specify	the	network	name	or	address	of				
						*			your	SMTP	mail	server	(this	might	not	be	an	IBM	i	or					
						*			IBM	i	server).		However,	it	must	be	addressable	from	the
						*			system	where	the	LANSA	Integrator	JSM	server	is	running				
																																																																					
						*	-	for	smtp_user,	specify	the	user	name	used	to	login	to	the		
						*			SMTP	server																																																
																																																																					
						*	-	for	smtp_password,	specify	the	password	for	the	smtp_user		
						*			specified	that	is	used	to	login	to	the	SMTP	server									
																																																																					
						*	NB:	user	and	password	might	be	case	sensitive,	depending	on		
						*					the	SMTP	server	you	are	using																												
																																																																					
					d	smtp_server					c																			'<your	server>'											
					d	smtp_user							c																			'<user	id>'															
					d	smtp_password			c																			'<password>'																
																																																																							
						*	-	for	smtp_to,	specify	the	e-mail	address	you	want	to	send					
						*			the	e-mail	to	(for	example,	your	own	e-mail	address)									
																																																																							
						*	-	for	smtp_from,	specify	the	e-mail	address	you	want	the							
						*			e-mail	to	originate	from.		Because	many	SMTP	mail	servers				
						*			prohibit	mail	relay,	this	may	need	to	be	an	address	from	the	
						*			e-mail	domain	that	is	normally	managed	by	the	mail	server.			

						*			You	can	specify	your	own	address	-	it	does	not	matter	if	the	
						*			FROM	address	is	the	same	as	the	TO	address.																		
																																																																							
					d	smtp_to									c																			'<to	address>'														
					d	smtp_from							c																			'<from	address>'												
																																																																							
					d	smtp_subject				c																			'E-mail	generated	+									
					d																																						by	SMTPMailService	+							
					d																																						example	program'											
																																																																							
						*	Declare	variables	for	the	JSM	calls																												
																																																																									
					d	jsmsrv										s													50a			inz(*blanks)																		
					d	jsmsts										s													20a			inz(*blanks)																		
					d	jsmmsg										s												255a			inz(*blanks)																		
					d	jsmcmd										s												255a			inz(*blanks)																		
					d	bytelength						s													10i	0	inz(*zero)																				
																																																																									
						*	Declare	structure	to	send	body	text	to	the	SMTPMailService							
						*	-	in	this	simple	example,	the	data	comes	from	the	compile-time			
						*			array	data,	but	it	could	equally	well	have	come	from	a	database
						*			or	received	through	another	LANSA	Integrator	service	call						
						*	NB:	This	MUST	match	the	structure	xml	provided	to	the	JSM	Server!
																																																																									
					d	smtpbody								ds																		occurs(smtpocur)														
					d																																					based(smtplistptr)												
					d		bodytext																					80a																																	
																																																																									
					d	smtpocur								c																			const(6)																						
					d	smtpsize								c																			const(%size(smtpbody))								
																																																																									
						*	Declare	the	compile-time	array	that	provides	the	body	text											
						*	for	this	simple	example																																														
																																																																													
					d	smtpdata								s													80a			dim(smtpocur)	perrcd(1)	ctdata				
																																																																													
						*	Completion	messages																																																		
																																																																													
					d	CompMsg01							c																			'JSMOPEN	call	completed.'									

					d	CompMsg02							c																			'		SERVICE_LOAD	call	completed.'		
					d	CompMsg10							c																			'		SET	call	completed.'											
					d	CompMsg20							c																			'		SEND	call	completed.'										
					d	CompMsg98							c																			'		SERVICE_UNLOAD	call	completed.'
					d	CompMsg99							c																			'JSMCLOSE	call	completed.'								
																																																																													
						*	Procedure	prototypes																																																	
																																																																													
					d	CheckResult					pr																																																				
					d		crjsts																													const	like(jsmsts)																
					d		crjmsg																													const	like(jsmmsg)																
																																																																													
					d	SendMessage					pr																																																
					d		smText																						512a			VALUE																									
					d		smType																							10a			VALUE																									
																																																																									
						*	Prototypes	for	the	JSM	calls																																					
																																																																									
						/COPY	QRPGLESRC,JSM_PROC.H																																									
																																																																									
						*	Open	a	connection	to	the	default	JSM	server																						
						*	-	because	the	server	parameter	is	blank,	details	of	the	default		
						*			JSM	server	are	obtained	from	the	data	area	JSMCLTDTA	on	IBM	i
						*			or	from	the	file	jsmcltdta.txt	on	other	supported	platforms)			
																																																																									
					c																			callp					p_jsmopen(jsmsrv:jsmsts:jsmmsg)							
					c																			callp					CheckResult(jsmsts:jsmmsg)												
					c																			callp					SendMessage(CompMsg01:'*COMP')								
																																																																									
						*	Load	the	SMTPMailService																																									
						*	-	this	example	explicitly	turns	tracing	on,	overriding	the							
						*			settings	in	the	manager.properties	file																								
																																																																														
					c																			eval						jsmcmd	=	'SERVICE_LOAD'																				
					c																													+	'	SERVICE(SMTPMAILSERVICE)	TRACE(*YES)'		
					c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)													
					c																			callp					CheckResult(jsmsts:jsmmsg)																	
					c																			callp					SendMessage(CompMsg02:'*COMP')													
																																																																														

						*	Set	the	SERVER,	USER	and	PASSWORD	necessary	to	connect	to													
						*	your	SMTP	mail	server																																																	
						*	-	you	MUST	alter	the	constant	definitions	at	the	beginning	of									
						*			this	program	to	specify	values	appropriate	for	your	mail	server					
						*	-	this	assumes	the	mail	server	listens	on	port	25.																				
						*			If	your	mail	server	uses	a	different	port	then	you	will	need								
						*			to	specify	the	PORT	keyword	too																																					
																																																																														
					c																			eval						jsmcmd	=	'SET'																													
					c																													+	'	SERVER('	+	%trim(smtp_server)	+	')'				
					c																													+	'	USER('	+	%trim(smtp_user)	+	')'								
					c																													+	'	PASSWORD('	+	%trim(smtp_password)	+	')'
					c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)													
					c																			callp					CheckResult(jsmsts:jsmmsg)															
					c																			callp					SendMessage(CompMsg10:'*COMP')											
																																																																												
						*	Set	TO	and	FROM	addresses	and	SUBJECT																															
						*	-	you	MUST	alter	the	constant	definitions	at	the	beginning	of							
						*			this	program	to	specify	values	appropriate	for	your	mail	server			
						*	-	these	can	also	be	specified	directly	on	the	SEND	command										
						*	-	you	can	specify	a	list	of	TO	addresses,	you	can	also	specify						
						*			single	or	lists	of	CC	and	BCC	addresses.		To	specify	multiple					
						*			addresses	you	must	make	separate	calls	to	SET	for	each	of	TO						
						*			CC	and	BCC,	supplying	the	appropriate	list	of	addresses	for	each		
																																																																												
					c																			eval						jsmcmd	=	'SET'																											
					c																													+	'	TO('	+	%trim(smtp_to)	+	')'										
					c																													+	'	FROM('	+	%trim(smtp_from)	+	')'						
					c																													+	'	SUBJECT('	+	%trim(smtp_subject)	+	')'
					c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)											
					c																			callp					CheckResult(jsmsts:jsmmsg)															
					c																			callp					SendMessage(CompMsg10:'*COMP')											
																																																																												
						*	You	may	wish	to	specify	file	attachments	to	be	sent	with	the	e-mail.				
						*	You	can	use	the	ADD	service	command	to	add	the	attachments.		This							
						*	example	does	not	send	attachments.																																						
																																																																																
						*	Populate	the	list	of	e-mail	body	text	lines	to	be	sent																		
						*	-	in	this	simple	example,	the	data	comes	from	the	compile-time										

						*			array	data,	but	it	could	equally	well	have	come	from	a	database							
						*			or	received	through	another	LANSA	Integrator	service	call													
																																																																																
					c																			eval						smtplistptr	=	%addr(smtpdata)																
																																																																																
						*	Send	the	e-mail																																																									
						*	-	this	passes	the	multiple	occurrence	data	structure																				
						*			(smtpbody)	containing	the	body	text	lines																													
						*	-	the	structure	is	described	to	the	SMTPMailService	by	the														
						*			structure	XML	identified	by	the	SERVICE_STRUCTURE	keyword	-	there					
						*			must	be	a	matching	entry	in	the	structure.properties	file	and	a							
						*			corresponding	structure	XML	file,	usually	in	JSMInstance\Structure
						*			folder																																																																
																																																							
						*	NOTE:	this	call	uses	the	JSMCMDX	api	in	order	to	be	able	to	send				
						*							variable	data	(in	this	case	the	body	text	structure/list)					
																																																																												
					c																			eval						jsmcmd	=	'SEND'																										
					c																													+	'	SERVICE_STRUCTURE(SMTP.MailBodyList)'
					c																													+	'	COUNT('		+	%char(smtpocur)	+	')'					
					c																													+	'	OCCURS('	+	%char(smtpocur)	+	')'					
					c																													+	'	SIZE('			+	%char(smtpsize)	+	')'					
																																																																												
					c																			eval						bytelength	=	smtpocur	*	smtpsize									
																																																																												
					c																			callp					p_jsmcmdx(jsmcmd:smtpbody:bytelength:				
					c																																							jsmsts:jsmmsg)																	
					c																			callp					CheckResult(jsmsts:jsmmsg)															
					c																			callp					SendMessage(CompMsg20:'*COMP')											
																																																																												
						*	Unload	the	SMTPMailService																																										
																																																																												
					c																			eval						jsmcmd	=	'SERVICE_UNLOAD'																
					c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)											
					c																			callp					CheckResult(jsmsts:jsmmsg)							
					c																			callp					SendMessage(CompMsg98:'*COMP')			
																																																																				
						*	Close	the	connection	to	the	JSM	server	and	finish											
																																																																				

					c																			callp					p_jsmclose(jsmsts:jsmmsg)								
					c																			callp					CheckResult(jsmsts:jsmmsg)							
					c																			callp					SendMessage(CompMsg99:'*COMP')			
					c																			eval						*inlr	=	*on																						
					c																			return																																					

						*	Procedure	to	check	the	result	of	a	Java	Service	Manager	call

					p	CheckResult					b																																												
					d	CheckResult					pi																																											
					d		crjsts																													const	like(jsmsts)							
					d		crjmsg																													const	like(jsmmsg)							
					d		crText									s												512a																												
					d		crMsg1									c																			const('JSM	Status	:	')			
					d		crMsg2									c																			const('JSM	Message:	')								
					d		crMsg3									c																			const('JSM	Service	error	has	+
					d																																												occurred')													
					c																			if								crjsts	<>	'OK'																								
					c																			eval						crText	=	crMsg1	+	crjsts														
					c																			callp					SendMessage(crText:'*DIAG')											
					c																			eval						crText	=	crMsg2	+	crjmsg														
					c																			callp					SendMessage(crText:'*DIAG')											
					c																			callp					SendMessage(crMsg3:'*ESCAPE')									
					c																			endif																																											
					p	CheckResult					e																																																	

						*	Procedure	to	send	a	program	message																														

					p	SendMessage					b																																																	
																																																																									
					d	SendMessage					pi																																																
					d	smText																							512a			VALUE																									
					d	smMsgT																								10a			VALUE																									
																																																																						
					d	smMsgI										s														7a			inz('CPF9897')													
					d	smMsgF										s													20a			inz('QCPFMSG			*LIBL					')
					d	smDtaL										s													10i	0	inz(%size(smText))									

					d	smStkE										s													10a			inz('*')																			
					d	smStkC										s													10i	0	inz(1)																					
					d	smMsgK										s														4a																														
					d	smErrC										s													10i	0	inz(0)																					
																																																																						
					c																			if								smMsgT	=	'*ESCAPE'																	
					c																			eval						smMsgI	=	'CPF9898'																	
					c																			endif																																								
																																																																						
					c																			call						'QMHSNDPM'																									
					c																			parm																				smMsgI															
					c																			parm																				smMsgF															
					c																			parm																				smText															
					c																			parm																				smDtaL															
					c																			parm																				smMsgT															
					c																			parm																				smStkE															
					c																			parm																				smStkC																						
					c																			parm																				smMsgK																						
					c																			parm																				smErrC																						
																																																																													
					p																	e																																																					
**CTDATA	smtpdata																																																												
This	e-mail	was	generated	by	the	LANSA	Integrator	RPG	ILE	example
program	for	the	SMTPMailService.																																													
Refer	to	the	LANSA	Integrator	Guide	for	more	information	about	using	the					
SMTPMailService	and	other	LANSA	Integrator	services.																									
====================																																																									
http://www.lansa.com																																																									
	

POP3MailService	Example
This	example	program	will	perform	the	following	steps:
1.		It	performs	a	series	of	calls	necessary	to	load	the	POP3MailService.
2.		It	opens	a	user	mailbox	on	the	POP3	mail	server,	using	the	POP3	server	and
the	user	and	password	details	provided	(you	need	to	modify	the	source	code
to	provide	details	appropriate	for	your	environment).

3.		It	retrieves	a	count	of	messages	available	in	the	mailbox.		If	there	is	more
than	one	message,	it	retrieves	various	details	of	the	first	message	and	writes
them	to	the	joblog	and	then	saves	the	message	body	text	to	file	body1.txt	in
folder	mailbody	in	the	JSM	instance	directory.

					Note:	as	supplied	the	example	program	does	NOT	remove	the	message	from
the	server	mailbox,	so	if	you	run	the	example	more	than	once	you	may
receive	the	same	message	each	time.

4.		It	closes	the	mailbox,	unloads	the	service	and	closes	the	connection	to	the
JSM	server.

Note:
To	test	this	example	fully,	you	need	to	be	sure	there	is	at	least	one	e-mail
message	in	the	mailbox	on	the	POP3	server	for	the	specified	user.		If
necessary,	use	your	e-mail	client	program	to	send	a	test	e-mail	to	the
specified	user.
You	must	specify	your	own	values	for	the	remote	server	name,	user	id	and
password	before	compiling	and	running	the	example.		These	are	all
contained	in	constants	near	the	beginning	of	the	source	code.
You	may	change	the	directory	and	file	names	used	in	the	example	if	you
wish.

Refer	to	the	comments	and	code	in	the	example	for	more	information.

Create	and	run	the	ILE	RPG	example	program

Copy	and	paste	the	source	provided	below	into	a	source	file	member.		Then
modify	the	constant	values	for	server,	user	id	and	password	as	directed	above
and	in	the	source	code.
To	create	the	program,	you	need	to	use	the	CRTRPGMOD	and	CRTPGM
commands.		Make	sure	that	you	use	the	parameter	values	specified	in	the	source

member.

	*	POP3:				example	in	RPG	ILE	of	using	the	LANSA	Integrator								
	*										POP3MailService																																									
	*																																																																		
	*	Note:				This	is	an	example	program	containing	only														
	*										rudimentary	exception	handling																										
	*																																																																		
	*	To	create	this	program	you	must	execute	the	following	commands,		
	*	supplying	the	indicated	parameter	values	and	any	others	that	are	
	*	necessary	in	your	installation:																																		
	*																																																																		
	*			CRTRPGMOD	MODULE(<modlib>/POP3)																																
	*													SRCFILE(<srclib>/<srcfil>)																											
	*																																																																		
	*			CRTPGM				PGM(<pgmlib>/POP3)																																			
	*													MODULE(<modlib>/POP3)																																
	*													BNDSRVPGM(<jsmpgmlib>/DCXS882X)																						
	*													ACTGRP(*CALLER)																																						

	*	You	MUST	replace	the	value	of	these	constants																
	*	before	compiling	and	running	this	example																				
																																																																
	*	-	for	pop3_server,	specify	the	network	name	or	address	of				
	*			your	POP3	mail	server	(this	might	not	be	an	IBM	i	or					
	*			IBM	i	server).		However,	it	must	be	addressable	from	the
	*			system	where	the	LANSA	Integrator	JSM	server	is	running				
																																																																
	*	-	for	pop3_user,	specify	the	user	name	used	to	login	to	the		
	*			POP3	server																																																
																																																																
	*	-	for	pop3_password,	specify	the	password	for	the	pop3_user		
	*			specified	that	is	used	to	login	to	the	POP3	server									
																																																																
	*	NB:	user	and	password	might	be	case	sensitive,	depending	on		
	*					the	POP3	server	you	are	using																												
																																																																

d	pop3_server					c																			'<your	server>'											
d	pop3_user							c																			'<user	id>'															
d	pop3_password			c																			'<password>'															
																																																																	
	*	These	constants	specify	the	location	that	this	example	program
	*	will	save	the	e-mail	body	text	-	change	them	if	required						
	*	-	because	a	relative	path	is	specified,	the	shipped	default			
	*			will	save	to	folder	"mailbody"	in	the	jsm	instance	folder			
																																																																	
d	pop3_savefil				c																			'body1.txt'																
d	pop3_savedir				c																			'mailbody'																	
																																																																	
	*	Declare	variables	for	the	JSM	calls																											
																																																																	
d	jsmsrv										s													50a			inz(*blanks)															
d	jsmsts										s													20a			inz(*blanks)															
d	jsmmsg										s												255a			inz(*blanks)															
d	jsmcmd										s												255a			inz(*blanks)															
d	bytelength						s													10i	0	inz(*zero)																	
																																																																	
	*	Completion	messages																																											
																																																																	
d	CompMsg01							c																			'JSMOPEN	call	completed.'										
d	CompMsg02							c																			'		SERVICE_LOAD	call	completed.'			
d	CompMsg10							c																			'		OPEN	call	completed.'											
d	CompMsg20							c																			'		GET	OBJECT(*MESSAGECOUNT)	call	+
d																																								completed'																						
d	CompMsg21							c																					'Message	count	is:	'													
d	CompMsg30							c																			'		GET	OBJECT(*FIRSTMESSAGE)	call	+
d																																								completed'																						
d	CompMsg40							c																			'		GET	OBJECT(*SUBJECT)	call	+					
d																																								completed'																						
d	CompMsg41							c																					'Subject	is:	'																			
d	CompMsg50							c																			'		GET	OBJECT(*FROMADDRESS)	call	+	
d																																								completed'																						
d	CompMsg51							c																					'FROM	address	is:	'														
d	CompMsg60							c																			'		GET	OBJECT(*SENTDATE)	call	+				
d																																								completed'																						
d	CompMsg61							c																					'Sent	date	is:	'																	

d	CompMsg70							c																			'		SAVE	OBJECT(*TEXT)	call	+							
d																																								completed'																						
d	CompMsg80							c																			'		DELETE	call	completed.'									
d	CompMsg90							c																			'		CLOSE	call	completed.'									
d	CompMsg98							c																			'		SERVICE_UNLOAD	call	completed.'
d	CompMsg99							c																			'JSMCLOSE	call	completed.'								
																																																																								
	*	Procedure	prototypes																																																	
																																																																								
d	CheckResult					pr																																																				
d		crjsts																													const	like(jsmsts)																
d		crjmsg																													const	like(jsmmsg)																
																																																																								
d	SendMessage					pr																																																				
d		smText																						512a			VALUE																													
d		smType																							10a			VALUE																													
																																																																								
	*	Prototypes	for	the	JSM	calls																																									
																																																																								
	/COPY	QRPGLESRC,JSM_PROC.H																																													
																																																																								
	*	Open	a	connection	to	the	default	JSM	server																										
	*	-	because	the	server	parameter	is	blank,	details	of	the	default						
	*			JSM	server	are	obtained	from	the	data	area	JSMCLTDTA	on	IBM	i			
	*			or	from	the	file	jsmcltdta.txt	on	other	supported	platforms)						
																																																																							
c																			callp					p_jsmopen(jsmsrv:jsmsts:jsmmsg)										
c																			callp					CheckResult(jsmsts:jsmmsg)															
c																			callp					SendMessage(CompMsg01:'*COMP')											
																																																																							
	*	Load	the	Pop3MailService																																												
	*	-	this	example	explicitly	turns	tracing	on,	overriding	the										
	*			settings	in	the	manager.properties	file																											
																																																																							
c																			eval						jsmcmd	=	'SERVICE_LOAD'																		
c																													+	'	SERVICE(POP3MAILSERVICE)	TRACE(*YES)'
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)											
c																			callp					CheckResult(jsmsts:jsmmsg)															
c																			callp					SendMessage(CompMsg02:'*COMP')											

																																																																							
	*	Open	the	post	office	(login	to	the	POP3	server)																					
	*	-	you	MUST	alter	the	constant	definitions	at	the	beginning	of							
	*			this	program	to	specify	values	appropriate	for	your	mail	server			
	*			for	server,	user	id	and	password																																				
	*	-	this	assumes	the	mail	server	listens	on	port	110.																			
	*			If	your	mail	server	uses	a	different	port	then	you	will	need								
	*			to	specify	the	PORT	keyword	too																																					
																																																																									
c																			eval						jsmcmd	=	'OPEN'																												
c																													+	'	SERVER('	+	%trim(pop3_server)	+	')'				
c																													+	'	USER('	+	%trim(pop3_user)	+	')'								
c																													+	'	PASSWORD('	+	%trim(pop3_password)	+	')'
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)													
c																			callp					CheckResult(jsmsts:jsmmsg)																	
c																			callp					SendMessage(CompMsg10:'*COMP')													
																																																																									
	*	Get	the	count	of	available	e-mail	messages																												
																																																																									
c																			eval						jsmcmd	=	'GET	OBJECT(*MESSAGECOUNT)'							
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)													
c																			callp					CheckResult(jsmsts:jsmmsg)																	
c																			callp					SendMessage(CompMsg20:'*COMP')													
																																																																									
*	Output	the	count	to	the	joblog,	proceed	if	one	or	more	messages	...
																																																																						
c																			callp					SendMessage(CompMsg21	+	%trim(jsmmsg)			
c																																									:'*COMP')																			
c																			if								%int(jsmmsg)	>	0																								
																																																																						
	*	...	set	the	current	message	to	the	first	available	message	...					
																																																																						
c																			eval						jsmcmd	=	'GET	OBJECT(*FIRSTMESSAGE)'				
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)										
c																			callp					CheckResult(jsmsts:jsmmsg)														
c																			callp					SendMessage(CompMsg30:'*COMP')										
																																																																						
	*	...	get	the	message	subject	and	write	to	joblog	...																
																																																																						

c																			eval						jsmcmd	=	'GET	OBJECT(*SUBJECT)'									
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)										
c																			callp					CheckResult(jsmsts:jsmmsg)														
c																			callp					SendMessage(CompMsg40:'*COMP')										
																																																																						
c																			callp					SendMessage(CompMsg41	+	%trim(jsmmsg)
c																																									:'*COMP')																
																																																																			
	*	...	get	the	FROM	address	and	write	to	joblog	...																
																																																																			
c																			eval						jsmcmd	=	'GET	OBJECT(*FROMADDRESS)'		
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)							
c																			callp					CheckResult(jsmsts:jsmmsg)											
c																			callp					SendMessage(CompMsg50:'*COMP')							
																																																																			
c																			callp					SendMessage(CompMsg51	+	%trim(jsmmsg)
c																																									:'*COMP')																
																																																																			
	*	...	get	the	sent	date	and	write	to	joblog	...																			
																																																																			
c																			eval						jsmcmd	=	'GET	OBJECT(*SENTDATE)'					
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)							
c																			callp					CheckResult(jsmsts:jsmmsg)											
c																			callp					SendMessage(CompMsg60:'*COMP')							
																																																																			
c																			callp					SendMessage(CompMsg61	+	%trim(jsmmsg)		
c																																									:'*COMP')																		
																																																																					
	*	...	save	the	body	text	to	a	file																																		
	*					-	as	supplied,	the	body	text	will	be	saved	to	file	"body1.txt"
	*							in	directory	"mailbody"	within	the	jsm	instance	directory			
																																																																					
c																			eval						jsmcmd	=	'SAVE	OBJECT(*TEXT)'										
c																													+	'	FILE('	+	%trim(pop3_savefil)	+	')'	
c																													+	'		DIR('	+	%trim(pop3_savedir)	+	')'	
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)									
c																			callp					CheckResult(jsmsts:jsmmsg)													
c																			callp					SendMessage(CompMsg70:'*COMP')									
																																																																					

	*	...	after	successfully	processing	a	message,	many	applications				
	*					would	wish	to	remove	the	message	from	the	mailbox	on	the	POP3	
	*					server.		As	shipped,	this	example	program	does	not	do	that	but
	*					you	can	uncomment	the	following	code	to	do	so	if	you	wish	...	
																																																																					
c*******************eval						jsmcmd	=	'DELETE'																						
c*******************callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)
c*******************callp					CheckResult(jsmsts:jsmmsg)				
c*******************callp					SendMessage(CompMsg80:'*COMP')
																																																												
c																			endif																																			
																																																												
	*	Close	the	post	office																																				
																																																												
c																			eval						jsmcmd	=	'CLOSE'														
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)
c																			callp					CheckResult(jsmsts:jsmmsg)				
c																			callp					SendMessage(CompMsg90:'*COMP')
																																																												
	*	Unload	the	Pop3MailService																															
																																																												
c																			eval						jsmcmd	=	'SERVICE_UNLOAD'					
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)
c																			callp					CheckResult(jsmsts:jsmmsg)				
c																			callp					SendMessage(CompMsg98:'*COMP')
																																																												
*	Close	the	connection	to	the	JSM	server	and	finish																
																																																																				
c																			callp					p_jsmclose(jsmsts:jsmmsg)													
c																			callp					CheckResult(jsmsts:jsmmsg)												
c																			callp					SendMessage(CompMsg99:'*COMP')								
c																			eval						*inlr	=	*on																											
c																			return																																										

	*	Procedure	to	check	the	result	of	a	Java	Service	Manager	call					

p	CheckResult					b																																																	
d	CheckResult					pi																																																

d		crjsts																													const	like(jsmsts)												
d		crjmsg																													const	like(jsmmsg)												
d		crText									s												512a																																	
d		crMsg1									c																			const('JSM	Status	:	')								
d		crMsg2									c																			const('JSM	Message:	')								
d		crMsg3									c																			const('JSM	Service	error	has	+
d																																												occurred')													
c																			if								crjsts	<>	'OK'																					
c																			eval						crText	=	crMsg1	+	crjsts											
c																			callp					SendMessage(crText:'*DIAG')								
c																			eval						crText	=	crMsg2	+	crjmsg											
c																			callp					SendMessage(crText:'*DIAG')								
c																			callp					SendMessage(crMsg3:'*ESCAPE')						
c																			endif																																								
p	CheckResult					e																																														

	*	Procedure	to	send	a	program	message																											

p	SendMessage					b																																														
																																																																	
d	SendMessage					pi																																													
d	smText																							512a			VALUE																						
d	smMsgT																								10a			VALUE																						
																																																																	
d	smMsgI										s														7a			inz('CPF9897')													
d	smMsgF										s													20a			inz('QCPFMSG			*LIBL					')
d	smDtaL										s													10i	0	inz(%size(smText))
d	smStkE										s													10a			inz('*')										
d	smStkC										s													10i	0	inz(1)												
d	smMsgK										s														4a																					
d	smErrC										s													10i	0	inz(0)												
																																																								
c																			if								smMsgT	=	'*ESCAPE'								
c																			eval						smMsgI	=	'CPF9898'								
c																			endif																															
																																																								
c																			call						'QMHSNDPM'																
c																			parm																				smMsgI						

c																			parm																				smMsgF						
c																			parm																				smText						
c																			parm																				smDtaL						
c																			parm																				smMsgT						
c																			parm																				smStkE						
c																			parm																				smStkC						
c																			parm																				smMsgK						
c																			parm																				smErrC						
																			
p																	e
	
	
intengbr_RPG_STMP
	

SMSService	Example

						*	SMS:					Example	in	RPG	ILE	of	using	the	LANSA	Integrator
						*										SMSService.
						*										This	example	uses	the	SMTP	(email)	protocol	to	send	the
						*										SMS	details	to	the	SMS	gateway.
						*										You	need	to	check:
						*										-	The	SMS	gateway	you	are	using	accepts	SMS	messages
						*												for	transmission	in	an	email	format.
						*										-	The	format	of	the	email	sent	agrees	with	the	format
						*												expected	by	your	SMS	gateway.
						*
						*	Note:				This	is	an	example	program	containing	only
						*										rudimentary	exception	handling
						*
						*	To	create	this	program	you	must	execute	the	following	commands,
						*	supplying	the	indicated	parameter	values	and	any	others	that	are
						*	necessary	in	your	installation:
						*
						*			CRTRPGMOD	MODULE(<modlib>/SMS)
						*													SRCFILE(<srclib>/<srcfil>)
						*
						*			CRTPGM				PGM(<pgmlib>/SMS)
						*													MODULE(<modlib>/SMS)
						*													BNDSRVPGM(<lansalib>/DCXS882X)
						*													ACTGRP(*CALLER)

						*	To	successfully	run	this	example	you	will	need	an	SMTP	(email)
						*	server	and	an	SMS	gateway.
						*	These	need	to	be	set	up	in	the	SMSService.properties	file.
						*	For	example:
						*				transport=smtp
						*				port=25
						*				server=10.2.0.55
						*				subject=user+password
						*				from.address=your.name@yourcoy.com.au

						*				mail.domain=yourcoy.com.au
						*				mobile.domain=streetdata.com.au

							*	You	must	replace	the	value	of	the	following	constants
						*	before	compiling	and	running	this	example
	
							*				phoneno	value	needs	to	be	replaced	with	mobile	phone	number	to
						*				which	the	SMS	message	will	be	sent.
					d	phoneno									c																			'+61412345678'
	
							*				message	value	can	be	replaced	with	the	text	of	the
						*				SMS	message
					d	message									c																			'Hello.	Test	message'
	
							*				emailfrom	value	needs	to	be	replaced	with	the	email	addressee
						*				which	will	be	used	on	the	SMTP	(email)	sent	to	the	SMS	gateway.
					d	emailfrom							c																			'fred.smith@lansa.com.au'

						*
						*	Declare	variables	for	the	JSM	calls
	
						d	jsmsrv										s													50a			inz(*blanks)
					d	jsmsts										s													20a			inz(*blanks)
					d	jsmmsg										s												255a			inz(*blanks)
					d	jsmcmd										s												255a			inz(*blanks)
					d	bytelength						s													10i	0	inz(*zero)
	
							*	Completion	messages
	
						d	CompMsg01							c																			'JSMOPEN	call	completed.'
					d	CompMsg02							c																			'		SERVICE_LOAD	call	completed.'
					d	CompMsg11							c																			'		SET	ENCODING	call	completed.'
					d	CompMsg12							c																			'		SET	FROM	call	completed.'
					d	CompMsg20							c																			'		SEND	call	completed.'
					d	CompMsg98							c																			'		SERVICE_UNLOAD	call	completed.'
					d	CompMsg99							c																			'JSMCLOSE	call	completed.'
	

							*	Procedure	prototypes
	
						d	CheckResult					pr
					d		crjsts																													const	like(jsmsts)
					d		crjmsg																													const	like(jsmmsg)
	
						d	SendMessage					pr
					d		smText																						512a			VALUE
					d		smType																							10a			VALUE
	
							*	Prototypes	for	the	JSM	calls
	
							/COPY	QRPGLESRC,JSM_PROC.H

						*	Open	a	connection	to	the	default	JSM	server
						*	-	because	the	server	parameter	is	blank,	details	of	the	default
						*			JSM	server	are	obtained	from	the	data	area	JSMCLTDTA	on	IBM	i
						*			or	from	the	file	jsmcltdta.txt	on	other	supported	platforms
	
						c																			callp					p_jsmopen(jsmsrv:jsmsts:jsmmsg)
					c																			callp					CheckResult(jsmsts:jsmmsg)
					c																			callp					SendMessage(CompMsg01:'*COMP')
	
							*	Load	the	SMSService
						*	This	loads	and	ititializes	the	service	using	the	values	defined	in
						*			the	SMSService.properties	file.
						*	This	example	explicitly	turns	tracing	on.
	
						c																			eval						jsmcmd	=	'SERVICE_LOAD'
					c																													+	'	SERVICE(SMSSERVICE)	TRACE(*YES)'
					c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)
					c																			callp					CheckResult(jsmsts:jsmmsg)
					c																			callp					SendMessage(CompMsg02:'*COMP')
						*
	
							*	Examples	of	SET	command
						*	The	SET	command	may	be	used	to	override	any	defaults	that	are
						*				defined	in	the	SMSService.properties	file.

	
							*				Set	the	encoding	value
					c																			eval						jsmcmd	=	'SET'
					c																																						+	'	ENCODING(ISO8859_1)'
					c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)
					c																			callp					CheckResult(jsmsts:jsmmsg)
					c																			callp					SendMessage(CompMsg11:'*COMP')
	
							*				Set	the	SMTP	(email)	FROM	value.
						*						The	FROM	value	will	be	used	when	sending	the	email
						*						to	the	SMS	gateway.
					c																			eval						jsmcmd	=	'SET'
					c																																						+	'	FROM('	+	emailfrom	+	')'
					c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)
					c																			callp					CheckResult(jsmsts:jsmmsg)
					c																			callp					SendMessage(CompMsg12:'*COMP')
	
							*	SEND	the	message
	
						c																			eval						jsmcmd	=	'SEND'
					c																																						+	'	TO('	+	phoneno
					c																																						+	')	MSG('	+	message	+	')'
					c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)
					c																			callp					CheckResult(jsmsts:jsmmsg)
					c																			callp					SendMessage(CompMsg20:'*COMP')
	
							*	Unload	the	SMSService
	
						c																			eval						jsmcmd	=	'SERVICE_UNLOAD'
					c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)
					c																			callp					CheckResult(jsmsts:jsmmsg)
					c																			callp					SendMessage(CompMsg98:'*COMP')
	
							*	Close	the	connection	to	the	JSM	server	and	finish
	
						c																			callp					p_jsmclose(jsmsts:jsmmsg)
					c																			callp					CheckResult(jsmsts:jsmmsg)
					c																			callp					SendMessage(CompMsg99:'*COMP')
					c																			eval						*inlr	=	*on

					c																			return

						*	Procedure	to	check	the	result	of	a	Java	Service	Manager	call

					p	CheckResult					b
					d	CheckResult					pi
					d		crjsts																													const	like(jsmsts)
					d		crjmsg																													const	like(jsmmsg)
					d		crText									s												512a
					d		crMsg1									c																			const('JSM	Status	:	')
					d		crMsg2									c																			const('JSM	Message:	')
					d		crMsg3									c																			const('JSM	Service	error	has	+
					d																																												occurred')
					c																			if								crjsts	<>	'OK'
					c																			eval						crText	=	crMsg1	+	crjsts
					c																			callp					SendMessage(crText:'*DIAG')
					c																			eval						crText	=	crMsg2	+	crjmsg
					c																			callp					SendMessage(crText:'*DIAG')
					c																			callp					SendMessage(crMsg3:'*ESCAPE')
					c																			endif
					p	CheckResult					e

						*	Procedure	to	send	a	program	message

					p	SendMessage					b
	
						d	SendMessage					pi
					d	smText																							512a			VALUE
					d	smMsgT																								10a			VALUE
	
						d	smMsgI										s														7a			inz('CPF9897')
					d	smMsgF										s													20a			inz('QCPFMSG			*LIBL					')
					d	smDtaL										s													10i	0	inz(%size(smText))
					d	smStkE										s													10a			inz('*')
					d	smStkC										s													10i	0	inz(1)
					d	smMsgK										s														4a
					d	smErrC										s													10i	0	inz(0)

	
						c																			if								smMsgT	=	'*ESCAPE'
					c																			eval						smMsgI	=	'CPF9898'
					c																			endif
	
						c																			call						'QMHSNDPM'
					c																			parm																				smMsgI
					c																			parm																				smMsgF
					c																			parm																				smText
					c																			parm																				smDtaL
					c																			parm																				smMsgT
					c																			parm																				smStkE
					c																			parm																				smStkC
					c																			parm																				smMsgK
					c																			parm																				smErrC
	
						p																	e
	

ZipService	Example
This	example	program	will	perform	the	following	steps:
1.		Performs	a	series	of	calls	necessary	to	load	the	ZipService.
2.		Creates	a	zip	file	called	LIZIPIN.ZIP	in	directory	/LIZIPOUT	in	the	IFS.
3.		Zips	the	contents	of	directory	/LIZIPIN	into	the	zip	file	and	closes	the	file.
4.		Opens	the	zip	file	again	for	reading.
5.		Retrieves	a	list	of	zip	file	entries	into	a	multiple	occurrence	data	structure.
6.		Unzips	the	first	zip	entry	into	the	directory	/LIZIPOUT.
7.		Closes	the	zip	file,	unloads	the	service	and	closes	the	connection	to	the	JSM
server.

Note:
To	test	this	example	meaningfully	you	need	to	create	the	two	folders
/LIZIPIN	and	/LIZIPOUT	in	the	IFS	and	then	add	a	small	selection	of	files
to	the	folder	/LIZIPIN.		You	can	use	any	files	–	these	are	the	files	that	will	be
zipped	by	the	example	program
The	example	program	can	only	successfully	retrieve	the	zip	file	entries	if
they	number	999	or	less,	so	do	not	add	more	files	than	this	to	the	folder
/LIZIPIN
For	maximum	compatibility,	the	example	program	can	only	cope	with	file
paths	up	to	256	characters	in	length.		Do	not	add	files	and	folders	to
/LIZIPIN	such	that	any	one	file	path	will	exceed	this	limit.		You	can	write
your	own	programs	to	handle	longer	paths	if	necessary.

Refer	to	the	comments	and	code	in	the	example	for	more	information.
There	are	three	steps	required	to	make	this	application	work:
1.			Create	the	structure	XML
The	call	to	the	GET	ENTRY(*LIST)	command	of	the	ZipService	passes	a
multiple	occurrence	data	structure	in	which	it	will	receive	a	list	of	up	to	999	zip
file	entries.		For	this	to	work,	the	LANSA	Integrator	service	needs	to	know	the
characteristics	of	this	structure.		This	is	accomplished	by	supplying	an	XML	file
that	describes	the	structure.
For	this	example,	the	required	XML	is	supplied	below.		To	install	this	XML	you
need	to	perform	the	following	steps:

a.		Locate	the	structure	folder	in	the	JSM	instance	folder	for	your	JSM	server
b.		Create	a	file	called	ZipEntryList.xml
c.		Edit	the	file	with	a	text	editor	and	paste	into	it	the	xml	supplied	below
Note	that	the	field	names	used	in	the	structure	XML	do	not	need	to	match	the
variable	names	used	in	the	RPG	program	(and	they	do	not	match	in	this
example).		It	is	their	order,	types	and	length	that	are	important.
<?xml	version="1.0"	encoding="UTF-8"?>
	
<rdml:structure	xmlns:rdml="http://www.lansa.com/2000/XML/Function">
	
			<rdml:field	name="ZIPENT"	type="A"	length="256"	/>
	
</rdml:structure>

2.				Register	the	structure	XML	with	the	JSM	Server
The	example	program	below	refers	to	the	structure	XML	supplied	above	with
the	symbolic	name	ZIP.ZipEntryList	by	specifying	that	name	in	the
SERVICE_STRUCTURE	keyword	of	the	GET	ENTRY(*LIST)	command.
We	need	to	give	the	JSM	Server	a	link	between	that	symbolic	name	and	the
actual	name	and	location	of	the	structure	XML	file	created	in	step	1.		To	do	this
you	need	to	perform	the	following	steps:
a.		Locate	the	system	folder	in	the	JSM	instance	folder	for	your	JSM	server.
b.		Edit	the	file	structure.properties	with	a	text	editor	and	paste	into	it	the	entry
supplied	below	(make	sure	the	new	entry	is	on	a	line	by	itself).

c.		Save	your	changes.
d.		Restart	or	refresh	the	JSM	Server	instance	(refer	to	Java	Service	Manager
Refresh).
					structure.ZIP.ZipEntryList=structure/ZipEntryList.xml	

3.			Create	and	run	the	ILE	RPG	example	program
Recent	installations	of	LANSA	Integrator	will	already	contain	the	source	for	the
example	program	below.		If	not,	you	can	copy	and	paste	the	source	into	a	source
file	member.
To	create	the	program,	you	need	to	use	the	CRTRPGMOD	and	CRTPGM
commands.		Make	sure	that	you	use	the	parameter	values	specified	in	the	source
member.

	*	ZIP:					example	in	RPG	ILE	of	using	the	LANSA	Integrator									
	*										ZipService																																															
	*																																																																			
	*	Note:				This	is	an	example	program	containing	only															
	*										rudimentary	exception	handling																											
	*																																																																			
	*	To	create	this	program	you	must	execute	the	following	commands,			
	*	supplying	the	indicated	parameter	values	and	any	others	that	are		
	*	necessary	in	your	installation:																																			
	*																																																																			
	*			CRTRPGMOD	MODULE(<modlib>/ZIP)																																		
	*													SRCFILE(<srclib>/<srcfil>)																												
	*																																																																			
	*			CRTPGM				PGM(<pgmlib>/ZIP)																																					
	*													MODULE(<modlib>/ZIP)																																		
	*													BNDSRVPGM(<jsmpgmlib>/DCXS882X)																							
	*													ACTGRP(*CALLER)																																							

	*	IFS	folders	used	by	this	program																																		
	*	-	to	try	this	program	you	need	to	create	these	folders	in	your	IFS
	*			and	add	one	or	more	files	to	the	/LIZIPIN	folder																
																																																																					
d	flrzipin								c																			const('/LIZIPIN')														
d	flrzipout							c																			const('/LIZIPOUT')													
d	zipfilepath					s												255a																																		
																																																																					
	*	Declare	variables	for	the	JSM	calls																															
																																																																					
d	jsmsrv										s													50a			inz(*blanks)																			
d	jsmsts										s													20a			inz(*blanks)																			
d	jsmmsg										s												255a			inz(*blanks)																			
d	jsmcmd										s												255a			inz(*blanks)																			
d	bytelength						s													10i	0	inz(*zero)																					
																																																																					
	*	Declare	structure	to	send	or	receive	zip	file	entries													
	*	-	the	structure	must	contain	the	following	fields	as	defined						
	*			by	the	GET	command	of	the	ZipService																												

	*			o	Zip	entry	(path	and/or	file	names)																																	
	*	NB:	This	MUST	match	the	structure	xml	provided	to	the	JSM	Server!						
																																																																										
d	ziplist									ds																		occurs(zipocur)																					
d		zipentry																				256a																																							
																																																																										
d	zipocur									c																			const(999)																										
d	zipsize									c																			const(%size(ziplist))															
d	zipcount								s														9p	0	inz(0)																														
																																																																										
	*	Completion	messages																																																				
																																																																										
d	CompMsg10							c																			'JSMOPEN	call	completed.'											
d	CompMsg20							c																			'		SERVICE_LOAD	call	completed.'				
d	CompMsg30							c																			'		CREATE	call	completed.'										
d	CompMsg40							c																			'		OPEN	call	completed.'												
d	CompMsg50							c																			'		ADD	call	completed.'													
d	CompMsg60							c																			'		GET	ENTRY(*LIST)	call	completed.'
d	CompMsg65							c																			'		GET	ENTRY(*READ)	call	completed.'
d	CompMsg70							c																			'		CLOSE	call	completed.'											
d	CompMsg80							c																			'		SERVICE_UNLOAD	call	completed.'			
d	CompMsg99							c																			'JSMCLOSE	call	completed.'											
																																																																											
	*	Procedure	prototypes																																																				
																																																																											
d	CheckResult					pr																																																							
d		crjsts																													const	like(jsmsts)																			
d		crjmsg																													const	like(jsmmsg)																			
																																																																											
d	SendMessage					pr																																																							
d		smText																						512a			VALUE																																
d		smType																							10a			VALUE																																
																																																																											
	*	Prototypes	for	the	JSM	calls																																												
																																																																											
	/COPY	QRPGLESRC,JSM_PROC.H																																																
																																																																											
	*	Open	a	connection	to	the	default	JSM	server																													
	*	-	because	the	server	parameter	is	blank,	details	of	the	default									

	*			JSM	server	are	obtained	from	the	data	area	JSMCTLDTA	on	IBM	i							
	*			or	from	the	file	jsmctldta.txt	on	other	supported	platforms)						
																																																																							
c																			callp					p_jsmopen(jsmsrv:jsmsts:jsmmsg)										
c																			callp					CheckResult(jsmsts:jsmmsg)															
c																			callp					SendMessage(CompMsg10:'*COMP')											
																																																																							
	*	Load	the	ZipService																																																	
	*	-	this	example	explicitly	turns	tracing	on,	overriding	the										
	*			settings	in	the	manager.properties	file																											
																																																																							
c																			eval						jsmcmd	=	'SERVICE_LOAD'																		
c																													+	'	SERVICE(ZIPSERVICE)	TRACE(*YES)'					
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)											
c																			callp					CheckResult(jsmsts:jsmmsg)															
c																			callp					SendMessage(CompMsg20:'*COMP')											
																																																																							
	*	Create	the	zip	file:	/LIZIPOUT/LIZIPIN.ZIP																										
	*	-	we	place	it	in	the	/LIZIPOUT	folder																															
	*	-	we	will	zip	the	contents	of	/LIZIPIN	into	it																						
																																																																							
c																			eval						zipfilepath	=	flrzipout	+	flrzipin	+	'.ZIP'		
c																			eval						jsmcmd	=	'CREATE'																												
c																																			+	'	FILE('	+	%trim(zipfilepath)	+	')'		
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)															
c																			callp					CheckResult(jsmsts:jsmmsg)																			
c																			callp					SendMessage(CompMsg30:'*COMP')															
																																																																											
	*	Add	the	contents	of	the	folder	/LIZIPIN	to	the	zip	file																	
	*	-	by	specifying	BASE(*CURRENT)	we	request	that	path	information	stored		
	*			in	the	zip	entries	is	only	for	descendant	folders	of	/LIZIPIN									
																																																																											
c																			eval						jsmcmd	=	'ADD'																															
c																													+	'	PATH('	+	flrzipin	+	')	BASE(*CURRENT)'			
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)															
c																			callp					CheckResult(jsmsts:jsmmsg)																			
c																			callp					SendMessage(CompMsg50:'*COMP')															
																																																																											
	*	Close	the	current	archive																																															

																																																																											
c																			eval						jsmcmd	=	'CLOSE'																													
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)															
c																			callp					CheckResult(jsmsts:jsmmsg)																			
c																			callp					SendMessage(CompMsg70:'*COMP')															
																																																																											
	*	Reopen	the	zip	file:	/LIZIPOUT/LIZIPIN.ZIP																														
	*	-	we	will	retrieve	a	list	of	its	contents																															
	*	-	we	will	unzip	the	first	file	into	/LIZIPOUT																											
																																																																											
c																			eval						jsmcmd	=	'OPEN'																														
c																																			+	'	FILE('	+	%trim(zipfilepath)	+	')'		
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)															
c																			callp					CheckResult(jsmsts:jsmmsg)																			
c																			callp					SendMessage(CompMsg40:'*COMP')															
																																																																											
	*	Load	a	list	of	zip	entries	from	the	current	archive																					
	*	-	although	this	passes	the	multiple	occurrence	data	structure											
	*			(ziplist)	in	which	to	receive	the	list,	the	data	is	not	actually						
	*			received	into	the	structure	until	the	JSMBYTERECV	call	below										
	*	-	the	structure	is	described	to	the	ZipService	by	the																			
	*			structure	XML	identified	by	the	SERVICE_STRUCTURE	keyword	-	there					
	*			must	be	a	matching	entry	in	the	structure.properties	file	and	a							
	*			corresponding	structure	XML	file,	usually	in	the	JSMInstance\Structure
	*			folder																																																																
																																																																											
	*	NOTE:	this	call	uses	the	JSMCMDX	api	in	order	to	be	able	to	send	and/or	
	*							receive	variable	data	(in	this	case	the	list)																					
																																																																											
c																			eval						jsmcmd	=	'GET	ENTRY(*LIST)'																		
c																													+	'	SERVICE_STRUCTURE(ZIP.ZipEntryList)'					
c																													+	'	OCCURS('	+	%char(zipocur)	+	')'										
c																													+	'	SIZE('			+	%char(zipsize)	+	')'										
																																																																											
c																			eval						%occur(ziplist)	=	1																										
c																			eval						bytelength	=	zipocur	*	zipsize															
																																																																											
c																			callp					p_jsmcmdx(jsmcmd:ziplist:bytelength:									
c																																							jsmsts:jsmmsg)																					

c																			callp					CheckResult(jsmsts:jsmmsg)																			
c																			callp					SendMessage(CompMsg60:'*COMP')															
																																																																											
	*	Get	the	length	of	the	received	data	structure																				
	*	-	only	continue	to	attempt	to	receive	it	if	the	length	is	valid		
																																																																				
c																			callp					p_jsmbytelngth(bytelength)												
c																			if												(bytelength	>	0)																		
c																													and	(bytelength	<=	zipocur	*	zipsize)	
																																																																				
	*	...	receive	the	zip	entry	list	into																														
	*					our	multiple	occurrence	data	structure																							
	*					-	don't	forget	to	set	the	DS	occurrence	to	1	before	the	call	
																																																																				
c																			callp					p_jsmbyterecv(ziplist)																
																																																																				
	*	...	calculate	the	number	of	entries																														
																																																																				
c																			eval						zipcount	=	bytelength	/	zipsize							
																																																																				
	*	...	unzip	the	first	entry	only	into	/LIZIPOUT																				
																																																																				
c																			eval						jsmcmd	=	'GET	ENTRY(*READ)'											
c																													+	'	FILE('	+	%trim(zipentry)	+	')'
c																													+	'	TO('	+	flrzipout	+	')'								
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)				
c																			callp					CheckResult(jsmsts:jsmmsg)								
c																			callp					SendMessage(CompMsg65:'*COMP')				
																																																																
c																			endif																																							
																																																																
	*	Close	the	current	archive																																				
																																																																
c																			eval						jsmcmd	=	'CLOSE'																		
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)				
c																			callp					CheckResult(jsmsts:jsmmsg)								
c																			callp					SendMessage(CompMsg70:'*COMP')				
																																																																
	*	Unload	the	ZipService																																								

																																																																
c																			eval						jsmcmd	=	'SERVICE_UNLOAD'									
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)				
c																			callp					CheckResult(jsmsts:jsmmsg)								
c																			callp					SendMessage(CompMsg80:'*COMP')			
																																																															
	*	Close	the	connection	to	the	JSM	server	and	finish											
																																																															
c																			callp					p_jsmclose(jsmsts:jsmmsg)								
c																			callp					CheckResult(jsmsts:jsmmsg)							
c																			callp					SendMessage(CompMsg99:'*COMP')			
c																			eval						*inlr	=	*on																						
c																			return																																					

	*	Procedure	to	check	the	result	of	a	Java	Service	Manager	call

p	CheckResult					b																																												
d	CheckResult					pi																																											
d		crjsts																													const	like(jsmsts)							
d		crjmsg																													const	like(jsmmsg)							
d		crText									s												512a																												
d		crMsg1									c																			const('JSM	Status	:	')			
d		crMsg2									c																			const('JSM	Message:	')			
d		crMsg3									c																			const('JSM	Service	error	has	+
d																																												occurred')													
c																			if								crjsts	<>	'OK'																								
c																			eval						crText	=	crMsg1	+	crjsts														
c																			callp					SendMessage(crText:'*DIAG')											
c																			eval						crText	=	crMsg2	+	crjmsg														
c																			callp					SendMessage(crText:'*DIAG')											
c																			callp					SendMessage(crMsg3:'*ESCAPE')									
c																			endif																																											
p	CheckResult					e																																																	

	*	Procedure	to	send	a	program	message																														

p	SendMessage					b																																																	

																																																																				
d	SendMessage					pi																																																
d	smText																							512a			VALUE																									
d	smMsgT																								10a			VALUE																									
																																																																				
d	smMsgI										s														7a			inz('CPF9897')													
d	smMsgF										s													20a			inz('QCPFMSG			*LIBL					')
d	smDtaL										s													10i	0	inz(%size(smText))									
d	smStkE										s													10a			inz('*')																			
d	smStkC										s													10i	0	inz(1)																					
d	smMsgK										s														4a																														
d	smErrC										s													10i	0	inz(0)																					
																																																																	
c																			if								smMsgT	=	'*ESCAPE'																	
c																			eval						smMsgI	=	'CPF9898'																	
c																			endif																																								
																																																																	
c																			call						'QMHSNDPM'																									
c																			parm																				smMsgI															
c																			parm																				smMsgF															
c																			parm																				smText															
c																			parm																				smDtaL															
c																			parm																				smMsgT															
c																			parm																				smStkE															
c																			parm																				smStkC															
c																			parm																				smMsgK
c																			parm																				smErrC
																																																		
p																	e																															
	

PDFSpoolFileService	Example
This	example	program	will	perform	the	following	steps:
1.		Executes	an	OVRPRTF	command	and	a	WRKJOB	command	to	create	a
spooled	file	on	output	queue	QPRINT	in	QGPL	with	user	data	PDFSPLF.

2.		Performs	a	series	of	calls	necessary	to	load	the	PDFSpoolFileService	and
connect	to	the	IBM	i	host	machine.

3.		Retrieves	a	list	of	spool	files	from	output	queue	QPRINT	in	QGPL	with	user
data	PDFSPLF.

4.		Converts	the	first	spool	file	in	the	list	to	the	PDF	file	PDFSPLF.PDF	in	the
JSM	instance	root	folder	(this	may	not	be	the	spool	file	created	by	the	current
run	if	the	program	has	been	run	before	without	cleaning	up	previous	spool
files).

5.		Disconnects,	unloads	the	service	and	closes	the	connection	to	the	JSM
server.

Refer	to	the	comments	and	code	in	the	example	for	more	information.
There	are	three	steps	required	to	make	this	application	work:
1.			Create	the	structure	XML
The	call	to	the	LIST	command	of	the	PDFSpoolFileService	passes	a	multiple
occurrence	data	structure	in	which	it	will	receive	a	list	of	up	to	50	spool	files	on
the	specified	output	queue.		For	this	to	work,	the	LANSA	Integrator	service
needs	to	know	the	characteristics	of	this	structure.		This	is	accomplished	by
supplying	an	XML	file	that	describes	the	structure.
For	this	example,	the	required	XML	is	supplied	below.		Recent	installations	of
LANSA	Integrator	will	already	contain	this	structure	XML.		If	not	you	need	to
perform	the	following	steps:
a.		Locate	the	structure	folder	in	the	JSM	instance	folder	for	your	JSM	server.
b.		Create	a	file	called	PDFSpoolFileList.xml.
c.		Edit	the	file	with	a	text	editor	and	paste	into	it	the	xml	supplied	below.
Note	that	the	field	names	used	in	the	structure	XML	do	not	need	to	match	the
variable	names	used	in	the	RPG	program	(and	they	do	not	match	in	this
example).		It	is	their	order,	types	and	length	that	are	important.
<?xml	version="1.0"	encoding="UTF-8"?>
	

<rdml:structure	xmlns:rdml="http://www.lansa.com/2000/XML/Function">
	
			<rdml:field	name="SPFNAM"	type="A"	length="10"	/>
			<rdml:field	name="SPFNUM"	type="A"	length="6"		/>
			<rdml:field	name="JOBNAM"	type="A"	length="10"	/>
			<rdml:field	name="JOBUSR"	type="A"	length="10"	/>
			<rdml:field	name="JOBNUM"	type="A"	length="6"		/>
			<rdml:field	name="SPFSTS"	type="A"	length="10"	/>
	
</rdml:structure>

3.			Register	the	structure	XML	with	the	JSM	Server
The	example	program	below	refers	to	the	structure	XML	supplied	above	with
the	symbolic	name	PDFSPLF.SpoolFileList	by	specifying	that	name	in	the
SERVICE_STRUCTURE	keyword	of	the	LIST	command.
We	need	to	give	the	JSM	Server	a	link	between	that	symbolic	name	and	the
actual	name	and	location	of	the	structure	XML	file	created	in	step	1.		Recent
installations	of	LANSA	Integrator	will	already	contain	this	link.		Otherwise,	you
need	to	perform	the	following	steps:
a.		Locate	the	system	folder	in	the	JSM	instance	folder	for	your	JSM	server.
b.		Edit	the	file	structure.properties	with	a	text	editor	and	paste	into	it	the	entry
supplied	below	(make	sure	the	new	entry	is	on	a	line	by	itself).

c.		Save	your	changes.
d.		Restart	or	refresh	the	JSM	Server	instance	(refer	to	Java	Service	Manager
Refresh).
					structure.PDFSPLF.SpoolFileList=structure/PDFSpoolFileList.xml

3.			Create	and	run	the	ILE	RPG	example	program
Recent	installations	of	LANSA	Integrator	will	already	contain	the	source	for	the
example	program	below.		If	not,	you	can	copy	and	paste	the	source	into	a	source
file	member.
To	create	the	program,	you	need	to	use	the	CRTRPGMOD	and	CRTPGM
commands.		Make	sure	that	you	use	the	parameter	values	specified	in	the	source
member.

	*	PDFSPLF:	example	in	RPG	ILE	of	using	the	LANSA	Integrator								
	*										PDFSpoolFileService																																					

	*																																																																		
	*	Note:				This	is	an	example	program	containing	only														
	*										rudimentary	exception	handling																										
	*																																																																		
	*	To	create	this	program	you	must	execute	the	following	commands,		
	*	supplying	the	indicated	parameter	values	and	any	others	that	are	
	*	necessary	in	your	installation:																																		
	*																																																																		
	*			CRTRPGMOD	MODULE(<modlib>/PDFSPLF)																													
	*													SRCFILE(<srclib>/<srcfil>)																											
	*																																																																		
	*			CRTPGM				PGM(<pgmlib>/PDFSPLF)																																
	*													MODULE(<modlib>/PDFSPLF)																													
	*													BNDSRVPGM(<jsmpgmlib>/DCXS882X)																						
	*													ACTGRP(*CALLER)																																						

	*	Commands	to	create	the	spooled	file	used	by	this	program																
																																																																											
d	ovrprt										c																			const('OVRPRTF	FILE(QPDSPJOB)	+						
d																																												OUTQ(QGPL/QPRINT)	HOLD(*YES)	+
d																																												USRDTA(PDFSPLF)')													
d	wrkjob										c																			const('WRKJOB	OUTPUT(*PRINT)')							
d	ovrprtlen							c																			const(%len(ovrprt))																		
d	wrkjoblen							c																			const(%len(wrkjob))																		
																																																																											
	*	Declare	variables	for	the	JSM	calls																																					
																																																																											
d	jsmsrv										s													50a			inz(*blanks)																									
d	jsmsts										s													20a			inz(*blanks)																									
d	jsmmsg										s												255a			inz(*blanks)																									
d	jsmcmd										s												255a			inz(*blanks)																									
d	bytelength						s													10i	0	inz(*zero)																											
																																																																											
	*	Declare	structure	to	receive	spool	file	list																												
	*	-	the	structure	must	contain	the	following	fields	as	defined												
*			by	the	LIST	command	of	the	PDFSpoolFileService																		
	*			o	Spool	file	name																																															
	*			o	Spool	file	number																																													

	*			o	Job	name																																																						
	*			o	Job	user																																																						
	*			o	Job	number																																																				
	*			o	Spool	file	status																																													
	*	NB:	This	MUST	match	the	structure	xml	provided	to	the	JSM	Server!	
																																																																					
d	spoollist							ds																		occurs(spoolocur)														
d		spoolfnam																				10a																																		
d		spoolfnum																					6a																																		
d		spooljnam																				10a																																		
d		spooljusr																				10a																																		
d		spooljnum																					6a																																		
d		spoolfsts																				10a																																		
																																																																					
d	spoolocur							c																			const(50)																						
d	spoolsize							c																			const(%size(spoollist))								
d	spoolcount						s														9p	0	inz(0)																									
																																																																								
	*	Completion	messages																																																		
																																																																								
d	CompMsg10							c																			'JSMOPEN	call	completed.'									
d	CompMsg20							c																			'		SERVICE_LOAD	call	completed.'		
d	CompMsg30							c																			'		CONNECT	call	completed.'							
d	CompMsg40							c																			'		LIST	call	completed.'										
d	CompMsg50							c																			'		CREATE	call	completed.'								
d	CompMsg60							c																			'		DISCONNECT	call	completed.'				
d	CompMsg70							c																			'		SERVICE_UNLOAD	call	completed.'
d	CompMsg99							c																			'JSMCLOSE	call	completed.'								
																																																																								
	*	Procedure	prototypes																																																	
																																																																								
d	CheckResult					pr																																																				
d		crjsts																													const	like(jsmsts)																
d		crjmsg																													const	like(jsmmsg)																
																																																																								
d	SendMessage					pr																																																				
d		smText																						512a			VALUE																													
d		smType																							10a			VALUE																										
																																																																					

	*	Prototypes	for	the	JSM	calls																																						
																																																																					
	/COPY	QRPGLESRC,JSM_PROC.H																																										
																																																																					
	*	Create	a	spool	file	that	we	will	convert	to	PDF																			
																																																																					
c																			call						'QCMDEXC'																														
c																			parm						ovrprt								command									255						
c																			parm						ovrprtlen					commandlen							15	5				
																																																																					
c																			call						'QCMDEXC'																														
c																			parm						wrkjob								command									255						
c																			parm						wrkjoblen					commandlen							15	5				
																																																																					
	*	Open	a	connection	to	the	default	JSM	server																							
	*	-	because	the	server	parameter	is	blank,	details	of	the	default			
	*			JSM	server	are	obtained	from	the	data	area	JSMCTLDTA	on	IBM	i	
	*			or	from	the	file	jsmctldta.txt	on	other	supported	platforms)				
																																																																											
c																			callp					p_jsmopen(jsmsrv:jsmsts:jsmmsg)														
c																			callp					CheckResult(jsmsts:jsmmsg)																			
c																			callp					SendMessage(CompMsg10:'*COMP')															
																																																																											
	*	Load	the	PDFSpoolFileService																																												
	*	-	this	example	explicitly	turns	tracing	on,	overriding	the														
	*			settings	in	the	manager.properties	file																															
																																																																											
c																			eval						jsmcmd	=	'SERVICE_LOAD'																						
c																													+	'	SERVICE(PDFSPOOLFILESERVICE)	TRACE(*YES)'
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)															
c																			callp					CheckResult(jsmsts:jsmmsg)																			
c																			callp					SendMessage(CompMsg20:'*COMP')															
																																																																											
	*	Connect	to	the	IBM	i	host	machine	containing	the	required	spool	files	
	*	-	because	no	HOST	parameter	is	specified,	the	service	will	establish				
	*			the	connection	to	the	same	IBM	i	that	the	JSM	Server	is	running	on		
																																																																											
c																			eval						jsmcmd	=	'CONNECT'																											
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)															

c																			callp					CheckResult(jsmsts:jsmmsg)																			
c																			callp					SendMessage(CompMsg30:'*COMP')															
																																																																											
	*	Load	a	list	of	spool	files	on	the	QGPL/QPRINT	output	queue														
	*	-	although	this	passes	the	multiple	occurrence	data	structure											
	*			(spoollist)	in	which	to	receive	the	list,	the	data	is	not	actually				
	*			received	into	the	structure	until	the	JSMBYTERECV	call	below										
	*	-	the	structure	is	described	to	the	PDFSpoolFileService	by	the										
	*			structure	XML	identified	by	the	SERVICE_STRUCTURE	keyword	-	there					
	*			must	be	a	matching	entry	in	the	structure.properties	file	and	a							
	*			corresponding	structure	XML	file,	usually	in	the	JSMInstance\Structure
	*			folder																																																																
																																																																											
	*	NOTE:	this	call	uses	the	JSMCMDX	api	in	order	to	be	able	to	send	and/or	
	*							receive	variable	data	(in	this	case	the	list)																					
																																																																											
c																			eval						jsmcmd	=	'LIST'																														
c																													+	'	LIBRARY(QGPL)	QUEUE(QPRINT)'													
c																													+	'	USERDATA(PDFSPLF)'																							
c																													+	'	SERVICE_STRUCTURE('																						
c																													+				'PDFSPLF.SpoolFileList)'																
c																													+	'	OCCURS('	+	%char(spoolocur)	+	')'								
c																													+	'	SIZE('			+	%char(spoolsize)	+	')'								
																																																																											
c																			eval						%occur(spoollist)	=	1																								
c																			eval						bytelength	=	spoolocur	*	spoolsize											
																																																																											
c																			callp					p_jsmcmdx(jsmcmd:spoollist:bytelength:							
c																																							jsmsts:jsmmsg)																					
c																			callp					CheckResult(jsmsts:jsmmsg)																			
c																			callp					SendMessage(CompMsg40:'*COMP')															
																																																																											
	*	Get	the	length	of	the	received	data	structure																											
	*	-	only	continue	to	attempt	to	receive	it	if	the	length	is	valid									
																																																																											
c																			callp					p_jsmbytelngth(bytelength)																			
c																			if												(bytelength	>	0)																									
c																													and	(bytelength	<=	spoolocur	*	spoolsize)				
																																																																											

	*	...	receive	the	spool	file	list	into																																
	*					our	multiple	occurrence	data	structure																										
	*					-	don't	forget	to	set	the	DS	occurrence	to	1	before	the	call				
																																																																							
c																			callp					p_jsmbyterecv(spoollist)																	
																																																																							
	*	...	calculate	the	number	of	entries																																	
	*					-	for	illustration	only,	not	used	in	this	example	program							
																																																																							
c																			eval						spoolcount	=	bytelength	/	spoolsize						
																																																																							
	*	...	create	a	PDF	file	in	the	root	of	the	IFS	for	the	first										
	*					spool	file	(if	any)																																													
																																																																							
c																			eval						jsmcmd	=	'CREATE'																								
c																													+	'	DOCUMENT(PDFSPLF.PDF)'															
c																													+	'	NAME('	+	%trim(spoolfnam)	+	')'						
c																													+	'	JOBNAME('	+	%trim(spooljnam)	+	')'			
c																													+	'	JOBUSER('	+	%trim(spooljusr)	+	')'			
c																													+	'	JOBNUMBER('	+	%trim(spooljnum)	+	')'
c																													+	'	NUMBER('	+	%trim(spoolfnum)	+	')'	
c																													+	'	FONTSIZE(8)	LEADING(8.5)'									
c																													+	'	ORIENTATION(*LANDSCAPE)'										
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)								
c																			callp					CheckResult(jsmsts:jsmmsg)												
c																			callp					SendMessage(CompMsg50:'*COMP')								
																																																																				
c																			endif																																											
																																																																				
	*	Close	the	current	IBM	i	host	machine	connection																
																																																																				
c																			eval						jsmcmd	=	'DISCONNECT'																	
c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)								
c																			callp					CheckResult(jsmsts:jsmmsg)												
c																			callp					SendMessage(CompMsg60:'*COMP')								
																																																																				
	*	Unload	the	PDFSpoolFileService																																			
																																																																				
c																			eval						jsmcmd	=	'SERVICE_UNLOAD'													

c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)								
c																			callp					CheckResult(jsmsts:jsmmsg)														
c																			callp					SendMessage(CompMsg70:'*COMP')										
																																																																						
	*	Close	the	connection	to	the	JSM	server	and	finish																		
																																																																						
c																			callp					p_jsmclose(jsmsts:jsmmsg)															
c																			callp					CheckResult(jsmsts:jsmmsg)														
c																			callp					SendMessage(CompMsg99:'*COMP')										
c																			seton																																								LR			
c																			return																																												

	*	Procedure	to	check	the	result	of	a	Java	Service	Manager	call							

p	CheckResult					b																																																			
d	CheckResult					pi																																																		
d		crjsts																													const	like(jsmsts)														
d		crjmsg																													const	like(jsmmsg)														
d		crText									s												512a																																			
d		crMsg1									c																			const('JSM	Status	:	')										
d		crMsg2									c																			const('JSM	Message:	')								
d		crMsg3									c																			const('JSM	Service	error	has	+
d																																												occurred')													
c																			if								crjsts	<>	'OK'																								
c																			eval						crText	=	crMsg1	+	crjsts														
c																			callp					SendMessage(crText:'*DIAG')											
c																			eval						crText	=	crMsg2	+	crjmsg														
c																			callp					SendMessage(crText:'*DIAG')											
c																			callp					SendMessage(crMsg3:'*ESCAPE')									
c																			endif																																											
p	CheckResult					e																																																	

	*	Procedure	to	send	a	program	message																														

p	SendMessage					b																																																	
																																																																				
d	SendMessage					pi																																																

d	smText																							512a			VALUE																									
d	smMsgT																								10a			VALUE																									
																																																																		
d	smMsgI										s														7a			inz('CPF9897')														
d	smMsgF										s													20a			inz('QCPFMSG			*LIBL					')	
d	smDtaL										s													10i	0	inz(%size(smText))										
d	smStkE										s													10a			inz('*')																				
d	smStkC										s													10i	0	inz(1)																						
d	smMsgK										s														4a																															
d	smErrC										s													10i	0	inz(0)																						
																																																																		
c																			if								smMsgT	=	'*ESCAPE'																		
c																			eval						smMsgI	=	'CPF9898'																		
c																			endif																																									
																																																																		
c																			call						'QMHSNDPM'																										
c																			parm																				smMsgI																
c																			parm																				smMsgF																
c																			parm																				smText																
c																			parm																				smDtaL																
c																			parm																				smMsgT																
c																			parm																				smStkE																
c																			parm																				smStkC	
c																			parm																				smMsgK	
c																			parm																				smErrC	
																																																			
p																	e																																
	

SVFileService	Example
This	example	program	performs	the	following	steps:
1.		Performs	a	series	of	calls	necessary	to	load	the	SVFileService
2.		Writes	a	CSV	file	containing	order	line	data	to	file	SVFILE.CSV	in	the	JSM
instance	folder	–	in	this	simple	example,	the	data	comes	from	compile-time
array	data	coded	in	the	RPG	program,	but	it	could	equally	well	have	come
from	a	database	or	have	been	received	in	various	formats	through	another
LANSA	Integrator	service	call						

3.		Unloads	the	service	and	closes	the	connection	to	the	JSM	server.
Refer	to	the	comments	and	code	in	the	example	for	more	information.
There	are	four	steps	required	to	make	this	application	work:
1.			Create	the	structure	XML
The	call	to	the	WRITE	command	of	the	SVFileService	passes	a	multiple
occurrence	data	structure	containing	the	order	line	items	that	will	be	written	to
the	CSV	file.		For	this	to	work,	the	LANSA	Integrator	service	needs	to	know	the
characteristics	of	this	structure.		This	is	accomplished	by	supplying	an	XML	file
that	describes	the	structure.
For	this	example,	the	required	XML	is	supplied	below.		To	install	this	XML	you
need	to	perform	the	following	steps:
a.		Locate	the	structure	folder	in	the	JSM	instance	folder	for	your	JSM	server.
b.		Create	a	file	called	SVOrderLine.xml.
c.		Edit	the	file	with	a	text	editor	and	paste	into	it	the	xml	supplied	below.
Note	that	the	field	names	used	in	the	structure	XML	do	not	need	to	match	the
variable	names	used	in	the	RPG	program	(although	they	do	match	in	this
example).		It	is	their	order,	types	and	length	that	are	important	–	not	their	names.
<?xml	version="1.0"	encoding="UTF-8"?>																														
																																																																				
<rdml:structure	xmlns:rdml="http://www.lansa.com/2000/XML/Function">
																																																																				
			<rdml:field	name="LINENUM"	type="S"	length="7"		/>															
			<rdml:field	name="PARTNUM"	type="A"	length="7"		/>															
			<rdml:field	name="PARTDSC"	type="A"	length="30"	/>															
			<rdml:field	name="PARTAMT"	type="S"	length="9"	decimal="2"	/>				

			<rdml:field	name="PARTQTY"	type="S"	length="7"		/>															
																																																																				
</rdml:structure>																																																			

2.			Register	the	structure	XML	with	the	JSM	Server
The	example	program	refers	to	the	structure	XML	supplied	above	with	the
symbolic	name	SV.SVOrderLine	by	specifying	that	name	in	the
SERVICE_STRUCTURE	keyword	of	the	WRITE	command.
We	need	to	give	the	JSM	Server	a	link	between	that	symbolic	name	and	the
actual	name	and	location	of	the	structure	XML	file	created	in	step	1.		To	do	this
you	need	to	perform	the	following	steps:
a.		Locate	the	system	folder	in	the	JSM	instance	folder	for	your	JSM	server.
b.		Edit	the	file	structure.properties	with	a	text	editor	and	paste	into	it	the	entry
supplied	below	(make	sure	the	new	entry	is	on	a	line	by	itself).

c.		Save	your	changes.
d.		Restart	or	refresh	the	JSM	Server	instance	(refer	to	Java	Service	Manager
Refresh).
					structure.SV.SVOrderLine=structure/SVOrderLine.xml	

3.			Define	the	header	for	the	resulting	CSV
The	contents	of	the	SVFILE.CSV	file	that	is	created	by	this	sample	should	look
similar	to	this:
LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY	
1,123,Gasket	Paper,9.95,10														
2,456,Gasket	polymer	glue,13.27,5								
	

You	will	note	that	the	first	record	contains	column	names	(or	headings).		Many
programs	that	process	CSV	data	will	or	can	recognize	and	make	use	of	these
column	names.
The	SVFileService	creates	these	column	headings	optionally.		If	you	wish	to
include	them,	then	you	need	to	specify	the	SVHEAD	parameter	of	the	WRITE
command.
This	example,	specifies	the	symbolic	name	ORDER	for	the	SVHEAD
parameter.		This	symbolic	name	identifies	a	set	of	column	headings	that	are
specified	in	the	service	properties	file	for	the	SVFileService.		Therefore	you
need	to	perform	the	following	steps	to	add	the	definition	to	the	service
properties	file	(if	it	is	not	already	there):

a.		Locate	the	properties	folder	in	the	JSM	instance	folder	for	your	JSM	server
b.		Edit	the	file	SVFileService.properties	with	a	text	editor	and	paste	into	it	the
entry	supplied	below,	if	it	is	not	already	there	(make	sure	that	the	new	entry	is
on	a	line	by	itself)

c.		Save	your	changes
d.		Restart	or	refresh	the	JSM	Server	instance	(refer	to	Java	Service	Manager
Refresh).

Note	that	the	column	headings	used	do	not	need	to	match	the	variable	names
used	in	the	RPG	program	or	in	the	structure	XML	(although	they	do	match	in
this	example).
					sv.head.order=LINENUM,PARTNUM,PARTDSC,PARTAMT,PARTQTY	

4.			Create	and	run	the	ILE	RPG	example	program
Copy	and	paste	the	source	provided	below	into	a	source	file	member.
To	create	the	program,	you	need	to	use	the	CRTRPGMOD	and	CRTPGM
commands.		Make	sure	that	you	use	the	parameter	values	specified	in	the	source
member.

						*	SVFILE:		example	in	RPG	ILE	of	using	the	LANSA	Integrator								
						*										SVFileService	to	write	a	comma-separated	file											
						*																																																																		
						*	Note:				This	is	an	example	program	containing	only														
						*										rudimentary	exception	handling																										
						*																																																																		
						*	To	create	this	program	you	must	execute	the	following	commands,		
						*	supplying	the	indicated	parameter	values	and	any	others	that	are	
						*	necessary	in	your	installation:																																		
						*																																																																		
						*			CRTRPGMOD	MODULE(<modlib>/SVFILE)																														
						*													SRCFILE(<srclib>/<srcfil>)																											
						*																																																																		
						*			CRTPGM				PGM(<pgmlib>/SVFILE)																																	
						*													MODULE(<modlib>/SVFILE)																														
						*													BNDSRVPGM(<jsmpgmlib>/DCXS882X)																						
						*													ACTGRP(*CALLER)																																						

						*	Path	of	the	CSV	file	created	by	this	program																							
						*	-	because	no	folder	path	is	specified,	the	file	will	be	created				
						*			in	the	JSM	instance	folder	by	default																												
																																																																											
					d	svfilepath						c																			const('SVFILE.CSV')													
																																																																											
						*	Declare	variables	for	the	JSM	calls																																
																																																																											
					d	jsmsrv										s													50a			inz(*blanks)																				
					d	jsmsts										s													20a			inz(*blanks)																				
					d	jsmmsg										s												255a			inz(*blanks)																				
					d	jsmcmd										s												255a			inz(*blanks)																				
					d	bytelength						s													10i	0	inz(*zero)																						
																																																																											
						*	Declare	structure	to	send	order	line	data	to	be	written	to	the					
						*	comma-separated	file:																																														
						*	-	in	this	simple	example,	the	data	comes	from	the	compile-time					
						*			array	data,	but	it	could	equally	well	have	come	from	a	database		
						*			or	received	through	another	LANSA	Integrator	service	call								
						*	NB:	This	MUST	match	the	structure	xml	provided	to	the	JSM	Server!	
																																																																										
					d	svlist										ds																		occurs(svocur)	based(svlistptr)
					d		linenum																							7s	0																																
					d		partnum																							7a																																		
					d		partdsc																						30a																																		
					d		partamt																							9s	2																																
					d		partqty																							7s	0																																
																																																																										
					d	svocur										c																			const(2)																							
					d	svsize										c																			const(%size(svlist))											
																																																																										
						*	Declare	the	compile-time	array	that	provides	the	data	for									
						*	this	simple	example																																															
																																																																										
					d	svdata										s													60a			dim(svocur)	perrcd(1)	ctdata			
																																																																										
						*	Completion	messages																																															
																																																																										

					d	CompMsg01							c																			'JSMOPEN	call	completed.'						
					d	CompMsg02							c																			'		SERVICE_LOAD	call	completed.'			
					d	CompMsg10							c																			'		WRITE	call	completed.'										
					d	CompMsg98							c																			'		SERVICE_UNLOAD	call	completed.'	
					d	CompMsg99							c																			'JSMCLOSE	call	completed.'									
																																																																														
						*	Procedure	prototypes																																																		
																																																																														
					d	CheckResult					pr																																																					
					d		crjsts																													const	like(jsmsts)																	
					d		crjmsg																													const	like(jsmmsg)																	
																																																																														
					d	SendMessage					pr																																																					
					d		smText																						512a			VALUE																														
					d		smType																							10a			VALUE																														
																																																																														
						*	Prototypes	for	the	JSM	calls																																										
																																																																														
						/COPY	QRPGLESRC,JSM_PROC.H																																														
																																																																														
						*	Open	a	connection	to	the	default	JSM	server																											
						*	-	because	the	server	parameter	is	blank,	details	of	the	default				
						*			JSM	server	are	obtained	from	the	data	area	JSMCLTDTA	on	IBM	i		
						*			or	from	the	file	jsmcltdta.txt	on	other	supported	platforms)					
																																																																											
					c																			callp					p_jsmopen(jsmsrv:jsmsts:jsmmsg)									
					c																			callp					CheckResult(jsmsts:jsmmsg)														
					c																			callp					SendMessage(CompMsg01:'*COMP')										
																																																																											
						*	Load	the	SVFileService																																													
						*	-	this	example	explicitly	turns	tracing	on,	overriding	the									
						*			settings	in	the	manager.properties	file																										
																																																																											
					c																			eval						jsmcmd	=	'SERVICE_LOAD'																	
					c																													+	'	SERVICE(SVFILESERVICE)	TRACE(*YES)'	
					c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)										
					c																			callp					CheckResult(jsmsts:jsmmsg)														
					c																			callp					SendMessage(CompMsg02:'*COMP')										
																																																																											

						*	Populate	the	list	to	be	written	to	the	CSV	file																				
						*	-	in	this	simple	example,	the	data	comes	from	the	compile-time					
						*			array	data,	but	it	could	equally	well	have	come	from	a	database							
						*			or	received	through	another	LANSA	Integrator	service	call													
																																																																																
					c																			eval						svlistptr	=	%addr(svdata)																				
																																																																																
						*	Write	a	comma-separated	list	of	items	from	the	compile-time	array							
						*	-	the	SVHEAD	parameter	identifies	headings	(defined	in	the	SVFILESERVICE
						*			service	properties	file)	that	will	be	written	to	the	CSV	file									
						*	-	this	passes	the	multiple	occurrence	data	structure																				
						*			(svlist)	containing	the	items																																									
						*	-	the	structure	is	described	to	the	SVFileService	by	the																
						*			structure	XML	identified	by	the	SERVICE_STRUCTURE	keyword	-	there					
						*			must	be	a	matching	entry	in	the	structure.properties	file	and	a							
						*			corresponding	structure	XML	file,	usually	in	the	<instance>\Structure
						*			folder																																																																
																																																																																
						*	NOTE:	this	call	uses	the	JSMCMDX	api	in	order	to	be	able	to	send								
						*							variable	data	(in	this	case	the	structure/list)																			
																																																																																
					c																			eval						jsmcmd	=	'WRITE'																													
					c																													+	'	FILE('	+	%trim(svfilepath)	+	')'			
					c																													+	'	SVHEAD(ORDER)'																					
					c																													+	'	SERVICE_STRUCTURE(SV.SVOrderLine)'	
					c																													+	'	COUNT('		+	%char(svocur)	+	')'					
					c																													+	'	OCCURS('	+	%char(svocur)	+	')'					
					c																													+	'	SIZE('			+	%char(svsize)	+	')'					
																																																																										
					c																			eval						bytelength	=	svocur	*	svsize											
																																																																										
					c																			callp					p_jsmcmdx(jsmcmd:svlist:bytelength:				
					c																																							jsmsts:jsmmsg)															
					c																			callp					CheckResult(jsmsts:jsmmsg)													
					c																			callp					SendMessage(CompMsg10:'*COMP')									
																																																																										
						*	Unload	the	SVFileService																																										
																																																																										
					c																			eval						jsmcmd	=	'SERVICE_UNLOAD'														

					c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)									
					c																			callp					CheckResult(jsmsts:jsmmsg)													
					c																			callp					SendMessage(CompMsg98:'*COMP')									
																																																																										
						*	Close	the	connection	to	the	JSM	server	and	finish																	
																																																																										
					c																			callp					p_jsmclose(jsmsts:jsmmsg)														
					c																			callp					CheckResult(jsmsts:jsmmsg)													
					c																			callp					SendMessage(CompMsg99:'*COMP')									
					c																			eval						*inlr	=	*on																												
					c																			return																																											

						*	Procedure	to	check	the	result	of	a	Java	Service	Manager	call						

					p	CheckResult					b																																																		
					d	CheckResult					pi																																																	
					d		crjsts																													const	like(jsmsts)													
					d		crjmsg																													const	like(jsmmsg)													
					d		crText									s												512a																																		
					d		crMsg1									c																			const('JSM	Status	:	')									
					d		crMsg2									c																			const('JSM	Message:	')									
					d		crMsg3									c																			const('JSM	Service	error	has	+	
					d																																												occurred')				
					c																			if								crjsts	<>	'OK'															
					c																			eval						crText	=	crMsg1	+	crjsts					
					c																			callp					SendMessage(crText:'*DIAG')		
					c																			eval						crText	=	crMsg2	+	crjmsg					
					c																			callp					SendMessage(crText:'*DIAG')		
					c																			callp					SendMessage(crMsg3:'*ESCAPE')
					c																			endif																																		
					p	CheckResult					e																																								

						*	Procedure	to	send	a	program	message																					

					p	SendMessage					b																																								
																																																																
					d	SendMessage					pi																																							

					d	smText																							512a			VALUE																
					d	smMsgT																								10a			VALUE																
																																																																
					d	smMsgI										s														7a			inz('CPF9897')							
					d	smMsgF										s													20a			inz('QCPFMSG			*LIBL					')	
					d	smDtaL										s													10i	0	inz(%size(smText))										
					d	smStkE										s													10a			inz('*')																				
					d	smStkC										s													10i	0	inz(1)																						
					d	smMsgK										s														4a																															
					d	smErrC										s													10i	0	inz(0)																						
																																																																							
					c																			if								smMsgT	=	'*ESCAPE'																		
					c																			eval						smMsgI	=	'CPF9898'																		
					c																			endif																																									
																																																																							
					c																			call						'QMHSNDPM'																										
					c																			parm																				smMsgI																
					c																			parm																				smMsgF																
					c																			parm																				smText																
					c																			parm																				smDtaL																
					c																			parm																				smMsgT																
					c																			parm																				smStkE																
					c																			parm																				smStkC																
					c																			parm																				smMsgK																
					c																			parm																				smErrC							
																																																														
					p																	e																																						
**CTDATA	svdata																																															
0000001123				Gasket	Paper																		0000009950000010		
0000002456				Gasket	polymer	glue											0000013270000005		
																															

ExcelReadService	Example
This	example	program	will	perform	the	following	steps:
1.		It	performs	a	series	of	calls	necessary	to	load	the	ExcelReadService.
2.		It	opens,	writes	and	closes	an	Excel	workbook	file	containing	order	line	data
to	file	XLREAD.XLS	in	the	JSM	instance	folder	–	in	this	simple	example,
the	data	comes	from	compile-time	array	data	coded	in	the	RPG	program,	but
it	could	equally	well	have	come	from	a	database	or	have	been	received	in
various	formats	through	another	LANSA	Integrator	service	call.

3.		It	unloads	the	service	and	closes	the	connection	to	the	JSM	server.
Refer	to	the	comments	and	code	in	the	example	for	more	information.
There	are	three	steps	required	to	make	this	application	work:
1.					Create	the	structure	XML
The	calls	to	the	WRITE	command	of	the	ExcelReadService	pass	a	multiple
occurrence	data	structure	containing	the	order	line	items	that	will	be	written	to
the	workbook.		For	this	to	work,	the	LANSA	Integrator	service	needs	to	know
the	characteristics	of	the	structure.		This	is	accomplished	by	supplying	an	XML
file	that	describes	the	structure.
For	this	example,	two	structures	are	used	–	one	is	used	to	write	column	headings
one	cell	at	a	time	while	the	second	is	used	to	write	the	order	line	data.		The
required	XML	is	supplied	below.		To	install	this	XML	you	need	to	perform	the
following	steps:
a.		Locate	the	structure	folder	in	the	JSM	instance	folder	for	your	JSM	server
b.		Create	files	called	XLCell.xml	and	XLOrderLine.xml
c.		Edit	the	XLCell.xml	file	with	a	text	editor	and	paste	into	it	the	xml	supplied
below
<?xml	version="1.0"	encoding="UTF-8"?>
	
<rdml:structure	xmlns:rdml="http://www.lansa.com/2000/XML/Function">
	
			<rdml:field	name="XLCELL"	type="A"	length="256"		/>
	
</rdml:structure>
	

d.		Edit	the	XLOrderLine.xml	file	with	a	text	editor	and	paste	into	it	the	xml

supplied	below
<?xml	version="1.0"	encoding="UTF-8"?>
	
<rdml:structure	xmlns:rdml="http://www.lansa.com/2000/XML/Function">
	
			<rdml:field	name="LINENUM"	type="S"	length="7"		/>
			<rdml:field	name="PARTNUM"	type="A"	length="7"		/>
			<rdml:field	name="PARTDSC"	type="A"	length="30"	/>
			<rdml:field	name="PARTAMT"	type="S"	length="9"	decimal="2"	/>
			<rdml:field	name="PARTQTY"	type="S"	length="7"		/>
	
</rdml:structure>																																																		
	

Note	that	the	field	names	used	in	the	structure	XML	do	not	need	to	match	the
variable	names	used	in	the	RPG	program.		It	is	their	order,	types	and	length	that
are	important	–	not	their	names.
2.					Register	the	structure	XML	with	the	JSM	Server
The	example	program	refers	to	the	structure	XML	supplied	above	with	the
symbolic	names	XL.XLCell	and	XL.XLOrderLine	by	specifying	those	names	in
the	SERVICE_STRUCTURE	keyword	of	the	WRITE	command.
We	need	to	give	the	JSM	Server	a	link	between	those	symbolic	names	and	the
actual	names	and	locations	of	the	structure	XML	files	created	in	step	1.		To	do
this	you	need	to	perform	the	following	steps:
a.		Locate	the	system	folder	in	the	JSM	instance	folder	for	your	JSM	server
b.		Edit	the	file	structure.properties	with	a	text	editor	and	paste	into	it	the	entries
supplied	below	(make	sure	the	new	entries	are	each	on	separate	lines	by
themselves)

c.		Save	your	changes
d.		Restart	or	refresh	the	JSM	Server	instance		(refer	to	Java	Service	Manager
Refresh).
structure.XL.XLCell=structure/XLCell.xml
structure.XL.XLOrderLine=structure/XLOrderLine.xml	

3.					Create	and	run	the	ILE	RPG	example	program
Copy	and	paste	the	source	provided	below	into	a	source	file	member.
To	create	the	program,	you	need	to	use	the	CRTRPGMOD	and	CRTPGM

commands.		Make	sure	that	you	use	the	parameter	values	specified	in	the	source
member.

						*	EXCELREAD:	example	in	RPG	ILE	of	using	the	LANSA	Integrator					
						*												ExcelReadService	to	write	an	Excel	workbook.									
						*																																																																	
						*	Note:				This	is	an	example	program	containing	only													
						*										rudimentary	exception	handling																									
						*																																																																	
						*	To	create	this	program	you	must	execute	the	following	commands,	
						*	supplying	the	indicated	parameter	values	and	any	others	that	are
						*	necessary	in	your	installation:																																	
						*																																																																	
						*			CRTRPGMOD	MODULE(<modlib>/EXCELREAD)																										
						*													SRCFILE(<srclib>/<srcfil>)																										
						*																																																																	
						*			CRTPGM				PGM(<pgmlib>/EXCELREAD)																													
						*													MODULE(<modlib>/EXCELREAD)																										
						*													BNDSRVPGM(<jsmpgmlib>/DCXS882X)																					
						*													ACTGRP(*CALLER)																																					

						*	Path	of	the	Excel	workbook	created	by	this	program															
						*	-	because	no	folder	path	is	specified,	the	file	will	be	created		
						*			in	the	JSM	instance	folder	by	default																										
																																																																									
					d	xlfilepath						c																			const('XLREAD.XLS')											
																																																																									
						*	Declare	variables	for	the	JSM	calls																														
																																																																									
					d	jsmsrv										s													50a			inz(*blanks)																		
					d	jsmsts										s													20a			inz(*blanks)																		
					d	jsmmsg										s												255a			inz(*blanks)																		
					d	jsmcmd										s												255a			inz(*blanks)																		
					d	bytelength						s													10i	0	inz(*zero)																				
																																																																									
						*	Declare	structure	to	send	order	line	data	to	be	written	to	the			
						*	Excel	workbook:																																																		

						*	-	in	this	simple	example,	the	data	comes	from	the	compile-time			
						*			array	data,	but	it	could	equally	well	have	come	from	a	database
						*			or	received	through	another	LANSA	Integrator	service	call						
						*	NB:	This	MUST	match	the	structure	xml	provided	to	the	JSM	Server!	
																																																																										
					d	xllist										ds																		occurs(xlocur)	based(xllistptr)
					d		linenum																							7s	0																																
					d		partnum																							7a																																		
					d		partdsc																						30a																																		
					d		partamt																							9s	2																																
					d		partqty																							7s	0																																
																																																																										
					d	xlocur										c																			const(2)																							
					d	xlsize										c																			const(%size(xllist))											
																																																																										
						*	Declare	the	compile-time	array	that	provides	the	data	for									
						*	this	simple	example																																															
																																																																										
					d	xldata										s													60a			dim(xlocur)	perrcd(1)	ctdata			
																																																																										
						*	Completion	messages																																															
																																																																										
					d	CompMsg01							c																			'JSMOPEN	call	completed.'						
					d	CompMsg02							c																			'		SERVICE_LOAD	call	completed.'		
					d	CompMsg10							c																			'		OPEN	call	completed.'										
					d	CompMsg20							c																			'		WRITE	call	completed.'									
					d	CompMsg30							c																			'		CLOSE	call	completed.'									
					d	CompMsg98							c																			'		SERVICE_UNLOAD	call	completed.'
					d	CompMsg99							c																			'JSMCLOSE	call	completed.'								
																																																																													
						*	Procedure	prototypes																																																	
																																																																													
					d	WriteCell							pr																																																				
					d		wcR1C1																							10a			value																													
					d		wcCell																						256a			value																													
																																																																													
					d	CheckResult					pr																																																				
					d		crjsts																													const	like(jsmsts)																
					d		crjmsg																													const	like(jsmmsg)																

																																																																													
					d	SendMessage					pr																																																				
					d		smText																						512a			VALUE																													
					d		smType																							10a			VALUE																													
																																																																													
						*	Prototypes	for	the	JSM	calls																																									
																																																																													
						/COPY	QRPGLESRC,JSM_PROC.H																																													
																																																																													
						*	Open	a	connection	to	the	default	JSM	server																										
						*	-	because	the	server	parameter	is	blank,	details	of	the	default						
						*			JSM	server	are	obtained	from	the	data	area	JSMCLTDTA	on	IBM	i				
						*			or	from	the	file	jsmcltdta.txt	on	other	supported	platforms)							
																																																																													
					c																			callp					p_jsmopen(jsmsrv:jsmsts:jsmmsg)											
					c																			callp					CheckResult(jsmsts:jsmmsg)																
					c																			callp					SendMessage(CompMsg01:'*COMP')												
																																																																													
						*	Load	the	ExcelReadService																																												
						*	-	this	example	explicitly	turns	tracing	on,	overriding	the											
						*			settings	in	the	manager.properties	file																												
																																																																													
					c																			eval						jsmcmd	=	'SERVICE_LOAD'																			
					c																													+	'	SERVICE(EXCELREADSERVICE)	TRACE(*YES)'
					c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)						
					c																			callp					CheckResult(jsmsts:jsmmsg)										
					c																			callp					SendMessage(CompMsg02:'*COMP')						
																																																																							
						*	Open	the	Excel	workbook	for	writing																												
																																																																							
					c																			eval						jsmcmd	=	'OPEN'																					
					c																													+	'	FILE('	+	%trim(xlfilepath)	+	')'
					c																													+	'	MODE(*WRITE)	REPLACE(*YES)'					
					c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)						
					c																			callp					CheckResult(jsmsts:jsmmsg)										
					c																			callp					SendMessage(CompMsg10:'*COMP')						
																																																																							
						*	Write	some	column	headings																																					
																																																																							

					c																			callp					WriteCell('3,3':'Line	Number')						
					c																			callp					WriteCell('3,4':'Part	Number')						
					c																			callp					WriteCell('3,5':'Part	Description')	
					c																			callp					WriteCell('3,6':'Unit	Amount')						
					c																			callp					WriteCell('3,7':'Unit	Quantity')				
																																																																																
						*	Populate	the	list	to	be	written	to	the	Excel	workbook																			
						*	-	in	this	simple	example,	the	data	comes	from	the	compile-time										
						*			array	data,	but	it	could	equally	well	have	come	from	a	database							
						*			or	received	through	another	LANSA	Integrator	service	call													
																																																																																
					c																			eval						xllistptr	=	%addr(xldata)																				
																																																																																
						*	Write	the	list	of	items	from	the	compile-time	array	to	the	specified				
						*	position	in	the	specified	worksheet:																																				
						*	-	this	passes	the	multiple	occurrence	data	structure																				
						*			(xllist)	containing	the	items																																									
						*	-	the	structure	is	described	to	the	ExcelReadService	by	the													
						*			structure	XML	identified	by	the	SERVICE_STRUCTURE	keyword	-	there					
						*			must	be	a	matching	entry	in	the	structure.properties	file	and	a							
						*			corresponding	structure	XML	file																																						
																																																																																
						*	NOTE:	this	call	uses	the	JSMCMDX	api	in	order	to	be	able	to	send								
						*							variable	data	(in	this	case	the	structure/list)														
																																																																									
					c																			eval						jsmcmd	=	'WRITE'																						
					c																													+	'	SHEET(ORDERLINES)	R1C1(5,3)'						
					c																													+	'	SERVICE_STRUCTURE(XL.XLOrderLine)'
					c																													+	'	COUNT('		+	%char(xlocur)	+	')'				
					c																													+	'	OCCURS('	+	%char(xlocur)	+	')'				
					c																													+	'	SIZE('			+	%char(xlsize)	+	')'				
																																																																									
					c																			eval						bytelength	=	xlocur	*	xlsize										
																																																																									
					c																			callp					p_jsmcmdx(jsmcmd:xllist:bytelength:			
					c																																							jsmsts:jsmmsg)														
					c																			callp					CheckResult(jsmsts:jsmmsg)												
					c																			callp					SendMessage(CompMsg20:'*COMP')								
																																																																									

						*	Close	the	Excel	workbook																																									
																																																																									
					c																			eval						jsmcmd	=	'CLOSE'																						
					c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)								
					c																			callp					CheckResult(jsmsts:jsmmsg)												
					c																			callp					SendMessage(CompMsg30:'*COMP')	
																																																																		
						*	Unload	the	ExcelReadService																															
																																																																		
					c																			eval						jsmcmd	=	'SERVICE_UNLOAD'						
					c																			callp					p_jsmcmd(jsmcmd:jsmsts:jsmmsg)	
					c																			callp					CheckResult(jsmsts:jsmmsg)					
					c																			callp					SendMessage(CompMsg98:'*COMP')	
																																																																		
						*	Close	the	connection	to	the	JSM	server	and	finish									
																																																																		
					c																			callp					p_jsmclose(jsmsts:jsmmsg)						
					c																			callp					CheckResult(jsmsts:jsmmsg)					
					c																			callp					SendMessage(CompMsg99:'*COMP')	
					c																			eval						*inlr	=	*on																				
					c																			return																																			

						*	Procedure	to	write	a	single	cell	at	a	time	to	the	workbook

					p	WriteCell							b																																																		
					d	WriteCell							pi																																																	
					d		wcR1C1																							10a			value																										
					d		wcCell																						256a			value																										
																																																																										
					c																			eval						jsmcmd	=	'WRITE'																							
					c																													+	'	R1C1('	+	%trim(wcR1C1)	+	')'							
					c																													+	'	SHEET(ORDERLINES)'																	
					c																													+	'	SERVICE_STRUCTURE(XL.XLCell)'						
					c																													+	'	COUNT(1)	OCCURS(1)'																
					c																													+	'	SIZE('	+	%char(%size(wcCell))	+	')'
																																																																										
					c																			eval						bytelength	=	%size(wcCell)													
																																																																										

					c																			callp					p_jsmcmdx(jsmcmd:wcCell:bytelength:				
					c																																							jsmsts:jsmmsg)															
					c																			callp					CheckResult(jsmsts:jsmmsg)													
					c																			callp					SendMessage(CompMsg20:'*COMP')									
																																																																										
					p	WriteCell							e																																																		

						*	Procedure	to	check	the	result	of	a	Java	Service	Manager	call					

					p	CheckResult					b																																																	
					d	CheckResult					pi																																																
					d		crjsts																													const	like(jsmsts)												
					d		crjmsg																													const	like(jsmmsg)												
					d		crText									s												512a																																	
					d		crMsg1									c																			const('JSM	Status	:	')								
					d		crMsg2									c																			const('JSM	Message:	')								
					d		crMsg3									c																			const('JSM	Service	error	has	+
					d																																												occurred')													
					c																			if								crjsts	<>	'OK'																								
					c																			eval						crText	=	crMsg1	+	crjsts														
					c																			callp					SendMessage(crText:'*DIAG')											
					c																			eval						crText	=	crMsg2	+	crjmsg														
					c																			callp					SendMessage(crText:'*DIAG')											
					c																			callp					SendMessage(crMsg3:'*ESCAPE')									
					c																			endif																																											
					p	CheckResult					e																																														

						*	Procedure	to	send	a	program	message																											

					p	SendMessage					b																																														
																																																																						
					d	SendMessage					pi																																													
					d	smText																							512a			VALUE																						
					d	smMsgT																								10a			VALUE																						
																																																																						
					d	smMsgI										s														7a			inz('CPF9897')													
					d	smMsgF										s													20a			inz('QCPFMSG			*LIBL					')

					d	smDtaL										s													10i	0	inz(%size(smText))									
					d	smStkE										s													10a			inz('*')																			
					d	smStkC										s													10i	0	inz(1)																					
					d	smMsgK										s														4a																														
					d	smErrC										s													10i	0	inz(0)																					
																																																																						
					c																			if								smMsgT	=	'*ESCAPE'																	
					c																			eval						smMsgI	=	'CPF9898'							
					c																			endif																														
																																																												
					c																			call						'QMHSNDPM'															
					c																			parm																				smMsgI					
					c																			parm																				smMsgF					
					c																			parm																				smText					
					c																			parm																				smDtaL					
					c																			parm																				smMsgT					
					c																			parm																				smStkE					
					c																			parm																				smStkC					
					c																			parm																				smMsgK					
					c																			parm																				smErrC					
																																																												
					p																	e																																				
**CTDATA	xldata																																													
0000001123				Gasket	Paper																		0000009950000010
0000002456				Gasket	polymer	glue											0000013270000005					
	

ILE	RPG	Client	JSM	API	Example
The	following	example	shows	how	the	JSM	APIs	are	used	from	an	ILE	RPG
program.	This	example	is	not	a	complete	RPG	program.

D	JSMSRV S 50
D	JSMSTS S 20
D	JSMMSG S 255
D	JSMCMD S 255
D	BYTEDATA S 32767
D	BYTELENGTH S 10I	0
C MOVE *BLANKS JSMSRV
C MOVE *BLANKS JSMSTS
C MOVE *BLANKS JSMMSG
C MOVE *BLANKS JSMCMD
C MOVE *BLANKS BYTEDATA
C Z-ADD 32767 BYTELENGTH

*
*	Open	connect	to	default	JSM	server
*
C CALLB 'JSMOPEN' 	
C PARM 	 JSMSRV
C PARM 	 JSMSTS
C PARM 	 JSMMSG

*
*	Send	command	to	service	and	receive	status	and	response
*
C MOVEL *BLANKS JSMCMD

*
C CALLB 'JSMCMD' 	
C PARM 'MYCMD' JSMCMD
C PARM 	 JSMSTS
C PARM 	 JSMMSG

*
*	Send	command	and	variable	data	to	service

*
C MOVEL 'MYCMD' JSMCMD

*
C CALLB 'JSMCMDX' 	
C PARM 	 JSMCMD
C PARM 	 BYTEDATA
C PARM 	 BYTELENGTH
C PARM 	 JSMSTS
C PARM 	 JSMMSG

*
*	Close	service
*
C CALLB 'JSMCLOSE' 	
C PARM 	 JSMSTS
C PARM 	 JSMMSG

*
C SETON 	 LR

C	Examples
C	Client	Open/Close	Example
C	Client	Working	List	Example

C	Client	Open/Close	Example
	
#include	<stdio.h>
#include	<stdlib.h>

/*	JSM	header	*/
#include	"x_jsm.h"

#define	JSMHOST	"LOCALHOST:4560"

static	char	status[JSM_STATUS_SIZE+1];
static	char	response[JSM_RESPONSE_SIZE+1];

/*	Main	function	*/

int	main(int	argc,	char	**argv);

/*	Utility	functions	*/

void	trim(char	*str);
void	printCharArray(char	*chars,	int	size);

int	main(int	argc,	char	**argv)
{
	char	*host;

	
	/*	Get	host	from	command	line	*/

	if	(argc	>	1)
	{
			host	=	argv[1];
	}
	else
	{
			host	=	JSMHOST;

	}

	
	/*	Open	JSM	connection	*/
	
	printf	("\nJSMOPEN	%s\n"	,	host);
	
	JSMOPEN	(host	,	status	,	response);
	
	trim	(response);
	printf	("status			=	%s\n"			,	status);
	printf	("response	=	%s\n\n"	,	response);

	
	/*	Check	status	*/
	
	if	(strncmp	(status	,	"OK"	,	2)	!=	0)
	{
			return	1;
	}

	
	/*	Close	JSM	connection	*/
	
	printf	("JSMCLOSE\n");

	JSMCLOSE	(status	,	response);
	
	trim	(response);
	printf	("status			=	%s\n"			,	status);
	printf	("response	=	%s\n\n"	,	response);
	
	return	0;
}

void	trim(char	*str)
{
	char	*end	=	str;
	while	(*str)

			if	(*(str++)	!=	'	')
					end	=	str;
	*end	=	'\0';		
}

void	printCharArray(char	*chars,	int	size)
{
	int	i;
	putchar('"');
	for	(i=0;	i<size;	i++)
			if	(*chars)
					putchar(*(chars++));
			else
					break;
	putchar('"');
	putchar('\n');
}

C	Client	Working	List	Example
	
#include	<stdio.h>
#include	<stdlib.h>

/*	JSM	header	*/
#include	"x_jsm.h"

#define	JSMHOST	"LOCALHOST:4560"

#define	MAX_BYTE_LENGTH					32767
#define	WORKING_LIST_SIZE			100
#define	PK1_LENGTH										10
#define	PK2_LENGTH										7

/*	Working	list	entry	definition:
*	
*				<rdml:field	name="TXT"	type="A"	length="30"	/>
*				<rdml:field	name="PK1"	type="P"	length="10"	decimal="2"	/>
*				<rdml:field	name="PK2"	type="P"	length="7"	decimal="0"	/>
*
*	Bytes	for	packed	field	=	(length	/	2)	+	1
*/

struct	Example3Line
{
	char	txt[30];
	char	pk1[(PK1_LENGTH	/	2)	+	1];
	char	pk2[(PK2_LENGTH	/	2)	+	1];
};

static	char	status[JSM_STATUS_SIZE+1];
static	char	response[JSM_RESPONSE_SIZE+1];
static	char	byteArray[MAX_BYTE_LENGTH];
static	int	byteArrayLength;

/*	Simple	wrapper	functions	for	JSM	API	calls	*/

void	jsmOpen(char	*cmd);
void	jsmCommand(char	*cmd);
void	jsmCommandX(char	*cmd,	void	*target,	int	strucSize);
void	jsmClose();

/*	Main	function	*/

int	main(int	argc,	char	**argv);

void	example3Test();

/*	Utility	functions	*/

struct	Example3Line	makeEx3Line(char	*txt,	long	pk1,	long	pk2);
void	trim(char	*str);
void	printCharArray(char	*chars,	int	size);
void	printEx3Line(struct	Example3Line	line);
void	getByteArray(int	*byteSize,	char	*byteArray);
void	longToPacked(unsigned	char	*packed,	long	num,	int	length);
long	packedToLong(unsigned	char	*packed,	int	length);

void	jsmOpen(char	*cmd)
{
	printf("\nJSMOPEN	%s\n",cmd);
	JSMOPEN(cmd,status,response);
	trim(response);
	printf("status			=	%s\nresponse	=	%s\n",status,response);
}

void	jsmCommand(char	*cmd)
{
	printf("\n%s\n",cmd);
	JSMCMD(cmd,status,response);
	trim(response);
	printf("status			=	%s\nresponse	=	%s\n",status,response);
}

void	jsmCommandX(char	*cmd,	void	*target,	int	strucSize)
{
	printf("\n%s\n",cmd);
	byteArrayLength	=	strucSize;
	JSMCMDX(cmd,(char*)target,&byteArrayLength,status,response);
	trim(response);
	printf("status										=	%s\nresponse								=	%s\n",status,response);
}

void	jsmClose()
{
	printf("\nJSMCLOSE\n");
	JSMCLOSE(status,response);
	trim(response);
	printf("status			=	%s\nresponse	=	%s\n",status,response);
}

int	main(int	argc,	char	**argv)
{
	if	(argc	>	1)
	{
			jsmOpen(argv[1]);
	}
	else
	{
			jsmOpen(JSMHOST);
	}

	example3Test();

	jsmClose();
	
	return	0;
}

void	example3Test()
{

	char	command[JSM_COMMAND_SIZE+1];
	int	byteSize;
	int	i;

	struct	Example3Line	workingList[WORKING_LIST_SIZE];
	struct	Example3Line	fields	=	makeEx3Line("3GL	client	field",
																																											-987654321,
																																											180980);

	workingList[0]	=	makeEx3Line("Text	line	1",		12345,			678);
	workingList[1]	=	makeEx3Line("Text	line	2",	-52300,	-3918);
	
	jsmCommand("SERVICE_LOAD	SERVICE(EXAMPLE3)");

	sprintf	(command,
											"SETFIELDS	SERVICE_STRUCTURE(EXAMPLE3.LINE)	SIZE(%d)",
											sizeof(fields)
);

	jsmCommandX(command,&fields,sizeof(fields));
	getByteArray(&byteSize,(char*)&fields);

	printf("\nFields\n");
	printEx3Line(fields);

	sprintf	(command,
											"ADDENTRY	SERVICE_STRUCTURE(EXAMPLE3.LINE)	SIZE(%d)	OCCURS(%d)	COUNT(%d)",
											sizeof(fields),	WORKING_LIST_SIZE,	2
);

	jsmCommandX(command,workingList,sizeof(workingList));
	getByteArray(&byteSize,	(char*)	workingList);

	for	(i=0;	i<(byteSize/sizeof(struct	Example3Line));	i++)
	{
			printf("\nWorking	list	entry	%d\n",i+1);
			printEx3Line(workingList[i]);
	}
}

struct	Example3Line	makeEx3Line(char	*txt,	long	pk1,	long	pk2)
{
	struct	Example3Line	line;
	memset(line.txt,'	',30);
	memcpy(line.txt,txt,strlen(txt));
	longToPacked(line.pk1,pk1,PK1_LENGTH);
	longToPacked(line.pk2,pk2,7);
	return	line;
}

void	trim(char	*str)
{
	char	*end	=	str;
	while	(*str)
			if	(*(str++)	!=	'	')
					end	=	str;
	*end	=	'\0';		
}

void	printCharArray(char	*chars,	int	size)
{
	int	i;
	putchar('"');
	for	(i=0;	i<size;	i++)
			if	(*chars)
					putchar(*(chars++));
			else
					break;
	putchar('"');
	putchar('\n');
}

void	printEx3Line(struct	Example3Line	line)
{
	printf("				TXT	=	");
	printCharArray(line.txt,30);
	printf("				PK1	=	%.2f\n",packedToLong(line.pk1,PK1_LENGTH)/100.0);

	printf("				PK2	=	%d\n",packedToLong(line.pk2,PK2_LENGTH));
}

void	getByteArray(int	*byteSize,	char	*byteArray)
{
	JSMBYTELNGTH(byteSize);
	printf("byte	array	size	=	%d\n",*byteSize);
	JSMBYTERECV(byteArray);
}

void	longToPacked(unsigned	char	*packed,	long	num,	int	length)
{
	int	packedLen	=	(length	/	2)	+	1;
	int	i;

	unsigned	char	*c	=	&packed[packedLen-1];

	/*	Sign	*/
	if	(num	<	0)
	{
			*c	=	0x0D;
			num	=	-num;
	}
	else
	{
			*c	=	0x0F;
	}

	/*	High	nibble	of	last	byte	*/
	*c	|=	(num	%	10)	<<	4;
	num	/=	10;

	for	(c	=	&packed[packedLen-2];	c	>=	packed;	c--)
	{
			*c	=	num	%	10;
			num	/=	10;
			*c	|=	(num	%	10)	<<	4;
			num	/=	10;
	}

}

long	packedToLong(unsigned	char	*packed,	int	length)
{
	int	packedLen	=	(length	/	2)	+	1;
	long	num	=	0;
	unsigned	char	hi,lo;
	int	i;
	
	for	(i=0;	i<packedLen;	i++)
	{
			hi	=	(packed[i]	&	0xF0)	>>	4;
			lo	=	(packed[i]	&	0x0F);
			if	(i	<	(packedLen-1))
			{
					if	(hi	>	9	||	lo	>	9)
							return	0;
					num	=	(num	*	100)	+	(hi	*	10)	+	lo;
			}
			else
			{
					num	=	(num	*	10)	+	hi;
					if	(lo	==	0x0D)
							num	=	-num;
					else	if	(lo	!=	0x0F)
							num	=	0;
			}
	}
	
	return	num;
}

	

Appendix	C.	EDI	Services
Electronic	Data	Interchange	(EDI)	is	a	set	of	standards	for	structuring
information	that	is	to	be	electronically	exchanged	between	and	within
businesses,	organizations,	government	entities	and	other	groups.
The	EDI	standards	were	designed	to	be	independent	of	communication	and
software	technologies.
EDI	can	be	transmitted	using	any	methodology	agreed	to	by	the	sender	and
recipient.
This	includes	a	variety	of	technologies	such	as	FTP,	SMTP,	HTTP,	AS1,	AS2
and	AS3.
LANSA's	EDI	facility	consists	of	these	services:
EDICatalogService
EDIDataSetService
EDIDatabaseService
EDIInterchangeService

EDICatalogService
Service	Name:	EDICatalogService
The	EDICatalogService	is	used	to	parse,	validate	and	process	EDI	documents.
The	EDICatalogService	supports	the	following	commands:
SERVICE_LOAD
SERVICE_GET
DELETE
RENAME
COPY
MOVE
LIST
SET
GET
READ
SPLIT
BREAK
SPLITBREAK
FORMAT
VALIDATE
SERVICE_UNLOAD

SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

	

SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

DELETE
The	DELETE	command	deletes	the	specified	file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

DELETE FILE value Mandatory.	File	Path.

	

	

RENAME
The	RENAME	command	renames	the	specified	local	file	to	a	new	name.	The
TO	file	must	be	in	the	same	directory	as	the	original,	FROM	file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RENAME FROM value Mandatory.	Old	file	name.

TO value Mandatory.	New	file	name.

REPLACE *YES Optional.	Replace	file.

*NO Do	not	replace	file.
The	default	value	of	the	REPLACE	keyword
is	*NO.
If	the	TO	filename	exists,	then	the	rename
process	is	stopped,	unless	the	REPLACE
keyword	is	*YES.

	

	

COPY
The	COPY	command	copies	the	specified	local	file	to	a	new	file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RENAME FROM value Mandatory.	Old	file	name.

TO value Mandatory.	New	file	name.

REPLACE *YES Optional.	Replace	file.

*NO Do	not	replace	file.
The	default	value	of	the	REPLACE	keyword
is	*NO.
If	the	TO	filename	exists,	then	the	rename
process	is	stopped,	unless	the	REPLACE
keyword	is	*YES.

	

	
	

MOVE
The	MOVE	command	moves	the	specified	local	file	to	a	new	file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RENAME FROM value Mandatory.	Old	file	name.

TO value Mandatory.	New	file	name.

REPLACE *YES Optional.	Replace	file.

*NO Do	not	replace	file.
The	default	value	of	the	REPLACE	keyword
is	*NO.
If	the	TO	filename	exists,	then	the	rename
process	is	stopped,	unless	the	REPLACE
keyword	is	*YES.

	

	

LIST
The	LIST	command	will	fill	the	command's	list	object	with	absolute	file	names.
A	single	field	working	list	is	required	to	receive	the	canonical	file	paths.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

LIST DIR value Optional.	Fill	working	list	with	directory
listing.	All	files	in	that	directory	will	be
selected.

EXT value Optional.	Filtering	on	file	extension.	The
filtering	match	is	case	insensitive.

	

If	a	directory	path	specified	by	the	DIR	keyword	is	used	then	filenames	in	that
directory	will	be	selected.
	

SET
The	SET	command	sets	the	current	working	directory.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET DIR value Mandatory.	Directory.

	

	

GET
The	GET	command	returns	the	current	validation	errors	into	the	specified
working	list.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET OBJECT *ERROR Mandatory.

	

	

READ
The	READ	command	reads	and	parses	the	specified	EDI	file.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

READ FILE value Conditional.	File	path.

ENCODING value Optional.	File	encoding.
Default.	ISO8859_1.

IGNORE *NONE Optional.	Ignore	characters.
Default.	*NONE

*CRLF Ignore	CR	and	LF	characters.

	

	
The	READ	command	reads	the	parsed	interchanges	for	the	specified
information.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

READ DATA *TA1 Optional.

*TA3 Optional.

*INTERCHANGE Optional.

*GROUP Optional.

*TRANSACTION Optional.

	

	

SPLIT
The	SPLIT	command	splits	the	specified	EDI	file	into	multiple	files.
Each	file	contains	a	single	interchange	and	the	each	new	file	uses	the	base	name
of	the	EDI	file	and	a	sequence	number.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SPLIT FILE value Conditional.	File	path.

ENCODING value Optional.	File	encoding.
Default.	ISO8859_1.

IGNORE *NONE Optional.	Ignore	characters.
Default.	*NONE

*CRLF Ignore	CR	and	LF	characters.

KEEP *YES Optional.	Keep	file.

*NO Default.

	

	

BREAK
The	BREAK	command	breaks	the	specified	EDI	file	into	multiple	files.
Each	file	contains	a	specified	number	of	transactions	and	the	each	new	file	uses
the	base	name	of	the	EDI	file	and	a	sequence	number.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

BREAK FILE value Conditional.	File	path.

ENCODING value Optional.	File	encoding.
Default.	ISO8859_1.

IGNORE *NONE Optional.	Ignore	characters.
Default.	*NONE

*CRLF Ignore	CR	and	LF	characters.

KEEP *YES Optional.	Keep	file.

*NO Default.

FORMAT *NONE Optional.
Default.	*NONE.

*CRLF 	

LIMIT number Optional.
Default.	2.

	

	

SPLITBREAK
The	SPLITBREAK	command	combines	features	from	the	SPLIT	and	BREAK
commands.
Each	file	contains	a	specified	number	of	transactions	and	the	each	new	file	uses
the	base	name	of	the	EDI	file	and	a	sequence	number.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SPLITBREAK FILE value Conditional.	File	path.

ENCODING value Optional.	File	encoding.
Default.	ISO8859_1.

IGNORE *NONE Optional.	Ignore	characters.
Default.	*NONE

*CRLF Ignore	CR	and	LF	characters.

KEEP *YES Optional.	Keep	file.

*NO Default.

FORMAT *NONE Optional.
Default.	*NONE.

*CRLF 	

LIMIT number Optional.
Default.	2.

	

	

FORMAT
The	FORMAT	command	operates	at	the	byte	stream	level	and	is	used	to	remove
and	add	CR	and	LF	characters	from	the	EDI	byte	stream.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

FORMAT FROM value Mandatory.	File	path.

TO value Mandatory.	File	path.

*FROM 	

BLOCK number Conditional.

*NOMAX Default.

SEPARATOR value Conditional.	If	no	separator	is
specified	then	block	size	is	used.

	

	

VALIDATE
The	VALIDATE	command	is	used	to	validate	a	specified	transaction.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

VALIDATE SEF value Mandatory.	file	path.

INTERCHANGE value Mandatory.	Interchange.

GROUP value Conditional.	Group.
Default.	blank.

TRANSACTION value Mandatory.	Transaction.

	

	

SERVICE_UNLOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

EDIDataSetService
Service	Name:	EDIDataSetService
The	EDIDataSetService	is	used	to	create	a	DataSet	from	an	EDI	transaction	and
to	create	an	EDI	transaction	from	a	DataSet.
The	EDIDataSetService	supports	the	following	commands:
SERVICE_LOAD
SERVICE_GET
GET
READ
WRITE
SERVICE_UNLOAD

SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

	

SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value
SERVICE_GET PROPERTY value Conditional.	Get	service

property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

GET
The	GET	command	returns	the	current	validation	errors	into	the	specified
working	list.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET OBJECT *ERROR Mandatory.

	

	

READ
The	READ	command	reads	the	specified	transaction	and	creates	a	DataSet	file.
Syntax:
CommandKeyword Value Developer	notes	for

Command/Keyword/Value
READ FILE value Mandatory.	File	path

SEF value Mandatory.	File	path.

MAP value Mandatory.	File	path.

DATASET value Mandatory.	File	path,

ENCODING value Optional.	File	encoding.
Default.	ISO8859_1.

IGNORE *NONE Optional.
Default.	*NONE.

*CRLF 	

MAPTRACE *YES Optional.	Trace	mapping.

*NO Default.

INTERCHANGE value Mandatory.	Interchange.

GROUP value Conditional.	Group.
Default.	blank.

TRANSACTION value Mandatory.	Transaction.

	

	

WRITE
The	WRITE	command	reads	the	specified	DataSet	file	and	creates	a	transaction
file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

WRITE FILE value Mandatory.	File	path.

SEF value Mandatory.	File	path.

MAP value Mandatory.	File	path.

DATASET value Mandatory.	File	path.

ENCODING value Optional.	File	encoding.
Default.	ISO8859_1.

DOCUMENT *X12 Optional.
Default.	*X12.

*EDIFACT 	

*TRADCOM 	

COMPRESS *YES Optional.
Default.	*YES.

*NO 	

SEGMENT_DELIMITER value Optional.

ELEMENT_DELIMITER value Optional.

COMPOSITE_DELIMITER value Optional.

DECIMAL value Optional.

ESCAPE value Optional.

	

	

SERVICE_UNLOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

EDIDatabaseService
Service	Name:	EDIDatabaseService
The	EDIDatabaseService	is	used	to	send	a	DataSet	to	a	database	and	to	receive
a	DataSet	from	a	database.
The	EDIDatabaseService	supports	the	following	commands:
SERVICE_LOAD
SERVICE_GET
CONNECT
SET
SEND
RECEIVE
COMMIT
ROLLBACK
METADATA
DISCONNECT
SERVICE_UNLOAD

SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

	

SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

CONNECT
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

CONNECT DATABASE value Mandatory.

DRIVER value Mandatory.

USER value Optional.

PASSWORD value Optional.

	

	

SET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SET ONERROR *ROLLBACK Optional.

*DISCONNECT 	

*CONTINUE 	

READONLY *YES Optional.

*NO 	

AUTOCOMMIT *YES Optional.

*NO 	

ISOLATION *NONE Optional.

*READCOMMITTED 	

*READUNCOMMITTED 	

*REPEATABLEREAD 	

*SERIALIZABLE 	

	

	

SEND
The	SEND	command	updates	the	current	database	using	the	specified	DataSet
file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND DATASET value Mandatory.	File	path.

TRADERID value Optional.

IDENTIFIER value Optional.

MODE *STREAM Optional.

*DATASET Default.

	

	

RECEIVE
The	RECEIVE	command	creates	a	DataSet	file	using	the	current	database
connection	and	specified	map.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RECEIVE MAP value Mandatory.	File	path.

TRADERID value Optional.

IDENTIFIER value Optional.

DATASET value Mandatory.	File	path

	

	

COMMIT
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

COMMIT 	 	 	

	

	

ROLLBACK
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

ROLLBACK 	 	 	

	

	

METADATA
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

METADATA TABLE value Mandatory.	Database	Table.

	

	

DISCONNECT
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

DISCONNECT 	 	 	

	

	

SERVICE_UNLOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

EDIInterchangeService
Service	Name:	EDIInterchangeService
The	EDIInterchangeService	is	used	to	collate	intermediate	transactions	into	a
single	interchange	document.
The	EDIInterchangeService	supports	the	following	commands:
SERVICE_LOAD
SERVICE_GET
BEGIN
ADD
END
WRITE
VALIDATE
GET
SERVICE_UNLOAD

SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

	

SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

BEGIN
The	BEGIN	command	begins	a	new	interchange.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

BEGIN SEF value Mandatory.	File	path.

INTERCHANGE *X12 Mandatory.

*EDIFACT 	

*TRADCOM 	

SEGMENT_DELIMITER value Optional.

ELEMENT_DELIMITER value Optional.

COMPOSITE_DELIMTER value Optional.

DECIMAL value Optional.

ESCAPE value Optional.

ENCODING value Optional.
Default.	ISO8859_1.

IDENTIFIER value Optional.

	

	

ADD
The	ADD	command	adds	groups	and	transactions	to	current	interchange.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

ADD OBJECT *TA1 Mandatory.

*TA3 	

*GROUP 	

*TRANSACTION 	

IDENTIFIER value Optional.

FILE value Conditional.	Transaction	file.

	

	

END
The	END	command	closes	the	current	interchange.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

END 	 	 	

	

	

WRITE
The	WRITE	command	writes	the	current	interchange	out	to	the	specified	file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

WRITE FILE value Manadatory.	File	path.

APPEND *YES Optional.

*NO Default.

	

	

VALIDATE
The	VALIDATE	command	is	used	to	validate	the	current	interchange.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

VALIDATE SEF value Mandatory.	file	path.

INTERCHANGE value Mandatory.	Interchange.

GROUP value Conditional.	Group.
Default.	blank.

TRANSACTION value Mandatory.	Transaction.

	

	

GET
The	GET	command	returns	the	current	validation	errors	into	the	specified
working	list.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET OBJECT *ERROR Mandatory.

	

	

SERVICE_UNLOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	
	
	

Appendix	D.	AS2	and	AS3	Services
AS2	and	AS3	are	a	security	standard	defined	by	the	Working	Group	of	the
Internet	Engineering	Task	Force	(IETF)	that	allows	EDIFACT,	X12	and	XML-
based	business	transactions	to	move	securely	over	the	Internet.
The	standard	underlines	the	critical	elements	of	data	privacy,	data	authentication
and	non-repudiation	of	origin	and	receipt,	required	to	ensure	the	integrity	of
data	communications	via	the	Internet.
The	business	benefits	of	AS2	and	AS3	interoperability	include	boosting
efficiency	and	lowering	the	cost	for	transmitting	critical	business	data.
LANSA's	AS2	and	AS3	facility	consists	of	these	services:
AS2InboundService
AS2OutboundService
AS2OutboundReceiptService
AS2CertificateService
AS3FileService

AS2InboundService
Service	Name:	AS2InboundService
The	AS2InboundService	is	used	to	receive	an	AS2	transaction	and	send	an
appropriate	response.
The	AS2InboundService	supports	the	following	commands:
SERVICE_LOAD
SERVICE_GET
GET
RECEIVE
SAVE
SEND
SERVICE_UNLOAD

SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

GET
The	GET	command	is	used	to	access	information	from	the	received	transaction.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

GET PROPERTY value Mandatory.	Property	keyword.

	

RECEIVE
The	RECEIVE	command	is	used	to	receive	an	AS2	transaction.
The	following	keywords	may	be	supplied	on	the	RECEIVE	command	or	as	an
entry	in	a	keyword/value	list	argument.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

RECEIVE RECEIVER value Mandatory.	The	identity	that	receives
the	transaction.	This	value	is	used	in
resource	file	lookups.
Value	is	made	up	of	2	components
separated	by	a	colon,	a	name
component	and	an	optional	private
keystore	password	component.
Example:	ACME:mypassword

PARTNER value Optional.	Authentication	partner.

	

The	RECEIVER	keyword	value	is	used	to	obtain	the	decryption	key	file,
password,	decryption	certificate	and	verify	authentication	certificate	using	a
selection	hierarchy	of	entries	from	the	properties	file.
	keystore.{receiver}=	pki/filename
	keystore	=	pki/filename
	keystore.password.{receiver}	=	password
	keystore.password	=	password
	certificate.{receiver}	=	pki/filename
	certificate	=	pki/filename
	authentication.certificate.{partner}=pki/filename
The	following	properties	come	from	the	received	HTTP	request.

Property Description Values

*AS2TO AS2-To. 	

*AS2FROM AS2-From. 	

*AS2VERSION AS2-
Version.

	

*FROM From. 	

*DATE Date. 	

*SUBJECT Subject. 	

*MESSAGEID Message-Id. 	

*RECEIPTDELIVERY Receipt-
Delivery-
Option.

The	delivery	address	for	an
asynchronous	receipt.	
Blank	if	synchronous	receipt
requested.

*RECEIPTPROTOCOL Receipt-
Delivery-
Option.

If	asynchronous	receipt	is
required,	this	contains	the
protocol	required	by	the	receipt.	
HTTP

value HTTP
protocol
property.

	

	

The	following	properties	come	from	the	received	transaction.

Property Description Example	message	values

*MICMD5 Calculated
MD5	MIC.

	

*MICSHA1 Calculated
SHA1	MIC.

	

*MICSHA256 Calculated
SHA256	MIC.

	

*MICSHA384 Calculated 	

SHA384	MIC.

*MICSHA512 Calculated
SHA512	MIC.

	

*CONTENT Transaction
data	content
type.

*XML	or	*X12	or	*EDIFACT	or
*RECEIPT	or	mime	type	in
uppercase.

*CONTENTTYPE Transaction
content	type	in
full.

application/xml;	name=xxxxxxxxxx

	

The	following	properties	come	from	the	received	receipt.
Use	the	GET	PROPERTY	(*CONTENT)	to	check	if	the	received	transaction	is
a	receipt.

Property Description Example
message
values

*RECEIPTMESSAGEID Message	ID	of	the
original	transaction.
This	can	be	used	to
match	to	the
original	sent
transaction.

	

*RECEIPTMIC MIC	of	the	original
transaction.

	

*RECEIPTMICALG MIC	algorithm. MD5,
SHA1

*RECEIPTDISPOSITIONTYPE Status	of	the
original	AS2
transaction.

Possible
values:
processed
displayed
dispatched
deleted

denied
failed.

*RECEIPTDISPOSITIONMODIFIER Status	of	the
original	AS2
transaction.

Possible
values:
""
error
warning
superseded
expired
mailbox-
terminated.

	

SAVE
The	SAVE	command	is	used	to	save	the	received	transaction	or	receipt.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SAVE FILE value Mandatory.	Filename

	

SEND
The	SEND	command	is	used	to	return	a	response	to	the	AS2	client	program.
The	SEND	command	internally	uses	the	Disposition-Notification-To	and	the
Disposition-Notification-Options	received	from	the	client	program	to	help	in
automatic	creation	of	a	response.
If	a	synchronous	receipt	was	requested,	a	receipt	must	be	sent.
If	an	asynchronous	receipt	was	requested,	a	basic	200	OK	response	is	sent.
Note:	For	asynchronous	receipts,	the	receipt	may	be	sent	later	to	the	requested
address.	The	Receipt-Delivery-Option	contains	the	delivery	URL.
The	list	argument	will	be	returned	with	the	following	keywords	and	values:

Keyword Description

MESSAGEID Message-Id	of	the	receipt	sent.

SUBJECT Subject	on	the	receipt.

FROM From	value	on	the	receipt.

DATE Date	on	the	receipt.

	

Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

SEND RESPONSE *DEFAULT Mandatory.	The	type	of
response	is	automatically
determined	from	the	client
request.	Either	basic,	receipt
or	signed	receipt	is	returned.

*OK This	will	send	a	basic	OK
(200	HTTP	response).	This
response	should	only	be	used
if	an	asynchronous	receipt
was	requested.

*ERROR Send	an	error	receipt.

FROM value Optional.	From.

SUBJECT value Optional.	Subject.

TEXT value Optional.	Text.

PROCESSED value Optional.	Default	value	is
"processed".

MODIFER value Optional.	Default	value	is
blank	or	"error"	for	response
*ERROR.

MESSAGEID value Optional.	Complete
transaction	message	id.	The
Message-Id	is	normally
generated.

	

The	RECEIVER	keyword	value	is	used	to	create	the	following	receipt
information.
	receipt.from.{receiver}	=	email	address
	receipt.from	=	email	address
	receipt.subject.{receiver}	=	subject
	receipt.subject	=	subject
	messageid.prefix.{recipient}	=	company	identifier
	messageid.prefix.	=	company	identifier
	
Human	readable	text	is	obtained	from	files	using	a	properties	file	selection
hierarchy.
	receipt.message.{receiver}	=	system/receipt-message.txt
	receipt.message	=	system/receipt-message.txt
	receipt.text.{receiver}	=	system/receipt-text.txt
	receipt.text	=	system/receipt-text.txt

	receipt.error.{receiver}	=	system/receipt-error.txt
	receipt.error	=	system/receipt-error.txt
	
The	receipt.message	contains	the	human	readable	component	of	the	receipt.
The	receipt.text	contains	the	text	that	is	sent	as	the	body	content	in	a	200	OK
basic	response.	It	is	sent	as	content	type	text/plain.
The	receipt.error	contains	the	human	readable	component	of	the	error	receipt.
The	following	special	merge	labels	are	supported	in	the	receipt.text,
receipt.message	and	receipt.error	files:
%%COMPANYFROM%%
%%COMPANYTO%%
%%DATE%%
%%SUBJECT%%
%%TEXT%%

Sample	receipt.message	file	content:
The	message	sent	to	recipient	<%%COMPANYTO%%>	on	%%DATE%%	with	subject	"%%SUBJECT%%"	has	been	received.

Sample	receipt.text	file	content:
Data	from	<%%COMPANYFROM%%>	has	been	received	by	<%%COMPANYTO%%>

Sample	receipt.error	file	content:
The	message	sent	
to	recipient	<%%COMPANYTO%%>	on	%%DATE%%	with	subject	"%%SUBJECT%%"	contains	the	
following	error	%%TEXT%%.

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
DO	NOT	use	the	SERVICE_UNLOAD	command	when	sending	a	HTTP
response.	Use	the	SEND	command	to	create	the	response	and	then	use	the
JSM_CLOSE	BIF	to	close	the	connection.	The	byte	array	response	returned	to
JSM	Client	program	by	the	SEND	command	will	be	become	the	HTTP
response.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

Sample	AS2InboundService	resources
#
#	AS2InboundService	resource	(Default)
#
messageid.prefix=DEFAULT-AS2
keystore=pki/default-key.p8
keystore.password=password
certificate=pki/default-cert.cer
receipt.from=as2manager@company.com
receipt.subject=Your	request	MDN	response	(default)
receipt.text=system/default-receipt-text.txt
receipt.message=system/default-receipt-message.txt
#
#	Receiver	–	ACME
#
messageid.prefix.acme=ACME-AS2
keystore.acme=pki/acme-key.p8
keystore.password.acme=password
certificate.acme=pki/acme-cert.cer
receipt.from.acme=as2manager@acme.com.au
receipt.subject.acme=Your	request	MDN	response
receipt.text.acme=system/acme-receipt-text.txt
receipt.message.acme=system/acme-receipt-message.txt
#
message.001=Service	successfully	loaded
message.002=Service	successfully	unloaded
message.003=Command	is	not	supported	:
#

AS2OutboundService
Service	Name:	AS2OutboundService
The	AS2OutboundService	is	used	to	send	an	AS2	transaction.
The	AS2OutboundService	supports	the	following	commands:
SERVICE_LOAD
SERVICE_GET
SEND
GET
SERVICE_UNLOAD

SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

SEND
The	SEND	command	is	used	to	send	an	AS2	transaction.
The	following	keywords	may	be	supplied	on	the	SEND	command	or	as	an	entry
in	a	keyword/value	list	argument.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND RECIPIENT value Mandatory.	The	identity	that
that	will	receive	the	transaction.
This	value	is	used	in	resource
file	lookups.
Value	is	made	up	of	2
components	separated	by	a
colon,	a	name	component	and
an	optional	private	keystore
password	component.
Example:	ACME:mypassword

FILE value Mandatory.	Filename	of
content.

NAME value Optional.	Override	name	of
filename	used	in	message.

CONTENT value Mandatory.	Content	mime-type.

*XML application/xml.

*X12 application/edi-x12.

*EDIFACT application/edifact.

MESSAGEID value Optional.	Complete	transaction
message	id.	The	Message-Id	is
normally	generated.

SUBJECT value Optional.	Transaction	subject.

RECEIPTTO value Optional.	Require	receipt.

*NONE Do	not	send	Disposition-
Notification-To.

RECEIPTSIGNED *YES Optional.	Require	signed
receipt.

*NO 	

DELIVERY value Optional.	URL	for
asynchronous	receipt	delivery.

*NONE Do	not	send	Receipt-Delivery-
Option.

SIGNED *YES Optional.	Signed	Transaction.

*NO Default.

ENCRYPTED *YES Optional.	Encrypted
Transaction.

*NO Default.

COMPRESSED *YES Optional.	Compressed	Content.

*NO Default.

USER value Optional.	Basic	authentication
user.

PASSWORD value Optional.	Basic	authentication
password.

PARTNER value Optional.	Authentication
partner.

	

The	RECIPIENT	keyword	value	is	used	to	obtain	the	signing	key	file,
password,	signing	certificate,	encryption	certificates	and	verify	authentication	of
signed	receipt	certificate	using	a	selection	hierarchy	of	entries	from	the
properties	file.
	keystore.{recipient}=	pki/filename
	keystore	=	pki/filename

	keystore.password.{recipient}	=	password
	keystore.password	=	password
	certificate.{recipient}	=	pki/filename
	certificate	=	pki/filename
	encryption.certificates.{recipient}	=	pki/filename,	pki/filename,	pki/filename
	authentication.certificate.{partner}	=	pki/filename
	url.{recipient}	=	http://company.com/as2server
	as2-to.{recipient}	=	companyto
	as2-from.{recipient}	=	companyfrom
	as2-from	=	companyfrom
	from.{recipient}	=	from
	from	=	from
	subject.{recipient}	=	subject
	subject	=	subject
	receipt.to.{recipient}	=	*none	|	email	address	(Disposition-Notification-To)
	receipt.to	=	*none	|	email	address	(Disposition-Notification-To)
	receipt.signed.{recipient}	=	*yes	|	*no	(Disposition-Notification-Options)
	receipt.signed	=	*yes	|	*no	(Disposition-Notification-Options)
	receipt.delivery.{recipient}	=	*none	|	url	(Receipt-Delivery-Option)
	receipt.delivery	=	*none	|	url	(Receipt-Delivery-Option)
	messageid.prefix.{recipient}	=	company	identifier
	messageid.prefix.	=	company	identifier
	signed.algorithm.{recipient}	=	*MD5	|	*SHA1	|	*SHA256	|	*SHA384	|
*SHA512

	signed.algorithm	=	*MD5	|	*SHA1	|	*SHA256	|	*SHA384	|	*SHA512
	encryption.algorithm.{recipient}	=	*DES3	|	*AES128	|	*AES192	|	*AES256
	encryption.algorithm	=	*DES3	|	*AES128	|	*AES192	|	*AES256

GET
The	GET	command	is	used	to	access	information	from	the	sent	transaction	and
the	HTTP	response	from	the	remote	AS2	server.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

GET PROPERTY value Mandatory.	Property	keyword.

	

The	following	properties	come	from	the	created	data	source	that	was	sent.

Property Description Values

*DATAMESSAGEID Message-Id. 	

*DATAMICMD5 Calculated	MD5
MIC.

	

*DATAMICSHA1 Calculated	SHA1
MIC.

	

*DATAMICSHA256 Calculated	SHA256
MIC.

	

*DATAMICSHA384 Calculated	SHA384
MIC.

	

*DATAMICSHA512 Calculated	SHA512
MIC.

	

*DATARECEIPT Receipt	requested. *YES	or	*NO

*DATARECEIPTSIGNED Signed	receipt
requested.

*YES	or	*NO.

*DATARECEIPTDELIVERY Receipt	delivery
requested.

*YES	=
asynchronous
*NO	=
synchronous

	

The	following	properties	come	from	the	HTTP	response.

Property Description Values

*AS2TO AS2-To. 	

*AS2FROM AS2-From. 	

*AS2VERSION AS2-Version. 	

*FROM From. 	

*DATE Date. 	

*SUBJECT Subject. 	

*MESSAGEID Message-Id. 	

*CONTENT Type	of	response	content. *RECEIPT	or	*OTHER

value HTTP	protocol	property. 	

	

The	following	properties	come	from	the	received	receipt.
Use	the	GET	PROPERTY	(*CONTENT)	to	check	if	the	received	response	is	a
receipt.

Property Description Example
message
values

*RECEIPTMESSAGEID Message	ID	of	the
original	transaction.
This	can	be	used	to
match	to	the
original	sent
transaction.

	

*RECEIPTMIC MIC	returned	in
receipt.	This	can	be
compared	with	the

	

original	transaction
MIC	to	check	the
transaction	delivery.

*RECEIPTMICALG MIC	algorithm. MD5,
SHA1

*RECEIPTDISPOSITIONTYPE Status	of	the	AS2
transaction.

Possible
values:
processed
displayed
dispatched
deleted
denied
failed.

*RECEIPTDISPOSITIONMODIFIER Status	of	the	AS2
transaction.

Possible
values:
""
error
warning
superseded
expired
mailbox-
terminated.

	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

Sample	AS2OutboundService	resources
#
#	AS2OutboundService	resource	(Default)
#
messageid.prefix=DEFAULT-AS2
subject=Default	subject
from=default@company.com
as2-from="Default	Company"
keystore=pki/default-key.p8
keystore.password=password
certificate=pki/default-cert.cer
#	receipt.signed=*yes	|	*no
receipt.to=notify@company.com
#
#	Recipient	–	ACME
#
messageid.prefix.acme=ACME-AS2
as2-to.acme="Acme	Corporation"
as2-from.acme="Rocket	Inc"
from.acme=person@rocket.com.au
url.acme=http://www.acme.com.au/cgi-bin/jsmdirect?as2server
subject.acme=The	subject
keystore.acme=pki/acme-key.p8
keystore.password.acme=password
certificate.acme=pki/acme-cert.cer
encryption.certificates.acme=pki/acme-cert.cer,pki/default-cert.cer
receipt.to.acme=notify@rocket.com.au
#	receipt.signed.acme=*yes	|	*no
#	receipt.delivery.acme=http://www.rocket.com.au/cgi-bin/jsmdirect?
as2receipt
#
message.001=Service	successfully	loaded
message.002=Service	successfully	unloaded
message.003=Command	is	not	supported	:
#

AS2OutboundReceiptService
Service	Name:	AS2OutboundReceiptService
The	AS2OutboundReceiptService	is	used	to	send	an	AS2	receipt.
The	AS2OutboundReceiptService	supports	the	following	commands:
SERVICE_LOAD
SERVICE_GET
SEND
GET
SERVICE_UNLOAD

SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

SEND
The	SEND	command	is	used	to	send	an	AS2	receipt.
The	following	keywords	may	be	supplied	on	the	SEND	command	or	as	an	entry
in	a	keyword/value	list	argument.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SEND RECIPIENT value Mandatory.	The	identity
that	that	will	receive	the
receipt.	This	value	is	used
in	resource	file	lookups.
Value	is	made	up	of	2
components	separated	by	a
colon,	a	name	component
and	an	optional	private
keystore	password
component.
Example:
ACME:mypassword

DELIVERY value Mandatory.	The	address	for
the	receipt	delivery.	This
will	have	been	retrieved
from	the	inbound
transaction
RECEIPTDELIVERY.

RECEIPTMIC value Mandatory.	MIC	of	original
transaction.

RECEIPTMESSAGEID value Mandatory.	Original
Message-Id.

RECEIPTSUBJECT value Mandatory.	Original
message	subject.

RESPONSE *DEFAULT Optional.	Default.	Send
receipt.

*ERROR Send	an	error	receipt.

PROCESSED value Optional.	Default	value	is
"processed".

MODIFIER value Optional.	Default	value	is
blank	or	"error"	for
response	*ERROR.

AS2TO value Optional.	AS2-To.

AS2FROM value Optional.	AS2-From.

FROM value Optional.	From.

SUBJECT value Optional.	Subject.

TEXT value Optional.	Text

MESSAGEID value Optional.	Complete
transaction	message	id.	The
Message-Id	is	normally
generated.

SIGNED *YES Optional.	If	*YES,	then	a
keystore	password	is
required.
Access	to	a	private	key	is
not	mandatory	but	it	will	be
required	if	the	receipt	is	to
be	signed.

*NO Default.

USER value Optional.	Basic
authentication	user.

PASSWORD value Optional.	Basic
authentication	password.

	

The	RECIPIENT	keyword	value	is	used	to	obtain	the	signing	key	file,	password
and	signing	certificate	using	a	selection	hierarchy	of	entries	from	the	properties

file.
	keystore.{recipient}=	pki/filename
	keystore	=	pki/filename
	keystore.password.{recipient}	=	password
	keystore.password	=	password
	certificate.{recipient}	=	pki/filename
	certificate	=	pki/filename
	as2-to.{recipient}	=	companyto
	as2-from.{recipient}	=	companyfrom
	as2-from	=	companyfrom
	from.{recipient}	=	from
	from	=	from
	subject.{recipient}	=	subject
	subject	=	subject
	messageid.prefix.{recipient}	=	company	identifier
	messageid.prefix.	=	company	identifier
	signed.algorithm.{recipient}	=	*MD5	|	*SHA1	|	*SHA256	|	*SHA384	|
*SHA512

	signed.algorithm	=	*MD5	|	*SHA1	|	*SHA256	|	*SHA384	|	*SHA512
	
Human	readable	text	is	obtained	from	a	file	using	a	properties	file	selection
hierarchy.
	receipt.message.{recipient}	=	system/receipt-message.txt
	receipt.message	=	system/receipt-message.txt
	receipt.error.{recipient}	=	system/receipt-error.txt
	receipt.error	=	system/receipt-error.txt
	
The	receipt.message	contains	the	human	readable	component	of	the	receipt.
The	receipt.error	contains	the	human	readable	component	of	the	error	receipt.
The	following	special	merge	labels	are	supported	in	the	receipt.message	and

receipt.error	files:
%%COMPANYFROM%%
%%COMPANYTO%%
%%DATE%%
%%SUBJECT%%
%%TEXT%%

Sample	receipt.message	file	content:
The	message	sent	to	recipient	<%%COMPANYTO%%>	on	%%DATE%%	with	subject	"%%SUBJECT%%"	has	been	received.

Sample	receipt.error	file	content:
The	message	sent	
to	recipient	<%%COMPANYTO%%>	on	%%DATE%%	with	subject	"%%SUBJECT%%"	contains	the	
following	error	%%TEXT%%.

GET
The	GET	command	is	used	to	access	information	from	the	sent	transaction	and
the	HTTP	response	from	the	remote	AS2	server.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

GET PROPERTY value Mandatory.	Property	keyword.

	

	
The	following	properties	come	from	the	created	data	source	that	was	sent.

Property Description Values

*DATAMESSAGEID Message-Id. 	

value HTTP	protocol	property. 	

	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

Sample	AS2OutboundReceiptService	resources
#
#	AS2OutboundReceiptService	resource	(Default)
#
messageid.prefix=DEFAULT-AS2
subject=Default	subject
from=default@company.com
as2-from="Default	Company"
keystore=pki/default-key.p8
keystore.password=password
certificate=pki/default-cert.cer
receipt.message=system/default-receipt-message.txt
#
#	Recipient	–	ACME
#
messageid.prefix.acme=ACME-AS2
as2-to.acme="Acme	Corporation"
as2-from.acme="Rocket	Inc"
from.acme=receiptperson@rocket.com.au
subject.acme=The	Subject
keystore.acme=pki/acme-key.p8
keystore.password.acme=password
certificate.acme=pki/acme-cert.cer
encryption.certificates.acme=pki/acme-cert.cer,pki/default-cert.cer
receipt.message.acme=system/acme-receipt-message.txt
#
message.001=Service	successfully	loaded
message.002=Service	successfully	unloaded
message.003=Command	is	not	supported	:
#

AS2CertificateService
Service	Name:	AS2CertificateService
The	AS2CertificateService	is	used	to	create	X.509	certificates.
The	AS2CertificateService	supports	the	following	commands:
SERVICE_LOAD
SERVICE_GET
CREATE
SERVICE_UNLOAD

SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

CREATE
The	CREATE	command	is	used	to	create	X.509	certificates.
Create	certificate	authority.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

CREATE CERTIFICATE *AUTHORITY Mandatory.	Type	of
certificate.

CA_CERTIFICATE_PATH value Mandatory.	X509	certificate
file.

CA_KEYSTORE_PATH value Mandatory.	PKCS8
keystore.

CA_KEYSTORE_PASSWORD value Mandatory.	Keystore
password.

CA_EXPIRY_DATE value Mandatory.	Expiry	date.

DATEFORMAT value Optional:	Date	format
Default.	mm/dd/yyyy

SERIAL value Mandatory.	Serial	number.

ALGORITHM *DSA Optional.	Type	of	key	pair.

*RSA Default.

STRENGTH value Optional.	Strength	of	key.

2048 Default.

COUNTRY value Optional.

STATE value Optional.

LOCALITY value Optional.

ORGANIZATION value Optional.

UNIT value Optional.

COMMON_NAME value Optional.

EMAIL value Optional.

SIGNING_ALGORITHM *SHA1RSA Optional.	Certificate	signing
algorithm.

*SHA1DSA 	

*SHA256RSA Default.

	

	
Create	certificate	request.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

CREATE CERTIFICATE *REQUEST Mandatory.	Type	of
certificate.

REQUEST_CERTIFICATE_PATH value Mandatory.	PKCS10
certificate	request	file.

REQUEST_KEYSTORE_PATH value Mandatory.	PKCS8
keystore.

REQUEST_KEYSTORE_PASSWORD value Mandatory.	Keystore
password.

ALGORITHM *DSA Optional.	Type	of	key	pair.

*RSA Default.

STRENGTH value Optional.	Strength	of	key.

2048 Default.

COUNTRY value Optional.

STATE value Optional.

LOCALITY value Optional.

ORGANIZATION value Optional.

UNIT value Optional.

COMMON_NAME value Optional.

EMAIL value Optional.

SIGNING_ALGORITHM *SHA1RSA Optional.	Certificate	signing
algorithm.

*SHA1DSA 	

*SHA256RSA Default.

	

	
Create	certificate	from	certificate	request.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

CREATE CERTIFICATE *CLIENT Mandatory.	Type	of
certificate.

CA_CERTIFICATE_PATH value Mandatory.	X509	certificate
authority	file.

CA_KEYSTORE_PATH value Mandatory.	PKCS8
keystore.

CA_KEYSTORE_PASSWORD value Mandatory.	Keystore
password.

REQUEST_CERTIFICATE_PATH value Mandatory.	PKCS10
certificate	request	file.

CLIENT_CERTIFICATE_PATH value Mandatory.	X509	certificate
file.

SERIAL value Mandatory.	Serial	number.

DAYS value Mandatory.	Valid	for

number	of	days.

SIGNING_ALGORITHM *SHA1RSA Optional.	Certificate	signing
algorithm.

*SHA1DSA 	

*SHA256RSA Default.

	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

AS3FileService
Service	Name:	AS3FileService
The	AS3FileService	is	used	to	read	and	write	AS3	transactions	and	receipts.
The	AS3FileService	supports	the	following	commands:
SERVICE_LOAD
SERVICE_GET
READ
GET
RECEIVE
CREATE
WRITE
SERVICE_UNLOAD

SERVICE_LOAD
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_LOAD 	 	 	

	

SERVICE_GET
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_GET PROPERTY value Conditional.	Get	service
property.

TRACE *SERVICE Conditional.	Read	service
trace	file.

*TRANSPORT Conditional.	Read	transport
trace	file.

	

	

READ
The	READ	command	reads	the	AS3	transaction	or	receipt	file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

READ FILE value Mandatory.	Filename.

	

GET
The	GET	command	is	used	to	access	information	about	the	read	transaction	or
receipt.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

GET PROPERTY value Mandatory.	Property	keyword.

	

Property Description Values

*AS3TO AS3-To 	

*AS3FROM AS3-From 	

*AS3VERSION AS3-Version 	

*DATE Date 	

*SUBJECT Subject 	

*MESSAGEID Message-Id 	

*NOTIFICATONTO Disposition-
Notification-To

	

*NOTIFICATIONOPTIONS Disposition-
Notification-Options

	

*CONTENT Content-Type *RECEIPT
*XML
*X12
*EDIFACT
*EDICONSENT
content	mime
type.

value Protocol	property 	

	

The	following	properties	come	from	a	transaction.
Use	the	GET	PROPERTY	(*CONTENT)	to	check	if	the	file	contains	a
transaction.

Property Description Values

*MICMD5 Calculated	MD5	MIC. 	

*MICSHA1 Calculated	SHA1	MIC. 	

*MICSHA256 Calculated	SHA256	MIC. 	

*MICSHA384 Calculated	SHA384	MIC. 	

*MICSHA512 Calculated	SHA512	MIC. 	

*CONTENTTYPE Transaction	content	type content	mime	type.

	

The	following	properties	come	from	a	receipt.
Use	the	GET	PROPERTY	(*CONTENT)	to	check	if	the	file	contains	a	receipt.

Property Description Example
message
values

*RECEIPTMESSAGEID Message	ID	of	the
original	transaction.
This	can	be	used	to
match	to	the	original
sent	transaction.

	

*RECEIPTMIC MIC	returned	in
receipt.	This	can	be
compared	with	the
original	transaction
MIC	to	check	the
transaction	delivery.

	

*RECEIPTMICALG MIC	algorithm. MD5,

SHA1

*RECEIPTDISPOSITIONTYPE Status	of	the	AS3
transaction.

Possible
values:
processed
failed.

*RECEIPTDISPOSITIONMODIFIER Status	of	the	AS3
transaction.

Possible
values:
""
error
warning

	

The	following	properties	come	from	a	created	transaction	or	receipt.

Property Description Values

*DATAMESSAGEID Message-Id. 	

*DATAMICMD5 CalculatedMD5	MIC. 	

*DATAMICSHA1 Calculated	SHA1	MIC. 	

*DATAMICSHA256 Calculated	SHA256	MIC. 	

*DATAMICSHA384 Calculated	SHA384	MIC. 	

*DATAMICSHA512 Calculated	SHA512	MIC. 	

	

RECEIVE
The	RECEIVE	command	decodes	the	loaded	transaction.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

RECEIVE RECEIVER value Mandatory.	The	identity	that	receives	the
transaction.	This	value	is	used	in	resource
file	lookups.
Value	is	made	up	of	2	components	separated
by	a	colon,	a	name	component	and	an
optional	private	keystore	password
component.
Example:	ACME:mypassword

PARTNER value Optional.	Authentication	partner

	

The	RECEIVER	keyword	value	is	used	to	obtain	the	decryption	key	file,
password,	decryption	certificate	and	verify	authentication	certificate	using	a
selection	hierarchy	of	entries	from	the	properties	file.
	keystore.{receiver}=	pki/filename
	keystore	=	pki/filename
	keystore.password.{receiver}	=	password
	keystore.password	=	password
	certificate.{receiver}	=	pki/filename
	certificate	=	pki/filename
	authentication.certificate.{partner}=pki/filename

CREATE
The	CREATE	command	is	used	to	create	an	AS3	transaction	or	receipt.
Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

CREATE OBJECT *TRANSACTION Optional.	Default.	Create
transaction

RECIPIENT value Mandatory.	The	identity
that	that	will	receive	the
receipt.	This	value	is	used
in	resource	file	lookups.
Value	is	made	up	of	2
components	separated	by	a
colon,	a	name	component
and	an	optional	private
keystore	password
component.
Example:
ACME:mypassword

SUBJECT value Optional.	Subject.

RECEIPTTO value Optional.	Receipt	delivery.

*NONE No	receipt	delivery.

RECEIPTSIGNED *YES Optional.	Signed	Receipt

*NO Default.

FILE value Mandatory.	File	containing
EDI	content.

NAME value Optional.	Name	of	file.
Default	is	to	use	the	FILE
name.

CONTENT value Mandatory.	Content	type.

*XML application/xml

*EDIFACT application/edifact

*X12 application/x12

SIGNED *YES Optional.	Sign	content.

*NO Default.

ENCRYPTED *YES Optional	Encrypt	content.

*NO Default.

COMPRESSED *YES Optional.	Compress
content.

*NO Default.

MESSAGEID value Optional.

	

The	RECIPIENT	keyword	value	is	used	to	obtain	the	signing	key	file,
password,	signing	certificate	and	encryption	certificates	using	a	selection
hierarchy	of	entries	from	the	properties	file.
	keystore.{recipient}=	pki/filename
	keystore	=	pki/filename
	keystore.password.{recipient}	=	password
	keystore.password	=	password
	certificate.{recipient}	=	pki/filename
	certificate	=	pki/filename
	encryption.certificates.{recipient}	=	pki/filename,	pki/filename,	pki/filename
	as3-to.{recipient}	=	companyto
	as3-from.{recipient}	=	companyfrom
	as3-from	=	companyfrom
	subject.{recipient}	=	subject
	subject	=	subject
	receipt.to.{recipient}=receipt	to

	receipt.to=receipt	to
	receipt.signed.{recipient}=*yes	|	*no
	receipt.signed=*yes	|	*no
	messageid.suffix.{recipient}	=	company	identifier
	messageid.suffix.	=	company	identifier
	signed.algorithm.{recipient}	=	*MD5	|	*SHA1	|	*SHA256	|	*SHA384	|
*SHA512

	signed.algorithm	=	*MD5	|	*SHA1	|	*SHA256	|	*SHA384	|	*SHA512
	encryption.algorithm.{recipient}	=	*DES3	|	*AES128	|	*AES192	|	*AES256
	encryption.algorithm	=	*DES3	|	*AES128	|	*AES192	|	*AES256

Syntax:

Command Keyword Value Developer	notes	for
Command/Keyword/Value

CREATE OBJECT *RECEIPT Mandatory.	Create	receipt.

RECIPIENT value Mandatory.	The	identity
that	receives	the	transaction.
This	value	is	used	in
resource	file	lookups.
Value	is	made	up	of	2
components	separated	by	a
colon,	a	name	component
and	an	optional	private
keystore	password
component.
Example:
ACME:mypassword

RECEIPTMIC value Mandatory.	Original
Message	MIC.

RECEIPTMESSAGEID value Mandatory.	Original
Message	Id.

RECEIPTSUBJECT value Mandatory.	Original
Message	Subject.

PROCESSED value Optional.	Default	is
"processed".

MODIFIER value Optional.	Default	is	blank.

AS3TO value Optional.	AS3-To.

AS3FROM value Optional.	AS3-From.

SUBJECT value Optional.	Receipt	subject.

TEXT value Optional.	Text.

MESSAGEID value Optional.

SIGNED *YES Optional.	Sign	receipt.

*NO Default.

	

The	RECIPIENT	keyword	value	is	used	to	obtain	the	signing	key	file,	password
and	singing	certificate	using	a	selection	hierarchy	of	entries	from	the	properties
file.
The	keystore	and	certificates	are	only	used	when	the	receipt	needs	to	be	signed.
	keystore.{recipient}=	pki/filename
	keystore	=	pki/filename
	keystore.password.{recipient}	=	password
	keystore.password	=	password
	certificate.{recipient}	=	pki/filename
	certificate	=	pki/filename
	as3-to.{recipient}	=	companyto
	as3-from.{recipient}	=	companyfrom
	as3-from	=	companyfrom
	subject.{recipient}	=	subject
	subject	=	subject
	receipt.to.{recipient}=receipt	to
	receipt.to=receipt	to

	messageid.suffix.{recipient}	=	company	identifier
	messageid.suffix.	=	company	identifier
	signed.algorithm.{recipient}	=	*MD5	|	*SHA1	|	*SHA256	|	*SHA384	|
*SHA512

	signed.algorithm	=	*MD5	|	*SHA1	|	*SHA256	|	*SHA384	|	*SHA512
Human	readable	text	is	obtained	from	a	file	using	a	properties	file	selection
hierarchy.
receipt.message.{recipient}	=	system/receipt-message.txt
receipt.message	=	system/receipt-message.txt
	
The	receipt.message	contains	the	human	readable	component	of	the	receipt.
The	following	special	merge	labels	are	supported	in	the	receipt.message	file:
%%COMPANYFROM%%
%%COMPANYTO%%
%%DATE%%
%%SUBJECT%%
%%TEXT%%

Sample	receipt.message	file	content:
The	message	sent	to	recipient	<%%COMPANYTO%%>	on	%%DATE%%	with	subject	"%%SUBJECT%%"	has	been	received.

WRITE
The	WRITE	command	saves	the	created	transaction	or	receipt	to	the	specified
file.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

WRITE FILE value Mandatory.	Filename.

	

SERVICE_UNLOAD
The	SERVICE_UNLOAD	command	unloads	the	service.
Syntax:
Command Keyword Value Developer	notes	for

Command/Keyword/Value

SERVICE_UNLOAD 	 	 	

	

	

Sample	AS3FileService	resources
#
#	AS3FileService	resource	(Default)
#
#	Default
#
messageid.suffix=DEFAULT
subject=Default	Subject
as3-from=Default	Company
keystore=pki/default-key.p8
keystore.password=password
certificate=pki/default-cert.cer
receipt.subject=Default	Receipt	Subject
#	receipt.signed=*yes	|	*no
receipt.to=ftp://mycompany/default
#	signed.algorithm=*sha1	|	*md5
#	encryption.algorithm=*des3
#
#	Recipient	-	ACME
#
messageid.suffix.acme=ACME
as3-to.acme="Acme	Inc."
as3-from.acme="My	Company"
subject.acme=Subject
keystore.acme=pki/acme-key.p8
keystore.password.acme=password
certificate.acme=pki/acme-cert.cer
encryption.certificates.acme=pki/acme-cert.cer
receipt.subject.acme=Receipt	Subject
#	receipt.signed.acme=*yes	|	*no
#	receipt.to.acme=*none	|	{address}
receipt.to.acme=ftp://mycompany/inbox
#	signed.algorithm.acme=*sha1	|	*md5
#	encryption.algorithm.acme=*des3
#

	LANSA Integrator Guide
	About this Guide
	What is LANSA Integrator?
	Who should use this Guide
	How to use this Guide
	Samples and Examples
	Additional Information
	Installation and Licensing

	What's New in this Version?
	1. Introduction to LANSA Integrator
	1.1 What is Java Service Manager (JSM)?
	1.1.1 Why use Java Service Manager?
	1.1.2 What is a JSM Client?
	1.1.3 What is JSMDirect?
	1.1.4 How does the Java Service Manager work?
	1.1.5 How Can I Use Java Service Manager
	1.1.6 Can I Create My Own Services?

	1.2 What is Integrator Studio?
	1.3 What is Integrator User Agent?

	2. Java Service Manager Administration
	2.1 Java Service Manager Administration for IBM i
	2.1.1 File and Folder Security
	2.1.2 Network Security
	2.1.3 JSM Job Management
	2.1.4 Java Service Administration
	2.1.4.1 Start Java Service Manager (STRJSM)
	Exit Program (IBM i)

	2.1.4.2 Clear Java Service Manager (CLRJSM)
	2.1.4.3 Optimize Java Service Manager (OPTJSM)
	2.1.4.4 Edit Manager Properties (EDTJSMMGR)
	2.1.4.5 Edit Service Properties (EDTJSMSRV)
	2.1.4.6 Change Default Instance (CHGJSMDFT)
	2.1.4.7 Work with Java Service Manager (WRKJSM)
	2.1.4.8 Work with Object Links
	2.1.4.9 Change JSM Owner (CHGJSMOWN)
	2.1.4.10 Change JSM Authority (CHGJSMAUT)
	2.1.4.11 Change JSM Primary Group (CHGJSMPGP)
	2.1.4.12 Change Attribute (CHGATR)

	2.2 Java Service Manager Administration for Windows
	2.3 Java Service Manager Administration for Linux
	2.4 Java Service Manager Console
	2.5 Java Service Manager Refresh
	2.6 Java Service Manager Pool Server
	2.7 Java Service Manager Additional Servers
	2.8 Java Hotspot Technology
	2.9 Java Endorsed Standards Override Mechanism
	2.10 JSM Startup Class
	2.11 Activation Framework
	2.12 IBM Java System Properties
	2.13 IBM Technology for Java Shared Classes
	2.14 LOG4J Logging Services
	2.15 Axis Properties
	2.16 Axis Message Handler
	2.17 SOAP Agent Message Handler
	2.18 Apache Axis 1.4 WS-Security and WS-Addressing
	2.19 REST Representational State Transfer
	2.20 JCE Unlimited Strength Policy Files

	3. Java Service Manager Clients
	3.1 LANSA RDML Client
	3.1.1 JSM_OPEN
	3.1.2 JSM_COMMAND
	RDML Reserved Commands
	RDML Reserved Keywords
	RDML Reserved Field Names

	3.1.3 JSM_CLOSE
	3.1.4 Sample LANSA RDML Client Programs

	3.2 LANSA RDMLX Client
	3.2.1 JSMX_BEGIN
	3.2.2 JSMX_OPEN
	3.2.3 JSMX_COMMAND
	RDMLX Reserved Commands
	RDMLX Reserved Keywords
	RDMLX Reserved Field Names

	3.2.4 JSMX_CLOSE
	3.2.5 JSMX_END
	3.2.6 Sample LANSA RDMLX Client Programs

	3.3 ILE RPG Client
	3.3.1 JSMOPEN
	3.3.2 JSMCMD & JSMCMDX
	3.3.3 JSMCLOSE
	3.3.4 RPG Reserved Commands
	3.3.5 RPG Reserved Keywords
	3.3.6 RPG Data Structure
	3.3.7 Sample ILE RPG Client Programs

	3.4 ILE RPGX Client
	3.4.1 JSMX_BEGIN
	3.4.2 JSMX_OPEN
	3.4.3 JSMX_BINDFLD
	3.4.4 JSMX_BINDLST
	3.4.5 JSMX_COMMAND
	RPGX Reserved Commands
	RPGX Reserved Keywords

	3.4.6 JSMX_CLOSE
	3.4.7 JSMX_END
	3.4.8 Sample ILE RPGX Client Programs

	3.5 C Client Error Messages
	3.6 Tracing
	3.6.1 Manager Tracing
	3.6.2 Client Command Tracing
	3.6.3 Service Program Tracing
	3.6.4 Service Program Tracing from the Client
	3.6.5 How Do I Start Tracing?
	3.6.6 Where Do I Find Trace Files?
	3.6.7 How Do I Clear Trace Files?

	3.7 Command
	3.8 Data Areas
	3.9 Resource properties - Studio sections
	3.10 Resource properties - Internationalization

	4. Java Service Manager HTTP Extensions
	4.1 JSMDirect
	4.1.1 WSDL Option
	4.1.2 SERVICE_LOAD
	4.1.3 JSMDirect Set up on IBM i
	Registering Functions for JSMDirect
	Maintaining Registration File DC@W29
	JSMDirect Program Logic

	4.1.4 JSMDirect Set up on Windows
	Registering Functions for JSMDirect

	4.1.5 JSMDirect Set up on Linux
	Registering Functions for JSMDirect

	4.2 JSMProxy
	4.2.1 JSMProxy Set up on IBM i
	Registering Functions for JSMProxy
	JSMProxy Program Logic

	4.2.2 JSMProxy Set up on Windows
	Registering Functions for JSMProxy

	4.2.3 JSMProxy Set up on Linux
	Registering Functions for JSMProxy

	4.3 JSMAdmin
	4.3.1 JSMAdmin Set up on IBM i
	4.3.2 JSMAdmin Set up on Windows

	4.4 Location of the LANSA System (IBM i)
	4.5 Location of the LANSA System (Windows)
	4.6 Location of the LANSA System (Linux)
	4.7 Exit Programs (IBM i)
	4.7.1 JSMDRTEXT
	4.7.2 JSMLSAEXT
	4.7.3 JSMPXYEXT
	4.7.4 JSMADMEXT
	4.7.5 JSMCHGUSER
	4.7.6 JSMCHGJOB
	4.7.7 JSMGETENV
	4.7.8 JSMTRCENV
	4.7.9 RUNJSMEXT

	4.8 Deployment (IBM i)
	4.9 Log Files (Windows)
	4.10 Apache Directives
	4.11 Apache URL Rewriting
	4.12 Apache Reverse Proxy
	4.13 Apache SSL Support
	4.14 Apache Tracing (IBM i)
	4.15 SSL Support
	4.16 SSL Handshake
	4.17 JSM HTTP Server

	5. Java Service Manager Services
	5.1 Supplementary Information
	5.1.1 Mapping Service Name to Java Classes
	5.1.2 IANA Encodings
	5.1.3 Time Zones
	5.1.4 Date and Time Formats
	5.1.5 Decimal Formats
	5.1.6 Web Browser Content
	5.1.7 Carriage Return, Line Feed and New Line
	5.1.8 XML Validation
	5.1.9 XML Entity Resolver
	5.1.10 XML Namespace
	5.1.11 XML Transformation
	5.1.12 XSL Extension
	5.1.13 MQSeries Built-In Functions
	MQ_CONN
	MQ_DISC
	MQ_BEGIN
	MQ_CMIT
	MQ_BACK
	MQ_OPEN
	MQ_CLOSE
	MQ_GET
	MQ_PUT
	MQ_DEPTH

	5.1.14 MQSeries IBM i Configuration
	5.1.15 MQSeries Programs
	5.1.16 Data Queue Programs
	5.1.17 IBM Toolbox for Java
	5.1.18 Common Command Keywords
	ARCHIVE
	BIND
	CONTENT
	ENCODING
	METHOD
	VERSION
	XSL
	SCHEMA
	VALIDATING
	FRAGMENT
	OUTPUT
	NUMBERFORMAT
	LOCALE
	SVROW
	SVROWLIMIT
	SVMODE
	SVQUOTE
	SVHEAD
	SVEXCLUDE
	SVCOLUMN
	SVTABLE
	SVLABEL
	SEPARATOR
	TRIM
	TRUNCATE
	DOMSET
	DOMSETMODEL
	DOMSETRESULT
	DOMGET
	DOMGETRESULT
	FILTER

	5.2 FTPService
	5.2.1 What can I use the FTPService for?
	5.2.2 Using the FTPService
	5.2.3 FTPService Commands
	SERVICE_LOAD
	CONNECT
	LOGIN
	CHGDIR
	GETDIR
	ASCII
	BINARY
	NOOP
	PUT
	GET
	SITE
	QUOTE
	CREATE
	DELETE
	RENAME
	LIST
	QUIT
	SERVICE_GET
	SERVICE_UNLOAD

	5.2.4 FTPService Examples

	5.3 SFTPService
	5.3.1 SERVICE_LOAD
	5.3.2 SERVICE_GET
	5.3.3 CONNECT
	5.3.4 LOGIN
	5.3.5 CHGDIR
	5.3.6 GETDIR
	5.3.7 PUT
	5.3.8 GET
	5.3.9 CHMOD
	5.3.10 DELETE
	5.3.11 CREATE
	5.3.12 RENAME
	5.3.13 LIST
	5.3.14 QUIT
	5.3.15 SERVICE_UNLOAD

	5.4 HTTPService
	5.4.1 SERVICE_LOAD
	5.4.2 SERVICE_GET
	5.4.3 IS
	5.4.4 GET
	5.4.5 SET
	5.4.6 SEND
	5.4.7 RECEIVE
	5.4.8 BIND
	5.4.9 WRITE
	5.4.10 Content Handlers
	InboundSeparatedValue
	InboundXML
	InboundXMLBind
	InboundJSONBind
	InboundNameValue
	InboundFile
	InboundLocation
	InboundStatus
	InboundMultiPart
	InboundTextHandler
	OutboundNameValue
	OutboundXML
	OutboundXMLBind
	OutboundJSONBind
	OutboundSeparatedValue
	OutboundMultiPart
	OutboundFile

	5.4.11 SERVICE_UNLOAD
	5.4.12 HTTPService Examples

	5.5 HTTPInboundJSONBindService
	5.5.1 SERVICE_LOAD
	5.5.2 SERVICE_GET
	5.5.3 BIND
	5.5.4 CLOSE
	5.5.5 GET
	5.5.6 SET
	5.5.7 WRITE
	5.5.8 SEND
	5.5.9 SERVICE_UNLOAD

	5.6 HTTPInboundQueryService
	5.6.1 SERVICE_LOAD
	5.6.2 SERVICE_GET
	5.6.3 GET
	5.6.4 SET
	5.6.5 SEND
	5.6.6 SERVICE_UNLOAD

	5.7 HTTPInboundXMLService
	5.7.1 SERVICE_LOAD
	5.7.2 SERVICE_GET
	5.7.3 GET
	5.7.4 SET
	5.7.5 RECEIVE
	5.7.6 SEND
	5.7.7 SERVICE_UNLOAD

	5.8 HTTPInboundXMLBindService
	5.8.1 SERVICE_LOAD
	5.8.2 SERVICE_GET
	5.8.3 BIND
	5.8.4 CLOSE
	5.8.5 GET
	5.8.6 SET
	5.8.7 WRITE
	5.8.8 SEND
	5.8.9 SERVICE_UNLOAD

	5.9 HTTPInboundSVService
	5.9.1 SERVICE_LOAD
	5.9.2 SERVICE_GET
	5.9.3 GET
	5.9.4 SET
	5.9.5 RECEIVE
	5.9.6 SEND
	5.9.7 SERVICE_UNLOAD

	5.10 HTTPOutboundXMLBindService
	5.10.1 SERVICE_LOAD
	5.10.2 SERVICE_GET
	5.10.3 BIND
	5.10.4 CLOSE
	5.10.5 GET
	5.10.6 SET
	5.10.7 WRITE
	5.10.8 SEND
	5.10.9 SERVICE_UNLOAD

	5.11 HTTPOutboundJSONBindService
	5.11.1 SERVICE_LOAD
	5.11.2 SERVICE_GET
	5.11.3 BIND
	5.11.4 CLOSE
	5.11.5 GET
	5.11.6 SET
	5.11.7 WRITE
	5.11.8 SEND
	5.11.9 SERVICE_UNLOAD

	5.12 SMTPMailService
	5.12.1 What can I use the SMTPMailService for?
	5.12.2 Using the SMTPMailService
	5.12.3 SMTPMailService Commands
	SERVICE_LOAD
	SET
	ADD
	SEND
	RESET
	SERVICE_GET
	SERVICE_UNLOAD

	5.12.4 SMTPMailService Examples
	5.12.5 Troubleshooting

	5.13 SMTPMailAttachmentSignatureService
	5.13.1 SERVICE_LOAD
	5.13.2 SERVICE_GET
	5.13.3 SET
	5.13.4 RESET
	5.13.5 SEND
	5.13.6 SERVICE_UNLOAD

	5.14 POP3MailService
	5.14.1 What can I use the POP3MailService for?
	5.14.2 Using the POP3MailService
	5.14.3 POP3MailService Commands
	SERVICE_LOAD
	OPEN
	GET
	SAVE
	READ
	DELETE
	CLOSE
	SERVICE_GET
	SERVICE_UNLOAD

	5.14.4 POP3MailService Examples
	5.14.5 Troubleshooting

	5.15 SMSService
	5.15.1 What can I use the SMSService for?
	5.15.2 Using the SMSService
	5.15.3 SMSService Properties
	5.15.4 SMSService Commands
	SERVICE_LOAD
	SET
	SEND
	SERVICE_UNLOAD

	5.15.5 SMSService Examples

	5.16 XMLFileService
	5.16.1 SERVICE_LOAD
	5.16.2 SERVICE_GET
	5.16.3 READ
	5.16.4 WRITE
	5.16.5 SEND
	5.16.6 RECEIVE
	5.16.7 DELETE
	5.16.8 RENAME
	5.16.9 SET
	5.16.10 LIST
	5.16.11 SERVICE_UNLOAD

	5.17 XMLBindFileService
	5.17.1 What can I use the XMLBindFileService for?
	5.17.2 Using the XMLBindFileService
	5.17.3 XMLBindFileService Properties
	5.17.4 XMLBindFileService Commands
	SERVICE_LOAD
	READ
	WRITE
	BIND
	GET
	SET
	DELETE
	RENAME
	LIST
	CLOSE
	SERVICE_GET
	SERVICE_UNLOAD

	5.17.5 XMLBindFileService Examples

	5.18 XMLParserService
	5.18.1 SERVICE_LOAD
	5.18.2 SERVICE_GET
	5.18.3 SET
	5.18.4 RESET
	5.18.5 LOAD
	5.18.6 PARSE
	5.18.7 STORE
	5.18.8 TRANSFORM
	5.18.9 GET
	5.18.10 CHECK
	5.18.11 FOREACH
	5.18.12 NEXT
	5.18.13 SERVICE_UNLOAD
	5.18.14 XMLParserService Examples

	5.19 XMLReaderService
	5.19.1 What can I use the XMLReaderService for?
	5.19.2 Using the XMLReaderService
	5.19.3 XMLReaderService Commands
	SERVICE_LOAD
	SET
	OPEN
	NEXT
	CLOSE
	SERVICE_GET
	SERVICE_UNLOAD

	5.20 XMLWriterService
	5.20.1 What can I use the XMLWriterService for?
	5.20.2 Using the XMLWriterService
	5.20.3 XMLWriterService Commands
	SERVICE_LOAD
	SET
	OPEN
	WRITE
	CLOSE
	SERVICE_GET
	SERVICE_UNLOAD

	5.21 XMLQueryService
	5.21.1 What can I use the XMLQueryService for?
	5.21.2 Using the XMLQueryService
	Typical XMLQueryService Command Usage
	Quick Guide to XPath expressions for use with XMLQueryService

	5.21.3 XMLQueryService Commands
	SERVICE_LOAD
	LOAD
	SET
	RESET
	QUERY
	SERVICE_GET
	SERVICE_UNLOAD

	5.21.4 XMLQueryService Example

	5.22 SOAPAgentService
	5.22.1 SERVICE_LOAD
	5.22.2 SERVICE_GET
	5.22.3 OPEN
	5.22.4 SET
	5.22.5 CALL
	5.22.6 GET
	5.22.7 IS
	5.22.8 CLOSE
	5.22.9 SERVICE_UNLOAD

	5.23 SOAPServerService
	5.23.1 SERVICE_LOAD
	5.23.2 SERVICE_GET
	5.23.3 OPEN
	5.23.4 IS
	5.23.5 GET
	5.23.6 SET
	5.23.7 CLOSE
	5.23.8 SERVICE_UNLOAD

	5.24 XMLQueueService
	5.24.1 SERVICE_LOAD
	5.24.2 SERVICE_GET
	5.24.3 RECEIVE
	5.24.4 SEND
	5.24.5 ARCHIVE
	5.24.6 SERVICE_UNLOAD

	5.25 XMLBindQueueService
	5.25.1 SERVICE_LOAD
	5.25.2 SERVICE_GET
	5.25.3 BIND
	5.25.4 CLOSE
	5.25.5 GET
	5.25.6 SET
	5.25.7 WRITE
	5.25.8 ARCHIVE
	5.25.9 SERVICE_UNLOAD

	5.26 FileQueueService
	5.26.1 SERVICE_LOAD
	5.26.2 SERVICE_GET
	5.26.3 READ
	5.26.4 WRITE
	5.26.5 SERVICE_UNLOAD

	5.27 OpenLDAPService
	5.27.1 What can I use the OpenLDAPService for?
	5.27.2 Using the OpenLDAPService
	5.27.3 OpenLDAPService Commands
	SERVICE_LOAD
	BIND
	GET
	ADD
	MODIFY
	DELETE
	SEARCH
	UNBIND
	SERVICE_UNLOAD

	5.27.4 OpenLDAPService Examples

	5.28 JMSFileService
	5.28.1 SERVICE_LOAD
	5.28.2 SERVICE_GET
	5.28.3 CONNECT
	5.28.4 SEND
	5.28.5 RECEIVE
	5.28.6 COMMIT
	5.28.7 ROLLBACK
	5.28.8 CLOSE
	5.28.9 SERVICE_UNLOAD

	5.29 JMSXMLBindService
	5.29.1 SERVICE_LOAD
	5.29.2 SERVICE_GET
	5.29.3 CONNECT
	5.29.4 SEND
	5.29.5 RECEIVE
	5.29.6 BIND
	5.29.7 GET
	5.29.8 SET
	5.29.9 WRITE
	5.29.10 ARCHIVE
	5.29.11 COMMIT
	5.29.12 ROLLBACK
	5.29.13 CLOSE
	5.29.14 SERVICE_UNLOAD

	5.30 JSONBindFileService
	5.30.1 What can I use the JSONBindFileService for?
	5.30.2 Using the JSONBindFileService
	5.30.3 JSONBindFileService Properties
	5.30.4 JSONBindFileService Commands
	SERVICE_LOAD
	READ
	WRITE
	BIND
	GET
	SET
	DELETE
	RENAME
	LIST
	CLOSE
	SERVICE_GET
	SERVICE_UNLOAD

	5.31 RFIDataSourceService
	5.31.1 SERVICE_LOAD
	5.31.2 SERVICE_GET
	5.31.3 CREATE
	5.31.4 CHECK
	5.31.5 DROP
	5.31.6 GET
	5.31.7 PUT
	5.31.8 CLEAR
	5.31.9 SEND
	5.31.10 SERVICE_UNLOAD
	5.31.11 RFIDDataSourceService Examples

	5.32 ZipService
	5.32.1 What can I use the ZipService for?
	5.32.2 Using the ZipService
	5.32.3 ZipService Commands
	SERVICE_LOAD
	CREATE
	OPEN
	ADD
	GET
	CLOSE
	DELETE
	SERVICE_GET
	SERVICE_UNLOAD

	5.32.4 ZipService Examples

	5.33 PDFSpoolFileService
	5.33.1 What can I use the PDFSpoolFileService for?
	5.33.2 Using the PDFSpoolFileService
	5.33.3 PDFSpoolFileService Commands
	SERVICE_LOAD
	CONNECT
	LIST
	SET
	CREATE
	DISCONNECT
	DELETE
	SERVICE_GET
	SERVICE_UNLOAD

	5.33.4 PDFSpoolFileService Examples
	5.33.5 Troubleshooting

	5.34 PDFDocumentService
	5.34.1 SERVICE_LOAD
	5.34.2 SERVICE_GET
	5.34.3 CREATE
	5.34.4 ADD
	5.34.5 CLOSE
	5.34.6 DELETE
	5.34.7 SIGN
	5.34.8 FILL
	5.34.9 READ
	5.34.10 SERVICE_UNLOAD
	5.34.11 XML Content
	Element - document
	Element - content
	Element - template
	Element - color
	Element - style
	Element - annotation
	Element - grid
	Element - add
	Element - import
	Element - import-image
	Element - attachment
	Element - page
	Element - annotation
	Element - anchor
	Element - text-align
	Element - text
	Element - input field
	Element - input hidden
	Element - input password
	Element - input checkbox
	Element - input radio-group
	Element - input radio
	Element - input combobox
	Element - input submit
	Element - table
	Element - column
	Element - list
	Element - item
	Element - if
	Element - return
	Element - line
	Element - circle
	Element - rectangle
	Element - image
	Element - barcode
	Element - sign-box
	Element - date-box
	Element - group-box
	Element - signature

	5.34.12 Example XML Content
	5.34.13 Example RDML function

	5.35 SVFileService
	5.35.1 What can I use the SVFileService for?
	5.35.2 Using the SVFileService
	5.35.3 SVFileService Commands
	SERVICE_LOAD
	READ
	WRITE
	DELETE
	RENAME
	CONNECT
	SET
	LIST
	COMMIT
	ROLLBACK
	DISCONNECT
	SERVICE_GET
	SERVICE_UNLOAD

	5.35.4 SVFileService Examples
	5.35.5 Troubleshooting

	5.36 ExcelService
	5.36.1 What can I use the ExcelService for?
	5.36.2 Using the ExcelService
	5.36.3 ExcelService Commands
	SERVICE_LOAD
	OPEN
	CREATE
	SAVE
	GET
	SET
	ADD
	REMOVE
	READ
	WRITE
	CLOSE
	SERVICE_GET
	SERVICE_UNLOAD

	5.37 ExcelReadService
	5.37.1 What can I use the ExcelReadService for?
	5.37.2 Using the ExcelReadService
	5.37.3 ExcelReadService Commands
	SERVICE_LOAD
	OPEN
	GET
	SET
	ADD
	REMOVE
	READ
	WRITE
	DEFINE
	CLOSE
	SERVICE_GET
	SERVICE_UNLOAD

	5.37.4 ExcelReadService Examples
	5.37.5 Troubleshooting

	5.38 SQLService
	5.38.1 What can I use the SQLService for?
	5.38.2 Using the SQLService
	5.38.3 SQLService Properties
	5.38.4 SQLService Commands
	SERVICE_LOAD
	CONNECT
	SET
	GET
	EXECUTE
	READ
	COMMIT
	ROLLBACK
	METADATA
	DISCONNECT
	SERVICE_UNLOAD

	5.38.5 SQLService Examples

	5.39 BASE64FileService
	5.39.1 SERVICE_LOAD
	5.39.2 SERVICE_GET
	5.39.3 ENCODE
	5.39.4 DECODE
	5.39.5 DELETE
	5.39.6 RENAME
	5.39.7 SET
	5.39.8 LIST
	5.39.9 SERVICE_UNLOAD

	5.40 PGPFileService
	5.40.1 SERVICE_LOAD
	5.40.2 SERVICE_GET
	5.40.3 ENCODE
	5.40.4 DECODE
	5.40.5 DELETE
	5.40.6 RENAME
	5.40.7 SET
	5.40.8 LIST
	5.40.9 SERVICE_UNLOAD

	5.41 AxesTerminalService
	5.41.1 What can I use the AxesTerminalService for?
	5.41.2 Using the AxesTerminalService
	5.41.3 AxesTerminalService Scripts
	5.41.4 AxesTerminalService Commands
	SERVICE_LOAD
	CONNECT
	DISCONNECT
	CAPTURE
	EXECUTE
	GET
	GETBYNAME
	GETBYPOS
	GETFIELD
	LOADSCRIPT
	SEND
	SETBYNAME
	SETBYPOS
	SETCURSOR
	SERVICE_GET
	SERVICE_UNLOAD

	5.41.5 AxesTerminalService Examples

	5.42 HashService
	5.42.1 SERVICE_LOAD
	5.42.2 SERVICE_GET
	5.42.3 HASH
	5.42.4 SERVICE_UNLOAD

	6. Create Your Own Services
	6.1 Create your Custom Service
	6.2 Java Service Manager Interfaces
	6.2.1 JSMService Interface
	6.2.2 JSMContainer Interface
	6.2.3 JSMCommand Interface
	6.2.4 JSMClient Interface
	6.2.5 JSMResource Interface
	6.2.6 JSMStorage Interface
	6.2.7 JSMTrace Interface
	6.2.8 JSMList Interface
	6.2.9 JSMFieldList Interface
	6.2.10 JSMField Interface

	6.3 Java Service Manager Classes
	6.3.1 JSMResponse Class
	6.3.1.1 Constructors
	6.3.1.2 Getter/Setter Methods

	6.3.2 JSMException Class
	6.3.2.1 Constructors
	6.3.2.2 Other Exception Handling

	6.3.3 Miscellaneous Helper Class
	6.3.4 Native IBM i Classes
	6.3.4.1 DataQueue Class
	6.3.4.2 MessageQueue Class
	6.3.4.3 UserSpace Class

	6.3.5 Utility Classes
	6.3.5.1 DataTypeText
	6.3.5.2 DataTypePacked
	6.3.5.3 DataTypeZoned

	7. Integrator Studio
	7.1 Get Started with Studio
	7.1.1 Studio Main Window
	7.1.2 Set Java Compiler and Java Runtime

	7.2 Use Studio with Projects
	7.3 Use Studio with Servers
	7.4 Use Studio with Services
	7.5 Use Studio to check sections
	7.6 Projects
	7.6.1 New Project
	7.6.2 Open Project
	7.6.3 Publish and Retrieve
	7.6.4 Deployment

	7.7 Servers
	7.7.1 New Server
	7.7.2 Open Server

	7.8 Services
	7.8.1 New Service
	7.8.2 Open Service

	7.9 Solutions
	7.9.1 New Solution

	7.10 XML Editor
	7.11 XML Viewer
	7.12 XMLSchema Viewer
	7.13 Trace Viewer
	7.14 Text Editor
	7.15 SEF Editor
	7.16 Property Editor
	7.17 XSL Compiler
	7.18 PKI Editor
	7.18.1 Introduction to Certificates
	7.18.2 Create a PKI Project
	7.18.3 Create a Certificate Authority
	7.18.4 Create a Certificate Request
	7.18.5 Create a Certificate Client
	7.18.6 PKI Editor Configuration
	7.18.7 View Certificate
	7.18.8 View Certificate Request
	7.18.9 View Remote Host
	7.18.10 View Certificates and Keystores using Studio
	7.18.11 Keystore Management
	7.18.12 PEM Format
	7.18.13 IBM i Digital Certificate Manager Interoperability

	7.19 CRL Editor
	7.19.1 Create a CRL Project
	7.19.2 Distribute a CRL File

	7.20 SOAP Wizard
	7.20.1 Create a SOAP Agent Project
	7.20.2 Updating a SOAP Agent Project
	7.20.3 Create a SOAP Server Type
	7.20.4 Create a SOAP Server Project
	7.20.5 SOAP Server Wizard Naming Conventions
	Example of a SOAP Server Wizard generated bean class
	Example of Apache Axis WSDL2Java generated bean class

	7.21 XML Binding Wizard
	7.21.1 Sample XML Document
	7.21.2 Changing Sample XML Document
	7.21.3 Create an XML Binding Project
	JavaScript Function Example

	7.22 JSON Binding Wizard
	7.22.1 Create a JSON Type
	7.22.2 Create a JSON Binding Project
	7.22.3 Create a JSON HTML Browser Client

	7.23 XML Transformation Wizard
	7.23.1 Architecture Overview
	7.23.2 Sample XML Document
	7.23.3 Create an XML Transformation Project
	7.23.4 How to use the XML Transformation Wizard
	File Menu
	Project Tab
	Source Tab
	Fields Tab
	List Tab
	Inbound Transformation Tab
	Outbound Transformation Tab
	Map Fields
	Test Transformation
	Save Transformation

	7.24 Repository Viewer
	7.24.1 Create a Repository Project
	7.24.2 LANSA Repository Functions
	JSMLR01 LANSA Process List
	JSMLR02 LANSA Process Information
	JSMLR03 LANSA Function Information
	JSMLR04 LANSA File List
	JSMLR05 LANSA File Information
	JSMLR06 LANSA Field List
	JSMLR07 LANSA Field Information
	JSMLR08 LANSA SOAP Type List
	JSMLR09 LANSA SOAP Type Information
	JSMLR10 LANSA JSON Type List
	JSMLR11 LANSA JSON Type Information
	JSMLR0A LANSA Type List
	JSMLR0B LANSA Type Information

	7.25 Test Editor
	7.25.1 Create a Test Project
	7.25.2 Test Samples

	9. Remote Function Invocation
	9.1 Using the RFIService client class
	9.2 Working with the RFIDataSource on the client
	9.3 RFI Example
	9.4 RFI Example Viewer

	10. Troubleshooting
	10.1 How to Display the version of Java
	10.2 How to Display the version of the Java Service Manager
	10.3 Tracing
	10.4 STRJSM command not working
	10.5 Locating error messages on IBM i
	10.6 JSMDirect or JSMProxy not working
	10.7 Java Virtual Machine is shut down when you log off from a Windows Server

	11. Recommendations
	Integrator Tutorials
	About the Tutorials
	Naming conventions

	INT001 - Verify JSM Install & Test
	Step 1. Find a specific SET example
	Step 2. Execute SET218 FTP example
	Step 3. Locating Source Code
	Summary

	INT002 - Getting Started with Basic JSM Operations
	Step 1. Create a Function using Template JSMXSKEL
	Step 2. Add a Working list to save Status and Messages to the CHECK_STS Subroutine
	Step 3. Create RDML function to display statuses and messages
	Step 4. Test iiiFN01 function
	Summary

	INT003 - Using the FTP Service
	Step 1. Build the Basic JSM functions
	Step 2. Build the JSM Commands for the FTP Service
	Step 3. Test iiiFN03 and iiiFN04 functions
	Step 4. Set up file JSMCLTDTA.txt - Optional
	Summary

	INT004 - Using the LANSA User Agent
	Concepts
	Step 1. Create a User Agent Solution and edit Host Properties file
	Step 2. Create a CSV file with Column Headings to Send
	Step 3. Create a Server Function iiiFN05
	Step 4. JSMDirect Service Configuration
	Step 5. Test iiiFN05 function
	Step 6. Ignore the Column Headings
	Step 7. Using a CSV without Column Headings
	Step 8. Sending an Excel spreadsheet. Optional
	Step 9. Invoke User Agent in Batch Mode
	Summary

	INT005 - Department Inquiry Bindings
	Concepts
	Step 1. Extend Studio Project iii Training
	Step 2. Create Request XML - iiiPRO04_request.xml
	Step 3. Create Response XML - iiiPRO04_response.xml
	Step 4. Create iiiFN06 Server Inbound (request) binding
	Step 5. Create iiiFN06 Server Outbound (response) binding
	Step 6. Binding Deployment and Configuration
	Summary

	INT006 - Department Inquiry Functions
	Step 1. Code iiiFN06 Server GET functionality
	Step 2. Code iiiFN06 Server SET functionality
	Step 3. iiiFN06 Update JSMDirect Configuration Table
	Step 4. Create User Agent Host Configuration file
	Step 5. Test iiiFN06 function with User Agent
	Step 6. Tracing (Optional)
	Summary

	INT007 - Department List Inquiry
	Concepts
	Step 1. Create XML iiiPRO05_request.xml
	Step 2. Create XML iiiPRO05_response.xml
	Step 3. Create iiiFN07 Server inbound (request) binding
	Step 4. Create iiiFN07 Server outbound (response) binding
	Step 5. Binding Deployment and Configuration
	Step 6. Code iiiFN07 Server GET functionality
	Step 7. Code iiiFN07 Server Database Logic and SET functionality
	Step 8. Update Configuration Table for iiiFN07
	Step 9. Create User Agent file for iiiFN07
	Step 10. Test iiiFN07 function with User Agent
	Summary

	INT008 - Department & Employee Server
	Concepts
	Step 1. Create XML iiiPRO06_request.xml
	Step 2. Create XML iiiPRO06_response.xml
	Step 3. Create iiiFN08 Server Inbound (request) binding
	Step 4. Create iiiFN08 Server Outbound (response) binding
	Step 5. Binding Deployment & Configuration
	Step 6. Code iiiFN08 Server GET Functionality
	Step 7. Code iiiFN08 Server Database Logic and SET functionality
	Step 8. Update JSMDirect Configuration Table for iiiFN08
	Step 9. Create User Agent Host Configuration file for iiiFN08
	Step 10. Test iiiFN08 Server Function with User Agent Client
	Summary

	INT009 � Department & Employee Client (Optional)
	Step 1. Create iiiFN09 Client Outbound (request) bindings
	Step 2. Create iiiFN09 Client Inbound (response) bindings
	Step 3. Binding Deployment and Configuration
	Step 4. Code iiiFN10 Client Wrapper Function
	Step 5. Code iiiFN09 Client SET functionality
	Step 6. Code iiiFN09 Client GET functionality
	Step 7. Test iiiFN08 Server with Client functions
	Step 8. A Client Visual Form (optional)
	Summary

	INT010A - SOAP Service - Define Server
	Step 1. Create a New project
	Step 2. Define custom SOAP Server Types
	Step 3. Create a new SOAP Server Solution
	Step 4. Create a new SOAP Operation
	Step 5. Map Parameters to Program Variables
	Step 6. Build the SOAP Server Solution
	Step 7. Deploy the SOAP Server Solution
	Part A. Publish Files
	Part B. Define Service entry

	Step 8. Create the SOAP Server Business Logic
	Summary

	INT010B - SOAP Service - Define Agent
	Step 1. Create a New Agent Solution
	Step 2. Map Parameters to Program Variables
	Step 3. Build the SOAP Agent Solution
	Step 4. Deploy the SOAP Agent solution
	Step 5. Review required Program to use the SOAP Agent Solution
	Step 6. Create form iiiFRM02 - Get Employees using SOAP
	Summary

	INT010C - SOAP Service - Test
	INT011 - Create Excel Document
	Step 1. Create RDMLX function iiiFN12
	Step 2. Complete function iiiFN12
	Step 3. Create RDML function iiiFN13
	Summary

	INT012 - Create Excel Document with Template and Formatting
	Step 1. Create RDMLX function iiiFN14
	Step 2. Complete Function iiiFN14
	Step 3. Create Function iiiFN15 and test
	Step 4. Add DEFINE Command to Format Output
	Step 5. Format Start Date Column
	Step 6. Insert a Total Salary Formula
	Step 7. Password Protect the Document
	Summary

	INT013 - Create PDF Output using PDFDocumentService
	Step 1. Plan the PDF Page Content
	Step 2. Create the PDF XML Template
	Step 3. Create an RDMLX Function to Produce a Single Page PDF
	Step 4. Create Function iiiFN17 - Create PDF Output for Employees
	Step 5. Create Function iiiFN18 � Test PDF Output for Employees
	Summary
	INT013 - Appendix A
	INT013 - Appendix B
	INT013 - Appendix C

	Personnel System
	Physical Database Map of Personnel System
	Sample Data in the Personnel Files

	Create RDMLX Templates
	JSMXSKEL Source Code
	BBJSMXCMD Source Code

	Appendix A. Performance and Tuning
	Java Service Manager Thread Safety
	IBM i - Java Heap Size
	IBM i - Pool Size
	IBM i � Work with JVM Jobs
	IBM i - Tuning GC for Java
	IBM i - DUMP JVM
	IBM i - ANALYZE JVM
	IBM i - Network Performance
	IBM i - Java License Program
	Oracle � Java Performance Tuning
	JSM Console

	Appendix B. Client Application Examples
	RDML Examples
	Open/Close Example
	FTPService Example
	HTTP Service Example (XML Inbound)
	HTTP Service Example (XML Outbound)
	SMTPMailService Example
	POP3MailService Example
	SMSService Example
	XMLBindFileService Example
	Step 1: XML Binding Wizard
	Step 2: Create some folders and some sample XML documents
	Step 3: RDML Function Code

	XMLParserService Example 1
	XMLParserService 2 (Node traversal)
	XMLQueryService Example
	MQSeries Built-in Function Example
	MQSeries and DataQueue programs Example
	OpenLDAPService Example
	RFIDataSourceService Example
	ZipService Example
	PDFSpoolFileService Example
	SVFileService Example
	ExcelReadService Example
	SQLService Examples
	Example 1 - Use of the SET PARAMETER(*SQL) command
	Example 2 - Use of the SET PARAMETER(*LIST)
	Example 3 - READ command receiving the result set from query

	JSMDirect Example

	RDMLX Examples
	FTPService Example
	SMTPMailService
	POP3MailService Example
	SMSService Example
	XMLBindFileService
	Step 3. RDMLX Form Code

	OpenLDAPService Example
	ZipService Example
	PDFSpoolFileService Example
	SVFileService Example
	ExcelReadService Example
	SQLService Example
	aXesTerminalService Example

	RPG Examples
	FTPService Example
	SMTPMailService Example
	POP3MailService Example
	SMSService Example
	ZipService Example
	PDFSpoolFileService Example
	SVFileService Example
	ExcelReadService Example
	ILE RPG Client JSM API Example

	C Examples
	C Client Open/Close Example
	C Client Working List Example

	Appendix C. EDI Services
	EDICatalogService
	SERVICE_LOAD
	SERVICE_GET
	DELETE
	RENAME
	COPY
	MOVE
	LIST
	SET
	GET
	READ
	SPLIT
	BREAK
	SPLITBREAK
	FORMAT
	VALIDATE
	SERVICE_UNLOAD

	EDIDataSetService
	SERVICE_LOAD
	SERVICE_GET
	GET
	READ
	WRITE
	SERVICE_UNLOAD

	EDIDatabaseService
	SERVICE_LOAD
	SERVICE_GET
	CONNECT
	SET
	SEND
	RECEIVE
	COMMIT
	ROLLBACK
	METADATA
	DISCONNECT
	SERVICE_UNLOAD

	EDIInterchangeService
	SERVICE_LOAD
	SERVICE_GET
	BEGIN
	ADD
	END
	WRITE
	VALIDATE
	GET
	SERVICE_UNLOAD

	Appendix D. AS2 and AS3 Services
	AS2InboundService
	SERVICE_LOAD
	SERVICE_GET
	GET
	RECEIVE
	SAVE
	SEND
	SERVICE_UNLOAD
	Sample AS2InboundService resources

	AS2OutboundService
	SERVICE_LOAD
	SERVICE_GET
	SEND
	GET
	SERVICE_UNLOAD
	Sample AS2OutboundService resources

	AS2OutboundReceiptService
	SERVICE_LOAD
	SERVICE_GET
	SEND
	GET
	SERVICE_UNLOAD
	Sample AS2OutboundReceiptService resources

	AS2CertificateService
	SERVICE_LOAD
	SERVICE_GET
	CREATE
	SERVICE_UNLOAD

	AS3FileService
	SERVICE_LOAD
	SERVICE_GET
	READ
	GET
	RECEIVE
	CREATE
	WRITE
	SERVICE_UNLOAD
	Sample AS3FileService resources

